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BRACKETS IN THE PONTRYAGIN ALGEBRAS OF
MANIFOLDS

Gwénaël Massuyeau, Vladimir Turaev

Abstract. — Given a smooth oriented manifold M with non-empty boundary, we
study the Pontryagin algebra A = H∗(Ω) where Ω is the space of loops in M based at
a distinguished point of ∂M. Using the ideas of string topology of Chas-Sullivan, we
define a linear map

{{− ,−}} : A ⊗ A −→ A ⊗ A
which is a double bracket in the sense of Van den Bergh satisfying a version of the
Jacobi identity. For dim(M) ≥ 3, the double bracket {{− ,−}} induces Gerstenhaber
brackets in the representation algebras associated with A. This extends our previous
work on the case dim(M) = 2 where A = H0(Ω) is the group algebra of the funda-
mental group π1(M) and the double bracket {{− ,−}} induces the standard Poisson
brackets on the moduli spaces of representations of π1(M).

Résumé (Crochets dans les algèbres de Pontryagin des variétés)
Étant donnée une variété M, lisse, orientée et à bord non-vide, nous étudions

l’algèbre de Pontryagin A = H∗(Ω) où Ω désigne l’espace des lacets dans M basés en
un point distingué de ∂M. En utilisant les idées de la topologie des cordes de Chas et
Sullivan, nous définissons une application linéaire

{{− ,−}} : A ⊗ A −→ A ⊗ A

qui est un crochet double au sens de Van den Bergh et satisfait une version de l’iden-
tité de Jacobi. Lorsque dim(M) ≥ 3, le crochet double {{− ,−}} induit des crochets
de Gerstenhaber sur les algèbres de représentations associées à A. Ceci étend notre
précédent travail sur le cas dim(M) = 2 où A = H0(Ω) est l’algèbre de groupe du
groupe fondamental π1(M) et le crochet double {{−,−}} induit les crochets de Poisson
habituels sur les espaces de modules de représentations de π1(M).

© Mémoires de la Société Mathématique de France 154, SMF 2017
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INTRODUCTION

A remarkable feature of an oriented surface Σ discovered by Goldman [20], [21]
is a natural Lie bracket in the vector space generated by the free homotopy classes
of loops in Σ. If Σ is connected and closed, then Goldman’s Lie bracket arises from
a symplectic structure on the moduli space of representations of the fundamental
group π = π1(Σ) in a Lie group G. This space Hom(π,G)/G consists of the conjugacy
classes of homomorphisms π → G. The resulting symplectic structure incorporates
the classical Kähler forms on the Teichmüller space (G = PSL(2,R)), on the Jacobi
variety (G = U(1)), and on the Narasimhan–Seshadri moduli spaces of semistable
vector bundles (G = U(N) with N ≥ 1). Goldman’s construction also yields the
Atiyah-Bott symplectic structure determined by a compact Lie group and a non-
degenerate ad-invariant symmetric bilinear form on its Lie algebra. If Σ is connected
and ∂Σ , �, then similar methods yield a weaker structure, namely, a Poisson bracket
in the algebra of conjugation-invariant smooth functions on Hom(π,G), see [17], [23].
This bracket extends to a quasi-Poisson bracket in the algebra of all smooth functions
on Hom(π,G), see [2]. Analogous results hold for the general linear group G = GLN

over any commutative ring provided Hom(π,GLN ) is treated as an affine algebraic
set and smooth functions are traded for regular functions, see [36].

Goldman’s Lie bracket for surfaces was generalized by Chas and Sullivan [9], [10]
to manifolds of arbitrary dimensions. Chas and Sullivan call this area of study the
“string topology”. The present memoir exhibits new phenomena in string topology.
We consider the Pontryagin algebras of manifolds with boundary and construct a
bracket in the associated representation algebras. For surfaces, our bracket is the
quasi-Poisson bracket on Hom(π,GLN ) mentioned above. In dimension ≥ 3, the
representation algebras are graded, and our bracket is a Gerstenhaber bracket, i.e.,
it satisfies the axioms of a Poisson bracket with appropriate signs. In the rest of the
Introduction we focus on manifolds of dimension ≥ 3.

We recall the concept of a representation algebra following [39], [34], [13]. Fix an
integer N ≥ 1 and a field F which will be the ground field of the algebras. Given
an algebra A and a commutative algebra B, consider the set S = S(A, N, B) of all
algebra homomorphisms from A to the algebra MatN (B) of (N × N)-matrices over B.



8 INTRODUCTION

Each a ∈ A and each pair of indices i, j ∈ {1, . . . , N} determine a mapping ai j : S → B
which evaluates a homomorphism A → MatN (B) at a and takes the (i, j)-th entry
of the resulting matrix. These mappings are the “coordinates" on S, generating an
algebra of “polynomial" B-valued functions on S. These coordinates satisfy various
polynomial relations some of which are universal, i.e., hold for all B. By definition, the
N-th representation algebra AN of A is generated by the symbols {ai j |a ∈ A, 1 ≤ i, j ≤ N}
subject to those universal relations. One of the universal relations says that the gen-
erators commute, so that AN is a commutative algebra. For every commutative al-
gebra B, the algebra AN projects onto the algebra of polynomial B-valued functions
on S(A, N, B) described above. We view AN as a universal form of these polynomial
algebras. If A is graded, then so is AN .

Our construction of brackets in the representation algebras {AN }N ≥1 is based on
the technique of Van den Bergh [42]. He showed how to construct such brackets from
a linear map

{{− ,−}} : A ⊗ A −→ A ⊗ A

satisfying certain conditions. Van den Bergh calls such maps double Poisson brackets.
We use the term bibracket for the version of double brackets used here. Also, we
work in the graded setting and rather consider Gerstenhaber bibrackets satisfying a
graded version of the Jacobi identity. We show that a Gerstenhaber bibracket {{− ,−}}
in a graded algebra A induces a Gerstenhaber bracket {− ,−} in AN for all N ≥ 1.
In terms of the generators, the bracket {− ,−} is defined as follows: for any a, b ∈ A,
i, j, u, v ∈ {1, . . . , N}, and any finite expansion

{{a , b}} =
∑
α

xα ⊗ yα ∈ A ⊗ A,

we set
{ai j , buv} =

∑
α

(xα)uj(yα)iv .

The bracket {− ,−} is invariant under the natural actions of the group GLN (F) and
the Lie algebra MatN (F) on AN .

Consider now a smooth oriented manifold M of dimension ≥ 3 with base point
⋆ ∈ ∂M , �.

Let Ω = Ω⋆ be the space of loops in M based at ⋆. The graded vector space
A = H∗(Ω; F)

carries an associative multiplication induced by concatenation of loops. This turns A
into a graded algebra, the Pontryagin algebra of M . We define a so-called intersection
bibracket in A as follows. Pick an embedded path ς : I = [0, 1] ↪→ ∂M connecting
the point ⋆ to another point ⋆′. Consider any singular cycles κ : K → Ω = Ω⋆ and
λ : L → Ω′ = Ω⋆′ . Let D be the set of all tuples (k ∈ K, s ∈ I, l ∈ L, t ∈ I) such
that κ(k)(s) = λ(l)(t). Each tuple (k, s, l, t) ∈ D determines two loops in M based at⋆.
The first loop goes along ς from ⋆ to ⋆′, then along the path λ(l) from ⋆′ = λ(l)(0)
to λ(l)(t) = κ(k)(s) and then along the path κ(k) back to κ(k)(1) = ⋆. The second
loop goes along the path κ(k) from ⋆ = κ(k)(0) to κ(k)(s) = λ(l)(t), then along λ(l)

MÉMOIRES DE LA SMF 154



INTRODUCTION 9

to λ(l)(1) = ⋆′ and finally along ς−1 back to ⋆. Under appropriate transversality
assumptions on κ and λ, the resulting map D → Ω×Ω is a singular cycle of dimension

dim(K) + dim(L) + 2 − dim(M).

Passing to homology classes and using the isomorphism A = H∗(Ω; F) ≃ H∗(Ω′; F)
determined by ς, we obtain the intersection bibracket in A. Our main result is the
following theorem.

Theorem. — The intersection bibracket in the Pontryagin algebra is a well-defined Gersten-
haber bibracket. It is natural with respect to diffeomorphisms of manifolds preserving the
orientation and the base point.

The intersection bibracket generalizes to higher dimensions the bibracket of a sur-
face defined in [36]. By the general theory, the intersection bibracket in the Pontryagin
algebra A induces a Gerstenhaber bracket in AN for all N ≥ 1. If the manifold M is
simply connected and F is a field of characteristic zero, then the Milnor–Moore the-
orem identifies A with the universal enveloping algebra of the graded Lie algebra
π∗(M) =

⊕
p≥2 πp(M) (with the degree shifted by 1 and the Whitehead bracket

in the role of the Lie bracket). In this case, the algebras AN can be viewed as the
representation algebras of π∗(M).

Despite the simplicity of the underlying idea, a precise definition of the inter-
section bibracket requires considerable efforts. First of all, we introduce a version
of singular homology using manifolds with corners instead of simplices. Homol-
ogy theories based on manifolds with corners were implicit already in [9] and were
since considered by several authors, see, for example, [7] and [11]. These theories
are insufficient for our aims and we develop our own approach. For any topological
space X , we define polychains in X as oriented manifolds with corners endowed with
additional structure including an identification of some faces, a map to X compatible
with this identification, and F-valued weights assigned to the connected compo-
nents (these weights play the role of the coefficients of singular simplices in singular
chains). We define a reduction of polychains which eliminates redundant connected
components (like, for example, components of weight zero). Each polychain in X has
a well-defined reduced boundary. If it is void, then the polychain is a polycycle. The
polycycles in X considered up to disjoint unions with reduced boundaries form a
graded vector space H̃∗(X), the face homology of X . The key theorem enabling our
construction of bibrackets says that the usual singular homology H∗(X) = H∗(X; F)

embeds in H̃∗(X) as a direct summand.
Given a manifold M and a point ⋆ ∈ ∂M as above, we define smooth polychains

in the loop space Ω = Ω⋆ of M and show that any pair of face homology classes of Ω
can be represented by transversal smooth polycycles. This allows us to carry out the
intersection construction outlined above and to obtain a linear map

Υ̃ : H̃∗(Ω) ⊗ H̃∗(Ω) −→ H̃∗(Ω × Ω).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



10 INTRODUCTION

This map induces a linear map in singular homology

Υ : A ⊗ A −→ H∗(Ω × Ω)

where A = H∗(Ω). The Künneth theorem allows us to rewrite Υ as a map

{{− ,−}} : A ⊗ A −→ A ⊗ A

which turns out to be a Gerstenhaber bibracket. The assumption that the ground ring
is a field is used only in the Künneth theorem; most of the exposition is therefore given
over an arbitrary commutative ring. Moreover, our constructions can be generalized
by replacing loops based at⋆with paths in M having both endpoints in ∂M . This leads
us to a notion of a path homology category of M and an extension of the intersection
bibracket to this category.

Given a smooth oriented manifold W with ∂W = �, we can remove a small open
ball from W and obtain thus a manifold with boundary. The intersection bibracket
in its Pontryagin algebra and the induced Gerstenhaber brackets are invariants of W .
Under further assumptions on W , we obtain an H0-Poisson structure [13] on the
Pontryagin algebra of W itself.

This work suggests a number of questions. So far, we do not have a general method
allowing to compute the face homology, and we do not know whether the face homol-
ogy carries more information than the singular homology. Other questions concern
the intersection bibracket. Is it sensitive to the smooth structure of the manifold?
Can it be generalized to PL-manifolds or to topological manifolds? Is it homotopy
invariant and can it be defined in homotopy-theoretic terms (cf. [12])? Note that the
technique of face homology allows one to define all the Chas-Sullivan operations [9].
It would be useful to formally identify the resulting geometric operations with those
in [12]. Also, it would be interesting to provide algebraic models for the intersection
bibracket. For instance, we do not know how our geometric constructions are related
to the cobar constructions of [3] applied to the Poincaré duality model of [31], see [3,
Section 5.5].

Organization of the memoir. — Chapters 1 and 2 are purely algebraic.
In Chapter 1 we define representation algebras and discuss brackets and bibrackets.
In Chapter 2 we discuss bibrackets in unital algebras and categories, and we also

consider Hamiltonian reduction in this context.
Chapter 3 introduces the face homology.
In Chapter 4 we study transversality of polychains and define intersection opera-

tions in the homology of path spaces.
In Chapters 5 and 6 we construct the intersection bibracket and discuss its prop-

erties.

Acknowledgements. — Part of this work was done while G. Massuyeau visited
Bloomington, Indiana in spring 2013; he would like to thank Indiana University
for hospitality and support. The work of V. Turaev on this memoir was partially
supported by the NSF grants DMS-1202335 and DMS-1664358. The authors would
like to thank F. Eshmatov for an explanation of the paper [3].
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Conventions. — Throughout the memoir, the letter K denotes a commutative ring
which serves as the ground ring of all modules and algebras. Thus, by a module
(respectively, an algebra, a linear map) we mean a K -module (respectively, a K -
algebra, a K -linear map). By the singular homology of a topological space we mean
singular homology with coefficients in K .

Given a smooth oriented manifold M and a smooth orientable submanifold N ⊂ M ,
an orientation of the normal bundle of N in M determines an orientation of N , and vice
versa, via the following rule: a positive frame in the normal bundle of N followed
by a positive frame in the tangent bundle of N is a positive frame in the tangent
bundle of M . If ∂M , �, then the orientation of M induces an orientation of ∂M using
the “outward vector first” rule.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017





CHAPTER 1

ALGEBRAS, BRACKETS, AND BIBRACKETS

1.1. Algebras and brackets

We start by recalling some standard terminology.

1.1.1. Graded modules and graded algebras. — By a graded module we mean a Z-
graded module over K

A =
⊕
p∈Z

Ap .

An element a of A is homogeneous if a ∈ Ap for some p; we write then |a| = p and
call |a| the degree of a. By definition, the degree of 0 ∈ A is an arbitrary integer. For
any d ∈ Z, the d-degree |a|d of a homogeneous element a ∈ A is

|a|d = |a| + d.

A graded algebra is a graded module A endowed with an associative bilinear
multiplication such that

ApAq ⊂ Ap+q for all p, q ∈ Z.
Note that if the product of k ≥ 1 homogeneous elements a1, . . . , ak of A is non-zero,
then the degree of this product is equal to

|a1 | + · · ·+ |ak |.
If a1 · · · ak = 0, then we set |a1 · · · ak | = |a1 | + · · ·+ |ak |. Similarly, for d ∈ Z, we write

|a1 · · · ak |d = |a1 | + · · ·+ |ak | + d.

We do not require a graded algebra A to have a unit element.
If ab = (−1) |a | · |b |ba for some homogeneous a, b ∈ A, then one says that a and b

commute.
For a graded algebra A, we denote by [A, A] the graded submodule of A spanned

by the vectors
ab − (−1) |a | · |b |ba

where a, b run over all homogeneous elements of A. The graded algebra A is commu-
tative if [A, A] = 0.
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Factoring any graded algebra A by the 2-sided ideal generated by [A, A] we obtain
a commutative graded algebra Com(A).

Given graded algebras A and B, a graded algebra homomorphism A → B is a degree-
preserving algebra homomorphism from A to B.

We will consider any Z≥0-graded module

A =
⊕
p≥0

Ap

as a Z-graded module by setting Ap = 0 for all p < 0.

1.1.2. Representation algebras. — Each graded algebra A determines an infinite
sequence of graded algebras Ã1, Ã2, . . . as follows, cf. [34], [13], [42]. The graded
algebra

ÃN with N ≥ 1

is defined by the generators ai j , where a runs over all elements of A, i, j ∈ {1, 2, . . . , N},
and the following relations: for all a, b ∈ A, k ∈ K , and i, j ∈ {1, 2, . . . , N},
(1.1.1) (ka)i j = kai j, (a + b)i j = ai j + bi j, (ab)i j = ail bl j .

In the latter formula and in the sequel we always sum up over repeating indices
and drop the summation sign. A typical element of ÃN is represented by a non-
commutative polynomial in the generators with zero free term. The grading in ÃN is
defined by |ai j | = p for all a ∈ Ap .

The construction of ÃN is functorial: a graded algebra homomorphism

f : A −→ A′

induces a graded algebra homomorphism

f̃N : ÃN −→ Ã′
N by f̃N (ai j) =

(
f (a)

)
i j

for all a ∈ A, i, j ∈ {1, . . . , N}.

For N = 1 we have Ã1 = A and f̃1 = f .
The importance of ÃN is due to the following fact. For any graded algebra B, let

MatN (B) be the graded algebra of (N × N)-matrices with entries in B. (A matrix has
a grading p ∈ Z whenever all its entries belong to Bp .) Then there is a canonical
bĳection

(1.1.2) HomGA

(
ÃN, B

) ≃−→ HomGA

(
A,MatN (B)

)
which is natural in A and B. Here GA stands for the category of graded algebras
and graded algebra homomorphisms. The bĳection (1.1.2) carries a graded alge-
bra homomorphism r : ÃN → B to the map A → MatN (B) sending any a ∈ A to
the (N × N)-matrix (r(ai j))i, j . The inverse bĳection carries a graded algebra homo-
morphism s : A → MatN (B) to the graded algebra homomorphism ÃN → B sending
a generator ai j to the (i, j)-th term of the matrix s(a) for all a ∈ A. Consequently,
the endofunctor

GA −→ GA, A 7−→ ÃN

MÉMOIRES DE LA SMF 154



1.1. ALGEBRAS AND BRACKETS 15

is left adjoint to the endofunctor
GA −→ GA, B 7−→ MatN (B).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017



16 CHAPTER 1. ALGEBRAS, BRACKETS, AND BIBRACKETS

The commutative graded algebra
AN = Com(ÃN )

is obtained from ÃN by adding the relations
ai jbkl = (−1) |a | · |b |bklai j

for any homogeneous a, b ∈ A and any i, j, k, l ∈ {1, . . . , N}. We call AN the N-th
representation algebra of A. The construction of AN is functorial: a morphism f : A → A′

in GA induces a morphism f̃N : ÃN → Ã′
N in GA, which in its turn induces a

morphism fN : AN → A′
N in the category of commutative graded algebras CGA. For

any commutative graded algebra B,

HomCGA(AN, B) ≃ HomGA(ÃN, B) ≃ HomGA(A,MatN (B)).
Consequently, the functor

GA −→ CGA, A 7−→ AN

is left adjoint to the functor

CGA −→ GA, B 7−→ MatN (B).

1.1.3. Brackets. — Let A be a graded module and d ∈ Z. By a bracket in A we mean
a linear map

{− ,−} : A ⊗ A −→ A.
A bracket {− ,−} in A:
▷ has degree d if {Ap , Aq} ⊂ Ap+q+d for all p, q ∈ Z;
▷ is d-antisymmetric if for all homogeneous a, b ∈ A,

(1.1.3) {a , b} = −(−1) |a |d · |b |d {b , a} ;

▷ satisfies the d-graded Jacobi identity if, for all homogeneous a, b, c ∈ A,

(1.1.4) (−1) |a |d · |c |d
{
a , {b , c}

}
+ (−1) |b |d · |a |d

{
b , {c , a}

}
+ (−1) |c |d · |b |d

{
c , {a , b}

}
= 0.

A degree d bracket {− ,−} in A satisfying (1.1.3) and (1.1.4) is called a d-graded Lie
bracket, and the pair (A, {− ,−}) is called then a d-graded Lie algebra.

For example, any graded algebra A gives rise to a 0-graded Lie algebra of deriva-
tions in A. Recall that a derivation in A of degree k ∈ Z is a linear map δ : A → A such
that

δ(Ap) ⊂ Ap+k for any p ∈ Z and

δ(ab) = δ(a)b + (−1)k |a |aδ(b) for any homogeneous a ∈ A and any b ∈ A.

Derivations of A of degree k form a module Derk(A). The graded module

Der(A) =
⊕
k∈Z

Derk(A)

carries a 0-graded Lie bracket defined by

[δ1, δ2] = δ1δ2 − (−1)k1k2δ2δ1
for any derivations δ1 and δ2 of A of degrees k1 and k2 respectively.
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A bracket {− ,−} in a graded algebra A satisfies the d-graded Leibniz rules if for all
homogeneous a, b, c ∈ A,

{a , bc} = {a , b}c + (−1) |a |d · |b | b{a , c},(1.1.5)

{ab , c} = a{b , c} + (−1) |b | · |c |d {a , c}b.(1.1.6)
A Gerstenhaber bracket of degree d ∈ Z in a graded algebra A is a d-graded Lie
bracket {− ,−} in A which satisfies the d-graded Leibniz rules. The pair (A, {− ,−}) is
called then a Gerstenhaber algebra of degree d.

For example, any graded algebra A is a Gerstenhaber algebra of degree 0 with
respect to the bracket (called the commutator) defined by

{a , b} = ab − (−1) |a | · |b |ba

for homogeneous a, b ∈ A and extended to all a, b ∈ A by linearity.

1.2. Bibrackets

The rest of this chapter presents an extension of Van den Bergh’s [42] theory
of double brackets in algebras to graded algebras. Such an extension is outlined
in [42, Section 2.7] in the case of degree −1.

Fix throughout this section a graded algebra A and an integer d.

1.2.1. Conventions. — Any x ∈ A⊗2 = A ⊗ A expands as a sum

x =
∑
α

x ′
α ⊗ x ′′

α

where x ′
α, x ′′

α are homogeneous elements of A and the index α runs over a finite set. To
simplify notation, we will drop the summation sign and the index and write simply

x = x ′ ⊗ x ′′.

Similarly, an element x of A⊗3 = A ⊗ A ⊗ A will be written as
x ′ ⊗ x ′′ ⊗ x ′′′

with homogeneous x ′, x ′′, x ′′′ ∈ A.
Unless explicitly stated otherwise, we endow A⊗2 with the “outer” A-bimodule

structure defined by
axb = ax ′ ⊗ x ′′b

for any a, b ∈ A and x ∈ A⊗2. We shall also use the “inner” A-bimodule structure
on A⊗2 defined by

(1.2.1) a ∗ x ∗ b = (−1) |a | · |b |+ |a | · |x′ |+ |b | · |x′′ | x ′b ⊗ ax ′′

for homogeneous a, b ∈ A and any x ∈ A⊗2.
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18 CHAPTER 1. ALGEBRAS, BRACKETS, AND BIBRACKETS

Given a permutation (i1, . . . , in) of (1, . . . , n) with n ≥ 1, we denote by
Pi1 · · ·in

the graded permutation A⊗n → A⊗n carrying any a1 ⊗ · · · ⊗ an with homogeneous
a1, . . . , an ∈ A to

(−1)tai1 ⊗ ai2 ⊗ · · · ⊗ ain
where t ∈ Z is the sum of the products |aik | · |ail | over all pairs of indices k < l such
that ik > il .

For any d ∈ Z, we similarly define the d-graded permutation
Pi1 · · ·in,d : A⊗n −→ A⊗n

using the d-degree |− |d = |− | + d instead of |− |.

1.2.2. Bibrackets in A. — A bibracket in A is a linear map
{{− ,−}} : A ⊗ A −→ A ⊗ A.

A bibracket {{− ,−}} in A has degree d if for any integers p, q,

{{Ap , Aq}} ⊂
⊕

i+j=p+q+d

Ai ⊗ Aj .

A d-graded bibracket in A is a bibracket {{− ,−}} in A of degree d satisfying the following
d-graded Leibniz rules: for all homogeneous a, b, c ∈ A,

{{a , bc}} = {{a , b}}c + (−1) |a |d · |b | b{{a , c}},(1.2.2)

{{ab , c}} = a ∗ {{b , c}} + (−1) |b | · |c |d {{a , c}} ∗ b.(1.2.3)
The following key lemma shows that a d-graded bibracket in A induces brackets

of degree d in all representation algebras {AN }N .

Lemma 1.2.1. — Given a d-graded bibracket {{− ,−}} in A and an integer N ≥ 1, there is a
unique bracket {− ,−} in AN satisfying the d-graded Leibniz rules (1.1.5), (1.1.6) and such
that
(1.2.4) {ai j , buv} = {{a , b}}′uj {{a , b}}′′iv
for all a, b ∈ A and i, j, u, v ∈ {1, . . . , N}. The bracket {− ,−} has degree d.

Proof. — We extend (1.2.4) to a bilinear form
{− ,−} : AN × AN −→ AN

satisfying (1.1.5) and (1.1.6). To see that this form is well-defined, we need to verify the
compatibility with the defining relations of AN . That the right-hand side of (1.2.4) is
linear in a and b follows from the linearity of {{− ,−}}. We now verify the compatibility
with the third relation in (1.1.1). Pick any homogeneous a, b, c ∈ A and set x = {{a , b}}
and y = {{a , c}}. Then

{{a , bc}} = xc + (−1) |a |d · |b | by = x ′ ⊗ x ′′c + (−1) |a |d · |b | by′ ⊗ y′′.
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Therefore, for any i, j, u, v ∈ {1, 2, . . . , N},{
ai j , (bc)uv

}
= {{a , bc}}′uj {{a , bc}}′′iv
= x ′

uj(x ′′c)iv + (−1) |a |d · |b |(by′)uj y′′iv
= x ′

uj x ′′
il clv + (−1) |a |d · |b | bul y′l j y

′′
iv

= {ai j , bul}clv + (−1) |a |d · |b | bul {ai j , clv} = {ai j , bulclv}.

To check that {(ab)i j , cuv} = {ailbl j , cuv}, set z = {{a , c}} and t = {{b , c}}. Then

{{ab , c}} = a ∗ t + (−1) |b | · |c |d z ∗ b = (−1) |t′ | · |a |t ′ ⊗ at ′′ + (−1) |b | · |cz′′ |d z′b ⊗ z′′.

Therefore{
(ab)i j , cuv

}
= {{ab , c}}′uj {{ab , c}}′′iv
= (−1) |t′ | · |a |t ′uj(at ′′)iv + (−1) |b | · |cz′′ |d (z′b)uj z′′iv
= (−1) |t′ | · |a |t ′uj ail t ′′lv + (−1) |b | · |cz′′ |d z′ulbl j z′′iv
= ailt ′uj t

′′
lv + (−1) |b | · |c |d z′ul z′′iv bl j

= ail{bl j , cuv} + (−1) |b | · |c |d {ail , cuv}bl j = {ailbl j , cuv}.

The last claim of the lemma follows from the definitions. □

1.2.3. Antisymmetric bibrackets. — Consider the linear involutions P21 and P21,d

of A⊗2 determined by the permutation (21) as in Section 1.2.1: for homoge-
neous a, b ∈ A, we have

P21(a ⊗ b) = (−1) |a | · |b |b ⊗ a and P21,d(a ⊗ b) = (−1) |a |d · |b |d b ⊗ a.

Given f ∈ End(A⊗2), the d-transpose of f is

fd = P21 f P21,d ∈ End(A⊗2).

Lemma 1.2.2. — A bibracket {{− ,−}} satisfies (1.2.2) if and only if its d-transpose {{− ,−}}d
satisfies (1.2.3).

Proof. — Assume that a bibracket {{− ,−}} in A satifies (1.2.2). Pick homoge-
neous a, b, c ∈ A and set x = {{c , a}}, y = {{c , b}}. Then

{{ab , c}}d = (−1) |ab |d · |c |dP21

(
{{c , ab}}

)
= (−1) |ab |d · |c |dP21

(
{{c , a}}b + (−1) |c |d · |a |a{{c , b}}

)
= (−1) |ab |d · |c |dP21

(
x ′ ⊗ x ′′b + (−1) |c |d · |a |ay′ ⊗ y′′

)
= (−1) |ab |d · |c |d+ |x′ | · |x′′b | x ′′b ⊗ x ′ + (−1) |b |d · |c |d+ |ay′ | · |y′′ |y′′ ⊗ ay′

= (−1) |ab |d · |c |dP21

(
{{c , a}}

)
∗ b + (−1) |b |d · |c |d a ∗ P21

(
{{c , b}}

)
= (−1) |b | · |c |d {{a , c}}d ∗ b + a ∗ {{b , c}}d .

So, {{− ,−}}d satifies (1.2.3). The converse is shown by a similar computation. □
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A bibracket {{− ,−}} in A is d-antisymmetric if
{{− ,−}}d = −{{− ,−}}.

By Lemma 1.2.2, a d-antisymmetric bibracket satisfies (1.2.2) if and only if it satis-
fies (1.2.3). Note for the record, that given a d-antisymmetric bibracket {{− ,−}} in A,
we have for any homogeneous a, b ∈ A,

(1.2.5) {{b , a}} = −(−1) |a |d · |b |d+ | {{a ,b}}′ | · | {{a ,b}}′′ |{{a , b}}′′ ⊗ {{a , b}}′ .
Lemma 1.2.3. — If in Lemma 1.2.1 the bibracket {{− ,−}} is d-antisymmetric, then the
induced bracket {−,−} in AN is d-antisymmetric, i.e., satisfies (1.1.3).

Proof. — Pick any homogeneous a, b ∈ A and set x = {{a , b}}. Then

{buv , ai j}
(1.2.5)
== −(−1) |a |d · |b |d+ |x′ | · |x′′ | x ′′

iv x ′
uj

= −(−1) |a |d · |b |d x ′
uj x ′′

iv = −(−1) |a |d · |b |d {ai j , buv}. □

1.2.4. The Jacobi identity. — The bracket in AN constructed in Lemma 1.2.1 may
not satisfy the d-graded Jacobi identity (1.1.4). To compute the deviation from
this identity, we observe that any bibracket {{− ,−}} in A induces a linear endo-
morphism {{− ,−,−}} of A⊗3, called the induced tribracket, by

(1.2.6) {{− ,−,−}} =
2∑

i=0

Pi
312({{− ,−}} ⊗ idA)(idA ⊗{{− ,−}})P−i

312,d

where P312,P312,d ∈ End(A⊗3) are as defined in Section 1.2.1.

Lemma 1.2.4. — Let N ≥ 1. If {{− ,−}} is a d-antisymmetric d-graded bibracket in A,
then the associated bracket {−,−} in AN satisfies, for any homogeneous a, b, c ∈ A and any
p, q, r, s, u, v ∈ {1, . . . , N},{

apq , {brs , cuv}
}
+ (−1) |a |d · |bc |

{
brs , {cuv , apq}

}
+ (−1) |ab | · |c |d

{
cuv , {apq , brs}

}
= {{a , b, c}}′uq {{a , b, c}}′′ps {{a , b, c}}′′′rv

− (−1) |b |d · |c |d {{a , c, b}}′rq {{a , c, b}}′′pv {{a , c, b}}′′′us .

Proof. — It follows from the definitions that
{{a , b, c}} =

{{
a , {{b , c}}′

}}
⊗ {{b , c}}′′ + (−1) |a |d · |bc |P312 ({{b , {{c , a}}′}} ⊗ {{c , a}}′′)

+ (−1) |ab | · |c |dP2
312

(
{{c , {{a , b}}′}} ⊗ {{a , b}}′′

)
=

{{
a , {{b , c}}′

}} ′ ⊗ {{
a , {{b , c}}′

}} ′′ ⊗ {{b , c}}′′

+ (−1) |a |d · |bc |P312

(
{{b , {{c , a}}′}}′ ⊗ {{b , {{c , a}}′}}′′ ⊗ {{c , a}}′′

)
+ (−1) |ab | · |c |dP2

312

(
{{c , {{a , b}}′}}′ ⊗ {{c , {{a , b}}′}}′′ ⊗ {{a , b}}′′

)
.
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Using the commutativity of AN , we deduce that
{{a , b, c}}′uq{{a , b, c}}′′ps{{a , b, c}}′′′rv(1.2.7)

=
{{

a , {{b , c}}′
}} ′

uq

{{
a , {{b , c}}′

}} ′′
ps
{{b , c}}′′rv

+ (−1) |a |d · |bc |
{{

b , {{c , a}}′
}} ′

ps

{{
b , {{c , a}}′

}} ′′
rv
{{c , a}}′′uq

+ (−1) |ab | · |c |d
{{

c , {{a , b}}′
}} ′

rv

{{
c , {{a , b}}′

}} ′′
uq
{{a , b}}′′ps .

Applying the transpositions b ↔ c, r ↔ u, and s ↔ v, we obtain
{{a , c, b}}′rq{{a , c, b}}′′pv{{a , c, b}}′′′us(1.2.8)

=
{{

a , {{c , b}}′
}} ′

rq

{{
a , {{c , b}}′

}} ′′
pv
{{c , b}}′′us

+ (−1) |a |d · |cb |
{{

c , {{b , a}}′
}} ′

pv

{{
c , {{b , a}}′

}} ′′
us
{{b , a}}′′rq

+ (−1) |ac | · |b |d
{{

b , {{a , c}}′
}} ′

us

{{
b , {{a , c}}′

}} ′′
rq
{{a , c}}′′pv .

Equalities (1.2.7) and (1.2.8) allow us to expand the right-hand side of the for-
mula claimed in the lemma. We next expand the left-hand side of this formula.
Set x = {{b , c}} ∈ A⊗2 and observe that{

apq , {brs , cuv}
}
= {apq , x ′

usx ′′
rv}

= {apq , x ′
us}x ′′

rv + (−1) |a |d · |x′ | x ′
us{apq , x ′′

rv}
= {{a , x ′}}′uq{{a , x ′}}′′psx ′′

rv + (−1) |a |d · |x′ | x ′
us{{a , x ′′}}′rq{{a , x ′′}}′′pv .

We rewrite the second summand as follows. Since {{− ,−}} has degree d,��{{a , x ′′}}′rq{{a , x ′′}}′′pv
�� = ��{{a , x ′′}}′{{a , x ′′}}′′

�� = |a| + |x ′′ | + d = |a|d + |x ′′ |.
The commutativity of AN implies that

(−1) |a |d · |x′ | x ′
us{{a , x ′′}}′rq{{a , x ′′}}′′pv = (−1) |x′ | · |x′′ |{{a , x ′′}}′rq{{a , x ′′}}′′pv x ′

us .

The d-antisymmetry of {{− ,−}} allows us to compute x = {{b , c}} from y = {{c , b}}: by
(1.2.5), we have x ′ ⊗ x ′′ = −(−1) |b |d · |c |d+ |y′ | · |y′′ |y′′ ⊗ y′. Hence,

(−1) |x′ | · |x′′ |{{a , x ′′}}′rq{{a , x ′′}}′′pv x ′
us = −(−1) |b |d · |c |d {{a , y′}}′rq{{a , y′}}′′pvy′′us .

As a result, we obtain that{
apq , {brs , cuv}

}
=

{{
a , {{b , c}}′

}} ′
uq

{{
a , {{b , c}}′

}} ′′
ps
{{b , c}}′′rv(1.2.9)

− (−1) |b |d · |c |d
{{

a , {{c , b}}′
}} ′

rq

{{
a , {{c , b}}′

}} ′′
pv
{{c , b}}′′us .

Cyclically permuting a, b, c and the indices, we obtain{
brs , {cuv , apq}

}
=

{{
b , {{c , a}}′

}} ′
ps

{{
b , {{c , a}}′

}} ′′
rv
{{c , a}}′′uq(1.2.10)

− (−1) |c |d · |a |d
{{

b , {{a , c}}′
}} ′

us

{{
b , {{a , c}}′

}} ′′
rq
{{a , c}}′′pv,{

cuv , {apq , brs}
}
=

{{
c , {{a , b}}′

}} ′
rv

{{
c , {{a , b}}′

}} ′′
uq
{{a , b}}′′ps(1.2.11)

− (−1) |a |d · |b |d
{{

c , {{b , a}}′
}} ′

pv

{{
c , {{b , a}}′

}} ′′
us
{{b , a}}′′rq .

The required formula directly follows from the equalities (1.2.7)–(1.2.11). □
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1.2.5. Gerstenhaber bibrackets. — A Gerstenhaber bibracket of degree d in A is a d-
antisymmetric d-graded bibracket {{− ,−}} in A such that the induced tribracket (1.2.6)
is equal to zero. The pair (A, {{− ,−}}) is called then a double Gerstenhaber algebra
of degree d. This structure was first introduced by Van den Bergh [42, Section 2.7]
for d = −1; see also [3] in the setting of differential graded algebras.

Lemma 1.2.5. — For any Gerstenhaber bibracket of degree d in A and N ≥ 1, the
bracket {− ,−} in AN given by Lemma 1.2.1 is a Gerstenhaber bracket of degree d.

Proof. — This follows from Lemmas 1.2.1, 1.2.3, and 1.2.4. The equality{
apq , {brs , cuv}

}
+ (−1) |a |d · |bc |

{
brs , {cuv , apq}

}
+ (−1) |ab | · |c |d

{
cuv , {apq , brs}

}
= 0

provided by Lemma 1.2.4 implies the d-graded Jacobi identity (1.1.4) in which a, b, c
are replaced with apq, brs, cuv , respectively. □

1.3. Equivariance

We show that the bracket constructed in Lemma 1.2.1 is equivariant under the
natural actions of the general linear group and the Lie algebra of matrices on the
representation algebra. We begin with terminology.

1.3.1. Lie pairs. — By a Lie pair we mean a pair (G, g) where G is a group and g
is a (non-graded) Lie algebra endowed with a (left) action of G on g by Lie algebra
automorphisms. The action is denoted by w 7→ gw for w ∈ g and g ∈ G.

Given a Lie pair (G, g), by a (G, g)-algebra we mean a graded algebra A endowed with
an action of G and an action of g such that gwa = gw(g−1a) for all g ∈ G, w ∈ g, a ∈ A.
Here an action of G on A is a group homomorphism from G to the group of graded
algebra automorphisms of A, and an action of g on A is a Lie algebra homomorphism
from g to the Lie algebra of derivations of A of degree zero, cf. Section 1.1.3.

1.3.2. Action on the representation algebras. — Fix an integer N ≥ 1. Let
GN = GLN (K)

be the N-th general linear group over K and let gN = MatN (K) be the Lie algebra of
(N × N)-matrices with Lie bracket

[u, v] = uv − vu.

The pair (GN, gN ) is a Lie pair where GN acts on gN by gw = gwg−1 for any g ∈ GN

and w ∈ gN . The representation algebra ÃN associated with a graded algebra A
in Section 1.1.2 is a (GN, gN )-algebra. Here GN acts on ÃN as follows: for a matrix
g = (gk,l)

N
k,l=1

∈ GN and a generator ai j ∈ ÃN , set

(1.3.1) gai j = (g−1)i,k gl, j akl .

In this formula, the numerical coefficients appear to the left of the generator akl . It is
easier to remember (1.3.1) in the equivalent form gai j = (g−1)i,k aklgl, j , and we will use
the latter form. Direct computations show that these formulas are compatible with
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the relations in ÃN and define an action of GN on ÃN . We verify the compatibility
with the relation (ab)i j = ailbl j :

g(ab)i j=(g−1)i,k (ab)klgl, j = (g−1)i,k akpbplgl, j

=(g−1)i,k akpδpqbqlgl, j = (g−1)i,k akpgp,r(g−1)r,qbqlgl, j = (gair)(gbr j).

The Lie algebra gN acts on ÃN as follows: for a matrix w = (wk,l)
N
k,l=1

∈ gN and a
generator ai j ∈ ÃN , set
(1.3.2) wai j = aikwk, j − wi,kak j .

This formula is compatible with the relations in ÃN and defines an action of gN on ÃN .
We verify the compatibility with the relation (ab)i j = ailbl j :

w(ailbl j) = w(ail)bl j + ailw(bl j)

= aikwk,lbl j − wi,kaklbl j + ailblkwk, j − ailwl,kbk j
= ailblkwk, j − wi,kaklbl j = (ab)ikwk, j − wi,k(ab)k j = w(ab)i j .

It is easy to check that these actions turn ÃN into a (GN, gN )-algebra. Moreover, these
actions descend to the commutative graded algebra AN = Com(ÃN ) and turn it
into a (GN, gN )-algebra.

The next lemma shows that the bracket in AN provided by Lemma 1.2.1 is equiv-
ariant under the actions of GN and gN .

Lemma 1.3.1. — Let {{− ,−}} be a d-graded bibracket in a graded algebra A. For any N ≥ 1,
the bracket {− ,−} in AN defined in Lemma 1.2.1 satisfies
(1.3.3) g{a , b} = {ga , gb} and w{a , b} = {wa , b} + {a ,wb}
for all g ∈ GN , w ∈ gN and a, b ∈ AN .

Proof. — Pick g = (gk,l)k,l ∈ GN . It is easy to see that if the identity g{x , y} = {gx , gy}
holds for all the generators of AN , then it holds for any x, y ∈ AN . Given a, b ∈ A and
i, j, u, v ∈ {1, . . . , N},

{gai j , gbuv} = {(g−1)i,kaklgl, j , (g−1)u,sbstgt,v}
= (g−1)i,k gl, j (g

−1)u,sgt,v{akl , bst }
= (g−1)i,k gl, j(g

−1)u,sgt,v{{a , b}}′sl{{a , b}}′′kt
= (g−1)u,s{{a , b}}′slgl, j (g

−1)i,k{{a , b}}′′ktgt,v
=

(
g{{a , b}}′uj)(g{{a , b}}′′iv

)
= g

(
{{a , b}}′uj{{a , b}}′′iv

)
= g{ai j , buv}.

Similarly, given w = (wk,l)k,l ∈ gN , it is enough to check the identity
w{x , y} = {wx , y} + {x ,wy}

for the generators of AN . For a, b ∈ A and i, j, u, v ∈ {1, . . . , N},
w{ai j , buv} = w

(
{{a , b}}′uj{{a , b}}′′iv

)
= w

(
{{a , b}}′uj){{a , b}}′′iv + {{a , b}}′ujw({{a , b}}′′iv

)
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= {{a , b}}′ukwk, j{{a , b}}′′iv − wu,k{{a , b}}′k j{{a , b}}′′iv
+ {{a , b}}′uj{{a , b}}′′ikwk,v − {{a , b}}′ujwi,k{{a , b}}′′kv

= wk, j{aik , buv} − wu,k{ai j , bkv} + wk,v{ai j , buk} − wi,k{ak j , buv}
= {aikwk, j − wi,kak j , buv} + {ai j , bukwk,v − wu,kbkv}
= {wai j , buv} + {ai j ,wbuv}. □

1.4. The associated pairing and the trace

We study the pairing A⊗ A → A induced by a bibracket in a graded algebra A and,
in particular, discuss its behavior under the trace maps.

1.4.1. The pairing ⟨−,−⟩. — A bibracket {{− ,−}} in a graded algebra A induces an
associated pairing ⟨−,−⟩ : A ⊗ A → A by

⟨a, b⟩ = {{a , b}}′{{a , b}}′′ ∈ A for a, b ∈ A.

Lemma 1.4.1. — Let {{− ,−}} be a d-antisymmetric d-graded bibracket in A. Then the
associated pairing ⟨−,−⟩ has the following properties:

(i) ⟨−,−⟩ has degree d and satisfies the d-graded Leibniz rule (1.1.5),
(ii) ⟨a, b⟩ ≡ −(−1) |a |d · |b |d ⟨b, a⟩ (mod[A, A]) for all homogeneous a, b ∈ A,

(iii) ⟨[A, A], A⟩ = 0 and ⟨A, [A, A]⟩ ⊂ [A, A],
(iv) for any homogeneous a, b, c ∈ A,⟨

⟨a, b⟩, c⟩ − ⟨a, ⟨b, c⟩
⟩
+ (−1) |a |d · |b |d

⟨
b, ⟨a, c⟩

⟩
= m

(
(−1) |a |d · |b |d {{b , a, c}} − {{a , b, c}}

)
where m ∈ Hom(A⊗3, A) carries x ⊗ y ⊗ z to xyz for all x, y, z ∈ A.

Proof. — Claim (i) is straightforward. To check (ii), set z = {{a , b}}. Then

{{b , a}} = −(−1) |a |d · |b |d+ |z′ | · |z′′ |z′′ ⊗ z′

by (1.2.5) and, modulo [A, A],

⟨b, a⟩ = −(−1) |a |d · |b |d+ |z′ | · |z′′ |z′′z′ ≡ −(−1) |a |d · |b |d z′z′′ = −(−1) |a |d · |b |d ⟨a, b⟩.
To check (iii), pick any homogeneous a, b, c ∈ A and set x = {{a , c}}, y = {{b , c}}.

We have
{{ab , c}} = a ∗ {{b , c}} + (−1) |b | · |c |d {{a , c}} ∗ b

= (−1) |a | · |y′ |y′ ⊗ ay′′ + (−1) |b | · |cx′′ |d x ′b ⊗ x ′′

so that

⟨ab, c⟩ = {{ab , c}}′{{ab , c}}′′ = (−1) |a | · |y′ |y′ay′′ + (−1) |b | · |cx′′ |d x ′bx ′′.

Transposing a and b, we also obtain

⟨ba, c⟩ = (−1) |b | · |x′ | x ′bx ′′ + (−1) |a | · |cy′′ |d y′ay′′.
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Since {{− ,−}} has degree d, we have |c x ′′ |d ≡ |a x ′ |(mod2) and |cy′′ |d ≡ |by′ |(mod2).
Therefore

⟨ab, c⟩ = (−1) |a | · |b | ⟨ba, c⟩.
Hence ⟨[A, A], A⟩ = 0. This equality together with (ii) imply the inclusion⟨

A, [A, A]
⟩
⊂ [A, A].

We now prove (iv). Set x = {{b , c}}, y = {{a , c}}, ỹ = {{c , a}}, z = {{a , b}}, z̃ = {{b , a}}.
Then

{{z′z′′ , c}} = z′ ∗ {{z′′ , c}} + (−1) |z′′ | · |c |d {{z′ , c}} ∗ z′′

= (−1) |z′ | · | {{z′′ ,c }}′ |{{z′′ , c}}′ ⊗ z′{{z′′ , c}}′′

+ (−1) |z′′ | · |c {{z′ ,c }}′′ |d {{z′ , c}}′z′′ ⊗ {{z′ , c}}′′.
We deduce that⟨

⟨a, b⟩, c
⟩
= ⟨z′z′′, c⟩ = (−1) |z′ | · | {{z′′ ,c }}′ |{{z′′ , c}}′z′{{z′′ , c}}′′(1.4.1)

+ (−1) |z′′ | · |c {{z′ ,c }}′′ |d {{z′ , c}}′z′′{{z′ , c}}′′.
By (i), we have⟨

a, ⟨b, c⟩
⟩
= ⟨a, x ′x ′′⟩ =

⟨
a, x ′⟩x ′′ + (−1) |a |d · |x′ | x ′⟨a, x ′′⟩,(1.4.2) ⟨

b, ⟨a, c⟩
⟩
= ⟨b, y′y′′⟩ =

⟨
b, y′⟩y′′ + (−1) |b |d · |y′ |y′⟨b, y′′

⟩
.(1.4.3)

By the definition of the tribracket (1.2.6),

{{a , b, c}} = {{a , x ′}} ⊗ x ′′ + (−1) |a |d · |bc |P312

(
{{b , ỹ′}} ⊗ ỹ′′

)
+ (−1) |ab | · |c |dP2

312

(
{{c , z′}} ⊗ z′′

)
= {{a , x ′}} ⊗ x ′′ + (−1) |a |d · |bc |P312

(
{{b , ỹ′}}′ ⊗ {{b , ỹ′}}′′ ⊗ ỹ′′

)
+ (−1) |ab | · |c |dP2

312

(
{{c , z′}}′ ⊗ {{c , z′}}′′ ⊗ z′′

)
= {{a , x ′}}′ ⊗ {{a , x ′}}′′ ⊗ x ′′

+ (−1) |a |d · |bc |+ |bỹ′ |d · |ỹ′′ | ỹ′′ ⊗ {{b , ỹ′}}′ ⊗ {{b , ỹ′}}′′

+ (−1) |ab | · |c |d+ | {{c ,z′ }}′ | · | {{c ,z′ }}′′z′′ |{{c , z′}}′′ ⊗ z′′ ⊗ {{c , z′}}′

(1.2.5)
== {{a , x ′}}′ ⊗ {{a , x ′}}′′ ⊗ x ′′

− (−1) |a |d · |bc |+ |b |d · |y′ |+ |a |d · |c |d y′ ⊗ {{b , y′′}}′ ⊗ {{b , y′′}}′′

− (−1) |ab | · |c |d+ | {{z′ ,c }}′′ | · |z′′ |+ |c |d · |z′ |d {{z′ , c}}′ ⊗ z′′ ⊗ {{z′ , c}}′′.
Therefore

m{{a , b, c}} = ⟨a, x ′⟩x ′′ − (−1) |a |d · |b |d+ |b |d · |y′ |y′⟨b, y′′⟩(1.4.4)

− (−1) |c {{z′ ,c }}′′ |d · |z′′ |{{z′ , c}}′z′′{{z′ , c}}′′.
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Transposing a ↔ b, we obtain

m{{b , a, c}} = ⟨b, y′⟩y′′ − (−1) |a |d · |b |d+ |a |d · |x′ | x ′⟨a, x ′′⟩(1.4.5)

− (−1) |c {{z̃′ ,c }}′′ |d · |z̃′′ |{{ z̃′ , c}}′ z̃′′{{ z̃′ , c}}′′

(1.2.5)
== ⟨b, y′⟩y′′ − (−1) |a |d · |b |d+ |a |d · |x′ | x ′⟨a, x ′′⟩

+ (−1) | {{z′′ ,c }}′ | · |z′ |+ |a |d · |b |d {{z′′ , c}}′z′{{z′′ , c}}′′.
Then (iv) follows from (1.4.1)–(1.4.5). □

1.4.2. The trace. — For a graded algebra A, consider the module
Ǎ = A/[A, A]

with the grading induced by that of A. Lemma 1.4.1 implies that the pairing
⟨−,−⟩ : A ⊗ A → A associated with {{− ,−}} induces a pairing

Ǎ ⊗ Ǎ −→ Ǎ.

The latter pairing is also denoted by ⟨−,−⟩. It has degree d and is d-antisymmetric. If
the induced tribracket of {{− ,−}} is zero, then ⟨−,−⟩ is a d-graded Lie bracket.

Note that for any N ≥ 1, the formula tr(a) = ∑N
i=1 aii defines a linear map

tr : A −→ AN .

Clearly, tr([A, A]) = 0 so that tr induces a linear map Ǎ → AN . This map is also
denoted by tr and is called the trace. The graded subalgebra of AN generated by
tr(Ǎ) ⊂ AN is denoted At

N and is called the N-th trace algebra of A. We have

At
N ⊂ AGN

N

where AGN

N is the subalgebra of AN consisting of the elements invariant under the
action of GN = GLN (K). When A is finitely generated as an algebra and K is a field
of characteristic zero, At

N = AGN

N , see [33].

Lemma 1.4.2. — Under the conditions of Lemma 1.4.1, the map tr : Ǎ → AN carries the
pairing ⟨−,−⟩ in Ǎ into the bracket {− ,−} in AN induced by {{− ,−}}. As a consequence,

{At
N , At

N } ⊂ At
N for all N ≥ 1.

Proof. — Pick any a, b ∈ A and let ǎ, b̌ be their projections to Ǎ. We have{
tr(ǎ) , tr(b̌)

}
=

{∑
i

aii,
∑
j

bj j

}
=

∑
i, j

{aii , bj j}

(1.2.4)
==

∑
i, j

{{a , b}}′ji {{a , b}}′′i j =
∑
j

({{a , b}}′{{a , b}}′′)j j

= tr
(
{{a , b}}′{{a , b}}′′

)
= tr

(
⟨a, b⟩

)
= tr

(
⟨ǎ, b̌⟩

)
. □

Note that for N = 1, the trace tr : A → A1 = Com(A) is the canonical projection
and At

1 = A1.
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CHAPTER 2

BIBRACKETS IN UNITAL ALGEBRAS AND IN CATEGORIES

2.1. Bibrackets in unital algebras

We define a version of representation algebras in the unital setting.

2.1.1. Unital algebras. — A graded algebra A is unital if it has a two-sided
unit 1A ∈ A0. Unital graded algebras and graded algebra homomorphisms carrying 1
to 1 form a category GA+. Given a unital graded algebra A, we define a sequence of
unital graded algebras Ã+

1 , Ã+
2 , . . . For N ≥ 1, Ã+

N is obtained from the algebra ÃN

defined in Section 1.1.2 as follows. First, we adjoin a unit to ÃN , that is consider
the unital graded algebra Ke ⊕ ÃN with two-sided unit e. By definition, Ã+

N is the
quotient of Ke ⊕ ÃN by the relations (1A)i j = δi je where δi j is the Kronecker delta
and i, j run over 1, . . . , N . For any B ∈ Ob(GA+), the bĳection (1.1.2) induces a natural
bĳection

(2.1.1) HomGA+

(
Ã+
N, B

)
≃ HomGA+

(
A,MatN (B)

)
.

Similarly, letCGA+ be the category of commutative unital graded algebras and graded
algebra homomorphisms carrying 1 to 1. Set

A+
N = Com(Ã+

N ) ∈ Ob(CGA+).

Then for any B ∈ Ob(CGA+), we have a natural bĳection

(2.1.2) HomCGA+

(
A+
N, B

)
≃ HomGA+

(
A,MatN (B)

)
.

We call A+
N the N-th unital representation algebra of A. From the viewpoint of algebraic

geometry, A+
N is the “coordinate algebra” of the “affine scheme” whose set of B-points

is the set of algebra homomorphisms A → MatN (B) for any B ∈ Ob(CGA+). Here
an “affine scheme” is a representable functor from CGA+ to the category of sets. The
same graded algebra A+

N can be obtained from AN by adjoining a two-sided unit e
and quotienting by the relations

(1A)i j = δi je
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where i, j run over 1, . . . , N . For N = 1, we have

Ã+
1 = A and A+

1 = Com(A).

Lemma 2.1.1. — Let {{− ,−}} be a d-graded bibracket in a unital graded algebra A and let
{− ,−} be the induced bracket in AN , see Lemma 1.2.1. Then there is a unique bracket {− ,−}+
in A+

N such that the projection AN → A+
N is bracket-preserving. If {{− ,−}} is a Gerstenhaber

bibracket of degree d, then {− ,−}+ is a Gerstenhaber bracket of degree d in A+
N .

Proof. — Denote the projection AN → A+
N by p. Clearly, p is onto which implies the

uniqueness of {− ,−}+. To prove the existence, we extend {− ,−} to a bracket {− ,−}′
in the algebra

A′
N = Ke ⊕ AN by {e , A′

N }′ = {A′
N , e}′ = 0.

The latter bracket is easily checked to satisfy the d-graded Leibniz rules (1.1.5), (1.1.6).
Therefore, it suffices to verify that (1A)i j − δi je annhilates {− ,−}′ both on the left and
on the right for all i, j. The Leibniz rule (1.2.3) for {{− ,−}} implies that {{1A , A}} = 0.
Therefore for any b ∈ A and u, v ∈ {1, . . . , N},{

(1A)i j − δi je , buv
} ′

=
{
(1A)i j , buv

}
− δi j{e , buv}′ = 0.

Since A′
N is generated by the set {buv |b, u, v}, the d-graded Leibniz rules (1.1.5), (1.1.6)

imply that {(1A)i j − δi je , A′
N }′ = 0. Similarly, {A′

N , (1A)i j − δi je}′ = 0. The last claim
of the lemma follows from Lemma 1.2.5. □

The constructions and results given for ÃN and AN in Sections 1.3.2 and 1.4.2 easily
extend to Ã+

N and A+
N .

2.1.2. The case of universal enveloping algebras. — A rich source of unital algebras
is the theory of Lie algebras since their universal enveloping algebras are unital.
In the graded setting one starts with a 0-graded Lie algebra L = (L, {−,−}) as in
Section 1.1.3.

The universal enveloping algebra U(L) of L is the quotient of the graded tensor
algebra

⊕
n≥0 L⊗n by the 2-sided ideal generated by the vectors

a ⊗ b − (−1) |a | · |b |b ⊗ a − {a, b}
where a, b run over all homogeneous elements of L. The graded tensor algebra is
unital and so is U(L).

For any unital graded algebra V , the composition with the natural linear map
L → U(L) determines a bĳection

(2.1.3) HomGA+

(
U(L),V

)
≃ HomLie(L,V)

where Lie is the category of 0-graded Lie algebras and, on the right hand-side, V is
viewed as a graded Lie algebra with the commutator bracket. Section 2.1.1 yields for
each N ≥ 1, a commutative unital graded algebra LN = (U(L))+N . By (2.1.2) and (2.1.3),
for any B ∈ Ob(CGA+), we have a natural bĳection

(2.1.4) HomCGA+(LN, B) ≃ HomLie

(
L,MatN (B)

)
.
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Note that LN is generated by the commuting symbols ai j where a runs over ho-
mogeneous elements of L and i, j run over 1, . . . , N , subject to the first two of the
relations (1.1.1) and the relation

{a, b}i j = ailbl j − (−1) |a | · |b |bilal j
for all homogeneous a, b ∈ L and all i, j. Lemma 2.1.1 shows how to obtain a bracket
in LN from a bibracket in U(L).

2.2. Bibrackets in categories

We define representation algebras and bibrackets for graded categories. We follow
Van den Bergh [42, Section 7] who did it for non-graded categories with finite sets of
objects.

2.2.1. Graded categories and associated algebras. — A graded category is a small cat-
egory C such that for any objects X,Y of C, the set HomC(X,Y) is a graded module, the
identity morphisms of all objects are homogeneous of degree zero, and the composi-
tion of morphisms is bilinear and degree-additive. The latter condition means that for
any homogeneous f ∈ HomC(X,Y) and g ∈ HomC(Y, Z), the morphism g ◦ f : X → Z
is homogeneous of degree | f | + |g |.

With a graded category C we associate a graded algebra

A = A(C) =
⊕

X,Y ∈Ob(C)

HomC(X,Y)

where ⊕ is the direct sum of graded modules. The product f g ∈ A of f ∈ HomC(X,Y)
and g ∈ HomC(U, Z) is equal to g◦ f ifY = U and to zero otherwise. For X ∈ Ob(C), the
identity morphism of X represents an element of A denoted eX . Clearly, eXeX = eX
and eXeY = 0 for X , Y . If the set Ob(C) is finite, then 1A =

∑
X∈Ob(C) eX is a two-sided

unit of A; if the set Ob(C) is infinite, then A is not unital.
For each integer N ≥ 1, we introduce a unital graded algebra C̃+

N . Consider the
unital graded algebra Ke ⊕ ÃN obtained by adjoining the two-sided unit e to the
graded algebra ÃN associated with A = A(C) in Section 1.1.2. Let C̃+

N be the quotient
of Ke ⊕ ÃN by the 2-sided ideal generated by the set {(eX)i j − δi je}X,i, j where X runs
over all objects of C and i, j ∈ {1, . . . , N}. The algebra C̃+

N has the following universal
property. For each unital graded algebra B, we consider the algebra MatN (B) of
(N × N)-matrices over B as a category with a single object. This category is graded:
a matrix is homogeneous of degree p if all its entries belong to Bp ⊂ B. There is a
natural bĳection

HomGA+

(
C̃+
N, B

) ≃−→ Fun
(
C,MatN (B)

)
where GA+ is the category of unital graded algebras and Fun(C,MatN (B)) is the set
of degree-preserving linear functors C → MatN (B). Note that such functors can be
interpreted as N-dimensional B-representations of C.
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The commutative unital graded algebra C+
N = Com(C̃+

N ) plays a similar role in the
category CGA+ of commutative unital graded algebras: for any B ∈ Ob(CGA+), there
is a natural bĳection

(2.2.1) HomCGA+

(
C+
N, B

) ≃−→ Fun
(
C,MatN (B)

)
.

2.2.2. Double Gerstenhaber categories. — Let d be an integer. A d-graded bibracket in
a graded category C is a d-graded bibracket {{− ,−}} in the graded algebra A = A(C)
such that

{{A , eX }} = {{eX , A}} = 0 for all X ∈ Ob(C).
If such a bibracket in A is a Gerstenhaber bibracket of degree d, then the pair
(C, {{− ,−}}) is called a double Gerstenhaber category of degree d.

Lemma 2.2.1. — Let {{− ,−}} be a d-graded bibracket in a graded category C. Then
▷ for any X,Y,U,V ∈ Ob(C),{{

HomC(X,Y) ,HomC(U,V)
}}

⊂ HomC(U,Y) ⊗ HomC(X,V);

▷ for any integer N ≥ 1, the bracket in AN determined by Lemma 1.2.1 induces a bracket
{− ,−} in C+

N satisfying the Leibniz rules (1.1.5), (1.1.6);
▷ if (C, {{− ,−}}) is a double Gerstenhaber category of degree d, then the pair (C+

N, {− ,−})
is a unital Gerstenhaber algebra of degree d for all N ≥ 1.

Proof. — Using the identity {{A , eX }} = {{eX , A}} = 0 and the Leibniz rules
for {{− ,−}}, we obtain that for any f ∈ HomC(X,Y), g ∈ HomC(U,V),

{{ f , g}} = {{eX f eY , eUgeV }}
= eU {{eX f eY , g}}eV

= eU
(
eX ∗ {{ f , g}} ∗ eY

)
eV

= eU
(
eX ∗ ({{ f , g}}′ ⊗ {{ f , g}}′′) ∗ eY

)
eV

= eU {{ f , g}}′eY ⊗ eX {{ f , g}}′′eV ∈ HomC(U,Y) ⊗ HomC(X,V).

Other claims of the lemma follow from the definitions and Lemma 1.2.5. □

We conclude that a double Gerstenhaber category (C, {{− ,−}}) of degree d gives
rise to a system of unital Gerstenhaber algebras {C+

N }N ≥1 of degree d. Moreover, for
any full subcategory C′ of C, the algebra A′ = A(C′) may be viewed as a subalgebra
of A = A(C) in the obvious way. The first claim of Lemma 2.2.1 implies that the
bibracket {{− ,−}} in A restricts to a bibracket in A′. In this way, C′ becomes a double
Gerstenhaber category of degree d. In particular, any object X of C determines a full
subcategory CX of C consisting of X and all its endomorphisms. Then the restriction
of {{− ,−}} to the unital graded algebra AX = A(CX) = EndC(X) is a Gerstenhaber
bibracket of degree d, and we have (CX)

+
N = (AX)

+
N .

2.2.3. Remark. — In analogy with non-unital algebras, one can consider “categories
without identity morphisms”. However, such generalized categories do not appear
in our geometric context and we do not study them.
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2.3. Bibrackets in Hopf categories

We define Hopf categories and we introduce a class of bibrackets in Hopf categories
called reducible bibrackets.

2.3.1. Hopf categories. — Consider a graded category C and the associated graded
algebra A = A(C), see Section 2.2.1. For X ∈ Ob(C), we let eX ∈ A0 ⊂ A be the
element represented by the identity morphism of X . We view A ⊗ A as an algebra
with multiplication defined by

(a1 ⊗ a2)(b1 ⊗ b2) = (−1) |a2 | · |b1 |a1b1 ⊗ a2b2

for any homogeneous a1, a2, b1, b2 ∈ A. A comultiplication in C is a degree-preserving
algebra homomorphism ∆ : A → A ⊗ A such that

(∆ ⊗ idA)∆ = (idA ⊗∆)∆ and ∆(eX) = eX ⊗ eX for all X ∈ Ob(C).
As a consequence, ∆ must carry H = HomC(X,Y) ⊂ A to H ⊗ H for any objects X,Y
of C. The image of any a ∈ H under ∆ expands (non-uniquely) as a sum∑

i

a(1)
i ⊗ a(2)

i

where i runs over a finite set and a(1)
i , a(2)

i are homogeneous elements of H. We use
Sweedler’s notation, i.e., drop the index i and the summation sign and write simply

∆(a) = a(1) ⊗ a(2).

The condition that ∆ is degree-preserving means that |a(1) | + |a(2) | = |a| for any
homogeneous a ∈ A. That ∆ is an algebra homomorphism means the identity

∆(ab) = (−1) |a(2) | · |b(1) | a(1)b(1) ⊗ a(2)b(2)

for any homogeneous a, b ∈ A.
An augmentation of C is a linear map ε : A → K carrying the identity morphisms

of all objects to 1, carrying Ap to 0 for all p , 0, and satisfying ε( f g) = ε( f )ε(g) for
any morphisms f , g in C with target( f ) = source(g). A counit for a comultiplication
∆ : A → A ⊗ A is an augmentation

ε : A −→ K

of C such that
(idA ⊗ε)∆ = idA = (ε ⊗ idA)∆: A −→ A.

Clearly, if ε is a counit of ∆, then ∆ is a split injection with left inverses idA ⊗ε
and ε ⊗ idA. Also, ε induces linear maps εin, εout : A → A such that

εin(a) = ε(a)eX and εout(a) = ε(a)eY,

for all X,Y ∈ Ob(C) and a ∈ HomC(X,Y). An antipode in C is a degree-preserving
linear map s : A → A carrying HomC(X,Y) to HomC(Y, X) for any X,Y ∈ Ob(C) and
satisfying

a(1)s(a(2)) = εin(a) and a(2) = εout(a),
for all a ∈ A. It follows immediately that s(eX) = eX for any X ∈ Ob(C).
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A graded category C endowed with a comultiplication ∆, a counit ε, and an
antipode s is called a Hopf category. When C has a single object, we recover the
usual notion of a graded Hopf algebra. A Hopf category (C,∆, ε, s) is cocommutative
if ∆ = P21∆ and is involutive if s is an involution.

Basic properties of Hopf algebras (see, for instance, [27, Theorem III.3.4]) generalize
to Hopf categories. We state the properties used in the sequel.

Lemma 2.3.1. — The antipode s of a Hopf category C is an antiendomorphism of the under-
lying algebra of A = A(C) in the sense that, for any homogeneous a, b ∈ A,

s(ab) = (−1) |a | · |b |s(b)s(a).
Also, s is an anti-endomorphism of the underlying coalgebra of A in the sense that, for any
a ∈ A,

ε(s(a)) = ε(a) and
(
s(a))(1) ⊗ (s(a)

)(2)
= (−1) |a(1) | · |a(2) |s(a(2)) ⊗ s(a(1)).

Finally, the cocommutativity of C implies its involutivity, and the latter is equivalent to any
of the following two properties:

(i) for all a ∈ A, (−1) |a(1) | · |a(2) |s(a(2))a(1) = εout(a);
(ii) for all a ∈ A, (−1) |a(1) | · |a(2) |a(2)s(a(1)) = εin(a).

Proof. — In the proof we will use the following notation. Recall that the algebra A is
linearly generated by morphisms in C. Given two expressions linearly depending on
one or several elements a, b, . . . of A, we relate these expressions by the symbol

· · ·
=

if they are equal for all a, b, . . . and this equality follows from the axioms of a Hopf
category whenever a, b, . . . are morphisms in C.

Let C be the module of degree-preserving linear maps A ⊗ A → A. Note that
the comultiplication in A induces a degree-preserving coassociative comultiplication
in A ⊗ A carrying a ⊗ b with a, b ∈ A to

(−1) |b(1) | · |a(2) |(a(1) ⊗ b(1)) ⊗ (a(2) ⊗ b(2)) .

This comultiplication induces the convolution product ∗ in C by

( f ∗ g)(a ⊗ b) = (−1) |b(1) | · |a(2) | f (a(1) ⊗ b(1))g(a(2) ⊗ b(2))

for any f , g ∈ C and any a, b ∈ A. We define elements l, r of C by

l(a ⊗ b) = s(ab) and r(a ⊗ b) = (−1) |a | · |b |s(b)s(a)
for any homogeneous a, b ∈ A. To prove the first claim of the lemma we must show
that l = r . To this end we define m, u, v ∈ C by

m(a ⊗ b) = ab, u(a ⊗ b) = εout(ab), v(a ⊗ b) = εin(ab)

for any a, b ∈ A. Observe that

(u ∗ r)(a ⊗ b) = (−1) |b(1) | · |a(2) |+ |b(2) | · |a(2) | εout
(
a(1)b(1))(s(b(2))s(a(2))

)
MÉMOIRES DE LA SMF 154



2.3. BIBRACKETS IN HOPF CATEGORIES 33

· · ·
= (−1) |b | · |a(2) | ε

(
a(1)b(1)

)
s(b(2))s(a(2))

· · ·
= (−1) |b | · |a(2) | ε(a(1))ε(b(1))s(b(2))s(a(2))

= (−1) |b | · |a | s
(
ε(b(1))b(2)

)
s
(
ε(a(1))a(2)) = r(a ⊗ b)

and
(l ∗ m)(a ⊗ b) = (−1) |b(1) | · |a(2) | s

(
a(1)b(1)

) (
a(2)b(2)

)
= s

(
(ab)(1)

) (
(ab)(2)

)
= εout(ab) = u(a ⊗ b).

Furthermore,

(m ∗ r)(a ⊗ b) = (−1) |b(1) | · |a(2) |+ |b(2) | · |a(2) | (a(1)b(1)
) (

s(b(2))s(a(2))
)

= (−1) |b | · |a(2) |a(1) (b(1)s(b(2)))s(a(2))

= (−1) |b | · |a(2) |a(1)εin(b)s(a(2))
· · ·
= a(1)εin(b)s(a(2))

= a(1)εin(b)s(a(2))ε(a(3))
· · ·
= a(1)s(a(2))ε(a(3)b)

= εin(a(1))ε(a(2)b) · · ·
= εin(ab) = v(a ⊗ b)

and
(l ∗ v)(a ⊗ b) = (−1) |b(1) | · |a(2) |s(a(1)b(1))εin(a(2)b(2))

· · ·
= (−1) |b(1) | · |a(2) |s(a(1)b(1))ε(a(2)b(2))
· · ·
= (−1) |b(1) | · |a(2) |s(a(1)b(1))ε(a(2))ε(b(2))

= s
(
a(1)ε(a(2))b(1)ε(b(2))

)
= l(a ⊗ b).

Since ∗ is an associative operation, we deduce that
l = l ∗ v = l ∗ m ∗ r = u ∗ r = r .

We now verify that s is an antiendomorphism of the unital coalgebra (A,∆, ε). For
this, we consider the module D of degree-preserving linear maps A → A⊗ A, and we
equip it with the convolution product defined by

( f ∗ g)(a) = f (a(1))g(a(2))

for any f , g ∈ D and any a ∈ A. Let l, r, u, v ∈ D be defined by
l = ∆s, r = (s ⊗ s)P21∆, u = ∆εout, v = ∆εin.

We must prove that l = r . Observe that, for any a ∈ A,

(u ∗ r)(a) = ∆εout(a(1))
(
(s ⊗ s)P21∆(a(2))

)
· · ·
= (−1) |a(3) | · |a(4) | (εout(a(1)) ⊗ εout(a(2))

) (
s(a(4)) ⊗ s(a(3))

)
= (−1) |a(3) | · |a(4) |εout(a(1))s(a(4)) ⊗ εout(a(2))s(a(3))

· · ·
= (−1) |a(2)a(3) | · |a(4) |ε(a(1))s(a(4)) ⊗ ε(a(2))s(a(3))
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= (−1) |a(2) | · |a(3) |ε(a(1))s(a(3)) ⊗ s(a(2))

= (−1) |a(1)a(2) | · |a(3) |s(a(3)) ⊗ s
(
ε(a(1))a(2))

= (−1) |a(1) | · |a(2) |s(a(2)) ⊗ s(a(1)) = r(a)

and
(l ∗∆)(a) = ∆

(
s(a(1)))∆(a(2)) = ∆

(
s(a(1))a(2)) = u(a).

Furthermore,
(∆ ∗ r)(a) = ∆(a(1))

(
(s ⊗ s)P21∆(a(2))

)
= (−1) |a(3) | · |a(4) | (a(1) ⊗ a(2)) (s(a(4)) ⊗ s(a(3))

)
= (−1) |a(2)a(3) | · |a(4) |a(1)s(a(4)) ⊗ a(2)s(a(3))

= (−1) |a(2) | · |a(3) |a(1)s(a(3)) ⊗ εin(a(2))
· · ·
= a(1)s(a(3)) ⊗ εin(a(2))

· · ·
= v(a)

and
(l ∗ v)(a) = ∆s(a(1))∆εin(a(2))

= ∆
(
s(a(1))εin(a(2))

)
· · ·
= ∆

(
s(a(1))ε(a(2))

)
= ∆

(
s
(
a(1)ε(a(2)))) = l(a) .

Using the associativity of ∗, we deduce that
l = l ∗ v = l ∗∆ ∗ r = u ∗ r = r .

Also, s preverves the counit: for any a ∈ A, we have

ε(a) · · ·
= ε(εin(a)) = ε

(
a(1)s(a(2))

)
· · ·
= ε(a(1))ε

(
s(a(2))

)
= ε

(
s(ε(a(1))a(2))

)
= ε

(
s(a)

)
.

We now prove the part of the lemma concerning the involutivity. If s2 = idA, then
the condition (i) is satisfied:

(−1) |a(1) | · |a(2) |s(a(2))a(1) = s
(
s(a(1))a(2)) = s

(
εout(a)

)
= εout(a).

Assume now that condition (i) is met and consider the convolution product ∗ in
the module, E , of degree-preserving linear maps A → A. For any a ∈ A,

(s ∗ s2)(a) = s(a(1))s
(
s(a(2))

)
= (−1) |a(1) | · |a(2) |s

(
s(a(2))a(1))

= s
(
εout(a)

)
= εout(a).

Thus, s ∗ s2 = εout. It follows from the axioms of a Hopf category that
idA ∗s = εin and εin ∗ f = f = f ∗ εout

for each f ∈ E carrying the set HomC(X,Y) into itself for all X,Y ∈ Ob(C). Applying
this to f = s2 and to f = idA and using the associativity of ∗, we obtain

s2 = εin ∗ s2 = idA ∗s ∗ s2 = idA ∗εout = idA .

MÉMOIRES DE LA SMF 154



2.3. BIBRACKETS IN HOPF CATEGORIES 35

This shows the equivalence between the involutivity and (i); the equivalence with (ii)
is proved similarly. Finally, if C is cocommutative, then the identity s ∗ idA = εout
implies (i), so that A is involutive. □

2.3.2. Bibrackets re-examined. — Bibrackets in a Hopf category (C,∆, ε, s) have a
useful reformulation which we now describe. Consider the associated graded alge-
bra A = A(C) and a d-graded bibracket

{{− ,−}} : A ⊗ A −→ A ⊗ A

with d ∈ Z. We define a linear map Λ = Λ({{− ,−}}) : A ⊗ A → A ⊗ A by

(2.3.1) Λ(a, b) = a(1)s
(
{{a(2) , b(1)}}′

)
⊗ {{a(2) , b(1)}}′′s(b(2))

for any a, b ∈ A. Note that, if a ∈ HomC(X,Y) and b ∈ HomC(U,V) with X,Y,U,V
in Ob(C), then Λ(a, b) ∈ HomC(X,U) ⊗ HomC(X,U).

Lemma 2.3.2. — For any a ∈ A and any homogeneous b, c ∈ A, we have

Λ(a, bc) = Λ
(
a, b(1)

)
ε
(
b(2)c

)
+ (−1) |b | · |c |Λ(a, c)(s ⊗ s)

(
∆(b)

)
,

Λ(ab, c) = Λ(a(1), c)ε(a(2)b) + ∆(a)Λ(b, c).

Proof. — Since both sides of the first identity are linear in b and c, it suffices to
consider the case where b ∈ HomC(U,V) and c ∈ HomC(W, Z) for some objects
U,V,W, Z of C. If V , W , then both sides of the identity are equal to zero. If V = W ,
then Λ

(
a, b(1)

)
ε
(
b(2)c

)
= Λ(a, b)ε(c) and

Λ(a, bc) = a(1)s
(
{{a(2) , (bc)(1)}}′

)
⊗ {{a(2) , (bc)(1)}}′′s((bc)(2))

= (−1) |b(2) | · |c |a(1)s
(
{{a(2) , b(1)c(1)}}′

)
⊗ {{a(2) , b(1)c(1)}}′′s(c(2))s(b(2))

= (−1) |b(2) | · |c |a(1)s
(
{{a(2) , b(1)}}′

)
⊗ {{a(2) , b(1)}}′′c(1)s(c(2))s(b(2))

+ η1a(1)s
(
{{a(2) , c(1)}}′

)
s(b(1)) ⊗ {{a(2) , c(1)}}′′s(c(2))s(b(2))

= ε(c)Λ(a, b) + η2Λ(a, c)
(
s(b(1)) ⊗ s(b(2))

)
where the signs η1, η2 = ±1 are computed by

η1 = (−1) |b(2) | · |c |+ |b(1) | · | {{a(2) ,c(1) }}′ |+ |b(1) | · |a(2) |d ,

η2 = η1 · (−1) |b
(1) | · | {{a(2) ,c(1) }}′′c(2) | = (−1) |b | · |c | .

The second identity is proved similarly with the key case being the one where a, b
are morphisms in C and the target object of a coincides with the source object of b.
Then Λ

(
a(1), c

)
ε
(
a(2)b

)
= Λ(a, c)ε(b) and

Λ(ab, c) = (ab)(1)s
(
{{(ab)(2) , c(1)}}′

)
⊗ {{(ab)(2) , c(1)}}′′s(c(2))

= (−1) |a(2) | · |b(1) | a(1)b(1)s
(
{{a(2)b(2) , c(1)}}′

)
⊗ {{a(2)b(2) , c(1)}}′′s(c(2))

= θ1a(1)b(1)s
(
{{b(2) , c(1)}}′

)
⊗ a(2){{b(2) , c(1)}}′′s(c(2))

+ θ2a(1)b(1)s
(
{{a(2) , c(1)}}′b(2)

)
⊗ {{a(2) , c(1)}}′′s(c(2))
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=
(
a(1) ⊗ a(2))Λ(b, c)

+ θ3a(1)b(1)s(b(2))s
(
{{a(2) , c(1)}}′

)
⊗ {{a(2) , c(1)}}′′s(c(2))

= ∆(a)Λ(b, c) + (−1) |a(2) | · |b |ε(b)Λ(a, c) = ∆(a)Λ(b, c) + ε(b)Λ(a, c)

where the signs θ1, θ2, θ3 = ±1 are computed by

θ1 = (−1) |a(2) | · |b(1) |+ |a(2) | · | {{b(2) ,c(1) }}′ |,

θ2 = (−1) |a(2) | · |b(1) |+ |b(2) | · |c(1) |d+ |b(2) | · | {{a(2) ,c(1) }}′′ |,

θ3 = θ2 · (−1) |b
(2) | · | {{a(2) ,c(1) }}′ | = (−1) |a(2) | · |b | . □

The bibracket {{− ,−}} may be recovered from the map Λ at least in the case where
the antipode s in C is invertible. Indeed, for any a, b ∈ A,

s(a(1))Λ
(
a(2), b(1)

)
b(2)(2.3.2)

= s(a(1))a(2)s
(
{{a(3) , b(1)}}′

)
⊗ {{a(3) , b(1)}}′′s(b(2))b(3)

= εout(a(1))s
(
{{a(2) , b(1)}}′

)
⊗ {{a(2) , b(1)}}′′εout(b(2))

= ε(a(1))s
(
{{a(2) , b(1)}}′

)
⊗ {{a(2) , b(1)}}′′ε(b(2))

= (s ⊗ idA)({{a , b}}).
If follows that, if the antipode s is invertible, then

{{a , b}} = (s−1 ⊗ idA)
(
s(a(1))Λ

(
a(2), b(1)

)
b(2)

)
= (−1) |a(1) | · |a(2)b(1) |d (s−1 ⊗ idA)

(
Λ(a(2), b(1))

) (
a(1) ⊗ b(2)

)
.

2.3.3. Reducible bibrackets. — Let {{− ,−}} be a bibracket in a Hopf category
C = (C,∆, ε, s).

It induces, in the notation of the previous subsection, a bilinear pairing
λ = λ({{− ,−}}) : A × A −→ A by λ = (ε ⊗ idA)Λ.

Explicitly, for any a, b ∈ A we have

(2.3.3) λ(a, b) = ε
(
{{a , b(1)}}′

)
{{a , b(1)}}′′s(b(2)).

It follows from Lemma 2.3.2 that, for any a ∈ A and any homogeneous b, c ∈ A,

λ(a, bc) = λ
(
a, b(1)

)
ε
(
b(2)c

)
+ (−1) |b | · |c |λ(a, c)s(b),

λ(ab, c) = λ(a(1), c)ε(a(2)b) + aλ(b, c).

We call a bibracket {{− ,−}} in C reducible if Λ(A ⊗ A) ⊂ ∆(A). Then
λ = (ε ⊗ idA)Λ = (idA ⊗ε)Λ: A × A −→ A and Λ = ∆ ◦ λ.

As a consequence, a reducible bibracket in a Hopf category with invertible antipode
is fully determined by the associated pairing λ.
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Lemma 2.3.3. — Suppose that the Hopf category C is cocommutative.
(i) If {{− ,−}} is reducible, then, for any a, b ∈ A,

{{s(a) , s(b)}} = (s ⊗ s)P21{{a , b}};
(ii) If {{− ,−}} is d-antisymmetric, then (s ⊗ s)Λ = −P21ΛP21,d ;

(iii) If {{− ,−}} is reducible and d-antisymmetric, then sλ = −λP21,d .

Proof. — In the proof we will often use that s2 = idA. We begin with (i). It easily
follows from Lemma 2.3.2 that Λ(a, eX) = 0 = Λ(eX, a) for any a ∈ A and X ∈ Ob(C).
Hence, for any x, y ∈ A,

0 = Λ(x, εout(y)) = Λ
(
x, s(y(1))y(2)

)
= Λ

(
x, s(y(1))

)
ε(y(2)) + (−1) |y(1) | · |y(2) |Λ

(
x, y(2))

)
(s ⊗ s)∆

(
s(y(1))

)
= Λ

(
x, s(y)

)
+ (−1) |y(1)y(2) | · |y(3) |+ |y(1) | · |y(2) |Λ

(
x, y(3)

) (
y(2) ⊗ y(1)

)
.

Therefore

(2.3.4) Λ
(
x, s(y)

)
= −(−1) |y(1)y(2) | · |y(3) |+ |y(1) | · |y(2) |Λ

(
x, y(3)

) (
y(2) ⊗ y(1)

)
.

Similarly, for any x, y ∈ A,

0 = Λ(εout(x), y) = (−1) |x(1) | · |x(2) |Λ
(
s(x(2))x(1), y

)
= (−1) |x(1) | · |x(2) |Λ

(
s(x(2)), y

)
ε(x(1)) + (−1) |x(1) | · |x(2) |∆

(
s(x(2))

)
Λ
(
x(1), y

)
= Λ

(
s(x), y

)
+ (−1) |x(1) | · |x(2)x(3) |+ |x(2) | · |x(3) | (s(x(3)) ⊗ s(x(2))

)
Λ
(
x(1), y

)
,

and therefore

(2.3.5) Λ
(
s(x), y

)
= −(−1) |x(1) | · |x(2)x(3) |+ |x(2) | · |x(3) | (s(x(3)) ⊗ s(x(2))

)
Λ
(
x(1), y

)
.

We have

(s ⊗ idA)
{{

s(a) , s(b)
}} (2.3.2)

== s
(
(s(a))(1)

)
Λ
(
(s(a))(2), (s(b))(1))

)
(s(b))(2)

= (−1) |a(1) | · |a(2) |+ |b(1) | · |b(2) | a(2)Λ
(
s(a(1)), s(b(2))

)
s(b(1))

(2.3.4)
== θ1a(2) (Λ(s(a(1)), b(4)) ∗ b(3)

)
b(2)s(b(1))

= θ2a(2) (Λ(s(a(1)), b(3)) ∗ b(2)
)
εin(b(1))

= θ3a(2) (Λ(s(a(1)), b(3)) ∗ b(2)
)
ε(b(1))

= θ4a(2) (Λ(s(a(1)), b(2)) ∗ b(1)
)

(2.3.5)
== θ5a(4)s(a(3))

(
s(a(2)) ∗ Λ(a(1), b(2)) ∗ b(1)

)
= θ6εin(a(3))

(
s(a(2)) ∗ Λ(a(1), b(2)) ∗ b(1)

)
= θ7ε(a(3))

(
s(a(2)) ∗ Λ(a(1), b(2)) ∗ b(1)

)
= θ8

(
s(a(2)) ∗ Λ(a(1), b(2)) ∗ b(1)

)
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where the signs θ1, θ2, . . . are computed by

θ1 = −(−1) |a(1) | · |a(2) |+ |b(1) | · |b(2)b(3)b(4) |+ |b(2)b(3) | · |b(4) |+ |b(2) | · |b(3) |

= −(−1) |a(1) | · |a(2) |+ |b(1) | · |b(2) |+ |b(1)b(2) | · |b(3)b(4) |+ |b(3) | · |b(4) | ,

θ2 = −(−1) |a(1) | · |a(2) |+ |b(1) | · |b(2)b(3) |+ |b(2) | · |b(3) | ,

θ3 = −(−1) |a(1) | · |a(2) |+ |b(2) | · |b(3) | = −(−1) |a(1) | · |a(2) |+ |b(1)b(2) | · |b(3) | ,

θ4 = −(−1) |a(1) | · |a(2) |+ |b(1) | · |b(2) | ,

θ5 = (−1) |a(1)a(2)a(3) | · |a(4) |+ |a(1) | · |a(2)a(3) |+ |a(2) | · |a(3) |+ |b(1) | · |b(2) |

= (−1) |a(3) | · |a(4) |+ |a(1)a(2) | · |a(3)a(4) |+ |a(1) | · |a(2) |+ |b(1) | · |b(2) | ,

θ6 = (−1) |a(1)a(2) | · |a(3) |+ |a(1) | · |a(2) |+ |b(1) | · |b(2) | ,

θ7 = (−1) |a(1) | · |a(2) |+ |b(1) | · |b(2) | = (−1) |a(1) | · |a(2)a(3) |+ |b(1) | · |b(2) | ,

θ8 = (−1) |a(1) | · |a(2) |+ |b(1) | · |b(2) | .

Therefore, using the cocommutativity of C, we obtain

(s ⊗ idA)
{{

s(a) , s(b)
}}

= s(a(1)) ∗ Λ
(
a(2), b(1)

)
∗ b(2).

Besides,
(s ⊗ idA)(s ⊗ s)P21{{a , b}} = P21(s ⊗ idA){{a , b}}

(2.3.2)
== P21

(
s(a(1))Λ

(
a(2), b(1)

)
b(2)

)
= s(a(1)) ∗

(
P21Λ

(
a(2), b(1)

) )
∗ b(2)

= s(a(1)) ∗ Λ
(
a(2), b(1)

)
∗ b(2)

where the last equality uses the formula P21Λ = Λwhich follows from the reducibility
of {{− ,−}}. We conclude that {{s(a) , s(b)}} = (s ⊗ s)P21{{a , b}}.

We now prove (ii). If the bibracket {{− ,−}} is d-antisymmetric, then for any homo-
geneous a, b ∈ A,

ΛP21,d(a ⊗ b) = (−1) |a |d · |b |d Λ(b, a)
= (−1) |a |d · |b |d b(1)s

(
{{b(2) , a(1)}}′

)
⊗ {{b(2) , a(1)}}′′s(a(2))

= θ1b(1)s
(
{{a(1) , b(2)}}′′

)
⊗ {{a(1) , b(2)}}′s(a(2))

= θ2P21

(
{{a(1) , b(2)}}′s(a(2)) ⊗ b(1)s({{a(1) , b(2)}}′′)

)
= θ3P21(s ⊗ s)

(
a(2)({{a(1) , b(2)}}′) ⊗ {{a(1) , b(2)}}′′s(b(1))

)
= −P21(s ⊗ s)Λ(a, b)

where the last equality is a consequence of the cocommutativity of C and

θ1 = −(−1)d |b(1) |+d |a(2) |+ |a(1) | · |b(1) |+ |a(2) | · |b(2) |+ |a(2) | · |b(1) |+ | {{a(1) ,b(2) }}′ {{a(1) ,b(2) }}′′ |,

θ2 = −(−1)d |b(1) |+d |a(2) |+ |a(1) | · |b(1) |+ |a(2) | · |b(2) |+ |a(2) | · | {{a(1) ,b(2) }}′′ |+ | {{a(1) ,b(2) }}′ | · |b(1) |,

θ3 = −(−1) |a(2) | · |a(1) |+ |b(2) | · |b(1) | .
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Finally, we deduce (iii) from (ii):
sλ = s(ε ⊗ idA)Λ = (ε ⊗ idA)(s ⊗ s)Λ

= −(ε ⊗ idA)P21ΛP21,d

= −(idA ⊗ε)ΛP21,d = −λP21,d . □

2.3.4. Remark. — Reducible bibrackets are interesting from the algebraic viewpoint
because they induce brackets in more general representation algebras associated
with algebraic groups. This class of algebras includes the representation algebras
considered here and associated with the general linear groups. For more on this,
see [37]. The bibrackets arising below in the geometric context are reducible.

2.4. Hamiltonian reduction of bibrackets

We formulate Hamiltonian reduction for Gerstenhaber bibrackets based on a no-
tion of an H0-Poisson structure. In the non-graded case, the content of this section is
due to Crawley-Boevey [13] and Van den Bergh [42].

2.4.1. H0-Poisson structures. — An H0-Poisson structure of degree d ∈ Z on a graded
algebra A is a d-graded Lie bracket ⟨−,−⟩ in the graded module

Ǎ = A/[A, A]

such that, for all homogeneous x ∈ Ǎ, the map
⟨x,−⟩ : Ǎ −→ Ǎ

lifts to a derivation A → A of degree |x |d = |x | + d. If A is a commutative graded
algebra, then an H0-Poisson structure of degree d in A is nothing but a Gerstenhaber
bracket of degree d in A.

Lemma 2.4.1. — Given a Gerstenhaber bibracket of degree d in a graded algebra A, the
induced bracket ⟨−,−⟩ in Ǎ is an H0-Poisson structure of degree d on A.

Proof. — That ⟨−,−⟩ is a d-graded Lie bracket in Ǎ follows from Lemma 1.4.1. The
same lemma shows that the formula x 7→ ⟨x,−⟩ defines a linear map Ǎ → Der(A)
which preserves the Lie bracket and carries Ǎp to Derp+d(A) for all p ∈ Z. This implies
the claim of the lemma. □

Theorem 2.4.2. — Let ⟨−,−⟩ be an H0-Poisson structure of degree d on a graded algebra A
and let N ≥ 1. Then there is a unique Gerstenhaber bracket {− ,−} of degree d in the trace
algebra At

N ⊂ AN such that, for any ǎ, b̌ ∈ Ǎ,{
tr(ǎ) , tr(b̌)

}
= tr⟨ǎ, b̌⟩ .

Proof. — The proof follows the same lines as in the non-graded case, see [13, The-
orem 4.5]. The uniqueness of {− ,−} is obvious because the image of the trace map
tr : Ǎ → AN generates At

N . To prove the existence, consider the commutative graded
algebra S = S(Ǎ) freely generated by the graded module Ǎ (the symmetric alge-
bra of Ǎ). The d-graded Lie bracket ⟨−,−⟩ in Ǎ uniquely extends to a Gerstenhaber
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bracket ⟨−,−⟩S of degree d in S. The map tr : Ǎ → AN uniquely extends to a graded
algebra homomorphism T : S → At

N , which is surjective. Therefore, it suffices to
prove the existence of a map {− ,−} : At

N × At
N → At

N such that the following diagram
commutes:

S × S
⟨−,−⟩S //

T×T
��

S

T

��

At
N × At

N

{− ,−}
// At

N .

In other words, we need to show that the pairing T ⟨−,−⟩S : S × S → At
N annihi-

lates Ker(T). Since the bracket ⟨−,−⟩S is d-antisymmetric, it suffices to show that

T
⟨
r,Ker(T)

⟩
S
= 0 for any r ∈ S.

Since the bracket ⟨−,−⟩S satisfies the d-graded Leibniz rule in the first variable and T
is an algebra homomorphism, it suffices to consider the case r ∈ Ǎ. By the definition
of an H0-Poisson structure, the map ⟨r,−⟩ : Ǎ → Ǎ lifts to a derivation δ : A → A.
There is a unique derivation δN : AN → AN such that δN (ai j) = (δ(a))i j for any a ∈ A
and i, j ∈ {1, . . . , N}. Then, for any a ∈ A,

δN
(
tr(a)

)
= δN

(∑
i

aii
)
=

∑
i

(
δ(a)

)
ii
= tr δ(a) = tr⟨r, ǎ⟩S .

It follows that the maps δNT : S → AN and T ⟨r,−⟩S : S → At
N ⊂ AN are equal

on Ǎ ⊂ S. Since Ǎ generates the algebra S and both these maps are derivations, they
must be equal. As a consequence, T ⟨r,Ker(T)⟩S = 0. □

Combining Lemma 2.4.1 and Theorem 2.4.2, we obtain that any Gerstenhaber
bibracket of degree d in A induces a Gerstenhaber bracket of degree d in At

N .
Clearly this bracket is the restriction of the Gerstenhaber bracket in AN provided
by Lemma 1.2.5.

2.4.2. Moment maps. — Let A be a unital graded algebra equipped with a Gersten-
haber bibracket {{− ,−}} of degree d.

A moment map for {{− ,−}} is an element µ ∈ A−d such that

{{µ, a}} = a ⊗ 1A − 1A ⊗ a

for all a ∈ A or, equivalently,

{{a , µ}} = a ⊗ 1A − 1A ⊗ a

for all a ∈ A. If d , 0, then there is at most one moment map. If d = 0, then for any
moment map µ ∈ A0 and any k ∈ K , the sum µ+ k1A is a moment map.

Lemma 2.4.3. — Let µ ∈ A−d be a moment map. The bracket ⟨−,−⟩ in A associated
with {{− ,−}} induces an H0-Poisson structure of degree d on B = A/AµA.
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Proof. — Let p : A → B and h : B → B̌ = B/[B, B] be the canonical projections.
Clearly, p carries [A, A] to [B, B] and induces a linear map p̌ : Ǎ → B̌. Lemma 1.4.1(iii)
shows that the bracket ⟨−,−⟩ in A induces a pairing ⟨−,−⟩ : Ǎ⊗ A → A. We claim that
there are linear maps u, v such that the following diagram commutes:

(2.4.1)
Ǎ ⊗ A

id ⊗p
//

⟨−,−⟩
��

Ǎ ⊗ B

u

��

p̌⊗h
// B̌ ⊗ B̌

v

��

A
p

// B h // B̌ .

Such maps u, v are necessarily unique because p, p̌, h are onto. As a consequence, the
following diagram commutes:

Ǎ ⊗ Ǎ

⟨−,−⟩
��

p̌⊗p̌
// B̌ ⊗ B̌

v

��

Ǎ
p̌

// B̌ .

Therefore v is a d-graded Lie bracket in B̌. Since ⟨x,−⟩ : A → A is a derivation for all
x ∈ Ǎ and p̌ is onto, the Lie bracket v is an H0-Poisson structure on B.

It remains to verify the claim above. The definitions of the moment map µ and the
bracket ⟨−,−⟩ in A imply that ⟨A, µ⟩ = 0. Hence,

⟨A, AµA⟩ ⊂ AµA = Ker p.

This inclusion implies the existence of u. By Lemma 1.4.1 (ii),
⟨AµA, A⟩ ⊂ AµA + [A, A] = Ker hp.

This implies the existence of v. □

By Theorem 2.4.2, we obtain that under the assumptions of Lemma 2.4.3, the
bibracket in A induces Gerstenhaber brackets of degree d on the trace algebras
of B = A/AµA. As an exercise, the reader may extend Lemma 2.4.3 to the setting of
graded categories discussed in Section 2.2.
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CHAPTER 3

FACE HOMOLOGY

3.1. Manifolds with faces and partitions

We recall manifolds with faces and discuss partitions on such manifolds.

3.1.1. Manifolds with faces. — We start with a bigger class of manifolds with corners,
see [8], [14], [25], [35], and [26]. An n-dimensional manifold with corners with n ≥ 0,
or, shorter, an n-manifold with corners, is a paracompact Hausdorff topological space
locally differentiably (C∞) modelled on open subsets of [0,∞)n. For a definition in
terms of local coordinate systems and for further details, see [26]. The underlying
topological space of an n-manifold with corners K is an n-dimensional topological
manifold with boundary. The topological boundary of K is denoted by ∂K (the symbol
∂K has a different meaning in [26]). The dimension function dK : K → Z carries a point
of K represented by a tuple (x1, . . . , xn) in a local coordinate system to the number of
non-zero terms in this tuple (this number does not depend on the choice of the local
coordinate system). For r ≥ 0, the set

Kr =
{

x ∈ K : dK(x) ≤ r
}

is a closed subset of K . It is clear that

K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 = ∂K ⊂ Kn = K .

Also, K0 = d−1
X (0) is a discrete set, and Kr \ Kr−1 is a smooth r-dimensional manifold

for all r ≥ 1.
The set P(K) = ∂K \ Kn−2 is an open subset of ∂K and any x ∈ ∂K belongs to the

closure of at most n− dK(x) connected components of P(K). We call K a manifold with
faces if K is compact and every x ∈ ∂K belongs to the closure of precisely n − dK(x)
different components of P(K). This condition implies that the closure in K of any
component of P(K) is an (n − 1)-dimensional manifold with faces whose dimension
function is the restriction of dK . We call the closure of a component of P(K) a principal
face of K . We can now define recursively on n = dim K the notion of a face of K .
By definition, a face of K is a connected component of K , or a principal face of K , or a
face of a principal face of K . Clearly, K has only a finite number of faces, and each face
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of K is a connected manifold with faces. The union of faces of K of dimension ≤ r is
equal to Kr for all r ≥ 0. The faces of K contained in ∂K are said to be proper.

Every point x of K lies in the interior of a unique face Fx of K . If dK(x) ≥ 1, then Fx

is the closure of the component of Kr \ Kr−1 containing x for r = dK(X). If dK(x) = 0,
then Fx = {x}. Note that Fx is the smallest face of K containing x: any face of K
containing x contains Fx as a face.

For example, any compact smooth manifold M is a manifold with faces, and its
faces are the components of M and of ∂M . For any n ≥ 0, an n-dimensional simplex
is a manifold with faces and its faces are the usual combinatorial faces. Finite disjoint
unions and finite products of manifolds with faces are manifolds with faces in the
obvious way. The empty set is considered as an n-manifold with faces for any n ≥ 0.

Following [35], we call a map f from an n-manifold with faces K to an m-manifold
with faces L smooth if, restricting f to any local coordinate systems in these manifolds,
we obtain a map that extends to a C∞-map from an open subset of Rn to Rm. (Such a
map f is said to be “weakly smooth” in [26].) A smooth map f : K → L is continuous
and its restriction to any face F of K is a smooth map F → L. A map f : K → L is a
diffeomorphism if it is a bĳection and both f and f −1 are smooth. Diffeomorphisms of
manifolds with faces preserve the dimension function and carry faces onto faces.

We can define smooth (C∞) triangulations of a manifold with faces repeating word
for word the standard definition of a smooth triangulation of an ordinary manifold
[38, Section 8.3] and requiring all faces to be subcomplexes. (The latter condition is
probably satisfied automatically but we prefer to spell it out.) The standard methods
of the theory of smooth triangulations [38, Section 10.6] apply in this setting and
show that all manifolds with faces have smooth triangulations.

A manifold with faces K is oriented if its underlying topological manifold is ori-
ented. The oriented manifold with faces obtained from K by inverting the orientation
is denoted by −K .

3.1.2. Partitions. — By a partition φ on a manifold with faces K we mean a partition
of the set of faces of K into disjoint subsets, called types, and a family of diffeomor-
phisms {φF,G : F → G}(F,G) numerated by ordered pairs (F,G) of faces of K of the
same type such that

(a) φF,F = idF for any face F of K and φG,H φF,G = φF,H for any faces F,G,H of K
of the same type;

(b) if F,G are faces of K of the same type, then φF,G : F → G carries any face F ′

of F onto a face G′ of G so that F ′,G′ have the same type as faces of K and
φF′,G′ = φF,G F′ : F ′ → G′.

The diffeomorphisms {φF,G}(F,G) will be called identification maps. For example, every
manifold with faces K has a trivial partition such that two faces have the same type if
and only if they coincide.

Given a partition φ on K , we write
x ∼φ y

for points x, y ∈ K if there are faces F,G of K of the same type such that x ∈ F, y ∈ G,
and φF,G(x) = y. Clearly, x ∼φ y if and only if the faces Fx, Fy have the same type
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and φFx,Fy (x) = y. Then ∼φ is an equivalence relation on K . The quotient topological
space

Kφ = K/∼φ
may not be a manifold. For any set L ⊂ K , we denote by Lφ the image of L under the
projection K → Kφ .

A smooth triangulation T of K fits a partition φ on K if the identification map
φF,G : F → G is a simplicial isomorphism for any faces F,G of the same type.

Lemma 3.1.1. — For any partition φ on K , there exists a smooth triangulation T of K which
fits φ and projects to a triangulation, Tφ , of the quotient space Kφ .

Proof. — We construct by induction on r ≥ 0 a smooth triangulation Tr of Kr sat-
isfying the following condition: all the identification maps between faces of K of
dimension ≤ r are simplicial isomorphisms. The case r = 0 is obvious: we just
take T0 = K0. Given Tr−1, we construct Tr as follows: pick one r-dimensional face
of K in each type and extend Tr−1 to the union of Kr−1 with these faces using the
theory of smooth triangulations [38, Section 10.6]. The resulting triangulation of this
union uniquely extends to a triangulation Tr of Kr satisfying the condition above.
Set n = dim K . Clearly, T = Tn is a smooth triangulation of K that fits φ.

Let T ′ and T ′′ be the first and second barycentric subdivisions of T , respectively.
Both T ′ and T ′′ fit φ. We claim that:

(i) the projection π : K → Kφ is injective on each simplex of T ′ and
(ii) the images under π of any two simplices of T ′′ (which by (i) are simplices) meet

along a common face.
Thus, the triangulation T ′′ of K projects to a triangulation of Kφ and satisfies the

conditions of the lemma.
To prove (i), consider a simplex τ of T ′. Since all simplices of T ′ are faces of n-

simplices, it suffices to consider the case where dim(τ) = n. Note that the restriction
of π : K → Kφ to the interior of any face of K is injective. Moreover, for any faces
F ⊂ G of K , the restriction of π to Int(F) ∪ Int(G) is injective. Therefore, to prove
the injectivity of π τ, it is enough to find a sequence of faces F0 ⊂ F1 ⊂ · · · of K ,
possibly with repetitions, such that τ ⊂ ∪

i Int(Fi). Let σ0 ⊂ σ1 ⊂ · · · ⊂ σn be the
simplices of T whose barycenters are the vertices of τ where dim(σi) = i for all i.
Let Fi be the smallest face of K containing σi . The inclusions σi−1 ⊂ ∂σi ⊂ Fi imply
that Fi−1 ⊂ Fi for all i. Note that Int(σi) ⊂ Int(Fi) since ∂Fi is a subcomplex of T .
Thus, τ ⊂ ∪

i Int(σi) ⊂
∪

i Int(Fi).
To prove (ii), observe first that for any simplex ∆ of T ′, the set π−1(π(∆)) is a

subcomplex of T ′. Indeed, this set is equal to ∪F,G φF,G(∆ ∩ F) where F,G run over
all faces of K of the same type. Since T ′ fits φ and both ∆ and F are subcomplexes
of T ′, so are the sets ∆ ∩ F, φF,G(∆ ∩ F), and π−1(π(∆)).

Consider any simplices τ1, τ2 of the triangulation T ′′. Let ∆1 and ∆2 be simplices
of T ′ containing τ1 and τ2 respectively. Set R = π(∆1) ∩ π(∆2). Clearly, R is the
image of the set ∆1 ∩ π−1(π(∆2)) under π. By the above, the latter set is a subcomplex
of ∆1. Therefore, R is a subcomplex of the simplex π(∆1). We claim that R ∩ π(τ1)
is a face of the simplex π(τ1). This claim would imply that R ∩ π(τ1) = π(τ0) for
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a simplex τ0 of T ′′. Since R ⊂ π(∆2), we can assume (replacing if necessary τ0 by
some φF,G(τ0)) that τ0 ⊂ ∆′

2 where ∆′
2 is the barycentric subdivision of ∆2. Then

π(τ1) ∩ π(τ2) = R ∩ π(τ1) ∩ π(τ2) = π(τ0) ∩ π(τ2)

is an intersection of two simplices of π(∆′
2). Hence, it is a simplex of π(∆′

2) and
a face of π(τ2). By symmetry between τ1 and τ2, the intersection π(τ1)∩ π(τ2) is also a
face of π(τ1).

To prove the claim above, we need only to show that any subcomplex R of an
arbitrary simplex ∆ meets any simplex τ of the first barycentric subdivision ∆′ along
a face of τ. Clearly, R∩ τ is an intersection of two subcomplexes of ∆′ and therefore a
subcomplex of τ. Set k = dim τ and let σ0 ⊂ · · · ⊂ σk be the faces of ∆ whose
barycenters v0, . . . , vk are the vertices of τ. Let i be the largest integer such that vi ∈ R.
Since R contains an interior point of σi and R is a subcomplex of ∆, we have σi ⊂ R.
Then R contains the face ⟨v0, . . . , vi⟩ of τ. Since R∩τ is a subcomplex of τ not containing
vi+1, . . . , vk , we have R ∩ τ = ⟨v0, . . . , vi⟩. □

3.2. Polychains, polycycles, and face homology

We introduce the face homology of a topological space X .

3.2.1. Polychains. — Given a partition φ on a manifold with faces K , we say that a
continuous map κ : K → X is compatible with φ if

κ ◦ φF,G = κ F : F −→ X

for any faces F,G of K of the same type. Every such κ is obtained by composing the
projection K → Kφ with a continuous map Kφ → X .

An n-dimensional polychain or, shorter, an n-polychain in X with n ≥ 0 is a quadruplet
K = (K, φ, u, κ)

where K is an oriented n-manifold with faces, φ is a partition on K , u is a map
π0(K) → K called the weight, and κ : K → X is a continuous map compatible with φ.
By convention, for every n ≥ 0, there is an empty n-polychain � whose underlying
n-manifold is the empty set.

A diffeomorphism of n-polychains K = (K, φ, u, κ) and K′ = (K ′, φ′, u′, κ′) in X is a
diffeomorphism f : K → K ′ such that

(1) κ = κ′ ◦ f ;
(2) faces F,G of K have the same type if and only the faces f (F), f (G) of K ′ have

the same type and then f G ◦ φF,G = φ′
f (F), f (G)

◦ f F : F → f (G);
(3) u′( f (C)) = deg

(
f C : C → f (C)

)
u(C) for any connected component C of K

where deg denotes the degree of a diffeomorphism.
We say that n-polychains K and K′ in X are diffeomorphic and we write K � K′ if there
exists a diffeomorphism of K onto K′. It is clear that � is an equivalence relation.
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By definition, the diffeomorphism class of a polychain K = (K, φ, u, κ) is preserved
if one simultaneously inverts the orientation of a component of K and multiplies the
corresponding weight by −1. Therefore the opposite polychain −K = (−K, φ, u, κ) is
diffeomorphic to (K, φ,−u, κ).

Examples of polychains are provided by singular manifolds in X , that is pairs (an
oriented smooth compact manifold M , a continuous map κ : M → X). Such a pair
determines a polychain (M, φ, u, κ) where M is viewed as a manifold with faces as in
Section 3.1.1, φ is the trivial partition, and u = 1 ∈ K is the constant function on π0(M).
As explained below, polychains in X may be also extracted from singular chains in X .
Thus, we can view polychains as common generalisations of singular manifolds and
singular chains in which the role of source spaces is played by manifolds with faces.

3.2.2. Reduced polychains. — A polychain K = (K, φ, u, κ) in X is reduced if any dis-
tinct connected components of K have different types with respect to φ and u(C) , 0
for any connected component C of K . We define two transformations of an arbitrary
polychain K = (K, φ, u, κ) in X whose composition turns K into a reduced polychain.

To define the first transformation, pick a representative in each type of connected
components of K , and let K+ ⊂ K be the union of these representatives. Clearly, K+

is a manifold with faces which we endow with orientation induced from that of K .
Restricting φ and κ to K+ we obtain a partition φ+ on K+ and a map κ+ : K+ → X
compatible with φ+. We define a weight u+ on K+ by

u+(C) =
∑
C′

deg(φC,C′)u(C ′)

where C is a component of K lying in K+ and C ′ runs over all components of K of
the same type as C. It is clear that (K+, φ+, u+, κ+) is a polychain in X whose distinct
components have different types. This polychain, denoted red+(K), is determined
by K uniquely up to diffeomorphism.

The second transformation of a polychain K = (K, φ, u, κ) removes from K all
connected components with zero weight and restricts φ, u, κ to the remaining manifold
with faces. The resulting polychain is denoted red0(K).

The two-step operation red = red0 red+ transforms an arbitrary polychain into a
reduced polychain defined uniquely up to diffeomorphism. It is clear that a poly-
chain K is reduced if and only if red(K) � K.

3.2.3. Operations. — The boundary of an n-polychain K = (K, φ, u, κ) in X is the
(n − 1)-polychain

∂K = (K∂, φ∂, u∂, κ∂)

in X defined as follows:
▷ The manifold with faces K∂ is the disjoint union of all principal faces of K

endowed with orientation induced from that of K (see the Introduction for our
orientation conventions).
▷ Let ι : K∂ → K be the natural map identifying each component of K∂ with its

copy in K . Two faces F,G of K∂ have the same type if the faces ι(F), ι(G) of K have
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the same type and
φ∂F,G = (ι G)

−1φι(F),ι(G)ι : F → G.

▷ For any connected component P of K∂, we set u∂(P) = u(KP) where KP is the
connected component of K containing the principal face ι(P).
▷ We set κ∂ = κι : K∂ → X .

The boundary of a polychain is well defined up to diffeomorphism, and diffeomorphic
polychains have diffeomorphic boundaries. The reduced boundary ∂rKof a polychainK

is defined by
∂rK = red(∂K).

Lemma 3.2.1. — For any polychain K in X ,

∂rred(K) = ∂rK and ∂r∂rK = �.

Proof. — The first identity is clear. The second identity follows from the first:

∂r∂rK = ∂rred(∂K) = ∂r∂K = red0 red+(∂∂K) = �. □

The disjoint union of two n-polychains K1,K2 in X is defined in the obvious way
and is denoted K1 ⊔K2. Clearly,

red(K1 ⊔K2) = red(K1) ⊔ red(K2) and ∂(K1 ⊔K2) = ∂K1 ⊔ ∂K2

so that ∂r(K1 ⊔K2) = ∂r(K1) ⊔ ∂r(K2).
For k ∈ K and a polychain K = (K, φ, u, κ) in X , set kK = (K, φ, ku, κ). Clearly,

red(kK) = red
(
k red(K)

)
and ∂(kK) = k∂K

so that ∂r(kK) = red(k∂rK). Note that the polychain (−1)K is diffeomorphic to the
polychain −K opposite to K.

3.2.4. Face homology. — The diffeomorphism classes of n-polychains in X may be
added and multiplied by elements of K , but do not form a module because the
distributivity relation (k + l)K � kK⊔ lK fails. Also, it is natural to throw in relations
identifying K with red(K) for all K. Quotienting the set of diffeomorphism classes
of n-polychains in X by the relations of these two types, we obtain the K -module of
n-polychains in X . These modules together with the boundary maps induced by ∂
form the face chain complex of X whose homology is the face homology of X . However,
we prefer the following more direct definition of face homology.

We say that n-polychains K1 and K2 in X are homologous, and write

K1 ≃ K2,

if there exist (n + 1)-polychains L1,L2 in X such that

red(K1) ⊔ ∂rL1 � red(K2) ⊔ ∂rL2.

Clearly, the homology relation ≃ is an equivalence relation (weaker than the dif-
feomorphism relation �). The homology class of an n-polychain K in X is denoted
by ⟨K⟩. Note that ⟨K⟩ = ⟨red(K)⟩. If K1 and K2 are homologous, then ∂rK1 � ∂rK2.
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A polychain K = (K, φ, u, κ) is a polycycle if ∂rK = �. A polychain homologous to
a polycycle is itself a polycycle. In particular, if K is a polycycle, then so is red(K) and
vice versa. Let

H̃n(X) =
{
n-polycycles in X

}
/ ≃

be the set of homology classes of n-polycycles in X . Note that the disjoint union of
polycycles is a polycycle, and multiplication of polycycles by elements of K yield
polycycles.

Lemma 3.2.2. — Disjoint union of polycycles together with multiplication of polycycles by
elements of K turn H̃n(X) into a module (over K ).

Proof. — Clearly, the disjoint union of polychains is compatible with ≃ and induces
a binary operation in H̃n(X). This operation is associative and commutative with �
representing the zero element. Thus, H̃n(X) is an abelian monoid.

To prove that H̃n(X) is a group, we use the cylinder construction on polychains.
Consider an n-polychain

K = (K, φ, u, κ) in X .
We define the cylinder polychain

K = (K, φ, u, κ)

as follows. Set K = K × I where I = [0, 1] is viewed as a manifold with faces I, {0}, {1}
and endow K with the product orientation. Two faces F × J, G × J ′ of K × I are of the
same type if F,G are faces of K of the same type and J = J ′ is any face of I; then

φF×J,G×J = φF,G × idJ .

By definition, u(C × I) = u(C) for any connected component C of K , and κ : K → X
is the composition of the cartesian projection K → K with κ : K → X . It follows from
the definitions that

red(K) � red(K) and ∂K � K ⊔ (−K) ⊔ ∂K.

Therefore

∂rK = red(∂K) � red(K) ⊔ red(−K) ⊔ red(∂K) � red(K) ⊔ red(−K) ⊔ ∂r(K).

If K is a polycycle, this gives ∂rK � red(K) ⊔ red(−K). Therefore K ⊔ (−K) ≃ �. We
conclude that H̃n(X) is an abelian group.

Given two homologous n-polycyclesK1 andK2 in X , pick (n+1)-polychainsL1,L2

in X such that
red(K1) ⊔ ∂rL1 � red(K2) ⊔ ∂rL2.

Then, for any k ∈ K ,

red
(
k(red(K1) ⊔ ∂rL1)

)
� red

(
k(red(K2) ⊔ ∂rL2)

)
.

For each i ∈ {1, 2},
red

(
k(red(Ki) ⊔ ∂rLi)

)
= red

(
k red(Ki)

)
⊔ red(k∂rLi) = red(kKi) ⊔ ∂r(kLi).
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We deduce that kK1 ≃ kK2. Thus, the multiplication by k ∈ K induces a well
defined map

H̃n(X) −→ H̃n(X).

The axioms of a K -module are straightforward except the linearity in k. The latter
is a consequence of the following fact: if

K1 = (K, φ, u1, κ) and K2 = (K, φ, u2, κ)

are n-polycycles in X (with the same K, φ, κ), then the n-polychain
K = (K, φ, u1 + u2, κ)

is a polycycle homologous to K1 ⊔K2. To see this, consider the cylinder polychain

K1 ⊔K2 � K1 ⊔K2

(as defined above) and modify its partition by additionally declaring that, for any
face F of K , the faces (F × {0})1 and (F × {0})2 of (K × I)1 ⊔ (K × I)2 have the
same type and the corresponding identification map is the identity map. This gives
an (n + 1)-polychain L such that

red+(∂L) � red+(K1) ⊔ red+(K2) ⊔ red+(−K) ⊔ (a polychain with zero weight).
Therefore

∂rL � red(K1) ⊔ red(K2) ⊔ red(−K).

Hence, K is a polycycle homologous to K1 ⊔K2. □

We call H̃n(X) the n-th face homology of X (with coefficients in K ).
The face homology extends to a functor from the category of topological spaces to

the category of modules: a continuous map f : X → Y induces a linear map

f∗ : H̃n(X) −→ H̃n(Y)

carrying the homology class of a polycycle K = (K, φ, u, κ) in X to the homology class
of the polycycle f∗(K) = (K, φ, u, f κ) in Y .

3.2.5. Deformations. — A deformation of a polychain K = (K, φ, u, κ) in X is a family
of polychains {Kt = (K, φ, u, κt)}t∈I with the same K, φ, u such that {κt : K → X}t∈I
is a (continuous) homotopy of κ0 = κ. By the definition of a polychain, the map κt is
compatible with φ for all t ∈ I.

Lemma 3.2.3. — If {Kt }t∈I is a deformation of a polycycle K, then K1 is a polycycle
homologous to K = K0.

Proof. — Equality ∂rK1 = � is a direct consequence of the assumption ∂rK = �.
Consider the cylinder polychain K = (K, φ, u, κ) associated with K = (K, φ, u, κ) in
the proof of Lemma 3.2.2. Let κ̂ : K = K × I → X be the map determined by the
homotopy {κt }t∈I of κ. Then R = (K, φ, u, κ̂ ) is a polychain such that

∂rR � red(K1) ⊔ red(−K0).

This implies that K0 ≃ K1. □
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Lemma 3.2.4. — Let X,Y be topological spaces. If maps f , g : X → Y are homotopic, then

f∗ = g∗ : H̃∗(X) −→ H̃∗(Y).

Proof. — Pick a homotopy { f t }t∈I between f 0 = f and f 1 = g. For any polycy-
cle K = (K, φ, u, κ) in X , we have a deformation {(K, φ, u, f t κ)}t∈I relating the poly-
cycles f∗(K) = (K, φ, u, f κ) and g∗(K) = (K, φ, u, gκ). Lemma 3.2.3 implies that these
polycycles are homologous. Hence, f∗ = g∗. □

Lemma 3.2.4 implies that a homotopy equivalence between topological spaces
induces an isomorphism of their face homology.

3.2.6. Cross product. — The cartesian product K × L of two manifolds with faces K
and L can be viewed as a manifold with faces in the obvious way. The faces of K × L
are the products F × G where F runs over faces of K and G runs over faces of L.
When K and L are oriented, we always provide K × L with the product orientation.
This construction leads to a cross product in face homology as follows.

Let X and Y be topological spaces. The cross product of a p-polychainK = (K, φ, u, κ)
in X and a q-polychain L = (L, ψ, v, λ) in Y is the (p + q)-polychain

K × L = (K × L, φ × ψ, u × v, κ × λ)
in X ×Y . Here φ × ψ is the following partition on K × L: for faces F, F ′ of K and G,G′

of L, the faces F ×G and F ′ ×G′ of K × L have the same type if, and only if, F has the
same type as F ′ and G has the same type as G′, and then

(φ × ψ)F×G,F′×G′ = φF,F′ × ψG,G′ .

The weight u × v carries C × D to u(C)v(D) for any connected components C of K
and D of L. We also define the reduced cross product of K and L by

K ×r L = red (K × L) .

Note that
(3.2.1) K ×r L � K ×r red(L) � red(K) ×r L � red(K) ×r red(L).

Lemma 3.2.5

(i) For any p-polychains K1,K2 in X and q-polychain L in Y ,
(K1 ⊔K2) ×r L � (K1 ×r L) ⊔ (K2 ×r L).

(ii) For any p-polychain K in X and for any q-polychain L in Y ,
∂r(K ×r L) � (∂rK ×r L) ⊔ (−1)p (K ×r ∂rL) .

Proof. — Clearly, (K1 ⊔K2) × L = (K1 × L) ⊔ (K2 × L) so that
(K1 ⊔K2) ×r L = red ((K1 ⊔K2) × L) � red(K1 × L) ⊔ red(K2 × L)

which proves (i). We now prove (ii). Let K and L be the oriented manifolds with faces
underlying K and L respectively. A principal face of K × L has either the form P × D,
where P is a principal face of K and D is a component of L, or the form C×Q, where C
is a component of K and Q is a principal face of L. The orientation of P×D ⊂ ∂(K × L)
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inherited from K × L coincides with the product orientation of P × D where P ⊂ ∂K
inherits orientation from K . The orientation of C ×Q ⊂ ∂(K × L) inherited from K × L
differs from the product orientation of C × Q, where Q ⊂ ∂L inherits orientation
from L, by the sign (−1)p . So

∂(K × L) � (∂K × L) ⊔ (−1)p (K × ∂L) .
Therefore

∂r(K ×r L) = ∂r red(K × L) = ∂r(K × L)

= red ∂(K × L)

� (∂K ×r L) ⊔ (−1)p (K ×r ∂L) .

We conclude thanks to (3.2.1). □

Lemma 3.2.6. — The cross product of polychains induces a bilinear map

(3.2.2) × : H̃∗(X) × H̃∗(Y) −→ H̃∗(X × Y).

Proof. — Let K be a polycycle in X and L be a polycycle in Y . Lemma 3.2.5 (ii)
implies that K ×r L is a polycycle. This polycycle is the reduction of K × L, and
therefore K × L also is a polycycle. We claim that assigning to (K,L) the homology
class ⟨K ×r L⟩ = ⟨K × L⟩ one obtains a well defined pairing (3.2.2). Let us prove the
independence of the choice of K in its homology class (the second variable is treated
similarly). Consider two homologous polycycles K1 and K2 in X , and let P1,P2 be
polychains in X such that

red(K1) ⊔ ∂rP1 � red(K2) ⊔ ∂rP2.

Lemma 3.2.5 (i) implies that

(red(K1) ×r L) ⊔ (∂rP1 ×r L) � (red(K2) ×r L) ⊔ (∂rP2 ×r L).

For i ∈ {1, 2}, formula (3.2.1) gives red(Ki) ×r L � red(Ki ×r L). Since ∂rL = �,
Lemma 3.2.5 (ii) gives ∂rPi ×r L = ∂r(Pi ×r L). Therefore

K1 ×r L ≃ K2 ×r L.

The linearity of (3.2.2) in the first variable follows from Lemma 3.2.5 (i) and the
equality (kK) × L = k(K × L) for all k ∈ K . The linearity in the second variable is
proved similarly. □

3.2.7. Remarks
(1) A polychain derived from a singular manifold κ : M → X (see Section 3.2.1)

is a polycycle if and only if ∂M = �. The oriented bordism classes of n-dimensional
singular manifolds

κ : M −→ X with ∂M = �
form an abelian group Ωn(X), called the n-dimensional oriented bordism group of X .
Treating singular manifolds as polychains, we obtain an additive map

Ωn(X) −→ H̃n(X).
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By Remark 3.3.5.2 below, this map is not surjective for some n, X , and K = Z. Thus,
some face homology classes over Z are not representable by singular manifolds.

(2) For a topological pair (X,Y) and an integer n ≥ 0, we define the n-th relative face
homology H̃n(X,Y) as follows. Given n-polychains K1,K2 in X , we write

K1 ≃Y K2

if there exist (n + 1)-polychains L1,L2 in X and n-polychains N1,N2 in Y such that

red(K1) ⊔ ∂rL1 ⊔ ι∗(N1) � red(K2) ⊔ ∂rL2 ⊔ ι∗(N2)

where ι : Y ↪→ X is the inclusion map. An n-polychain K in X is a polycycle relative to Y
if ∂rK is the image of an (n − 1)-polychain in Y under ι. Set

H̃n(X,Y) =
{
n-polycycles in X relative to Y

}
/ ≃Y .

The properties of the face homology of topological spaces stated above directly extend
to the face homology of topological pairs.

3.3. Face homology versus singular homology

In this section, we construct two natural transformations

[−] : H̃∗ −→ H∗ and ⟨−⟩ : H∗ −→ H̃∗

relating face homology to singular homology.

3.3.1. Preliminaries. — For an integer n ≥ 0, the symbol ∆n denotes the standard
n-simplex that is the convex hull of the standard basis (e0, . . . , en) of Rn+1. We endow
∆n with orientation induced by the order of its vertices, i.e. the orientation repre-
sented by the basis (−−−→e0e1,−−−→e1e2, . . . ,−−−−−→en−1en ) in the tangent space of ∆n at any point.
Each subset A = {i0, i1, . . . , ir } of {0, . . . , n} with i0 < i1 < · · · < ir and 0 ≤ r ≤ n de-
termines an affine map eA : ∆r → ∆n carrying the vertices e0, e1, . . . , er of ∆r to the
vertices ei0, ei1, . . . , eir of ∆n, respectively; the image of the map eA is the combinatorial
face of ∆n corresponding to A.

A singular n-simplex in a topological space X is a continuous map

∆n −→ X .

A singular n-chain in X is a finite formal linear combination of singular n-simplices
with coefficients inK . The boundary of a singular n-simplexσ : ∆n → X is the singular
(n − 1)-chain

(3.3.1) ∂σ =
n∑

a=0

(−1)a · σeâ where â = {0, 1, . . . , n} \ {a}.

The boundary of singular simplices extends to singular chains by linearity. The
modules of singular chains together with the boundary homomorphisms form the
singular chain complex C∗(X) of X . Its homology is the singular homology H∗(X) of X
(with coefficients in K ).
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3.3.2. The transformation [−]. — Consider an n-dimensional oriented manifold with
faces K . Each weight u : π0(K) → K determines a homology class

[K, u] =
∑
C

u(C)
[
C
]
∈
⊕
C

Hn(C, ∂C) = Hn(K, ∂K)

where C runs over all connected components of K and [C] ∈ Hn(C, ∂C) is the fun-
damental class of C. We say that a partition φ on K is compatible with u if for any
principal face P of K ,

(3.3.2)
∑
Q

deg(φP,Q)u(KQ) = 0

where Q runs over all (principal) faces of K of the same type as P and KQ is the
connected component of K containing Q.

Lemma 3.3.1. — Let φ be a partition on K compatible with a weight u : π0(K) → K . Then
there is a unique homology class

[Kφ, u] ∈ Hn(Kφ)
whose image in Hn(Kφ, (∂K)φ) is equal to the image of [K, u] under the map

Hn(K, ∂K) −→ Hn(Kφ, (∂K)φ)

induced by the projection K → Kφ .

Proof. — Consider the commutative diagram

Hn(∂K) //

π∗
��

Hn(K) //

π∗
��

Hn(K, ∂K)
∂∗ //

π∗
��

Hn−1(∂K)

π∗
��

Hn

(
(∂K)φ

)
// Hn

(
Kφ

)
// Hn

(
Kφ, (∂K)φ

) ∂∗ // Hn−1
(
(∂K)φ

)
,

where the vertical maps are induced by the projection π : K → Kφ and each row is a
part of the long exact sequence of a topological pair. We have

Hn((∂K)φ) = 0

since (∂K)φ is an (n − 1)-dimensional polyhedron. Hence, it is enough to show that
π∗∂∗([K, u]) = 0 ∈ Hn−1

(
(∂K)φ

)
.

Consider the commutative square

∂∗([K, u]) ∈ Hn−1(∂K)
j

//

π∗
��

Hn−1 (∂K,Kn−2)

π∗
��

Hn−1
(
(∂K)φ

) jφ
// Hn−1

(
(∂K)φ, (Kn−2)φ

)
where j and jφ are the inclusion homomorphisms. Since (Kn−2)φ is an (n − 2)-
dimensional polyhedron, Ker jφ = 0 and it suffices to prove that

jφπ∗∂∗([K, u]) = 0
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or, equivalently, that π∗ j∂∗
(
[K, u]

)
= 0. We have

∂∗
(
[K, u]

)
=

∑
C

u(C)∂∗
(
[C]

)
=

∑
C

u(C)[∂C]

where the sum runs over the connected components C of K . Then

j∂∗
(
[K, u]

)
=

∑
C

u(C)
∑
P⊂C

[P] =
∑
P

u(KP)[P]

where P runs over all principal faces of K and KP is the connected component of K
containing P. Pick a face Pi ∈ i in each type i of principal faces of K . Then

π∗ j∂∗([K, u]) =
∑
P

u(KP)π∗
(
[P]

)
=

∑
i

∑
Q∈i

u(KQ)π∗
(
[Q]

)
=

∑
i

∑
Q∈i

u(KQ)π∗
(
deg(φPi,Q) · (φPi,Q)∗([Pi])

)
=

∑
i

(∑
Q∈i

u(KQ)deg(φPi,Q)
)
π∗ ([Pi]) = 0

where at the last step we use the compatibility condition (3.3.2). □

It follows from the definitions that a polychain (K, φ, u, κ) in a topological space X
is a polycycle if and only if u and φ are compatible in the sense of (3.3.2). Therefore,
given an n-polycycle K = (K, φ, u, κ) in X , Lemma 3.3.1 gives the homology class

[Kφ, u] ∈ Hn(Kφ).

Since the map κ : K → X is compatible with φ, it induces a continuous map Kφ → X
denoted by κφ . We define

[K] = (κφ)∗
(
[Kφ, u]

)
∈ Hn(X).

The homology class [K] can be represented by explicit singular cycles which are
best described in terms of locally ordered triangulations. A local order on a triangu-
lation T of a topological space is a binary relation on the set of vertices of T which
restricts to a total order on the set of vertices of any simplex of T . For example, any total
order on the set of vertices of T is a local order on T . A triangulation endowed with a
local order is locally ordered. We say that a locally ordered smooth triangulation T of K
fits the partition φ if, for any faces F,G of K of the same type, the identification map
φF,G : F → G is a simplicial isomorphism preserving the local order on the vertices.
To construct such a locally ordered triangulation one can take a triangulation T of K
provided by Lemma 3.1.1 and lift an arbitrary total order ≤ on the set of vertices of
Tφ to T . More precisely, denote by π : K → Kφ the canonical projection and, for any
vertices a, b ∈ T , declare that a ≤ b if π(a) ≤ π(b). Since any simplex of T projects
isomorphically onto a simplex of Tφ , this gives a local order on T which, obviously,
fits φ.
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Pick a locally ordered smooth triangulation T of K which fits φ. Each r-simplex ∆
of T with r ≥ 0 determines a singular simplex in K denoted by σ∆ and obtained as the
composition of the affine isomorphism ∆r → ∆ preserving the order of the vertices
with the inclusion ∆ ↪→ K . We define the fundamental n-chain

(3.3.3) σ = σ(T, u) =
∑
∆

ε∆u(K∆)σ∆ ∈ Cn(K)

where ∆ runs over all n-simplices of T , K∆ is the connected component of K con-
taining ∆, ε∆ = +1 if the orientation of ∆ induced by that of K is compatible
with the order of the vertices of ∆ and ε∆ = −1 otherwise. Clearly, the image of σ
in Cn(K, ∂K) is a relative n-cycle representing [K, u]. Projectingσ to Kφ , we obtain a sin-
gular n-chain σφ ∈ Cn(Kφ). The compatibility of φ and u implies that σφ is an n-cycle.
Therefore [σφ] ∈ Hn(Kφ) satisfies the requirements of Lemma 3.3.1 so that

[Kφ, u] = [σφ].

It follows that [K] is represented by the singular n-cycle

(κφ)∗(σφ) = κ∗(σ) =
∑
∆

ε∆u(K∆)κσ∆ ∈ Cn(X).

Lemma 3.3.2. — The formula ⟨K⟩ 7→ [K] defines a linear map

[−] : H̃n(X) −→ Hn(X).

Moreover, [−] is a natural transformation from H̃n to Hn.

Proof. — It follows from the definitions that [K] ∈ Hn(X) depends only on the dif-
feomorphism class of K, that [K] = [red(K)], and that [kK] = k[K] for any k ∈ K .
Moreover, [K1 ⊔ K2] = [K1] + [K2] for any n-polycycles K1,K2 in X . Therefore, to
prove the first claim of the lemma, it is enough to show that [∂L] = 0 for any (n + 1)-
polychain L = (L, ψ, v, λ) in X . For this, pick a locally ordered smooth triangulation T
of L that fits ψ and consider the singular chain

σ = σ(T, v) =
∑
∆

ε∆v(L∆)σ∆ ∈ Cn+1(L).

Here ∆ runs over all (n + 1)-dimensional simplices of T , ε∆ is the sign determined
by the orientation of L and the order of the vertices of ∆, and L∆ is the component
of L containing ∆. Projecting σ to Lψ we obtain a singular chain σψ in Lψ . Next we
consider the n-polycycle ∂L = (L∂, ψ∂, v∂, λ∂). The triangulation T of L induces a
triangulation T∂ of L∂. The local order on the set of vertices of T restricts to a local
order on the set of vertices of T∂. Consider the fundamental n-chain τ = σ(T∂, v∂)
in L∂ as defined before the statement of the lemma. Projecting τ to the quotient
space (L∂)ψ∂ we obtain a singular n-cycle τψ∂ representing[

(L∂)ψ∂, u∂
]
∈ Hn

(
(L∂)ψ∂

)
.

The natural map ι : L∂ → L induces a map ιψ : (L∂)ψ∂ → Lψ carrying τψ∂ to ∂σψ .
By definition, λ∂ = λι : L∂ → X . Therefore

(λ∂)ψ∂ = λψ ιψ : (L∂)ψ∂ −→ X
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where λψ : Lψ → X is the map induced by λ : L → X . Hence,

[∂L] =
(
(λ∂)ψ∂

)
∗
(
[τψ∂ ]

)
= (λψ ιψ)∗

(
[τψ∂ ]

)
= (λψ)∗

(
[∂σψ]

)
= 0.

To prove the second claim of the lemma, consider a continuous map f : X → Y .
For any n-polycycle K = (K, φ, u, κ) in X , we have

f∗
(
[K]

)
= f∗(κφ)∗

(
[Kφ, u]

)
= ( f κφ)∗

(
[Kφ, u]

)
=

(
( f κ)φ

)
∗
(
[Kφ, u]

)
=

[
f∗(K)

]
since f∗(K) = (K, φ, u, f κ) by definition. □

3.3.3. The transformation ⟨−⟩. — Let X be a topological space and let n ≥ 0 be an
integer. We associate with each singular n-chain σ in X an n-polychain P(σ) in X .
Pick an expansion

σ =
∑
i

kiσi,

where i runs over a finite set of indices, ki ∈ K , and {σi}i are singular n-simplices
in X . Let K be the manifold with faces obtained as a disjoint union of copies (∆n)i
of ∆n numerated by all i. We define a partition φ on K as follows: a face F of (∆n)i
corresponding to a set A ⊂ {0, . . . , n} and a face F ′ of (∆n)i′ corresponding to a
set A′ ⊂ {0, . . . , n} are declared to be of the same type if A and A′ have the same
cardinality r ≤ n + 1, and σieA = σi′eA′ : ∆r−1 → X (where eA, eA′ are the maps
defined in Section 3.3.1). Then we set

φF,F′ = eA′e−1A : F −→ F ′.

Clearly, the map κ =
⨿

i σi : K → X is compatible with φ. We define a weight

u : π0(K) −→ K

by u((∆n)i) = ki for all i. The tuple (K, φ, u, κ) is an n-polychain in X depending on
the choice of the expansion σ =

∑
i kiσi . However, the polychain

P(σ) = red(K, φ, u, κ)
does not depend on this choice. Indeed, any two expansions of σ may be related
by the following operations: replacement of kσ• + lσ• by (k + l)σ• for any k, l ∈ K

and any singular n-simplex σ• in X ; addition of a term 0σ• for an arbitrary singular
n-simplexσ• in X ; the inverse operations. It is easy to see thatP(σ) is preserved under
these transformations. By definition, if σ = 0, then P(σ) = �.

The face homology class ⟨P(σ)⟩ of the polychain P(σ) will be denoted by ⟨σ⟩.

Lemma 3.3.3. — If σ is a cycle, then P(σ) is a polycycle. The formula [σ] 7→ ⟨σ⟩, applied
to singular n-cycles in X , defines a linear map

⟨−⟩ : Hn(X) −→ H̃n(X).

Moreover, ⟨−⟩ is a natural transformation from Hn to H̃n.

Proof. — We check first that for any singular n-chain σ in X ,

(3.3.4) ∂rP(σ) � P(∂σ).
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Pick an expansion σ =
∑

i kiσi such that the simplices {σi}i are pairwise distinct
and ki , 0 for all i. Then the associated polychain (K, φ, u, κ) is reduced and

P(σ) = (K, φ, u, κ).

A connected component P of ∂P(σ) = (K∂, φ∂, u∂, κ∂) is nothing but a principal face
of (∆n)i ⊂ K for some i = i(P) corresponding to the complement of a singleton
aP ∈ {0, . . . , n}. By the definition of u∂, we have

u∂(P) = ki(P).

We compute red+(∂P(σ)) as described in Section 3.2.1. Pick a representative P for
each type of connected components of K∂, and let K∂

+ ⊂ K∂ be the union of these
representatives. Restricting φ∂ and κ∂ to K∂

+ we obtain a partition φ∂+ on K∂
+ and a

compatible map κ∂+ : K∂
+ → X . The weight u∂+ on K∂

+ is evaluated on each component P
of K∂

+ by

u∂+(P) =
∑
Q

deg(φP,Q)u∂(Q) =
∑
Q

(−1)aP+aQ ki(Q) = (−1)aP

∑
Q

(−1)aQ ki(Q)

where Q runs over all components of K∂ of the same type as P. Note that the total
coefficient of the singular simplex σi(P)eâP

: ∆n−1 → X in ∂σ is∑
Q

(−1)aQ ki(Q).

Also, (−1)aP is the degree of eâP
: ∆n−1 → P (recall that ∆n−1 is oriented as in

Section 3.3.1 while P ⊂ ∂(∆n)i inherits orientation from (∆n)i where i = i(P)).
We conclude that the polychain red+(∂P(σ)) consists ofP(∂σ) and eventually several
connected components of weight zero. Hence

∂rP(σ) = red(∂P(σ)) = red0 red+

(
∂P(σ)

)
� P(∂σ).

This proves (3.3.4). The first assertion of the lemma follows.
Next we claim that, for any singular n-cycles σ, τ in X ,

(3.3.5) P(σ + τ) ≃ P(σ) ⊔ P(τ).

To see this, pick expansions σ =
∑

i kiσi , τ =
∑

j ljτj and let
K = (K, φ, u, κ) L = (L, ψ, v, λ)

be the associated polychains, respectively. Consider the cylinder polychain

K ⊔ L � K ⊔ L

(as defined in the proof of Lemma 3.2.2) and modify its partition by additionally
declaring that for any face F of (∆n)i ⊂ K corresponding to A ⊂ {0, . . . , n} and for any
face G of (∆n)j ⊂ L corresponding to B ⊂ {0, . . . , n} such thatσieA = τjeB, the faces F×
{0} and G × {0} of K ⊔ L are of the same type, and the corresponding identification
map is eBe−1A × id{0} : F × {0} → G × {0}. The resulting (n + 1)-polychain, M, in X
satisfies

red+ ∂M � red+(K) ⊔ red+(L) ⊔ red+(−R) ⊔ (a polychain with zero weight)
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where R is the polychain associated with the expansion
∑

i kiσi +
∑

j ljτj of σ + τ.
Hence,

∂rM � P(σ) ⊔ P(τ) ⊔ (−P(σ + τ))

and our claim follows.
If K has no zero-divisors, then P(kσ) � kP(σ) for any singular n-chain σ in X and

any non-zero k ∈ K . For an arbitrary K and all k ∈ K , we have

(3.3.6) P(kσ) � red
(
kP(σ)

)
≃ kP(σ).

Equalities (3.3.4)–(3.3.6) imply that the formula [σ] 7→ ⟨P(σ)⟩ defines a linear map

⟨−⟩ : Hn(X) −→ H̃n(X).

To prove the last claim of the lemma, consider a continuous map f : X → Y . Let σ
be a singular n-cycle in X , and let K = (K, φ, u, κ) be the n-polycycle associated to
an expansion

∑
i kiσi of σ. The n-polycycle associated to the expansion

∑
i ki( fσi)

of f∗(σ) has the form K′ = (K, φ′, u, f κ) and differs from f∗(K) = (K, φ, u, f κ) only in
the partition. Modifying appropriately the partition of the cylinder polychain f∗(K),
we obtain an (n + 1)-polychain M in X such that

red+ ∂M = red+ f∗(K) ⊔ red+(−K′) ⊔ (a polychain with zero weight).

We deduce that ∂rM = red f∗(K) ⊔ red(−K′) and

f∗
(
⟨P(σ)⟩

)
= f∗

(
⟨K⟩

)
=

⟨
f∗(K)

⟩
= ⟨K′⟩ =

⟨
P( f∗(σ))

⟩
. □

The next theorem implies that Hn(X) is canonically isomorphic to a direct sum-
mand of H̃n(X).

Theorem 3.3.4. — We have

[−] ◦ ⟨−⟩ = id : Hn(X) −→ Hn(X).

Proof. — Let σ =
∑

i kiσi be a singular n-cycle in X and let P(σ) = (K, φ, u, κ) be the
corresponding reduced n-polycycle. Then[

⟨[σ]⟩
]
=

[
P(σ)

]
= (κφ)∗

(
[Kφ, u]

)
=

[∑
i

kiσi

]
= [σ] ∈ Hn(X).

Here the third equality is obtained by considering the tautological locally ordered
smooth triangulation T of K and the corresponding fundamental n-chain σ(T, u)
(see the paragraph preceding Lemma 3.3.2). □

3.3.4. Cross product re-examined. — The following lemma shows that the transfor-
mation [−] : H̃∗ → H∗ carries the cross product × in face homology to the standard
cross product × in singular homology.
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Lemma 3.3.5. — For any topological spaces X , Y , the following diagram commutes:

(3.3.7)

H̃∗(X) × H̃∗(Y)
× //

[−]×[−]
��

H̃∗(X × Y)

[−]
��

H∗(X) × H∗(Y)
× // H∗(X × Y).

We first recall the definition of the map × : H∗(X) × H∗(Y) → H∗(X × Y) and then
prove Lemma 3.3.5. Fix integers p, q ≥ 0. Any p-element subset S of {1, . . . , p + q}
determines non-decreasing maps

α = αS : {0, . . . , p + q} → {0, . . . , p} and β = βS : {0, . . . , p + q} → {0, . . . , q}
such that α(0) = β(0) = 0 and for any i = 1, . . . , p + q,(

α(i), β(i)
)
=

{ (
α(i − 1) + 1, β(i − 1)

)
if i ∈ S,(

α(i − 1), β(i − 1) + 1
)

if i < S.

Let ωS ⊂ ∆p ×∆q be the convex hull of the set
{
(eα(0), eβ(0)), . . . , (eα(p+q), eβ(p+q))

}
.

Lemma 3.3.6. — The set ωS is an embedded (p + q)-simplex in ∆p ×∆q with vertices{
(eα(i), eβ(i))

}p+q

i=0
.

The simplices {ωS}S and their faces form a triangulation of ∆p ×∆q .

Proof. — This lemma is well known but we give a proof for completeness. For n ≥ 0,
denote byAn the affine space formed by the points ofRn+1 with sum of coordinates 1.
The basis (e0, . . . , en) of Rn+1 is an affine basis of An and ∆n ⊂ An. Consider the
basis (v1, . . . , vp) = (−−−→e0e1,−−−→e1e2, . . . ,−−−−−→ep−1ep ) of the vector space underlying Ap and the
basis (vp+1, . . . , vp+q) = (−−−→e0e1,−−−→e1e2, . . . ,−−−−−→eq−1eq ) of the vector space underlying Aq .
Then (v1, . . . , vp+q) is a basis of the vector space underlying the product affine space
Ap × Aq .

Recall that a (p, q)-shuffle is a permutation s of {1, . . . , p + q} such that
s(1) < s(2) < · · · < s(p) and s(p + 1) < · · · < s(p + q).

Any p-element subset S of {1, . . . , p+q} determines a unique (p, q)-shuffle s such that
S = s

(
{1, . . . , p}

)
,

The first claim of the lemma follows from the fact that the basis (vs−1(1), . . . , vs−1(p+q))
underlies the set of vertices of ωS ⊂ Ap ×Aq :

(3.3.8) (eα(0), eβ(0))
� vs−1(1)

// (eα(1), eβ(1))
� vs−1(2)

// · · · �
vs−1(p+q)

// (eα(p+q), eβ(p+q)).

To prove the second claim, observe that given n + 1 affinely independent points
f0, . . . , fn in an n-dimensional affine space, an arbitrary point f0 +

∑n
i=1 ti

−−−−→
fi−1 fi of this

space (with t1, . . . , tn ∈ R) belongs to the affine simplex spanned by f0, . . . , fn if and
only if 1 ≥ t1 ≥ · · · ≥ tn ≥ 0. Therefore any point z ∈ ∆p ×∆q expands uniquely as

z = (e0, e0) + z1v1 + · · ·+ zp+qvp+q
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with
1 ≥ z1 ≥ · · · ≥ zp ≥ 0 and 1 ≥ zp+1 ≥ · · · ≥ zp+q ≥ 0.

By the same observation and (3.3.8), the inclusion z ∈ ωS for a p-element subset S
of {1, . . . , p + q} holds if and only if

zs−1(1) ≥ zs−1(2) ≥ · · · ≥ zs−1(p+q)

where s is the (p, q)-shuffle determined by S. Therefore ∆p ×∆q is the union of the
simplices {ωS}S , and any two of these simplices meet along a common face. □

For each p-element subset S ⊂ {1, . . . , p + q}, we turn ωS into a singular simplex
in ∆p ×∆q by sending the ordered vertices e0 < e1 < · · · < ep+q of ∆p+q to

(3.3.9) (eα(0), eβ(0)) < (eα(1), eβ(1)) < · · · < (eα(p+q), eβ(p+q))

respectively. Summing up over all such S we obtain a singular chain

(3.3.10) ωp,q =
∑
S

εSωS ∈ Cp+q(∆
p ×∆q)

where εS is the sign comparing the orientation in ωS determined by the order of its
vertices (3.3.9) with the product orientation in ∆p ×∆q . The Eilenberg-Zilber chain map

(3.3.11) E Z : C∗(X) ⊗ C∗(Y) −→ C∗(X × Y)

is defined by
E Z(σ ⊗ τ) = (σ × τ)∗(ωp,q)

for any singular simplices σ : ∆p → X and τ : ∆q → Y . Here

(σ × τ)∗ : C∗(∆
p ×∆q) −→ C∗(X × Y)

is the chain map induced by σ × τ : ∆p ×∆q → X × Y .
The cross product of singular homology classes x ∈ Hp(X) and y ∈ Hq(Y) is defined

by taking any cycles σ ∈ Cp(X) and τ ∈ Cq(Y) representing x and y respectively, and
letting x × y ∈ Hp+q(X × Y) be the homology class of E Z(σ ⊗ τ).

Proof of Lemma 3.3.5. — Let K = (K, φ, u, κ) be a p-polycycle in X and L = (L, ψ, v, λ)
be a q-polycycle in Y . We must prove that

(3.3.12) [K × L] = [K] × [L] ∈ Hp+q(X × Y).

Fix a locally ordered smooth triangulation T of K which fits φ and consider the funda-
mental p-chain

∑
i εiu(K i)σi ∈ Cp(K) where i runs over p-simplices of T , σi : ∆

p → K
is the smooth singular simplex determined by i, εi is the sign comparing the orien-
tation induced by the order of the vertices of i to the orientation of K , and K i is the
connected component of K containing i. Then

[K] =
[∑

i

εiu(K i) (κ ◦ σi)
]
∈ Hp(X)
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where the square brackets on the right-hand side stand for the homology class of a
singular cycle. Similarly, fixing a locally ordered smooth triangulation W of L which
fits ψ, we obtain

[L] =
[∑

j

εj v(L j)(λ ◦ τj)
]
∈ Hq(Y)

where j runs over q-simplices of W , τj : ∆q → L is the smooth singular simplex
determined by j, εj is the sign comparing the orientation induced by the order of the
vertices of j to the orientation of L, and L j is the component of L containing j. By the
definition of the cross product in singular homology,

[K] × [L] =
[∑

i, j

εi εj u(K i)v(L j)E Z(κσi ⊗ λτj)
]

(3.3.13)

=
[ ∑
i, j,S

εi εj εSu(K i)v(L j) (κσi × λτj)ωS

]
where S runs over p-element subsets of {1, . . . , p + q}.

For any simplices i, j as above, we push forward via σi × τj the triangulation
of ∆p ×∆q provided by Lemma 3.3.6 to a triangulation of i × j ⊂ K × L. This gives a
smooth triangulation Z of K × L. The set of vertices Z0 of Z is the cartesian product
of the sets of vertices T0 and W0 of T and W , respectively; we endow Z0 with the
product of the binary relations on T0 and W0 determined by the local orders on T
and W . This defines a local order on Z which fits the partition φ × ψ.

The simplices of Z can be identified with the triples (i, j, S) as above, and the
corresponding singular simplices in K × L are the maps (σi × τj)ωS : ∆p+q → K × L.
(Here we use the fact that the order (3.3.9) of the vertices ofωS is given by the product
binary relation on the set of vertices of ∆p × ∆q determined by the natural orders
on the sets of vertices of∆p and∆q .) Let εi, j,S be the sign comparing the orientation of
the simplex (i, j, S) induced by the order of the vertices to the product orientation
of K × L. Let (K × L)i, j,S be the component of K × L containing the simplex (i, j, S).
Then

(3.3.14) [K × L] =
[ ∑
i, j,S

εi, j,S · (u × v)
(
(K × L)i, j,S

)
·
(
(κ × λ) ◦ (σi × τj)ωS

) ]
.

Clearly,
(u × v)

(
(K × L)i, j,S

)
= u(K i)v(L j).

Note that εi, j,S = εiεjεS since εiεj is the degree of the diffeomorphism
σi × τj : ∆p ×∆q −→ i × j

with respect to the product orientation in∆p×∆q and the product orientation in K×L
restricted to i × j. Comparing (3.3.13) to (3.3.14), we obtain (3.3.12). □

3.3.5. Remarks
(1) Though we shall not need it in the sequel, note that the sign εS in (3.3.10) can

be computed explicitly:
εS = (−1)nS
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where nS is the number of pairs i < j with i ∈ {1, . . . , p+q}\S and j ∈ S. Indeed, in the
notation introduced in the proof of Lemma 3.3.6, the orientation of ωS determined
by the sequence (3.3.9) is represented by the (p + q)-vector

vs−1(1) ∧ · · · ∧ vs−1(p+q) = (−1)mv1 ∧ · · · ∧ vp+q

where s is the (p, q)-shuffle associated with S and m is the number of inversions in s.
Therefore εS = (−1)m and it remains to observe that m = nS .

The definition of nS may be also reformulated in terms of the maps α = αS
and β = βS . Namely, nS is the number of pairs i < j such that

β(i) = β(i − 1) + 1 and α( j) = α( j − 1) + 1.

This implies the following formula for nS used, for example, in [15, Section 4 (b)]:

nS =
∑

1≤i< j≤p+q

(
β(i) − β(i − 1)

) (
α( j) − α( j − 1)

)
.

(2) By a celebrated result of Thom, there are topological spaces X and integers n > 0
such that some n-dimensional singular homology classes of X with coefficients
in K = Z are not realizable by closed singular manifolds. For such X and n, the
natural map from the n-dimensional oriented bordism group Ωn(X) to Hn(X), carry-
ing a closed singular manifold

κ : M −→ X

to κ∗([M]), is not surjective. This map splits as a composition of the map

Ωn(X) −→ H̃n(X)

described in Remark 3.2.7 with the surjective map [−] : H̃n(X) → Hn(X). Therefore,
for such X and n, the map Ωn(X) → H̃n(X) is not surjective.

(3) The face homology seems to be difficult to compute. As a consequence, the
authors do not know whether the transformation [−] : H̃∗ → H∗ is injective, and,
equivalently, whether ⟨−⟩ : H∗ → H̃∗ is surjective. In fact, the authors even do not
know whether the face homology of a point is trivial in positive degrees.

(4) The constructions and results of this section easily extend to the face homology
of topological pairs (cf. Remark 3.2.7).

3.4. Smooth polychains

We reformulate face homology of the path spaces of manifolds in terms of smooth
polychains. We start by studying polychains in manifolds.

3.4.1. Polychains in manifolds. — Recall from Section 3.1.1 that a map κ from an n-
dimensional manifold with faces K to a smooth m-dimensional manifold M (possibly,
with boundary) is said to be smooth if restricting κ to any local coordinate systems in
K and M we obtain a map that extends to a C∞-map from an open subset of Rn to Rm.
If N ⊂ K is a union of (some) faces of K , then we call a map N → M smooth whenever
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its restrictions to all faces of K contained in N are smooth. Such a map N → M is
necessarily continuous. This terminology applies in particular to N = ∂K .

Lemma 3.4.1. — Let K be a manifold with faces. Any smooth map ∂K → M extends to a
smooth map from a neighborhood of ∂K in K to M .

Proof. — Using a partition of unity on K and local coordinates on M , we easily reduce
the lemma to the case where K = Rn

+ = [0,∞)n with n ≥ 0 and M = R. We need to
prove that every function

f : ∂Rn
+ −→ R

whose restrictions to all proper faces of Rn
+ are smooth extends to a smooth function

on Rn
+. We exhibit one such extension explicitly. For a subset S of the set {1, . . . , n}

and a point x = (x1, . . . , xn) ∈ Rn
+ denote by xS the point of Rn

+ whose i-th coordinate
is xi if i ∈ S and zero otherwise. If S , {1, . . . , n}, i.e. if S is a proper subset of {1, . . . , n},
then xS ∈ ∂Rn

+. Set

(3.4.1) f̄ (x) =
∑

S⊊{1,...,n}
(−1)card(S)+n+1 f (xS).

Each function x 7→ f (xS) is smooth because it is a composition of f with the projection
of Rn

+ onto its proper face. Therefore the function f̄ : Rn
+ → R is smooth. Moreover,

it satisfies
f̄ (x) = f (x) for all x ∈ ∂Rn

+.
Indeed, pick i ∈ {1, . . . , n} such that xi = 0 and observe that each term in (3.4.1)
corresponding to S with i < S cancels with the term corresponding to S ∪ {i} pro-
vided the latter set is proper. This leaves only the term f (xS) = f (x) determined
by S = {1, . . . , n} \ {i}. □

Lemma 3.4.2. — Let κ : K → M be a continuous map from a manifold with faces K to a
smooth manifold M . Then any homotopy of

κ ∂K : ∂K −→ M

to a smooth map extends to a homotopy of κ to a smooth map K → M .

Proof. — Observe first that if
κ ∂K : ∂K −→ M

is smooth, then there is a homotopy of κ rel ∂K to a smooth map K → M . Indeed,
Lemma 3.4.1 yields an extension of κ ∂K : ∂K → M to a smooth map U → M
where U is a collar of ∂K in K . The latter map obviously extends to a continuous map
κ′ : K → M homotopic to κ rel ∂K . Since κ′ U is smooth and K \ U is a compact subset
of the smooth manifold K \ ∂K , there is a homotopy of κ′ to a smooth map K → M ,
and this homotopy may be chosen to be constant in a neighborhood of ∂K in U. The
resulting smooth map K → M is homotopic to κ rel ∂K .

To prove the lemma, take an arbitrary (continuous) extension of the given ho-
motopy of κ ∂K to a homotopy of κ, and compose it with a homotopy rel ∂K of the
resulting map K → M to a smooth map as in the previous paragraph. Next, using a
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collar of ∂K in K , deform the composed homotopy of κ into a homotopy satisfying
the conditions of the lemma. □

As an exercise, the reader may deduce from Lemma 3.4.2 (by an inductive con-
struction on the faces of K) that any continuous map K → M is homotopic to a smooth
map.

A polychain (K, φ, u, κ) in M is smooth if the map κ : K → M is smooth. We explain
now how to deform arbitrary polychains in M into smooth polychains. For the notion
of a deformation of a polychain in M , see Section 3.2.5. We explain first how to extend
deformations. Let N ⊂ K consist of some faces of K . We say that a homotopy{

(κ N)
t : N −→ M

}
t∈I

of κ N is compatible with the partition φ if

(κ N)
t
G ◦ φF,G = (κ N)

t
F

for any t ∈ I and any faces of the same type F,G ⊂ N .

Lemma 3.4.3. — Let K = (K, φ, u, κ) be a polychain in M and let N be a union of faces of K .
Let {

(κ N)
t : N → M

}
t∈I

be a homotopy of κ N compatible with φ such that (κ N)
1 : N → M is smooth. Then there is a

deformation {
Kt = (K, φ, u, κt)

}
t∈I

of K0 = K such that K1 is smooth and for all t ∈ I,

κt N = (κ N)
t : N −→ M .

Proof. — For any integer r , denote (as in Section 3.1.1) by Kr the union of all faces of K
of dimension ≤ r . Recursively in r = −1, 0, . . . , we construct a homotopy (κ Kr

)t of κ Kr

to a smooth map (κ Kr
)1 : Kr → M . For r = −1, there is nothing to do since K−1 = �.

The induction step goes as follows. For each type of r-dimensional faces of K , select a
representative face F so that if at least one face of the given type lies in N , then F ⊂ N .
If F ⊂ N , then set (κ F)

t = (κ N)
t
F for all t. If F ⊈ N , then by Lemma 3.4.2 there

is a homotopy of κ F to a smooth map extending the homotopy of κ on ∂F ⊂ Kr−1
obtained at the previous step. The homotopy on the selected r-dimensional faces
uniquely extends to a homotopy of κ on Kr compatible with φ. For r = dim(K), we
obtain the required deformation of κ. □

Lemma 3.4.4. — For any polychain K = (K, φ, u, κ) in M , there is a deformation{
Kt = (K, φ, u, κt)

}
t∈I

of K0 = K such that K1 is smooth and κt F = κ F for all t ∈ I and all faces F of K on which κ
is smooth.

Proof. — This is a special case of Lemma 3.4.3 where N is the union of all faces of K
on which κ is smooth and {(κ N)

t }t∈I is the constant homotopy. □
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We can now reformulate the face homology of M in terms of smooth polychains.
Note that if a polychain K in M is smooth, then so are the polychains redK, ∂K,
and ∂rK. Disjoint unions of smooth polychains are smooth. Applying the defini-
tions of Section 3.2.4 to X = M but considering only smooth polycycles and smooth
polychains we obtain smooth face homology H̃s

∗ (M).

Theorem 3.4.5. — The natural linear map H̃s
∗ (M) → H̃∗(M) is an isomorphism.

Proof. — Lemmas 3.2.3 and 3.4.4 imply that any polycycle in M is homologous to
a smooth polycycle. This proves the surjectivity of the map in the statement of the
theorem. To prove the injectivity it suffices to show that, for any homologous reduced
smooth n-polychains K1, K2 in M there are smooth (n + 1)-polychains R′

1,R
′
2 in M

such that
K1 ⊔ ∂rR′

1 � K2 ⊔ ∂rR′
2.

By assumption, there are (n + 1)-polychains R1,R2 in M and a diffeomorphism

f : K1 ⊔ ∂rR1 −→ K2 ⊔ ∂rR2.

For i = 1, 2, set
(Pi, φi, ui, κi) = Ki ⊔ ∂rRi

and let Ki ⊂ Pi be the union of the components of Pi underlying Ki . Lemma 3.4.4
yields a homotopy

{κt1 : P1 → M}t
of κ01 = κ1 to a smooth map κ11 in the class of maps compatible with the partition φ1,
which is constant on all faces of P1 on which κ1 is smooth. In particular, this homotopy
is constant on K1. Consider the homotopy

{κt2 = κt1 f −1 : P2 → M}t
of κ02 = κ2. This homotopy is compatible with the partition φ2 and is constant on K2

(because κ1 = κ2 f is smooth on f −1(K2)). Clearly, f : P1 → P2 is a diffeomorphism of
the smooth polychains

(P1, φ1, u1, κ
1
1) and (P2, φ2, u2, κ

1
2 = κ11 f −1).

For i = 1, 2, the polychain (Pi, φi, ui, κ1i ) is obtained from Ki ⊔ ∂rRi by a deformation
which is constant on Ki and transforms ∂rRi into a smooth polychain.

To finish the proof, we need only to show that this deformation of ∂rRi extends to a
deformation of Ri into a smooth polychain. This is done in three steps. First of all, ap-
plying Lemma 3.4.3 toK = red+ ∂Ri and taking for N the union of all connected com-
ponents of non-zero weight we obtain that our deformation of ∂rRi = red0 red+ ∂Ri

extends to a deformation of red+ ∂Ri into a smooth polychain. The latter deforma-
tion induces a deformation of ∂Ri into a smooth polychain. One more application of
Lemma 3.4.3 allows us to extend the latter deformation to a deformation of Ri into a
smooth polychain R′

i . Then K1 ⊔ ∂rR′
1 � K2 ⊔ ∂rR′

2. □
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3.4.2. Polychains in path spaces. — Pick two points ⋆,⋆′ in a smooth manifold M
(possibly, ⋆ = ⋆′ and ∂M , �). A path in M from ⋆ to ⋆′ is a continuous map
I = [0, 1] → M carrying 0 to ⋆ and 1 to ⋆′. Let

Ω = Ω(M,⋆,⋆′)

be the space of such paths with compact-open topology; we call Ω the path space of M .
Note that a map σ from a topological space K to Ω is continuous if and only if the
adjoint map σ̃ : K × I → M , carrying any pair (k ∈ K, s ∈ I) to σ(k)(s) ∈ M is
continuous; see, for example, [18, Section 1.2.7].

Given a subspace X of Ω, we call a map from a manifold with faces K to X smooth
if the adjoint map K × I → M is smooth in the sense of Section 3.4.1. A polychain
K = (K, φ, u, κ) in X is smooth if κ : K → X is smooth. The definitions of Section 3.2.4
restricted to smooth polycycles and smooth polychains in X , yield the smooth face
homology H̃s

∗ (X) of X . In the next theorem, X = Ω.

Theorem 3.4.6. — The natural linear map H̃s
∗ (Ω) → H̃∗(Ω) is an isomorphism.

Proof. — We follow the lines of Section 3.4.1 with M replaced by Ω. First, we show
that given a manifold with faces K , any smooth map

f : ∂K −→ Ω

extends to a smooth map from a neighborhood of ∂K in K to Ω. Indeed, the adjoint
map f̃ : ∂K × I → M extends to a smooth map ∂(K × I) → M by sending K × {0} to⋆
and K × {1} to ⋆′. By Lemma 3.4.1, the latter map extends to a smooth map

f̄ : U −→ M

for some neighborhood U of ∂(K × I) in K × I. Clearly, U ⊃ V × I for a neighborhood V
of ∂K in K . The map f V×I is adjoint to a smooth map V → Ω extending f .

Lemmas 3.4.2–3.4.4 remain true with M replaced by Ω. The proofs above apply
with the only difference that Lemma 3.4.1 should be replaced by the result of the
previous paragraph. The proof of Theorem 3.4.5 also works with M replaced by Ω.
This gives the desired result. □

In the case where ⋆,⋆′ ∈ ∂M , the path space Ω = Ω(M,⋆,⋆′) is homotopy equiva-
lent to a smaller space. Let

Ω◦ = Ω◦(M,⋆,⋆′)

be the subspace of Ω consisting of all paths α : I → M from ⋆ to ⋆′ such that
α−1(∂M) = ∂I. We call Ω◦ the proper path space of (M,⋆,⋆′).

Lemma 3.4.7. — The inclusion map Ω◦ ↪→ Ω is a homotopy equivalence.

Proof. — We begin with an observation in set-theoretic topology. Consider a topo-
logical pair Y ⊂ X and suppose that there is a homotopy

{ ft : X → X}t∈I
of the identity map f0 = idX such that ft(X) ⊂ Y for all t > 0. Then the inclusion
ι : Y ↪→ X is a homotopy equivalence and its homotopy inverse g : X → Y is obtained
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from f1 by reducing the image to Y . Indeed, the family { ft : X → X}t is a homotopy
between f0 = idX and f1 = ιg. Since ft ι(Y) ⊂ Y for all t ∈ I, we have the family of
maps { ft ι : Y → Y }t . This is a homotopy between idY and gι.

Using a tubular neighborhood of ∂M in M , we can easily construct a (smooth)
family of embeddings

{Fs,t : M ↪→ M}s,t∈I
such that Fs,t = idM if s ∈ {0, 1} or t = 0, and Fs,t(M) ⊂ Int M = M \ ∂M for all other
pairs (s, t). Given t ∈ I and a path α : I → M from⋆ to⋆′, we define a path αt : I → M
by αt(s) = Fs,t(α(s)) for all s ∈ I. This gives a family of paths {αt }t∈I such that α0 = α
andαt ∈ Ω◦ for all t > 0. The formula ft(α) = αt defines a homotopy { ft : Ω → Ω}t∈I of
f0 = idΩ such that ft(Ω) ⊂ Ω◦ for all t > 0. Now, the result of the previous paragraph
implies that the inclusion Ω◦ ↪→ Ω is a homotopy equivalence. □

Lemma 3.4.7 implies that H̃∗(Ω◦) ≃ H̃∗(Ω). The following theorem computes the
face homology of Ω◦ and Ω in terms of smooth polychains in Ω◦.

Theorem 3.4.8. — The natural linear map H̃s
∗ (Ω

◦) → H̃∗(Ω◦) is an isomorphism.

Proof. — Consider the homotopy { ft }t∈I of f0 = idΩ introduced in the proof of
Lemma 3.4.7 and set f = f1 : Ω → Ω◦ ⊂ Ω. For any manifold with faces L and for any
map λ : L → Ω, the adjoint map f̃tλ : L × I → M of ftλ is given by

f̃tλ(l, s) = ft
(
λ(l)

)
(s) = λ(l)t(s) = Fs,t

(
λ(l)(s)

)
= Fs,t

(
λ̃(l, s)

)
.

Consequently, if λ is smooth, then ftλ : L → Ω is smooth for all t ∈ I. We conclude
that for any smooth polychain L in Ω, the polychain f∗(L) in Ω◦ is smooth.

By the surjectivity of the map in Theorem 3.4.6, any polycycle K in Ω◦ is ho-
mologous in Ω to a smooth polycycle K′ in Ω. Applying f , we obtain that f∗(K)
is homologous in Ω◦ to the smooth polycycle f∗(K′). The homotopy { ft }t induces
a deformation of K into f∗(K) in Ω◦. Therefore K is homologous to f∗(K) in Ω◦.
Thus, K is homologous to f∗(K′) in Ω◦. This proves the surjectivity of the natural
map H̃s

∗ (Ω
◦) → H̃∗(Ω◦). To prove the injectivity, consider two reduced smooth n-

polycycles K1, K2 in Ω◦ that are homologous in Ω◦. Then they are homologous in Ω.
By the injectivity of the map in Theorem 3.4.6, there are smooth (n + 1)-polychains
L1,L2 in Ω such that K1 ⊔ ∂rL1 � K2 ⊔ ∂rL2. Applying f we obtain

f∗(K1) ⊔ ∂r
(
f∗(L1)

)
� f∗(K2) ⊔ ∂r

(
f∗(L2)

)
where f∗(K1), f∗(L1), f∗(K2), f∗(L2) are smooth polychains in Ω◦. So,⟨

f∗(K1)
⟩
=

⟨
f∗(K2)

⟩
∈ H̃s

n(Ω
◦).

The homotopy { ft }t induces a smooth deformation of Ki into f∗(Ki) and therefore
⟨Ki⟩ = ⟨ f∗(Ki)⟩ ∈ H̃s

n(Ω
◦) for i = 1, 2. Hence ⟨K1⟩ = ⟨K2⟩ ∈ H̃s

n(Ω
◦). This completes

the proof of the injectivity of the natural map H̃s
∗ (Ω

◦) → H̃∗(Ω◦) and of the theorem.
□
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CHAPTER 4

OPERATIONS ON POLYCHAINS

Throughout this chapter, M is an oriented smooth n-dimensional manifold with
boundary, where n ≥ 2. We fix points⋆1,⋆2,⋆3,⋆4 ∈ ∂M and assume, unless explicitly
stated to the contrary, that {⋆1,⋆2} ∩ {⋆3,⋆4} = � (possibly,⋆1 = ⋆2 and/or⋆3 = ⋆4).
For i, j ∈ {1, 2, 3, 4}, let
▷ Ωi j = Ω(M,⋆i,⋆j) be the path space and
▷ Ω◦

i j = Ω◦(M,⋆i,⋆j) ⊂ Ωi j be the proper path space of (M,⋆i,⋆j).

4.1. Transversality in path spaces

In this section, we study transversality of polychains in the proper path spaces Ω◦
12

and Ω◦
34.

4.1.1. Transversal maps. — The diagonal of M

diagM =
{
(x, x) | x ∈ M

}
⊂ M × M

is a smooth manifold diffeomorphic to M . We say that a smooth map g from a manifold
with faces N to M × M is weakly transversal to diagM if g(N) does not meet ∂(diagM)
and the restriction of g to Int(N) = N \ ∂N is transversal to Int(diagM) in the usual
sense of differential topology. (The interiors of N and diagM are smooth manifolds so
this condition makes sense.) The map g is transversal to diagM if its restriction to any
face of N is weakly transversal to diagM .

Fix manifolds with faces K and L. Consider smooth maps
κ : K −→ Ω◦

12, λ : L −→ Ω◦
34

and let κ̃ : K × I → M , λ̃ : L × I → M be the adjoint maps. The product map
κ̃ × λ̃ : K × I × L × I −→ M × M

carries a tuple (k ∈ K, s ∈ I, l ∈ L, t ∈ I) to the point (κ(k)(s), λ(l)(t)). The latter
point can lie on diagM only when s, t ∈ Int(I) = (0, 1) and never lies in ∂(diagM).
We say that κ and λ are transversal if the map κ̃ × λ̃ is transversal to diagM in the
sense above. Note that the maps κ and λ are transversal in our sense if and only if
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they are transversal in the sense of [35], see Proposition 7.2.2 therein. (Our notion of
transversality is stronger than the one in [26], see Remark 6.3 therein.) If κ and λ are
transversal, then their restrictions to arbitrary faces of K , L are transversal. Clearly,
smooth homotopies of κ and λ that are sufficiently C1-small preserve transversality.

Lemma 4.1.1. — For any smooth maps κ : K → Ω◦
12 and λ : L → Ω◦

34, there is an
arbitrarily C∞-small smooth homotopy {κt }t∈I of κ0 = κ such that κ1 and λ are transversal.

Proof. — Proceeding by induction on dim(L) ≥ −1, we can assume that κ is transver-
sal to the restrictions of λ to all proper faces of L. All subsequent homotopies of κ are
chosen to be small enough to preserve this property. Fix a smooth triangulation T
of K× I. A map from a simplex e of T to M is smooth if it is smooth as a singular simplex
in M . A smooth map f : e → M is λ-transversal if the map f × λ̃ : e × L × I → M × M
is weakly transversal to diagM .

We call a map g : K × I → M good if the adjoint map from K to the space of paths
in M takes values in Ω◦

12 = Ω◦(M,⋆1,⋆2). The map g is T-good if it is good and the
image of any simplex of T under g lies in a closed ball in M .

Consider the map κ̃ : K × I → M adjoint to κ. Clearly, κ̃ is good. Since
{⋆1,⋆2} ∩ {⋆3,⋆4} = �,

the set κ̃(K×∂I) is disjoint from λ̃(L× I). By continuity, there is a small δ > 0 such that
the sets κ̃(K × [0, δ]) and κ̃(K × [1− δ, 1]) are disjoint from λ̃(L × I). Subdividing T , we
can assume that κ̃ is T-good and Tδ = K × ([0, δ] ∪ [1 − δ, 1]) is a subcomplex of T . For
any simplex e of Tδ , the map κ̃ e is λ-transversal because (κ̃× λ̃)(e×L× I)∩diagM = �.

Set p = dim(K). We shall construct p + 2 homotopies
κ̃ = κ0 { κ1 { · · · { κp+2

in the class of T-good maps K × I → M such that for all r ≥ 0 and any simplex e of T
of dimension ≤ r −1, the map κr e is λ-transversal. Then, the restriction of κp+2 to any
simplex of T is λ-transversal. For each face E of K , the product E × I is a subcomplex
of T . Therefore, the restriction of κp+2 × λ̃ to E × I × L × I is weakly transversal to
diagM . By the beginning of the proof, the same holds when L is replaced with any
of its proper faces. This shows that the smooth map K → Ω◦

12 determined by κp+2 is
transversal to λ.

The homotopies κ̃ = κ0 { κ1 { · · · are constructed recursively. For r = 0, the
condition on κr is void, and we can take κ0 = κ̃. Assume that we have required
homotopies κ0 { κ1 { · · · { κr for some r ≥ 0. Consider an r-dimensional sim-
plex e ∈ T \ Tδ . Clearly, e ⊂ K × Int(I). For ε > 0, let Uε denote the (closed) metric
ε-neighborhood of ∂e in K × Int(I). The inductive assumption implies that

(*)
{

for a sufficiently small ε > 0, the restriction of the
map κr×λ̃ to Uε×L× I is weakly transversal to diagM .

Since κr is good and e ⊂ K × Int(I), we have κr(e) ⊂ Int(M). Since κr is T-good, one
has κr(e) ⊂ B for a closed ball B ⊂ M . We can choose B so that κr(e) ⊂ Int(B). We
identify B with the closed unit ball in Euclidean space with center 0. Pick a small
neighborhood S ⊂ B of 0 ∈ B so that κr(e) + s ⊂ Int(B) for all s ∈ S. Consider the
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smooth maps { fs : e → B ⊂ M}s∈S where fs carries any u ∈ e to κr(u)+ s. It is obvious
that the family of maps {

fs × λ̃ : e × L × I → M × M
}
s∈S

is weakly transversal to diagM in the sense that the adjoint map

e × L × I × S −→ M × M

is weakly transversal to diagM . By the classical transversality theorem (see [22, Sec-
tion 2.3]),

(**)
{

the set Sλ = {s ∈ S : the map fs × λ̃ is weakly transversal to diagM }
is dense (and open) in S.

(This argument is adapted from that of Laudenbach [32, Proof of Lemma 2.6].) In our
terminology, fs is λ-transversal for any s ∈ Sλ. For each s ∈ Sλ, we define a map

gs : e −→ B ⊂ M

by gs(u) = κr(u) + h(u)s for all u ∈ e where h : e → I is a smooth function
carrying e ∩ Uε/2 to 0 and e \ Uε to 1. Then gs = κr on e ∩ Uε/2 and gs = fs on e \ Uε .
We deduce from (*) and (**) that, for all sufficiently small s ∈ Sλ, the map gs is
λ-transversal. Pick such an s and consider the obvious linear homotopy κr e { gs
constant on e∩Uε/2. Combining such homotopies corresponding to all r-dimensional
simplices e ∈ T \ Tδ and extending by the constant homotopy on Tδ we obtain a ho-
motopy of κr on the union of Tδ with the r-skeleton of T . The latter homotopy extends
to a homotopy κr { κr+1 in the class of good maps K × I → M . Taking the vectors s
in this construction small enough, we can always choose the homotopy κr { κr+1 so
that it proceeds in the class of T-good maps. Since this homotopy is constant on Tδ
and on the (r − 1)-th skeleton of T , the λ-transversality of κr on the simplices of T
of dimension < r acquired at the previous steps is preserved during the homotopy.
By construction, κr+1 is λ-transversal on all r-dimensional simplices of T . □

Lemma 4.1.2. — The homotopy in Lemma 4.1.1 may be chosen to be constant on the union
of all faces E of K such that κ E is transversal to λ.

Proof. — The proof proceeds by induction on dim(K). If dim(K) = 0, then we take
the constant homotopy on all connected components of K on which κ is transversal
to λ and we take the homotopy provided by Lemma 4.1.1 on all other components
of K . Let p be a positive integer such that the lemma holds for all K of dimension < p.
We prove the lemma for an arbitrary p-dimensional manifold with faces K . As above,
if κ is transversal to λ on some connected components of K , then we take the constant
homotopy on that components. Thus we can assume without loss of generality that κ
may be transversal to λ only on proper faces of K .

Let Σ be the set of all faces E of K such that κ E is transversal to λ. By the definition
of transversality, if E ∈ Σ, then all faces of E also belong to Σ. Set

|Σ| =
∪
E∈Σ

E
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and note that |Σ| ⊂ ∂K by our assumption. All homotopies of κ : K → Ω◦
12 in the

following construction are arbitrarily C∞-small smooth homotopies constant on |Σ|.
We recursively construct p homotopies κ = κ−1 { κ0 { · · · { κp−1 such that
the restriction of κr to any face of K of dimension ≤ r is transversal to λ for all r .
Assume that we already have homotopies κ = κ−1 { κ0 { · · · { κr−1 with the
required properties where 0 ≤ r < p. Consider an r-dimensional face E of K not
belonging to Σ. By the assumptions on κr−1, the restriction of κr−1 to any proper face
of E is transversal to λ. Since dim(E) = r < p, the inductive assumption guarantees
that there is an arbitrarily C∞-small, smooth, constant on ∂E homotopy of κr−1 E

into a map E → Ω◦
12 transversal to λ. Combining these homotopies over all E as

above together with the constant homotopy on |Σ| and extending to a small smooth
homotopy of κr−1 on the rest of K , we obtain a homotopy κr−1 { κr with the required
properties.

Next pick a collar U � ∂K × I ⊂ K of ∂K � ∂K × {0} in K . Set

V = K \ U ⊂ K .

Then V is a manifold with faces and ∂V = U ∩ V � ∂K . By the above,

κ′ = κp−1 : K −→ Ω◦
12

is a smooth map whose restriction to all proper faces of K is transversal to λ. Therefore,
choosing the collar U sufficiently narrow, we can ensure that the map κ′ U : U → Ω◦

12 is
transversal to λ. By Lemma 4.1.1, there is an arbitrarily C∞-small homotopy {κt V}t∈I
of κ0 V = κ′ V such that κ1 V is transversal to λ. This homotopy extends to a small
homotopy {κt }t∈I of κ0 = κ′ constant on a neighborhood of ∂K in U. If the homo-
topy {κt V}t∈I is sufficiently small, then the extension may be chosen so that κt U is
transversal to λ for all t ∈ I. Then κ1 U is transversal to λ, and so, κ1 : K → Ω◦

12

is transversal to λ. The composite homotopy

κ = κ−1 { · · · { κp−1 = κ′ = κ0 { κ1

satisfies all the conditions of the lemma. □

4.1.2. Transversal polychains. — We call smooth polychains K = (K, φ, u, κ) in Ω◦
12

and L = (L, ψ, v, λ) in Ω◦
34 transversal if the maps κ : K → Ω◦

12 and λ : L → Ω◦
34 are

transversal. The following two lemmas show that any smooth polychain can be made
transversal to a given smooth polychain by a small deformation.

Lemma 4.1.3. — Let K = (K, φ, u, κ) and L = (L, ψ, v, λ) be smooth polychains in Ω◦
12

and Ω◦
34, respectively. Let N be a union of faces of K . Let{

(κ N)
t : N → Ω◦

12

}
t∈I

be a smooth homotopy of κ N compatible with φ such that (κ N)
1 : N → Ω◦

12 is transversal
to L. Then there is a smooth deformation {Kt = (K, φ, u, κt)}t∈I of K0 = K such that K1 is
transversal to L and for all t ∈ I,

κt N = (κ N)
t : N −→ Ω◦

12.
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Proof. — We apply the same recursive method as in the proof of Lemma 3.4.3 with M
replaced by Ω◦

12. The homotopy of κ on a representative face F is obtained in two
steps. First, we take an arbitrary smooth homotopy of κ F extending the homotopy
of κ ∂F obtained at the previous step. Then we compose with an additional smooth
homotopy rel ∂F to a map F → Ω◦

12 transversal to λ. The latter homotopy is provided
by Lemma 4.1.2. □

Lemma 4.1.4. — Let K = (K, φ, u, κ) and L = (L, ψ, v, λ) be smooth polychains in Ω◦
12

and Ω◦
34, respectively. There exists an arbitrarily C∞-small smooth deformation{

Kt = (K, φ, u, κt)
}
t∈I

of K such that the polychain K1 is transversal to L and κt F = κ F for all t ∈ I and all faces F
of K on which κ is transversal to λ.

Proof. — This is a special case of Lemma 4.1.3 where N is the union of all faces
of K on which κ is transversal to λ and {(κ N)

t }t is the constant homotopy. That the
deformation {Kt }t may be chosen arbitrarily C∞-small follows from Lemmas 4.1.1
and 4.1.2. □

We say that a pair of face homology classes (a ∈ H̃∗(Ω◦
12), b ∈ H̃∗(Ω◦

34)) is transversely
represented by a pair (K,L) if K is a smooth reduced polycycle in Ω◦

12 representing a,
L is a smooth reduced polycycle in Ω◦

34 representing b, and K is transversal to L. The
following lemma will play a key role in the sequel.

Lemma 4.1.5. — Every pair (a ∈ H̃∗(Ω◦
12), b ∈ H̃∗(Ω◦

34)) can be transversely represented by
a pair of polycycles. Any two pairs of polycycles transversely representing (a, b) can be related
by a finite sequence of transformations (K,L) 7→ (Ǩ, Ľ) of the following types:

(i) L � Ľ and Ǩ � K ⊔ ∂rM or K � Ǩ ⊔ ∂rM where M is a smooth polychain in Ω◦
12

transversal to L;
(ii) K � Ǩ and Ľ � L ⊔ ∂rN or L � Ľ ⊔ ∂rN where N is a smooth polychain in Ω◦

34

transversal to K.

Proof. — The first claim follows from Lemma 4.1.4 and the surjectivity in Theo-
rem 3.4.8. That we need only reduced polycycles follows from the fact that the reduc-
tion of a (smooth) polycycle gives a homologous (smooth) polycycle.

We prove the second claim of the lemma. Consider pairs of reduced polycycles
(K1,L) and (K2,L) transversely representing (a, b). Since K1 is homologous to K2,
we have

K1 ⊔ ∂rR1 � K2 ⊔ ∂rR2

for some (n + 1)-polychains R1,R2 in Ω◦
12. The injectivity in Theorem 3.4.8 ensures

that R1, R2 can be chosen to be smooth. Then there are smooth polychains R′
1,R

′
2

in Ω◦
12 transversal to L such that K1 ⊔ ∂rR′

1 � K2 ⊔ ∂rR′
2. These polychains are

obtained from R1, R2 using the same method as in the proof of Theorem 3.4.5 with
the following replacements:

M { Ω◦
12, “smooth” { “transversal to L", “homotopy" { “smooth homotopy",

Lemma 3.4.3{ Lemma 4.1.3 and Lemma 3.4.4{ Lemma 4.1.4.
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The move (K1,L) 7→ (K2,L) expands as the composition of the following type (i)
moves:

(K1,L) 7−→ (K1 ⊔ ∂rR′
1,L) 7−→ (K2 ⊔ ∂rR′

2,L) 7−→ (K2,L).

(The middle move is a type (i) move corresponding to M = �.) A similar argument
shows that if two pairs of polycycles (K,L1) and (K,L2) transversely represent (a, b),
then the move (K,L1) 7→ (K,L2) is a composition of type (ii) moves.

Consider now any pairs of polycycles (K1,L1) and (K2,L2) transversely represent-
ing (a, b). By Lemma 4.1.4, there is an arbitrarily C∞-small smooth deformation of K1

into a polycycle K transversal to L2. We assume the deformation to be so small that K
is transversal to L1 as well. By Lemma 3.2.3, K ≃ K1 represents a. By the previous
paragraph, each of the moves

(K1,L1) 7−→ (K,L1) 7−→ (K,L2) 7−→ (K2,L2)

expands as a composition of moves of types (i) and (ii). □

4.2. Intersection of polychains

We define “intersection” for transversal polychains in Ω◦
12 and Ω◦

34.

4.2.1. The intersection polychain. — Let K = (K, φ, u, κ) be a smooth polychain of
dimension p in Ω◦

12 and let L = (L, ψ, v, λ) be a smooth polychain of dimension q
in Ω◦

34. Assume that K and L are transversal in the sense of Section 4.1.2. We derive
from K and L an “intersection polychain” in Ω32 × Ω14.

Let κ̃ : K × I → M and λ̃ : L × I → M be the adjoint maps of κ and λ respectively.
Set N = K × I × L × I and consider the map κ̃ × λ̃ : N → M × M . Since K, L and I
are manifolds with faces of dimensions p, q and 1, respectively, N is a manifold with
faces of dimension p + q + 2. The transversality of κ and λ implies that the set

D =
(
κ̃ × λ̃

)−1
(diagM) ⊂ N

is empty if p+ q +2 < n and is a (p+ q +2− n)-dimensional manifold with corners if
p+q+2 ≥ n. In the latter case each point of D has a neighborhoodV in N such thatV∩D
is homeomorphic to Ru × [0,∞)v for some integers u, v ≥ 0 with u + v = p + q + 2 − n
and V is homeomorphic to Rn × (V ∩ D). These claims follow from the general
theorems about transversality and about submanifolds of manifolds with corners,
see [35, Propositions 3.1.14 and 7.2.7]. Consequently, P(D) ⊂ P(N) so that we can
consider the commutative diagram of inclusion maps

π0(P(D) ∩ V)
i //

j′

��

π0(P(N) ∩ V)

j

��

π0(P(D))
i′ // π0(P(N)) .

The structure of V described above implies that i is a bĳection between v-element
sets. Since N is a manifold with faces, j is an injection. Therefore j ′ is injective which
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implies that D is a manifold with faces. The faces of D are the connected components
of the intersections of D with faces of N .

We now upgrade D to a polychain in Ω32 ×Ω14. First of all, we orient D as follows.
We use the orientation of diagM ≈ M and the product orientation of M × M to
orient the normal vector bundle of diagM in M × M (see the Introduction for our
orientation conventions). Next, we pull-back this orientation of the normal vector
bundle along κ̃× λ̃ to obtain an orientation of the normal vector bundle of D in N . The
latter orientation together with the product orientation in N = K × I × L × I induces
an orientation of D. We also equip D with the weight w : π0(D) → K which, for any
connected components X of K and Y of L, carries all connected components of D
contained in X × I × Y × I to u(X)v(Y) ∈ K .

Next, we define a continuous map κ ◁̃▷λ : D × I → M × M by

(κ ◁̃▷λ)(x, s, y, t, u) =

{
(λ(y)(t ∗ u), κ(x)(s ∗ u)) if 0 ≤ u ≤ 1/2,

(κ(x)(s ∗ u), λ(y)(t ∗ u)) if 1/2 ≤ u ≤ 1

for any (x, s, y, t) ∈ D ⊂ K × I × L × I and u ∈ I, where we set

ℓ ∗ u =

{
2ℓu for ℓ ∈ I, u ∈ [0, 1/2],

1 − 2(1 − ℓ)(1 − u) for ℓ ∈ I, u ∈ [1/2, 1].
The key property of the operation ∗ is that for any ℓ, u ∈ I, we have 0 ≤ ℓ ∗ u ≤ ℓ
if u ∈ [0, 1/2] and ℓ ≤ ℓ ∗ u ≤ 1 if u ∈ [1/2, 1]. For a fixed (x, s, y, t) ∈ D, the point

(κ ◁̃▷λ)(x, s, y, t, u) ∈ M × M

moves along the path
(
λ̃(y, t ∗ u), κ̃(x, s ∗ u)

)
from (⋆3,⋆1) to the diagonal point(

κ̃(x, s), λ̃(y, t)
)

as u increases from 0 to 1/2 and, next, it moves from that diago-
nal point to (⋆2,⋆4) along the path

(
κ̃(x, s ∗ u), λ̃(y, t ∗ u)

)
as u increases from 1/2 to 1:

see Figure 4.2.1 next page. Thus the map κ ◁̃▷λ is adjoint to a continuous map
κ◁▷λ : D −→ Ω

(
M × M, (⋆3,⋆1), (⋆2,⋆4)

)
= Ω32 × Ω14

whose coordinate maps are denoted by κ ◁ λ : D → Ω32 and κ ▷ λ : D → Ω14.

figures-COLOR/diamond.pdf.{ps,eps} not found (or no BBox)

Figure 4.2.1. The pair (◁, ▷) = (κ ◁̃▷ λ)(x, s, y, t, u) ∈ M × M for a fixed
(x, s, y, t) ∈ D and u running from 0 to 1.

Finally, we define a partition of D. Here we need the assumption that the images
of κ and λ lie in Ω◦

12 ⊂ Ω12 and Ω◦
34 ⊂ Ω34, respectively. This assumption implies that

D ⊂ K × Int(I) × L × Int(I) ⊂ N .

Therefore each face F of D is contained in a unique smallest face
NF = AF × I × BF × I

of N , where AF is a face of K and BF is a face of L. Note that the codimension of F
in D is equal to the codimension of NF in N . We declare two faces F and F ′ of D to
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have the same type if and only if A = AF has the same type as A′ = AF′ in K , B = BF

has the same type as B′ = BF′ in L, and the diffeomorphism

NF = A × I × B × I
φA,A′×idI ×ψB,B′×idI

// A′ × I × B′ × I = NF′

carries F onto F ′. By restriction, we obtain a diffeomorphism θF,F′ : F → F ′ for any
such F, F ′. This defines a partition, θ, of D. Note that, for each face F of D, the faces
of D of the same type as F are in one-to-one correspondence with the pairs (A′, B′)
where A′ is a face of K of the same type as AF and B′ is a face of L of the same type
as BF .

Lemma 4.2.1. — The tuple D(K,L) = (D, θ,w, κ◁▷λ) is a polychain in Ω32 × Ω14.

Proof. — We need only to show that the map κ◁▷λ is compatible with the partition θ.
Consider two faces F and F ′ of the same type in D and set

A = AF, B = BF, A′ = AF′, and B′ = BF′ .

For any (x, s, y, t) ∈ F and u ∈ [0, 1/2], we have
(κ◁▷λ) (θF,F′(x, s, y, t)) (u) = (κ◁▷λ) (φA,A′(x), s, ψB,B′(y), t) (u)

=
(
λ
(
ψB,B′(y)

)
(t ∗ u), κ

(
φA,A′(x)

)
(s ∗ u)

)
=

(
λ
(
y
)
(t ∗ u), κ

(
x
)
(s ∗ u)

)
= (κ◁▷λ) (x, s, y, t) (u)

where the third equality follows from the compatibility of κ with φ and of λ with ψ.
A similar argument works for u ∈ [1/2, 1]. Thus, (κ◁▷λ)θF,F′ = (κ◁▷λ) F. □

4.2.2. Properties of D. — We study the behavior of the polychain D(K,L) under
the operations on K and L introduced in Sections 3.2.2 and 3.2.3.

Lemma 4.2.2. — Let K,K′ be smooth p-polychains in Ω◦
12 and L,L′ be smooth q-polychains

in Ω◦
34 such that K,K′ and L,L′ are pairwise transversal. Then

(i) D(kK,L) � D(K, kL) � kD(K,L) for any k ∈ K ;
(ii) redD(redK, redL) = redD(K,L);

(iii) ∂D(K,L) � (−1)nD(∂K,L) ⊔ (−1)n+p+1D(K, ∂L);
(iv) ∂rD(K,L) = (−1)n redD(∂rK, redL) ⊔ (−1)n+p+1 redD(redK, ∂rL);
(v) D(K ⊔K′,L) � D(K,L) ⊔D(K′,L), D(K,L ⊔ L′) � D(K,L) ⊔D(K,L′).

Proof. — Claims (i) and (v) are obvious. Claim (iv) easily follows from (ii) and (iii).
We prove (ii). It is clear that

red+ D(red+(−), red+(−)) = red+ D(−,−),
red0 D(red0(−), red0(−)) = red0 D(−,−).

Using the identities red red0 = red = red red+, we conclude that
redD(redK, redL) = red red0 D(red0 red+ K, red0 red+ L)

= red red0 D(red+ K, red+ L)
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= red red+ D(red+ K, red+ L)

= red red+ D(K,L) = redD(K,L).

We now prove (iii). LetK = (K, φ, u, κ),L = (L, ψ, v, λ) andD(K,L) = (D, θ,w, κ◁▷λ)
as in Section 4.2.1. Consider the boundary polychain

∂D(K,L) = (D∂, θ∂,w∂, (κ◁▷λ)∂)

as defined in Section 3.2.3, as well as the polychains

D(∂K,L) = (∗D, ∗θ, ∗w, κ∂◁▷λ) and D(K, ∂L) = (D∗, θ∗,w∗, κ◁▷λ∂).

We verify that

(4.2.1) D∂ � (−1)n ∗D ⊔ (−1)n+p+1D∗.

Consider a principal face F of D. Since the codimension of F in D is equal to the
codimension of NF = AF × I×BF × I in N = K × I×L× I, the face NF is a principal face
of N . Therefore either AF is a connected component of K and BF is a principal face of L,
or, AF is a principal face of K and BF is a connected component of L. We first analyze
the former case. Set

N∗ = K × I × L∂ × I .

Then F ⊂ D ⊂ N corresponds to a connected component F∗ of D∗ ⊂ N∗ via the map
idK × idI ×ι × idI : N∗ → N where ι : L∂ → L is the natural map as in Section 3.2.3.
The orientation of F induced by that of ∂D ⊂ D may differ from the orientation
of F∗ induced by D∗, and we now compute this difference. Let ε1 be the trivial 1-
dimensional vector bundle equipped with the canonical orientation and let−ε1 be the
same bundle with the opposite orientation. Given a cartesian product of topological
spaces, let pri denote the projection onto the i-th factor. Set

N∗
F = K × I × BF × I,

which is a submanifold with faces of N∗ of codimension 0 containing F∗. We can
also view N∗

F as a submanifold of N of codimension 1, so that F∗ ⊂ N∗
F corresponds

to F ⊂ N . Using the orientation conventions of the Introduction and using the letter T
for the tangent vector bundle of a manifold, we obtain the following orientation-
preserving isomorphisms of oriented vector bundles:

T N N∗
F
= pr∗1(TK) N∗

F
⊕ pr∗2(T I) N∗

F
⊕ pr∗3(T L) N∗

F
⊕ pr∗4(T I) N∗

F

� pr∗1(TK) ⊕ pr∗2(T I) ⊕ ε1 ⊕ pr∗3(T BF) ⊕ pr∗4(T I)

� (−1)p+1ε1 ⊕ pr∗1(TK) ⊕ pr∗2(T I) ⊕ pr∗3(T BF) ⊕ pr∗4(T I).︸                                                     ︷︷                                                     ︸
=TN∗

FTherefore

T N F∗ � (−1)p+1ε1 ⊕ T N∗
F F∗

� (−1)p+1ε1 ⊕ νN∗
F

F∗ ⊕ T F∗ = (−1)p+1ε1 ⊕ νN∗F∗ ⊕ TF∗
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where the letterνstands for the normal vector bundle of a submanifold in the ambient
manifold. On the other hand, restricting the orientation-preserving isomorphism of
oriented vector bundles T N D � νN D ⊕ T D to F we obtain that

T N F � νN D F ⊕ T D F � νN D F ⊕ ε1 ⊕ TF � (−1)nε1 ⊕ νN D F ⊕ TF .

Since the orientations ofνN∗F∗ = νN∗
F

F∗ andνN D are both induced by the orientation
of the normal bundle of diagM inx M × M , the bundle isomorphism νN∗

F
F∗ → νN D F

induced by the inclusion N∗
F ⊂ N is orientation-preserving. Combining with the

computations above, we deduce that

TF � (−1)n+p+1TF∗.

The case where AF is a principal face of K and BF is a connected component of L
is treated similarly. In this case, F corresponds to a connected component ∗F of ∗D,
and the orientation of F induced from that of D differs by (−1)n from the orientation
of ∗F induced by ∗D. This gives the diffeomorphism (4.2.1) of oriented manifolds with
faces, which is easily checked to be a diffeomorphism of polychains as in (iii). □

4.3. The operation Υ̃

We introduce an operation Υ̃ in the face homology of path spaces.

4.3.1. Definition and properties of Υ̃. — First, we show that the intersection opera-
tion defined in Section 4.2 induces an operation in face homology.

Lemma 4.3.1. — For any integers p, q ≥ 0, the intersection (K,L) 7→ D(K,L) from
Section 4.2.1 induces a bilinear map

H̃p(Ω12) × H̃q(Ω34) −→ H̃p+q+2−n(Ω32 × Ω14).

Proof. — Consider any face homology classes a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34). By
Lemmas 3.4.7 and 4.1.5, the pair (a, b) can be transversely represented by a smooth
reduced p-polycycle K in Ω◦

12 and a smooth reduced q-polycycle L in Ω◦
34. It follows

from Lemma 4.2.2.(iv) that the polychainD(K,L) inΩ32×Ω14 is a polycycle. Consider
another such pair (Ǩ, Ľ) transversely representing (a, b). We claim that the polycy-
cles D(K,L) and D(Ǩ, Ľ) are homologous. By Lemma 4.1.5, it suffices to prove this
claim in the following two cases:

▷ L = Ľ and there exists a smooth (p + 1)-polychain M in Ω◦
12 transversal to L

such that K � Ǩ ⊔ ∂rM or Ǩ � K ⊔ ∂rM;
▷ K = Ǩ and there exists a smooth (q + 1)-polychain N in Ω◦

34 transversal to K

such that L � Ľ ⊔ ∂rN or Ľ � L ⊔ ∂rN.
Assume for concreteness that L = Ľ and K � Ǩ⊔∂rM (the other cases can be treated
similarly). Since L is a reduced polycycle, Lemma 4.2.2.(iv) implies that

∂rD (M,L) = (−1)n redD (∂rM,L) .
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This and Lemma 4.2.2.(v) imply that

redD(K,L) � redD(Ǩ ⊔ ∂rM, Ľ) � redD(Ǩ, Ľ) ⊔ ∂rD
(
(−1)nM, Ľ

)
.

We conclude that D (K,L) is homologous to D
(
Ǩ, Ľ

)
. Thus, the face homology class⟨

D(K,L)
⟩
∈ H̃p+q+2−n(Ω32 × Ω14)

of D (K,L) depends only on a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34). This defines the pairing in
the statement of the lemma. The bilinearity of this pairing follows from assertions (i)
and (v) in Lemma 4.2.2. □

The pairing produced by Lemma 4.3.1 induces a linear map

H̃p(Ω12) ⊗ H̃q(Ω34) −→ H̃p+q+2−n(Ω32 × Ω14).

Taking the direct sum over all p, q ≥ 0, we obtain a linear map of degree 2 − n

(4.3.1) Υ̃ : H̃∗(Ω12) ⊗ H̃∗(Ω34) −→ H̃∗(Ω32 × Ω14).

To stress the role of the tuple of base points (⋆1,⋆2,⋆3,⋆4) we will also de-
note this map by Υ̃12,34. Any permutation (⋆i,⋆j,⋆k,⋆l) of (⋆1,⋆2,⋆3,⋆4) such
that {⋆i,⋆j} ∩ {⋆k,⋆l} = � yields a map

Υ̃i j,kl : H̃∗(Ωi j) ⊗ H̃∗(Ωkl) −→ H̃∗(Ωk j × Ωil).

We now establish the following symmetry for Υ̃.

Lemma 4.3.2. — Let p : Ω32 × Ω14 → Ω14 × Ω32 be the map permuting the two factors of
the cartesian product. For any a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34) with p, q ≥ 0,

p∗Υ̃12,34(a ⊗ b) = (−1)(p+1)(q+1)+n Υ̃34,12(b ⊗ a).

Proof. — We assume that (a, b) is transversely represented by a smooth reduced p-
polycycle K = (K, φ, u, κ) in Ω◦

12 and a smooth reduced q-polycycle L = (L, ψ, v, λ)
in Ω◦

34. Let

D(K,L) = (D, θ,w, κ◁▷λ) and D(L,K) = (D′, θ ′,w′, λ◁▷κ).

Let q be the permutation map M × M → M × M, (m1,m2) 7→ (m2,m1). This map
preserves diagM pointwise and preserves (respectively, inverts) the orientation of the
normal bundle of diagM in M × M if n is even (respectively, odd). Let

h : K × I × L × I → L × I × K × I

be the permutation map defined by (k, s, l, t) 7→ (l, t, k, s). Clearly,

deg h = (−1)(p+1)(q+1) and (λ̃ × κ̃)h = q(κ̃ × λ̃).

Thus, h restricts to a diffeomorphism h D : D → D′ of degree (−1)(p+1)(q+1)+n.
This diffeomorphism carries the weight w to w′ and the partition θ to θ ′. Also,

(λ◁▷κ) ◦ h D = p ◦ (κ◁▷λ).
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Thus, h D is a diffeomorphism of the polychains p∗D(K,L) and (−1)(p+1)(q+1)+nD(L,K).
We conclude that

p∗Υ̃12,34(a ⊗ b) =
⟨
p∗D(K,L)

⟩
= (−1)(p+1)(q+1)+n

⟨
D(L,K)

⟩
= (−1)(p+1)(q+1)+n Υ̃34,12(b ⊗ a). □

4.3.2. Computation of Υ̃. — To evaluate Υ̃ on a pair of face homology classes
in Ω12,Ω34, we represent these classes by smooth reduced transversal polycycles
in Ω◦

12,Ω
◦
34 and take the face homology class of the intersection polycycle. We now

explain how to compute Υ̃ from more general polycycles in Ω12,Ω34.
We say that polycycles (possibly non-smooth and non-reduced)

K = (K, φ, u, κ) in Ω12 and L = (L, ψ, v, λ) in Ω34

are admissible if there exist open sets U ⊂ K × Int(I) and V ⊂ L × Int(I) such that
(i) the maps κ̃ U : U → M and λ̃ V : V → M are smooth and their images do not

meet ∂M ;
(ii) (κ̃ × λ̃)−1(diagM) ⊂ U × V ;

(iii) for any face E of K and any face F of L, the restriction of κ̃ × λ̃ to(
Int(E × I) ∩ U

)
×
(
Int(F × I) ∩ V

)
is transversal to Int(diagM) in the usual sense of differential topology.

If K and L are admissible, then we can define the intersection polycycle D(K,L)
in Ω32 × Ω14 repeating word for word the definitions of Section 4.2. The poly-
cycle D(K,L) depends only on K,L and does not depend on the choice of U,V .

Lemma 4.3.3. — Let K and L be admissible polycycles in Ω12 and Ω34 representing, respec-
tively, a ∈ H̃∗(Ω12) and b ∈ H̃∗(Ω34). Then

Υ̃(a, b) =
⟨
D(K,L)

⟩
.

Proof. — Let K = (K, φ, u, κ) and L = (L, ψ, v, λ). The set
(κ̃ × λ̃)−1(diagM) ⊂ K × I × L × I

is closed and, hence, compact. By (ii), there are compact sets A ⊂ U and B ⊂ V such
that (κ̃ × λ̃)−1(diagM) ⊂ A× B. Pick a small deformation of κ and λ into smooth maps
(in the class of maps compatible with the partitions). The deformation may be chosen
to be constant on some open neighborhoods U ′ ⊂ U, V ′ ⊂ V of A, B, respectively, and
to be so small that the condition (ii) with U × V replaced by U ′ × V ′ is met during
the deformation. The condition (iii) with U,V replaced by U ′,V ′ is automatically
met during the deformation. By Lemma 3.2.3, the face homology class ⟨D(K,L)⟩ is
preserved under such a deformation. Thus, without loss of generality we can assume
from the very beginning that the maps κ and λ are smooth.

Pick a small neighborhood W of ∂M in M such that κ̃(U)∪ λ̃(V) ⊂ M \W . The proof
of Lemma 3.4.7 and Theorem 3.4.8 provides, for any i, j ∈ {1, 2, 3, 4}, a homotopy of
the identity map id : Ωi j → Ωi j into a map fi j : Ωi j → Ω◦

i j ⊂ Ωi j such that smooth
polycycles in Ωi j remain smooth throughout the homotopy. The homotopy acts on a
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path in M from ⋆i to ⋆j by pushing the interior points of the path inside M along a
1-parameter family of embeddings M ↪→ M . We can assume that these embeddings
are constant on M \W and so, the homotopy fixes all points of the paths lying in M \W .
For i = 1, j = 2 and i = 3, j = 4, these homotopies induce a smooth deformation of
polycycles

{Kt }t∈I =
{
(K, φ, u, κt)

}
t∈I, {Lt }t∈I =

{
(L, ψ, v, λt)

}
t∈I

where κ0 = κ, λ0 = λ, κ1 = f12κ, λ1 = f34λ. Our assumptions ensure that κ̃t U = κ̃ U

and λ̃t V = λ̃ V for all t ∈ I. Thus the set (κ̃t × λ̃t)−1(diagM) does not depend on t,
and Kt,Lt are admissible for all t ∈ I. Then the polycycle D(K1,L1) is obtained from
the polycycle D(K0,L0) = D(K,L) by deformation. Hence, by Lemma 3.2.3,⟨

D(K1,L1)
⟩
=

⟨
D(K,L)

⟩
.

The polycycles red(K1) inΩ◦
12 and red(L1) inΩ◦

34 transversely represent the pair (a, b).
We conclude that

Υ̃(a, b) =
⟨
D(redK1, redL1)

⟩
=

⟨
redD(redK1, redL1)

⟩
=

⟨
redD(K1,L1)

⟩
=

⟨
D(K1,L1)⟩ = ⟨D(K,L)

⟩
where the third equality is given by Lemma 4.2.2 (ii). □

4.3.3. The Leibniz rule. — We formulate for Υ̃ a Leibniz-type rule in the second
variable. (Since Υ̃ is symmetric in the sense of Lemma 4.3.2, a Leibniz-type rule in the
first variable easily follows.) Pick a fifth base point⋆5 ∈ ∂M . For any i, j, k ∈ {1, . . . , 5},
the concatenation of paths c : Ωi j ×Ωjk → Ωik induces a bilinear concatenation pairing

(4.3.2) H̃∗(Ωi j) × H̃∗(Ωjk) −→ H̃∗(Ωik), (a, b) 7−→ ab = c∗(a × b).

Similarly, for any i, j, k, l,m ∈ {1, . . . , 5}, the map c : Ωi j × Ωjk → Ωik induces bilinear
pairings

H̃∗(Ωlm × Ωi j) × H̃∗(Ωjk) −→ H̃∗(Ωlm × Ωik), (x, a) 7−→ xa = (id×c)∗(x × a),

H̃∗(Ωi j) × H̃∗(Ωjk × Ωlm) −→ H̃∗(Ωik × Ωlm), (a, x) 7−→ ax = (c × id)∗(a × x).

Lemma 4.3.4. — If ⋆5 ∈ ∂M \ {⋆1,⋆2}, then for any a ∈ H̃p(Ω12), b ∈ H̃q(Ω34), and
c ∈ H̃i(Ω45) with p, q, i ≥ 0,

Υ̃12,35(a ⊗ bc) = (−1)iΥ̃12,34(a ⊗ b)c + (−1)(p+n+1)q bΥ̃12,45(a ⊗ c).

Proof. — Let K = (K, φ, u, κ),L = (L, ψ, v, λ),R = (R, χ, z, ρ) be smooth polycycles
in Ω◦

12,Ω
◦
34,Ω

◦
45 representing a, b, c respectively. Applying Lemma 4.1.4 twice (and

choosing homotopy there sufficiently small), we can assume that K is transversal to
both L and R. Then bc is represented by the following polycycle in Ω35:

N = c∗(L × R) = (L × R, ψ × χ, v × z, η)
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where η = c(λ × ρ) and the adjoint map η̃ : L × R × I → M is computed by

η̃(l, r, t) =
{
λ̃(l, 2t) for l ∈ L, r ∈ R, t ∈ [0, 1/2],

ρ̃(r, 2t − 1) for l ∈ L, r ∈ R, t ∈ [1/2, 1].

The polycycles K and N are admissible in the sense of Section 4.3.2: we can take

U = K × Int(I) and V = N ×
(
Int(I) \ {1/2}

)
.

It follows from Lemma 4.3.3 that Υ̃12,35(a ⊗ bc) = ⟨D(K,N)⟩. Thus, to prove the
lemma, it is enough to show that

D(K,N) ≃ (−1)i (id×c)∗
(
D(K,L) × R

)
(4.3.3)

⊔ (−1)(p+n+1)q (c × id)∗
(
L ×D(K,R)

)
.

To this end, we compare D(K,N) = (D, θ,w, κ◁▷η) with

D(K,L) =
(
D′, θ ′,w′, κ◁▷λ

)
and D(K,R) =

(′D, ′θ, ′w, κ◁▷ρ) .
Consider the embedding

P′ : (K × I × L × I) × R ↪−→ K × I × (L × R) × I

defined by P′(k, s, l, t, r) = (k, s, l, r, t/2) and the embedding
′P : L × (K × I × R × I) ↪−→ K × I × (L × R) × I

defined by ′P(l, k, s, r, t) = (k, s, l, r, (t + 1)/2). Note that P′ has degree (−1)i while ′P
has degree (−1)(p+1)q . Consider also the cartesian projections

pr′ : (K × I × L × I) × R −→ K × I × L × I,
′pr : L × (K × I × R × I) −→ K × I × R × I .

Clearly, (κ̃ × η̃)P′ = (κ̃ × λ̃)pr′. Therefore, the map P′ restricts to a diffeomorphism
D′ × R −→ P′(D′ × R) ⊂ D

of degree (−1)i . Similarly, since (κ̃ × η̃) ′P = (κ̃ × ρ̃) ′pr, the map ′P restricts to a
diffeomorphism

L × ′D −→ ′P(L × ′D) ⊂ D

of degree (−1)(p+1)q+nq . Here we use the following general fact involving our orien-
tation conventions stated in the Introduction: if X , Y are oriented manifolds and S
is an oriented submanifold of X , then the bundle map νX×Y(S × Y) → νXS in-
duced by the cartesian projection X × Y → X is an orientation-preserving isomor-
phism on each fiber, while the bundle map νY×X(Y × S) → νXS induced by the
cartesian projection Y × X → X is orientation-preserving if and only if the product
(dim X − dim S) · dim(Y) is even.

It is clear from the definition of N and the computations of degrees above that

P′ ⊔ ′P : (−1)i(D′ × R) ⊔ (−1)(p+n+1)q(L × ′D) −→ D

is an orientation-preserving diffeomorphism. We claim that it transports the poly-
chain structures of (id×c)∗ (D(K,L) × R) and (c×id)∗ (L ×D(K,R)) into the polychain
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structure of D(K,N) up to deformation of the latter. This will imply (4.3.3) and the
lemma.

To prove our claim, we need to verify that P′ ⊔ ′P preserves the face partitions
and the weights and commutes with the maps to the path spaces up to deformation.
We start with the face partitions. Let F ′,G′ be faces of D′ of the same type and let
H, J be faces of R of the same type. Then F ′ × H and G′ × J are faces of D′ × R of the
same type. We claim that the faces F = P′(F ′ × H) and G = P′(G′ × J) of D have the
same type. By Section 4.2.1,

θ ′F′,G′ : F ′ −→ G′

is the restriction of the diffeomorphism

φAF′,AG′ × id×ψBF′,BG′ × id : NF′ = AF′ × I × BF′ × I −→ AG′ × I × BG′ × I = NG′

to F ′ where NF′ (respectively, NG′) is the smallest face of K × I × L × I containing F ′

(respectively, G′). The smallest faces NF and NG of K × I × (L × R) × I containing F
and G respectively are

NF = AF′ × I × (BF′ × H) × I and NG = AG′ × I × (BG′ × J) × I .

Clearly, the diagram

NF′ × H

P′

��

(φAF′ ,AG′×id×ψBF′ ,BG′×id)×χH,J
// NG′ × J

P′

��

NF

φAF′ ,AG′×id×(ψBF′ ,BG′×χH,J )×id
// NG

commutes, so that the bottom diffeomorphism in that diagram carries F onto G. We
deduce that F and G have the same type in D and the identification map θF,G : F → G
(which, by definition, is the restriction of the bottom diffeomorphism to F) satisfies

θF,G ◦ P′
F′×H = P′

G′×J ◦ (θ ′F′,G′ × χH,J).

This proves that P′ carries the partition θ ′× χ on D′× R to the partition θ restricted to
P′(D′× R) ⊂ D. A similar argument shows that ′P carries the partition ψ × ′θ on L × ′D
to the partition θ restricted to ′P(L × ′D) ⊂ D. It remains only to observe that a face
of D lying in P′(D′ × R) cannot have the same type as a face of D lying in ′P(L × ′D).
To see this, we use the fact that every face F of D determines a smallest face

NF = AF × I × (BF × CF) × I

of K × I × (L × R)× I such that F ⊂ NF and AF, BF,CF are faces of K, L, R respectively.
If F,G are faces of D of the same type, then AF, BF,CF must have the same type
as AG, BG,CG respectively, and the diffeomorphism

φAF ,AG × id×(ψBF ,BG × χCF ,CG ) × id : NF −→ NG

carries F onto G. Since this diffeomorphism preserves the last coordinate and

P′(D′ × R) ⊂ K × I × (L × R) × [0, 1/2], ′P(L × ′D) ⊂ K × I × (L × R) × [1/2, 1]

we deduce that F and G are both contained either in P′(D′ × R) or in ′P(L × ′D).
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We next show that the diffeomorphism P′ ⊔ ′P preserves the weights. Let W ′ be a
connected component of D′ and let Z be a connected component of R. The weight of
the connected component W ′ × Z of D′ × R is

(w′ × z)(W ′ × Z) = w′(W ′)z(Z) = u(U)v(V)z(Z)

where U and V are connected components of K and L, respectively, such
that W ′ ⊂ U × I × V × I. Clearly, P′(W ′ × Z) ⊂ U × I × (V × Z) × I so that

w
(
P′(W ′ × Z)

)
= u(U) · (v × z)(V × Z) = u(U)v(V)z(Z) = (w′ × z)(W ′ × Z).

This proves that P′ carries the weight w′ × z on D′ × R to the weight w restricted
to P′(D′ × R). A similar argument shows that ′P carries the weight v × ′w on L × ′D to
the weight w restricted to ′P(L ×′D).

We now show that P′⊔ ′P commutes with the maps toΩ32×Ω15 up to deformation.
The maps in question are κ◁▷η : D → Ω32 × Ω15 and f ⊔ g where

f = (id×c)
(
(κ◁▷λ) × ρ

)
: D′ × R −→ Ω32 × Ω15,(4.3.4)

g =
(
c × id)(λ × (κ◁▷ρ)

)
: L × ′D −→ Ω32 × Ω15.(4.3.5)

We first compute (κ◁▷η)P′. Pick any (k, s, l, t) ∈ D′ and r ∈ R. For x ∈ [0, 1/2],(
κ◁▷η)(P′(k, s, l, t, r)

)
(x) = (κ ◁̃▷ η)(k, s, l, r, t/2, x)

=
(
η̃(l, r, (t/2) ∗ x), κ̃(k, s ∗ x)

)
=

(
η̃(l, r, t x), κ̃(k, 2sx)

)
=

(
λ̃(l, 2t x), κ̃(k, 2sx)

)
=

(
λ̃(l, t ∗ x), κ̃(k, 2sx)

)
.

Similarly, for x ∈ [1/2, 1],
(κ◁▷η)

(
P′(k, s, l, t, r)

)
(x) = (κ ◁̃▷ η)(k, s, l, r, t/2, x)

=
(
κ̃(k, s ∗ x), η̃(l, r, (t/2) ∗ x)

)
=

(
κ̃(k, s ∗ x), η̃(l, r, 1 − (2 − t)(1 − x))

)
.

We separate two cases depending on whether or not 1 − (2 − t)(1 − x) ≤ 1/2 or,
equivalently, on whether or not x ≤ (3 − 2t)/(4 − 2t).

For x ∈ [1/2, (3 − 2t)/(4 − 2t)], we obtain

(κ◁▷η)(P′(k, s, l, t, r))(x) =
(
κ̃(k, s ∗ x), λ̃(l, 2 − 2(2 − t)(1 − x))

)
.

For x ∈ [(3 − 2t)/(4 − 2t), 1], we obtain
(κ◁▷η)(P′(k, s, l, t, r))(x) =

(
κ̃(k, s ∗ x), ρ̃(r, 1 − 2(2 − t)(1 − x))

)
.

These computations show that the first coordinate map D′ × R → Ω32 of (κ ◁▷η)P′

is equal to (κ ◁ λ) ◦ pr′ D′×R, which is also the first coordinate of the map f given
by (4.3.4). The second coordinate maps D′ × R → Ω15 of (κ◁▷η)P′ and f may differ.
Nonetheless, they are homotopic in the following way. For any s, t, y ∈ I, consider the
numbers

0 <
1

4
≤ ay =

1 + y

4
≤ 1

2
≤ bt,y =

1

2
+ y

1 − t
4 − 2t

≤ 3 − 2t
4 − 2t

< 1
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and let

αs,y : [0, ay] −→ [0, s], βt,y : [ay, bt,y] −→ [t, 1], γt,y : [bt,y, 1] −→ [0, 1]

be the affine maps carrying the left/right endpoints of segments to the left/right
endpoints respectively. We define a continuous map e : D′ × R × I × I → M by

(4.3.6) e(k, s, l, t, r, x, y) =


κ̃(k, αs,y(x)) if x ∈ [0, ay],

λ̃(l, βt,y(x)) if x ∈ [ay, bt,y],
ρ̃(r, γt,y(x)) if x ∈ [bt,y, 1].

Observing that a0 = 1/4, bt,0 = 1/2 and a1 = 1/2, bt,1 = (3− 2t)/(4− 2t), we conclude
that e determines a homotopy between the second coordinate maps of f and (κ◁▷η)P′

in the class of maps D′×R → Ω15. It remains to check that this homotopy is compatible
with the partition θ ′ × χ on D′ × R. Any faces F,G of D′ × R of the same type expand
as F = F ′ × H and G = G′ × J where F ′,G′ are faces of D′ of the same type and H, J
are faces of R of the same type. Let

NF′ = AF′ × I × BF′ × I and NG′ = AG′ × I × BG′ × I

be the smallest faces of K × I × L× I containing F ′ and G′ respectively. The identifying
map (θ ′ × χ)F,G : F → G is the restriction of the diffeomorphism(

φAF′,AG′ × id×ψBF′,BG′ × id
)
× χH,J : NF′ × H −→ NG′ × J .

Since the maps κ, λ, ρ are compatible with the partitions φ, ψ, χ respectively, we deduce
from (4.3.6) that for any (k, s, l, t) ∈ F ′, r ∈ H, and x, y ∈ I,

e
(
(θ ′ × χ)F,G(k, s, l, t, r), x, y

)
= e

(
φAF′,AG′ (k), s, ψBF′,BG′ (l), t, χH,J(r), x, y

)
= e(k, s, l, t, r, x, y).

Hence for each y ∈ I, the map

D′ × R −→ Ω15, (k, s, l, t, r) 7−→
(
x 7→ e(k, s, l, t, r, x, y)

)
is compatible with the partition θ ′× χ. We conclude that the homotopy of f to (κ◁▷η)P′

determined by e is compatible with the partition θ ′ × χ. One similarly constructs
a deformation of the map (4.3.5) into (κ◁▷η) ′P compatible with the partition. □

4.3.4. Change of base points. — Consider one more tuple (⋆′
1,⋆

′
2,⋆

′
3,⋆

′
4) of points

of ∂M such that {⋆′
1,⋆

′
2} ∩ {⋆′

3,⋆
′
4} = � and set Ω′

i j = Ω(M,⋆′
i,⋆

′
j). Section 4.3.1 yields

a linear map
Υ̃′ : H̃∗(Ω

′
12) ⊗ H̃∗(Ω

′
34) −→ H̃∗(Ω

′
32 × Ω′

14).

We compare Υ̃′ to the map Υ̃ : H̃∗(Ω12) ⊗ H̃∗(Ω34) → H̃∗(Ω32 ×Ω14) assuming that ⋆i

and ⋆′
i belong to the same connected component of ∂M for all i ∈ {1, 2, 3, 4}.

Choose a path ςi : I → ∂M from ⋆i to ⋆′
i for each i. The formula γ 7→ ς−1i γςj de-

fines a continuous map (ςi, ςj)# from Ωi j to Ωi′ j′ . Homotopic paths yield homotopic
maps, and constant paths yield maps homotopic to the identity. Therefore (ςi, ςj)#
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is a homotopy equivalence with homotopy inverse (ς−1i , ς−1j )#. The homotopy equiv-
alence (ςi, ςj)# induces an isomorphism in the face homology which we denote by
the same symbol:

(4.3.7) (ςi, ςj)# : H̃∗(Ωi j)
≃−→ H̃∗(Ω

′
i j).

Similarly, the isomorphism H̃∗(Ωi j × Ωkl) → H̃∗(Ω′
i j × Ω′

kl
) induced by the homotopy

equivalence (ςi, ςj)# × (ςk, ςl)# is also denoted by (ςi, ςj)# × (ςk, ςl)#.

Lemma 4.3.5. — If n ≥ 3, then the following diagram commutes:

(4.3.8)

H̃∗(Ω12) ⊗ H̃∗(Ω34)
Υ̃ //

(ς1,ς2)#⊗(ς3,ς4)# ≃
��

H̃∗(Ω32 × Ω14)

(ς3,ς2)#×(ς1,ς4)#≃
��

H̃∗(Ω′
12) ⊗ H̃∗(Ω′

34)
Υ̃′

// H̃∗(Ω′
32 × Ω′

14).

Proof. — Since the isomorphism (ςi, ςj)# depends only on the homotopy classes
of the paths ςi , ςj , and since composition of the paths leads to composition of the
corresponding isomorphisms, it is enough to consider the case where three of the
paths ςi’s are constant. Assume for concreteness that ⋆1 = ⋆′

1, ⋆2 = ⋆′
2, ⋆3 = ⋆′

3,
and ς1, ς2, ς3 are constant paths. The assumption n ≥ 3 implies that deforming if
necessary the path ς = ς4, we can ensure that ς(I) ⊂ ∂M \ {⋆1,⋆2}.

Let a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34). Consider smooth polycycles K = (K, φ, u, κ)
in Ω◦

12 and L = (L, ψ, v, λ) in Ω◦
34 transversely representing the pair (a, b). The

class (1, ς)#(b) ∈ H̃(Ω′
34) is represented by the polycycleL′ = (1, ς)#L inΩ′

34 (but not
in Ω′◦

34). The polycycles K and L′ are admissible in the sense of Section 4.3.2: we can
take U = K × Int(I) and V = L × (0, 1/2). Set

D(K,L) = (D, θ,w, κ◁▷λ) and D(K,L′) = (D′, θ ′,w′, κ◁▷λ′)

where λ′ = (1, ς)♯λ. It is easy to construct a diffeomorphism f : D → D′ preserving
the orientation, the weight, and the face partition, and such that (κ◁▷λ′)◦ f is homotopic
to (id×(1, ς)#) ◦ (κ ◁▷ λ) in the class of maps D → Ω32 × Ω′

14 compatible with θ.
Lemma 4.3.3 implies that

Υ̃′ (a ⊗ (1, ς)#(b)
)
= ⟨D(K,L′)⟩
=

⟨
(id×(1, ς)#)D(K,L)

⟩
=

(
id×(1, ς)#

) ⟨
D(K,L)

⟩
=

(
id×(1, ς)#

)
Υ̃(a, b).

This proves the commutativity of the diagram (4.3.8). □

4.3.5. Extension of Υ̃. — Assuming that n ≥ 3, we extend the definition of Υ̃ to
all 4-tuples of points ⋆1, ⋆2, ⋆3, ⋆4 ∈ ∂M . Deforming these points in ∂M , we can
obtain points ⋆′

1,⋆
′
2,⋆

′
3,⋆

′
4 ∈ ∂M such that {⋆′

1,⋆
′
2} ∩ {⋆′

3,⋆
′
4} = �. For i = 1, . . . , 4,

pick a path ςi : I → ∂M from ⋆i to ⋆′
i . Section 4.3.1 yields a linear map

Υ̃′ : H̃∗(Ω
′
12) ⊗ H̃∗(Ω

′
34) −→ H̃∗(Ω

′
32 × Ω′

14)
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where Ω′
i j = Ω(M,⋆′

i,⋆
′
j) for all i, j. Then we define

Υ̃ = Υ̃12,34 : H̃∗(Ω12) ⊗ H̃∗(Ω34) −→ H̃∗(Ω32 × Ω14)

to be the unique linear map such that the diagram (4.3.8) commutes. Lemma 4.3.5
implies that this map depends neither on the choice of the paths ς1, ς2, ς3, ς4 nor on
the choice of the points⋆′

1,⋆
′
2,⋆

′
3,⋆

′
4. If {⋆1,⋆2}∩{⋆3,⋆4} = �, then we can take⋆′

i = ⋆i

and the constant path ςi for all i, and recover the same map Υ̃ as before.
The properties of Υ̃ established under the assumption {⋆1,⋆2} ∩ {⋆3,⋆4} = �

remain true for arbitrary base points in ∂M . This easily follows from the definitions
and the fact that the concatenation pairing (4.3.2) is preserved under the change-of-
base-points isomorphism (4.3.7).

4.3.6. Renormalization. — We will use a renormalized version

(4.3.9) Υ̌ = Υ̌12,34 : H̃∗(Ω12) ⊗ H̃∗(Ω34) −→ H̃∗(Ω32 × Ω14)

of Υ̃ defined by
Υ̌(a ⊗ b) = (−1) |b |+n |a |Υ̃(a ⊗ b)

for any homogeneous a ∈ H̃∗(Ω12) and b ∈ H̃∗(Ω34). The properties of Υ̃ can be
rephrased for Υ̌. In particular, Lemma 4.3.2 yields the identity

(4.3.10) p∗Υ̌12,34(a ⊗ b) = −(−1) |a n · |b nΥ̌34,12(b ⊗ a)

where |− n = |− | + n is the n-degree. Also, for any ⋆5 ∈ ∂M (distinct from ⋆1 and ⋆2

if n = 2) and any homogeneous a ∈ H̃∗(Ω12), b ∈ H̃∗(Ω34), c ∈ H̃∗(Ω45), Lemma 4.3.4
yields the Leibniz rule

(4.3.11) Υ̌12,35(a ⊗ bc) = Υ̌12,34(a ⊗ b)c + (−1) |a n · |b | bΥ̌12,45(a ⊗ c).

Finally, the diagram (4.3.8) remains commutative with Υ̃ replaced by Υ̌.

4.4. The operation Υ

We derive from Υ̌ an operation Υ in singular homology. In this section we drop
the assumption {⋆1,⋆2} ∩ {⋆3,⋆4} = � when n ≥ 3.

4.4.1. Definition and properties of Υ. — Consider the linear map

(4.4.1) Υ = Υ12,34 : H∗(Ω12) ⊗ H∗(Ω34) −→ H∗(Ω32 × Ω14)

defined by the commutative diagram

H̃∗(Ω12) ⊗ H̃∗(Ω34)
Υ̌ // H̃∗(Ω32 × Ω14)

[−]
��

H∗(Ω12) ⊗ H∗(Ω34)

⟨−⟩×⟨−⟩

OO

Υ //______ H∗(Ω32 × Ω14).
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Formula (4.3.10) and the naturality of the transformation [−] : H̃∗ → H∗ imply the
following antisymmetry of Υ: for any homogeneous a ∈ H∗(Ω12), b ∈ H∗(Ω34),

(4.4.2) p∗Υ12,34(a ⊗ b) = −(−1) |a n · |b nΥ34,12(b ⊗ a)

where p∗ : H∗(Ω32 × Ω14) → H∗(Ω14 × Ω32) is the linear map induced by the permu-
tation map p : Ω32 × Ω14 → Ω14 × Ω32.

If n ≥ 3, then the diagram (4.3.8) with Υ̃ replaced by Υ̌ and the naturality of the
transformations ⟨−⟩ and [−] imply that the following diagram commutes:

(4.4.3)

H∗(Ω12) ⊗ H∗(Ω34)
Υ //

(ς1,ς2)#⊗(ς3,ς4)# ≃
��

H∗(Ω32 × Ω14)

(ς3,ς2)#×(ς1,ς4)#≃
��

H∗(Ω′
12) ⊗ H∗(Ω′

34)
Υ′

// H∗(Ω′
32 × Ω′

14).

Here, for every i ∈ {1, 2, 3, 4}, ⋆′
i is a point of ∂M connected to ⋆i by a path

ςi : I → ∂M , Υ′ is the map (4.4.1) determined by the base points ⋆′
1,⋆

′
2,⋆

′
3,⋆

′
4, and,

for all i, j ∈ {1, 2, 3, 4}, (ςi, ςj)# stands for the homotopy equivalence

Ωi j → Ω′
i j = Ω(M,⋆′

i,⋆
′
j), γ 7−→ ς−1i γςj

and for the induced isomorphism in singular homology.

The following crucial lemma will be proved in Section 4.4.3.

Lemma 4.4.1. — The following diagram commutes:

(4.4.4)

H̃∗(Ω12) × H̃∗(Ω34)

[−]×[−]
��

Υ̌ // H̃∗(Ω32 × Ω14)

[−]
��

H∗(Ω12) × H∗(Ω34)
Υ // H∗(Ω32 × Ω14).

4.4.2. The Leibniz rule for Υ. — As in Section 4.3.3 in the case of face homology, the
concatenation of paths induces three kinds of bilinear pairings in singular homology:

(4.4.5)



H∗(Ωi j) × H∗(Ωjk) −→ H∗(Ωik), (a, b) 7−→ ab = c∗(a × b),

H∗(Ωlm × Ωi j) × H∗(Ωjk) −→ H∗(Ωlm × Ωik),
(x, a) 7−→ xa = (id×c)∗(x × a),

H∗(Ωi j) × H∗(Ωjk × Ωlm) −→ H∗(Ωik × Ωlm),
(a, x) 7−→ ax = (c × id)∗(a × x).

Lemma 4.4.2. — For any⋆5 ∈ ∂M (distinct from⋆1 and⋆2 if n = 2) and any homogeneous
a ∈ H∗(Ω12), b ∈ H∗(Ω34), c ∈ H∗(Ω45),

(4.4.6) Υ12,35(a ⊗ bc) = Υ12,34(a ⊗ b)c + (−1) |a n · |b | bΥ12,45(a ⊗ c).

Proof. — For any x ∈ H̃∗(Ωi j), y ∈ H̃∗(Ωjk) with i, j, k ∈ {1, . . . , 5}, we have

(4.4.7) [xy] =
[
c∗(x × y)

]
= c∗[x × y] = c∗

(
[x] × [y]

)
= [x][y]
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where we use the naturality of [−] and Lemma 3.3.5. In particular,
bc =

[
⟨b⟩

] [
⟨c⟩

]
=

[
⟨b⟩⟨c⟩

]
.

We deduce that
Υ12,35(a ⊗ bc) = Υ12,35

(
[⟨a⟩] ⊗ [⟨b⟩⟨c⟩]

)
=

[
Υ̌12,35(⟨a⟩, ⟨b⟩⟨c⟩)

]
=

[
Υ̌12,35(⟨a⟩, ⟨b⟩)⟨c⟩ + (−1) |a n · |b | ⟨b⟩Υ̌12,35

(
⟨a⟩, ⟨c⟩)

]
=

[
Υ̌12,35(⟨a⟩, ⟨b⟩)

]
c + (−1) |a n · |b |b

[
Υ̌12,35(⟨a⟩, ⟨c⟩)

]
= Υ12,35(a, b)c + (−1) |a n · |b |bΥ12,35(a, c)

where the second, third, fourth and fifth formulas follow respectively from (4.4.4),
(4.3.11), (4.4.7), and the definition of Υ. □

4.4.3. Proof of Lemma 4.4.1. — We claim that, for all a ∈ H̃∗(Ω12) and b ∈ H̃∗(Ω34),

(4.4.8)
[
Υ̃(⟨[a]⟩, b)

]
=

[
Υ̃(a, b)

]
=

[
Υ̃(a, ⟨[b]⟩)

]
.

This would imply similar equalities with Υ̃ replaced by Υ̌. Therefore

Υ([a], [b]) = [Υ̌(⟨[a]⟩, ⟨[b]⟩)
]
=

[
Υ̌(a, ⟨[b])

]
=

[
Υ̌(a, b)

]
,

which proves the commutativity of the diagram (4.4.4).
We prove the first equality in (4.4.8); the second equality follows by the symmetry

of Υ̃ (Lemma 4.3.2). By Section 4.3.5, we can assume that {⋆1,⋆2} ∩ {⋆3,⋆4}= �. We
need to prove that, for any smooth polycycle K = (K, φ, u, κ) in Ω◦

12 and any smooth
polycycle L = (L, ψ, v, λ) in Ω◦

34 transversal to K,

(4.4.9)
[
Υ̃(⟨[K]⟩, ⟨L⟩)

]
=

[
D(K,L)

]
.

Set p = dim(K). Pick a locally ordered smooth triangulation T of K which fits φ.
The construction of such a triangulation in Section 3.3.2 (using Lemma 3.1.1) shows
that we can further assume that (*) F ∩ τ is a face of τ for any face F of K and any
simplex τ of T (cf. the last paragraph in the proof of Lemma 3.1.1). Consider the
fundamental p-chain

σ = σ(T, u) =
∑
∆

ε∆u(K∆)σ∆ ∈ Cp(K)

determined by T as in Section 3.3.2 (here ∆ runs over all p-simplices of T). Then κ∗(σ)
is a smooth singular p-cycle in Ω◦

12 representing the singular homology class
[K] ∈ Hp(Ω

◦
12).

Next consider the smooth p-polycycle
K′ = (K ′, φ′, u′, κ′)

in Ω◦
12 associated with the expansion

κ∗(σ) =
∑
∆

ε∆u(K∆)κσ∆
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as in Section 3.3.3. By construction, K ′ is a disjoint union of copies of the standard
p-simplex∆p indexed by p-simplices∆ of T and κ′ = κζ where ζ =

⨿
∆ σ∆ : K ′ → K .

By the definition of the transformation ⟨−⟩ : H∗ → H̃∗,⟨
[K]

⟩
=

⟨
[κ∗(σ)]

⟩
= ⟨K′⟩ ∈ H̃p(Ω12),

so that (4.4.9) is equivalent to

(4.4.10)
[
Υ̃(⟨K′⟩, ⟨L⟩)

]
=

[
D(K,L)

]
.

Lemma 4.1.4 yields a deformation of L into a polycycle L1 transversal to K′. Such
a polycycle L1 is also transversal to K. By Lemma 3.2.3, ⟨L⟩ = ⟨L1⟩ so that[

Υ̃(⟨K′⟩, ⟨L⟩)
]
=

[
Υ̃(⟨K′⟩, ⟨L1⟩)

]
.

By Lemma 4.3.1, the polycycles D(K,L) and D
(
K,L1

)
are homologous so that[

D(K,L)
]
=

[
D(K,L1)

]
.

Thus, in order to prove (4.4.10), we may assume without loss of generality that L is
transversal to K′. We need to prove that
(4.4.11)

[
D(K′,L)

]
=

[
D(K,L)

]
.

Set D(K,L) = (D, θ,w, κ◁▷λ), D(K′,L) = (D′, θ ′,w′, κ′◁▷λ) and
ζ̄ = ζ × idI × idL × idI : K ′ × I × L × I −→ K × I × L × I .

It follows from the definition that D′ = ζ̄ −1(D). Thus D′ is obtained by cutting D into
pieces, each “piece” being a connected component of D ∩ (∆ × I × L × I) where ∆ is
a p-simplex of T . The map ζ D′ : D′ → D is the obvious gluing map. It is surjective
and its restriction to every connected component of D′ is injective.

Consider the equivalence relations ∼θ on D and ∼θ′ on D′ defined by the partitions
(see Section 3.1.2). We claim that if some points d1, d2 ∈ D′ satisfy ζ̄(d1) ∼θ ζ̄(d2),
then d1 ∼θ′ d2. We now check this claim. Assume that for i = 1, 2,

di = (k ′
i, s, li, t) ∈ D′ ⊂ K ′ × I × L × I, and set ki = ζ(k ′

i ) ∈ K .

By assumption, there exist faces F1, F2 of D of the same type such that
ζ̄(di) = (ki, s, li, t) ∈ Fi for i = 1, 2

and θF1,F2
: F1 → F2 carries ζ̄(d1) to ζ̄(d2). For i = 1, 2, let Ai and Bi be faces of K and L

respectively such that Ai × I × Bi × I is the smallest face of K × I × L × I containing Fi .
Then ki ∈ Ai , li ∈ Bi , A1 has the same type as A2, B1 has the same type as B2, and

φA1,A2
(k1) = k2, ψB1,B2

(l1) = l2.

To proceed, let ∆i ≈ ∆p be the connected component of k ′
i in K ′, and let

σi = σ∆i : ∆
p −→ K

be the corresponding singular simplex (which is a simplicial isomorphism onto a
p-simplex of the triangulation T). Then ki ∈ Ai ∩σi(∆i). By the assumption (*) above,
Ai ∩ σi(∆i) is a face of the p-simplex σi(∆i). Since T fits φ, the sets

τ1 = σ1(∆1) ∩ φA2,A1

(
A2 ∩ σ2(∆2)

)
, τ2 = σ2(∆2) ∩ φA1,A2

(
A1 ∩ σ1(∆1)

)
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are faces of the p-simplices σ1(∆1), σ2(∆2) containing k1, k2 respectively.
The map φA1,A2

: A1 → A2 restricts to a simplicial isomorphism φ12 : τ1 → τ2 pre-
serving the order of the vertices and carrying k1 to k2. Set r = dim(τ1) = dim(τ2). Then
τ′i = σ−1

i (τi) is an r-dimensional face of the p-simplex ∆i containing k ′
i for i = 1, 2.

The map
φ′12 = σ−1

2 φ12σ1 τ′1
: τ′1 −→ τ′2

is an order-preserving simplicial isomorphism and φ′12(k
′
1) = k ′

2. Since ∆1,∆2 are
copies of the standard p-simplex ∆p , their faces τ′1, τ′2 correspond to certain (r + 1)-
element subsets S1, S2 of the set {0, . . . , p}. Since κφA1,A2

= κ A1
, we have

(κσ1) ◦ eS1
= (κσ2) ◦ eS2

: ∆r −→ Ω◦
12.

By the definition of K′, the latter equality implies that the faces τ′1, τ′2 of K ′ have the
same type and φ′

τ′1,τ
′
2
= φ′12 : τ′1 → τ′2. Consider now the map

Θ =
(
φ′τ′1,τ′2

× id×ψB1,B2
× id

)
: τ′1 × I × B1 × I → τ′2 × I × B2 × I .

We have
Θ(d1) = (φ′12(k

′
1), s, ψB1,B2

(l1), t) = d2.
Let Gi be the connected component of di in D′∩(τ′i × I×Bi× I). The equalityΘ(d1) = d2
implies that Θ(G1) = G2. Thus, G1 and G2 are faces of D′ of the same type, and the
identification map θ ′G1,G2

= Θ G1
carries d1 to d2. This proves that d1 ∼θ′ d2 as claimed.

Consider the canonical projections π : D → Dθ and π′ : D′ → D′
θ′ . The previous

claim implies that there exists a unique map g such that the diagram

Dθ

g

��

Dπoo

D′
θ′ D′

ζ D′

OO

π′oo

commutes. The map g is continuous because π′ is continuous and ζ̄, π are quotient
maps. Set

S = ζ̄(∂D′) = D ∩ T p−1

where T p−1 is the (p − 1)-skeleton of T . Clearly, ∂D ⊂ S. Consider the commutative
diagram

H∗(Dθ, (∂D)θ)

��

H∗(D, ∂D) ∋ [D,w]
π∗oo

��

[Dθ,w] ∈ H∗(Dθ) //

g∗

��

77ooooooooooo
H∗(Dθ, Sθ)

g∗

��

H∗(D, S) ∋ (ζ̄ D′)∗([D′,w′])
π∗oo

[
D′
θ′,w

′] ∈ H∗(D′
θ′)

// H∗(D′
θ′, (∂D′)θ′) H∗(D′, ∂D′) ∋ [D′,w′]

π′∗oo

(ζ̄ D′)∗

OO

where the unlabelled arrows are the inclusion maps. The definition of K′ implies that
the weight u′ : π0(K ′) → K of K′ is the composition of ζ# : π0(K ′) → π0(K) with
the weight u : π0(K) → K of K. Using the definition of the operation D, we deduce
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that the weight w′ : π0(D′) → K is the composition of (ζ̄ D′)# : π0(D′) → π0(D)
with the weight w : π0(D) → K . This fact and the definition of [D′,w′], [D,w] imply
that (ζ̄ D′)∗ ([D′,w′]) is the image of [D,w] in H∗(D, S). By Lemma 3.3.1, the image
of [Dθ,w] in H∗ (Dθ, (∂D)θ) is equal to π∗([D,w]). Using this fact, the uniqueness in
Lemma 3.3.1, and a simple diagram chasing we obtain that
(4.4.12) g∗

(
[Dθ,w]

)
= [D′

θ′,w
′] ∈ H∗(D′

θ′).

Next, we verify that
(4.4.13) (κ′◁▷λ)θ′g = (κ◁▷λ)θ : Dθ −→ Ω32 × Ω14.

Given d = (k, s, l, t) ∈ D, we have gπ(d) = π′(k ′, s, l, t) for any k ′ ∈ ζ−1(k) ⊂ K ′. Then
(κ′◁▷λ)θ′g

(
π(d)

)
= (κ′◁▷λ)(k ′, s, l, t) = (κ◁▷λ)(k, s, l, t) = (κ◁▷λ)θ

(
π(d)

)
where we use the equality κ′(k ′) = κ(k). Since π : D → Dθ is onto, we conclude
that (4.4.13) holds. This and (4.4.12) imply (4.4.11):[

D(K,L)
]
=

(
(κ◁▷λ)θ

)
∗
(
[Dθ,w]

)
=

(
(κ′◁▷λ)θ′

)
∗g∗

(
[Dθ,w]

)
=

(
(κ′◁▷λ)θ′

)
∗
(
[D′

θ′,w
′]
)
=

[
D(K′,L)

]
.
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CHAPTER 5

THE INTERSECTION BIBRACKET

Throughout this chapter, M is an oriented smooth n-dimensional manifold with
non-void boundary, where n ≥ 2.

5.1. Construction of the intersection bibracket

We introduce the path homology category of M and define the intersection
bibracket in this category.

5.1.1. The path homology category. — Let C = C(M) be the graded category whose
set of objects is ∂M and whose graded modules of morphisms are defined by

HomC(⋆,⋆
′) = H∗

(
Ω(M,⋆,⋆′)

)
for any ⋆,⋆′ ∈ ∂M . Composition in C is the pairing (4.4.5) defined via concatenation
of paths. For⋆ ∈ ∂M , the identity morphism of⋆ in C is the element of H0(Ω(M,⋆,⋆))
represented by the constant path in ⋆. We call C the path homology category of M .
By Section 2.2.1, this category determines a graded algebra

(5.1.1) A = A(C) =
⊕

⋆,⋆′∈∂M
H∗

(
Ω(M,⋆,⋆′)

)
.

The subcategory C0 of C formed by all objects and morphisms of degree 0 can
be formulated in terms of paths in M : for any ⋆,⋆′ ∈ ∂M , the module of mor-
phisms HomC0(⋆,⋆′) is freely generated by the set of homotopy classes of paths
from ⋆ to ⋆′ in M . Thus the category C0 is the linearization of the fundamental
groupoid π1(M, ∂M) of M based at ∂M , and the algebra A(C0) is the corresponding
groupoid algebra. Clearly, A(C0) embeds in A as a subalgebra.

5.1.2. The intersection bibracket. — Assume that n = dim(M) ≥ 3 and

(5.1.2)


The cross product in the homology H∗(Ω⋆) of the
loop space Ω⋆ = Ω(M,⋆,⋆) based at⋆ ∈ ∂M induces
an isomorphism H∗(Ω⋆) ⊗ H∗(Ω⋆) ≃ H∗(Ω⋆ × Ω⋆).
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By the Künneth theorem, the condition (5.1.2) holds if K is a principal ideal domain
and H∗(Ω⋆) = H∗(Ω⋆;K) is a flat K -module (this occurs, for instance, when K is a
field); it also holds for any K if H∗(Ω⋆;Z) is a free abelian group. Then the cross
product induces an isomorphism

ϖ32,14 : H∗(Ω32) ⊗ H∗(Ω14) −→ H∗(Ω32 × Ω14)

for any choice of base points⋆1,⋆2,⋆3,⋆4 ∈ ∂M . Composing the inverse isomorphism
with the map Υ12,34 defined in Section 4.4.1, we obtain a linear map

(ϖ32,14)
−1Υ12,34 : H∗(Ω12) ⊗ H∗(Ω34) −→ H∗(Ω32) ⊗ H∗(Ω14).

The direct sum of these maps over all 4-tuples of points in ∂M is a linear map

{{− ,−}} : A ⊗ A −→ A ⊗ A

called the intersection bibracket of M . We can now state our main result.

Theorem 5.1.1. — Under the assumptions above, (C, {{− ,−}}) is a double Gerstenhaber
category of degree d = 2 − n.

Proof. — That the bibracket {{− ,−}} has degree d follows from the fact that the
intersection polychain of a p-polycycle and a q-polycycle has dimension

p + q + 2 − n = p + q + d for any p, q.

The d-antisymmetry of {{− ,−}} follows from the formula (4.4.2) and the following
well-known fact:

For any topological spaces X and Y such that the cross product induces an isomor-
phism H∗(X) ⊗ H∗(Y) → H∗(X × Y), the isomorphism

H∗(X) ⊗ H∗(Y) −→ H∗(Y) ⊗ H∗(X)

induced by the interchange of factors X × Y → Y × X and the cross product isomor-
phisms, carries a ⊗ b to (−1) |a | · |b |b ⊗ a for any homogeneous a ∈ H∗(X), b ∈ H∗(Y);
see, for example, [15, Section 4(b)].

The bibracket {{− ,−}} satisfies the first Leibniz rule (1.2.2) as easily follows from
Lemma 4.4.2 using the associativity and the naturality of the cross product in sin-
gular homology. By Lemma 1.2.2 and the d-antisymmetry, the bibracket {{− ,−}} also
satisfies the second Leibniz rule (1.2.3). Therefore {{− ,−}} is a d-graded bibracket in A.

It is obvious from the definitions that {{− ,−}} annihilates the identity morphisms
of all objects. It remains only to prove that the associated tribracket is equal to zero;
we postpone the proof to Section 5.2. □

Since d = 2 − n < 0, the restriction of the intersection bibracket in C to C0 is equal
to zero. Moreover, the morphisms in C0 represented by paths in ∂M annihilate the
bibracket in C both on the right and on the left.

Theorem 5.1.1 and Lemma 2.2.1 imply that for every integer N ≥ 1, the associated
representation algebra C+

N is a unital Gerstenhaber algebra of degree 2 − n.
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5.1.3. The Pontryagin algebra. — We now fix a base point⋆ ∈ ∂M . By the Pontryagin
algebra of M , we mean the unital graded algebra

A⋆ = EndC(M)(⋆) = H∗(Ω⋆) where Ω⋆ = Ω(M,⋆,⋆).

Multiplication in A⋆ is the Pontryagin product given by ab = c∗(a × b).
Pontryagin algebras have been extensively studied since Serre’s thesis [40]. They

can be explicitly computed using the Adams-Hilton model [1] or the techniques of
rational homotopy theory (at least, in the simply connected case). We only mention
the relation with the homotopy groups, and refer to [15] for a detailed exposition.
Consider the boundary homomorphism

∂i : πi(M) = πi(M,⋆) −→ πi−1(Ω⋆) = πi−1(Ω⋆, e⋆)

for the path space fibration of M where i ≥ 1 and e⋆ ∈ Ω⋆ is the constant path at ⋆.
Since the total space of that fibration is contractible, ∂i is an isomorphism for all i.
Composing ∂i with the Hurewicz homomorphism πi−1(Ω⋆) → Hi−1(Ω⋆), we obtain
an additive map ∂̄i : πi(M) → Ai−1

⋆ called the connecting homomorphism. For i = 1,
this homomorphism extends to a ring isomorphism K [π1(M,⋆)] ≃ A0

⋆. For i = 2,
this homomorphism induces an isomorphism from K ⊗Z π2(M) onto H1(Ω

null
⋆ ) ⊂ A1

⋆

where Ωnull
⋆ is the connected component of Ω⋆ formed by all null-homotopic loops.

The group π1(M,⋆) acts on A⋆ by graded algebra automorphisms: the action of
any g ∈ π1(M,⋆) is the automorphism a 7→ ag = gag−1 of A⋆ where g is viewed as an
invertible element of A0

⋆. The inclusion ∂M ⊂ M allows us to consider the induced
action of π1(∂M,⋆) on A⋆.

Theorem 5.1.2. — If n = dim(M) ≥ 3 and the condition (5.1.2) is satisfied, then the
restriction of the intersection bibracket {{− ,−}} in the category C(M) to A⋆ is a π1(∂M,⋆)-
equivariant Gerstenhaber bibracket of degree 2 − n.

Proof. — Clearly, A⋆ = A(C⋆) where C⋆ is the full subcategory of C determined by
the object ⋆. Therefore our claim is a consequence of Theorem 5.1.1 and the results
stated at the end of Section 2.2.2. We only need to check the equivariance. Let a, b ∈ A⋆
and let ς be a loop in ∂M based at⋆ representing g ∈ π1(∂M,⋆). We deduce from the
commutativity of the diagram (4.4.3) that
Υ(ag ⊗ bg) = Υ

(
(ς−1, ς−1)♯(a), (ς

−1, ς−1)♯(b)
)
=

(
(ς−1, ς−1)♯ × (ς−1, ς−1)♯

)
Υ(a, b).

Using the naturally of the cross product, we conclude that
{{ag , bg}} =

(
{{a , b}}′

)g ⊗
(
{{a , b}}′′

)g
. □

By Theorem 5.1.2 and Lemma 2.1.1, the intersection bibracket in A⋆ induces a
natural structure of a Gerstenhaber algebra of degree 2− n in the commutative unital
graded algebra (A⋆)+N for all N ≥ 1. We call (A⋆)+N the N-th representation algebra
of M . The action of π1(∂M,⋆) on A⋆ induces an action of π1(∂M,⋆) on (A⋆)+N by
graded algebra automorphisms, and the Gerstenhaber bracket in (A⋆)+N is π1(∂M,⋆)-
equivariant. The isomorphism classes of the double Gerstenhaber algebra A⋆ and
the Gerstenhaber algebras {(A⋆)+N }N depend only on the connected component of ⋆
in ∂M .
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5.1.4. The induced Lie bracket. — We keep notation of Section 5.1.3 and let Ǎ⋆ be
the quotient of A⋆ = H∗(Ω⋆) by the submodule [A⋆, A⋆] spanned by the vectors
ab − (−1) |a | · |b |ba where a, b run over all homogeneous elements of A⋆. Under the
assumptions of Theorem 5.1.2, the intersection bibracket {{− ,−}} in A⋆ composed
with the multiplication of A⋆ induces a (2 − n)-graded Lie bracket ⟨−,−⟩ in Ǎ⋆,
see Section 1.4.1.

The Lie bracket ⟨−,−⟩ can be computed using the map

c∗ : H∗(Ω⋆ × Ω⋆) −→ H∗(Ω⋆)

induced by the concatenation of loops. Namely, if h : A⋆ → Ǎ⋆ is the natural projec-
tion, then for any homogeneous a, b ∈ A⋆,⟨

h(a), h(b)
⟩
= h

(
{{a , b}}′{{a , b}}′′

)
= hc∗Υ(a ⊗ b)

= (−1) |b |+n |a |hc∗
(
[Υ̃(⟨a⟩ ⊗ ⟨b⟩)]

)
.

The resulting expression may be used as the definition of ⟨−,−⟩ avoiding the use
of {{− ,−}}. This gives a (2 − n)-graded Lie bracket in Ǎ⋆ over an arbitrary com-
mutative ring K . The Jacobi identity for ⟨−,−⟩ may be deduced from Lemma 5.2.6
below. Presumably, the Lie bracket ⟨−,−⟩ is related to the operation discussed in [28,
Remark 3.2.3] using Chas-Sullivan’s techniques.

5.1.5. The simply connected case. — Suppose that the manifold M is simply con-
nected and the ground ring K is a field of characteristic zero. The classical Milnor-
Moore theorem (see [15, Theorem 21.5]) asserts that, the Pontryagin algebra

A⋆ = H∗(Ω⋆)

is fully determined by π∗(M) =
⊕

p≥0 πp(M) and the Whitehead bracket [−,−]Wh
in π∗(M). More precisely, consider the graded module

L⋆ =
⊕
p≥0

K ⊗Z πp(Ω⋆)

(obtained from π∗(M) by tensorizing with K and shifting the degree by 1), and
equip L⋆ with the bracket defined by

[k ⊗ α, l ⊗ β] = kl ⊗ (−1)p+1∂p+q+1

(
[∂−1p+1(α), ∂

−1
q+1(β)]Wh

)
∈ K ⊗ πp+q(Ω⋆)

for any k, l ∈ K , α ∈ πp(Ω⋆), β ∈ πq(Ω⋆). Then L⋆ is a 0-graded Lie algebra and
the Hurewicz homomorphism L⋆ → A⋆ extends to an isomorphism of the universal
enveloping algebra U(L) onto A⋆. Moreover, under this isomorphism, the standard
comultiplication in U(L) carrying any α ∈ L⋆ to α ⊗ 1 + 1 ⊗ α corresponds to the
comultiplication in A⋆ induced by the diagonal map Ω⋆ → Ω⋆ × Ω⋆. Note that, by
the Poincaré-Birkhoff-Witt theorem for graded Lie algebras [15, Theorem 21.1], the
natural linear map L⋆ → U(L⋆) is injective so that L⋆ can be treated as a submodule
of U(L⋆) ≃ A⋆.

Recall from Section 2.1.2 that the 0-graded Lie algebra L⋆ gives rise to represen-
tation algebras {(L⋆)N }N ≥1. The Milnor-Moore isomorphism U(L⋆) ≃ A⋆ induces
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an isomorphism (L⋆)N ≃ (A⋆)+N for all N ≥ 1. In this way, the algebras {(L⋆)N }N ≥1
acquire a structure of Gerstenhaber algebras of degree 2 − n.

5.1.6. The 2-dimensional case. — The case n = 2 (so far ruled out in this section by
the assumptions of Section 5.1.2) has been extensively studied by several authors and
gave the original impetus to this work. We briefly discuss this case.

A connected oriented surface M with ∂M , � is an Eilenberg-MacLane space
K(π, 1) where π is the fundamental group of M . For any points ⋆1,⋆2 ∈ ∂M , the
space Ω(M,⋆1,⋆2) is homotopy equivalent to the underlying discrete set of π. There-
fore, in the notation of Section 5.1.1, we have C = C0 and A = A(C0) is the groupoid
algebra of π1(M, ∂M).

For any points ⋆1,⋆2,⋆3,⋆4 ∈ ∂M such that {⋆1,⋆2} ∩ {⋆3,⋆4} = �, Section 4.4.1
yields a linear map

Υ12,34 : H0(Ω12) ⊗ H0(Ω34) −→ H0(Ω32 × Ω14) = H0(Ω32) ⊗ H0(Ω14)

(the latter equality holds for all K ). This construction extends to arbitrary 4-tuples
of points in ∂M by slightly pushing these points in the positive direction along ∂M
and proceeding as in Section 4.3.5. After an appropriate normalization, this yields
a 0-antisymmetric 0-graded bibracket of degree 0 in the groupoid algebra A. This
bibracket is quasi-Poisson in an appropriate sense, cf. [2], [42], [36]. For ⋆ ∈ ∂M ,
the restriction of this bibracket to the group algebra A⋆ = K [π1(M,⋆)] is the double
bracket {{− ,−}}s studied in [36, Section 7]. It is closely related to the homotopy inter-
section form in K [π1(M,⋆)] introduced in [41]; see also [29] for a similar operation.
The associated Lie bracket ⟨−,−⟩ in Ǎ⋆ was first introduced by Goldman [21].

Lemma 2.2.1 implies that for every integer N ≥ 1, the above bibracket in A induces
a bracket in the associated representation algebra C+

N . This bracket is quasi-Poisson
(and not Poisson), cf. [36]. Note that C+

N is the coordinate algebra of the affine scheme
(over K ) that associates to any unital commutative algebra B the set of groupoid ho-
momorphisms π1(M, ∂M) → GLN (B). Indeed, through linear extension of groupoid
homomorphisms, the latter set may be identified with the set of linear functors fromC

to the category MatN (B) considered in Section 2.2.1. We conclude by applying (2.2.1).

5.2. The Jacobi identity

We conclude the proof of Theorem 5.1.1 by proving that the tribracket associ-
ated with the intersection bibracket is equal to zero. We resume notation of Chap-
ter 4, i.e., fix points ⋆1,⋆2,⋆3,⋆4 ∈ ∂M such that {⋆1,⋆2} ∩ {⋆3,⋆4} = � and, for
any i, j ∈ {1, 2, 3, 4}, let Ωi j = Ω(M,⋆i,⋆j) be the path space and Ω◦

i j = Ω◦(M,⋆i,⋆j) be
the proper path space of (M,⋆i,⋆j). We start by developing a parametrized version
of the theory of polychains in path spaces.

5.2.1. Parametrized versions of Υ̃, Υ̌, and Υ. — Let Z be an arbitrary topological
space. Given a polychainL = (L, ψ, v, λ) inΩ◦

34×Z , we let λ′ andλ′′ be the compositions
of λ : L → Ω◦

34×Z with the projections toΩ◦
34 and Z , respectively. We call the polychain

L smooth if the map λ′ : L → Ω◦
34 is smooth in the sense of Section 3.4.2. Applying
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the definitions of Section 3.2.4 but considering only smooth polychains in Ω◦
34 × Z ,

we obtain smooth face homology H̃s
∗ (Ω

◦
34 × Z). The proof of Theorem 3.4.8 easily adapts

to this setting and yields that the natural linear map

H̃s
∗ (Ω

◦
34 × Z) −→ H̃∗(Ω

◦
34 × Z) ≃ H̃∗(Ω34 × Z)

is an isomorphism. This computes the face homology of Ω34 × Z in terms of smooth
polychains in Ω◦

34 × Z .
We say that smooth polychains K = (K, φ, u, κ) in Ω◦

12 and L = (L, ψ, v, λ) in Ω◦
34× Z

are transversal if the maps

κ : K −→ Ω◦
12 and λ′ : L −→ Ω◦

34

are transversal in the sense of Section 4.1.1. A pair (a, b) ∈ H̃p(Ω12) × H̃q(Ω34 × Z)
with p, q ≥ 0 is transversely represented by a pair (K,L) if K is a smooth reduced
p-polycycle in Ω◦

12 and L is a smooth reduced q-polycycle in Ω◦
34 × Z transversal to K.

Adapting the proof of Lemma 4.1.5, we obtain that any pair (a, b) as above can be
transversely represented by a pair of polycycles, and, furthermore, any two such pairs
of polycycles can be related by a finite sequence of transformations (K,L) 7→ (Ǩ, Ľ)
of the following types:

(i) L � Ľ and Ǩ � K⊔∂rM or K � Ǩ⊔∂rM where M is a smooth (p+1)-polychain
in Ω◦

12 transversal to L;
(ii) K � Ǩ and Ľ � L⊔ ∂rN or L � Ľ⊔ ∂rN where N is a smooth (q +1)-polychain

in Ω◦
34 × Z transversal to K.

We next adapt the construction of the intersection polychain. Consider smooth
transversal polychains K = (K, φ, u, κ) in Ω◦

12 and L = (L, ψ, v, λ) in Ω◦
34 × Z . Since the

polychain L′ = (L, ψ, v, λ′) in Ω◦
34 is smooth and transversal to K, Section 4.2.1 yields

an intersection polychain D(K,L′) = (D, θ,w, κ◁▷λ′) in Ω32 ×Ω14. We lift D(K,L′) to a
polychain in Ω32 × Ω14 × Z as follows.

Lemma 5.2.1. — Let pr : K × I × L × I → L be the cartesian projection. The tuple

DZ(K,L) = (D, θ,w, δ)

with δ = (κ◁▷λ′, λ′′ ◦ pr D) is a polychain in Ω32 × Ω14 × Z .

Proof. — We need only to check that the map λ′′ ◦ pr D : D → Z is compatible with
the partition θ. Let F,G be two faces of D of the same type and let

NF = AF × I × BF × I, NG = AG × I × BG × I

be the smallest faces of K×I×L×I containing F,G, respectively. Since λ′′ is compatible
with the partition ψ of L, we have for any (k, s, l, t) ∈ F

λ′′ pr
(
θF,G(k, s, l, t)

)
= λ′′ pr

(
φAF ,AG (k), s, ψBF ,BG (l), t

)
= λ′′

(
ψBF ,BG (l)

)
= λ′′(l) = λ′′ pr(k, s, l, t). □

The next claim is a parametrized version of Lemma 4.3.1 and is proved similarly.
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Lemma 5.2.2. — For any integers p, q ≥ 0, the intersection (K,L) 7→ DZ(K,L) induces a
bilinear map H̃p(Ω12) × H̃q(Ω34 × Z) → H̃p+q+2−n(Ω32 × Ω14 × Z).

The direct sum over all integers p, q ≥ 0 of the pairings produced by Lemma 5.2.2
is a linear map of degree 2 − n

Υ̃12,34Z : H̃∗(Ω12) ⊗ H̃∗(Ω34 × Z) −→ H̃∗(Ω32 × Ω14 × Z).

As in Section 4.3.6, a normalized version of this map

Υ̌12,34Z : H̃∗(Ω12) ⊗ H̃∗(Ω34 × Z) −→ H̃∗(Ω32 × Ω14 × Z)

is defined by
Υ̌12,34Z(a ⊗ b) = (−1) |b |+n |a | Υ̃12,34Z(a ⊗ b)

for any homogeneous a ∈ H̃∗(Ω12) and b ∈ H̃∗(Ω34 × Z). We also define an opera-
tion Υ12,34Z in singular homology by the commutative diagram

(5.2.1)

H̃∗(Ω12) ⊗ H̃∗(Ω34 × Z)
Υ̌12,34Z

// H̃∗(Ω32 × Ω14 × Z)

[−]
��

H∗(Ω12) ⊗ H∗(Ω34 × Z)

⟨−⟩×⟨−⟩

OO

Υ12,34Z
//______ H∗(Ω32 × Ω14 × Z).

The proof of Lemma 4.4.1 extends to this setting and gives the commutative diagram

(5.2.2)

H̃∗(Ω12) ⊗ H̃∗(Ω34 × Z)
Υ̌12,34Z

//

[−]×[−]
��

H̃∗(Ω32 × Ω14 × Z)

[−]
��

H∗(Ω12) ⊗ H∗(Ω34 × Z)
Υ12,34Z

// H∗(Ω32 × Ω14 × Z).

The following two lemmas will help us to compute Υ̃12,34Z and Υ12,34Z .

Lemma 5.2.3. — For any a ∈ H̃∗(Ω12), any b ∈ H̃∗(Ω34) and any homogeneous c ∈ H̃∗(Z),
we have

Υ̃12,34Z

(
a ⊗ (b × c)

)
= (−1) |c | Υ̃12,34(a ⊗ b) × c.

Proof. — It suffices to consider the case where a and b are homogeneous. Let
K = (K, φ, u, κ) and L = (L, ψ, v, λ)

be smooth polycycles in Ω◦
12 and Ω◦

34 representing a and b respectively, and such
that K is transversal to L. Let N = (N, χ, z, η) be a polycycle in Z representing c. Then

Υ̃12,34(a ⊗ b) × c =
⟨
D(K,L) ×N

⟩
.

By the definition of Υ̃12,34Z ,

Υ̃12,34Z

(
a ⊗ (b × c)

)
=

⟨
DZ(K,L ×N)

⟩
.

Therefore, it is enough to show that

(5.2.3) D(K,L) ×N = (−1) |c |DZ(K,L ×N).
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We set D(K,L) = (D, θ,w, κ◁▷λ) so that

D(K,L) ×N =
(
D × N, θ × χ,w × z, (κ◁▷λ) × η

)
.

We also set

DZ(K,L ×N) =
(
DZ, θZ,wZ, δZ

)
with δZ =

(
κ◁▷(λ prL), η prN DZ

)
where prL : L×N → L and prN : K × I × (L×N)× I → N are the cartesian projections.
The map

(K × I × L × I) × N −→ K × I × (L × N) × I, (k, s, l, t, n) 7−→ (k, s, l, n, t)

restricts to a diffeomorphism f : D× N → DZ of degree (−1)dim(N) = (−1) |c | . For any
point (k, s, l, t, n) in D × N , we have

δZ f (k, s, l, t, n) = δZ(k, s, l, n, t) =
(
(κ◁▷λ)(k, s, l, t), η(n)

)
=

(
(κ◁▷λ) × η

)
(k, s, l, t, n).

Furthermore, the diffeomorphism f carries the partition θ × χ to θZ and the weight
w × z to the weight wZ . Hence, f is a diffeomorphism of polychains (5.2.3). □

Lemma 5.2.4. — For any a ∈ H∗(Ω12), b ∈ H∗(Ω34) and c ∈ H∗(Z), we have

Υ12,34Z

(
a ⊗ (b × c)

)
= Υ12,34

(
a ⊗ b

)
× c

Proof. — It suffices to consider homogeneous a, b, c. By Lemma 3.3.5, we have

b × c = [⟨b⟩] × [⟨c⟩] = [⟨b⟩ × ⟨c⟩].

We deduce that

Υ12,34Z

(
a ⊗ (b × c)

)
= Υ12,34Z

(
[⟨a⟩] ⊗ [⟨b⟩ × ⟨c⟩]

)
=

[
Υ̌12,34Z(⟨a⟩ ⊗ (⟨b⟩ × ⟨c⟩))

]
= (−1) |b |+ |c |+n |a | [Υ̃12,34Z(⟨a⟩ ⊗ (⟨b⟩ × ⟨c⟩))

]
= (−1) |b |+n |a | [Υ̃12,34(⟨a⟩ ⊗ ⟨b⟩) × ⟨c⟩

]
= (−1) |b |+n |a | [Υ̃12,34(⟨a⟩ ⊗ ⟨b⟩)

]
×
[
⟨c⟩

]
= Υ12,34

(
a ⊗ b

)
× c

where the second, fourth and fifth equalities follow from (5.2.2), Lemma 5.2.3 and
Lemma 3.3.5 respectively. □

Given two topological spaces Y and Z , a straightforward generalization of the
constructions above and of Lemma 5.2.2 yields a bilinear map

Υ̃Y12,34Z : H̃∗(Y × Ω12) ⊗ H̃∗(Ω34 × Z) −→ H̃∗(Y × Ω32 × Ω14 × Z).

A normalized version Υ̌Y12,34Z of this map is defined by

Υ̌Y12,34Z(a ⊗ b) = (−1) |b |+n |a | Υ̃Y12,34Z(a ⊗ b)
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for any homogeneous a ∈ H̃∗(Y × Ω12) and b ∈ H̃∗(Ω34 × Z). The corresponding map
in singular homology is defined by the commutative diagram

(5.2.4)

H̃∗(Y × Ω12) ⊗ H̃∗(Ω34 × Z)
Υ̌Y12,34Z

// H̃∗(Y × Ω32 × Ω14 × Z)

[−]
��

H∗(Y × Ω12) ⊗ H∗(Ω34 × Z)

⟨−⟩×⟨−⟩

OO

ΥY12,34Z
//______ H∗(Y × Ω32 × Ω14 × Z).

Then, again, we have the commutative diagram

(5.2.5)

H̃∗(Y × Ω12) ⊗ H̃∗(Ω34 × Z)
Υ̌Y12,34Z

//

[−]×[−]
��

H̃∗(Y × Ω32 × Ω14 × Z)

[−]
��

H∗(Y × Ω12) ⊗ H∗(Ω34 × Z)
ΥY12,34Z

// H∗(Y × Ω32 × Ω14 × Z).

Finally, Lemma 5.2.4 generalizes to the identity

(5.2.6) ΥY12,34Z

(
(c × a) ⊗ (b × d)

)
= c ×Υ12,34

(
a ⊗ b

)
× d

for any a ∈ H∗(Ω12), b ∈ H∗(Ω34) and c ∈ H∗(Y), d ∈ H∗(Z).

5.2.2. Half-smooth polychains. — We compute the intersection operations of Sec-
tion 5.2.1 via so-called “half-smooth” polychains. Let Z be a topological space.
A q-polychain

L = (L, ψ, v, (λ′, λ′′) : L −→ Ω◦
34 × Z)

is half-smooth if the restrictions of the map λ̃′ : L × I → M (adjoint to λ′) to the
manifolds with faces L × [0, 1/2] and L × [1/2, 1] are smooth. Furthermore, L is half-
transversal to a smooth p-polychain K = (K, φ, u, κ) in Ω◦

12 if for any face E of K , any
face F of L, and any of the three sets J = [0, 1/2], [1/2, 1], {1/2} the map

κ̃ × λ̃′ : E × I × F × J −→ M × M

is weakly transversal to diagM in the sense of Section 4.1.1. Then the set

D(J) =
{
(k, s, l, t) ∈ K × I × L × J : κ̃(k, s) = λ̃(l, t)

}
inherits from K × I × L × J a structure of a manifold with faces, and we have
(5.2.7) D(J) ⊂ K × Int(I) × L × (J ∩ Int(I)).
Set

D− = D([0, 1/2]), D+ = D([1/2, 1]), D1/2 = D({1/2}).
It is clear that D1/2 = D− ∩ D+ = ∂D− ∩ ∂D+ and

dim D− = dim D+ = p + q + 2 − n, dim D1/2 = p + q + 1 − n.

Since L may be non-smooth, we cannot consider the intersection poly-
chain DZ(K,L). (A priori, the set D− ∪ D+ does not have a structure of a manifold
with faces.) Instead, we turn the disjoint union D− ⊔ D+ into a polychain which will
serve as a substitute for DZ(K,L). The inclusion (5.2.7) allows us to use the same
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construction as in Section 4.2.1 in order to upgrade D−, D+, and D1/2 to polychains
in Ω◦

32 × Ω◦
14 × Z denoted, respectively,

D− = D−(K,L), D+ = D+(K,L), D1/2 = D1/2(K,L).

As can be checked from our conventions, the oriented manifold D1/2 has the ori-
entation inherited from (−1)p+q+1+n∂D− or, equivalently, the orientation inherited
from (−1)p+q+n∂D+. The inclusions D1/2 ⊂ D± are compatible with the polychain
structures (except for the orientations): they map faces of D1/2 diffeomorphically
onto faces of D±, map faces of the same type onto faces of the same type, com-
mute with the identification diffeomorphisms of the faces, commute with the maps
to Ω◦

32 ×Ω◦
14 × Z , and the induced maps in π0 commute with the weights. Also, a face

of D± having the same type as the image of a face F of D1/2 must be the image of
a face of D1/2 of the same type as F. These facts allow us to form a (p + q + 2 − n)-
polychain Dh = Dh(K,L) in Ω◦

32 × Ω◦
14 × Z by taking the disjoint union D− ⊔ D+

and declaring that the images of any face of D1/2 in D− and D+ have the same type
and the identification diffeomorphism between them is the identity map. We shall
sometimes write

D− ∪
1/2

D+

for this polychain Dh .

Lemma 5.2.5. — Let K be a smooth p-polycycle in Ω◦
12 and let L be a half-smooth q-polycycle

in Ω◦
34 × Z half-transversal to K. Then Dh(K,L) is a polycycle in Ω◦

32 × Ω◦
14 × Z and[

Υ̃12,34Z(⟨K⟩, ⟨L⟩)
]
= [Dh(K,L)] ∈ Hp+q+2−n(Ω32 × Ω14 × Z).

Proof. — Lemma 4.2.2 directly extends to smooth polychains K, K′ in Ω◦
12 and half-

smooth polychainsL,L′ inΩ◦
34×Z half-transversal toK,K′; one should only replaceD

by Dh . This implies the first claim of Lemma 5.2.5.
There is an arbitrarily small deformation {Lt = (L, ψ, v, ((λ′)t, λ′′))}t∈I of L0 = L

into a smooth polycycle L1. We can assume that the restrictions of the maps

(λ̃′)t : L × [0, 1] −→ M

to L× [0, 1/2] and L× [1/2, 1] are smooth maps smoothly depending on t ∈ I. As in the
proof of Lemma 3.2.3, we derive from the deformation {Lt }t∈I a (q + 1)-polychain R

in Ω◦
34 × Z such that ∂rR = red(L1) ⊔ red(−L). The assumptions on the deformation

imply that R is half-smooth. Taking the deformation small enough, we can ensure
that R is half-transversal to K. By the assumption ∂rK = � and the generalized
version of Lemma 4.2.2,

(−1)n+p+1∂rDh(K,R) = redDh ( redK, red(L1) ⊔ red(−L)
)

= redDh(redK, redL1) ⊔
(
− redDh(redK, redL)

)
= redDh(K,L1) ⊔

(
− redDh(K,L)

)
.

Therefore ⟨
Dh(K,L)

⟩
=

⟨
Dh(K,L1)

⟩
∈ H̃p+q+2−n(Ω32 × Ω14 × Z).
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Projecting to singular homology, we obtain the equality[
Dh(K,L)

]
=

[
Dh(K,L1)

]
∈ Hp+q+2−n(Ω32 × Ω14 × Z).

Since the polycycle L1 is smooth, the manifold with faces underlying Dh(K,L1)
is obtained by cutting out the manifold with faces underlying DZ(K,L1) along a
smooth compact oriented proper submanifold of codimension 1. This easily implies
the equality

[
Dh(K,L1)

]
=

[
DZ(K,L1)

]
. Thus,[

Υ̃12,34Z(⟨K⟩, ⟨L⟩)
]
=

[
Υ̃12,34Z(⟨K⟩, ⟨L1⟩)

]
=

[
DZ(K,L1)

]
=

[
Dh(K,L)

]
. □

5.2.3. A Jacobi-type identity for Υ. — As in Section 4.3.5, the operations

Υ̃12,34Z, Υ̌12,34Z, Υ12,34Z

generalize to all tuples ⋆1,⋆2,⋆3,⋆4 ∈ ∂M . We pick two extra points ⋆5,⋆6 ∈ ∂M . For
Z = Ω56, the maps Υ̃12,34Z , Υ̌12,34Z , Υ12,34Z will be denoted respectively by

Υ̃12,3456, Υ̌12,3456, Υ12,3456.

Given a permutation (i, j, k, l,m, n) of (1, 2, 3, 4, 5, 6), we can accordingly renumber the
points ⋆1, . . . ,⋆6 and consider the corresponding maps Υ̃i j,klmn, Υ̌i j,klmn, Υi j,klmn.

We now establish a Jacobi-type identity for Υi j,klmn.

Lemma 5.2.6. — Consider the permutation maps

p231 : Ω36 × Ω52 × Ω14 −→ Ω52 × Ω14 × Ω36, (x, y, z) 7−→ (y, z, x),

p312 : Ω14 × Ω36 × Ω52 −→ Ω52 × Ω14 × Ω36, (x, y, z) 7−→ (z, x, y).

For any a ∈ Hp(Ω12), b ∈ Hq(Ω34) and c ∈ Hr(Ω56) with p, q, r ≥ 0, we have the following
equality in Hp+q+r+4−2n(Ω52 × Ω14 × Ω36):

Υ12,5436

(
a ⊗ Υ34,56(b ⊗ c)

)
+ (−1)(p+n)(q+r)(p312)∗Υ34,1652

(
b ⊗ Υ56,12(c ⊗ a)

)
+ (−1)(p+q)(r+n)(p231)∗Υ56,3214

(
c ⊗ Υ12,34(a ⊗ b)

)
= 0.

Proof. — Set ε = (−1)n(q+1)+pr . The definition of Υ34,56 and (5.2.2) imply that

Υ12,5436

(
a ⊗ Υ34,56(b ⊗ c)

)
= Υ12,5436

(
[⟨a⟩] ⊗ [Υ̌34,56(⟨b⟩ ⊗ ⟨c⟩)]

)
=

[
Υ̌12,5436(⟨a⟩ ⊗ Υ̌34,56(⟨b⟩ ⊗ ⟨c⟩))

]
= (−1)(r+nq)+(q+r+n+np)

[
Υ̃12,5436(⟨a⟩ ⊗ Υ̃34,56(⟨b⟩ ⊗ ⟨c⟩))

]
= ε(−1)q+p(n+r)

[
Υ̃12,5436(⟨a⟩ ⊗ Υ̃34,56(⟨b⟩ ⊗ ⟨c⟩))

]
.

Using the naturality of the transformation [−], we also obtain that

(−1)(p+n)(q+r)(p312)∗Υ34,1652

(
b ⊗ Υ56,12(c ⊗ a)

)
= (−1)(p+n)(q+r)

[
(p312)∗Υ̌34,1652(⟨b⟩ ⊗ Υ̌56,12(⟨c⟩ ⊗ ⟨a⟩))

]
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= (−1)(p+n)(q+r)+(p+nr)+(r+p+n+nq)
[
(p312)∗Υ̃34,1652(⟨b⟩ ⊗ Υ̃56,12(⟨c⟩ ⊗ ⟨a⟩))

]
= ε(−1)r+q(n+p)

[
(p312)∗Υ̃34,1652(⟨b⟩ ⊗ Υ̃56,12(⟨c⟩ ⊗ ⟨a⟩))

]
and

(−1)(p+q)(r+n)(p231)∗Υ56,3214

(
c ⊗ Υ12,34(a ⊗ b)

)
= (−1)(p+q)(r+n)

[
(p231)∗Υ̌56,3214(⟨c⟩ ⊗ Υ̌12,34(⟨a⟩ ⊗ ⟨b⟩))

]
= (−1)(p+q)(r+n)+(q+np)+(p+q+n+nr)

[
(p231)∗Υ̃56,3214(⟨c⟩ ⊗ Υ̃12,34(⟨a⟩ ⊗ ⟨b⟩))

]
= ε(−1)p+r(n+q)

[
(p231)∗Υ̃56,3214(⟨c⟩ ⊗ Υ̃12,34(⟨a⟩ ⊗ ⟨b⟩))

]
.

Thus, it is enough to prove the following identity in H∗ (Ω52 × Ω14 × Ω36), where
a ∈ H̃p(Ω12), b ∈ H̃q(Ω34) and c ∈ H̃r(Ω56) are now any face homology classes:

(−1)q+p(n+r)
[
Υ̃12,5436(a ⊗ Υ̃34,56(b ⊗ c))

]
(5.2.8)

+ (−1)r+q(n+p)
[
(p312)∗Υ̃34,1652(b ⊗ Υ̃56,12(c ⊗ a))

]
+ (−1)p+r(n+q)

[
(p231)∗Υ̃56,3214(c ⊗ Υ̃12,34(a ⊗ b))

]
= 0.

Slightly moving the points ⋆1, . . . ,⋆6 in ∂M , we can assume that they are
pairwise distinct. Let K = (K, φ, u, κ) be a smooth p-polycycle in Ω◦

12 represent-
ing a, let L = (L, ψ, v, λ) be a smooth q-polycycle in Ω◦

34 representing b, and
let N = (N, χ, z, η) be a smooth r-polycycle in Ω◦

56 representing c. We will assume
that K,L,N are pairwise transversal in the sense of Section 4.1.1. This assumption
and other transversality conditions imposed below in the course of the proof are
always achieved by a small deformation of K,L,N.

Let Dbc = D(L,N) be the intersection polycycle as defined in Section 4.2.1. Recall
that its underlying manifold with faces, Dbc , consists of all tuples (l, h, n, i) ∈ L×I×N×I
such that λ̃(l, h) = η̃(n, i). Let (cb, bc) stand for the underlying continuous map

λ◁▷η : Dbc −→ Ω◦
54 × Ω◦

36

of Dbc . The map cb = λ ◁ η : Dbc −→ Ω◦
54 carries a point (l, h, n, i) to the path I → M

which runs from ⋆5 to η̃(n, i) along η̃(n,−) in the first half-time and then runs
from λ̃(l, h) to ⋆4 along λ̃(l,−) in the second half-time. (Here and below, the time
parameter of paths always increases along subintervals of I with constant speed.)
The map bc = λ ▷ η : Dbc → Ω◦

36 carries (l, h, n, i) to the path I → M which runs
from ⋆3 to λ̃(l, h) along λ̃(l,−) in the first half-time and then runs from η̃(n, i) to ⋆6

along η̃(n,−) in the second half-time. Thus the paths cb(l, h, n, i) and bc(l, h, n, i) are
obtained from the paths η̃(n,−) and λ̃(l,−) by switching direction at the intersection
point λ̃(l, h) = η̃(n, i), see Figure 5.2.1 next page.

We set I◦ = Int(I) = (0, 1), Z = Ω◦
36 and viewDbc as a polycycle inΩ◦

54×Z . It is half-
smooth in the sense of Section 5.2.2. Slightly deforming the map κ̃ : K× I → M adjoint
to κ, we can assume Dbc to be half-transversal to K in the sense of Section 5.2.2. In the
sequel, we consider the associated (p+ q+ r +4−2n)-polychains D−

abc
= D−(K,Dbc)

and D+
abc

= D+(K,Dbc) in Ω◦
52 × Ω◦

14 × Z .
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⋆5

⋆3

⋆1 ⋆6

⋆4

⋆2

c

b
b

c

Figure 5.2.1. The polycycle Dbc in Ω◦
54 ×Ω◦

36.

On the one hand, the manifold with faces D−
abc

underlying the polychain D−
abc

consists of all tuples

(5.2.9) (k, s, l, h, n, i, t) ∈ K × I◦ × L × I◦ × N × I◦ × (0, 1/2]

such that λ̃(l, h) = η̃(n, i) and κ̃(k, s) = η̃(n, i ∗ t). The map

(5.2.10) (ca, a(cb), bc) : D−
abc −→ Ω◦

52 × Ω◦
14 × Z = Ω◦

52 × Ω◦
14 × Ω◦

36

underlyingD−
abc

is schematically shown in Figure 5.2.2 next page where one switches
direction at the dotted intersections. The first coordinate

ca : D−
abc −→ Ω◦

52

sends any point (5.2.9) to the path I → M which goes from⋆5 to η̃(n, i ∗ t) along η̃(n,−)
in half-time and, next, goes from κ̃(k, s) to ⋆2 along κ̃(k,−) in half-time. The map

a(cb) : D−
abc −→ Ω◦

14

carries a point (5.2.9) to the path I → M which goes from⋆1 to κ̃(k, s) along κ̃(k,−) in
half-time, next, goes from η̃(n, i ∗ t) to η̃(n, i) along η̃(n,−) in time

[
1
2, 1 −

1
4(1−t)

]
and,

finally, goes from λ̃(l, h) to ⋆4 along λ̃(l,−) in time
[
1 − 1

4(1−t), 1
]
. The map

bc : D−
abc −→ Ω◦

36

sends a point (5.2.9) to the path I → M which goes from ⋆3 to λ̃(l, h) = η̃(n, i)
along λ̃(l,−) in half-time and, next, goes from η̃(n, i) to ⋆6 along η̃(n,−) in half-time.

On the other hand, the manifold with faces D+
abc

underlying the polychain D+
abc

consists of all tuples

(5.2.11) (k, s, l, h, n, i, t) ∈ K × I◦ × L × I◦ × N × I◦ × [1/2, 1)

such that λ̃(l, h) = η̃(n, i) and κ̃(k, s) = λ̃(l, h ∗ t). The map

(5.2.12) ((cb)a, ab, bc) : D+
abc

−→ Ω◦
52 × Ω◦

14 × Ω◦
36
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is computed similarly to (5.2.10) and is schematically shown in Figure 5.2.2. We only
note that the map (cb)a : D+

abc
→ Ω◦

52 carries a point (5.2.11) to the path I → M which
goes from ⋆5 to η̃(n, i) along η̃(n,−) in time

[
0, 1

4t

]
, next, goes from λ̃(l, h) to λ̃(l, h ∗ t)

along λ̃(l,−) in time
[
1
4t ,

1
2

]
and, finally, goes from κ̃(k, s) to ⋆2 along κ̃(k,−) in the

remaining half-time.
Consider also the polychain D

1/2

abc
= D1/2

(
K,Dbc

)
in Ω◦

52 ×Ω◦
14 × Z . Its underlying

(p + q + r + 3 − 2n)-manifold with faces

D1/2

abc
= D−

abc ∩ D+
abc

consists of the tuples (k, s, l, h, n, i, 1/2) such that κ̃(k, s) = λ̃(l, h) = η̃(n, i). The under-
lying map

(ca, ab, cb) : D1/2

abc
−→ Ω◦

52 × Ω◦
14 × Ω◦

36

is the restriction of the maps (5.2.10) and (5.2.12), see Figure 5.2.2.

⋆5 ⋆5 ⋆5

⋆3 ⋆3 ⋆3

⋆1 ⋆1 ⋆1

⋆2

⋆4

⋆6

⋆2

⋆4

⋆6

⋆2

⋆4

⋆6

c a

a

c
b

c

b

c

c

b b

a

a
c

c

b b
b

a

a

Figure 5.2.2. The polychains D−
abc

, D1/2

abc
and D+

abc
.

Cyclically permuting a, b, c, we similarly obtain polychains D−
bca

, D1/2

bca
,D+

bca
and

D−
cab

, D1/2

cab
,D+

cab
. Lemma 5.2.5 allows us to rewrite (5.2.8) as the identity

(−1)q+p(n+r)
[
D−

abc ∪
1/2

D+
abc

]
+ (−1)r+q(n+p)(p312)∗

[
D−

bca ∪
1/2

D+
bca

]
(5.2.13)

+ (−1)p+r(n+q)(p231)∗
[
D−

cab ∪
1/2

D+
cab

]
= 0

in H∗(Ω52 ×Ω14 ×Ω36). The idea of the proof is to show that the six polychains on the
left-hand side of (5.2.13) cancel each other pairwise.

We first explain how to relate the polychains D−
abc

and D+
bca

. Observe that the
manifold with faces D+

bca
underlying D+

bca
consists of all tuples

(5.2.14) (l, h, n, i′, k, s, t ′) ∈ L × I◦ × N × I◦ × K × I◦ × [1/2, 1)

such that η̃(n, i′) = κ̃(k, s) and λ̃(l, h) = η̃(n, i′ ∗ t ′). We define a smooth map
F : K × I◦ × L × I◦ × N × I◦ × (0, 1/2] −→ L × I◦ × N × I◦ × K × I◦ × [1/2, 1)

by the formula
F(k, s, l, h, n, i, t) =

(
l, h, n, i′(i, t), k, s, t ′(i, t)

)
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where i′ : I◦ × (0, 1/2] → I◦ and t ′ : I◦ × (0, 1/2] → [1/2, 1) are given by

(5.2.15) i′(i, t) = 2it and t ′(i, t) = 1 − 1 − i
2 − 4it

·

Observe that the functions i′, t ′ satisfy the equations i′ = i ∗ t and i = i′ ∗ t ′. It easily
follows that the transformation (i′, t ′) : I◦×(0, 1/2] → I◦×[1/2, 1) is a diffeomorphism,
so that F is a diffeomorphism carrying D−

abc
onto D+

bca
. The resulting diffeomorphism

Fabc : D−
abc −→ D+

bca

is compatible with the partitions and the weights of the polychains D−
abc

, D+
bca

.
Moreover,

(5.2.16) (ca, a(cb), bc) = p312((ac)b, bc, ca)Fabc : D−
abc −→ Ω◦

52 × Ω◦
14 × Ω◦

36

up to homotopy of the second coordinate map compatible with the partitions. The
map Fabc carries D1/2

abc
⊂ D−

abc
diffeomorphically onto D1/2

bca
⊂ D+

bca
via the permuta-

tion
(k, s, l, h, n, i, 1/2) 7−→ (l, h, n, i, k, s, 1/2)

and (5.2.16) holds on D1/2

abc
as an equality of maps (no homotopy needed). One easily

constructs a homotopy of the map

a(cb) : D−
abc −→ Ω◦

14

into ((ac)b) ◦ Fabc constant on D1/2

abc
. Since the left-hand side of (5.2.13) is preserved

under such a homotopy of a(cb), we can assume that (5.2.16) is an equality of maps.
We prove now that

(5.2.17) deg Fabc = (−1)1+pn+qn+(p+1)(q+r).

The diffeomorphism Fabc carries the open subset R− = D−
abc

\ D1/2

abc
of D−

abc
onto the

open subset R+ = D+
bca

\ D1/2

bca
of D+

bca
, and deg Fabc is equal to the degree of the

restricted diffeomorphism R− → R+. Clearly,

R− = D−
abc ∩ X−

abc where X−
abc = K × I◦ × L × I◦ × N × I◦ × (0, 1/2),

R+ = D+
bca

∩ X+
bca

where X+
bca

= L × I◦ × N × I◦ × K × I◦ × (1/2, 1).

Consider the maps

X−
abc

G−
−−→ M4, (k, s, l, h, n, i, t) 7−→

(
κ̃(k, s), η̃(n, i ∗ t), λ̃(l, h), η̃(n, i)

)
,

X+
bca

G+

−−→ M4, (l, h, n, i′, k, s, t ′) 7−→
(
κ̃(k, s), η̃(n, i′), λ̃(l, h), η̃(n, i′ ∗ t ′)

)
.

Since N is transversal to both K and L, the map G− is transversal to diagM ×diagM in
the following sense: for any faces A, B,C of K, L, N respectively, the restriction of G−

to the interior of A × I◦ × B × I◦ × C × I◦ × (0, 1/2) is transversal to the interior of
diagM ×diagM (in the usual sense of differential topology). Similarly, the map G+

is transversal to diagM ×diagM . Observe that G− = G+F X−
abc

and that the inverse
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images of diagM ×diagM under the maps G−,G+ are, respectively, the sets R−, R+. We
identify

(5.2.18) νM4(diagM ×diagM) = pr∗12 νM2(diagM) ⊕ pr∗34 νM2(diagM)

where pri j : M4 → M2 is the cartesian projection defined by

pri j(m1,m2,m3,m4) = (mi,mj).

As above, νM2(diagM) carries the orientation induced by that of diagM ≈ M using our
orientation convention, and we give to (5.2.18) the product orientation. Pulling back
the latter orientation along G−, we obtain an orientation on the normal bundle of R−

in X−
abc

; this oriented normal vector bundle is denoted by ν−. The normal bundle
of R+ in X+

bca
is oriented similarly and denoted by ν+. Let T− be the tangent bundle

of R− with the orientation induced by that of ν−. Similarly, let T+ be the tangent
bundle of R+ with the orientation induced by that of ν+. Clearly, the diffeomorphism

(i′, t ′) : I◦ × (0, 1/2] −→ I◦ × [1/2, 1)

defined by (5.2.15) is orientation-reversing. Hence deg F = (−1)1+(p+1)(q+r), and
since F carries R− onto R+ and induces an orientation-preserving map ν− → ν+, we
have

(5.2.19) F∗
abc(T

+) = (−1)1+(p+1)(q+r)T−.

Next, consider the following isomorphisms of oriented vector bundles over R−,
where T stands for the tangent bundle, ν stands for the normal bundle, and pr
denotes the appropriate cartesian projection:

T(K × I × L × I × N × I × I) R−

� pr∗ T(K × I) R− ⊕ pr∗ T(L × I × N × I) R− ⊕ pr∗ T(I) R−

� pr∗ T(K × I) R− ⊕ pr∗
(
νL×I×N×I (Dbc) ⊕ T(Dbc)

)
R− ⊕ pr∗ T(I) R−

� (−1)n(p+1) pr∗νL×I×N×I (Dbc) R− ⊕ pr∗ T(K × I × Dbc × I) R−

� (−1)n(p+1) pr∗νL×I×N×I (Dbc) R− ⊕ νK×I×Dbc×I (R
−) ⊕ T(R−)

� (−1)np νK×I×Dbc×I (R
−) ⊕ pr∗νL×I×N×I (Dbc) R−︸                                                   ︷︷                                                   ︸

ν−

⊕T(R−).

It follows that T− = (−1)npT(R−). Similarly,

T(L × I × N × I × K × I × I) R+

� pr∗ T(L × I) R+ ⊕ pr∗ T(N × I × K × I) R+ ⊕ pr∗ T(I) R+

� pr∗ T(L × I) R+ ⊕ pr∗
(
νN×I×K×I (Dca) ⊕ T(Dca)

)
R+ ⊕ pr∗ T(I) R+

� (−1)n(q+1) pr∗νN×I×K×I (Dca) R+ ⊕ pr∗ T(L × I × Dca × I) R+
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� (−1)n(q+1) pr∗νN×I×K×I (Dca) R+ ⊕ νL×I×Dca×I (R
+)︸                                                    ︷︷                                                    ︸

(−1)nν+

⊕T(R+).

Here the sign (−1)n accompanying ν+ is the degree of the permutation map

M2 −→ M2, (m1,m2) 7−→ (m2,m1).

It follows that T+ = (−1)nqT(R+). Formula (5.2.19) and the computations of T+,T−

imply (5.2.17).
Cyclically permuting a, b, c, we obtain diffeomorphisms

Fbca : D−
bca −→ D+

cab
,

Fcab : D−
cab −→ D+

abc

such that

deg Fbca = (−1)1+qn+rn+(q+1)(r+p),(5.2.20)

deg Fcab = (−1)1+rn+pn+(r+1)(p+q).(5.2.21)

To conclude the proof, we set

D± = D±
abc ⊔ D±

bca ⊔ D±
cab and D1/2 = D+ ∩ D− = D1/2

abc
⊔ D1/2

bca
⊔ D1/2

cab
.

Clearly, FcabFbcaFabc = id on D1/2

abc
. Therefore any triangulation of D1/2

abc
extends

uniquely to a triangulation, T1/2, of D1/2 invariant under Fabc ⊔ Fbca ⊔ Fcab . (All tri-
angulations in this argument are supposed to be locally ordered and to fit the given
partitions, cf. Sections 3.1.2 and 3.3.2.) Subdividing, if necessary, T1/2 we can assume
that it extends to a triangulation, T−, of D−. Transferring T− along the diffeomorphism

Fabc ⊔ Fbca ⊔ Fcab : D− −→ D+

we obtain a triangulation, T+, of D+ also extending T1/2. We use the triangulations T−

and T+ to represent the left-hand side of (5.2.13) by a (p+ q+ r +4−2n)-dimensional
singular chain. According to (5.2.17), (5.2.20) and (5.2.21), every singular simplex
contributed by a top-dimensional simplex of T− cancels with the corresponding
singular simplex in T+. Therefore the singular chain in question is equal to zero and
so is the left-hand side of (5.2.13). □

5.2.4. Proof of Theorem 5.1.1 (the end). — Let {{− ,−,−}} ∈ End(A⊗3)be the tribracket
induced by the intersection bibracket {{− ,−}} in A = A(C). Pick any points ⋆1, . . . ,⋆6

in ∂M and any homology classes a ∈ Hp(Ω12), b ∈ Hq(Ω34) and c ∈ Hr(Ω56). We need
to show that the tensor

{{a , b, c}} =
{{

a , {{b , c}}′
}}

⊗ {{b , c}}′′(5.2.22)

+ (−1)(p+n)(q+r)P312

(
{{b , {{c , a}}′}} ⊗ {{c , a}}′′

)
+ (−1)(p+q)(r+n)P231

(
{{c , {{a , b}}′}} ⊗ {{a , b}}′′

)
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vanishes, where P312,P231 ∈ End(A⊗3) are the graded permutations defined in Sec-
tion 1.2.1. For any i, j, k, l, u, v ∈ {1, . . . , 6}, let

ϖi j,kl : H∗(Ωi j) ⊗ H∗(Ωkl) −→ H∗(Ωi j × Ωkl),

ϖi j,kl,uv : H∗(Ωi j) ⊗ H∗(Ωkl) ⊗ H∗(Ωuv) −→ H∗(Ωi j × Ωkl × Ωuv)

be the linear maps induced by the cross product. By definition of the intersection
bibracket and Lemma 5.2.4,

ϖ52,14,36

(
{{a , {{b , c}}′}} ⊗ {{b , c}}′′

)
= ϖ52,14

(
{{a , {{b , c}}′}}

)
× {{b , c}}′′

= Υ12,54

(
a ⊗ {{b , c}}′

)
× {{b , c}}′′

= Υ12,5436

(
a ⊗ ({{b , c}}′ × {{b , c}}′′)

)
= Υ12,5436

(
a ⊗ ϖ54,36({{b , c}})

)
= Υ12,5436 (a ⊗ Υ34,56(b ⊗ c)) .

Cyclically permuting a, b, c, we also obtain

ϖ52,14,36P312

(
{{b , {{c , a}}′}} ⊗ {{c , a}}′′

)
= (p312)∗ϖ14,36,52

(
{{b , {{c , a}}′}} ⊗ {{c , a}}′′

)
= (p312)∗Υ34,1652

(
b ⊗ Υ56,12(c ⊗ a)

)
,

ϖ52,14,36P231

(
{{c , {{a , b}}′}} ⊗ {{a , b}}′′

)
= (p231)∗ϖ36,52,14

(
{{c , {{a , b}}′}} ⊗ {{a , b}}′′

)
= (p231)∗Υ56,3214

(
c ⊗ Υ12,34(a ⊗ b)

)
.

Combining the last three identities, formula (5.2.22) and Lemma 5.2.6, we obtain
that ϖ52,14,36 ({{a , b, c}}) = 0. We conclude that {{a , b, c}} = 0.

5.3. Computations and examples

We compute Υ for spherical homology classes of complementary dimensions and
for 0-dimensional homology classes. We use these results to determine the intersec-
tion bibracket in two examples.

5.3.1. Intersection of spheres. — Assume that n = dim(M) ≥ 4. We compute the
operation Υ on the loop homology classes arising from spheres of complementary
dimensions. Let us fix a base point sk in the k-sphere Sk for every k ≥ 1. For x ∈ ∂M ,
we let

πk(M, x) =
[
(Sk, sk), (M, x)

]
be the k-th homotopy group of M at x. For x, y ∈ ∂M , we set

π1(M, x, y) = π0
(
Ω(M, x, y)

)
.
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Consider base points⋆,⋆′ in ∂M and integers p, q ≥ 2 such that p+q = n = dim(M).
Let Υπ

⋆,⋆′ be the following composition:

πp(M,⋆) × πq(M,⋆′)

∂̄p×∂̄q
��

Υπ
⋆,⋆′

((

] \ [ Z Y X W V U T R

Hp−1(Ω⋆) ⊗ Hq−1(Ω⋆′)
Υ // H0(Ω⋆′⋆ ×Ω⋆⋆′) ≃ K [π1(M,⋆′,⋆)] ⊗ K [π1(M,⋆,⋆′)].

Here Ω⋆ = Ω(M,⋆,⋆), Ω⋆⋆′ = Ω(M,⋆,⋆′), ∂̄∗ : π∗(M,⋆) → H∗−1(Ω⋆) is the con-
necting homomorphism of Section 5.1.3, and similar notation applies with ⋆ and ⋆′

exchanged. The following lemma computes Υπ
⋆,⋆′ when ⋆ , ⋆′.

Lemma 5.3.1. — Assume ⋆ , ⋆′. Let
α : (Sp, sp) −→ (M,⋆) and β : (Sq, sq) −→ (M,⋆′)

be continuous maps such that

α−1(∂M) = {sp}, β−1(∂M) = {sq}
and α Sp\{sp }, β Sq\{sq } are transversal smooth maps. Then

(5.3.1) Υπ
⋆,⋆′

(
[α], [β]

)
= (−1)n(p+1)+1

∑
(x,y)

ε(x, y)[βyα−1
x ] ⊗ [αxβ

−1
y ].

Here: the sum runs over all (x, y) ∈ Sp × Sq such that α(x) = β(y); ε(x, y) is the sign of the
product orientation in α∗(TxSp) ⊕ β∗(TySq) = Tα(x)M with respect to the orientation of M ;
αx is the composition of α with a path from sp to x in Sp and βy is the composition of β with a
path from sq to y in Sq .

Proof. — For k ≥ 1, let hk : Ik → Sk be a continuous map such that hk(∂Ik) = {sk},
hk Int(I k ) is smooth and the quotient map h̄k : Ik/∂Ik → Sk is a degree 1 homeomor-
phism. Then αhp : Ip = Ip−1 × I → M is adjoint to a continuous map ωα : Ip−1 → Ω⋆
which carries ∂Ip−1 to the constant path e⋆. Let

ω̄α : Ip−1/∂Ip−1 −→ Ω⋆

be the quotient map. Then

∂̄p
(
[α]

)
= (ω̄α)∗

(
[Ip−1/∂Ip−1]

)
= [K]

where K = (Ip−1, θp−1, 1, ωα) is the polycycle in Ω⋆ with weight 1 and with parti-
tion θp−1 defined as the product of p − 1 copies of the partition of I identifying {0}
to {1}. Similarly, ∂̄q([β]) = [L] for L = (Iq−1, θq−1, 1, ωβ).

The polycycles K and L are admissible in the sense of Section 4.3.2 where
⋆1 = ⋆2 = ⋆, ⋆3 = ⋆4 = ⋆′, U = Int(Ip−1) × Int(I) and V = Int(Iq−1) × Int(I). We
can therefore consider the intersection polychain D(K,L) and by Lemma 4.3.3,
it represents Υ̃(⟨K⟩ ⊗ ⟨L⟩). Then, using Lemma 4.4.1, we get

Υπ
⋆,⋆′

(
[α], [β]

)
= Υ

(
[K], [L]

)
= (−1)(q−1)+n(p−1) [Υ̃(⟨K⟩ ⊗ ⟨L⟩)

]
= (−1)q+n(p+1)+1

[
D(K,L)

]
.
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The intersection polycycle D(K,L) is 0-dimensional, and its points bĳectively corre-
spond to the pairs (x, y) ∈ Sp ×Sq such that α(x) = β(y). Such a pair (x, y) contributes

ε̃(x, y)
(
βy ᾱx, αx β̄y

)
∈ Ω⋆′⋆ × Ω⋆⋆′

to D(K,L) where αx, βy are paths as in the statement of the lemma, ᾱx is the compo-
sition of α with a path from x to sp in Sp , and β̄y is the composition of β with a path
from y to sq in Sq . Here ε̃(x, y) is the sign of the linear isomorphism

T(x,y)(Sp × Sq)
(α×β)∗

// T(z,z)(M × M) //
T(z,z)(M × M)
T(z,z) diagM

= νM×M(diagM)(z,z),

where z = α(x) = β(y), T(x,y)(Sp × Sq) = TxSp ⊕ TySq has the product orientation
and νM×M(diagM) has the orientation induced from that of diagM ≈ M . The linear
map T(z,z)(M × M) = TzM ⊕ TzM → TzM defined by (u, v) 7→ u − v induces an
orientation-preserving isomorphism νM×M(diagM)(z,z) → TzM . Composing with the
linear isomorphism above, we obtain the map

α∗ ⊕ (−β∗) : TxSp ⊕ TySq −→ TzM

whose degree is (−1)qε(x, y). Therefore ε̃(x, y) = (−1)qε(x, y). Thus,

Υπ
⋆,⋆′

(
[α], [β]

)
= (−1)n(p+1)+1

∑
(x,y)

ε(x, y)
[
(βy ᾱx, αx β̄y)

]
= (−1)n(p+1)+1

∑
(x,y)

ε(x, y)
[
βy ᾱx

]
⊗
[
αx β̄y

]
.

Since p ≥ 2, the path αx is well defined up to homotopy rel ∂I and ᾱx is homotopic to
α−1
x . Similar claims hold for β since q ≥ 2. This yields (5.3.1). □

If we consider a single point⋆ in the boundary of M , then we can similarly compute
the linear map

Υπ = Υπ
⋆,⋆ : πp(M,⋆) × πq(M,⋆) −→ K

[
π1(M,⋆)

]
⊗ K

[
π1(M,⋆)

]
.

Fix a path ς : I → ∂M from ⋆ to a different point ⋆′ ∈ ∂M , and consider maps

α : (Sp, sp) −→ (M,⋆) and β : (Sq, sq) −→ (M,⋆′)

satisfying the conditions of Lemma 5.3.1. Transporting β along ς−1, we obtain a map

ς−1β : (Sq, sq) −→ (M,⋆).

Applying Lemmas 4.4.2 and 5.3.1, we obtain that

Υπ([α], [ς−1β]) = Υ
(
∂̄p[α], ς(∂̄q[β])ς

−1)(5.3.2)
= ςΥ

(
∂̄p[α], ∂̄q[β]

)
ς−1

= ςΥπ
⋆,⋆′

(
[α], [β]

)
ς−1

= (−1)n(p+1)+1
∑
(x,y)

ε(x, y)[ςβyα−1
x ] ⊗ [αxβ

−1
y ς−1].
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This computation implies that the map Υπ is determined by the pairing

(aug ⊗ id)Υπ : πp(M,⋆) × πq(M,⋆) −→ K [π1(M,⋆)],

where aug : K [π1(M,⋆)] → K is the addition of coefficients. Note that

(5.3.3) (aug ⊗ id)Υπ ([α], [ς−1β]) = (−1)n(p+1)+1
∑
(x,y)

ε(x, y)[αxβ−1y ς−1].

The pairing on the right-hand side is the well known “geometric intersection" of
spherical cycles or the “Reidemeister pairing”, see [30] or [43, Section 5].

5.3.2. Intersection of arcs with spheres. — Assume that n = dim(M) ≥ 3. We fix
three points ⋆1,⋆2,⋆3 ∈ ∂M and consider the map Υπ

12,3 defined by the following
composition:

π1(M,⋆1,⋆2) × πn−1(M,⋆3)

∂̄1×∂̄n−1
��

Υπ
12,3

))

\ [ Z Y X W V U T S

H0(Ω12) ⊗ Hn−2(Ω33)
Υ // H0(Ω32 × Ω13) ≃ K

[
π1(M,⋆3,⋆2)

]
⊗K

[
π1(M,⋆1,⋆3)

]
.

As in the previous sections, Ωi j = Ω(M,⋆i,⋆j) for any i, j ∈ {1, 2, 3}. Lemma 5.3.1
easily adapts to this setting and yields the following computation of Υπ

12,3.

Lemma 5.3.2. — Let α ∈ Ω◦
12 and let

β : (Sn−1, sn−1) −→ (M,⋆3)

be a continuous map such that β−1(∂M) = {sn−1}. Assume that ⋆1 , ⋆3, ⋆2 , ⋆3 and that
α (0,1), β Sn−1\{sn−1 } are transversal smooth maps. Then

Υπ
12,3

(
[α], [β]

)
= −

∑
(x,y)

ε(x, y)[βyαx1] ⊗ [α0xβ
−1
y ].

Here: the sum runs over all (x, y) ∈ [0, 1]× Sn−1 such that α(x) = β(y); ε(x, y) is the sign of
the product orientation in α∗(Tx [0, 1])⊕ β∗(TySn−1) = Tα(x)M with respect to the orientation
of M ; α0x (respectively αx1) is the path running along α from ⋆1 to α(x) (respectively
from α(x) to⋆2) in the positive direction and βy is the composition of β with a path from sn−1
to y in Sn−1.

Lemma 5.3.2 can be adapted to the cases where ⋆1 = ⋆3 and/or ⋆2 = ⋆3. Besides,
we can similarly define an operation

Υπ
1,23 : πn−2(M,⋆1) × π1(M,⋆2,⋆3) −→ K

[
π1(M,⋆2,⋆1)

]
⊗ K

[
π1(M,⋆1,⋆3)

]
and compute it as in Lemma 5.3.2.
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5.3.3. A simply connected example. — Fix 2g integers p1, q1, . . . , pg, qg ≥ 2 such that
p1 + q1 = · · · = pg + qg = n. Consider the closed smooth n-manifold
(5.3.4) W = (Sp1 × Sq1) ♯ · · · ♯ (Spg × Sqg )

with the product orientation on each summand, and assume that M = W \ Int(D)
where D is a closed n-ball smoothly embedded in W . Fix a point⋆ ∈ ∂M and consider
the Pontryagin algebra A⋆ = H∗(Ω⋆) where Ω⋆ = Ω(M,⋆,⋆). We now compute the
intersection bibracket in A⋆.

For an appropriate choice of D, of the base points {sk ∈ Sk}k , and of the balls along
which the connected sums are performed in (5.3.4), the sets

Xi = Spi × {sqi } ⊂ Spi × Sqi and Yi = {spi } × Sqi ⊂ Spi × Sqi

are embedded spheres in M , for all i = 1, . . . , g. Since M is simply connected, these
spheres define certain elements xπi ∈ πpi (M,⋆) and yπi ∈ πqi (M,⋆), respectively.
Consider the corresponding elements of the Pontryagin algebra

xi = ∂̄pi (xπi ) ∈ Api−1
⋆ , yi = ∂̄qi (y

π
i ) ∈ Aqi−1

⋆ .

Since M deformation retracts to a wedge of 2g spheres isotopic to X1,Y1, . . . , Xg,Yg, it
follows from [5, III.1.B] (or, alternatively, from [1, Corollary 2.2]) that x1, y1, . . . , xg, yg
freely generate the unital graded algebra A⋆.

In particular, if K = Z, then A⋆ is a free abelian group. Therefore condition (5.1.2)
is satisfied for any ground ring K . Hence the intersection bibracket {{− ,−}} in A⋆ is
defined for any K , and is fully determined by its values on the generators. These
values can be computed from the formula (5.3.2): for any i, j = 1, . . . , g,

(5.3.5) {{xi , yj}} = δi j(−1)qi(pi+1)+11 ⊗ 1, {{yj , xi}} = δi j(−1)pi+11 ⊗ 1,

(5.3.6) {{xi , xj}} = 0, {{yi , yj}} = 0.

Here we use the assumption that the spheres Xi,Yj have codimension ≥ 2 in M and so
can be made disjoint from the interiors of arcs connecting them to⋆. As a consequence,
we observe that the bibracket {{− ,−}} is a graded version of the bibracket associated
by Van den Bergh [42] with the (double of the) quiver Qg having a single vertex and g

edges.
The graded module Ǎ⋆ = A⋆/[A⋆, A⋆] is freely generated by words in the letters

x1, y1, . . . , xg, yg, subject to the cyclic relations

w1w2 = (−1) |w1 | · |w2 |w2w1

for any words w1,w2 where |wi | is the sum of the degrees of the letters appearing
in wi . The (2 − n)-graded Lie bracket ⟨−,−⟩ in Ǎ⋆ induced by {{− ,−}} is a graded
version of the necklace Lie bracket associated to Qg, see [4], [19].

For any integer N ≥ 1, the Gerstenhaber bracket {−,−} in (A⋆)+N induced
by {{− ,−}} can be computed from (5.3.5), (5.3.6). In particular, (A⋆)+1 = Com(A⋆)
is the unital commutative graded algebra with free generators x1, y1, . . . , xg, yg in
degrees |xi | = pi − 1, |yi | = qi − 1, and for any i, j = 1, . . . , g,

{xi, yj} = (−1)qi(pi+1)+1δi j, {yj, xi} = (−1)pi+1δi j, {xi, xj} = 0, {yi, yj} = 0.
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The bracket {−,−} is a graded version of the standard Poisson bracket in the symmetric
algebra of a free module of rank 2g equipped with a symplectic form.

5.3.4. A non-simply connected example. — Let n ≥ 3. We compute the intersection
bibracket in the Pontryagin algebra of the exterior of a ball in W = S1 × Sn−1. We
endow W with the product orientation and set

X = S1 × {sn−1} ⊂ W and Y = {s1} × Sn−1 ⊂ W

where s1 ∈ S1 and sn−1 ∈ Sn−1 are the base points. As above, assume that
M = W \ Int(D) where D is a closed n-ball smoothly embedded in W \ (X ∪ Y).
Pick a point ⋆ ∈ ∂M = ∂D and connect it to the point s = (s1, sn−1) ∈ Int(M) by a
path γ : I → M such that γ−1(X ∪Y) = {1}. Up to homotopy relative to the endpoints,
there are two such paths; we take the path γ such that a positive tangent vector
of γ followed by a positively oriented basis of Tsn−1Sn−1 yields a positively oriented
basis of TsM , see Figure 5.3.1 below. Transporting X and Y along γ, we obtain certain
homotopy classes xπ ∈ π1(M,⋆) and yπ ∈ πn−1(M,⋆). Consider the corresponding
elements

x = ∂̄1(xπ) ∈ A0
⋆ and y = ∂̄n−1(y

π) ∈ An−2
⋆

of the algebra A⋆ = H∗(Ω⋆). Note that x is invertible in A0
⋆ ≃ K [π1(M,⋆)]. We claim

that the unital graded algebra A⋆ is generated by x±1 and y subject to the only
relation xx−1 = 1. Indeed,

A⋆ =
⊕
i∈Z

xiH∗(Ω
null
⋆ )

where Ωnull
⋆ is the connected component of Ω⋆ consisting of null-homotopic loops.

The space Ωnull
⋆ can be identified with the loop space of the universal cover of M .

This cover has the homotopy type of a wedge of countably many copies of Sn−1

since M deformation retracts to X ∪ Y � S1 ∨ Sn−1. Therefore, the unital graded
algebra H∗(Ωnull

⋆ ) is freely generated by the elements {xiyx−i}i∈Z, and the claim above
easily follows.

⋆

⋆′
ζ

γ

Y

s

⟳
X

∂D

Figure 5.3.1. The manifold M = (S1 × Sn−1) \ Int(D).

In particular, if K = Z, then A⋆ is a free abelian group. Therefore the intersection
bibracket {{− ,−}} in A⋆ is defined for any ground ring K . To determine {{− ,−}}, it
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suffices to compute its values on the generators x, y. For degree reasons,
(5.3.7) {{x , x}} = 0.

Let ς be an arc in ∂M connecting ⋆ to another point ⋆′. By Lemma 5.3.2, we obtain
{{x , ς−1yς}} = −ς−1x ⊗ ς, {{ς−1yς , x}} = ς ⊗ ς−1x.

This implies the equalities
(5.3.8) {{x , y}} = −x ⊗ 1, {{y , x}} = 1 ⊗ x.

Observe next that x−1yx and ς−1yς are images under the connecting homomor-
phism of certain elements of πn−1(M,⋆) and πn−1(M,⋆′) that can be represented
by disjoint embedded spheres. It follows that {{x−1yx , ς−1yς}} = 0 which implies
that {{x−1yx , y}} = 0. Using the Leibniz rules and (5.3.8), we deduce that
(5.3.9) {{y , y}} = 1 ⊗ y − y ⊗ 1.

Using (5.3.7)–(5.3.9), one can also compute the graded Lie bracket ⟨−,−⟩ in Ǎ⋆ and
the Gersthenhaber bracket {−,−} in (A+

⋆ )N for any integer N ≥ 1.
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CHAPTER 6

PROPERTIES OF THE INTERSECTION BIBRACKET

In this chapter, M is a smooth oriented connected manifold of dimension n ≥ 2
such that ∂M , � and the condition (5.1.2) is satisfied.

6.1. The scalar intersection form

We derive from the intersection bibracket of M a scalar intersection form and
compute it in terms of usual homology intersections. We begin with algebraic pre-
liminaries.

6.1.1. The scalar form induced by a bibracket. — Consider an arbitrary graded
category C and the associated graded algebra A = A(C), see Section 2.2.1. Given an
augmentation ε : A → K and a d-graded bibracket {{− ,−}} in C with d ∈ Z, we define
the induced scalar form

• : A × A −→ K by a • b = (ε ⊗ ε)
(
{{a , b}}

)
for any a, b ∈ A. Observe that

a • (bc) = (a • b)ε(c) + ε(b)(a • c),

for any a ∈ A, b ∈ HomC(X,Y), c ∈ HomC(Y, Z) with X,Y, Z ∈ Ob(C); similarly,

(ab) • c = ε(a)(b • c) + (a • c)ε(b)

for any c ∈ A, a ∈ HomC(X,Y), b ∈ HomC(Y, Z) with X,Y, Z ∈ Ob(C). Furthermore, if
the bibracket {{− ,−}} is d-antisymmetric, then

a • b = −(−1) |a |d · |b |d b • a for any homogeneous a, b ∈ A.

6.1.2. The scalar form induced by the intersection bibracket. — The path homology
category C = C(M) of the manifold M has a canonical augmentation ε : A(C) → K

obtained as the direct sum over all ⋆,⋆′ ∈ ∂M of the compositions

H∗
(
Ω(M,⋆,⋆′)

)
−→ H0

(
Ω(M,⋆,⋆′)

)
−→ K,
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where the left arrow is the obvious projection and the right arrow carries the homol-
ogy classes of all points to 1. By the previous subsection, this augmentation together
with the intersection bibracket induce a bilinear form • : A(C) × A(C) → K .

We compute • in terms of standard homological intersections in M . For simplicity,
we assume in the rest of this section that n ≥ 3, though the case n = 2 may be
considered similarly. For any points ⋆1,⋆2,⋆3,⋆4 ∈ ∂M , we define a linear map

(6.1.1) H∗
(
M, {⋆1,⋆2}

)
⊗ H∗

(
M, {⋆3,⋆4}

)
−−→ K .

It suffices to define the restriction of to Hk ⊗Hl for any k, l ≥ 0. If k + l , n, then this
restriction is equal to zero. Suppose now that k + l = n. When {⋆1,⋆2} ∩ {⋆3,⋆4} = �,
the form is the standard homological intersection, see, for example, [6]. When
{⋆1,⋆2} ∩ {⋆3,⋆4} , �, we separate two cases. If k ≥ 2, then Hk(M, {⋆1,⋆2}) is
canonically isomorphic to Hk(M) and the pairing is induced by the homologi-
cal intersection Hk(M) ⊗ Hl(M, {⋆3,⋆4}) → K . The case l ≥ 2 is treated similarly
using that Hl(M, {⋆3,⋆4}) is canonically isomorphic to Hl(M). Note that the assump-
tion k + l = n ≥ 3 guarantees that k ≥ 2 or l ≥ 2. If both these inequalities hold true,
then the two definitions above give the same pairing.

The next lemma yields a version of the homological suspension homomorphism
due to Serre [40, §IV.5].

Lemma 6.1.1. — Let Ω = Ω(M,⋆,⋆′) with ⋆,⋆′ ∈ ∂M . There is a unique homomorphism

Σ : H∗(Ω) −→ H∗+1

(
M, {⋆,⋆′}

)
such that for every polycycle K = (K, φ, u, κ) in Ω, we have

(6.1.2) Σ([K]) =
[
(K × I, φ × τ, u × 1, κ̃)

]
where τ is the trivial partition on I = [0, 1].

Proof. — The uniqueness of Σ is a direct consequence of Theorem 3.3.4. To prove the
existence, define a continuous map

ev : Ω −→ M by ev(α) = α(1/2)

and set Ω∂ = ev−1({⋆,⋆′}). The formula

d(α, s)(t) =

⋆ if t ∈ [0, 1/2 − s/2] ,
α(s + 2t − 1) if t ∈ [1/2 − s/2, 1 − s/2] ,
⋆′ if t ∈ [1 − s/2, 1]

defines a continuous map d : (Ω × I,Ω × ∂I) →
(
Ω,Ω∂

)
. Let

∆ : H∗(Ω) −→ H∗+1

(
Ω,Ω∂

)
be the linear map sending any x ∈ H∗(Ω) to d∗(x × [I, ∂I]) (the definition of ∆ is in-
spired by [9, §5] and [28, Remark 3.2.3]). Finally, we setΣ = ev∗ ∆. To check (6.1.2), ob-
serve that the fundamental class [I, ∂I] ∈ H1(I, ∂I) is represented by the 1-dimensional
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polycycle I = (I, τ, 1, id : I → I) relative to ∂I. Lemma 3.3.5 implies that for any poly-
cycle K = (K, φ, u, κ) in Ω,

Σ([K]) = ev∗ d∗
(
[K] × [I]

)
= (ev d)∗ [K × I] =

[
(K × I, φ × τ, u × 1, κ̃)

]
. □

We can now state the main result of this section.

Theorem 6.1.2. — For any ⋆1,⋆2,⋆3,⋆4 ∈ ∂M , the following diagram commutes:

H∗
(
Ω(M,⋆1,⋆2)

)
⊗ H∗

(
Ω(M,⋆3,⋆4)

) • //

−(−1)n |−|Σ⊗Σ

��

K .

H∗
(
M, {⋆1,⋆2}

)
⊗ H∗

(
M, {⋆3,⋆4}

)
DD

The proof of Theorem 6.1.2 proceeds in three steps. First we consider arbitrary
disjoint subsets ∂−M , ∂+M of ∂M and the standard homology intersection form

H∗(M, ∂−M) ⊗ H∗(M, ∂+M) −→ H∗(M).

We denote this form by ⊙ and compute it in terms of polycycles. Secondly, we relate ⊙
to the operation Υ. Finally, we deduce Theorem 6.1.2.

Lemma 6.1.3. — Let ∂−M , ∂+M be disjoint subsets of ∂M . Let K = (K, φ, u, κ) be a smooth
p-polycycle in M relative to ∂−M , let L = (L, ψ, v, λ) be a smooth q-polycycle in M relative
to ∂+M such that the map κ × λ : K × L → M × M is transversal to diagM in the sense of
Section 4.1.1. Let D = (κ×λ)−1(diagM) and let prK : K×L → K be the cartesian projection.
Then D is a manifold with faces and, for some orientation, partition θ, and weight w on D,
the polychain D = (D, θ,w, κ prK D) is a polycycle such that

(6.1.3) [K] ⊙ [L] = (−1)q(p+n)[D] ∈ Hp+q−n(M).

Proof. — The transversality assumption ensures that D inherits from K×L a structure
of a manifold with corners, see [35]. The same argument as at the beginning of
Section 4.2.1 shows that D is a manifold with faces. We orient D so that the induced
orientation of its normal bundle in K × L is the pull-back of the orientation of the
normal bundle of diagM ≈ M in M × M via (κ×λ) D. The partition θ of D is defined as
follows: the faces of D are the connected components of the intersections (F ×G)∩ D
where F and G range over faces of K and L respectively; two such faces C ⊂ (F×G)∩D
and C ′ ⊂ (F ′ × G′) ∩ D are of the same type if F, F ′ are of the same type, G,G′ are of
the same type, and (φF,F′ × ψG,G′)(C) = C ′. Then

θC,C′ = (φF,F′ × ψG,G′) C.

The weight w of D carries a connected component Z of D to u(X)v(Y) where X,Y
are connected components of K, L respectively, such that Z is contained in X × Y .
Then D = (D, θ,w, κ prK D) is a polycycle satisfying (6.1.3).

We leave the general case of this claim to the reader and prove it only under the
following assumptions: K and L are transversal compact oriented smooth submani-
folds of M such that ∂K = ∂M ∩ K ⊂ ∂−M and ∂L = ∂M ∩ L ⊂ ∂+M ; the partitions φ
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of K and ψ of L are trivial; the weights u : π0(K) → K and v : π0(L) → K send
all connected components to 1 ∈ K ; the maps κ : K → M and λ : L → M are the
inclusions. Under these assumptions, we have

[K] ⊙ [L] = [K] ⊙ [L] = [K ∩ L]

where [K] ∈ H∗(M, ∂−M), [L] ∈ H∗(M, ∂+M) and [K ∩ L] ∈ H∗(M) are the fundamental
classes, and K ∩ L is oriented so that

(6.1.4) νM(K ∩ L) = νM(K) K∩L ⊕ νM(L) K∩L

(this agrees with the orientation rule in [6, p. 375]). Since D = (K × L) ∩ diagM

corresponds to K ∩ L ⊂ M under the standard identification diagM ≈ M , we need
only to compare the orientation of D with that of K∩L. Note the following orientation-
preserving isomorphisms of oriented vector bundles:

T(M2) K×L = pr∗K
(
T(M) K

)
⊕ pr∗L

(
T(M) L

)
� pr∗K νM(K) ⊕ pr∗K T(K) ⊕ pr∗L νM(L) ⊕ pr∗L T(L)

� (−1)p(q+n) pr∗K νM(K) ⊕ pr∗L νM(L) ⊕ pr∗K T(K) ⊕ pr∗L T(L)

� (−1)p(q+n) pr∗K νM(K) ⊕ pr∗L νM(L) ⊕ T(K × L)

where prK : K × L → K and prL : K × L → L are the cartesian projections. Restricting
to D ⊂ K × L, we obtain

T(M2) D � (−1)p(q+n) ( pr∗K νM(K)
)
D ⊕

(
pr∗L νM(L)

)
D ⊕ T(K × L) D

� (−1)p(q+n)p∗
(
νM(K) K∩L

)
⊕ p∗(νM(L) K∩L) ⊕ T(K × L) D

� (−1)p(q+n)p∗νM(K ∩ L) ⊕ νK×L(D) ⊕ T(D)

where p is the identification diffeomorphism D → K ∩ L. On the other hand,

T(M2) D � νM×M(diagM) D ⊕ T(diagM) D

� νM×M(diagM) D ⊕ p∗
(
T(M) K∩L

)
� νM×M(diagM) D ⊕ p∗νM(K ∩ L) ⊕ p∗T(K ∩ L)

� (−1)(p+q)np∗νM(K ∩ L) ⊕ νM×M(diagM) D ⊕ p∗T(K ∩ L).

Since νK×L(D) = νM×M(diagM) D as oriented vector bundles, we deduce that

T(D) = (−1)p(q+n) · (−1)(p+q)n p∗T(K ∩ L) = (−1)q(p+n)p∗T(K ∩ L)

and (6.1.3) follows. □

Lemma 6.1.4. — Let, under the assumptions of Lemma 6.1.3, ⋆1,⋆2 ∈ ∂−M and
⋆3,⋆4 ∈ ∂+M . Let ε1 be the composition of the augmentation ε : H∗(Ω32 × Ω14) → K with
the linear map K → H∗(M) sending 1 ∈ K to [⋆1] ∈ H0(M). Then the following diagram
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commutes:
H∗(Ω12) ⊗ H∗(Ω34)

Υ12,34
//

−(−1)n |−|Σ⊗Σ

��

H∗(Ω32 × Ω14)

ε1

��

H∗(M, ∂−M) ⊗ H∗(M, ∂+M)
⊙ // H∗(M).

Proof. — Let pr32 : Ω32 × Ω14 → Ω32 be the cartesian projection. Clearly, the map
ev : Ω32 −→ M

is homotopic to the constant map α 7→ ⋆3 so that, in homology, (ev pr32)∗ = ε1. Pick
now any a ∈ Hp(Ω12) and b ∈ Hq(Ω34) with p, q ≥ 0. Let K = (K, φ, u, κ) be a smooth
reduced p-polycycle in Ω◦

12 and let L = (L, ψ, v, λ) be a smooth reduced q-polycycle
in Ω◦

34 transversely representing the pair of face homology classes (⟨a⟩, ⟨b⟩). Set
D(K,L) = (D, θ,w, κ◁▷λ).

Then
ε1Υ12,34(a ⊗ b) = (−1)q+np(ev pr32)∗

(
[D(K,L)]

)
= (−1)q+np ev∗

[
(D, θ,w, κ ◁ λ)

]
= (−1)q+np

[
(D, θ,w, κ̃ ◦ pr D)

]
where pr : K × I × L × I → K × I is the cartesian projection. We deduce from
Lemmas 6.1.1 and 6.1.3 that

− (−1)npΣ(a) ⊙ Σ(b)

= −(−1)np
[
(K × I, φ × τ, u × 1, κ̃)

]
⊙
[
(L × I, ψ × τ, v × 1, λ̃)

]
= (−1)1+np+(q+1)(p+1+n)

[
(D, θ,w, κ̃ ◦ pr D)

]
= (−1)1+q+(q+1)(p+1+n)ε1Υ12,34(a ⊗ b) = (−1)(q+1)(p+n)ε1Υ12,34(a ⊗ b).

Since (q + 1)(p + n) is even if p + q = n − 2 and ε1Υ12,34(a ⊗ b) = 0 otherwise, we
obtain the claim of the lemma. □

We can now complete the proof of Theorem 6.1.2. Set
∂−M = {⋆1,⋆2} and ∂+M = {⋆3,⋆4}.

Suppose first that ∂−M ∩ ∂+M = �. The desired claim is obtained by combining the
diagram in Lemma 6.1.4 with the obvious diagram

H∗(Ω32 × Ω14) ≃
ϖ32,14

//

ε1

��

H∗(Ω32) ⊗ H∗(Ω14)

ε⊗ε
��

H∗(M) // K

where ϖ32,14 denotes the inverse of the cross product isomorphism as before, and
the bottom horizontal arrow is the standard augmentation. To handle the case
{⋆1,⋆2} ∩ {⋆3,⋆4} , �, consider a smooth isotopy {ϕt : M → M}t∈I of ϕ0 = idM
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which is constant outside of a small neighborhood of the points ⋆1,⋆2 and such
that the point ⋆′

i = ϕ1(⋆i) lies in ∂M \ {⋆3,⋆4} for i = 1, 2. The diffeomorphism
ϕ1 : (M,⋆1,⋆2) → (M,⋆′

1,⋆
′
2) induces horizontal isomorphisms in the commutative

diagram

H∗
(
Ω(M,⋆1,⋆2)

) ) ≃ //

−(−1)n |−|Σ
��

H∗
(
Ω(M,⋆′

1,⋆
′
2)
)

−(−1)n |−|Σ
��

H∗
(
M, {⋆1,⋆2}

) ≃ // H∗
(
M, {⋆′

1,⋆
′
2}
)
.

Note that the upper horizontal arrow coincides with the isomorphism (ς1, ς2)# de-
fined in Section 4.4.1 where ςi : I → ∂M is the path t 7→ ϕt(⋆i). Tensoring this
diagram by the obvious commutative diagram

H∗
(
Ω(M,⋆3,⋆4))

) id //

Σ

��

H∗
(
Ω(M,⋆3,⋆4)

)
Σ

��

H∗
(
M, {⋆3,⋆4}

) id // H∗
(
M, {⋆3,⋆4}

)
we obtain a commutative diagram

H∗
(
Ω(M,⋆1,⋆2)

)
⊗ H∗

(
Ω(M,⋆3,⋆4)

) ≃ //

−(−1)n |−|Σ⊗Σ

��

H∗
(
Ω(M,⋆′

1,⋆
′
2)
)
⊗ H∗

(
Ω(M,⋆3,⋆4)

)
−(−1)n |−|Σ⊗Σ

��

H∗
(
M, {⋆1,⋆2}

)
⊗ H∗

(
M, {⋆3,⋆4}

) ≃ // H∗
(
M, {⋆′

1,⋆
′
2}
)
⊗ H∗

(
M, {⋆3,⋆4}

)
.

By the first part of the proof, we have the diagram in Theorem 6.1.2 for the
points ⋆′

1,⋆
′
2,⋆3,⋆4. Combining it with the diagram above we obtain the re-

quired diagram. Indeed, according to (4.4.3), the upper line represents the scalar
form • : H∗

(
Ω(M,⋆1,⋆2)

)
⊗ H∗

(
Ω(M,⋆3,⋆4)

)
→ K . In the bottom line we obviously

get : H∗
(
M, {⋆1,⋆2}

)
⊗ H∗

(
M, {⋆3,⋆4}

)
→ K .

6.2. The reducibility

The path homology category C = C(M) has a natural structure of a graded Hopf
category, which generalizes the usual Hopf algebra structure on the Pontryagin al-
gebra. The comultiplication ∆ in C is the direct sum over all ⋆,⋆′ ∈ ∂M of the linear
maps

H∗
(
Ω(M,⋆,⋆′)

)
−→ H∗

(
Ω(M,⋆,⋆′)

)
⊗ H∗

(
Ω(M,⋆,⋆′)

)
induced by the diagonal maps Ω(M,⋆,⋆′) → Ω(M,⋆,⋆′) × Ω(M,⋆,⋆′). (Note that
we use here the condition (5.1.2).) The counit ε in C is the augmentation defined in
Section 6.1.1. For ⋆,⋆′ ∈ ∂M , the inversion of paths induces a homeomorphism

Ω(M,⋆,⋆′) −→ Ω(M,⋆′,⋆)
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which in its turn induces a graded linear isomorphism
H∗(Ω(M,⋆,⋆′)) −→ H∗(Ω(M,⋆′,⋆));

the direct sum of these isomorphisms over all ⋆,⋆′ ∈ ∂M defines an antipode s in C.
It is well-known that the path homology category Cwith this data is a cocommutative
Hopf category.

Lemma 6.2.1. — The intersection bibracket in C = C(M) is reducible.

Proof. — Let A = A(C)be the graded algebra associated withC and letΛ = Λ({{− ,−}})
be the map (2.3.1) associated with the intersection bibracket {{− ,−}} in C. We must
show that Λ(a, b) ∈ ∆(A) for any a, b ∈ A. Since Λ is bilinear, it suffices to consider the
case where a ∈ Hp(Ω12) and b ∈ Hq

(
Ω34

)
for some p, q ≥ 0. Here Ωi j = Ω(M,⋆i,⋆j),

and ⋆1,⋆2,⋆3,⋆4 are four points in ∂M . Observe that a path in ∂M starting from ⋆2

represents a certain element v ∈ A0 and, by Lemma 2.3.2,
Λ(av, b) = Λ(a, b)ε(v) + ∆(a)Λ(v, c) = Λ(a, b).

Similarly, a path in ∂M ending at ⋆1 represents a certain u ∈ A0 and
Λ(ua, b) = Λ(u, b)ε(a) + ∆(u)Λ(a, b) = ∆(u)Λ(a, b).

Thus it suffices to consider the case where {⋆1,⋆2} ∩ {⋆3,⋆4} = �.
Pick transversal smooth polycycles

K = (K, φ, u, κ) in Ω◦
12 and L = (L, ψ, v, λ) in Ω◦

34

representing respectively ⟨a⟩ ∈ H̃p(Ω12) and ⟨b⟩ ∈ H̃q(Ω34). We form the intersection
polycycle D = (D, θ,w, κ ◁▷λ) in Ω32 × Ω14 as in Section 4.2.1. By definition, {{a , b}}
in H∗(Ω32) ⊗ H∗(Ω14) corresponds to the homology class

(−1)q+np[D] ∈ Hp+q+2−n
(
Ω32 × Ω14

)
under the isomorphism

ϖ32,14 : H∗(Ω32) ⊗ H∗(Ω14) −→ H∗
(
Ω32 × Ω14

)
induced by the cross product in homology. Consider the tensor

T = a(1) ⊗ {{a(2) , b(1)}} ⊗ b(2) ∈ H∗
(
Ω12

)
⊗ H∗

(
Ω32

)
⊗ H∗

(
Ω14

)
⊗ H∗

(
Ω34

)
.

Applying (5.2.6) with ⋆1, ⋆3 exchanged and with Y = Ω12, Z = Ω34, we obtain

ϖ12,32,14,34(T) = a(1) ×Υ12,34

(
a(2) ⊗ b(1)

)
× b(2)

= ΥY12,34Z

(
diag∗(a), diag∗(b)

)
∈ H∗

(
Ω12 × Ω32 × Ω14 × Ω34

)
where ϖ12,32,14,34 is the isomorphism induced by the cross product in homology
and diag∗ : H∗(Ωi j) → H∗(Ωi j × Ωi j) is induced by the diagonal map M → M × M .
The homology class ΥY12,34Z

(
diag∗(a), diag∗(b)

)
is represented by the polycycle

(−1)q+np (D, θ,w, κ′ × (κ◁▷λ) × λ′ : D −→ Ω12 × Ω32 × Ω14 × Ω34

)
where κ′ : D → Ω12 is obtained by projecting D ⊂ K × I × L× I onto K and applying κ,
whereas λ′ : D → Ω34 is obtained by projecting onto L and applying λ. Consider
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now the homeomorphisms {Ji : Ω3i → Ωi3}i=2,4 induced by the inversion of paths,
the concatenation maps {ci : Ω1i × Ωi3 → Ω13}i=2,4, and the map

µ = (c2 × c4)(idΩ12
×J2 × idΩ14

×J4)(κ′ × (κ◁▷λ) × λ′) : D −→ Ω13 × Ω13.

It follows that the image of the homology class

Λ(a, b) = a(1)s
(
{{a(2) , b(1)}}′

)
⊗ {{a(2) , b(1)}}′′s(b(2))

under the cross product isomorphism ϖ13,13 : H∗(Ω13) ⊗ H∗(Ω13) → H∗(Ω13 ×Ω13) is
represented by the polycycle

(−1)q+np (D, θ,w, µ).

To analyze this polycycle, let µ1, µ2 : D → Ω13 be the first and the second coordinates
of µ. For any point (k, s, l, t) ∈ D, the path µ1(k, s, l, t) is obtained by concatenation of
the following three paths:

(i) the path κ(k) from ⋆1 to ⋆2;
(ii) the initial segment of the path (κ(k))−1 from ⋆2 to the point κ(k)(s) = λ(l)(t);

(iii) the terminal segment of the path (λ(l))−1 from the latter point to ⋆3.
This concatenated path goes along a terminal segment of the path κ(k) twice in

opposite directions. Therefore the path µ1(k, s, l, t) is homotopic to a path ν(k, s, l, t)
obtained by concatenation of just two paths: the initial segment of the path κ(k)
from ⋆1 to the point κ(k)(s) = λ(l)(t) and the terminal segment of the path (λ(l))−1

from the latter point to ⋆3. The homotopy in question may be defined by an explicit
formula which applies to all points (k, s, l, t) ∈ D. Therefore, it determines a homo-
topy of the polycycle (D, θ,w, µ1) into the polycycle (D, θ,w, ν). A similar argument
applies to the path µ2(k, s, l, t) and yields a homotopy of the polycycle (D, θ,w, µ2)
into (D, θ,w, ν). Applying these two homotopies coordinatewise we obtain a homo-
topy of the polycycles (D, θ,w, µ) and (D, θ,w, (ν, ν)). It is obvious that the homology
class represented by the latter polycycle belongs to the image of the map

diag∗ : H∗(Ω13) −→ H∗(Ω13 × Ω13).

We conclude that Λ(a, b) ∈ ∆(A). □

Lemma 6.2.1 and the (2−n)-antisymmetry of the intersection bibracket of M implies
that it shares all the properties established in Lemma 2.3.3. Note that the associated
pairing λ generalizes the Reidemeister pairing (5.3.3).

The results of this section are analogues of the known properties of the intersection
bibracket in dimension two, see [36]. In dimension two, the role of λ is played by the
homotopy intersection form introduced in [41].

6.3. The string bracket

In this section, we relate the intersection bibracket of M to the Chas-Sullivan string
bracket in loop homology. By a loop in M we mean a continuous map

S1 −→ M where S1 = R/Z.
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Let L = L(M) be the space of loops in M with compact-open topology.
▷ The loop homology of M is H = H∗(L).
▷ The string homology, H, of M is the S1-equivariant homology of L where S1 acts

on L by (sγ)(t) = γ(s + t) for any s, t ∈ S1 and γ ∈ L.
Thus, H = H∗ (E ×S1 L) where E is the total space of the universal S1-principal

fiber bundle and E ×S1 L is the quotient of E × L by the diagonal action of S1. Since E

is contractible, the projection E × L → E ×S1 L induces a linear map E : H → H.

Chas and Sullivan [9] defined a degree 2 − n Lie bracket in H called the string
bracket. For n = 2, this is the Goldman bracket discussed in Section 5.1.6. We assume
that n ≥ 3 and relate the string bracket to the Lie bracket ⟨−,−⟩ in

Ǎ⋆ = A⋆/[A⋆, A⋆]

defined in Section 5.1.4.

Lemma 6.3.1. — Let ⋆ ∈ ∂M , Ω⋆ = Ω(M,⋆,⋆), and let r : Ω⋆ ↪→ L be the inclusion map.
The induced homology homomorphism

r∗ : A⋆ = H∗(Ω⋆) −→ H = H∗(L)

annihilates [A⋆, A⋆] and induces a linear map R : Ǎ⋆ → H. The composition

(−1)n E R : Ǎ⋆ −→ H

is a graded Lie algebra homomorphism.

Proof. — Let c : Ω⋆ × Ω⋆ → Ω⋆ be the concatenation of loops. For a ∈ Ap
⋆, b ∈ Aq

⋆,

ab − (−1)pqba = c∗(a × b) − (−1)pqc∗(b × a) = c∗(a × b) − c∗p∗(a × b)

where p : Ω⋆ × Ω⋆ → Ω⋆ × Ω⋆ is the transposition. Therefore, to show that

r∗(ab − (−1)pqba) = 0,

it suffices to prove that r∗c∗ = r∗c∗p∗. Clearly,

rcp = ( 12
.)rc

where
(
1
2
.) : L → L stands for the action of 1/2 ∈ R/Z = S1. Since

(
1
2
.) is homotopic

to the identity, rcp is homotopic to rc. We deduce that r∗ ([A⋆, A⋆]) = 0.
Recall the definition of the string bracket [−,−] inH. Let M : H → H be the degree 1

lift map in the Gysin sequence of the S1-bundle E × L → E ×S1 L. Chas and Sullivan
define a linear map

•CS : H ⊗ H −→ H

of degree−n called the loop product (and denoted by • in [9]). For a detailed exposition,
the reader is referred for instance to Cieliebak [11]. For a homogoneous x ∈ H and
any y ∈ H,

(6.3.1) [x, y] = (−1) |x |+n E
(
M(x) •CS M(y)

)
.
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This formula implies that to prove the second claim of the lemma, it is enough to
show the commutativity of the diagram

(6.3.2) Ǎ⋆ ⊗ Ǎ⋆

(−1) |− | MER ⊗ MER
� �

⟨−,−⟩
// Ǎ⋆

R
��

H ⊗ H
•CS // H .

Let a ∈ Hp(Ω⋆) and b ∈ Hq(Ω⋆) with p, q ≥ 0. Let h : A⋆ → Ǎ⋆ be the canonical
projection. To compute ⟨h(a), h(b)⟩, we pick a path ς in ∂M connecting ⋆ to another
point ⋆′. By definition,⟨

h(a), h(b)
⟩
= (−1)q+nphc∗

(
[Υ̃(⟨a⟩ ⊗ ⟨b⟩)]

)
= (−1)q+nphc∗

(
[((ς−1, e⋆)♯ × (e⋆, ς−1)♯)Υ̃(⟨a⟩ ⊗ (ς, ς)♯⟨b⟩)]

)
.

Let K = (K, φ, u, κ) be a reduced smooth polycycle in Ω◦
⋆ = Ω◦(M,⋆,⋆) and let

L = (L, ψ, v, λ) be a reduced smooth polycycle in Ω◦
⋆′ = Ω◦(M,⋆′,⋆′) such that (K,L)

transversely represents the pair (⟨a⟩, (ς, ς)♯⟨b⟩). Consider the intersection polychain

D(K,L) = (D, θ,w, κ◁▷λ).
Then

R
⟨
h(a), h(b)

⟩
(6.3.3)

= (−1)q+np R hc∗
[
((ς−1, e⋆)♯ × (e⋆, ς−1)♯)D(K,L)

]
= (−1)q+np

[
r∗c∗((ς−1, e⋆)♯ × (e⋆, ς−1)♯)D(K,L)

]
= (−1)q+np

[
(D, θ,w, rc((ς−1, e⋆)♯ × (e⋆, ς−1)♯)(κ◁▷λ))

]
= (−1)q+np

[
(D, θ,w, r(ς−1, ς−1)♯c(κ◁▷λ))

]
= (−1)q+np

[
(D, θ,w, r ′c(κ◁▷λ))

]
where, in the last two lines, c is the concatenation of paths

Ω(M,⋆′,⋆) × Ω(M,⋆,⋆′) −→ Ω(M,⋆′,⋆′) = Ω⋆′

and r ′ : Ω⋆′ ↪→ L is the inclusion. On the other hand,

MER h(a) = ME r∗(a) = ME
[
r∗⟨a⟩

]
= ME

[
(K, φ, u, rκ)

]
.

Using the computation of the map ME : H → H in [9], [11] (where this map is denoted
by ∆), we obtain

(6.3.4) MER h(a) = (−1)p
[
(K × S1, φ̄, ū, κ̄)

]
where we use the following notation: φ̄ is the partition on K × S1 induced by φ
(by identifying F × S1 to G × S1 via φF,G × idS1 for any faces F,G of the same type
in K); ū is the weight on K × S1 induced by u via the equality π0(K × S1) = π0(K);
the map κ̄ : K × S1 → L is defined using the action of S1 on L by (k, s) 7→ s(rκ(k))
for k ∈ K and s ∈ S1. The sign (−1)p in (6.3.4) is caused by a permutation of the two
factors of K × S1 with respect to [9], [11].
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Similarly,
MER h(b) = ME [r∗⟨b⟩] = ME

[
r ′∗(ς, ς)♯⟨b⟩

]
= (−1)q

[
(L × S1, ψ̄, v̄, λ̄)

]
where the map λ̄ : L × S1 → L is defined by (l, s) 7→ s

(
r ′λ(l)

)
for l ∈ L and s ∈ S1.

The loop product •CS can be computed in terms of face homology. This gives
MER h(a) •CS MER h(b)(6.3.5)

= (−1)p+q
[
(K × S1, φ̄, ū, κ̄)

]
•CS

[
(L × S1, ψ̄, v̄, λ̄)

]
= (−1)p+q+np

[
(D, θ̄, w̄, κ̄∞ λ̄)

]
.

Here D is the inverse image of diagM under the map
K × S1 × L × S1 −→ M × M, (k, s, l, t) 7−→

(
rκ(k)(s), r ′λ(l)(t)

)
.

Note that D has a structure of a manifold with faces inherited from K × S1 × L × S1.
The orientation, the partition θ̄ and the weight w̄ of D are as in the definition of the
intersection operation D in Section 4.2.1. The map

κ̄∞ λ̄ : D −→ L

sends a point (k, s, l, t) to the loop that first goes along the loop κ̄(k, s) and then
along the loop λ̄(l, t). Note the sign (−1)np in (6.3.5), which arises from the difference
between our orientation conventions and those in [11].

The map K × I × L × I → K × S1 × L × S1 determined by the canonical projection
I → S1 induces an orientation-preserving diffeomorphism D � D which carries the
partition θ into θ̄ and the weight w into w̄. Using the action of 1/4 ∈ S1 on L, one
easily constructs a homotopy between the maps r ′c(κ◁▷λ) and κ̄∞ λ̄ from D � D to L.
It follows that [

(D, θ,w, r ′c(κ◁▷λ))
]
=

[
(D, θ̄, w̄, κ̄∞ λ̄)

]
∈ H,

and we deduce (6.3.2) from (6.3.3) and (6.3.5). □

6.4. Moment maps and Hamiltonian reduction

We show that a spherical boundary component of the manifold M determines a
moment map for the intersection bibracket. This allows us to define an H0-Poisson
structure on the Pontryagin algebras of certain manifolds without boundary.

6.4.1. The moment map. — Assume that n = dim(M) ≥ 3 and that S is a component
of ∂M homeomorphic to the sphere Sn−1. Fix a point⋆ ∈ S and set A⋆ = H∗(Ω⋆)where
Ω⋆ = Ω(M,⋆,⋆). The orientation-preserving homeomorphisms Sn−1 � S represent
an element µπ = µπ

S
of πn−1(M,⋆). Recall the connecting homomorphism

∂̄n−1 : πn−1(M,⋆) −→ An−2
⋆ = Hn−2(Ω⋆)

of Section 5.1.3 and set
µ = µS = ∂̄n−1(µ

π) ∈ An−2
⋆ .

Lemma 6.4.1. — The element µ is a moment map for the intersection bibracket {{− ,−}} in A⋆
in the sense of Section 2.4.2.
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Proof. — Consider the path homology category C = C(M) of M and the intersection
bibracket {{− ,−}} in the associated graded algebra A = A(C). Pick a smooth closed
n-ball D ⊂ Int(M) and consider the smooth manifold P = M \ Int(D). As above, we
can consider the path homology category of P and the intersection bibracket {{− ,−}}P
in the associated graded algebra. Consider the restriction of {{− ,−}}P to the algebra

B =
⊕

⋆1,⋆2∈S
H∗

(
Ω(P,⋆1,⋆2)

)
.

The inclusion P ↪→ M induces a graded algebra homomorphism ι : B → A. The
definition of the intersection bibracket implies that the following diagram commutes:

(6.4.1)
B ⊗ B

{{− ,−}}P //

ι⊗ι
��

B ⊗ B

ι⊗ι
��

A ⊗ A
{{− ,−}}

// A ⊗ A.

⋆′

α

⋆ ⋆′′β

∂DS

Figure 6.4.1. The manifold P = M \ Int(D).

We must prove that

{{µ, a}} = a ⊗ 1 − 1 ⊗ a for any a ∈ A⋆ ⊂ A.

To this end, fix a path α in S leading from⋆ to a distinct point⋆′ ∈ S: see Figure 6.4.1.
The path α represents an element in H0(Ω,⋆,⋆

′) ⊂ A0 denoted also by α. This element
is invertible, and its inverse α−1 ∈ A0 is represented by the inverse path. Set

a′ = α−1aα ∈ H∗
(
Ω(M,⋆′,⋆′)

)
.

(In the notation of Section 4.3.4, a′ = (α, α)#(a).) Clearly, {{µ, a′}} = α−1{{µ, a}}α.
Hence it suffices to prove that

(6.4.2) {{µ, a′}} = a′α−1 ⊗ α − α−1 ⊗ αa′.

The homology class a′ can be represented by a polycycle K in Ω◦(M,⋆′,⋆′). Choosing
the ball D close enough to ∂M , we can ensure that it does not meet the image of K.
Then a′ = ι(b) for the homology class b ∈ H∗(Ω(P,⋆′,⋆′)) represented by K. Similarly,
µ = ι(τ) for some τ ∈ Hn−2(Ω(P,⋆,⋆)). We deduce from (6.4.1) that

{{µ, a′}} = (ι ⊗ ι)
(
{{τ , b}}P

)
.
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To proceed, we pick an embedded path in P leading from a point ⋆′′ ∈ ∂D to ⋆′

and meeting ∂P only in the endpoints. This path defines an invertible element β
in H0(Ω(P,⋆′′,⋆′)). Set

c = βbβ−1 ∈ H∗
(
Ω(P,⋆′′,⋆′′)

)
.

Note that {{τ , c}}P = 0 since c can be represented by a polycycle whose image does
not meet S. Therefore

{{µ, a′}} = (ι ⊗ ι)
(
{{τ , b}}P

)
= (ι ⊗ ι)

(
{{τ , β−1cβ}}P

)
= (ι ⊗ ι)

(
{{τ , β−1}}Pcβ + β−1c{{τ , β}}P

)
= (ι ⊗ ι)

(
− β−1{{τ , β}}Pβ−1cβ + β−1c{{τ , β}}P

)
.

By Lemma 5.3.2, we obtain {{β , τ}}P = −α ⊗ βα−1. Therefore {{τ , β}}P = βα−1 ⊗ α.
We conclude that

{{µ, a′}} = (ι ⊗ ι)(−α−1 ⊗ αb + bα−1 ⊗ α),
which proves (6.4.2). □

We deduce from Lemma 6.4.1 that the following three conditions are equivalent:
(i) A⋆ = K ;

(ii) µ = 0;
(iii) the intersection bibracket in A⋆ is zero.

6.4.2. Intersections in manifolds without boundary. — Let W be a smooth con-
nected oriented manifold of dimension n ≥ 3 without boundary. Our construction
of a bibracket in the Pontryagin algebra of a manifold requires the base point to lie
in the boundary, so that it does not apply to W . However, under certain assumptions
on W we can use the Hamiltonian reduction of Section 2.4 to define an H0-Poisson
structure on the Pontryagin algebra of W . To this end, pick a base point ⋆ ∈ W
and a smooth closed n-ball D ⊂ W with ⋆ ∈ ∂D. Consider the smooth manifold
M = W \ Int(D) with ∂M = ∂D = Sn−1; as everywhere in this chapter, we assume that
the condition (5.1.2) is satisfied. Let

A⋆ = H∗
(
Ω(M,⋆,⋆)

)
and B⋆ = H∗

(
Ω(W,⋆,⋆)

)
be the Pontryagin algebras of M and W , respectively. The inclusion M ↪→ W induces
a graded algebra homomorphism p : A⋆ → B⋆, Clearly, p(µ) = 0 where µ = µ∂M
belongs to An−2

⋆ . Therefore, Ker p ⊃ A⋆µA⋆.

Theorem 6.4.2. — Assume that the homomorphism p : A⋆ → B⋆ is onto and
Ker p = A⋆µA⋆. Then the intersection bibracket {{− ,−}} in A⋆ induces an H0-Poisson
structure of degree 2 − n on B⋆. This structure does not depend on the choice of the ball D.

Proof. — The first claim follows from Lemma 2.4.3. The independence of the choice
of the ball is a consequence of the naturality of the intersection bibracket under
diffeomorphisms, and the fact that for any balls D1,D2 ⊂ W with⋆ ∈ ∂D1∩ ∂D2 there
is a diffeomorphism f : W → W such that f (D1) = D2, f (⋆) = ⋆, and f is isotopic
to idW in the class of diffeomorphisms W → W fixing ⋆. Such an f acts on B⋆ as the
identity, and the result follows. □
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Recall from Theorem 2.4.2 that an H0-Poisson structure on B⋆ induces Gerstenhaber
brackets on the trace algebras of B⋆. Hence Theorem 6.4.2 allows us to associate
Gerstenhaber algebras with W .

Some manifolds do not satisfy the assumptions of Theorem 6.4.2, for example,
W = Sn (in this case A⋆ = K and B⋆ = K [x] where the generator x has degree n − 1,
cf. [5]). Nonetheless, according to [24] and [16], these assumptions are satisfied if W is
a closed simply connected manifold whose cohomology algebra H∗(W) = H∗(W ;K)
is not generated by a single element and K is a field whose characteristic is equal to
zero or is sufficiently large.

6.4.3. Example. — We consider the example of Section 5.3.3 and keep the same
notation. Thus

W = (Sp1 × Sq1)♯ · · · ♯(Spg × Sqg ) and M = W \ (an open ball).
The element µ = µ∂M ∈ A⋆ = H∗(Ω(M,⋆,⋆)) can be computed as follows. As a
topological manifold, M is the boundary-connected sum of the manifolds

Mj = (Sp j × Sqj ) \ (an open ball)
where j = 1, . . . , g. Hence

µπ = µπ∂M =

g∑
j=1

inj

(
µπ∂Mj

)
∈ πn−1(M)

where inj : πn−1(Mj) → πn−1(M) is the inclusion homomorphism (we can ignore
the base point because Mj and M are simply-connected). By the definition of the
Whitehead bracket [−,−]Wh in π∗(M), we have

inj(µ
π
∂Mj

) = [xπj , y
π
j ]Wh

where xπj ∈ πp j (M) and yπj ∈ πqj (M) are represented by the two factors of Mj . Thus,

µπ = [xπ1 , y
π
1 ]Wh + · · ·+ [xπg , y

π
g ]Wh ∈ πn−1(M).

Recall that the bracket [−,−] in A⋆ induced by the Pontryagin multiplication is related
to the Whitehead bracket in π∗(M) by the formula

[xi, yi] =
[
∂̄pi (xπi ), ∂̄qi (y

π
i )
]
= (−1)pi ∂̄pi+qi−1

(
[xπi , y

π
i ]Wh

)
∈ A⋆.

Therefore
µ = (−1)p1 [x1, y1] + · · ·+ (−1)pg [xg, yg] ∈ A⋆.

A direct computation on the generators x1, y1, . . . , xg, yg of A⋆ using (5.3.5)–(5.3.6)
confirms that µ is a moment map of the intersection bibracket {{− ,−}} of M , as claimed
by Lemma 6.4.1.

Consider in more detail the case g = 1 and set
p = p1, q = q1, x = x1 ∈ Ap−1

⋆ , y = y1 ∈ Aq−1
⋆ .

The loop space of W = Sp × Sq based at ⋆ is the product of the loop spaces of
Sp and Sq . By the Künneth theorem, the Pontryagin algebra B⋆ = H∗(Ω(W,⋆,⋆)) is
(as a graded algebra) the tensor product of the Pontryagin algebras of Sp and Sq .
Since the graded algebra A⋆ is freely generated by x, y, the quotient A⋆/A⋆µA⋆ is the
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commutative graded algebra freely generated by x, y. It is clear that the assumptions
of Theorem 6.4.2 are satisfied here for any ground ringK . Theorem 6.4.2 yields an H0-
Poisson structure ⟨−,−⟩ of degree 2− n on the (commutative) graded algebra B⋆. The
bracket ⟨−,−⟩ in B̌⋆ = B⋆ is then a Gerstenhaber bracket of degree 2 − n. It coincides
with the Gerstenhaber bracket {− ,−} in Com(A⋆) computed in Section 5.3.3.

6.4.4. Example. — We consider the example of Section 5.3.4 and keep the same
notation. Thus, W = S1 × Sn−1 and M = W \ (an open ball). The element

µ = µ∂M ∈ A⋆ = H∗
(
Ω(M,⋆,⋆)

)
can be computed as follows. Consider the cylinder I × Sn−1 with the product orienta-
tion and pick a closed n-ball D in its interior. Then

[∂D] =
[
{1} × Sn−1] − [

{0} × Sn−1] ∈ πn−1 ((I × Sn−1) \ Int(D)
)
.

(Here D carries the orientation induced by M and ∂D carries the orientation inherited
from D.) It follows that µπ(M) = (xπ)−1 · yπ − yπ where the dot denotes the action
of π1(M,⋆) on πn−1(M,⋆). We deduce that

µ = x−1yx − y ∈ A⋆.

A direct computation using (5.3.7)–(5.3.9) confirms that µ is a moment map of the
intersection bibracket {{− ,−}} of M , as claimed by Lemma 6.4.1.

By the Künneth theorem, the Pontryagin algebra B⋆ of W is (as a graded alge-
bra) the tensor product of the Pontryagin algebras of S1 and Sn−1. Thus, B⋆ is the
commutative graded algebra freely generated by x±1 ∈ B0

⋆ and y ∈ Bn−2
⋆ . As a con-

sequence, the assumptions of Theorem 6.4.2 are satisfied (for any ground ring K ) so
that the intersection bibracket {{− ,−}} of M induces an H0-Poisson structure ⟨−,−⟩ of
degree 2 − n on B⋆. Since B⋆ is commutative, this structure is a Gerstenhaber bracket
of degree 2 − n. According to (5.3.7)–(5.3.9), it is given by

⟨x, x⟩ = 0, ⟨x, y⟩ = −x, ⟨y, y⟩ = 0.

6.4.5. Remark. — The results of this section are high-dimensional analogues of the
well-known properties of surfaces. The Pontryagin algebra of a closed connected
oriented surface is the group algebra B = K [π] where π is the fundamental group
of the surface. Then B̌ = B/[B, B] = K [π̌] is the module freely generated by the set π̌
of conjugacy classes in π. The Goldman Lie bracket in B̌ is the canonical H0-Poisson
structure on B, see [36, Section 9].
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manifold with faces, 43
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moment map, 40
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polychain, 9, 46

boundary of, 47
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unital, 27
scalar form, 117
shuffle, 60
singular chain, 53

fundamental, 56
singular chain complex, 53
singular homology, 53

cross product in, 61
singular manifold, 47
singular simplex, 53

boundary of, 53
string bracket, 125
string homology, 125
trace, 26
trace algebra, 26
triangulation

fitting the partition, 55
local order on, 55
locally ordered, 55

tribracket
induced, 20

universal enveloping algebra, 28
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A fundamental geometric object derived from an arbitrary topological space M
with a marked point ⋆ is the space of loops in M based at ⋆. The Pontryagin
algebra A of (M,⋆) is the singular homology of this loop space with the graded
algebra structure induced by the standard multiplication of loops. When M is
a smooth oriented manifold with boundary and ⋆ is chosen on ∂M, we define
an “intersection” operation A ⊗ A → A ⊗ A. We prove that this operation is
a double bracket in the sense of Michel Van den Bergh satisfying a version of
the Jacobi identity. We show that our double bracket induces Gerstenhaber
brackets in the representation algebras of A. These results extend our previous
work on surfaces, where A is the group algebra of the fundamental group of
a surface and the Gerstenhaber brackets in question are the usual Poisson
brackets on the moduli spaces of representations of such a group. The present
work is inspired by the results of William Goldman on surfaces and by the
ideas of string topology due to Moira Chas and Dennis Sullivan.

Un objet géométrique fondamental qu’on associe à tout espace topologique M
avec un point marqué ⋆ est son espace de lacets basés en ⋆. L’algèbre de Pon-
tryagin A de (M,⋆) est l’homologie singulière de cet espace de lacets, avec
sa structure d’algèbre graduée induite par la multiplication usuelle des lacets.
Lorsque M est une variété orientée lisse à bord et ⋆ est choisi sur ∂M, nous
définissons une opération “d’intersection” A ⊗ A → A ⊗ A. Nous prouvons que
cette opération est un crochet double au sens de Michel Van den Bergh sa-
tisfaisant une variante de l’identité de Jacobi. Nous montrons que ce crochet
double induit des crochets de Grstenhaber sur les algèbres de représentations
de A. Ceci étend notre précédent travail sur les surfaces, où A est l’algèbre de
groupe du groupe fondamental d’une surface et les crochets de Gerstenhaber
en question sont les crochets de Poisson habituels sur les espaces de modules
de représentations d’un tel groupe. Le présent travail est inspiré des résultats
de William Goldman sur les surfaces, et des idées de la topologie des cordes
due à Moira Chas et Dennis Sullivan.


	Introduction
	Chapter 1. Algebras, brackets, and bibrackets
	1.1. Algebras and brackets
	1.2. Bibrackets
	1.3. Equivariance
	1.4. The associated pairing and the trace

	Chapter 2. Bibrackets in unital algebras and in categories
	2.1. Bibrackets in unital algebras
	2.2. Bibrackets in categories
	2.3. Bibrackets in Hopf categories
	2.4. Hamiltonian reduction of bibrackets

	Chapter 3. Face homology
	3.1. Manifolds with faces and partitions
	3.2. Polychains, polycycles, and face homology
	3.3. Face homology versus singular homology
	3.4. Smooth polychains

	Chapter 4. Operations on polychains
	4.1. Transversality in path spaces
	4.2. Intersection of polychains
	4.3. The operation normalnormal"0365
	4.4. The operation normalnormal 

	Chapter 5. The intersection bibracket
	5.1. Construction of the intersection bibracket
	5.2. The Jacobi identity
	5.3. Computations and examples

	Chapter 6. Properties of the intersection bibracket
	6.1. The scalar intersection form
	6.2. The reducibility
	6.3. The string bracket
	6.4. Moment maps and Hamiltonian reduction

	Bibliography
	Index

