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A COMMUTATIVE P1-SPECTRUM REPRESENTING MOTIVIC
COHOMOLOGY OVER DEDEKIND DOMAINS

Markus Spitzweck

Abstract. – We construct a motivic Eilenberg-MacLane spectrum with a highly struc-
tured multiplication over general base schemes which represents Levine’s motivic co-
homology, defined via Bloch’s cycle complexes, over smooth schemes over Dedekind
domains. Our method is by gluing p-completed and rational parts along an arithmetic
square. Hereby the finite coefficient spectra are obtained by truncated étale sheaves
(relying on the now proven Bloch-Kato conjecture) and a variant of Geisser’s ver-
sion of syntomic cohomology, and the rational spectra are the ones which represent
Beilinson motivic cohomology.

As an application the arithmetic motivic cohomology groups can be realized as
Ext-groups in a triangulated category of motives with integral coefficients.

Our spectrum is compatible with base change giving rise to a formalism of six func-
tors for triangulated categories of motivic sheaves over general base schemes including
the localization triangle.

Further applications are a generalization of the Hopkins-Morel isomorphism and a
structure result for the dual motivic Steenrod algebra in the case where the coefficient
characteristic is invertible on the base scheme.
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CHAPTER 1

INTRODUCTION

This paper furnishes the construction of a motivic Eilenberg-MacLane spectrum in
mixed characteristic. One of our main purposes is to use this spectrum for the defi-
nition of triangulated categories of motivic sheaves with integral (and thus also arbi-
trary) coefficients over general base schemes. These categories will satisfy properties
combining and expanding on properties of triangulated categories of motives which
have already been constructed. In [7] Cisinski-Déglise develop a theory of Beilinson
motives yielding a satisfying theory of motives with rational coefficients over gen-
eral base schemes. This theory is equivalent to an approach due to Morel where
one considers modules over the positive rational sphere spectrum, see loc. cit. Vo-
evodsky constructed triangulated categories of motives over a (perfect) field ([54],
[39]) in which integral motivic cohomology of smooth schemes is represented. In the
Cisinski-Déglise/Morel category over a regular base the resulting motivic cohomol-
ogy are Adams-graded pieces of rationalized K-theory, which fits with the envisioned
theory of Beilinson. In [44] modules over the motivic Eilenberg-MacLane spectrum
over a field are considered and it is proved that those are equivalent to Voevodsky’s
triangulated categories of motives in the characteristic 0 case. This result has recently
been generalized to perfect fields [28] where one has to invert the characteristic of the
base field in the coefficients. Étale motives are developed in [2] and [6].

We build upon these works and construct motivic categories using motivic stable
homotopy theory. More precisely we define objects with a (coherent) multiplication
in the category of P1-spectra over base schemes and consider as in [44] their module
categories. The resulting homotopy categories are defined to be the categories of
motivic sheaves.

This family of commutative ring spectra is cartesian, i.e., for any map between base
schemes X → Y the pullback of the ring spectrum over Y compares via an equivalence
to the ring spectrum over X. This is equivalent to saying that all spectra pull back
from Spec(Z). We thus give an affirmative answer to a version of a conjecture due to
Voevodsky [56, Conjecture 17].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



8 CHAPTER 1. INTRODUCTION

To ensure good behavior of our construction our spectra have to satisfy a list of
desired properties. Over fields the spectra coincide with the usual motivic Eilenberg-
MacLane spectra (this ensures that over fields usual motivic cohomology is represented
in our categories of motivic sheaves). Rationally we recover the theory of Beilinson
motives, because the rationalizations of our spectra are isomorphic to the respective
Beilinson spectra, and there is a relationship to Levine’s motivic cohomology defined
using Bloch’s cycle complexes in mixed characteristic ([36]).

To ensure all of that we first construct a spectrum over any Dedekind domain D of
mixed characteristic satisfying the following properties: It represents Bloch-Levine’s
motivic cohomology of smooth schemes over D (Corollary 7.19), it pulls back to
the usual motivic Eilenberg-MacLane spectrum with respect to maps from spectra
of fields to the spectrum of D (Theorem 8.22) and it is an E∞-ring spectrum. (We
remark that such an E∞-structure can always be strictified to a strict commutative
monoid in symmetric P1-spectra by results of [24].)

The latter property makes it possible to consider the category of highly struc-
tured modules over pullbacks of the spectrum from the terminal scheme (the spec-
trum of the integers), thus defining triangulated categories of motivic sheaves DM(X)

over general base schemes X such that over smooth schemes over Dedekind domains
of mixed characteristic the Ext-groups compute Bloch-Levine’s motivic cohomology
(Corollary 7.20, using Theorem 8.25). For general base schemes we define motivic
cohomology to be represented by our spectrum, i.e.,

Hi
mot(X,Z(n)) := HomSH(X)(1,Σ

i,nf∗MZSpec(Z)) ∼= HomDM(X)(Z(0),Z(n)[i]).

Here f : X → Spec(Z) is the structure morphism, MZSpec(Z) is our spectrum over the
integers and 1 is the sphere spectrum (the unit with respect to the smash product)
in the stable motivic homotopy category SH(X). By the base change property these
cohomology groups coincide with Voevodsky’s motivic cohomology if X is smooth
over a field. We note that the ring structure on our Eilenberg-MacLane spectrum gives
the (bigraded) motivic cohomology groups a (graded commutative) ring structure, a
property which was (to the knowledge of the author) missing for Levine’s motivic
cohomology. In particular we obtain a product structure on Chow groups of smooth
schemes over Dedekind domains.

By the work of Ayoub [1] the base change property enables one to get a full six
functor formalism for these categories of motivic sheaves including the localization
triangle (Theorem 9.1).

We remark that the spectrum we obtain gives rise to motivic complexes over any
base scheme X. More precisely one can extract objects Z(n)X in the derived cate-
gory of Zariski sheaves on the category of smooth schemes over X representing our
motivic cohomology. There are unital, associative and commutative multiplication
maps Z(n)X ⊗L Z(m)X → Z(n + m)X inducing the multiplication on motivic co-
homology. (These multiplications are in fact part of a graded E∞-structure (which
follows from the existence of the strong periodization, see Section C), but we do not
make this explicit since we have no application for this enhanced structure.) If X is

MÉMOIRES DE LA SMF 157



CHAPTER 1. INTRODUCTION 9

a smooth scheme over a Dedekind domain of mixed characteristic or over a field we
have isomorphisms Z(0)X ∼= Z and Z(1)X ∼= O

∗
/X [−1] (for the latter isomorphism see

Theorem 7.10).
Moreover one can extract motivic Eilenberg-MacLane spaces. If X is as above there

are isomorphisms K(Z(1), 2)X ∼= P∞X (Proposition 10.7) and K(Z/n(1), 1)X ∼= WX,n

(Proposition 10.8) in the motivic pointed homotopy category H•(X) of X. Here
WX,n is the total space of the line bundle OP∞X (−n) on P∞X with the zero section
removed (a motivic lens space).

The motivic complexes can also be viewed as objects in the derived category of
Zariski sheaves on all base schemes. As such they satisfy cdh-descent which can be
shown by the methods of [5, §3].

Among our applications is a generalization of the Hopkins-Morel ismorphism (The-
orem 10.3), relying on the recent work of Hoyois ([27], which in turn relies on work
of Hoyois-Kelly-Østvær [28]). In certain cases it follows that the Eilenberg-MacLane
spectrum is cellular (Corollary 10.4). We obtain a description of the dual motivic
Steenrod algebra over base schemes over which the coefficient characteristic is invert-
ible (Theorem 10.26). We note that one can ask if the statement of this theorem is
valid over any base scheme (thus asking for a description of the smash product of the
mod-p motivic Eilenberg-MacLane spectrum with itself in characteristic p).

The outline of this paper is as follows. In Section 3 we define motivic complexes over
small sites and describe their main properties, most notably the localization sequence
due to Levine (Theorem 3.1) and the relation to étale sheaves (where the Bloch-Kato
conjecture enters) (Theorem 3.9).

In Section 4 an E∞-spectrum MZ is constructed with the main property that it rep-
resents motivic cohomology with finite coefficients (which follows from Corollary 4.1.2)
and is rationally isomorphic to the Beilinson spectrum.

For the definition we use an arithmetic square, i.e., we first define p-completed
spectra for all prime numbers p and glue their product along the rationalization of
this product to the Beilinson spectrum (Definition 4.27).

The spectra with finite p-power coefficients which define the p-completed parts are
constructed using truncated étale sheaves outside characteristic p and logarithmic de
Rham-Witt sheaves at characteristic p.

Our spectrum is constructed in the world of complexes of sheaves of abelian groups
and spectrum objects therein. By transfer of structure this also defines (E∞-or com-
mutative ring) spectra in the world of P1-spectra in motivic spaces.

In order to prove that MZ represents integrally Bloch-Levine’s motivic cohomology
we define in Section 5 a second motivic spectrum M which by definition represents
Bloch-Levine’s integral motivic cohomology (and which will finally be isomorphic
to MZ). To do that we introduce a strictification process for Bloch-Levine’s cycle com-
plexes to get a strict presheaf on smooth schemes over a Dedekind domain. Hereby
we rely heavily on a moving lemma due to Levine (Theorem 5.8). Using a localiza-
tion sequence for the pair (A1,Gm) we obtain bonding maps arranging the motivic
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10 CHAPTER 1. INTRODUCTION

complexes into a Gm-spectrum (see Section 5.3). This section also contains the con-
struction of an étale cycle class map (inspired by the construction in [36]) which is
compatible with certain localization sequences (Proposition 5.2.3).

After treating motivic complexes over a field (Section 6) we give our comparison
statements in Section 7. First we compute the exceptional inverse image of M with
respect to the inclusion of a closed point into our Dedekind scheme (Theorem 7.4).
Theorem 7.14 states that the rationalization M Q is just the Beilinson spectrum. Our
main comparison statement is Theorem 7.18 which asserts a canonical isomorphism
between M and MZ as spectra.

Section 8 discusses base change. Here the Bloch-Kato filtration on p-adic vanishing
cycles plays a key role to obtain the part of base change where the characteristics of
the base field and of the coefficients coincide.

We treat the motivic functor formalism in Section 9. Section 10 contains the ap-
plications to the Hopkins-Morel isomorphism and the dual motivic Steenrod algebra.

The first two appendices discuss (semi) model structures on sheaf categories and
algebra objects therein and definitions and properties of pullbacks of algebraic cycles.

Our motivic Eilenberg-MacLane spectrum is strongly periodizable in the sense of
[50] (Theorem C.2, Remark 10.2). This shows that geometric mixed Tate sheaves with
integral coefficients over a number ring or similar bases which satisfy a weak version
of the Beilinson-Soulé vanishing conjecture can be modeled as representations of an
affine derived group scheme along the lines of [49] (Corollary C.4).

We finally remark that it should be possible to generalize our strictification process
in Section 5 to define a homotopy coniveau tower over Dedekind domains as in [35].
We will come back to this question in future work.

Acknowledgements. – I would like to thank Joseph Ayoub for giving ideas for the
stictification procedure used in Section 5.1 and spotting an error in an earlier ver-
sion of the text, Oliver Bräunling for discussions about cohomological dimensions of
fields of positive characteristic (which now is used in Proposition 8.9) and Paul Arne
Østvær for having the idea of introducing the arithmetic square in motivic homotopy
theory, which now enters in Definition 4.27. Furthermore I would like to thank Peter
Arndt, Mikhail Bondarko, Denis-Charles Cisinski, David Gepner, Christian Häse-
meyer, Hadrian Heine, Marc Hoyois, Moritz Kerz, Marc Levine, Jacob Lurie, Niko
Naumann, Thomas Nikolaus, Georges Raptis, Oliver Röndigs and Manfred Stelzer
for very helpful discussions and suggestions on the subject. My thanks also to the
referees of this article who helped to improve it very much.

MÉMOIRES DE LA SMF 157



CHAPTER 2

PRELIMINARIES AND NOTATION

For a site S and a category C we denote by Sh( S , C ) the category of sheaves on S

with values in C . If R is a commutative ring we set Sh( S , R) := Sh( S ,ModR), where
ModR denotes the category of R-modules.

For a Noetherian separated scheme S of finite Krull dimension (such schemes
we will call henceforth base schemes) we denote by SchS the category of separated
schemes of finite type over S and by SmS the full subcategory of SchS of smooth
schemes over S.

For t ∈ {Zar,Nis, ét} we denote by SmS,t the site SmS equipped with the topology t.
For S and t as above we denote by St the site consisting of the full subcategory

of SmS of étale schemes over S equipped with the topology t.
If m is invertible on S we write Z/m(r)S for the sheaf µ⊗rm on Sét. If it is clear

from the context we also write Z/m(r).
We let ε : SmS,ét → SmS,Zar and ε : Sét → SZar be the canonical maps of sites.
If X is a presheaf of sets on SmS we let R[X]t be the sheaf of R-modules on SmS,t

freely generated byX. If Y ↪→ X is a monomorphism we let R[X,Y ]t := R[X]t/R[Y ]t.
For S the spectrum of a Dedekind domain we let SmcS be the full subcategory

of SchS of schemes X over S such that each connected component of X is either
smooth over S or smooth over a closed point of S.

For an Fp-scheme Y we let WnΩ•Y be the de Rham-Witt complex of Y . It is a
complex of sheaves on Yét with a multiplication. These complexes assemble to a com-
plex of sheaves on the category of all Fp-schemes. There are canonical epimorphisms
Wn+1Ω•Y �WnΩ•Y respecting the multiplication.

For Y as above let dlog : O
∗
Y → WnΩ1

Y be defined by x 7→ dx
x , where x =

(x, 0, 0, . . .) is the Teichmüller representative of x.
The logarithmic de Rham-Witt sheaf WnΩrY,log is defined to be the subsheaf

of WnΩrY generated étale locally by sections of the form dlogx1 . . . dlogxr. Also
WnΩ0

Y,log is the constant sheaf on the abelian group Z/pn.
These sheaves assemble to a subcomplex WnΩ•Y,log of WnΩ•Y .
The WnΩrY,log assemble to a sheaf νrn on the category of all Fp-schemes. We set

νrn = 0 for r < 0. There are natural epimorphisms νrn+1 � νrn.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



12 CHAPTER 2. PRELIMINARIES AND NOTATION

We will also denote restrictions of νrn to certain sites, e.g., to YZar or Smk,t, k some
field of characteristic p, by νrn.

For a base scheme S we let SH(S) be the stable motivic homotopy category and
H•(S) the pointed A1-homotopy category of S.

If A is an abelian category we denote by D( A ) its derived category. We denote
by DA1

(Sh(SmS,t, R)) the A1-localization of D(Sh(SmS,t, R)).
We sometimes use the notation f∗, f∗ for a (non-derived or derived) push forward

or pullback between sheaf categories corresponding to sites induced by a scheme mor-
phism f . The precise sites which are used can always be read off from the source and
target categories.
E∞-structures are understood with respect to (the image of) the linear isometries

operad (see [14, I.3.]). To be more precise, taking normalized chains of the linear
isometries operad yields an operad E in Cpx≥0(Ab), and all our algebras will live in
categories C which receive a symmetric monoidal functor s from Cpx≥0(Ab), and then
we will call an algebra over s(E) an E∞-algebra in C .

Let us give a statement about sheaf operations for the small sites which we will
use throughout the text.

Lemma 2.1. – Let R be a commutative ring and f : X → Y a morphism between base
schemes. Then for t ∈ {ét,Nis} the pullback functor f∗ : Sh(Yt, R) → Sh(Xt, R) is
exact. If moreover f is a closed immersion then the same functor for t = Zar is also
exact, and for t ∈ {Zar,Nis, ét} the functor f∗ : Sh(Xt, R) → Sh(Yt, R) is exact and
the functor f∗f∗ : Sh(Xt, R)→ Sh(Xt, R) is naturally isomorphic to the identity (via
the unit of the adjunction), so the same holds on the level of derived categories for
the endofunctor f∗f∗ of D(Sh(Xt, R)).

Proof. – We check the first statement on stalks: Let U → X be étale an u ∈ U a
point. Let y be the image of u in Y and let O be the (strict) henselization of the local
ring of U at u. Let k be the residue field of O. Then the value of f∗(F ) (F ∈ Sh(Yt, R))
at O is the value of F at the henselization of OY,y relative to the k-point OY,y → k.
The claim follows.

For f a closed immersion the second and third statement can be found in [17]
before Lemma 2.1. The fourth statement can also be checked on stalks.
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CHAPTER 3

MOTIVIC COMPLEXES I

Let S be the spectrum of a Dedekind domain. For X ∈ SmcS and r ≥ 0 we denote
by M

X(r) ∈ D(Sh(XZar,Z)) Levine’s cycle complex. A representative is the complex
which has zr(_, 2r − i) in cohomological degree i, see [17, §3], [33].

Here for an equidimensional scheme Y of finite type over a regular one-dimensional
scheme, zr(Y, i) is the free abelian group on closed integral subschemes of Y × ∆i

(∆i the algebraic i-simplex over Spec(Z)) which intersect all faces properly. If Y ′ is
of finite type over the same regular one-dimensional base we have zr(Y

∐
Y ′, i) ∼=

zr(Y, i)⊕ zr(Y ′, i).
For r < 0 we set M

X(r) = 0. When it is clear from the context which X is
meant we also write M (r). We also write M

X
ét(r) for ε∗M

X(r) and M
X(r)/m

for M
X(r) ⊗L Z/m (since M

X(r) is scheme-wise a free abelian group we can also
replace here the derived tensor product ⊗L with the tensor product ⊗).

Theorem 3.1 (Levine). – Let i : Z → X be a closed inclusion in SmcS of codimen-
sion c and j : U → X the complementary open inclusion. Then there is an exact
triangle in D(Sh(XZar,Z))

(1) Ri∗M
Z(r − c)[−2c]→ M

X(r)→ Rj∗M
U (r)→ Ri∗M

Z(r − c)[−2c+ 1].

Proof. – This is [33, Theorem 1.7] (note the schemes in SmcS are of finite type over S,
so we can apply this result).

Corollary 3.2. – Let i : Z → X be a closed inclusion in SmcS of codimension c.
Then there is a canonical isomorphism

Ri! M
X(r) ∼= M

Z(r − c)[−2c]

in D(Sh(XZar,Z)).

Proof. – This follows from Theorem 3.1 using Lemma 2.1.

Theorem 3.3. – For X ∈ SmcS we have H
k( M

X(r)) = 0 for k > r.

Proof. – This is [17, Corollary 4.4] (note a connected scheme in SmcS is either smooth
overe S or over a field, so we can apply this result).
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Theorem 3.4. – Suppose X ∈ SmcS is of characteristic p. Then there is an isomor-
phism

(2) M
X(r)/pn ∼= νrn[−r]

in D(Sh(XZar,Z/pn)).

Proof. – If X is smooth over a perfect field this is [18, Theorem 8.3]. The general case
follows by a colimit argument (using [29, I. (1.10.1)]).

Corollary 3.5. – Let S be of mixed characteristic. Let p be a prime, X ∈ SmS

and π : X → S the structure morphism. Let and j : U := π−1(S[ 1
p ])→ X be the open

inclusion and i : Z ↪→ X the reduced closed complement. Then H
k(Rj∗M

U (r) ⊗L

Z/pn) = 0 for k > r and the natural map

(3) H
r(Rj∗( M

U (r)/pn))→ i∗ν
r−1
n

induced by the triangle (1) and the isomorphism (2) is an epimorphism.

Proof. – This follows from Theorem 3.3, the exactness of i∗ and the long exact se-
quence of cohomology sheaves induced by the exact triangle (1).

Lemma 3.6. – Suppose X ∈ SmcS is of characteristic p. Then the diagram

M
X(r)/pn+1

∼= //

��

νrn+1[−r]

��
M

X(r)/pn
∼= // νrn[−r]

in D(Sh(XZar,Z/pn+1)) commutes.

Suppose m is invertible on X ∈ SmcS . Then there is a cycle class map

(4) ccXm(r) : M
X(r)/m→ Rε∗Z/m(r)

in D(Sh(XZar,Z/m)).
We recall the definition of the cycle class map: For V ∈ SmcS we denote by cr(V, n)

the set of cycles (closed integral subschemes) of codimension r of V × ∆n which
intersect all V × Y with Y a face of ∆n properly.

Let µ⊗rm → G be an injectively fibrant replacement in Cpx(Sh(SmX,ét,Z/m)).
Let V ∈ SmX . For W a closed subset of V such that each irreducible component

has codimension greater or equal to r set G
W (V ) := ker( G (V )→ G (V \W )).

As in [36, 12.3] there is a canonical isomorphism of H2r( G
W (V )) with the free

Z/m-module on the irreducible components of W of codimension r and the map
τ≤2r G

W (V )→ H2r( G
W (V ))[−2r] is a quasi-isomorphism.

For V ∈ Xét denote by G
r(V, n) the colimit of the G

W (V × ∆n) where W runs
through the finite unions of elements of cr(V, n). The simplicial complex of Z/m-mod-
ules τ≤2r G

r(V, •) augments to the simplicial abelian group zr(V, •)/m[−2r]. This
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augmentation is a levelwise quasi-isomorphism. We denote by G
r(V ) the total com-

plex associated to the double complex which is the normalized complex associated
to τ≤2r G

r(V, •). Thus we get a quasi-isomorphism G
r(X) → zr(X)/m[−2r]. Here

for V ∈ SmcS the complex zr(V ) is defined to be the normalized complex associated
to the simplicial abelian group zr(V, •).

On the other hand for V ∈ Xét we have a canonical map G
r(V, n) →

G (V × ∆n) compatible with the simplicial structure. We denote by G
′(V ) the

total complex associated to the double complex which is the normalized complex
associated to G (V × ∆•). We have a canonical quasi-isomorphism G (V ) → G

′(V )

and a canonical map G
r(V ) → G

′(V ). The above groups and maps are functorial
in V ∈ Xét.

Thus we get a map
zr(_)/m[−2r] ∼= G

r → G
′ ∼= G

in D(Sh(Xét,Z/m)). This is (the adjoint of) the cycle class map.
The étale sheafification of the cycle class map is an isomorphism in D(Sh(Xét,Z/m)),

see [17, Theorem 1.2.4.].
Let f : Y → X be a flat morphism of schemes in SmcS . Then there is a flat pullback

f∗M
X(r)→ M

Y (r).

Lemma 3.7. – Let f : Y → X be a flat morphism of schemes in SmcS. Suppose m is
invertible on X. Then the diagram

f∗M
X(r)/m

f∗ccXm(r) //

��

f∗Rε∗Z/m(r)

��
M

Y (r)/m
ccYm(r) // Rε∗Z/m(r)

commutes.

Proof. – This follows from the definition of the étale cycle class map.

Lemma 3.8. – Let X ∈ SmcS and suppose m is invertible on X. Let m′|m. Then the
diagram

M
X(r)/m

ccXm(r) //

��

Rε∗Z/m(r)

��
M

X(r)/m′
ccX
m′ (r) // Rε∗Z/m′(r)

in D(Sh(XZar,Z/m)) commutes.

Proof. – This follows from the definition of the étale cycle class map.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



16 CHAPTER 3. MOTIVIC COMPLEXES I

Theorem 3.9. – Let X ∈ SmcS and suppose m is invertible on X. Then there is an
isomorphism

M
X(r)/m ∼= τ≤r(Rε∗Z/m(r))

in D(Sh(XZar,Z/m)) induced by the cycle class map.

Proof. – By [17, Theorem 1.2.2.] (which we can apply since the Bloch-Kato conjecture
is proven, [58]) we have

M
X(r) ∼= τ≤(r+1)Rε∗M

X
ét(r).

By Theorem 3.3 it follows that Rr+1ε∗M
X
ét(r) = 0. Thus

M
X(r)/m ∼= τ≤r(Rε∗M

X
ét(r)/m).

But by [17, Theorem 1.2.4.] we have

M
X
ét(r)/m ∼= Z/m(r)

induced by the cycle class map (see the proof of [17, Theorem 1.2.4.]). This shows the
claim.

Theorem 3.10. – Let i : Z → X be a closed inclusion in SmcS of codimension c and
suppose m is invertible on X. Then there is a canonical isomorphism

Ri!Z/m(r) ∼= Z/m(r − c)[−2c]

in D(Sh(Zét,Z/m)).

Proof. – This is [42, Théorème 3.1.1.].

A consequence is the localization/Gysin exact triangle for étale cohomology.

Corollary 3.11. – Let i : Z → X be a closed inclusion in SmcS of codimension c

and j : U → X the complementary open inclusion. Suppose m is invertible on X.
Then there is an exact triangle

i∗Z/m(r − c)[−2c]→ Z/m(r)→ Rj∗Z/m(r)→ i∗Z/m(r − c)[−2c+ 1]

in D(Sh(Xét,Z/m)) (note i∗ computes the derived push forward in this situation).

Proof. – This follows from Theorem 3.10 and the corresponding exact triangle involv-
ing Ri!Z/m(r).
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Theorem 3.12. – Let i : Z → X be a closed inclusion in SmcS of codimension c and
suppose m is invertible on X. Then the diagram

Ri! M
X(r)/m

∼= //

Ri!ccXm(r)

��

M
Z(r − c)/m[−2c]

ccZm(r−c)[−2c]

��

Ri!Rε∗Z/m(r)
∼=��

Rε∗Ri!Z/m(r)
∼= // Rε∗Z/m(r − c)[−2c]

in D(Sh(ZZar,Z/m)) commutes.

Proof. – Let U = X \ Z.
We use the definition of the étale cycle class map for X and the notation G , G

′

and G
r after (4).

Denote by G̃ , G̃
′
, G̃

r−c
the analogous objects defined for Z instead for X, so we

have a diagram
zr−c(_)/m[−2(r − c)] ∼← G̃

r−c
→ G̃

′ ∼← G̃

in Cpx(Sh(Zét,Z/m)).
For V ∈ SmX set GZ(V ) := ker( G (V )→ G (V |U )). Thus GZ ∈ Cpx(Sh(SmX,ét,Z/m))

computes i∗Ri!µ⊗rm .
There is an absolute purity isomorphism GZ

∼= i∗ G̃ [−2c] in D(Sh(SmX,ét,Z/m))

(see Theorem 3.10). Choose a representative ϕ : GZ → i∗ G̃ [−2c] in Cpx(Sh(SmX,ét,Z/m))

of this isomorphism. This exists since i∗ G̃ [−2c] is injectively fibrant.
For V ∈ Xét denote by G

′
Z(V ) the total complex associated to the double complex

which is the normalized complex associated to GZ(V ×∆•). Moreover let G
r
Z(V, n) be

the colimit of the G
W (V ×∆n) where W runs through the finite unions of elements

of cr−c(V |Z , n). Denote by G
r
Z(V ) the total complex associated to the double complex

which is the normalized complex associated to τ≤2r G
r
Z(V, •). Denote by zrZ(V ) the

complex zr−c(V |Z).
Set GU (V ) := G (V |U ), G

′
U (V ) := G

′(V |U ), G
r
U (V ) := G

r(V |U ) and zrU (V ) :=

zr(V |U ).
We have the diagram

i∗ G̃ [−2c]

∼��

GZ
∼oo //

∼��

G //

∼��

GU
∼��

i∗ G̃
′
[−2c] G

′
Z

∼oo // G ′ // G ′U

i∗ G̃
r−c

[−2c]

∼��

OO

G
r
Z

OO

∼oo //

∼��

G
r

OO

//

∼��

G
r
U

∼��

OO

i∗z
r−c(_)[−2r] zrZ(_)[−2r]

∼=oo // zr(_)[−2r] // zrU (_)[−2r].
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The upper three left most horizontal maps are induced by ϕ. The lower left square
commutes by the naturality of the purity maps in étale cohomology. All other squares
commute by construction. The last two arrows in each horizontal line compose to 0

and constitute an exact triangle, thus the second vertical line computes i∗Ri! of the
third vertical line. The claim follows.

Corollary 3.13. – Let i : Z → X be a closed inclusion in SmcS of codimension c

and j : U → X the complementary open inclusion. Suppose m is invertible on X.
Then the diagram

i∗M
Z(r − c)/m[−2c] //

i∗ccZm(r−c)[−2c]

��

M
X(r)/m

ccXm(r)

��

// Rj∗M
U (r)/m //

Rj∗ccUm(r)

��

i∗M
Z(r − c)/m[−2c+ 1]

i∗ccZm(r−c)[−2c+1]

��
i∗Rε∗Z/m(r − c)[−2c]

∼=��

Rj∗Rε∗Z/m(r)
∼=��

i∗Rε∗Z/m(r − c)[−2c+ 1]
∼=��

Rε∗i∗Z/m(r − c)[−2c] // Rε∗Z/m(r) // Rε∗Rj∗Z/m(r) // Rε∗i∗Z/m(r − c)[−2c+ 1]

in D(Sh(XZar,Z/m)) commutes.

Proof. – The diagram

i∗Ri! M
X(r)/m //

i∗Ri!ccXm(r)

��

M
X(r)/m

ccXm(r)

��

// Rj∗M
U (r)/m

ccUm(r)

��

// i∗Ri! M
X(r)/m[1]

i∗Ri!ccXm(r)[1]

��
i∗Ri!Rε∗Z/m

∼=��

i∗Ri!Rε∗Z/m[1]

∼=��
i∗Rε∗Ri!Z/m(r)

∼=��

Rj∗Rε∗Z/m(r)

∼=
��

i∗Rε∗Ri!Z/m(r)[1]

∼=��
Rε∗i∗Ri!Z/m(r) // Rε∗Z/m(r) // Rε∗Rj∗Z/m(r) // Rε∗i∗Ri!Z/m(r)[1]

commutes. Thus the claim follows from Theorem 3.12.

Theorem 3.14. – Let X ∈ SmcS. Let q : A1
X → X be the projection. Then the

canonical map
M

X(r)→ Rq∗M
A1
X (r)

is an isomorphism in D(Sh(XZar,Z)).

Proof. – This is [17, Corollary 3.5] (again we can apply this result since any connected
component is either smooth over S or over a field).
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CHAPTER 4

THE CONSTRUCTION

For Sections 4 through 7 and Appendix C of the paper we fix a Dedekind domain D

of mixed characteristic and set S := Spec( D). For a prime p we let S[ 1
p ] = Spec( D[ 1

p ])

and Zp ⊂ S the closed complement of S[ 1
p ] with the reduced scheme structure. Then

Zp is a finite union of spectra of fields of characteristic p.

4.1. The p-parts

4.1.1. Finite coefficients. – We fix a prime p and set U := S[ 1
p ], Z := Zp, i : Z ↪→ S

the closed and j : U ↪→ S the open inclusion.
For a scheme X for which the motivic complexes are defined we set M

X
n (r) :=

M
X(r)/pn.
For n ≥ 1 and r ∈ Z let Ln(r) := µ⊗rpn viewed as sheaf of Z/pn-modules on SmU,ét.
The pullback j−1 : SmS → SmU , X 7→ X ×S U , induces a push forward

j∗ : Sh(SmU,Zar,Z/pn)→ Sh(SmS,Zar,Z/pn)

(we suppress the dependence on n of the functor j∗). The same is true for étale sheaves.
Similarly, we have the pullback i−1 : SmS → SmZ , X 7→ X ×S Z, inducing also a

push forward on sheaf categories.
Let QLn(1) → Ln(1) be a cofibrant replacement in Cpx(Sh(SmU,ét,Z/pn)) (the

latter category is equipped with the local projective model structure, see Appendix A)
and let QLn(1) → RQLn(1) be a fibrant replacement via a cofibration. Thus T :=

RQLn(1)[1] is both fibrant and cofibrant.
Recall the decomposition

(5) RHomD(Sh(SmU,ét,Z/pn))(Gm,U , Ln(1)[1]) = Ln(1)[1]⊕ Ln(0).

The first summand splits off because the projection Gm,U → U has the section {1}.
To define the isomorphism of the remaining summand with Ln(0) we use the Gysin

sequence for the situation
Gm,U ↪→ A1

U ←↩ {0}.
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Let ι : Z/pn[Gm,U , {1}]ét → T (for notation see Section 2) be a map which classifies
the canonical element 1 ∈ H1

ét(Gm,U , Ln(1)) under the above decomposition (here the
source of ι is the chain complex having the indicated object in degree 0). Note that
Z/pn[Gm,U , {1}]ét is cofibrant.

Remark 4.1. – The map Z/pn[Gm,U ]ét → T induced by ι represents the map induced
by the last map of the exact triangle

Ln(1)→ Gm,U
pn→ Gm,U → Ln(1)[1]

in D(Sh(SmU,ét,Z)). This follows from the construction of the Gysin isomorphism.

We get a map

Sym(ι) : Sym(Z/pn[Gm,U , {1}]ét)→ Sym( T )

of commutative monoids in symmetric sequences in Cpx(Sh(SmU,ét,Z/pn)), in
other words Sym( T ) is a commutative monoid in the category of symmetric
Z/pn[Gm,U , {1}]ét-spectra SpΣ

Z/pn[Gm,U ,{1}]ét
(for symmetric sequences and (sym-

metric) spectra we refer to [26]). In particular it gives rise to an E∞-object
in SpΣ

Z/pn[Gm,U ,{1}]ét
.

Let QSym( T ) → Sym( T ) be a cofibrant replacement via a trivial fibration and
QSym( T )→ RQSym( T ) a fibrant resolution ofQSym( T ) in E∞(SpΣ

Z/pn[Gm,U ,{1}]ét
)

(here E∞(SpΣ
Z/pn[Gm,U ,{1}]ét

) is equipped with the transferred semi model structure,
see Appendix A. In particular RQSym( T ) is underlying levelwise fibrant for the
local projective model structure and is therefore suitable to compute the derived
push forward along ε : SmU,ét → SmU,Zar).

Lemma 4.2. – The map QSym( T ) → RQSym( T ) is a level equivalence, i.e.,
Sym( T ) is an Ω-spectrum.

Proof. – This follows from the fact that we have chosen the map ι in such a way that
the derived adjoints of the structure maps of Sym( T ) give rise to the isomorphism
RHom((Gm,U , {1}), Ln(r)[r]) ' Ln(r − 1)[r − 1].

Set A := ε∗(RQSym( T )), so the spectrum A is RQSym( T ) viewed as E∞-algebra
in Z/pn[Gm,U , {1}]Zar-spectra in Cpx(Sh(SmU,Zar,Z/pn)).

We denote by Ar the r-th level of A. Thus Ar ' Rε∗Ln(r)[r].
Set Atr

r := τ≤0(Ar), where τ≤0 denotes the good truncation at degree 0, i.e., the
complex Atr

r equals Ar in (cohomological) degrees< 0, consists of the cycles in degree 0

and is 0 in positive degree.
Thus by Theorem 3.9 there is for every X ∈ SmU an isomorphism

(6) Atr
r |XZar

∼= M
X
n (r)[r]

in D(Sh(XZar,Z/pn)), where Atr
r |XZar

denotes the restriction of Atr
r to XZar.
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Lemma 4.3. – The complexes Atr
r assemble to a Z/pn[Gm,U , {1}]Zar-spectrum Atr.

This spectrum is equipped with an E∞-structure together with a map of E∞-algebras
Atr → A which is levelwise the canonical map Atr

r → Ar.

Proof. – This follows from the fact that the truncation τ≤0 is right adjoint to the sym-
metric monoidal inclusion of (cohomologically) non-positively graded complexes into
all complexes and that Z/pn[Gm,U , {1}]Zar lies in this subcategory of non-positively
graded complexes.

Let QAtr → Atr be a cofibrant replacement via a trivial fibration in E∞-algebras
in Z/pn[Gm,U , {1}]Zar-spectra in Cpx≤0(Sh(SmU,Zar,Z/pn)) (so QAtr is also cofibrant
viewed as an E∞-algebra in spectra in unbounded complexes) and QAtr → RQAtr

be a fibrant resolution (as E∞-algebras in Z/pn[Gm,U , {1}]Zar-spectra in the model
category Cpx(Sh(SmU,Zar,Z/pn)), so in particular RQAtr is also underlying fibrant).

Proposition 4.4. – The map QAtr → RQAtr is a level equivalence, i.e., Atr and
QAtr are Ω-spectra.

Proof. – Set m := pn. Let X ∈ SmU . Let ı̃ : {0} → A1
X be the closed, ̃ : Gm,X → A1

X

the open inclusion and q : A1
X → X the projection. By Corollary 3.11 we have an

exact triangle

ı̃∗Z/m(r − 1)[−2]→ Z/m(r)A
1
X → R̃∗Z/m(r)→ ı̃∗Z/m(r − 1)[−1].

Note
Rq∗R̃∗Z/m(r) ∼= RHomD(Sh(SmU,ét,Z/m))(Gm,U , Ln(r))|Xét

and that Rq∗ applied to the last map in the triangle gives the projection to the second
summand in our decomposition (5). Thus by construction of the map ι this map also
gives the inverse of the adjoint of the structure map in RSym( T ).

By Theorem 3.1 there is an exact triangle

ı̃∗M n(r − 1)[−2]→ M
A1
X
n (r)→ R̃∗M n(r)→ ı̃∗M n(r − 1)[−1].

Hence by Theorem 3.3 the canonical map

τ≤r(R̃∗M n(r))→ R̃∗M n(r)

is an isomorphism. Thus in view of Theorem 3.9 the same truncation property holds
for R̃∗τ≤rRε∗Z/m(r). Thus the map

R̃∗τ≤rRε∗Z/m(r)→ Rε∗ ı̃∗Z/m(r − 1)[−1]

factors through τ≤r(Rε∗ ı̃∗Z/m(r − 1)[−1]).
Moreover the map

R̃∗τ≤rRε∗Z/m(r) ∼= τ≤rR̃∗τ≤rRε∗Z/m(r)→ τ≤rR̃∗Rε∗Z/m(r)

is an isomorphism, thus we have a canonical map

τ≤rRε∗Z/m(r)A
1
X → R̃∗τ≤rRε∗Z/m(r).
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Using Corollary 3.13 these maps fit into the commutative diagram

(7) M
A1
X
n (r) //

∼=
��

R̃∗M n(r) //

∼=
��

ı̃∗M n(r − 1)[−1]

∼=
��

τ≤rRε∗Z/m(r)A
1
X // R̃∗τ≤rRε∗Z/m(r) // τ≤r (̃ı∗Rε∗Z/m(r − 1)[−1]),

where the top row is part of the triangle given by Theorem 3.1. The composition

Atr
r−1[−r]|XZar

→ RHom(Z/m[Gm,U , {1}]Zar, A
tr
r [−r])|XZar

→ RHom(Z/m[Gm,U ]Zar, τ≤rRε∗Ln(r))|XZar

∼= Rq∗R̃∗τ≤rRε∗Z/m(r)→ τ≤r(Rε∗Z/m(r − 1)[−1]) ∼= Atr
r−1[−r]|XZar

is the identity.
Since

(8) Z/m[Gm,U ]Zar
∼= Z/m⊕ Z/m[Gm,U , {1}]Zar

the object Rq∗R̃∗τ≤rRε∗Z/m(r) splits into two summands, the trivial summand cor-
responding to the left summand in (8) and the non-trivial summand corresponding
to the right summand.

By Theorem 3.14 Rq∗M
A1
X
n (r) identifies with M

X
n (r), thus Rq∗ applied to the left

bottom arrow in (7) is an isomorphism to the trivial summand and Rq∗ of the bottom
row splits. Thus also Rq∗ of the top row splits. This shows that in fact

Rq∗ ı̃∗M n(r − 1)[−1] ∼= M
X
n (r − 1)[−1]

via the right vertical isomorphism and the right lower map in the diagram is isomor-
phic to the non-trivial summand in Rq∗R̃∗τ≤rRε∗Z/m(r). Since this holds over every
X ∈ SmU we are done.

Thus B := j∗(RQA
tr) is a Z/pn[Gm,S , {1}]Zar-spectrum and computes also level-

wise the derived push forward of Atr along j. (Note that to compute the levelwise
push forward we also could have used the levelwise model structure.)

By (6) for every X ∈ SmS we have

(9) Br|XZar

∼= R(jX)∗( M
XU
n (r))[r]

in D(Sh(XZar,Z/pn)) (here XU = X ×S U and jX denotes the inclusion XU ↪→ X).
Thus by Corollary 3.5 the map Btr

r := τ≤0Br → Br is a quasi-isomorphism.
As in Lemma 4.3 the Btr

r assemble to an E∞-algebra Btr, and the natural map
Btr → B is an equivalence.

By the following lemma we could have used j∗Atr instead of B and Btr.

Lemma 4.5. – The natural maps j∗(QAtr) → j∗A
tr and j∗(QA

tr) → B are level
equivalences.
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Proof. – Note first that each Atr
r is fibrant in Cpx≤0(Sh(SmU,Zar,Z/pn)), hence so

are the (QAtr)r, thus the j∗Atr
r and j∗(QAtr)r are the derived push forwards to the

homotopy category of Cpx≤0(Sh(SmS,Zar,Z/pn)). But the truncation commutes with
derived push forward (both are right adjoints), so the claim follows from the fact that
Btr → B is an equivalence.

Corollary 4.6. – There is a natural isomorphism

Rrj∗Ln(r) ∼= ε∗H
0(Btr

r ) = H
0(Btr

r )ét

in Sh(SmS,ét,Z/pn).

Proof. – We have j∗Atr = ε∗τ≤0j∗(RQSym( T )) (here the truncation is understood
levelwise), thus

Rrj∗Ln(r) ∼= H
0(j∗((RQSym( T ))r) = H

0(τ≤0j∗((RQSym( T ))r)

= ε∗H
0(ε∗τ≤0j∗((RQSym( T ))r) = ε∗H

0(j∗A
tr
r ) = ε∗H

0(Btr
r ).

At the end we used Lemma 4.5.

By (9) and Corollary 3.5 we have for every X ∈ SmS a natural epimorphism

(10) sX : H
0(Btr

r |XZar
) � (iX)∗ν

r−1
n ,

where iX is the inclusion X ×S Z ↪→ X.

Proposition 4.7. – The maps sX assemble to an epimorphism

s : H
0(Btr

r ) � i∗ν
r−1
n

in Sh(SmS,Zar,Z/pn).

In order to prove this proposition we describe the maps sX in a way Geisser used
to define his version of syntomic cohomology in [17, §6].

Let X ∈ SmS . We first give a construction of a map

bX : (iX)∗(Rrj∗Ln(r)|Xét
)→ νr−1

n

in Sh((XZ)ét,Z/pn). Over a complete discrete valuation ring of mixed characteristic
such a map was constructed in [4, §(6.6)], see also [17, §6]. We fix a point p ∈ Z and
let Λ be the completion of the discrete valuation ring Dp. Set T := Spec(Λ). Let η be
the generic point of T . Let XT := X ×S T , and let Xp be the special fiber and Xη

the generic fiber of XT .
We let jXT : Xη → XT and iXT : Xp → XT be the canonical inclusions.
Then the map

bXT : Mr
n,XT := (iXT )∗Rr(jXT )∗(Z/pn(r))→ νr−1

n

in [4, §(6.6)] is defined as follows (recall Z/pn(r) = µ⊗rpn ):
By [4, Corollary (6.1.1)] the sheaf Mr

n,XT
is (étale) locally generated by symbols

{x1, . . . , xr}, xi ∈ (iXT )∗(jXT )∗ O
∗
Xη (for the definition of symbol see [4, §(1.2)]).
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Then for any f1, . . . , fr ∈ (iXT )∗ O
∗
XT the map bXT sends the symbol {f1, . . . , fr}

to 0 and the symbol {f1, . . . , fr−1, π} (π a uniformizer of Λ) to dlogf1 . . . dlogfr−1,
where f i is the reduction of fi to O

∗
Xp .

By multilinearity and the fact that {x,−x} = 0 for x ∈ (iXT )∗(jXT )∗ O
∗
Xη this

characterizes bXT uniquely.

The base change morphism for the square

Xη

fXU //

jXT
��

XU

jX

��
XT

fX // X

applied to the sheaf Z/pn(r) on (XU )ét yields

(fX)∗Rr(jX)∗Z/pn(r)→ Rr(jXT )∗Z/pn(r)

(note that (fXU )∗Z/pn(r) = Z/pn(r)). Applying (iXT )∗ and noting that (iXT )∗(fX)∗ =

(ip)
∗ where ip is the inclusion ip : Xp → X we get a map

(ip)
∗Rr(jX)∗Z/pn(r)→Mr

n,XT .

Composing with bXT gives a map

(ip)
∗Rr(jX)∗Z/pn(r)→ νr−1

n .

Taking the disjoint union over all points in Z we finally get the map

bX : (iX)∗Rr(jX)∗Z/pn(r)→ νr−1
n ,

the adjoint of which is a map

[(bX) : Rr(jX)∗Z/pn(r)→ (iX)∗ν
r−1
n .

Together with the isomorphism of Corollary 4.6 we get the composition

(11) s′X : H
0(Btr

r )|XZar
→ ε∗H

0(Br)ét|XZar

∼= ε∗Rr(jX)∗Z/pn(r)→ (iX)∗ν
r−1
n

(by our convention νr−1
n also denotes the logarithmic de Rham-Witt sheaf

on (XZ)Zar).

Proposition 4.8. – With the notation as above we have sX = s′X .

Proof. – We keep the local completed situation at a point p of Z from above.

We have a natural map induced by flat pullback (fXU )∗M
XU
n (r) → M

Xη
n (r),

whence we get a base change morphism

f∗XRr(jX)∗M
XU
n (r)→ Rr(jXT )∗M

Xη
n (r).
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We get a diagram

f∗XRr(jX)∗M
XU
n (r) //

��

Rr(jXT )∗M
Xη
n (r) //

��

H
r−1((iXT )∗M

Xp
n (r − 1))

∼=
��

f∗Xε∗Rr(jX)∗Z/pn(r) // ε∗Rr(jXT )∗Z/pn(r) // (iXT )∗ν
r−1
n .

The left and middle vertical maps are induced by the isomorphism of Corollary 4.6
and (9). The left lower horizontal map is induced by the transformation f∗Xε∗ → ε∗f

∗
X .

The upper right horizontal arrow is part of the localization sequence for the motivic
complexes. The lower right horizontal map is induced by bXT .

The claim of the proposition follows from the commutativity of the outer square.
Indeed, a map from the left upper corner to the right lower corner is adjoint to a map

(ip)
∗Rr(jX)∗M

XU
n (r) = (iXT )∗f∗Rr(jX)∗M

XU
n (r)→ νr−1

n .

The assertion that the outside compositions are the same implies that the adjoints
of sX and s′X coincide over the point p. Since this is true for all points in Z the claim
follows.

The left square of the above square commutes by naturality of the cycle class map,
Lemma 3.7.

So we are left to prove the commutativity of the right hand square.

Since the right lower corner is an étale sheaf we can also sheafify this square in the
étale topology to test commutativity.

The resulting square is adjoint to a square

(iXT )∗ε∗Rr(jXT )∗M
Xη
n (r) //

∼=
��

ε∗H
r−1( M

Xp
n (r − 1))

∼=
��

(iXT )∗Rr(jXT )∗Z/pn(r) // νr−1
n

(the left vertical map is an isomorphism by Corollary 4.6 and (9), both understood for
the completed situation). This commutativity would follow from the commutativity
of the right hand square in the first diagram in the proof of [17, Theorem 1.3]. This
commutativity is not explicitely stated in loc. cit., but the proof in loc. cit. that the
composition κ ◦ α ◦ c (the three maps in this composition are introduced in the proof
of [17, Theorem 1.3]) is 0 shows the commutativity of our diagram:

As in loc. cit. let R be the strictly henselian local ring of a point in the closed
fiber Xp of XT , let L be the field of quotients of R, F the field of quotients of R/π,
V = R(π), V h the henselization of V and Lh the quotient field of V h.
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We have to show the commutativity of

Hr(R[ 1
π ], M n(r)) //

∼=
��

Hr−1(R/π, M n(r − 1))

∼=
��

Hr
ét(R[ 1

π ],Z/pn(r)) // νr−1
n (R/π).

The map νr−1
n (R/π) → νr−1

n (F ) is injective (see the proof of [17, Theorem 1.3],
where it is attributed to [20, Corollary 1.6]).

Thus by the naturality of the localization sequence for motivic complexes and the
fact that the bXT are sheaf maps it is enough to show commutativity of the square
which one gets from the last square by replacing R[ 1

π ] with L and R/π with F . But
this square factors as

Hr(L, M n(r)) //

∼=
��

Hr(Lh, M n(r)) //

∼=
��

Hr−1(F, M n(r − 1))

∼=
��

Hr
ét(L,Z/pn(r)) // Hr

ét(L
h,Z/pn(r)) // νr−1

n (F ).

The right upper horizontal map is induced from the localization sequence of the
motivic complexes for V h, its generic and its closed point.

The left hand square commutes by naturality of the cycle class map, and the
commutativity of the right hand square is shown in the proof of [17, Theorem 1.3] in
the paragraph before the last paragraph. This finishes the proof.

We next discuss functoriality of the construction of the morphisms s′X . So let
g : Y → X be a morphism in SmS . We still keep the local completed situation from
above. We let gZ , gT , gη and gp be the base changes of g (over S) to Z, T , η and p.

Consider the diagram

Yη
gη //

� _

jYT
��

Xη� _

jXT
��

YT
gT // XT

Yp
gp //

� ?

iYT

OO

Xp.
� ?

iXT

OO

A base change morphism gives us

(gT )∗Rr(jXT )∗(Z/pn(r))→ Rr(jYT )∗(Z/pn(r)).

Applying (iYT )∗ and using (iYT )∗(gT )∗ ∼= (gp)
∗(iXT )∗ gives

(gp)
∗Mr

n,XT →Mr
n,YT .
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Lemma 4.9. – The diagram

(gp)
∗Mr

n,XT

(gp)∗(bXT )
//

��

(gp)
∗νr−1
n

��
Mr
n,YT

bYT // νr−1
n

commutes.

Proof. – This follows from the definition of the morphisms bXT and bYT in terms of
symbols and the functoriality of the symbols.

As above for X let fY be the map YT → Y .

Lemma 4.10. – The diagram

g∗T f
∗
XRr(jX)∗Z/pn(r) //

��

g∗TRr(jXT )∗Z/pn(r)

��
f∗Y Rr(jY )∗Z/pn(r) // Rr(jYT )∗Z/pn(r),

where all maps are induced by base change morphisms, commutes.

Proof. – This follows by the naturality of the base change morphisms.

Corollary 4.11. – The diagram

(gZ)∗(iX)∗Rr(jX)∗Z/pn(r)
(gZ)∗(bX) //

��

(gZ)∗νr−1
n

��
(iY )∗Rr(jY )∗Z/pn(r)

bY // νr−1
n ,

where the left vertical map is induced by a base change morphism, commutes.

Proof. – This follows by combining Lemmas 4.9 and 4.10.

Corollary 4.12. – The diagram

g∗Rr(jX)∗Z/pn(r)
g∗([(bX)) //

��

g∗(iX)∗ν
r−1
n

∼=
��

(iY )∗(gZ)∗νr−1
n

��
Rr(jY )∗Z/pn(r)

[(bY ) // (iY )∗ν
r−1
n

commutes.
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Proof. – We check that the adjoints with respect to the pair (iY )∗, (iY )∗ of the two
compositions are the two compositions of Corollary 4.11. For the composition via the
left lower corner this is immediate. For the other composition one uses a compatibility
between adjoints and pullbacks.

Corollary 4.13. – The maps s′X assemble to a map of sheaves H
0(Btr

r )→ i∗ν
r−1
n .

Proof. – This follows directly from Corollary 4.12.

Proof of Proposition 4.7. – The assertion follows by combining Proposition 4.8 and
Corollary 4.13.

Let Cr be the kernel of the composition

Btr
r � H

0(Btr
r )

s
� i∗ν

r−1
n .

Then by construction of the maps sX we have for any X ∈ SmS an isomorphism

(12) Cr|XZar

∼= M
X
n (r)[r]

in D(Sh(XZar,Z/pn)) since both objects appear as (shifted) homotopy fibers of the
map

R(jX)∗M
XU
n (r)→ R(iX)∗M

XZ
n (r − 1)[−1].

This isomorphism is even uniquely determined since there are no non-trivial maps
M

X
n (r)→ (iX)∗ν

r−1
n [−r − 1] in D(Sh(XZar,Z/pn)).

Lemma 4.14. – Let R be a commutative ring, T ∈ Sh(SmS,Zar, R) and E an E∞-al-
gebra in symmetric T -spectra in Cpx≤0(Sh(SmS,Zar, R)). Let Er be the levels of E.
Let for any r > 0 an epimorphism H

0(Er) � er in Sh(SmS,Zar, R)[Σr] be given. Let
E′r be the kernel of the induced map Er → er and set E′0 := E0. Suppose the canonical
map ϕ : T → E1 (which is the composition T ∼= R⊗RT

unit⊗id−→ E0⊗RT → E1) factors
through E′1 and that for any r, r′ ≥ 0 the composition in Sh(SmS,Zar, R) induced by
the E∞-multiplication on E

H
0(E′r)⊗R H

0(E′r′)→ H
0(Er)⊗R H

0(Er′)→ H
0(Er+r′)→ er+r′

is the zero map. Then there is an induced structure of an E∞-algebra E′ in symmetric
T -spectra on the collection of the E′r together with a map of E∞-algebras E′ → E

which is levelwise the canonical map E′r → Er.

Proof. – All tensor products are over R. The condition implies that we have natural
maps

φr,r′ : H
0(E′r)⊗ H

0(E′r′)→ H
0(E′r+r′).

Let O be our E∞-operad in Cpx≤0(Sh(SmS,Zar, R)). Note that each E′r carries an
action of Σr. The structure maps of the E∞-algebra in T -spectra E are maps

s : Er ⊗ T → Er+1

and
a : O(k)⊗ Er1 ⊗ · · · ⊗ Erk → Er,
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r =
∑k
i=1 ri. These are subject to certain conditions. We show that when restricting

these maps to the E′r they factor through E′r (for the appropriate r). Then it is clear
that these new structure maps also satisfy the conditions required.

To show that the composition

O(k)⊗ E′r1 ⊗ · · · ⊗ E
′
rk
→ O(k)⊗ Er1 ⊗ · · · ⊗ Erk → Er

factors through E′r it is sufficient to show that the induced map on H
0 factors through

H
0(E′r). But since O is E∞ the map on H

0 is a map

H
0(E′r1)⊗ · · · ⊗ H

0(E′rk)→ H
0(Er)

and the conditions to be E∞ imply that this map is an iteration of the maps φr′,r′′ .
Thus we get the factorization.

To handle the case of the T -spectrum structure maps it is again sufficient to show
that the composition

ψ : H
0(E′r)⊗ T → H

0(Er)⊗ T → H
0(Er+1)

factors through H
0(E′r+1). But the commutativity of the diagram

O(2)⊗ Er ⊗ T

∼=
��

id⊗ϕ

��

O(2)⊗ Er ⊗R⊗ T

id⊗u⊗id

��

// O(1)⊗ Er ⊗ T

a⊗id

��

O(2)⊗ Er ⊗ E0 ⊗ T

id⊗suu

a⊗id

))
O(2)⊗ Er ⊗ E1

a

))

Er ⊗ T

s
uu

Er+1

(the only horizontal arrow is a structure map of the operad using R ∼= O(0)) implies
that ψ is the composition

H
0(E′r)⊗ T → H

0(E′r)⊗ H
0(E′1)→ H0(Er+1)

which factors through H
0(E′r+1) by assumption. This finishes the proof.

We want to apply Lemma 4.14 with T = Z/pn[Gm,S , {1}]Zar, E = Btr and er =

i∗ν
r−1
n . Then we have E′r = Cr.

Lemma 4.15. – The Σr-action on H
0(Btr

r ) is the sign representation.
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Proof. – This follows from the fact that there is a zig zag of Σr-equivariant quasi-
isomorphisms between T

⊗r and (Ln(1)[1])⊗r, and on the latter the Σr-action is
strictly the sign representation, since Ln(1)[1] has as only entry an invertible sheaf
of Z/pn-modules in homological degree 1.

So if we equip νr−1
n with the sign representation of Σr the map H

0(Btr
r )→ i∗ν

r−1
n

is Σr-equivariant.
The exact sequence

0→ Ln(1)→ Gm,U
pn→ Gm,U → 0

on SmU,ét induces a boundary homomorphism

β : j∗Gm,U → R1j∗Ln(1)

of sheaves on SmS,ét (note that (after restriction) this is the symbol map defined in
[4, (1.2)] in degree 1).

Lemma 4.16. – The diagram

Gm,S //

��

Z/pn[Gm,S , {1}]Zar
// Btr

1
// H 0(Btr

1 ) // H 0(Btr
1 )ét

∼=
��

j∗Gm,U
β // R1j∗Ln(1)

commutes.

Proof. – This follows from the defining property of the map ι (see Remark 4.1).

Corollary 4.17. – The composition

Gm,S → Z/pn[Gm,S , {1}]Zar
ϕ→ Btr

1 → H
0(Btr

1 )→ i∗ν
r−1
n

is the constant map to zero.

Proof. – This follows from Lemma 4.16, the definition of the map bXT and the def-
inition of symbol: The symbol {x} for x an invertible section over a smooth scheme
over S is sent to 0 via bXT .

Thus the first condition of Lemma 4.14 about the factorization of the map ϕ is
satisfied.

For the second condition we get back to our local completed situation. Let X ∈
SmS , p ∈ Z and let the notation be as above. By [32, §3, top of p. 277] there is an
exact sequence

(13) 0→ U0Mr
n →Mr

n → νr−1
n → 0

on (Xp)ét, where U0Mr
n is the subsheaf of Mr

n generated étale locally by symbols
{x1, . . . , xr} with xi ∈ (iXT )∗ O

∗
XT . This follows from the exact sequence

0→ U1Mr
n →Mr

n → νrn ⊕ νr−1
n → 0
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([4, Theorem (1.4)(i)]), where U1Mr
n is generated étale locally by symbols {x1, . . . , xr}

with x1 − 1 ∈ π · (iXT )∗ OXT . Indeed, given an element in the kernel of Mr
n → νr−1

n

we can first change it by symbols {x1, . . . , xr} with xi ∈ (iXT )∗ O
∗
XT to lie also in the

kernel of the map Mr
n → νrn, and then it lies in U1Mr

n which is also generated by
symbols (of the indicated type).

Lemma 4.18. – Let r, r′ ≥ 0. The composition

H
0(Cr)⊗ H

0(Cr′)→ H
0(Btr

r )⊗ H
0(Btr

r′)→ H
0(Btr

r+r′),

where the second map is induced by the E∞-structure on Btr, factors through
H

0(Cr+r′).

Proof. – Let y be a local section lying in the kernel of H
0(Btr

r ) → νr−1
n , similarly

for y′. We may view y and y′ as local sections of Mr
n and Mr′

n . They are mapped to 0

by the maps to νr−1
n and νr

′−1
n , thus by the exact sequence (13) the sections y and y′

can be written locally as linear combinations of symbols of the form {x1, . . . xr} and
{x′1, . . . , x′r′} with xi, x

′
i ∈ (iXT )∗ O

∗
XT . But the product of such symbols is just the

concatenated symbol {x1, . . . , xr, x
′
1, . . . , x

′
r′} which thus also lies in the kernel of the

map Mr+r′

n → νr+r
′−1

n . This is true over all points p of Z, so we see that y ⊗ y′ is
sent to 0 in i∗νr+r

′−1
n .

Corollary 4.19. – The collection of the Cr forms an E∞-algebra C in
Z/pn[Gm,S , {1}]Zar-spectra which comes with a map of E∞-algebras C → Btr

which is levelwise the canonical map Cr → Btr
r .

Proof. – This follows with Corollary 4.17 and Lemma 4.18 from Lemma 4.14.

Thus with (12) we have arranged the motivic complexes M
X
n (r)[r], r ≥ 0, into an

E∞-algebra in Z/pn[Gm,S , {1}]Zar-spectra on SmS,Zar.

Proposition 4.20. – The algebra C is an Ω-spectrum.

Proof. – Set m := pn. Let X ∈ SmS . Let ı̃ : {0} → A1
X be the closed, ̃ : Gm,X → A1

X

the open inclusion and q : A1
X → X the projection.

Since Z/m[Gm,S ]Zar
∼= Z/m⊕ Z/m[Gm,S , {1}]Zar we have a decomposition

RHom(Gm,S , Cr) ∼= Cr ⊕ R .

By Theorem 3.1 we have an exact triangle

ı̃∗M n(r − 1)[−2]→ M
A1
X
n (r)→ R̃∗M n(r)→ ı̃∗M n(r − 1)[−1].

The composition

Cr[−r]|XZar

∼= Rq∗M
A1
X
n (r)→ Rq∗R̃∗M n(r)

∼= RHom(Gm,S , Cr[−r])|XZar

∼= Cr[−r]|XZar
⊕ R [−r]|XZar

→ Cr[−r]|XZar

is the identity. Thus when we apply Rq∗ to the above triangle we obtain a split
triangle. Let φ : M

X
n (r − 1)[−1]

∼=→ R [−r]|XZar
be the resulting isomorphism.
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We are finished when we prove that the diagram

Cr−1|XZar

//

∼=
��

RHom(Z/m[Gm,S , {1}]Zar, Cr)|XZar

∼=
��

M
X
n (r − 1)[r − 1]

φ

∼=
// R |XZar

,

where the upper horizontal map is the derived adjoint of the structure map of the
spectrum C, commutes. To see this it is sufficient to show that the post composition
of the two compositions with the map R |XZar

→ Rj∗R
′
|XZar

, where R
′ is defined

to be the second summand in the decomposition RHom(Gm,U , Atr
r ) ∼= Atr

r ⊕ R
′,

coincide, since there are no non-trivial maps from Cr−1|XZar
to (iX)∗ν

r−2
n [−1].

But we have a transformation of diagrams from the above diagram to the diagram

(14) Btr
r−1|XZar

//

∼=
��

RHom(Z/m[Gm,S , {1}]Zar, B
tr
r )|XZar

∼=
��

R(jX)∗M
XU
n (r − 1)[r − 1]

∼= // Rj∗R
′
|XZar

which commutes by the arguments in the proof of Proposition 4.4. So the two pro-
longed compositions in question are the two compositions in diagram (14) precom-
posed with the map Cr−1|XZar

→ Btr
r−1|XZar

, thus they coincide. This finishes the
proof.

4.1.2. The p-completed parts. – In this section we want to arrange (variants of) C for
varying n into a compatible family, such that we can then take the (homotopy) limit
of this system.

To start with write Z/p• for the inverse system comprised by the commutative rings
Z/pn with the obvious transition maps and ModZ/p• for the category of modules over
this system, i.e., the category whose objects are systems of abelian groups

· · · →Mn → · · · →M2 →M1

where each Mn is annihilated by pn.
For a site S write Sh( S ,Z/p•) for Sh( S ,ModZ/p•).
The system of the Ln(r) comprises a natural object L•(r) of Sh(SmU,ét,Z/p•).
Let QL•(1) → L•(1) be a cofibrant replacement in Cpx(Sh(SmU,ét,Z/p•)) (the

latter category is equipped with the inverse local projective model structure, i.e., weak
equivalences and cofibrations are detected levelwise (note that the indexing category
of our systems has a canonical inverse structure; for a definition of the latter notion
see [25, Definition 5.1.1])) and let QL•(1)→ RQL•(1) be a fibrant replacement via a
cofibration. Thus T := RQL•(1)[1] is both fibrant and cofibrant.
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We claim that the maps ι (for varying n) from the beginning of Section 4.1.1 can
be arranged to a map

ι : Z/p•[Gm,U , {1}]ét → T .

Indeed, suppose we have already defined ι up to level n in such a way that on each
level k ≤ n the map represents the canonical element 1 ∈ H1

ét(Gm,U , Lk(1)). We claim
that we can extend the system of maps to level n+ 1: Choose a representative

ι′ : Z/pn+1[Gm,U , {1}]ét → T n+1.

Then the composition with the fibration T n+1 → T n is homotopic to the map in
level n. This homotopy can be lifted giving as second endpoint the required lift.

As in Section 4.1.1 the map of symmetric sequences Sym(ι) gives rise to an E∞-al-
gebra Sym( T ) in Ω-Z/p•[Gm,U , {1}]ét-spectra, and we let QSym( T )→ Sym( T ) be
a cofbrant replacement via a trivial fibration and QSym( T ) → RQSym( T ) be a
fibrant resolution.

Set A := ε∗(RQSym( T )) and Atr := τ≤0(A). As in Section 4.1.1 Atr is again an
E∞-algebra. We set B := j∗A

tr. By Lemma 4.5 the algebra B computes levelwise in
the n-direction the algebra which was denoted Btr in Section 4.1.1.

Thus we have for every n and r the epimorphism

sr,n : H
0(Br,n)→ i∗ν

r−1
n

of Proposition 4.7.

Lemma 4.21. – We have a commutative diagram

H
0(Br,n+1)

sr,n+1 //

��

i∗ν
r−1
n+1

��
H

0(Br,n)
sr,n // νr−1

n .

Proof. – We only have to verify that a corresponding diagram involving the maps s′X
commutes. This follows by the explicit definition of the maps bXT (recall the maps
[(bX) enter the definition of the maps s′X (11), and the maps bXT are used to define
the maps bX).

We thus get an epimorphism

Br → i∗ν
r−1
• .

We denote by Cr the kernel of this epimorphism.
As in Section 4.1.1 we can apply a variant of Lemma 4.14 (or the lemma levelwise

in the n-direction and using functoriality) to see that the collection of the Cr gives rise
to an E∞-algebra C together with a map of E∞-algebras C → B which is levelwise
(for the r-direction) the canonical map Cr → Br.

Let X ∈ SmS . We want to see that the canonical isomorphisms (12)

Cr,n|XZar

∼= M
X
n (r)[r]
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are compatible with the reductions Z/pn+1 → Z/pn.
First by Lemma 3.8 the diagram

M
XU
n+1(r)[r]

∼= //

��

A′r,n+1|(XU )Zar

��
M

XU
n (r)[r]

∼= // A′r,n|(XU )Zar

commutes.
This shows that if we compose the two compositions in the square

(15) Cr,n+1|XZar

∼= //

��

M
X
n+1(r)[r]

��
Cr,n|XZar

∼= // MX
n (r)[r]

with the map M
X
n (r)[r]→ R(jX)∗M

XU
n (r)[r] the resulting two maps coincide. But

HomD(Sh(XZar,Z/pn+1))(Cr,n+1|XZar
, νr−1
n [−1]) = 0, hence (15) commutes.

Let QC → C be a cofibrant and QC → Ccf be a fibrant replacement as E∞-alge-
bras. Then

D(p) := lim
n
Ccf
•,n

is an E∞-algebra in Zp[Gm,S , {1}]Zar-spectra in Cpx(Sh(SmS,Zar,Zp)).

Corollary 4.22. – For X ∈ SmS there is an isomorphism

D(p)r|XZar

∼= ( M
X(r))∧p[r]

in D(Sh(XZar,Zp)), where ( M
X(r))∧p is the p-completion of M

X(r).

Proof. – This follows from the commutativity of (15), since the p-completion
of M

X(r) is the homotopy limit over all the M
X
n (r).

Next we will equip D(p) with an orientation. Recall that given a ring spectrum
E in SH(S) (i.e., a commutative monoid in SH(S)) an orientation on E is a class
in E2,1(P∞), i.e., a map

Σ−2,−1Σ∞+ P∞ → E

in SH(S) the restriction of which to Σ−2,−1Σ∞+ P1 is the map

Σ−2,−1Σ∞+ P1 → Σ−2,−1Σ∞P1 ∼= 1→ E,

where the first map is the canonical projection to a summand and the third map is
the unit.
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Denote by O
∗
/U the sheaf (in any of the considered topologies) of abelian groups

represented by Gm,U over SmU , let O
∗
/S be defined similarly. For M a sheaf of abelian

groups or an object in a triangulated category we set M/pn := M ⊗L Z/pn.
Using the resolution of O

∗
/U by the sheaf of meromorphic functions and the sheaf

of codimension 1 cycles one sees that Rij∗ O
∗
/U = 0 for i > 0. Thus we have an exact

triangle
O
∗
/S → Rj∗ O

∗
/U → i∗Z→ O

∗
/S [1]

in the Zariski topology, from which we derive an exact triangle

(16) O
∗
/S/p

n → Rj∗ O
∗
/U/p

n → i∗Z/pn → O
∗
/S/p

n[1].

We have a map of exact triangles

O
∗
/U

pn //

��

O
∗
/U

//

��

O
∗
/U/p

n //

��

O
∗
/U [1]

��
Rε∗ O

∗
/U

pn // Rε∗ O
∗
/U

// Rε∗Ln(1)[1] // Rε∗ O
∗
/U [1].

The third vertical map factors uniquely through a map O
∗
/U/p

n → τ≤0(Rε∗Ln(1)[1]).
Since R1ε∗ O

∗
/U = 0 we see by the long exact cohomology sheaf sequences associ-

ated to these triangles that this map is an isomorphism. Note we have Atr
1,n
∼=

τ≤0(Rε∗Ln(1)[1]) in the derived category, and thus B1,n
∼= Rj∗τ≤0(Rε∗Ln(1)[1]) ∼=

Rj∗ O
∗
/U/p

n.
We note that the diagram

Rj∗ O
∗
/U/p

n //

∼=
��

i∗Z/pn

=

��
Rj∗τ≤0(Rε∗Ln(1)[1]) // H 0(B1,n)

sr,n // i∗Z/pn

commutes (this follows from the definition of the maps sr,n, Proposition 4.8 and
the definition of the maps s′X). Thus together with the triangle (16) we derive an
isomorphism C1,n

∼= O
∗
/S/p

n in D(Sh(SmS,Zar,Z/pn)). This isomorphism is moreover
unique since there are no non-trivial homomorphisms from O

∗
/S/p

n to i∗Z/pn[−1].
We see that there is an isomorphism D(p)1

∼= ( O
∗
/S)∧p in D(Sh(SmS,Zar,Zp)). We

denote any such isomorphism which is compatible with the projections to C1,n and
O
∗
/S/p

n by ϕ.
Since D(p) is an Ω-spectrum which satisfies Nisnevich descent and is A1-local the

maps Σ−2,−1Σ∞+ P∞ → D(p) in SH(S) correspond to maps

Z[P∞]Zar[−1]→ D(p)1

in D(Sh(SmS,Zar,Z)). We let o : Σ−2,−1Σ∞+ P∞ → D(p) correspond to Z[P∞]Zar →

O
∗
/S [1] → ( O

∗
/S)∧p[1]

ϕ−1[1]−→ D(p)1[1], where the first map classifies the tautological
line bundle O(−1) on P∞.
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The definition of the bonding maps inD(p) implies that the map Z[Gm,S , {1}]Zar →
D(p)1 corresponding to the unit map Σ−1,−1Σ∞(Gm,S , {1}) ∼= 1→ D(p) is the map

Z[Gm,S , {1}]Zar → O
∗
/S → ( O

∗
/S)∧p

ϕ−1

−→ D(p)1.

Note that this composition is independent of the particular choice of ϕ since we have

HomD(Sh(SmS,Zar,Z))(Z[Gm,S , {1}]Zar, ( O
∗
/S)∧p) ∼= Zp

∼= lim
n

HomD(Sh(SmS,Zar,Z))(Z[Gm,S , {1}]Zar, O
∗
/S/p

n).

Let ψ : (P1, {∞}) → Gm,S ∧ S1 be the canonical isomorphism in H•(S) and let
c : H•(S)→ DA1

(Sh(SmS,Nis,Z)) be the canonical map. Then the composition

Z[P1, {∞}]Zar
∼= c((P1, {∞})) c(ψ)−→ c(Gm,S ∧ S1) ∼= Z[Gm,S , {1}]Zar[1]→ O

∗
/S [1]

in DA1

(Sh(SmS,Nis,Z)) classifies the tautological line bundle on P1. Thus we see that
the map

Z[P1]Zar → Z[P1, {∞}]Zar → D(p)1[1],

where the first map is the canonical projection onto a summand and the second map
is induced by the unit map of D(p) is the restriction of o to Z[P1]Zar, so o is indeed
an orientation.

Proposition 4.23. – The spectrum in SH(S) associated with D(p) is orientable.

4.2. The completed part

Set D :=
∏
pD(p), where the D(p) are the algebras from the last section viewed

as E∞-algebras in spectra in Cpx(Sh(SmS,Zar, Ẑ)) and the product is taken over all
primes.

Then for X ∈ SmS we have

Dr|XZar

∼= (
∏
p

( M
X(r))∧p)[r]

in D(Sh(XZar, Ẑ)).

Corollary 4.24. – The spectrum in SH(S) associated with D is orientable.

Proof. – This follows from Proposition 4.23.

4.3. The rational parts

We denote by DQ the rationalization of D as an E∞-spectrum.
We denote by HB the Beilinson spectrum over S, see [7, Definition 14.1.2]. It has

a natural E∞-structure ([7, Corollary 14.2.6]) and is orientable ([7, 14.1.5]).
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Theorem 4.25. – HB is the initial E∞-spectrum among rational orientable E∞-spec-
tra.

Proof. – This is [7, Corollary 14.2.16 (Rv)].

Corollary 4.26. – There is a canonical map of E∞-spectra HB → DQ.

Proof. – This follows from Corollary 4.24 and Theorem 4.25.

4.4. The definition

Before giving the definition of the motivic Eilenberg-MacLane spectrum as an
E∞-object in the category of symmetric Z[Gm,S , {1}]Zar-spectra in Cpx(Sh(SmS,Zar,Z))

we give a summary of the objects defined on the way.
For each prime p and positive number n we started with the stricly commuta-

tive ring spectrum Sym( T ) in étale Z/pn-sheaves on SmS[ 1
p ], took the derived push

forward to the Zariski topology (a model of which is A) and then an appropriate trun-
cation (Atr). The derived push forward of that E∞-spectrum to S is modeled by B
and Btr (the latter living in homologically non-negative chain complexes). Appropri-
ate (homotopy) fibers of certain maps to logarithmic de Rham-Witt sheaves define
the E∞-algebra C.

Varying n we obtain in the limit the algebra D(p), whose product over all primes p
defines D. The rationalization of the latter object is DQ, which receives an E∞-map
from HB .

Definition 4.27. – We denote by MZ the homotopy pullback in E∞-spectra of the
diagram

D

��
HB // DQ,

where we model the homotopy pullback be replacing all objects fibrantly and all maps
by fibrations in the semi model structure on E∞-algebras in the category of symmetric
Z[Gm,S , {1}]Zar-spectra in Cpx(Sh(SmS,Zar,Z)).

If we want to emphasize the dependence on S we also write MZS .
The E∞-structure on the resulting object MZ will enable us later to develop for

example a motivic functor formalism for triangulated categories of motivic sheaves
on base schemes, in the form that we will define these categories to be the homotopy
categories of the categories of modules over pullbacks of MZSpec(Z).
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CHAPTER 5

MOTIVIC COMPLEXES II

5.1. A strictification

In this section we enlarge the motivic complexes from Section 3 to presheaves on
all of SmS . We need some preparations.

For each n ∈ N we define a category E n together with a functor ϕn : E n → [n],
where [n] is the category 0 → 1 → · · · → n. The objects of E n are triples (A,B, i)

where i ∈ [n] and A ⊂ B ⊂ {i, . . . , n} with i ∈ A. There is exactly one morphism from
(A,B, i) to (A′, B′, j) if i ≤ j, B ∩ {j, . . . , n} ⊂ B′ and A′ ⊂ A, otherwise there is no
such morphism. The functor ϕn is determined by the fact that (A,B, i) is mapped
to i. We declare a map f in E n to be a weak equivalence if ϕn(f) is an identity.

A category with weak equivalences is a category C together with a subcategory W

of C such that every isomorphism in C lies in W. A homotopical category is a category
with weak equivalences satisfying the two out of six property, see [11, 8.2].

For a category C with weak equivalences W we denote by LHW C its hammock
localization, see [12]. If it is clear which weak equivalences are meant we also write
LH C . The hammock localization satisfies an∞-categorical universal property, namely
the coherent nerve of (a fibrant replacement of) the hammock localization of C is up
to equivalence the universal ∞-category obtain from the nerve of C by inverting the
maps in W (in an ∞-categorical sense) see [22, 1.2.1 Proposition].

A morphism in [n] is defined to be a weak equivalence if it is an identity. So both
E n and [n] are homotopical categories. Since [n] is the homotopy category of LH([n])

there is a natural simplicial functor LH([n])→ [n] which is an equivalence of simplicial
categories (by the universal property given in loc. cit.). Composing with the natural
functor LH E n → LH([n]) gives us the simplicial functor LH E n → [n].

Proposition 5.1. – The natural functor LH E n → [n] is an equivalence of simplicial
categories.

Before giving the proof we need some preparations.
For us a direct category is a category with a chosen degree function, see [25, Defi-

nition 5.1.1].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



40 CHAPTER 5. MOTIVIC COMPLEXES II

For a category I a full subcategory J ⊂ I is called agreeable if no arrow in I has a
domain which is not in J and a codomain which is in J .

Lemma 5.2. – Let I be a direct category and J ⊂ I an agreeable subcategory. Let
C be a model category and D : I → C a cofibrant diagram for the projective model
structure. Then D|J is cofibrant in C

J .

Proof. – The right adjoint r to the restriction functor C
I → C

J is a right Quillen
functor since for i ∈ I \ J we have r(D)(i) = ∗.

Lemma 5.3. – Let I be a direct category and J ⊂ I an agreeable subcategory. Let
C be a model category and D : I → C a cofibrant diagram for the projective model
structure. Then the canonical map colim(D|J)→ colimD is a cofibration.

Proof. – The object colimD is obtained from colim(D|J) by successively gluing in the
D(i) for i ∈ I \ J for increasing degree of i. The domains of the attaching maps are
corresponding latching spaces.

For i ∈ [n] let E n,i := ϕ−1
n (i) and E n,≤i be the full subcategory of E n of objects

(A,B, j) with j ≤ i. It is easily seen that E n,≤i can be given the structure of a direct
category (choose e.g., the degree functor d : E n,≤i → N, (A,B, j) 7→ j + |B| − |A| =
j + |B \A|). For j ≤ i ≤ n let E n,[j,i] := ϕ−1

n ({j, . . . , i}).

Lemma 5.4. – Let C be a model category and D : E n,≤i → C be a projectively cofibrant
diagram. Then for k ≤ j ≤ i the restriction D| E n,[k,j] is also cofibrant.

Proof. – Let F : E n,[k,j] → E n,≤i be the inclusion. We claim that the right adjoint
r to the restriction functor C

E n,≤i → C
E n,[k,j] is a right Quillen functor. First note

that for D ∈ C
E n,[k,j] we have r(D)(x) = limφ, where φ : x/F → C sends an object

x → F (y) to D(y). Then r is right Quillen since for l < k and an object (A,B, l) ∈
E n,≤i with A ∩ [k, j] 6= ∅ the category (A,B, l)/F has the initial object (A,B, l) →
(A∩{m, . . . , n}, B ∩{m, . . . , n},m), where m = min(A∩ [k, j]), and for other objects
x ∈ E n,≤i the comma category x/F is empty, so that r(D)(x) = ∗ for D as above.

Lemma 5.5. – Let C be a model category and D : E n,≤i → C be a projectively cofibrant
diagram preserving weak equivalences. Then for any X ∈ ϕ−1

n (i) the map D(X) →
colimD is a weak equivalence.

Proof. – We show by descending induction on j, starting with j = i, that for any
X ∈ ϕ−1

n (i) the map D(X) → colimD| E n,[j,i] is a weak equivalence. For j = i this

follows from the fact E n,i has a final object. Let the statement be true for 0 < j+1 ≤ i
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and let us show it for j. Let J ⊂ E n,j be the full subcategory on objects (A,B, j)

such that A ∩ {j + 1, . . . , i} 6= ∅. Then we have a pushout diagram

colimD|J
//

��

colimD| E n,j

��
colimD| E n,[j+1,i]

// colimD| E n,[j,i] .

First note that by Lemmas 5.4 and 5.2 all objects in this diagram are cofibrant. Fur-
thermore the upper horizontal map is a cofibration by Lemma 5.3. The full subcate-
gory of J consisting of objects (A,B, j) with B = {j, . . . , n} is homotopy right cofinal
in J and contractible (it has an initial object), thus J is contractible. Since the diagram
D|J is weakly equivalent to a constant diagram it follows that D(X)→ colimD|J is a
weak equivalence for any X ∈ J , thus the upper horizontal map in the above diagram
is also a weak equivalence and the induction step follows.

Lemma 5.6. – Let C be a model category and l the left adjoint to the pull back functor
r : C

[n] → C
E n . Let D : E n → C be (projectively) cofibrant such that for any weak

equivalence f in E n the map D(f) is a weak equivalence. Then D → r(l(D)) is a
weak equivalence.

Proof. – We have l(D)(i) = colimD| E n,≤i . Thus the claim follows from Lemma 5.5.

Lemma 5.7. – Let F : I → J be an essentially surjective functor between small cate-
gories and W ⊂ I a subcategory making I into a category with weak equivalences. Sup-
pose F sends any map in W to an isomorphism. Then the natural map LHWI → J is a
weak equivalence between simplicial categories if and only if for any projectively cofi-
brant diagram D : I → sSet preserving weak equivalences the unit map D → r(l(D)) is
a weak equivalence (r is the pullback functor and l its left adjoint).

Proof. – Let C be the left Bousfield localization of the model category sSetI (equipped
with the projective model structure) along the maps Hom(f,_) where f runs through
the maps of W. Then (LHWI)op is weakly equivalent to the full simplicial subcategory
of sSetI consisting of cofibrant fibrant objects which become isomorphic in Ho(sSetI)

to objects in the image of the composed functor Iop → Ho(sSetI) → Ho C ↪→
Ho(sSetI). Similarly (but easier) Jop is weakly equivalent to a full simplicial sub-
category of sSetJ . The functor (LHWI)op → Jop is described via these equivalences by
the restriction of the push forward sSetI → sSetJ followed by a fibrant replacement
functor. The claim follows.

Proof of Proposition 5.1. – The claim follows from Lemmas 5.6 and 5.7.
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Let f : [n] → [m] be a map in 4. We define a functor f∗ : E n → E m by setting
f∗((A,B, i)) = (f(A), f(B), f(i)). One checks that this determines uniquely f∗. Thus
we get a cosimplicial object E : [n] 7→ E n in the category of small categories with
weak equivalences. Applying the hammock localization yields a cosimplicical simpli-
cial category LH E : [n] 7→ LH E n together with a map from LH E to the standard
cosimplicial simplicial category [•] which is levelwise a Dwyer-Kan equivalence.

Let SmAlggen
D

be the category of triples (A,n, (a1, . . . , an)) where A is a D-algebra
such that Spec(A) ∈ SmS and a1, . . . , an ∈ A generate A as a D-algebra. Morphisms
are morphisms of D-algebras with no compatibility of the generators required. Clearly
the functor (SmAlggen

D
)op → SmS , (A,n, (a1, . . . , an)) 7→ Spec(A), is an equivalence

onto the full subcategory of SmS of affine schemes.
Let Φ′ : Smop

S → Cat be a strict version (using e.g., [40]) of the pseudofunctor which
sends X to the category Sh(XNis,Cpx(Ab)) and any map f in SmS to f∗. Let∫

SmAlggen

D

Φ→ SmAlggen
D

be the left Grothendieck fibration of the functor Φ := Φ′ ◦ (SmAlggen
D
→ Smop

S )

(see e.g., [53] for the Grothendieck construction). For any X ∈ SmS let I ′X be a set
of representatives of open immersions in XNis and let I ′′X be the set of maps Dn ⊗ f
in Sh(XNis,Cpx(Ab)) (here Dn ∈ Cpx(Ab) refers to the n-disk complex), where n runs
through Z and f through I ′X (here ⊗ is an exterior tensor product). Let IX be the
union of the set of maps i∗(I ′′Z), where i : Z ↪→ X runs through a set of representatives
of closed immersion in SmS with target X. For F ∈ Sh(XNis,Cpx(Ab)) let RXF be
obtained from F by applying the small object argument to F for the set IX of maps
and the cardinal ω (here ω is the first infinite cardinal; it suffices to perform the small
object argument for that cardinal by the compactness of representables). Then for
any U ∈ XNis the complex (RXF )(U) is a representative of the derived sections of F
over U . Moreover the assignment (X,F ) → (RXF )(X) is functorial in

∫
SmAlggen

D

Φ

defining a functor Ψ:
∫

SmAlggen

D

Φ→ Cpx(Ab).

As in Section 3 for X ∈ SmS we denote by zr(X) ∈ Cpx(Ab) Bloch-Levine’s
complex of codimension r cycles and by ẑr(X) the object of Sh(XNis,Cpx(Ab)) given
by U 7→ zr(U). We let z̃r(X) := Ψ((X, ẑr(X))).

For X ∈ SmS and F = {f1, . . . fn} a set of closed immersions fi : Zi ↪→ X in SmS

we denote by zrF (X) the normalized chain complex associated to the simplicial abelian
group [n] 7→ zrF (X,n) which is the subsimplicial abelian group of zr(X, •) of cycles
in good position with respect to the Zi. Sheafifying we obtain the object ẑrF (X) ∈
Sh(XNis,Cpx(Ab)), and we let z̃rF (X) := Ψ((X, ẑrF (X))).

We also write zrF (A) for zrF (Spec(A)) and similarly for the other versions. We have
the following moving lemma due to Marc Levine.

Theorem 5.8. – For X ∈ SmS the natural map z̃rF (X) → z̃r(X) is a quasi-
isomorphism.
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Proof. – This follows from [34, Theorem 2.6.2]: We use the notation of loc. cit. and set
B := S, q := r, C := F , e := 0 and E := zq ∈ Spt(B(q)) (zq is introduced in loc. cit.
before Remark 2.2.1.). Then the local weak equivalence in [34, Theorem 2.6.2 (1)]
gives us the result. Note that the Axioms (4.1.1), (4.1.2) and (4.1.3) (in the presence
of finite residue fields) of loc. cit. are fulfilled for E.

Let
(A0, k0, (a0,1, . . . , a0,k0

))→ · · · → (An, kn, (an,1, . . . , an,kn))

be a chain of maps in SmAlggen
D

, i.e., an n-simplex, which we denote by K, in the
nerve of SmAlggen

D
. Let i ∈ [n] and B ⊂ {i, . . . , n} with i ∈ B. Set

Ci,B :=
⊗

j∈B\{i}

Ai[T1 . . . , Tkj ]
∼=

⊗
j∈B\{i}

Ai[Tj,1 . . . , Tj,kj ],

where the tensor products are over Ai. If i ≤ j ≤ n, B′ ⊂ {j, . . . , n} with j ∈ B′ and
B ∩ {j, . . . , n} ⊂ B′ we define a map gi,B,j,B′ : Ci,B → Cj,B′ over the map Ai → Aj
by sending a variable Tl,m for l > j to the respective variable Tl,m and to the image
of the element al,m in Aj for l ≤ j. If furthermore j ≤ k ≤ n and B′′ ⊂ {k, . . . , n}
with k ∈ B′′ and B′ ∩ {k, . . . , n} ⊂ B′′ then we have

(17) gj,B′,k,B′′ ◦ gi,B,j,B′ = gi,B,k,B′′ .

For t = (A,B, i) ∈ E n we let Ft be the set of closed subschemes of Spec(Ci,B)

consisting of the Spec(gi,B,j,B∩{j,...,n}) for j ∈ A \ {i}. For such t set Ct := Ci,B .
These closed subscheme are introduced to obtain a well-defined pullback of cycles:

We would like to have a pullback functor along the map Spec(Aj) → Spec(Ai).
Instead of doing this directly we first pull back (via smooth pullback) to the affine
space Spec(Ci,B) over Spec(Ai) and then use the pullback of cycles in good position
with respect to these closed subschemes.

Summarizing for j ∈ A we have a map

(Spec(Ct), ẑ
r
Ft(Ct))→ (Spec(Cj,B∩{j,...,n}), ẑ

r(Cj,B∩{j,...,n}))

in
∫

SmAlggen

D

Φ induced by pullback of cycles (see Appendix B) which for B′ ⊂
{j, . . . , n} with B ∩ {j, . . . , n} ⊂ B′ we can prolong via smooth pullback to a map
to (Spec(Cj,B′), ẑ

r(Cj,B′)).

Lemma 5.9. – Let t→ s be a map in E n. Then the above map

(Spec(Ct), ẑ
r
Ft(Ct))→ (Spec(Cs), ẑ

r(Cs))

in
∫

SmAlggen

D

Φ factors through (Spec(Cs), ẑ
r
Fs

(Cs)).

Proof. – Let t = (A,B, i) and s = (A′, B′, j). Set s′ := (A ∩ {j, . . . , n}, B ∩
{j, . . . , n}, j). Without loss of generality we can assume A′ = A ∩ {j, . . . , n}. Clearly
the map

(Spec(Ct), ẑ
r
Ft(Ct))→ (Spec(Cs), ẑ

r(Cs′))

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



44 CHAPTER 5. MOTIVIC COMPLEXES II

factors through (Spec(Cs′), ẑ
r
Fs′

(Cs′)). If A′ = {j} we are done, otherwise fix k ∈
A′ \ {j}. Set B′′ := (B ∩{j, . . . , n})∪ (B′ ∩{j, . . . , k}) and s′′ := (A′, B′′, j). Then we
have a well defined map

(Spec(Cs′), ẑ
r
Fs′

(Cs′))→ (Spec(Cs′′), ẑ
r
{gj,B′′,k,B′′∩{k,...,n}}(Cs

′′))

since cycles meet in the correct codimension. Furthermore we have a well defined map

(Spec(Cs′′), ẑ
r
{gj,B′′,k,B′′∩{k,...,n}}(Cs

′′))→ (Spec(Cs), ẑ
r
{gj,B′,k,B′∩{k,...,n}}(Cs))

for the same reason. Altogether we see that cycles meet as claimed.

For f : t→ s a map in E n we let αK(f) : z̃rFt(Ct)→ z̃rFs(Cs) be the map Ψ(g) for

g : (Spec(Ct), ẑ
r
Ft(Ct))→ (Spec(Cs), ẑ

r
Fs(Cs))

the map in
∫

SmAlggen

D

Φ constructed above using Lemma 5.9.

Lemma 5.10. – For f : t → s and g : s → r two maps in E n we have αK(g ◦ f) =

αK(g) ◦ αK(f).

Proof. – Let t = (A,B, i), s = (A′, B′, j) and r = (A′′, B′′, k). Then the map αK(f) is
defined by pulling back cycles via the map Spec(gi,B,j,B′) and the map αK(g) by pull
back via Spec(gj,B′,k,B′′). Thus the claim follows from (17) and Theorem B.3.

Setting αK(t) := z̃rFt(Ct) for t an object of E n and using Lemma 5.10 we get a
functor αK : E n → Cpx(Ab).

By restricting everything to opens U in SZar we get a functor

α̃K : E n → Cpx(Sh(SZar,Z)).

Lemma 5.11. – The functor α̃K sends weak equivalences in E n to quasi-isomorphisms.

Proof. – The weak equivalences in E n are sent under α̃K to cycle complexes which
differ from each other by being defined for different affine spaces over a base and by
good intersection properties with respect to different sets of closed subschemes. Thus
the statement follows from Theorem 5.8 (which takes care of the different sets of
closed subschemes) and Theorem 3.14 (which takes care of the different affine spaces
appearing over a base).

Lemma 5.12. – Let f : [m] → [n] be a monomorphism in 4 and K an n-simplex in
the nerve of SmAlggen

D
. Then the composition E m

f∗−→ E n
α̃K−→ Cpx(Sh(SZar,Z)) is

equal to α̃f∗K .

Proof. – We use a superscript K or f∗K to distinguish between the objects which
are defined above for K respectively f∗K. We have Cf

∗K
t = CKf∗t and F

f∗K
t = FKf∗t

for t an object of E m. Thus the claim follows on objects. The definitions of the two
functors on morphisms also coincide, thus the claim follows.
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For a category I we let N(I) be the subcategory of I × N (where N is a category
in the usual way) which has all objects and where a map (A,n) → (B,m) belongs
to N(I) if and only if the map A → B is the identity or if m > n. Note that a
composition of non-identity maps is again a non-identity map in N(I).

We let a map (A,n) → (B,m) in N(I) be a weak equivalence if and only if the
map A→ B is the identity. We have a canonical projection functor pr: N(I)→ I.

Proposition 5.13. – For any category I the canonical functor LHN(I) → I is a
weak equivalence of simplicial categories.

Proof. – We use Lemma 5.7. Let C be a model category and let C
N(I) be equipped

with the projective model structure (which exists since N(I) has the structure of a
direct category). Let D : N(I) → C be a cofibrant diagram which preserves weak
equivalences. For i ∈ I the diagram D|pr/i

is also cofibrant by [49, Lemma 4.2] (it is

not used here that C
I also should have a model structure). The full subcategory J

comprised by the objects ((i, n), p((i, n))
id−→ i) in pr/i is homotopy right cofinal, thus

colim(D|pr/i
) ' hocolim(D|J) from which it follows that D → r(l(D)), where l is the

left adjoint to r : C
I → C

N(I), is a weak equivalence.

Let N be the nerve of N(SmAlggen
D

) and π := Nerve(N(SmAlggen
D

)
pr−→ SmAlggen

D
).

For any K ∈ Nn we let σK : [n] → [n′] be the unique epimorphism in 4 such that
K = σ∗K(K ′) with K ′ ∈ Nn′ non-degenerate. K ′ is then also uniquely determined.
We let βK be the composition

E n
σK,∗ // E n′

α̃π(K′) // Cpx(Sh(SZar,Z)).

The α̃K are compatible for monomorphisms in 4 (Lemma 5.12). The reason for
introducing N(SmAlggen

D
) is that then the following compatibility statement for all

maps in 4 holds:

Lemma 5.14. – Let h : [m]→ [n] be a map in 4 and K ∈ Nn. Then the composition
E m

h∗−→ E n
βK−→ Cpx(Sh(SZar,Z)) is equal to βh∗K .

Proof. – Since every composition of non-identity maps in N(SmAlggen
D

) is a non-
identity map we have a commutative diagram

[m]
h //

fh∗K

��

[n]

fK

��
[m′] // [n′],

where the bottom horizontal map is a monomorphism. Thus the claim follows from
Lemma 5.12 and the definition of the maps βK and βh∗K .
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Let Γ: Cpx(Sh(SZar,Z)) → Cpx(Ab) be a fibrant replacement functor fol-
lowed by the global sections functor. We denote by qi the subcategory of quasi-
isomorphisms of Cpx(Ab). By Lemma 5.11 we get for any K ∈ Nn induced functors
LH(Γ ◦ βK) : LH E n → LHqiCpx(Ab) which are compatible with maps in 4 by
Lemma 5.14.

Let q• : Q• → LH E be a map between cosimplicial objects in sCat. By a coend
construction we can pair a simplicial set L and any cosimplicial object P• in sCat

to obtain an object of sCat which we denote by D
L
P• (in the notation of [23] this is

P• ⊗ L, see Definition 16.3.1. of loc. cit.). In the case L = N we just write DP• .
If L is the nerve of a category C we let D

C
P• := D

L
P• . We have D[•] ∼= N(SmAlggen

D
),

thus we have a natural map DQ• → N(SmAlggen
D

).

Lemma 5.15. – Let C be a model category and φ : X → Y a transformation between
Reedy cofibrant objects X,Y ∈ C

4 which is objectwise a weak equivalence. Then φ⊗
idL : X ⊗ L → Y ⊗ L (where we use the notation of loc. cit.) is a weak equivalence
in C for any simplicial set L.

Proof. – The objectX⊗L is a colimit over a4L-diagramD in C (here4L is the cate-
gory of simplices of L), likewise for Y ⊗L. By [23, Proposition 16.3.12.] these diagrams
are Reedy cofibrant, and since 4L has fibrant constants ([23, Proposition 15.10.4.])
the colimits above are homotopy colimits, whence the claim.

Lemma 5.16. – If Q• is Reedy cofibrant and the map Q• → [•] is a weak equiva-
lence then the natural map DQ• → N(SmAlggen

D
) is a weak equivalence of simplicial

categories.

Proof. – One deduces the result from the analogous statement for the usual adjunc-
tion between simplicial sets and simplicial categories involving the coherent nerve
functor, [37, Theorem 2.2.0.1]: The cosimplicial object X in sCat used to define the
coherent nerve functor is Reedy cofibrant (since it is the image of the standard cosim-
plicial object in sSet, which itself is Reedy cofibrant, with respect to the left adjoint
C to the coherent nerve functor). If now the simplicial set L is the nerve of a category
C then the natural map C(L) = X⊗L→ C in sCat is a weak equivalence. Using a zig
zag between X and Q• over [•] through Reedy cofibrant objects Lemma 5.15 implies
that then also Q• ⊗ L→ C is a weak equivalence, whence the claim.

From now on suppose that Q• is Reedy cofibrant and that the map Q• → [•] is a
weak equivalence (which can always be achieved by a cofibrant replacement of LH E

in sCat4).

For K ∈ Nn let γK := LH(Γ ◦ βK) ◦ qn. Then the γK are again compatible with
maps in 4.
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Lemma 5.17. – The compatible maps γK give rise to an induced map

γ : DQ• → LHqiCpx(Ab)

of simplicial categories.

Proof. – The simplicial category DQ• arises in such a way that for each K ∈ Nn,
n ∈ N, one takes a copy of Qn and glues these copies according to the simplical
structure in N and the cosimplicial structure in Q•. The compatibility of the maps
γK ensures that these maps taken together (which will be a map from the coproduct
of the Qn indexed by all n ∈ N, K ∈ Nn, to LHqiCpx(Ab)) factors through the glued
simplicial category.

Lemma 5.18. – The map γ gives rise to a diagram ho(γ) ∈ Ho(Cpx(Ab)N(SmAlggen

D
))

which is well-defined up to canonical isomorphism.

Proof. – This follows from a strictification result, see [37, Proposition 4.2.4.4].

Remark 5.19. – The above procedure to obtain from a family of maps γK (or even
from the family of maps αK or α̃K) an object in the homotopy category of a diagram
category with values in Cpx(Ab) will be used in variations several times below.

We define the motivic complex M (r) to be the push forward of ho(γ)[−2r] with
respect to the composition

Ho(Cpx(Ab)N(SmAlggen

D
))→ Ho(Cpx(Ab)SmAlggen

D )→ D(Sh(SmS,Zar,Z)),

where the first map is the (left) adjoint to the pullback along p : N(SmAlggen
D

) →
SmAlggen

D
(in fact by the definition of the maps βK and (the proof of) Proposi-

tion 5.13 the object ho(γ)[−2r] lies in the full subcategory Ho(Cpx(Ab)SmAlggen

D ) ↪→
Ho(Cpx(Ab)N(SmAlggen

D
)), so we could have used also the right adjoint) and the second

map is the Zariski localization map (note the canonical map from the derived category
of Zariski sheaves on affines in SmS to D(Sh(SmS,Zar,Z)) is an equivalence).

5.2. Properties of the motivic complexes

Let C , S be categories and I a small category. Let E
′ be a cosimplicial object in Cat

over [•]. Let for any n-simplex K of the nerve of S be a functor αK : E
′
n × I → C

be given. Suppose these functors are compatible for monomorphisms in 4, i.e., that
for f : [m] → [n] a monomorphism we have αK ◦ (f∗ × id) = αf∗K . Then for K̃ an
n-simplex of the nerve of S ×I we let T (α)K̃ be the composition E

′
n → E

′
n×I

αK−→ C ,
where the second component of the first map is the composition E

′
n → [n] → I (the

second map being the second component of K̃) and where K is the first component
of K̃. The T (α)K̃ are then again compatible for monomorphisms in 4.

Let ρ : S
′ → S × I be a functor and suppose that the composition in S

′ of two
non-identity maps is a non-identity map. Let K be an n-simplex of the nerve of S

′.
Let σ : [n] → [n′] be the unique epimorphism in 4 such that K = σ∗(K ′) for a
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non-degenerate n′-simplex K ′. Let T ρ(α)K be the composition E
′
n

σ∗−→ E
′
n′

T (α)K̃−→ C ,
where K̃ is the image of K ′ in the nerve of S × I. Then the T ρ(α)K are compatible
for all maps in 4.

In our applications S
′ will be N( S )× I.

5.2.1. Comparison to flat maps. – Let the notation be as in the last section. We denote
by SmAlggen,fl

D
the subcategory of SmAlggen

D
consisting of flat maps.

Let K be an n-simplex in the nerve of SmAlggen,fl
D

. In particular we have a chain
A0 → · · · → An of smooth D-algebras where each map is flat. We associate to this
the functor αflat

K : [n]→ Cpx(Sh(SZar,Z)) which sends i to (U 7→ zr(Spec(Ai)×S U))

and where the maps are induced by flat pullback of cycles. We denote by α̃flat
K the

composition E n
ϕn−→ [n]

αflat
K−→ Cpx(Sh(SZar,Z)).

Recall the maps α̃K . We have a natural transformation α̃flat
K → α̃K which is induced

by the maps Ai → Ct for t = (A,B, i) ∈ E n (recall Ct is a polynomial algebra over Ai).
We note that the cycle conditions given by the Ft are fulfilled since for a map t→ s

in E n with s = (A′, B′, j) the diagram

Ct // Cs

Ai

OO

// Aj

OO

commutes.
We denote by αK : E n × [1]→ Cpx(Sh(SZar,Z)) the functor corresponding to this

natural transformation.
Thus as in the beginning of Section 5.2 we get a compatible family of maps T ρ(α)K ,

where ρ is the functor N(SmAlggen,fl
D

)× [1]→ SmAlggen,fl
D

× [1].

For K an n-simplex in the nerve of N(SmAlggen,fl
D

)× [1] let γ̃K := LH(Γ ◦ T p(α)K) ◦ qn.
The γ̃K glue to give a map

γ̃ : D
N(SmAlggen,fl

D
)×[1]

Q•
→ LHqiCpx(Ab).

We denote by ho(γ̃) ∈ Ho(Cpx(Ab)N(SmAlggen,fl

D
)×[1]) the diagram canonically asso-

ciated to γ̃ (see Remark 5.19 for the last two steps).

Lemma 5.20. – ho(γ)|N(SmAlggen,fl

D
)
and ho(γ̃)|N(SmAlggen,fl

D
)×{1}

are canonically iso-

morphic.

Proof. – This follows by construction of ho(γ) and ho(γ̃).

Lemma 5.21. – ho(γ̃)|N(SmAlggen,fl

D
)×{0}

is canonically isomorphic to the diagram

on N(SmAlggen,fl
D

) which associates to an (A,n, (a1, . . . , an),m) the cycle com-
plex zr(A).
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Proof. – This follows by construction of ho(γ̃).

Let Smfl
S be the subcategory of SmS of flat maps.

Corollary 5.22. – The complex M (r)|Smfl
S

is canonically isomorphic to the dia-

gram X 7→ zr(X)[−2r] in D(Sh(Smfl
S,Zar,Z)).

Proof. – This follows from Lemmas 5.20 and 5.21, the fact that the map in
Ho(Cpx(Ab)N(SmAlggen,fl

D
)) associated to ho(γ̃) is an isomorphism, the fact (which

follows from these Lemmas) that the push forward of ho(γ) with respect to
Ho(Cpx(Ab)N(SmAlggen

D
)) → Ho(Cpx(Ab)SmAlggen

D ) has Zariski descent and from
the proof of Proposition 5.13.

Corollary 5.23. – For X ∈ SmS there is a canonical isomorphism M
X(r) ∼=

M (r)|XZar
in D(Sh(XZar,Z)).

Proof. – This follows from Corollary 5.22.

5.2.2. Some localization triangles. – We still keep the notation of Section 5.1. Let A be
a smooth D-algebra. Let K be an n-simplex in the nerve of SmAlggen

D
. For t ∈ E n

set CAt := A ⊗D Ct and FAt := {Spec(A) ×S a | a ∈ Ft}. Then as in Section 5.1 we
get functors

αAK : E n → Cpx(Ab), t 7→ z̃rFAt
(CAt ),

and

α̃AK : E n → Cpx(Sh(SZar,Z)).

Now let a1, . . . , ak ∈ A be generators ofA. SetA := (A, k, (a1, . . . , ak)) ∈ SmAlggen
D

.
For (A′, k′, (a′1, . . . , a

′
k′)) ∈ SmAlggen

D
let

A⊗ (A′, k′, (a′1, . . . , a
′
k′)) :=

(A⊗D A′, k + k′, (a1 ⊗ 1, . . . , ak ⊗ 1, 1⊗ a′1, . . . , 1⊗ a′k′)) ∈ SmAlggen
D
.

Similarly for an n-simplex K in the nerve of SmAlggen
D

the n-simplex A⊗K is defined
(we assume the tensor products involved are chosen from now on).

For K an n-simplex in the nerve of SmAlggen
D

we have a natural transformation
α̃AK → α̃A⊗K induced by applying Ψ to obvious maps in

∫
SmAlggen

D

Φ. We denote by

αAK : E n × [1]→ Cpx(Sh(SZar,Z))

the functor corresponding to this natural transformation.
For K an n-simplex in the nerve of N(SmAlggen

D
)× [1] we let

γAK := LH(Γ ◦ T ρ(αA)K) ◦ qn,

where ρ is the functor N(SmAlggen
D

)× [1]→ SmAlggen
D
× [1].
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The γAK glue to give a map

γA : D
N(SmAlggen

D
)×[1]

Q•
→ LHqiCpx(Ab).

We denote by ho(γA) ∈ Ho(Cpx(Ab)N(SmAlggen

D
)×[1]) the diagram canonically asso-

ciated to γA (see Remark 5.19 for the last two steps).

Lemma 5.24. – The push forward of ho(γA)[−2r]|N(SmAlggen

D
)×{1}

to D(Sh(SmS,Zar,Z)) is

canonically isomorphic to RHom(Z[Spec(A)]Zar, M (r)).

Proof. – Let j : SmAlggen
D

→ SmAlggen
D

be given by X 7→ A ⊗ X and
N(j) : N(SmAlggen

D
) → N(SmAlggen

D
) be the induced functor. Let i1 : N(SmAlggen

D
) →

N(SmAlggen
D

) × [1] be the map given by X 7→ X × {1}. Let i′1 be the map induced
by i1 on nerves. Then for K ∈ Nn we have T ρ(αA)i′1(K) = βA⊗K . It follows that the
composition

D
N(SmAlggen

D
)

Q•

D
i1
Q•−→ D

N(SmAlggen

D
)×[1]

Q•

γA−→ LHqiCpx(Ab),

which gives rise to ho(γA)[−2r]|N(SmAlggen

D
)×{1}

, is identical to the composition

D
N(SmAlggen

D
)

Q•

Dĵ
Q•−→ D

N(SmAlggen

D
)

Q•

γ−→ LHqiCpx(Ab),

which gives rise to RHom(Z[Spec(A)]Zar, M (r)), whence the claim.

Corollary 5.25. – The push forward of ho(γA)[−2r]|N(SmAlggen

D
)×{0}

to

D(Sh(SmS,Zar,Z)) is canonically isomorphic to RHom(Z[Spec(A)]Zar, M (r)).

Proof. – This follows from the fact that the map in Ho(Cpx(Ab)N(SmAlggen

D
)) associated

to ho(γA) is an isomorphism.

Now let f : A→ A′ be a flat map to a smooth D-algebra A′, let a′1, . . . , a′k′ ∈ A′ be
generators and A′ := (A′, k′, (a′1, . . . , a

′
k′)) ∈ SmAlggen

D
.

We have functors

a : SmAlggen
D
→ SmAlggen

D
, (B, l, (b1, . . . , bl))

7→ (A⊗D B, k + l, (a1 ⊗ 1, . . . , ak ⊗ 1, 1⊗ b1, . . . , 1⊗ bl))

and

b : SmAlggen
D
→ SmAlggen

D
, (B, l, (b1, . . . , bl))

7→ (A′ ⊗D B, k′ + l, (a′1 ⊗ 1, . . . , a′k′ ⊗ 1, 1⊗ b1, . . . , 1⊗ bl)),

and a natural transformation a → b induced by f . We let G : SmAlggen
D
× [1] →

SmAlggen
D

be the corresponding functor.
Let K be an n-simplex in the nerve of SmAlggen

D
× [1]. Let

αf2,K := α̃G(K) : E n → Cpx(Sh(SZar,Z)).
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Let K be an n-simplex in the nerve of SmAlggen
D

. We have a natural transformation
α̃AK → α̃A

′

K induced by f . Let αfK : E n × [1]→ Cpx(Sh(SZar,Z)) be the corresponding
functor.

For K an n-simplex in the nerve of SmAlggen
D
× [1] let

αf1,K := T (αf )K : E n → Cpx(Sh(SZar,Z))

(for notation see the beginning of Section 5.2).
We have a natural transformation αf1,K → αf2,K induced by applying Ψ to obvious

maps in
∫

SmAlggen

D

Φ. We denote by αfK : E n× [1]→ Cpx(Sh(SZar,Z)) the correspond-
ing functor.

For K an n-simplex in the nerve of N(SmAlggen
D

) × [1]2 we let γfK := LH(Γ ◦
T ρ(αf )K) ◦ qn, where ρ is the composition N(SmAlggen

D
)× [1]2 → SmAlggen

D
× [1]2 ∼=

(SmAlggen
D
× [1])× [1] (the S from the beginning of Section 5.2 is now SmAlggen

D
× [1]).

The γfK glue to give a map

γf : D
N(SmAlggen

D
)×[1]2

Q•
→ LHqiCpx(Ab).

We denote by ho(γf ) ∈ Ho(Cpx(Ab)N(SmAlggen

D
)×[1]2) the diagram canonically asso-

ciated to γf (see Remark 5.19 for the last two steps).

Lemma 5.26. – The push forward to D(Sh(SmS,Zar,Z)) of the map in
Ho(Cpx(Ab)N(SmAlggen

D
)) associated to ho(γf )[−2r]|N(SmAlggen

D
)×[1]×{1}

is canonically

isomorphic to the map

RHom(Z[Spec(A)]Zar, M (r))→ RHom(Z[Spec(A′)]Zar, M (r)).

Proof. – This follows from the definition of ho(γf ).

Corollary 5.27. – The push forward to D(Sh(SmS,Zar,Z)) of the map in
Ho(Cpx(Ab)N(SmAlggen

D
)) associated to ho(γf )[−2r]|N(SmAlggen

D
)×[1]×{0}

is canonically

isomorphic to the map

RHom(Z[Spec(A)]Zar, M (r))→ RHom(Z[Spec(A′)]Zar, M (r)).

Proposition 5.28. – Let i : Z → X be a closed immersion of affine schemes in SmS

of codimension 1 with open affine complement U . Then there is an exact triangle

RHom(Z[Z]Zar, M (r − 1))[−2]→ RHom(Z[X]Zar, M (r))

→ RHom(Z[U ]Zar, M (r))

→ RHom(Z[Z]Zar, M (r − 1))[−1]

in D(Sh(SmS,Zar,Z)), where the second map is induced by the morphism U → X.
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Proof. – Let A→ A′′ be the map of function algebras corresponding to i and A→ A′

the map corresponding to the open inclusion U ⊂ X.

ForK an n-simplex in the nerve of SmAlggen
D

we define a functor α : E n×[1]2→Cpx(Ab)
K

by sending (t, 0, 0) to z̃r−1

FA
′′

t

(CA
′′

t ), (t, 1, 0) to z̃r
FAt

(CAt ), (t, 1, 1) to z̃r
FA
′

t

(CA
′

t ) and

(t, 0, 1) to 0. Sheafification on S yields a functor α̃ : E n×[1]2→Cpx(Sh(SZar,Z))
K .

For K an n-simplex in the nerve of N(SmAlggen
D

)×[1]2 let γ:
K = LH(Γ◦T ρ(α̃)

K)◦qn.
The γK glue to give a map

γ : D
N(SmAlg

gen
D

)×[1]2

Q• →LHqiCpx(Ab).

We denote by ho(γ) ∈ Ho(Cpx(Ab)N(SmAlggen

D
)×[1]2) the diagram canonically associated

to γ (see again Remark 5.19).
The square in D(Sh(SmS,Zar,Z)) associated to the push forward of ho(γ)[−2r]

is exact by [33, Theorem 1.7]. Moreover by Corollary 5.25 the entries in this
square in the places (0, 0), (1, 0) and (1, 1) are RHom(Z[Z]Zar, M (r − 1))[−2],
RHom(Z[X]Zar, M (r)) and RHom(Z[U ]Zar, M (r)), and the map from entry (1, 0)

to (1, 1) is the one induced by the map U ⊂ X by Corollary 5.27. Thus by [38,
Definition 1.1.2.11] we get the exact triangle as required.

5.2.3. The étale cycle class map. – For X ∈ SmS and F a finite set of closed immer-
sions in SmS with target X we denote by crF (X,n) the set of cycles (closed integral
subschemes) of codimension r of X×∆n which intersect all Z×Y with Z ∈ F ∪{X}
and Y a face of ∆n properly.

Let U ⊂ S open. Let m be an integer which is invertible on U . Let µ⊗rm → G be an
injectively fibrant replacement in Cpx(Sh(SmU,ét,Z/m)).

Let X ∈ SmU . For W a closed subset of X such that each irreducible component
has codimension greater or equal to r set G

W (X) := ker( G (X)→ G (X \W )).
As in [36, 12.3] there is a canonical isomorphism of H2r( G

W (X)) with the free
Z/m-module on the irreducible components of W of codimension r and the map
τ≤2r G

W (X)→ H2r( G
W (X))[−2r] is a quasi-isomorphism.

For F a finite set of closed immersions in SmU with target X denote by G
r
F (X,n)

the colimit of the G
W (X ×∆n) where W runs through the finite unions of elements

of crF (X,n). The simplicial complex of Z/m-modules τ≤2r G
r
F (X, •) augments to the

simplicial abelian group zrF (X, •)/m[−2r]. This augmentation is a levelwise quasi-
isomorphism. We denote by G

r
F (X) the total complex associated to the double com-

plex which is the normalized complex associated to τ≤2r G
r
F (X, •). Thus we get a

quasi-isomorphism G
r
F (X)→ zrF (X)/m[−2r].

On the other hand we have a canonical map G
r
F (X,n) → G (X ×∆n) compatible

with the simplicial structure. We denote by G
′(X) the total complex associated to the

double complex which is the normalized complex associated to G (X×∆•). We have a
canonical quasi-isomorphism G (X)→ G

′(X) and a canonical map G
r
F (X)→ G

′(X).
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(Thus in D(Z/m) we get a map

zrF (X)/m[−2r] ∼= G
r
F (X)→ G

′(X) ∼= G (X).)

Let Ĝ
r

F (X) be the object (X,U 7→ G
r
F (U)) of

∫
SmAlggen

D

Φ and similarly for Ĝ
′
(X).

Let G̃
r

F (X) := Ψ( Ĝ
r

F (X)) and similarly for G̃
′
(X).

Our next aim is to make this assignment functorial in X for all maps in SmU . In the
following we sometimes insert into the above definitions A instead of Spec(A). Let I be
the category 0← 1→ 2← 3← 4 (we will obtain the cycle class map as an I-diagram
in D(Sh(SmU,Zar,Z)) where all except the map indexed by 1→ 2 are isomorphisms).
We denote by (SmAlggen

D
)m the full subcategory of SmAlggen

D
such that m is invertible

in the algebras belonging to the objects. We use the notation of Section 5.1. Let K be
an n-simplex in the nerve of (SmAlggen

D
)m. We assign to K the following functor

α′K : E n × I → Cpx(Ab): (t, 0) 7→ αK(t)/m[−2r], (t, 1) 7→ G̃
r

Ft
(Ct), (t, 2) 7→ G̃

′
(Ct),

(t, 3) 7→ G (Ct), (t, 4) 7→ G (Aϕn(t)). Sheafifying on UZar yields a functor α̃′K : E n×I →
Cpx(Sh(UZar,Z)). These functors are compatible for monomorphisms in 4.

ForK an n-simplex of the nerve of N((SmAlggen
D

)m)×I let γIK := LH(Γ◦T ρ(α̃′)K)◦
qn, where ρ is the functor N((SmAlggen

D
)m)× I → (SmAlggen

D
)m × I. The γIK glue to

give a map

γI : D
N((SmAlggen

D
)m)×I

Q•
→ LHqiCpx(Ab).

We denote by ho(γI) ∈ Ho(Cpx(Ab)N((SmAlggen

D
)m)×I) the diagram canonically associ-

ated to γI (see Remark 5.19).

The push forward of the I-diagram in Ho(Cpx(Ab)N((SmAlggen

D
)m)) corresponding to

the diagram ho(γI) to D(Sh(SmU,Zar,Z)) is an I-diagram of the form ( M (r)/m)|U
∼=

• → • ∼= • ∼= Rε∗µ⊗rm which yields the cycle class map.
Next we wish to show the compatibility of this cycle class map with the original

cycle class map defined for flat morphisms.
If in the following notation a collection F of closed subschemes is missing we assume

that this F is empty. For K an n-simplex in the nerve of (SmAlggen,fl
D

)m (with the
obvious notation) we define a functor α′′K : E n × I → Cpx(Ab) in the following way:
(t, 0) 7→ zr(Aϕn(t))[−2r], (t, 1) 7→ G

r(Aϕn(t)), (t, 2) 7→ G
′(Aϕn(t)), (t, 3), (t, 4) 7→

G (Aϕn(t)). Sheafifying on U yields a functor α̃′′K : E n × I → Cpx(Sh(UZar,Z)). There
is an obvious natural transformation α̃′′K → α̃′K . We denote by αK : E n × I × [1] →
Cpx(Sh(UZar,Z)) the corresponding functor.

For K an n-simplex of the nerve of N((SmAlggen,fl
D

)m)× I× [1] let γI×[1]
K := LH(Γ◦

T ρ(α)K) ◦ qn, where ρ is the functor N((SmAlggen,fl
D

)m)× I × [1]→ (SmAlggen,fl
D

)m ×
I × [1]. The γI×[1]

K glue to give a map

γI×[1] : D
N((SmAlggen,fl

D
)m)×I×[1]

Q•
→ LHqiCpx(Ab).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



54 CHAPTER 5. MOTIVIC COMPLEXES II

We denote by ho(γI×[1]) ∈ Ho(Cpx(Ab)N((SmAlggen,fl

D
)m)×I×[1]) the diagram canonically

associated to γI×[1] (see Remark 5.19).

The push forward of the I×[1]-diagram in Ho(Cpx(Ab)N((SmAlggen,fl

D
)m)) correspond-

ing to the diagram ho(γI×[1]) to D(Sh(Smfl
U,Zar,Z)) is an I × [1]-diagram where the

subdiagram indexed on I × {0} gives the old cycle class map and the subdiagram
indexed on I × {1} the new cycle class map restricted to flat maps. Thus the two
cycle class maps are canonically isomorphic (over flat maps).

Corollary 5.29. – For X ∈ SmU the cycle class map M
X(r)/m → Rε∗Z/m(r)

from Section 3 is canonically isomorphic to the cycle class map ( M (r)/m)|U →
Rε∗µ⊗rm restricted to XZar.

Now we also use the notation of Section 5.2.2. We assume m is invertible in A. For
an n-simplex K of the nerve of (SmAlggen

D
)m we define a functor (α′)AK : E n × I →

Cpx(Ab) in the following way: (t, 0) 7→ αAK(t)/m[−2r], (t, 1) 7→ G̃
r

FAt
(CAt ), (t, 2) 7→

G̃
′
(CAt ), (t, 3) 7→ G (CAt ), (t, 4) 7→ G (A⊗D Aϕn(t)). Sheafifying on UZar yields a func-

tor (α̃′)AK : E n × I → Cpx(Sh(UZar,Z)). These functors are compatible for monomor-
phisms in 4.

We have a natural transformation (α̃′)AK → α̃′A⊗K induced by applying Ψ to ob-
vious maps in

∫
SmAlggen

D

Φ. We denote by αAK : E n × I × [1] → Cpx(Sh(UZar,Z)) the
corresponding functor.

For K an n-simplex of the nerve of N((SmAlggen
D

)m)×I× [1] let γA,I×[1]
K := LH(Γ◦

T ρ(αA)K)◦qn, where ρ is the functor N((SmAlggen
D

)m)×I×[1]→ (SmAlggen
D

)m×I×[1].

The γA,I×[1]
K glue to give a map

γA,I×[1] : D
N(SmAlggen

D
)m×I×[1]

Q•
→ LHqiCpx(Ab).

We denote by ho(γA,I×[1]) ∈ Ho(Cpx(Ab)N((SmAlggen

D
)m)×I×[1]) the diagram canonically

associated to γA,I×[1] (see Remark 5.19).

The push forward of the I × [1]-diagram in Ho(Cpx(Ab)N((SmAlggen

D
)m)) correspond-

ing to the diagram ho(γA,I×[1]) to D(Sh(SmU,Zar,Z)) is an I × [1]-diagram where the
subdiagram indexed on I × {1} gives the functor RHom(Spec(A),_) applied to the
cycle class map ( M (r)/m)|U → Rε∗µ⊗rm .

Corollary 5.30. – The subdiagram indexed on I ×{0} of the above I × [1] diagram
in D(Sh(SmU,Zar,Z)) yields a map canonically isomorphic to the map

RHom(Spec(A), ( M (r)/m)|U )→ RHom(Spec(A),Rε∗µ⊗rm )

induced by the cycle class map.

MÉMOIRES DE LA SMF 157



5.2. PROPERTIES OF THE MOTIVIC COMPLEXES 55

Let i : Z → X be a closed immersion of affine schemes in SmS of codimension 1

with open affine complement V . The exact triangle

RHom(Z[Z]Zar, M (r − 1))[−2]→ RHom(Z[X]Zar, M (r))

→ RHom(Z[V ]Zar, M (r))

→ RHom(Z[Z]Zar, M (r − 1))[−1]

in D(Sh(SmS,Zar,Z)) from Proposition 5.28 yields an exact triangle

RHom(Z[ZU ]Zar, ( M (r − 1)/m)|U )[−2]→ RHom(Z[XU ]Zar, ( M (r)/m)|U )

→ RHom(Z[VU ]Zar, ( M (r)/m)|U )

→ RHom(Z[ZU ]Zar, ( M (r − 1)/m)|U )[−1]

in D(Sh(SmU,Zar,Z)).

Proposition 5.31. – Let the notation be as above. Then the diagram

RHom(Z[ZU ]Zar, ( M (r − 1)/m)|U )[−2] //

��

Rε∗RHom(Z[ZU ]ét, µ
⊗(r−1)
m )[−2]

��
RHom(Z[XU ]Zar, ( M (r)/m)|U ) //

��

Rε∗RHom(Z[XU ]ét, µ
⊗r
m )

��
RHom(Z[VU ]Zar, ( M (r)/m)|U ) //

��

Rε∗RHom(Z[VU ]ét, µ
⊗r
m )

��

RHom(Z[ZU ]Zar, ( M (r − 1)/m)|U )[−1] // Rε∗RHom(Z[ZU ]ét, µ
⊗(r−1)
m )[−1],

where the first vertical row is the exact triangle from above, the second vertical row is
the corresponding exact triangle for étale sheaves and where the horizontal maps are
induced by the cycle class maps, commutes.

Proof. – Let A→ A′′ be the map of function algebras corresponding to i and A→ A′

the map corresponding to the open inclusion V → X. We let J be the category which
is defined by gluing the object (0, 0) of [1]2 to the object 0 of [1]. We call c the object 1

of [1] viewed as object of J , the other objects are numbered (k, l), k, l ∈ {0, 1}. Let
µ
⊗(r−1)
m → G̃ be an injectively fibrant replacement in Cpx(Sh(SmU,ét,Z/m)). We let

H t(n) be the colimit of the G
W ((SpecCAt ) ×∆n), where W runs through the finite

unions of elements of cr−1(SpecCA
′′

t , n). We denote by H t the total complex associ-
ated to the double complex which is the normalized complex associated to τ≤2r H t(•).
We have an absolute purity isomorphism ϕ from the sheaf

SmU 3 Y 7→ ker( G (Y ×S X)→ G (Y ×X V ))
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to
SmU 3 Y 7→ G̃ (Y ×S Z)[−2]

in D(Sh(SmU,ét,Z/m)). This can be lifted to a map of (complexes of) sheaves since
the target of the map is injectively fibrant. We denote any such lift also by ϕ. We

let G̃
r−1

, G̃
′
, ˜̃

G
r−1

and ˜̃
G
′
be the analogs of G

r, G
′, G̃

r
and G̃

′
(and in the first and

third cases also with the cycle conditions).
For K an n-simplex in the nerve of (SmAlggen

D
)m we define, using ϕ, a functor

α♥K : E n × I × J → Cpx(Ab)

by sending

(t, 0, c) to z̃r−1

FA
′′

t

(CA
′′

t )[−2r], (t, 1, c) to ˜̃
G
r−1

FA
′′

t
(CA

′′

t )[−2],

(t, 0, (0, 0)) to z̃r−1

FA
′′

t

(CA
′′

t )[−2r], (t, 1, (0, 0)) to H t,

(t, 0, (1, 0)) to z̃rFAt (CAt )[−2r], (t, 1, (1, 0)) to G̃
r

FAt
(CAt ),

(t, 0, (1, 1)) to z̃r
FA
′

t
(CA

′

t )[−2r], (t, 1, (1, 1)) to G̃
r

FA
′

t
(CA

′

t ),

(t, 0, (0, 1)) to 0, (t, 1, (0, 1)) to 0,

(t, 2, c) to ˜̃
G
′
(CA

′′

t )[−2], (t, 3, c) to G̃ (CA
′′

t )[−2],

(t, 2, (0, 0)) to ker( G̃
′
(CAt )→ G̃

′
(CA

′

t )), (t, 3, (0, 0)) to ker( G (CAt )→ G (CA
′

t )),

(t, 2, (1, 0)) to G̃
′
(CAt ), (t, 3, (1, 0)) to G (CAt ),

(t, 2, (1, 1)) to G̃
′
(CA

′

t ), (t, 3, (1, 1)) to G (CA
′

t ),

(t, 2, (0, 1)) to 0, (t, 3, (0, 1)) to 0,

(t, 4, c) to G̃ (A′′ ⊗D Aϕn(t))[−2],

(t, 4, (0, 0)) to ker( G (A⊗D Aϕn(t))→ G (A′ ⊗D Aϕn(t))),

(t, 4, (1, 0)) to G (A⊗D Aϕn(t)),

(t, 4, (1, 1)) to G (A′ ⊗D Aϕn(t))

and (t, 4, (0, 1)) to 0

(the functoriality of this assignment uses a combination of the functoriality used
to define the cycle class map and the functoriality used to obtain the localization
triangle).

Sheafifying we obtain a functor α̃♥K : E n × I × J → Cpx(Sh(SZar,Z)). For K an
n-simplex in the nerve of N((SmAlggen

D
)m)×I×J we let γ♥K := LH(Γ◦T ρ(α̃♥)K)◦qn,

where ρ is the functor N((SmAlggen
D

)m)× I × J → (SmAlggen
D

)m × I × J .
The γ♥K glue to give a map

γ♥ : D
N((SmAlggen

D
)m)×I×J

Q•
→ LHqiCpx(Ab).
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We denote by ho(γ♥) ∈ Ho(Cpx(Ab)N((SmAlggen

D
)m)×I×J) the diagram canonically

associated to γ♥ (see Remark 5.19).
The commutativity of the push forward of the corresponding I × J-diagram

in Ho(Cpx(Ab)(SmAlggen

D
)m) to D(Sh(SmU,Zar,Z)) shows the claim, using Corol-

lary 5.30.

5.3. The naive Gm-spectrum

Proposition 5.32. – There exists a canonical isomorphism

M (r − 1)[−1] ∼= RHom(Z[Gm,S , {1}]Zar, M (r))

in D(Sh(SmS,Zar,Z)).

Proof. – By Proposition 5.28 there is an exact triangle

M (r − 1)[−2]→ RHom(Z[A1
S ]Zar, M (r))

→ RHom(Z[Gm,S ]Zar, M (r))→ M (r − 1)[−1].

There is a split RHom(Z[Gm,S ]Zar, M (r)) → RHom(Z[A1
S ]Zar, M (r)) induced

by {1} ⊂ Gm,S and the A1-invariance of M (r). This induces the required isomor-
phism.

In analogy with [41, I 6, Définition I.124] we define a naive Z[Gm,S , {1}]Zar-spec-
trum E in D(Sh(SmS,Zar,Z)) to consist of a sequence of objects En ∈ D(Sh(SmS,Zar,Z)),
n ∈ N, together with bonding maps Z[Gm,S , {1}]Zar ⊗ En → En+1 such that the
adjoints En → RHom(Z[Gm,S , {1}]Zar,En+1) are isomorphisms. A map of naive
spectra is defined in the obvious way. The theory developed in loc. cit. is also valid
in our case, in particular there is always a lift of a naive spectrum to an object in
the homotopy category of spectra and the functor from the homotopy category of
spectra to naive spectra is conservative and full ([41, I 6, Proposition I.126]).

We thus get from Proposition 5.32 a naive Z[Gm,S , {1}]Zar-spectrum M in the
category D(Sh(SmS,Zar,Z)) with entry M (r)[r] in level r. We also denote a lift of M

to the homotopy category of Z[Gm,S , {1}]Zar-spectra by M . If we want to emphasize
the dependence of M on S we write M S instead of M .
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CHAPTER 6

MOTIVIC COMPLEXES OVER A FIELD

We first note that the material from Section 5 carries over verbatim to the case of
smooth schemes over a field k, except that we do not have to use the constructions
involving

∫
SmAlggen

D

Φ and Ψ and the functor Γ in the constructions (this is because
over a field the Bloch cycle complex computes motivic cohomology over each open
(so there is no need to derive the global sections functor)). We denote the resulting
motivic complexes in D(Sh(Smk,Zar,Z)) by M (r)k. The resulting naive Gm-spectrum
is denoted by M k, the same notation is used for a lift to a spectrum. In this section
we will use the notation of Section 5 (like CAt etc.) carried over to the field case.

We let zre(X) = C∗(zequi(Ar, 0))(X) (for notation see e.g., [39]) be the complex
introduced by Friedlander and Suslin ([16]), so zre ∈ Cpx(Sh(Smk,Zar,Z)) and the
Zariski hypercohomology of zre computes Bloch’s higher Chow groups (see loc. cit.).

Let A = k[T1, . . . , Tr]. For K an n-simplex in the nerve of
SmAlggen

k (with corresponding chain A0 → · · · → An of k-algebras) we define a
functor αeK : E n×[1]→ Cpx(Ab) by sending (t, 0) to zre(Aϕn(t)) and (t, 1) to zr

FAt
(CAt ).

For K an n-simplex in the nerve of N(SmAlggen
k )× [1] let γeK := LH(T ρ(αe)K)◦ qn.

The γeK glue to give a map

γe : D
N(SmAlggen

k )×[1]

Q•
→ LHqiCpx(Ab).

We denote by ho(γe) ∈ Ho(Cpx(Ab)N(SmAlggen
k )×[1]) the diagram canonically associated

to γe.
The map in D(Sh(Smk,Zar,Z)) associated to the push forward of ho(γe)[−2r] is an

isomorphism. Moreover the target is canonically isomorphic to M (r)k. We get the

Proposition 6.1. – The complexes zre [−2r] and M (r)k are canonically isomorphic
in D(Sh(Smk,Zar,Z)).

Pairing of cycles gives us pairings zre ⊗ zse → zr+se involving the Eilenberg-Zilber
map). Using Proposition 6.1 this gives us pairings

(18) M (r)k ⊗L M (s)k → M (r + s)k

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



60 CHAPTER 6. MOTIVIC COMPLEXES OVER A FIELD

in D(Sh(Smk,Zar,Z)) which are unital, associative and commutative. Using the diag-
onal we obtain for any X ∈ Smk pairings

RHom(Z[X]Zar, M (r)k)⊗L RHom(Z[X]Zar, M (s)k)→ RHom(Z[X]Zar, M (r + s)k)

such that the map
M (•)k → RHom(Z[X]Zar, M (•)k)

is a map of N-graded algebras.
We derive an action

(19) M (r)k ⊗L RHom(Z[X]Zar, M (s)k)→ RHom(Z[X]Zar, M (r + s)k).

In order to achieve a compatibility between the localization triangle (Proposi-
tion 5.28) and this action we study an action of zre directly on Bloch’s complexes
which appear in the definition of the M (s)k.

Let A be a smooth k-algebra and let A′ := A[T1, . . . , Tr]. For K an n-simplex in
the nerve of SmAlggen

k (with corresponding chain A0 → · · · → An of k-algebras) we
define a functor αaK : E n × [1]→ Cpx(Ab) by sending (t, 0) to zre(Aϕn(t))⊗ zsFAt (CAt )

and (t, 1) to zr+s
FA
′

t

(CA
′

t ) (the transition maps from 0 to 1 are induced by pairing of
cycles).

For K an n-simplex in the nerve of N(SmAlggen
k )× [1] let γaK := LH(T ρ(αa)K)◦qn.

The γaK glue to give a map

γa : D
N(SmAlggen

k )×[1]

Q•
→ LHqiCpx(Ab).

We denote by ho(γa) ∈ Ho(Cpx(Ab)N(SmAlggen
k )×[1]) the diagram canonically associated

to γa.
The map in D(Sh(Smk,Zar,Z)) associated to the push forward of ho(γa)[−2r − 2s]

yields an action map

(20) M (r)k ⊗L RHom(Z[X]Zar, M (s)k)→ RHom(Z[X]Zar, M (r + s)k),

where X = Spec(A). We will show in Lemma 6.3 that the action maps (19) and (20)
coincide.

Lemma 6.2. – The pairing (20) for A = k coincides with the pairing (18).

Proof. – Let A := k[T1, . . . , Ts] and A′ := A[T1, . . . , Tr]. For K an n-simplex in the
nerve of S (with corresponding chain A0 → · · · → An of k-algebras) we define a
functor αcK : E n × [1]2 → Cpx(Ab) by sending (t, 0, 0) to zre(Aϕn(t)) ⊗ zse(Aϕn(t)),
(t, 0, 1) to zr+se (Aϕn(t)), (t, 1, 0) to zre(Aϕn(t))⊗ zsFAt (CAt ) and (t, 1, 1) to zr+s

FA
′

t

(CA
′

t ).

For K an n-simplex in the nerve of N(SmAlggen
k )× [1]2 let γcK := LH(T ρ(αc)K)◦qn.

The γcK glue to give a map

γc : D
N(SmAlggen

k )×[1]2

Q•
→ LHqiCpx(Ab).

We denote by ho(γc) ∈ Ho(Cpx(Ab)N(SmAlggen
k )×[1]2) the diagram canonically associ-

ated to γc.
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The commutativity of the square in D(Sh(Smk,Zar,Z)) associated to the push for-
ward of ho(γc)[−2r − 2s] shows the claim for the A under consideration. The claim
for A = k is shown in a similar manner.

Lemma 6.3. – For affine X the action maps (19) and (20) coincide.

Proof. – Let X = Spec(A) and let A′ := A[T1, . . . , Tr]. For K an n-simplex in the
nerve of S (with corresponding chain A0 → · · · → An of k-algebras) we define a
functor αgK : E n × [2] → Cpx(Ab) by sending (t, 0) to zre(Aϕn(t)) ⊗ zsFAt (CAt ), (t, 1)

to zre(A⊗k Aϕn(t))⊗ zsFAt (CAt ) and (t, 2) to zr+s
FA
′

t

(CA
′

t ).

For K an n-simplex in the nerve of N(SmAlggen
k )× [2] let γgK := LH(T ρ(αg)K)◦qn.

The γgK glue to give a map

γg : D
N(SmAlggen

k )×[2]

Q•
→ LHqiCpx(Ab).

We denote by ho(γg) ∈ Ho(Cpx(Ab)N(SmAlggen
k )×[2]) the diagram canonically associated

to γg.
Using methods as in the beginning of Section 5.2.2 one shows that the second map

in the diagram [2] → Ho(Cpx(Ab) S ) associated to ho(γg) is RHom(Z[X], f), where
f is the map induced by ho(γa) with A the k-algebra k. The composite map associated
to ho(γg) gives the action map (20), thus the claim follows from Lemmma 6.2.

Proposition 6.4. – Let i : Z → X be a closed immersion of affine schemes in Smk

of codimension 1 with open affine complement U . Then the diagram

M (r)k ⊗L RHom(Z[Z]Zar, M (s− 1)k)[−2] //

��

RHom(Z[Z]Zar, M (r + s− 1)k)[−2]

��
M (r)k ⊗L RHom(Z[X]Zar, M (s)k) //

��

RHom(Z[X]Zar, M (r + s)k)

��
M (r)k ⊗L RHom(Z[U ]Zar, M (s)k)

��

// RHom(Z[U ]Zar, M (r + s)k)

��
M (r)k ⊗L RHom(Z[Z]Zar, M (s− 1)k)[−1] // RHom(Z[Z]Zar, M (r + s− 1)k)[−1]

in D(Sh(Smk,Zar,Z)), where the horizontal maps are the above action maps and the
columns are the triangles from Proposition 5.28, commutes.

Proof. – For K an n-simplex in the nerve of S one defines a functor E n× [1]× [1]2 →
Cpx(Ab) combining the action maps from above and the functors used in the proof
of Proposition 5.28. The commutativity of the diagram associated to the resulting
functor D

N(SmAlggen
k )×[1]×[1]2

Q•
→ LHqiCpx(Ab) shows the claim.
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The isomorphism

Z[−1] ∼= M (0)k[−1] ∼= RHom(Z[Gm,k, {1}]Zar, M (1)k)

in D(Sh(Smk,Zar,Z)) from Proposition 5.32 induces a map

ι1 : Z[Gm,k, {1}]Zar[−1]→ M (1)k.

Lemma 6.5. – The composition

Z[Gm,k, {1}]Zar[−1]⊗L M (r − 1)k → M (1)k ⊗L M (r − 1)k → M (r)k,

where the first map is induced by ι1 and the second map is the above multiplication,
is adjoint to the isomorphism from Proposition 5.32.

Proof. – We consider the diagram

M (r − 1)k ⊗L RHom(Z[Gm,k, {1}]Zar, M (1)k) //

��

RHom(Z[Gm,k, {1}]Zar, M (r)k)

��
M (r − 1)k ⊗L RHom(Z[Gm,k]Zar, M (1)k) //

��

RHom(Z[Gm,k]Zar, M (r)k)

��
M (r − 1)k ⊗L M (0)k[−1] // M (r − 1)k[−1]

in D(Sh(Smk,Zar,Z)), where the upper vertical maps are inclusions of direct sum-
mands and the lower square is the lower square from Proposition 6.4. Thus the dia-
gram commutes, the compositions of the left vertical and the right vertical maps are
isomorphisms and also the upper and lower horizontal maps are isomorphisms.

The adjoint of the upper horizontal map is the composition

M (r − 1)k ⊗L RHom(Z[Gm,k, {1}]Zar, M (1)k)⊗L Z[Gm,k, {1}]Zar

→ M (r − 1)k ⊗L M (1)k → M (r)k,

where the first map is the tensor product of the identity on M (r − 1)k and the
adjoint of an identity, and the second map is the multiplication. Thus the adjoint
of the map which starts at the lower left corner of the above diagram, goes via the
inverse isomorphism to the upper left corner and then to the upper right corner is the
composition stated in the lemma.

The adjoint of the map from the lower right corner to the upper right corner
(again via the inverse isomorphism) is the second map in question, thus the maps
indeed coincide.

Recall the isomorphisms

(21) zre [−2r] ∼= C∗(Ztr((Gm,k, {1})∧r))[−r]

in D(Sh(Smk,Zar,Z)) constructed in [55]. We get a natural map

ι2 : Z[Gm,k, {1}]Zar[−1]→ C∗(Ztr(Gm,k, {1}))[−1] ∼= z1
e [−2] ∼= M (1)k.
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Lemma 6.6. – The maps ι1 and ι2 agree.

Proof. – Let i1 : Gm,k → A1
k be the natural inclusion and i2 : Gm,k → A1

k the inversion
followed by the natural inclusion. Let Q be the sheaf cokernel of the map

C∗(Ztr(Gm,k, {1}))
i1	i2−→ C∗(Ztr(A1

k, {1}))⊕ C∗(Ztr(A1
k, {1})).

Since this map is injective and the target is acyclic Q is a representative of the shifted
complex C∗(Ztr((Gm,k, {1})))[1].

For X ∈ Smk and maps f, g : X → A1
k let h(f, g) be the map X ×∆1 → A1

k given
by sf + (1− s)g, where s is the standard coordinate on the algebraic 1-simplex ∆1.

Let c : Gm,k → A1
k be the constant map to 1. Let ϕ ∈ C1(Ztr(A1

k, {1}))(Gm,k) be
given by h(i1, c), in a similar manner let ψ be given by −h(i2, c). Then

∂(ϕ,ψ) ∈ C0(Ztr(A1
k, {1}))(Gm,k)⊕ C0(Ztr(A1

k, {1}))(Gm,k)

is the image of idGm,k ∈ C0(Ztr(Gm,k, {1}))(Gm,k) with respect to the map i1 	 i2.
Thus the canonical map Z[Gm,k, {1}]Zar[1]→ Q is represented by the image of (ϕ,ψ)

in Q1(Gm,k).

Note there is a canonical map Q → C∗(Ztr(P1
k, {1})) which is induced by the

two canonical covering maps A1
k → P1

k. We denote the image of (ϕ,ψ) in the group
C1(Ztr(P1

k, {1}))(Gm,k) by η. Thus η induces a map

(22) Z[Gm,k, {1}]Zar[1]→ C∗(Ztr(P1
k, {1})).

The comparison isomorphism (21) is constructed using the natural map

C∗(Ztr(P1
k, {1}))→ C∗(zequi(P1

k \ {1}, 0)) ∼= C∗(zequi(A1
k, 0)),

and precomposition with (22) gives the map ι2 (modulo the identification z1
e [−2] ∼=

M (1)k and a shift). Let us denote the image of η in z1(Gm,k ×k A1
k, 1) by η′. The

cycle (in the sense of homological algebra) η′ is a sum ϕ′ + ψ′ of chains (where each
summand is a chain constituted by an algebraic cycle or the negative thereof). Here
ϕ′ (resp. ψ′) is the image of ϕ (resp. ψ). We want to compute the boundary of η′ for
the triangle defined by the sequence

(23) z0({0} ×k A1
k)→ z1(A1

k ×k A1
k)→ z1(Gm,k ×k A1

k).

Therefore we lift η′ to the middle complex, take the boundary and view it as an
element of the left complex. We first give a lift of ϕ′.

Let c′ : A1
k → A1

k be the constant map to {1}. We let ϕ̃ ∈ C1(Ztr(A1
k, {1}))(A1

k) be
given by h(idA1

k
, c′) and ϕ̃′ be the image of ϕ̃ with respect to the composition

C1(Ztr(A1
k, {1}))(A1

k)→ C1(Ztr(P1
k, {1}))(A1

k)→ z1
e(A1

k, 1)→ z1(A1
k ×k A1

k, 1).

Then ϕ̃′ is a lift of ϕ′. The boundary of the image of ϕ̃ in C1(Ztr(P1
k, {1}))(A1

k) is the
graph of the canonical embedding A1

k → P1
k.
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We let t be the standard coordinate on Gm,k, s the standard coordinate on ∆1 and
[x0 : x1] homogeneous coordinates on P1

k. Then the effective cycle corresponding to
the image of −ψ in C1(Ztr((P1

k, {1})))(Gm,k) is given by the homogeneous equation

sx0 + t(1− s)x0 = tx1.

The closure Z in A1
k × ∆1 ×k P1

k is given by the same equation. Intersecting with
s = 0 (resp. s = 1) gives the closed subscheme with equation t(x0 − x1) = 0 (resp.
x0 = tx1). This shows that the intersections of this closure with the faces of ∆1 are
proper. We view the restriction of Z to P1

k \ {1} as a cycle in z1(A1
k ×k A1

k, 1) and
denote its negative by ψ̃′. Thus ψ̃′ is a lift of ψ′.

We see that the boundary of ϕ̃′ cancels with the contribution of the boundary of ψ̃′

for s = 1. Thus the boundary of ϕ̃′ + ψ̃′ is given by the equation t = 0. It follows
that the boundary of η′ for the triangle defined by (23) corresponds to 1. The claim
follows.

Theorem 6.7. – The spectrum M k is isomorphic to the motivic Eilenberg-MacLane
spectrum MZk over k.

Proof. – The isomorphisms (21) are compatible with the product structures, see [30,
Proposition 3.3] for the case of a perfect ground field and [31] for the general case.
Thus the claim follows from Lemmas 6.5 and 6.6.
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CHAPTER 7

COMPARISONS

7.1. The exceptional inverse image of M

We let x be a closed point of S, k its residue field and i : Spec(k) ↪→ S the corre-
sponding closed inclusion. Set U := S \ {x}, U = Spec( D

′
), and let j be the open

inclusion U → S. We view k as a D-algebra in the canonical way.

We use the notation of Section 5. Let K be an n-simplex in the nerve of SmAlggen
D

.
For t ∈ E n set C ′t := D

′⊗D Ct and F ′t := {U ×S a | a ∈ Ft}. Also set C ′′t := k⊗D Ct
and F ′′t := {{x} ×S a | a ∈ Ft}. Define a functor α!

K : E n × [1]2 → Cpx(Ab) by
sending (t, 0, 0) to zr−1

F ′′t
(C ′′t ), (t, 1, 0) to z̃rFt(Ct), (t, 1, 1) to z̃rF ′t (C

′
t) and (t, 0, 1) to 0.

Sheafification on S yields a functor α̃!
K : E n × [1]2 → Cpx(Sh(SZar,Z)).

For K an n-simplex in the nerve of N(SmAlggen
D

)× [1]2 let γ!
K := LH(Γ ◦ T ρ(α̃!)K) ◦ qn,

where ρ is the functor N(SmAlggen
D

)× [1]2 → SmAlggen
D
× [1]2.

The γ!
K glue to give a map γ! : D

N(SmAlggen

D
)×[1]2

Q•
→ LHqiCpx(Ab).

We denote by ho(γ!) ∈ Ho(Cpx(Ab)N(SmAlggen

D
)×[1]2) the diagram canonically asso-

ciated to γ!.

The square in D(Sh(SmS,Zar,Z)) associated to the push forward of ho(γ!)[−2r] is
exact. We thus obtain the

Proposition 7.1. – There is an exact triangle

i∗M (r − 1)k[−2]→ M (r)→ j∗j
∗M (r)→ i∗M (r − 1)k[−1]

in DA1

(Sh(SmS,Nis,Z)).

Corollary 7.2. – There is a canonical isomorphism

i! M (r) ∼= M (r − 1)k[−2]

in DA1

(Sh(Smk,Nis,Z)).
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Corollary 7.3. – There is a canonical isomorphism of naive Gm-spectra

i! M ∼= M k(−1)[−2]

and also such an isomorphism of spectra.

Proof. – The bonding maps are the same.

Theorem 7.4. – There is an isomorphism of spectra

i! M ∼= MZk(−1)[−2].

Proof. – This follows from Corollary 7.3 and Theorem 6.7.

7.2. Pullback to the generic point

Let K be the fraction field of D and f : Spec(K)→ S the canonical morphism.

Lemma 7.5. – There is an isomorphism f∗M (r) ∼= M (r)K in D(Sh(SmK,Zar,Z)).

Proof. – Let X ∈ SmK and x a point of X. Locally around x the scheme X has
a model X̃ ∈ SmS with corresponding point x̃, such that we have an isomorphism
OX,x ∼= OX̃,x̃, and locally around x̃ such models are canonically isomorphic. It follows
that the fiber of f∗M (r) at x is canonically equivalent to the fiber of M (r) at x̃. By
the continuity of the cycle complexes (say for cofiltered systems where all transition
maps are open immersions) it follows that both fibers are equivalent to (a shift of)
Bloch’s cycle complex attached to Spec( OX,x).

Theorem 7.6. – There is an isomorphism f∗M ∼= MZK in SH(K).

Proof. – There is an isomorphism f∗M ∼= MK . The result now follows from Theo-
rem 6.7.

7.3. Weight 1 motivic complexes

We keep the notation of the last section.

Proposition 7.7. – Let k be a field, Z(1) = C∗(Ztr((Gm,k, {1})))[−1] be the motivic
complex of weight 1 (in the notation of [55] or [39]). Then there is an isomorphism
Z(1) ∼= O

∗[−1] in D(Sh(Smk,Zar,Z)). Moreover the map Z[Gm,k, {1}]Zar → O
∗ induced

by this map is the canonical one.

Proof. – The first part is [39, Theorem 4.1], the second part is contained in the proof
of [39, Lemma 4.4].

We denote by S(1) the set of codimension 1 points of S, and for each p ∈ S(1) we
let κ(p) be the residue field of p and ip the corresponding inclusion Spec(κ(p))→ S.
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Lemma 7.8. – There is an exact triangle⊕
p∈S(1)

ip,∗M (r − 1)κ(p)[−2]→ M (r)→ f∗M (r)K →
⊕
p∈S(1)

ip,∗M (r − 1)κ(p)[−1]

in D(Sh(SmS,Zar,Z)).

Proof. – This follows from Corollary 7.2 and Lemma 7.5.

Corollary 7.9. – We have H
i( M (1)) ∼= 0 for i 6= 1 and there is an exact sequence

0→ H
1( M (1))→ f∗ O

∗
/K →

⊕
p∈S(1)

ip,∗Z→ 0

in Sh(SmS,Zar,Z).

Proof. – This follows from Lemma 7.8 and Proposition 7.7.

Theorem 7.10. – There is a canonical isomorphism

M (1) ∼= O
∗
/S [−1]

in D(Sh(SmS,Zar,Z)).

Proof. – We have a canonical map Z[Gm,S ]Zar → H
1( M (1)) whose composition

with the map H
1( M (1)) → f∗ O

∗
/K is the canonical map by Proposition 7.7. The

image of this canonical map Z[Gm,S ]Zar → f∗ O
∗
/K is O

∗
/S . The claim follows now from

Corollary 7.9.

Let HB,1 ∈ D(Sh(SmS,Zar,Z)) be the first A1-and Nisnevich-local space in a
Ω-Gm,S-spectrum model of HB .

Theorem 7.11. – There is a canonical isomorphism

HB,1 ∼= ( O
∗
/S)Q

in D(Sh(SmS,Zar,Z)).

Proof. – The proof is similar to the proof of Theorem 7.10.
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7.4. Rational spectra

We keep the notation of the last sections.

Corollary 7.12. – There is an exact triangle⊕
p∈S(1)

ip,∗MZκ(p)(−1)[−2]→ M → f∗MZK →
⊕
p∈S(1)

ip,∗MZκ(p)(−1)[−1]

in SH(S).

Proof. – This follows from Theorems 7.4 and 7.6.

We call a spectrum E ∈ SH(S) a Beilinson motive if it is HB-local (compare with
[7, Definition 14.2.1]). This is the case if and only if the canonical map E → HB ∧E is
an isomorphism ([7, Corollary 14.2.16]).

Corollary 7.13. – The rationalization M Q is a Beilinson motive.

Proof. – The rational motivic Eilenberg-MacLane spectra MQκ(p) for p ∈ S(1) and
MQK are orientable, thus their push forwards to S are Beilinson motives ([7, Corol-
lary 14.2.16 (Ri)]). Now the claim follows from Corollary 7.12.

By construction we have M 0,0 = Z. By Corollary 7.13 the elements of ( M Q)0,0

correspond bijectively to maps HB → M Q, and we let u : HB → M Q be the map
corresponding to 1 ∈ Q = ( M Q)0,0.

Theorem 7.14. – The map u is an isomorphism.

Lemma 7.15. – For p ∈ S(1) the map

i!pHB
i!pu−→ i!pM Q

is an isomorphism.

Proof. – The definition of u is in such a way that the map u1 : HB,1 → M (1)Q[1]

induced by u is compatible with the natural maps from Q[Gm,S ]Zar to HB,1 and
M (1)Q[1]. Since these latter maps are surjections it follows that the composition

( O
∗
/S)Q ∼= HB,1

u1−→ M (1)Q[1] ∼= ( O
∗
/S)Q,

where the first resp. third map is the identification from Theorem 7.11 resp. Theo-
rem 7.10, is the identity. It follows that the map

ϕ : HB,κ(p)(−1)[−2] ∼= i!pHB
i!pu−→ i!pM Q

∼= MQκ(p)(−1)[−2],

where the first isomorphism is from [7, Theorem 14.4.1], induces an isomorphism on
zeroth spaces of Ω-Gm,κ(p)-spectra, thus ϕ(1)[2] corresponds to a nonzero element
in Q = HomSH(κ(p))(HB,κ(p),MQκ(p)). The claim follows.
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Proof of Theorem 7.14. – The map f∗u is an isomorphism. Now the claim follows
from Lemma 7.15 and the map between triangles of the form as in Corollary 7.12
induced by u.

7.5. The isomorphism between MZ and M

First we recast the definition of MZ working purely in triangulated categories. We
use the notation of Section 4.1.1.

The canonical triangle

Ln(r − 1)[−2]→ RHom(Z/pn[A1
U ]ét, Ln(r))

→ RHom(Z/pn[Gm,U ]ét, Ln(r))→ Ln(r − 1)[−1]

in D(Sh(SmU,ét,Z/pn)) induces a canonical isomorphism

Ln(r − 1)[−1] ∼= RHom(Z/pn[Gm,U , {1}]ét, Ln(r)).

We thus get a naive Z/pn[Gm,U , {1}]ét-spectrum Ln with entry Ln(r)[r] in level r.
By the choice of the map ι the underlying naive Z/pn[Gm,U , {1}]ét-spectrum of the
spectrum Sym( T ) is Ln.

Since we have canonical isomorphisms

RHom(Z/pn[Gm,U , {1}]Zar,Rε∗ Ln,r) ∼= Rε∗RHom(Z/pn[Gm,U , {1}]ét, Ln,r)

we get a naive Z/pn[Gm,U , {1}]Zar-spectrum Rε∗ Ln. The naive prespectrum (with
the obvious definition of naive prespectrum) τ≤0Rε∗ Ln with entries τ≤0Rε∗ Ln,r is a
naive spectrum by Proposition 4.4.

We also have canonical isomorphisms

RHom(Z/pn[Gm,S , {1}]Zar,Rj∗τ≤0Rε∗ Ln,r) ∼= Rj∗RHom(Z/pn[Gm,U , {1}]Zar, τ≤0Rε∗ Ln,r),

thus Hn := Rj∗τ≤0Rε∗ Ln is a naive Tn := Z/pn[Gm,S , {1}]Zar-spectrum.
By construction the underlying naive Tn-spectrum of B′ (see Section 4.1.1)

equals Hn.
Proposition 4.7 furnishes canonical maps

Hn,r → i∗ν
r−1
n

whose homotopy fibers we denote by Fn,r.
As after equation (12) it follows that the Fn,r are determined up to canonical

isomorphisms.
Using the structure maps of Hn we get maps

Tn ⊗ Fn,r → Tn ⊗Hn,r → Hn,r+1 → i∗ν
r
n

which are 0 since we know already from Section 4.1.1 that the Fn,r organize them-
selves into a naive T -spectrum such that the maps Fn,r → Hn,r form a map of naive
Tn-spectra.

Thus in turn the maps Tn ⊗ Fn,r → Hn,r+1 factorize through Fn,r+1. These fac-
torizations are unique since there are no non-trivial maps Tn ⊗ Fn,r → i∗ν

r
n[−1].
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Thus we see that the Fn,r assemble in a unique way into a naive Tn-spectrum Fn
together with a map of naive Tn-spectra Fn → Hn.

Of course the underlying naive Tn-spectrum of C (see Section 4.1.1) is Fn.
Set M n(r) := M (r)/pn and M n := M /pn. We have étale cycle class maps

M n(r)|U → Rε∗Ln(r)

(see Section 5.2.3).
Proposition 5.31 (applied with X = A1

S and Z = {1}) implies that these cycle class
maps combine to give a map of naive Z/pn[Gm,U , {1}]Zar-spectra j∗M n → Rε∗ Ln.

By Theorem 3.3 this map factors uniquely through τ≤0Rε∗ Ln (by an isomorphism,
see Theorem 3.9) and by adjointness we get a map of naive Tn-spectra M n → Hn

which factors as
M n → Rj∗j∗M n

∼=−→ Hn.

We have commutative diagrams

M n(r)[r] // Rj∗j∗M n(r)[r]

∼=
��

// i∗M n,Z(r − 1)[r − 1]

∼=
��

// M n(r)[r + 1]

Hn,r
// i∗νr−1

n .

(the vertical maps being isomorphisms) with an exact triangle as upper row: The exact
triangle is induced by a variant of Proposition 7.1. The right vertical isomorphism
is a global version of Theorem 3.4. The diagram commutes by a global version of
Proposition 3.4.

Thus we get a unique factorization M n → Fn which is an isomorphism.
Set T := Z[Gm,S , {1}]Zar. By adjointness we get a map of naive T -spectra

M → Fn.
For F,G ∈ D(Sh(SmS,Zar,Z/pn)) we denote by mapZ/pn(F,G) ∈ Ho(sSet) the

mapping space between F and G. We use the same notation for étale sheaves and
also for spectra. If the coefficients are Z we use the notation map.

Lemma 7.16. – For any r ≥ 0 we have mapZ/pn(Fn,r, Fn,r) ∼= Z/pn.

Proof. – We have

mapZ/pn(Fn,r,Rj∗τ≤0Rε∗ Ln,r) ∼= mapZ/pn(j∗Fn,r, τ≤0Rε∗ Ln,r)

∼= mapZ/pn(τ≤0Rε∗ Ln,r, τ≤0Rε∗ Ln,r)

∼= mapZ/pn(τ≤0Rε∗ Ln,r,Rε∗ Ln,r)

∼= mapZ/pn(ε∗τ≤0Rε∗ Ln,r, Ln,r)

∼= mapZ/pn( Ln,r, Ln,r) ∼= Z/pn.
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We have a long exact sequence

· · · → Hom(Fn,r[i+ 1], i∗ν
r−1
n )→ Hom(Fn,r[i], Fn,r)

→ Hom(Fn,r[i],Rj∗τ≤0Rε∗ Ln,r)→ Hom(Fn,r[i], i∗ν
r−1
n )→ · · ·

Thus the maps

Hom(Fn,r[i], Fn,r)→ Hom(Fn,r[i],Rj∗τ≤0Rε∗ Ln,r)

are isomorphisms for i > 0 and injective for i = 0. But since

Hom(Fn,r,Rj∗τ≤0Rε∗ Ln,r) ∼= Z/pn

the map for i = 0 is also surjective, so the claim follows.

Corollary 7.17. – The naive T -spectra Fn have lifts to T -spectra which are unique
up to canonical isomorphism (in the homotopy category). Denoting these lifts also
by Fn we have mapZ/pn(Fn, Fn) ∼= Z/pn. Moreover we have map( M , Fn) ∼= Z/pn
(the latter mapping space is computed in T -spectra).

Proof. – The mapping space from a lift of Fn to spectra to itself is computed as

holimrmapZ/pn(Fn,r, Fn,r) ∼= Z/pn,

from this the result follows.

Clearly we have Fn+1 ⊗L
Z/pn+1 Z/pn ∼= Fn.

Thus we get compatible maps M → Fn for all n in the homotopy category
of T -spectra. This furnishes a map M → holimnFn which is the p-completion map.
Note that the homotopy limit is uniquely determined up to canonical isomorphism.

We have a canonical isomorphism holimnFn ∼= D(p), where we use the notation of
Section 4.1.2. Thus we get a canonical map M → D (notation from Section 4.2) in
the homotopy category of T -spectra.

Moreover the diagram
M //

u−1◦f
��

D

��
HB // DQ,

where f : M → M Q is the rationalization map and and u is from Section 7.4,
commutes (maps out of M Q

∼= HB into Beilinson motives correspond to elements
in π0,0). Thus we obtain a map M → MZ (for the latter see Definition 4.27). This
map is an isomorphism since u is an isomorphism (Theorem 7.14) and each map
M → D(p) is the p-completion map.

We have shown

Theorem 7.18. – There is a canonical isomorphism M ∼= MZ in the homotopy
category of T -spectra. We have map( M , M ) ∼= Z, where map can denote the mapping
space in T -spectra or in SH(S).
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We leave the last assertion as an exercise to the reader.

Corollary 7.19. – For X ∈ SmS there is a canonical isomorphism

HomSH(S)(Σ
∞X+,MZ(n)[i]) ∼= Hi

mot(X,n),

where the latter group denotes Levine’s motivic cohomology.

For X ∈ SmS we denote by DM(X) the homotopy category of the category
of f∗MZ-modules, where f is the structural morphism of X.

Corollary 7.20. – For X ∈ SmS there is a canonical isomorphism

HomDM(X)(Z,Z(n)[i]) ∼= Hi
mot(X,n).

MÉMOIRES DE LA SMF 157



CHAPTER 8

BASE CHANGE

The main result of this section is Theorem 8.22 which states that the pullback of our
motivic Eilenberg-MacLane spectrum over a Dedekind domain of mixed characteristic
to the spectrum of a residue field of positive characteristic is canonically isomorphic to
Voevodsky’s motivic Eilenberg-MacLane spectrum. Proposition 8.7 handles the case
where the characteristic p of the residue field is invertible in the coefficients, whereas
Theorem 8.18 treats the main part for the case of Z/p-coefficients.

For the next result note that for a base scheme S, commutative ring R and topology
t ∈ {Zar,Nis, ét} there is for any X ∈ SmS a restriction functor D(Sh(SmS,t, R)) →
D(Sh(Xt, R)), F 7→ F |X , to the small site. Also for a map f : V → U between base
schemes there are (derived) pullback functors

f∗ : D(Sh(SmU,t, R))→ D(Sh(SmV,t, R))

and

f∗ : D(Sh(Ut, R))→ D(Sh(Vt, R)).

We will need the following proposition to carry over base change results for the small
sites to the big sites.

Proposition 8.1. – Let f : T → S be a morphism of base schemes, R a commutative
ring and t ∈ {Zar,Nis, ét}. Let F ∈ D(Sh(SmS,t, R)). For each X ∈ SmS let fX be
the map XT := T ×S X → X. Suppose that for each X ∈ SmS the object f∗X(F |Xt) ∈
D(Sh(XT,t, R)) is zero. Then f∗F ∈ D(Sh(SmT,t, R)) is zero.

Proof. – We use the language of ∞-categories. For any base scheme U let θ(U) be
the functor on Smop

U which associates to any X ∈ SmU the ∞-category associated to
the model category Cpx(Sh(Xt, R)) (see Appendix A for the model structure). This
functor is associated to the left Quillen presheaf

θ̃(U) : Smop
U → ModCat

X 7→ Cpx(Sh(Xt, R)).
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We denote by Sect(θ̃(U)) the ∞-category which is associated to the model category
of sections of θ̃(U). The objects of the category of sections of θ̃(U) are collections of
objects GX ∈ θ̃(U)(X) for any X ∈ SmU together with transition maps g∗GX → GY
for any map g : Y → X in SmU which have to satisfy a cocycle condition. We note
that colimits and limits are computed sectionwise in Sect(θ̃(U)).

We let Sect(θ̃(U))ét-cart be the full subcategory of Sect(θ̃(U)) which consists of
objects which are cartesian for étale morphisms in SmU . Then Sect(θ̃(U))ét-cart is
canonically equivalent to the ∞-category associated to Cpx(Sh(SmU,t, R)). Note that
the inclusion

Sect(θ̃(U))ét-cart ↪→ Sect(θ̃(U))

preserves colimits (since pullback functors are left adjoints) and also limits (since
pullbacks with respect to étale maps are also right adjoints), so it has both a left and
a right adjoint.

Let g : V → U be a morphism of base schemes. Then there is an induced left adjoint
g∗ : Sect(θ̃(U))→ Sect(θ̃(V )) which can be described as follows:

We denote by θ̃(V/U) the left Quillen presheaf on Smop
U which assigns to X ∈ SmU

the model category Cpx(Sh(XV,t, R)) and by θ(V/U) the associated functor with
values in ∞-categories. Pulling back along the maps XV → X for X ∈ SmU defines
a natural transformation of functors

θ̃(U)→ θ̃(V/U)

which induces an adjunction

Sect(θ̃(U)) � Sect(θ̃(V/U))

which is given objectwise by the adjunctions

θ(U)(X) � θ(V/U)(X),

X ∈ SmU .
Moreover θ̃(V/U) is given as the composition θ̃(V ) ◦ (f−1)op, where f−1 : SmU →

SmV is the pullback functor. Thus we get an induced adjunction

Sect(θ̃(V/U)) � Sect(θ̃(V ))

whose right adjoint is given by pulling back a section in Sect(θ̃(V )) along f−1 to a
section in Sect(θ̃(V/U)).

The functor g∗ is then given as the composition of left adjoints

Sect(θ̃(U))→ Sect(θ̃(V/U))→ Sect(θ̃(V )).

The base change Lg∗ : Cpx(Sh(SmU,t, R))→ Cpx(Sh(SmV,t, R)) is modeled by the
composition g̃

Sect(θ̃(U))ét-cart ↪→ Sect(θ̃(U))
g∗−→ Sect(θ̃(V ))→ Sect(θ̃(V ))ét-cart,

where the last morphism is the left adjoint to the inclusion, since the right adjoint ψ
of g̃ is canonically equivalent to the right adjoint of Lg∗: Note that the right adjoint
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Sect(θ̃(V ))→ Sect(θ̃(U)) preserves the étale-cartesian objects, since for an étale map
e : Y → X in SmU and G ∈ θ(V )(XV ) the canonical map

e∗(gX)∗G→ (gY )∗(eV )∗G

associated to the diagram

YV
eV //

gY

��

XV

gX

��
Y

e // X

is an equivalence in θ(U)(Y ). Thus for G ∈ Sect(θ̃(V ))ét-cart we have

(ψ(G)(X))(X) = (G(XV ))(XV )

for any X ∈ SmU , showing that ψ is equivalent to the right adjoint of Lg∗.
The assumption on F implies that the composition ψ′

Sect(θ̃(S))ét-cart ↪→ Sect(θ̃(S))→ Sect(θ̃(T/S))

applied to F already gives zero, since for X ∈ SmS we have

ψ′(F )(X) ' (Lf∗X)(F |Xt) ' 0.

Since by the above considerations Lf∗ is equivalent to the composition of ψ′ and
the functor

Sect(θ̃(T/S))→ Sect(θ̃(T ))→ Sect(θ̃(T ))ét-cart

the claim follows.

Remark 8.2. – As explained by one of the referees one can model the ∞-categories
Sect(θ̃(U)) by sheaves on an enlarged site SMU,t. The objects in SMU are factor-
izations Y → X → U , where the first morphism is étale and the second morphism
smooth. Morphisms are commutative diagrams

Y ′ //

��
Y

��
X ′ //

&&

X

��
U

and covers are sets of morphisms of the form

Yi //

��

Y

��
X

&&

X

��
U

such that {Yi → Y } is a cover in the topology t. Then the inclusion

Sect(θ̃(U))ét-cart ↪→ Sect(θ̃(U))
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is induced by the map of sites
SMU,t → SmU,t

which sends Y → X → U to Y → U .

Proposition 8.3. – Let R be a commutative ring, X a connected base scheme, x
a geometric point of X, G := πét

1 (X,x) the étale fundamental group of X at x
and p : X̃ → X the universal cover of X determined by x. Then for any F ∈
D(Sh(Xét, R)) the object RΓ(X̃, p∗F ) is naturally an object of DG(R), the derived
category of R-modules equipped with a continuous G-action, and there is a natural
isomorphism RΓ(X,F ) ∼= RΓ(X̃, p∗F )hG in D(R).

Proof. – The left adjoint to the global sections functor Γ: Cpx(Sh(Xét, R))→ Cpx(R)

can be factored as

Cpx(R)→ Cpx(R)[G]cts → Cpx(Sh(Xét, R)),

where Cpx(R)[G]cts is the category of complexes of R-modules equipped with a contin-
uous G-action. The second functor of this composition is fully faithful with essential
image the complexes of those sheaves which become constant after pullback to X̃.
When we equip the three categories appearing in this composition with the injective
model structures the two functors in the composition become left Quillen functors.
Moreover the right adjoint of the second functor is given by RΓ(X̃, p∗(−)) (the latter
objects carry natural continuous G-actions). Applying the derived right adjoints to
both functors yields the result.

Lemma 8.4. – Let R be a commutative ring, X a base scheme, K a field,
x : Spec(K) → X a point inducing an isomorphism on the residue fields and
ε : Xét → XNis the map of sites. Then for any F ∈ D(Sh(Xét, R)) the canonical map

(x∗Rε∗F )(Spec(K))→ RΓ(Spec(K), x∗F )

in D(R) is an isomorphism.

Proof. – Let Y := Spec( O
h
X,x) (the spectrum of the henselization of the local ring

of X at x). Let y be the geometric point of Y corresponding to an algebraic closure
of K and Ỹ the universal cover of Y with respect to y (Ỹ is then the spectrum of
the strict henselization of OX,x). Let FY ∈ D(Sh(Yét, R)) be the pullback of F to Y ,
similarly for FỸ . Then the left hand side of the map in question is naturally isomorphic
to RΓ(Y, FY ). By Proposition 8.3 the latter object can be naturally identified with
RΓ(Ỹ , FỸ )hG, where G is the absolute Galois group of K (with respect to the chosen
algebraic closure). But RΓ(Ỹ , FỸ ) is canonically isomorphic to y∗FY (since Ỹ is the
spectrum of a strictly henselian local ring) equipped with the natural G-action. The
canonical isomorphism (y∗FY )hG ∼= RΓ(Spec(K), x∗F ) yields the result.
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Proposition 8.5. – Let f : Y → X be a morphism of base schemes which induces
isomorphisms on residue fields and R a commutative ring. Let ε denote the maps of
sites Xét → XNis and Yét → YNis. Let F ∈ D(Sh(Xét, R)). Then the canonical map
f∗Rε∗F → Rε∗f∗F is an isomorphism in D(Sh(YNis, R)).

Proof. – Let K be a field and x : Spec(K) → Y a map inducing an isomorphism on
residue fields. Applying Lemma 8.4 twice we get

(x∗(Rε∗(f∗F )))(Spec(K)) ∼= RΓ(Spec(K), x∗f∗F ) ∼= (x∗f∗Rε∗F )(Spec(K)).

This shows the claim.

Proposition 8.6. – Let i : Z ↪→ X be a closed immersion between base schemes
and R a commutative ring. Let F ∈ D(Sh(SmX,Nis, R)), G ∈ D(Sh(SmZ,Nis, R)) and
ϕ : Li∗F → G be a map. Suppose that for any Y ∈ SmX the map i∗Y (F |YNis

) →
G|YZ,Nis

(iY the induced closed immersion ZY → Y ) induced by ϕ is an isomorphism

in D(Sh(YZ,Nis, R)). Then ϕ is an A1-weak equivalence.

Proof. – By the morphism induced by ϕ we mean the composition

i∗Y (F |YNis
)→ i∗Y ((Ri∗G)|YNis

) ∼= i∗Y (RiY,∗(G|YZ,Nis
)) ∼= G|YZ,Nis

,

where the first morphism comes from the adjoint F → Ri∗G of ϕ.
The cofiber of the adjoint F → Ri∗G of ϕ satisfies the assumption of Proposi-

tion 8.1, thus the map Li∗F → Li∗Ri∗G is an isomorphism. But the map i∗Ri∗G→ G

is an A1-weak equivalence, because Ri∗ preserves A1-weak equivalences (since i is fi-
nite) and the composition

DA1

(Sh(SmZ,Nis, R))→ DA1

(Sh(SmX,Nis, R))→ DA1

(Sh(SmZ,Nis, R))

is naturally equivalent to the identity. Therefore ϕ is the composition of an isomor-
phism and an A1-weak equivalence.

We will now prove base change for finite coefficients which are invertible on the base.
Let U be the spectrum of a Dedekind domain of mixed characteristic and p a prime
which is invertible on U . Let x ∈ U be a closed point of positive residue characteristic
and κ := κ(x). We denote by i the closed inclusion {x} ↪→ U . We let LU,n(r) = µ⊗rpn

viewed as object of D(Sh(SmU,ét,Z/pn)), similarly Lκ,n(r) = µ⊗rpn viewed as object
of D(Sh(Smκ,ét,Z/pn)). We have a natural map ϕ : LU,n(r) → Ri∗Lκ,n(r). Let ε
denote the maps of sites SmU,ét → SmU,Nis and Smκ,ét → Smκ,Nis. The adjoint of ϕ
induces the second map in the composition

Li∗Rε∗LU,n(r)→ Rε∗Li∗LU,n(r)→ Rε∗Lκ,n(r).

Applying τ≤r to this composition yields the second map in the composition

gn,r : Li∗τ≤rRε∗LU,n(r)→ τ≤rLi∗Rε∗LU,n(r)→ τ≤rRε∗Lκ,n(r),
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whereas the first map canonically exists since Li∗ preserves (−r−1)-connected objects
(being generated by homotopy colimits and extensions by suitable shifts of free sheaves
of Z/pn-modules on representables).

The sequence ((τ≤rRε∗LU,n(r))[r])r∈N assembles into a naive Z/pn[Gm,U , {1}]Nis-spec-
trum Fn in D(Sh(SmU,Nis,Z/pn)), and the sequence ((τ≤rRε∗Lκ,n(r))[r])r∈N into a
naive Z/pn[Gm,κ, {1}]Nis-spectrum Gn in D(Sh(Smκ,Nis,Z/pn)), and the gn,r give a
map of naive prespectra

gn : Li∗Fn → Gn.

Proposition 8.7. – The maps gn are levelwise A1-weak equivalences.

Proof. – Let X ∈ SmU , Xκ the inverse image of x and iX : Xκ ↪→ X the closed
inclusion. Proposition 8.5 implies that the canonical map

i∗XRε∗µ⊗rpn → Rε∗µ⊗rpn

is an isomorphism in D(Sh(Xκ,Nis,Z/pn)) (here the first µ⊗rpn denotes an object
in D(Sh(Xét,Z/pn)), whereas the second an object in D(Sh(Xκ,ét,Z/pn))). By the
exactness of i∗X the canonical map

i∗Xτ≤rRε∗µ⊗rpn → τ≤rRε∗µ⊗rpn

is thus also an isomorphism (in the same category). Thus the claim follows from
Proposition 8.6.

This establishes our first goal (base change for coefficients which are invertible on
the base).

Note that mapZ/pn(Gn,r, Gn,r) ∼= Z/pn (compare to Lemma 7.16) (here Gn,r de-
notes the r-th level of the naive spectrum Gn), thus the Gn lift to spectra Gn which
are unique up to canonical isomorphism (compare to Corollary 7.17) (these spectra
are A1-local, so can be considered as spectra in the A1-local categories).

Using the techniques of Section 5 one constructs as in Section 7.5 a map of naive
spectra M κ → Gn (M κ as in Section 6) which is induced by étale cycle class
maps. The induced map M κ/p

n → Gn is an isomorphism by Theorem 3.9. The
object D(p) := holimnGn is canonically defined and the canonically induced map
M κ → D(p) is the p-completion map.

Let p := char(κ). For each n ∈ N define a naive Z/pn[Gm,κ, {1}]Nis-spectrum En
by En,r := νrn ∈ D(Sh(Smκ,Nis,Z/pn)). The bonding maps are the compositions

En,r ⊗L Z/pn[Gm,κ, {1}]Nis → En,r ⊗L O
∗
/κ → En,r ⊗L ν1

n → νr+1
n
∼= En,r+1.

There is a map of naive spectra M κ → En such that the induced map
M κ/p

n → En is an isomorphism.
Note that mapZ/pn(En,r, En,r) is (homotopy) discrete, so that En has a canonical

model as spectrum which we also denote by En (which is again A1-local). Moreover
E := holimnEn is well-defined up to canonical isomorphism, and the canonical map
M κ → E is the p-completion map.
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We denote by HB,κ the Beilinson spectrum over κ. There is a canonical map

HB,κ → (E ×
∏

p 6=char(κ)

D(p))Q,

and the canonical diagram

(24) M κ
//

��

E ×
∏
p 6=char(κ)D(p)

��
HB,κ // (E ×

∏
p 6=char(κ)D(p))Q

is homotopy cartesian.
Suppose now that the U from above is the spectrum of a complete discrete valuation

ring Λ and x is the closed point of U . We have p = char(κ). Above we have for any
prime l 6= p constructed maps of naive spectra

Li∗MZU/ln ∼= Li∗Fn → Gn

(here the dependence of Gn and Fn on l is suppressed) which are isomorphisms by
Proposition 8.7 (here we view the naive spectra taking values in the A1-local cate-
gories). Thus these maps lift uniquely to isomorphisms between the corresponding
spectra. We get canonical maps Li∗MZU → Dl for all primes l 6= p.

Let η be the complement of {x} in U and j : η ↪→ U the open inclusion. We
again have the objects Lη,n(r) := µ⊗rpn ∈ D(Sh(Smη,ét,Z/pn)) and the map of sites
ε : Smη,ét → Smη,Nis. By the proof of Lemma 4.5 we get the first isomorphism in the
chain of isomorphisms

(25) Rj∗τ≤rRε∗Lη,n(r) ∼= τ≤rRj∗Rε∗Lη,n(r) ∼= τ≤rRε∗Rj∗Lη,n(r)

in D(Sh(SmU,Nis,Z/pn)) (the second isomorphism follows from functoriality of sites).
Mapping to H

r we get a map

Rj∗τ≤rRε∗Lη,n(r)→ H
r(Rε∗Rj∗Lη,n(r))[−r]

→ ε∗ε
∗H

r(Rε∗Rj∗Lη,n(r))[−r] ∼= ε∗Rrj∗Lη,n(r)[−r].

For any X ∈ SmU we have a map

(iX)∗RrjX,∗(Lη,n(r)|Xη,ét
)→ νrn ⊕ νr−1

n

in Sh(Xκ,ét,Z/pn) constructed in [4, §(6.6)]. The second projection of this map
was already described in Section 4.1.1, the first projection is similar: it sends
a symbol {f1, . . . , fr}, f1, . . . , fr ∈ (iX)∗ O

∗
X , to dlogf1 . . . dlogfr and a symbol

{f1, . . . , fr−1, π}, π a fixed uniformizer of Λ, to 0.
As in Section 4.1.1 these maps glue to give a map

Rrj∗Lη,n(r)
ϕ⊕ψ−→ i∗ν

r
n ⊕ i∗νr−1

n .

As in Section 7.5 we denote by Fn,r the homotopy fiber of the composition

Rj∗τ≤rRε∗Lη,n(r)[r]→ ε∗Rrj∗Lη,n(r)→ i∗ν
r
n ⊕ i∗νr−1

n → i∗ν
r−1
n ,
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and the sequence (Fn,r)r∈N assembles into a naive spectrum Fn (we do not need the
objects denoted by the same symbol from above any longer).

Note that the maps ϕ give rise to maps Fn,r → i∗ν
r
n, thus to maps

αn,r : Li∗Fn,r → νrn = En,r.

Lemma 8.8. – The maps αn,r assemble to a map αn : Li∗Fn → En of naive prespec-
tra.

Proof. – We leave the verification to the reader.

Our next goal is to show that the αn,r are A1-weak equivalences (this is achieved
with Theorem 8.18). The main tools are a filtration of Bloch and Kato on p-adic
étale cohomology, a descent construction for this filtration, a gluing procedure for the
graded pieces of this filtration from small to big sites and vanishing statements for
higher push forwards from the étale to the Nisnevich topology of certain sheaves.

Proposition 8.9. – Let X be a base scheme of characteristic p and F ∈ Sh(Xét,Z)

a p-torsion sheaf. Then Riε∗F ∈ Sh(XNis,Z) is zero for i > 1.

Proof. – Let K be a field and x : Spec(K) → X a map inducing an isomorphism on
residue fields. Then

Γ(Spec(K), x∗Rε∗F ) ∼= RΓ(Spec(K), x∗F )

in D(Ab) (Lemma 8.4). The latter complex (which is Galois cohomology) vanishes in
cohomological degrees > 1 by [46, II, Prop. 3].

Proposition 8.10. – Let X be a base scheme and F a quasi coherent sheaf on Xét.
Then Riε∗F ∈ Sh(XNis,Z) is zero for i > 0.

Proof. – Let K be a field and x : Spec(K) → X a map inducing an isomorphism on
residue fields. Then

Γ(Spec(K), x∗Rε∗F ) ∼= RΓ(Spec(K), x∗F )

in D(Ab) (Lemma 8.4). But for a finite Galois extension L/K the object (x∗F )(Spec(L))

is an induced Gal(L/K)-module, thus its cohomology vanishes in degrees > 0.

For X ∈ Smκ let Ω1
X be the sheaf on Xét (and thus also on XNis and XZar)

of absolute Kähler differentials on X. It is quasi coherent. Let Ω•X be the exterior
algebra over OX of Ω1

X . Define subsheaves

BiX := im(d : Ωi−1
X → ΩiX)

and ZiX := ker(d : ΩiX → Ωi+1
X )

of ΩiX on Xét.

Lemma 8.11. – For X ∈ Smκ we have Riε∗ΩjX = Riε∗BjX = Riε∗ZjX = 0

in Sh(XNis,Fp) for j ≥ 0 and i > 0.

MÉMOIRES DE LA SMF 157



CHAPTER 8. BASE CHANGE 81

Proof. – We have Riε∗ΩjX = 0 for j ≥ 0 and i > 0 by Proposition 8.10. We have
isomorphisms

ΩjX
∼= ZjX/B

j
X

given by the inverse Cartier operator, see [4, top of p. 112], thus the claim follows
for j = 0. Suppose by induction the claim for j. The exact sequence

0→ ZjX → ΩjX → Bj+1
X → 0

shows the claim for Bj+1
X , the above isomorphism for j + 1 shows the claim for Zj+1

X .
This finishes the proof.

Let Lη(r) := Lη,1(r). For any X ∈ SmU we have the following isomorphisms

i∗X(Rj∗τ≤rRε∗Lη(r))|XNis

∼= i∗X(τ≤rRε∗Rj∗Lη(r)|XNis
)

∼= τ≤ri
∗
X(Rε∗Rj∗Lη(r)|XNis

)

∼= τ≤rRε∗i∗Xτ≤r(Rj∗Lη(r)|Xét
)

in D(Sh(Xκ,Nis,Fp)).
The first isomorphism uses (25), the second the exactness of i∗X and the third also

Proposition 8.5 (strictly speaking we do not need the third isomorphism, but we give
it for motivation).

Set

(26) KX,0 := i∗Xτ≤r(Rj∗Lη(r)|Xét
) ∈ D(Sh(Xκ,ét,Fp)).

We will define descending filtrations on the sheaves H
k(KX,0) ∈ Sh(Xκ,ét,Fp),

0 ≤ k ≤ r (compare with [4]). We start with k = r.
For m ≥ 1 let Um H

r(KX,0) be the subsheaf of H
r(KX,0) generated étale locally

by sections of the form {x1, . . . , xr}, xi ∈ i∗XjX,∗ O
∗
Xη , such that x1 − 1 ∈ πmi∗X OX ,

see [4, p. 111]. We define U0 H
r(KX,0) := H

r(KX,0).
Let e be the absolute ramification index of Λ and e′ := ep

p−1 .
We denote by grmU•H

r(KX,0) them-th graded piece of the filtration U•H
r(KX,0).

Then we have

grmU•H
r(KX,0) ∼=


νr1 ⊕ ν

r−1,
1 0 = m,

Ωr−1
Xκ

, 1 ≤ m < e′, p - m,
BrXκ ⊕B

r−1
Xκ

, 1 ≤ m < e′, p | m,
0, e′ ≤ m,

see [4, Cor. (1.4.1)]. We denote these graded pieces by QmX . These sheaves QmX glue to
sheaves Qm on Smκ,ét.

To define the filtrations for k < r we have to adjoin a p-th root of unity and descend
a filtration upstairs.

Let Λ̃ be the integral closure of Λ in K̃ := K(ζp), where K is the quotient field
of Λ and ζp is a primitive p-th root of unity. Let d be the degree of K̃ over K and
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G := Gal(K̃/K). We have d | p − 1. There is a canonical injective group homomor-
phism ψ1 : G ↪→ F∗p characterized by g(ζp) = ζ

ψ1(g)
p for g ∈ G.

Lemma 8.12. – There exists a uniformizer π̃ of Λ̃ such that π̃d ∈ Λ.

Proof. – Since Λ is complete K contains all (p− 1)-st roots of unity, in particular all
d’th roots of unity. Thus by Kummer theory there is an a ∈ K such that K̃ = K( d

√
a).

Let a = sπk for a unit s ∈ Λ and k ∈ Z (π the uniformizer of Λ). Let M be
the subgroup of Q generated by 1 and k

d and let e = |M/Z|, so M = 1
eZ. Since

K( d
√
ae) = K( d

√
se) (note d | (ek)) is unramified over K the ramification index of L

over K is e. Let α, β ∈ Z with 1
e = α+ β kd , then π̃ := πα · ( d

√
a)β is as desired.

From now on π̃ denotes a uniformizer of Λ̃ as in Lemma 8.12. We have a natural
map ψ : G→ µp−1 ⊂ K∗ characterized by g(π̃) = ψ(g) · π̃ for g ∈ G. We let ψ2 be the

composition G ψ→ µp−1

∼=→ F∗p.

Example 8.13. – In the case Λ = Zp we can choose π̃ = p−1
√
−p (see [8, Theo-

rem 4.3.18]). In this case we have ψ1 = ψ2.

Let Ũ := SpecΛ̃, η̃ the generic point of Ũ , κ̃ the residue field of Λ̃.
For X ∈ SmU denote by X̃ the base change to Ũ .
The notations X̃η̃, X̃κ̃, jX̃ and iX̃ explain themselves.
We fix now X ∈ SmU .
We have the commutative diagram

X̃κ̃
� � iX̃ //

fκ

��

X̃

f

��

X̃η̃
? _

j
X̃oo

fη

��
Xκ
� � iX // X Xη.? _

jXoo

This is naturally a diagram of schemes equipped with G-actions. We will need to
consider G-equivariant étale sheaves on these schemes. To fix terminology let Y be
a base scheme equipped with an action of a finite group H and R a commutative
ring. We denote by ShH(Yét, R) the abelian category of H-equivariant étale sheaves
on Y . An object F ∈ ShH(Yét, R) in particular gives rise to natural isomorphisms
F (U) → F (Y ×h,Y U) for any U ∈ Yét and h ∈ H which have to satisfy various
compatibilities. Equivalently F can be viewed as an étale sheaf on the stack [Y/H].
We let D(ShH(Yét, R)) be the derived category of ShH(Yét, R).

This triangulated category can equivalently be defined as (homotopy) cartesian ob-
jects in the derived category of étale sheaves of R-modules on the standard simplicial
scheme the H-action on Y gives rise to.

For H-equivariant maps between H-base schemes there are the usual adjunctions
between these categories. Moreover there are various change of groups functors, of
which we only will need the functor D(Sh(Yét, R))→ D(ShH(Yét, R)) which equips an
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object with the trivial H-action in case H acts trivially on Y and its right adjoint,
taking H-homotopy fixed points, denoted (_)hH .

Lemma 8.14. – Let W → Y be an H-Galois cover of base schemes. Then

D(ShH(Wét, R)) ' D(Sh(Yét, R)).

This equivalence can be obtained as the composition

D(ShH(Wét, R))→ D(ShH(Yét, R))
(_)hH

−→ D(Sh(Yét, R)).

Proof. – The first statement follows from the fact that [W/H] ' Y , the second state-
ment from considering the corresponding left adjoints.

Now suppose we are given a map of groups ψ : H → R∗ and n ∈ Z. Then we
can twist on object F ∈ ShH(Yét, R) by multiplying for any U ∈ Yét and h ∈ H the
structure map F (U)→ F (Y ×h,Y U) with ψ(h)n. We denote the resulting equivariant
sheaf by F{n}ψ. We use the same notation for the induced functor on the derived cat-
egories. We note that the operation (_){n}ψ commutes with (derived) pull backs and
push forwards and with taking cohomology sheaves. Also for F,G ∈ D(ShH(Yét, R))

we have
F{n}ψ ⊗R G{m}ψ ∼= (F ⊗R G){n+m}ψ.

For any n ∈ Z we denote by L̃(n) the sheaf µ⊗np which we view as an object
of DG(Sh(X̃η̃,ét,Fp)) (since it pulls back from Xη it is equipped with a natural G-ac-
tion). We also let L(n) be the sheaf µ⊗np viewed as object of D(Sh(Xη,ét,Fp)). By
Lemma 8.14 we have a canonical isomorphism L(r) ∼= (Rfη∗ L̃(r))hG. Since the order
of G is prime to p the cohomology sheaves of the homotopy fixed points are the fixed
points of the cohomology sheaves (in fact these fixed points split off as direct sum-
mands defined by canonical projectors). Therefore we will write from now on (_)G

instead of (_)hG. Taking homotopy fixed points commutes with RjX,∗ and by the
above also with i∗X , thus we have

i∗XRjX,∗L(r) ∼= (i∗XRjX,∗Rfη∗ L̃(r))G ∼= (i∗XRf∗RjX̃,∗L̃(r))G ∼= (Rfκ∗ i∗X̃RjX̃,∗L̃(r))G.

For the last isomorphism we have used the proper base change formula (note the
left hand square in the above diagram is not necessarily cartesian, but the map from
the left upper corner to the pullback is the closed inclusion of the pullback equipped
with its reduced structure, so induces equivalences of étale sheaf categories).

So we have
H
k(i∗XRjX,∗L(r)) ∼= (fκ∗ H

k(i∗
X̃
RjX̃,∗L̃(r)))G

(we use that fκ∗ commutes with taking cohomology sheaves since fκ is finite).
We have an isomorphism L̃(0){1}ψ1 ∼= L̃(1) in DG(Sh(X̃η̃,ét,Fp)) sending 1 to ζp.

This gives us an isomorphism L̃(0){n}ψ1 ∼= L̃(n) for any n ∈ Z. We get the isomor-
phism

L̃(r) ∼= L̃(k)⊗ L̃(r − k) ∼= L̃(k)⊗ L̃(0){r − k}ψ1 ∼= L̃(k){r − k}ψ1 .
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We thus have

fκ∗ H
k(i∗

X̃
RjX̃,∗L̃(r)) ∼= (fκ∗ H

k(i∗
X̃
RjX̃,∗L̃(k))){r − k}ψ1

in ShG(Xκ,ét,Fp).
We have a filtration on H

k(i∗
X̃
RjX̃,∗L̃(k)) by the Um H

k(i∗
X̃
RjX̃,∗L̃(k)), where

the latter subsheaf is generated as above by sections of the form {x1, . . . , xr} such
that x1 − 1 ∈ π̃mi∗

X̃
OX̃ (m ≥ 1, for m = 0 we again take the whole sheaf). The

Um H
k(i∗

X̃
RjX̃,∗L̃(k)) are invariant under the G-action, thus the

Uk,mX := ((fκ∗ U
m H

k(i∗
X̃
RjX̃,∗L̃(k))){r − k}ψ1)G

filter H
k(i∗XRjX,∗L(r)) ∼= H

k(KX,0).

Let ẽ be the absolute ramification index of Λ̃ and ẽ′ := ẽp
p−1 .

We denote by

Q̃k,mX := grmU•H
k(i∗

X̃
RjX̃,∗L̃(k)) ∈ ShG(X̃κ̃,ét,Fp)

the m-th graded piece of the descending filtration U•H
k(i∗

X̃
RjX̃,∗L̃(k)).

Then we have

forg(Q̃k,mX ) ∼=


νk1 ⊕ ν

k−1,
1 0 = m,

Ωk−1

X̃κ̃
, 1 ≤ m < ẽ′, p - m,

Bk
X̃κ̃
⊕Bk−1

X̃κ̃
, 1 ≤ m < ẽ′, p | m,

0, ẽ′ ≤ m,

where forg(−) denotes forgetting the G-action, see [4, Cor. (1.4.1)].

Let P k,mX := fκ∗ Q̃
k,m
X ∈ ShG(Xκ,ét,Fp).

The sheaves νk1 ⊕ νk−1
1 , Ωk−1

X̃κ̃
and Bk

X̃κ̃
⊕Bk−1

X̃κ̃
are equivariant with respect to the

Gal(κ̃/κ)-action on X̃κ̃, thus they are also equivariant with respect to the G-action.
This defines a G-action on forg(P k,mX ), denoted Rk,mX ∈ ShG(Xκ,ét,Fp), which possibly
differs from P k,mX .

The formulas in [4, (4.3)] (the maps ρm defined there are used in Paragraphs 5 and
6 in loc. cit. to define the isomorphisms above) and the definition of the map to the
0-graded part show that there are isomorphisms

P k,mX
∼= Rk,mX {m}ψ2 .

We let Qk,mX := grm(Uk,•X ) ∼= (P k,mX {r − k}ψ1)G.
The considerations made show the following

Proposition 8.15. – The sheaves Qk,mX on Xκ,ét only depend on Xκ and glue to a
sheaf Qk,m on Smκ,ét.
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Define inductively objectsKX,m ∈ D(Sh(Xκ,ét,Fp)) in the following way. Form = 0

we have already defined the object (see (26)). We define KX,1 to be the homotopy
fiber of the composition

KX,0 → H
r(KX,0)[−r]→ Q0

X [−r].

There is a canoncial map KX,1 → Q1
X [−r]. Suppose KX,m together with a map

KX,m → QmX [−r]

is already defined for m < e′. Define then KX,m+1 to be the homotopy fiber of this
last map. If m + 1 < e′ there is a map KX,m+1 → Qm+1

X [−r]. If m + 1 ≥ e′ we have
KX,m+1

∼= τ≤(r−1)KX,0 and there is a map

KX,m+1 → Qr−1,0
X [−r + 1].

Keep going this way splitting off successively the

Qr−1,0
X [−r + 1], Qr−1,1

X [−r + 1], . . . , Qr−k,mX [−k], . . . , Q0,0
X

(where for this m we require 0 ≤ m < ẽ′) obtaining the KX,m+2, . . . ,KX,N = 0.
By construction we have triangles

KX,m+1 → KX,m → Q
k(m),m′(m)
X [−k(m)]→ KX,m+1[1],

where k(m) and m′(m) depend in a way on m which we do not make explicit.
Set H0 := τ≤rRj∗Lη(r). The maps H0|Xét

→ iX,∗Q
0
X [−r] glue to a map of

sheaves H0 → i∗Q
0[−r]. We let H1 be the homotopy fiber of this last map. We

have a map i∗XH1|Xét
→ KX,0 which factors uniquely through KX,1, thus we get a

map i∗XH1|Xét
→ Q1

X with adjoint H1|Xét
→ iX,∗Q

1
X . These maps glue to a map

H1 → i∗Q
1 whose homotopy fiber we denote by H2. Inductively one constructs

objects Hm ∈ D(Sh(SmU,ét,Fp)), 0 ≤ m ≤ N , with maps

i∗XHm|Xét
→ KX,m → Q

k(m),m′(m)
X [−k(m)]

(here we suppose m > e′, the other case is similar) whose adjoints glue to a map

Hm → H
k(m)(Hm)[−k(m)]→ i∗Q

k(m),m′(m)[−k(m)].

Hm+1 is then defined to be the homotopy fiber of this map. By construction we
have triangles

Hm+1 → Hm → i∗Q
k(m),m′(m)[−k(m)]→ Hm+1[1].

Moreover for X ∈ SmU we have

i∗X(Hm|Xét
) ∼= KX,m.

Note that we have Rjε∗i∗Qm ∼= i∗Rjε∗Qm = 0 for j > 0 andm ≥ 1 by Lemma 8.11,
similarly we have Rjε∗i∗Qk,m = 0 for j > 1 by Proposition 8.9. Thus the canonical
maps

τ≤rRε∗Hm → Rε∗Hm
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are isomorphisms for m ≥ 1. Since H
r+1(Rε∗H1) = 0 it also follows that the map

H
r(Rε∗H0)→ ε∗i∗Q

0 ∼= i∗ν
r
1 ⊕ i∗νr−1

1

is an epimorphism. It follows that we have an exact triangle

(27) Rε∗H1 → τ≤rRε∗H0 → ε∗i∗Q
0 → Rε∗H1[1].

Lemma 8.16. – For any F ∈ D(Sh(Smκ,ét,Fp)) we have Rε∗F ∈ D(Sh(Smκ,Nis,Fp))
is A1-weakly contractible (i.e., becomes 0 in the A1-localization DA1

(Sh(Smκ,Nis,Fp))).

Proof. – Tensoring F with the Artin-Schreier exact triangle

Fp → Ga → Ga → Fp[1]

shows that it is sufficient to show that Rε∗(F ⊗Ga) is A1-contractible. The standard
A1-contraction of Ga does the job.

Proposition 8.17. – The homotopy cofiber of the map

Rε∗HN → Rε∗H1

is A1-weakly contractible in D(Sh(SmU,Nis,Fp)) (i.e., becomes 0 in the A1-localization
DA1

(Sh(SmU,Nis,Fp))).

Proof. – This homotopy cofiber is filtered with graded pieces the Rε∗i∗Qm ∼=
i∗Rε∗Qm, m ≥ 1, and the Rε∗i∗Qk,m ∼= i∗Rε∗Qk,m, so it is sufficient to show that
these are A1-weakly contractible. But i∗ preserves A1-weak equivalences since it is
finite, so the claim follows from Lemma 8.16.

By Proposition 8.5 for anyX ∈ SmU we have i∗X(Rε∗HN )|XNis

∼= Rε∗i∗X(HN |Xét
) ∼=

Rε∗KX,N
∼= 0, thus due to Proposition 8.1 we get Li∗Rε∗HN

∼= 0. Proposition 8.17
implies that Li∗Rε∗H1 is A1-weakly contractible. By (27) it follows that

Li∗τ≤rRε∗H0 → Li∗ε∗i∗Q0

is an A1-weak equivalence.
Altogether we obtain

Theorem 8.18. – The maps αn,r defined before Lemma 8.8 are A1-weak equivalences.

So we have isomorphisms of naive spectra

Li∗MZU/pn ∼= Li∗Fn ∼= En

in the A1-local categories which lift uniquely to isomorphisms of spectra. The induced
map

Li∗MZ→ E

is the p-completion map.
We get that Li∗MZU sits in the same homotopy cartesian square as M κ (see

diagram (24)), whence (using Theorem 6.7)

Corollary 8.19. – There are canonical isomorphisms Li∗MZU ∼= M κ
∼= MZκ.
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We are next going to construct natural comparison maps for our spectra for mor-
phisms between Dedekind domains of mixed characteristic.

So let D → D̃ be a map of Dedekind domains of mixed characteristic. We use
the notation of Section 4.1.2, without tildas for the situation over S = Spec( D) and
with tildas for the situation over S̃ = Spec( D̃). Note that for the various categories
of complexes of sheaves we have Quillen adjunctions between the categories attached
to S and S̃. We let f denote the various maps from the situation with tildes to the
situation without, e.g., f : S̃ → S or f : Ũ → U .

We have an isomorphism ϕ : f∗L•(1) ∼= L̃•(1). Choose a map ψ : f∗ T → T̃ lifting
the image of ϕ in the homotopy category. Thus we get a map

f∗Sym( T )→ Sym( T̃ )

of commutative monoids in symmetric Z/p•[Gm,Ũ , {1}]ét-spectra. Using lifting argu-
ments one gets a map

f∗RQSym( T )→ RQSym( T̃ ).

One gets induced maps f∗A→ Ã, f∗A′ → Ã′, f∗B → B̃, f∗C → C̃, f∗C ′ → C̃ ′ and
f∗D(p)→ D̃(p).

By the definition of MZS and MZS̃ it is then clear that we get the comparison map

Φf : Lf∗MZS → MZS̃
which is a map of E∞-spectra.

Lemma 8.20. – If D̃ is a filtered colimit of smooth D-algebras then the comparison
map Φf is an isomorphism.

Proof. – Let D̃ = colimα Dα, where each Dα is a smooth D-algebra and set Sα :=

Spec( Dα). Let fα : Sα → S be the canonical maps. We show that for any X ∈ SmS̃

and integers p, q the induced map

(28) HomSH(S̃)(Σ
p,qΣ∞+ X, f

∗MZS)→ HomSH(S̃)(Σ
p,qΣ∞+ X,MZS̃)

is an isomorphism. By the remarks after [27, Definition A.1.] we can write X =

limαXα, where each Xα is a smooth and separated Sα-scheme of finite type. By [27,
Lemma A.7.(1)] the left side of (28) can be written as

colimαHomSH(Sα)(Σ
p,qΣ∞+ Xα, f

∗
αMZS).

A similar formula holds for the right hand side, using the continuity of the construc-
tions used to define MZ (more precisely we use continuity of étale cohomology, of the
logarithmic de Rham-Witt sheaves and of Beilinson motives).

Corollary 8.21. – Suppose D̃ is the completion of a local ring of S at a closed
point of positive residue characteristic. Then Φf is an isomorphism.
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Proof. – In this case D̃ is a filtered colimit of smooth D-algebras: We an apply
Popescu’s theorem ([9, Theorem 1.3]), since the map D→ D̃ is regular (in the sense
of [21, Définition (6.8.1)]), because D is of mixed characteristic. So Lemma 8.20
applies.

Theorem 8.22. – Let S = Spec(D), D a Dedekind domain of mixed characteristic,
x ∈ S a closed point of positive residue characteristic and i : {x} → S the inclu-
sion. Then there is a canonical isomorphism Li∗MZS ∼= MZκ(x) which respects the
E∞-structures.

Proof. – The isomorphism as spectra follows now from Corollary 8.19 and Corol-
lary 8.21. The isomorphism can be made to respect the E∞-structures by the unique-
ness of E∞-structures on MZκ(x), which holds since this spectrum is the zero-slice of
the sphere spectrum (see [35]).

Lemma 8.23. – Let g : k → l be a field extension. Then the natural map g∗MZk →
MZl is an isomorphism.

Proof. – This follows from [27, Theorem 4.18] (taking U to be the spectrum of the
prime field contained in k).

Lemma 8.24. – Let S̃ = Spec( D̃), D̃ a Dedekind domain, and let ϕ : E → F be any
map in SH(S̃). Suppose for any x ∈ S̃ that Li∗xϕ is an isomorphism, where ix denotes
the inclusion {x} ↪→ S̃. Then ϕ is an isomorphism.

Proof. – This follows from [7, Proposition 4.3.9] and localization.

Theorem 8.25. – For any map f between spectra of Dedekind domains of mixed
characteristic the comparison map Φf is an isomorphism.

Proof. – This follows from Theorem 8.22, Lemma 8.23 and Lemma 8.24.

MÉMOIRES DE LA SMF 157



CHAPTER 9

THE MOTIVIC FUNCTOR FORMALISM

For any base scheme X we let MZX := f∗MZSpec(Z), where f : X → Spec(Z) is the
structure morphism. We let MZX −Mod be the model category of highly structured
MZX -module spectra and set DM(X) := Ho(MZX −Mod). This is done e.g., along
the lines of [44]. For any map of base schemes f : X → Y we get an adjunction

f∗ : DM(Y ) � DM(X) : f∗.

The categories DM(X) are closed tensor triangulated and the functors f∗ are sym-
metric monoidal.

If f is smooth the functor f∗ has a left adjoint f].
Note that all these functors commute with the forgetful functors

DM(X)→ SH(X).

For the functors f∗ and f∗ this follows since these functors are the lifts of the respective
functors on the categories SH(−) to the module categories, and for f smooth this
follows for the functors f] since the functor f] : SH(X) → SH(Y ) is a SH(Y )-module
functor (i.e., the projection formula holds).

It follows that the assignment

X 7→ DM(X)

has the structure of a stable homotopy functor in the sense of [1].
Thus the main results of loc. cit. are valid for this assignment, and the extensions

of these results from [7] (e.g., removing the (quasi-)projectivity assumptions) are
available.

In particular for a morphism of finite type f : X → Y we have an adjoint pair

f! : DM(X) � DM(Y ) : f !.

Moreover the proper base change theorem holds.
We also have the
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Theorem 9.1. – Let i : Z ↪→ X be a closed inclusion of base schemes and j : U ↪→ X

the open complement. Then for any F ∈ DM(X) there is an exact triangle

j!j
∗F → F → i∗i

∗F → j!j
∗F [1]

in DM(X).
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FURTHER APPLICATIONS

10.1. The Hopkins-Morel isomorphism

We first equip MZ with an orientation.

Proposition 10.1. – Let X be a smooth scheme over Dedekind domain of mixed
characteristic. Then there is a unique orientation on MZX . The corresponding formal
group law is the additive one.

Proof. – Let S be the spectrum of a Dedekind domain of mixed characteristic. Let P ∈
D(Sh(SmS,Zar,Z)) be the first A1-and Nisnevich-local space of an Ω-P1-spectrum
model of MZS . Then by Theorem 7.10 there is a canonical isomorphism P ∼= O

∗
/S [1].

Moreover by the proof of this theorem the canonical map Z[P1, {∞}]Zar → P in-
duced by the first bonding map is induced by the suspension of the canonical map
Z[Gm,S , {1}]Zar → O

∗
/S , using the canonical isomorphism (P1, {∞}) ∼= Gm,S ∧ S1

in H•(S). Thus our map Z[P1, {∞}]Zar → O
∗
/S [1] classifies the line bundle O(−1). So

the map Σ−2,−1Σ∞+ P∞ → MZS corresponding to the map Z[P∞]Zar → O
∗
/S [1] which

classifies the tautological line bundle is an orientation of MZS . Pulling back to any
smooth scheme X over S gives an orientation of MZX . Since motivic cohomology
of X with negative weight vanishes this orientation is unique and the corresponding
formal group law is the additive one.

By pulling back the unique orientation of MZSpec(Z) to any base scheme X we see
that MZX has a canonical additive orientation.

Remark 10.2. – We note that over smooth schemes X over Dedekind domains of
mixed characteristic or over fields the orientation map MGLX → MZX has a unique
structure of an E∞-map. This E∞-map is achieved as the composition of the E∞-maps

MGLX → s0MGLX ∼= s01→ s0MZX → MZX ,

where the second isomorphism is [48, Corollary 3.3] and where the last map exists
since the map f0MZX → s0MZX is an isomorphism since MZX is 0-truncated.
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Thus for any base scheme X the orientation MGLX → MZX has a canonical
E∞-structure. Since MGLX has a strong periodization this gives an alternative proof
that MZX is strongly periodizable.

We see that we can factor the orientation map MGL → MZSpec(Z) through the
quotient MGL/(x1, x2, . . .)MGL, where the xi are images of generators of MU∗ with
respect to the natural map MU∗ → MGL2∗,∗. Pulling back this factorization to any
base scheme X we get a map ΦX : MGLX/(x1, x2, . . .)MGLX → MZX .

Theorem 10.3. – Let R be a commutative ring and X a base scheme whose positive
residue characteristics are all invertible in R. Then the map ΦX ∧MR, where MR

denotes the Moore spectrum on R, is an isomorphism.

Proof. – We only have to show this statement for X being equal to the spectrum of a
localization of Z. Then it follows by pullback to the points ofX and [27, Theorem 7.12]
using Theorem 8.22 and Lemma 8.24.

Corollary 10.4. – Let R be a commutative ring and X a base scheme whose pos-
itive residue characteristics are all invertible in R. Then MRX (which denotes MZX
with R-coefficients) is (stably) cellular, i.e., is contained in the smallest localizing
triangulated subcategory of SH(X) which contains the spheres S0,q for all q ∈ Z.

10.2. The dual motivic Steenrod algebra

In the whole section we fix a prime l.
For a base scheme S we denote by PicS a strictification of the 2-functor which

assigns to anyX ∈ SmS the Picard groupoid of line bundles onX. We denote by νPicS
the motivic space which assigns to any X ∈ SmS the nerve of PicS(X).

Proposition 10.5. – Let S be a regular base scheme and let f : P∞S → νPicS be a
map classifying a Gm-torsor P on P∞S . Then there is an A1-fiber sequence

P → P∞S → νPicS

of motivic spaces.

Proof. – The sequence is a fiber sequence in simplicial presheaves equipped with a
model structure with objectwise weak equivalences. Thus the claim follows from the
A1-and Nisnevich-locality of νPicS (and e.g., right properness of motivic model struc-
tures).

For a base scheme S we let WS,n,k be the Gm-torsor on PkS corresponding to the
line bundle OPk(−n). We let WS,n := colimkWS,n,k be the corresponding Gm-torsor
on P∞S .

We are going to compute the motivic cohomology of WS,n with Z/m-coefficients
for m|n relative to the motivic cohomology of the base S. We orient ourselves along
the lines of [57, §6].
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We have a cofibration sequence

(29) WS,n,+ → OP∞S (−n)+ → Th( OP∞S (−n)).

For a motivic space X over S let

Hp,q(X) := HomSH(S)(Σ
∞X+,Σ

p,qMZ)

be the motivic cohomology of X. More generally for an abelian group A we set

Hp,q(X, A) := HomSH(S)(Σ
∞X+,Σ

p,qMA).

We denote the respective reduced motivic cohomology groups of pointed motivic
spaces by H̃.

Then (29) gives a long exact sequence

(30) · · · → H∗−2,∗−1(S)σ
nσ−→ H∗,∗(S)σ → H∗,∗(WS,n)→ H∗−1,∗−1(S)σ → · · · .

Here σ is the class of OP∞S (−1) in H2,1(P∞S ).

For any m > 0 let βm : H∗,∗(_,Z/m) → H∗+1,∗(_) be the Bockstein homomor-
phism.

Let vn ∈ H2,1(WS,n) be the pullback of σ under the canonical map WS,n → P∞S .

Lemma 10.6. – For any m > 0 there is a u ∈ H1,1(WS,n,Z/m) such that the re-
striction of u to ∗ is 0 and such that βm(u) = n

gcd(m,n) · vn. If S is smooth over a
Dedekind domain of mixed characteristic or over a field then this u is unique with
these properties.

Proof. – Let ṽ ∈ H2,1(WS,n) be any m-torsion class which restricts to 0 on ∗. Note
that n

gcd(m,n) · vn is such a class. We will prove that then there is a unique ũ ∈
H1,1(WS,n,Z/m) which restricts to 0 on ∗ such that βm(ũ) = ṽ, assuming S is smooth
over a Dedekind domain of mixed characteristic or over a field. The general statement
about existence follows then by base change (e.g., from Spec(Z) to S).

Consider the commutative diagram

H1,1(WS,n) //

��

H1,1(WS,n,Z/m) //

��

H2,1(WS,n)
·m //

��

H2,1(WS,n)

H1,1(S) // H1,1(S,Z/m) // H2,1(S),

with exact rows and where the vertical maps are restriction to ∗ which split the maps
on cohomology induced by the structure map WS,n → S. The exact sequence (30)
around H1,1(WS,n) shows that the first vertical map is an isomorphism. A diagram
chase then shows existence and uniqueness of ũ with the required properties.
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We denote the canonical class in H̃1,1(WS,n,Z/m) obtained this way by un,m (by
demanding that these classes are compatible with base change). We set un := un,n.

We let
K(Z/n(1), 1)S ,K(Z(1), 2)S ∈ H•(S)

be the motivic Eilenberg-MacLane spaces which represent the functors H̃1,1(_,Z/n)

and H̃2,1(_) on H•(S) respectively.

Proposition 10.7. – If S is smooth over a Dedekind domain of mixed characteristic
or over a field then we have K(Z(1), 2)S ∼= νPicS

∼= BGm,S ∼= P∞S in H•(S).

Proof. – This follows from the fact the motivic sheaf of weight 1 is in this case
O
∗
/S [−1].

Proposition 10.8. – If S is smooth over a Dedekind domain of mixed characteristic
or over a field then we have K(Z/n(1), 1)S ∼= WS,n in H•(S). The isomorphism is
given by the class un.

Proof. – Let f : P∞S → νPicS be the map classifying the line bundle OP∞S (−n).WS,n is
the corresponding Gm-torsor over P∞S . Then the diagram

WS,n
// P∞S

f //

��

νPicS

��
K(Z/n(1), 1)S // K(Z(1), 2)S

·n // K(Z(1), 2)S

in H•(S), where the vertical maps are the canonical identifications, commutes. More-
over the rows are fiber sequences: the first one by Proposition 10.5, the second one by
definition. It follows that there is a vertical isomorphism u′ : WS,n → K(Z/n(1), 1)S
in H•(S) making the whole diagram commutative. The uniqueness clause of
Lemma 10.6 shows that u′ = un finishing the proof.

For any X ∈ SmS consider the functor Tn : Pic(X) → Pic(X), L 7→ L
⊗n. Its

homotopy fiber is the Picard groupoid Gn(X) whose objects are pairs ( L , ϕ), where
L is a line bundle on X and ϕ : L

⊗n → OX is an isomorphism, and whose morphisms
are isomorphisms of line bundles compatible with the trivializations. Note that we
have a fiber sequences

νGn(X)→ νPic(X)
νTn−→ νPic(X)

functorial in X and that these fiber sequences also make sense for X ∈ SetSmop
S .

As in the proof of Proposition 10.8 it follows that we have a canonical equivalence
K(Z/n(1), 1)S ∼= νGn in H•(S), provided that S is smooth over a Dedekind ring of
mixed characteristic or over a field.

Since νGn is Nisnevich- and A1-local it follows
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Proposition 10.9. – Suppose S is smooth over a Dedekind ring of mixed charac-
teristic or over a field and let X be in SmS or SetSmop

S . There is a canonical group
isomorphism between H1,1(X,Z/n) and the group of isomorphism classes of Gn(X).
The boundary map H1,1(X,Z/n) → H2,1(X) corresponds to the map on groupoids
which forgets the trivialization. Moreover the map

O(X)∗ ∼= H1,1(X,Z)→ H1,1(X,Z/n) ∼= Gn(X)

sends a unit x to the trivial line bundle with n-th tensor power trivialized by x.

Lemma 10.10. – Suppose S is smooth over a Dedekind ring of mixed characteristic
or over a field. The class un,m corresponds under the isomorphism of Proposition 10.9
to the isomorphism class of the object

(p∗ OP∞S (− n

gcd(m,n)
), (p∗ OP∞S (− n

gcd(m,n)
))⊗m ∼= p∗ OP∞S (−lcm(m,n)) ∼= OWS,n

),

where p is the map WS,n → P∞S and the last isomorphism is the m
gcd(m,n) -th tensor

power of the canonical isomorphism p∗ OP∞S (−n) ∼= OWS,n
.

Proof. – This element clearly satisfies the requirements of Lemma 10.6.

Lemma 10.11. – The image of the constant function on 1 under the isomorphisms

(Z/m)π0(S) ∼= H0,0(S,Z/m) ∼= H̃1,1(Gm,S ,Z/m)

corresponds under the isomorphism of Proposition 10.9 to the object ( OGm,S , ϕ), where
ϕ is given by multiplication with the canonical unit in O(Gm,S).

Proof. – This unit corresponds to 1 under the map

O
∗(Gm,S) ∼= H1,1(Gm,S)→ H̃1,1(Gm,S) ∼= H0,0(S) ∼= Zπ0(S).

Corollary 10.12. – Suppose S is smooth over a Dedekind ring of mixed character-
istic or over a field. Then the image of un,m|WS,n,0

under the isomorphisms

H̃1,1(WS,n,0,Z/m) ∼= H̃1,1(Gm,S ,Z/m) ∼= H0,0(S,Z/m) ∼= (Z/m)π0(S)

is the constant function on the class of m
gcd(m,n) .

Proof. – This follows from Lemmas 10.10 and 10.11.

Remark 10.13. – This shows that the constant c introduced in the proof of [57,
Proposition 6.6] is in fact 1.

Definition 10.14. – Let E be a motivic ring spectrum (i.e., a commutative monoid
in SH(S)) such that E0,0 is a Z/n-algebra. A mod-n orientation on E consists of an
orientation c ∈ E2,1(P∞S ) and a class u ∈ Ẽ1,1(WS,n) which restricts to 1 under the
map

Ẽ1,1(WS,n)→ Ẽ1,1(WS,n,0) ∼= Ẽ1,1(Gm,S) ∼= E0,0.

Remark 10.15. – This notion has its origin in the notion of mod-p-orientation used
in [51].
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It follows from Corollary 10.12 that the usual orientation of MZ/m together with
the class un,m defines a mod-n orientation on MZ/m provided m|n. We call this
orientation the canonical mod-n orientation of MZ/m.

Note also that any mod-n orientation gives rise to a mod-n′ orientation for n | n′.

Theorem 10.16. – Let E be a motivic ring spectrum such that E0,0 is a Z/n-algebra
with a mod-n orientation given by classes c ∈ E2,1(P∞S ) and u ∈ E1,1(WS,n). Let
v ∈ E2,1(WS,n) be the pullback of c under the canonical projection WS,n → P∞S .
Let X be a motivic space. Denote by u and v also the pullbacks of u and v to the
E-cohomology of X×WS,n. Then the elements vi, uvi, i ≥ 0 form a topological basis
of E∗,∗(X×WS,n) over E∗,∗(X). More precisely, the elements vi, uvi, 0 ≤ i ≤ k, form
a basis of E∗,∗(X ×WS,n,k) over E∗,∗(X), vk+1 is zero in E∗,∗(X ×WS,n,k) and the
canonical map

E∗,∗(X×WS,n)→ lim
k
E∗,∗(X×WS,n,k),

where the transition maps are surjective, is an isomorphism.

Proof. – By writing X has the homotopy colomit over 4op of a diagram with entries
disjoint unions of objects from SmS and replacing cohomology groups by mapping
spaces we reduce to the case where X = X ∈ SmS . The induced long exact sequences
in E-cohomology from the cofiber sequence

WX,n,k,+ → OPkX (−n)+ → Th( OPkX (−n))

split into short exact sequences

0→ E∗,∗(X)[σ]/(σk+1)→ E∗,∗(X ×WS,n,k)→ E∗−1,∗−1(X)[σ]/(σk+1)→ 0

since E0,0 is a Z/n-algebra. The image of u in the right group is of the form 1 + σ · r.
Using the fact that these sequences are E∗,∗(X)[σ]/(σk+1)-module sequences the claim
follows.

It follows that every element in E∗,∗(X×WS,n) can be uniquely written as a power
series ∑

i≥0

(aiv
i + biuv

i)

with ai, bi ∈ E∗,∗(X). Similar statements are valid for elements in E∗,∗(X ×W j
S,n).

The latter group can be written as the j-fold completed tensor product over E∗,∗(X)

of copies of E∗,∗(X×WS,n).
Note that if n is odd we have

E∗,∗(X×W j
S,n) ∼= E∗,∗(X)v1, . . . , vj(u1, . . . , uj),

but if n is even there can be more complicated relations for the u2
i .

The object WS,n ∈ H (S) is naturally a commutative group object (it represents
motivic cohomology over certain S, in particular S = Spec(Z), and pulls back). More-
over it has exponent n. This gives E∗,∗(X×WS,n) the structure of a cocommutative
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Hopf algebra object in a category whose tensor structure is the completed tensor
product.

The comultiplication

E∗,∗(X×WS,n)→ E∗,∗(X×W 2
S,n)

is uniquely determined be the images of u and v which can be written as power
series in u1, u2, v1, v2. These power series obey laws which are similar to the familiar
formal group laws. We won’t spell out these properties, suffices it to say that they are
grouped into unitality, associativity, commutativity, exponent n and independence of
the image of v of u1, u2.

For E = MZ/m, m|n, we have the additive law: u 7→ u1 + u2, v 7→ v1 + v2. This
follows from weight reasons for S = Spec(Z) and thus is true in general.

There is the notion of a strict isomorphism of such laws (power series), again
given by two power series (in u and v) in the target complete ring which start with
u respectively v. Moreover the second power series is independent of u. Caution is
required in the case n is even since then the complete rings in question might not
have standard form.

Two mod-n orientations on a motivic ring spectrum give rise to such a strict iso-
morphism.

Proposition 10.17. – Let E be a motivic ring spectrum such that E0,0 is an Fl-al-
gebra equipped with two additive mod-l orientations. Then the corresponding strict
isomorphism has the form

u 7→ u+ a0v + a1v
l + · · ·+ aiv

li + · · · ,

v 7→ v + b1v
l + · · ·+ biv

li + · · · .

Proof. – The proof is similar to the case of the additive formal group law over an
Fl-algebra.

Lemma 10.18. – The suspension spectrum Σ∞+ WS,n,k is finite cellular, in particular
dualizable. The suspension spectrum Σ∞+ WS,n is cellular.

Proof. – This is a standard argument.

In the following let Tk := Σ∞+ WS,n,k.

Lemma 10.19. – Let E be a mod-n oriented motivic ring spectrum. For any 0 ≤ i ≤ 1,
0 ≤ j ≤ k let Σ−2j−i,−j−iE → E ∧ T∨k be the E-module map corresponding to the
element uivj in the homotopy of the target spectrum. Then the induced map⊕

i,j

Σ−2j−i,−j−iE −→ E ∧ T∨k

is an isomorphism.

Proof. – Applying the functors Hom(Σp,qΣ∞+ X,−) for X ∈ SmS , p, q ∈ Z, shows the
claim.
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Lemma 10.20. – Let E be a motivic ring spectrum and U be a dualizable spectrum
such that E ∧U is a finite sum of shifts of E as a E-module. Then E ∧U∨ is the sum
over the corresponding negative shifts of E.

Proof. – For F a motivic spectrum we have

Hom(F,E ∧ U∨) = Hom(F ∧ U,E) = HomE(E ∧ U ∧ F,E)

= HomE(
⊕
α

Σpα,qαE ∧ F,E) = Hom(F,
⊕
α

Σ−pα,−qαE).

Lemma 10.21. – Let E be a mod-n oriented motivic ring spectrum. We have E-module
isomorphisms ⊕

i,0≤j≤k

Σ2j+i,j+iE ∼= E ∧ Tk

and ⊕
i,0≤j

Σ2j+i,j+iE ∼= E ∧ Σ∞+ WS,n,

where the corresponding generators are the duals of the vj , uvj.

Proof. – Use Lemmas 10.19 and 10.20 (the latter is applied with U = T∨k ).

Let E,F be mod-n oriented motivic ring spectra.

Lemma 10.22. – The natural map

E∗∗F ⊗F∗∗ F∗∗T∨k → (E ∧ F ∧ T∨k )∗∗

is an isomorphism.

Proof. – This follows from Lemma 10.19.

From the above lemma we derive a coaction map

E∗∗(WS,n,k) ∼= E−∗,−∗T
∨
k → (E ∧ F ∧ T∨k )−∗,−∗ ∼= E−∗,−∗F ⊗F−∗,−∗ F ∗∗(WS,n,k),

where for the second map we use the unit of F . These are compatible for different
values of k, yielding in the limit a coaction map

E∗∗(WS,n)→ E−∗,−∗F ⊗̂F−∗,−∗F ∗∗(WS,n).

We write the image of u as∑
j≥0

(αj ⊗ vj + βj ⊗ uvj),

similarly we write the image of v as ∑
j≥0

γi ⊗ vj .

(The latter sum is independent of u since the relation comes already from the projec-
tive space. Note also that the u’s and v’s on both sides are lying in different groups.)
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Proposition 10.23. – The strict isomorphism relating the two mod-n orientations
on E ∧ F has the form

uE =
∑
j≥0

(αjv
j
F + βjuF v

j
F ),

vE =
∑
j≥0

γiv
j
F .

Here the uE , vE are those generators coming from the orientation on E, similarly
for uF , vF .

Proof. – We leave the verification to the reader.

Remark 10.24. – The coefficients αi, βi, γi can also be described by images of canon-
ical homology generators with respect to the maps on F -homology of the orientation
maps

Σ−2,−1Σ∞+ P∞S → E

and

Σ−1,−1Σ∞+ WS,n → E.

We specialize now to the case E = F = MFl. The structure result below is analo-
gous to results from [57, §12].

Corollary 10.25. – The coaction map

H∗∗(WS,l,Fl)→ (MFl ∧MFl)−∗,−∗⊗̂(MFl)−∗,−∗H
∗∗(WS,l,Fl)

is given by

u 7→ u+
∑
i≥0

τi ⊗ vl
i

,

v 7→ v +
∑
i≥1

ξi ⊗ vl
i

with τi ∈ (MFl ∧MFl)2li−1,li−1 and ξi ∈ (MFl ∧MFl)2(li−1),li−1.

Proof. – This follows from Propositions 10.23 and 10.17.

Set A ∗∗ := (MFl ∧MFl)∗∗. We denote by B the set of sequences (ε0, r1, ε1, r2, . . .)

with εi ∈ {0, 1} and ri ≥ 0 with only finitely many non-zero terms. For any I ∈ B let

ω(I) := τ ε00 ξr11 τ
ε1
1 ξr22 · · · ∈ A p(I),q(I).
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Theorem 10.26. – Suppose l is invertible on S. Then the map⊕
I∈B

Σp(I),q(I)MFl → MFl ∧MFl,

where the map on the summand indexed by I is the MFl-module map (where we use
the right module structure on the target) corresponding to the element ω(I), is an
isomorphism.

Proof. – It is sufficient to show the statement for S = Spec(Z[ 1
l ]). This follows from

[28, Theorem 1.1] using Theorem 8.22 and Lemma 8.24.

Remark 10.27. – In the situation of the theorem the pair (H−∗,−∗(S,Fl), A ∗∗) has
the structure of a Hopf algebroid. The operations of MFl, i.e., Hom∗∗(MFl,MFl), are
the dual of A ∗∗.
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(SEMI) MODEL STRUCTURES

Proposition A.1. – Let C be a symmetric monoidal cofibrantly generated model
category and I an (essentially) small category with 2-fold coproducts. Then the pro-
jective model structure on C

I is symmetric monoidal (with the objectwise symmetric
monoidal structure). If I has an initial object and the tensor unit in C is cofibrant
then the tensor unit in C

I is also cofibrant.

Proof. – The assertions follow from the formula

(Hom(i,_) · f)�(Hom(j,_) · g) ∼= Hom(i t j,_) · (f�g)

for maps f and g in C and objectwise considerations.

Proposition A.2. – Let C be a left proper combinatorial model category and S be an
(essentially) small site. Then the projective model structure on C

S op

can be localized
to a local projective model structure where the local objects are presheaves satisfying
descent for all hypercovers of S .

Proof. – We localize at the set of maps

hocolimn∈4op(Un ×QA)→ QA,

where U• → X runs through a set of dense hypercovers (see [10]) of S and A through
the set of domains and codomains of a set of generating cofibrations of C (QA denotes
a cofibrant replacement of A).

Proposition A.3. – Let R be a commutative ring and C = Cpx(≥0)(R) be the
category of (non-negative) chain complexes of R-modules equipped with its standard
projective model structure. Let S be an (essentially) small site with 2-fold products
and enough points. Then the local projective model structure on C

S op

is symmetric
monoidal.

Proof. – The projective model structure is symmetric monoidal by Proposition A.1.
It remains to see that the pushout product of a generating cofibration with a trivial
cofibration is a weak equivalence. Checking this on stalks does the job (here use the
injective model structure on C ).
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Remark A.4. – This result is also contained in [15].

Theorem A.5. – Let R be a commutative ring and S an (essentially) small site with
2-fold products and enough points. Then Cpx(≥0)(Sh( S , R)) carries a local projective
symmetric monoidal cofibrantly generated model structure transferred from the local
model structure on presheaves. The weak equivalences are the quasi-isomorphisms.

Proof. – One applies the transfer principle (see e.g., [3, §2.5]): One has to check that
transfinite compositions of pushouts by images of generating trivial cofibrations are
weak equivalences. This follows from the existence of the injective model structure
and the fact that the sheafification functor preserves all weak equivalences. The same
applies to prove that the model structure is symmetric monoidal.

Let R and S be as in the theorem above. Then the canonical generating cofi-
brations of Cpx(≥0)(Sh( S , R)) have cofibrant domain. Thus for a cofibrant T ∈
Cpx(≥0)(Sh( S , R)) by [26, Theorem 8.11] there is a stable symmetric monoidal model
structure on the category SpΣ

T of symmetric T -spectra in Cpx(≥0)(Sh( S , R)).
It follows from [47, Theorem 4.7] that for a Σ-cofibrant operad O in SpΣ

T the
category of O-algebras inherits a semi model structure. In particular for the image
of the linear isometries operad in SpΣ

T we obtain a semi model category E∞(SpΣ
T )

of E∞-spectra.
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PULLBACK OF CYCLES

For a regular separated Noetherian scheme X of finite Krull dimension we let
X(p) be the set of codimension p points on X and Zp(X) the free abelian group
on X(p). Let C ∈ X(p), D ∈ X(q). We say that C and D intersect properly if the
scheme theoretic intersection Z of the closures of C and D in X has codimension
everywhere ≥ p + q. If C and D intersect properly then for a point W of Z of
codimension p+ q in X we set

m(W ;C,D) :=
∑
i≥0

(−1)ilength OX,W
(Tor

OX,W
i ( OC,W , OD,W )),

known as Serre’s intersection multiplicity.
We extend the notion of proper intersection and the intersection multiplicity at an

arbitrary W ∈ X(p+q) in the canonical way to elements of Zp(X) and Zq(X).
For C ∈ Zp(X) and D ∈ Zq(X) which intersect properly we let

C ·D :=
∑

W∈X(p+q)

m(W ;C,D) ·W.

For a coherent sheaf F on X whose support has everywhere codimension ≥ p we
let Zp( F ) ∈ Zp(X) be given by

Zp( F ) :=
∑

W∈X(p)

length OX,W
( F W ) ·W.

Proposition B.1. – Let F and G be coherent sheaves on X. Suppose that the sup-
ports of F , G and F ⊗ OX G have everywhere at least codimension p, q and p + q

respectively. Then

Zp( F ) · Zq( G ) =
∑
i≥0

(−1)iZp+q(Tor OX
i ( F , G )).

Of course this proposition is a special case of a statement valid for perfect complexes
on X.
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Proof. – Since the question is local on X we can assume X is local and the support
of F ⊗ OX G is the closed point of X. Then the proof proceeds as the proof of [45,
V.C. Proposition 1], using [43, Theorem 1] or [19] and a filtration argument (using
e.g., [13, Proposition 3.7]).

Proposition B.2. – Let C ∈ Zp(X), D ∈ Zq(X) and E ∈ Zr(X) such that C ·D,
(C ·D) · E and D · E are well defined. Then we have

(C ·D) · E = C · (D · E)

in Zp+q+r(X).

Proof. – The proof proceeds as the proof of [45, V.C.3.b) Associativity], using a spec-
tral sequence argument and Proposition B.1.

For a flat mapX → Y between regular separated Noetherian schemes of finite Krull
dimension there is a flat pullback f∗ : Zp(Y )→ Zp(X). (Note that in contrast for the
relative cycles considered in [52] there is a pullback map for arbitrary morphisms of
the base schemes.)

Let now S be a regular separated Noetherian scheme of finite Krull dimension. Let
f : X → Y be a morphism in SmS and C ∈ Zp(Y ). We say that f and C are in good
position if for every W ∈ X(p) with a non-zero coefficient in C the scheme theoretic
inverse image f−1(W ) has everywhere codimension ≥ p. If this is the case we define
f∗(C) ∈ Zp(X) by

f∗(C) := Γf · pr∗Y (C).

(We view this intersection, which takes place on X ×S Y , in a canonical way as
an element of Zp(X). Note also that the graph is not in general of a well defined
codimension, but for the definition we can e.g., assume X and Y to be connected.)

Theorem B.3. – Let X f−→ Y
g−→ Z be maps in SmS. Let C ∈ Zp(Z) and assume

g and C are in good position and f and g∗(C) are in good position. Then g ◦ f and
C are in good position and

(g ◦ f)∗(C) = f∗(g∗(C))

in Zp(X).

Proof. – Let U := Γf ×S Z ⊂ X ×S Y ×S Z and V := X ×S Γg ⊂ X ×S Y ×S Z. Let
prZ : X×S Y ×SZ → Z be the projection. The assertion follows from the associativity

(U · V ) · pr∗Z(C) = U · (V · pr∗Z(C))

which holds by Proposition B.2.
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AN EXPLICIT PERIODIZATION OF MZ

In this section we show in an explicit way that MZ is strongly periodizable in the
sense of [50, Definition 4.1]. This also follows from the existence of an E∞-orienta-
tion on MZ and the fact that MGL is strongly periodizable ([50, Theorem 6.1]), see
Remark 10.2.

Recall that a strong periodization of an E∞-ring spectrum E in SH(S) in the
following: Assuming the self-map id∧ τ of E∧ S2,1 ∧ S2,1, where τ is the twist, is the
identity (which is for example the case if E is orientable) the object∨

i∈Z
S2i,i ∧ E

is canonically a commutative monoid under E in SH(S)Z. The E∞-ring E is then
called strongly periodizable if this structure can be made into an E∞-structure, i.e., if
there exists an E∞-object in graded motivic symmetric spectra under a model of E
giving rise to the non-highly structured version above. Such a structure on MZ has
for example the consequence that there exists an E∞-version of motivic cochains, i.e.,
a natural graded E∞-algebra in complexes of abelian groups computing the motivic
cohomology of the base, see Corollary C.3.

We set ourselves in the situation of Section 4.1.2 before the definition of A. Since
L•(r) = L•(1)⊗r for any r ∈ Z the collection of the L•(r)[2r] gives rise to a strictly
commutative algebra L•(∗)[2∗] in Cpx(Sh(SmU,ét,Z/p•))Z. We denote by e the em-
bedding

Cpx(Sh(SmU,ét,Z/p•))→ Cpx(Sh(SmU,ét,Z/p•))Z

which sets everything into outer degree 0 and by the same symbol the induced em-
bedding of Z/p•[Gm,U , {1}]ét-spectra into e(Z/p•[Gm,U , {1}]ét)-spectra. The tensor
product in e(Z/p•[Gm,U , {1}]ét)-spectra of e(Sym( T )) with the suspension spectrum
of L•(∗)[2∗] can be written as the outer tensor product Sym( T )⊗ L•(∗)[2∗]. We let

Sym( T )⊗ L•(∗)[2∗]→ R(Sym( T )⊗ L•(∗)[2∗])

be a fibrant replacement in E∞-algebras in e(Z/p•[Gm,U , {1}]ét)-spectra (i.e., in the
semi model category E∞((SpΣ

Z/p•[Gm,U ,{1}]ét
)Z)). Set A := ε∗(R(Sym( T )⊗L•(∗)[2∗])).
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For k ∈ Z we denote by Ak the contribution of A in outer Z-degree k, so Ak is
a Z/p•[Gm,U , {1}]ét-spectrum. We set Atr

k := τ≤(−k)(Ak). The Atr
k assemble to an

E∞-algebra Atr ∈ E∞((SpΣ
Z/p•[Gm,U ,{1}]Zar

)Z). We set B := j∗A
tr.

As in Section 4.1.2 we have canonical epimorphisms

Bk,r → i∗ν
k+r−1
• [k].

We denote by Ck,r the kernels of these epimorphisms. A variant of Lemma 4.14 implies
that the collection of the Ck,r gives rise to an E∞-algebra C ∈ E∞((SpΣ

Z/p•[Gm,S ,{1}]Zar
)Z).

Let Cc → C be a cofibrant and Cc → Ccf be a fibrant replacement via a cofibration in
the latter semi model category and setD(p) := limn C

cf
∗,•,n ∈ E∞((SpΣ

Zp[Gm,S ,{1}]Zar
)Z).

Set D :=
∏
pD(p) ∈ E∞((SpΣ

Ẑ[Gm,S ,{1}]Zar
)Z). We let PHB be the periodic version

of HB , then there is a canonical E∞-map PHB → DQ.

Definition C.1. – We let PMZ denote the homotopy pullback in E∞-spectra of the
diagram

D

��
PHB // DQ.

Clearly we have

Theorem C.2. – The E∞-spectrum PMZ is a strong periodization of MZ in the sense
of [50].

For a base scheme X let DMT(X) be the full localizing triangulated subcategory
of DM(X) spanned by the Z(n), n ∈ Z. We denote by DMTgm(X) the full subcategory
of DMT(X) of compact objects.

Corollary C.3. – For a base scheme X there is a E∞-algebra AX in Cpx(Ab)Z

and a tensor triangulated equivalence DMT(X) ' D( AX).

Proof. – This follows now from [50, Theorem 4.3].

Corollary C.4. – Let X ∈ SmS be connected such that for any n we have
Hi

mot(X,n)Q = 0 for i � 0 (for example X = Spec(R), R the localization of a
number ring, or X = P1

R \ {0, 1,∞}). Then there is an affine derived group scheme
G over Z such that Perf(G), the (derived) category of perfect representations of G, is
tensor triangulated equivalent to DMTgm(X).

Proof. – This follows from [49, Theorem 6.21].
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We construct a motivic Eilenberg-MacLane spectrum with a highly
structured multiplication over general base schemes which represents
Levine’s motivic cohomology, defined via Bloch’s cycle complexes, over
smooth schemes over Dedekind domains. Our method is by gluing
p-completed and rational parts along an arithmetic square. Hereby the
finite coefficient spectra are obtained by truncated étale sheaves (relying
on the now proven Bloch-Kato conjecture) and a variant of Geisser’s
version of syntomic cohomology, and the rational spectra are the ones
which represent Beilinson motivic cohomology.

As an application the arithmetic motivic cohomology groups can be
realized as Ext-groups in a triangulated category of motives with integral
coefficients.

Our spectrum is compatible with base change giving rise to a
formalism of six functors for triangulated categories of motivic sheaves
over general base schemes including the localization triangle.

Further applications are a generalization of the Hopkins-Morel
isomorphism and a structure result for the dual motivic Steenrod algebra
in the case where the coefficient characteristic is invertible on the base
scheme.
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