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THE MATHEMATICAL VALIDITY OF
THE f(R) THEORY OF MODIFIED GRAVITY

Philippe G. LeFloch, Yue Ma

Abstract. — We investigate the Cauchy problem for the f(R) theory of modified
gravity, which is a generalization of Einstein’s classical theory of gravitation. The
integrand of the Einstein-Hilbert functional is the scalar curvature R of the space-
time, while, in modified gravity, it is a nonlinear function f(R) so that, in turn, the
field equations of the modified theory involve up to fourth-order derivatives of the
unknown spacetime metric. We introduce here a formulation of the initial value prob-
lem in modified gravity when initial data are prescribed on a spacelike hypersurface.
We establish that, in addition to the induced metric and second fundamental form
(together with the initial matter content, if any), an initial data set for modified
gravity must also provide one with the spacetime scalar curvature and its first-order
time-derivative. We propose an augmented conformal formulation (as we call it), in
which the spacetime scalar curvature is regarded as an independent variable. In par-
ticular, in the so-called wave gauge, we prove that the field equations of modified
gravity are equivalent to a coupled system of nonlinear wave-Klein-Gordon equations
with defocusing potential. We establish the consistency of the proposed formulation,
whose main unknowns are the conformally-transformed metric and the scalar curva-
ture (together with the matter fields) and we establish the existence of a maximal
globally hyperbolic Cauchy development associated with any initial data set with
sufficient Sobolev regularity when, for definiteness, the matter is represented by a
massless scalar field. We analyze the so-called Jordan coupling and work with the
so-called FEinstein metric, which is conformally equivalent to the physical metric —
the conformal factor depending upon the unknown scalar curvature. A main result
in this paper is the derivation of quantitative estimates in suitably defined functional
spaces, which are uniform in term of the nonlinearity f(R) and show that spacetimes
of modified gravity are ‘close’ to Finstein spacetimes, when the defining function f(R)
is ‘close’ to the Einstein-Hilbert integrand R. We emphasize that this is a highly sin-
gular limit problem, since the field equations under consideration are fourth-order in
the metric, while the Einstein equations are second-order only. In turn, our analysis
provides the first mathematically rigorous validation of the theory of modified gravity.

(© Mémoires de la Société Mathématique de France 150, SMF 2017



Résumé (Validité mathématique de la théorie f(R) de la gravité modifiée)

Nous étudions le probléme de Cauchy pour la théorie f(R) de la gravité modifiée,
laquelle généralise la théorie classique de gravitation due & Einstein. L’intégrant de la
fonctionnelle d’Einstein-Hilbert est la courbure scalaire de ’espace-temps, tandis que,
dans la théorie de la gravité modifiée, 'intégrant est une fonction nonlinéaire f(R), et
les équations de champ sont d’ordre quatre par rapport aux dérivées de la métrique
inconnue. Nous introduisons ici une formulation du probléme de valeurs initiales pour
la gravité modifiée, lorsque des données sont prescrites sur une hypersurface de type
espace. Nous établissons que, en plus de la métrique induite et de la deuxiéme forme
fondamentale, il est nécessaire de se donner la courbure de I’espace-temps et sa dé-
rivée premiére. Nous proposons alors une « formulation conforme augmentée » dans
laquelle la courbure scalaire est une inconnue indépendante supplémentaire. Dans
la jauge des ondes (ou jauge harmonique), nous démontrons que les équations de
champ forment un systéme couplé nonlinéaire d’équations d’ondes et d’équations de
Klein-Gordon. Nous établissons une propriété de consistance pour ce systéme dont
les inconnues sont la métrique conforme et la courbure scalaire, et nous démontrons
Iexistence d’un développement de Cauchy maximal lorsque les données initiales ont
une régularité de type Sobolev et que la matiére est décrite par un champ scalaire
sans masse. Nous analysons le « couplage de Jordan » dans la métrique d’Einstein qui
est conformément équivalente & la métrique physique. Nous obtenons des estimées de
type énergie dans des espaces fonctionnels & poids; ces estimées sont uniformes par
rapport a la nonlinéarité f(R) et nous permettent de valider rigoureusement la limite
singuli¢re f(R) — R. Nous montrons ainsi que le systéme d’ordre quatre de la gravité
modifiée converge vers le systéme d’ordre 2 de la gravité d’Einstein. Ce travail établit
donc la validité mathématique de la théorie de la gravité modifiée.
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CHAPTER 1

INTRODUCTION

In recent years, new observational data have suggested that alternative theories
of gravity, based on extensions of Einstein’s field equations of general relativity, may
be relevant in order to explain the accelerated expansion of the Universe as well as
certain instabilities observed in galaxies —without explicitly introducing notions such
as 'dark energy’ or ’dark matter’. Among these theories, the so-called f(R)-theory of
modified gravity (associated with a prescribed function f(R) of the scalar curvature R)
was recognized as a physically viable alternative to Einstein’s theory. Despite the
important role played by this theory in physics, the corresponding field equations
have not been investigated by mathematicians yet. This is due to the fact that the
modified gravity equations are significantly more involved than the Einstein equations:
they contain up to fourth-order derivatives of the unknown metric, rather than solely
second-order derivatives. Extensive works are available in the physical and numerical
literature [3], [4], [7], [8], [13], [23], [24], [25]. The study of the well-posedness for
this theory was also investigated earlier for instance in [9] by taking advantage of an
equivalence with the Brans-Dicke theory. Furthermore, the function f is sometimes
taken to be singular (and this leads to a further difficulty [5]), but here we assume
this function to be regular.

Our purpose in this article is to initiate a rigorous mathematical study of the
modified gravity equations and, specifically,

— to introduce a notion of initial data set in modified gravity,

— to describe an initial value formulation from an arbitrary spacelike hypersurface,

— to establish the existence of a globally hyperbolic mazimal development associ-
ated with a given initial data set,

— and, importantly, to provide a rigorous validation that the modified gravity the-
ory is an ‘approximation’ of Einstein’s theory, in sense that we will make precise
with quantitative estimates. For definiteness, we will deal with asymptotically
flat solutions, although our arguments are purely local and could be formulated
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in a domain of dependence of any initial data set. Our setting is appropriate
in order to address the global nonlinear stability of Minkowski spacetime which
we establish in the series of papers [18]-[22].

As already mentioned, in addition to the (second-order) Ricci curvature terms
arising in the Einstein equations, the field equations of the f(R)-theory involve fourth-
order derivatives of the metric and, more precisely, second-order derivatives of the
scalar curvature. The corresponding system of partial differential equations (after
a suitable choice of gauge) consists of a system of nonlinear wave equations, which
is significantly more involved than the corresponding system derived from Einstein’s
equations. Yet, a remarkable mathematical structure is uncovered in the present work,
which we refer to as the augmented conformal formulation:

— we introduce a conformally equivalent metric based on a conformal factor that
depends upon the (unknown) scalar curvature,

— we proceed by introducing an extended system in which the metric and its scalar
curvature are regarded as independent unknowns,

— we then establish the well-posedness of the initial value problem for this aug-
mented formulation,

— and we finally explain how to recover the solutions to the original system of
modified gravity.

Before we present our results in further details, let us first to recall that Einstein’s
theory is based on Hilbert-Einstein’s action

(1.0.1) Anglé, g] == /M <% + L[g, g})dVg

associated with a (3 + 1)-dimensional spacetime (M,g) with Lorentzian signature
(—,+,+,+) whose canonical volume form is denoted by dV = dVj,. Here, and there-
after, we denote by Rm = Rmy, Ric = Ricy, and R = R, the Riemann, Ricci, and
scalar curvature of the metric g, respectively. Observe that the above functional
Agnlg] is determined from the scalar curvature R, and a Lagrangian L[¢, g, the lat-
ter term describing the matter content represented by one or several fields ¢ defined
on M.

It is well-known that critical metrics for the action Agg[g] (at least formally) satisfy
Einstein’s equation

R
(1.0.2) Gg4 = Ricy — 79 g=38rTIp,gl,
in which the right-hand side ()

SL
(1.0.3) Toplg, g] := -2 W[dh 9] + gap Lo 9]

1. Greek indices «, 8 = 0, 1, 2, 3 represent spacetime indices.
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CHAPTER 1. INTRODUCTION 3

is referred to as the stress-energy tensor of the matter model. In the vacuum, for
instance, these equations are equivalent to the Ricci-flat condition
(1.0.4) Ricg = 0.

The ‘higher-order’ gravity theory of interest is defined as follows. A smooth func-
tion f : R — R being prescribed, the action of the f(R)-modified gravity theory
reads (2)

(1.0.5) Ancl¢, 9] =: /M (figf) + L, g])dVg,

whose critical points satisfy the field equations of modified gravity
(1.0.6) Ny :=f'(Ry) Gy — %(f(Rg) — Ryf'(Rg))g+ (90, — Vd)(f'(Ry))
=8rT[o,g].

The modified gravity tensor N, thus “replaces” Einstein’s tensor G, while the right-
hand side ) is still given by the same expression (1.0.3). Observe that, by taking the
trace of (1.0.6), we deduce the scalar equation

(1.0.7) trN, = f/(Ry)Ry — 2f'(Ry) + 30, f'(R,) = 8w tr(T),

which can be regarded as an evolution equation for the spacetime curvature and will
play an important role.

Concerning the matter content, we point out (cf. Chapter 2 for the derivation) that
the modified gravity tensor N, is divergence free, that is,

(1.0.8) V*Nup =0,
so that the matter field satisfies the matter evolution equation
(1.0.9) V¥Tas = 0.

Furthermore, in order for the nonlinear theory to be a formal extension of the
classical theory, we assume that f(R) ~ R in the zero curvature limit R — 0. Since
we will see later that the (positive) sign of the coefficient x := f”(0) > 0 is critical
for nonlinear stability, it is convenient to set

(1.0.10) f(R) =1+ k(R+ KO(R?)),
which after integration yields
(1.0.11) f(R) = R+ k(LR* + kO(R?)).

By definition, the remainder O(2?)/2? remains bounded when 2z — 0 (uniformly in x, if
this parameter is taken to vary). In particular, the function f is increasing and strictly
convex in a neighborhood of the origin and, therefore, one-to-one. In particular, the
term kO(R3) in (1.0.11) could be taken to vanish identically, which corresponds to

2. See Buchdahl [6], as well as the earlier proposal by Brans and Dicke [4].
3. Further discussed shortly below.

SOCIETE MATHEMATIQUE DE FRANCE 2017



4 CHAPTER 1. INTRODUCTION

the quadratic action [, (Ry+ $K(Ry)*+167L[¢, g]) AV}, often treated in the physical
literature.

As we will see, in local coordinates, the field equations (1.0.6) take the form of
a nonlinear system of fourth-order partial differential equations (PDE’s), while the
Einstein equation (1.0.2) leads to only second-order equations. Our challenge in the
present work is investigating the role of these fourth-order terms and generalizing
the mathematical methods that were originally developed for Einstein’s equations.
Furthermore, one formally would expect to recover Einstein’s theory by letting the
coefficient k tend to zero. However, this limit is very singular, since this involves
analyzing the convergence of a fourth-order system (of no well-defined type) to a
system of second-order (hyperbolic-elliptic) PDE’s.

Before we can proceed further, we need to make an important observation concern-
ing the modeling of the matter content of the spacetime. In the physics literature,
the choice of the frame ) in which measurements are made is still somewhat contro-
versial as explained in [7], [8], [23]. Yet, this issue is essential in order for properly
formulating the coupling between the gravity equations and the matter fields. Two
standpoints were proposed by physicists. In the so-called “Jordan frame”, the original
metric gog is considered to be the physically relevant metric, while in the “Einstein
frame”; the conformally-transformed metric

(1.0.12) 9'ap = f'(Ry)gas

is considered to be the physically relevant metric. In the present work, these two
approaches will be referred to as the “Jordan coupling” and “Einstein coupling” for
the matter. Hence, the “Jordan coupling” refers to the minimal coupling of the matter
field to the geometry of the spacetime (represented by the tensor N,) described by
the “Jordan metric” (i.e. the original metric) gos. On the other hand, the “Einstein
coupling” refers to the minimal coupling of the matter field to the geometry of the
spacetime described by the metric gTaﬁ.

It is important to observe that different matter couplings lead to different physical
theories, which may or may not be equivalent to each other. Of course, a given
physical theory can also be expressed in various choices of metrics, that is, for the
problem under consideration, the “Jordan coupling” could also be expressed with
the “Einstein metric” g, 3, while the “Einstein coupling” could also be stated in the
“Jordan metric” go3. A coupling which is minimal (in the sense that the action takes
the decoupled form (1.0.5)), in general, will no longer be minimal in another choice of
metric. This suggests that the Einstein metric is not the physical metric in the Jordan
coupling theory, while the Jordan metric is not the physical metric in the Einstein
coupling. This has apparently led to great confusion and controversies in the physical
literature, until some clarification was brought in the most recent contributions [7]

4. From a mathematical standpoint, all frames are of course equivalent.
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CHAPTER 1. INTRODUCTION 5

and [8]. Observe that our notion of Einstein coupling is equivalent to the notion of
Einstein frame adopted in [23].

In this work, we will treat the Jordan coupling but expressed in the (conformal)
Einstein metric gf. This coupling has the minimal form (1.0.5), but only in the original
metric g. If one would insist on stating the problem in terms of the Einstein metric,
then the coupling would not be minimal. This presentation appears to be optimal
from the standpoint of establishing a well-posed theory for the initial value problem.

Throughout this article, the matter model of interest is a massless scalar field,
defined by its standard stress-energy tensor, and we consider the following two possible
couplings:

Top = VadVsd — L gup 9 V56V 10,

T, = f(Rg)(VadV56 — L gap 9" V56V 10),

and, for convenience, the Einstein coupling is stated in the Jordan metric. As should
be expected from the above discussion, different choices of coupling lead to systems of
PDE’s of rather different nature. In fact, we will show that the Einstein coupling leads
to an ill-defined Cauchy problem. Therefore, in the rest of this section, we restrict

(1.0.13)

attention to the Jordan coupling.

We are now in a position to state our existence theory, at least in a preliminary
form. We recall that the initial value problem for the Einstein equations is classi-
cally formulated as follows. (We refer to the textbook by Choquet-Bruhat [10] for
the terminology and historical references.) Given a Riemannian 3-manifold (M, g)
together with a 2-covariant tensor field K (plus suitable matter data) satisfying cer-
tain constraint equations, one seeks for a (globally hyperbolic) development of this
initial data set. By definition, such a development consists of a Lorentzian manifold
(M, g) satisfying the Einstein equations such that M is embedded in M as a spacelike
hypersurface with induced metric g and second fundamental form K. The maximal
(globally hyperbolic) development, by definition, is the unique development of the
initial data set in which any such development can be isometrically embedded.

In short, our formulation of the initial value problem for the theory of modified
gravity is as follows. Since the field equations (1.0.6) are fourth-order in the metric,
additional initial data are required, which are denoted by Ry, R; and are specified on
the initial slice M: they represent the scalar curvature and the time derivative of the
scalar curvature of the (to-be-constructed) spacetime. They must of course also satisfy
certain Gauss-Codazzi-type constraints. In addition, since the matter is modeled
by a scalar field, say ¢, we also prescribe some initial data denoted by ¢g, ¢1, and
representing the initial values of the scalar field and its time derivative, respectively.
The prelimary statement above will be made more precise in the course of our analysis
and all necessary terminology will be introduced. For definiteness, the results are
stated with asymptotically flat data, but this is unessential.

SOCIETE MATHEMATIQUE DE FRANCE 2017



6 CHAPTER 1. INTRODUCTION

THEOREM 1.0.1 (Cauchy developments in the theory of modified gravity)

Consider the field equations (1.0.6) for the theory of modified gravity based on
a function f = f(R), satisfying (1.0.10), and assume that the matter is described
by a scalar field with Jordan coupling (1.0.13). Given an asymptotically flat initial
data set® (M, g,K, Ry, R1, ¢o, ¢1), there ewists a unique mazimal globally hyper-
bolic development (M, g) of these data, which satisfies®) the modified gravity equa-
tions (1.0.6). Furthermore, if an initial data set (M, g, K, Ro, Ry, ¢o, ¢1) for modified
gravity is “close” (in a sense that will be made precise later on) to an initial data
set (M, g', K', ¢y, ¢}) for the classical Einstein theory, then the corresponding devel-
opment of modified gravity is also close to the corresponding FEinstein development.
This statement is uniform in term of the gravity parameter k and modified gravity
developments converge to Einstein developments when k — 0.

Our results provide the first mathematically rigorous proof that the theory of mod-
ified gravity admits a well-posed Cauchy formulation and, furthermore, can be re-
garded as a “correction” to Einstein’s classical theory, as indicated by physicists.

A key contribution of the present work is a re-formulation of the field equations of
modified gravity as a system of second-order hyperbolic equations and, more precisely,
a coupled system of wave-Klein-Gordon equations. Note that wave-Klein-Gordon sys-
tems have brought a lot of attention in mathematical analysis: see, for instance,
Bachelot [1], [2], Delort et al. [11], [12], Holzegel and Warnick [15], Katayama [16],
Lannes [17], and LeFloch and Ma [20]-[18] and the references therein. For further
results on the mathematical aspects of the f(R) theory, we refer to [22]. We advocate
here the use of wave coordinates associated with the Finstein metric and our formu-
lation in such a gauge leads us to propose the following definition. Importantly, our
formulation below contains an augmented variable denoted by p, which represents the
scalar curvature of the spacetime (7).

DEFINITION 1.0.2. — The augmented conformal formulation of the field equations
of modified gravity (with Jordan coupling and in wave coordinates associated with the
Einstein metric) reads:

9d% % 8,059 5 = Faplgl; 99", 0g1) — 120.p0p
+V(p)gTa6 - 167T8(X¢8B¢,

(1.0.14) 91" 0006 = —241%0,6 95p,
a/B/ - ()zﬁ
gT ao/aﬂ’p - ﬁ =Wi(p) - 3t2pgT a9 8,6¢7

5. In the sense of Definition 6.4.1, below.
6. In the sense of Definition 2.4.2, below.
7. Specifically p = % In f'(Ry).

MEMOIRES DE LA SMF 150



CHAPTER 1. INTRODUCTION 7

in which Fap(g'; 09", 0g") are quadratic expressions (defined in Chapter 3 below), gt
is determined by the Ricci curvature, and the function V.=V (p) and W = W (p) are
of quadratic order as p — 0.

Clearly, we recover Einstein equations by letting x — 0 and thus f(R) — R.
Namely, we will show that p — 0 so that (1.0.14) reduces to the standard formulation
in wave coordinates [10]. In particular, in this limit, we do recover the expression
R =81V ,pV¢ of the scalar curvature in terms of the norm of the scalar field.

An outline of the rest of this article is as follows. In Chapters 2 and 3, we formulate
the initial value problem first in the Jordan metric and then in the Einstein metric.
We find that the second formulation is simpler, since the Hessian of the scalar cur-
vature is eliminated by the conformal transformation. Furthermore, we demonstrate
that the Einstein coupling is ill-posed. The conformal formulation is analyzed in
Chapter 4, where the wave gauge is introduced and the wave-Klein-Gordon structure
of the field equations is exhibited. Chapter 5 contains one of our main result and
proposes an augmented formulation of the conformal system of modified gravity. The
local existence theory with bounds that are uniform in x is developed in Chapters 6
to 8 and leads us in Chapter 9 to our main statement concerning the comparison
between the modified and the classical theories.

SOCIETE MATHEMATIQUE DE FRANCE 2017






CHAPTER 2

FORMULATION OF THE CAUCHY PROBLEM IN THE
JORDAN METRIC

2.1. The 3 + 1 decomposition of spacetimes

In this section, we formulate the initial value problem for the modified gravity
system, by prescribing suitable initial data on a spacelike hypersurface. We follow
the presentation in the textbook [10] where the classical gravity is studied. We are
interested in a time-oriented spacetime (M, g) endowed with a Lorentzian metric g
with signature (—, 4, +, +), which is homeomorphic to [0, tmax) X M; and admits a
global foliation by spacelike hypersurfaces M; ~ {t} x M. The foliation is determined
by a time function ¢t : M — [0,tyax) and a three-dimensional manifold M and,
throughout, we assume that

(2.1.1) M is globally hyperbolic and every M; is a Cauchy surface.

This ensures that a wave equation with initial data posed on any such Cauchy surface
enjoys the local existence and uniqueness property. (See [10], [14] for the definitions.)

We introduce local coordinates adapted to the above product structure, that is,
(z%) = (2%,2%) = (t,2%), and we call the basis of vectors (9;) the natural frame
defined on each slice M;. This also provides us with a 'natural frame’ (9, 9;) on the
spacetime M. By definition, the Cauchy adapted frame is given by the vectors e; = 0;
and eq = 0; — °0;, where 3 = 3'0; a time-dependent field, tangent to M;, called the
shift vector. We impose the restriction that eq is orthogonal to each M;.

We also introduce the dual frame (6*) of the Cauchy adapted frame (e, ) by setting

(2.1.2) 0° .= dt, 0" .= dz' + idt,
so that the spacetime metric reads
(2.1.3) g=—N?0°" + g;;0'0",

where the function N > 0 is referred to as the lapse function of the foliation. The
Levi-Civita connection V associated with g is represented by the set of connection
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coeflicients w,ea, defined by

(2.1.4) Vea =wl, 07 ®eg
and, consequently,

(2.1.5) V0" = —wS0" 6.

We denote by g = g; the induced Riemannian metric associated with the slices M;
and by V the Levi-Civita connection of g, whose Christoffel symbols (in the natural
frame) are denoted by T'.,. We can also introduce the extrinsic curvature of the slices
or second fundamental form K = Ky, defined by

(2.1.6) K(X,Y) = g(Vxn,Y)

for all vectors X, Y tangent to the slices My, where n denotes the future-oriented, unit
normal to the slices. In the Cauchy adapted frame, it reads

1
(2.1.7) K;; = —ﬁ«eo,gm — 91;0:8" — 910, 8").

Here, and throughout this article, we use the notation (eg, g;;) for the action of the
vector field ey on the function g;;. Next, we define the time-operator Oy acting on a
two-tensor defined on the slice M; by

(2.1.8) ATy = (eo, Tij) — T1;0;8" — Tu0; 8,
which, by definition, is a two-tensor on M;. With this notation, we thus have
1 -
2.1.9 K= ———00G:i-
( ) IN 095

Elementary calculations (see, for instance, [10, Section VI.3]) yield us the connection
coefficients in terms of the (3 4 1)-decomposition:

w80 = N_1<60,N>,

W(i)o :NgijﬁjN, wgi :w?o :NﬁlaiN,

(2.1.10) w?j = 1N"?((eo, gij) — 9n;0iB" — gihajﬁk) =-N"'Kj;,
wh; = —NK; +9;8",  wly=-NK,

i =i
—
Wi = jg.

Here, fj- « denotes the Christoffel symbol of the connection V in the coordinates {x'}.
It is also a standard matter to derive the Gauss-Codazzi equations for each slice:
Rijri = Rijp + Kickiy — Ki K,
(2.1.11) Roijk = N(V;Kpi — Vi.Kj;),
Roioj = N(0oKij + NKi K§ + V;0;N).
In addition by suitable contractions of these identities, we arrive at
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2.2. EVOLUTION AND CONSTRAINT EQUATIONS 11

(2.1.12b) Ro; = N(0;K| — ViK}),

and, for the (0,0)-component of the Einstein curvature,
N2 _ .
(2.1.12¢) Goo = 7(3 - K K" + (K})?).
These equations clarify the relations between the geometric objects of the spacetime
M and the ones of the slices M;.
The equation (2.1.12a) yields the evolution of the tensor K and together with the
definition 0yg = —2N K, we thus find the following first-order system satisfied by the

metric and the second fundamental form:
00gi; = —2NK;;.

(2.1.13) I Y l -
dKij = N(Rij — Rij) + NK;; K] —2NKyK; — V;0;N.

2.2. Evolution and constraint equations

Our objective is to combine the equations (2.1.12) and the field equations (1.0.6)
in order to derive the fundamental equations of modified gravity. We recall first some
elementary identities about the Hessian of a function expressed in the Cauchy adapted
frame. Given any smooth function f: M — R, we can write

Vdf =V((ey, /)07) = (s, (€ar £)) 07 @ 0% — (eq, f)w],0° @ 6.

First of all, we compute the components

—k
(2.2.1) ViV, f = 8,0, f — (ey, fYw]; = 0:0;f — Tj;0u f — wij{eo, f)
= ?lVJf + KijN_l(at — ﬁlal)f
=V,V,f+Ki;jLnf,

where £,, is the Lie derivative associated with the normal unit vector of the slice M;.
Then, for the other components, we find

ViVof = VoV, f = {e0,8; f) — {eo, [)wp; — Bi fu,
= (0 — B'0:)0;f — (0, — B'0i) f N"'O;N + NO, f K} — 0, f0; 3
= (0 — B'0:)0; f — (0, — B';) f O;In N + NO f K} — 0; f0; 8
=0;(0 — B'0))f — (0, — B'0:) fO;InN + NO, f K
=NO; (N8 — B'0)f) + NK}Oi f
and
VoVof = (0 — B'0:) (0 — B'0:) f — (9 — B'0) f wiy — 0if wio
= (0= B'0:) (0 — ') f — (8 — B'0)) f (NT'O;N) — i f (N~1(8, — B'0i)N)
= (9 — 8'9;)(0; — B0 f — (8 — B0 f - D;In N — 9, f (9, — B'9;) In N.
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12 CHAPTER 2. FORMULATION OF THE CAUCHY PROBLEM IN THE JORDAN METRIC

In particular, the trace of the Hessian of a function is the so-called wave operator,
expressed in the Cauchy adapted frame as

Oy f = g*’VaVsf = —N*VoVof + g7V, V; f
= —N"VoVof+g"V,V;f+ 37K ;N (0, — 'O, f
= -N"2VoVof +A;f +37K;jLnf,
where A f is the Laplace operator associated with the metric g.

To proceed with the formulation of the field equation (1.0.6), we need first to
rewrite it in a slightly different form, by defining the tensor:

N,

(2.2.2) E g0 — 3 5 (Ng)gap,

9ap =

where tr(.) is the trace with respect to the metric g. Then, we have the following
relation in terms of the Ricci tensor:

(2.2.3) Egag = f'(Rg)Rap + %f/(R)Wl(Rg)gaﬁ - (% Jap Ug + vavﬁ)f/(Rg)v

where we have introduced the function Wy by

f(r) —rf'(r)
foy
In view of (1.0.6), we know that E, satisfies the field equations

(2.2.4) Wi(r) = reR.

(2.2.5) Egop = 87(Tag — 5tr(T)gap) =: 8T Hagp,

where we have introduce the new matter tensor H,z. More precisely, it will be most
convenient to introduce, for different components, a different form of the equations,
that is, we write the field equations as:

Egij = 871'Hl'j,
(2.2.6) Eyy; = 8mHoj,
NQOO = 87TT0()7

or, equivalently,

(22.7a)  f'(Rg)Rij + 5/ (RYW1(Rg)gij — (5 9i3 Og + ViV;) f'(Ry)
=8n(T;; — 5tr(T)gij),
(22.70)  f'(Rg)Roj — VoV, f'(Ry) = 87Ty;,

(2270) f/(Rg> GQOO - %f/(Rg)W1(Rg)goo + (g()o Dg — Vovo) (f/(Rg)) = 8n1yp.

For completeness we check the following equivalence.

LEMMA 2.2.1. — If a metric gop and a matter tensor Tng satisfy the field equations
(1.0.6), then they also satisfy (2.2.6). The converse is also true.
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2.2. EVOLUTION AND CONSTRAINT EQUATIONS 13

Proof. — The equations (2.2.6) are clearly equivalent to
(Ng — SWT)ij = — 3 gijtr (87T — Ny),

(N — 87TT)0]' =0,
N‘JOO — 87TT00 =0.

By taking the trace of the tensor (N, —87T), we find tr(N,—87T) = —3 tr(87T — Ny)
and thus tr(877 — Ny) = 0, which proves the result. O

Hence, in view of (2.2.7a) and by using (2.2.1), we have arrived at the field equations
of modified gravity in a preliminary form. First of all, we have
L
f'(Ry)
Ei; 1 _
- — LWi(Ry)gss
Fi(R,) 21T
_ 9i;VoVof'(Ry)
2N2f(Ry)
where K := g" K;; is the trace of K with respect to g. We also have
1
Py Moo
Nyo; | NO;(N~'(0 — B'0i) f'(Ry)) ;
_ n + NK9;(In(f'(R
7(Ry) 7/(R,) o)
Ny, L Vo, (f"(Rg)LnRy)
f'(Rg) f'(Rg)

9ij

— 5 (Rg)Wi(Rg)gij + 5 (9, Og + 2ViV;) f'(Ry))

(7ij 05 +2ViV;) [ (Ry)
2f'(Ry)
+ (Kij + 395 K) Lo In(f'(Ry)),

(2.2.8b) Ry = + VoV, f'(Ry))

+ NK;0;(In(f'(Ry))),
and, finally,
(2280) GOO = ﬁRg)(NQOO + %f/(Rg)Wl(Rg)goo — (goo Dg — VoVQ)f/(Rg))
Ngoo 1 goo _ij ’
= L g0oW1(R,) — Ag UKL, R,).
7 (R,) + 3 gooW1(Ry) f’(Rg)( gt4g J )f( 9)
Next, by combining (2.2.8a) with (2.1.12a), (2.2.8b) with (2.1.12b), and (2.2.8¢)

with (2.1.12¢), the evolution equations and constraint equations for the system of
modified gravity read

(2.2.9) doKij = NRijj — NR;j + NK;; K| — 2NKy K} — V;0;N
= NR;j + NK;;K| - 2NK; K} — V;0;N

NE; N ~ N(gi;0; +2V,;V;) f/(Ry)
— Wi (R,)gii —
f/(Rg) + 2 1( g)g J 2fl(Rg)
NgijVoVof'(Rg) _
+ QJNQf’(Rg) - N(Kij + %gin)Lnln(f/(Rg))7
(2.2.10) 20gi; = —2NK;;,
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14 CHAPTER 2. FORMULATION OF THE CAUCHY PROBLEM IN THE JORDAN METRIC

and

_ y ‘ 2N 20, f'(R,)

R— KK 1+ (K)? = 900 4 “09 g
(2.2.11) ! (5) N2f'(Rg)  f/(Ry)

+ 2§ Kij £ (In f'(Ry)) — Wi(Ry),

where

Ny 0(f"(Ry)LnR _
(2212)  OKI - ViKi= -9 | i (/1) g)+K;8i(ln(f’(Rg))).

7 Nf(Ry) f'(Ry)

It remains to consider the coupling with the matter field, described by the stress-
energy tensor T,s. Recall that the equations read Ny 5= 8mT,3, where different
expressions for T, 3 are provided for the Jordan coupling and for the Einstein coupling.
We also define the mass density o and the momentum vector J (measured by an
observer moving orthogonally to the slices) by the relations

(2.2.13) o :=N"2Ty, Jj = —N"1Ty;.
We can thus conclude this section and introduce a definition suitable for modified
gravity.
PROPOSITION AND DEFINITION 2.2.2. — The equations for modified gravity in the
Cauchy adapted frame {eq,e1,ea,es} decompose as follows:
1. Evolution equations:
oKij = NRij + NK; ;K| —2NK;K! —VO;N
87TN<TZ“ — %g” tI‘(T))

N
+ Ewl(Rg)gz’j

f'(Ry)
(2.2.14) B N(gijAg +2V;V;) f'(Rg)  NgijVoVof'(Ry)
2f"(Ry) 2N2f"(Rg)

= N (Kij + 555 K) Lnln (f'(Ry)),
gi; = —2NK;j.

2. Hamiltonian constraint:
1670 n 205 f'(Ry)
f'(Ryg) f'(Ryg)
+2g7 K;; £, (In f'(Ry)) — Wi(Ry),

(2.2.15) R— KK+ (KJ)* =

3. Momentum constraint:
e sr; 05 (f"(Rg)LnRy) :

2.2.16 QK -~ VKl =———* s ! Y2+ Ki0;(In(f(Ry)))-
( ) VRaY ity fl(Rg) + f/(Rg) + j z( n(f( g)))

Observe that, in the classical gravity theory, the factor f'(Ry) is constant and equal
to unit, so that the terms containing f’(R,) in the right-hand sides of the constraint
equations (2.2.15) and (2.2.16) vanish identically; consequently, we can recover here
the standard equations (2.2.17) given below.
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2.3. THE DIVERGENCE IDENTITY 15

These new constraint equations are very involved compared with the classical ones:
they contain fourth-order derivatives of the metric g and, more precisely, second-order
derivatives of the scalar curvature R,. In particular, we can not recognize directly
the elliptic nature of the classical constraint equations.

REMARK 2.2.3. — Recall here the constraint equations for the classical theory of
general relativity, when the Einstein equations Gog = 8m1T,p are imposed: the last
two equations in (2.1.12) yield (when f' =0),
R-FKZ‘j K — (KZ)2 = 1670,
(2.2.17) . _
A\ Kij - V]Kll = 87 Jj.

2.3. The divergence identity

As in the classical gravity theory, we expect that the matter should be divergence-
free VT, 3 = 0, which is now proven.

LEMMA 2.3.1 (The divergence identity in modified gravity)
The contracted Bianchi identities

(2.3.1) V*Rap = 3VsR

imply the divergence-free property for the modified gravity tensor

(2.3.2) V*Ng,s5 = 0.

Proof. — The following calculation holds in any local frame. We compute the three

relevant terms:
VH(VaVsf'(R) = gas Do f'(R)) = (V*Va Vg = VsVVA) f'(R)
= (VaVsV® = V5V V) (f'(R))
= [Va, V5l (VE(f'(R))) = RapV(f'(R)),

then
V(f'(R) Rag) = RapV* (f'(R)) + ['(R) V*Rag
= RagV(f'(R)) + 3f'(R) V3R,
and, finally,
V(3f(R) gap) = 5Vs(f(R) = 5/ (R) VsR.
Combining these three identities together yields us the desired identity. O

As a first application of Lemma 2.3.1, we now determine which coupling (formulated
in the Jordan metric as far as this section is concerned) is mathematically sound. On
one hand, consider first the Jordan coupling, corresponding to

(2.3.3) Top = 0ad 036 — 5 gap 9% 7 0or ¢ 0r 9.
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16 CHAPTER 2. FORMULATION OF THE CAUCHY PROBLEM IN THE JORDAN METRIC

By the field equation Ng,p = 8mTop and (2.3.1), we find V*T, 3 = 0 and, after some
calculations,

(2.3.4) 900y ¢ = 0.

Consequently, if the scalar field ¢ satisfies the wave equation

(2.3.5) Oy ¢ =0,

then the tensor T,z is divergence-free, as required. Hence, we need to solve a single
scalar equation for the evolution of the matter.
On the other hand, if we assume the Einstein coupling

(2:3.6) Tap = Top = f'(By) (9a0 956 = 5 9as 9”7 06 0579).
then the field equation Ny, = 87TT;E§ together with (2.3.1) lead us to VaT;B =0,
which now reads
f//(Rg)TanaRg + f/(Rg)8ﬂ¢Dg ¢ =0.
This (vectorial) equation can be written as

B9) (3,6 056 — L o 6 B0 6) VR
(a(b ,@(b 59089 a'¢ B’¢)v g

aﬁ¢D9 ¢ = f’(Rg)

or, equivalently,

297 (g e =500) V= oy

Now, for general initial data, this is an over-determined ") partial differential system

(9%% 0ord 93 9)V 5 R.

(since the unknown of this vectorial system is a single scalar field): this strongly sug-
gests that the Einstein coupling is not mathematically (nor physically) well-behaved.
Consequently, from now on, we focus our attention on the Jordan coupling.

2.4. The initial value problem for modified gravity

Before we can formulate the Cauchy problem for the system (1.0.6), we need to
specify the stress-energy tensor. In agreement with our discussion in the previous
section, we assume a scalar field and the Jordan coupling (2.3.3), so that the matter
fields read

- 2 i
(2.4.1) { o =N"Too = |Ladl* + 3|Vo[, = 3(1Lndl® + 5700 0;0),

Ji = _Ln¢ az¢
DEFINITION 2.4.1. — An initial data set for the modified gravity theory
(MagaK7 R05R1a¢07¢1)

consists of the following data:

1. Unless we would impose the very unnatural restriction that V¢ and VR be co-linear.
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2.5. PRESERVATION OF THE CONSTRAINTS 17

— a 3-dimensional manifold M endowed with a Riemannian metric § and a sym-
metric (0,2)-tensor field K,

— two scalar fields denoted by Ry and Ry defined on M and representing the (to-
be-constructed) spacetime curvature and its time derivative,

— two scalar fields ¢o and ¢1 defined on M.

These data are required to satisfy the Hamiltonian constraint of modified gravity
2 _ 8(6% + 57 0i¢00;60) L 285 (Fo)

(24.2)  R-KiK7 +(KJ) F'(Ro) f'(Ro)
i " (Ro)Ry
+ 2g JKZ']' W - Wl(RO)a

and the momentum constraint of modified gravity

81 s ho n 9;(f"(Ro)R1)
f'(Ro) J'(Ro)

DEFINITION 2.4.2. — Given an initial data set (M, g, K, Ry, Ry, ¢o, ¢1) as in Defini-

tion 2.4.1, the initial value problem for the modified gravity theory consists of finding a

Lorentzian manifold (M, g) and a matter field ¢ defined on M such that the following

properties hold:

1. The field equations of modified gravity (1.0.6) are satisfied.

2. There exists an embedding i : M — M with pull-back metric g = i*g and second
fundamental form K.

3. The field Ry coincides with the restriction of the spacetime scalar curvature R
on M, while Ry coincides with the Lie derivative £, R restricted to M, where n
denotes the normal to M.

4. The scalar fields ¢g, ¢1 coincides with the restriction of ¢, Lnd on M, respec-
tively.

Such a solution to (1.0.6) is referred to as a modified gravity development of the initial
data set (M,g,K, R07R1a¢07¢1)-

+ K0, (In(f(Ro)))-

(2.4.3) ;K] —V,K} =

Similarly as in classical gravity, we can define [10] the notion of mazimal globally
hyperbolic development for the modified gravity theory. Observe that the initial value
problem for modified gravity reduces to the classical formulation in the special case
of vacuum and vanishing geometric data ¢y = ¢1 = Ry = Ry = 0. For the modified
gravity theory, we have just shown that, similarly as in classical gravity, these pre-
scribed fields can not be fully arbitrary, and certain constraints (given above) must

be assumed.
2.5. Preservation of the constraints

We need to address the following issue: if the evolution equations are satisfied
by symmetric two-tensors (g, K), the stress-energy tensor T is divergence-free, and
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18 CHAPTER 2. FORMULATION OF THE CAUCHY PROBLEM IN THE JORDAN METRIC

furthermore the constraint equations are satisfied on some initial slice My, then are
all of field equations satisfied? In other words, we want to establish the preservation
of the constraint equations along a flow of solutions.

This is the first instance where we establish a “preservation property” and, later in
this text, other similar situations will occur. The common character of these results
is as follows. A differential system being given, the equations therein can be classified
into two categories: one is easer to handle (the evolution equations in this example)
while the other is more difficult (the constraint equations here). Our strategy is to
replace the most difficult equations by some equations which can be deduced form
the original system (in this example, the trace-free equation of T') but are also easier
to handle. This leads us to a new system to be studied first, and an essential task is
to check the equivalence between the original system and the new system.

Before we give a precise statement, we make the following observation. The evolu-
tion equations (2.2.14) are equivalent to (2.2.7a) and the constraint equations (2.2.15)
and (2.2.16) are equivalent to (2.2.7b) and (2.2.7c). So we suppose that (2.2.7a)
together with the divergence condition V*T,3 = 0 are satisfied in the spacetime
M = Uye(0,tmun) Mt, and the constraint equations (2.2.7b) and (2.2.7c) are satisfied
on the initial slice. Then we will prove that the equations (2.2.7b) and (2.2.7c) are
satisfied in the whole spacetime. More precisely, we have the following result.

PROPOSITION 2.5.1. — With the notation above, suppose that the equations
(2.5.1) Eg,; —8mHi; =0 in the spacetime U My,

t€[0,tmax)
(2.5.2) Vs =0 in the spacetime U M,
hold, together with HE[0-tma)
(2.5.3) Egoj =8nHyj;, Ngo, = 8nToo  in the initial slice My = {t = 0}.
Then, it follows that
(2.5.4) Egoj =8mHoj, Ngoo =8mToo in the spacetime U M;.

t€[0,tmax)
Proof. — The calculations are made in the Cauchy adapted frame and, for conve-
nience, we introduce the notation
Ea,ﬁ = Ngaﬁ - 87TTa[3.

We will prove that ¥, = 0 which is equivalent to the desired result. First of all, by
the condition V,T,s = 0 and the identity (2.3.1), we have

(2.5.5) Va5 =0.
By the definition of Ej 5 and H,g, the following identity holds:

(2.5.6) Yap = Eg H.p — %gaﬁ tI‘(Eg — H)

af
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and, in particular,
(2.5.7) Y00 = Egqo — Hoo — 5 goo tr(Eg — H).
Now, due to the fact that g% = go; = 0 and (2.5.1), we have
(2.5.8) tr(E, — H) = ¢°°(Eyy, — Hoo).
Combining (2.5.7) and (2.5.8) yields
(2.5.9) tr(E, — H) = 2¢" %00
and, by substituting this into (2.5.6),
(2.5.10) Sap = Egos — Hap — 9op 9°° oo-
Here, we can compute more precisely the spatial components in view of (2.5.1)
(2.5.11) Sij = —0i5 9" Xoo-

Given this material, we are now in a position to calculate Eg = gaa/Zafg. ‘When
a = =0, we find

(2.5.12) Y0 = 200 g™ = g""%g0.
For 3 =0,1<a < 3, we set a = a and, by recalling that g%° = 0, we obtain
28 = gm,zwo = gaalza’O
For 1 <b < 3, we have
Sh = 968 9750 = g% g5
For 1 <b<3and1<a<3, by applying (2.5.11) and (2.5.12), we obtain
Zg = gaazba = gaalzba’ = _gaa’ Gba’ gOOEOO = _61?28
Hence, we conclude with
(2.5.13) ¥ = g% g5, B¢ = 5050,
Now recall that the identity (2.5.5) can be written as
VX3 =0,
which leads to
(€as TF) — wlpS§ +wgsEh = 0.
When g8 = 0, we have
(2.5.14) (€0, B0) + 02§ — wlsE§ +wlsEY = 0.
For 1 < b < 3, we can take the equation (2.5.13) and write

(eo, 900 gbeXg) + 8a( - 51?28) - wsz‘i + Wngg =0,
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which leads us to
(2.5.15) (€0, 36) — 900g" 020 — go0g" (W), T — Wi, E7)

+ 9005 (€0, 9% goer) 56 = 0.

We now consider the equations (2.5.14) and (2.5.15) together, and we observe that,
in view of (2.5.13), the lower-order terms are linear combinations ¥ with 0 < a < 3.
Hence, these equations form a first-order differential system with linear source-terms.
This system can also be written in a standard symmetric hyperbolic form. Namely,
by recalling the notation g = g; for the induced Riemannian metric on the slices M,
we introduce

V= (30,397, "= g00(g, 9%, 5°%)"
and
o1 =(1,0,0), o02=1(0,1,0), o3=1(0,0,1).

The principal part of the system defined by (2.5.14) and (2.5.15) can be put in the
form

(2.5.16) (€0, V) + > A",V = F,

where

a 0 a
AT = <—goopa 00 )

and F' is a linear form on V. By multiplying this equation by the matrix

Ag :=<1 0 ):_goo<—900 0 ),

0 =" gas 0 gab
we conclude that (2.5.16) becomes
(2.5.17) Aoleo, V) + > AgA®0,V = AF.

Note that AgA® are symmetric:
0 o°
Aot = ( ).
’ (0°)" 0
and the system (2.5.16) is thus symmetrizable. Clearly, (2.5.3) implies that V' =0 on
the initial slice {t = 0}. Thanks to our global hyperbolicity assumption (2.1.1) and
by a standard uniqueness argument, we therefore conclude that V' = 0 in the whole
spacetime. O
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CHAPTER 3

FORMULATION OF THE CAUCHY PROBLEM IN THE
EINSTEIN METRIC

3.1. Conformal transformation

In view of the derivation made in Chapter 2, it is clear that the evolution and
the constraint equations of modified gravity are, both, very involved and do not have
a standard (hyperbolic, elliptic) type within the general class of PDE’s. The main
difficulty comes from the fourth-order term

VaVif'(Ry).
As we will now show it, the conformal transformation
B _
(311) gTozB =™ JapB; gTa =e % gaﬁ

(which depends upon second-order derivatives of the unknown metric) will overcome
some of the difficulties: where the conformal factor is defined by

(3.1.2) p:=3Inf'(Ry)

or, equivalently, f'(R,) = e??. We now proceed by deriving several relevant expres-
sions in the conformal metric g in order to derive a tractable formulation of the field
equations.

We begin by deriving an expression for the gravity tensor N, in terms of the
Einstein metric.

LEMMA 3.1.1. — With the notation above, the following identity holds
(3.1.3) e* Rl g =6 00pdpp+ 35970 sWal(p) = Nyoy — 3 gap tr(N,),
where the function Wo = W (p) is defined implicitly by

(3.1.4) Wo(s) = It e = f/(r), reR.
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We also recall that the function W is defined by (2.2.4) and it will be also conve-
nient (in the proof below) to introduce the function W3 = Ws(p) by

(3.1.5) Ws(s) := f(r), e* =f'(r), reR.
Proof. — We need to analyze the tensor
Ngag = f/(Rg)RaB - %f(Rg)gaB + (gaﬂ Oy — Van)f'(Rg)
and its trace tr(Ny) = f'(Rg)Ry — 2f(Ry) + 30, f'(Ry). Recall first the identities
VoV e = 2e2pvavﬁp + 462”Vo¢pV5p,
Oge* = 2e* Oyp + 4e* g(Vp, Vp),
which imply
Nyop = €’ Rap—73 gapWa(p)+2¢* (gap Ug—Va V) p+4e* (gap 9(8p, 9p) —ap dpp)

and

Ws(p) 1 _ tr(Ng)
Ogp — 525 +29(0,0p) = cWalp) = — 5=

Moreover, we have the following relation between the Ricci curvature tensors of g
and ¢':

(3.1.6) Rlap = Rap = 2(VaVp = VapVsp) — (Ogp+29(Vp, Vp)) gas
and, therefore, we see that IV, can be expressed as
Ngop = eZPRTaﬁ — 662PVQPV[3,D +6e2° 903 9(Vp,Vp) + 3e? Gop dgp — %Wg(p)gag.

It remains to combine this result with the trace equation above. O

We are now in a position to state the field equations in the conformal metric. At
this juncture, it is unclear how the scalar field p should be recovered in term of the
Einstein metric, and this is an issue that we will address next.

PROPOSITION AND DEFINITION 3.1.2. — The field equations of modified gravity in
the Einstein metric g',5 = €* gog with p = 5 In(f'(Ry)) read

(3.1.7)  *RT,5 —6*0,pdsp + %gTMWQ(p) =8 (Top — %gTaﬁgTa,’BlTa/ﬁ/).
REMARK 3.1.3. — For any sufficiently regular function w, one also has

(3.1.8) Ogrw = e 2 (Dgw +2¢“P8,p 3510) =e 2 Oyw + 2gTa58ap dpw,
so that the trace equation transforms into

_ Walp)  Wslp) 1
(3.19) Hotp = 6e2r Getr  Getr

tr(Ng).
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3.2. Evolution and constraint equations in the conformal metric

As in the previous section, we can formulate the evolution equations and constraint
equations associated with the conformal field equation (3.1.3). To do so, as before,
we introduce a foliation of the spacetime M = [0, +00) x M; and a Cauchy adapted
frame {eg,e1, e, e3} associated with the transformed metric gf. Then, by similar
calculations as above, we find

= Sl
— 80KTZ-- l l Vlé)NT
(3.2.1a) R';; = Rij — TJ + KK — 2KTilKT]‘ - N]T ’
(3.2.1b) Rio; = N1(9,KT) =V KT)),
— ij !
(3.2.1c) Gloo = %NT2(RT - KT K™ 4 (K1)?%).

Here, WT refers to the covariant derivative on the slice M; with respect to gf, and we
observe that (3.2.1a) yields the evolution equations
(522 00K Ti; = NT(Rl — Ri;)) + NTK T, K1) — 2NTK T, KT, — Vo, NT,

o 50.@”]‘ = —QNTKTij.

Moreover, the transformed field equations (3.1.3) read

RTaﬁ =e (Ngaﬁ - %gaﬂtr(Ng)) + 60ap Opp — ZG%QTaﬁWﬂP)
and, by taking the trace of this equation with respect to the metric gt, we have
Rl = —e™*tr(Ny) + 69" (9p, 0p)gas + € g o sWal(p).
This leads us to
Gop = Nyop +6VaoVso—39"(0p,0p)g" 05 + e 79" s Walp),

We have thus derived the evolution equations and constraint equations. The evo-
lution equations read

_ _ 1 1 —
00Ky = NTR!, + NTKT KT — 2NTK T, K1, — 1o, N

— Nte=2r (Ng gl tr(Ng) +6e*0ip0;p+ 397, WQ(R9)>,

i 9a2p
dog'ij = —2NTKT,;,
while the Hamilton constraint equation reads

N,

_ i 1 2
RN = KTy KT 4 (K1)? = =80 +1218,001° + 69"(V7p, VTp) — =W (p)
€

Nt
and the momentum constraint equations read
Ny, .
) Tl =T Tl N 905 )
0;K'" -V K", = FoNT +6L,:p0;p.

Here, nt denotes the normal unit vector of the slice M;.
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Finally, we consider the Jordan coupling with matter field (this choice of coupling
being revisited in the next subsection):

(3.2.3) Ngop =8mTap
and, furthermore, we define the matter fields
To; T
o _20j t._ 200
(3.2.4) J' = Nt ol = N
DEFINITION 3.2.1. — In the Einstein metric, the equations of modified gravity in a

Cauchy adapted frame {eg, e1,eq,e3} can be decomposed as follows:

1. Ewvolution equations:
oK'y = NTR] + NTKH KT — oNTK T KT — 1o, N
— Nfe=2r (87TTij — 477672’)9%4 tr(T) + 6e*9;p 0;p + %gTijwl (Rg)>,
dogli; = —2NTKT,;.
2. Hamiltonian constraint:

2 1607
=%

_ ij l
(3.2.5) Rf — KT K 4 (KT) + 12|10 + 697 (Vip, Vip) — e 2 Wa(p)

3. Momentum constraints:
1 —t o i Jt
(3.2.6) 0, KT, - VKT = ~ S5k 4 6L p Oy,

Let us again emphasize again that the constraint equations are equivalent to
Nyoo = 8mToo, Ny, = 8m1oa, while the evolution equations are equivalent to

Ngap, — %gabtl"(Ng) = SW(Tab - %g“btr(ﬂ)'

3.3. The divergence identity

In order to derive an evolution equation for the matter field, we need the divergence
of the tensor N, with respect to the conformal metric g.

LEMMA 3.3.1. — The modified gravity tensor in terms of the conformal metric sat-
isfies the identity

(3.3.1) VTaNgaﬂ =e % (297587pN956 — tr(Ny)9sp).

Proof. — We work in an arbitrary (possibly only locally defined) natural frame. The
desired identity follows from

I os =T+ 92080 + 930ap — 9apVp.
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We have
VTaNgaﬁ =e 2 gO"YVTWNgaﬁ
= e g7 (0yNg o = TaNggs — T35 Ngus)
— 7% 9°7(g500p + 900+p — 910V’ P) Ny g5
— e g*(g00sp + 930 — 98V ° ) Ngos»
thus

[e3%

VI Nyas = € VO Ny 5 — e 2 (V0p+Vp— 4V p) Ny g5
- efz”(agptr(Ng) + V*pNg,5— Vo‘pNgaﬁ).
Recalling that V*Ng,5 =0 by Lemma 2.3.1, we conclude that
VTaNgaB = e_2p<2g7587p]\fgéﬁ — tr(Ny)9sp).
O

With the Jordan coupling, the divergence of the stress-energy tensor is thus ex-
pressed as
(3.3.2) VI = (2927050 Typ — tr(T)dgp) e,
which (together with an equation of state for the matter field) determines the evolution

of the matter.

REMARK 3.3.2. — We conclude this section with a discussion of the FEinstein cou-
pling. We rely on (3.3.1) and now show that the only meaningful choice of coupling
(now viewed in the Einstein metric) is the Jordan coupling. Observe first that the
Jordan coupling

Top = 00 3¢ — 5 gap| VoL,
implies
9pp tr(T) — 29" 05p Ty = —|V ¢l 3030 — 29(9p, 96) I + [V Y| 505p
= —29(9p, 0¢)0s¢,
which leads us to
(3.3.3) (29‘5785pT%3 — tr(T)9pp) e 2 =2¢"(9p,0p)0s¢.

From the identity

[0

VITT,5 = 0300, ¢

combined with (3.3.1), we have
90 Dyip = 2e72 g% 000 90 D5

and this leads us to the wave equation for the matter field

(3.3.4) Oy = 291" 0 605 p.
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On the other hand, let us consider the FEinstein coupling:

Taﬁ = T(i,@ = e2p(ao¢¢aﬁ¢ - %gaﬁ‘vd)‘g)v

which gives

VI'T.5 = 050016 + 279" 00rp(0ad 56 — § gas| Vo)
= e 05¢(0y1¢ + 29" (9p, 09)) — 0spI V1.
In combination with (3.5.1), we find
036 (0y1 ¢ + 29" (0p, 09)) — Dppl VoI5 = 29" (9p, 06) 95,
and therefore
* 03¢ (0yr¢ + 29" (9p, 0¢) — 272 g1 (Vip, Vig)) = 9sp| V.
In agreement with what we noticed with the Jordan metric, the Einstein coupling

leads to an over-determined partial differential system. This suggests again that the
Einstein coupling cannot lead to a well-posed initial value problem.

3.4. The conformal version of the initial value problem

We are now ready to formulate the notion of initial data set and the notion of
Cachy development in terms of the conformal metric. In agreement to our discussion
in the previous section, we work with the Jordan coupling and a massless scalar field:

(3.4.1) Top = 0a¢ 03¢ — %ga6|v¢|§7
and we set
ol =5 (1Lni 0 +5790:00;0), J'j = —L,100;0.
DEFINITION 3.4.1. — An initial data set for the modified gravity theory in the Ein-
stein metric (M, g', KT,p&pJ{, ¢2;, (ﬂ) consists of the following data:

— a 3-dimensional manifold M endowed with a Riemannian metric §' and a sym-
metric (0,2)-tensor field K1,

— two scalar fields denoted by pg and pJ{ on M and representing the (to-be-
constructed) conformal factor and its time derivative,

— two scalar field cb:_r) and d)J{ defined on M.

Furthermore, these data are required to satisfy the Hamiltonian constraint of mod-
ified gravity in the Einstein metric

(3842) R — KiK' 4 (K1)2 =872 ((6])2 + g1 0,60;60) + 6(o])?
y t
+6g170;:p00;p) — e 2P0 W (p)),
and the momentum constraint of modified gravity in the Finstein metric

(3.4.3) 3ij§ _ szTl ¢1 J% +6 Tagpo

MEMOIRES DE LA SMF 150



3.5. PRESERVATION OF THE CONSTRAINTS 27

DEFINITION 3.4.2. — Given an initial data set (M, gT,KT,pB,pJ{,ng,qﬁ) as in Def-
inition 3.4.1, the initial value problem for the modified gravity theory in the Einstein
metric consists of finding a Lorentzian manifold (M, g) and a two-tensor field Top
on M

1. The conformal metric ¢ is defined with the relation gTaﬁ = e* g,p with the
conformal factor p = %ln(f’(Rg)) where Ry is the scalar curvature of g.

2. The field equations of modified gravity (3.1.7) are satisfied with p = %ln ' (Ry).

3. There exists an embedding i : M — M with pull-back metric gt = i*g" and
second fundamental form K.

4. The field pg coincides with the restriction of the conformal factor p on M, while
p]; coincides with the Lie derivative £,,: p restricted to M, where n' denotes the
normal unit vector of M.

5. The scalar fields ¢>$, (bJ{ coincides with the restriction of ¢, L,t¢ on M.

Such a solution to (3.1.7) is referred to as a modified gravity development of the initial
data set (M, g%, K™, o}, pl. 85, 61).

The notion of mazimal globally hyperbolic development is then defined along the
same lines as in [10] for the classical gravity. We observe that our formulation of
the initial value problem for modified gravity reduces to the classical formulation in
the special case of vanishing geometric data (bg = qu = Ry = Ry = 0. On the other
hand, without matter fields and for non-vanishing geometric data Ry and R;, the
spacetimes under consideration do not satisfy Einstein vacuum equations. Similarly
as in classical gravity, these fields can not be fully arbitrary prescribed but certain
constraints (given above) must be assumed.

3.5. Preservation of the constraints

Next, we establish the preservation of the constraints, as follows.

PROPOSITION 3.5.1. — Let (gf, K1) be symmetric two-tensors defined in M =
Ure[0,tmax) Mt 1If the following equations hold in M

(3.5.1) Ny, — 5tr(Ng)gij = 87 (Tij — 5tr(Ny)gij),

(3.5.2) VTaTaﬂ = e72p(97567pT75 — dgptr(T)),

and

(3.5.3) Nygos = 87Tg.

holds on the initial slice My, then (3.5.3) holds throughout the spacetime M.

Proof. — Recalling the notation ¥,5 = Ny, 5 — 8mT,p, we are going to prove that
ooo = 0. We note that (3.5.1) can be written as

(3.5.4) Sij — strf (Z)g'y; = 0.
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By taking the trace of the tensor ¥,z — %trE gap With Tespect to g7, we find
tI‘TE — 2tI‘TE = 7NT72200 + gTij (El] - %tr(E)gij).
Combining with (3.5.4), we thus have

(3.5.5) trfy = —NT 254
Combining (3.5.5) together with (3.5.4), we then obtain
200

(3.5.6) i = —WgTij.

Along the same lines as in the proof of Proposition 2.5.1, we have
(3.5.7) LU D ¥ g 31
Let us consider the identity (3.3.1) combined with (3.5.2), and note the identity
(3.5.8) V" Sas = e720(20,p5] — dpptr(X)).

We observe that by (3.5.7), the right-hand-side is a linear form of the function Eg
and, by definition,
é «a
(3.5.9) ViaZ§ = (e, 2%) — wiosZ§ +wlgsT5.
By combining (3.5.8) and (3.5.9), we arrive at the first-order linear differential system
) «
<€a, Zg> - wTaﬁE? + wTaézg = 672p (28’)’[)273 - 85[)‘51‘(2)),
whose principal part is

(0, X) + 0,22 = lower order terms,
(3.5.10) 00
(e, g7 gTp.28) — 0,29 = lower order terms.
can be symmetrized by the same procedure as we did for the system (2.5.14) and
(2.5.15). Recall also that by (3.5.3), this system has vanishing initial data and, there-
fore, in view of our global hyperbolicity assumption (2.1.1), the desired result is
proven. O
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CHAPTER 4

THE CONFORMAL FORMULATION IN WAVE
COORDINATES

4.1. The wave gauge

We now turn our attention to solving the system (3.1.7) and our first task is thus
to express it in well-chosen coordinates. In view of the expression of the left-hand-
side of (3.1.7), we observe that if we remove the terms in p, the principal part (that
is, the second-order terms in g') is determined by RTQB. In order to investigate
its structure, we perform first some basic calculations, which are valid for general
Lorentzian manifolds in arbitrary local coordinates. Let (M, g) be a Lorentzian man-
ifold with metric g of signature (—, +, +, +) and consider any local coordinate system
{20, 21, 22 23}, Let ry 3 be the associated Christoffel symbols, and consider the wave
operator [, = V¢V, associated with g. The following lemma follows from a straight-
forward but tedious calculation.

LEMMA 4.1.1 (Ricci curvature in general coordinates). — With the notation
(4.1.1) I =g, Ty = gagl”,

one has

(4.1.2) Rag = —3 9% 0003 gap + 1(0aLs + 95T0a) +  Fap(g; 99, dg),

where Fo5(g;dg,0g) are nonlinear functions in the metric coefficients and are
quadratic in their first-order derivatives. The wave operator and the reduced wave
operator

ﬁgu = ga/ﬂlaa/aﬁl
satisfy the relation
(4.1.3) Ogu = g% % 00 0gu + TP 05u = Oyu + M osu,

and, clearly, these two operators coincide if and only if the coefficients T wvanish
identically.
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Proof. — Recall the definitions
Rap = 0\Tng — 9aT3x + Tasl%s — Taslia,
25 = 30 (9a gsx + 05 Jax' — Ox' Gap)-
In the expression of the Ricci tensor, we consider the first two terms:
MTap — 0l
= 307(9™ (00985 + 05 gas — D59ap)) — 30a(9™ (95 grs + Ox gss — Dsgpn))
= —30:(9™05908) + 202(9°(0agss + 05 gas)) — 20a(9™°05 g1,
so that
(4.1.4)  OIhs — 0aThx = —2 9°0059as + £ 972001 g5
+ 19050 g5 — 1 6790405 grs + Lot

where l.o.t. are quadratic terms in the first-order derivatives of the metric.
On the other hand, we can compute the term 9,1'g + 0gI' and obtain

I =T7,9 =59 97 (0agps + 05 gos — Osgap)
= 975 gaﬁ’aagm _ %gaﬂ gvéaégaﬁ

and

Ty = g I7 = g% 0ags) — 5 9*POx gag-
So, we have

0aT's = 0a (9" 05928) — $0a(97°05 ge)
and, therefore,
(4.1.5) 0al's + 0500 = g7°000x gs5 + 97° 30 s — 9™ O grs + LO-t.
It remains to compare (4.1.4) and (4.1.5).

Observe that the field equation (1.0.6) or the conformally transformed field equa-

tions (3.1.3), both, contain linear terms in the Ricci curvature. In order to exhibit the
hyperbolicity property for the linear part of these systems (at least for the second-order

terms in (1.0.6)), we now introduce local coordinates. Recall that a wave coordinate
system, by definition, has Christoffel symbols satisfying

A
(4.1.6) I = g*r7, =0.
In view of (3.1.3), the principal part (after removing the terms in p) of
N5 — 3 gaptr(Ng) — 5% (0aTT + 95TT)
is %ezf’gTaﬁaa/(‘?gngaB, which is a quasi-linear wave operator. From this observation,
the equations (3.1.7) in wave coordinates, with

(4.1.7) Iy =0,
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can be reformulated as:

(4.1.8) Ny, 5= 3 Gaptr(Ng) — 5% (0alT5 + 0577 0) = 87(Tup — 5 t1(T)gap),
while the trace equation (3.1.9) becomes

Wa(p) . Ws(p) | Artr(T)

Ge2r Getr 3etr

Hence, in view of Lemma 4.1.1, the above system can be written in terms of the

metric g and its derivatives. We emphasize that the trace equation (4.1.10c) and the
evolution equation of matter field (4.1.10d) below are coupled to the field equations.

1)
(4.1.9) Oyip+TT05p =

LEMMA 4.1.2 (Conformal field equations in wave coordinates)
The field equations (3.1.7) in wave coordinates take the form

a/ﬁ/
(4.1.10a)  g'" " 04 0p 9" = Fap(g';09",0g") — 1200p 9p

% 8m
2(p) gT .

5 (2Taﬁ —tr (T)gaﬂ)a

+ e2p af e2p

which is supplemented with the algebraic constraint equation (derived from the wave
coordinate condition)

(4.1.10b) gt =0,

In addition, this system must be supplemented with the trace equation

pB o o Walp)  Walp)  Amtr(T)
(4.1.10¢) g O Oprp = Go2r + Golr olr
with p = %f’(Rg), as well as with the evolution equation for the matter
(4.1.10d) VT = (tr(T)dsp — 2¢°70, pTy5) e 2.

4.2. A nonlinear wave system for the modified gravity theory

The aim of this subsection is to study the ‘essential system’ consisting of (4.1.10a)
and (4.1.10b). If we remove the terms in p, this is a quasi-linear wave system with
constraints (see (4.1.10b)), whose structure is quite involved. The strategy we propose
is to replace these constraints by another differential equation which will turn out to be
simpler to handle. We will write a new system which may (a priori) not be equivalent
to the original system (3.1.7). This system is defined as follows.

DEFINITION 4.2.1. — The wave-reduced system in geometric form associated with
(3.1.7) is, by definition,

(4.2.12) Ny — 3 Gaptr(Ng) — 5 (0alTp + 05T10) = 87(Top — §tr(T)gap),

(4.2.1b) VT = (tr(T)3sp — 2¢°70,pT,5) =%,
where Ny, 5 is defined by (3.1.3) and e? = f'(Ry).
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Thanks to (3.1.3) and Lemma 4.1.1, the above system reads also

a/IBI
9" " 0ar09" 05 = Faplg':09",09") — 120ap 0sp

Wa(p) T 8m
(4.2.2) + =3, 9"as — g5 (2Tas = tr(T)gas),

VTaTaﬁ = (tr(T)0pp — 296787PTW) e %,
p = %lnf/(Rg)a

which is (4.1.10) without the constraint equations (4.1.10b) but includes the evolution
equation (4.1.10d). In the following subsection, we will establish the following result.

PROPOSITION 4.2.2 (Preservation of the wave coordinate conditions in modified
gravity)

Consider a globally hyperbolic spacetime M = Uc(o,...)M¢ with metric g,
together with a matter field T defined on M. Suppose that the wave coordinate condi-
tions
(4.2.3) rt? .= gTu'BFTZB =0 on the initial slice M,

together with the constraint equations (3.2.5) and (3.2.6). Then, the wave condi-
tions (4.2.3) are satisfied within the whole of M.

In other words, if one wants to find a solution of (3.1.7), what we need to do is
to find first a solution of (4.2.2) with the constraint equations (4.2.3) satisfied on the
initial slice, with four additional constraint equations to be required on the initial
data set. Recall again that the interest of relying on (4.2.1) rather than on (3.1.7) is
that the former one has a hyperbolic principal part (after removing the terms in p).

4.3. Preservation of the wave coordinate conditions

The key to Proposition 4.2.2 is the contracted Bianchi identity and, amazingly, the
precise form of the modified gravity tensor N4 is not used at this juncture. We begin
with some lemmas and the derivations of key identities.

LEMMA 4.3.1. — For any (pseudo-riemannian) manifold (M, g), the following iden-
tity holds:

(4.3.1)  V(9als + 9500 — gap 9% 7 90 Ts)
= g7 0005 5 — g*'T7 0,15 — g*¥' T2, ;05T — 95 9% (0T,
where T}, 5 denote the Christoffel symbols and T := gaﬂFlﬂ and T, = g, T
Proof. — From the standard identities
VeOsu = g O Ogu — T, 50,u,
Ogu = g*P0,05u — gaﬁl"lﬁavu,
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we find
V(0als + 05T 0 — gap 9% % 8 Tsr)
= V29,I5 + V95T — 05 (9°7 0arTpr)
= 0,05 + % 00 05T — g° T8, 30500 — 05 9% 7 (0 Tpr) — g% 7 950u T
thus
V(9als + 95 0 — gas 9% 80T
=0,T5 — 9" T 05Ta = 9 97 (9 T)
= g7 0,05 5 — g*¥'T7 0,175 — o T, 3057 — 03 9% 7 (0 Tpr). O
Our next lemma establishes a relation between the wave condition and the evolu-
tion equation of the wave-reduced system (4.2.2). Recall that sufficiently regular is

assumed throughout so that all terms under consideration are continuous functions
at least.

LEMMA 4.3.2. — Consider an arbitrary manifold (M, g") and a (matter) tensor Tap.
Then, if in some local coordinate system {20, a1, 22,23}, g', Top satisfy (4.2.1), then
the following equations hold

(4.3.2) g7 0005 5 = Fa(p,gt; T, 00T,

where F(p, gt:.,.) is a combination of linear and bilinear forms, and one recalls FTZB

are the Christoffel symbols with FTB = gﬂg/FTﬁl = gap’ gO‘VFTi;.
Proof. — Taking the trace of (4.2.1a) with respect to the metric g,
(4.3.3) tr(N, — 877T) = —e* g*P9,T15
and combining with (4.2.1a), we obtain
(4.3.4) N5 = 87Tap = 5 gaptr(Ny — 87T) + 5 (a5 + 95T4)
= 1e2(9,T1 5 + 95T, — gt a0’ BT 5)
Taking the trace of (4.3.4) with respect to g, we obtain
/B/
(4.35) 3V (e (0aTT5 + 9T 0 — g 059" " 0T 3)) = VI" (N, 5 — 87T0p),
whose left-hand-side is evaluated by using (4.3.1):
o Oé,ﬁl
%VT (e* (&XFT/; + 95T, — gTa;agT aa’ﬂﬁ’))
_ %ervTa(aaFTB + aﬂr’fa _ g’faﬂg]‘a B 8a’FTB’)

+ eQ”(BaFTg + GBFTQ _ gTaﬁgTa B aa/FTﬁ')VTap,
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We thus obtain that
,ﬂ,
%VTa(eZo(aaFTﬁ_’_aﬂ]:‘Ta _g’raﬁgTa 3@’FT5’))
o' B’ aa’ iy aa’ 18 o' B’
= %GQP (gJr 8a/85/FTﬁ - gJr FTaa/((),erﬂ - g]L FTa/B(%FTa - (95‘(]Jr (8(,¢/FT,3/))
+ GZP(aaFTﬂ + 85FTQ — gTaBgTa A 8a/FTﬁ/)vTap
=: %ergTa ? 8a/851FTﬂ + %QZpﬁﬂ(p7 gT7 FT,W 8FT7)7

where Fj(p,g';.) is a combination of linear and bilinear forms of the functions ',
and OI'T,.

The right-hand side of (4.3.5) is computed by using the identity (3.3.1) and (4.2.1b),
that is,

VTQ(Ngaa — 87Top) = e (tr(Ny — 87T)dpp — 2975579(]\79513 — 87T53)).
Then, by (4.3.3), we obtain
VTO‘(NQQB — 877Ta5)

— a' ’ Oé/ﬁ/
=e(—eyg B 0w 5:05p — 2 g7°0.p(0aT T + 95T T, — gTaﬁgT aa/FT[;,))
= —g"°0,p(0,TT5 + 95T75)

and, by (4.3.5),
(4.3.6) g7 0005 T 5 = Fs(p, gt Tt 00T,
where
Fs(p,g"Th,,001) = —F3(p, g"; 11,001, — 272 790, p(95T1 5 + 05T5)
is a combination of linear and bilinear forms in FTV and 5FT7. O

LEMMA 4.3.3. — Let (M,g") be a globally hyperbolic Lorentzian manifold endowed
with a foliation M = [0,tmaz) X M; (and signature (—,+,+,+)), together with a
tensor field Top. Suppose that the equation (4.2.1) holds on the initial slice My and,
furthermore, the wave coordinate conditions and the constraint equations hold on the
slice My:
7= gt il = 0
and (as stated in (3.4.2)-(3.4.3))
1607 . 12|{eq, p)]

- g . 2
RY— KT K™ 4 (KT))* = +69'(Vp, Vp) — e 2 Wa(p),

e2r Nt2
- T 0
) —i-l —i-l o J j 6(60,/)) 'j
0K l—VTKj———GQP —1—7]\/,Jr .

Then, one has
BOFT/\ =0 in the spacetime M.
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Proof. — We work in a Cauchy adapted frame (eq, e1, €2, e3), that is,

, , T
eo = 0y — '0;, B = 9T017 e; =0,
94
so that g'(ep,e;) = 0. A tensor can be written in, both, the natural frame and the
Cauchy adapted frame. We denote by an underlined letter the components in the
Cauchy adapted frame. For example, T,z are the components of 7" in the Cauchy

frame.
Recall that the momentum constraint equations are equivalent to
(437) Nng = 87TIOja

the Hamiltonian constraint equation is equivalent to

(438) NgOO = 87TI()0.

Recall also that the Cauchy adapted frame is expressed in the natural frame via
ea = ®205, where

1 —ﬂl —ﬂ2 _63
01 0 0
P8) =
@)es=10 0 1 o
00 0 1
Then, we have
Nyap = Ngo gy @5 @5, Top = Tarp® T .

Observe that the wave-reduced field equation (4.2.1a) can be rewritten in the
Cauchy adapted frame as

Ngap — %trNggLB — %erCI)g @g ((%TT@ + 85/I‘Ta/) = 87T(Ia[3 — %tr(T)gLB),
which is
(4.3.9) Nyag — 5trNygh 5 — $2 (9] (ea, Tt ) + % (es,T10r))
=8 (Tap — 5tr(T)gls)-
Next, by combining (4.3.9) with (4.3.7) with « = 0,1 < 8 =5 < 3 in (4.3.9) and by
observing that gi 0 = 0, we obtain
(I)f <60,FT,3/> + <I>‘0¥’ <€b,FTa/> =0.

We consider this equation on the initial slice Mj.
Recall that it = 0 so that 9,I's = 0 for any 1 < b <3 and 0 < 8 < 3. Then
observe that @bﬁ = 55 and (ey, ') = 0,I'f v = 0, so that

(4.3.10) (o, TTy) =0,
which leads us to 8,I'f, = 0.

SOCIETE MATHEMATIQUE DE FRANCE 2017



36 CHAPTER 4. THE CONFORMAL FORMULATION IN WAVE COORDINATES

Now, we can combine (4.3.9) with (4.3.7) and (4.3.8) with a = 8 =0 in (4.3.9):
) (e, T gr) + @F (€0, o) = —tr(Ny — 87T)g gy
We recall (4.3.7) and (4.3.8) and the fact that gToj =0, so that
(4.3.11) tr(Ng — 87T) = g% (Nyas — 87 Tap) = " (Ngij — 87 Tij).

We also recall (4.3.9) with 1 <a=i<3and 1 <8 =j <3, and we observe that
{e;,I'T,) = 0. This shows that
ﬁl}ij - 871'11']' = %tr(Ng — 87TT)gij,

which leads us to

97 (Ngij — 87 Ti;) = Str(Ny — 87T)g" gs;.

Therefore, by (4.3.11), we have
tr(Ng — 87T) = 3 tr(N, — 87T,
and thus tr(N, — 877T) = 0. We substitute this conclusion in (4.3.10) and obtain
o (e0, T ) + @5 (e, o) = 0.
We finally recall (4.3.10) and get
DY (e, T'To) + @] (e0, I'fo) =0
and the desired conclusion is reached. O

Proof of Proposition 4.2.2. — In view of Lemma 4.3.2 and Lemma 4.3.3, we see that
rf g satisfies the initial value problem

91" 0051 5 = Fy(p. 911, 001,
with initial data
FT5|r0:0 =0, aorTﬁ|£0:0 =0.
Since z° is the timelike direction and the symmetry of g' guarantees the hyperbolicity

of gT“'ﬁ/aa,a@. We also observe that I'f = 0 is a solution of this initial value problem.
Thanks to the global hyperbolicity of g, the desired uniqueness result holds within
the domain of determinacy of the initial slice, that is, M itself, thanks to our global
hyperbolicity assumption. O
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CHAPTER 5

THE AUGMENTED CONFORMAL FORMULATION

5.1. A novel formulation

In this section we re-formulate our system and establish a local-in-time existence
theory. Since p is function of the scalar curvature, the system under consideration
now is still third-order and is not of a specific PDE type. (The third-order terms
are Jp, where p is a function of the second-order derivatives of gTaﬁ.) To bypass this
difficulty, we thus introduce still another transformation. In (4.2.1), we now replace
the constraint e*” = f/(R,) by the trace equation leading to the evolution equation
for p, and we introduce an augmented formulation, as we call it. For clarity in the
presentation, we switch from the notation p to the notation g, in order the emphasize
that the relation e*” = f'(R,) is no longer imposed.

Let us now define the tensor N gia S

ﬂa

(5.1.1) N %gagtr(Ng) = ¥Rt 5 — 60,0050 + %giaﬂWg(g).

9dap -
Here, ¢ plays the role of the previous quantity p = %1n f'(Rgy) (which need not hold),
and we work in the metric of the augmented system

(5.1.2) Ghp = € gap.

We also use the notation V¥, R! and R* for the connection, the Ricci curvature,
and the scalar curvature of g¥, respectively. Also, we denote by FiZB the Christoffel
symbols of g, and we set " := giaﬁFilB and TF, = gIW,F“.

DEFINITION 5.1.1. — The conformal augmented formulation of modified gravity is
the following partial differential system:
(5.1.3a) N; 5= 5€%(0al*s + 051%0) = 87 (Tup — 5 gastr(T)),

Wa(o) | f(0(0)) | 4mtx(T)
(5.1.3b) O:0= 535 + “gote soir 9 ap
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In the now proposed standpoint, o is an independent unknown, which no longer
depends upon the scalar curvature R,. In this way, the system under consideration
is second-order. Our first task then is to compute the divergence of N, ;*L.

LEMMA 5.1.2. — When (5.1.3b) holds, the following identity also holds:

(5.1.4) VHING 5= e 2(20% 0uroNy  , — tr(87T)8p0).
Proof. — By (5.1.3), we have
Ngiag = 629025 — 66900050 — & gap|Vol2:) — 3% asWal0),

where G5 := Rto3 — 5%, R* is the Einstein curvature of g*. We start from the
identities

VIG5 =0, and V" (9,0050 — %giaﬁwiggi) = dgo0 o0,
and we introduce the function
(5.1.5) s(r)=1Inf'(r), reR,
together with its local inverse near 0, denoted by 6. Then, we have

T (g0 Wa(0)) = 93(Wa(0)) = 93 (e 2/ (8(0)) — 6(0))

= (—2e72¢ f(0(0)) + e f'(6(0))0' (0)950 — ' (0)) Dpe

= —2e722f(0(0)) Ip0-
This allows us to compute the divergence of Ngia 5
ViaNgiaﬁ = QeQQGiﬁViQQ —12e*2(9,0080 — %gamvg\ﬁi)vi“g

— 6e%%0500,: 0+ €*05f(6(0))
= 262G,V 0 — 12°%(000050 — 5 gop| Vol ) V"0 — gt sWa(0) V"0
—6e229500,:0 + e 2295f(0(0)) + g 0 sW2(0) V"0

f(0(0) Wz(@))'

6ede 6e2e

= QNJQBViag — 6e295‘59<Dg¢ —
Then, by (5.3.1¢), we find

f(0(0)) | Walo) | 4mtx(T)
Gete 6e2e 3ete
and the desired conclusion follows. O

Dg¢g=

By Lemma 5.1.2, we see that the evolution law for T is
(5.1.6) ViTos = (2977050 T, 5 — tr(T)dp0) e 2.

The following question arises at this juncture: Will the relation e?¢ = f/(R,) (with
9" ap = €% gap) hold if we solely solve the equations (5.1.3)? The following subsections
precisely provide a (positive) answer to this question.
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First, in Chapter 5.2, we will re-formulate the initial value problem for the aug-
mented conformal formulation, by building upon our previous formulations of the field
equations in the Jordan and Einstein metrics.

Then, in Chapter 5.3, in order for the principal part of (5.1.3) to be hyperbolic,
we will write our augmented system in wave coordinates. Finally, in Chapter 5.4, we
will prove that once the wave constraint equations I'fy = 0 hold on the initial slice,
then the augmentation relation e?¢ = f/(R,) is guaranteed by (5.3.2).

5.2. Initial value formulation for the augmented conformal system

In this section, we revisit Definitions 3.4.1 and 3.4.2, as follows.

DEFINITION 5.2.1. — An initial data set for the augmented conformal formulation
of modified gravity (M, g*, K*, 0o, 01, ¢£, qﬁ) consists of the following data:

— a 3-dimensional manifold M endowed with a Riemannian metric g* and a sym-
metric (0,2)-tensor field K*,

— two scalar fields denoted by oo and o1 on M and representing the (to-be-
constructed) conformal factor and its time derivative,

— and two scalar field ¢g and qﬁ defined on M

Moreover, these data are required to satisfy the Hamiltonian constraint of modified
gravity in the augmented conformal form

5 j J - _+1j
(5.2.1)  Rf— KF K 4 (KY)2 =872 ((01)? + g% 0030, 00)
+6(01)° + 65" 0;000;00 — e~ > W2 (00)
and the momentum constraint in the augmented conformal form

) . i i
i =T % ¢ 8<Z>

(522) ajKii -V iKij = ﬁ + 6Qlaj£)0-

Here, R* and ﬁi is the scalar curvature and the connection of the metric g*, respec-

tively.

DEFINITION 5.2.2. — Given an initial data set (M, gt K*, oo, o1, gbg, gbjl;) as in Defi-
nition 5.2.1, the initial value problem in modified gravity in the augmented conformal
form consists of finding a Lorentzian manifold (M, g) and a two-tensor field Tpp on M
such that:

1. The augmented conformal metric giaﬁ = €%¢ g,5 with conformal factor ¢ satis-
fies the evolution equation (5.3.1c).

2. The augmented conformal field equations (5.3.1) are satisfied.

3. There exists an embedding i : M — M with pull-back metric gt = i*g* and
second fundamental form K*.
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4. The field oo coincides with the restriction of the conformal factor o on M, while
01 coincides with the Lie derivative L,z 0 restricted to M, where n* denotes the
normal unit vector of M (with respect to g*).

5. The scalar fields gb(i), qﬁf{ coincide with the restriction of ¢, L,:¢ on M.

Such a solution to (3.1.7) is referred to as a modified gravity development of the
initial data set (M, g¥, K*, oo, gl,qﬁ(i),d):{),

Note that, as in Chapter 3, the geometric form of the constraint equations is the

Hamiltonian constraint N,

900 = 8™ Too and the momentum constraint Ny, = 8mTo,.

5.3. Augmented conformal formulation in wave coordinates

We now reduce the conformal augmented system (5.1.3) in wave coordinates to a
system with hyperbolic principal part. Indeed, we obtain the following formulation,
where we replace the wave constraints by the evolution law of T given by (5.1.4).

DEFINITION 5.3.1. — The conformal augmented formulation of modified gravity is,
by definition, the following partial differential system.:

(5.3.1a) Ngaﬁ — 3 9ap tr(Ngi) — 1622(0,T 5 + 95T ,) = 87 (Tup — 5 gaptr(T)),

(5.3.1b) VT = (29°70,0 Ty 5 — tr(T)ds0) e 22,
5 Wa(e) | f(0(0) | 4mtr(T)
(5.3.1¢) Dg¢g+I‘i Os0 = Gole + Gole + 3ole giaﬁ.

By Lemma 4.1.1, we then have the following expressions in coordinates, in which
we emphasize that g% need not coincide with g'.

LEMMA 5.3.2. — The conformal augmented formulation of modified gravity theory
in coordinates reads

(XIB/
(5.3.2a) 9" 0005 9" 0 = Faplg'; 09, 09") — 12040030

Wa (o)
+ 20 giaﬁ - 167r(Ta[5 - %gagtr(T)),
(5.3.2b) ViTos = (29°7050 T, 5 — tr(T)dp0) e =22,
o8 _Wale) | f(6(o) | 4mtx(T)

(5.3.2¢) g O 010 = GoZe + Gote + Soie
with
(5.3.3) 9 ap = €% gags.
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5.4. Preservation of the constraints

Our first task is to address the problem of the preservation of the constraints.

PROPOSITION 5.4.1. — Let (M, g*) be a globally hyperbolic Lorentzian manifold en-
dowed with foliation M = [0, tna.) and with signature (—,+,+,4). Let T be a sym-
metric two-tensor (representing the matter content) and let o be a scalar field defined
in (—€,€) x R3. Furthermore, assume that (giaé,@7 ¢, 0) is a solution to the conformal
field equations (5.3.2). Let gop := e_2ggia/3 be the metric conformal to g*. Then,
provided the constraint equations (5.2.1) and (5.2.2) together with the constraint equa-
tions

(5.4.1) gt =0

are satisfied on the slice {z° = 0} (where Ry is the scalar curvature of gop and Filﬁ
are the Christoffel symbols of g*), then (5.4.1) holds in the whole of (—e,€) x R3.
Furthermore, one has

(5.4.2) e*? = * = S In(f'(Ry))

in (—€,€) x R?, so that (g%, 5,0, 0) is also a solution to (3.1.7).

The rest of this section is devoted to the proof of this proposition. Recall that,
throughout, we assume that the giaﬁ, o and T,p are sufficiently regular, so that all
relevant derivatives are continuous at least. For the proof, we need some preliminary
material and, first of all, we compute the divergence of N, 3.

LEMMA 5.4.2. — When (5.3.1c) holds, the following identity holds:

(5.43)  VHN;_ = e (20 DuroN; , — tr(87T)030) + 622950+ 050.

Proof. — First of all, in view of (5.1.3), we have
Nj o5 = Gl = 6¢° (020050 — 5 9ap|Val}) — 39 asW2(0):
where Gt 5 := RY,5—3g*,5R" is the Einstein curvature of g*. We have the identities
aB ~(e) _
v Gy =0,
af
VI (000080 — 3 9aslVol2i) = 95004 0.

As before, by introducing the function

(5.4.4) s(r)=3Inf'(r), reR
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42 CHAPTER 5. THE AUGMENTED CONFORMAL FORMULATION

with (local) inverse denoted by 6 and defined near 0 at least, we can write

V(g0 Wal0)) = 95 (Wal0)) = 95 (722£(8(0)) — 01(0))
= —2¢7%950f(0(0)) + e f'(6(0))0' (0)dp0 — 0’ (0)Ip0
= —2e7 %030 (6(0)) + ¢ *2e*0'(0)950 — 0'(0)s0
= —2e7*030f(0(0))-
We are now in a position to compute the divergence
ViaNgaﬁ = 2629G§6V1a9 —12e%* (040080 — %ga5|Vg\3¢)Viag
— 620300410+ €*93f(0(0))
=2e™G2 V0~ 12*(000030 — § 9ap| Vol 2 ) Vi 0 — g1 0 sWa(0) V"0
—6e%2050 g0+ 6_298ﬂf(9(g)) + giaBWQ(Q)ViQQ
f(0(0) WQ(Q))'

Gede 6e2e

= 2Ngiaﬁviag - 6e29859(|jg¢ -
In view of (5.3.1c), we find

gl f(0(0)) | Wa(o) | 4mtr(T)
Dgro=—1" 850+ Gete + 6e2e 3ete
and this yields the desired conclusion. O
LEMMA 5.4.3. — The equation (5.3.2a) leads also to the wave equation for o
Ry Wa(o)  Artr(T)  g*P0.Tis
(54.5) Hoio = Ge2e * 3e2e * 3ete  Ge2e

Proof. — We recall that (5.3.2a) can be written as
2 2 9 ap e
(5.4.6)  e®R*,5 — 60,0050 + —Walo) - 7(801“15 +95TH,)

=87 (Top — L gaptr(T)),
and that (3.1.6) implies (Tap = 5 9as )

Rtog = Rap —2(VaVgo — 0a0050) — (Og0 +29(V0, V0)) gas-
We substitute this relation into (5.4.6) and obtain
ezgRag - 2e29VaV5g - 46298a9859 — Gap e2e Ogo
—2e*% 945 9(Vo,Vo) + 39% s Wa(0)
=87 (Tap — 2t1(T)gap) + 36> (0al* 5 + 05T%0).
By taking the trace of this equation with respect to g, we have
e29Rg —6e2 Ogo — 1222 g(Vo, Vo) + 2e?°Wy(0) = —8mtr(T) + e?@ g”‘ﬂaaf‘ig,

which can also be written as

R, Wa(o) drtr(T) g*°
Ogo+2 =1 — 9,5
90+29(Vo, Vo) = 5 + — 3 20 5 8
In view of the expression (3.1.8), the desired result is proven. O
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In the next lemma, we identify the geometric form of the system (5.3.2).

LEMMA 5.4.4. — Let (M,g*) be a Lorentzian manifold together with a two-
tensor Topg. If, in some local coordinates {x°,x', 22,23}, (g%, Tup) satisfy (5.3.2),
then the following equation holds (in the domain of the coordinate system) :

(547) gia ’ aa’aﬂ’riﬂ = Fﬁ(g,gi; Fi’Ya 61—‘17)’

where F3(p, g%:.,.) is a combination of linear and bilinear forms and 1“135 denote the
associated Christoffel symbol with

iy = giﬁﬁ,piﬁ’ _ giﬁﬁlgi‘”‘VFif‘iy.

Proof. — By taking the trace of (5.3.1a) we have
(5.4.8) 2 g% 9Tt 5 = —tr (NI — 87T).
Combining this results with (5.3.1a), we obtain
(5.4.9) 1%(0al g + 951" = gap 97 00Tt ) = Nj . — 87T s,
By computing the divergence of this equation (for the metric g*) and evaluating the
left-hand side in (4.3.1), we get
(5.4.10) 3V (e22(0.TF 5 + 05T% o — gap g° % 0T 50))

= %eQQ (gi“/ﬁ/aa,aﬁ,riﬂ — giaa/f‘ila,&,l"ig

— g1 Dt 05T — 959t (0T )
+e2(e®(8u 5 + 9T, — g 9% 7 0T ) ) V0

=: %eQQ g“/ﬂ/aa/(‘)ﬂxfi,@ + ﬁﬁ(g, gi;FiW, 8F17).
Here, F is a combination of linear and bilinear forms on Fiv and GFIV depending
on o, g* and their derivatives.

On the other hand, the right-hand side is computed from (5.3.1b) and (5.4.3), as
follows:

VIQ(NSQB - 87TTQB) = 6_29(290‘0“,8&/@]\(3@[3 - tr(87rT)83Q) + 6e29659F1685Q
— 87re*29(29575‘79 T\ — tr(T)&‘gp)
= e_29(2g“’aﬁvg(l\7_§aﬁ — 8nTwap) — tr(N} — 87T)050) + 693pI'* 505 p.
Then, in view of (5.4.8) and (5.4.9), we obtain
(5.4.11) VE (NF, — 87Tag) = g7°0,0(0aT%5 + 0514 ) + 6051 Osp,

which is a linear form in the functions I'f, and &,1"1&. Finally, we arrive at the desired
conclusion by combining (5.4.10) and (5.4.11) with (5.4.9) together. O
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LEMMA 5.4.5. — Provided the equations (5.3.2) hold on the initial slice {t = 0} and
the condition

Ir'y=0
and the constraint equations (5.2.1) and (5.2.2) also hold on the initial slice {t = 0},
then it follows that, on this initial slice,

9.ty = 0.

Proof. — We observe that the constraint equations (5.2.1) and (5.2.2) are equiva-
lent to Ngio]‘ = 8nThy and Ngioo = 8nTyo, respectively. Consequently, the proof of
the lemma follows from the same calculation which was performed in the proof of

Lemma 4.3.3. Therefore, we omit the details. O

Proof of Proposition 5.4.1. — By Lemmas 5.4.4 and 5.4.5 and by the global hyper-
bolicity of the metric g, we see that, in the spacetime M,
(5.4.12) Its =0.
Recalling Lemma 5.4.3 and combining (5.4.5) with (5.4.12), we obtain
Ry Wy(o) Amtr(T)

(5.4.13) Ogro = Go2e + 3020 3 ole
In a similar way, (5.3.1c) becomes

_ Walo) | f(6(0) | 4mtr(T)
987 Tge2e Gete 3ete
By comparing these two equations, we thus get

Ry +Wa(e) — f(0(e)) =0,

which (by the definition of W5) leads us to 6#(p) = Ry, and it remains to recall the
notation e?¢ = R,. O

(5.4.14) O

5.5. The local existence theory

The standard theory of local-in-time existence for the initial value problem associ-
ated with hyperbolic problems can now be applied to an arbitrary initial set in these
sense of Definition 3.4.1. Let us sketch the strategy of proof. For simplicity in this
discussion and without genuine restriction, we can consider that the initial data set
and, therefore, the solutions are close to data in Minkowski space.

First of all, we need to construct the (local-in-time) solution of the prob-
lem (6.1.1) whose initial data set must be expressed in wave coordinates, say
(M, ggaﬁ,ghﬁ,go,gl,qﬁo,(ﬁl). This PDE initial data set is determined from the
geometric initial data set denoted by (M, g, K¥, 0o, o1, qﬁ%, qﬁj{) Without restriction,
smallness (and regularity) assumptions are here made on the initial data set.

Second, we need to check that this (local-in-time) solution leads to a globally
hyperbolic spacetime. Then, according to Proposition 5.4.1, we can conclude that
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this solution preserves the constraints (5.4.1) and (5.4.2) and, consequently, is also a
solution to the field equations (3.1.7) with g* = g" and o = p = £ In f'(R,). We thus
conclude that this solution solves the initial value problem in Definition 3.4.1.

Third, we need to observe that the solution (g, ¢) constructed from g, := e~ 2 gt P
is a solution to the original initial value problem, stated in Definition 2.4.2 with
the corresponding initial data set determined by (M, g*, K*, o, Ql,(ﬁ%,(ﬁb (via the
conformal transformation).

We omit the details and refer to Choquet-Bruhat [10] for the existence and unique-
ness statements in classical gravity, which based on our reformulation and discussion
above can be extactly restated for the field equations of modified gravity. For the rest
of this work, our objective is to revisit such a theory and, while re-proving this exis-
tence result, to establish that modified gravity developments remain close to classical
Finstein developments.
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CHAPTER 6

LOCAL EXISTENCE THEORY.
FORMULATION AND MAIN STATEMENT

6.1. Construction of the PDE initial data set

Our objective is thus to establish an existence theory for the Cauchy problem
associated with the modified gravity field equations (5.3.2), when the initial data are
assumed to be asymptotic flat. For the sake of simplicity and without genuine loss of
generality as far as our method of proof is concerned, we focus our presentation on
quadratic functions f(r) =r + %Iﬂ‘z. It is straightforward to modify our argument to
cover more general functions f.

We need first to introduce several notations, before we can state one of our main
results in Theorem 6.5.1 below. Recall that the matter model we are considering is the
massless scalar field with Jordan coupling and that, in agreement with Chapter 3.3
(see (3.3.4)), the system (5.3.2) under consideration reads

/5/
(6.1.1a) gia aa,aﬁ,giaﬁ = Fa@(gi;agi,agi) — 12040030

W-
+ %giaﬁ - 167raa¢85¢,

a/ﬁ/ a/ﬂ/
(6.1.1c) ¢ " 0ndpd =2g"" " D g0,
Wa(o) n f(6(0)  4m
6e2e 6ete 3e20
Clearly, this is quasi-linear system of wave equations in diagonalized form and, in order
to formulate a well-posed problem, the initial data set should include the functions

o' B’ a'p’
(6.1.1e) gt 9y 00 = 9" " 00 05/,

T as(0,2) = gb .5, 019" 05(0,2) = gf 51
(6.1.2) 0(0,7) = oo, 010(0,7) = o1,
$(0,2) = ¢ = ¢p, 8,0(0,2) = 61 = o}.

There are 24 functions to be prescribed, but the geometrical initial data set

(MagiaKiaQO7gla¢g7¢§)
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contains 16 functions only. In fact, in order to construct a solution of (6.1.1) that
also satisfies (3.1.7), we see that, by Proposition 5.4.1, the conditions (5.4.1), (5.2.1)
and (5.2.2) must hold on the initial hypersurface. These conditions form a nonlinear
PDE’s system of eight equations, and it is expected that the 8 remaining initial
data components could be determined from these 8 constraint equations. This task,
however, is not a trivial one and further investigation would be needed to fully clarify
the set of initial data.

From now on, we assume that this system of 8 constraint equations together with
the 16 functions prescribed by the geometric initial data set uniquely determine
our PDE’s initial data set. Throughout, we denote by (M, ggaﬂ,gfaﬂ, 00, 01, D0, 1)
the PDE initial data determined by (M, g*, K*, 09, 01, gbg, qﬁ) and the constraint equa-
tions (5.2.1), (5.2.2) and (5.4.1).

6.2. Simplifying the field equations of f(R) gravity

For definiteness, we focus on the role of second-order terms in f and assume that
(6.2.1) f(r):=r+isr®, reR

for some x > 0. We recall *” = f/(R,), so that

2p -1
e* =1+ kR,, Ry = © ,
K
and
Wa(s) = fr)=rf'(r) ragar—r(l+wr)  kr?
S () N 1+ kr  2(L+ k)’
with e2® = f/(r) = 1 + kr so that
(625 _ 1)2

(6.2.2) Wals) = == —

The spacetime (M, g*) under consideration is endowed with a foliation
M =10,T] x My, t€]0,T]

and we assume that, for each t, M, is diffeomorphic to R3. The spacetime metric is
supposed to be sufficiently close to Minkowski metric and, especially, is asymptotically
flat, so that the following notation is convenient:

(6.2.3) hap = G' ag — Map

and we thus seek for unknowns triples (hag,0,¢). Sometimes, we will write
(hag, 0, 0) = (hgﬁ, 0", ¢") in order to emphasize that the solutions of (5.3.2) depend
on the coefficient .
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With these notation the system (5.3.2) take in the alternative form:
(6.2.42) (m®? + HYP' (1)) 0o O/ hls 5 = Fup(h"; Oh", Oh*)

(GQQH — 1)2 (

— 1610, ¢" 030" — 12040 00" — 27 ole”

Mag + hZB)a

(6.2.4b)  (m™% 4+ HYP (1)) 00 06" = 2(m®'® + HYP' (1)) 0 6" 0,

20" _ 1
o' B’ a'B K k_S — 2
(624C) (m + H (h ))aﬂ/aﬁ/g 6K et
47 g g’
= e (4 H ()0 06"

where, from h" = (hy;3), we have determined
(6.2.5) (m*® + H*$(h")) as the inverse of (mas + hig).-

With this notation, the PDE initial data denoted by (M, ho, hi, 00, 01, ¢4, ¢1) is
thus rewritten in terms of h, with

hagli=0 = hoags = gioag — Mag, Othap = h14p = gi1a5~

The system under consideration is composed of 12 quasi-linear wave equations: 11 of
them (those on A% 5 and ¢") are quasi-linear wave equations, while the equation on "
is a quasi-linear Klein-Gordon equation with defocusing potential.

REMARK 6.2.1. — The coefficients H*P are clearly smooth functions of h, in a suf-
ficiently small neighborhood of the origin, at least. Hence, we can find a positive
constant eg such that if |h| < €, then for any integer k, the k-th order derivatives of
HP with respect to h, say D¥H*P, are well-defined and

sup ‘DkHo‘ﬁ(h)| < C(k,€o)
|hl<e

Standard linear algebra arguments show that when |h| < €y (with €y sufficiently small),
then

(6.2.6) H(h) = —has + Q%" (h, h) (1 + R*"(h)),

where Q% is a quadratic form in its argument and |R*?(h)| < C(eo) |h).

6.3. Vector fields and notation
We introduce the three generators of the spatial rotations
(631) Qij = jSaj - l‘jai = xiﬁj - xjﬁi,

which are known to commute with the wave operator, as well as with the Klein-Gordon
operator. Here, the coordinate indices are raised and lowered with the Minkowski
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metric. We also write

Q= Qyg, Qo =03, 3 := Q3.
Note that
(6.3.2) [Q.,0]=0, [Q,O+1=0.

The following notation about multi-indices will be used. Given a finite set & =
{a1,a2,...,a,}, we call n the order of .#, denoted by |-#| = n. We introduce an
ordering relation denoted by < on .#, defined by

a; 2oy ifand only if ¢ <.

The pair (&, <) is called an abstract multi-index. Obviously, a subset of .# can also
be regarded as a multi-index endowed with the same (restricted) order. The order <
describes the location of each differential operator in a product.

A partition of an abstract index .# is defined as follows. Let _#; be family of
subsets of &, with

Usa=2s snsw=2

Then, we say that {_#;} is an m-partition of .# and we write > -, 7, = .#. We
observe that each _#j can be regarded as a multi-index and Y ;" , | 7| = |.7].

If for all £ = 1,2,...,m, we have ¢, # O, then we say {_#;} is a proper m-
partition of .# and we write >_;" | Zx = .7, | 7| > 1.

Now, let us return to the case of multi-indices in the context of differential oper-
ators. Let Z be a family of order one differential operator, say Z = {Z1, Z2,... Zp}.
A n-multi-index on the family Z is a map

I:7 —{1,2,...p}, «a;,— I(ay) €{1,2,...p},

and we write Z1 := Z1(a1) © ZI(az) © " © L1(a,)- With some abuse of notation, we
often write I = (o, p—1,...,a1) with o; € {1,2,...p}, where each «; is replaced

An m-partition of index I is defined as follows. Let {_#i} be a (proper) m-partition
of an abstract index .#. Then we restrict the map I on each ordered set _#j,, and this
yields us an m-multi-index, denoted by {Jx} = I({_#x}). Then, we call Ji, a (proper)
m-partition of I and we denote it by I =>""; Ji, (|Jk]| > 1).

We often consider the set & (¥, m) composed by all possible m-partitions of .#.
Then, each partition in &(.#, m) can be associated with a partition of I. We observe
that if [j-, uy is a product of m functions, then

2(Iw)= ¥ 17w

{ Ar}e?(S m)i=1
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with {Jz} = I({_#r}). However, for the sake of simplicity in the notation and when-
ever there is no risk of confusion, we will often write
m

ZI(]Ehk): 3 ﬁZ‘]kuk.

my Je=1 k=1

6.4. Functional spaces of interest

Recall that, in classical gravity, an initial data set for the Cauchy problem must
satisfy the constraint equations (2.2.17). As first proven by Lichnerowicz, solutions
can be costructed by solving a nonlinear elliptic system and, by the positive mass
theorem, the non-trivial part of the metric § — /m decreases precisely at the rate r—!
at spatial infinity. Indeed, if § — m would decrease faster than r—!, then g = m.

In modified gravity, the constraint equations (5.2.1) and (5.2.2) are much more
involved, an analogue result related to the positive mass theorem is not known. Yet,
since we focus our attention on the (local) existence and (k — 0) convergence theory,
we can consider an “Einsteinian initial data set” having o9 = 01 = 0 satisfying the
classical constraint equations. We need to handle the quasi-linear wave system with
initial data decreasing like »~! at spatial infinity. These functions (in general) do
not lie in L?(R3), and we need to construct our local solution in suoitably weighted
functional spaces.

We need to introduce some norms about C'°(R3) functions, that is, smooth func-
tions with compact support. A first norm to be introduced is

lolxe = 30 (010" o] pages.
[T1]+[12|<d

The L? norm is with respect to the standard volume form, i.e. the Lebesgue measure.
The second norm defined for the C°(R?) functions is

lollxar = > 110:05 Q" 0l| 2ms),
[ 11| 4+]12]<d

where 0, ¢ refers to the spatial gradient of ¢.
The first functional space to be used in our analysis, the space Xj‘g“, is defined as

the completion of the norm ||. || ya+1 on the C2° functions. We denote by
P
(6.4.1) e llgrs i= I oo + 1 g

The second functional space, Xﬁ“, to be used in our analysis, is defined as the
completion of the norm ||.||ya+1 on the CZ° functions.
R
We also define the weighted sup-norm

I flle_y = sup {(1 +r)[f]}
r>0
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and
I laen = ey + 1l xarrs

so that the functional spaces £_1 and Xj‘?’l are obtained by completion from the
C. (R‘S) functions with respect of the norm under consideration.

The relations among these functional spaces are as follows:
(6.4.2) XM o xitcx? X§cX$, X§cXxg
In the next section, when d > 2, by (7.2.1), we will also see that
(6.4.3) Xlce ,, Xicxécxg

Finally, we define the norm of a triple Sy := (hoag, 00, ®0):

11 = 3 Nhoasllxses + loollyaes + lldoll o
o,

and we set
(6.4.4) X = X3 X x art

Similarly, for triples S1 = (h14p, ¢1,01), we define

I1S1llxs == D Ihasllxe + llorllxa + 1 xa
a,B

We are now ready to discuss the notion of asymptotically flat PDE initial data.

DEFINITION 6.4.1. — A PDE initial data set in wave coordinates for the initial
value problem stated in Definition 3.4.1, say (M, hoags P1ag, 00, 01, 0, ¢1) , is said to
be asymptotically flat if

— the initial slice My is diffeomorphic to R3 and in its canonical coordinate system,
the initial data set satisfies the wave constraint equations.

— in the canonical coordinate system (x', 2 23),

||h0aﬂ||371 < €0,

where €y represents the ADM mass.
— the &_1(R3) norm of 0o, 01, ¢1 are finite.

Hence, the initial data behaves like =1 at spatial infinity. A geometrical initial
data (M, g*, K*, 09, 01, qﬁ%, qﬁ) is called asymptotically flat, if it gives a asymptotically
flat PDE initial data.

We recall that the components of the solution to the system (6.1.1) are functions
defined in R* with three spatial variables and one time variable. To study these
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functions, say u = u(t,-), we need to the following norms and corresponding spaces:

[|ut, )HEd = Z ||8119[2u(t,.)”L2(R3)
[T1]+|12|<d
= > lgraanu ) = Y [lofutt )
k+|J1|+]J2|<d k+1<d
[ut, )| gar = Z 060" Qryu(t, )| 2 gs
s (R?)
|1 4+12] <d
=3 ¥ ||aaafaglmzu(t,.)|}L2(R3) =Y ||afu(t,.)||X£,
a k|14 J2|<d k+i<d
and then
lult, M gaer = llult; ) pe + lu, )l garr,
Jut, M garr o= lult, e, + [lut, )l g

We also define several norms on the time interval [0, T for p € [1, o0]:
1wl e o, 1);E4) * = H||u(t,.)HEdHLP([O,T]), lull Lo o, 13;9) = [ llu(t, ')HE;i,HLp([QT])v
||u||LP([O,T];E%) = H”“(t»-)HE;i%HLp([O,T])v ||“||Lr([o,T];Eg,) = H”U(tv~>||E;§HLp([0,T])~

Finally, for p < oo, we have the functional spaces of interest

Lr([0. 7B, LP(0.T:ER),  LP([0.T); Ef),

and LP([0,7T); E%), defined by completion with respect to the corresponding norms
in the space of C>°(R*) functions. This leads us to the definition of C([0,77],; E),
C([0,T); E$) and C([0,T]; E%) by completion from the space C° functions with
respect to the following norms:

L>([0,T); EY),  L>([0,T]; E%),  L>([0,T]; E%),

6.5. Existence theorem for the nonlinear field equations
We introduce the following norm for the initial data Sy := (ho, k1, do, ¢1, 00, 01):
IS0l sr 1= max {Woaallcarr, Maaallxa, s~ DEDE [go]l asn,
R DB [, 573D ool gnr, 67 o1 xa -
We are ready to state one of our main results.

THEOREM 6.5.1 (Local existence with uniform bounds). — Given any integer d > 4,
assume that

(hOaBahlaﬁ) S X}'?Fl X Xd7 (¢07¢1) e Xngl « Xd, (QO,QI) c X%Jrl « X4
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and suppose that So := (ho, h1, o, 91, 00, 01) satisfies
(651) ||SO||X,‘3+1 S € S €0

for some sufficiently small g > 0. Then, there exist constants A,T* > 0 which are
independent of k and such that, within the time interval [0, T*], the Cauchy problem
(6.2.4) (with 0 < k < 1) has a unique solution (hygz, #", 0%) in the following functional
space (with 0 < k < d—1):

arhs € C([0,T), X5 ") nCH ([0, T], X1,
oFe™ € C([0,T), X&) n (o, 7], X5+,
ore" € C([0,T], Xz ") n CH([0, T), X5z 1)

Furthermore, the following estimates hold with constant independent of :

(6.5.22) 125t g < Ae
(6.5.2b) 6% < Ae,

I
(6.5.2¢) lohllgy + K77 lon |l pa—1 < Ae.

Equipped with the above theorem, we are thus able to build the local solution of
the original Cauchy problem stated in Definition 5.2.2.

THEOREM 6.5.2 (Existence of modified gravity developments)

Consider an initial data set (M,gi,Ki7go,Q1,¢g,¢f) for the Cauchy
problem in Definition 5.2.1 and assume that its associated PDE initial data
So = (ho,h1,¢0,01,00,01) is asymptotically flat and satisfies the conditions in
Theorem 6.5.1. Let (hg, ¢, %) be the corresponding solution of (5.3.2) associated
with So. Then the spacetime ([0,T] x R3, g*) is a modified gravity development of the
initial data (M, gt, K*, oo, Ql,qﬁé,qﬁ).

Proof. — We simply note that the local solution (h';ﬁ, ", ") is sufficiently regular
and that h = g* —m sufficiently small, which guarantees that the metric g* is globally
hyperbolic on [0, T] xR3. We can apply the result about the preservation of constraints
in Proposition 5.4.1. Once the constraints

22 = Lin f'(R,), it =0
hold, we see that the pair (g%, ¢) satisfies the conformal field equations (3.1.7). O
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CHAPTER 7

TECHNICAL TOOLS FOR THE LOCAL EXISTENCE
THEORY

7.1. Estimates on commutators

From this subsection we will make some preparations in order to prove Theo-
rem 6.5.1. In this subsection we derive commutator estimates. First we point out the
following commutation relations:

(711) [aa, ch] = 6abac - 6acab7 [ah Qab] =0.

LEMMA 7.1.1. — Ifu is a smooth function defined on [0,T] x R3, then for any multi-
index I, Iy with |I1| + |I2] = n, the following estimates hold:

Q@ 0uJu=Y_ 6l50.9",

(7.1.2)
1<)

where ©1¢ are constants. When a = 0, one has ©1¢ = 0.

Proof — First, we observe that when a = 0, dy = 0, commutes with Q. When
a > 0, this is proven by induction on the order of |J|. When |J| = 1, the result is
proven by (7.1.1). We denote by

[Qa, 9] = 0550,
Now assume that for |J| < k, (7.1.2) is valid. For |J| =k, we find

Q' =, 0N,
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where |J1| = k — 1. Then, we have
[Q7,04)u = Qu, Q71051 — 0504, 21 u
= 00, V101 — Q4,027 U+ Q0,007 U — 0,904,971
= Qq, (127, 0u]u) + [Qa,, 0a]Q7 1
=00, (S 0Lkt +6k,0,0"

[ K1 [<[J1]
= Y O 0, 0,05 u+ 6] 0,07
[ K1 [<|J1]
= ) 0 020, Q5 u+ 06,007 + Y O [Q,, 0] u
[ K1 [<[J1] [K1[<[J1]
= Y O 00, Qw0 007w + Y 07 05,0.05 . O
[ Ky [<|J1] [ K1 [<[J1]

LEMMA 7.1.2. — Let u be a smooth function defined in [0, T]xR3. Then the following
estimates hold for |I| + |Iz] = d

(7.1.3a) 011012 0,u) < 10,00 Q"2u] + C(d) Y 8,00 Q%2ul,
\I |<| 12|
(7.1.3b) 10,00 Q0] < 90 Q20,u| + Cd) Y |08 Q% 0,ul,
|17 |+]15]1<d
(7.1.3¢) (08", 005]u| < C(d) > 0a0a05 Q" ul,
|J2(\l<a\I2|
(7.1.3d) loFQhu(t, )| < C(k) Y |0 Q0ult, )|, for |z > 1,
[J1|<k
(7.1.3¢) 010, HP0,05)u| < Y [0 Q%H |- |0,050] Q%]
Ji+J =1
J2+Jé212
[J11+]J5]>0
+C(d) > 108 (0,,0,0 0%,
JlJrJ{:Il
[J2|+|J51<| 12|
a,B,a ,a

where H*? are smooth functions.

Proof. — In view of (7.1.2), the following identity is immediate:

00Q%,0,] = ) oo u.

|K|<|I2]
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To derive (7.1.3a), we observe that
u =9 ([Q", Ba]u)
= Y (O 0.9%u) = > el a.00 0"

¢,|J2|<| 2] ¢, | J2| <|I2]
and
(7.1.4) Yoo |els ool < Cd) D [0.0" 0 .
c,|J2|<| 12| e 15| <|1I2]

This establishes (7.1.3a).
The equation (7.1.3b) is derived by induction on d. Clearly, (7.1.3b) holds for
d = 0. If it holds for d < k, let us prove the case d = k + 1:
|0,01 Q20| < [0 Q2 05u| + | [0a, 0" Q" ]u|.
Then by (7.1.4),
020" Q2] < |01 Q20u| +C(d) Y 0.0 Q" u.
el 131 <| T2
Note that |I5| < [Is| —1 < k. We apply the induction assumption on the second term
in the right-hand side and obtain
0.0 Q20| < |07 Q20.u + C(d—1) Y |97 ),
1> 5]
which proves (7.1.3b).
The proof of (7.1.3¢) is a direct application of (7.1.2).

(7.1.5) [00Q",0,05] u = [011Q", 04 Ogu + 0u (01 2, 95]u)

= Y 050,005 + > OF 0.0.00 Q"

DLJQ
[J2|<|I2] |J2|<| 12|

= Y 020000, + Y 05 0,0007, d5lu
[J2]<|T2| [J2|<| 12

|
+ Y 0% 0,000 Q%

/ Jo|<| I
= D OO, 0.0: 0, Y e
[J2| <[ 12|
K| <| I I I I I
el<IE] + 3 088 0,0.00 0% + Y 0l 0.0 9,07
[J2|<|I2| [ 72| <| 12|

which leads to (7.1.3c).
The proof of (7.1.3d) needs the notion of homogeneous functions. A smooth func-
tion f defined in the pointed region R? \ {0} is said to be homogeneous of degree i if

f(rz) =r'f(x), for any r > 0 and = € R*\ {0}.
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It is well-known that the partial derivatives of a homogeneous function of degree i are
also homogeneous and of degree i — 1.

We denote by w® := z%/r and we note that they are homogeneous functions of
degree 0. And recall the definition of radial derivative 9, = w®d,. We will prove that
(7.1.6) oF = Y Aol

a,| 1<k

where A¥ is a homogeneous function of degree —k + |I|. For k = 1, this is guaranteed
by the expression of d,.. Assume that this holds for the integer less than or equal to k&,
we will prove the case of k + 1:

okt = 0,08 =0, (S Aot )
I,a

= w0, (Afol) =) wPo, Aol + ) whAj0,0L.

I,a I,a I,a

We observe that w’d, A¥ is homogeneous of degree —k — 1+ |I| and w®A¥ is homoge-
neous of degree —(k + 1) + |I| + 1. This concludes (7.1.6). Next, we see that (7.1.3d)
follows immediately from (7.1.6).

To prove (7.1.3e), we perform the following calculation:

PLQE HP,05u) = Y OLQBHPSQ0,05u + H 0L Q" 0,05]u

J1+J1111
JotJ5=1Is
|11+ J5]>0

= Y 9lQ%HY0,0500 0%

Ji+Ji=I1

JatJy=1I2 + Z 892]19']éHa5[8§:hQ']2a8aaﬁ]u
[J11+]J2]>0 I T =1,
Ji+J) =
Jat+J4y=I>
= Y 90" HY0,050] 0% u
J1+J{:Il
J2+Jé212
[J11+1J5]>0
+ Y alekH (N el 050,000 0% + Y Of¢ 0,0.0]0"),
Ji+J=I [ K2 |<|J2] [ K2 |<|J2]
Jot+Jy=1Is | K3 <|Ka]
where (7.1.5) is applied. Then (7.1.3e) follows from this identity. O

We also need the commutator estimates on the product in the form 97102,
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LEMMA 7.1.3. — Let u be a smooth function defined in [0, T]xR3. Then the following
estimates hold for |I1| + |I2| = d:
(7.1.7a) 01 Q"2 00| < |0,0"Q"2ul + C(d) Y 0,0 Q" 2ul,

|31<I1|
(7.1.7Db) 020" Q2u| < |07 Q"20,ul + C(d) Y |0"19"0ul,

|I£|+ff§|<d
(7.1.7¢) (070", 0,05u] < C(d) Y |0a0,0" Q"

PRI

(7.1.7d) (07", HP0,05)ul < D 071072 HP| 10,0507 Q2ul

Ji+Ji=I1
Jg—‘rJé:IQ
[J11+] T3>0

+C(d) Y 07172 HY| - |00 0,07 Q.
Ji+J=I
[ T2+ J5|<|I2]
a,B,0 a
Proof. — From (7.1.2), the following identity is immediate:
010,80, = Y 02000 u.
|K|<| 12

Then we perform exactly the same calculation as in the proof of Lemma 7.1.2 with 9%
replaced by 0. O

7.2. Global Sobolev inequalities and embedding properties

For completeness, we re-derive a classical estimate (due to Klainerman).

LEMMA 7.2.1. — For allu € X% with d > 2, one has

(7.2.1) ulle_, < Cllullxa.

Proof. — We only prove this inequality for smooth functions since, by regularization,
it then extends to the whole X?. We consider R equipped with the polar coordi-

nates, i.e.:
1 2 3

x> =rsinfcosp, x°=rsinfsiny, z° =rcosé.
Note that (7.2.1) is equivalent to the following inequality for all 7o € R3:
|u(@o)|(1 +10) < Clluf xa

with zg = (2§, 23, 23) = (ro sin 0y cos @o, ro sin O sin @g, ro cos dp).
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The case ryp < 1 is direct by classical Sobolev inequality. We thus focus on the case
ro > 1 and we consider the estimate on the the following open subset of R? defined by

V= (o= b+ 1) x (o= hOo+ 1) x (sn— dpo+ ).
Now let u be a smooth function and denote also by w its restriction on V', with
v(r, 0, ¢) = u(rsinf cos p, rsin O sin ¢, r cos §)
with 79 > 1. Then by the classical Sobolev inequality, we have
|u(a:0)|2 = ’U(TQ, 6o, ¢0)|2 < C Z / |8f°8§165,2v|2d7‘d0d<p.
ko+ki+ka>2 7V

Note that in V, ro — 2 < r < ro+ 1, which leads to 1 —1/(2rg) < r/ro < 141/(2r0).
Recall that rg > 1, then
T

< <

N |
N |

To
Thus, we have

1 2
7/ \8f°8§18£2v\2drd9d<p§/ R0k k0 2L drdbdy
2 Jv v 7o
:7*62/ |8f08515‘£2v|27"2drd9d<p
v
:7"62/ |87’f08§18322v\2dx
v

<ry? / |0k 95 Ok v [ d,
R

where dz is the standard volume form of R3.
Here, we observe that
Jpv = cos p Qg1u + sin p Qzou
z! 2
= T Qa1u+ I
((xl)Q + (x2)2)2 ((x1)2 + (1,2)2)2

Opv = Qigu, Opv = Oru.

QBQUa

Note that Q7 cos¢, Q7 sinp are homogeneous of degree 0. So, by homogeneity,
that for r > £, we have

|0F0 0 9%2v| = |9F ((cos p Qa1 +sinp Q) Q30| < © > ok,

[I|<k1+k2
which leads to
(7.2.2) u(zo)l? < Cry? Y / 0RO u|2d .
1| +ho<2
Then by (7.1.3d), the desired result is proven. O

We will also need the following embedding result.
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LEMMA 7.2.2. — Let u be a function in X2 and v € L=([0,T]; E4™2). Then for
all pair of multi-indices (I, Iz) with |I1| + |I2] < d, the following estimate holds:

(7.2.3a) Ha;lQ’?uHLm(Rs) < Cllull ya+2,
(7.2.3b) |07 Q"0 (t, )| o gs) < Clv(t, )| a2 fort €0,T].

Proof. — We only prove this inequality when u € C°(R3) and v € C>°(R*). Then
by regularization, it extends on X}‘_lIJrQ and L ([0,T; E}ij‘Q).

We begin with (7.2.3a), and the proof is decomposed as follows.

Case 1: Iy = I = 0. The left-hand side of (7.2.3a) is controlled by its £€_; norm
so (7.2.3a) holds.

Case 2: |I;| > 0. In this case we suppose that Iy = (a1, as,...,a,) and denote by
I{ = (ag,...,ay). Then Ij is of order n — 1 > 0 and, by classical Sobolev’s inequality,

ok Q” D, D1 Q12

u||L°°(R3)

<C Y ||of 0,000

[J1|<2

Ul oo sy = |

uHLQ(Rg) < C||u||Xg+2.

Case 3: |I3] = 0,|Iz| > 0. In this case we suppose that I = (by,bs,...,b,) and
denote by I; = (ba,...,by). Then Ij is of order n — 1 > 0, and

107 %2 sy = 1960220l o g0y < C DL+ 7)0R" 20| o ey
b
= CZ HabQIéquil.
b

Then by (7.2.1), we have

0205, ey < €Y 0000 = € D Y [0l0R a0k 0] .
b [Ji]+]J2|<2 b

I/ ’ /
<O Y 0y 0s 0 Q20 2| o gy < Cllul guse,
b/
[J1]+]J5]<2

where the commutator estimate (7.1.3a) is used.

By combining these three cases together, (7.2.3a) is proven.

We then prove (7.2.3b). The proof is similar and we also discuss three different
cases.

Case 1: Iy = I = 0. The left-hand side of (7.2.3b) is controlled by its £€_; norm
so (7.2.3b) holds.
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Case 2: I; > 0. In this case we also suppose that I; = («a1,as,...,q,) and denote
by I} = (ag,...,a,). Then |I;| > 0, and also by the classical Sobolev’s inequality,

07150 ) <€ 3 (080 000000

[71]<2
=C Z Haozla;haﬁgpv(t")HLQ(]R3) < C||U(t7.)HE}d)+2.
[J1]<2

Case 8: |I;| = 0,|I5] > 0. We suppose that Iy = (b1, b2,...,a,) and denote by
I, = (ba,...,by). Then, we have |I5| > 0, and

0707500, )] gy = 2 250, )

<Y |1+ r)aQu(t, M oo sy = Y |ekut )|,
b b

<CY [0t )| . =C > |07 Q0,0 0(t, )| .
b \J1|+|bJ2\S2
<Y |[ofavalalku(t, )| . < Cllo(t, )| pare-
|J2\+|,Jé|§2

By combining these three cases, (7.2.3b) is established. O

LEMMA 7.2.3. — Let u € X} and v € L>=([0,T]; E%), then the following estimate
holds for all pair of multi-index (I1,1I) with 1 < || + |I2] < d:

(7.2.4a) (1 + r)_lag{lQhuHm(Rs) < Cllul| x4
(7.2.4b) 11+ 771" QR 0(t, )| sy < Cllo(t )| gar Sor t €10,7).
Proof. — The proof of (7.2.4a) is decomposed into several cases, as follows.
Case 1: |I;| > 0. In this case we suppose that Iy = (a1, as,...,a,) and denote by
Ii = (aa,...,ay). Then I is of order n — 1 > 0, and we obtain
I 1 _ I1 oI
[ee QUHLQ(H@) = |00, 022 2UHL2(R3) = HuHX;i

Case 2: |I1] = 0,]I2] > 0. In this case we suppose that Iy = (b1,be,...,b,) and
denote by I = (ba,...,by). Then I} is of order n — 1 > 0 and we have

11+ 7) 707 Q% || o gay = [|(147) 712, O

Ul 2y

<O |02l Lo gay < Clullxy.
b

(R3

By combining these two cases, (7.2.4a) is proven.

The proof of (7.2.4b) is exactly the same if we replace 9, by 9 above. O
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LEMMA 7.2.4. — For all function u of class X2, one has
(7.2.5) [ull @y <C Y [|(1+ |2)) 7 o Q" ul| ..
[I1|+]12]<2
Proof. — This inequality is equivalent to
(7.2.6) lu(z)] < C Z (1 + \x|)718£1912u||L2, rcR?
[11]+]12]<2

for all u € C°(R3). Then by regularization, this inequality is hold for all u € X?2.
This is proven by distinguish different x. Let x(.) a C* function defined on [0, o)
with

Then x(|.]) is a C2°(R3) function.
Now we consider the case |z| < % We consider the function
f@) = x(|2]) u(z)

which is in class C"O({|w| < 1}). Then we apply the classical Sobolev’s inequality:

1]<2 1<z

=C Z ‘|8£1X(|$|)8£2“(x)||L2({|a;\<1}) <c Z 02u(@) L2 ({1 <1y)

[T1]+| 12| <|1] [I12|<2
l71<2
<C Z H(]' + |x‘)_169€2u(x)||L2({|x\<1}) <C Z ||(]' + ‘x|)_la£2u(x)HL2(R3)7
[12]<2 [12]<2

where we used that 9% x(|z|) are bounded.
When |z| > 3, we have

|u(z |—|<1— 2lz))ul@)]| = [ +lal) - @+ 271 = x@l))u(@)]] o gy
<[J(a+ )7 (1 = x(@lz])u(@)|,
and the by (7.2.1),
u(@)] < (1 + )~ (1= x@lal))u@)]|,

<C Y florel (@ + 2Dt (1 = x@lD)u(@) | L2,

[I1]|+]|12|<2
=C Y [+ e (1= x(@la]))
\J1|+\J1| I Ji T 4
[Ty |+|12]<2 X 012 ((1 + |z|) (1 - X(2|x|))u(w)) HL2(R3),

where for the last equality we have used the fact that

Qo ((1+]2) 71 (1 = x(2l2))) =
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64 CHAPTER 7. TECHNICAL TOOLS FOR THE LOCAL EXISTENCE THEORY

since both factors are radial symmetric. Then we will prove that
! — —1
o7 (14 [2)7H (1 = x(2lz]))) < C(1+ )

for |J]| < 2. This is check directly by calculating and the fact that (1 — x(2|x|)) and
its derivatives are supported out of the ball {|z| < }. Then the desired result is
established. 0

7.3. Linear estimates

We begin with the linear theory of wave equation with the initial data given in
X4 (R?) x X4(R?). For the simplicity of proof, we introduce the energy functional
with respect to a metric ¢ defined in R* as follows:

(7.3.1) Ey(t,u) == (/ (= 9% 0sul® + 9" Daudyu) (¢, )dx) ’
R3

and

(132 Bpolws= ([ (=0 + P00+ A2 )
R3

A metric ¢®? is said to be coercive with constant C' > 0 if
(733) Cil ||Vu||L2(]R3) < Eg(t, ’LL) < C||VU||L2(R3),

where Vu refers to the spacetime gradient of w. At this juncture, let us introduce a
notation for the C2° functions defined in the region [0,7] x R3:

Hu(tﬂ')||Xd+l = Z HvailQhu(t’,)HH R3)"
d (R3)

[+ (12]<d

By (7.1.3a) and (7.1.3b), the norm || . ”X,‘fjl and [|V(.)||xa are equivalent.
We also introduce

Ej(s,u) = Z E,(s,0"Q"2u), Egyc(s,u) = Z E, (5,0 Q2y).
1|41z |<d 1|41z |<d

Then when the coercivity condition (7.3.3) is assumed,
The existence result in the next section is based on the following linear estimate.

LEMMA 7.3.1 (L type estimate for wave equation). — Let u be a smooth function
defined in the region [0,T] and let F = —Ow, then for any 0 <t <T

t
(7.3.5) Hu(t,.)Hg_l(RB)gCt/o 1F G, oy ds
+ O ([u(0,2)le_, @) + ] Vu(0,2) ][, &)

where Vu refers to the spacetime gradient of u.
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Proof. — This estimate based on the explicit expression of the linear wave equation.
We consider the Cauchy problem:

7.3.6 Hu= ok
(7.3.6) { w(0,2) = —f(@),  Ou(0,x) = —g(a).

Then, u can be expressed by

u(t, x) 47T/t_s/y|ts s,z —y)do(y)ds

g9(x —y)do(y)

ly|=t

t g [ (=)= et asty

= uy(t, ) + uz(t, ) + uz(t, x).

47Tt

Here, do(y) refers to the standard Lebesgue measure on the sphere |y| = t — s or
ly] = t, and (.,.) refers to the standard scalar product on R®. The notation 9, f
stands for the (spacial) gradient of f. The remaining work is to estimate u; with
i=1,2,3.

When |z| < 1, we make use of the fact that ||. | g ®s) < ||.[le_,. Then, we have

IE s, ey /
t, d d
|u1 x)| < 477/ o s o(y)ds

g/o PG5 et sds <t [ PG

The other terms wug and ug are estimated similarly. Then (7.3.5) is proven in this
case.

When |z] > 1, we need to establish the decay estimate of the solution at spatial
infinity. We begin with ;.

£ (s, )lle_,
u t,at < = / / 7d0yd8
‘ 1 t—35 Jjy=t—s 1+ |z —1y| )

1E (s, e 1/ -1
1+ o — y)) " do(y)ds.
47T/ ra— |y|:t—s( +lz—yl) do(y)ds

We focus on the expression flylztfs(l + |z — y|)"'do(y). We make the following

parametrization of the sphere {|y| =t — s}. Let 6 be the angle from the vector —x to
the vector —y, and ¢ refers the angle from the plan determined by pair of vector (z,y)
to a fixed plan containing x (for example the plan determined by x and (0,0, 1)). With
this parametrization, the volume form o(y) has the following expression:

do(y) = (t — s)?sinf0dfd.
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Also, by the classical trigonometrical theorem “Law of cosines”,
|z —y|? = |z|* 4 |t — s|* — 2|z|(t — s) cos 6.

Then, we obtain

2m ™ 2 o3
-1 t —s)“sinfddd
/ O+W—M)<M@%:/ / (e - :
ly|=t—s o Jo 1+ (|z|>+ |t —s|2—2|z|(t — s)cosb)2

)

1 2
t—s)2d
:QW/ (t—s)"dy 1
1 L+ (22 + [t = s]? = 2[z[(t — 5)7)?

where 7 := cosf. Then, we have

. 2r(t—s) (1 |#[(t — s)dy
T — do
/Zhbﬂ(1+| yl) do(y) ./

ol o1+ (|22 + [t — s — 20| (t — s)7)?

27r(t — s) /'letS) Tdr
[ g LT

where 7 := (|z|2 + |t — 5|2 — 2|z|(t — s)7)2. Then, we obtain

IF(s, ugl/ »
1 — d d
L [ ot
el +(t=9) 147
1R ( Hslf ds.
2|z W/ ol —(t—s)| 1+ 7T

Now the discussion should distinguish between two cases.

I /\

’ul(t7x)|

Case 1: |z| > t. In this case |x| > ¢t — s always holds, and we find

el (=) 14y
|mawnsmﬂ/W| HgI/M(tm1+T®
jol+(t=s) g
T AL I
2|z| g =(t—s) 1T

H ] +(t—s)
")He / drds
o)

z|—(t—s)

t t
x|/0 (t=s)||F(s,)|[o_ ds< |x|/o £ (s, ds

2] - [u(t, 2)| < t/o 1P, )], ds

| /\

2|9C‘ 0

which leads to
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Case 2: |z| < t. In this case we need a more precise calculation:

2l +(-9) g7
|’LL1 t iU 2| |/ H ||£ 1/|1: s)] 1+Td8
i) 2l +(t=5) g
/ 17 (s, e / LASERP
2| | —s)—|z| 1+71
1 21+ (t=s) +qr
F(s,. / d
2|x\ t—|a| H (5 )Hg_l (o= (t—s) T+ S
1 t—|z| 1 t
< M/o 2x|HF(s,.)H£1ds—|—2|x|/t_|m|2(t—s)HF(s,.)H8lds

t—|z| t t
g/o ;|F(s,.>||81ds+/” |}F<s,.);|871d5:/0 IF (s, ), ds

Recalling that |z| <t < T, we find

t t t
] < PG, 0% g [P0 a0

t
2] - |un(t,2)] < t/o 1P, ), ds
The estimate of us and ug are similar:
1 lglle . —1
fuatt, )] < £ /m—t l9(z — y)]dofy) < 145 /|— (o =yl +1) " do(y).

By the same parametrization made in the estimate of u; and similar calculation, we
can conclude with

so that

:E‘ : |u2(t7x)| < tHgHgfl'
In the same way, we have

1 [flle_.doly) 1 102 fle_, do(y)
|U3(t,$)‘ < +
47Tt2 |’l/| + |J? — y| + 1 47Tt |’U| + ‘Jf — y| + 1

A

||f||8 1 | |||8 fH(C, 1°

By combining the estimates made in |z| < 1 and |z| > 1, the desired result is estab-
lished. 0

[]

LEMMA 7.3.2 (L? type estimate for wave equation). — Let u be a smooth function
defined in the region [0,T] x R? and g** = m®® + H®? be a smooth metric, where
m®B is the Minkowski metric with signature (=, +,+,+). Assume that g*? is coercive
with constant C. Let f = —g*P0,0pu, then for any 0 <t < T,

d
(7.3.7) B () < CIF ()] sy + O (V9 1 )| B (1 10),
a,B
where Vu refers to the spacetime gradient of u.
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Proof. — This is a standard calculation and we write

Aug™?9,05u = 300 (g™ (Bpu)? — g**0uudpu) + 04 (g*? Dpudsu)
+ %&gaﬂ@auagu — Oq gaﬂatuagu.

Integrating on the slice {t = 7} and applying Stokes’ formula, we find

1

3 / 9o ( — g (0ru)? + g**Oqudyu) da
R3

= Owufdx + 1 / (8tga68au8gu — 20, gaﬂatuagu) dzx,
RS 2 ]R3

which leads to (by the coercivity condition)

1 1
,i (Eg(t, u))2 = Owufdr + = / (8tg“ﬂ8au8/3u — 20, g“'g(’?tuagu) dz,
2 dt R3 2 Jps
which is
d 1 af afB
Ey(t,u)—E4(t,u) = Owufda + = (8tg Oaudgu — 204 g 6tu8/3u) dzx.
dt R3 2 R3
So we have

d
Ey(t,u) 3 Byt u) < 10ullz2@s) - [ flla@e) + ClVG™ | ey - [VullZz s

and by recalling (7.3.3)

d
T Bot:w) < Cllf 2@y + CIVG™ || e Byt ).

O

Now we combine Lemmas 7.3.1 and 7.3.2 with the Sobolev estimate (7.2.1) in order
to get a estimate on the E}?l norm.

LEMMA 7.3.3 (EY, norm estimate on wave equation). — Let u be a smooth function
defined in the region [0,T] x R3. Let g*® be a smooth metric, g% = m®® + H*? with
m®P the standard Minkowski metric. Assume that g satisfies the following coercivity
condition with a constant C > 0 and |[H| < 1. Let ¢*?8,5u = —F. Then the
following estimates hold for d > 3:

(7.3.8a) [|ut, ')HE}djl < 1[0, )| g oC Ji Da(r)dr

t
+C/ ||F(T7')HE,1 eCI:Dd(S)dsdT7
0
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(7.3.8b) lu(t, )] , < Ct/o [FGs, )l ds

t
+ CtEj(O,u) Z/O HHocﬂ(S’ M e oC Jo Ds(m)dT g4
o,fB

t s
2O [ 0 [ e PO s+ CEE 0,0),
a,f 0 0

where

Dk(t) = rgjaﬂx "Ha’g(t7 )’|EI;I+1

Proof. — We begin with the estimate on E¢ norm of Vu. We differentiate the equa-
tion with respect to 011Q'2, where |I;| + |Iz] = I. Remember that this product of
operator commute with the linear wave operator, Then

—olQlF =001 Q20+ H* 0,050 Q2u + [0" Q"2 H*P0,05] u
which is g9, 050" Qf2u = —F — [011Q2, H*P0,,dg]u. Apply (7.3.7),
d
(7.3.9) aEg(t,athu) < Cllo" QR F(t,
+O|[0" 0%, HP 050 u(t, )| 2 s

+CY [ VH ()| oo sy B (8, 0" Q2 20).
a,f

M ez

We should estimate the second term in the right-hand side. By (7.1.3e),

(7.310) [0 Q" H*0.95)u| 12 5o
< Y llofeHY 0,050 Q%

- (R3)
J+di=I
Jat+J4y=I> aJ{QJZ’,Haﬁa 9 8J19J2u
g 2| o' Oa 2 es)
J1+J{:Il
[J2|+]J3|<|I2]
a,8,a',a
= T1 +T2

Here, we make the convention that when [ <0, [8119[1,(%%] =0.
We see that both terms can be bounded by CDgE%(s,u): For Tj, when
|J{| +|J5) < d—1, then by (7.2.3b),

107072 H 020507 Q7 u|| o oy < 1071072 HP| oo (g3) - 000507 Q2| 23

(R3
aB
< CIH| s ] .
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When |J]| + |J5| > d, then J; = J; = 0. Then by (7.2.4b) and (7.2.1),
1871072 HOP 8,050 Q"2 ul| 12 (gs)
<11+ 7)o QT HOP || oy (1 + 1) 0 Opu]| e )
< OIH*| gass 10adsull 5= < CILH | oo ] 5.

The term 75 is bounded in the same manner and we omit the details.
Combining this with (7.3.9), we find

(7.3.11) Byt ") < Cllo" Q= F(t, )| 2(re) + CDaEj(t,u)
+C Y |VHP ()| o sy o (8,072 0).
a,B
Taking the sum with respect to (11, I3) for |I;| 4 |I2| < d, then
d
(7.3.12) aE;}(lt,u) < CO||F(t,.)|| ga + CDaES(t,u).

Integrating (7.3.12), we obtain
t

(7.3.13)  Ed(t,u) < BEY0,u)eC o Palmdr c/ |E(7,)|| ga €€ Jr Pa®)dsdr,
0

which leads to (by (7.3.4)) (7.3.8a).
We now turns to estimate the €_; norm. We can easily deduce that

(7.3.14) Ou=—(1-H"""(H" + H"Mm")0,0,u
—2(1 = H" ' H9,0,u — (1 — H*)™'F.

Here, we use the assumption that H% < % to make sure that (1 — H%)~! is well
defined. By Lemma 7.3.1, we have

e, < ¢t [l m)F G, as

+Ct/ 11— B 0,0, ds+Ct/ (1= H%)~ B9, 0], ds
+ C(Jlu(0,2)|le_, @) + tIVu(0,2)|le_, @s))
t t t
SCt/ 1F (s, )], ds+C’t/ |90, 05|, ds+Ct/ | H® 8,00l ds
0 -t 0 -1 0

+ O(HU(O>$)H£_1(R3) +t ’|vu(07x)Ha_1(R3)>'
We observe that the following estimates are guaranteed by (7.2.1):
1 0a05ulle_, < [|H*|| Lo 10a03ulle _,

< NH Lo [0adpullp2 < C Y |H® | L= B (s, u)
0.6
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and [|[Vu(0,.)||e_, < C||Vu(0,.)||g2. By combining these two estimates, we get
(7.315)  [u(t,)||, < C’t/ot 1F(s, e ds
+Cty /Ot |HB(s,.)|| Lo B2 (s,u)ds + CtE2(0,u).
a,pB
By combining (7.3.13) and (7.3.15), we obtain
(7316) [ult )], < Ct/ot 1EGs, ), ds

t
—l—CtES(O,u)Z/ HH“’B(S,.)||Looecf;D3(T)de5
a,f 0

t s
+Ct2/ ||H“ﬂ(s,.)|\m/ (7, )| gy o€ 7 P2V ds + CEZ(0,0). O
a,8 70 0 3

Furthermore, the following L? estimate for Klein-Gordon equations is essential in
our analysis.

LEMMA 7.3.4 (L?-type estimate for KG equations). — Let v be in a smooth function
defined [0, T] xR? and let F = c?v—g*?0,05v, ¢ > 0. Suppose that g*? = m*F + HB
satisfies the coercivity condition with a constant C, i.e. (7.3.3). Then, the following
estimate holds for 0 <t <T:

(7.3.17) c||v(t, )HEd + ||v(t, .)||E;,+1 < O(HU(O, ')”EZ“ + ¢||v(0, )HEd) € Jo Da(r)dr
t

+ C/ | F(s,.) ga € JiPa(r) qrds.
0

Proof. — The proof is essentially the same to that of Lemma 7.3.1. The only differ-
ence comes from the potential term:

0:0(9*70adpv — *v) = 500 (9(B0v)? — g**0avdpv) — 5(cdov)?
+0a (gaﬁatvaﬁv) + %3t9aﬁ3avagv — O gaﬁﬁtvagv.
Then the same calculation of the proof in (7.3.1) leads to

d
(7.3.18) - Bgelt,v) < Cl[F ) sy + oY ||vH(t, M oo z3) Borelts v)-
o

Now we derive the equation with respect to 7:Q2, and perform the same calcu-
lation as we done in the proof of Lemma 7.3.3, the we arrive at:

t
(7319) B2 (t.u) < B (0, u)eCJi PaIa7 4 ¢ / IE(r, )| o € 2 Dato)ds g
0

Then combined with the expression of E, . and the coercivity condition (7.3.3), the
desired result is proven. O
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At the end of this subsection, we establish the following estimate on second order
time derivative of the solution.

LEMMA 7.3.5. — Let u be a smooth function defined in R* and suppose that u satisfies
the following wave/Klein-Gordon equation:

gaﬂﬁaagu —u=—F,

where ¢ > 0. Suppose that g*% = m®? + H*P with ‘HOO| < % Then the following
estimate hold for all pair of multi-index (I, I2)

(7.3.20) (|05 Q"0 0pul| 2 ) < (05222 (1 = HP) " (m® + H*)8,0pu)
ol (1= H) )| e

+ 2|0 Q" (1 — H*) " H*0,0,u)

+[|orQ"((1— H®)7'F)

2 ey

e @)
I s
Proof. — By decomposing the wave operator, we have
9°%0,05u = (—1 + H*)0,0pu + 2H"*9,;05u + (m* + H*)9,0pu
and thanks to the equation
(=1 4+ H)0,0,u + 2H"0,0,u + (m*® + H™)D,0pu — *u = —F,

we have

u 2H0,0,u  (m®™® + H™)0,0pu F
1_H® " 1_H® 1—H g

atﬁtu = —

7.4. Existence results for linear equations

We now establish the existence theory for linear wave and Klein-Gordon equations
with initial data in the corresponding functional spaces defined in subsection 6.4. We
begin with the wave equation.

PROPOSITION 7.4.1 (Existence of linear wave equation in Ef;)

Let d > 3 be an integer. Assume that F € L'([0,T); E?), (uo,u1) € B¢ x B9
Assume that g°# is a smooth metric defined on [0,T] x R® and coercive with con-
stant C > 0, and H*® = g% —m®P is in the class C([0,T); EG™) with |HY| < :.
Then the following Cauchy problem

9*P04,05u = —F,

(7.4.1) { u(0,2) = up(x), Ou(0,z) = uy(zx)
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has a unique solution in class C([0,T]; ES™) with ofu € C([0,T); E¥1=F%), where
1 < k <d. Furthermore, this solution satisfies the following estimate:

(7.4.2) ”U(t, ')HE}ijl < CHVU(O, )HEd ecfot Da(r)dr
t

+C/ HF(Tv')HEd ecf:Dd(S)dsdT’
0

(743)  Jult )], . < Ct/o [E(s, )|, ds

t
+ CtE3(0, u) Z/O | H (s, My elo Da(m)dr g
a,B

t s
e oS [0l [ 1Pl 2O+ CrE0,0),
o870 0

where
Di(t) := maxc [ H (1) g

Proof of Proposition 7.4.1. — The uniqueness is direct by applying Lemma 7.3.2.

The existence is based on the regularization and the estimate proved in
Lemma 7.3.3. We proceed by make a series of triple (uf,u}, F™) which converges to
(up, u1, F) in the following sense:

Jim [Jug — o[l gass =0, lim_[Juf — up|[pa =0
Jm | = Flliqoypa =0, lim [HZ? = Hl o o,y = 0,

where u?, u are C2°(R3) functions and for all t € [0, T], F"(t,.) € C2°(R3).

By classical existence theorem of linear wave equation (see for example [26]), fix
the time interval [0, T}, each triple (uf, u}, F™) determines a unique smooth solution
by (7.4.1). These solution, denoted by u™, formes a series.

Now we take the difference of the equation satisfied by ™ and u™~!:

9%P0,05(u" —u" 1Y) = (927 — ¢2P)0apu "t + (F — F™7Y),

The apply to this equation the estimate (7.3.8b), we see that the sequence {u"}
converges with respect the norm L>°([0,T]; €_1).
By estimate (7.3.8a), {u"} is bounded in L ([0, T], E4™). We recall the estimate
(7.3.13) and apply this on the time interval [¢',t"] C [0,T], we get
d n d n d(.c Y prrydr
B u") — EX(¢ u™) < B4 (eC t”d< )T 1)

+c/ |F™ (7, )| pa S PiCIar,
t/

where
Di(t) = ma [H0, )
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Recall that D} (1) and ||F(7,.)||ga are uniformly (with respect to n) bound. This
implies that {u”} is equicontinuous with respect to the norm L>([0, 7], ES™). Then
there is a sub-sequence of {u"} converges in the sense of L>([0,T], ES™). We de-
note it again by u”. Then we see that {u"} converges in L>([0,T], E%™). We denote
by u its limit.

When d > 3, (7.3.8b) shows that {u"} is a Cauchy sequence in L>°([0,T],€_1). So
that {u”} converges in C([0,T], E4™) (u™ are C2° functions so u™ € C([0,T];€_1)).
Furthermore, since u” are C2° functions so they are in C([0,7], E%™) which is a
closed subspace of L>([0,T], E4™). Then {u"} converges in C([0,T], E4). We
denote by u the C ([0, T], E4™)-limit of {u"}. Then we see that u € C([0,T]; E%)

We apply the same argument on {9Fu} and get the desired regularity. The estimate
on u is gained by taking limit of the estimate on u™. O

If we analyse carefully the proof of Proposition 7.4.1, we can conclude that if the
triple (F,ug,u;) is only supposed to be in L([0,T], E?) x E4™ x E?, the Cauchy
problem (7.4.1) determines also a unique solution in C([0,T], E5™). We prefer to
state this result separately in the following proposition:

PROPOSITION 7.4.2. — Let d > 3 and assume that the triple (F,ug,u1) is only sup-
posed to be in L'([0,T], E4) x EET x BEY. And assume that g*® is a O™ metric
defined on [0,T] x R® and coercive with constant C > 0, and H*® = g*# — m*8
is in the class C([0,T); ESY). Then the Cauchy problem (7.4.1) has a unique solu-
tion u in C([0,T], ES™) and 8Fu € C([0,T); E**'=F) for 0 < k < d. Furthermore, it
satisfies the following estimate:

(7.4.5) [ult, )| gass < C[|V(0,.)] 5 oJid CDa(r)dr

t
+ C/ HF(Tv ')HEd ef; Dd(s)dsdT7
0

where
Dy (1) := rg%x ||H°‘5(t, )HE’;,“

Apply Lemma 7.3.4 and taking the same regularization argument as in the proof
of Proposition 7.4.1, the following existence result for linear Klein-Gordon equation
holds.

PRrROPOSITION 7.4.3 (Existence for KG equation). — Let d > 3 and the triple
(vo, v1, F) be in class ES™ x E% x LY([0,T], ES). Assume that g*° is a C> metric
defined on [0,T] x R and coercive with constant C > 0, and H*? = g*% —m®# is in
the class C[0,T7; Eff'l). Then the following Cauchy problem

BY0gv —Fv=F, ¢>0,
(7.4.6) {g ’

v(0,2) = vo(z), Ow(0,z) = v1(x)
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has a unique solution in class C([0, T); EETH)NC([0,T); EL). Furthermore, it satisfies
the following estimate

(747&) ||’U(t, .)||E}13+1 + ||8t’l)(t, )HEd + CH”U(t, )HEd

< C([|[Vu(0, ) pa + €[00, )]] ) €€ Jo P47

N e
t
40 [ R, Lo o P dras,
0
(7.4.7b) ot )| gar +ellolt, )] pa
< C(IVu(0,.)]] g + ][00, )| ) € Jo Palr)dr

t
—|—C’/ HF(S7)||Ed € JiDa(m) q74s,
0

where

Dy(t) == max HGhQIZHa’B
|11\+|1ﬁ2|§k
a,

(e
7.5. Nonlinear estimates

To estimate the solution of quasi-linear system, we will need the following estimates
on nonlinear terms.

LEMMA 7.5.1. — Let F be a C*° function from R™ to R and u a C* application
form R* to R™ with components denoted by u = (uy,us, ..., Uy). Let Z be a family of
one order linear differential operate Z = {Z,} with o € A, where A is a subset of N*.
Then the following identity holds for all multi-index I = (o1, aa, ..., o)) with |[I| > 1:

m 1
(7.5.1) Z'Fw) = > P'Fw > JIT[2%w-

1<|LI<T| S K=l jd i1
Jji

Here PL =T[", 8f is a product of partial differential operator with L = (I1,...1y)
and the following convention is applied :

Zlw=1, if |I|=0.

Furthermore, in a product if the set of index is empty, this product is regarded as 1.
For example,

L
[[2%w =1, if 1;=0.
i=1

Proof. — We observe that, in the right-hand side and for a fixed L, the sum is taken
over all the proper |L|-partition of index I. That is, over all the proper L-partition
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of abstract index .# with |.#| = I. We denote by
Hji=F with {K;}=I({#4})

and we denote by Z2,(.#,|L|) the set of all proper |L|-partition of .#. Then (7.5.1)
can be written as

m
> P > JTIIZ%w. K} =1(143).
1<|LI< || {AjiYe2p (S| Lly=1i=1
Now we associate each term in the right-hand side to a pair (L, {J,}): in the sum,
each term PLF(u) H;n:l Hi’zl ZKiiu; corresponds to an operator PX. The quantity
{Kj;} is a partition of I which is a restriction of I on a abstract partition {J¢j;}. Note
that for fixed L the sum is taken on Z2,(#,|L|), so we have constructed a bijection
from the terms in the right-hand side to the following set

2(7) = {(L A} A € Zp(S,|L]), 1 < LI < |7}

We will prove (7.5.1) by induction on the order of |I]| with associated abstract
multi-index & = {a1,aq,...,a,}. We check by direct calculation that this identity
is valid for |I| = 1. Suppose that it holds for |I| < n, we consider |I'| = n+ 1. Let %’
be the associated n+ 1 order abstract multi-index composed by {a1, a9 ..., @y, Qpi1}
and the restriction of I’ on .# is coincide with I. Then

m
2 (F@) = Zray (Y PE@) Y T[I12%w)
1<|Ll < {AHjiyePp (S |L]) j=1i=1
m 1l
= Z Zri (o) (PPF(u)) Z H 7Ky,
1I<|LI<|| {Hji}eZp(S,|L]) j=1i=1
m 1
+ > P'Pu) > Zpanin) [T T] 25w
i<zl {A5:Ye2p(S|LI) j=li=1
= T1 + T2.

For Ty, we observe that

m m
Z ZPL;F(U)ZII(QHJFI)I% Z HHZKjiu]‘

T =
I<[L|<|I| k=1 {xﬂ-}ezz (y |L]) j=1i=1
= > > PHFw ) HHZ
I<|LIS] k=1 {HG: ey (S,|L]) j=11i=1

with Ly, = (11,05, ... Ly ..., 1,) with I, = ; for j # k and [}, = I + 1 and X, = %}
with (,1) # (k:,l ) and Jffk’l; = ap1. Here, Kjj is the restriction of I on JZj; while K7,
is the restriction of 1" on J7;.
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For Ts,

m L

= Y PF@) Y Zio [T 2%

1<|LI<|T| {H;iYe Pp(F,|LI) j=li=1
m 1
!
S S) TN SEND S | ) LT
1<ILI<T| {HAji}eZp(S,|L]) tsiosm j=1i=1
1<ig<ly

where #” ;; = ;; when (§,1) # (jo,d0) and A7 joiy = Hgie U {n+1}-

Now, we associate to each term in 7j and 75 a pair o(L’,{j;}) in the same
manner. This defines an injection from the terms contained in 77 and 75 to the set

2(7) = {(L' AL < || < |77 { A} € Zp(L], 7))

The injectivity property is by checked from the fact that for two terms if L' = L ,
the different terms correspond to a different partition (by our definition of sum over
partitions).

Denote by &7 the image of the terms in 77 and 75 under this injection. This is a
subset of 2(.#"). We will prove that & = 2(.#’) which leads to the equality in the
case |I'l =n + 1. To do so, let

(L' A{}) e 2(07), L'=(,1...,0,,)

Then we see that as a,11 € &’ there is one and only one (jo,ip) such that a,41 €
Ji/];)io sirllce Ugia A, = " and they are disjoint to each other. We will prove that
(L' {A5i}) € .

We define L = (I1, 12, ..., ;) with [; = [} for j # jo and [;, = I’ —1. We construct
{AGi} as follows: A = A if (j,4) # (jo,io) and Hjyi, = K}, N {ang1}¢. Such
constructed pair (L, %#};) to be in 2(.%).

When %, = @, we see that (L',{%};}) corresponds to a term in 77. More
precisely in the following term:

m
Z1(an ) (PEF(u)) > II1]2%w

{H5: ey (S|L]) j=11i=1

m m
= PL;vF(u)ZZanHuk Z HI_J[ZKT"UJ-,
k=1

{HG:i e Pp(F|L]) j=11i=1

where we can see it by fixing k = jo and {.%j;} in the sum.
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When i, # @, (L', {#};}) corresponds to a term in Ty:

m ol
PLF(u) Z ZI,(%H)HHZKW]-

{H5:}€2,(5 |L) j=li=1

m 1
=P'Fu) Y S TTTI 255w

(H3:}€ Py (,|LI) 1Z05m J=Li=]
we see it by fixing (i;, jo) and {};} in the sum. O

LEMMA 7.5.2. — Let F be a C*° function from R™ to R and u a C* application
form R* to R™. Then the following identity holds for any multi-index I, I, with
|[I1| + | 12| > 1:

[T1]+[12] m
(75.2)  onQl(F)= > > PR Y. ]]Jo%vaf,
=1 37, ;=1 i Kiji=I1 g=11i=1
i Koji=I2
where L = (I1,1la, ..., ln) is a m-dimensional vector with its components taking value

in N and P™ the partial differential operator

m
pt=TJ o
=1

and the convention 011 Q2u =1, if |I,| = |Iz| = 0 is applied.

Proof. — The proof is an application of (7.5.1). Let D! = 81:Qf2 with D = {0,, Q4 }
We denote by

D, =0, fora =0,1,2,3, D, =Qy_3, for a =4,5,6.
We denote the components of I; and I by

L = (B1,62,---Bny)y, L2= (V1,725 Vna)

Then I is determined by I = (a1,9,...Qn,,Qnyt1° " 5 Qny4n,) With «; = 3; for
i=1,2,n1 and qj4n, =i + 3 for i = 1,2, ns.

Remake that D is a family of first-order linear differential operator. Then by (7.5.1)

m 1

(7.5.3) o2 (F(u)) = Z Z PLF(u) H H ZK-”uj.
1<|LI<| ]| Zji Kji=I j=1l4i=1

Then, since Zji Kj; = I is a partition of I. Then

DK — §Eui (K
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with Zji Kij; = I, a partition of I; and ij‘ Kyj; = I a partition of I. This gives

m
ohal(Fw) = > > PER@) [ o™ 0 ;.

1<|LI<L|I| Xji K1ji=11 j=1li=1
i Kaji=I2

Then the desired result is proven. O]

The result of Lemma 7.5.2 will be applied in the following case where F(-) is
supposed to vanish at 0 in second order.

LEMMA 7.5.3. — Let F be a C* function defined in a compact neighborhood V' of 0
in R™ and F(0) = VF(0) = 0. Let d > 3 and suppose that u map from R* to V
with its components u; in L>=([0,T]; EY). Then the following estimates hold for any
couple of index (I, I) with |I1| + |I2| < d:

[Ty [+]12]
k
(7.5.4) [[0"Q" (F(w))(t,)|| o gy < C(E. V. d) > Jjult, )| e forte0,T],
k=2
where C(F,V,d) is a constant determined by F, V and d, and |u(t,.)||ge :=
max; (¢, ) .

Proof. — When |I1]| + |I2| = 0, by the condition F'(0) = VF(0) =0,

[F(u)] < C(F V)Y Juyl?

Jj=1

which leads to the desired result.

For |I]| + |Iz| > 1, proof is based on Lemma 7.5.2. We take the expression:
[T1|+|12

| m
ohal(Fw)= > > P'Fw Y J[[Jo"v ey,

=1 3™ ;=1 >ji Kiji=h j=1i=1
= g, Koji=I2

and observe that for [L| = 3770, 1; = 1, PLF(0) = 0. Then we have, in the compact
neighborhood V of 0,

|8JF(U)| < C(F7 V)lul’
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where C(F, V) is determined by V and F' and |u| := max; |u;|. Then,

(755)  |0"QR(Fw)| < 310, w)]]0" 2|
j=1
[11|+]12] m 1
T )
=2 > 1=l 344 K1ji=I1 j=1i=1

24, Koji=I2
< C(F,V)|ul - [0 Q"2

[T1]|+|12]

m 1
FYY @] Y T[T e,

=2 ™ 1=l X4 Kiji=l1 j=11=1
= i Koji=I2

The first term in the right-hand side is estimated as follows:

H“(t’ ) On QR (t, '>HL2(R3) < H“(t’ ')HLOO(]R?’) ) Hallghu(t’ ')HL2(R3)

< Clut, )| o - ult, )| o < CJlut, )|

where the Sobolev’s inequality is applied.
The second term in the right-hand side of (7.5.5) is estimated as follows: we observe
the term

m 1
O 1) (e
S, Kiji=h j=1i=1
22 Kaji=I2

Recall that [L| = 3_,1; > 2, then we see that in the product there are at least two

factors and
Y Kii=h, Y Kuyi=1I
ji ji
is a partition of (I1,Is) in [L| =}, I; pieces with |L| > 2. Note that
S Kyl = L] D Kyl = |1].
ji ji

We observe that there among the index K ;; there is at most one, denoted by Ky, j,,
is of order higher than %|Il |. In an other world,

|K1jil < [3|L]], if i # o, J # Jo,

where [z] denotes the biggest integer less than or equal to 2. The same result holds

for the index Ksj;. Then we conclude that in the decomposition of (I1,I3) there is

at most one pair of index, denoted by (K1, K2iyj,), is of order higher than [3d].

2
In an other world,

|Kjil + |Kajil < [3d], if i # 10,5 # Jo.
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Then if we take the L? norm, we will find that

m L
H I1 ﬁaxlsz”Uj(tv -)’

j=li=1

L2(R3)

<l

m
< ||8K1]7,QK2]'LU] aKlloJo QKmO]Ou]U

Mpoe@s) - | M ez es)

S

I
8 [l
S,
N
o=

~
<.

IN
s

H 0% 2 (1, | o - [l (8|

S,
M
o‘}—'
S,
i
o=

~
<.

IA
—
-

<
Il
=
-
Il
_

u(t, )| gosiga - [uct )l g

<.
*
=
o
N
=
(=]

Here, we have applied (7.1.3a). Now recall d > 3, then 2 + [%d] < d. Then, we get

ITTTTo% 0%rute.

j=1i=1

< [full!5.
L2(R3) -

Also, we observe that in the compact neighborhood V', sup, ¢y |[PYF(u)| < C(F,V)
with C(F,V,|L|) a constant determined by F and V and |L|. Then the desired result
is proven. O

Now, we combine Lemma 7.5.3 with the global Sobolev inequality (7.2.1).

LEMMA 7.5.4. — Based on the same assumptions on F and uw as in Lemma 7.5.3,
for |I1| + |Iz| < d — 2, the following estimate holds:

[Ty |+ 12|42

(7.5.6) 1010 (Fw) (¢, e, < CEV.D) > [ult,)|h

k=2

We also need the following estimate in the following discussion.

LEMMA 7.5.5. — Let d > 3 and assume that H(-) be a C™ function defined in
a compact neighborhood V of 0 in R™ and assume that u is a map from R to V
with its components u; in class L>([0,T]; EY). Then the following estimate holds
fOT’d Z |.[1| + |12‘ 2 1:

(75.7) ([0 +r)7ro" Q" (H(w) (8 )| L2 sy .
I |+ |12

<CH,V,d) Y ult )|y, te[0T]
k=1
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Proof. — We apply the expression (7.5.2):

[Ty |+(12]

m 1
oht(Hw) = > Y PtH@ Y []]Jo*va" i,

=1 E'"_l lj=l ij, Kyj;=I1 j=11i=1
= Xji Koji=1I2

Note that PEXH(u) is bounded by a constant C(H,V,|L|) determined by V. The
estimate of |07 Q2 (H (u))(t, .)||L2(R3) reduced into the estimate of

s n - [T TR 0% |

j=1i=1

L2(r3)’

where K1;; and Kyj; is a possible partition of (I, I). We take the same argument
to that the proof of Lemma 7.5.3. Suppose that [K1 .| + [K2jeio| > [K1ji| + [Ka2jil
for all pares (j,1), i.e. (K1jyi, K2j0i,) is the pair of index with highest order. Then,
we find

|K1ji| + ‘K2ji| < [%d], if 4 7é 10, J 7& Jo and |K1joio‘ + |K2j0i0| =1,

and we also have

|+ ﬁ ﬁ Oty (1,

j=li=1

L2(R3)

m l;
t < H H HaKuiQsziuj(t,_)HLOO(RS) . H(l+T)_laKlj"iOQK%”jouj(tv~)HL2(R3)~

i7io izt
In view of (7.2.3b) and (7.2.4b), the desired result is proven. O
LEMMA 7.5.6. — By taking the same assumption on H and u as in Lemma 7.5.5,

and assuming furthermore that H(0) = 0. Then for all |I1|+|I2| < d—2, the following
estimate holds:
[T1|+[12]+2

(7.5.8) 10727 (H () ()| e sy < CEHVd) D7 [t ) -
k=1
Proof. — When I = Iy = 0, we recall the that the condition H(0) = 0 implies

)HLOO(]R3) < C(H’ V)||u||L°°(R3) < C(H>V)Hu||871'

When |I1]| + Iz| > 1, we apply (7.5.7) combined with Lemma 7.2.4:
|07 Q% (H () (t, )| pe sy < C Y 070700 Q" (H(w)(t, )] 2 2o
[J1]+]J2]<2

<C >y 901 Q72012 (H (w)) (¢, .)|| 12 (rs)-

[J1l+]J5]<2
|17 < |11
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Here, we observe that when |I;| > 1, by applying (7.1.7a) successively (|I1] times),
we see that |I1]| > 1, this leads to the fact that |Ji| + |I1] + |J2| + |I5| > 1. Then we
apply (7.5.7).

When |I;]| = 0, then |I2] > 1 then we can also apply (7.5.7). O

LEMMA 7.5.7. — Let F be a C* function defined in a compact neighborhood V; of 0
in R™ and H be a C*° function defined in a compact neighborhood Vo of 0 in R™. As-
sume that F(0) = 0 and V(F) = 0. Let u be a map from R* to Vy with its components
uj in class L=([0,T]; E%) and v be a map form R* to Va with its components v, in
class L°([0,T]; E?). Then the following estimate holds for |I1| + |Iz| < d with d > 3:

(7.5.9)  [|o" Q" (HW)F(©)) (¢, )| 12 zs

d d
<l FV,d) (D et Mgy ) (X ot ), te0.7]
k=0 k=2

Proof. — The proof is based on Lemmas 7.5.3, 7.5.4, 7.5.5, and 7.5.6:
ohQR(Hw)F(v)) = Y 0% (H(u)— H(0))071Q% (F(v)) + H(0)0" Q" (F(v)).

JlJrJ{:Il
J2+Jé=12

When d > |J{| + |J3| > 3d, || + |Jo| < [3d] < d —2:
|07 Q72 (H (u) — H(0))(t,)071Q% (F(v))(t

]| e
< |07 Q% (H (u) = H(0)) (8, )] oo s - 19797 (F (@) (8 ]| 2 s
[J1]+]J2|+2 N [J1 1+ 73] .
<O FV.d) Y ult,)|p ZH Mo

k=1

where Lemma 7.5.6 and Lemma 7.5.4 are applied (on function H(u)—H(0) and F(v)).
The term H(0)0"*Q'2(F(v)) is estimated by (7.5.4).

When |Ji| + || > 4d > 1, |J] + |J}| < [3d] < d —2:
0772 (H (u)) (£, )07 Q% (F () (¢, )| o s

< ||+ )Tt (H(w) (¢t @+ r)a7ial2 (F(u)(t

7')HL2(R3) ")HLOO(]R?’)

= | +r) 7107 Q% (Hw) ()] pa s 071072 (F(u)) (£, )|,

[J1]+] 2] . FARSPARS .
<o rv.a)( Y el ) (S e ollk),
k=1 k=2
where Lemma 7.5.5 and Lemma 7.5.4 are applied. O

We will need the following estimate on multi-linear functions.
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LEMMA 7.5.8. — Let d > 3 be an integer and u;,v;, i = 1,2,...m be functions in
class L°°([0,T]; EY). Then the following estimates hold for m > 2 and |I|+ |I2| < d:

(7.5.10) Ha’lﬁ’z(H“z H“Z) Mosees
<CWd)fut,) = vt g > D fult g ot )

k=1 ki+ko=k

where ||ul| xa = max; |u;|| xe and ||v] xa := max; ||v;]| xa-
Proof. — We observe the following indentity
Hul Hvl = Z U — Uk) Huj ij.
k=1 j<k >k

Then, for each term, we have

ol ((uk — V) H U H vj>

i<k >k
_ § : oK1k 2k (ue — vi) H 8K1jQK2juj H aKleKZjUj.
> Ku=Ih i>k j<k
> Koi=Is

To estimate the product
oK1k K2k (up, — vg) H 6K1jQK2juj H 3K1jQK2jvj7
Jj>k i<k
we apply the same reasoning as in the proof of Lemma 7.5.3, there is at most one

pair of multi index of order bigger that [%d] . Then (7.5.10) is proven by applying the
classical Sobolev’s inequality. O

LEMMA 7.5.9. — Let d > 3 be an integer and wu;,v;, i = 1,...,m be func-

tions in class L>([0,T); E%). Then the following estimates hold for m > 2 for
1§|Il|+|_[2| <dandt e [0, ]

(7511)  [[a+n) 18[1(2[2(ﬁu2 ﬁv) t,.)
=1 =1

L2 (R3)
m—1 X
< CWd)fut,) = vt Mgy D 3 lult. )y, - ot
k=1 ki+ko=k

where |ull pa := max; [|usl|gg and |[v]|xe := max; [|vil| g4 -

Proof. — We observe the following indentity

Hul Hvz—; Uk — Vg HuJij

i<k >k
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Then, for each term, we have

ah Q2 ((uk — ) H U H vj>

i<k >k
_ § : oK1k )2k (up — vi) H 8K1jQK2jUj H 8K11'QK2J'Uj.
> Ku=Ih i>k j<k
> Koi=Is

To estimate the product
OF e Q2k (1), — ) H aKuQszuj H aKUQszvj7
>k i<k

we also apply the same reasoning as in the proof of Lemma 7.5.3, there is at most one
pair of multi index of order bigger that %d. We discuss three cases.
Case 1: |K1k| + |K2k| Z ‘K1j| + IKQJ“ fO?”j = 1,2, .oom.

Hence, (K1, Kor) takes the highest order. For j # k, | Ky | +|Kz;| < [%d] <d-—-2
and |K1| + |Kak| > 1, and we have

(1) TR (wy — ) T] 0% @20y T 0% 250y

J p
L2(R3
>k j<k (B?)

<@+ 7)o" QI (g — v | pa sy | [T 0" 2"y T aKleszijLw(W)
>k i<k
Ki;,0Kz2;,, . K150 K2;5,,.
< Clluk — vkl gy Ha QT Ha v UJHLOQ(RS)'
i>k Jj<k

Here, we used (7.2.3a) on the first factor. Note that since m > 2 then there exists
a jo # k. So the second factor is bounded by applying (7.5.8) and the fact that
K]+ [ Koy < d = 2.

Case 2: |K1i|+|Kaox| < [3d] < d—2 and there exists jo < k such that |Kyj,|+|Kaj,| >
| K1) + [ K2

Then, we have

H(l + r) LR Qe (g, — ) H ROy, H oF1i 2y,

i>k i<k L2(®?)

S|ﬁyﬁkQK%(“k_"%)HLw@@)IIHaK”QKﬁuﬂhqu%
i>k
% H ||8K1jQK2jvj||L°°(R3) . H(l_|_T)flaKleQK%oujO||L2(R3)
37:1');
< COllu —vllgg [T Iluslleg, TT llosllmg - 1 s
>k i<k
J#jo

where (7.2.3b) and (7.2.4b) are applied.
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Case 3: |K1|+|Kok| < [2d] < d—2 and there exists jo > k such that |Kyj,|+|Kaj,| >
K] + [ Koyl

The proof is exactly the same as in the last case provided we exchange the roles
of u; and v;. O

Finally, we are able to estimate the difference of two quadratic functions.

LEMMA 7.5.10. — Let d > 3 be an integer. Let F be a C™ function defined in a
compact neighborhood V' of 0 in R™ with F(0) = VF(0) = 0. Assume that u and v
are maps from R* to V with their components in L>=([0,T]; E?). Then the following
estimate hold for all pair of index (I, Iy) with |I;| + |I2] < d:

(7.512) (|05 (F(w) = F()|| o)
[Ty |+]12|—1

SOWEV.Du—vlxa Do D7 lullu - loll%.

k=1 ki+ko=k

Proof. — When I; = I, = 0, we apply the mean value theorem: there is a 6 € [0, 1]
such that

|F(u) — F(v)| < |VF(u+ (1—0)v)|u— |
Then by the condition VF(0) = 0,
|F(u) = F(v)| < |[VF(0u+ (1= 0)v)|u—v| < C(F,V)|fu+ (1 —0)v|-|u—vl|
Then
[Fu)t,-) = F)(t )| 2 sy < CEV)llu—vllp2es) - 10w+ (1 = 0)vl| 1 (rs)
<C

(W[utt, ) = v(t, )| ga (lult, g + o(t,)lla).

For the case for |I}| 4 |I2| > 1, we recall the expression (7.5.2), where " means

(7.5.13) Yo=Y >

2 Kgi=h 325 Koji=Ia

One has, with notation (7.5.13),

[ 11|+ 12| m
OB (Fu) - Fv) = Y > (PERw) Y T ] 05w
=1 3, 1;=1 j=li=1
m L
— PLF(’U) Z/ H H 8K1inK2ﬁUj)
j=li=1
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= 0;F(u)(0"Q"u; — 9" Q"))

J
[11[+12] m 1 m
n Z ZPL Z/<HH8KWQKWUJ__HHaKWQKzﬁUj)
=2 Z 1=l j=1li=1 j=1li=1
[Ty ][+]I2]
+ > > (PEF(u) - PFF(v) > HHaKlazQsz :
=1 Z lj=l j=1li=1
=T+ T, + Ts.

To estimate 17, we take into consideration of the condition VF(0) = 0 with leads
to

0, ()(t,.)] < C(V)ul.
S0 118, ()¢, )| =) < OOVt ) gty < C(F, V) u(t, ) xs. Then

172 (2,.)

’ HLQ(]RS) S C(F’ V)Hu(t? )

(& M- [Jult, )

To estimate T5, we need to apply Lemma 7.5.8. To do so, we observe the relation

(7.5.14)  9hQl (ﬁuy — ﬁvl-j>
i=1

m 1

E Z (HH(‘)KUZQKZWU _ HHaKleK?w )
Y iiKy5=I j=1li=1 j=li=1
X, K2ji=I2
Then
[T1]+]I2] m
= > S PP 811912<Hu ~II+)-
=2 3, 1=l j=1

Recall that |PLF(u)| is bounded by a constant C(F,V,|L|) determined by the neigh-
borhood V, the function F' and the order |L|. Then we apply (7.5.10).
The estimate of T3 is as follows:

[ 11|+ 12|
(7.5.15) ITsllo@sy < >, > ||PRF( ) = PEFW)| o o
=1 3, 1=l m
< 2 IITITo e vl o)

S iKij=I; j=li=1

2_7‘,7‘, K?jz‘:IZ
As in the estimate on Ty, we see that

m [11]+12]
> I ITof e ut, ) pagsy < D ot ke
Y giKiji=L  j=li=1 =1

2, Kaji=1I2
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and
|PEF@)(t,) = PEF@)( )] e oy < COF VLI ult, ) = vt )
<CW, L) ||ult, ) = v(t, )| ga

and then
d-1
HTS(tv ')HL2(R3) < C(V)Hu(t? ) - ’U(t, ')HEd Z HUHIEd
k=1
which leads us to the conclusion (7.5.12). O

The following L type estimate is a direct application of Lemma 7.5.10 and the
global Sobolev inequality (7.2.1):

LEMMA 7.5.11. — Let F, G, u and v take the assumption as in Lemma 7.5.10, then
for any |I1| + |I2] < d — 2, the following estimate holds:

(7.5.16) [[07 Q" (F(u)(t,.) = F(0)(t, )t e go)

d—1
<CEV,ult,) = vt ) g > D [t Mg - ([0t

k=1k1+ko=k

LEMMA 7.5.12. — Let d > 3 be an integer. Let H be a C*° function which is
defined in a compact neighborhood V' of 0 in R™ and let u,v be maps from R* to V
with their components in class L>([0,T), E%). Then the following estimate holds
fOT’ 1 S ‘I1| + |IQ‘ S d:

(7.5.17)  [[(1+7)710" Q" (H(uw) = H(©) (¢, )| 12 s

[T1[+|12

|
<OW)ut,) = ot gy 0 D0 e My, - ot )

k=0 ki+ko=k

Proof. — The proof is quite similar to that of Lemma 7.5.10. When |I;| + |I2] > 1,
we apply the same calculation and notation (7.5.13):

ol Q" (H(u) — H(v))

[11]+]12 m 1

\
= Z Z (PLH(u) Z/ H H aKlinKgﬂuj
=1 3, 1;=l i eai .
_ PLH(U) Z ! H H 8K1inK2‘”Uj>

j=1i=1
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| Iy |+ 12]

m 1 m
= 3 3 pra (I TToes - T [0 0km)
=1 ¥, 1=l j=1i=1 j=1i=1
[T1]+| 2] m U
+ >0 > (PPH(u) - PH(v) Y T [ o% v 0 i,
=1 Zj Iy=l j=li=1
= T1 +T2

The estimate of 77 and T are similar to the estimate made in the proof of
Lemma 7.5.10. Tj is estimated by apply Lemma 7.5.9 and T» is by applying the
following estimate

|PYH (1) = PYH@)| o gy < CCELV.|LDllu — vl < CVA L] — o]l s

and the fact that (by applying (7.5.7))

<cW)ll'g.

= d
L2(R?) X

o+ n [T T om0

j=1li=1

We also need a L estimate on H(u) — H(v):

LEMMA 7.5.13. — Let d > 3. Assume that H be a C*° function defined in a com-
pact neighborhood V. of 0 in R™ and assume that u,v are maps from R* to V with
their components in the class L>=([0,T]; E%). Then the following estimate holds for
||+ 2| <d—2:

(7.5.18) [|0"Q" (H(u) = H©))(t: )] e
M|+ Ea 1 i .
< CHV.d)ult,) = ot )y S 30 ey - ot )
k=0 ki+ko=Fk

Proof. — When I = I, = 0, then there exists § € [0,1] such that
|H(u) — H(v)| < |VH(Ou+ (1= 0)v)| - |u—v| < C(H,V)|u—v].

which proves (7.5.18).
For |I]| + |Iz| > 1, we apply Lemma 7.2.4 combined with (7.5.17). O

LEMMA 7.5.14. — Let F be a C*™ function defined in a compact neighborhood Vi
of 0 in R™ and H be a C*° function defined in a neighborhood Vo of 0 in R™. Let d
be an integer and d > 3. Assume that F(0) = 0,VF(0) = 0. Let uy and uz be maps
from R* to Vy with their components in L= ([0, T]; E%) and v1, v be maps from R*
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to Vi with their components in class L= ([0, T); EY). Then the following estimate holds
for |I1| + |Is] < d and d > 3. Then, we have

(7.5.19)  [|0"Q" (H (ur)F(v1) = H (u2) F(v2)) (£, )| 1> s
< CV)(llur(t, ) = ua(t, gy, + loa(ts ) = va(t, )l ge) ZM’“

where M (t) := max{[|luy; (¢, )| gy, [uz; (¢ )l pg, lv1; (8 )l gas [[v2;(E, )HEd}
Proof. — We have
ol (H(u1)F(v1) — H(u2)F(v2))
=ohql (H(u1)F(v1) — H(u1)F(v2) + H(u1)F(v2) — H(uz)F(vs))
= 0" Q" (H(u1)(F(v1) — F(v2))) + 0" Q" (F(v2)(H (u1) — H(uz)))
=Ty +T>.
The term T; is estimated as follows:
Ty = 0" Q" (H(u1)(F(v1) — F(v2)))
= Y QP (H(w))o QR (F(v) — F(v)).
Ji+Jo=I
J 4+ Th=1I,
When |J;| + |J2| < [3d] < d -2, by applying (7.5.8) and (7.5.12)

0727 (H (1)) 071 Q7% (F(v1) = F(02)) (¢, )| 2 gy

:HaJIQJZ(H( ) HLOO(]R3)H8JIQJI ( ) F(UQ))(t7')HL2(R3)
[J1]+]J2]+2
<cHEV,)( Y fuilt)]g)
k=0

[J11+] T3] -1

% (lloatt ) = w2t e D 32 loate )z lloate ) 2)-

k=1 ky+ko=k
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When | Ji| +|Jo| > 3d > 1, [J{| + |J3] < [3d], we apply (7.5.7):

[07:272 (H (1)) 971272 (P (1) = F(v2)) (¢, )| 2 gy

< (47107 Q% (H () (t )| paggsy - 07172 (F(01) = Foa)) (8]
[J1]+]J2]
Z ”u”]]c;‘gl : C(H7 Fa‘/ad)Hvl(ta - UQ HEd

|11+ J3]+1

D IND DN G [ G e

k=1 ki+ko=k
< C(H7F7‘/7d)||vl(t7 71}2
[T1]+|12]|+2

3 2 Ny - lloa 5 oa )

k=1 ki+ko+ks=Fk
The term T3 is estimated similarly by applying (7.5.4), (7.5.17), (7.5.6) and (7.5.18).
We omit the details, but we write out the estimate

e

[T1[+T2]+1

() Loy < Nualt, ) — uat, HEd >y |U1|| |U2|| Aol

k=2 ki+kot+ks=k

|72
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CHAPTER 8

PROOF OF THE LOCAL EXISTENCE

8.1. Iteration and uniform bound

In this section we will begin the proof of Theorem 6.5.1. The proof of this theorem
will occupy the following two subsections and follows a classical iteration procedure:

(8.1.1a) (m®? + HYP'(h)) 8o O by ™!
= Fop(hs; Oht, 0h%) — 1670665 03¢t 120, 0% 050"
— & Vi(e) (mag + B35,

(B.1.1b)  (m®F + HYP' (h)) 000y = 2(m® P + HP (hE)) Do 6500 01

o' B o' B " " g,’:i
(8.1.1c) (m*" +H B(hn))aa,aﬁ/gnﬂf?zl
47

3e2en

_ H71VP(Q2) B (mo/,B/ I Ha/B/(hZ)) 8a/¢ﬁ5ﬁ/¢gv

where
e —1 s

2s 2
—1 _ (-1 —1 —
K= Vi(s) := . KT V(s) = Gt 3.

2k eds
and with initial data

hz’[?(ovx) = hOaﬁa d)rny,(ovx) = ¢0($), QZ(O,%) = QO(x)a
Oty (0,2) = hiap,  0i9y(0,2) = ¢1(z) 00}y (0,2) = o1().

Recall the function H%?(h) are defined in (6.2.5) and the associated estimates are
in (6.2.6). We take (h';,g) and set

Sy = (haj s P 05)-

We also denote by Fi(Sf), Fp(Sf) and Fr(S)7) the terms in the right-hand side of
(8.1.1a), (8.1.1b) and (8.1.1c).
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We take S§ = (hZ}ga @6, 0f) as the solution of the following homogeneous Cauchy
problem:

Ohas =0, O =0, Dg—gﬁzo,
K

hg;(ow/lj) = hO(xﬂa ¢8(07$) = ¢0(.’L‘), QS(O,Z‘) = Qo(x)a
Oihyg(0,2) = hiag,  0i05(0,2) = du(x)  0i0f(0,2) = o1 ().

We see that the source terms and metric coefficients in (8.1.1) are sufficiently
regular and the initial data are in the corresponding class required in Propositions
7.4.1,7.4.2 and 7.4.3. Then, by the theory of local existence for linear equations, this
iteration procedure is well defined in a fixed time interval [0, 7], where the metric
coefficients and source terms are in the corresponding class and |[H (k)% < 1. We
see that is iteration defines a sequence of triple Sf} := (hzg, or, o). In order to get
the local existence, we will prove that S}’ converges in the norm

1S, )nll gaes
1
i=max{|lhg (¢, )l garrs (05 M pars 10n(E )l pars 672 [[on(E g},

for all ¢ € [0, T*], in which T* > 0 will be defined.
We suppose that for certain d > 3, for all £ < n and all ¢ € [0,T],

(8.1.2) 1S5t ) || pasr < Ae,

we will show that [|S5, (¢, .)[[xe+1 < Ae with T" and A well chosen.

First, we observe that when (8.1.2) holds with Ae < ¢y with €y small enough, the
metric gg[f = m“ﬁ—i—hg’; are coercive with constant C(eg), where C'(¢g) is determined
by €g.

Now, by combining (8.1.2) with Lemma 7.5.3, the following estimates on the source
terms follow.

LEMMA 8.1.1. — Assume that (8.1.2) holds with d > 3. Suppose that 0 < Ae < ¢,
where €q s a constant sufficiently small. Then the following estimates holds for k < n:

(8.1.3a) || Fap(hf, 005, 0h5)(t, )| pa + | 0atf0s 0 (t, )| o

+ 1100050505 (t, )| 1 < Cleo, d)(Ae)?,
8.1.3b)  [[(m™? + HYP (h}))0ar ¢50p 5 (L, )| e < Cleo, d)(Ae)?,
(8.1.3¢) le228 (m " + H'P (h5)) 0 5 0pr $5: (E, | o < Cleo, d) (Ae)?,
(8.1.3d) [ Vu(gf)(t )l ma < Cleo, d)(Ae)?,

5™ Va(0f) (mag + hiys )t )lpa < Cleo, d)(Ae)*.
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These are classical estimate when we establish the local theory of existence for
quasi-linear wave equations with quadratic nonlinearity. The only thing important
is (8.1.3d), where the k appears in the left-hand side in order to get estimates inde-
pendent of k.

Proof. — These estimates are applications of (7.5.4) and (7.5.9) combined with
(8.1.2). The only thing we need to be pay attention is that to guarantee the C'*°
regularity of the function H®?(-), we need to restrict its defined in a compact
neighborhood V of 0 in R'® with

V= <
{énléggolx | <eo}

with ¢ sufficiently small. This can be guaranteed by taking € < ¢g in (8.1.2).
We observe that Fi,g(hf, Ohf, Ohl) is quadratic with respect to Ohf and C°° with
respect to hf. Then we apply (7.5.9). The estimate on the term

(M7 + HP (1)) D 0050 O

is established in the same manner.
The estimate of (8.1.3d) is checked by using the estimate

_1
2okl pe < Ae,

which follows from (8.1.2). O

Now we begin the discussion of the commutators such as
(02021, HP (177) 00 Op Vs
which appears in the estimates of HhZ’;HHX%.

LEMMA 8.1.2. — There exists a positive constant €y such that if (8.1.2) holds with
d >3, Ae < eg < 1, then the following estimates hold for all couple of index (I, I3)
with 1 < |I| + | I2] < d:

(8.1.4a) [|[0" Q%2 HYP (h5) 00 03 |h5 ™ (t, )| a < Cleo, d)AelRE5 T (2, M par,
(8.1.4b) [[[0" Q"2 HP () Bar D105 1 (t )| pa < Cleo, d) Aelldfi 1 (E )] g
(8.14c) [|[9" Q" HYP (h)dar D10 11t )| ga < Cleo, d) Aellgfy1 (1 )| g

Proof. — The estimate of these three commutators are similar, and we only prove
the first statement. Let (I1,I2) be a pair of multi-indices, |I1]| + |I2| < d. Recall the
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estimate of commutator (7.1.3e):

1 Q! 1 ! ! ! Q! 1
|01 Q" HY P 00,05 | W < > 101 HY |- |00 0,07 QRS
Ji+Ji=I
PARIPARA
QI,B/,Q“,(Z
! ’ ’ !
1
+ > 01 HY P (00 0p 0" QR
J1+J1211
J2+Jé:]2
EARERARY

=11 +T5.
We begin with 75 and distinguish between two cases.
Case 1: 1 < |Jj|+|J5| <d—1, 1< |Ji|+ |J2] <d— 1. In this case, we have
07 Q7H (1) 000507 Q7 higg |
<1007 HS (hE) | oo ) - |0 O 0 Q72
< Oleo, d) A (¢, )| s

K,n+1
aff HL2(]R3)
where we used Ae <1 and (7.5.8).
Case 2: J{ = I1,J§ = 12, Jl = Jz = 0. Recall that d > 3 then |J1| + |J2| < d—3:
J’ ’ o' B’ K 1 ,
071 Q72 5 (1) 0 O 0 Q72 B
< ||@+r)tob oY (b
K,n+1
< Cleo, d)Aellhgs ™ || parr,

2 es)

M 2@y 1009 his |

where we used Ae <1 and (7.5.7).
The estimate of term T} is quite simpler. Recall that in the expression of 17, the
sum is taken over the index satisfying the following conditions:

L+ =0, ||+ |Jy) <|L|-1.
So (| 1]+ |J5]) + (|J2] + |J4]) < d — 1 which leads to |.J|| +|J5| < d —1. So

007 H' P 0,001 0,01 Q725 ) < ol He”

HL?(RS Loc'||3a”5a3§9"2hig+l ||L2(]R3)

As in the estimate of Ty, we see that with |J| + |J5] < d —1,
J! ’ /1l
[0z Q= HYP ||| L sy < Cleo, d) Ae.
The second factor on h';g”rl is bounded directly by ||h';ﬁ"+1\| 1. So we conclude
with (8.1.4a). 0

Now we need to discuss the bound of the initial data EJ (0, hgg”l), E2 (0,05,1)

and E¢ (0,0 ,,). We will see that these norms are controlled by [[Soll xa+1:
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8.1. ITERATION AND UNIFORM BOUND 97

LEMMA 8.1.3. — When ||So|| ya+1 is supposed to be bounded by € < €q for e suffi-
ciently small, there exists a positive constant determined by ey and d such that

Ed (07 n+1)+Ed ( a¢ﬁ>+Ed _%(OMQR) S61(607d)6'
In+1,K

dn In+1

Proof. — We recall that
C(Ly[igled
IS0z o= max { Noas s, aaplce, x=EETH g0 | guon,
3y [1g]an f1g] -2 [14] -2
K (2)[2d]+4||¢1||xd,;‘€ I:Qd} 2||Q0||X;+17K [2d] QHQIHXd}

We observe that when 0 < k < 1 the norm [|9f9* Q%2 0%(0,.)|| L2(rs) is determined
directly by oo and p; thus, bounded by klzd=2 < g3,
When 2 < k < d, we need to use the equation.

We will prove that for 0 < |k| < d—2and |I1|+ |[Is| <d—1-k
[10:0:0F 05 Q™= 15 5(0, ) || L2 (re) < Cleo, d)e,
(8.1.5) 100,05 921 Q"2 0%(0, )| 22y < Cleq, d)slz 2~ [EHe,
10:0:0F 81 Q21267(0, )| 2 ey < Cleo, d)r2 39~ 7e

This is proven by induction on k. We see that for k = 0,1, the estimates hold by
direct verification. Suppose that (8.1.5) holds for (k—1, k) we will prove the case k+1.

The estimate of |,0,0F 1ol Q2 @"||L2(r3), is a bit complicated. We see that by
Lemma 7.3.5,

10:0:0F 1951012 0| 2 ey < [|OF 1O Q" (1= H) ™ (m® + H™) 0a060%) || 12 s

+2[[of ot (1 - H) " H™ 0,040 || 2 s
T AR P
+ [0 1ot (1 = H)Fn) | 2 e
Then we see that
18:0:0F D1 Q2 0| L2(gs) < Ceo, d)rzNT 5[5,
We observe that by Lemma 7.3.5,
10:0:07 O Q2 Wl gl p2rey < [|OFOR Q" (1= HO) ™ (m® + H*)0a0uh5g) || 2 ®)

+2[joFol Q" (1 — H) " H"0,0,hfs)
+||ofol Q> ((1 — H)Fy) ||

(1o
L2(R3)

Then by the bounds prescribed by ||So[|4+! and (8.1.5), we see that ||0;0,0 Q12 hegllnzrs)
is bounded by C(eg, d)e.
In the same manner, we see that for 0 < k < d—2

(10:0:0F D11 Q%2 % | 2 sy < O, d)k™ Dlad+ie,
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98 CHAPTER 8. PROOF OF THE LOCAL EXISTENCE

Now we are ready to estimate the L? type norm of S*.

LEMMA 8.1.4. — There exists a positive constant ey such that if (8.1.2) holds for
Ae < ey <1 andd > 3, then
(8.1.68)  [[hg5 ()| s + 10ehes (1 )]
< Cleo, )(EeC(eo,d)Aet + Ae(eCleodAct _ 1))’
(8:1.6b) [ #7411 (t: ) garr + 9711t )]l o
C(eo,d) (eec(e"’d)Aet + Ae(eCleosdAct _ 1)),

<
8:060) [t g + 1000 g+ a0

< C(Eo,d) (EeC(eo, ) Aet + AE(eC(eo,d)Aet _ 1))’
where C(ep,d) is a positive constant determined by ey and d.

Proof. — This is an application of the L? estimate (7.3.7). We consider the estimate
for hZ’"H. To do so, we derive the equation (8.1.1a) with respect to a product 97 Q2
with |I1| + |IQ| S d:
(m*? + HYP (hf)) Oas 050" Q" R+
= 0" QR Fy (b, ¢f, o) — (01 Q"2 HYP 95,05 1T,
where Fy denotes the terms in the right-hand side of (8.1.1a), which is
Fy(hyy, o5, 00) = Fap(hy; Oy, Ohyy) — 1670467, 0507,
— 1200030505 — £~ Vi(0h) (mag + iy
Then by (7.3.7),

d

3 Bon (& QLT < Cl10" Q" Fyr || s s

+C[|[01 Q" B 0005 I | s

+ C«Z HVHOL B’ hn HLoo (&) gn( allglzhn n-‘rl)
af
By Lemma 8.1.1 and (8.1.2), and the (equi-)coercivity of g, guaranteed by Ae < ¢,
d

T Ea, (1,01 QPRI < Cleo, d)(Ae)® + Cleo, d)Ae Y B (1, h5 ™)

of
+ 0(607 d)A€Egn (t’ 811 QI2 h(’;,ﬁn-‘rl)

Taking the sum over the index (I1, I3) with |I;| + |I3] < d and «, 3:

dt ZEgn ahzﬁ”L-H < C(GQ,d)(Ag)Q + C(€Q,d)A€ZEg ’hzéz-&-l),
aff
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8.1. ITERATION AND UNIFORM BOUND 929

which leads to
(817) ZE!(;” (t, thH-l < ZEd hn+1 C(eg,d)Aet + Ae(eC(EU,d)Aet _ 1)

Note that by Lemma 8.1.3, E¢ (O,hayg) is controlled by |[|hol|ya+1 and [|hy|xa, so
" P
it can be controlled by C(eg, d)e, where C(ep,d) is a constant depending only on d
and €g.
The estimate of E‘gin (t, ¢, 1) is exactly the same, and we omit the details.
The estimate of on off ,; is similar. By the same energy estimate, we arrive at the
following estimate:
d
(8.1.8) G F 1 (5,010 08 1) < Ol Q" Frl s es)
+ CH ahQIz H® B’ aa’aﬁl]gz+1||L2(RS)

+CY ||VHY (h)
apf
where Fr denotes the right-hand side of (8.1.1c). Then, also by Lemma 8.1.1 and
(8.1.4¢) and the same calculation in the estimate of hzg,ﬂ'l,

HL"O(R3)E (@6119129;“)7

d
ET
In,Kk 2

Now we begin to make the choice of the couple (Ag,Tp) such that when A < Ay,
T < Tp, (8.1.6) implies

(t05) S B 4(0,g5,0)e 0D 4 ge(ClodAc 1) O

W s + 10605 0] < A
(8.1.9) H%l M pger + 1060511 (8 )| g < Ae
lohsr(t M pas + 1901t ) g+ 572 a8 ) < Ae
on the time interval [0, 7.
LEMMA 8.1.5. — There exists a couple of positive constants (g, Ao(€o, d)), where €g

is a universal constant and Ag(eq, d) is determined by d and ey such that when (8.1.2)
is valid with A > Ao and Ae < €9 <1 on the time interval [0,T] with

In (14 (2C(eo,d)) ™)
Cleg,d)Ae ’
where C(eg,d) is a constant determined by €y and d. Therefore, (8.1.9) hold.

TST()Z:

Proof. — By Lemma 8.1.4, we chose Ag(€g,d) and T such that when A > Ay(eg, d)
and ¢t <T
C(Go,d) (eeC(eo,d)Aet + AG(eC(eo,d)Aet _ 1)) S Ae.

This can be guaranteed by

eC(€07d)A€TO _ 1 S 1 , ec(Eo,d)AETo S A
20(60, d) 20(60, d)
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100 CHAPTER 8. PROOF OF THE LOCAL EXISTENCE

which is equivalent to

In (1 + (2C(eo,d))™1)
T's C(eg,d)Ae

A > 2C(co, d) + 1.

In (14 (2C(eo,d)) ™)
C(eg,d)Ae

Then we can take Ag = 2C(eg,d) + 1 and Ty =

Then we are about to estimate the €_; norm of hZ’”H.

LEMMA 8.1.6. — There exists a positive constant ey such that if (8.1.2) holds with
d >3, A> Ay, Ae < ¢y on the time interval [0,T), T < Ty, where (Ao, Tp) are
constants determined in Lemma 8.1.5. Then the following estimate holds:

(8.1.10) B 1t )|, < Cleo)T?(Ae)® + C(T + 1)e.

Proof. — We will apply (7.3.5), and we note that
Ohyy ™ = Fy — H? 005 h5
Then by (7.3.5), we have

t
i, < 00 [ 1Pl dr
t
cors [ a,0uns a0

+ O[5 O, +HIVAZET O] ,):

Then we can apply on each term the global Sobolev inequality (7.2.1) to get estimates
on the €_7 norms:

IFulle_, < CllFullx2 < CllFullp= < Cleo)(Ae)?,
where we used (8.1.3a) and (7.2.1). We have
1 Do O s T (8 ey < IHEP |l oy - 10 Dby 2
< CIHP|| gz, - 15 s
< Cleg)(Ae)?.

Here, we used Lemma 8.1.5.

The initial terms ||h}) "+1(O z)|le_, and [[Vh}; 7+ 51 are determined by the ini-
tial data hg and hi, hence, can be controlled by C’e where C' is a universal constant.
So we conclude with the desired result. O

Now we can conclude that, with suitable choice of A and T and sufficient small €,
the sequence {S,} is bounded with respect to the norm ||. || xa+1- More rigorously,
the following proposition.
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8.2. CONTRACTION PROPERTY AND LOCAL EXISTENCE 101

PROPOSITION 8.1.7. — There ezists a couple of positive constant (A, T') depends only
on €, € and d such that if (8.1.2) holds on [0,T], then

(8.1.11) IS5t | parr < Ae < €9 < 1,

which means that the sequence of triple {S} is bounded in the Banach space EIT1.
Furthermore T — oo, if € — 0.

Note that the choice of (A,T) are independent of k.

Proof. — By Lemma 8.1.5, we take already A > Ag(eg,d) and T < T such that
(8.1.9) holds. In order to prove (8.1.11), we need only to guarantee, by (8.1.10), the
following inequality:

C(e0)T?(Ae)? + C(T + 1)e < Ae.

This can be guaranteed by

A 1
T<-—-1 and T?°< ——.
- 2C o ~ 2C(eg)Ae
So we require that % — 1 > 0. Taking into consideration of the conditions in

Lemma 8.1.5:

In (1 + (2C (e, d)) ™)

A= Ag(eo,d) =2C(e0,d) +1 and T <Tp = C(eo,d)Ae
0

together withe the condition Ae < €y. So we see that when e sufficiently small such
that

Ap(eo,d) < 6067%,

we can take A = ege~3 and T = min{A(2C) ! — 1, (2C(eg)Ae)~2,Tp}. Then there
exist a constant C’(eg, d) such that T' > C'(eg, d)e~ 3. This proves the desired result.
O

8.2. Contraction property and local existence

To establish theorem 6.5.1, we need to prove that the sequence {S}} is contracting.

PROPOSITION 8.2.1. — Let (8.1.11) holds with (A,T) determined in by Proposition
8.1.7. Assume that d > 4. Then there exist a time interval [0, T*] determined by €q, €
and d such that the sequence {Sy} is contracting in the following sense:

(821) ” ',rj-f—l - SS”L‘”([O,T*];X;’) < AHSZ(t’ ) - S—l(tv ')HLOO([O’T*];X’%)'

with a fived 0 < A < 1. Furthermore, we can take T* such that T*(e) — 400, when
e—0t.
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102 CHAPTER 8. PROOF OF THE LOCAL EXISTENCE

We emphasize that here the lower bound of the life-span-time T given here does
not depend on the coefficient «.

The rest of this section is mainly devoted to the proof of this proposition. To do
so, we start by taking the difference of between the iteration relation for the pair
(Syi1,Sy) and that of (Sy;, Sy;_;). This leads to the following differential system

n n—1
(8.2.2a)  (m*? + H*P () Oar O (hig = RIZE)
— (Ha'ﬁ’(hf:l_l) N Ha'ﬁ'(hfL)) &X/aglhg’g + FH(SS) — FH(Ss_l),
(8.2.2b)  (m®% + HYP'(h5)) Bor O (054, — 61
— (HO/B/(hgfl) _ Ha/ﬂ/(hf;)) 8a/85/¢2 + FP(SZ) - FP(SS,l),
(82.2d) (m®" + HYP (h)) 0urDpr (0511 — 0F)
_ (Ha/[ﬁ/(hz_l) _ Ha/ﬁ/(hz)) aa/aﬁlgz —+ FR(SZ) — FR(SZ—I)’
with zero initial data
hEdTH0,2) = W5 (0,2) =0, O (hf ™+t = ) (0,2) =0,
¢Z+1(07w) - ¢g(0,$) =0, O (¢Z+1 - (ZSZ) =0,
QfL—i—l(O?x) - QTNL(07I) = 07 8t (Qn—l-l - Qn) (071') =0
For simplicity of expression, we denote by Dy (Sp,Sn—1) the right-hand side of

(8.2.2a), by Dp(S,,Sn—1) the right-hand side of (8.2.2b) and by Dg(S,, Sn—1) the
right-hand side of (8.2.2d). We need to estimate

hos ™ = hei g Nohes = dhll

N

(8.2.3)
n+1

lefirs = onll g 1as ™ = has e, -

First we recall the uniform bound of the sequence constructed in the last subsection:

(824) ||Sz(t, )||Eg+1 S A6 S €0 S 1

with d > 3 for 0 <t < T. We observe that this condition is equivalent to (8.1.9) for
all n € N*.
Now we will make a series of estimates to bound the norm listed in (8.2.3).

LEMMA 8.2.2. — Let {S;i} be the sequence constructed by (8.1.1) which satisfies the
uniform bound condition (8.2.4) with d > 4. Then the following estimate holds for
|1+ [I2] <d —1:

(82.5) |[0"Q"*Dpy( ,’§+1,S,§)(t,.)||L2(R3)gC(eo,d)AeHS,*;(t,.)— " (t,.)||Eg.

n—1
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8.2. CONTRACTION PROPERTY AND LOCAL EXISTENCE 103

Proof. — This is guaranteed by (7.5.19) and (8.1.2). Recall that
Dy (Sn, Sn1) = —(H*P (h5) = HYP'(h_,)) 00 O hls
+ (Fap(hyy, Ohiy, 0hy) — Fop(hn1,0hy,_y, 0k )
— 167 (00507 — Oatp_105¢n_1) — 12(0aldp0r — acr_19507 1)
— 5 (Vi03) (map + h5) = Vil05-1) (mas + b5 ™) )
— T+ Ty + T3+ T
We observe that [|Ti[|ga is bounded by C(eo, d)Ae|[hy — hy_ |l x4 -

||6I1 QIle ||L2(R3) < Z Ha.h 072 (HQ’B/(h,:L) _ HQIB,(hgil))a.]{Qjéao‘laﬁ/hggLHL%R?’)'
Ji+Ji=I

J2+Jé212
When |[Ji|+ |Ja| <d—3,d—1>|J| + | 4| > 2,
||8J1 QJz (HO/B/ (hfl) . Ha/ﬁ/(hzil))aJ{QJéaa,aﬁ,hZ’g
Ji0J o'B 1k o'B 1k
< /05 (7 (1) — Y (1)) | e
< Cleo, d)||hy; — by 1l g, - ||h2bn||E;g+1
< C(eo, d) Ael|hy; — h2—1||EgI
< Cleo, d)Ae|| Sy, = Sy 1l e,
Where (7.5.18) is applied.
When d —1 > |Ji|+ |Jo| > d—2, we have 0 < |J{| + |J}| < 1. Then recall that d > 4,
|Ji] +|J5| +1 < d—2. Then
[077 (H* 7 (hyy) = HP (B 1)) 071927200005 BTE || o sy
<[ toh (B (0 = HYP (W) | o s
< Cleo, AW — by |l pg, - 1|07 Q72 00 O his
< Cleo, )15 — Sp-1llge - HhZ}?HEg,
< Cleo, d)Ae|| Sy = S5 1l e,
where (7.2.1), (7.5.17) and (7.1.7a) are applied. Note that since of the term with
second order derivative 8a/85rh2g, we can only bound the £ norm, i.e. one order of
regularity is lost.
The E? term Ty and T3 are bounded by (7.5.12) and (8.2.4).
We should pay additional attention to the term Tj:
w1 (Vi(eR) (mas + heg) = Valehi-1) (map + hig ™))

The E? norm of this term can be bounded by C(eg,d)(Ae)?2. This is garanteed
by (7.5.4) and the assumption

k3| 0f | xo < Cleo, d) Ae

2 ey

|8J{ QJéaa’aB’thL HL?(RS)

(0719700 05 |,

I
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104 CHAPTER 8. PROOF OF THE LOCAL EXISTENCE

deduced from (8.2.4). O

LEMMA 8.2.3. — Let {SF} be the sequence constructed by (8.1.1) which satis-
fies the uniform bound condition (8.2.4). Then the following estimate holds for
||+ 2| <d-1:

a'B 1k Kky,n+1 K,n
(8.2.6) [0, HP (1) 0005/ ] (i ™ — W) o e

< C(eo) Ae||hlss AR e

Proof. — We perform the same calculation as in the proof of Lemma 8.1.2:
Hah QIQ’ Ha/ﬁ,a ’85’] (hf%’ﬂ'f‘l _ hﬁ,n) ’

< 3 PRQBEY | (0,0 0,07 0 (W — B
Ji+Ji=I
[J2|+1J5]<| 12|
o8, a
7! / ¥-u . 1 ’
£ ST OHQBHY | 0,050 Q7 (WIS — )|
JlJrJ{:Il
JatJy=1I2
[J11+]J3]>0

=: T1 —|—T2

To estimate T}, we observe that since |Ji| + |J5| + 2] + | 5| < d — 2, by (7.5.8)
and (8.2.4),
07272 H P (S| o gy < Cleos d) Ae
and also since |Ji| + |J2| < d —2:
I J K,n+1 K,
|Oar 000" Q% (55T = hiE)

HL2(R3 <C||hkun+1 hnn”Ed

Then we see that
||11HL2 R3) < C(GO)AE Hhaﬁbn ! - R nH d -
= EY

The estimate on T is established in a bit complicated. We see that |J;|+|J2| < d—2
in Ts, so

000007 0% 5 = Wy < CINEE™ = HF

(R3)
When 1 < |J{|+|J5| <d—1

[0 B (S| o sy < Cleo. d) Ae,
where we used (7.5.8) combined with (8.2.4). O

Now we are ready to estimate the term Hh” mtl e ”HEd
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LEMMA 8.2.4. — Let {SE} be the sequence constructed by (8.1.1) which satisfies the
uniform bound condition (8.2.4) with d > 4. Then the following estimate holds:

d — K, K,n
(8.2.7) EEgn 1, (ha’,;fl —hig)) < Cleo, d)Ae ||Sn(t,.) = Snalt, .)HEg

+ Cleo, d)AeEg (£, (W75 = hE)).

Proof. — We differentiate the equation (8.2.2a) with respect to a product 9/1Q'2 with
|I:] + |I2] < d — 1. Recall the relation of commutation, we get
(moﬂﬁ/ + Ha/ﬁ/ (hz))aa/aﬂ/aflgfg (hggl'i'l o thL)
= 0"Q" ((HP (h_y) — HYP' (b)) 00r O hLZY)
+01 Q" (Fu(Sy) — Fu(Si_1))
— [Pt B 9,05 ) (W - BEE).
Then we apply (7.3.7),

d

LBy (1 0M R ()

§C||8“QIZDH(SS, Z—l)||L2(R3)
[ 107", HY P (1) D ) (W5 = ) | L2y

+ Y NVH T ()| o sy B (6,0 (WG = REE).
o ,B’
Note that by (7.5.8) and (8.2.4),
[ H G

)HLOO(Rs) < C(eo, d)Ae

Then by Lemma 8.2.2 and 8.2.3,

d

= Fon (t, 0" Q" (R — hiE)) < Cleo, d) Ae||Sn(t,.) — Sn-1(t, .)||Eg

+Cleo, A ny 5™ = hii | s
+ Cleo)Acky, (£, 00 QW5 — hig)).

Then by taking the sum over all the pair of multi-index (I3, I3) with |I1|+|2] < d-1,
and observe that (by (8.2.4)):

1 : - 1 :
5™ = gl sy < Cleo,d)BG 7 (8 (MG — hiE)),s
and the desired result is proven. O

The estimates on ( il qﬁ,"”;) and (g,"fb 11— gfL) are established in the same manner.
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LEMMA 8.2.5. — Let {SE} be the sequence constructed by (8.1.1) which satisfies the
uniform bound condition (8.2.4) with d > 4. Then the following estimates hold:

d
(8.2.8a) aEgn—l(zt,( ror— 08) < Cleo, d)Ae|Sn(t,.) — Sni( HEd
+ CV(Eov d)AEEgJI( ) ( n+1 ¢Z))a
d - K K
(828b) EEZ i,% (ta (Qn—i—l - Qn)) < O(Eo, d)A€||Sn(t7 ) - Sn 1 ||Ed

+ Cleo, JAET (¢ (&1 — 07)-

At this juncture, we can finally estimate the £_; norm of (hZ’gH - hzg)

LEMMA 8.2.6. — Let {SE} be the sequence constructed by (8.1.1) which satisfies the
uniform bound condition (8.2.4) with d > 4. Then the following estimate holds:

(8.2.9) Ihes ™ = b e, < Cleo)tAe|[ Sy — S| -

Proof. — We are going to apply (7.3.5). To do so we need to establish the following
estimates:

(8.2.10) || HYF (hF)0u O (Hs ™ — < Cleo)Aellhify ™ — Wl g

e,

(8.2.11) | Du (S, Sk < C(eo)Ae||S — S

e, n1l g
We see that (8.2.10) follows from (8.2.5) and (7.2.1). To establish (8.2.10), we see
that .

[H P (h) 0 O (W5 = B ||

< NET e, - 10w B (g™ = BEE)
< Cleo) AR = W 1,
where (7.1.7) is applied. O

(R3)

Proof of Proposition 8.2.1. — We integrate (8.2.7), (8.2.8a) and (8.2.8b) and get the
following estimates:

(82.12a)  EI-(¢,

(hn ;n+1 e n)) < (eC(eo,d)Aet _ l)HSZ _
(8.2.12b)  ELM(t, (g5, — ¢f)) < (eCloDAt )]s — g
(t,

Sn_1 HLOO([O,T*];EZ)’
SR Fp——

)) < (eC(eo,d)Aet . 1)”52 S

_1 K
(8.2.12c) EX L3 mtll o o 7y

Qn+1 — On
Recall that the metric gy, is coercive with constant C'(ep). We have
[Sns1(ts) = Su(t )l ey
< Cleo,d)max { Eg* (t, (05" = b)),

o (b (G — 03)), B hmb (6 (050 — 0) }-
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Then we conclude with

(8.2.13) 1Sh4+1 = Shll Lo jo,7+);E4)

< Ceg, d) (eCle0DAT" _ 1| g5 — ST’jleLw([O,T*];Eg).

Then if we choose

then
A= el =1 <

which satisfies the contraction condition. Furthermore, recall that in Proposition 8.1.7
we can take A = eoe’% and T > C'(e, d)e*% when e sufficiently small. So here we can
also take T* = C"(eg,d)e 3 for e sufficiently small. This leads to the limit of 7™ (e)
when € — 07. O

Now we apply Banach’s fixed point theorem and see that {S/} converges to a triple
Sk = (h", ¢, 0") in the sense of L>([0,T*], E). Then we will prove that S* is a
solution of (8.1.1).

PROPOSITION 8.2.7. — When d > 4, the function S* constructed above is a solution
of (8.1.1) and, furthermore, for k <d

hg,@ € C([O’TOLE?{)’ af{chﬁ,@ € C([OaTO]’Eg’_k)v

[0

¢* € C([0. 7o), EF),  9fhiys € C(10,To), B "),

e

0" € C([0,To), E}), OFhis € C([0, Ty, L),

[0

with, in addition, ||S"(t,.)||gs < Ae with 0 <t <T™.

Proof. — The proof is based on taking the limit in both side of (8.1.1). The con-
vergence of {S%} in sense of L>([0,7*]; E%) can guarantee the convergence of both
sides of (8.1.1). Recall that the sequence {9;0;h,);'} also converges in the sense
L>(]0,T*]; E4~2) and so does {0:0;¢%} and {0:0;0%}.

The convergence of {S%} in E¢ guarantees the following convergence (remark
that k < 1):
hig = hog 0 L0, T7); Bfp),
Vhyd — Vhig in L=([0,77]; B4,
o = @™ in L2(0,T7]; Bp),
Vg - Vr in L2([0,T7); B4,
on = " in L((0,T"]; Bp) N L= ([0, T} B,
Vol — V& in L=([0,T*]; E471).

(8.2.14)
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Here, V denotes the spacetime divergence. By Sobolev embedding (d — 1 > 2), {h%},
{V¢r} and {05} converges in L>([0, 7] x R3). Furthermore, we have

010:hy — 0, hlyg in L([0,T7]; B472),

OpOuhlyy — 0,0,hfg in L=([0,T%]; E*2)

D10, — D10, ¢" in L([0, T*]; E4~2),

0x0a 0y — 0x0:¢" in L([0,T7); B72)

010:h%5 — 00, hlyg in L=([0,T7]; B472),

OpOuhlyy — 0,0.hfg in Lo([0,T%]; E2).

These convergence properties are sufficient to guarantee the convergence of both side
of (8.1.1) since both side depend linearly the terms with second order derivatives.

(8.2.15)

And the lower order terms converge in L°° sense. O

Proof of Theorem 6.5.1. — We have checked that the triple S* is a local solution of
(6.2.4). Furthermore, we notice that the lower bound of life-span-time T constructed
in Proposition 8.2.7 does not depend on x. The estimates are established by taking
the limit of the (8.2.4). O
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CHAPTER 9

COMPARING THE f(R) THEORY TO THE CLASSICAL
THEORY

9.1. Statement of the main estimate

In this section, we compare the solutions given by the f(R) theory with the solu-
tions of the classical Einstein theory. We denote by S® := (hag,®) the triple deter-
mined by the Cauchy problem:

(9.1.1a) (m®P" 4+ H?' (1)) 0o O havs = Fap(h, Oh, OR) — 167006 D56,

(9.1.1b) (m®% + HYP (h)) 0o 06 = 0,

with initial data
ha (va) = hOa 3 atha (O,Z) = hloz )
(9.1.2) { ’ g ’ g
¢(O,$) = ¢07 6t¢(07 I) = ¢1-
This limiting problem is defined by replacing p* by 0 in our formulation (6.3). As
before, if the initial data satisfies the corresponding constraint conditions, then
JaB = Mag + hap and ¢ satisfy the classical Einstein’s field equation coupled with
the massless scalar field ¢. For the convenience of discussion we introduce the norm

IS0l aer := max (hows s I rasllces 9ol e, Irllxa)-

PROPOSITION 9.1.1 (Local existence theory for the classical gravity system)
Suppose that (hoap, h1ag) € X}?‘l x X% and (¢o, ¢1) € Xj'i“ x X and with
d > 4, and denote by Sy = (ho, h1, ¢o, $1) and assume that for a sufficiently small g

[S0][ xarr Se<en<1.

Then there exist positive constants A, T* determined from €y, € and d such that the
Cauchy problem (9.1.1) with initial data So has a unique solution (hag, ¢) in the time
interval [0,T*]. Here

hap € C([0,T*]; Efy) and ¢ € C((0,T*]; E}).
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When € — 0%, we can take

lim T = +o0.

e—0t

Furthermore, in the time interval [0, T*], the local solution satisfies the estimates

(9.1.3) hasll gy + 1] 5 < Ae.

The proof is similar to that of Theorem 6.5.1: we make an iteration and estimate
the sequence constructed by this iteration and we prove that with suitable choice of
(A, T*), this sequence is contracting. The details of the argument are omitted.

Let So = (M, M0 90, #1) be an initial data which satisfies the Einstein’s con-
straint equation (2.2.17) and S1 = (hoag, h1ags P, #1, 00, 01) be an initial data which
satisfies the nonlinear constraint equations (5.2.1) and (5.2.2). Define the following
function D, (So, S1):

(S0, 1) = mac { ||y — howsl| gt 1 = Prasl o

68~ all g

68— doll g

QOHX;“’ 91HXd7 Ko HQOHXd}'

Denote by

SO(t) = (h2s(1),6°(1))
€ C([0,T7); X)) N CH([0,T]; X7 1) x C([0,T*); X)) n CH([0, T]; X7 1).

the local solution of Cauchy problem (9.1.1) with initial data S°(0) = Sy, and
Sn(t) = ( §B7¢K’QI{)
e C([0, T*); X&) n ([0, T]; X471 x ([0, T*]; X&) nCH([0, T]; X&71)
x C([0,T7); Xp) N CH([0, T); X5~ N C([0, T X5 7).

We introduce the “distance” from S° to S*:

d
DS, 5%)(t) = Z Ihas — haglles, +16° = ¢" gy
apf
and we are ready to state the key estimate derived in the present work.

THEOREM 9.1.2 (Comparison estimate). — There exists a positive constant ey such
that if

ma {[|S1] g [Soll o} <€ <eo <1

(with d > 4), then in the common interval of existence [0, T*] (which depends only on
€, €0 and d), the following estimates hold:

(9.1.4) DS, 8%)(t) < Cleo, d)(D7H(S%, 87)(0) + (ES 24 (0, 0))? + K2 (Ae)).
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9.2. Derivation of the comparison estimate

The proof of Theorem 9.1.2 requires better estimates on [|g} || xa-1. First we
establish an improved bound on the L? norm of 9,01 Q2 p*. The following lemma is
immediate from (6.5.2c).

LEMMA 9.2.1. — Let S = ( %,(ﬁ“,g“) be the solution of Cauchy problem (6.2.4)
with d > 4. Then the following estimate holds for all |I| + |I3] < d — 2:

(9.2.1) Kk™2)0,01 Q1 0| L2 sy < Cleo, d) Ae.

LEMMA 9.2.2. — There exists a positive constant ey such that if (8.1.2) holds for
d >4 and Ae < €q, then

(922) Hgﬁ(tv ')HQEd*2 § H%C(GOa d)t(A€)3 + C(GOa d)/‘i(Eg;g% (Oa QH))Q'

Proof. — We derive an energy-type estimate by differentiating (6.2.4c) with respect
to 011 Q%2 with |I;] + |I2] < d — 2. Similarly as in the proof of Lemma 7.3.4, we have

8t311 QIQ QH (gaﬁaa868119[2 QH . 3571811 QIQ QH)
— %ao (900(80811 ng QN)Q o gabaaall QIQ Qnaball QIQ Qn) o %80 ((3/1)7%8[1 QIZ 95)2
+0a (97701 Q12 0" 0501 2 0%) + 50,977 9,01 Q2 0" 950" Q12 0"
— Do g*P 00" Q"2 0790 Q12 o
For simplicity, we set v = 0710212 p* and obtain
O (01 Q2 Fr(h”, ¢", 0™))
= %& (goo(atv)2 - gabaavabv) - %@((3/{)7%1))2 + 0, (g“ﬁatvﬁgv)
+ %ﬁtgaﬂaavagv — 04 gaﬁatvagv.

Integrating this equation in the region [0, ¢] x R3 and using Stokes’ formula, we obtain

(9.2.3) /Ot /]R (01 Q2 Fr(h”, ¢", 0")) dzdt
=3B, (60" e")" — (B 4(0,0"0"0")"
+ /Ot /R3 (%Btgaﬁaavagv — 9, gaﬁatvc?gv) dzdt.
Then by (7.5.4), (7.5.9), (9.2.1) and (6.5.2), we see that
’/Ot /R atv(aIIQI2FR(h”,¢”,g"))dxdt‘ < Oleo, d)t(Ae)3k?
then, by (6.5.2) and since d > 4,
1009 | L= (re) < Cleo)llhagll pa-1 < Cleo)Ae,
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and thus
’ /Ot /Ra (10,9°° 000050 — 04 gaﬁatvaﬂv)dxdt' < C(eo, d)t(Ae)3k.
Combining the above two estimates together with (9.2.3), we find (with 0 < k < 1)
(Eg,n_%(t,ﬁllf)I?g“))Z < (Eg,n—%(o,ahgfzg,{))z + Cleo, d)t(Ac)rt.

In view of the definition of Eg 1 (t,u), this leads us to

_ © 1 1 5 K\\2 1
kY01 Q%2 (t,.)||%2(R3) < Cleo, d) (Eg =1 (0,0107 0™)) + C(eo, d)t(Ae)?k .
O

Proof of Theorem 9.1.2. — By taking the difference of (6.2.4a) and (9.1.1a), and the
difference of (6.2.4b) and (9.1.1b), we obtain

(9.2.4a) (m®' + HYP (1)) 000 (W5 — hE )
= —(H"P' (%) — H*P'(h*)) 00 Ot
+ (Fag(h®,0n°,0h°) — Fo5(h”, 0", 0R"))
— 167 (909" 05¢° — 009" 930")
+ 12000 050" + £~ Vi (0") (map + his),
(9.2.4D) (m®? + HY'(1°)) 00 0 (6° — 6%)
= —(HP'(h%) = HP' (h")) 0o O 6"
—2(m™? 4 HYP' (1)) 00 ¢ D 0"
We are going to derive (9.1.4) from these two equations. The proof is quite similar to

that of Lemmas 8.2.4 and 8.2.5.

Step I. L?-Type estimates. Let us begin with the F%? norm of (hgﬁ - h’;ﬁ). Let
(I1, I2) be a pair of multi-indices with |I1]| + |I2| < d — 2. We differentiate (9.2.4) with
respect to 911 Qf2:

(m®? 4 HYP' (h0)) 809501 Q"2 (W05 — D% 5)
= 9l Qk ((HY (h°) — HP (h*)) 0o 9 hE )
+ 0" Q" (Foap(h®, 0h°,0n°) — Fop(h™,0h",0h"))
— 1670 Q"2 (0,8 05¢4° — 000" 050")
— [0 Q" HYP (1) 0] (B0 — his)
+ 120720 (0507030") + 1O Q" (Vi (0") (map + hi3s))
=T +To+ T35+ Ty +T5 + Ts.
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Then combined with (7.3.7),

d K
(9.2.5) I Eg(t,0mQ" (hd5 — hiis))
< CZ 1Tl + C 3 [ (W] oy B (8, 07 27 (B = i)

=1 o,

We will need to control the L? norm of these T for ¢ = 1,...,6. The term 7; for
1 =1,2,3,4 can be bounded as follows:

(92.6) [ Tillr2(re) < Cleo, ) Ae (A = h"| gar + [Ih° = h*]| ga-1[6° — 6" pa-1)
< C(eo,d)AeDI(S0, S%)(1).

The proof is exactly the same to the one of (8.2.5) and (8.2.6) and we omit the details.
The key terms Ty and Tg are bounded as follows:

{ ||T5HL2(R3) < C(Go7d)I{(A6)27
IT6]| 2 (23) < Cleo, d)r? (Ae)* + Cleo, d) (ES21(0,07))>.

The estimates on T5 and T is related to the refined estimates (9.2.1) and (9.2.2). More
precisely, T5 is estimated by (7.5.4), (6.5.2b) and (9.2.1). The term Tg is estimated
by (7.5.4) and (9.2.2).

Next, we combine together the above estimates on T; and observe that

(9.2.7)

[H (R0)]] o < Cleo)Ae
and
Ey(t,0007 (K2, — 15,)) < Clen, dyDO=(5°, 5%)(t).
We can thus deduce from (9.2.5) that

(9.2.8) %Ej 2(t, (hQ5 — hg)) < Cleo,d)AeDT(S0, S5 (1) + Cleo, d)k* (Ae)?

+ C(e0,d) (ES23(0,0M))°,

where we recall the definition

(S0, §%)(t Zuh Bsllg + 16° — 6"l g

The estimate on the norm [|¢” — ¢'[| x4 is similar to that of h” —h* (even simpler).
We claim that the following estimate on the right-hand side of (9.2.4b):
(9.2.92)  ||(H*7(h°) — HYP'(h")) 00r 000" || pu» < Cle0) A€ — B g
(9.29b)  [|(m®® + H® (1")) 000" 050" | pa_» < Cleo)r? (Ae)?.
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The first can be proved exactly as in the proof of (9.2.8). The second one is proven
as follows: for any (Iy,I3) with |I1]| 4+ |I2] < d — 2,

072" (m®? + B (1)) 0ad" 930" )|| 2 2
< D 0RRm + HOP ()| e o) - 107127 (a6 050" 2 s

ST =1
Jat+Jhy=I>
< Cleo,d) Y [|07127(020"050") | 1o e,
i+ <2
< C(eo, d) Z Z HaKlQKzaa(bRaf{QKéaﬁgﬁHLz(Rﬁ)

Ki+Kj=J;
|J1H‘|J2‘<d 2 Kot Ky=J)

Then, when |K;| + |Ka| < d — 3,
K1 K kK1 K} K KK K K| K} K
|01 Q20,67 0" 10" 200 HL2(]R3) < [|o" Q"2 0.0 HLoo(JRS)H8 12720950 HL2(R3)
< Cleo, d) Ael| " || pa—r
< Cfep, d)r? (Ae)?.
When |K;| + |K2| =d —2 and K{ = K} = 0, recall that d > 4:
KK Kk K1 0K} K K1 K K K
|05 Q"2 0,67 0" 10280 ||L2(]R3) < [|o" Q"2 0.0 HL2(R3)H85Q ||L°°(]R3)
< Oeo, d) Ae||0"|| puer < Cleo, d)r* (Ae)?
So we conclude with (9.2.9b), and combined with (7.3.7),

d

(9.2.10) EE;H(L (¢° = ¢")) < Cleo,d)AeD7H(S, §7)(t) + C(eo, d)r? (Ae)*.

Step II. Estimate of the E_; norm. To do so we rewrite the equation (9.2.4a) into
(9.2.11)  O(hQs — htig) = —H*P (h°)00 0gr (hS5 — hE )
— (HP () — H ﬂ’(hﬂ))aafaﬁlhﬁ
+ (Fap(h®,0n°,0n°) — Fo5(h”,0h",0h"))
— 167(9a¢°950° — 009" 050")
+12000" 050" + K™ Vi (") (Map + hisp)
=To+T +To+T5+ Ty +T5 +Ts.
By (7.3.5) we need to control the £_; norm of the terms T; for i = 1,...6. By (7.2.1),
we need only to control the X2 norm of these terms. Recall the condition d > 4, then

d—2 > 2. So we only need to control the X% 2 norm of these terms. Note that in
Step I we have already controlled this norm for the terms 7; with i > 1. Now we
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only need to control the X2 norm of Ty. Let (I, 5) be a pair of multi-indices with
|I;] + |I2] < 2. Then, we have

072 Q"2 (P (1) g (W5 = 1)) || o s

< Y ol (H (1)) Q% e 05 (h — 1)) || 2 s,

J1+J{:Il
J2+Jé212
JioJ2 pre’ B (1,0 J1 0, 0 K
< D 07 ES T OO oy 1057272000 0 (g = hize) | 2 s
Ji+J1=I
J2+Jézlz

< Cleo)[[h®llxa - [A° = h" |l gy, < Cleo)Ael|n® — h¥| a-s.
Then by (7.3.5), the following estimate on €_; norm holds:

(9-2.12)  ||hgs(t,) = hea(t, )|

t
< C(eo)tAe/ DS, §)(7)d7 + C(L+ ) (11,5 — hoaplls1)-
0

Step III: Conclusion. Now by integrating (9.2.8) and (9.2.11), we get the estimate:
(9.213a)  EJ3(t,hds — hiis) < ES2(0,h05 — hiig)
t
+ C(eo7d)Ae/ D89, S%)(r)dT
0

+ C(eo, d)R? (A€t + Cleo, d)t(EL2 3 (0, 07))
(9.2.13b) EI72(t,¢° — ¢") < EZ2(0, (¢° — ¢"))

t
+C(eo,d)Ae/ DI1(80, 5%)(r)dr
0

+ Cleo, d)k? (Ae)?t.

Recall that g is coercive with constant C'(ep) when €q is sufficiently small. Then, we
have

(9.2.14) D480 — S7)(t)

< Cleo,d) Y Eg (8, h 5 — hiis)
a,B
+ Cleo,d) D [P0t ) = hEs(t e,
o,

+ Cleo, d) By 2 (t, ¢° — ¢") < Cleo, d)* DTS — §%)(1).
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Then by combining (9.2.12), (9.2.13a), (9.2.13b) and (9.2.14), the following estimate
holds:
(9.2.15)  DI71(S0, 8%)(t) < C(eo,d)(1 + T*)D41(SY, 5%)(0)
+ Ceg, d)T* (B2,
g,k 2

+ C(eo, d)T* k2 (Ae)?

t
+ C(eg, d)(1 + T*)Ae/ Dd_l(So, S™)(r)dT,
0

which yields
DTS, 87)()
< Cleo, d)(1+T) (DS, 59)(0) + (Ed24(0,07)" + ki (46)°)

% eC(eg,d)Ae(l«kT*)t. 0
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We investigate the Cauchy problem for the f(R) theory of modified gravity,
which is a generalization of Einstein’s classical theory of gravitation. The
integrand of the Einstein-Hilbert functional is the scalar curvature R of the
spacetime, while, in modified gravity, it is a nonlinear function f(R) so that,
in turn, the field equations of the modified theory involve up to fourth-order
derivatives of the unknown spacetime metric. We introduce here a formulation
of the initial value problem in modified gravity when initial data are prescribed
on a spacelike hypersurface. We establish that, in addition to the induced
metric and second fundamental form (together with the initial matter content,
if any), an initial data set for modified gravity must also provide one with
the spacetime scalar curvature and its first-order time-derivative. We propose
an augmented conformal formulation (as we call it), in which the spacetime
scalar curvature is regarded as an independent variable. In particular, in the
so-called wave gauge, we prove that the field equations of modified gravity are
equivalent to a coupled system of nonlinear wave-Klein-Gordon equations with
defocusing potential. We establish the consistency of the proposed formulation,
whose main unknowns are the conformally-transformed metric and the scalar
curvature (together with the matter fields) and we establish the existence of a
maximal globally hyperbolic Cauchy development associated with any initial
data set with sufficient Sobolev regularity when, for definiteness, the matter
is represented by a massless scalar field. We analyze the so-called Jordan
coupling and work with the so-called Einstein metric, which is conformally
equivalent to the physical metric — the conformal factor depending upon the
unknown scalar curvature. A main result in this paper is the derivation of
quantitative estimates in suitably defined functional spaces, which are uniform
in term of the nonlinearity f(R) and show that spacetimes of modified gravity
are ‘close’ to Einstein spacetimes, when the defining function f(R) is ‘close’ to
the Einstein-Hilbert integrand R. We emphasize that this is a highly singular
limit problem, since the field equations under consideration are fourth-order
in the metric, while the Einstein equations are second-order only. In turn, our
analysis provides the first mathematically rigorous validation of the theory of
modified gravity.



Nous étudions le probléme de Cauchy pour la théorie f(R) de la gravité mo-
difiée, laquelle généralise la théorie classique de gravitation due & Einstein.
L’intégrant de la fonctionnelle d’Einstein-Hilbert est la courbure scalaire de
I’espace-temps, tandis que, dans la théorie de la gravité modifiée, 'intégrant
est une fonction nonlinéaire f(R), et les équations de champ sont d’ordre quatre
par rapport aux dérivées de la métrique inconnue. Nous introduisons ici une
formulation du probléme de valeurs initiales pour la gravité modifiée, lorsque
des données sont prescrites sur une hypersurface de type espace. Nous établis-
sons que, en plus de la métrique induite et de la deuxiéme forme fondamentale,
il est nécessaire de se donner la courbure de ’espace-temps et sa dérivée pre-
miére. Nous proposons alors une « formulation conforme augmentée » dans
laquelle la courbure scalaire est une inconnue indépendante supplémentaire.
Dans la jauge des ondes (ou jauge harmonique), nous démontrons que les équa-
tions de champ forment un systéme couplé nonlinéaire d’équations d’ondes et
d’équations de Klein-Gordon. Nous établissons une propriété de consistance
pour ce systéme dont les inconnues sont la métrique conforme et la courbure
scalaire, et nous démontrons 'existence d’un développement de Cauchy maxi-
mal lorsque les données initiales ont une régularité de type Sobolev et que
la matiére est décrite par un champ scalaire sans masse. Nous analysons le
« couplage de Jordan » dans la métrique d’Einstein qui est conformément équi-
valente & la métrique physique. Nous obtenons des estimées de type énergie
dans des espaces fonctionnels & poids ; ces estimées sont uniformes par rapport
a la nonlinéarité f(R) et nous permettent de valider rigoureusement la limite
singuliére f(R) — R. Nous montrons ainsi que le systéme d’ordre quatre de
la gravité modifiée converge vers le systéme d’ordre 2 de la gravité d’Einstein.
Ce travail établit donc la validité mathématique de la théorie de la gravité
modifiée.



