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DIOPHANTINE APPLICATIONS OF GEOMETRIC
INVARIANT THEORY

Marco MACULAN

Abstract. --- This text consists of two parts. In the first one we present a proof of
Thue-Siegel-Roth’s Theorem (and its more recent variants, such as those of Lang for
number fields and that “with moving targets” of Vojta) as an application of Geometric
Invariant Theory (GIT). Roth’s Theorem is deduced from a general formula comparing
the height of a semi-stable point and the height of its projection on the GIT quotient.
In this setting, the role of the zero estimates appearing in the classical proof is played
by the geometric semi-stability of the point to which we apply the formula.

In the second part we study heights on GIT quotients. We generalise Burnol’s
construction of the height and refine diverse lower bounds of the height of semi-stable
points established to Bost, Zhang, Gasbarri and Chen. The proof of Burnol’s formula
is based on a non-archimedean version of Kempf-Ness theory (in the framework of
Berkovich analytic spaces) which completes the former work of Burnol.

Résumé (Applications diophantiennes de la théorie géométrique des invariants)

Ce texte est constitué de deux parties. Dans la premiéere nous présentons une preuve
du théoréme de Thue-Siegel-Roth (et des variantes plus récentes, comme celle de Lang
pour le corps de nombres et celle with moving targets de Vojta) basée sur la théorie
géométrique des invariants (GIT). Le théoréme de Roth est déduit d’une formule
reliant la hauteur d’un point semi-stable et la hauteur de sa projection dans le quotient
GIT. Dans ce cadre, le role du « lemme des zéros » présent dans la preuve classique
est joué par la semi-stabilité géométrique du point auquel on applique la formule.

Dans la deuxiéme partie nous étudions la hauteur sur les quotients GIT. Nous
généralisons la construction de Burnol de cette hauteur et nous améliorons plusieurs
minorations de la hauteur de point semi-stables précédemment établies par Bost,
Zhang Gasbarri et Chen. La preuve de la formule de Burnol porte sur une version
non-archimédienne de la théorie de Kempf-Ness (dans le langage de la géométrie
analytique de Berkovich), qui compléte le travail antérieur de Burnol.
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INTRODUCTION

In its original form, Roth’s Theorem states that given a real algebraic number a € R
which is not rational and a real number x > 2, there exist only finitely many rational num-
bers p/q € Q such that

- 2| <

1
q |*

lq
where p, g are coprime integers.

The general strategy to prove Roth’s Theorem stems back to the work of Thue. The main
ingredient is the construction of an “auxiliary” polynomial f in several variables which
vanishes at high order at («, . .., a): the crucial step is to prove that it does not vanish too
much at rational points which “approximate” (e, . .., a).

The original argument of Roth (generalizing those of Thue, Siegel and Gel’fond) involves
arithmetic considerations about the height of the rational approximations. On the other
hand, in the work of Dyson — who proved an earlier version of Roth’s Theorem — the
non-vanishing result (usually called “Dyson’s Lemma”) takes place over the complex num-
bers: being free from arithmetic constraints, it is said to be of geometric nature. The task
to generalize Dyson’s Lemma from 2 to several variables was accomplished by Esnault-
Viehweg [28]; afterwards Nakamaye [50] was able to give a proof of it relying on a variant
of Faltings’ Product Theorem and “elementary” concepts of intersection theory.

The advantage of having a geometric proof of Dyson’s Lemma was exploited by Bombieri
in the remarkable paper [7]: he showed that these methods lead to new effective results in
diophantine approximation available before only through the linear forms of logarithms of
Baker.

Using an arithmetic variant of the Product Theorem, Faltings and Wiistholz [30] gave a
new proof of Schmidt’s Subspace Theorem, sensibly different from the original one. Their
Zero Lemma, as in Roth and Schmidt, is of arithmetic nature. Their proof involves a notion
of semi-stability for filtered vector spaces (see also [29]). The role played by semi-stability
is anyway rather different from the one in the present paper: here it collects all the geomet-
ric informations coming from Dyson’s Lemma (hence from the Product Theorem); in their
paper it represents a combinatorial assumption that permits to perform an inductive step
based on the Product Theorem.

Inspired by work of Osgood [53] and Steinmetz [65] Vojta proved in [69] a generalised
version of Roth’s Theorem — called “with moving targets” — where the algebraic point can
vary along with the rational approximations. Its proof is based on the use of Schmidt’s
Subspace Theorem. However it has been noticed by Bombieri and Gubler [8, Theorem 6.5.2
and §6.6] that the techniques employed to prove Roth’s Theorem suffice to prove the version
“with moving targets” without recurring to Schmidt’s Subspace Theorem.
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The study of the interplay between Geometric Invariant Theory and height functions (in
the context of Arakelov geometry) has started more than twenty years ago with the work
of several authors.

Burnol [20] defined a height function on the GIT quotient of a projective space by a
reductive group and he expressed it in terms as the sum of the height on the projective
space and of local error terms.

Bost [12], [13], Zhang [75] and Soulé [64] proved several lower bounds on the height of
semi-stable points (in some explicit representations) and used them to give lower bounds
on the height of semi-stable varieties (e.g. semi-stable curves, abelian varieties...).

Gasbarri [32] was able to free the arguments of Bost and Zhang from the constraint of
knowing explicitly the representation of GL,,. Chen [22] proved an explicit variant of this
type of lower bounds and used it — inspired by work of Ramanan-Ramanathan [56] and
Totaro [67] — to study the semi-stability of the tensor product of hermitian vector bundles
over a ring of integers.

In the first chapter of this text, we show how a simple version of this general lower
bound on the height of (geometrically) semi-stable point leads to a general lower bound on
the height of suitable families of points (x1, . . .,x,) and (ai, . . ., a,) in P*(K)" and P*(K’)"
respectively to the diverse v-adic distances (where K is a number field and K is an extension
of degree > 2). This lower bound, which constitutes the main result of the present note, has
been established in the case n = 2 by Bombieri [7, Theorem 2], is effective and implies the
version of Roth’s Theorem we present here.

Let us discuss briefly the content of the chapters. For the precise statement of the results
we refer the reader to the first section of each chapter.

In Chapter 1 we introduce the basic tools of Geometric Invariant Theory that are needed
in order to deduce Roth’s Theorem. The results expounded in this chapter will be refined in
Chapter 4, but we preferred to give a succinct and self-containted account for the reader in-
terested to the proof of Roth’s Theorem in Chapter 2. It may also serve the reader interested
in Chapters 3 and 4 as an introduction to the results to be improved.

In Chapter 2 we prove Roth’s Theorem (along with some more recent variants) as a con-
sequence of the Fundamental Formula in Chapter 2 (applied to a suitably chosen “moduli
problem”).

In Chapter 3 we investigate a variant of the results of Kempf-Ness [46] for complex and
non-archimedean geometry.

In Chapter 4 we study deeply the height on the quotient and prove (some of) the desired
refinements of the results of Chapter 1.

An effort has been made in order to keep the different chapters independent one from the
other. In Chapter 2 the only references to Chapter 1 are in section 2.3, while in Chapter 4
the needed facts from Chapter 3 are recalled in section 1. We invite to read the chapters
separately.

SOCIETE MATHEMATIQUE DE FRANCE 2017



8 CONTENTS

Acknowledgements

The material expounded in this article is part of my doctoral thesis supervised J.-B. Bost. It
is a pleasure for me to thank him for his guidance and his steady encouragement. During the
preparation of the present article I have been stimulated by discussions with several people:
I warmly thank A. Chambert-Loir, A. Ducros, C. Gasbarri, M. Nakamaye and A. Thuillier.
Finally, I want to sincerely thank the referees for their careful reading and the series of
remarks that sensibly improved the quality of the present paper.

MEMOIRES DE LA SMF 152



CONVENTIONS

Here is a list of conventions and definitions that are used throughout the text.

1. — For aring A and a positive integer n, let
A™ .= Homyu (A", A).
The projective line P} over the ring A is the A-scheme
P = Proj(Sym A*").
Rather generally, if M is an A-module of finite type, then M"Y = Homy4 (M, A) and
P(M) := Proj(SymM").

2. — Let Abe aring, M be an A-module and n be a negative integer. Set
M®" .= MY®™" = Homu (M, A)®".

3. Hermitian Norms. — Let E, F be finite dimensional complex vector spaces equipped
respectively with hermitian norms ||.||g, ||.||r and associated hermitian forms (., .)g, (., .)F.
Let r be a non-negative integer.

> On the tensor power E Q¢ F let ||.||ggr be the norm associated to the hermitian form
(VO W, 0" @ W )per == (v,0)g - (W, w')p
where v,v’ € Eand w,w’ € F.

> On the r-th symmetric power Sym" E let |[|.||sym £ be the quotient norm with respect
to the canonical surjection E®” — Sym"E. If ey,...,e, denotes an orthonormal basis
of E, where n = dimc E, for every n-uple of non-negative integers (r1,...,r,) such that

4t r=r
L -1/2 rl -1/2
ey - epllsymr e = (.. =(—)
1 n 1oy Fisy...5n 7’1' rn!

This norm is hermitian and it is sub-multiplicative in the following sense: if f € Sym” E and
g € Sym® E, then

£ 9llsymr+s £ < 1 f llsym” £l - gllsym* E-
Let us also mention that the norm ||.||sym~ £ is bigger than the sup-norm on the unit ball: for

f € Sym"E,
|f ()]
Ifllsup :== sup ——— <
e

”f”Symr E-

> On the r-th external power A" E let ||.|| 1~ g be the norm associated to the hermitian

form
(VI A Avp, Wi A Awpdprp =det (o, wip ii,j=1,...,r)

where v1,...,v, and wy, ..., w, are elements of E.
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With this notation Hadamard inequality ! reads:

,
(1) lor A Aopllare < | [ lloile.
i=1

The hermitian norm ||.|| o g is not the quotient norm with respect to the canonical surjection
E®" — AT E, but it is Vr! times the quotient norm (see [22, Lemma 4.1]).

> For every linear homomorphism ¢: E — F write ¢ for the adjoint homomorphism
(with respect to the hermitian norms ||.|[g and ||.||r). On the vector space Homg¢(E, F) let
II-llttom(E, F) be the hermitian norm associated to the hermitian form

«07 (p)Hom(E,F) = Tl‘(q) © W)

where ¢, € Hom¢(E, F). If ey, . . ., e, is an orthonormal basis of E,

I lltom(z.y = llo(en)lIZ + -+ (e II2-

With these conventions the isomorphism E¥ ®c F — Homg (E, F) is isometric.

4. Non-archimedean norms. — Let K be a field complete with respect to a non-
archimedean absolute value and let o be its ring of integers. In order to do some com-
putations it is convenient to interpret o-modules as K-vector spaces endowed with
a non-archimedean norm. More precisely, for every torsion free n-module € denote
by E := € ®, K its generic fiber and consider the following norm: for every v € E set

[vll¢ :=inf{|A] : 1 € K*,v/A € €}.

The norm ||.||¢ is non-archimedean and its construction is compatible with operations on o-
modules: for instance, if ¢: € — F is an injective homomorphism with flat cokernel (resp.
surjective homomorphism) between torsion free o-modules then the norm ||.||¢ induced on
E := €®,K (resp. the norm ||.|| & induced on F := F®,K) is the restriction of the norm ||.|| &
on F (resp. is the quotient norm deduced from ||.||¢ and ¢, that is, the norm defined by
wr— inf |v|l¢
p(v)=w

for every element w of F.)

For a non-negative integer r > 0, the norm on symmetric powers Sym” € (resp. on
exterior powers /\” €) is the norm deduced by the one on the r-th tensor power €®" through
the canonical surjection €®" — Sym” € (resp. €% — A" 6). In particular, it is sub-
multiplicative (resp. Hadamard inequality holds).

5. Normalisation of places. — For a number field K let ok be its ring of integers and Vg
its the set of its places. If v is a place of K, let K, be the completion of K with respect to v
and C,, the completion of an algebraic closure of K, (with respect the unique absolute value
extending v). A non-archimedean place v extending a p-adic one is normalized by

[plo = p7toiel.

1. This inequality is Hadamard’s bound of the volume of a basis of a Euclidean space and not Hermite-
Hadamard’s inequality concerning convex functions.

MEMOIRES DE LA SMF 152
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6. Hermitian vector bundles and Arakelov degree. — Let K be a number field, ok its
ring of integers and Vi its set of places. An hermitian vector bundle € is the data of a flat
og-module of finite type € and, for every complex embedding o: K — C, an hermitian
norm ||.||%,- on the complex vector space €, := € ®, C. These hermitian norms are
supposed to be compatible to complex conjugation. For a place v € Vi let ||.||¢,» be the
norm induced on the K, -vector space €, := € ®,, K.

If % F are hermitian vector bundles over 0, a homomorphism of hermitian vector
bundles ¢: € — F is a homomorphism of ox-modules such that, for every embedding
o: K — C, it decreases the norms: that is, for every v € € ®, C,

le(@)llg.0 < lvlle.o-

If & is an hermitian line bundle, that is an hermitian vector bundle of rank 1, its degree is

deg(Z) :=log#(%/s%) - ) loglslis,o

o: K—C
= - > logllsllz,e = ) [Ko : R]logllsllz,o-
vEVK vEVK
finite infinite

where s € & is non-zero. It appears from the second expression that this, according to the
Product Formula, does not depend on the chosen section s. For a non-zero hermitian vector
bundle € one defines

> its degree: deg € := E%(Nk* 8):

= deg(€
> its slope: ©(€) := ilgf% );
> its maximal slope: i, (€) := sup H(F),

0#£FCé€
where the supremum is taken on all non-zero sub-modules & of € endowed with the

restriction of the hermitian metric on 8.

ProrosITION (Slopes inequality, [14]). — Let %, F be og -hermitian vector bundles and let
@ 8 ®y K = F ®y K be an injective homomorphism of K-vector spaces. Then,

A(8) < s (F) + D Togllollaup,or

v
where, for every placev € Vi, veVk

[EOIESY

llell sup, o :=
e 0#£s€y, ”s”%,v

SOCIETE MATHEMATIQUE DE FRANCE 2017
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7. Height function with respect to a hermitian line bundle. — Let K be a number
field, ok its ring of integers and X a projective flat g -scheme.

> A hermitian line bundle

< = (g’{”'”iﬂa}o‘: K—)C)

is the data of a line bundle £ on X and, for o: K — C, a continuous metric ||.||¢, » on
the complex line bundle £y (). The data {||.||#,o}o: k—c is supposed compatible with
complex conjugation.

Let K’ be a finite extension of K, ok its ring of integers and P a K’-point of L. By the
valuative criterion of properness, the point P induces a morphism of og-schemes

ep: Specogr — X.

The invertible og/-module ¢, is endowed with norms deduced from the metric on &£: the
associated hermitian line bundle on vk is denoted e, &.

> The height of P with respect to & is

1 — .=
More concretely, if s € HO(X, %) is a global section not vanishing at P,
K’ : Klh (P) = log#(ep£ /s(P)ep) — > logllsllz,o (P).
o: K—C
The real number hg (P) does not depend on the chosen K’, thus one has a well-defined
function

hs: L(Q) — R
called the height function with respect to & .

MEMOIRES DE LA SMF 152



CHAPTER 1

GEOMETRIC INVARIANT THEORY AND
ARAKELOV GEOMETRY: BASIC RESULTS

In this chapter we introduce the main tool of Geometric Invariant Theory (the Funda-
mental Formula, see Theorem 1.6) that we shall apply in Chapter 2 to a specific “moduli
problem” in order to get the Roth’s Theorem: it is a formula relating the height of a semi-
stable point with the height of its projection on the GIT quotient. In this general framework
we also state and prove a lower bound of the height on the quotient (see Theorem 2.1).

Even though these results will be sharpen in Chapter 4 through some more powerful
techniques, we present them here in a very basic form: this will permit to prove them in a
very elementary way. We hope that this will help the reader willing to proceed straight to
the proof of Roth’s Theorem expounded in Chapter 2.

1. The Fundamental Formula

Let K be a number field and o its ring of integers.

1.1. — Let X be a projective and flat og-scheme endowed with the action of an og-reductive
group ! € and let &£ be a very ample G-linearized invertible sheaf on X. The global sec-
tions € = I'(X, <) are endowed with a linear action of €. Thus the reductive group €
acts on P(€") and the invertible sheaf Ogv(1) is €-linearized. The closed embedding
j: X = P(8Y) and the isomorphism j*Ogv (1) =~ £ are §-equivariant.

1. Over an algebraically closed field k an algebraic group G — i.e. a smooth finite type affine k-group scheme —
is said to be reductive if it is connected and every normal smooth connected unipotent subgroup is trivial. Over an
arbitrary scheme S a group scheme G is said to be reductive (or G is a S-reductive group) if it satisfies the following
conditions:

1) G is affine, smooth and of finite type over S;

2) for all s € S, the 5-group scheme G5 := G Xs 5 is a reductive algebraic group (where 5 is the spectrum of
an algebraic closure of the residue field k(s)).
Examples of S-reductive groups are GL,, s, SL, s and their products. In the first chapter only og-reductive
group SL3 - will be considered. The interested reader can refer to [9, Chapter IV] for the theory over a field
and [34], [24] for the theory over an arbitrary scheme.
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1.2. — A point x € X is said to be semi-stable if there exists, for a sufficiently big d > 1,
a §-invariant global section s € T'(X, £®%) that does not vanish at x.

Consider the og-graded algebra of finite type o = &, (X, %£%). According to
a theorem of Seshadri [63, II.4, Theorem 4] the graded algebra

a4 = PrX,£o9)*

d>0

of G-invariants of o is an og-algebra of finite type and projective scheme Y := Proj 4 is
the categorical quotient of the open subset A*° of semi-stable points of X (with respect to
the action of reductive group € and the invertible sheaf &). For this reason it is denoted by

X//€ (orby (X,2£)//€ to keep track of the polarisation).

Let 7: A% — Y be the quotient morphism. Since ¥ is of finite type, for every sufficiently
divisible integer D > 1, there exists an ample invertible sheaf #lp on Y and a G-equivariant
isomorphism of invertible sheaves

. ®D
YD ﬂ*MD — g|gxss’

1.3. — For every embedding y : K — C let ||.||4,, be an hermitian norm on € ®, C which
is invariant under the action of a maximal compact subgroup of 6, (C). Suppose that the
family of norms {]|.||«,y },: k—c is compatible under complex conjugation.

Let ||.]lo(1),y be the Fubini-Study metric on the invertible sheaf Ogv (1) associated to the

hermitian norm ||.||¢v,, and let ||.||«,, be its restriction to &£. Denote by < the hermitian
line bundle on X obtained endowing &£ with the family of metrics {|.||<,},: k—c. For
every y € Y, (C) and every t € y*Jlp set

It apy () = sup[lonp ()| o, (%)-
x€X3(C)

7(x)=y

LemMma 1.1. — Let f € T'(Y, Mp) be a global section.

1) There exists a unique G-invariant global section ]7 € I'(X,£®P) which vanishes iden-
tically on X — X and such that pp(*f) = f |qss-
2) For every complex embedding y: K — C,

sup NI fllapy(y) = sup [If llgen,, (x).
ye%(@) xe%Y(C)

In particular, ||t||.up,, (y) < 4oo for every t € y* /M p, thus the function ||.|| «,,, defines
a metric on the invertible sheaf J(p.

Proof. — 1) It is a reformulation of the definition of % and JMlp. 2) It follows from 1). O

MEMOIRES DE LA SMF 152
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1.4. — Let Jlp be the associated hermitian invertible sheaf on % and h ji, the height
function given by M p (see [8, 2.7.17]). Define

(2, F)//9) =ik Thig, () € [0, +o)

(which is independent of D).
LEMMA 1.2. — hupin((X, £)//€) > —c0.

Proof. — Let D be such that Jlp is very ample and let ¢1,...,ty € T'(Y, Mlp) be a set of
generators of the global sections. Let K’ be a finite extension of K, let Q be a K’-point of Y
and ¢ the associated ok -point of % given by the valuative criterion of properness. There
exists i € {1,..., N} such that t; does not vanish at Q. By definition of the height,

K+ Qlh g, (Q) = log#(epulln/(eti - £glp)) = > logltillp,y (Q)
y: K'—C

> —[K':K] > sup loglltill.up,y(y)-
y:K—C Y% (©)
It suffices to show that for every i = 1,..., N and every y : K — C the function ||t;]| u,, is
uniformly bounded on %, (C). This follows from Lemma 1.1 (2) and concludes the proof. O

REMARK 1.3. — Proving this Lemma would have been unnecessary if one knew that the met-
ric ||.|| up,, Was continuous. This is actually the case but in an attempt to be self-contained
in this chapter we avoided the recourse to such a result. A proof of the continuity is ex-
pounded in Chapter 3 (see Theorem 1.1). In this setting it follows from the arguments of
Kempf-Ness (see Kirwan [48, Chapter 8, §2], Burnol [20] and Schwarz [62, Chapter 5]).
A proof (which is sensibly different from ours) in the general case is given by Zhang [75,
Theorem 4.10].

1.5. Instability measure. — Let v be a place of K. If v is non-archimedean let by ||.|| %, .
(resp. ||-|l.p,») be the continuous and bounded metric induced by the integral model &
(resp. Mlp) 2. For a C,-point x € X (C,) its v-adic instability measure is

lo(x) = —log sup llg-sllz.o(g-x) _ [~co, 0]

ges(Cy)  Isllzo(x)

where s € x*Z is a non-zero section. This does not depend on the chosen section s. If X is
a generator of the line j(x) € P(€")(C,),

g Fllens
-1 g 12 €ho,
wix) =log Inf ey

2. Let x be a Co,-point of X. Since X is proper, the C,-point x gives rise to a 0, -point &5 of X, where 0, is
the ring of integers of C,. The invertible sheaf ¢ is a free b,,-module of rank 1: choose a basis sg. Every other
element s € x*Z can be written in a unique way as s = Asgp with A € C,,. Set

sl o (x) = |lo-

This does not depend on the chosen basis sg of ¢ <. See also [8, Example 2.7.20].

SOCIETE MATHEMATIQUE DE FRANCE 2017



16 CHAPTER 1. GEOMETRIC INVARIANT THEORY AND ARAKELOV GEOMETRY

PROPOSITION 1.4. — Letv be a place of K. For every C,,-pointx € X*(C,,) and every non-zero
sectiont € 7 (x)*Mp,
o (x) > L Mo (7(x)).
Dl tllgon . (x)
Proof. — In the archimedean case this is clear by definition of the metric ||.|| 4, and the
‘6-invariance of x. Suppose that v is non-archimedean. Up to taking a power of #lp one
may assume that J(p is very ample.

Lety := 7(x) and let &, € Y (0,,) the unique v, -valued point of Y associated to y by the
valuative criterion of properness (where b, is the ring of integers of C,). Up to rescaling ¢
one may assume that ¢ is basis of the free 0,-module ¢} #lp and thus ||t[| iy, (y) = 1.

Since J[lp is generated by its global sections, there exists f € I'(¥,lp) ® d, such
that ¢, f = t. According to Proposition 1.1, the rational section " f extends uniquely to a

%-invariant global section f € (X, %®P) ® 5, which vanishes identically outside X*.
Fix g € €(C,). Since the section f is integral,

I7* fllpon o (g - %) = IIf llpon o (g~ x) < 1,

and recalling ||| .up,»(y) = 1 this entails ||7*t||gep (g - x) < |[t]lup,o(y). Taking the
supremum over all g € €(C,),
||7T*t||?j®D,v(g ' X) 1 |It|IMD,U(y)

1
Ip(x) = —=1log su > ——log ——————. |
» (%) B Trtlgen o = D Trtlgen o (3]

REMARK 1.5. — For a non-archimedean place v, it follows from the proof that in the preced-
ing Proposition one has equality if the reduction x of the point x at the place v is semi-stable,
i.e. it is a semi-stable [F,,-point of the scheme X X, [F,, under the action of €(F,,) (where F,,
is the residue field of C,).

In Chapter 3 the converse of the previous assertion is proved: that is, if the equality holds
than the point x is residually semi-stable (see also Theorem 1.16).

1.6. Fundamental formula. — Summing up the previous considerations:

THEOREM 1.6 (Fundamental Formula). — Let P € X (K) be a semi-stable point. Then for
almost all places v € Vi the instability measure 1,,(P) is zero and

[K?Q] > wlP)z s, (x(P).

hs(P) +

In practice one uses Theorem 1.6 through this immediate Corollary:

COROLLARY 1.7. — For every semi-stable point P € X%(K),

1

hg (P) + o U;K to(P) 2 hin (2. Z)//6).

REMARK 1.8. — One of the main tasks of Chapters 3 and 4 is to prove that the inequality
in the statement of the Fundamental Formula is actually an identity (this is the reason why
this result is called “Fundamental Formula”). For details, see Theorem 1.5 in Chapter 4.
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2. LOWER BOUND OF THE HEIGHT ON THE QUOTIENT 17

In the present situation, it had already been proven by Burnol [20, Proposition 5] (see also
Corollary 1.6 in Chapter 4).

2. Lower bound of the height on the quotient

2.1. Statement of the lower bound. — Let € = (%;,...,%,) be a n-uple of ok-
hermitian vector bundles of positive ranks. Let F be a ogx-hermitian vector bundle
and

p: GL(8) := GL(%1) Xox - -+ Xox GL(8,) — GL(F),
a representation, that is, a morphism of og-group schemes, which is unitary, i.e., for every
embedding o: K — C, the action of the compact subgroup

U(€)s :=U(ll.l6,,0) X -+ x U(ll.Il5,.,0) € GL(d)4(C)
respects the hermitian norm ||. || .

THEOREM 2.1. — With the notation introduced above, letb = (by, ..., b,) ben-uple of integers
and _ _ _

o " ® 8 — F,
a homomorphism of hermitian vector bundles, generically surjective and GL(€)-equivariant.
Then,

hrin(P(F), 0. (D) //SL(E)) > ). bufi(Ei) = 5 D b log ks,

where Oz, (1) is equipped with the Fubini-Study metric given by F and SL(®) is the og-
reductive group SL(&1) Xo, -+ Xox SL(Ep).

Here, for i = 1,...,n and negative b;, %?b" is the og-module %f" = %;@_bi endowed
with the (—b;)-th tensor power of the dual norm.

A different proof of this result will be given in Chapter 4 (see Theorem 1.11). The tech-
niques employed therein permit us to get a sharp lower bound in the case when rk€; = 2
(which will be the case of our interest when proving Roth’s Theorem).

REMARK 2.2. — This statement is more general than [22, Theorem 4.2] in the following
sense: with our notation Chen proves that for every semi-stable K-point P of P(F"),

n o 1 n
ho, ) (P) = > bifi(%:) - 5 D Ibil log rk &;.
i=1 i=1

Chen’s result is deduced from Theorem 2.1 thanks to the inequality given by Corollary 1.7
hosy (1) (P) 2 hnin (P(F), 0z, (1)) //SL(¥)).

REMARK 2.3. — In the proof of Theorem 2.1 one can limit ourselves to consider the case
where the integer b; are non-negative. Indeed, if the integers b; are not necessarily non-
negative, one can consider, for every i = 1,...,n,

2 { €; ifb; >0,

i_

€ otherwise.
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18 CHAPTER 1. GEOMETRIC INVARIANT THEORY AND ARAKELOV GEOMETRY

Set GL(®€’) := GL(%®]) x - - - x GL(%&,). If
0: € o0 E T

is a homomorphism of hermitian vector bundles as in the statement of Theorem 2.1, it in-
duces a generically surjective and GL(€’) homomorphism of hermitian vector bundles

=, ®|b =, ®|bn =
o8 ""e 08 - F.

The quotients of P(%") by SL(€) and SL(€’) := SL(%;) x - -- x SL(é},) are canonically
identified and the metrics induced on the polarisation Ml are the same. In particular,

hinin (P(FY), 05 (1)) //SL(8)) = huin (P(F"), 0z (1)) //SL(E")).

The remainder of this section is devoted to the proof of Theorem 2.1 when the integers
by, ...,bn are non-negative.

Invariant theory for a product of linear groups

2.2. — Let k be a field. Let n > 1 be a positive integer and E = (E1,...,E,) a n-uple of

non-zero k-vector spaces of finite dimension. Define
GL(E) := GL(Eq) Xk - - - X GL(Ep),
SL(E) := SL(Ey) Xk - - - Xk SL(Ep).
DEFINITION 2.4. — Let F be a non-zero k-vector space of finite dimension. A representation,

i.e. amorphism of k-group schemes, p: GL(E) — GL(F) is said to be homogeneous of weight
b= (by,...,b,) € Z" if, for every k-scheme S and all S-points t, ..., t, € Gny(S),

p(ty-idg,, ... ty -idg,) = £ -~ tb - idp .
PropPoSITION 2.5. — Let p: GL(E) — GL(F) be a homogeneous representation of weight
b = (by,...,b,) and suppose that the subspace of SL(E)-invariant elements of F is non-trivial.
Then:

1) foreveryi =1,...,n the dimension e; of E; divides the integer b;;
2) for everyk-schemeS, any S-point (g1, . . ., gn) of GL(E) and any SL(E)-invariant element
w of F:

(2.1) p(g1.. .. gn) - w=det(g)?/ - - - det(gy )P/ - w.

Proof. — This follows from the fact that characters of the general linear group are powers
of the determinant. m]

2.3. — For every non-negative integer N denote by Sy the group of permutations on N
elements (if N = 0, then Sy = {idg }). If E is a k-vector space the group Sy acts on the N-th
tensor product E®N permuting factors. Explicitly, if 0 € Sy is a permutation and x1, . . ., xn
are elements of E,

o- (x1 ®-~~®xN) = X5(1) ® - ® Xg(N)-

DEFINITION 2.6. — For N € Z the preceding action defines a homomorphism of non-
commutative k-algebras S| — Endg(E®N) denoted by ng, .
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2. LOWER BOUND OF THE HEIGHT ON THE QUOTIENT 19

2.4. — Letb = (b1,...,byn) be a n-uple of non-negative integers. The group
Sp = Sbl x---x@b",

acts component-wise on the k-vector space E®” := E?bl ® - @ES"" The k-group scheme
GL(E) acts by conjugation on the k-vector space

Endy (E®b) = Endy (E?bl) ®k - - - Q Endy (E;?b").

The representation GL(E) — GL(End(E®?)) is homogeneous of weight 0 = (0,...,0).
Proposition 2.5-2) entails that the invariant elements of End(E®P?) with respect to the ac-
tion of GL(E) and to the action of SL(E) are the same.

DEFINITION 2.7. — The linear action of S, on E®’ defines a homomorphism of non-
commutative k-algebras )7, k[Sp,] — End(E®?) denoted by ng,p.

The image of g, j is contained in the subspace of invariants of End(E®?). The First Main
Theorem of Invariant Theory affirms that in characteristic 0 the converse inclusion holds
too (cf. [71, Chapter IIT], [22, Theorem 3.1, Corollary] and [2, Appendix 1]):

THEOREM 2.8 (First Main Theorem of Invariant Theory). — Suppose that the characteristic
of k is zero. The subspace of SL(E)-invariant elements of the k-vector space End(E®?) is the
image of the homomorphism ng .

DEFINITION 2.9. — With the notation introduced above suppose that e; divides b; for every
i=1,...,n. Consider the homomorphism of k-vector spaces

®b;
(I)Ei,bi : End (El) ® det(Ei)®bi/ei — E;@bi
defined as the composition of the following homomorphisms:
®b;
End (E) ® det(E;) /e ESh

EPP @ (E®)Vehi/ei @ det(E;)®/% —— E" @ (det(Ei)V ® det(E;)

)®b,~/ei

where the horizontal arrow is id ® det ® id. Set ®r j 1= Pp, p, ® - - @ g, p,,.

COROLLARY 2.10. — Suppose that the characteristic of k is zero. Let F be a non-zero k-vector
space of finite dimension and p: GL(E) — GL(F) be a representation. Let b = (by,...,by)
be a n-uple of non-negative integers and

n
b;
@: ®E? —> F
i=1

be a surjective and GL(E)-equivariant homomorphism of k-vector spaces. The representation
p is homogeneous of weight b = (by, ..., b,) and if the subspace of SL(E)-invariant elements
of F is non-zero:

1) Foreveryi=1,...,n the dimension e; of E; divides the integer b;.
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20 CHAPTER 1. GEOMETRIC INVARIANT THEORY AND ARAKELOV GEOMETRY

2) The subspace of SL(E)-invariants of F is the image of the homomorphism

9o Prp o (nes®id): (X)k[Ss,] ® (X) det(E;)*"/* — F.
i=1 i=1

n

This is just a combination of the First Main Theorem of Invariant Theory with following:

REMARK 2.11. — In characteristic 0 a linear algebraic group is reductive if and only if for ev-
ery linear representation E of G there exists a unique G-equivariant projection Rg: E — EC
(the so-called Reynolds operator). The uniqueness entails the functoriality of the projection
on the invariants: for every G-equivariant linear homomorphism ¢ : E — F between linear
representations of G one has Rr o y = ¢ o Rg. In particular, if ¢ is surjective the induced
homomorphism ¢: E¢ — FC is surjective too. For details, refer to [49, p. 182] and [48,
Chapterl, §1].

Non-hermitian norms and tensor product. — In this paragraph we briefly discuss norms on
tensor products which are not hermitian. The interested reader can refer to [36] for the case
of two vector spaces and [33, Normes tensorielles, p. 33] for the present setting.

Let N > 1 be a positive integer and for every i = 1,..., N let V; be a finite-dimensional
complex vector space endowed with a norm ||.||y,. Let ||.]lyv be the operator norm on V;".
Denote by V the tensor product V; ® - - - ® V.

DEFINITION 2.12. — The e-norm and the 7-norm on the tensor product V are the norms
respectively defined, for v € V, by

. lp1 ®--- ® on(v)]
V,e -— sup

pievi—oy lotllyy -~ llonlivy
i=1,...,.N

llol

R R
ol = inf{ 3 el - loawliv 12 = )" a1 @ ® van].
a=1

a=1

The vector space V equipped with the norm ||.||v. is denoted V; ®; - - - ®, V. Analogously,
the space V equipped with ||.||v, » is denoted Vi ®, - - ®, Vn.

If the norms ||.||y, are hermitian let V; ®; --- ® Vi be the vector space V with the
hermitian norm on the tensor product.

ProPOSITION 2.13. — With the notation introduced above:

1) The e-norm ||.|| (resp. the m-norm ||.||;) is the smallest (resp. the biggest) among the
norms ||.|| on V such that, fori = 1,...,N andv; € V;,

lor® - @onll = loillv, - llowllvy,  (resp. lor @ - @ onll < ol -~ lowllvg )
and, fori =1,...,nand ¢; € V',
lor®--@onll” < lleillvy - -llonllvy, (resp. llor®--@onll” 2 lloillvy - llonllvy),

where ||.||¥ denotes the operator norm induced by ||.|| on V.
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2. LOWER BOUND OF THE HEIGHT ON THE QUOTIENT 21

2) |lollv,e < llollv,x forallv e V.

3) (Duality) The isomorphism V¥ =~ V) ®@c - - - ®c Vy induces the following isometries:
(Vi ®  ®: Vn)' — V) ®y - ®; Vy,
(Vi ®r ®, Vn)' — V) ® -+ ® Vy.

4) (Fonctoriality) For every i = 1,...,N let W; be a finite-dimensional complex vector

space equipped with a norm ||.|\w, and let ¢;: V; — W; be a linear map decreasing the norms.
Then, the induced maps

1O QPN :Vi® @ VW — W1 & ® Wn,
P1®- - QPN: V1 Qr - ®r VN — W1 @7 - - Q7 Wi,
decrease the norms.
5) Let L be a normed vector space of dimension 1. Then,
(Vi® @ VW) ® L=V ® - ® VN &L,
(Vi®r  ® V) ®r L=V ®z & Vy ®; L.

Sketch of the proof. — Parts 1), 4) and 5) follow from the definitions of the norms.

2) By bi-duality, for all i = 1,...,N and all v; € V; the very definition of the e-norms
entails

N N
lr®-@oylle = [ Jllvillvy < [ lloilv,
i=1 i=1
and one concludes thanks to 1).

3) Follows from 1) and 2) by duality. mi

PROPOSITION 2.14. — Let V and W be finite-dimensional normed vector spaces. The operator
norm on Home (V, W) coincides with the e-norm on V¥ ®c W through the canonical isomor-
phism

VY ® W — Home(V,W)
Proof. — This is Theorem [36, §1.1, Théoréme 1] for E=V,F =Cand G = W. O

REMARK 2.15. — Let L be a normed complex vector line. It follows from the preceding
Proposition that through the isomorphism L ® LY =~ C the e-norm on L ® L" induces the
absolute value on C.

PROPOSITION 2.16. — Let W be an hermitian vector space and let r > 1 be a positive integer.
Endow the exterior powers \" W with the hermitian norm defined in § 3 on page 9. Then the
canonical map det : W®=" — A" W decreases the norms.
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22 CHAPTER 1. GEOMETRIC INVARIANT THEORY AND ARAKELOV GEOMETRY

Proof. — For every element w € W®" and every writing w = Z§:1 Wo1 ® -+ ® Wy, the
Hadamard inequality (1) on page 10 yields

R
<detWa detw>detE,— = Z <Woc1 ARRRIVAN War, Wp1 ARRRIVAN Wﬁr)detEi

a,f=1
R
< Iwatllg; - - 1Werllg; - lwpille, - - - lwprlle;
a, f=1
R 2
= (D Iwarlle, -+ Iwerlls,)
a=1
which concludes the proof. O

Application to the lower bound of the height on the quotient

2.5. — Let us go back to the proof of Theorem 2.1 in the case when the integers b; are non-
negative. Denote by Y the quotient of semi-stable points of P(F) by SL(¥) and, for every
sufficiently divisible D, by Jl p the hermitian invertible sheaf on % induced by Oz (D).
Fix D such that Jlp is very ample.

2.6. Application of the First Main Theorem of Invariant Theory. — Assume that Y
is non-empty. Since the characteristic of K is zero and the homomorphism @ decreases the
norms, the general statement reduces to the case

F = €% .= €% g, - @, €.

For every i = 1,...,n denote by E; the K-vector space €; ®,, K and by E®” the K-vector
space Ei@bl ®K -+ Ok E,?b".

The subspace of SL(E)-invariant elements of SymP F is non-zero because Jlp is very
ample. Therefore for every i = 1, ..., n the integer e; := dimg €; divides Db;. Consider the
maps 7 := g, pp and ¢ := &g py, (see Definitions 2.7 and 2.9) and the surjection:

where E®PY .= E?Dbl ®K - Ok E?Db".

LEMMA 2.17. — Foreveryi = 1,...,n let§; € det(E;) be non-zero.
1) A set of generators of the SL(E)-invariant elements of the vector space

SymP E®¥ = T'(P(E®%),6(D))
is given by the image through ¢ o ® of the elements
fo=nlo) @ (877" @@ 57

where o = (01, ...,0p) ranges in Spp := Spp, X -+ - X Spp, .
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2) Through the identification T'(Y, M p) @, K =~ T(P(E®?),6(D))SHE):

® 1
b (P(°7). 05 (D)/SL(®)) > =15 sup { 35 log sup (0o 2)(fo)

OE€LDIb|  peVg

J%D,v}.

Proof. — 1) This is a direct consequence of Corollary 2.10 (applied to the representation
SymP E®? and the SL(V)-equivariant surjection ¢).

2) Let Q € Y(Q) be a point defined on a finite extension K’ of K. Since Jp is very
ample, according to (1) there exists 0 € Sp|p| such that the SL(E)-invariant polynomial
@ o O(f,) — seen as a global section of #lp — does not vanish at Q. By definition of the
height:

hao(Q) = Y —logllpo ®(f) 4. .(Q)
veVk
> > —log sup oo ®(fo)] . ()
veVg yeY(Co)
from which the conclusion of the lemma follows. O
2.7. Size of the invariants. — Consider the og-module

®Db ®Db ®Dby,
€ePb = g0 g ... @ GO b,
and denote by €®-P? (resp. €®2P?) the og-module €®P? endowed for every embedding
y: K — C with the e-norm ||.||; on the normed vector space
(%%;l)g’gl)bl/el ® -+ ®, (%igyen)®ngn/en’

(resp. with the hermitian norm ||.|| on tensor product). Consider the og-module
End,, (€®P?) endowed for all embedding y: K — C with the operator norm |.||.,2,, on

Endgg((é‘ng) _Hom(%‘ngb %®2Db)

Denote the resulting normed og-module by Endg,Q(%@’Db ). For every y: K — C endow
the complex vector space Sym?” (€%?) ®, C with the sup-norm on polynomials (see §3 on

page 9).

LEmMMA 2.18. — With the notation introduced above, the map ®g py, o ¢ defines an homomor-
phism of og -modules

@o®: End, (%% ® ® det €;)®Pbi/ei 5 symP(€%P),

which decreases the norms.

Proof. — The fact that the homomorphism ®g pj, © ¢ is defined at the level of ox-module is
clear. The map ¢ o ® is defined as a composition of the following maps:

1) %®2Db — SymD(%@)Qb);

_ I _ v n _ -
2) %Pt g, (®E(det %i)&Dbi/e") ®; ®g(det %i)&Dbi/ei =5 &®:Db,

i=1 i=1
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3) det: (%?*‘ei)v — det €)';
4) Endg,z(%®Db) — %%Db (® det% ®£Db,-/e,-)v'

Foreveryy: K — C each of these maps reduces the norms: indeed, part 1) is a reformulation
of the fact that the hermitian norm on polynomials defined in §3 on page 9 is bigger than
the sup norm; part 2) follows from Propositions 2.13-5) and Remark 2.15; part 3) follows
from the isometric isomorphism (&))®x¢ ~ (€2“)V given by Proposition 2.13-3) and
Proposition 2.16; part 4) follows from 3) and Proposition 2.14. m]

LEMMA 2.19. — Leto = (01,...,0n) € Spyp. Foreveryy: K — C:

Db DN
“’7(0-)”5,2,)/ <Sqet €N
Proof. — Foreveryi = 1,...,nlet v;1,...,v;, be an orthonormal basis of €;. Consider

the set R of indices
R=(rij:1<i<n1<j<Dlb)

with integral entries satisfying 1 < r; ; < e; for every i, j. For every R € R set

n Dbi/e; e n Dbi/e;
= % ) ‘ g > (g>vlr11el+a - (g;) (g) viri,jei+1 ®“'®viriv.fgi+5i'
i=1 j=1 a=1 =1 j=1

The vectors vg for R € % form an orthonormal basis of €®P?. For every T € €®P? write
T = Y peq Trur. With this notation:

ITIE = D" (Tel®. [Tl > max Tg.
ReR
ReR
For every R € R write
o(R) = (rio;())ij

By definition of 1(c) for every T one has 7(c)(T) = Xgeq TrVs(r). Therefore one has
In(e)(T)ll2 = IIT|l> and

o)(T)|2 T||2 Tr|?
LC2ICl e L D ¥ = 1 [PPSO D%
=0 Tl 20 ITIZ 720 maxgeq {|TR|2}
(the last supremum is attained for T = }\gcq UR)- =

2.8. End of the proof of Theorem 2.1. — For every i = 1,...,nlet §; € det(E;) be
non-zero. For every o = (071, ...,0,) € Spp consider

fo- — 7](0') ® (61®Db1/€1 Q- ®5®Db /en) c End(E®Db ® ®det ®Db,/e,

MEMOIRES DE LA SMF 152



2. LOWER BOUND OF THE HEIGHT ON THE QUOTIENT 25

Since the elements 75 are integral and the map ¢ o ® is defined at the level of og-modules,
for every non-archimedean place v,

Dbi e
sup [l 0 D(fo)lltpo(y) < [_] 16 s
yeY(Co)

According to Lemmata 2.18 and 2.19 for every embedding y: K — C:
Dbi/e;
sup g 0 D(fo)lltp,y (y) < llgp 0 @(fo)lsup.y < (o)l - ﬂ 16l

yeY(©)
I’l
b i 13
& 10l
According to Lemma 2.17,

[Ki@]hmin« ((8®b) 1))//SL< ))
_Z( Z log |6 laet £, ) log Jl:[N

b—&?gi?— —Zb log rk &;,

€;

\%

and one concludes recalling 11(€;) = @(%i)/ei.
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CHAPTER 2

DIOPHANTINE APPROXIMATION ON P! VIA
GEOMETRIC INVARIANT THEORY

In this chapter we prove Roth’s Theorem (and some variants) thanks to the tools of Geo-
metric Invariant Theory developed in Chapter 1. Let us describe briefly the structure of the
present chapter.

In Section 1 we review some material concerning Roth’s Theorem and we state the main
result of this chapter (the Main Theorem, see Theorem 1.12). More precisely, we show that
Roth’s Theorem with moving targets is a consequence of an effective statement (the Main
Effective Lower Bound, see Theorem 1.7) and how this last result is obtained from the Main
Theorem for a suitable choice of parameters.

In Section 2 we introduce the situation of Geometric Invariant Theory that we are inter-
ested in. Admitting the semi-stability of the point that we introduce and some intermediate
computations, we show that the Fundamental Formula translates into the Main Theorem.

These intermediate computations (upper bounds of the height and the instability measure
of the point) are developed in detail in Sections 3 and 4.

Finally, in Section 5, we show the semi-stability of the point, which is the crucial result
in order to apply the Fundamental Formula. Our proof is based on the Higher Dimensional
Dyson’s Lemma by Esnault-Viehweg-Nakamaye (Theorem 2.2). We also give an alternative
proof in dimension 2 based on the classical constructions of Wronskians. This argument
provides a simple “GIT proof” of the classical Theorem of Dyson-Gelfon’d.

1. Statement of the results
1.1. Roth’s Theorem with moving targets and the Main Effective Lower Bound

1.1.1. Height and distance on the projective line. — In order to state the results in their most
precise way it is convenient to make the following definitions.

DEFINITION 1.1. — 1) For a K-point x = (xp : x1) of the projective line [F"a its absolute
(logarithmic) height is

1
K : Q]

h(x) = > log I (x0, x1)llo

veVK
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where Vi denotes the set of places of K and, for every place v,
max{|xg|y, |x1|o} if v is non-archimedean

v |xo0l2 + |x112 if v is archimedean.

2) Let K be a number field and v € Vg a place of K. The v-adic spherical distance on P!
is defined, for C,,-points x = (xp : x1) and y = (yo : y1), by

[l (xo, x1) [l 1=

|xoy1 — X190l
I (20, 1)1l o ll (o, y1) Il

dy(x,y) == € [0,1].

3) Let x, y be K-points of P!. Then d, (x,y) = 1 for all but finitely many places v of K.
For a subset S C Vi (not necessarily finite) set

mg(x,y) == Z —logdy(x,y) € Rxg.

veS

If S = {v} is a singleton write m, (x, y).

PROPOSITION 1.2 (see [8, Theorem 2.8.21]). — Let x,y be distinct K-rational points of P*.
Then,

g v ) = ) + A(y).

DEFINITION 1.3. — Let a be a point of P! defined over a finite extension K’ of K, S C Vi a
finite subset of Vi and for every v € Slet o,,: K’ — C,, be a K-linear embedding. Denote
by a(?) the C,-point of P! induced by o, and set:

mg(a,x) := va(a(”“),x).

vES

1.1.2. Roth’s Theorem with moving targets. — In this paper we prove the following form of
Roth’s Theorem with moving targets:

THEOREM 1.4. — Let K be a number field, S C Vi a finite subset, K’ a finite extension of K and
K > 2 a real number. For every place v € S fix an embedding o,,: K’ — C,, which respects K.
There is no sequence of couples (x;,a;) with i € N made of a K-rational point x; of P* and a
K’-rational point a; of P! distinct from x; satisfying the following properties:

1) the sequence {h(x;)} is unbounded;

2) h(a;) = o(h(x;)) asi goes to infinity;

3) foralli € N the following inequality is satisfied:

1
K : Q]

mg(a;, x;) > kh(x;).

Vojta’s original form of Roth’s Theorem with moving targets is more general, in the sense
that it allows the target points to be K-rational:
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THEOREM 1.5 (cf. [69, Theorem 1]). — Let K be a number field, S C Vk a finite subset, g > 1
a positive integer and k > 2 a real number.
There is no sequence of (q + 1)-uples (x;, agl), e agq)) (i € N) made of pairwise distinct *
K-rational points of P! satisfying the following properties:

1) foralloc =1,...,q, h(al(.d)) = o(h(x;)) as i goes to infinity;

2) foralli € N the following inequality is satisfied:

Theorem 1.5 implies Theorem 1.4 by means of extending scalars from K to a Galois closure

of K’ over K and taking the points agg) to be the conjugated points of the points a;. We

ignore at the moment if such a statement can be obtained by the methods expounded in the
present paper.

Let us conclude this introduction remarking that for ¢ = 1,2 all these results are a
straightforward consequence of Proposition 1.2, which moreover gives an explicit upper
bound for height of the points x; in terms of the height of the points aga). However forq > 3
this result is ineffective in the sense such that an explicit bound is not known.

1.1.3. Main Effective Lower Bound. — As explained above, there is an intermediate step
in the proof of Roth’s Theorem which is effective and implies Roth’s Theorem through an
elementary argument by contradiction that will be reproduced in the next paragraph — this
is the principal cause of loss of effectiveness.

This intermediate effective result is a lower bound of the height of K-rational points
X1,...,Xp in terms of their v-adic distances from the algebraic points ay, . . ., a,. Although
this type of lower bounds plays a crucial role in the seminal work of Bombieri [7], it is rarely
stated as a stand-alone theorem.

This lower bound is called “Main Effective Lower Bound” and the aim of this paper is to
prove it by means of Geometric Invariant Theory. It involves some auxiliary real numbers
of geometric nature rq, .. .,r,: in the proof they are interpreted as the multi-degree of an
invertible sheaf on (P1)".

To state it we need to introduce the crucial concepts that govern the combinatorics in
Roth’s Theorem:

DEFINITION 1.6. — Let g,n > 1 be positive integers and let t > 0 and § € [0, 1] be real
numbers.

1) Consider the set A, (t) := {({1,...,{n) € [0,1]" : &+ -+ + & <t}
2) Let tg »(6) € [0, n] be the unique real number such that

1 —qvolA,(tg,n(d)) =6,

the volume being taken with respect the Lebesgue measure of R".

The function ty,,: [0,1] — [0, n] defined in this way is continuous.

(o)

1. ie foralli € Nonehasa; ’ # aST) for every o # 7 and one has x; # ago) foreveryo =1,...,q.
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3) Let Ry, »(5) be the unique positive real number such that

(1+R‘i’+(2))"1—1:5{’/5.

4) For a n-uple of positive real numbers r = (ry,...,r,) write [r| =ry + -+ 4+ 1.
We are now able to state the Main Effective Lower Bound (cf. [7, Theorem 2] for n = 2):

THEOREM 1.7 (Main Effective Lower Bound). — Let K’ be a finite extension of K of de-
gree q > 2 and let S C Vi be a finite set of finite places. Let n > 2 be a positive integer,
let 0 < § < 1/(2n!) be a real number and letr = (ry,...,r,) be an n-uple of positive real
numbers such thatr;/ri;1 > Rq n(8) foralli =1,...,n—1. Then, foralli = 1,...,n and for
all couples (x;, a;) made of a K-rational point x; of P! and a K’-rational point a; of P* such
that K(a;) = K, the following inequality holds:

e ® 2 (e, {n, frmetal® 0}

n n n 1 2
<(1+2q \/5) Z rih(x;) + %Z rih(a;) + (OgT\/_q + log 8)|r|,
i=1

i=1

where, for every place v € Vi, the embeddings o: K’ — C,, are meant to be K-linear.

REMARK 1.8. — We do not claim that the constants appearing in the Main Effective Lower
Bound are optimal. For instance, it follows from its proof and Remark 1.13 that the Main
Effective Lower Bound holds with log 8 replaced by log V12.

Anyway in order to deduce Roth’s Theorem the only thing that matters is the asymptotic
behaviour of the right-hand side.

1.1.4. Deducing Roth’s Theorem from the Main Effective Lower Bound. — Let us show how
the Main Effective Lower Bound (Theorem 1.7) implies Roth’s Theorem with moving targets
(Theorem 1.4).

Let us begin with the following bound which goes back to the work of Roth and it is
based on an explicit version of a phenomenon of concentration of measure (see [47]). This
is where the number 2 in Roth’s Theorem comes from.

LEMMA 1.9. — Let g,n > 1 be positive integers. Then,

tan(0) > $n—/inloggq.

liminfL =2.
n—oo tq,n(o)

In particular,

. 1.
Proof. — According to [8, Lemma 6.3.5] for every 0 < ¢ < 35:
vol A, ((% - €)n) < exp(—6ne?).

The result is obtained taking ¢ := % — tg,,(0)/n. mi
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Proof of Theorem 1.4. — Arguing by contradiction suppose that there exists a sequence
{(xi, a;) }ien verifying the conditions in the statement of Theorem 1.4. Up to extracting a
subsequence and passing to a sub-extension of K’, one may assume K(a;) = K’ foralli € N
andg=[K': K] > 2.

Fix a positive real number ¢ > 0. By a pigeonhole argument (the so-called “Mahler’s
Trick”, see [8, 6.4.2]) there exists an infinite subset I, C N such that, for every place v € S
there exists a positive real number A(e, v) which verifies, for every i € [,

AMe,v)mg(ai, x;) < my(a;,x;) < (/1(8, v) +

£
%) 'ms(ai,xi)

(the writing of the embeddings o,,’s has been dropped) and
l-¢< ZA(&,U) <1.

Up to renumbering the subsequence {(x;, a;) }ie, one may assume that the previous condi-
tions are satisfied for all i € N.

Take an integer n > 2, a positive real number § and n-uple of positive real numbers r
satisfying the conditions in the statement of Theorem 1.7. Applying the latter to the cou-
ples (x;,a;) fori = 1,...,n and using, for every place v € S,

i {pin frme(@. 0} < min | {rmoal”) 20},

one gets

n n

(142qV8) ) rih(x:) + %( r-(qh(ai) + C))

i=1

* K 1 wq e vzes Jpn {r"mv(“"’x")}
> L1
“[K:Q*"
where C := log \/Z + log 8. By hypothesis, foralli =1,...,n,
mg(a;,x;) > [K : QJkh(x;),

000, ).

thus,

Ktq,n(a)(l—g),@gn{rih( ,)} (1+2q‘/_)z (Z )

Since the x;’s are infinitely many the ratios of the heights h(x; 1) /h(x;) can be supposed
arbitrarily large (larger than Ry ,(6)). Therefore n-uple r can be taken such that

rih(xi) = rjh(xj),
for every i,j = 1,...,n. Dividing the preceding inequality by rih(x1):

I ¢
o Sh(x1)

Ktgn(0)(1—¢) < <(1+2gV8)n+ = 1 Z h(x
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Since h(a;) = o(h(x;)) as i goes to infinity one may assume h(a;) < 6 V5 h(x;). The ra-
tios r;/ri+1 and the height h(x;) can be supposed arbitrarily big. Thus,

Ktgn(6)(1—¢) < (1+ Sq%)n

Letting 6 and ¢ go to 0 and n go to infinity, according to Lemma 1.9,

K < liminfL =2,
n—co tq, n (0)
which contradicts the hypothesis k¥ > 2. ]

1.2. Statement of the Main Theorem

1.2.1. More combinatorial data. — It is convenient to fix some more notations on the com-
binatorics appearing in the study.

DEFINITION 1.10. — Let g, n > 1be positive integers, r = (r1,. .., r,) be a n-uple of positive
real numbers and t > 0 be a non-negative integer.
1) Consider the following subsets of R":

n

0, = {({1,...,§n) ER":0<% < forallizl,...,n} = | [[0,r],
i=1
— S {n
v, (1) ._{(gl,...,gn)emr_r_i+...+a Zt}’
e .gl {n .
Ar(l’) = {(gl,...,gn)EDr_Z+...+E<t} *Dr_vr(t).

Add Z in superscript to denote the intersection of these sets with Z”: write (1%, VZ(t)
and AZ(t). Forr = (1,...,1) write (1, V,,(t) and A, (t).

2) If A,, is the Lebesgue measure on R", let u,,: [0,n] — R,

fin(t) = /Vnm(zg1 ~1)dA, = /An(t)u—%)cun.

i+1<j<n \r;

n—-1
3) Define ¢4, := l_[ (1 + max {r—j}(q - 1)) - 1.
i=1
4) Denote by ug, () the unique real number in [0, n] such that
vol A, (ug,r(t)) = min { max {1 + eq,r — qvol Ay(t), O}, 1}.

LEmMMA 1.11. — The function py,: [0,n] — R is strictly concave?. Moreover the following
properties are satisfied:

2. That is, for every #1 < t2 in [0, n] and every £ € 0, 1],
Hn(Etr+ (1= &)t2) > Epn(tr) + (1 = Epn(t2).
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1) Forallt € [0,1],

2) pn(t) >0 forallt € [0,n];

3) pun(n—1) = pn(t) forallt € [0, n);
4) The function p, is increasing on [0, $n] and decreasing on [5n, n].

Proof. — Statements 1) and 3) are easy computations left to the reader. When n = 1 state-
ment 1) entails the strict concavity of y;. For n > 1 arbitrary the strict concavity of y, is
proved by induction thanks to the relation

min{t,1}
i@ = [ paat )b @)
0
2) Follows from p,,(0) = pp(n) = 0 and the concavity of yp,.

4) Follows from 3) and the strict concavity of p,. O

1.2.2. Main Theorem. — Keeping the notation just introduced, the main technical result of
the present paper is the following:

THEOREM 1.12 (Main Theorem). — Let K’ be a finite extension of K of degree q > 2 and let
S C Vi be a finite subset. Letn > 2 be an integer, tq, t, > 0 non-negative real numbers and let
r = (r1,...,rn) be an n-uple of positive real numbers. If the following inequality is satisfied,
(SS) pin(ugr(ta)) > pn(tx) + éq.r,

then, foralli = 1,...,n and for all couples (x;, a;) made of a K-point x of P! and K’-point a;
of P! such that K(a;) = K’, the following inequality holds:

[KlQ] (1—gvolAn(ta))ta Zg ( max { _ I{nnn {rimv(aga)’xi)}})

o: K'—C, li=l,
VE

n n
< Cy(tarte) ) rih(xi) + O (tar te) ). rih(as) + CF)(tas )11,
i=1 i=1
where

Cé’lr)(ta,tx) ::‘/V ( )g"ld/ln+%q(voIA(uq,r(ta))—,un(tx)),
n tx

CSZ)(tas tx) 1= qvol Ap(ta) 1q(vol Alugr(ta)) = pn(tx)),
Cg’,) (tastx) := vol Ay(ug,r(ta))log V6 + vol V,, (£, ) log V8 + g vol A, (tq) log +/2q.

Theorem 1.12 is interesting only when condition (SS) is close to its limit of validity (that is,
fin(tig,r(ta)) = pin(tc) — €q,r is very small) and 1 — g vol A, (t4) tends to zero. This is the case
that leads to Theorem 1.12 in the proof given in the next paragraph.

The fact that this is the only interesting case may be formulated more precisely saying
that, as soon as 1 — gvol A, (t,) = 8, Theorem 1.7 entails Theorem 1.12 with slightly big-
ger error terms, which are insignificant for applications and arise from simplifications in
computations in the proof that follows.
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ReEmARK 1.13. — The constant C,(fr)(ta, tx) can be slightly sharpen by employing Theo-

rem 1.11 in Chapter 4 instead of Theorem 2.1 in Chapter 1 in the proof of the Main Theorem.

Doing like this, one finds that Theorem 1.12 holds with Cg?,) (ta, tx) replaced by

vol A (g, (ta)) log V3 + vol V,, () log 2 + g vol A, (ta) log /29

(see also Remark 2.8).

1.3. From the Main Theorem to the Main Effective Lower Bound. — In this section
the Main Effective Lower Bound (Theorem 1.7) is deduced from the Main Theorem 1.12.
Since r;/rit1 > Rqn(8) foreveryi=1,...,n—1,thenegy, <6 V6.

1.3.1. Choice of the parameters. — The Main Effective Lower Bound is deduced from The-
orem 1.12 setting

ta :=tqn(0).
Write also g, (8) = ug,r(tg,n(0)).

LEMMA 1.14. — With the notation introduced above:
1) vol A, (iig,,(8)) = 6 4 e4,r < 1/n!, henceiig ,(5) < 1;

n+1

z)/' HdA, <28+ eqr) ™
An(iig,r(8))

) finligr(8)) > eq.r
4) pin(tig,r(5)) < €q,r + pn(Vnl5).
Proof. — 1) By hypothesis § < 1/(2n!) thus ty ,(6) < 1. Thus,
- 1
vol Ay (ig,r(8)) =8+ €q.r < i
Since vol A, (¢) = t"/n! for t < 1 one concludes

g, (8) = "nl(5 + eq.).

2) The expression of g, ,(6) found in (1) gives

U r 5 n+1 n+1 v '
/ gldgnzuz(5+£q’r)% ‘/n_.
An(iig. () (n+1)! n+1

Conclude by noticing Vn!/(n+1) < fforalln > 1.

3) Follow from the explicit expression given by Lemma 1.11-1),

pnliq (8) = 6+ e, ) (1= 5 Ynl(6 + 0, ).

and the hypotheses on § and ¢, ,..

4) Similar to 3). O
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For what concerns the choice of the parameter t,, roughly speaking, one stresses the va-
lidity of condition (SS) to its limit. More precisely, since the function p, is strictly decreasing
on [£n, n], there exists a unique real number wg,,(8) € [4n, n[ such that

lln(ﬁq,r(5)) = ﬂn(Wq,r(5)) +é&qr-
LEMMA 1.15. — With the notation introduced above:
1) vol V,(wg,,(8)) < 6;

2) / LA, <6
Vn(wq,r(a))

3) vol A, (g, (8)) = ptn(wg.(8)) < 36 V6.

Proof. — 1) Lemma 1.14-3) entails wg,,(8) > n— Vn!6.

2) Follows from (1): for every t € [n — 1, n], one has / {1 dA, < vol V().
Va(t)

3) By definition of wg, () and by Definition 1.10-2):
vol Ay (tig,r(8)) = pn(wg,r(8)) = vol Ay (iig,(8)) + eq,r — n(ig,r(5))

:2/ Gddy + g
i (4)

(5+€qr) +5qr,

where in the last inequality one uses Lemma 1.14 (2). The result follows from the hypotheses
gq,,<5{l/5and5<1/(2n!). mi

1.3.2. Application of the Main Theorem. — Lemma 1.14-3) permits us to apply Theorem 1.12
with tq = tq ,(5) and ty € |wg,,(5),n | close enough to wy ,(J). Letting t, tend to wy,(5)
and taking in account the estimates given by Lemma 1.15:

e ® 5 e o, ot

<5(1+2q\/_)2rl (xi +qul i) + Ir1Cq.r(9),

where Cg ,(5) := 6(1 + V&) log V6 + Slog V8 + (1 - 6 )log/2q. This concludes the
proof. O
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2. From the Fundamental Formula to the Main Theorem

2.1. Interlude on the index. — Let K be a field of characteristic 0.

2.1.1. Index. — Let n > 1 be a positive integer and P = (P!)" be the product of n copies
of the projective line over K. For every i = 1,...,nlet pr;: P — P! be the projection onto
the i-th factor.

Let z = (z1,...,2,) be a K-point of P and b = (b4, ...,by) be a n-uple of positive real
numbers. For every i = 1,...,nlet t; be a local parameter around z; € [F"l(K).

DEFINITION 2.1. — Let f € Op , be a non-zero regular function on [P defined on an open
neighbourhood of z. The function f develops into power series

t
f: Z f{tll...tﬁn’
C=(L1,. . ln)eNT

with fy € K. The index of f at z with respect to the weight b is
indy(f,z) := min {blfl + ot bln: fe # O};
If f =0, then ind} (0, z) := +co.

Ifb = (by,...,by) is a n-uple of positive real numbers, the n-uple (1/by,...,1/b,) is
denoted 1/b and the index with the respect the weight 1/b by ind, /5. The notion of index
can be extended to meromorphic sections s of an invertible sheaf L on [P which are regular
at z: it suffices to choose a trivialising section sy of L around z and set

indy (s, z) := indp(s/s0, 2).

2.1.2. Higher dimensional Dyson’s Lemma. — The main result concerning the index is the
Higher Dimensional Dyson’s Lemma: the version stated here is due to Nakamaye [50]. The
original version of Esnault-Viehweg [28] (which has a slightly bigger error term) would
work as well.

Letr = (r1,...,r,) be a n-uple of positive integers. Consider the following invertible
sheaf on the projective scheme P:

Op(r) :=pr] Op1(r1) ® - - - @ pr;, Opa (ry).

THEOREM 2.2 (Higher dimensional Dyson’s Lemma). — Let z(?), ..., 2(9) be K-points of P
and t©), ..., (9 be non-negative real numbers. Suppose that

> pri(z(a)) #* pri(z(T)) foreveryi=1,...,nandeveryo # t;
> there exists a non-zero global section f € I'(P,Op(r)) such that, for everyo =0,...,q,

ind, /- (f, 29 > (o),

Then the following inequality is satisfied:

=

n—

q A
Z vol A, (%)) < 1+ ¢4,, where ¢, := (1 +  max {r—]} max{q — 1,0}) -1
o=0

i+1<j<n lr;

I
-

i
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2.1.3. Index at a single point. — Letz = (z1,...,2z,) bea K-point of P, ¢ > 0 a non-negative
real number and r = (ry,...,r,) a n-uple of positive integers.

DEFINITION 2.3. — Let Zy (2, t) be the subscheme of P defined by the ideal sheaf of regular
sections f such thatind, . (f,z) > t. Consider the following linear subspace of I'(P, Op(r)):

K, (z,t) := Ker (F(P, Op(r)) — I'(Z (=, t)’GP(”)))
- {f € (P, 0p(r)) : indy ), (f.2) > t}.

PrROPOSITION 2.4. — Keeping the notation introduced above, for everyi = 1,...,n let To, Ti1
be a basis oszV such that T;, vanishes at z;.

1) The monomials T,(€) = @;_, T;a~ ‘T for £ € VZ(t) form a basis of the K-vector
space K,(z,t).

dimg K, ,(z, t
2) dimg K, (z,t) = #VZ(t) and lim dimy Key (2, ) =volV,(¢).

a—oo a”(rl RN rn)

dimg I'(Zar (2. 1), Op(ar))

3) dimg ['(Z,(z,t),0p(r)) = #AZ(t) and lim = vol A,(t).
a—oo (x"(rl cee rn)

Proof. — Left to the reader as an easy exercise. O
2.1.4. Index at multiple points. — Let r = (rq,...,r,) be a n-uple of positive integers and
let t > 0 be a non-negative real number and let N > 1 be a positive integer.

Foro =1,...,qletz(9) = (zga), .. (G)) be a K-point of P. Suppose z( 9 % zl(.r) for
everyo # randeveryi=1,...,n.
DEFINITION 2.5. — Consider the g-uple z = (z(1), ..., z(9)). Consider the closed subscheme
of P,

q
Zor(z,t) : U (), 1).

Consider the following linear subspace of I'(P, Op(r)):
Kg.r(z,t) := Ker(I'(P,0p(r)) — I'(Zy,r (2. 1),0p(r)))
= {f e I'(P,0p(r)) : indl/r(f,z(a)) >tforallo=1,... ,q}.

Recall that ug ,(t) is defined as the unique real number belonging to [0, n] and such that
vol Ay (ug,,(t)) = min { max {1 +eq,r —qvol An(2), O}, 1}.
PROPOSITION 2.6. — Keeping the notation introduced above:

1) T(Zg.r(2.1). Op(r EBF Z:(2'9), 1),0p(r)).
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n
2) dimg Ky ,(2,t) > l—l(ri + 1) — g#AZ(t). In particular,
i=1

dimg K, z,t
2.1) lim inf % Kaar(2:t)
a—oo an(rl oo rn)

>1—gvolAn(t).

3) Suppose ug,(t) < n. Let z®) € PY(K) be a point such that fori = 1,...,n and
oc=1,...,q onehaspr,(z9) # pr,(2(?)). Then, fort(® > ug,r(t),
Kgr(z,t) N K, (29,+0) = 0.
dimg Kq,ar(z, t)

4) limsup

< volA t)).
a—oo an(rl "'rn) = VO n(uq’r( ))

Remark that (3) and (4) are consequences of the Higher Dimensional Dyson’s Lemma.

Proof. — 1) This is because the closed subschemes Z,(z(?), t)’s are pairwise disjoint (see
[28, Lemma 2.8]).

2) Using the definition of Ky (2, t) as Ker(I'(P, Op(r)) — I'(Zy,r(2,t),0p(r))), the pre-
ceding point yields

dimg K¢ ,(2,t) > dimg I'(P, Op(r)) — dimg I'(Zg, (2, t), Op(r))

q
= dimg (P, Op(r)) — Z dimg T'(Z, (2, 1),06p(r) = | [(ri + 1) — g#AZ(2),

i=1

where in the last equality ones uses Proposition 2.4-3).

3) By contradiction suppose that there exists a non-zero element f in the intersection
Kqr(z,t) N K, (29, t(9)). The Higher Dimensional Dyson’s Lemma entails

9
D Vol An(t) + vol A (t?) < 1+ 24,
o=1

and thus vol A, (t”) < volA,(ug,(t)). This yields ) < ug ,(t) which contradicts the
hypothesis t© > u, ().

4) If vol Ay (ug,r(t)) = 1, which implies ug ,(t) = n, the statement is trivial. Assume
ug,r(t) < n. According to 3), for t(0) > ug,r(t),

Kgr(z,t)N K (29, 1) = 0.
Therefore Grassman'’s formula of dimensions gives
dimg Ky, (2,1) < dimg T(P, Op(r)) — dimg K, (2, t()
= dimg (P, Op(r)) - #V7 (+©),

where one uses Proposition 2.4-2) in the last equality. The statement is then obtained by
applying this inequality to any positive multiple of r and then letting ¢(°) tend to ug,,(t). O

2.2. Definition of the “moduli problem”. — Let K be a number field and let Vg be its
set of places.
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2.2.1. Linear actions on grassmannians. — Let € be a flat og-module of finite rank. For
every non-negative integer N let Grassy(€) be the grassmannian of subspaces of rank N
of €, i.e. the ng-scheme representing the functor

Gry(8): {vgx-schemes} — {sets},

(f: X — Specog) { locally free sub-Ox-modules F }
: K .

of f*& of rank N with flat cokernel

Suppose that an og-group scheme € acts linearly on the ox-module €. Then, for every
integer N > 0, the og-group scheme € acts on the grassmannian Grassy () of subspaces
of rank N, on the projective space P( AN %) and in an equivariant way on the invertible
sheaf O v (1). The Pliicker embedding @: Grassy(6) — P(AYN 8) is €-equivariant.

2.2.2. Back to the Main Effective Lower Bound. — Let K’ be a finite extension of K of degree
q > 2. Let n > 1 be a positive integer. Let P = (P} )" be the product of n copies of the

0K
projective line over og. Let r = (ry, ..., r,) be a n-uple of positive integers and let Op(r) be

the following invertible sheaf on P,
Op (1) = pr; Op1 (r1) @ - ® pr;, Opa (r).

Foralli = 1,...,nlet x; be a K-point of [F"%K and let a; be a K’-point of [F"%K such that
K(a;) = K’. Consider the following points x := (x1,...,x,), @ := (a1, ...,a,) of P and set
a:= {a(”) : 0 € Homg_1g(K’, @)}

Let ty, tq > 0 be non-negative real numbers and consider the following K-vector spaces
K. (x,tx) = {f € [(Pk.Op(r)) : indy ), (f,x) > ti},
Kgr(a.te) := {f € T(Pk.Op(r)) : indy/,(f.a) > ta},

where Pk denotes the generic fiber of P. 3 Since f is K-rational and a is not, imposing index
at a automatically imposes the same index condition at all conjugates of a.

Denote k,(t,) and kg, (ta) respectively the dimension of the K-vector spaces K, (x, ty)
and Kg - (a, t4). In such a way, these sub-vector spaces of the global sections I'(Pg, Op(r))
define the following K-points of grassmannians:

[Ky(x, )] € Grassg, (s,) (D(P, Op(r))),
[Kq.r(a,tq)] € Grassg, (1) (T(P,Op(r))).

3. Here the index of the section f, which is defined over K, at the point a, which is defined over K’, means the
index of the extension of f to K’. Alternatively, one may define the Q-vector space

Kg.r(a ta) == {f e D(P,Op(r)) ®y Q :indy/, (f, al?)) > tg forallo: K’ — Q}
and notice that it is invariant under Galois action, thus it comes from a K-vector space Kq, (@, tq). In any case,

Kq.r(a ta) @k Q = ﬂ I?r(a(g), ta),
o: K'-Q

where K, (al9), t4) := {f eT(P,0p(r)) & Q: indy /. (f, al@)) > ta}.
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n
The ok -reductive group SLj , acts on the product P = ([P’[}K) and thus on the grassman-

nians mentioned above. Write
kr(tx) kq,r(ta)

Fr(t) = N\ T(@0e(r), Forlta) = /\ T(P.0p(r),

and consider the Pliicker embeddings, which are equivariant morphisms with respect to the
action of SL3 ,,

Grassy, (1) (D(P. 0p(r))) — P(F (t)).

Grassi, () (T(P.0p (r)) — P(F4r(ta)).

2.2.3. The geometric invariant theory data. — We shall apply the Fundamental Formula to
the following situation:

P, = ([Kr(x’ ty)]s [Kq,r(a’ ta)])»
&L, = Grassg, (1) (T(P,0p(r))) Xor Grasskq’r(ta)(lﬂ([l]’, Op(r))),
6 =SLj .,

Z, = polarization of X, given by the Pliicker embeddings of the grassmannians,
and the closed embedding:
Jri Xp = P(Fp(tx)) %o P(Fg.r(ta)) — P(F(tx) @0 For(ta))-

(The first arrow is the Pliicker embedding of the Grassmannians and the second one is the
Segre embedding.) For every embedding y: K — C the complex vector spaces

kr(tx) n
Fr(ty) ® C = /\ (®Sym” C2V),
i=1

kq.r(ta) n

Fgr(ta) ® C= /\ (@Symn sz)’
i=1

are respectively equipped with the hermitian norms ||.|| %, (,).y and |||l %, , (¢,)., obtained by
tensor operations (see § 3 on page 9). Endow the complex vector space F,(tx), ®c Fq,r(ta)y
with the tensor norm associated to these norms. The result hermitian norm is invariant
under the action of SU5. Denote 3 - for the associated hermitian invertible sheaf on ;.

2.3. Proof of the Main Theorem

2.3.1. — In this section Theorem 1.12 is deduced admitting a semi-stability result (Theo-
rem 2.7) that is proved in section 5.2 and some intermediate computations (namely Propo-
sitions 3.1, 3.2 and 4.1) detailed in sections 3 and 4.

To show Theorem 1.12, by an approximation argument, the n-uple r = (r1,...,r,) is
assumed to be made of positive rational numbers. Even better, r can be taken with integer
coefficients as the Main Effective Lower Bound is homogeneous in r.
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2.3.2. Semi-stability conditions. — To prove Theorem 1.12 one applies the Fundamental For-
mula to the point P,, so one must show that P, is semi-stable. In Section 5.2 the following
is proved:

THEOREM 2.7. — Letn > 1 be a positive integer and r = (r1,...,r,) be a n-uple of positive
integers. Let ty,tq > 0 be real numbers with t, <ty ,(0). If the inequality

Pn(”q,r(ta)) > pn(tx) + €q.rs

is satisfied then there exists a positive integer ag = ag(q, n,r, ta, tx) such that, for every inte-
ger a > ay, the K-point Py, € Xy, (K) is semi-stable under the action of SL} with respect to
the polarization given by the Pliicker embeddings.

2.3.3. Applying the Fundamental Formula. — The numerical condition appearing in the pre-
vious statement is exactly the condition (SS) in Theorem 1.12. Thus according to Theorem 2.7
there exists a positive integer ag = ao(q, n, 7, tq, tx) such that, for every integer a > ay,
the K-point

Pyr = ([Kar(x7 t)], [Kq,ar(a’ ta)})

is semi-stable. The Fundamental Formula (or, better, Corollary 1.7 in Chapter 1) applied for
every a > oy to the point P,, gives the following inequality:

1

hgar (Par) + m ;lv(Par) > hmin((sxar, Siuzr)//@)’

where one uses that the instability measures are non-positive. Dividing the previous ex-
pression by a"*1(r; - - - r,) and letting & go to infinity,

1 . lv(Par)
21 - K : Q) ;hizn_?ip ati(rycorn)

. hg (Par) . hmin((%ar’ gar)//cg)
< lim sup - — lim sup :

a—co a"+1(r1~~~rn) a—rco anJrl(rl"‘rn)

In the following paragraphs the terms appearing in the preceding inequality are esti-
mated.

The bound of the term involving the height of the point P, will make appear the height
of the points x;’s and a;’s. It is the counterpart of the classical upper bound of the size of the
auxiliary polynomial made by means of Siegel’s Lemma. Here it will be a direct consequence
of basic definitions in Arakelov geometry.

The term where the instability measure occurs is of local nature and will make intervene
the distance between the algebraic and the rational point. In the classical framework this
corresponds to the Taylor expansion of the auxiliary polynomial around the algebraic point.

The term involving the lowest height on the quotient will finally play the role of the
constant terms.
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2.3.4. Upper bound of the height. — The Pliicker embeddings give a closed isometric em-
bedding of X, into P(Fg, - (ta)) X P(F,(tx)). Thus:

hgfr(Pr) = hg,(tx) ([Kr(x7 tx)” + hgq.r(ta)([Kq,r(aa ta)”‘

Some elementary estimates of Arakelov degrees (see Propositions 3.1-3.2) give:

n

h oo (Ke(xt)]) <0 th(x),

i=1¢evZ(t,)

hgqr(ta)([Kq,r(a, l’a)]) < (ﬁ(f’i + 1) - kq,r(ta))(qzn: r,-h(ai) + |r|log \/ﬁ)
’ i=1 i=1

Applying these estimates to every positive integer multiple of r:

(2.2) limsupL(Pm) < (/ & d/l) Zn:rih(xi)
Vi (tx)

a—oo an+1(r1 te rn)

i=1
n

+ qvolAn(ta)(qZ rih(a;) + |r| log\/%).

i=1
2.3.5. Upper bound of the instability measure. — Let v be a place of K. If the place v is
non-archimedean:

—1,(Py) > max {kq,r(ta)ta i:qlin . {rimv(al(,ﬂ),x,-)}

o: K'—-Cy
Sy a0 )

=1 ¢evZ(t,)

whereas in the archimedean case the previous lower bound holds when the error term

kq.r(ta) D log\ri + 1 + kg (ta)Ir 1og V3 + ki (tc) 7| log 2
i=1

is subtracted from the right-hand side of the previous lower bound. These bounds are proved
in Section 4 (see Proposition 4.1). If v is non-archimedean, then applying these estimates to
every positive integer multiple of f, and using Propositions 2.6 -2), 2.4-2) and 2.6-4):

P
—lim sup to (Par) > max {(1—qvolAn(ta))ta

. (0)
_— min {rim,(a."’, x;
e A"TL(ryocory) T o K'5C, ‘=1,..,,n{ iy (a7 i)}

1

te) —vol A, (ug »(t 1
+ fin(t) 5 n(tg.r(ta)) Zrimv(aga),xi)}.
im1

If v is archimedean, the term |r|(vol A, (ug,r(t4)) log V3 + vol Vau(tx)log 2) has to be sub-
tracted from the right-hand side. By Definition 1.10-2),

pin((ug,r(ta)) < Vol Ay (ug,r(ta)),
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thus condition (SS) entails yi,(tx) — volAp(ug ,(ta)) < 0. Bound from above the term

(@, x;) by
me(ai,xi),

wlov

myla

the sum being taken over the places w of K’ over v. Taking the sum over the places of S and
noticing that by Proposition 1.2,

Z me(ai,xi) < Z Z my, (a;,x;) = [K": Q](h(x) + h(a;)),

veES wlv veS weVgr

conclude that the term

1 . lzz(Par)
I N | __ovaer) |
K : Q] ZS e @y 1)
is bounded below by
(2.3) K ql (1 =gvolAy(ta))ta .. 1}(1;1_))(@ { ) qun {rlmv(a(a),xi)}}
: veS

+,u( )—volA (ug,r(ta)) Z ha))
=1
— [r](vol An(utg,r (ta)) log V3 + vol V,(£,) log 2).

2.3.6. Lower bound of the height on the quotient. — For i = 1,...,n set €; = o7 and
bi = —ri(kq,r(ta) + kr(tx)). Apply the lower bound given by Theorem 2.1 in Chapter 1 to
the representation

G = SL(&1) Xo -+ * Xox SL(€n) — GL(Fg,r (ta) ® Fr(tx)),
and to the surjection
L ®r;(k, ,r(ta)+kr(tx))
o: ®%®b @( 2v ) ’ — Fgr(ta) @ F (1),
i=1

The hermitian vector bundle &; is trivial, thus ﬁ(%l) = 0fori = 1,...,n. Through the
closed G-equivariant embedding j,: X, — P(Fg r(ta) ® F-(tx)) Theorem 2.1 yields

(X F1)//9) 2 P (P (Fo (1) ® F (1)), 6(1)) /)
> (kg (ta) + ke (£)) I Tog V2 =  (log kg (ta)! + logky (1)),
where the term —3 (log kg (ta)! + logk,(tx)!) is due to the ratio between the hermitian

norm on the alternating product and the quotient norm with the respect to surjection @
(see §3 on page 9). Thanks to Stirling’s approximation,

log kg, r(ta)!
aglgo 0{"+1(}"1 rn) o
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and similarly for k, (¢ ). The previous estimates, applied to every positive multiple of r, give:

(24) - limsup hmu;(ls%f{(rr’lga:)é/cg) < (vol An(ug,r(ta)) + vol Vy(ty))|r|log V2.

ReEMARK 2.8. — The refined version of Theorem 2.1 in Chapter 1 given by Theorem 1.11 in
Chapter 4, gives

Ponin (X7, £1)//€) = =4 (log kg, (ta)! + log ky (t:)!),
thus,

1‘ hmin((sxara gar)//cg)
— lim sup

<0.
a—o0 an+1(r1"'rn)

To conclude the proof of the Main Theorem it suffices to bound the asymptotic terms
in (2.1) taking in account the inequalities (2.2), (2.3) and (2.4).

3. Upper bound of the height
3.1. Rational point
PROPOSITION 3.1. — With the notation introduced in Section 2.2,
hg o (Kl t)]) < D0 >0 b)),
i=1¢eVZ(r,ty)

Proof. — Let Ty, T; be the canonical basis of K2V, For everyi =1,...,nlet (xj0,%1) € K2
be a generator of the line x; € P1(K). Suppose that x;q is non-zero. For every n-uple of
non-negative integers ¢ € [, define

n
T(0) == Q) Ty (1Tl
i=1

where Ty, = x;0T1 — xi1To. A basis of the K-vector space K, (x, t,) is given by the elements
T(¢) while ¢ ranges in VZ(t,).

Let v be a place of K. The Hadamard inequality (1) on page 10 gives

logH /\ T(é’)“, < Z log [IT(€)llr(p,60 (r)),o-

Fr(tx),0
£eVZ(t,x) rltx) £eVZ(ty,)

For every n-uple of non-negative integers ¢ € [1, the sub-multiplicativity of the norm on
symmetric powers gives

n
10g [70)] 100 = 2 LB Iy~ T e
i=

< Y (ri = ) logITollo + Y ilog 1Ty, llo = >, €3 log Ixillo-
i=1 i=1 i=1

Conclude the proof by taking the sum over all places. ]
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3.2. Target points

PRrROPOSITION 3.2. — With the notation introduced in Section 2.2,

n

hz . o ([Kar(ata)]) < (ﬁ(ri +1) = kg (ta)) (4 ), rih(ai) + Irllog y/2q ).

i=1 i=1

The rest of this section is devoted to the proof of this upper bound.

3.2.1. — Equip the ng-module T'(P, Op(r)) with the hermitian metric induced by the iden-
tification

(P, 6p(r)) = ®5ym’f (02Y).

Denote by T'(IP,Op(r)) the resulting ox-hermitian vector bundle. The og-hermitian vector
bundle IT'(P, Op(r)) is not trivial since the basis of I'(P?, Op(r)) given by the elements

() = Q) 11y
i=1

is orthogonal but not orthonormal. Anyway, for every place v, the sub-multiplicativity of
the norm on symmetric powers gives

n

n
log ”T(f)”ﬂp,@n)(r)),v < Z(ri = ;) log||Toll» + Z tilog ||yl = 0.

i=1 i=1
In particular,
(3.1) AT@0s(r) 2= >, D) 1og|ITO 5 6000 = O
VEVK o [17
3.2.2. — Endow the K-vector space Kg ,(a, tq) with the structure of og-hermitian vector

bundle induced by the one of I'(P, Op(r)). The ox-module
Hqr(a,ty) =T (P,0p(r)) NKqr(a, ta),
is equipped with the restriction of the hermitian norms on I'(P, Op(r)), and
G =T (P,0p(r))/Hqr(a,tq)

is endowed it with quotient norms deduced from I'(P, Op(r)) — €. Denote by @ the ox-
hermitian vector bundle obtained in this way. With these choices and according to (3.1):

K : @]h§q,r(;a)([Kq,r(a’ ta)]) = _Eég 7_{q,r(a’ ta)
— deg € — deg T (P, 6p(r)) < deg G.
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3.2.3. — Denote by E the K-vector space I'(Z,, - (a, ta),Op(r)) and let Q2 be a Galois closure
of K’ over K. Endow the 2-vector space E ® ) with a structure of ng-hermitian vector
bundle as follows. According to Proposition 2.6:

q
(32 Eex 2 = (PE?
_ o=1
where, for embedding o: K’ — Q, E(9) :=T'(Z,(a'?),t,),0p, (r)) *
Fori=1,...,nlet (al(.g), agf)) € 02 a generator of the line aga) € PY(K). Since a') is

not K-rational assume agg ) may be taken non-zero and, up to rescaling, agg ) =1.

For an embedding o: K’ — Q, a basis of the Q-vector space E(?) is given by
n
Ty (0) = QT3 T,
i=1 i

whereT o) =Th —agf)To and{ = ({1,...,¢,) ranges in the elements of AZ(t,). Let €(9) be

the g -submodule of ¢ E(?) generated by the elements T(£)’s. Equip it with the hermitian
norm having the elements T(£)’s as an orthonormal basis. Denote by €(?) the associated
0o -hermitian vector bundle.

Finally, according with (3.2), endow K-vector space E Qk {2 with the structure of og-
hermitian vector bundle given by the orthogonal direct sum of the og-hermitian vector
bundles €(?)’s. Denote by g, the so-obtained hermitian vector bundle.

3.2.4. — The evaluation homomorphism n: I'(Pg,0p(r)) — E = TI'(Zg ,(a,ta),0p(r))
factors through an injection ¢: € ®,, K — E. Applying the slope inequality (Proposition
‘Slopes inequality’ on page 11), one gets

Ee\g ® rk 6 (A

*— < Hpax(B0) + ) logllellsup.o
K:Q] = [©2:Q) U;ﬂ )

(33)  hz_ ) ([Ker(ata)]) <

where, for a place v € Vg, ||¢|| sup, o is the v-adic operator norm of e,

le(F)lleo

ozreeen  Iflleo

”g”sup,v =
This coincides with the operator norm [|7]|sup,o of 7. The ng-hermitian vector bundle 8 is
trivial hence 11, (€q) = 0.
3.2.5. — It remains to bound the v-adic size of the evaluation homomorphism 7. For an
embedding ¢ = 1,...,q let 5(?): T'(Pq,Gp(r)) — E, be the composition of 1 and the

canonical projection E ®x © — E(°). Denote by ||5(®) Il sup, o the operator norm of ().
With this notation:

> if v non-archimedean: [|9| sup,o = max ||77(")||5up,v;
o=L....q

> if v archimedean: ||n||sup,o < Vg max {||77(U)||Sup,v}.
o=1l...q

4. Here the point a9) is seen as an Q-point of P}, = [P}( Xk € and Zr(a(“), tq) denotes the subscheme
of P}Z of index ¢, on the point a(?).
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(

Foro=1,...,qandi=1,...,nlet (pia) be the linear automorphism of 02V defined by

T00—>T0,
() . ()
i T10—>T<a>—T1—a1TO

(o) (o)

() g...0 Sym™ @,"’ on the Q-vector

Consider the linear automorphism ¢,;"’ = Sym' ¢;

space
I'(Pg,0Op(r)) ® Q = Sym™ (Q*Y) ®q - - - ® Sym™ (Q2Y),

where forany i = 1,. .., nthe linear automorphism qo( o)
its action on symmetrlc powers.

With this notation the homomorphism (%) o (pﬁ") : T(Pg,0p(r)) — E©) coincides with
the evaluation morphism at the closed subscheme Z,((1 : 0),,):

its acting on the i-th factor through

" T. o) (€) if € € AZ(t,),
T(f):(g)rgf*‘*inf H{ at (€) r (ta)

= 0 otherwise.

By definition the elements T, () (€)’s form an orthonormal basis of the trivial o-hermitian

vector bundle €(?). Thus one has In(@) o goﬁa) lsup,o < 1 and

17 supo < 108l sup.o-

By recalling that for an endomorphism i of a ox-hermitian vector bundle % the sup-norm
of ¢ is smaller than its norm as an element of 7" ® ¥/,

||(‘/’£0))_1||sunv < logH( 1”End(F P,Op(r))0 = Z Vi log” (U) IHEnd(ofy),v'

The archimedean and the non-archimedean cases have to be distinguished. By definition

of ¢'”) one has (¢p{”))"}(Ty) = (1,0) and (¢\”)(Ty) = (a7, 1). Thus,

11 °
> if v is non-archimedean:

bﬂ<ﬂﬂmww=Mmﬂn@W%mw@WﬂmM

IOg” 10 ’ 1(17))”2);

> if is v archimedean:

10 [(07) ™ gz = & I TP + o))

< log||(ay. a f‘f))H +10g‘f
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Taking the sum over all the places of K:

n
Z log |17l sup,» < Z maxi{ZrilogH(al(,g)’ (o) ” }+|V|Q Ql log\/_

veVgn veVq o: K'—=Q i=1

<3S Y g d ], + 9 - Ollog g

veVq 5. K'—Q =1
n
=0l Y, D nh(a”) +Irllogy2g).
o K'—Q =1

Dividing by [ : Q], writing h( ) = h(a;) for o: K’ — Q@ and according to (3.3),

hgq’r(ta)([Kq,r(a, tqa)]) < rk%(quih(ai) + | log\/ﬁ).

i=1
Using tk € =tk I'(P, Op(r)) — rk Ky, (a, tq) and

n

kT (,0p(r) = [ [+ 1), tkHg r(a,ta) = kg r(ta),

i=1

one concludes the proof. ]

4. Upper bound of the instability measure

4.1. Notations and first reductions. — Let v be a place of K.
PrRoOPOSITION 4.1. — With the notation introduced in Section 2.2, if the place v is non-
archimedean,

whereas, in the v archimedean case, the previous inequality holds with

n
kq.r(ta) D logri + 1 + kg (ta)Ir|log V3 + ki (tc) 7| log 2
i=1

added on the right-hand side.

Throughout this section fix fori = 1,...,nand o: K’ — C,:

1) a generator (xjo, x;1) € K2 of x; € P1(K,,) such that || (xi0, xi1)|| o = 1.
2) a generator (a SO), ff)) eC? ofa(a) € P'(C,) such that ||(a 10)’ a;, )||v =1
3) a square root 6( € C, of( x,l - afl)x i0) L
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4.1.1. Elements of SLy measuring distances

DEFINITION 4.2. — Fori=1,...,nand o = 1,...,q let ggg)

of C2 given by the matrix:

(0) (@) 1 o —x
(o) . il i0
glU (( o %1 ) ) = —a( ) © ( (o) (5)) € GL2(Cv).

o
Xio X1 o Xi1 —a;; xio \"%1 %o

be the linear automorphism

Consider the n-uple () := (gia), e ,gﬁla)) € GLy(Cy)™.

PrROPOSITION 4.3. — With the notation introduced above, foralli =1,...,nandoc =1,...,q,
1) detg(g) (a (o)le —afl)x 0)~ L

(o) X3

3) For a non-zero vector (yo,y1) € C2 such that ||(yo,y1)|lo = 1,

2) log|detg( )|v = my(a;

max{dv(a@), [y]),ds(xi, [y])}  © non-archimedean
l9:7 - (woTh = i To)||, =

\/d (G ? b dy(xi [y ])2 v archimedean

where Ty, Ty denotes the canonical basis ofC%V and [y] € P1(C,) the line generated
by (yo.y1).

(o) (o)

a;,’,a;, ) are of norm 1.

Proof. — 1) Clear: the points (x;0, x;1) and (a
2) Clear from 1).

3) The automorphism gfa) of C2 acts on the dual vector space C2 through the transposed

inverse automorphism, whose matrix (with respect to the canonical basis Ty, Ty) is

al?) gl
( o %1 )
Xio  Xi1

The remainder is an elementary computation. ]

4.1.2. Proof of Proposition 4.1. — In this paragraph Proposition 4.1 is deduced from Propo-
sition 4.6 and 4.7: the latter are proved in the following sections.

DEFINITION 4.4. — For h = (hy,...,h,) € GL2(C,)" define
h-w .
o 1ol [Ky (1, £0)]) = log el (e

lwxll, (£, 0

1B - walloy (60
> 1o (h [Kq.r(ata)]) = log&

lwallz,,, (ta).0
where wy € F,(ty) ® K (resp. wq € Fy ,(tq) ® K) is a non-zero representative of Pliicker
embedding of the point [K, (x, t)] (resp. [Kq,r(a, ta))).

DEFINITION 4.5. — Fori = 1,...,nand o: K’ — C, consider the linear automorphism
jl(a) = gga)/ﬂl.(a), which is of determinant 1. Set § (?) := (g~1(6), . ,g*,S")).
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Employing this notation the instability measure i,,(P,) can be written as

(Br) =, int (K () + ko K (e t0)) |

< min {o(§ L K (0 t)]) + 10097, K1)

The representations F, (tx) and %, (t,) of GLj ,  are respectively homogeneous of weights

k,(tx)r and k,(t,)r. By Proposition 4.3-2), log |91.(J)| = %mv(a(g),xi) and

i

1o (G%, [Kr (3, £)]) = 10(9'), [Ky (5, £2)]) + % ; rim, (%), x;),

~0 o k J(ta) - o
(57 [Kgr(@.ta))) = 10(9'”). [Kyr(a.ta)]) + =5 3 rimo (a7 xi).
i=1

One concludes the proof of Proposition 4.1 applying the following:

PROPOSITION 4.6. — With the notation introduced above, if v is non-archimedean,
n
Ly (g("), (K, (x, tx)]) < —Z Z f,-mv(agg),xi)
i=1¢eVE(ty)

whereas, if v is archimedean, the preceding inequality holds with k, (t.)|r|log 2 be added on
the right-hand side.

ProprosITION 4.7. — With the notation introduced above, if v is non-archimedean,
10(9') K (@, 1a)]) < kg, (ta)ta min {rim, (af )},
whereas, if v is archimedean, the preceding inequality holds with
kq,r

(ta) <
o Zlog(rl- + 1) + kg, (ta)|7] log V3,
i=1

added on the right-hand side.

4.2. Taylor expansion at the single point: proof of Proposition 4.6. — Keep the no-
tations introduced in Section 4.1.

4.2.1. — Leti € {1,...,n} and consider the linear form
Ti1 := —xi1To + xi0T1 € sz.

Since the point (xj,x;1) € Kg is of norm 1 the linear form T;; is of norm 1. If v is non-
archimedean let T € 012}\/ be a linear form such that T;q, T;; is a basis of the o,,-module 012)\/.
If v is archimedean let T;y € ng be a linear form such that T, T;; is an orthonormal basis
of K2V,

Since the linear form Tj; vanishes at x; for every i = 1,. .., n, Proposition 2.4-1) implies
that a basis of the K-vector space K, (x, t) is given by the monomials

T(6) = Q) T T
i=1
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where £ = ({1,...,¢,) ranges in VZ(t,). The following vector of F,(t,) ®ox Ko,
w = /\ T(¢)
£evZ(ty)

is a non-zero representative of the Pliicker embedding of [K, (x, t;)]. If v is non-archimedean
the elements T(£)’s form a basis of the o,-module

(K,(x, t) ®1<1,) N (F(P, Op(r) ® ov).

Thus
log [[wll%, (¢,),0 = 0.

If v is archimedean the elements T(¢)’s are orthogonal but they are not of norm 1 and
1 Z .
logwllg, oo = ) gITOlr@omime=-5 2, 2. log(f)
£eVE(tx) LeVE (i) i=1

Bounding the binomial (2 ) by 27,

n

lognwug,(tx),v:—% > zn]log(g)z-% > N rilog2

LeVEi(t,) i=1 CeVE(ty) =1
= —k,(t,)|r] log V2.
4.2.2. — For any ¢ € VZ(t) the sub-multiplicativity of the norm on symmetric powers

yields

n

1og |9 - T(O)||p gm0 (1.0 < D ((ri = €:) log llgi - Tiollo + £:log lgf” - Tir )

i=1
Therefore applying the Hadamard inequality,

500 S 2 108]9 Tl e0)0
£eVE(to)

n
< > D (- ) oglg) T, + tilog g - T ).
CeVE(ty) 1=1

log ”g(ﬂ) . w|

Fori=1,...,nProposition 4.3-3) entails
1 o non-archimedean,

(o)
”g, IOHD { V2 v archimedean;
> 11987 - Tallo = do(al™, xy).

i
Summarising if v is non-archimedean:

n

o9 K (1)) = Tog 9wl oy <= D3 (D) 6 )moal ).
i=1 revZ(s,)
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If v is archimedean:

to (9", [Kr (x, £0)]) < loglg'™) - w]

o+ Ke(te)lrllog V2

gr(tx)

<=2 3 a0 + b o2

=1 £eVi(ty)

which concludes the proof. O

4.3. Taylor expansion at the algebraic points: proof of Proposition 4.7. — Keep the
notations introduced in Section 4.1.

4.3.1. — If v is non-archimedean let o, be the ring of K, and let fi,..., fkq,r(ta) be a basis
of the o,-module:

(Kq,,(a, ta) ®k Kv) N (F(P, Op(r) ®oy ov).
If v is archimedean let fi,..., fk,,(s,) be an orthonormal basis of Ky ,(a, ta) ® K». With
these notations the vector of % »(a, tq) ®oy Ko,

kq.r(ta

)
w = /\ fu
a=1

is a non-zero representative of the Pliccker embedding of [Kg, ,(a, t4)]. In order to simplify
notation denote by ||.|| ,, the induced norm on the C,,-vector space I'(P, Op (r)) ®,, C,. With
this notation Hadamard’s inequality (1) on page 10 entails
kq,r(ta)
(97 (K r(a ta)]) =logllg™ vl (< D, loglg - ful .

a=1
and it remains to prove the following:

LEMMA 4.8. — Let f be a non-zero element of Ky (@, t,). With the notation introduced above,
if v is non-archimedean,

(@) .
g - fllo _
1f1lo

whereas, if v is archimedean, the preceding inequality holds with

log t, max {r,- log dv(aga),xi)}
i=1,...,n

1 n
5 D log(ri +1) + Irllog V3
i=1

added on the right-hand side.
4.3.2. — Fori=1,...,n consider the linear form:

T = —agf)TO + agg)ﬂ € sz.
9l
non-archimedean let o, be the ring of integers of C,, and let T;y € Eiv be a linear form

Since the point (a ) € C2 is of norm 1 the linear form Tj; is of norm 1. If v is
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such that T;o, T;1 is a basis of the 0,-module Biv. 5 If v is archimedean let T;y € C%V be a

linear form such that T;o, T;; is an orthonormal basis of C2". For every n-uple of integers
= ({1,...,6,) € O, define

ri—{;
Tl 0 Tz 1

The monomials T(¢)’s form a basis of the Cv—vector space I'(P, Op(r)) ®k C,. If v is non-
archimedean the elements T(£)’s form a basis of the b,-module I'(P, Op(r)) ®, Dp. If v is
archimedean the monomials T(¢)’s are orthogonal and for every ¢ € [1,,

i, =(;) " —ﬂ( )

4.3.3. — Ifvisnon-archimedean, a computation similar to the one in paragraph 4.2.2 yields
log|lg'”) - T Zf log do ( (U Zf m, (a\”), x;),

whereas, if v is archimedean, the preceding inequality holds when kg, - (t4)|r|log V2is added
to the right-hand side.

4.3.4. — Write f = ), f¢T(¢) with f; € C,. If v is non-archimedean,

11l = max {1 felo : € < OF}.

=3 e

e?

,X;) are non-negative for every € € VZ(t,):

(32) i, frml”. )

t, min {r,mv(a(d), xi)}.
i=1,...,n

If v is archimedean,

(o)

Since the real numbers m,, (a;

Z Zl-mv ((150), xl-)
i=1

I\

1\

By definition the global section f satisfies ind; /,(f, al?)) > t4, that is, f; = 0 for every

¢ € A%(t,). In the non-archimedean case this yields:

loglg'”” - £l =, max ){loglfelv +log g - T(O)], }
< —tg_min_{rmq (a7, xi)| +log I flle.

i=1,...,n

which concludes the proof in the non-archimedean case.

5. Such a Tjq exists because the b,,-module o 0 /Tllov is torsion-free, thus free (cf.[11, 1.6.1 Proposition 2]).
One can avoid using this result by taking T;1 deﬁned over a finite extension of K,,. In the latter case the existence
of Tjp follows from the widely-know fact that a finite type, torsion-free module over a discrete valuation ring
is free.
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4.3.5. — Suppose henceforth v archimedean. Proposition 4.3-3) and the triangle inequality
give:

9 - £, < Z felo - 9 - T(O),

eVZ(ta)

max {d (@)Y el [ [V

=1,..., "
eVZ(ta) i=1

(4.1)

IA

Comparing ¢! and 2 norms on I'(P, Op(r)) thanks to Jensen’s inequality:

n

2 |ff|vﬁ‘/§ri_€i < \/ (ﬁ(ri + 1)) DRIHIEGE

€eVE(ta) i=1 £eVE(ta) =1

where one uses tkI'(P, Op(r)) = [}, (r; + 1). The right term can be compared with the
norm of f:

n

% vf]rs e (0] 3 i)

teVZ(t,) i=1 i=1 eVE(ty)
n
r ri—{; 2
= max 2" ’} o
dmax {(7) ]1 Il

Using Y2, (2)2b‘“ = 3%, one has max {(2) 1_[ 2’1'_["} < 3"l According to (4.1) this
£eVZ(ty) il
concludes the proof. ! O

5. End of the proof: semi-stability in the general case
5.1. Basic facts about the semi-stability of subspaces

5.1.1. Instability coefficient. — Let K be a field and let G a K-reductive group acting on a
proper K-scheme X equipped with a G-equivariant invertible sheaf L. Let x be a K-point
of X. Let A: G,;, — G be a one-parameter subgroup of G (which means that A is a morphism
of algebraic groups) and consider the morphism A, : G, — X given by

Ae(T) := A7) - x.

By properness of X, the morphism A, extends in a unique way to a morphism Aot Al 5 X,
Denote by xo the K-point A, (0). Since it is a fixed point under the action of G,,, then G,
acts on the K-vector space xL through a character

T —> ¢ HL(AX)

with pp (A, x) € Z. Ttis called the instability coefficient of x with respect to the one-parameter
subgroup A and the invertible sheaf L. ©

6. We follow here the convention adopted in [48, Definition 2.2].
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THEOREM 5.1 (Hilbert-Mumford criterion). — Suppose that K is perfect and L is ample. With
the notation introduced above, the point x is semi-stable if and only if
pr(A,x) =0

for every one-parameter subgroup A: G,, — G.

This theorem has been proved by Mumford [48, Theorem 2.1] when K is algebraically
closed. The general case has been proved independently by Kempf [45, Theorem 4.2] and
Rousseau [59].7

5.1.2. Instability coefficient of linear subspaces. — Let V be a finite dimension K-vector
space and r be a positive integer. Consider the grassmannian of r-dimensional subspaces
Grass, (V) and its Pliicker embedding @: Grass, (V) — P(A" V).

Suppose that a K-reductive group G acts linearly on V. Then it acts on the grassmannian
Grass, (V), on the projective space P(/\" V) and in a equivariant way on the invertible sheaf
6(1) on P(A" V). Since the Pliicker embedding @ is G-equivariant with respect to this
action, the ample invertible sheaf ®*0(1) on Grass,(V) is endowed with a G-equivariant
action.

DEFINITION 5.2. — Let A: G,,, — G be a one-parameter subgroup.
1) Let W C V be a linear subspace of dimension r. Set

p(A W) = oo (4, [W])
omitting the polarisation @*0(1).
2) For every integer p € Z consider the subspace
Vip i={veV:Ar) v=rPov}.
Let P, min (resp. pa max) be the smallest (resp. the biggest) integer p such that V) , is non-

Zero.

3) For every integer p € Z set V[p] := P ., Vaq-

qzp

Since the action of a torus is diagonalisable, one has V = EB bez Va,p- In particular,

_ 0 lfP > PA,max>
Vil = {V £ < prmin:

PROPOSITION 5.3. — Let W C V be a linear subspace of dimensionr. Set W[p] := W N V[p]
for every integer p.
1) The subspaces W|[p] form a decreasing filtration of W and

u(A,W]) = > p(dimg Wp] - dimg Wp+ 1)

pEZ PA,max

= prmndimg W - " dimg Wp].
P:p/\,min"l‘l

7. Inorder to understand that [45, Theorem 4.2] translates into Theorem 5.1 it is useful to consult the dictionary
between Kempf’s and Mumford’s notations given in the table in [48, Appendix to Chapter 2, section B].
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2) Let wi,...,w, be a basis of W. Foreveryi = 1,...,r let (A, [w;]) be the instability
coefficient of the point [w;] € P(V). Then the vector w; writes as
Mr)-w; = T_IJ(A’ [wil) Wi min + terms of higher order in ,

With Wi min € V. If the elements Wi min, - . ., Wrmin € V are linearly independent, then

p(A W) = " p(d [wil).
i=1

3) With the notations of (2), there exists a basis w1, . . ., w, of W such that their components
of minimal weight Wi min, . . ., Wr.min € V are linearly independent.

Proof. — This is a reformulation of the computations in [48, Chapter 4, §4]. See also [67,
§2, Lemma 2]. O
PrROPOSITION 5.4. — Let Wy, Wa be subvector spaces of V. Then:

1) (Inclusion formula) If W, is contained in Wa, then
(5.1) 1A, Wi]) = u(A, [Wal) = pa,min(dimg Wy — dimg Wa).

2) (Grassmann formula)

(5.2) (A W) + p (A [Wa]) 2 (2, [Wr + Wa]) + p(A, [Wh N W2)).
Proof. — 1) Clear.

2) For every integer p the usual Grassmann formula for linear subspaces gives
dimg Wi[p] + dimg Walp] = dimg (Wi [p] + Wa[p]) + dimg (Wi[p] N Walp]).
Conclude by noticing that W [p] + Wa[p] € (W1 + Wa)]p]. mi
REMARK 5.5. — The second statement of the previous Proposition is a generalisation of the
following fact: if V writes is the direct sum of Wy and W, then the couple ([W;], [Wa]) is

semi-stable (as point in a product of suitable grassmannians of V). Indeed, both terms in the
right-hand side of 2) vanish.

5.2. Asymptotic semi-stability: proof of Theorem 2.7

5.2.1. — Go back to the notation introduced in Section 2.2. The construction of invariant
elements is compatible with flat base change [63, §2 Lemma 2]. It follows that the semi-
stability of the points P,, is only a matter of the generic fiber of X,,. From now on we
silently work over K (for instance P will denote the projective scheme (P})").

THEOREM 5.6. — Letn > 1 be a positive integer and r = (r1,...,ry) be a n-uple of positive
integers. Let ty,tq > 0 be real numbers with t, < tg ,(0). If the inequality

pn(ug,r(ta)) > pn(tx) + €q.r,

is satisfied then there exists a positive integer g = (g, 1,1, tq, tx) such that, for every integer
a > ap, the K-point Py, € Xy, (K) is semi-stable under the action of SLS with respect to the
polarization given by the Pliicker embeddings.
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5.2.2. Computation of the instability coefficients. — For every n-uple of positive integers

r = (ri,...,rn), every non-negative real number t > 0 and every i € {1,...,n} set:
,urz’i(t) = Z 20 —r;
£eVZ(t)

Arguments similar to those in Lemma 1.11 show that ,urzi (t) is non-negative.

DEFINITION 5.7. — Let A : G, — SLj ¢ be a one-parameter subgroup.
1) Fori = 1,...,n, there exist a basis T;o, T;; of K? and a non-negative integer m,_; > 0
such that, for every 7 € G,,(K),
At) - Tio = 1™ Tyo,  Mz)-Tin =77 " Ty.

The n-uple of non-negative integers my = (my 1,...,my, ) is called the weight of A and the
bases Tjg, Tj1 (for i = 1,...,n) is called an adapted basis for A.

The integer m;_; does not depend on the choice of an adapted basis. If m,_; is non-zero
then the lines {T;o = 0} and {T;; = 0} are determined by A.

2) With the notations introduced above, for every Q-point y of P set

X,i(y) = {

Denote by y, the unique K-point of P such that y; ;(yy) = 1foralli=1,...,nand call it
the instability point of A (with respect to the chosen adapted bases).

1 if T;y vanishes at y,
0 otherwise.

ProposITION 5.8 (Instability coefficient at the single point). — Let A: G,, — SL be a one-
parameter subgroup. With the notation introduced above, fori =1,...,n,
n
H K (e, 1)) = D (=) my i (2).
i=1
ProrosITION 5.9 (Instability coefficient at the algebraic point). — Let § be a positive real
number. Under the assumptions of Theorem 2.7 there exist a positive real number py and a
positive integer ay (the two of them possibly depending on n, q, r, t, and t,) satisfying the
following properties: for every one-parameter subgroup A: G,, — SL%, every integer a > ag
and every real number 0 < p < po,
n
1A [Kg.ar(a,ta)]) 2 Z mp,i [.“fr,i(uq,r(ta) +p)—a" (- rn)(eq.r + 5)]
i=1
Proof of Theorem 2.7. — According to the Hilbert-Mumford criterion (Theorem 5.1) it suf-
fices to show that there exists o such that for every ¢« > «p and every one-parameter
subgroup A: G,, — SL3,

F(’L Por) = .U(/L [Kar (x, tX)]) + .”(’L [Kar(a, ta)]) > 0.

Let § be a positive real number. Let ap, §y and pg given by Proposition 5.9. Up to in-
creasing g and decreasing 6 and pg assume, fori =1,...,n,a > apand 0 < p < po:

(8S') ﬂfr,i(uq,r(ta) +p) > /er,i(tx) + a”+1ri(r1 w+1n)(eqr + ),
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Fix @ > ap and 0 < p < po. Propositions 5.8 and 5.9 yield that yi(A, P, ) is non-negative if:

n
N il (g (ta) + p) = @ ri(rr - ra)(egr +8) + (~1)Z, ()] 2 0.

i=1
Since the integers m, ; are supposed to be non-negative, this is satisfied according to (SS’).
This concludes the proof. O

Proof of Proposition 5.8. — Consider adapted bases Tjp, Tj; for A (i = 1,...,n). Suppose
xri(x) =0fori=1,...,n (in the other cases the argument is similar).

Under this assumption there exists & € K such that T;; — &;To vanishes at x;. According
to Proposition 2.4-1), a basis of the K-vector space K, (x, ty) is given by polynomials of the

form
®TV' (T = &Tio) "

where £ = (€1, ...,€,) € V,(&). The action of the one-parameter subgroup 1 is given by

n
f) _ ® Tm,Li(ri—2fi) (Ti';)i_fi (Til — T2m)\vi§iTi0)[i)
i=1

Since the integers m,_; are supposed to be non-negative, the component of T(¢) of minimal
weight is the polynomial multiplied by 3,7, m, ;(r; — 2¢;), that is

rieli s
O)min = ® Ty "'y
i=1

The elements T ()i, for £ € VZ(t,) are linearly independent, thus Proposition 5.3-2) yields
n
w4, [Kr(x, tx)] Z Z my.i(26; — r;) Zma,i,urz’i(tx). O
i=1 0eVZ(1,) i=1
5.2.3. Proof of Proposition 5.9
LEmMMA 5.10. — Let A: G, — SL% be a one-parameter subgroup. Suppose ®
ug,r(ta) # 0,n.
Let a9 be a K-rational point of P*. Then, for p > 0,
1A [Kgr(a.ta)]) + p(A [Kr (a1, ug.r(ta) + p)])
> (kg,r(ta) + kr(ug,r(ta) + p) — dim (P, Op(r Z my,iti.

Proof. — The hypothesis uy (o) # 0, n implies, by Definition 1.10-4),
vol Ay (ug r(ta)) = 1+ egr — qvol Ay(ta).

8. If ug,r(ta) = 0, n then Condition (SS) in Theorem 2.7 is not satisfied because y1,,(0) = pp (n) vanishes.
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Since the point a(*) is K-rational one has pr;(a?)) # pr;(a(®)) for every i = 1,...,n and
every o: K’ — Q. According to Proposition 2.6-3),

Ky r(a,ta) N K (@, ug »(ta) +p) =0

(apply it over Q to deduce it over K). Grassmann’s formula for instability coefficients
(Proposition 5.4 2) applied to the subspaces K, ,(a, o) and K, (a'?), ug ,(ts) + p) yields:

1A Ky r(ata)]) + p(A [Kr (a9, ug , (ta) + p)])
> p(4, [Kg,r(ata) + Kr(a(o)’”q,r(ta) +p)]).

With the notations introduced in paragraph 5.1.2, the smallest integer b such that the
vector space I'(P,Op(r)), is non-zero is — ;7 my ;r; (it occurs only for the monomial
T/3 ® -+ ® T,#). The inclusion formula (Proposition 5.4-1) applied to

Kgr(a,ta) + Ki(y,ug,r(ta) + p) € T(P,0p(r))

gives the result. m]

LEMMA 5.11. — Let § be a positive real number. Under the assumption of Theorem 2.7 there
exist a positive real number py and a positive integer ag (the two of them possibly depending

onn,d,r,t, and ty) such that, for every integer & > ag and every real number 0 < p < pg:
) dimg I'(P, Op (ar)) < é;
a(ry---ry) 3

#V5, (ug.r(ta) + p)
a(ry---ry)

kg, ar(ta)
a™(ry---ry)

Wl >,

2)

= (qvolAn(ta) —eq,r)| <

> (1 - gvolAy(ta)) —

[SUl )

Proof. — 1) Clear. 2) Follows from the definition of uy ,(t,) and statement 3) follows from
Proposition 2.6 -2). o

Proof of Proposition 5.9. — Let § be a positive real number and let ap and pg given by
Lemma 5.11. Take an integer o > a( and a real number 0 < p < po.

Let a(® € P(K) be the unique point such that y; ;(a(?)) = 1 for every i = 1,...,n.
Applying Proposition 5.8 to the point a(?):
n
(s [Kar (6, uq 1 (ta) + p)]) = _Zm&iﬂgr,i(”q,r(ta) +p)-

According to Lemma 5.11 and Proposition 2.4-2): =t

kg ar(ta) + kar(ug,r(ta) + p) — dimT(P, Op(ar)) > —a"(ry -+ - ry)(eq.r + 5),
Therefore Lemma 5.10 yields:

n

F(’L [Kq.ar(a, ta)]) 2 Z M, i [“zr,i(“q,r(ttz) +p)) - a"+1ri(r1 o rn)(eqr + 5)]’

which concludes the proof. ]
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6. Semi-stability on P! x P! and the Wronskian determinant

In this section a different proof of the semi-stability is given in the case n = 2 emphasizing
the role of the Wronskian determinant. Set

eq,r = (g = 1)min{ry,ro} /max{ry, ra} .

When r; > ry this coincides with the previous definition.

6.1. — The semi-stability statement will be the following one:

THEOREM 6.1. — Let r = (ry,r2) be a couple of positive integers such that ry > ro.
Let ty,tq > 0 be non-negative real numbers such that
0 <1-gqvolAs(ta) + eqi1,r < 3
If the inequality
(6.1) pa(te) < (1= gvol Aa(ta) ) (1 - 2y/2(1 - gvol As(ta) + ege1,r) |
is satisfied then there exists a positive integer ag = ao(q, 1, tqa,tx) such that, for every inte-

ger @ > ag, the K-point Py, € Yo (K) is semi-stable under the action of SL2 with respect to
the polarization given by the Pliicker embeddings.

In particular, given 0 < § < 1 one can apply it with

> tq = tg2(0) = A2(1-6)/g;

> t, that tends to the unique real number w € [1, 2] such that
o (w) = 5(1 — 228 + eqinr) )
This is enough to derive the Main Effective Lower Bound in the case n = 2.

ProrosITION 6.2 (Instability coefficient at the algebraic point). — Let § be a positive real
number. Under the assumptions of Theorem 6.1 there exists a positive integer ag (possibly
depending on q, r, t, and t,) satisfying the following properties: for every one-parameter sub-
group A: G, — SL%K and every integer o > ap:

[l(/l, [Kq,ar(a, ta)]) > a371r2<m/1,r>(1 - qVOlAg(ta) - (s)

x (1 ~2,/2(1 - gvol Ag(ta) + eqi1,r) )

where (., .) denotes the standard scalar product on R2.

An argument similar to the proof of Theorem 2.7 permits to deduce Theorem 6.1 from
Proposition 6.2. The key point in the proof of Proposition 6.2 is the following:

PROPOSITION 6.3. — Let f € K, (a, tq) be a non-zero section. If 1—qvol Ay(ta) +éq11,r < 3>
then, for every one parameter subgroup A: G,, — SL%K,

L) 2 (mary(1 - 2/ 2(1 - gvol s ta) +egir) )

the instability coefficient of f being taken as a point of P(I'(P, Op(r))) and with respect to the
invertible sheafO(1).
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Proof of Proposition 6.2. — Let 6 be a positive real number. Analogously to the proof of
Lemma 5.11 one may find a positive integer a such that for every integer & > ag:

kq ar (ta)
6.2 — > (1- 1As(ta)) — 6.

(6.2) a2riry ( g vol Ag( ‘1))
Let fi,. - - fiy ar(1a) D @basis of Ky 4 (@, t4) such that their components of minimal weight
(with respect to 1) fi,min, - - -+ fky 4y (ta),min are linearly independent (such a basis exists ac-
cording to Proposition 5.3). Then Proposition 5.3-2) entails

kq,ar(ta)

1A [Kgar(ata)]) = Z (A [fe])
=1
> kg, ar(ta)(my, r)(l - 2\/2(1 —gqvolAx(te) + €g41,r) ),

where the second inequality follows from Proposition 6.3. Conclude using (6.2). O

The result proved in what follows is actually the following version of Dyson’s Lemma:

THEOREM 6.4 (¢f. Corollary 6.15). — Let f € I'(P,0(r)) be a non-zero global section and
let b = (by,by) be a couple of non-negative real numbers. Let y be a Q-point of P'. Letq > 1
be an integer and for everyo = 1, ..., q let 2(%) be a Q-point of P. For everyi = 1,2 suppose:
1) pr;(2(9)) # pr,(2()) for every o # t;
2) pr;(2(?) # pr,(y) foreveryo =1,...,q.

Foreveryo =1,...,q supposet, <1 and
g
1
(6.3) 1- ;VOIAQ(indl/r(f, 2D)) +egi1, < 5

Then, indy (f,y) < max{b;r;} and

d( q
vol Ay (m b(fy ) <1- ZvolAg indy /- (f, 2 )) +égt1r

max{b;r;}

A similar version of Dyson’s Lemma with two different weights is indicated to hold
in [28, p.489]. The hypothesis (6.3) makes quantitative the assertion of Esnault-Viehweg
that indy (f, y) should be “very small” (see loc. cit.).

In order to prove Proposition 6.3 let us link the instability coefficient and index through
the following easy fact (whose proof is left to the reader):

PROPOSITION 6.5. — Let A: G, — SL2 x be a one parameter subgroup and fix an adapted
basis for A. Then, for every non-zero element f € T'(P, Op(r)),

I’l(/‘l’ [f]) = <m/1’ r) - andmg (fa y/l)’
where y, is the instability point of A (with respect to the chosen adapted bases).

Proof of Proposition 6.3. — It suffices to apply Theorem 6.4 to the points z(?) = a(®) for
o: K’ — Q, the weight b = m, and the point y = y, (the instability point of 1): since t, < 1
(otherwise (6.1) is not satisfied), vol Ay (t5) = $t2. m]

SOCIETE MATHEMATIQUE DE FRANCE 2017



62 CHAPTER 2. DIOPHANTINE APPROXIMATION ON P! VIA GIT

The rest of this section is therefore devoted to prove Theorem 6.4.

In view of Proposition 6.5, one would like to use this interpretation of the instability
measure to apply the usual Dyson’s Lemma — i.e. Theorem 2.2 when n = 2° — in order
to derive the semi-stability of the point. Unfortunately, the usual Dyson’s Lemma can be
applied when the weight of the index is the same at all points: here instead one has to apply
it to weight 1/r at the points z(?) for o = 1,. .., q and the weight m at the point y.

The key point in the proof of Theorem 6.4 is that in general the index of a polynomial
taken with respect to two different weights are not comparable. Anyway this is the case
when the polynomial is a product of polynomials in separate variables:

PROPOSITION 6.6. — Letb = (b1, by) andc = (c1, c2) be couples of non-negative real numbers.
Suppose that is made of positive real numbers. For alli = 1,2 let f; € T'(P!,0p1(r;)) be a
non-zero section. Then, for all Q-point z of P1,

indp(fi ® f2,2) < max{b;/c;} indc(f1 ® f2,2).
In a nutshell, in the proof of Theorem 6.4 the Wronskian permits to reduce to the latter

case.

6.2. Homogeneous Wronskian. — In this paragraph we introduce the wronskian as an
invariant under of SLg x. We follow the presentation given in [1, 2.8]. Let r, p be non-
negative integers such that p < r + 1.

DEFINITION 6.7. — Let fi,..., f, € Sym” K?" and let Ty, Ty be the canonical basis of K2".
The homogeneous Wronskian of the polynomials fi,.. ., f, is:

Wr(fi,.... fp) = (w)f’ . det( P11,

_.—A_l .
r! 3Té’ JaT{ )j,f_L___,p

It is an element of Sym?("~P*+1) K2V that is, a homogeneous polynomial of degree p(r—p+1)
in the variables Ty, T; (each entry is a homogeneous polynomial of degree r — (p — 1)).

The reader may consult [1, 2.9] for the relation with the classical notion of Wronskian.
It follows from Wronski’s criterion of linear independence [8, Proposition 6.3.10] that
fi, ..., f, are linearly independent if and only if Wr(fi, ..., f,) does not vanish.

The Wronskian is an alternating multi-linear map on Sym” K2V and therefore it can be
extended to a linear map

P
Wr: /\ Sym” K2V —s SymPU =P+ g2V,

9. This is case originally treated by Dyson [27], whose proof has then been revisited by several authors (see [7],
[68] and [70]).
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ProPOSITION 6.8 (cf. [1, 2.3, 2.5 and 2.8]). — The following properties are satisfied:
1) IfT},T{ is a basis and Wr": \P Sym” K2V — Sym?("=P+1) K2V is the Wronskian map
taken with respect to the latter basis, then as linear maps,
Wr' = det (T, T])?" =P+ wr,
where (T}, T}) is the linear map sending T; on T fori =0, 1.
2) The linear map Wr is equivariant under the action of SLo x on the vector spaces
AP Sym” K2V and Sym?("—P+1) K2V,

6.3. Tensorial rank. — Let V3, V5 be finite-dimensional K-vector spaces.

DEFINITION 6.9. — The tensorial rank of a non-zero vector v € V; ®k Vs is the minimal
integer p > 0 such that v can be written in the form v11 ® vo1 +- - - +v1, ®v2, Withvip € V;
fori=1,2and ¢ =1,..., p. Denote it by rtk(v).

The tensorial rank is invariant under homotheties and under GL(V;) x GL(V2) (acting
component-wise). The tensorial rank of v coincides with the rank of the linear map Vlv — V5
associated to v through the canonical isomorphism

Vi ®k Vo = Homg (V,', V)
(analogously it is the rank of the dual map V,) — V).

rk(v)

r—1 V1£ ® V2. Then, fori = 1,2,

Fori=1,2letv;,.. - Vitk(v) € Vi be such that v =
Vil,- . ., Virk(v) are linearly independent.

6.4. Splitting polynomials through the Wronskian. — Let r = (r,r2) be a couple of
positive integers and for i = 1,2 set V; := Sym” K2V, With this notation,
F(P, @[p(r)) =V ® Vs

For every non-zero f € I'(P,Op(r)) one can consider its tensorial rank rk(f) with respect
to this decomposition. With the notations of [7, p. 266],

s2(f) = tk(f) + 1.
For every i = 1,2 fix a basis Tjo, T;; of K2V

DEFINITION 6.10. — Let f € T'(P,Op(r)) be a non-zero section and let p = rk(f) be its

tensorial rank. For every couple of positive integers ¢ = (£1,€3) such that £{; < p for
i=1,2, set:
(92(p_1)f — 32(/7—1)]“ ’
‘ aTE  aTl T oTE gl

which is a global section of Op(r1 — (p—1), 72— (p—1)). The homogeneous Wronskian Wr(f)
is the determinant

Wr(f) := [ ﬁ (M)P] . det (a?(p—l)f)

9
ri! 1,0=1,....p

seen as a global section of Op(r; — (p— 1), — (p — 1))®~.
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Let f € I'(P,Op(r)) be a non-zero section and let p = rk(f) be its tensorial rank. Write

P
f=> fisfu
=1

with fi € T(PL,6(r;)) foralli = 1,2 and all £ = 1,...,p. Fori = 1,2 consider the
homogeneous Wronskian

Wri(f) == Wr(fi,s-- -, fip),

computed with respect to the basis Tjg, T;1. An elementary computation shows:

PROPOSITION 6.11. — With the notations introduced above,
Wr(f) = Wri(f) ® Wra(f).

6.5. Index of the Wronskian. — In this section the index of Wronskian is linked with
the one of the original polynomial.

ProprosITION 6.12. — Let f € I'(P,0p(r)) be a non-zero section and let b = (b1,b2) be a
couple of non-negative real numbers. Then, for every Q-point z of P,

rk(f) -1

) vol Aq(t) — rk(f)ez.r |,
r2

ind, (Wr(f),z) > max{biri}((rk(f) - 1)(2
where t := min{1, inf}, (f, z)/ max{b;r;}}.

Proof. — Since the Wronskian does not depend (up to a non-zero scalar factor) on the cho-
sen basis (Proposition 6.8), then for i = 1,2 one can chose a basis Tjo, T;; of K2V such
that Tio(pri (Z)) # 0 and Til(pri(z)) =0.

Let ¢t := indy(f, z) be the index of f at z. Let p = rk(f) be the tensorial rank of f and,
up to permuting the coordinates suppose r; > ry. Since deriving with respect to T1¢ and Tag
does not affect the index on z, for every £1,{ = 1,...,p,

indp (afg”;g 1, z) > max {o, t— (b, (b - 1,0 — 1)>}

o —1
> max {O, f— 2~ max{b,-ri}} — &9, max{b;r;}
r2

where

(b, (61— 1,6, — 1)) < max{b;r;}(1/r, (61 = 1,6, — 1)) < max{b,—r,—}(@,, + fgr— 1),
2

(recall 1/r = (1/r1,1/rz) and use £1 =1 < p — 1 < rp). Let S, be the permutation group
on {1,..., p}. Since the index is a valuation,

p
ind, (Wr(f), Z) > min {Z indy (6(2,([?;)12)]“’ Z)}
=1

eSS,

\%

min { Zp: max {O, t— -1 max{biri}}} — pea, max{b;r;}.
=1

€S, ©)
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Writing ¢’ := ¢/ max{b;r;} and u = min{(p — 1)/r2,t'},

gmax {o,t - fr__gl max{b;r;}} = max{biri}(;zl; (t' - é))
Finally,
-1 el
Conclude by:

LEMMA 6.13. — With the notations introduced above, let t := min{t’, 1}. Then,

u(t'— g) > p_—1(2_ £ l)volAg(E).

r2 r2

Proof of Lemma 6.13. — Two cases have to be considered:

> Suppose u = t’. Then, u(t’ — u) = +t'* and, because p — 1 < rs,
-1 -
£ "(2-£ 1) <1.
r2 r2

> Suppose u = (p — 1)/ro. Then,

The function

E(E-g/2) _P-¢)2

£(2-9) 2-¢

is decreasing for £ € [0,1] because { < 1. By assumption, u < £, therefore applying this
consideration with é =u = (p—1)/ro,
z_ 72
u(t—u/2) S ~t /2~ .-
u(2 -u) 1(2-1)
where in the last inequality one uses again the inequality #(2 — ) < 1. This terminates the
proof of the lemma. O

This concludes the proof of the proposition. O

PRrOPOSITION 6.14. — Let f € T'(P,Op(r)) be non-zero and b = (b1, bs) a couple of non-
negative real numbers. Let ¢ > 1 be an integer and for every o = 0,...,q let z(°) be a
Q-point of P. For every i = 1,2 suppose pr,(z(?)) # pr,(2(")) for every ¢ # t. Then,

q

Z vol Ao t(a) <1+4egi1r

where
Jo) _ {min {1.indy/,(f.2(7))} ifo=1,....q;
| min {1,ind,(f,2?)/ max{b;r;}} ifo = 0.
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Proof. — Suppose rk(f) > 1. The proof is done bounding from above and from below the
index ind, (Wr(f),z(?).

> Upper bound. — Borrow the notations from Proposition 6.6. Since
Wr(f) = Wri(f) ® Wra(f),
Proposition 6.6 applied to the weight ¢ = 1/r gives
ind, (Wr(f),z?) < max{b;r;} ind; /- (Wr(f), z20),

It remains to estimate ind;/,(Wr(f),z(?)). Set p := rk(f). Using the definition of the
index, the fact that Wr;(f) is a section of O(p(r; — p + 1)) on P! and the hypothesis that
the projection of the points z(?) are pairwise distinct:

indl/r(Wr(f) Z - mUIt(er(f) pr;(z (O)))
i=1 !
2 1 q
Zr— —p+1)- Z mult (Wr;(f), pr; ()

1 o=1

) i ndl/r (Wr(f (”)).

1=

(-

Mw’_\

i=1

Foro = 1,...,q, Proposition 6.12 (applied to z = z(?) and b = 1/r) entails:

ind, ), (Wr(£).27) 2 (p - 1)(2- 2= 1) vol Ag(£(9)),

r2

where t(?) = min {1, indy /,(f,z(?) )} Summing up, the index ind; (Wr( f), z(?)) is bounded
above, with qea , = £441,7, by

max{biri}[p(Q - 22: pr_—l +eq+1,r) -(p-1) ( )( zq: vol Ag( t(U) )]

i=1 ! o=1

> Lower bound. - Proposition 6.12 applied to the point z = z(?) and to the weight b gives:

ind, (Wr(f),y) > max{b;r;}(p - 1)(2 - pr_ l)VOIAQ(t(O)),
2

where t(*) := min {1,infb (f,20)/ max{biri}}.

Combining the lower bound and the upper bound of indy (f,z(?):

q

)( D volag(t))) < p(2- Tl) + Peqitr

o=0

(p—l(
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(in the right-hand side —(p — 1)/r1 has been neglected). Dividing by (p — 1)(
using2 — (p—1)/ry > 1:

q9
(o) p p ( p—l)-l
ZvolAg(t )Sp—1+p—1 24 r2 Eq+1,r

) and

1
< 1 + £q+l,r + m(l + £q+l,r).

Taking powers of f and multiplying by suitable linear polynomials, one can show that p can
be taken arbitrarily large (even though it could be small compared to ry) — see [7, Lemma 2
and I1.4] for more details. This concludes the proof in the case rk(f) > 1.

The same argument shows that one can suppose rk(f) > 1. ]

COROLLARY 6.15. — Under the assumptions of Proposition 6.14, suppose
indy/, (f,209)) <1
forc=1,...,q and

q
(6.1) Z vol Az (indy, (f,2(7))) + egrar < 3
Then, ind, (f,z(%)) < max{b;r;} and

vol As( vol Ay (indy /. (f, 2( )) + €g41,r-

max{b; r,}

ind, (f z(0 ) Zq:

Proof. — If indp(f,y) = max{b;r;}, Proposition 6.14 entails

N

ZVOIAQ ind; /,(f,2')) + egi1.r,

which contradicts (6.1). O

6.6. Wronskian as a covariant. — Let us conclude with a final remark. Fix a positive
integer p > 1. The Wronskian furnishes a “covariant” for the action of SL% K l.e. a ratio-
nal SL% K-equivariant map

Wr : P(T(P,0p(r))) - P(Sym?1 =P+ K2V @y SymP (=P +1) g2V),

which is defined on the open subset U, c P(I'(P,0p(r))) of lines generated by non-zero
sections f € T'(P, Op(r)) of tensorial rank > p. The Wronskian map Wr moreover induces a
SL3 k-equivariant isomorphism of line bundles Wr* 0(1) = O(p) u,- In the early stages of
the present work, this constituted for us one of the main evidences that the proof of Roth’s
theorem was connected with Geometric Invariant Theory.

To make this intuition more precise, for such a morphism one has

o (A If) 2 iu@w, W),
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for every global section f of Op(r) of tensorial rank > p and every one-parameter subgroup
A Gy — SL%’ % If y, is the instability point associated to the choice of admissible bases
for A, Proposition 6.5 leads to the lower bound

indm, (Wr(f).y2) 2 pindm, (f.y1) = 3p(p = 1)(ma1 + my.2).
As explained before, we want to apply Theorem 6.4 to the point y = y, and the
weight b = m,. Unfortunately, this lower bound is not sharp enough to deduce the

semi-stability of the point P, (for pys(t,) small enough). Instead we had to use the lower
bound given by Proposition 6.12 in the proof of Proposition 6.14.
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CHAPTER 3

KEMPEF-NESS THEORY IN NON-ARCHIMEDEAN GEOMETRY

In this chapter we investigate an analogue in non-archimedean geometry of a classical
result of Kempf and Ness [46] concerning the behaviour of hermitian norms on a (finite
dimensional) representation of a complex reductive group. Even though the aim is to study
the problem in the non-archimedean framework, the techniques that we employ are well-
suited to work both in the complex and non-archimedean case at the same time. Therefore
we decided to treat the two cases on the same footing, hoping that this will ease the task of
the reader.

In Section 1 we recall the original result of Kempf and Ness and we show how one has to
modify the statements in order to port them in the context of non-archimedean geometry.
This sections serves as an introduction to the results of this chapter and some of which will
be necessary for the developments of Chapter 4.

In Section 2 we introduce the three objects that will play the main role in the proof:
analytic spaces (in the sense Berkovich in the non-archimedean case), maximal compact
subgroups and plurisubharmonic functions. Complying with the choice of developing the
complex and the non-archimedean case at the same time, these concepts are presented try-
ing to stress the analogies between these two realms.

Concerning maximal compact subgroups and plurisubhamonic functions, the analogies
could have been pushed further. We deliberately opted to give naive definitions which are
enough for our purposes instead of being brought into far-reaching results on these subjects
(namely the theory of Bruhat-Tits buildings and Thuillier’s potential theory on curves which
are not rational).

Section 3 is the core of the chapter: we prove the main result concerning the behaviour
of invariant plurisubharmonic functions on the orbit of a point and its closure (see The-
orem 3.3). This leads to the understanding of the analytic topology on the GIT quotient
(which is new in the non-archimedean case, see Theorem 1.6). The proof of the latter relies
ultimately on the local compactness of the analytic spaces use and, in the non-archimedean
case, recurring to Berkovich spaces seems unavoidable.
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In the last section we translate the previous results into the continuity of the metric
on the GIT quotient. We also take profit of the occasion to prove the compatibility of the
construction this metric with integral models, where the original result of Burnol takes
place. These latter results will be crucial for Chapter 4.

1. Statement of the main results

1.1. A result of Kempf and Ness. — Let G be a complex (connected) reductive group
and let V be a (finite dimesional) representation of G endowed with an hermitian norm
[|.]]: V' — R.. Suppose that the hermitian norm ||.|| is invariant under the action of a max-
imal compact subgroup U of G.

Let v be a vector in V. Kempf and Ness studied in their celebrated paper [46] the prop-
erties of the function p,,: G — R defined by

Po(9) = llg - olI*.

Among the results therein presented, the following are of particular interest for us:

THEOREM 1.1. — With the notations introduced above:
1) The function p,, obtains its minimum value if and only if the orbit of v is closed.
2) Any critical point of p,, is a point where p,, obtains its minimum.
3) If p, obtains its minimum value, then the set where p,, obtains this value consists of a
single U - G, coset (here G,, is the stabiliser of v in G).

1.2. Interpretation via the moment map. — As discovered by Guillemin-Sternberg and
Mumford, these results permit to link the Geometric Invariant Theory of Kahler varieties
with the concept of moment map in symplectic geometry.

In the present situation a moment map p: P(V) — (LieU)V for the action of G on V is
defined as follows. For every non-zero vector v € V, consider the linear map

Hlo): LieU — R

defined for every a € Lie U by ? 1 (ad(a,v),v)
Hol(@) = oo s ——
27 [|lo]]
Here (.,.) denotes the hermitian form associated to the norm ||.||, i denotes a square root

of —1 and ad: Lie UXV — V denotes the adjoint action.

Say that v € V is minimal 2 if p,,(g) > p, (e) for every g € G and denote by P(V)™" the
set of points having a non-zero representative which is minimal.

PROPOSITION 1.2. — A non-zero vectorv € V is minimal if and only if the linear map p[,) is
identically zero.

(For a proof the reader can consult the proof of [48, Theorem 8.3].)

1. Other conventions on the scalar factor of u can be found in the literature.
2. The name minimal refers to the fact that the minimum of the norm on the orbit G - v is attained on v.
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With this notation statement 2) in Theorem 1.1 is translated into the equality:
§1(0) = B(VYm.
Moreover consider the open subset P(V)* of semi-stable points of P(V) with respect to G
and O(1). Let Y be categorial quotient of P(V)* by G. Then the map
#(0)/U—Y(C)

is a homeomorphism [48, Theorem 8.3]. When the action of U is free, the quotient =1 (0)/ U
is called the Marsden-Weinstein reduction or symplectic quotient. The interested reader can
refer to the original papers of Guillemin-Sternberg [40], [41], [42], or the more introductory
accounts of Kirwan [48, Chapter 8] and Woodward [72].

1.3. Present setting. — In this text we study what happens when one replaces:

> the field C by a field k complete with respect to an absolute value;
> the vector space V by a k-affine scheme X endowed with an action of a reductive k-

group G;

> the norm ||.|| by a plurisubharmonic function u: X — [—co,+oo[ (see Definition
2.29) invariant under a maximal compact subgroup U of G (see Definitions 2.20 and
2.21).

Azad-Loeb [3] studied the case when X is a complex smooth affine scheme (or more gen-
erally a smooth Stein space) and u: X(C) — R is a U-invariant strongly plurisubharmonic
function which is twice differentiable. Statements 1) and 3) in Theorem 1.1 are not longer
valid in general when the function is not strongly plurisubharmonic:

ExampLE 1.3. — Consider the action of the multiplicative group C* on C? given by

t-(x,y) = (1x,y).
The ¢* norm ||(x, y)||c = max{|x|, |y|} is plurisubharmonic and invariant under the action

of the maximal compact subgroup U(1). However the orbit of (1,1) is given by the points
of the form (¢, 1) with ¢ € C*, thus

e, Dl = 1= [l Dl

for every t € C*. Therefore the point (1, 1) is “minimal” in its orbit but its orbit is not closed.
Moreover every point of the form (¢, 1) with [¢] < 1 is “minimal” and they do not belong to
the same orbit under U(1).

In order to discuss what is a right analogue of the result of Kempf-Ness in this new
context, let us first go back to the classical algebraic framework of Geometric Invariant
Theory.

1.4. Algebraic setting. — Let k be a field. Let G be a reductive k-group acting on an
affine k-scheme X = Spec A of finite type. Denote by Y the spectrum of the subalgebra of
invariants A and by 7: X — Y the morphism induced by the inclusion A® c A.

The fundamental theorem of Geometric Invariant Theory in the affine case can be stated
as follows (see [48, Theorem 1.1 and Corollay 1.2] for characteristic 0, [43] on positive
characteristic and [63, Theorem 3] over more general bases).
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THEOREM 1.4. — The k-scheme Y is of finite type and the morphism r satisfies the following
properties:
1) 7 is surjective and G-invariant;

2) letK be a field extension of k and g : Xk := X X K — Yg := Y X K be the morphism
obtained extending scalars to K; then for all points x,x’ € X(K),

i (x) = nx(x’) ifandonlyif Gk -xNGg-x" # O,

the orbits being taken in Xk.
3) for every G-stable closed subset F C X its image n(F) C Y is closed;

4) the structural morphism n*: Oy — 1,0x induces an isomorphism
6y = (ﬂ*®x)G.

In particular Y is the categorical quotient of X by G in the category of k-schemes, i.e.
every G-invariant morphism 7’ : X — Y’ factors in a unique way through Y. For this reason,
for the rest of this paper Y is called the quotient of X by G and x the quotient morphism or
the projection (on the quotient).

1.5. Analytic setting. — Suppose moreover that the field k is complete with respect to
an absolute value |.|. Keeping the notations introduced above denote by G*" (resp. X",
resp. Y?") the k-analytic space obtained by analytification of the k-affine scheme G (resp. X,
resp. Y). Here, a real analytic space is the quotient of a complex analytic space by an
anti-holomorphic involution; non-archimedean analytic spaces are taken in the sense of
Berkovich. We summarised the needed material on the construction of the analytification
in Section 2.1: the reader can refer to that section for the definitions.

The k-analytic group G*" acts on the k-analytic space X" and the morphism of k-analytic

spaces 7: X — Y induced by the canonical projection (still denoted 7) is surjective and
G?*-invariant.

Let 0: G Xx X — X be the morphism of k-schemes defining the action of G on X.
DEFINITION 1.5. — The orbit of a point x € X" is the subset of X*" defined by
G™ . x 1= o™ (pr* (x)).

A subset F C X" is said to be G*"-stable (resp. G*-saturated) if for every point x € F, its
orbit G* - x (resp. the closure G - x of its orbit) is contained in F.

In the complex case these are just the usual notions. In any case, for two points x, y € X",
yeG¥ . x = xe Gy,

(in the non-archimedean case the statement is not obvious because x and y may have dif-
ferent complete residue field; see [5, Proposition 5.1.1]).
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1.6. Analytic topology of the GIT quotient. — Our first main result is the analogue of
points 1)-3) in Theorem 1.4 in the setting of k-analytic spaces:

THEOREM 1.6 (cf. Propositions 3.1 and 3.9). — With the notation introduced above, the mor-
phism 72 : X* — Y*" satisfies the following properties:
1) 7" is surjective and G*"-invariant;
2) foreveryx,x’ € X*":
1 (x) = 7(x’) ifand only if G¥.-xNG™-x' # @;
3) if F is a G*-stable closed subset of X", then its projection ®*(F) is a closed subset
of Y.

In the complex case statements 1) and 2) are deduced from their “algebraic” version (The-
orem 1.4 1)-2)). In order show 2), the crucial observation is that the orbit G - x of a point
x € X(C) is a constructible subset of X: its closure with respect to the complex topology
coincide with its Zariski closure. This theorem is already known as a consequence of the
results of Kempf and Ness. Another proof has been given also by Neeman [51].

Theorem 1.6 permits to derive formally the following consequences, whose proof is left
to the reader:
COROLLARY 1.7. — With the notation introduced above, the following properties are satisfied:
1) for every point x € X*" there exists a unique closed orbit contained in G®" - x;
2) for every G*"-saturated subsets F, F’ C X®":
™ (F)Nx®(F')# & ifandonlyif FNF + &;
3) asubsetV C Y is open if and only (#®)~1(V) c X is open;
4) let U be an open subset of X**; then U is G**-saturated if and only if
U= (2" (x™"(U));
if U satisfies one of this two equivalent properties, then its projection £**(U) is an open
subset of Y.
In particular the topological space Y?" is separated and is the categorical quotient in the
category of Ty topological spaces 3 of X" by the equivalence relation:
XRox &= G" -x=G"-x.
In the complex case, the isomorphism 7# : Oy — (7,0x)C is known to hold also at the
level of holomorphic functions, that is, the homomorphism of sheaves,

63 — (030",

is an isomorphism. This can be shown either by general techniques of Stein spaces (see for
instance [62, Chapter 5, Proposition 4-3)]) or as an application of Luna’s Slice Theorem (in
both cases, one averages functions on a maximal compact subgroup).

Now, neither of the two approaches is available in non-archimedean geometry — the
reasons being that Stein spaces are far to be understood, étale morphisms are not local

3. A topological space S is said to be T if the points of S are closed.
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isomorphisms and one cannot interpret (in characteristic 0) the Reynolds operator as an
average on maximal compact subgroup.

QUESTION. — In the non-archimedean case, is the homomorphism of sheaves,
# . man an\ G
" 03" — (O,

an isomorphism?

1.7. A variant of the result of Kempf-Ness

DEFINITION 1.8. — A function u: X" — [—00, +00] is said to be invariant under a maximal
compact subgroup of G if there exists a maximal compact subgroup U C G*" with the
following property: for every point t € G*" X X" such that pr,(¢) € U,

u(e™(1)) = u(pry(t),

where 0: G Xx X — X is the morphism defining the action of G on X.

THEOREM 1.9 (cf. Theorem 3.3). — Letu: X® — [—00, +00[ be a plurisubharmonic function
which is invariant under the action of a maximal compact subgroup of G. For every x € X",

. ; . /
ron ey ) = o dBE )
DEFINITION 1.10. — Let u: X® — [—00, +-00[ be a function. A point x € X" is said to be:
> u-minimal on w-fibre if u(x) < u(x’) for all x” € X" such that n(x) = 7 (x’);
> u-minimal on G-orbit if u(x) < u(x’) for all x’ € G* - x.
The set of u-minimal points on r-fibres (resp. u-minimal points on G-fibres) is denoted
by X" (u) (resp. X2 (u)).
COROLLARY 1.11 (cf: Corollary 3.4). — Letu: X — [—co, 400 be a plurisubharmonic func-
tion which is invariant under the action of a maximal compact subgroup of G. Then,
1) a point x is u-minimal on n-fibre if and only if it is u-minimal on G-orbit;
2) X7 (u) = X" (w);

3) ifu is moreover continuous, the set of u-minimal points on r-fibres X™ (u) is closed.

In order to understand better the relation with the result of Kempf and Ness remark the
following consequence of Theorem 1.9:

CoROLLARY 1.12. — With the notation introduced above, let u be topologically proper. Let
x € X* be a u-minimal point on its G-orbit (thus on its w-fibre). Then there exists a point
xo € G - x such that its orbit is closed and u(xy) = u(x).

Proof. — Indeedlet x” € G2" - x be a point whose orbit is closed. It suffices to take a minimal
point xq in the orbit of x’ (this exists because u is topologically proper). ]

The techniques employed to prove Theorem 1.9 permit to analyse the positivity condi-
tions that a U-invariant function has to satisfy in order to obtain a statement generalizing
the one of Kempf and Ness. This aspect is discussed in Section 3.5.
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1.8. Metric on GIT quotients. — Let X be a projective k-scheme acted upon by a reduc-
tive group G. Let L be a G-linearized ample invertible sheaf. Suppose that L is endowed with
an extended metric ||.||z: this is the data, for every analytic open subset U C X" and every
section s € I'(U, L*), of a function ||s||r,y : U — R satisfying the following properties for
all x e U:

> |Is|l,u(x) = 0 if and only if s(x) = 0;

> [14sllz,u (x) = [Alllslle,u (x) for all A € k;

> for an open subset V. C U, ||s

Lv = lIsllL,u |y
Note that in the complex case this notion coincide with the usual notion of metric on the
line bundle L.

Let X** be the open subset of semi-stable points of X and the let Y be the categorical
quotient of X* by G. Let m: X* — Y be the quotient map. For every D > 1 divisible
enough there exist an ample invertible sheaf Mp on Y and an isomorphism of invertible

sheaves,

¢op: T*Mp — LQFQSS,
compatible with the action of G (see [48, Theorem 1.10]). Define an extended metric on Mp

as follows: for y € Y" and a section t of Mp defined on a open neighbourhood of y, set

itllmp (y) := sup |Iz"t]l e (x).
n(x)=y
One checks that this is actually a metric, i.e. the right-hand side is not +co (see Proposi-
tion 4.5).

THEOREM 1.13 ([75, Thm 4.10], ¢f. Thm 4.6 in Chapter 3). — Make the following assumption:
> the metric ||.||L is invariant under the action of a maximal compact subgroup of G;

> for every analytic open subset U C X*" and every section s € I'(U,L*) that does not
vanish on U, the function —log ||s||: U — R is plurisubharmonic.

Then, the metric ||.||m,, is continuous.

REMARK 1.14. — In the complex case, if the metric ||.|| ¢, » is the restriction of a Fubini-Study
metric this result follows from the results of Kempf-Ness. Zhang shows that the general case
can be led back to the case of a Fubini-Study metric thanks to an approximation result due
to Tian and to an argument of extension of sections of small size (see [73, Theorem 2.2]
and [15, Appendix A]). The latter argument permits to show that the Kéhler form of the
metric ||.|| up, o is semi-positive [74, Theorem 2.2].

REMARK 1.15. — In the non-archimedean case, the main example of a metric with such
properties is given by metrics coming from integral models. More precisely, let X be a
projective k°-scheme endowed with an action of a reductive k°-group €. Suppose that X
comes equipped with a 6-linearized ample invertible sheaf £. Let X, G and L be respectively
the generic fibre of X, € and &£.

The continuous and bounded metric associated to the integral model & extends to an
extended metric ||.||% (see § 4.1.3). Then, the extended metric ||.||% is invariant under the
action of the maximal compact subgroup of G associated to € (see Definition 2.21) and,
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since & is ample, the function —log [|s|| ¢ is plurisubharmonic for every analytic open sub-
set U € X" and every invertible section s € T'(U, L®") (see Corollary 4.4).

THEOREM 1.16 (cf: Theorem 4.6). — Under the assumptions of Theorem 1.13 suppose that k is
non-trivially valued and algebraically closed. Let x € X**(k) be a semi-stable k-point of X and
t € m(x)*AMp be a non-zero section. Then,

sup ||z t[|pen (x") = sup ||z"t||pen (g x),
n(x)=m(x) 9eG (k)

(where the supremum on the left-hand side is ranging on k-points x’ in the fibre of 7(x)).

Suppose that k is either a finite extension of Q, or of the form [F((t)) for a field F. With
the notations of Remark 1.15 let L** be the open subset of semi-stable points of X and Y the
categorical quotient of X*°. For every D > 1 divisible enough there exist an ample invertible
sheaf Mlp on Y and an isomorphism of invertible sheaves on X%,

®D

¢D: ﬂ*ﬂD o gl%ss'

Let ||.]| ., be the continuous and bounded metric associated to M p.

THEOREM 1.17 (c¢f. Theorem 4.11). — Let k be either a finite extension of Q, or of the
form F((¢t)) for a field F and let K be the completion of an algebraic closure of k. Let y be a
K-point of Y and let t € y*Mp be a section. Then,

Ity (y) = sup [l7"tllgen (x),
7(x)=y

where the supremum on the right-hand side is ranging on K-points x of X in the fibre of y.

2. Preliminaries to the local part

Let k be a field complete with respect to an absolute value |. |.

2.1. Analytic spaces

2.1.1. Overview. — Our framework will be that of analytic spaces over k. There are three
cases:

1) The complex case: a C-analytic space will be a complex analytic space in the
usual sense.

2) The real case: an R-analytic space will be a R-locally ringed space isomorphic to a
quotient X /1 where X is a complex analytic space and t: X — X is an anti-holomorphic
involution.

4. The fields R and C are always assumed to be endowed with the usual archimedean absolute value.
5. Namely the quotient X /1 is the R-locally ringed space (|X /1], Ox/,) defined as follows:

> the topological space | X /1| is the quotient X /1 endowed with the quotient topology;

> if 7: X — |X /1| denotes the canonical projection, for every open subset U C |X /1] the sections of the
structural sheaf Ox, are defined by I'(U, Ox,) = L(x71(U), 6x)" = {f € I'(U, 6x) : H(F) = £}, where

#: 6x — 1.0 is the anti-holomorphic homomorphism of sheaves of R-algebras associated to the involution .
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3) The non-archimedean case: if the field k is complete with respect to a non-archimedean
absolute value (possibly trivial) k-analytic spaces in the sense of Berkovich are considered.
References for the latter theory are the foundational papers of Berkovich [5], [6]; a self-
contained introduction is given in [57, §1.2], while a reference linking other approaches to
non archimedean analytic geometric to Berkovich’s one may be [23].

We are interested in analytic spaces obtained from algebraic k-schemes. Instead of giving
the general definitions, we present a construction of the analytification of a finite type k-
scheme X following Berkovich [5, §1.5, §3.4 and §3.5], Poineau [54], Nicaise [52, §2], which
works for all three cases.

2.1.2. Underlying topological space. — Let X be a k-scheme of finite type.

DEeFINITION 2.1. — The topological space X" underlying the analytification of X is the set
couples (x,|.|) made of a point x € X (not necessarily closed) and of an absolute value
|.|: k(x) — R4 such that its restriction to k coincides with the original absolute on k
(here x(x) denotes the residue field at x).

The set |X?"| is endowed with the coarsest topology such that, for every open subset
U cX,

1) the subset |U*| = {(x,]|.]) € |X*"| : x € U} is open in | X?"|;

2) for every function f € I'(U, Ox), the following map is continuous

1 U — Ry If1: (5 ]]) 7 [f(x)].
This topology is called the analytic topology of X.

Not to burden notation denote a point (x, |.|) of |X?*| simply by x.

THEOREM 2.2. — IfX is non-empty, the topological space | X*"| is non-empty, locally separated
and locally compact. Moreover,

1) it is Hausdorff if and only if X is separated over k;
2) it is compact if and only if X is proper over k.

Proof. — The proof of the local compactness can be found in [5, §1.5]. Statements 1) and 2)
are respectively statements (i) and (ii) in [5, Theorems 3.4.8 and 3.5.3]. O

DEFINITION 2.3. — Let (x, |.]|) be point of X*". The complete residue field ¥ (x) at x is the
completion of the residue field x(x) with respect to the absolute value |.|.

This notation differs from the one that usually occurs in the literature, where the complete
residue field is denoted by # (x).

The topological space underlying the analytification of a scheme is functorial on the
scheme: thatis, if f: X — Y is a morphism between finite type k-schemes, then f induces
a continuous map |f?*|: |X*| — |Y?*"|.

Forgetting the absolute value gives rise to a continuous map ax : |[X*"| — X, where X is
the topological space underlying the scheme X.

REMARK 2.4. — The pre-image by ax of a closed point of x is a singleton: since k(x) is a
finite extension, there is a unique absolute value on k(x) extending |.|;. Distinguish three
cases:
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1) In the complex case, a theorem of Gel’fand-Mazur affirms that a complete field con-
taining C (isometrically) coincides with C. The map ax induces a homeomorphism
ax: |X*| — X(C) where X(C) is endowed with the complex topology.

2) In the real case, the map ax gives a homeomorphism
ax: |X*| — X(C)/ Gal(C/R).

3) In the non-archimedean case, this is the topological space underlying the analytifica-
tion of X in the sense of Berkovich. In this case the map ax is surjective. ¢

ProrosITION 2.5. — If k be an algebraically closed field and the absolute value on k non-
trivial, then the set of k-points X (k) is dense in X?".

An important feature for us will be the behaviour of the closure with respect to the Zariski
and analytic topology:

PROPOSITION 2.6. — Let X be a k-scheme of finite type. For every constructible set Z C X,
ay'(2) = ax' (Z).
where on the left-hand side the closure is taken with respect the analytic topology and on the

right-hand side to the Zariski one.

Proof. — See [39, Exp. XII, Corollaire 2.3] for the complex case and [5, Proposition 3.4.4]
for the non-archidemedean one. The real case is deduced from the complex case thanks to
the homeomorphism X" ~ X(C)/ Gal(C/R). o

2.1.3. Structural sheaf. — Let us introduce the concept of analytic function on X*". Begin
with the case X = A} for a non-negative integer n.

DEFINITION 2.7. — Let U C |X®?| be an open subset. An analytic function over U is a map
f:U > |iey K (x) such that for every x € U:

1) f(x) € x(x);

2) for every ¢ > 0 there exists an open neighbourhood U, of x in U and a rational function
ge € k(t1,. .., t,) without poles in U, such that, for every y € U, one has | (y) —g.(y)| < €
(here ty,...,t, are the coordinate functions on AZ)

The k-algebra of analytic functions on U is denoted by G5 (U).

The correspondence U~ O (U) gives rise to a sheaf of k-algebras on the topological
space X*". For every point x € X" the stalk at x is a local ring.

DErFINITION 2.8. — The n-dimensional analytic affine space is the locally k-ringed space

Ap = (JAp™],08%).

6. For instance, when X = A,lc, the Gauss norm on polynomials ||.||: k[t] — Ry, defined by 3 a;t*
max |a; |, is multiplicative and one can extend it to k(#). If n denotes the generic point of the affine line, the couple
(1, 1I-11) is a point of |A]1<’ .
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REMARK 2.9. — In the complex case, the locally C-ringed space A>®" is the topological
space C" equipped with the sheaf of holomorphic functions. In real case, the locally R-
ringed space Ay *" is the topological space C"/ Gal(C/R) equipped with the sheaf of holo-
morphic functions f on C" verifying f(z) = f(z). In the non-archimedean case it is the
analytical n-dimensional affine space in the sense of Berkovich. See for instance [5, §1.5]
and [54].

Even though holomorphic functions will be used only on A,lc’ " let us sketch how to
define the structural sheaf on the analytification of a k-scheme X of finite type.

1) If X is affine, fix a closed immersion j: X — A} for a suitable n. Let I C Oan be the
ideal sheaf defining X and let I*® C G2, be the ideal sheaf generated by I. Consider the
sheaf of k-algebras on X",

©an ,_jan—1(®an /Ian)
= an .
One can show that the sheaf 63" does not depend on the choice of the closed embedding j.

2) For an arbitrary k-scheme X choose a covering X = Ufil X; by affine open subsets.
The sheaves 0%, on |X | then glue to a sheaf Oxa on [X**|. One can show that 63 does
not depend on the chosen covering.

DEFINITION 2.10. — The locally k-ringed space X" := (|X*"|,0%) is called the analytifi-
cation of X.

To simplify the notation we do not distinguish X*" and its underlying topological
space | X?"|.

A morphism f: Y — X between k-schemes of finite type induces a morphism of k-
analytic spaces f*": Y2 — X If no confusion seems to arise write f instead of f*".

2.1.4. Extension of scalars

DEFINITION 2.11. — An analytic extension K of k is a field complete with respect to an
absolute value |.|x equipped with an isometric embedding k — K.

Let K be an analytic extension of k. Let X be a k-scheme of finite type and let
Xk := X Xk K the K-scheme obtained extending scalars to K. Let Xi" be the K-analytic
space obtained by analytification of the K-scheme Xk.

DEeFINITION 2.12. — The morphism of base change Xx — X gives rise to a morphism of
locally k-ringed space

Py k k' XP — X,
called the extension of scalars map. If no confusion arises, we will omit to write the depen-
dence on the scheme X.

PROPOSITION 2.13. — The map pry g is surjective and topologically proper. Since the topo-
logical spaces X*" and |Xg?| are locally compact, the map pry g /. is closed.

Proof. — In the archimedean case, when k = R and K = C, the map pry ¢ g Is just the
quotient map by the Galois action. In the non-archimedean case the reference is [6, §1.4].
m]
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The extension of scalars to K is functorial: for a morphism of k-schemes of finite type
f:Y — X denote by f2" : Y2 — X the morphism of K-analytic spaces induced by f.

DEFINITION 2.14. — A K-point of X is a couple (x, &;) made of a point x € X" and of an
isometric embedding ¢, : kK (x) — K.

Let x € X* be a point of X** and let k¥ (x) — K be an isometric embedding. The point
x may be viewed as a k(x)-point of X. Let xx be the K-point of Xg which factors the
composite map Spec K — Spec k (x) — X through the K-scheme Xk.

DEFINITION 2.15. — The couple (xk, |.|x) (Where |.|k is the absolute value on K) is a point
of X" called the point associated to x and the embedding i (x) — K.

2.1.5. Fibres. — Let f: Y — X be a morphism between k-schemes of finite type. Let
x € X* be a point, K = ¥ (x) be its complete residue field and xx the point of X" as-
sociated to x.
PROPOSITION 2.16. — Keep the notations just introduced. Then:

1) The map of scalars extension pry g i : Y¢" — Y™ induces a homeomorphism

Pry gyt (Y Xxi faxH)™ — ()7 ();

2) Forevery analytic extensionK” ofk and every pointx’ € Xpy such thatpry g/, (x') = x,
the map induced by pr, g i

pry g (&) 1) — (F) 7 (%)
is surjective.

Proof. — 1) In the complex case this is clear and the real case is deduced from the complex
one by Galois action. In the non-archimedean case, see [6, §1.4].

2) Let @ = «(x’) be the completed residue field of x” and let x{, be the point of X&"
associated to x”. The point x{, coincides with the point xq associated to the point x and
the embedding k(x) — Q = K (x’) (the latter is given by the fact that x” projects on x).
Therefore the composite map

(f3M) 7 (xy) 2 ()l (x') 2K (panyl (),

coincides with the map

-1 Py, /K -1 Pry.k/k -1
(fa")™ (xa) —== (") (k) —— (f*)" (%),
where K = K (x) is the completed residue field at x and xx is the point of X" associated
to x. The latter composite map is surjective: indeed, the second one is a homeomorphism
according to (1); the first one is the map of scalar extension
(YQ XXQ {XQ})an — (YK XXK {xK})an.

This implies that pry g/ : ( )~ (x") — ()7 (x) is surjective. o

PROPOSITION 2.17. — With the notations introduced above, let y1,ya € Y*" be points such that

f(yhl) = f(y2). Then, there exists an analytic extension  of k and Q-points x1q, x20 € X'
such that:
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1) pro(yio) = yi fori=1,2;
2) &M yia) = f3M(y20).

Proof. — The proof is made in two steps.

First step. — Suppose that X = Speck is just made of a k-rational point. The result in
this case is clear: it suffices to take {2 to be an analytic extension endowed with isometric
embedding « (y;) — Qfori = 1,2 and y1q, Y2 be the points of X3" associated to y; and y».

Second step. — Let x € X* be the point f(y1) = f(y2) and let K = ¥ (x) be its residue
field. Let xx € X3" be point associated to x. According to Proposition 2.16 the map

Pry k/k* (YK XXk {xK})an — (fan)_l(x)a
is a bijection. Therefore there exists y1x, y2x € Y2 such that
1) pry i (yix) = yi fori =1,2;

2) f&(yix) = f2"(y2x)-

Conclude applying the first step to the K-schemes Y’ = Yx Xx, {xx}, X’ = {xx} and the
morphism induced by fx: Yk — Xk. ]

2.2. Maximal compact subgroups. — Let k be complete field.

2.2.1. Subgroups. — Let G be a k-algebraic group (i.e. a smooth k-group scheme of finite
type). Let m: G Xx G — G be the multiplication map and inv: G — G be the inverse.

DEFINITION 2.18. — A subset H C G?" is said to be a subgroup if the following conditions
are satisfied:

1) the image through m® of the subset pry!(H) N pry!(H) € G* X} G*® is contained
in H;

2) the image of H through inv®" is contained in H;

3) the neutral element e € G(k) belongs to H.

A subgroup H is said to be compact if it is compact as a subset of G*".

Let K be an analytic extension of k and let H € G*" be a subgroup. Then the subset
Hg := prg g/ (H) € G

is a subgroup of G
Let G act on a k-scheme of finite type and let 6: G Xx X — X be the morphism defining
the action.

DEFINITION 2.19. — Let H € G® be a subgroup and let x € X" be a point. The H-orbit
of x, denoted H - x, is the image through ¢®" of the subset

prit (H) Nnpryt(x) € G xj X,
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2.2.2. Archimedean definition. — Let k = R, C and let G be a (connected) reductive k-
group.

DEFINITION 2.20. — If k = C a maximal compact subgroup of G is a compact subgroup U of
G(C) which is maximal among the compact subgroups of G(C).

If k = R a maximal compact subgroup of G is a compact subgroup U c G*" such that
praR(U) is a maximal compact subgroup of G(C).

Over the complex numbers a connected affine algebraic group H is reductive if and only
if H(C) contains a compact subgroup which is Zariski-dense. If this is the case:

> a compact subgroup of H(C) is Zariski-dense if and only if it is maximal;

> all the maximal compact subgroups of H(C) are conjugated.
If U is a maximal compact subgroup of G, then there exist a real algebraic group U and an
isomorphism of complex algebraic groups a: G ~ U xg C such that a(U) = U(R). A torus
T c G is defined over R (that is, it comes from a torus of U) if and only if T N U is the
maximal compact subgroup of T(C).

2.2.3. Non-archimedean definition. — Let k be non-archimedean and G a reductive k-group.
Consider only compact subgroups of G*" associated to reductive models of G. A thorough
study of maximal bounded subgroups of G(k) can be found in [18], [19], while compact
subgroups of G*" are considered in [5, Chapter 5] and [57], [58].

Let # be an affine k°-group scheme of finite type and let H = % Xy- k be its generic
fibre. Consider the compact subset

Uy = {h € H" : |f(g)| < 1for every f € k°[#]}
where k°[#] is the k°-algebra of regular functions on % .
DEFINITION 2.21. — A subset H € G?" is said to be a maximal compact subgroup if it is

of the form H = Ug for a reductive k°-group € and an isomorphism of k-group schemes
¢: € Xpe k — G.

The subset Ug earns the name of maximal compact subgroup because it is a subgroup (in
the sense of Definition 2.18), it is compact and it can be shown that it is maximal among the
compact subgroups of G*". The latter property will be of no use for us.

PROPOSITION 2.22. — With the notations introduced above:
1) the set of k-rationals points Ug(k) := UgNG(k) coincides with the set of k°-
points €(k°);

2) for every analytic extension K of k, one has
-1
Prk/k Ug = U‘§®koK°
as subsets of G ;

3) if'k is algebraically closed and non-trivially valued, the set Ug(k) is dense in Usg.

Proof. — 1) Let ¢4: A — k be the homomorphism of k-algebras induced by g € G(k). The
point g belongs to Uy if and only if |¢,(f)| < 1 for every f € k°[%€], which means that ¢
restricts to a homomorphism ¢, : k°[€] — k°.
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2) Let fi, ..., fn be generators of the k°-algebra k°[§]. For every point g € G,
|f(x)| < 1forevery f € k°[6] = |fi(x)| < 1foreveryi=1,...,N.

The statement follows from this and noticing that fi, ..., fx are also generators of the K°-
algebra K°[€].

3) This is true because the compact subset Ug is strictly affinoid in the sense of Berkovich.
Thus this can be found in [5, Proposition 2.1.15]. O

The main result of [26] and [34] is that, up to a finite separable extension, all reductive
groups comes by base change from Z. More precisely:

THEOREM 2.23. — Let G be a reductive k-group. Then, there exist a finite separable extension k'
of k, a Z-reductive group scheme § and an isomorphism of k’-group schemes

Gxr k' =€xz7k'.

This is the combination of Corollary 3.1.5 and Theorems 3.6.5-3.6.6 in [26].

2.3. Plurisubharmonic functions. — In this section we discuss plurisubharmonic func-
tions.

In the complex case we consider the usual plurisubharmonic functions and, in the real
case, complex plurisubharmonic functions invariant under complex conjugation.

In the non-archimedean case, subharmonic function on curves P! are by now well un-
derstood thanks to work of Rumely [60], [61], Rumely and Baker [4], Kani [44], Favre
et Jonsson [31] and Thuillier [66] (who studied systematically the theory of subharmonic
functions also on curves of higher genus). The comparison between these notions can be
found in [66, Chapitre 5]. Moving to higher dimension, we say that a function is plurisub-
harmonic if the restriction to the image of any every open subset of P! is subharmonic.
This does not give a sensible theory of plurisubharmonic functions: for instance, in order
to get the Maximum Principle one needs to test subharmonicity on curves of higher genus.
However, this definition will be enough for our purposes. Other approaches to plurisubhar-
monic functions have been studied by Chambert-Loir et Ducros [21] and Boucksom, Favre
et Jonnson [17].

2.3.1. Harmonic functions. — Let k be a complete field and let 2 Allc’ # be an open subset.

DEFINITION 2.24. — A real-valued function h: {2 — R is said to be harmonic if for every
x € () there exist an open neighbourhood U of x in €2, a positive integer N and for every
i =1,...,N an invertible analytic function f; € I'(U, 6")* and a real number «; € R such
that

N
hy = Za,-log|ﬁ|.
i=1

Note that the in the complex case one can always take N = 1 thanks to the exponential
map, which gives the usual notion of harmonic function. In the real case one finds the notion
of harmonic function on the associated open set of C invariant under conjugation. In the
non-archimedean case one recovers the notion of harmonic function of Thuillier (see [66,
Définition 2.31] taking in account [loc. cit., Théoréme 2.3.21]).
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PROPOSITION 2.25. — Let Q) be an open subset of the analytic affine line A,lc’ 4 The following
properties are satisfied:

1) Harmonic functions give rise to a sheaf of R-vector spaces on Allc’ an,
2) If f is an invertible analytic function on () then log | f| is an harmonic function.

3) Let f: 2 — Q be an analytic map between open subsets ofAllc’ " for every harmonic
map h on §) the composite map h o f is harmonic on §'.

4) Let K be an analytic extension of k and Qg = prI_(l/k (). For every harmonic function
h: @ — R composite function h o pry ;. : Qg — R is harmonic.

5) (Maximum Principle) If the open set () is connected, then an harmonic function h on )
attains a global maximum if and only if it is constant.

6) If ) is connected, every non-constant harmonic function h: ) — R is an open map.

Proof. — Statements 1) —4) are straightforward consequence of the definition.

5) The Maximum Principle it is well-known in the complex case (which imply the real
one) [25, Chapter I, 4.14]; in the non-archimedean case it can be found in the proof of
Proposition 2.3.13 in [66].

6) It is sufficient to show that the image of 2 is open. The image of (2 is an interval I ¢ R
(possibly unbounded) and one has to show that it does not contain its endpoints.

Treat the case of the right endpoint as follows: if I is unbounded on the right, then we
are done; if b € R is the right endpoint of I, then h cannot take the value b because of the
Maximum Principle. The case of the left endpoint goes similarly O

2.3.2. Subharmonic functions. — Let k be non-trivially valued and ) an open subset
of AL
k

DEFINITION 2.26. — A function u: {2 — [—oc0, 400 is said to be subharmonic if it is upper
semi-continuous and for every connected open subset )’ C (2 and every harmonic func-
tion h on € the function u o — h satisfies the maximum principle, that is, it attains a global
maximum if and only if it is constant.

In the complex case this is equivalent to the usual notion of subharmonic function. Thus
in the real case giving a subharmonic function on (2 is equivalent to give a subharmonic
function on ()¢ invariant under complex conjugation. In the non-archimedean case one
finds the notion of subharmonic function in the sense of Thuillier (see [66, Définition 3.1.5],
taking in account the characterisation [loc. cit., Corollaire 3.1.12] and compatibility to ana-
lytic extensions [loc. cit., Corollaire 3.4.5]).

PROPOSITION 2.27. — Let §) be an open subset of the analytic affine line A", The following
properties are satisfied:

1) Harmonic functions are subharmonic.

2) If u,v are subharmonic functions on ) and a, § are non-negative real numbers, then
au + fv and max{u, v} are subharmonic functions.

3) If f is an analytic function on ) then log |f| is subharmonic.
4) Let K be an analytic extension of k and Qg := prl}l/k (2). For every subharmonic func-
tionu: 2 — R composite function u o Pk Qk — R is subharmonic.
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5) Let f: Q' — ) be an analytic map between open subsets ofAllc’ a1 for every subharmonic
map u on §2 the composite map u o f is subharmonic on )'.

6) (Maximum Principle) If the open set §) is connected, then a subharmonic function h on
Q attains a global maximum if and only if it is constant.

7) If{u;}ies is a locally bounded family of subharmonic functions on (), the its regularised
upper envelope” is subharmonic.

8) Let uy,...,u, be subharmonic functions on 2 and ¢: R" — R be a convex function
that is non-decreasing in each variable. Extend ¢ by continuity into a function

@: [—00,400[" — [—c0, 00l
Then the function ¢ o (uy,...,uy): @ — [—oo, +oo| is subharmonic.

Proof. — 1) Follows from the definitions.
2) See [66, Proposition 3.1.8].
3) Follows from the definitions.

4) In the real case it follows from the definition with the mean value inequality [25,
Chapter I, Theorem 4.12]. In the non archimedean case the compatibility to extension of
scalars is proven in [66, Corollaire 3.4.5].

5) In the archimedean case this is well-known [25, Chapter I, Theorem 5.11]. In the non
archimedean case this is [66, Proposition 3.1.14].

6) Follows from the definitions.
7) See [66, Proposition 3.1.8].
8) See [25, Chapter I, Theorem 4.16]. O

PROPOSITION 2.28. — Letv: R — [—oo, +0oo| be a function. The composite map
volog|t]: GI — [0, +oo],
is subharmonic if and only if one of the following conditions are satisfied:

> v is identically equal to —oo;
> v is real-valued and convex.

Proof. — (&) If v = —co there is nothing to prove. If v is real valued and convex, then the
subharmonicity of v o log |¢| is similar to (8) in the previous proposition: one writes

o(§) = sup h;(§)
iel
where h;(£) = a;& + b; is the family of lines supporting the graph of v. For every i € I the
function h;(log|t|) = a;log |t| + b is (sub)harmonic. Thus according to (7) in the previous
proposition, the function
o(log 1) = sup;er hs{log )

is the (regularised) upper envelope of subharmonic functions, thus it is subharmonic.

7. Namely the smallest upper semi-continuous function bigger than u; for every i € I.
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(=) Suppose that v is not identically —co. Since log|¢| is a closed map and v o log |¢|
is upper semi-continuous, then v is upper semi-continuous. Let a < b real numbers let
¢(€) = A + p be an affine function such that

v(a) < @(a) and o(b) < @(b).

One has to show v(&) < ¢(&) for every & € |a, b|. Since the interval [a, b] is compact and
the function v — ¢ is upper semi-continuous, it attains a maximum on a point &, € [a, b].
By contradiction suppose v(&y) > ¢(&), thus & € ]a, b[. The function

o(log|t]) = Alog|t| + p
is harmonic on G2 and the open set
Q={teGi:a<loglt| <b},
is connected.

According to the subharmonicity of v o log |t|, the function (v — ¢) o log |¢| satisfies the
Maximum Principle on Q. Since it attains a global maximum, it is constant. Moreover, by
upper semi-continuity of v,

v(é0) = (o) < max{o(a) - ¢(a),v(b) - ¢(b)} <0,
which contradicts the hypothesis v(&) > ¢(&). mi

2.3.3. Plurisubharmonic functions. — Let X be a k-analytic space.

DEFINITION 2.29. — A map u: X — [—o0, +00] is said to be plurisubharmonic if it is upper
semi-continuous and for every analytic extension K of k, every open set {2 of A}éan and
every analytic map ¢: 2 — Xk, the composite map u o ¢: ) — [—co, +o0[ is subharmonic

on .

In the complex case this is usual notion of plurisubharmonic function; in the real case a
plurisubharmonic function is a plurisubharmonic function on the associated complex space
invariant under conjugation .

ProprosITION 2.30. — Let X be a k-analytic space.

1) IfX is an open subset of the affine line A,lc’ M theu is plurisubharmonic on X if and only
if it is subharmonic.

2) Ifu,v are plurisubharmonic functions on X and a,  are non-negative real numbers, then
au + fv and max{u, v} are plurisubharmonic functions.

3) If f is an analytic function on X then log |f| is plurisubharmonic.

8. In the archimedean case this is trivial. In the non-archimedean case the open subset {2 can be written as the
following increasing union 2 = UO<s<eb/a C, where

Ce={xe Allc’an ta+ e <log|t(x)| < b-iel}.
For all non-negative real numbers 0 < a < f3, the compact subset
Cla, p) ={x e Ap™ : & < |t(x)| < B}

is path connected. Therefore € is path-connected, thus connected. The fact that C(«a, ) is path-connected can
be shown by hands, and it is a basic, instructive exercise. Otherwise this follows from the fact the C(a, ) is a
normal k-analytic space, thus connected [5, Proposition 3.1.8], hence path-connected [5, Theorem 3.2.1].
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4) Let K be an analytic extension of k and u: X — [—o0,+oo[ be a plurisubharmonic
Junction. Then the composite functionuopry ;.. : Xg — [—00, +00[ is plurisubharmonic.

5) Let f: X’ — X be an analytic map between k-analytic spaces; for every plurisubhar-
monic map u on X the composite map u o f is plurisubharmonic on X’.

6) If{ui}ier is a locally bounded family of plurisubharmonic functions on X, the its regu-
larised upper envelope is plurisubharmonic.

7) Letus, ..., u, beplurisubharmonic functions on X and ¢: R" — R be a convex function
which is non-decreasing in each variable. Extend ¢ by continuity into a function

¢: [-00, +-oo[ " — [~co, +-oof.
Then the function ¢ o (uy,...,up): X — [—00, +oo[ is plurisubharmonic.
Proof. — Follows from Proposition 2.27. m]
2.3.4. Construction of invariant functions. — Let n > 1 be a positive integer.

DEFINITION 2.31. — An extended norm on AZ’ # js a function a : AZ’ # — R, such that for
every analytic extension K of k, the map induced on the K-valued points of A7,

pr
ug: AI(K) = K" =5 A SRy

is a norm on the K-vector space K”.

If k = R, C one says that u is hermitian if the induced norm on C" is hermitian. If k
is non-archimedean one says that u is non-archimedean if, for every analytic extension K
of k, the induced norm on K" is non-archimedean.

REMARK 2.32. — 1) If k = C an hermitian extended norm is a norm on C” in the usual
sense.
2) If k = R an hermitian extended norm corresponds to a scalar product on R”.

3) If k is non-archimedean an example of non-archimedean extended norm is the function

u(x) = max {r1|t1(x)|, ... ,rn|tn(x)|},

where ry, ..., r, are positive real numbers and t1, . . ., t, the coordinate functions on A".

If a, f are norms on k", set

d(a,f) = sup
xekn—{0}

log a(x) ‘

px)
This is well-defined real number since norms on k" are all equivalent. The function d defines

a distance on the set of norms on k": the induced topology is the one of uniform convergence
on bounded subsets of k.

ProposSITION 2.33. — Let k be non-archimedean.

1) A non-archimedean norm a on k™ extends to a continuous non-archimedean norm u,
on AZ’ 4 in a way such that, if «, § are norms on k", then

Uq (%)
ug(x)

sup
xeAP™—{0}

log

‘ = d(a, p).
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2) A continuous non-archimedean extended norm is a plurisubharmonic function.

Proof. — 1) The extension is defined in two steps. Suppose first that the norm « is diago-
nalizable, that is, there exists a basis vy, ...,v, of k" and positive real numbers ry,...,r,
such that

a(x1o1 + -+ + xp0,) = max{ri|x1],. .., ral|xnl}-

Let ¢1,...,¢n: k™ — k be the dual basis. For x € AZ’ M set

Ug (x) := max{ri|@1(x)],...,ralen(x)]}.

Then u, is a continuous non-archimedean extended norm which extends a. The formula
for the distance of u, and ug follows from [35, Proposition 2.1] applied to every analytic
extension of k. The general case follows by the previous one by approximation (see [11,
2.6.2, Proposition 3]).

2) Let u be a non-archimedean extended norm. In order to prove that it is plurisubhar-
monic, up to extending k, one may assume that k is algebraically closed and maximally com-
plete. The norm « induced on k" by u is then diagonalizable: there exists a basis v1,. .., v,
of k" and positive real numbers r1, ..., r, such that

a(xlvl + - +xnvn) = max {r1|x1|, .- '7rn|xn|}a

(see [11, 2.4.1 Definition 1 and 2.4.4 Proposition 2]). Let ¢y, . . ., ¢, be the dual basis. Since k"
is dense in A}>*" the preceding equality holds everywhere: for x € A",

u(x) = max {r1|(p1 ()], ... ,r,lI(pn(x)I}.

It follows that u is plurisubharmonic. m|

ProPOSITION 2.34. — Suppose k algebraically closed. Let G be a reductive k-group and X
an affine k-scheme of finite type acted upon by G. Let U be a maximal compact subgroup
of G. Then, there exists a continuous, U-invariant, plurisubharmonic and topologically proper
functionu: X* — [—oo, 400 .

Proof. — Up to embedding X in an affine in a G-equivariant way, one may assume X = A"
and that the action of G on X is linear. If k = C it suffices to consider an hermitian norm
invariant under the action of U. If k is non-archimedean, let € be the reductive k°-group
associated to the maximal compact subgroup U. Let @ be a non-archimedean norm on k"
and define

Bx) = supyesg(rey @(g - X)-
Since 6(k°) is bounded (that is, it is relatively compact in G*") then f(x) is a well-defined
real number. The function § is a €(k°)-invariant non-archimedean norm on k" and by
Proposition 2.33 it extends to a unique continuous non-archimedean extended norm ug
on AZ’ 4 The extended norm ug is continuous, plurisubharmonic and invariant under ac-
tion of G(k°). Since G (k°) is dense in U, ug is U-invariant by continuity. O

2.4. Minima on fibres and orbits. — In this section we collect some basic facts about the

variation of minima and maxima of a function along the fibres of a map of analytic spaces
and on the orbits under the action of an analytic group.
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2.4.1. Minima on fibres

DEFINITION 2.35. — Let f: X — Y be a map of sets and u: X — [—c0, +00] a function. The
map of u-minima on f-fibres fiu: Y — [—o00, +o0] is defined for every y € Y by

fiuly) = inf u(x).

Let k be a complete field and let f: X — Y be a morphism of k-schemes of finite type. Let
f*: X* — Y2 be the morphism of k-analytic spaces induced by f. Let K be an analytic
extension of k and let fZ": X* — Y®* be the morphism of K-analytic spaces deduced
extending scalars to K.

PROPOSITION 2.36. — Let u: X*™ — [—o0, +o0| be a function. With the notations just intro-
duced:

f[?i‘(” © er,K/k) = (ffmu) °Pry k/k -

Proof. — This follows from the fact that, for every point yx € Y2, the map induced by the
scalar extension

pryxt (87 k) — (F*™) 7' (),

where y = pry g /i (yx) is surjective (see Proposition 2.16-2)). ]

2.4.2. Minima on orbits. — Let X be a k-scheme of finite type endowed with an action of a
k-algebraic group G.

DEFINITION 2.37. — Let H € G*" be a subgroup and u: X*" — [—00, +00] a function. The
map of u-minima on H-orbits ugy : X** — [—co, 40| is defined, for every x € X?*, as
up(x):= inf u(x).
x'€H-x

In the case H = G*" write ug instead of ugan.

REMARK 2.38. — Let 0: G Xx X — X be the morphism of k-schemes defining the action
of Gon X. Let ¢ : G*" X} X — X" be the induced map of k-analytic spaces. Denote by

om: prit(H) € G*™ xp X* — X,
the map induced by ¢*". With this notation, by definition,
ug = og|(uopr,).

PROPOSITION 2.39. — Letu: X*® — [—o0, +co| be a function. Let K be an analytic extension
of k and consider the subgroup Hg = pra’lK/k(H) of G'. Then,

(uo er,K/k)HK =UH O PTx K/k -

Proof. — This follows from Proposition 2.36 combined with Remark 2.38. ]
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PROPOSITION 2.40. — Letu: X" — [—oo 4 oo[ be an upper semi-continuous function. Then,
1) the function ug: X* — [—o0, +0o| is upper semi-continuous;
2) ifu is continuous, the subset
Xmin(y) = {x € X*™ :ug(x) - u(x) > 0},

is closed.

Proof. — 1) In the complex case the statement is trivial since ug is the infimum of the upper
semi-continuous functions x + u(g - x) with g € G(C).

In the general case, according to Proposition 2.39, the statement is compatible to exten-
sion of scalars. Suppose that the absolute value on k is non-trivial and k is algebraically
closed. In this case the k-rational points G(k) are dense in G*. According to the upper
semi-continuity of u for every point x € X",

ug(x) := xrlerg_xu(x) = gelg(fk) u(g - x).

Conclude by remarking that the right-hand side is an upper semi-continuous function
on X" because it is the infimum of the upper semi-continuous functions u,: x  u(g - x)
with g € G(k).

2) Follows from upper semi-continuity of ug — u. ]

3. Kempf-Ness theory

Let k be a complete field. From now on simplify notations in the two ways:

> If f: X — Y is a morphism of k-schemes, denote by f the morphism of k-analytic
spaces f*": X® — Y* induced by f;

> Let X be a k-scheme of finite type endowed with the action of k-algebraic group G. If
x € X* is a point denote its orbit by G - x instead of G*" - x.

3.1. Set-theoretic properties of the analytification of the quotient. — The aim of this
section is to prove assertions (i) and (ii) in Theorem 1.6. Let us go back to the notation
introduced in paragraphs 1.4-1.5.

PRrROPOSITION 3.1. — With the notation introduced above:

1) the morphism : X* — Y®*" is surjective and G-invariant;
2) foreveryx,x’ € X*",

m(x1) = n(x2) ifandonlyif G-x1NG- x5 # <.
3) for every point x € X" there exists a unique closed orbit contained in G - x.

In particular, the image of x,x” € X*" coincide if and only if the unique closed orbit
contained in G - x and the unique closed orbit contained in G - x’ coincide.

Before passing to the proof of Proposition 3.1 remark the following:
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COROLLARY 3.2. — With the notations introduced above, let X’ be a G-stable closed sub-
scheme of X and Y’ its categorical quotient by G. Then the induced morphism of k-analytic
spaces Y'*™ — Y2 is injective.

Proof of Proposition 3.1. — 1) Clear from Proposition 1.4.
2) Consider two points x1, x2 € X*": one has to show

ﬂ(xl):ﬂ(XQ) — G~xlﬁG-x2¢®.

(=) Suppose that the closure of the orbits G - x; and G - x5 meet in a point y. By conti-

nuity and G-invariance of 7,
w(x1) = 7(y) = 7(x2).

(&) Suppose 7(x1) = m(x3). First of all one reduces to the case where x1, xo are k-
rational points. According to Proposition 2.17 there exist an analytic extension K of k and
K-rational points x1x, x2x € X3 such that:

> Pry i (xix) = x; fori =1,2;

> mx(x1x) = 7x(x2x) (Where g : X2 — Y2" is the morphism of K-analytic spaces
associated to ).

Since the construction of the invariants is compatible to the extension of the base field,
one has Ag’( = AY®; K where G is the K-reductive group deduced from G by extension of
scalars. Thus the affine K-scheme Yk is the categorical quotient of the affine K-scheme X
by the K-reductive group Gg. Thus, up to extending scalars to K, one may assume that the
points x1, xo € X*" are k-rational.

Let x1,x2 € X" be k-rational points and let ¢: X* — X be the morphism of locally
k-ringed spaces deduced by analytification of X. To avoid confusion momentarily denote:

> 7% X3 — Y2 the morphism of k-analytic spaces deduced from the morphism of
k-schemes7: X — Y;

> G . x; the orbit of the k-point x; € X" under the action of the analytic group G*" - x;
i=12).

Fori=1,2:

a G- a(x;)) = G*™ - x;.
The hypothesis 72" (x1) = 7 (x2) implies 7 ((x1)) = m(a(x2)). According to Theorem 1.4
the closure of their algebraic orbits meet:

G-a(x1)NG-a(x) # .

For i = 1,2 the orbit G - «(x;) a constructible subset of X thus its closure of Z with
respect to analytic topology coincide with its closure with respect to the Zariski topology
(Proposition 2.6):

a (G a(x) =a1(G-a(x;)) = G - x;.

Since the closure of the algebraic orbits G - a(x1), G - «(x2) meet then the closure of the
analytic orbits G3" - x1, G3" - x5 meet as well.

3) Follows from 2): consider a point x € X*" and two points y1,y2 € G - x. Since 7 is
continuous and G-invariant one has 7(y1) = 7(y2). If one supposes that the orbits of y;
and ys are closed, statement (2) affirms that G - y; and G - y» meet, thus they coincide. O
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3.2. Comparison of minima

3.2.1. Statements. — Let us go back to the notation introduced in paragraphs 1.4-1.5 and
recall the statement of Theorem 1.9:

THEOREM 3.3. — With the notation introduced above, let u: X* — [—o0, +00[ be a plurisub-
harmonic function which is invariant under the action of a maximal compact subgroup of G.
For every point x € X",

inf  u(x’)= inf u(x").
m(x")=m(x) ( ) x'€G-x ( )
COROLLARY 3.4. — Letu: X* — [—co, +oo[ be a plurisubharmonic function which is invari-

ant under the action of a maximal compact subgroup of G. Then,
1) a point x is u-minimal on n-fibres if and only if it is u-minimal on G-orbits;
2) X0 () = X2 (u);
3) ifu is moreover continuous, the set of u-minimal points on n-fibres X™"(u) is closed.

Proof of the Corollary. — Clear from the definitions of u-minimal point on 7-fibre and u-
minimal point on G-orbit. Statement 3) follows from Proposition 2.40-2). O

In order to prove Theorem 3.3 we show:

THEOREM 3.5. — With the notation previously introduced, for every point x € X" there exists
a point xo that belongs to the unique closed orbit contained in G - x and such thatu(xy) < u(x).

Let us show how it entails Theorem 3.3.

Proof of Theorem 3.3. — For every point x € X",

. < .
n(y)lgfr(x)u(y) - yérg‘xu(y)

It remains to prove the converse inequality. Let x,x’ € X®" be such that 7(x’) = 7 (x).
Applying Theorem 3.5 to the point x’, there exists a point x/, that belongs to the unique

closed orbit contained in G - x” and such that u(x) < u(x"). By continuity,
n(xg) = n(x") = 7 (x),
hence G - x(') is the unique closed orbit contained in G - x. Thus,

u(x") 2 u(x}) = inf u(y) > inf u(y)= inf u(y),
y€G-x|, yeG-x yeG-x

where the last equality comes from the upper semi-continuity of the function u. Since x” is
arbitrary,
inf  u(y) > inf u(y),

n(y)=n(x) yeGx

which concludes the proof of Theorem 3.3. ]

The rest of this section is hence devoted to the proof of Theorem 3.5.
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3.2.2. Parabolic subgroups containing destabilizing one-parameter subgroups. — Drop for
the moment the general notation.

Let k be an algebraically closed field and consider the action of a reductive k-group G
on an affine k-scheme X of finite type. Let S € X be a closed G-stable subset of X. The
following result has been established by Kempf during his proof of the existence of a rational
destabilizing one-parameter subgroup (see [45, Theorem 3.4]):

THEOREM 3.6. — Let x € X(k) be k-point of X such that
G-xNS+a.

Then, there exists a parabolic subgroup P = P(S, x) of G satisfying the following property: for
every maximal torus T C P there exists a one-parameter subgroup Ar: G, — T such that the
limit

}g% Alt) - x
exists ° and belongs to S.

3.2.3. Destabilizing one-parameter subgroups: archimedean case. — Let G be a complex
(connected) reductive group and let U ¢ G(C) a maximal compact subgroup. Then, there
exists an R-group scheme U such that U xg C = G and U(R) = U. Moreover, a torus
T c G is defined over R if and only if T(C) N U is the maximal compact subgroup of T(C).

Let X = Spec A be a complex affine scheme of finite type endowed with an action of G.
Let S € X be a G-stable Zariski closed subset.

LemMa 3.7. — Let x € X(C) be a point such that G - x meets S. Then, there exists a one-
parameter subgroup A: G,,, — G satisfying the following properties:

> the limit point liI’I(lJ A(t) - x exists and belongs to S;
t—
> the image of U(1) is contained in U.

This statement is implicitly proven in [46] when X = A{ is a linear representation
of G and S = {0}. It can be deduced from this case by means of G-equivariant morphism
f: X — A" such that f~1(0) = S.

Proof. — We reproduce here the argument of Kempf-Ness. According to Theorem 3.6 there
exists a parabolic subgroup P ¢ G with the following property: for every maximal torus
T C P there exists a one-parameter subgroup Ar: G,,, — T such that the limit point

}1_r)r(1J Ar(t) - x
exists and belongs to S.

Let P be the conjugated parabolic subgroup under the real structure of G given by U.
Let T be a maximal torus of the subgroup PN P which is defined over R. As a maximal torus
in the intersection of two parabolic subgroups T is a maximal torus of the whole group G.

Thus by Theorem 3.6 there exists a one-parameter subgroup A: G,, — T which satisfies
the required properties. O

9. Namely the morphism of k-schemes Ax: G,,, — X, t — A(¢) - x extends to a morphism of k-schemes
Ax: Al — X and by definition, lim,—o A(¢) - x := A, (0).
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3.2.4. Destabilizing one-parameter subgroups: non-archimedean case. — Let k be a field
complete with respect to a non-archimedean absolute value and k° its ring of integers.
Suppose k algebraically closed.

Let € be a reductive k°-group and G its generic fibre. A one-parameter subgroup
A: G e — € induces a map A*™: G2 — G* which sends U(1) into the maximal
compact subgroup U associated to €.

Let X = Spec A be an affine k-scheme of finite type endowed with an action of G and let
S € X be a G-stable closed subset.

LemMma 3.8. — Let x € X(k) be a point such that G - x meets S. Then, there exists a one-
parameter subgroup A: G, - — € such that the limit point on the generic fibre

}ir% Alt) - x
exists and belongs to S.

Proof. — By Theorem 3.6 there exists a parabolic subgroup P ¢ G with the following prop-
erty: for every maximal torus T contained in G there exists a one-parameter subgroup
Ar: G, — T such that the limit point

}gl}) AT (t) - X
exists and belongs to S.

Denote by Par(6) the scheme parametrizing the parabolic subgroups of €: it is proper
over k° [34, Exposé XXVI, Théoréme 3.3-Corollaire 3.5]. By the valuative criterion of
properness there exists a unique parabolic subgroup % of € with generic fibre P. Let I
be a maximal torus of & and let T be its generic fibre. 1°

Let A: G, — T be the one-parameter subgroup given by Theorem 3.6. Since k is alge-
braically closed, the torus J is split and the one-parameter subgroup A lifts in a unique way
to a one-parameter subgroup A: G, xo — J which satisfies the required properties. O

3.2.5. End of proof of Theorem 3.5. — Let x € X*" and U a maximal compact subgroup of G
which fixes the function u. Up to extending of k one may assume:

> archimedean case: k = C;
> non-archimedean case: k is algebraically closed and the point x is k-rational.

Let S be the unique closed orbit contained in G - x. According to Lemmata 3.7-3.8 there
exists a one-parameter subgroup A: G,, — G with the following properties:

> the limit point xg := }III(I) A(t) - x exists and belongs to S;

> the image of U(1) is contained in U.

10. By [34, Exposé XII, Théoréme 1.7] the existence (locally for the étale topology) of a maximal torus is
equivalent to the locally constance of the reductive rank, that is the function redrk: S — N defined for every

point s € S by redrk(s) := dimension of a maximal torus of G Xs Spec k(s) where x(s) denotes an algebraic
closure of the residue field k(s) at s. In general a maximal torus of a parabolic subgroup Q of a reductive group H
is a maximal torus of H [10, Corollary 11.3]: in particular, the reductive rank of Q is equal to the reductive rank H.
On the other side, the reductive rank of a reductive group is locally constant [34, Exposé XIX, Corollaire 2.6].
Therefore the reductive rank of the parabolic subgroup & is (locally) constant on Spec k°: since k is algebraically
closed & has a maximal torus.
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Let us show u(xp) < u(x). The map ¢ +— A(t) - x extends to a morphism of k-schemes
Ayt A,lc — X such that A, (0) = xg. The function
u(xg) ift =0,

. 1,an
Uy: A — [00, +0°[, t—> u(ﬂ(t) .x) otherwise,

k

is subharmonic (it can be written as u o A,) and U(1)-invariant. By the Maximum Principle,

lim sup ux (¢) = ux(0) = u(xo).

t—0

According to Proposition 2.28 the function
Uyt R > [—oo, 400, vy (loglt]) = ux(t)
is either identically equal to —oco or it is real-valued and convex. In both cases,

lim sup vy (€) = lim sup ux (¢) = u(xp) < 400,
t—0

§—>oo
hence v, has to be non-decreasing. In particular,

u(xp) = limsup vy (€) < vy (0) = u(x)

E—>o0

which concludes the proof of Theorem 3.5. ]

3.3. Analytic topology of the quotient

3.3.1. Statement. — In this section we prove assertion 3) in Theorem 1.6:

PROPOSITION 3.9. — Let F C X" be a closed G-stable subset of X*". Then its projection 7 (F)
is closed in Y.

Combining it with Corollary 3.2:

CoROLLARY 3.10. — Let X’ be a G-stable closed subscheme of X and let Y’ be its categorical
quotient by G. The induced morphism of k-analytic spaces Y'** — Y is a homeomorphism
onto a closed subset of Y?".

The rest of this section is devoted to the proof of Proposition 3.9.

3.3.2. Minimal points on affine cones. — The proof of Proposition 3.9 is based on a elemen-
tary fact concerning minimal points on fibres of a homogeneous map between affine cones.
Drop momentarily the general notation. Let

A=Pas  B=Dsa

d>0 d>0
be (positively) graded k-algebras of finite type such that the k-algebras Ay, By are finite (i.e.
finite dimensional as k-vector spaces). Let X = Spec A and Y = Spec B be their spectra. Let
¢: A — B be homogeneous homomorphism of degree D > 1 of graded k-algebras, that is a
homomorphism of k-algebras such that for every d > 0,

7(Bg) C Adp.
The homomorphism ¢ induces a morphism of k-schemes f: X — Y.
Let f2": X®* — Y?" be the morphism of k-analytic spaces induced by f.
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DEFINITION 3.11. — Letu: X*" — R, be a map.

1) A point x € X?" is said to be u-minimal on f-fibre if for every point x’ such that
f*™(x’) = f*(x) one has u(x’) < u(x). The subset of u-minimal points on f-fibres is
denoted by X}nin (u).

2) Let h: A3 x; X3 — X3 denote the morphism of multiplication by scalars induced
by the grading of A.

The function u: X — R is said to be 1-homogeneous if for every point z € AL x

Xan’
u(h(z)) = |pr1(z)| ~u(pry(2)).
where pry, pr, are the projections on A2 x; X0,

PROPOSITION 3.12. — With the notation introduced above, lelt u: X*™ — R, be a continu-
ous, 1-homogeneous and topologically proper function. If X}“m(u) is closed in X", then the
restriction of f to X}“m(u),

fan: X}mn(u) N Yan’
is topologically proper.

Proof of Proposition 3.12. — The statement is compatible with extension of scalars, thus the
absolute value |.|: Kk — R can be supposed to be surjective. 1!

Choosing homogeneous generators by, . .., b, of B with deg b, = §,, one may replace Y
by the weighted affine space

Als) = Specklti, ... tn](s),

where the k[ty, ..., tn](s) is the k-algebra of polynomials k[ti, . . .,,] where the grading is
given by deg t, = 8,. To ease notation denote f* by f and X}ni“(u) by X™min,

Arguing by contradiction, suppose that the restriction of f to X™" is not topologi-
cally proper. Then there exists a sequence of points {x;};en in X™" such that the images
{f (xi)}ien are contained in a compact subset of AE’;;“ while u(x;) — oo asi — co. One may
suppose u(x;) # 0 for every i € N. Since the absolute value of k is surjective, for every i € N

there exists A; € k™ such that |A;| = u(x;). Define a new sequence in X" setting
~ Xi
Xj = —-
i X

By homogeneity of u the points X; are minimal on the fibres of f. Moreover the points
x;’s are contained in the compact subset {x : u(x) = 1}. By sequential compactness 2, one
may assume that the sequence {X;} converges to a point X. By construction:

> Xoo iS u-minimal on f-fibre;

> u(fcoo) =1.

11. An analytic extension K of k such that the absolute value |. |k : K — R is surjective can be constructed
by means of transfinite induction. This is not really necessary for the proof: this assumption just makes the
exposition clearer. One can adapt the proof in the case when the absolute value |.|: Kk — R is dense. Another
way to circumvent it is to add only the real numbers u(x;) to the value group of k.

12. In the archimedean case analytic spaces are locally metrizable topological spaces; in the non-archimedean
case this is not the case and sequential compactness has been proven in [55].
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n
(8)
polynomials fi,..., f, of degree deg f, = DJ, (recall that the homomorphism ¢ is of de-

gree D). Thus, foreveryi e Nanda =1,...,n,

N | fo (xi)] _ |fa(xi)|.
| fa (%:)] = - uln)

These two properties are contradictory. Indeed the map f: X — A’ is given by some

The points f, (x;) are contained in a compact set, so the real numbers |f, (x;)| are bounded
independently of i and «. By hypothesis u(x;) — oo as i — oo, thus
| fa (i)

fim max |fa(®) = lim mex =SS =0,

.

which gives f(X.) = 0. Since X is a u-minimal point on f-fibre, the latter fact implies that
it must belong to the vertex Spec Ag of X.

The homogeneity of u implies u(Xs) = 0 which contradicts u(Xs) = 1. O

3.3.3. Reducing to the case of the affine spaces. — Go back to the proof of Proposition 3.9
and to the general notation introduced in paragraphs 1.4-1.5.

One reduces first to the case where X is an affine space A}. Let X; = SpecA; and
Xy = Spec A be k-affine schemes (of finite type) endowed with an action of the reductive
k-group G and let i : X; — X3 be a closed G-equivariant embedding. For ¢ = 1,2 let Y,
be the categorical quotient of X, by G and let 7, : X, — Y, be the quotient map. The
following diagram of k-schemes

X, —— Xy

”‘l l@

n—"="
is commutative, where j is the morphism induced between categorical quotients. Corol-

lary 3.2 affirms that j: Y — YI" is set-theoretically injective. In particular, for a subset F
of X
1 3

m(F) = ™ (mz 0 i(F)).

Suppose that the conclusion of Proposition 3.9 is true for the k-analytic space X3". If F is a
closed G-stable subset of X", then i(F) is a closed G-stable subset of X3" and its projection
m1(i(F)) is closed in Y. Thus m; (F) = j~! (72 0 i(F)) is closed in Y. One reduces to the
case of an affine space taking a closed G-equivariant embedding i: X — A}.

Let X be a linear representation A} = Specklty,...,t,] of G. Since the action of G
on X is linear, the action of G on the k-algebra of polynomials A := k[ty, . . ., t,] respects its
grading. In particular, the subalgebra of G-invariants A€ is graded and the inclusion A® ¢ A
is a homogeneous homomorphism of degree 1 of k-graded algebras.

3.3.4. Using Kempf-Ness theory. — The statement of Proposition 3.9 is compatible to ex-
tending scalars to an analytic extension of k: in the archimedean case one can take k = C
and in the non-archimedean one can suppose that the reductive k-group G is the generic
fibre of a reductive k°-group €.

SOCIETE MATHEMATIQUE DE FRANCE 2017



98 CHAPTER 3. KEMPF-NESS THEORY IN NON-ARCHIMEDEAN GEOMETRY

Let U be a maximal compact subgroup and take a function u: X** — R which is con-
tinuous, topologically proper, 1-homogeneous, plurisubharmonic and U-invariant (it exists
by Proposition 2.34).

To apply Proposition 3.12 to the function u one has to show that the subset of u-minimal
points on 7z-fibres X™1%(u) is closed. Since u is continuous, plurisubharmonic and invariant
under a maximal compact subgroup, this is true because, according to Corollary 3.4, the
subset of u-minimal points on 7-fibres coincide with the set of u-minimal point on G-orbits,
which is a closed subset. Now Proposition 3.12 tells that the restriction

70 XP (1) — Y

is topologically proper. As u is topologically proper, it is also surjective. The topological
spaces X™1(y) and Y" are locally compact, thus the restriction of 7 to X™*(u) is a closed
map.

One can now conclude the proof: for a closed G-stable subset F ¢ X",

(3.1) 7(F N XM (y)) = n(F).

Together with the fact that 7 : X™"(u) — Y is closed, this conclude the proof.

Let us show (3.1). (C) Clear. (D) One has to show that for every point x € F there exists
a u-minimal point on n-fibre x” € F such that 7 (x) = n(x”). Since F is a closed and G-stable
subset, it contains the closure of the orbit G - x of the point x. Let x’ € G - x a yu-minimal
point on G-orbit: it exists because the function u is topologically proper. Since u-minimal
points on G-orbits and on z-fibres coincide, the point x’ is u-minimal on z-fibre; since it
belongs to the closure of the orbit of x one has 7(x’) = z(x), which concludes the proof
of (3.1). m]

3.4. Continuity of minima on the quotient. — Let X be an affine k-scheme endowed
with an action of reductive k-group G. Let Y be the categorical quotient of X by G and
let 7: X — Y be quotient map. Let u: X* — [—o0, +0co] be a plurisubharmonic function
which is invariant under the action of a maximal compact subgroup of G.

Consider the function of u-minima on m-fibres ju : Y** — [—o0, +oo[ defined for every
yeY®as

mu(y) == inf u(x).
7(x)=y

PROPOSITION 3.13. — The map wyu: Y — [—oo, 400 is upper semi-continuous. If the func-
tion u is continuous and topologically proper, then:

1) the restriction of w to X2 (u) = X2 (u) is topologically proper and surjective onto Y *";

2) the function myu is continuous on Y ",

Proof. — To prove the upper semi-continuity of xju, one has to show that for every real
number « the subset V, := {y € Y* : mju(y) < a} is open. Theorem 3.3 implies, for every
point x € X",

mu(m(x)) == ”(x/l)rif”(x)u(x ) =ug(x) = x'le%f-xu(x ).
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In particular for every real number a:

(Ve = ({y € Y mpuly) < a})
= {x e X" : mu(n(x)) < a}

= {x e X" 1ug(x) < a}.

The function ug: X* — [—o0,+00[, x — infyeg. u(x’) is upper semi-continuous (see
Proposition 2.40). The preceding equality implies that U, := 7~ *(V,,) is a G-saturated open
subset of X", By Corollary 1.7 (4), V,, = n(Uy,) is an open subset of Y".

Suppose that u is moreover continuous and topologically proper.

1) The surjectivity of 7: X™?(u) — Y2 follows from the topological properness of the
function u. It remains to show that 7: X" (u) — Y®" is topologically proper. Let K be a
compact subset of Y". The function 7 u is upper semi-continuous, thus it is bounded on K:
set

a = sup rju(y) < +oo.
yeK

The inverse image 7~ (K) is a closed subset of {x € X* : ju(r(x)) < a}, hence it suffices
to show that the subset

{x e X™: mju(r(x)) < a} N X2 (w)

is compact. By definition of minimal point on z-fibre the functions 7ju and u coincide
on XM (u), hence

{x e X2 (u) : mpu(n(x)) < a} = {x € X2™(u) : u(x) < a}.

The right hand side is a compact subset because the subset X™1(u) is closed and u is topo-
logically proper.

2) The topological space X™"(u) is locally compact because it is a closed subset of X%,
thus the map 7: X™"(4) — Y is closed (it is topologically proper). The equality

U xpin(uy = (77 700) | i)

implies that 7 u is continuous. O

3.5. Comparison with the result of Kempf-Ness

3.5.1. Special plurisubharmonic functions. — In this section we work over the complex
numbers. We show how the techniques employed to prove Theorem 1.9 permit actu-
ally to find the result of Kempf-Ness for broader class of functions, called here special
plurisubharmonic. Let X be a complex analytic space.

DEFINITION 3.14. — A function u: X — [—o0, +00] is said special plurisubharmonic if it is

plurisubharmonic and for every non-constant holomorphic map ¢: D — X, where D =
{z € C : |z| < 1} is the unit disk, the function u o ¢ is non-constant.
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PRrRoOPOSITION 3.15. — Special plurisubhamornic functions enjoy the following properties:

1) ifa > 0 is a positive real number and u is a special plurisubharmonic function u, au is
special plurisubharmonic; if u, v are special plurisubharmonic, then u + v is special plurisub-
harmonic;

2) if X is a connected analytic curve and f is a non-constant holomorphic function then
log | f| is a special (pluri)subharmonic function;

3) if f: X’ — X is a holomorphic map with discrete fibres and u is a special plurisubhar-
monic function on X, then f*u is special plurisubharmonic on X’;

4) strongly plurisubharmonic functions are special plurisubharmonic.

ExamPLE 3.16

1) The converse to 4) is false: for every p > 1 the logarithm of the £#-norm,

log ||xller = log & lx11P + - - + |x,|P

is special plurisubharmonic on C" but it is not strongly plurisubharmonic on the radial
direction. If p # 2 (and n > 2) the Kihler form of the metric induced on Opns-1(1) is not
positive definite.

2) The logarithm of the ¢*-norm log ||x||;~ = logmax {|x1|, e, |xn|} is not special
plurisubharmonic.

Let G be a complex reductive group acting on a complex affine scheme X of finite type.

THEOREM 3.17. — Letu: X(C) — [—oo, +oo[ be a special plurisubharmonic function invari-
ant under the action of a maximal compact subgroup U of G. Let x € X(C) be a point which
is u-minimal on its G-orbit. Then,

1) the orbit G - x is closed;
2) let Gy be the stabilizer of x; the following inclusion is an equality:

{kg:keU,geGi(C)} c{geG(C):g-xeXZ"(u)}.
In other words, minimal points contained in a closed G-orbit form a single U-orbit.

COROLLARY 3.18. — Letu: X(C) — [—oo,+oo[ be a continuous topologically proper, special
plurisubharmonic function, invariant under the action of a maximal compact subgroup U of G.
Then, the continuous map induced by r,

X )/ U — Y
is a homeomorphism.

Proof. — 1) By contradiction suppose that the orbit of x is not closed and let S be the unique

closed orbit contained in G - x. According to Lemma 3.7 there exists a one-parameter sub-
group A: G,, — G with the following properties:

> the limit point xo := }in}) A(t) - x exists and belongs to S;

> the image of U(1) is contained in U.
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Let us show u(xo) < u(x). The morphism t > A(t) - x extends to a morphism A,.: A} — X
which is finite because the point x is not fixed under A. Consider the function

u(xo) ift =0,

Ux: C— [-oo, 400,  uy(t) := {u(/l(t) - x) otherwise.

The function u, is special (pluri)subharmonic and U(1)-invariant. According to the Maxi-
mum Principle,
lim sup = u,(0) = u(xp).
t—0

Proposition 2.28 implies that the function

Uyt R — [—00, +oo[, vy (loglt]) = ux(|t])
is either identically equal to —co or convex. As u, is special plurisubharmonic, given an
open interval I, vy is not constant on I. Since

lim sup v, (¢) = limsup uy () = u(xg) < +co

Fo-o0 t—0
the function vy, has to be increasing. Therefore
u(x0) = vx(00) < 03 (0) = u(x),
which contradicts the minimality of x.

2) Suppose that the reductive group G is a torus T. According to 1) the orbit T - x of x
is closed. Replacing X with T - x and T with T /T, (where Ty is the stabilizer of x) one may
assume that the stabilizer of x is finite, hence the morphism

ox: T — X, tr—t-x,

is finite. The function u, (t) := u(t-x) is special plurisubharmonic on T(C) and it is invariant
under the action of U. Identify T(C)/U with R" (where n is the dimension of T) through
logarithmic coordinates:

T(C)/U= (C*/U(1))" = R", (z1,...,2n) — (log|z1|,...,log|znl),

Since u, is invariant under action of U, it descends (through the above identification) on a
continuous function v : R” — R which is convex according to the plurisubhamornicity
of u,. Moreover, since u, is special plurisubharmonic, v is non-constant on every segment
contained in R”.

The hypothesis of x being u-minimal reads into the fact that v has a global minimum in
the origin 0 € R"™. To conclude the proof one has to show that the minimum is not obtained
elsewhere: this is true because, if the global minimum was obtained on ¢ € R" — {0},
by convexity the function v would be constant on the segment [0, £] = {t& : ¢ € [0, 1]}.

Let us go back to the case of an arbitrary complex reductive group G. Let g € G(C) be
such that g - x is a u-minimal point on the G-orbit. By Cartan’s decomposition there exist
elements k € U and ¢t € T(C) such that g = kt and T is a maximal torus of G such that
T(C) N U is the maximal compact subgroup of T. Since the function u is U-invariant,

u(g-x) =u(kt-x) =u(t-x),
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hence t - x is again a yu-minimal point on the G-orbit. By the case of a torus there exists
k’ e UNT(C) and t’ € T,(C) such that t = k’t’. Thus

g=kt = (kk')t' € {kg: k € U,g € G«(C)}

which concludes the proof. ]

4. Metric on GIT quotients
4.1. Extended metrics

4.1.1. Definition. — Let X be a k-scheme of finite type and L be an invertible sheaf on it.
Consider the total space of L over X,

V(L) = Specy (Symg, LY).

For a k-scheme S the S-valued points of V(L) are in functorial bijection with the set of
couples (x, s) made of an S-valued point x € X(S) and a global section s € I'(S, x*L).
)

an

Consider the k-analytic spaces X" and V(L)®" associated respectively to X and V(L).

DEFINITION 4.1. — A map ||.||.: V(L)*™ — R, is an extended metric on L if for every ana-
lytic extension K of k, the composite map

”'”L,K . \/(L,K) — \/(L)an ”_”L) R+,
is a norm on the fibres of L: for every K-point x € X(K) the map
s e x*L —> ||S||L(x) = ||(x, S)HL,K

is a norm on the K-vector space x*L. An extended metric is said to be continuous if it is
continuous as a map on V(L)

REMARK 4.2. — Let||.||. be an extended metric on L. For every analytic open subset U ¢ X"
one can consider the function ||s|L: U = R4, x — ||s||L(x).

On the other hand, consider the data, for every analytic open subset U ¢ X®" and every
section s € I'(U, L*"), of a function ||s||r,y : U — Ry satisfying the following properties for
all x € U:

> ||s|lL,u(x) = 0 if and only if s(x) = 0;

> || As]lL.u(x) = |AlllsllL(x) for all A € k;

> |Isll,u |y = llsllz,v for an open subset V C U.

Then the collection of maps {||s||,i7} defines an extended metric on L.

In the complex case, the notion of extended metric is the same of the notion of metric on

a line bundle. In the real case, an extended metric is a metric on the associated complex line
bundle invariant under complex conjugation.
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4.1.2. Constructions. — Usual constructions on metrics (dual, tensor powers...) are avail-
able also for extended metrics. For instance the dual metric and the tensor powers of a metric
are defined as follows. Let ||.||; be an extended metric on L, K an analytic extension of k,
x € X(K) a K-valued point of X and s € x*L. For a section ¢ of x*L" and a section s € x*L,
set

lo(t)]

sup  ———— and ||s®"||en k(x) == IsllL,x (x)".
rexi—o} ItllLx(x)

llollv,x (x) :=

The real number ||¢|rv, x (x) depends only on the image of (x, ¢) in V(L")?": the so-obtained
extended metric on LY is called the dual metric. Analogously one gets an extended metric
on L®" called the n-th tensor power of ||.||..

Let K be an analytic extension of k. If ||.||; is an extended metric on L then the function

-1z o pryry ks VIDE — R4
is an extended metric on the pull-back L of L to Xk := X X K.

4.1.3. Extended metric associated to integral models. — Suppose k non-archimedean and X
proper. Let X be a proper k°-model of X, that is, a proper k°-scheme together with an
isomorphism of k-schemes a: X =~ X Xy k. Let £ be an invertible sheaf on & together
with an isomorphism f: a*(Z|,(x)) = L. The construction that follows depends on the
isomorphisms o and f this dependence will not be indicated in order not to burden notation.

Define an extended metric ||.||¢ in the following way. Let K be an analytic exten-
sion of k and let x € X(K) be a K-valued point of X. The ring of integers K° of K is
a valuation ring and the valuative criterion properness implies that x lifts to a K°-valued
point &5 : SpecK® — X. The K°-module ;< is a K°-module free of rank 1: fix a genera-
tor sp of e3<. Every section s € x*L ~ ¢,& ®k- K writes as s = Asy for a unique A € K.
Set:

lIsll e,k (x) == |k

The real number ||s|| ¢ x(x) only depends on the image of (x,s) in V(L)*" and the induced
map

Ml = V)™ — Ry,

is a continuous extended metric called the extended metric associated to &.

The construction of the extended metric is compatible with the operations on in-
vertible sheaves: for instance the dual of the extended metric ||.||¢v is the extended
metric associated to the dual invertible sheaf &Y. If K is analytic extension then the
extended metric |||l o prg /k is the extended metric associated to the pull-back Zk- of &£
to Lgo = A Xpo K°.

Suppose k trivially or discretely valued (thus its ring of integers k° is noetherian) and
that L is very ample. The map

0: V(L") = Specy (Symg, L) — X = Spec @ I'(X,L%%)
d>0
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is surjective, proper and it induces an isomorphism of the complementary of the zero section
in V(LY) with X — SpecT'(X, ©x). For a point x € X" set

ug(x) = sup |f(x)].
fen(X.%)

For a basis fi, ..., f, of the k°~-module T'(X, £),

ug(x) = max |fi(x)].

PROPOSITION 4.3. — Suppose &£ generated by its global sections and L very ample. With the
notations introduced above,

Ny = ug o 6.

In particular the function log ||.|| ¢v: V(LY)*® — [—o0, +00[is a continuous, topologically
proper plurisubharmonic function on V(L")?".

Proof. — Let K be an analytic extension and K° its ring of integers. Let x be a K-valued
point of X and ¢, the unique K°-valued point of X which lifts x. Since & is generated by
its global sections, there exists a global section fy € T'(X, <) such that &} f; is a basis of the
K°-module ¢;%. Consider the generator s of ¢%" defined by the condition sy (&} fp) = 1.

For A € K let s = Asg: by definition ||s||¢, kx (x) = |A|x. Then,

|f0(x, $)|K = |A|K|f0(X, So)|K = Alx = lIsll¢v,x (x).
For a global section f € I'(X, £),

|f (9| = Al f(x,50) [ < 1Ak = lIsllv,x (x),

since f(x, sg) belongs to k°. This concludes the proof. mi

COROLLARY 4.4. — If<Z is ample, then the continuous map
log l.llev: V(LY)™ —> [—00, +oo]

is plurisubharmonic.

4.2. Extended metric on the quotient

4.2.1. Definition of the extended metric. — Let X be a projective k-scheme endowed with
an action of a reductive k-group G and a G-linearized ample invertible sheaf L. The graded
k-algebra of G-invariants

A% = PT(X,L59)° c A= PT(X,1%),

d>0 d>0

is of finite type. Denote by X the open subset of semi-stable points. The inclusion of AS
in A induces a G-invariant morphism of k-schemes

T X% — Y = ProjAG,
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which makes Y the categorical quotient of X** by G. Since A is of finite type, the k-scheme
Y is projective: for every positive integer D > 1 divisible enough there exist an ample
invertible sheaf Mp on Y and an isomorphism of invertible sheaves

L®D

. * ~
(pD’ﬂ:MD—> |Xss

compatible with the equivariant action of G. The isomorphism ¢p induces a surjective mor-

phism of k-schemes

7D \/(L?)?SS) — V(Mp).

Let ||| be a continuous extended metric on L and for a point ¢ € V(Mp)?" set

Itllmp == sup |Islizep € [0, 40,
np(s)=t
where the supremum ranges on the points s € \/(L?)I?SS)a“
PROPOSITION 4.5. — With the notation introduced here above, the function ||.||s, is an ex-

tended metric on Mp.

Proof. — Let K be an analytic extension of k which is algebraically closed and non-trivially
valued. Let y € Y(K) be a K-point of Y and t € y*Mp a section over y. Since Y(K) is dense
in Y2" and the extended metric ||. ||, is continuous,

tllmp.k(y) = sup Iz tllpen g (x) € [0, +o0].
x€X%(K)
7(x)=y

If one shows that the function .||, does not take the value +oo, it is clear from the
previous formula that ||.|[5, is an extended metric. Up to taking a power of Mp, the line
bundle Mp can be assumed to be generated by its global sections. It suffices to prove that
for every global section s € I'(Y, Mp) every point y € Y2,

l1£lla, (y) < +-eo.

The crucial point is that every global section t € I'(Y, Mp) of Mp corresponds through the
isomorphism ¢p to a G-invariant global section { € T'(X,L®P)¢ of L®P which vanishes
identically on the set of unstable points X — X*%. For every pointy € Y?",

lltllm, (y) < sup |17 ]len(x)

xexan

and the right-hand is a real number according to the compactness of X" and the continuity
of |||z o

THEOREM 4.6. — Suppose that:

1) the extended metric ||.||; is invariant under a maximal compact subgroup of G;
2) the dual extended metric ||.||pv: V(LY)*™ — R is a plurisubharmonic function.

Then the extended metric ||.||am,, is continuous.
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4.2.2. Passing to the affine cones. — In order to prove the theorem it is convenient to intro-
duce some further notation. The statement is compatible with taking powers of &£ and Ml p.
Suppose D such that £®P and Jlp are very ample. Consider the following graded k-
algebras of finite type:

Ap = EDTCLP) and AT = PHT(X, ME!) = EPT(X,L%P)C
d=0 d=0 d>0
The k-schemes X and Y are still identified with the homogeneous spectrum respectively of
Ap and Ag. The inclusion of Ag in Ap induces a morphism of k-schemes,
7: X :=SpecAp — Y := Spec A,

which makes Y the categorical quotient of X under the action of G (see [63, Theorem 3]).
The morphsim 7 also fits into the following commutative diagram:

0 ~

V(LYED) e—— V(LVeP) —2 X
ﬂl)l 7

Ompy -

V(M) .Y

where 0;ep and 0), are the morphisms. The morphisms 0;ep and 0y, are surjective and
proper, and they induce an open immersion outside the zero section of V(LY®?) and V(M)).
Therefore the extended metrics ||.||;vep and ||.|| MY, descend on functions u;ep and uyg, re-

spectively on X** and Y. By definition of the extended metric ||.|| Mp» for every y € yan,

(4.1) um, (y) = ,?(IXI;E upven (x) =: T uren (y).
(passing to the dual metrics switches the supremum with the infimum).

Proof of Theorem 4.6. — The function uyep inherits all the properties of the function ||. || ven:
it is continuous, topologically proper, plurisubharmonic and invariant under a maximal
compact subgroup of G. According to Proposition 3.13 the function uy, is continuous,
hence the extended metric ||. ||, is continuous too. O

4.3. Compatibility with entire models

4.3.1. Notation and statements. — Suppose that k is a non-archimedean complete field
which is discretely or trivially valued (thus its ring of integers k° is noetherian). Let € be
a reductive k°-group acting on a flat and projective k°-scheme X equipped with an ample
G-linearized invertible sheaf &£.

Here the technical hypothesis to make Seshadri’s theorem work is to assume that the
ring of integers k° is universally japanese.

DEFINITION 4.7. — An integral domain A is said to be japanese if for every finite exten-
sion K’ of its fractions field K = Frac(A) the integral closure of A in K’ is an A-module
of finite type (i.e. a finite A-algebra). A ring A us said to be universally japanese if every
integral A-algebra of finite type is japanese.
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For instance, the ring of integers of k is universally japanese when k is a finite extension
of Q, or when k = F((t)) for some field F [37, Corollaire 7.7.4].

Then the fundamental result of Seshadri [63, Theorem 2] holds: the graded k°-algebra of

‘G-invariants
d = PrE, 2% c d = P, 2
d>0 d>0
is of finite type. Denote by X** the open subset of semi-stable points, by Y its categorical
quotient and 7: A% — Y the canonical projection. For every D divisible enough let Jlp
be the ample line bundle on % deduced from £®P and

®D

¢p: 7[*./%]) — glf’[ss’

the G-equivariant isomorphism of invertible sheaves.

Denote with straight capital letters the k-schemes obtained as generic fibre of the k°-
schemes introduced previously (for instance X Xy k will be denoted by X). Let ||.|| ¢ be the
continuous extended metric on L associated to &£.

DEFINITION 4.8. — With the notations introduced above, let {2 be an analytic extension of k
which is algebraically closed and non-trivially valued. A semi-stable point x € X () is:

1) minimal if for a non-zero section s € x*%" and for every g € €(f2), then

Isllzv.a(x) < llg-sllzv.alg-x).

This does not depend on the chosen section s.

_ 2) residually semi-stable if the reduction ** x € X(Q) of x is a semi-stable point of the
Q-scheme I Xy 2 under the action of the 2-reductive group € X~ (2.

Let x € X® be a semi-stable point and 2 be the completion of an algebraic closure
of ¥(x). The point x is minimal (resp. residually semi-stable) if the associated Q-point
xq € X () is minimal (resp. residually semi-stable.)

THEOREM 4.9. — Suppose that k° is universally japanese. With the notations introduced above,
for every semi-stable point x € X" the following are equivalent:
1) x is minimal;

2) x is residually semi-stable.

COROLLARY 4.10. — Under the hypotheses of Theorem 4.9, let {) be an analytic extension of k
which is algebraically closed and non-trivially valued. Let x € X(£)) be a semi-stable point.
Then, there exists a semi-stable minimal point xo € X(Q) lying in the closure of the orbit of x
and whose orbit is closed (in X*°).

In the case of a projective space and k is a finite extension of Q,, this result was proven
by Burnol [20, Proposition 1]. We just adapt the argument of Burnol to the framework of
Berkovich spaces.

13. Since X is projective, by the valuative criterion of properness the point x lifts to a £2°-valued point of
ex: Spec Q° — X. The reduction of x, denoted X, is the reduction of ¢x modulo the maximal ideal of 2°.
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This theorem and its corollary will be proved in the next section. As a consequence,
consider the following metric on Mp:

1) the extended metric ||.|| 4, associated to the integral model M p;
2) the extended metric ||.||sr,, defined in the previous section (see paragraph 4.2.1).

THEOREM 4.11. — Suppose that k° is universally japanese. With the notation introduced above,
the metrics ||.||mp, and ||.|| u,, coincide. In particular, for every analytic extension §2 of k which
is algebraically closed and non trivially valued,

tlap.2(y) = sup |lr*tllgen o(x)

7(x)=y
where the supremum is ranging on the semi-stable Q)-points of X.

4.3.2. Some more notations. — Suppose that the integer D be such that the invertible
sheaves £®P and Jlp are very ample. Borrow the notations from paragraph 4.2.2.

According to (4.1), for every y € ?an,

ump (y) = myugen (y) = ﬁ(ixl;f:y upen (x).

Consider the real-valued functions ugen, w4, defined for x € X and Y€ yan by

ugep(x) = sup |f(x)] and wa,(y)= sup |g(y)].
fer(X,2£8D) gel (Y, Mp)
Since £®P and Jlp are supposed very ample, according to Proposition 4.3, one has
|.lgep = tpop © Orop  and  ||.||.up = Yuip © Omp-
The identification I'(Y, Mlp) ~ I'(X,2£)%, yields an inclusion T'(Y, Mlp) c T'(X,L®P).
Thus, for x € X2,
(4.1) wip (7(x)) < ugen (x).

LEMMA 4.12. — With the notations introduced above, let x € X be q point that does not
belong to the analytification of vertex Ox of the affine cone X,

Ox = SpecT'(X,0x) C X = Spec@F(X,LMD).
d>0
Let [x] be the associated point of X*". The following are equivalent:
1) the point [x] is residually semi-stable;
2) ugen (x) = uy, (7(x)).
Proof. — Up to rescaling x one may assume ugsp(x) = 1. Let Q be the completion of

an algebraic closure of k (x) and let ¢, : Spec{2° — X be the morphism associated to the
point [x] by the valuative criterion of properness.

1) = 2). Since Jlp is supposed very ample there exists a €-invariant global section
f € T(X,2%P) such that &;f is a basis of the invertible °-module ¢£2£®P. In other
words, the element f(x) € ° is a unit. This gives

wip (T(x)) =1 = ugen(x).
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2) = 1). The equality uy,, (7(x)) = 1 implies there exists a G-invariant global section
f € T(X,2£®P) such that f(x) € Q° is a unit, thus its reduction in () is non-zero. In partic-
ular the reduction x of x is semi-stable. m]

Proof of Theorem 4.11. — Since the construction of the extended metric ||.||%, ||.||.u, and
II.llm, are compatible with taking powers of & and Jl p, one may the line bundles £ ®" and
M p very ample.
The equality of metrics ||.|[s, = |||, is equivalent to the equality of functions
U, = Ump,. For all y € Y*", the inequality (4.1) entails
Uitp (y) < ump (y) = inf ugen (x)
7(x)=y
It remains to prove the converse inequality. Let y € Y be a point. Since the function
ugep on X is topologically proper, it attains a mininum on a point x in the fibre 771 (y).
According to Theorem 4.9 the projection [x] of the point x in X" is residually semi-stable.
Lemma 4.12-2) implies
ugen (%) = wa, (7(x)) = ey, (y)-
In particular,
um,(y) = _inf  ugen(x’). m
7(x)=y
Proof of Theorem 4.9. — 1) = 2) follows from inequality (4.1) and Lemma 4.12-2).
2) = 1). Denote by & the affine cone over the projective k°-scheme X with the respect
to the very ample invertible sheaf £ ®P, that is, the spectrum of the graded k°-algebra

dp = (P T(X,£%P).
d>0
Up to rescaling the point x suppose ugep(x) = 1. This is equivalent to say that x comes
from a k°-valued point of & whose reduction ¥ € f( IE) does not belong to the vertex
Oy = Spec (X, 6 ) of X.

Arguing by contradiction suppose that the point [x] is not residually semi-stable. This
means that its reduction | % ] is not a semi-stable point of the K-scheme X x-K. Applying the
Hilbert-Mumford criterion of semi-stability to the point [ x |, there exist a finite extension {2
of K and a one-parameter subgroup

A G, — Expe

that destabilizes the point [ % ]: in other words, if Oy = Spec (X, Og ) denotes the vertex
of the affine cone &,
lim A(t) - X € Oy Xgeo 2.

t—0
According to [34, Exposé XI, Théoréme 4.1] the k°-scheme that parametrizes the sub-
groups of multiplicative type of the k°-group scheme € is smooth over k°. Since the
valuation ring €° is henselian, by “Hensel’s Lemma” [34, Exposé XI, Corollaire 1.11] the
one-parameter subgroup 2 lifts to a one-parameter subgroup

AT —> G Xpo Qc,

SOCIETE MATHEMATIQUE DE FRANCE 2017



110 CHAPTER 3. KEMPF-NESS THEORY IN NON-ARCHIMEDEAN GEOMETRY

where J is a subgroup of multiplicative type (necessarily a torus). Thus, up to replacing 2
by a finite extension, one may assume that the torus J is the multiplicative group G, q-.
The associated morphism of (2-analytic spaces 1: G;'; — G§' sends the subgroup U(1)
into the maximal compact subgroup of G&" associated to the {2°-reductive group G xy- 2°.
Consider the map ¢.: G;'; — R defined by

Ox(t) := ugpen (A(t) - x).
The function ¢, is continuous and invariant under the action of the subgroup U(1). Define
the function y/x : R — R by the condition: for every point ¢t € G,

Y« (log |t]) = log px(t).
The function ¥ is continuous and, since the point x is supposed ugep-minimal on the G-
orbit, it has a global minimum on 0:

U (0) = log ugsn (x).
Since ugen (x) = 1 one has ¥, (0) = 0. To conclude the proof it suffices to prove that the
function ¢, takes negative values, contradicting the minimality of the point x.

The group G, o acts linearly on the Q°-module € := T'(X,2£®P) ® Q° through the
one-parameter subgroup A. Thus € may be decomposed in its isotypical components,

€ ::{{)%gm,

meZ

where, for every integer m € Z, €,, = {f € € : A(t) - f =t™f}. For m € Z set
um(x) = sup |f(x)].
F<%m

The preceding decomposition gives, for every point t € G},
0(t) = ugon (A1) - x) = sup {It]"um(x)}.
meZ
Taking the logarithm of the last expression and writing £ = log |¢|,
Yel) = sup {mE +logun(x)}.
meZ
U (x)#0

By assumption ugen (x) = 1 for every integer m, thus log u,, (x) < 0. Furthermore, for
every negative integer m < 0, one has log u,,(x) < 0 because the special fibre A of A desta-
bilises the point x. Summing up these considerations for every negative real number ¢ < 0:

> if m > 0 then mé + loguy,(x) < mé < 0;

> if m = 0 then m& + log u,, (x) = log um(x) < 0;

> if m < 0 then mé + logu,,(x) < 0 1if and only if ¢ > —logum,(x)/m because

—log u,,(x)/m is negative.
Therefore i/, (£) is negative for every real number & belonging to the interval
log um, (x)
Jmax - =500l
This conclude the proof of Theorem 4.9 thus of Theorem 1.17. ]
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Proof of Corollary 4.10. — Up to extending the scalars, suppose k = (2 and k algebraically
closed and non-trivially valued. Moreover, the orbit of x may be supposed closed in X*.
Consider the Zariski scheme-theoretic closure F of G-x in I, which is a flat scheme over k°
and the structural morphism & — Spec k° is surjective.

The closed subscheme & is stable under the action of €. Indeed, it coincides with the
scheme-theoretic closure of the image of the morphism

id, x
2 g xe a5,
where ¢,: Spec{2° — X is the morphism induced by x given by the valuative criterion
of properness and o: G Xyo X — X is the morphism defining the action of 6 on X. The
intersection X% N Z is an open subset of £ hence a flat scheme over k°.

Cramm. — The structural morphism a: X N'E — Speck® is surjective.

Proof of the claim. — Take a representative ¥ € X(k) of x (that does not belong to the
vertex Oy of X). Since the function ugep is topologically proper and the orbit of X is
closed, the function ugen attains its minimum on a point § € G* - X (whose completed
residue field can a priori be a huge analytic extension of k). The image y € X®" of § is
therefore a minimal point in the sense of Definition 4.8, thus, according to Theorem 4.9,
residually semi-stable. In other words, the morphism ¢,: Spec ¥ (y)° — X given by the
valuative criterion of properness factors through X% N Z,

XLSNE X

i !

Spec k¥ (y)° ——— Speck®

In particular the morphism a: X% NZE — Speck® is surjective. m]

Since the morphism « is flat and surjective, it admits a section (recall that k is alge-
braically closed). This section gives the residually semi-stable (thus minimal according to
Theorem 4.9) point that one was looking for. ]

The fact that @ admits a section can be found in [38, 17.6.2 and 18.5.11 (¢’)] or, in a more
elementary way, proved as follows:

LEMMA 4.13. — Let k be a complete non-archimedean field, which is non-trivially valued and
algebraically closed. Let S be a flat scheme of finite type over k°. If the structural morphism
@: 8 — Speck® is surjective, then there exists a section's: Speck® — S of @.

Proof. — It suffices to show when § is affine, that is § = Spec A where d is a flat k°-algebra
of finite type. Consider the k-algebra of finite type A := o ®- k. Since o is torsion free,
identify it with its image through the canonical homomorphism o — A. For every f € A
set:
Il = inf{|/1| s f/Aed,Ae kx}.

The surjectivity of the structural morphism @: § — Spec k° translates into the fact that ||.|| &
is not identically zero on A. Thus ||.|| 4 is a sub-multiplicative semi-norm on A. Let Abe the
completion of A with the respect to ||.|| 4.
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Let S be the generic fibre of § and let S*" be its analytification. Then the spectrum of the
Banach k-algebra A (see [5, §1.2]) is given by

M(A) == {s € S : |f(s)| < ||flla forall f € A}.

Since A is not reduced to 0, according to [5, Theorem 1.2.1], the topological space Jﬂ(;ﬁ\) is
non-empty and compact. Moreover, the Banach k-algebra A is strictly affinoid in the sense
of Berkovich (see [57, 1.2.4]): since k is algebraically closed, the k-points JL(A) N S(k) are

dense in ML (A). In particular, there is at least one such a point. ]
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CHAPTER 4

HEIGHTS ON GIT QUOTIENTS: FURTHER RESULTS

In this chapter we prove some finer results concerning the height on GIT quotients,
namely the Fundamental Formula (that here is an identity, not an inequality as in Chap-
ter 1), a compatibility with twists by principal bundles and a lower bound refining the one
presented in Chapter 1. This chapter is organised as follows.

Section 1 is an introduction to this chapter: we state here its main results, we collect
some facts from Chapter 3 and we take the opportunity to deduce the Fundamental Formula
(Theorem 1.5) from these.

In Section 2 we present some examples of height on the quotient. Firstly we explicitly
compute it in the case of endomorphisms of a vector space: although being elementary, the
proof of the lower bound in Section 4 is based on it. Secondly, in view of the of Fundamental
Formula, it is interesting to compare the lowest height in the orbit of a semi-stable point and
the height of the projection on the GIT quotient. We show through three examples that the
situation is more complicate than what we would hope for.

In Section 3 we illustrate the compatibility of the construction of the GIT quotient with
respect to the twist of the initial data by a hermitian principal bundle. From this compati-
bility we draw a canonical isomorphism between quotients which is the geometric reason
underlying the lower bounds proved by Bost, Gasbarri and Zhang. Hopefully, this should
make more explicit the geometrical content of this lower bound and its relationship with
the former work of Bogomolov.

In Section 4 we end up the global part proving an explicit version of this lower bound
which generalises and improves a result of Chen and the lower bound given in Chapter 1
(see Theorem 2.1). The proof here is just a reduction to the case of the endomorphisms of a
vector space (which is explicitly computed in the examples). In contrast with its simplicity,
the lower bound is sometimes optimal (notably for the case of products of SL5).
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1. Statement of the main results

1.1. Notation. — Let K be a number field and ok be its ring of integers. Let X be a flat and
projective og-scheme endowed with the action of a og-reductive group * €. Suppose that
X is equipped with a €-linearized ample invertible sheaf &£. According to a fundamental
result of Seshadri [63 Theorem 2] the graded og-algebra of €-invariants,

@r o, 2e4)% cm—@r X, 229,

is of finite type. =0 =0

Denote by X* the open subset of semi-stable points, i.e. the set of points x € X such
that there exist an integer d > 1 and a 6-invariant global section s of £®¢ that does not
vanish at x. The inclusion of 4¥ in o induces a €-invariant morphism of ox-schemes,

7 LS — Y :=Projod?,
which makes Y the categorical quotient of X* by € [63, Theorem 4].
Since 4¥ is of finite type, the nx-scheme ¥ is projective: for every positive integer
D > 1 divisible enough there exist an ample invertible sheaf /Ml p on Y and an isomorphism

of invertible sheaves,

(pD' T MD — g|a’/‘ss’

compatible with the equivariant action of €.

To complete the “arakelovian” data, for every complex embedding o: K — C endow
the invertible sheaf £y ¢y with a continuous metric ||.||«,,. Suppose that the following
conditions are satisfied:

> Semi-positivity: the Kahler form of the metric ||.||¢,» is semi-positive (in the sense of
distributions); equivalently for every analytic open subset U ¢ X,(C) and every section
s € I'(U, <) the function — log ||s||, » is plurisubharmonic;

> Invariance: the metric ||.|| ¢, is invariant under the action of a maximal compact sub-
group of €, (C).

Suppose that the family of metrics {||.||¢.o: 0: K — C} is invariant under complex
conjugation. Denote by & the corresponding hermitian invertible sheaf.

Let 0: K — C be a complex embedding. Define a metric on Jlp as follows: for every
point y € Y, (C) and every section ¢ € y* M p set

||t||MD,U(y) ‘= Sup ||7T*t||i/’®D,0'(x)'
m(x)=y
THEOREM 1.1 (¢f. Theorem 1.13 in Chapter 3). — Under the assumptions made on the metric

|[.ll¢.o (semi-positivity and invariance under the action of a maximal compact subgroup) the
metric ||.|| up, o is continuous.

The family of metric {||.||.up,o : 0: K — C} just defined is invariant under complex
conjugation.

1. Let S be a scheme. A S-group scheme G is said to reductive (or simply a S-reductive group) if the follow-
ing conditions are satisfied: 1) G is affine, of finite type and smooth over S, and 2) for every geometric point
5 : Spec2 — S (where €2 is an algebraically closed field) the fibre Gz = G Xs § is a connected reductive group
over 2.

MEMOIRES DE LA SMF 152



1. STATEMENT OF THE MAIN RESULTS 115

DEFINITION 1.2. — With the notations introduced above, denote by .l p the correspond-
ing hermitian invertible sheaf. Consider the function h z;: %(Q) — R defined, for every
Q€Y (Q), by .

hg(Q):= 5hi,(Q)

which does not depend on D. The height h j; is called the height on the quotient (with respect
toX, £ and €).

1.2. Instability measure. — Let v € Vi a place of K. If the place v is non archimedean
denote ||.|| %, the continuous and bounded metric induced by the entire model &£.

DEFINITION 1.3. — Let x be a C,, point of X. The (v-adic) instability measure is

lg - sll.(g - x)
Ip(x):=—=log sup —————~ € [-00,0
(=) ggefg(gy) lIsll<,o(x) : ]

where s € x* is a non-zero section. This is independent on the chosen section s.

The point x is said to be minimal at the place v (with the respect to the metric ||.||%,»
and the action of €) it its instability measure vanishes, i, (x) = 0.

ProPoOSITION 1.4. — Let x be a C,,-point of X. Then,
1) the instability measure 1,,(x) takes the value —co if and only if the point x is not semi-
stable;
2) if v is a non-archimedean place over a prime number p, the instability measure i,,(x)
takes the value O if and only if the point x is residually semi-stable, that is, the reduction 2
X of x is a semi-stable Fp-point of L X E, under the action of G X, E,.
These assertions are respectively consequences of Theorem 1.9 and Theorem 4.9 in Chap-

ter 3.

1.3. Statement and proof of the Fundamental Formula

THEOREM 1.5 (Fundamental Formula). — Let P € X*(K) be a semi-stable K-point. Then the
instability measures 1,,(P) are almost all zero and

Proof. — Let P € X*(K) be a semi-stable K-point of X and let ¢t € 7(P)*#lp be a non zero
section. Then,

(11) K : Q. (1(P) = > ~log Itllapo (x(P))
veVK
= Z —log sup |[7"t||gep ,(P’)
VeV n(P")=n(P)

2. Since X is projective, by the valuative criterion of properness the point x lifts to a 0,,-point of X, where b,
is the ring of integers of C,. Taking the reduction mod p one gets a [, point X of X which called the reduction
of x.
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where in the second equality one uses the very definition of the metric ||.|| 4, » for the
archimedean places and Theorem 1.17 in Chapter 3 for the non-archimedean ones. Accord-
ing to Theorem 1.16 in Chapter 3:

K : Qhu, (7(P)) = Z —log sup ||7"t||gep (g P)

veEVK 9€%(Cy)
Y g sup MllrnsloP)
S Tgese,)  lImttligeny(P)
+ > —logllx"tllgen, o (P)
veVg
_ D(Z Lo(P) + [K : @]hg(P)),
veVk

where one uses the definition the v-adic instability measure of P (the section 7*t is €-
invariant, thus g - 7%t = n*t for every g € €(C,)). This concludes the proof of the Funda-
mental Formula. ]

1.4. The case of a projective space. — Let F be an hermitian vector bundle over og.
Suppose that an og-reductive group € acts linearly on F and that, for every embedding
o: K — C, the hermitian norm ||.||% . is invariant under the action of a maximal compact
subgroup U, of €, (C).

The og-reductive group € acts on the projective space X = P(%) and in an equivari-
ant way on the invertible sheaf £ = 0(1). For every embedding o: K — C endow the
invertible sheaf O(1) |%, () With the Fubini-Study metric ||.||¢(1),, induced by the hermi-
tian norm ||.||# . By hypothesis, the metric ||.||(1),s under a maximal compact subgroup
of 6, (C) and its curvature form is positive.

Let £ be the so-obtained hermitian line bundle and borrow the general notation intro-
duced in paragraph 1.1.

Let v be a place of K. Let x be a non-zero vector of ¥ ®,, C, and [x] the associated
Cy-point of X. By definition,

. lg - x|l
ly([x]) =log inf ———=,
olbd) =log o) "l
where the norm ||.||#,, has been extended to ¥ ®,, C, (and denote again by ||.||, . its

extension). In this framework the Fundamental Formula reads as follows:

COROLLARY 1.6. — Let v be a non-zero vector in F ®,,, K and let P = [v] be the associated
K-point of X. If the point P is semi-stable, then:

o g xllgo
h z(7(P)) = ho=(1)([v]) + log inf ————
m( ( )) Gg(l)([ ]) ; gge@(cv) ||x||‘.¥,v
VEVK
= 1 inf : v-
> og inf llg-xls.

veVk

In this case the result was obtained by Burnol [20, Proposition 5].
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Minimality at archimedean places can be expressed in terms of vanishing of the moment

map. Let 0: K — C be a complex embedding of K. A moment map
to: P(F)y(C) — (LieUy)Y
for the action of €, (C) on P(% ), (C) is defined as follows. For a non-zero vector x € ¥®,C,
consider the linear map y, (x) defined by, for a € Lie Uy,
() 1 (ad(a,x),x)s
po(x).a = —  ——2—2,

2mi [E41F

where (., .), is the hermitian form associated to the hermitian norm ||.||%,,, i is a (fixed)
square root of —1 and ad: LieU, X¥F ®, C — F Q®, C denotes the adjoint action.

PROPOSITION 1.7. — With the notations introduced above, the point [x] € P(F),(C) is mini-
mal if and only if the linear map i, (x) is identically zero.

For a proof the reader can refer to the Proposition 1.2 in Chapter 3 and the references
cited therein.

1.5. Lowest height on the quotient. — Since the metric ||.|| «,.» is continuous and the
invertible sheaf Jlp is ample the height on Y is uniformly bounded below. Set

hunin (0, £)//6) = Q;;lf@) h 7 (Q).

By definition of hyin (X, £ )//€) one has the following immediate Corollary of the Funda-
mental Formula which is relevant for the applications.

COROLLARY 1.8. — Let P € X*(K) be a semi-stable K-point. Then the instability mea-
sures i, (P) are almost all zero and

1

hg (P) + 5 g UEZV]K to(P) 2 huin (X, Z)//6).

For applications is sometimes important to have an explicit lower bound of the height on
the quotient.

1.6. The lower bound of Bost, Gasbarri and Zhang. — Let N > 1 be a positive integer
and let ey, . .., en be positive integers. Consider the ogx-reductive groups

6 = GL¢,,0x Xog *** Xox GLep, 0k
8 = SLe; 0x Xog ** * Xog SLep,oxs
and for every embedding o: K — C consider their maximal compact subgroups
Uy, =U(e1) X ---xUley) € 65(C)
SU, = SU(e1) X --- x SU(en) C 85(C).
Let F be a hermitian vector bundle over ox and let p: € — GL(%) be a representation,
that is a morphism of ox-group schemes, which respects the hermitian structure: this means

that for every embedding 0: K — C the norm ||.||,, is fixed under the action of the
maximal compact subgroup U,. Borrow the notation from paragraph 1.4.
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Let € = (?_81, e %N) be a N-uple of hermitian vector bundles over ok such that
ﬂ(%i =e¢;foralli = 1,...,N. To this dilta one can associate a hermitian vector bundle
F 7 obtained from F by “twisting” it by € (see Section 3.1 for the precise definition). The

hermitian vector bundle F Z comes endowed with a representation,
pg: g = GL(%l) Xog *** Xog GL(%N) — GL(Q;%),
that respects the hermitian structures. Consider:

8¢ = SL(81) Xox -+ Xox SL(EN),

X = P(Fg),
¢ z = Og, (1) endowed with the Fubini-Study metric induced by F %
Y = categorical quotient of Xg with respect to Sg and Zx.

The representation p is said to be homogeneous of weight a = (ay, . ..,an) € ZV if, for
every og-scheme T and for every ty,...,iN € G, (T),

p(ty -ideg,, ... .ty -idgy) =t - 1Y - idg .
THEOREM 1.9 (cf. Theorem 3.8). — With the notations introduced above, if the representation
p is homogeneous of weight a = (a1, ...,an) € ZN and the subset of semi-stable points L
is not empty, then:
1) there exists an isomorphism ag: Yg — Y;

2) for every D > 0 divisible enough there exists a canonical isomorphism of hermitian line
bundles, that is an isometric isomorphism of line bundles,

N
Ba: dly 5 — g lln ® () fi(det &) P/,
i=1

where fg: Yg — Spec ok is the structural morphism;
N

3)  huin(Ts. L6)//S6) = hmin (X, £)//8) = D" ai ().

i=1

CoROLLARY 1.10. — With the notation of Theorem 3.8, for every K-point P of ¢ which is
semi-stable under the action of Sy:

ho (P) > _Z a; [1(%:) + hain (%0, L) //8).

N
K3
i=1

For N = 1 this is the original statement of Gasbarri [32, Theorem 1] which in turn was
generalisation of results of Bost [12, Proposition 2.1] and Zhang [75, Proposition 4.2].

1.7. An explicit lower bound. — In practice, it is useful to have an explicit lower bound
of the height on the quotient. Let N > 1 be a positive integer and let € = (€1,..., €N)
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be a N-uple of hermitian vector bundles over ox of positive rank. Consider the following
og-reductive groups

€ = GL(61) Xoy - - - %o GL(8N),
8 = SL(61) Xog - - Xox SL(EN),
and for every complex embedding o: K — C consider the maximal compact subgroups,
Us = U(ll-Il6,.0) X -+ - X U(|l. 1 &x.,0) € Go(C),
SUs = SU(|[.l5,.0) X - - - X SU(Illl gy.5) € So(C).
Let F be a hermitian vector bundle over og and let p: € — GL(%) be a representa-
tion which respects the hermitian structures, that is, for every embedding o: K — C the

norm ||.||#, o is fixed under the action of the maximal compact subgroup U,. Consider the
induced action of § on %. Borrow the notation introduced in paragraph 1.4. For an inte-

ger n > 1 write
t(n) log n! Zn: logi
n) = = —
n ~ n

Then £(n) < logn and, by Stirling’s approximation, £(n) ~ logn as n — co.

THEOREM 1.11 (cf. Theorem 4.1). — With the notations introduced above, let
N — — —

[End(€;)®% @y %?b"] — F
=1

@:

i
be a G-equivariant and generically surjective homomorphism of hermitian vector bundles.
Then,

Mz

e (P(F), 05 (1) //S) 2 - D sluletkE)

i=1 itk 6;>3
with equality ifby,...,bxy = 0.

Actually, one would hope for a better lower bound:

CONJECTURE 1.12. — Under the same hypotheses of Theorem 1.11,

hunin (P(F), 0= (1)) //8) > Zb (%)

The error terms appearing in Theorem 1.11 are linked to the error terms involved in the
upper bound of the maximal slope of the tensor product of hermitian vector bundles over og.
The interested reader can refer to [22] and [16].
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2. Examples of height on the quotient
2.1. Endomorphisms of a vector space

2.1.1. Semi-stable endomorphisms. — Let k be an algebraically closed field and E be a k-
vector space of (finite) dimension n. Consider the action by conjugation of the reductive
k-group GL(E) on the affine k-scheme

X := End(E) = Spec(A),

where A = Sym (End(E)"). For every endomorphism ¢: E — E denote by P,(T) its
characteristic polynomial,

Py(T) := det(T - idg —p) = T" — 51 (9)T" " + -+ + (=1)" 0 ().

The coefficients o1 (¢), . . . , 0, (¢) are polynomials in the coefficients of ¢, i.e. elements of A,
which are invariant under the action of SL(E).

PROPOSITION 2.1 (see [49, Proposition 2]). — The affine space A} together with the map
7: End(E) — AL, ¢ — (01(@).....0n(9)),

is the categorical quotient of X by SL(E). In particular, the invariants o1, . . ., o, generate the
k-algebra of invariants AS“(E).

PROPOSITION 2.2 (see [49, Proposition 4]). — Let ¢: E — E be a linear map. Then:
1) the orbit of ¢ is closed if and only if ¢ is semi-simple (i.e. it can be diagonalized);
2) the closure G - ¢ of the orbit of ¢ contains the orbit of the semi-simple part ¢ of ¢.

COROLLARY 2.3. — For every non-zero endomorphism ¢: E — E the associated k-point
[¢] € P(End(E)) is semi-stable if and only if ¢ is not nilpotent.

2.1.2. Arithmetic situation. — Let K be a number field and vk be its ring of integers. Let €
be a hermitian vector bundle on og.

Consider the action by conjugation of § = SL(€) on End(¥). Endow the ng-module
End(%€) with the norms on endomorphism (see §3 on page 9). The norm ||.||gnace), is
invariant under the action of the special unitary subgroup SU(||.||%,s) of 65 (C). Borrow
notation from paragraph 1.4 (with % = End(%) and € = 8).

THEOREM 2.4. — With the notations introduced above, let ¢ be an endomorphism of the K-
vector space € ®,,, K. Suppose that the corresponding K-point [¢] of P(End(€)) is semi-stable
(that is, the endomorphism ¢ is not nilpotent). Then, [ : Q]h z (r([¢])) is equal to

3 togmax {[Ailos- o Aalo} + 3 logf Aaf2 + - + 2,12,

veVq o: Q—-C
non-arch.
where A1, ..., A, are the eigenvalues of ¢ (counted with multiplicities) and §2 is a number field

containing them.

MEMOIRES DE LA SMF 152



2. EXAMPLES OF HEIGHT ON THE QUOTIENT 121

The categorical quotient Y of the semi-stable locus of P(End(6)) by SL(%é) can be identi-
fied with quotient by Py ! by the action of S, permuting coordinates (that is, the weighted
projective space P(1,2,...,n) over 0g).

Consider the “standard” Arakelov height h on Por 1. i.e. the one defined, for every finite

extension (2 of K and every Q-point A = (41 : --- : A,), by
1 1
1 Aoy s |A + = 1 MIZ 4+ 1 AlZ.
g 2 el b} g 3 oy IA1f2 + -+ 122
non-arch.

Then, the preceding theorem says that the height h 7 is obtained descending h on % through
the quotient P! — Y by S,
The remainder of this section is devoted to the proof of Theorem 2.4.

2.1.3. Reduction to local statements. — Let v be a place of K and let E be a C,,-vector space
of dimension n. Let ey, . . ., e, be a basis of E and equip E with the norm ||.||g defined by

max{|x1|o,...,|xnlo} if v is non-archimedean,
llx1e1 + -+ + xnenlle ==

ViIx1]2 4+ |xu]2  if v is archimedean.

Equip the C,-vector space End(E) with the norm ||.||gna(r) defined by:

sup |le(x)|le/lIx||E if v is non-archimedean,
x#0

\/||<p(e1)||}25 + -+ llg(en)llZ if v is archimedean.

lollEnd(e) =

In the non-archimedean case the norm ||.||g is the one associated to 0-submodule
C=0-1®---®0-¢,

of E (where o is the ring of integers of C;). The norm ||.||gna(g) is then associated to the
p-submodule End(€) of End(E).

In the archimedean case ||¢||2 = Tr(¢* o ¢) where ¢" is the adjoint endomorphism to ¢
with respect to the hermitian norm ||.||g.

PRropOSITION 2.5. — With the notation introduced above, for every endomorphism ¢ of E,

) max{|Ai|y,...,|Aulo} if v is non-archimedean,
inf |99 llena(e) =
9ESL(E,Co) VIAEZ + -4 A2 ifvis archimedean.

where A1, ..., A, are the eigenvalues of ¢ (counted with multiplicities).

Proof of Theorem 2.4. — It suffices to apply the Fundamental Formula in the form given by
Corollary 1.6 and use the expression of the local terms given by Proposition 2.5. ]
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In order to prove Proposition 2.5, it suffices to show that the endomorphism given by the
matrix (with respect to the basis ey, . . ., ey),

A0 0
diag(Ay, ... A =| . . .|
00 - Ay

is minimal.

2.1.4. Computing minimal endomorphisms. — In this framework an endomorphism is min-
imal if and only if

= inf -1 .
lloll Ena(E) pesic) l9¢g™" IlEnd(E)
PROPOSITION 2.6. — LetAq,...,A, € C,. With the notations introduced above, the endomor-

phism ¢ = diag(A4, ..., A,) is minimal.

Proof of Proposition 2.6: the non-archimedean case. — Let v be a non archimedean place.
Proposition 1.4-2) affirms that a non-zero endomorphism ¢ is minimal if and only if its
reduction ¢ is a semi-stable F,-point of P(End(€ ®, F))).

Let A4, ..., A, be elements of C,, and suppose that they are not all zero. Up to rescaling
the endomorphism ¢ = diag(1s,...,4,) assume

max{|/11|v,...,|/1n|v} =1.

The reduction of the point [¢] is the F,-point of P(End(€)) associated to the endomorphism
¢ = diag(A1, ..., A,) of the F,-vector space

CRFp=Fy-e1®- - ®F, en,
where, for every i = 1,...,n, i,- S Fp denotes the reduction of A;. The endomorphism ¢

is non-zero and semi-simple, hence semi-stable. Thus, according to Proposition 1.4-3), the
endomorphism ¢ is minimal, which conclude the proof in the non-archimedean case. O

Proof of Proposition 2.6: the archimedean case. — Let su(E) be the Lie algebra of the Lie
group SU(J|.|lg). A moment map p: X(C) — su(E)Y for this action is defined as fol-
lows: for every non-zero endomorphism ¢ it is the linear map which associates to every
skew-hermitian matrix A € su(E) the real number

A, ), @) En
i) () = % ([ ”40] 2<P>E d(E)
q””Enol(E)
where [A, 9] = A — @A denotes the Lie bracket operation, (., .)gnd(r) the hermitian form
associated to the norm ||.||gnq(g) and i is a square root of —1.
According to Proposition 1.7, the point ¢ is minimal if and only if y([¢]).A vanishes for
all A € su(E). This is equivalent to the following condition:

(A@, @) End() = (@A, @)Enq(g) for all A € End(E).

LEMMA 2.7. — With the notation introduced above, for every endomorphism ¢ of E the follow-
ing conditions are equivalent:
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1) (A@, @)End(E) = (PA, @) End(E) for all A € End(E);

2) ¢*¢ = ¢@p*, where ¢* denotes the adjont endomorphism to ¢ with respect to the
norm ||.||gnd(E);

3) The endomorphism ¢ is diagonalisable on a orthonormal basis.

Proof of Lemma 2.7. — The equivalence of 2) and 3) is a well-known fact in linear algebra.
The proof of the equivalence of 1) and 2) is the computation that follows.

Foralli,j=1,...,nlet A;; be endomorphism of E defined by
Aij(ek) =dike; forallk=1,...,n

(here &;x is Kronecker’s delta). Write ¢ = 3.} =1 @ijAij. With these conventions, for every
Lj=1,...,n,

Ajjp = Z(ijAik, PA;; = Z(PkiAkj-
k=1 k=1
The matrices A;; form an orthonormal basis of End(E) thus, fori,j = 1,...,n,
n n
(Aijp, ) = Z QikQiks {QAij, ) = Z PkiPk;-
k=1 k=1
On the other hand, by definition, ¢ = ZZ =1 ©jiAij. Therefore

n n
po" = Z (Aijo. 9)Aij,  ¢"¢ = Z (PAij, p)Aij.
i,j=1 i,j=1

It follows from these expressions that the two conditions in the statement are equivalent. O

The preceding Lemma concludes the proof: indeed for complex numbers A4, ..., A, the
associated diagonal matrix ¢ = diag(21,...,A,) is minimal. ]

2.1.5. A wvariant. — Let us stick to the complex case. Instead of considering the
norm ||.||gnq(g) endow End(E) with the operator norm:

llo()lle
ol sup := sup =——-
xz0  lIxlle
It is invariant under the action of SU(]|.||g).
PROPOSITION 2.8. — With the notation introduced above,
inf -1 =max1|A1],...,]A
geSL(E,C) ”g(Pg ”sup {| 1| | nl}

where A1, ..., A, € C are the eigenvalues of ¢ (counted with multiplicities).
Proof. — For every i = 1,...,n let v; be an eigenvector with respect to the eigenvalue A;:

forallg € SL(E,C) andalli=1,...,n,

llgeg™" (g - vy = il - llg - wille-
In particular, for all g € SL(E, C),

”g(Pgilnsup 2 max {Ml|» cees Mn},
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thus
inf Mowp = Mlsooos|Anl}-
e Ngeg™ llswp 2 max {IAa]...... 1Aal}
Since the endomorphism diag(A4, ..., A,) belongs to the closure of the SL(E)-orbit of ¢,
. -1 : —
geleI%g,C) llgeg™ I sup < ||d1ag(/11,...,/1n)||sup = max {|A1],....12nl},
which concludes the proof. m]

The same argument holds also in the non-archimedean case, leading to a different proof
of Proposition 2.5.

2.2. The lowest height on the orbit is not the height on the quotient

2.2.1. The question. — Let us go back to the notation introduced in Section 1.1 and let P be
a semi-stable K-point of X. Since the map « is 6-invariant:
(2.1) inf hg(g-P)> inf  hg(P'),
ges(@) 9-P) n(P)=n(P) 7 ()
where the infimum on the right-hand side is ranging over all semi-stable Q-points of &

lying on the fibre 77! (P). Since the instability measure ¢, (P) is a non-positive real number
for all v € V, the Fundamental Formula yields h (P) > h j (7(P)), thus:

(2.2) E(P,i)llf;r(P) hg (P') = h i (z(P)).

Combining the previous inequalities:

23 inf_he(g-P) > h g (n(P)).
(23) e 7(9-P) 2z hg(n(P))

QUESTION. — When are the inequalities (2.1), (2.2) and (2.3) identities?

Three examples of linear actions of € = GL, 7 on a hermitian vector bundle F are
presented:

1) In the first example (with n = 1) we show that inequalities (2.2) and (2.3) are not
identities if the hermitian vector bundle % is not semi-stable 3.

2) In the second one (with n = 1 again) we show that even taking F to be the trivial
hermitian vector bundle (that is, % = Z" endowed with the standard euclidian norm on R")
is not sufficient.

The problem seems to arise from the fact that in this example G, acts through different
weights, that is, the representation G,, — GL(%) is not homogeneous.

3) In the third one, we consider GL,, 7z acting on & = End(Z") by conjugation. Endow &
with hermitian norm on endomorphisms (see § 3 on page 9) deduced from the standard scalar
product on R”.

In this case we show that that the inequalities (2.2) and (2.3) are indeed equalities for all
semi-stable Q-points of P(%) whose orbit is closed (in P(%)**). Nonetheless, inequality (2.1)
is not an equality in general when the orbit of the point is not closed.

3. A hermitian vector bundle € on a number field K is said to be semi-stable if pimax () = p(6).
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2.2.2. Linear action on a non-trivial hermitian vector bundle. — Consider the action of G,,
on A% defined by

t- (Xo,xl) = (t_le, txl),
for every scheme S, every t € G,,(S) and every (xg,x1) € A%(S).

Consider the induced action of 6 = G, on X = P, and the 6-linearisation of £ = 6(1).
For every field k,

L% (k) = P! (k) = {0, 0}
Let Y be the categorical quotient of X% (which is canonically identified with Spec Z) and
let 7: A% — Y the quotient morphism.

For every couple r = (rg,r;) of positive real numbers consider the norm ||.||, on R?
defined by

I1Geo, )17 = rglcol + rf lxa |2
Endow the invertible sheaf £ with the Fubini-Study metric associated to ||.||,, which is
invariant under the action of U(1). Denote by & , the hermitian line bundle on X obtained
in this way and by h 7 . the height on the quotient Y associated to Z,.

PROPOSITION 2.9. — With the notations introduced above:
1) The point (1 : 1) € PY(Q) is semi-stable and

hg (x(1:1)) =log2ror.

g (171 t) > logfrd + 12,

In particular, this shows that inequalities (2.2) and (2.3) are never identities unless ry = r;.
The proof of this result is left to the reader as similar arguments appear in the next ex-
amples (see Propositions 2.10 and 2.13).

2) Foreveryt € G, (Q),
h

with equality fort = 1.

2.2.3. A negative example when the hermitian vector bundle is trivial. — Consider the Z-
module 8 = Z? endowed with the standard euclidian norm

[|Geo, %1, x2) [P = Ixol? + 1% + |22,

Let G,, act on Z3 by
t- (xo,xl,x2) = (t_2XQ, tx1, t4XQ).

Consider the induced action of G,,, on X = P2 and the linearisation of 6(1). Endow 6(1)
with the Fubini-Study metric induced by the norm ||.||.

PROPOSITION 2.10. — Consider the point P = (2 : 2 : 1). With the notations introduced above:
1) The point P is semi-stable and

h i (7(P)) = log3 —log V4.
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2) Foreveryt € G, (Q),

h®(1)(t P) > log3,

with equality fort = 1.

This shows that inequalities (2.2) and (2.3) are not identities, even though the hermitian
vector bundle € is trivial.

Proof. — 1) The semi-stability of the point P is clear. For every prime number p # 2 the
point P is minimal since its reduction

P=(2:2:1) e P*F,)
is a semi-stable point of PZ . It is also an elementary computation to see that the point P is

minimal at the unique archimedean place of Q.

On the other hand, for p = 2, it is not minimal: indeed, its reduction modulo 2 is
(0:0: 1) which is not a semi-stable point of [FD%?. For every t € G, (Ca),

log |t - (2.2,1)||, = max { — 2log|t|; — log 2,log |t|> — log 2, 4log |¢|2}.
The minimum of this function is obtained for log |t|s = —log %, thus

3
logtEG}nfC )||t (2,2,1 H2 l og2 = —log V4.

Finally the Fundamental Formula yields

= Z 1ngeemf - (2.2, 1)“ =log3 —log V.

veVg
2) Let K be a number field and let t € G,,(K). For every finite place v not dividing 2,
log ||t - (2,2, 1)Hv > max { — 2log |t|,, 41og ||, }.
whereas if v divides 2,
log ||t (2,2, 1)||U > max { — 2log |t|, — log2,4log ||, }.

Therefore, summing over all places of K, and thanks to the Product Formula, the height

K :Qlh 67y (t - P) is bounded below by
1
2max{ > logltle. Y. —210g|t|6} ) 1og( A2 el )
o: K—C o: K—C 2U:K—>C | |
LEMMA 2.11. — Let N > 1 be a positive integer. For every x1,...,xny € R,

N N N
1
Qmax{ E Xi, E —Qxi} + 3 E log(4e ™ 4 4?1 4 ¢%¥1) > Nlog3.
i=1 i=1 i=1

Proof of the Lemma. — Let consider the function a: RN — R defined by

N N N
1
a(xy,...,xN) = 2max{ E Xi, E —2xi} + 3 E log(4e ™% 4 4e?*i 4 ¢81),
=1 i=1 i=1
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The function « is convex and is invariant under permutations of coordinates. Therefore its
minimum is attained on the diagonal R c RN that is, it coincides with the minimum of the
function f: R — R given by

B(x) := N(2max{x, —2x} + % log(de ¥ + 4e** + ¢%)).
The minimum of f is seen to attained in 0. Thus for all x € R,

B(x) = p(0) = Nlog3,
whence the result. ad

Let us come back to the proof of Proposition 2.10. Order the complex embeddings
01,...,0n: K — C,where N = [K : Q], and apply the preceding Lemma with x; = log |¢|,,
foralli =1,...,N. Then,

h@(l)(g . P) > 10g3,
which concludes the proof. ]

2.2.4. Endomorphisms. — Let n > 1 be a positive integer and consider the hermitian vector
bundle € given by the Z-module € = Z" endowed with the standard hermitian norm.
Let ey, ..., e, be the standard basis of 6.

As in Section 2.1 consider the action by conjugation of € = SL,, 7 on ¥ = End(€) and
borrow the notations introduced in paragraph 2.1.2.

For every number field K and for every Ay,...,A, € K, denote by diag(41,...,4,) the
endomorphism of € ® K = K" given by the matrix (with respect the standard basis),

A O -0

0 Ay --- 0

diag(/h,...,/ln)z . .o .
00 ...An

ProprosITION 2.12. — Let Ay,...,A, € K and suppose that they are not all zero. With the
notation introduced above,

h@g(l)([diag(ll, s An)]) = h g (7([diag(As, ..., An)])).

In particular, for all non-zero semi-simple endomorphism ¢ of K",

infﬁ h%(l)(g' [QDD = hﬁ(”([(p]))
geSL, (Q)

This is an immediate consequence of Theorem 2.4. This shows that inequalities (2.2)
and (2.3) are identities for non-zero semi-simple endomorphism, that is, for those points
having a closed orbit.

However, inequality (2.1) is not an equaility in general. For instance, take n = 2 and
consider the endomorphism ¢ of ‘€ given by the matrix (with respect the standard basis),

o=(o1):
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PRoPOSITION 2.13. — With the notations introduced above:
1) The endomorphism ¢ is semi-stable and
h iz (n([0]) = log V2;
2) Forevery g € SLy(Q),
hoy (9 o)) > log V3,
with equality for g = id.

Proof. — 1) This is a direct consequence of Theorem 2.4.
2) Let K be a number field and let g € SLy(K) be given by the matrix

_[ac
9=\pdl

where a, b, ¢, d € K are such that ad — bc = 1. With this notation,

1 l—ab a®
For every finite place v of K:
lgeg~ "o = max {|1 = ablo, |1 + ablo, al2, [b]2} = max {1, |al3, B3 }.
On the other hand, for every complex embedding o: K — C,
lgog 12 = 1 — ab|2 + |1 + abl2 + lal; + bI2 = 2+ (al2 + [b]2)”.

Suppose a # 0. Since |b|, is non-negative for all places v of Vg, the previous expressions
entail

K : Qlhgrs (9 [o]) 2 Zv logmax {1,]a|2} + 1 ; Clog (2+ laly).
veVK o: K—
finite

Thanks to the Product Formula:

Z logmax{1,|a|2} > max {0, Z log|a|g} = max {O, - Z loglalf,}.

veEVK veVK o: K—C
finite finite
Putting together the previous lower bounds, the height [K : Q]h @(g - [¢]) is bounded
below by
(2.4) max { 0. > -log |a|?,} + 3 log(2+lald).
o: K—C o: K—C
LEMMA 2.14. — Let N > 1 be a positive integer. For every x1,...,xn € R,
N N
max{O, —xi}—&—%Zlog(Q—i—eQ’”) > Nlog V3.
i=1 i=1

The proof of the preceding Lemma is similar to the one of Lemma 2.11.

MEMOIRES DE LA SMF 152



3. THE APPROACH OF BOST, GASBARRI AND ZHANG 129

Let us conclude the proof in the case a # 0. Order the complex embeddings
01,...,0N : K— C,
where N = [K : Q)], and apply the preceding Lemma with x; = log |a|(2,l_ foralli=1,...,N.
According to (2.4),
hog)(g - [¢]) > log V3.
The case a = 0 and b # 0 is proven similarly. m|

3. The approach of Bost, Gasbarri and Zhang

3.1. Twisting by principal bundles. — In order to make more explicit the geometrical
content of the approach of Bost, Gasbarri and Zhang and its link with the work of Bogo-
molov, let us recall a basic construction involving principal G-bundles.

3.1.1. The algebraic construction. — Let G be a group scheme over a non-empty scheme S.
Let X be a S-scheme endowed with a (left) action of G and let P be a principal G-bundle *
(always assumed to be locally trivial for the Zariski topology).
By definition, the twist of X by P is the categorical quotient of X Xs P by the (left) action
of G defined as
g+ (x.p) = (9x.pg7"),
for every S-scheme S’ and every point g € G(S’) on (x,p) € X(S’) X P(S’). Concretely, Xp
is constructed as follows:
1) Pick a covering S = |J;¢; S; by open subset on which P is trivial and, for every i € I,
let p;: S; — P be a section.
2) Glue the schemes X Xg S; along the isomorphisms
XXSSU —)XXSSij, X > gjj * X,
where S;; = S; N S; and g;; is the unique S;;-point of G sending p; to p;.
In particular Xp is isomorphic to X locally on the base S. This construction will be used
in the following examples:

1) Let G acting on itself by conjugation. The twist Gp is a S-group scheme and it acts
on Xp. More generally, if H is normal subgroup of G (namely a closed subscheme such that,
for every S-scheme S, the set H(S’) is a normal subgroup of G(S’)) then Hp is a normal
subgroup of Gp.

2) Let G act linearly on a vector bundle F over S and let V(F)p be the twist by P of the
total space V(F) of F. Consider the sheaf on S defined for every open subset U C S by

I'(U, Fp) := Mors (U, V(F)p).

Then Fp is a vector bundle over S, the S-group scheme Gp acts linearly on it and its total
space V(Fp) is identified with V(F)p. The vector bundle Fp is the twist of F by P.

4. A principal G-bundle P is a S-scheme endowed with a (right) action a: P Xxs G — P such that:
1) the morphism (pry, @): P Xs G — P Xs P is an isomorphism of S-schemes;

2) P is locally trivial for the Zariski topology: there exists an open covering S = |J;c; S; and for every i € I
there exists a section p; : S; — P.
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3) Let L be a G-linearized line bundle on X and let V(L)p be twist by P of its total
space V(L) over X. Consider the sheaf Lp on the twist Xp of X by P defined for every
open subset U C Xp by

I'(U,Lp) := Mors (U, V(L)p)
Then Lp is Gp-linearized line bundle over Xp and its total space V(Lp) over Xp is identified
with \/(L)p.

ExamPLE 3.1. — Let N > 1 be a positive integer and ey, . .., ex be positive integers. Con-
sider the following S-group schemes:

G = GLe,,s X5+ X5 GLey, s,
S = SLel,S Xg:++ Xg SLeN,S .

Let E = (E1,...,EN) be a N-uple of vector bundles on S such that E; is of rank e; for
all i. To E one associates the principal G-bundle

Pg = Fs(E1) Xs -+ xs Fs(En),
where for all i the S-scheme Fs (E; ) is the frame bundle of E;: for every S-scheme f: S’ — S,
Fs(E:)(S") = 15004 moa (0%, £ Es).

The (right) action of G on Pg is given by composing on the right.

Let us be given a vector bundle F on S and a representation p: G — GL(F). Consider
the induced action of G on X = P(F) and the invertible sheaf L = Op(1). Denote by Fg the
twist of F by Pg. Then:

Gp = GL(E;) Xs - - - Xs GL(Ex),
Sg = SL(E1) Xs - -+ Xs SL(EN),
Xg = P(Fg),
Lg = Op, (1),
where one writes Gg, Sg, Xg and Lg instead of Gp,, Sp,, Xp, and Lp,.
3.1.2. The hermitian construction. — Let us work over the complex numbers. Let G be a

complex algebraic group and Cg € G(C) be a compact subgroup. Denote the couple (G, Cg)
by G.

DEFINITION 3.2. — A principal hermitian G-bundle is a couple (P, Cp) made of a principal
G-bundle and of a non-empty compact subset Cp C P(C) such that the map induced by the
action G,

CpxCg — CpxCp, (p,u) > (p.pu),
is a bijection.

Let X = (X,Cx) be a couple made of a complex scheme of finite type and a compact
subset Cx C X(C). Suppose that G acts on X and this action induces an action of Cg on Cx.
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DEFINITION 3.3. — Let P = (P,Cp) be a principal hermitian G-bundle. The twist of X by P
is the couple )_(13 = (Xp,Cx, ), where Xp is the twist of X by P and Cyx, is the image of the
map

(Cx X Cp)/Cc — Xp(C) = (X(C) x P(C))/G(C).

Note that this map is injective by definition of principal hermitian G-bundle.

Let p € Cp be a point and for every x € X(C) denote by [x,p] the class of (x,p) in
Xp(C) = (X(C) x P(C))/G(C). Then the map

X(C) — Xp(C), x+ [x,p)],

is an isomorphism which identifies the subset Cx with Cx,.

Let P be a principal P-bundle. The examples worked out for principal G-bundles can be
now translated in this new context:

1) Let G acting on itself by conjugation. The twist of G = (G,Cg) by P is a couple
(Gp, Cgp ) made of a complex algebraic group Gp and of a compact subgroup Cg,, of Gp(C).

Let H = (H,Cy) be a couple made of a normal algebraic subgroup H of G and a com-
pact subgroup Cy of H(C) which is stable under conjugation by Cs. Then ITI§ is a cou-
ple (Hp, Cp,) made of the twist of Hp by P (which is a normal algebraic subgroup of Gp)
and of a compact subgroup of Hp(C).

2) Let F = (F,||.llr) be a (finite dimensional) hermitian vector space. Suppose that G
act linearly on F and that the norm ||.||f is invariant under the action of Cg. Consider the
couple V(F) = (V(F), Dr) where

Dr = {v eF:|v|r < 1}.
Let V(F) 5 = (V(Fp), Dy, 5) be the twist of V(F) by P. Then there exists a unique hermitian
norm ||.||r, on Fp such that
Dp5= {v € Fp : ||v|lpy < 1}.
The hermitian vector space F 5 = (Fp, ||.||r,) is the twist of F by P.

3) Let X be a proper complex scheme endowed with an action of G together with a G-
linearized line bundle L. Suppose that L is equipped with a continuous metric ||.||y which
is invariant under the action of Cg. Consider the couple V(L) = (V(L), D) where V(L) is
the total space of L over X and

D = {(x,s) : x € X(C),s € x"L, |Is|lr(x) < 1}.

Remark since X(C) is compact, then Dy, is a compact subset of V(L)(C). Moreover it is
stable under the action of Cg. Let

V()5 = (V(Lp). Dy 5).
be the twist of V(L) by P. There exists a unique continuous metric ||. |z, on Lp such that
D, 5= {(x,s) : x € Xp(C),s € x*Lp, |Is|lL, (x) < 1}

The hermitian line bundle L 5 = (Lp, ||.|l1,,) is the twist of L = (L, ||.|lz) by P.
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ExAamPLE 3.4. — Let N > 1 be a positive integer and let ey, ...,en be positive integers.
Consider the complex reductive groups

G = GL¢,,c Xc ** X¢ GLey,c; S = SLej ¢ X¢ -+ X¢ SLey, 5
and their maximal compact subgroups
Co:=U=U(e;) x---xUlen),
Cs:=SU = SU(el) XX SU(CN).
Let E = (Ey,...,En) be a N-uple of hermitian vector spaces, that is couples
E; = (Ei Illlg,)
made of a complex vector space E; and a hermitian norm ||.|[g,. Suppose dim¢ E; = e; for
all i. To such a E one associates the principal hermitian G-bundle P g = (Pg,Cg) defined by
Pp = Fc(E1) Xc -+ Xc Fe(En),  Cy=O(E;) x -+ X O(Ey),

where, for all i, Fc (E;) is the frame bundle of E; and O(E;) is the orthonormal frame bundle
of E;, i.e. the set of linear isometries C¢ — E; (here C% is endowed with the standard
hermitian norm).

Let F = (F,||.|lr) be a hermitian vector space and p: G — GL(F) a representation.
Suppose that the norm ||.||r is invariant under the action of U. Consider the induced action
of G on X = P(F) and the invertible sheaf L = Op(1) endowed with the Fubini-Study
metric ||.[|z. Denote by F 5 = (Fg, ||.||r; ) the twist of F by P z. Then:

1) the twist of the couple (G, U) by P is the couple (Gg, Uz) where

Gg = GL(E1) Xs ---xs GL(En), Ug =U(llllg,) X --- x U([l.lley ) 5
2) the twist of the couple (S, SU) by P ; is the couple (S, SUz) where
Sg = SL(E1) Xs -+ Xs SL(En), SUg = SU(|l.Ilg,) X - X SU(Il.lley ) 5
3) the twist of the hermitian line bundle L = (L, ||.||;) by P 7 is the hermitian line bundle
LE = (LE’ ””LE) OI’IXE = P(FE) where

Lg =0p,(1), ||.llL; = Fubini-Study metric associated to ||.||F,.

3.2. Statement and proof of the result

3.2.1. Setup. — Let K be a number field. Let N > 1 be a positive integer and let ey, ..., en
be positive integers. Consider the og-reductive groups

€ = GL¢,, 05 Xog *** Xog GLen,oxs S = SLey,0x Xog * ** Xog SL

eN,OK >
and for every embedding o: K — C consider their maximal compact subgroups
U, =U(e;) X---xU(ey) € 65(C), SU, =SU(e1) X ---xSU(en) C S5(C).
Let F be a hermitian vector bundle over ox and let p: € — GL(%) be a representation,
that is a morphism of ox-group schemes, which respects the hermitian structure: this means

that for every embedding 0: K — C the norm ||.||,, is fixed under the action of the
maximal compact subgroup U,.
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The linear action of € on & induces an action of ¢ on X = P(%) and a ¢-linearisation
of £ = O(1). For every embedding o: K — C endow the invertible sheaf O(1) |y _(c) with
the Fubini-Study metric, which invariant under the action of U, and whose curvature form
is positive.

Consider the open subset of semi-stable points &% with the respect to § and the cate-
gorical quotient % = X //S of X by 8, namely % = Proj 4® where

d = PrE, 2% = P syml (F).
d>0 d=0

Let 7: X% — Y be quotient morphism. For every integer D > 0 divisible enough let /(p be
the ample line bundle on % induced by £®P. Endow it with the continuous metric defined
in Section 1.1.

Since § is normal in G, for every d > 0, the sub-ox-module of S-invariant global sections
of £%4,

D(X, 2% c (X, £%9),

is stable under the linear action of € on I'(,%£®¢). This implies that the open subset of
semi-stable points X** is stable under the action of 6. Moreover € acts on the quotient Y
and, for every D > 0 divisible enough, the invertible sheaf J#lp is G-linearized. For every
embedding o: K — C the metric ||.|| 4, is invariant under the action of U,.

3.2.2. Twisting by hermitian vector bundles. — Let € = (%,..., %N) be a N-uple of her-
mitian vector bundles over g such that rk§; = e; for every i = 1,..., N. Apply the con-
structions presented in Section 3.1.1 to the representation p and the N-uple of xg-modules
€ = (64, ..., 6y underlying the hermitian vector bundles of €.

Going back to the notations of the Example 3.1, let F¢, €%, Sg, X, L% denote the twist
of #,6,8, X, £ by €. Then:

Cg = GL(%l) Xog *** Xog GL(%N), Sg = SL(%l) Xog = Xog SL(%N),
Xg = P(%cg), Se = @g%(l).

The og-reductive group Gg acts linearly on F¢ and the invertible sheaf ¥y is Gg-
linearized. Consider the open subset X' of semi-stable points of X with respect Gy
and Pg. Denote by X¢//S¢ the categorical quotient of I3 by Sg and, for every inte-
ger D > 0 divisible enough, by J#lp % the ample invertible sheaf associated to S£§’D .

Proros1TION 3.5 (Compatibility of GIT quotients to twists). — With the notations introduced
above:

1) The set of semi-stable points X3’ is the twist of X by €;
2) The quotient Xg //Sx is the twist of the quotient Y = X //S by €;
3) The invertible sheaf M p, % is the twist of Mlp by 6.

Sketch of the proof. — All these assertions follow from the following remark.

REMARK 3.6. — Let ¥ be a vector bundle over og endowed with a linear action of 6. Denote
by U its twist by €. Then the subspace 7/%8‘5 of invariant elements of V% by Sg coincide

with the twist ()¢ of 7S by €.
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This is clear: indeed, by construction one has the inclusion (7'¢)g %;g and the equal-
ity may be checked locally on Spec ok.

To conclude the proof of the Proposition it suffices to apply the preceding remark with
VU =T(X,2%%) forall d > 0. mi

Let 0: K — C be a complex embedding. By hypothesis, the representation induced by p,
ps: G (C) — GL(F)(C),

respects the hermitian structure, that is, the norm ||.|| %, is invariant under the action of U,.
Therefore one can apply the constructions described in Section 3.1.2. Going back to the no-
tations of the Example 3.4, the complex vector space Fg ®, C is endowed with an hermitian
norm ||.||#,,» which is invariant under the action of the maximal compact subgroup

U%,O' =U (”'”%130) X---xU (|I~||%N,(r)-

The invertible sheaf &% is endowed with the Fubini-Study metric ||.|| %+ associated to
the norm |||, ». The metric ||.|| %, is invariant under the maximal compact subgroup

SUg , =SU (IIll6,,0) X -+ X SU (Il %y,0) € So(C).
Let ||.|| i p,%,o be the continuous metric on the invertible sheaf Ml p defined in Section 1.1.
The metric ||.|| #p,o on #p is invariant under the action of U,: let ||.||’MD,%’6 be the

metric on Jlp, g obtained by twisting the hermitian line bundle J p by 6.

ProprosITION 3.7. — With the notations introduced above, the metrics ||.|| up.%, 0
coincide.

1 gy 60

Proof. — This is seen picking isometries ¢;: C* — 6; ®, C foralli = 1,...,N. This
verification is left to the reader. O

3.2.3. Statement. — Keep the notations introduced before. By definition the representa-
tion p is homogeneous of weight a = (ay,...,an) € ZN if for every nx-scheme T and for

every ti,...,tN € Gp(T), one has p(t; - idg,,...,tx - idgy) =t -+ - 13 - idg: .

THEOREM 3.8. — With the notations introduced above, let € = (%1, e, %N) be a N-uple
of hermitian vector bundles over ok such that rk €; = e; for every i. If the representation p is
homogeneous of weighta = (ay, . ..,an) € ZN and the subset of semi-stable points X* is not
empty, then:
1) there exists an isomorphism ag: Yg — Y;
2) for every D > 0 divisible enough there exists an isomorphism of hermitian line bundles,
that is an isometric isomorphism of line bundles,
N
g Mz — apdlp @ (X) fi(det &)Y eubi/e,
i=1

where fg: Yg — Spec ok is the structural morphism;
N

3) hoin(Te. L) //Se) = humin(X. L) //S) = Y a; i(%&s).
i=1
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COROLLARY 3.9. — With the notation of Theorem 3.8, for every K-point P of X¢ which is semi-
stable under the action of S,

N
hz (P) 2 = ) aii(8:) + hmin (X, 2) /).

i=1

3.2.4. Proof of Theorem 3.8. — Let us begin with the following basic fact concerning homo-
geneous representations.

ProprosITION 3.10. — Let V' be non-zero ox-module which is flat and of finite type. Let
r: € — GL(7) be a homogeneous representation of weight b = (by,...,bn). If the sub-
module V'S of S-invariant elements of V' is non-zero, then:

1) e; divides b; foreveryi=1,...,N;

2) the induced representation r: € — GL(VS) is given by

r(g1s...,gn) = (detg)b i/ei

:z

Il
_

i

for every og-scheme T and for every (g1, ...,9n) € €(T).

Proof. — Consider the induced representation r: ¢ — GL(%'®). Since the action of S on F$
is trivial by definition, the map r factors through a morphism of ox-group schemes

7: (€/8) =GN — GL(79).

The representation r is homogeneous of weight b = (by,...,by), thus, for every og-
scheme T and every t1,...,tx € Gp(T),
r(ty-idsg,,. .. by -idg,) = 22V id.
On the other hand,
r(ty -idg,,. ...ty -idg, ) = F(t]", .. 00),
thus
~(.€1 enN\ _ b1 bn
Pt ) =1ty - id.
Statements 1) and 2) are then clear. O

COROLLARY 3.11. — Under the hypotheses of Theorem 3.8:

1) The action of € on Y is trivial;

2) For every integer D > 0 divisible enough the o -group scheme G acts on the fibres of Mlp
through the character N
(g15- .. gN) V> n(detgi)_“"D/E".

i=1
More precisely, for every og-scheme T, every (¢1,...,.gn) € G(T), every pointy € Y (T) and

every sections € I'(T, y*JMlp),
N

(91,---,9N) - ( l_[detg “iD/ei~s).

i=1
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Proof. — Pick D such that Mlp is very ample. Then, the associated closed embedding
jp: Y — P(I'(Y,lp)") and the isomorphism j;O0(1) =~ Jlp are G-equivariant. The
global sections I'(Y, Jlp) are identified with

I(X,£%P)S = (SymP (F))°.

0K
Since the representation p is homogeneous of weight a = (ay,...,an), the induced
representation on Symg( (FV) is homogeneous of weight

—Da = (-Dajy, . ..,—Day).
It follows from Proposition 3.10-2) applied to ¥V = Symg< (FV) that the action of €
on I'(Y, Ml p) is given by the representation

(91,---9gN) — l_[(detgi)faiD/e" -id.
i=1

1

Assertions 1) and 2) are now straightforward. O
Theorem 3.8 follows from the previous Corollary:

Proof of Theorem 3.8. — According to Proposition 3.5-2), the quotient Y is the twist of the
quotient Y by E: since G is acting trivially, one gets an isomorphism

ag: Y — Y.
Similarly, according to Proposition 3.5-3) and Proposition 3.7, the hermitian line bun-

dle Jt p.% is obtained twisting the hermitian line bundle M p by €. Since the action of €
on the fibres of Ml p is given by the character N

(91, gn) — [ |(detgs)=P/e,
i=1
we get a canonical isomorphism of hermitian line bundles

N
‘B%Z MD,% ;) 0{%%D®®f*(det %i)\/@aiDi/ei,

i=1

which concludes the proof. ]

4. Lower bound of the height on the quotient

4.1. Statement. — In this section we prove Theorem 1.11. Let us recall here the notations
introduced in paragraph 1.5.

Let N > 1 be a positive integer and let € = (€,..., €y) be a N-uple of hermitian
vector bundles over ok of positive rank. Consider the following ok -reductive groups

€ = GL(%l) Xog *°* Xog GL(%N), S = SL(%l) Xog ** Xog SL(C@N),
and for every complex embedding ¢: K — C consider the maximal compact subgroups,

Uo = U(ll-l%,,6) X - X U(ll-ll&y,0) © Go(C),
SUs = SU(|l.%,,0) X - - X SU(Il- | gy 0') € Sor(C).
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Let F be a hermitian vector bundle over og and let p: € — GL(%) be a representa-
tion which respects the hermitian structures, that is, for every embedding o: K — C the
norm ||.||#, » is fixed under the action of the maximal compact subgroup U, .

Consider the induced action of § on F and borrow notation from paragraph 1.4.

THEOREM 4.1. — Leta = (ay,...,an) andb = (b1,...,bn) be N-uples of integers. With the
notations introduced above, let

N —_—
® [End(%;)%" © 7] — &

be a G-equivariant and generically surjective homomorphism of hermitian vector bundles.
Then,

hanin (P(F), 05 (1)) //8) > Zby - > Sibile(k),

itk€; >3
with equality if by, ..., by = 0.

The homomorphism ¢ is §-equivariant and it decreases the v-adic norms at all places v
of K (the archimedean ones by hypothesis, the non-archimedean ones because ¢ is defined at
the level of ng-modules). For this reason, it suffices to prove Theorem 4.1 in the case ¢ = id,
that is:

THEOREM 4.2. — Leta = (ay,...,an) andb = (by,...,bn) be N-uples of integers and set
N
® End )% @ %?b"].
iz1
With the notations introduced above,

hanin (P(F), 05 (1))//8) 2 = Y bifi(&) = > 5Ibilt(rk8y),

i=1 i:tk€;>3

with equality ifby, ..., by = 0.

The remainder of Section 4 is devoted to the proof of Theorem 4.2.

4.2. Tensor products of endomorphisms algebras

4.2.1. Notation. — In this section we are going to prove Theorem 4.2 in the case b; = 0 for
alli =1,...,N, that is, in the case N
= (X)End(E7),
i=1

for a N-uple of integers a = (a1, ...,an).

THEOREM 4.3. — With the notation introduced above,
homin (P(F),0(1))//8) = 0.

Begin with the easy inequality:
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PROPOSITION 4.4. — With the notation introduced above,

hain (P(F),0(1))//8) < 0.

Proof. — Thanks to the canonical isomorphism End(€%) ~ End(%;®%) the integers a;
may be supposed non-negative.

According to Theorem 3.8 it suffices to show this when K = Q and the hermitian vector
bundles %i are trivial, that is, for all i = 1, ..., N, the hermitian vector bundle %i is the
Z-module €; = Z° endowed with the standard hermitian norm. Consider the hermitian
vector bundle €’ := € ® .- ® %f,“” . Identify it with the trivial vector bundle given by
€’ = z%erttaney endowed with the standard hermitian norm. With this notation one
has a canonical §-equivariant isomorphism of hermitian vector bundles % =~ End(€’).

Consider the endomorphism ¢ of €’ given by the matrix (with respect the canonical basis
of €’) whose (1, 1)-entry is 1 and the other entries are 0:

10---0
=1
00---0

The point [¢] of P(F) is semi-stable under the action by conjugation of SL(§’) (hence with
respect to the action of §) because it is not nilpotent. If h ;; denotes the height on the
quotient Y of P(F)* by S and 7: P(F)*® — ¥ is the quotient map, the Fundamental
Formula for projective spaces (Corollary 1.6) gives

hg (7([e]) < ho 1) ([e]) =0,

which concludes the proof. ]
It remains to prove the converse inequality. It suffices to show:

THEOREM 4.5. — Let ¢ € F ®,, K be a non-zero vector such that the associated K-point [¢]

of P(F) is semi-stable. Then,
S log_inf lg-ollz.o
geS(Cy) ||<P||':7,v

veVK

Indeed, Theorem 4.3 is deduced applying Theorem 4.5 and the Fundamental Formula (in
the form given by Corollary 1.6) to every finite extension K’ of K and to every semi-stable
point of P(%) defined over K.

The remainder of this section is devoted to the proof of Theorem 4.5.

4.2.2. The case of a non-nilpotent endomorphism. — Consider ¢ as an endomorphism of the
K-vector space @, €2“ ®,, K thanks to the canonical isomorphism

a: (f{) End(7) = End ( (f{) 6.
i=1

i=1
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With this identification assume that ¢ is not nilpotent. Then the point [¢] is semi-stable
under the action 8. Actually, something more is true: consider the og-reductive group

H :=SL(E " @ - ®Ex™N)

and its action by conjugation on F (through the isomorphism «). According to Corollary 2.3,
the point [¢] is semi-stable under the action of #. Thus [¢] is semi-stable with respect to S
and, for every place v of K,

4.1 inf collgo = inf  ||hoh Y5
(4.1) geg(lcv)llg oll#,o he?lt,n(cv)llqv (XS

The isomorphism « is an isometry as soon as endow F with the hermitian norms deduced
from the identification

N N v N
End (X)) = (55w (XQ)55).
i=1 i=1 i=1

Therefore one can apply Theorem 2.4 to [¢] and obtain that

Q: K(Zlog inf Ikl . )

veEVK
is equal to
3 logmax {[hiler. o Malo} + > logf ul2 4o+ 1212,
veVg o: Q—-C
non-arch.
where A1, ..., 4, are the eigenvalues of ¢ (counted with multiplicities) and €2 is a number

field containing them. Since the latter quantity is non-negative, taking the sum of (4.1) over
all places,

2 log i llg-ols.o> ) log, inf lheh g0 >0,

veVk veEVK
this gives Theorem 4.5 in this case.

4.2.3. The case of a non-vanishing invariant linear form. — Suppose that there exists a S-
invariant linear form f € T'(P(%),6(1)) = F" that does not vanish at [¢]. To treat this
case one needs some information describing the form of this invariants given by the First
Main Theorem of Invariant Theorem. Thus let us recall it here again.

Foreveryi=1,...,N let S|4, be the permutation group on |a;| elements. For a permu-
tation o let ¢; » be the automorphism of %i@ % permuting factors by o. Seen as an element
of End(%°“"), the endomorphism ¢; , is invariant under conjugation by SL(€®%). There-
fore, for every N-uple of permutations,

o = (0'1,...,O'N) S 6|a1| X~~'X6|am
the endomorphism ¢, = €1,5, ® - - ® €N,65 € F is invariant under the action of §.

We can now state the First Main Theorem of Invariant Theory (cf. [71, Chapter III], [22
Theorem 3.1, Corollary] and [2, Appendix 1]):
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THEOREM 4.6 (First Main Theorem of Invariant Theory). — The subspace of elements
of F ®,, K which are invariant under the action of S X, K is generated, as a K -linear space,
by the elements e, while o ranges in Sjg,| X - -+ X S|gy|-

For every N-uple of permutations o = (01,...,0Nn) € Sjq,| X - - - X S|q,| denote by e
its image by the canonical isomorphism

N N
F = ®End(%?“’ ~ ® %V®a,
i=1 =1

Let us resume the proof of Theorem 4.5. Since there is a S-invariant linear form non-
vanishing on [¢], according to Theorem 4.6, there exists a suitable N-uple of permutations
0 =(01,...,0N) € Sjq,| X -+ X S|qy such that £7(¢) # 0. By definition,

£5(9) = Tr(poeg),
Since the trace of the endomorphism ¢ o ¢,-1 is non-zero it is not nilpotent. Therefore, the
preceding case implies:

(4.2) v; loggeénf ”g (po 50—1)” > 0.

Remark the following facts:

1) For every place v of K and every non-zero vector € F ®,, Co,

I oesrillg,o = I¥ll%o
2) The endomorphism ¢,-1 commutes with the action of § (it is the definition of S-
invariance).

As a consequence of these considerations, for every g € §(C,),

g - @llgo =g (0o,
Summing over all places, the preceding equality together with (4.2) entails
2 log_inf llg-olls.0 20,
ges(C
VeV

which proves Theorem 4.5 in this case.

4.2.4. The general case. — Let us finally treat the general case. By definition of semi-
stability there exist a positive integer D > 1 and a S-invariant global section

f €T(P(F),6(D)) = Sym”(F")
that does not vanish at the point [¢]. Consider the D-fold Veronese embedding
P(F) — P(F®P).  [g] — [¢°"].
The point [p®P] is a semi-stable point of P(%®P). Since FV® — SymP” (FV) is a surjec-

tive and a S-equivariant homomorphism, and since the point P is defined on a field of char-
acteristic 0, f can be supposed being the image of a S-invariant element f’ of #'®P ®, K. °

5. Let k be a field and let V, W be representation of a reductive k-group G. A G-equivariant homomorphism
@: V — W induces a linear homomorphism¢: VC — WS If ¢ is surjective and k is of characteristic 0 then the
homomorphism VC — W is surjective [49, pages 181-182].
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Up to rescaling f’ one may assume that there exists a S-invariant linear form
frer(P(FeP).0(1)

which does not vanish at [p®P]. Therefore one may apply the preceding case to ¢®P and
obtain

: . ,®D
2 log_dnf llg- ¢ llzen, . > 0.

veVg

For every place v of K and for every g € $(C,),

D
g - 0®Pllgen,, = (Ilg : 90”?,0) :

which concludes the proof of Theorem 4.5. ]

4.3. The general case

4.3.1. Notation. — In this section we will prove the general case of Theorem 4.2. As for
Theorem 4.3 this is deduced from the following:

THEOREM 4.7. — Let ¢ € F®,, K be a non-zero vector such that the associated K -point P = [x]
of P(F) is semi-stable. Then,

> log_inf [EALI EA
9e8(Co) Il 7,0

The rest of this section is devoted to the proof of Theorem 4.7.

4.3.2. The case of a non-vanishing invariant linear form. — Suppose that there is a S-
invariant linear form which does not vanish at the point P. In particular, the submodule of
S-invariant elements of

N
F = (X) [End(,)"* © 6" ]
i=1

is non-zero. Therefore Proposition 3.10-1) implies that e; = rk €; divides b; fori = 1,...,N.
The idea is to embed conveniently P(%) and deduce Theorem 4.7 in this case from Theo-
rem 4.3.

DEFINITION 4.8. — Fix an integeri € {1,...,N}.
1) For e; = 2, let ¢; the isomorphism of og-modules
g %% — End(6;) ® det;
whose inverse is given, for every ¢ € End §; and every v;,v2 € 6;, by the map
¢ ® (v1 Av2) - @(v1) ® vz — p(v2) ® V1.
2) For e; # 2, let ¢; be the homomorphism of og-modules
£i0 €7 — End(8) ® det &,

whose dual map,
¢/ : End(§;%%) ® det 6 —> €%,
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is defined as follows: for every ¢ € End(%ivm") and every vq,...,v; € %lv the image of
the element ¢ ® (v1 A --- A v,) is

Z sign(y)e(vy (1) ® -+ @ Vy(e,)) ® (V1 A -+ ADg,).

Y €Ce;

Endow the og-modules End(%;) ® det$; and End(%°“") ® det®; with the hermitian
norms deduced (by taking tensor products, dual and the determinant) from the hermitian
norm ||.||,.

PROPOSITION 4.9. — Fix an integeri € {1, ..., N}. With the notations introduced above:
1) fore; = 2, ¢; is a GL(%6;)-equivariant isomorphism of hermitian vector bundles;
2) fore; # 2, ¢; is GL(6;)-equivariant and, for an embedding o: K — C,

sup 16iMle o

x#0  [IxXllo

where the supremum is ranging on the elements of%i@ei ®¢ C, the norm in the numerator is
the one ofEnd(%i@ei) ® det€; and the norm in the denominator is the one of%l@e".

Proof. — The fact that the map ¢; is GL(%;)-equivariant is clear in both cases. Leto: K — C
be a complex embedding and write

W:i=%8,C, w:=dmcW=e; |.lw:=IIls.0. f:=e¢.

Let x1,. .., x,, be an orthonormal basis of W.
1) If w = 2 for every endomorphism ¢ of W:

£ (0 ® (x1 A x2))|[yyee = [l0(x1) ® %2 = (3x2) ® x1 |02

= o)l + o)l

= ll@llenaw) = [l ® (x1 A x2)||End(W)®detW’

which shows that f~! (thus f) is an isometry.
2) Suppose w # 2. For every w-uple R = (ry,...,r,) made of integers r, € {1,...,w}
(x=1,...,w)set
XR =X, @ - QXp,,.
While Rranges in the set {1, . .., w}" the vectors xg form an orthonormal basis of the vector
space W®". For every element t € W& write

= Z tRXR.
Re{1,...,w}w

Letx),...,x,, be the basis of W" dual to xi, . . ., x,, and for every permutation y € &,, write
x)\,’ = Xy(1) ® - - ® Xy (). With this notation, for every t € W®", the map f is expressed as

f(t) = Z Z sign(y)trxr ® X, ® (x1 A+ A Xyy).

Re{l,...,w}w yeG,,
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Taking the norm gives the result:

2
“f(t)HEnd(W)®W®detW = Z |1LR|2 <wl- ||t||‘2,1/®w, o
Re{1,..,w}w
For every i = 1,...,N the homomorphism g? bifes induces, through the identification
gbi ~ (€®¢i)®bi/¢i the following homomorphisms:
(ei _ 2) ®b /2. cg@b _ El’ld( >®b i/2 (detcgi)@bi/Q’
(e #2) g?”'/ “. €2% — End(%,)®" ® (det;)®"/
For everyi =1,..., N consider the og-module
End(%§;)®%Ti/2 ife; = 2,
F =
End(%€;)®%*%  otherwise

and the homomorphism of ng-modules

ni = id@e?/: End(;)%% ® %% — F/ @ det 6=/

Set ¥ := F| ® - -+ ® F},. The homomorphism 7 = 71 ® - - - ® nn gives rise to an injective
6-equivariant homomorphism of g-modules : F — F’ ® D, where

N
P = (X) det /.
i=1

Endow %’ and & of the hermitian norms deduced from the hermitian norms on 6;. Passing
to the projective spaces, it is induces a §-equivariant closed embedding

n:P(F) > P(F D).

Therefore, since the point P is defined on a field of characteristic 0 (see footnote 5), the im-
age n(P) is a semi-stable K-point of P(%’®% ) with respect to the action of §. If x € F ®,, K
is a non-zero representative of P, the Fundamental Formula for projective spaces (Corol-
lary 1.6) and Proposition 4.9 entail:

o g xllge
h—(x(P)) = log in
an(P) = D) log inf T

veVg
o g n(x) g e, |b; |
> log inf 2=~ 7 777 Pilpey.
U;K & gesico) I7(x)ll F e, v i:;‘g 2 (e:)

Since the action of § is trivial on the line bundle &, the canonical isomorphism
a:P(F D) — P(F)
is §-equivariant. Moreover, it induces an isomorphism of hermitian line bundles
5 =V
(24 ®§,(1) =~ ®§,®§(1) ®f (35 5

where f: P(¥’) — Spec ok is the structural morphism.
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Let Y’ be categorical quotient of P(F)* by § and let 7’: P(F")* — Y’ be the quo-
tient map. Denote by h j, is the height on the quotient %’ (with respect to § and Oz, (1)).
Applying again the Fundamental Formula, one finds

o Nlg n@l5ea.. T
log inf ———————— =hz(nx'(edon(P))) - ) biu(E),
PR e el E ARG RPILTIC
K
so that, putting all together, one obtains

N
b (r(P) 2 h g (' (@on(P) = Y bii(E) — > ot(er).

i

Il

—
v
w

Thanks to Theorem 4.3 the height h 7, is non-negative, which concludes the proof of Theo-
rem 4.7 in this case.

4.3.3. The general case. — Suppose that there exists a S-invariant global section
s e (P(F),6(D))

that does not vanish at P. One argues as in paragraph 4.2.4 — namely, taking the D-uple
embedding P(F) — P(F®P) and applying the preceding case. These details are left to the
reader. This concludes of the proof of Theorem 4.7, hence of Theorem 4.2. m]
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This text consists of two parts. In the first one we present a proof of Thue-
Siegel-Roth’s Theorem (and its more recent variants, such as those of Lang for
number fields and that “with moving targets” of Vojta) as an application of
Geometric Invariant Theory (GIT). Roth’s Theorem is deduced from a general
formula comparing the height of a semi-stable point and the height of its
projection on the GIT quotient. In this setting, the role of the zero estimates
appearing in the classical proof is played by the geometric semi-stability of the
point to which we apply the formula.

In the second part we study heights on GIT quotients. We generalise
Burnol’s construction of the height and refine diverse lower bounds of the
height of semi-stable points established to Bost, Zhang, Gasbarri and Chen.
The proof of Burnol’s formula is based on a non-archimedean version of Kempf-
Ness theory (in the framework of Berkovich analytic spaces) which completes
the former work of Burnol.

Ce texte est constitué de deux parties. Dans la premieére nous présentons
une preuve du théoréeme de Thue-Siegel-Roth (et des variantes plus récentes,
comme celle de Lang pour le corps de nombres et celle with moving targets
de Vojta) basée sur la théorie géométrique des invariants (GIT). Le théoreme
de Roth est déduit d’une formule reliant la hauteur d’un point semi-stable et
la hauteur de sa projection dans le quotient GIT. Dans ce cadre, le réle du
« lemme des zéros » présent dans la preuve classique est joué par la semi-
stabilité géométrique du point auquel on applique la formule.

Dans la deuxiéme partie nous étudions la hauteur sur les quotients GIT.
Nous généralisons la construction de Burnol de cette hauteur et nous amélio-
rons plusieurs minorations de la hauteur de point semi-stables précédemment
établies par Bost, Zhang Gasbarri et Chen. La preuve de la formule de Burnol
porte sur une version non-archimédienne de la théorie de Kempf-Ness (dans
le langage de la géométrie analytique de Berkovich), qui compléte le travail
antérieur de Burnol.



