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SEMISIMPLE LIE ALGEBRAS AND THEIR
CLASSIFICATION OVER p-ADIC FIELDS

Torsten Schoeneberg

Abstract. — We study semisimple Lie algebras over fields of characteristic zero, with
emphasis on p-adic fields and aiming at classification. We first transfer parts of the
structure theory of reductive algebraic groups to our setting, with some variations.
Classifying invariants are attached to Lie algebras and visualised with Satake-Tits
diagrams. We give necessary and sufficient criteria for these diagrams. Over general
fields of characteristic zero, we then classify all quasi-split forms, and we adapt an
older classification theory for the classical types A-D to our language. Finally we focus
on p-adic fields, where we achieve a complete classification by combination of certain
well-known properties of these fields with our general results and methods, and we
discuss the relation of this with a theorem of Kneser. This extends work by Weisfeiler.

Résumé (Algèbres de Lie semi-simples et leur classification sur les corps p-adiques)
Nous étudions les algèbres de Lie semi-simples sur les corps de caractéristique

nulle, où l’accent est mis sur les corps p-adiques, l’objectif étant leur classification.
Nous transférons d’abord certaines parties de la théorie de la structure des groupes
réductifs dans notre contexte, avec quelques variations. Des invariants classifiants
sont attachés aux algèbres de Lie et sont visualisés à l’aide de diagrammes de Satake-
Tits. Nous donnons des critères nécessaires et suffisants pour ces diagrammes. Sur
les corps généraux de caractéristique nulle, nous classifions ensuite toutes les formes
quasi-déployées et nous traduisons une théorie ancienne de classification pour les
types classiques A-D dans notre langue. Nous mettons enfin l’accent sur les corps
p-adiques, où nous obtenons une classification complète par combinaison de certaines
propriétés bien connues sur ces corps avec nos résultats généraux et nos méthodes,
et nous abordons la relation de ces résultats avec un théorème de Kneser. Tout cela
prolonge un travail de Weisfeiler.

c⃝ Mémoires de la Société Mathématique de France 151, SMF 2017
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To the memory of Michel Lazard and Boris Weisfeiler

[. . . ] Und es starben

Noch andere viel. Mit eigener Hand

Viel traurige, wilden Muths, doch göttlich

Gezwungen, zulezt, die anderen aber

Im Geschike stehend, im Feld. [. . . ]

Hölderlin, Mnemosyne

α1

α2

α = 2α2 + 3α1





CHAPTER 1

INTRODUCTION

In 1964, Boris Weisfeiler published the short note [We1] on the classification of

semisimple Lie algebras over a p-adic field. It is the purpose of this work to explain

this note, append proofs to it, and put it into mathematical context.

Let us first give some mathematical-historical background. The Killing-Cartan clas-

sification of semisimple Lie algebras over the complex numbers C is one of the standard

classification theorems of modern mathematics. Both Killing, who had the results, and

E. Cartan, who gave streamlined proofs in his Thèse of 1894, were interested in “infi-

nitesimal groups” – as they were called then – mainly as a means to study Lie groups.

In this spirit, Cartan also achieved the classification over the ground field R. It is no
wonder that fundamental concepts in the theory are named after them.

Likewise, the Weyl group is named after Weyl, who introduced this powerful tool

in his approach to the subject in the 1920s. Cartan had already reduced the clas-

sification to that of root systems. Whereas he had achieved this classification in a

computational way, Weyl’s methods paved a new route, which was then taken by

Coxeter, Witt and Dynkin. It also became clear that the classification over C really is

one of the split semisimple Lie algebras, which are the only ones over an algebraically

closed field. With the works of Chevalley and Cartier’s “Séminaire Sophus Lie” in the

1950s, this theory seems to have reached its definite form, in which it was presented

in Bourbaki’s fundamental treatment [Bo2] and found its way in many textbooks.

Most mathematicians will have heard of the four classical families A-D and the five

exceptional types E6, E7, E8, F4 and G2.

But Weyl had paved more than one way. He was the one who (orally) introduced the

name “Lie algebra”, and he promoted the subject as a means in itself which could be

treated analogously to associative algebras – which, at the same time, were researched

thoroughly by algebraists and number theorists, over various ground fields. Such a

study for Lie algebras was initiated independently by Landherr [Lan1] and Jacobson

[Jac1] in 1935. Landherr made the fundamental observation that one can start from
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the known classification over an algebraically closed field and then investigate forms

of the respective types: that is, take one type from the Killing-Cartan list and then

find, over your ground field k, those Lie algebras which fall in this type after scalar

extension to an algebraic closure k̄ . In modern terminology, he achieved this a) for

the inner forms of type A over a general field of characteristic 0, and b) for all

forms of type A over R (reproving Cartan’s results) and all p-adic fields, thinking

in the direction of number fields and a local-global principle like the one Hasse had

introduced for associative algebras. Jacobson on the other hand found a method that

could deal with (almost) all the other classical types, i.e. B-D and the outer forms of

type A, over any field of characteristic 0. Both Landherr’s and Jacobson’s approach

can be described as enveloping the Lie algebras with certain associative algebras and

then using known classification results for these. Jacobson and others went on to find

similar approaches to the exceptional types, using various other kinds of algebras.

Meanwhile, after the Lie algebras had stepped out of the shadow of Lie groups, the

theory of algebraic groups had emerged and, with the revolution in algebraic geometry,

soon adopted a generality which left Lie algebras behind. With Weil’s fundamental

paper [Wei], the Landherr-Jacobson approach could be seen as a variant of a special

case of Galois cohomology at work.

Mathematicians now aimed at a classification of semisimple, or more generally re-

ductive, algebraic groups over fields (and then, schemes) as general as possible. It was

certainly understood, not only by Weisfeiler, that by their close connection in char-

acteristic 0, this would comprise the classification of semisimple Lie algebras. Many

people worked on the group case, where the Borel-Tits paper [BT1] was a highlight,

not least because of the generality of the ground field. Although Tits had announced

most of the results earlier, it was Satake who had first published (in [Sat2]) proofs

for some central theorems, at least over perfect ground fields. He would later extend

his approach in [Sat3]. On the other hand, the scope of Tits’ “Table II” in [Tit1]

is intimidating. Satake’s and Tits’ visualisations of the classification are remarkably

similar, and these Satake-Tits diagrams will abound in this work. They are also at

the heart of Weisfeiler’s note.

We proceed as follows.

▷ Chapter 2 collects some preliminaries and gives references for results we will use

freely. In particular, we assume the classification of the split case via root systems

and Dynkin diagrams to be known.

▷ In Chapter 3 we start with the structure theory of semisimple Lie algebras over

any field k of zero characteristic. Our general approach is to translate Satake’s method

to our setting, which is certainly what Weisfeiler did. A central concept are the toral

subalgebras which are the analogue of tori. There is, however, one major deviation from

Satake’s method: namely, we start with a self-contained construction of k-rational root

systems. This generalisation of the well-known split case is due to Seligman [Sel2]

MÉMOIRES DE LA SMF 151
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and more or less straightforward, its most profound ingredient being the Jacobson-

Morozov theorem. Then we translate a bulk of Satake’s and Borel-Tits’ work to Lie

algebras. One major tool is the elementary but fruitful notion of Γ-bases which bring

root system combinatorics in balance with Galois actions. A recurring theme is the

treatment of the relative Weyl group: its realisation as a subquotient of the absolute

Weyl group, and simultaneously as a quotient of certain automorphism groups of the

Lie algebra, is a highlight of this chapter. To achieve it, we use the k-rational root

system and thereby circumvent some technical parts of Satake’s method.

The main goal, however, is to attach two invariants to a semisimple Lie algebra,

its index and its anisotropic kernel. In Section 3.1, we define them and show that

in a natural manner they only depend on the isomorphism class of the Lie algebra.

In Section 3.2 we discuss opposite extremes of these invariants – the anisotropic and

(quasi-)split cases –, which play a major role in the classification, and we give basic

but instructive examples. In Section 3.3 we prove the isomorphism theorem which

describes how the invariants indeed classify semisimple Lie algebras. In Section 3.4 we

finally introduce the Satake-Tits diagrams that visualise large parts of the invariants.

At this point, the reader should be able to read Weisfeiler’s table.

▷ In Chapter 4 we begin to prove its correctness. The question is now largely trans-

lated to: which diagrams can occur over a given field k? It turns out in Section 4.1

that one can reduce this question to connected diagrams. In Section 4.2, we bring

Galois cohomology into play; it gives a powerful tool as well as the clarifying termi-

nology of outer and inner forms of various types. Then we present, in Sections 4.3

and 4.4, some general principles which exclude or produce admissible diagrams, or

certain forms, over any characteristic zero field.

In this generality we also present the classification of the classical types in Sec-

tion 4.5. The key ideas here are still the ones of Landherr and Jacobson, polished in

the spirit of Galois cohomology, so that e.g. the appearance of Brauer groups is not

too surprising. This approach is covered in the textbooks [Jac6] and [Sel1], but we

only follow it for a while. Namely, their classification translates to one of involutorial

algebras, which in turn are classified by certain equivalence classes of (skew-)hermitian

spaces. This is good and fine, but we prefer to classify with the theory of Chapter 3

by assigning the corresponding Satake-Tits diagrams. Proceeding this way, some of

the more delicate uniqueness issues in the associative-algebraic classification can be

avoided. Indeed its full strength will only be needed for inner forms of type A, which

had already been treated completely in Landherr’s very first paper. In Section 4.6, we

discuss and construct all quasi-split Lie algebras, whose classification is equivalent to

that of quadratic and cubic extensions of the ground field.

▷ In Chapter 5 we turn to special fields. The p-adic fields are our primary target,

but it is useful to look first at C1 fields. In the language of Serre’s Galois coho-

mology [Ser3], they are one-dimensional, and with a result by Springer we show in

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017
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Section 5.1 that over these fields all semisimple Lie algebras are quasi-split. Now p-adic

fields are not of this kind – cohomologically, they are rather two-dimensional –, but

their maximal unramified extensions are, and this suffices to show Weisfeiler’s first

theorem:

Theorem (1). — If g is a semisimple Lie algebra over a p-adic field k, then there is

a finite unramified extension K|k such that gK is quasi-split.

This implies that for most forms there exist unramified (in particular, cyclic) split-

ting extensions. In Section 5.2 we classify the inner forms of type A over p-adic fields,

and then discuss Weisfeiler’s second theorem which says that anisotropic forms over

p-adic fields are very rare – we have already encountered all of them:

Theorem (2). — All simple anisotropic Lie algebras over a p-adic field k are derived

algebras of k-division algebras. In particular, they are inner forms of type A.

We connect it with Kneser’s theorem [Kne] about the vanishing of a certain coho-

mology group. On the basis of what we have until there, Kneser’s result implies both

theorem (2) and Weisfeiler’s table, hence the complete classification over p-adic fields.

However, Weisfeiler’s work had appeared earlier, and it is not clear from [We1] how

he arrived at his results, or even whether he concluded the theorem from the table or

vice versa.

We undertake the verification in Sections 5.3 to 5.5. Specifically, in 5.3. we collect

some technical facts and rule out certain anisotropic exceptional forms. In 5.4 we

verify both theorem (2) and the table for the classical types. (1) The special p-adic

ingredient here is a well-known theorem which says that all hermitian, skew-hermitian

and related forms in more than very few variables are isotropic; apart from this, we

only use our general results from Chapter 4. In Section 5.5 we attack the exceptional

types. For some diagrams, suitable Lie algebras are constructed with the techniques

of Chapter 4. It turns out that we can exclude all other diagrams with our general

methods and the results for the classical types – except for the anisotropic ones. To

exclude these, we extend the results of 5.3, which works for almost all the anisotropic

forms. The only ones for which we still have to rely on Kneser’s theorem are one

inner form of type E6, and one trialitarian form of type D4 (although to be fair, the

classification in types E7 and E8 rests on the result for E6).

▷ In Chapter 6 we very briefly address the case k = R and finish with concluding

remarks about other approaches.

1. One outer form of type D2m was overlooked by Weisfeiler, see Section 5.4.4.
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CHAPTER 2

PREREQUISITES

Notations:

▷ n is a (natural) number and p is a prime.

▷ C,R,Q,Z,Fp have the usual meanings, likewise Mm×n( . ), Mn( . ) and GLn( . ).

▷ Fq denotes a finite extension of Fp.
▷ We use Gauß’ floor function ⌊x⌋ and Euler’s totient function ϕ(n).

▷ For a ring R, the group of units is denoted by R∗ or R×. For a vector or matrixX,

the transpose is denoted by tX.

▷ We write In for the unit matrix in GLn, and Eij is the matrix with (i, j)-th

entry 1 and all other entries 0. A diagonal matrix is denoted by diag(x1, . . . , xn).

2.1. Lie algebras and root systems

Definition 2.1.1. — Let R be a commutative unital ring. A Lie algebra over R is

an R-module g together with an R-bilinear map – the Lie bracket –

[. , .] : g× g −→ g, (x, y) 7−→ [x, y]

satisfying, for all x, y, z ∈ g, the relations

[x, x] = 0 and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

We will only deal with the case where R is a field, so that g is a vector space, which

is most often assumed to be finite dimensional. In the following, a ring denoted by

the letter k will always be meant to be a field.

For the concepts of ideals and subalgebras, products of Lie algebras, abelian (= com-

mutative), nilpotent and solvable Lie algebras, as well as the centre z(g), the radi-

cal r(g), and the derived Lie algebra Dg = [g, g], the derived series Dig, descending
central series Cig, and also representations, in particular the adjoint representation,

and the Killing form of a Lie algebra, see [Bo2, I]. For subsets H,K of a Lie algebra,
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[H,K] denotes the subalgebra generated by all [h, k] for h ∈ H, k ∈ K. Further, for a

subset H of the Lie algebra g, we have its

▷ centraliser zg(H) := {x ∈ g : [x, h] = 0 for all h ∈ H}; it is a subalgebra, and if

H is an ideal of g, then so is zg(H);

▷ normaliser ng(H) := {x ∈ g : [x, h] ∈ H for all h ∈ H}; if H is a subalgebra of g,

then ng(H) is the largest among the subalgebras n of g such that H is an ideal in n.

We state the concept of semisimplicity, as well as the stronger one of simplicity

and the weaker one of reductivity. For the assertions in the following, see [Bo2, I.6].

Definition 2.1.2. — Let g be a finite-dimensional Lie algebra over k.

i. g is called simple if it is not abelian and its only ideals are g and {0}.
Now let char(k) = 0.

ii. g is called semisimple if the following equivalent conditions are satisfied:

(a) g is isomorphic to a product of simple Lie algebras.

(b) The radical r(g) is zero.

(c) g does not contain any non-zero abelian ideal.

(d) g does not contain any non-zero solvable ideal.

(e) The Killing form on g is non-degenerate.

iii. g is called reductive if the following equivalent conditions are satisfied:

(a) g is isomorphic to the product of an abelian and a semisimple Lie algebra.

(b) g is isomorphic to the product of its centre z(g) and its derived algebra Dg.

(c) Dg is semisimple.

(d) The adjoint representation of g is a direct sum of irreducible representa-

tions.

(e) Radical and centre of g are equal: r(g) = z(g).

iv. A subalgebra h of g is called reductive in g if the representation h → gl(g),

h 7→ adg h is the direct sum of irreducible representations.

There are no semisimple Lie algebras of dimension 1 or 2, and over an algebraically

closed k there is up to isomorphism a unique simple one of dimension 3, namely, sl2(k).

In a semisimple Lie algebra g, we have well-behaved notions of semisimple and

nilpotent elements, and we have Jordan decomposition: every element x ∈ g can

be written uniquely as the sum x = xs + xn of a semisimple and a nilpotent one

commuting with each other, called the semisimple and nilpotent component of x, re-

spectively; further, adg(xs) and adg(xn) are the semisimple and nilpotent parts of

adg(x) ∈ Endk(g), and can be written as polynomials in adg(x) without constant

term. For all this, see [Bo2, I.6.3] and [Bo1, VII.5, especially nos. 7–9]. (1) A subal-

gebra is called nil if it consists of nilpotent elements.

1. For semisimple and nilpotent components of a vector space endomorphism, the Bourbaki ref-

erence in earlier (Hermann) editions was Algèbre VIII.9.
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We also mention the base change routines that we will often use:

Definition 2.1.3. — Let K|k be a field extension.

i. If G is a Lie algebra over K, then in the obvious way it can be considered as a

Lie algebra over k. Call this Lie algebra RK|kG, the scalar restriction of G to k.

ii. If g is a Lie algebra over k, then the tensor product K⊗k g becomes a Lie algebra

over K when as Lie bracket [. , .]K we take the unique K-bilinear map satisfying

[a⊗ x, b⊗ y]K = ab⊗ [x, y]

for a, b ∈ K,x, y ∈ g. Call this Lie algebra gK , the scalar extension of g to K.

Note that in scalar restriction, the usual assumption of finite dimension of the Lie

algebra only remains intact for a finite extension K|k (or if the algebra is zero).

If h ⊂ g is a subalgebra, we can in an obvious way, and will without further notice,

identify hK with a (K-)subalgebra of gK . Also, we will occasionally identify g with

the (k-)subalgebra of RK|kgK given by 1⊗ g ⊂ gK .

We will use the notion of Cartan subalgebras (cf. [Bo2, VII.2]) which in our case are

better viewed as the the maximal toral subalgebras, see Chapter 3 and especially 3.1.5.

With these, the notions of Borel subalgebras and parabolic subalgebras are defined,

first in the split case (cf. [Bo2, VIII.3.3–4]) and then in the general case as those

that become Borel or parabolic after scalar extension to an algebraic closure (cf.

[Bo2, VIII.3.5]). In particular, Borel subalgebras do not necessarily exist. In fact,

the question of existence of Borel subalgebras will play an important role in our

classification, and we will make use of the results of [Bo2, VIII.10] which very roughly

say that “many nilpotent elements” is equivalent to “smaller parabolic subalgebras”.

The rank rk(g) of a Lie algebra g and the notion of a regular element are defined

in [Bo2, VII.2]. If char(k) = 0, all Cartan subalgebras of g have dimension rk(g), and

they are precisely the g0(x) for regular elements x. Here,

g0(x) :=
{
y ∈ g : (adg(x)

n)(y) = 0 for some n ≥ 1
}
.

For semisimple x, we have g0(x) = ker(adg(x)), and the dimension of this space

is rk(g) if and only if x is regular; else it is strictly larger.

Remark 2.1.4 (Stabilities under scalar extension). — Let K|k be an extension of

fields of characteristic zero, and let g be a Lie algebra over k.

i. We have (z(g))K = z(gK); and for any subalgebra h ⊆ g, we have (ng(h))K =

ngK
(hK), see [Bo2, I.3.8]. (The analogous statement for the centraliser is wrong

in general.)

ii. If κ(. , .) is the Killing form of g, the Killing form of gK is κK(a ⊗ x, b ⊗ y) =

ab κ(x, y), see [Bo2, I.3.8].

iii. The following properties are satisfied by g if and only if they are satisfied by gK :
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(a) Being semisimple, see [Bo2, I.6.10].

(b) Being reductive, see [Bo2, I.6.10].

(c) Being nilpotent, see [Bo2, I.4.5].

(d) Being solvable, see [Bo2, I.5.6].

(e) Being a Cartan subalgebra (of another Lie algebra g′ resp. g′K), see [Bo2,

VII.2.2, Prop. 3].

iv. If gK is simple, g is simple, see [Bo2, I.6.10]. The converse is not true in general,

cf. Section 4.1; at least by the above, gK is semisimple for simple g.

Remark 2.1.5 (Stabilities under scalar restriction). — Let K|k be a finite extension

of fields of characteristic zero, and let G be a Lie algebra over K. Set g := RK|kG.

We have z(G) = z(g). The following properties are satisfied by G if and only if they

are satisfied by g:

i. Being simple, see [Bo2, I.6.10].

ii. Being semisimple, see [Bo2, I.6.10].

iii. Being nilpotent: follows from [Bo2, I.1.9].

iv. Being solvable: follows from [Bo2, I.1.9].

We will make use of the theorems of Engel (cf. [Bo2, I.4.2]), Levi-Malcev (cf. [Bo2,

I.6.8]) and Jacobson-Morozov (cf. [Bo2, VIII.11]) for which, however, we use a slightly

different normalisation:

Definition 2.1.6. — An sl2-triple in a Lie algebra g is a triple (x, h, y) of elements

of g distinct from (0, 0, 0) and such that

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

(Bourbaki’s y is our −y.)

Accordingly, for us the Lie algebra sl2(k) has the standard basis:

X =
( 0 1

0 0

)
, Y =

( 0 0

1 0

)
, H =

( 1 0

0 −1

)
The Jacobson-Morozov theorem states that every nilpotent element x ̸= 0 in a

semisimple Lie algebra g can be extended to an sl2-triple (x, h, y). An sl2-triple in g

is the same as a (necessarily injective) homomorphism sl2(k) ↪→ g and thus a way to

view g as a representation of sl2(k).

From this representation theory (cf. [Bo2, VIII.1]) we use the following. Let E

be a representation of sl2(k), and for an eigenvalue λ of H in E (a “weight”), de-

note the corresponding eigenspace by Eλ. The following facts are stated in or follow

immediately from loc. cit. Proposition 2 and its Corollaire (in particular, part iii is

Corollaire (ii) with 1 = i ≥ p = 2− λ).

Lemma 2.1.7. — Let E be a finite-dimensional representation of sl2(k).
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i. If λ is a weight, then it is an integer, and |λ|, |λ| − 2, . . . ,−|λ| are weights too.

Consequently, the largest and smallest weights are integers symmetric around 0,

i.e. they are of the form λ and −λ for λ ∈ Z≥0.

ii. E is the direct sum of the Eλ.

iii. If λ > 0 is an eigenvalue of H in E, then X maps Eλ−2 onto Eλ.

Another nice application is:

Lemma 2.1.8. — Let h ⊆ g be an inclusion of semisimple Lie algebras. Then every

x ∈ h which is nilpotent in h is nilpotent in g.

Namely, by Jacobson-Morozov, there is a homomorphism sl2 ↪→ h sending X to x,

and viewing g as sl2-representation with respect to this gives that adg(x) = ad(X) is

nilpotent.

For automorphisms of (semisimple) Lie algebras, we follow [Bo2, VIII.5]. In par-

ticular:

Definition 2.1.9. — We have the chain of subgroups Aute(g) ⊂ Aut0(g) ⊂ Aut(g),

with strict inclusions in general, where Aute(g) are the elementary automorphisms,

that is, finite products of

exp(adn) := x 7−→
∑
k≥0

(adg(n))
k

k!
(x)

for nilpotent n ∈ g; and Aut0(g) are those automorphisms that become elementary

after scalar extension to an algebraic closure. For a subset H ⊆ g we set

Aut(g,H) = {f ∈ Aut(g) : f(H) = H, Aut∗(g,H) = Aut∗(g) ∩Aut(g,H)

for ∗ ∈ {0, e}.

We presuppose the classification of split Lie algebras via root systems as in [Bo2,

VIII.4]; also, the matrix description of the “classical types”A-D in [Bo2, VIII.13] or

[Jac6, IV. 6]. For root systems, the general reference is [Bo2, VI]. Let us state some

basics in the following.

Let V be vector space over a field k with char(k) = 0, and let V ∗ be its dual. For

α ∈ V, α∗ ∈ V ∗, we define an element sα,α∗ ∈ Endk(V ) by:

sα,α∗(x) := x− α∗(x)α(1)

If α∗(α) = 2, this is a reflection in the sense of [Bo2, V.2], in particular s2α,α∗ = idV .

Definition 2.1.10
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i. A root system (in V ) is a subset R ⊂ V that satisfies:

R is finite, generates V , and 0 /∈ R.(RS1)

For all α ∈ R, there exists α̌ ∈ V ∗ with α̌(α) = 2 and sα,α̌(R) ⊆ R.(RS2)

For all α ∈ R, α̌(R) ⊆ Z.(RS3)

As explained in [Bo2, VI.1.1], α̌ in (RS2) is uniquely determined by α (and thus

(RS3) is to be understood). For brevity, set

sα := sα,α̌.

ii. For a root system R in V , we call

▷ rank(R) := dimk V the rank of R,

▷ A(R) := {σ ∈ Autk(V ) : σ(R) = R} the automorphism group of R, and

▷ W (R) := subgroup of A(R) generated by the sα for α ∈ R the Weyl group

of R.

iii. The root system R is called reduced if whenever α = c · β for α, β ∈ R, we have

c ∈ {1,−1}.

We refer to [Bo2, VI] for the plentitude of properties that follow from these defi-

nitions. In particular, we will freely use the translation of the theory to and from the

ground fields Q and R, the relations and proportions between roots in a root system,

and the decomposition of a root system into irreducible root systems.

Remark 2.1.11. — Let R be a root system (in the real vector space V ). For

σ ∈ A(R), we have (
σ(α)̌

)(
σ(β)

)
= α̌(β)

for all α, β ∈ R. Namely, there is an A(R)-invariant scalar product ⟨. , .⟩ on V such

that

α̌(.) = 2
⟨α, .⟩
⟨α, α⟩

·

The notions of positive roots and bases of a root system are used. Recall in partic-

ular that W (R) acts simply transitively on the set of bases (cf. [Bo2, VI.1.5, Thm 2

and Rem. 4]), and that W (R) is normal in A(R) with A(R)/W (R) ≃ Aut(R,∆)

for any basis ∆ of R (cf. [Bo2, VI.1.5, Prop. 16 and 4.2, Cor.]); further, that this

group identifies with the graph automorphisms of the Dynkin diagram. We have the

usual list of irreducible reduced root systems/connected Dynkin diagrams An, Bn,

Cn, Dn (n ≥ 2), E6, E7, E8, F4, G2 (with the repetitions A1 = B1 = C1; B2 = C2;

D2 = A1 ×A1; D3 = A3), as well as the non-reduced BCn, and we use the plates

at the end of [Bo2, VI] for their properties. In particular we adhere to Bourbaki’s

labelling of the simple roots/vertices, although they look strange for the E types,

where the “lower” vertex is α2:
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α1 α3 α4 α5 α6

α2

E6

α1 α3 α4 α5 α6 α7

α2

E7

α1 α3 α4 α5 α6 α7 α8

α2

E8

A(R)/W (R) is the symmetric group S3 for D4 (an exceptional phenomenon which

will occur as triality in the course of this work), of order two for An(n ≥ 2), Dn(n ̸= 4)

and E6, and trivial in all other cases.

2.2. p-adic fields, C1 fields, quaternion algebras

We have the field of p-adic numbers Qp with ring of integers Zp, and we call p-adic

field a finite extension of Qp. Any finite extension of a p-adic field is again a p-adic

field. A p-adic field k is a local field of characteristic zero. It is complete with respect

to a discrete valuation vk : k → Z ∪ {∞} and has some Fq as residue field. If k is

a local field, we denote by Ok its ring of integers, by mk the maximal ideal of Ok
and by πk a uniformiser, i.e. generator of mk. The general reference for local fields

is [Ser2]. Specifically, the concept of (un)ramified extensions will be important. Any

local field k has a maximal unramified extension which is unique up to isomorphism

(or unique inside a fixed algebraic closure k̄) and will be denoted by knr; see [Ser2,

III.5].

Definition 2.2.1 (Property C1). — We say that a field k has the C1 property

or is C1 if the following holds: every homogeneous polynomial in n variables P ∈
k[X1, . . . , Xn] of degree d ∈ {1, . . . , n− 1} has a non-trivial zero, meaning that there

is (0, . . . , 0) ̸= (a1, . . . , an) ∈ kn with P (a1, . . . , an) = 0.

At one point we use the

Theorem 2.2.2 (cf. [Lang]). — If k is a local field, knr is C1.

Quaternion algebras will be of some importance in the classification. See [Pie, 1.6–

1.7] and [Inv, 2.C] for the following basics: a quaternion algebra Q over a field k with

char(k) ̸= 2 is described (not one-to-one) by two parameters a, b ∈ k∗:

Q :=
(a, b
k

)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



16 CHAPTER 2. PREREQUISITES

which is the 4-dimensional k-algebra with basis 1, i, j, ij and multiplication given by

i2 = a, j2 = b and ij = −ji which implies (ij)2 = −ab. The three-dimensional space

spanned by i, j and ij is that of pure quaternions. Over a p-adic field k, just as over R,
up to isomorphism there is only one quaternion division algebra (i.e. quaternion al-

gebra which is a skew field). The one over R, the Hamilton quaternions, is usually

denoted as

H =
(−1,−1

R

)
while for those over a p-adic k, a standard description (for p ̸= 2) is(u, πk

k

)
where u ∈ O∗

k \ O∗2
k .

On a quaternion algebra Q := (a,bk ), there is the so-called standard involution

γ : x1 + yi+ zj + wij 7→ x1− yi− zj − wij,

i.e. the k-linear map with eigenspaces k and the pure quaternions, of respective eigen-

values 1 and −1. It satisfies γ2 = idQ and γ(st) = γ(t)γ(s) [!] for all s, t ∈ Q. We will

need this in the discussion of the classical types of Lie algebras in Section 4.5.

2.3. Quadratic, symplectic and hermitian forms

Our general references for this theory are [Bo1, IX] and [Lam]. Since we are

generally in characteristic ̸= 2, we have the well-known equivalences between quadratic

forms and symmetric bilinear forms. For symplectic (= alternate bilinear) forms,

we will use the standard form in [Bo1, IX.5.1]. In left/right conventions, we follow

Bourbaki and make the following

Definition 2.3.1. — Let D be a skew field and σ : D → D an involutorial anti-

automorphism, i.e. an additive map satisfying

σ(ab) = σ(b)σ(a) for all a, b ∈ D and σ2 = idD .

Let V be a left D-vector space. A bi-additive map h : V × V → D satisfying

h(ax, by) = ah(x, y)σ(b)

for all x, y ∈ V and a, b ∈ D is called a σ-hermitian form (on V ) if

h(y, x) = σ
(
h(x, y)

)
for all x, y ∈ V , and is called a σ-skew-hermitian form (on V ) if

h(y, x) = −σ
(
h(x, y)

)
for all x, y ∈ V . Such an h is non-degenerate if h(x, V ) = 0 implies x = 0.
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Skew-hermitian forms are called “anti-hermitian” by Bourbaki; in any case, they

are the ϵ-hermitian forms with ϵ = −1. The notions of (totally) isotropic vectors or

subspaces are defined in [Bo1, IX.4]. There we also find the fundamental

Theorem 2.3.2 (Witt’s decomposition theorem [Wit]). — Let k be a field with

char(k) ̸= 2, and let (V, q) be a quadratic space over k. Then there is a decompo-

sition

(V, q) ≃ (V0, 0)⊕ (Vh, qh)⊕ (Va, qa)

where V0 = ker(q) is the radical, (Vh, qh) is hyperbolic and (Va, qa) is anisotropic,

and all three are uniquely determined up to isomorphism. If V0 = 0, the integer

r := 1
2 dimk Vh is the maximal dimension of a totally isotropic subspace of (V, q), and

is called the Witt index of (V, q).

Loc. cit. also contains its analogue for hermitian and skew-hermitian forms, which

also have a well-defined Witt index if they satisfy the ”condition T”: For every x ∈ V ,

there is a ∈ D such that

h(x, x) = a+ ϵσ(a)

where ϵ = 1 or −1 according to whether h is hermitian or skew-hermitian. We do not

have to worry about this, because we are in characteristic ̸= 2 and can set a = 1
2h(x, x).

If b is a non-degenerate symmetric bilinear form on an n-dimensional k-vector

space, the discriminant d(b) is the well-defined residue in k∗/k∗2 of (−1)⌊ 1
2n⌋ times

the determinant of a representing matrix of b; the sign ensures that hyperbolic spaces

have discriminant 1.
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CHAPTER 3

STRUCTURE THEORY AND THE ISOMORPHISM

THEOREM

Let k be a field with char(k) = 0. Unless mentioned otherwise, all Lie algebras

are finite dimensional, and all field extensions K|k will be inside a fixed algebraic

closure k̄ |k with absolute Galois group G = Gal(k̄ |k). One can check that nothing

depends essentially on the choice of k̄ .

General references for the algebraic group analogue of this chapter are [BT1],

[Sat3], [Spr2, 2..5–6] and [Spr3, Chap. 15–17].

Throughout this whole chapter, let g be a semisimple Lie algebra over k. Let κ(. , .)

be its Killing form.

3.1. Definition of the invariants

3.1.1. Toral subalgebras and rational root decompositions

Definition 3.1.1 (Weights and roots). — Let h be any subalgebra of g. For any

linear form α ∈ h∗ := Homk(h, k), we set

gα := gα(h) :=
{
x ∈ g : [h, x] = α(h)x for all h ∈ h

}
.

If this subspace is non-zero, we call it the weight space of the weight α (of h in g).

The non-zero weights are called the roots of h in g, the – obviously finite – set of these

is denoted by R(g, h).

Note that in the above situation, g0 = zg(h). Also, an immediate calculation with

the Lie algebra axioms gives

[gα, gβ ] ⊆ gα+β(2)

for all α, β ∈ h∗.

For later use, we note:

Lemma 3.1.2. — For α ∈ R(g, h), every element of gα is nilpotent in g.
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Proof. — Let x ∈ gα. It suffices to show thatX := adg x is nilpotent in the associative

algebra Endk(g). We will show that the trace Tr(Xn) is 0 for all n ≥ 1, which proves

the assertion by [Bo1, VII.5.5, Cor. 4]. (1)

Choose h ∈ h with r := α(h) ̸= 0, and set H := adg(h), Y := 1
rX. Then we

have X = HY − Y H, and because Y commutes with Xn−1 (where X0 := 1), we can

write Xn as commutator

Xn = Xn−1(HY − Y H) = (Xn−1H)Y − Y (Xn−1H)

which has trace 0 because Tr(AB) = Tr(BA) for any endomorphisms A,B. (The

argument is a special case of [Jac6, II.5, Lemma 4]; for a proof explicitly using scalar

extension, see [Bo2, VII.1.3, Prop. 10.(iv)].)

Definition 3.1.3 (Toral and split toral subalgebras)
i. A subalgebra a of g is toral if it is abelian and all its elements are semisimple.

ii. A toral subalgebra a is called split (over k) if all its elements are ad-diagonalisable

over k; that is, for every x ∈ a, there is a k-basis of g consisting of eigenvectors

for adg(x) with all eigenvalues in k.

iii. Amaximal (split) toral subalgebra is one which is not strictly contained in another

(split) toral subalgebra.

Remark 3.1.4

i. Subalgebras of (split) toral subalgebras are (split) toral.

ii. For an isomorphism h : g ≃ g′, the subalgebra a ⊆ g is (maximal/split/maximal

split) toral if and only if so is h(a) ⊆ g′.

iii. If k is algebraically closed, every toral subalgebra is split.

iv. The argument in [Hum, 8.1] shows that a subalgebra which consists of ad-

diagonalisable elements is automatically abelian. Therefore, one could define a

split toral subalgebra as a subalgebra consisting of ad-diagonalisable elements.

On the other hand, the “abelian” condition is not redundant in the definition

of toral subalgebras; in fact, we will encounter non-zero semisimple Lie algebras

which consist entirely of semisimple elements, see 3.2.1 with example 3.2.5.

v. Maximal (split) toral subalgebras always exist because our Lie algebras have finite

dimension and we have the split toral subalgebra {0}.
vi. The usual Caveat about the order of words is in order: whereas a split maximal

toral subalgebra is also a maximal split toral subalgebra, not every maximal split

toral subalgebra is a split maximal toral subalgebra (it is if and only if it is a

maximal toral subalgebra).

Proposition 3.1.5. — In our setting, the maximal toral subalgebras t are precisely

the Cartan subalgebras of g. In particular, they equal their own centraliser and

1. In earlier editions, this was Corollaire 4 in Algèbre VII.3.5.
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normaliser, all maximal toral subalgebras of g have the same dimension (cf. [Bo2,

VII.3.3]) and a split maximal toral subalgebra is a splitting Cartan subalgebra in the

sense of [Bo2, VIII.2.1].

Proof. — In [Bo2, VII], this is left as exercise 3 to §2. That a Cartan subalgebra

of g is maximal toral follows easily from [Bo2, VII.2.4]. The following proof of the

converse, for maximal toral t, is a combination of the proof of [Sel2, §1, Prop. 1] with
ideas of [Hum, 8.1–8.2] and [Xue].

Step 1. — For any toral subalgebra a ⊆ g, we have zg(a) = ng(zg(a)). Namely,

adg(a) is semisimple for a ∈ a, so ker(adg(a)) = ker((adg(a))
2). Hence

n ∈ ng(zg(a)) =⇒ [a, n] ∈ zg(a) for all a ∈ a⇒ [a, [a, n]] = 0 for all a ∈ a

⇐⇒ n ∈ ker((adg(a))
2) for all a ∈ a

⇐⇒ n ∈ ker(adg(a)) for all a ∈ a⇐⇒ n ∈ zg(a),

and the other inclusion is clear. (Similarly one can show zg(a) = ng(a).)

Step 2. — Keeping the notation of step 1, zg(a) contains the semisimple and nilpo-

tent components (in g) of its elements. Namely, for x ∈ zg(a), write x = xs + xn;

then adg(xs) = (adg(x))s and adg(xn) = (adg(x))n can be written as polynomials in

adg(x) without constant term, so that both restrict to the zero map on a, hence xs
and xn centralise a.

Step 3. — Any semisimple element xs of z := zg(t) is contained in t. Namely, if it

were not, we would have the toral subalgebra t+ kxs ⊋ t.

Step 4. — z is nilpotent. Namely, decomposing x = xs + xn for x ∈ z, by step 3

we have adz(x) = adz(xs) + adz(xn) = adz(xn) and this, being the restriction of

the nilpotent endomorphism adg(xn) to z, is a nilpotent endomorphism, so that the

assertion follows from Engel’s theorem.

By steps 1 and 4, z is a Cartan subalgebra of g. In particular, all its elements

are semisimple (cf. [Bo2, VII.2.4, Thm 2]), which implies x = xs in the above de-

compositions. So by step 3, t = z. (For this last step, some of the references use

the non-degeneracy of the Killing form on z × z, which in turn is shown via scalar

extension. Implicitly, this is also used in the proof of our Bourbaki citation.)

Remark 3.1.6. — From zg(t) = t for a maximal toral t, it also follows that t is a

maximal abelian subalgebra of any intermediate algebra t ⊆ h ⊆ g (and maximal

toral in h for semisimple h – only in this case we have defined the concept). For any

toral subalgebra a, it follows from zg(a) = ng(a) that the centraliser commutes with

scalar extension: (zg(a))K = zgK
(aK).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



22 CHAPTER 3. STRUCTURE THEORY AND THE ISOMORPHISM THEOREM

Lemma 3.1.7. — If a is a

i. toral subalgebra

ii. split toral subalgebra

iii. maximal toral subalgebra

of g, then for every extension K|k, aK has the respective property in gK .

Proof

i. aK is abelian and generated additively by the elements c ⊗ a with c ∈ K, a ∈ a.

These are obviously semisimple, and the sum of commuting semisimple elements

is again semisimple (cf. [Bo1, VII.5.8, Cor.]).

ii. Analogously, scalar multiples and sums of commuting diagonalisable elements are

diagonalisable (cf. [Bo1, VII.5.7, Cor.]).

iii. We have ngK
(aK) = (ng(a))K = aK by [Bo2, I.3.8] and 3.1.5. Thus there is not

even any abelian (K-)Lie algebra b with aK ⊊ b ⊆ gK .

With that proposition, this (and the converse “aK maximal toral in gK ⇒ a

maximal toral in g”) also follows from the corresponding assertion for Cartan

subalgebras, [Bo2, VII.2.1, Prop. 3].

If a is split toral, then by definition, all adg(a) ∈ Endk(g) for a ∈ a are diagonalis-

able and commute with each other. It is then a well-known fact of linear algebra that,

with the notation of 3.1.1, we have a decomposition of k-vector spaces:

g = g0 ⊕
⊕

α∈R(g,a)

gα .

We will now collect decisive facts about this weight decomposition that generalise

standard facts (cf. [Bo2, VIII.2]) about splitting Cartan subalgebras – which, as per

remark 3.1.5, are the split maximal toral subalgebras in our setting. In particular

we will see that for a maximal split toral s, R(g, s) is a (possibly non-reduced) root

system. One should beware that the case s = 0 or equivalently, R(g, s) = ∅, can

occur, see example 3.2.5. Most of the following discussion (prop. 2.1.8 to 2.1.13) is a

reformulation of [Sel2, I.1].

Proposition 3.1.8. — Let a be a split toral subalgebra.

i. R(g, a) spans a∗ as k-vector space.

ii. For weights α and β with α+ β ̸= 0, gα and gβ are orthogonal with respect to κ.

iii. For every weight α, the restriction of κ to gα× g−α is non-degenerate. In partic-

ular, if α ∈ R(g, a), then −α ∈ R(g, a), and gα and g−α are dual to each other

with respect to κ.

iv. For all s, s′ ∈ a we have κ(s, s′) =
∑
β∈R(g,a) dimk(gβ)β(s)β(s

′).

MÉMOIRES DE LA SMF 151



3.1. DEFINITION OF THE INVARIANTS 23

Proof

i. If the k-span of R(g, a) were strictly smaller, there would exist an a ∈ a \ {0}
with α(a) = 0 for all α ∈ R(g, a). Then the weight decomposition would imply

[a, x] = 0 for all x ∈ g, that is, a ∈ z(g); but z(g) is zero because g is semisimple.

ii. If x ∈ gα, y ∈ gβ , applying (2) twice shows that for any weight γ, adg(x) ◦ adg(y)
maps gγ to gγ+α+β , which implies the assertion by the weight decomposition.

iii. The first assertion follows from ii. and the non-degeneracy of κ, the others are

immediate consequences.

iv. This is immediate from the weight decomposition.

With the following crucial proposition we get our hands on the coroots.

Proposition 3.1.9. — Let s be a maximal split toral subalgebra. For α ∈ R(g, s),
there is a unique element Hα ∈ s such that

α(Hα) = 2 and Hα = [U, V ]

for certain U ∈ gα, V ∈ g−α. Moreover, for any 0 ̸= X ∈ gα there is 0 ̸= Y ∈ g−α
such that [X,Y ] = Hα (and then necessarily, [Hα, X] = 2X and [Hα, Y ] = −2Y ).

Proof. — Let 0 ̸= X ∈ gα. By 3.1.2, X is nilpotent. By the Jacobson-Morozov the-

orem, there are y, z ∈ g such that [z,X] = 2X, [z, y] = −2y and [X, y] = z. Decom-

posing

y =
∑

β∈R(g,a)∪{0}

yβ and z =
∑

β∈R(g,a)∪{0}

zβ

with respect to the weight decomposition, we see from (2) and X ∈ gα that [z0, X] =

2X (in particular, z0 ̸= 0), that [zβ , X] = 0 for β ̸= 0, and that [X, y−α] = z0.

Applying [Bo2, VIII.11.2, Lemma 6] to h = z0 and x = X gives a “better” ỹ ∈ g with

[z0, ỹ] = −2ỹ and [X, ỹ] = z0. Again decomposing ỹ =
∑
β∈R(g,a)∪{0} ỹβ and using (2)

we get [X, ỹ−α] = z0 (in particular, ỹ−α ̸= 0), and [z0, ỹβ ] = −2ỹβ for all weights β,

specifically for β = −α.
We now claim that Hα := z0 has the properties asserted in the second sentence.

(Our construction then shows the assertion of the third sentence for the above X

with Y := ỹ−α.)

The above construction already shows α(Hα) = 2, and that Hα is the Lie product

of an element of gα with one of g−α. Further, Hα is contained in g0 which means

that it commutes with all elements of s. Finally, it being the semisimple part of an

sl2-triple and the representation theory of sl2 shows that all eigenvalues of adg(Hα)

are integers, so it certainly is diagonalisable. Hence with s also s+kHα is a split toral

subalgebra of g, and by maximality, we must have Hα ∈ s. The uniqueness will follow

from the following lemma by noting that for H,H ′ ∈ a with β(H) = β(H ′) for all

roots β, we have that H −H ′ is central in g, hence 0.
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Lemma 3.1.10. — For α ∈ R(g, s), let U ∈ gα, V ∈ g−α be such that H := [U, V ] is

in s and satisfies α(H) = 2. Let β be any weight of s in g. Then there are q, r ∈ Z≥0

such that for i ∈ Z, we have gβ+iα ̸= {0} if and only if −r ≤ i ≤ q; further,

β(H) = r − q.

Proof. — U,H, V are an sl2-triple in g, with respect to which we consider the sl2-

representation E :=
∑
i∈Z gβ+iα. Let q (resp. r) be maximal in Z with the property

gβ+qα ̸= {0} (resp. gβ−rα ≠ {0}). The eigenspaces of H in E are the non-zero

Eβ(H)+2i = gβ+iα for i ∈ Z, so by 2.1.7.ii we have

β(H) + 2q = −
(
β(H)− 2r

)
,

hence β(H) = r−q; then by part i of the same lemma, the possible eigenspaces above

are indeed non-zero for −r ≤ i ≤ q.

These Hα allow us to derive further results:

Proposition 3.1.11. — Let s be a maximal split toral subalgebra, and for

α ∈ R(g, s), let Hα be as above.

i. For α, β ∈ R(g, s), we have β(Hα) ∈ Z.
ii. For α ∈ R(g, s), we have κ(Hα,Hα) ∈ Z>0.

iii. For α ∈ R(g, s) and s ∈ s, we have:

α(s) = 2
κ(Hα, s)

κ(Hα,Hα)
·

iv. If α1, . . . , αn ∈ R(g, s) ⊂ s∗ are k-linearly independent, then Hα1
, . . . , Hαr

∈ s

are k-linearly independent. The Hα for α ∈ R(g, s) span s over k.

v. The restriction of κ to s× s is non-degenerate.

Proof

i. Restatement of part of the previous lemma.

ii. We have κ(Hα,Hα) =
∑
β∈R(g,s) dimk(gβ)(β(Hα))

2, so the assertion follows

from i. and α(Hα) = 2 > 0.

iii. Let α ∈ R(g, s). Setting s′ := s − 1
2α(s)Hα ∈ s (and using ii.), the claim is

equivalent to: κ(Hα, s
′) = 0.

To show this, choose an sl2-triple X,Hα, Y as in 3.1.9. There is a subset

B ⊆ R(g, s) such that the roots can be partitioned as

R(g, s) =
⨿
β∈B

{β + iα : i ∈ Z, β + iα ∈ R(g, s)};

the spaces g(β, α) :=
∑
i∈Z,β+iα∈R(g,s) gβ+iα are stable under ad(s′) as well as

under the adjoint action of the sl2-triple. Because of the partition, κ(Hα, s
′) is the

sum of the traces of adg(β,α)(Hα)◦adg(β,α)(s′) for β ∈ B. But because α(s′) = 0,

such a trace is just β(s′) multiplied with the trace of adg(β,α)(Hα). Finally, this
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last trace is zero because the endomorphism adg(β,α)(Hα) is the commutator of

the endomorphisms adg(β,α)(X) and adg(β,α)(Y ).

iv. Assume we have λ1, . . . , λn ∈ k with
∑n
i=1 λiHαi

= 0. Then for all s ∈ s, we have

0 = κ (

n∑
i=1

λiHαi , s)
iii.
=

1

2

n∑
i=1

λi · κ(Hαi ,Hαi) · αi(s),

so by assumption and part ii, all λi must be zero. The second assertion follows

from the first one and 3.1.8.i.

v. This follows from part iii, as α(s) = 0 for all α ∈ R(g, s) implies s = 0 for s ∈ s.

Using the canonical identification of s with its bidual (s∗)∗, we set α̌ := Hα and

see with the remark after (1) that sα,α̌ is a reflection.

Theorem 3.1.12. — Let s be a maximal split toral subalgebra of g. Then R(g, s) is

a root system (in s∗).

Proof. — Finiteness and 0 /∈ R are obvious, so (RS1) follows from 3.1.8.i. For α, β

in R(g, s), Lemma 3.1.10 gives us non-negative q, r such that

sα,α̌(β) = β − β(Hα)α = β + (q − r)α,

and that this is a weight. It is non-zero because as a reflection, sα,α̌ is injective, so

(RS2) follows. Finally, (RS3) is given by 3.1.11.i.

Let us point out three differences to the “split” situation in [Bo2, VIII.2.2] (for all

of them to occur, see example 3.2.9):

▷ R(g, s) is not reduced in general: there might be α ∈ R(g, s) with 2α ∈ R(g, s).
▷ The root spaces gα can have dimension > 1.

▷ The space [gα, g−α] can also have dimension > 1, in particular might be not

generated by the element Hα (but its intersection with s is, as follows from later

results).

Obviously, the third point can only occur if the second one does. The next propo-

sition shows that the first two points can only occur together, and “why” they do not

in the case of a split maximal toral s.

Proposition 3.1.13

i. For α, β ∈ R(g, s) with β(Hα) > 0 and for every 0 ̸= Xα ∈ gα, we have

[Xα, gβ−α] = gβ.

ii. For α ∈ R(g, s) we have dimk g2α < dimk gα.

iii. If zg(s) = s (equivalently, s is maximal toral), dimk gα = 1 for all α ∈ R(g, s). In
particular, [gα, g−α] = k ·Hα, and R(g, s) is reduced.
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Proof

i. By 3.1.9, Xα is part of an sl2-triple Xα,Hα, Yα. Set λ := β(Hα). In the finite

dimensional sl2-representation E :=
∑
i∈Z gβ+iα again we have Eλ+2i = gβ+iα

for i ∈ Z; now apply 2.1.7.iii.

ii. Trivial if 2α /∈ R(g, s). Else, part i with β = 2α shows that for 0 ̸= Xα ∈ gα,

ad(Xα) induces a k-linear surjection gα ↠ g2α, whose kernel contains 0 ̸= Xα.

iii. Setting β = α in part i, we get gα = [zg(s), Xα] = [s, Xα] = α(s)Xα.

The root system R(g, s) abstractly comes equipped with its Weyl group, which is

identified with the Weyl group of its inverse root system formed by the Hα = α̌ (see

the remarks after Proposition 2 in [Bo2, VI.1.1]). One can check with 3.1.11 that on

the inverse root system, the Killing form κ is non-degenerate and invariant under the

action of the Weyl group. We will find a realisation of the Weyl group as a subquotient

of Aute(g, s) (see definition 2.1.9) in the spirit of [Bo2, VIII.5.2]. To start with, there

is a well-defined group homomorphism, the contragredient of the restriction to s,

εs : Aute(g, s) −→ A
(
R(g, s)

)
, f 7−→

[
α 7→ α ◦ f−1

|s for α ∈ R(g, s)
]

whose kernel obviously is {f ∈ Aute(g, s) : f|s = ids}.

Proposition 3.1.14. — For α ∈ R(g, s), choose an sl2-triple (X,Hα, Y ) as in 3.1.9

and set

gα := exp(adY ) ◦ exp(ad(−X)) ◦ exp(adY ) ∈ Aute(g).

Then gα(Hα) = −Hα, and gα = id on the orthogonal complement of Hα in s (with

respect to κ).

Proof. — For the second assertion, s ⊥ Hα for s ∈ s by 3.1.11.iii means α(s) = 0,

hence gα(s) = s because X ∈ gα, Y ∈ g−α. For the first assertion, calculate:(
exp(adY ) ◦ exp(ad(−X)) ◦ exp(adY )

)
(Hα)

= (exp(adY ) ◦ exp
(
ad(−X))

)
(Hα + 2Y )

= exp(adY )
(
−Hα + 2Y + 2X − 2Hα + 1

2 (−4X)
)

= exp(adY )(−Hα + 2Y ) = −Hα + 2Y + (−2Y ) = −Hα

Corollary 3.1.15. — For choices as above, let G be the subgroup of Aute(g, s)

generated by the gα. Then εs(G) =W (R(g, s)).

We will later improve this result, see 3.1.47 and the subsection around it.

We end this subsection with a conjugacy result on maximal split toral subalgebras

in g. It will be needed“only”to show that the invariants we will define are independent

from various choices. The analogous conjugacy statement for maximal k-split tori in

reductive groups is proven in [BT1, 4.21].
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Theorem 3.1.16. — Let s, s′ be maximal split toral subalgebras of g. Then there is

an elementary automorphism g ∈ Aute(g) such that g(s′) = s.

Proof. — The only statement and proof of (a slightly more general version of) this

in the literature seems to be [Sel2, I.3]. We give a sketch of this proof. Fix a system

of positive roots P in R(g, s) and set

N(s) :=
⊕
λ∈P

gλ, P(s) := zg(s)⊕N(s). (2)

Step 1. — For every semisimple xs ∈ P(s), there is an h ∈ Aute(g) with

h(xs) ∈ zg(s).

Namely, write a general element x ∈ P(s) as u+n0 with u ∈ zg(s), n0 ∈ N(s). Using

that the endomorphism adN(s)(u) is semisimple (by 3.1.29), one defines ni and n
(i)
0

in N(s) inductively so that

exp(adni) ◦ · · · ◦ exp(adn1)(x) = u+ n
(i)
0 mod CiN(s),

where the n
(i)
0 are in the kernel of adN(s)(u). Using nilpotence of N(s), after

finitely many steps one has u and n
(r)
0 being the semisimple and nilpotent part of

exp(adnr) ◦ · · · ◦ exp(adn1)(x); in particular, if x = xs is semisimple, it is mapped

to u.

Step 2. — If s′ ⊂ P(s), there is h ∈ Aute(g) with h(s
′) = s. (3)

Namely, pick a “generic” element x ∈ s′, meaning zg(x) = zg(s
′), and apply step 1.

One gets s ⊆ zg(h(x)) = zg(h(s
′)). Using maximalities, one infers that s = h(s′).

Step 3. — One checks that N(s) is a maximal nil (= consisting of nilpotent el-

ements) subalgebra of g, and that P(s) is the normaliser of N(s) in g. One further

checks that for any two maximal nil subalgebras N1,N2 of g with respective normalis-

ers P1,P2, one has (i = 1, 2):

Pi = (P1 ∩P2) +Ni

Step 4. — Let N be a maximal nil subalgebra of g with normaliser P. Then there

is h ∈ Aute(g) with h
−1(zg(s)) ⊆ P.

Namely, there is a reductive subalgebra M of g consisting of semisimple elements

and such that P = M⊕N and P(s) = M⊕N(s). (To construct such an algebra inside

P(s) ∩ P with step 3 is the most technical part of the proof, using the embedding

g ↪→ gl(g) and facts about Lie algebras of endomorphisms.) Now first one conjugates

the centre z(M) into zg(s), applying the technique of step 2. (Here again there is a

2. This is in fact a minimal parabolic subalgebra of g.
3. This is an analogue of Corollaire (ii) of [Bo2, VIII.3, Prop. 9] in our situation.
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technical digression to construct a suitably “generic” element.) Secondly, one looks at

the algebra

C := zP(s)(z
(
M)
)

and shows that it is reductive with semisimple part D(C ∩ zg(s)) ⊆ zg(s). Since

the semisimple DM is contained in C, by a part of the Levi-Malcev theorem (cf.

[Bo2, I.6.8, Cor. 1]) there is an elementary automorphism (of C, extending to g) h

which conjugates DM into that semisimple part, and stabilises z(M). So we have

conjugated all of M into zg(s). With a dimension argument, one shows that in fact

zg(s) = h(M) ⊆ h(P).

We now define N(s′) and P(s′) analogously, with respect to some system of positive

roots P ′ ⊂ R(g, s′). By steps 3 and 4, we can assume without loss of generality that

zg(s) ⊆ P(s′).

Step 5. — Under this assumption, the roots

P (P, P ′) :=
{
α ∈ R(g, s) : gα ∩P(s′) ̸= {0}

}
form a system of positive roots, i.e. there is w ∈W (R(g, s)) with P = wP (P, P ′), and

we have:

P(s′) = zg(s)⊕
⊕

α∈P (P,P ′)

gα

Namely, for this one argues cleverly with (2), 3.1.13.i and sl2-triples.

Step 6. — As in 3.1.14 and its corollary, there is an f ∈ Aute(g, s) that induces

the w in step 5. It follows:

f(P(s′)) = zg(s)⊕
⊕
α∈P

gα = P(s)

So without loss of generality, we are in the situation of step 2, and therefore finished.

Corollary 3.1.17. — The integer rank(R(g, s)) := dimk(s) is independent from the

choice of s. We call it the k-rank of g.

3.1.2. Galois actions and the anisotropic kernel. — Let a be a toral subalgebra

of g. Choose a k-basis a1, . . . , an of a; by field theory, there exists an extension K|k
such that all the characteristic polynomials of the adg(ai) split into linear factors

over K. This implies that aK is a split toral subalgebra of gK .

Definition 3.1.18 (Splitting extensions). — An extension K|k such that aK is split

toral in gK is called a splitting extension, and K a splitting field, for the toral subal-

gebra a.
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It is clear from the preceding construction that a splitting extension can be chosen

to be finite and Galois over k. It is also clear that every extension of a splitting field

is again a splitting field.

After we have come this far using not much scalar extension, we will now unleash

the full power of this tool. To begin with, let a ⊆ t be any inclusion of toral subalgebras

of g such that a is split over k, and let K|k be a splitting extension for t. We have the

vector space decomposition:

g = zg(a)⊕
⊕

λ∈R(g,a)

gλ(3)

Tensoring this gives:

gK = (zg(a))K ⊕
⊕

λ∈R(g,a)

(gλ)K(4)

On the other hand, aK is split toral in gK , so:

gK = zgK
(aK)⊕

⊕
λ∈R(gK ,aK)

(gK)λ(5)

And finally, because tK is split toral in gK :

gK = zgK
(tK)⊕

⊕
α∈R(gK ,tK)

(gK)α(6)

These decompositions are strongly related. Recall that for any finite-dimensional

vector space V over k, we have a canonical inclusion

V ↪−→ K ⊗k V, v 7−→ 1⊗ v,

and a canonical isomorphism

K ⊗k (V ∗) ∼= (K ⊗k V )∗,(7)

see [Bo1, II.6.4], where by abuse of notation the ∗ denotes k-dual on the left, but

K-dual on the right. Using this, the following lemma establishes identity between (4)

and (5).

Lemma 3.1.19. — The composed map

a∗ ↪−→ (a∗)K ∼= (aK)∗

induces a bijection R(g, a) ≃ R(gK , aK). We have (gλ)K = (gK)λ for every λ

in R(g, a) using this identification. Further, we can identify (zg(a))K and zgK
(aK)

(“case λ = 0”).

Proof. — We have already remarked (zg(a))K = zgK
(aK) in 3.1.6. Calling 1 ⊗ λ the

image of λ ∈ R(g, a) under the composed map, clearly (gλ)K ⊆ (gK)1⊗λ. Comparing

(4) and (5) and a consideration of dimensions shows that all these inclusions have to

be equalities, which also shows that the map is surjective on the roots.
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The inclusion aK ⊆ tK induces the restriction map

ρ : (tK)∗−↠ (aK)∗.

This connects (5) with (6):

Proposition 3.1.20. — We have

zg(a)K = zgK
(tK)⊕

⊕
α∈R(gK ,tK)
ρ(α)=0

(gK)α

and for every λ ∈ R(gK , aK),

(gλ)K =
⊕

α∈R(gK ,tK)
ρ(α)=λ

(gK)α.

The map ρ restricts to a surjection

ρ : R(gK , tK) ∪ {0}−↠ R(gK , aK) ∪ {0}.

Proof. — Using the identification of the foregoing lemma, the “⊇” in the asserted

equations is clear. As before, comparing (5) and (6) and a consideration of dimensions

proves all claims.

Corollary 3.1.21. — For any toral subalgebra a ⊆ g, the centraliser zg(a) is a

reductive Lie algebra.

Proof. — By 2.1.4, being reductive is stable under scalar extension; by 3.1.6, for a

toral subalgebra, the centraliser commutes with scalar extension; thus we can w.l.o.g.

assume a to be split. Choose a maximal toral subalgebra t containing a, and a splitting

field K for t. Again it suffices to check that (zg(a))K is reductive. By 3.1.20 and 3.1.5,

zg(a)K = tK ⊕
⊕

α∈R(gK ,tK)
ρ(α)=0

(gK)α

and this is a reductive Lie algebra by [Bo2, VIII.3.1, Prop. 2].

We now fix a maximal split toral subalgebra s, a maximal toral subalgebra t con-

taining s (again the existence of such a t is clear by finite dimension), and a finite

Galois splitting extension K|k for t. We set

R := R(gK , tK), R := R(gK , sK), R0 :=
{
α ∈ R : ρ(α) = 0

}
.

By 3.1.12 and 3.1.19, R and R are root systems. The elements of R are sometimes

called restricted roots, or (k)-rational roots. By 3.1.5, for R we have the classical theory

of [Bo2, VIII]. Finally, if R0 is not empty, it also is a root system (in the vector space

it generates): we obviously have −α ∈ R0 and α+ β ∈ R⇒ α+ β ∈ R0 for α, β ∈ R0
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and conclude by [Bo2, VI.1.7, Prop. 23]. We will have a closer look at R0 later: see

the Subsection 3.1.2.1, in particular 3.1.31.

In the theory of algebraic and Lie groups, the roots and weights are constructed

from some module of characters usually denoted by variants of the letter X. Here

we just define X to be the additive group (= Z -module) in (tK)∗ generated by R.

By 3.1.8.i, it is a lattice, i.e. the natural map K ⊗Z X → (tK)∗ is bijective. (4)

We will now construct actions of the absolute Galois group G on several of the

above objects, in particular on roots. Since they will all be induced by the action

of G on K, we can and will see them as actions of Γ := Gal(K|k). We start with the

action of Γ on gK = K ⊗k g (more general, every aK for a subalgebra a of g) given

by operation on the first factor. Then the action of σ ∈ Γ is σ-linear, i.e.

σ(ax+ y) = σ(a)σ(x) + σ(y) for all a ∈ K,x, y ∈ gK ,

and satisfies: [
σ(x), σ(y)

]
= σ

(
[x, y]

)
for all x, y ∈ gK

In particular, σ acts as automorphism of RK|k gK . Further, because σ is an automor-

phism ofK, for aK-subspace U of gK , σ(U) is aK-subspace of the sameK-dimension.

The fixed set (gK)Γ is g, and we define the following, k-linear, kind of a trace map:

gK−↠ g, x 7−→ x̂ :=
∑
σ∈Γ

σ(x).

It is surjective because for x ∈ g, x̂ = |Γ| · x.
We also have Γ-actions on (tK)∗ and (sK)∗ per (7), which we will for the moment

write in the form σλ. Choosing e.g. a basis t1, . . . , tn of t and the corresponding dual

basis u1, . . . , un of t∗, the isomorphism (7) writes λ ∈ (tK)∗ as
n∑
i=1

λ(1⊗ ti)⊗ ui

so that, for σ ∈ Γ, σλ is defined to be the K-linear map sending 1 ⊗ ti ∈ tK
to σ(λ(1⊗ ti)). Abusing notation, this is the map σ ◦ λ ◦ σ−1, where the left σ is

the original k-automorphism of K and the right one is the automorphism of RK|ktK .

Now for any weight α of tK in gK , σ((gK)α) is a K-subspace of gK , and for

x ∈ σ((gK)α), say x = σ(y) with y ∈ (gK)α, we have

[a⊗ ti, x] =
[
σ(σ−1(a)⊗ ti), σ(y)

]
= σ

(
[σ−1(a)⊗ ti, y]

)
= σ

(
α(σ−1(a)⊗ ti) · y

)
= (σα)(a⊗ ti) · x

for a ∈ K and ti as above. Using that the σ ∈ Γ act as automorphisms, we see:

4. This root lattice is often called Q in the group case; it sits inside the weight lattice P . Roughly

speaking, with X := Q we define Lie algebras to be “of adjoint type”; less roughly said, their

automorphism groups really are.
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Lemma 3.1.22

i. For σ ∈ Γ and a weight α of tK in gK , σα also is a weight of tK in gK . The

corresponding weight space is σ((gK)α), whose K-dimension is the same as that

of (gK)α, namely, 1. The Galois action stabilises R, a fortiori restricts to X,

turning it into a Γ-module.

ii. On R, the Galois action is trivial.

iii. The map ρ is equivariant with respect to the Galois actions. That is (by ii.),

ρ(σ(α)) = ρ(α) for all σ ∈ Γ, α ∈ R.

Proof. — Part i sums up the foregoing discussion. For part ii, analogous considera-

tions apply, and additionally we can use that by 3.1.19, for a k-basis s1, . . . , sm of s,

we have λ(1 ⊗ si) ∈ k = KΓ for all 1 ≤ i ≤ m and λ ∈ R. Part iii follows from the

canonicity of the isomorphism (7).

Remark 3.1.23. — We will later define another Galois action on the roots as a

certain twisting of the above action – see 3.1.41.

From now on, if not noted otherwise, we will consider R as a root system inside

the R-vector space V := R⊗ZX. The automorphism group A(R) and the Weyl group

W (R) are thus subgroups of AutR(V ). The Galois action above is identified with a

homomorphism Γ → A(R), and we will write σA for the image of σ ∈ Γ under this

homomorphism (so σχ = σA(χ) for χ ∈ X). This enables us to define a Galois action

on the Weyl group:

Lemma 3.1.24. — For w ∈ W (R), set σw := σA ◦ w ◦ σ−1
A , where composition is

in A(R). This defines an action of Γ on the Weyl group.

Proof. — One has σw ∈ W (R) because W (R) is normal in A(R). Verification of the

rest is straightforward.

To see more structure in X and R, we go back to our Lie algebras over K. The

natural pairing between t∗K and tK – for which we have (σℓ)(σ(x)) = σ(ℓ(x)) for

ℓ ∈ t∗K , x ∈ tK and σ ∈ Γ – induces an inclusion-reversing bijection

{Γ-stable K-subspaces of tK} −→←− {Γ-stable K-subspaces of (tK)∗},

a −→ a⊥ := {ℓ ∈ (tK)∗ : ℓ(a) = 0},

where ⊥L := {t ∈ tK : L(t) = 0} ← L.

Note that since tK is abelian, we can write “subalgebras” for “subspaces” on the

left. Also, the projection (tK)∗ ↠ (tK)∗/a⊥ can be identified with the restriction

map (tK)∗ ↠ a∗, ℓ 7→ ℓ|a. Since X spans (tK)∗ by 3.1.8.i, the above induces an
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inclusion-reversing bijection

{Γ-stable subalgebras of tK} −→←− {Γ-stable saturated submodules of X},
a −→ aX :=

{
χ ∈ X : χ(a) = 0

}
,

aY := {t ∈ tK : Y (t) = 0} ←− Y

where a submodule Y ⊆ X is called saturated if X/Y has no Z -torsion. Using 3.1.8.i

again, we can identify X/aX with a lattice in a∗ so that the projection X ↠ X/aX

again corresponds to the restriction χ 7→ χ|a.

Finally, note that the set on the left is in bijection with the set of k-subalgebras of t:

Every Γ-stable K-subalgebra (= K-subspace) a of tK arises by scalar extension from

a k-subalgebra (= k-subspace) of t, namely, from aΓ (see e.g. [Spr3, Prop. 11.1.4]).

Definition 3.1.25. — Define the Γ-stable saturated submodule

X0 :=
{
χ ∈ X :

∑
σ∈Γ

σχ = 0
}
.

In general we have

|Γ| ·X0 ⊊
⟨
{σχ− χ : χ ∈ X}

⟩
Z ⊊ X0,(8)

but the following shows that X/X0 is well-suited as Γ-coinvariants of X. Let r ⊆ t be

a subalgebra. a := rK is a Γ-stable subalgebra of tK . We have an induced action of Γ

on X/aX.

Proposition 3.1.26. — With the above notation, the following are equivalent:

i. X0 ⊆ aX.

ii. The Γ-action on X/aX is trivial.

iii. im(α|r) ⊆ k for all α ∈ R.
iv. r is a split toral subalgebra of g.

Proof. — i. ⇒ ii. Obviously, χ − σχ ∈ X0 for all χ ∈ X, σ ∈ Γ. But condition ii. is

equivalent to χ− σχ ∈ aX for all χ ∈ X,σ ∈ Γ.

ii. ⇒ i. Let χ ∈ X0. As remarked, ii. says that χ− σχ ∈ aX for all σ ∈ Γ, so also∑
σ∈Γ

(χ− σχ) = |Γ| · χ−
∑
σ∈Γ

σχ︸ ︷︷ ︸
=0

∈ aX

and therefore χ ∈ aX since aX is saturated.

ii. ⇔ iii. Choose a k-basis t1, . . . , tn of t such that t1, . . . , tr (r ≤ n) form a basis

of r. Then using our identifications and the description of the Galois action in 3.1.22,

we see that ii. is equivalent to α(ti) ∈ KΓ = k for 1 ≤ i ≤ r and all α ∈ R, which
is iii.
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iii. ⇒ iv. Remember the trace x̂ :=
∑
σ∈Γ σ(x) ∈ g for x ∈ gK . For α ∈ R,

x ∈ (gK)α and r ∈ r, condition iii. implies [1 ⊗ r, x̂] = α(1 ⊗ r)x̂; that is, x̂ is an

element of the weight space to the weight α|r of r in g. Now decomposing

x =
∑

α∈R∪{0}

xα

we have

x̂ =
∑

α∈R∪{0}

x̂α

and by k-linearity and surjectivity of the trace, it follows that g is the sum of the

weight spaces of r in g. Hence each adg(r) for r ∈ r is diagonalisable over k.

iv. ⇒ iii. This follows from the relations between the weight decompositions with

respect to r, t, rK and tK in 3.1.19 and 3.1.20.

Corollary 3.1.27

i. X0 is the annihilator of sK in X. Every subalgebra of t which is split toral in g

is contained in s: in other words, s is the unique maximal split toral subalgebra

of g contained in t. The map ρ is induced by the projection X ↠ X/X0 which we

will also call ρ.

ii. R0 = R ∩X0.

Proof

i. The proposition and the foregoing discussions imply that the annihilator aX0

of X0 is of the form rK , where r is a split toral subalgebra of g that contains all

other subalgebras of t which are split toral in g. In particular, it contains s, and

by maximality of s, must be equal to it.

ii. The assertion follows from the first statement in i.

Note that in general, X0 is not generated by R0, see example 3.2.9. The submodule

generated by R0 will turn up when we now have a closer look at:

3.1.2.1. The anisotropic kernel. — By 3.1.21, zg(s) is reductive. More precisely, the

derived algebra of (zg(s))K is the semisimple( ∑
α∈R0

K ·Hα

)
︸ ︷︷ ︸

⊆tK

⊕
⊕
α∈R0

(gK)α

and its centre is
∩
α∈R0

ker(α) ⊆ tK . Write zg(s) = Z×Dzg(s) where Z is the centre

of zg(s), and the derived algebra Dzg(s) is semisimple.

Remark 3.1.28. — We have the chain of inclusions

s ⊆ Z ⊆ t ⊆ zg(s)
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(For the second one, remark that t is its own centraliser in g and a fortiori in zg(s).)

As t is abelian, the second inclusion is an equality if the third one is, and we will see the

converse shortly. In example 3.2.9, the first inclusion will be proper; in example 3.2.5,

the second and third one will be.

Remark 3.1.29. — All elements of zg(s) are semisimple (in g). All elements of the

semisimple Lie algebra ga := Dzg(s) are semisimple (in ga).

Proof. — In step 2 of the proof of 3.1.5 we have seen that with an element x ∈ zg(s),

its semisimple and nilpotent part are also in zg(s). So for the first assertion it suffices

to see there is no x ̸= 0 in zg(s) which is nilpotent in g. If there were, by a Jacobson-

Morozov argument improved with weight decomposition like in the proof of 3.1.9,

we would find an h ∈ zg(s) with [h, x] = 2x on the one hand, but h ad-diagonalisable

in g on the other hand; since it commutes with s, the latter implies that h is contained

in s, hence [h, x] = 0, a contradiction. For the second assertion note that for x ∈ ga,

adga
(x) is the restriction of the semisimple endomorphism adg(x) to the adg(x)-stable

subspace ga, and therefore itself semisimple.

Definition 3.1.30. — The semisimple Lie algebra

ga := Dzg(s) (∼= zg(s)/Z)

is called the anisotropic kernel of g (with respect to s). We call Xa (resp. Va) the

submodule of X (resp. subspace of V ) generated by R0.
(5) As noted before, we have

Xa ⊆ X0 without equality in general. Remark that in the duality setup before defini-

tion 3.1.25, Xa is the annihilator of ZK in X.

The anisotropic kernels are the bad guys because they generally resist classification.

In later chapters we will see that they disappear over C1 fields and are under strict

control over p-adic fields. The opposite cases ga = g and ga = {0} will be treated in

Section 4.2, where we also say something about the terminology.

Proposition 3.1.31. — The set ta := t∩ga is a maximal toral subalgebra of ga, and

(ta)K =
∑
α∈R0

K ·Hα

is split maximal toral in

(ga)K = (ta)K ⊕
⊕
α∈R0

(gK)α.

Restriction α 7→ α|(ta)K induces a bijection R0 ≃ R((ga)K , (ta)K).

5. “a” for anisotropic. We found notations like X0 (cf. [Sat2], [Sat3]) or X1 (cf. [Spr3]) more

confusing.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



36 CHAPTER 3. STRUCTURE THEORY AND THE ISOMORPHISM THEOREM

Proof. — It is clear that ta is a toral subalgebra of ga. Because Z ⊆ t, an abelian

subalgebra a ⊋ ta in ga would give rise to an abelian subalgebra Z + a ⊋ t in zg(s),

but we had remarked in 3.1.6 that t is maximal abelian in zg(s). So ta is maximal

toral in ga and consequently (ta)K is split maximal toral in (ga)K . Finally, we have

(ga)K = D((zg(s))K) (cf. [Bo2, I.1.9]), and according to earlier remarks, tK∩(ga)K =∑
α∈R0

K ·Hα also is a maximal toral subalgebra of (ga)K , so the evident inclusion

(ta)K ⊆ tK∩(ga)K is an equality. The last assertion is an immediate consequence.

Corollary 3.1.32. — One has the equivalences

Z = t ⇔ ta = {0} ⇔ ga = {0} ⇔ Z = zg(s) ⇔ t = zg(s) ⇔ Xa = {0},

3.1.3. Relative Weyl groups, Γ-linear orders and the twisted Galois action

For later use, we introduce certain subgroups of the Weyl group W (R).

Lemma 3.1.33. — Mapping sα ∈ GL(Va) to sα ∈ GL(V ) defines a group isomor-

phism from W (R0) to the subgroup of W (R) generated by {sα : α ∈ R0}; call this
group W0. It is invariant under the Galois action on W (R) from 3.1.24.

Proof. — The first assertion is true in the general situation of a subspace U ⊆ V

generated by a symmetric and closed subsystem of roots as considered in [Bo2, VI.7,

Prop. 23]). Namely, there is a W (R)-invariant scalar product ⟨. , .⟩ on V (cf. [Bo2,

VI.1.1, Prop. 3]) and hence (cf. [Bo2, V.2.3]), sα ∈ GL(V ) is given by

sα(v) = v − 2
⟨v, α⟩
⟨α, α⟩

α.

Writing U⊥ for the orthogonal complement of U in V with respect to ⟨. , .⟩, we see

that for α ∈ U , the spaces U and U⊥ are sα-invariant; moreover, the restriction sα|U
is sα ∈ GL(U) (by the identification [Bo2, VI.1.7, Prop. 23]), whereas sα|U⊥ = idU⊥ .

The invariance under the Galois action follows from the invariance of R0 under the

Galois action.

Remark 3.1.34. — The proof also shows: The induced actions of W0 on X/Xa

and V/Va, a fortiori on X/X0 and V/V0, are trivial.

One of our aims is to find the Weyl group of R as a subquotient in W (R). In this

direction, up to here we can prove:

Lemma 3.1.35. — Set WΓ := {w ∈W (R) : w(X0) = X0}.
i. W0 is a normal subgroup of WΓ.

ii. We have a homomorphism π :WΓ → A(R) with W0 ⊆ ker(π).

Proof. — Part i follows from wsαw
−1 = sw(α) for α ∈ R0, w ∈W . For part ii, we had

seen earlier that the morphism of Γ-modules

ρ : X−↠ X/X0
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corresponds to the restriction χ 7→ χ|sK (identifying X/X0 with a lattice in s∗K),

and induces a surjection R ↠ R. For w ∈ WΓ, define π(w)(ρ(χ)) := ρ(w(χ)) for

any χ ∈ X. By the definition of WΓ, π(w) is a well-defined automorphism of X/X0

that stabilises R. Equality π(W0) = {id} follows from the previous remark.

We will see in 3.1.48 that in fact ker(π) =W0 and im(π) =W (R). But for this, we

need the notion of a Γ-linear order, introduced by Satake [Sat2].

3.1.3.1. Γ-linear orders. — Let≤ be a linear group order onX, i.e. a total order with

x ≤ y ⇒ x+z ≤ y+z for all x, y, z ∈ X. As usual, x > y means the negation of x ≤ y,
and the meaning of < and ≥ is clear. Defining one such linear order is equivalent to

choosing an additively closed subset X+ ⊂ X such that X = X+ ⊔ {0} ⊔ −X+, the

correspondence being given by X+ = {χ ∈ X : χ > 0}.

Lemma 3.1.36. — The following are equivalent:

i. For χ ∈ X \X0 with χ > 0, we have χ′ > 0 for all χ′ ≡ χ mod X0.

ii. For χ ∈ X \X0 with χ > 0, we have σχ > 0 for all σ ∈ Γ.

Proof. — i. ⇒ ii. is clear from σχ − χ ∈ X0. For the converse, remark first that ii.

implies χ > 0⇔ all σχ > 0⇔
∑
σ∈Γ

σχ > 0 for any χ ∈ X. Now if χ as in i. is given

and χ′ = χ+ χ0 with χ0 ∈ X0, then∑
σ∈Γ

σχ′ =
∑
σ∈Γ

σχ

and this is > 0 by ii.

Definition 3.1.37. — A linear group order on X is called a Γ-linear order if it

satisfies the equivalent conditions above.

Remark 3.1.38. — A Γ-linear order on X clearly induces linear group orders

onX/X0 and X0. Conversely, given linear group orders on X/X0 and X0, there is a

unique Γ-linear order on X inducing them. In particular, Γ-linear orders exist: For

a Z -module isomorphic to some Zr (as X0 and X/X0 are), the lexicographic order

on Zr:
(x1, . . . , xr) > 0 ⇐⇒ there is s ∈ {1, . . . , r} with x1 = · · · = xs−1 = 0 and xs > 0

transports to a linear group order on it (depending on the chosen isomorphism, i.e.

on the choice of basis).

Given any linear group order on X, the roots in R which are positive with respect

to this order form a positive system of roots in the sense of [Bo2, VI.1.7]; therefore

there is a unique basis ∆ of R such that the positive roots with respect to this basis

are exactly the positive roots with respect to the given linear order. A basis associated

in this way with a Γ-linear order is called a Γ-basis.

From now on, fix a Γ-basis ∆ of R.
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In general, for a root system R with basis D and closed subsystem R′, it is not

true that D ∩R′ is a basis of R′. In our situation, the Γ-linear order remedies this:

Proposition 3.1.39. — Let ∆0 be the basis of R0 with respect to the induced order.

Then ∆0 = ∆ ∩R0 = ∆ ∩X0.

Proof. — It suffices to show that every (w.l.o.g.: positive) α ∈ R0 is a linear combina-

tion of the elements of ∆∩R0. Let δ1, . . . , δr be the different elements of ∆ arranged

such that ∆∩R0 = {δi : i < s} for a certain 0 ≤ s ≤ r+1. Write α =
∑r
i=1 niδi with

all ni ∈ Z≥0. If we had nk ≥ 1 for some k ≥ s, then

δk ≡ δk − α =
( ∑

1≤i≤r
i ̸=k

−niδi
)
− (nk − 1)δk mod X0,

but δk /∈ X0 is positive and the right hand side is not, contradicting 3.1.36.

Let ∆ := ρ(∆ \∆0) = ρ(∆) \ {0}. We will see in 3.1.45 that this is a basis of R.

Lemma 3.1.40. — Let ∆′ be another Γ-basis.

i. ∆ = ∆′ if and only if ∆0 = ∆′
0 and ∆ = ∆′.

ii. If ∆ = ∆′, then there is a w0 ∈W0 with w0(∆) = ∆′ (and unique in W(R) with

this property).

Proof. — For the non-trivial direction in i, the conditions imply that all α ∈ ∆′ are

positive with respect to a Γ-linear order defining ∆, hence with respect to ∆, so the

bases must coincide. For part ii, by the proposition and 3.1.33 there is w0 ∈W0 with

w0(∆0) = ∆′
0 = w0(∆) ∩R0 = (w0(∆))0; on the other hand,

w0(∆) = ρ
(
w0(∆) \∆′

0

)
= π(w0)

(
ρ(∆)

)
\ {0} = ρ(∆) \ {0} = ∆ = ∆′,

so w0(∆) = ∆′ by part i. The uniqueness assertion follows from W (R) acting simply

transitively on bases.

3.1.3.2. The twisted Galois action. — We will now define a new action of Γ on the

roots, as follows:

Let σ ∈ Γ. By 3.1.22 and the characterisation of bases in [Bo2, VI.1.7, Cor. 3], σ

acts on R in such a way that σA(∆) is another basis (remember σA is the element of

A(R) through which σ acts). Hence there is a unique element wσ ∈ W (R) such that

wσ(σA(∆)) = ∆. We will soon show the crucial fact that wσ ∈W0.

Definition 3.1.41. — For χ ∈ X, set (6)

t(σ)(χ) := wσ(σA(χ))

6. The twisted action is denoted as σ∗ in [Tit1, 2.3], ∆σ in [BT1, 6.2], [σ] in [Sat3, II 2.1] (where

wσ is our w−1
σ ), φ(σ) in [Spr2, 2.6.1], τ(σ) in [Spr3, 15.5.2].
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Lemma 3.1.42. — This defines a group homomorphism t : (G ↠)Γ→ AutZ(X) such

that each t(σ) stabilises R and ∆; so we can and will also view t as homomorphism

to the subgroup Aut(R,∆) ≃ A(R)/W (R) of A(R).

Proof. — For the first assertion, recall the Γ-action on W (R) by conjugation from

3.1.24. The uniqueness statement before the definition implies that wστ = wσ
σ(wτ )

for any σ, τ ∈ Γ, meaning that σ 7→ wσ is a 1-cocycle Γ → W (R); this gives t(στ) =

wστσAτA = wσσAwττA = t(σ)t(τ). The rest follows directly from 3.1.22 and the

definitions.

Proposition 3.1.43 (Properties of t)

i. t(Γ) stabilises ∆0; a fortiori, also ∆ \∆0, R0 and R \R0.

ii. For χ ∈ X and σ ∈ Γ, we have

t(σ)(χ) ≡ σχ mod Xa and σχ ≡ χ mod X0.

iii. For χ, ψ ∈ X \X0, we have ρ(χ) = ρ(ψ) if there is σ ∈ Γ with t(σ)(χ) = ψ.

iv. Write ∆ = {δ1, . . . , δr} such that ∆0 = {δ1, . . . , δs−1} (as in the proof of 3.1.39).

Then for i ≥ s and σ ∈ Γ, we have σA(δi) = t(σ)(δi) +
∑s−1
j=1 njδj for certain

nj ∈ Z≥0.

v. (Converse of iii for simple roots.) With the notations of iv, if ρ(δi) = ρ(δk) for

i, k ≥ s, then there is σ ∈ Γ with t(σ)(δi) = δk.

Proof

i. Let σ ∈ Γ. With the same argument as before definition 3.1.41, there is a unique

w0,σ ∈ W0 such that w0,σ(σA(∆0)) = ∆0. So it suffices to show the following

claim: Using the identification of 3.1.33, this w0,σ is the wσ defined before.

As seen earlier, w0,σ (being an element of W0) induces the identity on X/X0,

which by 3.1.36 implies that w0,σ(α) > 0 and /∈ R0 for α ∈ R \ R0 with α > 0.

Analogously σA(α) > 0 and /∈ R0 for α ∈ R \ R0 with α > 0. Thus w0,σ ◦ σA
stabilises the set of positive elements of R which are not in R0. By definition,

it stabilises the positive elements of R0, so it stabilises the set of all positive

elements. Thus, w0,σ(σA(∆)) is a basis of R consisting of positive elements with

respect to the basis ∆ and hence must itself be ∆, and our claim follows from

the uniqueness property used to define wσ.

ii. The first claim follows from wσ ∈W0 and 3.1.34, the second from 3.1.27.

iii. With part ii this is immediate from 3.1.26 and 3.1.27.

iv. By part i, t(σ)(δi) = δk for some k ≥ s, so by part ii, σδi ∈ R is of the form

δk +

s−1∑
j=1

njδj

with nj ∈ Z. ∆ is a basis and one coefficient is positive, so all nj ≥ 0.
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v. For any χ, ψ ∈ V \ V0, ρ(χ) = ρ(ψ) implies (and is in fact equivalent to)∑
σ∈Γ σA(χ) =

∑
σ∈Γ σA(ψ). Thus iv implies∑
σ∈Γ

t(σ)(δi) =
∑
σ∈Γ

t(σ)(δk) +
∑
j≤s−1

mjδj

for certain mj ∈ Z. Since t(Γ) stabilises {δj : j ≥ s} by i, and ∆ is a vector space

basis of V , one t(σ)(δi) has to be δk (and all mj = 0).

Remark 3.1.44. — The twisted Galois action on roots can also be defined (on ∆,

and then linearly extended) via the Galois action on parabolic subalgebras, and the

correspondence of [Bo2, VIII.3.4, Rem.] between elements of ∆ and certain parabolic

subalgebras. Cf. [Tit1, 2.3] and [BT1, 6.2].

Corollary 3.1.45

i. V0 is generated by ∆0 ∪ {δ − ε : δ, ε ∈ ∆ \∆0, ρ(δ) = ρ(ε)}.
ii. ∆ is a basis of R.

Proof

i. By (8), V0 is generated by {σχ − χ : χ ∈ V, σ ∈ Γ} and a fortiori (∆ spans V )

by {σδ − δ : δ ∈ ∆, σ ∈ Γ}. Since σδ ∈ R ∩ X0 = R0 ⊂ Xa = Z∆0 for δ ∈ ∆0,

it is spanned by ∆0 ∪ {σδ − δ : δ ∈ ∆ \∆0, σ ∈ Γ}, so by part iv of the previous

proposition, by ∆0 ∪ {t(σ)(δ)− δ : δ ∈ ∆ \∆0, σ ∈ Γ} which is contained in the

set in the claim.

ii. It suffices to show that the distinct elements of ∆, call them λ1, . . . , λr, are linearly

independent in V/V0. For each of them fix one δj(i) ∈ ∆ \∆0 with ρ(δj(i)) = λi.

Then the set ∆0 ∪ {δ − δj(i) : 1 ≤ i ≤ r, δj(i) ̸= δ ∈ ∆ \ ∆0, ρ(δ) = ρ(δj(i))} is

linearly independent (because the δ ∈ ∆ are), and by part i generates V0. Since

its cardinality is |∆| − r = dimk V − r, we have r = dimk V/V0.

3.1.3.3. Relative Weyl groups revisited. — We can now complete our earlier inves-

tigations of the Weyl group. Recall the groups WΓ,W0 and the map π from 3.1.35;

we want to show that π induces an isomorphism WΓ/W0 ≃ W (R). Along the way,

we improve 3.1.15.

Recall from [Bo2, VIII.5.2] that there is a well-defined group homomorphism

εtK : Aute(gK , tK) −↠W (R), s 7−→ [χ 7→ χ ◦ s−1
|tK for χ ∈ X]

(the contragredient of the restriction to tK) which induces an isomorphism

Aute(gK , tK)/ ker(εtK ) ∼=W (R),(9)

where ker(εtK ) = {s ∈ Aute(gK , tK) : s|tK = idtK}.
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Lemma 3.1.46

i. For s ∈ Aute(gK , tK),

εtK (s) ∈WΓ ⇐⇒ s ∈ Aute(gK , sK),

εtK (s) ∈W0 ⇐⇒ s|sK = idsK .

ii. Aute(gK , sK) =(
Aute(gK , tK) ∩Aute(gK , sK)

)
·
{
s ∈ Aute(gK) : s|sK = idsK

}
. (7)

iii. There is a canonical isomorphism

Aute(gK , sK)/{s ∈ Aute(gK) : s|sK = idsK} ∼=WΓ/W0.

Proof. — Part i follows from the duality of sK and X0 in the sense of 3.1.27. Part iii

is a consequence of (9), the first two parts and one of the isomorphism theorems.

In part ii, the inclusion“⊇” is trivial. So let s ∈ Aute(gK , sK); then s(tK) is another

maximal toral subalgebra of gK , and is contained in zgK
(sK) (because s stabilises sK

and a fortiori its centraliser). So by the conjugacy theorem 3.1.16 (8) applied to tK
and s(tK) in zgK

(sK), there is s1 ∈ Aute(zgK
(sK)) with s1(s(tK)) = tK , so s1s

in Aute(gK) stabilises both tK and sK . The proof is finished with the following fact:

s1, like any element of Aute(zgK
(sK)), can naturally be extended to an element of

{s ∈ Aute(gK) : s|sK = idsK}.
To see this, let n ∈ zgK

(sK) be adzgK
(sK)-nilpotent; write n = nZ + nD for

the decomposition zgK
(sK) = Z × D into centre and semisimple part. Then

exp(adzgK
(sK) n) = exp(adzgK

(sK) nD) on zgK
(sK), and nD is nilpotent in D.

By 2.1.8, adgK
(nD) is nilpotent, and exp of it obviously extends exp(adzgK

(sK) n)

(which fixes sK pointwise).

We can now put things together with 3.1.15. The homomorphism εs via our iden-

tifications extends to

εsK : Aute(gK , sK) −→ A(R), s 7−→ [χ 7→ χ ◦ s−1
|sK for χ ∈ X/X0].

Its kernel is {s ∈ Aute(gK) : s|sK = idsK}, and we had seen that its image con-

tainsW (R). Going through our identifications shows that π is the composition of εsK
with the (inverse of the) isomorphism from part iii of the last lemma.

Lemma 3.1.47. — One has im(εsK ) =W (R).

7. This is the analogue of N (S) = N (S, T ) · Z(S) in [BT1, 5.5]; cf. [Sat3, II.2.1.5].
8. Being in the split case, we can also apply [Bo2, VIII.3.3] here. zgK (sK) being reductive, not

necessarily semisimple, is not a problem, because its centre is contained in tK and fixed by s as well

as by every automorphism of zgK (sK).
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Proof. — Because we know already that the image containsW (R), and because A(R)

is the semidirect product of W (R) and Aut(R,B) for an arbitrary basis B of R, it

suffices to show (for our chosen Γ-basis ∆):

εsK (s) ∈ Aut(R,∆) =⇒ εsK (s) = id .

With the identifications of the previous lemma, we can assume w.l.o.g. that s ∈
Aute(gK , tK) and look at εtK (s) ∈WΓ. Then we have

εtK (s)(∆) = ∆

by assumption, and εtK (s)(∆0) is another basis of R0. So there is a (unique) w ∈W0

such that wεtK (s)(∆0) = ∆0, whereas (W0 acting trivially on X/X0)

wεtK (s)(∆) = ∆.

On the other hand, one easily sees thatWΓ sends Γ-bases to Γ-bases, so by 3.1.40.i, we

have wεtK (s)(∆) = ∆. The action ofW (R) on bases is simple, so εtK (s) = w−1 ∈W0,

hence εsK (s) = id.

Proposition 3.1.48. — One has:

i. π induces an isomorphism WΓ/W0
∼=W (R).

ii. For w ∈WΓ, the following are equivalent:

(a) w ∈W0.

(b) π(w) = id.

(c) π(w)(∆) = ∆.

iii. WΓ operates simply transitively on the set of all Γ-bases.

Proof. — Part i follows from the foregoing discussion, and part ii from i (the non-

trivial (c) ⇒ (a) also follows directly from 3.1.40). For part iii, we have remarked in

the previous proof that WΓ does indeed act on the set of all Γ-bases. The action is

simple because so is the action ofW (R) on the set of all bases. The transitivity follows

with part i and 3.1.40 from the transitivity of the actions of W (R) and W0 on the

sets of bases of R and R0, respectively, and the triviality of the W0-action on R.

Remark 3.1.49. — For the analogues in the group case, see 6.10 and parts of 5.3 in

[BT1], as well as [Sat2, §2] and [Sat3, II.2.1–2.3]. There, a different route is chosen:

Not knowing a priori that R is a root system, the group WΓ/W0 is directly identified

with N (S)/Z(S) for a maximal split torus S. Then by an intricate investigation into

this group’s action on (minimal) parabolic subgroups, it is shown that R is a root

system having WΓ/W0 as Weyl group.

In a more general context, the question when an analogous subquotient of the Weyl

group is again a Weyl group of a root system is analysed in [Sch], see also [Hec]. It

turns out that parts i and iii of the proposition are kind of equivalent, and that they

impose strong conditions on the Galois action and other symmetry properties of the

root system, which we will use later for the classification.
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Whereas realising the Weyl group in the form N(T )/Z(T ) for a suitable torus T

is common in group theory, it seems that its realisation as quotient of automorphism

groups of Lie algebras has only been done in [Bo2, VIII.5], covering only the split

case.

3.1.4. The invariants and their independence from choices. — We can now

define our invariants:

▷ The tuple (X,R,∆,∆0, t)
(9) is called the index of our semisimple Lie algebra g

(for now: with respect to all the choices we have made). We will show that, up to

a natural notion of equivalence, the index depends only on g (in fact, only on its

isomorphism class) and not on the choices.

▷ Recall from 3.1.30 the anisotropic kernel ga of our semisimple Lie algebra g (for

now: with respect to the chosen s). The following lemma is obvious from its definition:

Lemma 3.1.50. — Let g and g′ be two semisimple Lie algebras over k with s (resp. s′)

chosen as before. Suppose there is an isomorphism f : g
∼−→ g′ with f(s) = s′. Then f

induces an isomorphism fa : ga
∼−→ g′a.

With the conjugacy theorem 3.1.16 we conclude:

Corollary 3.1.51. — Up to an elementary automorphism in g, ga is independent

of the choice of s. Up to isomorphism, it only depends on the isomorphism class of g.

Next, we will see in which way the index depends on g and the choices.

Definition 3.1.52 (Congruence of indices). — Let (X,R,∆,∆0, t), (X
′, R′,∆′,∆′

0, t
′)

be two indices. An isomorphism of abelian groups h : X
∼−→ X ′ such that

i. h(R) = R′, h(∆) = ∆′, h(∆0) = ∆′
0;

ii. h(α)̌ = α̌ ◦ h−1 for all α ∈ R or equivalently, (h(α))̌ (h(β)) = α̌(β) for all

α, β ∈ R (10);

iii. t′(g) = h ◦ t(g) ◦ h−1 for every g ∈ G
is called a congruence h : (X,R,∆,∆0, t) → (X ′, R′,∆′,∆′

0, t
′), and if such h exists,

the two indices are called congruent. Obviously, congruence defines an equivalence

relation on any set of indices.

Choosing, firstly, different splitting fields K and L (as long as both are finite and

Galois) in an obvious way does not affect the index. To see this, one immediately

reduces to the case K ⊆ L, and this is easily checked.

Next, let us vary s, t and ∆.

9. There is some redundancy here; e.g. X can be recovered from R, different from the case of

algebraic groups. We keep it like this since we often need both X and R anyway.
10. In fact, condition ii follows from i (cf. [Win, 3.7.3.1.2/4 and 3.7.3.4.3]), but we wanted to state

it explicitly.
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Proposition 3.1.53. — Let g and g′ be two semisimple Lie algebras over k with

s, t,∆ (resp. s′, t′,∆′) chosen as before, such that K is a finite Galois splitting field

for both t and t′. Suppose there is an isomorphism (of K-Lie algebras) F : gK
∼−→ g′K

such that F (tK) = t′K and F (sK) = s′K . Then in the following cases we have a

congruence of the corresponding indices:

i. F = idK ⊗f for an isomorphism f : g ≃ g′.

ii. g = g′ and F ∈ Aut0(gK).

Proof. — The map ϕ : X ′ ∼−→ X,χ 7→ χ ◦ (F|tK ) is an isomorphism that satisfies

▷ ϕ(R′) = R, and

▷ ϕ(X ′
0) = X0 (by F (sK) = s′K and 3.1.27).

Call ψ := ϕ−1 its inverse. A moment’s consideration with the defining property of

Hψ(α) (in 3.1.9) shows Hψ(α) = F (Hα), in other words (ψ(α))̌ = α̌◦ψ−1. The second

point above implies that ψ(∆) is a Γ-basis of R′. So by 3.1.48, there is a unique

w′ ∈ W ′
Γ such that w′(ψ(∆)) = ∆′, and by 3.1.39 a fortiori w′(ψ(∆0)) = ∆′

0. We

claim that h := w′ ◦ ψ is a congruence (from (X, . . . ) to (X ′, . . . )), and with 2.1.11,

the one thing left to check is what it does with the Galois actions.

So let σ ∈ Γ be given. We have wσ ∈W0 (and w′
σ ∈W ′

0) being defined uniquely in

W (R) (and W (R′)) by wσ(σA(R)(∆)) = ∆ (and w′
σ(σA(R′)(∆

′)) = ∆′). Setting

σh := σA(R′) ◦ h ◦ σ−1
A(R),

that is, (σh)(χ) = σ(h(σ
−1

χ)), one calculates(
h ◦ wσ ◦ (σh)−1

) (
σA(R′)(∆

′)
)
= ∆′

so if the element in the left bracket is in W (R′), it must be w′
σ. Look at the two cases:

i. Here we have σF := σ◦F ◦σ−1 = F , a fortiori σϕ = ϕ, i.e. σA(R)ψ
−1 = ψ−1σA(R′).

Hence

hwσσA(R)h
−1σ−1

A(R′) = w′ψwσ σA(R)ψ
−1w′−1σ−1

A(R′)

= w′︸︷︷︸
∈W (R′)

ψwσψ
−1 σA(R′)w

′−1σ−1
A(R′)︸ ︷︷ ︸

∈W (R′)

and the middle term is in W (R′), too: Indeed, ˇψ(α) = α̌ ◦ ψ−1 implies

ψsαψ
−1 = sψ(α) and the claim follows.

ii. Let e := (gK , tK ,∆, (Xα)α∈∆) be an épinglage (cf. [Bo2, VIII.4, Def. 1]). Then

σ ∈ Γ transforms it into the épinglage σ(e) := (gK , tK , σA(R)(∆), (σ(Xα))σA(R)(α)).

On the other hand, the given F transforms it into the épinglage

e′ :=
(
gK , t

′
K , ψ(∆), (F (Xα))ψ(α)

)
.

This, in turn, is transformed by σ into

σ(e′) :=
(
gK , t

′
K , σA(R′)ψ(∆), (σ(F (Xα)))σA(R′)ψ(α)

)
.
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Now by [Bo2, VIII.5.3, Prop. 5], there are unique fσ ∈ Aut0(gK , tK) and f ′σ ∈
Aut0(gK , tK) such that fσ(σ(e)) = e and f ′σ(σ(e

′)) = e′. By the definition of wσ
and w′

σ and ibid. 2, Prop. 4, we have

ϵtK (fσ) = wσ and ϵt′K (f ′σ) = w′
σ.

Further note the following: It is easily seen that σF ∈ Aut0(gK) (use that σ ◦
exp(adn) ◦ σ−1 = exp(ad(σ(n)))). Also, F ◦ fσ and f ′σ ◦ σF both transform σ(e)

to e′, and since they are both in Aut0(gK), they must be equal by ibid. . 3,

Prop. 5; or in other words, not just the outer but also the inner diagram in

e σ(e)

e′ σ(e′)

F σF

f ′σ

fσ

σ

σ

is commutative. This implies in particular

ψ ◦ wσ = w′
σ ◦ σψ(10)

hence

ψ ◦ wσ ◦ σA(R) = w′
σ ◦ σψ ◦ σA(R) = w′

σ ◦ σA(R′) ◦ ψ.

Inserting this into our element shows what we want:

hwσσA(R)h
−1σ−1

A(R′) = w′(ψwσ σA(R))ψ
−1w′−1σ−1

A(R′)

= w′(w′
σσA(R′)ψ)ψ

−1w′−1σ−1
A(R′)

= w′w′
σ︸ ︷︷ ︸

∈W (R′)

σA(R′)w
′−1σ−1

A(R′)︸ ︷︷ ︸
∈W (R′)

∈W (R′).

In both cases we conclude that for χ ∈ X,(
t′(σ) ◦ h

)
(χ) = w′

σ

(
σA(h(χ)

)
) = h

(
wσ
(
σA(h

−1
(
σ−1
A (σA(h(χ))))

)))
= h

(
wσ(σA(χ))

)
=
(
h ◦ t(σ)

)
(χ),

so that indeed t′(σ) = h ◦ t(σ) ◦ h−1.
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Remark 3.1.54

i. Certainly the above proposition holds in more cases, but we were not able to

prove it in full generality in which its group analogue is claimed in [Sat2, p. 228]

and [Sat3, pp. 85 et seq.]. We see a gap in this claim exactly where we had to go

into the cases above.

ii. The independence statement in [BT1, 6.2] (whose equation (3) should be read

“modulo conjugation”) corresponds to our case ii. It is proved via parabolic

subgroups and uses in a crucial way that they all are conjugate to “standard”

parabolic subgroups; cf. [Tit1, 2.3]. One could translate this to our setting, where

the equivalence classes of parabolic subalgebras under the action of Aut0(gK)

have a nice description in [Bo2, VIII.5.3, Rem. 4]. The key fact for both this

and our proof (whose heart is equation (10)) is the assertion of [Bo2, VIII.5.3,

Prop. 5] that the action of Aut0(gK) on the épinglages of gK is simply transitive.

We feel unsure about the last lines in Bourbaki’s proof, but the assertion can

certainly be proven e.g. using VIII.3.3, Corollaire to Prop. 10 instead of VII.3.2,

Thm 1, without further scalar extension.

Definition 3.1.55 (Congruence associated with an isomorphism)

In the setting of the above proposition, the congruence w′ ◦ ψ defined in its

proof is called the congruence associated with F .

Applying the proposition to F = id already shows that for fixed s and t, the index

of g up to congruence does not depend on the choice of ∆, that is, the choice of the

Γ-linear order. More precisely it shows that for two such choices, the congruence is

given by a specific element of the Weyl group.

Proposition 3.1.56. — Let s, t respectively s′, t′ in g be chosen as before, and let K

be a splitting field for both t and t′. Then there is an F ∈ Aute(gK) such that

F (sK) = s′K and F (tK) = t′K .

Proof. — Theorem 3.1.16 gives us an elementary automorphism h ∈ Aute(g) with

h(s) = s′. A fortiori, h(zg(s)) = zg(s
′), and both h(t) and t′ are maximal toral (= Car-

tan) subalgebras of g, contained in zg(s
′) and hence Cartan subalgebras of zg(s

′). It

follows that hK(tK) and t′K are both split Cartan subalgebras of the reductive Lie al-

gebra zg(s
′)K . From [Bo2, VIII.3.3] we get η ∈ Aute((zg(s

′))K) with η(hK(tK)) = t′K .

Because η is elementary, firstly, it extends to an automorphism η̂ of gK , and secondly,

it fixes s′K . Set F := η̂ ◦ hK .

Combining this with 3.1.53 shows that the index of g depends, up to congruence,

not on the choices made. Further:
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Theorem 3.1.57. — Let f : g
∼−→ g′ be an isomorphism of Lie algebras. Then for

appropriate choices, there is a congruence from the respective index of g to that of g′

h : (X,R,∆,∆0, t)
∼−→ (X ′, R′,∆′,∆′

0, t
′)

and an isomorphism fa : ga
∼−→ g′a of the anisotropic kernels, which are compatible in

the sense that the induced map

h|Xa
: (Xa, R0,∆0,∆0, t|Xa

) −→ (X ′
a, R

′
0,∆

′
0,∆

′
0, t

′
|X′

a
)

is the congruence associated with (fa)K := id⊗fa : (ga)K
∼−→ (g′a)K .

Proof. — If we choose s, t,∆ and a splitting field K for t as before, then s′ := f(s) is

a maximal split toral subalgebra of g′, t′ := f(t) is a maximal toral one containing s′.

Call ψ as usual the inverse of the contragredient of F := id⊗f : gK → g′K . With F

also ψ commutes with the (untwisted) Galois actions, so that ∆′ := ψ(∆) is a Γ-basis

(of R′ ⊂ X ′, defined with respect to t′K). A congruence between the indices defined

with respect to these choices is just given by ψ (no twisting with a Weyl group element

needed), and taking as fa of course the restriction to ga of f , and ∆0 as Γ-basis of R0,

the compatibility is obvious.

The converse of this is the “isomorphism theorem” from this chapter’s title. We will

state and prove it in Section 3.3. Before doing this, let us look at some special cases

and examples.

3.2. Special cases and examples

In this section, we will consider opposite extreme cases of what our invariants

can be. [Spr3, 16.2.2] whose proof, however, needs slight corrections. They will be

very useful for the classification. Keep the notation of the previous sections, i.e.

choose s, t,∆, etc. as before.

3.2.1. The anisotropic case

Lemma 3.2.1. — The following are equivalent:

i. ∆0 = ∆,

ii. R0 = R,

iii. X0 = X,

iv. R = ∅,

v. s = {0},
vi. ga = zg(s) = g,

vii. every element of g is semisimple,

viii. g contains no non-zero nilpotent element,

ix. g contains no parabolic subalgebra distinct from g.
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Proof. — Equivalences and implication i⇔ ii⇔ iii⇔ iv⇔ v⇒ vi are clear. Algebra g

being semisimple implies v ⇐ vi. We have vii ⇔ viii from the Jordan decomposition,

and by 3.1.2, viii ⇒ iv. Remark 3.1.29 gives vi ⇒ vii (alternatively, v ⇒ viii by

Jacobson-Morozov).

Finally, the equivalence viii ⇔ ix is exercise 6.a of [Bo2, VIII.10]. Direction “⇐”

follows by contraposition from [Bo2, VIII.10, Cor. 2] applied to n = k·X for a non-zero

nilpotent X ∈ g, because the radical of g and hence the set called “ng(g)” in loc. cit.

(defined in the same paragraph) is zero. For the converse, assume there is a parabolic

subalgebra p ⊊ g. Then by [Bo2, VIII.3.4, Prop. 13] the largest nilpotent ideal of pk̄
is a non-zero sum of root spaces in gk̄ , which (cf. ibid.. Prop. 9) consists of nilpotent

elements of gk̄ . By [Bo2, I.4.5], this ideal is the scalar extension of the largest nilpotent

ideal in p. In particular, under the usual identifications, its intersection with p is non-

zero, and consists of elements which are nilpotent in g.

Definition 3.2.2. — If these equivalent conditions are satisfied, g is called

anisotropic.

Parts vii to ix (and v, saying that {0} is the unique split toral subalgebra in g)

show directly that this is independent from the choices of s, t etc. One readily sees

e.g. from 3.1.29 that the anisotropic kernel of a semisimple g is indeed anisotropic,

and of course an anisotropic Lie algebra is its own anisotropic kernel. Also, part viii

combined with lemma 2.1.8 gives

Corollary 3.2.3. — A semisimple subalgebra of an anisotropic Lie algebra is

anisotropic.

Remark 3.2.4. — The terminology comes from anisotropic quadratic forms; the

connection will occur in the next example and become striking in 4.5.14; see also

[Sat3, I.4.4, Example 1], [BT1, 4.24]. [Sat3] and [We1] use the word compact. This

is common usage in the theory of real Lie algebras (cf. [Hel, Chap. III, X], [OVi],

[Oni], [Bo2, IX]) and ultimately stems from the fact that over R, these Lie algebras

correspond to compact Lie groups Int(g). For the connection between anisotropy and

compactness in algebraic groups over local fields cf. [BT1, §9] and [Sat3, I.4.4.4].

Example 3.2.5 (Anisotropic form of A1). — Let K|k be a quadratic extension, say

K = k(y) with y2 =: a ∈ k. Denote the non-trivial element of Γ = Gal(K|k) by σ:

σ(r + sy) = r − sy for r, s ∈ k.

Assume further that there is an element b ∈ k which is not a norm of the exten-

sion K|k. Consider, inside RK|k sl2(K), the 3-dimensional subalgebra g given by all

elements ( ry s+ ty

b(s− ty) −ry

)
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with r, s, t ∈ k. One easily sees that gK identifies with sl2(K) (in particular, g is

simple), a general element of which we denote as

x =
(x11 x12
x21 x22

)
subject to x11 = −x22. We claim that g is anisotropic, for which we verify 3.2.1.viii.

Assume that

x =
( ry s+ ty

b(s− ty) −ry

)
is a nilpotent element of g. Then adg(x) is nilpotent and so is

adgK
(1⊗ x) = id⊗ adg(x),

hence (cf. [Bo2, I.6.3, Thm 3]) so is 1 ⊗ x = x viewed as element of sl2(K). This

implies by definition (cf. [Bo2, I.6.3, Def. 3]) that the matrix x itself is nilpotent, so

its characteristic polynomial must be T 2, that is, −r2y2 − b(s2 − t2y2) = 0 which is

equivalent to

(s = t = 0 = r) or
(
b =

−r2y2

s2 − t2y2
= NK|k

( ry

s+ ty

))
The second case was excluded, so x = 0 and our claim is proved.

NB. — Our choice of a, b is made so that the quadratic formX2
0−aX2

1−bX2
2+abX

2
3

(or equivalently, the quadratic form X2
3 − bX2

1 − aX2
2 ) is anisotropic over k. This in

turn is equivalent to the quaternion algebra

D :=
(a, b
k

)
being a division algebra, cf. [Pie, 1.6]. In fact, our g is the derived algebra (= semisim-

ple part) of the associative k-algebra D viewed as Lie algebra with commutator

bracket. For K|k = C|R and a = b = −1, we have the Hamilton quaternions as D,

and g is the compact real form of sl2(C). For k a p-adic field, one can take as K|k the

unique unramified extension of degree 2 and as b a uniformiser of k. For more in this

direction, see Section 4.4 and compare example (a) in Remark 4.5.20.i.

As g is anisotropic, the unique split toral subalgebra is s = {0}. Any one-

dimensional subspace is a maximal toral subalgebra, but to have K as splitting field,

we choose

t =
{( ry 0

0 −ry

)
: r ∈ k

}
gK has the well-known root α(x) = x11 − x22 (= 2x11) with respect to the split

maximal toral subalgebra

tK =
{(x11 0

0 x22

)
: x11 = −x22

}
.
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We have ρ(α) = α|sK = 0 and the root spaces

(gK)α =
( 0 ∗
0 0

)
, (gK)−α =

( 0 0

∗ 0

)
.

Let us look at the Galois action on a root space: Writing( 0 x
0 0

)
=
x

2
·
( 0 1

b 0

)
︸ ︷︷ ︸

∈g

+
x

2y
·
( 0 y

−by 0

)
︸ ︷︷ ︸

∈g

we see with σ(y) = −y that

σ

(( 0 x
0 0

))
=

σ(x)

2
·
( 0 1

b 0

)
− σ(x)

2y
·
( 0 y

−by 0

)
=
( 0 0

bσ(x) 0

)
so that σ((gK)α) = (gK)−α, hence

σα = −α. Further:
i. R = R0 = {±α} (type A1)

ii. ∆ = ∆0 for both possible bases (automatically Γ-bases) {α} and {−α}
iii. X = X0 = Xa = Zα
iv. {0} = s = Z ⊊ t ⊊ ga = zg(s) = g

v. W (R) =W (R)Γ =W0 = {± id}
vi. wσ = − id so that t(σ) = id.

3.2.2. The quasi-split case

Lemma 3.2.6. — The following are equivalent:

i. ∆0 = ∅.

ii. R0 = ∅.

iii. Xa = {0}.
iv. ga = {0}.
v. zg(s) = t.

vi. g contains a Borel subalgebra.

Proof. — i ⇔ ii ⇔ iii ⇔ iv ⇔ v amends 3.1.32. Now if these are satisfied,

g = zg(s)︸ ︷︷ ︸
t

⊕
⊕
λ∈R

gλ

and with 3.1.20 one sees that for a system of positive roots R+ in R,

t⊕
⊕
λ∈R+

gλ

is a Borel subalgebra of g. Conversely, assume there is a Borel subalgebra b ⊂ g. Then

its largest nilpotent ideal N has b as normaliser in g; this follows from stability of the

normaliser and the largest nilpotent ideal (cf. [Bo2, I.5.5]) under scalar extension.
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Hence N is the intersection with g (or the set of all Gal(k̄ |k)-invariants) of Nk̄ = sum

of all positive root spaces with respect to some toral subalgebra and order of roots.

Certainly N is a nil subalgebra in g, and if it were not maximal nil in g, by [Bo2,

VIII.10, Cor. 2] there would exist a parabolic subalgebra q in g whose radical strictly

contains N; so that the radical of qk̄ would strictly contain Nk̄ , which is absurd by

a dimension comparison. Now if s, t,K are chosen as usual, by step 4 of the proof

of 3.1.16 we can assume that s ⊆ t ⊆ zg(s) ⊆ b and hence bK must be of the form

tK ⊕
⊕

α∈P (gK)α for a system of positive roots P ⊂ R. Since on the other hand,

all (gK)α for α ∈ R0 are in bK , necessarily R0 = ∅.

Definition 3.2.7. — If these equivalent conditions are satisfied, g is called quasi-

split.

Remark 3.2.8. — The property of being split is stronger, as the next example shows.

Characterisations of split Lie algebras will be given in 3.2.12.

Example 3.2.9 (Quasi-split form of A2
(12)). — Let K|k be a quadratic extension,

say K = k(y) with y2 ∈ k. Denote the non-trivial element of Γ = Gal(K|k) by σ:

σ(a+ by) = a− by for a, b ∈ k.

Consider, inside RK|k sl3(K), the 8-dimensional subalgebra g given by all elements( a+ by c+ dy ey

f + gy −2by −c+ dy

hy −f + gy −a+ by

)

with a, b, c, d, e, f, g, h ∈ k. One easily sees that gK identifies with sl3(K), a general

element of which we denote as

x =

(x11 x12 x13
x21 x22 x23
x31 x32 x33

)

subject to x11 + x22 + x33 = 0. We claim that

s :=

{( a 0 0

0 0 0

0 0 −a

)
: a ∈ k

}
and t :=

{( a+ by 0 0

0 −2by 0

0 0 −a+ by

)
: a, b ∈ k

}

are maximal split toral and maximal toral subalgebras of g, respectively. Indeed,

tK =

{(x11 0 0

0 x22 0

0 0 x33

)
: x11 + x22 + x33 = 0

}
.

12. This is essentially the example from [Sel2, p. 13], generalised from C|R and with slightly

different normalisations.
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is known to be maximal toral in gK , so t is maximal toral in g by the proof of 3.1.7.

On the other hand, one sees that s is split toral and that zg(s) = t, so any split toral

subalgebra containing s must be in t. But t itself is not split, and dimk(s) = 1 < 2 =

dimk(t) proves our claim.

gK has the well-known roots α1(x) = x11 − x22, α2(x) = x22 − x33 with respect

to tK . We have ρ(α1) = α1|sK = α2|sK = ρ(α2) =: λK . Further:

i. R = {±α1,±α2,±(α1 + α2)} (type A2),

ii. R = {±λK ,±2λK} (type BC1),

iii. R0 = ∆0 = ∅,

iv. X = Zα1 + Zα2,

v. X0 = Z(α1 − α2) (so indeed ρ(α1) = ρ(α2) under ρ : X ↠ X/X0),

vi. Xa = {0},
vii. {0} = ga ⊊ s ⊊ Z = t = zg(s),

viii. σα1 = α2,
σα2 = α1,

ix. the two Γ-bases are ∆ = {α1, α2} and ∆′ = {−α1,−α2} ,
x. W (R)Γ = {id, sα1+α2

},W0 = {id},
xi. wσ = id so that t(σ) = σA is the transposition of α1 and α2.

Root spaces and coroots “upstairs” are well known:

(gK)α1
=

( 0 ∗ 0

0 0 0

0 0 0

)
, (gK)α2

=

( 0 0 0

0 0 ∗
0 0 0

)
, (gK)α1+α2

=

( 0 0 ∗
0 0 0

0 0 0

)
;

Hα1 =

( 1 0 0

0 −1 0

0 0 0

)
, Hα2 =

( 0 0 0

0 1 0

0 0 −1

)
, Hα1+α2 =

( 1 0 0

0 0 0

0 0 −1

)
,

and Hα is a K-basis of [gα, g−α] for each α ∈ R. But “below”, for the rational root

λ : s −→ k,

( a 0 0

0 0 0

0 0 −a

)
7−→ a

we have

gλ =

( 0 c+ dy 0

0 0 −c+ dy

0 0 0

)
, g−λ =

( 0 0 0

f + gy 0 0

0 −f + gy 0

)
,

Hλ = −H−λ =

( 2 0 0

0 0 0

0 0 −2

)
, g2λ =

( 0 0 ey

0 0 0

0 0 0

)
, H2λ =

( 1 0 0

0 0 0

0 0 −1

)
.
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In particular dimk(gλ) = dimk(g−λ) = 2 as predicted by 3.1.13. In the same vein, we

have [( 0 y 0

0 0 y

0 0 0

)
︸ ︷︷ ︸

∈gλ

,

( 0 0 0

1 0 0

0 −1 0

)
︸ ︷︷ ︸

∈g−λ

]
=

( y 0 0

0 −2y 0

0 0 y

)
∈ t \ s

so in fact [gλ, g−λ] = t has dimension 2 and is not generated by Hλ. Also note how the

root spaces are “skew”with respect to each other: although (gλ)K = (gK)α1
⊕ (gK)α2

,

we have gλ ∩ (gK)αi
= {0} for i = 1, 2.

Finally it might be worthwhile to see the Galois action on a root space explicitly:

Writing ( 0 x 0

0 0 0

0 0 0

)
=
x

2
·

( 0 1 0

0 0 −1
0 0 0

)
︸ ︷︷ ︸

∈g

+
x

2y
·

( 0 y 0

0 0 y

0 0 0

)
︸ ︷︷ ︸

∈g
we see with σ(y) = −y that

σ

(( 0 x 0

0 0 0

0 0 0

))
=

σ(x)

2
·

( 0 1 0

0 0 −1
0 0 0

)
− σ(x)

2y
·

( 0 y 0

0 0 y

0 0 0

)
=

( 0 0 0

0 0 −σ(x)
0 0 0

)

so that indeed σ((gK)α1
) = (gK)α2

.

Remark 3.2.10. — This example can be generalised to construct non-split quasi-

split Lie algebras of type An for arbitrary n ≥ 2. (For n = 1, the construction

degenerates to the split sl2(k).) Namely, let K = k(y) be as above, d = n + 1 and

consider inside RK|ksld(K) those matrices (xi,j) that satisfy xi,j = −σ(xd+1−j,d+1−i);

that is, those traceless d × d matrices over K such that each entry is the negative

conjugate of the one mirrored at the secondary diagonal (in particular, the entries on

the secondary diagonal are k-multiples of y); or in yet other words, the traceless d× d
matrices (xi,j) over K satisfying (xi,j) ·H +H · t(σ(xi,j)) = 0 where H is the d× d
matrix with entries 1 on the secondary diagonal and 0 else. A maximal split toral

subalgebra is

s :=
{
diag(x1,1, . . . , xd/2,d/2, −xd/2,d/2, . . . ,−x1,1) : xi,i ∈ k

}
or

s :=
{
diag(x1,1, . . . , xn/2,n/2, 0, −xn/2,n/2, . . . ,−x1,1) : xi,i ∈ k

}
according to whether n is odd or even. One calculates that for odd n, the rational

root system R is of type Cd/2, whereas for even n, it is of type BCn/2 (we will

show this with an easy method in 3.4.1). We have wσ = id so that the twisted and

untwisted Galois action coincide, and σ transposes αi and αn−i+1, where αi are the

conventionally named roots of sld(K). (13)

13. Cf. [Bo2, VIII.13, exercise 16.a] and 4.5.22 for much more generality.
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Remark 3.2.11. — For different choices of the quadratic extension K|k, the above

gives non-isomorphic Lie algebras. In the index, the difference is in the kernel of the

twisted Galois action t : Gal(k̄ |k)→ Aut(R,∆), whereas the image of t is always the

same. We call the fixed field of the kernel of t the “fixed field of t” for short.

3.2.3. The split case

Lemma 3.2.12. — The following are equivalent:

i. g is quasi-split, and the twisted Galois action is trivial (i.e. t ≡ id).

ii. The non-twisted Galois action on X is trivial.

iii. X0 = {0}.
iv. s = t.

v. R = R.

vi. t is split toral.

vii. (g, t) is a split semisimple Lie algebra in the sense of [Bo2, VIII.2].

Proof. — i⇒ ii by 3.1.43.ii and 3.2.6.iii. The equivalence iii⇔ iv follows from 3.1.27,

and ii ⇔ iii as well as iv ⇔ v ⇔ vi ⇔ vii ⇔ i are clear.

Remark 3.2.13 (Splitting fields). — As a matter of convention, we call a splitting

field for our semisimple g a field K such that there is a maximal split toral s in g,

and a maximal toral t containing s, such that K is a splitting field for t. Caveat : this

does not mean that any toral subalgebra, nor even every other t′ of this kind, is split

by K.

Any splitting field for g must contain the fixed field of t. So if this fixed field

is a splitting field itself – e.g. for quasi-split g – it is the unique minimal splitting

field, meaning that every splitting field for any choice t ⊇ s has to contain it. Not

all Lie algebras have such a minimal splitting field. In fact different non-split toral

subalgebras t, even if chosen with respect to the same s, might even have linearly

disjoint splitting extensions. For example in 5.2.2 we will see Lie algebras for which

every extension of a given degree d is a splitting field (for some t chosen with respect

to s = 0 there).

3.3. The isomorphism theorem

In this section we prove the converse of 3.1.57. In this sense, the description of the

isomorphism class of a semisimple Lie algebra is reduced to the description of its index

and anisotropic kernel. For split semisimple Lie algebras, the statement reduces to a

variant of the classical uniqueness theorem as formulated by Chevalley and others,

see e.g. [Bo2, VIII.4.4]. In fact we will use this result for a splitting extension, and

then derive the general version by Galois descent, including the notorious Hilbert 90.

Our proof follows [Sat2] and [Sat3, II.2.4], i.e. translates it to Lie algebras.
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Let g, g′ be two semisimple Lie algebras over k. Fix choices s, s′, . . . as before,

including a common finite Galois splitting field K for both t and t′. With respect

to these choices, we have the indices (X,R,∆,∆0, t) and (X ′, R′,∆′,∆′
0, t

′), and the

anisotropic kernels ga and g′a.

Assume that there is a congruence

h : (X,R,∆,∆0, t) −→ (X ′, R′,∆′,∆′
0, t

′)

and an isomorphism

fa : ga
∼−→ g′a

which are compatible in the sense that the induced map

h|Xa
: (Xa, R0,∆0,∆0, t|Xa

) −→ (X ′
a, R

′
0,∆

′
0,∆

′
0, t

′
|X′

a
)

is the congruence associated with (fa)K := id⊗f : (ga)K
∼−→ (g′a)K .

Theorem 3.3.1 (Satake, Tits, Weisfeiler). — Under the above assumptions, there is

an isomorphism f : g→ g′ inducing fa and such that h is associated with

fK := id⊗f : gK −→ g′K .

A special case is:

Corollary 3.3.2. — If g is quasi-split, its isomorphism class is uniquely determined

by its index.

The proof of the theorem will take up the rest of this section.

3.3.1. Requisites. — For each α ∈ R, choose a basis of (gK)α, i.e. a non-zero

element eα ∈ (gK)α, in such a way that [eα, e−α] = Hα (this is possible by 3.1.9).

Make an analogous choice of e′α′ for α′ ∈ R′. These choices remain fixed throughout

this section. By 3.1.22, for each (σ, α) ∈ Γ×R there is a unique ξσ,α ∈ K∗ defined by

the relation:

σ(eα) = ξσ,α · eσA(α)(11)

Now for σ, τ ∈ Γ we have σ(τ(eα)) = σ(ξτ,α) · σ(eτA(α)) = σ(ξτ,α) · ξσ,τA(α) · eσAτA(α),

so that:

ξστ,α = σ(ξτ,α) · ξσ,τA(α)(12)

(So for each α ∈ R, the map σ 7→ ξσ,α is a cocycle from the subgroup Γα := {σ ∈ Γ :

σ(α) = α} to K∗, but we will not need this.) Define ξ′σ,α′ ∈ K∗ analogously.

Next, suppose we are given an isomorphism F : gK
∼−→ g′K such that F (tK) = t′K

(write F : (gK , tK)
∼−→ (g′K , t

′
K) for short). We get the isomorphism

ψ : X
∼−−→ X ′, χ 7−→ χ ◦

(
(F|tK )−1

)
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with ψ(R) = R′. This in turn gives, for α ∈ R, unique ηα ∈ K∗ defined by

F (eα) = ηα · e′ψ(α).(13)

From the root space decomposition it is clear that if two isomorphisms F and G give

rise to the same tuple (ψ, (ηα)α∈R), we have F = G, so F is uniquely determined by

this tuple. Write

F ←→
(
ψ, (ηα)α∈R

)
.

We will later see some sufficient conditions for a tuple to occur, i.e. to arise from an

isomorphism. The proof of the following remark contains a necessary one:

Remark 3.3.3. — For any basis B of the root system R, an isomorphism F as above

is already determined by ψ and (ηα)α∈B .

Proof. — The chosen eα give rise to structure constants Nα,β ∈ K∗ defined by

[eα, eβ ] = Nα,β · eα+β for α, β ∈ R with α+ β ∈ R;(14)

also remember [eα, e−α] = Hα. Analogously, define N ′
α′,β′ . It is then not hard to show

that F commuting with the Lie brackets and F (Hα) = Hψ(α) implies

ηα+β = ηα · ηβ ·
N ′
ψ(α),ψ(β)

Nα,β
, η−α = η−1

α

for α, β ∈ R with α+ β ∈ R, from which the claim follows.

For σ ∈ Γ and an isomorphism F as above, set σF := σ ◦ F ◦ σ−1 – the σ’s

meaning the k-automorphisms of g′K and gK – which is again an isomorphism

(gK , tK)
∼−→ (g′K , t

′
K). The next lemma shows how: i) this Galois action and ii)

composition translate to the tuple. For ϕ ∈ HomZ(X,X
′), we define σϕ := σA′ ϕσ−1

A

with the σA ∈ A(R), σA′ ∈ A(R′) again meaning the elements defined by the Galois

actions on X and X ′.

Lemma 3.3.4

i. For σ and F as above, we have

σF ←→
(σ
ψ,
(
σ(ησ−1

A (α)) ·
ξ′
σ,ψ(σ−1

A (α))

ξσ,σ−1
A (α)

)
α∈R

)
.

ii. For isomorphisms

(gK , tK)
F−−→ (g′K , t

′
K)

F ′

−−−→ (g′′K , t
′′
K)

(with X ′′, R′′, (e′′α)α∈R′′ , etc.) we have

F ′ ◦ F ←→ (ψ′ ◦ ψ, (η′ψ(α) · ηα)α∈R)

MÉMOIRES DE LA SMF 151



3.3. THE ISOMORPHISM THEOREM 57

Proof. — Let α ∈ R. For χ ∈ X we have

(σψ)(χ) = σ(ψ(σ
−1

χ)) = σ(ψ(σ−1 ◦ χ ◦ σ))

= σ(σ−1 ◦ χ ◦ σ ◦ (F|tK )−1) = χ ◦ σ ◦ (F|tK )−1 ◦ σ−1

= χ ◦ (σF|tK )−1.

where the internal σ’s with which the maps are composed are the k-automorphisms

of tK , t
′
K and K. Further,

(σF )(eα)
(11)
== σ(F (ξσ−1,α · eσ−1

A (α)))

= σ(ξσ−1,α) · σ(F (eσ−1
A (α)))

(13)
== σ(ξσ−1,α) · σ(ησ−1

A (α) · e
′
ψ(σ−1

A (α))
)

= σ(ξσ−1,α) · σ(ησ−1
A (α)) · σ(e

′
ψ(σ−1

A (α))
)

(11)
== σ(ξσ−1,α) · σ(ησ−1

A (α)) · ξ
′
σ,ψ(σ−1

A (α))
· e′
σA′ψσ

−1
A (α)

,

and σ(ξσ−1,α) is the inverse of ξσ,σ−1(α) by (12). (Note e′
σA′ψσ

−1
A (α)

= e′(σψ)(α).)

This shows i. For ii., just remark

F ′(F (eα)) = F ′(ηα e
′
ψ(α)) = ηα F

′(e′ψ(α)) = ηα η
′
ψ(α) e

′′
ψ′(ψ(α)).

Set TX := HomZ(X,K
∗), see [Bo2, VIII.5..2] – our X is the root lattice called

Q(R) there. There is an embedding i : TX ↪→ Aut(gK , tK) called “f” in loc. cit.:

for Φ ∈ TX and any weight α ∈ R ∪ {0}, the restriction of i(Φ) to the weight space

(gK)α is given by scalar multiplication with Φ(α). In fact our tuples, in the case of

F ∈ Aut(gK , tK), are explicit versions of the exact sequence

1→ TX −→ Aut(gK , tK) −→ A(R)→ 1,

with respect to the same chosen basis (eα)α∈R for domain and target. (Vaguely said,

TX is a multiplicative ersatz torus, and in the group setting, i(Φ) would be the inner

automorphism given by conjugation with Φ.)

Lemma 3.3.5. — Let F ∈ Aut(gK , tK). Then for Φ ∈ TX , we have F = i(Φ) if

and only if F ↔ (id, (Φ(α))α∈R). In particular, given any basis B of R and arbitrary

ηα ∈ K∗ for α ∈ B, there are unique ηα for α ∈ R \B and a unique F ∈ Aut(gK , tK)

such that F ↔ (id, (ηα)α∈R). This F is in i(TX).

Proof. — That i(Φ) ↔ (id, (Φ(α))α∈R) for Φ ∈ TX is clear; and we had already

remarked that F is uniquely determined by its tuple. For the second assertion, B is

a Z -basis of X, so there is a unique Φ ∈ TX with Φ(α) = ηα for α ∈ B. Then by the

first part, F := i(Φ) has a tuple of the prescribed form, with Φ(α) = ηα for all α ∈ R.
The uniqueness then follows from 3.3.3.

To end this subsection, we explicitly remark the following:
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Proposition 3.3.6. — F : (gK , tK)
∼−→ (g′K , t

′
K) is of the form id⊗f with f :

(g, t)
∼−→ (g′, t′) if and only if σF = F for all σ ∈ Γ.

Proof. — σF = F for all σ ∈ Γ means that F is Γ-equivariant, which implies that by

restriction it induces an isomorphism (of Lie algebras over k)

f : g = (gK)Γ ≃ (g′K)Γ = g′.

with f(t) = f((tK)Γ) = f(tK)Γ = (t′K)Γ = t′. We naturally identify F with id⊗f .
The other direction is trivial.

3.3.2. Construction of the isomorphism. — Keeping assumptions and nota-

tions, we now construct an isomorphism from gK to g′K and then improve it until we

can let it descend to an isomorphism f as in the theorem. We start with a refined

version of the isomorphism theorem for split semisimple Lie algebras.

Proposition 3.3.7. — Let ψ : X
∼−→ X ′ be an isomorphism with ψ(R) = R′. Let

B be any basis of R, and for any α ∈ B, let ηα ∈ K∗. Then there are ηα ∈ K∗ for

α ∈ R\B and an isomorphism F : (gK , tK)
∼−→ (g′K , t

′
K) such that F ↔ (ψ, (ηα)α∈R).

Proof. — By the mentioned theorem – see e.g. [Bo2, VIII.4.4, hm 2.i] – there is an

isomorphism F1 : (gK , tK)
∼−→ (g′K , t

′
K) such that ψ(χ) = χ ◦ F−1

1|tK for all χ ∈ X.

Consequently, we have F1 ↔ (ψ, (θα)α∈R) for certain θα ∈ K∗. There is a unique

Φ ∈ TX with Φ(α) = θ−1
α ηα for all α ∈ B. Setting ηα := Φ(α)θα for all α ∈ R and using

3.3.5 and 3.3.4.ii, we see that F := F1 ◦ i(Φ) is an isomorphism (gK , tK)
∼−→ (g′K , t

′
K)

satisfying F ↔ (ψ, (ηα)α∈R).

So in order to get a good F , we need ψ and ηα with good properties. For this, we

will now make use of the extra data we have got.

Let the isomorphism (fa)K : (ga)K
∼−→ (g′a)K (sending (ta)K to (t′a)K) correspond

to the tuple (ψ0, (η
0
α)α∈R0).

Proposition 3.3.8. — There is an isomorphism F : (gK , tK)
∼−→ (g′K , t

′
K) with

F ↔ (ψ, (ηα)α∈R), satisfying the following properties:

i. (a) ψ|Xa
= ψ0;

(b) ηα = η0α for α ∈ R0;

ii. there is w′ ∈W ′
Γ such that w′ψ = h;

iii. (a) σψ = ψ for all σ ∈ Γ;

(b) For all (σ, α) ∈ Γ×R,

ξ′σ,ψ(α) = ξσ,α ·
ησA(α)

σ(ηα)
·

MÉMOIRES DE LA SMF 151



3.3. THE ISOMORPHISM THEOREM 59

Proof

First step. — By definition (3.1.55), the congruence associated with (fa)K is given

by the map w′ ψ0 for a unique w′ ∈ (W ′
0)Γ = W ′

0; by assumption, it is equal to h|Xa
.

So define

ψ := w′−1h : X
∼−−→ X ′

which certainly satisfies ψ(R) = R′, i.(a) and ii. We show that we also have iii.(a).

Let σ ∈ Γ. Remember that σψ was defined as σA′ψσ−1
A , where σA′ means the

element in A(R′) and σA the one in A(R) through which σ operates on X ′ and X.

We naturally extend everything to the vector spaces V and V ′. On these, we have

A(R)- (respectively, A(R′)-)invariant scalar products, hence a decomposition V =

Va⊕V ⊥
a such that V ⊥

a can A(R)-equivariantly be identified with V/Va (and analogous

for V ′). Further, property ii in the definition 3.1.52 of a congruence shows that we

have h(V ⊥
a ) = (V ′

a)
⊥.

Now it suffices to check σ-invariance for the restrictions ψ|Va
and ψ|V ⊥

a
. The first

one is extended from ψ0, which is σ-invariant by 3.3.4.i because (fa)K is.

From our congruence we know t′(σ) = h ◦ t(σ) ◦ h−1; on the other hand, we had

(see the proof of 3.1.43.i)

t(σ) = wσσA
(
resp. t′(σ) = w′

σσA′
)

with wσ ∈W0, w
′
σ ∈W ′

0. Since (by 3.1.34) W0 acts trivially on V ⊥
a , and W ′

0 trivially

on (V ′
a)

⊥, we get

σA′ ◦ h|V ⊥
a

= (h ◦ σA)|V ⊥
a

and, because w′ was in W ′
0 as well,

σA′ ◦ ψ|V ⊥
a

= (ψ ◦ σA)|V ⊥
a

which proves our claim.

Second step. — We define ηα for α ∈ ∆ so that i.(b) and iii.(b) are satisfied. Of

course ηα := η0α for α ∈ ∆0. For a preliminary consideration, choose arbitrary η̃α ∈ K∗

for α ∈ ∆ \ ∆0. The previous proposition shows the existence of an isomorphism

F̃ : (gK , tK)
∼−→ (g′K , t

′
K) such that F̃ ↔ (ψ, (η̃α)α∈R) with certain η̃α for α ∈ R \∆.

Using i.(a) and 3.3.3 we see that the restriction of such F̃ to (ga)K coincides with

(fa)K , so that necessarily η̃α = η0α for α ∈ R0. Further, using 3.3.4 and σψ = ψ,

we get

σF̃ ◦ F̃−1 ←→
(
id, (ζ̃σ,σ−1

A (α))α∈R
)

with

ζ̃σ,α :=
ξ′σ,ψ(α)

ξσ,α
· σ(η̃α)
η̃σA(α)

(15)
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so that iii.(b) is equivalent to ζ̃σ,α = 1 for all (σ, α) ∈ Γ × R. (NB: This is already

satisfied for (σ, α) ∈ Γ × R0 because the η0α came from (fa)K ↔ (ψ0, (η
0
α)α∈R0

), and

id(ga)K = σ(fa)K ◦ (fa)−1
K ↔ (idXa

, (ζ̃σ,σ−1
A (α))α∈R0

).)

Now 3.3.5 shows that for σ ∈ Γ there is a Φσ ∈ TX with σF̃ ◦ F̃−1 = i(Φσ), hence

ζ̃σ,σ−1
A (α) = Φσ(α)

for all α ∈ R. Because Φσ (a fortiori Φσ ◦ σA) is a group homomorphism, it follows

that

▷ ζ̃σ,α = ζ̃σ,β if α− β ∈ Xa (use σ−1
A (R0) = R0 and the NB above);

▷ it suffices to choose (η̃α)α∈∆\∆0
such that ζ̃σ,α = 1 for α ∈ ∆ \∆0 and σ ∈ Γ.

From (12) and (15) one also calculates (for σ, τ ∈ Γ, α ∈ R):

ζ̃στ,α = ζ̃σ,τA(α) · σ(ζ̃ τ,α)(16)

Now fix a first choice of η̃α ∈ K∗ for α ∈ ∆ \∆0. Fix any such α. Set

Γα :=
{
σ ∈ Γ : t(σ)(α) = α

}
,

a normal subgroup of Γ. Then 3.1.43.ii (or iv), the first bullet above and (16) show

that σ 7→ ζ̃σ,α is a cocycle Γα → K∗. Thus by Hilbert 90, there is µα ∈ K∗ such that

ζ̃σ,α = σ(µα)µ
−1
α for σ ∈ Γα.

Set ηα := µ−1
α η̃α, keeping the other η̃• on ∆ \ {α}. In this second choice, we have

newly determined ηβ for all roots β of the form
∑
δ∈∆ nδδ with nα ̸= 0; in particular

ησA(α) = µ−1
α η̃σA(α) for all σ ∈ Γα by 3.1.43.iv and the relations in 3.3.3. So for this

improved choice we have

ζσ,α =
ξ′σ,ψ(α)

ξσ,α
· σ(µ

−1
α η̃α)

µ−1
α η̃σA(α)

= ζ̃σ,α ·
µα

σ(µα)
= 1

for all σ ∈ Γα. The next step will be to extend this to all σ ∈ Γ.

Let σ1, . . . , σm be a complete set of representatives of Γ/Γα with σ1 = id. Consider

the orbits, with respect to the t-action, of Γ in ∆ \∆0: the one which contains α is

{α, t(σ2)α, . . . , t(σm)α}. Pick j ∈ {2, . . . ,m} and define

β := (σ
−1
j wσj

)(α) = (σ−1
jA ◦ wσj

◦ σjA)(α).

Since wσj
∈W0, also

σ−1
j wσj

∈W0 (3.1.33), and thus by 3.1.34,

β = α+
∑
δ∈∆0

nδδ with certain nδ ∈ Z≥0 .

On the other hand, t(σj)α is an element of ∆ \ (∆0 ∪ {α}). So when we now make a

third choice, which differs from the second one in defining:

ηt(σj)α := σj(ηβ) ·
ξ′σj ,ψ(β)

ξσj ,β
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where the things on the right hand side are from the second choice, then ηβ remains

the same in the third as in the second choice. This is made so that in this third choice,

by (15) and using σjA(β) = t(σj)α, we get

ζσj ,β =
σj(ηβ)

ησ(β)
·
ξ′σj ,ψ(β)

ξσj ,β
= 1

and hence also ζσj ,α = 1 because β − α ∈ Xa. Writing a general σ as product of

some σj with something in Γα and using the cocycle condition (16), we now have

achieved ζσ,α = 1 for all σ ∈ Γ.

But plugging this result into (16) once more, we see that we even have ζσ,τ(α) = 1

for every σ, τ ∈ Γ, and so by τ(α)− t(τ)(α) ∈ Xa and the first bullet, we have reached

ζσ,α′ = 1

where α′ is any root in the t-orbit of α, and σ is arbitrary.

Now if the orbit is the whole set ∆ \ ∆0, we are finished. If not, pick a new α

from another orbit and repeat the procedure – there is no interference with the earlier

adjustments. After finitely many steps, the proof is complete, and the F given by the

ψ and ηα is constructed and satisfies σF = F for any σ ∈ Γ.

The proof of the theorem is finished as follows. The above F by 3.3.6 descends to

an isomorphism f : (g, t)
∼−→ (g′, t′) which is of the form described in the theorem:

by part i of the proposition, it induces fa, and by part ii, id⊗f ∼= F induces the

congruence h.

3.4. Visualisation: Satake-Tits diagrams

A convenient way to visualise an index (X,R,∆,∆0, t) was introduced by Satake

in [Sat1]. Closely resembling is the visualisation in [Tit1], so the name Satake-Tits

diagram seems appropriate. What one does is to take the Dynkin diagram of the root

system R (in V , with respect to the basis ∆) and to decorate it by

▷ colouring black those vertices whose corresponding roots are in ∆0 (Tits instead

encircles those in ∆ \ ∆0; confusingly, in the table of [Spr3, p. 320], the vertices of

∆ \∆0 are blackened);

▷ drawing arrows which show how the t-action permutes the vertices (Tits instead

encircles the ones in a common t-orbit). Indeed, by 3.1.42 and [Bo2, VI.4.2, Cor.],

each t(σ) “is” a diagram automorphism.

So the Satake-Tits diagrams of our examples 3.2.5 and 3.2.9 are:

and

t(σ)

Of course, equivalent indices give the same diagram. A Lie algebra is anisotropic

(resp. quasi-split, resp. split) if and only if all vertices in its diagram are black (resp.
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white, resp. white and there are no arrows). Since in all cases except for the type D4,

the automorphism group of a connected Dynkin diagram has order ≤ 2, the arrows

do not get very complicated in many cases. Indeed if [K : k] = 2 for K the fixed field

of t, we can and will do without the labelling of the arrows (they would all be the

non-trivial automorphism of K|k), and instead add the field K to the description.

This information describes the index up to equivalence.

Remark 3.4.1. — We call a Satake-Tits diagram closed if every pair of vertices in

it is linked by a combination of edges and/or arrows. We will see in Section 4.1 that

a Lie algebra with closed Satake-Tits diagram arises by scalar restriction from an

“absolutely simple one” whose underlying Dynkin diagram is connected; and in 4.3.5

that a partition of a Satake-Tits diagram in its closed components corresponds to a

decomposition of the Lie algebra in its simple factors. So a Lie algebra is simple (resp.

absolutely simple) if its Satake-Tits diagram is closed (resp. has connected underlying

Dynkin diagram).

We end this section and chapter with a useful application of Satake-Tits diagrams.

3.4.1. Application: how to compute the rational root system. — We de-

scribe a sometimes convenient way to read off the k-rational roots R from the Satake-

Tits diagram of a Lie algebra g. The method is given by Tits in [TiW, 42.3.5],

cf. [Tit1, 2.5]. Assume that the k-rank of g is ≥ 1 (in other words, R is not empty),

and that the underlying Dynkin diagram is connected, so that R is irreducible.

Lemma 3.4.2. — The root system R is irreducible. Fixing a Γ-basis ∆, ρ projects the

highest root to the highest root of R with respect to ∆.

Proof (see [Spr3, 15.5.6]; for the highest root α ∈ R, see [Bo2, VI.1.8]). — One sees

that for any positive root β ∈ R, there is a finite sequence β = β0, β1, . . . , βn = α

such that βi − βi−1 = niδi for certain ni ≥ 0 and δi ∈ ∆. Reduction of this sequence

gives an analogous one in R which shows that in fact ρ(α) is the unique highest root

in R, so that R is irreducible.

Using that R is an irreducible root system, it can now be determined by the

surjectivity of ρ : R ↠ R, 3.1.43, 3.1.45, and the plates at the end of [Bo2, VI]. Let

us show the method with two typical examples: We will later encounter the diagrams

σ

σ σ
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of respective types E6 and D4. By 3.1.43.v and 3.1.45, the k-rank of g (= rank of R)

is the number of t-orbits containing white vertices (Tits calls these the “distinguished

orbits”). So in both examples, the rational root system has rank 2. For the E6 type,

ρ(α2) and ρ(α4) (α2 is the “lower vertex” in Bourbaki’s odd-looking labelling, α4 is

the one above it) are a basis of R; Bourbaki’s plate shows that the root system R of

type E6 has highest root

α := α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

so R has highest root ρ(α) = 2ρ(α2) + 3ρ(α4). The only root system of rank 2 which

contains such a combination of basis roots is G2, so this must be it, with ρ(α4) being

the shorter root.

For the D4 type, analogously, one basis root of R is ρ(α2) (α2 is the “middle”

vertex), and the other is ρ(α1) = ρ(α3) = ρ(α4): being in one t-orbit, they all have

the same image. Now R has highest root

α1 + 2α2 + α3 + α4

so R contains 3ρ(α1)+2ρ(α2), and again R must be of type G2, now with the common

projection of the “outer” roots as the short one.

One more example: We had seen the quasi-split forms of An. Say n ≥ 3 is odd,

d := n+ 1. The Satake-Tits diagram is

R has basis

δ1 := ρ(α1) = ρ(αn), δ2 := ρ(α2) = ρ(αn−1), . . . ,

δd/2−1 := ρ(αd/2−1) = ρ(αd/2+1), δd/2 := ρ(αd/2),

and we see that it has highest root

d/2−1∑
i=1

2δi + δd/2

and also contains

(0 · δ1+)

d/2−1∑
i=2

2δi + δd/2.

The first information still gives us the possibilities Bd/2 and Cd/2, with δd/2 being

the leftmost or rightmost vertex in the usual Dynkin diagram labelling. But then the

second information rules out Bd/2 (except for d = 4, where B2 = C2), so R is of

type Cd/2 as claimed in 3.2.10.

This method can be used to exclude many diagrams, because they would give rise

to impossible rational root systems. We do not need it in this generality, but will

exploit it in the case of k-rank 1, see 4.3.3.
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CHAPTER 4

CLASSIFICATION OVER GENERAL FIELDS

Interpreting the isomorphism theorem as a uniqueness statement, we can no longer

avoid the question of existence. The question is: Which diagrams and which anisotropic

kernels can occur over a given field k? For example, if k is algebraically closed, one

knows that there cannot be any arrows or black vertices (i.e. no anisotropic kernels).

In Sections 4.1–4.4 we develop methods to exclude or construct various diagrams, by

a combination of algebraic and combinatorial reasoning. Section 4.5 gives a general

theory for the classical types A-D, and Section 4.6 deals with the quasi-split forms.

Both suggest, as earlier examples did, that for a complete classification one has to take

account of the arithmetic of the given field, which will be done in the next chapter.

In this chapter, char(k) = 0 if not noted otherwise. All Lie algebras are understood

to be of finite dimension. We say that an index or a Satake-Tits diagram is k-admissible

if there is a semisimple Lie algebra over k which has this index or diagram.

4.1. Reduction to absolutely simple Lie algebras

It is obvious that to classify semisimple Lie algebras, we only have to classify simple

ones. But we can reduce further.

In this section, our ground field k is only assumed to be perfect, with algebraic

closure k̄ . (1)

Definition 4.1.1. — A Lie algebra g over k is called absolutely simple if gk̄ is simple

over k̄ , or equivalently, gK is simple over K for every extension K|k.

It turns out that every simple Lie algebra is the scalar restriction of an abso-

lutely simple one. This was announced by Albert and proven – for a larger class

of non-associative algebras than Lie algebras – with different methods by Landherr

1. The perfectness assumption is used only in the proposition.
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(cf. [Lan1]) and Jacobson (cf. [Jac2]) in the 1930s. We present here a nice little the-

ory around this fact, generally following Jacobson, and along the way solving [Bo2,

VIII.4, Exercise 4].

For a Lie algebra g over k, let A(g) be the (associative, unital) k-subalgebra of

Endk(g) generated by all adg(x), x ∈ g. Remark straightaway that for any field

extension L|k, a⊗ adg(x) 7→ adgL
(a⊗x) defines a natural isomorphism of associative

L-algebras:

L⊗k A(g) ∼= A(gL)(17)

Also remark that g is a (left) A(g)-module, and that an ideal of g is the same as an

A(g)-submodule. Further define:

K := K(g) :=
{
s ∈ Endk(g) : s ◦ adg(x) = adg(x) ◦ s for all x ∈ g

}
which as finite dimensional k-vector space is the same as zgl(g)(adg(g)); but we view

it as associative k-algebra and remark that as such it identifies with EndA(g)(g).

Now let g be simple. Then K is a skew field by Schur’s lemma. In fact, it is a field;

namely, since g = [g, g] it suffices to see that two elements s, t ∈ K commute on a

commutator [x, y] for x, y ∈ g. But

s
(
t([x, y])

)
= s
(
[x, ty]

)
= [sx, ty] = t

(
[sx, y]

)
= t
(
s([x, y])

)
where we have used, from left to right, that t commutes with adg(x), s with − adg(ty),

t with adg(sx) and s with − adg(y). We call K the centroid of g and remark that g

has a natural structure as Lie algebra over K. When viewing it as such, we denote

it byKg.

We claim that the centroid of Kg is K. Indeed, it is{
s ∈ EndK(Kg) : s ◦ adKg(x) = adKg(x) ◦ s for all x ∈ Kg

}
⊆
{
s ∈ Endk(g) : s ◦ adg(x) = adg(x) ◦ s for all x ∈ g

}
= K

and the other inclusion is clear. Further, the inclusion A(g) ⊆ Endk(g) factors through

natural maps A(g) ↪→ EndK(Kg) ↪→ Endk(g), and the first arrow is bijective by Jacob-

son’s density theorem [Bo1, VIII.5.5]. (2) Consequently, the following are equivalent:

i. g is simple and K = k,

ii. A(g) = Endk(g).

In this case we call g central simple. So e.g. Kg is central simple if g is simple. It

follows from (17) that every scalar extension of a central simple Lie algebra is again

central simple, a fortiori absolutely simple. But we have much more:

Proposition 4.1.2. — Let g be a simple Lie algebra and L|k a Galois extension

containing the centroid K. Then gL ≃ g1 × · · · × gr where r = [K : k] and the gi are

2. Or §4.2 in earlier editions. The theorem is absent from [Jac2], as he only proved it eight years

later!
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absolutely simple Lie algebras over L. In particular, g is central simple if and only if

it is absolutely simple.

Proof. — Writing K = k[X]/(f) where f is a minimal polynomial of a primitive

element of K|k, we have L ⊗k K ∼=
∏r
i=1 Li (as L-algebras) where the Li are all L

but with an L-action twisted via certain elements σi : L ≃ Li of the Galois group

Gal(L|k), permuting the zeros of f ∈ L[X]. In particular, r = [K : k]. Then with (17),

A(gL) ∼= L⊗k EndK(Kg) ∼= EndL⊗kK

(
(L⊗k K)⊗K (Kg)

)
∼= End∏r

i=1 Li

( r⊕
i=1

(Kg)Li

)
∼=

r∏
i=1

EndLi

(
(Kg)Li

)
.

Calling ei the i-th idempotent in the last product, the A(gL)-module ei ·gL is a simple

ideal gi in gL, which is in fact the simple L-Lie algebra deduced from (Kg)L by scalar

extension (i.e. twisting the L-action) with σi. (It can be shown that as soon as L is a

splitting field for g, the gi are all isomorphic as Lie algebras over L.)

As promised, we can write our simple Lie algebra as scalar restriction of an ab-

solutely simple one: g = RK|k(
Kg). Now let char(k) = 0. The proposition and its

proof show how the Satake-Tits diagram of g looks like: It consists of [K : k] copies

of the Satake-Tits diagram of Kg (whose underlying Dynkin diagram is irreducible),

and these copies are connected by arrows. To be more precise, for a finite Galois split-

ting field L, one should index the copies by Li corresponding to L ⊗k K ∼=
∏r
i=1 Li;

the arrows between the copies correspond to the way Gal(L|k) interchanges the Li
and hence the gi in the proposition. In particular, a simple Lie algebra has closed

Satake-Tits diagram in the sense of 3.4.1.

As an example, start with a split simple (automatically absolutely simple) Lie

algebra G over a finite extension K|k and consider g := RK|kG. The Satake-Tits

diagram will consist of [K : k] copies of the Dynkin diagram of G with arrows between

them; so if [K : k] > 1, g is non-split quasi-split (but also: not absolutely simple).

More generally, every finite scalar restriction of a quasi-split Lie algebra is quasi-

split. So the Satake-Tits diagram of RK|k sl2(K) for a Galois resp. non-Galois cubic

extension K|k are:

σ

σ σ

σ1

σ2 σ3

Here, σ is a generator of Gal(K|k) ≃ Z/3, resp. σi are the three transpositions in

S3 ≃ Gal(L|k), L being the normal closure of K. We will use this in Section 4.6.
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4.2. Galois cohomology and forms of certain types

General references for this section are [Ser2, VII, Appendix and X], [Ser3, III.1]

and [Wei]. The variants in [Jac6, X] and [Sel1, IV..1–2] have their origin in Jacobson’s

pre-cohomological version (cf. [Jac3, 6]). Compare also [Sat3, I.3].

Let K|k be a field extension and G a Lie algebra over K. A K|k-form of G is a pair

(g, F ) consisting of a Lie algebra g over k and an isomorphism F : G
∼−→ gK of Lie

algebras over K. Sometimes we drop the specific F and just say that g is a K|k-form
of G.

Now let g1 and g be Lie algebras over k such that (g1, F ) is a K|k-form of gK ,

and suppose K|k is Galois. Every σ ∈ Gal(K|k) acts on both (g1)K and gK , and we

set σF := σ ◦ F ◦ σ−1 which is again a K-isomorphism from gK to (g1)K . This is

compatible with the notation before and in 3.3.4, and in the special case g = g1 gives

a left Gal(K|k)-action on Aut(gK). In the general case, set

aσ := F−1 ◦ σF.

Then it is easily checked that aσ ∈ Aut(gK) and that aστ = aσ(
σaτ ) for all σ, τ

in Gal(K|k), so that σ 7→ aσ is a cocycle. Next, if (g1, F ) and (g2, F
′) are two K|k-

forms of gK as above, and if there is a k-isomorphism of Lie algebras f : g2
∼−→ g1, for

the cocycles aσ and bσ corresponding to F and F ′ as above, we have

bσ = ϕ−1 ◦ aσ ◦ (σϕ)

for all σ ∈ Gal(K|k), where ϕ := F−1 ◦ fK ◦ F ′ ∈ Aut(gK). In other words, the

corresponding cocycles are cohomologous.

Theorem 4.2.1. — The above assignment induces a bijection from the set of iso-

morphism classes of K|k-forms of gK to H1(Gal(K|k),Aut(gK)).

Although this is proven in much greater generality e.g. in [Ser2, X.2], let us stress

the following down-to-earth approach to the inverse of this map. Given a cocycle

a : Gal(K|k) −→ Aut(gK), σ 7−→ aσ,

we get for each σ ∈ Gal(K|k) a map ua(σ) := aσ ◦ σ (where the second σ denotes the

canonical action on gK). Then ua(σ) is a σ-semilinear, bijective map from gK to itself,

compatible with the Lie bracket, we have ua(id) = id and ua(στ) = ua(σ) ◦ ua(τ).
One calls the ua’s Galois semi-automorphisms and says they define the Galois action

twisted with the cocycle a. Define g(a) to be the set of elements of gK which are fixed

by all ua(σ), σ ∈ Gal(K|k). Then g(a) is a Lie algebra over k, and one shows that

the K-span of g(a), which identifies with g(a)K , is all of gK . Hence g(a) is a K|k-
form of gK . If b is a cocycle cohomologous to a, say bσ = ϕ−1 ◦ aσ ◦ (σϕ) for some

ϕ ∈ Aut(gK), then ϕ restricts to an isomorphism g(b)
∼−→ g(a) of Lie algebras over k.

Now let char(k) = 0 and let all extensions be inside a fixed algebraic closure k̄ |k. As

noted in Chapter 3, for every semisimple g over k there is a finite Galois extension K|k
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such that gK is split over K. The split semisimple Lie algebras, in turn, are classified

and can be defined over any prime field (for us, Q). We can express this as follows: For

each (isomorphism class of) irreducible root system R ∈ {An, Bn, . . . , G2}, fix a split

Lie algebra S(R) of corresponding type over Q. (This corresponds to fixing “base

points” in cohomology sets.) Then for every absolutely simple Lie algebra g over k

there is a finite Galois extension K|k such that g is a K|k-form of one S(R)K . (3)

In this case, we say that g is a form of type R, and it is easily seen that this type

is indeed well-defined and depends only on (much less than) the k-isomorphism class

of g; in fact, it “is” the k̄-isomorphism class of gk̄ , as g is a k̄ |k-form of S(R)k̄ .

Putting this information together and using the limit procedures for infinite Galois

cohomology, we get:

Theorem 4.2.2. — The isomorphism classes of forms of type R over k are in bijec-

tion with the pointed set

H1
(
Gal(k̄ |k),Aut(S(R)k̄)

)
,

the class of the split form being the distinguished point. Those forms which have the

Galois splitting extension K|k correspond to the ones in

H1
(
Gal(K|k),Aut(S(R)K)

)
which by inflation identifies with a subset of the above.

This translates our problem to a computation of Galois cohomology sets. Of course

this is an equally difficult problem, but the cohomology machinery gives new methods

to attack it. The classification of the split Lie algebras, which provides the underlying

Dynkin diagrams to the Satake-Tits diagrams in our general approach, here pops up

via their respective automorphism groups. The other ingredient are Galois groups, in

which the field arithmetic is encoded.

Remark 4.2.3

i. For k = R, the Galois group Z/2 looks innocent, and still one gets a rich theory.

But the messy-looking classification using certain“involutions” in real or complex

Lie groups, going back to E. Cartan and to be found e.g. in [OVi, Chap. 5.1] or

[Oni, §3], finds a nice interpretation in a cohomological theorem by Borel and

Serre, [Ser3, III.4.5].

ii. A posteriori we will see that splitting fields for absolutely simple Lie algebras

often have small degrees; in fact, over a p-adic field k, all forms of type different

from An are split by extensions of degree ≤ 6, and the splitting field can often be

chosen to be unramified. But to arrive at this conclusion, we first have to exploit

the general theory.

3. In fact it follows from the previous section that a simple g is a K|k-form of some finite product

of copies of S(R)K for a unique irreducible R.
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Definition 4.2.4. — A K|k-form of the split Lie algebra S(R)K is called an inner

form if a corresponding cocycle has image in Aut0(S(R)K), i.e. if its corresponding

element is in the image of the map

H1
(
Gal(K|k),Aut0(S(R)K)

)
−→ H1

(
Gal(K|k),Aut(S(R)K)

)
induced by inclusion. Otherwise, it is called an outer form.

With the methods of the next subsection and [Bo2, VIII.5] one can show e.g. that

an absolutely simple Lie algebra is an inner form of a split Lie algebra if and only

if there are arrows in its Satake-Tits diagram. Note that Aut0(S) is of index ≤ 2

in Aut(S) for split simple S except for those of type D4, where the quotient is the

symmetric group S3. In this case, a form whose corresponding cocycle has images of

order 3 or 6 modulo Aut0(S(D4)) is called of trialitarian type.

4.2.1. Application: An existence statement. — Connecting the cohomological

viewpoint with parts of our preparation for the isomorphism theorem in Chapter 3,

we will later be able to prove existence of certain forms. The idea of the following is in

[Sat3, II.3.1]; although it is necessarily a little technical, we hope that our presentation

can add to clarification.

In our preparation for the isomorphism theorem we had expressed certain isomor-

phisms of Lie algebra as tuples. We will now do this for the automorphisms which

are in the image of a cocycle. Let g′ be a Lie algebra over k and fix s′, t′,K|k as

usual, giving its index (X ′, R′, . . . ). Then g′ is a K|k-form of S(R)K . Because S(R)

is actually defined over Q, we can choose a maximal split toral t (giving rise to a root

system R and lattice X) and bases for the corresponding root spaces (eα)α∈R defined

over Q. Because the split maximal toral (= split Cartan) subalgebras in S(R)K are

conjugate, we can assume the isomorphism F : S(R)K → g′K satisfies F (tK) = t′K .

Let σ 7→ aσ be the corresponding cocycle. We recall the notations of Section 3.3.1 and

have a very special case: Because t and the eα are defined over Q, the Galois action

on X is trivial, i.e. all σA = id, and all ξσ,α = 1 in (11). Further, calling ψ : X → X ′

the contragredient of F , we also just define e′ψ(α) := F (eα) for all α ∈ R, so that by

definition (see (13)) we have

F ←→
(
ψ, (1)α∈R

)
Then it follows immediately from 3.3.4 that

F−1 ←→
(
ψ−1, (1)α∈R′

)
,

σF ←→ (σψ, (ξ′σ,ψ(α))α∈R),

aσ = F−1 ◦ σF ←→ (a∗σ, (ξ
′
σ,ψ(α))α∈R),

where a∗σ = ψ−1 ◦ σψ is the contragredient of aσ and the ξ′• are defined by σ(e′α) =

ξ′σ,α ·e′σA′ (α)
. Indeed σψ = σA′ ◦ψ and a∗σ = ψ−1 ◦σA′ ◦ψ by triviality of the σA. From

now on we stay in X ′, i.e. identify X and X ′ via ψ, so that a∗σ = σA′ . (One could say
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that aσ is the linear map whose “matrix” in the good basis eα is the “matrix” of the

semilinear map σ on g′K with respect to the image, via F , of this basis.)

Fact 1. — The ξ′• satisfy

ξ′στ,α = σ(ξ′τ,α) · ξ′σ,τA′ (α)(18)

(for all α ∈ R, σ, τ ∈ Γ) by (12).

Fact 2. — a∗σ can be recovered from the index and a∗σ|X′
a
. Namely, for χ′ ∈ X ′ and

σ ∈ Γ we have t′(σ)(χ′) = w′
σ(σA′(χ′)) so that a∗σ = σA′ = (w′

σ)
−1t′(σ). We know

t′(σ) from the index and w′
σ from the restriction to X ′

a.

Fact 3. — Knowing a∗σ, the tuple (ξ′σ,α)α∈R is determined by (ξ′σ,α)α∈R0
. Namely,

this follows from the isomorphism theorem.

So with the information of its index (X ′, R′,∆′,∆′
0, t

′), and assuming its anisotropic

kernel is given as a form of S(R′
0)K (where K|k is finite Galois and contains the fixed

field of t), one can actually construct the cocycle a and hence the Lie algebra g′ as

form of the split Lie algebra S(R′)K . This suggests to try the process with something

that “could be an index”:

Definition 4.2.5. — A possible index is a tuple (X,R,∆,∆0, t) where R is a root

system spanning the free Z -module X, ∆ is a basis of R, ∆0 a subset of ∆ and t a

homomorphism from Gal(k̄ |k) toA(R), such that ∆ and ∆0 are stable under each t(σ).

Call R0 the subsystem generated by ∆0, Xa the submodule spanned by R0.

Let a possible index (X,R,∆,∆0, t) be given and assume the following:

i. We have an anisotropic k-Lie algebra ga given as a form of the split Lie alge-

bra S(R0)K , with index (Xa, R0,∆0,∆0, t|Xa
), where K|k is finite Galois and

contains the fixed field of t.

As above this gives a tuple (a∗σ |Xa
, (ξσ,α)α∈R0), and elements wσ ∈ W (R0) ⊆

W (R) defined by t(σ)(χ) = wσ(σA(χ)) for χ ∈ Xa. Define, on all of X

a∗σ := (wσ)
−1 ◦ t(σ)

ii. The (ξσ,α)α∈R0
can be extended to (ξσ,α)α∈R such that:

a) each (a∗σ, (ξσ,α)α∈R) comes from a (necessarily unique) automorphism

of S(R)K , call it aσ;

b) (18) is satisfied.

Proposition 4.2.6. — Under these conditions, there is a K|k-form g of the split

Lie algebra S(R)K which has index (X,R,∆,∆0, t) and anisotropic kernel ga. In

particular, the index is k-admissible.

Proof. — With 3.3.4 one calculates that condition (ii) defines a cocycle σ 7→ aσ from Γ

with values in Aut(S(R)K). With the construction after theorem 4.2.1, this cocycle

defines a form (g, F ) of type R, so its index is (X,R, ?, ?, ?). The Galois action on g is
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described by aσ, in particular σA = a∗σ. Define X0 with respect to this Γ-action; from

anisotropy of ga and the Γ-action restricting to the original one on Xa = Z · ∆0, it

follows that ∆0 ⊆ (∆ ∩X0). Now we claim that for all σ ∈ Γ, a∗σ(δ) = w−1
σ ◦ t(σ)(δ)

is positive (with respect to ∆) for δ ∈ ∆ \ ∆0. Namely, δ′ := t(σ)(δ) ∈ ∆ \ ∆0 by

assumption, and w−1
σ (δ′) = δ′ +

∑
δi∈∆0

niδi for certain ni ∈ Z≥0 because wσ sends

roots to roots and induces the identity on X/Xa. The claim is proven. It implies that

indeed ∆0 = ∆ ∩ X0, since for δ /∈ ∆0 it implies that
∑
σ∈Γ σA(δ) is ̸= 0, so that

δ /∈ X0. It also implies that ∆ is a Γ-basis. It is then immediate that the twisted

action with respect to this coincides with the given t.

4.3. Necessary and sufficient conditions on the index

In this section we exploit some facts which, although rather simple for the most

part, will reduce the number of admissible indices by large. Unless noted otherwise,

g is a semisimple k-Lie algebra with index (X,R,∆,∆0, t) with respect to s, t,K

as always, char(k) = 0 and all extensions of k are in a fixed algebraic closure k̄

with G = Gal(k̄ |k).

4.3.1. The opposition involution. — For any root system R with basis D, the

opposition involution of D is the element I ∈ A(R) defined as follows: there is a unique

wI ∈ W (R) such that wI(D) = −D. Set I(α) := −wI(α) for α ∈ R. This defines

an automorphism of the Dynkin diagram of (R,D) which stabilises each irreducible

component. If R is irreducible, it is the identity, except in the cases An (n ≥ 2),

E6 and Dn (n odd (!)) where it is the unique non-trivial involution of the Dynkin

diagram.

Lemma 4.3.1. — Let I be the opposition involution of ∆. Then I stabilises ∆0 and

commutes with all t(σ), σ ∈ G.

Proof. — We show that wI ∈WΓ. There is w1 ∈WΓ such that π(w1) ∈W (R) maps

∆ to −∆. Then w1(∆ \ ∆0) = −(∆ \ ∆0). Since w1(∆0) is another basis of R0,

there further is w2 ∈ W0 with w2(w1(∆0)) = −∆0. Then w2w1(∆) = −∆ and hence

wI = w2w1 ∈ WΓ. This implies that I stabilises X0 and thus ∆0. Now let σ ∈ G.
Since t(σ) ∈ A(R), we have (t(σ))−1 wI t(σ) ∈W (R), but since t(σ) stabilises ∆ and

is linear, this element also maps ∆ to −∆ and hence is wI .

So roughly said, the black (and white) vertices in a Satake-Tits diagram of the

mentioned types have to be symmetric. E.g. the following is impossible:
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4.3.2. Admissible subindices. — In this subsection, stability under t(G) and con-

tainment of (parts of the) anisotropic kernel in subdiagrams of a Satake-Tits diagram

will allow us to descend corresponding subalgebras from gK to g, which gives us

admissibility criteria.

First, let ∆′ be a subset of ∆ which contains ∆0 and is stable under every t(σ).

Set X ′ := X ∩ Q · ∆′, R′ := R ∩ X ′, and denote by t′ the induced twisted Galois

action on X ′. R′ is the subsystem of R generated by (i.e. consisting of roots which are

non-negative or non-positive combinations of elements of) ∆′, and we have X ′ = ZR′,

cf. [Bo2, VI.1.7].

Set R′ := ρ(R′) \ {0} which is the same as the subsystem of R generated by

∆′ = ρ(∆′)\{0}. The conditions on ∆′ ensure by 3.1.43.v that R∩ρ−1(R′∪{0}) = R′.

Further, set

s0 :=
∩
λ∈R′

ker(λ) =
∩
λ∈∆′

ker(λ) ⊆ s.

By 3.1.21, zg(s0) is reductive, so g′ := D(zg(s0)) is semisimple. We have

zg(s0) = zg(s)⊕
⊕
λ∈R′

gλ and zg(s0)K = zgK
((s0)K) = tK ⊕

⊕
α∈R′

(gK)α.

One also sees s ∩ z(zg(s0)) = s0 and thus

s ∼= s0 × (s ∩ g′) ⊆ z(zg(s0))× g′ ∼= zg(s0).

Lemma 4.3.2 (Erasing lemma). — The Lie algebra g′ is semisimple with maximal

split toral subalgebra s′ := s∩g′ =
∑
λ∈R′ kHλ and maximal toral subalgebra t′ := t∩g′.

With respect to these, its index is (X ′, R′,∆′,∆0, t
′).

Proof. — (In fact, g′ is the standard Levi subalgebra of the parabolic subalgebra

corresponding to ∆′ via [Bo2, VIII.3.4, Rem.]. 3.1.2.1 was the case ∆′ = ∆0.) We

have s ∩ g′ =
∑
λ∈R′ kHλ by definition of the Hλ (3.1.9) and 3.1.11.iv. One also sees

that g′ contains the anisotropic kernel ga as subalgebra,

g′ ⊇ ga ⊕
∑
λ∈R′

kHλ ⊕
⊕
λ∈R′

gλ and g′K =
∑
α∈R′

KHα ⊕
⊕
α∈R′

(gK)α

as vector spaces. It follows that t′K =
∑
α∈R′ KHα is maximal toral in g′K , hence t′ is

maximal toral in g′ and a fortiori, s′ is maximal split toral in g′. The rest now follows

easily, using X0 ⊆ X ′.

This puts severe restrictions on indices. In a k-admissible Satake-Tits diagram it

means the following: Erase the t(G)-orbit of any set of white vertices (i.e. the vertices

and all edges touching them); then what is left must again be a k-admissible diagram.

There is a kind of a converse of 4.3.2 which allows us to build k-admissible diagrams

from ones with smaller k-rank:
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Proposition 4.3.3 (Patching proposition). — Let (X,R,∆,∆0, t) be a possible index

(4.2.5). Assume there are subsets ∆′,∆′′ of ∆ both of which are invariant under t(G)
and such that

∆ = ∆′ ∪∆′′, ∆′ ∩∆′′ = ∆0.

Like in the beginning of this subsection, we can form the “possible subindices”

(X ′, R′,∆′,∆0, t
′) and (X ′′, R′′,∆′′,∆0, t

′′). Let ga be an anisotropic Lie alge-

bra over k, given as K|k-form of S(R0)K , with index (Xa, R0,∆0,∆0, t|Xa
) =

(X ′
a, R

′
0,∆0,∆0, t|X′

a
) = (X ′′

a , R
′′
0 ,∆0,∆0, t|X′′

a
), and K|k finite Galois and containing

the fixed field of t. Then if both possible subindices are k-admissible with Lie algebras

g′, g′′ split over K and having ga as anisotropic kernels, then (X,R,∆,∆0, t) is

k-admissible with Lie algebra g having anisotropic kernel ga.

Proof. — We want to apply 4.2.6. Like in Section 4.2.1, for all σ ∈ Γ := Gal(K|k),
the Lie algebras ga, g

′ and g′′ define a∗σ|X′ and a∗σ|X′′ which both extend a∗σ|Xa
and by

∆′ ∩∆′′ ⊆ ∆0 patch well to a common a∗σ on X. Further they define tuples of scalars

(ξ0σ,α)α∈R0 , (ξ′σ,α)α∈R′ and (ξ′′σ,α)α∈R′′ which coincide for common α (necessarily

in R0) and each satisfy (18) for their respective α’s. Now for α ∈ ∆ we set ξσ,α := ξ′σ,α
or ξ′′σ,α according to whether α ∈ ∆′ or ∆′′. By 3.3.7 for ψ = a∗σ : X → X these

(ξσ,α)α∈∆ can be extended to (ξσ,α)α∈R such that there exists an aσ ∈ Aut(S(R)K)

with aσ ↔ (a∗σ, (ξσ,α)α∈R). (Note that certainly ξ0σ,α = ξσ,α for α ∈ R0 because of the

assumption on the anisotropic kernel, but we do not claim these new ξ’s to coincide

with any of the above ξ′ or ξ′′ for α ∈ R \ ∆.) To apply 4.2.6, it remains to check

that σ 7→ aσ is a cocycle or equivalently, these ξσ,α satisfy (18) for all α ∈ R. They
certainly do for α ∈ ∆ and we will see that this implies the stronger claim. Namely,

with 3.3.4 one computes that for σ, τ ∈ Γ:

a−1
στ aσ(

σaτ )↔ (id, (ξ−1
στ,α · ξσ,τA(α) · σ(ξτ,α))α∈R)

so that by 3.3.5, we have ξ−1
στ,α · ξσ,τA(α) · σ(ξτ,α) = Φ(α) for some Φ ∈ HomZ(X,K

∗).

But as said, Φ|∆ ≡ 1 and thus Φ ≡ 1 and everything is proven.

Remark 4.3.4. — It is possible to generalise this to finitely many sub-bases ∆′, and

also to relax a little the condition that they all contain ∆0: It is only necessary that

in the Satake-Tits diagram, the subdiagrams contain with each black vertex all black

vertices linked to it by a (possibly double or triple) edge, cf. [Sat3, II.3.1].

Remark 4.3.5. — Let g =
∏r
i=1 gi be a semisimple Lie algebra decomposed into its

simple factors. With Section 4.1 one sees that this corresponds to a decomposition

of the Satake-Tits diagram into closed components (cf. 3.4.1). Conversely, assume

we have a partition of the Satake-Tits diagram of a semisimple g into closed subdi-

agrams Si. Then a combination of the erasing lemma, the patching proposition (in

the remarked generalised version) and the isomorphism theorem shows that g is the
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direct product of subalgebras gSi
with indicated diagrams, which are then necessarily

simple.

4.3.3. The case of k-rank 1. — Let g be an absolutely simple Lie algebra over k

whose k-rank is 1. This means that in its Satake-Tits diagram, there is either exactly

one white vertex, or exactly two with an arrow between them.

(A priori there could also be the case of a diagram of type D4 where the outer

vertices are white and in one t(G)-orbit, while the inner vertex α2 is black:

where the action is via Z/3Z and S3, respectively. But this is impossible since R

contains its highest root α := α1 + 2α2 + α3 + α4 and thus the root system R would

contain ρ(α1) and ρ(α) = 3 · ρ(α1).)

Let α (resp. α, β) be the root(s) in ∆ \∆0. In this situation, we have:

Lemma 4.3.6. — If
∑
δ∈∆

nδδ is any positive root in R, then nα ∈ {1, 2} (resp. nα =

nβ = 1).

Proof. — R is a root system of rank 1 with basis ∆ = {ρ(α)} (resp. = {ρ(α) =

ρ(β)}). It is either A1 (which enforces the case nα = 1) or BC1, which implies the

statement.

This little fact rules out many indices in the exceptional types. Going through the

plates at the end of [Bo2, VI], we see which single white vertex (or orbit) is possible:

i. For inner forms of type E6, invoking also 4.3.1, the only possibility is α = α2:

ii. For outer forms of type E6, the possibilities are α = α2 and {α, β} = {α1, α6}:

iii. For E7, the possibilities for a single white vertex are α1, α2, α6 and α7:
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iv. For E8, the possibilities for a single white vertex are α1 and α8:

v. For F4, the possibilities for a single white vertex are α1 and α4:

vi. For G2, the only possibility for a single white vertex is α2:

4.3.4. An An application

Proposition 4.3.7 (see Tits [Tit1]). — An inner form of type An with k-rank r

can exist only if d := (n+ 1)/(r + 1) is an integer. Its Satake-Tits diagram has to be

d− 1 d− 1 . . . d− 1

Proof. — Induction on r which is the number of white vertices. For r = 0 the assertion

is trivial, and for r = 1, 4.3.1 implies that n has to be odd and the white vertex must

be the central one. Now assume n0 ≥ r0 ≥ 2 and the assertion shown for r < r0 and

arbitrary n. Given a k-admissible diagram of inner type An0
with exactly r0 white

vertices, say the first white vertex from the left is the d-th vertex of all. Erase it. By

the erasing lemma 4.3.2, what remains on the right of this has to be a k-admissible

diagram, of inner type An0−d and with k-rank r0 − 1. By the induction hypothesis,

d′ := (n0 − d + 1)/r is an integer, the abridged diagram to the right looks as above

with d′ for d, and in particular, the second white vertex from the left in the original

diagram is the (d+ d′)-th vertex of all. Erase this one, and again by 4.3.2, what is on

the left of it,

d− 1 d′ − 1

is a k-admissible diagram. So by the case of k-rank 1 we must have d = d′. Hence

d(r0 +1) = n0 − d+1+ d = n0 +1, i.e. d = (n0 +1)/(r0 +1) and the whole diagram

is of the asserted form.

We will describe these forms explicitly in the next section and 4.5.21.
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4.4. Skew fields and anisotropic types

In this section, we show a method to produce absolutely simple anisotropic Lie

algebras which generalises example 3.2.5. It will turn out later that over a p-adic

field k, these are the only absolutely simple anisotropic forms.

For this section and the next, recall the concept of central simple algebra (CSA for

short) over a field k, and how it leads to the Brauer group Br(k) (cf. [Ser2, X..4–7],

[Pie, 12.5], [Rei, Chap. 7]). For a CSA A over k, we have its invariants

▷ degree Deg(A) =
√
dimk A and

▷ index Ind(A) = Deg(D) where D is a division algebra equivalent to A in Br(k).

Further there is the

▷ exponent (or period) Exp(A) which is the order of the class of A in Br(k). It is

known (cf. [Pie, 14.4, Prop. b.ii]) that Exp(A) and Ind(A) have the same prime

divisors.

We also make use of the reduced characteristic polynomial, and the reduced norm

which is denoted as Nrd, cf. [Pie, Chap. 16], [Rei, Section 9].

When viewing an associative k-algebra as a Lie algebra over k with respect to the

commutator bracket [a, b] := ab−ba, we denote it by the corresponding Fraktur letter:

So the associative algebra A when viewed as Lie algebra is called A, etc.

Let k be any field and X ∈ Mn(k). On the n2-dimensional k-vector space Mn(k),

consider the operator ad(X) ∈ Endk(Mn(k)) given by

ad(X)(Y ) := XY − Y X.

The following lemma says that the eigenvalues of ad(X) are the pairwise differences

of the eigenvalues of X.

Lemma 4.4.1. — Assume that over an algebraic closure k̄, the characteristic polyno-

mial of X decomposes as χX(T ) =
∏n
i=1(T − λi). Then the characteristic polynomial

of ad(X) over k̄ decomposes as

χad(X)(T ) =
∏

1≤i,j≤n

(
T − (λi − λj)

)
.

Proof. — For X = diag(λ1, . . . , λn) this is easy, the elementary matrix Eij being an

eigenvector for λi − λj , and the general version can be derived by scalar extension

to k̄ and Jordan forms. Compare e.g. [Bo2, VII.2.2, Example 3] for a conceptual or

[Lan1, p. 47] for a computational proof.

Now let D be a k-central division algebra with n := Deg(D). Its (Lie-algebraic)

centre z = z(D) is its (associative-algebraic) centre k. Assume that k is perfect.

Proposition 4.4.2. — Every nilpotent element of D is contained in z.
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Proof. — It is known that there exists a finite field extension K|k in k̄ such that we

have a K-algebra isomorphism

K ⊗k D ≃Mn(K)

with regard to which we identifyD = 1⊗D with a sub-k-algebra of the right hand side.

Let now a ∈ D such that a ∈ D is nilpotent; this means that ad(a) ∈ EndK(Mn(K))

is nilpotent when restricted to D. But D generatesMn(K) asK-vector space, so ad(a)

is nilpotent, whence its characteristic polynomial is:

χad(a)(T ) = T (n2)

The lemma implies that the characteristic polynomial of a ∈Mn(K) is

χMn(K),a(T ) = (T − λ)n

with some λ ∈ k̄ . Note that by definition, χa := χMn(K),a is the reduced characteristic

polynomial of a ∈ D, which depends neither on the choice of the splitting field K nor

on the splitting isomorphism K ⊗k D ≃ Mn(K), and whose coefficients are already

in k: cf. [Pie, Prop. 16.1], [Rei, Thm 9.3]. On the other hand, the minimum polynomial

mink,a(T ) divides χa(T ) in k[T ] (cf. [Pie, Lemma 16.3b and Exercise 16.3.3], [Rei,

Exercise 9.1]). Thus in k̄ [T ] we have mink,a(T ) = (T − λ)m for some 1 ≤ m ≤ n. But
since D is a skew field and k is perfect, a is contained in a separable field extension

k(a)|k inside D. By Galois theory necessarily m = 1 and a = λ ∈ k = z. (The

argument works more generally if char(k) does not divide n.)

Corollary 4.4.3. — Let char(k) = 0. D/z ≃ DD is either zero (namely, if and only

if D = k, i.e. n = 1) or an anisotropic form of type An−1.

Proof. — Assume k ⊊ D. Then with the splitting field K from above, we get DK ≃
gln(K), zK = z(DK) and thus (D/z)K ≃ DK/zK ≃ sln(K). If x ∈ D/z is nilpotent,

then so is adD(x̂) for any representative x̂ of x in D, so x̂ ∈ z by the proposition,

hence x = 0. So D/z is anisotropic.

Another corollary is [Bo2, VIII.10, Exercise 7b] and will be taken up in 5.1.4:

Corollary 4.4.4. — If over a field k with char(k) = 0 all semisimple Lie algebras

are quasi-split, then every finite-dimensional division algebra D over k is a field; or

in other words, Br(K) = 0 for every finite extension K|k.

Proof. — If D is not a field, let K ⊊ D be its centre. Apply the previous corollary

for D over K to get the simple RK|k(D/z) which contains no nilpotent element and

thus is anisotropic.
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4.5. Involutorial algebras and the classical types

For the “classical types”A-D there is a theory which relates forms of Lie algebras

(and algebraic groups) to objects of associative algebra which in turn can be classified.

This unified approach was laid out in [Wei], concentrating on the group case. The

corresponding theory for Lie algebras can be found in our main source [Sel1, IV.3]

but goes back to Landherr and Jacobson; for a version with little Galois cohomology,

cf. [Jac6, X] and exercises 16 and 17 to [Bo2, VIII.13]. A modern resource for the

vast theories surrounding this is [Inv]. From a Galois cohomological viewpoint, the

upshot is that the automorphism groups of certain objects are naturally equivalent,

which induces the correspondences.

In this section, k is generally assumed to be of characteristic ̸= 2, although this

is mostly for simplicity. When we go into details with Lie algebras, we restrict to

char(k) = 0.

Definition 4.5.1 (Involutorial algebras, first and second kind)

i. An involutorial k-algebra is a pair (A, ι) consisting of a finite dimensional k-

algebra A and a k-linear map ι : A → A satisfying ι2 = idA and ι(xy) =

ι(y)ι(x) for all x, y ∈ A. In this context, ι is called an involution (or “involutorial

anti-automorphism”). For any field extension K|k, we have the scalar extension

(K ⊗k A, id⊗ι) which we call (AK , ιK) and which is an involutorial K-algebra.

An isomorphism of involutorial k-algebras f : (A, ι) → (B, j) is of course an

isomorphism of k-algebras f : A→ B with j ◦ f = f ◦ ι.
ii. An involutorial k-algebra (A, ι) is called simple if A contains no proper ι-stable

ideal. It is called absolutely simple if (AK , ιK) is simple for all extensions K|k.
iii. An absolutely simple involutorial k-algebra (A, ι) is called

▷ of the first kind if A is a central simple algebra over k. Otherwise, it is called

▷ of the second kind. Then either

▷▷ A contains a proper ideal B, in which case it is easily seen that A =

B ⊕ ι(B) and B is a central simple k-algebra: such an (A, ι) is called of

type AI. Or

▷▷ A is simple, in which case one sees that its centre C is a quadratic field

extension of k such that ι|C is the non-trivial automorphism of C|k. Such
an (A, ι) is called of type AII.

Note that (AK , ιK) is of the same kind as (A, ι), and also of type AI if (A, ι) is.

On the other hand, (AC , ιC) is of type AI if (A, ι) is of type AII with centre C. Also

note that for the second kind, our terminology coincides with the one of [Inv, 2.B],

but deviates slightly from the general terminology of [Inv], where what we call an

involutorial k-algebra of type AII would be a central simple algebra over C with

involution of the second kind (the ground field is different).
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Theorem 4.5.2 (Wedderburn, Albert). — Let (A, ι) be an involutorial k-algebra of

the first kind (resp. of type AII). Then there is a unique n ∈ N≥1 and a division alge-

bra D with centre k (resp. C), unique up to isomorphism, such that A ≃ EndD(D
n),

and on D there is an involution I such that I|k = idk (resp. I|C = ι|C); in particular,

(D, I) is an involutorial k-algebra of the first kind (resp. of type AII).

Proof. — The Wedderburn part is found in any book about algebras. For the in-

volution, see [Alb, Chap. II, Thm 5]. Remark that it is not necessarily so that I is

the restriction of ι to D (or even that ι restricts to D) under a specific isomorphism

A ≃ EndD(D
n), but there is one for which it is. Compare [Inv, Thm 3.1] for a more

general variant.

This is complemented by the following crucial theorem. Recall the notions from

Section 2.3.

Theorem 4.5.3. — Let (D,σ) be an involutorial k-algebra such that D is a skew

field. If it is of the first kind, there is a one-to-one correspondence

non-degenerate σ-hermitian and

σ-skew-hermitian forms on Dm

(up to a factor in k∗)

←→
{

involutions of the first kind

on the k-CSA EndD(D
m)

If it is of the second kind (necessarily of type AII), there is a one-to-one correspon-

dence

non-degenerate

σ-hermitian forms on Dm

(up to a factor in k∗)

←→


involutions ι of the second kind

on the C-CSA EndD(D
m)

satisfying ι|C = σ|C

Both correspondences are given by mapping a form h to ι : A 7→ A∗, where A∗ is the

(left) adjoint to A with respect to h.

Proof. — This is [Inv, Thm. 4.2] applied to our situation (E = D, M = Dn, θ = σ).

(The left/right conventions in [Inv] are different from ours/Bourbaki’s, but there is

no essential difference.)

4.5.1. The first kind: Types B, C and D. — Let (A, ι) be of the first kind, so

that A is a CSA over k, and let n = Deg(A).

Remark 4.5.4. — Exp(A) is 1 or 2. Consequently, Ind(A) is a power of 2; if n is

odd, it is 1 which means that A is split.

Proof. — The involution gives an isomorphism of k-algebras A ≃ A op, and as is

well-known, the class of A op in Br(k) is the inverse of the class of A.

MÉMOIRES DE LA SMF 151



4.5. INVOLUTORIAL ALGEBRAS AND THE CLASSICAL TYPES 81

Set

Sym(A, ι) := {a ∈ A : ι(a) = a},
Skew(A, ι) := {a ∈ A : ι(a) = −a}.

The following are straightforward:

Lemma 4.5.5 (Basic properties)

i. A = Sym(A, ι)⊕ Skew(A, ι) as k-vector spaces.

ii. Skew(A, ι) is stable under the commutator bracket, thus a Lie subalgebra of A

(remember, this is the notation for A viewed as Lie algebra); when viewed as

such, call it S(A, ι).

iii. For any field extension K|k, we have a natural identification S(AK , ιK) =

(S(A, ι))K .

Now let us first look at the split case A =Mn(k). By 4.5.3 (with (D,σ) = (k, id)),

ι corresponds to a nondegenerate bilinear form b on kn which is well-defined up to

multiplication with a scalar in k∗ and either symmetric or skew-symmetric. In the

first case, call ι of orthogonal type, in the second case, of symplectic type.

In the non-split case, take the same definition after extension with a splitting

field, by which we mean an extension K|k such that AK ≃ Mn(K). The type does

not depend on the choice of such a splitting field and isomorphism. Indeed we have

(cf. [Inv, Prop. 2.6]):

Lemma 4.5.6. — ι is of orthogonal type if and only if

dimk(Skew(A, ι)) =
n(n− 1)

2
.

ι is of symplectic type if and only if

dimk(Skew(A, ι)) =
n(n+ 1)

2
.

Moreover, if ι is of symplectic type, n is even.

(The last remark just comes from the fact that on an odd-dimensional vector space,

all skew-symmetric forms are degenerate.)

From now on, let char(k) = 0.

▷ For odd n (≥ 3), A is split by 4.5.4 and ι is of orthogonal type. For an appropriate

extension K|k (in fact, it can be chosen as a composite of quadratic extensions),

there is an isomorphism AK ≃ Mn(K) such that the symmetric bilinear form bK
corresponding to ιK is given by bK(x, y) = txSy where

S :=

( 0 Iν−1

Iν−1 0

1

)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



82 CHAPTER 4. CLASSIFICATION OVER GENERAL FIELDS

with n = 2ν+1. The involution ιK is then given by A 7→ S−1(tA)S. ThusS(AK , ιK) =

(S(A, ι))K is, by the classical description, (4) a split Lie algebra of type Bν .

▷ For even n and ι of symplectic type, as soon as AK is split, by [Bo1, IX.5.1]

there is an isomorphism AK ≃ Mn(K) such that the symplectic form bK is given by

bK(x, y) = txSy where

S :=
( 0 Iν
−Iν 0

)
with n = 2ν. Analogous to above, (S(A, ι))K is a split Lie algebra over K of type Cν .

▷ For even n (≥ 4) and ι of orthogonal type, after extension with a splitting field

of A, and then (analogously to type B) a series of quadratic extensions, for bK we

now have a matrix

S :=
( 0 Iν
Iν 0

)
and (S(A, ι))K is split of type Dν for n = 2ν.

We thus have:

Proposition 4.5.7. — S(A, ι) is an absolutely simple Lie algebra of respective type

B, C or D in the cases considered above.

The great thing is that this construction gives all k-forms of absolutely simple Lie

algebras of the respective types (except for trialitarian types D4). The crucial facts

we need for this, first noted by Jacobson, are the next two lemmata.

Lemma 4.5.8. — Skew(A, ι) generates A as associative k-algebra (i.e. the smallest

sub-k-algebra of A containing it is the whole algebra A.)

Proof. — See [Inv, Lemma 2.26 (1)]. One reduces by scalar extension to standard

split cases, which are done by direct matrix calculations.

Lemma 4.5.9. — Let S(A, ι)K be split as above. If it is not of type D4, then every

f ∈ Aut((S(A, ι)K) is induced by a unique automorphism f of (AK , ιK), which in turn

is of the form X 7→ F−1XF for F ∈ GLn(K) with ιK(F )F = S−1(tF )SF ∈ K∗·In. (5)
For type D4, the same holds for f which are of order ≤ 2 modulo Aut0((S(A, ι)K).

Proof. — See e.g [Sel1, Lemma IV.3.1] except for the D4 case which is easily

amended. One uses the explicit description of automorphisms of the split Lie algebras

(cf. [Bo2, VIII.13]) to see that they are of the form X 7→ F−1XF for F as described;

with the previous lemma, their extension to automorphisms of (A, ι) is unique. (One

4. See e.g. [Jac6, IV.6]. There are different but equivalent normalisations in [Bo2, VIII.13].

Without coordinates, the split forms of types B and D are those where b corresponds to a quadratic

form of maximal Witt index ν = ⌊ 1
2
n⌋.

5. F is a (matrix of) similitude with respect to (S or) bK , i.e. bK(Fx, Fy) ∈ K∗ · bK(x, y).
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can even descend to an analogous result for non-split Lie algebras, cf. [Jac3, Thm 3]

and [Inv, Prop. 2.25].)

This shows by the general Galois cohomology machinery that the forms of S(A, ι)

and the forms of (A, ι) are in correspondence:

Theorem 4.5.10 (Jacobson, Weil). — Let g be an absolutely simple Lie algebra

over k of type Bν , Cν or Dν (in the case Dν , ν ≥ 2 and non-trialitarian). Then

there is an involutorial k-algebra of the first kind (A, ι) as described in the respective

cases above such that g ≃ S(A, ι).

Proof. — Let K|k be a finite Galois splitting field for g. By the discussion after 4.2.1

we have a cocycle σ 7→ aσ from Gal(K|k) into Aut(S(Mn(K), ιK)), with ιK given

via a matrix S as in the descriptions of the split form of the respective type; and g

is isomorphic to the fixed elements of S(Mn(K), ιK) under all aσ ◦ σ. Now by the

lemma, we view the cocycle as one from Gal(K|k) to Aut(Mn(K), ιK), and define A

to be the fixed set in Mn(K) of all aσ ◦ σ, σ ∈ Gal(K|k). One checks immediately

that (A, ιK|A) is an involutorial k-algebra of the respective type, and with 4.5.8 one

sees that g ≃ S(A, ιK|A).

Remark 4.5.11. — We do not address the question how unique such an (A, ι) is –

which is dealt with extensively in Jacobson’s work – because here we are only inter-

ested in existence, which provides us with k-admissible diagrams. In most cases (see

the later remark 4.5.20 for typical exceptions), the (A, ι) to a form g is unique up

to isomorphism; the condition “up to isomorphism” translates to equivalence modulo

scaling (“cogredience” in Jacobson’s terminology) of certain (skew-)hermitian forms.

But for a p-adic field k, admissibility conditions and the isomorphism theorem will im-

ply that we almost only need a more careful look at the “uniqueness” of the analogous

construction for type A, taken up later.

Now we connect the theorem with the classification of Chapter 3: what is the index

of a Lie algebra S(A, ι)?

4.5.1.1. The index of of S(A, ι). — Let d := Ind(A) and m = n/d. We have an

isomorphism A ≃ EndD(D
m), where D is a k-division algebra Brauer equivalent

to A. By 4.5.2, there is an involution of the first kind on D. In the split case D = k it

is the identity, and we had already seen that the involutions of orthogonal/symplectic

type on A are induced by symmetric bilinear/symplectic forms on km. If, on the other

hand, d ≥ 2, we assume that the involution on D is of symplectic type (6) and call

it γ. Then we have the following refined version of 4.5.3, also part of [Inv, Thm 4.2.1]:

6. This is always possible by composing with an inner automorphism (cf. [Inv, Prop. 2.7.3]) and

will be the canonical choice in later applications, where D is a quaternion algebra.
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Theorem 4.5.12. — There are one-to-one correspondences

non-degenerate

γ-skew-hermitian forms on Dm

(up to a factor in k∗)

←→


involutions of the first kind

of orthogonal type

on the k-CSA EndD(D
m)

non-degenerate

γ-hermitian forms on Dm

(up to a factor in k∗)

←→


involutions of the first kind

of symplectic type

on the k-CSA EndD(D
m)

Now let h(. , .) be a symmetric bilinear form on km or a γ-(skew-)hermitian form

on Dm. Write V for km or Dm in these cases, and let ι be the left adjoint with respect

to h on A, that is, h(v, aw) = h(ι(a)v, w) for all a ∈ A, v, w ∈ V .

Lemma 4.5.13. — If h(. , .) is anisotropic and g := S(A, ι) is semisimple (which by

our earlier results is the case for n ≥ 3), then g is anisotropic. (7)

Proof. — V naturally is a g-module as g is a subalgebra of A. Assume that there is a

nilpotent element x ̸= 0 in g. By Jacobson-Morozov, x is part of an sl2-triple (x,H, y)

in g, so that V also becomes a finite dimensional sl2(k)-module, and decomposes into

eigenspaces Vλ with λ ∈ Z for the operation of H. Since 0 ̸= H ∈ A, we can take λ

different from 0. Then for all v ∈ Vλ ̸= {0} we have

−λh(v, v) = h(−λv, v) = h(−Hv, v) = h(ι(H)v, v) = h(v,Hv) = h(v, λv) = λh(v, v)

which implies h(v, v) = 0, a contradiction to h being anisotropic.

Now let us first investigate the case d = 1 or equivalently, the CSA A is split over k.

h(. , .) is a symmetric bilinear form which we now call b(. , .). g is of type B⌊ 1
2n⌋

for odd

n and of type Dn/2 for even n. By Witt decomposition, we can set V = kn together

with a matrix

S :=

( 0 Ir 0

Ir 0 0

0 0 Sa

)

such that r is the Witt index of b(v, w) = (tv)Sw, and Sa ∈ Mn−2r,n−2r(k) defines

the anisotropic form ba(va, wa) = (tva)Sawa on kn−2r. The corresponding involution

(the left adjoint with respect to b) on A =Mn(k) is given by

ι(X) = tS−1 · tX · tS.

A computation with the relation ι(X)
!
= −X shows that our g consists of those

matrices of the form

7. The converse is also true, as will become clear in the following.
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(A B G

C −(tA) H
E F J

)

where A,B,C ∈Mr(k), E,F ∈Mn−2r×r(k), G,H ∈Mr×n−2r(k), with the following

relations: tB = −B, tC = −C (i.e. B and C are skew-symmetric), tF · tSa = −G,
tE · tSa = −H, and tS−1

a · tJ · tSa = −J . If we assume, as we always can, Sa to be a

diagonal matrix diag(b1, . . . , bn−2r), the last relation means that the (i, j)-entry of J

is its (j, i)-entry times −b−1
i bj ; in particular, the diagonal of J is zero.

We visibly have the r-dimensional k-split toral subalgebra

s :=
{
diag(a1, . . . , ar,−a1, . . . ,−ar, 0, . . . , 0) : ai ∈ k

}
and will see that it is maximal split toral. Indeed, one checks that its centraliser –

which contains any larger toral subalgebra – is

zg(s) =





a1
. . . 0

ar
−a1

. . .
0 −ar

J


: J as above, ai ∈ k


.

So the matrices J in the lower right corner give the Lie algebra zg(s)/s. For

n− 2r ≥ 3, we had seen in the lemma that this is an anisotropic semisimple Lie

algebra, hence s is maximal split toral in g and zg(s) = s ⊕ ga for the anisotropic

kernel ga of g (with respect to s), which consists of the matrices with entries 0 outside

of the block J . Setting t := s⊕ ta for ta maximal toral in ga, and fixing the usual root

basis in a split extension, one concludes that in the Satake-Tits diagram, the vertices

α1, . . . , αr are white, the remaining ones are black.

In the cases n − 2r = 0 and n − 2r = 1 (where J = 0), we get the split forms of

type Dr and Br, respectively.

In the remaining case n = 2r+2, zg(s)/s is one-dimensional, in particular abelian,

and we must have a non-split quasi-split form of type Dn/2 with maximal toral subal-

gebra t = zg(s). The anisotropic part of the space, with Sa = diag(b1, b2), corresponds

to the form b1X
2 + b2Y

2, with discriminant d = −b1b2 · k∗2 /∈ k∗2. (Note that on

an even-dimensional vector space, the discriminant is invariant under scaling.) Vis-

ibly K := k(
√
−b1b2 ) is the minimal splitting field, and the non-trivial element of

Gal(K|k) under the twisted action t must correspond to the non-trivial automor-

phism of the Dynkin diagram that flips the two outer vertices αr and αr+1.

Before taking up the case d > 1, with these results we can already settle
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4.5.1.2. Type Bν . — Because by 4.5.4 the CSA A is automatically split. We thus

see from the above discussion that the corresponding Lie algebra of type Bν has the

following Satake-Tits diagram with total number of vertices ν = n−1
2 :

r

Remark 4.5.14. — This is the most direct connection to the theory and nomen-

clature of quadratic forms, and might explain why Tits calls his version of the iso-

morphism theorem a “Witt-type theorem”: In this example, all the information of

the (Satake-Tits) index is in the (Witt) index r; and the isomorphism class of the

anisotropic kernel (of the Lie algebra) is determined by the isomorphism class of the

anisotropic kernel (of the quadratic form). Witt’s decomposition theorem appears here

as suggestive special case of the isomorphism theorem.

4.5.1.3. Type Dν . — Here, the CSA A might be split or not. If it is, the previous

discussion applies. For r = ν = 1
2n2, we have “the” split Lie algebra. If r = ν − 1, we

get the quasi-split forms

with minimal splitting field k(
√
d) where d is a representative in k of the discriminant

of the bilinear form that defines (A, ι); each quadratic extension can occur. As soon

as r ≤ ν − 2, the Satake-Tits diagram is either

r

or

r

and this depends on the discriminant (which, recall, on an even-dimensional space is

invariant under scaling):

Lemma 4.5.15. — Let ν ≥ 2, n = 2ν and (A, ι) be given by a symmetric bilinear

form b on kn with Witt index r as above. The Lie algebra g = S(A, ι) is an outer

form of type Dν (i.e. there is an arrow in the Satake-Tits diagram) if and only if the

discriminant d(b) is not in k∗2. In this case, the fixed field of the twisted Galois action

t is k(
√
d ) where d is a representative of d(b) in k∗.
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Proof. — By induction on µ := ν − r which is half the dimension of the anisotropic

kernel of b (and of ga for µ ≥ 2). We know the assertion for µ = 0 (split case) and

µ = 1 (non-split quasi-split case) where d(b) was necessarily in k∗2 resp. not in k∗2.

Now let µ ≥ 2. Resuming the notations of the general discussion, we can assume that

the 2µ × 2µ-matrix Sa is diagonal, say Sa = diag(b1, b2, . . . , b2µ). By definition, d(b)

is the residue of (−1)µ · b1 · · · · · b2µ mod k∗2.

Remark that for any pair of indices 1 ≤ i ̸= j ≤ 2µ, the scalar −bibj or equivalently
−bi/bj cannot be a square in k∗, since otherwise the form defined by Sa would have

the isotropic vector t(0, . . . , 0, 1, 0, . . . , 0, x, 0, . . . , 0) with 1 the i-th and x :=
√
−bi/bj

the j-th entry.

Set K(i, j) := k(
√
−bibj ). Then at least the corresponding two-dimensional space

in VK(i,j) is hyperbolic with respect to bK(i,j), and the discriminant is

d(bK(i,j)) = (−1)µ−1 ·
∏
ℓ ̸=i,j

bℓ ≡ d(b) mod K(i, j)∗2.

Now there are two cases:

▷ There is a pair (i, j) such that d(bK(i,j)) /∈ K(i, j)∗2. Then certainly d(b) /∈ k∗2 on
the one hand, and on the other hand by the induction hypothesis, S(A, ι)K(i,j)

is an outer form, a fortiori S(A, ι) is an outer form and all assertions “descend”.

▷ d(bK(i,j)) ∈ K(i, j)∗2 for all pairs (i, j). We make a further distinction:

▷▷ d(b) /∈ k∗2. But above we saw d(b) ∈ K(i, j)∗2 for all pairs, and K(i, j)|k
is quadratic, so k(

√
−bibj ) = K(i, j) = k(

√
d ) for d = (−1)µ

∏
bℓ. This

means that all −bibj are congruent (to d and thus to each other) mod k∗2.

Then 1 ≡ (−bibj)(−bjbℓ) ≡ bibℓ mod k∗2, hence all bi are in the same square

class, hence by scaling and equivalence we can assume that all bi = 1. With

d(b) /∈ k∗2 this is impossible unless µ is odd and−1 /∈ k∗2, a typical“real”case
which can be checked by hand (the non-trivial automorphism of k(

√
−1 )|k

induces the opposition involution on the diagram).

▷▷ d(b) ∈ k∗2. We have to show that our Lie algebra is an inner form. By the

induction hypothesis, we know that all S(A, ι)K(i,j) are inner forms. So if we

had a non-trivial t-action, its fixed field would have to be a proper extension

of k contained in all K(i, j), so they would all be equal. Like before we

conclude that without loss of generality, all bi = 1, and the t-fixed field

and all K(i, j) must be k(
√
−1 ), in particular −1 /∈ k∗2 which now gives a

contradiction for odd µ. For even µ, one again checks that the non-trivial

automorphism induces the opposition involution on the diagram which for

even µ, however, is the identity, contradicting our assumption.

To complete the discussion of typeDν , we now sketch the case d > 1 or equivalently,

A is non-split. Then A ≃ EndD(D
m) and we see that by the first case of 4.5.12, our
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Lie algebras come from (and, cf. 4.5.11, are classified “up to scaling in k” by) γ-skew-

hermitian forms on Dm, where we assume γ to be of symplectic type. Let such a form

have index r, then our Lie algebra is given by those matrices X ∈ A = Mm(D) such

that ι(X) = tH−1 · t(γ(X)) · tH = −X where H is a γ-skew-hermitian matrix. The

coordinates can be chosen such that

H :=

 0 −Ir 0

Ir 0 0

0 0 Ha

 .

where Ha defines an anisotropic skew-hermitian form on Dm−2r. Then g consists of

the matrices A B G

C −t(γ(A)) K
E F J


where A,B,C ∈ Mr(D), E,F ∈ Mm−2r×r(D), G,K ∈ Mr×m−2r(D) are subject

to the following relations: tB = γ(B), tC = γ(C) (i.e. B and C are γ-hermitian),
tγ(F ) · tHa = G, tγ(E) · tHa = −K, and tH−1

a · tγ(J) · tHa = −J . If we assume, as

we always can, Ha to be a diagonal matrix diag(b1, . . . , bn−2r) – where necessarily the

bi ∈ Skew(D, γ) –, the last relation means that the (i, j)-entry of J is the γ-conjugate

of its (j, i)-entry times −b−1
i bj ; in particular, the diagonal of J consists of elements of

Skew(D, γ).

A split toral subalgebra of k-dimension r is given by

s := {diag(a1, . . . , ar,−a1, . . . ,−ar, 0, . . . , 0) : ai ∈ k}

and its centraliser zg(s) consists of the matrices

c1
. . . 0

cr
−γ(c1)

. . .
0 −γ(cr)

J


with J as above and ci ∈ D. Let u be those matrices as above with all ci ∈ D \ k,
so that zg(s) = s ⊕ u. By 4.5.13, as soon as 2r < m (for d > 2) or 2r < m − 1 (for

d = 2), the matrices with zeros outside of J describe an anisotropic subalgebra a, but

the anisotropic kernel is bigger: it is all of u, as one can show with the investigation of

skew fields in Section 4.4 (compare the later discussion of type AI), and it decomposes

as (DD)r ⊕ a. This a on its own is a form of type Dµ with µ = 1
2 (n− 2rd) = ν − rd.

One infers that the general Satake-Tits diagram is
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d− 1 d− 1 . . .

ν − rd, all black
or

d− 1 d− 1 . . .

ν − rd, all black

and again the occurrence of an arrow depends on whether the discriminant of the

γ-skew-hermitian form, which in this case can be well-defined as

(−1)m ·Nrd
(
det(h(vi, vj))

)
mod k∗2

for a D-basis v1, . . . , vm of V (cf. [Tsu, 1.3]), is in k∗2 or not. If not, there is an arrow

and its fixed field is the corresponding quadratic extension.

In the special case m = 2r, equivalently ν = rd, the anisotropic space Va vanishes

and this leads to a diagram with white vertices αd, α2d, . . . , αrd, and all others black.

For example for d = 2 we get:

Note the consistency with 4.3.1: Since d is a power of 2 by 4.5.4, the rank ν = rd

is even, so the opposition involution does not flip the two rightmost vertices αν−1

(black) and αν (white).

The last exceptional case is d = 2 and ν = m = 2r + 1 (hence r ≥ 1, since a type

D1 does not exist). Here D = Q is a quaternion division algebra and γ is the standard

involution from Section 2.2. Indeed, by [Inv, Prop. 2.21], this is the unique symplectic

involution on Q, whereas the orthogonal ones are those of the form ιu(x) = u·γ(x)·u−1

where u is an invertible element of Skew(Q, γ) which is uniquely determined by ιu up

to a factor in k∗. Now the space Va is of Q-dimension 1, the anisotropic form ha on

it is given by ha(v, w) = vHaγ(w) with a pure quaternion Ha = qa ̸= 0, unique up to

scaling with k∗, and the condition q−1
a · γ(J) · qa = −J is equivalent to J ∈ k · qa. One

calculates that the Satake-Tits diagram is

and the fixed field of the arrow is the well-defined quadratic extension k(
√
a ) where

a = −Nrd(qa), a representative of the discriminant.
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4.5.1.4. Type Cν . — As noted in the split cases after lemma 4.5.6, if the CSA A is

split, then S(A, ι) is the split form of type Cν with n = 2ν.

Otherwise, if d ≥ 2, for type Cν we are interested in the second case of 4.5.12 and

see that our Lie algebras now come from γ-hermitian forms. The discussion is very

similar to the one above, and we just give the result: If such a form has index r, the

Satake-Tits diagram of the corresponding Lie algebra is

d− 1 d− 1 . . . ν − rd, all black
respectively

d− 1 d− 1 . . .

for ν > rd respectively ν = rd. Again d is a power of 2 by 4.5.4, and of course d

divides n = 2ν.

As a final remark, the case d > 1 is strongly restricted for fields of interest:

Remark 4.5.16. — If in Br(k) there is only one element of order 2, then by 4.5.2

and 4.5.4, in the above cases necessarilyD ≃ D op is“the”division algebra representing

this element. Specifically, if k is R or a p-adic field,D is the quaternion division algebra

over k and d = 2 (if not 1) in types Cν and Dν above.

4.5.2. The second kind: Type A. — Let (A, ι) be of the second kind. If it is of

type AI with A ≃ B⊕ ι(B), we set n := Deg(B); if it is of type AII with centre C set

n := Deg(A) with A viewed as CSA over C. So in both cases we have dimk A = 2n2,

and n is “stable under scalar extension”. Setting again

Skew(A, ι) :=
{
a ∈ A : ι(a) = −a

}
we see that this is stable under the commutator bracket and thus a Lie algebra S(A, ι)

over k; also, S(AK , ιK) ∼= (S(A, ι))K . Here we have dimkS(A, ι) = n2 (for both

types). Skew(A, ι) generates A as k-algebra as soon as n > 1 for type AI and n > 2

for type AII, cf. [Jac6, X.4, Lemma 4].

Let us first look at an (A, ι) of type AI, i.e. A ≃ B ⊕ ι(B) for a central simple

k-algebra B. Then ι(B) ≃ B op and we can identify (A, ι) with (B × B op, (a, b op) 7→
(b, a op)) (cf. [Inv, 2.14]); or specifically if B ≃Mn(k), we can also arrange ι(X,Y ) =

(tY, tX). It is obvious that in this case, the skew elements identify with the “anti-

diagonal” (b,−b op) (resp. (X,−tX)) and thus with a copy of B; hence the corre-

sponding Lie algebra is S(A, ι) ≃ B. If n ≥ 2 and B ≃ Mr(D) with D a central

k-division algebra of degree d (so n = rd), we thus have

S(A, ι) ≃ glr(D) (resp. D for r = 1),

g := DS(A, ι) ≃ Dglr(D) (resp. DD for r = 1)
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and if K|k splits D (i.e. DK ≃Md(K)) we have

gK ≃ sln(K)

so that g is a form of type An−1.

Now since for (A, ι) of type AII with centre C, (AC , ιC) is of type AI and thus can

be further split as above, we see that DS(A, ι) is an absolutely simple Lie algebra of

type An−1. Again we have a converse [Sel1, Lemma and Thm 4.3.1]:

Theorem 4.5.17 (Landherr, Jacobson, Weil). — Let n ≥ 2.

i. Let (AK , ιK) ≃ (Mn(K)×Mn(K), (x, y) 7→ (ty, tx)) so that DS(A, ι)K ≃ sln(K).

Every f ∈ Aut((S(A, ι)K) is induced by a unique automorphism f of (AK , ιK),

which in turn is of the form

(X,Y ) 7−→ (F−1XF, t(F−1tY F )) or (X,Y ) 7−→ (F−1Y F, t(F−1tXF ))

for an F ∈ GLn(K).

ii. Like in 4.5.10 it follows: let g be an absolutely simple Lie algebra of type An−1.

Then there is an involutorial k-algebra of the second kind (A, ι) with dimk A = 2n2

such that g ≃ DS(A, ι).

Remark that x 7→ −tx, the non-trivial element of Aut(sln(K))/Aut0(sln(K)) for

n ≥ 3, corresponds to (X,Y ) 7→ (Y,X) under i.

Corollary 4.5.18. — If g ≃ DS(A, ι) as in part ii of the theorem, g is an inner

form (of the split DS(AK , ιK) as in part i) if and only if (A, ι) is of type AI.

Proof. — If g is inner, then by what we just remarked the automorphisms in the image

of a corresponding cocycle are all of the first form described in the theorem: They

stabilise both factors. Then so do their corresponding Galois semi-automorphisms.

Hence their fixed point set A visibly is a product of two non-trivial factors. Conversely,

assume A = A1 × A2 with non-trivial factors and identify it with a subset of a split

AK as in the theorem. A1K and A2K must correspond to the two factors Mn(K);

but if in the image of a cocycle corresponding to A there were an automorphism that

flips the factors, so would the corresponding Galois semi-automorphism; and for every

element (a1, a2) ∈ A1 ×A2, being fixed by it, a1 would be determined by a2 which is

absurd.

The distinction between AI and AII goes back to Landherr, who originally (cf.

[Lan1, p. 50]) distinguished the corresponding Lie algebras by characteristic poly-

nomials of their matrix representations. — As promised in 4.5.11 we are now also

interested in how unique an (A, ι) for g as in the theorem is:

Proposition 4.5.19. — Let (A1, ι1) and (A2, ι2) be absolutely simple involutorial

k-algebras of the second kind, of k-dimensions 2n21 resp. 2n22, ni ≥ 2, such that there

is an isomorphism of k-Lie algebras f : S(A1, ι1) ≃ S(A2, ι2). Then f is induced by
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an isomorphism f : (A1, ι1) ≃ (A2, ι2), and f is unique except for the case that the

algebras are of type AII and ni = 2. In particular, if the (Ai, ιi) are of type AI and

given as Ai ≃ Bi ×B op
i , then either B1 ≃ B2 or B1 ≃ B op

2 .

Proof. — See [Jac6, X.4, Thms 10 and 11] or even [Lan1, Satz 3] (for type AI), cf.

also [Inv, Prop. 2.25]. The strategy – which works for both types like we (or rather

Weil) defined them, rendering Jacobson’s distinction unnecessary – is to embed ev-

erything in a common split (AK , ιK) resp. the Lie algebra of its skew elements. Then,

balancing cleverly the distinct Galois actions, one reduces to the case of automor-

phisms of this, which we had settled in the theorem. Now one descends back to the

given forms. This shows existence of the isomorphism, and uniqueness follows again

because the associative algebras in question are generated by their skew elements.

Remark 4.5.20

i. In low degrees, there exist exceptional isomorphisms among the first kind

(“B2 = C2”) which we have circumvented by not investigating uniqueness there

at all, see 4.5.11. There also exist exceptional isomorphisms intertwining the two

kinds (“A1 = B1 = C1, D2 = A1×A1, A3 = D3”) which we have circumvented by

restricting the proposition above to “inside” the second kind. Since in the end we

will classify not by involutorial algebras, but by indices and anisotropic kernels,

our results not only suffice, but even will imply e.g. the following identities of

anisotropic forms over a p-adic field k, where Q is its quaternion division algebra

with standard involution γ:

(a) (“A1 = C1 = B1”) the derived Lie algebra of Q over k is isomorphic

to S(Q, γ) (this is immediate!), and to S(M3(k), ι) where ι is the adjoint with

respect to any anisotropic quadratic form on k3 (specifically, the reduced norm

on the pure quaternions; every other is cogredient to this); (8);

(b) (“A3 = D3”) the derived Lie algebra of a 16-dimensional k-central divi-

sion algebra (there are two anti-isomorphic ones, which by the proposition give

the same Lie algebra) is isomorphic to S(M3(Q), ι) where ι comes from any

anisotropic γ-skew-hermitian form on Q3 (in fact there is only one). For starters

one sees that both Lie algebras have dimension 15.

ii. Another instance where the classification with involutorial algebras falls short

is related to triality (cf. [Jac6, X, Exercise 3]): Over k = R, the Lie alge-

bras S(M4(H), ι) (with ι coming from any skew-hermitian form on H4) and

S(M8(R), ι) (with ι coming from a quadratic form on R8 of Witt index 2) are

isomorphic, although the involutorial algebras are not. This will also appear over

p-adic fields k, see 5.4.7. One look at the Satake-Tits diagrams gives an idea:

8. This is true verbatim for k = R, Q = H; and is nothing else than example 3.2.5.
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Turning back to type A, we can now classify both types and describe their diagrams.

4.5.2.1. The inner forms/Type AI

Proposition 4.5.21 (cf. 4.3.7). — If g is an inner form of type An over k, then

there is a k-central division algebra D, Deg(D) = d, and an r ∈ Z≥0 such that

d(r + 1) = n + 1 and g is isomorphic to the derived algebra of Mr+1(D) viewed as

Lie algebra over k. The isomorphism class of g determines D up to isomorphism or

anti-isomorphism. Conversely, such derived algebra of Mr+1(D) is an inner form of

type An. Its rational root system is of type Ar, and its Satake-Tits diagram is:

d− 1 d− 1 . . . d− 1

In particular, every anisotropic inner form of type An is isomorphic to the derived Lie

algebra of a k-central division algebra D of degree n + 1; two such division algebras

D1, D2 have isomorphic derived Lie algebras if and only if D1 ≃ D2 or D1 ≃ D op
2 .

Proof. — All assertions except for the one about the diagram and the rational roots

are combinations of 4.5.17.ii and 4.5.19. To compute the diagram, note the following:

Inside the derived algebra of Mr+1(D), the diagonal matrices with entries in k are

a split toral subalgebra s of dimension r. On the other hand, the diagonal matrices

with entries in in D \ k∗ form an anisotropic subalgebra isomorphic to a product of r

copies of DD. Such a DD, in turn, by 4.4.3 and 4.5.18 has Satake-Tits diagram

d− 1

Finally one sees that zg(s) consists exactly of all diagonal matrices in g, hence is the

k-direct sum of s and the named anisotropic subalgebra, from which it follows that s

is indeed maximal split toral, the k-rank of our algebra is r, the named anisotropic

subalgebra is its anisotropic kernel (with respect to s), and the Satake-Tits diagram

is as described. (For this, one could also invoke 4.3.7 as soon as one knows that the

k-rank is r.) The rational roots are computed as in 3.4.1.

4.5.2.2. The outer forms/Type AII. — Here again we content ourselves with a

description of the admissible diagrams, since for p-adic k, we will get a unique-

ness/isomorphism statement for free.

Let (A, ι) be of type AII, specifically, A ≃ Mm+1(D) with D a central division

algebra over C of degree d, C|k a quadratic extension, m+1 = n+1
d , n ≥ 2, and there
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is an involution σ of the second kind on D, so that σ|C is the non-trivial element

of Gal(C|k). By the second part of 4.5.3, the Lie algebras S(A, ι) are classified (not

necessarily one-to-one) by the σ-hermitian forms on Dn+1/d.

Proposition 4.5.22. — Let such a form have Witt index r. Then DS(A, ι) has

Satake-Tits diagram

n− 2rd

with C being the fixed field of the twisted Galois action.

Proof. — (We restrict to the case d = 1 i.e. D = C. This is obviously the only

case if k = R, but even so for k a p-adic field, as will turn out in 5.4.3. Cf. [TiW,

42.3.4] for a geometric interpretation of the group analogue. See also [Bo2, VIII.13,

Exercise 16.b].) Fix an element y with C = k(y), y2 ∈ k. In generalisation of 3.2.10

and similar to the types B − D, our Lie algebra g = DS(A, ι) is given by those

traceless (!) matrices X ∈ A =Mn+1(C) such that ι(X) = tH−1 · t(σ(X)) · tH = −X
where H is a σ-hermitian matrix. The coordinates can be chosen such that

H :=

 0 Ir 0

Ir 0 0

0 0 Ha

 .

where Ha defines an anisotropic form on Cn−2r.

NB. In 3.2.10, we had maximal possible Witt index r = ⌊n+2
2 ⌋ and chose the

(equivalent but) different coordinatisation

H =


0 1

1

. .
.

1 0

 .

Now g (with our new general coordinates) consists of the matricesA B G

D −t(σ(A)) K
E F J


with trace 0 and where A,B,D ∈ Mr(C), E,F ∈ Mn−2r×r(C), G,H ∈ Mr×n−2r(C)

are subject to the following relations: tB = −σ(B), tD = −σ(D) (i.e. B and D are

σ-skew-hermitian), tσ(F ) ·tHa = −G, tσ(E) ·tHa = −K, and tH−1
a ·tσ(J) ·tHa = −J .

If we assume, as we always can, Ha to be the diagonal matrix diag(b1, . . . , bn−2r) –
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where necessarily the bi ∈ k –, the last relation means that the (i, j)-entry of J is the

σ-conjugate of its (j, i)-entry times −b−1
i bj ; in particular, the diagonal of J consists

of k-multiples of y. Again one checks that a split toral subalgebra of k-dimension r is

given by

s :=
{
diag(a1, . . . , ar,−a1, . . . ,−ar, 0, . . . , 0) : ai ∈ k

}
and its centraliser zg(s) consists of the traceless matrices

c1
. . . 0

cr
−σ(c1)

. . .
0 −σ(cr)

J


with ci ∈ C and J as above. No element of zg(s) \ s is ad-diagonalisable over k, hence

s is maximal split toral. One further checks that a maximal toral t containing s is

given by those elements in zg(s) where J is diagonal (note that indeed dimk(t) = n).

With an argument similar to 4.5.13, as soon as 2r ≤ n − 1, the traceless matrices J

describe an anisotropic subalgebra which identifies with zg(s) modulo its centre. This

is the anisotropic kernel ga,
(9) and the C-rank of (ga)C is n− 2r.

To “see” the swapping of the roots, one can introduce the toral subalgebra

u :=
{
diag(b1y, . . . , bry, b1y, . . . , bry, 0, . . . , 0) : bi ∈ k,

r∑
i=1

bi = 0
}
.

Then s ⊕ u ⊕ ta = t as long as 2r ≤ n. Call αi the linear form sending a general

element of s as above to ai − ai+1, and βi the one sending a general element of u as

above to bi − bi+1. One can check that (αi ± yβi)1≤i≤r are part of a root basis of

R(gC , tC), and σ switches the sign: they are indeed the white vertices in the diagram.

If 2r = n+ 1, so the form is quasi-split, one has to set βr = 0, mirroring the trace 0

condition and producing the lone middle vertex αr.

4.6. Quasi-split forms

Absolutely simple, non-split quasi-split Lie algebras can a priori exist in the fol-

lowing types:

9. After minor sign changes and the trace 0 condition, this is the decisive difference to the dis-

cussion for type Dν . It comes from the commutativity of C, opposed to the divison algebra D there

having k as centre.
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An (n ≥ 2)

Dn (n ≥ 2)

E6

σ

σ σ

σ1

σ2 σ3

D4 (trialitarian types)

As noted in Section 3.4, the isomorphism class of a semisimple Lie algebra over k

having such a diagram is uniquely determined by it together with the fixed field of t,

which is a quadratic (resp. cubic or degree 6 for the trialitarian types) splitting field

for the Lie algebra, in fact its unique minimal splitting field (inside a fixed k̄).

Those of type An were described in 3.2.10 and, with other coordinates, in the

previous section. We saw that the isomorphism classes of absolutely simple, non-split,

quasi-split k-Lie algebras of type An, n ≥ 2, correspond bijectively to the quadratic

extensions K|k (inside our fixed k̄).

Those of non-trialitarian type Dn have been dealt with in the general dis-

cussion in Section 4.5.1. Their isomorphism classes are in correspondence with

anisotropic quadratic forms in two variables up to scaling and equivalence, which

(by b1X
2
1 + b2X

2
2 7→ −b1b2) is again the set k∗/k∗2 or that of quadratic extensions

of k. The rational root system of such a form is easily computed to be of type Bn−1.

A quasi-split form of type E6 for a given quadratic extension K|k can be patched

from the corresponding quasi-split form of type A5 and a copy of sl2(k) with the

patching Proposition 4.3.3:
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A5

A1

We see that again these forms are in correspondence with quadratic extensions of k,

because those of type A5 are. The rational root system of such a form is of type F4

as the method of Section 3.4.1 shows.

For the trialitarian types, it should be clear what is meant in the diagram: t(σ)

is a generator for Z/3, and the t(σi) are the three transpositions in S3, for certain

elements σ resp. σi ∈ Gal(k̄ |k) that restrict to the fixed field of t, which is a Galois

cubic extension K|k resp. an extension K|k with Galois group isomorphic to S3. The

rational root system was computed to be of type G2 in 3.4.1. We show that similar

to the quadratic cases above, every Galois extension K|k with Galois group of order

3 or isomorphic to S3, respectively, can occur as fixed field of the t-action.

What one patches here is a copy of sl2(k) – giving the central vertex – with a

suitable scalar restriction RK0|k sl2(K0). Namely, K0 = K for the Z/3 case, whereas

for the S3 case we take as K0 any of the three (non-Galois) subextensions of K|k of

degree 3. By Section 4.1 the diagrams are, respectively,
σ

σ σ

σ1

σ2 σ3

and K is the fixed field of the twisted Galois action.

When one knows the split forms, the classification of quasi-split forms is thus en-

tirely equivalent to the arithmetic-algebraic problem to determine all Galois extensions

of k with Galois group isomorphic to Z/2,Z/3 and S3, the last being in turn equivalent

to that of non-Galois cubic extensions. This is also equivalent to the determination

of H1(Gal(k̄ |k), A(R)/W (R)) (= the homomorphisms of Gal(k̄ |k) to A(R)/W (R) up

to conjugacy), which fits in the Galois cohomological approach.
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CHAPTER 5

CLASSIFICATION OVER SPECIAL FIELDS

Again, k is a field of characteristic zero, and every extension of it is understood to

be in a fixed algebraic closure k̄ |k.

5.1. C1 fields and unramified splitting for p-adic fields

Lemma 5.1.1 (Springer, [Spr1]). — If k is C1, every non-zero semisimple Lie algebra

contains a non-zero nilpotent element.

Proof. — Let g be a semisimple Lie algebra of dimension n ≥ 1. For x ∈ g, the

characteristic polynomial of adg(x) ∈ Endk(g) with variable T is of the form

n∑
i=r

pi(x)T
i

where r = rk(g) and for i < n, pi is a homogeneous polynomial map from g to k

of degree n − i, meaning that after a choice of basis x1, . . . , xn of g, there are ho-

mogenous polynomials Pi ∈ k[X1, . . . , Xn] of degree n− i such that pi(
∑n
i=1 cixi) =

Pi(c1, . . . , cn). By the C1 property, in particular there is a non-zero y ∈ g with

pr(y) = 0 or in other words, y is non-regular.

We prove the assertion by induction over n = dimk g. For n = 0 ⇔ g = 0, there

is nothing to show. There are no semisimple Lie algebras of dimension 1 or 2, and

if n = 3, then gk̄ ≃ sl2(k̄). We identify g with a subalgebra of Rk̄|kgk̄ and use that

the characteristic polynomial “remains the same” (cf. [Bo2, VII.2.2, Rem. 2]) so that

by ibid., example 2, p2 ≡ 0 and hence the y constructed above is nilpotent.

Now let n > 3 and assume the assertion is true for all Lie algebras of dimension < n.

Pick a non-regular y ̸= 0 as above; by Jordan decomposition, w.l.o.g. y is semisimple.

Consider g1 := zg(y) = ker(adg(y)) = g0(y). By [Bo2, VII.1, Prop. 11], g1 is reductive,

by [Bo2, VII.3.3, Cor.] it contains an element z which is regular in g. If we had

[y, z] = 0, then by the Jacobi identity ker(adg(y)) = ker(adg(z)), but this is a Cartan
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subalgebra whose dimension is rk(g) < dimk(g1). Thus the derived algebra Dg1 is non-
zero, semisimple, and its dimension is < n. By the induction hypothesis it contains

an x ̸= 0 which is nilpotent in Dg1 and hence (2.1.8) in g.

This has a strong consequence:

Proposition 5.1.2. — If k is C1, every semisimple Lie algebra is quasi-split.

Namely, this follows from Springer’s lemma and the following fact.

Proposition 5.1.3. — The following are equivalent (for the field k):

i. Every non-zero semisimple Lie algebra contains a non-zero nilpotent element.

ii. Every semisimple Lie algebra contains a Borel subalgebra (i.e. is quasi-split).

iii. The only anisotropic semisimple Lie algebra is {0}.

Proof. — This can be shown directly (cf. [Bo2, VIII.10, Exercise 7.a]) but follows eas-

ily from our previous results. Indeed, i ⇔ iii is immediate from 3.2.1.viii. By part ix

there, an anisotropic Lie algebra with a Borel subalgebra must be equal to it, hence

solvable, hence zero, so ii⇒ iii. Finally, if iii is valid, then in particular every semisim-

ple g has trivial anisotropic kernel, so is quasi-split by 3.2.6.iv.

Remark 5.1.4. — Corresponding statements for algebraic groups are largely due

to Serre [Ser1], Springer, and Steinberg [Ste]. Indeed the following are equivalent

for our field k (remember char(k) = 0 and every extension is understood to be an

intermediate extension of k̄ |k):
i. The cohomological dimension of Gal(k̄ |k) is 1.
ii. For every extension K|k, the Brauer group Br(K) is trivial.

iii. For every extension K|k and every finite Galois extension L|K, the Gal(L|K)-

module L∗ is cohomologically trivial.

iv. In the situation of iii, the norm NL|K : L∗ → K∗ is surjective.

v. H1(k,G) is trivial for every semisimple (or connected linear) algebraic group G.

vi. Every linear algebraic group contains a Borel subgroup defined over k.

vii. Every non-trivial semisimple algebraic group contains a unipotent element ̸= 1.

viii. k has the properties of 5.1.3.

This is the property dim(k) ≤ 1 in [Ser3], and the above equivalences are Proposi-

tion 5 in II, 3.1 and Theorems 1, 1′, 2 in III, 2 there. It is shown in ibid. II, 3.2 that

the property C1 implies iv and thus all of the above. Springer’s lemma above showed

that C1 implies viii, and “viii ⇒ ii” was 4.4.4.

Proposition 5.1.2 combined with Lang’s theorem 2.2.2 implies:

Corollary 5.1.5 (Weisfeiler’s Theorem 1). — For a semisimple Lie algebra g over a

p-adic field k, there exists a finite unramified extension K|k such that gK is quasi-split.
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Proof. — Since the maximal unramified extension knr is C1, 5.1.2 says that gknr

contains a Borel subalgebra B. Let b1, . . . , bn be a knr-basis of B. Since we can write

gknr =
∪

k⊆K⊆knr

K|k finite

gK

there is a finite unramified extension K|k such that gK contains all bi. The vector

space b spanned by them in gK satisfies b = B ∩ gK and hence is a subalgebra, and

by definition a Borel subalgebra, of gK.

5.2. Type AI and Kneser’s theorem

We had seen in the general discussion how the inner forms of type A are completely

described by the central division algebras over k. Now for a p-adic field k, one has the

well-known (cf. [Rei, Sections 14 and 31])

Theorem 5.2.1 (cf. Hasse [Has]). — Br(k) ≃ Q/Z. For d ≥ 1, there are exactly ϕ(d)

isomorphism classes of k-central division algebras of degree d. Each of them contains

a copy of, and is split by, any field extension K|k of degree d, and there are ⌊ϕ(d)+1
2 ⌋

classes up to isomorphism and anti-isomorphism.

Combined with 4.5.21 this gives a complete classification of inner forms of type A.

In particular:

Proposition 5.2.2. — For d ≥ 2, there are ⌊ϕ(d)+1
2 ⌋ anisotropic inner forms of type

Ad−1 over k up to isomorphism. Each of them is split by any extension of degree d. (1)

So for d ∈ {2, 3, 4, 6} we can and will speak of “the” anisotropic (inner) form of sld.

We will see that sld has no outer anisotropic forms. In fact the following theorem, due

independently to Weisfeiler and Kneser, states that much more is true.

Theorem 5.2.3 (Weisfeiler’s Theorem 2). — Over a p-adic field k, all absolutely

simple anisotropic Lie algebras are inner forms of type A.

These are the ones from above, classified by the k-central division algebras. The

remarkable assertion is that no other anisotropic forms exist.

Kneser actually noted the corresponding statement for algebraic groups: see [Kne,

Satz 3], (2) where it follows from his main

Theorem 5.2.4 (Kneser). — For a p-adic field k and a connected, simply connected

semisimple algebraic group G defined over k, we have H1(Gal(k̄ |k), G) = 1.

1. This means that for any such extension K|k, there is a maximal toral subalgebra of g which

is split by K. Indeed, the maximal abelian subalgebras of D “are” the maximal (= d-dimensional)

subfields of D, and their intersections with DD are the maximal toral subalgebras of this.
2. Bruhat and Tits complemented their opus magnum with a completely different and more

general proof in [BT2, Section 4].
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In fact, the whole classification of semisimple algebraic groups, or Lie algebras,

over a p-adic field k can be derived from Kneser’s theorem. This is sketched in [Kne,

II.4–5] and also done in [Sat3, II.3.3]. The idea is that the vanishing of Kneser’s

cohomology group gives upper bounds on the size ofH1(Gal(k̄ |k),Aut(Xk̄)), whereX

is the object of interest. We sketch the procedure, for an absolutely simple Lie algebra g

of type R. There are algebraic groups G and G0 defined over k such that G(K) =

Aut(gK) and G0(K) = Aut0(gK) for every subextension K|k of k̄ . The group G0 is

connected and of adjoint type (cf. [Bo2, VIII.5.4]), and there is an exact sequence

1→ Z −→ G̃0 −→ G0 → 1

where G̃0 satisfies the conditions for Kneser’s theorem and (the dual of) its centre Z

can be identified with P (R)/Q(R), which is listed for all types in the plates of [Bo2,

VI]. With [Ser3, I.5.7] we get an exact sequence

1→ H1(k,G0)→ H2(k, Z).(19)

We first look at the case G = G0 where we only have inner forms: e.g. for the types

E8, F4 and G2, Z and hence H2(k, Z) are trivial, so there is only the split form.

For type E7, again G0 = G, but now Z has two elements and so has H2(k, Z) (as

can be seen via Tate duality). We will indeed show the existence of one non-split

form of type E7 over k in 5.5.5. Hence, this and the split one are all of them. In the

general case we have G ≃ G0 ⋊S (semidirect product) where S ≃ A(R)/W (R) is the

automorphism group of the Dynkin diagram (cf. [Bo2, VIII.5.3, Cor. 1]). This gives

a surjective ϕ in the exact sequence

H1(k,G0) H1(k,G) H1(k, S)
ϕ

of [Ser3, I.5.5]. H1(k, S) classifies exactly the quasi-split forms, which is the Galois

cohomological interpretation of our results in 4.6. Indeed this sequence can be trans-

lated to the statement that every form can be viewed as an “inner form of a uniquely

determined quasi-split form”. (The “inner forms” in our terminology are then the in-

ner forms of the split form, i.e. the image of the left = kernel of the right map in

the sequence). With [Ser3, I.5.5, Cor. 2] for an α ∈ H1(k, S) (corresponding to one

quasi-split form), the set ϕ−1(α) (corresponding to the “forms of this form”) can be

identified with the quotient of H1(k, aG0) under a certain action of H0(k, aS), where

a is an arbitrary cocycle representing an arbitrary ā with ϕ(ā) = α, and the subscripts

denote twisting with this cocycle. In particular, the inner forms (in our terminology)

are given by orbits of S in H1(k,G0). With (19) one can transport this to the orbits

of an S-action on H2(k, Z), which further identifies with (the Galois fixed set of the

dual of) Z by Tate duality. In type E6, Z is a group of three and S a group of two

elements, the S-action permutes the two non-trivial elements of Z, so we expect (at

most) one non-split inner form and will indeed see it in 5.5.4. For the outer forms

of type E6, and also e.g. for the trialitarian types D4, it turns out that already the
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twisted H2(k, aZ) is trivial, hence in these cases there exist no outer forms except for

the quasi-split ones we have described in 4.6. Tables which summarise the results for

all types are found in [Kne, p. 254] and [Sat3, p. 121].

We believe, however, that this approach is not the only possible way. First, using

results about (skew-)hermitian forms over p-adic fields, we can completely classify

the classical types with our earlier results, and theorem 5.2.3 for these types follows

from this. This will be done in Section 5.4. (In [Kne, I], Kneser proves his theorem

for the classical types using the same results about hermitian forms.) In the further

course of the classification in Section 5.5, we will see that each possible diagram can

either be excluded by our previous results or shown to be admissible – except for the

anisotropic forms. Thus the validity of Weisfeiler’s table is reduced, without using

Kneser’s theorem, to the seemingly simpler statement:

Reduced Theorem. — There are no anisotropic Lie algebras of exceptional type

over p-adic fields.

To prove this, we need some more machinery which we will set up in the next

Section 5.3. We will then combine that with our previous results and Weisfeiler’s first

theorem (5.1.5) to prove the Reduced Theorem in every case except for one form in

type E6 and one in type D4.

Kneser himself suggests equivalence of his and Weisfeiler’s results in [Kne, II,

footnote 4]. The paper [Tit4] deals with anisotropic forms, but for p-adic fields it also

refers to Kneser’s theorem.

Remark 5.2.5. — For k = R the situation is very different. Here it is a classical

result due to E. Cartan that for every type, there exists a unique anisotropic form.

But only one of them is an inner form of type A, in fact A1, the derived Lie algebra

of Hamilton’s quaternions; whereas e.g. the anisotropic forms of type An, n ≥ 2, are

outer forms.

5.3. Tools for ruling out anisotropic forms: The prime degree case

Recall Weisfeiler’s first theorem 5.1.5 which said that we have unramified, in par-

ticular cyclic splitting extensions, at least for the inner forms of split Lie algebras (cf.

definition 4.2.4). A cyclic extension K|k can further be “filtered” to a tower of fields

k ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Kd = K such that every step Kr|Kr−1 is of prime degree.

These are the ones we are going to attack in this section. Already basic arithmetic

constraints rule out most prime degree extensions as splitting fields, as we will see,

not only in the p-adic case. The main goal of this section then is a big step towards

the Reduced Theorem in the preceding section: we show that over p-adic fields, there

are no anisotropic Lie algebras of exceptional type which are split by an unramified

extension of prime degree.
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We start with a technical lemma. Let R be a root system and V be the R-vector
space spanned by it.

Lemma 5.3.1. — Let ℓ be a prime, and σ ∈ A(R) such that σ ∈ GL(V ) has minimal

polynomial T ℓ−1 + T ℓ−2 + · · · + T + 1 (in particular σℓ = id). Then for every root

α ∈ R, after possibly replacing σ by some σj (with 1 ≤ j ≤ ℓ− 1), the roots

α1 := α, α2 := σ(α), . . . , αℓ−1 := σℓ−2(α)

satisfy the relations of a basis of root system of type Aℓ−1 (i.e. correspond to the nodes

in the associated Dynkin diagram).

Proof. — The result is trivially true for ℓ = 2, so let ℓ ≥ 3. We choose an A(R)-

invariant scalar product ⟨. , .⟩ on V . All σj(α) have the same length, without loss of

generality let this length be 1. α, σ(α), . . . , σℓ−2(α) are linearly independent, and we

have

σℓ−1(α) = −
ℓ−2∑
i=0

σi(α)

Multiplying out ⟨σℓ−1(α), σℓ−1(α)⟩ = 1, using the σ-invariance and ⟨α, α⟩ = 1, gives

(ℓ− 1) + 2

ℓ−2∑
i=1

(ℓ− 1− i)⟨α, σi(α)⟩ = 1(20)

Since ℓ ≥ 3, this means that for some 1 ≤ j ≤ ℓ − 2, ⟨α, σj(α)⟩ must be nega-

tive. Replace σ by this σj , so we have ⟨α, σ(α)⟩ < 0 and indeed by [Bo2, VI.1.3],

⟨α, σ(α)⟩ = − 1
2 because the roots have the same length 1. But then by σ-invariance,

⟨σℓ−1(α), α⟩ = − 1
2 too and thus

σℓ−1(α) + α = −
ℓ−2∑
i=1

σi(α)(21)

is a root which further is of length 1 again ([loc. cit.]). We are finished here if ℓ = 3.

To proceed in the case ℓ > 3, note first that inserting ⟨α, σ(α)⟩ = − 1
2 into (20) gives

2

ℓ−2∑
i=2

(ℓ− 1− i)
⟨
α, σi(α)

⟩
= 0.

Further note that ⟨
α, σi(α)

⟩
=
⟨
α, σℓ−i(α)

⟩
(22)

for all 0 ≤ i ≤ ℓ by σ-invariance and σℓ = id. Coupling these pairs reduces our

equation further to

(ℓ− 2) ·
ℓ−2∑
i=2

⟨
α, σi(α)

⟩
= 0(23)
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where we can cancel the constant too. Applying σ−1 to (21), we have the root

ℓ−3∑
i=0

σi(α)(24)

of length 1, which multiplied out gives

(ℓ− 2) + 2

ℓ−3∑
i=1

(ℓ− 2− i)
⟨
α, σi(α)

⟩
= 1

or, using ⟨α, σ(α)⟩ = − 1
2 and coupling the pairs (22) again,

(ℓ− 3) ·
ℓ−3∑
i=2

⟨α, σi(α)⟩ = 0

where again cancelling the constant (we assume ℓ > 3 now) and comparing with (23)

gives: ⟨
α, σℓ−2(α)

⟩
=
⟨
α, σ2(α)

⟩
= 0.(25)

From this one infers that

σℓ−1(α) + α+ σ(α) = −
ℓ−2∑
i=2

σi(α)(26)

is again a root of length 1. This process can be repeated, showing iteratively that

⟨α, σi(α)⟩ = 0

for i ∈ {2, . . . , ℓ− 2}. This proves the claim.

Actually, we do not even need ℓ to be a prime – we note the following generalisation

for use in later sections:

Corollary 5.3.2. — Let n ∈ N and σ ∈ A(R) such that σ ∈ GL(V ) has minimal

polynomial Tn−1 + Tn−2 + · · · + T + 1 (in particular σn = id). Then for every root

α ∈ R such that the σ-conjugates of α span an (n − 1)-dimensional subspace of V ,

after possibly replacing σ by some σj (with gcd(j, n) = 1), the roots

α1 := α, α2 := σ(α), . . . , αn−1 := σn−2(α)

satisfy the relations of a basis of root system of type An−1 (i.e. correspond to the nodes

in the associated Dynkin diagram).

Proof. — By induction on the number of divisors of n, the lemma being the start

of the induction. Then for general n, one imitates the proof until the place after

equation (20) where we get

⟨α, σj(α)⟩ < 0
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for some 1 ≤ j ≤ n − 2. If gcd(j, n) were not 1, we could w.l.o.g. assume that j is a

divisor of n and use the induction hypothesis on σj to see that the sets

{α, σj(α), σ2j(α), . . . , σ(d−1)j(α)},

{σ(α), σj+1(α), σ2j+1(α), . . . , σ(d−1)j+1(α)},
...

{σj−1(α), σ2j−1(α), σ3j−1(α), . . . , σ(n−1)(α)}

(where d := n/j) would each span root systems of type Ad−1; and there are j of them.

But that would mean the span of all σ-conjugates of α would only have dimension

j · (d− 1) = n− j, contradiction.
So j does not divide n, and the rest of the proof is exactly the same as in the

lemma.

Remark 5.3.3. — i. This is consistent with table 3 in [Car]. Also, a posteriori, σ

is a Coxeter element of the sub-root-system of type An−1.

ii. Note that in the situation of the lemma, σ splits V into σ-invariant subspaces

each of dimension ℓ− 1. In particular, rk(R) has to be a multiple of ℓ− 1.

iii. Note however that although the σ-invariant subspace spanned by the σ-

conjugates of any root α now necessarily contains a sub-root system of type Aℓ−1,

the intersection of R with that subspace might be a larger root system. An ex-

ample is a root system of type G2 (cf. [Bo2, Plate X], or this work’s dedication)

with σ being the rotation by 120◦.

The lemma puts severe restrictions on anisotropic forms of exceptional types with

splitting fields of prime degree:

Proposition 5.3.4. — Let k be a field with char(k) = 0, and let g be an absolutely

simple, anisotropic Lie algebra of exceptional type over k, with a cyclic splitting ex-

tension K|k of prime degree ℓ. Let (X,R,∆,∆0 = ∆, t) be the index of g with respect

to s = {0} and a maximal toral t which is split by the extension K. Let σ be a gen-

erator of Γ = Gal(K|k) and resume notations like σA, X0, V , etc. from Chapter 3.

Then:

▷ If ℓ = 2, σA = − id.

▷ If ℓ = 3, R cannot be of type E7.

▷ If ℓ = 5, R must be of type E8.

▷ The case ℓ > 5 cannot occur.

Proof. — Since X = X0 = {χ ∈ X :
∑ℓ−1
i=0 σA

i(χ) = 0}, the element σA ∈ A(R) has
no eigenvector of eigenvalue 1 in V = RX (this is called an“elliptic element”), and it is

of order ℓ. This already implies the assertion for ℓ = 2, and more generally, the minimal

polynomial of σA ∈ GL(V ) is the cyclotomic polynomial T ℓ−1+T ℓ−2+ · · ·+T +1, so
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we are in the situation of the preceding lemma and remark. For odd ℓ and R not of

type D4, we also see that σA ∈ W (R) because |A(R)/W (R)| ≤ 2; for R of type D4,

the same holds true for ℓ > 3. Then D4, F4 and G2 are excluded for ℓ > 3 because

their Weyl groups have orders 26 · 3, 27 · 32 and 22 · 3. E6 is excluded for ℓ > 5 since

its Weyl group is of order 27 · 34 · 5.
Finally, part ii of the remark implies rk(R)/(ℓ − 1) ∈ Z, which excludes type E6

for ℓ = 5 and type E7 for ℓ ≥ 3.

Now we attack these remaining cases over p-adic fields, starting with ℓ = 2. The

following has an analogue in [We3], especially §§8 and 12, but we were not able to

verify all statements there. We take a different approach which however uses the same

key fact about the norms of the unramified quadratic extension.

Proposition 5.3.5 (Case ℓ = 2). — Let g be a semisimple Lie algebra over a p-adic

field k which is split by the unramified quadratic extension K|k. If the root system

of gK contains roots γ, δ such that γ + δ is a root, then g cannot be anisotropic.

In particular, if g is absolutely simple and anisotropic, it must be of type A1, i.e.

the anisotropic form of sl2.

Proof. — Let σ be the non-trivial element of Gal(K|k). Assume g is anisotropic. In

our general terminology of choices, necessarily s = {0}. Choose a maximal toral t

defined over k and split over K.

We resume notation from Section 3.3.1 but now fix a Chevalley basis consisting of

Hα and bases eα of the root spaces, which means that the structure constants Nα,β
defined in (14) are in Z \ {0} (such a basis exists by [Che], cf. [Bo2, VIII.4.4]). We

have Nα,β = −Nβ,α for all roots α, β as well as H−α = −Hα. Also, we have the crucial

relation

N−α,−β = −Nα,β(27)

cf. [Che, p. 23]. (Our sign conventions follow [Che] instead of Bourbaki, that is, we

have [eα, e−α] = Hα. Remember that we chose our basis of sl2 accordingly in 2.1.6.)

Now the root lattice satisfies X = X0 and therefore σA = − id on X; in particular,

σA(α) = −α for all roots α. We get elements ξα ∈ K∗ defined by

σ(eα) = ξα e−α

Because σ(Hα) = [σ(eα), σ(e−α)] = ξαξ−αHσA(α) and
σα(σ(Hα)) = σ(α(Hα)) = 2,

we have σ(Hα) = HσA(α) = H−α = −Hα and ξ−α = ξ−1
α for all α ∈ R. We also have

σ(ξα) · ξ−α = 1 as in (12), hence ξα ∈ k∗, and for each root α, the copy of sl2(K)

G(t, α) := KHα + (gK)α + (gK)−α

= KHα +Keα +Ke−α
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is σ-stable, hence descends to k where it becomes g(t, α) := G(t, α)σ=id and necessarily

is the anisotropic form of sl2. Picking y ∈ K∗ with σ(y) = −y, it has the k-basis

yHα, eα + ξαe−α, y(eα − ξαe−α)

and visibly is isomorphic to the form described in example 3.2.5, the ξα here identifying

with the “b” there (with our sign conventions; with Bourbaki’s conventions instead,

it would be −b). We had seen in that example that this sl2-form being anisotropic is

equivalent to ξα /∈ NK|k(K) which, K|k being unramified, means that

for all roots α, we have: ξα ≡ πk mod O∗
k(28)

In other words, for all roots α, the constant ξα must be of odd valuation in k. But if

there are roots γ, δ whose sum is a root, calculating σ([eγ , eδ]) = σ(Nγ,δ eγ+δ) in two

different ways gives

N−γ,−δ · ξγξδ = Nγ,δ · ξγ+δ
and thus by (27),

ξγ+δ = −ξγξδ(29)

which contradicts (28).

Remark 5.3.6. — Our carefulness about signs in the above proof seems unnecessary

(as −1 is of valuation 0 anyway), but it becomes important when one wants to see

why the analogous statement in the case k = R is not true, and indeed anisotropic

forms exist in every type, all split by the quadratic C|R. There, in our sign convention,

we would have ξα ≡ −1 mod R∗2 for all roots α, and (29) would be perfectly OK; in

Bourbaki’s sign convention, we would instead have all ξα ∈ R∗2 (that is, > 0), but

in that convention, we have N−α,−β = Nα,β instead of (27) and thus ξγ+δ = ξγξδ
instead of (29), again without contradiction.

Note that the condition in Proposition 5.3.5 – that R contains two roots whose sum

is a root of the same length – can be reformulated as R containing a sub-root-system

of type A2. We need a bit more than that that to derive a contradiction in the next

case, ℓ = 3.

Proposition 5.3.7 (Case ℓ = 3). — Let g be a semisimple Lie algebra over a p-adic

field k which is split by the unramified cubic extension K|k. If the root system of gK
contains a sub-root-system of type A3, then g cannot be anisotropic.

In particular, if g is absolutely simple of exceptional type and anisotropic, it would

need to be of type G2 (which however will be excluded in the next proposition).

Proof. — Let σ be a generator of Gal(K|k), and again fix t and a Chevalley basis of

eα’s andHα’s as before. Since σA is elliptic of order 3, we now have for each root α that:

α and σ(α) are a basis of the sub-root system consisting of {±α,±σ(α),∓σ2(α) =

±(α + σ(α)} which is of type A2, and the corresponding Chevalley basis vectors e?
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generate a subalgebra of gK isomorphic to sl3(K). Again define ξα by σ(eα) = ξαeσ(α)
for all α ∈ R. Since the Galois-invariants of each of those subalgebras are subalgebras

of the anisotropic g, they must each be the anisotropic k-form of sl3. As an analogue

to equation (28) in the quadratic case, one can show (3) that this implies:

For all roots α, ξ2α · ξσ(α) ≡ πk or π2
k mod O∗

k

or in other words, the valuation vk(ξ
2
α · ξσ(α)) ∈ Z has to be non-trivial modulo 3

for every root α ∈ R. Let us abbreviate the invariant r(α) := ξ2α · ξσ(α). Note that

replacing σ by σ2 would switch for each α whether r(α) is congruent to π or π2.

On the other hand, using that all occurring Chevalley structure invariants N?,?

are ±1 because all the roots have the same length, one computes

r(α+ β) = ±r(α)r(β)

for all roots α, β of the same length such that α + β is a root of the same length,

which means

vk
(
r(α+ β)

)
= vk

(
r(α)

)
+ vk

(
r(β)

)
.

Now let α1, α2, α3 be an ordered basis of the sub-root-system of type A3 existing by

hypothesis. This means that all consecutive sums (α1+α2, α2+α3, α1+α2+α3) are

roots, all of the same length as any αi. Abbreviate v(1) := vk(r(α1)), v(2) := vk(r(α2))

and v(3) := vk(r(α3)). Now an application of Dirichlet’s box principle leads to a

contradiction: Not all of the integers

v(1), v(2), v(3)

vk(r(α1 + α2)) = v(1) + v(2),

vk(r(α2 + α3)) = v(2) + v(3) and

vk(r(α1 + α2 + α3)) = v(1) + v(2) + v(3)

can be ̸≡ 0 mod 3 at the same time.

For the final assertion, it is readily checked that all exceptional root systems except

those of type G2 contain subsystems of type A3 (except for type F4, their bases even

contain bases of such subsystem; in F4 on the other hand, the long and short roots

are systems of type D4 which in turn contain various copies of A3).

3. Computations with matrices as in 3.2.5, from which we derived (28), become a bit awkward

now. But one can use our knowledge about the Lie algebra of type A2 in question being the derived

algebra of a cyclic CSA and invoke the theory of [Rei, 30.4 and 31]. To this end, note that the

decisive generating element in the enveloping associative algebra, written as a matrix, is

x =

 0 1 0

0 0 ξα

ξαξσ(α) 0 0

 ;

and whether the diagonal matrix x3 = ξ2α · ξσ(α) · I, or rather its diagonal entry, is a norm of K|k
or not, decides whether that CSA contains nilpotent elements or not, i.e. whether our Lie algebra is

not anisotropic or is anisotropic. Compare also [loc. cit., 14.6].
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We can amend the case G2 “by hand” – in fact, we have the very general

Proposition 5.3.8. — There is no anisotropic Lie algebra over any (characteristic 0)

field k which is of type G2 and split by a cyclic extension of odd degree.

Proof. — (Cf. [We2, §2].) Assume there is one and fix a maximal toral t as usual. A

look at the root system (cf. [Bo2, Plate X], or this work’s dedication) shows that the

Galois group must act through a rotation of 120◦, and hence factors through a cubic

extension. The“long roots” form a closed, symmetric and irreducible subsystem, hence

gK has a simple subalgebra H which consists of the sum of tK and the corresponding

root spaces. Now H with the adjoint action naturally acts on the 6-dimensional sum V

of the root spaces of the “short roots”; indeed tK leaves each root space invariant, and

a long root space (gK)β sends a short root space (gK)α to 0 if α + β /∈ R, or else

to (gK)α+β which is again a short root space, as the plate shows. So we have a 6-

dimensional representation of H. Also, V is a vector space complement of H in gK .

Inspecting the plate one sees further that the short roots decompose into two disjoint

sets (in the form of equilateral triangles) stable under “adding a long root, if the result

is a root”; correspondingly, V is the direct sum of two (3-dimensional) subspaces V1,

V2 invariant under the adjoint action of H, corresponding to those two sets of short

roots. These representations are non-trivial homomorphisms H → sl3(K) which are

necessarily isomorphisms (by simplicity and dimension counting).

H is invariant under our Galois action because the set of the long roots (hence

the sum of the corresponding root spaces) and tK are; V1 and V2 are invariant under

our Galois action because the two equilateral triangles of the short roots are. So

taking fixed sets under the Galois (=: Γ) action, h := HΓ is an 8-dimensional simple

subalgebra of g, and vi := V Γ
i are three-dimensional k-vector spaces whose direct

sum is a complement of h in g, on which h acts with the restricted adjoint action.

This gives non-trivial homomorphisms h→ sl(vi) ≃ sl3(k) which again are necessarily

isomorphisms. In other words, the simple subalgebra h is split, in contradiction to g

being anisotropic.

After this digression, we settle the remaining case ℓ = 5, where according to Propo-

sition 5.3.4 only type E8 can occur anyways. But it is easy now to guess the general-

isation of the method for ℓ = 2 and 3:

Proposition 5.3.9 (Case ℓ = 5). — Let g be a semisimple Lie algebra over a p-

adic field k which is split by the unramified extension K|k of degree 5. If the root

system of gK contains a sub-root-system of type A5, then g cannot be anisotropic. In

particular, no g of exceptional type is anisotropic and split by the unramified extension

of degree 5.

Proof. — The same principle as in the proof of Proposition 5.3.7. This time, one first

attaches to each root α a Galois-invariant subalgebra of type A4 whose enveloping
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matrix algebra contains the decisive element

x =


0 1 0 0 0

0 0 ξα 0 0

0 0 0 ξαξσ(α) 0

0 0 0 0 ξαξσ(α)ξσ2(α)

ξαξσ(α)ξσ2(α)ξσ3(α) 0 0 0 0

 ,

with x5 = ξ4αξ
3
σ(α)ξ

2
σ2(α)ξσ3(α) · I, so that in this case the invariant

r(α) := ξ4αξ
3
σ(α)ξ

2
σ2(α)ξσ3(α)

due to anisotropy is not allowed to be a norm of K|k, which boils down to:

For all roots α, vk
(
r(α)

)
̸≡ 0 mod 5.

But again vk(r(?)) is additive on the positive roots in the sub-root-system in the hy-

pothesis, say with ordered basis (α1, . . . , α5), and Dirichlet’s box principle forces r(?)

to be of valuation divisible by 5 for at least one of the consecutive sums

? =

k∑
i=j

αi for 1 ≤ j ≤ k ≤ 5,

which is a contradiction.

Finally, according to Proposition 5.3.4, the only exceptional type that possibly

could exist here is E8, which however does contain various copies of A5.

Summing up this section, we have proved:

Theorem 5.3.10. — Let g be an absolutely simple Lie algebra of exceptional type

over a p-adic field k, which is split by an unramified extension K|k of prime degree.

Then g cannot be anisotropic.

Note that the technique developed apparently can be generalised to prove:

Proposition 5.3.11. — Let g be a semisimple Lie algebra over a p-adic field, split

by the unramified extension of prime degree ℓ. If the root system of g contains a

subsystem of type Aℓ, g cannot be anisotropic.

Caveat: The anisotropic g of inner type A which is split by degree ℓ extensions is

not of type Aℓ, but of type Aℓ−1 – the one that featured in Lemma 5.3.1, and was

used in the proofs to derive the norm-/valuation-criterion on what we called r(α).

This is of limited use though, since for the exceptional types, only the three cases

ℓ ≤ 5 left open by Proposition 5.3.4 are to be considered anyway, whereas for the

classical types, we can exclude anisotropy by different, general arguments: which we

will do in the next section.
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5.4. Types AII, B, C and D over p-adic fields

For a p-adic field k, almost everything about these types follows from

Theorem 5.4.1 (Witt). — A quadratic form in 5 or more variables over k is

isotropic.

Proof. — See [Wit, Satz 16] or [Lam, Chap. 6, Thm 2.12].

This was extended by Jacobson (cf. [Jac5]), Ramanathan, Tsukamoto (cf. [Tsu])

and others to the following. For a common proof, see [Kne, I Anhang]:

Proposition 5.4.2. — The following are isotropic over a p-adic field k:

i. Hermitian forms in 3 or more variables over a quadratic extension C|k (see type

AII).

ii. Hermitian forms in 2 or more variables over the quaternion division algebra Q

with standard involution γ (see type C).

iii. Skew-hermitian forms in 4 or more variables over the quaternion division algebra

(see type D).

5.4.1. Type AII. — The general discussion of the outer forms of type A (4.5.22)

showed that they are classified by σ-hermitian forms on vector spaces over D, where

(D,σ) is a division algebra over k of type AII; meaning that there is a quadratic

extension C|k such thatD is a C-central division algebra, and σ induces the non-trivial

automorphism of C|k. As promised in the general discussion, our task is simplified by:

Proposition 5.4.3 (Landherr). — If k is a p-adic field with D, σ and C as above,

then C = D, so σ is the non-trivial element of Gal(C|k).

Proof. — There is a complicated proof in [Lan1, §4], and a nicer one in [Lan2, p. 211

et seq.] which is close to one by Jacobson and generalises to the following: First one

shows that (DC , σC) is isomorphic to (D ×D op, (x, y op) 7→ (y, x op)) as involutorial

C-algebra (cf. [Inv, Prop. 2.15]). Consequently, D ≃ D op and the class of D has order

≤ 2 in Br(C). Thus if D ̸= C, D would be the quaternion division algebra over C.

Secondly, one shows that any quaternion algebra Q over C with σ as given is of the

form Q0 ⊗k C for a k-quaternion algebra Q0 (cf. [Inv, Prop. 2.22]). But for p-adic k,

every quadratic extension splits every quaternion algebra, so that Q0⊗k C cannot be

a skew field.

So the outer forms of type An (n ≥ 2) are given by hermitian forms on Cn+1,

where C runs through the different quadratic extensions of k. By 5.4.2.i the Witt

index r of such a form has to satisfy n+1−2r ≤ 2, and thus the Satake-Tits diagram

(whose number of black vertices was n− 2r) will be
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if n is even and either

or

if n is odd. Their rational root systems, determined as in 3.4.1, are BCn/2, C(n+1)/2

and BC(n+1)/2, respectively. The anisotropic kernel in the last case, by the erasing

lemma, is an inner form of type A1 and thus the anisotropic form of sl2. They all have

C as fixed field of the twisted Galois action t, and indeed as minimal splitting field.

For the third diagram, any other quadratic extension C ′ ̸= C splits the anisotropic

kernel, so that gC′ has the second diagram, with minimal splitting field C.C ′.

So by he isomorphism theorem, there are as many isomorphism classes of outer

forms of type An as quadratic extensions of k for even n, and twice as many for odd

n > 1.

5.4.2. Bn

Proposition 5.4.4. — A Lie algebra of type Bn over k has Satake-Tits diagram

or

In the non-split case, the anisotropic kernel is the anisotropic form of sl2, and the

rational root system is of type Bn−1. Any quadratic extension is a splitting field.

Proof. — By the general discussion of 4.5.1.2 we know that such a Lie algebra has

the diagram

r

and is given by a quadratic form with Witt index r on k2n+1. If we had r < n− 1, we

see by the discussion there (or by the erasing Lemma 4.3.2) that there would exist an

anisotropic form in 2(n− r) + 1 ≥ 5 variables.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



114 CHAPTER 5. CLASSIFICATION OVER SPECIAL FIELDS

The anisotropic kernel is determined by the erasing lemma and discussion of

type A1. This also gives the assertion about the splitting field, and the rational root

system is easily calculated like in Section 3.4.1.

5.4.3. Cn

Proposition 5.4.5. — A Lie algebra of type Cn over k is either split, or its Satake-

Tits diagram is either

or

according to whether n is odd or even. In the non-split case, the anisotropic kernel is

a product of ⌊n+1
2 ⌋ copies of the anisotropic form of sl2, and the rational root system

is of type BCr for odd n and of type Cr for even n, where r = ⌊n2 ⌋. Any quadratic

extension is a splitting field.

Proof. — We had seen already in the general discussion of 4.5.1.4 that d = 1 gives the

split form. Otherwise, as noted in 4.5.16, d = 2 and D = Q is the quaternion division

algebra with its standard involution γ. By 5.4.2.ii, all non-degenerate hermitian forms

are equivalent to the one given by the unit matrix, and hence for the Witt index r

we have 2r = n − 1 if n is odd and 2r = n if n is even, which gives the diagrams.

⌊n+1
2 ⌋ = n− r is the number of black vertices.

The anisotropic kernel is determined by the erasing lemma and discussion of

type A1. This also gives the assertion about the splitting field, and the rational root

system is easily calculated like in Section 3.4.1.

5.4.4. Dn

Proposition 5.4.6. — A Lie algebra of type Dn over k which comes from an invo-

lutorial k-algebra whose underlying CSA is split has Satake-Tits diagram

or

or
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In the last two cases, the rational root systems are of type Bn−1 and Bn−2, respectively.

The anisotropic kernel in the last case is a product of the anisotropic form of sl2
with itself, and it is split by any quadratic extension. The first and third one are

thus completely described up to isomorphism; for the second diagram, there is one

isomorphism class of Lie algebras for every quadratic extension of k, and this quadratic

extension splits it.

Proof. — Proceeding as for type B, we can exclude the case r < n − 2. The first

diagram is the case r = n, the split form. For r = n− 1 we have the quasi-split forms

discussed in Section 4.5.1. The final case is r = n−2. By [Lam, Chap. 6, Cor. 2.15] up

to isomorphism, there is a unique 4-dimensional anisotropic quadratic space (k4, q),

corresponding to Sa = diag(1,−u,−π, πu) (where π is a uniformiser and u ∈ Ok such

that k(
√
u ) is unramified; for p ̸= 2, any u ∈ Ok \ O2

k will do) whose discriminant

is the square (πu)2. Its diagram is as described in the general discussion, and the

anisotropic kernel and rational root system are determined as usual.

It remains to discuss the forms of type Dn where d = Ind(A) = 2 for the cor-

responding involutive algebra (A, ι). Analogous to the discussion for type C, this is

equivalent to the description of skew-hermitian forms over the quaternion division

algebra Q with its standard involution. By 5.4.2.iii now necessarily n− 2r ≤ 3 for the

dimension n (over Q) and the Witt index r.

The anisotropic skew-hermitian forms are determined in [Tsu, Thm 3]: There is ex-

actly one in the dimensions 3 and 0, giving the first and last of the following diagrams.

In dimensions 2 and 1 there is one for each quadratic extension, the correspondence

being given by the discriminant (4) in k∗/k∗2, and the corresponding quadratic exten-

sion K|k is the fixed field of the t-action in the middle two cases. The cases are:

n = 2r + 3 (n odd):

n = 2r + 2 (n even) (this one is missing in [We1]):

n = 2r + 1 (n odd):

n = 2r (n even):

4. Defined as in the general discussion of 4.5.1.3 via the reduced norm, cf. [Tsu, 1.3].
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The anisotropic kernels are, from top to bottom:

▷ a product of r copies of the anisotropic form of sl2 with the anisotropic form

of sl4;

▷ a product of r copies of the anisotropic form of sl2 with RK|ka, where K|k is the

mentioned fixed field of t and a is the anisotropic K-form of sl2;

▷ a product of r copies of the anisotropic form of sl2;

▷ ditto.

Finally, with the method of Section 3.4.1, the rational root systems are seen to be

of type Br in the first three cases and of type Cr in the last.

Remark 5.4.7. — For n = 4, the phenomenon from 4.5.20.ii occurs and the case

d = 1, r = 2 reappears as d = 2, r = 2. So S(M4(Q), ι1) ≃ S(M8(k), ι2) with

ι1 :X 7→
( 0 −I2
I2 0

)
· t(γ(X)) ·

( 0 I2
−I2 0

)
and ι2 coming from the quadratic form on k8 of Witt index 2 (i.e. with anisotropic

kernel the 4-dimensional anisotropic space). All other diagrams that we listed, and

hence their Lie algebras, are visibly distinct.

5.5. Exceptional Lie algebras over p-adic fields

We now classify, over a p-adic field k, the absolutely simple Lie algebras of the

exceptional types, by which we mean

▷ those of types G2, F4, E6, E7, E8, and

▷ the so-called trialitarian forms which are those of type D4 where the twisted

Galois action does not factor through a quotient of order ≤ 2.

The main method is to use the results of Section 4.3, combined with the results for

the classical types, to exclude most possible Satake-Tits diagrams. It should be noted

that large parts of this (e.g. everything where only the result about inner types of An
in 4.3.7 is used) work just as well over arbitrary fields, as Tits’ list in [Tit1] suggests.

The remaining diagrams are then shown to be admissible, except for the anisotropic

ones. For these, we exploit the results in the prime degree case of Section 5.3. This

way, we can avoid using Kneser’s theorem except for one case in type E6 and one in

type D4 (although to be clear, one should note that the cases E7 and E8 rely on E6).

5.5.1. G2

Proposition 5.5.1. — Every Lie algebra of type G2 over k is split.
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a) With Kneser’s theorem: The fundamental group P (R)/Q(R) is trivial and hence

by Kneser’s theorem there is only the split form.

b) Without Kneser’s theorem: by 4.3.6, the only other possibilities are anisotropic

ones, or a form with diagram

Assume first we had such a Lie algebra. It is split by the unramified quadratic

extension K|k (since its anisotropic kernel is), so fix s, t as usual with tK split, and

call σ the non-trivial element of Γ := Gal(K|k). Looking at the root system (cf. [Bo2,

Plate X], or this work’s dedication) shows that the Galois action would have to consist

precisely of the reflection sα1 . In particular we would have β − σA(β) = α1 ∈ R for

β = 2α1 + α2. This is impossible by the following lemma, which looks p-adic but is

inspired by an analogous assertion over the field R in [Ara, Prop. 1.3].

Lemma 5.5.2. — Let g be a semisimple Lie algebra with s, t as always such that t is

split by the unramified quadratic extension K|k. Let σ be the non-trivial element of

Gal(K|k). Then β − σA(β) is not a root, for any root β.

Proof. — σA = − id on X0, so the assertion is clear for β ∈ R0. For the general

case, we resume notation from Sections 3.3.1 and 5.3: Again we fix a Chevalley basis

consisting of Hα and bases eα of the root spaces, with the structure constants Nα,β
defined in (14) being integers. We have Nα,β = −Nβ,α for all roots α, β. Again we

define ξα’s by σ(eα) = ξαeσA(α). Because σ(Hα) = [σ(eα), σ(e−α)] = ξαξ−αHσA(α)

and σα(σ(Hα)) = σ(α(Hα)) = 2, we have σ(Hα) = HσA(α) and ξ−α = ξ−1
α for all

α ∈ R.
Now assume there is β ∈ R with β − σA(β) ∈ R. Then Nβ,−σA(β) ∈ Z \ {0}.

Computing [σ(eβ), e−β ] = σ([eβ , σ(e−β)]) in two different ways gives

ξβNσA(β),−β · eσA(β)−β = σ(ξ−β)ξβ−σA(β)Nβ,−σA(β) · eσA(β)−β

and hence

ξβ = −σ(ξ−1
β ) · ξβ−σA(β)

or, setting γ = β − σA(β):
ξγ = −NK|k(ξβ)

But on the other hand, the subalgebra KHγ+Keγ+Ke−γ is stable under the Galois

operation, hence descends to a form of sl2(K) which is anisotropic because γ ∈ R0,

and the argument in the proof of Proposition 5.3.5 shows that ξγ /∈ ±NK|k(K) or

in other words, its πk-adic valuation is odd, hence we have a contradiction and the

lemma is proven.

So there can be only split or anisotropic forms.

Now assume there is an anisotropic one. Choose an unramified splitting field K|k.
Since K|k is cyclic, we can “filter” the extension to a tower of fields k = K0 ⊂ K1 ⊂
· · · ⊂ Kn = K such that each Ki+1|Ki is unramified of prime degree.
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Now since for all i, the scalar extension gKi
is either split or anisotropic, and

of course scalar extensions of a split form remain split, there must be exactly one

step such that gKi is anisotropic but (gKi)Ki+1 = gKi+1 is split. But then gKi is

an anisotropic form of type G2 over the p-adic field Ki, with Ki+1, an unramified

extension of prime degree, as splitting field: which we excluded in Section 5.3. The

proposition is proven.

5.5.2. F4

Proposition 5.5.3. — Every Lie algebra of type F4 over k is split.

Proof. — a) Again P (R)/Q(R) is trivial and hence by Kneser’s theorem, only the

split form exists.

b) Without using Kneser’s theorem: First, all diagrams containing a white vertex

are easily ruled out. Namely, if the rightmost vertex α4 is white and the form is not

split, by applying the erasing Lemma 4.3.2 to that vertex and comparing with type B3,

the only possibility is

which is excluded by erasing α2 and seeing an impossible diagram of type A2 to its

right. So α4 is black. If α1 were white, erasing it and looking at type C3 gives the

only option

which is impossible by erasing α3. So α1 is black. By 4.3.6 we are left with

which again is impossible as erasing one white vertex shows.

So again, there are only split or anisotropic forms.

The same procedure as for type G2, filtering an unramified splitting field to subex-

tensions of prime degrees, then excludes anisotropic forms via Section 5.3, and the

proposition is proven.

5.5.3. E6, inner forms

Proposition 5.5.4. — Over k, there are two inner forms of Lie algebras of type E6:

The split one, and one whose Satake-Tits diagram is
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and whose anisotropic kernel is the product of two copies of the anisotropic form of sl3.

The rational root system is of type G2, and a splitting field is the unramified cubic

extension.

Proof. — Below is a list of all possible diagrams, except for the anisotropic one,

which are allowed by 4.3.1 (on the left). Most of them are then directly excluded by

an application of the erasing Lemma 4.3.2: we signify a part of the diagram which,

according to that lemma (that is, after erasing certain white vertices and possibly

restricting to a connected component) would have to be k-admissible, but is not,

according to our discussion of the classical types.

not admissible

of type D5

not admissible

of type A4

not admissible

by 4.3.6

not admissible

of type A4

not admissible

of type A2

not admissible

of type A2

not admissible

of type A2

(see below)

not admissible

of type A4
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not admissible

of type A4

admissible!

not admissible

of type A2

not admissible

of type A2

not admissible

of type A2

admissible!

To exclude the diagram

we note that if it were k-admissible – being given by the Lie algebra g, say – then the

anisotropic kernel ga would be of inner type A5 and thus be the anisotropic form of

sl6. This means that it is split by the unramified extension of degree 6, which is the

composite field of the unramified extensions of degree 3 and 2, call them K and L.

Then (ga)K , being a non-split inner form of type A5 which is split by the unramified

quadratic extension L.K|K, would have Satake-Tits diagram

and consequently the diagram of gK would have to be

which was excluded in the list above.

Let us now describe the non-split admissible form
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It exists by the patching Proposition 4.3.3. Concretely, we patch: Firstly, the admis-

sible form of type A5

and secondly, a product of sl2(k) with two copies of the anisotropic form of sl3:

Both have anisotropic kernel as described and so has their patching. The assertion

about the splitting field is then clear, and the rational root system was calculated in

Section 3.4.1.

We have thus dealt with all possible forms except for anisotropic ones. Kneser’s

and Satake’s table show that there are two inner forms of type E6, so no anisotropic

ones can occur.

Without Kneser’s theorem, we can at least get the following information: assume

g is an anisotropic inner form of type E6, and choose an unramified splitting field of

minimal degree K|k. Again filter the extension as k = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K

such that each Ki+1|Ki is unramified of prime degree. Look at the forms gKi . Now

let 0 ≤ i < n be the first index such that gKi+1 is not anisotropic. By Section 5.3,

gKi+1
cannot be split, thus it has to be the form with diagram

Further, due to minimality and what we know about this form, necessarily n = i+2

and [Kn : Ki+1] = 3. Let us replace k by Ki and call L := Ki+1, then we have a

diagram of fields

K

L

3
~~~~~~~~

F

ℓ
OOOOOOOOOOOOOO

k
3

��������ℓ

OOOOOOOOOOOOOOO

where ℓ := [L : K] is a prime and F is the unramified cubic extension of k. But then,

which form is gF ? Again due to minimality, it cannot be the split form; and again
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due to Section 5.3, it cannot be anisotropic; so it must be the form with the same

diagram as above. Hence, due to minimality, necessarily ℓ = 3 and actually F = L.

So what we would like to rule out is an anisotropic form, split by the unramified

extension of degree 9, whose scalar extension to the intermediate unramified extension

of degree 3 would be the non-split non-anisotropic form mentioned above. Sadly, we

were not able to lead this to a contradiction. (The method we used so far will however

help in cases E7 and D4, see below.)

5.5.4. E7

Proposition 5.5.5. — Over k, there are two forms of Lie algebras of type E7: The

split one, and one whose Satake-Tits diagram is

and whose anisotropic kernel is the product of three copies of the anisotropic form of

sl2. The rational root system is of type F4. A splitting field is the unramified quadratic

extension.

Proof. — As before we rule out other diagrams with at least one white vertex. If the

“lower vertex” α2 is white, the “upper row” has to be a k-admissible diagram of inner

type A6, so the only non-split possibility is:

(*)

To exclude (*), we generalise the method of the erasing Lemma 4.3.2; cf. [PSt, Sec-

tion 5, Lemma 3]. First note the

Lemma. — Let R be an irreducible root system with basis B = {α1, . . . , αr}, and
let α0 be the negative of its highest root. Then for any proper subset B′ ⊊ B, the

intersection of the Z -span of B′ ∪ {α0} with R is a root subsystem R′ of R (in the

vector space it generates) with basis B′ ∪ {α0}.

The proof is straightforward; for the last assertion one uses that the coefficient of

any αj (j ≥ 1) in any root is less or equal to its coefficient in the highest root. The

lemma implies: if one erases a non-empty set of vertices from the completed Dynkin

diagram of R, what remains is a (possibly non-connected) Dynkin diagram of a root

system. One can indeed check this case-by-case in the plates of [Bo2, VI]. Now the

completed Dynkin diagram of type E7 is:

α0
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Assume there were a Lie algebra g over k having (∗) as Satake-Tits diagram for the

usual choices including a Γ-basis ∆. Form the root subsystem R′ as in the lemma

for ∆′ := ∆ \ {α2}. Setting R′ = ρ(R′) \ {0}, with 3.4.2 one checks that this is the

subsystem of R generated by ρ(∆′ ∪ {α0}) \ {0} (which is just {ρ(α0)} in this case)

and that ρ−1(R′ ∪ {0}) = R′. Proceeding then as in the erasing lemma, one would

get a semisimple Lie algebra g′ over k which would be generated by the anisotropic

kernel ga and the root space of ρ(α0), and whose Satake-Tits diagram would be:

α0

This is an impossible form of type A7, so (∗) is excluded (over any field k). Hence

we can assume from now on that the lower vertex α2 is black. Then the “rightmost

vertex”α7 is black, since if not, erasing it gives a non-admissible diagram of type E6.

Case 1. — The “leftmost vertex” α1 is black. If the second to the right vertex α6

were white, on the left of it there would be an admissible form of D5 which looks like

where the gray vertices can be white or black. Comparing with our list there we see

that this is impossible: so α6 is black. The same game for α5 and forms of type A4

shows that α5 must be black, then repeating it for α4 and A2 shows that we are left

with the diagrams

and

The first two (of k-rank 1) are excluded by 4.3.6. The anisotropic one is left aside.

Case 2. — The“leftmost vertex”α1 is white. Then erasing it must give an admissible

diagram of type D6 which looks like
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where the gray vertices are either black or white. Comparing with our list for type D6

we see that the only possibility corresponds to the one named in the proposition:

This exists by the patching Proposition 4.3.3. Concretely, we patch: Firstly, the direct

product of an admissible form of type D5 and the anisotropic form of sl2:

Secondly, the direct product of an admissible form of type A3 and the anisotropic

form of sl2:

Both have a threefold product of the anisotropic form of sl2 as anisotropic kernel and

so has our patched form of type E7. The assertion about the splitting field is clear

and the rational roots are easily computed like in Section 3.4.1.

We have thus dealt with all possible forms except for anisotropic ones. Kneser’s

and Satake’s table show that there are two forms of type E7, so no anisotropic ones

can occur.

We can, however, rule out anisotropic forms without Kneser’s theorem:

Proposition 5.5.6. — There is no anisotropic form of type E7 over k.

Proof. — Assume g were one and choose an unramified splitting field of minimal

degree K|k. Again filter the extension as k = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K such that

each Ki+1|Ki is unramified of prime degree, and let 0 ≤ i < n be the first index such

that gKi+1 is not anisotropic. By Section 5.3, gKi+1 cannot be split, thus it has to be

the form with diagram
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Further, due to minimality and what we know about this form, necessarily n = i+2

and [Kn : Ki+1] = 2. Let us replace k by Ki and call L := Ki+1, then we have a

diagram of fields

K

L

2
~~~~~~~~

F

ℓ
OOOOOOOOOOOOOO

k
2

��������ℓ

OOOOOOOOOOOOOOO

where ℓ := [L : K] is a prime and F is the unramified quadratic extension of k. But

which form is gF then? Again due to minimality, it cannot be the split form; and again

due to Section 5.3, it cannot be anisotropic; so it must be the form with the same

diagram as above. Hence, due to minimality, necessarily ℓ = 2 and actually F = L.

So we have an anisotropic g which is split by the unramified extension of degree 4.

Make the usual choices of t, s, R, . . . , and let σ be a generator of Gal(K|k). Then
the minimal polynomial of σA as element of GL(V ) (where V is the R-vector space

spanned by the root system R) must divide T 3 + T 2 + T + 1 = (T + 1)(T 2 + 1).

Choose an A(R)-invariant scalar product on V . We will now look at the cyclic

R[σA]-module generated by any given root α, which will be of R-dimension 1, 2 or 3.

In each case we will derive a contradiction.

1) If the R[σA]-module generated by α is one-dimensional over R – equivalently,

σA(α) = −α – the space spanned by α and thus also its orthogonal complement ⟨α⟩⊥
are Galois-stable and thus define subalgebras of g which are necessarily anisotropic.

But the roots orthogonal to any given root in E7 form a root system of type D6, and

we know from the discussion of the classical types that no Lie algebra of this type can

be anisotropic. So σA cannot be multiplication by −1 on any root.

2) I the R[σA]-module generated by α is two-dimensional over R – equivalently,

σ2
A(α) = −α – it is readily seen that α and σ(α) must be orthogonal to each other;

in this case, the roots orthogonal to their span form a root system of type A1 ×D4,

and again we know that no anisotropic form of classical type D4 (no triality since

ord(σA) = 4)) exists.

3) So for each root α, the σA-invariant subspace spanned by its σA-conjugates in V

must be 3-dimensional, and the minimal polynomial of σA is indeed T 3 + T 2 + T +1.

Then by corollary 5.3.2, the σA-conjugates of any root α are the basis of a subsystem

of type A3. But the roots orthogonal to such a (Galois-invariant) subsystem in E7

form a (Galois-invariant) subsystem of type A1×A2, which is impossible: one can see

that there is no way in which σA with said minimal polynomial can operate on A1×A2

without stabilising both factors, which would give a 1- and a 2-dimensional Galois-

invariant subsystem, contradicting the above results about their non-existence.
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5.5.5. E8

Proposition 5.5.7. — Every Lie algebra of type E8 over k is split.

Proof. — The root system of type E8 has trivial P (R)/Q(R), so by Kneser’s theorem,

only one form can exist, and this is the split one. Still, our usual procedures allow us

to rule out the other diagrams directly.

Assume first we had a diagram with at least one white vertex. If the “rightmost

vertex”α8 were white, by the classification of E7 the only option for a non-split form

would be

but the segment formed by α7 and α8 is not admissible in type A2. So α8 is black. If

α7 were white, the possibilities (by admissible diagrams of inner type E6) are

which are both excluded e.g. by erasing the “lower vertex” α2. So α7 is black. Now if

the lower vertex α2 were white, the “upper row”would have to be an admissible form

of type A7 ending in two black vertices. This gives the possibilities

and

The first is excluded by erasing α5 and looking at the left part, the second is impossible

by 4.3.6. So α2 is black. If the “third to the right” vertex α6 were white, by the

classification of type D5, the only option is
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which is seen to be impossible by erasing the left white vertex. So α6 is black. If α5

were white, by the classification of type A4 the only option is

which is impossible by 4.3.6. So α5 is black. If the leftmost α1 were white, erasing it

would give a non-admissible form of type D7, so α1 is black. Since by 4.3.6 there is

no form of k-rank 1 left, and

is impossible – as erasing any of the white vertices shows –, we are left with all-black

anisotropic forms.

But since we know now that only anisotropic and split forms can exist, the tech-

nique of reducing to an unramified splitting field of prime extension, which is settled

by Section 5.3, works exactly as in the cases G2 and F4.

5.5.6. D4, trialitarian types

Proposition 5.5.8. — Except for the quasi-split forms described in Section 4.6, no

other Lie algebras of trialitarian type exist over k.

We had already noted in Section 4.3.3 that the diagrams

are not admissible over any field. Assume we had a g with diagram

or

where K := the fixed field of the twisted Galois action would be an extension of k

with Gal(K|k) cyclic of order 3, resp. isomorphic to the symmetric group S3. Then gK
would have the diagram
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– a non-trialitarian form of type D4 – which however is not admissible over p-adic

fields according to the list in Subsection 5.4.4. (5) (That the diagram of gK would be

as described is not as trivial as it might seem; but it follows from Section 4.1 (cf.

Remark 3.4.1) that the anisotropic kernel ga of such g, with diagram

or

would necessarily be the scalar restriction RK|ka of a := the anisotropic K-form of

sl2, and we would have (ga)K ≃ a3. From this one can conclude.)

Now let us rule out all anisotropic forms, whose diagrams would be

(case I) (case II)

or

Case I (Twisted Galois action via Z/3). — Again let K be the fixed field of the

twisted Galois action. Then the diagram for gK contains no arrows and thus gK , due

to our results so far (including the classification of non-trialitarian types), is either

the split form

(case Ia)

5. According to the list in [Tit1], such forms do exist over number fields; correspondingly, the

described diagram of a non-trialitarian form is admissible over number fields.
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or has, up to permutation of the outer vertices, the diagram

(case Ib)

With Galois theory, we will now reduce case Ib to Ia. Namely, gK with this diagram

is split by any quadratic extension L|K; choose one such that Gal(L|k) ≃ Gal(L|K)×
Gal(K|k), i.e. L = K[x] with x2 ∈ k, x /∈ K. Set ℓ := k(x):

L

K

2
~~~~~~~

ℓ

3
NNNNNNNNNNNNNN

k
2

�������3

OOOOOOOOOOOOOO

Then our results so far imply that the Lie algebra gℓ would have diagram

(case Ib.1) (case Ib.2)

or

and have L as a splitting field, with Gal(L|l) ≃ Gal(K|k) ≃ Z/3 being the Galois

group that acts on the diagram. Thus in case Ib.1, gℓ with its cubic splitting field L

is an instance of case Ia. Also:

Lemma 5.5.9. — Case Ib.2 cannot occur.

Proof. — We use the method that allowed us to exclude anisotropic forms in type E7

in Proposition 5.5.6. Namely, we make the usual choices, including a generator σ ∈
Gal(L|k) ≃ Z/6 ≃ Z/2× Z/3. The minimal polynomial of σA ∈ A(R) must divide

T 5 + T 4 + T 3 + T 2 + T + 1 = (T + 1)(T 2 + T + 1)(T 2 − T + 1)

and again we look at the R[σA]-module in V = RX generated by one given root α.

1) If it is one-dimensional over R, the roots orthogonal to it form a root system of

type A1 × A1 × A1, and without loss of generality, we can pick the three orthogonal

roots in that product to be basis roots α1, α3 and α4; whereas the root α we started

with would be −α1−2α2−α3−α4, the negative of the highest root. But using that σA
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is elliptic and of order 6, one concludes that modulo renumbering α1, α3 and α4, σA
would have to map

α1 7−→ −α3 7−→ α4 7−→ −α1 7−→ α3 7−→ −α4

and operate as − id on {±α2,±α1 + α2 + α3 + α4,±α1 + α2 + α3 + α4}. This last

set, however, is a root system of type A2, and the subalgebra of g generated by it

would be anisotropic, but split by the quadratic extension ℓ = Lσ
2=id|k (and also be

an outer form), which is impossible by our classification of type A.

So on no root α, σA operates as − id.

2) Now assume the R[σA]-module generated by a root α is two-dimensional over R.
Considering the minimal polynomial, we must either have

σ2
A(α) + σA(α) + α = 0 or σ2

A(α)− σA(α) + α = 0.

In both cases, α and σA(α) would be the basis of a sub-root-system of type A2; in the

second case however, it is easily seen (similar to Lemma 5.3.1) that σA would be the

rotation by 60◦, which is not an element of the Weyl group, thus again we would find

an anisotropic outer form of type A2 as subalgebra in g, which is impossible. So if the

R[σA]-module spanned by a root α is two-dimensional, we have σ2
A(α)+σA(α)+α = 0.

This means, however, that σ3
A = id on these submodules; so if this would be the case

for all α ∈ R, the whole algebra would be split by the cubic extension K = Lσ
3=id|k,

a contradiction.

So there must be a root α ∈ R such that the R[σA]-module generated by it is of

dimension 3 or 4 as R-vector space.
3) If its dimension is 3, the roots in that subspace must form a sub-root-system of

rank 3. Since we are in type D4, the possibilities for such a sub-root-system would be

(A1)
3 and A3.

(There is no subsystem of type A1 × A2 in a root system of type D4.) In the first

case (which means that we have three orthogonal roots), there is a fourth root in R

orthogonal to all of them, and we are back in the excluded case of a one-dimensional

R[σA]-module. The second case is impossible because an anisotropic form of type A3,

is not split by an extension of degree 6.

4) Remains the case that for every root α, the σA-conjugates of α span the whole

space V . In this case, the minimal polynomial of σA would have to have degree 4,

hence be

(T 2 + T + 1)(T 2 − T + 1) = T 4 + T 2 + 1.

Applying the proof of Lemma 5.3.1 to σ2
A we see that for any root α, α and σ2

A(α) are

a basis of a root system of type A2. Choosing an A(R)-invariant scalar product ⟨. , .⟩
on V and fixing the (unique) root length as ⟨β, β⟩ = 1 for every root β, we have that

⟨α, σA(α)⟩ = ⟨σA(α), σ2
A(α)⟩ ∈ {0,± 1

2}. However, the orthogonal complement of any

sub-root-system of type A2 in D4 contains no roots, so ⟨α, σA(α)⟩ = 0 is excluded.
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But if ⟨α, σA(α)⟩ = 1
2 (i.e. the angle between them is 60◦), one computes (using

⟨α, σ2
A(α)⟩ = − 1

2 )

⟨σA(α)− α− σ2
A(α), σA(α)− α− σ2

A(α)⟩ = 0

hence σA(α) = α + σ2
A(α). With a similar computation for σ3

A(α), one sees that

the σ-conjugates of α remain in a two-dimensional subspace, in contradiction to our

assumption. Analogously, if ⟨α, σA(α)⟩ = − 1
2 (i.e., the angle is 120◦), we have

⟨σA(α) + α+ σ2
A(α), σA(α) + α+ σ2

A(α)⟩ = 0,

hence σA(α) = −α− σ2
A(α), and again one arrives at a contradiction.

The upshot of all this is:

Corollary 5.5.10. — If, over every p-adic field, there is no anisotropic form with

diagram

and split by the cubic fixed field of the twisted Galois action (case Ia above), then there

is no anisotropic form with that diagram over any p-adic field at all.

Case II (Twisted Galois action via S3)

We can reduce this case to the same case I.a above, showing

Proposition 5.5.11. — If, over every p-adic field, there is no anisotropic form with

diagram

and split by the cubic fixed field of the twisted Galois action (case Ia above), then there

is no anisotropic form of type D4 over any p-adic field at all.

Proof. — We have to rule out diagrams
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where the Galois group operates via all of the symmetric group S3. Assume a form g

over a p-adic field k with such a diagram given. Let K be the fixed field of the twisted

Galois action, so that Gal(K|k) ≃ S3, and let F be the fixed field of the alternating

subgroup A3, so that F |k is the unique quadratic subextension of K|k:
K

F

A3 ≃ Z/3

k

2

In the diagram of gF , the twisted Galois action operates via A3 ≃ Z/3, so it is

or

The first case is excluded by our assumption and the last corollary. So we are in

the second case. Then K is a splitting field for g. As usual, choose t, s, R, . . . and an

A(R)-invariant scalar product on V , the vector space around the root system. Let τ

be a 3-cycle and σ a transposition in S3. Note that due to anisotropy (X = X0 = Xa),

we have

v + τA(v) + τ2A(v) + σA(v) + σAτA(v) + σAτ
2
A(v) = 0

for all v ∈ V , in particular there is no v ̸= 0 fixed by both τA and σA. We look at the

R[S3]-modules generated by a root α (and what we just said amounts to: this module

is not allowed to contain the trivial representation).

1) If one such module is one-dimensional over R, τA operates trivially and σA as

− id on it (in the language of S3-representations, it is the sign representation). The

roots in its orthogonal complement are a system of type (A1)
3, and τA must permute

the factors in this triple cyclically. If σA operated trivially on that triple, then for v ̸= 0

in it, v + τA(v) + τ2A(v) ̸= 0 would be a vector fixed by all S3, which is impossible.
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One easily sees (using that στσ = τ2 which excludes σA = − id on the triple) that

choosing any root β in the triple, with

β1 := β, β2 := τA(β), β3 = τ2A(β),

σA must fix one βi and σA(βj) = −βk for the other two indices j, k ̸= i. The Lie

subalgebra of g generated by the root spaces of this (A1)
3 thus has the full S3 ≃

Gal(K|k) operating on it, and its diagram is

It follows from Section 4.1 (cf. remark 3.4.1) that this Lie algebra is the scalar restric-

tion RK|ka of a := the anisotropic K-form of sl2. In particular, it would become a3

after scalar extension to K, hence not be split by K, contradicting our assumption.

2) By the representation theory of S3, a two-dimensional module must be the so-

called standard representation. The roots in it would be a subsystem of type A2,

with τA operating as rotation by 120◦ in one direction, and σA operating as a re-

flection sβ associated with one of the contained roots β (i.e. S3 operates as the full

Weyl group W (A2)). However, the relations between the roots in a system of type D4

make it impossible to define actions of τA and σA on all of V consistently. (Any root

outside our subsystem of type A2 will be non-orthogonal to several roots inside it;

and all these angles will have to be held invariant under the operations of σA and τA,

often already prescribing how these elements will act on the roots; going through the

calculations, one always reaches a contradiction.)

3) If the R[S3]-module generated by a root α is three-dimensional, the root system

in it must be of rank 3, so of type (A1)
3 or A3 (there is no subsystem of type A2×A1

in D4). The first case leads, via orthogonal complement, back to a one-dimensional

module already excluded; whereas the anisotropic subalgebra corresponding to a root

system of type A3 would not be split by an extension of degree 6.

4) According to the representation theory of S3, there is no cyclic R[S3]-module of

R-dimension > 3 without containing the trivial representation.

Remark 5.5.12. — For the quasi-split trialitarian types, it remains to add to the

description in 4.6 which Galois extensions K|k with Gal(K|k) isomorphic to Z/3 or S3

exist for a p-adic field k.

i. Cubic extensions of k are either unramified or totally ramified. The unique un-

ramified one is Galois. The ramified ones are given (not one-to-one) by Eisenstein
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polynomials X3 + aX2 + bX + c ∈ Ok[X] where a, b, c are divisible by πk, and

π2
k ∤ c. Its discriminant is ∆ = a2b2 − 4b3 − 4a3c− 27c2 + 18abc, and it is known

that the corresponding extension is Galois if and only if ∆ ∈ k∗2.
If p ̸= 3, this can be arranged if and only if k contains a primitive third root

of unity; equivalently 3 | q − 1, where q is the order of the residue field of k; or

equivalently, −3 ∈ k∗2. In this case, the Z/3-extensions are in obvious bijection

with the subgroups of k∗/(k∗)3 of order 3; in particular k( 3
√
πk) is a ramified

Galois cubic extension of k.

ii. An extension K|k with Gal(K|k) ∼= S3 is the Galois closure of any of its three

subextensions L|k with [L : k] = 3, which are not Galois; and conversely, any non-

Galois cubic extension L|k has such a K|k as normal closure. As noted in part i.,

a non-Galois cubic L|k is given by an Eisenstein polynomial of degree 3 whose

discriminant ∆ is not a square in k. We then have K = L(
√
∆), and the inertia

degree f(K|k) is 1 or 2, according to whether f(k(
√
∆)|k) is 1 or 2, i.e. whether

vk(∆) is odd or even. As Weisfeiler’s table claims, both cases can occur: if k does

not contain a primitive third root of unity, the splitting field K of X3 − πk is an

example, for which f(K|k) = 2 if p ̸= 3 and f(K|k) = 1 if k = Q3.

5.5.7. E6, outer forms

Proposition 5.5.13. — The only outer forms of type E6 over k are the quasi-split

ones which we described in Section 4.6 as being in bijection with k∗/k∗2.

As noted in Section 5.2, the cohomological approach shows that the outer forms of

type E6 are quasi-split. But we can do this without Kneser’s theorem. First, we rule

out other diagrams with white vertices. If the “lower vertex” α2 is white, erasing it

must give an admissible diagram of outer type A5 with at least one black vertex, so

the whole diagram is

But then erasing the two proper orbits leaves a non-admissible diagram of type A2.

So α2 is black. Now the same reasoning rules out

and
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Erasing the outer proper orbit in

and comparing with the classification of type D4 shows that these diagrams are not

k-admissible. Neither is

as can be seen, for example, by the generalised erasing method with which we excluded

the diagram (*) of type E7 in 5.5.5: The completed Dynkin diagram for E6 is

α0

and erasing the upper middle vertex in the diagram in question leaves a connected

component

α0

which does not occur in type A2 over any field.

Invoking 4.3.1 and 4.3.6 we see that the all-black anisotropic form is the only

possibility left. So the proposition is reduced to the following one, which we can prove

with our methods (although, to be fair, relying on the non-existence of anisotropic

inner forms of type E6):

Proposition 5.5.14. — There is no anisotropic outer form of type E6 over k.
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Proof. — Assume there is one, and let K be the quadratic extension of k which is

the fixed field of the twisted action. gK is an inner form of type E6, hence by their

classification either the split one

or the one with diagram:

In the first case, gK split, we choose t, s, R . . . and a generator σ ∈ Gal(K|k) as

usual and see that σA = − id, hence any given root α ∈ R is part of a Galois-stable A1

(namely, ±α); but the roots orthogonal to α (with respect to an A(R)-invariant scalar

product) form a root system of type A5 and are again stable under σA, giving rise to an

anisotropic subalgebra of type A5 which is split by a quadratic extension, contradicting

what we know about type A.

So gK must be the non-split form with the diagram above, which is split by any

extension L|K of degree 3. Choose one such that Gal(L|k) ≃ Z/6 ≃ Z/2 × Z/3 (the

unramified extension would do).

Again we choose t, s, R, . . . , a generator σ ∈ Gal(L|k), and an A(R)-invariant

scalar product on V . We know that σA ∈ GL(V ) is of order 6 and operates without

eigenvalue 1, so its minimal polynomial has to be a divisor of

T 5 + T 4 + T 3 + T 2 + T + 1 = (T + 1)(T 2 + T + 1)(T 2 − T + 1)

and we look at the cyclic R[σA]-modules generated by roots, case by case arriving at a

contradiction:

1) Not all those modules can be of R-dimension 1, since that would imply σA = − id.

2) If there was a two-dimensional one, the roots contained in it would be a system

either of type A1 ×A1 or of type A2.

In the first case, one easily sees σ2
A(α) is either α or −α. If it is α, α + σA(α) is

fixed by σA, hence 0, so σA = − id and the module is not two-dimensional; if it is −α,
we have σ2

A = − id and σA has ±
√
−1 as eigenvalues over an algebraic closure, in

contradiction to what we know about the minimal polynomial.

In the second case, on our two-dimensional module, σA has minimal polynomial

T 2+T +1, i.e. operates by rotating the roots by 120◦. (If it were T 2−T +1, σA would

rotate by 60◦ and we would have an outer form, which cannot be anisotropic.) The

roots orthogonal to any system of type A2 in E6 form a system of type A2×A2, Galois-

stable in our case. If each factor in this pair were Galois-stable, again σA would have

minimal polynomial T 2 + T + 1 on both of them, hence on all V , which is impossible
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since it is of order 6. So σA has to “switch” the factors. Actually, choose any β in that

A2 ×A2; then we can already name the roots conveniently, so that σA maps

α1 := β 7−→ α6 := σA(β) 7−→ α3 := σ2
A(β)

7−→ α5 := σ3
A(β) 7−→ −α1 − α3 7−→ −α5 − α6 7−→ α1

and

α0 := α 7−→ α2 := σA(α) 7−→ −α2 − α0

in the diagram

α0

α2

α1 α3 α5 α6

This diagram is related to a basis of the whole root system by dropping α0 and

introducing a root α4 with the relation

α0 = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6.

But this relation forces σA to send the root α4 to −α2 − α3 − 2α5 − α6, which is not

a root, contradicting σA(R) = R.

3) A three-dimensional module generated by a root would contain a root system

of rank 3 corresponding to an anisotropic form. Type A1 × A2 is excluded by easy

combinatorics; type A3 would not be split by our field extension of degree 6. Remains

the case A1 ×A1 ×A1. Orthogonal to such a subsystem in E6 would be a fourth A1,

stable under σA and hence with σA = − id on it. On our three-dimensional A1×A1×
A1, one readily sees that σ3

A = ± id, and“+” is impossible since otherwise for any root

in there, α+σ(α)+σ2(α) ̸= 0 would be fixed by σ. We name basis roots conveniently

so that σA maps

α1 7→ −α0 7→ α6 7→ −α1 7→ α0 7→ −α6

and

α4 7→ −α4

in the diagram
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α0

α1 α4 α6

Now those roots can be amended by roots α3, α5 and α2 uniquely determined by being

at angle 120◦ to both α1 and α4 (resp. α4 and α6, resp. α4 and α0), so that α1, . . . , α6

are again a basis of R and α0 is the negative of the highest root in that basis. One

checks that this forces σA to act on them as follows:

α3 7−→ −α2 7−→ α5 7−→ −α3 7−→ α2 7−→ −α5

so that, like in the case D4 (and indeed we have a subsystem of type D4 here with

basis α2, . . . , α5), we find that σA operates as − id on the subsystem consisting of

{±α4,±(α2 + α3 + α4 + α5),±(α2 + α3 + 2α4 + α5)}

This subsystem is of type A2 and would give rise to an anisotropic form of this type,

but an outer form (since − id /∈W (A2)), which does not exist. Contradiction.

4) On a four-dimensional cyclic module, σA would have to operate with minimal

polynomial

(T 2 + T + 1)(T 2 − T + 1) = T 4 + T 2 + 1.

Exactly as in the case D4 (see step 4 in the proof of Lemma 5.5.9) one shows that α

and σ2
A(α) form a basis of a sub-root-system of type A2; if σA(α) was not orthogonal

to α, one would arrive at a contradiction (the module would have R-dimension 2)

like there. So necessarily σA(α), σ
3
A(α) are the basis of a root system of type A2

orthogonal to the other one, so the roots in our module are a system of type A2×A2.

But orthogonal to this, and Galois-stable, is another subsystem of type A2, and we

are back in the case we ruled out in step 2:

α σ2
A(α) σ3

A(α) σA(α)

5) A five-dimensional module generated by a root would contain a root system of

rank 5 corresponding to an anisotropic form. According to our classification of the

classical types, there is no anisotropic form of type D5. A subsystem of type D4×A1

does not exist in R, all other sub-root systems of rank 5 would be products of some An
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with the n’s adding up to 5. Except for A5, all of these are easily ruled out by basic

combinatorics, or reduced to cases already treated; remark also that there are now 5

mutually orthogonal roots in R, hence no subsystem of type (A1)
5.

As for the case A5, the orthogonal complement of such a sub-root-system is a

Galois-invariant subsystem of type A1 on which σA = − id; name one of its roots α0.

On the A5 factor, being anisotropic and split by our degree 6 extension, by corol-

lary 5.3.2 we can name the basis roots α1, α3, . . . , α6 so that σA maps

α1 7−→ α3 7−→ α4 7−→ α5 7−→ α6 7−→ −α1 − α3 − α4 − α5 − α6.

The diagram to look at here is

α0

α1 α3 α4 α5 α6

and again we can switch to a basis of our original R by dropping α0 and introducing

α2 subject to

α0 = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6.

With this one computes that σA maps

α2 7→ −α2 − α3 − 2α4 − 2α5 − α6 7→ α1 + α2 + 2α3 + 2α4 + α5 7→ −α2

so that the R[σA]-module generated by α2 is of R-dimension 2 and thus already shown

to be impossible: It would be an outer form of type A2 again.

6) Since the degree of the minimal polynomial of σA is ≤ 5, no cyclic R[σA]-module

of R-dimension ≥ 6 exists.
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CHAPTER 6

CONCLUDING REMARKS

6.1. The field k = R

As noted in the introduction, already E. Cartan had classified the semisimple Lie

algebras over R, and the theory of real Lie algebras is strongly connected to that of

real Lie groups. A comprehensive treatment is [Hel]. For Lie algebras, [OVi, Chap-

ter 5] uses methods close to ours, including split toral (“diagonalizable”) subalgebras,

rational root systems and Satake-Tits diagrams, and combines them with classical

“real” methods, namely the Cartan involution and Cartan decomposition.

Araki’s paper [Ara] uses only a few basic lemmata – some of which, however, are

peculiar to R or at least real closed fields – and then goes through all possible Satake-

Tits diagrams with lots of combinatorial reasoning. A very streamlined version of this

is M. Sugiura’s appendix to [Sat3], where much is built on Cartan’s theorem quoted

in 5.2.5 that for every type there exists a unique anisotropic (“compact”) real form.

With the notation of Section 4.2.1, this compact real form corresponds to the cocycle

given by aσ ↔ (− id, (−1)α∈∆) where of course σ is the complex conjugation. The

twisted Galois action t(σ) on this compact form is always given by the opposition

involution from Section 4.3.1, so that the compact forms are outer forms for the types

An (n ≥ 2), Dn (n odd) and E6, and inner forms for all other types. (The parity

distinction for type Dn was visible in the proof of 4.5.15.)

For comprehensive lists of Satake-Tits diagrams, rational root systems and the

connection to Cartan’s labelling of the forms, see [OVi, Table 9] and [Oni, Table 5].

6.2. k-rational approaches (Allison, Seligman)

Let k be a field with char(k) = 0. Allison’s paper [All] proposes an isomorphism

theorem for central simple (= absolutely simple, see Section 4.1) Lie algebras which

is “k-rational” in the sense that both its statement and proof do not make use of

scalar extension. It starts from maximal split toral subalgebras s (called T there)
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and corresponding k-rational root systems R, like in our Section 3.1.1. The precise

statement of the criterion for isomorphism of two such Lie algebras (g, s) and (g′, s′)

is a little technical, but it can be summarised as

▷ an isomorphism (zg(s), s)
≃−→ (zg′(s′), s′), which induces an isomorphism of the

rational root systems R ≃ R′, which further

▷ is compatible with some extra structures corresponding to the k-rational Weyl

groups, and

▷ for “very few” roots α ∈ R and corresponding α′ ∈ R′, an isomorphism of the

root spaces, compatible with everything above.

“Very few” here means that only one root for every root length in R has to be

taken, and so “very few” has cardinality 1 if R is of type A,D or E, cardinality 3 if R

is of type BCn with n ≥ 2, and cardinality 2 in all other cases.

Note that isomorphism of the anisotropic kernels is included in the first point. The

compatibility with the Weyl group structure allows the reduction to few root spaces,

since the roots are permuted by the Weyl group.

Along the way, some interesting results on Lie algebras are achieved via their

rational root systems. For example [All, Cor. 6.6] says that an absolutely simple g

with rational root system R of type D or E is automatically split (i.e. R = R); one

can indeed check directly that our method from Section 3.4.1 can never produce a

root system of these types (except in the split case). The“rational”method uses much

more calculation with ideals and subalgebras. See Seligman’s [Sel2] and [Sel3] for an

extensive version of this approach.

6.3. Explicit constructions for exceptional types

Besides the connection of the classical types to certain associative algebras like

we have presented it, there are similar constructions for the exceptional types. One

highlight is “Freudenthal’s magic square” which in a way gives a construction for all

exceptional types at once; except for Freudenthal’s works, see e.g. [Tit2] and [Vin].

In [GPe], the Satake-Tits diagrams for some forms of type E6 in this construction

are computed.

We mention one recent invention: In [Inv, X], the authors construct trialitarian

algebras which produce the trialitarian types of our Lie algebras. The idea is close

in spirit to the construction for the classical types. Like it was necessary there, in

the type AII, to allow as underlying objects pairs of associative algebras (which were

“linked”by a switching involution), here one has triples of algebras which are linked by

an extra structure. This allows to catch the extra operation of the symmetric group S3

and gives further insights into phenomena like the one mentioned in 4.5.20.ii and 5.4.7:

Here it turns out that each of the algebras (M4(Q), ι1) and (M8(k), ι2) is a factor of

the Clifford algebra of the other.
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We study semisimple Lie algebras over fields of characteristic zero, with em-
phasis on p-adic fields and aiming at classification. We first transfer parts of the
structure theory of reductive algebraic groups to our setting, with some vari-
ations. Classifying invariants are attached to Lie algebras and visualised with
Satake-Tits diagrams. We give necessary and sufficient criteria for these dia-
grams. Over general fields of characteristic zero, we then classify all quasi-split
forms, and we adapt an older classification theory for the classical types A-D
to our language. Finally we focus on p-adic fields, where we achieve a complete
classification by combination of certain well-known properties of these fields
with our general results and methods, and we discuss the relation of this with
a theorem of Kneser. This extends work by Weisfeiler.

Nous étudions les algèbres de Lie semi-simples sur les corps de caractéristique
nulle, où l’accent est mis sur les corps p-adiques, l’objectif étant leur classifi-
cation. Nous transférons d’abord certaines parties de la théorie de la structure
des groupes réductifs dans notre contexte, avec quelques variations. Des inva-
riants classifiants sont attachés aux algèbres de Lie et sont visualisés à l’aide
de diagrammes de Satake-Tits. Nous donnons des critères nécessaires et suf-
fisants pour ces diagrammes. Sur les corps généraux de caractéristique nulle,
nous classifions ensuite toutes les formes quasi-déployées et nous traduisons
une théorie ancienne de classification pour les types classiques A-D dans notre
langue. Nous mettons enfin l’accent sur les corps p-adiques, où nous obte-
nons une classification complète par combinaison de certaines propriétés bien
connues sur ces corps avec nos résultats généraux et nos méthodes, et nous
abordons la relation de ces résultats avec un théorème de Kneser. Tout cela
prolonge un travail de Weisfeiler.


