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POISSON ENSEMBLES OF LOOPS
OF ONE-DIMENSIONAL DIFFUSIONS

Titus Lupu

Abstract. — There is a natural measure on loops (time-parametrized trajectories that
in the end return to the origin), which one can associate to a wide class of Markov
processes. The Poisson ensembles of Markov loops are Poisson point processes with
intensity proportional to these measures. In wide generality, these Poisson ensembles
of Markov loops are related, at intensity parameter 1/2, to the Gaussian free field,
and at intensity parameter 1, to the loops done by a Markovian sample path. Here,
we study the specific case when the Markov process is a one-dimensional diffusion.
After a detailed description of the measure, we study the Poisson point processes of
loops, their occupation fields, and explain how to sample these Poisson ensembles of
loops out of diffusion sample path perturbed at their successive minima. Finally, we
introduce a couple of interwoven determinantal point processes on the line, which
is a dual through Wilson’s algorithm of Poisson ensembles of loops, and study the
properties of these determinantal point processes.

Résumé (Ensembles poissoniens de boucles des diffusions unidimensionnelles)

Il y a une mesure naturelle sur les boucles (trajectoires paramétrées par le temps,
qui & la fin retournent & leur origine) qu’on peut associer & une large classe de proces-
sus de Markov. Les ensembles poissoniens de boucles markoviennes sont des processus
ponctuels de Poisson d’intensité proportionnelle & ces mesures. Dans une grande gé-
néralité, ces ensembles poissoniens de boucles markoviennes sont reliés, au paramétre
d’intensité 1/2, au champ libre gaussien, et au paramétre d’intensité 1, aux boucles
crées par une trajectoire markovienne. Ici nous étudions le cas spécifique ot le proces-
sus de Markov est une diffusion unidimensionnelle. Aprés une description détaillée de
la mesure, nous étudions les processus ponctuels de Poisson des boucles, leurs champs
d’occupation et expliquons comment séquencer ces ensembles poissoniens de boucles
a partir de trajectoires de diffusions perturbées & leur minima successifs. Enfin, nous
introduisons un couple de processus ponctuels déterminantaux sur la droite, entre-
lacés, qui est un dual, a travers l'algorithme de Wilson, de I’ensemble poissonien de
boucles, et étudions les propriétés de ces processus ponctuels déterminantaux.
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CHAPTER 1

INTRODUCTION

1.1. Measure on loops: history

There is a measure on loops one can naturally associate to a wide class of Markov
processes. In general, it is expressed as

(1.1.1) w(dy) : />0/ L (dY)pe(x, 2)m (dx)%,

where p;(z,y) are the transition densities with respect to a o-finite measure m(dy),
and ]P”;ﬂ are the bridge probability measures. Here, a loop < is a path parametrized
by continuous time, which at the end returns to the origin (v(0) = v(T'(%))).

Such a measure first appeared, to my knowledge, in the work of Symanzik [61, 62,
63]. There, studying the ¢* model in dimension d, he expressed the moments, and
some other functionals, of such fields in terms of multiple intergals over measures on
massive Brownian loops and massive Brownian paths, corresponding to a d-dimen-
sional Brownian motion killed at independent exponential time. He called this loop
expansion, and saw it as Euclidean analog of Feynman diagrams in Minkowski space
QFT. Later, in the work of Brydges, Frolich and Spencer [9], an analogous measure
appeared, but for discrete time random walk loops.

Then, an analogously defined measure in the setting of the two-dimensional Brow-
nian motion appeared in the work of Lawler and Werner [34]. They also considered
the Poisson point processes of intensity proportional to this measure on loops, which
they called “loop-soups”. The main motivation for studying this object was that the
obtained loops, up to reroooting and time-reparametrization, were invariant in law by
conformal transformations. This properties were used by Sheffield and Werner in [57]
to construct the Conformal Loop Ensemble (CLE) as outer boundaries of clusters in
a Brownian loop-soup.

Lawler and Trujillo-Ferreras initiated in [33] the study of discrete time random
walk loop-soups. See also a recent survey by Lawler [31]. The measure they used
was actually the same that appeared in Brydges, Frolich and Spencer [9]. Le Jan
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2 CHAPTER 1. INTRODUCTION

considered loops parametrized by continuous time, associated to Markov jump process
on an electrical network, with intensity following rhe pattern (1.1.1), rather than the
discrete time random walk loops [36]. He also called the object Poisson ensemble of
Markov loops rather than loop-soup. We will adopt Le Jan’s terminology. If one takes
the discrete skeleton of Le Jan’s loops, one gets the random walk loops studied in [33].

Taking loops parametrized by continuous time allowed Le Jan to consider the occu-
pation field of Poisson ensembles of Markov loops, that is to say the total time spent
by loops on each vertex. Le Jan identified two properties universally satisfied by these
Poisson ensembles of Markov loops. The first one, is that at intensity parameter 1/2,
the occupation field has same law as half the square of a Gaussian free field. This is
an extension of Dynkin’s isomorphism [16, 18, 17|, and is closely related to Symanzik’s
identities [63]. The second universal property is that, at intensity parameter 1, the
loops erased during the loop-erasure algorithm applied to a Markovian sample path,
are part of a Poisson ensembles of Markov loops. This property has been previously
observed in the two-dimensional Brownian setting. See [34], Conjecture 1, and [32],
Theorem 7.3. See also [56] for recent developments in dimension three. On an elec-
trical network, Wilson’s algorithm [69] samples a uniform spanning tree by running
successive loop erased random walks. Le Jan observed that the loops erased during
this algorithm give a Poisson ensembles of Markov loops of intensity parameter 1.

Since then, the definition of the measure of loops was extended to a wide class of
Markov processes, including some not having transition densities [38, 25, 23]. Actually,
one rather considers measures on unrooted loops, seen as parametrized by a circle,
where the cut between the start and the endpoint is not identified. What makes such
measures on unrooted loops natural is actually the covariance by time change by an
inverse of a Continuous Additive Functional (CAF). The time change by an inverse
of a CAF transforms a Markov process into an other one, possibly on a smaller state
space. The measure on unrooted loops of the time changed process is the pushforward
by time-change of the measure on loops of the initial Markov process. This covariance
is no longer true at the level of rooted loops. In dimension two for Brownian loops,
the covariance by time-change implies the invariance by conformal transformations of
the range [34].

1.2. Measure on loops: present work and recent developments

These notes are devoted to the study of loop measures, Poisson ensembles of loops
and of an analog of Wilson’s algorithm in the setting of one-dimensional diffusions.
This is a work done during my Ph.D. under the direction of Le Jan at Université
Paris-Sud, Orsay [39]. The aim of these notes is to give a complete and self-contained
presentation of the topic in the continuous one-dimensional setting, displaying both

MEMOIRES DE LA SMF 158



1.2. MEASURE ON LOOPS: PRESENT WORK AND RECENT DEVELOPMENTS 3

results true more generally and those specific to our setting, and making the con-
nection with the accumulated knowledge on the Brownian motion and diffusions, in
particular their path decomposition. The study will also extend to loop measures as-
sociated to some infinitesimal generators containing a creation of mass term, under
a negativity condition, as those enter in the expression of some exponential moments
of occupation fields of Poisson ensembles of loops.

The aspects covered in these notes are the following: We will study the measures
on loops, their covariance by change of scale and of speed of the underlying diffusions,
covariance by adding a killing or creation of mass term, and invariance by conjuga-
tion of the generators of diffusions by positive continuous functions (generalization of
h-transforms). Since the loops we consider are unrooted, a natural operation to do is
to root the loops at their minima. In the Brownian case, this is related to Vervaat’s
bridge-to-excursion transformation [67]. For more general diffusion, this leads to a
disintegrated analog of Vervaat’s transformation, where the law of bridge conditioned
on its minimum, and after exchange of pre- and postminimum part, is identified as
absolutely continuous with respect the law of the excursion (Proposition 3.21). We
will further study the Poisson point processes of loops. It turns out that in the Brow-
nian case, the Poisson ensembles of loops under the form of excursions (not bridges)
already appeared in the litterature, in the Lévy-Hincin decomposition of square Bessel
processes [35], and in the decompositions of a family of perturbed Brownian motions
[35, 46]. We will investigate the occupation field Poisson ensembles of loops, which
is a sum of local times, and identify it to (in general non-homogeneous) continuous
state branching processes with immigration. We will revisit the relation to the Gaus-
sian free field for the intensity parameter 1/2. Further, we will explain how to sample
Poisson ensembles of loops by slicing sample paths of diffusions perturbed at their
successive minima. At intensity parameter 1, one uses for this unperturbed diffusions,
which is the duality between loops and loop-erasure. Then, we study the analog of
Wilson’s algorithm applied to one-dimensional diffusions with a killing measure. It
returns on one hand a Poisson ensemble of loops of intensity parameter 1, and on the
other hand a couple of interwoven determinantal point processes on the line, which
can be seen as an analog of a random spanning tree. One point process gives the
points connected to the root/cemetery, and the other point process corresponds to
“deleted edges”. Le Jan in [36], Section 8.4, relates the duality between loops and
uniform spanning trees/determinantal point processes given by Wilson’s algorithm
to the supersymmetry, as determinantal point processes are associated to fermionic
fields, and occupation fields of Poisson ensembles of loops to bosonic fields. Finally,
we study some monotone coupling properties for our determinantal point processes
as the killing measure increases.
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4 CHAPTER 1. INTRODUCTION

One elementary, but very important observation done in this work is that in con-
tinuous one dimensional setting, the clusters of loops are exactly delimited by the
zeroes of the occupation field (Proposition 4.8). This observation led the author of
these notes to study the loops associated to diffusions on metric graphs [40]. A metric
graph is obtained by replacing the edges in an electrical network by continuous line
segments. A diffusion on it behaves like a one-dimensional diffusion inside the edges,
and performs excursions in all directions once it reaches a vertex [3]. Loops of metric
graph diffusions have both a non-trivial geometry and continuous local times. Out of
this one obtains that on metric graphs, the sign components of a Gaussian free field
are exactly the clusters of a Poisson ensemble of loops of intensity parameter 1/2. In
this Poisson ensemble of metric graph loops, the restriction of loops to vertices gives
a random walk loop-soup, and the loops that do not visit any vertex form Poisson
ensembles of loops of one-dimensional diffusions inside each edge. This isomorphism
with the signed Gaussian free field led to a proof of convergence on two-dimensional
lattices of clusters of rescaled random walk loop-soups to clusters of a Brownian loop-
soup [42]. Further, in a collaboration with Aru and Sepulveda [1, 2], we show that
the continuum Gaussian free field in dimension two, which is a random generalized
function, actually lives on clusters of a two-dimensional Brownian loop-soup. For this,
we use the approximation by metric graphs of two-dimensional lattices.

The author thanks Professor Yves Le Jan (Université Paris-Sud, Orsay) for fruitful
discussions and its helpful advice in relation with this work. The author also thanks
Professor Jim Pitman (University of California, Berkeley) for his comments on a
previous version of these notes and his bibliographical suggestions.

1.3. Results and layout

The layout of these notes is the following: In Chapter 2 we recall some facts on
one-dimensional diffusions and set the important notations. In Section 2.1 we recall
the properties of the solutions to the second order ODE

2
ZTZ + uv =0,
where v is a signed measure. In Section 2.2 we review the theory of one-dimensional
diffusions, their generators, Green’s functions, transition densities, excursions, bridge
measures, etc. In Section 2.3 we further consider “generators” with creation of mass
term and characterize a class of such operators which up to a conjugation are equiv-
alent to generator of diffusions (Proposition 2.7).

The Chapter 3 is devoted to the properties of the measure on loops of one-
dimensional diffusions. In Section 3.1 we introduce the functional spaces of continuous
rooted and unrooted loops. In Section 3.2 we define the measures p*¥ on paths joining
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1.3. RESULTS AND LAYOUT 5

two points x and y, and study their invariance and covariance properties by different
transformations such as time-reversal, restriction to a subinterval, increase of killing
measure, change of scale, change of time and conjugation. In Section 3.3 we intro-
duce the measure p on rooted loops, and p* on unrooted loops, and again study the
invariance and covariance properties. In particular, one distinctive property of p* is
the covariance by time change (Corollary 3.13), which justifies the study of unrooted
loops rather then rooted ones. In Section 3.4 we deal with the multiple local times
of loops, and show that these appear as densities of concatenation of independent
paths p®%2 ... <Qu¥=1%n g y*"1 relative to p* (Proposition 3.16). We also show
that two diffusions have the same measure on loops if and only if they are conjugate
(Proposition 3.17). In Section 3.5, we make a connection between the Brownian mea-
sure on loops and the Lévy-Ité measure on Brownian excursions using the Vervaat’s
bridge-to-excursion transformation. The idea is to root loops at their minima. This in
turn leads us in Section 3.6 to a conditioned version of Vervaat’s transformation that
holds for any one-dimensional diffusion process (Proposition 3.21). It relates a bridge
conditioned on its minimum and the excursion measure above this minimum. In Sec-
tion 3.7 we show that by restricting continuous loops to a discrete subsets we get the
natural measure on random walk loops (Proposition 3.27). In Section 3.8 we consider
loop measure in case of creation of mass terms and see what properties generalize to
this case.

In Chapter 4 we poissonize the measure on loops and study the occupation fields of
Poisson ensembles of Markov loops. In Section 4.1 we recall the properties of the con-
tinuous state branching process with immigration. In Section 4.2 we show that these
processes, parametrized by the space variable, appear as occupation fields of Poisson
ensembles (Poisson point processes) of loop of one-dimensional diffusions (Proposi-
tion 4.6). We also observe that the clusters of loops are exactly the excursions of
the occupation field above zero (Proposition 4.7). In Section 4.3 we consider the
particular case of intensity parameter 1/2. We identify occupation fields as squares of
Gaussian free fields (Property 4.11), give a signed version of this isomorphism (Propo-
sition 4.12), and show how it is possible to derive particular versions of Dynkin’s
isomorphism using the isomorphism with loops and Palm’s identity for Poisson point
processes.

In Chapter 5 we root each loop in its minimum and obtain this way a collection of
positive excursions. Then, we order these excursions in the decreasing sense of their
minima and glue them together. In Section 5.1 we recall some deterministic facts on
paths obtained by this procedure. In Section 5.2 we apply this procedure to random
loops in our Poisson point processes. We obtain this way continuous paths which can
be described as diffusions perturbed at their successive minima. (Propositions 5.2 and
5.4). We study the particular case of intensity parameter 1 in Section 5.3. For this
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6 CHAPTER 1. INTRODUCTION

particular value of intensity, the loops can be recovered from unperturbed diffusion
sample paths, by slicing them (Propositions 5.6 and 5.7).

In Chapter 6 we apply an extension of Wilson’s loop-erasure algorithm (used to
sample uniform spanning trees on electrical networks out of random walks) to transient
one-dimensional diffusions, and obtain a couple of interwoven determinantal point
processes on R, (Vs, Zo0), dual to Poisson ensembles of loops of intensity parameter
1. In Section 6.1 we describe our construction, which involves an arbitrary choice of a
countable everywhere dense family of points on the line, which are the starting points
for diffusions. In Section 6.2 we relate the paths erased during the algorithm to the
Poisson ensemble of loops of intensity parameter 1 (Proposition 6.1). In Section 6.3
we consider our algorithm in case of Brownian motion on R with a killing measure
k. We show that the law of (Yoo, Z50) does not depend on the arbitrary choice of the
countable everywhere dense family of starting points (Proposition 6.7). We identify
Voo and Z, separately as determinantal point processes (Propositions 6.8 and 6.10),
and then identify the joint law of (Yoo, Z50) (Proposition 6.11). We also give a criterion
for Voo and Z4 to be finite or bounded on one side (Proposition 6.9). In Section 6.4
we point out how our identities transform if one takes a general transient diffusion
instead of a Brownian motion with killing measure (Proposition 6.13).

In Chapter 7 we prove some monotone coupling properties for the determinantal
point processes introduced in Chapter 6. These monotone couplings do not follow
from the construction by loop-erasure, but rather from the form of determinantal
kernels. First, in Section 7.1 we describe the conditional laws for (Veo, Z5), when
conditioning on Z,, not charging an interval (Proposition 7.2) or )V, not charging
an interval (Corollary 7.6). In Section 7.2 we show that by increasing the killing
measure in the diffusion, one can increase Z,, and make ), satisfy some constraints
(Propositions 7.19 and Proposition 7.20). The monotone couplings of determinantal
point processes we obtain are explicit.

1.4. A list of commonly used notations

Chapter 2

I : R or an open subinterval of R.

v : a signed o-finite measure on 1.

K : a positive Radon measure on I, considered as a killing measure.

Supp : the support of a measure.

m : density of a speed measure on I.

w : density of a scale measure on 1.

L : either the infinitesimal generator of a, possibly killed, diffusion on I, or a more
general second order differential operator containing a creation of mass term.
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1.4. A LIST OF COMMONLY USED NOTATIONS 7

d*u

.7 a signed measure, often also assumed to

u : in general, a function on I with
be positive.

up : a positive non-decreasing solution to Lu = 0.

u| : a positive non-increasing solution to Lu = 0.

W (u1,us) : Wronskian of u; and wus.

X, : diffusion of generator L.

¢ : 400 or killing time for X;.

07(X) : local times of X;.

Gr(z,y) or G(z,y) : Green’s function of L.

pe(z,y) : transition densities.

IP;’y : bridge probability measure, from z to y, of duration t.

N2E . measure on excursions above x.

NSE : measure on excursions below x.

~ : a generic continuous path or loop.

Scale4 : change of scale operator (by A) acting on paths.

Scale®™ : change of scale operator (by A) acting on generators.

Speed,, : change of speed operator (by V') acting on paths.

L|T : operator L restricted to functions supported on an open subinterval TofI.

Conj(u, L) : conjugation of the differential operator L by the function u, u=!Lu.

D+ : operators that are not conjugates of generators of diffusions.

D0~ : operators that are conjugates of generators of diffusions.

DO : operators that are conjugates of generators of recurrent diffusions.

®~ : operators that are conjugates of generators of transient diffusions.

Chapter 3

T(v) : total life-time of a path or loop +.

shift, : a cyclic translation of parametrization of a loop.

£ : space of rooted loops.

£* . space of unrooted loops.

7 : projection form £ to £*.

dpaths : distance on paths.

dg~ : distance on unrooted loops.

Bg : Borel o-algebra on £.

Bg« : Borel o-algebra on £*.

7/ : stopping time at local time at y equal to [.

T, : first passage time at level a.

A : given p; a measure on paths, pf is the image of y1 by time reversal.

< : given 1 and puo two measures on paths, 1 <lps is the image measure of p ® po
by the operation of concatenation of paths.
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8 CHAPTER 1. INTRODUCTION

pp¥ or p™Y : a measure on finite life-time paths, starting in z and ending in y,
associated to the generator L.

wr or u : measure on rooted loops associated to the generator L.

w3, or pu* : measure on unrooted loops associated to the generator L.

£F1®2:5%n - multiple local times.

£¥*1:%2,-Tn : circular multiple local times.

V(v) : transformation that exchanges the pre- and the postminimum part of a
bridge v (Vervaat’s transformation).

wpn ¢ measure on unrooted loops associated to the standard Brownian motion
on R.

Wy @ measure on unrooted loops associated to the standard Brownian motion
on R.

Phar0,0 ¢ law of standard Brownian bridge from 0 to 0 in time ¢.

ni g u - probability measure on Brownian excursions above 0 in time ¢.

B; : Brownian motion.

pt - Bessel 3 process.

n;y ® : probability measure on excursions above a in time ¢ for general diffusions.

pgax)(x,y) : transition densities of a diffusion on I N (a,+00), killed in a, that is
of generator L|m(a’+oo).

[P)c(c?;)’t : bridge probability measures associated to L|m (a400)"
a,+o0o

p;°® : diffusion on I N (a,+00) obtained by conditioning the original diffusion not
to hit a.
PH% : law of p;® starting from a.

Chapter 4

dB, : spatial Gaussian white noise.

« : a positive constant, intensity parameter.

Lq, 1, or L, : Poisson ensemble of loops of intensity auj .

Ei’L or Eﬁ : occupation field of L, 1.

# : cardinal.

®,,5 : operator f — [, Grie(z,y)f(y)o(dy).

|45 : operator f — [; Griso(z,y)f(y)|7|(dy).

¢, : Gaussian free field on I of covariance function G(z,y).

M(E) : space of locally finite measure on an abstarct Polish space .
® : abstract Poisson random measure.

B, : set of partitions of {1,...,n}.
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1.4. A LIST OF COMMONLY USED NOTATIONS 9

Chapter 5

g4 : a generic excursion above 0.

Q : countable everywhere dense subset of (—o0, z¢), indexing the excursions.

&(t) : function obtained by gluing together the excursions (¢ + e4)4eco ordered in
decreasing sense of their minima.

0(25) : inf[(),t] f

Lo By ¢ Poisson ensemble of Brownian loops of intensity apuj,,.

((f%)M (t) : path starting in zo, obtained by gluing together some loops in L, g
under the form of excursions above the minimum.

0o, BM(t) infjo ¢ fz()f??.)M~

=0 (0) (€500 (), 655 (0).

TT(R?): {(z,a) € R? |z > a}.

Diag(R?) : {(z,z) | z € R}.

DapMm : a functional space of functions on 7+ (R?), which is a core for the gener-
ator of 2 BM(t)

f(()fg) (t) : path starting in z, obtained by gluing together some loops in £, 1, under
the form of excursions above the minimum.

05 (1) = infpo €07

=90 = (€53 (1), 079 (1),

T+(I2) : {(x,a) € I? | z > a}.

TTEF) : closure of T7(I?) in (inf I, sup I]2.

Dlag(IQ) : {(z,z) | x € T}.

D_: : a functional space of functions on T+ (I2), which is a core for the generator

a,L

of ().

LM (Xt)o<t<c) : first way to slice a diffusion sample path (X:)o<t<¢ into loops
of Ly 1., corresponding to the loop-erasure procedure.

L%((Xt)o<t<c) : second way to slice a diffusion sample path (X;)o<i<¢ into

loops of Ly, corresponding to the loop-erasure procedure applied to the

time-reversed path.

Chapter 6

T : atree on a graph, often a spanning tree.

C(e) : positive weight, conductance of an edge e.

(Vn, Tn) : result obtained after n first steps of Wilson’s algorithm applied to one-
dimensional diffusions. ), is a finite set of points, where the killing by x oc-
curred. J, is a finite set of disjoint line segments, corresponding to the branches
of the “tree” discovered so far.
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CHAPTER 1. INTRODUCTION

(Yoo, Z0) ¢ final result of Wilson’s algorithm applied to one-dimensional diffusions.
Yo and Z,, are two interwoven point processes, such that between any tow
points in ),,, there is a point of Z.,, and vice-versa. Points in )., are those
connected to the root/cemetery, where the killing by « occurred. Points in Z,,
are analogs of missing edges in a spanning tree, separating different branches
connected to the root/cemetery.

Q.. : cardinal of ).

Yo1,Yn2,---,Yn o) ¢ points in Y, ordered in the increasing sense.

[p%l,prtl], [P;,zyp:f,z], e [p;’Qn,pzan] : intervals in 7, ordered in the increasing
sense.

E, : subset of indices ¢ € {1,...,Qn} for which Y,, , = p, .

E;t : subset of indices ¢ € {1,...,Q,} for which Y, , = p/\ .
E, " : subset of indices ¢ € {1,...,Q,} for which p,, <V, , <p/ .
&, : operator f — [, G(z,y)f(y)k(dy).

G(z,y)G(z, 2)

G@x) e _ I )

0:2) : Gluz) ~ TS

K(y,z) : determinantal kernel for Z.

K(z,y)K(z, 2)

K@) (y, 2) : Ky, 2) — S@Wk@,2)

(y,2) : K(y,2) K(z.2)

M, (Yoo, Z0)(dyo, dz1,dyy, . . . ,dzn, dyy,) : infinitesimal probability for yo, y1,...,¥n
being n + 1 consecutive points in V., and 21, ..., 2z, being the n points in Z,
separating them.

%n(ag,bo,dl,i)l,al,bl, . ,&n,l;n,an,bn) : an event corresponding to Y., having

points in [a;, b;]-s, £, having points in [a;, b;]-s, and some additional conditions.

Chapter 7

T : a uniform spanning tree on a weighted graph (electrical network).

YEex) (@ox) ylxeo) zlxzo) y(@or) Z(zor) y)(awo) (o) . oonditioned versions
of (Yoo, Zx0), above and below xg.

G@ox) f(zox) G(xzo) fo(xzo) Glzor) fo(wor) Glewo) fo(9o) . gggociated determi-
nantal kernels.
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CHAPTER 2

PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

2.1. A second order ODE

In this chapter we will introduce the one-dimensional diffusions we will consider
throughout this work (Section 2.2). In Section 2.3 we will extend the framework to
“generators” containing a mass-creation term. In Section 2.1 we will prove or recall
some facts on functions harmonic for these generators.

Let I be an open interval of R and v a signed measure on I. By signed measure
we mean that the total variation |v| is a positive Radon measure, but not necessarily
finite, and v(dz) = €(z)|v|(dx) where € takes values in {+1}. We look for the solutions

of the linear second order differential equation on I:
d?u
Given a solution u of (2.1.1), we will write *(z+) and 2%(z~) for the right-hand side
respectively left-hand side derivative of u at x. The two are related by
d d
= (@) - (@) = —u(@)v({a}).
Using a standard fixed point argument one can show that (2.1.1) satisfies a Cauchy-

(=)

Lipschitz principle: if zo € I and ug,vg € R, there is a unique solution u of (2.1.1),

continuous on I, satisfying u(zo) = ug and g—z(x?{) = vg. Let 17 € I N (xg,+0). A
continuous function u on [zg, x1] is solution of (2.1.1) with previous initial conditions

at xo if and only if it is a fixed point of the affine operator J on C([z¢, z1]) defined as

Ou)(@) = w0+ (e~ a0 — [ (= y)uly)v(dy).

(mo,:l:]

[v|([zo,z1])" (z1 —=%0)™

The Lipschitz norm of J" is smaller or equal to ' . So for n large
enough J” is contracting and thus J has a unique fixed point in C([zg, z1]).
Let W (u1,us)(z) be the Wronskian of two functions uy, us:
du
*(ah) — () (=),

duz duy
dx

W (ug,u2)(x) := uy () T
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12 CHAPTER 2. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

If uy,ug are both solutions of (2.1.1), W(uy,usz) is constant on I. Using this fact we
get a results which is similar to Sturm’s separation theorem for the case of a measure
v with a continuous density with respect to the Lebesgue measure (see Theorem 7,
Section 2.6 in [7]):

PROPERTY 2.1. — Given xg < x1 two points in I:

(i) Let uy be a solution of (2.1.1) satisfying uq(zo) = 0, dul( &) >0, and uy a
solution such that us(xzg) > 0. Assume that us > 0 on [zo,z1]. Then u; > 0
on (zg,x1].

(ii) Let ui,us be two solutions such that ui(zo) = ua(zo) > 0 and La(zd) >
dua (z8). Assume that us > 0 on [zg,21). Then ui > us on (zo, z1).

(iil) If there is a solution u to (2.1.1) positive on (zg,x1) and zero at o and 1

then any other linearly independent solution of (2.1.1) has ezactly one zero

n (zo,1).
Next we prove a lemma that will be useful in Section 2.3.

LEMMA 2.2. — Let vy be the positive part of v. Let xg < z1 € I. Let f be a continuous
positive function on [xo, 1] such that ming, 5.1 f > vy ([wo,z1])%. Then the equation
d’u
dz2

has a positive solution that is non-decreasing on [zq, z1].

(2.1.2) +uv—uf =0

Proof. — Set a := minp,, .1 f. Let u be the solution to (2.1.2) with the initial values
u(zo) = 1, % (z) = /a. We will show that u is non-decreasing on [zg, z1]. Assume
that this is not the case. This means that Z—Z(x"’) takes negative values somewhere
n [zg,x1]. Let

Zo = inf {x € [zo, 1] dj(x+) < 0}'

Since 2%(z%) is right-continuous, %%(z) < 0. Let r(z) := u(lz) du (z). u is positive

on [zg, 23] hence r is defined [zg, z3]. 7(z9) = V/a. r is cadlag and satisfies the equation
dr = (f —r?)dz — dv.
Let z3 := sup{z € [xo,z2] | r(z) > v/a}. We have

T2

r(z2) =71(x3) + / (f(z) — Tz(a:))dx — v([z3, z2]).

x3

By construction r(z3 ) > /a. By definition, f — 72 > 0 on (3, z2]. Thus,

r(za) > vVa — v([z3,z2]) > 0.
It follows that r(z3) > 0, which is absurd. O
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2.1. A SECOND ORDER ODE 13

In the case ¥ = —2x where x is a non-zero positive Radon measure, the Equa-
tion (2.1.1) becomes:

(2.1.3) ldQ—u —uk = 0.
2 dz?

This is the equation of exit probabilities of a Brownian motion with killing mea-
sure k. In this case, the two-dimensional linear space of solutions is spanned by two
convex positive solutions u; and u|, ut being non-decreasing and u; non-increasing.
Given z, € I, we can construct u; as the limit when z; — inf I of the unique solution
which equals 0 in z; and 1 in zy. For u; we take the limit as ;1 — supI. u; and
u, are defined up to a positive multiplicative constant. See [8], Section 16.11, or [53],
Appendix 8, for more details. Next we give equivalent conditions on the asymptotic

behavior of u; and u; that will be used in Chapter 6.

PROPOSITION 2.3. — In case [0,+00) C I, the following four conditions are equiva-
lent:

() Ji0.400) T6(dz) < +00,

(ii) u ( ) >0,

(iii) There is C > 0 such that for all z > 1, ut(z) < Cr,
)

(iv) S0, 400y W (@)uy(z)K(dz) < +o0.
Proof. — We will prove in order that (ii) implies (i), (iii) implies (i), (i) implies (ii),
(i) implies (iii) and (iv) implies (ii). (iv) is obviously implied by the combination of
(i), (ii) and (iii).

(ii) implies (i): For all z € [0, +00),

du
——Lat) = 2/ u (y)k(dy) < 2uy(+00)k((z, +00)).

dz (z,+00)

dul( 1) is integrable on (0, +00). Since u| (4+00) > 0, this implies that,

/ k((z, +00))dx < +00.
(0,4+50)

But

[ wroonds= [ ystay),
(0,400) (0,400)
and hence (i).

(iii) implies (i): If (iii) holds then for all z € [0, +00), % (z+) < C. But

T =GO w2 [ wsa)

This implies that

[ urwlay) < +oc.
(0,+00)
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14 CHAPTER 2. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

Since uy is convex, ut(y) > up(0) + %(0*)3/. So (i) is satisfied.
(i) implies (ii): For all y € [0, +00),
—+oo
uy (y) — uy (+00) —2/ / k(dz)dz < 2u(y )/ (z — y)r(dx).
(2,+00) (y,+00)

Condition (i) implies that

lim 2/ (x — y)k(dz) = 0.

ymee Sy, +oo)

So for y large enough, u (y) — uj (+00) < u|(y). Necessarily, u| (+00) > 0.
(i) implies (iii): For all y < z € [0, 4+00),

duy
dx

(@) = GO + 20 n((wa) +2 [ () = wr ().

(y,7]

(2.1.4)

Let y be large enough such that

2/(y7+oo)(z —y)k(dz) < 1.

Then there is C' > 0 large enough such that

(2.1.5) 0 > (%) 4 2u (4)r((y, +o00)) + 2C (2 - y)n(dz).
dy (y,+00)

Assume that there is z € [0, +00) such that duT L(zt) > C. Let

Zg = inf{x >y %(fr) > C’}.

T ‘Z—T(Q:JF) is right-continuous. Thus “L(zg) = C. By definition, for all z € [y, zo],

ddﬂ( *) < C, and hence uy(z) —uq(y) < C(z—y) But then (2 1.4) and (2.1.5) imply
that dﬂ(xo ) < C which is contradictory. It follows that A (x™) is bounded by C,
which implies property (iii).
(iv) implies (ii): Applying integration by parts we get that for all z > 0,
d’LLT

2 /(O’I] up(y)uy (y)k(dy) = /(O’E] ul(y)d(@) (dy)

_ duT duT z dul d’LLT

@@ - TN - [ TN

CZ;T (z1)uy(z) is positive. We get that

(2.1.6)

oo dul + duT + duT
— it 2 - < ot .
/0 gy ) g )y <2 /( oy MR @R(E) + ZHOu(0) < oo
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2.1. A SECOND ORDER ODE 15

Next,

(2.1.7)

Jim D (@) =0
and
(2.1.8) lim —@(z+)uT(x) =W(uy,ur) — lim dﬂ(aﬁ)ul(x) = W(uy,ur).
z—+oo dx z—+o0o dx

(2.1.6) together with (2.1.8) imply that

oo 1 duT +
—(y")dy < +o0.
/0 ur(y) dy W)

But this is impossible because log(u;(+00)) = 4+00. Thus u|(+00) > 0. O

Next we deal with the continuity of u; and u; with respect the measure x. We will
write u, 1 and u,,| to denote the dependence on «.

LEMMA 2.4. — Let zg € I. Let (kn)n>0 be a sequence of non-zero positive Radon
measures on I converging vaguely (i.e., against functions with compact support) to k.

Urp, T 5, Urp,l Up,|
Then i ey comverges to i (@0)? e (o) . (30)
gences are uniform on compact subsets of I.

and the conver-

converges to

Proof. — We will deal with the convergence of %7 the other one being similar. To
simplify notations we will chose the normalization u, | (zo) = s, | (o) = 1. Without
loss of generality we will also assume that x({zo}) = 0. The proof will be made of

two parts. First we will show that if u is the solution of (2.1.3) and wu,, solution of

1 d?u
and if u,(29) = u(zg) = 1 and 2% (zf) = limp— 400 ”Z‘—;(wj), then u,, converges to u
uniformly on compact subsets of I. After that we will show that dugig'l(xa’ ) converges
du,c,l +
to — = (zg ).

Let 1 € I N (xg,+00). Let (vp)n>0 be a sequence in R converging to v. Let J,
respectively J be the following affine operators on C([zg, z1]):

(Gnf)(@) =1+ (& — 20)vn +2 / (& — 1) F(9)rn(dy).

(z0,z]

ON@) =1+ @-sov+2 [ (@ y)fw)ldy)

(anm]
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16 CHAPTER 2. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

Let u, respectively u be the fixed points of J, respectively J. Let € € (0,1). The
Lipschitz norm of 37 is bounded by ?—J!mn([xo,xl])j(ml — x0)?. For j > j., for all
n € N, this norm is less then . Then

max |up, —u| = max |Feu, — Feu| < max |Feu — Feul + max |Feu, — Teu|
[z0,21] [zo0,21 [z0,z1] Z0,T1

< max |¥eu — Feul + & max_ |u, — ul.
[z0,21] Z0,T1

Hence,

(2.1.10) max |u, —u| < max_|Jeu — Feul,
[zo,71] 1—¢ [zo,z1]

For y <x €I and i € N*, let

Foaly, @) = / (@ = 9io1) - (92 — ) W1 — ) Rn(dys) . (i),
Y<y1<--<yY;—1<T

fily,a) = /< @) On )~ W) (),

and fo,;(y, ) = fo(y,z) =z —y. fn: and f; are continuous functions. Moreover, the
vague convergence of k, to k ensures that if (y,,Zn)n>0 is & sequence converging
to (y,x), then f, ;(yn,xn) converges to f;(y, ).

j€_2

@)@ =1+ @ zoon+ Y [ 1+ (= 0)un) sy 2)ald)

+ /’” w(y) frj.—1(y, 2)kn(dy),

0
j£_2

(Feu)(z) =1+ (x—z0)v+ Y /z(l + (y — zo)v) fily, x)k(dy)
i=0 V%o

+ /m u(y) fi.—1(y, )k(dy).

0
For fixed z, the functions y — 1y <y<afn,i(y,z) and y — 1y <y<sfi(y, ) have a
compact support but are discontinuous in zg. If (2,)n>0 is a sequence in [z, 1]
converging to z, then the convergence of v, to v, the weak convergence of k, to k
and the condition k({zo}) = 0 ensure that (J3’su)(z,) converges to (J3’su)(z). This
implies the uniform convergence of J7su to 3%=u on [z, z1]. From (2.1.10) follows that
U, converges uniformly to u on [zg,z1]. The situation is similar for z; < z¢ and we
get the uniform convergence on compact sets of u, to u.
Let
du,

du
v := lim inf —"med (4 , T = lim sup —fnad (Y.
- n—4oo dx ( 0) n—>+o£) dx ( 0)

Let v < dq;’;* (zg). There is 21 € I N (zg,+00) such that the solution of (2.1.3) with

initial conditions u(zo) = 1, %*(z+) = v, is zero in ;. Since u,,,| converges to u,|
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2.2. ONE-DIMENSIONAL DIFFUSIONS 17

uniformly on [z, z1] and u,,| is positive on [zg,x1], we get that for n large enough,
Up,,,| is positive on [zg,z1] and M(xo ) >wv. Thus v > d”’“ L ().
Conversely, let v < 7. Let u,, be the solution of (2.1.9) with initial conditions
Un(z0) = 1, Lo (zf) = 0. If du;i;’i(mg) > v, then for any z € I N [xzg, +00),
dug , duy, | duy, | duy,, |
bl Lo <7nvx+_(7n’x+ _v)<_(7nﬁx+ _U)

du"?nvl

(@) < un, (Tt (ed) — v) (@ - a0).

If sup I < 400, then by convexity of u, |,

un(z) <

and uy,(z,) < 0, where

supl —x rdug,,| 4\ _
(St @) —v) (@ = o),

supl — xg
duy
sup I + (%(xé) - v)mo(supI — z9)

du,.;mi +
1+ (7(% ) — v) (supI — z9)

Zn 1=

-1
This is also true if sup I = 400, and in this case z, = z¢ + (du”" L(zd) — v) . Let

u be the solution of (2.1.3) with initial conditions u(zo) = 1, %*(z*) = v and

supI + (v — v)zo(sup I — )
1+ @—wv)(supl —xo)

oo T

unnl( +

Considering a subsequence along which xg ) converges to U, we get by uniform

convergence of u, tu u on compact sets that u(zs) > 0. It follows that du” L(zd) > v.
du
Hence “2%L(zf) > w.

Finally, v =7 = dTZf 2L (), and this implies the uniform convergence on compact
subsets of u,,, .| to ux,|. ]

2.2. One-dimensional diffusions

In this subsection we will describe the kind of linear diffusion we are interested
in, recall some facts and introduce notations that will be used subsequently. For a
detailed presentation of one-dimensional diffusions see [27] and [8], Chapter 16.

Let I be an open interval of R, m and w continuous positive functions on I. We
consider a diffusion (X¢)y<;<¢© on I with generator

w0 = i (s s)

and killed as it hits the boundary of I. In case I is unbounded, we also allow X to blow

up to infinity in finite time. ¢(%) is the first time X either hits the boundary or explodes.
To avoid some technicalities we will assume that is locally bounded, although this
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18 CHAPTER 2. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

condition is not essential. Given such a diffusion, the speed measure m(z)dz and the
scale measure w(z)dz are defined up to a positive multiplicative constant, but the
product mw is uniquely defined. A primitive S of w is a natural scale function of X.
Consider the random time change df = (X e,y dt- Then, (3 S(X7))o<icio is a standard
Brownian motion on S(I) killed when it first hits the boundary of S(I). For all f, g
smooth, compactly supported in I,

/(L“’)f)( )g( d:c—/f LOg)(z)m(z)dz.

I
The diffusion X has a family of local times (¢ (X))zer,:>0 With respect to the measure
m(z)dz such that (z,t) — £7(X) is continuous. We can further consider diffusions
with killing measures. Let x be a non-negative Radon measure on I. We kill X as
soon as [; £f(X)m(z)k(dz) hits an independent exponential time with parameter 1.
The corresponding generator is

(2.2.1) L= %% (w(lm) CZU) _

Let (X¢)o<t<c¢ be the diffusion of generator (2.2.1), which is killed either by hit-

>x
exc

ting 01, or by exploding, or by the killing measure k. For =z € I, let 2% and n3%
be the excursion measures of X above and below the level x up to the last time X
visits . The behavior of X from the first to the last time it visits = is a Poisson
point process with intensity 1% + nSZ, parametrized by the local time at = up to
the value £5(X). n2% and n<Z are obtained from the Lévy-Ité measure on Brownian
excursions through scale change, time change and multiplication by a density func-
tion accounting for the killing. See [54] for details on excursion measures in case of

recurrent diffusions.

If X is transient, the Green’s function of L,
G(z,y) = B, 65 (X)),
is finite, continuous and symmetric. For z < y it can be written

G(z,y) = ur(x)u,(y),

where uy(z) and u|(y) are positive , respectively non-decreasing and non-increasing
solutions to the equation Lu = 0, which through a change of scale reduces to an equa-
tion of form (2.1.3). If S is bounded from below, us(inf ™) = 0. If S is bounded from
above, u(supI~) = 0. uy(x) and u;(y) are each determined up to a multiplication
by a positive constant, but when entering the expression of G, the two constants are
related. For z < y € I,

up ()
ut(y)

u(y)
uy(z)

= P, (X hits z before time (), = P, (X hits y before time ().
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2.2. ONE-DIMENSIONAL DIFFUSIONS 19

See [27] or [8], Chapter 16, for details. Let W (u,u;) be the Wronskian of u) and uy:

duT + dul
g &) mui(z)

This Wronskian is actually the density of the scale measure: W(u,u1) = w. We may

W(uy,up)(@) := u(z) (z).
write Gy when there is an ambiguity on L.

If the killing measure k is non zero, then the probability that X, starting
from z, gets killed by k before reaching a boundary of I or exploding equals
J; G(z,y)m(y)k(dy). Conditionally on this event, the distribution of X - is

1zEIG(x7 z)m(z)n(dz)
[ Gz, y)m(y)s(dy) -

Indeed, let f be a non-negative compactly supported measurable function on I and

7= inf{t € [0,¢)] /Ieg(X)m(y)n(dy) > z}.

Then, by definition,

B[] = [ " L [F(X, pc)di = / T avem, | | o]
But i
| 1ot = [ o Xmwna)
(see Corollary 2.13, Chapter X in [53]). It follows that

+oo
B = [ 0] [ 8o (o] m@untan) = [ 16 pim)n(a).

The semi-group of L has positive transition densities p;(x,y) with respect to the
speed measure m(y)dy and (¢, z,y) — pi(z,y) is continuous on (0,+o0c0) x I x I.
McKean gives a proof of this in [45] in case when the killing measure k has a con-
tinuous density with respect to the Lebesgue measure. If this is not the case, we can
take u a positive continuous solution to Lu = 0 and consider the h-transform of L
by u: ! Lu. The latter is the generator of a diffusion without killing measure and by
[45] this diffusion has continuous transition densities p;(x,y) with respect to m(y)dy.
Then u(z)p:(z, y)ﬁ are the transition densities of the semi-group of L. Transition
densities with respect to the speed measure are symmetric: p;(x,y) = p;(y, z). For all
z,y € I and t > 0 the following equality holds:

(2.2.2) Em[fi’/\g(X)] :/0 ps(z,y)ds.

Next we deal with bridge probability measures.
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20 CHAPTER 2. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

PROPOSITION 2.5. — The bridge probability measures ]P”;y() (bridge of X from x toy
in time t conditioned neither to die nor to explode in the interval) satisfy: for allx € T
the map (z,y,t) — }P’txy() is continuous for the weak topology on probability measures

on continuous paths.

Proof. — Our proof mainly relies on absolute continuity arguments of [24] and [14],
and the time reversal argument of [24]. [14] gives a proof of weak continuity of bridges
for conservative Feller cadlag processes on second countable locally compact spaces.
But since the proof contains an error and we do not restrict to conservative diffusions,
we give here accurate arguments for the weak continuity.

First, we can restrict to the case k = 0. Otherwise, consider u a solution to Lu = 0,
positive on I. The generator of the h-transform of L by u is

s (uo as):

and does not contain any killing measure. The h-transform preserves the bridge mea-

sures and changes the density functions relatively to m(y)dy to ﬁpt(x, y)u(y), and
thus preserves their continuity.

Then we normalize the length of bridges: if (Xs(x’y’t))ogsgt is a path under the
law P% (), let ﬁ;y() be the law of (X7¥")o<,<1. It is sufficient to prove that
(z,y,t) — I@;y() is continuous. For v € [0, 1], let @;Z ) be the law of (X &¥)o<,<,.
Let ]TD;“() be the law of the Markovian path (X,)o<r<, starting from z. For v € [0, 1),
we have the following absolute continuity relationship:
p(lfv)t(thay)

pe(z,y)
Let (Jn)n>0 be an increasing sequence of compact subintervals of I such that

(2.2.3) dPLY = 1yree dP%L®.

I =J,,50Jn- Let T}, be the first exit time from J,,. Let f,, be continuous compactly
supported function on I such that 0 < f,, <1 and f,;, = 1. We can further assume
that the sequence (f,)n>0 is non-decreasing. The map

(#,9,t) = fa(sup X)fn(inf X)dPL

[0,vt] [0,vt]

is weakly continuous. Let (z;,y;,t;) >0 be a sequence converging to (z,y,t). Let F' be
a continuous bounded functional on C([0,v]). Then, applying (2.2.3), we get

(224) P (fa(supq)fu(inf 7)F(y)) = P (fo(sup ) fo(inf 7)F(y))
[0,v] [0,] [0,v] [0,v]

_ tjv p(lf’u)t(’)/(v)ay) .
(2.2.5) =Py (mfn([sﬁ ’Y)fn([lor’lf] V)F(’Y))
Ht,v p(l—v)t(’}/(v), y) .
(2.2.6) -P; (an(‘[s(},lg v)fn([l(){lf] YEF (7))
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~. p(1—v)t-(7(”),yj)
2.2.7 + Pliv 2 fn(sup7y) fn(inf v)F(y
(2.2.7) y ( e it VF ()
228) =By (2D 5 g ine )P ).
! pt(l‘ay) [0,v] (0,]
Since 20=2:(4 4o continuous and bounded on Jn, (2.2.5)—(2.2.6) converges to 0.

pt(z,y)

P1-vyt; (-¥5) P1—v)t(5Y)
P, (%5,95) pe(z,y)

Thus, (2.2.7)—(2.2.8) converges to 0, and finally (2.2.4) converges to 0. Let ng € N

and n > ng. Then,

Moreover, for j large enough, is uniformly close on J, to

Pl (1- fn([sglﬁ v)fn([lonf] 7)=1- (fn([su% v)fn([{)nf] 7))

<1—=PY" (fny(SUD7) fu, (inf 7)) — 1 — PL? y(fro (5UP ) fng (inf 7)),
[0,0] [0,] [0,0] [0,v]

and consequently

lim hmsup]P’t”’” (1—fn(SUP’)’)fn([10nf 7)) = 0.

n—-—+oo j—+4o0 [0 ’U]
It follows that
lim Pi? (F(v) = @i’z(F(’Y))

jotoo TIYI
From this we get that the law of any finite-dimensional family of marginals
of @txy() depends continuously on (z,y,t). To conclude we need a tightness re-
sult for (z,y,t) + P, (-). We have already tightness for (z,y,t) — PL% (). The
image of P}, (-) through time reversal is P}, (-). So we also have tightness on intervals
[1 —',1] where 0 < v’ < 1. But if v + v/ > 1, tightness on [0,v] and on [1 — v/,1]
implies tightness on [0,1]. This concludes. The article [14] contains an error in the
proof of the tightness of bridge measures in the neighborhood of the endpoint. O

2.3. “Generators” with creation of mass

In this section we consider more general operators

(2.3.1) Lzmzx);;( (1);;)”

with zero Dirichlet boundary conditions on 01, where v is a signed measure on [

which is no longer assumed to be negative. We set

LO .=
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In the sequel we may call L “generator” even in case the semi-group (e‘X);>q does
not make sense. Our main goal in this subsection is to characterize through a posi-
tivity condition the subclass of operators of form (2.3.1) that are equivalent up to a
conjugation to the generator of a diffusion of form (2.2.1).

We will consider several kinds of transformations on operators of the form (2.3.1).
First, the conjugation. Let u be a positive continuous function on I such that 3277; is
a signed measure. We call Conj(u, L) the operator

1 d [u(z)? d
u(z)2m(z) do (w(x) dx
If f is smooth function compactly supported in I then

Conj(u, L) f = u ' L(uf).

1
Conj(u, L) = ) +v+ aL(O)u.

In case L is the generator of a diffusion and Lu = 0, Conj(u, L) is a Doob’s h-transform
(see [15], Chapter 11).

Second, the change of scale. If A is a C' function on I such that % > 0 and
% € L2 (I) and (y(t))o<i<T @ continuous path in I, then we will set Scale4(y) to
be the continuous path (A(y(s)))o<t<r in A(I). Let Scale®™ (L) be the operator on
functions on A(I) with zero Dirichlet boundary conditions induced by this change of

scale:

1 d 1 d
165" (L) = el L)+ A,
Scale;™ (L) mo A~(a) da <w0A—1(a) da> A

where A,v is the push-forward of the measure v by A.

Third, the change of time. If V is positive continuous on I then we can consider
the change of time ds = V((¢))dt. Let Speed;, be the corresponding transformation
on paths. The corresponding “generator” is %L.

Finally, the restriction. If I is an open subinterval of I, then set L|7 to be the
operator L acting on functions supported on T and with zero Dirichlet conditions
on 91.

For the analysis of L we will use a bit of spectral theory. If [zg,z1] is a compact
interval of R and i, W are positive continuous functions on [z, 1], then the operator
%% (%%) with zero Dirichlet boundary conditions has a discrete spectrum of
negative eigenvalues. Let —X1 be the first eigenvalue. It is simple. According to Sturm-
Liouville theory (see for instance [66], Section 5.5) we have the following picture:

PROPERTY 2.6. — Let A > 0 and u a solution to

1 1
d ( d)-l—)\u:()

mde \ 0 dz
PR . du
with initial conditions u(zg) = 0, %(xo) > 0.
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(i) If u is positive on (zg,21) and u(x;) = 0, then X = Ay and u is the fundamental
eigenfunction.
(i) If u is positive on (zg,x1], then A < Ap.
(iii) If u changes sign on (xo,x1), then X\ > \i.

Next we state and prove the main result of this section.

PRroOPOSITION 2.7. — The following two conditions are equivalent:

(i) There is a positive continuous function u on I satisfying Lu = 0.

(ii) For any f smooth compactly supported in I,
(2.3.2) / (LO £ () f(x)m(z)dz + / f(z)*m(z)v(dz) < 0.

I I

Proof. — (i) implies (ii): First, observe that the equation Lu = 0 reduces through a
change of scale to an equation of the form (2.1.1). Let u be given by condition (i).
Let L := Conj(u,L). Since Lu = 0, L is a generator of a diffusion without killing
measure. Let m(z) := u?(z)m(z). Then for all g smooth compactly supported in I,
J;(Lg)(z)g(z)m(z)dz < 0. But

[ E@g@ynte)iz = [ (L0 ug)(@ ug)@m(@)ds + [ (ug)(aPm(av(do).

I I I
Thus (2.3.2) holds for all f positive compactly supported in I such that u=lf is
smooth. By density arguments, this holds for general smooth f.

(ii) implies (i): First we will show that for every compact subinterval J of I, there
is a positive continuous function u; on J satisfying Luy = 0 on J. Let J be such an
interval. According to Lemma 2.2, there is A > 0 and w) positive continuous on J
satisfying Luy — Auy =0 on J. Let Ly := Conj(u,\,L|j). Then,

1 d [(u? d
LA—uzmdx<wdx>“

Let Lg\o) := Ly—\. L9 is the generator of a diffusion on J. We can apply the standard
spectral theorem to Lg\o)_ Let —)\; be its fundamental eigenvalue. L&O) +A=0L),isa
non-positive operator because it is a conjugate of L|J which satisfies condition (ii).
This implies that A < A;. Let @ be a solution of Lg\o)ﬂ + Azt = 0 with initial conditions
@(minJ) = 0 and %(minJ) > 0. Since A < Ay, according to Property 2.6, @ is
positive on J. We set u 7 := u)U. Then u; is positive continuous on J and satisfies
Lujy = 0. This finishes the proof of the first step.

Now consider a fixed point zo in I and (J,)n>0 an increasing sequence of com-
pact subintervals of I such that xzo € jo and ,>qJn = I. Let uy, be a posi-

tive L-harmonic function on J,. We may assume that uj, (z9) = 1. The sequence

(dql;;” (zd )) is bounded from below. Otherwise, some of the u;, would change
n>0
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sign on I N (xg, +00). Similarly, since none of the u;, changes sign on I N (—oo,xp),

(%(mg )) . is bounded from above. Let v be an accumulation value of the se-
n>0

quence (dw n (xd )) . Then the L-harmonic function satisfying the initial conditions
n>0

u(zo) =1 and 2 (zf) = v is positive on I. O

We will divide the operators of the form (2.3.2) in two sets: D%~ for those that
satisfies the constraints of the Proposition 2.7, and D7 for those that do not. %~ is
made exactly of operators that are equivalent up to a conjugation to the generator
of a diffusion. We will subdivide the set D%~ in two: ®~ for the operators that
are a conjugate of the generator of a transient diffusion, and ®° for those that are
a conjugate of the generator of a recurrent diffusion. These two subclasses are well
defined since a transient diffusion can not be a conjugate of a recurrent one. Observe
that each of L € ®~, ©° and © is stable under conjugations, changes of scale and of
speed. Operators in ®~ and ©° do not need to be generators of transient or recurrent
diffusions themselves. For instance consider on R

_1a

2d 2—|—a+61—a 5_1,

where a;,a_ > 0. If 3ay —a_ > 0then L € ®%, if 3a;, —a_ = 0 then L € D, if
3a+ —a_ <0then L e®™.

If L € %, the semi-group (etL)tZO is well defined. Indeed, let X be the diffusion
on I of generator L(®) and ¢ the first time it hits the boundary of I or blows up
to infinity. Let u be a positive L-harmonic function and L := Conj(u, L). L is the
generator of a diffusion X on I without killing measure. Let f be the first time X hits
the boundary of I or blows up to infinity. Using Girsanov’s theorem, one can show
that for any F' positive measurable functional on paths, z € I and ¢t > 0 the following
equality holds:

b
u(z)

In case L € ®7, let (G;(z,y))z,yer be the Green’s function of L relatively to the
2

B [Liccowp ([ #0m)(dn) F(Xoceco)| = B 1 aulROF(Eoocac)]

measure u(z)

Gula,y) = [ / exp ( [ dz>) dtéi’(X)] — u(@)u(y)Cr(z,y).

For L € ©~, the Green’s functions G, satisfy the following resolvent identities:

m(z)dz. Then L has a Green’s function (Gr(z,y))s yer that equals
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LEMMA 2.8. — If L € ®~ and U is a signed measure with compact support on I such
that L+ 0 € ©7, then for all x,y € I,

Gris(z,y) — Crlz,y) = / GLio(2, 2)G (5, y)m(2)5(d2)
- / Gr(z,2)Grio(z y)m(2)7(d2).

Proof. — We decompose L as L = L(® + v, where L(®) does not contain measures and
v is a signed measure on I. Let (X;)o<¢<¢ be the diffusion of generator L©) . Then

G e,y) = [ / e [ e COmapta) ) dtz%oo],

Grio(z,y) = E, l/j exp (/ ¢ (X)m(a)(v + ﬁ)(da)) dtf%’(X)] :

I

and

e [ C0m@) 0+ n)(ao)) e (| f?<X>m<a>u<da>)

= exp ( /1 ¢(X)m(a)v(da) ) (exp ( / 02(X)m(a)i(d )) - 1)
= exp ( /I ¢(X)ym(a)v(da ) / / exp < / (X )m(a)i(d )) dol? (X)m(2)i(dz).

Thus, Grys(z,y) — Gr(z,y) equals
(2.3.3)

/ / / exp < / m(a)(£f(X)v(da) + £5(X )(da))> dszz(X)dszg(X)m(z)a(dz)].

We would like to interchange E, [-] and [,(-)m(z)#(dz). Let z € I and (X( )o<t<Cas

(Xt(z))ogt<cz be two independent diffusions of generator L(®) starting in x respec-

tively z. Applying Markov property, we get

E. [ / 5 / exp ([ me e x)wtaa) + €§(X)17(da))>dséi(X)dsﬁfz’(X)]
—E / - / “ exp ( / m(a) (€2(X ) (v + ﬂ)(da>)

X exp </Im(a)(ei(x(z))V(daOdufi(X(z))dsfi(X(m))]

= Grio(z,2)Gr(z,y).
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Since 7 has compact support,

Ey

/, /05 /Otexp ( /1 m(a) (£ (X)v(da) +Z?(X)ﬂ(da)))dsﬁj(X)dsfi’(X)m(z)|;7|(dz)]

- [&. [ / € | e ([ m@ e (X)vtan + )50 ) dse;'(X)dsety(X)] (=) 7](d2)

= [ Griote, DG ym(Iol () < +oo.
I
Thus, in (2.3.3) we can interchange E, [-] and [;(-)m(z)7(dz) and get

Gris(@,y) — Grle,y) = / Grs (2, 2)G1 (2 y)m(2)i(dz).

Since L and L + ¥ play symmetric roles, we also have
Gule9) — Greslo) = [ Gulen2)Grrolzpym(z)(-0)(d2). =
I

The discrete analog of the sets ®~, ©° and ©1 are symmetric matrices with
non-negative off-diagonal coefficients inducing a connected transition graph, with the
highest eigenvalue that is respectively negative, zero and positive. However, in con-
tinuous case, the sets L € ®~, ®° and ®* can not be defined spectrally because
for operators from L € ®~ and ®* the maximum of the spectrum can also equal
zero. However, the next result shows that the sets ®~ and © 7 are stable under small
perturbations of the measure v and that ©° is not.

PROPOSITION 2.9. — (i) If L € ©° and k is a non-zero positive Radon measure
onl,thenL—k€®D and L+ke€DT.
(ii) If L € D~ and J is a compact subinterval of I, then there is K > 0 such that for
any positive measure k supported in J satisfying k(J) < K, we have L+k € D~
(i) If L € ©T, then there is K > 0 such that for any positive finite measure k
satisfying k(1) < K, we have L —k € DT.
(iv) If L € ©*, there is a positive Radon measure  on I such that L — k € D°.
(v) Let L € D% and z9 < z1 € I. Then L|(zo,x1) € D0 if and only if there is an

L-harmonic function u positive on (zg,z1) and zero in xg and .

Proof. — (i): Consider u positive continuous on I such that Conj(u, L) is the generator
of a recurrent diffusion. Since Conj(u, L — k) = Conj(u, L) — &, Conj(u, L — k) is the
generator of a diffusion killed at rate x and thus L — k € ®~. Similarly we can not
have L + k € D%~ because this would mean L = (L + k) — k € D~.

(ii): Without loss of generality we may assume that L is the generator of a transient
1 d?

is transient, I # R. We may assume that zg := inf I > —oco. Write J = [z1, z3]. Let

diffusion and that it is at natural scale, that is to say L = Since the diffusion
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k be a positive measure supported in [z1,x2]. Let u be the solution to Lu + ux = 0
, ‘j—:(mar) = 1. u is affine on [zg, 1] and on [z, sup I).
On [z1,z2] u is bounded from above by xo — xo. Thus, if

with initial conditions u(zg) = 0

mingg, z,) M
(z2 — o)
then u is non-decreasing on I and hence positive. This implies that L + x € ©%~. By
Peleisal ™ then [+ 5 € D
(iii): By definition, there is f smooth compactly supported in I such that (2.3.2)
does not hold for f. Let U be the value of the left-hand side in (2.3.2). U > 0. If « is

a positive finite measure on I satisfying

K([z1,z2]) <

the point (i) of current proposition, if x([z1, z2]) <

U

I FIlZ maxgsupp(f) m’

then if we replace v by v — & in (2.3.2), keeping the same function f, we still get

k() <

something positive. Thus, L — x € DF.

(iv): Let f be a smooth function compactly supported in I such that (2.3.2) does
not hold for f. Let J be a compact subinterval of I containing the support of f. The
set

{s€[0,1]|L—vy+slyjyy €D}
is not empty because it contains 0, and open by Proposition 2.9 (ii). Let spax by its
supremum. Then sp,x <1 and L — vy + spaxljvy € D0, Then

k= 1p vy + (1 = smax)Lyvg

is appropriate.
(v): First, assume that there is such a function u. Then, by definition, L (z0.1)
0,L1
DY%~. Conj(u, L| (w0, )) does not have any killing measure and the derivative of its
0,71

natural scale function is ;3. It is not integrable in the neighborhood of zq or ;.

Thus, the corresponding diffusion never hits zg or 1. This means that it is recurrent.

Conversely, assume that L| (20.22) € D0 Let u be a solution to Lu = 0 satisfying
0,22

u(zg) = 0 and 2%(z{) > 0. If u changed its sign on (zo, 1), then according to the

preceding we would have L| (= € D+, If u were positive on an interval larger that
05

z1)

(zo,21), we would have L (=0 € ®~. The only possibility is that w is positive

111)
on (xg,x1) and zero in ;. O
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CHAPTER 3

MEASURE ON LOOPS AND ITS BASIC PROPERTIES

3.1. Spaces of loops

In this chapter, in Section 3.3, we will introduce the infinite measure p* on loops
which is at the center of this work. Prior to this, in the Section 3.2 we will introduce
measures p®¥ on finite life-time paths which will be instrumental for defining p*. In
Sections 3.4, 3.5, 3.7, 3.8 will be explored different aspects of u*. In Section 3.6 we
will extend the Vervaat’s Brownian bridge to Brownian excursion transformation to
general diffusions. This generalization can be easily interpreted in terms of measure u*
and is related to the results of Section 3.5. In Section 3.1 we will introduce the spaces
of paths and loops on witch will be defined the measures we will consider throughout
the paper.

First we will consider continuous, time parametrized paths on R, (7(t))o<t<7(v)>
with finite life-time T'(y) € (0,400). Given two such paths (v(t))o<i<7(+)
(7'(t))o<t<7(~"), & natural distance between them is

and

dpatns(7,7") = |1og(T (7)) — log(T'(v"))| + Jnax, YT (7)) =" (0T("))|-

A rooted loop in R will be a continuous finite life-time path (v(t))o<¢<7(y) such that
Y(T(7y)) = 7(0) and £ will stand for the space of such loops. £ endowed with the metric
dpaths is & Polish space. In the sequel we will use the corresponding Borel o-algebra,
Bg, for the definition of measures on £. For v € [0,1], we define a parametrization
shift transformation shift, on £: shift,(y) = 4 where T'(¥) = T'(v) and

© { Y(WT(7) +1) if t < (1-v)T(7),
Yt -1 —=v)T(y) ift>1—v)T(y).

We introduce an equivalence relation on £: v/ ~ v if T(y') = T(v) and there is
v € [0,1] such that 4/ = shift,(y). We call the quotient space £/, the space of
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unrooted loops, or just loops, and denote it £*. Let m be the projection 7 : £ — £*.
There is a natural metric do~ on £*:

dS* (W(’Y)v W(V/)) = 'uren[énl] dpaths (Shiftv (7)» 7/)'

(£*,de~) is a Polish space and 7 is continuous. For defining measures on £* we will
use its Borel o-algebra Bg-. m~1(Bg+), the inverse image of Bg- by T, is a sub-algebra
of Bg.

In the sequel we will consider paths and loops that have a continuous family of local
times (4§ (7))zer,0<t<7(5) relatively to a measure m(z)dz such that for any positive
measurable function f on R and any t € [0,T(v)],

/Otf( ds—/@”‘ m(z)dz.

We will simply write £%(vy) for ET(—y)('Y)'

In the sequel we will also consider transformations on paths and loops and the
images of different measures by these transformation. We will use everywhere the
following notation: If £ and &£’ are two measurable spaces, F : £ — £’ a measurable
map and 7 a positive measure on &£, F,n will be the measure on £’ obtained as the
image of ) trough F'.

3.2. Measures p**¥ on finite life-time paths

First we recall the framework that Le Jan used in [36]: G = (V,E) is a finite
connected undirected graph. Lg is the generator of a symmetric Markov jump process
with killing on G. mg is the duality measure for Lg. (pf (2, Y))zyev,e>0 is the family
of transition densities of the jump process and (IP’S;;())Eyer,tZO the family of bridge
probability measures. The measure on rooted loops associated with Lg is

dt
(3.2.1) (e / PG LO)pS (z, 2)me (z) — .
t>0 gev t

W1 is the image of yur,. by the projection on unrooted loops. The definition of u7, is
the exact formal analog of the definition used in [34] for two-dimensional Brownian
loops and in [63] for massive Brownian loops in dimension four. In [36] also appear
variable life-time bridge measures (47)Y); yev which are related to uj :

+oo
(3.2.2) pre () = /O oy ()pE (2, y)dt.

In this subsection we will define and give the important properties of the formal analog
of the measures ,uig in case of one-dimensional diffusions. In the next Section 3.2 we
will do the same with the measure on loops u7, ..
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I is an open interval of R. (X;)o<¢<¢ is a diffusion on I with a generator L of the
form (2.2.1). We use the notations of Section 2.1. Let z,y € I. Following the pattern
of (3.2.2), we define:

DEFINITION 3.1. — We define
—+o00
W= [, Ome i
0

We will write u*¥ instead of u7’Y whenever there is no ambiguity on L. The defini-
tion of ¥ depends on the choice of m, but m(y)u™? does not. Measures p*¥ appear
in [16] and enter the expression of Dynkin’s isomorphism between the Gaussian free
field and the local times of random paths. Pitman and Yor studied these measures in
[48, 50] in the setting of one-dimensional diffusions without killing measure (x = 0).
Next we give a handy representation of u”¥ in the setting of one-dimensional diffu-
sions. It was observed and proved by Pitman and Yor in case k = 0. See also [55]. We
consider the general case.

PROPOSITION 3.2. — Let F' be a non-negative measurable functional on the space of
variable life-time paths starting from x. Then

¢
(3.2.3) WY (F (7)) = E, / F((Xgogsgt)dtei'(m].

Equivalently

[
I EE) =B | [ F(Xosez)dl]
0
where 7 :=inf{t > 0| £;(X) > I}.

Proof. — It is enough to prove this for F' non-negative continuous bounded functional
witch takes value 0 if either the life-time of the paths exceeds some value ., < +00
or of it is inferior to some value t,;,, or if the endpoint of the path lies out of a
compact subinterval [z1, z2] of I. For j < n € N, set ¢, := tmin + w and

Aty = tmax=lmin - Almost surely, fOC F((Xs)o<s<t)dil} is a limit as n — 400 of

n—1

(3.2.4) SO F((X oz, oK) =€ (X)),

§=0
Moreover, (3.2.4) is dominated by ||[Flloolf ... It follows that the expectations con-

verge too. Using the Markov property and (2.2.2), we get that the expectation of
(3.2.4) equals

n—1 Aty
(3.2.5) Zj / B / B (F((Xs)ogect, ) e, (2 2)pr (2 y)drm(z)dz.
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Using the fact that p,(-,-) is symmetric, we can rewrite (3.2.5) as
(3.2.6)

z n—1 At
2 1 n
/ ( § Atnng,’; (F((XS)OSSSt,-,n)) Pt n (ZL‘, Z)) At / Dr (ya z)drm(z)dz
Z1 j=0 n JO

As n — 400, the measure Aitn OAt" pr(y, z)drm(z)dz converges weakly to d,. Us-
ing the weak continuity of bridge probabilities (Proposition 2.5), we get that (3.2.6)

converges to

tmax
| P ple . 0

Proposition 3.2 also holds in case of a Markov jump processes on a graph, where the
local time is replaced by the occupation time in a vertex dived by its weight. Proposi-
tion 3.2 shows that we can consider ™Y as a measure on paths (v(t))o<¢<7(,) endowed
with continuous occupation densities (€7(7)).cr,0<t<7(5)- Next we state several prop-
erties that follow almost immediately from Definition 3.1 and Proposition 3.2.

PROPERTY 3.3. — (i) The total mass of the measure p*¥ is finite if and only if
X is transient and then it equals G(z,y). If it is the case, m;ﬁ*x is the law
of X, starting from X(0) = x, up to the last time it visits x. mum,y is the
law of X, starting from X (0) = x, conditioned to visit y before ¢, up to the last
time it visits y.

(ii) The measure u¥* is image of the measure p*¥ by time reversal.
(iii) If I is an open subinterval of I, then
/J’??i(d’)/) = 1'y contained in iu?y(d’)/)
I

(iv) If & is a positive Radon measure on I, then

i) = exo (= [ m)ias) ) i)

(v) If A is a change of scale function, then

Az),Aly) _ ,
Scalek® L = Scaleas p7Y.
(vi) If V is a positive continuous function on I, then for the time changed diffusion

of generator %L,
Ty _ T,y
p oy = Speedy, py”.
.. . .y . . 2 . .
(vil) If u is a positive continuous function on I such that ZTZ is a signed measure

and Lu is a non-positive measure, then

o _ 1 Ty
Conj(u,L) U(Z’)U(y) L
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Previous equalities depend on a particular choice of the speed measure for the
modified generator. For (iv) we keep the measure m(y)dy. For (iil) we restrict m(y)dy
to I. For (v) we choose (% OA_I)_1

For (vii) we choose u(y)?m(y) dy. Property (ii) follows from that p;(z,y) = p:(y, x)

m o A~lda. For (vi) we choose ﬁm(y)dy.

and P, ,(-) is the image of P, (-) by time reversal. Property (vi) is not immedi-
ate from definition 1 because fixed times are transformed by time change in ran-
dom times, but follows from Proposition 3.2. Property (vii) follows from that a
conjugate does not change bridge probability measures and changes the semi-group

(pe(@, )My dy) zo0.0e1 to (351 (@, y)u()m(y)dy)eo.er. Property (i) was proved
by Pitman and Yor in case x = 0. See [50]. The case x # 0 can be obtained through
conjugation.

One can decompose the measures p*¥ at the minimum of the path. This is done in
[50] for the case k = 0. The general case can be obtained through conjugation. This
is a generalization of Williams path decomposition [68]. See also [22].

PROPERTY 3.4. — Let X and X be two independent Markovian paths of generator L
starting from X(0) = x and )?(0) =y. For a < z Ay, we introduce T, and T, the
first time X respectively X hits a. Let PT: be the first passage bridge of X from x
to a, conditioned by the event T, < (. Let ]I~”§“ be the analog for X. Let ﬁfa/\ be the

image of IF?;@ through time reversal and PTs < Iﬁ["’fa/\ the image of PLa ® ﬁyfa’\ through
concatenation at a of two paths, one ending and the other starting in a. Then,

)= [ R < QR <) (P <) Qu()da
acl,alzAy
The next property was given without proof by Dynkin in [16].

LEMMA 3.5. — Assume k # 0. Let Py(-) be the law of (Xi)o<t<¢ where X(0) = .
Then

/EI p=Y(m(y)k(dy) = 1x kited by xPa(-)-

Proof. — Let 0 < t; <ty < --- < t, and let Ay, As,..., A,, A1 be Borel subsets
of I. The measure pu™¥ satisfies the following Markov property

,u'%y(T(’Y) > tna’)’(tl) € Ala o 77(tn) € Anu7(T(7)) € An+1)

= / pe (@, z1)m(z1) .. Dt -t (X1, Tp)M(Tn) Y (T (7y) € Apgr)dzy .. . dxy,
A1 X-XA,

= 1y€An+1 / Pty (l’, $1)m($1) Dty —tn (»Tn—l, wn)m(wn)G(mn, y)dxl o dxy,.
A1 X--XAp
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Hence,
(3.2.7)

/EI YT (y) > o, v(t1) € A1, ..o, 7(tn) € An,v(T(7)) € Ans1)m(y)r(dy)

= / i, (z,z1)m(z1) ..ot —t,_y (Trne1, Tn)M(20) G (T, y)m(y)dy . . . da,k(dy).

A1 ><-“><An+1

From Markov property of X follows
Po(¢>tn, Xy, € A1y, Xy, € Ap, X¢- € Apya)

= / P (, x1)m(21) Pty —ty (1, Tn)M(20) Py, (X € Apyr)dey ... day.
A1 X--xXA,

Since the distribution of X~ on the event of X killed by & is 1,crG(Xo, y)m(y)x(dy),

we get

(328) ]Pm(c > tn,th € Al, Ce ,th S An;X(— € An+1)

= / D, (zyz1)m(ze) .. pe, —t,_, (Tn—1, Tn)M(20)G(Tn, y)m(y)dzy . . . dz,k(dy).

Ay X XAnpya

The equality between (3.2.7) and (3.2.8) implies the lemma. O
Next we study the continuity of (z,y) — pu®v.

LEMMA 3.6. — Let J be a compact subinterval of I. Then the family of local times
of X satisfies: for every e > 0,
lim supP, (supﬂi’/\g(X) > E) =0.

t—0t zeg yel

Proof. — It is enough to prove it in case the killing measure « is zero because adding
a killing measure only lowers £}, .(X). Without loss of generality we may also assume
that the diffusion is on its natural scale, that is to say w = 2. Then, X is just a time
changed Brownian motion on some open subinterval of R. For a Brownian motion
(Bt)t>0 the statement is clear. In this case P, (supyeR ng/\c (B) > 8) does not depend
on z and for a given z,

lim P, (supiAc(B) > 5) =0.
yeR

t—0+

Otherwise, let

¢
I :=/ m(Xs)ds.
0
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Then, given the time change that transforms X into a Brownian motion B, we have
t/(X) = 7,(B).

Let J = [zg,21]. Let Zmin € I, Tmin < o and Tmax € I, Tmax > 1. Let T,

ZTmin;Tmax be

the first time X hits either i, or Tmax. Let s > 0, e > 0and z € J. If t <

s , then on the event T, . . > t, Z; is less or equal to s. So, for ¢
max[mminv"max] m min;Tmax

small enough,

P, (sup b (X) > 5) <P, (sup ¢¥(B) > 6) Py (T e < t)-
yel

yeR
But,
Pr (Toinmax <) =Pry Tominmax <)+ Pry (Do zmax < t) s

and

lim sup Py, (Ty,n 2mee <) = 0.

t—=0%t zeg
Thus,

lim sup sup P, (sup e (X) > 5) <P, (sup (B) > 5) .
t—0t z€J yel yEeR

Letting s go to 0 we get the statement of the lemma. O

PROPOSITION 3.7. — Let tpax > 0. Let F' be a bounded functional on finite life-time
paths endowed with continuous local times that depends continuously on the path
(¥t)o<t<T(y) and on (lg”w(v)(y))zg, where we take the topology of uniform conver-
gence for the occupation densities on I. On top of that we assume that F is zero if
T(7y) > tmax- Then the function (x,y) — u®Y(F (7)) is continuous on I x I.

Proof. — If we had assumed that F' does only depend on the path regardless to its
occupation field then the continuity of (z,y) — u®¥(F(v)) would just be a conse-
quence of the continuity of transition densities and of the weak continuity of bridge
probability measures. For our proof we further assume that L does not contain any
killing measure. If this is not the case, then we can consider a continuous positive
L-harmonic function u. Then Conj(u, L) does not contain any killing measure and up
to a continuous factor u(x)u(y) gives the same measure p*¥ (Property 3.3 (vii)). We
will mainly rely on the representation given by Proposition 3.2.

Let z,y € I and (x;,y;)j>0 a sequence in I X I converging to (z,y). Without
loss of generality, we assume that (z;);>0 is increasing. We consider sample paths
(X+t)o<t<c and (Xt(j))ggt<<j of the diffusion of generator L starting from z and each
of x;, coupled on a same probability space in the following way: First we sample X
starting from z. Then we sample X (©) starting from z,. It starts independently from
X until the first time Xt(o) = X;. After that time X© sticks to X. This two paths
may never meet if one of them dies to early. If X, X(© ..., XU) are already sampled,
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we start XUt from %41 independently from the preceding sample paths until it
meets one of them. After that time XU+ sticks to the path it has met. Let

TG = inf{t > 0| X9 = X,}.

If X does not meet X, we set T\ = 400. By construction, (T());> is a non-
increasing sequence. Here we use that there is no killing measure. T() is equal in
law to the first time two independent sample paths of the diffusion, one starting
from = and the other from z;, meet. Thus, the sequence (T(j))jzo converges to 0 in
probability. Since it is decreasing, it converges almost surely to 0.

We use reduction to absurdity. The sequence (u®% (F(7)));>0 is bounded be-
cause F' is bounded and zero on paths with life-time greater then tp.x. Assume
that it does not converge to u®Y(F(7)). Then there is a subsequence that con-
verges to a value other than p®¥(F(v)). We may as well assume that the whole
sequence (u® % (F(y)));j>0 converges to a value v # p®Y(F(v)). According to

Lemma 3.6, the sequence ((¢Z,,(X()),cr);>0 of occupation density functions con-

TG)
verges in probability to the null function. Thus, there is an extracted subsequence
(€5 (X (n))),er)n>0 that converges almost surely uniformly to the null func-
tion. We will show that (u®in¥in (F(7)))n>0 converges to u*¥(F(v)) and obtain a
contradiction.

For ze T and [ >0 let
7 =inf{t > 0| £ (X) > 1}
and
7 = inf{t > 0] (X)) > 1}.

Then, according to Proposition 3.2,

wo(Fe) =5 [ e F((Xoosaer?)al],

Loy X9 ‘ .
wern (F) =] [ FX D oceerti)al]
0
For any z € I, if 77, € [T, ¢;), then 7%, = Tf;, where
=147, (X) =7 (XD).

Along the subset of indices (jn)n>0, T;JZ”Z converges to 7 for every I € (0,1{(X))

except possibly the countable set of values of [ where [ — T]?-Jl jumps. For any [ such
that ijs"l converges to 7, the path (X‘gj))OSSSrfjf”, converges to the path (X;)o<s<7/.

Moreover, for such [, the occupation densities (li’.’j”l (X)), cr converge uniformly
In,
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to (124 (X)).er- Indeed,
l

£y i (X)) = ezyan( ) = L36) (X) + L5 (XU,
n,l

Jnl

Thus, for all [ € (0, K?(X )), except possibly countably many,
lim F((XP)o<s<’) = F((Xs)ozs<T!)-

n—-+4oo

For n large enough, ¢; = ¢ and Ef:;x/\ (X n)) converges to E?max/\c (X). It follows

in
that the following almost sure convergence holds

(3.2.9)
Zfi’;an (xny . _ Wmaxnc (X)
tin FX ot = [ F(Xosuerti
n—+0oo Jq ’ 0

The left-hand side of (3.2.9) is dominated by ||F||+oo€?;ax/\@ (XUn). In order to
conclude that the almost sure convergence (3.2.9) is also an L! convergence we need

only to show that

(3.2.10) E [| @ (X))~ (X) |} —0.
We already know that K:;’izx AC, (XUn)) converges almost surely to £} ac(X). More-
over,
. tlTlélX
[zyfﬂZxAgjn (XU ”))} = /0 Pt(Zj, Y )
and

B[] = [ nie

It follows that the expectations converge. By Scheffe’s lemma, the L' convergence
(3.2.10) holds.

We have shown that there is always a subsequence (p®»¥in (F'(y)))n>0 that con-
verges to p™¥(F(y)), which contradicts the convergence of (u®¥% (F(7)));>0 to a
different value. O

3.3. The measure p* on unrooted loops

T,z

The measure p®* can be seen as a measure on the space of rooted loops £. Next

we define a natural measure p} on £* following the pattern (3.2.1).

DEFINITION 3.8. — Let up be the following measure on £:

dt 1 .
r(dy) : />0 /mej 2 (dV)pe(z, z)m(z)dz i W/QEGI pp " (dy)m(x)da.

W7, = Ty pir, is a measure on £*.
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We will drop the subscript L whenever there is no ambiguity on L. Definition 3.8
does not depend on the choice of the speed measure m(z) dz. The measures p and p*
are o-finite but not finite. They satisfy the following elementary properties:

PROPERTY 3.9. — (i) p is invariant by time reversal.
(ii) If I is an open subinterval of I, then
lu’L|I~(d'7) = 1'y contained in T IU‘L(d’Y)'

(iii) If K is a positive Radon measure on I, then

pa-aln) = ex (= [ £ )m(a)ids) ) ().
(iv) If A is a change of scale function, then
ﬂ'Scalegen L= Scale A« HL-

(v) If u is a positive continuous function on I such that mz is a signed measure
and Lu is a non-positive measure, then

HConj(u,L) = KL

Same properties hold for u*.

The measures y and p* contain some information on the diffusion X but the invari-
ance by conjugation (Property 3.9 (v)) shows that they do not capture its asymptotic
behavior. In Section 3.4 we will prove a converse to Property 3.9 (v). In our setting,
most important examples of conjugates are:

— The Bessel 3 process on (0,+00) is a conjugate of the Brownian motion
on (0,4+00), killed when hitting 0, through the function z +— .

— The Brownian motion on R killed with uniform rate xdz (i.e., k constant) is a
conjugate of the drifted Brownian motion on R with constant drift v/2x, through

the function z +— e~ V2T,

In the sequel we will be interested mostly in p* and not u. As it will be clear from
next propositions, the measure p* has some nice features that u does not.

PROPOSITION 3.10. — Let v € [0, 1]. Then shift,. u = p. In particular,
(3.3.1) u(-) = / shift,, p(-)dv.
ve[0,1]

Proof. — For a rooted loop 7 of life-time T'(7y), we will introduce ; the path restricted
to time interval [0,vT ()] and 2 the path restricted to [vT'(y),T(y)]. By bridge
decomposition property, the measure u(dvy1, dy2) equals

. dt
/ / /]P)vt d'}’l ]P)(],-ac )t(d')?)pvt (.’17, y)p(l—v)t(ya x)m(y) dym(a:) dx 7
t>0
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Since 7; and 7, play symmetric roles, changing the order of «; and -2 does not change
the measure pu. O

Formula (3.3.1) shows that we can get back to the measure p from the measure p*
by cutting the circle parametrizing a loop in £* in a point chosen uniformly on this
circle, in order to separate the start from the end.

COROLLARY 3.11. — Let F be a positive measurable functional on £.
Then, the map v — fol F(shift, (y))dv is 7~1(Bg+)-measurable and

d(F(v)w)

1
m 1By = /0 F(shift, (y))dv.

Proof. — We need only to show that for every F’ measurable functional on £*,

(3.3.2) | PP e = [ [ Pebite,0)F o).

From Proposition 3.10 follows that for every v € [0, 1],

(3.3.3) [ FOP t)utdn) = [ Plsbite, )P (r()ta).
Integrating (3.3.3) on [0,1] leads to (3.3.2). O

The next identity appears in [36] in the setting of Markov jump processes on graphs.
It can be generalized to a wider class of Markov processes admitting local times (see
Lemma 2.2 in [25]). We will give a short proof that suits our framework.

COROLLARY 3.12. — Let x € I. Then,

(3.3.4) E()p*(dy) = mp™*(dy).

Forl >0, let ]P’;’m (+) be the law of the sample paths of a diffusion X of generator L,
started from x, until the time 77 when £7(X) hits |, conditioned by 7* < (. Then,

+oo e o dl
(3.3.5) 1y visits o™ (dy) = / TP (dy)e” @ T
0

By convention, we set G(z,z) = 400 if X is recurrent.

Proof. — Let ¢ > 0 such that [z —¢,2+¢] C I. Let Tj;_. z4)(7) be the time a loop y
spends in [z — €,z + €]. From the identity (3.3.1) follows that

x+e
Hemeetd® gy = L [ i @ma)as,
and simplifying T'(y),
zr+e
Tigcpte) (V" (dy) = / T p® % (dy)m(z)dz.
r—¢€
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Using local times we rewrite the previous expression as

S22 e (m(z)dz 1 ote
= w(dy) = zi/ T > (dry)m(2)dz.
fw_Jr: m(z)dz (d) fzj; m(z)dz Jz—e (drym(z)
Let €9 > 0 such that [z — 9,z + £09] C I. Let F' be a continuous bounded functional
on loops endowed with continuous local times such that F' is zero if the life-time

(3.3.6)

of the loop exceeds tmax > 0 and if SUp,c(,_.y o1e,) {*(7) €xceeds lmax. According
to Proposition 2.5, the right-hand side of (3.3.6) applied to F' converges as ¢ — 0
to (mepu®*)(F(7)). By dominated convergence it follows that the left-hand side of
(3.3.6) applied to F converges as ¢ — 0 to
5 EF)p*(dy).

Thus, we have the equality
(3.3.7) ; ) F)p(dy) = (mep™*)(F(7))-
The set of test functionals F' that satisfy (3.3.7) is large enough to deduce the equality
(3.3.4) between measures.

From Proposition 3.2 follows that

+oo .
wa)= [ B Qe ma
0
Applying (3.3.4) to the above disintegration, we get (3.3.5). O

COROLLARY 3.13. — Let V be a positive continuous function on I. We consider a
time change with speed V: ds = V (z)dt. Then

(3.3.8) ,u*%L = Speedy,, U7
Proof. — By Definition 3.8 and Property 3.3 (vi),

1 (T V((0)
1p(dvy) = / ds Speedy,, dv)).
Applying Corollary 3.11, we obtain
dSpeedy, pr _ LV aeTe)d
Fio ) T _ -
dugr T s VS (s))ds
This concludes. O

In dimension two, the time change covariance of the measure p* on loops plays a key
role for the construction of the Conformal Loop Ensembles (CLE) using loop-soups as
in [57]: Let D be an open domain of the complex plane, (B;)o<t<¢ the two-dimensional
standard Brownian motion in D killed when hitting 0D and p* the corresponding
measure on loops. If f : D — D is a conformal map, then (f(B:))o<t<¢ is a time
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changed Brownian motion. If we consider y* not as a measure on loops parametrized
by time but a measure on the geometrical drawings of loops, then p* is invariant by
the transformation ((t))o<t<7(y) = (f(7(t)))o<t<T(y)- This is proved in [34].

Given that p* is invariant through conjugation and covariant with the change of
scale and change of time, if X is a recurrent diffusion, then up to a change of scale
and time, p* is the same as for the Brownian motion on R, and if X is a transient
diffusion, even if the killing measure k is non-zero, then up to a change of scale and
time, p* is the same as for the Brownian motion on a bounded interval, killed when
it hits the boundary.

3.4. Multiple local times

In this subsection we define the multiple local time functional on loops. Corol-
lary 3.12 gives a link between the measure p* and the measures (u®?%)gcs. Using
multiple local times we will get a further relation between p* and (u™¥), yer. This
will allow us to prove a converse to Property 3.9 (v): two diffusions that have the

same measure on unrooted loops are conjugates.

DEFINITION 3.14. — If (7(t))o<¢<7(+) is @ continuous path in I having a family of local
times (4§ (7))rer,0<t<T(y) relatively to the measure m(r)dz, we introduce multiple
local times £%1:%2:-%n (~) for x1,xa,..., T, € I:

rrminy) i [ 0 ()b () - 67 ).
0<ty <t2<--<t, <T(v)
If v € £ and has local times, we introduce circular local times for :

T () = Z (B Be@)rTe(m) (),

¢ circular
permutation
of {1,2,...,n}
{182 heing invariant under the transformations (shift,),c(o,1), We see it as a

functional defined on £*.

Multiple local times of form ¢%%%(y), called self intersection local times, were
studied by Dynkin in [18]. Circular local times were introduced by Le Jan in [36].

Let n € N* and p € {1,...,n}. Let Shuffle,, be the set of permutations o
of {1,...,n} such that for all i < j € {1,...,p}, 0(i) < o(j), and for all ¢ <
je{p+1,...,n}, (i) < o(j). Permutations in Shuffle,, are obtained by shuf-
fling two card decks {1,...,p} and {p+1,...,n}. Let Shuffle}, ,, be the permutations
of {1,...,n} of the form o o c where c is a circular permutation of {p+1,...,n}, and
o € Shuffle,, ,, satisfies (1) = 1. One can check the following:

PROPERTY 3.15. — For all z1,...,Zp, Tpt1,...,%n € I,
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05T () fFr+ 1T () = Z (2o To @) Topt1) - To(n) (7))
o€Shuffle;,
(i)
FFT15 5T (,y)e*prrl,...,xn (’Y) — Z (T! (1) T (p) Tl (p1) 105! (n) (’Y)
o’€Shuffle;, ,

The equality 3.15 (ii) appears in [36]. It is also shown in [36] that for transient
Markov jump processes,

(3.4.1) /f*“’“"‘ """ r(Mldy) = Gar, 22) X -+ X G(@n—1,20) X G(2n, 21).

It turns out that we have more. We consider L a generator of a diffusion on I of
form (2.2.1). If ; for ¢ € {1,2,...,n — 1} is a continuous path from z; to x;4;, then
we can concatenate y1,7s,...,Yn—1 t0 obtain a continuous path v; <1y < --- <1 yn_1
from z; to x,,. Let p®*2 .- - < u® 1" be the image measure "2 ®- - - Q pu*n-1:»
by this concatenation procedure.

PRrROPOSITION 3.16. — The following absolute continuity relations hold:

(i) (u™0®2 Qe Quon=2n)(dy) = L5201 () ptote (dy),
(i) ma(p™2 < -ee Qune b G Pt (dy) = T2 0T () (dry ).

Proof. — (i): Let ((Xt(J))OSt<<j)O§j§n—1 be n — 1 independent diffusions of generator
L, with X’ = &;. For 1 >0, let

I = inf {tj >0 67X > z}.

According to Proposition 3.2, (u®%2 - -+ < p*»=1%n)(F(v)) equals
(3.4.2)

1 n—1
E[ / F((Xf ))ogtgffjl <-- '<’(Xt( ))Ogtg‘r;ffl'lnil)dll coedly 1.
lj<ézj+1(x(j)),1§j§n—l
Let (X;)o<t<c¢ be an other diffusion of generator L. Let
=1inf{t > 0| I7>(X) > 1},

Tll

and recursively defined,
Tll,...,ljfl,lj = lnf{t Z Tl17-~-ylj—1 | Efj+1(X) > l]}'

Then, by strong Markov property, (3.4.2) equals
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which in turn equals
(3.4.3) E [/ Lyjit;<cF (X)ostst,_y) de €52(X) oo de, 45 (X)) -
By Proposition 3.2, (3.4.3) equals [ £%1:%n=1(y)F (y)u® % (dy).
(ii): According to the identity (i) and Corollary 3.11, we have
Tu (072 e QBT QPP (dy) = /01 £22> %0 (ghift,, (7)) dv e pu® 1t (dy).

According to Corollary 3.12,

1 1
/ £22>5%n (ghift,, (7)) dom, p® %t (dy) 26‘”1(7)/ £72 %0 (shift, (7)) dop™ (dy).
0 0

But,

1
o (7)/ 072" (ghift, (y))dv = £*F10%20 0 (),
0
which ends the proof. .

Note that Proposition 3.16 (ii) implies (3.4.1).

ProrosiTiON 3.17. — IfL and L are two generators of diffusions on I of form (2.2.1)

such that puj = “*Z’ then there is a positive continuogs function u on I such that g%‘ i
a signed measure, Lu a non-positive measure and L = Conj(u, L). If the diffusion of
generator L is recurrent, then L = L.

Proof. — Let m(z)dz be a speed measure for L and m(z)dz be a speed measure for L.
First let us assume that both L and L are generators of transient diffusions. Applying
the identity (3.4.1) to [,. £**¥(y)u*(dv) we get that for all z,y € I,

and for all z,y,z € I,
(3.4.5)

Gz (z,y)Gg(y, 2)G (2, x)m(z)m(y)m(z) = Gr(z,y)GL(y, 2)GL(z, x)m(z)m(y)m(z).
Fix z¢ € I. Let u be

; < Gy, y)i(y).
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Applying (3.4.4) and (3.4.5) to (3.4.6), we get that
(347) T CEDhEImG) = Grlen)m(w).

Applying (3.4.7) once to (z,y) and once do (z,z), we get that

Gi(z,y) G(y,y)
G(z,y) Gi(y,y)

From (3.4.8) we deduce that ‘327’5 is a signed measure. From (3.4.7) we deduce that

L= Conj(u, L). —Lu is the killing measure of L and is non-negative.

(3.4.8) u(y) = u(z)

If we no longer assume that L and L generate transient diffusions then consider
A > 0. Then pj_, = ,u*Z_ K According to the above, there is w positive continuous
d*u

function on I such that Z—7 is a signed measure and

L — X\ = Conj(u, L — \) = Conj(u, L) — \.
Then L = Conj(u, L) and necessarily Lu is a non-positive measure.

The class of recurrent diffusions is preserved by conjugation. If L is the generator
of a recurrent diffusion then so is Z, and thus, u is bound to satisfy Lu = 0. But since
the diffusion of L is recurrent, the only solutions to Lu = 0 are constant functions.
Thus, L = L. O

3.5. Measure on loops rooted at the minimum

By conditioning the measure p by the life-time of loops we get a sum of bridge
measures. In this section we will disintegrate the measure p* as a measure on the

minimal value of the loop and its behavior above this value. By doing this way we

>x
exc*

will obtain a sum of excursion measures 7 In case of Brownian loops on R this
disintegration will follow from the Vervaat’s bridge to excursion transformation. The
case of general diffusion will be obtained using covariance of the measure on loops by
time and scale change, restriction to a subinterval, killing, as well as invariance by

conjugation.

THEOREM (VERVAAT). — ([67],[6]) Let (v(s))o<s<t be a random path following the
Brownian bridge probability measure PEM7O7O(~). Let spin := argmin~y. Then the path

s+ —min<y + (shift s 7)(s)

has the law of a positive Brownian excursion of life-time t.
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In the sequel if 7 is a measure on paths and z € R, we will write (z + n) for the
image of n by v — x + 7. 771??\/1 will be the Lévy-It6 measure on positive Brownian
excursions and nt B u the probability measure on positive Brownian excursions of
duration ¢. Given a continuous loop (Vt)o<¢<7(y) and tmin the first time v hits min -y,
let V(v) be the transformation shift ¢,

(v

. V is Bg-measurable.

PROPOSITION 3.18. — Let pu;, be the measure on loops associated to the Brownian
motion on R. Then,

(3.5.1) i) =2 [ ot nz2)(dn) da.

a€R
The measure on (min -y, max+y) induced by p's,, is la<p(b — a) 2dadb. Let a < b€ R
and p, p two independent Bessel 3 processes starting from 0. Let Ty_, and Ty—, be the
first times p respectively p hits b — a. Let (ﬂt)0<t<Tb, 47, be the path

a+ p; ift <Ty_q,
a+ ﬁTb,a—&-TVb,a—t ’Lft > Tb—a-

Bt :=
Then the law of (ﬁt)0<t<Tb, VT, S the probability measure obtained by conditioning
the measure p1,, on (min~y, max~y) = (a,b).

Proof. — For the Brownian motion on R, upys writes

dt
w—HP’ dr.
.UBM /Ie]R />0 BM.,0, o)( ) ontd

Let v¢(a)da be the law of the minimum of the bridge under IP’BM’O’O. Applying the
Vervaat’s transformation, we get that

dt
V)= [ [ (/ w—a)dx) @+ 1290 () 2 da.
a€R Jt>0 ’ 2t

Since f (z — a) dz = 1, the right-hand side above equals

dt
a+nY )—=da
/a . /( PO s

But,
dt

/t (@ 1780 A = 2ak 130

The equality (3.5.1) follows. The rest of the proposition is a consequence of the

William’s representation of Brownian excursions (see [53], Chapter XII). O

COROLLARY 3.19. — Let I be an open interval of R and A > 0. Let p* be the measure

on loops in I associated to the generator 1 §dx2 . Given a loop (v(t))o<t<T(y), let

R(y) be the loop
R(7) = (maxy + miny — v(t))o<i<7(v)
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. . . . X y-+mi
that is to say the image of y through reflection relatively to =22, Then,
R.u* = p*.

Proof. — It is enough to prove this in case A = 0 and I = R. Otherwise, we multiply
the measure uj,, by a density function that is invariant by R. Then we use the
description of the measure pj,, conditional the value of (min~, max~y) and the fact
that if @ > 0, (p;)> is a Bessel 3 process starting from 0 and T}, is the first time it hits
b, then (y — pr,—t)o<it<1, has the same law as (p;)o<i<7, (see [53], Section VIL.4). O

Now we consider that L is a generator of a diffusion on I of form (2.2.1). Given a
point x¢ € I, ™% and 4% will be the L-harmonic functions satisfying the initial
conditions u™*(zg) = u"*(z9) = 0, d“;r;o (zf) = 1 and 9 D(zy) = —1. If
z <y € I then
(35.2) w(y)u™¥(z) = wz)u®*(y).

Indeed, the Wronskian W( =¥ u®) takes in x the value u™¥(x) and in y the value
u™®(y), and the ratio e )W( =Y uT®)(z) is constant. If k = 0, then the both sides
of (3.5.2) equal fy 2)dz. w0 is positive on I N (zg,+00) and u™*° is positive

on IN(—o0,z). Let L+ 70 be Conj(u™*°, L) restricted to I N (xq,+oc) and L™ be
Conj(u™% L) restricted to I N (—o0,zq). LT and L™ are generators of transient

diffusions without killing measures. If L is the generator of the Brownian motion
on R, then L0 is just the generator of a Bessel 3 process. In general case, g is
an entrance boundary for LT%° and L%, that is to say a diffusion started from
x # xo will never reach the boundary at zy, and we can also start this diffusions
at the boundary point z¢, in which case it will be immediately repelled away from
zo. Let z € I and (p;"")o<i<(+= be a diffusion of generator L™ starting from z.
Let y € I, y > x. Let T,/" be the first time p™* hits y and f,;”” the last time it

visits y. Then (p;fz T is a diffusion of generator L™ ¥ starting from .
Y

+t)0§t<
Let (p; "¥)o<t<c-v be a diffusion of generator L™¥ starting from y and T, ¥ the first
time it hits . Then (p;” )0<t<T+ - and (p
let C' be the constant

T_yy Jo<i<r v are equal in law: Indeed

w(z)
W (u=¥,ut")(z)
The Green’s operator of p™% killed in y is

C:

+,x(,/
+ - ) u (y) ’ /
(14, ) D) = € [Tt ny v ) iy )y
and the Green’s operator of p~*¥ killed in z is
u¥(y’)
O / (@AY VY ) =y W)Y
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The potential measure of (pf’m)0<t<T;,z starting from x is
U(z")dz' = Cut® (2 )u™Y (2" )m(z")dz’,
and for any f, g bounded functions on (x,y),
(3.5.3)
y
/ ((_L-i-,w

T

U = [T ) U

|(2,0)

The time reversal property for (p;” o<t <= follows from the duality relation (3.5.3).
See [53], Section VIL.4 for details on time reversal.

COROLLARY 3.20. — If L is a generator of a diffusion on I of form (2.2.1), then
(35.4) WO = [ mrtOu@da
acl

The measure on (minvy, max~y) induced by p* is 1a<b61%' Leta<bel.

Let (pj’a)0§t<<+,a and (pt_’b)OSKC,b be two independent diffusion, the first of genera-

tor L% starting from a and the second of generator L™ starting from b. Let Tb+’a be
ime ot hi —b ime p—* hi

the first time p*® hits b and T,° the first time p~° hits a. Let (ﬂt)OStST:,a+T;,b be

the path

5 o ift <T,"?,
= —b . +,a
pt,leva ift > T,

Then the law of (6t)0<t<T+,a+T—,b 1s the probability measure obtained by conditioning
<t<T, a

the measure p* on (min~y, max~y) = (a,b).

Proof. — Both sides of (3.5.4) are covariant by scale and time change. Moreover both
sides satisfy Property 3.9 (ii) for the restriction to a subinterval and Property 3.9
(iii) when adding a killing measure. Thus, the general case (3.5.4) follows from the
Brownian case (3.5.1) by this covariance properties.

If L is a generator without killing measure (x = 0) then the description of the
measure on (min~y, maxvy) and the probabilities obtained after conditioning by the
value of (min~y, max ) follow through a change of scale and time from the analogous
description in Proposition 3.18. If k # 0, then we can take u a positive L-harmonic
function and deduce the result for L from the result for Conj(u, L) using the fact that

N*L = 'u‘Eonj(u,L)' O
The relation between the measure on loops and the excursions measures in dimen-
sion 1 (identity (3.5.4)) has an analog in the setting of two-dimensional Brownian

loops. See Propositions 7 and 8 in [34] by Lawler and Werner. It is possible to disin-
tegrate the measure on loops in dimension 2 using the so called bubble measures.
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3.6. A generalization of the Vervaat’s transformation

In this section we will show a conditioned version of the Vervaat’s transformation
that holds for any one-dimensional diffusion of form (2.2.1) and not just for the
Brownian motion. L will be a generator of a diffusion on I of form (2.2.1). From
Corollary 3.12 and identity (3.5.4) follows that for every z € I,

(3.6.1) VuPL (dv)pe(z, z)dt = / 5 (y)n”*(dy)w(a)da.

>0 a€l,a<z
Let IP%, ,(dy | miny = a) be the bridge probability measure conditioned on the value
of the minimum being to equal a. Further we will show that there is a version that
depends continuously on (a,t). Let n;"® be the probability measure obtained from 5>
by conditioning the excursion on having a life-time ¢. The identity (3.6.1) suggests
the following:

PROPOSITION 3.21. — For everya <z €I andt >0

; £ (v)ng ()
(3.6.2 V*]P’tI " d*’y miny =a) = %
) = )= e
The distribution of minvy under ]P”;J equals
1 pP(T() € (Lt +db)
6. >a /= ’ d
(3.6.3) w(a)n; (4 (W))pt(ﬂv, 2) 7t a,

n” (T(y)E(t,t+dt))
dt

where is the density of the measure on the life-time of the excursion

&g (dy)
ng (€ (v) 7
in x is a measure on {s € [0,t] | v(s) = x}. The transformation V sends the starting

mduced by n~%. Given an excursion vy following the law the local time

point of the bridge to a point s € [0,t] distributed, conditional on the excursion -,

according to the measure de%(V) .
£ ()

Identities (3.6.2) and (3.6.3) can be viewed as a conditioned analog of the Vervaat’s
relation between the Brownian bridge and the Brownian excursion. The latter can be
deduced from (3.6.2) and (3.6.3) using the translation invariance of the Brownian
motion. From (3.6.2) we can only deduce that (3.6.2) and (3.6.3) hold for Lebesgue
almost all t and a. We need to show the weak continuity in (a, t) of conditioned bridge
probabilities and biased conditioned excursion probabilities to conclude. It is enough
to prove Proposition 3.21 for L not containing any killing measure and such that for
all a < z € I, a diffusion starting from x reaches a almost surely. Indeed, for a general
generator, Conj(u, L) does satisfy the above constraints and if Proposition 3.21 is
true for Conj(uy, L), then it is also true for L. From now on we assume that L satisfies
the above constraints. Next, we give a more constructive description of the conditioned
bridges and biased conditioned excursions. We start with bridges.
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Property 3.4 shows that the measure PZe < I@’Za/\ conditioned on T, + T, =t is a

version of P,  (dvy | miny = a). Let pgax) (z,y) be the transition density on IN(a, +00)

relatively to m(y)dy of the semi-group generated by L|m ( Then ptax) (z,a™) =

a,+oo).
0. According to [45], for all ¢t > 0, y — pgax)(ac,y) is C!. Let 82p§ax)(w,y) be the

derivative relatively to y. It has a positive limit an,E“X) (z,a™") as y — aT. Extended

in this way, the map (¢, z,y) — 82p§ax)(x, y) is continuous on (04 o00) X I'N(a, +00) X
IN[a,+00). The distribution of T, under P, is (see [27], page 154)

1 (ax)( +
— dt.
w(a) 82pt (IL‘, a )

Let nga; "t be the bridge probability measure of L|m (arto0)" It has a weak limit JP’;“:Q *

as y — at. Let F, be the sigma-algebra generated by the restriction of a continuous
path to the time interval [0, s]. Let P1% be the law of p*® starting from a. For all
s € (0,t), we have the following absolute continuity relations:

(ax),t o
(3.6.4) Poae’ 1y, i (Xoa®)
d]P)z Fs a azptax)(x’a_,’_) )

and for the time reversed bridge,

(ax),tA a @
- B et
drg* 7 82p§ax)(x,a+)

Using the absolute continuity relation (3.6.4) and (3.6.5), one can prove in a similar
way as in Proposition 2.5 that the map (¢,y) — ]P’ia;ﬂz’t is continuous for the weak
topology. The first passage bridge PZe disintegrates as follows

]‘ a a
(3.6.6) PO = oo [ B 00w a
t>

From Property 3.4 and (3.6.6) we get that:
PROPERTY 3.22. — The distribution of min~y under P}, is

d t a
(3.6.7) W / 09\ (,a™)0p\”, (w, a* )ds.

w(a)

There is a version of P,  (dy | min~y = a) that disintegrates as

z,at t—s

Jy (PL2" B0 (dm)0pl™) (2, 0%)0apl ) (w, at)ds
Jy 0298 (,a*)0p\ %) (x, a*)ds

(3.6.8)

Next we show that the probability measure given by (3.6.8) depends continuously
on (a,t).
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LEMMA 3.23. — The functions (z, a,t) — pgax)(a},a“‘) and (z,a,t) — 95p\"™ (z,at)
are continuous on {(z,a) | x > a € I} x (0,400).

Proof. — As in [45], we can use the eigendifferential expansion of L to express
p{)(z,a*) and 8:p{") (z,a*). Let zo. For A € R, consider e1(-,\) and ea(-, A) two
solutions to Lu + Au = 0 with initial conditions

e1(zg,A\) =1, %(mo,/\) =0, eazo,\)=0 %(xg,)\) =1
Let e(z, \) be the 2-vector whose entries are ej(z, \) and ex(z, A). According to The-
orems 3.2 and 4.3 in [45], for all @ € I, there is a Radon measure {(*) on (—o0, 0] with
values in the space of 2 X 2 symmetric positive semi-definite matrices such that for

all z € I N (a,+00),
0
B @at) = [ eMTela Vi @N)e(a, ),

8op\™) (z,a*) = /0 et”e(x,A)fW)(dA)@(a,A).
oo ox
Let z > a € I. Consider two sequences (%, )n>0 and (an)n>o in I N (—o0, ), converg-
ing to x respectively a, such that for all n > 0, z,, > a,. Let (b;);>0 be an increasing
sequence in I N (x,sup ) converging to sup . Let f, ; be the 2 x 2-matrix valued
measure on (—o00,0] corresponding to the eigendifferential expansion of L restricted
to (an,b;). fn,; charges only a discrete set of atoms. As shown in the proof of Theo-
rem 3.2 in [45], the total mass of the measures 1A|X|72[|f,;(dX), LA 72§ | (dN)
and 1 A [A]72|§(¢¥)||(d\) is uniformly bounded. Moreover, for a fixed n, as j — +oo,
1A |A|72%f,,;(d)) converges vaguely, that is against continuous functions vanishing at
infinity, to the measure 1 A |A|72§(¢»*)(d)). Moreover, for any increasing integer-
valued sequence (j,)n>0 converging to 400, 1 A [A|72f, ;. (d)\) converges vaguely
as n — 400 to 1 A|A|72§(2¥)(d)). Since the sequence (j,)n>0 is arbitrary, this implies
that 1 A |A|72§(@ ) (d)) converges vaguely as n — +00 to 1 A |A|72f(@X)(d)).
There are constants C, ¢’ > 0 such that for all A < 0 and n > 0,

’ ’ 8 ’
(369) lle(zn, VIl < VI, fle(an, V| < O VI, 25 (g, N)] < O VI,
Let t > 0 and (¢»)n>0 & sequence of times converging to t. From (3.6.9) follows that

lim sup|)\|26t">‘||e(mn,)\)|| X |le(an, A)|| = 0.
Aﬂfoonzo

A = 1V [X\%et"? (e(zn, A), O¢(an, \)) vanishes at infinity and converges uniformly
on (—00,0] to A — 1V |\|%e** (e(z,)),e(a, \)). The vague convergence of measures
implies that
0 0
lim et A Te(x,, A)F@ ) (dA)e(an, ) = / e Te(x, M@ (dN)e(a, N).

—
n—too /o —o0
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Similarly, 82p§:” ) (@, at) converges to dap\™™ (z,a't). O

LEMMA 3.24. — The map a — P1% is weakly continuous.

Proof. — Let ag € I. Consider the process (pf’ao)tzo following the law P;‘O’“O. For a €
In(ag,+00), let T, be the last time p™9 visits a. Then (p;"j:’t)tzo follows the law
PH. The process-valued map a — (p;"jr"t)tzo is almost surely continuous on I N

(ag, +00) and thus, the laws depend weakly continuously on a. O

PROPOSITION 3.25. — The version of ]P”;’w(d'y | miny = a) given by (3.6.8) is weakly
continuous in (a,t).

)t

Proof. — From the absolute continuity relations (3.6.4) for the bridge IP;“:Jr and

(3.6.5) for its time reversal, together with the continuity of the densities which fol-

lows from Lemma 3.23, and the weak continuity of a — P}%, we can deduce in a very

(ax),t

similar way as in Proposition 2.5 that the map (a,t) — P is weakly continuous

z,at
on (0,+00) x I N (—o0,x), and hence (a,s,t) — Pia;)’s < P;a;r)’t_“ is weakly con-

tinuous. Finally, the densities that appear in expression (3.6.8) are continuous with
respect to (a, s,t). O

2% which is similar to Bis-

Next we will give a decomposition of the measure 7
mut’s decomposition of Brownian excursions (see [53|, Section XII.4, Theorem 4.7).
Biane used this Bismut’s decomposition to give an alternative proof for the Brownian
Vervaat’s transformation ([6]). 82p§ax)(x,a+) is C! relatively to z and the deriva-
tive 61,2p§ax)(:v,a+) has a positive limit 81,2p§ax)(a+,a+) as y — aT. Moreover
t 3172p§ax)(a+,a+) is continuous. The measure on the life-time of the excursion

induced by n~% is (see [54])
1 (@x) + .+
Wal’th ((l ,a )dt
Let s € [0,t]. The measure n; ®(-) disintegrates as (see [54])

Loy, 08 (@, a)0ap ) (2, at
(3610) / (IP:(Ea:Jr),s/\ <]IP:(Ea,;<+),t s) () 2P (iL‘ a () ><2)pt—s (.’E a )m(y)dy
zel,x>a ’ ’ 81,2Pta (a+7 a+)

For every s; < sg € [0, s], under the bridge measure Péa; )’s,

sg , (ax) (ax)
@6.1) R
, S1 psa (ya Z)
and under the bridge measure IF’;“:Q s
sy ,.(ax) p;) (ax) +
(3612) P?(Ja;;)’t(£§2 ('7) _ gil (’7)) — / Dr (yﬂl(:(z)jps—r ('Tya )dr
’ 51 azps (y’ a+)
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Combining (3.6.10) and (3.6.12) we get that for every s; < s2 € [0, s],

oo . 2 9op{™) (&, a)9ap\" Y (2, a™)
(3.6.13) e (1) — €7 (7)) = / d il

@) ds.
S1 6172pt (a+,a+)

PROPOSITION 3.26. — Let F; and F> be two non-negative measurable functional on
the paths with variable life-time. Then,

(3.6.14) 77 ( | A< Ratr(s + r))ogrgt_smsez(v))

8,05 (2, at)Dopl™ ) (, at)

@ ds.
81,217,5 (a+ ) a'+)

t
_ /0 P(aXJr),s/\ (Fl )ng:Jr),tfs(Fb)

z,a

In particular,

(3.6.15)
t (ax) + (ax) +
T a ax),s a —s aZpS (ZL‘,(I )an —s (x,a )
e = [ (PO QP (@) :

@) ds.
51,21% (a+, a+)

Proof. — It is enough to prove the result in case F; and F5, are non-negative, contin-
uous and bounded. On top of that we may assume that there are spmin < Smax € (0,?)
such that F; respectively F5 takes value 0 if the life-time of a path is smaller than sy,
respectively ¢ — Smax, and that there is C € I, C' > a, such that F} and F; take value
0 if maxy > C. For j < n € N, set As,, := %(smaX — Smin) and 8j 5 1= Smin + JAS,.
Then, almost surely,

(3.6.16) /O Fi((v(r)osr<s) Fa((v(s + 7))osr<i—s)dsb5 ()

= lim Y Fi((v(M)ogr<s; ) (N=E, (M) Fa((¥(8741n+7))o<r<t—s;11.0)-
§=0

Moreover, the right-hand side of (3.6.16) is dominated by £7 (7)||F1||o || F2|lco- Thus,
the n; *-expectation converges too. Applying (3.6.10) and (3.6.11) we get

7 (FL((v(M)osrss, D, (1) = €, (D) F2((V(sj1,m + 7)or<t—s,41 1))

As,
_ / P(GX),Sj,n/\(FI)IP)(GX),t—Sj+1,n (F2)qn(r, y, 2)m(y)dym(z)dzdr,
0 (a,C)?

y,at z,at
where
(. 2) = 82]7&?:)(2/7a+)3ngi§3+1yn(z,a+)p(ax)(y’x)p(Aax)_ (2,2).
8172p£ax)(a+,a+) T Sp—T
The measure 1y’z>a€IALsn fOAs” Gn(r,y, 2)drdydz converges weakly as n — +oo

t0 0(z,2)- The maps (s,y) — BngaX)(x, a™) and (s,y) — ]P’gax)’y’“+(-) are continuous.
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Moreover, 62p§?2)(y,a+)82p§i§3+1 (2z,a™) is uniformly bounded for j < n € N and

y,z € (a,C]. All this ensures that the 7;“-expectation of the right-hand side of
(3.6.16) converges as n — 400 to the right-hand side of (3.6.14). O

Now we need only to match the preceding descriptions to prove Proposition 3.21.
(3.6.8) and (3.6.15) imply (3.6.2). (3.6.7) and (3.6.13) imply (3.6.3). The fact that
ds 5 (y

&)

the point where the excursion is split is distributed according to ) follows from

(3.6.14).

3.7. Restricting loops to a discrete subset

Let L be the generator of a diffusion on I of form (2.2.1) and (X;)o<t<¢ be the
corresponding diffusion. Let J be a countable discrete subset of I. A Markov jump
process to nearest neighbors on J is naturally embedded in the diffusion X. In this
section we will show that, given any z,y € J, the image of the measure 7Y through
the restriction application that sends a sample paths of the diffusion (X¢)o<t<¢ to
a sample path of a Markov jump process on J, is a measure on J-valued paths that
follows the pattern (3.2.2). From this we will deduce that the image of the measure
p7, through the restriction to J is a measure on J-valued loops following the pattern
(3.2.1) and which was studied in [36]. This property will be used in Section 4.2 to
express the law of finite-dimensional marginals of the occupation field of a Poisson
ensemble of intensity auj .

For a continuous path (v(t))o<¢<7(y) in I, endowed with continuous local times,
let

(7)== Y 6 (y)m(a).
€l
For s > 0, we introduce the stopping time

3(y) == inf{t > 0| Z}(7) > s}.
We write 4 for the path (7(7’£))0<8<IJ( (o on J. Let my be the measure
<s<Top,
my = Zm(x)&c.
23
The occupation measure of ! is
> (m(x)s,,
€l

and (£°(7))ze; are also occupation densities of the restricted path y' with respect
to my.

The restricted diffusion X7 is a Markov jump process to nearest neighbors on J,
potentially with killing. If zo < x; are two consecutive points in J, the jump rate from
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and the jump rate from z; to x is

. 1 1 1
To 80 T1 18 oy tmo) v w0 (ar) mEn)w(E@) a1 (7o)

If zg < 1 < 2 are three consecutive points in J, then the rate of killing while in z; is
1 W (u™%2, ut0)(xq) 1 1
m(z)w(zr) \ w2 (z)uto(z1)  um (o)  uh®i(za) )

If J has a minimum zg and z; is the second lowest point in J, then the killing rate

while in zq is

1 (W(u‘)xl,uT)(xo) 1 )
m(zo)w(zo) \ u™" (zo)uj(zo)  uho(z1)/

An analogous expression holds for the killing rate while in a possible maximum of J.
X7 is transient if and only if X is. Let Lj be the generator of X’. Lj is symmetric
relatively to my. Its Green’s function relatively to mj is (G(x,¥))syer, that is the
restriction of the Green’s function of L to J x J. X7 may not be conservative even if
the diffusion X is. In case if J is not finite, X! may blow up performing an infinite
number of jumps in finite time. Measures (17"Y)s yer, pr and p have discrete space
analogs (u7)zyer, pir, and pj , as defined in [36], that follow the patterns (3.2.2)
and (3.2.1).

PROPOSITION 3.27. — Let 2,y € J. Then v — ~' transforms u7? into u7? and u}

J
into py, .

Proof. — The representation (3.2.3) also holds for x7'”. For [ > 0, let
) =1inf{t > 0 | £¢}(X) > I},

and
2= inf{s > 0| 4(X?) > 1}.

Then for any non-negative measurable functional F,
+oo
WY (F(y)) = /0 dIE, [175,,J<IgF((Xﬂ)OSsSTf,J)} .

But, (X;H)OSSST;{,J
and only if 7/ < (. Thus, u7” is the image of 47 through the restriction of paths

is the image of (X;)o<t<,v by the map vy — 77, and le’ﬂ < Ig if

to J. The second part of the proposition can be deduced from that for any x € J,

e ()i (dy) = mapp*(dy),
and as noticed in [36],

(Y pi, (dy) = mpg " (dy)). O

Previous restriction property and the time-change covariance of p* (Corollary 3.13)
can be treated in a unified framework of the time change by the inverse of a continuous
additive functional. This is done in [25], Section 7.
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3.8. Measure on loops in case of creation of mass

We can further extend the definition of the measures p*Y on paths and p and p*
on loops to the case of L being a “generator” on I containing a creation of mass term,
as in (2.3.1). Doing so will enable us to emphasize further the conjugation invariance
of the measure on loops and will be useful in Section 4.2 to compute the exponential
moments of the occupation field of Poisson ensembles of Markov loops. Let v be signed
measure on I. Let L(®) .= 14 ( L_d ) and L := L) 4+ v,

DEFINITION 3.28. — — The measure on paths is

i) = e ([ Iman) ) wi @),

— the measure on rooted loops is

palan) = exp ([ m@)u(d)) o (),
I
— the measure on unrooted loops is puj := m.pur.

Definition 3.28 is consistent with Properties 3.3 (iv) and 3.9 (iii). If & is any other
signed measure on I, then

(3.8.) i) = e [ EGym@)atan) ) i @)

Same holds for p and p*. Under the extended definition, the measures p*¥ still satisfy
Properties 3.3 (ii), (iii), (v) and (vi). Proposition 3.7 remains true. p still satisfies
Properties 3.9 (i), (ii) and (iv). Proposition 3.10 and Corollary 3.11 still hold. The
identities (3.3.4) and (3.3.8) remain true for p*. Concerning the conjugation, we have:

PROPOSITION 3.29. — Let u be a continuous positive function on I such that 327“; s a
signed measure. u(x)?m(z)dz is a speed measure for Conj(u, L). Then for allz,y € I,
pé’é’nj(u)m = m;fi’y, and fconj(u,r)y = 1. Conversely, if L and L are two “gen-
erators” with or without creation of mass such that puj = “*Z’ then there is a positive

t Lu

continuous function u on I such tha d; is a signed measure and L= Conj(u, L).

Proof. — There is a positive Radon measure & on I such that both L — K and
Conj(h, L) — k are generators of (killed) diffusions. But
Conj(u, L) — & = Conj(u, L — §).

It follows that uéﬁ’nj(%L)_E = muf’zk, and fconj(u,L)—7 = ML—k- Applying
(3.8.1) we get the result.
If uy, = ,u%, we can again consider £ a positive Radon measure on I such that both

L—%and L—F are generators of (killed) diffusions. We have p} _ . = “*Z—k' According
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to Proposition 3.17, there is a positive continuous function u on I such that ‘32712‘ is a

signed measure and L — k = Conj(u, L — k). Then, L = Conj(u, L). O

Similarly to the case of generators of diffusions (Section 3.5), one can consider
L-harmonic functions v =% and u™% in case of L containing creation of mass. If L €
DT, then ™% respectively v is not necessarily positive on I N (—o0,z) respectively
IN(z,+00). Let

M(z) :=sup{y € I,y >z | Vz € (z,y),u""(2) > 0} € U {sup I}.

If L € %, then for all z € I, M(z) = supl. Let y € I, y > x. If y < M(x), then
L|(:ﬂ Y €D . If y= M(z), then L|(m ) € D% If y > M(x), then L|(m » € D*. The

diffusion p™% of generator L% = Conj(u+’x,L+’$|(z M(x))) is defined on (z, M (z)).

Similarly for p~¥. Moreover, if M (z) € I, then L*T? —M(z

M) = o prery

If L € ©%~, the description of the measure on (min~y, max~) induced by p*
as well as of the probability measures obtained by conditioning p* by the value
of (min v, maxy) is the same as given by Corollary 3.20, with the same formal expres-
sions. Next we state what happens if L € ©7:

PROPOSITION 3.30. — Let L € ®*. The measure on (min~, max ) induced by u* and
restricted to the set {a € I,b € (a, M (a))} is 1a€1,b€(a,M(a))%. Ifa<b<
M (a), then the probability measure obtained through conditioning by (min -y, max~y) =
(a,b) has the same description as in Corollary 3.20. Outside the set {a € I,b €
(a,M(a))}, the measure on (min~y, max~) is not locally finite. That is to say that, if
a<bel and b> M(a), then for all e > 0.

(3.8.2) p* ({miny € (a,a +¢),maxy € (b—¢,b)}) = +o0.

Proof. — For the behavior on {a € I,b € (a, M(a))}: There is a countable collection
(I;)j>0 of open subintervals of I such that

{a€I,be (a,M(a))} = U{x <yel}
j=0
Since for all j, L|Ij € ©%~, Corollary 3.20 applies to L|Ij. Combining the descriptions
on different {a < b € I;}, we get the description on {a € I,b € (a, M(a))}.
For the behavior outside {a € I,b € (a, M (a))}: Let A < B € R. Then,

teo rA dadb
(3.8.3) wiy ({miny < A,maxy > B}) = / / — = +400.
B Jooo (b—a)?

Ifa<beland M(a)=">, then 14« <pu* is the image of u},, through a change of
scale and time. In this case, (3.8.2) follows from (3.8.3). If b > M (a), then L|(a n €

DT. According to Proposition 2.9 (iv), there is a positive measure Radon measure &
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on (a,b) such that L|(a py " E DY From what precedes, (3.8.2) holds for [1,2| e
) (a:0)

Moreover, M*LI > ,uzl _,.- S0, (3.8.2) holds for ,uj‘:| .
(a,b) (a,b) (a,b)
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CHAPTER 4

OCCUPATION FIELDS
OF THE POISSON ENSEMBLES
OF MARKOV LOOPS

4.1. Inhomogeneous continuous state branching processes with immigration

In this chapter we will introduce the Poisson ensembles of Markov loops L, of
intensity au™ and consider their occupation fields, that is to say the sums over in-
dividual loops of the local times at some level. We will identify these occupation
fields as inhomogeneous continuous state branching processes with immigration. This
will be done in Section 4.2. In the Section 4.1 we will give the basic properties of
such branching processes. In Section 4.3 we will deal with the particular case of the
intensity being %,u*, in relation with Dynkin’s isomorphism.

Let I be an open interval of R. We will consider stochastic processes where z € I is
the evolution variable. We do not call it time because in the sequel it will rather
represent a space variable. Let (B,).cr be a standard Brownian motion. Consider the
following SDEs:

(4.1.1) dZ, = o(m)\/ZdBm + b(z) Z,da,
(4.1.2) dz, = a(x)\/ZdBw + b(z) Zydz + c(z)dx.

dB, is the spatial white noise. We use Itd’s integral for it, as our space is ordered
increasingly.

For our needs we will assume that o is positive and continuous on I, that b and
c are only locally bounded and that c is non negative. In this case existence and
pathwise uniqueness holds for (4.1.1) and (4.1.2) (see [53], Section IX.3), and Z and
Z take values in R, . 0 is an absorbing state for Z.

(4.1.1) satisfies the branching property: if Z(1) and Z® are two independent pro-
cesses solutions in law to (4.1.1), defined on IN[zg, +00), then Z(1) 4+ Z 2 is a solution
in law to (4.1.1). If Z and Z are two independent processes, Z solution in law to (4.1.1)
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and Z solution in law to (4.1.2), defined on I N [zg,+00), then Z 4 Z is a solution
in law to (4.1.2). Solutions to (4.1.2) are (inhomogeneous) continuous state branch-
ing processes with immigration. The branching mechanism is given by (4.1.1) and
the immigration measure is ¢(z)dz. The homogeneous case (o, b and ¢ constant) was
extensively studied. See [29, 58].

The case of inhomogeneous branching without immigration reduces to the homo-
geneous case as follows: Let zg € I and let

Olc) = exp (— / b(v) dy) - Aw = [ owrcwry

Zo

If (Zy)zer is a solution to (4.1.1), then (C(A_l(a,))ZA—l(a))aeA(l) is a solution in law

to
dZ, = 2\/ Z,dB,.
Let Z be a solution to (4.1.1) defined on I N[z, +00), starting at zo with the initial
condition Z;, = 29 > 0. Then, for A >0 and z € I, z > zo:

—209(Z0,,A)

e

7,\21] —e

Bz, == {
¥(xo,x, ) depends continuously on (xg,z, ). If z = xg, then
(4.1.3) P(xo, o, A) = A
If g <xz1 <29 €1, then

110(:1:07 x2, A) = 1)0(1'07 X1, 1/1(1717 Z2, A))
1) satisfies the differential equation

(4.1.4) %(mo,w,)\) =

o(z0)?

Y(xo, , )\)2 — b(xo)(zo,x, ).

If b is not continuous, Equation (4.1.4) should be understand in the weak sense. If b is
continuous, then (4.1.4) satisfies the Cauchy-Lipschitz conditions, and ¥ is uniquely
determined by (4.1.4) and the initial condition (4.1.3). This is also the case even if
b is not continuous. Indeed, by considering C(a:)Zz rather than Zm, that is to say

considering g((fo))w(xo, z, A) rather than ¥ (xo,z,\), we get rid of b.

Inhomogeneous branching processes are related to the local times of general one-
dimensional diffusions:

PROPOSITION 4.1. — Let zg € I and let (X¢)o<i<c be a diffusion on I of generator L
of form (2.2.1) starting from xqg. Let zo > 0 and

720 = inf{t > 0 £,°(X) > 20}.

z
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Then, conditional on T2° < (, (£2 7o (X)) wel s>, 18 a solution in law to the SDE

- = dl -
(4.1.5) dZ, = \/20(@)\ Z,dB, + 2%(@%@:.

Proof. — If X is the Brownian motion on R, then w = 2 and u| is constant. In this
case the assertion is the second Ray-Knight theorem. See [53], Section XI.2. The Equa-
tion (4.1.5) is then the equation of a square of Bessel 0 process. If min < ¢ and X is
the Brownian motion on (Zmin, +00) killed in Zmyin, then the law of (Kfzo (X)) zer,z>x0
conditional on T < ¢ does not depend on x.,;, and is the same asz 0in case of the
Brownian motion on R. Equation (4.1.5) is still satisfied.

If X is a diffusion on I that satisfies that for all x+ > a € I, starting from z,
X reaches almost surly a, which is equivalent to u| being constant, then through
a change of scale and time X is the Brownian motion on some (Zmpin, +00), where
Zmin € [—00,4+00). Time change does not change the local times because we defined
them relatively to the speed measure. Only the change of scale matters. If S is a
primitive of w, then, conditional on 7° < (, (Zf;&y)(X ))y>18(0) 18 & square of
Bessel 0 process. The Equation (4.1.5) follows fro(IJn the equation of the square of
Bessel 0 process by deterministic change of variable dy := %w(w)dm.

Now the general case. Let (Xt)0§t<5 be the diffusion of generator Conj(u,L).
ik
We assume that both X and X start from zg. The law of X up to the last time it
visits xg is the same as for X. Let

= 1
= inf {t >0]6°(X) > )220}.

uy(zo

dz is the natural scale measure of X and u) (z)?m(z)dz is its speed measure.

Then, the law of (Kf:(? (X))zer,z>z, conditional on 72° < ¢ is the same as the law

of (uy(z )2€x(~))$61 +>2, conditional on 7 < (. The factor u(x)? comes from the
fact that performing an h-transform we change the measure relatively to which the
local times are defined. For any a < xg € I, X reaches a a.s. Thus, (¢2(X ))mel z>z0

satisfies the SDE
V2w(z
dZ, = \/ Z,dB,,
Cuy(e) ’
and (ul(m)2€§zo ()?))mel’meo satisfies (4.1.5). O
Z0

If there is immigration: Let Z be a solution to (4.1.2) defined on I N [zg,+00),
starting at zo with the initial condition Z,, = 29 > 0. Then, for A > 0 and z € I,
T Z Zo,

(4.1.6) Ez, ,—z 6 7"] = exp (—zow(xo,x,/\) - /w w(y,x,/\)C(y)dy) :
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4.2. Occupation field

Let L be the generator of a diffusion on I of form (2.2.1).

DEFINITION 4.2. — The Poisson point process of Markov loops associated to L, with
intensity parameter o > 0, is the Poisson ensemble of intensity auj, denoted L, .
Ly, 1, is a random infinite countable collection of unrooted loops supported in I. It is
also called “loop-soup”.

~

DEFINITION 4.3. — The occupation field of £, 1, is (EQL)QCGI, where

L2 =Y ().

YELa,L

We will drop out the subscript L whenever there is no ambiguity on L. In this
section we will identify the law of (Eﬁ)xe 7 as an inhomogeneous continuous state
branching process with immigration. If J is a discrete subset of I, then applying
Proposition 3.27, we deduce that (Eﬁ)wej is the occupation field of the Poisson en-
semble of discrete loops of intensity a7y, , as defined in [36], Chapter 4. This fact allows
us to apply the results of [36] in order to describe the finite-dimensional marginals of
the occupation field. If the diffusion is recurrent, then for all x € I, Zg = 400 a.s. If
the diffusion is transient, then for all z € I, Eg < 400 a.s. Next we state how does

the occupation field behave if we apply various transformations on L.

PROPERTY 4.4. — Let L be the generator of a transient diffusion.

(1) If A is a change of scale function, then
FA(z)

_ px
a,ScaleS™ L ‘COC:L'

(ii) If V is a positive continuous function on I, then
Le L= Ly 1

(iil) If u is a positive continuous function on I such that Lu is a non-positive mea-
sure, then
1 =~

P~ . -
[’a,Conj(u,L) - U(SC)2 [’a,L‘

Previous equalities depend on a particular choice of the speed measure for the
modification of L. For (i) we choose (% OA_l)_1
%m(m)dm. For (iii) we choose u(x)?m(z)dz. The fact that L3, conjeur) F LaL
despite L4, conj(u,L) = La,z comes from a change of speed measure.

m o A~ 'da. For (ii) we choose

Next we characterize the finite-dimensional marginals of the occupation field by
stating the results that appear in [36], Chapter 4.
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PROPERTY 4.5. — The distribution of Zﬁ 18

Crl@a)® s (1
1 o (g ) oot

Let x1,%9,...,2, € I and A1, Aa,...,An > 0. Then,

n ~ det(Gr_sn 5. (5,2, iin )<
(4.2.1) E lexp (-Z&Li")] = ( (G Zi:l)\’(;”( iigiss ) .
i=1

det(GL(2i, 5))1<i j<n

The moment E [Egl Efff .. Egn] s an o-permanent:

B[Ly L. L] = 3 at et oS T[] Glai, o).
ceS, i=1

~

If J is a discrete subset of I, then (LZ)zcy, viewed as a stochastic process that evolves
when x increases, s an inhomogeneous continuous state branching process with im-
migration defined on the discrete set J. In particular, for any x1 < xo < --- <z, €1
andp € {1,2,...,n}, (231,23, ... ,Eﬁp> and (Eﬁ;’, Lot . ,Eﬁ”) are independent

.. T
conditional on L.

Next we show that the processes x — L% parametrized by € I, where z is assumed
to increase, is an inhomogeneous branching process with immigration of form (4.1.2).
In particular, it has a continuous version and is inhomogeneous Markov.

PROPOSITION 4.6. — (Ez)ze] has the same finite-dimensional marginals as a solution
to the stochastic differential equation

dl
(4.2.2) dZy = \/2w(x)\/ ZydB, + 2%(@@@ + aw(z)dz.

If L is the generator of a Brownian motion on (0,4+00) killed when it hits 0, then
(Eg)wo has the same law as the square of a Bessel process of dimension 2a starting
from 0 at x = 0. If L is the generator of a Brownian motion on (0, Tmax), killed when
hitting the boundary, then (E§)0<m<$max has the same law as the square of a Bessel
bridge of dimension 2a from 0 at £ =0 to 0 at T = Tpax-

Proof. — Let g < x € I and Ao, A > 0. Applying the identity (4.2.1) to the case of
two points, we get that
(4.2.3)

E [exp (—Aoﬁzo - )\Eﬁ)] = (1 + XG(@o, 70)) (1 + AG(, )) — Ao A(G(o, 7))?)
Let

-

. Aag G(;L‘(),l'o) ¢
o )\U‘Ca = ~/ . N .\
(20, Ao) :=E {e } (G($07$0) + )‘0>
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For y < x, let
G(z,y)G(y, z)A
G(y,y)(G(y,y) + Adety . G)’

G(y,y)
A) = —1 .
oy, z,\) og (G(y’y) - Ndet, . G

One can check that the right-hand side of (4.2.3) equals
U(zg, Ao + ¥(z0,x, N)) exp(—ap(zq, z, A)).
In particular, for the conditional Laplace transform:
(424) E [exp (—)\Ez) | Zﬁo} = exp (—Zﬁodz(xo,x, )\)) exp(—ap(zg, z, ) a.s.

Moreover,

Yy, z,\) =

8’1/1 2 dul

?y(yvxv /\) = W(UL,UT)(y)’w(y,IE, )‘)2 - Ul(y) @(y)dj(y»x’ )‘)
= w020 - 25 )l ),
and
dp
?y(yvma/\) = —W(UL,UT)(y)lﬁ(y,IE,)\) = —w(y)ip(y,x,)\),

and we have the initial conditions ¢ (z,z,A) = A and ¢(z,z,A) = 0. Thus, (4.2.4)
has the same form as (4.1.6) where c(y) = aw(y). Let (Zy)yer,y>a, be a solution to
(4.2.2) with the initial condition Z,, being a gamma random variable of parameter o
with mean aG(zo, zo). It follows from what precedes that (£20, £2) has the same law
as (Zzy, Zz). Using the conditional independence satisfied by the occupation field, we
deduce that (Eg)yel,yZaco has the same finite-dimensional marginals as (Zy)yer,y>m,-
Making x¢ converge to inf I along a countable subset, we get a consistent family of
continuous stochastic processes, which induces a continuous stochastic process (Z;)yer
defined on whole I. It satisfies (4.2.2) and has the same finite-dimensional marginals
as (Eg)yel .

In case of a Brownian motion in (0, +00) killed in 0, the Equation (4.2.2) becomes
dZ, = 2+/ Z,dB, + 2a dz,

which is the SDE satisfied by the square of a Bessel process of dimension 2a. Moreover
(Ei)x>0 has the same one-dimensional marginals as the latter, more precisely Eﬁ is
a gamma r.v. of parameter o with mean 2ax. This shows the equality in law.

In case of a Brownian motion in (0, Zyax) killed in 0 and Zyax, the Equation (4.2.2)
becomes

1
dZ, =2\ Z,dB, + ——— Z,.dx + 2adx,

Tmax —
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which is the SDE satisfied by the square of a Bessel bridge of dimension 2« from

~

0at x =0 to0 at £ = Tmax. Moreover, the latter process and (LZ)o<z<z,,., have

the same one-dimensional marginals, more precisely gamma r.v. of parameter a with

mean 2a(Tmax — ) ;. Thus, the two have the same law. O

max

We showed that (Zg)me 1 has the same finite-dimensional marginals as a continu-
ous stochastic process. We will assume in the sequel and prove in Section 5.2 that
one can couple the Poisson ensemble £, and a continuous version of its occupation
field (Eg)xe 7 on the same probability space. This does not follow trivially from the
fact that the process (Eﬁ)we 1 has a continuous version. Consider the following coun-
terexample: Let U be an uniform r.v. on (0,1). Let & be a countable random set of
Brownian excursions defined as follows: conditional on U, & is a Poisson ensemble
with intensity 135, + 15y Let (&,)scr be the occupation field of &. Then, & is

continuous on (—oo0,U) and (U, 4+00) but not at U. Indeed, & =0 and

Let (&!)ycr be the field defined by: & = &, if 2 # U and &) = 1. (&))per is
continuous and for any fixed x € R é’z =&, as. Thus, (é‘Z)zEJR is a continuous version
of the process (gx)me]]{, but it can not be implemented as a sum of local time across
the excursions in &. As we will show in Section 5.2, such a difficulty does not arise in
case of L,.

(Eg)ze 7 is an inhomogeneous continuous state branching with immigration. The
branching mechanism is the same as for the local times of the diffusion X, given
by (4.1). The immigration measure is aw(x)dz. The interpretation is the following:
given a loop in L,, its family of local times performs a branching according to the
mechanism (4.1), independently from the other loops. The immigration between = and
x4 Az comes from the loops whose minima belong to (z,z + Az). For a better under-
standing of this, it is useful to keep in mind the representation of the unrooted loops
as positive excursions above their minima, as in Corollary 3.20. In case of Brownian
loops on (0, +00) or (0,1), one recovers in this way the Lévy-Hincin representation of
squares of Bessel processes and Bessel bridges [49, 35, 46]. We would also like to men-
tion Pitman’s work [47], where he studied a cyclically stationary local time process
on a circle, which he decomposed as a sum of individual local times over an infinite
countable collection of Poisson distributed loops, called “pulses”.

It is remarkable that, although the immigration measure is absolutely continuous
with respect to Lebesgue measure, there is only a countable number of moments at
which immigration occurs. These are the positions of the minima of loops in L.
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Moreover, the local time of each loop at its minimum is zero. For x > a € I, let

Eee Y e

V€L
min~vy>a

Let a<bel. For j <neN,let Az, := %(b —a) and let z;,, := a + jAz,. Then,
(E((f] —1):25 ) is a sequence of independent gamma r.v. of parameter o and the
1<j<n
G(zj1,7;)G (), 25-1)
G(zj-1,2-1)
G(zj-1,2;)G (), 25-1)
G(zj-1,7-1)

and o(Ax,,) is uniform in j. Thus,
n
li E[ E(zj—l)»%‘] =
m B2 L

n . . e b
lim « (G(.’ﬂj,l‘j) _ G(leam])G(:UJ?le)) — a/ w(x)dac,

mean of L5777 is a(G(xj,xj) - ) For n large,

G(zj,x5) —

= w(zj_1)Az, + o(Azx,),

n—boo © e G(zj-1,7j-1)
and
n
A(z]—l)’m]
Jim Var (30 £
Jj=1
n 2
= lim o (G(Ij,xj)_G(xJ1’%)(;(%’%1)) =0.
n—o0 G(zj-1,2j-1)

j=1
It follows that 37, L&~ converges in probability to o f; w(z) dz. This is con-
sistent with our interpretation of immigration.

Next proposition deals with the zeroes of the occupation field.

PROPOSITION 4.7. — Let zg € I. If fm“w z)dz < +oo, then

lim Ex =

x—inf I

sup

Analogous result holds sz (z)dz < +00.

If a > 1, then the continuous process (Lg)mel stays almost surely positive on I. If
a <1, then (LZ)zer hits 0 infinitely many times on I.

Proof. — If f ey w(z)dr < +oo, then L + k, where & is the killing measure of L, is
also the generator of a transient diffusion. We can couple (£a L)mej and (Ea Ltr)ael

on the same probability space such that a.s. for all z € I, [,a L < ‘Ca,L+n' But,
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~

according to Property 4.4 (i), (£, 1y, )zer is just a scale changed square of Bessel
process starting from 0 or square of a Bessel bridge from 0 to 0. Thus,
lim L%, < lim £%,. . =0.
w1 0L = i p e Ls

Regarding the number of zeros of (Eﬁ)me 7 on I, Property 4.4 ensures that it remains
unchanged if we apply scale, time changes and conjugations to L. Since any generator
of a transient diffusion is equivalent through latter transformation to the generator of
a Brownian motion on (0, 4+00) killed in 0, the result on the number of zeros of (L%) e
follows from standard properties of Bessel processes. O

Next we study the clusters of loops. We introduce an equivalence relation on the
loops of L,: 7y is in the same class as 7 if there is a finite chain of loops 9,71, --,Vn
in £, such that vo = v, 7, = 4, and for all ¢ € {0,1,...,n — 1}, %([0,T(y:)]) N
Yi+1([0, T(vi41)]) # 0. A cluster is the union of all v([0,T'(y)]) where the loops
belong to the same equivalence class. It is a subinterval of I. By definition, clusters
corresponding to different equivalence classes are disjoint.

The study of clusters of a loop-soup was initiated in [57] in the two-dimensional
Brownian setting, where these clusters were used to construct the Conformal Loop
Ensembles (CLE). In [37] were studied the clusters of loops of Markovian jump pro-
cesses on a general graph. The particular case of the discrete circle was treated in [11].
The loop clusters on Z¢, d > 3, and the question of their percolation, were studied
in [13, 12]. In our setting of one dimensional diffusions the description of clusters of
loops is simple: these are exactly the connected components of the positive set of
the occupation field. This key observation led the author of these notes to study the
Poisson ensembles of loops associated to diffusions on metric graphs [40], obtained
by replacing discrete edges in a graph by continuous line segments. There, the loops
combine both non-trivial geometry and continuous local times. There too, the clusters
of loops are exactly the connected components of the positive set of the occupation
field. Out of this, it was deduced that on the discrete half-plane Z x N, the critical
intensity for the nearest neighbor random walk loops is @ = 1/2 [41], the same as
in the two-dimensional Brownian case studied in [57], and that one obtains CLE as
scaling limits of discrete clusters of loops on Z x N [42].

PRrROPOSITION 4.8. — Let L be the generator of a transient diffusion on I. If o > 1, the
loops in L, form a single cluster: I. If a € (0,1), there are infinitely many clusters.
These are the maximal open intervals on which (Ez)xej is positive. In case of the
Brownian motion on (0,+00) killed at 0, the clusters correspond to the jumps of a
stable subordinator with index 1 — «. In case of a general diffusion, by performing a

change of scale of derivative %;‘)—2, we reduce the problem to the previous case. In case
1
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of the Brownian motion on (0,400) killed at 0 and with uniform killing k, the clusters
e2V2hz g
W .

correspond to the jumps of a subordinator with Levy measure 1;~¢
Proof. — Assume that £, and a continuous version of (Eg)ze 7 are defined on the same
probability space. Almost surely the following holds:

— Given v # ' € L4, minvy # max~y' and max~y # min~’.
— For all v € L,, M7 (y) = M3*Y(y) = 0 and ¢*(y) is positive for z €
(min v, max ).

Whenever the above two conditions hold it follows deterministically that the clusters
are the intervals on which (£Z),ec; stays positive. We deduce then the number of
clusters from Proposition 4.7.

~

If L is the generator of the Brownian motion on (0, +00) killed at 0, then (£%),¢; is
the square of a Bessel process of dimension 2a and its excursions correspond to the
jumps of a stable subordinator with index 1 — a.

In general, a generator L has the same measure on loops as Conj(u, L). A diffusion

of generator Conj(u;, L) transforms through a change of time and a change of scale

of density %:—2 into a Brownian motion on (0,+o0) killed at 0. For the clusters, the
1

change of time does not matter.

In case of a Brownian motion on (0,+00) killed at 0 and with uniform killing x,

2Kx

we can take u) (r) = e~ . The scale function is then

Y dy " 2van L 23
Sa:z/ :/ eV gy = ——__(£2V2rT _ 1),
(=) o uy(y)? 0 Y 2\/2/<;( )

Let (Y:)t>0 be an 1 — a stable subordinator with Levy measure 1y>0y_(2_a)dy. The

clusters of E%%d‘%—ﬂ correspond to the jumps of the process (S™'(Y;))i>0, which
is not a subordinator. We will see that nevertheless the latter process has the same
set of jumps as a subordinator with Levy measure 1,9 (62622\:?1‘1)‘”2_&. Let ¢ > 0 and
(Yz,t)t>0 be the process obtained from (Y;);>o by removing all the jumps of height
less then €. By construction Y, ; <Y;. (S_l(Ye,t))tzo is a Markov process: given the
position of S7!(Y.,) at time ¢, the process waits an exponential holding time with

inverse of the mean equal to

/+oo dy B 1
. y2—a - (1 _ a)gl—a'

Once a jump occurs, the jump of Y; is distributed according the probability

dy
y2—a :

Lyse(l—a)et™@
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The distribution of the corresponding jump of S~!(Y. ;) is obtained by pushing for-
ward the above probability by the map y — S~ (y + Yz ;) — S~*(Yz+), which gives

(2\/@)2*0‘62‘/%(“”5_1(YSvf))dx
(e2V2R(a+S 1 (Vo)) — 62\/%5—1(&,0)2‘“

l—a

loss-1(e4v..)—5-1(v..) (1 — @)e

e2V2re gy
(62 2k __ 1)2—a
(2v/25K)2~ e2V2re iy
(1+ 2@}/6’01704 (e2V2rz — 1)2—a'

—« —a, —(l—« kSt et
= Ly 51 (et ver)—5-1(ve0) (1 — @)el % (2V/2k) 3™ (1m2VERS T (¥er)

= Loss-1(e4ve )-s-1(v. (1 — @)™

Consider now the random time change

(2V2K)2
inf t>0/ ds>wvy,
re(v) = { | 1+2ﬁ2,d,65)1a —}

and at the limit as ¢ — 0,

7(v) == 1nf{t>0|/ +2\/\/§)Y_a)l adst}.

For the time-changed process (S™! (Y. ;. (v)))v>0, the rate of jumps of height belonging
to [z,z + dzx] is

62\/ 2Kk dz

2V2kx __ 2—«
(e 1)

0 otherwise.

ifo>S"e+Yer ) =S Yer. ()

Thus, as € goes to 0, on one hand the process (S‘l(YE,TE(U)))UZO converges in law

to (S™!(Yr(v)))v>0, and on the other hand it converges in law to a subordinator with

2@1
dz O

LeVy measure 11:>0 W .

The clusters coalesce when « increases and fragment when « decreases. Some in-
formation on the coalescence of clusters delimited by the zeroes of Bessel processes
is given in [5], Section 3. This clusters can be obtained as a limit of clusters of dis-
crete loops on discrete subsets. In case of a symmetric jump process to the nearest
neighbors on €N, if @ > 1, there are finitely many clusters, and if @ € (0, 1), there are
infinitely many clusters and these clusters are given by the holding times of a renewal
process, which suitable normalized converges in law as ¢ — 01 to the inverse of a
stable subordinator with index 1 — a. See Remark 3.3 in [37].

We can consider the occupation field (Ea 1)zer if L is not the generator of a
diffusion but contains creation of mass as in (2.3.1). In this setting, if u is a positive
continuous function on I such that ‘522 is a signed measure, then for all z € I

T

1
£a L-

. _
‘Ca,Conj(u,L) - u(z)2 "
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It follows that if L € ®~, then for all z € I, EﬁL < 400 a.s. and if L € ©°, then
for all x € I, EﬁL = 400 a.s. If L € DT, then according to Proposition 2.9 (iv),
there is a positive Radon measure % such that L — & € ©°. Then, for all z € I,
AQL > Ez,L—r@ = 4o0. If L € ©, then Properties 4.4 (i) and (ii) still hold. The
description given by Property 4.5 of the finite-dimensional marginals of (Zﬁ)ze 7 is

still true, although the case of creation of mass was not considered in [36]. (Eg)xe I
still satisfies the SDE (4.2.2).

PROPOSITION 4.9. — Let L € ®~ and ¥ a finite signed measure with compact support
in I. Then there is equivalence between:

(i) E {exp (fI Eiy?(dw))] < 400,
(i) L+7eD .
If L+ 7D e ®, then for s € [0,1],

(4.2.5) E [exp ( /1 2§7Lz7(da:)>} — exp <a /0 1 /1 GL+3,;(x,w)17(dx)ds>.

Proof. — First, observe that [; £ L= L|17|(dx) is almost surely finite because |7| is finite
and has compact support and (Ea 1)zer is continuous. Also, observe that ®~
convex. So, if L+ 7 € ®7, then for all s € [0,1], L + sv € D~

(i) implies (ii): Let P, , be the law of £, and P,
There is an absolute continuity relation between the intensity measures:

pryo(dy) = exp ( /I Em(v)) pr(dy).

is absolutely continuous with respect to P, , and
exp (fI Ez,LD(d:v))

IE [exp (f[ EgLﬁ(da:)ﬂ

But this can not be if L + 7 ¢ ®~, because then, for any x € I, EgL < 400, and
EZJ;_H; = +00. Thus, necessarily, L+ 7 € D~

w.Lis b€ the law of Lo 115

In case (i) is true, Pz,

(4.2.6) dPr. .., = Lovr-

(ii) implies (i): We first assume that & is a positive measure and L+ 7 € ©~. Then,

P, . is absolutely continuous with respect to P, , ., and

exp( fI oLV dl"))

E [exp (= J; £5 1457(dr) ) |

Inverting the above absolute continuity relation, we get that

E [exp </1 E;Lz;(dm)ﬂ =E [exp (-/IE;H&:;(dx))]_l < +o0.
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If 7 is not positive, let 7+ and —7~ be its positive respectively negative part. Then,

E[exp (/1227L17(d1')>:| =K {exp </I LE s ;ﬂd@ﬂ E [exp (—/IE;Lﬂ(dx)ﬂ

_ E [exp (— I; Efv Lﬁ‘(dm))} .
[exp( fI P L+:7V+ dm))}

For the expression (4.2.5) of exponential moments:

(4.2.7) %E [exp (s/lfg,Lﬁ(dx))] =E [/I L2, 5(dz)exp (s/IEQLl?(dI))] :

From the absolute continuity relation (4.2.6) follows that the right-hand side of (4.2.7)

st

This implies (4.2.5). O

As in discrete space case, the above exponential moments can be expressed us-
ing determinants. On the complex Hilbert space .?(d|7|), define, for s € [0,1], the
operators

(2511 (a / G, 9) F ()7 ().

The operator |®; ;| is self-adjoint, positive semi-definite with continuous kernel func-
tion, and according to [59], Theorem 2.12, it is trace class. Since trace class operators
form a two-sided ideal in the algebra of bounded operators, &, ; is also trace class.
Moreover,

(4.2.8) TI‘(@S),;) = /IGL+S,;($,CL')17(d.Z‘).

The determinant det(Id + &, ;) is well defined as a converging product of its eigen-
values (see [59], Chapter 3).

PRrROPOSITION 4.10. —

exp <a /0 1 /l GL+S,;(x,x)z7(dx)ds> _ (det(Id + &, )"

Proof. — & ; has only real eigenvalues. Indeed, let A be such an eigenvalue and f a
non zero eigenfunction for A. The sign of 7, sign(?), is a {—1,+1}-valued function
defined d|7| almost everywhere.

(4.2.9) [ GEm@N @16 i@ @) = A [ 1P @)

I
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The left-hand side of (4.2.9) is non-negative. If the right-hand side of (4.2.9) is non-
zero, then \ is real. If it is zero, consider f. := f + esign(?)f. Then,

A=t o ([ ) )@ | 1slsm@) @0 | @) ( [ |f|2(fv)|17|(dw)>_1,

e—0+ 2¢
and thus A is real.

The operators &, ; are compact and the characteristic space corresponding to each
of their non-zero eigenvalue is of finite dimension. Let (\;);>¢ be the non-increasing
sequence of positive eigenvalues of & ;. Each eigenvalue )\; appears as many times
as the dimension of its characteristic space ker(®;1 ; — A;Id)" (n large enough). Simi-
larly, let (_S\j) ;>0 be the non-decreasing sequence of the negative eigenvalues of & ;.
Let s € [0,1]. According to the resolvent identity (Lemma 2.8), the operators &; 5
and & ; commute and satisfy the relation

1
(4210) 617[,65,5 = 65756175 = E(le’f/ — 6579).
Since &1 ; and &, ; commute, these operators have common characteristic spaces.
From (4.2.10) follows that (71 +(1>‘_is)/\i)i20 is a non-increasing se(%uence of positive

1—(1—-s)X;/5>0
sequence of eigenvalues of &, ;. But the family of operators (&, 5)sco,1] is bounded.

eigenvalues of &, ;. If i is not an eigenvalue of &; 5, then ( is also a

Thus, none of ﬁ can blow up when s varies. So, it turns out that &; ; has no
—(1=5)X;

eigenvalues in (—oo, —1]. From (4.2.8) we get

A \j
Griso(z,z)p(dx) = _— —
/z ! §1+(1—8)Ai ;1—(1—3)Aj
The above sum is absolutely convergent, uniformly for s € [0, 1]. Integrating over [0, 1]
yields
1
/ /GL+sg(a:,az)z7(dsc)ds = Zlog(l + )+ Zlog(l —Aj).
0 JI i>0 §>0
This concludes the proof. O

4.3. Isomorphism with the Gaussian free field

In [36] Le Jan observed the equality in law between the occupation field of a Poisson
ensemble of loops of a symmetric Markov jump process on an electrical network, at
intensity parameter o = 1/2; and half the square of a discrete Gaussian free field
(GFF). His identity is a generalization of Dynkin’s isomorphism [16, 18, 17], which
relates the square of a GFF and the occupation times of Markovian trajectories.
Dynkin’s isomorphism itself can be seen as a reformulation of an identity by Symanzik
[63], who expressed the moments of a continuum GFF in R? as a multiple intergal over
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a measure on Brownian loops, which is the higher dimensional analog of our measure
given by Definition 3.8. Dynkin’s isomorphism theorem has multiple variations, such
as the generalized Ray-Knight theorems [19, 21] (see also [52, 30] for the original
Ray-Knigth theorems), Eisenbaum’s isomorphism [20], Sznitman’s isomorphism for
random interlacements [64], and the last in this line, Le Jan’s isomorphism for Poisson
ensembles of loops [36]. Le Jan’s isomorphism has the advantage to give the whole
square of a GFF as an occupation field of Markovian trajectories, not just parts of it.
See also [44] and [65] for a review on this subject.

We are going to formulate Le Jan’s isomorphism in our setting of one-dimensional
diffusions. Let L be a generator of a transient diffusion on I of form (2.2.1). Let
(¢z)zer be a centered Gaussian process with covariance function

El¢z¢y] = G(z,y).
(¢z)zer is the Gaussian free field associated to L. Let S be a primitive of . Then,

S(supI) = —|—oo Moreover, S(inf I) > —oo because L is the generator of a transwnt

diffusion. ( bz > _is a standard Brownian motion starting from 0
1(5- 1(‘1)) a€s(I)

at S(inf I). In particular (¢m)ze 1 is inhomogeneous Markov and has continuous sample
paths. As observed in [36], Chapter 5, the following holds:

PROPERTY 4.11. - When a = 3, (Em)we]' has the same law as (3¢2)scr. In case

of a Brownian motion on (0,+00) killed in 0, (L )e>0 1S the square of a standard
Brownian motion starting from 0. In case of a Browman motion on (0, Tmayx), killed
in 0 and Tmax, (L3 )o<z<,., 1S the square of a standard Brownian bridge on [0, Zmax]
2
from 0 to 0. In case of a Brownian motion on R with constant killing rate k, (L3 )zer s
2

the square of a stationary Ornstein-Uhlenbeck process.

In our continuous one-dimensional setting one can “polarize” the above identity, in
order to relate to £ 1 not only the square of the GFF, but also its sign.

PROPOSITION 4.12. — Let a = % Let ¢ : I — {=1,0,1} be a sign function, which is
zero on the points not visited by loops in E%, and to visited points assigns a sign —1 or
1, constant on each cluster of loops, uniform (P(s(z) =1) =P(¢(z) = —1) = 1), and
conditional independent on each cluster. Then, the field (¢(x) \/E)zej is distributed
like a Gaussian free field (¢z)zer- ’

Proof. — (\/E)ZGI gives the absolute value of the GFF (|¢;|)zer. According to
Proposition 4.8,2 the clusters of £ 1 correspond exactly to the connected components
of {x € I|¢, # 0}. Moreover, conditional on (|¢; |)zer, sign(¢) is distributed inde-
pendently uniformly on each such connected component. O
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Proposition (4.12) extends to the Poisson ensembles of loops associated to diffusions
on metric graphs [40], as there too the occupation field is continuous, an in particular
satisfies the intermediate value property. This relation to the GFF was used in [42]
to show in dimension two the convergence of clusters of discrete loops to clusters of
Brownian loops. Further, the “polarized” version of Le Jan’s isomorphism on metric
graphs was applied to show that, in some sense, the continuum GFF in dimension two
lives on clusters of a Poisson ensemble of Brownian loops, and that these clusters are
its sign components [1, 2]. One procedes by approximating the GFF on a continuum
two-dimensional domain by the metric graph GFF. See also [51].

Next we recall the original Dynkin’s isomorphism (see [16, 18, 17]):

THEOREM (DYNKIN’S ISOMORPHISM). — Let x1,xa,...,Z2, € I. Then for any non-
negative measurable functional F' on continuous paths on I,

Hfﬁxz $2)zer)
- &[G et I

pairings pairs

(4.3.1) E,

where Y,
(271)

pairings MEONS that the n pairs {y;,z;} are formed with all 2n points x; in all

possible ways.

We will show that in case x; = Z;yn, for i € {1,...,n} , ie., Hle ¢z, being
a product of squares ]_[z 1 2 ,» one can deduce the Dynkin’s isomorphism from the
relation between the square of the Gaussian free field and the occupation field. In [38]
and [25] this is only done in case n = 1 and z; = x5 using the Palm’s identity for
Poissonian ensembles and the analog of the relation (3.3.4). To generalize for any n
we will use an extended version of Palm’s identity and the absolute continuity relation
given by Proposition 3.4.1 (ii).

LEMMA 4.13. — Let £ be an abstract Polish space. Let IM(E) be the space of locally
finite measures on € and let M € M(E). Let & be a Poisson random measure of
intensity M. Let H be a positive measurable function on M(E) x E™. Let P, be the
set of partitions of {1,...,n}. If P € P, and i € {1,...,n}, then P(i) will be the
equivalence class of i under P. The following identity holds:

@s2) E[ [ m@. ql,...,qn>Hq> 0]
Z /5#7’ ((D+Zéqc’QP(l)w-wQP(n))} HM(dqc).

PeB, ceP ceP
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Proof. — We will make an induction over n. If n = 1, (4.3.2) is the Palm’s identity for
Poisson random measures. Assume that n > 2 and that (4.3.2) holds for n — 1. We
set

fl(q’aqlv"-aqn—l) ::/H(q)7qla-'-aqn—laqn)<1>(dqn)'
&

Then,
(4.3.3)
n—1
E[/ H(®,q1,---,qn-1,qn) H<I> dql] E[ H(®,q1,. ., qn- 1)H<I>(dqi)}
en ent i=1
= Z / ) [/H(q’Jr Z 8q. AP (1) - -+ AP (n—1)> qn)
PreP,_ Y EFT ceP
x (®(dgn) + Y 0, (dgn)) } I M(dge).
CIGP, C/E'P/
Given a partition P’ € §3,,_1, one can extend it to a partition of {1,...,n—1,n} either

by deciding that n is single in its equivalence class or by choosing an equivalence class
¢’ € P’ and adjoining n to it. In the identity (4.3.3), the first case corresponds to the
integration with respect to ®(dg,), and according to Palm’s identity

[/H ® + Z 6q HAPr(1)y -+ -5 dP (n—1), qn)(p(dqn)‘|

cepP’
&

The second case corresponds to the integration with respect to d, , (dgy,). Thus, the
right-hand side of (4.3.3) equals the right-hand side of (4.3.2). O

H((D + Z (sqcz ydPr(1)y -+ AP (n—1)» Qn)] M(dQn)

cep’

Next we show how derive a particular case of Dynkin’s isomorphism using the
above extended Palm’s formula. Since (E )zer and (;@%)ze 1 are equal in law,

Eq [ch (582) )] = "B, [HZEiF((AE)er)] .

i=1

Applying Lemma 4.13, we get that
Ec [H Ly F <<A§>zez>]
=1
=Y /H” (vp@))E
ep,” i=1

m\H

(L5 + D¢ (7)) zEI]H St (dve).

ceP ceP
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Let &,,(P) be all the permutations o of {1,...,n} such that the classes of the partition
‘P are the supports of the disjoint cycles of 0. Given a class ¢ € P, let j. be its smallest
element. From Property 3.15 (ii) follows that

n
[T ey = 30 JLe™e oo o ().
i=1

0€G,(P) cEP
Proposition 3.16 (ii) states that

(e Te ey Tolel e (y, ) u* (drye)

(i) s e el =105y lel (5 g 1ol (5o) de /1~
= mo(u7UN(dy;,) Qo qput UGN (@) A p” I (dA ),
and if the loop 7. is a concatenation of paths ¥, , ..., ¥sle1-1(j,)s Volel (j,), then
E(7e) = € (F.) + -+ CForei-1() + £ Folel(g,))-
It follows that

o~

=8

(434) 2"Er, lﬁ S

— Z on-— # cycles oftJ'/]Eﬁl
2

)xEI)]

F((L5 + > G)aen) | [T 170 (@)
=1 =1

ceG,
But the right-hand side of (4.3.4) is just the same as the right-hand side of (4.3.1) in
the specific case when for all i € {1,...,n}, z;4+, = z;. This finishes the derivation of

the special case of Dynkin’s isomorphism.
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CHAPTER 5

DECOMPOSING PATHS INTO POISSON ENSEMBLES OF LOOPS

5.1. Gluing together excursions ordered by their minima

Let L be the generator of a diffusion on I of form (2.2.1). A loop of L, 1, rooted at
its minimal point is a positive excursion. For a given zy € I, we will consider the loops
v € L4, such that min~y € (inf I, 2]. We will root these loops at their minima and
then order the obtained excursions in the decreasing sense of their minima. Then we
will glue all these excursions together and obtain a continuous paths 5((;%). The law
of this path can be described as a one-dimensional projection of a two-dimensional
Markov process. Moreover this path contains all the information on the ensemble of
loops L4, N{y € £* | min~y < xo}. So this is a way to sample the latter ensemble of
loops.

In case of Brownian loops, the paths fg%)M turn out to belong to a family of
Brownian motions perturbed at their minima, studied for instance in [35, 10, 46]. The
decomposition of such perturbed Brownian motions into Poisson point processes of
excursions already appears in [35, 46].

We will also see that, for a general diffusion of generator L, the case @ = 1 is
particular. Indeed, ffLO) is the sample path of a one-dimensional diffusion. This is
the analog in dimension one of the link between £; and the loop-erasure procedure
already observed in [34], in the setting of two-dimensional Brownian loops, and in
[36], Chapter 8, in the setting of discrete loops on network, and will de described in
detail in Section 5.3. See also [22].

In Section 5.1 we will consider generalities about gluing together excursions ordered
by their minima and probability laws will not be involved. In Section 5.2 we will deal
with 5((55’:) and identify its law. In Section 5.3 we will focus on the case @ = 1 and
describe other ways of slicing sample paths of diffusions into Poisson ensembles of
loops.
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Let 9 € R and let Q be a countable everywhere dense subset of (—o0,zg). We
consider a deterministic collection of excursions (e,)se0, where (e4(t))o<i<r(e,) is @
continuous excursion above 0, T'(e,) > 0, and

eq(0) = eq(T'(eq)) =0,
Vt € (0,T(eq)), eq(t) > 0.

We also assume that for all C > 0 and a < x(, there are only finitely many ¢q €
QN (a,zo) such that maxe, > C, and that for all a < o,

(5.1.1) > T(eg) < +oo.
q€Qn(a,zo)
Let T(y) be the function defined on [0, +00) by
T(y) := > T(ey).
q€2N(z0—Yy,T0)

T is a non-decreasing function. Since Q is everywhere dense, T is increasing. T is
right-continuous and jumps when z¢ —y € Q. The height of the jump is then T'(e_,).

Let Thax := T(+00) € (0, +00]. For t € [0, Trnax), we define
0(t) := zo — sup{y € [0, +00) | T(y) > t}.

6 is a non-increasing function from [0, Ti,ax) to (—o0, zo]. Since T is increasing, 0 is
continuous. We define

b~ (t) = inf{s € [0, Tmax) | 0(s) = 0(t)},
bt (t) = sup{s € [0, Tmax) | 0(s) = 0(t)}.

b~ (t) < bT(t) if and only if 6(t) € Q, and then, b*(t) —b~ (t) = T(eq(t)). We introduce
the set

b = {t € [0,Tmax) | 0(t) € Q, b~ (t) = 6(¢)}.
b~ is in one to one correspondence with Q by t — 6(t).

Finally, we define on [0, Tinax) the function &:
€0 = { 0(t) if 0(t) ¢ Q.
O(t) +egy(t —b(t)) ifO(t) € Q.
Intuitively, £ is the function obtained by gluing together the excursions (¢ + e4)qc0
ordered in decreasing sense of their minima. See Figure 5.1 for an example of £ and 6.
PROPOSITION 5.1. — £ is continuous. For all t € [0, Thax),

(5.1.2) o) = inf &
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The set b~ can be recovered from & as follows:

(5.1.3) b~ ={t €[0,Tmax) | £(t) = [lgltf] &, and e > 0,Vs € (0,¢e),&(t+ s) > £(¢)}.

If tg € b—, then

(5.1.4) b*(to) = inf{t € [to, Tmax] | £(t) < &(t0)}-

Proof. — Let t € [0,Tmax). To prove the continuity of £ at ¢, we distinguish three
case: the first case is when 0(t) € Q and b~ () < t < b*(¢), the second case is when
0(t) € Q, and the third case is when 6(¢) € Q and either b= (t) =t or b*(t) = ¢.

In the first case, for all s € (b= (¢),bT(t)),

£(s) = 0(t) + eqqr)(s — b7 (1))
eg(+) being continuous, we get the continuity of £ at ¢.

In the second case, we consider a sequence (t,),>0 in [0, Tmax) converging to t.
Let C' > 0. There are only finitely many ¢ € Q such that there is n > 0 such that
(t,) = ¢ and maxe, > C. Moreover, for any ¢ € Q, there are only finitely many
n > 0 such that 6(¢,) = ¢. Thus, there are only finitely many n > 0 such that
0(t,) € Q and maxeg,) > C. So, for n large enough,

(5.1.5) O(t,) < E(tn) < O(tn) + C.

But, £(t) = 6(¢) and 6(t,,) converges to 0(t). Since we may take C arbitrarily small,
(5.1.5) implies that £(¢,,) converges to 6(t).

Regarding the third case, assume for instance that 6(¢t) € Q and ¢t = b~ (¢). The
right-continuity of £ at ¢ follows from the same argument as in the first case and
left-continuity from the same argument as in the second case.

By definition, for all ¢ € [0,Tmax), 0(t) < £(t). 0 being non-increasing, for all
t € [0, Tax)

0(t) < inf &.
< e

For the converse inequality, we have

0(t) =&(b™(t)) > inf &.

(6) = &b~ () = it ¢
Regarding (5.1.3) and (5.1.4), we have the following disjunction: If §(¢) € Q and
b=(t) < t < bT(t), then &(t) > 6(¢). If 0(t) € Q and t = b~ (¢), then for all s €
(0,67 (t) — b (1)), &(t + 8) > £(t). If either 6(t) € Q and t = bT(t) or O(t) € Q,
then £(t) = 6(t), and there is a positive sequence (sy)n>o decreasing to 0 such that
O(t+ sn) € Qand £(t + sp,) = 0(t + s5,) < 0(2). O
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FIGURE 5.1. Drawing of £ (full line) and 6 (dashed line).

Previous proposition shows that one can reconstruct @ and the family of excursions
(eq)geg only knowing £. (5.1.2) shows how to recover 8 from . (5.1.3) and (5.1.4)
show how to recover the left and the right time boundaries of the excursions of &
above 6. Also, observe that the set defined by the right-hand side of (5.1.3) is countable
whatever the continuous function £ is, even if it is not obtained by gluing together
excursions.

5.2. Loops represented as excursions and glued together

Let o > 0 and L, gy the Poisson ensemble of loops of intensity au},,, where
Wy is the measure on loops associated to the Brownian motion on R. Let 2o € R.
We consider the random countable set O:

Q :={minvy |y € La,pm} N (—00, o).
Almost surely, Q is everywhere dense in (—00,zg), and for every ¢ € Q, there is only
one v € Lo gy such that miny = g. Almost surely, v € L, g reaches its minimum
at one single moment. Given ¢ € Q and v € L, gy such that miny = ¢, we consider
eq to be the excursion above 0 equal to v — ¢, where we root the unrooted loop
at argmin~y. Then, the random set of excursions (eq),co almost surely satisfies the

assumptions of Section 5.1. In particular, the condition (5.1.1) follows from the fact
that, according to (3.5.1),

“+o0
tA1l

IAT(Y)1min~ve(az s (dY) = (g — a ——dt < +o0.
S AT O it paslan) = @o—a) [ T

Thus, we can consider the random continuous function (55;% v (t))e>0 constructed by

gluing together the excursions (¢ + e4)qco in the way described in Section 5.1. Let

zo) () = 1nf §az;)3)M,

20D (t) = @$2M<x9$§M<»
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Next we will describe the law of the two-dimensional process (Eff‘g M(t)) >0

PROPOSITION 5.2. — Let (B;)i>0 be a standard Brownian motion on R starting from
0. (ESC’%)M(t))DO has the same law as

1 1
(0 1Bl = 2B 20 - Le())
>0

In particular, for a« = 1, ( iwg)M(t))tSO has the same law as a Brownian motion

starting from xg.

Proof. — For a < xg, let T, be the first time HSTJOB)M hits a. For [ > 0, let
7 =inf{t >0 £)(B) > 1}.

According to the disintegration (3.5.1) of the measure uj,, in Proposition 3.18, for
all a < zo, the family (e;)4c0n(a,z,) Of excursions above 0 is a Poisson point process
of intensity 2an§g4. This implies the following equality in law:

T T (law)
(gt(x,OB)M(t)_eé,?;M(t))QStSTa =" (IBt])o<i<so

(wg—a)
Since the above holds for all a < xg, we have the following equality in law:

T T law
(650 () = 057500, (1), (o — Bt (D))iz0 = (1Bel, (B))izo
which is exactly the equality in law we needed. Finally, for @« = 1, (zo + |B:| —
?9(B))t>0 has the law of a Brownian motion starting from z. See [53], Section VI.2.
U

According to Proposition 5.2, a Brownian sample path can be decomposed into a
Poisson process of positive excursion with decreasing minima. This decomposition is
for instance described in [35, 46] and [28], Section 6.2.D. In case o = 1, Proposition 4.6
states that the occupation field of a the Poisson ensemble of loops associated to
the Brownian motion on (0,+o00) killed at 0 is the square of a Bessel process of
dimension 2 starting from 0 at 0. This result can also be obtained using the fact that
( %xg)M (t))i<o is a Brownian sample path and applying the first Ray-Knight theorem
which gives the law of the occupation field of a Brownian path stopped upon hitting 0.

From Proposition 5.2 follows in particular that (E((f?g) M(t)) 150 18 @ sample path of

a two-dimensional Feller process. Let

TH(R?) := {(x,a) e R* | z > a}, Diag(R?) := {(z,z) | z € R}.
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For (z0,a0) € T+ (R?), we define the process

(5.2.1)
(B339 (9) 150 = (7532 0), 05555 (1)) 1

1 —x 1 ag—x
= <a0+|$0—a0+Bt| _EZ?O O(B),a.(]—afto O(B)> ,
t>0

where (Bi);>0 is a Brownian motion starting from 0. Eff%ﬁ) has the same law

as ESOB)M. The family of paths (E((laf%ﬁ))mo>ao are the sample paths of the same
Feller semi-group on T (R?), starting from all possible positions. Next we describe
this semi-group in terms of generator and domain. Let f be a continuous function
on T (R?), C? on the interior of T (R?), such that all its second order derivatives
extend continuously to Diag(IR?). This implies in particular that the first order deriva-
tives also extend continuously to Diag(R?). We write 91 f, dof and 8y 1 f for the first
order derivative relatively to the first variable, the second variable and the second

order derivative relatively the first variable. Applying It6-Tanaka’s formula we get
(z0,a0) ' (z0,a0)
FESHW @) = f(zo,a0) + / 01f(Ba 5o (s)) sign(zo — ag + Bs)dBs
0

t 1 xTo,a xo,a
+/ ((1 - ) A, — aag) FEYY (s)) dytae (B) / A1 f (B39 (s)) ds.
0

Let D,y be the set of continuous functions f on TF(R?), C? on the interior
of TT(IR?), such that all the second order derivatives extend continuously to Diag(R?)
and that moreover satisfy the following constraints: f and 0,1 f are uniformly con-
tinuous and bounded (which also implies that 0;f is bounded by the inequality

101 fllco < 24/11flloo101.1 flloo), and on Diag(R?) the following equality holds:

(2o oo

If f € Doy, then §(E[f(EL 53, (1))] — f(z0,a0)) converges as t — 0T, uniformly
for (z9,a0) € TT(R?), to %81’1f(x0,a0). Moreover, D, gy is & core for %81,1 in the

space of continuous bounded function on T+ (R?).

Next we describe what we obtain if we glue together the loops, seen as excursion,
ordered in the decreasing sense of their minima, where instead of L, gas we use the
Poisson ensemble of Markov loops associated to a general diffusion. Let I be an open
interval of R and L a generator on I of form

L= m?ae)di <w<1m>cgs)
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with zero Dirichlet boundary conditions. Let S be a primitive of w(z). We assume
that S(sup I) = +oco. Let
TH(I?) = {(z,a) € I? | © > a}, Diag(I?) := {(z,2) | z € I}.

Let TT(F) be the closure of TF(I?) in (inf I,sup I]?.
Given any @ > aj > 18(inf I), let {, be the first time %5 hits 1S(inf I). Let

i, = / (57 (26753 (5)))ds.

Let (I, be the inverse function of (It)o <t<¢, - It is a family of stopping times

)0<t<I~<-a

for H(w%?&) For zo > ap €I and t < :ﬁa, let

—(zo,a To,a T0,a —(S(2z S2a
=) = (675 0,075 1) = 2SI,

If « =1, then 550%’“0) is just the sample paths starting zq of a diffusion of generator L.

Let ﬁ% 7 be the space of continuous functions f on 7" (I?) satisfying

— f o8 1is C? on the interior of T (I2) and all the second order derivatives
extend continuously to Diag(I?).
— f(z,a) and m(w 01 (w(w)alf(x a)) are bounded on T (I?) and extend contin-

uously to T+(I2)

— f(z,a) and m(m) 01 (w(z) o1 f(z, a)) converge to 0 as a converges to inf I uni-
formly in x.

— On Diag(I?) the following equality holds:

(5.2.2) <(1 - ) 0 — az) f(z,z) =0.

=(Z0,a0)
LEMMA 5.3. — (“a,Z )moZaoEI

positions of the same Markovian or sub-Markovian semi-group on T+ (I%). The law

is a family of sample path starting from all possible

of the path ES%’GO) depends weakly continuously on the starting point (zg,ag). The

domain of the generator of this semi-group contains ﬁa,fﬂ and on this space the

™ (a™)

Moreover, there is only one Markovian or sub-Markovian semi-group with such gen-

generator equals

erator on D_ +.
a,L

Proof. — Since a change of scale does not alter the validity of the above statement, we

can assume that 1w = 2. Then, sup I = +oo0. (Eim%’ao)(t)) is then obtained from

0<t<T;_
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(Eff%?\j}) (t))o <i<i, by a random time change. The Markov property and the contin-

uous dependence on the starting point for Hf%’ao)

for 2 ”(mo’ao) I fe 'D 1> then

follows from analogous properties

Zo,a ]‘ It_l/\ga —\Z0,a
(f( = AL) —g [ B E ()
0 >0
is a local martingale. We can rewrite it as

t
E(ro.0) B T A _
f(E oL (tnIg) - /0 Qﬁl(ff%’%)(s)) haf(E] (s))18<,§ads N

The above local martingale is bounded on all finite time intervals and thus is a true

martingale. Since 01,1 f(x,a) converges to 0 as a converges to inf I, uniformly

2m(m)
in z, it follows that

FEEENT)) = 1,07, fEEY ).

Thus,

lim % (E [1t<;§af(”f‘;’“°)(t))] — f(:ro,ao)) = 2~1

t—0+ m(zo)

Moreover, the above convergence is uniform in (xg,aq) because #@)81,1 f(z,a) ex-

01,1 f(zo,a0).

tends continuously to T+(I2).

To prove the uniqueness of the semi-group, we need to show that there is A > 0

such that
1 ~
(=) a0

is sufficiently large, for instance that it contains all functions with compact support
in T*(I?). Let g be such a function and A > 0. Consider the equation

1
(5.2.3) 2(e )81 1f(z,a) = Af(z,a) = g(z, a).
Let @y, be a positive decreasing solution to
1 d*u
— ()= A = 0.
m(x) dz? (2) u(z)
Let

+oo +oo
fo(z,a) = ﬂ,\7i(w)/ / 2m(z)g(z,a)tx, (z) dz Ndfy

1 (y)?
Then, fo is a solution to (5.2.3) and it is compactly supported in 7+ (I?). We look for
the solutions to (5.2.3) of form

f(z,a) = fo(z,a) + C(a)ix, ().

MEMOIRES DE LA SMF 158



5.2. LOOPS REPRESENTED AS EXCURSIONS AND GLUED TOGETHER 85

f satisfies the constraint (5.2.2) if and only if C' satisfies

i@ @+ (1- 1) T @) + hia) -

a (0%

)= ((1-2) o= 202) ofava)

h is compactly supported in I. We can set
. o [f )
Clo) =inslat [ P
inf 1 T, (y)*
C is zero in the neighborhood of inf I. Moreover, @y, has a limit at +oo. It follows
that f € ,Doz,ff O

where

Let L be the generator of a diffusion on I of form (2.2.1). Let 2o € I. Consider
the loops v in L, 1, such that miny < zy, rooted at argmin +y, seen as excursions. Let
(fgf%) (t))o<t<c, be the path on I obtained by gluing together this excursions ordered
in the decreasing sense of their minima. Let

Ot (1) = min €7,
’ 0,t
=00 = (6t Oa)-

PROPOSITION 5.4. — Let L := Conj(uy, L). Then, (ESEOL) (t))0<t<¢ has the same law
as (Eiz%m")(t))
particular, for a =1, 5( 20) s the sample path of a diffusion of generator L. For all
a>0,

0<t<iy” So it is a sample path of a two-dimensional Feller process. In

lim in £ () = inf I.
t—Cao ’
If L is the generator of a recurrent diffusion, then

lim sup 5((;62) (t) =supl.
t—Ca ’
Otherwise,
lim sup {((f%) (t) =infI.
t—Ca ’
Proof. — First, notice that if L is the generator of a recurrent diffusion then L=1L.
Otherwise, a diffusion of generator L = L is, put informally, a diffusion of generator
L conditioned to converge to inf I (which may occur with zero probability). From h-
transform invariance of the measure on loops follows that £, 1 = L, i From Property
3.9 (iv) and Corollary 3.13 follows that :‘(fOL) is obtained from =, gy by scale and

time change in the same way as H(m’z’ 20) , and thus, = ( 0) and Ef%’mo) have the same

)
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law. Regarding the limits of ngz) at (., we need just to observe that they hold if L is
the generator of the Brownian motion on an interval of form (a, +00), a € [—00, +00),
and by time and scale change they hold in general. O

As explained in Proposition 5.1, the knowledge of the path (f(z(’)( ))0 <<t alone
is enough to reconstruct L, N {y € £* | miny < z¢}. From this we ‘deduce the
following:

COROLLARY 5.5. — If L is the generator of a transient diffusion, it is possible to con-

struct on the same probability space L, 1 and a continuous version of the occupation

field (L%, )aer.

Proof. — By scale and time change covariance and invariance by conjugation of the
Poisson ensembles of loops, it is enough to prove the statement in case of a Brownian
motion on (0,4o00) killed at 0. Let (zy),>0 be an increasing sequence in (0, +00)
converging to +0o. We consider a sequence of independent paths (§éz’g’1f4"))n> o defined
by (5.2.1). Let

Toe, 1= i0f {t 2 0| €7557) () = 2},
where conventionally we set _; := 0. By decomposing on [0, T}, 5, ,] the restricted
path ({S};’ﬂ”)(t))o <ieT , one can reconstruct a family of loops « such that
’ = nTp 1

miny € (x,_1,%,): there is a random countable set %,, of disjoint compact subinter-
vals [b~,b%] of [0,T}, 5, ,] such that

{ECH 0740 gy - | 07,07 € B} = Lo pun{y € £ [ miny € (@n_1,20)},
(see (5.1.3)). The union of all previous families of loops for n > 0 is a Poisson ensemble
of loops Lo, gm N {7y € £ | miny > 0}.

Each of ¢ azg’f/[") is a semi-martingale and its quadratic variation is

(€ e0pmmy =1,

Moreover, for all z € R,

t 1 t
Lenan _,dEC ) (s) = (1 - > / 109(B)—azds2(B) = 0.
/0 Ny ,BM al J 2(B)

From Theorems 1.1 and 1.7 in [53], Section VI.1, follows that we can construct on
the same probability space fgfg’;l") and a space-time continuous version of local times
(¢7 (ga’”g’]@")))m crso Of 5&%’;}) relatively to the Lebesgue measure. In particular

(Ei’fg’l\“}")) is continuous. If [b~,b"] € J,, then

(2 (€)= - (€53)) 00

T
x — {7

nTn_1
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is the occupation field of the loop corresponding to the time interval [b~, b]. We need
to check that

(5.24) as,Vo>065 (i) = > e (€lmn)) -6 (elm).
[b—,bt]€B,

For z > 0, consider the random set of times

(5.2.5) {te0.Tue, ]S @ =23\ J  Bb*).
(b=, bF]€Bn

(Inazn)

If z is a minimum of a loop embedded in (fa’BM orif x & (Tn_1,n)

(t)) 0<t<Thn,z, ,
then the set (5.2.5) is empty. Otherwise, it is reduced to one point: the first hitting time

(Zn,Tn

of the level x. Almost surely, for all x > 0, the measure d. ¢y (fa’ B ) is supported
in {t > 0|§$g’&”)(t) = z} and has no atoms, and thus does not charge the set
(5.2.5). This implies (5.2.4). Finally, we can conclude that ( e (f&f};’fj‘)))wo is
the occupation field of L, par N{y € £*|min~y € (zp—1, )}

The occupation field of £, gy N {7y € £* | min~y > 0} is

(S )
>0

n>0

The above sum is locally finite and thus varies continuously with x. O

5.3. Thecasea =1

According to Proposition 5.4, in case a = 1, the Poisson ensemble of loops £; p,
can be recovered from sample paths of one-dimensional diffusions. A similar property
was observed for loops of the two-dimensional Brownian Motion and of Markov jump
processes on graphs. In [36], Chapter 8, it is shown that by launching consecutively
symmetric Markov jump processes from different vertices of a finite graph and apply-
ing Wilson’s algorithm ([69]), one can simultaneously construct a uniform spanning
tree of the graph with prescribed weights on the edges and an independent Poisson
ensemble of Markov loops of parameter « = 1. If D is a simply-connected open do-
main of C other than C, it was shown in [70] that one can couple a Brownian motion
on D, killed at hitting D, and a simple curve (SLE2) with same extremal points such
that the latter appears as the loop-erasure of the first. It is conjectured that given this
loop-erased Brownian motion and an independent Poisson ensemble of Brownian loops
of parameter 1, by attaching to the simple curve the loops that cross it one recon-
structs a Brownian sample path. See [34], Conjecture 1, and [32], Theorem 7.3. More
recently, a similar property was proved for loops of the three-dimensional Brownian
motion [56].
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In case of one-dimensional diffusions one can partially recover £, r, from Markovian
sample paths otherwise than slicing & §wL°) in excursions. The next result has an analog
for loops of Markov jump processes on graphs. See [36], Remark 21.

PROPOSITION 5.6. — Assume that L is the generator of a transient diffusion.
Let x € I. Let (Xi)o<t<c be the sample path of a diffusion of generator L started
from x. Let T,, the last time X wvisits x. For 1 > 0, let

o ={t>0|(X)>1}.

Let (g;)jen be a Poisson-Dirichlet partition PD(0,1) of [0,1], independent from X,
ordered in an arbitrary way. Let

The family of bridges ((Xt),.lxjilgtgflzj )j>0 has, up to unrooting, the same law as the
loops in

LypN{ye L[z (0, T(MD}
In particular, (Xt)0<t<ﬁ can be obtained through sticking together all the loops
in Lo, 1, that visit x.

Proof. — According to Corollary 3.12, (£*(Y))yeLa. 1,y visits = i @ Poisson ensemble of
intensity ¢~ TEm %. Thus, EﬁL is an exponential r.v. with mean G(z, z) and has the
same law as £f(X). Moreover, the Poisson ensemble (£(7))yec, .,y visits = has, up
to reordering, the same law as (I; — lj_1);>0. Almost surely, { — 77° does not jump
at any [;. Conditional on (;);>0, ((Xt)lej_lgtSlej )j>o is an independent family of
bridges and (Xt)ﬁ””j
identity (3.3.5) and the theory of marked Poisson ensembles. O

<t<r# has the same law as (X¢)o<t<-# , . We conclude using
1=0=T =P =T

Assume that L is the generator of a transient diffusion. Let x € I and let
(Xt)o<t<c be a sample path starting from x of the diffusion corresponding to L. We
will describe two different ways to slice (X¢)o<¢<¢ S0 as to obtain the loops

L1,nN{y € £ [7([0,T()]) N [X(0), X (¢7)](or [X(¢T), X(0)]) # 0}.

The first method corresponds to the “loop-erasure procedure” applied to (X;)o<t<c¢
and the second to the “loop-erasure procedure” applied to the time-reversed path
(X¢—t)o<t<c. Let ﬁc be the last time (X;)o<¢<¢ visits . Let T be the first time X
hits X.-. If X.- € 0I, then T = (. Let (gj)jen be a Poisson-Dirichlet partition
PD(0,1) of [0,1], independent from X. The first method of decomposition is the
following:
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— The path (X;),.,.7 is decomposed into bridges ((X:)rr <i<s)j>0 from =
st<Ts jo1=r=T =
to x by applying the Poisson-Dirichlet partition (g;) en to Zf(X ), as described
in Proposition 5.6.
— Given the path (Xﬁ-s-t)ogt«—ﬁ’ if X.- <z, we define

bt = {t €0,¢ - T,) | Xz o= sup  Xp .,
s€ft,(—Tx)

and 3e € (0,¢) st. Vs € (t—,8), X5, < X5, }.
b is countable, and we define on b+ the map b~:

b=(t) :==sup{s € [0,t) | X7 =X

Tz-l—t}'
(X5 +b—(t)+s)0§s§t—b—(t))teb+ is the family of negative excursions of the path
(Xﬁ“)oﬁ«iﬁ below (SuP[ﬁCH,g) X)0§t<cfﬁn' If X.- >z, then

bt = {te[o,g—ﬁnx inf X

_ X7
seltc-T,) =t

Tott —
and Je € (0,¢) s.t. Vs € (t —¢,t), X5 > Xﬁ+t}'
We define on b™ the map b™:

b= (t) :=sup{s €[0,t) | X X

Tots Tm-ﬁ—t}'
((Xfx+b—(t)+s)0§s§t—b*(t))teb+ are the positive excursions of (sz+t)0§t<c—ﬁ
(To+t,0) X>O§t<c—ﬁ'

— We denote £ ((Xt)o<t<¢) the set of loops
{(Xr

i—

above (inf

1+s)0§s§‘rlzj —lej71 | Jj= 0} U {(X’f1+b7(t)+s)0fs§t—b_(t) | te b+}a
where the loops are considered to be unrooted.
The second method of decomposition is the following:

— If X~ <z, we define
b = {t e0,7)| X, = inf X and 3 > 0 5.6, Vs € (1, 42), X, > Xt}.
t
On b~ we define the map b*:
bt (t) :=inf{s € (t,T) | Xs = X:}.

((Xt+s)o<s<v+(t)—t)teco- are the positive excursions of the path (X;),., 7 above
(infig 4 X)y<;<7- This is exactly the decomposition described in the previous
Section 5.2. If X~ > z, then

b™ = {t €[0,7)| X; =supX and Je > 0 s.t. Vs € (t,t +¢), X, < Xt}.
[0,¢]
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90 CHAPTER 5. DECOMPOSING PATHS INTO POISSON ENSEMBLES OF LOOPS

The map b" defined on b~ is
bt (t) :=inf{s € (t,T) | Xs = X,}.
((Xt4s)o<s<b+(t)—t)teo— are the negative excursions of the path (X;) be-
low~(sup[01t] X)ogtgf'
— If T' < ¢, we introduce:

0<t<T

J
~ X, . _
=0 (X)) a,
=0
and
n =inf{t e [T,0) | 6 (X) > I},

We decompose the path (X;) into bridges ((X3)

to X(—
— We denote .Z?((X¢)o<t<¢) the set of loops
{(Xits)o<s<ory—t [t €D} U {(XT[J_71+5)0§S§TZ~J_—TL~J_71 |j >0},

where the loops are considered to be unrooted.

T<t<(¢ St )i>o from X.-

T
Lj—

The loops in 2! ((X¢)o<t<¢) and Z2((X+t)o<t<¢) are not the same but follow the same

law.

PROPOSITION 5.7. — LY ((Xt)o<i<c) and L*((Xi)o<t<c), considered as collections
of unrooted loops, have the same law. Let L, be a Poisson ensemble of loops in-
dependent from X.-. Then LY (Xt)o<i<c) and L?((Xi)o<i<c) have the same law
as

(5.3.1) Ly N{y e L [y([0,T(M]) N [X(0), X(¢T)] (or [X(¢T), X(0)]) # 0}.

Proof. — First, we will prove that .£?((Xt)o<t<¢) has the same law as (5.3.1). If
P(X¢- = inf I) > 0, then conditional on X~ = inf I, (X¢)o<t<¢ has the law of a sam-
ple path corresponding to the generator Conj(u;,L). If y € IN(—o0, z] and y is in the
support of  (the killing measure in L), then, conditional on X- = y, (X;)o<¢<¢ is dis-
tributed according the measure m p7? (Property 3.3 (i)). According to Lemma 3.5,
(Xt)o<i<7 and (X7, ,)o<s<c—7 are independent conditional on X¢- =y, (Xi)oo,c7
having the law of a sample path corresponding to the generator Conj(u, L), run until
hitting y, and (X7 ,,)o<;<c_7 following the law mu%y. From Proposition 5.4 and
5.6 follows that £?((X;)o<t<¢) and (5.3.1) have the same law on the event X~ < .
Symmetrically, this also true on the event X.- > x.

The decomposition - ((X;)o<t<¢) is obtained by first applying the decomposition
2 to the time-reversed path (X;_¢)o<t<¢ and then applying again the time-reversal
to the obtained loops. The law of the loops in (5.3.1) is invariant by time-reversal.

MEMOIRES DE LA SMF 158



5.3. THE CASE o =1 91

Let y € I, y in the support of x. Conditional on X.- =y, the law of (X¢_;)o<i<c¢ is
ﬁuy’m. So, applying the decomposition .#? to the path (X;_¢)o<t<¢ conditioned
on X¢- =y gives

Ly {y e L [y([0,T(M]) Ny, ] (or [z,y]) # 0}

If P(X,- = inf I) > 0, then, conditional on X.- = inf I, the path (X;)o<;<¢ is a limit
as y — inf I of paths following the law m u®Y (i.e., the latter are restrictions of
the former). Thus, conditional on X~ = inf I, £*((X¢)o<i<¢) is an increasing limit
as y — inf I of
Ly {y e £ [y([0,T()]) N[y, ] # 0},
which is
Ly, 0 {y € £ [y([0,T()]) N[inf I, z] # 0}.

Similar is true conditional on X~ = sup[. O
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CHAPTER 6

WILSON’S ALGORITHM IN DIMENSION ONE

6.1. Description of the algorithm

Given a finite undirected connected graph G = (V,E) and C a positive weight
function on its edges, which we interpret as an electrical network with conductance C,
a uniform spanning tree of the weighted graph G is a random spanning tree with the
occurrence probability of a spanning tree 7 proportional to

II c.
e edge of T

The edges belonging to the uniform spanning tree are a determinantal point process
(transfer current theorem). In [69] Wilson showed how to sample a uniform spanning
tree using successive random walks to nearest neighbors, with transition probabilities
proportional to C, starting from different vertices, and erasing the loops created by
these random walks. The edges left after loop-erasure form a uniform spanning tree.
This is known as Wilson’s algorithm. See [4, 31] for a review. In [36], chapter 8, Le Jan
shows that the loops erased during the execution of Wilson’s algorithm are related to
the Poisson ensemble of Markov loops of intensity parameter a = 1.

In [36], Chapter 10, Le Jan suggested that Wilson’s algorithm can be adapted to
the situation where the random walk on a graph is replaced by a transient diffusion on
a subinterval I of R. In this section we will describe the algorithm in the latter setting.
The algorithm returns on one hand a sequence of one-dimensional paths which can
be decomposed into a Poisson ensemble of Markov loops of parameter 1 (Section 6.2),
and on the other hand a pair of interwoven determinantal point processes on I, which
may be interpreted as some kind of uniform spanning tree. In Section 6.3 we will
derive the law of this pair of determinantal point processes in the setting where the
underlying is a Brownian motion on R with a killing measure. In Section 6.4 we will
give without proof the law in general case as it follows directly from the Brownian
case.
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94 CHAPTER 6. WILSON’S ALGORITHM IN DIMENSION ONE

Let I be a subinterval of R and L a generator of a transient diffusion on I of form
2.2.1. Let & be the killing measure in L, which may be zero. Let (z,,),>1 be a sequence

of pairwise distinct points in I which is dense in I. Let ((Xt(m"))oq<< ) be a

sequence of independent sample paths of the diffusion of generator L, with starting
points Xém") = z,. In the first step of Wilson’s algorithm we will recursively define
sequences (Tn)n>1, (Vn)n>1 and (J)n>1 where T, is a killing time for X@a) Y is
a finite subset of Supp(x) U 9l and 7, is a finite set of disjoint compact subintervals
of I, some of which may be reduced to one point:

Ty =, Vo= {X;jﬁ}, T = {[xl,xgﬂ]} (or {[B(Tzlf),xl]}).
— Assume that ), and J, are constructed. If z,41 € U Jca, J, then we set

Thi1:=0,Vpy1:=Ypand Jps1:=Tpn- U 21 & UJan J, then we define

Toy1 := min (Cn,inf {t >0|x™e J J})

JCTn
If X(Tx,"“) € U c, J, then there is a unique J € J,, such that Xj(,w,”“) €J.In
1 = n+1

this cgse, we set V41 := YV, and
jn+1 = (jn \ {J}) U {J U [mn+1’X’§“i_1tl)]}
(or (Zu\{IHU{ITU X, ] D).

If Xq(f,"“) ¢ Ujcy, J, then we set Vi1 := Y, U {Xq(,z,”“)} and
n+1 = nt1

Tusr 1= Ta U { (o1, XEI)} (o T UL (XS, 0] }).
n+1 n+1
It is immediate to check by induction the following facts:

— Y, C Supp(k) U AI. More precisely, Y, € Supp(r) U {y € I | ]P’(Xé;”) =y) > 0}.
— The intervals in J,, are pairwise disjoint.

— For every y € V,, there is one single J € 7, such that y € J.

— Vn € V-

— If n < n/, then for every J € J, there is one single J' € 7,/ such that J C J'. We
denote ¢, the corresponding map from J, to J, . The map 1, , is injective.
Trivially, for n < n/ <n”, 4y 1 =ty 17 0 Uy

— Forany J € J,, 0J C Y, U{z1,..., 2.}

In the second step of Wilson’s algorithm we will take the limit of the sequence

((Yn, Tn))n>1 and define (Yoo, Joo) as follows:

V= UV IT=U U { U zn,nf(J>}-

n>1 n>1JedJ, ~n'>n
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Yoo is a finite or countable subset of Supp(k) U 0I. J is a finite of countable set of
disjoint subintervals of I, but these subintervals are not necessarily closed or bounded.
For any y € Vo, there is a single J € J, such that y € J, and this induces a bijection
between Vs, and J. For any J € J,,, there is a single J' € J,, such that J C J'. We
define 2, oo (J) = J'. 5,00 is injective. Trivially, for n < 0/, 45 06 = /.00 © 1y n/. We
will sometimes write YV, (1, ..., 2n), Tn(T1,.- -, Zn), VYoo (Zn)n>1) and Joo((zn)n>1)
in order to emphasize the dependence on the starting points (2, ),>1. In Sections 6.3
and 6.4 we will see that:

— The set V4, is a.s. discrete.

— A.s,, for any intervals J € J, J \ 01 is open.

— The subset I\ ;. _J is a.s. discrete.

— The law of (Vs , Jo) does not depend on the choice of starting points (x,,)n>1.

We introduce Z,, := I\ (UJGJOO J). We will further see that V. and Z. are

determinantal point processes.

The couple (Yoo, Joo) may be interpreted as a spanning tree. Consider the following
undirected “graph”: Its set of “vertices” is I U {t}, where { is a cemetery point outside
of I. Ever point z € I is connected by an “edge” to its two infinitesimal neighbors
x —dx and z + dz. Every point in Supp(k) is connected by an “edge” to t. Finally, any
point in y € OI such that ]P’(X(w") = y) > 0 is connected by an “edge” to 7. On this

“graph” (Veo, Joo) induces the followmg ‘spanning tree”: Each point in |J ;. 7. 18
connected to its infinitesimal neighbors in I and Z., represents “edges” on I that are
missing. Moreover, every point in ), is connected to 7.

There are two trivial cases in which (Yoo, Joo) is deterministic. In the first one
k = 0 and I has one single regular or exit boundary point y characterized by
IP(X;?”) =y) > 0 (see [8], Chapter 16, for the characterization of boundaries). Then,
Yo is made of this boundary point and 7, contains one single interval TU ). Z is
empty. In the second case I does not have regular or exit boundaries and « is propor-
tional to a Dirac measure cdy,. Then, Voo = {yo} and Joo = {I}. Zo is again empty.
In all other situation Z, is non-empty and random. See Figure 6.1 for an illustration
of (Vn, ) for 1 <n <5 and Figure 6.2 for an illustration of (Yoo, Zc0)-

6.2. The erased paths

During the execution of Wilson’s algorithm we used the paths ((Xt(g”"))0<t<T ) .
= n/n>1

These paths can be further decomposed using the procedure described in Section 5.3.
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T4 T2 x3 T x5
° ° ° N o
T4 T2 T3 T ry
o \ s o g o
T4 T2 T3 T ry
x4 T2 T3 T s
T4 T2 T3 T x5

F1cure 6.1. Illustration of ((Vn, Jn))1<n<s: x-dots represent the points
of YV, and thick lines the intervals in 7.

FIGURE 6.2. Illustration of (Vs , Jo): x-dots represent the points of Voo
and diamonds the points of Z.

PROPOSITION 6.1. — The family of unrooted loops

U 2" (X5 oerer,)

n>1

has the same law as the Poisson ensemble Ly 1. Moreover it is independent from

(Yoo, Too)-

Proof. — Let L1, be a Poisson ensemble of loops independent from the family of

(mn)
paths ((Xt )0§t<<n) s
show that the triple B

. Using Proposition 5.7 and induction is it immediate to
1

VT )2 (X))

j=1

has the same law as

(yn,.jm {(’Y(t))OStST('y) € L1, | v([0,T(v)]) N U J # @}> .

JeTn
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Since (Yoo, Joo) is by construction independent from ((Xt(m" )) condi-

0§t<Tj) 1<j<n
tional on (Y, Jn), we further get that the triple

Voor Toos O " ((Xt(xj))ogt<Tj)

Jj=1

has the same law as

<yoo,jooa{(7(t))0<t<T(’Y) € 'clL |7 0 T U J# ®}>

JETn
Taking the limit of the third component as n tends to infinity we get that

Voo, Tooy | J 2" <(Xt(zj))05t<Tj>

Jj=1

has the same law as

<y00)jooa {(’Y(t))0<t<T("/) € ‘Cl L | 7( 0 T U J 7& ®}>

To conclude we need only to show that almost surely

{(’Y(t))o<t<T(»y) € L1,z |v(0,T(y U J # @} =Ly L.
JE€ET o

The latter is equivalent to |J Jeg., J being dense in I, which will be proved in the
next section. O

6.3. Determinantal point processes (Yoo, Z): Brownian case

In this section we will describe (Yoo, Joo) in the Brownian case by giving the joint
law of the point processes V., and Z. First, we will study the case of a Brownian
motion on a bounded interval (a,b), killed upon hitting a or b, and without killing
measure. Then, we will study the case of the Brownian motion on R with a non-zero

Radon killing measure . We will write (Bt(m")) instead of (Xt(m"))

0<t<Cn 0<t<Cn "

PROPOSITION 6.2. — In the case of a Brownian motion on a bounded interval (a,b),

killed upon hitting a or b, and without killing measure, Vo is deterministic and equals
{a,b} and Z is made of a single point distributed uniformly on (a,b).

Proof. — For n > 1, we define Z,, 0 < 1 < -+ < &y n41 as the family zq,...,2,,a,b
ordered increasingly. According to this definition, Z,0 = @ and Z,n+1 = b. As a

convention we denote Zoo := a and Zo; := b. For n > 2, one of the following

situations may occur:

— Yo = {b} and Ty = {[#n,1, ]},
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— Yn={a}and J, = {[a’jn,n]}v
— Yn = {a,b} and for some j € {2,...,n}, Tn = {[a, &n j—1], [Zn,;, b]}.

In any case, (a,b) \ (UJEJn J) is an interval of form (%, j_1,&n,;)-

We set {J}o = 0. Let n > 1. There is a j € {1,...,n} such that =z, €

(:zn—l,j—lajn—l,j)- Conditional on (a,b) \ (UJEJnfl J) = (i'n—l,j—lyi'n—l,j)a the
)

jnfl,j_xn
n—1,j)—Fn-1,;-1

. By induction we get that

point B(Tm," equals T, 1 ;-1 with probability and Z,_1; with
" xn_infl,j—l
n—1,j)—&n—1,j—-1

P ((a,b) V(U J)= (:zn,j_l,gz«n,j)) - %

JETn

probability -

Hence,

P(Voo = {a}) < lim P ((a,b) V(U VY)= (azn,o,szn,l)> = lim =l g,
JETn

and similarly P(Voo = {b}) = 0. Thus, Vs = {a,b}. Almost surely for n large
enough, 7, will be of form {[a,Z, j_1], [Zr ,b]} for a random j € {2,...,n}. We
denote by p:{)l, respectively p,, 5, the random values of Z,, j_1, respectively Z, ;. Al-
most surely, neither of the non-decreasing sequence (pj;l)n or non-increasing sequence
of (p, 2)n is stationary. This fact follows from the same argument according to which
Yoo is not reduced to one point. Moreover, p,, , — p;f,l, bounded by supQSan(in,j -
Zn j—1), converges to 0. It follows that a.s., Z is reduced to one point, the common
limit of p:’l and p,, ,. Finally, if a < b are two values taken by the sequence (Tn)n>1,
then

- b-a
P(Z4 C (a,b)) = .
(20 € (a,0)) = o —
It follows that the unique point in Z,, is distributed uniformly on (a,b). O

We consider now the case of the Brownian motion on R with a non-zero Radon
killing measure k. G(z,y) = ur(zAy)u; (zVy) will be the Green’s function of %j—; —
The law of (Vn,Jn) may be expressed explicitly. Let @, be the cardinal of Y.
Let Y, 1,Yn2,...,Yn,Q(n) be the points in ), ordered in the increasing sense. De-
note by [p, 1,p, 4], [p;z,p;z],...,[p;’Qn,p;Qn] the intervals in J, ordered in the
increasing sense. For all ¢ € {1,...,Qn}, Yo q € [P, ,, 0 ,]- It happens with positive
probability that for some ¢, p;, , = p;';q, if one of the starting points z1,...,x, is an
atom of k. To compute recursively the joint law of above random variables we use
the following facts: Given a killed Brownian path (Bt(x)) 0<t<c

distribution of Bégf) is G(z,y)k(dy) (see Section 2.2). Given a < z, let Ty, be the first

starting from z, the
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time B hits a. Then,
u(z) _ G(z,a)

Pl =0=1 0 = Gao

On the event T, > (, the distribution of Bé’f) is

G(z,a)G(a,y)

Glaa) )1y>a/~”~(dy)~

(Gle,y) — Ba(Ta < O)C(a, ) 1ymar(dy) = (G(:c,y) -

More generally, if @ < z < b and ( is the first time B(®*) gets either killed by the
killing measure « or hits a or b, then

— The probability that Bé-f) =qis:

det(
uy(@uy(2) —uy(@)up(@) _ \ Glaz) G

(
uy(a)ur (b) —uy (b)uq(a) dt(G(b,b) G(a,b) )
) G(a,a)

— The probability that Bé-gf) =bis:

det( G(a,z) G(a,b) >

uy(z)ur (b) — uy (D)us(z) _ G(z,b) G(bb)

uy (a)ur (b) — uy(b)ur(a) . t( G(a,a) G(a,b) )
“\ Gap oy

— The distribution of Béf) on (a,b) is:

G(z,y) G(a,y) G(y,b)
det | G(a,z) G(a,a) G(a,b)
G(z,b) G(a,b) G(b,d)

. G(a,a) G(a,b)

e

G(a,b) G(b,b)
Above expressions give the law of (Y1, J1) and the law of (Y11, Jn+1) conditional
on (Y, Jn). By induction, one can derive the law of (V,,J,). We will express it
using a single identity involving a determinant. However, this single identity may
correspond to different configurations: We will divide the set of indices {1,...,Q,}

in three categories E,, E; and E, % where for ¢ € E,, Y,y = p,, ,, for ¢ € E},
Ynq=p;,and for g€ E>F, p, <Y, , <pt, Forinstance, on Figure 6.1, Q5 = 3,

Locy<tr(dy).

n

E; = {3}, B = {1} and E;"* = {2}.
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PROPOSITION 6.3. — Let ¢ € {1,...,n}. Let (E,,Ef,E, ") be a partition
of {1,...,q}:

{1,....¢}=E, UEIUE,"
Let = be an increasing function from E, UE " to{z1,...,2,} and ™ an increasing
function from EfX L E % to {z1,...,2,}. We assume that the sets x~(E; T E,; )
and zt(E; 1L E; %) are disjoint, that for every i € E;»% x7 (i) < 2 (i) and that for
every i € E; WEY and j € Ef WE, " such that i # j, (7 (j) — 27 (4)) has the
same sign as (j —i). Let (A;)1<i<n be a family of disjoint bounded intervals each of
which may be open, closed or semi-open such that for every i < j, maxA; < min A,
that for every i, min A; >z~ (i) ifi € E, L E", maxA; < zV(i) ifi € EFLE T,
and that for all i,

7 (i—1),z7(i — 1) <minA;, maxA; <z (i+1),27(i + 1),

where in the previous inequalities one should only consider the terms that are defined.
Let p; (yi) and pf (y;) be the functions defined by: p; (y;) = = (i) if i € E; L E;»*
and y; otherwise. pi (y;) = z* (i) if i € E} 1L E;;% and y; otherwise. Then,

(6.3.1)
IP>(62” = q,Vi € E;7p7:,i =z ( ) pnz - Yn 1V7’ € En vpnz - .’E+(l) p'r:i = Y"J’
\v’ieE;’Jr,p;i:a:_(z) pnizm tE),vre{l,...,q}, Yo, €A,) =
det (G(p; (v:), } (y5)) k(dy;)-
/ylEAl /quA 7 1<Z Jsq Sl_[5

det (G(p; (yi),pj(yj)))lgi’qu may be rewritten as a simpler product:

(6.3.2) G(Pl_(yl)’P;r(yﬁ) H (G(p;—i-l(yr+1)7p:_+1(yr+1))

1<r<q—1

_ Gy (yr),pf+1(yr+1))G(pi(yr),p,T+1(yr+1)))
G(pr (), 7 (yr)) '

If o is a permutation of {1,...,n}, then (Vn(To)s - Tom)), In(Ta(1),--->To(n)))

has the same law as (Vn(z1,...,2n), Tn(z1,...,2,)) Moreover, for any n' > n and
any permutation o of {n+1,...,n'}, the law of (Vn/(T1,. .. Tn, To(nt1), - -+ > To(n’)),
T (T1s o Ty T(ng1)s - -+ To(nr))) conditional on (Vp(w1,...,%0), Tn(T1,...,2Tn))
is the same as the law of (Y (%1, .+, Tny Tt 1y -3 T )y T (B1, - ooy Ty T 15+ -+ 5 Tiar))
conditional on (Vn(z1,...,2Zn), Tn(z1, ..., Zn)).

Proof. — We will only give the sketch of a short proof. First, let us check that the

determinant det (G(pi_ (yz),p;'(yj))) may be indeed expressed as a product

1<i,j<q
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(6.3.2). We use the fact that for any a < b< a < b € R,

G(a,b)G(b,a) = G(a,a)G(b,b) = ur(a)uq (b)uy (@)u, ().
By subtracting from the last line in the matrix (G(p; (yi),p;' (yj)))lgi,qu’ which is
(G(py (4g), P (Y5)))1<j<q> the second to last line (G(py_;(Yg-1),P; (¥5)))1<j<q mul-

G(pq_fl (yq—l)ap;L (Yq))

G(0g_1(Yg-1), P41 (Yg-1))
except the diagonal one. Thus, det (G(pi_ (yi),pj(yj)))lgi’qu equals

tiplied by

, we get zero for all coefficient on the last line,

det (G(p; (yi)7p;_(yj)))1§i,j§q—1

G(py_1(yg-1), 0§ (¥))G(pi_ 1 (Yg-1), 15 (yq)))’

x (G(pq (4q), Py (¥q)) — N SOy

By induction we get (6.3.2).

Next step is to check that (Y, (x1,...,Zn—2,Tn—1,%n), Tn(Z1,.. ., Tn_2,Tn_1,Tn))
and (Vn(1,-. -, Tn-2,Tn, Tn—1), Tn(Z1,. .., Tn_2,Tn,Tn_1)) have the same law con-
ditional on (Y,—2(z1,...,Tn-2), Jn—2(z1,...,Zn—2)). This can be done using the ex-

plicit expressions for the conditional destitution of B;x_"‘l), B(Ti_”), B;w_” ) and B

n—1 n—1

(wn—l)
Ty ’

This invariance by transposition of the two last starting points implies in turn all the
invariances by permutation stated in the proposition.

From the invariance by permutation follows that one only needs to prove (6.3.1)
in case £1 < g < -+- < Zy. In this case one can prove (6.3.1) by induction on n using

the expression (6.3.2) for det (G(p; (yi),p;r(yj)))1<ij<q. O

The fact that the law of the tree obtained after n steps of Wilson’s algorithm is
invariant under permutations of the starting points (z1,...,z,) is something that is
also satisfied in case of random walks on a true finite graph. The product (6.3.2) can
be further rewritten as
(6.3.3)

ur (P ()i ey () T i (we))ur (ora 9r0)) =t (07 (90))uy (041 (9r41)))-
1<r<q—-1

Next, we will show that ), and Z,, are a.s. discrete.

LEMMA 6.4. — For alln >2 and g € {2,...,n},

P (Voo N (P g1:Pg) =0 Prog15P1 4> @n > q)
2(p;t,q - p'r:,q—l)
uy (P g 1)t (i) — up(pyy 4 1)y (P q)
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Proof. — Let n and ¢ be fixed. For n’ > n, let

N(n/) = #({xn+1) ceey Qin/} N (p;,q_lvpi,q))

and Zp1 < Znrg < -o0 < Zps N(w) the points of {Zni1,.. 20} O (D, 1,008 )
ordered increasingly. By convention, we define Z,/ o = p, ., and Zp N1 =
Pyt 4+ The condition Y N (p,, ,_1,p4,) = 0 is satisfied if and only if for some i €
{1,2,...,N(n') + 1}, necessarily unique, the following holds:

[pnq 1,1'” 71— 1 U J and [xn 'Lapnq = U J
JETm JeT,

Thus,

(y’n/ pn,q 1’pn,q) @ | pr_z,qfl’p:,q’ Qn Z Q)

N(n')+
Z P([p;,qflyin’,i—l] g U J7 [fin’,iap;‘;q] g U J| py_L,qup;:qun Z Q)
i=1

JETm JeT,

Let T, ; be the first time B(*~") hits either p,, ,_; or pjf | or gets killed by the killing
measure k. For ¢ € {1,2,...,N(n') + 1}, let T}, ; ..., be the first time B@n) hits

&y i—1. Since the law of (Y, J,/) conditional on (Y, J,,) is invariant by permutation
of points in (Zp41,...,Zn), we get that

]P)([pr;q_lajn’,ifl] g U J7 ['fjn’,hp;;r,q] g U J| p',:,q—lap:g,q7 Qn 2 q)

JETm Jejn/
—P B(In/i 1) — B(in/,i) _ o+ T, T, — + >
- T7 pnq 1 T _pn,q7 n’ l < n’ zwn/ Vi 1| pn7q—1apn,ann - q
n!i—1 n! i

Cuy (B i )ug (Enr ) — up (B io1)uy (B )

uy (P g1 (i) — w1 (P g 1)Uy (i)

It follows that

P (yn’ m (pr_;,qflap;t,q) = (Z) | p;,q—lap;t,qa Qn Z q)
N(n')+1 -

-3 ) (Znrim1)ug (Fnr i) = g (T io1)uy (T i)

= uypy ) w (Pie) = ur (D 41wy (Pe)

If £, ;1 is close to T, ;, then

Uy (Znsi—1)ur (Tns i) — ur (Ensim1)uy (Ens i)
=W(up,up)(@nric1)(Enr i — Tnrim1) + 0(@nr i — Enrjim1)

=2(&n i — Tnric1) +0(Enr i — & jim1).
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The sequence (Zn')n/>nt1 is dense in (p, ,_4,pt ). Thus,

im P (Vo N (0 go15Pmg) =01y g1,078 45 Qn > )

n’/—-+4o0
_ 2(p’rtq B p;,q—l)
Uy (p;,q—ﬂuT (i) — UT(p;,q—1)“i 2 N

PROPOSITION 6.5. — Let a < b € R. Then, for alln > 1,

(6.3.4) E[#(n Nla,b))] < » G(x, z)r(dz).

It follows that a.s., for alla < b € R, Vo N[a,b) is finite.

Proof. — Leta<be [a, b], where a is close to b. We will first show that for all n > 1,

(6.3.5) P (yn N [a,b) # (7)) < |  Ga,2)n(dz) + o(b - a),
)

where o(b—a) is uniform over @ and b close to each other in [a, b]. Then, we will deduce
(6.3.4) by partitioning the interval [a, b) in small subintervals [d, b) and approximating

the expected number of points in (g, l~)) by the probability of presence of one point.
Let n > 1. Then,

P (Vulor, o o2) 0[aB) £0) <P (Vusaer,..20,a.8) 0 [a,5) £0).

Since the law of Y, is invariant by permutation of the starting points,
P (yn+2(m1, T, 8, B) N [G,B) # (/)) —P (yn+2(a,5,x1, o 2) 0 [3,D) # Q)) .
But,
(63.6) P (Vura(d,bar,...,20) 0[a,D) #0) =P (3a(a,b) [a,b) £ )
+ P (22(8,5) N1 [3,8) = 0, Vns2(@, b1, ., 20) 1 [3,8) £0)

We start Wilson’s algorithm by launching first B(® starting from @ followed by B®
starting b. Then,

P (yg(a,é) N [a,5) # (2)) _P (B‘Tf_) e [a,B))+IP> (Bg_) # [a,5), By <a, B(TZZ e [a,E)).
Applying Proposition 6.3, we get that
P (a(a,b) 1 [a,8) # 0)
- /ze[&’g) <G(&,x) +/y<&(G(y,a)G(:c,E) —G(y,é)G(&,x))m(dy)) k(dz).
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For z € R, let T} ,, be the first time B@ hits 2. Then,

G@a)+ [ (Ga)6@H) - 6 DG@)n(dy)

= G(z,z) (IP’(Tl > Th.) + g((”” b))IP’(T <D BYY < a)> < G(z,).
Thus,
(6.3.7) P (yz(a, B) N [a,b) # m) < /[aj) G(z, )r(dz).
Further,
P (22(,5) N [3,5) = 0, Vnia(@ by, b) #0)
<P (¥5(a,0) N [a,5) = 0, Ys0 (@, b, (25);21) N [a,5) #0)

Applying Lemma 6.4 and Proposition 6.3, we get that
P(Y2(a,8) N[3,5) = 0, Yo @, é, (2);21) 0 [a,ia) + @)

i Gly,a) Gly:2)
" /yga /zzb ysglad) Ot ( G(a,b) G(b,2) > KA

< @@u @) - u@ul 6)-206-) [ wsd) [ uEnd:)

But,

uy (@)ug (b) — up(@)u | (b) —2(b— @) = o(b— a).
Thus,

6.38) P (y2(a, B) N [@,0) = 0, Vosol(@ b, z1,. .., 2n) N [a,0) # (z)) = o(h—a).

Combining (6.3.6), (6.3.7) and (6.3.8) we get (6.3.5).
Now, for j € N* and i € {1,...,27}, consider the intervals A; ; defined by

A--:{ [a'i"(i_1)2_j(b—a),a+i2_j(b—a)) ifi<2i —1,
Y fat+ (1 -279)(b - a),b] ifi= 2,

Then, E [#(Y, N [a,b))] is the increasing limit of 212;1 P (Y, NA;; #0). But,

27 Y
Zp(yn NA; #0) < Z/ G(x,z)k(dr) +270(277).
i=1 =1 i
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(6.3.4) follows. Since (6.3.4) holds for all n, it also holds at the limit when n tends
to +o00. This implies that Vo N [a, d) is a.s. finite. O

PROPOSITION 6.6. — Almost surely, all the intervals in J, are open.

Proof. — We need only to show that for any n > 1 and ¢ € {1,...,n},
(6.3.9) P (Qn >q,Vn' > n,min(zn,n/([p;’q,p;f’q])) = p;’q) =0,
and

P (Qn > ¢,Yn' > n,max (1,0 ([py, 4,01t 4]) = Pdn) = 0.
Let n and ¢ be fixed. We will show (6.3.9). We will also assume that ¢ > 2. The proof
is similar if ¢ = 1. We need to show that a.s., the following conditional probability
converges to 0:

lim P (min(zn’n/([p;q,p:’q])) = Pn,q | Vny Tn)s Qn > q) =0.

n’/—-+o0

We recall that for n” > n+ 1, B®»") is a Brownian motion starting from ,~ and
it is independent from (Y, J,). Let Tn”,p;n be the first time it hits p_,, and T~
the first time it either hits (J,. 7., J or gets killed by the killing measure x. Since
the law of (V,/, Jn) conditional on (¥,,J,) is invariant by permutation of points

in (nt1,.-.,Zn), we get that

P (min(en,w ([P g P g])) = Prg | Vns Tn), @n > 4)

. _ - _ + —
S n+1éI}Lf//<nl 1 11’:,,1_1<$n//<p;,qIFD <Tn” - Tn",Pq_,n | pn:q_l’pnaq7 Qn 2 q) :

But, P (fnu =T, pin | p:’q_l,p;q) is close to 1 if z,,~ is close enough to p;, .. There

is always a subsequence of (2, )n»>n+1 made of points in (pj;qfl,p;’q) which con-
verges to p, .. It follows that
; 7o + - _
n//gl,’,fb‘_;’_l 1 - lp:’q_l<1‘n// <p;,qIED (Tn” - Tn",;ﬂq_,n | pn)q_l’pnvq’ Qn Z q) - 07

which concludes the proof. O

From Proposition 6.6 follows that Z., is closed. Moreover, it does not contain any
of the points of the sequence (z,,),>1. Since the sequence (zy),>1 is everywhere dense,
the connected components of Z,, are single points. One can see that

— If y < § are two consecutive points in Voo, then #(Z. N (y,9)) = 1.
— If Yo is bounded from below and y = min Y., then Z,, N (—oo,y] = 0.
— If Yo is bounded from above and y = max Vs, then Z,, N [y, +00) = 0.
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See Figure 6.2. The set Z,, may be empty, which for instance happens almost surely
if k is a Dirac measure. For n > 1, we define

-
Z, = {pnﬂgpn*ﬂ?quQn}.

We will write Z,,(z1,...,2,) and Z,((,)n>1) whenever we need to emphasize the

dependence on the starting points.

PROPOSITION 6.7. — The law of (Voo, Z00) does not depend on the starting points

(xn)nZI .

Proof. — Let (&,)n>1 be another sequence of pairwise disjoint points in R. We will
show that the sequence (Vo,,(z1,...,Tn, T1,---,%n), Zon(T1,- -« T, T1,...,%y)) cOn-
verges in law t0 (Voo ((Zn)n>1), Zoo((Zn)n>1)) and that (Von(Z1,...,%n,T1,...,Zn),
Zon(Z1,- - &n,x1,...,2Tp)) converges t0 (Voo((Zn)n>1), Zoo((Zn)n>1)). Since the
two couples of point processes (Vo (T1,- -, Tn, T1,-- -, &n), Zan(T1, -y Tny T1y. .-y Tn))
and (Von(Z1,.. ., &Tny &1,y .-y &)y Zon (1, .. -, &n, T1,- .., 2Tn)) have the same law, this
will finish the proof.

For the convergence in law we will use the topology of uniform convergence on
compact sets of collections of points in R. It can be defined using the following metric:
Let dg be the Hausdorff metric on compact subsets of R. One may use the metric
dpp on point processes:

dpp(X,X) :=dg(tan~ (X)) U{-1,1}, tan " (X) U {-1,1}).
In order to simplify the notations we will write

Vny, Zn) = (Vn(z1, - 20), Zn(z1, -, T0)),
(yooyzoo) = (yoo((xn)nZI)aZoo((xn)nZI))a

(5}/27172”;271) = (y2n(x17 ... 7xna531’ cee 7i‘n)722n(m17 cee 71771.75'17 .. ai‘n))

We can construct ((Vn, Zn))n>1; (Yoo, Zoo) and ((5}/271,52”))”21 on the same proba-
bility space using independent Brownian motions starting from the points in (z,,)n>1
and (&y)n>1 and killed by the measure k. We construct the sequence ((Vn, Zn))n>1
using the Wilson’s algorithm described in the introduction. This way, V,, C V,+1 and
Voo = Un>1 V.. In order to construct )Nign, we first construct ),, and then continue
the Wilson’s algorithm using the Brownian motions starting from Zi,...,%,. This
way, V, C 37271 but not necessarily )7% C )Nigm_,_l).
Let C >0and ¢ € (0,%). Let 6 € (0,1), § small. There is N € N* such that

P(YyN[~C,Cl = Vo N[-C,C]) > 1 6.
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There is €’ € (0,¢) such that for all a < b € [-C, C] satisfying b—a < €', the following
holds:
2(b—a) < K3
uy(a)uy(b) — ur(a)uy(b) = N
There is N’ > N such that with probability 1 — 26 the following two conditions hold:

1-—

(6.3.11) Leb ([-C,C]\ |J J)<¢"
JET N/

We define the following two random variables:

= min (min J), Kt := (max J).
JETN1,JC[-C,C]

= max
JeTN,JC[-C,C]

If (6.3.11) holds, then [-<,%] C [K—,K*]. If (6.3.10) and (6.3.11) hold than for
n> N, [K~,K*]\ U ¢, Jis made of at most N intervals, each of length at most ¢’

Consider the following condition on )Nizn:
(6.3.12) Vo N[K~, KT =Y, N[K~,K"].
Applying Lemma 6.4, we get that, for all n > N’,
P (372n satisfies (6.3.12) | (6.3.10) and (6.3.11) hold) >1-4.
This implies that, for all n > N’,

i ()7% satisfies (6.3.12), and (6.3.10) and (6.3.11) hold.) >1 - 36.

Let n > N’. On the event when (6.3.10) and (6.3.11) hold and Y, satisfies (6.3.12),
which happens with probability at least 1 — 39, the following is true:

— Vo N[K™, K¥] =Yoo N [K~,K¥],
— dyg(Zon N[K™, K1), 2o N[K—,KT]) <.

In particular, with probability at least 1 — 3,

T dPP§v§2n7yoo) < 1-— tan_l(%)7
_ dH(ZZ'ruZoo) <e+ (1 — tan_l(%))_

Since C is arbitrary large and € and § are arbitrary small, this implies that ()7%, ggn)
converges in law as n — 400 t0 (Yoo, Zo0)- O

Next we identify the law of )., as a determinantal fermionic point process. For
generalities on this processes, see [26], Chapter 4, and [60].
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PROPOSITION 6.8. — Letn>1 anda; < by <ag <by <---<ap<b, €R. Then,

n

H #(Voo N [ar, by) ] / / det (G ?Jzayj))lgi,jgn H k(dyy).
la1,b1) Y [an,bn) r=1

r=1

(6.3.13) E

In other words Y is a determinantal point process on R with reference measure K
and determinantal kernel G.

Proof. — Consider points @, < b, € [a,,b,] for r € {1,...,n}. We will show that

(6.3.14)

B (vr e {1,...,n}, Yoo N [ar,By) #0)

= /[~ E)"'/r - )dEt (G(yiayj))lgi,jgnnﬁ'(dyr)

r=1
n (ZO(ZT—dr ) X Hn b))+ Y. ] ol —an) [T #(lar b)),
r=1 Ec%}# ,n}reE r¢FE

where the quantities O(l;r — a,) and O(Br — @,) are uniform over a, < b, € [ar, b,
a, close to b,. From (6.3.14) one deduces (6.3.13) by splitting the intervals [a,., b,] in
small subintervals and approximating the number of points in V., N [a,,b.) by the
number of subintervals of [a,, b,) that contain a point in V.

Since the law of )., does not depend on the choice of everywhere dense sequence
of starting points, we will assume that the first 2n starting points in Wilson’s algo-
rithm are in order ai,b1,...,a,,b,. We will show that for all non-empty subsets E

of {1,...,n},

(6.3.15) P (Vr € E, Vo N lar,by) = 0, Voo N[y, by) # 0,Yr & E, Vo, O [, by) # VJ)

= [I oG- —a.) [] =(la-, b))

reE r¢E

Further, we will show that for any rg € {1,...,n},
(6.3.16)

IP(VT‘ € {17 s 7n}7y2nm[a‘?“’[;1") 7é (Z)’ [dToa BTO] g U J) = O(I;To_dro) H H([ar»br))-

JeT2n r=1

If for all r € {1,...,n}, an @, b.) # 0 and [a,,b,] C Use,, J, then, necessarily,
Q2, = n and ..72n = {[ar,b,] | 1 < 7 < n}. We will use the fact that according
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0 (6.3.1),
(6.3.17)

P(QZn:nyj%z:{[dr, [11<r<n}

_ n
= /al’gl) /[amgn) det (G%,lﬂ) rciien H dyr

r=1

N——

n n

_ / / det (G (ys,y;)) 1<U<"ﬁ/<cdyr (ZO([N)T—ZIT))XHK:([&T,IN)T)).

=1 =1
[61,51) [an,bn) " "

Let us show (6.3.15). A closed expression of the probability in (6.3.15) can be
computed using (6.3.1) and Lemma 6.4. Since many different configurations (different
values of @2, and configurations of Jy,) contribute to the probability in (6.3.15), we
will not give the closed expression and only give the estimates. Let E be a non-empty
subset of {1,...,n}. If » ¢ E, then the condition Vs, N [a,,br) # 0 contributes by a
factor O(k([dr, by))) to the probability in (6.3.15). If » € E, then the two conditions
YVan N [ar,br) = 0 and Voo N [@y, br) # O imply that (a,, br) N Ujses,, J = 0. Accord-
ing to the identity (6.3.3), the condition (a,,br) N Ujsez,, J = 0 contributes to the
probability in (6.3.15) by a factor

O(ul(&r)uT(Br) - uT(ar)ul(ET)) = O(Er - ELT)'

According to Lemma 6.4, the additional condition Ve N [@,,br) # 0 contributes to
the probability in (6.3.15) by a factor

2(b, — )

1-— = =
uy (@r)ur (by) — up(ar)uy (br)

=o0(1).

(6.3.15) follows.

We deal now with (6.3.16). As in the previous case, the condition that for all
re {1,...,n}, Yon N [ar,b) # 0, contributes by a factor O (H"_l n([&r,gr)))
the probability in (6.3.16). The condition [ay,,br,] € U Jed,, J implies that there is
ie{2,..., an} such that &,, < p3,, i1 <DPap; < br,. As previously, this contributes
by a factor O(by, — dr,) to the probability. Combining (6.3.15), (6.3.16) and (6.3.17)
yields (6.3.14). O

Let &, be the following operator defined for functions in L2(dk) with compact

z) = / G, y) f(v)r(dy).

A standard condition for a determinantal point process with kernel G relative to

support:

the measure s to be well defined is &,; to be positive semi-definite, contracting and

SOCIETE MATHEMATIQUE DE FRANCE 2018



110 CHAPTER 6. WILSON’S ALGORITHM IN DIMENSION ONE

locally trace class. We explain why this is true. Let f be a compactly supported L2 (dk)
function. Then, the weak second derivative of &, f is

d(B.f)\
a(2E0) = 28, f — N,
&, f and % are square-integrable and
1 d(B,f)
(Buf)fdr = | (B.f)dr+ 5 | (B.f)d
(6.3.18) /R /R 2 /R ( dx )

:/R(Q%f)an-l—;A(d(igf))zdx.

Identity (6.3.18) shows that ®, is positive semi-definite. It also shows that
fR(®nf)2dK: < fR(QS,if)fd/-c, which implies that &, is contracting and hence
can be continuously extended to a contraction of the whole space L%(dk). &, is
locally trace class because it is positive semi-definite and its functional kernel is
continuous (see Theorem 2.12 in [59], Chapter 2).

Next we give a criterion for ), to be finite or just to be finite in the neighborhood
of either 400 or —oo.

PROPOSITION 6.9. — If f(o +00) zk(dx) < Hoo, then, almost surely, # (Voo N
(0,+00)) is finite. Moreover,

(6.3.19) E[# (Voo N (0,400))] = /(0 . )G(:v,x)l-@(dm) < 400.

If f(07+oo) zk(dx) = +00, then, almost surely, #(Vso N (0,400)) = +00. In general,
for alla € R,

(6.3.20) P(Vso N (a,+00) =0) = ul(+oo)/ ur(z)k(dz).

(_Ooxa]

Similarly, if [, |x|k(dz) < +oo, then, a.s., #Vu is finite and
E[#YV] = / G(z,z)k(dz) < +o00.
R
If [, |z|k(de) = +oo, then, a.s., #Vao = +00.

Proof. — We need only to deal with the finiteness of #(Vs N (0,400)). If
f(0’+oo)xk(dx) < +o00, then (6.3.19) holds according to 2.3, and hence, #(Vs N
(0, +00)) is finite is finite a.s.

We will prove (6.3.20). If f(o +00) zk(dx) = +oo, then, according to 2.3,
uy(+00) > 0, and thus, #(Vs N (0,4+00)) = 400 a.s. Let a < b € R. We assume that
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the two first starting points in Wilson’s algorithm are a and b. Then,

(6.3.21)
(a) (a) (b)
P(Voo N (a,8] = 0) = P(B,2 > b) + P(B” < a, B  =a)
= (B(a) >b) + P(Bé? <a) x P(B(b) hits a before time (5)
uy (b)
= Ye(dz) + / G(a,z)k(dz) ) x
/b,+oo) ( (—o00,a] ) Uy (CL)
/ () +u®) [ uro(do)
+oo) (—o0,a]
Letting b go to +oo in (6.3.21) gives (6.3.20). O

Next we will show that Z, is a determinantal point process with kernel K relatively
to the Lebesgue measure where

K(w:2) = —3 Ty A 2) ") D (g v 2))

= 2/(_00,1!/\4 ur(x)k(dz) x /[y\/z,+oo) uy (z)k(dz).

PROPOSITION 6.10. — Letn>1 anda; < by <as <by <---<a, <b, €R. Then,

6.3.22 E ZOO mbr = d K iy <5 ii<n dr.
( ) lg#( ﬂ(a ))] /(a1,b1)[an,bn) et( (Z ZJ))IS RS H &

r=1

If forr € {1,2,...,n}, k({a.}) = k({b.}) =0, then
(6.3.23)

P(VT’ € {1,2, PN ,n},#(Zoo n ((LT,br)) = 1) = det(IC(ai,bj))lgi,an X H(bT — (Lr).
r=1

Proof. — We will only prove (6.3.23). (6.3.22) can be deduced from (6.3.23) by diving
the intervals (a,,b,) in small subintervals and approximating the expected number
of points in these subintervals by the probability to have one single point per subin-
terval. Observe that, if the measure s has atoms, then K is not continuous. Yet,
Z dd—;(zﬂ is right-continuous and z — %(z_) is left-continuous. So the approxi-
mation can still be done.

Consider the Wilson’s algorithm where the 2n first starting points are in order
ai, bl, as, bz, ceeyQp, bn Then,

(6.3.24) P (vre {1,2,...,n}, #(Zs0 N (ar, b)) = 1)

:P(Vre{l,Q,...,n},(ar, SR\ | J(ar,b myoo_(z))

JET2n
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Applying Lemma 6.4, we get that (6.3.24) equals

(6.3.25)
n b _ar)
P(V € {1)27"" } ( 7”’ CR\Jg2,L ) 1;[ ar)UT(b _U’T(G’T‘)ul(br).
Further,

(6.3.26) P(Vre{l,&...,n},(ar,br)QR\ U J>

JET2n

a bn b, ar
=1P’<B(T1“§a1,B(T2n)zbn,we{l, jn=1}b, < By < B “)<a+1).

2r4+1

Applying (6.3.1) and (6.3.3), we get that (6.3.26) equals

(6.3.27)

[y 0) — s (o ®0) x | sty > [ (i)

Sﬁ
,..»—\

1;[( [brs art1]) +/b <yr<gr<ar+1(ul(yr)uT(gr)_UT(yr)ul(gr))ﬁ(dyr)ﬁ(d'gr))'

But,
(6.3.28)

/ wy (9 Yur () (dyr ) (di)
br<y,r<gr<arii

5w () = G e

2
du du) duyq 1/ duy ,
= r br,v — \4r - a5 r) 5 d T/
(5 @) = B4 00) Sl ar) - ) ()
and
(6.3.29)

-/ USIHCARCRICS
b <yr <gr<ar+1

= ! dul dul +
2 /b <yr<art1 “ (yr)< dx (aT+1) dz (yr ))/@(dyr)
du

_ _Ldw _ dur g ) 1 / duy
=3 (G ) = GO Frlar v 3 | i) sl
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Combining (6.3.28) and (6.3.29) we get that
/ (i 9 () — 1 (s () (e ()
br<yr<gr<ari1

duT dul _ % dU,T
= (O 00 T )~ T 00 S ar40))

3] () T - n) G )

= i(%(l)r)%(afdrl) - %(b )(Z;T (aT+1)> — K’([bmar+1]).

It follows that (6.3.27) equals

(6:330) T (ui(arur(br) = us(ar)uy (b)) x (= 3 5 (@) T 60)
r=1

(%, %<ar+l>—%<bT>‘Zj<aT+l>))

r=1

1 n

=2 H (uy(ar)uq(br) — ur(ar)u; (by)) x det(K(as, bj))1<ij<n-
(6.3.25) together with (6.3.30) gives (6.3.23). O

To see that the operator induced by the kernel K on LL?(Leb) is positive semi-
definite, one can check that for any L2 function f with compact support,

[tk vz = [ 6.2 < / f(:r)dw> K(dg)s(d2).

Too see that K induces a contraction, one can check that, for any C! function f with
compact support,

[tk @tz = [ j@rie -5 [ Taeen e

and that [, 9 (§)G(7, 2) L (2)dydz > 0.

The determinantal kernels G and K both satisfy the following relation: for any
r<y<zekR,

(6.3.31)  G(x,y)G(y,2) = G(z,2)G(y,y)  K(z,9)K(y, 2) = K(z, 2)K(y, ).

For z € R and y, z > x, we define
(6.3.32)

G(ZX)(yaz) = G(y,Z) -
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Relation (6.3.31) ensures that det(G(yi,y;))1<i,j<n and det(K(zi,2;))1<ij<n can be
factorized as follows: If y1 < y2 < --- < yp, then

(6.3.33) det(G(yi, yj)1<ij<n = Gyr,v1) [ [ G (yr, 1)
r=2

If 21 < 290 < --- < zp, then

(6.3.34) det(K (21, 27))1<ij<n = K(21,210) [[ K& (20, 20).

r=2

The relations (6.3.31), or equivalently the factorizations (6.3.33) and (6.3.34), imply
that the spacings between consecutive points of V., respectively Z.,, are indepen-
dent, that is to say conditional on )Y, having a point at yg, the position of the next
higher point y is independent on Y., N (—00,yo), and similarly for Z., ([60], Sec-
tion 2.4). Conditional on yg € Voo, the distribution of its higher neighbor in YV, is of
the form fa(yo,y)k(dy). Similarly, denote fix:(zg,2)dz the distribution between two
consecutive points in Z,, conditional on 2y be the lowest one. Following relations
relate G(¥0*) (y, 5), respectively K(*0*) (2, 2), to fg, respectively fi:

G (y,y) = fa(yo,y)

+ Z/ fa(yo,y1)fa(y1,y2) - - fG(Z/j—l,y)/‘”v(dyl) s /-c(dyj_l),

j>2 Yo<y1<--<yY;-1<y

K (2, 2) = fic (20, 2)

+ Z/ f}c(ZO, zl)f;g(zl,zg) S f;c(zj_l,z)dzl . dzj_l.

j>2 z20<21<<2z;-1<2

If f(0’+oo) z k(dz) < +00,i.e., Voo (0, +00) a.s. finite, then f(yO,Jroo) folyo,y)r(dy) < 1
and f;goo fic(20,2)dz < 1.

Given a couple of interwoven point processes (), Z) on R, such that between any
two consecutive point in ) lies one single point of Z, and such that for any J bounded

subinterval of R, ) satisfies the constraint

E[#(YNJ)] < 400,
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the joint distribution of (), Z) can be fully described using the family of measures
(M (y Z))n>0 defined by

| £y, 2)(a0) = B[ 3 f(0)].

Yo€Y

/ f(yO)Zlayl» ceey Zn)yn)Mn(ya Z)(dy07 dzladyla cee 7dznvdyn)
Yo<z1<yY1<...2n<Yn

:E[ Z f(yOazlvyla'-'7znayn) .

Yo,--3Yn
n+1 consecutive points in Y

21,020 €Z
Yo<z1<Y1<...2n<Yn
M, (Y, Z)(dyo,dz1,dy, - . . ,dzy,, dy,) is the infinitesimal probability for yo, y1,- .., Yn
being n + 1 consecutive points in ), and 21, ..., 2, being the n points in Z separating

them. In case of (Yoo, Zoo)s Mo(Voos Zo0)(dyo) = G(Yo,Yo)k(dyo)-

PrRoOPOSITION 6.11. — Forn > 1,

(6.3.35)
M, (Voos Z0)(dyo, dz1, . .., dzn, dyn) = 2"ur (yo)u (yn)k(dyo)dz1 - . . dznk(dyn)
= QnG(yo, yn)’i(dyO)dzl cee dzn’i(dyn)

Moreover,
fa(yo,y) = 2(y — yo) () k(dy)-almost everywhere,
uy(yo)
Felzo.2) = 26((20, D) (2 (20) %eb(2)  de-almost cverywh
x(20,2) = 26((20, 2)) | 5 (0 o 7 z-almost everywhere.

The distribution on Z., conditional on Vs is the following: given two consecutive
points y1 < Yo N Voo, then the point of Z., lying between them is distributed uniformly
n (y1,y2) and independently on the behavior of Z. on (—oo,y1) U (y2,+00). The
distribution on Y., conditional on Z. is the following: given two consecutive points
z1 < z2 in Zy, then the point of Vo lying between them is distributed on (21, z2)
according the measure 1zl<y<Z2% and independently on the behavior of Vo
on (—00, z1) U (22, +00). If f(foo,O) |z|x(dx) < 400, then min Yo, is distributed condi-

x(dy)
o k((—oo,min Z,))
on the behavior of Vs on (—oo,min Zy,). Similarly, for the distribution of max YVu,

tional on Z., according to the measure 1ycmin z and it is independent

conditional on max Z, if f(o +00) zk(dz) < +o0.

Proof.—Leta0<b0<&1<51<a1<b1<--~<&n<5n<an<bn€R.Let
be the event €, (ag, bo, d1,b1,a1,b1, .-, an,bn, Gy, by), corresponding to the following

conditions:

— Vs N [ag,bg] 7é @ Voo N [anv ] 7é @7
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— Vre{l,...,n}, #(Vs Nlar, br]) =1,

— Vredl,.. .,n},#(Zoo N (ar,by)) =1,

— Vre{0,...,n =1}, Voo U Zoo) N (by, ] = 0, (Voo U Zo) N [bry ary1) = 0.
We will compute the probability of ‘Kn(ag,bo,&l,i)l,al,bl, ...,dn,gn,an,bn). Con-
sider that we execute the Wilson’s algorithm where the 2n first starting points are
61,51, ... ,dn,l;n. The only configurations that contribute to the studied event are
those where B(T?f) € [ao, bol, B;f;l;) € [an,by] and for r € {1,...,n — 1}, B(b)
B;,a_r“) € [ar41,br41]. We further need that for r € {1,...,n}, Yoo N (@, b,) = 0.

2r41

Thus, applying (6.3.1), (6.3.3) and Lemma 6.4 we get that the probability of the
event %n(am bo, a1, 517 a1, by, ..., an, Ena Qn, bn) equals

/[ao’bo] ut (yo)k(dyo) X /{ambn] ) (yn)K(dyn) X 7«131 #([ar, br]) x rli[_lz(br —&,).

The above probability also equals M, (Yoo, Zo0)([ao, bo] X [@1,b1] X [a1,b1] X -+ x
[@n, bp] X [an, bn]), and gives the expression of (6.3.35). To get the expressions of fg
and fi, just observe that

G(yo,y0) fa (o, y)k(dyo) s (dy) = Mi([yo,yo + dyo] X (yo0,y) X [y,y + dy]),

K (20, 20) frc (20, 2)dzodz = M3((—00, 29) X [20, 20+ dzo] X (20, 2) X [2, 2+ dz] X (2, +00)).

Expression (6.3.35) gives also the law of Z, conditional on Y., and the law of Y,
conditional on Z.,, except for the possible extremal points of V... Let’s deal with the
distribution of max Y., conditional on max Z, in case f(O,—i—oo) zk(dz) < +o00. Again,
according to (6.3.35), conditional on zg € Z,, the distribution of min Y, N(2g, +00) is
proportional to 1y ,,u(y)k(dy). To obtain the distribution of max Y., conditional
on max Z,, one must weight u (y) by 1 — fg>y fa(y, 9)k(dg), i.e., the probability of
not having any point in Y, consecutive to y. But,

folwintdn) =2 [ () 1D x(ap)

7>y 7>y u(y)
— lim y— ydul ~+ dul
g—-+o0 uy (y) a ¢ y)
Further,
du .
G- G-y [ @k <2 @-yuess) - o,
(9,+00) (9,+00)
It follows that
- . 1 dup o\ uy(400)
faly, 9)k(dy =——/ —(gh)dg=1- ———=.
/37>y v 9)(49) up(y) Jgsy dx W uy(y)
Thus, 1,5 .,u; (y) (1 — fg>y fg(y,ﬁ)n(dﬂ))/e(dy) is simply proportional to 1, ,,x(dy).

O
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PROPOSITION 6.12. — In case [, |z|x(dz) < 400,

P(#Yoo = 1) = up(—00)uy (+00)..(R)

Conditional on #Y = 1, the unique point in Y., is distributed according z((dﬂé’)).

Proof. — The distribution of the unique point yy of V. on the event #YV,, = 1 is
given by the following sieve identity:

(G(yo,yw— [ Gty ety

Yy—-1<Yo

—/ G(Y0,%0) fa (o, y1)k(dyr)
Y1>Yo

+ / . / - G(yl,y1)fc<y1,yo>fc<yo,y1>n<dy1>n<dy1>>n(dyo>.

It is the infinitesimal probability of )., having a point at gy, minus the probability
of having a point at yy and an other lower, minus the probability of having a point
at yo and an other higher, plus the probability of having a point at yy surrounded by
two neighbors on both sides. The identity can be further factorized as

(1) 2 [ - oo nldy) )

 (wston) -2 [ m- o)) ) % ().

According to the calculation done in the proof of Proposition 6.11, the above equals
up(—o0)u (+00)k(dyo). O

Now, let us describe (Y, £Z5) in two particular cases. If the killing rate is uniform,
that is to say x(dy) = cdy, where c is constant, then

cfa(0,7) = fic(wo, @) = 2e(x — mg)e™ 2= 720),

Both the spacings of V., and Z, are i.i.d. gamma-2 variables with mean \/g . Actually,

the union Y., U Z,, is a Poisson point process with intensity v/2cdz. If the killing

measure is of form k = ¢) . _, 0;, where c is constant, then again the spacings between

JEZ
consecutive points in V., are i.i.d random variables, this time integer valued. Let Ny be

a random variable with same distribution as this spacings. For any j € N
P(Ny = j) = 2¢j(1 + V2¢) 7.

N3 can be written as Nog = Nj + Nl — 1, where N; and ]Vl are two independent
geometric variables of parameter (1+ +1/2c)~!. Actually, if yo < y are two consecutive
points in Y., and z the point of Z,, lying between them, then, conditional on yq,

SOCIETE MATHEMATIQUE DE FRANCE 2018



118 CHAPTER 6. WILSON’S ALGORITHM IN DIMENSION ONE

(lz] — 0,y — | z]) has the same law as (N; — 1, N). Moreover, {|z] | z € Z5} has the
same law as V..

6.4. Determinantal point processes (Voo, 2 ): general case

Let I be an open subinterval of R and L be the generator of a transient diffusion
on [ of form L = ﬁ% (ﬁ %) — Kk, with zero Dirichlet boundary conditions
on 0I with sample path denoted (X;)o<¢<¢. We will describe, without proof, the law
of (Voo, Zo0) in this generic case. It can be derived in the same way as it was done
in the previous section. Let G be the Green’s function of L relatively to the measure

m(y)dy, factorizable as G(z,y) = ur(x Ay)u(z Vy).

PROPOSITION 6.13. — V., and Z. are a.s. discrete point processes. Let OI be the
boundary of I in RU {—o0,+o00}. Almost surely,

Ve NOI = {y € 0T | (X~ =y) >0}.

If k # 0, the points in Yoo NI are a determinantal point process with determinantal
kernel G(z,y) relatively the reference measure m(y)k(dy). Z- is a determinantal
point process on I with determinantal kernel

duq du _

%((y/\z)*)%((y\/z) )

relatively to the reference measure %. Given two consecutive points y1 < Y2

i Yoo, then the point of Z. lying between them is distributed according to
w(z)dz

f(y1yy2) w(a)da’

on (—00,y1) U (y2,+00). Given two consecutive points z1 < z3 in Zo, then

the measure 1y < <y, and independently on the behavior of Z.

the point of Ve lying between them is distributed on (z1,22) according the

measure 121<y<Z2%, and independently on the behavior of Yo
(z1,22)

on (—00,21) U (22, +00).
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CHAPTER 7

MONOTONE COUPLINGS
FOR THE POINT PROCESSES (V, Zs)

7.1. Conditioning

In this chapter we will deal with monotone coupling for the determinantal point
processes Yo, and 2, intruded in Chapter 6. We will restrict to the Brownian case.
Consider two different killing measures x and £ on R, with k < &, and the couples
of determinantal point processes (Voo, Zo0), respectively ()NJOO,ZVOO) corresponding to
the Brownian motion on R with killing measure k, respectively k. We will show
that one can couple (V, Z5) and (3700,200) on the same probability space such
that Z C ZNOO and )NJOO C Yoo U Supp(R — k). Moreover, if x and & are proportional,
we may also have Y, C )NJOO. We will provide an explicit construction for the this
couplings in Section 7.2.

In Section 7.1, we will prove conditioning results for (Vs, Z0): what is obtained
if Yo or Z., is conditioned by either containing a point at a given location or not
containing any points in a given interval. These results will be used in the next section.
The conditional law we will obtain are analogous to those of the uniform spanning
tree on a finite undirected connected graph: Let G be such a graph, E the set of
its edges, C' a weight function on E and Y the corresponding uniform spanning tree
on G. Let F7 and E5 be two disjoint subsets of E such that F; contains no cycles and
such that erasing the edges in E5 does not disconnect G. The law of T conditioned
by E1 €T and TN Ey = () can be described as follows: Let G’ be the graph obtained
from G trough erasing the edges in F5 and contracting (i.e., identifying the two end
vertices) the edges in E;. The edges of G’ are in one to one correspondence with
E\ E,. If we keep the same weight function C on these edges and take Y’ an uniform
spanning tree on G’, then T/ U E; has the same law as Y conditional on E; C T and
T N Ey =0 (see Proposition 4.2 in [4]).

Let x be a Radon measure on R and G(z,y) = ui(z A y)uy(z V y) the Green’s

1d?

function of 57— — k. First, we will restrict the Brownian motion with killing measure
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% to a half-line by adding either a killing or a reflecting boundary point and describe
what is obtained if we apply the Wilson’s algorithm to it. This is related to some of
the conditional laws we are interested in. Diffusions with reflection were not discussed
so far.

For zg < y, let

) = ) = 2L

and for zg < y, 2, let
G (y, 2) = uf™ ) (y A 2)uy (y V 2),

(zoX)

du U
() M (v 2)).

G(®0%) was already introduced in (6.3.32). For y < z, let

K (y, 2) =

W) = ) = 2w ),

and for y, z < xg, let

G(XZ‘O)(y’ z) = U’T(y AN Z)’U,ixxo)(y V Z),

1 duT isz)
Je (o) =—-—((yAz)" V2)7).
(5:2) = —5 Ly A ) ) (v 2))
G@oxX) | respectively G(*#0) | is the Green’s function of %% — K restricted to the in-

terval (zg, +00), respectively (—o0, zg), with zero Dirichlet boundary condition at zg.
Let zg € R such that x({zo}) = 0. For z¢ < y, let

u%zob)(y) = up(y) + (%(xo)>_1%($0)ul(y),

and for y, z < xg, let

G(wOD)(ya Z) — u%wob) (y A Z)’Llll (y \Y Z)a

(zoP)
. 1du du _
K@)y, 2) = =5 — (4 A 2) ) T (W v 2) ).

K(@o®) was already introduced in (6.3.32). For y < xo, let

W) = 1) + (2 @) ) ),

and for y, z < xg, let
G (y,2) = up(y A 2)u{™ (y v 2),

1 duT du(QIO)

K0 (y,2) o= =5 (W A D)) ———((y vV 2)").
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G(®o®)  respectively G(%0) is the Green’s function of 5% — kK restricted to the

interval [zg,+00), respectively (—oo,zg], with zero Neumann boundary condition

at xo. Equivalently, G(*™)  respectively G(9%0), is the restriction to [zq,400), re-

spectively (—oo,zg], of the Green’s function on R of éd;
2

d
2dz? — L(—oo,a0] k-

L[zo,4+00) K, T€SDPECtively

Consider now zo € R and (z,),>1 & dense sequence of pairwise disjoint points
in (zg,+00). We consider the Wilson’s algorithm applied to the Brownian motion
on (zg,+00), with killing measure « and killing boundary xo, where (z,)n>0 is the
sequence of starting points. Let y(W) and Zgox) be the interwoven point processes
in [z, +00) obtained as result. See Figure 7.1 for an illustration of the first four steps

( gox)’zgox))

of Wilson’s algorithm and of . According to Proposition 6.13, =y €

gox) gox)m(

a.s., Zg,+00) is a determinantal point process with determinantal

*) is a determinantal point

kernel G(*0%) relatively to the measure L(z,400) and Zéff”
process with kernel K(*0%) relatively to the measure 1,542,dz. The distribution of the
2n closest to g points in (Vso (zox) (@0, +00)) U 2829 the odd-numbered belonging

to yéz,”ox) N (zg, +00) and the even-numbered to Z Z(zox ) , is given by the measure

M,§z°X>(y§§°X>, Zgox))(dzl,dyl, ooy dzp, dyy)

=27 Uy (Yn) ——"2dz1k(dy1) . . . dzpk(dyn).

uy (zo)
Its total mass equals P(#y‘“x) > n + 1). If the Wilson’s algorithm is applied to
the Brownian motion on (—o00,zg), killed at zy and with killing measure , and
(y(”f)’ Z(X“)) are the point processes returned by the algorithm, then the distri-
bution of the 2n closest to z( points in (JJ(X“) N (—o0,zq)) U 2{X®0) is given by the
measure

M) (Y0 ZOw0N(dz_y, dy_q,...,dz_p,dy_,)

n U1 (Y=n)
= onT=n) g k(dy_q) ... dz_pk(dy_).
(). d )
Let now z9 € R such that x({zo}) = 0. If we replace the Brownian motion

on (zg,+o0) killed in zg by a Brownian motion on [zg,+00) reflected in zy, and

keep the killing measure x, we get another pair (y“”OD) Z (zob))

of interwoven point
processes on [zg,+00). The pair (y(””ob) Z(IOD)) can be also obtained by applying
Wilson’s algorithm to a Brownian motion on R with the killing measure 14, to0)-
See Figure 7.2 for an illustration of (y(””‘”) Z “D)) Observe the difference with Fig-
ure 7.1 at the third step of Wilson’s algorithm. y<””°'>) is a determinantal point process
with determinantal kernel G(*°*) relatively to the measure L(zo,400) K- zf,é”““) is a de-

terminantal point process with kernel (0™ relatively to the measure 1,55,dz. The
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distribution of the 2n — 1 closest to xg points in yéi”ob) U Z§§°‘>), the odd-numbered
belonging to Zgob) and the even-numbered to y§§°'>’, is given by the measure

My(LzOD) (ygob)’ ZgOD))(dyla le, o 7dzn—17 dyn)

= —2" (Cs;l (x0)> _lul (yn)k(dy1)dz1 . .. dzp_16(dyy).

If the Wilson’s algorithm is applied to the Brownian motion on (—oo, z¢], reflected
at x¢ and with killing measure x, and (yf,j””“) , Zc(,ij) ) are the point processes returned
by the algorithm, then the distribution of the 2n — 1 closest to xy points in yéj”“)) U

AN given by the measure

M320) (Y(azo)  z(Swo)y gy | dz_q,... dz_pi1,dy_n)

du -1
= on (d—;(mo)) wi(yon)6(dy—1)dz_1 . .. dz_ni1k(dy—p).

0 T3 T2 T Tl

Y Py Py Py AN

T x3 ) T4 T

N N

xp o3 T 4 1

N N - N

xp T3 x9 4 1

N N AN
fuls)
N N N N N N

Ficure 7.1. Illustration of the first four steps of Wilson’s algorithm in
case of killing at o and of (yé:”x),zézox)): x-dots represent the points
of Y0 diamonds the points of Z{*°*), and thick lines the intervals
in 7,70,

Let V. and Z., be the determinantal point processes associated to the Brownian
motion on R with killing measure x. Let n,n’ € N*. The following two factorizations
hold:

Mn+n/(yooy Zoo)(dy—n’» dz—n/, ceey dy—la dZ_l, dy(), le, dyla ) dzna dyn)
= MU (Yw0), Z2000) ey, dy—1,. .., dz_n, dy—n') X G(yo,y0)r(dyo)
X M,gyox>(y§gox>, Zégox))(dzl,dyl, ooy dzn, dyn),
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zo x3 x2 x4 T
° ° ° ° N

zo x3 x2 x4 T
° ° N > N

zo x3 T2 T4 x1
e . & N

z0 x3 x2 x4 Tl
- 5 N

o

FiGUure 7.2. Illustration of the first four steps of Wilson’s algorithm in
case of reflection at zp and of (y§§°'>>, Z§§0>>): x-dots represent the points
of V") diamonds the points of Z{*°>, and thick lines the intervals

in J,\"%).

Mn+n'—1(yo<>7 Zoo)(dy—n’v dz—n’+17 sy dz—la dy—la dZOa dyla le, ey dzn—la dy’n)
= MU (Y(0), Z(#0)) (dy_y,dz_1, ..., dz i1, dy—n') X K(20, 20)dz0
X Mﬁzob)(yéjob), Zézob))(dyl, dz1, ..., dzp_1,dyn).

The above factorizations imply the following:

PROPERTY 7.1. — Let e > 0 and let F| and F5 be two measurable non-negative func-

tionals on couples of point processes on R and f a measurable non-negative function
on R. Then,

E[ Z f(yO)Fl(yOO N (_OoayO]7ZDO N (_ooayO])FQ(yOO N [y07 +Oo)7z<>0 N [yOa +OO)):|
Y0E€EVoo

=/f(yo)G(yo,yo)E[F1(y§§y°),ZéiyO))]lE[Fg(yégox),Zég”))]ﬂ(dyo),
R

and

E|: Z f(ZO)Fl(yOO N (_OO,ZO]aZOO N (—00,20])F2(y00 n [207+OO)7ZOO N [207 +OO)):|

20€ 200

- / F(20)K (20, 20) E[Fy (V) 20 E[Fy (P&, 2G07))dzo.
R

Ifyo € Supp(k), then, conditional on Yo € Voo, (Voo N(—00, Yo|, ZooN(—00, yo]) and
(Voo N [yo, +00), 2o N [Yo, +00)) are independent, (Voo N(—00, Yo, ZooN(—00, yo]) has
the same law as (yééy"),zéjy")) and (Voo N [Yo, +00), Zoo N [yo, +00)) has the same
law as (yéé’“) ég”)).
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If k((—00,20)) > 0, k((20,+00)) > 0 and k({z0}) = 0, then, conditional on zy €

, (Voo N (=00, 20], Zoo N (=00, 20]) and (Voo N [20, +00), Zoo N [20, +00)) are in-
dependent, (Voo N (=00, 20], Zoo N (=00, 20]) has the same law as (Y™, 2$7)) and
(Voo N [20, +00) Zeo N [20, +00)) has the same law as (YO, 2E°)).

Let yo € R and ¢ > 0. We will denote by ( o) 2¢ O)) the pair of interwo-
ven determinantal point processes corresponding to the killing measure & + cdy,,
conditioned on Y containing yo. The law of (y(y") Z(yO)) does not depend on
the value of ¢ according to Property 7.1. (y(yO) N (yo,—i-oo),Zc(,gO) N (yo, +00)) and
(y(yO) N(—00,¥o0), A (—00,9o)) are independent. The distribution of the 2n clos-
est to yo points in (y(y‘)) U Z(yO)) N (yo, +00), on the event #(yég‘” N (yo, +00)) > n,
is

Yn
(7.1.1) Lyp<am<yr<o<an<yn 2" i )dzlff(dyl) -dznk(dyy).

u (yo)

The distribution of the 2n closest to yo points in ( o) y Zél{‘))) N (—00,y0) is

(7.1.2) 1y0>271>y71>...>27n>y7n2" (Y ")dz 16(dy—_1) ... dz_pr(dy_n).
u1(Yo)

Let a < b € R. Next we will describe what happens if we condition by Z,, N
[@,b] = 0. This condition implies in particular that # (Vs N [a,b]) < 1. Let R be the
quotient space, where in R we identify to one point all the points lying in [a, b]. R is
homeomorphic to R. Let # be the projection from R to R. Let 6 be the class of [a, b]
in R. We define on R the metric dg:

— Ifx <y <aorb<az<y, then dg(7(z), 7(y)) =y — .

— If x < aand y > b, then dg(7(x),7(y)) = (y — 2) — (b — a).
— If z < a, then dg(7(x),0) = a — 2.

— If £ > b, then dg(7(x),0) = = — b.

R endowed with dg is isometric to R. So, we can define a standard Brownian motion
on R. Let # be the measure x pushed forward by # on R. In particular #({0}) =
#([a,b]). Let (Yoo, Zo0) be the pair of interwoven determinantal point processes on R
obtained by applying the Wilson’s algorithm to the Brownian motion on R with killing
measure <.

PROPOSITION 7.2. — Conditional on Z, N [a,b] = 0, (#(Veo), 7(Zx)) has the same
distribution as (Veo, Z00). Moreover, on the event Vo, N [a,b] # 0, the unique point

in Voo N [a,b] is distributed according the probability measure 1‘15#1’2]()@)
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Proof. — First, we compute P(Z N [a, b] = 0). We consider that a and b are the first
two starting points in the Wilson’s algorithm. Then,

P(Zo N [a,0] = 0) = ]P’(B(T‘? > ) +1P>(B;:? <a,BY) - a) —i—IP’(B( V=B el b))

= 2 B0 0, () — i (@ S (5) + (@) () [a, ).
Next, we determine the Green’s function G of %dd? — % on R. Let iy and @) be
two solutions on R to

lda

Sdp k= 0,
with the initial conditions u4(0) = uq(a), %(9*) = d;f( 7), 4,(0) = uy(b) and

%(0*) = %(b*). Then, for z < a, 47(7(z)) = us(z) and for z > b, 4 (7(z)) =

uy(x). 41 and @) are positive, @7 is non-decreasing and @; non-increasing. Moreover,

dﬁT + dﬂT _ R R dU,T _
—_— = — 2 = — 2 .
“L0) = L) + 20 (OR10) = T @) + 20 (@), B)
The Wronskian of 4| and 41 equals
R (L P RPN Tyt
Way, ) =, (0) 5 H0%) — a1 (0) L (0%)
- dUT dul

2 (4) = (@) 2L ) + 20y (@ () 1)
=2P(Z25 NJa,b] = 0).

Thus, G equals

An o W (EAGD(EVG)
G -
@0 = Pzt =0)
In particular, if x < a and y > b, then

A(alo) A ur (z)uy () G(z,y)
7.1.3 G = = .
(7.1.3) ®@)*W) = Bz Ao =0) ~ P(Zwn o b =)
To prove the equality in law, we need to consider the probabilities of the events
Gn (ao,bo,al,bl,al,bl, .. an,bn,an,bn) where n > 1 and ag < by < a1 < by < a1 <
hh<---<a, < b < ap < b, € R, corresponding to following conditions:

— Yoo Nao, bo] # 0, Yoo N [an, bn] # 0,

— Vre{l,...,n}, #(V N [ar, T]) =1,

— Vre {1,...,n},#(Zoo N (ar, b)) =1,

—Vre{0,...,n =1}, Voo U Zso) N (by, @] = 0, (Voo U Zoo) N [br, ary1) = 0.
We will also assume that either all of the [a,,b.] do not intersect [a,b], or one
of the [a,,b,] is contained in [a,b] and the other do not intersect [a,b]. The

probabilities of such events determine the joint law of (Yo, Zo) on the event
H#Voo > 2,250 NJa,b] = 0. We will denote %,(-) the analogously defined events,
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where we replace (Vao; Zoo) by (Yoo, Zoo)- We do not need to deal with the event
#Yo = 1, because then Z,, = 0.

We first consider the case of [a,b] N (U_,lar,b,]) = 0. If there is ro € {0,n — 1}
such that b,, < a and b < a,,+1, then

P (an(ao,bo,&l,gl,al,bl, . ,dmgn,an,bn),zoo n [a,b] = (Z))

n—1

— [ ot x [ il x ] #llerb)
[ao,bo] [an,bn r=1
x [T 20 — @) x 2Leb([ar,, bro] \ [a, B]).
r#ro
Using (7.1.3), we get that the above equals

P(Zo N [a,0] = 0) x P (o (i(ao), 7 (b0), 7(@r), 7(Ba), -, (an), 7(B0)) )

If b < ap, then we consider a Wilson’s algorithm, where the 2(n+1) first starting points
are @y, by, ..., dn, bn,a, b. The conditions %n(ao, bo, a1, bi,a1,b1,...,an, by, an, by) and
Zo N a,b] = O are satisfied if and only if the following is true:

a b b, ar
— B<le> € [ao, bo), B<T2,n> € [an,by], for all 7 € {1,...,n — 1}, B;;T) = Bl ¢

2r+41
[ar,by] and for all r € {1,...,n}, Voo N (@, by) = 0.
— Either B\ € (b, B(T‘?)] or BY <aorBY =B €lab].

2n+1 2n+42 2n+41 2n+42
Then,

]P(%n(ao,bo,dl,gl,al,bl, e ,&n,gn,an,bn),zm n [(I,b] = @)

n—1 n

= /[ \ ]Ul(yn)fi(d:’/n) X H /‘f'([ar’br]) X H Q(ET _ &r)
Ay ,0n st 1
X (uT(a) / (uy (y)us (yo) — ug (y)uy (yo)) s (dy)k(dyo) + ut(a)s([ag, bo))

b<y<yo,Yo€[ao,bo]

YR p——"

X /{ao!bo}(ui(b)m(yo) - w(b)ul(yo))ﬁ(dyo)>
:/[ ) ]Ul(yn)l-’u(dyn) X H k([ar, b)) X H 2(by — @)
2

< (Rurta) /[ . (B 5 s 90) — 20 (5% 00 ) o)

+ (%%(a_) + uq(a)k([ao, bo1])> / (uy (b)us (o) — UT(b)UL(yo))H(dyo))-

[ao,bo]
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But, for yg > b,
i (7 00)) = 1 (@) (52 (6 s (o) — S (67 Y ()

+ (59 @)+ un(@llao, b)) (0 (90) = 1 (B 40)).
Indeed, one can check the initial conditions @4 (#(b)) = ut(a) and ZL(7(b)T) =
1 (07) + 2up (a)k([ao, bo). It follows that
P(n(a0,b0, 1, b1, -3, bi), Zoo N[0, 1] = (2))

n—1 n

= [ wwsem < [ ) x I sons) < J] 26~

[#(a0),# (bo)] [7(an),#(bn)] =

= P(Ze0 N[a, 0] = 0) x P (%u(i(a0), #(bo), #(a1), #(b1), .., 7 (an), 7 (b)) )
Similar holds if b,, < a.

Now, we consider the case when there is rg € {0,...,n} such that [a.,,br,] C [a, ]
and [a,b] N (UT;&TO [ar,b;]) =0.1f 1 <rg <n—1, then

P <<gn(a'07b07a17617 L 7an7b’rl)7zoo n [U,,b] = 0)

B /[ao,bo] “ (yO)K(dyO) - /[an,bn] Ul(yn)ﬂ(dyn) x Tl_lzl H([ar,br])

X H 2(b, — ) X 2Leb([ry, by, \ [a,8]) X 2Leb([arg 41, brot1] \ [a, b))
r#ro,ro+1

_ K(L‘z[a zﬁ)]) x P(Z50 1 [a,b] = 0)

x P (%n(i(a0), #(bo), 7(@1), 7(br), ., 7 (an), 7(bn) )
Moreover, 7t (ar,) = (by,) = 6. If 79 = 0, then
P(%n(ao, bo, a1, l~)1, ey Qny, bn), Zso N [a, b] = @)
= url@)nlao.ba) % [ uy(un)n(dyn)

[anabn]

< [ &(lar,b,]) x [ 2(6r — @) x 2Leb([ds1, b1] \ [a, b])

([Zo’ bo]) - _
(@ b)) X P(Z5 N a,b] = 0)
x P (Cfn(w(ao),ﬁ(bo),ﬁ(&l),ﬁ(gl), . ,ﬁ(an),fr(bn))) )
and 7 (ag) = #(bo) = 6. We have a similar expression if ry = n. O
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Next, we deal with the condition of the determinantal point process V., not charg-
ing a given subinterval of R. We will consider the following more general situation:
Let k and & be two different killing measures on R, with x < &K, and the couples of
determinantal point processes (Voo, Zoo) respectively (JN)OO, 200) corresponding to the
Brownian motion on R with killing measure x respectively %. Let G be the Green’s

function of % dd > — K, factorized as

G(z,y) = iy (z Ay)iy(z Vy).
Let

1 diiy dii

Ky, 2) = —5 A2 (v 2)).

We will assume that & — k has a first moment, that is to say
/|x| (dz) — k(dz)) < +00.

Let x be the Radon-Nikodym derivative

dk

di’

By definition, 0 < x < 1. Let Ajj be the point process obtained from )700 as follows:
Given a point y in Y,, we chose to erase it with probability x(y) and keep it with

X =

probability 1 — x(y), each choice being independent from the other choices and the
position of other points. It is immediate to check that AY is a determinantal point
process with determinantal kernel (G(z, Y))zyer relatively to the measure (1 — x)&,
that is to say the measure & — k. We will show that conditional on A? =0, (?oo, Noo)
has the same law as (Vso, Z00)- In case 1 —x belng the indicator function of a bounded
subinterval of R, this gives the law of ()ioo, Oo) conditioned on Y., not charging this
subinterval.

LEMMA 7.3. — AY is a.s. finite. Let
Vi (Y) = (ﬂT(y) —/ < Uy (y—1) (wy (y—1)ur (y) — wy (y-1)u (1)) (R — H)(dy—l))

X (’fw(y) —/ N @y (y1)(ug (y1)uy (y) —ul(yl)uT(y))(fﬂ—H)(dyl))-
Then,
PH#AY = 1) = [ 0ealo) (7~ R)(dy).
R

The distribution of the unique point in AY conditional on #A)j =11s

0 (1) — ) (dy)
P(#AY = 1)

MEMOIRES DE LA SMF 158



7.1. CONDITIONING 129

Furthermore,

and P(AY = 0) > 0.

Proof. — First, let us check that [ G(y,y)(R(dy)—k(dy)) < +oo. Since R—r has a first
moment, we need only to show that é(y, y) grows sub-linearly in the neighborhood
of —oo and +o00. Let @ < b € R such that £((a,b)) > 0. Let G, be the Green’s func-
5 1n - L(a,p)R. Then G, (y,y) is affine on (—o0, a) and on (b, +00). Moreover
G(ya ) < Ga,b(yay)' Thus, we get

E[#AY] = / Gy v) (R(dy) — K(dy)) < +oo.

tion of %

In particular AY is a.s. finite.
To bound ]P’(#Ay > 2) we use the following;:

P(#AT > 2) < E[#ATHAY - 1)]
-1 / (Gla,2)Gly,y) — Gla,y)?) (Rlda) — r(da))(R(dy) — x(dy))

| /\

2
/G (,y)(R(dy) —ﬁ(dy))) :

The expression of IE[#A)J #A)) 1)] that we used is general for determinantal point
processes.

Let us prove now that IP’(Aji =0) > 0. AY is determinantal point process associ-
ated to a trace-class self-adjoint positive semi-definite contraction operator on L% (d& —
dr). P (Ajiv = ) > 0 if and only if all the eigenvalues of the operator are strictly less
then 1 (see Theorem 4.5.3 in [26]). Let f € L2(k — k). Let

/ G(z, ) f (v) (R(dy) — w(dy)).

F' is continuous, dominated by

Gt ([ Glor)ota) — n(e)* [ 507 (wa) = wta)

and has left-side and right-side derivatives at every point. F' satisfies the equation

1d*F
3 + Fik = f(k — k).
Assume by absurd that f = F' (¥ — k)-almost everywhere. Then,
/F k(dx) — k(dz)) /f dz) — k(dz))

- [ F@)(a) + /‘éf()dm-
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Thus, F is necessarily constant. But then, this means that (k—k)(R) = £(R), which is
impossible because k is non zero. Thus, 1 is not an eigenvalue of the operator defining
the determinantal process AY and thus, P(AY = 0) > 0.

As for JNJOO, the spacing between consecutive points of AY are independent. By
construction, AY C Supp(k — k). Given yo € Supp(k — k), let

Ly>yo fa5(%0, y) (R(dy) — K(dy))

be the distribution of the lowest point in A)NJ N (Yo, +00) conditional on yg € A)NJ.
Since yo may be the maximum of AY, fa5(yo,y)(R(dy) — (dy)) < 1. For y to be
min AYN(yo, +00), y must belong to Vo, all points in ¥’ € Voo N(yo, y) must be erased
(probability x(y’) for each), and y must be kept (probability 1 — x(y)). For 3’ > yo,
let fz(vo,y’) be

iy (y')

@y (yo

fawo,y') =20y — wo)

~

Lyr>yo f5 (Yo, y')R(dy’) is the distribution of min Voo N(yo, +00) conditional on yo € Voo
(Proposition 6.11). fA5 and fg are related as follows:

fAj}v(yOvy)
j—1
o,y +Z/ fa(yo,v1) - f@(yj—lay)HX(yi)ﬂ(dyi)
j>2 Yo<-<yY;-1<y i=1

~ =
((y))< (v — vo) +Zzﬂ/ (y1—yo)-~-(y—yj—1)£[1ﬁ(d%)>-

j>2 Yo<-<yY;j—1<y
But,
j—1
2(y—yo)+z2j/ (v1 —wo0) --- (y — yj—1) [ ] w(dys)
j>2 Yo<-<yY;j—1<Y i=1

-1

= ul((yo)) (fG (Yo, vy +Z/ feo,y1) - fa(yj—1,y H k(dy;) )

j>2 Yo<-<Yj—1<y

uy (yo) G(yo,y)?
Ull(yo) (G(y’ )~ m) = uy(yo)ur(y) — ur(yo)uy (y)-

(see Section 6.3). It follows that

P00 = T g o) () s o) )
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In particular, if yg < y1 < --- < y, € R, the infinitesimal probability that A has a
point at each of the locations y; and no points in-between is

n

G(0,90) Fa5 W0 1) - - Fag(Un—1,yn) [ [(R(dy:) — r(dy:))
=0

= H (g (st (gim1) — ug(ya)uy (i) T [ (R(dys) — k(dys).

=0

Thus, the expression of v, z(y) is an inclusion-exclusion identity obtained as follows:
V,%(Y) (R — K)(dy) is the infinitesimal probability that AY contains a point at y, from
which we subtract the infinitesimal probabilities to have a point at y at another below
respectively above, and to which we add the infinitesimal probability to have a point
at y and points both below and above y. O

Next we deal with the law of (Vso, Zo0) conditional on AY = 0. Let y € Supp(i — m)
First, we will compute the probability that Ayﬂ(yo, +00) # 0 conditional on yg € Voo

LEMMA 7.4. — There are positive constants ¢; and co such that for all x € R,

(7.1.4) / )y &) — g ) (2))1 () () — () = 1 (2) — equ 2),

Uy (x) — couy ().

(7.1.5) /y>w(uT(y)ul(1’) — uy(y)ur(2))a, (y)(R(dy) — (dy))
In particular,
Ui (Y) = ercau (y)uy (y)-
Proof. — We will prove (7.1.5). The proof of (7.1.4) is similar. Let f be the function
f(@) = ay(z) - /y>m(UT(y)Ul(m) — uy(y)ur ()@, () (R(dy) — K(dy)).
The derivative of f, defined everywhere except at most countably many points, is

5@ =G0 = [ (0@ —mw) G160 ) — sl
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The weak second derivative of f is

@ =@ [ (0G0 ~u ) @) h @) ~ )
(1 (@) 5 ) — () 20 2 ) ) () — i)
= 24 (z)k(dx)

- /> (ur(y)uy(z) = uy(y)ur ()i, (y)(R(dy) — £(dy)) x k(dz)

+ 24 (z)(k(dz) — k(dz))
= 24 (z)k(dz)

- /> (ur(y)uy(z) = uy(y)ur ()i, (y)(R(dy) — £(dy)) x x(dz)

= 2f(z)k(dx).

Thus, f satisfies the same differential equation as u|. Moreover, |f| is dominated by

) (z) +uy(z) Gy, y)(k(dy) — k(dy)).

y>x
Thus, f is bounded on the intervals of the type (a,+0o0). It follows that there is a
constant ¢y € R such that f = cpu). Thus, we get the identity (7.1.5). Let us show
that c; > 0. Let & € Supp(&). Then,

1- @ / (o) (o) () ) () () — )

=1- /> Faz (@ y)(R(dy) — 5(dy)) = P(AY N (z,+00) =0 |z € Yao).

The above conditional probability is positive because according to Lemma 7.3,
IP’(AY = @) > 0. Thus, f is positive and ¢, > 0. O

LEMMA 7.5. — Conditional on the event AY = 0, ()N)OO,ZNOO) has the same law
a5 (Voo, Zoo)-

Proof. — It is enough to show that conditional on A:)N) = 0, JNJOO has the same law
as Y. Indeed, in both cases the points of ZNOO, respectively Z., are distributed
independently and uniformly between any two consecutive points of 3700, respectively
Voo. Forn > 1land y1 < -+ < yn, let o, (dy1, - .., dy,) be the infinitesimal probability
for 3700 having a point at each of the locations y; and none in-between, conditional
on AY = (). We need only to show that

n n

(7.1.6) on(dyrs - dyn) = 2" ug (y)uy (ya) ] [ = wien) [T w(do):
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For y; < --- < y, to be n consecutive points in joo and for Aj = 0, we need y; <
-+» < yn to be n consecutive points in V., to choose not to erase any of y; (probability
Xx(y;)) and finally we need that AY N (—o0,y;) = 0 and AY N (yn,+o0) = (. Thus,

1 n—1~ ~
on(dys, ..., dyn) = mQ it (y1)y (Yn)
X (1 - aT(lyl) /y<y1 (uy (y)ur(y1) — ur(y)uy (y1))ad (y) (R(dy) — H(‘h/)))
X <1 - al(lyn) o (ur(Y)uy (yn) — uy (¥)ur(yn))ay (y) (R(dy) — "i(dy))>

16 o n n
en(dyr, .. dyn) = ——=—2""up(y1)uy (yn) | | (¥i — %i-1) | | w(dyi).
1 say—p el W11

Since the constant B (2152: M) does not depend on n, the previous equations implies that

= =~ C1C2
| : P(AY =0)
But P(Vso # 0 | AY = 0) = P(Voo # 0) = 1. Thus,
C1C2

PAY =0)

and 7.1.6 holds. O

COROLLARY 7.6. — Let a < b € R such that &(R \ [a,b]) > 0. Conditional on Y N
[a,b] = 0, ()NJOO, 200) has the same law as the pair of interwoven determinantal point
processes obtained from the Wilson’s algorithm applied to the Brownian motion with
killing measure 1g\[q,pK-

LEMMA 7.7. — Conditional on #A)N) = 1 and on the position of the unique point Y
in AY, (Voo; Z00) has the same law as (yg), Zg)).

Proof. — It is enough to show that conditional on #Aj} = 1 and on the position
of the unique point Y in A)j, 3700 has the same law as yéf ). Indeed, the points
of goo, respectively Zg ), are independently and uniformly distributed between any
two consecutive points in JNJOO, respectively Zg ).
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Let n > 1and ig € {1,...,n}. Let y1 < --+ < y, € R. The infinitesimal probability
for y1,...,yn being n consecutive points in Voo, and AY = {y;, } is

2" Mg (y1) @y (yn)

011 (1= s | )~ w0 ) ) ) ~ ()

(1 (u () (yn) — ) ()1 (9) )1 () (R(dy) — r(dy) )

=2 i#i0
= 122" Mg (yn)uy (yn) [ (0 — wicr) T w(dws) x (& = 5)(dys,)
i=2 i#ig
io—1
(7.1.8) = ve (i) (F — K)(dys,) X Qiolqi?((yy:)) H (Yit1 — yi)k(dy:)

n

—ip L (Yn)
X 2T ==t H (Yi — yi—1)k(dyi)-
uy (yio) i=io+1

In 7.1.8 appears the infinitesimal probability for AY = {yi, } times the infinitesimal
probability for yi,...,y, being n consecutive points in y§g°> (compare with expres-

sions 7.1.1 and 7.1.2). O

7.2. Couplings

In this section we will prove the monotone coupling results for (Vs, Zo) stated
at the beginning of Section 7.1. The construction of the coupling will be explicit.
However, it will not appeal to Wilson’s algorithm used to define (Yoo, Z0). First,
we will describe analogous monotone coupling results for uniform spanning trees on
finite graphs. In this case no explicit construction is known in general and the proof
relies on Strassen’s theorem and the conditions for stochastic domination between
determinantal processes shown in [43].

PROPOSITION 7.8. — Let G be a finite connected undirected graph with E its set of
edges, and (C(e))ecr a positive weight function on E. Let F be a subset of E. Let
(C(e))ecr be an other weight function such C > C and C = C on E\ F. Let T be
the uniform spanning tree of G corresponding to the weights C and T the uniform
spanning tree of G corresponding to the weights C. There is a coupling of T and T
such that

(7.2.1) TN(E\F)CTN(E\F).
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In case F is made of all edges adjacent to a particular vertex xy, and C is proportional
to C on F, then there is a coupling satisfying the additional condition

(7.2.2) TNFCTYNF.

Proof. — Tt is enough to prove the first coupling ((7.2.1)) in case F is a single edge
(F = {e}). Then, by induction on #F the general result will follow. From definition
of uniform spanning trees is clear that P(e € T) < P(e € T). Moreover, T conditional
on e € T, respectively e € T, has the same law as T conditional on e € 'Y‘, respectively
ed T.A possible coupling is the following: first we couple lcey with 1 5 in a way
such that l.cy < 1ee"?' In case lecy = 1e€'Y' = 0, respectively lecy = 1e€'Y' =1, we
sample for both T and T the same tree having the law of T conditioned by e & T,
respectively e € T. In case lcey =0 and 1, _5 = 1, we use the fact that on the edges
in E\ {e}, the law of T conditioned on e € T is stochastically dominated by the law
of T conditioned on e ¢ T, which implies the existence of a monotone coupling by
Strassen’s theorem. See Theorems 5.2, 5.3 and 5.5 in [43].

Now we consider the case of F' made of all edges adjacent to a particular vertex x,
and C is proportional to C on F. Let (T, ) be a coupling satisfying (7.2.1). In general
it does not satisfy (7.2.2). To deal with this issue we will re-sample the edges of T and
T contained in F, that is to say sample T’ having the same law as T, o having the
same law as T, such that Y'N(E\F) = TN(E\F), Y'N(E\F) = TN(E\F) and such
that Y/NF C Y'NF. Let T3, ..., Ty be the connected components of YN(E\F). (7.2.1)
ensures that each connected component of TN (E'\ F) is contained in one of the 7;.
Let 711y, Ti,g15- - IN15 - -+, TN gy be the connected components of TN (E\F),
where 7; ; C 7;. Conditional on 7i,...,7y, T N F has the following law: for each
7; one chooses an edge connecting zy to 7; with probability proportional to C, and
independently from the edges of T that will connect o to other (7;/); ;. Similarly,
for the law of T conditional on Tia,--sTigrs -3 INas - TN gn- To construct Y’
and Y’ we use the fact that C is proportional to C' on F"

— We start with T and T satisfying (7.2.1).

— Then we remove from T and T the edges contained in F'.

— For each 7; ;, we add to T’ an edge connecting x to 7; ;, chosen proportionally
to its weight under C, each choice being independent from the others.

— For each i € {1,..., N}, there are ¢; edges in Y’ connecting zo to 7;, one for
each (7;;)1<j<q,. In order to construct Y’, we need to chose one out of ¢; to
keep and remove the others. We chose to keep the edge corresponding to 7; ;

> Cle).

e connecting
xo to 7—@'1j

with probability proportional to
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The choice is done independently for each i € {1,...,N}.

By construction, Y N F C Y/ NF. O

Consider now two different killing measures x and % on R, with k < K, and the
couples of determinantal point processes (Veo, Zo0), respectively (3700,200), corre-
sponding to the Brownian motion on R with killing measure x, respectively 5. We
want to show that one can couple (Yoo, Zo0) and (3700, ZNOO) on the same probability
space such that Z,, C goo and )NJOO C Yoo USupp(k — k), and if k and & are propor-
tional, also have V., C :)NJOO. The condition Z,, C goo and )NJOO C Yoo USupp(k — k) is
analogous to (7.2.1). The condition Vs C Vs is analogous to (7.2.2), where the
cemetery t plays the role of the distinguished vertex zy. We used the stochastic dom-
ination principle ([43]) for determinantal point process with determinantal kernel a
projection operator. It ensures the existence of a monotone coupling but does not give
one explicitly (see open questions [43]). However, for (Vao, Zoo) and (Yoo, Zo) we will
construct a whole family of rather explicit monotone couplings.

Let G be the Green’s function of %% — K, factorized as

G(z,y) = U (z Ay)a (z Vy).

Let

- 1 diiy

R(w,2) =~ (A 2D (v 2) ),

Let ®; be the operator on L?(d&) defined on functions with compact support as
follows:

wﬁmmzéémwﬂwmm.

In case k = ck, where c is a constant, ¢ > 1, we have the following resolvent identity,
which follows from Lemma 2.8:

1 1 1 1
(7.23) 760k}®l€ = 7@5605 = 7(®N - 760!{)'
c c 1 c

Next we prove that a simple necessary but not sufficient condition for monotone
couplings to exist is satisfied. It won’t be used in the sequel but we prefer to give a
direct proof for it.

PROPOSITION 7.9. — For any 21, ..., 2, € R such that £({2;}) =0,

(7.2.4) det(K(zi, 2;))1<i,j<n 2 det(K(2i, 2j))1<i,j<n-
If R = ¢k, ¢ > 1, then for any yi1,...,yn € Supp(k),

(7.2.5) " det(G (i, yj))1<i,j<n > det(G(Yi, yj))1<ij<n-
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Proof. — We will first show (7.2.4). To begin with we will show that for any z; € R,
E(zl, z1) > K(z1, z1). The Wronskian

W 1)(2) 1=y (2) S () = 1 (2) Sl ()

is non-negative. Indeed, W (uy, @1)(—00) = 0 and
dW (ug, %) = 2up@y(di — dr) > 0
Similarly, the Wronskian
i — day o +
W (w1, 80)(2) = w1 () () — 1 () T )
is non-positive. Using the fact that

W(U’l’uT) = W(fbl,’aT) = 2,

we get
~ 1 d’U,T + dul + dﬂT + dul +
R(z1,2m) = K, 2m) = 5 (D THED - THEDTHED)
_ Ldu 4 du g ) = T
(T EO T EW @) - T T EW )
_Lduy iy oy
4(d$< )T (=)W (ur, g (21)

U du
LN THEW ) (=) 2 0.
To prove (7.2.4) in general, we will use the factorization (6.3.34). For zg < z, let
(z du Yday , _. .
i (2) =y (1) + (@) S @)a ().

Factorization (6.3.34) ensures that we only need to prove that, for zo < z, with

k({zo}) =0,

~(zob) . (zo>)
—%(z‘*)%(z) _duT ’ Py )dul( )
dz dz - dx dx
First, observe that the Wronskian
x x x da(IUD) T d ($0D)
W (™, i7" (2) = ™ (2) = (1) = ™ (2) ; (=)

is non-negative on [z¢, +-00). Indeed, W (u; (wo>) ~(gc(’b))(.ac) =0, and

AW (uf™), @7) = 2077 (2)a@{") (2)(dR — dk) > 0.

The sequel of the proof works as in the previous case.
Let’s prove now (7.2.5). First, we consider the case n = 1. From the resolvent
identity (7.2.3) follows that

G — 6, =(c—1)(&, — 6..6,).
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Since &, is contracting, this implies that &, < &, where the inequality stands for
positive semi-definite operators on IL?(dk). Let y; € Supp(x). Then, for any & > 0,

(7.2.6) c/(yl_s’ylﬂ_)2 G(z,y)k(dz)x(dy) > /(yl_s’yl_‘_s)2 G(z,y)x(dr)k(dy).

Since y; € Supp(k), both sides of (7.2.6) are positive. The continuity of G and G
ensures that ¢G(y1,y1) > G(y1,y1). In case of general n, we use the factorization

(6.3.33). It is enough to prove that for any z¢ < y, y € Supp(x),

(7.2.7) G (y,y) > G (y,y),
where _
~ =~ G(x07 y)2
G(IOX)(y7y) = G(y,’y) _——_
G($Oa LL'())

G is the restriction to (g, +00)? of the Green’s function of %% = L(zg,400) K-

Let &) and B2°) be the operators on L?(1(;, +o0)dk) defined for functions f
with compact support as

(600 f)(z) := /( G f)sa)

@) =c [ G @) fw)s(dy)
(zg,+00)

QS,SEOX) and @gﬁ“x) are contractions and satisfy a resolvent identity similar to (7.2.3),

which similarly implies (7.2.7). O

The resolvent identity (7.2.3) implies that &, and &., commute and that
6, < &... It was shown in case of determinantal point processes on discrete space
that this a sufficient condition for a monotone coupling to exist. See Theorem 7.1
in [43].

To construct the couplings we will give several procedures that take determinis-
tic arguments, among which pairs of interwoven sets of points, and return pairs of
interwoven random point processes. The first procedure we describe will be used as
sub-procedure in subsequent procedures.

PROCEDURE 7.10. — Arguments:

— a pair (Y, Z) of disjoint discrete sets of points in R, such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{-o0}, supYUZ € YU {+o0},

— a positive Radon measure K,

— a point yo € R, such that yo & Z.

Procedure:

(1) If yo € YV, we define a random variable Z distributed as follows:
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(ia) If there are y' € Y, 2’ € ZU {400}, such that y' < 2', yo € (v',7'), and
YNn(y,2")=Z,.N(Y,2") =0, then Z is distributed according to
Leew vo) %
ur(yo) — ur(y') dw
(ib) If there are y' € Y, 2/ € ZU {—o0}, such that 2’ < y', yo € (2',y’) and
yn(Z,y)=2n(2,y) =0, then Z is distributed according to

z)dz.

“Llec(oy) duy

_zelwow) By,

) — o) e P
(ii) If there are y' € Y, 2z’ € Z U {400}, such that y < 2', yo € (v',2'), and

YA, #) = Z0 (@, #) = 0, then

up ('
u1(Yo)
¥,2) = (Vu{w\{y'}2),
up(y')
u1(Yo)

Y, 2) = (VU{w}, Z2u{z}).
(iii) If there are y' € Y, 2/ € Z U {—o0}, such that 2/ < y', yo € (¢,¥), and

yniZ,y)=Z2n(,y) =0, then

uy(y')
uy (yo)
(jja ZN) = (yU {yO} \ {y/}7Z)7
uy(y')
uy (Yo)

Y, 2) = (VU{w}, 2u{z}).
(iv) Ifyo € Y, we set (¥, Z) = (Y, Z).
Return: (Y, Z).

(ii a) with probability we set

(ii b) and with probability 1 — , we set

(iii a) with probability we set

(iii b) and with probability 1 — we set

LEMMA 7.11. — If Procedure 7.10 is applied to the pair of interwoven determinan-
tal point processes (Yoo, Zo0) corresponding to the killing measure k, then its result
(Y, Z) has the same law as (y§2°>,zég°)).

Proof. — By construction, yg € ,')NJ Let Zl < }71 < e < Zn < ?n be the 2n closest

points to yo in (Y U Z) N (yg, +00). On the event min(Yoo U Z50) N (Yo, +0) € Zoo

(point (ii) in Procedure 7.10), their distribution is given by

(7.2.8)
1y0<21<y1<"'<2n<yn2n</

(—o0,y0)

up (y')n(dy'))ul (yn)dz16(dy1) - . . dzpk(dyy).
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On the event min(Ye U Zo0) N (Yo, +00) € Voo (point (iii) in Procedure 7.10), the
distribution of min(Yeo U Z) N (yo, +00) is (see Proposition 6.11)

o2 [ nu)(om = vy /)

# 1y ) G, )

= Lyrsyo (ug (yo) — up(+00))uy (y)w(dy’) + 1yrsyout (+00)uy (y')k(dy’)
= 1yrsyouq (yo)uy (y')k(dy").

Thus, on the event min(Y. U Z5) N (Yo, +00) € Voo (point (iii) in Procedure 7.10),
the distribution of (Z1,Y1,...,2Z,,Y,) is

(7.2.9)
U (y/) Non U (yn)
1yo<z1<~-~<yn<Ao<y,<Zl ull(yo)uT(yo)ul(y )2 ull(y) K(dy' ))dzm(dm)...dznm(dyn),
7.2.10
| +1) —L oAU o)uy ()27 ) 0 ) - (dya)
Yo<z1<<Yn ( )dx 1)ur (Yo )u | \Y ul(y) 1 Y1 n Yn)-

The term (7.2.9) corresponds to the case when a point is removed from Y, (case
(iii a) in Procedure 7.10) and (7.2.10) to the case when Z is added to Z,, (case
(iii b) in Procedure 7.10). The sum of the densities that appear in (7.2.8), (7.2.9) and
(7.2.10) is

2n(/(_Oovyo)m(y/)n(dy/)>u1(yn) + (/y uy () uT(yO)ul(y’)znwn(dy/D

o<y’ <z U (%) )
“i_(ylo) % (1) (yo)uy (y1)2" le ((zg
=2 om0 + e (e = ) oo )
_2n—1 dul
uy (yo) 2z P (wo)uy (yn)

-1 du nU (yn)
] e W) =2 T

So, we obtain the density which appears in (7.1.1).

=2"" w(yn)( L(yo) +

It remains to prove that (Y N (yo,+00), Z N (yo,400)) and (Y N (—o0,40), Z N
(—00,¥0)) are independent. Let Z_; > Y_1 > -+ > Z_,» > Y_,» be the n’ clos-
est points to yo in (Y U Z) N (—00,y0). The distribution of the family of points
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(Z_1,Yr..., 2, Yo, Z1, Y1, ..., Zp,Yy) on the event #(Y N (—o0,y0)) > n,
#(V N (yo,+00)) >n' is

(7.2.11)
ntn’ Nu Ul(y/)ﬂ no_ 2”+”/_1uT(y,n,)ul(yn)@ 5
([ 2 wtmu ) 2 wta) Ll L)
(7.2.12)
n+n’ Uq (y/) / 2n+n,_1UT (y—n/)ui (yn) % p
" /z_1<y’<yo ? UT(y_n/)Ul(yn)uT(yO) wldy)+ u1(Yo) dzr ( _1)>

X lyfn/ <zfn/<---<z71<yo<z1<---<zn<ynH(dyfn’)dzfn’ coodz_qdzy .. dzn”(dyn)

The term (7.2.11) corresponds to point (iii) in Procedure 7.10 and (7.2.12) to point
(ii) in Procedure 7.10. One can check that the sum of the densities equals

2n+n' ur (y—n’) u| (y")

ut(yo) wy(yo)

ThllS, (j N (y0,+00),§ﬁ (y0,+00)) and (y n (_Oo7y0)’§m (_Ooﬂyo)) are indepen'
dent. O

LEMMA 7.12. — We consider the subspace of triples ((V, Z), K, yo) consisting of a pair
of discrete sets of points (¥, Z), a Radon measure k and a point yo € R, and which
satisfies the restrictions on the arguments of Procedure 7.10. We assume this subspace
endowed with the product topology obtained from the topology of uniform convergence
on compact subsets for the pairs (Y, Z), the vague topology for the measures k and
standard order topology on R. If (37, 2) is the pair of point processes obtained by apply-
ing Procedure 7.10 to the arguments ((V, 2), k,yo), then its law depends continuously

on ((J},Z),n,yo)-

Proof. — From Lemma 2.4, it follows that the cumulative distribution function of Z
(point (i) in Procedure 7.10) depends uniformly continuously on ((¥, Z), k,¥yo) in the
neighborhood of triples where yo ¢ ). Moreover, the probabilities to make either the
choice (ii a) or the choice (ii b), as well as to make either the choice (iii a) or the
choice (iii b), depend continuously on (), Z), &, o). Thus, the law of (), Z) depends
continuously on ((¥, Z), k,yo) in the neighborhood of triples where yo & Y. Moreover,
in the neighborhood of triples where yo € Y, with high probability, converging to 1,
(Y,Z) = (¥, Z). Thus, the law of (Y, Z) is continuous also at these triples. O

First, we will describe a coupling in case when K and « differ by an atom: k¥ =
K =+ ¢dy,. We construct the coupling as follows:
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PROCEDURE 7.13. — Arguments:

— a pair (Y, 2) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{—o0}, supYUZ € YU {+o0},

— two positive Radon measures £ and K where K is of form K = k + cd,, and
Yo & Z.

Procedure:

(i) Let B be a Bernoulli r.v. of parameter cé(yg,yo).
(ii) If B =0, we set (Y, Z) = (Y, Z).
(iii) If B = 1, we apply Procedure 7.10 to the arguments (Y, Z), k and yo and set
(Y, Z) to be its result.

Return: (Y, Z).

(j 2) constructed this way satisfies the following: between any two consecutive
points in y lies a single point in Z and between any two consecutive points in Z lies
a point in y. By construction, Z C Zand Y C YU {90}

PROPOSITION 7.14. — If Procedure 7.18 is applied to the pair of interwoven determi-
nantal point processes (Voo, Zo0), corresponding to the measure k, then the returned
pair of point processes (JNJ, g) has the law of the interwoven determinantal point pro-
cesses (3700, ZNOO), corresponding to K = K + 0y, .

Proof. — Observe that a.s., yo € Z-. First, we deal with the case k({yo}) = 0. Then,
almost surely, yo € Vo and yo € Y if and only if § = 1. But,

P(3 =1) = P(yo € Y) = ¢G (%0, %0)-

Accordlng to Corollary 7.6, conditional on g ¢ Y, ())oo, ) has the same law
S (Voo; Z00), that is to say the same law as (Y, Z) conditional on 3 = 0. Ac-
cording to Lemma 7.11, conditional on § = 1, (y,z?) follows the same law
(yﬁ( 00,%0), Z N (=00, 40)), which is also the law of (Vso,Zo0) conditioned
on yg € yoo.
We deal now with the case k({yo}) > 0.

P(yo € Yoo) = ({0 })G (0, v0),
Plyo € V) =P(B=1)+P(8=0,90 € Voo)
= ¢G(yo,y0) + (1 — G (Y0, %0)) k({0 }) G (%0, ¥o)-

But G and @ satisfy the resolvent identity (see Lemma 2.8):

Gl 3030} Gl ) = o S Gl 1) — Gl )
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It follows that P(yg € V) = P(yg € Voo). Let & :=  — k({yo})dy, and (Yoo, Zo0) be the
interwoven determinantal point processes corresponding to &.et &’ := E—r({y0})dy, and
( ~(’X], Z;o) be the interwoven determinantal processes corresponding to #’. According to
Corollary 7.6, (jiv, Z ) conditioned by yo & Y has the same law as (Yoo, Zo0) conditioned
on yg € Voo, which is the same law as (ﬁoo, ZVOO) conditioned on yq & ﬁ)o, and it is the
law of (Yoo, Z00)- For yg € )N), there are two possibilities: either yg € Yo or yg € Voo
and 8 = 1. In the first case, it follows from Proposition 7.1 that (Ve , Zo ) conditioned
on Yo € Vo has the same law as (3700, 200) conditioned on yg € )NJOO. In the second case,
(Voo, Zo0) conditioned on yg & Voo, has the same law as (Yoo, Zo0)- This brings us back to
the situation k({yo}) = 0. According to what was proved earlier, conditional on yo & Voo
and 8 = 1, (Y, Z) has the same law as (Y'_, Z/_) conditioned on yo € V', . But this is
the same law as for (Vso, Zo0) conditioned on yg € Voo. So again, (Y, Z) has the same
law as (Yoo, Zoo)- O

Next we consider the more general case where the measure & — k has a first moment:
/ |z|(R(dx) — k(dz)) < +o0.
R

First, we describe a procedure that does not give a coupling between (Yoo, £Zo,) and
(Vsos Zc0), but allows to approach it.

PROCEDURE 7.15. — Arguments:

— a pair (Y, 2) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{—o0}, supYUZ e YU{+oo} ;

— two positive Radon measures k, i such that k < & and [, |z| (R(dx) — k(dz)) <
+o00 and (K — Kk)(Z) = 0.

Procedure:

(i) Let B be a Bernoulli r.v. of parameter

Jr 0oz (W) (R — ) (dy)
(see notations of Proposition 7.3).
(ii) Let Y be a real r.v. independent from (3, distributed according to
v,k () (F — £)(dy)
P(B=1)
(iii) If B =0, we set (Y, Z) = (I, Z).
(iv) If B = 1, we apply Procedure 7.10 to the arguments (Y, 2), k and Y, and set
(Y, 2) to be its result.

Return: (Y, Z).
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Observe that in case & and k differ only by an atom, Procedure 7.15 is the same
as Procedure 7.13.

LEMMA 7.16. — Let (Yoo, Zo0), respectively (;)700, 200), be the pair of interwoven de-
terminantal point processes corresponding to the killing measure k, respectively k. We
assume that Procedure 7.15 is applied to (Voo, Zoo) and that (¥, Z) is the returned
pair of point processes. Then, the total variation distance between the law of (i, Z~)

and the law of (Veo, Zo0) is less or equal to (fR Gy, ) (R(dy) — H(dy)))Q.

Proof. — Let AY be the determinantal point process defined in Section 7.1 (see
Lemma 7.3). According to Lemma 7.5, the law of (37, 2), conditional on 8 = 0, is the
same as the law of ()Nioo, ZNOO), conditional on AY = ). From Lemmas 7.11 and 7.7 fol-
lows that the law of ()Ni, ZN), conditional on 8 = 1, is the same as the law of ()Nioo, 500),
conditional on #A)j = 1. Moreover, P(8 =1) = P(#A)j = 1). However,

P(8 = 0) = P(AY = 0) + P(#AY > 2) > P(AY = 0).

It follows that the total variation distance between the law of (?,2) and the law
of (Voo, Zo0) is less or equal to 2P(#AY > 2), which, according to Lemma 7.3, is less

~ 2
or equal to (IR G(y,y)(k(dy) — n(dy))) : O

COROLLARY 7.17. — Let kg < K1 < -+ < K; be positive Radon measures such that
[z |zl(k;(dz) — ko(dx)) < 4oco. Let G; be the Green’s function of %% — Kk; and
( é?, ZC(,?) the pair of interwoven determinantal point processes corresponding to k;.
Let ((y<i>,z<i>))0§i§j be the sequence of pairs of interwoven point processes defined
as follows: (Y0, 20) .= (yﬁ?,zé?); given (YO=1D Z26=1) (Y@ z@) s obtained
by applying Procedure 7.15 to the arguments (y@—l),z(i—l)), Ki—1 and k;. Then, the
total variation distance between the law of (J/(j),Z(j)) and the law of (yéﬁ;),zéz;)) 18
less or equal to

J

(/RGi—l(y7y)(’€i(dy) - Hi_1(dy)))2_

=1

Proof. — Let (), 2'®) be the pair of point processes obtained by applying Proce-
dure 7.15 to the arguments (yé;‘”, Zéé_l)), ki—1 and k;. According to Lemma 7.16,
the total variation distance between the law of (3", /) and the law of (Y, 2{)) is

2
less or equal to (fR Gi—1(y,y)(ki(dy) — m,l(dy))) . We denote by d, the total vari-
ation distance between the law of (Y@, Z2(9)) and the law of ( @ Zég)). The total
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variation distance between the law of ()'®), 2'()) and the law of (Y@, Z(®) is less or
equal to d;_;. It follows that

d; <di—1 + (/RGi—l(yvy)(Ki(dy) - Hi—l(dy)))2a

and thus,
4 < Z ( /R G () () — mia () O

Next, we give a true monotone coupling between (V, Z) and ()Nioo,goo). We
still consider that £ < & and that [, |z|(R(dz) — k(dz)) < +o0. To construct the
coupling we will use a continuous monotonic increasing path in the space of measures,
(Kq)o<q<1, joining k to & (kg = K, k1 = K). Such a path is defined as follows: Let A be
a positive Radon measure on R X [0, 1] satisfying the following constraints:

— For any ¢ € [0,1], A(R x {q}) = 0.

— For any A Borel subset of R, A(A x [0,1]) = R(A).

For ¢ € [0,1], we define k, as the measure on R satisfying, for any A Borel subset
of R,
Fa(A) = Ko(A) + A(A x [0, ).

For any ¢ < ¢’ € [0,1], k; < Kkq. Moreover, the map g — £, is continuous for the
1.d?
2 dz?
(for x <y, Gq(z,y) = uq,1(x)uq,  (y)) and use the measure G4(y, y)A(dy, dg), which

vague topology. In the sequel we will denote G, the Green’s function of — Kq

is finite.

PROCEDURE 7.18. — Arguments:

— a pair (Y, 2) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{-o0}, supYUZ € YU {+o0},

— two positive Radon measures k, &, such that k < & and [, |z|(F(dz) — k(dz)) <
+o00 and (k — Kk)(Z) =0,

— a continuous monotonic increasing path in the space of measures, (Kq)o<q<1,
joining K to &, obtained by integrating the Radon measure A on R x [0, 1].

Procedure:

(i) First, sample a Poisson point process of intensity Gq4(y, y)A(dy, dg) on Rx[0,1]:
((Y,45))1<j<n, the points being ordered in the increasing sense of g;.

(ii) Then, construct recursively the sequence (YU, Z(j)))ogjgN of pairs of interwo-
ven point processes as follows: (Y@, Z(0)) is set to be (¥, Z). (Y, Z2(0)) is ob-
tained by applying Procedure 7.10 to the arguments ())(j_l), Z6-1), Kq; and Yj.

(iii) (Y, Z) is set to be (YN, ZM),
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Return: (Y, Z).

The condition (& — k)(Z) = 0 ensures that a.s., none of Y lies in Z. By con-
struction, Z C Z and )NJ C Y U Supp(k — k). ()7,2) differs from (), Z) only by a
finite number of points. The law of ()N),Z) depends only on the “geometrical path”
(Kq)o<g<1 and not on its parametrization: if ¥ is an increasing homeomorphism from
[0,1] to itself, then Procedure 7.18 applied the path (ky(g))o<q<1 returns the same
result (in law). Below, an illustration of Procedure 7.18:

0 —X

X —<

1+
q

Ficurge 7.3. Illustration of Procedure 7.18: On the left are represented
(¥, 2) and the Poisson process ((Yj,q;))i<j<n. On the right are rep-
resented the successive (Y7, 2)))o<;j<n. x-dots represent the points
of yU) and diamonds the points of Zz0),

PROPOSITION 7.19. — Let (Yoo, Z00), respectively (jivoo,goo), be the couple of inter-
woven determinantal point processes corresponding to the killing measure k, respec-
tively . We assume that Procedure 7.18 is applied to (Yoo, Zo0) and that (JN),ZV) 18
the returned couple of point processes. Then, (JNJ, ZN) has the same law as (i)o,goo).

Proof. — Observe that a.s., (K — K)(Z) = 0. Let n € N*. We define the family
(Y™ 2G:m))) o< i<, of interwoven point processes as follows: (V@) Z(0.7)) equals
(Voos Zoo). Given (YU—1Lm) zG-1n)y (yGm) z(G:n) is obtained by applying Proce-
dure 7.15 to the arguments (YU—1m) ZG=12)) k; , and k;. We will show that,
as n tends to infinity, the law of (Y7 Z(nn) coﬁverges inntotal variation to the
law of (500,200) and converges weakly to the law of (i, Z~), which will imply that
(Y, Z) and (Yoo, Zoo) have the same law.
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Applying Corollary 7.17, we get that the total variation distance between the law
of (Y™™ Z(mm)) and the law of (Yoo, Zoo) is bounded by

J

n (/RG%(y,y)(n%(dy) _ ”%(dy))y

1

<sup (DY (0 ey ()~ s @)’

z€R j=1

<sup (G”)) [ @+ ) - i)

zeR 1 + |$|
X sup /R(1+ lyD (k3 (dy) — Kiz1(dy))-

1<j<n

The continuity of the path (k4)o<g<1 ensures that

tim sup [ (14 y)s (@) — s (d) =
n—-4o0o 1<j<n JR n n
and hence, the total variation distance between the law of (Y™™ Z("™)) and the

law of (jivoo, Z~oo) converges to 0 as n tends to infinity.

We define a random finite set E,, of points in R x %, %, ey %} as follows: Let

(B1myB2.ms--->Bnn) be a family of independent Bernoulli variables, 3;, being of
parameter

n n

[ 0nics e, W) — ) ().
| Ui

Whenever 3;, = 1, we add to E, a point (Y; ., %) to E,, where Y; ,, is a r.v.

)

distributed according the measure

1

B, =) e W —i2)(@)

The (Y n, %) are assumed to be independent and independent from the family
(B1myB2.n5 -+ Bnm). The pair () Z(nn)) s sampled as follows: starting from
(Yo, Z), independent from E,,, we apply successively, for ¢ ranging from 1 to n,
Procedure 7.10 with the arguments Kiz1, and Y;,, whenever §;,, = 1. At the end,
we get (V™) Z(mm)) According to Lemma 2.4, the law of the pair of point pro-
cesses returned by Procedure 7.10 depends continuously on the arguments. So, to
prove that (Y™™ Z(m) converges in law to (I, Z), we only need to show that the
random set of point E,, converges in law to the Poisson point process ((Y;,¢;))1<j<n
used in Procedure 7.18. All of the functions v, , ., (y) are dominated by Go(y, ).

n n
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Moreover,
| vnﬂ,ni(y) - G%(l%y)'
<us | (y) u%,T(yfl)(u%,l(yfl)u%,T(y) - U%q(y—l)u%yl(y))
Yy-1<y
X (H%' — ki—1)(dy—1)
bug ) [ g ) nuss () — wis y)us 1)
Yy1>y
X (rs = i )(dya)
e D ) — v e )
Yy-1<y

X (ki —Kiz1)(dy-1)

[ e e ) v nues 0)
Y1>y
X (ki — Kiz1)(dyr)

SGo(y,y)/ Go(y-1,y-1)(ks — Kiz1)(dy-1)

2
y_1<y " "

— ri)(dyn)

a
n n

+ Go(y,y) Go(y1, 1) (K
Y1>yY

— riz1)(dy—1)

1
n

A
n

— Ki-1 )(dyl)

a
n n

X Go(y1,41)(k
Yy1>y

Thus, given any bounded interval J,

im  sup sup|ve, , .k, (¥) —Gi(y,y)| =0.
n—+00 1<i<n yeJ IETRD ™

It follows that
lim sup P(8;,=1)=0,

n—+00 1<i<n

and the measure

D Vi W) (s = Kiz1)(dy) ® 81 (dg)
i=1 roor

converges weekly to Gq(y,y)A(dy,dq), which is the intensity of the Poisson point
process ((Yj,q;j))1<j<n. Thus, the random sets E,, are compound Bernoulli approx-
imations of the Poisson point process ((Yj,q;))1<j<n and converge in law to the
latter. O
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Given a continuous monotonic increasing path (kq)o<q¢<1 in the space of Radon
measures, and a pair of interwoven determinantal point processes (Yoo, Zo0) cOITE-
sponding to kg, used as argument, Procedure 7.18 yields non-homogeneous Markov
g-parametrized process in the space of interwoven pairs of discrete sets of points,
whose one-dimensional marginal at any value gy of the parameter is the pair of in-
terwoven determinantal point processes corresponding to the killing measure k.
This corresponds to sampling only the partial Poisson point process of intensity
lo<g<qoGq(y,y)A(dy, dq) and successively applying Procedure 7.10 for each of its
points. In general, multidimensional marginals corresponding to ¢; < --- < ¢, depend
not only on Kg,,...,Kq,, but on the whole path (£4)q, <¢<q,- For instance, consider
two different paths (kq)o<q<1 and (Rq)o<q<1, Where

- HOZIAQOZ(S_%-i-(S%,
é

— K1 =Ry = _%—}—5_%—{-5%4—5%,

— kg = 2q57%+67%+5% for q € [0,%], and kK, :57%+67%+6%+(2q—1)6%
for q € [%,1],

— kg =0_1 +01 +2¢0; for g € [0,3], and &g = (2¢ — 1)0_1 +06_1 + 01 +3
for g € [%,1].

Let Gy(z,y) = uq1(z A y)ug, (z V y) be the Green’s function of %% — Kq, and
@q(x,y) = Ug1(z Ay)lq, (z V y) the Green’s function of %% — Rq. Let (Vo) Zoo),
()700, 200)) be the coupling between the point process corresponding to kg, respectively
k1, induced by the path (kq)o<q<1, and (Yoo, Zo)s (Yoo, Z55)) the coupling induced
by the path (R4)o<q<1. Then,

({3 {3

3
2
ECAC
3
2

11 SN A sy
e )RS
But,
Gy () =64(-3) Gi(-2)=6i(5),
and
ay1(3)  uy(—3) ar,y (= 3) _ wg(3)
a3 (3)  up (=3) i (=3)  wg(3)
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Thus
) up(~3) 1)
pn={- 14 F={-343) _ 0D )
{11l a1l 1(-3) 1(3)
e e R e B
But,
“é,l(—%)_j uti(3) 11
i (—D I w3 M
Thus,
Hoe {31 {- 10

1105
P<yoo:{_§§}v oo:{
The two couplings are different.

If K — k does not have a first moment, we can still construct a coupling between
(Voos Zo0) and (Yoo, Zo0) as follows: Consider a continuous monotonic increasing path
(Kq)o<g<1 joining £ to R, satisfying the constraint

Vg € [0, 1),/]R |z|(Kq(dx) — Ko(dz)) < 4o00.

Given go € (0,1), one can apply Procedure 7.18 to the arguments (Yoo, Zoc);5; Kqpos
and the partial path (kq)o<q<q,- As result, we get a two interwoven determinantal
point processes corresponding to the killing measure Kgo- At the limit, as ¢y tends
to 1, we get something that has the same law as ()/oo, Oo)

Next, we prove the existence of stronger couplings in case & = ck, where ¢ > 1 is
a constant.

PropoSITION 7.20. — If K = ck, with ¢ > 1, then there is a coupling between
(Voo Zoo) and (Yoo, Zoo), such that Zo C Zoo, and Yoo C Voo-

Proof. — Consider a coupling between (Voo, Z5) and (yoo, ) given by Procedure
7.18, pos31bly extended to the case where x does not have a first moment. Then,
Zy C Zoo, but in general, Vo, & Voo So, we will sample other point processes Y’ and
y;o that conditional on Z.,, respectively Zoo, have the same law as )., respectively

joo, and such that Y/ C i’)o For each connected component J of R\ZVOO, we sample
1,c7R(dy)
yeJ

_ R(J)

the Y5 are independent from Z., and independent one from another. We set

a point ?j according the measure . We assume that, conditional on goo, all

Y, = {f’j | J connected component of R\ Zs}.

MEMOIRES DE LA SMF 158



7.2. COUPLINGS 151

Then, (Y., Zs) has the same law as (Yoo, Zoo). Let be J a connected component
of R\ Z, and Jiyens jNJ the connected components of J '\ Zo. On J, we define the
r.v. Y as follows: Y is equal to one of the ?jn—s, and

~ ~ ~ K
P(Y; = Yy | J, Ji, .. JIN,) =
We set
Y., :={Y; | J connected component of R\ Z.}.
By construction, Y. C i’x) Moreover, the proportionality of x and & ensures that

(V.. , Z) has the same law as (Yo, Zoo)- O

[e R
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There is a natural measure on loops (time-parametrized trajectories that in the
end return to the origin), which one can associate to a wide class of Markov
processes. The Poisson ensembles of Markov loops are Poisson point processes
with intensity proportional to these measures. In wide generality, these Poisson
ensembles of Markov loops are related, at intensity parameter 1/2, to the
Gaussian free field, and at intensity parameter 1, to the loops done by a
Markovian sample path. Here, we study the specific case when the Markov
process is a one-dimensional diffusion. After a detailed description of the
measure, we study the Poisson point processes of loops, their occupation fields,
and explain how to sample these Poisson ensembles of loops out of diffusion
sample path perturbed at their successive minima. Finally, we introduce a
couple of interwoven determinantal point processes on the line, which is a
dual through Wilson’s algorithm of Poisson ensembles of loops, and study the
properties of these determinantal point processes.

Il y a une mesure naturelle sur les boucles (trajectoires paramétrées par
le temps, qui & la fin retournent & leur origine) qu’on peut associer a
une large classe de processus de Markov. Les ensembles poissoniens de
boucles markoviennes sont des processus ponctuels de Poisson d’intensité
proportionnelle 4 ces mesures. Dans une grande généralité, ces ensembles
poissoniens de boucles markoviennes sont reliés, au paramétre d’intensité 1/2,
au champ libre gaussien, et au paramétre d’intensité 1, aux boucles crées par
une trajectoire markovienne. Ici nous étudions le cas spécifique ot le processus
de Markov est une diffusion unidimensionnelle. Aprés une description détaillée
de la mesure, nous étudions les processus ponctuels de Poisson des boucles,
leurs champs d’occupation et expliquons comment séquencer ces ensembles
poissoniens de boucles & partir de trajectoires de diffusions perturbées a leur
minima successifs. Enfin, nous introduisons un couple de processus ponctuels
déterminantaux sur la droite, entrelacés, qui est un dual, a travers ’algorithme
de Wilson, de 'ensemble poissonien de boucles, et étudions les propriétés de
ces processus ponctuels déterminantaux.
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