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COMPACTNESS PROPERTIES OF PERTURBED
SUB-STOCHASTIC C0-SEMIGROUPS ON L1(μ)
WITH APPLICATIONS TO DISCRETENESS

AND SPECTRAL GAPS

Mustapha Mokhtar-Kharroubi

Abstract. — We deal with positive C0-semigroups (U(t))t�0 of contractions
in L1(Ω;A, μ) with generator T where (Ω;A, μ) is an abstract measure space
and provide a systematic approach of compactness properties of perturbed C0-
semigroups

(
et(“T−V ”))

t≥0 (or their generators) induced by singular potentials
V : (Ω;μ) → R+. More precise results are given in metric measure spaces
(Ω, d, μ). This new construction is based on several ingredients: new a pri-
ori estimates peculiar to L1-spaces, local weak compactness assumptions on
unperturbed operators, “Dunford-Pettis” arguments and the assumption that
the sublevel sets ΩM := {x;V (x) ≤ M} are “thin at infinity with respect to
(U(t))t�0”. We show also how spectral gaps occur when the sublevel sets are not
“thin at infinity”. This formalism combines intimately the kernel of (U(t))t�0
and the sublevel sets ΩM . Indefinite potentials are also dealt with. Various ap-
plications to convolution semigroups, weighted Laplacians and Witten Lapla-
cians on 1-forms are given.
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Résumé (Propriétés de compacité de semigroupes sous-stochastiques perturbés
dans L1 et applications aux spectres discrets et aux trous spectraux)

Nous traitons de C0-semigroupes à contractions positifs (U(t))t�0 dans
L1(Ω;A, μ) de générateur T où (Ω;A, μ) est un espace mesuré abstrait et
donnons une approche systématique des propriétés de compacité de C0-
semigroupes perturbés

(
et(“T−V ”))

t≥0 (ou de leurs générateurs) induites par
des potentiels singuliers V : (Ω;μ) → R+. Des résultats plus précis sont donnés
pour des espaces métriques mesurés (Ω, d, μ). Cette nouvelle construction
repose sur plusieurs ingrédients : de nouvelles estimations a priori propres
aux espaces L1, des hypothèses de compacité locale faible sur les opérateurs
non perturbés, des arguments de type « Dunford-Pettis » et l’hypothèse que
les sous-ensembles de niveau ΩM := {x;V (x) ≤ M} sont « fins à l’infini par
rapport à (U(t))t�0 ». Nous montrons aussi l’apparition de trous spectraux
lorsque les sous-ensembles de niveaux ΩM ne sont pas « fins à l’infini par rap-
port à (U(t))t�0 ». Ce formalisme combine intimement le noyau de (U(t))t�0
et les sous ensembles de niveau ΩM . Les potentiels indéfinis sont aussi traités.
Des applications variées aux semigroupes de convolution, aux Laplaciens à
poids et aux Laplaciens de Witten sur les 1-formes sont données.
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CHAPTER 1

INTRODUCTION

This work is an improved version of [44] and provides new functional an-

alytic tools and results on perturbation theory and spectral analysis of sub-

stochastic C0-semigroups in L1 spaces and also various related results of ap-

plied interest. Before outlining the content of this work, some information in

Hilbert space setting is worth mentioning. According to a classical result go-

ing back at least to K. Friedrichs [18], the spectrum of a Schrödinger operator

in L2(RN )

(−Δ)� V (form-sum)

is discrete (i.e. consists of isolated eigenvalues with finite multiplicity) or equiv-

alently (−Δ)� V has a compact resolvent for nonnegative potentials

V ∈ L1
loc(R

N ) such that lim
|x|→∞

V (x) = +∞.

Of course, it is also known since a long time that this condition is not necessary

since F. Rellich [64] already observed for example that for the potential

(1) V (x1, x2) = x21x
2
2,

(−Δ) � V is still resolvent compact in L2(R2) even if V (x1, x2) fails to go

to +∞ at infinity near the axes. Besides K. Friedrichs [18], the literature

on discreteness of the spectrum of Schrödinger operators goes back to A.M.

Molchanov [54] and is now considerable; we refer to the survey [69] and also to

the more recent paper [41] for more developments. This literature deals with

Schrödinger operators on more general non-compact Riemannian manifolds

and provides optimal (i.e. necessary and sufficient) conditions of discreteness in

terms of Wiener capacity of suitable sets. Such sharp results are not always of

simple practical use, but sufficient or necessary conditions in terms of measures
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are also available. For instance, we note A.M. Molchanov’s necessary condition

of discreteness ∫
B(x,r)

V (y)dy −→ +∞ as |x| → ∞

where B(x, r) is the ball centered at x with radius r. We note also that if for

any M > 0 the sublevel set

ΩM :=
{
y;V (y) ≤ M

}
is “thin at infinity” in the sense that for some r > 0

(2)
∣∣B(x, r) ∩ ΩM

∣∣ −→ 0 as |x| → ∞
(here

∣∣Ξ∣∣ refers to Lebesgue measure of a measurable set Ξ) then (−Δ) � V

has a discrete spectrum, see [69], Corollary 10.2, p. 268.

In ([20], Lemma 5 and Remark 2), it is observed that the sublevel sets of a

nonnegative function V are “thin at infinity” if and only if for some r > 0

(3)

∫
B(x,r)

1

1 + V (y)
dy −→ 0 as |x| → ∞;

the argument relies on the simple double inequality (for arbitrary M > 0)

1

1 +M

∣∣B(x, r) ∩ ΩM

∣∣ ≤ ∫
B(x,r)

1

1 + V (y)
dy,

∫
B(x,r)

1

1 + V (y)
dy ≤ ∣∣B(x, r) ∩ ΩM

∣∣+ 1

1 +M

∣∣B(0, r)
∣∣.

One realizes then that the above sufficient criterion of discreteness coincides

with the one already given in [6] under Assumption (3); one sees also that

A.M. Molchanov’s necessary condition follows from “thinness at infinity” of

sublevel sets ΩM since

∣∣B(0, r)
∣∣ = ∣∣B(x, r)

∣∣ = ∫
B(x,r)

√
1 + V (y)√
1 + V (y)

dy

≤
(∫

B(x,r)

1

1 + V (y)
dy

) 1
2
(∫

B(x,r)
(1 + V (y)

)
dy)

1
2

and then ∫
B(x,r)

V (y)dy � −∣∣B(0, r)
∣∣+ |B(0, r)

∣∣2∫
B(x,r)

1
1+V (y) dy

;

it seems that this has not been noticed in the literature on the subject.

MÉMOIRES DE LA SMF 148



CHAPTER 1. INTRODUCTION 3

More recently, it was shown in [36] that (−T )� V is resolvent compact in

L2(RN ) when T is the relativistic α-stable operator

(4) T = −(−Δ+m
2
α )

α
2 +m

provided that

lim
|x|→∞

V (x) = +∞.

This result was extended in [76] (for sublevels sets ΩM having finite mea-

sure only) to much more general symmetric Markov generators in L2(Ω;μ)

satisfying the so-called intrinsic super Poincaré inequality and such that the

Markov semigroup has a density with respect to μ. The proof given by the

authors is however quite involved and combines various technical arguments;

shortly after, a simpler proof was given in [72] and other developments, still

for self-adjoint operators in Hilbert spaces, were also given in [20], [37]. Even

the finiteness assumption on the measure of the sublevels sets ΩM has been

dropped. For instance, we find in [72] that if T is a self-adjoint operator

in L2(Ω;μ) such that
{
etT ; t � 0

}
is an ultracontractive C0-semigroup in the

sense that

(5) etT ∈ L(L2(Ω;μ), L∞(Ω;μ)
)

(for some t > 0) then (−T )�V is resolvent compact in L2(Ω;μ) provided that

V ∈ L1
loc(R

N ) and V � 0 is such that its sublevels sets are r-polynomially thin

(for some r > 0), i.e. for any R > 0∫
ΩM

∣∣ΩM ∩B(x;R)
∣∣rμ(dx) < +∞.

We note that in R
N , r-polynomially thin set is necessarily thin at infinity in

the sense (2) (see [20] Lemma 7).

There exists also an important literature on Poincaré (or spectral gap) in-

equality for Markov C0-semigroups arising in Probability and Statistical Me-

chanics

varμ(f) :=

∫
Ω
f2dμ−

(∫
Ω
f dμ

)2 ≤ c(A
1
2 f,A

1
2 f), f ∈ D(A

1
2 ),

(of interest e.g. for exponential trend to equilibrium) where (Ω, μ) is a prob-

ability space, A is a nonnegative self-adjoint operator in L2(Ω, μ), 1 ∈ D(A)

and A1 = 0. Such an inequality is sometimes derived from Log Sobolev

(or Gross) inequalities; see e.g. [25], [66], [27], [75], [3]. Note that this notion

of a spectral gap amounts to the fact that 0, the bottom of σ(A), is an isolated

simple eigenvalue; as such, this notion is meaningful in much more general

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



4 CHAPTER 1. INTRODUCTION

(e.g. non hilbertian) contexts even if, of course, it cannot be formulated in

terms of variance inequality. This inequality amounts to strict positivity of

the bottom of the essential spectrum σess(A); we refer to [62], [43] for the

location of essential spectra of Schrödinger operators (−Δ) � V in L2(RN )

when the sublevel sets of V are not “thin at infinity”. We refer also to [13] for

different related spectral problems. We point out that all the results above

are hilbertian in nature. (We mention however a paper [22] dealing with

spectral gaps for bounded positive operators in Lp spaces (1 < p < ∞) and

applications.) We point out that neither L1 compactness results nor spectral

gap results in L1 spaces can a priori be derived from this literature.

1.1. A new formalism in L1 spaces

This work is intended to provide a new point of view on these spectral

problems in abstract L1 spaces. Let

(Ω;A, μ)

denote a general measure space and let (U(t))t�0 be a positive C0-semigroup

of contractions (i.e. a substochastic C0-semigroup) on L1(Ω;A, μ) with gener-

ator T. In the sequel, for brevity, we will write L1(Ω;μ) or even L1(Ω) unstead

of L1(Ω;A, μ). We denote by

V : Ω −→ R+,

a nonnegative (or more generally bounded from below) finite almost every-

where measurable function, i.e.

(6) 0 ≤ V (x) < +∞ a.e.

Let

Vn := V ∧ n

and let (et(T−Vn))t�0 be the C0-semigroup generated by T−Vn. It is elementary

to see that

et(T−Vn+1)f ≤ et(T−Vn)f, ∀f ∈ L1
+(Ω;μ)

so that a monotone convergence in L1(Ω;μ)

(7) UV (t)f := lim
n→+∞ et(T−Vn)f

defines a semigroup (UV (t))t�0. This semigroup is a priori strongly continuous

for t > 0 only (see e.g. [2]). We say that

(8) V is admissible for (U(t))t�0

MÉMOIRES DE LA SMF 148
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if (UV (t))t�0 is a C0-semigroup, i.e. is strongly continuous at t = 0. In such a

case, TV , the generator of (UV (t))t�0, is an extension of

T − V : D(T ) ∩D(V ) −→ L1(Ω;μ).

Note that if

D(T ) ∩D(V ) is dense in L1(Ω;μ)

then V is admissible for (U(t))t�0, see [74] Proposition 2.9. (The above con-

siderations hold in all Lp spaces, see [74]. Actually, this construction extends

in case (U(t))t�0 is not positive but is dominated by a positive contraction

C0-semigroup and also to complex potentials V , see [39].)

We deal here with spectral theory of perturbed C0-semigroups (UV (t))t�0

or perturbed generators TV . More precisely, we are concerned with resolvent

compactness of TV and, more generally, with existence of spectral gaps for

perturbed generators, i.e.

(9) sess(TV ) < s(TV )

where

s(TV ) := sup
{
Reλ;λ ∈ σ(TV )

}
is the spectral bound of TV and

sess(TV ) := sup
{
Reλ;λ ∈ σess(TV )

}
is the essential spectral bound of TV , (σess refers to essential spectrum). Note

that s(TV ) ∈ σ(TV ) and s(TV ) coincides with the type ω of (UV (t))t�0 from

classical theory of positive C0-semigroups on Lp spaces (see [55], [77]). Note

also that (9) implies that

σ(TV ) ∩
{
λ; Reλ > sess(TV )

}
consists of a nonempty set of isolated eigenvalues with finite algebraic multi-

plicities.

We study also the compactness of the perturbed C0-semigroup (UV (t))t�0

and, more generally, its essential compactness i.e.

(10) ress
(
UV (t)

)
< rσ

(
UV (t)

)
where rσ

(
UV (t)

)
is the spectral radius of UV (t) (rσ(UV (t)) = eωt) and

ress
(
UV (t)

)
:= sup

{|μ|;μ ∈ σess(UV (t))
}

is the essential spectral radius of UV (t).

Note that we can attach to (UV (t))t�0 an essential type

ωess ∈
[−∞, s(TV )

]

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



6 CHAPTER 1. INTRODUCTION

such that

ress
(
UV (t)

)
= eωesst (t ≥ 0),

(see e.g. [55], p. 73–74). We say that (UV (t))t�0 has a spectral gap if (10) is

satisfied or equivalently if

ωess < s(TV ).

Similarly, (10) implies that

σ
(
UV (t)

) ∩ {
β; |β| > ress(UV (t))

}
consists of a nonempty set of isolated eigenvalues with finite algebraic multi-

plicities; this in turn implies that

σ(TV ) ∩
{
λ; Reλ > ωess

}
consists of a nonempty set of isolated eigenvalues with finite algebraic multi-

plicities (see e.g. [55]) and consequently

sess(TV ) ≤ ωess.

Thus the existence of a spectral gap for (UV (t))t�0 implies that TV has also

a spectral gap while the converse statement is not true in general. Indeed, in

practice, unless we know that (UV (t)) t�0 is operator norm continuous, i.e.

(0,+∞) 
 t �−→ UV (t) ∈ L(L1(Ω;μ)
)

(or at least for large t) is continuous in operator norm, a priori we do not have

a spectral mapping theorem for (UV (t))t�0 and its spectral properties cannot

be completely inferred from the knowledge of σ(TV ).

Here the essential spectrum σess(O) of a closed linear operator O on a Ba-

nach space X is the complement of its Fredholm domain. It is known that

if O∈ L(X) then

σess(O + S) = σess(O)

for any strictly singular operator S (see e.g. [38], Proposition 2.c.10, p. 79

or [34]) and consequently

ress(O + S) = ress(O).

(We point out that there are several non equivalent concepts of essential spec-

tra but, for bounded operators, the corresponding essential spectral radius is

the same for all them, see [17], Corollary 4.11, p. 44.) It is known also that

in L1-spaces the class of strictly singular operators is nothing but the class of

weakly compact operators, see [61]. The use of weak compactness turns out to

be the right tool for spectral theory in L1 spaces; indeed, most of our proofs

rely on weak compactness arguments.

MÉMOIRES DE LA SMF 148
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Note that the (a priori) domination

UV (t) ≤ U(t)

shows easily that if (U(t))t�0 is compact then so is (UV (t))t�0 regardless of the

properties of V ; of course, we are particularly interested in the more interesting

case where the unperturbed C0-semigroup (U(t))t�0 is neither compact nor

essentially compact (see also Remark 19 below).

This work provides a new and systematic approach of compactness or essen-

tial compactness properties of perturbed C0-semigroups (UV (t))t�0 (induced

by singular potentials V ). While most of the known literature on full dis-

cretenes or spectral gaps is concerned with hilbertian results and quite often

by self-adjoint semigroups, we give here a new point of view relying on a

new circle of ideas peculiar to L1-spaces without any connection with self-

adjointness. In our general context, the relevant technical tools we need will

be different depending on whether we deal with TV or (UV (t))t�0 . Thus, in our

study of spectral properties of perturbed generators TV , we take advantage of

the quite unsuspected fact (in comparison to L2-space setting) that V is always

TV -bounded in L1 spaces [56], [74], i.e. the perturbed resolvent (λ− TV )
−1 is

always smoothing in the sense that

(λ− TV )
−1 ∈ L(L1

(
Ω;μ);D(V )

)
where D(V ), the domain of the multiplication operator by V, is endowed

with the graph norm. We point out that in general the perturbed semigroup

(UV (t))t�0 need not be smoothing, see Remark 10 below, (this explains why

our results are much more systematic for perturbed generators than for per-

turbed semigroups). To study spectral properties of perturbed C0-semigroups

(UV (t))t�0, we provide two different strategies. The first strategy consists in

assuming that (U(t))t�0 is operator norm continuous, (i.e.

(0,+∞) 
 t �−→ U(t) ∈ L(L1(Ω;μ)
)

is continuous in operator norm), in showing the operator norm continuity of

the perturbed C0-semigroup (UV (t))t�0 and in taking advantage of spectral

properties of TV and “spectral mapping tools” for operator norm continuous

C0-semigroups. The second (direct) strategy relies on the possibility for the

perturbed C0-semigroup (UV (t))t�0 to be smoothing too. Indeed, we show

first that a smoothing effect

(11) UV (t) ∈ L(L1
(
Ω;μ);D(V )

)
(t > 0)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



8 CHAPTER 1. INTRODUCTION

has a dual characterization

(12) U∗V (t)V ∈ L∞(Ω;μ) (t > 0)

where (12) is understood as

sup
n

∥∥U∗V (t)Vn

∥∥
L∞(Ω;μ)

< +∞
where Vn = V ∧ n.

Such a smoothing effect (11) implies a “weak type” estimate

(13)

∫
{V >M}

(UV (t)f)μ(dx) ≤
ct
∥∥f∥∥
M

, ∀f ∈ L1
+(Ω;μ), ∀M, t > 0

(with 0 < ct < +∞ ) which plays a key role in this paper.

We show that a sufficient condition for (11) to hold is

(14) ct := lim inf
ε→0+

∥∥∥U∗V (t+ ε)1− U∗V (t)1
ε

∥∥∥
L∞(Ω;μ)

< +∞, (t > 0)

where U∗V (t) is the dual operator of UV (t). Actually, the contractivity of

(UV (t))t�0 shows that (14) is equivalent to

lim inf
ε→0+

∥∥∥U∗V (t+ ε)1− U∗V (t)1
ε

∥∥∥
L∞(Ω;μ)

< +∞, (t ∈ (
0, δ)

)
for some small δ > 0. A sufficient condition for (14) to hold is

lim
ε→0+

U∗V (t+ ε)1− U∗V (t)1
ε

exists in weak star topology

i.e.

(15) U∗V (t)1 ∈ D
(
(TV )

∗), (t > 0)

((TV )
∗, the dual of TV , is the weak star generator of (U∗V (t))t�0) or equivalently

(16) ∀f ∈ L1(Ω;μ), (0,+∞) 
 t �−→
∫

UV (t)f is differentiable.

If

(17) (0,+∞) 
 t �−→ U∗V (t)1 ∈ L∞(Ω) is continuous

(or equivalently if U∗V (t)1 ∈ D((TV )∗) for all t > 0) then (14) and (16) turn

out to be equivalent.

We point out that (16) is much weaker than demanding that (UV (t))t�0

is a differentiable semigroup. Actually, our main assumption (11) is not on the

“regularity” of (UV (t))t�0. Indeed, we will show that one dimensional transla-

tion semigroups could satisfy (11) although they are not even operator norm

continuous (see Proposition 8 below).

MÉMOIRES DE LA SMF 148
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A peculiarity of Assumption (14) is that it concerns the dual perturbed semi-

group (U∗V (t))t�0 which is not a priori a “given object” in contrast to (U(t))t�0

and V . The good news is that (14) is always satisfied if

(18)
(
U(t)

)
t�0

is holomorphic

because (UV (t))t�0 is then holomorphic too [2], [31]. On the other hand, it is

an open problem (even for bounded V ) to decide whether a differentiability

of (U(t))t�0 can be inherited by (UV (t))t�0 regardless of V (see e.g. [65]).

Note that a sufficient condition of (immediate) differentiability of a contraction

C0-semigroup (S(t))t�0 with generator G is

(19) ∃ω > 0, lim
|s|→∞

ln |s| · ∥∥(ω + is−G)−1
∥∥ = 0,

(see [60], Corollary 4.10, p. 58). We denote by P the class of C0-semigroups of

contractions with generators satisfying (19) and show that if (U(t))t�0 belongs

to P and if V belongs to its generalized Kato-class potentials, i.e.

(20) V is T -bounded and lim
λ→+∞

rσ
[
V (λ− T )−1

]
< 1,

then (UV (t))t�0 belongs also to P. Thus (14) is also satisfied for the class-P
differentiable C0-semigroups (U(t))t�0 and their generalized Kato-class poten-

tials V .

The weak type estimate (13) provides us with an alternative approach of

compactness or essential compactness of perturbed C0-semigroups (UV (t))t�0

when (U(t))t�0 is not a priori operator norm continuous; (this is useful e.g. for

some parabolic equations with unbounded drifts, see [53]). We note however

that even the class of holomorphic semigroups is already sufficiently rich to

provide us with a wealth of examples of practical interest, see Remark 27 and

Chapters 4 and 7.

We mention that the smoothing effect (11) did not appear in the initial ver-

sion [44] of this paper where the weak type estimate (13) (for almost all t > 0

only) is obtained under (14) and the additional assumption that L1(Ω;A, μ)

is separable. The smoothing effect (11) has been derived from (14) with M.

Brassart and its proof consists actually in pushing further the proof of the

weak type estimate given in [44].

The fact that V is TV -bounded, the weak type estimate (13) combined to

local weak compactness assumptions on unperturbed operators, to properties

of sublevel sets

ΩM :=
{
y;V (y) ≤ M

}
,
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more precisely their “size at infinity with respect to unperturbed operators”

(see the definition below), and to “Dunford-Pettis” arguments, play an impor-

tant part in our formalism and provide us with new relevant tools in spectral

theory of perturbed sub-stochastic C0-semigroups. Our local L1 weak com-

pactness assumptions on unperturbed operators are very weak ones and are

trivially satisfied by most examples occuring in the literature. We provide thus

a pure L1 theory on full discretenes or spectral gaps of perturbed substochastic

C0-semigroups.

For sub-Markov C0-semigroups (U(t))t�0 (i.e. which act in all Lp spaces as

positive contraction semigroups), the L1 spectral picture extends to Lp spaces,

providing us e.g. with hilbertian results, (while converse statements are not true

in general, see [10], Chapter 4.3). However, our aim here is rather to build and

explore an L1 spectral theory for its own sake; as far as we know, this program

is undertaken here for the first time.

As a consequence of our local weak-compactness assumptions, the unper-

turbed C0-semigroups (U(t))t�0 must exhibit integral kernels, (see Remark 28

below). We have in mind various kinds of transition kernels which appear in

the literature on Markov processes in metric spaces. For instance, the Heat

kernel associated to the Laplace Beltrami operator on non-compact complete

Riemannian manifolds (Ω, d, μ) of dimension n (d is the geodesic distance

and μ is the Riemannian volume) with Ricci curvature bounded below and

having the so-called “bounded geometry” (see [10] p. 172) satisfies a Gaussian

estimate for each t > 0

(21) pt(x, y) ≤ C1
t exp

(
− d(x, y)2

C2
t

)
,

see e.g. [10], [23]. However, Brownian motions on some fractal spaces lead to

transition kernels with sub-Gaussian estimates

(22) pt(x, y) ≤ C

t
α
β

exp
(
−

(dβ(x, y)
Ct

) 1
β−1

)
where α > 0 is the Hausdorff dimension and β > 2 is “a walk dimension”, see

e.g. [5]. On the other hand, the study of kernel estimates for non local Dirichlet

forms, in connection with Markov processes with jumps, developped also in

the last decades and typical kernel estimates of jump Markov C0-semigroups

are polynomial

(23) pt(x, y) ≤ C

t
α
β

(
1 +

d(x, y)

t
1
β

)−(α+β)
,

see e.g. [29].
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We point out that the analysis of one dimensional weighted shift semigroups

shows that a priori we cannot drop the assumption that (U(t))t�0 is a C0-

semigroup of (integral) kernel operators, see Remark 18.

1.2. Main results

Before outlining our main results, we mention first a useful abreviation used

throughout the paper in order to avoid cumbersome notations: for any linear

operator O ∈ L(L1(Ω;μ)) and for any measurable subset Ξ ⊂ Ω, the (abuse of)

notation

O : L1(Ω;μ) −→ L1(Ξ;μ)

refers to the operator

L1(Ω;μ) 
 f �−→ [Of ]|Ξ ∈ L1(Ξ;μ),

where [Of ]|Ξ is the restriction of Of to the subset Ξ.

Chapter 2 is devoted to various technical results. We show how (12) provides

a dual characterization of the smoothing effect (11). We show how Assump-

tion (14) implies the smoothing effect (11). We show also how (16) implies (14)

and why they are equivalent if (17) is satisfied. Besides the class of holomorphic

C0-semigroups (U(t))t�0 , we show how (14) is satisfied for class-P differen-

tiable C0-semigroups (U(t))t�0 and their generalized Kato class potentials V .

We show also the stability estimate for arbitrary C > 0

sup
t≤C

∥∥et(T−Vn)f − UV (t)f
∥∥ ≤ eC

∥∥ [V − Vn] (1− TV )
−1f

∥∥, ∀f ∈ L1
+(Ω;μ)

where Vn := V ∧n. Note that
{
[V − Vn] (1− TV )

−1}
n
is a sequence of bounded

operators going strongly to zero as n → +∞. This estimate implies that

(UV (t))t�0 is operator norm continuous provided that (U(t))t�0 is operator

norm continuous and

(24)
∥∥ [V − Vn] (1− TV )

−1∥∥
L(L1(Ω;μ))

−→ 0 as n → +∞.

Finally, we study whether weighted translation C0-semigroups (UV (t))t�0

on L1(R) satisfy or do not satisfy (11).

Chapter 3 contains our main compactness theorems for general measure

spaces (Ω;A, μ). We show that TV is resolvent compact provided that

(25) (λ− T )−1 : L1(Ω;μ) −→ L1(ΩM ;μ) is weakly compact

where

ΩM :=
{
y;V (y) ≤ M

}
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12 CHAPTER 1. INTRODUCTION

are the sublevel sets of V. See also Remark 16 for an additional statement

when the sublevel sets of V have finite measures.

If (UV (t))t�0 is operator norm continuous then (25) implies the stronger

result that the perturbed C0-semigroup (UV (t))t�0 is compact on L1(Ω;μ).

We can also avoid the operator norm continuity assumption. Indeed, if (11) is

satisfied then we show that (UV (t))t�0 is a compact C0-semigroup on L1(Ω;μ)

provided that

(26) U(t) : L1(Ω;μ) −→ L1(ΩM ;μ) is weakly compact (t > 0, M > 0).

See also Remark 20 for an additional statement when the sublevel sets of V

have finite measures. (Note that a weighted translation C0-semigroup on

L1(R) (see (42)) provides us with an example of a perturbed semigroup

(UV (t))t�0 which is never compact, whose generator TV could be resolvent

compact and such that the smoothing effect (11) could hold, see Remark 18.)

Before proceeding further the general theory, we devote Chapter 4 to a

specific class of C0-semigroups, the so-called convolution semigroups (related

to Lévy processes) on euclidean spaces because of their great applied interest.

We show first a preliminary technical result. Let h ∈ L1(RN ) and

H : L1(RN ) 
 ϕ −→
∫
RN

h(x− y)ϕ(y)dy ∈ L1(RN )

be the corresponding convolution operator on L1(RN ). If Ξ ⊂ R
N is a Borel

subset, we characterize the compactness of

H : L1(RN ) −→ L1(Ξ);

in particular, a sufficient condition for this to happen is that Ξ be “thin at

infinity”in the sense (2). This allows us to deal with convolution C0-semigroups

(U(t))t�0

U(t) : f ∈ L1(RN ) �−→
∫

f(x− y)mt(dy) ∈ L1(RN )

where {mt}t≥0 are Radon sub-probability measures on R
N such that m0 = δ0

(the Dirac measure at zero), mt ∗ms = mt+s and mt → m0 vaguely as t → 0+.

The sub-probability measures {mt}t�0 are characterized by

(27) m̂t(ζ) := (2π)−
N
2

∫
e−iζ.xmt(dx) = (2π)−

N
2 e−tF (ζ), ζ ∈ R

N
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where F (ζ) is the so-called characteristic exponent (see e.g. [32], Chapter 3).

The resolvent of the generator T is also a convolution with a measure mλ

(λ− T )−1f =

∫
f(x− y)mλ(dy)

where

m̂λ(ζ) =

∫ +∞

0
e−λt m̂t(ζ)dt =

1

λ+ F (ζ)
.

Thus, if mλ(dy) is a function (i.e. is absolutely continuous with respect to

Lebesgue measure) then TV has a compact resolvent provided that the sublevel

sets ΩM are “thin at infinity” in the sense (2). Similarly, if mt(dy) are func-

tions (t > 0) then (UV (t))t�0 is a compact C0-semigroup provided that (11)

is satisfied and the sublevel sets ΩM are “thin at infinity”; in addition, this

property is shown to be stable by subordination. For instance, this covers all

C0-semigroups subordinated to the heat semigroup, e.g. the symmetric sta-

ble semigroup of order 2α, the geometric α-stable semigroup, the relativistic

α-stable semigroup, etc.

Chapter 5 complements Chapter 3 in the context of L1 spaces over separable

metric measure spaces, i.e. separable metric spaces (Ω, d) endowed with a Borel

measure μ which is finite on bounded Borel subsets of Ω. This framework is

motivated by Markov processes in metric spaces, (see e.g. [24]). The existence

of a metric d allows to complement the main compactness results of Chapter 3,

in particular to understand further the key conditions (25), (26) in terms of

“thinness at infinity” of sublevel sets ΩM . We restrict ourselves to the relevant

case

μ(Ω) = +∞.

We show that if (11) is satisfied and if U(t) is such that

U(t) : L1(Ω;μ) −→ L1(Ξ;μ)

is weakly compact for any bounded Borel set Ξ ⊂ Ω then (UV (t))t�0 is a

compact C0-semigroup in L1(Ω;μ) provided that for some x0 ∈ Ω

(28) lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) = 0

where pt(x, y) is the kernel of U(t).

We express (28) by saying that the sublevel sets ΩM are “thin at infinity

with respect to (U(t))t�0”. In particular, if

v(r) := sup
x∈Ω

μ
(
B(x, r)

)
< ∞ (r � 0)
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14 CHAPTER 1. INTRODUCTION

and if pt(. , .) satisfies an estimate of the form

pt(x, y) ≤ ft
(
d(x, y)

)
where

ft : R+ −→ R+ is non increasing

and such that (for large r) the function

r �−→ ft(r) v(r + 1)

is nonincreasing and integrable at infinity then the sublevel sets ΩM are “thin

at infinity with respect to (U(t))t�0” if they are “thin at infinity” in the sense

that there exists a point y ∈ Ω such that for any R > 0

μ
{
ΩM ∩B(y;R)

} −→ 0 as d(y, ȳ) → +∞.

These results apply e.g. to kernels with estimates of the form (21), (22) or (23)

under an appropriate condition on the volume growth

r �−→ v(r)

(in order to meet the conditions on r �→ ft(r) v(r+ 1)), see Remark 39 below.

In Chapter 6 (which continues Chapter 5), we show how spectral gaps occur

when the sublevel sets ΩM are not “thin at infinity with respect to (U(t))t�0”,

more precisely, when (28) is not satisfied. Indeed, we show that if (11) is

satisfied, if

U(t) : L1(Ω) −→ L1(Ξ)

is weakly compact for any bounded Borel set Ξ and if the kernel pt(x, y) of U(t)

satisfies the estimate

(29) sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < es(TV )t

(for some x0 ∈ Ω) then the perturbed C0-semigroup (UV (t))t�0 exhibits a

spectral gap (i.e. is essentially compact); more precisely, we show that

ωess ≤ inf
t>0

1

t
ln

(
sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)
)

where ωess is the essential type of (UV (t))t�0. To get some insight into (29), it

is useful to have in mind that s(TV ) is the type of (UV (t))t�0 and that

es(TV )t = rσ
(
UV (t)

) ≤ ∥∥UV (t)
∥∥
L(L1(Ω))

≤ ∥∥U(t)
∥∥
L(L1(Ω))

= sup
y∈Ω

∫
Ω
pt(x, y)μ(dx).

MÉMOIRES DE LA SMF 148



1.2. MAIN RESULTS 15

We also study spectral gaps for generators TV . Indeed, we show that if the

kernel G1(x, y) of (1− T )−1 satisfies the estimate

(30) sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

G1(x, y)μ(dx) <
1

1− s(TV )

(for some x0 ∈ Ω) then the perturbed generator TV exhibits a spectral gap;

more precisely

s(TV )− sess(TV ) ≥ η((1− s(TV ))

ress [(1− TV )−1]
where η is the difference between the right and left hand sides of (30). Simil-

iarly, we gain some insight into (30) by noting that

sup
y∈Ω

∫
G1(x, y)μ(dx) =

∥∥(1− T )−1
∥∥

≥ rσ
(
(1− T )−1

)
=

1

1− s(T )
≥ 1

1− s(TV )
.

Thus, under (30), σ(TV ) ∩ {λ; Reλ > sess(TV )} consists of a nonempty set of

isolated eigenvalues with finite algebraic multiplicities. This spectral picture

does not prevent a priori the existence of sequences of isolated eigenvalues

of TV with imaginary parts going to infinity. If additionally (UV (t))t�0 is op-

erator norm continuous then we get the much stronger conclusion that this

C0-semigroup has a spectral gap, i.e. is essentially compact.

We point out that the results above extend more generally in case (U(t))t�0

is not positive but is dominated by a positive contraction C0-semigroup

(Ũ(t))t�0, i.e. ∣∣U(t)f
∣∣ ≤ Ũ(t)(t) |f |, f ∈ L1(Ω)

(note that any contraction C0-semigroup in L1 space admits a modulus, i.e. a

minimal dominating positive contraction C0-semigroup [35]) and to complex

potentials V provided that ReV is nonnegative and admissible with respect

to (Ũ(t))t≥0 and |ImV | is regular with respect to (Ũ(t))t≥0, (see [39] for the

definition of regularity). Indeed, in this case∣∣UV (t)f
∣∣ ≤ ŨReV (t) |f |, f ∈ L1(Ω)

(see [39], Proposition 1.20 (a)) and then the role played here by (U(t))t�0

and V should be played respectively by (Ũ(t))t≥0 and ReV because weak

compactness properties are stable by domination. We do not try to elaborate

on these points here.

In Chapter 7, we deal with some weighted Laplacians on euclidean spaces

(see e.g. [10], [23], [28], [19]); we revisit and complement several L2 com-

pactness results given in [28] in connection with Fokker-Planck operators.
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Indeed, let

μ(dx) = e−Φ(x)dx

be a measure on R
N and let −�μ be the positive self-adjoint operator on

L2(RN ;μ(dx)) associated to the Dirichlet form∫
RN

∣∣∇ϕ
∣∣2μ(dx).

Then �μ is is unitarily equivalent to a Schrödinger operator on L2(RN ; dx)

�− (
1
4 |∇Φ|2 − 1

2�Φ
)
.

Then, assuming that

V := 1
4 |∇Φ|2 − 1

2�Φ is bounded from below,

we give several new compactness results on Schrödinger C0-semigroups in L1

spaces for various classes of potentials Φ arising in the literature. Such results

rely on the fact that the sublevel sets of V are thin at infinity. More generally,

we deal also with spectral gaps when the sublevel sets of V are not thin at

infinity. In particular, if

1
4 |∇Φ|2 − 1

2�Φ � 0 and e−Φ ∈ L1(RN ; dx)

then the existence of a spectral gap for �μ is guaranteed under the condition

sup
M>0

lim
C→+∞

sup
y∈RN

∫
{x∈ΩM ; |x|�C}

1

(4πt)
n
2

exp
(
− |x− y|2

4t

)
dx < 1

(ΩM are the sublevel sets of 1
4

∣∣∇Φ
∣∣2 − 1

2�Φ) while �μ need not be resolvent

compact.

This condition provides us with a sufficient criterion, in terms of sublevel

sets of
1
4 |∇Φ|2 − 1

2�Φ,

for a probability measure on R
N

Z−1 e−Φ(x)dx,
(
Z =

∫
e−Φ

)
to satisfy the Poincaré inequality.

In Chapter 8, we deal with Witten Laplacians, i.e. Hodge Laplacians on

weighted forms (i.e. forms with coefficients in L2(RN ; e−Φ(x)dx)); see e.g. [73],

[33] and [27], Chapter 2. The Witten Laplacian on 0-forms is unitarily equiv-

alent to

�(0)
Φ = �(0) + 1

4 |∇Φ|2 − 1
2�Φ
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in L2(RN ; dx) (where �(0) = −�) while the Witten Laplacian on 1-forms is

unitarily equivalent to

�(1)
Φ = �(0)

Φ ⊗ Id + Hess Φ

in
(
L2(RN ; dx)

)N
(1-forms are identified to their coefficients); both Laplacians

are nonnegative and the lower spectral bound of �(0)
Φ is equal to zero when

e−Φ(x)dx is a probability measure. The interest of Witten Laplacians in Sta-

tistical Mechanics stems in particular from the beautiful Helffer-Sjöstrand’s

covariance formula

(31)

∫ (
f(x)− 〈f〉)(g(x)− 〈g〉)e−Φ(x)dx =

∫ (
(�(1)

Φ )−1df, dg
)
e−Φ(x)dx,

where

〈f〉 =
∫

f(x)e−Φ(x)dx

(see [73], [33] and [27], Chapter 2). The invertibility of �(1)
Φ is of course a

key point, (see [33] for the details). We show the existence of spectral con-

nections between �(0)
Φ and �(1)

Φ : By combining L1 results and hilbertian tools

(Glazman’s Lemma) we show here that if Φ is convex (no strict convexity is

needed) then the essential lower spectral bound of �(0)
Φ is less than or equal

to that of �(1)
Φ ; in particular �(1)

Φ is resolvent compact if �(0)
Φ is. We show

also, still for convex Φ, that if �(0)
Φ has spectral gap and if the lowest eigen-

value λΦ of Hess Φ is not identically zero then the spectral lower bound of

�(1)
Φ is strictly larger than that of �(0)

Φ and consequently �(1)
Φ is invertible

if e−Φ(x)dx is a probability measure. In such a case, (31) is thus meaningful

while Brascamp-Lieb’s inequality∫ (
f(x)− 〈f〉)(g(x)− 〈g〉)e−Φ(x)dx ≤ (

(Hess Φ)−1df, dg
)

demands that Φ is uniformly strictly convex (see [33]). We can also remove

the convexity assumption and study the existence of a spectral gap for �(1)
Φ

in terms of the heat kernel and the sublevel sets of

1
4 |∇Φ|2 − 1

2�Φ+ λΦ.

In Chapter 9, we come back to the general theory in L1(Ω;A, μ) for general

measure spaces (Ω;A, μ) and consider indefinite potentials

V = V+ − V−
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(which are not a priori bounded from below); we regard “T − (V+ − V−)” as

perturbed operators

TV+ + V−
provided that V− is TV+-bounded and belongs to the generalized Kato

class of (etTV+ )t≥0 . This second perturbation theory uses different ideas

inspired by transport theory [46], [51], [52]. In particular, we show how the

compactness or essential compactness properties of (etTV+ )t≥0 are inherited

by (et(TV+
+V−))t≥0. Finally, for sub-Markov C0-semigroups (U(t))t�0, we show

how these results extend to Lp spaces.

I am indebted to the referee for helpful and constructive remarks and sug-

gestions which helped to improve the initial version of the paper. I thank M.

Brassart for an interesting discussion on the weak type estimate (13) (as given

in the previous version of this paper [44]) which led to (11). Other problems

in connection with this work are investigated with A. Rhandi in [53]; I thank

him also for helpful discussions around this topic.
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CHAPTER 2

PRELIMINARY RESULTS

In this chapter (and in the following one), (Ω;A, μ) denotes a general

measure space and (U(t))t�0 is a sub-stochastic C0-semigroup on L1(Ω;A, μ)

with generator T. We denote by (UV (t))t�0 the sub-stochastic C0-semigroup

on L1(Ω;A, μ) defined in the Introduction (see (7)) where V is a nonnegative

potential satisfying (6) and admissible for (U(t))t�0. This chapter is devoted

to several technical results. We start with the following known result pecu-

liar to L1-spaces [56], [74]; for reader’s convenience, we recall briefly its proof

(as given in [74], Lemma 4.1) in a slightly different form.

Lemma 1. — Let V satisfy (6) and (8). Then D(TV ) ⊂ D(V ) and V is TV -

bounded.

Proof. — For a bounded potential W and f ∈ D(T ) ∩ L1
+(Ω;μ) we have for

any real λ

d

dt

∥∥e−λtUW (t)f
∥∥ =

d

dt

∫
e−λtUW (t)f dμ

=

∫
d

dt

[
e−λtUW (t)f

]
dμ

=

∫
(T − λ−W )

[
e−λtUW (t)f

]
dμ

=

∫
(T − λ)

[
e−λtUW (t)f

]
dμ−

∫
W

[
e−λtUW (t)f

]
dμ

≤ −e−λt
∥∥WUW (t)f

∥∥
or

(32) e−λt
∥∥WUW (t)f

∥∥ ≤ − d

dt

∥∥e−λtUW (t)f
∥∥.
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It follows for λ > 0 that and∫ +∞

0
e−λt

∥∥WUW (t)f
∥∥dt ≤ −

∫ +∞

0

d

dt

∥∥e−λtUW (t)f
∥∥dt = ‖f‖.

Thus ∫ +∞

0
e−λt

∥∥VnUVm(t)f
∥∥dt ≤ ‖f‖, ∀m � n

since UVm(t) ≤ UVn(t). Letting m → +∞, by monotone (decreasing) conver-

gence we get ∫ +∞

0
e−λt

∥∥VnUV (t)f
∥∥dt ≤ ‖f‖

and then, by monotone (increasing) convergence, we obtain∫ +∞

0
e−λt

∥∥V UV (t)f
∥∥dt ≤ ‖f‖

which is nothing but ∥∥V (λ− TV )
−1f

∥∥ ≤ ‖f‖
for f ∈ D(T ) ∩ L1

+(Ω;μ). Finally the density of D(T ) ∩ L1
+(Ω;μ) in L1

+(Ω;μ)

and the fact that

L1(Ω;μ) = L1
+(Ω;μ)− L1

+(Ω;μ)

show that V (λ−TV )
−1 is a bounded operator or equivalently V is TV -bounded.

We give now a dual characterization of the possibility for the perturbed

semigroup (UV (t))t�0 to satisfy the above smoothing effect.

Theorem 2. — Let V satisfy (6) and (8). The smoothing effect (11) holds,

i.e. for any t > 0, there exists ct > 0 such that

(33) UV (t)f ∈ D(V ) and
∥∥V UV (t)f

∥∥ ≤ ct‖f‖, ∀f ∈ L1(Ω;μ),

if and only if (12) holds, i.e.

U∗V (t)V ∈ L∞(Ω;μ) (t > 0)

in the sense that supn
∥∥U∗V (t)Vn

∥∥
L∞(Ω)

< ∞ where Vn = V ∧ n.

Proof. — By decomposing f into positive and negative parts and using the

monotone convergence theorem, the uniform boundedness theorem shows

that (33) amounts to

(34) lim
n→∞

∫
Ω
Vn(x)

(
UV (t)f

)
(x)μ(dx) exists for all f ∈ L1(Ω).

MÉMOIRES DE LA SMF 148



CHAPTER 2. PRELIMINARY RESULTS 21

On the other hand,∫
Ω
Vn

(
UV (t)f

)
dμ =

∫
Ω

(
U∗V (t)Vn

)
f dμ

so (33) is equivalent to

(35) lim
n→∞

∫
Ω
(U∗V (t)Vn)f dμ exists for all f ∈ L1(Ω).

By the uniform boundedness theorem again, this last limit defines a continuous

linear functional on L1(Ω). Let

ζ(t) := lim
n→∞

(
U∗V (t)Vn

)
(pointwise non-decreasing limit) . By decomposing f into positive and negative

parts and using the monotone convergence theorem

lim
n→∞

∫
Ω
(U∗V (t)Vn)f dμ =

∫
Ω
ζ(t)f dμ

so

L1(Ω) 
 f �−→
∫
Ω
ζ(t)f dμ

is a continuous linear functional on L1(Ω) whence ζ(t) ∈ L∞(Ω), i.e. U∗V (t)V
belongs to L∞(Ω;μ) (t > 0). Conversely, if ζ(t) ∈ L∞(Ω) then (35) holds and

then (34) holds too.

We give now a sufficient condition for the smoothing effect (11) to hold.

Theorem 3. — Let V satisfy (6) and (8). If (14) is satisfied then so is (33).

Proof. — Let f ∈ L1
+(Ω;μ). We start from (32) with λ = 0∥∥WUW (t)f

∥∥ ≤ − d

dt

∥∥UW (t)f
∥∥.

Then ∫ b

a

∥∥VnUVn(s)f
∥∥ds ≤ ∥∥UVn(a)f

∥∥− ∥∥UVn(b)f
∥∥.

In particular∫ b

a

∥∥VnUVm(s)f
∥∥ds ≤ ∥∥UVn(a)f

∥∥− ∥∥UVn(b)f
∥∥, ∀m � n

so that (by the construction of (UV (t))t�0) letting m → +∞∫ b

a

∥∥VnUV (s)f
∥∥ds ≤ ∥∥UVn(a)f

∥∥− ∥∥UVn(b)f
∥∥, ∀n
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and letting n → +∞ (by monotone convergence theorem)∫ b

a

∥∥V UV (s)f
∥∥ds ≤ ∥∥UV (a)f

∥∥− ∥∥UV (b)f
∥∥

=

∫
UV (a)f −

∫
UV (b)f =

∫ (
U∗V (a)1− U∗V (b)1

)
f.

In particular

1

ε

∫ t+ε

t

∥∥V UV (s)f
∥∥ds ≤ ∫

U∗V (t)1− U∗V (t+ ε)1

ε
f (ε > 0),

i.e.

1

ε

∫ t+ε

t

∫
{V (x)>0}

V (x) (UV (s)f) (x)μ(dx)ds ≤
∫

U∗V (t)1− U∗V (t+ ε)1

ε
f.

We choose an arbitrary δ > 0. Then (using (6))∫
{V (x)>0}

V (x)
(
UV (s)f

)
(x)μ(dx)

=
∑
k∈Z

∫
{(1+δ)k≤V (x)<(1+δ)k+1}

V (x)
(
UV (s)f

)
(x)μ(dx)

�
∑
k∈Z

(1 + δ)k
∫
{(1+δ)k≤V (x)<(1+δ)k+1}

(
UV (s)f

)
(x)μ(dx).

It follows, for arbitrary M > 0, that∑
∣∣k∣∣≤M

(1 + δ)k
1

ε

∫ t+ε

t
ds

∫
{(1+δ)k≤V (x)<(1+δ)k+1}

(
UV (s)f

)
(x)μ(dx)(36)

≤
∫

U∗V (t)1− U∗V (t+ ε)1

ε
f

≤
∥∥∥U∗V (t+ ε)1− U∗V (t)1

ε

∥∥∥
L∞(Ω;μ)

· ‖f‖

so that, knowing that

1

ε

∫ t+ε

t
UV (s)f ds −→ UV (t)f (ε → 0+) in L1(Ω;μ),

and passing to the limit in (36) as ε → 0+ we get∑
|k|≤M

(1 + δ)k
∫
{(1+δ)k≤V (x)<(1+δ)k+1}

(
UV (t)f

)
(x)μ(dx) ≤ ct‖f‖, ∀M > 0
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or equivalently∑
k∈Z

∫
{(1+δ)k≤V (x)<(1+δ)k+1}

(1 + δ)k
(
UV (t)f

)
(x)μ(dx) ≤ ct‖f‖.

On the other hand, on the set{
x; (1 + δ)k ≤ V (x) < (1 + δ)k+1

}
we have

V (x)

1 + δ
< (1 + δ)k

so

1

1 + δ

∑
k∈Z

∫
{(1+δ)k≤V (x)<(1+δ)k+1}

V (x)
(
UV (t)f

)
(x)μ(dx) ≤ ct‖f‖

i.e.
1

1 + δ

∫
{V (x)>0}

V (x) (UV (t)f) (x)μ(dx) ≤ ct‖f‖
or

1

1 + δ

∥∥V UV (t)f
∥∥ ≤ ct

∥∥f∥∥.
It follows that ∥∥V UV (t)f

∥∥ ≤ ct‖f‖
since δ > 0 is arbitrary. For arbitrary f ∈ L1(Ω;μ), the positivity of V and

UV (t) implies ∥∥V UV (t)f
∥∥ ≤ ∥∥V UV (t)|f |

∥∥ ≤ ct
∥∥|f |∥∥ = ct‖f‖

and ends the proof.

We deduce immediately:

Corollary 4. — Let V satisfy (6) and (8). If (11) is satisfied (e.g. if (14) is

satisfied) then

(37)

∫
{V >M}

(
UV (t)f

)
μ(dx) ≤ ct‖f‖

M
, ∀f ∈ L1

+(Ω;μ), ∀M > 0, ∀t > 0.

Remark 5. — The weak type estimate (37) was obtained previously from (14)

in a direct way in [44] for almost all t > 0 under the additional assumption

that L1(Ω;A, μ) is separable.

It is worth to analyze Assumption (14).

Proposition 6. — If (16) is satisfied then so is (14). If (17) is satisfied

then (16) and (14) are equivalent.
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Proof. — Note that (16) amounts to

∀t > 0, lim
ε→0

U∗V (t+ ε)1− U∗V (t)1
ε

exists in the weak star topology of L∞(Ω;μ)

which in turn implies the boundedness of

ε−1
∥∥U∗V (t+ ε)1− U∗V (t)1

∥∥
L∞(Ω;μ)

for ε ∈ ]0, 1] by the uniform boundedness principle and implies (14). Con-

versely, let (14) be satisfied, i.e.

(38) lim inf
ε→0+

∥∥∥U∗V (ε)gt − gt
ε

∥∥∥
L∞(Ω;μ)

< +∞

where gt := U∗V (t)1 (t > 0). The subspace of L∞(Ω;μ) of strong continuity

of (U∗V (t))t�0 is nothing but D ((TV )
∗) (and is invariant under (U∗V (t))t�0) so

that (17) is equivalent to

(39) gt ∈ D ((TV )
∗).

Finally (39) and [9], Theorem 2.1.4 (c), p. 91, imply that g ∈ D((TV )
∗).

We do not consider here the question whether U∗(t)1 ∈ D (T ∗) for all t > 0

can imply U∗V (t)1 ∈ D ((TV )
∗) for all t > 0 ? Note that if (UV (t))t�0 is oper-

ator norm continuous then so is (U∗V (t))t�0 and of course (17) is satisfied or

equivalently U∗V (t)1 ∈ D((TV )∗) (t > 0). We note also that if Ω is a locally

compact space endowed with a Radon measure μ and if (U∗V (t))t�0 leaves

invariant (and is strongly continuous on) the subspace of bounded and uni-

formly continuous functions then of course 1 ∈ D ((TV )
∗) and consequently

U∗V (t)1 ∈ D ((TV )
∗) (∀t > 0). (See [57] for the Feller properties of (U∗V (t))t�0.)

Note that (14) is also satisfied if

(40) (0,+∞) 
 t �−→ UV (t) ∈ L(L1(Ω;μ)) is locally lipschitz

since ∥∥U∗V (t+ ε)1− U∗V (t)1
∥∥
L∞(Ω;μ)

≤ ∥∥U∗V (t+ ε)− U∗V (t)
∥∥
L(L∞(Ω;μ))

=
∥∥UV (t+ ε)− UV (t)

∥∥
L(L1(Ω;μ))

.

Note finally that the condition (40) is a priori weaker than a differentiability

condition on the perturbed C0-semigroup (UV (t))t�0 because the differentia-

bility of a bounded C0-semigroup (S(t))t≥0 in a Banach space X is equivalent

to global Lipschitz conditions

∀ε > 0, ∃Cε > 0,
∥∥S(t)− S(s)

∥∥
L(X)

≤ Cε|t− s|, ∀t, s � ε,

(see e.g. [30] Lemma 2.1).
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Weighted shift semigroups on L1(R, dx) give us some insight into the nature

of (11) and (14).

Proposition 7. — Let V ∈ L1
loc(R) and let (U(t))t�0 be the translation

C0-semigroup on L1(R, dx)

(41) f �−→ U(t)f = f(x− t), f ∈ L1(R, dx).

The perturbed C0-semigroup (UV (t))t�0

(42) UV (t)f = e−
∫ x
x−t V (s)dsf(x− t)

satisfies (14) if and only if

(43) lim inf
ε→0+

∥∥∥ζt+ε − ζt
ε

∥∥∥
L∞(R)

< +∞, (t > 0)

where ζt ∈ L∞(R) is the function

ζt : R 
 y �−→ e−
∫ y+t
y V (s)ds.

In particular (14) is satisfied if

(44) (0,+∞) 
 t �−→ ζt ∈ L∞(R, dx) is locally lipschitz.

Condition (17) amounts to

(0,+∞) 
 t �−→ ζt ∈ L∞(R, dx) is continuous.

Proof. — A change of variable shows that∫
R

UV (t)f =

∫
R

e−
∫ y+t
y V (s)dsf(y)dy

so that

U∗V (t)1 = e−
∫ y+t
y V (s)ds = ζt(y).

In particular ∥∥U∗V (t+ ε)1− U∗V (t)1
∥∥
L∞(R)

=
∥∥ζt+ε − ζt

∥∥
L∞(R)

which ends the proof.

Thus, under e.g. (44), (UV (t))t�0 satisfies (14) although it is neither differ-

entiable nor operator norm-continuous. Let us check directly the possibility

for the above translation C0-semigroup to satisfy (11).
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Proposition 8. — Let V ∈ L1
loc(R). Let (U(t))t�0 be the translation C0-

semigroup (41).

(i) The smoothing effect (11) holds if and only if

(45) Ht : y �−→ V (t+ y)e−
∫ y+t
y V (s)ds is essentially bounded (t > 0).

(ii) If V is differentiable, bounded away from zero and if V ′/V is bounded

then (45) is satisfied.

(iii) V is locally bounded if and only if Ht is. More precisely, V is unbounded

in the vicinity of some point x̄ ∈ R if and only if Ht is unbounded in the

vicinity of x̄− t.

Proof. — (i) follows from a simple change of variable since∫
R

V (x) (UV (t)f) (x)dx =

∫
R

V (t+ y)e−
∫ y+t
y V (s)dsf(y)dy.

(ii) We note that for all u, v ∈ R

V (u)

V (v)
= e

∫ u
v

V ′(s)
V (s)

ds

so
V (u)

V (v)
≤ eC

∣∣u−v∣∣
where C = supV ′/V . On the other hand, there exists x ∈ [y, y + t] (depending

on y and t) such that

1

t

∫ y+t

y
V (s)ds = V (x)

whence (using α := supz≥0 z e−z)

V (t+ y)e−
∫ y+t
y V (s)ds =

V (t+ y)

V (x)
V (x)e−tV (x) ≤ αeCt, ∀y ∈ R

since
∣∣x− (t+ y)

∣∣ ≤ t.

(iii) follows from the fact that Ht(.) is nothing but V (t+ .) times the strictly

positive continuous function

y �−→ e−
∫ y+t
y V (s)ds.

In particular

lim sup
y→x−t

Ht(y) =
(
lim sup

z→x
V (z)

)
e−

∫ x
x−t V (s)ds = +∞

where 0 < e−
∫ x
x−t V (s)ds ≤ 1.
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Remark 9. — Proposition 8 (ii) allows V to have e.g. a polynomial growth

at infinity.

Remark 10. — Proposition 8 (iii) shows that we cannot expect (11) to hold

if V has a local (integrable) singularity.

The operator norm continuity of (UV (t))t�0 is of course a natural mean to

translate compactness properties from the resolvent (λ − TV )
−1 to the semi-

group UV (t) (see [60], Theorem 3.3, p. 48). However, it is an open problem to

decide whether the operator norm continuity of a substochastic C0-semigroup

(U(t))t�0 is inherited by (UV (t))t�0 regardless of V . This problem is not cov-

ered by the paper [40] which deals with a special class of unbounded pertur-

bations preserving immediate norm continuity of C0-semigroups. We provide

here a solution to this open problem.

Theorem 11. — Let V satisfy (6) and (8). Let Vn := V ∧ n.

(i) Then for all finite C > 0 and all f ∈ L1
+(Ω;μ)

(46) sup
t≤C

∥∥et(T−Vn)f − UV (t)f
∥∥ ≤ eC

∥∥[V − Vn](1− TV )
−1f

∥∥.
In particular, if (U(t))t�0 is operator norm continuous and if

(47)
∥∥ [V − Vn] (1− TV )

−1∥∥
L(L1(Ω;μ))

−→ 0 as n → +∞
then (UV (t))t�0 is also operator norm continuous.

(ii) In particular, let (1−TV )
−1 be an integral operator with kernel GV (x, y).

If (U(t))t�0 is operator norm continuous and if

(48) sup
y∈Ω

∫
{V �n}

GV (x, y)V (x)μ(dx) −→ 0 as n → +∞

then (UV (t))t�0 is also operator norm continuous.

Proof. — Note first that both V and Vn are TV -bounded so that the sequence{
[V − Vn](1− TV )

−1}
n

of bounded operators converges strongly to zero. According to the general

theory et(T−Vn)f → UV (t)f for all f ∈ L1(Ω;μ) uniformly in t ∈ [0, C]. We

start with the Duhamel formula (for a positive bounded perturbation) and

f ∈ L1
+(Ω;μ)

et(T−Vn)f = et(T−Vn+k)f +

∫ t

0
e(t−s)(T−Vn+k) [Vn+k − Vn] e

s(T−Vn+k)f ds.
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By letting k → +∞, Vn+k(x)− Vn(x) → V (x)− Vn(x) a.e. and then

et(T−Vn)f = UV (t)f +

∫ t

0
UV (t− s) [V − Vn]UV (s)f ds.

The additivity of the norm on the positive cone shows that∥∥et(T−Vn)f − UV (t)f
∥∥ =

∥∥∥ ∫ t

0
UV (t− s) [V − Vn]UV (s)f ds

∥∥∥
=

∫ t

0

∥∥UV (t− s) [V − Vn]UV (s)f
∥∥ds

≤
∫ t

0

∥∥ [V − Vn]UV (s)f
∥∥ds

=
∥∥∥ ∫ t

0
[V − Vn]UV (s)f ds

∥∥∥
=

∥∥∥ [V − Vn]

∫ t

0
UV (s)f ds

∥∥∥
≤

∥∥∥ [V − Vn]

∫ C

0
UV (s)f ds

∥∥∥
≤ eC

∥∥∥ [V − Vn]

∫ C

0
e−sUV (s)f ds

∥∥∥
for all t ≤ C where C > 0 is arbitrary. Hence

sup
t≤C

∥∥et(T−Vn)f − UV (t)f
∥∥ ≤ eC

∥∥ [V − Vn] (1− TV )
−1f

∥∥,
for all f ∈ L1

+(Ω;μ) and

sup
t≤C

∥∥et(T−Vn) − UV (t)
∥∥ ≤ eC

∥∥ [V − Vn] (1− TV )
−1∥∥.

Finally, if (U(t))t�0 is operator norm continuous then so is
(
et(T−Vn)

)
t≥0

because Vn is a bounded perturbation [63] so that the last operator norm

estimate ends the proof of (i). If (1 − TV )
−1 is an integral operator with

kernelGV (x, y) then an elementary calculation shows that∥∥ [V − Vn] (1− TV )
−1∥∥

L(L1(Ω))
= sup

y∈Ω

∫
{V �n}

GV (x, y)V (x)μ(dx)

and this, combined with (i), ends the proof of (ii).

Remark 12. — Condition (48) is of course satisfied if

(49) sup
y∈Ω

∫
{V �n}

G(x, y)V (x)μ(dx) −→ 0 as n → +∞
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where G(x, y) is the kernel of (1− T )−1. In particular, if (1− T )−1 belongs to

L(L1(Ω), Lp(Ω)) for some p > 1 and if V ∈ Lp∗(Ω) (where p∗ is the conjugate

exponent of p) then (49) is satisfied.

We give now a stability property for a suitable class of differentiable C0-

semigroups (U(t))t�0 and suitable perturbations V .

Theorem 13. — Let (U(t))t�0 be a class-P differentiable C0-semigroup and

let V belong to its generalized Kato class potentials in the sense (20). Then

(UV (t))t�0 is class-P differentiable.

Proof. — Let Vn := V ∧ n and let ω > 0 be such that

rσ
[
V (ω − T )−1

]
< 1.

Since (U(t))t�0 is positive then it is easy to see that for any integer k∥∥ (
Vn(ω + is− T )−1

)k ∥∥ ≤ ∥∥ (
Vn(ω − T )−1

)k ∥∥ ≤ ∥∥ (
V (ω − T )−1

)k ∥∥
so that

rσ
[
Vn(ω + is− T )−1

] ≤ rσ
[
V (ω − T )−1

]
< 1, ∀s ∈ R, ∀n.

Thus

(
ω + is− (T − Vn)

)−1
f = (ω + is− T )−1

∞∑
k=0

(−1)k
(
Vn(ω + is− T )−1

)k
f

and ∥∥(ω + is− (T − Vn))
−1f

∥∥
≤ ∥∥(ω + is− T )−1

∥∥ ·
∞∑
k=0

∥∥(Vn(ω + is− T )−1)k
∥∥ · ‖f‖

≤ ∥∥(ω + is− T )−1
∥∥ ·

∞∑
k=0

∥∥(V (ω − T )−1)k
∥∥ · ‖f‖.

On the other hand, by construction (see (7)), et(T−Vn) → etTV strongly as

n → ∞ so that(
ω + is− (T − Vn)

)−1
f =

∫ ∞

0
e−(ω+is)t et(T−Vn)f dt

implies (
ω + is− (T − Vn)

)−1
f −→ (ω + is− TV )

−1f as n → ∞
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and ∥∥(ω + is− TV )
−1∥∥ ≤ ∥∥(ω + is− T )−1

∥∥ ·
∞∑
k=0

∥∥(V (ω − T )−1)k
∥∥.

Finally lim|s|→∞ ln |s| · ∥∥(ω + is− TV )
−1∥∥ is less than or equal to( ∞∑

k=0

∥∥(V (ω − T )−1)k
∥∥) lim

|s|→∞
ln |s| · ∥∥(ω + is− T )−1

∥∥ = 0

which ends the proof.

In the theorem above, it is not clear whether we can remove the assumption

that V belongs to the generalized Kato class of (U(t))t�0. We end this chapter

with a helpful tool.

Lemma 14. — Let (V (t))t≥0 be a C0-semigroup on L1(Ω;μ) with generator G.

If the resolvent (λ−G)−1 is a weakly compact operator for some (or equivalently

all) λ ∈ ρ(G) then (λ−G)−1 is a compact operator for all λ ∈ ρ(G).

Proof. — The resolvent identity

(λ−G)−1 − (μ−G)−1 = (μ− λ)(λ−G)−1(μ−G)−1, λ, μ ∈ ρ(G)

shows that the weak compactness of (λ−G)−1 implies the the weak compact-

ness of (μ−G)−1. By the classical Dunford-Pettis’ theorem (see e.g. [1], Corol-

lary 5.88, p. 344) the product of two weakly compact operators on L1(Ω;μ)

is a compact operator so that∥∥(λ−G)−1 − (μ− λ)(λ−G)−1(μ−G)−1
∥∥ =

∥∥(μ−G)−1
∥∥ −→ 0

as μ → +∞ shows that (λ−G)−1 is a compact operator.
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CHAPTER 3

COMPACTNESS RESULTS ON

ABSTRACT L1(Ω;A, μ) SPACES

This chapter is devoted to the main compactness theorems in abstract

measure spaces. As pointed out in Chapter 1, for any linear operator

O ∈ L(L1(Ω;μ)) and for any measurable subset Ξ ⊂ Ω, the notation

O : L1(Ω;μ) −→ L1(Ξ;μ)

refers to the operator

L1(Ω;μ) 
 f �−→ [Of ]|Ξ ∈ L1(Ξ;μ)

where [Of ]|Ξ is the restriction of Of to the subset Ξ. We start with:

Theorem 15. — Let V satisfy (6) and (8). Let (U(t))t�0 be a sub-stochastic

C0-semigroup on L1(Ω;μ) with generator T . Then TV is resolvent compact if

and only if for all M > 0

(50) (λ− TV )
−1 : L1(Ω;μ) −→ L1(ΩM ;μ) is weakly compact.

A sufficient condition for (50) to hold is that

(51) (λ− T )−1 : L1(Ω;μ) −→ L1(ΩM ;μ) is weakly compact.

Proof. — According to Lemma 14, it suffices to show that TV is resolvent

weakly compact. Let f = (λ−TV )
−1g with λ > s(TV ) (g ∈ B) where B is the

unit ball of L1(Ω;μ). Since D(TV ) ⊂ D(V ) and V is TV -bounded (Lemma 1)

then there exists a constant c > 0 such that
∥∥V f

∥∥ ≤ c
∥∥g∥∥ so that

M

∫
{V (x)�M}

∣∣f(x)∣∣μ(dx) ≤
∫
{V (x)�M}

V (x)
∣∣f(x)∣∣μ(dx)

≤
∫

V (x)
∣∣f(x)∣∣μ(dx) ≤ c, ∀g ∈ B
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so that
∫
{V (x)�M} |f(x)|μ(dx) → 0 as M → +∞ uniformly in g ∈ B. Thus

we have decomposed f = (λ − TV )
−1g as f1ΩM

+ f1Ωc
M

where f1Ωc
M

can be

made as small in L1-norm as we want (uniformly in g ∈ B) and f1ΩM
is a

relatively weakly compact set by (50). This shows the first claim. Finally, the

domination

(λ− TV )
−1
|ΩM

≤ (λ− T )−1|ΩM

shows that (51) implies (50).

Remark 16. — If the sublevel sets ΩM have finite μ-measure then Condi-

tion (51) is automatically satisfied provided that

(λ− T )−1 ∈ L(L1
(
Ω;μ), Lp(Ω;μ)

)
for some p > 1. This follows from the fact that the embedding of Lp(ΩM ;μ)

into L1(ΩM ;μ) is weakly compact (i.e. a bounded subset of Lp(ΩM ;μ) is an

equi-integrable subset of L1(ΩM ;μ)).

We complement Theorem 15 with:

Theorem 17. — Let V satisfy (6) and (8). Let (U(t))t�0 be a sub-stochastic

C0-semigroup on L1(Ω;μ) with generator T. We assume that for M > 0

and t> 0

(52) U(t) : L1(Ω;μ) −→ L1(ΩM ;μ) is weakly compact (t > 0)

Then:

(i) TV is resolvent compact.

(ii) If (11) is satisfied then (UV (t))t�0 is a compact C0-semigroup.

Proof. — Let PΩM
: L1(Ω;μ) → L1(ΩM ;μ) be the restriction operator. Note

that

PΩM
(λ− T )−1 = PΩM

∫ +∞

0
e−λtU(t)dt = lim

ε→0
PΩM

∫ ε−1

ε
e−λtU(t)dt

where the convergence holds in operator norm. Let us show that PΩM
(λ−T )−1

is weakly compact. It suffices to show that

PΩM

∫ ε−1

ε
e−λtU(t)dt =

∫ ε−1

ε
e−λtPΩM

U(t)dt

is a weakly compact operator. This is a strong integral (not a Bochner inte-

gral) of a bounded, strongly continuous W (L1(Ω;μ), L1(ΩM ;μ))-valued map-

ping where W (L1(Ω;μ), L1(ΩM ;μ)) is the Banach space of weakly compact
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operators from L1(Ω;μ) into L1(ΩM ;μ). By [68] or [47]∫ ε−1

ε
e−λtPΩM

U(t)dt

is a weakly compact operator. Then the first claim is a consequence of Theo-

rem 15.

(ii) We choose an arbitray t > 0. Let f = UV ( t )g with g ∈ B the unit ball

of L1(Ω;μ). By corollary 4
∫
{V (x)�M} |f(x)|μ(dx) → 0 as M → +∞ uniformly

in g ∈ B. On the other hand

|f | = ∣∣UV ( t ) g
∣∣ ≤ UV ( t ) |g| ≤ U( t ) |g|

so that, by (52), the restriction to ΩM of
{
UV ( t )g; g ∈ B

}
is relatively

weakly compact by domination and then, by arguing as in the proof of

Theorem 15, one sees that
{
UV ( t )g; g ∈ B

}
is a relatively weakly compact

subset of L1(Ω;μ), i.e. UV (t) is a weakly compact operator for all t � t and

consequently for all t > 0. Actually, UV (t) is a compact operator for all t > 0

since

UV (t) = UV (
t
2)UV (

t
2)

and the product of two weakly compact operators on L1(Ω;μ) is a compact

operator (see e.g. [1], Corollary 5.88, p. 344).

Remark 18. — The resolvent of generators of one-dimensional perturbed

shift C0-semigroups (42) with V ∈ L1
loc(R),

(λ− TV )
−1f =

∫ x

−∞
e−

∫ x
y (λ+V (s))dsf(y)dy (λ > 0)

is compact if (for instance) the sublevel sets of V have finite measure, e.g.

if lim|x|→∞ V (x) = +∞. Indeed,

∣∣(λ− T )−1f
∣∣ ≤ ∫ +∞

−∞
e−λ|x−y|

∣∣f(y)∣∣dy
shows that (λ− T )−1 ∈ L(L1(Ω;μ), Lp(Ω;μ)) for all p ∈ [1,+∞] so it suffices

to invok Remark 16. But the perturbed C0-semigroup (UV (t))t�0 is never com-

pact since it is not operator norm continuous in t > 0. This lack of compactness

can also be inferred from the fact that (UV (t))t�0 extends to a C0-group where

UV (−t)f = e
∫ y+t
y V (s)dsf(y + t) (t > 0).

In this example, (52) is never satisfied while the smoothing effect (11) could be

so, see Proposition 8 (ii). This example shows the importance of (52) (which
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is slightly stronger than an assumption of semigroups of kernel operators,

see Remark 28).

Remark 19. — The assumption that (UV (t))t�0 is smoothing in the

sense (11) appears in many places in this paper. The domination

(53) UV (t) ≤ U(t)

shows obviously that (UV (t))t�0 is smoothing if the unperturbed semigroup

(U(t))t�0 is. This last assumption is however too strong; indeed, its combi-

nation to (52), implies that (U(t))t�0 itself is compact! Of course (53) would

imply easily that (UV (t))t�0 is also compact.

Remark 20. — If the sublevel sets ΩM have finite μ-measure then Condi-

tion (52) is automatically satisfied provided that

U(t) ∈ L
(
L1(Ω;μ), Lp(Ω;μ)

)
(t > 0)

for some p > 1. This is the case e.g. for ultracontractive (in the sense (5))

symmetric Markov C0-semigroups (U(t))t�0 since

U(t) ∈ L(L1(Ω;μ), L2(Ω;μ)
)

(t > 0).

Since the compactness of (λ − TV )
−1 is equivalent to the compactness of

UV (t) for t > 0 if (UV (t))t�0 is operator norm continuous (see e.g. [60], The-

orem 3.3, p. 48) then we have:

Corollary 21. — Let V satisfy (6) and (8). Let (UV (t))t�0 be operator norm

continuous. If (51) is satisfied then (UV (t))t�0 is a compact C0-semigroup.

Remark 22. — It is not difficult to see that (λ−TV )
−1 is compact if and only

if
∫ t
0 UV (s)ds is for all t � 0 (the argument holds for general C0-semigroups

in Banach spaces). Thus Theorem 15 implies that∫ t

0
UV (s)ds is a compact operator on L1(Ω;μ)

under Assumption (51) only.

If (U(t))t�0 is a sub-Markov C0-semigroup (i.e. acts in all Lp spaces as a

positive contraction semigroup), we denote it by (Up(t))t≥0 as a C0-semigroup

acting on Lp(Ω;μ) and denote by T p its generator. As in the L1 case, we define

the perturbed C0-semigroup
(
Up
V (t)

)
t≥0 with generator T p

V and
(
Up
V (t)

)
t≥0 is

strongly continuous if and only if (UV (t))t�0 is (see [74], Proposition 3.1).

Then using the compactness interpolation theorem for σ-finite measures (see

e.g. [10], Theorem 1.6.1, p. 35) we obtain immediately:
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Corollary 23. — Let V satisfy (6) and (8). Let (U(t))t�0 be a sub-Markov

C0-semigroup and let μ be σ-finite. Then:

(i) If (51) is satisfied then T p
V is resolvent compact in Lp(Ω;μ). If addi-

tionnaly (UV (t))t�0 is operator norm continuous (on L1(Ω;μ)) then the C0-

semigroups
(
Up
V (t)

)
t≥0 are compact in Lp(Ω;μ).

(ii) If (11) and (52) are satisfied then the C0-semigroups
(
Up
V (t)

)
t≥0 are

compact in Lp(Ω;μ).

A more precise result can be derived in the self-adjoint case:

Corollary 24. — Let V satisfy (6) and (8). Let (U(t))t�0 be a symmetric

sub-Markov C0-semigroup and let μ be σ-finite. If (51) is satisfied then the

C0-semigroup
(
Up
V (t)

)
t≥0 is compact in Lp(Ω;μ) for p > 1.

Proof. — By Corollary 23, T 2
V is resolvent compact. It follows that the self-

adjoint C0-semigroup
(
U2
V (t)

)
t≥0 itself is also compact for t > 0. An interpo-

lation argument shows that
(
Up
V (t)

)
t≥0 is compact (t > 0) for all p > 1.

Remark 25. — Note that under the assumptions of Corollary 24, the C0-

semigroup (UV (t))t�0 need not be compact on L1(Ω;μ).

We show now that the basic assumption (52) is stable by subordination. We

recall first some notions on subordinate C0-semigroups. Let f ∈ C∞((0,+∞))

be a Bernstein function, i.e.

f � 0, (−1)k
dkf(x)

dxk
≤ 0, ∀k ∈ N.

It is characterized by the representation

e−tf(x) =
∫ +∞

0
e−xs ηt(ds) (t > 0)

where (ηt)t�0 is a convolution C0-semigroup of sub-probabiity measures on

[0,+∞) (see e.g. [32], Theorem 3.9.7, p. 177). Let (U(t))t�0 be a contraction

C0-semigroup. We can define (see [32], Chapter 4 for the details) the so-called

subordinate C0-semigroup
(
Uf (t)

)
t�0

(in the sense of Bochner) acting as

ϕ ∈ L1(Ω) �−→ Uf (t)ϕ =

∫ +∞

0
(U(s)ϕ) ηt(ds) ∈ L1(Ω).

Theorem 26. — Let (U(t))t�0 be a positive contraction C0-semigroup on

L1(Ω;μ) satisfying (52). Let f be a Bernstein function such that

(54) lim
x→+∞ f(x) = +∞.

Then the subordinate C0-semigroup
(
Uf (t)

)
t�0

satisfies also (52).
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Proof. — Note first that (54) (i.e. e−tf(x) → 0 as x → +∞ (t > 0)) amounts

to ηt({0}) = 0 for all t > 0. This implies that∥∥∥ ∫ ε−1

ε
U(s) ηt(ds)− Uf (t)

∥∥∥ ≤ ηt
(
[0, ε[

)
+ ηt

(
]ε−1,+∞[

) −→ 0 as ε → 0,

so that ∥∥∥ ∫ ε−1

ε
PΩM

U(s) ηt(ds)− PΩM
Uf (t)

∥∥∥ −→ 0 as ε → 0.

It suffices to show that
∫ ε−1

ε PΩM
U(s) ηt(ds) is weakly compact. By assump-

tion, for all s > 0, PΩM
U(s) is weakly compact. Moreover

s > 0 �−→ PΩM
U(s) ∈ L(L1(RN ), L1(ΩM )

)
is strongly continuous and bounded. It follows from [68] or [47] that the strong

integral
∫ ε−1

ε PΩM
U(s) ηt(ds) is also weakly compact.

It seems that Assumption (54) is purely technical; indeed, see Theorem 32

below on convolution C0-semigroups on R
N where this assumption is no longer

necessary.

Remark 27. — It is not clear that Assumption (14) is stable by subordina-

tion. However, for some Bernstein functions f, the subordinate C0-semigroup

(Uf (t))t�0 is always holomorphic (and thus (14) is satisfied by (Uf
V (t))t�0)

regardless of (U(t))t�0; we note also that if (U(t))t�0 is holomorphic then so

is (Uf (t))t�0 for any Bernstein function f ; see [21] and references therein.

Remark 28. — Let L1(Ω;A, μ) be separable. If O : L1(Ω;μ) → L1(Ω;μ) is

such that

1ΩM
O : L1(Ω;μ) 
 f �−→ 1ΩM

Of ∈ L1(ΩM ;μ)

is weakly compact then 1ΩM
O is (uniquely represented by) an integral op-

erator with a measurable kernel (see the remark in [16], p. 508) and this

clearly implies that O is an integral operator with a measurable kernel since

V (x) < +∞ a.e. Thus Condition (51) (resp. Condition (52)) implies that

(λ − T )−1 (resp. U(t)) is an integral operator with a measurable kernel. For

instance, this is the case of ultracontractive symmetric Markov C0-semigroups

(see also [71], Corollary A.1.2).
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CHAPTER 4

APPLICATIONS TO PERTURBED

CONVOLUTION SEMIGROUPS

Before continuing the general theory, we devote a chapter to specific

compactness results on convolution C0-semigroups on euclidean spaces. Let

Ξ ⊂ R
N be a Borel subset. We say that Ξ is “thin at infinity” if

(55)
∣∣Ξ ∩B(z; 1)

∣∣ −→ 0 as |z| → ∞
where B(z; 1) is the ball with radius 1 centered at z ∈ R

N and | . | refers to

Lebesgue measure. We start with a basic result.

Lemma 29. — Let h ∈ L1
+(R

N ) and let

H : L1(RN ) 
 ϕ �−→
∫
RN

h(x− y)ϕ(y)dy ∈ L1(RN )

be a convolution operator. Let Ξ ⊂ R
N be a Borel set. Then

H : L1(RN ) −→ L1(Ξ)

is compact if and only if

(56) sup
y∈RN

∫
Ξ∩{|x|�c}

h(x− y)dx −→ 0 as c → +∞.

Moreover (56) is satisfied if Ξ is “thin at infinity”.

Proof. — We note first that the continuity of y ∈ R
N �→ hy(.) ∈ L1(RN )

(where hy(.) : x �→ h(x− y) is the translation of h(.) by a vector y) shows that

H : L1(RN ) → L1(Ξ) is compact for any bounded Borel set Ξ. On the other

hand, if H : ϕ ∈ L1(RN ) → L1(Ξ) is compact then∥∥χΞ∩{|x|>c}H
∥∥
L(L1(RN ),L1(Ξ))

−→ 0 as c → +∞
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(we still denote by χΞ∩{|x|>c} the multiplication operator by the indicator

function χΞ∩{|x|>c}) because
∥∥χ{|x|>c}f

∥∥
L1(Ξ)

→ 0 as c → +∞ uniformly in f

in a compact set of L1(Ξ), i.e. (56) holds. Conversely, under (56),

H : ϕ ∈ L1(RN ) −→ L1(Ξ)

is a limit in operator norm (as c → +∞) of χΞ∩{|x|≤c}H which is compact

since Ξ ∩ {|x| ≤ c} is bounded.

Let us show now that (56) is satisfied if Ξ is “thin at infinity”. To show (56)

it suffices that

(57) lim
|y|→+∞

∫
Ξ
h(x− y)dx = 0.

Indeed, let ε > 0 be arbitrary and let D > 0 be such that∫
Ξ
h(x− y)dx ≤ ε for all

∣∣y∣∣ > D.

It suffices to show that for any D > 0

sup
|y|≤D

∫
Ξ∩{|x|�c}

h(x− y)dx −→ 0 as c → +∞

i.e.

(58) sup
|y|≤D

∫
Ξ∩{|x|�c}

hy(x)dx −→ 0 as c → +∞.

Since y ∈ R
N �→ hy(.) ∈ L1(RN ) is continuous then{

hy(.); |y| ≤ D
}
is compact subset of L1(RN )

and consequently {hy(.); |y| ≤ D} is an equi-integrable subset of L1(RN ) so

that (58) is true. It suffices now to show that (57) is satisfied if Ξ is “thin at

infinity”. We observe first that (55) is actually equivalent to

(59) ∀R � 1,
∣∣Ξ ∩B(y;R)

∣∣ −→ 0 as |y| → ∞
where B(y;R) is the ball with radius R centered at y ∈ R

N . It suffices to

observe that
∣∣Ξ∩B(y;R)

∣∣ ≤ ∑JR
i=1

∣∣Ξ∩B(yi; 1)
∣∣ where we have covered B(y;R)

by a finite number JR (depending on R only) of balls B(yi; 1) with radius 1.

We write∫
Ξ
h(x− y)dx =

∫
Ξ−y

h(z)dz =

∫
(Ξ−y)∩B(0,R)

h(z)dz +

∫
(Ξ−y)∩B(0,R)c

h(z)dz

≤
∫
(Ξ−y)∩B(0,R)

h(z)dz +

∫
B(0,R)c

h(z)dz
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where B(0;R)c is the exterior of the ball B(0;R). The invariance of Lebesgue

measure by translation yields

(60)
∣∣(Ξ− y) ∩B(0;R)

∣∣ = ∣∣Ξ ∩B(y;R)
∣∣.

Finally, for any ε > 0 we choose R large enough so that
∫
B(0;R)c h(z)dz < ε

and then
∫
(Ξ−y)∩B(0;R) h(z)dz → 0 as

∣∣y∣∣ → +∞ by (59) and (60).

We consider now the convolution C0-semigroup (U(t))t�0 with generator T

introduced in Chapter 1

(61) U(t) : ϕ ∈ L1(RN ) �−→
∫

ϕ(x− y)mt(dy) ∈ L1(RN )

where {mt}t≥0 are Radon sub-probability measures on R
N such that m0 = δ0,

mt ∗ ms = mt+s and mt → m0 vaguely as t → 0+. Such convolution C0-

semigroups cover many examples of practical interest such as Gaussian semi-

groups, α-stable semigroups, relativistic Schrödinger semigroups, relativistic

α-stable semigroup etc. (see [32], Chapter 3). This C0-semigroup acts in all

Lp(RN ) (1 ≤ p < +∞); in such spaces, we denote it by (Up(t))t�0 and denote

its generator by T p. We recall that

(λ− T )−1ϕ =

∫
ϕ(x− y)mλ(dy)

where

m̂λ(ζ) =

∫ +∞

0
e−λt m̂t(ζ)dt =

1

λ+ F (ζ)
.

Two kinds of assumptions can be used. Either

(62) ∃ pt ∈ L1
+(R

N ) such that mt(dy) = pt(y)dy (t > 0)

or

(63) ∃Gλ ∈ L1
+(R

N ) such that mλ(dy) = Gλ(y)dy.

Note that (63) is much weaker than (62) . Note also that (62) is satisfied if

e−tF (ζ) ∈ L1(RN ) (t > 0). As a consequence of Lemma 29 we have:

Theorem 30. — Let (U(t))t�0 be the convolution C0-semigroup (61) on

L1(RN ). Let the sublevel sets ΩM be “thin at infinity”. If (63) is satisfied

then TV is resolvent compact on L1(RN ). If (62) and (11) are satisfied then

(UV (t))t�0 is a compact C0-semigroup on L1(RN ).

Since
(
U2(t)

)
t≥0 is self-adjoint for real characteristic exponent then Corol-

lary 24 implies:
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Corollary 31. — We assume that the characteristic exponent is real.

Let (63) be satisfied and ΩM be “thin at infinity”. Then
(
Up
V (t)

)
t≥0 are

compact C0-semigroups on Lp(RN ) for all p > 1.

We give now a subordination result. For any Bernstein function f , we denote

by
(
Uf (t)

)
t≥0 the subordinated C0-semigroup (in the sense of Bochner) defined

in Chapter 3 which is also a convolution C0-semigroup with characteristic

exponent F f = f ◦ F . We denote by (Uf
V (t))t≥0 the corresponding perturbed

C0-semigroup, i.e.

Uf
V (t) := (Uf )V (t).

Theorem 32. — Let (U(t))t�0 be the convolution C0-semigroup (61)

on L1(RN ). Let f be a Bernstein function and let
(
Uf (t)

)
t�0

be the cor-

responding subordinate C0-semigroup. We assume that mt are functions

(t > 0). If (11) is satisfied by
(
Uf (t)

)
t�0

and if the sublevel sets ΩM are “thin

at infinity” then
(
Uf
V (t)

)
t≥0

is a compact C0-semigroup on L1(RN ).

Proof. — Let
{
mf

t

}
t≥0

be the Radon sub-probability measures corresponding

to the convolution C0-semigroup
(
Uf (t)

)
t�0

. We have

U(t) = ϕ ∗mt and Uf (t)ϕ =

∫ +∞

0
(U(s)ϕ) ηt(ds)

wheree−tf(x) =
∫ +∞
0 e−xs ηt(ds) (t > 0). Thus

Uf (t)ϕ =

∫ +∞

0
(ϕ ∗ms) ηt(ds) = ϕ ∗mf

t

where

(64) mf
t =

∫ +∞

0
ms ηt(ds)

is the Radon measure

〈mf
t , ζ〉 =

∫ +∞

0
〈ms, ζ〉 ηt(ds),

(
ζ ∈ Cc(R

N )
)
.

Let ms be a function ps ∈ L1
+(R

N ). Then 〈ms, ζ〉 =
∫
RN ps(y)ζ(y)dy and

〈mf
t , ζ〉 =

∫ +∞

0

(∫
RN

ps(y)ζ(y)dy
)
ηt(ds)

=

∫
RN

(∫ +∞

0
ps(y) ηt(ds)

)
ζ(y)dy
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shows that

mf
t (dy) = pft (y)dy

where

pft (y) :=

∫ +∞

0
ps(y) ηt(ds)

is an L1 function. Finally Theorem 30 ends the proof.

We refer to Remark 27 to check how (14) could be satisfied by (Uf (t))t�0.

Since the heat semigroup is holomorphic in L1(RN ) then so is (Uf (t))t≥0 for

any Bernstein function f (see [21]) and then Theorem 32 implies:

Corollary 33. — Let (U(t))t�0 be the heat C0-semigroup on L1(RN ) and

let f be a Bernstein function. Then (Uf
V (t))t≥0 is a compact C0-semigroup if

the sublevel sets ΩM are “thin at infinity”.

We end this chapter with some usual examples covered by Corollary 33.

Note that xα (x > 0) for 0 < α ≤ 1 is a Bernstein function f (see [32], Ex-

ample 3.9.16, p. 180) and {Uf (t); t � 0}, the so-called symmetric stable semi-

group of order 2α, corresponds to F (ζ) =
∣∣ζ∣∣2α. Note that ln(1 + x) (x > 0)

is a Bernstein function (see [32], Example 3.9.15, p. 180) so that ln(1 + xα)

(x > 0) is also a Bernstein function f (see [32], Corollary 3.9.36, p. 206)

and {Uf (t); t � 0}, the so-called geometric α-stable semigroup, corresponds

to F (ζ) = ln(1 + |ζ|α) (0 < α ≤ 2). Finally, (x + m
2
α )

α
2 − m is a Bernstein

function f (see [67]) and {Uf (t); t � 0}, the relativistic α-stable semigroup

generated by (4), corresponds to F (ζ) = (|ζ|2 +m
2
α )

α
2 −m.

Remark 34. — We can also deal with perturbation of generators of convo-

lution semigroups by indefinite potentials, see Chapter 9 and Remark 69.
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CHAPTER 5

COMPACTNESS RESULTS ON L1(Ω; d, μ)

In this chapter (and the following one) we complement the main compacte-

ness results in Chapter 3 in L1 spaces over separable metric measure spaces

(Ω; d,A, μ) where (Ω, d) denotes a separable metric space, A is the σ-algebra

of Borel subsets of Ω and μ is a σ-finite Borel measure on Ω. It follows that

A is separable, i.e. is generated by a denumerable sub-family D ⊂ A (see [59]

Theorem 1.8, p. 5) and consequently (see e.g. [8] p. 98) L1(Ω;A, μ) is separable.

We assume also that

(65) bounded Borel sets have finite μ-measure.

The existence of a metric d allows to understand further the key conditions

(25) and (26). Let (U(t))t�0 be a sub-stochastic C0-semigroup on L1(Ω;A, μ)

with generator T. We complement Theorem 15 by:

Theorem 35. — Let (Ω, d, μ) be a separable metric measure space satisfy-

ing (65). Let V satisfy (6) and (8). We denote by (UV (t))t�0 the corresponding

perturbed sub-stochastic C0-semigroup. We assume that

(1− T )−1 : L1(Ω;μ) −→ L1(Ξ)

is weakly compact for any bounded Borel set Ξ. Let G1(x, y) be the kernel of

(1− T )−1. If

(66) lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

G1(x, y)μ(dx) = 0, ∀M > 0

(for some x0 ∈ Ω) then (51) holds (and then TV is resolvent compact).

Proof. — Note that (66) is x0-independent. As noted in Remark 28, the exis-

tence of the kernel G1(x, y) follows from the separability of L1(Ω;μ) and the
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weak compactness assumption. We decompose χΩM
(1− TV )

−1 as

χΩM
(1− T )−1 = χ{x∈ΩM ,d(x,x0)�C}(1− T )−1

+χ{x∈ΩM ,d(x,x0)<C}(1− T )−1.

By assumption, χ{x∈ΩM ,d(x,x0)<C}(1−TV )
−1 is weakly compact. On the other

hand, the norm of χ{x∈ΩM ,d(x,x0)�C}(1− T )−1 is given by

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

G1(x, y)μ(dx)

so (by Assumption (66))∥∥χΩM
(1− T )−1 − χ{x∈ΩM ,d(x,x0)<C}(1− T )−1

∥∥
L(L1(Ω;μ))

is arbitrarily small for C large enough. Hence χΩM
(1− TV )

−1 is weakly com-

pact.

We note that if (UV (t))t�0 is operator norm continuous (e.g. if (U(t))t�0 is

operator norm continuous and (47) is satisfied) then Theorem 35 implies the

compactness of the C0-semigroup (UV (t))t�0. We have also:

Theorem 36. — Let (Ω, d, μ) be a separable metric measure space satisfy-

ing (65). Let V satisfy (6) and (8). We denote by (UV (t))t�0 the corresponding

perturbed sub-stochastic C0-semigroup. We assume that (11) is satisfied. Let

U(t) : L1(Ω;μ) −→ L1(Ξ)

be weakly compact for any bounded Borel set Ξ. Let pt(x, y) be the kernel

of U(t). If

(67) lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) = 0 (t > 0)

(for some x0 ∈ Ω) then (52) holds (and then (UV (t))t�0 is a compact C0-

semigroup).

Proof. — Arguing as in the previous proof, we decompose χΩM
U(t) as

χΩM
U(t) = χ{x∈ΩM ,d(x,x0)�C}U(t)

+χ{x∈ΩM ,d(x,x0)<C}U(t).

Since χ{x∈ΩM ,d(x,x0)<C}U(t) is weakly compact and∥∥χΩM
U(t)− χ{x∈ΩM ,d(x,x0)�C}U(t)

∥∥ = sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)

goes to zero as M → +∞ then χΩM
U(t) is weakly compact, i.e. (52) holds.
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We link now Theorem 35 and Theorem 36 to the notion of sublevels sets

“thin at infinity”. We say that a Borel set Ξ ⊂ Ω is “thin at infinity” if there

exists a point y ∈ Ω such that for all M > 0

(68) μ {Ξ ∩B(y;M)} −→ 0 as d(y, y) → +∞

where B(y;M) is the ball centered at y with radius M. This definition is

y-independent.

We give first a basic preliminary result.

Lemma 37. — We assume that

v(r) := sup
x∈Ω

μ
(
B(x, r)

)
< +∞, ∀r � 0.

Let H be the integral operator

L1(Ω;μ) 
 ϕ �−→
∫
Ω
h(x, y)ϕ(y)μ(dy) ∈ L1(Ω;μ)

satisfying a kernel estimate of the form

h(x, y) ≤ f
(
d(x, y)

)
where f : R+ → R+ is nonincreasing and such that (for sufficiently large r)

r �−→ f(r)v(r + 1)

is non increasing and integrable at infinity. Then:

(i) H is a bounded operator on L1(Ω;μ).

(ii) If a Borel set Ξ ⊂ Ω is “thin at infinity” in the sense (68) then

H : L1(Ω;μ) −→ L1(Ξ;μ) is weakly compact.

Proof. — (i) By domination, it suffices to show that

(69) ϕ ∈ L1(Ω;μ) �−→
∫

f
(
d(x, y)

)
ϕ(y)μ(dy) ∈ L1(Ω;μ)

is a bounded operator. This holds if and only if there exists C > 0 such that∫
f
(
d(x, y)

)
μ(dx) ≤ C, ∀y ∈ Ω.
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We have∫
f
(
d(x, y)

)
μ(dx) =

∫
{d(x,y)<1}

f
(
d(x, y)

)
μ(dx)(70)

+

∞∑
n=1

∫
{n≤d(x,y)<n+1}

f
(
d(x, y)

)
μ(dx)

≤ f(0)μ(B(y, 1)) +

∞∑
n=1

f(n)
[
μ(B(y, n+ 1))− μ(B(y, n))

]
=

[
f(0)− f(1)

]
μ
(
B(y, 1)

)
+

[
f(1)− f(2)

]
μ(B(y, 2)) + · · ·

=

∞∑
n=0

[
f(n)− f(n+ 1)

]
μ
(
B(y, n+ 1)

)
(71)

which is finite if
∞∑
n=0

f(n)μ
(
B(y, n+ 1)

)
< ∞,

∞∑
n=0

f(n+ 1)μ
(
B(y, n+ 1)

)
< ∞

or ∞∑
n=0

f(n)v(n+ 1) < ∞,

∞∑
n=0

f(n+ 1)v(n+ 1) < ∞

or equivalently
∞∑
n=0

f(n)v(n+ 1) < ∞

(since v(n) ≤ v(n + 1)) which follows from
∫ +∞
1 f(r)v(r + 1)dr < ∞ and

r �→ f(r)v(r + 1) is nonincreasing.

(ii) We decompose the integral operator (69) by decomposing its kernel as

f
(
d(x, y)

)
= 1Ξc(x)f

(
d(x, y)

)
+ 1

Ξ̃c
(x)f

(
d(x, y)

)
where

Ξc := Ξ ∩ {
x; d(x, y) � c

}
and Ξ̃c := Ξ ∩ {

x; d(x, y) < c
}

since x ∈ Ξ. Note that f(d(x, y)) ≤ f(0) so that

ϕ ∈ L1(Ω;μ) �−→
∫

1
Ξ̃c
(x)f

(
d(x, y)

)
ϕ(y)u(dy) ∈ L∞(Ξ̃c;μ)

and (since μ{Ξ̃c} is finite) the imbedding of L∞(Ξ̃c;μ) into L1(Ξ̃c;μ) is weakly

compact because a bounded subset of L∞(Ξ̃c;μ) is equi-integrable. It suffices

to show that the norm of the second part goes to zero as c → +∞, i.e.

sup
y∈Ω

∫
Ξ∩{d(x,y)�c}

f(d(x, y))μ(dx) → 0 as c → +∞.
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Consider first the integral∫
Ξ∩{d(x,y)�c}

f
(
d(x, y)

)
μ(dx)

=

∞∑
n=0

∫
{n≤d(x,y)<n+1}∩Ξ∩{d(x,y)�c}

f
(
d(x, y)

)
μ(dx)

≤
∞∑
n=0

f(n)μ
[ {n ≤ d(x, y) < n+ 1} ∩ Ξ ∩ {d(x, y) � c} ].

We note that
∞∑

n=m

f(n)μ
[ {n ≤ d(x, y) < n+ 1} ∩ Ξ ∩ {d(x, y) � c} ]

≤
∞∑

n=m

f(n)μ
[ {n ≤ d(x, y) < n+ 1} ]

=

∞∑
n=m

f(n)
[
μ(B(y, n+ 1))− μ(B(y, n))

]

≤
∞∑

n=m

f(n)
[
μ(B(y, n+ 1)) + μ(B(y, n))

]

≤ c

∞∑
n=m

f(n)
[
v(n+ 1) + v(n)

]
so that, for any ε > 0 there exists an integer m such that
∞∑

n=m

f(n)μ
[ {n ≤ d(x, y) < n+ 1}∩Ξ∩{d(x, y) � c} ] ≤ ε uniformly in y ∈ Ω.

It suffices to show that
m∑

n=0

f(n)μ
[ {n ≤ d(x, y) < n+ 1} ∩ Ξ ∩ {d(x, y) � c} ] → 0 as c → +∞

uniformly in y ∈ Ω, or equivalently for any n ≤ m

(72) μ
[ {n ≤ d(x, y) < n+ 1} ∩ Ξ ∩ {d(x, y) � c} ] −→ 0 as c → +∞

uniformly in y ∈ Ω. The inequality

d(y, y) �
∣∣d(x, y)− d(x, y)

∣∣ � c− (n+ 1)

for c > (n+ 1) shows that either the set{
x;n ≤ d(x, y) < n+ 1

} ∩ {
x; d(x, y) � c

}
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is empty (and then μ [{n ≤ d(x, y) < n+ 1} ∩ Ξ ∩ {d(x, y) � c}] = 0) or

d(y, y) � c− (n+ 1). On the other hand, by assumption, for any n

μ
[ {x; d(x, y) < n+ 1} ∩ Ξ

] −→ 0 as d(y, y) → ∞
and then (72) follows.

Now Theorem 35, Theorem 36 and Lemma 37 imply:

Theorem 38. — Let (Ω, d, μ) be a separable metric measure space satisfy-

ing (65). Let V satisfy (6) and (8). We denote by (UV (t))t�0 the corresponding

perturbed sub-stochastic C0-semigroup. We assume that the sublevel sets ΩM

are “thin at infinity” in the sense (68).

(i) If the kernel G(x, y) of (1 − T )−1 satisfies an estimate of the form

G(x, y) ≤ f(d(x, y)) where f : R+ → R+ is nonincreasing and such that (for

large r) r → f(r)v(r + 1) is nonincreasing and integrable at infinity then TV

is resolvent compact.

(ii) Let (11) be satisfied. If for each t > 0, the kernel pt(. , .) of U(t) satisfies

an estimate of the form pt(. , .) ≤ ft(d(x, y)) where ft : R+ → R+ is nonin-

creasing and such that (for large r) r �→ ft(r)v(r + 1) is nonincreasing and

integrable at infinity then (UV (t))t�0 is a compact C0-semigroup.

Remark 39. — Theorem 38 applies to the different examples of kernel esti-

mates (21), (22) and (23) arising in the theory of Markov process

ft(r) :=
C

tγ
exp

(
− r2

Ct

)
,

C

t
α
β

exp

(
− r

β
β−1

C
β

β−1 t
β

β−1

)
or

C

t
α
β

(
1 +

r

t
1
β

)−(α+β)

,

provided we impose an appropriate volume growth

r �−→ v(r)

in order to meet the above conditions on r �→ ft(r)v(r + 1).
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CHAPTER 6

SPECTRAL GAPS ON L1(Ω; d, μ)

In this chapter, we investigate phenomena which can occur when (UV (t))t≥0
is not compact or TV is not resolvent compact. We recall that s(TV ) ∈ σ(TV )

and s(TV ) is equal to the type of (UV (t))t�0. Note that s(TV ) ≤ 0 by the

contraction of (UV (t))t�0. We recall also that the spectral gap (or essential

compactness) property of perturbed C0-semigroups (UV (t))t�0 refers to the

strict inequality

ωess(UV ) < s(TV )

while a spectral gap property of perturbed generator TV refers to

(73) sess(TV ) < s(TV ).

We deal first with perturbed generators.

Theorem 40. — Let (Ω, d, μ) be a separable metric measure space satisfying

(65). Let V satisfy (6) and (8). We denote by (UV (t))t�0 the corresponding

perturbed sub-stochastic C0-semigroup. Let

(1− T )−1 : L1(Ω) −→ L1(Ξ)

be weakly compact for any bounded Borel set Ξ. We assume that the kernel

G1(x, y) of (1− T )−1 satisfies the estimate

(74) sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

G1(x, y)μ(dx) <
1

1− s(TV )

(for some x0 ∈ Ω). Then

s(TV )− sess(TV ) ≥ η̂

where
η̂ :=

η((1− s(TV ))

ress[(1− TV )−1]
and η is difference between the right and left hand sides of (74).
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Proof. — We choose an arbitrary ε > 0 such that

ε < η.

It is known (see e.g. [55], Proposition 2.5, p. 67), for any β ∈ ρ(TV ),

(75) rσ
[
(β − TV )

−1] = 1

dist(β, σ(TV ))
,

in particular

rσ
(
(1− TV )

−1) = 1

1− s(TV )

(since s(TV ) ∈ σ(TV )) and

1− s(TV ) =
1

rσ ((1− TV )−1)
.

Let

λ ∈ σ(TV )

be an arbitrary spectral value of TV and let

q := Imλ

be its imaginary part. Note that Reλ ≤ s(TV ).

Note the uniform domination in q ∈ R∣∣(1 + iq − TV )
−1f

∣∣ = ∣∣∣ ∫ +∞

0
e−(1+iq)t e−tTV f dt

∣∣∣
≤

∫ +∞

0
e−t e−tTV |f |dt = (1− TV )

−1|f |.

The same argument shows that∣∣(1 + iq − TV )
−nf

∣∣ ≤ (1− TV )
−n|f |

for any integer n so that taking the 1
n -powers of the operator norms and passing

to the limit as n → ∞
(76) rσ((1 + iq − TV )

−1) ≤ rσ
(
(1− TV )

−1), ∀q ∈ R.

We decompose (1 + iq − TV )
−1 as

(1 + iq − TV )
−1 = χΩc

M
(1 + iq − TV )

−1(77)

+χ{x∈ΩM ,d(x,x0)�C}(1 + iq − TV )
−1

+χ{x∈ΩM ,d(x,x0)<C}(1 + iq − TV )
−1

where Ωc
M is the complement of the sublevel set ΩM . Since

χ{x∈ΩM ,d(x,x0)<C}(1 + iq − TV )
−1
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is dominated by χ{x∈ΩM ,d(x,x0)<C}(1− TV )
−1 which is itself dominated by

χ{x∈ΩM ,d(x,x0)<C}(1− T )−1

then, by our assumption, the third operator in (77) is weakly compact. More-

over, we saw in the proof of Theorem 15 that the norm of χΩc
M
(1−TV )

−1 goes

to zero as M → +∞ so that, by domination, the norm of χΩc
M
(1+ iq− TV )

−1

goes to zero (uniformly in q) as M → +∞. Finally, the norm of

χ{x∈ΩM ,d(x,x0)�C}(1 + iq − TV )
−1

is less than or equal to that of χ{x∈ΩM ,d(x,x0)�C}(1− TV )
−1 which is itself less

than or equal to the norm of χ{x∈ΩM ,d(x,x0)�C}(1− T )−1, i.e.

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

G1(x, y)μ(dx).

It follows that for M and C large enough∥∥χΩc
M
(1 + iq − TV )

−1 + χ{x∈ΩM ,d(x,x0)�C}(1 + iq − TV )
−1∥∥ ≤ 1

1− s(TV )
− ε

uniformly in q. In L1 spaces, the essential spectrum is stable by weakly com-

pact perturbations (see [38], Proposition 2.c.10, p. 79) so that for M and C

large enough

ress
[
(1 + iq − TV )

−1] = ress
[
(χΩc

M
+ χ{x∈ΩM ,d(x,x0)�C})(1 + iq − TV )

−1]
≤ ∥∥(χΩc

M
+ χ{x∈ΩM ,d(x,x0)�C})(1 + iq − TV )

−1∥∥
<

1

1− s(TV )
− ε = rσ

[
(1− TV )

−1]− ε

uniformly in q so

(78)
1

1− s(TV )
− ress

[
(1 + iq − TV )

−1] > ε uniformly in q.

By using (78) and (76) we get

1

ress [(1 + iq − TV )−1]
− (1− s(TV ))(79)

=

1
1−s(TV ) − ress

[
(1 + iq − TV )

−1]
1

1−s(TV )ress [(1 + iq − TV )−1]
≥ ε((1− s(TV ))

ress [(1− TV )−1]

uniformly in q.

On the other hand, γ is an isolated eigenvalue of TV with finite algebraic

multiplicity if and only if 1
1+iq−γ is an isolated eigenvalue of (1 + iq − TV )

−1
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with finite algebraic multiplicity, then any spectral value γ of TV such that

1

|1 + iq − γ| > ress
[
(1 + iq − TV )

−1]
is an isolated eigenvalue of T with finite algebraic multiplicity. Hence any

spectral value λ of TV (with imaginary part q) such that

|1− Reλ| < 1

ress [(1 + iq − TV )−1]
is an isolated eigenvalue of T with finite algebraic multiplicity. Since

0 ≤ 1− Reλ =
(
1− s(TV ) ) + (s(TV )− Reλ

)
then any spectral value λ of TV (with imaginary part q) such that

s(TV )− Reλ <
1

ress[(1 + iq − TV )−1]
− (

1− s(TV )
)

is an isolated eigenvalue of T with finite algebraic multiplicity. Finally, (79)

shows that any spectral value λ of TV (with imaginary part q) such that

s(TV )− Reλ <
ε((1− s(TV ))

ress [(1− TV )−1]
is an isolated eigenvalue of T with finite algebraic multiplicity. The arbitrari-

ness of ε < η ends the proof.

We have a better insight into (74) if we note the estimates

sup
y∈Ω

∫
G1(x, y)μ(dx) =

∥∥(1− T )−1
∥∥ ≥ rσ

(
(1− T )−1

)
=

1

1− s(T )
≥ 1

1− s(TV )
.

Theorem 41. — Let the conditions of Theorem 40 be satisfied. If (UV (t))t�0

is operator norm continuous then ωess(UV ) < s(TV ) i.e. (UV (t))t�0 has a spec-

tral gap.

Proof. — By the operator norm continuity of (UV (t))t�0,

(λ− TV )
−1 =

∫ +∞

0
e−λtUV (t)dt (Reλ > s(TV ))

is given by a Bochner integral (instead of simply a strong integral) so that

Riemann-Lebesgue Lemma holds

(80)
∥∥(λ− TV )

−1∥∥ −→ 0 as |Imλ| → ∞.

By Theorem 40, there exists α > 0 such that

σ(TV ) ∩
{
s(TV )− α � Reλ ≤ s(TV )

}
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consists of a (non-empty) set isolated eigenvalues with finite algebraic multi-

plicities. This set must be finite. Indeed, otherwise we would have a sequence

of eigenvalues νk = αk + iβk such that αk ∈ [s(TV )− α, s(TV )] and
∣∣βk∣∣ → ∞

with normalized eigenvectors xk. Without loss of generality, we may assume

that

αk −→ α ≤ s(TV ) ≤ 0.

Since TV xk = (αk + iβk)xk, i.e. (1 + iβk − TV )xk = (1− αk)xk then

1 =
∥∥xk∥∥ =

∣∣(1− αk)
∣∣ · ∥∥(1 + iβk − TV )

−1xk
∥∥

≤ ∣∣(1− αk)
∣∣ · ∥∥(1 + iβk − TV )

−1∥∥
which is impossible if

∣∣βk∣∣ → ∞ because of (80).

We denote by {ν1, ..., νJ} this finite set of eigenvalues. Let P be the (finite

dimensional) spectral projection corresponding to this finite set of eigenvalues.

Note that this projection commutes with UV (t). We denote by Y its finite

dimensional range. We decompose L1(Ω) as

L1(Ω) = X ⊕ Y

where X = (I − P )(L1(Ω)). Then

σ(TV ) = {ν1, ..., νJ} ∪ σ(TV |X)

where TV |X is the restriction of TV to X (with domain D(TV ) ∩X) and

σ(TV |X) = σ(TV ) ∩
{
Reλ < s(TV )− α

}
.

We decompose then UV (t) as

UV (t) = UV (t)P + UV (t)(I − P ).

It follows that

σess
(
UV (t)

)
= σess

(
UV (t)(I − P )

) ⊂ σ
(
UV (t)(I − P )

)
where (UV (t)(I − P ))t≥0 is identified to the C0-semigroup on X with genera-

tor TV |X . Thus

eωesst = ress
(
UV (t)

) ≤ rσ
(
UV (t)(I − P )

)
.

Since (UV (t)(I − P ))t≥0 is also operator norm continuous then the spectral

mapping theorem

σ
(
UV (t)(I − P )

)− {0} = etσ(TV |X)

holds (see e.g. [55], p. 87) so that rσ(UV (t)(I − P )) ≤ e(s(TV )−α)t and finally

ωess < s(TV ).
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We give now a second approach to spectral gaps for perturbed C0-

semigroups based on the weak type estimate (37).

Theorem 42. — Let (Ω, d, μ) be a separable metric measure space satisfy-

ing (65). Let V satisfy (6) and (8). We denote by (UV (t))t�0 the correspond-

ing perturbed sub-stochastic C0-semigroup. We assume that (11) is satisfied.

Let t > 0 be fixed and let

U(t) : L1(Ω) −→ L1(Ξ)

be weakly compact for any bounded Borel set Ξ. We assume that the kernel

pt(x, y) of U(t) satisfies the estimate

(81) sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < es(TV )t

for some t > 0 (and some x0 ∈ Ω). Then ωess(UV ) < s(TV ).

Proof. — We denote by Ωc
M the complement of ΩM and decompose UV (t) as

UV (t) = χΩc
M
UV (t) + χ{x∈ΩM ,d(x,x0)�C}UV (t)(82)

+χ{x∈ΩM ,d(x,x0)<C}UV (t).

Since χ{x∈ΩM ,d(x,x0)<C}UV (t) is dominated by χ{x∈ΩM ,d(x,x0)<C}U(t) then, by

our assumption, the third operator in (82) is weakly compact. Then the sta-

bility of the essential spectrum by weakly compact perturbations in L1 spaces

(see [38], Proposition 2.c.10, p. 79) shows that for all M,C

eωess(UV )t = ress [UV (t)] = ress
[
(χΩc

M
+ χ{x∈ΩM ,d(x,x0)�C})UV (t)

]
≤ ∥∥(χΩc

M
+ χ{x∈ΩM ,d(x,x0)�C})UV (t)

∥∥
and then

eωess(UV )t ≤ lim
M→∞

lim
C→∞

∥∥(χΩc
M

+ χ{x∈ΩM ,d(x,x0)�C})UV (t)
∥∥

= lim
M→∞

lim
C→∞

∥∥χ{x∈ΩM ,d(x,x0)�C}UV (t)
∥∥

since (37) shows that the norm of χΩc
M
UV (t) goes to zero as M → +∞. On

the other hand, the norm of χ{x∈ΩM ,d(x,x0)�C}UV (t) is less than or equal to

that of χ{x∈ΩM ,d(x,x0)�C}U(t), i.e.

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)

MÉMOIRES DE LA SMF 148



CHAPTER 6. SPECTRAL GAPS ON L1(Ω; d, μ) 55

so one has

eωess(UV )t ≤ lim
M→∞

lim
C→∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)

= sup
M>0

lim
C→∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < es(TV )t

and ωess(UV ) < s(TV ).

Remark 43. — Actualy the proof of Theorem 42 provides the “quantitative”

estimate

ωess ≤ inf
t>0

1

t
ln

(
sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)
)
.

The proof of Theorem 42 suggests an interesting variant.

Corollary 44. — Let (Ω, d, μ) be a separable metric measure space satisfy-

ing (65). Let V satisfy (6) and (8). We denote by (UV (t))t�0 the correspond-

ing perturbed sub-stochastic C0-semigroup. We assume that (11) is satisfied.

Let t > 0 be fixed and let

U(t) : L1(Ω) −→ L1(Ξ)

be weakly compact for any bounded Borel set Ξ. We assume that the kernel

pt(x, y) of U(t) satisfies the estimate

(83) sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < es(T )t

(for some x0 ∈ Ω) where s(T ) be the spectral bound of T . Then

either s(TV ) < s(T ) or s(TV ) = s(T ) and ωess(UV ) < s(TV ).

Proof. — Since s(TV ) ≤ s(T ) then either s(TV ) < s(T ) or s(TV ) = s(T ) and

then we can of course replace s(T ) by s(TV ) in (83) and appeal to Theorem 42.

In particular, if (U(t))t�0 is a stochastic C0-semigroup (i.e. mass preserving

on the positive cone) then
∫
pt(x, y)μ(dx) = 1 and s(T ) = 0 so that we have:

Corollary 45. — Let (Ω, d, μ) be a separable metric measure space satis-

fying (65). Let V be satisfy (6) and (8). Let (U(t))t�0 be a stochastic C0-

semigroup (i.e. mass preserving on the positive cone). We assume that (11)

is satisfied. Let t > 0 be fixed and let

U(t) : L1(Ω) −→ L1(Ξ)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



56 CHAPTER 6. SPECTRAL GAPS ON L1(Ω; d, μ)

be weakly compact for any bounded Borel set Ξ. If the kernel pt(x, y) of U(t)

satisfies the estimate

(84) sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < 1

(for some x0 ∈ Ω) then either s(TV ) < 0 or ωess(UV ) < s(TV ) = 0.

We consider now the case where (U(t))t�0 is a sub-Markov C0-semigroup,

i.e. acts in all Lp spaces as a positive contraction C0-semigroup. We denote

it by (Up(t))t�0 as a C0-semigroup acting on Lp(Ω;μ) with generator T p. We

denote by
(
Up
V (t)

)
t≥0 the corresponding perturbed C0-semigroup in Lp(Ω;μ)

and by T p
V its generator. Let s(T p

V ) be the spectral bound of T p
V . Finally,

let ωess(U
p
V ) be the essential type of

(
Up
V (t)

)
t≥0 .

Theorem 46. — Let (Ω, d, μ) be a separable metric measure space satis-

fying (65). Let V satisfy (6) and (8). Let (U(t))t�0 be a sub-Markov C0-

semigroup. We assume that (11) is satisfied. Let t > 0 be fixed and let

U(t) : L1(Ω) −→ L1(Ξ)

be compact for any bounded Borel set Ξ. If the kernel pt(x, y) of U(t) satisfies

the estimate

sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < eps(T
p
V )t

(for some x0 ∈ Ω) then ωess(U
p
V ) < s(T p

V ).

Proof. — We recall that s(T p
V ) is equal to the type of

(
Up
V (t)

)
t≥0 (see [77]).

We decompose Up
V (t) as

Up
V (t) = χΩc

M
Up
V (t) + χ{x∈ΩM ,d(x,x0)�C}U

p
V (t)

+χ{x∈ΩM ,d(x,x0)<C}U
p
V (t)

where Ωc
M is the complement of the sublevel set ΩM . We note the compactness

of χ{x∈ΩM ,d(x,x0)<C}Up(t) in Lp(Ω) (by interpolation from the L1 compactness

assumption) and then the domination

χ{x∈ΩM ,d(x,x0)<C}U
p
V (t) ≤ χ{x∈ΩM ,d(x,x0)<C}Up(t)

shows that χ{x∈ΩM ,d(x,x0)<C}U
p
V (t) is compact in Lp(Ω) by Doods-Fremlin’s

theorem (see e.g. [1],Theorem 5.20, p. 286). Moreover, by (37) the L1-operator

norm of χΩc
M
UV (t) goes to zero as M → +∞ while its L∞-operator norm

is less than or equal to one. Then, by Riesz-Thorin interpolation theorem,
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the Lp-operator norm of χΩc
M
Up
V (t) goes also to zero as M → +∞. Finally,

the L1-operator norm of χ{x∈ΩM ,d(x,x0)�C}UV (t) is less than or equal to that

of χ{x∈ΩM ,d(x,x0)�C}U(t), i.e.

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)

(and its L∞-operator norm is less than or equal to one) so that, by Riesz-

Thorin interpolation theorem, the Lp-operator norm of χ{x∈ΩM ,d(x,x0)�C}U
p
V (t)

is less than or equal to(
sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)
) 1

p
.

It follows that for M and C large enough the Lp-operator norm of

χΩc
M
Up
V (t) + χ{x∈ΩM ,d(x,x0)�C}U

p
V (t)

is less than (eps(T
p
V )t)

1
p = es(T

p
V )t. Then the stability of the essential spectrum

by compact perturbations shows that

eωess(U
p
V )t = ress

[
Up
V (t)

]
= ress

[
(χΩc

M
+ χ{x∈ΩM ,d(x,x0)�C})U

p
V (t)

]
≤ ∥∥(χΩc

M
+ χ{x∈ΩM ,d(x,x0)�C})U

p
V (t)

∥∥ < es(T
p
V )t

so that ωess(U
p
V ) < s(T p

V ).

Remark 47. — In Theorem 42, if we replace (81) by

sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx) < eαt

for some α ≤ s(TV ) then the proof above gives ωess(UV ) < α. This formulation

of Theorem 42 will be used in the proof of Theorem 63 below. More generally,

the proof of Theorem 42 shows the “quantitative” estimate

ωess(UV ) ≤ inf
t>0

1

t
ln

(
sup
M>0

lim
C→+∞

sup
y∈Ω

∫
{x∈ΩM ; d(x,x0)�C}

pt(x, y)μ(dx)
)
.

Remark 48. — Note that if the C0-semigroup (UV (t))t≥0 is irreducible and

essentially compact (i.e. ωess(UV ) < s(TV )) then s(TV ) is a strictly dominant

(algebraically simple) eigenvalue of TV and

e−s(TV )tUV (t)P as t → +∞
in operator norm where P is the one-dimensional spectral projection as-

sociated to the leading eigenvalue s(TV ) (see e.g. [55], p. 343–344); in the
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case s(TV ) = 0, we have the so-called “exponential return to equilibrium”;

see [53] for the irreducibility of (UV (t))t≥0 and the precise statements. Besides

weighted Schrödinger operators (see Theorem 58 below), this occurs e.g. in

neutron transport theory [51].
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CHAPTER 7

ON WEIGHTED LAPLACIANS

In this chapter (and the following one) we illustrate the previous abstract

theory by many concrete examples of applied interest.

Let h ∈ C2(RN ) such that h(x) > 0 for all x ∈ R
N and let μ(dx) = h2(x)dx.

We define the weighted Laplacian on L2(RN ;μ(dx))

�μ :=
1

h2
div(h2∇) = �+ 2

∇h · ∇
h

.

This is (minus) the self-adjoint operator in L2(RN ;μ(dx)) associated to the

Dirichlet form ∫
RN

∣∣∇ϕ
∣∣2μ(dx)

on

H1(RN ;μ) =
{
ϕ ∈ L2(RN ;μ),

∂ϕ

∂xi
∈ L2(RN ;μ), 1 ≤ i ≤ N

}
(see e.g. [10], Chapter 4.7, [23]). Let

V :=
�h

h
.

It is easy to see that

�μϕ = �ϕ+ 2
∇h · ∇ϕ

h
=

1

h
[h�ϕ+ 2∇h · ∇ϕ+ ϕ�h− V ϕh]

=
1

h
[�ϕh− V ϕh] ,

i.e.

�μ =
1

h
◦ (�− V ) ◦ h.

Thus the weighted Laplacian �μ in L2(RN ;μ(dx)) is unitarily equivalent to

the Schrödinger operator�−
h
h on L2(RN ; dx) by the unitary transformation

I : ϕ ∈ L2(RN ;μ(dx)) �−→ hϕ ∈ L2(RN ; dx).
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This shows that the weighted Laplacian �μ in L2(RN ;μ(dx)) has the

same spectral properties (i.e. resolvent compactness, spectral gaps...) as

the Schrödinger operator � − �h/h on L2(RN ; dx). We begin with several

compactness results for weighted Laplacians related to thinness properties of

sublevels sets of V . We start with the following result already obtained in [42]

by other means.

Proposition 49. — Let h ∈ C2(RN ) with h(x) > 0 ∀x ∈ R
N . We assume

that �h/h is bounded from below. Then the weighted Laplacian �μ generates

a compact C0-semigroup on L2(RN ;μ(dx)) provided that the sublevel sets ΩM

of �h/h are “thin at infinity”.

Proof. — Let V := 
h
h . Up to a bounded perturbation, without loss of general-

ity, we can assume that V � 0. Then“�−V ”, or more rigorously�V , generates

a compact C0-semigroup on L1(RN ; dx) (see Theorem 30) and in L2(RN ; dx)

by an interpolation argument. We conclude by a similarity argument.

Remark 50. — It follows from Proposition 49 that the imbedding of

H1(RN ;μ) into L2(RN ;μ) is compact if �h/h is bounded from below and its

sublevel sets are “thin at infinity”; see also [19].

Generally, the function h is written in the form h(x) := e−
Φ
2
(x) where Φ is

a real C2 function on R
N , i.e.

μ(dx) = e−Φ(x)dx.

Note that in this case

�μ = �+ 2
∇h · ∇

h
= �−∇Φ · ∇

in L2(RN ; e−Φ(x)dx); we do not assume a priori that e−Φ(x) is integrable. It

is known that

V :=
�h

h
= 1

4

∣∣∇Φ(x)
∣∣2 − 1

2�Φ(x).

The (minus) Schrödinger operators

�Φ := −�+ 1
4

∣∣∇Φ
∣∣2 − 1

2�Φ

in L2(RN ; dx) are also known as the Witten Laplacians (on 0-forms) and were

studied in particular in [28] in connection with Fokker-Planck operators. Thus

Proposition 49 takes the form:

Corollary 51. — Let Φ be a real C2 function on R
N . If

1
4 |∇Φ|2 − 1

2�Φ
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is bounded from below then the weighted Laplacian �μ on L2(RN ; e−Φ(x)dx)

generates a compact C0-semigroup provided that the sublevel sets of
1
4 |∇Φ|2 − 1

2�Φ are “thin at infinity”.

Remark 52. — The Ornstein-Uhlenbeck generator � − x · ∇ is a weighted

Laplacian in L2(RN ; e−
|x|2
2 dx) unitarily equivalent to (minus) −�+ |x|2

4 − N
2

(the harmonic oscillator) in L2(RN ; dx) and is known to generate a compact

C0-semigroup. We point out that the Ornstein-Uhlenbeck C0-semigroup is not

compact in L1(RN ; e−
|x|2
2 dx) (see [10], Chapter 4.3) while the C0-semigroup

generated by (minus) the harmonic oscillator is compact in L1(RN ; dx).

We revisit now various examples considered in the literature in L2 setting.

The following potential appears e.g. in [26], [33]

(85) Φ(x) =
1

h

N∑
j=1

( λ

12
x4j +

ν

2
x2j

)
+

1

h
· I
2

N∑
j=1

|xj − xj+1|2

(with the convention xN+1 = x1) where h > 0, λ > 0, ν < 0, I > 0.

Corollary 53. — Let Φ be of the form (85). Then −�Φ generates a

(holomorphic) compact C0-semigroup in L1(RN ; dx).

Proof. — Writing (85) in the form

Φ(x) = α

N∑
j=1

x4j − β

N∑
j=1

x2j + γ

N∑
j=1

|xj − xj+1|2

where α > 0, β > 0, γ > 0, it is easy to see that

�Φ = 12α|x|2 + γ(4− 2β)N.

On the other (see [33]) there exists c > 0 such that ∇Φ(x) · x � c|x|4 for |x|
large enough. Thus ∇Φ(x) · x/|x| � c|x|3 and then

∣∣∇Φ(x)
∣∣ � c|x|3 for

∣∣x∣∣
large enough. Finally

1
4 |∇Φ|2 − 1

2�Φ � c2|x|6
4

− 6α|x|2 + γ(2− β)N −→ +∞

as |x| → +∞ and we are done.

Sometimes Φ enjoys useful decompositions. We give a result in this direction

and then apply it to uniformly strictly convex Φ.
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Corollary 54. — Let Φ = Φ1 +Φ2 where Φ1,Φ2 be C2 functions such that(
1
4 |∇Φ1|2 − 1

2�Φ1

)
+ 1

2∇Φ1 · ∇Φ2 and 1
4

∣∣∇Φ2

∣∣2 − 1
2�Φ2

are bounded from below. If the sublevel sets of

1
4 |∇Φ2|2 − 1

2�Φ2

are “thin at infinity” then −�Φ generates a (holomorphic) compact C0-

semigroup in L1(RN ; dx).

Proof. — We note that

�Φ := −�+
(
1
4 |∇Φ1|2 − 1

2�Φ1

)
+

(
1
4 |∇Φ2|2 − 1

2�Φ2

)
+ 1

2∇Φ1 · ∇Φ2.

We may assume that(
1
4 |∇Φ1|2 − 1

2�Φ1

)
+ 1

2∇Φ1 · ∇Φ2 and 1
4 |∇Φ2|2 − 1

2�Φ2

are nonnegative. One sees that the sublevel sets of 1
4 |∇Φ|2− 1

2�Φ are included

in the sublevel sets 1
4 |∇Φ2|2 − 1

2�Φ2 an then are “thin at infinity” whence

−�Φ generates a (holomorphic) compact C0-semigroup in L1(RN ; dx).

A classical result by D. Bakry and M. Emery (see e.g. [66], Théorème 3.1.29,

p. 50) asserts that if Φ is uniformly strictly convex with
∫
e−Φ(x)dx = 1 then

the probability measure μ(dx) = e−Φ(x)dx satisfies a logarithmic-Sobolev

(or Gross) inequality and consequently (see e.g. [66], Proposition 3.1.8, p. 37)

the spectral gap (or Poincaré) inequality holds. We complement this by the

following result which does not depend on the integrability of e−Φ(x):

Corollary 55. — Let Φ be uniformly strictly convex (i.e. there exists

m > 0 such that Φ′′(x) � mI for all x ∈ R
N ) such that 1

4 |∇Φ|2 − 1
2�Φ is

bounded below. Then −�Φ generates a (holomorphic) compact C0-semigroup

in L1(RN ; dx).

Proof. — Let Φ′′(x) be the Hessian of Φ at x. Let Φ1(x) = Φ(x) − 1
3m|x|2.

Then

Φ′′1(x)(h, h) = Φ′′(x)(h, h)− 2
3m

∣∣h∣∣2 � 1
3m

∣∣h∣∣2,
i.e. Φ′′1(x) � 1

3mI so Φ1 is uniformly strictly convex and consequently (see

e.g. [66], p. 48)

x · ∇Φ1(x) � 1
3m|x|2 − b

where b is a constant. Thus Φ(x) = Φ1(x) + Φ2(x) (where Φ2(x) = 1
3m|x|2)

with

∇Φ1(x) · ∇Φ2(x) =
2
3mx · ∇Φ1(x) �

2m2

9
|x|2 − 2

3mb.
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It follows that 1
4 |∇Φ1|2 − 1

2�Φ1 is bounded from below since

1
4 |∇Φ2(x)|2 − 1

2�Φ2 =
1
9m

2|x|2 − 1
2mN

is. This ends the proof since

1
4 |∇Φ2(x)|2 − 1

2�Φ2 −→ +∞
as |x| → ∞.

We find in [28] systematic results on resolvent compactness or spectral gaps

when Φ is a polynomial. In particular, if Φ is a sum of nonpositive monomials

then �Φ is resolvent compact in L2(RN ; dx) if and only if∑
|α|>0

∣∣Dα
xΦ(x)

∣∣ −→ +∞

as
∣∣x∣∣ → +∞, see [28] Theorem 11.10 (ii), p. 120. We complement this by:

Proposition 56. — Let

(86) Φ(x) = −
∑
|α|≤C

cαx
2α1
1 x2α2

2 · · ·x2αN
N , (cα > 0)

where ᾱi > 0 for all i for at least one multi-index ᾱ. Then −�Φ generates a

(holomorphic) compact C0-semigroup in L1(RN ).

Proof. — We have

∂Φ

∂xj
= −

∑
|α|≤C

(2αjcα)x
2αj−1
j

∏
i �=j

x2αi
i ,

∂2Φ

∂x2j
= −

∑
|α|≤C

(2αj − 1)(2αjcα)x
2αj−2
j

∏
i �=j

x2αi
i ≤ 0

so that −�Φ � 0. On the other hand

|∇Φ|2 =
N∑
j=1

[ ∑
|α|≤C

(2αjcα)x
2αj−1
j

∏
i �=j

x2αi
i

]2

�
N∑
j=1

∑
|α|≤C

(2αjcα)
2x

2(2αj−1)
j

∏
i �=j

x4αi
i

�
N∑
j=1

(2ᾱjcᾱ)
2x

2(2ᾱj−1)
j

∏
i �=j

x4ᾱi
i .
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We observe that 1
4 |∇Φ|2 − 1

2�Φ � 0 and
{
x; 14 |∇Φ(x)|2 − 1

2�Φ(x) ≤ M
}

is included in {
x;x

2(2ᾱj−1)
j

∏
i �=j

x4ᾱi
i ≤ 4M

(2ᾱjcα)2

}
for any j. It suffices to show that the latter set is thin at infinity. We may also

restrict ourselves to positive coordinates. This set is defined by

xj ≤ Mj∏
i �=j x

2ᾱi/(2ᾱj−1)
i

where

Mj =
[ 4M

(2ᾱjcᾱ)2

] 1
2(2ᾱj−1)

.

To fix the notations, suppose that j = N and set

βi :=
2ᾱi

(2ᾱN − 1)
, 1 ≤ i ≤ N − 1.

Note first that if aN is large enough then the intersection of a cube

C :=
{
x; ai − 1 ≤ xi ≤ ai + 1; ∀i}

with the set defined by xN ≤ MN/
∏N−1

i=1 xβi
i is empty. On the other hand, it is

true that the Lebesgue measure of this intersection is always less than

MN

∫ ai+1

a1−1
dx1

xβ1
1

· · ·
∫ aN−1+1

aN−1−1
dxN−1
x
βN−1

N−1

= MN

[ 1

(1− β1)

( 1

(a1 − 1)β1
− 1

(a1 + 1)β1

)]
× · · · ×

[ 1

(1− βN−1)

( 1

(aN−1 − 1)β1
− 1

(aN−1 + 1)β1

)]
when βi �= 1, otherwise replace the corresponding term by ln((ai + 1)/(ai + 1)).

One sees that

MN

∫ ai+1

a1−1
dx1

xβ1
1

· · ·
∫ aN−1+1

aN−1−1
dxN−1
x
βN−1

N−1
−→ 0

if (at least) one coordinate ai (1 ≤ i ≤ N − 1) tends to infinity.

The case of nonnegative polynomials

(87) Φ(x) =
∑
|α|≤C

cαx
2α1
1 x2α2

2 · · ·x2αN
N , (cα > 0)

is much more involved even for homogeneous polynomials, see [28]. We restrict

ourselves to the simplest “elliptic” case.
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Proposition 57. — Let

Φ(x) =
∑
|α|=r

cαx
2α1
1 x2α2

2 · · ·x2αN
N (cα > 0).

If ∇Φ(x) �= 0 for x �= 0 then −�Φ generates a (holomorphic) compact C0-

semigroup in L1(RN ).

Proof. — It is known (see [28]) that

1

4

∣∣∇Φ(x)
∣∣2 − 1

2
�Φ(x) −→ +∞

as |x| → ∞; this is a consequence of the following facts: The compactness

of the unit sphere SN−1 implies the existence of a constant c > 0 such that∣∣∇Φ(x)
∣∣ � c for all x ∈ SN−1 and then

∣∣∇Φ(x)
∣∣ � c|x|2r−1 for all x ∈ R

N

since Φ is homogeneous of degree 2r; on the other hand,

�Φ =
∑
|α|=r

N∑
j=1

(2αj − 1)(2αjcα)x
−2
j x2α1

1 x2α2
2 · · ·x2αN

N .

This ends the proof.

Note that Proposition 57 covers e.g. the case

Φ(x) =

N∑
i=1

cix
2k
i (ci > 0, k � 1).

Before giving one more example, let us come back to the model case (1) and

observe that the sublevel sets of its potential V (x1, x2) = x21x
2
2, i.e.

ΩM =
{
(x1, x2); |x2| ≤ M

|x1|
}
,

are thin at infinity. Indeed, it suffices to restrict ourselves to

Ω+
M := ΩM ∩ {

(x1, x2);x1 > 0, x2 > 0
}
=

{
(x1, x2); x2 ≤ M

x1

}
and to consider the case where we move the ball B(z; 1) (centered at z =

(z1, z2) with z1 > 0) by letting z1 → +∞. The set B(z; 1)∩Ω+
M is included in

{(x1, x2); z1 − 1 ≤ x1 ≤ z1 + 1} ∩ Ω+
M whose Lebesgue measure is equal to∫ z1+1

z1−1
M

x1
dx1 = M ln

(z1 + 1

z1 − 1

)
−→ 0 as z1 → +∞.

We exploit this observation to deal with the weighted Laplacian correspond-

ing to

Φ(x1, x2) = x21x
2
2 + ε(x21 + x22) (ε > 0).
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Indeed, it is known (see [28] Proposition 10.20, p. 111) that �Φ is resolvent

compact in L2(R2) for all ε > 0. We can obtain a stronger conclusion for ε � 1.

Indeed, one checks that

1
4 |∇Φ|2 − 1

2�Φ = x21x
2
2(x

2
1 + x22 + 2ε) + (ε2 − 1)(x21 + x22)− 2ε

� x21x
2
2(x

2
1 + x22)− 2ε

so that, for (x21 + x22) � 1,

1
4 |∇Φ|2 − 1

2�Φ � x21x
2
2 − 2ε

and then the above observation implies that �Φ generates a compact holo-

morphic semigroup in L1(R2). Note that 1
4 |∇Φ|2 − 1

2�Φ is not bounded from

below if ε < 1.

We end this chapter with an approach of spectral gaps for weighted Lapla-

cians in terms of kernel estimates involving sublevel sets of

1
4 |∇Φ|2 − 1

2�Φ

when the latter are not a priori thin at infinity. We consider the usual case

(88) e−Φ(x) ∈ L1(RN ; dx).

Theorem 58. — Let Φ be a real C2 function on R
N satisfying (88). Let

1
4 |∇Φ|2 − 1

2�Φ be nonnegative and let ΩM be its sublevel sets. If

(89) sup
M>0

lim
C→+∞

sup
y∈RN

∫
{x∈ΩM ; |x|�C}

1

(4πt)
n
2

exp
(
− |x− y|2

4t

)
dx < 1

(for some t > 0) then the C0-semigroup generated by the weighted Laplacian

on L2(RN ;μ(dx)) has a spectral gap (but need not be compact).

Proof. — If e−Φ(x) ∈ L1(RN ; dx) then μ(dx) is finite and then the constant

function 1 is an eigenfunction of �μ associated to the eigenvalue 0 which is

then the spectral bound of �μ. Then 0 is also the spectral bound of

�− (
1
4

∣∣∇Φ
∣∣2 − 1

2�Φ
)

in L2(RN ; dx) and also in L1(RN ; dx) because the spectrum is the same in

L2(RN ; dx) and L1(RN ; dx) (see e.g. [11]) whence s(TV ) = 0 and we conclude

by Theorem 42.

Remark 59. — One sees that (89) provides us with a sufficient condition

(in terms of sublevel sets of 1
4 |∇Φ|2 − 1

2�Φ) for the probability measure

μ(dx) = Z−1 e−Φ(x)dx

(where Z =
∫
e−Φ) to satisfy the Poincaré inequality.
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ON WITTEN LAPLACIANS ON 1-FORMS

Let Φ be a real C2 function on R
N and let μ(dx) = e−Φ(x)dx. Let

L2(μ) := L2
(
R
N , μ(dx)

)
with scalar product (. , .)μ and norm ‖ . ‖μ. The d-Complex in weighted L2

spaces is given by

d(0) d(1)

Ω0 −−→ Ω1 −−→ Ω2 −→ · · · ΩN → 0

where Ωp := Ωp(RN ) (p ≤ N) denotes the space of L2(μ) p-forms (i.e. p-forms

with coefficients in L2(μ)) equipped with its

L2
(
R
N , μ;∧p

R
N
)

structure (Ω0 is identified to L2(μ)). For the sake of simplicity, we still keep

in Ωp the notations (. , .)μ and ‖ . ‖μ. Here

d(p) : Ωp −→ Ωp+1

is the restriction to Ωp of the exterior differential d and is considered as an

unbounded operator

L2
(
R
N , μ;∧p

R
N
) → L2

(
R
N , μ;∧p+1

R
N
)

with domain {
ω ∈ Ωp; dω ∈ Ωp+1

}
where dω is computed in the distributional sense. We denote by

d∗(p) : Ωp+1 −→ Ωp

the adjoint of d(p). The Laplacian �(p) on Ωp is then defined by

(90) �(p) = d∗(p) ◦ d(p) + d(p−1) ◦ d∗(p−1) (p � 1)
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and

�(0) = d∗(0) ◦ d(0).
Actually, the unbounded operator �(p) is defined by means of its quadratic

form

‖d(p)ω‖2μ + ‖d∗(p−1)ω‖2μ, ω ∈ Ωp,

we refer to [73], [33], [27] for the details. It turns out that the Laplacian

operator on weighted 0-forms

�(0) : L2(μ) → L2(μ)

is unitarily equivalent to the following one

�(0)
Φ = −�+ 1

4 |∇Φ|2 − 1
2�Φ

on L2(RN , dx) while the Laplacian on weighted 1-forms

�(1) = d∗(1) ◦ d(1) + d(0) ◦ d∗(0)

on L2
(
R
N , μ;∧1

R
N
)
is unitarily equivalent to the following one

�(1)
Φ = �(0)

Φ ⊗ Id + Hess Φ

on the unweighted space

L2(RN , dx;∧1
R
N )

where Hess Φ is the hessian of Φ; see [73], [33], [27].

We identify an 1-form to its coefficients and therefore the spaces

L2(RN , dx;∧1
R
N ) =

(
L2(RN , dx)

)N
.

By construction, �(0)
Φ and �(1)

Φ are nonnegative operators. Thus �(1)
Φ is a

nonnegative unbounded operator on
(
L2(RN , dx)

)N
.

Spectral properties of Witten Laplacians �(0)
Φ on 0-forms have been consid-

ered in the previous chapter. Our aim now is to show the existence of spectral

connections between �(0)
Φ and �(1)

Φ (see e.g. [33] Theorem 1.3 for other kinds

of connections). To this end, we recall first a basic functional analytic result

related to Glazman’s Lemma.

Theorem 60 (see [58], Proposition 6.1.4, Corollaries 6.1.1 and 6.1.2, p. 72))

Let A and B be two self-adjoint operators in a Hilbert space H such that

(Au, u) ≤ (Bu, u), u ∈ D
where D ⊂ H is a core for both A and B. Then:

(i) For any real λ, if σ(A) ∩ (−∞, λ) is discrete (i.e. consists of isolated

eigenvalues with finite multiplicities) then so si σ(B) ∩ (−∞, λ).
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(ii) If we denote by λA
1 ≤ λA

2 ≤ ··· ≤ λA
k ≤ · · · and λB

1 ≤ λB
2 ≤ · · · ≤ λB

k ≤ · · ·
their eigenvalues in (−∞, λ), numbered according to their multiplicities,

then λA
k ≤ λB

k .

If A is a bounded below self-adjoint operator then we define its essential

lower spectral bound λess as the supremum of the set{
λ;σ(A) ∩ (−∞, λ) consists of isolated eigenvalues with finite multiplicity

}
with the convention that λess = +∞ if the set is empty or equivalently if A is

resolvent compact.

We give first spectral results under a convexity assumption on Φ.

Theorem 61. — Let Φ be a convex C2 function and let �(0)
Φ and �(1)

Φ be the

Laplacians defined above. Let λ0
ess and λ1

ess be respectively the essential lower

spectral bounds of �(0)
Φ and �(1)

Φ . Then

λ0
ess ≤ λ1

ess;

in particular, �(1)
Φ is resolvent compact if �(0)

Φ is. Let λ0 and λ1 be respectively

the lower spectral bounds of �(0)
Φ and �(1)

Φ . If λ0 is an isolated eigenvalue

of �(0)
Φ (i.e. �(0)

Φ has a spectral gap) and if the lowest eigenvalue λΦ(x) of

Hess Φ(x) is not identically zero then

λ1 > λ0.

Proof. — Let A = �(0)
Φ ⊗ Id and B = �(1)

Φ . The convexity of Φ implies

that Hess Φ is a form-nonnegative multiplication (matrix) operator so that

(Aω, ω) ≤ (Bω, ω) for C∞c 1-forms ω. Note that A is nothing but N copies

of �(0)
Φ so that A has the same spectral strucure as �(0)

Φ . In particular, the

essential lower bound of �(0)
Φ coincides with that of A. Thus σ(A)∩(−∞, λ0

ess)

is discrete and then, by Theorem 60, σ(B)∩ (−∞, λ0
ess) is also discrete so that

λ0
ess ≤ λ1

ess. If �(0)
Φ is resolvent compact then λ0

ess = +∞ and then so is λ1
ess

so �(1)
Φ is resolvent compact too.

To prove the last claim, note that

Hess Φ � λΦ(x)Id

implies

(91) (�(0)
Φ + λΦ)⊗ Id ≤ �(1)

Φ
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and then the spectral bottom of (�(0)
Φ +λΦ)⊗ Id (or equivalently the spectral

bottom λ̃0 of �(0)
Φ + λΦ) is less than or equal to that of �(1)

Φ , i.e.

λ̃0 ≤ λ1.

It suffices to show that λ0 < λ̃0. Note that λΦ � 0 by the convexity of Φ and

then �(0)
Φ ≤ �(0)

Φ + λΦ implies the trivial inequality λ0 ≤ λ̃0. Suppose now

that λ0 is an isolated eigenvalue of �(0)
Φ . Then there exists α > 0 such that

σ(�(0)
Φ ) ∩ [

λ0, λ0 + α
)
is discrete and then, by Theorem 60,

σ(�(0)
Φ + λΦ) ∩

[
λ0, λ0 + α

)
is also discrete (possibly empty). Thus, if λ̃0 � λ0 + α we are done. Oth-

erwise, λ̃0 is an isolated eigenvalue of �(0)
Φ + λΦ; by a classical result this

eigenvalue is simple and is associated to a normalized positive almost every-

where eigenfunction f̃ . By assumption, there exists also a normalized positive

almost everywhere eigenfunction f associated to the eigenvalue λ0 of �(0)
Φ .

The fact that (f, λΦf̃) > 0 when λΦ(.) is not identically zero implies

λ0(f, f̃) = (�(0)
Φ f, f̃) = (f,�(0)

Φ f̃) < (f,�(0)
Φ f̃ + λΦf̃) = λ̃0(f, f̃)

so that λ0 < λ̃0.

Under the assumptions of the preceding theorem, if∫
e−Φ(x)dx = 1

then λ0 = 0 so λ1 > 0 and consequently �(1)
Φ is invertible. This allows thus

the formulation of the “exact” Helffer-Sjöstrand’s covariance formula while

Brascamp-Lieb’s inequality∫ (
f(x)− 〈f〉)(g(x)− 〈g〉)e−Φ(x)dx ≤ (

(Hess Φ)−1df, dg
)

is meaningful for strictly convex Φ only; see [33] for more information.

We remove now the convexity assumption on Φ.

Theorem 62. — Let Φ be a C2 function and let �(0)
Φ and �(1)

Φ be the Lapla-

cians defined above. Let λΦ(x) be the lowest eigenvalue of Hess Φ(x). We as-

sume that 1
4 |∇Φ|2− 1

2�Φ+λΦ is bounded below. Then �(1)
Φ is resolvent compact

provided that the sublevel sets of 1
4 |∇Φ|2 − 1

2�Φ+ λΦ are thin at infinity.

Proof. — It follows from (91) and Theorem 60, that �(1)
Φ is resolvent compact

if �(0)
Φ + λΦ is; the remainder is clear.
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We show now how spectral gaps for Witten Laplacians on 1-forms occur

when the sublevel sets of 1
4 |∇Φ|2− 1

2�Φ+λΦ are not thin at infinity. We still

assume that assume that 1
4 |∇Φ|2− 1

2�Φ+λΦ is bounded below; for simplicity,

we assume that

1
4 |∇Φ|2 − 1

2�Φ+ λΦ � 0

(otherwise we “shift” the operator by adding a suitable constant). Let D1 be

the space of 1-form ω =
∑N

j=1 ωj dxj with ωj ∈ H1(RN ) and

N∑
j=1

∫ (
1
4 |∇Φ|2 − 1

2�Φ
) ∣∣ωj(x)

∣∣2dx+

∫ (
Hess Φ(x)ω(x), ω(x)

)
RN dx < ∞.

The lower spectral bound of �(1)
Φ is given by

λ1 := inf
ω∈D1

‖ω‖L2=1

N∑
j=1

[ ∫ ∣∣∇ωj(x)
∣∣2dx+

∫ (
1
4 |∇Φ|2 − 1

2�Φ
) ∣∣ωj(x)

∣∣2dx]
+

∫ (
Hess Φ(x)ω(x), ω(x)

)
RN dx

while the lower spectral bound of �(0)
Φ + λΦ is given by

λ0 := inf
f∈D0

‖f‖L2=1

[ ∫ ∣∣∇f(x)
∣∣2dx+

∫ (
1
4 |∇Φ|2 − 1

2�Φ+ λΦ

)∣∣f(x)∣∣2dx]

where

D0 =
{
f ∈ H1(RN );

∫ (
1
4 |∇Φ|2 − 1

2�Φ+ λΦ

) ∣∣f(x)∣∣2dx < ∞
}
.

Clearly λ0 ≤ λ1.

Theorem 63. — Let Φ be a C2 function such that

1
4 |∇Φ|2 − 1

2�Φ+ λΦ � 0.

Let �(1)
Φ be the Laplacian defined above and let λ1 be its lower spectral bound.

We denote by ΩM the sublevel sets of 1
4 |∇Φ|2 − 1

2�Φ+ λΦ. If

(92) sup
M>0

lim
C→+∞

sup
y∈RN

∫
{x∈ΩM ;|x|�C}

1

(4πt)
n
2
exp

(
− |x− y|2

4t

)
dx < e−λ

1t

(for some t > 0) then �(1)
Φ has a spectral gap but need not be resolvent compact.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



72 CHAPTER 8. ON WITTEN LAPLACIANS ON 1-FORMS

Proof. — Let β0
ess be the essential lower spectral bound of �(0)

Φ + λΦ. Un-

der (92), Theorem 42, with the heat semigroup (U(t))t≥0 on L1(RN ) and the

potential

V = 1
4 |∇Φ|2 − 1

2�Φ+ λΦ,

and Remark 47 show that the essential type of the perturbed C0-semigroup

(UV (t))t≥0 in L1(RN ) generated by

−(�(0)
Φ + λΦ) = �− (

1
4 |∇Φ|2 − 1

2�Φ+ λΦ

)
= �− V

is strictly less −λ1. On the other hand, the domination

UV (t) ≤ U(t)

shows that the kernel of UV (t) has a Gaussian upper bound and this implies

that its (essential) spectrum is the same in all Lp(RN ) (see [11]). In particu-

lar, its essential type in L2(RN ) is strictly less −λ1, i.e. −β0
ess < −λ1. Since

σ(�(0)
Φ + λΦ(x)) ∩ (−∞, β0

ess) is discrete, or equivalently

σ
(
(�(0)

Φ + λΦ(x))⊗ Id
) ∩ (−∞, β0

ess) is discrete,

then (91) and Theorem 60 show that σ(�(1)
Φ )∩ (−∞, β0

ess) is discrete. The fact

that β0
ess > λ1 shows that �(1)

Φ has a spectral gap.

Remark 64. — An alternative approach to spectral theory of Witten Lapla-

cians on 1-forms and Witten Laplacians on (0,1) forms is given in [45].
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CHAPTER 9

PERTURBATION THEORY FOR INDEFINITE

POTENTIALS

This last chapter continues the general theory of Chapter 3 for general

measure spaces
(Ω;A, μ)

and deals with indefinite potentials

V = V+ − V−

(which are not a priori bounded from below) given as differences of nonnegative

and finite almost everywhere functions (denoted by) V+ and V−. Note that V+

and V− need not be the positive and negative parts of V .

Let (U(t))t�0 be a substochastic C0 -semigroup in L1(Ω;A, μ) with genera-

tor T . This chapter deals with spectral properties of

“T − V ”=“T − V+ + V−”

and those of the corresponding C0-semigroup.

9.1. L1 theory

We first define “T − V+ + V−”. Let V+ satisfy (6) and (8) and assume

(93) V− : D(TV+) −→ L1(Ω;μ) is TV+-bounded

with

(94) lim
λ→+∞

rσ
[
V−(λ− TV+)

−1] < 1.

Then Desch’s theorem [14] (see e.g. [4], Chapter 5 or [46], Chapters 7 and 8)

shows that

TV+ + V− : D(TV+) −→ L1(Ω;μ)

generates a positive C0-semigroup (et(TV+
+V−))t≥0 on L1(Ω;μ).
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The spectral properties (full discreteness or spectral gaps) of TV+ and

(etTV+ )t≥0 are dealt with in details in Chapter 3, Chapter 5 and Chapter 6.

In the present chapter, we show how these spectral properties are inherited

by TV+ + V− and (et(TV+
+V−))t≥0. This perturbed C0-semigroup is given by a

Dyson-Phillips series

(95) et(TV+
+V−) =

∞∑
k=0

Uk(t)

where U0(t) = etTV+ and

(96) Uk(t)ϕ =

∫ t

0
Uk−1(s)V−U0(t− s)ϕds (k ≥ 1)

where the operators Uk(t) defined (by induction) first on D(TV+) extend

uniquely as bounded operators on L1(Ω;μ) and the series (95) converges in

operator norm and uniformly in bounded t; see e.g [46], Chapters 7 and 8

for the details. By renorming the space L1(Ω;μ) by an equivalent norm ‖ . ‖,
additive on the positive cone, without loss of generality we can replace (94) by

(97) lim
λ→+∞

∥∥V−(λ− TV+)
−1∥∥ < 1,

(see [46] Lemma 8.3, p. 189). We fix λ large enough such that∥∥V−(λ− TV+)
−1∥∥ < 1.

By shifting TV+ by −λI (i.e. we replace TV+ by TV+−λ) we can assume without

loss of generality that s(TV+) < 0 and∥∥V−(0− TV+)
−1∥∥ < 1.

Let

X t̄ = C
(
[0,+∞),L(L1(Ω, μ)

))
denote the Banach space of strongly continuous L(L1(Ω, μ))-valued functions

equipped with sup-norm∥∥Z∥∥
∞ = sup

t∈[0,+∞)

∥∥Z(t)
∥∥
L(L1(Ω,μ))

and define the linear operator on X t̄

O : X t̄ 
 Z �−→
∫ t

0
Z(s)V−U0(t− s)ds ∈ X t̄.
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Let us estimate the norm of OZ. Note that for ϕ ∈ D(TV+)

∥∥OZ(t)ϕ
∥∥ ≤

∫ t

0

∥∥Z(s)V−U0(t− s)ϕ
∥∥ds

≤ ∥∥Z∥∥
∞

∫ t

0

∥∥V−U0(t− s)ϕ
∥∥ds

≤ ∥∥Z∥∥
∞

∫ t

0

∥∥V−U0(t− s)
∣∣ϕ∣∣∥∥ds.

By the additivity of the norm on the positive cone,∫ t

0

∥∥V−U0(t− s)
∣∣ϕ∣∣∥∥ds =

∥∥ ∫ t

0
V−U0(s)

∣∣ϕ∣∣ds∥∥
≤ ∥∥ ∫ +∞

0
V−U0(s)

∣∣ϕ∣∣ds∥∥
=

∥∥V− ∫ +∞

0
U0(s)

∣∣ϕ∣∣ds∥∥ =
∥∥V−(0− TV+)

−1 |ϕ| ∥∥
≤ ∥∥V−(0− TV+)

−1∥∥
L(L1(Ω,μ))

· ∥∥ |ϕ| ∥∥
=

∥∥V−(0− TV+)
−1∥∥

L(L1(Ω,μ))
· ∥∥ϕ∥∥

so, for all t ≥ 0,∥∥OZ(t)ϕ
∥∥ ≤ ‖Z‖∞ · ∥∥V−(0− TV+)

−1∥∥
L(L1(Ω,μ))

· ∥∥ϕ∥∥
and, by density, this estimate remains true for all ϕ ∈ L1(Ω, μ) so∥∥OZ

∥∥
∞ ≤ ∥∥V−(0− TV+)

−1∥∥
L(L1(Ω,μ))

· ‖Z‖∞
and ∥∥O∥∥

L(X t̄
) ≤ ∥∥V−(0− TV+)

−1∥∥
L(L1(Ω,μ))

< 1.

Thus V− is a Miyadera-Voigt perturbation of TV+ according to the terminology

in [40].

We are ready to show:

Theorem 65. — Let (U(t))t�0 be substochastic C0-semigroup in L1(Ω;A, μ)

with generator T and let V+ satisfy (6) and (8). We assume that (93) and (94)

are satisfied. Then:

(i) If TV+ is resolvent compact then so is TV+ + V−.

(ii) If (etTV+ )t≥0 is compact then so is (et(TV+
+V−))t≥0.
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Proof. — Let TV+ be resolvent compact. The perturbed resolvent for λ large

enough

(98) (λ− TV+ − V−)−1 = (λ− TV+)
−1

+∞∑
i=0

(
V−(λ− TV+)

−1)i
shows that TV+ + V− is also resolvent compact.

Let (etTV+ )t≥0 be compact. Then TV+ is resolvent compact (see [60], The-

orem 3.3, p. 48) and consequently, by (i), so is TV+ + V−. On the other

hand, (etTV+ )t≥0 is also operator norm continuous (see [60], Theorem 3.3).

Since V− is a Miyadera-Voigt perturbation then the operator norm continu-

ity of (etTV+ )t≥0 is inherited by (et(TV+
+V−))t≥0, (see [40], Theorem 9). The

operator norm continuity of (et(TV+
+V−))t≥0 and the resolvent compactness of

TV+ + V− imply (see [60], Theorem 3.3) that (et(TV+
+V−))t≥0 is compact.

We deal now with spectral gaps for generators.

Theorem 66. — Let (U(t))t�0 be a substochastic C0-semigroup in L1(Ω;A, μ)

with generator T and let V+ satisfy (6) and (8). We assume that

(99) V− is TV+-weakly compact

i.e. V−(λ− TV+)
−1 is weakly compact. Then (94) is satisfied and

(100) sess(TV+ + V−) = sess(TV+).

In particular

s(TV+ + V−)− sess(TV+ + V−) > 0

if

s(TV+)− sess(TV+) > 0.

Proof. — It is known (see [48]) that (99) implies that

lim
λ→+∞

rσ
[
V−(λ− TV+)

−1] = 0

so that (94) is satisfied. On the other hand (98) shows that

(λ− TV+ − V−)−1 − (λ− TV+)
−1 = (λ− TV+)

−1
+∞∑
i=1

(V−
(
λ− TV+)

−1)i
is weakly compact. It follows that (λ − TV+ − V−)−1 and (λ − TV+)

−1 have

the same essential spectrum (see [38], Proposition 2.c.10, p. 79) so TV+ + V−
and TV+ share the same essential spectrum and consequently (100) is satisfied.

We note that s(TV+ + V−) ≥ s(TV+) because

(λ− TV+ − V−)−1 ≥ (λ− TV+)
−1
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so that

s(TV+ + V−)− sess(TV+ + V−) ≥ s(TV+)− sess(TV+)

and this ends the proof.

We consider now spectral gaps for C0-semigroups.

Theorem 67. — Let (U(t))t�0 be a substochastic C0-semigroup in L1(Ω;A, μ)

with generator T and let V+ satisfy (6) and (8). Let (99) be satisfied. We

assume that

(101) (etTV+ )t≥0 is operator norm-continuous

Then (et(TV+
+V−))t≥0 and (etTV+ )t≥0 share the same essential spectrum and

consequently the same essential type. In particular, (et(TV+
+V−))t≥0 has a spec-

tral gap if (etTV+ )t≥0 has.

Proof. — We have seen in the proof of Theorem 65 that (et(TV+
+V−))t≥0 is

also operator norm-continuous. We start from∫ +∞

0

(
es(TV+

+V−) − esTV+
)
ds = (λ− TV+)

−1
+∞∑
i=1

(
V−(λ− TV+)

−1)i
so that (for any t > 0 and ε > 0) the domination

(λ− TV+)
−1

+∞∑
i=1

(
V−(λ− TV+)

−1)i ≥ ∫ t+ε

t

(
es(TV+

+V−) − esTV+
)
ds

shows that ∫ t+ε

t

(
es(TV+

+V−) − esTV+
)
ds is weakly compact

ans then so is

et(TV+
+V−) − etTV+ = lim

ε→0

1

ε

∫ t+ε

t

(
es(TV+

+V−) − esTV+
)
ds (t > 0)

because the limit holds in operator norm since both C0-semigroups are op-

erator norm-continuous. The stability of the essential spectrum by a weakly

compact perturbation (see [38], Proposition 2.c.10, p. 79) shows the first claim.

The second claim follows from the fact that s(TV+ + V−) ≥ s(TV+) and that

these spectral bounds of the generators coincide with the types of the corre-

sponding C0-semigroups.
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Note that if V− is T -weakly compact, i.e. if V−(λ−T )−1 is weakly compact,

(and therefore T -bounded) then

(102) V−(λ− TV+)
−1 ≤ V−(λ− T )−1

shows that (99) is satisfied regardless of V+. We put aside this particular case

and give a sufficient condition insuring the key condition (99) which relies on a

suitable “competition” between the components V+ and V− of the potential V.

Proposition 68. — Let (U(t))t�0 be a substochastic C0-semigroup in

L1(Ω;A, μ) with generator T and let V+ satisfy (6) and (8). Let

ΩM :=
{
y;V+(y) ≤ M

}
be the sublevel sets of V+. We assume that

(103)
V−
V+

is bounded and sup
x∈Ωc

M

V−(x)
V+(x)

→ 0 as M → +∞.

If for all M

(104) 1ΩM
V−(λ− TV+)

−1 is weakly compact

then (99) is satisfied.

Proof. — By assumption, there exists c > 0 such that

V−(x) ≤ cV+(x) on Ω.

Note that

V−(λ− TV+)
−1 =

V−
V+

V+(λ− TV+)
−1

shows that V− is TV+-bounded since V+ is TV+-bounded (Lemma 1). We have

V−(λ− TV+)
−1 = 1ΩM

V−(λ− TV+)
−1 + 1Ωc

M
V−(λ− TV+)

−1.

By (104) 1ΩM
V−(λ− TV+)

−1 is weakly compact for any M > 0. On the other

hand

1Ωc
M
V−(λ− TV+)

−1 = 1Ωc
M

V−
V+

V+(λ− TV+)
−1

≤
(

sup
x∈Ωc

M

V−(x)
V+(x)

)
V+(λ− TV+)

−1

goes to zero in norm as M → ∞ by (103) since V+ is TV+-bounded.
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Remark 69. — We note that (102) implies that the generalized Kato

class of (U(t))t�0 is included in the generalized Kato class of
(
UV+(t)

)
t≥0.

See [49] for some results on generalized Kato class potentials for convolution

C0-semigroups (U(t))t�0 on L1(RN ) (with generator T ), in particular for

T -weakly compact potentials V−.

9.2. Lp theory

Let (U(t))t�0 be a sub-Markov C0-semigroup with generator T in L1(Ω, μ)

(i.e. acts in all Lp spaces as a positive contraction C0-semigroup). We de-

note it by (Up(t))t�0 when acting on Lp(Ω, μ) and denote its generator by T p

(so T 1 = T ). We denote by (Up
V+

(t))t≥0 the perturbed C0-semigroup (for the

potential V+) and by T p
V+

its generator. Under (94) one shows that the C0-

semigroup (et(TV+
+V−))t≥0 on L1(Ω, μ), with generator

TV+ + V− : D(TV+) −→ L1(Ω, μ),

interpolates on all Lp(Ω, μ) (1 ≤ p < ∞) providing positive strongly continu-

ous semigroups (Wp(t))t≥0 =
(
etAp

)
t≥0 in Lp(Ω, μ) with generators Ap where

A1 = TV+ + V−;

(this is done in [49] for convolution C0-semigroups but the ideas can be adapted

easily to this general context). We point out that V− is not a priori T p
V+

-

bounded for p > 1 and, as far as we know, there is no simple characterisation

of the domain of Ap. However, if (U(t))t�0 is symmetric then V− is form-

bounded with respect to −T 2
V+

with relative form-bound less than or equal to

lim
λ→+∞

rσ
[
V−(λ− TV+)

−1]
and A2 is given by

(105) −A2 = (−T 2
V+

)� (−V−) (form-sum),

(see [49], [50]).

Theorem 70. — Let (U(t))t�0 be a sub-Markov C0-semigroup and let V+ sat-

isfy (6) and (8). Let (94) be satisfied. If TV+ is resolvent compact on L1(Ω, μ)

then Ap is resolvent compact too. In the symmetric case, (Wp(t))t≥0 is a com-

pact C0-semigroup on Lp(Ω, μ) for all p > 1.
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Proof. — By Theorem 65, TV+ + V− is resolvent compact in L1(Ω, μ). By

interpolation, Ap is resolvent compact too in Lp(Ω, μ) for all p > 1. Since(
W2(t)

)
t≥0 = (etA2)t≥0

is self-adjoint then it is operator norm continuous so that, by interpolation,

(etAp)t≥0 (for p > 1) are operator norm continuous too. Finally (etAp)t≥0 is

compact (see [60], Theorem 3.3).

Remark 71. — Let (U(t))t�0 be subordinated to the heat C0-semigroup

on L1(RN ) and let V+ satisfy (3) (or equivalently let the sublevel sets of V+

be thin at infinity). Then TV+ is resolvent compact on L1(RN ) by Corollary 33

and Theorem 70 implies that A2 (as given by (105)) has a discrete spectrum;

(see [7] for a result in this direction when (U(t))t�0 is the heat semigroup).

We end this chapter with:

Theorem 72. — Let (U(t))t�0 be a sub-Markov C0-semigroup on L1(Ω;A, μ)

with generator T and let V+ satisfy (6) and (8). Let (99) be satisfied. We

assume that (U(t))t�0 is operator norm-continuous. Then (etAp)t≥0 and

(e
tT p

V+ )t≥0 have the same essential type. In particular, (etAp)t≥0 has a spectral

gap if (e
tT p

V+ )t≥0 has.

Proof. — Note first that (99) implies that

lim
λ→+∞

rσ
[
V−(λ− TV+)

−1] = 0

(see [48]). We know that et(TV+
+V−) − etTV+ is weakly compact in L1(Ω, μ)

for t > 0 (see the proof of Theorem 67) and then so is

(α− etTV+ )−1
(
et(TV+

+V−) − etTV+
)

(for large |α|). It follows that [(α− etTV+ )−1(et(TV+
+V−) − etTV+ )]2 is compact

in L1(Ω, μ) (see e.g. [1], Corollary 5.88, p. 344) and consequently, by interpo-

lation, [
(α− e

tT p
1V+ )−1(etAp − e

tT p
1V+ )

]2
is compact on Lp(Ω, μ) for all p > 1. Finally, the analytic Fredholm alterna-

tive shows that etAp and etTpV+ have the same essential radius (see e.g. [52],

Corollary 7, p. 358) and consequently the same essential type.
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MÉMOIRES DE LA SMF 148



BIBLIOGRAPHY 85

[49] , Perturbation theory for convolution semigroups, J. Funct. Anal.,

t. 259 (2010), pp. 780–816.

[50] , New form-bound estimates for many-particle Schrödinger-type
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