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Publié avec le concours du Centre National de la Recherche Scientifique



Y. Chitour
E-mail : yacine.chitour@lss.supelec.fr
L2S, Université Paris-Sud XI, CNRS and Supélec, Gif-sur-Yvette, 91192,
France.

P. Kokkonen
E-mail : pvkokkon@gmail.com
L2S, Université Paris-Sud XI, CNRS and Supélec, Gif-sur-Yvette, 91192,
France and University of Eastern Finland, Department of Applied Physics,
70211, Kuopio, Finland.

2010 Mathematics Subject Classification. — 53C05, 53C29, 70G45.

Key words and phrases. — Development of manifolds, geometric control, con-
trollability, curvature tensor.

The work of the first author is supported by the “iCODE Institute project”
funded by the IDEX Paris-Saclay, ANR11-IDEX-0003-02. The work of the
second author is supported by Finnish Academy of Science and Letters.



ROLLING OF MANIFOLDS AND
CONTROLLABILITY IN DIMENSION THREE

Yacine Chitour, Petri Kokkonen

Abstract. — We present the rolling (or development) of one smooth connected
complete Riemannian manifold (M, g) onto another one (M̂ , ĝ) of equal di-
mension n ≥ 2 where there is no relative spin or slip of one manifold with
respect to the other one. Relying on geometric control theory, we provide an
intrinsic description of the two constraints “without spinning” and “without
slipping” in terms of the Levi-Civita connections ∇g and ∇ ĝ by defining cor-
responding vector fields distributions in the appropriate state space. We then
address the issue of complete controllability for that rolling problem. We first
establish basic global properties for the reachable set and investigate the asso-
ciated Lie bracket structure. In particular, we point out the role played by a
curvature tensor defined on the state space, that we call the rolling curvature.
When the two manifolds are three-dimensional, we give a complete local char-
acterization of the reachable sets and, in particular, we identify necessary and
sufficient conditions for the existence of a non open orbit. In addition to the
trivial case where the manifolds (M, g) and (M̂ , ĝ) are (locally) isometric, we
show that (local) non controllability occurs if and only if (M, g) and (M̂ , ĝ)
are either warped products or contact manifolds with additional restrictions
that we precisely describe.

c© Mémoires de la Société Mathématique de France 147, SMF 2016
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Résumé (Roulement de variétés et commandabilité en dimension trois)
Nous présentons le roulement (ou développement) d’une variété rieman-

nienne connexe (M, g) sur une autre (M̂ , ĝ) de dimension égale n ≥ 2, lorsqu’il
y a pas de glissement ni spin de l’une par rapport à l’autre. Nous donnons
une description intrinsèque des contraintes « sans glissement » et « sans spin »
à l’aide des connections de Levi-Civita ∇g and ∇ ĝ afin de définir la distribu-
tion associée à (R) dans l’espace d’état approprié. Nous donnons les premières
propriétés globales pour les ensembles atteignables et nous étudions la struc-
ture d’algèbre de Lie correspondante. En particulier, nous caractérisons le rôle
crucial joué par un tensor courbure dans l’espace d’état que nous appelons
courbure de roulement. Lorsque les deux variétés sont de dimension 3, nous
donnons une caractérisation complète de la structure locale des ensembles at-
teignables et en particulier celles des orbites non ouvertes. En plus du cas trivial
où les variétés (M, g) et (M̂ , ĝ) sont (localement) isométriques, nous montrons
que la non commandabilité locale a lieu si et seulement si (M, g) et (M̂ , ĝ) sont
des produits tordus ou des variétés de contact avec une description précise.

MÉMOIRES DE LA SMF 147
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CHAPTER 1

INTRODUCTION

We study the rolling of a manifold over another one. Unless otherwise pre-

cized, manifolds are smooth, connected, oriented, of finite dimension n ≥ 2,

endowed with a complete Riemannian metric. The rolling is assumed to be

without spinning nor slipping and we refer to it as the rolling (R) since it is

possible to have another rolling problem just assuming a no-slipping condition

(cf. [23]).

When both manifolds are isometrically embedded into an Euclidean space,

the rolling problem (R) is classical in differential geometry through the notions

of “development of a manifold” and “rolling maps”, see [41] and references

therein.

To get an intuitive grasp of the problem, consider the rolling problem (R)

of a 2D convex surface S1 onto another one S2 in the euclidean space R
3. The

most classical such example is the so-called plate-ball problem, i.e., a sphere

rolling onto a plane in R
3, (cf. [21] and [32]). The two surfaces are in contact,

i.e. they have a common tangent plane at the contact point and, equivalently,

their exterior normal vectors are opposite at the contact point.

If γ : [0, T ] → S1 is a C1 regular curve on S1, one says that S1 rolls onto S2

along γ without spinning nor slipping if the following holds. The curve traced

on S1 by the contact point is equal to γ and let γ̂ : [0, T ] → S2 be the

curve traced on S2 by the contact point. At every time t ∈ [0, T ] the relative

orientation of S2 with respect to S1 is measured by the angle θ(t) between γ̇(t)

and ˙̂γ(t) in the common tangent plane at the contact point and let Q be the

state space of the rolling problem (which is therefore five dimensional since

a point in Q is defined by fixing a point on S1, a point on S2 and an angle

in S1, the unit circle). The no-slipping condition says that ˙̂γ(t) is equal to γ̇(t)

rotated by the angle θ(t) and the no-spinning condition characterizes θ̇(t) in
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term of the surface elements at γ(t) and γ̂(t) respectively. Then, once a point

on S2 and an angle are chosen at time t = 0, the curves γ̂ and θ are uniquely

determined.

The most basic issue in geometric control theory linked to the rolling prob-

lem (R) is that of controllability, i.e. to determine, for two given points q init
and q final in the state space Q, if there exists a curve γ so that the rolling

of S1 onto S2 along γ steers the system from q init to q final. If this is the case

for every points q init and q final in Q, then the rolling of S1 onto S2 is said to

be completely controllable.

If the manifolds rolling on each other are two-dimensional, the controllabil-

ity issue is well-understood thanks to the work of [2], [7] and [27] especially.

For instance, in the simply connected case, the rolling (R) is completely con-

trollable if and only if the manifolds are not isometric. In the case where the

manifolds are isometric, [2] also provides a description of the reachable sets in

terms of isometries between the manifolds.

In particular, these reachable sets are immersed submanifolds of Q of di-

mension either 2 or 5. In case the manifolds rolling on each other are isometric

convex surfaces, [27] provides a beautiful description of a two dimensional

reachable set: consider the initial configuration given by two (isometric) sur-

faces in contact so that one is the image of the other one by the symmetry

with respect to the (common) tangent plane at the contact point. Then, this

symmetry property (chirality) is preserved along the rolling (R). Note that if

the (isometric) convex surfaces are not spheres nor planes, the reachable set

starting at a contact point where the Gaussian curvatures are distinct, is open

(and thus of dimension 5).

From a robotics point of view, once the controllability is well-understood,

the next issue to address is that of motion planning, i.e., defining an effective

procedure that produces, for every pair of points (q init, q final) in the state

space Q, a curve γq init, q final
so that the rolling of S1 onto S2 along γq init, q final

steers the system from q init to q final. In [9], an algorithm based on the con-

tinuation method was proposed to tackle the rolling problem (R) of a strictly

convex compact surface onto an Euclidean plane. That algorithm was also

proved in [9] to be convergent and it was numerically implemented in [4] (see

also [26] for another algorithm).

The rolling problem (R) is traditionally presented by isometrically embed-

ding the rolling manifolds M and M̂ in an Euclidean space (cf. [33], [41],

[19]) since it is the most intuitive way to provide a rigorous meaning to the

notions of relative spin (or twist) and relative slip of one manifold with respect

MÉMOIRES DE LA SMF 147
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to the other one. However, the rolling model will depend in general on the em-

bedding. For instance, rolling two 2D spheres of different radii on each other

can be isometrically embedded in (at least) two ways in R
3: the smaller sphere

can roll onto the bigger one either inside of it or outside. Then one should

be able to define rolling without having to resort to any isometric embedding

into an Euclidean space. To be satisfactory, that intrinsic formulation of the

rolling should also allow one to address at least the controllability issue.

Let us first provide an intrinsic definition of the state space Q. For n ≥ 3,

the relative orientation between two manifolds is defined (in coordinates) by

an element of SO(n). Therefore the state space Q is locally diffeomorphic to

neighborhoods of M×M̂ ×SO(n) and thus of dimension 2n+ 1
2n(n−1). There

are two main approaches for an intrinsic formulation of the rolling problem (R),

first considered by [2] and [7] respectively. Note that the two references only

deal with the two dimensional case but it is immediate to generalize them to

higher dimensions. In [2], the state space Q is given by

Q =
{
A : T xM → T x̂ M̂ | A o-isometry, x ∈ M, x̂ ∈ M̂ },

where “o-isometry”means positively oriented isometry, (see Definition 3.1 be-

low) while in [7], one has equivalently

Q =
(
FOON(M)× FOON(M̂ )

)
/Δ,

where FOON(M), FOON(M̂ ) are the oriented orthonormal frame bundles of

(M, g), (M̂ , ĝ) respectively, and Δ is the diagonal right SO(n)-action.

The next step consists of using either the parallel transports with respect

to ∇g and ∇̂ ĝ (Agrachev-Sachkov’s approach) or alternatively, orthonormal

moving frames and the structure equations (Bryant-Hsu’s approach) to trans-

late the constraints of no-spinning and no-slipping and derive the admissible

curves, i.e., the curves of Q describing the rolling (R), (cf. Eq. (13) below).

Finally, one defines either a distribution or a codistribution depending which

approach is chosen.

In the present paper, we adopt the Agrachev-Sachkov’s approach and we

construct an n-dimensional distribution DR on Q so that the locally absolutely

continuous curves tangent to DR are exactly the admissible curves for the

rolling problem, (cf. Definition 3.17 below). The construction of DR comes

along with the construction of (local) basis of vector fields, which allow one

to compute the Lie algebraic structure associated to DR. (See also [28], [16]

for alternative constructions of of the rolling problem (R).) Note also that the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



4 CHAPTER 1. INTRODUCTION

precise definition of the rolling (R) has been extended to the case of manifolds

with different dimensions in [31].

We now describe precisely the results of the present paper. In Section 2,

are gathered the notations used throughout the paper. The control system

associated to the rolling problem (R) is presented in Section 3 by giving a

precise definition of the state space Q and of the set of admissible controls,

which is equal the set of locally absolutely continuous (l.a.c.) curves on M

only. We thus obtain a driftless control systems affine in the control (Σ)R and

also provide, in Appendix A, expressions in local coordinates for these control

systems.

In Section 3, we construct the rolling distribution DR and we provide (local)

basis of vector fields for DR. We show that the rolling (R) of M over M̂ is

symmetric to that of M̂ over M i.e., the reachable sets are diffeomorphic. The

controllability issue turns out to be a delicate one since, in general, there is no

“natural” principal bundle structure on πQ,M : Q → M which leaves invariant

the rolling distribution DR. Despite this fact, we prove that reachable sets are

smooth bundle over M (cf. Proposition 4.2) and have an equivariance prop-

erty of the reachable sets of DR with respect to isometries from M and M̂ .

We deduce from that complete controllability for the rolling problem (R) as-

sociated to a pair of manifolds M and M̂ is equivalent to that of the rolling

problem (R) associated to their universal Riemannian coverings. Therefore, as

far as complete controllability is concerned, one can assume without loss of

generality that M and M̂ are simply connected.

We then compute the first order Lie brackets of the vector fields generating

DR and find that they are (essentially) equal to vector fields given by the

vertical lifts of

(1) Rol(X,Y )(A) := AR(X,Y )− R̂(AX,AY )A,

where X,Y are smooth vector fields of M , q = (x, x̂;A) ∈ Q and R(·, ·),
and R̂(. , .) are the curvature tensors of g and ĝ respectively. We call the

vertical vector field defined in Eq. (1) the Rolling Curvature, (cf. Definition 4.9

below). Higher order Lie brackets can now be expressed as linear combinations

of covariant derivatives of the Rolling Curvature for the vertical part and

evaluations on M̂ of the images of the Rolling Curvature and its covariant

derivatives.

In dimension 2, the Rolling Curvature is (essentially) equal to

KM (x)−KM̂ (x̂),

MÉMOIRES DE LA SMF 147



CHAPTER 1. INTRODUCTION 5

where KM ( . ), KM̂ ( . ) are the Gaussian curvatures of M and M̂ respectively.

At some point q ∈ Q where KM (x) −KM̂ (x̂) �= 0, one immediately deduces

that the dimension of the evaluation at q of the Lie algebra of the vector fields

spanning DR is equal to five, (the dimension of Q) and thus the reachable set

from q is open in Q. From that fact, one has the following alternative:

(a) there exists q0 ∈ Q so that KM − KM̂ ≡ 0 over the reachable set

from q0, yielding easily that M and M̂ have the same Riemannian covering

space (cf. [2] and [7]);

(b) all the reachable sets are open and then the rolling problem (R) is

completely controllable.

In dimensions n ≥ 3, the rolling curvature cannot be reduced to a scalar

and it seems difficult compute in general the rank of the evaluations of the

Lie algebra of the vector fields spanning DR. We however can derive an easy

sufficient condition for complete controllability, reminiscent of the 2D case:

if, for every point q ∈ Q, the vertical part of TqQ belongs to the tangent

space at q of the reachable set from q, then (Σ)R is completely controllable,

cf. Proposition 4.18 (see also [16] for a similar result). Moreover, in the case

where one of the manifolds (let say (M̂ , ĝ)) is of constant (Gaussian) curvature,

a key simplification occurs namely the state space Q carries the structure of a

principal bundle compatible with DR (cf. [14]). One can further show that the

constant curvature assumption to get a principal bundle structure for rolling

is (essentially) a necessary condition (cf. [10]). In that situation, the orbits

obtained by rolling along loops of (M, g) become Lie subgroups of the structure

group of πQ,M : Q → M which can be realized as holonomy groups of either

certain vector bundle connections (that we call rolling connections) when the

curvature of the space form is non-zero, or of an affine connection (in the sense

of [22]) in the zero curvature case. Note that in the latter case, the rolling (R)

is nothing else but the development of a manifold onto its tangent space which

was used first by Cartan in [8] in order to define the (affine) holonomy group

of the affine connection. By studying the rolling connections, one is able to

prove precise controllability results (cf. [14], [12], [11], [13]).

Section 5 collects our results for the rolling (R) of three-dimensional Rie-

mannian manifolds. We are able to provide a complete classification of the

possible local structures of a non open orbit, and to each of them, to charac-

terize precisely the manifolds (M, g) and (M̂ , ĝ) giving rise to such orbits.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



6 CHAPTER 1. INTRODUCTION

Roughly speaking, we show that the rolling problem (R) is not completely

controllable i.e. ODR
(q0) if and only if the Riemannian manifolds (M, g)

and (M̂ , ĝ) are locally of the following types (i.e., in open dense sets):

(i) isometric,

(ii) both are warped products with similar warping functions or

(iii) both are of class Mβ with the same β > 0.

Here, the manifolds of class Mβ are defined as three-dimensional Rieman-

nian manifolds carrying a contact structure of particular type, as described

in [1] and that we recall in Appendix C.1. The possible values of the orbit

dimension d of a non open orbit ODR
(q0) (i.e. d = dimODR

(q0)) are corre-

spondingly in (i) d = 3, (ii) d = 6 or d = 8 and finally (iii) d = 7 or d = 8,

where the alternatives in (ii) and (iii) depend on the initial orientation A0.

Consequently, it follows that the possible orbit dimensions for the rolling of 3D

manifolds are

dimODR
(q0) ∈ {3, 6, 7, 8, 9},

where dimension d = 9 corresponds to an open orbit (in Q). Note that we do

not answer here to the question of global structure of (M, g), (M̂ , ĝ) when

the rolling problem (R) is not completely controllable. We finally gather in a

series of appendices several results either used in the text or directly related

to it.
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CHAPTER 2

NOTATIONS

For any sets A,B,C and U ⊂ A×B and any map F : U → C, we write

Ua =
{
b ∈ B | (a, b) ∈ U

}
and U b =

{
a ∈ A | (a, b) ∈ U

}
.

Similarly, let

Fa : Ua → C, Fa(b) := F (a, b) and F b : U b → C, F b(a) := F (a, b).

For any sets V1, . . . , Vn the map pri : V1×· · ·×Vn → Vi denotes the projection

onto the i-th factor. For a real matrix A, we use Ai
j to denote the real num-

ber on the i-th row and j-th column and the matrix A can then be denoted

by [Ai
j ]. If, for example, one has Ai

j = aij for all i, j, then one uses the notation

Ai
j = (aij)

i
j and thus A = [(aij)

i
j ]. The matrix multiplication of A = [Ai

j ] and

B = [Bi
j ] is therefore given by AB =

[(∑
k A

i
kB

k
j

)i
j

]
. Suppose V,W are finite

dimensional R-linear spaces, L : V → W is an R-linear map and F = (vi)
dimV
i=1 ,

G = (wi)
dimW
i=1 are bases of V , W respectively. The dimW ×dimV -real matrix

corresponding to L w.r.t. the bases F and G is denoted by MF,G(L). In other

words, L(vi) =
∑

j MF,G(L)
j
iwj (corresponding to the right multiplication by

a matrix of a row vector). Notice that, if K : W → U is yet another R-linear

map to a finite dimensional linear space U with basis H = (ui)
dimU
i=1 , then

MF,H(K ◦ L) = MG,H(K)MF,G(L).

If (V, g), (W,h) are inner product spaces with inner products g and h, one

defines LTg,h : W → V as the transpose (adjoint) of A w.r.t g and h i.e.,

g(LTg,hw, v) = h(w,Lv). With bases F and G as above, one has MF,G(L)
T =

MG,F (L
Tg,h), where T on the left is the usual transpose of a real matrix i.e.,

the transpose w.r.t standard Euclidean inner products in R
N , N ∈ N.



8 CHAPTER 2. NOTATIONS

In this paper, by a smooth manifold, one means a smooth finite-dimensional,

second countable, Hausdorff manifold (see e.g. [25]). By a smooth submanifold

of M , we always mean a smooth embedded submanifold. For any smooth map

π : E → M between smooth manifolds E and M , the set

π−1
({x}) =: π−1(x)

is called the π-fiber over x and it is sometimes denoted by E x , when π is clear

from the context. The set of smooth sections of π is denoted by Γ(π). The

value s(x) of a section s at x is usually denoted by s x . A smooth manifold M

is oriented if there exists a smooth (or continuous) section, defined on all

of M , of the bundle of n-forms π∧n(M) :
∧n(M) → M where n = dimM . If

not otherwise mentioned, the smooth manifolds considered in this paper are

connected and oriented. For a smooth map π : E → M and y ∈ E, let V y (π)

be the set of all Y ∈ T y E such that π∗(Y ) = 0. If π is a smooth bundle, the

collection of spaces V y (π), y ∈ E, defines a smooth submanifold V (π) of T (E)

and the restriction πT (E) : T (E) → E to V (π) is denoted by πV (π). In this

case πV (π) is a vector subbundle of πT (E) over E. For a smooth manifold M ,

one uses VF(M) to denote the set of smooth vector fields on M i.e., the set

of smooth sections of the tangent bundle πT (M) : T (M) → M . The flow of a

vector field Y ∈ VF(M) is a smooth onto map ΦY : D → M defined on an

open subset D of R×M containing {0}×M such that ∂
∂tΦY (t, y) = Y ΦY (t,y)

for (t, y) ∈ D and ΦY (0, y) = y for all y ∈ M . As a default, we will take D to

be the maximal flow domain of Y .

For any distribution D on a manifold M , we use VFD to denote the set of

vector fields X ∈ VF(M) tangent to D (i.e., X x ∈ D x for all x ∈ M) and

we define inductively for k ≥ 2,

VFk
D = VFk−1

D + [VFD,VFk−1
D ],

where VF1
D := VFD. The Lie algebra generated by VFD is denoted by Lie(D)

and it equals
⋃

k VFk
D. For any maps γ : [a, b] → X, ω : [c, d] → X into a set X

such that γ(b) = ω(c) we define

ω 
 γ : [a, b+ d− c] → X; (ω 
 γ)(t) =

{
γ(t), t ∈ [a, b],

ω(t− b+ c), t ∈ [b, b+ d− c].

A map γ : [a, b] → X is a loop in X based at x0 ∈ X if γ(a) = γ(b) = x0.

In the space of loops [0, 1] → X based at some given point x0, one defines an

operation “ · ” of concatenation, by
ω · γ :=

(
t �→ ω(12 t)

) 
 (t �→ γ(12 t)
)
.
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If N is a smooth manifold and y ∈ N , we use Ωy(N) to denote the set of all

piecewise C1-loops [0, 1] → N of N based at y.

Given a smooth distribution D on a smooth manifold M , we call an abso-

lutely continuous curve c : I → M , I ⊂ R, D-admissible if c it is tangent to D
almost everywhere (a.e.) i.e., if for almost all t ∈ I it holds that ċ(t) ∈ D c(t) .

For x0 ∈ M , the endpoints of all the D-admissible curves of M starting at x0
form the set called D-orbit through x0 and denoted OD(x0). More precisely,

OD(x0) =
{
c(1) | c : [0, 1] → M, D-admissible, c(0) = x0

}
.(2)

By the Orbit Theorem (see [3]), it follows that OD(x0) is an immersed smooth

submanifold of M containing x0. It is also known that one may restrict to

piecewise smooth curves in the description of the orbit i.e.,

OD(x0) = {c(1) | c : [0, 1] → M piecewise smooth

and D-admissible, c(0) = x0}.
We call a smooth distribution D′ on M a subdistribution of D if D′ ⊂ D. An

immediate consequence of the definition of the orbit shows that in this case,

for all x0 ∈ M , OD′(x0) ⊂ OD(x0).
If π : E → M , η : F → M are two smooth maps (e.g. bundles), let C∞(π, η)

be the set of all bundle maps π → η i.e., smooth maps g : E → F such

that η ◦ g = π. For a manifold M , let πMR
: M × R → M be the projection

onto the first factor i.e., (x, t) �→ x (i.e., πMR
= pr1). If π : E → M , η : F → M

are any smooth vector bundles over a smooth manifold M , f ∈ C∞(π, η) and

u,w ∈ π−1(x), one defines the vertical derivative f at u in the direction w by

ν(w) u (f) := (Dνf)(u)(w) :=
d

dt 0
f(u+ tw).(3)

Here w �→ (Dνf)(u)(w) = ν(w) u (f) is an R-linear map between fibers

π−1(x) → η−1(x).

In a similar way, in the case of f ∈ C∞(E) and u,w ∈ π−1(x), one defines

the π-vertical derivative

ν(w) u (f) := Dνf(u)(w) :=
d

dt 0
f(u+ tw)

at u in the direction w. This definition agrees with the above one modulo the

canonical bijection C∞(E) ∼= C∞(idE , πER
). This latter definition means that

ν(w) u can be viewed as an element of V u (π) and the mapping w �→ ν(w) u

gives a (natural) R-linear isomorphism between π−1(x) and V u (π) where

π(u) = x. If w̃ ∈ Γ(π) is a smooth π-section, let ν(w̃) be the π-vertical

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



10 CHAPTER 2. NOTATIONS

vector field on E defined by ν(w̃) u (f) = ν(w̃ x ) u (f), where π(u) = x and

f ∈ C∞(E). The same remark holds also locally.

In the case of smooth manifolds M and M̂ , x ∈ M , x̂ ∈ M̂ , we will use

freely and without mention the natural inclusions (⊂) and isomorphisms (∼=):

T xM,T x̂ M̂ ⊂ T (x,x̂) (M × M̂ ) ∼= T xM ⊕ T x̂ M̂ ,

T ∗
xM,T ∗

x̂ M̂ ⊂ T ∗
(x,x̂) (M × M̂ ) ∼= T ∗

xM ⊕ T ∗
x̂ M̂ .

An element of T (x,x̂) (M×M̂ ) ∼= T x (M)⊕T x̂ (M̂ ) with respect to the direct

sum splitting is denoted usually by (X, X̂ ), where X ∈ T xM , X̂ ∈ T x̂ M̂ .

Sometimes it is even more convenient to write

X + X̂ := (X, X̂ )

when we make the identifications (X, 0) = X, (0, X̂ ) = X̂ . Let (M, g), (M̂ , ĝ)

be smooth Riemannian manifolds.

A map f : M → M̂ is a local isometry if it is smooth, surjective and

f∗ x : T xM −→ T f(x) M̂

is an isometric linear map for all x ∈ M . A bijective local isometry f : M → M̂

is called an isometry and then (M, g), (M̂ , ĝ) are said to be isometric. In this

text we say that two Riemannian manifolds (M, g), (M̂ , ĝ) are locally isomet-

ric, if there is a Riemannian manifold (N, h) and local isometries F : N → M

and G : N → M̂ which are also covering maps i.e. if they are Riemannian cov-

ering maps. One calls (N, h) a common Riemannian covering space of (M, g)

and (M̂ , ĝ). Notice that being locally isometric is an equivalence relation in

the class of smooth Riemannian manifolds (the fact that we assume F,G to

be Riemannian covering maps, and not only local isometries, implies the tran-

sitivity of this relation).

The space M = M × M̂ is a Riemannian manifold, called the Riemannian

product manifold of (M, g), (M̂ , ĝ), when endowed with the product metric

ḡ := g ⊕ ĝ . One often writes this as (M, g) × (M̂ , ĝ). Let ∇, ∇̂,∇ (resp.

R, R̂, R) denote the Levi-Civita connections (resp. the Riemannian curvature

tensors) of (M, g), (M̂ , ĝ), (M = M × M̂ , ḡ = g ⊕ ĝ) respectively. From

Koszul’s formula (cf. [25]), one has

∇
(X,X̂ )

(Y, Ŷ ) = (∇XY, ∇̂
X̂
Ŷ ),(4)
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when X,Y ∈ VF(M), X̂ , Ŷ ∈ VF(M̂ ) and hence from the definition of the

Riemannian curvature tensor

R
(
(X, X̂ ), (Y, Ŷ )

)
(Z, Ẑ ) =

(
R(X,Y )Z, R̂(X̂ , Ŷ )Ẑ

)
,(5)

where X,Y, Z ∈ T xM and X̂ , Ŷ , Ẑ ∈ T x̂ M̂ . For any (k,m)-tensor field T

on M we define ∇T to be the (k,m+1)-tensor field such that (see [39], p. 30)

(∇T )(X1, . . . , Xm, X) = (∇XT )(X1, . . . , Xm),(6)

X1, . . . , Xm, X ∈ T xM .

The parallel transport of a tensor T0 ∈ T k
m γ(0) (M) from γ(0) to γ(t) along

an absolutely continuous curve γ : I → M (with 0 ∈ I) and with respect to

the Levi-Civita connection of (M, g) is denoted by(
P∇g)t

0
(γ)T0.

In Levi-Civita’s notation ∇g (resp. parallel transport P∇g
), the upper index g

(resp. ∇g) referring to the Riemannian metric g (resp. the connection ∇g) is

omitted if it is clear from the context. Let (γ, γ̂) : I → M × M̂ be a smooth

curve on M × M̂ defined on an open real interval I containing 0. If(
X(t), X̂ (t)

)
: I −→ T (M × M̂ )

is a smooth vector field on M × M̂ along (γ, γ̂) i.e., (X(t), X̂ (t)) belongs to

T (γ(t),γ̂(t)) (M × M̂ ) then one has

∇(γ̇(t), ˙̂γ(t))(X, X̂ ) = (∇γ̇(t)X, ∇̂ ˙̂γ(t)X̂ )(7)

if the covariant derivatives on the right-hand side are well defined.

If (N, h) is a Riemannian manifold we define Iso(N, h) to be the (smooth Lie)

group of isometries of (N, h) (cf. [39], Lemma III.6.4, p. 118). It is clear that

the isometries respect parallel transport in the sense that for any absolutely

continuous γ : [a, b] → N and F ∈ Iso(N, g) one has (cf. [39], p. 41, Eq. (3.5))

F∗ γ(t) ◦ (P∇h)t
a
(γ) =

(
P∇h)t

a
(F ◦ γ) ◦ F∗ γ(a) .(8)

The following result is standard.

Theorem 2.1. — Let (N, h) be a Riemannian manifold and for any absolutely

continuous γ : [0, 1] → M , γ(0) = y0, define

Λ∇h

y0 (γ)(t) =

∫ t

0

(
P∇h)0

s
(γ)γ̇(s)ds ∈ T y0

N, t ∈ [0, 1].

Then the map Λ∇h

y0 : γ �→ Λ∇h

y0 (γ)(.) is an injection from the set of absolutely

continuous curves [0, 1] → N starting at y0 onto an open subset of the Banach
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space of absolutely continuous curves [0, 1] → T y0
N starting at 0. Moreover,

the map Λ∇h

y0 is a bijection onto the latter Banach space if (and only if ) (N, h)

is a complete Riemannian manifold.

Remark 2.2

(i) For example, in the case where γ is the geodesic t �→ expy0(tY ) for

Y ∈ T y0
N , one has Λ∇h

y0 (γ)(t) = tY.

(ii) It is directly seen from the definition of Λ∇h

y0 that it maps injectively

(piecewise) Ck-curves, k = 1, . . . ,∞, starting at y0 to (piecewise) Ck-curves

starting at 0. Moreover, these correspondences are bijective if (N, h) is com-

plete.
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CHAPTER 3

STATE SPACE, DISTRIBUTIONS AND

COMPUTATIONAL TOOLS

3.1. State Space

3.1.1. Definition of the state space. — After [2], [3] we make the follow-

ing definition.

Definition 3.1. — The state space Q = Q(M, M̂ ) for the rolling of two n-

dimensional connected, oriented smooth Riemannian manifolds (M, g), (M̂ , ĝ)

is defined as

Q =
{
A : T xM → T x̂ M̂ | with A o-isometry, x ∈ M, x̂ ∈ M̂

}
,

where “o-isometry” stands for “orientation preserving isometry” i.e., if (Xi)
n
i=1

is a positively oriented g-orthonormal frame of M at x then (AXi)
n
i=1 is a

positively oriented ĝ-orthonormal frame of M̂ at x̂.

The linear space of R-linear map A : T xM → T x̂ M̂ is canonically isomor-

phic to the tensor product T ∗
xM ⊗ T x̂ M̂ . On the other hand, by using the

canonical inclusions T ∗
xM ⊂ T ∗

(x,x̂) (M × M̂ ), T x̂ M̂ ⊂ T (x,x̂) (M × M̂ ),

the space T ∗
xM ⊗ T x̂ M̂ is canonically included in T 1

1 (M × M̂ ) (x,x̂) , the

space of (1, 1)-tensors of M × M̂ at (x, x̂). These inclusions make

T ∗M ⊗ TM̂ :=
⋃

(x,x̂)∈M×M̂

T ∗
xM ⊗ T x̂ M̂

a subset of T 1
1 (M × M̂ ) such that

π
T ∗M⊗TM̂

:= π
T 1
1 (M×M̂ ) T ∗M⊗TM̂

: T ∗M ⊗ TM̂ −→ M × M̂

is a smooth vector subbundle of the bundle of (1, 1)-tensors π
T 1
1 (M×M̂ )

on M × M̂ .
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The state spaceQ = Q(M, M̂ ) can be described as a subset of T ∗M⊗TM̂ as

Q =
{
A ∈ T ∗M ⊗ TM̂ (x,x̂) | (x, x̂) ∈ M × M̂ ,

‖AX‖ ĝ = ‖X‖g, ∀X ∈ T xM, det(A) = 1
}
.

In the next subsection, we will show that πQ := π
T ∗M⊗TM̂ Q is moreover a

smooth subbundle of π
T ∗M⊗TM̂

. It is also sometimes convenient to consider

the manifold T ∗M ⊗TM̂ and we will refer to it as the extended state space for

the rolling. This concept of extended state space naturally makes sense also in

the case where M and M̂ are not assumed to be oriented (or connected).

A point A ∈ T ∗M ⊗ TM̂ with π
T ∗M⊗TM̂

(A) = (x, x̂) (or A ∈ Q with

πQ(A) = (x, x̂)) will be usually denoted by (x, x̂;A) to emphasize the fact

that A : T xM → T x̂ M̂ . Thus the notation q = (x, x̂;A) simply means

that q = A.

3.1.2. The Bundle Structure of Q. — In this subsection, it is shown

that πQ is a bundle with typical fiber SO(n).

Definition 3.2. — Suppose the vector fields Xi ∈ VF(M) (resp. X̂ i ∈
VF(M̂ )), i = 1, . . . , n form a g-orthonormal (resp. ĝ-orthonormal) frame of

vector fields on an open subset U of M (resp. Û of M̂ ). We denote

F = (Xi)
n
i=1 and F̂ = (X̂ i)

n
i=1

and for x ∈ U , x̂ ∈ Û we let

F x = (Xi x )
n
i=1, F̂ x̂ = (X̂ i x̂ )

n
i=1.

A local trivialization τ = τ
F,F̂

of Q over U × Û induced by F, F̂ is given by

τ : π−1
Q (U × Û ) → (U × Û )× SO(n), (x, x̂;A) �→ (

(x, x̂),M
F

x
,F̂

x̂

(A)
)
,

whereM
F

x
,F̂

x̂

(A)ji = ĝ(AXi, X̂ j) sinceAXi x =
∑

j ĝ(AXi x , X̂ j x̂ )X̂ j x̂ .

For the sake of clarity, we shall write M
F

x
,F̂

x̂

(A) as M
F,F̂

(A). Obviously

‖AX‖ ĝ = ‖X‖g for all X ∈ T xM is equivalent to ATg, ĝA = idT
x
M and we

get

M
F,F̂

(A)TM
F,F̂

(A) = M
F̂ ,F

(ATg, ĝ )M
F,F̂

(A) = MF,F (idT
x
M ) = idRn ,

where T denotes the usual transpose in gl(n), the set of Lie algebra of n×n-real

matrices. Since detM
F,F̂

(A) = det(A) = +1, one has M
F,F̂

(A) ∈ SO(n).
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Remark 3.3. — Notice that the above local trivializations τ
F,F̂

of πQ are just

the restrictions of the vector bundle local trivializations

(π
T ∗(M)⊗T (M̂ )

)−1(U × Û ) −→ (U × Û )× gl(n)

of the bundle π
T ∗(M)⊗T (M̂ )

induced by F, F̂ and defined by the same formula

as τ
F,F̂

. In this setting, one does not even have to assume that the local

frames F , F̂ are g- or ĝ-orthonormal. Hence πQ is a smooth subbundle of

π
T ∗M⊗TM̂

with Q a smooth submanifold of T ∗M ⊗ TM̂ .

One has the following simple proposition.

Proposition 3.4. — Let q = (x, x̂;A) ∈ Q and B ∈ T ∗(M) ⊗ T (M̂ ) (x,x̂) .

Every πQ-vertical tangent vector (i.e., an element of V q (πQ)) is of the form

ν(B) q for a unique B ∈ T ∗M ⊗TM̂ (x,x̂) and ν(B) q is tangent to Q if and

only if

ĝ(AX,BY ) + ĝ(BX,AY ) = 0,

for all X,Y ∈ T xM or simply B ∈ A(so(T xM)).

We use T to denote the (g, ĝ)-transpose operation Tg, ĝ in the sequel.

The proposition says that V q (πQ) is naturally R-linearly isomorphic to

A(so(T xM)).

3.2. Distribution and the Control Problem

3.2.1. From Rolling to Distributions. — Each point (x, x̂;A) of the

state space Q = Q(M, M̂ ) can be viewed as describing a contact point of

the two manifolds which is given by the points x and x̂ of M and M̂ , respec-

tively, and an isometry A of the tangent spaces T xM , T x̂ M̂ at this contact

point. The isometry A can be viewed as measuring the relative orientation

of these tangent spaces relative to each other in the sense that rotation of,

say, T x̂ M̂ corresponds to a unique change of the isometry A from T xM

to T x̂ M̂ . A curve t �→ (γ(t), γ̂(t);A(t)) in Q can then be seen as a motion of

M against M̂ such that at an instant t, γ(t) and γ̂(t) represent the common

point of contact in M and M̂ , respectively, and A(t) measures the relative

orientation of coinciding tangent spaces T γ(t)M , T γ̂(t) M̂ at this point of

contact.

In order to call this motion rolling, there are two kinematic constraints that

will be demanded (see e.g. [2], [3, Chapter 24], [9]) namely
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(i) the no-spinning condition;

(ii) the no-slipping condition.

In this section, these conditions will be defined explicitly and it will turn out

that they are modeled by certain smooth distributions on the state space Q.

The subsequent sections are then devoted to the detailed definitions and analy-

sis of the distribution DNS and DR on the state space Q, the former capturing

the no-spinning condition (i) while the latter capturing both of the condi-

tions (i) and (ii).

The first restriction (i) for the motion is that the relative orientation of the

two manifolds should not change along motion. This no-spinning condition

(also known as the no-twisting condition) can be formulated as follows.

Definition 3.5. — An absolutely continuous (a.c.) curve

q : I −→ Q, t �−→ (
γ(t), γ̂(t);A(t)

)
,(9)

defined on some real interval I = [a, b], is said to describe a motion without

spinning of M against M̂ if, for every a.c. curve [a, b] → TM ; t �→ X(t) of

vectors along t �→ γ(t), we have (see also [28] for a similar definition)

(10) ∇γ̇(t)X(t) = 0 =⇒ ∇̂ ˙̂γ(t)

(
A(t)X(t)

)
= 0 for a.e. t ∈ [a, b].

Note that Condition (10) is equivalent to the following: for a.e. t and all

parallel vector fields X(.) along x(.), one has(∇(γ̇(t), ˙̂γ(t))A(t)
)
X(t) = 0.

Since the parallel translation P t
0(γ) : T γ(0)M → T γ(t)M along γ(.) is an

(isometric) isomorphism (here X(t) = P t
0(γ)X(0)), then (10) is equivalent to

∇(γ̇(t), ˙̂γ(t))A(t) = 0 for a.e. t ∈ [a, b].(11)

The second restriction (ii) is that the manifolds should not slip along each

other as they move i.e., the velocity of the contact point should be the same

w.r.t both manifolds. This no-slipping condition can be formulated as follows.

Definition 3.6. — An a.c. curve

q : I −→ Q, t �−→ (
γ(t), γ̂(t);A(t)

)
,

defined on some real interval I = [a, b], is said to describe a motion without

slipping of M against M̂ if

(12) A(t)γ̇(t) = ˙̂γ(t) for a.e. t ∈ [a, b].
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Definition 3.7. — An a.c. curve

q : I −→ Q, t �−→ (
γ(t), γ̂(t);A(t)

)
,

defined on some real interval I = [a, b], is said to describe a rolling motion i.e.,

a motion without slipping or spinning of M against M̂ if it satisfied both of

the conditions (10),(12) (or equivalently (11),(12)). The corresponding curve

t �→ (γ(t), γ̂(t);A(t)) that satisfies these conditions is called a rolling curve.

It is easily seen that t �→ q(t) = (γ(t), γ̂(t);A(t)), t ∈ [a, b], is a rolling curve

if and only if it satisfies the following driftless control affine system

(Σ)R

⎧⎪⎪⎨⎪⎪⎩
γ̇(t) = u(t),

˙̂γ(t) = A(t)u(t),

∇(u(t),A(t)u(t))A(t) = 0,

for a.e. t ∈ [a, b],(13)

where the control u belongs to U(M), the set of measurable TM -valued

functions u defined on some interval I = [a, b] such that there exists a.c.

y : [a, b] → M verifying u = ẏ a.e. on [a, b]. Conversely, given any control

u ∈ U(M) and q0 = (x0, x̂0;A0) ∈ Q, a solution q(.) to this control system ex-

ists on a subinterval [a, b′], a < b′ ≤ b satisfying the initial condition q(a) = q0.

The fact that System (13) is driftless and control affine can be seen from its

representation in local coordinates (see Eqs. (54)–(56) in Appendix A).

We begin by recalling some basic observations on parallel transport. As is

clear, if one starts with a (1, 1)-tensor A0 ∈ T 1
1 (x0,x̂0)

(M × M̂ ) and has an

a.c. curve t �→ (γ(t), γ̂(t)) on M×M̂ with γ(0) = x0, γ̂(0) = x̂0, defined on an

open interval I � 0, then the parallel transport A(t) = P t
0(γ, γ̂)A0 exists on I

and determines an a.c. curve in T 1
1 (M × M̂ ). But now, if A0 rather belongs

to the subspace T ∗M ⊗TM̂ or Q of T 1
1 (M × M̂ ), it will actually happen that

the parallel translate A(t) belongs to this subspace as well for all t ∈ I. This

is the content of the next proposition, whose proof is straightforward.

Proposition 3.8. — Let t �→ (γ(t), γ̂(t)) be an absolutely continuous curve

in M × M̂ defined on some real interval I � 0. Then we have

A0 ∈ T ∗M ⊗ TM =⇒ A(t) = P t
0(γ, γ̂)A0 ∈ T ∗M ⊗ TM̂ , ∀t ∈ I,

A0 ∈ Q =⇒ A(t) = P t
0(γ, γ̂)A0 ∈ Q, ∀t ∈ I,

and

P t
0(γ, γ̂)A0 = P t

0(γ̂) ◦A0 ◦ P 0
t (γ), ∀t ∈ I.(14)
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Let T (M × M̂ ) ×
M×M̂

(T ∗(M) ⊗ T (M̂ )) be the total space of the prod-

uct vector bundle π
T (M×M̂ )

×
M×M̂

π
T ∗(M)⊗T (M̂ )

over M × M̂ . We will de-

fine certain lift operations corresponding to parallel translation of elements of

T ∗M ⊗ TM̂ .

Definition 3.9. — The No-Spinning lift is defined to be the map

LNS : T (M × M̂ )×
M×M̂

(
T ∗(M)⊗ T (M̂ )

) −→ T
(
T ∗(M)⊗ T (M̂ )

)
,

such that, if q = (x, x̂;A) ∈ T ∗(M) ⊗ T (M̂ ), X ∈ T xM , X̂ ∈ T x̂ M̂ and

t �→ (γ(t), γ̂(t)) is a smooth curve on in M × M̂ defined on an open interval I

containing 0 such that γ̇(0) = X, ˙̂γ(0) = X̂ , then one has

LNS

(
(X, X̂ ), q

)
=

d

dt 0
P t
0(γ, γ̂)A ∈ T q

(
T ∗(M)⊗ T (M̂ )

)
.(15)

The smoothness of the map LNS can be easily seen by using local triv-

ializations. We will usually use a notation LNS(X ) q for LNS(X, q) when

X ∈ T (x,x̂) (M × M̂ ) and q = (x, x̂;A) ∈ T ∗(M)⊗ T (M̂ ).

In particular, when X ∈ VF(M × M̂ ), we get a lifted vector field on

T ∗(M)⊗ T (M̂ ) given by q �→ LNS(X ) q . The smoothness of LNS(X ) for

X ∈ VF(M × M̂ ) follows immediately from the smoothness of the map LNS.

Notice that, by Proposition 3.8, the No-Spinning lift map LNS restricts to

LNS : T (M × M̂ )×
M×M̂

Q −→ TQ,

where T (M × M̂ ) ×
M×M̂

Q is the total space of the fiber product

π
T (M×M̂ )

×
M×M̂

πQ.

Definition 3.10. — The No-Spinning (NS) distribution DNS on T ∗M ⊗TM̂

is a 2n-dimensional smooth distribution defined pointwise by

DNS q = LNS

(
T (x,x̂) (M × M̂ )

)
q ,(16)

with q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ . Since DNS Q ⊂ TQ (by Proposition 3.8)

this distribution restricts to a 2n-dimensional smooth distribution on Q which

we also denote by DNS (instead of DNS Q ).

The No-Spinning lift LNS will also be called DNS-lift since it maps vectors

of M × M̂ to vectors in DNS. The distribution DNS is smooth since LNS(X )

is smooth for any smooth vector field X ∈ VF(M × M̂ ). Also, the fact that

the rank of DNS exactly is 2n follows from the next proposition, which itself

follows immediately from Eq. (15).
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Proposition 3.11. — For every q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ and X in

T (x,x̂) (M × M̂ ), one has(
π
T ∗M⊗TM̂

)
∗
(
LNS(X ) q

)
= X,

and in particular (πQ)∗(LNS(X ) q ) = X if q ∈ Q.

Thus (π
T ∗M⊗TM̂

)∗ (resp. (πQ)∗) maps DNS (x,x̂;A) isomorphically onto

T (x,x̂) (M×M̂ ) for every (x, x̂;A) ∈ T ∗M⊗TM̂ (resp. (x, x̂;A) ∈ Q) and the

inverse map of (π
T ∗M⊗TM̂

)∗ DNS q
(resp. (πQ)∗ DNS q

) is X �→ LNS(X ) q .

The following basic formula for the lift LNS will be useful.

Theorem 3.12. — For X ∈ T (x,x̂) (M×M̂ ) and A ∈ Γ(π
T ∗M⊗TM̂

), we have

LNS(X ) A
(x,x̂)

= A∗(X )− ν
(∇XA

)
A

(x,x̂)
,(17)

where ν denotes the vertical derivative in the vector bundle π
T ∗M⊗TM̂

, and A∗
is the map T (M × M̂ ) → T (T ∗M ⊗ TM̂ ).

Proof. — Choose smooth paths γ : [−1, 1] → M and γ̂ : [−1, 1] → M̂ such

that (γ̇(0), ˙̂γ(0)) = X and take an arbitrary f ∈ C∞(T ∗M ⊗ TM̂ ). Define

Ã(t) = P t
0(γ, γ̂)A (x,x̂) . Then

LNS(X ) A
(x,x̂)

=
˙̃
A(0) = Ã∗

( ∂

∂t

)
.

Also, it is known that (see e.g. [39], p.29)

P 0
t (γ, γ̂)

(
A (γ(t),γ̂(t))

)
= A (x,x̂) + t∇XA+ t2F (t),(18)

with t �→ F (t) a C∞-function ] − 1, 1[ → T ∗
xM ⊗ T x̂ M̂ . Moreover, with

Π(t) = P t
0(γ, γ̂), one has(

A∗(X )− Ã∗(
∂

∂t
)
)
f = lim

t→0

f(A (γ(t),γ̂(t)) )− f(Π(t)A (x,x̂) )

t

= lim
t→0

f(Π(t)A (x,x̂) + tΠ(t)∇XA+ t2Π(t)F (t))− f(Π(t)A (x,x̂) )

t

= lim
t→0

1

t

∫ t

0

d

ds
f
(
Π(t)A (x,x̂) + sΠ(t)∇XA+ s2Π(t)F (t)

)
ds

=
d

ds s=0
f
(
A (x,x̂) + s∇XA+ s2F (0)

)
= ν(∇XA) A

(x,x̂)
f.
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We shall write Eq. (17) from now on with a compressed notation

LNS(X ) A = A∗(X )− ν(∇XA) A .

Remark 3.13. — If A ∈ Γ(π
T ∗(M)⊗T (M̂ )

) and q := A (x,x̂) ∈ Q (e.g. if

A ∈ Γ(πQ)), then on the right hand side of (17), both terms are elements

of T q (T
∗M ⊗ TM̂ ) but their difference is actually an element of T q Q.

As a trivial corollary of the theorem, one gets the following.

Corollary 3.14. — Suppose t �→ q(t) = (γ(t), γ̂(t);A(t)) is an a.c. curve on

T ∗M ⊗ TM̂ or Q defined on an open real interval I. Then, for a.e. t ∈ I,

LNS

(
γ̇(t), ˙̂γ(t)

)
q(t)

= Ȧ(t)− ν
(∇(γ̇(t), ˙̂γ(t))A

)
q(t)

.

Remark 3.15. — The controllability of the control system associated to the

distribution DNS is studied more thoroughly in [23]. In particular, it is shown

there that the orbits of DNS can be completely characterized in terms of the

holonomy groups of (M, g) and (M̂ , ĝ).

3.2.2. The rolling distribution DR. — We next define a distribution

which will correspond to the rolling with neither slipping nor spinning. As

regards the rolling of one manifold onto another one, the admissible curve q(.)

must verify the no-spinning condition (10) and no-slipping condition (12) that

we recall next. Since q(.) is tangent to DNS, we have A(t) = P t
0(x, x̂)A(0),

and the no-slipping condition (12) writes A(t)γ̇(t) = ˙̂γ(t). It forces one to

have, for a.e. t,

q̇(t) = LNS

(
γ̇(t), A(t)γ̇(t)

)
q(t)

.

Evaluating at t = 0 and noticing that if q0 := q(0), with q0 = (x0, x̂0;A0) ∈ Q

and γ̇(0) =: X ∈ T x0
M are arbitrary, we get

q̇(0) = LNS(X,A0X)
q0
.

This motivates the following definition.

Definition 3.16. — For q = (x, x̂;A) ∈ Q, we define the Rolling lift or

DR-lift as a bijective linear map

LR : T xM ×Q
(x,x̂)

−→ T
q
Q,

given by

LR(X, q) = LNS(X,AX)
q
.(19)
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This map naturally induces LR : VF(M) → VF(Q) as follows. For X ∈
VF(M) we define LR(X), the Rolling lifted vector field associated to X, by

LR(X) : Q → T (Q), q �−→ LR(X)
q
,

where LR(X) q := LR(X, q).

The Rolling lift map LR allows one to construct a distribution on Q (see [6])

reflecting both of the rolling restrictions of motion defined by the no-spinning

condition, Eq. (10), and the no-slipping condition, Eq. (12).

Definition 3.17. — The rolling distribution DR on Q is the n-dimensional

smooth distribution defined pointwise by

DR q
= LR(T xM)

q
,(20)

for q = (x, x̂;A) ∈ Q.

The Rolling lift LR will also be called DR-lift since it maps vectors of M to

vectors in DR. Thus an absolutely continuous curve

t �−→ q(t) =
(
γ(t), γ̂(t);A(t)

)
in Q is a rolling curve if and only if it is a.e. tangent to DR i.e., q̇(t) ∈ DR q(t)

for a.e. t or, equivalently, if q̇(t) = LR(γ̇(t)) q(t) for a.e. t.

Define πQ,M = pr1 ◦ πQ : Q → M and notice that its differential (πQ,M )∗
maps each DR (x,x̂;A) , (x, x̂;A) ∈ Q, isomorphically onto T xM . Similarly one

defines π
Q,M̂

= pr2 ◦ πQ : Q → M̂ .

Proposition 3.18. — For any q0 = (x0, x̂0;A0) ∈ Q and absolutely continu-

ous

γ : [0, a] −→ M a > 0,

such that γ(0) = x0, there exists a unique absolutely continuous q : [0, a′] → Q,

q(t) = (γ(t), γ̂(t);A(t)), with 0 < a′ ≤ a (and a′ maximal with the latter

property), which is tangent to DR a.e. and q(0) = q0. We denote this unique

curve q by

t �−→ qDR
(γ, q0)(t) =

(
γ(t), γ̂DR

(γ, q0)(t);ADR
(γ, q0)(t)

)
,

and refer to it as the rolling curve along γ with initial position q0. In the case

that M̂ is a complete manifold one has a′ = a.

Conversely, any absolutely continuous curve q : [0, a] → Q, which is a.e. tan-

gent to DR, is a rolling curve along γ = πQ,M ◦q i.e., has the form qDR
(γ, q(0)).
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Proof. — We need to show only that completeness of (M̂ , ĝ) implies that

a′ = a. In fact, X̂ (t) := A0

∫ t
0 P

0
s (γ)γ̇(s)ds defines an a.c. curve t �→ X̂ (t) in

T x̂0
M̂ defined on [0, a] and the completeness of M̂ implies that there is a

unique a.c. curve γ̂ on M̂ defined on [0, a] such that X̂ (t) =
∫ t
0 P

0
s (γ̂)

˙̂γ(s)ds

for all t ∈ [0, a]. Defining A(t) = P t
0(γ̂) ◦ A0 ◦ P 0

t (γ), t ∈ [0, a] we notice that

t �→ (γ(t), γ̂(t);A(t)) is the rolling curve along γ starting at q0 that is defined

on the interval [0, a]. Hence a′ = a.

Remark 3.19. — It follows immediately from the uniqueness statement of

the previous theorem that, if γ : [a, b] → M and ω : [c, d] → M are two a.c.

curves with γ(b) = ω(c) and q0 ∈ Q, then

qDR
(ω 
 γ, q0) = qDR

(
ω, qDR

(γ, q0)(b)
) 
 qDR

(γ, q0).(21)

On the space Ωx0(M) of piecewise differentiable loops of M based at x0 one

has

qDR
(ω · γ, q0) = qDR

(
ω, qDR

(γ, q0)(1)
) · qDR

(γ, q0),

where γ, ω ∈ Ωx0(M).

In the case where the curve γ on M is a geodesic, we can give a more precise

form of the rolling curve along γ with a given initial position.

Proposition 3.20. — Consider q0 = (x0, x̂0;A0) ∈ Q, X ∈ T x0
M and

γ : [0, a] −→ M, γ(t) = expx0
(tX),

a geodesic of (M, g) with γ(0) = x0, γ̇(0) = X. Then the rolling curve

qDR
(γ, q0) =

(
γ, γ̂DR

(γ, q0);ADR
(γ, q0)

)
: [0, a′] −→ Q,

0 < a′ ≤ a, along γ with initial position q0 is given by

γ̂DR
(γ, q0)(t) = êxpx̂0

(tA0X),

ADR
(γ, q0)(t) = P t

0

(
γ̂DR

(γ, q0)
) ◦A0 ◦ P 0

t (γ).

Of course, a′ = a if M̂ is complete.

Proof. — Let 0 < a′ ≤ a such that γ̂(t) := êxpx̂0
(tA0X) is defined on [0, a′].

Then, by proposition 3.8, q(t) := (γ(t), γ̂(t);A(t)) with

A(t) := P t
0(γ̂) ◦A0 ◦ P 0

t (γ), t ∈ [0, a′],

is a curve on Q and A(t) is parallel to (γ, γ̂) in M × M̂ . Therefore t �→ q(t) is

tangent to DNS on [0, a′] and thus

q̇(t) = LNS

(
γ̇(t), ˙̂γ(t)

)
q(t) .
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Moreover, since γ and γ̂ are geodesics,

A(t)γ̇(t) = (P t
0(γ̂) ◦A0)

(
P 0
t (γ)γ̇(t)

)
= P t

0(γ̂)(A0X) = ˙̂γ(t),

which shows that for t ∈ [0, a′],

q̇(t) = LNS

(
γ̇(t), A(t)γ̇(t)

)
q(t)

= LR

(
γ̇(t)
)

q(t)
.

Hence t �→ q(t) is tangent to DR i.e., it is a rolling curve along γ with initial

position q(0) = (γ(0), γ̂(0);A(0)) = (x0, x̂0;A0) = q0.

Remark 3.21. — If γ(t) = expx0
(tA0X) and q0 = (x0, x̂0;A0), the statement

of the proposition can be written in a compact form as

ADR
(γ, q0)(t) = P t

0

(
s �→ exp(x0,x̂0)

(
s(X,A0X)

))
A0,

for all t where defined.

The next proposition describes the symmetry of the study of the rolling

problem of (M, g) rolling against (M̂ , ĝ) to the problem of (M̂ , ĝ) rolling

against (M, g).

Proposition 3.22. — Let D̂R be the rolling distribution in Q̂ := Q(M̂ ,M).

Then the map

ι : Q −→ Q̂; ι(x, x̂;A) = (x̂, x;A−1)

is a diffeomorphism of Q onto Q̂ and

ι∗DR = D̂R.

In particular, ι(ODR
(q)) = OD̂R

(ι(q)).

Proof. — It is obvious that ι is a diffeomorphism (with the obvious inverse

map) and for an a.c. path q(t) = (γ(t), γ̂(t);A(t)) in Q,

(ι ◦ q)(t) = (γ̂(t), γ(t);A(t)−1
)

is a.c. in Q̂ and for a.e. t,

˙̂γ(t) = A(t)γ̇(t), A(t) = P t
0(γ̂) ◦A(0) ◦ P 0

t (γ)

is equivalent to

γ̇(t) = A(t)−1 ˙̂γ(t), A(t)−1 = P t
0(γ) ◦A(0)−1 ◦ P 0

t (γ̂).

These simple remarks prove the claims.
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Remark 3.23. — Notice that Definitions 3.16 and 3.17 make sense not only

in Q but also in the space T ∗M ⊗ TM̂ . It is easily seen that DR defined on

T ∗M ⊗ TM̂ by Eq. (20) is actually tangent to Q so its restriction to Q gives

exactly DR on Q as defined above. Similarly, Propositions 3.18, 3.20 and 3.22

still hold if we replace Q by T ∗M ⊗TM̂ and Q̂ by T ∗M̂ ⊗TM everywhere in

their statements.

3.3. Lie brackets of vector fields on Q

In this section, we compute commutators of the vectors fields of T ∗M⊗TM̂

and Q with respect to the splitting of T (T ∗M ⊗ TM̂ ) (resp. TQ) as a direct

sum DNS ⊕ V (π
T ∗M⊗TM̂

) (resp. DNS ⊕ V (πQ)). The main results are Propo-

sitions 3.35, 3.35 and 3.37. These computations will serve as preliminaries for

the Lie bracket computations relative to the rolling distribution DR studied

in the next section. It is convenient to make computations in T ∗M ⊗TM̂ and

then to restrict the results to Q.

3.3.1. Computational tools. — The next lemmas will be useful in the

subsequent calculations.

Lemma 3.24. — Let (x, x̂;A) ∈ T ∗M⊗TM̂ (resp. (x, x̂;A) ∈ Q). Then there

exists a local π
T ∗M⊗TM̂

-section (resp. πQ-section) Ã around (x, x̂) such that

Ã (x,x̂) = A and ∇X Ã = 0

for all X ∈ T (x,x̂) (M × M̂ ).

Proof. — Let U be an open neighborhood of the origin of T (x,x̂) (M × M̂ ),

where the ḡ-exponential map exp : U → M × M̂ is a diffeomorphism onto

its image. Parallel translate A along geodesics t �→ exp(tX ), X ∈ U , to get

a local section Ã of T ∗(M) ⊗ T (M̂ ) in a neighborhood of x = (x, x̂). More

explicitly, one has

Ã
y
= P 1

0

(
t �→ exp

(
t(expx)

−1(y)
))
A,

for y ∈ U . If (x, x̂;A) ∈ Q, this actually provides a local πQ-section. Moreover,

we clearly have ∇X Ã = 0 for all X ∈ T (x,x̂) (M × M̂ ).

Notice that the choice of Ã corresponding to (x, x̂;A) is, of course, not

unique.
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The proof of the following lemma is obvious and hence omitted.

Lemma 3.25. — Let Ã be a smooth local π
T ∗M⊗TM̂

-section and Ã (x,x̂) = A.

Then, for any vector fields X,Y ∈ VF(M × M̂ ) such that

X (x,x̂) = (X, X̂ ) and Y (x,x̂) = (Y, Ŷ ),

one has(
[∇X ,∇Y ]Ã

)
(x,x̂) = −AR(X,Y ) + R̂(X̂ , Ŷ )A+ (∇[X,Y ]Ã) (x,x̂) .(22)

Here [∇X ,∇Y ] is given by ∇X ◦ ∇Y − ∇Y ◦ ∇X and is an R-linear map on

the set of local sections of π
T ∗M⊗TM̂

around (x, x̂).

We next define the actions of vectors

LNS(X ) q ∈ T q (T
∗M ⊗ TM̂ ), X ∈ T (x,x̂) (M × M̂ ),

ν(B) q ∈ V q (πT ∗M⊗TM̂
), B ∈ T x

∗M ⊗ T x̂ M̂ ,

on certain bundle maps instead of just functions (e.g. from C∞(T ∗M⊗TM̂ )).

Recall that if η : E → N is a vector bundle and y ∈ N , u ∈ E y = η−1(y), we

have defined the isomorphism

νη u : E y −→ V u (η); νη u (v)(f) =
d

dt 0
f(u+ tv), ∀f ∈ C∞(E).

We normally omit the index η in νη, when it is clear from the context, and

simply write ν instead of νη and it is sometimes more convenient to write

ν(v) u for ν u (v). By using this we make the following definition.

Definition 3.26. — Suppose B is a smooth manifold, η : E → N a vector

bundle, τ : B → N and F : B → E smooth maps such that η ◦ F = τ . Then,

for b ∈ B and V ∈ V b (τ), we define the vertical derivative of F as

VF := ν
F (b)

−1(F∗V) ∈ E
τ(b)

.

This is well defined since F∗V ∈ V F (b) (η). In this matter, we will show the

following simple lemma that will be used later on.

Lemma 3.27. — Let N be a smooth manifold, η : E → N a vector bundle,

τ : B → N a smooth map, O ⊂ B an immersed submanifold and F : O → E

a smooth map such that η ◦ F = τ O .

(i) For every b0 ∈ O, there exists an open neighborhood V of b0 in O, an

open neighborhood Ṽ of b0 in B s. t. V ⊂ Ṽ and a smooth map F̃ : Ṽ → E

such that η ◦ F̃ = τ
Ṽ

and F̃ V = F V . We call F̃ a local extension of F

around b0.
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(ii) Suppose τ : B → N is also a vector bundle and F̃ is any local extension

of F around b0 as in case (i). Then if v ∈ B τ(b0)
is such that ν b0

(v) ∈ T b0
O,

one has

ν b0
(v)(F ) =

d

dt 0
F̃ (b0 + tv) ∈ E τ(b0)

,

where on the right hand side one views t �→ F̃ (b0 + tv) as a map into a fixed

(i.e. independent of t) vector space E F (b0)
and the derivative d

dt is just the

classical derivative of a vector valued map (and not a tangent vector).

Proof. — (i) For a given b0 ∈ O, take a neighborhood W of y0 := τ(b0)

in N such that there exists a local frame v1, . . . , vk of η defined on W (here

k = dimE − dimN). Since η ◦ F = τ O , it follows that

F (b) =

k∑
i=1

fi(b) vi τ(b) , ∀b ∈ τ−1(W ) ∩ O,

for some smooth functions fi : τ
−1(W ) ∩ O → R, i = 1, . . . , k. Now one can

choose a small open neighborhood V of b0 in O and an open neigborhood Ṽ

of b0 in B such that V ⊂ Ṽ ⊂ τ−1(W ) and there exist smooth f̃ 1, . . . , f̃ k :

Ṽ → R extending the functions fi V , i.e. f̃ i V = fi V for i = 1, . . . , k. To

finish the proof of case (i), it suffices to define F̃ : Ṽ → E by

F̃ (b) =
k∑

i=1

f̃ i(b) vi τ(b) , ∀b ∈ Ṽ .

(ii) The fact that t �→ F̃ (b0 + tv) is a map into a fixed vector space E F (b0)

is clear since

F̃ (b0 + tv) ∈ E
η(F̃ (b0+tv))

= E τ(b0+tv) = E τ(b0)
.

Since F V = F̃ V and ν b0
(v) ∈ T b0

V , we have F∗ν b0
(v) = F̃ ∗ν b0

(v).

Also, t �→ b0 + tv is a curve in E τ(b0)
, and hence in E, whose tangent vector

at t = 0 is exactly ν b0
(v). Hence

ν F (b0)
(ν b0

(v)F ) = F∗ν b0
(v) = F̃ ∗ν b0

(v) =
d

dt 0
F̃ (b0 + tv).

Here on the rightmost side, the derivative =: T is still viewed as a tangent

vector of E at F̃ (b0) i.e. t �→ F̃ (b0 + tv) is thought of as a map into E. On

the other hand, if one views t �→ F̃ (b0 + tv) as a map into a fixed linear

space E τ(b0)
, its derivative =: D at t = 0, as the usual derivative of vector
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valued maps, is just D = ν F (b0)
−1(T ). In the statement, it is exactly D whose

expression we wrote as d
dt 0 F̃ (b0 + tv). This completes the proof.

Remark 3.28. — The advantage of the formula in case (ii) of the above lemma

is that it simplifies in many cases the computations of τ -vertical derivatives

because t �→ F̃ (b0 + tv) is a map from a real interval into a fixed vector space

E F (b0)
and hence we may use certain computational tools (e.g. Leibniz rule)

coming from the ordinary vector calculus.

Let O be an immersed submanifold of T ∗M ⊗ TM̂ and write

πO := π
T ∗M⊗TM̂ O .

Then if

T : O → T k
m(M × M̂ ) with π

Tk
m(M×M̂ )

◦ T = πO

(i.e. T ∈ C∞(πO, πTk
m(M×M̂ )

)) and if

q = (x, x̂;A) ∈ O and X ∈ T (x,x̂) (M × M̂ )

are such that LNS(X ) q ∈ T q O, we next want to define what it means to

take the derivative LNS(X ) q T . Our main interest will be the case where

k = 0, m = 1, i.e. T k
m(M × M̂ ) = T (M × M̂ ), but some arguments below

require this slightly more general setting.

First, for a moment, we take

O = T ∗M ⊗ TM̂ .

Choose some local π
T ∗M⊗TM̂

-section Ã defined on a neighborhood of (x, x̂)

such that Ã (x,x̂) = A and define

LNS(X ) q T := ∇X (T (Ã))− ν(∇X Ã) q T ∈ T k
m (x,x̂) (M × M̂ ),(23)

which is inspired by Eq. (17). Here as usual, T̃ (Ã) = T̃ ◦ Ã is a locally defined

(k,m)-tensor field on M × M̂ . Note that this does not depend on the choice

of Ã since if ω ∈ Γ(π
Tm
k (M×M̂ )

) and if we write

(T ω)(q) := T (q)ω (x,x̂)
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as a full contraction for q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ , whence T ω belongs to

C∞(T ∗M ⊗ TM̂ ), we may compute (where all the contractions are full)(
LNS(X ) q T

)
ω =

(∇X

(
T (Ã)

))
ω −

( d

dt 0
T (A+ t∇X Ã)

)
ω

= ∇X

(
T (Ã)ω

)− T (q)∇X ω − d

dt 0

(
T (A+ t∇X Ã)ω

)
= ∇X

(
(T ω)(Ã)

)− d

dt 0
(T ω)(A+ t∇X Ã)− T (q)∇X ω

i.e. (
LNS(X ) q T

)
ω = LNS(X ) q (T ω)− T (q)∇X ω,(24)

for all ω ∈ Γ(π
Tm
k (M×M̂ )

) and where LNS(X ) q on the right hand side acts as

a tangent vector to a function T ω ∈ C∞(T ∗M ⊗ TM̂ ) as defined previously.

The right hand side is independent of any choice of local extension Ã of A

(i.e. Ã (x,x̂) = A), it follows that the definition of LNS(X ) q T is independent

of this choice as well. Now if O ⊂ T ∗M⊗TM̂ is just an immersed submanifold,

we take the formula (24) as the definition of LNS(X ) q T .

Definition 3.29. — Let O ⊂ T ∗M ⊗ TM̂ be an immersed submanifold and

q = (x, x̂;A) ∈ O, X ∈ T (x,x̂) (M × M̂ ) be such that LNS(X ) q ∈ T q O.

Then for T : O → T k
m(M × M̂ ) such that π

Tk
m(M×M̂ )

◦ T = πO, we define

LNS(X ) q T

to be the unique element in T k
m (x,x̂) (M×M̂ ) such that Eq. (24) holds for every

ω ∈ Γ(π
Tm
k (M×M̂ )

), and call it the derivative of T with respect to LNS(X ) q .

We now to provide the (unique) decomposition of any vector field of T ∗M⊗
TM̂ defined over O (not necessarily tangent to it) according to the decompo-

sition T (T ∗M ⊗ TM̂ ) = DNS ⊕ V (π
T ∗M⊗TM̂

).

Proposition 3.30. — Let X ∈ C∞(πO, πT (T ∗M⊗TM̂ )
) be a smooth bundle

map (i.e. a vector field of T ∗M ⊗ TM̂ along O) where O ⊂ T ∗M ⊗ TM̂ is a

smooth immersed submanifold. Then there are unique smooth bundle maps

T ∈ C∞(πO, πT (M×M̂ )
) and U ∈ C∞(πO, πT ∗M⊗TM̂

)

such that

X q = LNS

(
T (q)

)
q + ν

(
U(q)

)
q , q ∈ O.(25)
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Proof. — First of all, there are unique smooth vector fields

X h,X v ∈ C∞(πO, πT (T ∗M⊗TM̂
)
)
,

of T ∗M ⊗ TM̂ along O such that

X h
q ∈ DNS q , X v

q ∈ V q (πT ∗M⊗TM̂
),

for all q ∈ O and X = X h + X v. Then, we define

T (q) = (π
T ∗M⊗TM̂

)∗X h
q and U(q) = ν q

−1(X v
q ),

where q = (x, x̂;A) ∈ O and ν q is the isomorphism

T ∗
xM ⊗ T x̂ M̂ −→ V q (πT ∗M⊗TM̂

), B �−→ ν(B) q .

This clearly proves the claims.

Remark 3.31. — The previous results shows that to know how to compute

the Lie brackets of two vector fields X ,Y ∈ VF(O) where O ⊂ T ∗M ⊗ TM̂ is

an immersed submanifold (e.g. O = Q), one needs, in practice, just to know

how to compute the Lie brackets between vectors fields of the form

q �−→ LNS

(
T (q)

)
q ,LNS

(
S(q)

)
, q �−→ ν(U(q)) q , ν

(
V (q)

)
q

where X q = LNS(T (q)) q +ν(U(q)) q and Y q = LNS(S(q)) q +ν(V (q)) q

as above.

Remark 3.32. — Notice that if O ⊂ T ∗M⊗TM̂ is an immersed submanifold,

q = (x, x̂;A) ∈ O, X ∈ T q O and T ∈ C∞(πO, πTk
m(M×M̂ )

), then we may

define the derivative X T ∈ T k
m(M × M̂ ) by decomposing

X = LNS(X ) q + ν(U) q

for the unique X ∈ T (x,x̂) (M × M̂ ) and U ∈ (T ∗M ⊗ TM̂ ) (x,x̂) .

We finish this subsection with some obvious but useful rules of calculation,

that will be useful in the computations of Lie brackets on O ⊂ T ∗M ⊗ TM̂

and we will make use of them especially in section 5.

Lemma 3.33. — Let O ⊂ T ∗M ⊗ TM̂ be an immersed submanifold,

q = (x, x̂;A) ∈ O, T ∈ C∞(πO, πTk
m(M×M̂ )

), F ∈ C∞(O), h ∈ C∞(R),

X ∈ T (x,x̂) (M × M̂ ) such that LNS(X ) q ∈ T q O and finally

U ∈ (T ∗M × TM̂ ) (x,x̂) such that ν(U) q ∈ T q O.
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Then

(i) LNS(X ) q (F T ) =
(
LNS(X ) q F

)
T (q) + F (q)LNS(X ) q T ,

(ii) LNS(X ) q (h ◦ F ) = h′
(
F (q)

)
LNS(X ) q F,

(iii) ν(U) q (F T ) = (ν(U) q F )T (q) + F (q)ν(U) q T ,

(iv) ν(U) q (h ◦ F ) = h′
(
F (q)

)
ν(U) q F.

If T : O −→ TM ⊂ T (M × M̂ ) is such that T (q) ∈ T xM for all q =

(x, x̂;A) ∈ O and one writes

(.)T (.) : O −→ TM̂ ⊂ T (M × M̂ ); q = (x, x̂;A) �−→ AT (q),

(see Remark 3.34 below), then

(v) LNS(X ) q

(
(.)T (.)

)
= ALNS(X ) q T ∈ T x̂ M̂ ,

(vi) ν(U) q

(
(.)T (.)

)
= UT (q) +Aν(U) q T ∈ T x̂ M̂ ,

where LNS(X ) q T, ν(U) q T ∈ T xM . Finally, if Y ∈ VF(M) is considered

as a map O → TM ; (x′, x̂′;A′) �→ Y x′ and if we write

X = (X, X̂ ) ∈ T xM ⊕ T x̂ M̂ ,
then

(vii) LNS(X ) q Y = ∇XY .

Remark 3.34. — In the cases (v) and (vii) we think of T : O → TM , to

adapt to our previous notations, as a map T : O → pr∗1(TM) where pr1
is the projection M × M̂ → M onto the first factor. Here pr∗1(πTM ) is a

vector subbundle of π
T (M×M̂ )

which we wrote, slightly imprecisely, as TM ⊂
T (M × M̂ ) in the statement of the proposition. Thus T (q′) ∈ T x′ M for all

q′ = (x′, x̂′;A′) ∈ O just means that pr∗1(πTM ) ◦ T = πO.

Proof. — Items (i)–(iv) are immediate to derive. We next turn to an argument

for the others. We take a small open neighborhood V of q in O, a small open

neighborhood Ṽ of q in T ∗M ⊗ TM̂ such that V ⊂ Ṽ a smooth

T̃ : Ṽ −→ TM

such that T̃ V = T V and T̃ (q′) ∈ T x′ M for all q′ = (x′, x̂′;A′) ∈ Ṽ . Such an

extension T̃ of T is provided by Lemma 3.27 by taking b0 = q, τ = π
T ∗M⊗TM̂

,

η = pr∗1(πTM ) with pr1 : M × M̂ = M the projection onto the first factor (see

also Remark 3.34 above). Then taking

t �−→ Γ(t) =
(
γ(t), γ̂(t);A(t)

)
MÉMOIRES DE LA SMF 147



3.3. LIE BRACKETS OF VECTOR FIELDS ON Q 31

to be any curve in O with Γ(0) = q, Γ̇(0) = LNS(X ) q , we have

LNS(X ) q

(
(.)T (.)

)
= LNS(X ) q

(
(.)T̃ (.)

)
= ∇X

(
A(.)T̃ (A(.))

)− d

dt 0

(
A+ t∇XA(.)

)
T̃
(
A+ t∇XA(.)

)
=
(∇XA(.)

)
T̃ (q) +A∇X

(
T̃ (A(.))

)− (∇XA(.)
)
T̃ (q)

−A
d

dt 0
T̃
(
A+ t∇XA(.)

)
= ALNS(X ) q T̃ = ALNS(X ) q T,

where the first and the last steps follow from the facts that(
(.)T̃ (.)

)
V =

(
(.)T (.)

)
V and T̃ V = T V .

This gives (v).

To prove (vi) we compute

ν(U) q

(
(.)T (.)

)
= ν(U) q

(
(.)T̃ (.)

)
=

d

dt 0
(A+ tU)T̃ (A+ tU)

=
( d
dt 0

(A+ tU)
)
T̃ (q) +A

d

dt 0
T̃ (A+ tU) = UT (q) +Aν(U) q T̃

= UT (q) +Aν(U) q T.

Finally, we prove (vii). Suppose that Y ∈ VF(M). Then the map

O −→ TM, (x′, x̂′;A′) �−→ Y x′

is nothing more than Y ◦ pr1 ◦ πO where pr1 : M × M̂ → M is the projection

onto the first factor. Take a local π
T ∗M⊗TM̂

-section Ã with Ã (x,x̂) = A. Then

since Y ◦ pr1 ◦ πO = Y ◦ pr1 ◦ πT ∗M⊗TM̂ O , we have

LNS(X ) q (Y ◦ pr1 ◦ πO) = LNS(X ) q (Y ◦ pr1 ◦ πT ∗M⊗TM̂
)

= ∇
(X,X̂ )

(Y ◦ pr1 ◦ πT ∗M⊗TM̂
◦ Ã)− d

dt 0
(Y ◦ pr1 ◦ πT ∗M⊗TM̂

)(A+ t∇X Ã).

But (Y ◦ pr1 ◦ πT ∗M⊗TM̂
◦ Ã) (x′,x̂′) = Y x′ = (Y, 0) (x,x̂) for all (x′, x̂′) and

(Y ◦ pr1 ◦ πT ∗M⊗TM̂
)(A+ t∇X Ã) = Y x for all t and hence

LNS(X ) q (Y ◦ pr1 ◦ πO) = ∇
(X,X̂ )

(Y, 0)− 0 = ∇XY.

3.3.2. Computation of Lie brackets. — We now embark into the com-

putation of Lie brackets.
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Proposition 3.35. — Let O ⊂ T ∗M ⊗ TM̂ be an immersed submanifold,

T = (T, T̂ ), S = (S, Ŝ ) ∈ C∞(πO, πT (M×M̂ )

)
with LNS(T (q)) q ,LNS(S(q)) q ∈ T q O for all q = (x, x̂;A) ∈ O. Then, for

every q ∈ O, one has[
LNS(T (.)),LNS(S(.))

]
q = LNS

(
LNS(T (q)) q S − LNS(S(q)) q T

)
q

+ ν
(
AR(T (q), S(q))− R̂(T̂ (q), Ŝ (q))A

)
q
,(26)

with both sides tangent to O.

Proof. — We will deal first with the case where O is an open subset of

T ∗M ⊗ TM̂ . Take a local π
T ∗M⊗TM̂

section Ã around (x, x̂) such that

Ã (x,x̂) = A, ∇Ã (x,x̂) = 0;

see Lemma 3.24.

Let f ∈ C∞(T ∗M⊗TM̂ ). By using the definition of LNS and ν, one obtains

LNS

(
T (A)

)
q

(
LNS(S(.)(f))

)
= T (A)

(
LNS(S(Ã))

Ã
(f)
)

− d

dt 0
LNS

(
S(A+ t∇T (A)Ã)

)
A+t∇T (A) Ã

(f)

= T (A)
(
S(Ã)

(
f(Ã)

)− d

dt 0
f(Ã + t∇

S(Ã)
Ã)
)

− d

dt 0
S(A+ t∇T (A)Ã)

(
f(Ã + t∇

T (Ã)
Ã)
)

+
∂2

∂t∂s 0
f
(
A+ t∇T (A)Ã + s∇

S(A+t∇T (A) Ã)
(Ã + t∇

T (Ã)
Ã)
)
.

We use the fact that ∇X Ã = 0 for all X ∈ T (x,x̂) (M ×M̂ ) and ∂
∂t and T (Ã)

commute (as the obvious vector fields on M × M̂ ×R with points (x, x̂, t)) to

write the last expression in the form

T (A)
(
S(Ã)(f(Ã))

)− d

dt 0
T (A)

(
f(Ã + t∇

S(Ã)
Ã)
)

− d

dt 0
S(A)

(
f(Ã + t∇

T (Ã)
Ã)
)

+
∂2

∂t∂s 0
f
(
A+ st∇S(A)(∇T (Ã)

Ã)
)
.
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By interchanging the roles of T and S and using the definition of commutator

of vector fields, we get from this[
LNS(T (.)),LNS(S(.))

]
q (f)

=
[
T (Ã), S(Ã)

]
q

(
f(Ã)

)
+

∂2

∂t∂s 0
f
(
A+ st∇S(A)(∇T (Ã)

Ã)
)

− ∂2

∂t∂s 0
f
(
A+ st∇T (A)(∇S(Ã)

Ã)
)

=
[
T (Ã), S(Ã)

]
q

(
f(Ã)

)
+

d

dt 0
ν
(
t∇S(A)(∇T (Ã)

Ã)
)

q (f)

− d

dt 0
ν
(
t∇T (A)(∇S(Ã)

Ã)
)

q (f)

=
[
T (Ã), S(Ã)

]
q

(
f(Ã)

)
+ ν
(∇S(A)(∇T (Ã)

Ã)
)

q (f)

− ν
(∇T (A)(∇S(Ã)

Ã)
)

q (f)

=
[
T (Ã), S(Ã)

]
q

(
f(Ã)

)− ν
(
[∇

T (Ã)
,∇

S(Ã)
]Ã
)

q (f).

Using Lemma 3.25, we get that the last line is equal to

[T (Ã), S(Ã)] (x,x̂) (f(Ã))

− ν
(
∇

[T (Ã),S(Ã)]
(x,x̂)

Ã −AR
(
T (A), S(A)

)
+ R̂

(
T̂ (A), Ŝ (A)

)
A
)

q (f),

from which, by using the definition of LNS, linearity of ν(.) q and arbitrariness

of f ∈ C∞(T ∗M ⊗ TM̂ ), we get[
LNS(T (.)),LNS(S(.))

]
q

= LNS

(
[T (Ã), S(Ã)]

)
q + ν

(
AR(T (A), S(A))− R̂(T̂ (A), Ŝ (A))A

)
q .

Finally,

d

dt 0
S(A+ t∇T (q)Ã︸ ︷︷ ︸

=0

) =
d

dt 0
S(A) = 0,

d

dt 0
T (A+ t∇S(q)Ã︸ ︷︷ ︸

=0

) =
d

dt 0
T (A) = 0,

since T (q), S(q) ∈ T (x,x̂) (M × M̂ ) and hence by Eq. (23),

[T (Ã), S(Ã)] = ∇T (q)

(
S(Ã)

)− ∇S(q)

(
T (Ã)

)
= LNS

(
T (q)

)
q S − LNS

(
S(q)

)
q T .
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The claim thus holds in this case (i.e. whenO is an open subset of T ∗M⊗TM̂ ).

We let O ⊂ T ∗M ⊗ TM̂ to be an immersed submanifold and

T , S : O −→ T (M × M̂ )

are such that, for all q = (x, x̂;A) ∈ O, T (x, x̂;A), S(x, x̂;A) belong to

T (x,x̂) (M × M̂ ) and LNS(T (q)) q , LNS(S(q)) q belong to T q O.

For a fixed q = (x, x̂;A) ∈ O, we may, thanks to Lemma 3.27 (taking

τ = π
T ∗M⊗TM̂

, η = π
T (M×M̂ )

, b0 = q and F = T or F = S there) take a

small open neighborhood V of q in O, a neighborhood Ṽ of q in Q such that

V ⊂ Ṽ and some extensions

T̃ , S̃ : Ṽ −→ T (M × M̂ )

of T V , S V with

T̃ (x′, x̂′;A′), S̃ (x′, x̂′;A′) ∈ T (x′,x̂′) (M × M̂ )

for all (x′, x̂′;A′) ∈ Ṽ . Then since

LNS

(
T (.)

)
V = LNS

(
T̃ (.)

)
V and LNS

(
S(.)

)
V = LNS

(
S̃ (.)

)
V ,

we compute, because of what has been shown already,[
LNS(T ),LNS(S)

]
q
=
[
LNS(T̃ ) V ,LNS(S̃ ) V

]
q

=
(
[LNS(T̃ ),LNS(S̃ )] V

)
q

= LNS

(
LNS(T (q)) q S̃ − LNS(S(q)) q T̃

)
q

+ ν
(
AR(T (q), S(q))− R̂( T̂ (q), Ŝ (q))A

)
q
,

where in the last line we used that

T̃ (q) = T (q) =
(
T (q), T̂ (q)

)
and S̃ (q) = S(q) =

(
S(q), Ŝ (q)

)
.

Take any ω ∈ Γ(π
Tm
k (M×M̂ )

). Since LNS(T (q)) q ∈ T q O = T q V by as-

sumption and since (Sω) V = (S̃ ω) V , we have

LNS

(
T (q)

)
q (Sω) = LNS

(
T (q)

)
q (S̃ ω) V .

But then Eq. (24), i.e. the definition of LNS(T (q)) q S implies that(
LNS(T (q)) q S

)
ω = LNS

(
T (q)

)
q (Sω)− S(q)∇T (q)ω

= LNS

(
T (q)

)
q (S̃ ω)− S̃ (q)∇T (q)ω

=
(
LNS(T (q)) q S̃

)
ω
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that is

LNS

(
T (q)

)
q S = LNS

(
T (q)

)
q S̃

and similarly

LNS

(
S(q)

)
q T = LNS

(
S(q)

)
q T̃ .

This shows that on O we have the formula[
LNS(T ),LNS(S)

]
q = LNS

(
LNS(T (q)

)
q S − LNS

(
S(q)

)
q T
)

q

+ ν
(
AR(T (q), S(q))− R̂(T̂ (q), Ŝ (q))A

)
q
,

where both sides belong to T q O (since the left hand side obviously belongs

to T q O).

Proposition 3.36. — Let O ⊂ T ∗M ⊗ TM̂ be an immersed submanifold,

T = (T, T̂ ) ∈ C∞(πO, πT (M×M̂ )
) and U ∈ C∞(πO, πT ∗M⊗TM̂

)

be such that, for all q = (x, x̂;A) ∈ O,

LNS

(
T (q)

)
q ∈ T q O, ν

(
U(q)

)
q ∈ T q O.

Then[
LNS(T (.)), ν(U(.))

]
q = −LNS

(
ν(U(q)

)
q T ) q + ν

(
LNS(T (q)) q U

)
q ,

with both sides tangent to O.

Proof. — As in the proof of Proposition 3.35, we will deal first with the case

where O is an open subset of T ∗M ⊗ TM̂ . Take a local π
T ∗M⊗TM̂

section Ã

around (x, x̂) such that (see Lemma 3.24)

Ã (x,x̂) = A and ∇Ã (x,x̂) = 0; .

In some expressions we will write q = A for clarity.

Let f ∈ C∞(T ∗M ⊗ TM̂ ). Then LNS(T (A)) q

(
ν(U(.))(f)

)
is equal to

T (A)
(
ν(U(Ã))

Ã
(f)
)− d

dt 0
ν
(
U(A+ t∇T (A)Ã)

)
A+t∇T (A) Ã

(f),
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which is equal to T (A)
(
ν(U(Ã))

Ã
(f)
)
once we recall that ∇T (A)Ã = 0. In

addition, one has

ν
(
U(A)

)
q

(
LNS(T (.))(f)

)
=

d

dt 0
LNS(T

(
A+ tU(A)

)
A+tU(A)

(f)

=
d

dt 0
T
(
A+ tU(A)

)(
f
(
Ã + tU(Ã)

))
− ∂2

∂s∂t 0
f
(
A+ tU(A) + s∇T (A+tU(A))

(
Ã + tU(Ã)

))
=

d

dt 0
T
(
A+ tU(A)

)(
f
(
Ã + tU(Ã)

))
− ∂2

∂s∂t 0
f
(
A+ tU(A) + st∇T (A+tU(A))

(
U(Ã)

))
,

since ∇T (A+tU(A))Ã = 0. We next simplify the first term on the last line to

get

d

dt 0
T (A+ tU(A))

(
f
(
Ã + tU(Ã)

))
= (ν(U(q)) q T )

(
f(Ã)

)
+ T (A)

(
ν
(
U(Ã)

)
Ã
(f)
)

and then, for the second term, one obtains

∂2

∂s∂t 0
f
(
A+ tU(A) + st∇T (A+tU(A))(U(Ã))

)
=

d

ds 0
f∗ q ν

( d

dt 0

(
tU(A) + st∇T (A+tU(A))(U(Ã))

))
q

=
d

ds 0
f∗ q ν

(
U(A) + s∇T (A)(U(Ã))

))
q

=
d

ds 0

(
f∗ q ν(U(A)) q + sf∗ q ν

(∇T (A)(U(Ã))
)

q

)
= f∗ν

(∇T (A)(U(Ã))
)

q = ν(∇T (A)(U(Ã))) q f.

Therefore one deduces[
LNS(T (.)), ν(U(.))

]
q (f)

= −(ν(U(q)) q T
)(
f(Ã)

)
+ ν
(∇T (A)

(
U(Ã)

))
q
f

= −Ã∗
(
ν
(
U(A)

)
q T
)
(f) + ν

(∇T (A)

(
U(Ã)

))
q
(f)

= −LNS(ν(U(A)) q T ) q (f) + ν
(∇T (A)

(
U(Ã)

))
q
(f),
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where the last line follows from the definition of LNS and the fact that

∇ν(U(A))
q
T Ã = 0. Finally, Eq. (23) implies

∇T (q)

(
U(Ã)

)
= ∇T (q)

(
U(Ã)

)− ν(∇T (q)Ã︸ ︷︷ ︸
=0

) q U = LNS

(
T (A)

)
q U.

Thus the claimed formula holds in the special case where O is an open subset

of T ∗M ⊗ TM̂ . More generally, let O ⊂ T ∗M ⊗TM̂ be an immersed subman-

ifold, and

T = (T, T̂ ) : O −→ T (M × M̂ ) = TM × TM̂ , U : O −→ T ∗M × TM̂

as in the statement of this proposition.

For a fixed q = (x, x̂;A) ∈ O, Lemma 3.27 implies the existence of a neigh-

borhood V of q in O, a neighborhood Ṽ of q in T ∗M ⊗ TM̂ and smooth

T̃ : Ṽ −→ T (M × M̂ ), Ũ : Ṽ −→ T ∗M ⊗ TM̂

such that T̃ (x, x̂;A) ∈ T (x,x̂) (M × M̂ ), Ũ (x, x̂;A) ∈ (T ∗M ⊗ TM̂ ) (x,x̂)

and T̃ V = T V , Ũ V = U V (for the case of an extension Ũ of U , take in

Lemma 3.27, τ = π
T ∗M⊗TM̂

, η = π
T 1
1 (M×M̂ )

, F = U , b0 = q). In the same

way as in the proof of Proposition 3.35, we have[
LNS(T ), ν(U)

]
q =

[
LNS(T̃ ), ν(Ũ )

]
q
,

LNS

(
T̃ (q)

)
q Ũ = LNS

(
T (q)

)
q U.

Hence by what was already shown above,[
LNS(T ), ν(U)

]
q = −LNS

(
ν(U(q)) q T̃

)
q + ν

(
LNS(T (q)) q U

)
q .

We are left to show that ν(U(q)) q T̃ = ν(U(q)) q T and for that, it suffices

to show that

ν
(
ν(U(q)) q T̃

)
T (q) = ν

(
ν(U(q)) q T

)
T (q) .

If f ∈ C∞(T (M × M̂ )), then

ν
(
ν(U(q)) q T̃

)
T (q) f =

(
T̃ ∗ν

(
U(q)

)
q

)
f

= ν
(
U(q)

)
q (f ◦ T̃ ) = ν

(
U(q)

)
q (f ◦ T )

=
(
T ∗ν

(
U(q)

)
q

)
f = ν

(
ν(U(q)

)
q T ) T (q) f,

where at the third equality we used the fact that (f ◦ T̃ ) V = (f ◦ T ) V and

ν(U(q)) q ∈ T q O = T q V . This completes the proof.
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Finally, we derive a formula for the commutators of two vertical vector fields.

Proposition 3.37. — Let O ⊂ T ∗M ⊗TM̂ be an immersed submanifold and

U, V ∈ C∞(πO, πT ∗M⊗TM̂
) be such that

ν
(
U(q)

)
q , ν
(
V (q)

)
q ∈ T q O

for all q ∈ O. Then[
ν(U(.)), ν(V (.))

]
q = ν

(
ν(U(q)) q V − ν

(
V (q)

)
q U
)

q .(27)

Proof. — We begin with the case where O is an open subset of T ∗M ⊗ TM̂

and write q = (x, x̂;A) ∈ O simply as A. Let f ∈ C∞(T ∗M ⊗ TM̂ ). Then,

ν
(
U(A)

)
q

(
ν(V (.))(f)

)
=

d

dt 0
ν(V (A+ tU(A)) A+tU(A) (f)

=
∂2

∂t∂s 0
f
(
A+ tU(A) + sV

(
A+ tU(A)

))
=

d

ds 0
f∗ q ν

( d

dt 0

(
tU(A) + sV

(
A+ tU(A)

)))
q

=
d

ds 0
f∗ν
(
U(A) + sν

(
U(A)

)
q V
)

q

= f∗ν
(
ν
(
U(A)

)
q V
)

q = ν
(
ν(U(A)

)
q
V ) q f.

from which the result follows when O is an open subset of T ∗M ⊗ TM̂ . The

case where O is only an immersed submanifold of T ∗M ⊗ TM̂ can be treated

by using Lemma 3.27 in the same way as in the proofs of Propositions 3.35

and 3.36.

As a corollary to the previous three propositions, we have the following,

whose proof is immediate.

Corollary 3.38. — Let O ⊂ T ∗M ⊗ TM̂ be an immersed submanifold

and X ,Y ∈ VF(O). Letting for q ∈ O,

X q = LNS

(
T (q)

)
q + ν

(
U(q)

)
q , Y q = LNS

(
S(q)

)
q + ν

(
V (q)

)
q ,

to be the unique decompositions given by Proposition 3.30. Writing T = (T, T̂ ),

S = (S, Ŝ ) corresponding to T (M × M̂ ) = TM × TM̂ , we get

[X ,Y] q =
(
LNS(X q S ) q + ν(X q V ) q

)− (LNS(Y q T ) q + ν(Y q U) q

)
+ ν
(
AR(T (q), S(q))− R̂(T̂ (q), Ŝ (q))A

)
q

(for the notation, see the second remark after Proposition 3.30).

MÉMOIRES DE LA SMF 147



CHAPTER 4

STUDY OF THE ROLLING PROBLEM (R)

In this section, we investigate the rolling problem as a control system (Σ)R
associated to the distribution DR.

4.1. Global properties of a DR-orbit

We begin with the following remark.

Remark 4.1. — Notice that the map πQ,M : Q → M is in fact a bundle.

Indeed, let F = (Xi)
n
i=1 be a local oriented orthonormal frame of M defined

on an open set U . Then the local trivialization of πQ,M induced by F is

τF : π−1
Q,M (U) −→ U × FOON(M̂ ), τF (x, x̂;A) = (x, (AXi x )

n
i=1),

is a diffeomorphism. Note also that since πQ,M -fibers are diffeomorphic to

FOON(M̂ ), in order that there would be a principal G-bundle structure for

πQ,M , it is necessary that FOON(M̂ ) is diffeomorphic to the Lie-group G.

From Proposition 3.20, we deduce that each DR-orbit is a smooth bundle

over M . This is given in the next proposition.

Proposition 4.2. — Let q0 = (x0, x̂0;A0) ∈ Q and suppose that M̂ is com-

plete. Then

πODR
(q0),M := πQ,M ODR

(q0)
: ODR

(q0) −→ M,

is a smooth subbundle of πQ,M .

One defines similarly

πODR
(q0),M̂

:= π
Q,M̂ ODR

(q0)
: ODR

(q0) −→ M̂ .
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Proof of Proposition 4.2. — First, surjectivity of πODR
(q0),M follows from

completeness of M̂ by using Proposition 3.18. Since DR q ⊂ T q ODR
(q0) for

every q ∈ ODR
(q0) and (πQ,M )∗ maps DR q isomorphically onto T πQ,M (q)M ,

one immediately deduces that πODR
(q0),M is also a submersion. This implies

that each fiber (πODR
(q0),M )−1(x) = ODR

(q0) ∩ π−1
Q,M (x), x ∈ M , is a smooth

closed submanifold of ODR
(q0). Choose next, for each x ∈ M , an open convex

Ux ⊂ T xM such that expx Ux
is a diffeomorphism onto its image and 0 ∈ U .

Define

τx : π−1
Q,M (Ux) −→ Ux × π−1

Q,M (x),

q = (y, ŷ;A) �−→ (
y,
(
x, γ̂DR

(γy,x, q)(1);ADR
(γy,x, q)(1)

))
,

where

γy,x : [0, 1] → M, γy,x(t) = expx
(
(1− t) exp−1

x (y)
)

is a geodesic from y to x. It is obvious that τx is a smooth bijection. Moreover,

restricting τx to ODR
(q0) clearly gives a smooth bijection

ODR
(q0) ∩ π−1

Q,M (Ux) −→ Ux ×
(ODR

(q0) ∩ π−1
Q,M (x)

)
.

The inverse of τx, τ
−1
x : Ux × π−1

Q,M (x) → π−1
Q,M (Ux) is constructed with a

formula similar to that of τx and is seen, in the same way, to be smooth.

This inverse restricted to Ux × (ODR
(q0) ∩ π−1

Q,M (x)) maps bijectively onto

ODR
(q0) ∩ π−1

Q,M (Ux) and thus τx is a smooth local trivialization of ODR
(q0).

This completes the proof.

Remark 4.3. — In the case where M̂ is not complete, the result of Propo-

sition 4.2 remains valid if we just claim that πODR
(q0),M is a bundle over its

image M◦ := πQ,M (ODR
(q0)), which is an open connected subset of M . Write

M̂ ◦ := π
Q,M̂

(ODR
(q0)
)
.

Then using the diffeomorphism

ι : Q := Q(M, M̂ ) −→ Q̂ := Q(M̂ ,M), (x, x̂;A) �−→ (x̂, x;A−1)

(Proposition 3.22) one gets

πODR
(q0),M̂

= π
Q,M̂ ODR

(q0)
= π

Q,M̂
◦ ι−1

O
̂DR

(ι(q0))
◦ ι ODR

(q0)

= π
Q̂,M̂ O

̂DR
(ι(q0))

◦ ι ODR
(q0)

= πO
̂DR

(ι(q0)),M̂
◦ ι ODR

(q0)
,
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from which we see that πODR
(q0),M̂

is also a bundle over its image M̂ ◦ since

ι ODR
(q0)

: ODR
(q0) −→ OD̂R

(
ι(q0)

)
is a diffeomorphism and since by the previous proposition and the above re-

mark πO
̂DR

(ι(q0)),M̂
is a bundle over its image, which necessarily is M̂ ◦. Notice

also that if M is complete, then M̂ ◦ = M̂ .

The next proposition can be useful in case one of the manifolds has a large

group of isometries. We do not provide an argument for this proposition since

it is immediate.

Proposition 4.4. — For any Riemannian isometries

F ∈ Iso(M, g) and F̂ ∈ Iso(M̂ , ĝ)

of (M, g), (M̂ , ĝ) respectively, one defines smooth free right and left actions

of Iso(M, g), Iso(M̂ , ĝ) on Q by

q0 · F := (F−1(x0), x̂0;A0 ◦ F∗ F−1(x0)
),

F̂ · q0 := (x0, F̂ (x̂0); F̂ ∗ x̂0
◦A0),

where q0 = (x0, x̂0;A0) ∈ Q. We also set

F̂ · q0 · F := (F̂ · q0) · F = F̂ · (q0 · F ).

Then for any q0 = (x0, x̂0;A0) ∈ Q, a.c. γ : [0, 1] → M , γ(0) = x0, and

F ∈ Iso(M, g), F̂ ∈ Iso(M̂ , ĝ), one has

F̂ · qDR
(γ, q0)(t) · F = qDR

(F−1 ◦ γ, F̂ · q0 · F )(t),(28)

for all t ∈ [0, 1]. In particular,

F̂ · ODR
(q0) · F = ODR

(F̂ · q0 · F ).

We derive the following consequence.

Corollary 4.5. — Let q0 = (x0, x̂0;A0) ∈ Q and γ, ω : [0, 1] → M be abso-

lutely continuous such that γ(0) = ω(0) = x0, γ(1) = ω(1). Then assuming that

qDR
(γ, q0), qDR

(ω, q0), qDR
(ω−1.γ, q0) exist and if there exists F̂ ∈ Iso(M̂ , ĝ)

such that

F̂ · q0 = qDR
(ω−1 · γ, q0)(1),

then

F̂ · qDR
(ω, q0)(1) = qDR

(γ, q0)(1).
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Proof. — One has

qDR
(γ, q0)(1) = qDR

(ω · ω−1 · γ, q0)(1)
=
(
qDR

(
ω, qDR

(ω−1 · γ, q0)(1)
) · qDR

(ω−1 · γ, q0)
)
(1)

=
(
qDR

(ω, F̂ · q0) · qDR
(ω−1 · γ, q0)

)
(1) = qDR

(ω, F̂ · q0)(1)
= F̂ · qDR

(ω, q0)(1).

Proposition 4.6. — Let π : (M1, g1) → (M, g) and π̂ : (M̂ 1, ĝ1) → (M̂ , ĝ)

be Riemannian coverings. Write Q1 = Q(M1, M̂ 1) and (DR)1 for the rolling

distribution in Q1. Then the map

Π : Q1 −→ Q, Π(x1, x̂1;A1) =
(
π(x1), π̂(x̂1); π̂∗ x̂1

◦A1 ◦ (π∗ x1
)−1
)

is a covering map of Q1 over Q and

Π∗(DR)1 = DR.

Moreover, for every q1 ∈ Q1 the restriction onto O(DR)1(q1) of Π is a covering

map O(DR)1(q1) → ODR
(Π(q1)). Then, for every q1 ∈ Q1, one has

Π
(O(DR)1(q1)

)
= ODR

(
Π(q1)

)
and one has O(DR)1(q1) = Q1 if and only if ODR

(Π(q1)) = Q.

As an immediate corollary of the above proposition, we obtain the following

result regarding the complete controllability of (DR).

Corollary 4.7. — Let π : (M1, g1) → (M, g) and π̂ : (M̂ 1, ĝ1) → (M̂ , ĝ) be

Riemannian coverings. Write

Q = Q(M, M̂ ), DR and Q1 = Q(M1, M̂ 1), (DR)1

respectively for the state space and for the rolling distribution in the respective

state space. Then the control system associated to DR is completely controllable

if and only if the control system associated to (DR)1 is completely controllable.

As a consequence, when one addresses the complete controllability issue for

the rolling distribution DR, one can assume with no loss of generality that

both manifolds M and M̂ are simply connected.

We now proceed with the proof of Proposition 4.6.

Proof. — It is clear that Π is a local diffeomorphism onto Q. To show that

it is a covering map, let q1 = (x1, x̂1;A1) and choose evenly covered w.r.t π,

π̂ open sets U and Û of M , M̂ containing π(x1), π̂(x̂1), respectively. Thus

π−1(U) =
⋃

i∈I Ui and π̂−1(Û ) =
⋃

i∈Î Û i where Ui, i ∈ I (resp. Û i, i ∈ Î)
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are mutually disjoint connected open subsets of M1 (resp. M̂ 1) such that π

(resp. π̂) maps each Ui (resp. Û i) diffeomorphically onto U (resp. Û ). Then

Π−1
(
π−1
Q (U × Û )

)
= π−1

Q1

(
(π × π̂)−1(U × Û )

)
=

⋃
i∈I, j∈Î

π−1
Q1

(Ui × Û j),

where π−1
Q1

(Ui × Û j) for (i, j) ∈ I × Î are clearly mutually disjoint and con-

nected. Now if for a given (i, j) ∈ I × Î we have

(y1, ŷ1, B1), (z1, ẑ1;C1) ∈ π−1
Q1

(Ui × Û j)

such that Π(y1, ŷ1;B1) = Π(z1, ẑ1, C1), then y1 = z1, ŷ1 = ẑ1 and hence

B1 = C1, which shows that Π restricted to π−1
Q1

(Ui × Û j) is injective. It is

also a local diffeomorphism, as mentioned above, and clearly surjective onto

π−1
Q (U × Û ), which proves that π−1

Q (U × Û ) is evenly covered with respect

to Π. This finishes the proof that Π is a covering map.

Suppose next that q1(t) = (γ1(t), γ̂1(t);A1(t)) is a smooth path on Q1 tan-

gent to (DR)1 and defined on an interval containing 0 ∈ R. Define

q(t) =
(
γ(t), γ̂(t);A(t)

)
:= (Π ◦ q1)(t).

Then

˙̂γ(t) = π̂∗ ˙̂γ1(t) = π̂∗A1(t)γ̇1(t) = A(t)π∗γ̇1(t) = A(t)γ̇(t),

A(t) = π̂∗ γ̂1(t)
◦ P t

0(γ̂1(t)) ◦A1(0) ◦ P 0
t (γ1) ◦ (π∗ γ1(t)

)−1

= P t
0(γ̂(t)) ◦ π̂∗ γ̂1(t)

◦A1(0) ◦ (π∗ γ1(t)
)−1 ◦ P 0

t (γ)

= P t
0(γ̂(t)) ◦A(0) ◦ P 0

t (γ),

which shows that q(t) is tangent to DR. This shows that Π∗(DR)1 ⊂ DR and

the equality follows from the fact that Π is a local diffeomorphism and the

ranks of (DR)1 and DR are the same i.e., equal to n.

Let q1 = (x1, x̂1;A1). We proceed to show that the restriction of Π

gives a covering O(DR)1(q1) → ODR
(Π(q1)). First, since Π∗(DR)1 = DR and

Π : Q1 → Q is a covering map, it follows that

Π
(O(DR)1(q1)

)
= ODR

(
Π(q1)

)
.

Let q := Π(q1) and let U ⊂ Q be an evenly covered neighborhood of q w.r.t. Π.

By the Orbit Theorem, there exists vector fields Y1, . . . , Yd ∈ VF(Q) tan-

gent to DR and (u1, . . . , ud) ∈ (L1([0, 1]))d and a connected open neighbor-

hood W of (u1, . . . , ud) in (L1([0, 1]))d such that the image of the end point

map end(Y1,...,Yd)(q,W ) is an open subset of the orbit ODR
(q) containing q and
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included in the Π-evenly covered set U . Let (Yi)1, for i = 1, . . . , d, be the

unique vector fields on Q1 defined by

Π∗(Yi)1 = Yi, i = 1, . . . , d.

Since Π∗(DR)1 = DR, it follows that (Yi)1 are tangent to (DR)1 and also,

Π ◦ end((Y1)1,...,(Yd)1) = end(Y1,...,Yd) ◦ (Π× id).

It follows that end((Y1)1,...,(Yd)1)(q
′
1,W ) is an open subset of O(DR)1(q1) con-

tained in Π−1(U) for every q′1 ∈ (Π O(DR)1
(q1)

)−1(q). Since end((Y1)1,...,(Yd)1)

is continuous and W is connected, it thus follows that for each q′1 ∈
(Π O(DR)1

(q1)
)−1(q), the connected set end((Y1)1,...,(Yd)1)(q

′
1,W ) is contained in

a single component of Π−1(U) which, since U was evenly covered, is mapped

diffeomorphically by Π onto U . But then Π maps end((Y1)1,...,(Yd)1)(q
′
1,W )

diffeomorphically onto end(Y1,...,Yd)(q,W ). Since it is also obvious that

(Π O(DR)1
(q1)

)−1
(
end(Y1,...,Yd)(q,W )

)
=

⋃
q′1∈(Π O(DR)1

(q1)
)−1(q)

end((Y1)1,...,(Yd)1)(q
′
1,W ),

we have proved that end(Y1,...,Yd)(q,W ) is an evenly covered neighborhood of q

in ODR
(q) w.r.t Π O(DR)1

(q1)
.

Finally, let us prove that for every q1 ∈ Q1, the following implication holds

true,

ODR

(
Π(q1)

)
= Q =⇒ O(DR)1(q1) = Q1,

(the converse statement being trivial). Indeed, if ODR
(Π(q1)) = Q, then, for

every q ∈ Q, ODR
(q) = Q and, on the other hand, the fact that Π restricts

to a covering map O(DR)1(q
′
1) → ODR

(Π(q′1)) = Q for any q′1 ∈ Q1 implies

that all the orbits O(DR)1(q
′
1), q

′
1 ∈ Q1, are open on Q1. But Q1 is connected

(and orbits are non-empty) and hence there cannot be but one orbit. In par-

ticular, O(DR)1(q1) = Q1.

4.2. Rolling Curvature and Lie Algebraic Structure of DR

4.2.1. Rolling Curvature. — We compute some commutators of the vec-

tor fields of the form LR(X) with X ∈ VF(M). The formulas obtained hold

both in Q and T ∗M ⊗ TM̂ and thus we do them in the latter space.

The first commutators of the DR-lifted fields are given in the following

theorem.
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Proposition 4.8. — If X,Y ∈ VF(M), q = (x0, x̂0;A) ∈ T ∗(M) ⊗ T (M̂ ),

then the commutator of the lifts LR(X) and LR(Y ) at q is given by[
LR(X),LR(Y )

]
q
= LR

(
[X,Y ]

)
q

(29)

+ ν
(
AR(X,Y )− R̂(AX,AY )A

)
q
.

Proof. — Choosing T (B) = (X,BX), S(B) = (Y,BY ) for B ∈ T ∗(M) ⊗
T (M̂ ) in proposition 3.35 we have

[LR(X),LR(Y )] q = LNS(LNS(X,AX) q S − LNS(Y,AY ) q T ) q

+ ν(AR(X,Y )− R̂(AX,AY )A) q .

By Lemma 3.33 one has

LNS(X,AX) q S = LNS(X,AX) q

(
Y + (.)Y

)
= LNS(X,AX) q Y +ALNS(X,AX) q Y

= ∇XY +A∇XY,

so

LNS

(
LNS(X,AX) q S − LNS(Y,AY ) q T

)
q

= LNS

(∇XY +A∇XY −∇Y X −A∇Y X
)

q

= LR(∇XY −∇Y X) q ,

which proves the claim after noticing that one has ∇XY −∇Y X = [X,Y ] by

torsion freeness of ∇.

Proposition 4.8 justifies the next definition.

Definition 4.9. — Given vector fields X,Y, Z1, . . . , Zk ∈ VF(M), we define

the Rolling Curvature of the rolling of M against M̂ as the smooth mapping

Rol(X,Y ) : π
T ∗M⊗TM̂

−→ π
T ∗M⊗TM̂

,

by

Rol(X,Y )(A) := AR(X,Y )− R̂(AX,AY )A.(30)

Moreover, for q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ , we use Rolq to denote the linear

map

∧2T xM −→ T ∗
xM ⊗ T x̂ M̂

defined on pure elements of ∧2T xM by

Rolq(X ∧ Y ) = Rol(X,Y )(A).(31)
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Similarly, for k ≥ 0, we define the smooth mapping

∇kRol(X,Y, Z1, . . . , Zk) : πT ∗M⊗TM̂
−→ π

T ∗M⊗TM̂
,

by

∇kRol(X,Y, Z1, . . . , Zk)(A)(32)

:= A∇kR(X,Y, (.), Z1, . . . , Zk)

− ∇̂kR̂(AX,AY,A(.), AZ1, . . . , AZk).

Restricting to Q, we have

Rol(X,Y ),∇kRol(X,Y, Z1, . . . , Zk)(A) ∈ C∞(πQ, πT ∗M⊗TM̂
),

such that, for all (x, x̂;A) ∈ Q,

Rol(X,Y )(A),∇kRol(X,Y, Z1, . . . , Zk)(A) ∈ A
(
so(T xM)

)
.

Remark 4.10. — With this notation, Eq. (29) of Proposition 4.8 can be writ-

ten as [
LR(X),LR(Y )

]
q = LR

(
[X,Y ]

)
q + ν

(
Rol(X,Y )(A)

)
q .

Recall that using the metric g, one may identify

T ∗
xM ∧ T xM = so(T xM)

with ∧2T xM as we usually do without mention. In order to take advantage

of the spectral properties of a (real) symmetric endomorphism, we introduce

the following operator associated to the rolling curvature.

Definition 4.11. — If q = (x, x̂;A) ∈ Q, let

R̃olq : ∧2T xM −→ ∧2T xM

be the (real) symmetric endomorphism defined by

R̃olq := ATRolq.(33)

4.2.2. Computation of more Lie brackets

Proposition 4.12. — Let X,Y, Z ∈ VF(M). Then, for q = (x, x̂;A) in

T ∗M ⊗ TM̂ , one has[
LR(Z), ν(Rol(X,Y )(.))

]
q

= −LNS

(
Rol(X,Y )(A)Z

)
q
+ ν
(∇1Rol(X,Y, Z)(A)

)
q

+ ν
(
Rol(∇ZX,Y )(A)

)
q
+ ν
(
Rol(X,∇ZY )(A)

)
q
.
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Proof. — Taking T (B) = (Z,BZ) and U = Rol(X,Y ) for B ∈ T ∗M ⊗ TM̂

in Proposition 3.36, we get[
LR(Z), ν

(
Rol(X,Y )(.)

)]
q

= −LNS

(
ν(Rol(X,Y )(A)) q (Z + (.)Z)

)
q

+ ν
(
LNS(Z,AZ) q Rol(X,Y )(.)

)
q .

By Lemma 3.33 one has

ν
(
Rol(X,Y )(A)

)
q

(
Z + (.)Z

)
= Rol(X,Y )(A)Z,

while by taking a local π
T ∗M⊗TM̂

-section Ã s. t. Ã (x,x̂) = A, ∇Ã (x,x̂) = 0,

one gets

LNS(Z,AZ) q Rol(X,Y )(.)

= ∇Z+AZ

(
Rol(X,Y )(Ã)

)
= ∇1Rol(X,Y, Z)(A) + Rol(∇ZX,Y )(A) + Rol(X,∇ZY )(A).

By Proposition 4.8, the last two terms (when considered as vector fields on

T ∗M ⊗ TM̂ ) on the right hand side belong to VF2
DR

.

Since for X,Y ∈ VF(M) and q = (x, x̂;A) ∈ Q we have

ν
(
Rol(X,Y )(A)

)
q ∈ ODR

(q)

by Proposition 4.8, it is reasonable to compute the Lie-bracket of two elements

of this type. This is given in the following proposition.

Proposition 4.13. — For any q = (x, x̂;A) ∈ Q and X,Y, Z,W ∈ VF(M)

we have[
ν(Rol(X,Y )(.)), ν(Rol(Z,W )(.))

]
q

= ν
(
Rol(X,Y )(A)R(Z,W )− R̂(Rol(X,Y )(A)Z,AW )A

− R̂(AZ,Rol(X,Y )(A)W )A− R̂(AZ,AW )Rol(X,Y )(A)

− Rol(Z,W )(A)R(X,Y ) + R̂(Rol(Z,W )(A)X,AY )A

+ R̂(AX,Rol(Z,W )(A)Y )A+ R̂(AX,AY )Rol(Z,W )(A)
)

q
.

Proof. — We use Proposition 3.37 where for U, V we take

U(A) = Rol(X,Y )(A) and V (A) = Rol(Z,W )(A).
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First compute for B such that ν(B) q ∈ V q (Q) that

ν(B) q U = ν(B) q

(
Ã �→ ÃR(X,Y )− R̂(ÃX, ÃY )Ã

)
=

d

dt 0

(
(A+ tB)R(X,Y )− R̂((A+ tB)X, (A+ tB)Y )(A+ tB)

)
= BR(X,Y )− R̂(BX,AY )A− R̂(AX,BY )A− R̂(AX,AY )B.

So by taking B = V (A) we get

ν(V (A)) q U = Rol(Z,W )(A)R(X,Y )− R̂(Rol(Z,W )(A)X,AY )A

− R̂(AX,Rol(Z,W )(A)Y )A− R̂(AX,AY )Rol(Z,W )(A),

and similarly for ν(U(A)) q V .

For later use, we find it convenient to provide another expression for Propo-

sition 4.13 and, for that purpose, we recall the following notation. For A,B

in so(T xM), we define

[A,B]so := A ◦B −B ◦A ∈ so(T xM).

Then, one has the following corollary.

Corollary 4.14. — For any q = (x, x̂;A) ∈ Q and X,Y, Z,W ∈ VF(M) we

have

ν q
−1
[
ν(Rol(X,Y )(.)), ν(Rol(Z,W )(.))

]
q

(34)

= A
[
R(X,Y ), R(Z,W )

]
so
− [R̂(AX,AY ), R̂(AZ,AW )

]
so
A

− R̂(Rol(X,Y )(A)Z,AW )A− R̂(AZ,Rol(X,Y )(A)W )A

+ R̂(AX,Rol(Z,W )(A)Y )A+ R̂(Rol(Z,W )(A)X,AY )A.

4.3. Controllability properties of DR and first results

Proposition 4.8 has the following simple consequence.

Corollary 4.15. — The following cases are equivalent:

(i) The rolling distribution DR on Q is involutive.

(ii) For all X,Y, Z ∈ T xM and (x, x̂;A) ∈ T ∗(M)⊗ T (M̂ )

Rol(X,Y )(A) = 0.

(iii) (M, g) and (M̂ , ĝ) both have constant and equal curvature.

The same result holds when one replaces Q by T ∗M ⊗ TM̂ .
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Proof. — (i) ⇔ (ii) follows from Proposition 4.8.

(ii) ⇒ (iii). We use

σ(X,Y ) = g(R(X,Y )Y,X) and σ
(X̂ ,Ŷ )

= ĝ(R̂(X̂ , Ŷ )Ŷ , X̂ ),

to denote the sectional curvature of M w.r.t orthonormal vectors X,Y

in T xM and the sectional curvature of M̂ w.r.t. orthonormal vectors

X̂ , Ŷ ∈ T x̂ M̂ respectively. The assumption that Rol = 0 on Q then implies

σ(X,Y ) = σ̂(AX,AY ), ∀(x, x̂;A) ∈ Q, X, Y ∈ T xM.(35)

If we fix x ∈ M and g-orthonormal vectors X,Y ∈ T xM , then, for any

x̂ ∈ M̂ and any ĝ-orthonormal vectors X̂ , Ŷ ∈ T x̂ M̂ , we may choose A

in Q (x,x̂) such that AX = X̂ , AY = Ŷ (in the case n = 2 we may have to

replace, say, X̂ by −X̂ but this does not change anything in the argument

below). Hence the above equation (35) shows that the sectional curvatures

at every point x̂ ∈ M̂ and w.r.t every orthonormal pair X̂ , Ŷ are all the

same, i.e. σ(X,Y ). Thus (M̂ , ĝ) has constant sectional curvatures i.e., it has a

constant curvature. Changing the roles of M and M̂ we see that (M, g) also

has constant curvature and the constants of curvatures are the same.

(iii) ⇒ (ii) Suppose that M, M̂ have constant and equal curvatures. By a

standard result (see [39] Lemma II.3.3), this is equivalent to the fact that there

exists k ∈ R such that

R(X,Y )Z = k
(
g(Y, Z)X − g(X,Z)Y

)
, X, Y, Z ∈ T xM, x ∈ M,

R̂(X̂ , Ŷ )Ẑ = k
(
ĝ(Ŷ , Ẑ )X̂ − ĝ(X̂ , Ẑ )Ŷ

)
, X̂ , Ŷ , Ẑ ∈ T x̂ M̂ , x̂ ∈ M̂ .

On the other hand, if A ∈ Q, X,Y, Z ∈ T xM , we would then have

R̂(AX,AY )(AZ) = k
(
ĝ(AY,AZ)AX − ĝ(AX,AZ)(AY )

)
= A

(
k(g(Y, Z)X − g(X,Z)Y

)
= A

(
R(X,Y )Z

)
.

This implies that Rol(X,Y )(A) = 0 since Z was arbitrary.

In the situation of the previous corollary, the control system (Σ)R is as far

away from being controllable as possible: all the orbits ODR
(q), q ∈ Q, are

integral manifolds of DR. The next consequence of Proposition 4.8 can be seen

as a (partial) generalization of the previous corollary and a special case of the

Ambrose’s theorem. The corollary gives a necessary and sufficient condition

describing the case in which at least one DR-orbit is an integral manifold of DR.

Corollary 4.16. — Suppose that (M, g) and (M̂ , ĝ) are complete. The fol-

lowing cases are equivalent:
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(i) There exists a q0 = (x0, x̂0;A0) ∈ Q such that the orbit ODR
(q0) is an

integral manifold of DR.

(ii) There exists a q0 = (x0, x̂0;A0) ∈ Q such that

Rol(X,Y )(A) = 0, ∀(x, x̂;A) ∈ ODR
(q0), X, Y ∈ T xM.

(iii) There is a complete Riemannian manifold (N, h) and Riemannian cov-

ering maps F : N → M , G : N → M̂ . In particular, (M, g) and (M̂ , ĝ)

are locally isometric.

Proof. — (i) ⇒ (ii). Notice that the restrictions of vector fields LR(X), where

X ∈ VF(M), to the orbit ODR
(q0) are smooth vector fields of that orbit. Thus

[LR(X),LR(Y )] is also tangent to this orbit for any X,Y ∈ VF(M) and hence

Proposition 4.8 implies the claim.

(ii) ⇒ (i). It follows, from Proposition 4.8, that DR ODR
(q0)

, the restriction

of DR to the manifold ODR
(q0), is involutive. Since maximal connected integral

manifolds of an involutive distribution are exactly its orbits, it follows that

ODR
(q0) is an integral manifold of DR.

(i) ⇒ (iii). Let N := ODR
(q0) and h := (πQ,M N )∗(g) i.e., for q = (x, x̂;A)

in N and X,Y ∈ T xM , define

h
(
LR(X) q ,LR(Y ) q

)
= g(X,Y ).

If F := πQ,M N and G := π
Q,M̂ N , we immediately see that F is a local

isometry (note that dim(N) = n) and the fact that G is a local isometry

follows from the following computation: for q = (x, x̂;A) ∈ N , X,Y ∈ T xM ,

one has

ĝ
(
G∗(LR(X) q ), G∗(LR(Y ) q )

)
= ĝ(AX,AY )

= g(X,Y ) = h
(
LR(X) q ,LR(Y ) q

)
.

The completeness of (N, h) can be easily deduced from the completeness of M

and M̂ together with Proposition 3.20. Proposition II.1.1 in [39] proves that

the maps F,G are in fact (surjective and) Riemannian coverings.

(iii) ⇒ (ii): Let x0 ∈ M and choose z0 ∈ N such that F (z0) = x0. Define

x̂0 = G(z0) ∈ M̂ and A0 := G∗ z0
◦ (F∗ z0

)−1 which is an element of Q (x0,x̂0)

since F,G were local isometries. Write q0 = (x0, x̂0;A0) ∈ Q.

Let γ : [0, 1] → M be an a.c. curve with γ(0) = x0. Since F is a smooth

covering map, there is a unique a.c. curve Γ : [0, 1] → N with γ = F ◦ Γ and

Γ(0) = z0. Define γ̂ = G ◦ Γ and A(t) = G∗ Γ(t) ◦ (F∗ Γ(t) )
−1 ∈ Q, t ∈ [0, 1].
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It follows that, for a.e. t ∈ [0, 1],

˙̂γ(t) = G∗ Γ(t) Γ̇(t) = A(t)γ̇(t).

Since F,G are local isometries, ∇(γ̇(t), ˙̂γ(t))A(.) = 0 for a.e. t ∈ [0, 1]. Thus

t �−→ (
γ(t), γ̂(t);A(t)

)
is the unique rolling curve along γ starting at q0 and defined on [0, 1] and

therefore curves of Q formed in this fashion fill up the orbit ODR
(q0). More-

over, since F,G are local isometries, it follows that for every z ∈ N and

X,Y ∈ T F (z)M , Rol(X,Y )(G∗ z ◦ (F∗ z )
−1) = 0. These facts prove that the

condition in (ii) holds and the proof is therefore finished.

Remark 4.17. — If one does not assume that (M, g) and (M̂ , ĝ) are complete

in Corollary 4.16, then (iii) in the above corollary must be replaced by the

following:

(iii)′ There is a connected Riemannian manifold (N, h) (not necessarily com-

plete) and Riemannian covering maps F : N → M◦, G : N → M̂ ◦ where

M◦, M̂ ◦ are open sets of M and M̂ and there is a z0 ∈ N such that if

q0 = (x0, x̂0;A0) ∈ Q is defined by A0 := G∗ z0
◦ (F∗ z0

)−1, then

M◦ = πQ,M

(ODR
(q0)
)

and M̂ ◦ = π
Q,M̂

(ODR
(q0)
)
.

In particular, M◦, M̂ ◦ are connected and (M◦, g), (M̂ ◦, ĝ) are locally iso-

metric. Indeed, the argument in the implication (i) ⇒ (iii) goes through except

for the completeness of (N, h), where N = ODR
(q0) (connected). Proposi-

tion 4.2 and Remark 4.2 show that

F = πQ,M N : N −→ M◦, G = π
Q,M̂ N : N −→ M̂ ◦

are bundles with discrete fibers. Now it is a standard (easy) fact that a bundle

π : X → Y with connected total space X and discrete fibers is a covering map

(this could have been used in the above proof instead of referring to [39]).

On the other hand, in the argument of the implication (iii) ⇒ (ii) we did

not even use completeness of (N, h) but only the fact that F : N → M is a

covering map to lift a curve γ in M to the curve Γ in Q. In this non-complete

setting, we just have to consider using curves γ in M◦ and lift them to N

by using F : N → M◦. Indeed, if q = (x, x̂;A) ∈ ODR
(q0), there is a curve

γ : [0, 1] → M such that qDR
(γ, q0)(1) = q. For all t one has

γ(t) = πQ,M

(
qDR

(γ, q0)(t)
) ∈ πQ,M

(ODR
(q0)
)
= M◦,

so γ is actually a curve in M◦.
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Finally, notice that the assumption in (iii)′ that M̂ ◦ = π
Q,M̂

(ODR
(q0))

follows from the others. Indeed, making only the other assumptions, it is first

of all clear that if q and γ are as above, then

π
Q,M̂

(q) = π
Q,M̂

(
qDR

(γ, q0)(1)) = G(Γ(1)
) ∈ M̂ ◦,

so π
Q,M̂

(ODR
(q0)) ⊂ M̂ ◦. Then if x̂ belongs to M̂ ◦, one may take a path

γ̂ : [0, 1] → M̂ ◦ such that γ̂(0) = x̂0, γ̂(1) = x̂ and lift it by the covering

map G to a curve Γ̂(t) in N starting from z0. Then if γ(t) := F (Γ̂(t)), t ∈ [0, 1],

we easily see that γ̂ = γ̂DR
(γ, q0), whence x̂ = γ̂(1) ∈ π

Q,M̂
(ODR

(q0)).

On the opposite direction with respect to having the rolling curvature equal

to zero, one gets the following proposition (cf. [16] for another proof).

Proposition 4.18. — Suppose there is a point q0 = (x0, x̂0;A0) ∈ Q and

ε > 0 such that for every X ∈ VF(M) with ‖X‖g < ε on M one has

V ΦLR(X)(t,q0)
(πQ) ⊂ T

(ODR
(q0)
)
, |t| < ε.

Then the orbit ODR
(q0) is open in Q. As a consequence, we have the following

characterization of complete controllability: the control system (Σ)R is com-

pletely controllable if and only if

(36) ∀q ∈ Q, V q (πQ) ⊂ T q ODR
(q).

Proof. — For the first part of the proposition, the assumptions and

Lemma 4.20 given below imply that for every X ∈ T x0
M we have

LNS(Y, Ŷ ) q0
∈ T q0

ODR
(q0)

for every Y ∈ X⊥, Ŷ ∈ A0X
⊥. But since X is an arbitrary element of T x0

M ,

this means thatDNS q0
⊂T q0

ODR
(q0) and because T q0

Q = DNS q0
⊕ V q0

(πQ),

we get

T q0
Q = T q0

(ODR
(q0)
)
.

This implies that ODR
(q0) is open in Q. The last part of the proposition is an

immediate consequence of this and the fact that Q is connected.

Remark 4.19. — The above corollary is intuitively obvious. Assumption

given by Eq. (36) simply means that there is complete freedom for infinitesi-

mal spinning, i.e., for reorienting one manifold with respect to the other one

without moving in M × M̂ . In that case, proving complete controllability is

easy, by using a crab-like motion.
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We end this section by providing a technical lemma needed for the argument

of the previous proposition. It is actually a consequence of Proposition 3.36.

Lemma 4.20. — Let q0 = (x0, x̂0;A0) ∈ Q. Suppose that, for some X

in VF(M) and a real sequence (tn)
∞
n=1 s.t. tn �= 0 for all n, limn→∞ tn = 0,

we have, for every n ≥ 0,

V ΦLR(X)(tn,q0)
(πQ) ⊂ T

(ODR
(q0)
)
.(37)

Then LNS(Y, Ŷ ) q0
∈ T q0

ODR
(q0) for every Y ∈ T x0

M that is g-orthogonal

to X x0
and every Ŷ ∈ T x̂0

M̂ that is ĝ-orthogonal to A0X x0
. Hence the

orbit ODR
(q0) has codimension at most 1 inside Q.

Proof. — Letting n tend to infinity, it follows from (37) that V q0
(πQ) ⊂

T q0
ODR

(q0). Recall, from Proposition 3.4, that every element of V q0
(πQ) is

of the form ν(B) q0
, with a unique B ∈ A0so(T x0

M). Fix such a B and define

a smooth local section S̃ of so(TM) → M defined on an open set W � x0 by

S̃ x = P 1
0

(
t �→ expx0

(
t exp−1

x0
(x)
))
(AT

0 B).

Then clearly, S̃ x0
= AT

0 B and ∇Y S̃ = 0 for all Y ∈ T x0
M and it is easy to

verify that S̃ x ∈ so(T xM) for all x ∈ W . We next define a smooth map

U : π−1
Q (W × M̂ ) −→ T ∗M ⊗ TM̂ , U(x, x̂;A) = AS̃ x .

Obviously ν(U(x, x̂;A)) ∈ V (x,x̂;A) (πQ) for all (x, x̂;A). Then, choosing in

Proposition 3.36, T = X + (.)X (and the above U) and noticing that

ν
(
U(A0)

)
q0
T = U(A0)X = BX,

one gets[
LR(X), ν(U(.))

]
q0

= −LNS(BX) q0
+ ν
(∇(X,A0X)

(
U(Ã)

))
q0

(38)

where Ã (x0,x̂0)
= A0. By the choice of S̃ and Ã, we have, for all Y = (Y, Ŷ )

in T (x0,x̂0)
M × M̂ ,

∇Y

(
U(Ã)

)
= ∇Y (Ã S̃) = (∇Y Ã)S̃ (x0,x̂0)

+ Ã (x0,x̂0)
∇Y S̃ = 0,

and hence the last term on the right hand side of (38) actually vanishes.

By definition, the vector field q �→ LR(X) q is tangent to the orbit ODR
(q0)

and, by the assumption of Equation (37), the values of the map

q = (x, x̂;A) �−→ ν
(
U(A)

)
q
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are also tangent to ODR
(q0) at the points ΦLR(X)(tn, q0), n ∈ N. Hence(

(ΦLR(X))−tn

)
∗ν(U(.)) ΦLR(X)(tn,q0)

∈ T q0
ODR

(q0)

and therefore,[
LR(X), ν(U(.))

]
q0

= lim
n→∞

((ΦLR(X))−tn

)
∗ν(U(.)) ΦLR(X)(tn,q0)

− ν(B) q0

tn
∈ T q0

ODR
(q0),

i.e., the left hand side of (38) must belong to T q0
ODR

(q0). But this implies

that

LNS(BX) q0
∈ T q0

ODR
(q0),

fo rall B such that ν(B) ∈ V q0
(πQ), i.e.

LNS

(
A0so(T x0

M)X
)

q0
⊂ T q0

ODR
(q0).

Notice next that so(T x0
M)X is exactly the set X x0

⊥ of vectors of T x0
M

that are g-perpendicular to X x0
. Since A0 ∈ Q, it follows that the set

A0so(T x0
M)X is equal to A0X x0

⊥ which is the set of vectors of T x̂0
M̂

that are ĝ-perpendicular to A0X x0
. We conclude that

LNS(Y ) q0
= LR(Y ) q0

− LNS(A0Y ) q0
∈ T q0

ODR
(q0)

for all Y ∈ X x0

⊥.
Finally notice that since the subspaces

X⊥ × {0}, R(X,A0X) and {0} × (A0X)⊥

of T (x0,x̂0)
(M × M̂ ) are linearly independent, their LNS-lifts at q0 are that

also and hence these lifts span a (n−1)+1+(n−1) = 2n−1 dimensional sub-

space of T q0
ODR

(q0). This combined with the fact that V q0
(πQ) is contained

in T q0
ODR

(q0) shows

dimODR
(q0) ≥ 2n− 1 + dimV q0

(πQ) = dim(Q)− 1

i.e., the orbit ODR
(q0) has codimension at most 1 in Q. This finishes the

proof.
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CHAPTER 5

ROLLING PROBLEM (R) IN 3D

As mentioned in introduction, the goal of this chapter is to provide a local

structure theorem of the orbits ODR
(q0) when M and M̂ are 3-dimensional

Riemannian manifolds. Recall that complete controllability of (Σ)R is equiva-

lent to openess of all the orbits of (Σ)R, thanks to the fact that Q is connected

and (Σ)R is driftless. In case there is no complete controllability, then there

exists a non open orbit which is an immersed manifold in Q of dimension at

most 8. Moreover, as a fiber bundle over M , the fiber has dimension at most 5.

5.1. Statement of the Results and Proof Strategy

Our first theorem provides all the possibilities for the local structure of a

non open orbit for the rolling (R) of two 3D Riemannian manifolds.

Theorem 5.1. — Let (M, g), (M̂ , ĝ) be 3-dimensional Riemannian mani-

folds. Assume that (Σ)R is not completely controllable and let ODR
(q0), for

some q0 ∈ Q, be a non open orbit. Then, there exists an open and dense

subset O of ODR
(q0) so that, for every q1 = (x1, x̂1;A1) ∈ O, there are neigh-

borhoods U of x1 and Û of x̂1 such that one of the following holds:

(a) (U, g U ) and (Û , ĝ
Û
) are (locally) isometric;

(b) (U, g U ) and (Û , ĝ
Û
) are both of class Mβ for some β > 0;

(c) (U, g U ) and (Û , ĝ
Û
) are both isometric to warped products (I×N, hf ),

(I × N̂ , ĥ
f̂
) for some open interval I ⊂ R and warping functions f, f̂

which moreover satisfy either

(c-A) f = f̂ or
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(c-B) there is a constant K ∈ R such that for all t ∈ I

f ′′(t)
f(t)

= −K =
f̂ ′′(t)
f̂(t)

·

For the definition and results on warped products and class Mβ , we refer

to Appendix C.3 and Appendix C.2 respectively.

Remark 5.2. — Regarding Item (c-A) above, what we actually establish in

studying the appropriate case (see Proposition 5.27 below) is that f ′(t)
f(t) = f̂ ′(t)

f̂(t)
,

for every t ∈ I. Then by integrating the previous equation, one derives first

that there exists a positive constant C such that f = Cf̂ and then one gets

the conclusion of the theorem by eventually taking Cf̂ as warping function

over I × N̂ . Finally, the constant factor C can be absorbed into the metric ĥ.

Note that we do not address here to the issue of the global structure of

a non open orbit for the rolling (R) of two 3D Riemmanian manifolds. For

that, one would have to “glue” together the local information provided by

Theorem 5.1. Instead, our second theorem below shows, in some sense, that

the list of possibilities established in Theorem 5.1 is complete. We will exclude

the case where ODR
(q0) is an integral manifold since in this case this orbit

has dimension 3 and (M, g), (M̂ , ĝ) are locally isometric, see Corollary 4.16

and Remark 4.17.

Theorem 5.3. — Let (M, g), (M̂ , ĝ) be 3D Riemannian manifolds, q0 =

(x0, x̂0;A0) ∈ Q and suppose ODR
(q0) is not an integral manifold of DR. If

one writes

M◦ := πQ,M (ODR

(
q0)
)
, M̂ ◦ := π

Q,M̂

(ODR
(q0)
)
,

then the following holds true.

(a) If (M, g), (M̂ , ĝ) are both of class Mβ and if E1, E2, E3 and Ê1, Ê2, Ê3

are adapted frames of (M, g) and (M̂ , ĝ), respectively, then one has:

(A) If A0E2 x0
= ±Ê2 x̂0

, then dimODR
(q0) = 7;

(B) If A0E2 x0
�= ±Ê2 x̂0

and if (only) one of (M◦, g) or (M̂ ◦, ĝ) has
constant curvature, then dimODR

(q0) = 7;

(C) Otherwise, dimODR
(q0) = 8.

(b) If (M, g) = (I×N, hf ), (M̂ , ĝ) = (Î× N̂ , ĥ
f̂
) are warped products, where

I, Î ⊂ R are open intervals, and if x0 = (r0, y0), x̂0 = ( r̂0, ŷ0), then one

has
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(b-A) If A0
∂
∂r (r0,y0)

= ∂
∂r ( r̂0, ŷ0)

and if there exists C > 0 such that, for

every t such that (t+ r0, t+ r̂0) ∈ I × Î, it holds

f(t+ r0) = Cf̂(t+ r̂0),

then dimODR
(q0) = 6.

(b-B) Suppose there is a constant K ∈ R such that f ′′(r)
f(r) = −K = f̂ ′′( r̂ )

f̂( r̂ )
for all (r, r̂ ) ∈ I × Î.

(b-B1) If A0
∂
∂r (r0,y0)

= ± ∂
∂r ( r̂0, ŷ0)

and f ′(r0)
f(r0)

= ± f̂ ′( r̂0)
f̂( r̂0)

, with

±-cases correspondingly on both cases, then dimODR
(q0) = 6.

(b-B2) If (only) one of (M◦, g), (M̂ ◦, ĝ) has constant curvature, then
one has dimODR

(q0) = 6.

(b-B3) Otherwise dimODR
(q0) = 8.

Here (r, y) �→ ∂
∂r (r,y) , ( r̂, ŷ ) �→ ∂

∂r ( r̂, ŷ ) , are the vector fields in I ×N

and Î × N̂ induced by the canonical, positively oriented vector field r �→
∂
∂r r on I, Î ⊂ R.

Remark 5.4. — Similarly to Remark 5.2, we have the following. Regarding

Item (b-A) above, what we actually assume (see Proposition 5.32 below) is

that, for every t such that (t+ r0, t+ r̂0) ∈ I × Î, it holds

f ′(t+ r0)

f(t+ r0)
=

f̂ ′(t+ r̂0)

f̂(t+ r̂0)
,

which is equivalent to the condition on the warping functions given in

item (b-A).

From now on(M, g), (M̂ , ĝ) will be connected, oriented 3-dimensional Rie-

mannian manifolds. The Hodge-duals of (M, g), (M̂ , ĝ) are denoted by � := �M

and �̂ := �
M̂
, respectively.

As a reminder, for q0 = (x0, x̂0;A0) ∈ Q, we will write

πODR
(q0) : = πQ ODR

(q0)
: ODR

(q0) −→ M × M̂ ,

πODR
(q0),M : = pr1 ◦ πODR

(q0) : ODR
(q0) −→ M,

πODR
(q0),M̂

: = pr2 ◦ πODR
(q0) : ODR

(q0) −→ M̂ ,

where pr1 : M × M̂ → M , pr2 : M × M̂ → M̂ are projections onto the first

and second factor, respectively.
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5.2. Proof of Theorem 5.1

We fix for the rest of the paragraph a non open orbit ODR
(q0), for some

q0 ∈ Q. By Proposition 4.2, one has that dimODR
(q0) < 9 = dimQ and, by

Corollary 4.14, one knows that the rank of Rolq is less than or equal to two,

for every q ∈ ODR
(q0).

For j = 0, 1, 2, let Oj be the set of points of ODR
(q0) where rankRolq is

locally equal to j, i.e.,

Oj =
{
q = (x, x̂;A) ∈ ODR

(q0) |
there exists an open neighborhood O

of q in ODR
(q0) such that rankRolq′ = j, ∀q′ ∈ O

}
.

Notice that the union of the Oj ’s, when j = 0, 1, 2, is an open and dense subset

of ODR
(q0) since each Oj is open in ODR

(q0) (but might be empty). Clearly,

Item (a) in Theorem 5.1 describes the local structures of (M, g) and (M̂ , ĝ)

at a point q ∈ O0. The rest of the argument consists in addressing the same

issue, first for q ∈ O2 and then q ∈ O1.

5.2.1. Local structures for the manifolds around q ∈ O2. — Through-

out the subsection, we assume, if not otherwise stated, that the orbit ODR
(q0)

is not open in Q (i.e., dimODR
(q0) < 9 = dimQ) and, in the statements in-

volving O2, the latter is non empty. Note that O2 is also equal to the set of

points of ODR
(q0) where rankRolq is equal to 2.

Proposition 5.5. — Let q0 = (x0, x̂0;A0) ∈ Q so that the orbit ODR
(q0) is

not open in Q. Then, for every q = (x, x̂;A) ∈ O2, there exist an orthonormal

pair XA, YA ∈ T xM such that if ZA := �(XA ∧ YA) then XA, YA, ZA is

a positively oriented orthonormal pair with respect to which R and R̃ol are

written as

R(XA ∧ YA) =

⎛⎝ 0 K(x) 0

−K(x) 0 0

0 0 0

⎞⎠ , �R(XA ∧ YA) =

⎛⎝ 0

0

−K(x)

⎞⎠ ,

R(YA ∧ ZA) =

⎛⎝0 0 0

0 0 K1(x)

0 −K1(x) 0

⎞⎠ , �R(YA ∧ ZA) =

⎛⎝−K1(x)

0

0

⎞⎠ ,
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R(ZA ∧XA) =

⎛⎝ 0 0 −K2(x)

0 0 0

K2(x) 0 0

⎞⎠ , �R(ZA ∧XA) =

⎛⎝ 0

−K2(x)

0

⎞⎠ ,

R̃olq(XA ∧ YA) = 0,

R̃olq(YA ∧ ZA) =

⎛⎝ 0 0 −α(q)

0 0 KRol
1 (q)

α(q) −KRol
1 (q) 0

⎞⎠ ,

�R̃olq(YA ∧ ZA) =

⎛⎝−KRol
1 (q)

−α(q)

0

⎞⎠ ,

R̃olq(ZA ∧XA) =

⎛⎝ 0 0 −KRol
2 (q)

0 0 α(q)

KRol
2 (q) −α(q) 0

⎞⎠ ,

�R̃olq(ZA ∧XA) =

⎛⎝ −α(q)

−KRol
2 (q)

0

⎞⎠ ,

where K,K1,K2 are real valued functions defined on M .

Consequently, with respect to the orthonormal oriented basisAXA, AYA, AZA

of T x̂ M̂ ,

(39)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�AT R̂(AXA ∧AYA)A =

⎛⎝ 0

0

−K(x)

⎞⎠ ,

�AT R̂(AYA ∧AZA)A =

⎛⎝−K1(x) +KRol
1 (q)

α(q)

0

⎞⎠ ,

�AT R̂(AZA ∧AXA)A =

⎛⎝ α(q)

−K2(x) +KRol
2 (q)

0

⎞⎠
Before pursuing to the proof, we fix some additional notations provided in

the following remark.

Remark 5.6. — By the last proposition, −K1(x),−K2(x),−K(x) are the

eigenvalues of R x corresponding to eigenvectors �XA, �YA, �ZA given by

Proposition 5.5, for q = (x, x̂;A) ∈ O2. Recall that

Q(M, M̂ ) −→ Q(M̂ ,M), q = (x, x̂;A) �−→ q̂ = (x̂, x;AT )
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is a diffeomorphism which maps DR to D̂R, where the latter is the rolling dis-

tribution on Q(M̂ ,M). Hence this map maps DR-orbits ODR
(q) to D̂R-orbits

OD̂R
(q̂ ), for all q ∈ Q. So the rolling problem (R) is completely symmetric

w.r.t. the changing of the roles of (M, g) and (M̂ , ĝ). Hence Proposition 5.5

gives, when the roles of (M, g), (M̂ , ĝ) are changed, for every q = (x, x̂;A)

in O2 vectors X̂A, Ŷ A, ẐA ∈ T x̂ M̂ such that R̃olq((A
T X̂A) ∧ (AT Ŷ A)) = 0

and that �̂X̂A, �̂ẐA, �̂ẐA are eigenbasis of R̂ x̂ with eigenvalues which we call

−K̂ 1(x̂),−K̂ 2(x̂),−K̂ (x̂), respectively. The condition R̃olq(XA∧YA) = 0 im-

plies that K(x) = K̂ (x̂) for every q = (x, x̂;A) ∈ O2 and also that AZA = ẐA,

since �(XA ∧ YA) = ZA, �̂(X̂A ∧ Ŷ A) = ẐA.

We divide the proof of Proposition 5.5 into several lemmas.

Lemma 5.7. — For every q = (x, x̂;A) ∈ O2 and any orthonormal pair (which

exists) XA, YA ∈ T xM such that

Rol(XA ∧ YA) = 0 and XA, YA, ZA := �(XA ∧ YA)

is an oriented orthonormal basis of T xM , one has with respect to the basis

XA, YA, ZA,

R(XA ∧ YA) =

⎛⎝ 0 KA ηA
−KA 0 −βA
−ηA βA 0

⎞⎠ , �R(XA ∧ YA) =

⎛⎝ βA
ηA

−KA

⎞⎠ ,

R(YA ∧ ZA) =

⎛⎝ 0 −βA ξA
βA 0 K1

A

−ξA −K1
A 0

⎞⎠ , �R(YA ∧ ZA) =

⎛⎝−K1
A

ξA
βA

⎞⎠ ,

R(ZA ∧XA) =

⎛⎝ 0 −ηA −K2
A

ηA 0 −ξA
K2

A ξA 0

⎞⎠ , �R(ZA ∧XA) =

⎛⎝ ξA
−K2

A

ηA

⎞⎠ ,

R̃olq(XA ∧ YA) = 0,

R̃olq(YA ∧ ZA) =

⎛⎝0 0 −α

0 0 KRol
1

α −KRol
1 0

⎞⎠ , �R̃olq(YA ∧ ZA) =

⎛⎝−KRol
1

−α

0

⎞⎠ ,

R̃olq(ZA ∧XA) =

⎛⎝ 0 0 −KRol
2

0 0 α

KRol
2 −α 0

⎞⎠ , �R̃olq(ZA ∧XA) =

⎛⎝ −α

−KRol
2

0

⎞⎠ .
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Here ηA, βA, ξA, α,K
Rol
1 ,KRol

2 depend a priori on the basis XA, YA, ZA and on

the point q but the choice of these functions can be made locally smoothly

on O2 i.e., every q ∈ O2 admits an open neighborhood O′
2 in O2 such that the

selection of these functions can be performed smoothly on O′
2.

Proof. — Since rankRolq = 2 < 3 for q ∈ O2, it follows that there is a

unit vector ωA ∈ ∧2T xM such that Rolq(ωA) = 0. But in dimension 3, as

mentioned in Appendix, one then has an orthonormal pair XA, YA ∈ T xM

such that ωA = XA ∧ YA. Moreover, the assignments q �→ ωA, XA, YA can be

made locally smoothly. Set ZA := �(XA∧YA). the fact that R̃olq is a symmetric

map implies that

g
(
R̃olq(YA ∧ ZA), XA ∧ YA

)
= g
(
R̃olq(XA ∧ YA), YA ∧ ZA

)
= 0,

g
(
R̃olq(ZA ∧XA), XA ∧ YA

)
= g
(
R̃olq(XA ∧ YA), ZA ∧XA

)
= 0.

As a consequence of the previous result and because, for X,Y ∈ T xM , one

gets

AT R̂(AX ∧AY )A = R(X ∧ Y )− R̃olq(X ∧ Y ),

then we have that, w.r.t. the oriented orthonormal basis AXA, AYA, AZA

of T x̂ M̂ ,

(40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̂AT R̂(AXA ∧AYA)A =

⎛⎝ βA
ηA

−KA

⎞⎠ ,

�̂AT R̂(AYA ∧AZA)A =

⎛⎝−K1
A +KRol

1

ξA + α

βA

⎞⎠ ,

�̂AT R̂(AZA ∧AXA)A =

⎛⎝ ξA + α

−K2
A +KRol

2

ηA

⎞⎠ .

The assumption that rankRolq = 2 on O2 is equivalent to the fact that

for any choice of XA, YA, ZA as above, R̃olq(YA ∧ZA) and R̃olq(ZA ∧XA) are

linearly independent for every q = (x, x̂;A) ∈ O2 i.e.

KRol
1 (q)KRol

2 (q)− α(q)2 �= 0.(41)

We next show that, with any (non-unique) choice ofXA, YA as in Lemma 5.7,

then ηA = βA = 0.
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Lemma 5.8. — Choose any XA, YA, ZA = �(XA∧YA) as in Lemma 5.7. Then,

for every q = (x, x̂;A) ∈ O2 and any vector fields X,Y, Z,W ∈ VF(M),[
ν
(
Rol(X ∧ Y )(.)

)
, ν
(
Rol(Z ∧W )(.)

)]
q

(42)

belongs to ν
(
span{�XA, �YA}

)
q ⊂ T q ODR

(q0). Moreover, πQ O2
is an sub-

mersion (onto an open subset of M×M̂ ), dimV q (ODR
(q0)) = 2 for all q ∈ O2

and dimODR
(q0) = 8.

Proof. — First notice that by Lemma 5.7(
Rolq(�XA)

Rolq(�YA)

)
=

(−KRol
1 −α

−α −KRol
2

)(
�XA

�YA

)
for q = (x, x̂;A) ∈ O2 and since the determinant of the matrix on the right

hand side is, at q ∈ O2, K
Rol
1 (q)KRol

2 (q)−α(q)2 �= 0, as noticed in (41) above,

it follows that

�XA, �YA ∈ span
{
Rolq(�XA),Rolq(�YA)

}
.

Next, from Proposition 4.8 we know that, for every q = (x, x̂;A) ∈ ODR
(q0)

and every Z,W ∈ T xM

ν
(
Rolq(Z ∧W )

)
q ∈ V q (πODR

(q0)) ⊂ T qODR
(q0).

Hence, ν(Rolq(�XA)), ν(Rolq(�YA)) ∈ V q(πODR
(q0)) for every q ∈ O2 and then

ν(A�XA), ν(A�YA) ∈ V q (πODR
(q0)),(43)

for all q = (x, x̂;A) ∈ O2. We claim that πODR
(q0) O2

is a submersion (onto

an open subset of M × M̂ ). Indeed, for any vector field W ∈ VF(M) one has

LR(W ) q ∈ T q ODR
(q0) for q = (x, x̂;A) ∈ O2 and since the assignments

q �→ XA, YA can be made locally smoothly, then also[
LR(W ), ν(A�XA)

]
q ∈ T q ODR

(q0).

But then Proposition 3.36 implies that(
πODR

(q0)

)
∗
(
[LR(W ), ν(A�XA)] q

)
= (πODR

(q0))∗
(− LNS(A(�XA)W ) q + ν(A�LR(W ) q X(.)) q

)
=
(
0,−A(�XA)W

)
,

where we wrote X(.) as for the map q �→ XA. Similarly,(
πODR

(q0)

)
∗
(
[LR(W ), ν(A�YA)] q

)
=
(
0,−A(�YA)W

)
.
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This shows that for all q = (x, x̂;A) ∈ O2 and Z,W ∈ T xM , we have(
0,−A(�XA)W

)
,
(
0,−A(�YA)W

) ∈ (πODR
(q0))∗T qODR

(q0) ⊂ T xM × T x̂ M̂ .

Because �XA, �YA are linearly independent, this implies that

{0} × T x̂ M̂ ⊂ (πODR
(q0))∗T q ODR

(q0).

Finally, because LR(W ) q ∈ T q ODR
(q0) for any q = (x, x̂;A) ∈ ODR

(q0) and

any W ∈ T xM , and (πODR
(q0))∗LR(W ) q = (W,AW ), one also has

(W, 0) = (W,AW )− (0, AW ) ∈ (πODR
(q0))∗T q ODR

(q0),

which implies

T xM × {0} ⊂ (πODR
(q0))∗T q ODR

(q0).

This proves that πODR
(q0) O2

= πQ O2
is indeed a submersion.

Because O2 is not open in Q (otherwise ODR
(q0) would be an open subset

of Q), it follows that dimO2 ≤ 8 and since πODR
(q0) O2

has rank 6, being a

submersion, we deduce that for all q ∈ O2,

dimV q (πODR
(q0)) = dimO2 − 6 ≤ 2.

But because of (43) we see that dimV q (πODR
(q0)) ≥ 2 i.e.

dimV q (πODR
(q0)) = 2,

which shows that dimO2 = 8, hence dimODR
(q0) = 8 and

span
{
ν(A�XA) q , ν(A�YA) q

}
= V q (ODR

(q0)), ∀q = (x, x̂;A) ∈ O2.

To conclude the proof, it is enough to notice that since for any X,Y, Z,W

belong to VF(M), and ν(Rol(X ∧ Y )(A)) q , ν(Rol(Z ∧ W )(A)) q belong to

V q (ODR
(q0)), then[
ν(Rol(X ∧ Y )(.)), ν(Rol(Z ∧W )(.))

]
q ∈ V q (ODR

(q0)).

Lemma 5.9. — If one chooses any XA, YA, ZA = �(XA∧YA) as in Lemma 5.7,

then

ηA = βA = 0, ∀q = (x, x̂;A) ∈ O2.
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Proof. — Fix q = (x, x̂;A) ∈ O2. Choosing in Corollary 4.14 X,Y ∈ VF(M)

such that X x = XA, Y x = YA, we get, since Rolq(XA ∧ YA) = 0,

ν q
−1
[
ν
(
Rol(X ∧ Y )(.)

)
, ν
(
Rol(Z ∧W )(.)

)]
q

= A
[
R(XA ∧ YA), R(Z x ∧W x )

]
so

− [R̂(AXA ∧AYA), R̂(AZ x ∧AW x )
]
so
A

+ R̂
(
AXA, AR̃olq(Z x ∧W x )YA

)
A

+ R̂
(
AR̃olq(Z x ∧W x )XA, AYA

)
A.

We compute the right hand side of this formula in two special cases (a)–(b)

below.

(a) Take Z,W ∈ VF(M) such that Z x = YA, W x = ZA. In this case,

computing the matrices in the basis �XA, �YA, �ZA,

AT ν q
−1
[
ν(Rol(X ∧ Y )(.)), ν(Rol(Z ∧W )(.))

]
q

=
[
R(XA ∧ YA), R(YA ∧ ZA)

]
so

−AT
[
R̂(AXA ∧AYA), R̂(AYA ∧AZA)

]
so
A

+AT R̂(AXA, AR̃olq(YA ∧ ZA)YA)A

+AT R̂(AR̃olq(YA ∧ ZA)XA, AYA)A

=

⎛⎝ βA
ηA

−KA

⎞⎠ ∧
⎛⎝−K1

A

ξA
βA

⎞⎠−
⎛⎝ βA

ηA
−KA

⎞⎠ ∧
⎛⎝−K1

A +KRol
1

ξA + α

βA

⎞⎠
+AT R̂(AXA,−KRol

1 AZA)A+AT R̂(αAZA, AYA)A

= −
⎛⎝ βA

ηA
−KA

⎞⎠ ∧
⎛⎝KRol

1

α

0

⎞⎠
+KRol

1

⎛⎝ ξA + α

−K2
A +KRol

2

ηA

⎞⎠− α

⎛⎝−K1
A +KRol

1

ξA + α

βA

⎞⎠
=

⎛⎝ −αKA +KRol
1 (ξA + α)− α(−K1

A +KRol
1 )

KAK
Rol
1 +KRol

1 (−K2
A +KRol

2 )− α(ξA + α)

−αβA +KRol
1 αA +KRol

1 αA − αβA

⎞⎠
=

⎛⎝ �

�

2(KRol
1 ηA − αβA)

⎞⎠ .
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By Lemma 5.8 the right hand side should belong to the span of �XA, �YA which

implies

KRol
1 ηA − αβA = 0.(44)

(b) Take Z,W ∈ VF(M) such that Z x = ZA, W x = XA. Again, comput-

ing w.r.t. the basis �XA, �YA, �ZA, yields

AT ν q
−1
[
ν(Rol(X,Y )(.)), ν(Rol(Z,W )(.))

]
q

=
[
R(XA, YA), R(ZA, XA)

]
so

−AT
[
R̂(AXA, AYA), R̂(AZA, AXA)

]
so
A

+AT R̂(AXA, AR̃olq(ZA, XA)YA)A

+AT R̂(AR̃olq(ZA, XA)XA, AYA)A

=

⎛⎝ βA
αA

−KA

⎞⎠ ∧
⎛⎝ ξA
−K2

A

ηA

⎞⎠−
⎛⎝ βA

ηA
−KA

⎞⎠ ∧
⎛⎝ ξA + α

−K2
A +KRol

2

ηA

⎞⎠
+AT R̂(AXA,−αAZA)A+AT R̂(KRol

2 AZA, AYA)A

= −
⎛⎝ βA

ηA
−KA

⎞⎠ ∧
⎛⎝ α

KRol
2

0

⎞⎠
+ α

⎛⎝ ξA + α

−K2
A +KRol

2

ηA

⎞⎠−KRol
2

⎛⎝−K1
A +KRol

1

ξA + α

βA

⎞⎠
=

⎛⎝−KAK
Rol
2 + α(ξA + α)−KRol

2 (−K1
A +KRol

1 )

αKA + α(−K2
A +KRol

2 )−KRol
2 (ξA + α)

−βAK
Rol
2 + αηA + αηA −KRol

2 βA

⎞⎠
=

⎛⎝ �

�

2(αηA − βAK
Rol
2 )

⎞⎠ .

Since the right hand side belongs to the span of �XA, �YA, by Lemma 5.8, we

obtain

αηA −KRol
2 βA = 0.(45)

Combining Equations (44) and (45) we get(
KRol

1 −α

α −KRol
2

)(
ηA
βA

)
=

(
0

0

)
.
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According to Eq. (41) the determinant of the 2×2-matrix on the left hand side

does not vanish, which implies that ηA = βA = 0. The proof is finished.

Lemma 5.10. — For every q = (x, x̂;A) ∈ O2, there are orthonormal

XA, YA ∈ T xM such that XA, YA, ZA = �(XA ∧ YA) is an oriented orthonor-

mal basis of T xM with respect to which in Lemma 5.7 one has

ηA = βA = ξA = 0,

i.e., �XA, �YA, �ZA are eigenvectors of R x .

Proof. — Fix q = (x, x̂;A) ∈ O2, choose any XA, YA, ZA = �(XA ∧ YA) as in

Lemma 5.7 and suppose ξA �= 0 (otherwise we are done). By Lemma 5.9, one

has ηA = βA = 0, meaning that �ZA is an eigenvector of R x . For t ∈ R, set(
XA(t)

YA(t)

)
:=

(
cos(t) sin(t)

− sin(t) cos(t)

)(
XA

YA

)
.

Then clearly

ZA(t) := �(XA(t) ∧ YA(t)) = �(XA ∧ YA) = ZA,

and XA(t), YA(t), ZA(t) is an orthonormal positively oriented basis of T xM .

Since

Rolq
(
�ZA(t)

)
= Rolq(�ZA) = 0,

Lemma 5.9 implies that ηA(t), βA(t) = 0 if one writes ηA(t), βA(t), ξA(t) for

the coefficients of matrices in Lemma 5.7 w.r.t XA(t), YA(t), ZA(t). Our goal

is to show that ξA(t) = 0 for some t ∈ R.

First of all �ZA(t) = �ZA is a unit eigenvector of R x which does not depend

on t. On the other hand, R x is a symmetric map ∧2T xM → ∧2T xM , so

it has two orthogonal unit eigenvectors, say, u1, u2 in (�ZA)
⊥ = �(Z⊥

A ). Thus

u1, u2, �ZA forms an orthonormal basis of ∧2T xM , which we may assume to

be oriented (otherwise swap u1, u2). Then

span{u1, u2} = �Z⊥
A = span{�XA, �YA}

and there exists t0 ∈ R such that �XA(t0) = u1, �YA(t0) = u2 Since

R x

(
�XA(t0)

)
= −K1�XA(t0), R x

(
�YA(t0)

)
= −K2�YA(t0),

we have ξA(t0) = 0 as well as ηA(t0) = βA(t0) = 0.

Remark 5.11. — Notice that the choice of ZA can be made locally smoothly

on O2 but, at this stage of the argument, it is not clear that one can choose

XA, YA, with ξA = 0, locally smoothly on O2. However, it will be the case

cf. Corollary 5.15.
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We now aim to prove, roughly speaking, that the eigenvalue −K must be

double for both spaces (M, g), (M̂ , ĝ) if neither one of them has constant

curvature.

Lemma 5.12. — If the eigenspace at x1 ∈ πODR
(q0),M (O2) corresponding to

the eigenvalue −K(x1) of the curvature operator R is of dimension one, then

(M̂ , ĝ) has constant curvature K(x1) on the open set

πODR
(q0),M̂

(
π−1
ODR

(q0),M
(x1)

)
of M̂ . The claim also holds with the roles of (M, g) and (M̂ , ĝ) interchanged.

Proof. — Suppose that at x1 ∈ πODR
(q0),M (O2) the eigenvalue −K(x1) has

multiplicity 1. By continuity, the −K(.)-eigenspace of R is of dimension one

on an open neighborhood U of x1. Since this eigenspace depends smoothly on

a point of M , we may choose, taking U smaller around x1 if needed, positively

oriented orthonormal smooth vector fields X̃ , Ỹ , Z̃ on U such that

�Z̃ = X̃ ∧ Ỹ

spans the −K(.)-eigenspace of R at each point of U . Taking arbitrary

q′ = (x′, x̂′;A′) ∈ (πODR
(q0),M )−1(U) ∩O2

and letting XA′ , YA′ , ZA′ be the vectors provided by Theorem 5.7 at q, the

−K(x′)-eigenspace of R x′ is also spanned byXA′∧YA′ . By the orthonormality

and orientability, XA′ ∧ YA′ = X̃ x′ ∧ Ỹ x′ from which Z̃ x′ = ZA′ and

Rol(X̃ x′ ∧ Ỹ x′ )(A
′) = Rol(XA′ ∧ YA′)(A′) = 0.

Now fix, for a moment, q = (x, x̂;A) ∈ (πODR
(q0),M )−1(U) ∩O2. By replacing

X̃ by cos(t)X̃ + sin(t)Ỹ and Ỹ by − sin(t)X̃ + cos(t)Ỹ on U for a certain

constant t = tx ∈ R, we may assume that X̃ x = XA, Ỹ x = YA. Since, as

we just proved, for all (x′, x̂′;A′) ∈ (πODR
(q0),M )−1(U) ∩O2, one has

Rol(X̃ x′ ∧ Ỹ x′ )(A
′) = 0,

then the vector field ν(Rol(X̃ ∧ Ỹ )(.)) ∈ VF(πODR
(q0),M ) vanishes identically

i.e. ν(Rol(X̃ ∧ Ỹ )(.)) = 0 on (πODR
(q0),M )−1(U) ∩ O2. Therefore, the com-

putation in part (a) of the proof of Lemma 5.9 (replace X �→ X̃ , Y �→ Ỹ ,

Z �→ Ỹ , W �→ Z̃ there; recall also that ξA = 0 by the choice of XA, YA, ZA)
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gives, by noticing also that here KA = K(x), K1
A = K1(x) and K2

A = K2(x),

0 = AT ν q
−1
[
ν
(
Rol(X̃ , Ỹ )(.)

)
, ν
(
Rol(Ỹ , Z̃ )(.)

)]
q

=

⎛⎝ −αKA + αKRol
1 − α(−K1

A +KRol
1 )

KAK
Rol
1 +KRol

1 (−K2
A +KRol

2 )− α2

0

⎞⎠
=

⎛⎝ α(−K +K1)

KRol
1 (K −K2 +KRol

2 )− α2

0

⎞⎠ .

Similarly, the computation in part (b) of the proof of Lemma 5.9 (now replace

X �→ X̃ , Y �→ Ỹ , Z �→ Z̃ , W �→ X̃ there) gives,

0 = AT ν q
−1
[
ν
(
Rol(X̃ , Ỹ )(.)

)
, ν
(
Rol(Z̃ , X̃ )(.)

)]
q

=

⎛⎝−KAK
Rol
2 + α2 −KRol

2 (−K1
A +KRol

1 )

αKA + α(−K2
A +KRol

2 )−KRol
2 α

0

⎞⎠
=

⎛⎝KRol
2 (−K +K1 −KRol

1 ) + α2

α(K −K2)

0

⎞⎠ .

By assumption, −K(.) is an eigenvalue of R distinct from the other eigenvalues

−K1(.), −K2(.) on U . Hence we must have α(q) = 0. Since

0 �= KRol
1 (q)KRol

2 (q)− α(q)2 = KRol
1 (q)KRol

2 (q),

we have KRol
1 (q) �= 0 and KRol

2 (q) �= 0, hence

K(x)−K1(x) +KRol
1 (q) = 0 and K(x)−K2(x) +KRol

2 (q) = 0

for q = (x, x̂;A) ∈ (πODR
(q0),M )−1(U) ∩ O2. Since q = (x, x̂;A) was arbitrary

in (πODR
(q0),M )−1(U) ∩O2, we have proven that

α(q) = 0,

−K1(x) +KRol
1 (q) = −K(x),

−K2(x) +KRol
2 (q) = −K(x),

for all q = (x, x̂;A) ∈ (πODR
(q0),M )−1(U) ∩O2.

Looking at (39) reveals that for every

q = (x, x̂;A) ∈ (πODR
(q0),M )−1(U) ∩O2,
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the three 2-vectors AXA ∧ AYA, AYA ∧ AZA and AZA ∧ AXA are mutu-

ally orthonormal eigenvectors of R̂ x̂ all corresponding to the eigenvalue

−K(x), i.e., (M̂ , ĝ) has constant curvature −K(x) at x̂. Since x1 ∈ U , the

Riemannian space (M̂ , ĝ) has constant curvature −K(x1) at all points x̂1

in πODR
(q0),M̂

(
(πODR

(q0),M )−1(x1) ∩O2

)
.

Finally, we argue that

Ŝ := πODR
(q0),M̂

(
(πODR

(q0),M )−1(x1) ∩O2

)
is an open subset of M̂ . It is enough to show that π

Q,M̂ Ôx1
: Ôx1 → M̂ is

a submersion where Ôx1 := (πODR
(q0),M )−1(x1) ∩ O2 is a submanifold of O2.

To begin with, recall that πQ O2
is an submersion onto an open subset of

M × M̂ by Lemma 5.8. Let q ∈ Ôx1 and write q = (x1, x̂;A). Choose any

frame X̂ 1, X̂ 2, X̂ 3 of T x̂ M̂ . Then there are Ŵi ∈ T q (ODR
(q0)), i = 1, 2, 3,

such that (πQ)∗(Ŵi) = (0, X̂ i). In particular, (πQ,M )∗(Ŵi) = 0, so Ŵi ∈
V q (πODR

(q0),M ). But since T q Ôx1 = V q (πODR
(q0),M ), we have Ŵi ∈ T q Ôx1

and thus X̂ i = (π
Q,M̂

)∗Ŵi ∈ im(π
Q,M̂ Ôx1

)∗, which proves the claim and

finishes the proof.

Remark 5.13. — It is actually obvious that the eigenvalue −K(.) of R of

(M, g) is constant, equal to K(x1) say, in a some neighborhood of x1 in M ,

if −K(x1) were a single eigenvalue of R x1
. Even more is true: One could

show, even without questioning whether −K(.) is a single eigenvalue for R

and/or R̂ or not, that on πQ,M (O2) and π
Q,M̂

(O2) this eigenvalue is actually

locally constant (i.e. the function K(.) is locally constant). This fact will be

observed e.g. in Lemma 5.16 below.

Lemma 5.14. — The following holds:

1) For any q1 = (x1, x̂1;A1) ∈ O2, (M̂ , ĝ) cannot have constant curvature

at x̂1.

2) There does not exist a q1 = (x1, x̂1;A1) ∈ O2 such that −K(x1) is a

single eigenvalue of R x1
.

This also holds with the roles of (M, g) and (M̂ , ĝ) interchanged.

Proof. — 1) Suppose (M̂ , ĝ) has a constant curvature K̂ at x̂1. Let E1, E2, E3

be an oriented orthonormal frame on a neighborhood U of x1 such that

�E1 x1
, �E2 x1

, �E3 x1
are eigenvectors of R at x1 with eigenvalues −K1(x1),
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−K2(x1), −K(x1), respectively, where these eigenvalues are as in Proposi-

tion 5.5. As we have noticed, K̂ = K(x1). Because R̂ x̂1
= −K̂ id∧2T

x̂1
M̂
,

one has

R̃olq1(�E1) = (−K1(x1) + K̂ )�E1 x1
,

R̃olq1(�E2) = (−K2(x1) + K̂ )�E2 x1
,

R̃olq1(�E3) = (−K(x1) + K̂ )�E3 x1
= 0.

Since rank R̃olq1 = 2, we have −K1(x1) + K̂ �= 0, −K2(x1) + K̂ �= 0.

Because the vector fields ν(Rol(�E1)(.)), ν(Rol(�E2)(.)) are tangent to the

orbit ODR
(q0) on O′

2 := O2 ∩ π−1
Q,M (U), so is their Lie bracket. According to

Proposition 3.37, the value of this bracket at q1 is equal to[
ν
(
Rol(�E1)(.)

)
, ν
(
Rol(�E2)(.)

)]
q1

=
(−K1(x1) + K̂

)(−K2(x1) + K̂
)
ν(A�E3) q1

.

Hence ν(Rol(�E1)(.), ν(Rol(�E2)(.), [ν(Rol(�E1)(.)), ν(Rol(�E2)(.))] are tan-

gent to ODR
(q0) and since they are linearly independent at q1, hence they are

linearly independent on an open neighborhood of q1 in ODR
(q0). Therefore,

from Corollary 4.18, it follows that the orbit ODR
(q0) is open in Q, which is a

contradiction.

2) Suppose −K(x1) is a single eigenvector of R x1
, where q1 = (x1, x̂1;A1)

belongs to O2. Then, by Lemma 5.12, the space (M̂ , ĝ) would have a constant

curvature in an open set which is a neighborhood of x̂1. By Case 1), this leads

to a contradiction.

By the last two lemmas, we may thus assume that for every q = (x, x̂;A)

in O2 the common eigenvalue −K(x) = −K̂ (x̂) of R x , R̂ x̂ has multiplicity

two. It has the following consequence.

Corollary 5.15. — The assignments

q �−→ XA, YA, ZA and q �−→ KRol
1 (q),KRol

2 (q), α(q)

as in Proposition 5.5 can be made locally smoothly on O2.

Proof. — Let q1 = (x1, x̂1;A1) ∈ O2. By Lemma 5.14, there are open neigh-

borhoods U � x1 and Û � x̂1 such that the eigenvalues −K2(x) of R x and

−K̂ 2(x̂) of R̂ x̂ are both simple. Therefore the map q �→ YA can be made

locally smoothly on O2 and this is also the case for the map q �→ ZA since it

corresponds to the 1-dimensional kernel of R̃olq and XA = �(YA ∧ ZA).
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Lemma 5.16. — For every q1 = (x1, x̂1;A1) ∈ O2, there are open neigh-

borhoods U, Û of x1, x̂1 and oriented orthonormal frames E1, E2, E3 on M ,

Ê1, Ê2, Ê3 on M̂ with respect to which the connections tables are of the form

Γ =

⎛⎜⎝Γ1
(2,3) 0 −Γ1

(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 Γ1

(2,3)

⎞⎟⎠ , Γ̂ =

⎛⎜⎝Γ̂1
(2,3) 0 −Γ̂1

(1,2)

Γ̂1
(3,1) Γ̂2

(3,1) Γ̂3
(3,1)

Γ̂1
(1,2) 0 Γ̂1

(2,3)

⎞⎟⎠ ,

and

V (Γ1
(2,3)) = 0, V (Γ1

(1,2)) = 0, ∀V ∈ E2 x
⊥, x ∈ U,

V̂ (Γ̂1
(2,3)) = 0, V̂ (Γ̂1

(1,2)) = 0, ∀V̂ ∈ Ê2 x̂
⊥, x̂ ∈ Û .

Moreover, �E1, �E2, �E3 are eigenvectors of R with eigenvalues −K,−K2(.),

−K on U and similarly �̂ Ê1, �̂ Ê2, �̂ Ê3 are eigenvectors of R̂ with eigenvalues

−K,−K̂ 2(.),−K on Û , where K ∈ R is constant.

Proof. — As we just noticed, for every q = (x, x̂;A) ∈ O2, the common eigen-

value −K(x) = −K̂ (x̂) of R x and R̂ x̂ has multiplicity equal to two.

Fix q1 = (x1, x̂1;A1) ∈ O2 and let E1, E2, E3 (resp. Ê1, Ê2, Ê3) be

an orthonormal oriented frame of (M, g) defined on an open set U � x1
(resp. Û � x̂1) such that U × Û ⊂ πQ(O2) and that �E1, �E2, �E3 (resp.

�̂ Ê1, �̂ Ê2, �̂ Ê3) are eigenvectors with eigenvalues −K1(.),−K2(.),−K(.)

(resp. −K̂ 1(.),−K̂ 2(.),−K̂ 3(.)) on U (resp. Û ) as given by Proposi-

tion 5.5. Since −K has multiplicity two on U (resp. −K̂ has multiplicity

two on Û ), we assume that K1(.) = K(.) �= K2(.) everywhere on U , (resp.

K̂ 1(.) = K̂ (.) �= K̂ 2(.) everywhere on Û ) without loss of generality. Recall

that K(x) = K̂ (x̂) for all q = (x, x̂;A) ∈ O2 by Proposition 5.5 (and the

remark that follows it) and hence for all x ∈ U , x̂ ∈ Û , K(x) = K̂ (x̂).

Taking U, Û to be connected, this immediately implies that both K and K̂

are constant functions on U and Û . We denote the common constant value

simply by K.

Let XA, YA, ZA be chosen as in Proposition 5.5 for every q = (x, x̂;A) ∈ O2.

Then, since �YA is a unit eigenvector of R x corresponding to the single eigen-

value −K2(x), we must have E2 x = ±YA and since ν(A�YA) q is tangent to

the orbit ODR
(q0), by Lemma 5.8, it follows that for every q = (x, x̂;A) ∈ O2,

the vector ν(A�E2 x ) q is tangent to ODR
(q0). This, together with Propo-

sition C.18 (given in Appendix), proves the claim for (M, g). Symmetrically

(working in Q(M̂ ,M)) the claim also holds for (M̂ , ĝ). The proof is com-

plete.
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We finally aim at proving that, using the notations of the previous lemma,

Γ1
(2,3)(x) = Γ̂1

(2,3)(x̂) for all (x, x̂) ∈ πQ(O
′
2), where O′

2 = π−1
Q (U × Û ) ∩ O2

and U, Û are the domains of definition of orthonormal frames E1, E2, E3 and

Ê1, Ê2, Ê3 as given by Lemma 5.16 above.

To this end, we define θ : O′
2 → R (restricting to smaller sets U , Û if

necessary) to be a smooth function such that for all q = (x, x̂;A) ∈ O′
2,

XA = cos
(
θ(q)

)
E1 + sin

(
θ(q)

)
E3,

ZA = − sin
(
θ(q)

)
E1 + cos

(
θ(q)

)
E3,

where XA, ZA (and also YA) are chosen using Proposition 5.5. Indeed, this is

well defined since XA, ZA lie in the plane Y ⊥
A = E2 x

⊥ as do also E1 x , E3 x ,

for all q = (x, x̂;A) ∈ O′
2. To simplify the notation, we write

cθ := cos
(
θ(q)

)
and sθ := sin

(
θ(q)

)
as well as Γi

(j,k) = Γi
(j,k)(x), when there is no room for confusion. We will be

always working on O′
2 if not mentioned otherwise. Moreover, it is convenient

to denote the vector field E2 of M by Y in the computations that follow (since

E2 x is parallel to YA for all q ∈ O′
2, this notation is justified). We will do

computations on the “side of M” but the results are, by symmetry, always

valid for M̂ as well. We will make use of the following formulas which are

easily verified (see Lemma 3.33),

LR(XA) q X(.) = (LR(XA) q θ − cθΓ
1
(3,1) − sθΓ

3
(3,1))ZA + Γ1

(1,2)Y,

LR(Y ) q X(.) = (LR(Y ) q θ − Γ2
(3,1))ZA,

LR(ZA) q X(.) = (LR(ZA) q θ + sθΓ
1
(3,1) − cθΓ

3
(3,1))ZA + Γ1

(2,3)Y,

LR(XA) q Y = −Γ1
(1,2)XA + Γ1

(2,3)ZA,

LR(Y ) q Y = 0,(46)

LR(ZA) q Y = −Γ1
(2,3)XA − Γ1

(1,2)ZA,

LR(XA) q Z(.) = (−LR(XA) q θ + cθΓ
1
(3,1) + sθΓ

3
(3,1))XA − Γ1

(2,3)Y,

LR(Y ) q Z(.) = (−LR(Y ) q θ + Γ2
(3,1))XA,

LR(ZA) q Z(.) = (−LR(ZA) q θ − sθΓ
1
(3,1) + cθΓ

3
(3,1))XA + Γ1

(1,2)Y.

Remark 5.17. — Notice that ν(A�ZA) q is not tangent to the orbit ODR
(q0)

for any q = (x, x̂;A) ∈ O′
2. Indeed, otherwise there would be an open neigh-

borhood O ⊂ O′
2 of q such that for all q′ = (x′, x̂′;A′) the vectors

ν(A′
�XA′) q′ , ν(A′

�Y ) q′ , ν(A′
�ZA′) q′
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would span V q′ (πQ) while being tangent to T q′ ODR
(q0), which implies

V q′ (πQ) ⊂ T q′ ODR
(q0). Then Corollary 4.18 would imply that ODR

(q0) is

open, which is not the case. We will use this fact frequently in what follows.

Taking U , Û smaller if necessary, we may also assume that θ is actually

defined not only on O′
2 but on an open neighborhood Õ ′

2 of O2 in Q. We will

make this technical assumption to be able to write e.g. ν(A�ZA) q θ whenever

needed.

Lemma 5.18. — For every q = (x, x̂;A) ∈ O′
2 we have

ν(A�Y ) q θ = 1,

LR(XA) q θ = cθΓ
1
(3,1) + sθΓ

3
(3,1),

LR(Y ) q θ = Γ2
(3,1) − Γ1

(2,3).

Moreover, if one defines for q = (x, x̂;A) ∈ O′
2,

FX q : = LNS(XA) q − Γ1
(1,2)ν(A�ZA) q ,

FZ q : = LNS(ZA) q − Γ1
(2,3)ν(A�ZA) q ,

then FX , FZ are smooth vector fields on O′
2 tangent to the orbit ODR

(q0).

Proof. — We begin by showing that ν(A�Y ) q θ = 1. Indeed, we have for every

q = (x, x̂;A) ∈ O′
2 that ĝ(AZA, Ê2) = 0. Differentiating this w.r.t. ν(A�Y ) q

yields

0 = ĝ(A(�Y )ZA, Ê2)− ν(A�Y ) q θ ĝ(AXA, Ê2)

= ĝ(AXA, Ê2)(1− ν(A�Y ) q θ).

We show that ĝ(AXA, Ê2) �= 0, whence ν(A�Y ) q θ = 1. Indeed, if it were

the case, then AXA ∈ E⊥
2 and hence �̂(AXA) would be an eigenvector of R̂ x̂

with eigenvalue −K. This would then imply that

R̃olq(�XA) = R(�XA)−AT R̂( �̂(AXA))A

= −K �XA +KAT ( �̂(AXA)A = 0.

Because, R̃olq(XA ∧ Y ) = 0 as well, we see that R̃olq has rank ≤ 1 as a map

∧2T xM → ∧2T xM , which is a contradiction since q ∈ O′
2 ⊂ O2 and O2

is, by definition, the set of points of the orbit where R̃olq has rank 2. This

contradiction establishes the above claim.
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We next compute the Lie brackets[
LR(Y ), ν((.)�X(.)

]
q

= −LNS(A(�XA)Y ) q + ν(A�LR(Y ) q X(.)) q

= −LNS(AZA) q + (LR(Y ) q θ − Γ2
(3,1))ν(A�ZA) q ,[

LR(X(.)), ν((.)�Y )
]

q

= −LR(ν(A�Y ) q X(.)) q − ν(A�Y ) q θLNS(A(�Y )XA) q

+ ν(A�(cθ(−Γ1
(1,2)E1 + Γ1

(2,3)E3)

+ sθ(−Γ1
(2,3)E1 − Γ1

(1,2)E3))) q

= −LR(ν(A�Y ) q X(.)) q + LNS(AZA) q

− Γ1
(1,2)ν(A�XA) q + Γ1

(2,3)ν(A�ZA) q ,

which sum is equal to[
LR(Y ), ν((.)�X(.)

]
q +

[
LR(X(.)), ν((.)�Y )

]
q

= (LR(Y ) q θ − Γ2
(3,1) + Γ1

(2,3))ν(A�ZA) q

− LR(ν(A�Y ) q X(.)) q − Γ1
(1,2)ν(A�XA) q .

Since this has to be tangent to ODR
(q0), we get that the ν(A�ZA) q -component

vanished i.e.,

LR(Y ) q θ = Γ2
(3,1) − Γ1

(2,3).

Next compute[
LR(X(.)), ν((.)�X(.)

]
q

= −ν(A�XA) q θLR(ZA) q − LNS

(
A (�XA)XA︸ ︷︷ ︸

=0

)
q

+ ν
(
A�

(
(LR(XA) q θ − cθΓ

1
(3,1) − sθΓ

3
(3,1))ZA) + Γ1

(1,2)Y
)

q
,

and so we must have again that the ν(A�ZA) q -component is zero i.e.,

LR(XA) q θ = cθΓ
1
(3,1) + sθΓ

3
(3,1).

Since LNS(AZA) q = LR(ZA) q −LNS(ZA) q , [LR(X(.)), ν((.)�Y )] q can

be written as[
LR(X(.)), ν((.)�Y )

]
q

= −FZ q + LR(ZA) q − LR

(
ν(A�Y ) q X(.)

)
q − Γ1

(1,2)ν(A�XA) q

= −FZ q − Γ1
(1,2)ν(A�XA) q ,
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which proves that FZ , as defined in the statement, is indeed tangent to the

orbit on O′
2. To show that FX is also tangent to the orbit we compute[

LR(Z(.)), ν((.)�Y )
]

q

= −LR

(
ν(A�Y ) q Z(.)

)
q − ν(A�Y ) q θLNS

(
A(�Y )ZA

)
q

+ ν
(
A�(−sθ(−Γ1

(1,2)E1 + Γ1
(2,3)E3)

+ cθ(−Γ1
(2,3)E1 − Γ1

(1,2)E3))
)

q

= −LR

(
ν(A�Y ) q Z(.)

)
q − LNS(AXA) q

− Γ1
(1,2)ν(A�ZA) q − Γ1

(2,3)ν(A�XA) q

= FX q − LR(XA) q − LR

(
ν(A�Y ) q Z(.)

)
q − Γ1

(2,3)ν(A�XA) q

= FX q − Γ1
(2,3)ν(A�XA) q ,

which finishes the proof.

Lemma 5.19. — For all (x, x̂) ∈ πQ(O
′
2) one has

Γ1
(2,3)(x) = Γ̂1

(2,3)(x̂).

Proof. — We begin by observing that for all q = (x, x̂;A) ∈ O′
2 one has

ĝ(AZA, Ê2) = 0. Indeed, AZA and Ê2 x̂ are eigenvectors of R̂ x̂ correspond-

ing to non-equal eigenvalues −K and −K̂ 2(x̂), hence they must be orthogonal.

Since AZA ∈ Ê2 x̂
⊥, there is a θ̂ = θ̂(q), for all q = (x, x̂;A) ∈ O′

2, such that

AZA = −s
θ̂
Ê1 + c

θ̂
Ê3.

Because AXA, AY ∈ (AZA)
⊥, there exits also a φ̂ = φ̂(q) such that

AXA = c
φ̂
(c

θ̂
Ê1 + s

θ̂
Ê3) + s

φ̂
Ê2,

AY = −s
φ̂
(c

θ̂
Ê1 + s

θ̂
Ê3) + c

φ̂
Ê2.

Moreover, Lemma 5.18 along with Eq. (46) implies that LR(Y ) q Z(.) simpli-

fies to

LR(Y ) q Z(.) = Γ1
(2,3)(x)XA.

Therefore, differentiating ĝ(AZA, Ê2) = 0 with respect to LR(XA) q , one

obtains

0 = LR(Y ) q ĝ((.)Z(.), Ê2)

= ĝ(ALR(Y ) q Z(.), Ê2) + ĝ(AZA, ∇̂AY Ê2)
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= Γ1
(2,3) ĝ(AXA, Ê2) + ĝ

(
AZA,−s

φ̂
c
θ̂
(−Γ̂1

(1,2)Ê1 + Γ̂1
(2,3)Ê3)

− s
φ̂
s
θ̂
(−Γ̂1

(2,3)Ê1 − Γ̂1
(1,2)Ê3)

)
= s

φ̂
Γ1
(2,3) − s

φ̂
ĝ
(
AZA, Γ̂

1
(2,3)AZA − Γ̂1

(1,2)(c θ̂ Ê1 + s
θ̂
Ê3)
)

= s
φ̂
(Γ1

(2,3)(x)− Γ̂1
(2,3)(x̂)).

We claim that sin(φ̂(q)) �= 0 for q = (x, x̂;A) ∈ O′
2, which implies that

Γ1
(2,3)(x) − Γ̂1

(2,3)(x̂) = 0 and finishes the proof. Indeed, sin(φ̂(q)) = 0 would

mean that AXA = ±(c
θ̂
Ê1 + s

θ̂
Ê3), thus AXA ∈ Ê⊥

2 . By the argument at

the beginning of the proof of Lemma 5.18, this would be a contradiction.

Corollary 5.20. — The following holds.

(i) If for some (x1, x̂1) ∈ πQ(O
′
2), one has Γ

1
(2,3)(x1) �= 0 (or Γ̂1

(2,3)(x̂1) �= 0),

there are open neighborhoods U ′ � x1, Û
′ � x̂1 such that (U ′, g), (Û ′, ĝ) are

both of class Mβ for β = Γ1
(2,3)(x1) (or β = Γ̂1

(2,3)(x̂1)).

(ii) If for some (x1, x̂1) ∈ πQ(O
′
2), one has Γ

1
(2,3)(x1) = 0 (or Γ̂1

(2,3)(x̂1) = 0),

there are open neighborhoods U ′ � x1, Û
′ � x̂1 such that U ′ × Û ′ ⊂ πQ(O

′
2)

and isometries F : (I × N, hf ) → (U, g), F̂ : (I × N̂ , ĥ
f̂
) → (Û , ĝ), where

I ⊂ R is an open interval, such that

f ′′(t)
f(t)

= −K =
f̂ ′′(t)
f̂(t)

, ∀t ∈ I.

Proof. — Let U ′, Û ′ be connected neighborhoods of x1, x̂1 such that U ′ × Û ′

is contained in πQ(O
′
2) (recall that by Lemma 5.8, πQ(O

′
2) is open in M ×M̂ ).

(i) Set β = Γ1
(2,3)(x1) �= 0. By Lemma 5.19, one has for every x ∈ U ′, x̂ ∈ Û ′

that

Γ̂1
(2,3)(x̂) = Γ1

(2,3)(x1) = β, Γ1
(2,3)(x) = Γ̂1

(2,3)(x̂1) = β.

By Proposition C.17 case (ii), it follows that (after shrinking U ′, Û ′) (U, g) and
(Û , ĝ) are both of class Mβ . This gives (i).

(ii) By Lemma 5.19, one has for every x ∈ U ′, x̂ ∈ Û ′ that

Γ̂1
(2,3)(x̂) = Γ1

(2,3)(x1) = 0, Γ1
(2,3)(x) = Γ̂1

(2,3)(x̂1) = 0,

i.e. Γ1
(2,3) and Γ̂1

(2,3) vanish on U ′, Û ′, respectively. Then Proposition C.17

case (iii) gives (after shrinking U ′, Û ′) the desired isometries F, F̂ . Moreover,

MÉMOIRES DE LA SMF 147



5.2. PROOF OF THEOREM 5.1 77

Eq. (58) in that proposition gives, since E2 =
∂
∂r , Ê2 =

∂
∂r ,

−K =
d

dr

f ′(r)
f(r)

+
(− f ′(r)

f(r)

)− 02 =
f ′′(r)
f(r)

,

−K =
d

dr

f̂ ′(r)
f̂(r)

+
(− f̂ ′(r)

f̂(r)

)− 02 =
f̂ ′′(r)
f̂(r)

,

where r ∈ I. This proves (ii).

5.2.2. Local structures for the manifolds around q ∈ O1. — In analogy

to Proposition 5.5 we will first prove the following result. In the results below

that concern O1, we always assume that O1 �= ∅. For the next proposition,

contrary to an analogous Proposition 5.5 of Subsubsection 5.2.1, we do not

need to assume that ODR
(q0) is not open. The subsequent result only relies

on the fact that O1 is not empty.

Proposition 5.21. — Let q0 = (x0, x̂0;A0) ∈ Q. Then for every q = (x, x̂;A)

in O1 there exist an orthonormal pair XA, YA ∈ T xM such that if ZA :=

�(XA ∧ YA) then XA, YA, ZA is a positively oriented orthonormal pair with

respect to which R and R̃ol may be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(XA ∧ YA) =

⎛⎝ 0 K(x) 0

−K(x) 0 0

0 0 0

⎞⎠ , �R(XA ∧ YA) =

⎛⎝ 0

0

−K(x)

⎞⎠ ,

R(YA ∧ ZA) =

⎛⎝0 0 0

0 0 K(x)

0 −K(x) 0

⎞⎠ , �R(YA ∧ ZA) =

⎛⎝−K(x)

0

0

⎞⎠ ,

R(ZA ∧XA) =

⎛⎝ 0 0 −K2(x)

0 0 0

K2(x) 0 0

⎞⎠ , �R(ZA ∧XA) =

⎛⎝ 0

−K2(x)

0

⎞⎠ ,

R̃olq(XA ∧ YA) = 0, R̃olq(YA ∧ ZA) = 0,

R̃olq(ZA ∧XA) =

⎛⎝ 0 0 −KRol
2 (q)

0 0 0

KRol
2 (q) 0 0

⎞⎠ ,

�R̃olq(ZA ∧XA) =

⎛⎝ 0

−KRol
2 (q)

0

⎞⎠ ,

(47)

where K,K2 are real-valued functions defined on M .
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With respect to XA, YA, ZA given by the theorem, we also have

(48)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�AT R̂(AXA ∧AYA)A =

⎛⎝ 0

0

−K(x)

⎞⎠ ,

�AT R̂(AYA ∧AZA)A =

⎛⎝−K(x)

0

0

⎞⎠ ,

�AT R̂(AZA ∧AXA)A =

⎛⎝ 0

−K2(x) +KRol
2 (q)

0

⎞⎠ .

Relevant observations regarding the previous proposition are collected next.

Remark 5.22

The last proposition says that �XA, �YA, �ZA are eigenvectors of R x , for every

q = (x, x̂;A) ∈ O1, with corresponding eigenvalues −K(x),−K2(x),−K(x).

Changing the roles of (M, g) and (M̂ , ĝ), the proposition gives that, for every

q = (x, x̂;A) ∈ O1, eigenvectors �̂X̂A, �̂Ŷ A, �̂ẐA are eigenvectors of R̂ x̂ , with

corresponding eigenvalues −K̂ (x̂),−K̂ 2(x̂),−K̂ (x̂).

(b) The eigenvalues K and K̂ coincide on the set of points that can be

reached, locally, by the rolling. More precisely, Proposition 5.21 tells us that

−K̂ (x̂) = −K(x), ∀(x, x̂) ∈ πQ(O1),

and that this eigenvalue is at least a double eigenvalue for both R x and R̂ x̂ .

(c) The above at-least-double eigenvalue cannot be a triple eigenvalue

for both R x and R̂ x̂ at the same time, for (x, x̂) ∈ πQ(O1). Indeed,

if K2(x) = K(x) and K̂ 2(x̂) = K̂ (x̂), then clearly this would imply that

Rolq = 0, which contradicts the fact that q ∈ O1 implies rankRolq = 1.

(d) It is not clear that the assignments q �→ XA, ZA can be made locally

smoothly on O1. However, it is the case for the assignment q �→ YA. In addition,

for every q = (x, x̂;A) ∈ O1, the choice of YA and Ŷ A are uniquely determined

up to multiplication by −1. Indeed, �YA = ZA∧XA is a unit eigenvector of R̃olq
corresponding to the simple non-zero eigenvalue −KRol

2 (q) (it is non-zero since

rankRolq = 1, q ∈ O1). By symmetry, the same holds of Ŷ A as well. Then

AYA = ±Ŷ A, ∀q = (x, x̂;A) ∈ O1.

We begin by the following simple lemma.
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Lemma 5.23. — For every q = (x, x̂;A) ∈ O1 and any orthonormal pair

(which exists) XA, YA ∈ T xM such that

XA, YA, ZA := �(XA ∧ YA)

is an oriented orthonormal basis of T xM and

Rolq(XA ∧ YA) = 0, Rolq(YA ∧ ZA) = 0,

one has with respect to the basis XA, YA, ZA,

R(XA ∧ YA) =

⎛⎝ 0 KA αA

−KA 0 −βA
−αA βA 0

⎞⎠ , �R(XA ∧ YA) =

⎛⎝ βA
αA

−KA

⎞⎠ ,

R(YA ∧ ZA) =

⎛⎝ 0 −βA ξA
βA 0 K1

A

−ξA −K1
A 0

⎞⎠ , �R(YA ∧ ZA) =

⎛⎝−K1
A

ξA
βA

⎞⎠ ,

R(ZA ∧XA) =

⎛⎝ 0 −αA −K2
A

αA 0 −ξA
K2

A ξA 0

⎞⎠ , �R(ZA ∧XA) =

⎛⎝ ξA
−K2

A

αA

⎞⎠ ,

R̃olq(XA ∧ YA) = 0, R̃olq(YA ∧ ZA) = 0,

R̃olq(ZA ∧XA) =

⎛⎝ 0 0 −KRol
2

0 0 0

KRol
2 0 0

⎞⎠ , �R̃olq(ZA ∧XA) =

⎛⎝ 0

−KRol
2

0

⎞⎠ .

Moreover, the choice of the above quantities can be made locally smoothly

on O1.

Proof. — We only need to prove the existence of an oriented orthonormal basis

XA, YA and ZA such that Rolq(XA ∧ YA) = 0, Rolq(YA ∧ ZA) = 0. Indeed,

when this has been established, one may use Lemma 5.7, where we now have

KRol
1 (q) = 0, α(q) = 0 because Rolq(YA ∧ ZA) = 0, to conclude.

Since for a given q = (x, x̂;A) ∈ O1, R̃olq : ∧2T xM → ∧2T xM is symmet-

ric linear map that has rank 1, it follows that its eigenspaces are orthogonal and

its kernel has dimension exactly 2. Thus there is an orthonormal basis ω1, ω2, λ

of ∧2T xM such that R̃olq(ωi) = 0, i = 1, 2. Taking XA = �ω1, ZA = �ω2 and

YA = �λ we get, up to replacing XA with −XA if necessary, an oriented or-

thonormal basis of T xM such that Rol(XA∧YA) = 0, Rol(YA∧ZA) = 0.

As a consequence of the lemma and because

AT R̂(AX,AY )A = R(X,Y )− R̃olq(X,Y )
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for X,Y ∈ T xM , we have that w.r.t. the oriented orthonormal basis

XA, YA, ZA,

(49)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�AT R̂(AXA, AYA)A =

⎛⎝ βA
αA

−KA

⎞⎠ ,

�AT R̂(AYA, AZA)A =

⎛⎝−K1
A

ξA
βA

⎞⎠ ,

�AT R̂(AZA, AXA)A =

⎛⎝ ξA
−K2

A +KRol
2

αA

⎞⎠ .

The assumption that rankRolq = 1 is equivalent to the fact that for every

q = (x, x̂;A) ∈ O1,

KRol
2 (q) �= 0.(50)

This implies that YA is uniquely determined up to multiplication by −1 (see

also Remark 5.22 above). Hence, in particular, for every q = (x, x̂;A) ∈ O1,

ν
(
Rolq(∧2TM)(A)

)
q
= span

{
ν(A(ZA ∧XA)) q } = span{ν(A�YA) q

}
.

We will now show that, with any (non-unique) choice of a pair XA, YA as in

Lemma 5.23, one has that αA = 0 and KA = K1
A.

Lemma 5.24. — If one chooses any

XA, YA, ZA = �(XA ∧ YA)

as in Lemma 5.23, then

βA = 0, KA = K1
A, ∀q = (x, x̂;A) ∈ ODR

(q0).

Proof. — Fix q = (x, x̂;A) ∈ O1. Choosing in Corollary 4.14 X,Y ∈ VF(M)

such that X x = XA, Y x = YA, we get, since Rolq(XA ∧ YA) = 0,

ν q
−1
[
ν(Rol(X,Y )(.)), ν(Rol(Z,W )(.))

]
q

= A
[
R(XA ∧ YA), R(Z x ∧W x )

]
so

− [R̂(AXA ∧AYA), R̂(AZ x ∧AW x )
]
so
A

+ R̂(AXA ∧AR̃olq(Z x ∧W x )YA)A

+ R̂(AR̃olq(Z x ∧W x )XA, AYA)A.
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Since q′ = (x′, x̂′;A′) �→ ν(Rol(∧2T x′ M)(A′)) q′ = span{ν(A′
�YA′)} is a

smooth rank one distribution on O1, it follows that it is involutive and hence

for all X,Y, Z,W ∈ VF(M),[
ν(Rol(X ∧ Y )(.)), ν(Rol(Z ∧W )(.))

]
q
∈ span

{
ν(A�YA) q

}
,

where we used that Rol(∧2TM)(A) = span{A�YA} as observed above.

We compute the right hand side of this formula in different cases. We begin

by taking any smooth vector fields X,Y, Z,W with X x = XA, Y x = YA,

Z x = ZA, W x = XA. One gets

AT ν q
−1
[
ν(Rol(X,Y )(.)), ν(Rol(Z,W )(.))

]
q

=
[
R(XA ∧ YA), R(ZA ∧XA)

]
so

− [AT R̂(AXA ∧AYA)A,AT R̂(AZA ∧AXA)A
]
so

+AT R̂(AXA ∧ Rol(ZA ∧XA)(A)YA)A

+AT R̂(Rol(ZA ∧XA)(A)XA ∧AYA)A

=

⎛⎝ βA
αA

−KA

⎞⎠ ∧
⎛⎝ 0

−KRol
2

0

⎞⎠
+AT R̂(AXA ∧ 0)A+AT R̂(KRol

2 AZA ∧AYA)A

=

⎛⎝−KAK
Rol
2

0

−βAK
Rol
2

⎞⎠−KRol
2

⎛⎝−K1
A

ξA
βA

⎞⎠
=

⎛⎝KRol
2 (−KA +K1

A)

KRol
2 ξA

−2βAK
Rol
2

⎞⎠ ∈ span
{
ν(A�YA) q

}
.

Because KRol
2 (q) �= 0, this immediately implies that

−KA +K1
A = 0, βA = 0.

This completes the proof.

We will now rotate XA, YA, ZA in such a way that we can set αA equal to

zero.

Lemma 5.25. — For every q = (x, x̂;A) ∈ O1 there are orthonormal XA, YA ∈
T xM such that XA, YA, ZA = �(XA ∧ YA) is an oriented orthonormal basis

of T xM with respect to which in Lemma 5.23 one has αA = 0.
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Proof. — Fix q = (x, x̂;A) ∈ O1, choose any XA, YA, ZA = �(XA ∧ YA) as in

Lemma 5.23 and suppose αA �= 0 (otherwise we are done). For t ∈ R, set(
XA(t)

ZA(t)

)
=

(
cos(t) sin(t)

− sin(t) cos(t)

)(
XA

ZA

)
.

Then clearly

YA(t) := �(XA(t) ∧ ZA(t)) = �(XA ∧ ZA) = YA

and XA(t), YA(t), ZA(t) is an orthonormal positively oriented basis of

T xM . Since R̃olq is a symmetric map ∧2T xM → ∧2T xM and since

�XA, �ZA are its eigenvectors corresponding to the eigenvalue 0, it follows

that �XA(t), �ZA(t), which are just rotated �XA, �ZA in the plane that

they span, are eigenvectors of Rolq corresponding to the eigenvalue 0, i.e.

Rolq(XA(t) ∧ YA) = 0, Rolq(YA ∧ ZA(t)) = 0 for all t ∈ R.

Hence the conclusion of Lemma 5.23 holds for the basis XA(t), YA, ZA(t)

and we write ξA(t), αA(t), βA(t), KA(t), K1
A(t), K2

A(t) for the coefficients

of the matrices of R given there w.r.t. XA(t), YA, ZA(t). Then Lemma 5.24

implies that βA(t) = 0, KA(t) = K1
A(t) for all t ∈ R. We now compute

αA(t) = g
(
R(XA(t) ∧ YA)ZA(t), XA(t)

)
= g
(
R(ZA(t) ∧XA(t))XA(t), YA(t)

)
= −g

(
R(ZA ∧XA)YA, XA(t)

)
= −g

(− αAXA + ξAZA, cos(t)XA + sin(t)ZA

)
= −αA cos(t) + ξA sin(t).

Thus choosing t0 ∈ R such that

cot(t0) =
ξA
αA

,

we get that αA(t0) = 0. As already observed, we also have βA(t0) = 0,

K1
A(t0) = KA(t0) and Rolq(XA(t0) ∧ YA) = 0, Rolq(YA ∧ ZA(t0)) = 0.

Since αA and βA vanish w.r.t XA, YA, ZA, as chosen by the previous lemma,

we have that −KA is an eigenvalue of R x with eigenvector XA ∧ YA, where

q = (x, x̂;A) ∈ O1. Knowing this, we may prove that even ξA is zero as well

and that (automatically) −KA is a at least a double eigenvalue of R x . This

is given in the lemma that follows.

Lemma 5.26. — If q = (x, x̂;A) ∈ O1 and XA, YA, ZA as in Lemma 5.25,

then ξA = 0.
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Proof. — Since for any q = (x, x̂;A) ∈ O1, −KA is an eigenvalue of R x , we

know that its value only depends on the point x of M and hence we consider

it as a smooth function −K(x) on M . We claim that that −K(x) is at least a

double eigenvalue of R x . Suppose it is not. Then in a neighborhood U of x we

have that −K(y) is a simple eigenvalue of R y for all y ∈ U . In that case, we

may choose smooth vector fields X,Y on U , taking U smaller if necessary, such

that X y ∧ Y y is a (non-zero) eigenvector of R y corresponding to −K(y)

and X x = XA, Y x = YA. Write

O := π−1
Q,M (U) ∩O1.

For any (y, ŷ;B) ∈ O, we know that XB ∧ YB is a unit eigenvector of R y

corresponding to −K(y) and hence, modulo replacing X by −X, we have

XB ∧ YB = X y ∧ Y y . Then, for all (y, ŷ;B) ∈ O with y ∈ U , one has

ν
(
Rol(X y ∧ Y y )(B)

)
(y, ŷ;B) = ν

(
Rol(XB ∧ YB)(B)

)
(y, ŷ;B) = 0,

i.e., ν(Rol(X∧Y )(.)) is a zero vector field on the open subset O of the orbit. If

we also take some smooth vector fields Z,W such that Z x = ZA, W x = XA,

we get by the fact that ν(Rol(X ∧ Y )(.)) = 0 and from the computations in

the proof of Lemma 5.24 that

0 = ν q
−1
[
ν(Rol(X,Y )(.)), ν(Rol(Z,W )(.))

]
q

=

⎛⎝KRol
2 (−KA +K1

A)

KRol
2 ξA

−2βAK
Rol
2

⎞⎠ =

⎛⎝ 0

KRol
2 ξA
0

⎞⎠ .

Since KRol
2 (q) �= 0 we get ξA = 0. This implies, along with the results obtained

in the previous lemma (i.e. K = K1
A, βA = αA = 0), that w.r.t. the basis

XA, YA, ZA, one has

�R(XA ∧ YA) =

⎛⎝ 0

0

−KA

⎞⎠ , �R(YA ∧ ZA) =

⎛⎝−KA

0

0

⎞⎠ ,

which means that XA ∧YA and YA ∧ZA are linearly independent eigenvectors

ofR x corresponding to the eigenvalue−KA = −K(x). This is in contradiction

to what we assumed at the beginning of the proof. Hence we have that −KA

is, for every q = (x, x̂;A) ∈ O1, an eigenvalue of R x of multiplicity at least 2.
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Finally, since we know that w.r.t. XA, YA, ZA,

�R(XA ∧ YA) =

⎛⎝ 0

0

−KA

⎞⎠ , �R(YA ∧ ZA) =

⎛⎝−KA

ξA
0

⎞⎠ ,

�R(ZA ∧XA) =

⎛⎝ ξA
−K2

A

0

⎞⎠ ,

and since R x is a symmetric linear map having double eigenvalue −KA, then

there exists a unit eigenvector ω of R x corresponding to −KA which belongs

to the plane orthogonal to XA∧YA (in ∧2T xM). Hence, ω = cos(t)YA∧ZA+

sin(t)ZA ∧XA for some t ∈ R and

−KA

⎛⎝cos(t)

sin(t)

0

⎞⎠ = −KA�ω = �R(ω)

= cos(t)�R(YA ∧ ZA) + sin(t)�R(ZA ∧XA)

= cos(t)

⎛⎝−KA

ξA
0

⎞⎠+ sin(t)

⎛⎝ ξA
−K2

A

0

⎞⎠ =

⎛⎝−KA cos(t) + ξA sin(t)

ξA cos(t)−K2
A sin(t)

0

⎞⎠ ,

where the matrices are formed w.r.t. XA, YA, ZA. From the first row, we get

ξA sin(t) = 0. So either ξA = 0 and we are done or sin(t) = 0, implying that

ω = 1±YA ∧ ZA with 1± ∈ {−1,+1} and hence⎛⎝−KA

ξA
0

⎞⎠ = �R(YA ∧ ZA)

= 1±�R(ω) = −KA(1±�ω) = −KA�(YA ∧ ZA) =

⎛⎝−KA

0

0

⎞⎠ ,

which gives ξA = 0 anyhow.

The previous lemma implies Proposition 5.21, since now −KA = −K1
A,

−K2
A are eigenvalues of R x for every (x, x̂;A) ∈ O1 and hence, defining

K(x) := KA, K2(x) := K2
A,

we obtain well defined functions K,K2 : M → R.
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The following proposition is the last result of this subsection. Notice that it

does need the assumption that ODR
(q0) is not open while the previous results

do not need this assumption.

Proposition 5.27. — Suppose ODR
(q0) is not open in Q. Then there is an

open dense subset O◦
1 of O1 such that for every q1 = (x1, x̂1;A1) ∈ O◦

1 there

are neighborhoods U and Û of x1 and x̂1, respectively, such that either

(i) both (U, g U ), (Û , ĝ
Û
) are of class Mβ or

(ii) both (U, g U ), (Û , ĝ
Û
) are isometric to warped products

(I ×N, hf ), (I × N̂ , ĥ
f̂
)

and f ′(r)/f(r) = f̂ ′(r)/f̂(r), for all r ∈ I.

Moreover, there is an oriented orthonormal frame E1, E2, E3 (resp.

Ê1, Ê2, Ê3) defined on U (resp. on Û ), such that �E1, �E3 (resp. �Ê1, �Ê3)

are eigenvectors of R̂ with common eigenvalue −K(.) (resp. −K̂ (.)) and one

has

A1E2 x1
= Ê2 x̂1

.

Proof. — Let q1 = (x1, x̂1;A1) ∈ O1. As observed in Remark 5.22, either

R x1
or R̂ x̂1

has −K2(x1) or −K̂ 2(x̂1), respectively, as a single eigenvalue.

By symmetry of the problem in (M, g), (M̂ , ĝ), we assume that this is the

case for R x1
. Hence there is a neighborhood U of x1 such that K2(x) �= K(x)

for all x ∈ U . Then, there is an open dense subset O′
1 of O1 ∩ π−1

Q,M (U) such

that, for every q = (x, x̂;A) ∈ O′
1, there exists an open neighborhood V̂ of x̂

where either K̂ 2 = K̂ on V̂ or K̂ 2( ŷ ) �= K̂ ( ŷ ) for ŷ ∈ V̂ . For the rest of the

argument, we assume that q1 belongs to O′
1.

By shrinking U around x1 and taking a small enough neighborhood Û

of x̂1, we assume there are oriented orthonormal frames E1, E2, E3 on U

(resp. Ê1, Ê2, Ê3 on Û ) such that �E1, �E2, �E3 (resp. Ê1, Ê2, Ê3) are

eigenvectors of R (resp. R̂) with eigenvalues −K(.),−K2(.),−K(.) (resp.

−K̂ (.),−K̂ 2(.),−K̂ (.)), where these eigenvalues correspond to those in

Proposition 5.21. Taking U , Û smaller if necessary, we take XA, YA, ZA as

given by Proposition 5.21 for M and X̂A, Ŷ A, ẐA for M̂ on π−1
Q (U × Û )∩O′

1,

which we still denote by O′
1. Since �YA and �E2 x are both eigenvalues

of R x , for q = (x, x̂;A) ∈ O′
1, corresponding to single eigenvalue −K2(x), we

moreover assume that YA = E2 x , for all q = (x, x̂;A) ∈ O′
1. Then because

ν
(
Rolq(ZA ∧XA)

)
q = −KRol

2 (q)ν(A�E2) q
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is tangent to the orbit ODR
(q0) at the points q = (x, x̂;A) ∈ O′

1, we conclude

from Proposition C.18 (given in Appendix) that

Γ =

⎛⎜⎝Γ1
(2,3) 0 −Γ1

(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 Γ1

(2,3)

⎞⎟⎠ ,

where Γ and Γi
(j,k) are as defined there.

We will now divide the proof in two parts (cases I and II below), depending

whether (M̂ , ĝ) has, in certain areas, constant curvature or not.

Case I. — Suppose, after shrinking Û around x1, that K̂ 2(x̂) = K̂ (x̂) for

all x̂ ∈ Û . We also assume that Û is connected. This implies by Schur Lemma

(see [39, Proposition II.3.6]) that K̂ 2 = K̂ is constant on Û and we write

simply K̂ for this constant. Again by possibly shrinking Û , we assume that

(Û , ĝ
Û
) is isometric to an open subset of a 3-sphere of curvature K̂ .

Assume first that Γ1
(2,3) �= 0 on U . Then Proposition C.17, case (ii), implies

that Γ1
(1,2) = 0 on U and (Γ1

(2,3))
2 = K(x) is constant on U , which must be K̂ .

Hence if β := Γ1
(2,3), which is constant on U , then (U, g U ) is of class Mβ as

is (Û , ĝ
Û
) and we are done (recall that M−β = Mβ) i.e., this is case (i). On

the other hand, if Γ1
(2,3) = 0 on U , then we have that (U, g U ), after possibly

shrinking U , is isometric, by some F , to a warped product (I × N, hf ) by

Proposition C.17 case (iii). At the same time, the space of constant curvature

(Û , ĝ
Û
), again after shrinking Û if necessary, can be presented, isometrically

by certain F̂ , as a warped product (Î × N̂ , ĥ
f̂
), where N̂ is a 2-dimensional

space of constant curvature. Because for all x ∈ U we have K(x) = K̂ , we get

that for all (r, y) ∈ I ×N , r̂ ∈ Î,

−f ′′(r)
f(r)

= K(F (r, y)) = K̂ = − f̂ ′′( r̂ )
f̂( r̂ )

.

It is not hard to see that we may choose f̂ such that f̂(0) = f(0) and f̂ ′(0) =
f ′(0), which then implies that f̂(r) = f(r), for all r ∈ I. This leads us to

case (ii).

Case II. — We assume here that K̂ 2(x̂) �= K̂ (x̂) for all x̂ ∈ Û . The same

way as for (M, g) above, this implies that Ŷ A = Ê2 x̂ and that w.r.t. the
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frame Ê1, Ê2, Ê3, Proposition C.18 yields

Γ̂ =

⎛⎜⎝Γ̂1
(2,3) 0 −Γ̂1

(1,2)

Γ̂1
(3,1) Γ̂2

(3,1) Γ̂3
(3,1)

Γ̂1
(1,2) 0 Γ̂1

(2,3)

⎞⎟⎠ ,

where Γ̂i
(j,k) = ĝ(∇̂

Ê i
Ê j , Êk), 1 ≤ i, j, k ≤ 3.

We now claim that for all (x, x̂) ∈ πQ(O
′
1), we have

Γ1
(2,3)(x) = Γ̂1

(2,3)(x̂), Γ1
(1,2)(x) = Γ̂1

(1,2)(x̂).

By Remark 5.22, we have AYA = ±Ŷ A for q = (x, x̂;A) ∈ O′
1, and so we get

AE2 x = ±Ê2 x̂ . Without loss of generality, we assume that the ‘+’ -case

holds here. In particular, if X ∈ VF(M), one may differentiate the identity

AE2 = Ê2 w.r.t. LR(X) q to obtain

A∇XE2 = ∇̂AX Ê2, ∀q = (x, x̂;A) ∈ O′
1.

Since AE1, AE3, Ê1, Ê3 ∈ (AE2)
⊥ = Ê⊥

2 , there exists, for every q ∈ O′
1,

ϕ = ϕ(q) ∈ R such that

AE1 x = cos
(
ϕ(q)

)
Ê1 x̂ + sin

(
ϕ(q)

)
Ê3 x̂ ,

AE3 x = − sin
(
ϕ(q)

)
Ê1 x̂ + cos

(
ϕ(q)

)
Ê3 x̂ .

As usual, we write below cos(ϕ(q)) = cϕ, sin(ϕ(q)) = sϕ. We compute

A∇E1E2 = A(−Γ1
(1,2)E1 + Γ1

(2,3)E3)

= (−cϕΓ
1
(1,2) − sϕΓ

1
(2,3))Ê1 + (−sϕΓ

1
(1,2) + cϕΓ

1
(2,3))Ê3,

and, on the other hand,

∇̂AE1 Ê2 = cϕ(−Γ̂1
(1,2)Ê1 + Γ̂1

(2,3)Ê3) + sϕ(−Γ̂1
(2,3)Ê1 − Γ̂1

(1,2)Ê3)

= (−cϕΓ̂
1
(1,2) − sϕΓ̂

1
(2,3))Ê1 + (cϕΓ̂

1
(2,3) − sϕΓ̂

1
(1,2))Ê3.

Taking X = E1 above and using the last two formulas, we get

(−cϕΓ
1
(1,2) − sϕΓ

1
(2,3))Ê1 + (−sϕΓ

1
(1,2) + cϕΓ

1
(2,3))Ê3 = A∇E1E2

= ∇̂AE1 Ê2 = (−cϕΓ̂
1
(1,2) − sϕΓ̂

1
(2,3))Ê1 + (cϕΓ̂

1
(2,3) − sϕΓ̂

1
(1,2))Ê3,

from which

cϕ(−Γ1
(1,2) + Γ̂1

(1,2)) + sϕ(Γ
1
(2,3) − Γ̂1

(2,3)) = 0.
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Next we notice that differentiating the identity AE1 = cϕÊ1 + sϕÊ3 w.r.t.

ν(A�E2) q gives

A(�E2)E1 =
(
ν(A�E2) q ϕ

)
(−sϕÊ1 + cϕÊ3),

which simplifies to

−AE3 =
(
ν(A�E2) q ϕ

)
AE3,

and hence yields

ν(A�E2) q ϕ = −1, ∀q = (x, x̂;A) ∈ O′
1.

Thus, if (t, q) �→ Φ(t, q) is the flow of ν((.)�E2) in O′
2 with initial position at

t = 0 at q ∈ O′
1, the above implies that ϕ(Φ(t, q)) = ϕ(q) + t for all t such

that |t| is small enough. Since sin and cos are linearly independent functions

on any non-empty open real interval, the above relation implies that

−Γ1
(1,2)(x) + Γ̂1

(1,2)(x̂) = 0, Γ1
(2,3)(x)− Γ̂1

(2,3)(x̂) = 0,

which establishes the claim.

We may now finish the proof of the proposition. Indeed, if Γ1
(2,3) �= 0 on U ,

Proposition C.17 implies that Γ1
(2,3) =: β is constant and Γ1

(1,2) = 0 on U .

If x̂ belongs to the open subset π
Q,M̂

(O′
1) of M̂ , there is a q = (x, x̂;A) ∈ O′

1

where (x, x̂) ∈ U × Û , by the definition of O′
1. The above implies

Γ̂1
(1,2)(x̂) = Γ1

(1,2)(x) = 0, Γ̂1
(2,3)(x̂) = Γ1

(2,3)(x) = β.

Thus shrinking Û if necessary, this shows that Γ̂1
(1,2) vanishes on Û and Γ̂1

(2,3)

is constant = β on Û . We conclude that (U, g U ) and (Û , ĝ
Û
) both belong

to the class Mβ and we are in case (i).

Similarly, if Γ1
(2,3) = 0 on U , the above argument implies that, after taking

smaller Û , that Γ̂1
(2,3) = 0 on Û . Proposition C.17 implies that there is, taking

smaller U, Û if needed, open interval I = Î ⊂ R, smooth functions f, f̂ : I =

Î → R, 2-dimensional Riemannian manifolds (N, h), (N̂ , ĥ) and isometries

F : (I ×N, hf ) → (U, g U ), F̂ : (Î × N̂ , ĥ
f̂
) → Û such that

f ′(r)
f(r)

= Γ1
(1,2)

(
F (r, y)

)
, ∀(r, y) ∈ I ×N,

f̂ ′( r̂ )
f̂( r̂ )

= Γ̂1
(1,2)

(
F̂ ( r̂, ŷ )

)
, ∀( r̂, ŷ ) ∈ Î × N̂ .
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Clearly we may assume that 0 ∈ I = Î and F (0, y1) = x1, F̂ (0, ŷ1) = x̂1

for some y1 ∈ N , ŷ1 ∈ N̂ . Since t �→ (t, y1) and t �→ (t, ŷ1) are geodesics in

(I ×N, hf ), (Î × N̂ , ĥ
f̂
), respectively, γ(t) := F (t, y1) and γ̂(t) = F̂ (t, ŷ1) are

geodesics on M and M̂ . In addition,

γ̂ ′(0) = Ê2 x̂1
= A1E2 x1

= A1γ
′(0),

so γ̂(t) = γ̂DR
(γ, q1)(t) for all t. This means that(

F (t, y1), F̂ (t, ŷ1)
)
=
(
γ(t), γ̂(t)

) ∈ πQ(O
′
1),

and therefore

f ′(t)
f(t)

= Γ1
(1,2)

(
F (t, y1)

)
= Γ̂1

(1,2)

(
F̂ (t, ŷ1)

)
=

f̂ ′(t)
f̂(t)

,

for all t ∈ I = Î. We then belong to case (ii) and the proof of the proposition

is concluded.

We have studied the case where q belongs to O1 ∪ O2. As for the points

of O0, one uses Corollary 4.16 and Remark 4.17 to conclude that for every

q0 = (x0, x̂0;A0) ∈ O0, there are open neighborhoods U � x0 and Û � x̂0 such

that (U, g U ) and (Û , ĝ
Û
) are locally isometric. With the choice of the set O

as the union of O0 ∪O◦
1 ∪O2, (where O◦

1 was introduced in Proposition 5.27),

one concludes the proof of Theorem 5.1.

5.3. Proof of Theorem 5.3

Only items (b) and (c) are addressed and they are treated in separate sub-

sections.

5.3.1. Case where both manifolds are of class Mβ. — Consider two

manifolds (M, g) and (M̂ , ĝ) of class Mβ , β ≥ 0 and oriented orthonormal

frames E1, E2, E3 and Ê1, Ê2, Ê3 which are adapted frames for of (M, g)

and (M̂ , ĝ) respectively. We will prove that in this situation, the rolling prob-

lem is not completely controllable.

We define on Q two subsets

Q0 : =
{
q = (x, x̂;A) ∈ Q | AE2 �= ±Ê2

}
,

Q1 : =
{
q = (x, x̂;A) ∈ Q | AE2 = ±Ê2

}
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



90 CHAPTER 5. ROLLING PROBLEM (R) IN 3D

Proposition 5.28. — Let (M, g), (M̂ , ĝ) be of class Mβ for β ∈ R. Then for

any q0 = (x0, x̂0;A0) ∈ Q1 one has ODR
(q0) ⊂ Q1. Moreover, Q1 is a closed

7-dimensional submanifold of Q and hence in particular dimODR
(q0) ≤ 7.

Proof. — Define

h1, h2 : Q −→ R, h1(q) = ĝ(AE1, Ê2), h2(q) = ĝ(AE3, Ê2),

when q = (x, x̂;A) ∈ Q. Set h = (h1, h2) : Q → R
2, then

Q1 = h−1(0).

We will first show that h is regular at the points of Q1, which then implies

that Q1 is a closed submanifold of Q of codimension 2 i.e., dimQ1 = 7 as

claimed. Before proceeding, we divide Q1 into two disjoint subsets

Q+
1 =

{
q = (x, x̂;A) ∈ Q | AE2 = +Ê2

}
,

Q−
1 =

{
q = (x, x̂;A) ∈ Q | AE2 = −Ê2

}
,

whence Q1 = Q+
1 ∪ Q−

1 . These are the components of Q1 and we prove

the claims only for Q+
1 , the considerations for Q−

1 being completely similar.

First, since for every q = (x, x̂;A) ∈ Q+
1 one has AE2 = Ê2, it follows that

AE1, AE3 ∈ Ê⊥
2 and hence there is a smooth φ : Q+

1 → R such that

AE1 = cos(φ)Ê1 + sin(φ)Ê3 =: X̂A,

AE3 = − sin(φ)Ê1 + cos(φ)Ê3 =: ẐA.

In the sequel, we set

cφ = cos
(
φ(q)

)
and sφ = sin

(
φ(q)

)
.

For q = (x, x̂;A) ∈ Q+
1 , one has

ν(A�E3) q h1 = ĝ
(
A(�E3)E1, Ê2

)
= ĝ(AE2, Ê2) = 1,

ν(A�E1) q h1 = ĝ
(
A(�E1)E1, Ê2

)
= 0,

ν(A�E3) q h2 = ĝ
(
A(�E3)E3, Ê2

)
= 0,

ν(A�E1) q h2 = ĝ
(
A(�E1)E3, Ê2

)
= − ĝ(AE2, Ê2) = −1,

which shows that indeed h is regular on Q+
1 . We next show that the vectors

LR(E1) q ,LR(E2) q ,LR(E3) q are all tangent to Q+
1 and hence to Q1. This

is equivalent to the fact that LR(Ei) q h = 0 for i = 1, 2, 3. We compute for
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q = (x, x̂;A) ∈ Q+
1 , recalling that AE1 = X̂A, AE2 = Ê2, AE3 = ẐA,

LR(E1) q h1 = ĝ(A∇E1E1, Ê2) + ĝ(AE1, ∇̂X̂A
Ê2)

= −Γ1
(3,1) ĝ(AE3, Ê2) + ĝ(X̂A, βcφÊ3 − βsφÊ1)

= −Γ1
(3,1) ĝ(ẐA, Ê2) + ĝ(X̂A, βẐA) = 0,

LR(E1) q h2 = ĝ(A∇E1E3, Ê2) + ĝ(AE3, ∇̂X̂A
Ê2)

= ĝ(A(Γ1
(3,1)E1 − βE2), Ê2) + ĝ(ẐA, βẐA)

= ĝ(Γ1
(3,1)X̂A − βÊ2, Ê2) + β = 0,

LR(E2) q h1 = ĝ(A∇E2E1, Ê2) + ĝ(AE1, ∇̂Ê2
Ê2)

= −Γ2
(3,1) ĝ(ẐA, Ê2) + 0 = 0,

LR(E2) q h2 = ĝ(A∇E2E3, Ê2) + ĝ(AE3, ∇̂Ê2
Ê2)

= Γ2
(3,1) ĝ(X̂A, Ê2) + 0 = 0,

LR(E3) q h1 = ĝ(A∇E3E1, Ê2) + ĝ(AE1, ∇̂ẐA
Ê2)

= ĝ
(
A(βE2 − Γ3

(3,1)E3), Ê2

)
+ ĝ(X̂A,−βsφÊ3 − βcφÊ1)

= ĝ(βÊ2 − Γ3
(3,1)ẐA), Ê2)− β ĝ(X̂A, X̂A) = β − β = 0,

LR(E3) q h2 = ĝ(A∇E3E3, Ê2) + ĝ(AE3, ∇̂ẐA
Ê2)

= Γ3
(3,1) ĝ(AE1, Ê2) + ĝ(ẐA,−βX̂A)

= Γ3
(3,1) ĝ(X̂A, Ê2) + 0 = 0.

Thus LR(E1) q ,LR(E2) q ,LR(E3) q and hence DR are tangent to Q+
1 , which

implies that any orbit ODR
(q) through a point q ∈ Q+

1 , is also a subset of Q+
1 .

The same observation obviously holds for Q−
1 and therefore the proof is com-

plete.

Next we will show that if (M, g) and (M̂ , ĝ) are of class Mβ with the same

β ∈ R, then the rolling problem of M against M̂ is not controllable. We begin

by completing the proposition in the sense that we show that the orbit can be

of dimension exactly 7, if (M, g), (M̂ , ĝ) are not locally isometric.

Proposition 5.29. — Let (M, g) and (M̂ , ĝ) be Riemannian manifolds of

class Mβ, β �= 0, and let q0 = (x0, x̂0;A0) ∈ Q1. Then if ODR
(q0) is not an

integral manifold of DR, one has dimODR
(q0) = 7.
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Proof. — Without loss of generality, we assume that A0E2 x0
= Ê2 x̂0

.

Then Proposition 5.28 and continuity imply that AE2 x = Ê2 x̂ for all

q = (x, x̂;A) ∈ ODR
(q0) and hence that AE1 x , AE3 x ∈ span{Ê1 x̂ , Ê3 x̂ }.

This combined with Lemma C.8 implies

R̃olq(�E1) = 0, R̃olq(�E2) =
(−K2(x) + K̂ 2(x̂)

)
(�E2), R̃olq(�E3) = 0,

for q = (x, x̂;A) ∈ ODR
(q0), where −K2(x),−K̂ 2(x̂) are eigenvalues of R x ,

R̂ x̂ corresponding to eigenvectors �E2 x , �̂ Ê2 x̂ , respectively. Since ODR
(q0)

is not an integral manifold of DR, there is a point q1 = (x1, x̂1;A1) ∈ ODR
(q0)

such that −K2(x1)+ K̂ 2(x̂1) �= 0 (see Corollary 4.16 and Remark 4.17). Then

there are open neighborhoods U and Û of x1 and x̂1 in M and M̂ , respectively,

such that −K2(x) + K̂ 2(x̂) �= 0 for all x ∈ U, x̂ ∈ Û . Define

O := π−1
Q (U × Û ) ∩ ODR

(q0),

which is an open subset of ODR
(q0) containing q0. Because for all q =

(x, x̂;A) ∈ O one has

ν
(
Rolq(�E2)

)
q ∈ T q ODR

(q0) and −K2(x) + K̂ 2(x̂) �= 0,

it follows that

ν(A�E2) q ∈ T q ODR
(q0), ∀q = (x, x̂;A) ∈ O.

Moreover, Γ1
(1,2) = 0 and Γ1

(2,3) = β is constant and hence one may use Propo-

sition C.20, case (i), to conclude that the vector fields defined by

L1 q = LNS(E1) q − βν(A�E1) q ,

L2 q = βLNS(E2) q ,

L3 q = LNS(E3) q − βν(A�E2) q ,

are tangent to the orbit ODR
(q0). Therefore the linearly independent vectors

LR(E1) q ,LR(E2) q ,LR(E3) q , ν(A�E2) q , L1 q , L2 q , L3 q ,

are tangent to ODR
(q0) for all q ∈ O, which implies that dimODR

(q0) ≥ 7.

By Proposition 5.28, we conclude that dimODR
(q0) = 7.

We are left to study the case of an DR-orbit passing through some q0 ∈ Q0.

Proposition 5.30. — Let (M, g) and (M̂ , ĝ) be two Riemannian manifolds

of class Mβ, β �= 0, and let q0 = (x0, x̂0;A0) ∈ Q0. Write

M◦ := πQ,M

(ODR
(q0)
)
, M̂ ◦ := π

Q,M̂

(ODR
(q0)
)
,

which are open connected subsets of M , M̂ . Then we have:
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(i) If only one of (M◦, g) or (M̂ ◦, ĝ) has constant curvature, then

dimODR
(q0) = 7.

(ii) Otherwise dimODR
(q0) = 8.

Proof. — As before, we let E1, E2, E3 and Ê1, Ê2, Ê3 to be some adapted

frames of (M, g) and (M̂ , ĝ) respectively. We will not fix the choice of q0 in

Q0 (and hence do not define M◦, M̂ ◦) until the last half of the proof (where

we introduce the sets M0,M1, M̂ 0, M̂ 1 below). Notice that Proposition 5.28

implies that ODR
(q0) ⊂ Q0, for every q0 ∈ Q0.

The fact that AE2 x �= ±Ê2 x̂ for q = (x, x̂;A) ∈ Q0 is equivalent to the

fact that the intersection (AE⊥
2 x ) ∩ Ê⊥

2 x̂ is non-trivial for all q = (x, x̂;A)

in Q0. Therefore, for a small enough open neighborhood Õ of q0 inside Q0,

we may find a smooth functions θ, θ̂ : Õ → R such that this intersection is

spanned by AZA = ẐA, where

ZA : = − sin
(
θ(q)

)
E1 x + cos

(
θ(q)

)
E3 x ,

ẐA : = − sin
(
θ̂(q)

)
Ê1 x̂ + cos

(
θ̂(q)

)
Ê3 x̂ .

We also define

XA : = cos
(
θ(q)

)
E1 x + sin

(
θ(q)

)
E3 x ,

X̂A : = cos
(
θ̂(q)

)
Ê1 x̂ + sin

(
θ̂(q)

)
Ê3 x̂ .

To unburden the formulas, we set

sτ := sin
(
τ(q)

)
and cτ := cos

(
τ(q)

)
if τ : Õ → R is some function and the point q ∈ Õ is clear from the context.

SinceXA, E2 x , ZA (resp. X̂A, Ê2 x̂ , ẐA) form an orthonormal frame for every

q = (x, x̂;A) ∈ Õ and because A(Z⊥
A ) = Ẑ⊥

A , it follows that there is a smooth

φ : O′ → R such that

AXA = c
φ̂
X̂A + s

φ̂
Ê2 = c

φ̂
(c

θ̂
Ê1 + s

θ̂
Ê3) + s

φ̂
Ê2,

AE2 = −s
φ̂
X̂A + c

φ̂
Ê2 = −s

φ̂
(c

θ̂
Ê1 + s

θ̂
Ê3) + c

φ̂
Ê2,

AZA = ẐA.

In particular, for all q = (x, x̂;A) ∈ Õ , one has ĝ(AZA, Ê2) = 0. Note that

for all q = (x, x̂;A) ∈ Õ , since A�ZA = �̂ẐAA,

R̃olq(�ZA) = R(�ZA)−AT R̂( �̂ẐA)A = −K �ZA +KAT
�̂ẐAA = 0,
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and hence, since R̃olq : ∧2T xM → ∧2T xM is a symmetric map,

R̃olq(�XA) = −KRol
1 (q)�XA − α�E2,

R̃olq(�E2) = −α�XA −KRol
2 (q)�E2,

for some smooth real-valued functions KRol
1 ,KRol

2 , α defined on Õ .

We begin by considering the smooth 5-dimensional distribution Δ on the

open subset Õ of Q0 spanned by

LR(E1) q ,LR(E2) q ,LR(E3) q , ν(A�E2) q , ν(A�XA) q .

What will be shown is that Lie(Δ) spans at every point q ∈ O a smooth

distribution Lie(Δ) q of dimension 8 which, by construction, is involutive. We

consider VFk
DR

,VFk
Δ,Lie(Δ) as C∞(Õ)-modules. Since XA = cθE1 + sθE3, in

order to compute brackets of the first 4 vector fields above against ν(A�XA) q ,

we need to know some derivatives of θ. We begin by computing the following.

LR(XA) q Z(.) = (−LR(XA) q θ + cθΓ
1
(3,1) + sθΓ

3
(3,1))XA − βE2,

LR(E2) q Z(.) = (−LR(E2) q θ + Γ2
(3,1))XA,

LR(ZA) q Z(.) = (−LR(ZA) q θ − sθΓ
1
(3,1) + cθΓ

3
(3,1))XA.

Differentiating ĝ(AZA, Ê2) = 0 with respect to LR(XA) q gives,

0 = ĝ
(
ALR(XA) q Z(.), Ŷ

)
+ ĝ(AZA, ∇̂AXA

Ê2)

= ĝ
(
A(−LR(XA) q θ + cθΓ

1
(3,1) + sθΓ

3
(3,1))XA − βE2

)
, Ê2)

+ ĝ(AZA, cφ̂c θ̂ βÊ3 − c
φ̂
s
θ̂
βÊ1)

= s
φ̂
(−LR(XA) q θ + cθΓ

1
(3,1) + sθΓ

3
(3,1))− βc

φ̂
+ c

φ̂
s2
θ̂
β + c

φ̂
c2
θ̂
β

= s
φ̂
(−LR(XA) q θ + cθΓ

1
(3,1) + sθΓ

3
(3,1)).

Since s
φ̂
�= 0 (because otherwise AE2 = ±Ê2), we get

LR(XA) q θ = cθΓ
1
(3,1) + sθΓ

3
(3,1).

In a similar way, differentiating ĝ(AZA, Ê2) = 0 with respect to LR(ZA) q ,

LR(E2) q , one finds

LR(ZA) q θ = −sθΓ
1
(3,1) + cθΓ

3
(3,1),

LR(E2) q θ = −β + Γ2
(3,1).
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Finally, applying ν(A�E2) q on the equation ĝ(AZA, Ê2) = 0 gives,

0 = ĝ(ν(A�E2) q ((.)Z(.), Ê2)

= ĝ
(
A(�E2)ZA − (ν(A�E2) q θ

)
AXA, Ê2

)
=
(
1− ν(A�E2) q θ

)
ĝ(AXA, Ê2),

and since ĝ(AXA, Ê2) = s
φ̂
�= 0, ν(A�E2) q θ = 1. Using the definition of XA

and ZA, we may now summarize

LR(E1) q θ = Γ1
(3,1), LR(E2) q θ = −β + Γ2

(3,1),

LR(E3) q θ = Γ3
(3,1), ν(A�E2) q θ = 1.

By Proposition C.20 and the fact that β �= 0, we see that VF2
Δ contains the

vector fields given by

L1 q = LNS(E1) q − βν(A�E1) q ,

L̃2 q = LNS(E2) q ,

L3 q = LNS(E3) q − βν(A�E3) q ,

i.e., L̃2 =
1
βL2. Computing[

LR(E1), ν((.)�X(.))
]

q = −sθLR(E2) q + sθL̃2 q − sθβν(A�E2) q ,[
LR(E2), ν((.)�X(.))

]
q = −LR(ZA) q − sθL1 q + cθL3 q ,[

LR(E3), ν((.)�X(.))
]

q = cθLR(E2) q − cθL̃2 q − cθβν(A�E2) q ,[
ν((.)�E2), ν((.)�X(.))

]
q , = 0

and since one also has[
LR(E1),LR(E2)

]
q = LR

(
[E1, E2]

)
q −sθK

Rol
1 ν(A�XA) q −sθαν(A�E2) q ,[

LR(E2),LR(E3)
]

q = LR

(
[E2, E3]

)
q −cθK

Rol
1 ν(A�XA) q −cθαν(A�E2) q ,[

LR(E3),LR(E1)
]

q = LR

(
[E3, E1]

)
q − αν(A�XA) q −KRol

2 ν(A�E2) q ,

we see using in addition Proposition C.20, case (ii) (the first three Lie brackets

there), that VF2
Δ is generated by the following 8 linearly independent vector

fields defined on Õ by

LR(E1) q ,LR(E2) q ,LR(E3) q , ν(A�E2) q , ν(A�XA) q , L1 q , L̃2 q , L3 q .

We now proceed to show that Lie(Δ) = VF2
Δ. According to Proposition C.20

case (ii) and the previous computations, we know that all the brackets between
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LR(E1), LR(E2), LR(E3), ν((.)�E2) and L1, L3 and also [L1, L3] belong to

VF2
Δ, so we are left to compute the bracket of ν((.)�X(.)), L̃2 against L1, L3 and

also L̃2 against LR(E1) q ,LR(E2) q ,LR(E3) q , ν(A�E2) q , ν((.)�X(.)) q . To

do that, we need to know more derivatives of θ. Since[
LR(E1), ν

(
(.)�E2

)]
= LR(E3) q − L3 q ,

we get

L3 q θ = LR(E3) q θ − LR(E1) q

(
ν((.)�E2)θ︸ ︷︷ ︸

=1

)
+ ν(A�E2) q

(
LR(E1)θ︸ ︷︷ ︸
=Γ1

(3,1)

)
= Γ3

(3,1),

and similarly, by using [LR(E3), ν((.)�E2)] = −LR(E1) q + L1 q , one gets

L1 q θ = Γ1
(3,1). On the other hand,

LNS(E2) q Z(.) =
(− LNS(E2) q θ + Γ2

(3,1)

)
XA,

and to compute L̃2 q θ = LNS(E2) q θ, operate by LNS(E2) q onto equation

ĝ(AZA, Ê2) = 0 to get L̃2 q θ = Γ2
(3,1). With these derivatives of θ being

available, we easily see that[
L1, ν((.)�X(.))

]
q = 0,[

L1, L̃2

]
q = (Γ2

(3,1) + β)L3 q ,[
L3, ν((.)�X(.))

]
q = 0,[

L3, L̃2

]
q = −(Γ2

(3,1) + β)L1 q ,[
LR(E1), L̃2

]
q = βL3 q − LR(∇E2E1) q ,[

LR(E2), L̃2

]
q = 0,[

LR(E3), L̃2

]
q = −βL1 q − LR(∇E2E3) q ,[

ν((.)�E2), L̃2

]
q = 0,[

ν((.)�X(.)), L̃2

]
q = 0.

Hence we have proved that VF2
Δ is involutive and hence

Lie(Δ) = VF2
Δ.

There being eight linearly independent generators for Lie(Δ) = VF2
Δ, we con-

clude that the distribution D spanned pointwise on Õ by Lie(Δ) is integrable
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by Frobenius theorem. The choice of q0 ∈ Q0 was arbitrary and we thus can

build an 8-dimensional smooth involutive distribution D by the above con-

struction on the whole Q0. Since DR ⊂ Δ ⊂ D, we have ODR
(q0) ⊂ OD(q0)

for all q0 ∈ Q0 and thus dimODR
(q0) ≤ 8.

We will show when the equality holds here and show when dimODR
(q0) = 7.

Define

M0 =
{
x ∈ M | β2 �= K2(x)

}
,

M1 =
{
x ∈ M | ∃ open V � x s.t. ∀x′ ∈ V, β2 = K2(x

′)
}
,

M̂ 0 =
{
x̂ ∈ M̂ | β2 �= K̂ 2(x̂)

}
,

M̂ 1 =
{
x̂ ∈ M̂ | ∃ open V̂ � x̂ s.t. ∀x̂′ ∈ V̂ , β2 = K̂ 2(x̂

′)
}
,

and notice that M0 ∪ M1 (resp. M̂ 0 ∪ M̂ 1) is an open dense subset of M

(resp. M̂ ). At this point we also fix q0 ∈ Q0 and write

M◦ = πQ,M

(ODR
(q0)
)
, M̂ ◦ = π

Q,M̂

(ODR
(q0)
)

as in the statement of this proposition. Let

q1 = (x1, x̂1;A1) ∈ π−1
Q (M0 × M̂ 0) ∩Q0.

Take an open neighborhood Õ of q1 in Q0 as above (now for q1 instead of q0

which we fixed) such that πQ(Õ) ⊂ M0× M̂ 0, and introduce on Õ the vectors

XA, ZA, X̂A, ẐA along with the angles θ, θ̂, φ̂, again as above. For q ∈ Õ ,

one has(
R̃olq(�XA)

R̃olq(�E2)

)
=

(
s2
φ̂
(−β2 + K̂ 2) c

φ̂
s
φ̂
(−β2 + K̂ 2)

(−β2 + K̂ 2)sφ̂cφ̂ −K2 + s2
φ̂
β2 + c2

φ̂
K̂ 2

)(
�XA

�E2

)
,

R̃olq(�ZA) = 0.

The determinant d(q) of the above matrix is equal to

d(q) = −s2
φ̂
(−K2 + β2)(−K̂ 2 + β2),

so d(q) �= 0 since q ∈ Õ ⊂ π−1
Q (M0 × M̂ 0) ∩ Q0. Since ν(Rol(�E2)(A)) q1

belongs to T q1
ODR

(q1), we obtain that

ν(A1�E2) q1
∈ T q1

ODR
(q1).

If q1 = (x1, x̂1;A1) ∈ π−1
Q (M0 × M̂ 0) ∩ Q0, then one can take a sequence

q′n = (x′n, x̂′
n;A

′
n) ∈ ODR

(q1) such that q′n → q1 while x̂′
n ∈ M̂ 0. Since M0

and Q0 are open, we have for large enough n that q′n ∈ π−1
Q (M0 × M̂ 0) ∩Q0,
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hence ν(A′
n�E2) q′n

∈ T q′n
ODR

(q1) and by taking the limit as n → ∞, we

have ν(A1�E2) q1
∈ T q1

ODR
(q1). Suppose next

q1 = (x1, x̂1;A1) ∈ π−1
Q (M0 × M̂ 1) ∩Q0.

Then R̃olq1(�E1) = R̃olq1(�E3) = 0, R̃olq1(�E2) = (−K2(x1) + β2)�E2 with

K2(x1) �= β2 and hence ν(A�E2) q1
∈ T q1

ODR
(q1). Thus we have proven

that

ν(A�E2) q ∈ T q ODR
(q), ∀q ∈ Q0 ∩ π−1

Q (M0 × M̂ ).

Changing the roles of M and M̂ we also have

ν
(
( �̂ Ê2)A

)
q ∈ T q ODR

(q), ∀q ∈ Q0 ∩ π−1
Q (M × M̂ 0).

On Q, define two 3-dimensional distributions D, D̂ as follows, for q ∈ Q let

D̂ q be the span of

K̂ 1 q = LNS(AE1) q + βν(A�E1) q ,

K̂ 2 q = LNS(AE2) q ,

K̂ 3 q = LNS(AE3) q + βν(A�E3) q ,

and D q be the span of

K1 q = LNS(A
T Ê1) q − βν(( �̂ Ê1)A) q ,

K2 q = LNS(A
T Ê2) q ,

K3 q = LNS(A
T Ê3) q − βν(( �̂ Ê3)A) q .

We claim that for any q1 = (x1, x̂1;A1) ∈ Q and any smooth paths

γ : [0, 1] −→ M, γ̂ : [0, 1] −→ M̂

with γ(0) = x1, γ̂(0) = x̂1 there are unique curves Γ, Γ̂ : [0, 1] → Q of the same

regularity as γ, γ̂ such that Γ is tangent to D, Γ(0) = q1 and πQ,M (Γ(t)) = γ

and similarly Γ̂ is tangent to D̂, Γ̂(0) = q1 and π
Q,M̂

(Γ̂(t)) = γ̂ . The key

point here is that Γ, Γ̂ are defined on [0, 1] and not only on a smaller interval

[0, T ] with T ≤ 1. We write these curves as Γ = Γ(γ, q1) and Γ̂ = Γ̂(γ̂ , q1),

respectively. Notice that since (π
Q,M̂

)∗D = 0 and (πQ,M )∗D̂ = 0, one has

π
Q,M̂

(
Γ(γ, q1)(t)

)
= x̂1, πQ,M

(
Γ̂(γ̂ , q1)(t)

)
= x1, ∀t ∈ [0, 1].

We only prove the above claim forD since the proof for D̂ is similar. Unique-

ness and local existence are straightforward. Take some extension of γ to an

interval ] − ε, 1 + ε[ =: I and write Γ1 := Γ(γ, q1). Consider a trivialization
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(global since we assumed the frames Ei, Ê i, i = 1, 2, 3 to be global) of πQ
given by

Φ : Q −→ M × M̂ × SO(n), (x, x̂;A) �−→ (
x, x̂,M

F,F̂
(A)
)
,

where F = (E1, E2, E3), F̂ = (Ê1, Ê2, Ê3). For every (s, C) ∈ I × SO(n) one

has

Φ
(
Γ(γ(s+ ·),Φ−1(γ(s), x̂1;C))(t)

)
=
(
γ(s+ t), x̂1, B(s,C)(t)

)
,

where B(s,C)(t) ∈ SO(n) and t in an open interval containing 0. On I×SO(n),

define a vector field

X (s,C) :=
( ∂

∂t
, Ḃ(s,C)(0)

)
.

If Φ(Γ(γ, q1)(t)) = (γ(t), x̂1;C1(t)), then since

d

ds
Φ
(
Γ1(s)

)
=

d

dt 0
Φ
(
Γ(γ, q1)(t+ s)

)
=

d

dt 0
Φ
(
Γ(γ(s+ ·),Γ(γ, q1)(s))(t)

)
=

d

dt 0

(
γ(t+ s), x̂1, B(s,C1(s))(t)

)
=
(
γ̇(s), 0, (pr2)∗X (s,C1(s))

)
,

we see that s �→ (s, (pr3 ◦ Φ ◦ Γ1)(s)) = (s, C1(s)) is the integral curve of X
starting from (0, C1(0)). Conversely, if Λ1(t) = (t, C(t)) is the integral curve

of X starting from (0, C1(0)), then Γ̃1(t) := Φ−1(γ(t), x̂1, C(t)) gives an inte-

gral curve of D starting from q1 and πQ,M (Γ̃1(t)) = γ(t).

Hence the maximal positive interval of definition of Γ1 is the same as that

of the integral curve Λ1 of X starting from (0, C1). If it is of the form [0, t0[ for

some t0 < 1+ ε, then, because [0, 1]×SO(n) is a compact subset of I×SO(n),

there is a t1 ∈ [0, t0[ with Λ1(t1) /∈ [0, 1] × SO(n) i.e. t1 /∈ [0, 1] which is

only possible if t1 > 1, and thus t0 > 1. We have shown that the existence of

Γ1(t) = Γ(γ, q1)(t) is guaranteed on the whole interval [0, 1].

Since for all q ∈ Q0 ∩ π−1
Q (M0 × M̂ ), which is an open subset of Q, one has

ν(A�E2) q ∈ T q ODR
(q), it follows from Proposition C.20 that

L1 q = LNS(E1) q − βν(A�E1) q ,

L̃2 q = LNS(E2) q ,

L3 q = LNS(E3) q − βν(A�E3) q ,

are tangent to the orbit ODR
(q) and hence so are LR(E1) q − L1 q = K̂ 1 q ,

LR(E2) q − L̃2 = K̂ 2 q and LR(E3) q − L3 q = K̂ 3 q i.e.,

D̂ q ⊂ T q ODR
(q), ∀q ∈ Q0 ∩ π−1

Q (M0 × M̂ ).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



100 CHAPTER 5. ROLLING PROBLEM (R) IN 3D

A similar argument shows that

D q ⊂ T q ODR
(q), ∀q ∈ Q0 ∩ π−1

Q (M × M̂ 0).

Assume now that (M1 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅ and that M0 �= ∅. Choose

any q1 = (x1, x̂1;A1) ∈ ODR
(q0) with (x1, x̂1) ∈ M1 × M̂ 0 and take any curve

γ : [0, 1] → M with γ(0) = x1, γ(1) ∈ M0. Then since

π
Q,M̂

(
Γ(γ, q1)(t)

)
= x̂1,

we have πQ(Γ(γ, q1)(t)) ∈ M × M̂ 0 for all t ∈ [0, 1] and since also D q is

contained in T q ODR
(q0) for all q ∈ ODR

(q0) ∩ π−1
Q (M × M̂ 0), we have that

Γ(γ, q1)(t) ∈ ODR
(q0), ∀t ∈ [0, 1].

Indeed, suppose there is a 0 ≤ t < 1 with Γ(γ, q1)(t) /∈ ODR
(q0) and define

t1 = inf
{
t ∈ [0, 1] | Γ(γ, q1)(t) /∈ ODR

(q0)
}
.

Clearly t1 > 0. Because q2 := Γ(γ, q1)(t1) ∈ π−1
Q (M×M̂ 0), it follows that for |t|

small one has Γ(γ, q1)(t1+t) ∈ ODR
(q2), whence if t < 0 small, Γ(γ, q1)(t1+t) ∈

ODR
(q2) ∩ ODR

(q0), which means that q2 ∈ ODR
(q0) and thus for t ≥ 0 small

Γ(γ, q1)(t1 + t) ∈ ODR
(q0), a contradiction. Hence one has

πQ
(
Γ(γ, q1)(1)

) ∈ (M0 × M̂ 0) ∩ πQ
(ODR

(q0)
)
.

In other words we have the implication:

(M1 × M̂ 0) ∩ πQ
(ODR

(q0)
) �= ∅, M0 �= ∅

=⇒ (M0 × M̂ 0) ∩ πQ
(ODR

(q0)
) �= ∅.

By a similar argument, using D̂ instead of D, one has that

(M0 × M̂ 1) ∩ πQ
(ODR

(q0)
) �= ∅, M̂ 0 �= ∅

=⇒ (M0 × M̂ 0) ∩ πQ
(ODR

(q0)
) �= ∅.

Suppose now that there exists q1 = (x1, x̂1;A1) ∈ π−1
Q (M0×M̂ 0)∩ODR

(q0).

We already know that T q1
ODR

(q0) contains vectors

LR(E1) q1
,LR(E2) q1

,LR(E3) q1
,

ν(A�E2) q1
, ν(( �̂ Ê2)A) q1

,

L1 q1
, L̃2 q1

, L3 q1
,
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which are linearly independent since q1 ∈ (M0 × M̂ 0) ∩ πQ(ODR
(q0)). Indeed,

if one introduces XA, ZA and an angle φ as before, we have sin(φ(q1)) �= 0

as q1 ∈ Q0 and

ν
(
( �̂ Ê2)A1

)
q1

= ν
(
A1�(AT

1 Ê2)
)

q1

= sin
(
φ(q1)

)
ν(A1�XA1) q1

+ cos
(
φ(q1)

)
ν(A1�E2) q1

.

Therefore dimODR
(q0) ≥ 8 and since we have also shown that dimODR

(q0) ≤ 8,

we have that(
M0 × M̂ 0) ∩ πQ(ODR

(q0)
) �= ∅ =⇒ dimODR

(q0) = 8

Write Q◦ := π−1
Q (M◦ × M̂ ◦), which is an open subset of Q and clearly

ODR
(q0) ⊂ Q◦. To finish the proof, we proceed case by case.

(a) Suppose (M̂ ◦, ĝ) has constant curvature i.e. M̂ 0 ∩ M̂ ◦ = ∅. By as-

sumption then, (M◦, g) does not have constant curvature, which means that

M0 ∩M◦ �= ∅.

At every q = (x, x̂;A) ∈ Q◦, one has R̃olq(�E1) = R̃olq(�E3) = 0 and

R̃olq(�E2) = (−K2(x) + β2)�E2 and therefore[
LR(E1),LR(E2)

]
q = LR

(
[E1, E2]

)
q ,[

LR(E2),LR(E3)
]

q = LR

(
[E2, E3]

)
q ,[

LR(E3),LR(E1)
]

q = LR

(
[E3, E1]

)
q +

(−K2(x) + β2
)
ν(A�E2) q .

From these, Proposition C.20 case (ii) and from the brackets (as above)[
LR(E1), L̃2

]
q = βL3 q − LR(∇E2E1) q ,[

LR(E3), L̃2

]
q = −βL1 q − LR(∇E2E3) q ,[

LR(E2), L̃2

]
q = 0,[

ν((.)�E2), L̃2

]
q = 0,[

L1, L̃2

]
q = (Γ2

(3,1) + β)L3 q ,[
L3, L̃2

]
q = −(Γ2

(3,1) + β)L1 q ,

we see that the distribution D̃on Q◦ spanned by the seven linearly independent

vector fields

LR(E1), LR(E2), LR(E3), ν
(
(.)�E2

)
, L1, L̃2, L3,

with L1, L̃2, L3 as above, is involutive. Moreover D̃ contains DR Q◦ , which

implies ODR
(q0) = ODR Q◦ (q0) ⊂ O

D̃
(q0) and hence dimODR

(q0) ≤ 7.
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To show the equality here, notice that since M0 ∩ M◦ �= ∅, one has that

O := π−1
Q,M (M0)∩ODR

(q0) is an open non-empty subset of ODR
(q0). Moreover,

because K2(x) �= β2 on M0 ∩ M◦, we get that ν(A�E2) q ∈ T q ODR
(q0) for

all q ∈ O, from which one deduces by Proposition C.20, case (i) that D̃ q is

contained in T q ODR
(q0), which then implies dimODR

(q0) ≥ 7. This proves

one half of case (i) in the statement of this proposition.

b) If (M◦, g) has constant curvature, one proves as in case a), by simply

changing the roles of M and M̂ , that dimODR
(q0) = 7. This finishes the proof

of case (i) of this proposition.

For the last case, we assume that neither (M◦, g) nor (M̂ ◦, ĝ) have constant
curvature i.e. we have M◦ ∩M0 �= ∅ and M̂ ◦ ∩ M̂ 0 �= ∅.

c) Since M◦ ∩ M0 �= ∅, there is a q1 = (x1, x̂1;A1) ∈ ODR
(q0) such that

x1 ∈ M0. If x̂1 ∈ M̂ 0, we have (M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅ and which

implies, as we have shown, that dimODR
(q0) = 8.

Suppose then that x̂1 ∈ M̂ 1. Then one may choose a sequence q′n =

(x′n, x̂′
n;A

′
n) ∈ ODR

(q0) such that q′n → q1 and x̂′
n ∈ M̂ 1. Because M0 is

open, for n large enough one has (x′n, x̂′
n) ∈ (M0× M̂ 1)∩πQ(ODR

(q0)). Hence

(M0×M̂ 1)∩πQ(ODR
(q0)) �= ∅ and∅ �= M̂ ◦∩M̂ 0 ⊂ M̂ 0, which has been shown

to imply that (M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅ and again dimODR

(q0) = 8.

The proof is complete.

Remark 5.31. — One could adapt the proofs of Propositions 5.28, 5.29

and 5.30 to deal also with the case β = 0. For example, Proposition 5.28 as

formulated already is valid in this case, but the conclusion when β = 0 could

be strengthened to dimODR
(q0) ≤ 6. However, since a Riemannian manifold

of class M0 is also locally a Riemannian product, and hence locally a warped

product, we prefer to view this special case β = 0 as part of the subject

of Section 5.3.2.

5.3.2. Case where both manifolds are warped products. — Suppose

(M, g) = (I × N, hf ) and (M̂ , ĝ) = (Î × N̂ , ĥ
f̂
), where I, Î ⊂ R are open

intervals, (N, h) and (N̂ , ĥ) are connected, oriented 2-dimensional Riemannian

manifolds and the warping functions f, f̂ are smooth and positive everywhere.

We write ∂
∂r for the canonical, positively directed unit vector field on (R, s1)

and consider it as a vector field on (M, g) and (M̂ , ĝ) as is usual in direct

products. Notice that then ∂
∂r is a g-unit (resp. ĝ-unit) vector field on M (resp.
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M̂ ) which is orthogonal to T y N (resp. T ŷ N̂) for every (r, y) ∈ M (resp.

( r̂, ŷ ) ∈ N̂). We will prove that starting from any point q0 ∈ Q = Q(M, M̂ )

and if the warping functions f, f̂ satisfy extra conditions relative to each other,

then the orbitODR
(q0) is either 6- or 8-dimensional. The first case is formulated

in the following proposition.

Proposition 5.32. — Let (M, g) = (I × N, hf ), (M̂ , ĝ) = (Î × N̂ , ĥ
f̂
) be

warped products of dimension 3, with I, Î ⊂ R open intervals. Also, let q0 =

(x0, x̂0;A0) ∈ Q be such that if one writes x0 = (r0, y0), x̂0 = ( r̂0, ŷ0), then

A0
∂

∂r (r0,y0)
=

∂

∂r ( r̂0,y0)
(51)

holds and

f ′(t+ r0)

f(t+ r0)
=

f̂ ′(t+ r̂0)

f̂(t+ r̂0)
, ∀t ∈ (I − r0) ∩ (Î − r̂0).(52)

Then if ODR
(q0) is not an integral manifold of DR, one has dimODR

(q0) = 6.

Proof. — For convenience we write

κ(r) :=
f ′(r + r0)

f(r + r0)
=

f̂ ′(r + r̂0)

f̂(r + r̂0)
, r ∈ (I − r0) ∩ (Î − r̂0) =: J.

Let γ be a smooth curve in M defined on some interval containing 0 and such

that γ(0) = x0 and let (γ(t), γ̂(t);A(t)) = qDR
(γ, q0)(t) be the rolling curve

generated by γ starting at q0 and defined on some (possible smaller) maxi-

mal interval containing 0. Write γ(t) = (r(t), γ1(t)) and γ̂(t) = ( r̂(t), γ̂1(t))

corresponding to the direct products M = I×N and M̂ = Î× N̂ . Define also,

ζ(t) := r(t)− r0, S(t) : =
∂

∂r γ(t)
,

ζ̂(t) := r̂(t)− r̂0, Ŝ (t) : = A(t)−1 ∂

∂r γ̂(t)
,

which are vector fields on M along γ. Notice that

ζ̇(t) = ṙ(t) = g
(
γ̇(t),

∂

∂r γ(t)

)
= g
(
γ̇(t), S(t)

)
,

˙̂
ζ(t) = ˙̂r(t) = ĝ

(
˙̂γ(t),

∂

∂r γ̂(t)

)
= ĝ
(
A(t)γ̇(t),

∂

∂r γ̂(t)

)
= g
(
γ̇(t), Ŝ (t)

)
.
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By Proposition 35, Chapter 7, p. 206 in [35], we have

∇γ̇(t)
∂

∂r
=

f ′(r(t))
f(r(t))

(
γ̇(t)− ṙ(t)

∂

∂r γ(t)

)
,

= κ(ζ(t))
(
γ̇(t)− ζ̇(t)

∂

∂r γ(t)

)
,

∇̂ ˙̂γ(t)

∂

∂r
=

f̂ ′( r̂(t))
f̂( r̂(t))

(
˙̂γ(t)− ˙̂r(t)

∂

∂r γ̂(t)

)
,

= κ(ζ̂(t))
(
˙̂γ(t)− ˙̂

ζ(t)
∂

∂r γ̂(t)

)
,

i.e.,

∇γ̇(t)S(t) = κ
(
ζ(t)
)(
γ̇(t)− ζ̇(t)S(t)

)
,

∇γ̇(t)Ŝ (t) = A(t)−1∇̂ ˙̂γ(t)

∂

∂r
= κ
(
ζ̂(t)
)(

A(t)−1 ˙̂γ(t)− ˙̂
ζ(t)A(t)−1 ∂

∂r γ̂(t)

)
,

= κ
(
ζ̂(t)
)(
γ̇(t)− ˙̂

ζ(t)Ŝ (t)
)
.

Let ρ ∈ C∞(R) and t �→ X(t) be a vector field along γ and consider a first

order ODE ⎧⎨⎩ρ̇(t) = g
(
γ̇(t), X(t)

)
,

∇γ̇(t)X = κ
(
ρ(t)
)(
γ̇(t)− ρ̇(t)X(t)

)
.

By the above we see that the pairs (ρ,X) = (ζ, S) and (ρ,X) = (ζ̂ , Ŝ )

both solve this ODE. Moreover, by assumption ζ(0) = 0 = ζ̂(0) and Ŝ (0) =

A(0)−1 ∂
∂r x̂0

= ∂
∂r x0

= S(0) so these pairs have the same initial conditions

and hence (ζ, S) = (ζ̂ , Ŝ ) on the interval where they are both defined. Then,

r(t)− r0 = r̂(t)− r̂0, A(t)
∂

∂r γ(t)
=

∂

∂r γ̂(t)
,

for all t in the interval where the rolling curve qDR
(γ, q0) is defined. Define

Q∗
+ =

{
q = (x, x̂;A) =

(
(r, y), ( r̂, ŷ );A

) ∈ Q |
r − r0 = r̂ − r̂0, A

∂

∂r x
=

∂

∂r x̂

}
.

By the above considerations, as long as the curve is defined,

qDR
(γ, q0)(t) ∈ Q∗

+,
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which implies that ODR
(q0) ⊂ Q∗

+. We show that Q∗
+ is a 6-dimensional sub-

manifold of Q. Let

q = (x, x̂;A) = ((r, y), ( r̂, ŷ );A) ∈ Q

such that A ∂
∂r x = ∂

∂r x̂ . Then for all α ∈ R, X ′ ∈ T y N one has

‖X ′‖2g + α2 =
∥∥∥X ′ + α

∂

∂r x

∥∥∥2
g
=
∥∥∥A(X ′ + α

∂

∂r x

)∥∥∥2
ĝ

= ‖AX ′‖2ĝ + 2 ĝ
(
AX ′, α

∂

∂r x̂

)
+ α2.

This implies that for all X ′ ∈ T y N

‖X ′‖2g = ‖AX ′‖2ĝ and ĝ
(
AX ′,

∂

∂r x̂

)
= 0.

Thus AT y N ⊥ ∂
∂r x̂ and also A ∂

∂r x ⊥ T ŷ N̂ by assumption. Define

Q+
1 =

{
q = (x, x̂;A) =

(
(r, y), ( r̂, ŷ

)
;A) ∈ Q | A ∂

∂r x
=

∂

∂r x̂

}
,

and let q1 = (x1, x̂1;A1) = ((r1, y1), ( r̂1, ŷ1);A1) ∈ Q+
1 . Choose a local ori-

ented h- and ĥ-orthonormal frames X ′
1, X

′
2 in N around y1 and X̂ ′

1, X̂
′
2 in N̂

around ŷ1. Let the corresponding domains be U ′ and Û ′. Writing E1 = ∂
∂r ,

E2 = 1
fX

′
1, E3 = 1

fX
′
2 on M and Ê1 = ∂

∂r , Ê2 = 1

f̂
X̂ ′

1, Ê3 = 1

f̂
X̂ ′

2 on M̂ , we

see that E1, E2, E3 and Ê1, Ê2, Ê3 are g- and ĝ-orthonormal oriented frames

and we define

Ψ : V := π−1
Q

(
(R× U ′)× (R× Û ′)

) −→ SO(3),

Ψ(x, x̂;A) =
[
( ĝ(AEi, Ê j))

j
i

]
.

This is a chart of Q and clearly

Ψ(V ∩Q+
1 ) = (R× U ′)× (R× Û ′)×

{( 1 0

0 A′
)
| A′ ∈ SO(2)

}
.

This shows that Q+
1 ∩V is a 7-dimensional submanifold of Q and hence Q+

1 is

a closed 7-dimensional submanifold of Q. Defining

F : Q+
1 −→ R, F

(
(r, y), ( r̂, ŷ

)
;A) = (r − r0)− ( r̂ − r̂0),

we see that Q∗
+ = F−1(0). Once we show that F is a submersion, it follows

that Q∗
+ is a closed codimension 1 submanifold of Q+

1 (i.e. dimQ∗
+ = 7−1 = 6)

and thus it is a 6-dimensional submanifold of Q. Indeed, let q = (x, x̂;A) ∈ Q+
1

and let γ(t) be an integral curve of ∂
∂r starting from x and γ̂(t) = x̂ a constant

path. Let q(t) = (γ(t), γ̂(t);A(t)) be the DNS-lift of (γ, γ̂) starting from q.
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Then γ̇(t) = ∂
∂r γ(t) ,

˙̂γ(t) = 0 and since ∂
∂r is a unit geodesic field on M , one

has

d

dt
ĝ
(
A(t)

∂

∂r γ(t)
,
∂

∂r γ̂(t)

)
= ĝ
(
A(t)∇γ̇(t)

∂

∂r
,
∂

∂r γ̂(t)

)
+ ĝ
(
A(t)

∂

∂r
, ∇̂0

∂

∂r γ̂(t)

)
= 0.

This shows that q(t) ∈ Q+
1 for all t and in particular, LNS(

∂
∂r x ) q = q̇(0)

belongs to T q Q
+
1 . Then if one writes

γ(t) =
(
r(t), γ1(t)

)
, γ̂(t) = x̂ = ( r̂, ŷ ) = constant,

one has ṙ(t) = 1 and therefore

d

dt 0
F (q(t)) =

d

dt 0

(
(r(t)− r0)− ( r̂ − r̂0)

)
= 1,

i.e., F∗LNS(
∂
∂r x ) q = 1, which shows that F is a submersion. (Alternatively,

one could have uses the charts Ψ as above to prove this fact.) Since we have

shown that dimQ∗
+ = 6 and ODR

(q0) ⊂ Q∗
+, it follows that ODR

(q0) ≤ 6.

To prove the equality here, we will use the assumption that ODR
(q0) is not

an integral manifold of DR. Take local frames Ei, Ê i as above near x1 and x̂1,

where

q1 = (x1, x̂1;A1) =
(
(r1, y1), ( r̂1, ŷ1);A1

) ∈ ODR
(q0).

The assumption that f ′(t+ r0)/f(t+ r0) = f̂ ′(t+ r̂0)/f̂(t+ r̂0) for all t ∈ J

easily imply that

f ′′(t+ r0)

f(t+ r0)
=

f̂ ′′(t+ r̂0)

f̂(t+ r̂0)
=: κ2(t)

for all t ∈ J as well. Respect to the frames �E1, �E2, �E3 and �̂ Ê1, �̂ Ê2, �̂E3

one has (see Proposition 42, Chapter 7, p. 210 of [35])

R (r,y) =

⎛⎝−σ(y)/f(r)2 + κ(r − r0)
2 0 0

0 κ2(r − r0) 0

0 0 κ2(r − r0)

⎞⎠ ,

R̂ ( r̂, ŷ ) =

⎛⎝−σ̂( ŷ )/f̂( r̂ )2 + κ( r̂ − r̂0)
2 0 0

0 κ2( r̂ − r̂0) 0

0 0 κ2( r̂ − r̂0)

⎞⎠ ,
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where σ(y) and σ̂( ŷ ) are the unique sectional curvatures of (N, h) and (N̂ , ĥ)

at points y, ŷ. Write

−K2(r, y) = − σ(y)

f(r)2
+ κ(r − r0), −K̂ 2( r̂, ŷ ) = − σ̂( ŷ )

f̂( r̂ )2
+ κ( r̂ − r̂0).

Since A1
∂
∂r x1

= ∂
∂r x̂1

, we already know that A1E2 x1
and A1E3 x1

are in

the plane span
{
Ê2 x̂1

, Ê3 x̂1

}
. This and the fact that r1−r0 = r̂1− r̂0 imply

that

R̃olq1 =

⎛⎝−K2(x1) + K̂ 2(x̂1) 0 0

0 0 0

0 0 0

⎞⎠ ,

w.r.t. �E1 x1
, �E2 x1

, �E3 x1
. Since ODR

(q0) is not an integral manifold of DR,

it follows from Corollary 4.16 and Remark 4.17 that there is a q1 ∈ ODR
(q0),

where R̃olq1 �= 0. Hence there is a neighborhood O of q1 in ODR
(q0) such that

R̃olq �= 0. With respect to local frames Ei, Ê i as above (taking O smaller if

necessary), this means that K2(x) �= K̂ 2(x̂) for all q = (x, x̂;A) ∈ O and since

ν
(
Rolq(�E1)

)
q =

(−K2(x) + K̂ 2(x̂)
)
ν(A�E1) q ,

we have

ν(A�E1) q ∈ T q ODR
(q0), ∀q ∈ O.

Hence applying Proposition C.20 case (i) to the frame F1 := E2, F2 := E1,

F3 := E3 implies that the six linearly independent vectors (notice that we have

Γ1
(2,3) = 0 in that proposition)

LR(F1) q ,LR(F2) q ,LR(F3) q , ν(A�F2) q , L1 q , L3 q ,

are tangent to ODR
(q0) at q ∈ O, where

L1 = LNS(F1) q − Γ1
(1,2)(x)ν(A�F3) q ,

L3 = LNS(F3) q + Γ1
(1,2)(x)ν(A�F1) q ,

with Γ1
(1,2)(x) = g(∇F1F1F2) = g(∇E2E2, E1) = −f ′(r)/f(r) if x = (r, y).

Hence dimODR
(q0) ≥ 6.

Remark 5.33. — The condition Rolq1 �= 0 in the proof of the previous propo-

sition was equivalent to the condition K2(x1) �= K̂ 2(x̂1) which again means

that if x1 = (r1, y1), x̂1 = (x̂1, ŷ1),

σ(y1)

f(r1)2
�= σ̂( ŷ1)

f̂(r1)2
,
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where σ(y) (resp. σ̂( ŷ )) is the sectional curvature of (N, h) at y ∈ N (resp. of

(N̂ , ĥ) at ŷ ∈ N̂).

Remark 5.34. — To show that dimODR
(q0) ≤ 6 under the assumptions of

the proposition, we showed that if q = (x, x̂;A) ∈ Q∗
+, then qDR

(γ, q)(t) ∈ Q∗
+

for any path γ starting from x. For this we basically used the uniqueness of

the solutions of an ODE. Alternatively, one could have proceeded exactly in

the same way as in the proof of Proposition 5.28. To this end, one defines as

there h1, h2 : Q → R and also F : Q → R as above as

h1(q) = ĝ(AE1, Ê2), h2(q) = ĝ(AE3, Ê2), F (q) = (r − r0)− ( r̂ − r̂0).

Write H = (h1, h2, F ) : Q → R
3, Q∗ := H−1(0) and Q = Q∗

+ ∪Q∗− where Q∗
+

(resp. Q∗−) consists of all q = (x, x̂;A) ∈ Q∗ where A ∂
∂r = + ∂

∂r (respec-

tively A ∂
∂r = − ∂

∂r ). Then, for all q ∈ Q∗
+,

H∗ν(A�E1) q = (0,−1, 0), H∗ν(A�E3) q = (1, 0, 0),

H∗LNS(
∂

∂r
, 0) q = (0, 0, 1),

which shows (again) that Q∗
+ is a 6-dimensional closed submanifold of Q

(and so is Q∗) while w.r.t. orthonormal bases E1, E2, E3, Ê1, Ê2, Ê3, where

E2 =
∂
∂r , Ê2 =

∂
∂r , one has for q = (x, x̂;A) ∈ Q∗

+, since x = (r, y), x̂ = ( r̂, ŷ )

with r − r0 = r̂ − r̂0 =: t,

LR(E1) q h1 = ĝ
(
A(Γ1

(1,2)E2 − Γ1
(3,1)E3), Ê2

)
+ ĝ(AE1,−Γ̂1

(1,2)AE1)

= −f ′(r)
f(r)

+
f̂ ′( r̂ )
f̂( r̂ )

= −f ′(t+ r0)

f(t+ r0)
+

f̂ ′(t+ r̂0)

f̂(t+ r̂0)
= 0,

LR(E1) q h2 = Γ1
(3,1) ĝ(AE1, Ê2) + ĝ(AE3,−Γ̂1

(1,2)AE1) = 0,

LR(E2) q h1 = −Γ2
(3,1) ĝ(AE3, Ê2) = 0,

LR(E2) q h2 = Γ2
(3,1) ĝ(AE1, Ê2) = 0,

LR(E3) q h1 = LR(E3) q h2 = 0,

LR(E1) q F = LR(E2) q F = LR(E3) q F = 0,

hence DR q ⊂ T q Q
∗
+ for all q ∈ Q∗

+. This obviously implies that ODR
(q) is

contained in Q∗
+ for all q ∈ Q∗

+ and thus dimODR
(q) ≤ dimQ∗

+ = 6.
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For the following proposition we introduce some more notations,

Q0 : =
{
q = ((r, y), ( r̂, ŷ );A) ∈ Q | A ∂

∂r (r,y)
�= ± ∂

∂r ( r̂, ŷ )

}
,

Q+
1 : = {q = (x, x̂;A) ∈ Q | A ∂

∂r (r,y)
= + ∂

∂r ( r̂, ŷ )

}
,

Q−
1 : =

{
q = (x, x̂;A) ∈ Q | A ∂

∂r (r,y)
= − ∂

∂r ( r̂, ŷ )

}
,

Q1 : = Q+
1 ∪Q−

1 ,

S+
1 : =

{
q = ((r, y), ( r̂, ŷ );A) ∈ Q+

1 | f ′(r)
f(r) = + f̂ ′( r̂ )

f̂( r̂ )

}
,

S−
1 : =

{
q = ((r, y), ( r̂, ŷ );A) ∈ Q−

1 | f ′(r)
f(r) = − f̂ ′( r̂ )

f̂( r̂ )

}
,

S1 : = S+
1 ∪ S−

1 .

We have that Q decomposes into the disjoint union

Q = S1 ∪ (Q\S1) = S1 ∪ (Q1\S1) ∪Q0.

Proposition 5.35. — Let (M, g) = (I × N, hf ) and (M̂ , ĝ) = (Î × N̂ , ĥ
f̂
),

be warped products with I, Î ⊂ R open intervals and suppose that there is a

constant K ∈ R such that

f ′′(r)
f(r)

= −K =
f̂ ′′( r̂ )
f̂( r̂ )

, ∀(r, r̂ ) ∈ I × Î .

Let q0 = (x0, x̂0;A0) ∈ Q and write

M◦ := πQ,M

(ODR
(q0)
)
,

M̂ ◦ := π
Q,M̂

(ODR
(q0)). Assuming that ODR

(q0) is not an integral manifold

of DR, we have the following cases:

(i) If q0 ∈ S1, then dimODR
(q0) = 6;

(ii) If q0 ∈ Q\S1 and if only one of (M◦, g) or (M̂ ◦, ĝ) has constant curva-
ture, then dimODR

(q0) = 6;

(iii) Otherwise dimODR
(q0) = 8.

Proof. — As in the proof of Proposition 5.32 (see also Remark 5.34) it is

clear that Q1 is a closed 7-dimensional closed submanifolds of Q and Q−
1 , Q

+
1

are disjoint open and closed submanifolds of Q1. Also, S1, S
+
1 , S

−
1 are closed

subsets of Q1. Let us begin with the case where q0 ∈ S+
1 . Writing x0 = (r0, y0),
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x̂0 = ( r̂0, ŷ0) and defining

w(t) :=
f ′(t+ r0)

f(t+ r0)
− f̂ ′(t+ r̂0)

f̂(t+ r̂0)
,

we see that for all t ∈ (I − r0) ∩ (Î − r̂0),

w′(t) =
f ′′(t+ r0)

f(t+ r0)︸ ︷︷ ︸
=−K

−
(f ′(t+ r0)

f(t+ r0)

)2 − f̂ ′′(t+ r̂0)

f̂(t+ r̂0)︸ ︷︷ ︸
=−K

+
( f̂ ′(t+ r̂0)

f̂(t+ r̂0)

)2
,

i.e.,

w′(t) = −w(t)
(f ′(t+ r0)

f(t+ r0)
+

f̂ ′(t+ r̂0)

f̂(t+ r̂0)

)
, w(0) = 0.

This shows that w(t) = 0 for all t ∈ (I−r0)∩(Î− r̂0) and hence the assumptions

of Proposition 5.32 have been met. Thus dimODR
(q0) = 6. On the other hand,

if q0 = (x0, x̂0;A0) ∈ S−
1 and x0 = (r0, y0), x̂0 = ( r̂0, ŷ0), define

f̂ ∨(t) := f̂(−t), Î ∨ := −Î

and notice that

ϕ : (Î × N̂ , ĥ
f̂
) −→ (Î ∨ × N̂ , ĥ

f̂ ∨) =: (M̂ ∨, ĝ ∨)

given by ( ŷ, r̂ ) �→ ( ŷ,− r̂ ) is an isometry, which induces a diffeomorphism

Φ : Q −→ Q(M, M̂ ∨)

by (x, x̂;A) �→ (x, ϕ(x̂);ϕ∗ x̂ ◦ A) which preserves the respective rolling dis-

tributions and orbits:

Φ∗(DR q ) = D ∨
R Φ(q) , Φ

(ODR
(q)
)
= OD ∨

R

(
Φ(q)

)
,

the notation being clear here. But now Φ(A0) = ϕ∗(A0
∂
∂r ) = −ϕ∗ ∂

∂r = ∂
∂r and

since q ∨
0 := Φ(q0) = ((r0, y0), (− r̂0, ŷ0);ϕ∗ ◦A0),

(f̂ ∨)′(− r̂0)

f̂ ∨(− r̂0)
=

d
dt 0 f̂

∨(t− r̂0)

f̂( r̂0)
=

d
dt 0 f̂( r̂0 − t)

f̂( r̂0)
= − f̂ ′( r̂0)

f̂( r̂0)
=

f ′(r0)
f(r0)

.

Thus Φ(q0) belongs to the set S+
1 of Q(M, M̂ ∨) (which corresponds by Φ

to S−
1 of Q) and thus the above argument implies that dimOD ∨

R
(Φ(q0)) = 6

and therefore ODR
(q0) = 6. Hence we have proven (i).

We next deal with the case where q0 ∈ Q\S1. Up until the second half of

the proof, where we introduce the sets M0,M1, M̂ 0, M̂ 1, we assume that the

choice of q0 ∈ Q\S1 is not fixed (and hence M◦, M̂ ◦ are not defined yet). So let
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q0 = (x0, x̂0;A0) = ((r0, y0), ( r̂0, ŷ0);A0) ∈ Q\S1 and choose some orthonor-

mal frame X1, X3 (resp. X̂ 1, X̂ 3) on N (resp. N̂) defined on an open neighbor-

hood U ′ of y0 (resp. Û ′ of ŷ0) and consider them, in the natural way, as vector

fields on M (resp. M̂ ). Moreover, assume that X1,
∂
∂r , X3 (resp. X̂ 1,

∂
∂r , X̂ 3)

is oriented. Writing

E1 =
1

f
X1, E2 =

∂

∂r
, E3 =

1

f
X3, Ê1 =

1

f̂
X̂ 1, Ê2 =

∂

∂r
, Ê3 =

1

f̂
X̂ 3,

we get positively oriented orthonormal frames of M and M̂ , defined on

U := I × U ′, Û := Î × Û ′, respectively. Then we have, by [35], Chapter 7,

Proposition 42 (one should pay attention that there the definition of the

curvature tensor differs by sign to the definition used here) that with respect

to the frames �E1, �E2, �E3 and �̂ Ê1, �̂ Ê2, �̂ Ê3,

R =

⎛⎜⎝−K 0 0

0 −σ+(f ′)2
f2 0

0 0 −K

⎞⎟⎠ , R̂ =

⎛⎜⎝−K 0 0

0 −σ̂+(f̂ ′)2

f̂2
0

0 0 −K

⎞⎟⎠ ,

where σ(y) and σ̂( ŷ ) are the unique sectional (or Gaussian) curvatures of

(N, h) and (N̂ , ĥ) at points y, ŷ. Write

−K2 :=
−σ + (f ′)2

f2
and − K̂ 2 :=

−σ̂ + (f̂ ′)2

f̂2
.

We now take an open neighborhood Õ of q0 in Q according to the following

cases:

(a) If q0 ∈ Q0, we assume that Õ ⊂ Q0 ∩ π−1
Q (U × Û ).

(b) If q0 ∈ Q+
1 \S1 (resp. q0 ∈ Q−

1 \S1) we assume that

Õ ⊂ π−1
Q (U × Û )\(S1 ∪Q−

1 ) (resp. Õ ⊂ π−1
Q (U × Û )\(S1 ∪Q+

1 )).

Write Õ0 := Õ ∩Q0. Thus in case (a) one has Õ = Õ0 � q0 while in case (b)

one has Õ = Õ0 ∪ (Õ ∩ (Q±
1 \S1)), as a disjoint union, and q0 /∈ Õ0, the ‘±’

depending on the respective situation. Moreover, if the case (b) occurs, we

assume that q0 ∈ Q+
1 \S1 since the case where q0 ∈ Q−

1 \S1 is handled in a

similar way. We will still shrink Õ around q0 whenever convenient and always

keep in mind that Õ0 = Õ ∩ Q0 even after the shrinking. Notice that this

shrinking does not change the properties in (a) and (b) above. Moreover, [35],

Chapter 7, Proposition 35 implies that if Γ, Γ̂ are connection tables w.r.t.
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E1, E2, E3 and Ê1, Ê2, Ê3, respectively,

Γ =

⎛⎜⎝ 0 0 −Γ1
(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 0

⎞⎟⎠ , Γ̂ =

⎛⎜⎝ 0 0 −Γ̂1
(1,2)

Γ̂1
(3,1) Γ̂2

(3,1) Γ̂3
(3,1)

Γ̂1
(1,2) 0 0

⎞⎟⎠ ,

and

W (Γ1
(1,2)) = 0, ∀W ∈ E⊥

2 , Ŵ (Γ̂1
(1,2)) = 0, ∀Ŵ ∈ Ê⊥

2 ,

since Γ1
(1,2)(r, y) = −f ′(r)

f(r) and Γ̂1
(1,2)( r̂, ŷ ) = − f̂ ′( r̂ )

f̂( r̂ )
. Actually one even has

Γ2
(3,1) = 0 and Γ̂2

(3,1) = 0, but we do not use this fact; one could for example

rotate E1, E3 (resp. Ê1, Ê3) between them, in a non-constant way, to destroy

this property. The fact that AE2 x �= ±Ê2 x̂ for q = (x, x̂;A) ∈ Q0 is equiv-

alent to the fact that the intersection (AE⊥
2 x ) ∩ Ê⊥

2 x̂ is non-trivial for all

q = (x, x̂;A) ∈ Q0. Therefore, by shrinking Õ around q0 if necessary, we may

find a smooth functions θ, θ̂ : Õ0 → R such that this intersection is spanned

by AZA = ẐA, where

ZA : = − sin(θ(q))E1 x + cos(θ(q))E3 x ,

ẐA : = − sin(θ̂(q))Ê1 x̂ + cos(θ̂(q))Ê3 x̂ .

We also define

XA : = cos
(
θ(q)

)
E1 x + sin

(
θ(q)

)
E3 x ,

X̂A : = cos
(
θ̂(q)

)
Ê1 x̂ + sin

(
θ̂(q)

)
Ê3 x̂ .

To unburden the formulas, we write from now on usually

sτ := sin
(
τ(q)

)
, cτ := cos

(
τ(q)

)
if τ : Ṽ → R is some function, Ṽ ⊂ Q, and the point q ∈ Ṽ is clear from

the context. Since XA, E2 x , ZA (resp. X̂A, Ê2 x̂ , ẐA) form an orthonormal

frame for every q = (x, x̂;A) ∈ Õ0 and because A(Z⊥
A ) = Ẑ⊥

A , it follows that

there is a smooth φ : Õ0 → R such that

AXA = cφX̂A + sφÊ2 = cφ(c θ̂ Ê1 + s
θ̂
Ê3) + sφÊ2,

AE2 = −sφX̂A + cφÊ2 = −sφ(c θ̂ Ê1 + s
θ̂
Ê3) + cφÊ2,

AZA = ẐA.
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In particular, for all q = (x, x̂;A) ∈ Õ0, one has ĝ(AZA, Ê2) = 0. Formulas

in Eq. (46), p. 72 hold with Γ1
(2,3) = 0 and Y = Ê2. Since they are very use-

ful in computations, we will now derive three relations, two of which simplify

Eq. (46), and all of which play an important role later on in the proof. Differ-

entiating the identity ĝ(AZA, Ê2) = 0 with respect to LR(XA) q , LR(E2) q

and LR(ZA) q , one at a time, yields on Õ0,

0 = ĝ
(
ALR(XA)Z(.), Ê2

)
+ ĝ(AZA, ∇̂AXA

Ê2)

= (−LR(XA) q θ + cθΓ
1
(3,1) + sθΓ

3
(3,1)) ĝ(AXA, Ê2)

+ ĝ(ẐA,−cφΓ̂
1
(1,2)X̂A)

= sφ(−LR(XA) q θ + cθΓ
1
(3,1) + sθΓ

3
(3,1)),

0 = ĝ
(
ALR(E2)Z(.), Ê2

)
+ ĝ(AZA, ∇̂AE2 Ê2)

= (−LR(Y ) q θ + Γ2
(3,1)) ĝ(AXA, Ê2) + ĝ(ẐA, sφΓ̂

1
(1,2)X̂A)

= sθ(−LR(Y ) q θ + Γ2
(3,1)),

0 = ĝ
(
ALR(ZA)Z(.), Ê2

)
+ ĝ(AZA, ∇̂AZA

Ê2)

= (−LR(ZA) q θ − sθΓ
1
(3,1) + cθΓ

3
(3,1)) ĝ(AXA, Ê2)

+ Γ1
(1,2) ĝ(AE2, Ê2) + ĝ(ẐA,−Γ̂1

(1,2)ẐA)

= sφ
(− LR(ZA) q θ − sθΓ

1
(3,1) + cθΓ

3
(3,1)

)
+ cφΓ

1
(1,2) − Γ̂1

(1,2).

Define

λ(q) := LR(ZA) q θ + sθΓ
1
(3,1) − cθΓ

3
(3,1), q ∈ Õ0,

which is a smooth function on Õ0. Since sin(φ(q)) = 0 would imply that

AE2 = ±Ê2, we have sin(φ(q)) �= 0 on Õ0 ⊂ Q0 and hence we get

LR(XA) q θ = cθΓ
1
(3,1) + sθΓ

3
(3,1), LR(E2) q θ = Γ2

(3,1),

sφλ = cφΓ
1
(1,2) − Γ̂1

(1,2).

These formulas, along with Γ1
(2,3) = 0, simplify Eq. (46) to

(53)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

LR(XA) q X(.) = Γ1
(1,2)E2, LR(E2) q X(.) = 0,

LR(ZA) q X(.) = λZA, LR(XA) q E2 = −Γ1
(1,2)XA,

LR(E2) q E2 = 0, LR(ZA) q E2 = −Γ1
(1,2)ZA,

LR(XA) q Z(.) = 0, LR(E2) q Z(.) = 0,

LR(ZA) q Z(.) = −λXA + Γ1
(1,2)E2,
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at q ∈ Õ0. We use these in the rest of the proof without further mention.

Notice that, for any q = (x, x̂;A) ∈ (Q+
1 \S1) ∩ Õ , and any sequence (which

exist as Q1 ∩ Õ is a nowhere dense subset of Õ) qn ∈ Õ0, qn → q, we have

cos(φ(qn)) → cos(φ(q)) = 1, hence 0 �= sin(φ(qn)) → 0. Because

lim
n→∞(cφΓ

1
(1,2) − Γ̂1

(1,2))(qn) = (cφΓ
1
(1,2) − Γ̂1

(1,2))(q)

= Γ1
(1,2)(x)− Γ̂1

(1,2)(x̂) �= 0,

as q ∈ Q+
1 \S1, we get

lim
n→∞

(
sin
(
φ(qn)

)
λ(qn)

) �= 0, lim
n→∞ sin

(
φ(qn)

)
= 0,

which implies that limn→∞ λ(qn) = ±∞. In particular, we see that, even after

shrinking Õ , one cannot extend the definition of θ in a smooth, or even C1, way

onto Õ , since if this were possible, the definition of λ above would imply that λ

is continuous on Õ and hence the above sequences λ(qn) would be bounded.

This fact about the unboudedness of λ(q) as q approaches (Q+
1 \S1)∩Õ will be

used later. To get around this problem, we will be working for a while uniquely

on Õ0.

Define on Õ0 a 5-dimensional smooth distribution Δ spanned by

LR(E1) q ,LR(E2) q ,LR(E3) q , ν(A�E2) q , ν(A�XA) q , q ∈ Õ0.

We will proceed to show that the Lie algebra Lie(Δ) spans at every point

of q ∈ Õ0 a 8-dimensional distribution Lie(Δ) q which is then necessarily

involutive.

Notice that we consider VFk
Δ, k = 1, 2, . . . and Lie(Δ) as C∞(Õ0)-modules.

Since LR(X(.)),LR(E2),LR(Z(.)) span DR on Õ0, they generate the mod-

ule VFDR ˜

O0

and hence Lie(DR
Õ0

). Moreover, the brackets[
LR(X(.)),LR(E2)

]
q = −Γ1

(1,2)LR(XA) q ,[
LR(E2),LR(Z(.))

]
q = Γ1

(1,2)LR(ZA) q −KRol
1 ν(A�XA) q − αν(A�E2) q ,[

LR(Z(.)),LR(X(.))
]

q = λLR(ZA) q − αν(A�XA) q −KRol
2 ν(A�E2) q ,

along with the definition of XA, ZA, show that VF2
DR ˜

O0

⊂ VFΔ.

The first three Lie brackets in Proposition C.20 case (ii) show that VF2
Δ

contains vector fields L1, L3 given by

L1 q = LNS(E1) q −Γ1
(1,2)ν(A�E3) q , L3 q = LNS(E3) q +Γ1

(1,2)ν(A�E1) q ,
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and also L2 q , which in this setting is just the zero-vector field on Õ0. We

define

FX q := cθL1 q + sθL3 q ,

FZ q := −sθL1 q + cθL3 q − Γ1
(1,2)ν(A�XA) q ,

hence FX , FZ ∈ VF2
Δ and one easily sees that they simplify to

FX q = LNS(XA) q − Γ1
(1,2)ν(A�ZA) q ,

FZ q = LNS(ZA) q .

It is clear that the vector fields

LR(X(.)), LR(E2), LR(Z(.)), ν
(
(.)�E2

)
, ν
(
(.)�X(.)

)
, FX , FZ ,

span the same C∞(Õ0)-submodule of VF2
Δ as do

LR(E1), LR(E2),LR(E3), ν
(
(.)�E2

)
, ν
(
(.)�X(.)

)
, L1, L3.

We now want to find generators of VF2
Δ. By what we have already done and

said, it remains us to compute need to prove that the Lie-brackets between

the four vector fields

LR(XA) q , LR(E2) q , LR(ZA) q , ν(A�E2) q ,

and ν((.)�X(.)) q . Since we will have to derivate XA, it follows that the deriva-

tives of θ will also appear. That is why we first compute with respect to all the

(pointwise linearly independent) vectors that appear above. As a first step,

compute

FX q Z(.) = (−FX q θ + cθΓ
1
(3,1) + sθΓ

3
(3,1))XA,

FZ q Z(.) = LNS(ZA) q Z(.)

= (−FZ q θ − sθΓ
1
(3,1) + cθΓ

3
(3,1))XA + Γ1

(1,2)E2.

Knowing already LR(XA) q θ,LR(Y ) q θ,LR(ZA) q θ, we derivate the iden-

tity

ĝ(AZA, Ê2) = 0,
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w.r.t. ν(A�E2) q , ν(A�XA) q , FX q , FZ q , which gives (notice that the deriva-

tive of Ê2 with respect to these vanishes)

0 = ĝ
(
A(�E2)ZA − ν(A�E2) q θAXA, Ê2

)
= (1− ν(A�E2)) ĝ(AXA, Ê2) = sφ(1− ν(A�E2)),

0 = ĝ
(
A(�XA)ZA − ν(A�XA) q θAXA, Ê2

)
= − ĝ(AE2, Ê2)− ν(A�XA) q θ ĝ(AXA, Ê2)

= −cφ − sφν(A�XA) q θ,

0 = ĝ(−Γ1
(1,2)A(�ZA)ZA, Ê2) + (−FX q θ + cθΓ

1
(3,1) + sθΓ

3
(3,1)) ĝ(AXA, Ê2)

= sφ(−FX q θ + cθΓ
1
(3,1) + sθΓ

3
(3,1)),

0 = (−FZ q θ − sθΓ
1
(3,1) + cθΓ

3
(3,1)) ĝ(AXA, E2) + Γ1

(1,2) ĝ(AE2, Ê2)

= sφ(−FZ q θ − sθΓ
1
(3,1) + cθΓ

3
(3,1)) + cφΓ

1
(1,2),

and since sφ �= 0 on Õ0,

ν(A�E2) q θ = 1,

ν(A�XA) q θ = − cot(φ),

FX q θ = cθΓ
1
(3,1) + sθΓ

3
(3,1),

FZ q θ = −sθΓ
1
(3,1) + cθΓ

3
(3,1) + cot(φ)Γ1

(1,2).

These simplify the above formulas to

FX q Z(.) = 0,

FZ q Z(.) = LNS(ZA) q Z(.) = − cot(φ)XA + Γ1
(1,2)E2,

and moreover it is now easy to see that for q ∈ Õ0,

FX q X(.) = Γ1
(1,2)E2, FX q E2 = −Γ1

(1,2)XA,

FZ q X(.) = cot(φ)Γ1
(1,2)ZA, FZ q E2 = −Γ1

(1,2)ZA.

The Lie brackets[
LR(X(.)), ν((.)�X(.))

]
q

= cot(φ)LR(ZA) q − LNS(A�(�XA)XA) q + Γ1
(1,2)ν(A�E2) q

= cos(φ)LR(ZA) q + Γ1
(1,2)ν(A�E2) q ,
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[
LR(E2), ν((.)�X(.))

]
q

= −LNS(A(�XA)E2) q + ν(A�0) q = FZ q − LR(ZA) q ,[
LR(Z(.)), ν((.)�X(.))

]
q

= − cot(φ)LR(XA) q − LNS

(
A�(�XA)ZA

)
q + ν

(
A�(λZA)

)
,

= − cot(φ)LR(XA) q + LR(E2) q − (LNS(E2) q − λν(A�ZA) q

)
,[

ν(A�E2), ν((.)�X(.))
]

q

= ν(A[�E2, �XA]so) q + ν(A�ZA) q = 0,

show that if one defines

FY q := LNS(E2) q − λν(A�ZA) q ,

then one may write[
LR(Z(.)), ν((.)�X(.))

]
q = − cot(φ)LR(XA) q + LR(E2) q − FY q ,

and hence we have shown that VF2
Δ is generated by vector fields

LR(X(.)), LR(E2),LR(Z(.)), ν
(
(.)�E2

)
, ν
(
(.)�X(.)

)
, FX , FY , FZ ,

which are all pointwise linearly independent on Õ0.

Next we will proceed to show that the VF2
Δ generated by the above eight

vector fields is in fact involutive, which then establishes that Lie(Δ) = VF2
Δ.

At first, the last nine Lie brackets in Proposition C.20 (recall that we have

Γ1
(2,3) = 0) show that [FZ , FX ] and the brackets of LR(X(.)), LR(E2),

LR(Z(.)), ν((.)�E2), with FX and FZ all belong to VF2
Δ as well as do[

FX , ν((.)�X(.))
]

q

= −LNS(− cot(φ)ZA) q + ν
(
A�(LNS(XA) q X(.))

)
q

− Γ1
(1,2)ν

(
A[�ZA, �XA]so + ν(A�ZA) q X(.) − cot(φ)A�XA

)
q

= cot(φ)LNS(ZA) q + ν(A�FX q X(.)) q

− Γ1
(1,2)ν(A�E2) q + Γ1

(1,2) cot(φ)ν(A�XA) q

= cot(φ)FZ q + Γ1
(1,2) cot(φ)ν(A�XA) q ,[

FZ , ν((.)�X(.))
]

q

= −LNS(cot(φ)XA) q + cot(φ)Γ1
(1,2)ν(A�ZA) q = − cot(φ)FX q .

Therefore, it remains to us to prove that the brackets of FY with all the

other seven generators of VF2
Δ, as listed above, also belong to VF2

Δ. Since the

expression of FY involves λ, which was defined earlier, we need to know its
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derivatives in all the possible directions (except in FY -direction) as well as the

expression for FY q θ. We begin by computing this latter derivative. As usual,

the way to proceed is to derivate 0 = ĝ(AZA, Ê2) w.r.t. FY q , for which, we

first compute

FY q Z(.) = (−FY q θ + Γ2
(3,1))XA,

and hence (notice that FY q Ê2 = 0)

0 = ĝ(−λA(�ZA)ZA, Ê2) + (−FY q θ + Γ2
(3,1)) ĝ(AXA, Ê2)

= sφ(−FY q θ + Γ2
(3,1)),

from where one deduces that FY q θ = Γ2
(3,1). One then easily computes that

on Õ0,

FY q X(.) = 0, FY q E2 = 0, FY q Z(.) = 0.

To compute the derivatives of λ, we differentiate the identity sφλ =

cφΓ
1
(1,2) − Γ̂1

(1,2) proved above. Obviously, this will require the knowledge of

derivatives of φ, so we begin there. To do that, one will differentiate the

identity cφ = ĝ(AE2, Ê2) in different directions. One has,

∇̂AXA
Ê2 = −cφΓ̂

1
(1,2)X̂A,

∇̂AE2 Ê2 = sφΓ̂
1
(1,2)X̂A,

∇̂AZA
Ê2 = −Γ̂1

(1,2)ẐA,

and hence

−sφLR(XA) q φ = ĝ(−Γ1
(1,2)AXA, Ê2) + ĝ(AE2, ∇̂AXA

Ê2),

= −sφΓ
1
(1,2) + ĝ(AE2,−cφΓ̂

1
(1,2)X̂A),

= −sφΓ
1
(1,2) + sφcφΓ̂

1
(1,2),

−sφLR(E2) q φ = ĝ(ALR(E2) q E2, Ê2) + ĝ(AE2, ∇̂AE2 Ê2),

= 0 + ĝ(AE2, sφΓ̂
1
(1,2)X̂A) = −s2φΓ̂

1
(1,2),

−sφLR(ZA) q φ = ĝ(−Γ1
(1,2)AZA, Ê2) + ĝ(AE2,−Γ̂1

(1,2)ẐA) = 0,

−sφν(A�E2) q φ = ĝ(A(�E2)E2, Ê2) = 0,

−sφν(A�XA) q φ = ĝ(A(�XA)E2, Ê2) = ĝ(AZA, Ê2) = 0,

−sφFX q φ = ĝ(−Γ1
(1,2)A(�ZA)E2 − Γ1

(1,2)AXA, Ê2) = 0,
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−sφFZ q φ = ĝ(−Γ1
(1,2)AZA, Ê2) = 0,

−sφFY q φ = ĝ(−λA(�ZA)E2 + 0, Ê2) = λĝ(AXA, Ê2) = sφλ.

Because sφ �= 0 on Õ0, one also gets

LR(XA) q φ = Γ1
(1,2) − cφΓ̂

1
(1,2),

LR(E2) q φ = sφΓ̂
1
(1,2),

FY q φ = −λ,

LR(ZA) q φ = ν(A�E2) q φ = ν(A�XA) q φ = FX q φ = FZ q φ = 0.

Next notice that

LR(XA) q Γ
1
(1,2) = FX q Γ

1
(1,2) = XA(Γ

1
(1,2)) = 0,

LR(E2) q Γ
1
(1,2) = FY q Γ

1
(1,2) = E2(Γ

1
(1,2)),

LR(ZA) q Γ
1
(1,2) = FZ q Γ

1
(1,2) = ZA(Γ

1
(1,2)) = 0,

because XA, ZA ∈ E⊥
2 and similarly, since X̂A, ẐA ∈ Ê⊥

2 ,

LR(XA) q Γ̂
1
(1,2) = AXA(Γ̂

1
(1,2)) = sφÊ2(Γ̂

1
(1,2)),

LR(E2) q Γ̂
1
(1,2) = AE2(Γ̂

1
(1,2)) = cφÊ2(Γ̂

1
(1,2)),

LR(ZA) q Γ̂
1
(1,2) = AZA(Γ̂

1
(1,2)) = 0,

FX q Γ̂
1
(1,2) = FY q Γ̂

1
(1,2) = FZ q Γ̂

1
(1,2) = 0.

Finally, taking the derivative of the identity sφλ = cφΓ
1
(1,2)−Γ̂1

(1,2) and using

the previously derived rules,

cφ(Γ
1
(1,2) − cφΓ̂

1
(1,2))λ+ sφLR(XA) q λ

= −sφΓ
1
(1,2)(Γ

1
(1,2) − cφΓ̂

1
(1,2))− sφÊ2(Γ̂

1
(1,2)),

sφcφΓ̂
1
(1,2)λ+ sφLR(E2) q λ

= −s2φΓ̂
1
(1,2)Γ

1
(1,2) + cφE2(Γ

1
(1,2))− cφÊ2(Γ̂

1
(1,2)),

sφLR(ZA) q λ = 0, sφν(A�E2) q λ = 0,

sφν(A�XA) q λ = 0, sφFX q λ = 0,

− cφλ
2 + sφFY q λ = sφΓ

1
(1,2)λ+ cφE2(Γ

1
(1,2)),

sφFZ q λ = 0,
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from which the last six simplify immediately to

LR(ZA) q λ = ν(A�E2) q λ = ν(A�XA) q λ = FX q λ = FZ q λ = 0,

FY q λ = cot(φ)
(
E2(Γ

1
(1,2)) + λ2

)
+ Γ1

(1,2)λ.

Next simplify LR(E2) q λ by using first sφλ = cφΓ
1
(1,2) − Γ̂1

(1,2), and obtain

sφLR(E2) q λ = −sφcφΓ̂
1
(1,2)λ− s2φΓ̂

1
(1,2)Γ

1
(1,2)

+ cφE2(Γ
1
(1,2))− cφÊ2(Γ̂

1
(1,2)),

= −cφΓ̂
1
(1,2)(cφΓ

1
(1,2) − Γ̂1

(1,2))− s2φΓ̂
1
(1,2)Γ

1
(1,2)

+ cφE2(Γ
1
(1,2))− cφÊ2(Γ̂

1
(1,2)),

= −Γ1
(1,2)Γ̂

1
(1,2) + cφE2(Γ

1
(1,2)) + cφ(−Ê2(Γ̂

1
(1,2)) + (Γ̂1

(1,2))
2)

and then using −K = −Ê2(Γ̂
1
(1,2)) + (Γ̂1

(1,2))
2, to deduce

sφLR(E2) q λ = −Γ1
(1,2)Γ̂

1
(1,2) + cφE2(Γ

1
(1,2))− cφK,

once more Γ̂1
(1,2) = cφΓ

1
(1,2) − sφλ,

sφLR(E2) q λ = −Γ1
(1,2)(cφΓ

1
(1,2) − sφλ) + cφE2(Γ

1
(1,2))− cφK,

= cφ(−K − (Γ1
(1,2))

2 + E2(Γ
1
(1,2))) + sφΓ

1
(1,2)λ,

which finally simplifies, thanks to −K = −E2(Γ
1
(1,2))+(Γ1

(1,2))
2 and sφ �= 0, to

LR(E2) q λ = λΓ1
(1,2).

Next we simplify LR(XA) q λ by using the same identities as above when

simplifying LR(E2) q λ yields

sφLR(XA) q λ = −cφ(Γ
1
(1,2) − cφΓ̂

1
(1,2))λ− sφΓ

1
(1,2)(Γ

1
(1,2)

− cφΓ̂
1
(1,2))− sφÊ2(Γ̂

1
(1,2)),

= −λ(sφλ+ Γ̂1
(1,2)) + c2φΓ̂

1
(1,2)λ,

− sφ(Γ
1
(1,2))

2 + sφΓ̂
1
(1,2)(sφλ+ Γ̂1

(1,2))− sφ(K + (Γ̂1
(1,2))

2),

= −sφ(λ
2 + (Γ1

(1,2))
2 +K)− λΓ̂1

(1,2) + c2φλΓ̂
1
(1,2) + s2φΓ̂

1
(1,2)λ,

= −sφ(λ
2 + (Γ1

(1,2))
2 +K),

which implies, at last, that LR(XA) q λ = −(λ2 + (Γ1
(1,2))

2 +K).
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Finally, on Õ0, we compute Lie the brackets[
LR(XA), FY

]
q = LNS(−Γ1

(1,2)XA) q − LR

(
LNS(E2) q X(.)

)
q

+ ν
(
AR(XA ∧ E2)− R̂(AXA ∧ 0)A

)
q

− LR(XA) q λν(A�ZA) q

− λ
(− LNS(A(�ZA)XA)− LR(ν(A�ZA) q X(.)) + ν(A�0) q

)
= −Γ1

(1,2)FX q − LR(FY q X(.)) q + λLR(E2) q − λFY q

+ (−(Γ1
(1,2))

2 −K − LR(XA) q λ− λ2)︸ ︷︷ ︸
=0

ν(A�ZA) q ,

[
LR(E2), FY

]
q = −LR(E2) q λν(A�ZA) q

− λ(−LNS(A(�ZA)E2) q + ν(A�0) q )

= −λLR(XA) q + λFX q +
(
λΓ1

(1,2) − LR(E2) q λ
)︸ ︷︷ ︸

=0

ν(A�ZA) q ,

[
LR(ZA), FY

]
q = LNS(−Γ1

(1,2)ZA) q + LR

(
LNS(E2) q Z(.)

)
+ ν
(
AR(ZA ∧ E2)− R̂(AZA ∧ 0)A

)
q

− LR(ZA) q λν(A�ZA) q

− λ
(− LNS(A(�ZA)ZA) q + LR(ν(A�ZA) q Z(.)) q

)
− λν

(
A�(−λXA + Γ1

(1,2)E2)
)

q

= −Γ1
(1,2)FZ q + LR(FY q Z(.)) q +Kν(A�XA) q

− LR(ZA) q λ︸ ︷︷ ︸
=0

ν(A�ZA) q − λν(A�(−λXA + Γ1
(1,2)E2) q ,

[
ν((.)�E2), FY

]
q = −ν(A�E2) q λν(A�ZA) q

− λν
(
A[�E2, �ZA]so − ν(A�E2) q θA�XA

)
q

= −ν(A�E2) q λν(A�ZA) q = 0,[
ν((.)�X(.), FY

]
q = −ν

(
A�LNS(E2) q X(.)

)
q − ν(A�XA) q λν(A�ZA) q

− λν
(
A[�XA, �ZA]so − ν(A�XA) q θA�XA

)
q

− λν
(−A�ν(A�ZA) q X(.)

)
) q

= −ν(A�FY q X(.)︸ ︷︷ ︸
=0

) q − ν(A�XA) q λ︸ ︷︷ ︸
=0

ν(A�ZA) q

− λν(A�

(− E2 + cot(φ)XA

)
) q ,
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[FZ , FY ] q = LNS

(− Γ1
(1,2)ZA − LNS(E2) q Z(.)

)
q

+ ν
(
AR(ZA ∧ E2)

)
q − FZ q λν(A�ZA) q

− λ
(− LNS(ν(A�ZA) q Z(.)) + ν(A�FZ q Z(.)) q

)
= −Γ1

(1,2)FZ q − LNS(FY q Z(.)︸ ︷︷ ︸
=0

) q +Kν(A�XA) q

− FZ q λ︸ ︷︷ ︸
=0

ν(A�ZA) q − λν(A�(− cot(φ)XA + Γ1
(1,2)E2)) q ,

and finally, noticing that

−λFX q + Γ1
(1,2)FY q = −λLNS(XA) q + Γ1

(1,2)LNS(E2) q ,

one has

[FX , FY ] q = LNS

(
LNS(XA) q E2 − LNS(E2) q X(.)

)
q + ν

(
AR(XA ∧ E2)

)
q

− LR(XA) q λν(A�ZA) q + E2(Γ
1
(1,2))ν(A�ZA) q

− λ
(− LNS(ν(A�ZA) q X(.)) + ν(A�LNS(XA) q Z(.)) q

)
+ Γ1

(1,2)ν
(
A�LNS(E2) q Z(.)

)
q + Γ1

(1,2)ν(A�ZA) q λν(A�ZA) q

= −Γ1
(1,2)LNS(XA) q − LNS(FY q X(.)︸ ︷︷ ︸

=0

) q

+ ν
(
A� (−λFX q + Γ1

(1,2)FY q )Z(.)︸ ︷︷ ︸
=0

)
q

+
(−K − FX q λ+ E2(Γ

1
(1,2))

)
ν(A�ZA) q

= −Γ1
(1,2)FX q +

(−K − FX q λ+ E2(Γ
1
(1,2))− (Γ1

(1,2))
2
)
ν(A�ZA) q ,

which, after using FX q λ = 0 and Eq. (58), simplifies to

[FX , FY ] q = −Γ1
(1,2)FX q .

Since all these Lie brackets also belong to VF2
Δ, we conclude that VF2

Δ is in-

volutive and therefore Lie(Δ) = VF2
Δ. Therefore the span of Lie(Δ) at each

point Õ0 is 8-dimensional subspace of T q Q, since VF2
Δ is generated by eight

pointwise linearly independent vector fields. Since q0 ∈ Q\S1 was arbitrary and

since the choice of XA, E2, ZA in Õ0 are unique up to multiplication by −1,

we have shown that on Q0 there is a smooth 5-dimensional distribution Δ

containing DR Q0
such that Lie(Δ) = VF2

Δ spans an 8-dimensional distribu-

tion D and which is then, by construction, involutive. We already know from
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the beginning of the proof that q ∈ S1 implies that ODR
(q) ⊂ S1 so, equiva-

lently, q ∈ Q\S1 implies that ODR
(q) ⊂ Q\S1. Hence we are interested to see

how D can be extended on all over Q\S1 i.e. we have to see how to define it

on Q1\S1. For this purpose, we define the Sasaki metric G on Q by

X = LNS(X, X̂ ) q + ν(A�Z) q , Y = LNS(Y, Ŷ ) q + ν(A�W ) q ,

G(X ,Y) = g(X,Y ) + ĝ(X̂ , Ŷ ) + g(Z,W ),

for q = (x, x̂;A) ∈ Q, X,Y, Z,W ∈ T xM , X̂ , Ŷ ∈ T x̂ M̂ . Notice that any

vector X ∈ T q Q can be written in the form LNS(X, X̂ ) q + ν(A�Z) q for

some X, X̂ , Z as above. Since D is a smooth codimension 1 distribution on Q0,

it has a smooth normal line bundle D⊥ w.r.t. G defined on Q0 which uniquely

determines D. We will use the Sasaki metric G to determine a smooth vector

field N near a point q0 ∈ Q1\S1 spanning D⊥. So let q0 ∈ Q1\S1 and assume,

as before, that q0 ∈ Q+
1 \S1 the case of Q−

1 \S1 being handled similarly. Take

the frames E1, E2, E3, Ê1, Ê2, Ê3 and Õ , Õ0, XA, ZA as done above (the

case (b)). Because cos(φ(q0))Γ
1
(1,2)(x0) − Γ̂1

(1,2)(x̂0) �= 0, one assumes, after

shrinking Õ around q0, that we have

cos
(
φ(q)

)
Γ1
(1,2)(x)− Γ̂1

(1,2)(x̂) �= 0

for all q = (x, x̂;A) ∈ Õ , which then implies that λ(q) �= 0 on Õ0. Here to

say what is the value of cos(φ(q)) even at q ∈ Q1\S1, we use the fact that

cos(φ(q)) = g(AE2, Ê2) for all q ∈ Õ (though φ(q) is not a priori defined). To

determine a smooth vector field N ∈ D⊥ on Õ0, we write

N q = a1LNS(XA) q + a2LNS(E2) q + a3LNS(ZA) q

+ b1LNS(AXA) q + b2LNS(AE2) q + b3LNS(AZA) q

+ v1ν(A�XA) q + v2ν(A�E2) q + v3ν(A�ZA) q ,

and since this must be G-orthogonal to D, we get

0 = G
(N ,LR(XA)

)
= a1 + b1, 0 = G

(N ,LR(E2)
)
= a2 + b2,

0 = G
(N ,LR(ZA)

)
= a3 + b3, 0 = G

(N , ν(A�XA)
)
= v1,

0 = G
(N , ν(A�E2)

)
= v2, 0 = G(N , FX) = a1 − Γ1

(1,2)v3,

0 = G(N , FY ) = a2 − λv3, 0 = G(N , FZ) = a3.

So if we set v3 =
1
λ and introduce the notation

L⊥
R(X) q := LNS(X,−AX) ∈ DNS q , q = (x, x̂;A) ∈ Q, X ∈ T xM,
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we get a smooth vector field N on Õ0 which is G-perpendicular to D and given

by

N q =
1

λ(q)
Γ1
(1,2)(x)L

⊥
R(XA) q + L⊥

R(E2) +
1

λ(q)
ν(A�ZA) q , q ∈ Õ0

=
cθ
λ(q)

(Γ1
(1,2)L

⊥
R(E1) q + ν(A�E3) q ) + L⊥

R(E2) q

+
sθ
λ(q)

(Γ1
(1,2)L

⊥
R(E3) q − ν(A�E1) q ).

i.e.,

N q = H1(q)X1 q + X2 q +H3(q)X3 q ,

where X1,X2,X3 are pointwise linearly independent smooth vector fields on Õ

(and not only Õ0) given by

X1 q = Γ1
(1,2)L

⊥
R(E1) q + ν(A�E3) q ,

X2 q = L⊥
R(E2) q ,

X3 q = Γ1
(1,2)L

⊥
R(E3) q − ν(A�E1) q ,

while H1, H3 are smooth functions on Õ0 defined by

H1 =
cos(θ)

λ
, H3 =

sin(θ)

λ
.

Notice that θ and λ cannot be extended in a smooth or even C1-way from Õ0

to Õ , but as we will show, one can extend H1, H3 in at least C1-way onto Õ .

First, since λ(q) → ±∞ while cos(θ(q)), sin(θ(q)) stay bounded, it follows

that H1, H3 extend uniquely to Õ ∩ Q1 by declaring H1(q) = H3(q) = 0 for

all q ∈ Õ ∩ Q1. Of course, these extensions, which we still denote by H1, H3,

are continuous functions on Õ .

The next objective consists of showing that H1, H3 are at least C1 on Õ .

For this purpose, let X ∈ VF(Õ) and decompose it uniquely as

X =
3∑

i=1

aiLR(Ei) +
3∑

i=1

biLNS(Ei) +
3∑

i=1

viν((.)�Ei),

with ai, bi, vi ∈ C∞(Õ). We will need to know the derivatives of θ and λ

in all the directions on Õ0. These have been computed above by using the

frame XA, E2, ZA instead of E1, E2, E3 except in the direction of ν(A�ZA) q .
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As before, one computes (using that sφ �= 0 on Õ0 as usual),

ν(A�ZA) q θ = 0, ν(A�ZA) q φ = 1,

ν(A�ZA) q λ = −Γ1
(1,2)(x)− λ(q) cot(φ(q)).

One now easily computes that on Õ0,

X (θ) = (−a1sθ + a3cθ)λ

+ (−b1sθΓ
1
(1,2) + b3cθΓ

1
(1,2) − v1cθ − v3sθ) cot(φ) +B1(q),

X (λ) = (−a1cθ − a3sθ)λ
2 + (−b1cθΓ

1
(1,2) − b3sθΓ

1
(1,2) + v1sθ − v3cθ)λ cot(φ),

+ a2Γ
1
(1,2)λ+ b2 cot(φ)E2(Γ

1
(1,2)) +B2(q),

where

B1(q) = (a1 + b1)Γ
1
(3,1) + (a2 + b2)Γ

2
(3,1) + (a3 + b3)Γ

3
(3,1) + v2,

B2(q) = (−a1cθ − a3sθ)
(
(Γ1

(1,2))
2 +K

)
+ (−b1cθ − b3sθ)(Γ

1
(1,2))

2

+ (v1sθ − v3cθ)Γ
1
(1,2).

Then

X (H1) = −sθ
X (θ)

λ
− cθ

X (λ)

λ2

= a1 + (b1Γ
1
(1,2) + v3)

cot(φ)

λ
−

a2cθΓ
1
(1,2)

λ
−

b2cθE2(Γ
1
(1,2))

λ

cot(φ)

λ

− sθB1

λ
− cθB2

λ2
,

X (H3) = cθ
X (θ)

λ
− sθ

X (λ)

λ2

= a3 + (b3Γ
1
(1,2) − v1)

cot(φ)

λ
−

a2sθΓ
1
(1,2)

λ
−

b3sθE2(Γ
1
(1,2))

λ

cot(φ)

λ

+
cθB1

λ
− sθB2

λ2
.

Since sφλ = cφΓ
1
(1,2) − Γ̂1

(1,2), one has cot(φ)/λ = cφ/(cφΓ
1
(1,2) − Γ̂1

(1,2)), and

therefore as q tends to a point q1 of Q+
1 ∩ Õ , we have

lim
q→q1

cot(φ)

λ
=

1

Γ1
(1,2) − Γ̂1

(1,2)

.
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Since B1, B2 stay bounded as q approaches a point of Q+
1 ∩ Õ , we get for every

q1 = (x1, x̂1;A1) ∈ Q+
1 ∩ Õ that

lim
q→q1

X (H1) = a1(q1) +
b1(q1)Γ

1
(1,2)(x1) + v3(q1)

Γ1
(1,2)(x1)− Γ̂1

(1,2)(x̂1)
=: DXH1(q1),

lim
q→q1

X (H3) = a3(q1) +
b3(q1)Γ

1
(1,2)(x1)− v1(q1)

Γ1
(1,2)(x1)− Γ̂1

(1,2)(x̂1)
=: DXH3(q1).

From these, it is now readily seen that H1, H3 are differentiable on Õ ∩ Q+
1

with X q1
(H1) = DXH1(q1), X q1

(H3) = DXH3(q1) and that H1, H3 are C1-

functions on Õ . We therefore have thatN is a well-defined C1 vector field on Õ

and since D = N⊥ w.r.t. G on Õ0, it follows that D extends in C1-sense on Õ .

Since q0 ∈ Q+
1 \S1 was arbitrary and because the case q0 ∈ Q−

1 \S1 is handled

similarly, we see that D can be extended onto the open subset Q\S1 of Q

as a (at least) C1-distribution, which is C∞ on Q0. Since DR Q\S1
⊂ D and

because q ∈ Q\S1 implies that ODR
(q) ⊂ Q\S1 as we have seen, it follows that

for every q0 ∈ Q\S1 we have ODR
(q0) ⊂ OD(q0) where the orbit on the right is

a priori an immersed C1-submanifold of Q\S1. However, since D is involutive

and dimD = 8 on Q\S1, we get by the C1-version of the Frobenius theorem

that dimOD(q0) = 8 and hence

dimODR
(q0) ≤ dimOD(q0) = 8,

for every q0 ∈ Q\S1.

We will now investigate when the equality holds here. Define

M0 = {x ∈ M | K2(x) �= K},
M1 = {x ∈ M | ∃ open V � x s.t. K2(x

′) = K ∀x′ ∈ V },
M̂ 0 = {x̂ ∈ M̂ | K̂ 2(x̂) �= K},
M̂ 1 = {x̂ ∈ M̂ | ∃ open V̂ � x̂ s.t. K2(x̂

′) = K ∀x̂′ ∈ V̂ },
and notice that M0 ∪M1 (resp. M̂ 0 ∪ M̂ 1) is a dense subset of M (resp. M̂ ).

Here we also fix the choice of q0 = (x0, x̂0;A0) ∈ Q\S1 and define

M◦ = πQ,M

(ODR
(q0)
)
, M̂ ◦ = π

Q,M̂

(ODR
(q0)
)

as in the statement. Write also

Q◦ := π−1
Q (M◦ × M̂ ◦)

and notice that ODR
(q0) ⊂ Q◦.
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We define on Q two 2-dimensional distributions D and D̂. For every q1 =

(x1, x̂1;A1) ∈ Q, take orthonormal frames E1, E2, E3, Ê1, Ê2, Ê3 of M, M̂

defined on open neighborhoods U, Û of x1, x̂1 with E2 = ∂
∂r , Ê2 = ∂

∂r . Then,

for q ∈ π−1
Q (U × Û ) ∩Q, the 2-dimensional plane D q is spanned by

K1 q = LNS(A
T Ê1) q − Γ̂1

(1,2)(x)ν(( �̂ Ê3)A) q ,

K3 q = LNS(A
T Ê3) q + Γ̂1

(1,2)(x)ν(( �̂ Ê1)A) q ,

and D̂ q is spanned by

K̂ 1 q = LNS(AE1) q + Γ1
(1,2)(x)ν(A�E3) q ,

K̂ 3 q = LNS(AE3) q − Γ1
(1,2)(x)ν(A�E1) q .

Obviously, different choices of frames Ei, Ê i, i = 1, 2, 3, give K1,K3, K̂ 1, K̂ 3

that span the same planes D, D̂, since we have fixed the choice of E2 = ∂
∂r ,

Ê2 =
∂
∂r . Exactly as in proof of Proposition 5.30, one can show that for every

q1 =
(
(r1, y1), ( r̂1, ŷ1);A1

) ∈ Q

and smooth paths γ : [0, 1] → N , γ̂ : [0, 1] → N̂ with γ(0) = y1, γ̂(0) = ŷ1
there are unique smooth paths Γ, Γ̂ : [0, 1] → Q such that for all t ∈ [0, 1],

Γ̇(t) ∈ D Γ(t) , Γ(0) = q1, (πQ,M ◦ Γ)(t) = (r1, γ(t)),

˙̂
Γ(t) ∈ D̂

Γ̂(t)
, Γ̂(0) = q1, (π

Q,M̂
◦ Γ̂)(t) = ( r̂1, γ̂(t)).

Since (π
Q,M̂

)∗D = 0 (resp. (πQ,M )∗D̂ = 0), one has π
Q,M̂

(Γ(t)) = x̂1 (resp.

πQ,M (Γ̂(t)) = x1) for all t ∈ [0, 1]. We write these as Γ = Γ(γ, q1), Γ̂ = Γ̂(γ̂ , q1).

If E2 = ∂
∂r , Ê2 = ∂

∂r , then by exactly the same arguments as in the proof of

Proposition 5.30 we have

ν(A�E2) q ∈ T q ODR
(q), ∀q ∈ Q0 ∩ π−1

Q (M0 × M̂ ),

ν
(
( �̂ Ê2)A

)
q ∈ T q ODR

(q), ∀q ∈ Q0 ∩ π−1
Q (M × M̂ 0).

We next show how one can replace Q0 by Q\S1. Take frames Ei, Ê i

(i = 1, 2, 3), as above when defining D, D̂ for some q1 ∈ Q1\S1. We assume

here without loss of generality that q1 ∈ Q+
1 \S1 since the case q1 ∈ Q−

1 \S1

can be dealt with in a similar way. If h1, h2 : π
−1
Q (U × Û ) → R are defined as

h1(q) = ĝ(AE1, Ê2), h2(q) = ĝ(AE3, Ê2),
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we have Q1∩π−1
Q (U × Û ) = (h1, h2)

−1(0) and (h1, h2) : π
−1
Q (U × Û ) → R

2 is a

regular map at the points of Q1 (see e.g. Remark 5.34 or the proof of Proposi-

tion 5.28). Since q1 ∈ Q+
1 \S1, then LR(E1) q1

h1 = Γ1
(1,2)(x1)− Γ̂1

(1,2)(x̂1) �= 0

and LR(E3) q1
h2 = Γ1

(1,2)(x1) − Γ̂1
(1,2)(x̂1) �= 0, which shows that ODR

(q1)

intersects Q+
1 transversally at q1 (hence at every point q ∈ ODR

(q1)), by di-

mensional reasons (because dimQ1 = 7, dimQ = 9). From this, it follows

that ODR
(q1) ∩Q1 is a smooth closed submanifold of ODR

(q1) and that there

is a sequence q′n = (x′n, x̂′
n;A

′
n) ∈ ODR

(q1) ∩ Q0 such that q′n → q1. If now

q1 ∈ π−1
Q (M0×M̂ )∩Q1\S1, then we know that for n large enough, q′n belongs

to π−1
Q (M0×M̂ )∩Q0 and hence ν(A�E2) q′n

∈ T q′n
ODR

(q′n) = T q′n
ODR

(q1).

Taking the limit implies that ν(A�E2) q1
∈ T q1

ODR
(q1). Similarly, if q1 be-

longs to π−1
Q (M × M̂ 0)∩Q1\S1, one has ν(( �̂ Ê2)A) q1

∈ T q1
ODR

(q1). Hence

we have that if E2 =
∂
∂r , Ê2 =

∂
∂r , then

ν(A�E2) q ∈ T q ODR
(q), ∀q ∈ (Q\S1) ∩ π−1

Q (M0 × M̂ ),

ν(( �̂ Ê2)A) q ∈ T q ODR
(q), ∀q ∈ (Q\S1) ∩ π−1

Q (M × M̂ 0).

For every q ∈ (Q\S1) ∩ π−1
Q (M0 × M̂ ), which is an open subset of Q, one

has ν(A�E2) q ∈ T q ODR
(q) with E2 = ∂

∂r and hence by Proposition C.20,

case (i), it follows that

L1 q = LNS(E1) q − Γ1
(1,2)(x)ν(A�E3) q ,

L3 q = LNS(E3) q + Γ1
(1,2)(x)ν(A�E1) q ,

are tangent to ODR
(q), where E1, E2 = ∂

∂r , E3 is an orthonormal frame in an

open neighborhood of x1. But because K̂ 1 q = LR(E1) q − L1 q , K̂ 3 q =

LR(E3) q − L3 q , we get that

D̂ q ⊂ T q ODR
(q), ∀q ∈ (Q\S1) ∩ π−1

Q (M0 × M̂ ).

Moreover, if q = (x, ( r̂, ŷ );A) ∈ (Q\S1)∩ π−1
Q (M0 × M̂ ) and if γ̂ : [0, 1] → N̂

is any curve with γ̂(0) = ŷ, then one shows with exactly the same argument

as in the proof of Proposition 5.30 that, for all t ∈ [0, 1],

Γ̂(γ̂ , q)(t) ∈ ODR
(q) ∩ π−1

Q (M0 × M̂ ).

In particular,

∃ q = (x, ( r̂, ŷ );A) ∈ (Q\S1) ∩ π−1
Q (M0 × M̂ )

=⇒ {x} × ({ r̂} × N̂
) ⊂ πQ

(ODR
(q)
)
.
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A similar argument shows that

D q ⊂ T q ODR
(q), ∀q ∈ (Q\S1) ∩ π−1

Q (M × M̂ 0),

and that for all q = ((r, y), x̂;A) ∈ (Q\S1)∩ π−1
Q (M × M̂ 0) and γ : [0, 1] → N

with γ(0) = y,

Γ(γ, q)(t) ∈ ODR
(q) ∩ π−1

Q (M × M̂ 0), ∀t ∈ [0, 1].

In particular,

∃ q =
(
(r, y), x̂;A

) ∈ (Q\S1) ∩ π−1
Q (M × M̂ 0)

=⇒ ({r} ×N
)× {x̂} ⊂ πQ

(ODR
(q)
)
.

Everything so far is similar to the proof of Proposition 5.30 and continues to

be so, with few minor changes (notably, here dimD = dim D̂ = 2 instead of 3).

Suppose that (M1 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅. Take

q1 = (x1, x̂1;A1) ∈ π−1
Q (M1 × M̂ 0) ∩ ODR

(q0),

with x1 = (r1, y1). If σ(y) is the unique sectional curvature of N at y, we have

K2(r1, y1) =
σ(y1)− (f ′(r1))2

f(r1)2
= K.

We go from here case by case.

(I) If N does not have constant curvature, there exists y2 ∈ N with σ(y2) �=
σ(y1) and hence

K2(r1, y2) =
σ(y2)− (f ′(r1))2

f(r1)2
�= K,

i.e., (r1, y2) ∈ M0. Since q1 ∈ ODR
(q0) ⊂ Q\S1, we have by the above

that(
(r1, y2), x̂1

) ∈ ({r1} ×N
)× {x̂1} ⊂ πQ

(ODR
(q1)
)
= πQ

(ODR
(q0)
)
,

and since ((r1, y2), x̂1) belong to M0 × M̂ 0, we get that which implies

that (M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅.

(II) Suppose that (N, h) has constant curvature C i.e. σ(y) = C for all y ∈ N .

We write K2(r, y) = K2(r) on M since its value only depends on r ∈ I

and notice that for all r ∈ I,

dK2

dr
= −2

f ′(r)
f(r)

(K2(r)−K).

But K2(r1) = K, so by the uniqueness of solutions of ODEs, we get

K2(r) = K for all r ∈ I and hence (M, g) has constant curvature K.
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Of course, regarding case (II), it is clear that if (M, g) has constant curva-

ture K, then (N, h) has a constant curvature. Hence we have proved that if

(M, g) does not have a constant curvature and if (M1 × M̂ 0) ∩ πQ(ODR
(q0))

is not empty, then also (M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅. The argument being

symmetric in (M, g), (M̂ , ĝ), we also have that if (M̂ , ĝ) does not have a con-

stant curvature and if (M0×M̂ 1)∩πQ(ODR
(q0)) �= ∅, then also (M0 × M̂ 0)∩

πQ(ODR
(q0)) �= ∅. Notice that (M◦, g) and (M̂ ◦, ĝ) cannot both have constant

curvature, since this violates the assumption that ODR
(q0) is not an integral

manifold of DR (see Corollary 4.16 and Remark 4.17).

We can now finish the proof by considering, again, different cases.

a) Assume that (M̂ ◦, ĝ) has constant curvature equal then to K. We have

M̂ 0 ∩ M̂ ◦ = ∅.

If E2 = ∂
∂r , then Hence, R̃olq(�X) = 0 for all q ∈ Q◦ = π−1

Q (M◦ × M̂ ◦),
X ∈ E⊥

2 while R̃olq(�E2) = (−K2(x) + K)�E2. At q1 = (x1, x̂1;A1) ∈ Q◦,
take an open neighborhood U of x1 and an orthonormal basis E1, E2, E3 with

E2 =
∂
∂r and let D1 be a distribution on π−1

Q,M (U) spanned by

LR(E1), LR(E2), LR(E3), ν
(
(.)�E2

)
, L1, L3,

where L1, L3 are as in Proposition C.20. Obviously, one defines in this way a

6-dimensional smooth distribution D1 on the whole Q◦ and the above from of

R̃olq, q ∈ Q◦, along with Proposition C.20, case (ii), reveal that it is involutive

(recall that Γ1
(2,3) = 0 there). Clearly, DR ⊂ D1 on Q◦ and since ODR

(q0) ⊂ Q◦,
we haveODR

(q0) ⊂ OD1(q0) and hence dimODR
(q0) ≤ 6. Because (M◦, g) does

not have constant curvature (as noticed previously), we have M0 ∩ M◦ �= ∅

and thus O := ODR
(q0) ∩ π−1

Q,M (M0) is a non-empty open subset of ODR
(q0).

For every q = (x, x̂;A) ∈ O, one has R̃olq(�E2) = (−K2(x) +K)�E2 �= 0 and

hence that ν(A�E2) q ∈ T q ODR
(q0). Therefore, Proposition C.20, case (i),

implies that D1 O is tangent to ODR
(q0). This gives dimODR

(q0) ≥ 6 and

hence dimODR
(q0) = 6.

b) If (M◦, g) has constant curvature, then the argument of case a) with the

roles of (M, g), (M̂ , ĝ) interchanged, shows that dimODR
(q0) = 6.

Hence we have proven (ii). For the rest of the cases, we may assume that

neither (M◦, g) nor (M̂ ◦, ĝ) has constant curvature i.e. M◦ ∩ M0 �= ∅,

M̂ ◦ ∩ M̂ 0 �= ∅.
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c) Suppose (M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅ and let q1 = (x1, x̂1;A1) ∈

π−1
Q (M0 × M̂ 0) ∩ODR

(q0). We already know that T q1
ODR

(q0) contains

vectors

LR(E1) q1
, LR(E2) q1

, LR(E3) q1
, ν(A�E2) q1

,

ν
(
( �̂ Ê2)A

)
q1
, L1 q1

, L3 q1
, L̂1 q1

, L̂3 q1
,

where

L̂1 q1
= LNS(Ê1) q1

+ Γ̂1
(1,2)(x̂1)ν(( �̂ Ê3)A1) q1

,

L̂3 q1
= LNS(Ê3) q1

− Γ̂1
(1,2)(x̂1)ν(( �̂ Ê1)A1) q1

.

If q1 ∈ Q0. these vectors span an 8-dimensional subspace of T q1
ODR

(q0),

Indeed, by considering XA1 , ZA1 , X̂A1 , ẐA1 and angles φ, θ, θ̂ as before,

one has sin(φ(q1)) �= 0 and

ν
(
( �̂ Ê2)A1

)
q1

= ν
(
A1�(AT

1 Ê2)
)

q1

= sin
(
φ(q1)

)
ν(A1�XA1) q1

+ cos
(
φ(q1)

)
ν(A1�E2) q1

,

cθL1 q1
+ sθL3 q1

= LNS(XA1) q1
− Γ1

(1,2)(x1)ν(A1�ZA1) q1
,

−sθL1 q1
+ cθL3 q1

= LNS(ZA1) q1
+ Γ1

(1,2)(x1)ν(A1�XA1) q1
,

c
θ̂
L̂1 q1

+ s
θ̂
L̂3 q1

= LNS(X̂A1) q1
+ Γ̂1

(1,2)(x1)ν(A1�ZA1) q1

= cφLNS(A1XA1) q1
− sφLNS(A1E2) q1

+ Γ̂1
(1,2)(x1)ν(A1�ZA1) q1

,

−s
θ̂
L̂1 q1

+ c
θ̂
L̂3 q1

= LNS(A1ZA1) q1
− Γ̂1

(1,2)(x1)ν(A1�(AT X̂A1)) q1

= LNS(A1ZA1) q1

− Γ̂1
(1,2)(x1)

(
cφν(A1�XA1) q1

− sφν(A1�E2) q1

)
.

On the other hand, if q1 ∈ Q1, then since Q1 is transversal to ODR
(q0)

at q1, we can replace q1 by a nearby q′1 ∈ π−1
Q (M0 × M̂ 0)∩ODR

(q0)∩Q0

and the above holds at q′1. Therefore dimODR
(q0) ≥ 8 and since we have

also shown that dimODR
(q0) ≤ 8, we have the equality.

d) Since M◦ ∩ M0 �= ∅, there is a q1 = (x1, x̂1;A1) ∈ ODR
(q0) such that

x1 ∈ M0. If x̂1 ∈ M̂ 0, one has that (M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅ and

hence case c) implies that dimODR
(q0) ≤ 8. If x̂1 /∈ M̂ 0, then x̂1 ∈ M̂ 1.

Therefore, we may find a sequence q′n = (x′n, x̂′
n;A

′
n) ∈ ODR

(q0) such

that q′n → q1 and x̂′
n ∈ M̂ 1. So for n large enough, we have (x′n, x̂′

n) ∈
(M0×M̂ 1)∩πQ(ODR

(q0)). Thus (M̂ , ĝ) does not have constant curvature
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and (M0 × M̂ 1) ∩ πQ(ODR
(q0)) �= ∅ which we have shown to imply that

(M0 × M̂ 0) ∩ πQ(ODR
(q0)) �= ∅ from which the above case c) implies

that dimODR
(q0) ≤ 8.

The cases c) and d) above give (iii) and therefore the proof is complete.

Remark 5.36. — It is not difficult to see that Proposition 5.32 general-

izes to higher dimension as follows. Keeping the same notations as before,

let (M, g) = (I, s1) ×f (N, h) and (M̂ , ĝ) = (Î , s1) ×f̂
(N̂ , ĥ), I, Î ⊂ R, be

warped products where (N, h) and (N̂ , ĥ) are now connected, oriented (n−1)-

dimensional Riemannian manifolds. As before, let q0 = (x0, x̂0;A0) ∈ Q be

such that if we write x0 = (r0, y0), x̂0 = ( r̂0, ŷ0), then (51) and (52) hold true.

Then, the exact argument of Proposition 5.32 yields that the orbit ODR
(q0)

has dimension at most equal to 1
2n(n + 1). One can even have equality, if

the (n − 1)-dimensional manifolds (N, h) and (N̂ , ĥ) are such that that the

corresponding R̃olq′0 operator (in (n − 1)-dimensional setting) is invertible at

q′0 = (y0, ŷ0;A
′
0) ∈ Q(N, N̂), where A′

0 :
∂
∂r x0

⊥ → ∂
∂r x̂0

⊥ is the restriction of A0

and if we also assume that f(r0) = 1, f̂(r0) = 1, an assumption that can

always be satisfied after rescaling the metrics of (N, h) and (N̂ , ĥ).
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APPENDIX A

FIBER COORDINATES AND CONTROL

THEORETIC POINTS OF VIEW

In this section we describe equations of the control system (Σ)R in terms of

moving orthonormal frames. Let

F = (F1, . . . , Fn), F̂ = (F̂ 1, . . . , F̂ n)

be oriented orthonormal local frames of M and M̂ defined on U and Û re-

spectively. We assume moreover that

q(t) =
(
γ(t), γ̂(t);A(t)

)
, t ∈ [0, 1],

is an a.c. curve in Q sucht that γ([0, 1]) ⊂ U and γ̂([0, 1]) ⊂ Û .

Define for every x ∈ U and x̂ ∈ Û the linear maps

Γ : T xM −→ so(n), Γ(X)ji = g(∇XFi, Fj),

Γ̂ : T x̂ M̂ −→ so(n), Γ̂(X̂ )ji = ĝ(∇̂
X̂
F̂ i, F̂ j).

Let A : [0, 1] → SO(n) be given by A(t) = M
F,F̂

(A(t)) = [Ai
j(t)] i.e.,(

A(t)F1 γ(t) , . . . , A(t)Fn γ(t)

)
=
(
F̂ 1 γ̂(t) , . . . , F̂ n γ̂(t)

)A(t).

Taking ∇(γ̇(t), ˙̂γ(t)) of this gives(∇(γ̇(t), ˙̂γ(t))(A(.))F1 γ(t) , . . . ,∇(γ̇(t), ˙̂γ(t))(A(.))Fn γ(t)

)
+
(
A(t)∇γ̇(t)F1, . . . , A(t)∇γ̇(t)Fn

)
=
(∇̂ ˙̂γ(t) F̂ 1, . . . , ∇̂ ˙̂γ(t) F̂ n

)A(t) +
(
F̂ 1 γ̂(t) , . . . , F̂ n γ̂(t)

)Ȧ(t),

i.e., (
F̂ 1 γ̂(t) , . . . , F̂ n γ̂(t)

)(−A(t)Γ(γ̇(t)) + Γ̂( ˙̂γ(t))A(t) + Ȧ(t)
)

=
(∇(γ̇(t), ˙̂γ(t))(A(.))F1 γ(t) , . . . ,∇(γ̇(t), ˙̂γ(t))(A(.))Fn γ(t)

)
.
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Hence one sees that

q(t) =
(
γ(t), γ̂(t);A(t)

)
satisfies Eq. (10)

⇐⇒ Ȧ(t) = A(t)Γ
(
γ̇(t)
)− Γ̂

(
˙̂γ(t)
)A(t).

We newt show how to interpret (Σ)R as an affine driftless control system in

π−1
Q (U × Û ). Fix q0 = (x0, x̂0;A0) ∈ π−1

Q (U × Û ). Note that there is an open

subset U ⊂ L1([0, 1],Rn) and a one-to-one correspondence between a.c. curves

γ : [0, 1] → U with γ(0) = x0 and U given by

γ̇(t) =
(
F1 γ(t) , . . . , Fn γ(t)

)⎛⎜⎝u1(t)
...

un(t)

⎞⎟⎠ , (u1, . . . , un) ∈ U .(54)

The no-slip condition, Eq. (12) now becomes

˙̂γ(t) =
(
F̂ 1 γ̂(t) , . . . , F̂ n γ̂(t)

)A(t)

⎛⎜⎝u1(t)
...

un(t)

⎞⎟⎠ ,(55)

and, by the above, the no-spin condition, Eq. (10), becomes

Ȧ(t) =
n∑

i=1

ui(t)
(
A(t)Γ(Fi γ(t) )−

n∑
j=1

Aj
i (t)Γ̂(F̂ j γ̂(t) )A(t)

)
.(56)

Hence, the problem (Σ)R is equivalent on π−1
Q (U × Û ) to the control system

defined by Eqs. (54), (55) and (56) where the controls (u1, . . . , un) belong to

U ⊂ L1([0, 1],Rn)

and A(t) = M
F,F̂

(A(t)) = [Ai
j(t)]. If v = (v1, . . . , vn) ∈ R

n we write

〈F, v〉 =
n∑

i=1

viFi and 〈F̂ , v〉 =
n∑

i=1

vi F̂ i.

With this notation, if we write u = (u1, . . . , un), we write the system (54), (55)

and (56) more compactly as⎧⎪⎪⎨⎪⎪⎩
γ̇(t) =

〈
F γ(t) , u(t)

〉
,

˙̂γ(t) =
〈
F̂ γ̂(t)A(t), u(t)

〉
,

Ȧ(t) = A(t)Γ
(〈F γ(t) , u(t)〉

)− Γ̂
(〈F̂ γ̂(t)A(t), u(t)〉)A(t).
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APPENDIX B

THE ROLLING PROBLEM EMBEDDED IN R
N

In this section, we compare the rolling model defined by the state space

Q = Q(M, M̂ ),

whose dynamics is governed by the conditions (11)-(12) (or, equivalently,

by DR), with the rolling model of two n-dimensional manifolds embedded

in R
N as given in [41] (Appendix B). See also [28], [19].

Let us first fix N ∈ N and introduce some notations. The special Euclidean

group of RN is the set

SE(N) := R
N × SO(N)

equipped with the group operation � given by

(p,A)�(q,B) = (Aq + p,AB), (p,A), (q,B) ∈ SE(N).

We identify SO(N) with the subgroup {0} × SO(N) of SE(N), while R
N is

identified with the normal subgroup R
N ×{idRN } of SE(N). With these iden-

tifications, the action � of the subgroup SO(N) on the normal subgroup R
N is

given by

(p,A)�q = Aq + p, (p,A) ∈ SE(N), p ∈ R
N .

Let M and M̂ ⊂ R
N be two (embedded) submanifolds of dimension n. For

every z ∈ M, we identify T z M with a subspace of RN (the same holding in

the case of M̂ ) i.e., elements of T z M are derivatives σ̇(0) of curves σ : I → M

with σ(0) = z (I � 0 a nontrivial real interval).

The rolling of M against M̂ without slipping or twisting in the sense of [41]

is realized by a smooth curves

G : I −→ SE(N); G(t) =
(
p(t), U(t)

)
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(I a nontrivial real interval) called the rolling map and σ : I → M called

the development curve such that the following conditions (1), (2), (3) hold for

every t ∈ I:

(1) (a) σ̂(t) := G(t)�σ(t) ∈ M̂,

(b) T σ̂(t) (G(t)�M) = T σ̂(t) M̂.

(2) No-slip: Ġ(t)�σ(t) = 0.

(3) No-twist: (a) U̇(t)U(t)−1T σ̂(t) M̂ ⊂ (T σ̂(t) M̂)⊥ (tangential no-twist),

(b) U̇(t)U(t)−1(T σ̂(t) M̂)⊥ ⊂ T σ̂(t) M̂ (normal no-twist).

The orthogonal complements are taken w.r.t. the Euclidean inner product

of RN . In condition (2) we define the action ‘�’ of Ġ(t) = (U̇(t), ṗ(t)) on R
N

by the same formula as for the action ‘�’ of SE(N) on R
N .

We next consider two classical cases of rolling and interpret the no-twist

conditions in these cases.

Example B.1

(i) Suppose N = 3, n = 2 i.e., M,M̂ are surfaces of R3. Assuming that

they are oriented, there exist smooth normal vector fields N , N̂ of M and M̂
respectively. For a given t, choose oriented orthonormal frame X̂ , Ŷ ∈ T σ̂(t) M̂
and â , b̂ , ĉ ∈ R such that U̇(t)U(t)−1 ∈ so(3) can be written as

U̇(t)U(t)−1 = â (N̂ σ̂(t)×) + b̂ (X̂×) + ĉ (Ŷ ×),

where × denotes the cross product in R
3 and for a vector V ∈ R

3 we denote

by (V×) the element of so(3) given by W ∈ R
3 �→ V ×W ∈ R

3. It is now easy

to see, by applying U̇(t)U(t)−1 to X̂ , Ŷ , that the tangential no-twist condition

(3)-(a) is equivalent to the fact that â = 0 i.e.,

U̇(t)U(t)−1 does not contain (N̂ σ̂(t)×)-component.

This is what is intuitively understood by“no spinning”since it is the (N̂ σ̂(t)×)

component â of U̇(t)U(t)−1 that mesures the instantaneous speed of rotation

of M about the axis N̂ σ̂(t) at the corresponding point of contact. Notice

also that

U̇(t)U(t)−1N̂ σ̂(t) = −b̂ Ŷ + ĉ X̂ ∈ T σ̂(t) M̂,

so the normal no-twist condition (3)-(b) is automatically satisfied. This ex-

ample can be easily generalized to any case of oriented hypersurfaces, i.e.

when N = n+ 1.
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(ii) Suppose now that N = 3 and n = 1 i.e. M,M̂ are regular curves in R
3.

Without loss of generality, we assume that ‖σ̇(t)‖ = 1, hence also ‖ ˙̂σ(t)‖ = 1.

Let X̂ , Ŷ ∈ ˙̂σ(t)⊥ such that X̂ , Ŷ , ˙̂σ(t) is an oriented orthonormal frame in R
3.

One may write U̇(t)U(t)−1 ∈ so(3) as

U̇(t)U(t)−1 = â ( ˙̂σ(t)×) + b̂ (X̂×) + ĉ (Ŷ ×).

Since then

U̇(t)U(t)−1 ˙̂σ = −b̂ Ŷ + ĉ X̂ ,

the tangential no-twist condition (3)-(a) is trivially satisfied. As for the normal

no-twist condition (3)-(b), one sees that it is equivalent to â = 0 i.e.,

U̇(t)U(t)−1 does not contain ( ˙̂σ(t)×)-component.

Intuitively this means that the instantaneous speed of rotation â of M about

the axis ˙̂σ(t) is zero at the point of contact, so M does not turn around M̂.

The two manifolds M and M̂ are embedded inside R
N by embeddings

ι : M −→ R
N and ι̂ : M̂ −→ R

N

and their metrics g and ĝ are induced from the Euclidean metric sN of RN

i.e., g = ι∗sN and ĝ = ι̂ ∗sN . In the above setting, we take now M = ι(M),

M̂ = ι̂ (M̂ ). For z ∈ M and ẑ ∈ M̂, consider the linear orthogonal projections

P T : T z R
N −→ T z M and P⊥ : T z R

N −→ T z M⊥,

P̂ T : T ẑ R
N −→ T ẑ M̂ and P̂ ⊥ : T ẑ R

N −→ T ẑ M̂⊥.

For X ∈ T z R
N and Y ∈ Γ(πTRN M ) (here πTRN M is the pull-back bundle

of TRN over M), we use ∇⊥
XY to denote P⊥(∇sN

X Y ) and one writes similarly

∇̂⊥
X̂
Ŷ = P̂ ⊥(∇sN

X̂
Ŷ ) for X̂ ∈ T ẑ R

N and Y ∈ Γ(πTRN M̂ ). We notice that,

for any z ∈ M, X ∈ T z M and Y ∈ VF(M), we have

∇sN
X Y = ι∗

(∇ι−1∗ (X)ι
−1
∗ (Y )

)
+∇⊥

XY,

and similarly on M̂. Notice that ∇⊥ and ∇̂⊥ determine (by restriction) con-

nections of vector bundles

πTM⊥ : TM⊥ −→ M and π
TM̂⊥ : TM̂⊥ −→ M̂.

These connections can then be used in an obvious way to determine a connec-

tion ∇⊥ on the vector bundle

π(TM⊥)∗⊗TM⊥ : (TM⊥)∗ ⊗ TM⊥ −→ M×M̂.
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Let us take any rolling map G : I → SE(N), G(t) = (p(t), U(t)) and

development curve σ : I → M and define x = ι−1 ◦σ. We will go througth the

meaning of each of the above conditions (1)–(3).

(1) (a) Since σ̂(t) ∈ M̂, we may define a smooth curve x̂ := ι̂−1 ◦ σ̂ in M̂ .

(b) One easily sees that

U(t)T σ̂(t)M = T σ̂(t) (G(t)�M) = T σ̂(t) M̂.

Thus A(t) := ι̂−1∗ ◦ U(t) ◦ ι∗ T
x(t)

M defines a map

T x(t)M −→ T x̂(t) M̂ ,

which is also orthogonal i.e., A(t) ∈ Q (x(t),x̂(t)) for all t. Moreover, if

B(t) := U(t) T
σ(t)

M⊥ , then B(t) is a map

B(t) : T σ(t)M⊥ −→ T σ̂(t) M̂
⊥

and, by a slight abuse of notation, we can write

U(t) = A(t)⊕B(t).

Thus Condition (1) just determines a smooth curve t �→ (x(t), x̂(t);A(t))

inside the state space Q = Q(M, M̂ ).

(2) We compute

0 = Ġ(t)�σ(t) = U̇(t)σ(t) + ṗ(t)

=
d

dt

(
G(t)�σ(t)

)− U(t)σ̇(t) = ˙̂σ(t)− U(t) ◦ ι∗ ◦ ι−1
∗ ◦ σ̇(t),

which, once composed with ι̂−1∗ from the left, gives 0 = ˙̂x(t)−A(t)ẋ(t).

This is exactly the no-slip condition, Eq. (12).

(3) Notice that, on R
N × R

N = R
2N , the sum metric sN ⊕ sN is just s2N .

Moreover, if γ : I → R
N is a smooth curve, then smooth vector fields

X : I → T (RN ) along γ can be identified with smooth maps X : I → R
N

and with this observation one has: Ẋ(t) = ∇sN
γ̇(t)X.
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(a) Since U(t) = A(t)⊕B(t), we get, for t �→ X̂ (t) ∈ T σ̂(t) M̂, that

U̇(t)U(t)−1X̂ (t)

= ∇s2N
(σ̇, ˙̂σ)(t)

X̂ (.)− U(t)∇s2N
(σ̇, ˙̂σ)(t)

(
U(.)−1X̂ (.)

)
= P T

(∇̂sN
˙̂σ(t)

X̂ (.)
)
+ ∇̂⊥

˙̂σ(t)
X̂ (.)

− U(t)
(
P T
(∇sN

σ̇(t)(A(.)−1X̂ (.))
)
+∇⊥

σ̇(t)

(
A(.)−1X̂ (.)

))
=
(∇(ẋ, ˙̂x)(t)A(.)

)
A(t)−1

(
ι̂−1
∗ X̂ (t)

)
+
(
∇̂⊥

˙̂σ(t)
X̂ (.)−B(t)∇⊥

σ̇(t)(A(.)−1X̂ (.))
)
,

from which it is clear that the tangential no-twist condition corre-

sponds to the condition that ∇(ẋ(t), ˙̂x(t))A(.) = 0. This means that

t �→ (x(t), x̂(t);A(t)) is tangent to DNS for all t ∈ I. Thus, the tangential

no-twist condition (3)-(a) is equivalent to the no-spinning condition,

Eq. (10).

(b) Choose t �→ X̂⊥(t) ∈ T σ̂(t) M̂⊥ and calculate as above

U̇(t)U(t)−1X̂⊥(t)

= P T (∇sN
˙̂σ(t)

X̂⊥(.)) + ∇̂⊥ ˙̂σ(t)

− U(t)
(
P T
(∇sN

σ̇(t)(B(.)−1X̂ (.))
)
+∇⊥

σ̇(t)(B(.)−1X̂ (.))
)

=
(
P T (∇sN

˙̂σ(t)
X̂⊥(.)−A(t)P T

(∇sN
σ̇(t)(B(.)−1X̂ (.))

))
+
(∇⊥

(σ̇(t), ˙̂σ(t))
B(.)

)
B(t)−1X̂ (t),

and hence we see that the normal no-twist condition (3)-(b) corresponds

to the condition that

∇⊥
(σ(t),σ̂(t))B(.) = 0, ∀t.

In a similar spirit to how Definition 3.5 was given, one easily sees that

this condition just amounts to say that B maps parallel translated normal

vectors to M to parallel translated normal vectors to M̂. More precisely,

ifX0 ∈ TM⊥ andX(t) = (P∇⊥
)t0(σ)X0 is a parallel translate ofX0 along

σ w.r.t. to the connection ∇⊥ (notice that X(t) ∈ T σ(t)M⊥ for all t),

then the normal no-twist condition (3)-(b) requires that t �→ B(t)X(t)

(which is the same as U(t)X(t)) is parallel to t �→ σ̂(t) w.r.t the connec-

tion ∇̂⊥ i.e., for all t,

B(t)
(
(P∇⊥

)t0(σ)X0

)
= (P ∇̂⊥

)t0(σ̂)
(
B(0)X0

)
.
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N

We formulate the preceding remarks to a proposition.

Proposition B.2. — Let ι : M → R
N and ι̂ : M̂ → R

N be smooth embed-

dings and let g = ι∗(sN ) and ĝ = ι̂ ∗(sN ). Fix points x0 ∈ M , x̂0 ∈ M̂ and an

element B0 ∈ SO(T ι(x0)
M⊥, T ι̂ (x̂0)

M̂⊥). Then, there is a bijective corre-

spondence between the smooth curves t �→ (x(t), x̂(t);A(t)) of Q tangent to DNS

(resp. DR), satisfying (x(0), x̂(0)) = (x0, x̂0) and the pairs of smooth curves

t �→ G(t) = (p(t), U(t)) of SE(N) and t �→ σ(t) of M which satisfy the condi-

tions (1), (3) (resp. (1), (2), (3), i.e. rolling maps) and U(0) T
σ(0)

M⊥ = B0.

Proof. — Let t �→ q(t) = (x(t), x̂(t);A(t)) to be a smooth curve in Q such

that (x(0), x̂(0)) = (x0, x̂0). Denote σ = ι ◦ x, σ̂ = ι̂ ◦ x̂ and let B(t) =

(P∇⊥
)t0((σ, σ̂))B0 be the parallel translate of B0 along t �→ (σ(t), σ̂(t)) w.r.t

the connection ∇⊥. We define

U(t) :=
(
ι̂ ∗ ◦A(t) ◦ ι−1

∗
)⊕B(t) : T σ(t)M −→ T σ̂(t) M̂,

and p(t) = σ̂(t) − U(t)σ(t). Then, by the above remarks, the smooth curve

t �→ G(t) = (p(t), U(t)) satisfies Conditions (1), (3) (resp. (1), (2), (3))

if t �→ q(t) is tangent to DNS (resp. DR). This clearly gives the claimed bi-

jective correspondence.
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APPENDIX C

SPECIAL MANIFOLDS IN 3D RIEMANNIANN

GEOMETRY

C.1. Preliminaries

On an oriented Riemannian manifold (M, g), the Hodge-dual �M is defined

as the linear map uniquely given by

�M : ∧kT xM −→ ∧n−kT xM ; �M (X1 ∧ · · · ∧Xk) = Xk+1 ∧ · · · ∧Xn,

with x ∈ M , k = 0, . . . , n = dimM and X1, . . . , Xn ∈ T xM any oriented

basis. For an oriented Riemannian manifold (M, g) and x ∈ M , let so(T xM)

be the set of g-antisymmetric linear maps T xM → T xM . and writes so(M)

as the disjoint union of so(T xM), x ∈ M . If A,B ∈ so(T xM), we define

[A,B]so := A ◦B −B ◦A ∈ so(T xM).

Also, we define the following natural isomorphism φ by

φ : ∧2TM −→ so(M); φ(X ∧ Y ) := g(·, X)Y − g(·, Y )X.

Using this isomorphism, the curvature tensor R of (M, g) at x ∈ M , is the

linear map given by

R : ∧2T xM → ∧2T xM ; R(X ∧ Y ) := φ−1(R(X,Y )),

where X,Y ∈ T xM . Here of course R(X,Y ), as an element of

T ∗
xM ⊗ T xM,

belongs to so(T xM). It is a standard fact that R is a symmetric map when

∧2T xM is endowed with the inner product, also written as g,

g(X ∧ Y, Z ∧W ) := g(X,Z)g(Y,W )− g(X,W )g(Y, Z).

For A,B ∈ so(T xM), tr(AB) = g(φ−1(A), φ−1(B)). The map R is the cur-

vature operator and we will, with a slight abuse of notation, write it as R.
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If dimM = 3, then �
2
M = id when �M is the map ∧2TM → TM and

TM → ∧2TM . Let X,Y, Z ∈ T xM be an orthonormal positively oriented

basis. Then

�M (X ∧ Y ) = Z, �M (Y ∧ Z) = X, �M (Z ∧X) = Y.

In terms of this basis X,Y, Z one has

�Mφ−1

⎛⎝ 0 −α β

α 0 −γ

−β γ 0

⎞⎠ =

⎛⎝γ

β

α

⎞⎠ .

Lemma C.1. — If (M, g) is a 3-dimensional oriented Riemannian manifold

and x ∈ M .

(i) Then each 2-vector ξ ∈ ∧2T xM is pure, i.e. there exist X,Y ∈ T xM

such that ξ = X ∧ Y .

(ii) For every X,Y ∈ T xM one has[
φ(�MX), φ(�MY )

]
so

= φ(X ∧ Y ).

C.2. Manifolds of class Mβ

We define and investigate some properties of special type of 3-dimensional

manifolds. Following [1] we make a definition.

Definition C.2. — A 3-dimensional manifold M is called a contact manifold

of type (κ, 0) where κ ∈ C∞(M) if there are everywhere linearly independent

vector fields F1, F2, F3 ∈ VF(M) and smooth functions c, γ1, γ3 ∈ C∞(M)

such that

[F1, F2] = cF3, [F2, F3] = cF1, [F3, F1] = −γ1F1 + F2 − γ3F3,

and −κ = F3(γ1)− F1(γ3) + (γ1)
2 + (γ3)

2 − c.

The frame F1, F2, F3 is said to be an (normalized) adapted frame of M and

c, γ1, γ3 the corresponding structure functions.

Remark C.3. — More generally, one could say that a 3-dimensional contact

manifold M is of class (κ, χ) if its so-called first and second invariants are κ

and χ, respectively, where κ, χ ∈ C∞(M), cf. [1].

One may define on such a manifold a Riemannian metric g in a natural

way by declaring F1, F2, F3 to be orthogonal. In order to see that a manifold
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defined in the above definition C.2 is indeed a contact manifold, it suffices to

define a 1-form α by

α(X) = g(X,F2), X ∈ TM,

and observe that

dα(F3, F1) = −g
(
[F3, F1], F2

)
= −1,

from which one can conclude that α ∧ dα �= 0 (cf. [15], Definition 1.1.3 and

Lemma 1.1.7).

The structure of the connection table (see section C.4) of the Levi-Civita

connection and the eigenvalues of the corresponding curvature tensor are given

in the following lemma, which is a direct consequence of Koszul’s formula.

Lemma C.4. — Let M be a contact manifold of type (κ, 0) with adapted frame

F1, F2, F3 and structure functions c, γ1, γ2. If g is the unique Riemannian

metric which makes F1, F2, F3 orthonormal, then the connection table w.r.t.

F1, F2, F3 is

Γ =

⎛⎝ 1
2 0 0

γ1 c− 1
2 γ3

0 0 1
2

⎞⎠ ,

Moreover, at each point, �F1, �F2, �F3 (with � the Hodge dual) are eigenvec-

tors of the curvature tensor R with eigenvalues −K,−K2(.),−K, respectively,

where

K = 1
4 (constant), K2(x) = κ(x)− 3

4 , x ∈ M.

To justify somewhat our next definition, we make the following remark.

Remark C.5. — Notice that if β ∈ R, β �= 0 and gβ := β−2g then the Koszul

formula gives,

2gβ(∇gβ
Fi
Fj , Fk) = β−2g

(
[Fi, Fj ], Fk

)− β−2g
(
[Fi, Fk], Fj

)− β−2g
(
[Fj , Fk], Fi

)
= 2β−2Γi

(j,k),

because gβ(Fi, Fj) = β−2δij . Then, Ei := βFi, i = 1, 2, 3, is a gβ-orthonormal

basis and if (Γβ)
i
(j,k) = gβ(∇EiEj , Ek), then for every i, j, k.

β−3(Γβ)
i
(j,k) = β−3gβ(∇gβ

Ei
Ej , Ek) = gβ(∇gβ

Fi
Fj , Fk) = β−2Γi

(j,k),

i.e. (Γβ)
i
(j,k) = βΓi

(j,k).
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Definition C.6. — A 3-dimensional Riemannian manifold (M, g) is said

to belong to class Mβ , for β ∈ R, if there exists an orthonormal frame

E1, E2, E3 ∈ VF(M) w. r. t. which the connection table is

Γ =

⎛⎜⎝ β 0 0

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

0 0 β

⎞⎟⎠ .

In this case the frame E1, E2, E3 is called an adapted frame of (M, g).

Remark C.7. — For a given β ∈ R, one can say that a Riemannian space

(M, g) is locally of class Mβ , if every x ∈ M has an open neighborhood U

such that (U, g U ) is of class Mβ . Since we are interested in local results, we

usually speak of manifolds of (globally) class Mβ .

Lemma C.8. — If β �= 0 and (M, g) is of class Mβ with an adapted frame,

then �E1, �E2, �E3 are eigenvectors of R with eigenvalues −β2,−K2(.),−β2,

where

−K2(x) = β2 + E3(Γ
1
(3,1))− E1(Γ

3
(3,1))

+ (Γ1
(3,1))

2 + (Γ3
(3,1))

2 − 2βΓ2
(3,1) (x ∈ M).

Proof. — Immediate from Proposition C.17, Eq. (60).

Next lemma is the converse of what has been done before the above defini-

tion.

Lemma C.9. — Let (M, g) be of class Mβ, β �= 0, with an adapted frame

E1, E2, E3. Then M is a contact manifold of type (κ, 0) with (normalized)

adapted frame Fi :=
1
2βEi, i = 1, 2, 3. Moreover, for x ∈ M , κ and the structure

functions c, γ1, γ3 are given by

c =
β + Γ2

(3,1)

2β
, γ1 =

Γ1
(3,1)

2β
, γ3 = −

Γ3
(3,1)

2β
, κ =

K2

4β2
+

3

4
.

Proof. — From the torsion freeness of the Levi-Civita connection on (M, g)

and from the connection table w.r.t. E1, E2, E3, we get

[E1, E2] = (β + Γ2
(3,1))E3,

[E2, E3] = (β + Γ2
(3,1))E1,

[E3, E1] = −Γ1
(3,1)E1 + 2βE2 − Γ3

(3,1)E3.

From this and the fact that β �= 0, the claims are immediate.

MÉMOIRES DE LA SMF 147



C.2. MANIFOLDS OF CLASS Mβ 145

Remark C.10. — (i) Note that the classes Mβ and M−β are the same.

Indeed, if (M, g) is of class Mβ and E1, E2, E3 is an adapted orthonormal

frame, then (M, g) is of class M−β with a adapted frame F1, F2, F3 where

F1 = E3, F3 = E1 (i.e., the change of orientation of E1, E3 plane moves

from Mβ to M−β). It would then be better to speak of Riemannian manifolds

of class Mβ with β ≥ 0 or of class M|β|.

(ii) If one has a Riemannian manifold (M, g) of class Mβ , then scaling the

metric by λ �= 0 one gets a Riemannian manifold (M,λ2g) of class Mβ/λ. This

follows from Remark C.5 above.

Remark C.11. — If (M, g) is of class M0, then since β = 0 and Γ1
(1,2) = 0,

one deduces e.g. from Theorem C.14 that (M, g) is locally a warped product.

Conversely, a Riemannian product manifold is locally of class M0. Hence there

are many non-isometric spaces of class M0.

To conclude this subsection, we will show that for every β ∈ R there exist

3-dimensional Riemannian manifolds of class Mβ which are not isometric. See

also [1].

Example C.12

(i) Let M be SO(3). There exists left-invariant vector fields E1, E2, E3 such

that

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

Hence with the metric g rendering E1, E2, E3 orthonormal, we get a space

(M, g) of classM1/2. By the definition of κ and Lemma C.9 we have κ = 1

and K2 =
1
4 .

(ii) Let M be the Heisenberg group H3. There exists left-invariant vector

fields E1, E2, E3 such that

[E1, E2] = 0, [E2, E3] = 0, [E3, E1] = E2.

Then, M endowed with the metric for which E1, E2, E3 are orthonormal,

is of class M1/2 and κ = 0, K2 = −3
4 .

(iii) Let M be SL(2). There exists left-invariant vector fields such that

[E1, E2] = −E3, [E2, E3] = −E1, [E3, E1] = E2.

If g is a metric with respect to which E1, E2, E3 are orthonormal, then M

is of class M1/2, with κ = −1 and K2 = −7
4 .
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Note that if one takes the “usual” basis of sl(2) as a, b, c satisfying,

[c, a] = 2a, [c, b] = −2b, [a, b] = c,

then one may define e1 =
1
2(a+ b), e2 =

1
2(a− b), e3 =

1
2c to obtain

[e1, e2] = −e3, [e2, e3] = −e1, [e3, e1] = e2.

None of the examples in (i)-(iii) of Riemannian manifolds of class Mβ

with β = 1
2 are (locally) isometric one to the other. This fact is immedi-

ately read from the different values of K2 (constant). Hence by Remarks

C.10 and C.11, we see that for every β ∈ R there are non-isometric

Riemannian manifolds of the same class Mβ .

C.3. Warped Products

Definition C.13. — Let (M, g), (N, h) be Riemannian manifolds and f ∈
C∞(M). Define a metric hf on M ×N

hf = pr∗1(g) + (f ◦ pr1)2pr∗2(h),
where pr1, pr2 are projections onto the first and second factor of M × N ,

respectively. Then the Riemannian manifold (M × N, hf ) is called a warped

product of (M, g) and (N, h) with the warping function f . One may write

(M×N, hf ) as (M, g)×f (N, h) and hf as g⊕f h if there is a risk of ambiguity.

We are mainly interested in the case where (M, g) = (I, s1), where I ⊂ R

is an open non-empty interval and s1 is the standard Euclidean metric on R.

By convention, we write ∂
∂r for the natural positively directed unit (w.r.t. s1)

vector field on R and identify it in the canonical way as a vector field on the

product I ×N and notice that it is also a unit vector field w.r.t. hf .

Since needed in section 5, we state (a local version of) the main result of [18]

in 3-dimensional case. The general result allows one to detect Riemannian

spaces which are locally warped products. In our setting we use it (in the

below form) to detect when a 3-dimensional Riemannian manifold (M, g) is,

around a given point, a warped product of the form (I ×N, hf ), with I ⊂ R,

f ∈ C∞(I), and (N, h) a 2-dimensional Riemannian manifold.

Theorem C.14 (see [18]). — Let (M, g) be a Riemannian manifold of di-

mension 3. Suppose that at every point x0 ∈ M there is an orthonormal

frame E1, E2, E3 defined in a neighborhood of x0 such that the connection table
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w.r.t. E1, E2, E3 on this neighborhood is of the form

Γ =

⎛⎜⎝ 0 0 −Γ1
(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 0

⎞⎟⎠ ,

and moreover

X(Γ1
(1,2)) = 0, ∀X ∈ E⊥

2 .

Then there is a neighborhood U of x, an interval I ⊂ R, f ∈ C∞(I) and a

2-dimensional Riemannian manifold (N, h) such that (U, g U ) is isometric to

the warped product (I ×N, hf ). If

F : (I ×N, hf ) −→ (U, g U )

is the isometry in question, then for all (r, y) ∈ I ×N ,

f ′(r)
f(r)

= −Γ1
(1,2)(F (r, y)), F∗

∂

∂r (r,y)
= E2 φ(r,y) .

C.4. Technical propositions

Since we will be dealing frequently with orthonormal frames and connection

coefficients, it is convenient to define the following concept.

Definition C.15. — Let (M, g) be a 3-dimensional Riemannian manifold.

If E1, E2, E3 is an orthonormal frame of M defined on an open set U , then

Γj
(i,k) = g(∇EjEi, Ek), we call the matrix

Γ =

⎛⎜⎝Γ1
(2,3) Γ2

(2,3) Γ3
(2,3)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) Γ2

(1,2) Γ3
(1,2)

⎞⎟⎠ ,

the connection table w.r.t. E1, E2, E3. To emphasize the frame, we may write

Γ = Γ(E1,E2,E3).

Remark C.16. — (i) Since E1, E2, E3 is orthonormal, one has Γi
(j,k) = −Γi

(k,j)

for all i, j, k. These relations mean that to know all the connection coefficients

(of an orthonormal frame), it is enough to know exactly nine of them. It is

these nine coefficients that appear in the connection table.

(ii) Here it is important that the frame E1, E2, E3 is ordered and hence one

should speak of the connection table w.r.t. (E1, E2, E3) (as in the notation
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Γ = Γ(E1,E2,E3)), but since we always list the frame in the correct order, there

will be no room for confusion.

(iii) Notice that the above connection table could be written as Γ = [(Γj
�i)

i
j ],

if one writes �1 = (2, 3), �2 = (3, 1) and �3 = (1, 2) i.e.

Γ =

⎛⎝Γ1
�1 Γ2

�1 Γ3
�1

Γ1
�2 Γ2

�2 Γ3
�2

Γ1
�3 Γ2

�3 Γ3
�3

⎞⎠ .

(iv) One should notice that usually the Christoffel symbols Γk
ji of a frame

E1, E2, E3 are defined by

∇EjEi =
3∑

k=1

Γk
jiEk.

The notation Γj
(i,k) introduced above differs from this by

Γj
(i,k) = Γk

ji.

We find this notation convenient and we only use it when dealing with 3-

dimensional manifolds.

Proposition C.17. — Suppose (M, g) is a 3-dimensional Riemannian man-

ifold and in some neighborhood U of x ∈ M there is an orthonormal frame

E1, E2, E3 defined on an open set U with respect to which the connection table

is of the form

Γ =

⎛⎜⎝Γ1
(2,3) 0 −Γ1

(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 Γ1

(2,3)

⎞⎟⎠ ,

and V (Γ1
(2,3)) = 0, V (Γ1

(1,2)) = 0, for all V ∈ E2 y
⊥, y ∈ U .

Then the following are true:

(i) For every y ∈ U , �E1 y , �E2 y , �E3 y are eigenvectors of R with eigen-

values −K(y),−K2(y),−K(y), respectively (i.e. the eigenvalues of �E1 y and

�E3 y coincide).

(ii) If Γ1
(2,3) �= 0 on U and if U is connected, it follows that on U the

coefficient Γ1
(2,3) is constant, Γ

1
(1,2) = 0 and K(y) = (Γ1

(2,3))
2 (constant). Hence

(U, g U ) is of class Mβ, for β = Γ1
(2,3).

(iii) If Γ1
(2,3) = 0 in the open set U , then every y ∈ U has a neighborhood

U ′ ⊂ U such that (U ′, g U ′ ) is isometric to a warped product (I×N, hf ) where
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I ⊂ R is an open interval. Moreover, if

F : (I ×N, hf ) −→ (U ′, g U ′ )

is the isometry in question, then, for every (r, y) ∈ I ×N ,

f ′(r)
f(r)

= −Γ1
(1,2)(F (r, y)), F∗

∂

∂r (r,y)
= E2 F (r,y) .

Moreover, one has

0 = −E2(Γ
1
(2,3)) + 2Γ1

(1,2)Γ
1
(2,3),(57)

−K = −E2(Γ
1
(1,2)) + (Γ1

(1,2))
2 − (Γ1

(2,3))
2,(58)

−K2 = E3(Γ
1
(3,1))− E1(Γ

3
(3,1)) + (Γ1

(3,1))
2 + (Γ3

(3,1))
2(59)

− 2Γ1
(2,3)Γ

2
(3,1) + (Γ1

(1,2))
2 + (Γ1

(2,3))
2.(60)

Proof. — (i) We begin by computing in the basis �E1, �E2, �E3 that

R(E3 ∧ E1) =

⎛⎜⎝−Γ1
(1,2)

Γ3
(3,1)

Γ1
(2,3)

⎞⎟⎠ ∧

⎛⎜⎝Γ1
(2,3)

Γ1
(3,1)

Γ1
(1,2)

⎞⎟⎠+

⎛⎜⎝E3(Γ
1
(2,3))

E3(Γ
1
(3,1))

E3(Γ
1
(1,2))

⎞⎟⎠−

⎛⎜⎝−E1(Γ
1
(1,2))

E1(Γ
3
(3,1))

E1(Γ
1
(2,3))

⎞⎟⎠

+ Γ1
(3,1)

⎛⎜⎝Γ1
(2,3)

Γ1
(3,1)

Γ1
(1,2)

⎞⎟⎠− 2Γ1
(2,3)

⎛⎜⎝ 0

Γ2
(3,1)

0

⎞⎟⎠+ Γ3
(3,1)

⎛⎜⎝−Γ1
(1,2)

Γ3
(3,1)

Γ1
(2,3)

⎞⎟⎠ =

⎛⎝ 0

−K2

0

⎞⎠ ,

where we omitted the further computation of row 2 and wrote it simply as −K2

and use the fact that Ei(Γ
1
(1,2)) = 0, Ei(Γ

1
(2,3)) = 0 for i ∈ {1, 3}. Thus �E2 y

is an eigenvector of R y for all y ∈ U . Since R y is a symmetric linear map

∧2T y M to itself and �E2 y is an eigenvector for R y , we know that the other

eigenvectors lie in �E2 y , which is spanned by �E1 y , �E3 y . By rotating E1, E3

among themselves by a constant matrix, we may well assume that �E1 y , �E3 y

are eigenvectors of R y corresponding to eigenvalues, say, −K1(y),−K3(y).

We want to show that K1(y) = K3(y). Computing R y (E1 ∧ E2) in the basis
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�E1 y , �E2 y , �E3 y gives (we write simply Γi
(j,k) for Γ

i
(j,k)(y), etc.)⎛⎝ 0

0

−K3(y)

⎞⎠ = R y (�E3) = R y (E1 ∧ E2)

=

⎛⎜⎝Γ1
(2,3)

Γ1
(3,1)

Γ1
(1,2)

⎞⎟⎠ ∧

⎛⎜⎝ 0

Γ2
(3,1)

0

⎞⎟⎠+

⎛⎜⎝ 0

E1(Γ
2
(3,1))

0

⎞⎟⎠−

⎛⎜⎝E2(Γ
1
(2,3))

E2(Γ
1
(3,1))

E2(Γ
1
(1,2))

⎞⎟⎠
+ Γ1

(1,2)

⎛⎜⎝Γ1
(2,3)

Γ1
(3,1)

Γ1
(1,2)

⎞⎟⎠− (Γ1
(2,3) + Γ2

(3,1))

⎛⎜⎝−Γ1
(1,2)

Γ3
(3,1)

Γ1
(2,3)

⎞⎟⎠
=

⎛⎜⎝ −E2(Γ
1
(2,3)) + 2Γ1

(1,2)Γ
1
(2,3)

E1(Γ
2
(3,1))− E2(Γ

1
(3,1)) + Γ1

(1,2)Γ
1
(3,1) − (Γ1

(2,3) + Γ2
(3,1))Γ

3
(3,1)

−E2(Γ
1
(1,2)) + (Γ1

(1,2))
2 − (Γ1

(2,3))
2

⎞⎟⎠ ,

from where −K3(y) = −E2 y (Γ
1
(1,2)) + (Γ1

(1,2)(y))
2 − (Γ1

(2,3)(y))
2. Similarly,

computing R y (E2 ∧ E3) in the basis �E1 y , �E2 y , �E3 y ,⎛⎝−K1(y)

0

0

⎞⎠ = R y (�E1) = R y (E2 ∧ E3)

=

⎛⎜⎝ 0

Γ2
(3,1)

0

⎞⎟⎠ ∧

⎛⎜⎝−Γ1
(1,2)

Γ3
(3,1)

Γ1
(2,3)

⎞⎟⎠+

⎛⎜⎝−E2(Γ
1
(1,2))

E2(Γ
3
(3,1))

E2(Γ
1
(2,3))

⎞⎟⎠−

⎛⎜⎝ 0

E3(Γ
2
(3,1))

0

⎞⎟⎠
− (Γ2

(3,1) + Γ1
(2,3))

⎛⎜⎝Γ1
(2,3)

Γ1
(3,1)

Γ1
(1,2)

⎞⎟⎠− Γ1
(1,2)

⎛⎜⎝−Γ1
(1,2)

Γ3
(3,1)

Γ1
(2,3)

⎞⎟⎠
=

⎛⎜⎝ −E2(Γ
1
(1,2))− (Γ1

(2,3))
2 + (Γ1

(1,2))
2

E2(Γ
3
(3,1))− E3(Γ

2
(3,1))− (Γ2

(3,1) + Γ1
(2,3))Γ

1
(3,1) − Γ1

(1,2)Γ
3
(3,1)

E2(Γ
1
(2,3))− 2Γ1

(1,2)Γ
1
(2,3),

⎞⎟⎠
leads us to

−K1(y) = −E2 y (Γ
1
(1,2))−

(
Γ1
(2,3)(y)

)2
+
(
Γ1
(1,2)(y)

)2
.

By comparing to the result of the computations of R y (E1 ∧ E2) and

R y (E2 ∧ E3) implies that K1(y) = K3(y). In other words, if one writes K(y)

for this common value K1(y) = K3(y), one sees that E2 y
⊥ is contained in
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the eigenspace of R y corresponding to the eigenvalue −K(y). This finishes

the proof of (i).

(ii) Suppose now that Γ1
(2,3) �= 0 on an open connected subset U of

πODR
(q0),M (O). Then since E1(Γ

1
(2,3)) = 0, E3(Γ

1
(2,3)) = 0 on U , one has, on U ,

[E3, E1](Γ
1
(2,3)) = E3(E1(Γ

1
(2,3)))− E1(E3(Γ

1
(2,3))) = 0.

On the other hand, [E3, E1] = −Γ1
(3,1)E1 + 2Γ1

(2,3)E2 − Γ3
(3,1)E3, so

0 = [E3, E1](Γ
1
(2,3))

= −Γ1
(3,1)E1(Γ

1
(2,3)) + 2Γ1

(2,3)E2(Γ
1
(2,3))− Γ3

(3,1)E3(Γ
1
(2,3))

= 2Γ1
(2,3)E2(Γ

1
(2,3)).

Since Γ1
(2,3) �= 0 everywhere on U , one has E2(Γ

1
(2,3)) = 0 on U . Because

E1, E2, E3 span TM on U , we have that all the derivatives of Γ1
(2,3) vanish on U

and thus it is constant. From the first row of the computation of R(E1 ∧ E2)

in the case (ii) above, one gets

0 = −E2(Γ
1
(2,3)) + 2Γ1

(1,2)Γ
1
(2,3) = 2Γ1

(1,2)Γ
1
(2,3),

which implies Γ1
(1,2) = 0 on U . Finally from the last row computation of

R(E1 ∧ E2) (recall that K1(y) = K3(y) =: K(y)), one gets

−K(y) = −E2(Γ
1
(1,2)) + (Γ1

(1,2))
2 − (Γ1

(2,3))
2 = −(Γ1

(2,3))
2.

This concludes the proof of (ii).

(iii) This case follows from Theorem C.14.

We next provide two technical propositions which are needed to conclude

the proof of Theorem 5.1 and Theorem 5.3.

Proposition C.18. — Let (M, g), (M̂ , ĝ) be two Riemannian manifolds of

dimension 3, q0 = (x0, x̂0;A0) ∈ Q and suppose there is an open subset O

of ODR
(q0) and a smooth unit vector field E2 ∈ VF(πQ,M (O)) such that

ν(A�E2) q is tangent to ODR
(q0) for all q ∈ O. If the orbit ODR

(q0) is not

open in Q, then for any x ∈ πQ,M (O) and any unit vector fields E1, E3 such

that E1, E2, E3 is an orthonormal frame in some neighborhood U of x in M ,

the connection table associated to E1, E2, E3 is given by

Γ =

⎛⎜⎝Γ1
(2,3) 0 −Γ1

(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 Γ1

(2,3)

⎞⎟⎠ ,
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and

V (Γ1
(2,3)) = 0, V (Γ1

(1,2)) = 0, ∀V ∈ E2 y
⊥, y ∈ U,

where Γ = [(Γj
�i)

i
j ],Γ

j
(i,k) = g(∇EjEi, Ek) and �1 = (2, 3), �2 = (3, 1), �3 = (1, 2).

Remark C.19. — In particular, this means that the assumptions of the pre-

vious proposition imply that the assumptions of Proposition C.17 are fulfilled.

Proof. — Notice that πQ,M (O) is open in M since πODR
(q0),M = πQ,M ODR

(q0)

is a submersion. Without loss of generality, we may assume that there exist

E1, E3 ∈ VF(πQ,M (O)) such that E1, E2, E3 form an orthonormal basis.

We begin by computing in O the following Lie bracket,[
LR(E2), ν((.)�E2)

]
q = −LNS(A(�E2)E2) q + ν(A�∇E2E2) q

= ν(A�(−Γ2
(1,2)E1 + Γ2

(2,3)E3) q =: V2 q ,

whence V2 is a vector field in O and furthermore[
V2, ν((.)�E2)

]
q = ν(A[�(−Γ2

(1,2)E1 + Γ2
(2,3)E3), �E2]so) q

= ν(A�(−Γ2
(1,2)E3 − Γ2

(2,3)E1)) q =: M2 q ,

whereM2 is a vector field in O as well. Now if there were an open subset O′ of O
the πODR

(q0)-vertical vector fields where ν(A�E2) q , V2 q ,M2 q were linearly

independent for all q ∈ O′, it would follow that they form a basis of V q (πQ)

for q ∈ O′ and hence V q (πQ) ⊂ T q (ODR
(q0)) for q ∈ O′. Then Corollary 4.18

would imply that ODR
(q0) is open, which is a contradiction. Hence in a dense

subset Od of O one has that ν(A�E2) q , V2 q ,M2 q are linearly dependent

which implies

0 = det

⎛⎜⎝ 0 1 0

−Γ2
(1,2) 0 Γ2

(2,3)

−Γ2
(2,3) 0 −Γ2

(1,2)

⎞⎟⎠ = −(Γ2
(1,2))

2 − (Γ2
(2,3))

2,

i.e.,

Γ2
(1,2) = 0 and Γ2

(2,3) = 0,

on πODR
(q0),M (Od). It is clear that πODR

(q0),M (Od) is dense in πODR
(q0),M (O)

so the above relation holds on the open subset πODR
(q0),M (O) of M .
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Next compute[
LR(E1), ν((.)�E2)

]
q = LNS(AE3) q + ν

(
A�(−Γ1

(1,2)E1 + Γ1
(2,3)E3)

)
q

= LR(E3) q − L3 q ,[
LR(E3), ν((.)�E2)

]
q = −LNS(AE1) q − ν

(
A�(−Γ3

(1,2)E1 + Γ3
(2,3)E3)

)
q

= −LR(E1) q + L1 q ,

where L1, L3 ∈ VF(O′) such that

L1 q : = LNS(E1) q + ν
(
A�(−Γ3

(1,2)E1 + Γ3
(2,3)E3)

)
q ,

L3 q : = LNS(E3) q − ν
(
A�(−Γ1

(1,2)E1 + Γ1
(2,3)E3)

)
q .

Continuing by taking brackets of these against ν(A�E2) q gives[
L1, ν((.)�E2)

]
q = ν(A�(−Γ1

(1,2)E1 + Γ1
(2,3)E3)) q

+ ν(A[�(−Γ3
(1,2)E1 + Γ3

(2,3)E3), �E2]so) q

= ν(A�(−(Γ1
(1,2) + Γ3

(2,3))E1 + (Γ1
(2,3) − Γ3

(1,2))E3) q =: M3,[
L3, ν((.)�E2)

]
q = ν(A�(−Γ3

(1,2)E1 + Γ3
(2,3)E3)) q

− ν(A[�(−Γ1
(1,2)E1 + Γ1

(2,3)E3), �E2]so) q

= ν(A�((−Γ3
(1,2) + Γ1

(2,3))E1 + (Γ3
(2,3) + Γ1

(1,2))E3) q =: M1.

Since ν(A�E2) q ,M1 q ,M3 q are smooth πODR
(q0)-vertical vector fields de-

fined on O′, we may again resort to Corollary 4.18 to deduce that

0 = det

⎛⎜⎝ 0 1 0

−(Γ1
(1,2) + Γ3

(2,3)) 0 Γ1
(2,3) − Γ3

(1,2)

−Γ3
(1,2) + Γ1

(2,3) 0 Γ3
(2,3) + Γ1

(1,2)

⎞⎟⎠
= −((Γ1

(1,2) + Γ3
(2,3))

2 + (Γ1
(2,3) − Γ3

(1,2))
2
)
,

i.e., Γ3
(2,3) = −Γ1

(1,2), Γ
3
(1,2) = Γ1

(2,3) on πODR
(q0),M (O). We will now prove that

derivatives of Γ1
(2,3) and Γ1

(1,2) in the E⊥
2 -directions vanish on πODR

(q0),M (O).

To reach this we first notice that

L1 q = LNS(E1) q − ν
(
A�(Γ1

(2,3)E1 + Γ1
(1,2)E3)

)
q ,
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and then compute[
LR(E1), L1

]
q = LNS(Γ

1
(1,2)E2 − Γ1

(3,1)E3) q − LR(∇E1E1) q

+ ν(AR(E1 ∧ E1)− R̂(AE1 ∧ 0)A) q + Γ1
(1,2)LNS(AE2) q

− ν
(
A�(E1(Γ

1
(2,3))E1 + E1(Γ

1
(1,2))E3)

)
q

− ν
(
A�(Γ1

(2,3)(Γ
1
(1,2)E2 − Γ1

(3,1)E3)

+ Γ1
(1,2)(Γ

1
(3,1)E1 − Γ1

(2,3)E2))
)

q

= Γ1
(1,2)LR(E2) q − Γ1

(3,1)L3 q − LR(∇E1E1) q

− ν
(
A�(E1(Γ

1
(2,3))E1 + E1(Γ

1
(1,2))E3)

)
q .

So if one define J1 q := ν
(
A�(E1(Γ

1
(2,3))E1 + E1(Γ

1
(1,2))E3)

)
q , then J1 is a

smooth vector field in O (tangent to ODR
(q0)) and[

J1, ν((.)�E2

]
q = ν

(
A�(E1(Γ

1
(2,3))E3 − E1(Γ

1
(1,2))E1)

)
q .

Since ν(A�E1) q , J1 q and [J1, ν((.)�E2] q are πODR
(q0) vertical vector fields

in O and ODR
(q0) is not open, we again deduce that

E1(Γ
1
(2,3)) = 0, E1(Γ

1
(1,2)) = 0.

In a similar way,[
LR(E3), L3

]
q = LNS(Γ

3
(3,1)E1 + Γ1

(1,2)E2) q − LR(∇E3E3) q

+ ν(AR(E3 ∧ E3)− R̂(AE3 ∧ 0)A) q

+ Γ1
(1,2)LNS(AE2) q

− ν
(
A�(−E3(Γ

1
(1,2))E1 + E3(Γ

1
(2,3))E3)

)
q

− ν
(
A�(−Γ1

(1,2)(Γ
1
(2,3)E2 − Γ3

(3,1)E3)

+ Γ1
(2,3)(Γ

3
(3,1)E1 + Γ1

(1,2)E2)
)

q

= Γ3
(3,1)L1 q + Γ1

(1,2)LR(E2) q − LR(∇E3E3) q

− ν
(
A�(−E3(Γ

1
(1,2))E1 + E3(Γ

1
(2,3))E3)

)
q ,

so J3 q := ν
(
A�(−E3(Γ

1
(1,2))E1 + E3(Γ

1
(2,3))E3)

)
q defines a smooth vector

field on O and[
J3, ν((.)�E2)

]
q = ν

(
A�(−E3(Γ

1
(1,2))E3 − E3(Γ

1
(2,3))E1)

)
q .

The same argument as before implies that E3(Γ
1
(1,2)) = 0, E3(Γ

1
(2,3)) = 0. Since

E⊥
2 is spanned by E1, E3, the claim follows. This completes the proof.
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We next provide a complementary result to Proposition C.18 which will be

fundamental for the proof of Theorem 5.3.

Proposition C.20. — Let (M, g), (M̂ , ĝ) be two Riemannian manifolds of

dimension 3, q0 = (x0, x̂0;A0) ∈ Q. Assume that there is an open subset O of

ODR
(q0) and a smooth orthonormal local frame E1, E2, E3 ∈ VF(U) defined

on the open subset U := πQ,M (O) of M with respect to which the connection

table has the form

Γ =

⎛⎜⎝Γ1
(2,3) 0 −Γ1

(1,2)

Γ1
(3,1) Γ2

(3,1) Γ3
(3,1)

Γ1
(1,2) 0 Γ1

(2,3)

⎞⎟⎠ ,

and that moreover, for all V ∈ E2 y
⊥ and all y ∈ U ,

V (Γ1
(2,3)) = 0, V (Γ1

(1,2)) = 0.

Define smooth vector fields L1, L2, L3 on the open subset Õ := π−1
Q,M (U) of Q

by

L1 q = LNS(E1) q − ν
(
A�(Γ1

(2,3)E1 + Γ1
(1,2)E3)

)
q ,

L2 q = Γ1
(2,3)(x)LNS(E2) q ,

L3 q = LNS(E3) q − ν
(
A�(−Γ1

(1,2)E1 + Γ1
(2,3)E3)

)
q .

Then we have the following:

(i) If ν(A�E2) q is tangent to the orbit ODR
(q0) at every point q ∈ O, then

the vectors

LR(E1) q , LR(E2) q , LR(E3) q , ν(A�E2) q , L1 q , L2 q , L3 q ,

are all tangent to ODR
(q0) for every q ∈ O.

(ii) On Õ we have the following Lie-bracket formulas[
LR(E1), ν((.)�E2)

]
q = LR(E3) q − L3 q ,[

LR(E2), ν((.)�E2)
]

q = 0,[
LR(E3), ν((.)�E2)

]
q = −LR(E1) q + L1 q ,[

L1, ν((.)�E2)] q = 0,[
L3, ν((.)�E2)] q = 0,[
LR(E1), L1

]
q = −Γ1

(3,1)L3 q + Γ1
(3,1)LR(E3) q ,[

LR(E3), L3

]
q = Γ3

(3,1)L1 q − Γ3
(3,1)LR(E1) q ,
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[
LR(E2), L1

]
q = Γ1

(1,2)L1 q − (Γ1
(2,3) + Γ2

(3,1))L3 q ,[
LR(E2), L3

]
q = (Γ1

(2,3) + Γ2
(3,1))L1 q + Γ1

(1,2)L3 q ,[
LR(E3), L1

]
q = 2L2 q − Γ3

(3,1)L3 q − LR(∇E1E3) q

− Γ1
(2,3)LR(E2) q

− (K2 + (Γ1
(2,3))

2 + (Γ1
(1,2))

2
)
ν(A�E2) q ,[

LR(E1), L3

]
q = −2L2 q + Γ1

(3,1)L1 q − LR(∇E3E1) q

+ Γ1
(3,1)LR(E2) q ,

+ (K2 + (Γ1
(1,2))

2 + (Γ1
(2,3))

2)ν(A�E2) q ,[
L3, L1

]
q = 2L2 q − Γ1

(3,1)L1 q − Γ3
(3,1)L3 q

− (K2 + (Γ1
(2,3))

2 + (Γ1
(1,2))

2)ν(A�E2) q .

Proof. — It has been already shown in the course of the proof of Proposition

C.18 that the vectors LR(E1) q ,LR(E2) q ,LR(E3) q , ν(A�E2) q , L1 q , L3 q

are tangent to ODR
(q0) for q ∈ O. Moreover, the first 7 brackets appearing in

the statement of this corollary are immediately established from the compu-

tations done explicitly in the proof of Proposition C.18. We compute,

[LR(E2), L1] q = −LR(∇E1E2) q + LNS(−Γ2
(3,1)E3) q

+ ν
(
AR(E2 ∧ E1)− R̂(AE2 ∧ 0)A

)
+ LNS(A(�(Γ1

(2,3)E1 + Γ1
(1,2)E3))E2) q

− ν
(
A�(Γ1

(2,3)(−Γ2
(3,1)E3) + Γ1

(1,2)(Γ
2
(3,1)E1))

)
q

− ν
(
A�(E2(Γ

1
(2,3))E1 + E2(Γ

1
(1,2))E3)

)
q

= −LR(∇E1E2) q − Γ2
(3,1)L3 q +Kν(A�E3) q

+ LNS(A(Γ1
(2,3)E3 − Γ1

(1,2)E1)) q

− ν
(
A�(E2(Γ

1
(2,3))E1 + E2(Γ

1
(1,2))E3)) q

= −LR(∇E1E2) q − Γ2
(3,1)L3 q + LR(Γ

1
(2,3)E3

− Γ1
(1,2)E1) q − Γ1

(2,3)L3 + Γ1
(1,2)L1

+ (2Γ1
(2,3)Γ

1
(1,2) − E2(Γ

1
(2,3)))ν(A�E1) q

+ (−E2(Γ
1
(1,2)) +K − (Γ1

(2,3))
2 + (Γ1

(1,2))
2)ν(A�E3) q .

One knows from Eq. (58) that

−K = −E2(Γ
1
(1,2)) + (Γ1

(1,2))
2 − (Γ1

(2,3))
2, −E2(Γ

1
(2,3)) + 2Γ1

(1,2)Γ
1
(2,3) = 0
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and since also ∇E1E2 = −Γ1
(1,2)E1 + Γ1

(2,3)E3, this simplifies to[
LR(E2), L1

]
q
= −Γ2

(3,1)L3 q − Γ1
(2,3)L3 + Γ1

(1,2)L1.

The Lie bracket [LR(E2), L3]q can be found by similar computations. We

compute [LR(E3), L1] q . We have, recalling that Ei(Γ
1
(2,3)) = 0, Ei(Γ

1
(2,3)) = 0

for i = 1, 3,[
LR(E3), L1

]
q = −LR(∇E1E3) q + LNS

(
Γ1
(2,3)E2 − Γ3

(3,1)E3

)
q

+ ν
(
AR(E3 ∧ E1) q − R̂(AE3 ∧ 0) q

+ LNS

(
A(�(Γ1

(2,3)E1 + Γ1
(1,2)E3))E3

)
q

− ν
(
A�(Γ1

(2,3)(Γ
1
(2,3)E2 − Γ3

(3,1)E3)

+ Γ1
(1,2)(Γ

3
(3,1)E1 + Γ1

(1,2)E2)
)

q

= −LR(∇E1E3) q +
(−K2 − (Γ1

(2,3))
2 − (Γ1

(1,2))
2
)
ν(A�E2) q

− Γ3
(3,1)L3 q − Γ1

(2,3)LR(E2) q + 2L2 q .

The computation of [LR(E1), L3] q is similar. We compute [L3, L1] with

the following four steps:[
LNS(E3),LNS(E1)

]
q = LNS

(− Γ1
(3,1)E1 + 2Γ1

(2,3)E2 − Γ3
(3,1)E3

)
q

+ ν(AR(E3 ∧ E1)− R̂(0 ∧ 0)A) q ,[
LNS(E3), ν

(
(.)�(Γ1

(2,3)E1 + Γ1
(1,2)E3)

)]
q

= ν
(
A�(Γ1

(2,3)(Γ
1
(2,3)E2 − Γ3

(3,1)E3) + Γ1
(1,2)(Γ

3
(3,1)E1 + Γ1

(1,2)E2))
)

q
,[

ν
(
(.)�(−Γ1

(1,2)E1 + Γ1
(2,3)E3)

)
,LNS(E1)

]
q

= −ν
(
A�(−Γ1

(1,2)(Γ
1
(1,2)E2 − Γ1

(3,1)E3) + Γ1
(2,3)(Γ

1
(3,1)E1 − Γ1

(2,3)E2))
)

q
,[

ν
(
(.)�(−Γ1

(1,2)E1 + Γ1
(2,3)E3)

)
, ν
(
(.)�(Γ1

(2,3)E1 + Γ1
(1,2)E3)

)]
q

= ν
(
A
[
�(−Γ1

(1,2)E1 + Γ1
(2,3)E3), �(Γ1

(2,3)E1 + Γ1
(1,2)E3)

]
so

)
q

=
(
(Γ1

(1,2))
2 + (Γ1

(2,3))
2
)
ν(A�E2) q .

Collecting these gives,

[L3, L1] q = −Γ1
(3,1)L1 q − Γ3

(3,1)L3 q + 2Γ1
(2,3)LNS(E2) q

− (K2 + (Γ1
(2,3))

2 + (Γ1
(1,2))

2
)
ν(A�E2) q .
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