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GLOBAL ASPECTS OF THE REDUCIBILITY
OF QUASIPERIODIC COCYCLES

IN SEMISIMPLE COMPACT LIE GROUPS

Nikolaos Karaliolios

Abstract. — In this mémoire we study quasiperiodic cocycles in semi-simple
compact Lie groups. For the greatest part of our study, we will focus ourselves
to one-frequency cocyles. We will prove that C∞-reducible cocycles are dense
in the C∞ topology, for a full measure set of frequencies. Moreover, we will
show that every cocycle (or an appropriate iterate of it, if homotopy appears
as an obstruction) is almost torus-reducible (i.e. can be conjugated arbitrarily
close to cocycles taking values in an abelian subgroup of G). In the course
of the proof we will firstly define two invariants of the dynamics, which we
will call energy and degree and which give a preliminary distinction between
(almost-)reducible and non-reducible cocycles. We will then take up the proof
of the density theorem. We will show that an algorithm of renormalization
converges to perturbations of simple models, indexed by the degree. Finally,
we will analyze these perturbations using methods inspired by K.A.M. theory.

c⃝ Mémoires de la Société Mathématique de France 146, SMF 2016
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Résumé. — Ce mémoire porte sur l’étude des cocycles quasi-périodiques à va-
leurs dans des groupes de Lie compacts semi-simples. Nous nous restreindrons
au cas des cocycles à une fréquence. Nous démontrons que, pour un ensemble
de fréquences de mesure de Lebesgue pleine, l’ensemble des cocycles C∞ qui
sont C∞-réductibles sont C∞-denses. De plus, sous la même condition arith-
métique, nous démontrons que tout cocycle (quitte à l’itérer afin de simplifier
suffisamment l’homotopie du lacet dans le groupe), est presque tore-réductible
(c’est-à-dire qu’il peut être conjugué arbitrairement proche à des cocycles pre-
nant valeurs dans un sous-groupe abélien donné de G).

Le premier pas de la démonstration est l’obtention de deux invariants de
la dynamique, qu’on appelle énergie et degré, qui distinguent en particulier
les cocycles (presque-)réductibles des cocycles non-réductibles. On entamera
ensuite la démonstration du théorème principal. Nous démontrons dans un se-
cond temps qu’un algorithme dit de renormalisation permet de ramener l’étude
de tout cocycle à celle des perturbations de modèles simples indexés par le de-
gré. Nous analysons ensuite ces perturbations par des méthodes inspirées de la
théorie K.A.M.

MÉMOIRES DE LA SMF 146
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CHAPTER 1

INTRODUCTION

This mémoire is concerned with the study of quasiperiodic cocycles in
semisimple compact Lie groups. Cocycles are discrete dynamical systems
whose phase space is a fibered space X × E → X. Fibered dynamics is given
by the iteration of a mapping of the type

(T, f) : X × E −→ X × E, (x, e) $−→ (Tx, f(x, e))

where T is a mapping of X into itself, and f : X ×E → E. Consequently, the
fiber {x} × E is mapped into the fiber {Tx} × E following e $→ f(x, e). The
notation SW(X,E) for the set of such dynamical systems is classical. If E is a
group or a space on which a group acts, this kind of fibered dynamics is called
a cocycle. We can then note a cocycle by

(T, f) : X × E −→ X × E, (x, e) $−→ (Tx, f(x).e)

with f : X → E and the dot . stands for the group multiplication or action.
The n-th iterate of the cocycle (T, f), n ≥ 1, is of the form

(T, f)n.(x, e) = (Tnx, f(Tn−1x) ◦ · · · ◦ f(x).e)

We say that two cocycles ψi = (T, fi) ∈ SW(X,E), i = 1, 2, over the same
transformation are (semi-)conjugate iff there exists g : X → E such that

ψ1 ◦ (Id, g) = (Id, g) ◦ ψ2

and we remark that it is a notion stronger than that of dynamical (semi-)
conjugation by a mapping h : X × E ! satisfying ψ1 ◦ h = h ◦ ψ2, since
conjugation of cocycles preserves the fibered-space structure of X × E.

In general contexts we suppose that (X,µ), the basis of the dynamics, is
a measured space and that T is ergodic with respect to µ. A particular case,
which brings us to the subject of our study, occurs when X = Td = Rd/Zd,
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a d-dimensionan torus, and T = Rα : x $→ x + α, is a minimal translation,
and therefore uniquely ergodic with respect to the Haar measure on the torus.
These cocycles are called quasiperiodic and α is called the frequency of the
cocycle.

We remark here that, depending on the structure of E, the fibers, we can
define measurable cocycles, or Ck-differentiable cocycles, with k ∈ N∪ {∞,ω}
(ω stands for real analytic), according to the regularity of the mapping f .

Cocycles in linear groups come up naturally in dynamical systems. For ex-
ample, if ϕ is a diffeomorphism of the torus Td, its differential defines a cocycle
on T Td ≈ Td × Rd in a natural way by

(x, y) $−→ (ϕ(x), Dϕ(x).y)

An other class of examples, closer to our subject, is that of fibered linear
flows. Such a flow is defined as the fundamental solution of the system of ODEs

X ′ = F (θ).X, θ′ = ω = (α, 1) ∈ Td+1

where F : Td+1 → g, and g is a matrix algebra in MN (R). The map of first
return in the vertical circle T ↪→ Td × T is a cocycle on {0} × Td × RN . It is
quasiperiodic if {Rω mod Zd+1} is dense in Td+1.

When α is rational, such flows are perfectly understood thanks to the Flo-
quet representation of solutions: The solutions of the system of ODEs

X ′ = U(θ).X, θ′ = k ∈ Qd(1)

are of the form X(t) = B(kt+θ0).etU0(θ0).X0 where B(·) is a 2Zd-periodic map
in the matrix group of algebra g. For cocycles, the Floquet representation of a
solution corresponds to conjugation of a cocycle to a constant one: a cocycle
(Rα, f) is called constant if f : Td → G is a constant mapping. Such cocycles
are called reducible.

This normal form theorem breaks down when α is irrational, and the goal of
the theory is to examine the density properties of Floquet-type solutions, and
the possibility of approximation of any given vector field with a field admitting
Floquet-type solutions. We now restrict ourselves to the case of cocycles in
Td×G, where G is a semisimple compact Lie group, such as SU(N) or SO(N).

The first step is the study of vector fields close to constants, or cocycles close
to constants. In this setting the breakdown of Floquet theory is attributed to
small divisor phenomena. The use of K.A.M. machinery allows, however, to
give an affirmative answer to both questions, for a full measure set of fre-
quencies (called Diophantine) (see [29] and the references therein). Moreover,
Floquet representations occur in full measure sets for generic one-parameter

MÉMOIRES DE LA SMF 146
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families of cocycles. On the other hand, we know that the Floquet representa-
tion does break down for generic cocycles (cf. [14]).

The second step was carried out in a first time by R. Krikorian [31] for one-
frequency cocycles in SU(2). There, under a full measure condition on the fre-
quency, the density of reducible cocycles is shown to be true when G = SU(2).
However, not all cocycles can be conjugated arbitrarily close to a reducible co-
cycle (which amounts to the approximation by Floquet-type solutions in the
formulation above). It is however shown that a weaker form of approximation
can be obtained: every cocycle can be conjugated arbitrarily close to a cocy-
cle taking values in the subgroup of diagonal matrices. Cocycles conjugated
to diagonal ones are called torus-reducible and those who can be conjugated
arbitrarily close to diagonal cocycles are caled almost torus-reducible.

The goal of this mémoire is to generalize these results to more general
contexts. Here, some complications due to homotopy have to be faced.

Theorem 1.1. — For a.e. frequency in T, and for any given semisimple com-
pact Lie group G, reducible cocycles are dense in SW∞,1(T, G), the subspace
of SW∞(T, G) formed by cocycles homotopic to Id : T×G !.

For cocycles non-homotopic to the identity, we obtain

Theorem 1.2. — Under the same hypotheses, if a cocycle (α, A(·)) belongs
to SW∞,m(T, G), the subspace of cocycles whose m-th iterate is homotopic
to the Id, then (α, A(·))m belongs to SW∞,1(T, G) and it is accumulated by
reducible cocycles in SW∞,1(mT, G).

where we remark that the approximation holds for cocycles of longer periods.
The second part of R. Krikorian’s theorem also admits a generalization.

Theorem 1.3. — Under the same hypotheses on α and G, every cocycle in
SW∞,1(T, G) is almost torus-reducible.

Again, for non-homotopic cocycles we have to consider an iterate:

Theorem 1.4. — Under the same hypotheses on α and G, for every cocycle
(α, A(·)) ∈ SW∞,m(T, G), there exists χ dividing m such that (α, A(·))χ ∈
SW∞,m/χ(T, G) is almost torus-reducible.

We remark that almost torus-reducibility holds without passing to longer
periods, but only by iterating.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



4 CHAPTER 1. INTRODUCTION

The proof follows the line of argument of R. Krikorian’s article cited above,
but we also use some techniques appearing in [17], and adapt them to the more
general algebraic setting. A brief presentation of the argument is as follows.

A theorem by R. Krikorian stating that a cocycle is C∞-reducible iff the
sequence of its iterates is precompact in C∞. This fact allows us to construct
examples of cocycles that are not reducible, and in fact not even almost re-
ducible. These are the periodic geodesics of the group over any irrational ro-
tation. Such examples demonstrate the fact that almost reducibility is not a
global phenomenon, and explains the use of almost torus-reducibility in its
place.

Subsequently, the renormalization scheme allows us to identify such cocycles
as the only models of cocycles for which we can rule out almost reducibility.
Disregarding homotopy issues, if there is no way of conjugating a given cocycle
close to a constant one, then it can be conjugated close to a periodic geodesic.

Finally, we take up the local study of the different types of models of dynam-
ics, where a diophantine condition on the rotation is needed so that K.A.M.
techniques can be applicable. The local study of periodic geodesics over such
rotations shows that almost reducibility to the model holds in a small enough
neighbourhood, under the condition that the scheme is initiated on a cocycle
obtained as a limit of renormalization. Moreover, we show that cocycles who
are driven by renormalization towards shorter geodesics (or constant cocycles)
are dense in a neighbourhood of these models. Finally, we prove the almost
reducibility theorem for cocycles close to constants, and reprove the theorem
of local density of reducible cocycles.

The global almost torus-reducibility theorem has now been proved case-by-
case, and the global density theorem follows from a finite induction argument.
If the cocycle can be conjugated to a neighbourhood of a constant cocycle, it
is accumulated by reducible ones. If not, it is almost torus-reducible, and the
corresponding periodic geodesic is accumulated by cocycles conjugate close to
shorter periodic geodesics. Since the periodic geodesics form a discrete set,
after a finite number of similar steps and arbitrarily small perturbations we
obtain a cocycle that can be conjugated close to constant ones, and the theorem
has been proved.

MÉMOIRES DE LA SMF 146
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CHAPTER 2

BASIC DEFINITIONS AND TOOLS FROM
ALGEBRA AND ANALYSIS

2.1. Algebra

2.1.1. Compact Lie groups. — For this section, we refer mainly to [8],
whose notations we have adapted, and [21], as well as [6], [10] and [29]. By G
we will denote a real connected compact semi-simple Lie group, and sometimes
refer to it simply as a compact group, even though some of the results presented
below are true in a more general context.

2.1.1.1. Generalities. — Let G be a real connected compact Lie group,
furnished with a Haar measure, both left- and right-invariant, inducing
an invariant Riemannian metric d(·, ·). The following theorem by Gleason-
Montgomery-Zipplin supplies a sufficient condition of algebraic and topological
nature under which a topological group is a Lie group.

Theorem 2.1. — Let G′ be a locally compact topological group satisfying the
additional hypothesis of non-existence of small subgroups. Then G′ is a Lie
group.

The hypothesis of non-existence of small subgroups is the following: there
exists a neighborhood of the Id which contains only the trivial topological
subgroup Id. The study of real compact groups is capital in the theory of Lie
groups, as explained in [8] and their study is to a large extent reduced to that
of semisimple ones (1). Under these hypotheses, G admits a representation in
a unitary group. For this reason, with the exception of this first chapter, we
will abuse the notation A∗ for the inverse of A ∈ G.

1. Semisimplicity will be defined later on by means of a geometric criterion.
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The tangent space to the identity of G, furnished with the linear antisym-
metric commutator [·, ·] : g×g → g, is by definition its Lie algebra g. The endo-
morphisms of g preserving its structure as a Lie algebra are denoted by Aut(g),
while GL(g) denote the linear transformations of the vector space g.

The exponential mapping

exp : g −→ G, h $−→ exp(h) = eh

is defined as the time one of the flow generated by the right-invariant vec-
tor field associated to h. As a result of the compactness of the group, the
exponential mapping is onto.

We can define the adjoint representation of the group into its algebra as the
differential at the Id of the mapping B $→ A.B.A−1, for A ∈ G fixed. We thus
obtain a linear automorphism

AdA : h $−→ d

dt
A.B(·).A−1|t=0

where B(·) is defined locally around 0 and such that d
dtB(·)|t=0 = hId and

B(0) = Id. The image of G in Aut(g) under its adjoint representation is noted
by Inn(g) and called the inner automorphisms of g. It is a subgroup of Aut(g)
since [AdA .h,AdA .h′] = AdA .[h, h′] holds for all h and h′ in g. We also have
that A ∈ ZG, if, and only if, Ad(A) = Idg. Therefore, Inn(g) is naturally
isomorphic to G/ZG, which is the Lie group that has the same Lie algebra
as G, but whose center is reduced to the Id.

We can also define the adjoint representation of g into itself via the com-
mutator: for h fixed, let adh : h′ $→ [h, h′] and the two representations are
connected by

Ad(eh).h′ = ead(h).h′,

for all h, h′ ∈ g. This representation induces a bilinear symmetric form on g,
called the Cartan-Killing form, by

〈
h, h′

〉
= − tr(adh ◦ adh′)

The group and the algebra are semi-simple if the Cartan-Killing form is non-
degenerate, and it can be proved that a semi-simple group is compact if it is
positive definite, in which case the algebra is said to be compact. The Rieman-
nian structure induced by a non-degenerate Cartan-Killing form is compatible
with the one induced by the Haar measure.

The center of G, denoted by ZG is finite and its cardinal will be denoted cG.
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The adjoint action ofG is an isometry of g with respect to the Cartan-Killing
form and the latter satisfies identically

〈
[h, h′], h′′

〉
=

〈
h, [h′, h′′]

〉

We will use the following theorem, from [8] (21.6.9).

Theorem 2.2. — Let G be a connected real Lie group (not necessarily com-
pact or semisimple), ZG its center and g its Lie algebra. Then, the following
conditions are equivalent:

1. The group G/ZG is compact
2. The group G is isomorphic to a product Rm ×G1, where G1 is compact
3. The group G̃, the universal covering of G, is isomorphic to a product

Rn ×K, where K is a compact semi-simple simply connected Lie group.
4. The Lie algebra g is decomposed in c ⊕ D(g), where c is its center and

D(g) is the derived algebra [g, g]. The restriction of the Cartan-Killing
form to D(g) is positive non-degenerate.

Under these assumptions, D(g) is isomorphic to the Lie algebra of K;
its center ZK is finite; G is isomorphic to G̃/D, where D is a discrete
subroup of Rn × ZK , ZG is isomorphic to (Rn × ZK)/D and if we call
Ǧ = G/ZG, we have ZǦ = {Id}. The groups Ad(G̃), Ad(G) and Ad(K),
viewed as subroups of Aut(g) are all equal and isomorphic to G/ZG =
Inn(G).

2.1.1.2. Tori and maximal tori. — For this section, see [8], 21.7. From this
section on, the group is supposed compact semisimple, even though some of
the results hold if we drop the semisimpleness assumption.

Let us consider a connected abelian subgroup H ⊂ G. Since G is compact,
H is in fact homomorphic to a torus Rd/Zd and for this reason we will call
it a torus of G. Using standard arguments, we can find T , a maximal abelian
subgroup of G (called a maximal torus (2)), containing H. Maximality is un-
derstood in the sense of set-theoretical inclusion. We have then

Proposition 2.3. — 1. Let T be a maximal torus of G. Then, for any
A ∈ G, there exists S ∈ G such that S.A.S−1 ∈ T . In particular, G
agrees set-theoretically with the union of its maximal tori.

2. If T and T ′ are maximal tori of G, there exists S ∈ G such that
S.T ′.S−1 = T .

2. Since the maximal tori of matrix groups such as SU(w + 1) are formed by diagonal

matrices, we will sometimes abuse the word diagonal and its derivatives.
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10 CHAPTER 2. BASIC DEFINITIONS AND TOOLS

3. The centralizer ZG(H) of a torus H ⊂ G is connected and, if S ∈ ZG(H),
then H∪{S} is contained in a maximal torus.

4. The neutral component Z0
G(S) of ZG(S) (the centralizer of S ∈ G) is

equal to the union of the maximal tori containing S.

By 2, the dimension of maximal tori of G is a constant depending only on
the group. It is called the rank of G and we will denote it by w.

We now give the following definition, concerning the number of maximal
tori containing an element of G.

Definition 2.4. — An element in S ∈ G is called regular if it is contained
in a unique maximal torus, and generic if it generates it topologically, i.e. if
the closure of {Sk}k∈Z is the torus itself. It will be called singular if it is not
regular.

Genericity is a generic condition, just as minimality is generic in the space of
translations in Tw. Therefore, S is regular iff the neutral component of ZG(S)
is a maximal torus and a generic element is a fortiori regular. An example of
a regular but not generic element can be constructed by using any root of 1
in S1 other than −1. We refer the reader to section 1.1.2 for the canonical
embedding S1 ↪→ SU(2) which gives an example of such an element in a Lie
group. More concretely, we consider elements of SU(2) of the type

[
exp(2iπp/q) 0

0 exp(−2iπp/q)

]

with p, q ∈ Z, q ̸= 0 and
p

q
̸= 1, 12 . It can be verified that if S is of this form, it

commutes only with diagonal matrices (which are the maximal tori in SU(2),
as we will see in subsection 1.1.2), but Sq = Id, so that S is not generic.

The normalizer of a maximal torus

NG(T ) = {S ∈ G, S.T .S−1 ⊂ T }

in general strictly contains the torus. The factor group W (T ) = NG(T )/T is
a finite group, called the Weyl group with respect to T . Since any two tori
are obtained by conjugation, all the groups W (T ) are all isomorphic one to
another and therefore isomorphic to the Weyl group of G, noted W . For any
torus H, the group WH = NG(H)/ZG(H) is a subgroup of W and we have
equality if H is maximal. In the particular case where S ∈ G is given, the
intersection of all maximal tori containing S is a torus H of G, and the group
WH is isomorphic to W if, and only if, H is a maximal torus, i.e. if s is regular.
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We also reprove the following lemma, a proof of which using techniques from
Algebraic Geometry can be found in [29] (lemma 2.3.14).

Lemma 2.5. — Let G be a real compact semi-simple Lie group. Then, there
exists a minimal positive integer χG, depending only on the group G and
smaller than #W ! with the following property. If K, a subset of G, is abelian,
then

KχG = {kχG , k ∈ K}
is a subset of a maximal torus of G. The integer χG is equal to 1 if G =
SU(w + 1).

Proof. — Let A,B ∈ G such that ABA−1B−1 = Id and suppose that there
does not exist a maximal torus passing by both A and B.

We can fix, therefore, a maximal torus TA containing A. Since B /∈ TA, there
exists Ã ∈ TA such that

BÃB−1Ã−1 = C ′ ̸= Id,

where C ′ ∈ Z0
G(A). For this, one only need consider a path Φ(·) : [0, 1] → TA

connecting Ã to the Id and to verify that then Φ(·)BΦ(·)−1B−1 commutes
with A at all times, while it connects C ′ with the Id. In particular, each
generic element Ã is such.

We also remark that, by the commutation relation ABA−1B−1 = Id, we find
directly that such a B defines a whole class B.Z0

G(A) of elements commuting
with A but not on the same torus as A.

Since C = C ′.Ã ∈ Z0
G(A) and generic (it is conjugate to Ã by B), it defines

a unique maximal torus TC . By Point 2 of proposition 2.2 applied to the
group Z0

G(A) gives the existence of an S ∈ Z0
G(A) such that S−1.TC .S = TA,

which implies that

S.B.TA.B−1.S−1 = TA.
Therefore, S.B is in W (TA), and does not depend on the maximal torus TA.
Therefore, Ad(S.B)|TA is of finite order, so that (S.B)n ∈ TA for some n not
bigger than #W . Thus, Bn ∈ Z0

G(A), which implies that Ad(Bn) preserves
some maximal torus passing by A, and therefore Bn is in this torus.

For any given group G, the constant χG of this lemma is to be chosen
optimal. We also prove:

Lemma 2.6. — If G̃ is a semi-simple compact group and G = G̃/K where
K ⊂ ZG̃ is a non-trivial subgroup, then χG̃ ≤ χG, and χG̃ divides χG.
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12 CHAPTER 2. BASIC DEFINITIONS AND TOOLS

Proof. — For the first part, we use the fact that the commutator group of a
semisimple compact Lie group is the group itself, and we let Ã, B̃ ∈ G̃ such
that Ã.B̃.Ã−1.B̃−1 = S ∈ K, S ̸= Id. From the commutation relation it follows
that, if we call π the projection G̃ → G, then π(Ã) ̸= π(B̃). On the other hand,
π(Ã) and π(B̃) commute in G.

Consider now TÃ ⊂ G̃, a maximal torus containing Ã. Then, TÃ.B̃ ̸= TÃ,
(TÃ.B̃)/K ̸= TÃ/K, and π(TÃ.B̃) and π(Ã) commute.

Therefore, there exist elements in G who commute, but whose preimages
in G̃ do not.

The second statement follows from the fact that if Ã, B̃ ∈ G̃ do not com-
mute, but A = π(Ã) and B = π(B̃) do commute in G, then Ã.B̃.Ã−1.B̃−1 =
S ∈ K. Consequently, Ã#K and B̃#K commute.

This second lemma clarifies the relation of the constant χG with the homo-
topy of a group, since any non-simply connected group is obtained by factor-
ization of a simply connected one as in the statement of the lemma. Finally,
we will need the following last lemma in this series. In order to keep the proof
simple, and since the lemma itself will be used in such a context, we use the
language of toral algebras. We therefore postpone it to the appendix 11. The
reader is however encouraged to read the proof, since it actually comes up in
chapter 6.

Lemma 2.7. — Let G be as before and suppose that it is simply connected.
Then, χG = 1. In other words, if G is simply connected, commuting elements
can be simultaneously diagonalized.

2.1.1.3. Toral algebras and root-spaces. — Let us consider an abelian subalge-
bra h of g, i.e. a subalgebra for which the restriction of the Lie bracket to h×h
vanishes identically. It is the Lie algebra of a torus H of G, and for this reason
it will be called a toral algebra. If H is contained in T , a maximal torus whose
Lie algebra is t, then h ⊂ t. The Lie algebra t is a maximal toral algebra and
its dimension is w. The relations between different (maximal) toral algebras
are analogous to those between (maximal) tori. We also give the definition of
regular and singular elements of g.

Definition 2.8. — An element s ∈ g will be called regular if it is contained
in a unique maximal toral algebra, and generic if exp(Rs) is dense in the
maximal torus containing it. If it is not regular, it will be called singular.

If s ∈ g is regular, then ZG(exp(Rs)) is a maximal torus of G.
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A special case of Lie group is the n-dimensional torus

Un = {(zi) ∈ (C∗)n, |zi| = 1}.

Its Lie algebra is iRn ⊂ Cn, where Cn is the Lie algebra of the ambient
group (C∗)n. The kernel of the group homomorphism

exp : iRn −→ Un

is 2iπZn and every character χ of Un (i.e. a group homomorphism Un → S1)
can be written as

χ(u) = eγ(iξ1,...,iξn)

if u = (eiξ1 , ..., eiξn), so that γ(2iπm1, ..., 2iπmn) ∈ 2iπZ if all mi ∈ Z. For
the same reasons, if T is a maximal torus and t its Lie algebra, we find that
the restriction of exp in t defines a group homomorphism, whose kernel is a
lattice Γt ⊂ t. If χ is a character of T and h ∈ t, then

χ(exp(h)) = e2iπρ(h)

for some ρ ∈ t∗, such that ρ(h) ∈ Z for all h ∈ ΓT . The set of such ρ is Γ∗
T ,

the dual lattice of ΓT . The elements of 2iπΓ∗
T ⊂ t∗C (the dual space of the

complexified Lie algebra tC) are the weights of t. They are R-linear mappings
t → iR ⊂ C. The lattice 2iπΓ∗

t will be denoted by P (G, t) or simply P (G),
since the lattices corresponding to different tori are obtained by the action of
an inner endomorphism.

Let us now fix a maximal toral algebra t of g and the corresponding torus.
We will denote by tC and gC the corresponding complexified spaces and we
introduce the involution c(x+ iy) = x− iy, where x, y ∈ g. The Cartan-Killing
form extends to a complex symmetric (and therefore not Hermitian) bilinear
form.

The properties of the representation of T = exp(t) in gC imply the existence
of a finite subset ∆ of 2iπΓ∗

T such that gC decomposes into the sum of tC and
subspaces Eρ such that, for all eρ ∈ Eρ and h ∈ t,

adh .eρ = 2iπρ(h)eρ.

Such weights are called the roots of G with respect to T . We note that if
ρ ∈ ∆, then −ρ ∈ ∆ and E−ρ = c(Eρ). If ρ + ρ′, ρ′ ̸= −ρ, is a root, we have
[Eρ, Eρ′ ] ⊂ Eρ+ρ′ and the bracket is {0} otherwise. We will denote by Q(g)
the lattice generated by the roots over Z. We have clearly Q(g) ⊂ P (g).

In the more familiar context of SU(w + 1), one retrieves these concepts by
fixing a basis for Cw+1, thus fixing the torus of diagonal matrices and the
corresponding lattice of preimages of the Id in iRw. Each non-diaconal entry
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14 CHAPTER 2. BASIC DEFINITIONS AND TOOLS

at position (i, j) in su(w + 1), the vector space of traceless skew-symmetric
(w+1)× (w+1) matrices, corresponds to a space Eρ, and the root functional
simply to ρij : diag(2iπak) $→ (ai − aj). In particular, the number of roots is
greater than w, and there are relations of linear dependence between them.

A vector h ∈ t is regular if, and only if, ρ(h) ̸= 0 for all roots ρ, or equiv-
alently, if exp(h) does not belong to any of the subgroups χ−1

ρ (1) ⊂ t, where

χρ(exp(h)) = e2iπρ(h) is the character whose weight is ρ.
For any given ρ, there exists a subalgebra Rhρ ⊕ Cjρ ≈ su(2) so that the

following multiplication table and orthogonality relations hold true.

[thρ, zjρ] = 2iztjρ,

[zjρ, wjρ] = 2
Re(izw̄)

|hρ|
hρ, ∀z, w ∈ C,

⟨jρ, hρ⟩ = ⟨ijρ, hρ⟩ = ⟨jρ, ijρ⟩ = 0,

|zjρ| = |z|, and |hρ| > 0,

[jρ, jρ′ ] ∈ Eρ+ρ′ .

Here, hρ ∈ t, the complex plane Cjρ stands for the two real-dimensional plane
underlying Eρ⊕E−ρ and we remind that Eρ+ρ′ = {0} if ρ+ρ′ is not a root. We
stress that the complex directions Cjρ complexify to 2-dimensional complex
planes in gC. The subalgebras thus constructed are called root spaces.

2.1.1.4. Basis of the root system. — Using the standard properties of semi-
simple compact Lie algebras, we can obtain a basis ∆̃ of ∆ such that if

(2) ρ′ =
∑

ρ∈∆̃

mρ′ρρ

then the mρ′ρ are all integers of the same sign. This results in the existence of
a partition ∆ = ∆+ ∪ (−∆+) such that ρ ∈ ∆+ (resp. ∈ −∆+) if, and only if,
all the integers in the above sum are positive (resp. negative).

We then have the following decomposition:

(3) g = t⊕
⊕

ρ∈∆+

Cjρ =
⊕

ρ∈∆̃

Rhρ ⊕
⊕

ρ∈∆+

Cjρ

with

⟨jρ, jρ′⟩ = 0, |jρ| = 1, ⟨hρ, hρ′⟩ " 0, [h, jρ] = 2iπρ(h)jρ ∀h ∈ t.

The basis ∆̃ will be call a Weyl’s basis for the root system and the de-
composition of g as above the root system decomposition with respect to the
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maximal abelian algebra t. The choice of such a basis is a simultaneous diag-
onalization of all operators adh : s $→ [h, s], s ∈ g, for h ∈ t. These operators
therefore commute.

A special case of mappings t → G which will be of great importance in
our study is that of periodic geodesics of the group, which are one-parameter
subgroups isomorphic to S1. Since such mappings can be viewed as mappings
t → T ⊂ G, where T is a maximal torus of G, this geodesic admits a lift in t
(the Lie algebra of T ). Since, additionally, any basis of t can be obtained by
the action of W (G) on a single one, we can consider a fixed basis and introduce
the notations

(4)

{
Er(·) = exp

(∑
ρ(2πrρhρ ·)

)
,

Er,a(·) = exp
(∑

ρ(2π(rρ · +aρ)hρ
)

where r ∈ Zw and a ∈ Rw characterize the geodesic, modulo the action
of W (G).

Finally, by duality, there exists a basis (Hρ)ρ∈∆̃ of t, such that ρ′(Hρ) = δρ,ρ′ .
We then have

Hρ =
∑

ρ∈∆̃

kρ′ρHρ′

with kρ′ρ rational numbers of the same sign. We can suppose that they are of
the form

lρ′ρ
D

where D ∈ N∗ and |lρ′ρ| ≤ e, with e ∈ N∗. Clearly, #∆̃ = w, the rank of the
group, while q = #∆+ = 1

2(f − w), where f is the real dimension of g.

2.1.2. Notation and algebra in SU(2) and SO(3). — Since a certain
variety of the phenomena that we will describe are already present when G
is SU(2) or SO(3) we will construct some concrete examples in these cases and
we will compare the results obtained in this mémoire with the ones already
existing in the literature. In order to do this, we need to describe explicitly
the notions defined in the previous section in this more concrete setting.

We bring to the attention of the reader the fact that in these concrete
examples we introduce a normalization of the Cartan-Killing form which is
not compatible with the one used in the abstract case.
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2.1.2.1. The group SU(2). — Let us denote the matrix S ∈ SU(2),

S =

[
t z

−z̄ t̄

]
,

where (t, z) ∈ C2 and |t|2 + |z|2 = 1, by {t, z}SU(2). The subscript will be sup-
pressed from the notation, unless necessary. The manifold SU(2) is naturally
identified with S3 ⊂ C2 through G ∋ {t, z}SU(2) $→ (t, z) ∈ S3. In particular,
SU(2) is simply connected. The law of multiplication is pushed forward to the
mapping of S3 × S3 → S3 given by

{t1, z1}.{t2, z2} = {t1t2 − z1z̄2, t1z2 + t̄2z1}.

Inversion is pushed forward to the involution of S3

{t, z} $−→ {t̄,−z}.

The circle S1 is naturally embedded in G as the group of diagonal matrices,
which is a maximal torus of SU(2). In particular w = 1, the rank of SU(2).

The Lie algebra su(2) is naturally isomorphic to R3 ≈ R×C equipped with
its vector and scalar product. The element

s =

[
it u

−ū −it

]

will be denoted by {t, u}su(2) ∈ R×C, or {t,Ru, Iu}g ∈ R3. The scalar product
will sometimes be denoted by

t1t2 +R(u1ū2) = t1t2 +Ru1.Ru2 + Iu1.Iu2
Mappings with values in su(2) will be denoted by

U(·) = {Ut(·), Uz(·)}su(2)
in these coordinates, where Ut(·) is a real-valued and Uz(·) is a complex-valued
function.

The adjoint action of h ∈ su(2) on itself is pushed-forward to twice the
vector product:

ad{1,0} .{0, 1, 0} = 2{0, 0, 1}
plus cyclic permutations and the Cartan-Killing form, normalized by

〈
h, h′

〉
= −1

8
tr(ad(h) ◦ ad(h′))

is pushed-forward to the scalar product of R3. The periodic geodesics of the
group for the induced Riemannian structure are of the form

S. exp({2πr ·, 0}su(2)).S∗, S ∈ SU(2).
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Under this normalization, the minimal length for a geodesic leaving from the Id
and arriving at − Id is π, and the minimal length of a periodic geodesic is
twice as much, i.e. 2π. We also find directly that the preimages of the Id in
the maximal toral algebra of diagonal matrices are points of coordinates in the
lattice 2πZ. The first critical point of the exponential mapping is {π, 0}, and
the critical value is − Id.

The adjoint action of the group on its algebra is pushed-forward to the
action of SO(3) on R × C. In particular, the diagonal matrices, of the form
exp({t, 0}su(2)), fix the real direction and act by multiplication by e2it in the
complex direction.

Finally, the Weyl group of SU(2) is naturally isomorphic to the multiplica-
tive group {1,−1} and two representatives are the matrices

Id and

[
0 1

−1 0

]

the action of the second one being a reflection with respect to the complex
plane:

(−1)W .{t, 0}su(2) = {−t, 0}su(2).

2.1.2.2. The group SO(3). — Since SO(3) = SU(2)/{± Id}, we will identify
the Lie algebras of the two groups and keep the same normalization for the
Cartan-Killing form. In particular, all non-zero vectors in so(3) are regular.
From the normalization of the Cartan-Killing form, it follows that the minimal
length of a periodic geodesic, typically

(5)

⎡

⎣
cos(2π ·) sin(2π ·) 0

− sin(2π ·) cos(2π ·) 0
0 0 1

⎤

⎦

is π. This geodesic admits a lift in SU(2) to a geodesic connecting the Id
with − Id, exp({π ·, 0}su(2)), and therefore is is not homotopic to a constant
in SO(3). On the other hand

⎡

⎣
cos(4π ·) sin(4π ·) 0

− sin(4π ·) cos(4π ·) 0
0 0 1

⎤

⎦

admits a lift to E1(·) = exp({2π ·, 0}su(2)), and therefore it is a closed geodesic,
homotopic to a constant and with minimal length. For this reason we will use
the notation

E 1
2
(·) = R2π · =

⎡

⎣
cos(2π ·) sin(2π ·) 0

− sin(2π ·) cos(2π ·) 0
0 0 1

⎤

⎦
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for geodesics as in equation (5). From the above, it follows that the preimages
of the Id in the maximal toral algebra of standard rotations are points of
coordinates in the lattice πZ ⊂ R.

We also remark that χSO(3) = 2, and we investigate the relation of this
fact with the fact that SO(3) = SU(2)/{± Id}. It is a common fact that if two
matrices A and B in SU(2) commute, they can be simultaneously diagonalized,
or in our terminology, they belong to the same maximal torus. Since the torus
of reference in this group is that of diagonal matrices, we can rephrase this into
the existence of S ∈ SU(2) such that S.A.S∗ and S.B.S∗ belong to T . On the
other hand, not any two commuting matrices in SO(3) can be simultaneously
conjugated to the torus of standard rotations. In order to see this, we consider
the torus T /{± Id} of standard rotations and an element π({eiθ, 0}) ̸= IdSO(3)

in it (π is the canonical projection SU(2) → SO(3)). It commutes with all the
matrices in T /{± Id}, and conversely, if (a preimage of) it commutes with a
matrix in SU(2), this matrix is in T . A simple calculation shows that

{eiθ, 0}.{a, b}.{e−iθ, 0}.{ā,−b} = {|a|+ e2iθ|b|, ab(1 + e2iθ)}.

We see, therefore, that the equation

A.B.A∗.B∗ = − Id

admits the solutions

A = {±i, 0}, B = {0, b}

with b ∈ S1. This family of solutions obviously does not intersect the standard
torus, and its projection to SO(3) gives the rotation

π(A) =

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

which commutes with standard rotations, but also with the one parameter
family

π(B(θ)) =

⎡

⎣
cos θ sin θ 0
sin θ − cos θ 0
0 0 −1

⎤

⎦ =

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦.

⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦

for θ ∈ [0, 2π], which does not intersect the standard torus.
Finally, we introduce the standard basis of so(3),

j1 =

⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦, j2 =

⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦, j3 =

⎡

⎣
0 0 1
0 0 0

−1 0 0

⎤

⎦.
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In the identification

su(2) ≈ so(3),

the vector j1 corresponds to {1, 0}su(2), and the plane generated by j2 and j3
to the complex plane C ↪→ su(2).

2.2. Calculus

2.2.1. Calculus in Lie groups. — Let us now define the differential oper-
ator

L : C∞(T, G) −→ C∞(T, g), L(A)(·) = ∂A(·).A∗(·).
This operator uses the structure of the group in order to simplify the ex-
pressions of derivatives. Since a Lie group is a manifold, the derivative of a
G-valued path is a section of its tangent bundle. The fact that the tangent
bundle is trivial (i.e. trivializable in a canonical way) allows us to define the
derivative of a path as a curve in a single vector space, naturally isomorphic
to the fibers, instead of a section of the tangent bundle. This is done by using
the group structure of the manifold and mapping canonically, for each x ∈ T,
the tangent space TA(x)G ⊂ TG at A(x) ∈ G to g = TIdG via the differential

of left translation, S $→ SA(x)∗. (3) If the underlying group is simply R∗
+, this

is just a way of normalizing the derivative of the exponential as

φ′(x) =

(
d

dx
eφ(x)

)
e−φ(x)

instead of letting it grow along with eφ(x). If the underlying group is S1, the
tangent vector deviates from the vertical line oriented upwards when the base
point is not 1 ∈ S1, and right multiplication rectifies it to the standard one.

The basic properties of this operator are as follows.

1. L(A(·).B(·)) = a(·) + Ad(A(·)).b(·), where we introduce a notational
convention: L(A(·)) = a(·), L(B(·)) = b(·) and similarly for any mapping
T → G (eventually R → G).

2. Derivation of A∗(·).A(·) = Id gives a∗(·) = −Ad(A∗(·)).a(·) (notice the
abuse of notation)

3. In fact, since the action of G in the following chapter will be chosen to be left multiplica-

tion, the choice of right multiplication in the definition of the operator L slightly complicates

the calculations in chapter 5. However, it becomes more natural in the local theory of models,

where traditionally perturbations are chosen to act on the right.
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3. If A(·) = exp(φ(·)), where φ : C∞(R, t), with t ⊂ g a toral algebra, then
a(·) = φ′(·)

4. ∂L(A(·).B(·)) = ∂a(·) + Ad(A(·)).∂b(·) + [a(·),Ad(A(·)).b(·)]
5. If A(·) = exp(U(·)) is C0-close to the identity, then

a(·) = exp(ad(U(·)))− Id

ad(U(·)) ∂U(·)

where exp(ad(U(·)))−Id
ad(U(·)) represents the operator

∑∞
0

1
(n+1)! ad(U(·))n.

Property 1 implies the following fact. Let K be a subgroup of ZG, G̃ = G/K
and π : G → G̃ the canonical projection. We remind that the Lie algebras of G
and G̃ are naturally isomorphic. Then, if A(·) : T → G is C1, Ã(·) = π(A(·)) :
T → G̃ is also C1-smooth (possibly of period smaller than 1) and property 1
implies that ã(·) = a(·), with a slight abuse of notation. If, keeping the same
notations, we suppose that Ã(·) is given and we choose a lift A(·) of Ã(·) to
G (i.e. such that π(A(·)) = Ã(·)), then A(·) will be at most #K periodic
and A(· + 1) = S.A(·), where S ∈ K. Then we find again that the derivatives
of A(·) and Ã(·) in g are equal. Or, equivalently, the derivative in g of a curve
in G depends on the isomorphism class of the Lie algebra, and not the group
itself, a quite natural fact, since different groups with the same Lie algebra are
locally indistinguishable.

Finally, property 4 implies the following bounds for derivatives of products,
which will be useful in the estimates of iterates of cocycles.

Proposition 2.9. — We have the following estimates concerning the deriva-
tives.

1. Let Ai : T → G, i = 1, · · · , n, be smooth enough, and let

m0 = max
i

∥ai∥∞ and ms = max
i,0≤σ≤s

∥∂sai∥∞.

Then we have

∥∂s(a1...an)∥∞ ≤ Csms(1 +m0)
sns+1.

2. Let U ∈ C∞(T, g) be small enough in C0(T, g) and A : T → G. Then

C−1
s (1− ∥U(·)∥0)

s∥U(·)∥s+1

≤ ∥∂sLeU(·)∥s ≤ Cs(1 + ∥U(·)∥0)
s∥U(·)∥s+1,

∥Ad(A(·)).U(·)∥0 = ∥U(·)∥0,
∥L(exp(Ad(A(·)).U(·))∥s

≤ Cs(1 + ∥U(·)∥0)
s(1 + ∥a(·)∥0)

s(1 + ∥a(·)∥s)∥U(·)∥s+1.
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If we admit a uniform bound on the term ∥U(·)∥0,

∥L(exp(Ad(A(·)).U(·))∥s ≤ Cs(1 + ∥a(·)∥0)
s(1 + ∥a(·)∥s)∥U(·)∥s+1.

Proof. — 1. Since

∂(Ad(A(·)).b(·))) = Ad(A(·)).∂b(·) + [a(·),Ad(A(·)).b(·)],

induction in n, convexity inequalities and counting of the terms gives the
result.

2. If we let h ∈ g, we calculate

∂Ad(B(·)).h = [b(·),Ad(B(·)).h]

so that the derivative in the Lie algebra of Inn(G) ≈ G/ZG (which is a
subalgebra of gl(g) naturally isomorphic to g) reads

(∂Ad(B(·)).Ad(B∗(·)) = adb(·)

and

C−1∥B∥s ≤ ∥Ad(B(·))∥s ≤ C∥B∥s,
where the constant is universal since it depends only on the adjoint rep-
resentation of g into itself (4).

If we call Ũ(·) = Ad(A(·)).U(·), we have

LeŨ(·) = Ad(A(·)).LeU(·) + (Id−Ad(eŨ(·)))a(·).

Therefore,

∥LeŨ(·)∥s ≤ ∥Ad(A(·)).LeU(·)∥s + ∥(Id−Ad(eŨ(·)))a(·)∥s
# ∥LeU(·)∥s + ∥Ad(A(·))∥s∥LeU(·)∥0

+ ∥U(·)∥0∥a(·)∥s + ∥Ad(eŨ(·))∥s∥a(·)∥0
# ∥eU(·)∥s + (1 + ∥a(·)∥s−1)∥eU(·)∥1

+ ∥U(·)∥0∥a(·)∥s + ∥eŨ(·)∥s∥a(·)∥0.

In particular, for s = 1,

∥LeŨ(·)∥0 ≤ ∥eU(·)∥1 + ∥A(·)∥0∥eU(·)∥1 + ∥U(·)∥0∥A(·)∥1
≤ ∥eU(·)∥1 + ∥U(·)∥0(1 + ∥a(·)∥0)

and the announced estimates follow from these expressions.

4. This expression is in fact not totally accurate, since in the C0 norm we should replace

the Riemannian distance from B(·) to the Id with the min(d(B(·), S), S ∈ ZG). We keep

this fact implicit in order to keep notation simpler.
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For X ∈ g small enough, let

K(X).∆X = (D(eX).∆X).e−X .

Then, K(X) is in GL(g), since the exponential is a local diffeomorphism. This
operator can be calculated by

K(X).∆X =
ead(X) − Id

ad(X)
.∆X

= ∆X + 1
2 [X,∆X] +

1

3!
[X, [X,∆X]] + · · · .

In particular, L exp(U(·)) = K(U(·)).∂U(·), and

K(−X).∆X = Ad(e−X).K(X).∆X.

The transposed operator with respect to the Cartan-Killing form is found by

K(X)T = K(−X)

as shows the expansion of the operator. Since K(X) is invertible for small
enough X, we will sometimes use the notational convention

∆̃X = K(X).∆X.

In fact, for X small enough, K(X) is close to being an isometry, since

K(−X).K(X) = Id+
1

12
ad2X +O(|X|4)

as shows a direct calculation.

2.2.2. Functional spaces. — We will consider the space C∞(Td, g)
equipped with the standard maximum norms

∥U∥0s = max
T

|∂sU(·)|, ∥U∥s = max
0≤σ≤s

∥U∥0σ

for s ≥ 0, and the Sobolev norms

∥U∥2Hs =
∑

k∈Zd

(1 + |k|2)s|Û(k)|2

where Û(k) =
∫
U(·)e−2iπkx are the Fourier coefficients of U(·). The fact

that the injections Hs+
1
2d(Td, g) ↪→ Cs(Td, g) and Cs(Td, g) ↪→ Hs(Td, g) for

all s ≥ 0 are continuous is classical.
For mappings R ⊃ I → g we will use the norms

∥U(·)∥s,I = max
0≤σ≤s

∥∂σU(·)∥L∞(I),
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where I ⊂ R is an interval. If I = [0, T ], we will replace I by T in these
notations.

The space C∞(Td, G) is equipped with the following norms for s ≥ 1 (we
remind the convention LA(·) = a(·))

∥A∥00 = max
T

d(A(·), Id), ∥A∥0s = max
(
∥A∥0, ∥a∥s−1

)
,

∥A∥s = ∥a∥s−1,I , ∥A(·)∥
s−1,I

= ∥a∥
s−1,I .

We note that in the ∥·∥ norms of G-valued maps we omit the C0 norm, irrel-
evant for the majority of the arguments since G is supposed to be compact.

We will also use the convexity or Hadamard-Kolmogorov inequalities for
0 ≤ σ ≤ s (see [27]) (U ∈ C∞(Td, g)):

(6) ∥U(·)∥σ ≤ Cs,σ∥U∥1−σ/s
0 ∥U∥σ/ss ,

and the inequalities concerning the composition of functions (see [29]):

(7) ∥φ ◦ (f + u)− φ ◦ f∥s ≤ Cs∥φ∥s+1(1 + ∥f∥0)
s(1 + ∥f∥s)∥u∥s

which hold for Cs norms.
We will use the truncation operators

TNf(·) =
∑

|k|≤N

f̂(k)e2iπk· ,

ṪNf(·) = TNf(·)− f̂(0),

RNf(·) =
∑

|k|>N

f̂(k)e2iπk· ,

Ṫ f(·) = Tf(·)− f̂(0).

These operators satisfy the estimates

∥TNf(·)∥Cs ≤ Cs,s′N
(d+1)/2∥f(·)∥Cs ,

∥RNf(·)∥Cs ≤ Cs,s′N
s−s′+d+1∥f(·)∥Cs′ .

The Fourier spectrum of a function will be denoted by

σ̂(f) = {k ∈ Zd, f̂(k) ̸= 0}.

Finally, we will need the space of real analytic mappins Cω
δ (T, SU(2)), de-

fined as the space of analytic mappings T → SU(2) (the reader can think of
mappings whose matrix coefficients for the adjoint action are real analytic),
and admit an analytic extension to T × [−δi, δi] for δ > 0. The norm of this
space is the analytic norm ∥A∥δ = supx∈T,|ϵ|<δ ∥A(x + iϵ)∥. The norm on the
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righthand side of the definition here is the operator norm associated to the her-
mitian product on C2, which is legitimate since SU(2) complexifies to SL(2,C),
so that the values of the mapping for complex values of the variable in the
basis are in fact in SL(2,C).

2.2.3. The Nash-Moser inverse function theorem. — This theorem,
stated and proved in [20], will be used in the proof of a normal form theorem
in chapter 8. The theorem is stated in the context of tame mappings between
Fréchet spaces, for which the model is, say, E = C∞(X,R) spaces with X a
compact manifold. Since the Nash-Moser theorem will be used in exactly such
a context, we will restrict the generality and slightly simplify the statement. In
our discussion, we give an overview of section 4.2 of [29], rather than referring
directly to the R. Hamilton’s article.

In what follows, E denotes a Fréchet space and ∥·∥s, s ∈ N the family of its
seminorms defining the usual topology of E by the system of neighborhoods
of 0 ∈ E

Ui,j = x ∈ E , ∥x∥s < (j + 1)−1, 0 ≤ s ≤ i

where i, j ∈ N∗

The absence of a norm defining the topology of the space E makes the
definition of a differential more difficult than in Banach spaces, but directional
derivation (Gâteaux derivative) is nonetheless well defined. Let U ⊂ E be an
open subset and E and F be topological vector spaces. A continuous mapping
f : U → F is called Gâteaux-differentiable if there exists a mapping

Df : U × E −→ F, (x, h) $−→ Df(x).h

continuous jointly in (x, h) and linear in h, and such that the following limit
exists and verifies

lim
t→0

f(x+ th)− f(x)

t
= Df(x).h

Higher order differentiability is defined inductively.
A Fréchet space is called graded if the semi-norms defining its topology are

increasing in strength. In the context of C∞(T, g), this amounts to

∥·∥s ≤ ∥·∥s+1

which is verified by the definition of the norms. In fact, any Fréchet space
can be made into a graded one, by a simple change in the definition of its
seminorms. A graded Fréchet space is called tame if there exists a family of
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continuous operators TN , indexed by N ∈ N∗, satisfying the properties of the
truncation operators introduced just above:

∥TNe∥s′ ≤ Cs.s′N
s−s′+r∥e∥s,

∥RNe∥s ≤ Cs,s′N
s′−s−r∥e∥s′

for all 0 ≤ s ≤ s′, for a uniform choice of r ∈ N and positive constants Cs.s′ ,
and where RN = Id−TN . In general contexts, such operators TN are called
smoothing operators, following the properties of truncation in the usual con-
crete examples.

A linear application T between graded Fréchet spaces E and F will be called
tame if there exists l ∈ N and a family of positive constants Cs such that

∥Te∥s ≤ Cs∥e∥s+l, ∀s ∈ N, ∀e ∈ E ,

where we have used the same notation for seminorms in both spaces.
If E and F are graded Fréchet spaces, U ⊂ E is a neighborhood of 0 and

P : (U, 0) → (F , 0) is a mapping, we will say that it is tame if there exists l ∈ N,
“the loss of derivatives”, and a family of positive constants Cs such that

∥Pf∥s ≤ Cs(1 + ∥f∥s+l), ∀s ∈ N.

The following proposition of [20] shows that the basic properties of differ-
ential calculus in Banach spaces survive in this context.

Proposition 2.10. — Let X be a compact manifold, E and F two finite-
dimensional vector spaces. Then

1. The spaces C∞(X,E) and C∞(E,F ), furnished with the Cs norms are
tame Fréchet spaces.

2. Composition

C∞(X,E)× C∞(E,F ) −→ C∞(X,F ), (f, g) $−→ g ◦ f

is a tame mapping.

3. If g ∈ C∞(E,F ) is fixed, then

βg : C∞(X,E) −→ C∞(X,F ), f $−→ g ◦ f

is C∞-tame, and its differential is given by

Dβg : C∞(X,E) −→ C∞(X,F ), ∆f $−→ Dβg(f).∆f

where Dβg(f).∆f represents the mapping x $→ Dg(f(x)).∆f(x).
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4. If g ∈ C∞(E,F ) is fixed, then

βg : C∞(X,F ) −→ C∞(X,E), f $−→ f ◦ g

is C∞-tame, and its differential is given by

Dβg : C∞(X,E) −→ C∞(X,F ), ∆f $−→ (x $→ ∆f(g(x)).g′(x)).

5. If f ∈ C∞(E,E) is invertible, then there exists U , a neighborhood of f ,
such that

U −→ C∞(E,E), g $−→ g−1

is C∞-tame, where g−1 is the inverse function of g in the usual sense.

Finally, we introduce some notation before stating the version of Hamilton’s
theorem proved in [29] that we will use.

Let E and F be two tame Fréchet spaces, U ⊂ E a neigborhood of 0, r ∈ N∗

and (Cs)s a family of positive constants indexed by N.
We denote by A(r, (Cs)s, U) the set of tame mappings f : U → F such that

f(0) = 0 and

∥f(x)∥s ≤ Cs(1 + ∥x∥s+r), ∀s ∈ N
The set Ak(r, (Cs)s, U), k ∈ N ∪ {∞}, is formed by functions f such that
Dlf ∈ A(r, (Cs)s, U), for 0 ≤ l ≤ k. If there exists a tame continuous mapping
L : U × F → E, linear in the second variable, such that for all x ∈ U ,
Df(x) is invertible and of inverse L(x), we will write, by abuse of notation,
f ∈ A−1(r, (Cs)s, U). If f is both in Ak(r, (Cs)s, U) and A−1(r, (Cs)s, U), we
will write f ∈ Ak,−1(r, (Cs)s, U).

With this notation, we have:

Theorem 2.11. — Let f ∈ A2,−1(r, (Cs)s, U). Then, there exist r1, ε1, de-
pending only on r, U and the family Cs, such that f−1, the inverse of f , exists
and is well defined in V1, the neighborhood of 0 ∈ F defined by {∥y∥r1 ≤ ε1}.
Moreover, for y ∈ V1, ∥f−1(y)∥s ≤ cs(1 + ∥y∥s+r1).

The following version is a uniform one, and allows estimates on the size of
the neighborhood where inversion takes place.

Theorem 2.12. — Let f ∈ A2,−1(r, (Cs)s, U), whose derivative Df admits
a tame inverse in U , and M > 0 such that (Df)−1 ∈ A(r, (MCs)s, U).
Then, there exists ν > 0 (one can chose ν = 2), r1 and ε1, depending only
on r, U and the family Cs, such that f−1 exists and is well defined in a
neighborhood of 0 ∈ F of the form {∥y∥r1 ≤ M−νε1}. In this neighborhood,
f−1 ∈ A2(r1, (M−νCs)s).
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2.3. Arithmetics, continued fraction expansion

A deep introduction into arithmetics and continued fraction expansion can
be found in [26]. A geometric interpretation of the algorithm, followed by an
introduction to K.A.M. theory can be found in [2].

Let us introduce some notation, where α is a real number:

◃ |∥α|∥ = |α|Z = dist(α,Z) = minZ |α− l|,
◃ [α] the integer part of α,

◃ {α} the fractional part of α,

◃ G(α) = {α−1}, the Gauss map.

Consider α ∈ T \ Q fixed, and let p−2 = q−1 = 0 and p−1 = q−2 = 1.
Then (pn/qn)n≥0 is the sequence of best rational approximations of α defined
recursively as follows. Let

αn = Gn(α) = G(αn−1), an = [α−1
n−1],

(5) βn =
n∏

0

αk.

Then the Euclidean division of βn−2 by βn−1 reads

βn−2 = anβn−1 + βn,

qn = anqn−1 + qn−2,

pn = anpn−1 + pn−2,

where pn and qn are strictly positive for n ≥ 1 and βn = (−1)n(qnα − pn).
We have

1

qn + qn+1
< βn <

1

qn+1
, |∥qn−1α|∥ < |∥kα|∥, ∀ 0 < k < qn.

Moreover, for all n, αnαn−1 <
1
2 and consequently

βn < 2−n/2.

Two basic facts which distinguish continued fractions in one-dimension from
the higher dimensional analogues are the following:

qn−1βn + qnβn−1 = 1 and

∣∣∣∣
pn pn−1

qn qn−1

∣∣∣∣ = (−1)n.

The following notion is essential in K.A.M. theory. It is related with the
quantification of the closeness of rational numbers to certain classes of irra-
tional numbers.

5. We hope that the reader will not confuse the natural numbers an introduced in the

continued fractions expansion with the mappings an(·) defined in chapter 5.
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Definition 2.13. — We will denote by DC(γ, τ) the set of numbers α in T\Q
such that for any k ̸= 0,

|αk|Z ≥ γ−1

|k|τ .

Such numbers are called Diophantine. The set DC(γ, τ), for τ > 1 fixed and
γ ∈ R∗

+ is of positive Haar measure in T. If we fix τ and let γ run through the
positive real numbers, we obtain

⋃
γ>0DC(γ, τ) which is of full Haar measure.

The numbers that do not satisfy any Diophantine condition are called
Liouvillean. They form a residual set of 0 Lebesgue measure.

This last following definition concerns the relation of the approximation of
an irrational number with its continued fractions representation.

Definition 2.14. — Denote by RDC(γ, τ) the set of recurrent Diophantine
numbers. It is the set of all α ∈ T\Q such that Gn(α) ∈ DC(γ, τ) for infinitely
many n. It is a set of full Lebesgue measure since the Gauss map is ergodic
with respect to a smooth measure.

In contexts where the parameters γ and τ are not significant, they will be
omitted in the notation of both sets.
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CHAPTER 3

COCYCLES IN Td ×G

3.1. Definitions and general properties

Let α = (α1, ...,αd) ∈ Td, d ∈ N∗, be a topologically minimal translation.
This property is, by Kronecker’s theorem, equivalent to (α1, ...,αd, 1) ∈ Rd+1

being linearly independent over Z. The translation Td ! will sometimes be
denoted by Rα : x $→ x + α mod (Zd). In the greatest part of our study we
will limit ourselves to the case d = 1, where minimality is equivalent to α
being an irrational number.

If A(·) ∈ Cs(Td, G), s ∈ N∪∞, then the couple (α, A(·)) acts on the fibered
space Td ×G → Td defining for any (x, S) ∈ Td ×G a diffeomorphism by

(α, A(·)).(x, S) = (x+ α, A(x).S).

We will call such an action a quasiperiodic cocycle over Rα (or simply a co-
cycle). The space of such actions is denoted by SWs

α(Td, G) ⊂ Diffs(Td × G)
and d is the number of frequencies of the cocycle. When d and G are clearly
defined by the context, we will abbreviate the notation to SWs

α. Cocycles are
a class of fibered diffeomorphisms, since fibers of Td × G are mapped into
fibers, and the mapping from one fiber to another in general depends on the
base point. A closed subspace of SWs

α(Td, G) which will be of use will be the
space SWs,1

α (Td, G) of cocycles homotopic to constants. In this context, this
last condition amounts to A(·) being homotopic to constants in G.

The space
⋃

α SW
s
α(Td, G), where the union is over minimal transla-

tions, will be denoted by SWs(Td, G). The space SWs
α(Td, G) inherits the

topology of Cs(Td, G), and SWs(Td, G) has the standard product topology
of Td × Cs(Td, G). The space SWs is consequently not a complete metric
space, something which makes reasoning more delicate when one wishes to
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vary the frequency. In this work, the frequency is to be considered fixed. We
note that cocycles are defined over more general maps and in more general
contexts of regularity and structure of the basis and fibers, including Lie
groups such as GL(n,R), GL(n,C), SL(n,R), SL(n,C) and their classical
subgroups.

If we consider a representation of G on Cw′
, the action of the cocycle can

be also defined on Td × Cw′
, simply by replacing S by a complex vector.

A particular case of representation that we will strongly use is the adjoint
representation of G in g.

We can define two projections

(8)

{
π1 : SW

s(Td, G) −→ Td, (α, A(·)) $−→ α,

π2 : SW
s(Td, G) −→ Cs(Td, G), (α, A(·)) $−→ A(·)

and we can identify Cs(Td, G) with π−1
1 (0). This identification set aside, α is

to be considered minimal.
The n-th iterate of the action is given by

(α, A(·))n.(x, S) = (nα, An(·)).(x, S) = (x+ nα, An(x).S)

where An(·) represents the quasiperiodic product of matrices equal to

An(·) = A(· + (n− 1)α) · · ·A(·)

for positive iterates. Negative iterates are found as inverses of positive ones:

(α, A(·))−n = ((α, A(·))n)−1 = (−nα, A∗(· − nα) · · ·A∗(· − α)).

The regularity needed for the main results is in fact C∞, but some of the
intermediate results are proved in very low regularity.

We will also need to consider the case where Gj ↪→ G, j = 1, 2, and
G1 ∩G2 = Id. If (α, Aj(·)) are cocycles in Td × Gj over the same rotation
in the basis, then we can define a cocycle in Td ×G by their product and we
have

SWs
α(Td, G1)× SWs

α(Td, G2) ↪−→ SWs
α(T, G).

We will denote this cocycle by (α, A1×A2(·)). Clearly, the subgroup G1×G2 ⊂
G is invariant under the action of the product cocycle.

Cocycles appear as Poincaré mappings of quasiperiodic skew-systems, the
continuous time equivalent of cocycles. Such systems are defined by the ODE
in Td+1 ×G

d

dx
X = F (x).X, ẋ = ω = (α, 1).
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Here, F (·) : Td+1 → g, and ω ∈ Rd+1. The flow of this ODE satisfies

Φt(x, S) = (x+ tω, X(x, t).S),

where the first factor is a dense geodesic in Td+1 and the second factor satisfies
the ODE

d

dt
X(x, t) = F (x+ tω).X(x, t)

and we consider the fundamental solution, i.e. the one with initial values
X(x, 0) = Id. The first return map on the vertical circle in Td+1 = Td × T
defines a cocycle in Td ×G. The study of such ODEs is an attempt to extend
Floquet theory in ODEs with quasi-periodic (instead of periodic) periodic co-
efficients, and reducibility amounts to the existence of a periodic conjugation
to a constant vector field.

3.2. Classes of cocycles with simple dynamics, conjugation

The cocycle (α, A(·)) is called a constant cocycle if A(·) = A ∈ G is a
constant mapping. In that case, the quasiperiodic product reduces to a simple
product of matrices

(α, A)n = (nα, An)

and the dynamics become easy to describe.
Another, more general, distinct class of cocycles having relatively simple

dynamics is given by the mappings A(·) taking values in a maximal torus of G.
Such a cocycle will be called abelian. The interest of abelian cocycles lies in the
the existence of a discrete invariant that distinguishes qualitatively different
types of dynamics (cf. chapter 4), as well as in the fact that they represent the
most general cocycles whose iteration can be made explicit. More precisely,
let (α, A(·)) be an abelian cocycle, and call T a maximal torus in which A(·)
takes its values. Let us also fix a basis (hρ) of t, the Lie algebra of T . With
these choices, there exists a vector r = (rρ) ∈ Zw, periodic functions of zero
mean value φρ(·) and a =

∑
ρ aρhρ ∈ t, such that

(9) A(·) = exp
(∑

ρ

(2πrρ · +φρ(·) + aρ)hρ
)
.

The iterates of such a cocycle can be calculated explicitly, namely

(α, A(·))n =
(
nα, exp

(∑

ρ

(2πrρn(· +
(n− 1)

2
α) + Sα

nφρ(·) + naρ)hρ
))
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where Sα
nφ(·) stands for the Birkhoff sum of the function φ(·) over the trans-

lation by α,

Sα
nφ(·) =

n−1∑

k=0

φ(· + kα).

Clearly, if the values of the mapping A(·) in some fibers x and x + α do not
commute, the calculation is no longer true.

The group Cs(Td, G) ↪→ SWs(Td, G) acts by dynamical conjugation. Let
B(·) ∈ Cs(Td, G) and (α, A(·)) ∈ SWs(Td, G). Then we define

ConjB(·) .(α, A(·)) = (0, B(·)) ◦ (α, A(·)) ◦ (0, B(·))−1

= (α, B(· + α).A(·).B−1(·)),

which is in fact a change of variables within each fiber of the product Td ×G.
The dynamics of ConjB(·) .(α, A(·)) and (α, A(·)) are essentially the same,
since

(ConjB(·) .(α, A(·)))n = (nα, B(· + nα).An(·).B−1(·)).

Definition 3.1. — Two cocycles (α, A(·)) and (α, Ã(·)) in SWs
α(Td, G) are

called Cs-conjugate modulo m ∈ N∗ iff there exists B(·) ∈ Cs(mT, G) such
that (α, Ã(·)) = ConjB(·) .(α, A(·)). We will use the notation

(α, A(·)) ∼ (α, Ã(·))

to state that the two cocycles are conjugate to each other.

We remark that it is indeed possible for cocycles in SWs
α(Td, G) to be con-

jugate modulo m with m ≥ 2. We will encounter such examples later on.

Since the qualitative features of the dynamics are determined up to a con-
jugation, we are interested in the density properties of the orbits of the classes
described above and this motivates the following definition:

Definition 3.2. — A cocycle will be called Cs-reducible (modulo m) iff it is
Cs-conjugate (modulo m) to a constant, and Cs-torus-reducible (modulo m)
iff it is Cs-conjugate (modulo m) to an abelian cocycle.

In these definitions the conjugacy is implicitly supposed to take its values
in G. If we fix a unitary representation of G ↪→ U(w′), we can define a some-
what weaker notion of (torus-)reducibility, namely reducibility in the ambient
group U(w′), which is referred to as U(w′) (torus-)reducibility.

Finally, since it is known that not all cocycles are reducible (e.g. generic
abelian cocycles over Liouvillean rotations, but also cocycles over Diophantine
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rotations, even though this result is hard to obtain, see [14]) we also need the
following concept.

Definition 3.3. — A cocycle (α, A(.)) is said to be almost reducible
mod m,m ∈ N∗, if there exists sequence of conjugations Bn(·) ∈ C∞(mTd, G),
such that ConjBn(·) .(α, A(·)) becomes arbitrarily close to constants in the
C∞ topology, i.e. iff there exists (An), a sequence in G, such that

A∗
n(Bn(· + α)A(·)B∗

n(·)) −→ Id

in C∞(mTd, G). Almost torus-reducibility is defined in an analogous way.

The last and weakest notion of reducibility is that of quasi-reducibility. It is
a version of almost reducibility where we allow Bn(·) ∈ C∞(PnTd, G) and
Pn → ∞ and we demand that

A∗
nBn(Pn · +α)A(Pn ·)B∗

n(Pn ·) −→ Id

in C∞(Td, G). This notion is better adapted to cases where construction of
a conjugation is not possible without a loss of periodicity. This phenomenon
was present in [29], but we have been able to overcome the difficulties related
to it in chapter 9.

3.3. Some considerations and results on reducibility of cocycles

Let us now study the construction of conjugacies in some cases which have
come to be considered simple. For this reason, we will allow G to be a more
general Lie group than in the rest of the work.

The question of conjugation within the class of constant cocycles has been
settled in [29] (see section 4.3 for the statement of the theorem). As we have
already pointed out the significance of abelian cocycles, we will proceed to the
study of conjugation within this class in the aforementioned section. Let us,
however, study right-away a particular case, which lies in the core of K.A.M.
theory.

The simplest case of cocycles occurs when the group G is abelian. Cocycles
in T× R where studied for example in [37] in the resolution of the linearized
equation satisfied by commuting diffeomorphisms of S1. We also refer to [2]
and [24]. A cocycle in this setting has the form (α,φ(·)) and the dynamics are
given by

(x, y) $−→ (x+ α,φ(x) + y).
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Suppose now that two cocycles over the same rotation α are given, (α,φ1(·))
and (α,φ2(·)). These cocycles are conjugate to each other iff there exists
ψ(·) : T → R such that

ψ(· + α) + φ1(·)− ψ(·) = φ2(·) or ψ(· + α)− ψ(·) = φ2(·)− φ1(·).

Since R is abelian, conjugating (α,φ1(·)) to (α,φ2(·)) is equivalent to conju-
gating (α,φ(·)) to (α, 0), where φ(·) = φ1(·)−φ2(·), so that this last equation
reads

(10) ψ(· + α)− ψ(·) = φ(·).

This equation, whose unknown is the conjugant ψ is called a linear cohomo-
logical equation.

Periodicity of the functions implies that φ̂(0) = 0 (or equivalently
φ̂1(0) = φ̂2(0)) is a necessary condition for the existence of such a ψ. For this
reason φ̂(0) is called the obstruction of such an equation. If φ̂(0) ̸= 0, we can
only solve the equation

ψ(· + α)− ψ(·) = φ(·)− φ̂(0) = Ṫφ(·).

Application of the Fourier transform shows that such a ψ must satisfy,
for k ̸= 0,

ψ̂(k) =
1

e2iπkα − 1
φ̂(k).

Since α is irrational (the equivalent to minimality of Rα for one-frequency co-
cycles), e2iπkα − 1 is never 0, and therefore equation (10) admits as a solution
at least a “formal Fourier series”, so long as φ(·) is, say, in L2. The convergence
of the Fourier series of such a solution is related to small denominator phe-
nomena, since e2iπkα is arbitrarily close to 1 for an infinite number of k (e.g. for
k equal to some qn, the denominators of continued fractions approximations).

The convergence of
∑

ψ̂(k)e2iπk· is guaranteed under some smoothness con-
ditions on φ and/or some arithmetic conditions on α. A relevant combination
of hypotheses in our context gives the following classical lemma.

Lemma 3.4. — Let α ∈ DC(γ, τ) and φ(·) ∈ C∞(T,R). Then, there exists
ψ ∈ C∞(T,R) such that

ψ(x+ α)− ψ(x) = φ(x)− φ̂(0).

The solution ψ satisfies the estimate ∥ψ∥s # γ∥φ∥
s+τ+

1
2
, where the constant

is universal and depends only on s. The solution is unique modulo additive
constants.
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We remind the reader that Diophantine numbers are defined in defini-
tion 2.13, and that such a condition is necessary. For the convenience of the
reader, we include the proof of the lemma.

Proof. — Using the diophantine condition on α, we find that for k ̸= 0

|ψ̂(k)| ≤ γ|k|τ |φ̂(k)|.

Therefore,

∥ψ∥2s ≤
∑

k∈Z
(1 + |k|)2s+1|ψ̂(k)|2

# γ2
∑

k∈Z
(1 + |k|)2s+1|k|2τ |φ̂(k)|2

# γ2
∑

k∈Z
(1 + |k|)2s+2τ+1|φ̂(k)|2

# γ2∥φ∥2
s+τ+

1
2
,

where the constant may change from one line to another.

We also remark that in the general case where d ≥ 1, the same result holds
if we replace the estimate by

∥ψ∥s # γ∥φ∥
s+τ+

1
2d
.

On the other hand, if α is Liouvillean, no solution exists in any function
space for generic C∞ (or even Cω) functions. This kind of arithmetic obstruc-
tions to reducibility is therefore already present in the simplest of algebraic
settings, and we will encounter in the guise of resonances in the dynamics in
the fibers in chapter 9.

A second kind of obstructions to reducibility is the one related to homotopy.
Cocycles conjugate to each other are also homotopic to each other, indepen-
dently of the arithmetic properties of the rotation in the basis. In order to be
precise, let us suppose that (α, Ai(·)). i = 1, 2, are continuous and conjugate
to each other, and that B(·) is continuous. The path in C0(Td, G)

B(· + (1− t)α)A2(·)B−1(·)

deforms continuously A1(·) to B(·)A2(·)B−1(·). Since the homotopy group
of a compact Lie group G is that of T ↪→ G, where T is a maximal torus,
we can deform continuously A2(·) to Ã(·) and B(·) to B̃(·) which they take
values in T . As a consequence, both A1(·) and A2(·) are homotopic to Ã(·).
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In particular, a reducible cocycle is homotopic to constants, and so are almost
reducible cocycles.

An example of a cocycle which is not reducible and not almost reducible for
this exact reason is

(α, R2π ·) ∈ SW∞(Td, SO(3))

for any minimal α. This cocycle, as well as C0-small perurbations of it, are
not reducible. Its second iterate,

(2α, R4π(·+α/2))

admits a lift in SW∞(Td, SU(2)), which is (2α, E1(· + α/2)) in the notation
that we have adopted. Since SU(2) is simply connected, there is no topological
obstruction to the reducibility of this cocycle, but it is in fact not reducible.
The reason is a non-trivial theorem by R. Krikorian (cf. theorem 3.8) which is
still of topological nature, but this time the topological space is C∞(Td, SU(2))
and not the group SU(2) itself. Since the reason for the non-reducibility of
(2α, E1(· + α/2)) is not a discrete invariant depending continuously on the
mapping in the fibers, one could expect (and it is in fact true, cf. theorem 3.11)
that arbitrarily small perturbations of this cocycle become almost reducible.

One could call such obstructions geometric ones, since one of the results
that we will prove is that, at least for one-frequency coycles, cocycles which
are not conjugate in any way close to constant ones are those whose dynamics
are similar to those of some periodic geodesic of G.

The third type of obstructions is of purely dynamical nature and they were
constructed in [14]. The obstruction in this case is unique ergodicity of the
dynamics in Td × SO(3), where the preserved measure is the product of the
Haar measures on the basis and in the fibers. Since a constant cocycle (α, Rϑ)
admits many invariant measures, unique ergodicity is incompatible with re-
ducibility. The construction of these cocycles by a K.A.M. scheme shows in
fact that non-reducible cocycles are not exotic objects that live far from the
well understood constant cocycles, since they are in fact almost reducible.

We close this chapter by stating some results in the existing litterature con-
cerning the reducibility of quasiperiofic skew-systems in compact Lie groups.
Some of these theorems are stated in the continuous-time case, but their proofs
work equally well in the discrete-time case.

Firstly, let us give two positive results in the local setting, by R. Krikorian,
the first one being on the density of reducible cocycles in the neighborhood of
constants, proved in [29].
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Theorem 3.5. — Let G be a compact semisimple Lie group ω ∈ DCd(γ,σ),
i.e. such that

|(k,ω)| ≥ γ−1

|k|σ , k ∈ Zd\{0}.

Then, there exist ε0, s0 > 0 and a natural number χG, depending only on the
group G, such that, for all A ∈ g and F ∈ C∞(Td, g) satisfying ∥F∥s0 ≤ ε0 and

every ε, s > 0, there exists F ′ ∈ C∞(χGTd, g) such that (ω/2π, A + F ′(·)) is
reducible mod χG and satisfies ∥F − F ′∥s ≤ ε. If G = SO(3), or SU(w + 1),
one can take χG = 1. In other words, reducible systems are dense in

{A+ F (·), A ∈ g, F ∈ C∞(Td, g), ∥F∥s0 ≤ ε0}, g = so(3), su(w + 1).

A step of the proof of the theorem is the proof of quasi-reducibility of
systems satisfying the same smallness condition.

The density properties are quite delicate and (as shows the proof) reducibil-
ity of any given system cannot be concluded, at least in the K.A.M. construc-
tive sense. For this reason, such theorems are in general coupled with theorems
where one embeds an individual system or cocycle in a family of such systems
depending on parameters, and then studies the measure-theoretic abundance
of reducible systems with respect to the parameters. The first such theorems,
proofs of which are in the scope of classical K.A.M. theory, asserted that for
generic one-parameter families there is reducibility for a set of positive mea-
sure in the parameter space. Moreover, the measure tends to be full as the
size of the perturbation goes to 0 (the “K.A.M. tongues”). For this part of the
theory, one can consult [11] and [29]. These theorems have been improved
to prevalence theorems, i.e. theorems asserting reducibility in full measure for
generic one-parameter families. This improvement has been possible only for
analytic cocycles, in contrast with positive measure theorems who have also
been proved in the C∞ case ([29]).

The prevalence theorem that we cite next was proved in [30].

Theorem 3.6. — Let G and ω as above, h > 0, Λ ⊂ R an interval and
A ∈ g, generic. Then, there exists ϵ0, depending on Λ, A, ω, h, such that, if
F (·) ∈ Cω

h (Td, G) satisfies |F |h < ϵ0, then for a.e. λ ∈ Λ, (ω/2π,λA + F (·))
is reducible mod χG. If G = SO(3), or SU(w + 1), one can take χG = 1

The local picture as we know it is completed by H. Eliasson’s theorem,
which we have already discussed.

Theorem 3.7. — Let ω as above and let h > 0. Then, there exists a constant
C = C(h,σ) such that the set of F (·) ∈ Cω

h (Td, so(3)) for which the system
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(ω/2π, A+F (·)), with A ∈ so(3) and ∥F∥h < C has a unique invariant measure
is a Gδ-dense set.

We also cite the following theorem of qualitative nature, proved in [29]
(theorem 2.2.3).

Theorem 3.8. — Let G be a compact connected semisimple Lie group, α ∈ Td

a minimal translation and (α, A(·)) ∈ SW∞(Td, G), such that {(α, A(·))n}n∈Z
be precompact in SW∞(Td, G) for the C∞ topology. Then, there exists A0 ∈ G
and B(·) ∈ C∞(Rd/χ̃GZd, G) such that

A(·) = B(· + α)A0B
∗(·).

The integer χ̃G can be chosen equal to cGχG, and if χG = 1 it can be chosen
equal to 1.

We remind that χG is a constant depending only on G. We also remark that
the inverse is trivially true, and we give the immediate corollary

Corollary 3.9. — A cocycle (α, A(·)) ∈ SW∞(Td, G) is reducible, possibly
modulo χ̃G, if, and only if, there exists q ∈ Z∗ such that (α, A(·))q is reducible.

As for the problem of reducibility in an ambient group and intrinsic re-
ducibility, C. Chavaudret has shown in [7] the following theorem.

Theorem 3.10. — Consider a skew-system in Td ×G, where G is

◃ Sp(n,R) (the real symplectic group of dimension n),

◃ SL(n,R) (the group of real n× n matrices of determinant 1),

◃ O(n) (the n-dimensional orthogonal group),

◃ U(n).
Suppose, moreover, that the system is GL(n,C)-reducible. Then, it is G-
reducible mod 2. It is reducible mod 1 when G = U(n).

The equivalence of U(w′)- and G-reducibility is unknown.

Finally, we conclude with the results obtained more recently in the global
setting, i.e. where there is no assumption of closeness to constants for the
studied system. Although it was preceded by some preliminary results by
K. Fraczek [16], the first general result of global density is due to R. Kriko-
rian [31]:

Theorem 3.11. — There exists Σ ⊂ T, of full measure such that, for α ∈ Σ,
reducible cocycles are dense in SW∞

α (T, SU(2)) in the C∞ topology.
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The set Σ as it is defined is slightly thinner than RDC (see definition 2.14).
The proof of the theorem relies in the renormalization of dynamics, which
brakes down the proof of the theorem to the local study of a collection of
models (periodic geodesics of SU(2)), followed by the actual study of the mod-
els using K.A.M. techniques.

A corollary of the proof of the theorem is the quantization of the length of
rescaled iterates of the cocycle, for rotations in Σ and in regularity C2. This
result was generalized by K. Fraczek in [17]:

Theorem 3.12. — For every (α, A(·)) ∈ SW1(T, SU(2)), there exists a mea-
surable and bounded function ψ : T → su(2) such that Lebesgue a.e.

1

n
LAn(·) =

1

n
an(·) −→ ψ(·).

Moreover, ψ is invariant by the dynamics of the cocycle,

Ad(A(·))ψ(·) = ψ(· + α)

and therefore |ψ(·)| is a.e. a constant.

This constant was defined to be the degree of the cocycle and in the same
paper it was shown that it is quantized.

Theorem 3.13. — If (α, A(·)) ∈ SW2(T, SU(2)), then its degree is in 2πN.

We remark that no arithmetic conditions, other than irrationality, are as-
sumed for α, and that from the proof (which uses renormalization) it follows
that the degree as defined by K. Fraczek generalizes the length of “renormal-
ization representatives” as used by R. Krikorian in his proof.

Subsequently, K. Fraczek showed that

Theorem 3.14. — If (α, Ai(·)) ∈ SW2(T, SU(2)), i = 1, 2, are measurably
conjugate to each other then their degrees are equal.

Finally, K. Fraczek refined the local study of obstructions and showed that
if the rotation in the basis is RDC and the cocycle is of degree r, it is conjugate
to the obstruction, thus obtaining the following global density theorem.

Theorem 3.15. — Reducible cocycles are dense in SW∞
α (T, SU(2)) in

the C∞ topology if α ∈ RDC.
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3.4. Statement of the main theorem and plan of the proof

After having established the basic vocabulary, we can state the main theo-
rem of this mémoire.

Theorem 3.16. — Let α ∈ RDC and (α, A(·)) ∈ SW∞(T, G). If 1 ≤ m ≤ χG

is the minimal natural number such that (α, A(·))m is homotopic to constants,
then (α, A(·))m is accumulated by reducible cocycles in SW∞

mα(mT, G).

In other words, for such α, any cocycle (α, A(·)) in T×G has an iterate which
is accumulated by reducible cocycles and the maximal number of iterations
needed in order to satisfy this property depends only on the group G. We
remind that the definition of the constant χG is given by lemma 2.5.

We can also give a version of the theorem concerning the cocycle itself, and
not perturbations of it. Moreover, its statement does not involve any loss of
periodicity, only iteration for reasons of homotopy.

Theorem 3.17. — Let α ∈ RDC, and (α, A(·)) ∈ SW∞(T, G) and m as
above. Then, there exists χ ∈ N∗, χ|m, such that (α, A(·))χ is almost torus-
reducible in SW∞

χα(T, G).

The proof of these theorems, based on intermediate results some of which
have an interest on their own, occupies the remaining of this mémoire. It
combines techniques used in the proof of theorems 3.11, 3.15 and 3.5, which
nonetheless have had to be adapted in order to be applicable in this more
general context. Let us give a general plan of the proof.

Abelian cocycles. — Firstly, in chapter 4, we study briefly the basic examples
of non-reducible cocycles obtained easily from theorem 3.8. These are cocy-
cles C∞-conjugate to ones of the form (α, Er(·)), where Er(·) is a 1-periodic
geodesic of G (for the notation, see subsection 2.1.1.4). If (α, A(·)) is such a
cocycle, we find that by

(11) lim
1

qn
LAqn(·)

with qn as in section 2.3, we can define a smooth curve a(·) : T → g \ {0}
which is invariant under the dynamics:

Ad(A(·)).a(·) = a(· + α).

The invariance of the curve and the minimality of α imply that the class of
the vectors a(·) in g mod Inn(g) is well defined, and that the curve is in
fact traced in a sphere in g (since the adjoint action of G is an isometry).
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For such cocycles, in fact, this class is essentially the degree r ∈ Zw of the
geodesic Er(·).

Conversely, the existence of such an invariant curve a(·) implies that, given
any vector s ∈ g in the class of a(·), we can conjugate the given cocycle to
(α, Ã(·)) commuting with s. Two cases are possible: either the vector s is
regular (in the algebraic sense of the first chapter), or it is singular.

In the fist case, since only one maximal torus T passes by s, Ad(Ã(·)).s = s
implies that Ã(·) takes values in T , i.e. (α, A(·)) is torus-reducible. However,
if s is singular, torus-reducibility cannot be concluded by an algebraic rea-
soning. Such an argument can only produce what we will call a splitting of
the dynamics in proposition 4.5. The splitting consists of two subgroups, G+

and G0, with G+ abelian and given by the intersection of all maximal tori pass-
ing by s, and with G0 being the largest subgroup of G commuting with G+

and intersecting with G+ only at the Id. If the vector s is singular, the cocycle
(α, A(·)) can be conjugated to a cocycle taking values in G0×G+ ↪→ G, which
is not necessarily abelian. If the invariant curve is obtained as in equation (11),
we can additionally conclude that the part of the dynamics in G+ carries all
the linear growth of the derivatives of the cocycle, and the derivatives in the
G0-part grow sublinearly.

The energy of a cocycle. — In chapter 5 we begin the general study of cocycles.
We drop the assumption that the cocycle (α, A(·)) is torus-reducible, but we
define, following K. Fraczek, an invariant curve of regularity only L2(T, g).
Due to the curve’s low regularity, we cannot derive conclusions finer than the
fact that if it is non-degenerate (i.e. if it is not equal to 0 for a.e. x ∈ T),
the cocycle is not reducible. On the other hand, since the invariance relation
holds a.e., we can still define the type of a.e. vector in the image of a(·) as
the degree of the cocycle. The length of these vectors is an invariant of the
dynamics (just as the degree), which we will call energy. There is a shift in
terminology with respect to K. Fraczek’s work. There, the degree of a cocycle
in T × SU(2) is defined as a numerical quantity (which corresponds to our
energy), since classes of vectors in su(2) ≈ R3 modulo Inn(su(2)) ≈ SO(3) are
spheres centered in the origin, thus completely determined by their radius. In
more general groups, however, the length of vectors in the image of a(·) is
an insufficient invariant, and therefore we need to keep the term degree for
their type. Subsequently, we show that higher-order derivatives (if they exist)
carry no additional information, since 1

nσ+1∂σLAn(·) → 0 in L2, provided that
∂σLA(·) ∈ L2.
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The most important properties of the energy are those proven in proposi-
tion 5.3: the energy of the n-th iterate is nothing else but n times the energy
of the cocycle, and the energy of the cocycle (α, A(·)) is not bigger than the
energy of the path A(·) : T → G (i.e. the L2 norm of its derivative), or its
length (i.e. the L1 norm of its derivative). These L2 and L1 norms decrease
as n increases due to two causes. One is the averaging, already present in
abelian groups: if φ : T → R, then its Birkhoff sums converge to its mean
value, φ̂(0), which is certainly smaller than ∥φ∥Li , i = 1, 2. The other is the
non-alignment of Ad(A(·)).an−1(· + α) with a(·) (cf. the invariance relation
satisfied by a(·)), which results in an at most linear growth of lengths, due to
the triangle inequality.

Renormalization. — The low regularity of the limit object of the dynamics,
the curve a(·), calls for a more sophisticated means of study of the dynamics.
This means is known as the renormalization scheme, and we present and apply
it in chapter 6, following R. Krikorian. In this context, renormalization could
be motivated by the observation that, thanks to the invariance of the curve,

(12) Ad(A(−1)nqn(·)).a(·) = a(· + βn),

where the quantities qn and βn are given by the continued fractions algorithm
(see section 2.3). This fact, together with the fact that the passage in the limit
in equation (12) is still justified in L2, shows that for large n, and around
every point ν of Lebesgue continuity of a(·), A(−1)nqn(·) looks like a piece of
geodesic of speed (−1)nqna(ν). Let us fix 0 as such a point for definiteness.

However, the fact that A(−1)nqn(·) ≈ exp((−1)nqna(0)·) does not imply,
at least not directly, that (α, A(·)) ∼ (α, exp(a(0)·)). In order to establish
such a fact, we need to consider A(−1)nqn(·) coupled with the preceding iter-
ate in the continued fractions algorithm, A−(−1)nqn−1

(·). For n large enough,
A−(−1)nqn−1

(·) obviously also approaches the limit object. The couple of co-
cycles

(βn−1, A−(−1)nqn−1
(·)) and (βn, A(−1)nqn(·))

is to be considered as a linearly independent couple of commuting cocycles
which completely describes the dynamics of the original cocycle. Indeed, it is
obtained by lifting the continued fractions algorithm and interpreting division
at each step as iteration of the commuting pair

(1, Id) and (α, A(·)).

Here, 1 codes the initial scale of the torus T = R/Z, α the dynamics in the
basis, A(·) the dynamics in the fibers. Finally, Id codes the 1-periodicity
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of the mapping A(·), as well as the fact that the space in which the dy-
namics takes place is T × G, i.e. that fibers {x} × G and {x + 1} × G are
isomorphic via the identity mapping. Both couples ((1, Id), (α, A(·))) and
((βn−1, A−(−1)nqn−1

(·)), (βn, A(−1)nqn(·))) act naturally on R × G. They gen-
erate the same Z2 action, modulo a change of basis of generators, coded by a
matrix in GL(2,Z).

After n steps of the algorithm of continued fractions applied on the initial
couple ((1, Id), (α, A(·))), we obtain ((βn−1, A−(−1)nqn−1

(·)), (βn, A(−1)nqn(·))).
Let us interpret the quantities defining the second one. In a scale reduced to
βn−1, the dynamics of the cocycle (α, A(·)) are represented by the cocycle
(βn, A(−1)nqn(·)), but acting on a space whose fiber {x+βn−1}×G is isomorphic
to {x}×G by S → A−(−1)nqn−1

(x).S (and not by the Id). We remark that the
distortion of the fibers accumulates as x increases, so that x in this context is
more naturally considered as a real-valued variable.

We can, however, zoom in, in order to change the scale of the dynamics
back to 1. The zoom, which makes sense since the cocycles act on R×G, gives
the commuting couple

(1, Ã−(−1)nqn−1
(·)) and (αn, Ã(−1)nqn(·)).

Finally, we can restore the fibers by a conjugation (0, B(·)) : R → G such that

B(·) = Ã−(−1)nqn−1
(· + 1).Ã−(−1)nqn−1

(·))∗

We then obtain a commuting couple of the type

(1, Id) and (αn, Ǎn(·))

which we call a renormalization representative of (α, A(·)). A renormalization
representative is a cocycle over a different rotation (αn instead of α), and of
shorter period (βn−1 instead of 1) than the original one. It represents, nonethe-
less, completely the original cocycle in the following sense. Conjugation of the
representative, or arbitrarily small perturbations of it translate back to conju-
gations of the original cocycle. Consequently, all reducibility and accumulation
by reducible cocycles properties are shared by the two objects.

The important point comes from our first observation in this paragraph
(cf. the formula in equation (12)). In our vocabulary, it means that around a
typical point ν ∈ T, the two cocycles

(1, Ã−(−1)nqn−1
(·)) and (αn, Ã(−1)nqn(·))
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defining the commuting pair at the n-th step of the algorithm converge to the
same limit object of the dynamics, a(ν). This allows us to obtain a renormal-
ization representative as an expression of the limit object:

Ǎn(·) ≈ exp(a(ν)·).

Since the representative is a 1-periodic cocycle, we obtain the quantization of
the degree (theorem 6.1):

ea(ν) = Id, a.e. ν ∈ T.

We have hidden some problems concerning homotopy and the algebraic type
of the degree (regular or singular), but roughly the convergence of the renor-
malization scheme shows the following thing. If we are willing to allow the
arithmetic properties of the rotation to deteriorate, we can simplify the ex-
pression of our cocycle to a perturbation of its degree. Then, any conjugation or
perturbation that we construct for the representative (therefore in a distorted
phase-space and locally in x) is translated into a conjugation or perturbation
of the original cocycle, well defined for all x ∈ T and 1-periodic.

The homotopy class of a cocycle manifests itself, when significant, in the
context of lemma 2.5. Therefore, it is significant only if the degree is not a
regular vector and only if the cocycle is non-homotopic to constants within G0.
The way to cope with this issue is to consider a sublattice of the action, and
thus commuting pairs of the type

(χ, Id) and (χαn, Ǎn(·))

as renormalization representatives. The number χ ∈ N∗ is such that “A(·) is
homotopic to constants in the part of the group that matters”.

The preceding arguments sum up essentially to saying that the ergodicity
of the dynamics in the basis results in the cancellation of non-commutativity
in the fibers. Moreover, they interpret the energy (α, A(·)) as the length of the
path coding the dynamics of the qn-th iterate of (α, A(·)) in the scale βn−1.
Moreover, they show how commutativity appears robustly when the lengths
in the proper scale are in accordance with the asymptotic characteristics of
the dynamics: initially, non-commutativity makes lengths decrease, until the
ergodic theorem cancels the non-commutativity. Finally, let us remark that
this derivation shows that the fact that the group G is not commutative does
not affect the asymptotic properties of the dynamics and only marginally (ap-
pearing through homotopy) the models of the dynamics: the quantization of
the degree is the same as for cocyles in T × Tw and the models of dynamics
are (non-abelian) perturbations of geodesics in Tw ↪→ G.
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Finally, the observation that conjugation between cocycles acts on the limit
curve by algebraic conjugation (see the proof of proposition 5.3), can serve as
a motivation for K. Fraczek’s theorem on the measurable invariance of the de-
gree, which we generalize and strengthen in terms of its regularity assumptions
(theorem 6.7). Since the invariant curve defining the degree of a C1 cocycle
is measurable, it is reasonable to expect that measurable conjugation of C1

cocycles, which preserves the properties of their limit curves, should preserve
the degree. We do not know, however, a proof of this fact not using renormal-
ization, although this property is not related to it.

A priori estimates for perturbations of regular cocycles. — The effect of non-
commutativity is exploited in chapter 7. At this point, we suppose that renor-
malization of a given cocycle is not bound to simplify its dynamics, i.e. that
the cocycle (α, A(·)) is given as a perturbation of a geodesic (α, Er,a(·)) whose
derivative is equal to the degree of (α, A(·)). Under this assumption, we ob-
tain some necessary conditions satisfied by the perturbation, summed up in
lemma 7.1.

In order to motivate these estimates, let us restrain ourselves to the case
where G = SU(2) and consider a cocycle whose dynamics in the fibers are given
by a perturbation of Er(·) = exp({2πr ·, 0}su(2)), with r ∈ N∗ (for the notation,
see subsection 2.1.2). We remark that a perturbation in the diagonal direction
(i.e. in the direction commuting with the privileged direction of the dynamics)
dies out thanks to the additive ergodic theorem. We suppose, therefore, that
the perturbation is non-zero only in the complex direction of su(2) ≈ R×C, and
write the perturbation in the form U(·) : x $→ {0, Uz(·)}su(2), with Uz(·) : T →
C small enough. Therefore, we consider a cocycle of the form (α, Er,a(·)eU(·)),
with such a mapping U(·), restrained in the plain orthogonal to er.

Then again, in this simplified context, two possibilities can be distinguished.
Either 0 ∈ C is in the bounded component of the complement of the curve
Uz(·), or in the unbounded one, depending on the significance of the constant
part of the perturbation over its non-constant part.

For the first case, let us suppose moreover that the perturbation has only
one frequency, and thus of the form Uz(·) = εe2iπk· with k ̸= 0, so that
U(·) = {0, εe2iπk·}. (1) In this case, ∂U(·) = {0, 2iπεke2iπk·} is orthogonal to
U(·), and thus does not commute with it. Transfer of ∂eU(·) to g = TId gives

1. The coefficient ε should in fact be chosen in C∗, but its absolute value is the significant

part, as the imaginary part only introduces a phase in the perturbation, which by the geomet-

ric argument given below should se easily seen to be irrelevant. The parameter ε remains,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



46 CHAPTER 3. COCYCLES IN Td ×G

the first order term ∂U(·) and the second order term 1
2 [U(·), ∂U(·)]. This

second term is, by elementary vector algebra in R3, parallel to er = LEr,a(·),
i.e. in the real line of R× C, and its value is {2πε2k, 0}.

Since [·, ·] ≡ 2 · ×·, we obtain that if k > 0 (i.e. if the circle of radius ε
in C is traversed in the direction of er) all terms contribute positively in the
calculation of the L2 norm of the derivative. If, however, k < 0, the bracket
{2πε2k, 0} is in the opposite direction than er: the path A(·) is traversed
with a speed equal to 2π(r − ε2|k|), constantly smaller than 2πr at least in
the diagonal direction. On the other hand, the term in the complex direction,
∂U(·), contributes to the L2 norm by (2πkε)2. Therefore, if k ≤ −2r, this drift
in the real direction is compensated by the movement within the complex one.
On the other hand, for−2r+1 ≤ k < 0, the contribution remains negative. The
same calculation when all Fourier modes are authorized in the perturbation
shows that, at least in the order of ε2, the frequencies are not mixed, so that
the conclusion remains valid: if the perturbation rotates clockwise in {0}× C
around R sufficiently slowly, the counter-clockwise rotation of the geodesic
does not compensate it, and the cocycle cannot be of degree r.

Up to now there is no dynamics in the estimates, but it comes into effect
when the perturbation is of the second type, i.e. if 0 is in the unbounded
component of the complement of Uz(·). In this case, the constant part is the
principal part of the perturbation, so let us suppose that the perturbation is
actually constant:

A(·) = Er(·)e{0,z},

where z ∈ C∗ is small. The path is merely a (right) translate of the geodesic
Er(·), so that is length is that of the geodesic. Surprisingly enough, in the
second iterate of this cocycle the previous phenomenon appears:

A(· + α).A(·) = Er(· + α)e{0,z}.Er(·)e{0,z}

= E2r(·)Er(α)e
{0,z e−4iπr·}.e{0,z}.

The constants Er(α) and e{0,z} are insignificant, and the previous reasoning
applies with r replaced by 2r. In both cases, the fact that estimation of the
length is continuous in the C1 topology completes the picture whenG = SU(2).
For definiteness and comparability with the general case, we remind that not r,
but 2r corresponds to rρ in the notation for general Lie groups.

nonetheless a 2-dimensional real parameter for considerations concening the dimension of

obstructions.
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Finally, since su(2) is embedded in any semi-simple compact Lie algebra,
and since the interaction of different such subalgebras is of higher order, the
result remains true for any compact algebra g.

These estimates allow a preliminary description of the configuration in
SW∞

α (T, G) of the conjugacy classes of periodic geodesics (section 7.7), for
any α ∈ T \ Q. From the estimates, we obtain directly that every model
(α, Er(·)) is in the boundary of an open set (in the C1 topology) of cocycles
of energy strictly smaller than |er|. Since any cocycle (α, A(·)) has renormal-
ization representatives mod χ arbitrarily close to such a geodesic, we can
perturb such a renormalization representative and obtain a cocycle of smaller
energy. This perturbed cocycle is the renormalization representative of a co-
cycle (χα, A′(·)) ∈ SW∞(T, G). However, due to the distortion-restoration of
the fibers and the rescaling, we cannot relate the smallness of the perturbation
of the renormalization representatives to the distance of the cocycles (α, A(·))
and (α, A′(·)). We can say, nonetheless, that A(·) can be continuously de-
formed to A′(·), and that, if we go deep enough into renormalization, we can
make the perturbation of the representative arbitrarily small.

As a conclusion, we can say that the different conjugacy classes are not
too far from each other, unlike their discrete repartition in SW∞(T,Tw). Ad-
ditionally, it is precisely the non-abelian character of G which destroys this
structure. On the other hand, this argument cannot be pushed any further,
and a more precise conclusion demands a study of the renormalization rep-
resentatives as cocycles. If some renormalization representative of (α, A(·))
can be conjugated arbitrarily close to the limit object, since the distortion of
the fibers and the rescaling factor have been kept constant, the same follows
for the cocycle (α, A(·)) by inverting the renormalization scheme. Likewise,
if the renormalization representative is accumulated by cocycles reducible to
the limit object, we can conclude that the property of accumulation by lower
energy cocycles holds equally for the cocycle (α, A(·)) itself.

Perturbations of regular geodesics. — The local study of the limit objects
starts in chapter 8 with the local study of regular geodesics. From this chapter
on, unlike with the previous ones, we suppose that the rotation α satisfies
some recurrent Diophantine condition (see definition 2.14), so that K.A.M.
and K.A.M.-like methods are applicable.

In this chapter we suppose that the cocycle (αn, Er,an(·).eUn(·)) is given,
where αn ∈ DC with a priori fixed constants, Un(·) : T → g satisfies some
smallness condition in C∞ and Er,an(·) is a regular geodesic. The hypothesis
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that αn ∈ DC is satisfied by the definition of RDC if we consider a subsequence
in the renormalization scheme. Moreover, we suppose that the degree of the
renormalization representative of some cocycle is r, and therefore equal to the
degree of (αn, Er,an(·)).

These assumptions pose the problem as that of the study of perturbations
of regular geodesics over Diophantine rotations, the perturbations being of
the same degree as the geodesics. In order to simplify the notation and since
we have established the connection of this setting with the global problem,
we suppose that the cocycle is given in the form (α, Er,a(·).eU(·)) is given,
where α ∈ DC.

The regularity of Er,a(·) implies that for every embedding su(2) ↪→ g cor-
responding to a root ρ, there exists an integer rρ ̸= 0 such that

Ad(Er,a(·)).jρ = 2iπrρjρ.

So, we suppose, with no serious loss of generality (2) that

G = SU(2) and Er,a(·) = {e2iπr(·+a), 0}SU(2).

The a priori estimates described just above indicate that only a part of
the spectrum of the perturbation is significant. It corresponds to the part of
the perturbation of the the limit object which cannot be evened out by the
additive ergodic theorem.

Before connecting this fact with the local theory of regular geodesics, let us
make a small digression and state a more general remark on the local theory
of models of cocycles. Let us suppose that the cocycle

(α, A(·))

is a model of dynamics in which we are interested, and let us consider a
perturbation of it in the form

(α, A(·)eU(·)),

where U(·) : T → g is small. What one would wish in the context of the
local theory of (α, A(·)) would be to find a conjugation, hopefully of the order
of U(·), conjugating the perturbed cocycle to the exact model. The conjugant

2. The only loss is that we are forced to consider only rρ ∈ 2Z∗ rather than in Z∗, but

this does not affect our discussion. The discussion remains true of one formally substitutes

r = 1
2 .
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is supposed to be of the form exp(Y (·)), where again Y (·) is supposed to be
small. The equation satisfied by such a Y (·) is a non-linear one, namely

eY (·+α).A(·).eU(·).e−Y (·) = A(·) or eAd(A∗(·)).Y (·+α).eU(·).e−Y (·) = Id .

The exact model acts on the conjugant by algebraic conjugation along the trans-
lation by α. Since this equation is non-linear, we opt for the solution of the
linearized one and therefore renounce in single-handedly conjugating the per-
turbed cocycle to the exact model. The linearized equation reads

(13) Ad(A∗(·)).Y (· + α)− Y (·) = −U(·).

By solving this equation, we can only reduce (α, A(·)) to

eY (·+α).A(·).eU(·).e−Y (·) = A(·)eU ′(·)

with U ′(·) much smaller than the initial perturbation U(·) (we say that it is
“of second order”). This will hopefully (i.e. under some relevant assumptions)
give rise to an iterative scheme which will settle the question. Unfortunately,
even this is not possible, at least not in general, as, for a given A(·), the image
of the operator

(14) Y (·) $−→ Ad(A∗(·)).Y (· + α)− Y (·)

may not be closed in C∞(T, g), or its closure may not be equal to C∞(T, g).
In the first case, some first order phenomena cannot be reduced with good
estimates by a conjugation of the same order as the perturbation (we will call
such phenomena resonances in chapter 9) (3). In the second case, the pertur-
bation in the complementary space cannot be reduced by a conjugation of the
same order as the perturbation. We will see in the case of regular cocycles
that such perturbations cannot be reduced by conjugations of any order. The
space complementary to the image of the operator constitutes the dynamical
obstructions to reducibility to the exact model. Perturbations supported in
the obstructions are the exit door to the conjugacy class of the model. This is
quite straightforward in the case of regular geodesics, and quite trickier in the
case of constant cocycles.

Let us now end our digression and return to the special case under consid-
eration. The conjugation equation, studied in section 8.3, then reads

Ad(E∗
r,a(x)).Y (x+ α)− Y (x) = −U(x)

3. Exact resonances belong actually to the second case of obstructions.
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which, if we note Y (·) = {Yt(·), Yz(·)}su(2), decomposes into

Yt(· + α)− Yt(·) = −Ut(·),

e−4iπr(·+a).Yz(· + α)− Yz(·) = −Uz(·).

In the first equation, small divisor phenomena appear, but they are related
only to α, so that the assumption that α ∈ DC settles this part of the per-
turbation (see lemma 3.4). We remind that the only topological obstruction
to the solution of the equation concerns the mean value of the rhs function,
which is an abelian constant, so that its dynamics are of the same type as
those of (α, Er,a(·)), only with a different a.

The second equation reads, in the space of frequencies,

(15) e2iπ((k+2r)α−2a)Ŷz(k + 2r)− Ŷz(k) = Ûz(k)

for all k ∈ Z. It is a difference equation of step 2r in the space of rapidly decay-
ing sequences, so that its free parameters are 2r terms of the sequence. Since
these parameters, which are in fact the obstructions, are freely chosen, we can
place them in the interval {−2r+1, . . . , 0}. We thus establish that (α, Er,a(·))
perturbed by obstructions will have different dynamics if the obstructions are
strong enough: in that case, the a priori estimates show that the cocycle can-
not be of degree r. This observation gives rise to the K.A.M. scheme of [31],
a variant of which we use in chapter 10. This method, sufficient for the proof
of the density theorem, shows that if the cocycle (α, A(·)) is close enough
to (α, Er,a(·)), the smallness of the perturbation depending on α ∈ DC, and if
(α, A(·)) is of degree r, then it is smoothly conjugate to (α, Er,a′(·)). A fun-
damental reason for the convergence of the scheme (apart from the legitimate
assumption on the degree) is the absence of small divisor phenomena in the
dynamics in the fibers: there are no such phenomena in equation (15) and as a
consequence the conjugation not only always exists, but it also is of the order
of the perturbation.

This last observation triggers a more general question. Since the core of the
difficulties of K.A.M. theory is absent in this context, can we say more? This is
done by dropping the assumption on the degree of (α, A(·)), thus authorizing
non-zero obstructions.

The answer could be seen to be affirmative in the following way. Let us
assume that (α, Er,a(·)eU(·)) is given, and let us write

U(·) = Ucob(·) + Uob(·),
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where Ucob(·) is in the image (4) of the operator introduced in equation (14),
and Uob(·) is in a complementary space, and it is spectrally supported
in {−2r + 1, s, 0}. Then, there exists Y (·) ∈ C∞(T, g) such that

Ad(E−r,−a(x)).Y (x+ α)− Y (x) = −Ucob(x).

Moreover, as we will see in section 8.2, Y (·) satisfies good (tame) estimates
with respect to U(·), where the constants and the loss of derivatives depend
only on α, and therefore are constant throughout the scheme. Consequently,
we can write

Er,a(·)eU(·) = Er,a(·)eUcob(·)+U ′(·)eUob(·)

= e−Y (·+α)Er,a′(·)eU
′(·)eUob(·)eY (·).

In these equations, U ′(·) may change from one line to another, but it is
quadratic with respect to U(·) and Y (·), and a′ = a + Ût(0). The next step,
however, has to be different, since, in general, Uob(·) will be of the order
of U(·). This takes us to the study of perturbations of models of the type

(α, Er,a(·).eP (·)),

where P (·) takes values in the space of obstructions (5) and satisfies some fixed
a priori bound, and U(·) is at least quadratic with respect to P (·). Then,
conjugation in the neighborhood of this model reads

eY (·+α).Er,a(·).eU(·).eP (·).e−Y (·) = Er,a′(·).eU
′(·).eP

′(·),

where Y (·) is of the order of U(·), U ′(·) is quadratic with respect to U(·), and
P ′(·) is close to P (·) up to a correction of the order of U(·).

Given the a priori bounds on P (·), and anticipating that Y (·) be of the
order of U(·), we find that, up to quadratic terms, the preceeding equation is
equivalent to

eY (·+α).Er,a(·).eU(·).e−Y (·).eP (·) = Er,a′(·).eU
′(·).eP

′(·),

4. Cob stands for coboundary and Ob for obstructions
5. We keep implicit the dependence of the obstructions with respect to the abelian con-

stant a, since for a′ close to a the space of obstructions of (α, Er,a′(·)) is a finite-dimensional

vector space, canonically isomorphic to the obstructions of (α, Er,a(·)). In order to see this,

is suffices to check that, in the case where G = SU(2) we can normalize a to 0 by introducing

a translation x #→ x+ λ, and then verify that, in proposition 8.6, the obstructions Γ behave

well under such translations for λ seen now as a parameter close to 0. Finally, the dimension

depends only on r.
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where we have used the fact that the operator Id−Ad(exp(Y (·))) is of the
order of Y (·) (by the estimates on the Hausdorff-Campbell formula of sec-
tion 11.3), and thus Ad(exp(Y (·))).P (·) = P (·), plus terms of the order of U(·)
which we have incorporated in U(·). (6) Rewriting this last equation in a more
familiar form gives

eY (·+α).Er,a(·).eU(·).e−Y (·) = Er,a′(·).eU
′(·).eP

′(·)−P (·),

which is exactly the case treated previously:

eY (·+α).Er,a(·).eU(·).e−Y (·) = Er,a′(·).eU
′(·).eUOb(·)

and the step is concluded if we call P ′(·) = P (·) + U ′
Ob(·), a′ = a + Ût(0),

and U ′(·) the quadratic term. Iteration is possible, since if the a priori bounds
are satisfied with some margin by P (·), then they are equally satisfied with
some margin by P ′(·), and the diagonal constant a′ is not too far from a.
Therefore, the scheme whose iterative step we just described should converge
and produce a conjugation Ỹ (·) satisfying

eỸ (·+α).Er,a(·).eU(·).e−Ỹ (·).eP (·) = Er,a′(·).eP̃ (·),

where P̃ (·) takes its values in the space of obstructions.
The scheme in the way we presented it looks more than a classical fixed-

point argument than a K.A.M. scheme, and this is true in a way, since the
loss of derivatives and the constants entering the estimates depend only on r
and α, which are kept constant throughout the scheme, and small divisors
are only a secondary phenomenon. The actual proof, however, is a convergent
classical K.A.M. scheme, or its equivalent, the Hamilton inverse function the-
orem (theorem 2.11). The exactness of the statements of theorems 8.1 and 8.4
is precisely due to the secondary effect of small divisor phenomena in this
context.

Perturbations of singular geodesics. — Since the natural place of chapter 10,
at least from the dynamical point of view, is actually before chapter 9, let us
try to motivate the need for a more accurate local theory of constant cocycles,
which made chapter 9 necessary. We also hope that it will serve the reader

6. There is a hidden classical fixed point argument here. In the final proof that we give

it does not appear in this way, but at this point the reader can think of this trick as a trial-

and-error procedure, where the terms coming from [Id−Ad(exp(Y (·)))].P (·) are gradually

incorporated in U(·) until equilibrium is reached. The absence of small divisors guarantees

convergence.
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as an introduction for the difficulties of the K.A.M. scheme finally applied in
chapter 10.

Singular cocycles stand in the middle between regular ones and cocycles
of 0 energy, in the sense that their obstruction to reducibility, the invariant
curve a(·) is non-degenerate, but in the same time weaker than the obstruction
of a regular cocycle. The first manifestation of this fact is already present in
renormalization, since a singular cocycle can be renormalized to a commuting
pair of the type

(1, C̃(n)
0 (·)) and (αn, Er(·)Ã(n)

0 (·)),

where Ã(n)
0 (·), C̃(n)

0 (·) are close to constants commuting with er = LEr = a(0).
However, unlike for regular cocycles, in general we cannot bring this pair to
the canonical form

(1, Id) and (αn, Er(·)Ã(n)
0 (·)),

unless we iterate χ0 times first, where χ0 is the constant χG0 related to G0, the
largest semisimple subgroup of G not commuting with a(0). We can, nonethe-
less, always obtain a commuting pair of the type

(χ0, Id) and (χ0αn, Eχ0rÃ
(n)
0 (·))

with Ã(n)
0 (·) close to a constant Ã(n)

0 belonging to the same maximal torus
as Er(·). By rescaling by a factor of χ0 and introducing some obvious
notation, we can bring ourselves to the case where the 1-periodic coycle

(αn, Er(·)Ã(n)
0 eUn(·)) is given. The RDC condition on α allows us to assume

that αn ∈ DC, so by still simplifying the notation we obtain the cocycle
(α, Er(·)AeU(·)) with U(·) ∈ C∞(T, g) arbitrarily small and α ∈ DC.

A second manifestation of the intermediate character of singular cocycles is
the fact that they can be obtained as renormalization representatives of pos-
itive energy perturbations of regular cocycles, something that should become
clear to the reader in the body of the mémoire.

This intermediate character makes itself clearer in their local theory, i.e. in
the reduction of cocycles of the form (α, Er(·)AeU(·)) of degree r, with er ∈ g
a singular vector. In this case, the exact model that we consider is the normal
form (α, Er(·)A), and the conjugation equation (13) then reads

Ad(A∗E∗
r (·)).Y (· + α)− Y (·) = −U(·).

We can directly partition roots into two sets. The roots ρ ∈ ∆+ such that
[er, jρ] ̸= 0 called I(+), and the roots satisfying [er, jρ] = 0, called I(0). The fact
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that the geodesic is singular implies that both sets are non-empty.The empti-
ness of I(+) corresponds to a degenerate curve a(·), while the emptiness of I(0)

corresponds to a regular geodesic. The fact that Er(·) andA belong to the same
maximal torus allows us to write the equations separately in each eigenspace.
The equation for the coordinates in the torus is the same as the one for Yt(·)
in (15), while the one in the direction ρ ∈ I(+) is of the same type as that
for Yz(·). If, however, ρ ∈ I(0), then the direction jρ commutes with er, so
that only the constant part of the normal form acts on the conjugation via the
operator associated to the cocycle (α, Er(·)A) as in equation (14). This is the
characteristic of the perturbation theory of constant cocycles and the source
of small divisor phenomena in the fibers.

The same observation holds in fact for the effect of perturbations of the
normal form in the directions jρ. If ρ ∈ I(+), the positive energy part of the
dynamics, any perturbation of the normal form (α, Er(·)A) in the direction jρ
with suitably chosen frequencies has energy strictly smaller than |er|. On the
other hand, any small enough perturbation in jρ with ρ ∈ I(0), the 0 energy
part of the dynamics, does not affect the energy, since it is evened out by the
Ergodic theorem. Continuity of such estimates with respect to the C1 norm
allows us to conclude that if U(·) is ε-small in C1 with ε small enough, then
a perturbation of the order of ε is sufficient in order to obtain a cocycle of
smaller energy. One only needs to chose

(α, Er(·)AeU(·)ezjρ)

with |z| big enough, but of the order of ε, and ρ ∈ I(+). In other words, a
theorem that can allow the proof of the global density theorem is the almost
reducibility to normal forms, but with a controllable growth of the conjugations
with respect to the decay of perturbations. Let us state what we need more
clearly. Suppose that for (α, Er(·)AeU(·)) of degree r and with U(·) small
enough, there exists a sequence of conjugations Bn(·) : T → G such that

ConjBn
(α, Er(·)AeU(·)) = (α, Er(·)Ane

Un(·))

with An some sequence of constants commuting with Er(·), and Un(·) → 0
in C∞. Then, conjugation is equivalent to

Er(·)AeU(·) = B∗
n(· + α)Er(·)Ane

Un(·)Bn(·)
= B∗

n(· + α)Er(·)AnBn(·)eAd(B∗
n(·)).Un(·).

This is an instance of a more general fact. If (α, A(·)) is a model of dynamics
and (α, Ã(·)) = ConjB(·)(α, A(·)) is another expression of the same model,
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then

(α, Ã(·)eAd(B(·)).U(·)) = ConjB(·)(α, A(·)eU(·)).

We can say that dynamical conjugation acts on perturbations by algebraic con-
jugation.

Therefore we can perturb (α, Er(·)AneUn(·)) and obtain a cocycle of smaller
energy. If Ad(B∗

n(·)).Un(·) → 0 in C∞, then the perturbation of the initial
cocyle (α, Er(·)AeU(·)) is also arbitrarily small. This is a necessary condition
for the density of reducible cocycles.

The independence of positive and 0-energy phenomena, at least in the first
order, motivates a scheme where the initial cocycle (α, Er(·)AeU(·)) is supposed
to be of degree r, and the perturbation is small enough. Then, at each step
the conjugation in the positive and 0-energy parts are applied separately for
the linearized problem, so that (α, Er(·)AneUn(·)) is conjugated to

(α, Er(·)Ane
ObUn(·)eUn+1(·)),

where ObUn(·) are the positive energy obstructions of Un(·), as defined
in the study of regular geodesics. Then, since Un+1(·) is quadratic with
respect to Un(·), ObUn(·) must also be quadratic, otherwise the cocycle
(α, Er(·)AneObUn(·)eUn+1(·)), which is conjugate to (α, Er(·)AneUn(·)) would
not be of degree r, a contradiction. The scheme is therefore ready to be
iterated.

Such a strategy, however, would demand the almost reducibility theorem
for perturbations of constants, which was not available. Its weaker equivalent,
the almost quasi-reducibility theorem, is sufficient for the proof of the local
density theorem by the following trick, used by R. Krikorian (7).

The 1-periodic cocycle (α, AeU(·))), sufficiently close to the constant (α, A),
after n steps of the K.A.M. scheme is conjugated by Bn(·) ∈ C∞(cDnT, G)
to a Dn-periodic cocycle (α, AneUn(·))), where Un(Dn ·) → 0 in C∞ expo-
nentially fast. Then, the mapping Un(·) is proved to be increasingly well ap-
proximated by 1-periodic mappings U ′

n(·), something with is used in order to
obtain a new sequence of conjugations B′

n(·) ∈ C∞(χGT, G), reducing the co-

cycle (α, AeU(·))) to (α, AneŨn(·))), where still Ũn(·) goes to 0 ∈ C∞(χGT, g)
exponentially fast, while conjugations grow polynomially. Then, embedding of

the cocycle (α, AneŨn(·))) in a suitably chosen one-parameter family and use

7. We present a simplified version of it, for the sake of comprehension of the exposition.
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of the reducibility in positive measure guarantees that there exists a parturba-

tion of (α, AneŨn(·))) of the order of Ũn(·) which is reducible. The conjugation
reducing this last cocycle is of the order of the perturbation.

A relevant observation is that in general there exist ρ ∈ I(+) and ρ′ ∈ I(0)

such that [jρ, jρ′ ] ̸= 0, for example the vectors j1 and j2 in the example of a
singular cocycle in the next section. As a result, the independence of the re-
duction in the positive (I(+)) and 0 (I(0)) energy parts of the dynamics holds
only in the first order, and the loss of periodicity in conjugation within the G0

propagates to the rest of the perturbation. This makes the procedure of regain-
ing periodicity more delicate. Suppose that we have obtained the Dn-periodic
cocycle (α, Er(·)AneUn(·)), with Un(·) very small. Imitation of R. Krikorian’s
trick for regaining periodicity would amount to writing the mapping in the
form

Er(·)Ane
Un(·) = Er(·)Ane

U
(0)
n (·)eU

(+)
n (·),

where U (0)
n (·) ≈ πg0Un(·) and U (+)

n (·) has a 0 projection in g0. By the local

theory, there exists a perturbation of the cocycle (α, AneU
(0)
n (·)) of the order

of Un(·) such that the new cocycle, (α, AneŨ
(0)
n (·)) is reducible and the conju-

gation Ỹ (0)
n (·) is of the order of Ũ (0)

n (·). The cocyle

(α, Er(·)Ane
Ũ

(0)
n (·)eU

(+)
n (·))

can then be conjugated to the one defined by the mapping

Er(·)A′
ne

Ad(Ỹ
(0)
n (·)).U(+)

n (·)).

The non-commutativity of the positive and 0-energy parts, however, results in
the perturbation being quadratic, but non-zero, in the 0-energy part. There-
fore, only one step of reduction can be made without having to deal with small
divisor phenomena. It should be possible to iterate the procedure via a fixed
point argument, but it is obviously a complication in the proof.

We think that problems arising from the loss of periodicity in the local the-
ory of constant cocycles are not impossible to overcome. Neverthelesss, the
complications in the proof of the global density theorem, such us the need for
a priori estimates on perturbations of singular geodesics, where the perturba-
tions have arbitrarily long periods, or the adaptation of the argument using
the reducibility in positive measure would make the argument very compli-
cated. Finally, the existent local theory does not fit into, and we were not able
to make it fit into, the point of view that we have taken up concerning the
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role of obstructions in the dynamics. These reasons motivated the content of
chapter 9, which we will resume now.

Revisiting the local theory. — We now treat the case which, with respect to the
dynamics of the initial cocycle, corresponds to the curve a(·) being degenerate
to 0 ∈ g, i.e. the case of 0 energy. Under this assumption, the initial cocycle
(α, A(·)) can be renormalized to commuting pairs of the form

(βn−1, C̃
(n)) and (βn, Ã

(n))

up to an arbitrarily small error, and therefore has renormalization representa-

tives modulo χG arbitrarily close to (χGαn, Ã
(n)
0 ), where Ã(n)

0 ∈ G is a constant.
These cocycles are χG-periodic, but we can rescale the torus T and see them
as 1-periodic cocycles over the rotation αn. Again, the RDC condition on α
implies that for a subsequence of such renormalization representatives, αn is
in DC, which we will suppose from now on. Finally, we simplify the notation
and suppose that we are given the cocycle (α, AeU(·)), with α ∈ DC, A ∈ G,
and U(·) : T → g satisfying some smallness condition.

The reason for the differences between the theory of perturbations of peri-
odic geodesics and that of constants is the importance of small divisor phenom-
ena. These phenomena are in the core of the local theory, and the complications
that they cause are not a failure of the methods. The proof of theorem 3.5 re-
lies on a generalized K.A.M. scheme, following the results of H. Eliasson (see
theorem 3.7). In this context a cocycle of the form (α, AeU(·)) is given, with
U(·) : T → g small enough. Then, the local conjugation equation (13) reads

Ad(A∗).Y (· + α)− Y (·) = −U(·).

The operator associated the constant cocycle (α, A) always has a positive
codimension image in C∞(T, g). This codimension is bounded by f , the real
dimension of g, equal to w + 2q, where w is the rank and q is the number
of positive roots. The first w constraints, always present, come from the toral
coordinates, where the reduction equation is as for Yt(·) in equation (15).
These obstructions, just as in the local study of regular geodesics, are not
important, since they are always constants, and thus of the same type as the
linear model. The rest 2q constraints come from the complex directions in g.
For the direction jρ the equation reads

e−2iπaρ .Yρ(· + α)− Yρ(·) = −Uρ(·)

or, in the frequency space,

(16) (e−2iπ(aρ−kα) − 1).Ŷρ(k) = −Uρ(k).
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Clearly, this equation is not solvable for the mode kρ ∈ Z if it satisfies

(17) aρ − kρα ∈ Z.

These obstructions are not always are present, since such a kρ not always exists.
If the kρ satisfying eq. 17 (which is automatically unique, since α /∈ Q)) is equal
to 0, the obstruction is of the same type as the constant model around which
we have linearized. Therefore, in this case the obstruction is not important.
On the other hand, if kρ ̸= 0, then the corresponding obstruction is a non-
constant perturbation and thus of a different type than (α, A). For this reason,
we distinguish this case and call such a root ρ a resonant root. A constant in G
is resonant if it has a resonant root.

The first results in the direction of theorem 3.6 were obtained by system-
atically ignoring resonant constants, and this approach allowed the proof of
reducibility for a positive measure set in the parameter space. It is based on
classical K.A.M. theory which in this context amounts to supposing that up
to a rapidly growing truncation order Nn, the roots aρ are Kn-away from
resonances, with Kn comparable to Nn. Then, for frequencies up to Nn the
equation (16) can be solved with good estimates, while if some Cs0 norm (s0 is
fixed throughout the scheme) is small enough with respect to Nn, the frequen-
cies not eliminated form a quadratic term. In this procedure, one needs at
each step, by imposing transversality conditions to the one-parameter family,
to assure that the non-resonance conditions are satisfied for a sufficiently large
set of parameters.

If the cocycle is not embedded in such a family, in order to make reduction
possible, one has to be able to cope with resonant constants. In this part, we
follow and adapt the proof of theorem 3.5, a corollary of the proof of which
is local quasi-reducibility (see definition 3.3). The proof of this theorem was
directly based on the approach taken up by H. Eliasson. In section 9.4 we
reinterpret H. Eliasson’s reduction of resonances as a reduction of obstruc-
tions. More precisely, let us suppose that at the n-th step of the algorithm
we have obtained a cocycle (α, AneUn(·)) by successive conjugations acting
on (α, A.eU(·)). Then, either the constant An is sufficiently away (i.e. Kn-
away) from resonances up to the order of truncation Nn, or not. In the first
case, all obstructions are constant, so the preceding procedure works. In the
second case, we partition the roots into three classes. The ones for which the
obstruction is constant, called I0 in lemma 9.7, those for which the obstruc-
tion is non-constant, Ir, and those for which there is no obstruction, Id. In
the corollary (cor. 9.9) to this lemma, we prove that if the perturbation Un(·)
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of the constant cocycle (α, An) were spectrally supported in the obstructions,
then the cocycle (α, An.eUn(·)) would be reducible, but by a conjugation far
from the identity. Our interpretation of the role of the obstructions calls us to
rewrite the cocycle in the form

(α, An.e
Un(·)) = (α, An.e

Obn Un(·).eU
′
n(·))

where Obn Un(·) stands for the obstructions of Un(·) with respect to conju-
gation in the neighborhood of (α, An) (i.e. to the operator 14), and U ′

n(·)
has only second order terms in the space of obstructions. Corollary 9.9
suggests that (α, An.eObn Un(·)) is a good candidate for the model around
which we linearize, and the technical part of the scheme confirms it: if we

center the truncation on the obstructions by means of the operator T (k)
Nn

defined in section 9.5 (see equations (45) and (43)) conjugation works like
in the presence of only constant obstructions. In this way, we can conjugate

(α, An.eObn Un(·).eU
′
n(·)) to (α, An.eObn Un(·).eŨn+1(·)) with a close-to-the-

identity conjugation, where Ũn+1(·) is quadratic with respect to Un(·). The
estimates show that reduction of the principal part of the new perturba-
tion, Obn Un(·), does not change the quadratic character of Ũn+1(·), so that,
by conjugating with the reduction of obstructions, we obtain the cocycle
(α, An.eUn+1(·)) with Un+1(·) much smaller than Un(·), and iteration is possi-
ble. The iteration of this K.A.M. scheme proves directly the almost reducibility
of any cocycle sufficiently close to a constant one, and the comparison of the
(polynomial) rate of growth of conjugants versus the (exponential) decay of
the norms of perturbations proves the local density of reducible cocycles.

The content of corollary 9.14 is the conjugation lemma used in the iteration.
Convergence of the scheme (which immediately proves local almost reducibil-
ity, i.e. theorem 9.2) is proved in section 9.6, and the section is concluded with
the proof of the (already known) local density theorem (theorem 9.1).

In fact, we could skip the reduction of the obstructions at each step and
construct a K.A.M. scheme for the reduction of any given cocycle (satisfying
the smallness conditions) arbitrarily close to reducible ones by a product of
converging conjugations. This is another natural concept of almost reducibility.
Then, comparison of the norm of the conjugant reducing the limit cocycles to
constants with the decay of the perturbation would yield the same results. This
would be in fact more faithful to our interpretation of the role of obstructions,
but the construction of such a scheme is needlessly complicated.
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3.5. A concrete example

In order to make clear the proof of global density theorem, we will take
up the study of an example in T× SU(3). It is a simply connected group, for
which χSU(3) = 1, so we avoid problems related to homotopy, which will be
coped with in section 7.7. For SU(3) we have w = 2, q = 3 and f = 8, for the
rank, the number of roots and the real dimension of su(3).

Let us introduce the notations

j1 =

⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦, j2 =

⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦, j3 =

⎡

⎣
0 0 1
0 0 0

−1 0 0

⎤

⎦

h1 =

⎡

⎣
i 0 0
0 −i 0
0 0 0

⎤

⎦, h2 =

⎡

⎣
0 0 0
0 i 0
0 0 −i

⎤

⎦.

We also note that [jl, ijl] = 2hl, for l = 1, 2, 3, and normalize the Cartan-Killing
norm so that the norms of all vectors are equal to 1. Finally, we introduce the
corresponding numbering of roots,

ρ1 : h $→ (t1 − t2), ρ2 : h $→ (t2 − t3) ρ3 : h $→ (t1 − t3)

for

h = 2iπ

⎡

⎣
t1 0 0
0 t2 0
0 0 t3

⎤

⎦

with t1 + t1 + t3 = 0. Then, {ρ1, ρ2} form the Weyl’s basis, ρ3 = ρ1 + ρ2 and
{ρ1, ρ2, ρ3} are the positive roots. For a mapping U(·) : T → su(3) we will use
the coordinates

U(·) =
∑

i=1,2
U t
i (·)hi +

∑
i=1,2,3

Ui(·)ji

Let, now, A(·) : T → SU(3) be such that ∥LA(·)∥L1 ≥ |e(1,3)|, where

e(1,3) =

⎡

⎣
2iπ 0 0
0 4iπ 0
0 0 −6iπ

⎤

⎦ = 2πh1 + 6πh2.

For this vector, ρ1(e(1,3)) = −1, ρ2(e(1,3)) = 5, ρ3(e(1,3)) = 4. Since all these
integers are non-zero, the vector is regular.

By proposition 5.3, a condition on the length of the path A(·) : T → SU(3)
is necessary for the cocycle (α, A(·)) to be of degree e(1,3), and it is satisfied if,
say, ∥LA(·)∥L1 ≥ 200π.
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The energy of the cocycle. — Let us suppose that the sequence an(·) = LAn(·)
converges to a non-degenerate curve a(·) ∈ L2(T, g), and suppose moreover
that a.e. vector in the image of a(·) is a regular vector in su(3). At this point,
the results proved in chapter 5, namely corollary 5.7 and lemma 5.10 allow us to
make some preliminary conclusions. The corollary shows that the cocycle can
be measurably diagonalized. Finally, the lemma shows that n−(s+1)∂sLAn(·)
goes to 0 in L2. Estimation of the decay of norms in L2 uses the fact that
∥∂sLAn(·)∥∞ grow no faster than ns+1, by lemma 5.9.

Renormalization of a regular cocycle. — The next step in the study of the
dynamics of the cocycle is renormalization of the dynamics, which we will fol-
low under the assumption that (α, A(·)) is a regular cocycle. The convergence
of the scheme (theorem 6.3) shows that, for almost every ν ∈ T, the cocycle
(α, A(·)) can be renormalized to commuting pairs

(1, C̃(n)
ν (·)), (αn, Ã

(n)
ν (·))

(notice that we have already introduced the rescaling factor) satisfying the

following property. Both mappings C̃(n)
ν (·) (which codes the distortion of the

fibers) and Ã(n)
ν (·) (which codes the rescaled dynamics in the distorted phase

space) approach a(ν):

Ã(n)
ν (x) = Ã(n)

ν (0). exp((−1)nqnβn−1a(ν)x+O(εn(ν))),

C̃(n)
ν (x) = C̃(n)

ν (0). exp(−(−1)nqn−1βn−1a(ν)x+O(εn(ν))),

where both constants C̃(n)
ν (0) and Ã(n)

ν (0) commute with exp(Ra(ν)). Since we
assume that a(ν) is a regular vector, we have that ρi(a(ν)) ̸= 0, for i = 1, 2, 3,
which is clearly equivalent to the three diagonal entries being distinct. Elemen-

tary linear algebra the shows that both constants C̃(n)
ν (0) and Ã(n)

ν (0) have to
be diagonal.

Commutation of the couple implies directly that

C̃(n)
ν (0).Ã(n)

ν (0) exp(a(ν)x) = Ã(n)
ν (0) exp(a(ν)(x+ 1).C̃(n)

ν (0).

Using the commutation of the constants with a(ν), we find that

C̃(n)
ν (0).Ã(n)

ν (0) exp(a(ν)) = Ã(n)
ν (0).C̃(n)

ν (0)

up to an arbitrarily small error. Since both constants are diagonal, the above
equation implies that exp(a(ν)) = Id, in accordance with theorem 6.1.

If we normalize the commuting couple, we obtain a representative which is
arbitrarily close to

(αn, Ã
(n)
ν (0)ea(ν)x).
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This is the content of theorem 6.3 in the case G = SU(3) and with the addi-
tional hypothesis that a(ν) is regular.

Perturbations of regular geodesics. — In order to be able to illustrate the local
study of regular geodesics more clearly, we reintroduce the assumption that
the degree of (α, A(·)) is e(1,3), so that the renormalization representatives
have the form

(αn, E(1,3),an(·)e
U(·))),

where

E(1,3),an(·) =

⎡

⎣
e2iπ · 0 0
0 e4iπ · 0
0 0 e−6iπ ·

⎤

⎦.

⎡

⎣
e2iπa1,n 0 0

0 e2iπ(a2,n−a1,n) 0
0 0 e−2iπa2,n

⎤

⎦.

And we also suppose that n is such that αn ∈ DC.
There are exactly three embeddings of su(2) in su(3) sending the positive

root of su(2) to a positive one in su(3), corresponding to the three positive
roots of su(3). Since

[e(1,3), j1] = −2iπj1, [e(1,3), j2] = 10iπj2, [e(1,3), j3] = 8iπj3,

theorem 8.1 implies that any small enough perturbation of this periodic
geodesic can be conjugated to a cocycle of the form

(αnE(1,3),an+a′n(·).e
P (·))

with P (·) of the form

exp
(
P̂1(0)j1 +

∑0

−9
P̂2(k)e

2iπk·j2 +
∑0

−7
P̂k(k)e

2iπk·j3
)
,

where the P̂i(k) are small complex numbers, and a′n is close to 0. Then, the
a priori estimates of the chapter 7 show that the cocycle is of degree (1, 3) if,
and only if, all the P̂i(k) in this previous expression are 0.

Moreover, they show that if these coefficients are non-zero, the cocycle is
of energy strictly less than |e(1,3)|. Even though it is possible to perturb this

cocycle to a regular one (if we perturb it by P̂1(0) ̸= 0), we will examine the
perturbation by P̂2(0) ̸= 0. This perturbation is in the subalgebra associated
to the root ρ2, so that is will lead renormalization a cocycle of degree e(1,l),
with l equal to 0, 1 or 2. Let us suppose that the perturbed cocycle is in fact
of degree e(1,2), where

e(1,2) =

⎡

⎣
2iπ 0 0
0 2iπ 0
0 0 −4iπ

⎤

⎦ = 2πh1 + 4πh2.
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We remark that the complex direction Cj1 commutes with this vector, unlike
the other two complex directions.

Renormalization of a singular cocycle. — The hypothesis that the degree of
the new perturbed cocycle (αn, A1(·)) is e(1,2) implies that it can be renormal-
ized to commuting pairs of the form (m > n)

Ã(m)
1,ν (x) = Ã(m)

1,ν (0). exp((−1)mqnβm−1a1(ν)x+O(εm(ν))),

C̃(m)
1ν (x) = C̃(m)

1,ν (0). exp(−(−1)mqn−1βm−1a1(ν)x+O(εm(ν))),

where both constants C̃(m)
ν (0) and Ã(m)

ν (0) commute with exp(Ra1(ν)) and we
have called a1(·) the invariant curve of the cocycle (α, A1(·)).

Clearly, commutation of the two constants with a1(ν) ≈ e(1,2) no longer
implies that the constants are diagonal. They are constrained, however, in the
subgroup

[
SU(2) 0

0 1

]
× exp(Re(1,2)) = G0 ×G+

which is the splitting (cf. definition 4.7 and theorem 4.5 ) associated to e(1,2).
Then, as in the case of a regular cocycle, we can conjugate the pair to

(1, C̃(m)
ν (0)), (αm, Ã(m)

ν (0). exp(a1(ν)x))

plus error terms. Since this is still a commuting pair, we have, as in the regular
case,

C̃(m)
ν (0).Ã(m)

ν (0) exp(a1(ν)) = Ã(m)
ν (0).C̃(m)

ν (0).

Since both constants take values in the splitting G0×G+ and the factor G+ is
abelian, the commutator of the constants is in SU(2). Therefore we obtain that
a1(ν) has to be a preimage of the Id. Then, the preceding equation simplifies to

C̃(m)
ν (0).Ã(m)

ν (0) = Ã(m)
ν (0).C̃(m)

ν (0)

up to an arbitrarily small error. Since, now, the semisimple factor G0 of the
splitting is in fact SU(2), we obtain once again that the constants are both
diagonal. For general groups, though, this is not true and in order to gain
this property we may need to consider powers of the constants, a complication
explained in the proof of theorem 6.3.

Following the procedure already described, we obtain the renormalization
representative

(αm, Ã(n)
1,ν (0)e

a1(ν)x)
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only with a different constant Ã(m)
1,ν (0), which is on the same torus as a1(ν).

This is the content of theorem 6.3 in the case G = SU(3) and for a singu-
lar a1(ν).

Perturbations of singular geodesics. — This leads us to the local study of
singular geodesics. Here, we suppose that the given cocycle is of the form

(αm, E(1,2)(·)AeU(·))

with A ∈ G on the same torus as E(1,2)(·), and U(·) ∈ C∞(T, g) satisfying
some smallness condition depending on αm ∈ DC. We also suppose that the
cocycle is of degree (1, 2). Then, the iterative procedure described in chapter 10
allows us to conjugate this cocycle arbitrarily close to cocycles in normal form

(αm, E(1,2)(·)Ake
Uk(·))

with Ak ∈ G on the same torus as E(1,2)(·), and Uk(·) converging exponentially
fast to 0 ∈ C∞(T, g), while the conjugations grow only polynomially. Then,
we need only to perturb the cocycle like

(αn, E(1,2)(·)Ake
Uk(·)ezkji),

where zk ∈ C∗ is of the order of Uk(·) and i = 2, 3, in order to obtain a cocycle
of smaller enery.

We remark that, since in general we cannot hope to conjugate the cocycle
to the normal form (αn, E(1,2)(·)Ak), we cannot control the way in which the
energy will decrease: all models E(j,k) with j = 0, 1 and k = 0, 1, 2 are possible,
with the exception of (1, 2).

Renormalization of 0 energy cocycles. — After a finite number of perturba-
tions (the maximal number of perturbations is bounded by a number depend-
ing only on the degree of the cocyle) (α, A(·))), all of which can be made
arbitrarily small, and renormalization of the perturbed cocycles and conjuga-
tion of renormalization representatives, we will obtain a cocycle of 0 energy.
This cocyle can be renormalized to commuting pairs of the type (l > m)

(1, C̃(l)
ν (0)), (αl, Ã

(l)
ν (0))

plus error terms. Then, commutation of the pair shows that the two constants
commute, up to an arbitrarily small error. In SU(3) this implies that they are
both diagonal, so that we can obtain the renormalization representative of the
form

(αl, AeU(·)).

In general groups, however, commutativity is gained after iteration.
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Perturbations of constant cocycles. — This is the last step in our study, at
least from the dynamical point of view, and it is described in chapter 9. Here,
we suppose that αl ∈ DC, and theorem 9.1 allows us to perturb the renormal-
ization representative (αl, AeU(·)) to (αl, AeU

′(·)), which is reducible.
Since the induction was finite and the perturbations at each step could be

made arbitrarily small, the global density theorem follows.
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CHAPTER 4

DYNAMICS OF ABELIAN COCYCLES

In this chapter we attempt a survey of the models of cocycles whose dy-
namics can be characterized as simple. We try to point out what remains true
when we embed these “toy cocycles” in the larger class that we seek to study
in the rest of this mémoire.

In order to simplify the presentation, we suppose that the regularity of the
mappings is C∞, but most of the proofs use very low regularity. The results will
be extended in weaker regularity in the following chapters, where the precise
statements will be given, but in the proofs we will use the notions, techniques
and observations that arise naturally in this phenomenological part of the
study. We note nonetheless that the regularity typically needed in the proofs
is no more than C2 for the cocycles and for conjugations.

Since, in particular, minimal translations on the torus are also (uniquely)
ergodic, some of the proofs work also in the measurable case, with the necessary
modifications of the proofs and of the statements of the results.

Finally, since not all proofs work when d ≥ 2 (e.g. those using the Denjoy-
Koksma inequality, see below), and since the conclusions are significant pre-
cisely in the case d = 1, we suppose, as for the greatest part of the remaining
of this mémoire, that the cocycle has only one frequency.

4.1. Cocycles in SW(T, S)

The simplest case of a cocycle in a compact (but not semisimple) Lie group
is that of a cocycle in T× S = T× S1. Any given (α, A(·)) ∈ SW(T, S) can be
written in the form

(α, Er(·)e2iπ(φ(·)+θ))
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with φ : T → S such that
∫
φ = 0 and θ ∈ R, and where, for r ∈ Z, we have

noted by Er(·) : S ! the map e2iπθ $→ e2iπrθ.
Conjugation in SW(T, S) is related with the solution of a linear cohomolog-

ical equation (see lemma 3.4), and conjugation between constant cocycles is
realized by conjugations of the type Er(·).

Such cocycles admit a first classification by homotopy, for if r′ ̸= r, then
the cocycles (α, Er(·)) and (α, Er′(·)) are not conjugate, and the choice of
non-trivial φ and θ clearly cannot change this fact. Even more, if α satisfies
some diophantine condition, r and θ + αZ completely determine the class of
conjugacy of the cocycle.

However, since the source of interest in SW(T, S) comes from the canonical
embedding S ↪→ SU(2), classification by homotopy is not the good starting
point. In fact, even in view of the embedding S mod {±1} ↪→ SO(3), where
there are homotopy issues, this proves to be insufficient, since the second iter-
ate of a cocycle non-homotopic to constants in SW(T, SO(3)) becomes homo-
topic to constants, whereas this is not true in SW(T, S). The concept apt for
generalization proves to be the fact that non-trivial homotopy of a cocycle in
SW(T, S) is equivalent to linear growth of the derivatives of its iterates. This
can be carried out by observing that the rate of growth of derivatives equals
the degree of the mapping in absolute value.

In order to obtain it, let us consider a particular case for the differential
operator L introduced in 2.2.1. We identify R with T1S and trivialize TS by

TS ∋ (e2iπθ, s) $−→ (e2iπiθ, e−2iπθs) ∈ S× R.

Application of the operator L amounts to projecting the differential to the
second coordinate in the trivial tangent bundle. A simple calculation then
shows that 1

nLAn(·) → 2πr, where A(·) is as in the beginning of the paragraph.
If we consider SW(T, S) ↪→ SW(T, SU(2)) as the subgroup of diagonal co-

cycles, this cocycle assumes the form (α, Er(·)), where the notation is now
as in paragraph 2.1.2. The relics of homotopy is this type of growth of the
derivative, which is in the direction of the vector {1, 0}su(2). Factorization of
SU(2) by ± Id and consideration of SW(T, S) ↪→ SW(T, SO(3)) shows that
in this case the allowed rates of growth of derivatives are in 1

22πZ where the
factor 1

2 is precisely the cardinal of {± Id}.
In a first attempt to exit from the abelian world, we can conjugate the

cocycle (α, A(·)) ∈ SW(T, S) ↪→ SW(T, SU(2)) by an arbitrary mapping B(·) :
T → SU(2), and call the cocycle thus obtained (α, Ã(·)). Since

(α, Ãn(·)) = (α, B(· + nα)An(·)B∗(·))
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and using the properties of the operator L, we discover that

ã∗n(·) = L(Ã∗
n(·)) = b(·) + Ad(B(·)).a∗n(·) + Ad(B(·)A∗

n(·)).b∗(· + nα)

= −n.Ad(B(·)).2πr{1, 0}su(2) + o(n)

(we remind the notational convention following which an(·) = LAn( .) and
b(·) = LB(·)).

The study in the following section is just a higher-dimensional analogue of
what we just saw.

4.2. Dynamics of torus-reducible cocycles

4.2.1. A first definition of the degree. — Let (α, A(·)) be a C∞-torus-
reducible cocycle in SW∞(T, G), T a maximal torus and (hρ)ρ∈∆̃ a basis of t.
Therefore, A(·) is of the type

(18) A(x) = B(x+ α). exp
(∑

ρ∈∆̃

2π(rρx+ φρ(x) + aρ)hρ
)
.B−1(x)

with φρ(·) : T → R of mean value 0, aρ ∈ T, r ∈ Zw and B(·) : T → G.
After reminding the notation an(·) = LAn(·), where the operator L is

defined in section 2.2.1, we can readily prove

Proposition 4.1. — Let (α, A(·)) ∈ SW1 be C1 torus-reducible. Then the
length of the n-th iterate normalized by n is quantized:

1

n
|an(·)| −→

∣∣∣
∑

ρ

2πrρhρ
∣∣∣

uniformly and rρ ∈ Z, ∀ρ ∈ ∆̃. The limit does not depent on the conjugation
B(·) and is therefore an invariant under C1 conjugation.

The definition of this quantity will be extended to all C1 cocycles and called
“energy”in the next chapter. The important point will be that the quantization
does not change when we consider non-abelian cocycles.

Proof. — Taking the derivative of the formula for the n-th iterate gives

an(x) = b(x+nα)+Ad(B(x+nα)).
∑

ρ

2πrρ(n+Sα
nφ

′
ρ(x))hρ−Ad(An(x)).b(x)

(we remind the notational convention following which an(·) = LAn(·) and
b(·) = LB(·)).
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If r = 0, we find that

an(x) = b(x+ nα) + Ad(B(x+ nα)).
∑

ρ

Sα
nφ

′
ρ(x)hρ −Ad(An(x)).b(x),

so that 1
nan(·) tends uniformly to 0 by unique ergodicity of Rα with respect

to the Haar measure on T.
If, now, r ∈ Zd \ {0}, we find that

(19) an(x) = Ad(B(x+ nα)).
∑

ρ

2πrρ(n+ Sα
nφ

′
ρ(x))hρ + cn(x),

where∥cn(·)∥L∞ ≤ 2∥b(·)∥L∞ , so that

∥an(x)−Ad(B(x+ nα)).
∑

ρ

2πrρnhρ∥L∞ = o(n)

which implies the statement since the adjoint action is an isometry of g.

A special class of (torus-)reducible cocycles in the case r = 0 is the one
consisting of those reducible to a constant in ZG. If we let

(α, A(·)) = (α, B(· + α).C.B∗(·)),

with C ∈ ZG be such a cocycle, we have

an(·) = b(· + nα)−Ad(B(· + nα).B∗(·)).b(·)

and therefore

(20) |∂saqn(·)| = O(βn),

where the constant depends on s and B(·).
Calculation of higher order derivatives (still in the case r = 0) and a similar

calculation show that higher derivatives share the same property:

1

n
∂san(x) −→ 0 and |∂saqn(·)| ≤ Cs, ∀s ≥ 0.

In the special case where n = qk, a denominator of a best rational approxi-
mation, the Denjoy-Koksma inequality (see [22]), gives estimates on the speed
of convergence. According to this inequality, for any function ϕ(·) : T → R of
bounded variation,

|Sα
qkϕ(·)− qk

∫

T
ϕ(·)| ≤ Var(ϕ)

where Var(ϕ) stands for the total variation of ϕ(·). Application of this inequal-
ity in our case and use of the fact that

∫
T φ

′
ρ = 0 gives

|aqn(·)| ≤ Cmax ∥φρ∥1.
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Similar estimations in the case where r ̸= 0 give only

1

n2
∂san(·) −→ 0

uniformly.

Examination of the proof of the previous proposition shows that C1 torus-
reducibility implies in fact more than the existence of a discrete invariant
when r ̸= 0: for large n,

(21) an(·) =
1

n
an(·)

is uniformly bounded away from 0. It follows from equation (19) that if
nkα → 0 in T, then uniformly

ank(·) → a(·) = Ad(B(·)).
∑

ρ

2πrρhρ.

Moreover, whenever nkα → γ in T,

ank(·) → Ad(B(· + γ)).
∑

ρ

2πrρhρ,

that is to a(· + γ). Therefore, B(·) satisfies

(22) Ad(B∗(·)).a(·) =
∑

ρ

2πrρhρ

but this equation in general does not determine B(·), nor the dynamics of the
cocycle, as we will see later on.

As for a(·), we can prove, in fact, something more:

Lemma 4.2. — Let (α, A(·)) ∈ SW1 be C1 torus-reducible, and let r ̸= 0.
Then, 1

qn
aqn(·) converges uniformly (in C0) to a C1 continuous curve

a(·) : T −→ g.

The curve a(·) satisfies the invariance relation

(23) Ad(A(·)).a(·) = a(· + α).

Proof. — We need only to prove the invariance relation. Let n ∈ N. The
cocycles (α, A(·)) and (α, A(·))qn commute, since they are iterates of the same
diffeomorphism. We have, therefore, A(· + qnα).Aqn(·) = Aqn(· + α).A(·).
Taking the derivative of this formula gives

Ad(A(x+ qnα)).aqn(x)− aqn(x+ α) = Ad(Aqn(x+ α)).a(x)− a(x+ qnα).

If we divide both sides by qn and let n go to infinity, we obtain the announced
formula by uniform convergence.
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We can immediately prove:

Corollary 4.3. — The modulus of a(·) is constant. Moreover, the image
of a(θ) under Inn(g) is a constant subset of g, not depending on θ.

Proof. — Using the invariance relation (23) we find

|a(· + α)| = |Ad(A(·)).a(·)| = |a(·)|.

Since Rα is minimal on the torus and |a(·)| is invariant under Rα, it is constant.
The relation (23) itself shows that, for a fixed h ∈ g, the set

{θ ∈ T, ∃ B ∈ G s.t. Ad(B).a(θ) = h}

is invariant under Rα. If for h, h′ the corresponding sets intersect, the two
vectors can be conjugated in Inn(g), so that minimality of Rα allows us to
conclude.

We remark that the fist statement of the corollary is exactly the definition
of the energy of the cocycle given in 4.1, but its proof in this context gives an
additional reason (the invariance of the curve under the dynamics) which is the
property that we will use when we examine the inverse problem of determining
the dynamics under the assumption of the existence of a(·).

Finally, let us suppose that (α, Ai(·)) ∈ SW1, i = 1, 2, are conjugate
by B̃(·) ∈ C1 and that (α, A1(·)) satisfying the hypotheses of the previous
lemma. Then, (α, A2(·)) also satisfies these hypotheses, and the curves ai(·)
associated to (α, Ai(·)) as in the lemma satisfy

a1(·) = Ad(B̃(·))a2(·)

as shows a direct calculation. Therefore, the class of a(·) in g modulo Inn(g) is
in fact a second quantized invariant under C1 conjugation. This invariant takes
values in the lattice of preimages of the Id in g, modulo the action of Inn(g).
The definition of this invariant will be extended to what we will call the degree
in the next chapter.

The conclusion of chapter 6 is, in fact, that the two quantized invariants
defined in this section keep the same quantization in their values when aptly
extended to all C1 cocycles. Chapter 6 already implies that, unlike for cocycles
in T×Tw, the conjugacy classes of abelian models for cocycles in T×G should
not be expected to form a space of discrete classes in SW1.
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4.2.2. The failure of the converse derivation. — We have seen that C1

torus reducibility implies the existence of some nice objects, which are invariant
under conjugation of the dynamics.

Let us now suppose that a cocycle (α, A(·)) is given such that the normalized
sequence aqn(·) = 1

qn
aqn(·) tends uniformly to a Cσ curve a(·), with σ ≥ 1.

Inspection of the proof of lemma 4.2 shows that in fact the curve a(·) satisfies
automatically the conclusions of the lemma, and in particular |aqn(·)| tends
to a positive constant C. Let us suppose that C > 0, in which case we say
that a(·) is non-degenerate.

Lemma 4.2 and its corollary allow us to transform algebraic conjugations
acting on the invariant curve into dynamic conjugations acting on the cocycle
in the following way.

Lemma 4.4. — If there exists a (non-degenerate) curve a(·) in g satisfying
equation (23), there exists h ∈ g \ {0} a vector in the Lie algebra and a cG-
periodic mapping B(·) such that (α, Ã(·)) = ConjB(·)(α, A(·)) satisfies

Ad(Ã(·)).h = h.

Proof. — Let us consider Ia = {a(θ), θ ∈ T} and h ∈ g such that

Ad(B)a(θ) = h

for some θ ∈ T and B ∈ G. The set of vectors of g that can be conjugated to h
is given by Ad(Ǧ).h, where Ǧ = G/ZG and the Lie algebra of Ǧ is naturally
isomorphic to g. Moreover, if h′ = Ad(B).h for some B ∈ Ǧ, then for any
B′ ∈ Zh = {S ∈ G,Ad(S).h = h},

h′ = Ad(B.B′).h.

Finally, if B1 and B2 are such that h′ = Ad(Bi).h, i = 1, 2, then B = B1B∗
2

satisfies
Ad(B).h = h

so that B ∈ Zh. Therefore, Ad(Ǧ).h is naturally isomorphic to G/Zh.
The set Zh = ZG(exp(Rh)) is a subgroup of Ǧ. Let us call g̃ the Lie algebra

of Zh. We remark that the manifold (in fact symmetric space) G/Zh has,
at each point, a tangent space canonically isomorphic to g/g̃ (the quotient
is taken in the category of vector spaces): this is true at the image of Id
under the projection π : Ǧ → G/Zh, and any other coset is obtained by
left multiplication in Ǧ, as S.Zh = S.(Id .Zh). The projection is locally a
submersion in the neighborhood of the Id, as for all s ∈ g,

dπId(s) = s− πg̃s,
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where πg̃ is the orthogonal projection on g̃ with respect to the Cartan-Killing
form. Therefore, the kernel of dπId is g̃. It follows that π is globally a sumber-
sion and the kernel of the differential at S ∈ Ǧ is (RS)∗g̃, where RS : H $→ SH
is the right multiplication in Ǧ.

Consequenlty, since the curve a(·) : T → g takes values in Ad(Ǧ).h ≈ G/Zh,
it admits a lift B̌ : R → Ǧ of regularity Cσ

a(·) = Ad(B̌(·)).h.

Since a(·) is periodic,

Ad(B̌∗(· + 1)B̌(·)).h = h

and therefore D(·) = B̌∗(· + 1)B̌(·) takes values in Zh.
Anticipating lemma 6.10 (for the proof of which the semisimplicity of G is

irrelevant), we write

D(·) = Ď(· + 1)Ď∗(·),

with Ď(·) ∈ Cσ(R,Zh). The mapping

B̃(·) = B̌(·)Ď(·)

is in Cσ(T, Ǧ), since

B̃(· + 1) = B̌(· + 1)Ď(· + 1) = B̌(· + 1)D(·)Ď(·) = B̌(·)Ď(·).

Since Ad(Ď(·)).h = h, we have

a(·) = Ad(B̃(·)).h

and, B̃(·) admits a cG-periodic lift B(·) ∈ Cσ(cGT, G) satisfying the same
equation owing to the fact that

B∗(· + 1)B(·) ∈ ZG.

Using, now the invariance relation satisfied by a(·), we see that

Ad(A(·))a(·) = a(· + α),

Ad(A(·)B(·)).h = Ad(B(· + α)).h,

Ad(B∗(· + α)A(·)B(·)).h = h.

Therefore, the lemma is proved.

The description of the dynamics of the cocycle (α, Ã(·)) is given by the
following proposition.
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Proposition 4.5. — Let (α, A(·)) be a cocycle in SW(T, G) satisfying the
hypothesis of lemma 4.4. Then, there exists an abelian subgroup G+ = Th, and
a semisimple subgroup G0 (G0 may be trivial) commuting with G+ and such
that G0 ∩G+ = {Id} satisfying the following properties. The cocycle (α, A(·))
can be conjugated mod cG to a cocycle of the form

(α, Ã(·)) = (α, Ã0(·)× Ã+(·)).

The cocycle (α, Ã+(·)) ∈ SW(T, G+) is abelian and

1

n
ã+,n(·) −→ h

and the cocycle (α, Ã0(·)) ∈ SW(T, G0) is such that

1

n
ã0,n(·) −→ 0.

The conjugation can be chosen of the same regularity as the invariant curve.

Corollary 4.6. — If G = SU(2), any cocycle satisfying the hypothesis of
lemma 4.4 can be conjugated to an abelian one by a 2-periodic transfer function.

Proof of the corollary. — Since every torus in SU(2) is a maximal torus, and
since the hypothesis of lemma implies that G+ is non-trivial, we obtain that
G0 = {Id}. Therefore, in the notation of the theorem, (α, Ã(·)) is abelian.

This proposition motivates the following definition.

Definition 4.7. — Let (α, A(·)) ∈ SW(T, G) and suppose that there exist
G0 and G+ as in theorem 4.5 and B(·) such that (α, Ã(·)) = ConjB(·)(α, A(·))
takes values in G0×G+ ↪→ G. We will then say that (α, A(·)) admits a splitting
of the dynamics

Proof of proposition 4.5. — Let h and B(·) as in the proof of the previous
lemma. If h is a regular element of the algebra, the condition Ad(Ã(·)).h = h
is equivalent to Ã(·) taking values on the unique maximal torus passing by h.
Therefore, in this case G+ is a maximal torus and G0 = {Id}.

Let us now suppose that h is singular. Since Ad(Ã(·)) fixes h, Ã(·) takes
values in Zh = ZG(exp(Rh)). As g is the Lie algebra of a compact group, it
follows from theorem 2.2 that Zh is a Lie group whose Lie algebra g̃ = ker(adh)
splits in the direct sum of g+, the intersection of all toral algebras containing h,
and g0 = [g̃, g̃], the Lie algebra of Zh/ exp(g+). By construction, g+ and g0
commute.

A concrete description of the decomposition can be obtained via a root space
decomposition of g associated to a torus containing g+. Then, g0 is generated
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by the vectors hρ and jρ corresponding to roots ρ such that ρ(h) = 0, and
therefore by constuction g0 is semi-simple. Then, g+ is g⊥0 ∩ g̃.

Finally, G0∩G+ = Id where G0 = exp(g0) and G+ = exp(g+). If w0 and w+

are the respective ranks of G0 and G+, we have w0 + w+ = w and G+ is a
torus of dimension 0 < w+ ≤ w and equality holds iff h is regular.

Since (α, Ã(·)) ∈ SWs(T, G̃), and g̃ = g0 ⊕ g+, we can easily verify that
the normalized derivatives of (α, Ã+(·)) converge to h, and those of (α, Ã0(·))
converge to 0:

LÃqn(·) = b∗(· + qnα) + Ad(B∗(· + qnα)).aqn(·) + Ad(B∗(· + qnα)Aqn(·))b(·)
= qnAd(B∗(·))a(·) + o(qn) = qnh+ o(qn).

Since LÃ(·) = a+(·) + a0(·), and the two components are iterated separately
thanks to the commutativity of G+ with G0, we obtain that

1

qn
(a+)qn(·) −→ h and

1

qn
(a0)qn(·) −→ 0.

Heuristically, the existence of an invariant curve obtained as the limit of
normalized derivatives allows us to abelianize only a part of the dynamics.
The fact that the part of the dynamics controlled by the invariant curve is
exactly the part where there is linear growth of the derivatives allows us to
conclude that in the remaining part derivatives grow sublinearly. Sublinear
growth of the derivatives is true for almost reducible cocycles, and, as we
will see in chapter 6, the converse is true, in the sense that sublinear growth
characterizes dynamics of close-to-constant cocycles. On the other hand, it
is already clear that linear growth of the derivatives is the characteristic of
non-local dynamics.

A concrete example of a curve a(·) for which we cannot conclude torus-
reducibility can be seen in SU(4). If the points of the curve belong to Inn(g).h,
where

h =

⎡

⎢⎢⎣

λi 0 0 0
0 −λi 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

then commutation with h, which is the only exploitable information, does not
provide anything on the dynamics within the subgroup

[
Id2 0
0 SU(2)

]
,
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which is the G0 factor of the corresponding decomposition. The factor G+ is
given by the subgroup image of

⎡

⎢⎢⎣

(λ1 + 2λ2)i 0 0 0
0 −λ1i 0 0
0 0 −λ2i 0
0 0 0 −λ2i

⎤

⎥⎥⎦

under the exponential mapping, where λ1,λ2 ∈ R. We remark that the only
diagonal vector in g0 of the Weyl basis of su(4) is

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

⎤

⎥⎥⎦,

while the vectors
⎡

⎢⎢⎣

0 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 0

⎤

⎥⎥⎦ and

⎡

⎢⎢⎣

i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −i

⎤

⎥⎥⎦

are neither in g0 nor in g+. The only vector of the Weyl’s basis which is in g+
is the remaining one,

⎡

⎢⎢⎣

i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

which accounts for the fact that the corresponding complex direction
⎡

⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

is the only one in the root-space decomposition commuting with g0.
Concrete examples exist, in fact, in any group of dimension higher than

SU(2), namely in SU(3), where vectors of the type
⎡

⎣
2λi 0 0
0 −λi 0
0 0 −λi

⎤

⎦
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commute with the subgroup
[
1 0
0 SU(2)

]

and the corresponding abelian algebra g+ is generated by the vector
⎡

⎣
2λi 0 0
0 −λi 0
0 0 −λi

⎤

⎦

itself.

If we anticipate proposition 4.9, we find directly that (α, A(·)) is torus-
reducible if, and only if, (α, Ã0(·)) is torus-reducible in G0.

Since Ã+(·) takes its values in a torus and it is periodic, it is of the form

Ã+(·) =
∑

ρ

2πhρ(rρ · +φρ(·)),

where the φρ(·) are periodic. By resolving a linear cohomological equation

in G+, we find that if α is Diophantine, (α, Ã(·)) can be conjugated to a
cocycle of the form

(α, Ã0(·)× (Er(·).A)),

where Er(·) = exp(
∑

ρ 2πrρhρ ·) and A ∈ G+. In the particular case where

Ã0(·) = A0 ∈ G0, such a splitting will be called a normal form.

The construction of the splitting of the dynamics shows that in general
we cannot expect to avoid phenomena of coexistence of close-to constants
cocycles with far-from-constants cocycles. The two cases where this does not
occur is either when iteration and normalization converge to constants, or
when the vector obtained by the construction is regular, and it should be
expected that this dichotomy is generic under some reasonable Diophantine
conditions. Since every non-zero vector in su(2) is regular, the result in SU(2)
assumes a more elegant form, namely that the existence of an invariant curve
implies the existence of a 2-periodic conjugation to an abelian cocycle. This
form, however, cannot be obtained in full generality for any given group G.

4.3. Conjugation of abelian cocycles

The action of conjugacies on the class of constant cocycles has been exhaus-
tively described in [29] (proposition 2.5.9):
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Proposition 4.8. — Let (α, Ai), i = 1, 2 be two constant cocycles, conju-
gate by B(·) ∈ C∞(mTd, G), where B(0) = Id and m ∈ N∗. Then, for any
character χρ,

χρ(A1).χρ(A
−1
2 ) ∈ exp(2iπ/mZ),

and B(·) is a group homomorphism mTd → G.

Since conjugation between abelian cocycles is less restrictive, the result is
less precise. On the other hand it is somewhat more elegant, since it is related
to the action of Weyl’s group, which is a finite group.

Proposition 4.9. — Let (α, Ã(·)) and (α, A(·)) in SW(T, T ) ↪→ SW(T, G)
such that

(α, Ã(·)) = ConjB(·)(α, A(·))

and consider the corresponding splittings G̃0 × G̃+ ↪→ G and G0 × G+ ↪→ G.
Then

(α, Ã+(·)) = ConjB(·)(α, A+(·)), (α, Ã0(·)) = ConjB(·)(α, A0(·)).

The action of B(·) on G+ → G̃+ projects naturally to the action of a repre-
sentative of W (G+) ⊂ W (G).

The following corollary is immediate.

Corollary 4.10. — The integer vector r which distinguishes qualitatively
different models of dynamics of abelian cocycles is determined up to the action
of W (G).

Before passing on to the proof of the proposition, we remark that the hy-
pothesis that Ã(·) and A(·) take values on the same torus is not restrictive,
since any two tori in G are obtained by a (constant algebraic) conjugation
acting on a standard one.

Proof of proposition 4.9. — Let us suppose that

(α, Ã(·)) = ConjB(·)(α, A(·))

holds, for a certain B(·) ∈ C0(T, G).
The mappings (α, A(·)) and (α, Ã(·)) take values in the same maximal

torus T , whose toral algebra is t. In this case, B(·) is determined up to left
and right multiplication with a constant in T , as shows the formula

Ã(·) = B(· + α).A(·).B−1(·).
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Let, now, h, h′ ∈ t be any two vectors. Then, the same formula, together with
the fact that the restriction of the adjoint action of both A(·) and Ã(·) in t is
the identity, gives directly

⟨Ad(B(· + α)).h, h′⟩ = ⟨Ad(B(·)).h, h′⟩.

In particular, if we let these two vectors run through a basis of t, we see by the
minimality of Rα that the restriction of Ad(B(·)) in t is in fact a constant.

If we denote by Bρ,h(·)jρ the projection of the image of Ad(B(·)).h on the

plane Cjρ, and also use the notation Ad(Ã(·)).jρ = exp(ãρ(·)).jρ, we find that

Bρ,h(· + α) = exp(−ãρ(·))Bρ,h(·).

In particular, for all ρ and h, we have |Bρ,h(·)| = C, a constant. Therefore, if
C ̸= 0, Bρ,h(·) : T → C.S1 admits a lift C exp(bρ,h(·)) which satisfies

bρ,h(· + α)− bρ,h(·) = ãρ(·) mod 2iπZ.

We now disinguish two cases. If ãρ(·) : R → iR is of the form 2iπ(r̃ρ · +ϕρ(·))
with rρ ∈ Z∗ (i.e. if hρ /∈ g0) and ϕρ(·) periodic, then bρ,h(·) cannot be a lift of
a periodic function, unless it is constant and therefore Bρ,h(·) must be equal
to 0. On the other hand, if r̃ρ = 0, the equation may or not admit smooth or
even continuous solutions depending on the arithmetic properties of α, but in
the particular case where ϕ̂ρ(0) ∈ αZ∗ (such constants are called resonant) it
may also admit solutions of the form

bρ,h(·) = 2iπr · ,

which correspond to mappings cGT → G If we admit that the conjugant be
m-periodic, the resonant constants can belong to α 1

mZ∗, and then the equation
admits non-local solutions of the form

bρ,h(·) = 2iπ
r

m
· ,

a phenomenon already observed in [29]. We remark that there is no loss of pe-
riodicity apart from the phenomena observed in conjugation between constant
cocycles.

Therefore, ⟨Ad(B(·))hρ′ , jρ⟩ can be non-zero only if

Ad(Ã(·))jρ = C exp(2iπ(ϕρ′(·))),

with C > 0. Since the roles of Ã(·) and A(·) are symmetric, the same holds
for A(·).
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If we now turn to the study of Bρ,ρ′(·) = ⟨Ad(B(·))jρ, jρ′⟩, we find that

Bρ,ρ′(· + α) = exp(ãρ′(·)− aρ(·))Bρ,ρ′(·).

Consequently, Bρ,ρ′(·) can be non-zero only if ãρ′(·)− aρ(·) is a periodic func-
tion, which amounts to r̃ρ′ = rρ.

We conclude that the class of conjugant B(·) is well defined in

W (G+) ≈ W (G̃+) ⊂ W (G),

where G0 × G+ ↪→ G and G̃0 × G̃+ ↪→ G are the splittings corresponding to
(α, A(·)) and (α, Ã(·)). Since any two different maximal tori are obtained by an
algebraic conjugation in G and all the groups W (T ) are naturally isomorphic
to W , independently of such conjugations, we have proved the proposition

Therefore, the additional symmetries of the torus, owing to the fact that
it is embedded in a Lie group G, result in the existence of conjugations be-
tween models which would not conjugate otherwise. The action of Weyl’s group
reduces the number of abelian models of dynamics, by taking into account
the symmetries of T induced by the action of G. For example, the cocycles
(α, Er(·)) and (α, E−r(·)), r ∈ N∗ are not conjugate in SW(T, S), but they are
conjugate in SW(T, SU(2)).

If the rotation in the basis is Diophantine, the vectors r and (aρ)ρ∈∆̃ com-

pletely describe the dynamics of an abelian cocycle up to conjugation (cf.
equation (9) for the notation), as shows the resolution of a classical linear co-
homological equation. If the rotation is Liouvillean, we cannot conclude any-
thing more than the density in C∞ topology in the space of abelian cocycles
of the orbits of models of the type

(
α, exp

(∑

ρ

(2π(rρ · +aρ
)
hρ

)
.

Since any basis of a maximal torus of G can be obtained by the action of W (G)
on a single one, we can consider a fixed basis and use the notations

(24)
Er(·) = exp

(∑
ρ(2πrρhρ ·)

)
,

Er,a(·) = exp
(∑

ρ(2π(rρ · +aρ)hρ
)
.

In the particular case where G = SU(2), the possible abelian models are
exhausted by

(α, exp({2πr(· + φ(·) + a), 0}),
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where r ∈ Z. The action of Weyl’s group identifies r with −r (and φ(·) and a
with −φ(·) and −a) in the space of abelian cocycles, so that we need only
consider r ∈ N in the description of the abelian models.
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CHAPTER 5

THE ENERGY OF A COCYCLE IN T×G

5.1. Introduction

In the previous chapter (proposition 4.1), we observed the phenomenon of
quantization of the asymptotic normalized length of torus-reducible cocycles
in T × G over any irrational rotation. This phenomenon was first observed
in [31] in his study of cocycles in T × SU(2) (cf. also [16] for a similar result
for cocycles over the golden ratio). In this more restricted algebraic context,
R. Krikorian proved the quantification of this same quantity for cocycles over
rotations in the set Σ of theorem 3.11 as an intermediate result of the proof
of the global density of reducible cocycles in the non-local case. The proof
uses the local density theorem, theorem 3.5, and the renormalization scheme
that we will be presented and implemented in chapter 6. Under some arith-
metic conditions, somewhat stricter than a simple recurrent Diophantine one,
renormalization was proved to converge towards either constant cocycles, or
the normal forms (αn, Er(· + θ)), where Er(·) = exp(2iπrh·) and θ ∈ T is a
constant and r ∈ N∗, which are geodesics of SU(2) and thus a special case of
abelian cocycles. These normal forms, called obstructions, are not reducible
by virtue of theorem 3.8. They are proved to be C∞-accumulated by reducible
cocycles by establishing a dichotomy: if a cocycle in the neighborhood of a
normal form is not reducible to it, renormalization converges to a normal
form of smaller length, and cocycles of the latter type form a dense set in the
neighborhood of normal forms. Induction and use of the local version of the
theorem concludes the proof, and the quantization of the asymptotic length
of C2 cocycles has been proved under the arithmetic condition imposed.
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This result was generalized in [17] (cf. theorems 3.13 and 3.15). There, it
was proved that the conjugation to the obstructions under the condition defin-
ing Σ implies conjugation under a simple recurrent Diophantine condition (1).
Moreover, it was proved by K. Fraczek with the use of ergodic theorems and
renormalization that the quantization phenomenon is observed for C2 cocycles
independently of any arithmetic conditions, and the asymptotic normalized
length, or energy, of the cocycle was defined to be its degree. Additionally, it
was proved, using a technique similar to the one used in the proof of propo-
sition 4.5, that every cocycle in T × SU(2) of positive degree is measurably
torus-reducible. This result cannot be generalized in more general groups, as
it is based essentially on the fact that the tori of SU(2) are of dimension 1, or,
in other terms, the fact that phenomena of positive degree cannot be observed
in coupling with local phenomena.

Here, we extend these results to cocycles in compact groups, where the
complexity of the geometry forces a change in terminology. The fact that
a maximal toral algebra in su(2) is the real line in R × C, results in the
classification of the different abelian models by an invariant in 2πN, as already
discussed, equal to the mean speed of a reparametrized periodic geodesic.
However, this invariant is insufficient for more general groups. For example,
the cocycles obtained by the geodesics Eri(·) for r1 = (3, 0, 4) and r2 = (5, 0, 0),
i.e.

⎡

⎢⎢⎣

e6iπ · 0 0 0
0 e−6iπ · 0 0
0 0 e8iπ · 0
0 0 0 e−8iπ ·

⎤

⎥⎥⎦ and

⎡

⎢⎢⎣

e10iπ · 0 0 0
0 e−10iπ · 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

in SU(4), who have the same speed (or degree, according to K. Fraczek’s ter-
minology), cannot be conjugated over any irrational rotation as shows propo-
sition 4.9. Therefore, we keep the term degree for the vector in 2πZw, defined
modulo the action of Weyl’s group, i.e. modulo permutations of its coordinates
and changes of sign, and call its length energy.

1. This result can be strengthened by establishing a normal form theorem in the neigh-

bourhood of (α, Er(.)) with a Diophantine α, which asserts that reducibility to (α, Er(.)) is

of codimension 2r, and that the dichotomy proved by R. Krikorian persists under the weaker

artithmetic condition. This will be the object of chapter 8
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5.2. Definition and basic properties of the energy

Let (α, A(·)) ∈ SWs, with α ∈ T\Q, s ≥ 1, and

a(·) = LA(·) = ∂A(·).A∗(·) ∈ Cs−1(T, g)

(see section 2.2.1). Since the n-th iterate of the cocycle for n ≥ 1 is given by
(nα, An(·)) = (nα, A(· + (n− 1)α)...A(·)), the derivative of its inverse reads

a∗n(·) = LA∗
n(·) = a∗(·) + Ad(A∗(·)).a∗n−1(· + α)

as imply the properties of the differential operator L (see section 2.2.1). There-
fore, if we define the unitary operator

U : L2(T, g) −→ L2(T, g), b(·) $−→ Ad(A∗(·)).b(· + α)

we have

a∗n(·) =
n−1∑

0

Uka∗(·).

We note that this operator is in fact associated to the cocycle (α, A(·)) and
should be noted by U(α,A(·)), but the simplified notation will be used, since
the cocycle is to be considered fixed.

By the von Neumann ergodic theorem, there exists a∗+(·) ∈ L2(T, g),
U -invariant, such that

a∗+(·) = lim
n→∞

1

n
a∗n(·)

in L2 and Lebesgue a.e. U -invariance implies that |a∗+(·)| is constant a.e., since

|a∗+(·)| = |Ad(A∗(·)).a∗+(· + α)| = |a∗+(· + α)|

and α is an ergodic translation on the torus.

In the same way we define a∗−(·) as

a∗−(·) = − lim
n→∞

1

n
a∗−n(·)

Since A−n(· + nα)An(·) = Id, we have

a∗n(·) = −Ad(A∗
n(·)).a∗−n(· + nα) = −Un.a∗−n(·)

and consequently we find that

∥ 1
n
a∗n(·)− a∗+(·)∥L2 = ∥ − 1

n
a∗−n(·)− a∗+(·)∥L2

which implies that

a∗(·) = a∗+(·) = a∗−(·)
is unambiguously defined.
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In a similar way, the fact that A∗
n(·)An(·) = Id and a∗n(·) = −Un.an(·−nα),

implies that
1

n
an(·) → −a∗(·)

in L2 when n → ±∞, and we are justified to define

a(·) = lim
n→±∞

1

n
an(·) = −a∗(·).

As before, a(·) satisfies the invariance equation (23)

Ad(A(·)).a(·) = a(· + α)

and |a(·)| is constant a.e.. The invariance equation implies that the measurable
families of subalgebras g+(·) and g0(·), associated to a(·) as in section 4.2,
satisfy the same invariant relations a.e.. The proofs are obtained as in the afore-
mentioned section just by replacing minimality and continuity by ergodicity
and measurability, respectively.

Definition 5.1. — Let (α, A(·)) be a C1 cocycle.

◃ The number

∥a(·)∥L2 = lim
n→±∞

1

n
∥an(·)∥L2 = |a(·)| a.e.

will be called the energy of (α, A(·)) and denoted by en(α, A(·)).
◃ The set where |a(·)| = en(α, A(·)) is invariant by Rα and thus of full

measure.

We remark that the derivative of A(·) in g and the inner endomorphism
Ad(A∗(·)) (and therefore the operator U) depend only on the Lie algebra g
and not on the topology of the group G having g as its Lie algebra. The-
orem 3.8 implies directly that a cocycle of positive energy is not reducible.
There exist however cocycles of 0 energy which are not reducible, as we will
see in section 7.7.

Since the invariance of the curve gives directly that

Ad(Aqn(·)).a(·) = a(· + (−1)nβn),

the following corollary is immediate

Corollary 5.2. — a(·) and Aqn(·) commute asymptotically:

Ad(Aqn(·)).a(·) → a(·) in L2.
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We observe that the mapping a(·) generalizes the one defined for C1-torus-
reducible cocycles, with uniform convergence replaced by convergence in L2,
and the invariance of the degree in the latter case persists in this more general
setting:

Proposition 5.3. — The energy of a cocycle is invariant by conjugation in
C1(T, G). Moreover,

en(α, A(·))n = |n|. en(α, A(·)), ∀n ∈ Z,

en(α, A(·)) ≤ ∥a(·)∥Li , i = 1, 2,∞.

Proof. — Let B(·) ∈ C1(T, G). Then, calling (α, Ã(·)) = ConjB(·)(α, A(·)),

ãn(·)−Ad(B(· + nα)).an(·) = b(· + nα) + Ad(B(.+ nα).An(·)).b∗(·)

so that||ãn(·)|− |an(·)|| ≤ Cst and en(α, Ã(·)) = en(α, A(·)).
The second relation follows directly from the fact that

(α, An(·))k = (α, A(·))nk

and the third from the triangle inequality.

Corollary 5.4. — The ergodic cocycles in T×SO(3) constructed in [14] are
of zero energy.

In fact, we can prove that all cocycles in the regime of the local theory as
in [28] and [29] are of zero energy, despite the eventual loss of periodicity.

We also note the following simple fact.

Lemma 5.5. — Let (α, A(·)) = (α, A1(·)×A2(·)). Then,

en((α, A(·))) = en((α, A1(·))) + en((α, A2(·))).

In view of these properties of the invariant curve and the discussion in
section 4.2.2, we are motivated to give the following definition

Definition 5.6. — A cocycle (of positive energy) will be called regular if, and
only if, the curve a(·) consists a.e. of regular vectors, and singular otherwise.
This property is invariant by C1-conjugation.

We remind that a vector in g is called regular if, and only if, it is contained
in a single maximal torus, so that a cocycle being regular or singular is an
algebraic property of its dynamics, and should not be confused with the reg-
ularity of the cocycle, i.e. the regularity of the mapping T → G defining the
dynamics in the fibers.
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The following corollary of proposition 4.5 is immediate:

Corollary 5.7. — If the cocycle (α, A(·)) is regular and of positive energy,
then it can be measurably conjugated to an abelian cocycle. In particular, all
cocycles in T× SU(2) of positive energy have this property.

The hypothesis of the corollary is optimal as shows the following example.
Let α ∈ DC, Er(·) be a periodic geodesic in SU(2) and (α, A exp(F (·)) be a
non-reducible cocycle in SU(2). It is well known that such cocycles exist, and
they are even abundant in the neighborhoods of constants (see, e.g., [14]). The
hypothesis that α ∈ DC implies that such a cocycle is not torus-reducible,
since for a Diophantine rotations reducibility and torus-reducibility coincide.
Finally, we consider SU(2)× SU(2) ↪→ SU(4) and define

(α, A(·)) = (α, Er(·)×A exp(F (·)),

which is a cocycle in T × SU(4). This cocycle is of positive energy, but not
regular, and clearly not C∞-torus-reducible, by virtue of theorem 4.9.

This is, in fact the best possible generalization of K. Fraczek’s theorem
which states that all cocycles of positive energy in T×SU(2) can be measurably
conjugated to abelian ones, obtained as a corollary of theorem 3.12 of the same
paper.

If we try to adapt the arguments in section 4.2 in the measurable context,
which is, in fact, imitating K. Fraczek’s proof of the afore-mentioned result,
but for a singular invariant curve, we obtain a void statement. We cannot
conclude anything more than the existence of a measurable conjugacy and the
corresponding (measurable) splitting

G̃0 × G̃+ ↪−→ G, (α, Ã(·)) = (α, Ã0(·)× Ã+(·)),

where (α, Ã+(·)) is “of positive energy”and (α, Ã0(·)) is in general non-abelian
and “of zero energy”.

The definition of the energy can be extended in a rather awkward way to
some measurable abelian cocycles by using Birkhoff’s ergodic theorem. More
precisely, let us consider the case where G = SU(2) and a measurable abelian
cocycle (α, A(·)). If the mapping A(·) admits a lift in g of the form

exp(2iπ(r · +φ(·))h)

with r ∈ Z∗ and φ(·) : T → R an integrable function such that
∫
φ(·) = 0, (2)

then the n-th iterate is calculated as in the abelian case:

An(·) = exp((2πr(n · +1
2n(n− 1)α+ Sα

nφ(·))h)).
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Clearly, normalization by n of the lift of An(·) in g and passage to the limit
gives 2πr, which is what we would want to define as the degree of (α, A(·)). In
fact this generalization is cyclic in the sense that it supposes that the degree
can be defined, as the existence of a lift of this form is not guaranteed in the
measurable context.

This generalization cannot in general be applied to (α, Ã+(·)), which is
abelian by construction, and thus we do not know if the cocycle (α, Ã+(·))
remains a cocycle of positive energy under this extended definition. On the
other hand, there is no known extension to (non-abelian) cocycles of regularity
lower than H1, and it is highly probable that there does not exist any, so that
the statement that en(α, Ã0(·)) = 0 is devoid of any meaning, unless (α, Ã0(·))
is found to be at least measurably torus-reducible. However, since in SU(2)
exactly one of the factors of the splitting is non-trivial (which is not always the
case, even if it should be so “generically”, in any given compact group), and
the conclusion that all positive energy cocycles are measurable torus-reducible
is important, even though it does not survive in more general contexts.

Finally, let us revisit the expression a∗n(·) =
∑n−1

0 Uka∗(·). Using the tri-
angle inequality, as well as the fact that U is a unitary operator, we find that

∥a∗n(·)∥L2 ≤ n∥a∗(·)∥L2 .

It is a classical fact that equality holds if, and only if, all the vectors composing
the sum are colinear. In this particular case, this amounts to the existence of
a positive constant λ such that

Ua∗(·) = λa∗(·).

Since |λ| = ∥Ua∗(·)∥L2/∥a∗(·)∥L2 (we assume that ∥a∗(·)∥L2 ̸= 0), we find
that λ = 1, and the ergodic sum reduces to

a∗n(·) = na∗(·).

Therefore, in the case of maximal growth of the derivatives of the iterates of
(α, A(·)), a∗(·) = a∗(·), and en(α, A(·)) = ∥a∗(·)∥L2 . Reinserting the expres-
sion for the operator U we obtain the relation

a∗(·) = Ad(A∗(·)).a∗(· + α) or a∗(· + α) = −a(·).

2. This is in fact not any more restrictive than the existence of such a lift, since, if we

consider A(·+γ) (such a choice of γ is possible since r ̸= 0) instead of A(·), we can eliminate∫
φ(·) without affecting the dynamics.
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Thus, a2(·) = a(· + α) + Ad(A(· + α)).a(·) = 2a(· + α) and inductively

an(·) = na(· + nα)

Since
1

n
an(·) = a(· + nα) −→ a(·)

and α is minimal, this can be true only if a(·) is constant and equal to, say,
h. The assumption that A(·) is H1 implies, therefore, that it is of the form

exp(h·).A0.

The condition that Ua(·) = a(·) and the periodicity of A(·) imply respectively
that

Ad(A0).h = h, exp(h) = Id

and we have proved:

Theorem 5.8. — The operator U associated to a cocycle (α, A(·)) of regu-
larity H1 admits a(·) as an eigenfunction with positive eigenvalue if, and only
if, the cocycle is a periodic geodesic, and therefore C∞. The eigenvalue is equal
to 1.

It seems reasonable to speculate that the attractors of the dynamics in
SW1(T, G) should be the periodic geodesics of the group, which is in fact
proved to be true in the next chapter.

Another distinct case of the action of the operator U(α,A(·)) is the one as-
sociated to abelian cocycles, which is slightly more general than that of the
periodic geodesics. For such a cocycle, we have

Ad(A(·)).a(· + α) = a(· + α).

Supposing that this relation is verified, we find that the sum defining a(·) is
reduced to a simple Birkhoff sum over Rα, so that a(·) = â(0), a constant.
This constant is fixed by Ad(A(·)), as we have seen in the previous chapter.

5.3. Higher-order derivatives

Let us start by stating and proving a lemma on the growth of Cs norms of
the iterates of a smooth cocycle:
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Lemma 5.9. — The n-th iterate of the cocycle (α, A(.)) ∈ SWs satisfies the
estimates

∥∂σan(·)∥0 ≤ Cσn
σ+1(1 + ∥a(·)∥σ)∥a(·)∥

σ+1
0 , or

∥An(·)∥s ≤ Csn
s(1 + ∥a(·)∥s)∥a(·)∥

s
0,

where the constant Cσ depends only on σ, and 0 ≤ σ ≤ s − 1. Therefore, the
normalized derivatives 1

nσ+1∂σan(·) are bounded uniformly for n.

Proof. — The proof is obtained by applying proposition 2.9 and using the
translation invariance of the norms.

The result given above can be considerably refined:

Lemma 5.10. — Let 1 ≤ σ ≤ s− 2. Then as n → ±∞
1

nσ+1
∂σan(·) −→ 0 in L2.

Proof. — The estimates of lemma 5.9 and convexity inequalities imply that
it is sufficient to prove the lemma for σ = 1, and the fact that a(·) = −a∗(·)
implies that it is sufficient to prove the result for 1

n2∂a∗n(·).
The properties of the differential operator L imply that

∂a∗n(·) =
n−1∑

0

Uk−1∂a∗(·) +
n−2∑

k=0

n−1∑

l=k+1

[Uka∗(·), U la∗(·)].

As has already been proved, 1
n

∑n−1
0 Uk−1∂a∗(·) converges in L2, and there-

fore
1

n2

n−1∑

0

Uk−1∂a∗(·)

tends to 0 as n → ∞, and, since [·, ·] is antisymmetric, we have to prove that

1

n2

n∑

k=0

k∑

l=0

[Uka∗(·), U la∗(·)] −→ 0 in L1(T, g),

which is the object of lemma 11.1 in Appendix 11.

Since the sequence ( 1
n2∂a∗n(·))n is uniformly bounded in L∞, we obtain the

convergence in L2, and thus we can prove the same result for higher derivatives.
The case n → −∞ is treated analogously.

The two lemmas of this section imply that the essential information on the
asymptotic behaviour of the dynamics of a cocycle should be contained in at
most the first derivative, since the mere existence in L2 of a derivative of a
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higher order implies that, after rescaling, it converges to 0 in the same space.
This is the object of the next chapter.
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CHAPTER 6

Z2 ACTIONS ON R×G AND THE
RENORMALIZATION SCHEME

In this chapter, we present and apply the main tool used in the study of
non-local phenomena of the dynamics of cocycles in T×G, where G is typically
SL(2,R) or SU(2). It can be described essentially as a division algorithm, since
it is the outcome of the lift of the euclidean division algorithm for the continued
fractions expansion to the dynamics of a cocycle over an irrational rotation.
The lift of this algorithm divides the limit object of the dynamics obtained in
the previous chapter, i.e. the invariant curve a(·), by the group of iterates of
the cocycle. Since, however, the limit object lives in a low-regularity space (L2),
the algorithm should be expected to diverge (at least a priori) in C∞.

Another interpretation of the function of renormalization in the study of
quasiperiodic cocycles could be the reduction of the study of general global
objects to the local study of perturbations of normal forms, obtained as the
basins of attraction of renormalization. The property used in the reduction of
the global study to the different local ones is the preservation of the quality of
dynamics under renormalization, and it is precicely due to the fact that renor-
malization divides the limit object of the dynamics by the group of iterates of
the cocycle.

An application of a weaker, yet renormalization-like, algorithm to the study
of cocycles in T× SU(2) dates back to [34], with some interesting results and
questions for research, but the application is restricted to the golden ratio,
and it is based on the very fact that, for the golden ratio ϕ, iteration of Rϕ

coincides with the continued fractions algorithm. This scheme was used also
in [16], where it was used in the proof of the quantization of the degree of a
cocycle, as it is defined in the same paper.
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Renormalization was introduced in the study of cocycles in the same product
space in [31], under a form which is applicable to any irrational rotation, and
the convergence results where proved for a full measure set of frequencies. The
algorithm was proved to converge for C2 cocycles over such rotations, and
then the local study of the normal forms towards which the renormalization
converges gave the first global density result for C∞ cocycles in T × SU(2).
In the study of the convergence of renormalization, two functionals where
introduced. The one based on L2 norms (called J (2)) was used to measure the
convergence and the second, the length functional (called J (1)), was proved to
take discrete values in a way that generalizes the result of K. Fraczek, obtained
for cocycles over the golden ratio.

These results where generalized in manifold directions in [17]. In a first
time, the algorithm was proved to converge independently of any arithmetic
conditions on the (irrational) rotation, for C1 regularity. The two functionals
introduced by R. Krikorian where proved to be alternative definitions of the
degree, a quantity that can be defined without the use of renormalization and
for C1 cocycles over any irrational rotation. In particular, the regularity needed
for the equivalence was only C1 for J (2), but C2 for J (1). Since it is J (1) that is
used in the identification of the normal forms towards which renormalization
converges, the quantization of the degree was proved in regularity C2. Re-
examination and improvement of the local study made in [31] loosened the
arithmetic condition for the global density of reducible cocycles to a RDC.
Finally, it was proved that C2 cocycles that are measurably conjugate have
the same degree.

In the presentation of the algorithm, we have adapted the one in [15], used
for the study of cocycles in T × SL(2,R). The proof of the convergence of
renormalization is based on K. Fraczek’s approach as it is given in [17], but
the notation is adapted to that used in [31].

The generalizations of the results are essentially two-fold, the first direction
being of algebraic nature and the second one concerning regularity. By its
definition, the algorithm does not depend on the fibers G of the product space,
but only on the fact that the cocycle has only one frequency, since continued
fractions algorithms are less efficient when more frequencies are involved. The
tool is therefore ready to be applied to the study of cocycles in any compact
Lie group, where the complexity of the observable phenomena outside the case
studied so far is revealed (see the discussion on the splitting of the dynamics,
cf. section 4.2.2). The second direction is based on a rather simple observation,
which establishes the equivalence of the three different possible definitions of
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the degree for C1 cocycles, and this allows us to prove the quantization of
the degree for cocycles of such regularity. In fact, observation of the proof
shows that the real regularity needed is H1 and this regularity represents the
threshold under which the degree of a cocycle cannot be defined. For this,
see [23] for the study of the “parabolic map” of T2, given by

(x, y) $−→ (x+ α, x+ y).

It is the additive version of the dynamics of periodic geodesics in SU(2).
Therein it is established that all invariant distributions of this mapping, other
than the Haar measure on the torus, are in H−1(T2), the space of distributions
in T2 that can be continuously extended to functionals on H1(T2).

Summing up, in this chapter we prove that the degree of a cocycle in
SW1(T, G), for any compact Lie group G, admits a definition in a way that
naturally extends the degree as defined for cocycles in SW1(T, SU(2)). This de-
gree is the topological degree of a periodic geodesic, viewed as a mapping of T
into a maximal torus of G, and therefore takes discrete values. The periodic
geodesics of the group are the normal forms which arise as topological obstruc-
tions to reducibility, thus marking the passage from local to global. Finally,
the measurable invariance of the degree is proved to be true in regularity C1

and persists in this more general algebraic setting.

6.1. Synopsis of the chapter

After having introduced the notion of Z2 actions and defined the renormal-
ization algorithm for such actions, we generalize the definition of the energy of
a cocycle to actions and subsequently study the convergence of the algorithm
in order to obtain the following key theorems to the proof of the global density
theorem.

The first one concerns the quantization of the length of the vectors belonging
to the invariant curve a(·) (see section 5.2 for the notation), which is the same
as for abelian cocycles:

Theorem 6.1. — Let (α, A(·)) ∈ SW1(T, G), with G a semisimple compact
Lie group and w the dimension of its maximal tori. Then, the energy of the
cocycle satisfies

en(α, A(·)) = 2π
∥∥∥
∑

ρ∈∆̃

rρhρ
∥∥∥, r ∈ Nw,
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where the vector h = 2π
∑

ρ∈∆̃ rρhρ ∈ g is a preimage of the Id and a(ν) ∈
Inn(g).h for a.e. ν ∈ T.

This theorem, whose proof is in p. 112, motivates the following definition

Definition 6.2. — The vector r ∈ Nw, defined modulo the action of Weyl’s
group and invariant under C1 conjugation, is the degree of (α, A(·)). It is
denoted by deg((α, A(·))) and it satisfies

exp
(
2π

∑

ρ∈∆̃

rρ.hρ
)
= Id .

The degree of an abelian cocycle coincides with the topological degree of
the corresponding mapping Er(·) : T → T , which justifies the terminology.

The following theorems concern the convergence of renormalization per se.
For the definition of the unknown quantities in their statements (mostly the

operators (Λχ0)∗ and R̃n
ν acting on Φ), we address the reader to section 6.3.

The first theorem asserts that renormalization of a positive energy cocycle
(α, A(·)), homotopic to constants, converges towards geodesics of speed equal
to the degree of (α, A(·)):

Theorem 6.3. — Let (α, A(·)) ∈ SWs(T, G), 2 ≤ s ≤ ∞, homotopic to
the Id, and en(α, A(·)) > 0. Then, for a.e. ν ∈ T, there exists a sequence
of conjugations Dn,ν(·) ∈ Hs−1(R, G) satisfying the following properties:

ConjDn,ν(·) R̃
n
νΦ is normalized and ConjDn,ν(·) R̃

n
Φ(e2)(·) is arbitrarily

close to

A(n)
ν . exp(a(ν)(·))

in Hs−1(T, G), with A(n)
ν ∈ Zν . The set of such ν ∈ T is invariant under Rα.

We have called Zν = ZG(exp(Ra(ν))). For cocycles non-homotopic to con-
stants, we have the following version of the theorem.

Theorem 6.4. — Let (α, A(·)) ∈ SWs(T, G), 2 ≤ s ≤ ∞ and en(α, A(·)) > 0.
Then, for a.e. ν ∈ T, there exists a sequence of conjugations Dn,ν(·) ∈
Hs−1(R, G) satisfying the following properties: ConjDn,ν(·) R̃

n
νΦ is normalized,

and ConjDn,ν(·) R̃
n
Φ(e2)(·) is arbitrarily close in Hs−1(T, G) to

A(n)
ν . exp(a(ν)·).A(n)

ν,0 (·).
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Here A(n)
ν,0 (·) : T → G0 is a geodesic of minimal length in its homotopy

class, of order χ in the homotopy group of G0, and A(n)
ν ∈ Zν anti-commutes

with A(n)
ν,0 (·):

A(n)
ν .A(n)

ν,0 (·).(A
(n)
ν )∗ = A(n)

ν,0 (·)
∗.

The renormalized action ConjDn,ν(·) Λχ.R̃
n
νΦ, which corresponds to the renor-

malization representative of the χ-th iterate of (α, A(·)), satisfies the conclu-
sions of the previous theorem. The constant χ satisfies 0 ≤ χ ≤ χ0, with χ0

the constant of lemma 2.5 corresponding to G0, the 0-energy component of the
splitting associated to (α, A(·)). This constant is taken equal to 1 if G0 = {Id}.

Thus, homotopy appears in the part of the dynamics which is of 0 energy,
if it is not trivial.

The second couple of theorems concerns the cocycles of 0, and asserts that
renormalization of 0-energy cocycles converges toward constant cocycles, again
modulo iteration by χ times:

Theorem 6.5. — Let (α, A(·)) ∈ SWs(T, G), 2 ≤ s ≤ ∞, homotopic to the
Id, and en(α, A(·)) = 0. Then, for every ν ∈ T, there exists a sequence of

conjugations Dn,ν(·) ∈ Hs−1(R, G) such that ConjDn,ν(·) R̃
n
Φ is normalized

and ConjDn,ν(·) R̃
n
Φ(e2)(·) is arbitrarily close to a constant.

The version for cocycles non-homotopic to constants reads

Theorem 6.6. — Let (α, A(·)) ∈ SWs(T, G), 2 ≤ s ≤ ∞ such that
(α, A(·))m is homotopic to the Id. and en(α, A(·)) = 0. Then, for every
ν ∈ T, there exists a sequence of conjugations Dn,ν(·) ∈ Hs−1(R, G) such that

ConjDn,ν(·) R̃
n
Φ is normalized and ConjDn,ν(·) R̃

n
Φ(e2)(·) is arbitrarily close

to A0.Ã(·). Here, Ã(·) a geodesic of minimal length in the homotopy class of

A(·) and A0 ∈ G anti-commutes with Ã(·). The action ConjDn,ν(·) Λm.R̃n
Φ

is arbitrarily close to a normalized constant action.

We then proceed to a brief discussion on the preservation of the homotopy
under renormalization before extending a result known since [17], namely the
dependence of the degree of the cocycle (now defined as a vector and not as a
numerical quantity) on the rotation in the basis to this more general context.

The degree of a C1-cocycle can be well defined, we have seen that it re-
sults immediately from the definitions that C1 conjugations leave the degree
invariant. However, using the convergence of renormalization, we can prove a
stronger proposition:
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Proposition 6.7. — Let (α, Ai(·)) ∈ SW1(T, G), i = 1, 2, be conjugate by
B(·) : T → G and let us suppose that B(·) is measurable. Then

deg(α, A1(·)) = deg(α, A2(·)).

The proof of this proposition occupies section 5.8.

6.2. Z2 actions

In order to cope with the expected divergence in C∞ of the approximation
of the limit object a(·), we will have to examine the dynamics in finer scales,
which sums up to considering tori γ−1T = R/γ−1Z, where γ goes to infinity
in a controlled way, related to the arithmetic properties of α. In order to
avoid such non-uniform objects, we consider cocycles in SWs(R, G) and express
periodicity in a more abstract way, which nonetheless proves to be practical
for the study of the dynamics.

Let, therefore, (α, A(·)) and (β, B(·)) be commuting cocycles in SWs(R, G),
with α,β ∈ (0, 1], not necessarily irrational. Commutation of these cocycles
sums up to the following relation satisfied by the mappings A(·) and B(·)

B(· + α).A(·) = A(· + β).B(·).

We can then define an abelian action of Z2 on R×G (1) by

Φ(k, l).(x, S) = (α, A(·))k ◦ (β, B(·))l.(x, S).

The space of such actions will be denoted by Λs(R, G) and we will say that the
action Φ is generated by (α, A(·)) and (β, B(·)). We will denote by e1 = (1, 0)
and e2 = (0, 1) the standard basis of the module Z2. We will also use, for such
an action Φ, the notation (

(α, A(·))
(β, B(·))

)
.

Definition 6.8. — An action will be called constant if Φ(k, l) is a constant
cocycle for every (k, l) ∈ Z2. It will be called normalized if Φ(e1) = (1, Id), in
which case π2(Φ(e2)) is automatically 1-periodic. A cocycle (α, A(·)) with A(·)
1-periodic is thus naturally identified with the action generated by (1, Id)
and (α, A(·)). We will say that this action is associated to the cocycle (α, A(·)).

1. And likewise on the product of R with any space on which G acts.

MÉMOIRES DE LA SMF 146



6.2. Z2 ACTIONS 99

An action is constant iff its generators are constant, and we remind this fact
since we will examine actions through their generators, and not abstractly.

The space Cs(R, G) acts on Λs by the generalization of conjugation in
SWs(T, G): if B(·) ∈ Cs(R, G), then Φ′ = ConjB(·)Φ is given by

Φ′(k, l) = ConjB(·)(Φ(k, l)), ∀(k, l) ∈ Z2

and this gives rise to the following natural definitions.

Definition 6.9. — Two actions will be called conjugate if they belong to the
same orbit under the action of conjugacies.

An action will be called reducible if it is conjugate to a normalized constant
action, and torus-reducible if it is conjugate to a normalized action such that
π2(Φ(e2)) takes its values on a torus of G, which with no loss of generality can
be assumed to be a fixed torus T .

Naturally, two actions are conjugate iff their generators are, but with trans-
fer functions in R → G.

If d(·) is a (semi-)metric on a space of applications taking values in G, then
it induces a (semi-)metric on Λs defined by

max
i=1,2

d(π2(Φ1(ei)),π2(Φ2(ei))),

i.e. the max of the distances of their generators. In the special case of the
Cs(I) topology, where I ⊂ R or T and s ≥ 0, we will use the notations

∥Φ∥0s,I = max
i=1,2

∥π2(Φ(ji))∥0s,I ,

d0s,I(Φ1,Φ2) = max
i=1,2

∥π2(Φ1(ji))− π2(Φ2(ji))∥,

∥Φ∥s,I = max
i=1,2

∥π2(Φ(ji))∥s,I ,

ds,I(Φ1,Φ2) = max
i=1,2

∥π2(Φ1(ji))− π2(Φ2(ji))∥s,I .

We can now prove:

Lemma 6.10. — Let Φ ∈ Λs(R, G) such that π1(Φ(1, 0)) = 1. Then there
exists B(·) ∈ Cs(R, G) such that ConjB(·)Φ is normalized. B(·) satisfies, for
1 ≤ σ ≤ s− 1 and T ∈ N∗, the estimates

∥B(·)∥σ,T ≤ CσT
σ(1 + ∥π2(Φ(e1)∥σ,T )∥π2(Φ(e1))∥0,T
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and the normalized action satisfies

∥ConjB(·)Φ(e2)∥s,1 ≤ Cs(1 + ∥π2(Φ(e1))∥1,2)∥π2(Φ(e2)∥s,1
+ ∥π2(Φ(e1)∥σ,2∥π2(Φ(e1))∥1,1.

Proof. — In order to prove the first part, we need to solve the equation

(25) B(· + 1) = B(·).C∗(·),

where C(·) = π2(Φ(1, 0)). Let us fix B0(·) ∈ Cs([0, 1], G) such that

B0(0) = Id and ∂σB0(0) = 0, 1 ≤ σ ≤ s

∂σB0(·)|t=1 = ∂σ(B0(·).C∗(·))|t=0, 0 ≤ σ ≤ s,

∥B0(·)∥σ,1 ≤ Cσ∥C(·)∥σ,1, 1 ≤ σ ≤ s− 1.

Then, define for all j ∈ Z

B(· + j) = B0(·).C∗
j (·).

It can be verified inductively that B(·) is Cs(R, G) and by its very definition
it solves the equation (25). Moreover, if σ, T ∈ N, it satisfies

∥B(·)∥σ,[T,T+1] = ∥B0(·).CT (·)∥σ,1
and the estimate can be proved by imitating the proof of lemma 5.9.

Since B(·) ∈ Cs(R, G) is 1-periodic if ConjB(·)(1, Id) = (1, Id), the following
lemma is an immediate consequence of the definitions and the previous lemma.

Lemma 6.11. — A cocycle is (torus-)reducible if, and only if, the Z2 action
associated to it is (torus-)reducible. Likewise, it is accumulated by (torus-)
reducible cocycles if, and only if, the corresponding action is.

We remark that, in view of the proof of the previous lemma, an action
is torus-reducible if it is conjugate to an action Φ′ such that π2(Φ′(e1)) and
π2(Φ′(e2)) take their values on the same torus, and π1(Φ′(e1)) = 1.

However, unlike with actions associated to cocycles in, say T× SU(w + 1),
we cannot always normalize a constant action to another constant one for the
following reason. If

Φ =

[
(1, C)
(α, A)

]

is a constant action, then C and A commute. However, if G is not simply
connected, then they need not belong to the same maximal torus. A natural
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conjugation normalizing the cocycle is B(·) = exp(−H ·), where exp(H) = C.
But, unless Ad(A).H = H,

Φ′ =

[
(1, Id)

(α, exp(−H(· + α)).A. exp(H ·))

]

is not constant, but with a good choice of the conjugant it is a geodesic of
minimal length in its class, as shows the proof of lemma 2.7. Normaliza-
tion can be achieved by considering the action given by a sub-lattice of Z2.
If (α, exp(−H(· +α)).A. exp(H ·))m is homotopic to constants, then there ex-
ists a preimage H ′ ∈ g of C and 0 ≤ χ ≤ χG such that Ad(Aχ).H ′ = H ′.
Therefore, if we consider the action Φ̃ generated by (1, C) and (α, A)χ, and
conjugate by B′(·) = exp(−H ′ ·), we obtain the constant action

ConjB′(. ) Φ̃ =

[
(1, Id)

(χα, exp(−χH ′α).Aχ)

]
.

Therefore, we have the following lemma.

Lemma 6.12. — Let Φ be a constant action with generators (1, C) and (α, A).
This action can be normalized to a constant action iff A and C belong to a
common maximal torus. If not, it can be normalized to an action Φ′ associated
to a cocycle (α, A(·)) non-homotopic to constants, and more precisely to a
geodesic of minimal length in its class. The minimal χ ∈ N such that C and
Aχ belong to a common maximal torus and the order of A(·) in the homotopy
group of G are the same number.

The action generated by (1, C) and (α, A)χ, corresponding to the sub-action
Z⊕ χZ ↪→ Z2 can be normalized to a constant action.

This last action is Λχ.Φ in the notation of the next section. Since normal-
ized actions are associated to cocycles conjugate to each other (cf. proof of
lemma 6.20, and since homotopy is preserved by fibered conjugation, a differ-
ent choice of conjugant will not solve the problem. Either we do not normalize
the action to a constant one, or we consider an iterate of the cocycle, the action
associated to which can be normalized to a constant one.

6.3. Renormalization of actions

We now present the basic tool for the study of the dynamics of cocycles
via their identification with the corresponding Z2-action. Given the irrational
number α, we generate an infinity of base-changes of the module Z2, and these
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base-changes are pulled back to changes of generators of the Z2- action corre-
sponding to (α, A(·)). These successive base-changes, given by the continued
fractions algorithm applied to α, provide us with a subsequence of iterates of
(α, A(·)), which, being adapted to α, reflects its arithmetic properties, and
whose derivatives converge to a(·).

We now define the actions that are used in the renormalization:

◃ GL(2,Z) acts on Λs by change of basis of the module Z2. If Φ ∈ Λs and
P ∈ GL(2,Z), then P∗Φ(k, l) = Φ(P−1.(k, l)), ∀ (k, l) ∈ Z2, i.e. P∗Φ is
generated by P−1.e1 and P−1.e2

◃ R acts by translations in the basis: for ν ∈ R:

π2(TνΦ(k, l)) = π2(Φ((k, l))(.+ ν), ∀(k, l) ∈ Z2

and we remind that π2 is the projection on the mapping defining the
cocycle, defined right after π1, the projection on the frequency (cf. equa-
tion (8)).

◃ R∗
+ acts by dilatations of the basis: if λ ∈ R∗

+, then

π1(MλΦ(k, l)) = λ−1π1(Φ((k, l))(·),
π2(MλΦ(k, l)) = π2(Φ((k, l))(λ·), ∀(k, l) ∈ Z2.

◃ We also define the action of the semigroup N∗ by the restriction to the
a sub-lattice. If m ∈ N∗, the action Λm.Φ is generated by Φ(e1) and
Φ(me2).

We note that the first three actions commute with each other, since dilata-
tions and translations commute with iteration. Conjugation commutes with
base changes, while it satisfies the following invariance properties

Tν ◦ ConjB(·) = ConjB(·+ν) ◦Tν , Mλ ◦ ConjB(λ·) = ConjB(·) ◦Mλ

and the equalities

∥MλΦ∥s,T = λs∥MλΦ∥s,λ−1T

follow directly from the definitions.

Since the loss of information described by lemma 6.12 is inherent, we give
the following definition

Definition 6.13. — Given a Z2 action Φ and m ∈ N∗, the action Λm.Φ will
be called the m-lattice of Φ. An action Φ′ such that Λm.Φ is normalized will
be called normalizable modulo m.
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It can be seen directly that the action Φ is (torus-)reducible (resp. accu-
mulated by reducible actions) iff MλP∗Φ is (torus-)reducible (resp. accumu-
lated by reducible actions) for some (and thus for all) P ∈ GL(2,Z), and
λ = π1(P∗Φ(1, 0)), and the same holds for Tν . We can therefore generalize the
different notions of reducibility of Z2-actions as defined and used above to:

Definition 6.14. — An action Φ will be called reducible if it is conjugate
to a constant action Φ′ such that π2(Φ′(e1)) = Id, and torus-reducible if it is
conjugate to an action Φ′ such that π2(Φ′(e1)) and π2(Φ′(e2)) take their values
on the same maximal torus T ⊂ G.

It will be called (torus-)reducible modulo m ∈ N∗ if Λm.Φ is (torus-)
reducible.

Given an action Φ such that π1(Φ(e1)) = 1, the n-th renormalized action
can now be defined as

RnΦ = Mβn−1 ◦ (Qn)∗Φ,

where, following the notations introduced in section 1.3,

Qn =

[
pn pn−1

qn qn−1

]
∈ GL(2,Z)

and the Qn satisfy the recursive relation

Qn = Qn−1

[
an 1
1 0

]
= Qn−1An

so that

R̃n
Φ = Mαn−1 ◦ (An)∗Rn−1Φ.

For the action Φ associated to the cocycle (α, A(·)),

R̃n
Φ(e2) = (αn, A(−1)nqn(βn−1 ·)) = (αn, A

(n)(βn−1 ·)) = (αn, Ã
(n)(·)),

R̃n
Φ(e1) = (1, A(−1)nqn−1

(βn−1 ·)) = (1, A(n−1)(βn−1 ·)) = (1, C̃(n)(·)),

(βn, A
(n)(·)) = (βn−1, A

(n−1)(·))−an ◦ (βn−2, A
(n−2)(·)).

We will also use the notations

R̃n
νΦ = T−νR̃

n
(TνΦ), Rn

νΦ = T−ν(Qn)∗(TνΦ)

and omit the subscript when ν = 0.

The actions R̃n
νΦ can be normalized in a non canonical way: there exists

B(·) = Bn,ν(·) ∈ C∞(R, G) such that ConjB(·) R̃
n
νΦ is normalized.
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Definition 6.15. — For an action Φ associated to the cocycle (α, A(·)), we
will call such a ConjB(·) R̃

n
νΦ(e2) a renormalization representative of (α, A(·)).

The choice of a renormalization representative is non-canonical, since it de-
pends on the choice of B(·), but since different renormalization representatives
are cocycles conjugate to each other (cf. proof of lemma 6.20), the indetermi-
nacy is not important for the results that we seek to obtain. However, we will
see that when renormalization goes deep enough, so that a(·) is approximated
well enough, it indicates a natural way of normalizing the actions.

Similarly, we call a renormalization representative modm the cocycle
ConjB(·) Λm.R̃n

νΦ(e2), when this last action is normalized modm.

From the above, it follows that

Proposition 6.16. — The cocycle (α, A(·)) is (torus-)reducible (resp. accu-
mulated by (torus-)reducible cocycles) if there exist n and ν such that Rn

νΦ is
(torus-)reducible (resp. accumulated by (torus-)reducible cocycles), where Φ is
the action associated to (α, A(·)).

We remark that the action associated to a cocycle is (torus-)reducible
mod m, iff the m-th iterate of the cocycle is (torus-)reducible. We also need
to make clear that renormalization does not commute with the action of N∗.
This is because the continued fractions of mγ and those of γ are not related.
They become related if we place mγ in mT, which we will do in the proof of
our main theorem.

Using lemmas 5.9 and 5.10, we can prove the a priori estimates

Proposition 6.17. — For the action Φ associated to the cocycle (α, A(·)),
we have

∥∥R̃n
νΦ

∥∥
σ,R # Kσ,

∥∥∂σ c̃(n)(·)
∥∥
L2(I)

−→ 0,
∥∥∂σã(n)(·)

∥∥
L2(I)

−→ 0.

for all 1 ≤ σ ≤ s− 1 and any compact interval I and for any ν ∈ T.

Proof. — As we have seen, for any n ∈ Z∗, the derivative of An(·) satisfies

∥an(·)∥0 ≤ n∥a(·)∥0.

In particular, ∥a(n)(·)∥0 = ∥LA(n)(·)∥0 ≤ qn∥a(·)∥0, and since

ã(n)(·) = βn−1a
(n)(βn−1 ·)

and qnβn−1 < 1, the result is proved for the C0 norms of the first derivatives.
Similarly,

∥∂an(·)∥0 # n∥∂a(·)∥0 + n2∥a(·)∥20.
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Since, now, ∂ã(n)(·) = β2
n−1∂a

(n)(βn−1 ·), the estimate follows as before.

Finally, the convergence to 0 in L2(I) for ∂σã(n)(·), σ ≥ 1, follows from the
fact that

∂ã(n)(·) = β2
n−1∂a

(n)(βn−1 ·) = q2nβ
2
n−1∂a

(n)(βn−1 ·)

and ∂a(n)(·) → 0 in L2(T), so that ∂a(n)(βn−1 ·) in L2(I), for any compact
interval I.

The estimates on c̃(n)(·) and its derivatives are obtained in exactly the same
way, and we just remark that the numerical factor that gains convergence
for c̃(n)(·) (as does qnβn−1 for ã(n)(·)) is now qn−1βn−1 = αn−1qn−1βn−2,
which is in fact more than what is needed in order to establish convergence.
The factor αn−1 will be interpreted as a scaling factor in the proof of the
convergence of the scheme.

A remark. — A. Avila’s theory of SL(2,C) cocycles (cf. [3]), gives immedi-
ately the following quantization theorem for analytic cocycles in T × SU(2).
Before stating it, we remind that SU(2) complexifies to SL(2,C) and remark
that, if A(·) ∈ Cω

δ (T, SU(2)), i.e. if A(·) is analytic and admits a holomorphic
extension to the strip |ℜ(z)| < δ, then

d

dε
∥A(x0 + εi)∥|ε=0+ = |πt(a(x0))|

where t is a maximal torus (2) passing by A(x0) and ∥·∥ stands for the operator
norm associated to the Hermitian norm on C2. This relation holds for the
following simple reason. If we assume that

A(0) = {At(0), 0}

is diagonal and At(x) = exp(is0 + is1x + O(x2)), then the increment of the
norm as we pass to the complex plane is given by the increment of the real
part of At(0 + iε) which is precisely s1. The general case follows.

Theorem 6.18. — The energy of analytic cocycles in T× SU(2) is quantized
in 2πN.

Proof. — Suppose that the curve a(·) is non-degenerate, so that the cocycle
is measurably diagonalizable. Moreover, for a.e. point x0,

1

qn

d

dε
∥Aqn(x0 + εi)∥|ε=0+ −→

n→∞
|a(x0))|.

2. In fact in the case where A(x0) = ± Id one should consider the maximum of such

projections on all maximal tori, which is equal to the norm of the derivative
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This fact implies that the acceleration of a cocycle, as defined in [3], is equal
to its energy as has been defined herein. In the same paper by A. Avila, it is
shown that this quantity is quantized in 2πN.

As we will see later on, this fact persists in more general contexts and in
lower regularity.

6.4. Energy of actions

Using lemma 6.10, we can define the energy of a Z2 action, in a way that
generalizes the definition given for cocycles:

Definition 6.19. — The energy of a normalized action Φ equals the energy
of Φ(e2), i.e.

en(Φ) = en(Φ(e2)).

If MλΦ is normalized, then

en(Φ) = λ−1. en(MλΦ(e2)).

The pertinence of the definition is established by the following lemma.

Lemma 6.20. — The definition of the energy does not depend on the choice
of the conjugacy that normalizes the action, provided that it is C1.

Proof. — Let Bi(·) ∈ C1(R, G), i = 1, 2 be such that Φ′
i = ConjBi(·)Φ be

normalized. Then, if we let B(·) = B1(·).B∗
2(·), it satisfies ConjB(·)(1, Id) =

(1, Id), and therefore it is 1-periodic. Since Φ′
1 = ConjB(·)Φ

′
2, which implies

that Φ′
1(e2) = ConjB(·)Φ

′
2(e2), and the energy of a cocycle is invariant under

the action of C1 periodic conjugations (by proposition 5.3), the result has been
proved.

The following corollary is immediate.

Corollary 6.21. — The energy of an action is invariant under C1 conju-
gation of actions.

The energy of an action is related with the renormalization scheme in the
following way (notice that we need only consider renormalization of normalized
actions):
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Lemma 6.22. — The sequences din given by

din = βn∥a(n−1)(·)∥Li(T) + βn−1∥a(n)(·)∥Li(T)

for i = 1, 2 are decreasing and converge to en(Φ). As a consequence, the energy
of an action is invariant under renormalization:

en(Φ) = en(R̃n
νΦ)

for all n ∈ N∗ and ν ∈ T. In particular, the energy of a cocycle is equal to the
energy of any of its renormalization representatives.

Proof. — By virtue of the recurrence relation satisfied byRnΦ and the triangle
inequality, we find that

∥a(n)(·)∥Li ≤ ∥a(n−2)(·)∥Li + an∥a(n−1)(·)∥Li .

Since βn−2 = anβn−1 + βn, we find

βn−1∥a(n)(·)∥Li + βn∥a(n−1)(·)∥Li ≤ βn−1∥a(n−2)(·)∥Li + βn−2∥a(n−1)(·)∥Li

and the sequences din are decreasing. Since 1
qn
∥a(n)(·)∥Li → en(Φ) for i = 1, 2,

and since βn−1qn + βnqn−1 = 1, we immediately obtain the proof of the first
part of the lemma.

The second part follows from the first one and the invariance of the energy
under smooth enough conjugation.

This quantity was introduced in [31] and was used in the proof of the
convergence of the renormalization scheme. The observation that this quantity
is equal to the degree is due to K. Fraczek. Another important quantity used
in the calculation of the energy of an action is its original definition by R.
Krikorian as the length functional J1 defined as follows. Let us consider the
sequence

J1
n(ν) =

∫ ν+βn−1

ν
|a(n)(·)|+

∫ ν+βn

ν
|a(n−1)(·)| =

∫ 1

0
|ã(n)ν (·)|+

∫ αn

0
|ã(n−1)

ν (·)|.

We can prove immediately

Lemma 6.23. — For ν ∈ T fixed, (J1
n(ν))n is decreasing, and (J1

n(ν))n con-
verges uniformly to the energy of the action.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



108 CHAPTER 6. Z2 ACTIONS ON R×G AND THE RENORMALIZATION SCHEME

Proof. — We calculate

J1
n(ν) =

∫ ν+βn−1

ν
|a(n)(·)|+

∫ ν+βn

ν
|a(n−1)(·)|

≤
∫ ν+βn−1

ν

ak∑

1

|a(n−1)(· + βn−2 − jβn−1)|

+

∫ ν+βn−1

ν
|a(n−2)(·)|+

∫ ν+βn

ν

∣∣∣a(n−1)(·)
∣∣∣

≤
∫ ν+βn−2

ν
|a(n−1)(·)|+

∫ ν+βn−1

ν
|a(n−2)(·)| = J1

n−1(ν)

which proves the first part. We call

J1(ν) = lim
n→∞

J1
n(ν)

which is defined for all ν ∈ T.
Let us now observe that A∗(· + (−1)nqnα).A(n)(·) = A(n)(· − α).A∗(·),

so that
∣∣|a(n)(·)|− |a(n)(· − α)|

∣∣ ≤ |a∗(·)|+ |a∗(· + (−1)nqnα)| ≤ 2∥a∗(·)∥L∞

and we find

|J1
n(ν)− J1

n(ν + α)| ≤
∣∣∣∣
∫ ν+βn−1

ν
|a(n)(·)|− |a(n)(· − α)|

∣∣∣∣

+

∣∣∣∣
∫ ν+βn

ν
|a(n−1)(·)|− |a(n−1)(· − α)|

∣∣∣∣

≤ 2∥a∗(·)∥L∞(βn−1 + βn)

and, by the definition of J1(ν), J1(ν+α) = J1(ν), for all ν ∈ T. Since J1(·) is
defined as a pointwise limit of a decreasing sequence of continuous functions,
and the invariance relation holds everywhere, J1(·) = J1, a constant. We now
find that

∥J1
n(·)∥L1 =

∫

T
J1
n(ν)dν = βn−1∥a(n)(·)∥L1 + βn∥a(n−1)(·)∥L1

by Fubini’s theorem and the invariance of the Haar-Lebesgue measure on the
torus. The Lebesgue monotone convergence theorem and the previous lemma
conclude the proof of convergence of J1

n(·) in L1. Since (J1
n(·)) is a sequence of

continuous functions on a compact space converging pointwise to a continuous
function, the convergence is in fact uniform.

The proof of this lemma is essentially as in [17], except for this last ob-
servation, which is the reason for the improvement of our results in terms of
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regularity. The functional J1(·) is the quantity used in the proof of the con-
vergence of the renormalization scheme, where it appears as the length of the
path of Rn

νΦ after the natural normalization, and by this observation we relate
it a priori to the energy of the cocycle, whereas in K. Fraczek’s article they
were related a posteriori.

The factors in the definition of J1
n(·) in this last lemma, are exactly the

respective lengths of the curves R̃n
ν .e1(·) and R̃n

ν .e2(·) for times in [0,αn]
and [0, 1] respectively. The factor αn appears as the rescaling factor which
we encountered in the proof of 6.17. For these reasons, the argument ν is to be
considered as the base point of renormalization, i.e. the point around which
we can rescale and obtain a good image of the global dynamics. The fact
that the choice of the point is irrelevant is justified by the integration in the
proof, which connects the pointwise information of the functional J1

n(·) with
the global (in T) information of d1n.

6.5. Convergence of the scheme

As indicates the conclusion of the previous section, the sequence

un(ν) = (−1)n
∫ ν+βn−1

ν
a(n)(·)− (−1)n

∫ ν+βn

ν
a(n−1)(·)

should be expected to converge to a(ν). The study of this fact, which in other
words is the invariance of the limit object of the dynamics under renormaliza-
tion, is the object of the section. We begin by the following proposition.

Proposition 6.24. — The sequence (un(·)) converges to a(·) in Li, i = 1, 2.

Proof. — Using the notation 1
qn
a(n)(·) = a(n)(·), we have

∣∣∣
∫ ν+βn−1

ν
a(n)(·)

∣∣∣ ≤ qn

∫ ν+βn−1

ν
|a(n)(·)| ≤ qnβn−1 sup

n
∥a(n)(·)∥L∞ ,

which is finite, as has already been proved. Thus, (un(·)) is uniformly bounded
in L∞.

Using the fact that qnβn−1 + qn−1βn = 1, we find

un(ν)− a(ν) = (−1)n
∫ ν+βn−1

ν
a(n)(·)− qnβn−1a(ν)

− (−1)n
∫ ν+βn

ν
a(n−1)(·)− qn−1βna(ν).
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Let us assume for simplicity that n is even. Then
∣∣∣
∫ ν+βn−1

ν
a(n)(y)dy − qnβn−1a(ν)

∣∣∣

≤ qn

∫ ν+βn−1

ν
|a(n)(y)− a(ν)|dy

≤ qn

∫ ν+βn−1

ν
|a(n)(y)− a(n)(ν)|+ |a(n)(ν)− a(ν)|dy

≤ 1

βn−1

∫ ν+βn−1

ν
|a(n)(y)− a(n)(ν)|+ |a(n)(ν)− a(ν)|

and, since a(n)(·) → a(·) a.e., we need only to prove the same thing for the
first term. This done in lemma 11.2 in Appendix 11.

The other term can be estimated in the same way in both arguments, and
likewise the case of an odd n in the second one and therefore, (un(·)) converges
almost everywhere to a(·). The bounded convergence theorem concludes the
proof of convergence in L1, and the uniform boundedness of the sequence
grants automatically convergence in L2.

Corollary 6.25. — For a.e. ν ∈ T,
∫ ν+βn−1

ν
a(n)(·)− (−1)nqnβn−1a(ν) −→ 0

and the set where there is convergence, denoted by E, is invariant by Rα.

Let us point out that for all ν ∈ T,

|un(ν)| =
∣∣∣
∫ ν+βn−1

ν
a(n)(·)−

∫ ν+βn

ν
a(n−1)(·)

∣∣∣

≤
∫ ν+βn−1

ν
|a(n)(·)|+

∫ ν+βn

ν
|a(n−1)(·)| = J1

n(ν)

This inequality implies directly that

lim sup |un(ν)| ≤ en(α, A(·)), ∀ ν ∈ T

and if the energy of the cocycle is 0, un(ν) converges to 0 in C0 topology.

We now use the commutation of the generators and their asymptotic com-
mutation with a(·). We begin by remarking that in the general case where
γ(·) is a curve defined locally around 0 and taking values in g, the integral of
the ODE

LΓ(·) = γ(·), Γ(0) = Γ0
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does not satisfy

Γ(ν) = exp
(∫ ν

0
γ(·)

)
.Γ0

unless
∫ x
0 γ(·), or Γ(x), and γ(x) commute for all x ∈ [0, ν]. Such a relation is

verified up to an error in L1 by a(n)(·) and A(n)(·):

(26) Ad(A(n)(·)).a(n)(·) = a(n)(·) + εn,· ,

where εn,· ∈ L1 is of the order of ∥a(n)(·)−(−1)na(·)∥L1+∥a(·+βn)−a(·)∥L1 .
This fact, along with the continuous dependence of solutions of ODE’s and the
fact that an(·) = LAn(·), implies that

Ã(n)(ν + x) = Ã(n)(ν). exp
(∫ ν+βn−1x

ν
a(n)(·) +O(εn,ν(x))

)
,

C̃(n)(ν + x) = C̃(n)(ν). exp
(∫ ν+βn−1x

ν
a(n−1)(·) +O(εn,ν(x))

)

for x ∈ [0, 1]. In particular,

Ã(n)(ν + 1) = Ã(n)(ν). exp
(∫ ν+βn−1

ν
a(n)(·) +O(εn,ν(1))

)
,(27a)

C̃(n)(ν + αn) = C̃(n)(ν). exp
(∫ ν+βn

ν
a(n−1)(·) +O(εn,ν(αn))

)
(27b)

and, using the preceding calculations (proposition 6.24 and its corollary), we
find that

Ã(n)(ν + 1) = Ã(n)(ν). exp((−1)nqnβn−1a(ν) +O(εn,ν(1))),

C̃(n)(ν + αn) = C̃(n)(ν). exp(−(−1)nqn−1βna(ν) +O(εn,ν(αn))).

These formulas can be written as

Ã(n)(ν + 1) = Ã(n)(ν). exp(Kn(ν) +O(εn(ν))),

C̃(n)(ν + αn) = C̃(n)(ν). exp(Ln(ν) +O(εn(ν))),

where we call

Kn(ν) = (−1)nqnβn−1a(ν), Ln(ν) = −(−1)nqn−1βna(ν).

If the cocycle is smoother, we can sharpen the convergence result using the
following lemma
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Lemma 6.26. — Let (α, A(·)) ∈ SWs(T, G), 2 ≤ s ≤ ∞. If en(α, A(·)) > 0,
there exists a full measure set Es ⊂ T such that for each ν ∈ Es,

ã(n)(·)− (−1)nqn−1βna(ν) −→ 0 uniformly in [ν − 1, ν + 1],

|a(ν)| = en(α, A(·)),
∂σã(n)(·) −→ 0 uniformly in [ν − 1, ν + 1], 1 ≤ σ ≤ s− 2,

1

βn−1

∫ ν+1

ν−1
|∂s−1ã(n)(·)| −→ 0.

We stress that there is no uniformity in ν or s, but only in each interval
[ν − 1, ν + 1]. The sets Es are invariant under Rα.

If en(α, A(·)) = 0, we have, for all ν ∈ T,

∂σã(n)(·) −→ 0 uniformly in [ν − 1, ν + 1], 0 ≤ σ ≤ s− 2.

Proof. — We can apply lemma 11.2 of appendix 11 to 1
qsn
∂s−1a(n)(·), which

has been proved to converge to 0 in L2 and obtain a full measure set of in T
for which

1

βn−1qsn

∫ ν+βn−1

ν−βn−1

|∂s−1a(n)(·)| −→ 0

holds. If Es is the intersection of such sets for 0 ≤ σ ≤ s with the set where
|a(·)| = en(α, A(·)), it is of full measure and the rest of the properties follow
from the convergence results already proved. The invariance of the sets Es
follows from the U -invariance of the limit curve a(·).

Under these assumptions, the mismatch function εn,ν(·) in equation (27) is
in fact Cs−1 in the dynamic variable x for every fixed ν ∈ T, and tends to 0 in
Hs−1, with the same local convergence properties as in the previous lemma.

We can now prove the quantization theorem:

Proof of theorem 6.1. — Let us suppose for the moment that 0 ∈ Es, for sim-
plicity in notation. For n even and big enough,

C̃(n)(x) = C̃(n)(0). exp(Ln(0).(x) +O(εn,0(x)))

uniformly around 0, with C̃(n)(0) ∈ Z0 = ZG(exp(Ra(0))) up to a small error,

i.e. Ad(C̃(n)
0 ).a(0) = a(0) + O(εn) and the same holds for Ã(n)(x). The fact

that the generators of the renormalized action commute implies that

exp(a(0) +O(εn))) = C̃(n)(0)Ã(n)(0)(C̃(n)(0))∗(Ã(n)(0))∗,
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where we have used that qnβn−1 + qn−1βn = 1. Since the commutator of two
constants in Z0 = G0×G+ is in G0, and since exp(a(0)) ∈ G+, we immediately
obtain that

exp(a(0)) ∈ G0 ∩G+ = {Id}.
Since the choice of the base-point of renormalization is not significant, we have
proved theorem 6.1.

Let us now proceed to the proof of theorems 6.3 and 6.5, and their analogues
for cocycles non-homotopic to constants.

Proof of theorems 6.3 and 6.4. — The conjugation

D̃n(x) = exp
(
− Ln(0)

x(x− 1)

2

)

taking values in exp(Ra(0)) reduces the action R̃n
Φ to the one generated by

(1, C̃(n)(0). exp(O(εn))), (αn, Ã
(n)(0). exp(a(0)(·) +O(εn))),

where again Ã(n)(0) ∈ Z0 is a different constant and we have used the fact
that Ln(0) and Kn(0) are collinear with a(0), as well as the commutation
relation 26. Let us recall the splitting of Z0 = G0 ×G+ ↪→ G (cf. section 4.2)
which corresponds to a(0). We can decompose, up to a small error, C̃(n)(0)
into C+.C0, where C0 ∈ G0 and C+ ∈ G+. Then, if H+ ∈ g+ is a preimage
of C+, the conjugant exp(−H+ ·) reduces the action to

(1, C0. exp(O(εn))), (αn, Ã
(n)(0). exp(a(0)(·) +O(εn)))

with Ã(n)(0) replaced by Ã(n)(0) exp(−H+αn). We remark that the first gener-
ator is a perturbation of a constant cocycle in T×G0. Let us also split Ã(n)(0)

into A+.A0, as we have done with C̃(n)
0 .

In order to normalize the action, we have to reduce the constant C0 to the
Id, and the natural conjugant is exp(−H0 ·), where H0 ∈ g0 is a preimage
of C0. If A0 and C0 are on a common maximal torus in G0, this conjugation
conjugates the action to the one generated by

(28)

{
(1, exp(O(εn))),

(αn, exp(−H0αn)Ã(n)(0). exp(a(0)(·) +O(εn)))

and a close-to-the Id can normalize this action to an action associated to a
cocycle of the same form.

If, however, C0 and A0, the proof of lemma 2.7 shows that we can choose
H0 ∈ g0, a preimage of C0, satisfying the following condition. The vector H0

decomposes into H1 + H2, where Ad(A0).H1 = H1 and Ad(A0).H2 = −H2,
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and then exp(2H2) = Id. We choose H2 of minimal length, and the minimal
χ, 1 ≤ χ ≤ χ0 ≤ χG, such that Ad(Aχ).H2 = H2. Then conjugation by
exp(−H0 ·) reduces the action to the one generated by

(1, exp(O(εn))),

(αn, exp(−H0αn)A+. exp(a(0)(·)) exp(−H0 ·).A0. exp(H0 ·) exp(O(εn))).

As shows the proof of lemma 2.7, exp(−H0 ·).A0. exp(H0 ·) is a periodic
geodesic in G0, it is non homotopic to constants, and its order in the homo-
topy group of G0 is precisely χ. Consequently, if, as previously normalize this
action by a close-to-the Id conjugation reducing the first generator to (1, Id),
we obtain the first part of theorem 6.4. The second part follows from the
choice of χ made above.

Translating this construction by ν, composing with the algebraic conjuga-
tion D(ν) that diagonalizes a(ν), and modifying accordingly the notation, we
can obtain the same result for any ν ∈ Es. This proves theorems 6.3 and 6.4
in their full generality.

Proof of theorems 6.5 and 6.6. — Repeating the arguments in the 0 energy
case, and remembering that under this assumption J1

n(·) → 0 uniformly proves
theorem 6.5.

We close this section with the following remark.

Remark 6.27. — We stress that if the cocycle is regular, the constant χG is
irrelevant, as follows from the proof. In particular, if G = SO(3), this constant
equals 2, but all non-zero vectors in g = so(3) ≈ su(2) are regular. We will
examine the consequences of this phenomenon in section 7.7.

6.6. Preservation of homotopy under renormalization

From the above arguments we can draw the rather surprising conclusion
that, in the global as in the local theory, the greatest part of the analysis of the
dynamics of a cocycle is made in the isomorphism class of the Lie algebra of the
group. In particular, for a given cocycle (α, A(·)) ∈ SWs(T, G), the definition
of the energy and the invariant curve do not depend directly on the group, but
only on a(·) (which however should be the derivative of a closed path T → G)
and Ad(A(·)) ∈ Cs(T, Inn(g)), which both remain the same if we replace G
by G/K, where K ⊂ ZG and (α, A(·)) by (α,π(A(·))) ∈ SWs(T, G/K), where
π : G → G/K is the canonical projection. In particular, since the functionals
measuring the convergence of the renormalization are calculated in the same
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way, they depend only in the same indirect way on the group. These properties
are not necessarily conserved when we pass to a covering of G, and we will
examine how this affects the study of the dynamics.

The difference between the groups becomes important in the solution of the
equation

exp(h) = Id .

When we renormalize cocycles in T × (G/K), a finer lattice in Zw is admis-
sible than the one admissible for cocycles in T ×G, and this is the case even
for regular cocycles. In the case of close-to-a-constant and singular cocycles,
the constant χG becomes important. Since the constants χG and χG/K are
different, we have to iterate a different number of times in order to obtain the
necessary commutativity for the normalization of the renormalized action.

A manifestation of the first phenomenon is the quantization of Er(·)
in SU(2), where the levels of energy allowed are in 2πN, whereas the quan-
tization in SO(3) is in πN. The factor 1

2 is clearly due to the cardinal of the
center of SU(2), equal to {± Id}, which in this case is also the reason why
χSU(2) = 1, while χSO(3) = 2.

It is nonetheless possible to renormalize a cocycle without losing track of
its homotopy class, but this seems to be obtained in a more natural, but still
not canonical, way by passing on to a group with simpler homotopy (3).

Let, therefore, (α, A(·)) ∈ SWs(T, G) and G̃ be the universal cover of G, so
that G = G̃/K, where K ⊂ ZG̃. Then, A(·) admits a lift Ã(·) in G̃ which is at

most #K-periodic. There exists, however, S ∈ K such that Ã(·+1) = S.Ã(·).
The choice of S depends on the chosen lift, but the smallest integerm such that
Sm = Id is in fact a characteristic of the homotopy class of A(·). Therefore,
even though the couple ((1, Id), (α, Ã(·))) does not define a Z2- action on T×G̃,
it satisfies the commutativity relation

(29) (1, Id) ◦ (α, Ã(·)) = (0, S) ◦ (α, Ã(·)) ◦ (1, Id).

Let us firstly study cocycles satisfying this weaker commutation relation,
and let two cocycles U, V ∈ SWs(T, G̃) commute modulo S ∈ ZG̃:

U ◦ V = (0, S) ◦ V ◦ U.

3. A similar way to the one we have chosen is to associate a symbol to the action associated

to the cocycle. The symbol codes the homotopy class of the path in G. It is invariant by

the all the actions used in renormalization, except for the action of N∗, which accounts for

the fact that composition of a path with itself simplifies its homotopy. However, we find this

presentation needlessly abstract, and we prefer the one given in the text.
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These cocycles do not define a Z2 action, but we can always define a function

Φl : Z2 −→ SWs(T, G̃), (m,n) $−→ Um ◦ V n,

or

Φr : Z2 −→ SWs(T, G̃), (m,n) $−→ V n ◦ Um,

which is not a group homomorphism. This property can be regained if we
factorize G̃ modulo K, or if we restrict it to the submodule (#K.Z)2. It is
equally regained if we consider the adjoint action of G̃ on g and the induced Z2

action.
Let us examine Φl. A matrix in GL(2,Z) does not act on it in a canonical

way. It can be nonetheless verified that the change of basis of Z2 by a matrix
in GL(2,Z) preserves the relation modulo an inversion of S which is not sig-
nificant, as it corresponds to the change of orientation of the path induced by
renormalization. If [

a b
c d

]
∈ GL(2,Z)

and Ũ = Ua ◦ V c and Ṽ = Ud ◦ V d, then

Ũ◦ = (0, S±1) ◦ Ũ ◦ Ṽ

according to the sign of the determinant. Therefore, if P ∈ GL(2,Z), the action
Φ̃ = P∗Φl is well defined and

Φ̃l(e1) ◦ Φ̃l(e2) = (0, S±1) ◦ Φ̃l(e2) ◦ Φ̃l(e1)

so that the commutation relation is preserved, and the only reason for which it
is non-canonical is the original choice of Φl instead of Φr. Additionally, it can
be verified directly that the renormalization and normalization of the action Φ̃
associated to the couple ((1, Id), (α, Ã(·))) as if it were a Z2 action preserve
this relation, in view of the fact that S ∈ ZG̃:

R̃n
ν Φ̃(e1) ◦ R̃n

ν Φ̃(e2) = (0, S(−1)n) ◦ R̃n
ν Φ̃(e2) ◦ R̃n

ν Φ̃(e1)

and this property persists under conjugation of actions. For example, if
(1, C(·)) and (α, A(·)) satisfy

C(· + α).A(·) = S.A(· + 1).C(·)

and B : R → G normalizes (1, C(·)) to (1, Id), then Ã(·) = B(·+α)A(·)B∗(·)
satisfies

Ã(· + 1) = S.Ã(·).
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Since S codes the homotopy class of the cocycle, we find that the renor-
malization in fact preserves homotopy, in contrast with simple iteration of the
cocycle.

Finally, since all the estimates concerning the measurement of the conver-
gence of the scheme depend only on the isomorphism class of g, this renormal-
ization of non-abelian actions has the same characteristics as the renormaliza-
tion of the action associated to (α, A(·)) ∈ SWs(T, G).

6.7. Dependence of the degree on the frequency

In this section we simplify and generalize an argument given in [17]. It was
used in the construction of two cocycles (αi, A(·)) ∈ SW∞(T, SU(2)), i = 1, 2,
given by the same mapping A(·) : T → SU(2), but different rotations in the
basis satisfying α1 − α2 ̸= 1

2 , and such that en(α1, A(·)) ̸= en(α2, A(·)). Since
any compact group contains subgroups locally isomoprhic to SU(2), we present
the argument in the context of SU(2), and use the fact that it is of perturbative
nature in order to obtain the same result in any compact group.

From the results so far, it is clear that if ∥a(·)∥L1 < 2π then en(α, A(·)) = 0,
independently of α. Moreover, a simple calculation shows that, for

Er(·) = {e2iπr · , 0}SU(2), r ∈ N∗,

then en(α, Er(·+θ)) = 2πr, again independently of α, and of θ ∈ R. However,
if A(·) = Er(·)A0, where A0 is a non-diagonal constant, then ∥a2(·)∥L1 < 4πr,
so that en(α1, A(·)) < 2πr (see [31] or the following chapter). Thus, our goal
should be the construction of a mapping A(·) : T → SU(2) such that (α1, A(·))
is conjugate to (α1, Er(·)) whereas (α2, A(·)) is conjugate to (α2, Er(·)A0),
with A0 as before.

Let us therefore consider

A(·) = Φ(· + α1).Er(·).Φ(−·),

where Φ(·) : T → T ′ is a (non-trivial) homomorphism (T ′ is a maximal torus,
not necessarily the standard one). By construction, (α1, A(·)) ∼ (α1, Er(·)),
and therefore en(α1, A(·)) = 2πr. On the other hand, with A0 = Φ(α1 − α2),

ConjΦ(·)(α2, A(·)) = Φ(· + α2).A0.Er(·).Φ(−·),

so that (α2, A(·)) ∼ (α2, A0Er(·)), and en(α2, A(·)) < 2πr, provided that A0

is non-diagonal. This last property is satisfied, say, if Φ(α1 − α2) ̸∈ G+ ×G0.
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In particular, we see that the property that the cocycle (α, A(·)) be (torus-)
reducible should be expected to depend both on the rotation and the mapping
defining the cocycle.

Following the remark in the beginning of the section, similar constructions
can be carried out with SU(2) replaced by any compact Lie group giving

Theorem 6.28. — Let α1,α2 ∈ T\Q be such for some torus homomorphism
Φ : cGT → G, Φ(α1 − α2) ̸∈ ZG. Then, there exists a mapping A(·) : T → G
such that en(α1, A(·)) ̸= en(α2, A(·)).

The condition on the αi is satisfied if α1 − α2 ̸∈ 1
cGψG

Z where cG is the
cardinal of ZG and ψG is a constant in N∗ depending only on the group G.

6.8. Proof of measurable invariance of the degree (prop. 6.7)

In this section, we prove proposition 6.7. There is a similar proof in [17],
but for cocycles of regularity C2. The improvement of the result in terms of
regularity is granted by the improved results for the convergence of renormal-
ization. There is also the slight complication due to the fact that for general
compact groups the degree is a vector and not a number as in SU(2).

Let us call Φi, i = 1, 2 the actions associated to the cocycles (α, Ai(·)). If we
use the fact that R̃n

νΦ2 = ConjB̃ν(·) R̃
n
νΦ1, we find that

B̃ν(· + αn)Ã
(n)
ν,1 (· + 1)C̃(n)

ν,1 (·)
∗B̃∗

ν(·) = Ã(n)
ν,2 (· + 1)C̃(n)

ν,2 (·)
∗, a.e.

We have seen (cf. formula 27 and those that follow it) that for almost every ν
we have uniformly in [−1, 1],

A(n)
ν,1 (· + 1)C(n)

ν,1 (·)
∗ −→ A(n)

ν,1 exp((−1)na1(ν)·)(C(n)
ν,1 )

∗,

where A(n)
ν,1 and C(n)

ν,1 are constants, and similarly for Ã(n)
ν,2 (·)C̃

(n)
ν,2 (·)∗.

The set of ν such that both B̃ν(x+αn) and B̃ν(x+1) tend to B̃ν(0) for a.e.
x ∈ [−1, 1] is of full measure. Therefore, a1(ν) and a2(ν) are a.e. algebraically
conjugate and thus

deg((α, A1(·))) = deg((α, A2(·))).
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CHAPTER 7

A PRIORI ESTIMATES ON PERTURBATIONS
OF REGULAR GEODESICS

As has been shown in the previous chapter, the renormalization scheme con-
verges, independently of any arithmetical conditions, to a model of dynamics
given by (α, Er(·).A), where r ∈ Zw and A ∈ G commutes with Er(·). How-
ever, convergence is gained by the introduction of the scaling factors β−1

n−1,
since otherwise convergence is possible only in L2, where lives a(·), the limit
object of the dynamics. This is actually the way lemma 6.11 becomes useful in
the study of the dynamics, since it shows the limitations of renormalization.
We cannot conclude the desired density properties, unless we stop renormal-
ization after a finite number of steps, and then take up the local study of the
limit cocycles, but viewed as cocycles and not as actions any more. Therefore,
the local theory of geodesics is the next natural step in our study.

The non-triviality of G+ implies the existence of an obstruction to the re-
ducibility of the cocycle and is the core of the passage from local to global
phenomena. In this chapter we begin the study of the case where this obstruc-
tion is maximal. By maximal we mean that er = L(Er(·)) is a regular vector
in g, i.e. it belongs to a unique maximal torus which we will call t. Since the
property of a cocycle being regular is invariant under conjugation and renor-
malization, fact that follows directly from the invariance of the degree under
renormalization (cf. proposition 6.24), we can study the dynamics of pertur-
bations of periodic geodesics whose derivative is a regular vector in g, without
loss of generality. Another characterization of regular cocycles is the trivial-
ity of the zero-energy component G0 for the splitting associated to a positive
energy cocycle.

The convergence of the renormalization and the invariance of the degree un-
der renormalization allow us to pose the problem in the following perturbative
setting. We can suppose that the cocycle (α, A(·)) is of degree r, with |r| > 0,
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and a C∞ perturbation of a regular periodic geodesic of degree r. In other
words, we suppose that A(·) can be written in the form

Er(·).A. exp(U(·)),

where er = L(Er(·)) and A ∈ G commute (i.e. Ad(A).er = er), and U(·) is
small. A smallness condition of the type ∥U(·)∥H1 ≤ C, where 0 < C < 1
is some fixed constant will in fact be sufficient. The fact that er is regular
implies that Er(·) and A take values on the same maximal torus T. Then, the
choice of ∆̃ ⊂ ∆+, a basis for the roots of g, with respect to the maximal
abelian algebra t, the Lie algebra of T allows us to write Er(·) in the form
exp(

∑
2πrρhρ ·) and A in the form exp(

∑
2πaρhρ) and use the notation

Er,a(·) = Er(·).A

as in equation (4). Therefore, the models of cocycles which we are interested
in are written in the form

(α, Er,a(·) exp(U(·)))

with U(·) =
∑

ρ∈∆̃ U t
ρ(·)hρ +

∑
ρ∈∆+

Uρ(·)jρ, small enough in C∞(T, g).

It turns out that some estimates on the perturbation can be deduced, under
the assumption that (α, Er,a(·) exp(U(·))) is of degree r. It has already been
proved (cf. proposition 5.3) that ∥an(·)∥Li ≥ en(α, A(·)), for i = 1, 2 and for
all n ∈ N∗. In particular, ∥a(·)∥L1 ≥ en(α, A(·)), and this gives a first estimate,
which is however inadequate for the following reason. Let (a,Er(·).e{0,z}) be
a constant perturbation of a periodic geodesic in SU(2). We find directly that

∥L(Er(·).e{0,z})∥Li = 2πr.

However, it is known since [31] that such a cocycle, and even small enough
perturbations in C1 (the smallness depending on |z| and α−1) can be of energy
strictly smaller than 2πr. The reason for this is the non-commutativity of e{0,z}

and Er(·), which results in the second iterate being of energy strictly smaller
than 4πr. We point out that, since the invariant curve a(·) has been defined by
simple iteration, and not renormalization, we can obtain the needed estimates
using the derivative of (2α, A2(·)), and not by estimating the functional J (1)

on R1Φ, where again Φ is the Z2 action associated to the cocycle (α, A(·)).
This is one of the drawbacks of the techniques used in [31], since it results in
an implicit dependence of the smallness condition on the frequency. The lack
of uniformity results in the set Σ of theorem 3.11 being a strict subset of RDC.

Further iteration gives expressions that are too complicated for the esti-
mates, so we will restrict the estimations in those of the first two iterates.
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They prove to be sufficient, since the influence of the first order terms is al-
ready important after two iterations, and higher-order phenomena are outside
the scope of reduction schemes.

7.1. Notation

As mentioned before, the perturbation

U(·) =
∑

ρ∈∆̃

U t
ρ(·)hρ +

∑

ρ∈∆+

Uρ(·)jρ

is supposed to be small in a topology to be made precise. We will mostly use
this expression in Fourier coefficients

U(·) =
∑

ρ∈∆̃

∑

k∈Z
Û t
ρ(k)e

2iπk·hρ +
∑

ρ∈∆+

∑

k∈Z
Ûρ(k)e

2iπk·jρ,

so that

∂U(·) =
∑

ρ∈∆̃

∑

k∈Z
2iπkÛ t

ρ(k)e
2iπk·hρ +

∑

ρ∈∆+

∑

k∈Z
2iπkÛρ(k)e

2iπk·jρ.

Since U(·) is to be seen as a perturbation of Er,a(·), it is reasonable to

impose that
∑

ρ∈∆̃ Û t
ρ(0)hρ = 0, i.e. that there is no constant part in the

perturbation in the torus t. This can be obtained by using the following fact.
We can write

exp(U(·)) = exp
(∑

ρ∈∆̃

Û t
ρ(0)hρ

)
. exp

(
Ũ(·)−

∑

ρ∈∆̃

Û t
ρ(0)hρ

)
,

where Ũ(·)− ṪU(·) is of second order. The mapping

h $−→
∫

πt(exp
−1(eh.eŨ(·)))

is a local diffeomorphism for Ũ(·) taking values in a neighborhood of 0 in t,
which gives the result.

Finally if Er,a is a regular geodesic (see equation (4)) and er = LEr,a(·), for
any ρ ∈ ∆+ there exist r̃ρ ∈ Z∗ such that

[er, jρ] = 2iπr̃ρ.jρ and ∥r̃∥ ≤ C. en(α, A(·)),

where the constant depends only on the groupG and we call r̃ = (rρ)ρ∈∆+ ∈ Zq.
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7.2. Synopsis of the chapter

In this chapter, we obtain an estimate similar to the one used in [31] in the
control of the low frequencies of a perturbation of the normal form of degree r,
under the assumption that the perturbed cocycle is still of the same degree r.

In the context of this mémoire, the estimates are valid if the cocycle is a
perturbation of a regular geodesic. As can be seen if one follows the calcula-
tions, the result remains true if the normal form is a singular geodesic coupled
with a constant in G0 and the perturbation is 0 in g0. Let us, however, state
the main result of the chapter in the first, more transparent context.

Lemma 7.1. — There exists a positive constant C, depending only on r, such
that if (α, Er,a(·).eU(·)) is of degree r, where U(·) is small enough in H1, then
it satisfies

∥Λ0
r̃U(·)∥L2 ≤ C∥(Id−Λr̃)∂U(·)∥L2 .

The truncation operator Λ0
r̃ is defined in def. 7.3. It is a truncation in low

frequencies, corresponding to the phenomenon that we described in the plan
of the proof (p. 45), only in a more complicated geometry. Firstly, we use the
fact that interactions between the different subalgebras isomporphic to su(2)
are of higher order, in order to break the estimates into a superposition of
estimates in simpler geometry. In this context, we can say that if in (su(2))ρ,
the subalgebra corresponding to the root ρ, the perturbation is too eccentric
(i.e. the non-abelian constant part is dominant), or if the perturbation spins
around hρ too fast in the negative direction, then the perturbation in (su(2))ρ
contributes negatively to the energy of the cocycle. And this is exactly the
description of the part of Λ0

r̃ concerning (su(2))ρ. If, now, the perturbed cocycle
is assumed to be of degree r, then the contributions of the different parts of
the perturbation must sum up to a non-negative contribution, and this grants
the a priori estimate of the lemma.

Using these estimates, we can obtain a first theorem describing (with an
inadequate precision) the configuration of the conjugacy classes of periodic
geodesics.

Let us introduce some notation before stating the theorem proved above.
Let (α, A(·)) ∈ SWs(T, G), s ≥ 1, and let 1 ≤ χ ≤ χG be the smallest positive
integer such that Aχ(·) is homotopic to constants. Let also Φ be the Z2 action
associated to (α, A(·)). Then, we have:

Theorem 7.2. — Let G be a compact semi-simple Lie group and (α, A(·)) ∈
SWs(T, G), s ≥ 1, and let χ as above. Then, if en(α, A(·)) > 0, (α, A(·))χ has
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renomalization representatives mod χ which are arbitrarily close to cocycles
of smaller energy. All cocycles of zero energy in the homotopy class of (α, A(·))
satisfy the following property: renormalization mod χ of the χ-lattice associ-
ated to such cocycles converges to constant actions.

The proof of this theorem occupies section 7.7. Since the proof relies heavily
on the phenomenon of non-commutativity exploited in section 7.4, it is clear
that this property is due to the fact that G is non-commutative.

This theorem is a density theorem for 0-energy actions, and a density the-
orem for close-to constant normalized actions, modulo a finite covering of the
torus. However, it does not assert that reducible and almost-reducible cocycles
are dense in SW∞(T, G) modulo χG, for the following reason. Let (α, A(·)) be
a cocycle as in the theorem and Φ be the associated action. The theorem only

asserts that for a.e. ν ∈ T, R̃(n)
ν Φ converges to models accumulated by lower

energy cocycles. If we wish to obtain a density theorem, we have to be able to

normalize R̃(n)
ν Φ to Φ′ and to prove that Φ′(e2) is accumulated by lower energy

cocycles, and then apply lemma 6.11. This, however, is a stronger assertion.
The theorem, which holds for all irrational rotations, only allows us to con-

struct perturbations of R̃(n)
ν Φ which are of smaller energy, but cannot be

made arbitrarily small unless we allow n to grow. It allows us, nonetheless, to
conclude a fundamental difference between cocycles in SW∞(T,Tw), which is
abelian and not semi-simple, and SW∞(T, G), with G compact semisimple.

We saw in the introductory study of abelian cocycles (chapter 3) that these
cocycles are classified by homotopy, and therefore form discrete classes, and
iteration of a path T → Tw non-homotopic to constants will not make it
homotopic to constants. On the other hand, when we study abelian cocycles
in G, and therefore consider SW∞(T,Tw) ↪→ SW∞(T, G), with w the rank
of G, we find that the limit object of the dynamics is quantized in the same
lattice as in SW∞(T,Tw), but the classes are no longer discrete (eventually
modulo iteration).

The situation is intermediate in compact groups which are not semi-simple.
Let us consider, for example, the cocycle in T×U(2) defined by

A(·) =
[
e2iπk· 0
0 e2iπk·

]

over any irrational, with k ∈ Z∗.
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This cocycle admits a non-trivial limit curve in u(2) consisting of the single
vector [

2iπk 0
0 2iπk

]
.

We remark that A(·) takes values in the center of U(2), which is naturally
isomorphic to S1. Since, now, U(2) locally around the Id is isomorphic to a
neigborhood of (1, Id) in S1 × SU(2), we can readily see that all small enough
perturbations of (α, A(·)) have the same limit curve. Clearly, the reason for
this is that the limit object of the dynamics of (α, A(·)) lives in the direction
in which the semisimplicity criterion fails for u(2).

7.3. Estimation of the energy of the path A(·)

A direct calculation shows that

a(·) = L(A(·)) = er +Ad(Er,a(·)).u(·),

where u(·) = L exp(U(·)), so that the estimates of the energy of the path A(·)
in G are significant only when U(·) is non-constant. The remaining case will
be studied later in this section. Using the Ad-invariance of the Cartan-Killing
form we find

∥a(·)∥2L2 = en2+2

∫

T
⟨er, u(·)⟩+ ∥u(·)∥2L2

and the assumption that the cocycle is of degree r implies

2

∫

T
⟨er, u(·)⟩+ ∥u(·)∥2L2 ≥ 0.

Using the expansion of the operator L and the fact that U(·) is to be
considered small, we have the estimate

u(·) = LeU(·) = ∂U(·) + 1
2 [U(·), ∂U(·)] +O(|U(·)|2|∂U(·)|)

= ũ(·) +O(|U(·)|2|∂U(·)|).

We now find that

2⟨er, ũ(·)⟩ = 2⟨er, ∂U(·)⟩+ ⟨er, [U(·), ∂U(·)]⟩
= 2⟨er,πt∂U(·)⟩+ ⟨er, [U(·), ∂U(·)]⟩
= 2⟨er,πt∂U(·)⟩+ ⟨[er, U(·)], ∂U(·)⟩
= 2⟨er,πt∂U(·)⟩+

∑

ρ∈∆+

Re(2iπr̃ρUρ(·)∂Ūρ(·))
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and therefore

2

∫
⟨er, ũ(·)⟩ =

∫
Re(

∑

ρ∈∆+

4π2r̃ρ
∑

k∈Z
k|Ûρ(k)|2).

The error term can be bounded by
∫
|U(·)|2|∂U(·)| ≤ ∥U∥L∞

∫
|U(·)||∂U(·)|

≤ ∥U∥L∞∥U∥L2∥∂U∥L2 # ∥U∥3H1

since H1 is continuously embedded in L∞. Consequently,

2

∫
⟨er, u(·)⟩ =

∑

ρ∈∆+

4π2r̃ρ
∑

k∈Z
k|Ûρ(k)|2 +O(∥U∥3H1).

We also have

∥ũ∥2L2 = ∥∂U(·)∥2L2 + ∥[U(·), ∂U(·)]∥2L2

= ∥∂πtU(·)∥2L2 +
∑

ρ∈∆+

∥∂Uρ(·)∥2L2 +O(∥U∥4H1).

Therefore,

2

∫
⟨u(·), er⟩+ ∥u∥2L2 ≤

∑

ρ∈∆+

4π2r̃ρ
∑

k∈Z
k|Ûρ(k)|2

+ ∥∂πtU(·)∥2L2 +
∑

ρ∈∆+

∥∂Uρ(·)∥2L2 +O(∥U∥3H1).

Since ∑

ρ∈∆+

∥∂Uρ(·)∥2L2 =
∑

ρ∈∆+

∑

k∈Z
4π2k2|Ûρ(k)|2

and
∑

ρ∈∆
4π2r̃ρ

∑

k∈Z
k|Ûρ(k)|2 +

∑

ρ∈∆+

∥∂Uρ(·)∥2L2 = 4π2
∑

ρ∈∆+

∑

k∈Z
(r̃ρ + k)k|Ûρ(k)|2

we find that

2

∫
⟨u(·), er⟩+∥u∥2L2 ≤ 4π2

∑

ρ∈∆+

∑

k∈Z
(r̃ρ+k)k|Ûρ(k)|2+∥∂πtU(·)∥2L2+O(∥U∥3H1).

The fact that (r̃ρ + k)k < 0 for k between 0 and −r̃ρ motivates the following
definition.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



126 CHAPTER 7. A PRIORI ESTIMATES ON PERTURBATIONS

Definition 7.3. — Let r̃ρ ∈ Z∗, ρ ∈ ∆+. We will call Iρ = {1, 2, ...− r̃ρ − 1}
if r̃ρ < 0, and Iρ = {−1,−2, ..,−r̃ρ + 1} if r̃ρ > 0. We also let Λr̃ and Λρ be
the truncation operators

Λr̃U(·) =
∑

ρ∈∆+

ΛρUρ(·)jρ =
∑

ρ∈∆+

∑

k∈Iρ

Ûρ(k)e
2iπk·jρ.

We will also use the non-homogeneous truncation operator

Λ0
r̃U(·) =

∑

ρ∈∆+

Λ0
ρUρ(·)jρ = Λr̃U(·) +

∑

ρ∈∆+

Ûρ(0)jρ.

The image of the operator Λ0
r̃ in L2 will be denoted by Pr̃.

Using these notations, we have

2

∫
⟨u(·), er⟩+ ∥u∥2L2 ≤ −4π2∥Λr̃U(·)∥2L2 +

∑

ρ∈∆
(r̃ρ + 1)2∥(Id−Λρ)∂Uρ(·)∥2L2

+∥∂πtU(·)∥2L2 +O(∥U∥3H1).

The condition that the cocycle is of degree r implies that

4π2∥ΛrU(·)∥2L2(30)

≤
∑

ρ∈∆
(r̃ρ + 1)2∥(Id−Λρ)∂Uρ(·)∥2L2 + ∥∂πtU(·)∥2L2 +O(∥U∥3H1)

or, in a more compact form:

Lemma 7.4. — Let (α, Er,a(·) exp(U(·))) be of degree r. Then, there exists a
positive constant such that if ∥U∥H1 is small enough

∥Λr̃U(·)∥L2 # ∥(Id−Λr̃)∂U(·)∥L2 .

The constant depends only on the degree.

We remark that this inequality does not give any information on Û(0).

7.4. Estimation of the energy of the second iterate

For the second iterate of (α, A(·)) = (α, Er,a(·).eU(·)), we have

(2α, A2(·)) = (2α, Er,a(· + α).eU(·+α).Er,a(·).eU(·))

and therefore

a2(·) = a(· + α) + Ad(A(· + α)).a(·)
so that

∥a2(·)∥2L2 = 2∥a(·)∥2L2 − 2

∫
⟨a∗(· + α), a(·)⟩.
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We have already seen that

a(·) = er +Ad(Er,a(·)).(∂U(·) + 1
2 [U(·), ∂U(·)]) +O(|U(·)|2.|∂U(·)|)

and in the same way we find

−a∗(·) = ∂U(·)− 1
2 [U(·), ∂U(·)] + er + [er, U(·)]
− 1

2 [U(·), [er, U(·)]] +O(|U(·)|3 + |U(·)|2.|∂U(·)|).

Since we have already estimates on ∥ṪU∥L2 , we will split U(·) in

Û(0) + ṪU(·) = U0 + U̇(·),

where U0 = Û(0) is orthogonal to er. With these notations, we find that

∥a2(·)∥2L2 ≤ 2∥a(·)∥2L2 + 2 en2−∥[er, U(·)]∥2L2

+ 2

∫ 〈
[er, U0],Ad(Er,a(·)).∂U̇(·)

〉

+ 2

∫ 〈
∂U̇(· + α) + [er, U̇(· + α)],Ad(Er,a(·)).∂U̇(·)

〉

+O(∥U∥3H1)

so that if ∥U∥H1 is small enough,

∥a2(·)∥2L2 ≤ 4 en2+2

∫ 〈
∂U̇(·) + [er, U̇(·)], ∂U̇(·)

〉

+ 2

∫ 〈
∂U̇(· + α) + [er, U(· + α)],Ad(Er,a(·)).∂U̇(·)

〉

− ∥[er, U(·)]∥2L2 +O(∥U∥3H1)

≤ 4 en2+C1∥∂U̇(·)∥2L2 − |[er, U0]|(|[er, U0]|

− ∥∂U̇(·)∥L2) +O(∥U∥3H1)

≤ 4 en2+C1∥∂U̇(·)∥2L2 − C2|[er, U0]|(|[er, U0]|− ∥∂U̇(·)∥L2).

We find, therefore, that

Lemma 7.5. — Let (α, Er,a(·).eU(·)+U0) be a perturbation (small enough

in H1) of the cocycle (α, Er,a(·)). Let also, without loss of generality, Û(0) = 0
and U0 ̸= 0. Then, there exists a constant C0 depending only on r such that if

∥∂U∥L2 ≤ C0|U0|

then (α, Er,a(·).eU(·)+U0) is of energy strictly smaller than that of (α, Er,a(·)).

This was first proved in [31], but the constant implicitly depended on α.
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7.5. End of the proof of lemma 7.1

Using the estimates obtained so far, we can prove, lemma 7.1:

Proof of lemma 7.1. — The estimate on the L2 norm of the derivative of the
first iterate implies that

∥ΛrU(·)∥L2 ≤ C ′∥(Id−Λr)∂U(·)∥L2

for some constant C ′. Since

∥Λ0
rU(·)∥2L2 = ∥ΛrU(·)∥2L2 + |Û(0)|2,

inequality
∥∥Λ0

rU(·)
∥∥
L2 ≥ M

∥∥(Id−Λ0
r)∂U(·)

∥∥
L2 for M big enough would imply

that ∥∂U∥H1 ≤ C0|U0|, which contradicts the hypothesis.

7.6. Further estimates

Use of the invariance of the degree under C1 conjugation allows us in fact
to control some of the low frequencies in the spectrum of the perturbation. It
follows immediately from the definitions that, for B(·) = exp(U(·)),

ConjB(·)(α, Er,a(·).eU(·)) = (α, eU(·+α).Er,a(·)) = (α, Er,a(·).eV (·))

with V (·) = Ad(E∗
r,a(·)).eU(·+α), so that

V̂ρ(k) = e2iπkαÛρ(k + 2rρ).

Inserting this relation in the estimates obtained in the previous sections gives
the estimate

∥Λ0
−r̃U∥L2 # ∥(Id−Λ0

−r̃)∂U∥L2 .

More generally, since conjugation by a periodic geodesic Er′ acts by translation
on the frequencies of U(·), (1) we can see conjugation as an action on the
truncation operator. If, now, Λ is a translate of Λ0

r̃ under this action, then we
have the same type of estimate, with Λ in the place of Λ0

−r̃.

Finally, the conjugation D(·) = exp(U(·)/2) imitates the effects of two
iterations and normalization of the derivative, since

ConjD(·)(α, Er,a(·).eU(·)) = (α, eU(·+α)/2.Er,a(·).eU(·)/2)

= (α, Er,a(·).eV (·)/2.eU(·)/2),

1. It also changes the constant A, by it is not important since the constant does not enter

in the estimates.
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with V (·) as previously, since

(α, Er,a(·).eU(·))2 = (2α, Er,a(· + α).eU(·+α).Er,a(·).eU(·))

= (2α, Er,a(2 · +α).eV (·)eU(·)).

A calculation shows, however, that the effect of non-commutativity of er with
the constant part of the perturbation is not seen in L(Er,a(·).eV (·)/2.eU(·)/2).
As a result, estimation of the energy of the path of Er,a(·).eV (·)/2.eU(·)/2 gives
only the trivial estimate

∥u(·)∥2L2 ≥
∣∣∣
∫

⟨u∗(· + α),Ad(Er,a(·)).u(·)⟩
∣∣∣,

which shows, nonetheless, that the use of Cauchy-Schwartz inequality in the
estimation of the energy of the path of the second iterate does not result into
too rough estimates.

7.7. Proof of theorem 7.2

Let Er,a(·) be a periodic geodesic in G, not necessarily regular, and the
corresponding splitting G0 × G+ ↪→ G. If the zero energy component is not
trivial, and A0eU0(·) ∈ C∞(T, G0) is a perturbation of a constant A0 ∈ G0,
it is clear that (α, Er,a(·)A0eU0(·)) is of the same degree, for an irrational α,
since renormalization of the perturbed cocycle will converge to some Er,a′(·).
On the other hand, the preceding estimates show that a small perturbation
spectrally supported in some Iρ with ρ(er) ̸= 0, and therefore not commut-
ing with Er,a(·), decreases the energy of the cocycle. The same thing holds
for renormalization representatives of cocycles non-homotopic to constants.
If A ∈ G0 anti-commutes with exp(H ·) : 2T → G0, then the G0-valued cocy-
cle is of energy 0. Therefore, no G0-valued perturbation can change the energy
of the cocycle. We also point out that the perturbed cocycle is in the same
homotopy class as Er,a(·).

Therefore, the picture is the following. If we renormalize a cocycle in a given
class of homotopy, the scheme converges towards an action within the same
class, which can be of positive or zero energy. Let us begin the study with
the two simplest non-abelian groups, SU(2) and SO(3), where all geodesics
are regular, but SO(3) is not simply connected and χSO(3) = 2, while SU(2) is
simply connected and χSU(2) = 1.
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7.7.0.1. Cocycles in SU(2) and SO(3). — The positive energy abelian models
in SU(2), all of them regular, are given by the periodic geodesics Er(·), r ∈ N∗

[
e2iπr · 0
0 e−2iπr ·

]
.

These models, after projection to SO(3), become the positive energy models
which are homotopic to the identity:

⎡

⎣
cos(4πr ·) sin(4πr ·) 0

− sin(4πr ·) cos(4πr ·) 0
0 0 1

⎤

⎦.

Perturbation of such a model, say by a small constant in non-standard con-
figuration (which we will note by A throughout this paragraph) reduces the
energy. In the special case of E1(·), such a perturbation will yield a cocy-
cle which, after renormalization, will converge to close-to-constant dynamics.
Consideration of its homotopy class (or, equivalently, the fact that it admits a
1-periodic lift to SU(2)), implies that in SO(3) as in SU(2), it can be normal-
ized modulo 1, and passage to a 2-lattice is not necessary. Therefore, in both
groups, such models are accumulated by cocycles of 0 energy modulo 1.

In SO(3), however, we also have the class of geodesics non-homotopic to
constants given by the periodic geodesics E

r+
1
2
(·), r ∈ N:

⎡

⎣
cos(2π(2r + 1)·) sin(2π(2r + 1)·) 0

− sin(2π(2r + 1)·) cos(2π(2r + 1)·) 0
0 0 1

⎤

⎦.

Such geodesics, seen in SU(2), emanate from the Id, and after having passed
r times by the Id end in − Id. Clearly, the second iterate of such a cocycle
is homotopic to constants. The same calculations as before show that a per-
turbation of E

r+
1
2
(·) with r > 0 by A drives the renormalization towards

some E
r′+

1
2
(·), with r′ < r. A remarkable phenomenon is encountered when

we reach the normal form E 1
2
(·), which is the minimal energy model of dynam-

ics simultaneously non-reducible and non-homotopic to constants. Once again,
the estimations show that renormalization of E 1

2
(·).A will converge towards

constant actions, or equivalently that for n big enough R̃n
Φ (the action asso-

ciated to a (α, E 1
2
(·).A)) will be close to a constant action. The consideration

of its homotopy class shows that in this case we will have to iterate R̃n
Φ(e2)

before normalizing the action. Therefore, (Λ2)∗R̃
n
Φ, and consequently the sec-

ond iterate of E 1
2
(·).A, is in the class of local dynamics mod 2, whereas E 1

2
(·).A
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itself cannot be. In fact, Φ is expected to converge towards constants like, say,

π2(R̃
n
(e1)) =

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦, π2(R̃
n
(e2)) =

⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦.

who commute, but are not on the same maximal torus. Normalization of the
action itself drives it back to the neighborhood of translate of E 1

2
(·), since the

natural choice is the conjugant E 1
2
(12 ·), and

E 1
2
(12(· + α)).

⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦.E 1
2
(12 ·)

T = E 1
2
(12α)

⎡

⎣
cos(2π ·) sin(2π ·) 0
sin(2π ·) − cos(2π ·) 0

0 0 −1

⎤

⎦.

On the other hand, the square of both constants is the Id, so that (Λ2)∗R̃
n
Φ

can be normalized without any problem. The factor 2 in Λ2 in this case is due
to the fact that χSO(3) = 2. In fact, this very example shows that there exist
cocycles in T× SO(3) which become reducible after iteration, since, if we call

A(·) =

⎡

⎣
cos(2π ·) sin(2π ·) 0
sin(2π ·) − cos(2π ·) 0

0 0 −1

⎤

⎦

=

⎡

⎣
cos(2π ·) − sin(2π ·) 0
sin(2π ·) cos(2π ·) 0

0 0 1

⎤

⎦.

⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦

then, for any irrational α, π2(2α, A2(·)) is equal to
⎡

⎣
cos(2πα) − sin(2πα) 0
sin(2πα) cos(2πα) 0

0 0 1

⎤

⎦.

However, (α, A(·)) itself is not reducible for any α, since A(·) is non-homotopic
to the Id.

Schematically, we can say that renormalization of E 1
2
(·).A converges to-

wards constant actions, but normalization without iteration drives us back
away from constant cocycles. Iteration and normalization allow us to conju-
gate the dynamics to a model close to a constant (which in fact is in the
conjugacy class of (α, Id)). We can say that, if we do not authorize iteration,
the geodesic E 1

2
(·) takes up the role of constants in its homotopy class.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



132 CHAPTER 7. A PRIORI ESTIMATES ON PERTURBATIONS

7.7.0.2. Cocycles of smaller energy in the neighborhood of regular geodesics.
— In this case, the value of χG is irrelevant with the normalization of the
action, since we can conjugate the action to a normalized one and arbitrarily
close to some (αn, Er,a(·)), without iterating. Any small enough constant non-
diagonal perturbation of such a model reduces the energy, but in general it
may lead renormalization to singular dynamics and not directly to constants.
For example, renormalization of

⎡

⎣
e2iπ · 0 0
0 e4iπ · 0
0 0 e−6iπ ·

⎤

⎦. exp

⎡

⎣
0 0 0
0 0 z
0 −z̄ 0

⎤

⎦

in SU(3), with z ∈ C small, may converge to

⎡

⎣
e2iπ · 0 0
0 e2iπ · 0
0 0 e−4iπ ·

⎤

⎦,

which is singular. In the neighborhood of a singular geodesic χG0 becomes
relevant, since normalization without iteration may, as in SO(3), drive the al-
gorithm away from constant actions. Therefore, in general the local picture in
the neighborhood of regular geodesics is that such models are accumulated by
cocycles of smaller energy, which however may be conjugate (close) to the cor-
responding geodesics or (close) to constant actions only modulo 1 ≤ m ≤ χG.

The picture is simpler in groups like SU(w + 1) where the constant equals
one, and therefore all cocycles of positive energy are accumulated by cocycles of
smaller energy, which can be conjugated (close) to the corresponding geodesics
or (close) to constant actions modulo 1.

7.7.0.3. Cocycles of smaller energy in the neighborhood of singular geodesics.
— In the case of a singular cocycle of positive energy, renormalization and
conjugation of actions is not affected until it reaches the form of equation 28,
which is (after some simplification of the notation)

[
(1, C0. exp(O(εn)))

(αn, A0. exp(er · +O(εn)))

]

with C0 ∈ G0. We also recall the corresponding splitting G0 ×G+ ↪→ G, and
suppose that there are no error terms, i.e. that

R̃(n)
Φ =

[
(1, C0)

(αn, A0. exp(er ·))

]
.
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Since er = a(0) is singular, depending on the homotopy of the cocycle in G0,
we may not be able to conjugate C0 to the Id with a conjugant commuting with
A0, but this can be assured by iterating at most χ0 = χG0 times. This fact is a
more general case of the phenomenon observed in perturbations of E 1

2
(·)-like

models in SO(3). An action like the one we are studying may be associated
to a cocycle non-homotopic to the Id, and renormalization may converge to
constants for a part of the non-triviality of its homotopy class while the rest is
still close to a geodesic in the same homotopy class. At this step, we can iterate
χ0 times and obtain a cocycle of singular dynamics, but whose homotopy
within the 0 energy component allows conjugation of the action to the actual

geodesic. This action, (Λχ0)∗R̃
(n)

Φ, can thus be conjugated to
[

(1, Id)
(χ0αn, A0. exp(χ0er ·))

]

with a different A0, but still commuting with a(0). A constant non-abelian
perturbation of A0. exp(χ0a(0)·) in a complex direction jρ such that [er, jρ] ̸= 0
will drive renormalization to a lower energy model.

We can, nonetheless, perturb R̃(n)
Φ to a lower energy cocycle without it-

erating. Let H0 ∈ g0 be a preimage of C0. Then, conjugation by exp(−H0 ·)
gives the action [

(1, Id)
(αn, exp(er ·).A0(·))

]
,

where the zero-energy component A0(·) = exp(−H0(·+αn)).A0. exp(H0 ·) may
not be constant. If we chose a root ρ such that hρ ∈ g+, then jρ commutes
with all vectors in g0, so that the action

[
(1, Id)

(αn, exp(er ·).A0(·). exp(zjρ)

]

will be of smaller energy. Iteration of this procedure, and renormalization and
normalization of the resulting actions will eventually give a cocycle of minimal
energy in the homotopy class of the initial cocycle and the associated action

[
(1, Id)

(αn, exp(er′ ·).A0)

]
,

where A0 is a different constant and er′ will be 0 iff the cocycle were homotopic
to constants. If we renormalize a m-lattice of such an action, with 1 ≤ m ≤ χG

depending only on the homotopy class of the cocycle, renormalization will
converge to constants.
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CHAPTER 8

PERTURBATIONS OF REGULAR GEODESICS

Based on the a priori estimates obtained in the previous chapter and on
techniques developed in [29] (chapter 4) and in [31], we begin the local study
of regular obstructions by proving that under a Diophantine condition on the
rotation in the basis and a smallness condition (related to the Diophantine
condition) on the perturbation, the cocycle (α, Er,a(·).eU(·)) can be reduced to
(α, Er,a′(·).eP (·)), where a′ is a constant in the torus, and P (·) is a Fourier poly-
nomial spectrally supported in Ir̃. Already, the estimates and the discussion
of the previous chapter show that, unless P (·) = 0, such a (α, Er,a′(·).eP (·))
is not of degree r, which gives a good description of the local structure of the
conjugacy class of (α, Er,a(·)), where in fact the diagonal constant a is not
very important.

The motivation of the result becomes easier after the study of the linearized
equation, at the end of section 8.2, but let us briefly describe the procedure.
In the previous chapter we saw that some low frequencies in the spectrum
of the perturbation of a regular geodesic do not allow, if they are dominant,
the perturbed cocycle to be of energy |er|. It is reasonable, therefore, to think
of them as obstructions to reducibility to Er,a(·). The first reaction to this
observation was that of R. Krikorian in [31], where he supposed that a given
cocycle in T × SU(2), perturbation of a periodic geodesic of the group (au-
tomatically regular), is actually of the same degree as the geodesic. Then, he
showed that if the rotation is Diophantine, a convergent K.A.M. scheme can
be defined which constructs a conjugation reducing the cocycle to the periodic
geodesic. At each step, the obstructions to reducibility were shown to die out
along with the perturbation thanks to the assumption on the degree.

A careful study of the procedure shows that a K.A.M. scheme (and not a
fixed-point argument) is needed because there is a loss of derivatives in the
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estimates, which, however, is uniform throughout the scheme. Therefore, it
is possible that a more accurate result can be obtained, and this is done by
dropping the assumption that the given cocycle is of the same degree as the
geodesic, but retaining only the assumption that the perturbation is small.
Then, the Nash-Moser inverse function theorem is used in order to show the
following. We can split any given perturbation, at least in the level of linear
terms, into the obstructions plus a coboundary. The obstructions cannot be
eliminated, but we can consider them as part of the model around which
linearize. Then, the coboundary can still be eliminated, thanks to the absence
of small divisors. The fact that this procedure can be carried out with uniform
estimates provided that the obstructions are small enough, allows the use of
the inverse function theorem, which guarantees that the exact problem can be
solved. In other words, we can split any perturbation into two parts. The first
one, P (·), is the one that we cannot hope to eliminate. But if we consider the
model (α, Er,a(·)eP (·)) as the model of the dynamics, then the remaining part
of the perturbation can be eliminated by conjugation. Finally, the a priori
estimates show that the cocycle is of degree r if, and only if, this principal
part P (·) = 0.

8.1. Synopsis of the chapter

In this section we apply Hamilton’s inverse function theorem in order to
obtain a normal form theorem for cocycles in the neighborhood of a regular
geodesic. We remind that Pr was introduced in the previous chapter (def. 7.3).
We denote by E0 the space of mappings in f ∈ C∞(T, g) such that

∫
πt(f) = 0.

This tame Fréchet space inherits its topology from E = C∞(T, g), which in
turn is the topology induced by the family of seminorms

∥U∥s = max
0≤σ≤s

(∥∂σU∥∞)

for U ∈ E . Finally, t denotes the unique maximal toral algebra of g contain-
ing er.

With these notations, the normal form theorem reads

Theorem 8.1. — Let α ∈ DC(γ, τ), r ∈ Zw such that er ∈ t be regular, and
a ∈ t. Then there exists W = W(α, r), a neighborhood of 0 in E, such that for
any U(·) ∈ W, there exists a unique (λ, B, P ) ∈ t× E0 × Pr such that

Er,a(·).eU(·) = eB(·+α).Er,a+λ(·).eP (·).e−B(·).
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The triple (λ, B, P ) satisfies tame estimates with respect to U and λ depends
continuously on it.

We remark that the important characteristic of Pr is not its support in
the space of frequencies, but rather the fact that Pr and Ad(Er,a(·)).Pr have
disjoint supports, for all a ∈ t, as we have seen in the previous chapter.

We also have the following corollary.

Corollary 8.2. — The orbits of (α, Er,a(·)), with a ∈ t and α ∈ DC(γ, τ),
under the adjoint action of E0 form locally a tame Fréchet manifold of codimen-
sion 2

∑
ρ∈∆+

|r̃ρ|+ w in SW∞(T, G). Or, more importantly, reducibility to a
normal form is a property with codimension 2

∑
ρ∈∆+

|r̃ρ| in the neighborhood
of (α, Er,a(·)) in SW∞

α (T, G).

A direct application in this particular case of the a priori estimates on
perturbations of regular geodesics shows that a such cocycle in normal form
is of energy smaller than that of (α, Er,a(·)), unless P (·) = 0. We thus obtain

Theorem 8.3. — Reducibility to a regular periodic geodesic over a Diophan-
tine rotation (α, Er,a(·)) is locally of codimension 2

∑
ρ∈∆ |r̃ρ|. All cocycles of

degree r in this neighborhood of Er,a(·) are reducible to a normal form.

Combining this theorem with the renormalization scheme, we obtain the
following result.

Theorem 8.4. — If α ∈ RDC and the cocycle (α, A(·)) is regular of degree r,
then (α, A(·)) is C∞-conjugate to (α, Er,a(·)) for some a ∈ t.

Proof. — If the cocycle (α, A(·)) is regular, then, by theorem 6.3, renormal-
ization converges towards models of the type (αn, Er,a(·)). We remind that
under the assumption that the cocycle is regular, the constant χG becomes ir-
relevant, and therefore there exist renormalization representatives (αn, Ãn(·))
arbitrary close in the C∞ topology to cocycles of the type (αn, Er,a(·)).

Since α ∈ RDC(γ, τ), αn ∈ DC(γ, τ) infinitely many times. Therefore, the
αn can be chosen uniformly Diophantine and the normal form theorem can
be applied to some (αn, Ãn(·)). The hypothesis that (αn, Ãn(·)) is of degree r
allows us to conclude.

Finally, for cocycles in T× SU(2) we have the following result.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



138 CHAPTER 8. PERTURBATIONS OF REGULAR GEODESICS

Theorem 8.5. — If α ∈ RDC and (α, A(·)) ∈ SW∞(T, SU(2)) is of non-zero
degree, then it is C∞-conjugate to (α, Er(·+ θ)) for some θ ∈ T. Reducible co-
cycles in T×SU(2) are dense in the total space, if the rotation satisfies a RDC.

Proof. — Every non-zero vector in su(2) is regular, so that all positive energy
cocycles are regular too. Therefore, as in the proof of theorem 8.4, we find
that all cocycles of positive energy are conjugate to the corresponding periodic
geodesic.

Since every such cocycle is accumulated by cocycles of lower energy, after
a finite number of arbitrarily small perturbations we can obtain a cocycle
of 0 energy. Then, renormalization of such a cocycle converges to constants
(we remind that χSU(2) = 1), and the local density theorem 3.5 allows us to
conclude.

This density result was first obtained in [31] under a somewhat stricter (and
easily recognizable as an artefact of the method) arithmetic condition of full
measure in T. The calculations in the proofs already indicate the existence of a
local Fréchet manifold of cocycles reducible to the normal form (α, Er(· + θ))
and show that cocycles of smaller energy form an open dense set in the neigh-
borhood of normal forms. The arithmetic condition imposed was loosened to
a simple RDC in [17], but without the stronger result on the codimension and
the local description of the conjugacy classes.

8.2. Local reduction lemmas

Let us firstly write and solve the linearized cohomological equation of reduc-
tion of the perturbation to a second-order one. We suppose that conjugation
by a small B(·) ∈ C∞(T, g) reduces the perturbation U(·) to a smaller one,
noted by V (·)

exp(B(x+ α)).Er,a(x). exp(U(x)). exp(−B(x)) = Er,a(x). exp(V (x)).

Linearization of this equation, under the assumption that U(·), D(·) and V (·)
are small in C0 and V (·) ≪ U(·), i.e. is of second order with respect to U(·),
gives

Ad(E−r,−a(x)).B(x+ α)−B(x) = −U(x).
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Introducing the coordinates B(·) =
∑

ρ∈∆̃Bt
ρ(·).hρ +

∑
ρ∈∆+

Bρ(·).jρ,
as for U(·), we have the equations

Bt
ρ(· + α)−Bt

ρ(·) = −U t
ρ(·), ρ ∈ ∆̃,(31)

e−2iπ(r̃ρ ·+aρ).Bρ(· + α)−Bρ(·) = −Uρ(·), ρ ∈ ∆+,(32)

where 2πr̃ρ = ⟨er, hρ⟩ ̸= 0 and rρ ∈ N∗ for all ρ ∈ ∆̃ (but in general, rρ ∈ Z∗,
for ρ ∈ ∆+).

The set of equations involving the coordinates on the torus (equation (31))
are classical linear cohomological equations for which we refer to lemma 3.4.
We remind that the only topological obstruction to the solution of the equation
concerns the mean value of the rhs function, which must be 0.

Solving the equation (32) is less classical, so let us consider its general form,

e2iπ(mx+c)f(x+ α)− f(x) = g(x)

with m ∈ Z∗ and c ∈ T. The constant c can easily be seen to be irrelevant,
since composition by a translation x $→ x− c/m gives the equation the form

e2iπmxf(x+ α)− f(x) = g(x),

where we have kept the same notation for f(·) and f(· − c/m), similarly
for g(·).

Application of the Fourier transform to this last form of the equation gives

(33) e2iπ(k−m)αf̂(k −m)− f̂(k) = ĝ(k)

for all k ∈ Z.
Let us suppose for simplicity that m is positive, the remaining case being

treated similarly. The forward solution of the equation is then found by forward
iteration of the following formula:

f̂(k) = e−2iπkα(ĝ(k +m) + f̂(k +m)).

This gives

(34) f̂+(k) =
∞∑

j=1

e−2iπj(k+ j−1
2 m)αĝ(k + jm).

Backward iteration of the formula

f̂(k) = ĝ(k) + e2iπ(k−m)αf̂(k −m)

gives the backward solution

(35) f̂−(k) =
∞∑

j=0

e2iπj(k−
(j+1)

2 m)αĝ((k − j)m).
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The forward and the backward solution are constructed independently, and
f+(·) =

∑
k f̂+(k)e

2iπk· (resp. f− = (·)
∑

k f̂−(k)e
2iπk·) is in C∞(T, g) only if

the summation is for k > l (rep. k ≤ l′) where l ∈ Z (resp. l′) is to be fixed.
Clearly, determination of all the Fourier coefficients of the solution imposes
that l′ = l − 1. If, now we define

f̂ : Z −→ C, f̂(k) =

{
f̂+(k) if k > l,

f̂−(k) if k ≤ l.

Then, f̂(·) is the Fourier series of a function f : T → C which solves the
equation (33) for k ̸∈ {l + 1, ..., l + m}, as shows the form of the solution.
For the remaining values of k, we find that

e2iπ(k−m)αf̂(k −m)− f̂(k) = e2iπ(k−m)αf̂−(k −m)− f̂+(k).

The a priori estimates obtained in the previous chapter suggest that we chose
l = −m, since, with this choice, the set of frequencies in {l + 1, ..., l + m}
is equal to the set Iρ of def. 7.3 if m = rρ. In other words, the frequencies
in {l+ 1, ..., l+m} are, for a given choice of l, the obstruction to the solution
of equation (33) and we use the arbitrariness of the choice of l in order to place
the obstructions in the frequencies controlled by the a priori estimates.

For this reason, we will abuse the notation of Iρ and denote by Im the
set {−m+ 1, ..., 0}.

For the given choice of l, depending on m, we define

f̂ : Z −→ C, f̂(k) =

{
f̂+(k) if k > −m,

f̂−(k) if k ≤ −m,

and f : T → C is the inverse Fourier transform of f̂(·).
Since, for any p ∈ N, |k|p|ĝ(k)| → 0 as |k| → ∞, we obtain the estimate

∥f∥s ≤ Cs∥g∥s+3

and for truncations up to an arbitrary order N , we find that

∥TNf∥s ≤ CsN
2∥g∥s, ∥RNf∥s ≤ Cs,s′N

s−s′+3∥g∥s′
with s ≥ s′ ≥ 0. Clearly, if for any given m we choose l = −m, the constants
in the estimates depend only on m.

We have therefore proved

Proposition 8.6. — The function f = F−1(f̂ ) as defined above solves the
equation

f(x+ α)− e2iπmxf(x) = g(x)− Γmg(x)
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where

F{Γmg}(k) = ĝ(k)− (e2iπ(k−m)αf̂−(k −m)− f̂+(k))

for k ∈ {−m+1, .., 0} and 0 otherwise, is a trigonometric polynomial of order
at most m− 1. The following estimates hold for all s ≥ 0:

∥f∥s # ∥g∥s+3, ∥Γmg∥s # ∥g∥s,

where the constants depend only on m and s.
The mapping Φ : g $→ (f,Γmg) is an invertible continuous linear application

from Hs+3(T,R) to Hs(T,R)× {F−1(
∑

Im ake2iπk·), ak ∈ C}.

Summing up what we have proved, we can state the following proposition.

Proposition 8.7. — Let

Er,a(·) = exp
(∑

ρ∈∆̃

2iπhρ(rρ · +aρ)
)

be a regular periodic geodesic,

U(·) =
∑

ρ∈∆̃

U t
ρ(·).hρ +

∑

ρ∈∆+

Uρ(·).jρ

be small enough in Cτ+3(T, g) and α ∈ DC(γ, τ). Then, there exist B(·) and
Γr̃U(·) (notice the abuse in the notation) in C∞(T, g), where

B(·) =
∑

ρ∈∆̃

Bt
ρ(·).hρ +

∑

ρ∈∆+

Bρ(·).jρ,

Γr̃U(·) =
∑

ρ∈∆+

ΓρUρ(·).jρ =
∑

ρ∈∆+

∑

k∈Iρ

pρ(k)e
2iπk· .jρ,

solving the equation

Ad(Er,a(·)∗).B(· + α)−B(·) = −U(·) + Γr̃U(·) +
∑

ρ∈∆̃

Û t
ρ(0).hρ

with the estimates

∥B(·)∥s ≤ γCs∥U(·)∥s+τ+3, ∥Γr̃U(·)∥s ≤ Cs∥U(·)∥s,

where the constants depend only on r, but not on a or α.
The Bt

ρ(·) are unique up to an additive constant in R (thus unique if we
impose that their constant Fourier coefficient be 0). The rest ΓrU(·) is uniquely
determined by U(·) and the choice of its spectral support.

Let us also define the spaces in which the obstructions take values
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Definition 8.8. — We will denote by Pr̃ the image of the mapping Γr̃

in C∞(T, g) and by P0
r̃ the space t⊕ Pr̃.

This proposition indicates that a K.A.M.-like scheme can be used, just as
in [31]. The scheme is defined by replacing the perturbation U(·) by a Fourier-
truncation of a sufficiently high order N , and solving the linearized equation
for the low frequencies. This reduces the perturbation to the sum of a term of
order CsNa∥U∥0∥U∥s and the rest ΓhU(·). The hypothesis that the cocycle is
of degree r gives the estimate

∥Λ0
r̃U(·)∥s # ∥(Id−Λ0

r̃)U(·)∥s.

This estimate implies that the rest is in fact of second order with respect to the
original perturbation, and the reduction can be iterated. The convergence of
the scheme shows that all small enough perturbations of (α, Er,a(·)) of degree r
are C∞ conjugate to a (α, Er,a′(·)). The reason why this is a purely local
theorem, i.e. if the conjugation exists it can be chosen small, is the fact that the
arithmetic properties of the diagonal constant a in Er,a(·) are irrelevant and
the only small denominator phenomena are those appearing in the reduction
of the toral coordinates. Since, however, they are related only to α, and not
to a, they are uniform throughout the K.A.M. scheme and do not pose any
problems to the convergence of the scheme.

This fact enables us to choose a Nash-Moser inverse function theorem ap-
proach (see [20]). The proof of such a theorem consist essentially in the con-
struction of a convergent classical K.A.M. scheme which replaces the fixed
point argument in the standard inverse function theorem for Banach spaces.
Heuristically, the theorem states that if the equation of reduction to the nor-
mal form has can be uniquely solved in all the tangent spaces in a neighbor-
hood of 0 and with uniform estimates and uniform loss of derivatives, then
the K.A.M. scheme converges. In other words, if we can make one step of the
scheme (i.e. solve the linearized equation) in each tangent space, but with uni-
form estimates and loss of derivatives, then the inversion of the mapping by
the Nash-Moser theorem does the rest of the convergent scheme.

Nonetheless, K.A.M. theory is not made obsolete by the Nash-Moser the-
orem, since the latter is, as all such theorems, of purely local nature. As a
consequence, an inverse function approach can only construct conjugations of
the same order as the perturbation of the normal form. On the other hand, one
can construct reducible cocycles for which the hypothesis (apart from regular-
ity assumptions) of the theorem (i.e. the resolution of the linearized equation
with good estimates) fails. Consider, e.g., α ∈ T \ Q and k ∈ Z∗. Then, the
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cocycles in T× SU(2) of the form

(36) (α, AeU(·))

with A = {eiπkα, 0}SU(2) and U(·) = {0, εe2iπk·}su(2) (ε ∈ R∗ is small) can

be reduced by the 2-periodic conjugation E−k/2(·) = {e−iπk· , 0}SU(2) to the
constant cocycle

(α, E−k/2(α)A exp({0, ε}su(2)))
as shows a direct calculation. The conjugation, however is of order one, while
the perturbation is of order ε. We refer the reader who is unfamiliar with this
kind of problems to chapter 9 for the proof that the linearized equation cannot
be solved for this cocycle due to the fact that the constant A is resonant. As
a consequence, there is no good candidate for a conjugation of the same order
as the perturbation, and the inverse function theorem approach fails, even
though the cocycle is reducible. On the other hand, conjugation by E−k/2(·)
can be integrated in a K.A.M. scheme as a process of reduction of resonances
(as in, say, [13]), if we renounce in constructing a convergent sequence of
conjugations.

After this digression, let us return to the subject of this chapter and point
out that the phenomena that obstruct the existence of a conjugation of the
order of the perturbation are absent, as indicates proposition 8.7. This fact
results in the exactness of theorem 8.3.

In order to establish the contrast between theorem 8.3 and the phenomena
observed in the local theory, we present, somewhat prematurely, the equivalent
to our theorem in the local case, as obtained by R. Krikorian in [29], after hav-
ing introduced some notation. Let u ∈ G, then call Γu a space complementary
to Im(Id−Adu) in g and

lu : g −→ ker(Id−Adu)

be the projection with respect to the Cartan-Killing form. The Fréchet space
of smooth mappings Td → g such that lu(B(0)) = 0 will be denoted by Eu. An
element u of G is called Diophantine with respect to α ∈ T if the eigenvalues
of its adjoint action have this property, i.e. if

|uρ − kα|Z ≥ γ−1

|k|τ

for all k ∈ Zd \ {0}. We can now state

Theorem 8.9 (R. Krikorian). — Let u0 ∈ G be in DCα(γ, τ) and let Γ = Γu0

and E = Eu0. Let also α be Diophantine. Then, there exist an ε > 0 and s > 0
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such that if u ∈ C∞(Td, G) and ∥u− u0∥s < ε, there exists a unique couple
(B,C) ∈ E × Γ such that

u(·) = eC .eB(·+α).u0e
−B(·).

The smallness condition ε is given by c.γc
′
, where the constants c and c′ do

not depend on γ.

The contrast between the two theorems resides in the factor eC of equa-
tion (8.9), which measures the failure of the inverse function theorem to ob-
tain reducibility. As will be made clear in chapter 9 (and as has been made
clear in [29]) the factor eC is precisely due to phenomena resembling to those
observed in the discussion following equation (36).

The local normal form theorem can be used in the proof of a theorem
for the reducibility in positive measure in the parameter space for generic
one-parameter families. However, the stronger theorem of reducibility in full
measure is true, but cannot be obtained by the inverse function theorem, since
it is based on the reduction of resonances.

8.3. Preliminary transformations and notation

Let us denote by exp−1 the inverse of the exponential mapping, defined
in a neighborhood of the Id, and taking values in a neighborhood of 0 ∈ g.
The space orthogonal to t for the Cartan-Killing form, t⊥, is the complex
space spanned by the vectors jρ, ρ ∈ ∆+. The orthogonal projection on t
will be denoted by πt. Finally, we will denote by V = C∞(T, g) and call W a
neighborhood of 0 ∈ V.

We can easily eliminate the obstruction to the solution of equation (31)
using the following fact. The mapping

h $−→
∫

πt(exp
−1(eh.eU(·)))

is a local diffeomorphism in a neighborhood of 0 in t, called N (cf. also corol-
lary 8.1 of [31]). We can therefore introduce a fibration of W into N × W0,
where W0={U ∈ W,πt(Û(0)) = 0}.

Therefore, if ∥U(·)∥0 ∈ W is small enough, there exists a unique couple
(h, U0(·)) ∈ N ×W0 such that

Er,a(·).A.eU(·) = Er,a(·).eh.eU0(·) = Er,a+h(·)eU0(·),

where U0(·) ∈ W0 and the mapping U(·) $→ U0(·) is continuous from Cs into
itself, for all s. The smallness condition on the perturbation can be weakened
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to a smallness condition on ∥U(·) − πt(Û(0))∥0. Finally, we can chose W0 so
that Ad(T ).W0 = W0.

Since the rest C ∈ Γ in the local normal form theorem is needed in order to
absorb the topological obstruction to the resolution of the linearized cohomo-
logical equation, we are lead to replace it by a more general mapping, since
the topological obstruction for the solution of (32) is no longer a constant.

Essentially, the normal form theorem should measure the failure to solve
the equation

Conjexp(B(·)) .(α, Er,a(·).eU(·)) = (α, Er,a(·)).

This failure will be represented by the additional terms eλ and eD(·) in the
following formula:

Er,a(·).eU(·) = e−B(·+α).Er,a+λ(·).eB(·).eD(·).

This equation, solved for the perturbation term, gives

(37) eU(·) = Er,a(−·).e−B(·+α).Er,a+λ(·).eB(·).eD(·).

The formula that we seek to obtain is

Er,a(·).eU(·) = e−B(·+α).Er,a′(·).eP (·).eB(·)

with P (·) a Fourier polynomial taking values in t⊥.

We remind that for X ∈ g small enough and ∆X in the tangent space at X,
we call

∆̃X = K(X).∆X = (D(eX).∆X).e−X .

We shall write ∆B =
∑

∆B(k).e2iπkx for a variation of B(·) ∈ V, where

∆B(k) =
∑

ρ∈∆̃

∆Bt
ρ(k).hρ +

∑

ρ∈∆+

∆Bρ(k).jρ

are the Fourier coefficients. Mappings will not be denoted by B(·), but simply
by B, in order to avoid confusion with the notation ∆B(k).

We also recall the notation

Rα : x $−→ x+ α

for the translation of T into itself.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



146 CHAPTER 8. PERTURBATIONS OF REGULAR GEODESICS

8.4. Proof of the normal form theorem

Let us therefore consider the smooth mapping

Ψ̃ : ((t, 0)× (g, 0)3 ;T, t) −→ ((g, 0) ;T, t)
(λ, X, Y, Z; x, a) $−→ exp−1(Er,a(−x).e−X .Er,a+λ(x).e

Y .eZ),

where x and a are presently seen as parameters.
We remark that (37) can be solved by inverting the mapping

Ψ(λ, B,D) = Ψ̃(λ, B ◦Ra, B,D; a)

and, therefore, the next step is to prove the differentiability properties required
by Hamilton’s theorem and choose the functional spaces so that the mapping
will be invertible.

The rest of this section is thus occupied by the proof of the following theo-
rem.

Proposition 8.10. — Suppose that α ∈ DC(γ, τ), r ∈ Zw is such that er ∈ g
is regular and let a ∈ t, the unique maximal torus passing by er. Then there
exists W̃, a neighborhood of 0 in the local Fréchet manifold

Vr = {(λ, B,D) ∈ t× E0 × E , D ∈ Ad(e−B).Pr̃}

such that the mapping

Ψ : W̃ → E , (λ, B,D) $−→ exp−1(E∗
r,a(·).eB◦Rα .Er,a+λ(·).e−B.e−D))

satisfies the conditions of Hamilton’s theorem (theorem 2.11) for all (λ, B,D)

in W̃ . Moreover, W̃ can be chosen so that (λ, B,D) ∈ W̃ if and only if

(λ, B ◦Rθ, D ◦Rθ) ∈ W̃, for all θ ∈ T. The size of the neighborhood in E
is bounded by

∥u∥s0 ≤ Cst.max(γ, 1)−2,

where s0 ∈ N and the constants do not depend on γ, but only on r.

Regularity of the mapping. — Let us begin by proving the following proposi-
tion.

Proposition 8.11. — Ψ is a C∞-tame mapping N ×W2 → E defined in a
neighborhood of 0 ∈ t× E2.

Proof. — Let us call U = Ψ̃(λ, X, Y, Z). A direct calculation shows that

K(U).∆U = Ad(Er,a(−·)e−X)(−∆̃X +∆λ+Ad(Er,a+λ(·)).∆̃Y

+Ad(Er,a+λ(·).eY ).∆̃Z.
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We can now define

Ψ : N ×W2−→ E , Ψ(λ, B,D) = Ψ̃(λ, B ◦Rα, B,D;A).

If we pose now U = Ψ(λ, B,D) ∈ E and ∆U = (∆λ,∆B,∆D) (we remind

that ∆̃U = K(U).∆U) we see that

Ad(eB◦RαEr,a(·)).∆̃U = −∆̃B ◦Rα +∆λ+Ad(Er,a+λ(·)).∆̃B

+Ad(Er,a+λ(·).eB).∆̃D,

which proves the proposition.

Construction of the inverse. — We now try to restrict the space on which Ψ
is defined, in order to obtain inversibility for the restricted mapping. More
precisely, we will define Vr, the local Fréchet manifold of proposition 8.10 so
that, if we still denote by Ψ the mapping Vr → V, DΨ is bijective at each
point of Vr, and the inverse satisfies tame estimates.

We therefore solve the equation

∆U ′ = −∆̃B ◦Rα +Ad(Er,a+λ(·)).∆̃B +∆λ+Ad(Er,a+λ(·).eB).∆̃D

for any ∆U ′ ∈ E , thus establishing the surjectivity of DΨ in the tangent space
at (λ, B,D) ∈ N ×W2. We will solve the equation in the following equivalent
form

∆U ′′ = Ad(E∗
r,a+λ(·)).∆̃B ◦Rα − ∆̃B −∆λ−Ad(eB).∆̃D,

where

∥∆U ′′∥s ≤ Cs(1 + ∥B∥s)∥∆̃U∥s.
It can be seen directly that πt(∆̃B(0)) is not determined by the equation, so,

in order to gain uniqueness for ∆B(0)) ∈ W0, we will use πt(∆̃B(0)) as free
parameters.

Direct application of proposition 8.7 grants the existence of (∆b,∆p) ∈
V0 × P0

r̃ such that

∆U ′′ = Ad(E∗
r,a+λ(·)).∆b ◦Rα −∆b+∆p

and (∆b,∆p) satisfy tame estimates with respect to∆U , uniformly for a and λ:

∥∆b∥s ≤ C ′
s

∥∥∆U ′′∥∥
s+τ+3

≤ C ′
s+τ+3(1 + ∥B∥s+τ+3)∥∆̃U∥s+τ+3,

∥∆p∥s ≤ C ′
s

∥∥∆U ′′∥∥
s
≤ C ′

s(1 + ∥B∥s)∥∆̃U∥s,

where C ′
s = max(1, γ)C ′′

s (r). We will omit the prime in the notation of this
constant.
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We can therefore rewrite equation (8.4) in the form

Ad(E∗
r,a+λ(·)).∆b ◦Rα −∆b+∆p(38)

= Ad(E∗
r,a+λ(·)).∆̃B ◦Rα − ∆̃B −∆λ− ∆̃P .

We have called ∆̃P = Ad(eB).∆̃D, which by convexity inequalities satisfies

∥∆̃P∥s ≤ Cs(1 + ∥B∥s)∥∆̃D∥s.

The situation for the inversion of ∆D → ∆̃P and the decomposition of ∆̃P
into a coboundary plus an obstruction, however, is slightly more complicated.
Observation of the formula that we seek to prove indicates that we should
seek D in Ad(e−B).Pr̃. For such a D, we have

∆̃D = Ad(e−B).∆̃P ,

where ∆̃P = K(P ).∆P for P,∆P ∈ Pr̃, which justifies the notation ∆̃P . For
a given such P and ∆P , proposition 8.7 gives the existence of ∆Dcob and a
Fourier polynomial Γr̃.∆̃P such that

∆̃P = Ad(E∗
r,a+λ(·)).∆Dcob ◦Rα −∆Dcob + Γr.∆̃P .

The family of mappings P̃r !
∆P $−→ Γ̃r̃(P ).∆P = Γr̃ ◦K(P ).∆P

is a family of linear mappings of between vector spaces of the same finite
dimension, depending on the parameter P ∈ Pr. For P = 0, Γ̃r̃(0) = Id, and
the estimates in proposition 8.7 imply that the family depends continuously
on P , so that ∆Dcob and Γ̃r∆P satisfy uniform estimates with respect to ∆P ,
for all P sufficiently small in C0:

∥∆Dcob∥s ≤ Cs+τ+3(1 + ∥P∥s+τ+3)∥∆P∥s+τ+3,

∥Γ̃r̃(P ).∆P∥s ≤ Cs(1 + ∥P∥s)∥∆P∥s.

Similar estimates are also satisfied with respect to the original variable ∆D

∥∆Dcob∥s ≤ Cs+τ+3(1 + ∥B∥s+τ+3 + ∥P∥s+τ+3)∥∆D∥s+τ+3,

∥Γ̃r̃(P ).∆P∥s ≤ Cs(1 + ∥B∥s + ∥P∥s)∥∆D∥s
so long as ∥B∥s+τ+3, ∥P∥s+τ+3 ≤ 1. We can therefore solve the equation

Γ̃r.∆P = πt⊥∆p

with good estimates and write the equation for the remaining terms in the
form

Ad(E∗
r,a+λ(·)).∆b′ ◦Rα −∆b′ + πt∆p = Ad(E∗

r,a+λ(·)).∆B̃ ◦Rα − ∆̃B −∆λ,
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where ∆b′ = ∆b−∆Dcob. Projection on t gives ∆λ = −πt∆p, and finally we
find ∆̃B = ∆b′ +∆c, where ∆c ∈ t is to be determined.

Let us now study the inversion of the change of variables ∆B $→ ∆̃B.

Lemma 8.12. — Let ∆̃B ∈ V0 satisfy (38) (it is then automatically unique,
by virtue of proposition 8.7). Then there exists a unique ∆c ∈ t such that

∆B = K−1(B).(∆̃B +∆c) ∈ V0.

Moreover, the mapping ∆̃B → ∆B is tame.

Proof. — Let us call ∆B′ = K(B)−1.∆̃B. Since B is to be considered small,∫
K−1(B) is invertible as for ∥B∥0 small enough

∥
∫

K−1(B)− Id ∥ ≤ C∥B∥0

in operator norm. Therefore, we can find a unique ∆c ∈ t such that
πt

∫
K−1(B).∆c = πt∆B′

t(0). Let, now,

∆B = ∆B′ −K−1(B).b.

Then,
∫
πt(∆B) = 0 and thus ∆B ∈ E0. Additionally, K(B).∆B′ and

K(B).∆B differ only by a constant diagonal matrix, so that equation (38) is

satisfied with K(B).∆B in the place of ∆̃B. Finally,

∥∆B∥s # ∥∆B′∥s + (1 + ∥B∥s)|∆c|
# (1 + ∥B∥s)(∥∆̃B∥s + (1 + ∥B∥0)∥∆̃B∥s).

Admitting a uniform bound, say ∥B∥0 < 1, we obtain the desired estimate

∥∆B∥s ≤ Cs(1 + ∥B∥s)∥∆̃B∥s.

We remark that, thanks to the local nature of the setting, the changes
of variables are continuous mappings from Cs(T,R) into itself, with norms
bounded by constants depending only on N and W, for each s. Therefore, the
loss of derivatives is only due to the inversion of the operator involved in the
linearized equation studied in the previous section.
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CHAPTER 9

REVISITING THE LOCAL THEORY

The next natural step in our study, since we follow the path “global-to-
local”, should be to treat the case where the obstruction to reducibility is
intermediate, i.e. the perturbations of singular geodesics. As we will see in the
next chapter, the study of singular geodesics is reduced to a parallel application
of the local reduction lemmas of the local theory as we will develop it in this
chapter with the K.A.M. scheme used in [31].

For this reason, we will present the local theory, for which the main reference
is [29]. We will adapt and simplify the proof of theorem 3.5 proved in the
reference. Additionally, we improve the local almost quasi-reducibility theorem
obtained as a corollary of the proof of theorem 3.5 to a local almost reducibility
theorem (see chapter 2 for the definitions of these notions).

The proof of the local density theorem by R. Krikorian works in the context
of a unitary representation of G. If one reads carefully the proofs, they can
see that the adjoint representation of G on g works just as well. It is not a
faithful representation, but since its kernel ZG is discrete, it does not interfere
significantly in the theory. In order to be able to use the Fourier transform,
the unitary group in which G was embedded, was in turn embedded in a space
of matrices with complex coefficients. In our context, the role of the ambient
matrix vector space is taken up by the linear transformations of the real vector
space g, an object which is again defined intrinsically.

Summing up, we re-obtain in a slightly more general context the well known
theorem of the density of reducible cocycles in the neighborhood of constant
cocycles. We also prove the local almost-reducibility theorem, which strength-
ens the almost quasi-reducibility theorem of R. Krikorian. In addition, the
proof of the density theorem is significantly simpler, since it does not use the
reducibility in positive measure for 1-parameter families. This last element
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becomes important in the study of perturbations of singular geodesics that
we will take up in the next chapter, and allows an elegant proof of a slightly
sharper and more natural global density theorem.

9.1. Notation

Throughout this chapter, we suppose that a 1-periodic perturbation of a
constant cocycle is given

(α, A.eU(·)).

We also suppose that α ∈ DC(γ, τ), i.e.

|kα|Z = dist(kα,Z) ≥ γ−1

|k|τ , k ∈ Z∗.

We remind that we denote by w the rank of G, by q the number of positive
roots of G, and by f the dimension of the real vector space g and by t = ta
a maximal toral algebra passing by a, a preimage of A in g by exp. If ∆̃ are
the roots in a basis of Weyl with respect to t, we denote by (Hρ)ρ∈∆̃ the dual
basis of t. The choice of a Weyl’s basis induces a decomposition of g into a
direct sum of subspaces

g =
(⊕

ρ∈∆̃

RHρ

)
⊕
( ⊕

ρ∈∆+

Cjρ
)
,

where the (Hρ) span t and the (jρ)∪(ijρ), where i =
√
−1, form an orthonormal

basis of the space othogonal to t with respect to the Cartan-Killing form.
We remind the reader that if s ∈ t, then

[s, jρ] = 2iπρ(s)jρ = 2iπsρjρ

in the notations that we have adopted. For mappings U(·) : T → g we use the
notation

U(·) =
∑

ρ∈∆̃

U t
ρ(·)Hρ +

∑

ρ∈∆+

Uρ(·)jρ = U t(·) +
∑

ρ∈∆+

Uρ(·)jρ.

Since for every ρ′ ∈ ∆+, there exist positive integers mρ′,ρ such that

ρ′ =
∑

∆̃

mρ′,ρρ

there exist rational numbers pρ′,ρ = lρ′,ρ/D with |lρ′,ρ| ≤ b, such that

Hρ′ =
∑

∆̃

pρ′,ρHρ,

where D, b ∈ N∗ are considered fixed.
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We also call c = cG, the cardinal of ZG.

Finally, a real number β will be called Diophantine with respect to α if it
satisfies

|β − kα|Z ≥ γ−1

|k|τ .

The set of such numbers will be denoted by DCα(γ, τ).

9.2. Synopsis of the chapter

In this chapter, we revisit, simplify and sharpen the local theory, as known
since [29], namely theorem 3.5, and obtain

Theorem 9.1. — Let α ∈ DC(γ, τ). Then, there exist ϵ > 0 and s0 ∈ N∗

such that, if U(·) ∈ C∞(T, g) satisfies ∥U(·)∥s0 < 1, ∥U(·)∥0 < ϵ and A ∈ G,

then the cocycle (α, AeU(·)) is accumulated in the C∞ topology by reducible
cocycles.

This theorem was in fact already known in a slightly weaker form, as a
comparison with theorem 3.5 can show. Its proof was based on a local quasi-
reducibility theorem (see definition 3.3 and the discussion below), and obtained
from it in a slightly more complicated way than we derive it from the following
local almost reducibility theorem, which in turn was not known.

Theorem 9.2. — Let α ∈ DC(γ, τ). Then, there exist ϵ > 0 and s0 ∈ N∗ such
that, if ∥U(·)∥s0 < 1, ∥U(·)∥0 < ϵ and A ∈ G, then the cocycle (α, AeU(·)) is
almost reducible.

The proof of this theorem is grants control of the growth of the conjugants,
which is polynomial, versus an exponential decay of the perturbations. This
fact grants the preceding density theorem. It is with the same argument that R.
Krikorian obtained his local density theorem from his almost quasi-reducibility,
but with a complication. The problem of longer periods (the difference between
almost reducibility and quasi-reducibility) made it necessary to use the classi-
cal K.A.M. theory and reducibility in positive measure in the parameter space.
We managed to overcome this difficulty and rid the argument of this compli-
cation by reinterpreting H. Eliasson’s generalized K.A.M. scheme. We followed
the adapted version of it for compact Lie groups as in [29], but interpreted
the reduction of resonances (see section 9.4), as the reduction of the good lin-
ear model in the presence of resonances. This fact allowed us a better control
of the procedure and the recovery of the loss of periodicity (inherent in the
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theory in general compact groups) at each step of the K.A.M scheme, which
gives almost reducibility, instead of quasi-reducibility.

These last two theorems admit global analogues. Since we use the conver-
gence of renormalization, we strengthen the arithmetic condition to a recurrent
Diophantine one and obtain the following statements.

Theorem 9.3. — Let α ∈ RDC and (α, A(·)) ∈ SW∞
α (T, G) be of degree 0,

and let m ∈ N∗ be the minimal natural number such that (α, A(·))m is homo-
topic to the Id. Then, the cocycle (α, A(·))m is almost reducible.

The global analogue of the local density theorem is as follows

Theorem 9.4. — Let α ∈ RDC. Then, reducible cocycles are dense in the
class of 0-degree cocycles in SW∞

α (T, G) that are homotopic to constants.

Since we have already seen that positive energy cocycles in SW∞(T, SU(2))
are accumulated by cocycles of smaller energy, by a simple induction argument
we can obtain the following theorem.

Theorem 9.5. — Let α ∈ RDC. Then, reducible cocycles are dense in
SW∞

α (T, SU(2)). The same holds for cocycles in SW∞
α (T, SO(3)) which are

homotopic to constants. If (α, A(·)) ∈ SW∞
α (T, SO(3)) is not homotopic to

constants, there exist arbitrarily small perturbations of

(α, A(·))2 ∈ SW∞
2α(T, SO(3))

(thus one-periodic perturbations), such that

(α, A′(·))2 ∈ SW∞
2α(2T, SO(3))

is accumulated by reducible cocycles (the perturbed cocycle is considered as
a 2-periodic cocycle).

Proof. — The only part which is not clear is the one on cocycles in T×SO(3)
which are not homotopic to constants.

Let (α, A(·)) be such a cocycle of energy 0. Then it has renormalization
representatives mod 2 which are arbitrarily close to constants, and therefore
it is accumulated (in C∞(2T, SO(3))) by reducible cocycles.

If (α, A(·)) has positive energy, then its second iterate can be conjugated
to a normal form (2α, R4rπ(·+θ) by a 1-periodic conjugation. Therefore, we
can perturb (α, A(·))2 to a cocycle of 0 energy. However, renormalization of
the second iterate has to be done in SW∞(2T, SO(3)) if we want to draw
conclusions for (α, A(·)). Renormalization of the action generated by (2, Id)
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and (2α, A′(·)), where A′(·) = A2(·)eU(·) (after a change of scale by a factor 2)
drives us to the case treated first in the proof.

This complication will have to be dealt with in the proof of the main theorem
of this mémoire in the case of multiply connected groups.

The theorems in the local case are of course valid for cocycles with an
arbitrary number of frequencies, but their global analogues are not known to
hold, since their proof requires renormalization of the dynamics.

9.3. Strategy of the proof of theorem 9.2

The proof of the local almost reducibility theorem is reduced at a first time
to writing and solving with good estimates the reduction of a perturbation
of a constant cocycle to a perturbation of order two, and then iterating the
procedure by means of a K.A.M. scheme.

The convergence of the scheme needed for the second part has been taken
from [15], so for the time being we focus on the first part, the linear problem.

Let us assume that a Y (·) : T → g, small enough, can reduce the perturba-
tion U(·) to V (·), with V (·) of order two with respect to U(·). The equation
satisfied by such a conjugant is

eY (·+α).A.eU(·).e−Y (·) = A′.eV (·)

or
eAd(A∗).Y (·+α).eU(·).e−Y (·) = A∗A′.eV (·).

Linearization of this equation under the smallness assumptions implies that
such a Y (·) must satisfy the equation

(39) Ad(A∗).Y (· + α)− Y (·) = −U(·).

We introduce the coordinates

U(·) =
∑

ρ∈∆̃

U t
ρ(·)Hρ +

∑

ρ∈∆+

Uρ(·)jρ,

where U t
ρ(·) are real and Uρ(·) complex 1-periodic functions. We will write Y (·)

in an analogous way. The linearized equation then decomposes into two differ-
ent types of equations as follows.

The simpler case is that of the abelian part, which reads

Y t
ρ(· + α)− Y t

ρ(·) = −U t
ρ(·)

for which we refer the reader to lemma 3.4.
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The second type of equation is the one that characterizes the reduction of
perturbations of constants. It reads

(40) e−2iπρ(a)Yρ(· + α)− Yρ(·) = −Uρ(·)

for ρ ∈ ∆+. Application of the Fourier transform gives

(41) (e2iπ(kα−ρ(a)) − 1)Ŷρ(k) = −Ûρ(k), k ∈ Z.

Therefore, the Fourier coefficient Ŷρ(k), k ∈ Z, is not determined by the equa-
tion if

kα− ρ(a) ∈ Z
or equivalently if

a ∈ P (G) + αP (G).

For the definition of P (G), see section 2.1.1.3. If a /∈ P (G) + αP (G), but is
close to it, reduction of the corresponding Fourier coefficients deteriorates the
estimates.

In order to avoid the loss of derivatives, a problem already encountered in
lemma 3.4, we solve the equation (41) for only a finite number of coefficients,
which we will determine depending on the arithmetic properties of a.

For this equation, we can distinguish three different possibilities.

◃ The first one, which gives rise to a classical K.A.M. scheme as in [29],
occurs when ρ(a) is far from kα,

(42) |ρ(a)− kα|Z ≥ K−1

for all 0 < |k| ≤ N and some K > 0, comparable with N . Unlike with classical
K.A.M., we suppose explicitly that the inequality 42 is violated for k = 0. Let
us denote by I0 the roots ρ ∈ ∆+ for which aρ satisfies this property. Then, we
can solve equation (40) for 0 < |k| ≤ N , i.e. we solve equation (39) with Uρ(·)
replaced by the homogeneous truncaction ṪNUρ(·), and obtain a solution to
the equation

e−2iπρ(a)Yρ(· + α)− Yρ(·) = −TNUρ(·) + Ûρ(0)

with Yρ(·) of the order of Uρ(·).
◃ The second one, the most gentle in fact, occurs when ρ(a) is far from kα,

|ρ(a)− kα|Z ≥ K−1

for all 0 ≤ |k| ≤ N , in which case we will say that it is Diophantine with
respect to α. Let us denote by Inr the roots ρ ∈ ∆+ for which aρ satisfies
this property. Then, we can solve equation (41) for 0 ≤ |k| ≤ N , i.e. we solve
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equation (40) with Uρ(·) replaced by the truncaction TNUρ(·), and obtain a
solution Yρ(·) of the order of Uρ(·).

◃ The third and last case occurs when the inequality (42) is violated by
some kρ with 0 < |kρ| ≤ N . We will show that with no loss of generality we can
restrict our study to the case where |kρ| ≤ N ′, with N ′ < N , but with N −N ′

of the order of N . Moreover, with a good choice of the parameters K and N ,
we can ensure that if such a kρ exists, then it is unique, and, additionally, that
the inequality 42 is verified for 0 < |k − kρ| ≤ N . Finally, we will ensure that,
if Ir is the set of such roots, then I0 ∪ Id ∪ Ir = ∆+. For the roots in Ir we can
only solve the equation

e−2iπρ(a)Yρ(· + α)− Yρ(·) = −Ṫ
(kρ)
N U,

where

(43) Ṫ
(kρ)
N U =

∑

0<|k−kρ|≤N

Ûρ(k)e
2iπk·

when again Yρ(·) is of the order of Uρ(·).
Therefore, we have solved the equation (39), but with U(·) on the rhs re-

placed by

ṪNU t(·) +
∑

ρ∈Id

TNUρ(·)jρ +
∑

ρ∈Ir

Ṫ
(kρ)
N Uρ(·)jρ +

∑

ρ∈I0

ṪNUρ(·)jρ.

If we call

ObU(·) = Û t(0) +
∑

ρ∈Ir

Uρ(kρ)e
2iπkρ ·jρ +

∑

ρ∈I0

Ûρ(0)jρ

the equation that we have solved reaches the form

Ad(A∗).Y (· + α) + U(·)− Y (·) = ObU(·) + Rest,

where the term “Rest” represents the rests of the truncation operators Ṫ
(kρ)
N ,

ṪN and TN , accordingly with the subspace of g. The corresponding result for
the non-linear problem is the conjugaction of (α, AeU(·)) to (α, AeObU(·)eU

′(·)),
with U ′(·) of second order with respect to U(·).

We remark that, since we have solved a linearized equation, where second
order terms are neglected, linearization of the equation

Conjexp(Y (·))(α, AeObU(·)eŨ(·)) = (α, AeObU(·)eU
′(·))

with Ũ(·) = U(·)−ObU(·)+O(|U |2) and U ′(·) of second order, gives exactly
the same equation, solution and estimates. We can therefore interpret the
procedure as linearization in the neighborhood of a the non-constant cocycle
which incorporates the obstructions to the solution of the linearized equation.
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Iteration of such a conjugation lemma is thus not possible, since the term
ObU(·) is of the order of U(·). Moreover, since ObU(·) has non-zero Fourier
coefficients exactly where the linear theory fails, a different approach has to
be taken.

This approach resembles to, without being identical with, the reduction of
resonances of [12] and [29], and in this context it consists in constructing a
conjugation of a controlled norm that reduces the exact model around which we
linearize, (α, AeObU(·)), to a constant. A good candidate for such a conjugation
is a periodic geodesic e−H · : T → TA, with TA a maximal torus passing by A.
We have, then,

Conjexp(−H ·)(α, AeObU(·)) = (α, e−HαA exp(Ad(e−H ·).ObU(·)))

so that the only possibly non-constant term is Ad(e−H ·).ObU(·). Given the
form of ObU(·) : T → g, we calculate

Ad(e−H ·).ObU(·) = Û t(0) + Ad(e−H ·)(
∑

ρ∈Ir

Uρ(kρ)e
2iπkρ ·jρ +

∑

ρ∈I0

Ûρ(0)jρ)

= Û t(0) + (
∑

ρ∈Ir

Uρ(kρ)e
2iπ(kρ−ρ(H))·jρ +

∑

ρ∈I0

Ûρ(0)e
−2iπρ(H)·jρ.

Consequently, ObU(·) can be made constant after such a conjugation if we
can solve the equations ρ(H) = kρ for ρ ∈ Ir, and ρ(H) = 0 for ρ ∈ I0. This is
done in section 9.4, where it is shown also that such an H can be constructed
so as to satisfy |H| # N ′, where we remind that |kρ| ≤ N ′.

With such an H, we have

Conjexp(−H ·)(α, AeObU(·)eŨ(·)) = (α, Ã exp(Ad(e−H ·).U ′(·))),

where U ′(·) is quadratic with respect to U(·), and therefore we can iterate the
procedure.

The second part of the reduction, the construction of the conjugation
exp(−H ·), shows that the obstructions to the solution of the linear equation
are reducible cocycles. Therefore, the linearization of the problem in the
beginning was linearization in the neighborhood of reducible, instead of
constant, cocycles.

There is in fact a slight complication due to the fact that e−H · is not in gen-
eral 1-periodic, but this is resolved by post-conjugating with another periodic
geodesic, as our approach allows us to treat this problem of longer periods at
each step of the algorithm, instead of the accumulated loss of periodicity after
having applied the algorithm a sufficient number of times.
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9.4. Resonances and reduction of resonant modes

The preceding section has shown the importance of the relation of ρ(a)
mod Z, for ρ ∈ ∆+, with kα mod Z. More precisely, if ρ(a) = kρα mod Z for

some kρ ∈ Z, then the corresponding Fourier coefficient Ûρ(kρ) of Uρ(·) cannot
be eliminated in the linear equation. In the perturbative setting, if this equal-
ity is approximate and ρ(a) − kρ mod Z is small with respect to N−1, then
reduction of the corresponding Fourier coefficient deteriorates the estimates.
This motivates the following definition.

Definition 9.6. — A constant β ∈ R such that

kα− β ∈ Z

for some k ∈ Z∗ is called (α-)resonant. The set of such constants is denoted
by Res(α) and its complement, the set of non-resonant roots, NR(α).

Let I ⊂ Z∗. If there exists k ∈ I such that

|β − kα|Z = dist(β − kα,Z) ≤ K−1,

we will say that β is in RS(α,K) in I. In the case I = {k ∈ Z, 0 < |k| ≤ N},
the sets of such constants will be denoted by RS(α, N,K) and DS(α, N,K)
respectively. We will then say that β is K-resonant to the order N .

A constant a ∈ g is in RS(α,K) in I (resp. in RS(α, N,K)) if there exists
a root in ρ ∈ ∆+ such that ρ(a) is in RS(α,K) in I (resp. in RS(α, N,K)).
If no such root exists, a ∈ DS(α,K) in I (resp. in DS(α, N,K)).

We stress that we consider 0 as non-resonant, i.e. we do not authorise k = 0
in the definition of Res and that of RS.

With this notation, for any given a ∈ g and t = ta, a maximal toral algebra
passing by a, we can introduce a partition of the roots in ∆+ in

(44)

⎧
⎨

⎩

Ir = {ρ ∈ ∆+, ρ(a) = kρα+ lρ ∈ αZ∗ + Z},
I0 = {ρ ∈ ∆+, ρ(a) = lρ ∈ Z},
Id = {ρ ∈ ∆+, ρ(a) ̸∈ αZ+ Z} = ∆+\(Ir ∪ I0).

Let us also associate to each ρ ∈ Ir the (unique) kρ satisfying ρ(a) = kρα+ lρ.
This notation is to be fixed throughout the chapter. We can now state and
prove the following lemma.

Lemma 9.7. — Let a ∈ t ⊂ g, call (aρ)ρ∈∆+ = (ρ(a))ρ∈∆+ ∈ Cq and define
the corresponding partition of the roots in ∆+, as in equation (44). Then, there
exists H ∈ t such that, for all ρ ∈ Ir we have ρ(H) = kρ, and for all ρ ∈ I0,
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ρ(H) = 0. The vector H is of the form
∑ k′ρ

D
Hρ, where the summation is over

a subset of (Ir ∪ Id) ∩ ∆̃, and k′ρ ∈ Z.

We remind that q = #∆+ denotes the number of positive roots, which are
not linearly independent. We also recall that any root ρ′ in ∆+\∆̃ can be
written in the form

∑
ρ∈∆̃mρ′,ρρ where the mρ′,ρ are positive integers. The

entries of inverses of invertible submatrices of (mρ′,ρ) are rational numbers of
the form lρ,ρ′/D, where |lρ,ρ′ | ≤ e is a positive integer and D ∈ N∗ and lρ,ρ′

and D are not necessarily coprime.

Proof. — Let us now call

Ĩr = Ir ∩ ∆̃, Ĩ0 = I0 ∩ ∆̃, Ĩd = Id ∩ ∆̃.

It is then clear that
Ir ⊂ vect(Ĩr, Ĩd) ∩∆+

so that we can chose I lr a linearly independent subset of Ir, and complete it
with I l0, a maximal set of linearly independent roots in I0 \ vect(Ĩ0) in order
to obtain a maximal linearly independent subset of roots in Ĩr ∪ Ĩd. Then, we
can solve the linear system

∑

ρ∈Ĩr∪Ĩd

mρ′,ρuρ = kρ′ , ρ′ ∈ I lr,

∑

ρ∈Ĩr∪Ĩd

mρ′,ρuρ = 0, if ρ′ ∈ I l0,

and the uρ are rational numbers of the form k′ρ/D, and k′ρ = Dkρ if ρ ∈ Ĩr.
The vector

∑

ρ∈Ĩr∪Ĩd

k′ρ
D

Hρ

by construction satisfies the conclusions of the lemma, since the resonance
of a linear combination of resonant roots is the linear combination of the
resonances: if ρ′ =

∑
ρ∈Ĩr mρ′,ρρ is resonant, kρ′ =

∑
ρ∈Ĩr mρ′,ρ, kρ.

Remark 9.8. — If we suppose that |kρ| ≤ N , for all ρ ∈ Ir, then there exists
a constant b depending only on G such that |k′ρ| ≤ bDN , for all ρ ∈ Ĩr ∪ Ĩd.
This follows from the fact that the resonances kρ for the roots in Ir and the
integers k′ρ defined for roots in Ĩr∪ Ĩd are related by submatrices of the Cartan
matrix of the group.

The notation for the integers k′ρ as solutions to the linear system of the
proof of lemma 9.7 is also to be considered fixed throughout the chapter.
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Before stating a direct corollary, we remind that for a function f : T → K,
where K = R,C, we call σ(f) = {k ∈ Z, f̂(k) ̸= 0}.

Corollary 9.9. — Let A ∈ G, U(·) ∈ C∞(T, g) and H constructed as in
lemma 9.7. Then, if U(·) is spectrally supported in the obstructions and the
resonances,

σ(U t
ρ(·)) ⊂ {0},

σ(Uρ(·)) ⊂ {0} if ρ ∈ I0,

σ(Uρ(·)) ⊂ {kρ} if ρ ∈ Ir,

σ(Uρ(·)) = ∅ otherwise,

the cocycle (α, AeU(·)) is reducible mod 1.

Proof. — If U(·) satisfies the hypothesis of the corollary, then it has the form

U(·) = Û t(0) +
∑

ρ∈Ir

Uρ(kρ)e
2iπkρ ·jρ +

∑

ρ∈I0

Ûρ(0)jρ.

If, now, the vector H satisfies the conclusions of lemma 9.7, we find directly
that

e−H(·+α)AeU(·)eH · = e−HαA exp(Ad(e−H ·).U(·))

= e−HαA exp
(
Ad(e−H ·).

(
U t(0) +

∑
Uρ(·)jρ

))

and we calculate

Ad(e−H ·).
(
U t(0) +

∑
Uρ(·)jρ

)

= U t(0) + Ad(e−H ·).
( ∑

ρ∈Ir

e2iπkρ ·Ûρ(kρ)jρ +
∑

ρ∈I0

Ûρ(0)jρ
)

= U t(0) +
∑

ρ∈Ir

e2iπ(kρ−ρ(H))·Ûρ(kρ)jρ +
∑

ρ∈I0

Ûρ(0)jρ.

Since, by construction of the vector H, kρ = ρ(H), we find that

Ad(e−H ·).U(·) = s ∈ g.

This shows that

Conjexp(−H ·)(α, AeU(·)) = (α, Ã),

i.e. that (α, AeU(·)) is reducible mod cD via the torus morphism e−H · .
Since e−H(·+1)eH · is constant, we can imitate the last part of the proof of

proposition 2.2.4 in [29] and regain periodicity.
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Firstly, we show that there exists a maximal torus passing both by e−H

and Ã, where

Ã = e−HαA exp(s).

We initially show that s ∈ g commutes with eH :

Ad(e−H).s = U t(0) + Ad(e−H).
( ∑

ρ∈Ir

Ûρ(kρ)jρ +
∑

ρ∈I0

Ûρ(0)jρ
)

= U t(0) +
( ∑

ρ∈Ir

Ûρ(kρ)e
−2iπρ(H)jρ +

∑

ρ∈I0

Ûρ(0)e
−2iπρ(H)jρ

)

= s

since for ρ ∈ Ir ∪ I0, ρ(H) ∈ Z. Therefore, e−H and e−HαA exp(λs) com-
mute for λ ∈ [0, 1]. Since e−HαA and e−H · are on the same maximal
torus TA ⊂ Z0

G(e
−H) (the neutral component of ZG(e−H)), this implies

Ã ∈ Z0
G(e

−H), and consequently there exists TÃ, a maximal torus passing

both by e−H and Ã.
Therefore, there exists a group morphism C(·) : R → TÃ such that

C(1) = e−H , so that

AeU(·) = e−H(·+α)ÃeH ·

= e−H(·+α)C(· + α).C(−α)ÃC∗(·)eH ·

= e−H(·+α)C(· + α).A′.C∗(·)eH · .

Therefore, AeU(·) is reducible by C∗(·)e−H · which is 1-periodic since

C∗(· + 1)e−H(·+1) = C∗(·)C∗(1)e−He−H · = C∗(·)e−H · .

This corollary concludes what we need to prove in the linear algebraic con-
text before passing on to the regime of perturbation theory. The connection
of these results with K.A.M. theory is made with the following lemma. It is
a generalization (already found in [29]) of a rather simple observation, which
constitutes the basis of L.H. Eliasson’s results for quasiperiodic skew-systems
in Td × SO(3) (see [11]) and those based upon them. It asserts that for a
suitably chosen K, big enough with respect to N , there can be at most one
resonant mode.

Lemma 9.10. — Let α ∈ DC(γ, τ), N ′, N ∈ N∗, and K > 0 such that
K ≥ 2τ+1γN τ . Then, if β ∈ RS(α, N,K)

1. There exists a unique k0, satisfying

|β − kα|Z < K−1, 0 < |k| ≤ N.
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Moreover,

|β − kα|Z ≥ K−1, 0 < |k − k0| ≤ N ′

for any N ′ such that K ≥ 2γN ′ τ .

2. β is non-resonant (in the linear-algebraic sense, i.e β − kα ̸∈ Z) to the
order Nnr < (γ−1K)1/τ for k ∈ Z∗ with 0 < |k − k0| ≤ Nnr.

3. |β|Z ≥ K−1.

Proof. — 1. Let k1, k2 ∈ Z with 0 < |ki| ≤ N and k1 ̸= k2, such that
|β − kiα|Z ≤ K−1, for i = 1, 2, i.e.

|β − kiα− li| ≤ K−1

for some li ∈ Z. We have therefore, with k = k1−k2, so that 0 < |k| ≤ 2N ,
and l = l1 − l2

|kα− l| ≤ 2K−1.

Since α ∈ DC(γ,σ), k ̸= 0 implies

|kα|Z ≥ γ−1

|k|τ ≥ γ−1

(2N)τ
.

This is possible only if

γ−1

(2N)τ
< 2K−1,

which contradicts the choice of K and N .

2. For the second part, we need only remark that

|β − kα|Z = |β − k0α+ k − k0α|Z
≥ |k − k0α|Z − |β − k0α|Z

≥ γ−1

|k − k0|τ
−K−1 ≥ K−1

provided that

K ≥ 2γ|k − k0|τ .
3. Finally, since |β − k0α− l0| ≤ K−1 we have

|β|Z ≥ |k0α|Z −K−1 ≥ γ−1

|k0|τ
−K−1

≥ 2τ+1K−1 −K−1 ≥ K−1.

If we fix K and N ′ satisfying K ≥ 2γN ′ τ and we assume that resonances
occur only to the order N < N ′, we have the following corollary.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



164 CHAPTER 9. REVISITING THE LOCAL THEORY

Corollary 9.11. — 1. If β ∈ RS(α, N,K), then |β|Z ≥ (2(N
′

N )
τ −1)K−1.

2. If |β|Z < K−1, then β ∈ DS(α, N ′,K).

This lemma and its corollary are necessary in order to apply the linear-
algebraic reduction of resonances to a K.A.M. scheme, since in the latter case
constants are only approximately Diophantine, 0 or resonant. A resonant con-
stant can have only one resonant mode, but, if the constants are not chosen
suitably, they may be more than one when we allow closeness to resonances
up to K−1. On the other hand, we need to be able to solve exactly the linear
system that reduces the resonant modes to constants.

9.5. The local conjugation lemma

Before stating and proving the proposition which will be used in the K.A.M.
scheme, we will fix some notation. We let b be the maximum of the operator
norms of (inverses of) square submatrices of (mρ′,ρ), D as before and b̃ = 2b.

For a given N ∈ N∗ we let N0 = N , Ni = b̃Ni−1, i = 1, ..., q + 1. To every
order of truncation we associate the sets of roots

I(i)r = Res(K,Ni),

I(i)0 = {ρ ∈ ∆+, |aρ| < K−1},
DS(i) = DS(K,Ni),

I(i)d = DS(i)\I(i)0 .

We also define the kρ ∈ Z equal to 0 for all roots in I(i)0 , and kρ if ρ ∈ I(i)r ,
and we will sometimes omit the superscript (i) for simplicity in notation. We
remark that if we fix a constant A in G and a maximal torus passing by it, the
root-space decomposition of g results in the canonical definition of the Fourier
modes of mappings in C∞(T, g) in

Z =
( ⊔

ρ∈∆̃

Zt
ρ

)
<
( ⊔

ρ∈∆+

Zρ
)
,

where the first factor accounts for the coordinates in the maximal torus (and
therefore for real functions) and the second for C-valued functions in the di-
rections jρ. The spectrum σ of a mapping U(·) ∈ C∞(T, g) is viewed in a
canonical way as a subset of Z as

σ(U) =
( ⊔

ρ∈∆̃

σ(U t
ρ)
)
<
( ⊔

ρ∈∆+

σ(Uρ)
)
.
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In this notation, we can define k = ka ⊂ Z such that (k)ρ = {kρ} if ρ ∈
I0 ∪ Ir and (k)ρ = ∅ otherwise, so that the hypothesis of lemma 9.9 amounts
to σ(ObU(·)) ⊂ kA.

We will need the notation

|k| = max
ρ∈∆+

|(k)ρ|,

where by convention |∅| = 0.
Clearly, the frequencies of mappings in C∞(DT, g) belong to the finer set

ZD =
( ⊔

ρ∈∆̃

1

D
Zt
ρ

)
<
( ⊔

ρ∈∆+

1

D
Zρ

)

and Z ↪→ ZD in a canonical way. Even though Z is not a lattice, the struc-
ture of additive group within each components remains of interest, since the
adjoint action of a cD-periodic geodesic translates the frequencies within each
component of Z without mixing them:

σ(Ad(eH ·).U(·)) =
( ⊔

ρ∈∆̃

σ(U(·)tρ)ρ
)
<
( ⊔

ρ∈∆+

(σ(Uρ(·))−
k′ρ
D

)ρ
)

if H is of the form
∑ k′ρ

D
Hρ.

To such a partition of the roots, we associate the truncation operators

(45)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T (k)
Ni

U(·) = ṪNiU
t(·) +

∑
ρ∈Id TNiUρ(·)jρ

+
∑

ρ∈Ir Ṫ
(kρ)
Ni

Uρ(·)jρ +
∑

ρ∈I0 ṪNiUρ(·)jρ,
ObU(·) = Û t(0) +

∑
ρ∈Ir Uρ(kρ)e2iπkρ ·jρ +

∑
ρ∈I0 Ûρ(0)jρ,

R(k)
Ni

U(·) = U(·)− T (k)
Ni

U(·)−ObU(·),

and we refer the reader to equation (43) for the definition of the less familiar
quantities. Finally, we define the pierced box

Ḃ(k, Ni) ⊂
( ⊔

ρ∈∆̃

Zρ
)
<
( ⊔

ρ∈∆+

Zρ
)

to be the spectral support of mappings in the image of T (k)
Ni

, and the box

B(k, Ni) as the spectral support of mappings in the image of T (k)
Ni

+Ob.

Proposition 9.12. — Let α ∈ DC(γ, τ), N ∈ N∗, and K > 0 chosen such
that K ≥ 2τ+1γb̃q+1N τ . Then for any A ∈ G, there exists 0 ≤ i ≤ q and
k = kA ∈ Z with |kA| ≤ Ni, such that
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1. Ad(A) ∈ DS(α,K) in Ḃ(kA, Ni+1) and is non-resonant in

Ḃ(kA, 2Ni+1) ⊂ Z.

2. If σ(U(·)) ⊂ k, then there exists a cD -periodic torus morphism

B(·) = exp(−HA ·) : cDT −→ TA
with σ(Ad(B(·))) included in B(∅, bDNi) × {∅} ⊂ ZD, reducing
(α, AeU(·)) to a constant (α, A′).

We remind that in fact (α, AeU(·)) is reducible modulo 1. In order to estab-
lish this stronger fact, one need only follow the proof of corollary 9.9 in this
perturbed setting. The vectors H and s remain the same (“resonant modes are
exact”), but A in the perturbed setting is at most K−1-away from the A con-
sidered in the exact setting (“resonances are approximate”). This indefiniteness
of A only tilts the torus in which we regain periodicity (the mapping C(·) of
the proof), but the argument proving the existence of the torus remains valid
since K−1 is small, and Ad(A).H = H and Ad(eH).s = s in both cases.

Proof. — Let A ∈ G, TA a maximal torus passing by A, and (e2iπaρ)ρ the
eigenvalues of the adjoint action of A. For 0 ≤ i ≤ q we observe that, since

I(i)r ⊂ I(i+1)
r , DS(i+1) ⊂ DS(i) and DS(i) ∪I(i)r = ∆+, there exists such an i for

which I(i)r = I(i+1)
r , so that

∆+ = DS(i+1) ∪I(i)r

is a partition of the root system. Immitating the proof of the previous lemma,
we define

Ĩr = I(i)r ∩ ∆̃, Ĩd = I(i)d ∩ ∆̃, Ĩ0 = I(i)0 ∩ ∆̃.

It follows directly from the definitions that if ρ ∈ span(Ĩ0), then

|aρ| ≤ bK−1. On the other hand, if ρ ∈ I(i)r , then |aρ| ≥ (2b̃− 1)K−1 > bK−1,

so that I(i)r ̸⊂ span(Ĩ0). As a consequence, it remains true in the perturbative
setting that the resonance of a linear combination of resonant roots is the

linear combination of the resonances: if ρ′ =
∑

ρ∈Ĩr mρ′,ρρ and ρ′ ∈ I(i)r ,
then kρ′ =

∑
ρ∈Ĩr mρ′,ρkρ.

We can therefore adapt the proof of the lemma 9.7 to this setting and obtain

a vector H of the form
∑

ρ∈∆̃
k′ρ
DHρ satisfying

ρ(H) = kρ, if ρ ∈ I(i)r ,

ρ(H) = 0, if ρ ∈ I0,

|k′ρ| ≤ bDNi, k′ρ ∈ Z.
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Therefore, if σ(U(·)) is contained in the resonant modes of the directions

in I(i)r and the constant terms in I0, the cocycle (α, AeU(·)) is reducible by
exp(−H ·).

Since the set of frequencies described in the second point of the previous
proposition is exactly the set of obstructions to resolving the linear cohomolog-
ical equation with good estimates, we can now prove the following proposition,
after having introduced the notation

N (u)
i = Ni +Ni+1, N (l)

i = Ni −Ni−1

for 1 ≤ i ≤ q. Both N (u)
i and N (l)

i are of the order of N .

Proposition 9.13. — Let α ∈ DC(γ, τ) and K ≥ 2τ+1γb̃q+1N τ . Let, also,
(α, AeU(·)) ∈ SW∞(T, G) with

c1,0K(N (u)
q )2ε0 < 1,

where εs = ∥U∥s. Then, there exists 0 ≤ i ≤ q and a conjugation Y (·) ∈
C∞(T, g) such that

eY (·+α).A.eU(·).e−Y (·) = AeObU(·)eU
′(·).

The cocycle (α, AeObU(·)) is reducible by a cD-periodic torus morphism

B(·) : cDT −→ TA
with σ(Ad(B(·))) included in B(∅, bDNi) × {0} ⊂ ZD. The mapping B(·)
is exp(−H ·) as constructed in lemma (9.7). Finally, the following estimates
hold:

∥Y (·)∥s ≤ c1,sK(N (u)
i )s+

1
2 ε0, ∥Ob(U(·))∥s ≤ c1,sN

s+
1
2

i ε0

and U ′(·) ∈ C∞(T, g) is such that

ε′s ≤ c2,sK
2(N (u)

i )2((N (u)
i )sε0 + εs)ε0 + Cs,s′(N

(l)
i+1)

s−s′+2εs′ .

Proof. — Let us write the cohomological equation in the neighborhood
of (α, A):

eY (·+α)AeU(·)e−Y (·) = A′(·)eU ′(·),

where A′(·) is not too far from A and U ′(·) is supposed to be much smaller
than U(·). We remark that since we want to obtain a purely local conjugation
proposition we allow A′(·) to be non-constant and to incorporate the obstruc-
tions to the solution of the linear equation. The following form of the equation
is therefore more adapted to the problem

eAd(A∗)Y (·+α)eU(·)e−Y (·) = A∗A′(·)eU ′(·).
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Since A∗A′(·) = exp(V (·)) is of the same order as U(·), we can linearize the
preceeding equation to

Ad(A∗)Y (· + α) + U(·)− Y (·) = V (·).

For the constant A ∈ G, we fix the the index i of the previous proposition
and use the partition ∆+ = Ir ∪ Id ∪ I0 and k = kA ∈ Z associated to i. We
have the following estimates

∥T (kA)
Ni+1

U(·)∥s ≤ Cs(N
u
i )

s+
1
2 ε0,

∥R(kA)
Ni+1

U(·)∥s ≤ Cs,s′(N
l
i+1)

s−s′+2εs′ ,

∥ObU(·)∥s ≤ Cs(Ni)
s+

1
2 ε0

concerning the corresponding truncation operators.
The definition of the partition Ir ∪ Id ∪ I0 implies that the equation

Ad(A∗)Y (· + α) + U(·)− Y (·) = ObU(·) +R(kA)
Ni+1

U(·)

can be solved, with the estimate

∥Y (·)∥s ≤ CsK(Nu
i )

s+
1
2 ε0.

Coming back to the non-linear problem (see also section 11.3 of the ap-
pendix), we find that

eY (·+α).A.eU(·).e−Y (·) = AeObU(·)eU
′(·),

where U ′(·) is of second order with respect to Y (·) and U(·) (and ObU(·)),
so that

ε′s ≤ c2,sK
2(N (u)

i )2((N (u)
i )sε0 + εs)ε0 + Cs,s′(N

(l)
i+1)

s−s′+2εs′ .

Finally, by the construction of the mapping ObU(·) and the vector kA,
it follows that the cocycle (α, AeObU(·)) is reducible by the torus morphism
constructed in the previous proposition, and therefore reducible modulo cD.

Corollary 9.14. — Let α ∈ DC(γ, τ) and K ≥ 2τ+1γb̃q+1N τ . Let, also,
(α, AeU(·)) ∈ SW∞(T, G) with

c1,0K(N (u)
q )2ε0 < 1,

where εs = ∥U∥s. Then, there exists 0 ≤ i ≤ q and a conjugation G(·) ∈
C∞(T, G) such that

G(· + α).A.eU(·).G∗(·) = A′eU
′(·)
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The mapping U ′(·) is 1-periodic, and G(·) and U(·) satisfy the estimates

∥G(·)∥s ≤ c1,sN
s
i + c1,sK(N (u)

i )s+
1
2 ε0,

ε′s ≤ c2,sK
2(N (u)

i )2((N (u)
i )sε0 + εs)ε0 + Cs,s′(N

(l)
i+1)

s−s′+2εs′ .

Proof. — We only need to apply successively the conjugations constructed in
the proof of corollary 9.9. By the corollary we have

Conjexp(Y (·))(α, AeU(·)) = (α, AeObU(·)eŨ(·)),

where Ũ(·) is quadratic with respect to U(·) and Y (·). We observe that

σ(Ad(e−H ·)) ⊂ B(∅, bDNi),

so that

σ(Ad(e−H ·)Rk
NU(·) ⊂ B(∅, bDN l)c

which implies

∥(Ad(e−H ·)Rk
NU(·)∥s ≤ Cs,s′(N

l
i+1)

s−s′+2εs′ .

By construction, the conjugation by e−H · satisfies

Conjexp(−H ·)(α, AeObU(·)eŨ(·)) = (α, AeseU
′(·))

where s ∈ g and U ′(·) = Ad(e−H ·)Ũ(·).
Finally, we can choose the torus morphism C(·) constructed in the corollary

for the reduction of the period of the conjugation to be of minimal C1 norm,
so that the adjoint action of C(·) affects the norms by constants depending
only on G. Since the mapping G(·) = C(·)e−H ·eY (·) is 1-periodic, it satisfies
the conclusions of the corollary.

The proof of this corollary concludes the preparation for the K.A.M. scheme.

9.6. Iteration and conclusion

In this section, we will follow [15] since the scheme needed in order to
conclude is only a special case of theorem 10, proved in the appendix C of the
paper. For the sake of completeness, we present the context and the statement
of the theorem.

Any notation that conflicts with the one established in the rest of this
mémoire is to be considered local.
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Let a > 0, 0 < σ0 ≤ 1, M,m, µ, µ > 0 such that

M

m
< 1 + σ0,

m

µ
< 1, 0 ≤ 2µ < µ.

We point out that µ is taken positive in the paper, but inspection of the proof
shows that µ = 0 is admissible.

For such choices of parameters, there exists g > 0

1

µ− µ
< g < min(

1 + σ0
M

,
1

m
,
1

µ
)

and 0 < σ < σ0 such that

1 + σ < µ− µg,

that is
1 + σ

µ− µ
< g < min(

1 + σ0
M

,
1

m
,
1

µ
).

For s, s , let Cs,s : [0,∞) → [1,∞) be a family of continuous functions
on [0, 2] such that Cs,s(t) = 1 if t > 2, increasing with respect to s, s ≥ 0 and
let

Cs = max
0≤t≤2

Cs,s(t).

Under these assumptions we get the following theorem

Theorem 9.15. — There exists s0 > 0 such that if εp,s is a double sequence
satisfying

εp+1,s ≤ Cs,s(1+λa
pεp,0)(λ

a+Ms
p ε1+σ0

p,0 +λa+ms
p εp,0εp,s+λa−(s−s)µ

p (εp,s+λs µ
p εp,0))

for any s, s, p ∈ N, where λp = L(1+σ)p, L = Cs0 and if

ε0,0 ≤ (Cs0)
− s0

g , ε0,s0 ≤ 1

then, for any s ∈ N εp,s = O(λ−∞
p ). Moreover, s0 does not depend on the

sequence (Cs)s and can be taken of the form (a+ 1)ξ(σ0,M,m, µ, µ).

Remark 9.16. — A small comment on the theorem and its proof is due. In its
statement, the theorem asserts that, provided that the smallness conditions are
satisfied and the inductive estimates hold for all positive integers p, then the
K.A.M. scheme converges exponentially fast. In practice, however, the induc-
tive estimates hold under certain smallness conditions which have to be verified
at each step. In our case, the smallness conditions, which are related to the
applicability of the Hausdorff-Campbell formula, are of the type CLa

pεp,0 < 1
in the notation of the theorem above.

This problem is resolved by the very first lemma in the proof of the theo-
rem 9.15 which asserts that if γ0 is big enough (the largeness depending on
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the parameters of the theorem), s0 = gγ0 and b = κγ0 where κ > 0 is such
that

1 + σ + κ

µ− µ
< g

and if the smallness assumptions of the theorem for p = 0 are satisfied, then
we have inductively

εp,0 < λ−γ0
p , εp,s0 < λb

p,

which justifies the use of the inductive estimates. We have omitted the con-
stants in the expressions for the sake of simplicity.

9.6.1. Choice of constants. — In order to apply theorem 9.15, we begin
by fixing some notation. We call

εn,s = ∥Un(·)∥s.

We also define the sequence of orders of truncation Nn and the diophantine
constants Kn and we need to have

Kn ≥ 2τ+1γb̃q+1N τ
n ,

Nn,i = b̃iNn,

N l
n,i ≥ Nn,

Nu
n,i ≤ 2b̃q+1Nn.

If we also take into account the customary definition of

Nn = N1+σ
n−1 = N (1+σ)n−1

1 ,

where N = N1 and σ are to be fixed, we may also chose Kn to grow as a power
of Nn, so that we have

Nn = N (1+σ)n−1
, Kn = N τ+ν

n ≥ 2τ+1γb̃q+1N τ
n ,

where for ν > 0 fixed, the last inequality holds if N is big enough.

9.6.2. Estimates. — In view of corollary 9.14, we have the following sit-
uation. A cocycle (α, AeU(·)) = (α, A1eU1(·)) ∈ SW∞(T, G) is given, and we
want to construct inductively a sequence of 1-periodic conjugations

Ln(·) = Gn(·)...G1(·) = Cn(·)e−Hn ·eYn(·)...C1(·)e−H1 ·eY1(·)

such that

(α, A1e
U1(·)) = ConjLn(·)(α, Ane

Un(·)).
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At each step, Yn(·) is to be given by the local conjugation lemma 9.13, the
cD-periodic torus morphism e−Hn · reduces the obstructions of Un(·) seen as
a perturbation of the constant cocycle (α, An), and Cn(·) commutes with

An+1 = e−HnαAn exp(Ad(e−H ·).Obn Un(·)) and Cn(1) = e−Hn ,

so that Gn(·) and consequently Ad(Gn(·)) are 1-periodic.
Let us now express the inductive estimates at the n-th step as a function

of Nn. The corollary 9.14 is applicable at the step n if

c1,0Kn(N
u
n,q)

2εn,0 < 1

or, with a different constant c1,0,

(46) c1,0N
τ+ν+2
n εn,0 ≤ 1.

We find that

εn+1,s ≤ c2,sN
2τ+2ν+2
n (N s

nεn,0 + εn,s)εn,0 + Cs,s′N
s−s′+2
n εn,s′ ,

∥Gn(·)∥s ≤ c1,sN
τ+ν+s+

1
2

n εn,0 + c3,sN
s+

1
2

n ,

or, in the form of the estimates as they appear in theorem 9.15

(47) εn+1,s ≤ Cs,s(N
2τ+2ν+2+s
n ε2n,0 +N2τ+2ν+2

n εn,0εn,s +N2−(s−s)
n εn,s)

Therefore, the estimates satisfy the hypotheses of theorem 9.15 with

a = 2τ + 2ν + 2, M = 1 = σ0 = 1, m = 0, µ = 1, µ = 0

and with these choices, we can determine σ as in theorem 9.15.

9.6.3. Iteration and convergence. — A choice of a big enough
N ≥ Cs0 implies that the smallness condition (46) is satisfied provided

that ε0,0 ≤ N− s0
g . Therefore, the scheme can be initiated, and the remark

following theorem 9.15 justifies the application of corollary 9.14 at each step,
and consequently the inductive estimates in equation (51) are valid.

Therefore, 9.15 is applicable and gives that, for all s ∈ N,

εn,s = O(N−∞
n ),

i.e. that for any s ∈ N and for any σ ∈ N , there exists a positive constant
C = C(s,σ) such that

εn,s ≤ CN−σ
n .

For shortness, we will write ∥Un(·)∥ = OC∞(N−∞
n ).
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9.6.4. Proof of theorem 9.1. — A direct consequence of the application
of the generalized K.A.M. scheme of theorem 9.15 is the proof of theorem 9.2,
since the convergence of every εn,s with s fixed and n → ∞ is precisely the
definition of almost reducibility.

The fact that εn,s converges exponentially fast to 0 becomes important in
the proof of the local density theorem:

Proof of theorem 9.1. — In the previous section, we obtained that, if U1(·)
satisfies the smallness conditions of theorem 9.15, we can construct a sequence
of conjugations Ln(·) ∈ C∞(cT, G) such that

∥Ln(·)∥s # nN s
n,

(α, A1e
U1(·)) = ConjLn(·)(α, Ane

Un(·)),

∥Un(·)∥s = O(N−∞
n ).

We have constructed the sequence of conjugations Ln(·) satisfying

A1e
U1(·) = Ln(· + α)Ane

Un(·)L∗
n(·)

= Ln(· + α)AnL
∗
n(·)eŨn(·),

where Ũn(·) = Ad(Ln(·))Un(·). Since∥∥∥Ũn(·)
∥∥∥
s
# εn,s + nN s

nεn,0

we obtain directly that Ũn(·) → 0 in the C∞ topology. Therefore,

Ln(· + α)AnL
∗
n(·) −→ A1e

U1(·),

and by construction the cocycles

(α, Ln(· + α)AnL
∗
n(·))

are reducible.

The proof of the global analogues of the theorems are obtained in the same
way as theorem 8.4 from theorem 8.3, and we only point out that the local
theorems are true for cocycles in SW(Td, G) for any d ∈ N∗, the only difference
being that the loss of derivatives in the local conjugation lemmas is s + 1

2d
in place of s + 1

2 and the resulting non-significant changes in the choice of
constants in the K.A.M. scheme.
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CHAPTER 10

PERTURBATIONS OF SINGULAR GEODESICS

We now return to the study of the non-local problem. More specifically,
we take up the local study the remaining case of singular geodesics, which is
the final step for the proof of the theorem on the global density of reducible
cocycles and its consequences.

In this setting, we suppose that er is a singular vector in g, so that neither
of the factors in the splitting G0 × G+ is trivial. The models toward which
renormalization converges, modulo an iteration at most χG0 times, are of the
form Er(·)A, where Er(·) and A commute.

We fix t, a maximal toral algebra in g and T the corresponding torus passing
by A. We can therefore, write such a cocycle in the form

(α, Er(·).A.eU(·))

where A ∈ T and U(·) is small in the C∞ topology.
The particularity of the local study of singular geodesics is the coexistence

of local and global phenomena, which demands a posteriori estimates on the
rest, as in the study of regular geodesics, together with a reduction scheme as
in the local case. The independence of the two parts of the dynamics in the
first order allows us, however, to apply separately the reduction within G0 and
within the directions that do not commute with G+.

10.1. Notation

Throughout this chapter, we suppose given a 1-periodic perturbation of a
1-periodic geodesic of the form

(χα̃, Eχr̃(·)A exp(U(·))),
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where Er(·) and A commute, and 1 ≤ χ ≤ χ0. We call

(α, Er(·)A exp(Ũ(·))) = (χα̃, Eχr̃(·)A exp(U(·))).

We also suppose that α ∈ DC(γ, τ), i.e.

|kα|Z = dist(kα,Z) ≥ γ−1

|k|τ .

This is implied by the hypothesis that α̃ ∈ DC(γ̃, τ), only with a different
constant γ. We also suppose that er is singular, so that the corresponding
splitting G0 ×G+ has no trivial factors.

We remind that we denote by w (w0) the rank of G (resp. G0), by q (resp. q0)
the number of positive roots of G (resp. G0), and by f (resp. f0) the dimension
of the real vector space g (resp. g0). If ∆̃ are the roots in a Weyl basis, we denote
by ∆̃0 the roots in the corresponding basis of the root system of t0 = t ∩ g0,
by I(0) the positive roots of G0 and I(+) = ∆+ \ I(0). In other terms,

I(+) = {ρ ∈ ∆+, ρ(er) ̸= 0}, I(0) = {ρ ∈ ∆+, ρ(er) = 0}.

We also remind that for ρ′ ∈ I(0), there exist positive integers (mρ′,ρ)ρ, ρ′ ∈ I(0)

such that

ρ′ =
∑

∆̃0

mρ′,ρρ,

there exist rational numbers pρ′,ρ = qρ′,ρ/D0 with |qρ′,ρ| ≤ b0, such that

Hρ′ =
∑

∆̃0

pρ′,ρHρ,

where D0, b0 ∈ N∗ are considered fixed. The matrices in these relations are
submatrices of the matrices satisfying the same relations in g, and consequently
D0 ≤ D and b0 ≤ b.

We also define the orthogonal projections (1)

π0 : g → g0 and π+ = Id−π0.

As we have already seen in the concrete examples in chapter 4.2, the
vectors Hρ corresponding to roots in ∆̃ \ ∆̃0 do not form a basis of g+.
This fact is nonetheless not significant, so we complete the basis (Hρ)ρ∈∆̃0

to (Hρ)ρ∈∆̃, a basis of g, with a set of orthonormal vectors in g+, indexed by

roots in ∆+ \ ∆̃0, even though the completion of the basis is non-canonical.
On the other hand, wherever the properties of the vector er are important,

the reader should rather think in terms of the dual of the Weyl’s basis of t

1. Note that π+ is not a projection on g+ but on (g0)
⊥.
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extending that of t0, even though this basis is not used explicitly. The complex
directions jρ ∈ g, ρ ∈ ∆̃ are those associated to such a Weyl’s basis of t.

We also use the notation

c0 = cG0 and Z = Z0
G(exp(Rer)).

10.2. Synopsis of the chapter

In a first time, as in the previous chapters, we prove the local almost re-
ducibility to normal forms in the case of singular geodesics:

Theorem 10.1. — Let α ∈ DC(γ, τ) and r ∈ Nw such that Er(·) be a 1-
periodic singular geodesic and A ∈ Z0

G(exp(Rer)) = Z. Then, there exist ϵ > 0
and s0 ∈ N∗ such that if

∥U(·)∥0 = ε0 < ϵ, ∥U(·)∥s0 = εs0 < 1

and the cocycle (α, Er(·)AeU(·)) is of degree r, then it is almost reducible
to (α, Er(·)A′) where also A′ ∈ Z: There exists a sequence of conjugations
Bn(·) ∈ C∞(T, G) and a sequence of constants An ∈ Z, such that

((Er(·)An)
∗
(
Bn(· + α).Er(·)AeU(·).B∗

n(·)
)
−→ Id

in C∞(T, G).

We point out that the failure of exact reducibility to the normal form is
due to small divisor phenomena in G0. All the complications in this part of
the theory, in comparison with the theory of regular geodesics, are due to
the presence of the non-trivial factor G0. Consequently, all the proofs and the
statements of the theorems stand between the simplicity and the sharpness of
those in chapter 8 and the complications of the local theory of the previous
chapter.

Besides almost reducibility to periodic geodesics, we can also obtain the
local density of cocycles reducible to periodic geodesics in the class of cocycles
of degree r:

Theorem 10.2. — Let α ∈ DC(γ, τ), r ∈ Nw such that Er(·) be a 1-periodic
singular geodesic and A ∈ Z. Then, cocycles reducible to (α, Er(·)A′) where
A′ ∈ Z are dense in the class of cocycles of the form (α, Er(·)AeU(·)) which are
of degree r and U(·) satisfies the smallness conditions of the previous theorem.
More formally, The closure of

{ConjB(·)(α, Er(·)A′), B(·) ∈ C∞(T, G), A′ ∈ Z}
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in SW∞
α contains all cocycles in

{(α, Er(·)A).eU(·)), A ∈ Z, U(·) ∈ C∞(T, G),

ε0 < ϵ, εs0 < 1, deg(α, Er(·)A).eU(·)) = r}.

The proof of this theorem is obtained by the comparison of the rate of
convergence of the scheme with the explosion of the norms of the reducing
conjugations, exactly as in the local theory.

As previously, if we relax the arithmetic condition on the frequency
to a RDC, we obtain the global analogues of these theorems, namely

Theorem 10.3. — Let α ∈ RDC and (α, A(·)) ∈ SW∞(T, G) be of degree
r ∈ Nw such that Er(·) be a 1-periodic singular geodesic. Moreover, let m ∈ N∗

be the minimal natural number such that (α, A(·))m is homotopic to the Id.
Then, there exists χ ∈ N, with 1 ≤ χ ≤ m and χ|m, such that (α, A(·))χ can be
conjugated arbitrarily close in C∞(T, G) to cocycles of the form (χα, Eχr(·)A),
where A ∈ Z.

We also prove the theorem:

Theorem 10.4. — Let α and (α, A(·)) as in the previous theorem. Then,
for the same χ ∈ N∗, (α, A(·))χ is accumulated in SW∞

χα(T, G) by cocycles
conjugate to (χα, Eχr(·)A) in SW∞

χα(T, G), where A ∈ Z.

Finally, we state the corollary:

Corollary 10.5. — Let α ∈ RDC and (α, A(·)) ∈ SW∞(T, G) be of positive
energy, and m as above. Then, there exists χ ∈ N, with 1 ≤ χ ≤ m such that
(α, A(·))χ is accumulated in C∞(T, G) by cocycles of smaller energy.

Proof. — Since (α, A(·))χ is almost reducible to a cocycle of the form
(α, Er(·)A) where Ad(A).er = er, and for all a ∈ g small enough and such
that [a, er] ̸= 0, (χα, Eχr(·)Aea) is of smaller energy than (α, A(·))χ, the
result follows.

We can now obtain the main theorem of this mémoire, the theorem of global
density of reducible cocycles, assuming the proofs of the theorems previously
stated in this section.
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10.3. Proof of the global density theorem

The proof of theorem 3.16 is in fact a finite induction argument and uses
the yet unproven theorems of this chapter, as well as the theorems proved in
chapters 8 and 9.

Proof. — Let (α, A(·)) ∈ SW∞(T, G). If the cocycle is of energy 0, the con-
clusion of the theorem is true by the theorems proved in the study of the local
case, see the synopsis of chapter 9, and more specifically theorem 9.3.

If the cocycle is of degree r ̸= 0, then, by corollary 10.5, there exists 1 ≤ χ ≤
min(m,χ0) and χ|m such that (α, A(·))χ is accumulated by cocycles of smaller
energy. Let us consider (χα, A′(·)), a perturbation of (α, A(·))χ, and assume
that en(χα, A′(·)) > 0, since if en(α, A′(·)) = 0 the proof is concluded. If
en(χα, A′(·)) > 0, we need to renormalize (χα, A′(·)). Since we want to relate
the result of the renormalization scheme with the dynamics of the cocycle
(α, A(·)), we cannot apply the continued fractions algorithm to χα ∈ T, even
though (χα, A′(·)) ∈ SW∞

χα(T, G). We can, nonetheless, consider χα ∈ χT,
which places (χα, A′(·)) ∈ SW∞

χα(χT, G). Rescaling by χ we obtain the cocycle
(α, A′(χ−1 ·)) ∈ SW∞

α (T, G), which is of smaller energy than (α, A(·)), and
whose order in the homotopy group is smaller.

If to (α, A(·)) we associate the splitting of the dynamics G0 × G+ ↪→ G,
and to (α, A′(χ−1 ·)) the splitting G′

0 × G′
+ ↪→ G, we find that G0 ↪→ G′

0

in a canonical way. This is due to the fact that the splitting is preserved by
renormalization, since the degree is preserved. Therefore, if r′ is the degree of
(α, A′(χ−1 ·)), G′

0 (or rather g′0) is characterized by the equation [er′ , s] = 0
for s ∈ g. This equation is satisfied for all s ∈ g such that [er, s] = 0, since the
perturbations that decrease the energy of the cocycle (α, A(·)) do not commute
with er. More informally, such perturbations shrink G+ and and consequently
make G0 grow.

If we denote by χ′ the natural number associated to (α, A′(χ−1 ·)), χ di-
vides χ′ and thus

(α, A(·))χ′
= (χα, Aχ(·))χ

′/χ

is accumulated in SW∞
χ′α(χT, G) by cocycles of energy smaller than

en(α, A′(χ−1 ·)), just by virtue of the corresponding theorem of accumu-
lation by cocycles of smaller energy applied to (α, A′(χ−1 ·)).

Since the perturbations can be chosen arbitrarily small, we can repeat this
step a finite number of times, until we obtain a cocycle for which en = 0, or,
equivalently, G′

+ = {Id} and G′
0 = G.
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10.4. Strategy of the proof of theorem 10.1

As announced in the previous chapter, the proof local almost reducibility
to singular geodesics consists essentially in a parallel reduction of the positive
and 0-energy parts of the perturbation. The linear equation corresponding to
the first part is the one encountered in chapter 8, while the one corresponding
to the latter is that of the local theory.

This coexistence of close-to-constants and far-from-constants dynamics does
not allow the use of an inverse function theorem as in the case of regular
geodesics, since the reduction of resonant modes in G0 has to be treated with
non-converging conjugations. As we will see, this forces a non-uniform choice
for the spectral support of the obstructions, since the reduction of resonant
modes does not commute with all jρ, ρ ∈ I(+). This is in fact a sufficient
reason for the inapplicability of the inverse function theorem, as we know that
reduction of resonant modes cannot be avoided for generic cocycles. We also
need to adapt the a priori estimates obtained for perturbations of regular
geodesics (see chapter 7) in order to control the obstructions in the positive-
energy regime, as perturbations within G0 will increase the energy of the path.

In order to cope with these problems, we use the K.A.M. scheme of the
previous chapter combined with the one described in [31], after having proved
that the local reduction lemmas for local and non-local dynamics can actually
be combined.

Let us, therefore, consider

(α, A(·)) = (α, Er(·)A exp(U(·))),

a 1-periodic perturbation of a singular geodesic, and assume that a Y (·) : T → g,
small enough, can reduce the perturbation U(·) to V (·), with V (·) of second
order with respect to U(·). Let us call (α, A′(·)) the cocycle thus obtained.
The equation satisfied by such a conjugant is

eY (·+α).Er(·)A.eU(·).e−Y (·) = Er(·)A′.eV (·).

Linearization of this equation under the smallness assumptions implies that
such a Y (·) must satisfy the equation

(48) Ad(E∗
r (·)A∗).Y (· + α)− Y (·) = −U(·).

The linearized equation then decomposes into two different types of equations
(and a third for the coordinates in the torus) as follows.
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Projection of the equation on g0 and introduction of some obvious notation
gives

Ad(A∗)Y (0)(· + α) + U (0)(·)− Y (0)(·) = Ob0U(·) +R0,(kA)
Ni+1

U(·),

where Y (·) satisfies good estimates and the cocycle (α, A.eOb0 U(·)) is reducible
by B(·) : c0D0T → G0 ↪→ G.

Projection of the equation on the positive energy component gives

Ad(Er(·)∗.A∗).Y (+)(· + α) + U (+)(·)− Y (+)(·)

= Γr̃U
(+)(·) +

∑

∆++

Û t
ρ(0).Hρ +

∑

∆++

RNi+1Uρ(·)jρ

= Ob+ U(·) +
∑

∆++

RNi+1Uρ(·)jρ.

If, now, we call ObU(·) = Ob0 U(·) + Ob+ U(·), we find that

Conjexp(Y (·))(α, Er(·)AeU(·)) = (α, Er(·)A′eObU(·)eV (·)),

where ObU(·) is of the order of U(·), and V (·) is of second order. Since, how-
ever, π0ObU(·) = Ob0 U(·) may not be constant, the length of the paths A′(·)
and A′

2(·) will be greater than |er| and 2|er| respectively, and therefore the a
priori estimates cannot give any additional information.

This fact shows that, before applying the a priori estimates, we have to
reduce the 0-energy part of the obstruction. This reduction may translate
the positive energy part of the obstruction, since ρ(H) may be non-zero also
for roots in I(+). This fact forces a modification in the definition of the opera-
tor Γr̃, so that, the frequencies of Ad(e−H ·).Γr̃ belong to the standard intervals
[0,−rρ − 1] ∩ Z or [−rρ + 1, 0] ∩ Z, depending on the sign of rρ (see defini-
tion 7.3). Moreover, since the conjugation (called C(·) in lemma 9.9) takes
values in a different torus, it may mix the frequencies of the positive energy
obstructions, so we need to apply the estimates for a D-periodic perturbation
of the geodesic, obtain their smallness, and then regain periodicity.

The conjugation lemma that we obtain this way gives rise to a slightly non-
standard K.A.M. scheme for the following reason. We have no direct estimates
for the C0 norm of the perturbation after conjugation, and we cannot have
any, since the only way to control it is through the C1 norm. Therefore, the
Kolmogorov-Hadamard interpolation inequalities have to be applied between
the C1 and Cs0 norms, instead of C0 and Cs0 , and we can then use the fact
that the C0 norm of the first derivative controls the C0 norm of the function
in order to gain smallness of all norms and continue the procedure.
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10.5. A priori estimates

In this section we adapt the apriori estimates obtained for perturbations
of regular geodesics in the case of perturbations of singular geodesics, and we
prove a similar lemma. The differences are in fact due to the different definition
of the truncation operator, taking into account the fact that er is singular,
and to the fact that perturbations of longer periods need to be considered.
Therefore, in what follows we let U(·) : PT → g, where P ∈ N∗.

10.5.0.1. Estimates on the energy of the path. — If U(·) is small and P -
periodic, then the path

A(·) = EPr(·).A.eŨ(·),

where Ũ(·) = U(P ·) is 1-periodic. We remind that, since

U(·) =
∑

ρ∈∆̃

∑

k∈Z
Û t
ρ(k)e

2iπP−1k·Hρ +
∑

ρ∈∆+

∑

k∈Z
Ûρ(k)e

2iπP−1k·jρ,

where Û (t)
ρ (k) =

∫ 1
0 U (t)

ρ (P ·)e−2iπk· we find immediately that

Ũ(·) =
∑

ρ∈∆̃

∑

k∈Z
Û t
ρ(k)e

2iπk·hρ +
∑

ρ∈∆+

∑

k∈Z
Ûρ(k)e

2iπk·jρ

Estimation of its energy gives

∥a(·)∥2L2 = P 2 en2+2

∫
⟨ePr, ũ(·)⟩+ ∥ũ(·)∥2L2 .

This last equation implies that, in the first order, the projection of u(·) on g0
contributes only (positively) in the term ∥u(·)∥2L2 , and not in

∫
⟨er, u(·)⟩, which

justifies the notation

I(+) = {ρ ∈ ∆+, ρ(er) ̸= 0}, I(0) = {ρ ∈ ∆+, ρ(er) = 0}.

We also modify the definition of the truncation operators:

Definition 10.6. — Let r̃ρ ∈ Z∗ for ρ ∈ I(+), and P ∈ N∗. We will call
IP,ρ = {1, 2, ...− r̃ρP +1} if r̃ρ < 0, and IP,ρ = {−1,−2, ..,−r̃ρP −1} if r̃ρ > 0.
We also let ΛP r̃ and ΛP,ρ be the truncation operators

ΛP r̃U(·) =
∑

ρ∈I(+)

ΛP,ρUρ(·)jρ =
∑

ρ∈I(+)

∑

k∈IP,ρ

Ûρ(k)e
2iπk·jρ.
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We will also use the non-homogeneous truncation operator (2)

Λ0
P r̃U(·) =

∑

ρ∈I(+)

Λ0
P,ρUρ(·)jρ = ΛP r̃U(·) +

∑

ρ∈I(+)

Ûρ(0)jρ.

A calculation similar to the one made in the regular case gives

∥a(·)∥2L2 = P 2 en2+
∑

ρ∈I(+)

4π2P r̃ρ
∑

k∈Z
k|Ûρ(k)|2)

+
∑

ρ∈∆+

∑

k∈Z
4π2k2|Ûρ(k)|2 + ∥∂πtŨ(·)∥2L2 +O(∥Ũ∥3H1)

and the resulting bound

∥a(·)∥2L2 ≤ P 2 en2−
∑

ρ∈I(+)

4π2∥ΛPrŨ(·)∥2L2 + ∥∂(Id−ΛP r̃)Ũ(·)∥2L2 +O(∥Ũ∥3H1)

so that the following lemma is true:

Lemma 10.7. — Let (α, Er(·)A exp(U(·))) of degree r and U(·) ∈ C∞(PT, g)
be such that U(P ·) is small enough in H1. Then, there exists a positive con-
stant such that

∥ΛP r̃U(P ·)∥L2 # ∥∂(Id−ΛP r̃)U(P ·)∥L2 .

The dependence of the constant on P is not important for us, since in fact
P = D, the loss of periodicity in the reduction of resonant modes.

10.5.0.2. Estimation of the energy of the second iterate. — We use the bound
on the L2 norm of the derivative, obtained in the case of perturbations of
regular geodesics

∥a2(·)∥2L2 ≤ 4P 2 en2

+ C1∥∂Ũ(·)∥2L2 − C2∥[er, Ũˆ(0)]∥
(
∥[er, Ũˆ(0)]∥ − ∥∂Ũ(·)∥L2

)

Since ∥[er, Ũˆ(0)]∥2 =
∑

ρ∈I(+) 4π2r̃2ρ|Ûρ(0)|2, the following lemma holds.

Lemma 10.8. — Let (α, Er(·)AeŨ(·)) be a P -periodic perturbation (small
enough in H1) of the cocycle (α, Er(·)A). Let also, without loss of generality,
Û(0) be orthogonal to er and

∑
ρ∈I(+) |Ûρ(0)|2 ̸= 0. Then, there exists a

constant C0 depending only on r such that if

∥∂Ũ∥2L2 ≤ C0

∑

ρ∈I(+)

|Ûρ(0)|2

then (α, Er(·)AeU(·)) is of energy strictly smaller than that of (α, Er(·)A).

2. The superscript 0 does not refer to g0.
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10.5.0.3. Conclusion. — In the same way, we conclude that the following a
priori estimate holds for perturbations of singular geodesics, which is to be
compared with lemma 7.1.

Lemma 10.9. — There exists a positive constant C, depending on r but not
on A and U(·), such that if (α, Er(·)AeU(·)) is of degree r, where U(·) is
P -periodic and small enough in H1, then it satisfies

∥∥Λ0
P r̃U(P ·)

∥∥
L2 ≤ C∥(Id−ΛP r̃)∂U(P ·)∥L2 .

We remark that the only difference with the estimates obtained previously
is in the fact that the perturbation within g0 contributes only in increasing the
energy of the path. This is expressed in the estimates by the fact that functions
in g0 are in the kernel of the truncation operator ΛP r̃. Since these estimates
give no information on the pertrubation if the order of the perturbation in g0
is bigger than the one not commuting with g+, we need to reduce both parts.

10.6. Local conjugation lemma

Let us assume that a Y (·) : T → g, small enough, can reduce the per-
turbation U(·) to V (·) with V (·) ≪ U(·). The equation satisfied by such a
conjugant is

eY (·+α).Er(·).A.eU(·).e−Y (·) = Er(·).A′.eV (·)

or

(Ad(E∗
r (·)A∗)eY (·+α)).eU(·).e−Y (·) = A∗A′.eV (·).

Linearization of this equation under smallness assumtions implies that such
a Y (·) must satisfy the equation

Ad(E∗
r (·)A∗).Y (· + α)− Y (·) = −U(·).

Let us introduce the coordinates

U(·) =
∑

ρ∈∆̃

U t
ρ(·)Hρ +

∑

ρ∈∆+

Uρ(·)jρ,

where as usual U t
ρ(·) are real and Uρ(·) complex periodic functions. We will

write Y (·) in an analogous way. The linearized equation then decomposes in
three different types of equations as follows.

The simpler case is that of the diagonal part, which reads

Y t
ρ(· + α)− Y t

ρ(·) = −U t
ρ(·),
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for which we refer the reader to lemma 3.4. In a similar way, if ρ ∈ I(+),
i.e. if ρ(er) ̸= 0, then the equation in the direction jρ is of the type of the
lemma 8.6. Finally, for roots in I(0), we refer to proposition 9.13.

Putting all the corresponding estimates together gives the following lemma
concerning the solution of the linearized equation.

Lemma 10.10. — Let α ∈ DC(γ, τ) and (α, Er(·).A.eU(·)) ∈ SW∞(T, G) and
K ≥ 2τ+1γb̃q0+1

0 N τ . We remind that we call εs = ∥U∥s. Then, there exists
0 ≤ i ≤ q0 and mapping Y (·) ∈ C∞(T, g) and U ′(·) ∈ C∞(T, g) such that

Ad(E∗
r (·).A∗)Y (· + α) + U(·)− Y (·) = ObU(·) + R̃nU(·),

Conjexp(Y (·))(α, Er(·).A.eU(·)) = (α, Er(·).A.eObU(·).eU
′(·)).

The conjugant Y (·) satisfies the estimates

∥Y (·)∥s ≤ c1,sK(Nu
i )

s+
1
2 ε0.

The mapping ObU(·) = Ob(α,Er(·).A) U(·) satisfies the property that there
exists a torus morphism B(·) : c0D0T → G0 ↪→ G such that

(49)

{ πg0(Ad(B(·))ObU(·)) = U0 ∈ g0 ⊕ g+,

Λ0
D0r̃

(Ad(B(·))ObU(·)) = Ad(B(·))ObU(·)− U0.

We have the following estimates

∥ObU(·)∥s ≤ CsN
s+

1
2

i ε0,

∥R̃NU(·)∥s ≤ Cs,s′(N
l
i+1)

s−s′+2εs′ ,

ε′s ≤ c2,sK
2(Nu

i )
2((Nu

i )
sε0 + εs)ε0 + Cs,s′(N

l
i+1)

s−s′+2εs′ .

We remind that Ni+1 = b̃0Ni, Nu
i = Ni +Ni+1, and N l

i = Ni −Ni−1.

Proof. — The coordinates Y t
ρ(·), ρ ∈ ∆̃, as has been shown, satisfy the equa-

tion

Y t
ρ(· + α) + U t

ρ(·)− Y t
ρ(·) = Û t

ρ(0) +RNiU
t
ρ(·)

for which the estimates follow directly.
We now focus on the roots in I(0). Following the solution of the linear

equation in the close-to-constants case, we chose a suitable i between 0 and q0
and partition the roots in I(0) into I(0)res∪I(0)nr , the resonant and the non-resonant
ones. We also define Ob0, the projection operator on C∞(T, g0) which projects
to the resonant modes k = (kρ)ρ∈I(0) and the constant ones for roots close
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to 0. Finally, we use the truncation operator R(k),0
Ni+1

on C∞(T, g0). With these
notations, we have

∑

ρ∈I(0)
[Ad(A∗)Yρ(· + α) + Uρ(·)− Yρ(·)]jρ = Ob0 U(·) +R(k),0

Ni+1
U(·).

As in local theory (see proposition 9.13), there exists a torus morphism B(·) :
c0D0T → G0 satisfying

|LB(·)| ≤ b0D0Ni

and such that

Ad(B(·))Ob0 U(·) = U0

a constant in g0. The announced estimates on ε′s, Ob0 U(·) = π0ObU(·) and
the conjugation are obtained in the same way as in the proposition treating
the purely local case.

Finally, we consider the roots in I(+) and define the integers k′ρ for such
roots by the relation

[LB(·), jρ] = 2iπ
k′ρ
D0

jρ.

Clearly, if k′ρ is non-zero, the reduction of resonant modes in G0 translates the
Fourier coefficients of the rest of the linear cohomological equation for roots
in I(+). The a priori estimates of lemma 10.9, however, give us information
only on a part of the spectrum of the perturbation determined by r. In order
to take this effect into account, we need to translate the rest of the equation

by − k′ρ
D0

in each direction, which amounts in fact to resolving the auxiliary
equation

∑
ρ∈I(+)

[Ad(A∗E∗
r (·))Ỹρ(· + α) + Uρ(·)− Ỹρ(·)]jρ

= Ad(B(·))
∑

ρ∈I(+)
Uρ(·)jρ + ΓD0r[Ad(B(·))

∑
ρ∈I(+)

Uρ(·)jρ],

for which the given function function Ũ(·) = Ad(B(·))
∑

ρ∈I(+) Uρ(·)jρ satis-

fies the estimate ε̃s ≤ CsN
s+

1
2

i εs, since its Fourier coefficients are translated.

By solving this equation, we obtain a rest corresponding to Ũ in standard con-
figuration. If we conjugate the equation back by Ad(B∗(·)), we obtain Yρ(·)

∑
ρ∈I(+)

Yρ(·)jρ = Ad(B∗(·))
∑

ρ∈I(+)
Ỹρ(·)jρ,

which solves the cohomological equation for U(·) but with a translated rest.
The rest Ad(B∗(·)).ΓD0r[Ũ(·)] has the appropriate spectral support for equa-
tion (49) to be satisfied. The periodicity is regained in the same way as in the
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local case, since the mapping Ỹρ(·) is obtained by simple operations on the
Fourier coefficients of

Ad(B(·))
∑

ρ∈I(+)
Uρ(·)jρ,

which commute with algebraic conjugation by Ad(B(·)).
This translation deteriorates the estimates for the rest obtained in propo-

sition 8.6 for Cs norms by a factor (b0Ni)
s+

1
2 , while the rest of the estimates

remain as in the proposition.
This last part is proved in more detail in lemma 11.3 in the appendix, for

the sake of completeness.

We remark that, by using smallness assumptions on the C1 norm of the
perturbation, we can show that the significant part of the obstruction is its
projection on g0, i.e. that ObU(·)−Ob0 U(·) is of the order of U ′(·). Therefore,
the non-constant part of the rest in the complement of g0 can be incorporated
to U ′(·), thus giving the cocycle (α, Er(·).A.eOb0 U(·)eU

′(·)) where

(α, Er(·).A.eOb0 U(·))

= ConjB(·)(α, Er(·).B(α)A. exp
( 1

D0

∫ D0

0
Ad(B(·))Ob0 U(·))

)

so that the following corollary is true.

Corollary 10.11. — Let α ∈ DC(γ, τ),

A ∈ Z = ZG(exp(Rer), (α, Er(·).A.eU(·)) ∈ SW∞(T, G)

be of degree r, and K ≥ 2τ+1γb̃q0+1
0 N τ . Let, also,

c1,0K(Nu
q0)

3ε1 < 1,

where εs = ∥U∥s. Then, there exists 0 ≤ i ≤ q0 and a conjugation

G(·) = C(·)B(·)eY (·) ∈ C∞(T, g)

such that

G(· + α)Er(·)AeU(·)G∗(·) = Er(·)A′eU
′(·)

where also A′ ∈ Z. The conjugant G(·) satisfies the estimates

∥G(·)∥s ≤ c1,s(K(Nu
i )

s+ 1
2 ε0 +N

s+ 1
2

i ).

Finally, if we call

ε̃s = ∥∂U(·)∥s, ε̃′s = ∥∂U ′(·)∥s, ε′0 = ∥U ′(·)∥0,
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we have the following estimates:

ε′0 ≤ C2ε̃
′
0,

ε̃′s ≤ c2,sK
2(Nu

i )
2((Nu

i )
sε̃0 + ε̃s)ε̃0 + Cs,s′(N

l
i+1)

s−s′+2ε̃s′ .

We note that the smallness condition is now imposed on ε1, so that the
a priori estimates can be applied. If we admit an a priori bound on ε0, the
ε1 in the smallness condition can be substituted by ε̃0. We also note that the
quantities with tildes are the norms of the derivative of the perturbation.

Proof. — We need only to show that the positive energy part of the obstruc-
tion π+ObU(·) is of second order with respect to U(·). By construction of
the mappings,

B(· + α)eY (·+α)Er(·)AeU(·)e−Y (·)B∗(·) = Er(·)AeAd(B(·))ObU(·)eŨ
′(·)

= Er(·)A′eΛ
0
D0r̃

Ad(B(·)))ObU(·)eŨ
′(·),

where A′ = A exp(Ad(B(·)).Ob0 U(·)) ∈ Z is a constant, and δ′s = ∥Ũ ′(·)∥s
satisfies

δ′s ≤ c2,sK
2(Nu

i )
2((Nu

i )
sε0 + εs)ε0 + Cs,s′(N

l
i+1)

s−s′+2εs′ .

Under the assumption that δ′1 ≤ C, where C ≪ 1 is a fixed positive num-
ber, condition which is implied by the smallness assumption of the statement,
c1,0K(Nu

q0)
3ε1 < 1, the a priori estimates (lemma 10.9) are applicable and give

∥Λ0
D0r Ad(B(·))Ob+ U(·)∥0 ≤ C1∥∂Ũ ′(·)∥0.

Therefore, if we call

U ′(·) = exp−1(eAd(B(·))ObU(·)eŨ
′(·)), ε̃s = ∥∂U(·)∥s, ε̃′s = ∥∂U ′(·)∥s,

we have

ε′0 ≤ C2ε̃
′
0, ε̃′s ≤ c2,sK

2(Nu
i )

2((Nu
i )

sε̃0 + ε̃s)ε̃0 + Cs,s′(N
l
i+1)

s−s′+2ε̃s′ ,

where we have used the a priori bound for ε0.
Finally, conjugation by C(·) deteriorates the estimations by multiplicative

constants and regains periodicity.

10.7. Iteration and conclusion

10.7.1. Choice of constants. — We now fix some notation similar to the
one in the previous chapter. We call

ε̃n,s = ∥∂Un(·)∥s and εn,0 = ∥Un(·)∥0.
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We also define the sequence of orders of truncation Nn and the diophantine
constants Kn as before

Kn = N τ+ν
n , Nn = N (1+σ)n−1

, N l
n,i ≥ Nn, Nu

n,i ≤ 2b̃q+1Nn,

where for ν > 0 fixed, Kn ≥ 2τ+1γb̃q0+1
0 N τ

n provided that N is big enough.

10.7.2. Estimates. — We now wish to apply the corollary 10.11 to the
cocycle

(α, Er(·).A.eU(·)) = (α, Er(·).A1.e
U1(·)) ∈ SW∞(T, G),

where A ∈ ZG(exp(Rer)) in order to construct inductively a sequence of 1-
periodic conjugations

Ln(·) = Gn(·)...G1(·) = Cn(·)e−Hn ·eYn(·)...C1(·)e−H1 ·eY1(·)

such that

(α, Er(·).A1.e
U1(·)) = ConjLn(·)(αEr(·).An.e

Un(·))

with An ∈ ZG(exp(Rer)) and Un(·) → 0 in C∞ faster than the rate of growth
of Ln. At each step, Yn(·) is to be given by the local conjugation lemma 10.10,
B(·) reduces the obstructions in g0, and C(·) regains periodicity of the conju-
gants.

Let us therefore express the inductive estimates and smallness conditions at
the n-th step as a function of Nn. Firstly, we admit a bound ∥U1∥0 ≤ C0 ≪ 1,
which also has to be proven uniform for all n. If this is the case, the lemma of
local reduction is applicable at the step n if

c1,1Kn(N
u
n,q)

3ε̃n,0 < 1

or, with a different constant c1,1,

(50) c1,1N
τ+ν+3
n ε̃n,0 < 1.

We find that

ε̃n+1,s ≤ c2,sK
2
n(N

u
n,q0)

2((Nu
n,q0)

sε̃n,0 + ε̃n,s)ε̃n,0 + Cs,s′(N
l
n,q0+1)

s−s′+2ε̃n,s′ ,

εn+1,0 ≤ C2ε̃n+1,0,

or, since Nu
n,q0 and N l

n,q0 are of the order of Nn,

ε̃n+1,s ≤ c2,sK
2
n(Nn)

2((Nn)
sε̃n,0 + ε̃n,s)ε̃n,0 + Cs,s′(Nn)

s−s′+2ε̃n,s′ ,

εn+1,0 ≤ C2ε̃n+1,0,

or, in the form of the estimates as they appear in theorem 9.15

(51) ε̃n+1,s ≤ Cs,s(N
2τ+2ν+2+s
n ε̃2n,0 +N2τ+2ν+2

n ε̃n,0ε̃n,s +N2−(s−s)
n ε̃n,s).
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Therefore, the estimates satisfy the hypotheses of theorem 9.15 with

a = 2τ + 2ν + 3, M = 1 = σ0 = 1, m = 0, µ = 1, µ = 0,

and with these choices, we can determine σ as in theorem 9.15.

10.7.3. Iteration and convergence. — A choice of a big enough N ≥ Cs0

implies that the smallness condition 50 is satisfied provided that ε̃0,0 ≤ N− s0
g .

Therefore, the scheme can be initiated, and the remark following theorem 9.15
justifies the application of corollary (10.11) at each step, and consequently the
inductive estimates in equation (51) are valid. It is crucial that at each step
the estimate εn,0 ≤ C2ε̃n,0 implies that the C0 norm, which we do not control
directly dies out along with the C0 norm of the first derivative, so that the
use of the a priori estimates is justified.

Therefore, theorem 9.15 is applicable and gives that, for all s ∈ N,
ε̃n,s = O(N−∞

n ),

which implies that εn,s = O(N−∞
n ) as well. The density theorem and the

accumulation by cocycles of smaller energy are concluded as before, since con-
jugations grow only polynomially with Nn.

10.8. Proof of theorem 10.1

Finally, a word on the proof of the local almost reducibility and local density
of cocycles reducible to the normal forms.

These theorems are obtained in the same way as in their counterparts
for perturbations of constant cocycles. The K.A.M. scheme whose conver-
gence we proved in the preceding section constructs a sequence of conjuga-
tions that conjugate a given cocycle (α, Er(·)AeU(·)) ever closer to one of the
form (α, Er(·)A′), on the assumption of a smallness condition on U(·) and
provided that

deg(α, Er(·)AeU(·)) = r

Therefore, local almost reducibility of all such cocycles to normal forms is an
immediate corollary of the convergence of the scheme. Finally, the given cocycle
is conjugated exponentially close to the normal form, whereas the norms of
conjugations grow only polynomially. This proves the local density theorem.
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APPENDIX

11.1. Missing proofs of some lemmas

We begin by the lemma concerning the abelian subsets of simply connected
Lie groups.

Proof of lemma 2.7. — Let A,B ∈ G be commuting elements and suppose
that T ∋ A is a maximal torus, such that Ad(B).T = T . Such a torus exists,
by the proof of lemma 2.5. If Ad(B)|T = Id, then T contains both A and B,
so the proof is finished. If not, let us consider Φ(·) : [0, 1] → T be a geodesic
of minimal length connecting the Id with A and such that

Φ̃ = Ad(B).Φ : [0, 1] −→ T

intersects Φ only at its extremities. This amounts to considering a ∈ t (t is
the Lie algebra of T ), a preimage of A, such that Ad(B).a ̸= a. This preimage
satisfies, however, Ad(B).a ∈ t. This implies that a decomposes in a1 + a2,
both in t, such that Ad(B).a1 = a1 (and a1 is possibly 0), and Ad(B).a2 ̸= a2,
but a2 ̸= 0. Since A and B commute,

e = a−Ad(B).a = (a1 + a2)−Ad(B).(a1 + a2) = a2 −Ad(B).a2 ̸= 0

is a preimage of the Id. Since

e+Ad(B).e = a2 −Ad(B2).a2,

and since Ad(B)|T is of finite order m,

m∑

0

Ad(Bi).e = 0.
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We call χ the minimal positive integer for which this sum is 0. We also remark
that ⟨e, a2⟩ = −⟨e,Ad(B).a2⟩, so that if we call a′ the projection of a2 parallel
to e, we have exp(2a′) = Id.

If we assume, now, that G is simply connected, the paths Φ and Φ̃ are homo-
topic with fixed endpoints. In particular, there exists such a homotopy Ψt(·)
such that for t ∈ [0, 1] fixed, Ψt(·) is a minimal geodesic connecting the Id
with A, Ψ0(·) = Φ(·), and Ψ1(·) = Φ̃(·). It remains to show that we can find
a homotopy Ψ such that for some fixed parameter value t0,

Ad(B).LΨt0(·) = LΨt0(·).

The fact that the homotopy Ψt(·) consists of geodesics implies that there
exists a path B(·) : [0, 1] → G such that Ψt(·) = Ad(B(t)).Ψ0(·). This
path can be continuously deformed to a path still denoted by B(·), such that
Ad(B(·)).(a−a′) = a−a′. The corresponding homotopy is still denoted by Ψ.
This choice is possible, since Ad(B(0)).a = a. Therefore, for some parameter
value t0, Ad(B.B(t0)).a′ = a′, and there exists a maximal torus passing both
by A and B, since Ψt0(1) = A and

Ad(B).LΨt0(·) = LΨt0(·).

If the group is not simply connected, the argument remains valid if we
replace B by Bχ, with χ ≤ m.

We now give the proof of the lemma on Lie brackets of Birkhoff sums used
in the proof of lemma 5.10:

Lemma 11.1. — Let u ∈ L2(T,Rd), U a unitary operator in L2(T,Rd),
and [(·, ·)] a bilinear antisymmetric application on Rd × Rd, invariant by
U : [U ·, U ·] = U .[·, ·]. Then,

1

n2

n∑

k=0

k∑

l=0

[Uku, U lu] −→ 0 in L1(T,Rd).

Proof. — Let

φ = lim
1

n

n∑

k=0

Uku

which is the projection of u on the subspace of U -invariant functions, and call
ψ = u− φ. We have immediately

lim
1

n

n∑

k=0

Ukψ = 0
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in L2. By the antisymmetry of the bracket,

n∑

k=0

k∑

l=0

[Uku, U lu] =
n∑

k=0

k[Ukψ,φ] +
n∑

k=0

(n− k)[φ, Ukψ](52)

+
n∑

k=0

k∑

l=0

[Ukψ,U lψ].

If we call sn = ∥
n∑

k=0
Ukψ∥L2 , we can rearrange the terms in

n∑
k=0

(n− k)Ukψ

and obtain

∥
n∑

k=0

(n− k)Ukψ∥L2 ≤
n∑

k=0

sk.

If, for ε > 0 we let N > 1 such that for n ≥ N , sn ≤ nε, then we have

n∑

k=0

sk =
N∑

k=0

sk +
n∑

k=N

sk ≤ 1
2N(N + 1)∥ψ∥L2 + 1

2εn(n+ 1).

Choosing n big enough (n ≫ N), we can make 1
n2

n∑
k=0

sk smaller than ε. Since

n∑

k=0

kUkψ +
n∑

k=0

(n− k)Ukψ = n
n∑

k=0

Ukψ,

we find that 1
n2

n∑
k=0

kUkψ also converges to 0. Consequently, the first two sums

in equation (52) converge to 0 in L1.

Now, we estimate 1
(nN)2

nN∑
k=0

k∑
l=0

[Ukψ, U lψ] in L1, with a similar choice of ε

and N . The summation can be decomposed into summation over 1
2n(n − 1)

squares of the type

(j+1)N−1∑

k=jN

(i+1)N−1∑

l=iN

[Ukψ, U lψ] =
[∑

k

Ukψ,
∑

l

U lψ
]
, 1 ≤ i, j ≤ n− 1,

which, by invariance of the norms by U , we can bound by

∥∥∥
(j+1)N−1∑

k=jN

(i+1)N−1∑

l=iN

[Ukψ, U lψ]
∥∥∥
L1

# N2ε

and n triangles of the type

U jN
N∑

k=0

k∑

l=0

[Ukψ, U lψ], 1 ≤ j ≤ n− 1,
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which can be bounded by

∥∥∥
N∑

k=0

k∑

l=0

[Ukψ, U lψ]
∥∥∥
L1

# 1
2N(N − 1)∥ψ∥L2 .

Thus,

1

(nN)2

∥∥∥
nN∑

k=0

k∑

l=0

[Ukψ, U lψ]
∥∥∥
L1

# ∥ψ∥L2

2n
+

ε

2

and an appropriate choice of n gives the desired estimate.

The following, used in the proof of proposition 6.24, can be also found in [17]
(lemma 2.4).

Lemma 11.2. — Let (fn(·)) be a sequence of non-negative, uniformly bounded
measurable functions, such that fn(·) → 0 almost surely with respect to the
Lebesgue measure µ. Then, if (cn) is a sequence of positive numbers converging
to 0, we have

1

cn

∫ x+cn

x
fn(·) −→ 0, a.s.(x).

Proof. — By the Egorov theorem, for any k ∈ N∗, there exists a closed set Bk

of Lebesgue measure at least 1− 1
k such that

lim sup
x∈Bk

fn(x) = 0.

We denote by Ak the Lebesgue density points of Bk, i.e. the points x ∈ Bk for
which

lim
ε→0+

µ([x− ε, x+ ε])

2ε
= 1.

This property is true for a.e. point of Bk. Then, we find that for x ∈ Ak,

1

cn

∫ x+cn

x
fn(·) =

1

cn

∫

[x,x+cn]∩Ak

fn(·) +
1

cn

∫

[x,x+cn]\Ak

fn(·)

≤ lim sup
x∈Ak

fn(x) +M
µ([x, x+ cn]\Ak)

cn
,

where M is a uniform bound for fn(·). Since the right hand side converges
to 0, the lemma is proved.
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11.2. Lemma on conjugation close to singular geodesics

Finally, we state and prove the lemma needed in lemma 10.10 in order to
quantify the influence of the translation of Γm in the space of frequencies on
the solution of (33). More precisely,

Lemma 11.3. — Let m ∈ Z∗ and g(·) ∈ C∞(T,C). Then, there exist positive
constants Cs such that, for any N,N ′ ∈ N with 0 ≤ N ′ < N , there exists f(·),
a solution to eq.

TNf(· + α)− e2iπmx·TNf(·) = g(·)− ΓN ′,mg(·) + rN (·)

with σ(ΓN ′,mg(·)) ⊂ {−m+ 1−N ′, ..,−N ′} satisfying the estimates

∥TNf∥s ≤ Cs(N
(u))s+3∥g∥s+3,

∥rN∥s ≤ Cs(N
(l))s

′−s+3∥g∥s,

∥ΓN ′,mg∥s ≤ Cs(N
′)s+

1
2 ∥g∥0,

where N (u) = N +N ′ and N (l) = N −N ′. The constants do not depend on N
and N ′.

Proof. — Let us revisit the formulas (34) and (35) for the forward and back-
ward solution, respectively. The solution of the auxiliary equation

φ(· + α)− e2iπm·φ(·) = e−2iN ′π ·g(·)− Γm(e−2iN ′π ·g(·))

gives the formulas

φ̂+(k) =
∞∑

j=1

e−2iπj(k+N ′+ j−1
2 m)αĝ(k + jm+N ′),

φ̂−(k) =
∞∑

j=0

e2iπj(k+N ′− j+1
2 m)αĝ((k − j)m+N ′)

respectively for the Fourier coefficients of the forward and backward solution.
If we call f = e2iN

′π ·φ, then it satisfies

f(· + α)− e2iπm·f(·) = g(·)− ΓN ′,mg(·)

with

ΓN ′,mg(·) = e2iN
′π ·Γm(e−2iN ′π ·g(·)).
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The forward and backward sums for f(·) become

f̂+(k) =
∞∑

j=1

e−2iπj(k+N ′+ j−1
2 m)αĝ(k + jm),

f̂−(k) =
∞∑

j=0

e2iπj(k+N ′− (j+1)
2 m)αĝ((k − j)m).

This implies the estimates of the lemma exactly as in the proof of 8.6, since N ′

appears only in the factors e−2iπj(k+N ′+ j−1
2 m)α and e2iπj(k+N ′− (j+1)

2 m)α which
do not affect the estimates, and in the translation of the truncation operators.
Moreover, inspection of the proof shows that if N ′ is in 1

DZ, but g(·) is 1-
periodic, the solution f(·) is in fact 1-periodic.

In the proof of lemma 10.10 we actually use a vector-valued version of the
lemma above, with the differentm uniformly bounded by the size of resonances
in G0.

11.3. Estimate on the Hausdorff-Campbell formula without linear
terms

The following estimate is useful in K.A.M. theory, since the latter passes
by the solution of liearized equations coming from non-linear problems. When
we use these approximate solutions to attack the initial problem, we have
to estimate the series of the Hausdorff-Campbell formula (see [21]) without
constant and linear terms. This is done in the appendix of [29], or in [15]
(equations 6.1 and 6.2) as follows.

If Q is quadratic in (f, g), i.e. if Q is C2, Q(0, 0) = 0 and DQ(0, 0) = 0, we
have

∥Q(f, g)∥s ≤ Cs(1 + ∥f∥0 + ∥g∥0)s+1(∥f∥0 + ∥g∥0)(∥f∥s + ∥g∥s),

which simplifes to

∥Q(f, g)∥s ≤ Cs(∥f∥0 + ∥g∥0)(∥f∥s + ∥g∥s)

if we admit a priori bounds for ∥f∥0 and ∥g∥0.
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