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Société Mathématique de France
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CHAPTER 0

INTRODUCTION

0.1. Statement of the problem

Let F = {(x, y) ∈ R2, x ! 0, b(x) " y " a(x)} be a wedge in R2, the curves
y = a(x) and y = b(x) are called in this paper the faces of the wedge. We assume
a(0) = b(0) = 0, a(x) > 0 > b(x) for x > 0:

Σi ∩ {t = −1}
∆+ = {y = a(x)}

O

∆− = {y = b(x)}

F

Figure 0.1. Wedge F , incident wave front set Σi

The space domain is O = R2 − F . We denote the faces of the wedge by ∆+

and ∆−. With the notation ∆̃+ = {(x, y, t), y = a(x), t ∈ R, x ∈ R} and ∆̃− =
{(x, y, t), y = b(x), t ∈ R, x ∈ R}, we verify that ∆± = ∆̃± ∩ {x > 0}. The functions



2 CHAPTER 0. INTRODUCTION

a and b are assumed to be analytic functions on R. We define the exterior domain
Ω = O × Rt. It will be convenient to consider that ∂O = ∂O+ ∪ ∂O− ∪ {(0, 0)}. In
all the sequel, p will denote the projection from R2 × Rt to R2.

The problem of diffraction by a wedge with Dirichlet or Neumann boundary con-
ditions has been studied by other authors before (starting with Poincaré [34], [35]
and Sommerfeld [40], then Garnir [19], Bernard [3], [5], [7], [8], Kaminetzki-Keller
[23], Bouche-Molinet [9], [30], Cessenat [12], Assous-Ciarlet [1]). However, these au-
thors considered a wedge with straight faces or a wedge whose faces are circular arcs
(Bernard [5]). The generalization to a curved wedge with analytic faces was done for
a Dirichlet boundary condition by Gérard and Lebeau [20]. Other authors studied
related problems: Kondrat’ev [24] considered more general boundary conditions and
a cone, as well as Eskin [17, 18] or Bernard [7]. Grisvard [21], Azaiez-Dauge [2],
Assous-Ciarlet-Sonnendrucker [1] studied elliptic problems outside polyhedra.

The results of Gérard and Lebeau were used by Burq [11] to obtain a control result
with open sets with corners. A generalization of the propagation result to a wedge in
Rd is due to Lebeau [29].

We generalize in this paper the results of [20] for more general boundary conditions.
We assume that each face of the wedge is characterized by an impedance boundary
condition, that we describe below by equation (6).

Let us consider an incident wave ui(x, y, t) ∈ H1
loc(R

2 × Rt), solution of the wave
equation (∆−∂2

t2)ui(x, y, t) = 0. We assume that ui is conormal analytic to a surface
Σi such that Σi ∩ {t < 0} ⊂ Ω, Σi ∩ {t = 0} ∩ ∂Ω = {(0, 0, 0)} and ui(x, y,−δ)
is supported on the side of p(Σi ∩ {t = −δ}) ⊂ R2 which does not contain F (see
Figure 0.1). The wave ui is the generalization of a plane wave(1). This wave can be
written, in a neighborhood of t = x = y = 0

(1) ui(x, y, t) =
1
2π

∫ +∞

−∞
eiω(t−θi(x,y))σi(x, y, ω) dω + a(x, y, t)

where the function a is analytic in the neighborhood of (0, 0, 0) and θi(0, 0) = 0,
∇θi(0, 0) = (1, 0). The symbol σi is analytic and satisfies

(2) sup
s!0

∫ +∞

−∞
(1 + |τ |2)|σi(x, y, τ − is)|2 dτ < +∞.

Let us define the impedance boundary conditions. For this purpose, we define,
when they exist, the two traces ∂+ and ∂−, which are the normal derivatives on each
face of the wedge (unlike in [20], where the normalization coefficient was not present):

(3)

{
∂+f(x) = (1 + (a′(x))2)−1/2(∂yf − a′(x)∂xf)|y−a(x)=0+

∂−f(x) = (1 + (b′(x))2)−1/2(b′(x)∂xf − ∂yf)|y−b(x)=0− .

(1)For example, when σi(x, y, ω) = (1 + |ω|)−3 and θi(x, y) = x, ui is (up to a regularization) the

inverse Fourier transform of what is called a plane wave propagating in the x direction.
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0.1. STATEMENT OF THE PROBLEM 3

Notice that these derivatives are the exterior normal derivatives to the wedge F ; when
we consider the usual Green’s formula in O, the exterior normal derivatives to O are
−∂±u.

0.1.1. The tangent straight wedge. — If the functions a(x) and b(x) are lin-
ear functions, the wedge is an angular sector, which is defined in polar coordinates
by − tan−1 |b′(0)| " θ " tan−1 a′(0), and the exterior normal derivative to the wedge
is r−1∂θu(r, tan−1 a′(0)) on the face y = a′(0)x and −r−1∂θu(r, tan−1 b′(0)) on the
face y = b′(0)x. We shall write a = a′(0) and b = b′(0) to shorten the notations. The
angular sector associated with O is denoted by O0. We introduce Ω0 = O0×Rt to be
in accordance with the classical calculus on the diffraction by a wedge (J.M. Bernard
[8]). We verify that, when the situation is the one described in the figure below:

ui

φ0

nπ/2

−nπ/2

F0

F0
γ+

−γ−

φ0

ui

Figure 0.2. Definition of n and φ0

the face θ = nπ/2 is the face y = b′(0)x of the straight wedge we consider in our
hypothesis. The normal derivative ∂− on this face is −r−1∂θu(r, nπ/2), and the
boundary condition written in (4) of [8] is, on this face

r−1∂θu
(
r, nπ/2

)
+ ik sin θ+u

(
r, nπ/2

)
= 0.

This boundary condition is thus ∂−u− ik sin θ+u = 0. In a same way, the boundary
condition on the other face φ = −nπ/2 is

r−1∂θu(r,−nπ/2)− ik sin θ−u(r,−nπ/2) = 0,

that is ∂+u − ik sin θ−u = 0. Finally, the incident wave written in (1) of [8] is
ui = eikr cos(φ−φ0). The equation of the wave front associated with this representation,
assuming that the projection wave front at t = −t0 is away from the wedge, is t =
−r cos(φ− φ0). With this remark, we notice that (according to the Physics notation
for the Fourier transform in time of the incident wave) the corresponding incident
wave is

Ui(r, φ, t) =
1
2π

∫

R

eik(r cos(φ−φ0)+t) dk

which implies that the boundary condition in the (x, y, t) system of coordinates is

∂±u− sin θ∓∂tu|∆± = 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE



4 CHAPTER 0. INTRODUCTION

0.1.2. The boundary conditions for the problem. — The definition of ∂± is
extended to functions of Ω (as being the quantity *n±(x) · ∇u(x, y)).

Let z+(x) and z−(x) be two complex functions, defined and analytic on R, satis-
fying(2)

(4) )z+(x) > 0, )z−(x) > 0.

The condition Σi ∩ {t < 0} ∩ ∂Ω = ∅ implies the relations ∂±θi(0) < 0 (which are
fulfilled because b′(0) < 0 and a′(0) > 0).

Consider the diffraction of ui by the half space whose boundary is ∆̃± and con-
taining the point (1, 0). The condition

(5) ∂±θi(0)− z±(0) *= 0

implies that the Dirichlet to Neumann operator ∂±u − z±∂tu → ∂±u is defined,
microlocally in a neighborhood of (0, 0, τ,−τ∂±θi(0)) ∈ T ∗(∆̃±). The condition (5)
rewrites ∂±θi(x) − z±(x) *= 0 at a point (x, a(x)) of ∂O+ = p(∆+) (respectively
(x, b(x)) of ∂O− = p(∆−)) and it is necessarily fulfilled for any point where ui is an
incident wave, that is a point of p(∆+) where ∂+θi(x) < 0 or a point of p(∆−) where
∂−θi(x) < 0. This is a consequence of (4) and of the inequalities ∂±θi(0) < 0, which
ensures that )(∂±θi(0)− z±(0)) < 0.

Let u ∈ H1
loc(R

2 × Rt) be a solution of the wave equation in Ω, equal to ui for
all strictly negative t’s, satisfying impedance boundary conditions on each face of the
wedge. If it exists, it is the solution of the system (6) (which is the same system
as (1.4) of [20] with mixed boundary conditions):

(6)






(∆− ∂2
t2)u = 0 in Ω

∂+u(x, t)− z+(x)∂tu(x, a(x), t) = 0
∂−u(x, t)− z−(x)∂tu(x, b(x), t) = 0
u|t<0 = ui|t<0.

To this system, we associate the problem with constant coefficients in the tangent
straight wedge Ω0, which is

(7)






(∆− ∂2
t2)u = 0 in Ω0

∂+u(x, t)− z+(0)∂tu(x, ax, t) = 0
∂−u(x, t)− z−(0)∂tu(x, bx, t) = 0
u|t<0 = ui|t<0.

In this paper, we prove that the wave u, in the neighborhood of t = x = y = 0, can
be written as the sum of two reflected waves (called ue,+ and ue,−) and of a diffracted
wave ud. The reflected waves ue,± are described below and are computed classically.

(2)Note that the global condition on is needed if we intend to construct a solution in O× t, but if

we assume the existence of a solution and we want to evaluate the influence of the edge (x, y) = (0, 0),

this condition is only necessary in a neighborhood of x = 0, hence at x = 0 if we are free of the

choice of the neighborhood of t = 0.
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0.2. RIGOROUS ASYMPTOTIC BEHAVIOR OF THE SOLUTION 5

The diffracted wave ud is conormal analytic to {t = (x2 + y2)1/2}, hence there exists
a symbol σd(x, y, ω) such that

ud(x, y, t) =
1
2π

∫
eiω(t−r)σd(x, y, ω) dω

where σd has an asymptotic expansion in inverse powers of ω, of the same type as
the one obtained by Gérard and Lebeau in [20] for the diffracted wave associated
with a Dirichlet boundary condition. The traces u|∆+ , u|∆− , ∂+u, ∂−u are solution
of a pseudodifferential system, which symbol is invertible in an algebra of pseudod-
ifferential operators. This solution is computed explicitly by the inversion of the
pseudodifferential system. We then prove the validity of the asymptotic expansion of
the solution. The leading order term of the solution of (6) is the leading order term
of the solution of the problem (7). This leading order term is computed ([8], [9], [3])
using Sommerfeld-Maliuzhinetz inversion formula [30], [31], [40].

The main difficulty which arises here is the fact that we have to control the so-
lution at the corner, arising from the fact that the boundary condition is not the
Dirichlet boundary condition. Another question one may ask is the problem of the
behavior of the trace on the boundary, to be able to compute the Calderòn operators.
These questions make the generalization of the techniques of Gérard and Lebeau not
straightforward, as we shall see along this text.

0.2. Rigorous asymptotic behavior of the solution

We will see in Section 2.1 the conditions (29) such that the problem (7) is a well
posed problem. At each point (x0, y0, t0, ξ0, η0, τ0) such that x0y0 *= 0, the con-
dition (4) implies that the problem is a microlocally well posed problem, and the
condition (29) implies that the harmonic problem obtained after Fourier transform in
time of the diffraction problem is well posed for all ω ∈ C− = {ω ∈ C,,ω < 0}.

We denote by z the function

(8) z = z+1∆+
+ z−1∆−

.

Kaminetzki and Keller [23], following the works of Sommerfeld [40], found for-
mally that the harmonic wave diffracted by the wedge was characterized by a term
e−iτr/(τr)1/2.

Gérard and Lebeau [20] proved for Dirichlet boundary conditions that the front
Σd = {t = (x2 + y2)1/2} is a subset of the wave front set of the solution u. We prove
the same result for mixed boundary conditions. Both solutions ue and ud contribute
to the symbol on this front. A precise description of the principal symbol of ud and
of ue is given in Section 5.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE



6 CHAPTER 0. INTRODUCTION

0.2.1. Description of ue. — Let ur,+ be the solution of the wave equation obtained
by reflection of ui by ∆̃+:

(9)
{

(∆− ∂2
t2)ur,+(x, y, t) = 0, y > a(x)

∂+(ui − ur,+)(x, t) − z+(x)∂t(ui − ur,+)(x, a(x), t) = 0

and the wave ur,− diffracted by ∆̃−:

(10)
{

(∆− ∂2
t2)ur,−(x, y, t) = 0, y < b(x)

∂−(ui − ur,−)(x, t) − z−(x)∂t(ui − ur,−)(x, b(x), t) = 0.

These two functions are (up to analytic functions a±(x, y, t)) described by integrals
analogous to (1)

(11) ur,±(x, y, t) =
1
2π

∫ +∞

−∞
eiτ(t−θ±(x,y))σz

±(x, y, τ) dτ + a±(x, y, t).

Introduce θa(x) = θi(x, a(x)) and θb(x) = θi(x, b(x)). The functions θ± are the
solutions of

(12) (∇θ+)2 = 1, ∂+(θ+ + θi)(0, 0) = 0, θ+(x, a(x)) = θa(x),

(13) (∇θ−)2 = 1, ∂−(θ− + θi)(0, 0) = 0, θ−(x, b(x)) = θb(x),

following the notations of [20] p. 370. This allows to introduce the front of each wave:

Σ+ = {(t, x, y), t = θ+(x, y)}, Σ− = {(t, x, y), t = θ−(x, y)}.

The symbols σz
±(x, y, τ) are the solutions of the transport equations of [26] associ-

ated with the impedance boundary conditions(3):

(14)

∂xθ+∂xσz
+ + ∂yθ+∂yσz

+ +
1
2
∆θ+σz

+ + (2iτ)−1∆σz
+ = 0

(z+(x) − ∂+θi(x))σz
+(x, a(x), τ) +

∂+σz
+(x)
iτ

= (z+(x) + ∂+θi(x))σi(x, a(x), τ) +
∂+σi(x)

iτ
,

(15)

∂xθ−∂xσz
− + ∂yθ−∂yσz

− +
1
2
∆θ−σz

− + (2iτ)−1∆σz
− = 0

(z−(x)− ∂−θi(x))σz
−(x, b(x), τ) +

∂−σz
−(x)
iτ

= (z−(x) + ∂−θi(x))σi(x, b(x), τ) +
∂−σi(x)

iτ
.

The relation (5) allows us to solve in the neighborhood of x = y = t = 0 the system
of transport equations (14), (15).

We introduce the functions

(16) u± = ui − ur,± ∈ H1
loc(R

2 × Rt).

(3)We used the relation ∂+θ+(x) = −∂+θi(x) and ∂−θ−(x) = −∂−θi(x) for any point of ∆+ or ∆−
assumed to be in the lighted region.
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0.2. RIGOROUS ASYMPTOTIC BEHAVIOR OF THE SOLUTION 7

We denote by δ+ and δ− the single-layer distributions on the face ∆+ and ∆−. We
denote also by δ′+ and δ′− the double-layer distributions on the face ∆+ and ∆−. The
canonical representation of such distributions is given through an orthogonal repre-
sentation of T(x,a(x))R

2 and of T(x,b(x))R
2. For this purpose, we introduce the local

semi-geodesic transformations h+ and h− from [0, ρ0] × [0, ρ1] to the corresponding
neighborhood of the boundary:

h+(x, n) = (x, a(x)) +
n

(1 + (a′(x))2)1/2
(−a′(x), 1)

h−(x, n) = (x, b(x)) +
n

(1 + (b′(x))2)1/2
(b′(x),−1).

The transformation h+ is a diffeomorphism of a neighborhood of (x0, 0) into a neigh-
borhood of (x0, a(x0)). Its inverse transformation is denoted by ρ+. Let g ∈ D′(R).
The distributions g ⊗ δ+ and g ⊗ δ− are defined by the action on the test function
φ1 ⊗ φ1 ∈ C∞

0 (R2) equal to φ1(x)φ2(n):

(17)

{
〈g ⊗ δ+, φ1 ⊗ φ2〉 = 〈g, (1 + (a′(x))2)1/2φ1〉φ2(0)

〈g ⊗ δ−, φ1 ⊗ φ2〉 = 〈g, (1 + (b′(x))2)1/2φ1〉φ2(0).

In a similar way, we define, for g ∈ D′(R), the distributions on R2 denoted by g ⊗ δ′+
and g ⊗ δ′− through the relations

〈g ⊗ δ′+, φ1 ⊗ φ2〉 = −〈g, (1 + (a′(x))2)1/2φ1 > ∂+φ2(0)

〈g ⊗ δ′−, φ1 ⊗ φ2〉 = −〈g, (1 + (b′(x))2)1/2φ1〉∂−φ2(0).

This way of defining the two boundary distributions is intrinsic. Note that we choose
here a way of orienting the boundary; in the case of y = a(x) = 0, we verify that

〈g ⊗ δ′+, φ(x, y)〉 = −
∫

R

g(x)∂yφ(x, 0) dx.

Let ue be the solution in R2 × R of

(18)






(∆− ∂2
t2)ue = u+(x, a(x), t)1x>0 ⊗ δ′+ + u−(x, b(x), t)1x>0 ⊗ δ′−

+ ∂+u+(x, t)1x>0 ⊗ δ+ + ∂−u−(x, t)1x>0 ⊗ δ−
ue|t<0 = ui|t<0.

Introduce the fundamental solution of ∆ − ∂2
t2 supported in t ! 0, denoted by

(∆− ∂2
t2)

−1
+ . We have

ue = ui + (∆− ∂2
t2)

−1
+

[
u+(x, a(x), t)1x>0 ⊗ δ′+ + u−(x, b(x), t)1x>0 ⊗ δ′−

]

+ (∆− ∂2
t2)

−1
+

[
∂+u+(x, t)1x>0 ⊗ δ+ + ∂−u−(x, t)1x>0 ⊗ δ−

]

SOCIÉTÉ MATHÉMATIQUE DE FRANCE



8 CHAPTER 0. INTRODUCTION

0.2.2. Contribution of the jump at the corner. — For the description of the
solution and of ue, we introduce the contribution of the jump between u+(0, 0, t)
and u−(0, 0, t), θ being any function identically equal to 1 in a neighborhood of 0,
say [−1, 1], and compactly supported, and R being a small real number

(19) u0(x, y, t) = (∆− ∂2
t2)

−1
+

[
(u+(0, 0, t)− u−(0, 0, t))θ

( x

R

)
1x!0δ

′
+

]
.

We shall see later on that the solution u satisfies u|[0,T ]×∂O ∈ L2([0, T ], H1(∂O)),
hence this jump is artificial, because it is introduced by the difference u+(0, 0, t) −
u−(0, 0, t).

From the relation (143) of the Appendix, and the regularity results of Lemma 6.5
of the Appendix, we check that u0 is a distribution of L2

loc for which we have the jump
formula [u0|∂Ω] = (u+(0, 0, t)− u−(0, 0, t))θ(x/R)1x!0. The distribution ue, given by
the system (18), is associated with a trace on the boundary (defined by (u|∆+ , u|∆−))
which is in H1(∆+)⊗H1(∆−). The distribution ue − u0 writes:

ue − u0 = (∆− ∂2
t2)

−1
+

[(
u+(x, a(x), t) − (u+(0, 0, t)− u−(0, 0, t))θ

( x
R

))
δ′+

+ u−(x, b(x), t)δ′−
]
+ (∆− ∂2

t2)
−1
+

[
∂+u+δ+ + ∂−u−δ−

]
+ ui.

We consider the distribution on R2 equal to

tr(x, t) =
(
u+(x, a(x), t)− (u+(0, 0, t)−u−(0, 0, t))θ

( x
R

))
1x!0 +u−(−x, b(−x), t)1x<0

The restriction of tr on R∗
+ × Rt (respectively on R∗

− × Rt) is a distribution of
L2(Rt, H1

loc(R
∗
+)) (respectively of L2(Rt, H1

loc(R
∗
−))), and tr(0+, t) = tr(0−, t) =

u−(0, 0, t). Hence tr(x, t) is an element of L2(Rt, H1(R)). We apply the fundamental
solution on a Dirichlet trace which is in H1(∂Ω) and a Neumann trace in L2(R).
It is again a consequence of Lemma 6.5 of the Appendix and of the regularity of
(∆− ∂2

t2)
−1
+ that ũe = ue − u0 is in H1

loc(Ω).
The distribution ũe is convenient to take into account the behavior at the corner,

but will not be convenient to use the 2-microlocal propagation result, because the
trace of the distribution ue − ũe is not V±-outgoing according to the definition of
Gérard and Lebeau [20].

We introduce σ±(x, τ) such that u+(x, a(x), t) = (1/2π)
∫
σ+(x, τ)eiτ(t−θa(x)) dτ

(respectively u−(x, b(x), t) = (1/2π)
∫
σ−(x, τ)eiτ(t−θb(x)) dτ).

The jump between u+(0, 0, t) and u−(0, 0, t) cannot be avoided, because in general
we have σ+(0, τ) *= σ−(0, τ). The traces of u+ and of u− used in what follows are
computed in Lemma 5.2 (Section 5.3). The analytic wave front set of ue is included
in the conormal set to the smooth part of Σd ∪ Σ+ ∪ Σ− (because ue is conormal
analytic to the smooth part of Σd ∪ Σ+ ∪ Σ−). The detailed calculus of the symbols
is written in Section 5.
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0.2.3. Statement of the high frequency result. — Let γ+ ∈ ]0, π/2[ and
γ− ∈ ]− π/2, 0[ be defined by

(20) a′(0) = tanγ+, b′(0) = tan γ−.

The angle of the wedge F is γ = γ+ − γ− ∈ ]0, π[.
Let θ± be the Brewster angles of the faces, defined for example by J.M. Bernard

in [5, p. 322 (2)]:

(21) sin θ± = z±(0).(4)

We get that

σ±(0, τ) =
2 sinγ±

sin θ± ± sinγ±
σi(0, 0, τ)

(
1 + O

(1
τ

))
.

Let Ωε = Oε ×Rt =
[
R2 − (F ∪ {(x, y), tan(γ− − ε)x " y " tan(γ+ + ε)x})

]
×Rt.

We introduce the set Ω̃ε = Ωε ∩ Ω+,ε ∩ Ω−,ε, where

Oε

O

∆+ = {y = a(x)}

∆− = {y = b(x)}

F

Figure 0.3. Region of validity of the high frequency result

– Ω±,ε = R2 × Rt when ,z±(0) *= 0
– when ,z±(0) = 0, Ω±,ε excludes the sector between the angles γ± − θ± − ε and

γ± − θ± + ε, and the sector γ± + θ± − π − ε, γ± + θ± − π + ε

We prove in this paper that the asymptotic expansion of the wave is known in the
high frequency regime outside the corner for small times. In other words, we can find

(4)More precisely, we should write sin θ∓ = z±(0) as in Section 0.1.1, because in the notations of

[8], the face − is the face called + here, as was noticed in Section 0.1.1. We drop this notation and

adopt the notation (21).
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the analytic wave front set of u, and it is the union of the reflected wave front set and
of a diffracted wave front set (Corollary 1).

A precise description of the symbol of u on each front is available, and this is the
aim of the main Theorem:

Theorem 1. — We assume )z+(0) > 0, )z−(0) > 0.
• For all ε, there exists ε1 such that, for 0 < t < ε1 and (x, y, t) ∈ Ω̃ε

(22) u(x, y, t) = ue(x, y, t) + ud(x, y, t).

The distribution ud +u0 belongs to H3/2
loc (Ω̄ε) and is conormal analytic with respect

to t = r, that is there exists a symbol σd(x, y, ω) such that

ud(x, y, t) + u0(x, y, t) =
1
2π

∫ +∞

−∞
eiω(t−r)σd(x, y, ω) dω

where the symbol σd satisfies

sups!0

∫ +∞

−∞
(1 + |τ |2)3/2|σd(x, y, τ − is)|2 dτ < +∞.

• There exists a function D(θ, γ+, γ−, θ+, θ−), depending only on θ+, θ−, γ+, γ−,
and θ such that the symbol σ0

d(x, y, τ)

σ0
d(r cos θ, r sin θ, τ) = 1|τ |!1

eiπ/4

(2πτr)1/2
σi(0, 0, τ)D(θ, γ+, γ−, θ+, θ−)

satisfies

sups!0

∫ +∞

−∞
(1 + |τ |2)5/2|σd(x, y, τ − is)− σ0

d(x, y, τ − is)|2 dτ < +∞.

The wave front set of the solution is thus known:

Corollary 0.1. — The function ue is conormal analytic to the smooth part of

Σi ∪ Σr,+ ∪ Σr,− ∪ Σd,

and the function ud + u0 ∈ H3/2(Ω̄ε) is conormal analytic to Σd.

Using explicit calculations of special functions, J.M. Bernard [5] computed the
diffraction coefficient for the diffraction of a plane wave by a straight wedge with
constant coefficients mixed boundary conditions. This result gives the coefficient of
diffraction D(θ, γ+, γ−, θ+, θ−) (section 5).

As Gérard and Lebeau did, we transform (6) into a system of two relations on the
boundary between distributions constructed from the traces of u − ue, and we prove
that the leading order term of this system is invertible if and only if the system (7)
is a well posed problem (Section 4). We prove that the system (42) (which is the
Fourier transform of the system (7) with a Fourier parameter equal to τe−iα) is a well
posed system (Proposition 2.1 in Section 4.7). This ends the proof of the validity of
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the computation. We apply the pseudodifferential calculus introduced by Gérard and
Lebeau and we deduce the leading term of the wave diffracted by a wedge.

We solved a few technical problems as well as fundamental ones. The key argument
which makes this paper work is the fact that u|∂Ω ∈ L2(Rt, H1(∂O)). This is achieved
by proving that the trace of u on each face is in H1(∆̃±) and that u|∂O belongs to
H1/2(∂O) owing to the boundary condition. The most technical problems were caused
by the terms coming from the diffracted solution associated with the distribution
(∆ − ∂2

t2)
−1
+ (gδ′∂O), which normal derivative belongs to L2(∂O) when g ∈ H1(∂O),

and is no longer in L2(∂O) when g ∈ H1(∂+O)⊗H1(∂−O) and g(0)|∂+O *= g(0)|∂−O.
This regularity result is a consequence of a precise calculus of the Dirichlet to Neumann
operators. However, the Dirichlet to Neumann operators are more complicated than
the“Neumann to Neumann”operators K+

± and K−
± introduced by Gérard and Lebeau

in [20]. These Dirichlet to Neumann operators are a sum of operators, which have
the same type of regularity as K+

± and K−
± , acting on g and its tangential derivative.

Moreover, according to the jump between σ+(0, 0, τ) and σ−(0, 0, τ), it has been
necessary to include the resolution of a Helmholtz problem with a given jump of the
trace of u on ∂Ω.

The second important tool is the generalization to the mixed impedance bound-
ary condition of the 2-microlocal propagation result obtained for Dirichlet boundary
condition.

The pseudodifferential system we obtain here is complicated, and cannot be in-
verted in the same simple way of Gérard and Lebeau; in particular the compatibility
condition at the corner has to be taken into account. However, we reduce the problem
of existence to the computation of the inverse of an operator where this compatibility
condition at the corner is absent.
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CHAPTER 1

EXISTENCE, UNIQUENESS, AND REGULARITY
OF THE SOLUTION

In this chapter, we prove that the problem of diffraction of a H1
loc conormal analytic

wave is a well posed problem, through the Hille-Yosida theorem. We show that, under
a physical assumption, the system (6) is a good tool to study the diffraction of an
electromagnetic wave by a dielectric piecewise analytic object. Finally, we show that
the trace u|∂Ω of the solution of (6) belongs to H1(∂Ω) and that the normal derivative
∂nu belongs to L2(∂Ω), which enable us to use the techniques of Gérard and Lebeau.

1.1. Uniqueness and existence of a solution

Consider three positive real numbers T, t0, δ, with t0 + δ < T/3, and a function
θ0, C∞(R), compactly supported, with support in [−T, T ], identically equal to 1
in [−T/2, T/2]. We introduce

ũ0(x, y) = θ0(
√

(x + δ)2 + y2)ui(x, y,−δ),

ũ1(x, y) = θ0(
√

(x + δ)2 + y2)∂tui(x, y,−δ).
(23)

We consider the problem

(24)






(∆− ∂2
t2)u = 0

∂+u(x, t)− z+(x)∂tu(x, a(x), t) = 0
∂−u(x, t)− z−(x)∂tu(x, b(x), t) = 0
u(x, y,−δ) = ũ0(x, y)
∂tu(x, y,−δ) = ũ1(x, y).

We have the proposition

Proposition 1.0. — Under the conditions (4) and the conditions

∆ui ∈ L2
loc(R

2 × Rt), ∂tui ∈ H1
loc(R

2 × Rt),

the problem (24) is a Cauchy problem with mixed boundary conditions. It admits an
unique solution which belongs to

E = C(R+,t, H
2(O) ∩H1(O)) ∩ C1(R+,t, H

1(O)) ∩ C2(R+,t, L
2(O)).
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This proposition proves that the problem (6) admits an unique solution, if it exists.
This does not prove the existence of a solution, because we have not enough regularity
conditions on the initial data to ensure the application of the Hille-Yosida theorem.
However, if we consider a function φδ/2, regularization in time, compactly supported
for −δ/2 " t " δ/2, and if we consider the initial data ũδ = θ0(

√
(x + δ)2 + y2)φδ/2 /

ui, the solution for t ! 0 of the problem (24) with initial data u|t<−δ = ũδ|t<−δ,
which exists because the initial data are regular enough in time, is equal to φδ/2 / u,
where u is the solution, if it exists, of (6).

Now consider ui(x, y,−δ) − ũ0(x, y) and ∂tui(x, y,−δ) − ũ1(x, y). The support
of these two distributions is contained in the intersection of the half space whose
boundary is θi(x, y) = −δ which does not contain (0, 0) and the complementary of
the disk of radius T/2 passing through the point (−δ, 0).

Note that ui is a solution of the d’Alembert equation, thus we know the contribution
at infinity. Let us define the distribution

Si(x, y, t) = ui(x, y, t)
[
θ′′0 (
√

(x + δ)2 + y2) +
θ′0(
√

(x + δ)2 + y2)
√

(x + δ)2 + y2

]

+ 2θ′0(
√

(x + δ)2 + y2)
[
∂xui

x + δ√
(x + δ)2 + y2

+ ∂yui
y√

(x + δ)2 + y2

]

which is in L2(R2×Rt), according to the fact that θ′ and θ′′ are compactly supported
and ui ∈ H1

loc(R2 × Rt). We introduce the distribution h solution of






(∆− ∂2
t2)h(x, y, t) = Si(x, y, t)

h|t=−δ = 0
∂th|t=−δ = 0.

This distribution exists (see Wilcox [41]) because Si belongs to L2(R2 × Rt). Hence
w = h + ui(1 − θ(

√
(x + δ)2 + y2)) is a distribution in H1

loc(R
2 × ]−∞, t0]) solution

of





(∆− ∂2
t2)w = 0

w(x, y,−δ) = ui(x, y,−δ)(1 − θ(
√

(x + δ)2 + y2))
∂tw(x, y,−δ) = ∂tui(x, y,−δ)(1− θ(

√
(x + δ)2 + y2)).

Then w + v is solution of (6) for t " t0. The uniqueness of w + v is not obvious
with this method, because w and v depend on the truncation function. However,
given a T and a truncation θ, the distributions w and v are unique. The solution
of (6) for t " t0 is the superposition of the solution v of (24) and of the solution of
a free propagation problem in R2 × ] − ∞, t0], with initial conditions v(x, t,−δ) =
ui(x, y,−δ)− ũ0(x, y), ∂tv(x, y,−δ) = ∂tui(x, y,−δ)− ũ1(x, y). As t0 + δ < T/3, v is
identically 0 in B(0, T/3)× [−δ, t0] (see Figure 1.1).
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∆+ = {y = a(x)}

O

Support of

the Cauchy data

∆− = {y = b(x)}

F

Figure 1.1. Support of the wave w

1.2. The application to the system of Maxwell equations

The situation described above is adapted for the high frequency scattering of an
electromagnetic wave by a wedge in R3, if we assume that the wedge is F × Rz and
that the wave front set of the incident electromagnetic field is the surface

Σi = {t = θi(x, y), z ∈ R} ⊂ R
4,

and that this incident field, solution of the Maxwell equations in a neighborhood W of
(0, 0, 0, 0), is conormal analytic to Σi in W , supported in the part of R4 characterized
by t ! θi(x, y):

(25)
*Ei(x, y, z, t) =

1
2π

∫
eiτ(t−θi(x,y))*ei(x, y, τ) dτ,

*Hi(x, y, z, t) =
1
2π

∫
eiτ(t−θi(x,y))*hi(x, y, τ) dτ.

We omit from now the dependency in z. The boundary condition we assume on
each face of the wedge is computed using [27], and we make the following physical
assumption (which is not true for the case of a wedge filled with dielectric material
because the Calderón operator is well defined on H−1/2 (div, Γ), see Cessenat [13]).
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Hypothesis 1.1
(H) The boundary condition on ∂Ω × Rz is the trace of the boundary condition on
each face ∂O+ ×Rt ×Rz and ∂O−×Rt ×Rz induced by the incident electromagnetic
wave.

The Maxwell equations inside the dielectric write
{

rot *E + µ∂t
*H = 0

rot *H − ε∂t
*E = 0.

Let Z be the pseudodifferential matrix operator taking into account the boundary
condition. When the time dependency is e−iτt, recall that the boundary condition
induced by a material of dielectric constants ε, µ, )(εµ) > 0, ,(εµ) < 0 contained in
{(x, y, z), y < a(x), x ∈ R, z ∈ R} is given by the relation

*n+ ∧ *E = Op(Z(x, a(x), η, τ))[*n+ ∧ (*n+ ∧ *H)]

where

*n+ =
1

(1 + (a′(x))2)1/2
(−a′(x), 1, 0) and − η = ∇θi(x, a(x)) − ∂+θi(x)*n+(x).

We introduce ν+(x) = (εµ− η2)1/2, ,ν+(x) > 0, that is

ν+(x) = (εµ− 1 + (∂+θi(x))2)1/2.

In a similar fashion, we define ν−(x) = (εµ − 1 + (∂−θi(x))2)1/2. The eigenval-
ues of Z0, leading order term of Z, are µ/ν+(x) for the eigenvector ∇θi(x, a(x)) −
∂+θi(x)*n+(x) and ν+(x)/ε for the eigenvector *e3, because the tangent space to the
boundary is spanned by these two vectors and *e3 = (∇θi(x, a(x))−∂+θi(x)*n+(x))∧*n+ .
The application of Z to a function characterized by a phase function of the form
e−iωc φ(x,z) (which is defined on the boundary) is given by the leading order term of
Z computed at the point η = −∇φ through the application of the stationary phase
lemma.

As we assume the behavior in time of the solution to be characterized by eiτt, we
get −ν+(x) in the eigenvalues, because we need to have the decay in the obstacle of the
form e−iτsν+(x)l−iτθi(x,a(x)). When l → +∞, this factor goes to 0 if )(−iτsν+(x)l) <
0, which implies, for τ > 0, the choice s = −1.

We consider only the leading order term of the boundary condition, and we get

Z0[*n+ ∧ (*n+ ∧ *H)] =
µ

ν+(x)
(H1 + a′(x)H2)(x, a(x), t)

(1 + (a′(x))2)1/2





1
(1+(a′(x))2)1/2

a′(x)
(1+(a′(x))2)1/2

0





+
ν+(x)
ε

H3(x, a(x), t)




0
0
1



 .
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We deduce from this relation the boundary condition induced by the leading order
term:

E3(x, a(x), t) =
µ

ν+(x)
H1(x, a(x), t) + a′(x)H2(x, a(x), t)

(1 + (a′(x))2)1/2

a′(x)E2(x, a(x), t) + E1(x, a(x), t)
(1 + (a′(x))2)1/2

= −ν+(x)
ε

H3(x, a(x), t).

We use the Maxwell equations in the free space

rot *E + µ0∂t
*H = 0, rot *H − ε0∂t

*E = 0

and take the derivative in time of the two boundary conditions to obtain

∂tE3(x, a(x), t) =
µ

ν+(x)µ0

−∂yE3(x, a(x), t) + a′(x)∂xE3(x, a(x), t)
(1 + (a′(x))2)1/2

∂tH3(x, a(x), t) = − ε0
ν+(x)ε

−a′(x)∂xH3(x, a(x), t) + ∂yH3(x, a(x), t)
(1 + (a′(x))2)1/2

which writes 




∂+H3(x, a(x), t) +
ν+(x)

µr
∂tH3(x, a(x), t) = 0

∂+E3(x, a(x), t) +
ν+(x)
εr

∂tE3(x, a(x), t) = 0.

As ,ν+(x) > 0, )ν+(x) < 0, we check that

ν+(x)
µr

= |µr|−2()ν+)µr + ,ν+,µr)

We add the usual condition )µr > 0 to obtain )(ν+(x)/µr) < 0. Hence this boundary
condition is of the type (6) and satisfies the hypotheses of Theorem 1. The set up of
this section is summarized in

Lemma 1.1. — The solution of the system of Maxwell equations in Ω×Rz, assuming
that the incident electromagnetic wave is of the form (25) and that the boundary
condition is deduced from (H) is given when the solution of





(∆x,y − c−2∂2
t2)H3 = 0, Ω× Rz

∂±H3 +
ν±(x)

µr
∂tH3 = 0, ∆+ × Rz

H3|t<−δ = Hi,3|t,−δ






(∆x,y − c−2∂2
t2)E3 = 0, Ω× Rz

∂±E3 +
ν±(x)
εr

∂tE3 = 0, ∆+ × Rz

E3|t<−δ = Ei,3|t,−δ
is known. Thus we have 





µ0∂tH1 = −∂yE3

µ0∂tH2 = ∂xE3

ε0∂tE1 = ∂yH3

ε0∂tE2 = −∂xH3

The divergence free condition is fulfilled as soon as the wave ( *Ei, *Hi) satisfies it (it
is a Cauchy condition for a first order system of partial differential equations).
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The Theorem 1 above implies the diffraction result for the system written in Lemma
1.1, which gives the electromagnetic field diffracted by a wedge filled with absorbing
dielectric material under the hypothesis 1.1. This gives the proof of the hypothesis
used by Bernard in [4].

1.3. Estimates on the boundary ∂O × [0, T ]

Consider u the solution, if it exists, of (6). We denote by u = u1Ω the distribution
extending u to R2 × Rt. The function u belongs to L2

loc(R
2 × Rt) (unlike in Gérard

and Lebeau, because there is a jump of the trace of u). We define v± = (∂±u)|x>0

as distributions in D′(∆±), because u is a solution of the wave equation and the
boundary is non characteristic. We have

Proposition 1.1

(1) There exists a constant c such that supp(v±) ⊂ {(t, x), 0 " x " ct}.
(2) The distributions v± belong to L2(R+ × [0, T ]).
(3) The trace of the solution on the boundary belong to H1(∂Ω).
(4) The jump formula is valid:

(∆− ∂2
t2)u = (v+δ+ + v−δ−) + (u|∆+

1x>0δ
′
+ + u|∆−

1x>0δ
′
−).

1.3.1. Proof of the L2 regularity. — The first item of Proposition 1.1 comes
from the fact that the distribution v± of D′(∆±) satisfies supp v± ⊂ {t ! 0}. As we
have finite speed of propagation, the solution is 0 for (x2 + y2)1/2 > t, hence v+ is
supported in (x2 + (a(x))2)1/2 " t and v− is supported in (x2 + (b(x))2)1/2 " t. We
denote by c−1 = min((1 + (a(x)/x)2)1/2, (1 + (b(x)/x)2)1/2) and we get the result.

We introduce a function χ compactly supported in a subset of B(0, r0)× ]− T, T [,
equal to 1 in a neighborhood of (0, 0) and ρε the product of χ with a time regularization
fε(t). We introduce

uε = ρεu = χ(x, y, t)[fε / u](x, y, t) = χ(x, y, t)
∫

fε(t′)u(x, y, t− t′) dt′.

The distribution uε is now in C∞
0 (]−T, T [, H1(O)). As u ∈ H1

loc(Ω̄), uε ∈ H1(Ω̄), and
we have uniformly in ε the inequality ‖uε‖H1(Ω̄) " C where C is independent of ε. As
uε is regular in t, ∂2

t (ρεu) is regular, as well as ∂t(ρεu)|∂Ω. These distributions belong
to H1(R2 ×R). Note that the norm in H1(R2 ×R) of these distributions can depend
on ε.

We check that uε satisfies

∆uε = [∆, ρε]u + ρε∂
2
t2u

As we have ρε∂2
t2u = χ(fε / ∂2

t2u) = χ∂2
t2(fε / u), where fε / u belongs to

C∞
0 (]− T, T [, H1

loc(O)), we get ρε∂2
t2u ∈ H1. Thus ∆uε ∈ L2(Ω). From the results of

Grisvard [21] (see Section 6.1.2), we can define in H−1/2(∂Ω) the normal derivative
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of uε, because ∆uε ∈ L2(Ω) and uε ∈ H1(Ω). The normal derivative is defined
through the equality, for v ∈ H1(Ω)(1):

(26) 〈∂nuε, v|∂Ω〉H−1/2,H1/2 = 〈∆uε, v〉L2(Ω) + 〈∇uε,∇v〉L2(Ω).

From the results of Dauge and Azaiez [2], and Costabel and Dauge [15], as γ ∈ ]0, π[,
there exists ε′′ > 0 such that uε ∈ H

3
2+ε′′ because

uε ∈ L2(R, H1+ π
2π−γ−ε

′
(O)), ∀ ε′ > 0.

We note that this implies in particular ∂nuε ∈ L2(∂Ω) (with the norm possibly
depending on ε) as well as ∂tuε ∈ L2(∂Ω). The aim of the first part of this proof is to
show that the norm of ∂nuε in L2(∂Ω) is independent of ε. For these distributions,
we have 〈∂nuε, ∂tuε|∂Ω〉 = (∂nuε, ∂tuε|∂Ω).

Introduce

a(ε) =
(
(∆− ∂2

t2)uε, ∂tuε
)

=
(
[∆− ∂2

t2 , ρε]u, ∂tuε
)
.

The operator [∆ − ∂2
t2 , ρε] is of order 2 + 0 − 1 = 1, bounded uniformly in ε (be-

cause the family of operators of order 0 ρε is uniformly bounded in ε). Hence
‖[∆ − ∂2

t2 , ρε]u‖L2(Ω) " C1. We have of course ‖∂tuε‖L2(Ω) " C. Hence the term
a(ε) is bounded uniformly in ε.

It is also a consequence of (26) that

〈∂nuε, v|∂Ω〉H−1/2,H1/2 = 〈[∆− ∂2
t2 , ρε]u, v〉+ 〈∇uε,∇v〉 − 〈∂tuε, ∂tv〉

which implies the inequality

|〈∂nuε, v|∂Ω〉| " (‖[∆− ∂2
t2 , ρε]‖L2(Ω) + ‖∇uε‖L2(Ω) + ‖∂tuε‖L2(Ω))‖v‖H1(Ω).

Hence there exists a constant D, independent of ε, such that, with a good choice of
v ∈ H1(Ω), of given trace v|∂Ω ∈ H1/2(∂Ω) (we know from Grisvard [21] that the
lifting lemma is valid from H1/2(∂Ω) to H1(Ω) for a polyhedral boundary)

|〈∂nuε, v|∂Ω〉| " D‖v|∂Ω‖H1/2(∂Ω).

The norm of ∂nuε in H−1/2(∂Ω) is bounded independently of ε by D.
Note now that (−∂2

t2uε, ∂tuε) = 0, because ∂tuε is in C∞
0 (] − T, T [, H1(O)). We

deduce the equality

a(ε) = (∆uε, ∂tuε) = −(∇uε,∇∂tuε) + 〈∂nuε, ∂tuε|∂Ω〉

= −(∇uε,∇∂tuε) + (∂nuε, ∂tuε|∂Ω)

We check that
∫
Ω∇uε∇∂tuε dxdy dt = 1

2

∫
R

dt ∂t(
∫
O |∇uε|2 dxdy) = 0. Hence

(∆uε, ∂tuε) = (∂nuε, ∂tuε|∂Ω).

(1)We should perhaps say in L2([0, T ], H1(O)) and speak of H−1/2(∂O)
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Let n+(x) = (1+(a′(x))2)−1/2(−a′(x), 1) and n−(x) = (1+(b′(x))2)−1/2(b′(x),−1).
We have the equalities

*n+ · ∇uε = (∂+χ)(fε / u)|∆+ + χfε / ∂+u
*n− · ∇uε = (∂−χ)(fε / u)|∆− + χfε / ∂−u
∂nuε|∆+ = (∂+ χ|∆+ − z+(x)∂tχ)(fε / u)|∆+ + z+(x)∂tuε|∆−

∂nuε vert∆− = (∂−χ|∆− − z−(x)∂tχ)(fε / u)|∆− + z−(x)∂tuε|∆−

We then get

∂tuε|∆+ =
∂nuε + α+(x, t)(fε / u)|∆+

z+(x)
, α+(x, t) = ∂+χ|∆+ − z+(x)∂tχ|∆+

∂tuε|∆− =
∂nuε + α−(x, t)(fε / u)|∆−

z−(x)
, α−(x, t) = ∂−χ|∆− − z−(x)∂tχ|∆−

We use now the relation a(ε) = (∂nuε, ∂tuε|∂Ω) and |a(ε)| " C0, C0 independent
of ε, to get

|(∂nuε, ∂nuε/z) + (∂n,+uε, r+) + (∂n,−uε, r−)| " C0

where r±(x, t) = α±(x,t)
z±(x) (fε / u)|∆± .

As χ is identically equal to 1 in a neighborhood of (x, y) = (0, 0), we verify that the
two distributions r+ and r− belong to H1/2

0 (R+×Rt), identically 0 in a neighborhood
of the corner, and satisfy ‖r±‖H1/2(R+×Rt) " C± independent of ε. Hence the distri-
bution r = r+1∆+ +r−1∆− is in H1/2(∂Ω), with norm bounded by C = max(C+, C−).
This implies that

(∂n,+uε, r+) + (∂n,−uε, r−) = 〈∂nuε, r〉H−1/2,H1/2 " C‖∂nuε‖H−1/2(∂Ω).

We deduce the inequality

|(∂nuε, ∂nuε/z)| " C0 + C‖∂nuε‖H−1/2(∂Ω) " C0 + CD.

For x in [−ct0, ct0], we have 0 < c0 " )z " c1 thus there exists a constant D0,
independent of ε, such that

‖∂nuε‖L2(∂Ω) " D0.

The first part of our regularity result is proven. We prove now that ∂tanu ∈ L2(∂Ω),
where the operator ∂tan is defined on ∆+ by (1 + (a′(x))2)−1/2(∂x + a′(x)∂y)|y=a(x)

(and a similar definition on ∆−). For every real vector field X on R2, we can write
X on ∂O, almost everywhere, as X = (X · *n)∂n + (X ·*t)∂tan. The following equality
is true for v ∈ H1(Ω) (using the representation X = α1(x, y)∂x + α2(x, y)∂y):

(v, Xv)L2(Ω) =
∫

Ω
v[α1∂xv̄ + α2∂y v̄] dxdy dt

= −
∫

Ω
[∂x(α1v)v̄ + ∂y(α2v)v̄] dxdt dy

+
∫

∂Ω
[α1|∂Ωnx + α2|∂Ωny]|v|2 dσ dt,
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hence
)(v, Xv)L2(Ω) = −1

2

∫

Ω
div X |v|2 − 1

2

∫

∂Ω
(X · n)|v|2∂Ω dσ dt.

We also verify that a0(ε) = )([∂2
t2 − ∆, ρε]u, Xuε) is uniformly bounded in ε

because Xuε is uniformly bounded in L2(Ω) and the operator [∆−∂2
t2, ρε] is bounded

uniformly from H1(Ω) to L2(Ω). We have the equalities

)((∂2
t2− ∆)uε, Xuε) = a0(ε)

= −)(∂tuε, X∂tuε)−)(∆uε, Xuε)
= −)(∂tuε, X∂tuε) + )(∇uε,∇Xuε)−)(∂nuε, Xuε)
= −)(∂tuε, X∂tuε) + )(∇uε, X∇uε) + )(∇uε, [X,∇]uε)−)(∂nuε, Xuε).

If we introduce

a1(ε) =
1
2

∫

Ω
div X |∂tuε|2 dxdt dy,

ax,y(ε) =
∫

Ω
div X |∂x,yuε|2 dxdt dy,

a2(ε) = )(∇uε, [X,∇]uε),

these four terms are bounded uniformly in ε. As uε is at least in H
3
2+ε′′(O), the

traces of ∂tuε, ∂xuε, ∂yuε on the boundary are well defined, and we get

− 1
2
(∂tuε, (X · n)∂tuε) +

1
2
(∂xuε, (X · n)∂xuε) +

1
2
(∂yuε, (X · n)∂yuε)

= (a− a1 − a2 − ax − ay)(ε).

We rewrite, on the boundary,

(∂xuε)2 + (∂yuε)2|∆± = (∂±uε)2 + (∂tanuε)2.

There exists a vector field X and a constant d0 *= 0 such that X ·n ! d2
0 > 0 for almost

every point in ∂Ω. We proved previously that ‖∂tuε‖L2(∂Ω) is bounded uniformly in ε,
hence this leads to

(∂tanuε, X · n∂tanuε)L2(∆+) + (∂tanuε, X · n∂tanuε)L2(∆−) " C′

where C′ is independent of ε. This implies that ∂tanuε is bounded in L2(∆±), indepen-
dently of ε. As ∂tu is equal to ∂nu on each face (up to the impedance coefficient), we
obtain that u|∆+ ∈ H1(∆+) and u|∆− ∈ H1(∆−). As the support of u does not meet
the wedge for t < 0, we verify that supp(u|∆+) ⊂ {t ! 0} and supp(u|∆−) ⊂ {t ! 0}.
Hence we define, for all τ ∈ C−, the partial Fourier transform in time of u|∆+ , which
is a holomorphic function in τ with values in H1(∂O+) (denoted by û+(τ, x)) and
û−(τ, x) in a similar fashion. The distribution u|∂Ω is supported in t ! 0 and be-
longs to L2(R, H1/2(∂O)) (see Simon [37] for this injection), hence its partial Fourier
transform in time is holomorphic in τ on C− with values in H1/2(O). From the fact
that û± ∈ H1(∂O±), we deduce the existence of u+(τ) = limx→0 û(x, a(x), τ) and of
u−(τ) = limx→0 û(x, b(x), τ).
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The last step here is to use Theorem 1.5.2.3 of [21]: the mapping from H1(O) to
H1/2(∂O+)×H1/2(∂O−) with the additional condition

∫ δ

0
|u|∂O+(x(s)) − u|∂O−(x(−s))|2 ds

s
< +∞,

where x(s) (0 " s " δ) parameterizes ∂O+ and x(−s) (0 " s " δ) parameterizes
∂O−, is continuous. Hence we obtain the necessary relation u+(τ) = u−(τ) for all
τ ∈ C− (equality between holomorphic functions)(2). The distribution U(s, τ) =
u+(x(s), τ)1s!0 + u−(x(−s))1s>0 is thus, for all τ ∈ C−, in H1(R) which means that
û(x, τ) ∈ H1(∂O) and is holomorphic in τ ∈ C−, because there is no discontinuity at
x = 0.(3).

The distribution w(x, t) = u|∆+(x, t)1x>0 + u|∆−(−x, t)1x<0 satisfies ∂tu|∂Ω equal
to (z±)−1∂nu on ∆± hence ∂tw ∈ L2(R× Rt) and w ∈ L2(Rt, H1(R)), supported for
t ! 0. Along with u|∂Ω ∈ L2(R, H1/2(∂O)), we obtain u|∂Ω ∈ H1(∂Ω). Additionally,
u|S ∈ L2(R) with support in t ! 0.

Recall the usual jump formula when Ω is an open set of regular boundary. The
exterior normal to Ω is called *n. Then

∆(u1Ω) = (∆u)1Ω + [∂nu]δ∂Ω + [u]δ′∂Ω.

We have to give a precise distribution of δ′, which is

(27)
〈
[∂nu]δ∂Ω + [u]δ′∂Ω, φ

〉
=
∫

∂Ω

[
[∂nu]φ|∂Ω − [u](*n · ∇φ)|∂Ω

]
dσ.

In the case studied here (that is in the neighborhood of any regular point of the
boundary), the interior is O and the wave in it is u, the exterior is F , the wave in it
is 0, and the exterior normal unit vector to O is −*n±. Hence [∂nu] = −*n± · ∇0 −
(−*n± · ∇u)] = ∂±u, [u] = [0 − u], and (*n · ∇φ)|∂O = −∂±u. Hence the formula (27)
leads to (Ω = O × Rt)

〈∆(u1Ω), φ〉 =
∫

∂Ω
[∂±uφ|∂Ω − u|∂Ω∂±φ] dσ.

Hence (∆−∂2
t2)(u1Ω)−u|∂Ωδ′∂Ω−v+δ∆+−v−δ∆− , distribution of H−2(Ω), is supported

by (0, 0) × R+,t. It is necessarily of the form S(t)δ(0,0) with S ∈ L2(Rt), supported
for t ! 0.

Let ψ be any C∞(R) function, with values in [0, 1], identically equal to 1 for x " x0

and 0 for x ! y0 (0 < x0 < y0). A choice of ψ is done in the next Section. For ,τ < 0,

(2)Note that, precisely, the equality u+(t) = u−(t) is true in L2( ), and the equality of the Fourier

transform is true in $τ < 0 as usual L∞
loc functions, because the distributions are supported in t 0.

(3)Note that a function u which is in H1( , L2(O)) is continuous in time, and is well defined in

L2(O) for all time t. Moreover, as these distributions are in L2( , H1(∂O)), supported for t 0, we

apply the same remark as above for their partial Fourier transform in time for $τ < 0. We can thus

speak of the value in time of such distributions as well as of the value of the Fourier transform.
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we introduce the distributions solution of the Helmholtz equation:

vS(x, y, τ) =
i

4
Ŝ(τ)H(1)

0 (τr)

and
φu(0,0,τ)(x, y, τ) = (∆ + τ2)−1

[
û|S(τ)ψ(|x|)δ′∂Ω

]
.

we have

u1Ω −F−1(vS + φu(0,0,τ))(x, y, t)

= (∆− ∂2
t2)

−1
+

[
(u|∂Ω − u(0, 0, t)ψ(|x|)δ′∂Ω + v+δ∆+ + v−δ∆−

]
.

The distribution u1Ω admits a limit for (x, y) ∈ O tending to a point of ∂O and
we proved previously that the trace u|∂Ω was continuous on the boundary. The
distribution φ̂u(0,0,t)(x, y, t) is also continuous on the boundary.

From usual results on the boundary outside the corner points, the distribution

(∆− ∂2
t2)

−1
+

[
(u|∂Ω − u(0, 0, t)ψ(|x|))δ′∂Ω + v+δ∆+ + v−δ∆−

]

is also well defined at the corner. However, owing to the fact that H(1)
0 (τr) is equiv-

alent to 1
2π log 1

r , the term v̂S is not continuous on the boundary for r = 0 if S *= 0.
Hence S = 0 for ,τ < 0. As the distribution S is supported for t ! 0, we have S = 0.
This ends the proof of the jump formula. The proof of Proposition 1.1 is complete.

The equality of the fourth item of Proposition 1.1 leads to the following definition,
which gives the boundary operators used throughout this paper:

Definition 1.1 (Mirror operators)
• For f ∈ L2(R+), we define the mirror operators (which are the normal derivatives

of the single-layer solutions associated with a density f on the boundary ∆+ (for the
lower index +) or on the boundary ∆−):

K+,k
± (f)(x, k) = ψ(x)∂+

(
[∆ + k2]−1(1x′!0f(x′, k)ψ(x′)δ±)

)

K−,k
± (f)(x, k) = ψ(x)∂−

(
[∆ + k2]−1(1x′!0f(x′, k)ψ(x′)δ±)

)

• For f ∈ H1(R+), we define the mirror operators (which are the normal derivatives
of the double-layer solutions associated with a density f on the boundary ∆+ (for the
lower index +) or on the boundary ∆−)

R+,k
± (f)(x, k) = ψ(x)∂+

(
[∆ + k2]−1(1x′!0f(x′, k)ψ(x′)δ

′

±)
)

R+,k
± (f)(x, k) = ψ(x)∂−

(
[∆ + k2]−1(1x′!0f(x′, k)ψ(x′)δ

′

±)
)
.

• Let U ∈ H1(∂Ω). To U is associated an element f of H1(R), which can be
split in two elements f+ and f− of H1(R+), such that f+(x′) = f(x′)1x′!0 and
f−(x′) = f(−x′)1x′!0, satisfying the relation f+(0) = f−(0). We define the operators
R±,k through

R±,k(f) = R±,k
+ (f+) + R±,k

− (f−).
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Note that the operators K+,k
± and K−.k

± are Neumann to Neumann operators (stud-
ied by Gérard and Lebeau) and the operators R+,k

± , R−,k
± are Dirichlet to Neumann

operators.
The aim of the sections that follow is to find a pseudodifferential expression for the

operators introduced in Definition 1.1 and to compute their asymptotic expansion, in
the pseudodifferential calculus written by Gérard and Lebeau in [20]. This will be
found in Lemma 4.2.

In the following section, we consider the operators of Definition 1.1 in the case of
a straight wedge; the operators will be denoted by small letters k, r instead of capital
letters K, R. The upper indices denotes the derivative we choose (∂+, ∂−), the lower
index denotes the boundary on which the density is defined.
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CHAPTER 2

DIFFRACTION BY A STRAIGHT WEDGE

Let F0 = {(x, y) ∈ R2, tanγ−x " y " tan γ+x, x ! 0}. Let O0 = R2 − F0,
D+ = {(x, tanγ+x) ∈ R2, x ! 0}, D− = {(x, tan γ−x) ∈ R2, x ! 0}. The normal
derivatives on ∂O0 = D+ ∪D− are

∂nu|D+(x) = −∂+u(x) = (sin γ+∂xu− cos γ+∂yu)(x, tan γ+x)

∂nu|D−(x) = −∂−u(x) = (− sinγ−∂xu + cos γ−∂yu)(x, tan γ−x).
(28)

We verify that

F̄0 = {(r cos θ, r sin θ), r ∈ R+, θ ∈ [γ−, γ+]}
O0 = {(r cos θ, r sin θ), r ∈ R

∗
+, θ ∈ ]γ+, 2π + γ−[}.

Using the translation u(r, θ) → u(r, θ − γ−), we reduce F0 to R+ × [0, γ+ − γ−],
γ+ − γ− < π and using the translation u(r, θ) → u(r, θ − γ+), we see that O0 3
R∗

+ × ]0, 2π − γ+ + γ−[, 2π − γ+ + γ− > π.
For simplicity’s sake, we shall consider the set R∗

+×]0, α[, where α ∈ ]0, 2π[, α *= π.
We consider the diffraction problem in O0, the boundary condition on each face

of the wedge O0 being ∂nu|D± + sin θ±∂tu|D± = 0. In Proposition 2.1, we prove a
regularity result under the assumption

(29) ) sin θ± > 0, , sin θ+ ×, sin θ− ! 0.

2.1. Existence of the solution of an elliptic problem

In this Section, we consider O = ]0, β[× R∗
+ for 0 < β < 2π. We denote by E the

space of distributions u(r, θ) on [0, β]× R+ such that:

E =
{
u ∈ Cθ([0, β]; H1(R+));

1
r
∂θu ∈ Cθ([0, β], L2(R+)); u(0, 0) = u(0, β)

}
.

For χ a C∞ function constant in the neighborhood of 0, we notice (as p. 420 of [20])
that [∆, χ] transforms E into L2. Gérard and Lebeau proved in Appendix D of [20],
the
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Theorem 2. — Let 0 < β < 2π and ω /∈ R.

(1) The problem (∆+ω2)u = 0, u|∂O = f ∈ H1(∂O) admits an unique solution in
E ∩H1(O).

(2) The problem (∆ + ω2)u = 0, ∂nu = g ∈ L2(∂O) admits an unique solution in
E ∩H1(O).

and used the following result, from Grisvard [21]

Lemma 2.1. — Let 0 < β < 2π and ω /∈ R.

(1) The problem (∆+ω2)u = f ∈ L2(O), u|∂O = 0 admits in E∩H1(O) an unique
solution.

(2) The problem (∆+ω2)u = f ∈ L2(O), ∂nu = 0 admits in E ∩H1(O) an unique
solution.

We easily deduce from these results the existence and uniqueness in E ∩H1(O) of
a solution of (∆ + ω2)u = h, ∂nu = g for h ∈ L2(O) and g ∈ L2(∂O).

We prove:

Proposition 2.1. — Let ω ∈ C − R, more precisely )ω > 0, ,ω < 0. Under the
condition (29) and the assumptions g± ∈ L2(R+), h ∈ L2(O), the problem:

(30)






(∆ + ω2)u = h
[iω sin θ−u + ∂nu]|θ=0 = g−
[iω sin θ+u + ∂nu]|θ=β = g+

has a unique solution in E ∩H1.

We notice that this result is proven if there exists a solution U of the problem
(30) which satisfies the relation ∂nU ∈ L2(∂O) (that is r−1∂θU(r, 0) ∈ L2(R+) and
r−1∂θU(r, β) ∈ L2(R+)). If such a U exists, the problem

(∆ + ω2)V = h, ∂nV = ∂nU

admits an unique solution V ∈ E ∩H1(O) through Theorem 2 and Lemma 2.1 and
the function w = V − U is solution of the problem

(∆ + ω2)w = 0, ∂nw = 0

which unique solution is 0 (Theorem 2). The function U is thus equal to V , hence U
is in E ∩H1(O). The Proposition 2.1 is a consequence of

Lemma 2.2. — The problem (30) admits a unique solution in H1 for h ∈ L2(O) and
g± ∈ L2(R+). This solution satisfies ∂nu ∈ L2(∂O).

The proof of Lemma 2.2 is in the Annex.
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2.2. The mirror operator for a straight wedge

Let C− = {k ∈ C, ,k < 0}. The partial Fourier transform in time of u(t, x, y) ∈
D′(R×R2) is denoted by û(k, x, y), and we denote also by ûλ(k, x, y) the distribution
û(λk, x, y).

Form now, we drop the notation ⊗ for distributions in D′(R2) whenever it is clear
that the definition is correct. We define, for ξ ∈ R and k ∈ C−,

(31) ξ0 = (k2 − ξ2)1/2, ,ξ0 > 0.

Using the notations of Definition 1.1 and the notations for the operators associated
with the straight wedge, we have

Lemma 2.3

(1) Expression of the single-layer terms (operators computed by Gérard and Lebeau)
• For the regular terms (face + to face + or face − to face −)

k+,k
+ (f)(x, k) =

1
4π cos γ+

∫

R×R+

ψ(x)ψ(x′)f(x′)ei (x−x′)ξ
cos γ+ dx′ dξ =

1
2
ψf(x)

k−,k
− (f)(x, k) =

1
4π cos γ−

∫

R×R+

ψ(x)ψ(x′)f(x′)ei (x−x′)ξ
cos γ− dx′ dξ =

1
2
ψf(x)

• For the singular terms (face + to face − or face − to face +)(1)

1x!0k
+,k
− (f)(x, k) =

1
4π cos γ−

∫∫
1x′!01x!0f(x′)ψ(x′)ψ(x)(cos γ − ξ

ξ0
sin γ)

× e
−i x′ξ

cos γ− e
i x
cos γ−

(cos γξ+sin γξ0) dx′ dξ

1x!0k
−,k
+ (f)(x, k) =

1
4π cos γ+

∫∫
1x′!01x!0f(x′)ψ(x′)ψ(x)(cos γ − ξ

ξ0
sin γ)

× e
−i x′ξ

cos γ− e
i x
cos γ+

(cos γξ+sin γξ0) dx′ dξ

(2) Expression of the double layer operators:

r+,k(g)(x, k) =
1x!0ψ(x)
4π cos γ+

∫

R

iξ0F(ψg+)(
ξ

cos γ+
)ei xξ

cos γ+ dξ

− 1x!0ψ(x)
4π cos γ−

∫

R

i(cos γξ0 − sin γξ)F(ψg−)(
ξ

cos γ−
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ+ dξ

(1)Note that these two relations write

1x 0k+,k
− (f)(x, k) =

ψ(x)

4π cos γ−
e
i x
cos γ+

(ξ cos γ+ξ0 sin γ)
(cos γ −

ξ

ξ0
sin γ)F(ψf)(

ξ

cos γ−
) dξ

1x 0k−,k
+ (f)(x, k) =

ψ(x)

4π cos γ+
e
i x
cos γ−

(ξ cos γ+ξ0 sin γ)
(cos γ −

ξ

ξ0
sinγ)F(ψf)(

ξ

cos γ+
) dξ
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r−,k(g)(x, k) =
1x!0ψ(x)
4π cos γ+

∫

R

i(cos γξ0 − sin γξ)F(ψg+)(
ξ

cos γ+
)ei

x(ξ cos γ+ξ0 sinγ)
cos γ− dξ

− 1x!0ψ(x)
4π cos γ−

∫

R

iξ0F(ψg−)(
ξ

cos γ−
)ei xξ

cos γ− dξ

We identify in these two operators the regular and the singular part. We have the
relations

r+,k
+ (g)(x, k) = −g+(0)

1
4π

∫

R

ξ

ξ0
e

i xξ
cos γ+ dξ

+
ik2ψ(x)
4π cos γ+

∫
1
ξ0
F(ψg+)(

ξ

cos γ+
)ei xξ

cos γ+ dξ

− ψ(x)
4π

∫
ξ

ξ0
F(∂x′(g+ψ))(

ξ

cos γ+
)ei xξ

cos γ+ dξ

r+,k
− (g) = g−(0)

ψ(x)
4π

∫

R

(sin γ +
ξ

ξ0
cos γ)ei

x(ξ cos γ+ξ0 sinγ)
cos γ+ dξ

− ik2ψ(x) cos γ
4π cos γ−

∫

R

1
ξ0

F(ψg−)(
ξ

cos γ−
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ+ dξ

ψ(x)
4π

∫

R

(sin γ + cos γ
ξ

ξ0
)F(∂x′(ψg−))(

ξ

cos γ−
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ+ dξ

r−,k
+ (g) = −g+(0)

ψ(x)
4π

∫

R

(sin γ +
ξ

ξ0
cos γ)ei

x(ξ cos γ+ξ0 sin γ)
cos γ− dξ

+
ik2ψ(x) cos γ

4π cos γ+

∫

R

1
ξ0

F(ψg+)(
ξ

cos γ+
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ− dξ

− ψ(x)
4π

∫

R

(sin γ + cos γ
ξ

ξ0
)F(∂x′(ψg+))(

ξ

cos γ+
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ− dξ

r−,k
− (g)(x, k) = g−(0)

1
4π

∫

R

ξ

ξ0
cos γ−e

i xξ
cos γ− dξ

− ik2ψ(x)
4π cos γ−

∫
1
ξ0

F(ψg−)(
ξ

cos γ−
)ei xξ

cos γ− dξ

+
ψ(x)
4π

∫
ξ

ξ0
F(∂x′(g−ψ))(

ξ

cos γ−
)ei xξ

cos γ− dξ

Lemma 2.3 is a consequence of Lemma 4.2 for the operators of order 0 and is the
result of Proposition 6.2 for the operators of order 1. The proof of these results is
written in Section 4.2. The boundary operators associated with the straight wedge
are given by the equalities (81), (82), (83), (84) of Lemma 6.5 below (reproduction of
the calculus of Gérard and Lebeau) in the case of the operators of type K for µ+ = a,
µ− = b, a(x) = ax, b(x) = bx, a = tan γ+, b = tan γ−.

The operators k+,k
+ and k−,k

− are (up to the localization ψ) equal to 1
2 Id.
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We notice that the distribution ψ(x)
4π

∫
R

ξ
ξ0

e
i xξ
cos γ+ dξ (and more generally the dis-

tributions coefficient of g+(0) and g−(0) for the double-layer operators) are not in
L2(R), but belong to H−1(R). Hence it will be useful to consider the operators

r+,k
+,0 (g)(x, k) = +

ik2ψ(x)
4π cos γ+

∫
1
ξ0
F(ψg+)(

ξ

cos γ+
)ei xξ

cos γ+ dξ

− ψ(x)
4π

∫
ξ

ξ0
F(∂x′(g+ψ))(

ξ

cos γ+
)ei xξ

cos γ+ dξ

r+,k
−,0(g) = − ik2ψ(x) cos γ

4π cos γ−

∫

R

1
ξ0
F(ψg−)(

ξ

cos γ−
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ+ dξ

+
ψ(x) cos γ

4π

∫

R

(sin γ + cos γ
ξ

ξ0
)F(∂x′(ψg−))(

ξ

cos γ−
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ+ dξ

r−,k
+,0 (g) =

ik2ψ(x) cos γ
4π cos γ+

∫

R

1
ξ0
F(ψg+)(

ξ

cos γ+
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ− dξ

− ψ(x) cos γ
4π

∫

R

(sin γ + cos γ
ξ

ξ0
)F(∂x′(ψg+))(

ξ

cos γ+
)ei

x(ξ cos γ+ξ0 sin γ)
cos γ− dξ

r−,k
−,0 (g)(x, k) = − ik2ψ(x)

4π cos γ−

∫
1
ξ0
F(ψg−)(

ξ

cos γ−
)ei xξ

cos γ− dξ

+
ψ(x) cos γ+

4π

∫
ξ

ξ0
F(∂x′(g−ψ))(

ξ

cos γ−
)ei xξ

cos γ− dξ

proven in Proposition 4.3 to be operators from H1(R+) to L2(R+).
We have the relation, for k ∈ C−:

(32)
∫

R

(sin γ +
ξ

ξ0
cos γ)ei x

cos γ+
(ξ cos γ+ξ0 sin γ) dξ =

∫

R

ζ

ζ0
e

i xζ
cos γ+ dζ.

This is a consequence of the change of variable ζ = ξ cos γ+ ξ0 sin γ. To prove (32) we
must take some care and differentiate between the two cases γ < π/2 and γ > π/2.
We introduce also ζ∗ = −ξ sinγ+ξ0 cos γ. Simple algebra yields (ζ∗)2+ζ2 = k2, hence
ζ∗ and −ζ∗ are candidates to be equal to the root of positive imaginary part of k2−ζ2.
We first deform the contour of integration ξ ∈ R to ξ ∈ Reiα. A simple perturbation
argument implies that we can take k ∈ R+. When ξ ∈ Reiα, ξ cos γ + ξ0 sin γ ∈ Γγ ,
which is a contour in the complex plane. Note that Γπ−γ = Γγ and both contours are
described in opposite directions (the contour 0 < γ < π/2 is described from −∞ to
+∞).

For 0 < γ < π/2, (k2 − ζ2)1/2 = ζ∗. As dζ = dξ cos γ − ξ
ξ0

dξ = dξ
ξ0
ζ0 we obtain

∫

Reiα

(sin γ +
ξ

ξ0
cos γ)ei x

cos γ+
(ξ cos γ+ξ0 sin γ) dξ =

∫

Γγ

ζ

ξ0
e

i x
cos γ+

ζ ξ0
ζ0

dζ.
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The contour Γγ is described from −∞ to +∞ (which means that it starts from the
branch in ) < 0 to end with the branch in ) > 0), hence, as there is no branching
point or pole in the loop with (−∞eiα,∞eiα), we obtain the equality (32).

For π/2 < γ < π, (k2 − ζ2)1/2 = −ζ∗ and dζ = − dξ
ξ0
ζ0, hence

∫

Reiα

(sin γ +
ξ

ξ0
cos γ)ei x

cos γ+
(ξ cos γ+ξ0 sin γ) dξ = −

∫

Γγ

ζ

ξ0
e

i x
cos γ+

ζ ξ0
ζ0

dζ.

The result comes from the fact that Γγ is described from ) > 0 to ) < 0 and is thus
replaced by (+∞eiα,−∞eiα).

This leads to the equalities

(33)
r+,k(g) = r+,k

+,0 (g+) + r+,k
−,0 (g−),

r−,k(g) = r−,k
+,0 (g+) + r−,k

−,0 (g−).

For the computation of the operators r, we consider the Mellin transform of both
the restriction of f ∈ H1(R) to R+ and to R−, and of the derivative ∂xf on R+ and
on R−. We thus need to construct the space of holomorphic functions of z in ,z < 0
associated with H1(R). This is the aim of the next paragraph.

2.3. Identification of H1(R)

Let L be the space of holomorphic functions in )z < 0, satisfying

sups<0

∫ +∞

−∞
|φ(s + iξ)|2 dξ < ∞.

Let φ ∈ L. There exists (from Paley-Wiener theorem) a function Φ(x) ∈ L2(R+) such
that

φ(z) =
∫ ∞

0
ezxΦ(x) dx.

The relation between φ and Φ is bijective from L to L2(R+).
The generalization of this result to the functions of H1(R) is given by

Lemma 2.4. — The transformation (Φ(x)1x!0,Φ(−x)1x!0) 4→ (φ+, φ−) is a bijec-
tion from H1(R) to the subspace of L× L, (L1)2, defined through

(L1)2 = {(φ+, φ−) ∈ L× L, ∃ c0 ∈ C, (zφ− + c0, zφ+ + c0) ∈ L× L}

Proof. — For Φ ∈ H1(R), we define Φ+(x) = Φ(x)1x>0 and Φ−(x) = Φ(−x)1x>0.
Both distributions Φ+ and Φ− belong to L2(R) and are supported in x > 0, hence
belong to H1(R+).

The transformation

Φ ∈ H1(R) 4−→
(
φ+(z) =

∫ ∞

0
Φ(x)ezx dx, φ−(z) =

∫ ∞

0
Φ(−x)ezx dx

)
∈ (L1)2
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is a bijection. For Φ ∈ H1(R), the definition of φ+ and of φ− follows form the
equalities

φ+(z) =
∫ ∞

0
ezxΦ(x) dx, φ−(z) =

∫ ∞

0
exzΦ(−x) dx.

The fact that Φ ∈ H1(R) implies that ∂xΦ ∈ L2(R), hence

φ̃+(z) =
∫ ∞

0
exz∂xΦ(x) dx, φ̃−(z) = −

∫ ∞

0
ezx∂xΦ(−x) dx

belong to L. Using a classical integration by parts, we have

φ̃+(z) = −Φ(0)− zφ(z), φ̃−(z) = −Φ(0)− zφ−(z).

There exists a constant c0, equal to Φ(0), such that c0 + zφ+ ∈ L and c0 + zφ− ∈
L, and φ± ∈ L. Hence (φ−, φ+) ∈ (L1)2. As φ+(−iξ) =

∫∞
0 e−ixξΦ(x) dx and

φ−(−iξ) =
∫∞
0 eixξΦ(−x) dx, the function Φ belongs to L2(R) hence

Φ̂(ξ) = φ+(−iξ) + φ−(−iξ)

(as the functions φ+ and φ− belong to L, the limit, for s → 0 of φ±(s− iξ) exists in
L2).

Let us start now from (φ+, φ−) element of (L1)2. The limit lims→0(φ±(s − iξ))
exists in L2(R), hence the distribution Φs

±, equal to the inverse Fourier transform of
the holomorphic function φ±(s− iξ), has a limit, as s → 0, in L2(R+). Let Φ̃s

+(x) be
the inverse Fourier transform of (s− iξ)φ+(s− iξ) + c0. The relation

∫

R

|(s− iξ)φ+(s− iξ) + c0|2 dξ " C

independent of s, proves that Φ̃s
+ admits a limit in L2(R+) as s → 0. The relation

∫

R

[(s + iξ)φ+(s + iξ) + c0]eixξ−εξ2 dξ

= (s +
d

dx
)
[ ∫

R

φ+(s + iξ)eixξ−εξ2 dξ
]

+ c0e
−x2/4ε(

π

ε
)1/2

implies that the distribution Φs
+ is solution of the equation

(s +
d

dx
)Φs

+ + c0δ0 = Φ̃s
+(x).

Taking the limit as s → 0, the function Φ+ is in H1(R+) and its value at x = 0
is equal to c0. The same calculus holds for Φ−, hence we constructed an element
of H1(R) with the value c0 at 0. The uniqueness comes from the uniqueness of the
representation of L2(R+) through L.

As a Corollary, we define and characterize the space of Fourier transforms of ele-
ments of H1(R+) (which are not necessary null at x = 0):
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Corollary 2.1. — The space L1, subset of L, equal to

L1 = {φ ∈ L, ∃ c ∈ C, z 4→ zφ(z) + c ∈ L}

is isomorphic to the space H1(R+) of distributions f ∈ L2(R+) such that the distri-
bution φ ∈ C∞

0 (R∗
+) 4→ −〈f, ∂xφ〉 belongs to L2(R).

2.4. Expression of the boundary operators using the Mellin transform

Let τ > 0. We introduce, for each ξ ∈ R, the complex number ξα of positive
imaginary part defined through

ξα = (τ2e−2iα − ξ2)1/2.

Definition 2.1. — The four operators I0,τ
α , I1,τ

α T 0,τ
α and T 1,τ

α used for the double-
layer operators are defined through

I0,τ
α (φ)(z) =

1
2π

∫ +∞

−∞

dξ
z + iξ

τ2e−2iα

ξα
φ(−iξ)

I1,τ
α (φ)(z) =

1
2π

∫ +∞

−∞

dξ
z + iξ

ξ

ξα
φ(−iξ)

T 0,τ
α (φ)(z) =

1
2π

∫ +∞

−∞

dξ
z + i(ξ cos γ + ξα sinγ)

τ2e−2iα

ξα
φ(−iξ)

T 1,τ
α (φ)(z) =

1
2π

∫ +∞

−∞

dξ
z + i(ξ cos γ + ξα sinγ)

[cos γ
ξ

ξα
+ sin γ]φ(−iξ).

Lemma 2.5. — These operators can also be written

I0,τ
α (φ)(z) = − 1

2π

∫ +∞

−∞

∫ ∞

0
et(z+iξ) τ

2e−2iα

ξα
φ(−iξ) dξ dt

I1,τ
α (φ)(z) = − 1

2π

∫ +∞

−∞

∫ ∞

0
et(z+iξ) ξ

ξα
φ(−iξ) dξ dt

T 0,τ
α (φ)(z) = − 1

2π

∫ +∞

−∞

∫ ∞

0
et(z+i(ξ cos γ+ξα sin γ)) τ

2e−2iα

ξα
φ(−iξ) dξ dt

T 1,τ
α (φ)(z) = − 1

2π

∫ +∞

−∞

∫ ∞

0
et(z+i(ξ cos γ+ξα sin γ))[cos γ

ξ

ξα
+ sin γ]φ(−iξ) dξ dt.

The proof of Lemma 2.5 is based on the equalities, valid when )z " 0 because
sin γ > 0 and ,ηα1 > 0:

∫ +∞

0
et(z+iξ) dt = − 1

z + iξ
∫ +∞

0
dt et(z+i(ξ cos γ+ηα1 sin γ)) = − 1

z + i(ξ1 cos γ + ηα1 sinγ)
.

(34)

MÉMOIRES DE LA SMF 88



2.4. EXPRESSION OF THE BOUNDARY OPERATORS 33

We give the action of the operators I0,τ
α , I1,τ

α , T 0,τ
α , T 1,τ

α on the imaginary axis.
Let Φ+ ∈ H1(R+),Φ− ∈ H1(R+), such that Φ+(0) = Φ−(0). This means that the

distribution Φ(x) = Φ+(x)1x>0 + Φ−(−x)1x<0 is element of H1(R).
We associate to Φ the element of L× L× L× L equal to (φ+, φ̃+, φ−, φ̃−), where

(35)
φ+(−iξ) = Φ̂+( ξ

cos γ+
), φ−(−iξ) = Φ̂−( ξ

cos γ−
),

φ̃+(−iξ) = F(∂xΦ+)( ξ
cos γ+

), φ̃−(−iξ) = F(∂xΦ−)( ξ
cos γ−

).

Note that the only difference with the transform introduced in the previous paragraph
is the coefficient 1/ cosγ±.

Lemma 2.6. — We have the equalities:

F [1x>0∂+(∆ + τ2e−2iα)−1(Φ+δ
′
+ + Φ−δ

′
−)](Σ/cos γ+) =

1
2
[
−iI0,τ

α (φ+)+cos γ+I1,τ
α (φ̃+)

]
(−iΣ)+

1
2

cos γ+

[ cos γ
cos γ−

iT 0,τ
α (φ−)−T 1,τ

α (φ̃−)
]
(−iΣ)

F [1x>0∂−(∆ + τ2e−2iα)−1(Φ+δ
′
+ + Φ−δ

′
−)](Σ/cos γ−) =

1
2
[
−iI0,τ

α (φ−)+cos γ−I1,τ
α (φ̃−)

]
(−iΣ)+

1
2

cos γ−
[ cos γ
cos γ+

iT 0,τ
α (φ+)−T 1,τ

α (φ̃+)
]
(−iΣ).

Proof. — From the expressions of Proposition 6.2 (rewritten in Lemma 2.3), we notice
that

r+,τe−iα

+,0 (Φ+)(x, τe−iα) =
i

4π cos γ+

∫
dx e

i xξ
cos γ+

τ2e−2iα

ξα
Φ̂+(

ξ

cos γ+
)

− 1
4π

∫
dx e

i xξ
cos γ+

ξ

ξα

̂̃Φ+(
ξ

cos γ+
).

We consider the Fourier transform of this expression in Σ/cos γ+, we use the change
of variable t = x/cos γ+ and we make use of the first relation of (34) to get

F(1x>0r
+,τe−iα

+,0 (Φ+))(Σ/cos γ+) = − i

4π

∫
dξ

−iΣ+ iξ

τ2e−2iα

ξα
Φ̂+(

ξ

cos γ+
)

+
1
4π

∫
dξ

−iΣ+ iξ

ξ

ξα
F(Φ̃+)(

ξ

cos γ+
).

The definition of φ̃+ and of φ+ lead to the relation

F(1x>0r
+,τe−iα

+ (Φ+))(Σ/cos γ+) =
[1
2

cos γ+I1,τ
α (φ̃+)− i

2
I0,τ
α (φ+)

]
(−iΣ).

Along with the definition of r+,τe−iα

+ , this gives the relations of the lemma for the
pseudodifferential operators.
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We notice that, again with Proposition 6.2

r−,τe−iα

+ (Φ+)(x, τe−iα) = − i

4π
cos γ
cos γ+

∫
dξ
τ2e−2iα

ξα
Φ̂+(

ξ

cos γ+
)ei x

cos γ−
[ξ cos γ+ξα sin γ]

+
1
4π

∫
dξ[sin γ + cos γ

ξ

ξα
]F(Φ̃+)(

ξ

cos γ+
)ei x

cos γ−
[ξ cos γ+ξα sin γ]

The use of the second relation of Laplace yields easily, again with t = x/ cos γ− and
with the introduction of φ+ and φ̃+, the expression

F(1x>0r
−,τe−iα

+ (Φ+))(Σ/cos γ−)

=
i

4π
cos γ

cos γ−
cos γ+

∫
dξ
τ2e−2iα

ξα
φ+(−iξ)

dξ
−iΣ+ i(ξ cos γ + ξα sinγ)

− 1
4π

cos γ−
∫

dξ[sin γ + cos γ
ξ

ξα
]φ̃+(−iξ)

dξ
−iΣ + i(ξ cos γ + ξα sin γ)

.

We recognize on the right hand side the operators T 0,τ
α and T 1,τ

α , acting on z = −iΣ
and on the left hand side, the expression of

F(1x>0∂−[(∆ + τ2e−2iα)−1(Φ+δ
′
+)])(

Σ
cos γ−

).

The equality corresponding in Lemma 2.6 follows.

Note that the relation φ̃±(z) = −Φ(0)− zφ±(z)
cos γ±

leads to the relations

F
[
1x>0∂+(∆ + τ2e−2iα)−1(Φ+δ

′
+ + Φ−δ

′
−)
]
(

ξ

cos γ+
)

=
1
2

[
P r(φ+)− cos γ+

cos γ−
P s(φ−)

]
(−iξ)

F
[
1x>0∂−(∆ + τ2e−2iα)−1(Φ+δ

′
+ + Φ−δ

′
−)
]
(

ξ

cos γ−
)

=
1
2

[cos γ−
cos γ+

P s(φ+)− P r(φ−)
]
(−iξ)

where a formulation of the operators P r and P s is given by the integrals

P r(φ)(z) =
1
2π

∫

R

iξαφ(−iξ)
z + iξ

dξ

P s(φ)(z) =
1
2π

∫

R

i(cos γξα − sin γξ)φ(−iξ)
z + i(ξ cos γ + ξ0 sin γ)

dξ.

The operator

(
P r − cos γ+

cos γ−
P s

cos γ−
cos γ+

P s −P r

)

is continuous from (L1)2 to L× L.
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2.5. The fundamental analytic system for the traces

One of the important steps of this paper is to prove that the operator associated
with the straight wedge is invertible. More precisely, we consider the equality of
Proposition 1.1 and we write an heuristic analysis:

(∆− ∂2
t2)u = v+δ+ + v−δ− + u|∂Ωδ′∂Ω,

which leads to the relation ((∆ − ∂2
t2)

−1
+ is the fundamental solution of the

d’Alembertian supported in t ! 0)

u = ui + (∆− ∂2
t2)

−1
+ [v+δ+ + v−δ− + u|∂Ωδ′∂Ω]

which implies the two relations
{
∂+u = ∂+ui + K+

+ (v+) + K+
−(v−) + R+(u|∂Ω)

∂−u = ∂−ui + K−
+ (v+) + K−

− (v−) + R−(u|∂Ω)

Hence we need to solve the system





v+ = ∂+ui + K+
+ (v+) + K+

−(v−) + R+(u|∂Ω)
v− = ∂−ui + K−

+ (v+) + K−
−(v−) + R−(u|∂Ω)

v+ − z+(x′)∂t(u|∆+) = 0
v− − z−(x′)∂t(u|∆−) = 0.

Considering the Laplace-Fourier transform in time and ω = τe−iα, we obtain, for
the straight wedge, the system

(36)






f+ = D+
i + k+,τe−iα

+ (f+) + k+,τe−iα

− (f−) + r+,τe−iα
(g)

f− = D−
i + k−,τe−iα

+ (f+) + k−,τe−iα

− (f−) + r−,τe−iα
(g)

f+ − i sin θ+τe−iαg+ = 0
f− − i sin θ−τe−iαg− = 0.

We finally compute the Fourier transform of the first and third lines of this system
at Σ/ cos γ+ and of the second and fourth lines at Σ/ cosγ−. With the notations

(37)






ψ+(−iθ) = F(f+)( θ
cos γ+

)
ψ−(−iθ) = F(f−)( θ

cos γ−
)

β+(−iθ) = F(g+)( θ
cos γ+

)
β−(−iθ) = F(g−)( θ

cos γ−
)

and introducing the operators S+
α = 2k+,τe−iα

− , S−
α = 2k−,τe−iα

+ , T±
+,α = 2r±,τe−iα

+,0 ,

T±
−,α = 2r±,τe−iα

−,0 , we obtain the system

(38)






ψ+ −S+
αψ− −T +

+,αβ+ −T +
−,αβ− = φ+

−S−
α ψ+ +ψ− −T−

+,αβ+ −T−
−,αβ− = φ−

ψ+ −i sin θ+τe−iαβ+ = 0
ψ− −i sin θ−τe−iαβ− = 0.
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We prove in the next paragraph that this system admits, for (φ+, φ−) ∈ L × L,
a solution (ψ+, ψ−) ∈ L × L and (β+, β−) ∈ (L1)2, the space (L1)2 being defined in
Lemma 2.4.

2.6. The invertibility in L× L of the analytic system

In this section, we use a solution in Ω × Ω′ of (∆ + τ2e−2iα)U = 0 to solve the
previous system. This is to be done constructing a solution which is continuous at the
corner (Proposition 2.2) for computing an element of (L1)2, and deducing from this
construction the invertibility of a system related to (38) with a jump at the corner
(g+(0) *= g−(0)) (Corollary 2.2).

Proposition 2.2. — The system (38) admits an unique solution in L×L such that
β+, β− is associated with an element of H1(∂Ω).

Proof. — We introduce

∂1
±W = ±(cos γ±∂y − sin γ±∂x)W |y−tan γ±x=0∓,x>0.

Similarly, we write the two traces on each tangent line that we need:
{

W |D+,+ = W |y−x tan γ+=0+ W |D+,− = W |y−x tan γ+=0−

W |D−,+ = W |y−x tan γ−=0− W |D−,− = W |y−x tan γ−=0+

Let O be the set R2 − ({y = tanγ+x, x ! 0} ∪ {y = tanγ−x, x ! 0}). Suppose
that U is a distribution with the following properties:

• the distribution U is solution of the Helmholtz equation (∆ + e−2iατ2)U = 0 in
the wedge F0 as well as in the space R2 − F0.

• the distributions ∂±U and ∂1
±U are in L2

• the distributions U |D±,+ and U |D±,− are in H1(D±).

If we denote by Ũ the distribution defined in R2 equal to U on O, a consequence
of the formula (27) and of the regularity at the corner is that:

(39) (∆ + τ2e−2iα)Ũ = (∂+U − ∂1
+U)⊗ δ+ + (U |D+,+ − U |D+,−)⊗ δ′+

+ (∂−U − ∂1
−U)⊗ δ− + (U |D−,+ − U |D−,−)⊗ δ′−

We introduce:

(40)
{
Ψ± = ∂±U − ∂1

±U
G± = U |D±,+ − U |D±,−.

For the simplicity of notations, we denote by G̃± the distribution which is the deriva-
tive in H1(D±) of G±. The equality (39) rewrites:

(41) (∆ + τ2e−2iα)Ũ = Ψ+δ+ + G+δ
′
+ + Ψ−δ− + G−δ

′
−,
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hence

∂±Ũ(x, τ) = k±,τe−iα

+ (Ψ+) + k±,τe−iα

− (Ψ−) + r±,τe−iα
(G)

= 1
2Ψ+ + k±,τe−iα

− (Ψ−) + r±,τe−iα

+,0 (G+) + r±,τe−iα

−,0 (G−)

We note that

∂±Ũ(x, τ) = ∂±U − ∂1
±U + ∂1

±U = Ψ± + ∂1
±U.

This will give a system linking Ψ±, G± and ∂1
±U .

Let us consider the holomorphic functions defined by





ψ±(−iξ) = F(Ψ±)( ξ
cos γ±

)
β±(−iξ) = F(G±)( ξ

cos γ±
)

β̃± = F(G̃±)( ξ
cos γ±

).

We obtain F(∂±Ũ)( ξ
cos γ±

) = ψ±(−iξ) + F(∂1
±U)( ξ

cos γ±
). From Lemma 2.6,

(ψ+, ψ−, β+, β−, β̃+, β̃−) satisfies





[
ψ+ − S+

α ψ− + iI0,τ
α (β+)− cos γ+I1,τ

α (β̃+)

+ cosγ+(− cos γ
cos γ−

iT 0,τ
α (β−) + T 1,τ

α (β̃−))
] (−iξ) = −2F(∂1

+U)( ξ
cos γ+

)
[
ψ− − S−

α ψ+ + iI0,τ
α (β−) cos γ−I1,τ

α (β̃−)

+ cosγ−(− cos γ
cos γ+

iT 0,τ
α (β+) + T 1,τ

α (β̃+))
] (−iξ) = −2F(∂1

−U)( ξ
cos γ−

).

We note that the system (38) is obtained with the boundary condition ψ± −
iτe−iα sin θ±β± = 0 and the source terms such that φ±(−iξ) = F(−2∂1

±U)( ξ
cos γ±

).
When φ± are given in L × L, we introduce the distributions Φ± in L2(R+) such

that φ±(−iξ) = F(Φ±)( ξ
cos γ±

). We have the relations

∂1
±U = −1

2
Φ±.

The boundary conditions yield

Ψ± − iτe−iα sin θ±G± = 0

that is

(∂± − ∂1
±)U − iτe−iα sin θ±(U |D±,+ − U |D±,−) = 0.

It is thus equivalent to solve (38) and to solve:
• a Neumann boundary problem in the inner wedge:

(∆ + τ2e−2iα)U = 0, ∂1
+U = −1

2
Φ+, ∂1

−U = −1
2
Φ−.

• following the condition on the traces on the boundary in the outer space asso-
ciated with the boundary condition (which is the extension of the condition of [20]),
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we impose a condition on the traces on the boundary in the outer space associated
with the boundary condition, namely

{
∂+U − ie−iατ sin θ+U |D+,+ = ∂1

+U − ie−iατ sin θ+U |D+,−

∂−U − ie−iατ sin θ−U |D−,+ = ∂1
−U − ie−iατ sin θ−U |D−,−

The system of equations in the open set O is then

(42)






(∆ + τ2e−2iα)U = 0
(∂+ − ∂1

+)U − iτe−iα sin θ+(U |D+,+ − U |D+,−) = 0
(∂− − ∂1

−)U − iτe−iα sin θ−(U |D−,+ − U |D−,−) = 0
∂1
+U = − 1

2Φ+

∂1
−U = − 1

2Φ−

Let φ± be given in L. When (42) has a solution U in O, we construct the function
Ũ by (39) and ψ± are given by the relations (40). The existence of the solution of
(38) is a consequence of the existence of a solution of (42), result given by

Lemma 2.7. — The system (42) is a well posed problem. It admits a solution

U ∈ Cθ(R/2πZ, H1(R+))

such that

r−1∂θU ∈ Cθ([γ−, γ+], L2(R+)) ∩ Cθ([γ+, 2π + γ−], L2(R+)).

This solution satisfies U(0, γ+) = U(0, γ−), and thus V (x) = U(x, γ+)1x!0 +
U(−x, 2π + γ−)1x"0 is element of H1(R).

Proof of Lemma 2.7. — From φ± ∈ L, we obtain Φ± ∈ L2(R+). Using, for ω =
τe−iα /∈ R+, the point 2 of Theorem 2 (proven in [20]), we verify that the prob-
lem in the internal wedge (∆ + τ2e−2iα)U = 0 in γ− " θ " γ+ with the Neu-
mann boundary condition ∂1

±U = − 1
2Φ± admits a unique solution U such that

r−1U, ∂rU and r−1∂θU are in L2(R+). This solution U satisfies U(0, γ+) = U(0, γ−) =
0. We thus compute the traces of U on the internal boundary. The distributions
χ± = ∂1

±U − ie−iατ sin θ±U |y−x tan γ±=o∓ are in L2(R+). It has been proven in
Proposition 2.1 that the problem (∆ + τ2e−2iα)U = 0 with the boundary condi-
tion ∂±U − ie−iατ sin θ±U |y−x tan γ±=o± = χ±, which satisfies the hypothesis (29) for
α small enough, is a well posed problem and admits a solution Ũ in H1 ∩ E. We de-
duce that the traces of this solution ∂±Ũ in the external wedge are in L2(R+) hence
ψ±, such that ψ±(−iξ) = Ψ̂±( ξ

cos γ±
) belongs to L. Moreover Ψ± = ∂±Ũ − ∂1

±U . An
additional but crucial consequence of Proposition 1.1 is that Ũ |∂Ω0 is in H1(∂Ω0). As
G± = U |∂O±,+−U |∂O±,− is in H1(∂O), a consequence of Lemma 2.4 is that the holo-
morphic functions β±(z) =

∫∞
0 G±(x)ezx dx are in (L1)2. Lemma 2.7 is proven.

We obtained (ψ+, ψ−) ∈ L × L and (β+, β−) ∈ (L1)2. The system (38) admits a
solution in L× L× (L1)2. This ends the proof of Proposition 2.2.
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We prove the

Corollary 2.2. — Let l+ ∈ L, l− ∈ L and S0 a given complex number. We consider
the system, for φ+ ∈ L1, φ− ∈ L1, ψ+ ∈ L, ψ− ∈ L:





ψ+ + iI0,τ
α (φ+)− cos γ+I1,τ

α (φ̃+) + cos γ+[− cos γ
cos γ−

iT 0,τ
α (φ−) + T 1,τ

α (φ̃−)] = l+

ψ− + iI0,τ
α (φ−)− cos γ−I1,τ

α (φ̃−) + cos γ−[− cos γ
cos γ+

iT 0,τ
α (φ+)− T 1,τ

α (φ̃+)] = l−
ψ+ − iτe−iα sin θ+φ+ = 0
ψ− − iτe−iα sin θ−φ− = 0
φ̃+(z) + 1

cos γ+
zφ+(z) = φ̃−(z) + 1

cos γ−
zφ−(z) + S0

This system admits an unique solution.

We reduce this system to the system of Proposition 2.2. More precisely, we consider
a function l ∈ C∞

0 (R) equal to 1 in a neighborhood of 0. Let R be a large number.
We introduce the distribution which belongs to L2(O), equal to

U0 = (∆ + τ2e−2iα)−1[iτ sin θ+e−iαl(x/R)1x!0δ+ + l(x/R)δ′+].

Note that this distribution takes into account a jump at the corner for the trace of
U0 on the boundary ∂O.

Let Φ+ and Φ− be two functions of H1(R+) such that Φ−(0) = Φ+(0) + S0. The
distribution Φ−(−x)1−x!0 + (Φ+(x) + S0l(x/R))1x!0 is an element of H1(R), and
the distribution Φ−δ′− + (Φ+(x) + S0l(x/R))1x!0δ′+ is constructed as corresponding
to an element of H1(∂Ω).

We consider Ψ± ∈ L2(R+), to which we associate ψ±(z) =
∫∞
0 exz/ cos γ±Ψ±(x) dx.

Remember that

1
2
Sαψ∓(−iξ) = cos γ∓F [1x>0∂±(∆ + τ2e−2iα)−1(Ψ∓δ∓)](

ξ

cos γ±
)

This is an easy extension of the formula (5.7) p. 391 of [20] (according to the new
definition of the normal derivative used here). We also proved the equalities of Lemma
2.6.

Let us introduce the distribution, element of L2(O)

U = (∆ + τ2e−2iα)−1[Ψ+δ+ + Ψ−δ− + Φ+δ
′
+ + Φ−δ

′
−].

We consider the distribution V = U + S0U0. We verify

V = (∆ + τ2e−2iα)−1
[
[Ψ+ + iτ sin θ+e−iαl(x/R)1x!0S0]δ+ + Ψ−δ−

+ [Φ+ + l(x/R)1x!0]δ′+ + Φ−δ
′
−

]
,
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hence V ∈ H1(R2{y = ax, y = bx, x > 0}). On this distribution, we apply the jump
formula, through






Ψ+ + iτ sin θ+e−iαl(x/R)1x!0S0 = ∂+V − ∂1
+V

Ψ− = ∂−V − ∂1
−V

Φ+ + S0l(x/R)1x!0 = V |∆+,+ − V |∆+,−
Φ− = V |∆−,+ − V |∆−,−.

The main argument used in the proof of Proposition 2.2 is that, when ∂1
+V and ∂1

−V
are given in L2(R+), then the problem associated is solved in Ω ∪ Ω′. We use this
idea and identify ∂1

+V and ∂1
−V such that we reduce to the problem of Corollary 2.2.

Introduce the Fourier transform l̂ of l. We note that

F(Φ+ + S0l(x/R)1x!0)(
ξ

cos γ+
) = φ+(−iξ) + RS0 l̂(

ξR

cos γ+
)

F(∂xΦ+ +
S0

R
l′(x/R))1x!0(

ξ

cos γ+
) = φ̃+(−iξ)− S0 + i

ξR

cos γ+
l̂(

ξR

cos γ+
)

F(Ψ+ + iτe−iα sin θ+S0l(
x

R
)1x!0)(

ξ

cos γ+
) = ψ(−iξ) + iτe−iα sin θ+S0Rl̂(

ξR

cos γ+
)

Introducing (for the simplicity of writing) l1(z), l2(z), l3(z) such that

l1(z) = Rl̂(
izR

cos γ+
), l2(z) =

zl1(z)
cos γ+

− 1 and l3(z) = iτe−iα sin θ+l1(z),

we obtain

F(∂+V )(
ξ

cos γ+
) =

1
2

[
ψ+ + l3 + cos γ+Sαψ− + [−iI0,τ

α (φ+ + S0l1) + cos γ+I1,τ
α (φ̃+ + S0l2)]

+ cos γ+[
cos γ
cos γ−

iT 0,τ
α (φ−)− T 1,τ

α (φ̃−)]
]
(−iξ),

F(∂−V )(
ξ

cos γ−
) =

1
2

[
ψ− + cos γ−Sα(ψ+ + S0l3) + [−iI0,τ

α (φ−) + cos γ−I1,τ
α (φ̃−)]

+ cos γ−
[ cos γ
cos γ+

iT 0,τ
α (φ+ + S0l1)− T 1,τ

α (φ̃+ + S0l2)
]]

(−iξ).

Hence we have the relations
ψ+ − cos γ+Sαψ− + iI0,τ

α φ+ − cos γ+I1,τ
α φ̃+ − cos γ+[ cos γ

cos γ−
iT 0,τ
α φ− − T 1,τ

α φ̃−] = st+

ψ− − cos γ−Sαψ+ + iI0,τ
α φ− − cos γ−I1,τ

α φ̃− − cos γ−[ cos γ
cos γ+

iT 0,τ
α φ+ − T 1,τ

α φ̃+] = st−

where

st+(z) = −2F(∂1
+V )(

iz

cos γ+
) + S0(−iI0,τ

α l1 + cos γ+I1,τ
α l2 − l3)

st−(z) = −F(2∂1
−V )(

iz

cos γ−
) + S0 cos γ−[Sαl3 +

cos γ
cos γ+

iT 0,τ
α l1 − T 1,τ

α l2].

MÉMOIRES DE LA SMF 88



2.6. THE INVERTIBILITY IN L × L OF THE ANALYTIC SYSTEM 41

We notice that l1, l2, l3 belong to L, hence the terms st+ and st− belong to L
if F(2∂1

±V )( iz
cos γ±

) belong to L, which is equivalent to ∂1
±V belong to L2(R+). We

denote by e± the distributions of L2(R+) such that

st±(z) = −2F(2∂1
±V )(

iz

cos γ±
) + S0F(e±)(

iz

cos γ±
).

This analysis being done, assume that l+ and l− are given in L2(R+). We consider
the distributions Φ± = l± − S0e±. They belong to L2(R+). From Lemma 2.7,
the system (42) admits a solution V ∈ Cθ(R/2πZ, H1(R+)) which is continuous.
We compute Ψ+ = ∂+V − ∂1

+V − iτ sin θ+e−iαl(x/R)1x!0S0, Ψ− = ∂−V − ∂1
−V ,

Φ+ = V |∆+,+−V |∆+,−−S0l(x/R)1x!0, Φ− = V |∆−,+−V |∆−,−. These distributions
belong respectively to L2(R+), L2(R+), H1(R+), H1(R+) and, in addition, Φ+(0)−
Φ−(0) = −S0. Hence, according to (35), the Mellin transform of (ψ+, ψ−,Φ+,Φ−) is
in L× L× L1 × L1 and we have the relation of compatibility

φ̃+(z) +
z

cos γ+
φ+(z) = φ̃−(z) +

z

cos γ−
φ−(z) + S0.

The proof of Corollary 2.2 is complete.
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CHAPTER 3

MICROLOCAL PROPAGATION OF SINGULARITIES
FOR THE MIXED PROBLEM

The aim of this Section is to generalize the 2-microlocal regularity result that
Gérard and Lebeau obtained for the Dirichlet problem to a mixed boundary condition
satisfying the strong Lopatinskii condition. Throughout this Section, we will follow
the notations of [20]. The proof follows step by step the proof of Gérard and Lebeau,
but the result is not a consequence of their result.

We denote, in this section only, the normal coordinate(1) to the face ∆̃+ of the
wedge by t, and the “tangential” variables, including the time (denoted by x2), by x.
The same presentation may be done for the diffraction by the face −. In the case
useful for the propagation in R2 × Rt, we may have d = 2, and the boundary is of
dimension 2. In the semi-geodesic system of coordinates (t, x) [26], the wave operator
can be written (up to a conjugation, using the traditional notation Dt = 1

i ∂t):

P = D2
t + R(t, x, Dx)

where, the boundary ∆̃± being analytic, the coefficients of R, differential operator,
are analytic. We consider in this problem the mixed boundary condition

∂tu + Lu = 0

where L is a tangential differential operator of order 1.
The boundary conditions studied in this paper corresponds to L = z±(x1)∂x2 ,

x1 is the variable on t = 0, x2 is the time variable, and t is the normal variable
to the boundary. The result we prove is true only in the neighborhood of points
where the operator ∂t + L is elliptic thus invertible. However, if we return to the
boundary conditions used in this paper, we verify that the conditions ,z+(0) *= 0 and
,z−(0) *= 0 imply that the operator ∂t + z±∂x2 is always elliptic if ξ2 *= 0.

The model case of a constant impedance and a straight boundary. — The model case
is the wave equation in the upper half plane. The time variable is x2, the variable on
the boundary ∆ = {t = 0} is denoted by x1, and the wave operator is

(Dt)2 + (Dx1)
2 − (Dx2)

2.

(1)denoted by n in the introduction
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The boundary condition is (∂t + α∂x2)u(0, x1, x2) = 0, α ∈ R.
Let u be a solution in t > 0 of the wave equation with the boundary condition.

The energy of u is E(u)(x2) =
∫

t!0[(Dtu)2 + (Dx1u)2 + (Dx2u)2] dx1 dt, and we have
∂x2(E(u))(x2) = α

∫
(∂x2u(0, x1, x2))2 dx1. Hence the energy decreases if and only if

α < 0. The condition α < 0 leads to a well posed problem.
Now, let us consider an incoming wave ui(x1, x2, t) = ei(τt+ξ1x1+ξ2x2). We have

ui(x1, x2, t) = eiξ2[x2+ τ
ξ2

t+
ξ1
ξ2

x1]. Hence the wave front of this plane wave is x2 =
− τ
ξ2

t − ξ1
ξ2

x1. This plane wave is incoming when x2 increasing implies t decreasing.
Hence τ/ξ2 > 0.

Let ur the reflected wave induced by ui. We have ur(x1, x2, t) = Ae−iτt+iξ1x1+iξ2x2

and u = ui + ur. Hence A is solution of τ − τA + α(ξ2 + Aξ2) = 0, hence we have(
− τ
ξ2

+ α
)
A = α + τ/ξ2. For all the points ρ0 = (0, x0

2, ξ
0
1 , ξ02) of T ∗(∂Ω) such that

τ2 + r(0, 0, x0
2, ξ

0
1 , ξ02) = 0 satisfying the inequality | − τ

ξ02
+ α| ! ε0, we can compute

the reflection coefficient and we shall see that the Théorème 3.1 of [20] is true in this
case.

We modify the proof of Théorème 3.1 of [20] as follows. As usual, the cotangent
bundle to the boundary T ∗({t = 0}) is the union of the elliptic set E , the hyperbolic
set H, and of the glancing set G. If r0(x, ξ) is the restriction to t = 0 of the principal
symbol r(t, x, ξ) of R, we have

E = {(x, ξ), r0(x, ξ) > 0}, H = {(x, ξ), r0(x, ξ) < 0}, G = {(x, ξ), r0(x, ξ) = 0}.

We prove a second microlocalisation theorem along an involutive submanifold of
T ∗({t = 0}) under the only assumption that this submanifold is transverse to the
Hamiltonian field.

We introduce, in a neighborhood of ρ0 = (x0, ξ0) ∈ T ∗({t = 0}), an analytic
real function s(x, ξ) such that s(x, λξ) = λs(x, ξ), s(ρ0) = 0, ds(ρ0) ∧ ξ0 dx *= 0,
{r0, s}(ρ0) *= 0. The submanifold V = s−1(0) is an involutive submanifold in T ∗({t =
0}), transverse in ρ0 to the Hamiltonian vector field Hr0 . We introduce SS2,1

V (f) the
second microlocal analytic wave front set of f along V ([28]) . We have

(ρ0,±1) /∈ SS2,1
V (f) =⇒ SS(f) ∩ {±s > 0} ∩Wρ0 = ∅.

Notice that ±1 indicates the “sense of propagation of SS(f) along V ” in the neighbor-
hood of ρ0. The generalized bicharacteristics of P are constructed as usual (see [26]
for example). We introduce ε = {r0, s}(ρ0)/|{r0, s}(ρ0)|.

Recall the definition of f V -outgoing in ρ0 (definition 3.4 p 364 of [20]):

Definition 3.1. — The distribution f(t, x) in {t > 0}, extendible distribution, solu-
tion of Pf = 0, is V -outgoing in ρ0 when one of the following conditions is fulfilled:

i) ρ0 ∈ E
ii) ρ0 ∈ H and if γ± are the two half-bicharacteristic curves of p (principal symbol

of P ) passing through (t = 0, x0,±
√
−r0(x0, ξ0), ξ0) and contained in T ∗({t > 0}),

MÉMOIRES DE LA SMF 88



CHAPTER 3. PROPAGATION OF SINGULARITIES 45

we have
γ+ ∩ SS(f) = ∅ or γ− ∩ SS(f) = ∅.

iii) ρ0 ∈ G and there exists ε > 0 such that the conditions 0 " t < ε, |ρ− ρ0| " ε,
s(ρ) < 0 imply (ρ, t, τ) /∈ SSb(f).

This definition has to be compared with the definition of [25], where the ray was,
at the glancing point, tangent at the second order, and where we chose one of the two
characteristics γ+ or γ−. This definition of microlocally outgoing coincides with the
definition given by R. Melrose in [32].

Théorème 3.1 p. 364 of [20] generalizes to the following theorem:

Theorem 3. — If f is a distribution on M = R
+
t × Rx such that Pf = 0 and

f V -outgoing, then, for ρ0 ∈ H ∪ G, such that L(ρ0) + (−r0(0, ρ0))1/2 *= 0 and
L(ρ0)− (−r0(0, ρ0))1/2 *= 0, we have

(ρ0,−1) /∈ SS2,1
V ((∂tf + Lf)|t=0) =⇒ (ρ0,−1) /∈ SS2,1

V (∂tf |t=0).

If ρ0 is in E , there exists a pseudodifferential operator of order 0 such that
ρ0 /∈ SS(∂tu − C(∂tu + Lu)). For ρ0 ∈ H, we denote by ρ+

0 and ρ−0 the two
points of {(0, x, τ, ξ), τ2 + r(0, x, ξ) = 0} such that the projection (x0, ξ0) of
this point on T ∗(∂Ω) is ρ0. These two points are (0, x0, (−r(0, x0, ξ0))1/2, ξ0) and
(0, x0,−(−r(0, x0, ξ0))1/2, ξ0).

As f is V -outgoing, γ+ ∩ SS(f) = ∅ or γ− ∩ SS(f) = ∅. Assume (for instance)
that γ+ ∩ SS(f) = ∅. We have thus γ− ⊂ SS(f). For

(43) (−r0(ρ0))1/2 + L(ρ0) *= 0,

there exists a pseudodifferential operator of order 0, in the neighborhood of ρ0, called
C, such that

ρ0 /∈ SS(∂tu− C(∂tu + Lu)).

In a similar fashion, this operator C is microlocally defined at ρ0 for γ−∩SS(f) = ∅

and the condition L(ρ0) − (−r0(ρ0))1/2 *= 0. This operator is the Calderòn operator
(see [26]). This operator is defined under the condition :

(44) L(ρ0) ± (−r0(ρ))1/2 *= 0.

We use then the fact that pseudodifferential operators are 2-microlocal operators to
prove Theorem 3. Assume from now that ρ0 ∈ G. There exists a canonical tangential
transform χ, from a neighborhood of ρ0 in T ∗(Cd) to a neighborhood of 0 in T ∗(Cd)
such that

i) χ(T ∗(Rd)) = Λφ0 , where the phase function φ0(z) is

φ0(z) =
1
2
()z1)2 +

1
2

j=d∑

j=2

(,zj)2.
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This implies that
Λφ0 = {(z1, z

′,−i)z1,−,z′)}
ii) the coordinate z1 is the “good choice” of symplectic coordinates for r0 and s,

that is for ε = ±1

εr0 ◦ χ−1(z, ζ) = ζ1 + iz1

s ◦ χ−1(z, ζ) = iζ1l0(z, ζ), l0|Λφ0
> 0.

iii) χ(ρ0) = 0.

Let Tχ be a Fourier-Bros-Iagolnitzer transform associated with the canonical trans-
form χ quantized by the analytic phase function g(z, x). The graph of χ is thus
{(x,−g′x, z, g′z)}, and we have g(0, x0) = 0, det g′′zx(0, x0) *= 0.

For ψ ∈ C∞
0 (Rd), supported in a neighborhood of x0, identically equal to 1 near

x0, we may define

Tχh(z, λ) =
∫

eiλg(z,x)h(x)ψ(x) dx.

Let f the function considered in Definition 3.1. We introduce

(45) u(t, z, λ) = Tχ(x 4→ f(t, x))(z, λ).

We consider the algebra of operators in the complex plane used by Gérard and Lebeau,
and for the reader’s convenience, we reproduce here some of the definitions and results
of Section 3.2 of [20].

Let I = [0, t0], U an open subset in T ∗(Cd), K a compact subset of C/R. We
introduce Am(I, U, K) the space of formal series e =

∑
n!0(iλ)

−nen such that
en(t, τ, z, ζ, λ) is holomorphic for t ∈ V , complex neighborhood of I, (z, ζ) ∈ U and
such that

(46) |en(t, τ, z, ζ, λ)| " ABnn!(1 + |τ |)m.

We associate to e the sequence of holomorphic functions

k(e, ζ0; n, α) =
λ

2π

∫ +∞

−∞
eiλ(t−s)τ 1

α!
∂αξ en(t, τ, z, ζ0, λ) dτ.

If m ! 0, there exists a decomposition

(47) e(t, τ, z, ζ, λ) =
j=m∑

j=0

ej
n(t, z, ζ, λ)τ j + e−n (t, τ, z, ζ, λ)

where e−n ∈ A−1(I, U, K) and each ej
n is defined by

ej
n(t, z, ζ, λ) =

∂j
τ je(t, 0, z, ζ, λ)

j!
and e−n is the remainder term of the Taylor series, equal to

τm+1

∫ 1

0

(1− s)m

m!
∂m+1
τm+1e(t, τs, z, ζ, λ) ds.
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For e ∈ Am(I, U, K), m < 0, we define

k±(e, ζ0; n, α)(t, s, z, λ) = k(e, ζ0; n, α)(t, s, z, λ)|±(t−s)>0,

which extends up to t = s. We have, for
∫ t0
0 k(e, ζ0; n, α)(t, s, z, λ)v(s, z, λ) ds, the

following definition: for m ! 0,

(48)
∫ t0

0
k(e, ζ0; n, α)(t, s, z, λ)v(s, z, λ) ds =

∫ t

0
k+(e, ζ0; n, α)(t, s, z, λ)v(s, z, λ) ds

+
∫ t0

t
k−(e, ζ0; n, α)(t, s, z, λ)v(s, z, λ) ds +

j=m∑

j=0

(iλ)−j 1
α!
∂αξ ej

n(t, z, ζ0, λ)∂j
t v(t)

The definition for m < 0 is obtained by putting the finite sum as empty. We associate
to e ∈ Am(I, U, K) the differential operator

(49) Op(e)(ζ0, C1, C2)u(t, z, λ) =
∑

n"λ/C1
|α|"λ/C2

(iλ)−n

∫ t0

0
k(e, ζ0; n, α)(t, s, z, λ)(

1
iλ
∂z − ζ0)αu(s, z, λ) ds.

We associate also the operator

(50) K±(t, s)(ζ0, C1, C2) =
∑

n"λ/C1
|α|"λ/C2

(iλ)−nk±(e, ζ0; n, α)(t, s, z, λ)(
1
iλ
∂z − ζ0)α.

We note that we have the estimate, owing to the estimates on en, and to the fact
that K is a compact of C− R, which implies that dist(K, R) > 0:

(51) |∂βs,tk
±(e, ζ0; n, α)(t, s, z, λ)| " Cβλ

|β|+1BnR−|α|
0 n!e−

λ
2 |t−s| dist(K,R).

These differential operators satisfy the following results

Lemma 3.1. — Let R0 > D > 0 such that

sup
z∈ω

∥∥∥
2
i

∂φ

∂z
− ζ0
∥∥∥ " D.

If ω′ is a subset of ω such that dist(ω̄′, Cω) *= 0, we introduce C0 = 1/D dist(ω̄′, Cω).
For C1 ! 2B/e, C2 ! C0, u ∈ C∞(I, Hφ(ω)), we have

Op(e)(ζ0, C1, C2)(u) ∈ C∞(I, Hφ(ω′)).

Moreover, if C′
1 ! 2B/e, C′

2 ! C0, there exists ε > 0 such that

Op(e)(ζ0, C1, C2)(u)−Op(e)(ζ0, C′
1, C

′
2)(u) ∈ C∞(I, Hφ−ε(ω′)).

Proof. — See [20], p. 358 (Lemma 3.1).
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Lemma 3.2. — Let ω, D, R0 ω′ be as in Lemma 3.1, and C0 the constant obtained in
Lemma 3.1.

For (ζ′0, R′
0, D

′) such that ω×{|ζ′0− ζ| " R′
0} ⊂ U , supω |2i ∂zφ− ζ′0| < D′ < R′

0,we
introduce C′

0 = 1/D′ dist(ω′, Cω) and for all C1, C′
1 greater than 2B/e, C2 ! C0,

C′
2 ! C′

0, there exists ε > 0 such that

Op(e)(ζ0, C1, C2)(u)−Op(e)(ζ′0, C
′
1, C

′
2)(u) ∈ C∞(I, Hφ−ε(ω′)).

Proof. — See [20], p. 359 (Lemma 3.2).

Lemma 3.3. — Let ω′ ⊂ ω. There exists C0
1 , C0

2 , such that, for all C1 ! C0
1 , C2 !

C0
2 , there exists ε > 0 such that, for all u ∈ C∞(I, Hφ(ω)),

Op(e ◦ q)(ζ0, C1, C2)(u)−Op(e)(ζ0, C1, C2)[Op(q)(ζ0, C1, C2)(u)] ∈ C∞(I, Hφ−ε(ω′))

where the composition calculus is the usual one, g = e ◦ q with

gn(t, τ, z, ζ, λ) =
∑

n′+n′′+|α|+l=n

1
l!α!

∂l
τ∂
α
ζ en′∂l

t∂
α
z qn′′(t, z, ζ, λ).

Proof. — See [20], Lemma 3.3 p. 361.

We notice that the differential operator (iλ)−1∂zj , whose symbol is ζj in the an-
alytic calculus of Sjöstrand, is associated with e0 = ζj , en = 0 for n > 0 in the
definition above. If L is a pseudodifferential operator of order 1, the symbol in this
calculus of the operator 1

iλL is the symbol l(z, ζ) = L ◦χ−1(z, ζ) = L(χ−1(z, ζ)) such
that l(χ(x, ξ)) = L(x, ξ).

There exists an analytic symbol q defined in a neighborhood of t ∈ [0, t0], (z0, ζ0) =
(0, 0), of the form

q(t, z, ζ, λ) =
∑

n!0

(iλ)−nqn(t, z, ζ)

such that q0(t, χ(x, ξ)) = r(t, x, ξ) and that

λ2 Op(q)(0, C1, C2)(eiλg(z,x)) = tR(t, x, Dx)(eiλg(z,x)) + eiλg(z,x)b(t, x, z, λ)

where the symbol b is analytic near (t, x, 0) and is bounded by e−ε
′λ for an ε′ > 0.

We introduce φ−(z) the phase function equal to

φ−(z) =






1
2
()z1)2 +

1
2

j=d∑

j=2

(,zj)2, if )z1 ! 0,

1
2

j=d∑

j=2

(,zj)2, if )z1 < 0.

Consider f the function considered in Definition 3.1. The condition iii) of this defini-
tion implies that there exists ε > 0 such that

SS(f) ∩ {0 < t " ε/2, |ρ− ρ0| " ε/2, s(ρ) " 0} = ∅.
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Let t0 ∈ ]0, 1[. As f is an extendible solution of Pf = 0, where P is a par-
tially hypoelliptic operator, there exists ν0 ∈ R such that, for all k ! 0, f ∈
Ck([0, t0], Hν0−k({|x| " a/2})).

Hence, by the properties of the Fourier-Bros-Iagolnitzer transform, we may choose
a neighborhood Ω0 of z0 = 0 such that u ∈ C∞([0, t0], Hφ0(Ω0)).

We have (ρ0,−1) /∈ SS2,1
V (∂tf + Lf |t=0), which implies that there exists Ω0 small

enough such that

(52) ∀ z ∈ Ω0, |∂tu(0, z, λ) + Op(L ◦ χ−1)(u(0, z, λ))| " AλM+1eλφ−(z).

As u is a solution of the problem, there exists ε0 and Ω1 compact subset of Ω0 such
that

(53) Op(τ2 + q)(0, C1, C2)u ∈ C∞([0, t0], Hφ0−ε0(Ω1)).

We choose t0 > 0 and we fix d1 > 0 such that

(54)
|z| " 2d1 =⇒ z ∈ Ω1

|z| " 2d1, )z1 < 0 =⇒ ∃ ε2 > 0, u ∈ C∞([0, t0], Hφ0−ε2(Ω0))
|z| " 2d1, )z1 " 0, t′0 > 0 =⇒ ∃ ε3 > 0, u ∈ C∞([t′0, t0], Hφ0−ε3(Ω0)).

Let α > 0 be given. There exists a function θα ∈ C∞([−d1, +∞[) and three numbers
s1(α), s2(α), s3(α) such that −d1 < s3(α) < s2(α) < s1(α) < 0 with the following
properties :

sup(0,
s2

2
− α) " θα(s) " s2

2
; s + α ! θ′α(s) ! s

θα(s) =
s2

2
, s ! s1(α); θ′α(s) > s, −d1 " s < s1(α); θα(s) = 0, s ∈ [s3(α), s2(α)].

Let also introduce a function Φ ∈ C∞(R, R+), such that Φ is increasing, Φ(d1) > d1,
Φ(t) = 0 for t " d1/4. Using Φ, θ̃α(s) = θα(s) − s2/2 and φ0 we construct φ (as in
[20]) for |)z1| " d1 and ((,z1)2 + |z′|2))1/2 " d1 :

φ(z) = φ0(z) + θ̃α()z1 + Φ(((,z1)2 + |z′|2)1/2)).

This is a phase function satisfying :

φ(z) " φ0(z) ; φ(z) = φ0(z) on )z1 + Φ(y(z)) ! s1(α).

Let y(z) = ((,z1)2 + |z′|2)1/2. We assume that φ is the phase function associated
with the canonical transform, such that

2
i

∂φ

∂z′
= ζ′,

2
i

∂φ

∂z1
= ζ1.

We deduce from this equality the relation

ζ1 = −i)z1 + θ̃′α
(
)z1 + Φ(y(z))

)1
i

(
1− iΦ′(y(z))

,z1

y(z)
)
.

This equality implies ,(ζ1 + iz1) = −θ̃′α()z1 + Φ(y(z))) " 0.
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Recall that 2
i
∂φ0
∂z = −,z′. We introduce, for 0 < δ < 1, the phase function

φδ = δφ+ (1 − δ)φ0.
We have the following

Lemma 3.4. — Let |∇Φ|∞ = sup{|Φ′(y)|, |y| " d1}. There exists D > 0, indepen-
dent of α, such that, for 0 < δ < 1,

ε,q0

(
t, z,

2
i

∂φδ
∂z

)
" δ,(iz1 + ζ1)[1 −Dδ(1 + |∇Φ|)t].

Proof. — Note that

2
i

∂φδ
∂z′

− 2
i

∂φ0

∂z′
= δ(

2
i

∂φ

∂z′
− ∂φ0

∂z′
) = δ[θ̃α()z1 + Φ(y(z)))−)z1 + Φ(y(z))]

2
i
∂z̄jΦ.

Hence we obtain
2
i

∂φδ
∂z

− 2
i

∂φ0

∂z
= δ[−,(ζ1 + iz1)]

2
i
∂z̄jΦ′

which leads to the inequality

(55)
∣∣∣
2
i
(∂z′φδ − ∂z′φ0)

∣∣∣ " 2d1δ‖Φ′‖[−d1,d1]|,(ζ1 + iz1)|.

We have
2
i
(∂z1φδ−∂z1φ0) = δ(

2
i
∂z1φ−

2
i
∂z1φ0) = δ(−i)z1+i)z1)+δ[−,(ζ1+iz1)]

1
i
(1−iΦ′).

Hence we obtain
∣∣∣
2
i
(∂z1φδ − ∂z1φ0)

∣∣∣ " δ|,(ζ1 + iz1)|(1 + |∇Φ|).

Using the equality εr0(χ−1(z, ζ)) = ζ1 + iz1 = εq0(0, z, ζ), we obtain

εq0(0, z,
2
i

∂φδ
∂z1

) = iz1 +
2
i

∂φδ
∂z1

= iz1 + δζ1 + (1 − δ)(−i)z1) = δ(iz1 + ζ1)−,z1.

Hence ε,q0(0, x, 2
i
∂φδ
∂z1

) = δ,(iz1 + ζ1).
We note that (z, 2

i
∂φδ
∂z ) = (z, 2

i
∂φ0
∂z ) + (0, 2

i ∂zφδ − 2
i ∂zφ0), hence there exists a

constant D0 such that
∣∣∣χ−1(z,

2
i

∂φδ
∂z

)− χ−1(z,
2
i

∂φ0

∂z
)
∣∣∣ " D0

∣∣∣
2
i
∂zφδ −

2
i
∂zφ0

∣∣∣

" D0(1 + 2d1)(1 + |∇Φ|)|,(iz1 + ζ1)|.

As q0(t, χ(x, ξ)) = r(t, x, ξ), we get the equality

q0(t, χ(x, ξ)) = r(0, x, ξ) + t

∫ 1

0
∂ur(tu, x, ξ) du.

We use the hypothesis that D2
t +r(t, x, Dx) is a differential operator of order 2. Hence

the principal symbol of D2
t +r(t, x, Dx) is τ2+

∑
i,j aij(t, x)ξiξj = τ2+r(t, x, ξ), which
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implies that ∂tr(t, x, ξ) =
∑

ij ∂taij(t, x)ξiξj . We introduce (xδ , ξδ) = χ−1(z, 2
i
∂φδ
∂z )

and (x, ξ) = χ−1(z, 2
i
∂φ0
∂z ). Hence

r(t, xδ , ξδ) = r(0, xδ , ξδ) + t

∫ 1

0
∂tr(tu, xδ , ξδ) du

= r(0, xδ , ξδ) + t

∫ 1

0
[∂tr(tu, xδ, ξδ)− ∂tr(tu, x, ξ)] du + r(t, x, ξ) − r(0, x, ξ).

This yields

εq0(t, z,
2
i

∂φδ
∂z

) = δ(iz1 + ζ1)−,z1

+ εt

∫ 1

0
[∂tr(tu, xδ, ξδ)− ∂tr(tu, x, ξ)] du + εr(t, x, ξ) − εr(0, x, ξ).

As Λφ0 = {(z, 2
i
∂φ0
∂z )} = χ(T ∗(Rd)), we get that (x, ξ) ∈ T ∗(Rd) hence ,r(t, x, ξ) =

,r(0, x, ξ) = 0, which imply

ε,q0(t, z,
2
i

∂φδ
∂z

) = δ,(iz1 + ζ1) + εt,
[ ∫ 1

0
[∂tr(tu, xδ , ξδ)− ∂tr(tu, x, ξ)] du

]

We have
∣∣∣
∑

i,j

∂taij(tu, xδ)(ξδ)i(ξδ)j−
∑

i,j

∂taij(tu, x)ξiξj
∣∣∣ " D1

∣∣∣χ−1(z,
2
i

∂φδ
∂z

)−χ−1(z,
2
i

∂φ0

∂z
)
∣∣∣.

Thus there exists a constant D, independent of α, such that
∣∣∣ε,q0(t, z,

2
i

∂φδ
∂z

)− δ,(iz1 + ζ1)
∣∣∣ " Dδ(1 + |∇Φ|)t|,(iz1 + ζ1)|

and using the fact that ,(iz1 + ζ1) " 0, that

ε,q0(t, z,
2
i

∂φδ
∂z

) " δ,(iz1 + ζ1)[1−Dδ(1 + |∇Φ|)t)].

The lemma 3.4 is proven.

We introduce then t1 such that

(56) Dt1(1 + ‖Φ′‖[−d1,d1]) " 1
2
.

As we have the conditions (54), and as

φ(z) " φ0(z), φ(z) = φ0(z) for )z1 + Φ(y(z)) ! s1(α)

there exists α0 > 0 and β > 0 such that, for all α ∈ ]0, α0[, we have

u ∈ C∞([t1/2, t1], Hφ({|)z1| < d1, |y| < d1}))
u ∈ C∞([0, t1], Hφ({|)z1| < d1, |y| < d1,)z1 < −d1/2}))
u ∈ C∞([0, t1], Hφ({|)z1| < d1, |y| < d1, |y| ! d1 − β})).

We introduce the sets

Ω2 = {|)z1| < d1, |y(z)| < d1}, Ω3 = {|)z1| < 5d1/6, |y| < d1 − β/3}.
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From Op(p̃)(0, C1, C2)(u) ∈ C∞([0, t0], Hφ0−ε0(Ω1)) and from Lemma 3.1, if C′
1

and C′
2 are large enough, there exists ε1 > 0 such that

(57) Op(p̃)(0, C′
1, C

′
2)(u) ∈ C∞([0, t1], Hφ0−ε1(Ω3)).

Let now α ∈ ]0, inf(α0, ε1/2)[. We will prove that, for all δ ∈ [0, 1],

(58) u ∈ C∞([0, t1], Hφδ(Ω2)).

First of all, as we have, from (54) u ∈ C∞([0, t0], Hφ0−ε(Ω0)) for |z| " 2d1. There
exists β′ > 0 such that s1(α) − β′ > s2(α), and we have, for )z1 + Φ(y(z)) ! s1(α),
φ(z) = φ0(z), as well as, for every ε small enough, u ∈ C∞([0, t0], Hφ0−ε(Ωz)), Ωz

being a small neighborhood of z, hence if φ(z) < φ0(z), we use ε such that φ(z) >
φ0(z)− ε, hence u ∈ C∞([0, t1], Hφ(Ωz)). Hence

u ∈ C∞([0, t1], Hφ(Ω2 ∩ {)z1 > s1(α)− β′})).

Hence (58) is true for δ small enough, because, for )z1 " s1(α)−β′, we have θ̃α(s) "
θ̃α(s1(α)− β′) < 0. We denote by δ0 the largest value of δ̃ such that

∀ δ < δ̃, u ∈ C∞([0, t1], Hφδ (Ω2)).

Now, we have φδ(z) = φ0(z) + δ(φ(z) − φ0(z)). For δ small enough, as we have
φ0(z)−φ(z) " δ0 (because −θ̃α is bounded between s2/2 and the maximum value on
[s2(α), s1(α) − β′], hence bounded by δ0) we may choose δ small enough so that we
can take ε2 = δδ0. Note that t1 plays no role here.

Assume that (58) is true for all δ < δ0, where δ0 ∈ ]0, 1[. We consider a point
z0 = (z0

1 , y0) in Ω2, with −3d1/4 " )z0
1 " s1(α)− β′/2 and |y| " d1 − β/2.

We have, for τ ∈ R, ε,(τ2 + q0(t, z, ζ)) = ε,q0(t, z, ζ) " 1
2,(ζ1 + iz1). We choose

the neighborhood of (z0, ζ0). For this point, we have ,(ζ01 +iz0
1) = ()z0

1 +Φ(y(z0)))−
θ′α()z0

1 + Φ(y(z0))) < 0 because )z0
1 + Φ(y(z0)) " s1(α)− β′

2 + Φ(d1 − β/2).
We choose β′ and β such that Φ(d1−β/2) < β′/2 and β′ ∈ ]0, s2(α)−s1(α)[. Hence

we have ,(ζ01 + iz0
1) < 0, and the neighborhood U we choose is such that we have

,(ζ1 + iz1) < ,(ζ01 + iz0
1)/2. We then obtain ,ε(τ2 + q0(t, z, ζ)) " −|,(ζ01 + iz0

1)|/4.
The function |τ2 + q0(t, z, ζ)|/(1 + τ2) has for limit 1 in ±∞, hence is, on the com-
plementary of a compact set in τ ∈ R, bounded below by 1/2. On the compact set,
it cannot vanish, thus is bounded below by a constant c1. We take c = min(c1, 1/2)
to obtain the inequality

|τ2 + q0(t, z, ζ)| ! c(1 + τ2), ∀ (z, ζ) ∈ U, t ∈ [0, t1] and τ ∈ R.

The roots of τ2 + q0(t, z, ζ) stay in a compact set K of C − R. Owing to the
definitions, we can consider symbols on Am([0, t1], U, K).

From the usual theory for analytic symbols, e = (τ2 + q)−1 ∈ A−2([0, t1], U, K).
We consider two neighborhoods of z0, denoted by ω1 ⊂ ω0, and R0 > 0 such that
ω0 × {|ζ0 − ζ| < R0} ⊂ U , and | 2i

∂φδ0
∂z − ζ0| < D0 < R0. We may assume (choice of

θα) that | 2i
∂φδ

z | < D < R, where R is a radius of convergence of the series defining
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q(t, z, ζ) (inequality (46)). We consider, in (57), the constants C′
1 and C′

2 such that
C′

1 ! 2B/e, C′
2 ! 1/D dist(Ω3, CΩ2), where B is the constant for q in inequalities of

the form (46). Let C′′
2 = C′

2 + (D−1
0 + D−1)/dist(ω1, Cω0). From Lemma 3.1, there

exists ε > 0 such that

Op(τ2 + q(t, z, ζ))(0, C′
1, C

′′
2 )(u) ∈ C∞([0, t1], Hφδ0−ε(Ω3)).

From Lemma 3.2, we deduce immediately that

(59) Op(τ2 + q(t, z, ζ))(ζ0, C′
1, C

′′
2 )(u) ∈ C∞([0, t1], Hφδ0−ε(ω1)).

This result is still true if C′
1, C′

2 are replaced by larger constants, by diminishing ε.
The following steps of this proof is the proof of the following Lemmas:

Lemma 3.5. — Let u ∈ C∞(I, Hφ(Ω)). We have

Op(e)(ζ0, C1, C2)(
1
iλ
∂t)[
( 1
iλ
∂t

)2
u(

1
iλ
∂t)] = Op(τ2e)(ζ0, C1, C2)(u)

+ λ−2[K+(t, 0)∂tu(0)− ∂sK
+(t, 0)u(0)−K−(t, t0)∂tu(t0) + ∂sK

−(t, t0)u(t0)].

Lemma 3.6. — Introduce the complex number (q(t, z, ζ))1/2 such that we have
)(q(t, z, ζ))1/2 > 0. The operator K+(0, 0) is a pseudodifferential operator of order 1:

K+(0, 0) =
∑

m!0

(iλ)1−mK1
m(0, 0)

where K1
0 (0, 0) satisfies, for v ∈ Hφ

[
Op(K1

0 (0, 0))(ζ0, C1, C2)−Op
( 1

2i(q(0, z, ζ))1/2

)
(ζ0, C1, C2)

]
(v) ∈ Hφ−ε.

The operator ∂sK+(0, 0) is a pseudodifferential operator of order 2, whose principal
symbol is λ2/2.

Proof. — We have

e0(t, τ, z, ζ) = (τ2 + q(t, z, ζ))−1

=
1

2i(q(t, z, ζ))1/2

[ 1
τ − i(q(t, z, ζ))1/2

− 1
τ + i(q(t, z, ζ))1/2

]
.

(60)

The relation e ◦ (τ2 + q) = 1 writes, for p ! 1
∑

|α|+n=p

1
α!
∂αζ,τen∂

α
t,zq = 0.

This leads to the choice of each ep for p ! 1 because we have

(61) ep(t, τ, z, ζ) = −
∑

|α|+n=p
n"p−1

1
α!
∂αζ,τen∂

α
t,zq.
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The relations (60) and (61) show that there exists a sequence of analytic functions
rp(t, z, ζ) and two sequences Ap,q(t, z, ζ), Bp,q(t, z, ζ) such that

(62) ep(t, τ, z, ζ) = rp(t, z, ζ)
[ 1
τ − i(q(t, z, ζ))1/2

− 1
τ + i(q(t, z, ζ))1/2

]

+
∑

2"q"p

Ap,q

(τ + iq1/2)p
+

Bp,q

(τ − iq1/2)p
.

We have thus

∂ατ,ζep = ∂ατ,ζrp

[ 1
τ − i(q(t, z, ζ))1/2

− 1
τ + i(q(t, z, ζ))1/2

]

+
∑

2"q"p+|α|

Aαp,q

(τ + iq1/2)p
+

Bαp,q

(τ − iq1/2)p
.

Identifying the term of the form (τ + iq1/2)−1 and the term of the form (τ − iq1/2)−1

(which are the only ones to give a residue), we deduce that

rp +
∑

|α|+n=p

1
α!
∂ατ,ζrn∂

α
t,zq = 0.

and r0 = (2iq1/2)−1.
We compute

k+(e, ζ0; p, α)(t, s, z, λ) =
λ

2π

∫ +∞

−∞
1t−s>0e

iλ(t−s)τ 1
α!
∂αζ ep(t, τ, z, ζ0) dτ.

The expression of ep given in (62) and a classical formula of residue on the contour
[−R, R]∪ {Reiθ, 0 < θ < π} (because )(i(t− s)τ) < 0 on the curve) around the pole
i(q(t, z, ζ))1/2 (owing to the fact that, uniformly on [0, t1] × Ū , )(q(t, z, ζ))1/2 > 0)
yield:

(63) k+(e, ζ0; p, α)(t, s, z, λ) = iλe−λ(t−s)(q(t,z,ζ))1/2 1
α!
∂αζ rp(t, z, ζ0).

The operator K+(t, t) is thus the operator of symbol

iλ
∞∑

p=0

(iλ)−prp(t, z, ζ)

because we can take the limit t− s → 0.
The relation (63) shows that the principal symbol of K+(t, t), which is obtained

with p = 0, is given by
∑

|α|"λ/C

k+(e, ζ0; 0, α)(t, t, z, λ)(
1
iλ
∂z−ζ0)α =

λ

2

∑

|α|"λ/C

1
α!
∂αζ (q(t, z, ζ))−1/2(

1
iλ
∂z−ζ0)α.

This shows that K+(t, t) is the usual analytic tangential pseudodifferential operator
λ
2 (q(t, z, ζ))−1/2 of order 1, where )(q(0, z, ζ))1/2 > 0.
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Similarly, we have
1
iλ
∂sk

+(e, ζ0; 0, α) = k+(−τe, ζ0; 0, α)

and the equality

− τ

τ2 + q(t, z, ζ)
= −1

2
[

1
τ − i(q(t, z, ζ))1/2

+
1

τ + i(q(t, z, ζ))1/2
]

leads to the fact that ∂sk+(e, ζ0; 0, α) is the operator of symbol − 1
2 (iλ)(iλ) = λ2/2.

We can also verify that it is λ
2(q)1/2 (−iλ(i(q)1/2)). This ends the proof of Lemma

3.6.

Proof of Lemma 3.5. — We want to prove

(64) Op(e)(ζ0, C1, C2)[
( 1
iλ
∂t

)2
u] = Op(τ2e)(ζ0, C1, C2)(u)

+
1
λ2

[K+(t, 0)∂tu(0)− ∂sK
+(t, 0)u(0)−K−(t, t0)∂tu(t0) + ∂sK

−(t, t0)u(t0)].

Note that

Op(τ2e)(ζ0, C1, C2)(u)(t, z, λ)

=
∑

n"λ/C1
|α|"λ/C2

(iλ)−n

∫ t0

0
k(τ2e, ζ0; n, α)(t, s, z, λ)[eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))] ds.

We calculate each term. We have

k(τ2e, ζ0; n, α)(t, s, z, λ) =
λ

2π

∫ +∞

−∞
eiλ(t−s)τ τ2 1

α!
∂αζ en(t, τ, z, ζ0, λ) dτ

=
( 1
iλ
∂t

)2[ λ
2π

∫ +∞

−∞
eiλ(t−s)τ 1

α!
∂αζ en(t, τ, z, ζ0, λ) dτ

]

=
( 1
iλ
∂t

)2
k(e, ζ0; n, α) =

( 1
iλ
∂s

)2
k(e, ζ0; n, α).

We have the equality
∫ t0

0
k(τ2e, ζ0; n, α)(t, s, z, λ)

(
eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)
dds

=
∫ t0

0
(

1
iλ
∂s)2
[
k(e, ζ0; n, α)(t, s, z, λ)

](
eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)

ds

= −
∫ t0

0

( 1
iλ
∂s

)
[k(e, ζ0; n, α)(t, s, z, λ)

](
eiλzζ0

( 1
iλ
∂s

)( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)

ds

+ (
1
iλ

)2∂sk
−(e, ζ0; n, α)(t, t0, z, λ)

(
eiλzζ0∂s

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)

− (
1
iλ

)2∂sk
+(e, ζ0; n, α)(t, 0, z, λ)

(
eiλzζ0∂s

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)
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=
∫ t0

0
k(e, ζ0; n, α)(t, s, z, λ)

[
eiλzζ0(

1
iλ
∂s)2
( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
]
ds

+ (
1
iλ

)2∂sk
−(e, ζ0; n, α)(t, t0, z, λ)

(
eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)

− (
1
iλ

)2∂sk
−(e, ζ0; n, α)(t, 0, z, λ)

(
eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0u(s, z, λ))
)

− (
1
iλ

)2k+(e, ζ0; n, α)(t, t0, z, λ)
(
eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0∂su(s, z, λ))
)

+ (
1
iλ

)2k+(e, ζ0; n, α)(t, 0, z, λ)
(
eiλzζ0

( 1
iλ
∂z

)α(e−iλzζ0∂su(s, z, λ))
)

Note that, in the above equalities, we considered the integral
∫ t0
0 . From the

definition of the operator (48), it is in reality
∫ t
0 k+ +

∫ t0
t k−, with k+ = k1t!s

and k− = k1t"s. Hence, in the integration by parts, we see the terms k−(t, t0) −
k−(t, t) + k+(t, t) − k+(t, 0). We use then the relations k+(t, t) = k−(t, t) and
∂sk+(t, t) = ∂sk−(t, t), which proves precisely the equality above. Using Definition
(50) of the operator K+ and of the operator K− we obtain the relation (64), which
is the relation of Lemma 3.5.

We have thus

[Op(1)(u)−Op(e)Op(τ2 + q(t, z, ζ))](ζ0, C1, C2)(u)

= [Op(1)−Op(e)Op(q)−Op(e)Op(τ2)](ζ0, C1, C2)(u).

From the relation Op(τ2)(u) = ( 1
iλ∂t)2u(t) (case of Definition (49) and the expression

(48) for m = 2 and e2
0 = 1, e1

0 = e0
0 = 0 and e− = 0), and from the previous formula,

we get

(65) [Op(1)−Op(e)Op(τ2 + q)](ζ0, C1, C2)(u)

= [Op(1)−Op(e)Op(q)−Op(τ2e)](u)

− λ−2[K+(t, 0)∂tu(0)− ∂sK
+(t, 0)u(0)−K−(t, t0)∂tu(t0) + K−(t, t0)u(t0)]

= [Op(eq)−Op(e)Op(q)](u)

− λ−2[K+(t, 0)∂tu(0)− ∂sK
+(t, 0)u(0)−K−(t, t0)∂tu(t0) + K−(t, t0)u(t0)].

Using Lemma 3.3 of [20] for the composition of such operators, we have

[Op(eq)−Op(e)Op(q)](u) ∈ C∞([0, t1], Hφδ0−ε(ω1).

We write the formula (65) for t1 instead of t0, and we use this result. Hence we get

(66) Op(1)u(t)− Op(e)Op(p̃)(ζ0, C̃1, C̃2)u(t)

+ λ−2[K+(t, 0)∂tu(0)− ∂sK
+(t, 0)u(0)−K−(t, t1)∂tu(t1) + ∂sK

−(t, t1)u(t1)]

∈ C∞([0, t1], Hφδ0−ε(ω1)).
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From this equality, by putting t = 0 and using the inequality (51), we get
K−(0, t1)∂tu(t1) ∈ Hφδ0−ε, ∂sK−(0, t1)u(t1) ∈ Hφδ0−ε, thus
1
λ2

[K+(0, 0)∂tu(0)−∂sK
+(0, 0)u(0)]+Op(1)u(0)−Op(e)Op(τ2 +q)(u)(0) ∈ Hφδ0−ε.

As u is a solution of (τ2 + q)(u) = 0 (by hypothesis), the equality (59) holds. As
Op(1) = Id, this gives

1
λ2

[K+(0, 0)∂tu(0)− ∂sK
+(0, 0)u(0)] + u(0) ∈ Hφδ0−ε,

that is

(67) K+(0, 0)∂tu(0, z, λ) = ∂sK
+(0, 0)u(0, z, λ)− λ2u(0, z, λ) + w(0, z, λ)

where w ∈ Hφδ0−ε(ω1).
We introduce v = 1

iλ (∂tu + Tχ(Lf))|t=0. By the usual pseudodifferential calculus,
there exists an operator L̃, of principal symbol L(χ−1(z, ζ)) = l(z, ζ), such that
v = 1

iλ∂tu(0, z, λ) + L̃(u(0, z, λ)). We express the relation (67) in terms of v. The
strong Lopatinskii condition yields u(0, z, λ) = (L̃)−1(v − 1

iλ∂tu(0, z, λ)), and the
equality (67) leads to the two relations

[K+(0, 0) + (
1
iλ
∂sK

+(0, 0) + iλ) ◦ (L̃)−1](
1
iλ
∂tu(0, z, λ))

= (
1
iλ
∂sK

+(0, 0) + iλ)(L̃)−1v +
1
iλ

w

[
1
iλ
∂sK

+(0, 0) + iλ+ K+(0, 0)L̃]u = K+(0, 0)v − 1
iλ

w.

The inequality for v in the hypothesis of Theorem 3 implied the relation (52):

|v(z, λ)| " AλMeλφ0(z)

We use now the following result

Lemma 3.7. — There exists a neighborhood Ũ ⊂ U of (z0, ζ0) in which the operator
K = K+(0, 0) + ( 1

iλ∂sK+(0, 0) + iλ)(L̃)−1 is elliptic.

Proof. — We check that, owing to Lemma 3.6, the symbol of K in the analytic cal-
culus is

λ

2
1

(q(0, z, ζ))1/2
+

iλ

2
1

l(z, ζ)
=

λ

2(q(0, z, ζ))1/2l(z, ζ)
[l(z, ζ) + i(q(0, z, ζ))1/2].

For (z, ζ) = (z0, ζ0), we have |q(0, z, ζ)| ! c̃, and the operator (q(0, z, ζ))1/2 is
elliptic on U . In a same way, l̃(z, ζ) is elliptic on U . The ellipticity of K on U is thus
equivalent to the ellipticity of l(z, ζ) + i(q(0, z, ζ))1/2 in U .

For z in a neighborhood of the glancing point (0, 0), we know that q(0, z, ζ) is small,
and going back to the beginning, as |)l(0, 0)| > 0, we can choose a neighborhood of
the point (0, 0) such that |q(0, z, ζ)| " |)l(0, 0)|/2, which imply that the condition
l(z, ζ)+i(q(0, z, ζ))1/2 *= 0 is fulfilled. Hence the operator is invertible. The boundary
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operator ∂t + L is elliptic in the neighborhood of a glancing point as soon as L is not
0 at the glancing point.

Note that this is a consequence of the fact that, for )z > 0, the operator τ + ξ2z
is elliptic for τ = 0, corresponding to glancing points. Lemma 3.7 is proven.

Lemma 3.7 allows us to deduce the regularity of (iλ)−1∂tu(0, z, λ) in terms of the
regularity of v(z, λ).

From the inequality
|v(z, λ)| " AλMeλφ−(z)

for z ∈ Ω0 small, we deduce that u(0, z, λ) and ∂tu(0, z, λ) satisfy the inequalities,
owing to Lemma 3.7 and to the ellipticity of L:

| 1
iλ
∂tu(0, z, λ)| " A′λMeλφ−(z)

|u(0, z, λ)| " A′′λM+1eλφ−(z).

Hence ∂tu(0) and u(0) are in Hφδ0−ε(ω3) where ω3 ⊂ ω2. As Op(1)(u) = u, and
u ∈ C∞([t1/2, t1], Hφ(ω2)), we deduce that u ∈ C∞([0, t1], Hφδ0−ε(ω3)) because φ !
φδ0 − ε for ε small enough.

Hence there exists δ′0 > δ0 such that u ∈ C∞([0, t1], Hφδ′0 (ω3)), which is contradic-
tory with the hypothesis that δ0 is the largest δ for which it is possible.

Hence we have
∀ δ ∈ ]0, 1[, u ∈ C∞([0, t1], Hφδ (Ω2)).

The case of δ0 = 1 is achieved by the fact that w̃ ∈ Hφ1−ε and that the relations
on (iλ)−1∂tu(0) and u(0) are still valid, and as φ1 ! φ−, we get, for z = (z1, z′),
)z1 ∈ [s3(α), s2(α)], |y(z)| " d1/4

|∂tu(0, z, λ)| " A′λM+1eλφ(z)

|u(0, z, λ)| " A′′λMeλφ(z).
(68)

The result of Theorem 3 is proven in the neighborhood of the elliptic and hyperbolic
points, hence, if z0 = (z0

1 , (z′)0), ,z0
1 *= 0, as we get εr0(χ−1(z, ζ)) = −,z1 for

(z, ζ) ∈ Λφ0 , we deduce that such points are either elliptic or hyperbolic, hence the
theorem is true and the inequalities (69) are valid for all z ∈ V0, neighborhood of z0.

|∂tu(0, z, λ)| " C′λM+1eλφ−(z)

|u(0, z, λ)| " C′′λMeλφ−(z).
(69)

Finally, for |y(z)| " d1/4 and )z1 ∈ [s3(α), s2(α)], we have φ(z) = φ−(z) = 1
2 (,z′)2.

From (68) and (69), by the maximum principle, if we choose α small enough such
that the region [s3(α), 0] is large, we get (69) for z in a neighborhood of 0.

Hence (ρ0,−1) /∈ SS2,1
V (∂tf |t=0) and (ρ0,−1) /∈ SS2,1

V (f |t=0). The Theorem 3 is
proven.
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We deduce from that theorem that, by considering the waves u± constructed in
the Introduction, we have the same regularity result as in Proposition 3.1 of [20]. Let
f̃± = v± − 1x>0∂±u±. The following Proposition gives the analytic wave front set
of f̃±.

Proposition 3.1. — For all ε0 > 0, there exists ε1 > 0 such that

SS(f̃±) ∩ {x > 0, t ! ε1}

⊂ {|ξ +
τ

cos γ±
| < ε0} ∪ {|ξ +

τ

cos γ±
cos θ±| < ε0} ∪ {|ξ − τ

cos γ±
cos θ±| < ε0}

and a point t ! ε1, (0, t, ξ, τ) is not in SS2,1
V±

(f̃±) when

|ξ +
τ

cos γ±
| ! ε0, |ξ +

τ

cos γ±
cos θ±| ! ε0, |ξ − τ

cos γ±
cos θ±| ! ε0.

In the particular case , sin θ+, sin θ− *= 0 (which means that the boundary condi-
tion is absorbing), these conditions reduce to

SS(f̃±) ∩ {x > 0, t ! ε1} ⊂ {|ξ + τ/cos γ±| < ε0}

and a point (0, t, ξ, τ), t ! ε1 is not in SS2,1
V±

(f̃±) when |ξ + τ/cos γ±| ! ε0.

We denote by L± the operator in Ω± defined by

L+φ(x, y, t) = (1 + (a′(x))2)−1/2(∂yφ− a′(x)∂xφ)− z+(x)∂tφ

Notice that f̃±|x>0 = ∂±(u− u±)|x>0. We have

(70) (u − u±)|t<0 = ur,±|t<0,

(71) L±(u − u±)|∂Ω±∩x>0 = 0.

We introduce the involutive submanifold V± = T ∗(∆±×R)∩{x = 0}, associated with
s(x) = x. Similarly, we introduce the involutive submanifold −V± = T ∗(∆± × R) ∩
{x = 0}, associated with s(x) = −x (we changed the orientation on the cotangent
space). A solution of (∆− ∂2

t2)g = 0 is V±-incoming if and only if g is −V±-outgoing
(following Definition 3.1).

We intend to show that u − u± is V±-incoming. If this is true, then Theorem 3
proves that

(ρ0,−1) /∈ SS2,1
V±

(∂±(u− u±)− z±(x)(u − u±)|∂Ω±)
and the condition

(72) ∃ ε′′ > 0, |(L(ρ0))2 − r0(0, ρ0)| ! ε′′

implies
(ρ0,−1) /∈ SS2,1

V±
(∂±(u− u±)) ∩ SS2,1

V±
(u− u±|∂Ω±).

It is important to notice that (72) is automatically fulfilled if ,z±(0) *= 0, because ρ is
real. This means that the impedance boundary condition correspond to an absorbing
material. It means also that the Brewster angles are complex.
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The Proposition 3.1 is a consequence of Lemma 3.8.

Lemma 3.8. — If ρ = (x, t, ξ̃, τ), 0 " x " ct, |ξ̃ + τ/cos γ±| ! ε0, the relations (70),
(71) imply

u− u± is V±-incoming at ρ.

Proof of Lemma 3.8. — The argument of Gérard and Lebeau is valid, owing to an
analytic theorem of propagation of singularities for a mixed boundary condition, in the
neighborhood of points where this mixed boundary condition is elliptic, that is where
the Calderòn operator exists. This result is a generalization of the usual theorem of
propagation of singularities for Dirichlet boundary conditions of Sjöstrand [38].

If ρ ∈ E , the elliptic regularity shows that, owing to the boundary condition

∂±(u− u±)− z±(u− u±)|{x>0}∩∂Ω± = 0

and the representation of the Calderòn operator, the result of Proposition 3.1 is true.
If ρ /∈ E , we consider the half bicharacteristic of ∂2

t2 −∆ starting at ρ, included in
Ω±, in the direction of t < 0(2).

• Let us assume first that |ξ̃−τ/ cos γ±| ! ε′0, where ε′0 is to be given. There exists
ε1 such that, for t " ε1, γ does not cross the “real” boundary ∆± before reaching
t < 0. The half-bicharacteristic γ is constructed such that the distance to ∆± is
decreasing along γ in the neighborhood of ∆±.

But the choice of the phase function θ± implies that, on the bicharacteristics in-
cluded in SS(ur,±) ∩ Ω±, the distance to ∆± is increasing along the bicharacteristic
parametrized by t. This shows that ur,± is regular along γ.

– If x = 0, this means exactly (see Definition 3.1) that u− u± is V±-incoming.
– If x > 0, we know that u − u±|t<0 = ur,±|t<0. By construction, the half-

bicharacteristic γ enters the region t < 0 while staying in D±. Hence there exists
ε1 > 0 such that γ∪{t > −ε1} ⊂ D±, and thus on this part of the bicharacteristic there
is no interaction with the boundary. Hence as ur,± is regular for −ε1 < t < 0, from the

(2)To give a precise idea to the reader, we consider the (elementary) case where ∆+ = {y = 0},
D+ = {y > 0}, the normal variable to the boundary is y = n, and the bicharacteristic strips starting

from a point (t, x, 0, τ0, ξ0, η0) which is hyperbolic, that is η0 = ±(τ2
0 − ξ2

0)1/2, are

x(s) = x + 2ξ0s, n(s) = 2η0s, t(s) = t − 2τ0s.

Hence the half bicharacteristic strips starting at (t, x, τ0, ξ0) included in n > 0 are

x(s) = x + 2ξ0s, n(s) = ±2(τ2
0 − ξ2

0)1/2s, t(s) = t − 2τ0s, ±s > 0.

This bicharacteristic is directed towards t < 0 when −2τ0s < 0. Hence, for τ0 > 0, the half bichar-

acteristic included in n > 0 directed towards t < 0 is

x(s) = x + 2ξ0s, n(s) = 2(τ2
0 − ξ2

0)1/2s, t(s) = t − 2τ0s, s > 0

and for τ0 < 0, the half bicharacteristic included in n > 0 directed towards t < 0 is

x(s) = x + 2ξ0s, n(s) = −2(τ2
0 − ξ2

0)1/2s, t(s) = t − 2τ0s, s < 0.
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propagation of singularities theorem in an open set, we obtain that γ∩SS(u−u±) = ∅.
This means that u− u± is V±-incoming.

• Consider the second case |ξ̃−τ/ cos γ±| " ε′0. For ε′0 small enough, it is geometric
to see that every half-ray γ1 issued from ρ (there is no uniqueness because of the
glancing points) in the direction of t < 0 is locally contained in x > 0. There is thus
a point of γ1 in {t < 0} ∩ {x > 0} such that ur,± is regular.

– When the point is hyperbolic, that is ξ̃ *= τ/cos γ±, if ε′0 is chosen small enough,
we know that the boundary operator L± is elliptic at ρ. From the conditions (70),
(71) and the theorem of reflection of singularities with a mixed boundary condition
which is elliptic (which is the case when |ξ̃ − τ/cos γ±| is small), we obtain that
SSb(u − u±) ∩ γ1 = ∅.

– For x = 0, u− u± is V±-incoming if ρ is hyperbolic.
– For x > 0, we also get that u− u± is V±-incoming.

– When the point is glancing, that is ξ̃ = τ/cos γ±, this means that

ρ = (0, t, τ, τ/ cos γ±).

We verify that the half rays γ∗ starting from ρ stay in x > 0 before entering t < 0
(that is because γ+ < π/2 and γ− > −π/2). This means that there exists a point
of {t < 0} ∩ {x > 0} where ur,± is regular. Thus the same argument of propagation
of singularities for the mixed boundary problem (the boundary condition is elliptic
because we are at the glancing point) applied to this new point show that u − u± is
V±-incoming.

Finally, there is no other assumption needed to prove that the wave u − u± is
V±-incoming, hence Lemma 3.8 is proven.

Note that is is not surprising that the points in the neighborhood of ξ̃ = −τ/cos γ±
are not incoming, because it is near the tangent direction which excludes a propagation
in the good region.

Let us end the proof of Proposition 3.1. It is enough to apply Theorem 3 to the
wave u−u±, excluding the points of the form |(L±(ρ))2−r0(0, ρ)| " ε′0, using Lemma
3.8.
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CHAPTER 4

REDUCED SYSTEM ON THE BOUNDARY

As in the section 5 of [20], we prove that the principal symbol of the system
calculating the normal derivatives on each face is the symbol associated with the
same system corresponding to the tangent plane wedge and the boundary conditions
where the coefficient of ∂tu|∆± is z±(0). This idea has already been used by J.M.
Bernard who proved (annex of [5] pp. 327-329) that for a convex boundary (for which
is known the source on the boundary), the boundary condition on the plane tangent
“face” of the diedra (given in (2) p. 322) and the boundary condition deduced on the
solution near the curved boundary (given by the expression A.9 p. 329) have the same
leading term. This was done using Maliuzhinets integral ([31]).

In a first part of this section, we shall introduce the unknowns and give their
microlocal regularity. In a second part, after introducing the F.B.I. transform in time
and the F.B.I. transform in x, we shall give the explicit calculation of the symbols.

Let e be a strictly positive number and Ee the space of tempered distributions
u(t, x), supported in t ! 0, such that the partial Fourier transform in time of u,
Fu(k, x), is in L2(R2) for ,k < 0 and its norm is bounded by A(1 + |k|)B|,k|−e.
This space of tempered distributions has been introduced in Definition 2.1 of [20].
The partial FBI in time of such functions is defined by

(73) T0u(τ, x, λ) =
( λ
2π
)1/2
∫

*k=−a
eiλkτ−λk2/2Fu(λk, x) dk.

There is an inversion formula for this transformation, given by [20] (2.12).
Let W be an open subset of C, φ ∈ C0(W, R).

Definition 4.1. — We denote by Hφ(W, L2) the Sjöstrand space of functions
f(w, x, λ), holomorphic in w ∈ W , L2(R) in x, defined for λ ! 1, such that for all K
compact subset of W , there exists A, B > 0 such that

sup
w∈K

‖e−λφ(w)f(w, ·, λ)‖L2(R) " AλB .
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For κ > 0, we define

(74) Wκ = {W ∈ C, |)W | < κ, |1 + ,W | < κ}.

Introduce t0 > κ. The function φ0(w) = 1
2 (,w)2 is the usual weight function of

Sjöstrand (see Sjöstrand [38]). The following Lemma gives the regularity of T0u for
a function supported in t ! t0:

Lemma 4.1. — Let φ(w) = φ0(w) − 1
2 (t0 − κ)2. For u ∈ Ee, such that suppu is

contained in {t ! t0}, we have

T0u ∈ Hφ(Wκ, L
2).

If Kk is a family of operators bounded on L2(R2) and satisfying the inequality

(75) ‖Kk‖ " A1(1 + |k|)B1 |,k|−e

for ,k < 0 and the family is holomorphic in k,,k < 0, then Kk defines an operator
from Ee1 into Ee1+e through

(76) F(Ku)(k, x) = Kk(Fu)(k, x).

We can compute T0Ku with Proposition 2.2 of [20] p. 350, that we recall below:

Proposition 4.1. — For u ∈ Ee′ and K from Ee′ to Ee+e′ , we have the identity

T0Ku− λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτ eiλτ(w−t)−λτ2KλτT0u(t− iτ, ·, λ) ∈ Hφ(W, L2)

where t± = ±2κ, τ± = 1 ± 2κ− i/λ, and φ(w) = φ0(w) − κ2/4.

The relation proven in Proposition 1.1 allows us to write a first system between
the trace on the boundary and the traces of the normal derivatives on each piece of
the boundary.

4.1. The fundamental identity

Let us introduce localizing functions in time φ1, φ2 and in space ψ. We fix a t0 > 0
small. The functions φ1, φ2 are in C∞

0 (Rt) and ψ ∈ C∞
0 (R) (they are defined as in

p. 351 of [20]):
• On a neighborhood of [0, t0], φ1 ≡ 1 and φ1 ≡ 0 for t ! 2t0,
• On a neighborhood of [0, t0/2], φ2 ≡ 1 and φ2 ≡ 0 for t ! t0,
• For −3ct0 " x " 3ct0, c introduced above in Lemma 1.1, ψ ≡ 1, and ψ ≡ 0 for

|x| ! 4ct0.
In particular, φ1φ2 = φ2 and (1−ψ)φ1×10"x"ct = 0. Recall that u is the solution

of (6) and u = 1Ωu.
From Proposition 1.1, we have

(∆− ∂2
t2)u = (v+δ+ + v−δ−) + (u|∂Ωδ′∂Ω) = G
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with u|t<0 = ui|t<0. As (∆−∂2
t2)

−1
+ is the fundamental solution of (∆−∂2

t2) supported
in t ! 0, we obtain the equality (77) comparing the solution in t < 0 and in t > 0:

(77) u = ui + (∆− ∂2
t2)

−1
+ [v+δ+] + (∆− ∂2

t2)
−1
+ [v−δ−] + (∆− ∂2

t2)
−1
+ [u|∂Ωδ′∂Ω].

From this relation, we get

φ2u = φ2ui + φ2(∆− ∂2
t2)

−1
+ [φ1v+δ+] + φ2(∆− ∂2

t2)
−1
+ [φ1v−δ−]

+ φ2(∆− ∂2
t2)

−1
+ [φ1u|∂Ωδ′∂Ω] + S1(x, y, t).

with

S1(x, y, t) = φ2(∆− ∂2
t2)

−1
+ ((1 − φ1)G).

The support of G is contained in t ! 0, hence the support of (1− φ1)G is contained
in t ! t0 + δ0, δ0 > 0. Hence, as (∆− ∂2

t2)
−1
+ is the outgoing solution, the support of

(∆− ∂2
t2)

−1
+ (1− φ1)G is contained in t ! t0 + δ0, where φ2 ≡ 0. Thus S1 ≡ 0.

We consider the normal derivative of this relation, and we take the partial Fourier
transform in time, which is valid because φ1v± ∈ L2(R2) supported in t ! 0, hence
the partial Fourier transform in time of φ1v± exist and is holomorphic in ,k < 0. We
check that

‖F(φ1v±)(·, k)‖L2(R) " Ct1/2
0 ‖v±φ1‖L2(R+×R+),

hence φ1v± ∈ E0. From the boundary equality, φ1u|∂Ω ∈ E0. Hence we have the
equality, after Fourier transform in time (denoted by û or by F(u)), for k ∈ C−:

φ̂2(k) / û = φ̂2(k) / ûi + φ̂2(k) / (∆ + k2)−1[F(φ1v+)δ+]

+ φ̂2(k) / (∆ + k2)−1[F(φ1v−)δ−] + φ̂2(k) / (∆ + k2)−1[F(φ1u|∂Ω)δ′∂O].

Recall that the operators K+,k
± , K−,k

± , R+,k and R−,k are defined in Definition 1.1.
Hence we get

(78) φ̂2(k) / ψ(x)F(∂+u) = φ̂2(k) / K+,k
+ [F(φ1v+)] + φ̂2(k) / K+,k

− [F(φ1v−)]

+ φ̂2(k) / R+,k[F(φ1u|∂Ω)] + φ̂2(k) / ψ(x)∂+ûi.

(79) φ̂2(k) / ψ(x)F(∂−u) = φ̂2(k) / K−,k
+ [F(φ1v+)] + φ̂2(k) / K−,k

− [F(φ1v−)]

+ φ̂2(k) / R−,k[F(φ1u|∂Ω)] + φ̂2(k) / ψ(x)∂−ûi.

We state in the next section the results on the operators R±,k and K±,k
± , K∓,k

± . The
regularity results allow us, along with (76) to write the system deduced from the two
equalities with the operators R± and K±

± , K∓
± .
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4.2. Expression of the Neumann to Neumann operators

In this Section, we calculate using a residue theorem the operators K+,k
± , K−,k

± ,
R+,k

± , R−,k
± defined in Definition 1.1. From the simple example of the function equal

to 1 on [0, 1], and the distribution ∂y[(∆ + k2)−1(1[0,1] ⊗ δ′x=0)], which is equal to
two Dirac distributions concentrated at 0 and at 1, we check that the operators R±,k

+

and R±,k
− send functions of H1(R+) to distributions of H−1−ε(R). However, we prove

that these operators send H1
0 (R+) on L2(R+) and that the operators R+,k and R−,k

live from H1(R) to L2(R+). We need in what follows some definitions:

(80)






µ+(x, x′)(x − x′) = a(x) − a(x′)
µ−(x, x′)(x − x′) = b(x)− b(x′)
ξ±1 = ξ + µ±η
η±1 = −µ±ξ + η
ξ±(x, x′, k, ξ±1 ) = [k2(1 + µ2

±)− (ξ±1 )2]1/2

ξ0 = [k2 − ξ2]1/2

the functions and dual variables allowing us to study the behavior of the faces of the
wedge, where ,ξ+ > 0,,ξ0 > 0, ,ξ− > 0. We have η = µ±ξ

±
1 +η±1

1+µ2
±

, ξ = ξ±1 −µ±η
±
1

1+µ2
±

. We
note that

(1+µ2
±)(k2− ξ2−η2) = (ξ±1 )2 +(η±1 )2−k2(1+µ2

±), (1+µ2
±) dξ∧ dη = dξ±1 ∧ dη±1 ,

hence
dξ dη

k2 − ξ2 − η2
=

dξ±1 dη±1
(ξ±)2 − (η±1 )2

.

The operators K have been calculated in [20] and we only reproduce the results in
the

Lemma 4.2. — Let σ+, σ−, s+,−, s−,+ the symbols equal to





σ+(x, x′, ξ+1 , k) =
µ+ − a′(x)

1 + µ2
+

(
ξ+1
ξ+

− µ+)

σ−(x, x′, ξ−1 , k) =
b′(x) − µ−

1 + µ2
−

(
ξ−1
ξ−

+ µ−)

s+,−(x, ξ, k) = 1− a′(x)
ξ

ξ0

s−,+(x, ξ, k) = 1 + b′(x)
ξ

ξ0
.

Let

ψ+,−(x, x′, ξ, k) = (x− x′)ξ + (a(x) − b(x′))ξ0,

ψ−,+(x, x′, ξ, k) = (x− x′)ξ + (a(x′)− b(x))ξ0.
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We have, for f ∈ L2(R+)

(81) K+,k
+ (f)(x, k) =

1
4π

∫

R+×R

ψ(x)ψ(x′)f(x′)ei(x−x′)ξ+1

× (1 + (a′(x′))2)1/2

(1 + (a′(x))2)1/2
[1 + σ+(x, x′, ξ+1 , k)] dx′ dξ+1

(82) K−,k
− (f)(x, k) =

1
4π

∫

R+×R

ψ(x)ψ(x′)f(x′)ei(x−x′)ξ−1

× (1 + (b′(x′))2)1/2

(1 + (b′(x))2)1/2
[1 + σ−(x, x′, ξ−1 , k)] dx′ dξ−1

1x!0K
−,k
+ (f)(x, k) =

1
4π

∫

R2
ψ(x)ψ(x′)f(x′)1x!01x′!0e

iψ−,+(x,x′,ξ,k)

× (1 + (a′(x′))2)1/2

(1 + (b′(x))2)1/2
s−,+(x, ξ, k) dx′ dξ

1x!0K
+,k
− (f)(x, k) =

1
4π

∫

R2
ψ(x)ψ(x′)f(x′)1x!01x′!0e

iψ+,−(x,x′,ξ,k)

× (1 + (b′(x′))2)1/2

(1 + (a′(x))2)1/2
s+,−(x, ξ, k) dx′ dξ

Equivalently,

(83) K−,k
+ (f) = − 1

4π

∫

R+×R

f(x′)ψ(x′)ψ(x′)e
i(x−x′)ξ+1 +i(b(x′)−a(x′))

ξ+1 −µ+ξ+
1+µ2

+ dx′ dξ+1

× (1 + (a′(x′))2)1/2

(1 + (b′(x))2)1/2

[µ+ − b′(x)
1 + µ2

+

ξ+1
ξ+

− 1 + b′(x)µ+

1 + µ2
+

]

(84) K+,k
− (f) =

1
4π

∫

R+×R

f(x′)ψ(x′)ψ(x′)e
i(x−x′)ξ−1 +i(a(x′)−b(x′))

ξ−1 +µ−ξ−
1+µ2

− dx′ dξ−1

× (1 + (b′(x′))2)1/2

(1 + (a′(x))2)1/2

[µ− − a′(x)
1 + µ2

−

ξ−1
ξ−

− 1 + a′(x)µ−

1 + µ2
−

]

4.3. The Dirichlet to Neumann operators

The results of what follows are similar to (2.27), (2.28) and the system of equations
given from (2.29) to (2.42) of [20]. We prove in this Section the two
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Proposition 4.2. — There exist distributions S+
+ , S−

− , S+
− and S−

+ of H−1(R) such
that, for f ∈ H1(R+)

R±,k
± f = R±,k

±,0f + f(0)S±
±

R±,k
∓ f = R±,k

∓,0f + f(0)S±
∓ .

The operators R±,k
±,0 are operators from H1(R+) to L2(R) and R±,k

∓,0 are operators from
H1(R+) to L2(R+) whose expression is given in Proposition 4.3 below.

We introduce some new notations for the symbols:
(85)




L+
1 (x, x′) =

1
(1 + (a′(x))2)1/2

[µ+ − a′(x)
1 + µ2

+

µ+ − a′(x′)
1 + µ2

+

− 1 + µ+a′(x)
1 + µ2

+

1 + µ+a′(x′)
1 + µ2

+

]

L+
2 (x, x′) =

1
(1 + (a′(x))2)1/2

[µ+ − a′(x)
1 + µ2

+

1 + µ+a′(x′)
1 + µ2

+

+
µ+ − a′(x′)

1 + µ2
+

1 + µ+a′(x)
1 + µ2

+

]

L+
3 (x, x′) =

1
(1 + (a′(x))2)1/2

[ (1 + µ+a′(x))(1 + µ+a′(x′))
1 + µ2

+

]

L−
1 (x, x′) =

1
(1 + (b′(x))2)1/2

[µ− − b′(x)
1 + µ2

−

µ− − b′(x′)
1 + µ2

−
− 1 + µ−b′(x)

1 + µ2
−

1 + µ−b′(x′)
1 + µ2

−

]

L−
2 (x, x′) = − 1

(1 + (b′(x))2)1/2

[µ − b′(x)
1 + µ2

−

1 + µ−b′(x′)
1 + µ2

−
+

µ− − b′(x′)
1 + µ2

−

1 + µ−b′(x)
1 + µ2

−

]

L−
3 (x, x′) =

1
(1 + (b′(x))2)1/2

[ (1 + µ−b′(x))(1 + µ−b′(x′))
1 + µ2

−

]
.

and we introduce the symbols used here

(86)






q+
1 (x, x′, ξ+1 , k) = ψ(x)ψ(x′)

[
L+

2 (x, x′) + L+
1 (x, x′)

ξ+1
ξ+

]

σ+
2 (x, x′, ξ+1 , k) = ψ(x)L+

3 (x, x′)ψ(x′)
k2

ξ+
+

1
i
∂x′q+

1 (x, x′, ξ+1 , k)

q−1 (x, x′, ξ−1 , k) = ψ(x)ψ(x′)
[
L−

2 (x, x′) + L−
1 (x, x′)

ξ−1
ξ−

]

σ−2 (x, x′, ξ−1 , k) = ψ(x)L−
3 (x, x′)ψ(x′)

k2

ξ−
+

1
i
∂x′q−1 (x, x′, ξ−1 , k)

(87)






r+,−
1 (x, ξ, k) =

1
(1 + (a′(x))2)1/2

(a′(x) +
ξ

ξ0
)

r+,−
2 (x, x′, ξ, k) =

k2

ξ0

1 + a′(x)b′(x′)
(1 + (a′(x))2)1/2

r−,+
1 (x, ξ, k) =

1
(1 + (b′(x))2)1/2

(
ξ

ξ0
− b′(x))

r−,+
2 (x, x′, ξ, k) =

k2

ξ0

1 + b′(x)a′(x′)
(1 + (b′(x))2)1/2

.
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Proposition 4.3. — The operators R±,k
±,0 and R±,k

∓,0 defined on H1(R+) are defined
through the equalities

R±,k
±,0(f) =

i

4π

∫

R+×R

σ±2 (x, x′, ξ±1 , k)ei(x−x′)ξ±1 f(x′) dx′ dξ±1

+
1
4π

∫

R+×R

q±1 (x, x′, ξ±1 , k)ei(x−x′)ξ±1 ∂x′f dx′ dξ±1

1x!0R
±,k
∓,0(f) = − i

4π

∫

R+×R

eiψ±,∓ψ(x)ψ(x′)r±,∓
2 (x, x′, ξ, k)1x!01x′!0f(x′) dx′ dξ

+
1
4π

∫

R+×R

eiψ±,∓ψ(x)r±,∓
1 (x, ξ, k)1x!01x′!0∂x′(ψf)(x′) dx′ dξ

These operators are operators from H1(R+) to L2(R) satisfying the relation (75) for
e = 3. We have, on H1

0 (R+), the equality R±,k
∓,0 = R±,k

0,∓ = R±,k
∓ . The same result

holds for the operators R+ and R−.

The main result we deduce from this relation is

Theorem 4. — The operators 1x!0R+ and 1x!0R− are well defined on H1(R). If
f ∈ H1(R) is associated to f+ ∈ H1(R+) and to f− in H1(R+) (the first one be-
ing f1x!0 and the second one being f(−x)1x!0) and to f(0) (which is bounded by
‖f‖H1(R)),they are respectively given by

1x!0R
+(f) = 1x!0R

+
+,0(f+) + 1x!0R

+
−,0(f−) + f(0)T +

1x!0R
−(f) = 1x!0R

−
+,0(f+) + 1x!0R

−
−,0(f−) + f(0)T−.

The distributions T+ and T− are the restriction to R+ of the distributions of L2(R)
given by

〈T̃±, l〉 =
i

4π

∫∫
T±(x)l(x)

k2

ξ3±

[
(1 + µ2

±) + 3i
ξ±1
ξ2±

µ±∂xµ±

]
eixξ±1 dxdξ±1

We begin with the proof of this theorem. The expression of the distributions S+
+

and S+
− , given in (151), (153) lead to the expression (154) for the distribution S+

+ +S+
− .

The theorem 4 is a consequence of the results of regularity on R±
±,0 and on R±

∓,0 of
Proposition 4.3 as well as the regularity of the distribution T+. For T +, we notice
that the functions

g1(ξ±1 ) =
k2

ξ3±
, g2(ξ±1 ) = 3i

ξ±1
ξ2±

belong to L2(Rξ±1 ), and that
∫

(1 + |ξ±1 |2)s|gj(ξ±1 )|2 dξ±1 < +∞ for 2s− 6 < −1.

hence its inverse Fourier transform is in H
5
2−ε(R), which imply that T + is in H

5
2−ε(R).
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The expression of the distribution T + is also easily computed using (151) and
(153). Note that, using integration by parts and the relation ∂ξ+1 ξ+ = −ξ+1 /ξ+ and
∂xξ+ = k2µ+∂xµ+/ξ+, we have

〈T +, l〉 =
ik2

4π

∫

R2
T+(x)l(x)eixξ+1

[1 + µ2
+

ξ3+
+ 3i

ξ+1 µ+∂xµ+

ξ5+

]
dxdξ+1 .

This relation will be used for the asymptotic expansion of the corner term. The proof
of Proposition 4.2 and of Proposition 4.3 is the aim of Sections 4.2 to 4.4. We use
the regularity result of Proposition 4.3 to write, from the equalities (78) and (79) the
system deduced from the jump formula.

We showed in Proposition 1.1 that u|∂O ∈ H1(Rt × ∂O). Hence u|∂O ◦ j−1 is a
distribution of H1(R2) supported in t ! 0. The support of the distribution u|∂O is
included in 0 " x " ct, hence the support of φ1u|∂O is included in (t, x) ∈ [0, 2t0] ×
[0, 2ct0]. The partial Fourier transform in time of φ1u|∂O is thus bounded in H1(R),
independently of k. This imply

φ1u|∂O ∈ E0, ‖F(φ1u|∂O)‖H1(R) " A′.

The Proposition 1.1 shows that v± ∈ L2([0, T ]× R+), which gives

φ1v± ∈ E0.

We thus deduce, using the fact that R+,k and R−,k are bounded from H1(R) to
L2(R+) and satisfy the inequality (75) for e = 3 that we can apply R±,k to φ1u|∂O
and that R±,k(φ1u|∂O) is bounded in L2(R+) and satisfy

‖R±,k(φ1u|∂O)‖L2(R+) " C
(1 + |k|)A

|,k|3 ‖F(φ1u|∂O)‖H1(R).

The inversion formula can be performed on R±,k(φ1u|∂O)(x, k), which defines
R±(φ1u|∂O) ∈ E3. Finally

φ2R
±(φ1u|∂O) ∈ E3, φ2K

±
+ (φ1v+) ∈ E1, φ2K

±
−(φ1u|∂O) ∈ E1.

The system of equations (78) and (79) lead to

(88)

{
ψφ2v+ = φ2ψ∂+ui + φ2K

+
+(φ1v+) + φ2K

+
−(φ1v−) + φ2R+(φ1u|O)

ψφ2v− = φ2ψ∂−ui + φ2K
−
+ (φ1v+) + φ2K

−
−(φ1v−) + φ2R−(φ1u|O)

We consider the same localizing function as Gérard and Lebeau [20] (the function
θ(x), which is C∞, 0 for x " 1, 1 for x ! 2) and we show that, by multiplying (88)
by θ(x/ε), we obtain, in L2(R+), the equality

(89)






ψφ2v+ = 1x!0φ2ψ∂+ui + φ21x!0K
+
+ (φ1v+) + φ21x!0K

+
−(φ1v−)

+φ21x!0R+(φ1u|O)
ψφ2v− = 1x!0φ2ψ∂−ui + φ21x!0K

−
+ (φ1v+) + φ21x!0K

−
−(φ1v−)

+φ21x!0R−(φ1u|O).
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We have computed another expression of the operators 1x!0K
±,k
∓ and R±,k

∓ . We
introduce the operators Q± and S±,∓ (which are not exactly the same as the operators
introduced in [20] by the relations (2.32) p. 353 but differ only slightly, according to
the definition of the trace and the normal derivative we chose) through

(90)

{
K±

± = (1
2ψ(x) ⊗ ψ(x′) + 1

2Q±)

1x!0K
±
∓ = 1

2S±,∓.

The Dirichlet to Neumann operators can be decomposed using the result of Propo-
sition 4.3 and Proposition 4.2. We have in particular, for Φ ∈ H1(R2 × R), the
existence of Φ± = ψ((1x>0Φ ◦ j−1) ◦ j±) and Φ̃± = ψ((1x>0∂xΦ ◦ j−1) ◦ j±).

We introduce the operators I±,0, I±,1, R±,∓,0, R±,∓,1 on Ee such that we have
the equalities, for Φ ∈ H1(∂Ω):

(91)
2R+(Φ) = 2T +(x)Φ(0) + I+,0(Φ+) + I+,1(Φ̃+) + R+,−,0(Φ−) + R+,−,1(Φ̃−)

2R−(Φ) = 2T−(x)Φ(0) + I−,0(Φ−) + I−,1(Φ̃−) + R−,+,0(Φ+) + R−,+,1(Φ̃+).

Comparing with the relations of Proposition 4.3, we have

(92)

I+,0(f)(x, k) =
1
2π

∫

R+×R

iσ+
2 (x, x′, ξ+1 , k)ei(x−x′)ξ+1 f(x′, k) dx′ dξ+1

I+,1(f̃)(x, k) =
1
2π

∫

R+×R

q+
1 (x, x′, ξ+1 , k)ei(x−x′)ξ+1 f̃(x′, k) dx′ dξ+1

R+,−,0(f)(x, k) =
1
2π

∫

R+×R

eiψ+,−(x,x′,ξ,k)r+,−,0(x, x′, ξ, k)f(x′, k) dx′ dξ

R+,−,1(f̃)(x, k) =
1
2π

∫

R+×R

eiψ+,−(x,x′,ξ,k)r+,−,0(x, x′, ξ, k)f̃(x′, k) dx′ dξ

with r+,−,0(x, x′, ξ, k) = −iψ(x)ψ(x′)r+,−
2 (x, x′, ξ, k) + r+,−

1 (x, ξ, k)ψ(x)∂x′ψ(x′) and
r+,−,0(x, x′, ξ, k) = ψ(x)ψ(x′)r+,−

1 (x, ξ, k)1x!01x′!0 and similar relations lead to I−,0,
I−,1, R−,+,0, R−,+,1. The system of equations on

ψφ1v+, ψφ1v−, ψφ1u(x, a(x), t) = ψφ1u|O+ , ψφ1u(x, b(x), t) = ψφ1u|O−

and the derivatives

ψφ1(∂xu + a′(x)∂yu) = ψφ1∂tanu|O+ , ψφ1(∂xu + b′(x)∂yu) = ψφ1∂tanu|O−
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is deduced from the system (89) and the identities, valid for f ∈ L2 supported in
0 " x " ct (using φ1φ2 = φ2). This system writes

(93)






(1− 1x!0Q+)(ψφ1v+)
−I+,0(ψφ1u|∂O+)− I+,1(ψφ1∂tanu|∂O+)
−S+,−(ψφ1v−)
−R+,−,0(ψφ1u|∂O−)−R+,−,1(ψφ1∂tanu|∂O−)
−2T +u(0, 0, t)

= 2φ2ψ∂+ui + r+

(1− 1x!0Q−)(ψφ2v−)
−I−,0(ψφ1u|∂O−)− I−,1(ψφ1∂tanu|∂O−)
−S−,+(ψφ1v+)
−R−,+,0(ψφ1u|∂O+)−R−,+,1(ψφ1∂tanu|∂O+)
−2T−u(0, 0, t)

= 2φ2ψ∂−ui + r−.

where
{

r+ = (1− φ2)[1x!0Q+(ψφ1v+) + S+,−(ψφ1v−) + 2R+(ψφ1u|∂O)− ψφ1v+]
r− = (1− φ2)[1x!0Q−(ψφ1v−) + S−,+(ψφ1v+) + 2R−(ψφ1u|∂O)− ψφ1v−]

The terms r± are element of E3, they are compactly supported in x (because of
ψ in the operators and in the source term), supported in t ! t0/2 (because φ2 ≡ 1
on [0, t0/2]). The system (93) is the system we base ourselves on. If we define the
operator Υ from E0 to E0 through

Υk(F(u(·, k))(x, k) = ikFu(x, k)

that is Υk = ik IdL2 , the system we study for computing the solution is (93) to which
we add the two boundary relations. We use then that the support of ∂tφ1 is included
in [t0, 2t0] and that 1 − φ2 = 1 for t ! t0 to conclude that (1 − φ2)∂tφ1z±(x)ψu|∂O±

has the same properties as the terms r±. The final system (obtained with the system
(93) and the impedance boundary conditions) is the following:

(94)






(1− 1x!0Q+)(ψφ1v+)− I+,0(ψφ1u|∂O+)− I+,1(ψφ1∂tanu|∂O+)
−S+,−(ψφ1v−)−R+,−,0(ψφ1u|∂O−)−R+,−,1(ψφ1∂tanu|∂O−)
−2T +u(0, 0, t)

= 2φ2ψ∂+ui + r+

(1− 1x!0Q−)(ψφ2v−)− I−,0(ψφ1u|∂O−)− I−,1(ψφ1∂tanu|∂O−)
−S−,+(ψφ1v+)−R−,+,0(ψφ1u|∂O+)−R−,+,1(ψφ1∂tanu|∂O+)
−2T−u(0, 0, t)

= 2φ2ψ∂−ui + r−
ψφ1v+ −Υ(z+(x)ψφ1u|∂O+) = −z+(x)ψu|∂O+(1− φ2)∂tφ1

ψφ1v− − Υ(z−(x)ψφ1u|∂O−) = −z−(x)ψu|∂O−(1 − φ2)∂tφ1.

We seek a solution of (94), (ψφ1v+, ψφ1v−, ψφ1u|∂O+ , ψφ1u|∂O−) ∈ L2(R2)×L2(R2)×
(H1(R+ × Rt)×H1(R+ × Rt))comp supported in t ! 0.
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This system will be modified in Section 5.4 to include the terms generated by ue,
the classical reflected wave written in the Introduction.

4.4. Regularity of the operators R±,k
+,0 and R±

−,0

We generalize the results of Gérard and Lebeau, stated in Lemma 2.3 of [20], to
the operators R±,k

+ and R±,k
− . This proof relies on Lemma 2.4 and Lemma 2.5 of [20]

which give the L2 regularity of compactly supported symbols. Of course, we study
the regularity of the operators R+,k

+,0 (and the similar ones written from the relations
of Lemma 6.5). These operators satisfy

Proposition 4.4. — The operators R±,k
±,0 and R±,k

∓,0 are bounded from H1(R+) to
L2(R) of norm in C(H1(R+), L2(R)) satisfying the inequality (75) for e = 3.

We associate to these operators, according to Definition (76), the operators from Ee

to Ee+3. The operators R+,k and R−,k are bounded in C(H1(R), L2(R)) and satisfy
the inequality (75) for e = 3.

We have

Corollary 4.1. — Note that a slight change of the definition may show that the
operators are bounded from Ee to Ee+1 because we can perform the estimates before
the integration by parts in x′.

We state the two results of Gérard and Lebeau which will be used here.

Lemma 4.3 (Lemma 2.4 of [20]). — If q(x, x′, ξ) is a symbol, compactly supported in
(x, x′), such that

‖∂l
x∂

l′

x′q(x, x′, ξ)‖∞ " Cl,l′

then the pseudodifferential operator of symbol q(x, x′, ξ) is continuous on L2(R), and
we have

‖Op(q)f‖L2(R) " c0( max
l"2,l′"2

Cl,l′ )‖f‖L2(R).

Its proof comes from the fact that, on the support of the symbol, we can expand
f as a Fourier series which is in l2. We evaluate the action of Op(q) on the Fourier
series, and the condition l " 2, l′ " 2 comes from the fact that

∑ 1
1+n2 < +∞.

Lemma 4.4 (Lemma 2.5 of [20]). — Let qε(x, y, ξ) be a compactly supported symbol
in (x, y) such that there exists a constant c1 and constants Cl such that, for all y ! 0,
for l ! 0

sup
x

|∂l
xqε| " Cle

−c1(y+ε)|ξ|.

The operator

Qε(f)(x) =
∫

ei(x−y)ξqε(x, y, ξ)f(y) dy dξ
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is bounded from L2(R+) to L2(R) and its norm is estimated, uniformly in ε, by
c1, Cl, l " 2.

Proof of Proposition 4.4. — We consider the equalities (150) (for the case of the pseu-
dodifferential operator) and (152) (for the case of the singular face-to-face operator)
proven above. We check that, for t0 given, (x, x′) ∈ suppψ, 1 + (µ+(x, x′))2 is
bounded. Hence there exists D0 > 0 such that, for |ξ+1 | ! D0(1 + |k|), the real
part of (ξ+1 )2 − k2(1 + µ2

+) is positive, greater than 1
2 (ξ+1 )2, the real part of the

square root of this complex number (of positive real part) is greater than 1
2 |ξ

+
1 |. This

writes ,ξ+ ! 1
2 |ξ

+
1 | for |ξ+1 | ! D0(1 + |k|), hence ξ+1 /ξ+ is bounded by 1/2 and

|ξ−1
+ | " 2/|ξ+1 | " 2/D0(1 + |k|).
We split the integration in ξ±1 in two parts, the part where |ξ±1 | " D0(1 + |k|) in

which we use L∞ estimates on the compactly supported symbol, and the part where
|ξ±1 | ! D0(1 + |k|), where we use the preceding lemmas.(1)

Let us consider the other terms. The symbol σ+
2 1|ξ+1 |!D0(1+|k|), σ

−
2 1|ξ+1 |!D0(1+|k|),

q+
1 1|ξ+1 |!D0(1+|k|), q−1 1|ξ+1 |!D0(1+|k|) satisfy the assumptions of Lemma 4.3, while

the symbols eiφ+
ε q+
ε 1|ξ+1 |!D0(1+|k|), eiφ+

ε r+
ε 1|ξ+1 |!D0(1+|k|), eiφ−

ε q−ε 1|ξ+1 |!D0(1+|k|),

eiφ−
ε r−ε 1|ξ+1 |!D0(1+|k|) satisfy the assumptions of Lemma 4.4. For example, we use the

fact that ∂x′(ξ+)−1 = −k2µ+∂x′µ+
ξ3+

to obtain, for |ξ+1 | ! D0(1 + |k|)

‖∂x′(ξ+)−1‖ " M(1 + |k|)2
1
8 |ξ

+
1 |3

" 8M

D3
0(1 + |k|)

hence

‖∂x′
ξ+1
ξ+
‖ " M(1 + |k|)2

1
8 |ξ

+
1 |3

" 8M

D3
0

.

From Lemma 4.3, we deduce that there exists C > 0 such that
∥∥∥−

1
4π

∫

R2
1x′!0e

i(x−x′)ξ+1 q+
1 1|ξ+1 |!D0(1+|k|)∂x′f dx′ dξ+1

∥∥∥
L2(R)

" C‖∂x′f1x′!0‖L2(R),

∥∥∥−
1
4π

∫

R2
ei(x−x′)ξ+1 1x′!0σ

+
2 1|ξ+1 |!D0(1+|k|)f dx′ dξ+1

∥∥∥
L2(R)

" C‖f1x′!0‖L2(R).

(1)The result obtained is not optimal in $k; we may have the optimal result, based on the inequalities

1‖ξ+
1 ‖ D0(1+|k|)L

+
1 (x, x′)

(ξ+
1 )2

ξ+
+ L+

2 (x, x′)ξ+
1 + L+

3 (x, x′)
k2

ξ+ ∞
D1

(1 + |k|)2

|$k|

1‖ξ+
1 ‖ D0(1+|k|)e

iφ+
ε M+

1 (x, x′)ξ+ + M+
2 (x, x′)ξ+

1 + M+
3 (x, x′)

k2

ξ+ ∞
D2

(1 + |k|)2

|$k|
and the fact that the support of the integral is the support in x, x′ times the support 1|ξ+

1 | D0(1+|k|),

hence the integral with a symbol t truncated in ξ+
1 satisfies (continuous injection)

dx′ dξ+
1 t(x, x′, ξ+

1 )f(x′)ei(x−x′)ξ+
1

L2( )
(2D0R(1 + |k|))‖t‖∞‖f‖L2( )

and we perform the inverse integration by parts to introduce these symbols.
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Along with the inequalities
∥∥∥−

1
4π

∫

R2
1x′!0e

i(x−x′)ξ+1 q+
1 1|ξ+1 |"D0(1+|k|)∂x′f dx′ dξ+1

∥∥∥
L2(R)

" C(1 + |k|)3

|,k|3 ‖∂x′f1x′!0‖L2(R),

∥∥∥−
1
4π

∫

R2
ei(x−x′)ξ+1 1x′!0σ

+
2 1|ξ+1 |"D0(1+|k|)f dx′ dξ+1

∥∥∥
L2(R)

" C(1 + |k|)3

|,k|3 ‖f1x′!0‖L2(R),

we deduce that R+,k
+,0 is bounded from H1(R+) to L2(R) and that there exists D∗ > 0

such that

‖R+,k
+,0‖H1(R+),L2(R+) " D∗

(1 + |k|)3

|,k|3 .

We thus define an operator R+
+,0 from Ee to Ee+3 through the equality

F [R+
+,0(u)](k, x) = R+,k

+,0 [F(u)](k, ·)(x).

The case of the operators from a face to another face is similar. Denote the min-
imum of 1

1+µ2
+

on the support of ψ ⊗ ψ by δ1, introduce the minimum δ2 > 0 of
∫ 1
0 (a′(ux′)− b′(ux′)) du. Consider the constant c0 = 1

4δ1 min(1, δ2). We have

,φ+
ε (x, x′, ξ+1 , k) =

(a(x′)− b(x′) + ε)
1 + µ2

+

,ξ+ ! c0(x′ + ε)|ξ+1 |,

∀n, ∃Dn, |∂n
x (φ+

ε − x.ξ+1 )| " Dn|ξ+1 |(x′ + ε).

The second relation comes from ∂xξ+ = µ+∂x′µ+k2/ξ+ and successive derivatives of
ξ+. This imply that, for all n and for x′ ! 0,

(95)
∥∥∂n

x (ei(φ+
ε −(x−x′).ξ+1 )ψ(x′)ψ(x)rεj )1|ξ+1 |!D0(1+|k|)

∥∥
L∞(x,k)

" Dne−c0(x
′+ε)|ξ+1 |/2

Hence there exists a constant D, depending on c0, D0, D1, D2, such that, if the limit
of R−,k,ε

+,0 is denoted by R−,k
+,0 ,

(96) ‖R−,k
+,0(f)‖L2(R) " D

(1 + |k|)3

|,k|3 [‖f1x′!0‖L2(R+) + ‖∂x′f1x′!0‖L2(R+)].

The proof of the inequalities for R+,k
−,0 and R−,k

−,0 is left to the reader.

The last thing to be checked is the behavior of the corner terms in R+,k and in
R−,k. As the result will be used later, we intend to study it carefully.

Recall that the expression of the kernels of the operators R±,k
± are written in Lemma

6.5. The result on R±,k
∓ is a consequence of the calculus of this section, which shows
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that the operator

− i

4π

∫

R+×L
eiψ±,∓r±,∓

2 (x, x′, ξ, k)ψ(x)ψ(x′)1x!01x′!0f(x′) dx′ dξ

+
1
4π

∫

R+×L
eiψ±,∓ψ(x)r±,∓

1 (x, ξ, k)1x!01x′!0∂x′(ψ(x′)f(x′)) dx′ dξ

is continuous from H1(R+) to L2(R) when L = {ξ ∈ R, |ξ| ! C0(1 + |k|)} and that,
before the integration by parts, the symbol obtained is bounded by (1+|k|)2

|*k| . Hence
the expression of R±,k

∓ written in Lemma 6.5 and in Proposition 4.3 have the same
regularity and they have the same value for f ∈ C∞

0 (R+), and moreover the same
value for f(0). Hence they are equal.

We introduce the operators on which we will perform the asymptotic expansion,
for f ∈ H1(R2), f̃ ∈ L2(R2)

R±,1,k
±,0 (f̃)(x, k) =

1
4π

∫

R+×R

q±1 (x, x′, ξ±1 , k)f̃ dx′ dξ±1 ,

S±,2,k
±,0 (f)(x, k) =

i

4π

∫

R+×R

ψ(x)ψ(x′)L±
3 (x, x′)

k2

ξ±
ei(x−x′)ξ±1 f(x′) dx′ dξ±1 ,

S±,1,k
±,0 (f)(x, k) =

1
4π

∫

R+×R

∂x′q±1 (x, x′, ξ±1 , k)ei(x−x′)ξ±1 f(x′) dx′ dξ±1 ,

such that

(97) R±,k
±,0(f) = R±,1,k

±,0 (∂xf1x!0) + S±,2,k
±,0 (f1x!0) + S±,1,k

±,0 (f1x!0).

Introduce

(98)

R±,1,k
∓ (f̃)(x, k) =

1
2π

∫

R2
eiψ±,∓(x,x′,ξ,k)1x!0,x′!0ψ(x)ψ(x′)r±,∓

1 (x, ξ, k)

·f̃(x′) dx′ dξ

S±,2,k
∓ (f)(x, k) = − i

2π

∫

R2
eiψ±,∓(x,x′,ξ,k)1x!0,x′!0ψ(x)ψ(x′)r±,∓

2 (x, x′ξ, k)

·f(x′) dx′ dξ

S±,1,k
∓ (f)(x, k) =

1
2π

∫

R2
eiψ±,∓(x,x′,ξ,k)1x!0,x′!0ψ(x)∂x′ψ(x′)r±,∓

1 (x, ξ, k)

·f(x′) dx′ dξ.

We have

(99) R±,k
∓,0(f) = R±,1,k

∓,0 (∂xf1x!0) + S±,2,k
∓,0 (f1x!0) + S±,1,k

∓,0 (f1x!0)

which is a consequence of the equality (92).
All the operators involved have bounded symbols when ξ is large. We note that the

operators introduced above in the relations (92) from Proposition 4.3 and written in
system (93), that is I+,0, I+,1, R+,−,0, R+,−,1, are easily related with the operators
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introduced above through the equalities

F(I+,0(f))(x, k) = 2(S+,2,k
+ + S+,1,k

+ )(F(f))(x)
F(I+,1(f))(x, k) = 2R+,1,k

+ (F(f))(x)
F(R+,−,0(f))(x, k) = 2(S+,2,k

− + S+,1,k
− )(F(f))(x, k)

F(R+,−,1(f))(x, k) = 2R+,1,k
− (F(f))(x).

Similar equalities hold for the operators corresponding to − upper indices.
The operators S±,2,k

±,0 and S±,1,k
±,0 are not put together in this equality because they

differ through their order in k; in particular the symbol of the operator S±,2,k
±,0 behaves,

for ξ = λζ and for k = λk̃ as λ, while the symbols of S±,1,k
±,0 are of order λ0.

We end this Section with a Lemma allowing us to perform the asymptotic expansion
of the operators R±,k

± and R±,k
∓ . This asymptotic expansion is complex valued, hence

we have to consider x, x′, ξ, k in C instead of R. More precisely, we allow x, x′ to be
“not far” from the real axis, ξ to be complex. We have

Lemma 4.5. — Let C1 be the complex contour defined in Section 6.3, depending on
the parameters a′, a′′. There exists a constant D1 such that, for a′ 9 t0 9 1/D1,
the symbols q+

1 (x, x′, ξ+1 , k), σ+
2 (x, x′, ξ+1 , k) are holomorphic in (x, x′, k) for ξ+1 ∈ C1,

max(|)x|, |)x′|) " 5ct0, max(|,x|, |,x′|) " 2a′/D1, |k − 1| " 4a′/D1 and satisfy

|q+
1 (x, x′, ξ+1 , k)| " D1

a′ , |σ+
2 (x, x′, ξ+1 , k)| " D1

(a′)3
.

A similar result is available for the complex contour dilated by the coefficient cos γ+
cos γ−

in the ,ξ direction and for the symbols q−1 and σ−2 .

Proof. — This Lemma is a consequence of ξ+ = ((1 + µ2
+)k2 − (ξ+1 )2)1/2, for which

we verify that, for k = 1 and x = x′ = 0, ξ+1 must be different from 1/cosγ+, hence,
for ξ+1 ∈ C1, we verify that there exists c̃ > 0 such that

∣∣∣(ξ+1 )2 − 1
cos2 γ+

∣∣∣ ! c̃a′.

If D1 is large enough, for ξ+1 ∈ C1, max(|)x|, |)x′|) " 5ct0, max(|,x|, |,x′|) " 2a′/D1,
|k − 1| " 4a′/D1, we obtain |ξ+| ! d̃a′.

As the operator q+
1 is of the form ψ(x)ψ(x′)[L2(x, x′)+L1(x, x′)ξ+1 /ξ+], we get the

result for the symbol q+
1 . The result on the symbol σ+

2 is a consequence of

∂x′q+
1 = ∂x′(ψ(x)ψ(x′)L2(x, x′)) + ∂x′(ψ(x)ψ(x′)L1(x, x′))

ξ+1
ξ+

− ψ(x)ψ(x′)L+
1 (x, x′)

ξ+1 k2µ+∂x′µ+

ξ3+
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE



78 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

We verify that, for |ξ| ! C0(1 + |k|)

|eiψ+,−(a′(x) +
ξ

ξ0
)ψ(x)ψ(x′)1x!01x′!0| " e−c0(x+x′)|ξ|

|eiψ+,−
k2

ξ0
ψ(x)ψ(x′)1x!01x′!0| " e−c0(x+x′)|ξ|.

As we have ∫ ∞

0
dy

∫
dξe−c0(x+y)|ξ|f(y) dξ =

2
c0

∫ ∞

0

f(y)dy

x + y

which is bounded from L2(R+) to L2(R+), we show that the operators R̃±,k
± are

bounded from H1(R+) to L2(R+) (the estimate on |ξ| " C0(1+|k|) is a L∞ estimate).

4.5. Asymptotic expansions of the operators K+,k
± and R+,k

±,0

This section summarizes the formalism of Section 3 and Section 4 of [20], in which
the authors microlocalize the problem.

We notice that the main result of this section, proven in Proposition 4.5 and in
Proposition 4.6, leads to

Corollary 4.2
• The asymptotic expansion of the operators S+,2,k

+ , S+,1,k
+ , R+,1,k

+ , Q+ follow the
same pattern and lead to similar symbols in the pseudodifferential calculus of Gérard
and Lebeau. The integrals obtained can be deformed on the contour C(+) defined in
Section 6.3.

• The asymptotic expansion of the operators S+,2,k
− , S+,1,k

− , R+,1,k
− and S+,− follow

the same pattern and lead to similar symbols in the pseudodifferential calculus of
Gérard and Lebeau. The integrals obtained can be deformed on the contour C(l, b)
defined also in Section 6.3.

Hence we may be able to use again the same techniques as in [20].
We define the pseudodifferential operators used in this section. The operator T0

which is the Fourier-Bros-Iagolnitzer (FBI) transform in time has been introduced
by (73). We introduce the partial FBI transform in x, the set Wκ was defined in
(74). In what follows, we consider A, ε such that A sin ε > 4 and we denote by
U = ω(ε, A) = {z ∈ C, arg z ∈ ]π/2 + ε, 3π/2 − ε[, |z| ! A}. Let ω be a ε -sector,
that is U ∪ ω′, where A is given and ω′ a bounded open set. For ω of this form, we
denote by Hω the space of functions g(z, λ) on ω associated with the norm

‖g(·, λ)‖ω = supθ
(∫ ∞

A
|g(ρeiθ, λ)|2dρ

)1/2
+ ‖g‖∞,ω′

such that ∃C0 > 0, ‖g(·, λ)‖ω " C0λC0 . We say that g ∈ Hω is negligible if there
exists C1 > 0 such that ‖g(·, λ)‖ω " C1e−λ/C1 .
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We introduce X open set in C2. Recall that φ0(w) = 1
2 (,w)2. The space

H(φ0, X, ω) is the space of functions g(t, k, z, λ), holomorphic for (t, k) ∈ X , living in
Hω, such that

∃C2 > 0, ∀ (t, k) ∈ X, ‖g(t, k, ·, λ)‖ω " C2e
λC2eλφ0(t−ik).

We say that g is negligible in H(φ0, X, ω) if there exists C3 > 0 such that

∀ (t, k) ∈ X, ‖g(t, k, ·, λ)‖ω " C3e
−λ/C3eλφ0(t−ik).

We define a family of sectors ωσ such that d(ωσ, ωc
σ′) = d1(σ′−σ) (σ′ > σ) and we

simplify the notation with

(100) Hσ = Hωσ .

For the purpose of this paper, we define also

H±
σ = Hω±

σ

where ω±
σ = 1

cos γ±
ωσ. We introduce the FBI transform in x as in Section 4.1 of [20].

In particular, the FBI transform in x, denoted by T1, is described through (4.1) to
(4.5) of [20] p. 372, and a Gaussian localization operator Jρ is defined through (4.16)
of [20]. We reproduce these definitions here.

Let ψ2 ∈ C∞
0 , equal to 1 on supp(ψ), equal to 0 for |x| ! 5ct0. For g ∈ L2

loc(R),
supp(g) ⊂ R+, z ∈ C, we define

T1g(z, λ) =
∫ ∞

0
eiλxz−λx2/2ψ2(x)g(x) dx.

For h(z, λ) holomorphic in z and ρ > 0, we introduce

Jρ(h)(z, λ) =
( λ
2π
)1/2
∫ +ρ

−ρ
h(z + x, λ)e−λx2/2 dx,(101)

J−1
ρ (h)(z, λ) =

( λ
2π
)1/2
∫ ρ

−ρ
e−λx2/2h(z + ix) dx.(102)

Properties of these operators T0, T1, Jρ, J−1
ρ are the following (from p. 374-375 of

[20]) :

– For ω′ ⊂< ω (that is ω is a ε-sector and ω′ is a ε′-sector, with ε′ > ε), there
exists ρ0 such that, for ρ ∈ ]0, ρ0], Jρ and J−1

ρ send Hω into Hω′ , and these operators
are independent of ρ, up to a negligible operator R satisfying

∃C, ∀ g ∈ Hω, ‖R(g)‖ω′ " Ce−λ/C‖g‖ω.

– There exist two negligible operators R1,2
ρ such that

Jρ ◦ J−1
ρ = Id +R1

ρ, J−1
ρ ◦ Jρ = Id +R2

ρ.

– Moreover, Jρ is a quantization of the canonical transform (x, ξ) 4→ (x− iξ, ξ).
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Let f(t, x) ∈ L2, supp f ⊂ {0 " x " ct, 0 " t " 2t0}. If we introduce F (w, z, λ) =
(T0 ⊗ T1)(f)(w, z, λ), we obtain, as a consequence of

(103)
( λ
2π
)1/2
∫

*k=−a
e−

λ
2 (k−i(w−t))2 dk = 1

that

(104) F (w, z, λ) =
∫ +∞

−∞
eλ(xz−x2/2−(w−t)2/2)f(x, t) dxdt.

The value at x = 0 is microlocalized through the

Lemma 4.6. — Let f(t, x) ∈ L2(R2), supp f ⊂ {0 " x " ct, 0 " t " 2t0} and
1x>0∂xf(t, x) ∈ L2(R2). We introduce F̃ (w, z, λ) = (T0⊗T1)(1x>0∂xf). We have the
identity

(105) F̃ (w, z, λ) = −T0(f(0, ·))(w, λ) + (∂z − λz)F (w, z, λ) + r(w, z, λ)

where r(w, z, λ) is bounded by C
|z|e

−λ/C .
This writes also

(106) − 1
λ

T0(f(0, ·))(w, λ) =
1
λ

F̃ (w, z, λ) + (
1
λ
∂z − z)F (w, z, λ) +

1
λ

r(w, z, λ)

We deduce from this relation
(107)

Jρ(
1
λ

F̃ )(z, w, λ) = −zJρ(F )(w, z, λ)− 1
λ

T0(f(0, ·))(w, λ) +
e−λρ

2/2

(2πλ)1/2
r̃(w, z, λ, ρ)

where the term r̃ is bounded.

The equality (104) implies that

F̃ (w, z, λ) =
∫ +∞

−∞
dt

∫ ∞

0
dx e(λxz−λx2)/2ψ2(x)e−λ(w−t)2/2∂xf(x, t)

=
∫ +∞

−∞
dt

∫ ∞

0
dx∂x[f(x, t)e(λxz−λx2)/2ψ2(x)]e−λ(w−t)2/2

−
∫ +∞

−∞
dt

∫ ∞

0
dx f(x, t)∂x[e(λxz−λx2)/2ψ2(x)]e−λ(w−t)2/2

= −
∫ +∞

−∞
dt f(0, t)e−λ(w−t)2/2

−
∫ +∞

−∞
dt

∫ ∞

0
dx f(x, t)(λz − λx)e(λxz−λx2)/2ψ2(x)e−λ(w−t)2/2

−
∫ +∞

−∞
dt

∫ ∞

0
dx f(x, t)∂xψ2(x)e(λxz−λx2)/2e−λ(w−t)2/2.

From the equality (103), we get that
( λ
2π
)1/2
∫

*k=−a
e−λk2/2−ikλ(t−w) dk = e−λ(w−t)2/2,
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which imply that the first term above is

−
∫ +∞

−∞
dt f(0, t)e−λ(w−t)2/2 = −

( λ
2π
)1/2
∫

*k=−a
e−λk2/2+ikλw

∫ +∞

−∞
dt e−ikλtf(0, t) dk

= −T0(f(0, t))(w, λ).

On the other hand, we notice that

∂zF (z, w, λ) =
∫ +∞

−∞
dt

∫ ∞

0
dxλxeλxz−λx2/2ψ2(x)e−λ(w−t)2/2f(x, t).

We deduce then the identity (105). Hence we have the equality

Jρ(
1
λ

(T0 ⊗ T1)(∂xf))(z, w, λ) =

− zJρ(T0 ⊗ T1)(f)(w, z, λ)−
( 1√

2π

∫ ρ√λ

−ρ
√
λ

e−u2/2du
) 1
λ

T0(f(0, ·))(w, λ)

+
e−λρ

2/2

√
2πλ

[(T0 ⊗ T1)(f)(w, z + ρ, λ)− (T0 ⊗ T1)(f)(w, z − ρ, λ)]

which imply the equality (107), where the term r̃ is equal to

r̃(w, z, λ, ρ) = (T0 ⊗ T1)(f)(w, z + ρ, λ)− (T0 ⊗ T1)(f)(w, z − ρ, λ)

+ 2ρ
∫ ∞

1
e−

ρλ2
2

u2−1
2 du

1
λ

T0(f(0, ·))(w, λ).

Let f(t, x) ∈ H1(R × R), supported in {−ct " x " ct, t " 3t0}. Note that the
two distributions f(t, x)1x!0 and ∂xf(t, x)1x>0 are element of L2(R2), supported in
{0 " x " ct, t " 3t0}. We define

F (w, z, λ) = (T0 ⊗ T1)(f(t, x)1x!0)(w, z, λ),

F̃ (w, z, λ) = (T0 ⊗ T1)(∂xf(t, x)1x!0)(w, z, λ).

It is a consequence of Proposition 3.1 that, if f(t, x) is the trace of u − u± on the
boundary, considered as Lipschitz equivalent to R, the part R+ being associated with
∆+ and the part R− being associated with ∆−,

∃ ε > 0, A, B, δ > 0, ∀w ∈ W3κ, ∀ z ∈ C,
|F (w, z, λ)| " AλBeλ

(%w)2
2 +λΦδ

|F̃ (w, z, λ)| " AλB+1eλ
(%w)2

2 +λΦδ .

We note that, as ψ is flat in the neighborhood of 0, the symbol σ+
2 can be

replaced by the symbol L+
3 (x, x′)(k2/ξ+) + i−1∂x′(L+

2 (x, x′) + L+
1 (x, x′)ξ+1 /ξ+),

and the symbol q+
1 by the symbol L+

2 (x, x′) + L+
1 (x, x′)ξ+1 /ξ+. We introduce the

symbols s+
2 (x, x′, ξ+1 , k) = L+

3 (x, x′)k2/ξ+ and s+
1 (x, x′, ξ+1 , k) = ∂x′(L+

2 (x, x′) +
L+

1 (x, x′)ξ+1 /ξ+). We use the asymptotic expansion of Gérard and Lebeau (Appendix
B, (B.1) to (B.22) of [20]) noticing that s+

2 (x, x′, λξ+1 , λk) = λs+
2 (x, x′, ξ+1 , k) and

s+
1 (x, x′, λξ+1 , λk) = s+

1 (x, x′, ξ+1 , k) as well as q+
1 (x, x′, λξ+1 , λk) = q+

1 (x, x′, ξ+1 , k).
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We define the elementary symbols

(108) s+
2,n,m(k, ξ) =

∂n
x∂

m
x′ s+

2

n!m!
(0, 0, ξ, k)

(109) q+
1,n,m(k, ξ) =

∂n
x∂

m
x′ q+

1

n!m!
(0, 0, ξ, k).

(110) s+
1,n,m(k, ξ) =

∂n
x∂

m
x′ s+

1

n!m!
(0, 0, ξ, k)

Applying Proposition 4.1, which is Proposition 2.2 of [20], we compute (T0 ⊗
T1)(R+

+,0)(f) using the relation, for f ∈ Ee′ ,

T0R
+
+f − λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτeiλτ(w−t)−λτ2I(t, τ, z, λ) ∈ Hφ(W, L2).

We recall some definitions and results of [20] on the Sjöstrand spaces used here,
namely Definition 2.2 and Lemma 2.2 and Proposition 2.2 p. 350 of [20].

Recall also that if R ∈ Hφ0(W, L2), then T1R ∈ H(φ0, Xa′/D1 , U) because T1

sends continuously L2 into HU (the Sjöstrand spaces are defined in Definition 4.1 and
following equalities). As

T1 ⊗ T0(1x>0R
+
+,0(f)) =

λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτeiλτ(w−t)−λτ2I(t, τ, z, λ) + T1R,

the remainder term is negligible. The application of Proposition 4.5 below yields the
asymptotic expansion of I. The same pattern applies to all the terms of the system
(94).

Proposition 4.5. — There exists t10, and, for t0 ∈ ]0, t10[ given, three constants
a′, ρ, C0

2 such that
i) I(t, k, z, λ) = T1(1x>0R

+,λk
+,0 T0f)(t− ik, z, λ) ∈ H(φ0, Xa′/D1 , U)

ii) For C1 ! eD1/a′, C2 ! C0
2 , the function

r(t, k, z,λ) = T1(1x>0R
+,λk
+,0 T0f)(t− ik, z, λ)

− iλ

2
J−1
ρ

( ∑

n"λ/C1,m"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ
z + iξ

s+
2,n,m(k, ξ)

( 1
λ
∂z

)m
JρF (−iξ)

)

− 1
2
J−1
ρ

( ∑

n"λ/C1,m"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ
z + iξ

s+
1,n,m(k, ξ)

( 1
λ
∂z

)m
JρF (−iξ)

)

− 1
2
J−1
ρ

( ∑

n"λ/C1,m"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ
z + iξ

q+
1,n,m(k, ξ)

( 1
λ
∂z

)m
JρF̃ (−iξ)

)

is negligible in H(φ0, Za′/D1 , U).
These integrals can be deformed on the contour C(+) defined in Section 6.3. Note

that F̃ is of “weight” λ hence contributions of s2
+ and of q+

1 are of “weight” λ.

MÉMOIRES DE LA SMF 88



4.5. ASYMPTOTIC EXPANSIONS 1 83

Note that, for f ∈ Ee, verifying ∂xf1x!0 ∈ Ee, we have the identity T0(∂xf1x!0) =
1x!0∂x(T0(f)), because the integration is only in the time variable. As

1
4π

∫∫
dξ+1 dx′ s+

2 (x, x′, ξ+1 , λk)T0f(t− ik, x′, λ)

=
λ2

4π

∫∫
dζ+1 dx′ s+

2 (x, x′, ζ+1 , k)T0f(t− ik, x′, λ)

because s+
2 (x, x′, λζ+1 , λk) = λs+

2 (x, x′, ζ+1 , k),

1
4π

∫∫
dξ+1 dx′ s+

1 (x, x′, ξ+1 , λk)T0f(t− ik, x′, λ)

=
λ

4π

∫∫
dζ+1 dx′ s+

1 (x, x′, ζ+1 , k)T0f(t− ik, x′, λ)

because s+
1 (x, x′, λζ+1 , λk) = s+

1 (x, x′, ζ+1 , k) and

R+,1,λk
+,0 (T0f)(t− ik, x, λ) =

1
4π

∫∫
dξ+1 dx′ q+

1 (x, x′, ξ+1 , λk)1x′!0∂x′T0f(t− ik, x′, λ)

=
λ

4π

∫∫
dζ+1 dx′ q+

1 (x, x′, ζ+1 , k)T0(1x′!0∂x′f)(t− ik, x′, λ)

because q+
1 (x, x′, λζ+1 , λk) = q+

1 (x, x′, ζ+1 , k), we get three different terms to evaluate.
The proof of this Proposition, identical to the proof of Proposition 4.1 of [20], is given
in Section 6.3 of the Appendix

The three sequences of operators s+
2,n,m(k, ξ), s+

1,n,m(k, ξ) and q+
1,n,m(k, ξ) lead to

the construction of the three sequences:

q+
1,n(k, λ)(f) =

∑

j+m=n

∂j
z

( 1
2π

∫

C(+)

dξ
z + iξ

q+
1,nm(∂x′f1x′!0)(k, ξ,−iξ)

)
,

s+
2,n(k, λ)(f) =

∑

j+m=n

∂j
z

( 1
2π

∫

C(+)

dξ
z + iξ

s+
2,nm(f)(k, ξ,−iξ)

)
,

s+
1,n(k, λ)(f) =

∑

j+m=n

∂j
z

( 1
2π

∫

C(+)

dξ
z + iξ

s+
1,nm(f)(k, ξ,−iξ)

)
.

The three symbols s+
2 (k, λ), s+

1 (k, λ) and q+
1 (k, λ) are valued in the chain of spaces

H+
σ .
The case of the operators R+,k

−,0 is similar to the case of the operators S±,∓ of [20].
We introduce now the two phase functions

φ+(x) = i(a(x)− a′(0)x)ξ0 −
x2

2
, φ−(x) = −i(b(x′)− b′(0)x′)ξ0 −

(x′)2

2
.
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Let

r−,+
1,n,m(f)(k, ξ, z) =

k2

ξ0

1
n!

1
m!
∂n

x∂
m
x′

[
eλφ+(x)+λφ−(x′)

( 1 + a′(x)b′(x′)
(1 + (a′(x))2)1/2

)
∂m

z f(x′ + z)
]
|x=0,x′=0,

r−,+
2,n,m(f)(k, ξ, z) =

1
n!

1
m!
∂n

x∂
m
x′

[
eλφ+(x)+λφ−(x′)

( a′(x) + ξ/ξ0
(1 + (a′(x))2)1/2

)
∂m

z f(x′ + z)
]
|x=0,x′=0.

Let F̃ (x′, z, λ, t− ik) = F (t− ik, x′ + z, λ). We have the

Proposition 4.6. — If t10 and t0 are given as in Proposition 4.5, there exists
l, κ0, C0

1 , C0
2 such that, for κ ∈ ]0, κ0], C1 ! C0

1 , C2 ! C0
2

i) the function T1(R+,λk
− T0f)(t− ik, z, λ) is in H(φ0, Xκ, U),

ii) T1(R+,λk
− T0f)(t− ik, z, λ)

+
λ

2

∑

n"λ/C1
m"λ/C2

( 1
λ
∂z

)n( 1
2π

∫

C(l,b)

dξ
z + i(ξ + a′(0)ξ0)

r−,+
1,n,m(F )(k, ξ,−i(ξ + b′(0)ξ0))

)

− i

2

∑

n"λ/C1
m"λ/C2

( 1
λ
∂z

)n( 1
2π

∫

C(l,b)

dξ
z + i(ξ + a′(0)ξ0)

r−,+
2,n,m(F̃ )(k, ξ,−i(ξ + b′(0)ξ0))

)

is negligible in H(φ0, Xκ, U). The contour used here is shown in Section 6.3.

This is the extension of proposition 4.2 of [20] for the operator S−,+. We check
that the function ∂x′ψ(x′) in the calculus instead of ψ(x′) leads to a symbol which
is equal to 0, hence only the symbol 1+a′(x)b′(x′)

(1+(a′(x))2)1/2 (a′(x) + ξ/ξ0) contributes to the
symbol after the asymptotic expansion. We have the equalities r±,∓

1 (x, x′, λζ, λk) =
r±,∓
1 (x, x′, ζ, k) and r±,∓

2 (x, x′, λζ, λk) = r±,∓
1 (x, x′, ζ, k).

These two sequences of operators lead to the construction of the two sequences:

r−,+
1,n (k, λ)(f) =

−
∑

j+m=n

∂j
z

( 1
2π

∫

C(l,b)

dξ
z + i(ξ + a′(0)ξ0)

r−,+
1,nm(f)(k, ξ,−i(ξ + b′(0)ξ0))

)

r−,+
2,n (k, λ)(f) =

−
∑

j+m=n

∂j
z

( 1
2π

∫

C(l,b)

dξ
z + i(ξ + a′(0)ξ0)

r−,+
2,nm(∂x′f)(k, ξ,−i(ξ + b′(0)ξ0))

)
.

Notice that the symbols r−,+
j,n (k, λ) operate from H−

0 to HU . The symbol r−,+(k, λ)
is an analytic symbol from the bounded operators of H−

0 into H+
1 . We prove this
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Proposition in Section 6.3, and it is a reproduction of the proof of Gérard and Lebeau
[20].

The same results apply for the operators with the “minus” index.
Note that we have to write the asymptotic expansion of the operators S±,∓

and Q±. The asymptotic expansion of these operators takes into account the term
( (1+(a′(x′))2

1+(a′(x))2) )1/2 and the term ( (1+(a′(x′))2

1+(b′(x))2) )1/2 we added in the symbol to Q+ and to
S+,−. Hence we obtain a slight modification of the expressions of the asymptotic
expansion (4.34) of [20] into

T1(1x>0Q
+,λkT0f)(t− iτ, z, λ) 3 J−1

ρ

( ∑

m"λ/C1,n"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ+1
z + iξ+1

· ∂
n
x∂

′m
x

n!m!

[(1 + (a′(x′))2

1 + (a′(x))2
)1/2

(1 + σ+(x, x′, ξ+1 , k))− 1
]( 1
λ
∂z

)m
JρF (−iξ+1 )

)

(and the term of order 0 obtained for m = n = 0 is still 0) and we modify the relation
(4.49) of [20] into

T1(1x>0S
+,−,λkT0f)(t−iτ, z, λ) 3−

∑

m"λ/C1,n"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C(l,b)

dξ+1
z + i(ξ + aξ0)

· ∂
n
x∂

′m
x

n!m!

[
eλφ++λφ−

(1 + (b′(x′))2

1 + (a′(x))2
)1/2

(1− a′(x)ξ/ξ0)
]( 1
λ
∂z

)m
F (−i(ξ + bξ0))

We end the asymptotic expansion by computing the expansion of the source terms
associated with the values at t = 0 of the trace g(x, t) on the boundary, which belongs
to H1(R2). Note that this imply that g(0, t) is bounded by the derivative of g, hence
we need to introduce G = (T0 ⊗ T1)(g)1x!0 and G̃ = (T0 ⊗ T1)(∂xg1x!0). We intend
to compute

(T0 ⊗ T1)(F−1(T +f̂(0, k))(x, t)).

We use again Proposition 4.1 (Proposition 2.2 of [20]), because the distribution
T + is regular in k in the sense of the spaces E3, to obtain (here we gave the explicit
notation of T + depending on k: T +,k)

T0(F−1(T +ĝ(0, k)) =
λ

2π

∫ t+

t−

∫ τ+

τ−

dt dτ eiλτ(w−t)−λτ2T +,λτ (x)T0g(t− iτ, 0, λ) + R

the remainder term is in Hφ(W, L2).
Recall that

〈T +,λτ , l〉 =

i

4π

∫

R2
eix.ξ+1

T+(x)l(x)λ2τ2

(λ2τ2(1 + µ2
+)− (ξ+1 )2)3/2

[
1 + µ2

+ +
3µ+∂xµ+ξ

+
1

λ2τ2(1 + µ2
+)− (ξ+1 )2

]
dxdξ+1 .
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We write

t(x, ξ+1 , λ) =
T+(x)τ2

(τ2(1 + µ2
+)− (ξ+1 )2)3/2

[
1 + µ2

+ +
3
λ

µ+∂xµ+
ξ+1

τ2(1 + µ2
+)− (ξ+1 )2

]
.

We consider now the application of T1. It concerns only the x variable, hence we
compute

S(t, τ, z, λ) = T1(T +,λτ )(z, λ)T0g(t− iτ, 0, λ).

Proposition 4.7. — We have the equality

(T0 ⊗ T1)(F−1(T +f̂(0, k))(x, t)) =
λ

2π

∫ t+

t−

∫ τ+

τ−

dt dτ eiλτ(w−t)−λτ2S(t, τ, z, λ)

where S has the following asymptotic expansion

S(t, τ, z, λ) 3 1
λ

T0g(t− iτ, 0, λ)
i

2
J−1
ρ

[ ∑

n"λ/C1

1
p!
( 1
λ
∂z

)p 1
2π

∫

C(+)

tp(ξ+1 , λ) dξ+1
z + iξ+1

]
,

where tp(ξ+1 , λ) = ( ∂∂x
)pt(0, ξ+1 , λ).

We also have

(T0 ⊗ T1)(z(x)1x!0∂tg(t, x)) 3 λ

2π

∫ t+

t−

∫ τ+

τ−

dt dτeiλτ(w−t)−λτ2Z(t, τ, z, λ)

with

(111) Z(t, τ, z, λ) 3 iτλJ−1
ρ

[ ∑

n"λ/C1

( 1
λ
∂z

)n 1
2π

∫

R

dξ
z + iξ

∂n
x z(0)
n!

JρG(t−iτ,−iξ, λ)
]
.

Apply the definition of T +,k to l(x) = eiλxz−λx2/2ψ2(x)1x!0, which belongs to L2

(it is necessary to notice that because the expression of T+ is defined for functions
of C∞

0 (R) but can be extended to such functions). Hence we have, changing ξ+1 into
λξ+1

T1(T +,λτ )(z, λ) =
i

4π
λ

∫

R

dξ+1

∫ ∞

0
eλxz+iλxξ+1 −λx2/2λ−1t(x, ξ+1 , λ)ψ2(x) dx

The Taylor expansion of t writes

t(x, ξ+1 ) =
p=N∑

p=0

( ∂
∂x

)p
t(0, ξ+1 )

xp

p!
+

xN+1

N !
tN (x, ξ+1 )

and

SN (z, λ) =
i

4π

∫

R

dξ+1

∫ ∞

0
eλx(z+iξ+1 )−λx2

2 −ν(ξ+1 )2 xN+1

N !
tN (x, ξ+1 )

is negligible in H(φ0, Xκ, U) when ν → 0+ and N = O(λ), because the symbol
B+(x)/ξ3+ is of the same type as σ. The only thing left in the calculus is

i

4π

∫

R

dξ+1
1
p!
( ∂
∂x

)p
t(0, ξ+1 )

∫ ∞

0
xpeλx(z+iξ+1 )−λx2/2 dx.
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We use the relation

λ

∫ ∞

0
eλx(z+iξ+1 )−λx2/2xpψ(x) dx =

( 1
λ
∂z

)p[
J−1
ρ

( 1
z + iξ+1

)
+ r(z + iξ+1 , λ)

]

which is the result of Lemme 4.3 of [20], hence, as [Jρ, ∂z] = 0, we have, using the
appendix B of [20],

i

4π

∫

R

dξ+1
1
p!

(
∂

∂x
)pt(0, ξ+1 )

∫ ∞

0
xpeλx(z+iξ+1 )−λx2/2 dx

=
i

4πλ

∫

C(+)
dξ+1

1
p!
( ∂
∂x

)p
t(0, ξ+1 )

( 1
λ
∂z

)p[
J−1
ρ

( 1
z + iξ+1

)
+ r(z + iξ+1 , λ)

]
.

We replace T0g(t−iτ, 0, λ) by the relation obtained in Lemma 4.6 through the equality
(107), which imply

− 1
λ

T1(T +,λτ )T0g(t− iτ, 0, λ) 3 T1(T +,λτ )
[
Jρ(

1
λ

F̃ )(z, w, λ) + zJρ(F )(w, z, λ)
]
.

Hence we have the asymptotic expansion of the contribution of the corner.
The second item of the proposition comes easily from Proposition 4.1 of [20] using

the representation

z(x)∂tg(x, t) =
∫

R×R+

ei(x−x′)ξz(x)∂tg(t, x′) dx′ dξ

and the partial Fourier transform in time of ∂tu(t, x) which leads to a term of the
form λiτ ĝ(λτ, x).

In the end of this Section, we write the leading order term of all the operators we
computed (and symbols we computed) coming from the system (94).

Introduce

X =





(T0 ⊗ T1)(ψφ1v+)
(T0 ⊗ T1)(ψφ1u|∂O+)
(T0 ⊗ T1)(ψφ1u|∂O−)
(T0 ⊗ T1)(ψφ1v−)
(T0 ⊗ T1)(ψφ1∂tanu|∂O+)
(T0 ⊗ T1)(ψφ1∂tanu|∂O−)
T0(φ1u(0, 0, t))





and L =





2φ2ψ∂+ui + r+

2φ2ψ∂−ui + r−
−z+(x)ψu|∂O+(1 − φ2)∂tφ1

−z−(x)ψu|∂O− (1− φ2)∂tφ1



 .

Let B be the operator which symbol is

(112) op(b) =

Id− op(q+) − op(i+,0) − op(i+,1) − op(s+,−) − op(r+,−,0) − op(r+,−,1) −2t+
− op(s−,+) − op(r−,+,0) − op(r−,+,1) Id− op(q−) − op(i−,0) − op(i−,1) −2t−

Id iλ op(z+) 0 0 0 0 0

0 0 0 Id iλ op(z−) 0 0
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where the definition of op(z±) is straightforward owing to (111). The principal symbol
of b is given by the leading order term of each symbol, taking into account the behavior
in λ. We obtain:

(113) b0 =





1 −iλs+
2,0,0 −q+

1,0,0 −s+ −λr+,−
1,0,0 ir+,−

2,0,0 0
−s− −λr−,+

1,0,0 ir−,+
2,0,0 1 −iλs−2,0,0 −q−1,0,0 0

1 iτλz+(0) 0 0 0 0 0
0 0 0 1 iτλz−(0) 0 0





We notice that, in this symbol, we mixed some terms with λ and other terms
without λ, because, when we use the two last lines of the equality into the two first
lines, the terms 1 and −s+ transform into −iτλz+(0) and into iτλz−(0)s+.

We also notice that it is equivalent to replace the two terms t+ and t− by 0, because
in the final system, all terms will be of order λ except for these two terms.

Proposition 4.8. — The system (94) imply the equality BX = L, where B is the
matricial operator of symbol op(b) given in (112).

The operators op(q+), op(q−), op(i+,0) op(i+,1), op(s+,−), op(r+,−,0), op(r+,−,1),
op(s−,+), op(r−,+,0), op(r−,+,1), op(i−,0), op(i−,1) written in this system admit an
asymptotic expansion.

The expression of the principal symbol is given in (118).

We remark that the second, third and last column of this system can be associated
with an operator acting on the trace u|∂O+ and the fifth and sixth columns are the
representation of an operator acting on u|∂O− .

Corollary 4.3. — For the straight wedge, the total symbols obtained are exactly the
symbols with ,0,0. The matrix (113) is the matrix of the system associated with the
straight wedge.

4.5.1. Calculus of u0. — We compute now the distribution u0(x, y, t) introduced
in (19). We consider its partial Fourier transform in time û0(x, y, τ), and we have:

û0(x, y, τ) =
σ+(0, 0, τ)− σ−(0, 0, τ)

4π2

·
∫

R2
dξ dη

∫ +∞

0
dx′ ei(x−x′).ξ+i(y−a(x′))·η

k2 − ξ2 − η2
θ(x′/R)(η − a′(x′)ξ).

We notice that the calculus of this function is similar to the calculus done for R+,k
+

and of R−,k
+ . We use exactly the same residue theorem as before in both contributions

(the one in y > a(x), y > 0 and the one in y < b(x), y < 0 for x > 0), as well as in the
contribution in x < 0. The symbol obtained each time using the residue theorem is
equivalent to a constant when ξ+1 or ξ goes to ±∞, hence the symbol obtained does
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not belong to L2. We note that, integrating by parts in x′ the expression
∫

R

dξ
∫ +∞

0
s0(x, x′, ξ, k)θ(x′/R)eiφ(x,y,x′,ξ,k) dx′

we get, with the equality

s0(x, x′, ξ, k) = ∂x′φ(x, y, x′, ξ, k)s−1(x, y, x′, ξ, k) + s1
−1(x, y, x′, ξ, k),

where both symbols behave as 1/(1 + |ξ|) when ξ goes to ±∞
∫

R

dξ
∫ +∞

0
s0(x, x′, ξ, k)θ(x′/R)eiφ(x,y,x′,ξ,k) dx′ =
∫

R

dξ
∫ +∞

0
s1
−1(x, y, x′, ξ, k)θ(x′/R)eiφ(x,y,x′,ξ,k) dx′

+ i

∫

R

dξ
∫ +∞

0
∂x′(s−1θ(x′/R))eiφ(x,x′,ξ,k) dx′ + i

∫

R

dξs1(x, y, 0, ξ, k)eiφ(x,y,0,ξ,k).

The last contribution is the less regular one, it is in L2
loc. The two other contributions

are in H1
loc. Hence we identified the leading order term of u0.

4.6. System of equations and microlocalisation of the sources

For our purpose in this section, we introduce the new unknowns that will be used
for the microlocal system. It is necessary to use these unknowns, so that we may be
able to remove the behavior of the classical reflected wave and the results of Section
2 of outgoing waves. Recall that we defined ur,± in the introduction by (9) and (10)
and u± = ui − ur,±.

Let us denote by f̃± = v± − 1x>0∂±u± and by g̃± = (u − u±)|∂O± . Note that
g̃+(0+, t) *= g̃−(0+, t). Note also that u±|∆±

∈ H1(R2), hence the traces g̃+ and g̃−

are both in H1(R∗
+ × R). We also get f̃± ∈ L2(R+ × R).

We introduce f± = φ1f̃±, g± = φ1g̃±. We write the new unknowns for the mi-
crolocalized system

F± = (T0 ⊗ T1)(f±)
G± = (T0 ⊗ T1)(g±)
G̃± = (T0 ⊗ T1)(φ1(1∆±∂x(u|∂O)− ∂tan(u±)1∆±))

(which means, for the last waves, that we took the derivative of a function in H1(V ),
V being regular or not regular, which is in L2(V ), and that we took afterwards the
restriction to a part of V ).

It is clear that φ1v± = φ1f̃± + φ11x>0∂±u± and that φ1u|∂O = [φ1g̃± + φ1u±],
where the bracket [ ] means that the corresponding distribution is the superposition
of the + part on ∆+ and of the − part on ∆−.
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The system (94) writes, using the new unknowns and the representation of the
operators






f+ − 1x!0Q+(f+)− S+,−(f−)− 2T +u(0, 0, t)
−I+,0(g+)− I+,1(g̃+)−R+,−,0(g−)− R+,−,1(g̃−)

= 2h+ + r+

−S−,+(f+) + f− − 1x!0Q−(f−)− 2T−u(0, 0, t)
−R−,+,0(g+)−R−,+,1(g̃+)− I−,0(g−)− I−,1(g̃−)

= 2h− + r−

f+ −Υ(z+(x)g+) = −z+(x)ψu|∂O+(1− φ2)∂tφ1

f− −Υ(z−(x)g−) = −z−(x)ψu|∂O−(1− φ2)∂tφ1.

The modification is generated by the source terms, and we have






h+ =
2φ2ψ∂+ui − ψφ1∂+u+ + 1x!0Q+(ψφ1∂+u+) + S+,−(ψφ1∂−u−)
+I+,0(ψφ1u+|∂O+) + I+,1(ψφ1∂tanu+|∂O+)
+R+,−,0(ψφ1u−|∂O−) + R+,−,1(ψφ1∂tanu−|∂O−)

h− =
2φ2ψ∂−ui + S−,+(ψφ1∂+u+)− ψφ1∂−u− − 1x!0Q−(ψφ2∂−u−)
+R−,+,0(ψφ1u+|∂O+) + R−,+,1(ψφ1∂tanu+|∂O+)
+I−,0(ψφ1u−|∂O−) + I−,1(ψφ1∂tanu−|∂O−)

.

The system of equations (93) becomes (as (3.109)):
(114)




f+ − 1x!0Q+(f+)− S+,−(f−)− 2T +[g+(0, t)]
−I+,0(g+)− I+,1(g̃+)−R+,−,0(g−)−R+,−,1(g̃−)

= h+ + 2T +[u+(0, 0, t)] + r̃+

−S−,+(f+) + f− − 1x!0Q−(f−)− 2T−[g−(0, t)]
−R−,+,0(g+)−R−,+,1(g̃+)− I−,0(g−)− I−,1(g̃−)

= h− + 2T−[u−(0, 0, t)] + r̃−

with the relations:

r̃+ = (1− g2)2φ2ψ∂+ui − (1− g2)[1x!0Q+(g+) + S+,−(g−) + R+(g)]
r̃− = −(1− g2)[S−,+(g+) + 1x!0Q−(g−) + R−(g)].

Note finally that the compatibility condition between the traces g+ and g− is a
consequence of u(x, a(x), t)− u(x, b(x), t) goes to 0 when x goes to 0 and writes

(115) g+(0, t)− g−(0, t) = u−(0, 0, t)− u+(0, 0, t).

The asymptotic expansion of the right hand of the system (114) is given, as in the
section 4.5 of [20], by the expansion of (T0 × T1)(h±). There exists six symbols, of
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the same order as σi, such that

∂+u+(x, t) =
1
2π

∫

R

ikp+(x, k)eik(t−θa(x)) dk

u+(x, a(x), t) =
1
2π

∫

R

q+(x, k)eik(t−θa(x)) dk

∂x[u+(x, a(x), t)] =
1
2π

∫

R

ikq̃+(x, k)eik(t−θa(x)) dk

∂−u−(x, t) =
1
2π

∫

R

ikp−(x, k)eik(t−θb(x)) dk

u−(x, b(x), t) =
1
2π

∫

R

q−(x, k)eik(t−θb(x)) dk

∂x[u−(x, b(x), t)] =
1
2π

∫

R

ikq̃−(x, k)eik(t−θb(x)) dk.

We have the relations





p+(x, k) = z+(x)[σ+
z − σi](x, a(x), k)

p−(x, k) = z−(x)[σ−z − σi](x, b(x), k)
q+(x, k) = [σ+

z − σi](x, a(x), k)
q−(x, k) = [σ−z − σi](x, b(x), k)
q̃+(x, k) = −∂xθa(x)q+(x, k) + 1

ik∂xq+(x, k)
q̃−(x, k) = −∂xθb(x)q−(x, k) + 1

ik∂xq−(x, k)

We write

p+(x, k) = p+(x)σi(x, a(x), k)(1 + O(k−1))
q+(x, k) = q+(x)σi(x, a(x), k)(1 + O(k−1))
q̃+(x, k) = q̃+(x)σi(x, a(x), k)(1 + O(k−1))
p−(x, k) = p−(x)σi(x, b(x), k)(1 + O(k−1))
q−(x, k) = q−(x)σi(x, b(x), k)(1 + O(k−1))
q̃−(x, k) = q̃−(x)σi(x, b(x), k)(1 + O(k−1)),

where





p±(x) =
2z±(x)∂±θi(x)

z±(x)− ∂±θi(x)

q±(x) =
2∂±θi(x)

z± − ∂±θi(x)
q̃+(x) = −q+(x)∂xθa(x), q̃−(x) = −q−(x)∂xθb(x).

Note that

q̃±(0) = ± 2 sinγ±
sin θ± ± sinγ±

, q±(0) = −q̃±(0), p±(0) = − sin θ±q̃±(0).
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We introduce T0(ψφ1u+|∂O+)(x, τ) = T0(ψ(x)φ1(·)1x!0u+|∂O+(x, ·))(τ) for exam-
ple. Making use of Proposition 4.1 we get

(T0 ⊗ T1)(I+,0(ψφ1u+|∂O+))(w, z, λ) 3 λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτ eiλτ(w−t)−λτ2

T1(I+,0,λτ (T0(ψφ1u+|∂O+)(·, λτ)))(t − iτ, λ)

Making use of the definition of T0, we obtain

T1(I+,0,λτ (T0(ψφ1u+|∂O+)(·, λτ)))(t − iτ, λ) =
( λ
2π
)1/2
∫

*k=−a
eikλ(t−iτ)−λk2/2T1[I+,0,λτ [F(ψφ1(·)1x!0u+(x, ·)|∂O+)](x, λk)] dk.

Hence, for the calculus of this terms, is left the calculus of

T1[I+,0,λτ (F(ψφ11x!0u+|∂O+))(x, λk)].

which is a function of τ, k, z, λ.
We get rid of the localization φ1 because, owing to the finite speed of propagation,

ψφ11x!0u+ = ψ1x!0u+. Hence we compute

T1[I+,0,λτ (ψ(·)q+(·, λk)e−iλkθa(·))](z, λ).

The same method applies to all the terms of the source term h+. We write

(T0 ⊗ T1)(h+)(w, z, λ) = (T0 ⊗ T1)(2ψ∂+ui) + l+2 (w, z, λ) + l+3 (w, z, λ) + o+(w, z, λ)

where

l+2 (w, z, λ) = (T0 ⊗ T1)[1x!0Q
+(ψφ1∂+u+)− ψφ1∂+u+]

+ (T0 ⊗ T1)[I+,0(ψφ1u+|∂O+)] + (T0 ⊗ T1)[I+,1(ψφ1∂x(u+|∂O+))],

l+3 (w, z, λ) = (T0 ⊗ T1)[1x!0S
+,−(ψφ1∂−u−)]

+ (T0 ⊗ T1)[R+,−,0(ψφ1u−|∂O−)] + (T0 ⊗ T1)[R+,−,1(ψφ1∂x(u−|∂O−))],

and the term (T0 ⊗ T1)(2ψ∂+ui) has been computed in [20].
We write each term by using Proposition 4.1, hence

l+2 (w, z, λ) 3 λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτ eiλτ(w−t)−λτ2Λ+
2 (t, τ, z, λ),

l+3 (w, z, λ) 3 λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτ eiλτ(w−t)−λτ2Λ+
3 (t, τ, z, λ)
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(with the obvious definition of Λ+
2 and Λ+

3 ). Then there exists two symbols
λ+

2 (t, τ, k, z, λ) and λ+
3 (t, τ, k, z, λ) such that

Λ+
2 (t, τ, z, λ) =

( λ
2π
)1/2
∫

*k=−a
eiλk(t−iτ)−λk2/2λ+

2 (t, τ, k, z, λ) dk

3
( λ
2π
)1/2
∫ 1+4κ

1−4κ
eiλk(t−iτ)−λk2/2λ+

2 (t, τ, k, z, λ) dk

Λ+
3 (t, τ, z, λ) =

( λ
2π
)1/2
∫

*k=−a
eiλk(t−iτ)−λk2/2λ+

3 (t, τ, k, z, λ) dk

3
( λ
2π
)1/2
∫ 1+4κ

1−4κ
eiλk(t−iτ)−λk2/2λ+

3 (t, τ, k, z, λ) dk.

We concentrate on the calculus of λ+
2 and of λ+

3 . The pseudodifferential calculus
of [20] p 382–387 is still valid. The analogous of Proposition 4.3 of [20] holds to
compute the symbol of h+. Note that the total phase function is

φ(w, t, τ, k) = τ(w − t) + iτ2 + k(t− iτ) + i
k2

2
which critical point is (t, τ, k) is (0, iw, iw), of associated critical value φ(w, 0, iw, iw)
= iw2/2. We then introduce φ1(w) = −,(iw2/2) = 1

2 ((,w)2 − ()w)2). We get
l+2 (w, z, λ) ∈ Hφ1(Wκ, H

+
1 ), as well as l+3 (w, z, λ). The sign 3 used here means that

the difference can be neglected in Hφ0(Wκ, HU ). We have

Proposition 4.9. — There exists t10 > 0 such that, for t0 ∈ ]0, t10], there exists
κ, a′, l, C1

0 , C2
0 , ρ such that, for C1 ! C1

0 , C2 ! C2
0 , we have

λ+
2 (t, τ, k, z, λ) =

1
2π

∫

C(+)
µ+

2 (t, τ, k, ξ+1 , z, λ) dξ+1

λ+
3 (t, τ, k, z, λ) = − 1

2π

∫

C(l,tanγ−)
µ+

3 (t, τ, k, ξ, z, λ) dξ

where µ+
2 and µ+

3 admit the following expansions:

µ+
2 3 λJ−1

ρ

∑

n"λ/C1,m"λ/C2

( 1
λ
∂z

)n[ 1
z + iξ+1

λ−m−1

(i(ξ+1 + k))m+1

1
n!
∂n

x∂
m
x′ (µ̃+

2 (x, x′, ξ+1 , τ, k, λ)e−iλk(θa(x′)−x′))|x=x′=0

]

µ+
3 3 λJ−1

ρ

∑

n"λ/C1,m"λ/C2

( 1
λ
∂z

)n[ 1
z + i(ξ + tanγ+ξ0)

λ−m−1

(i(ξ + tan γ−ξ0 + k))m+1

1
n!
∂n

x∂
m
x′ (eiλφ++iλφ− µ̃+

3 (x, x′, ξ, τ, k, λ)e−iλk(θb(x
′)−x′))

]
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with the symbols

µ̃+
2 (x, x′, ξ+1 , τ, k, λ) =
[(1 + (a′(x′))2

1 + (a′(x))2
)1/2

[1 + σ+(x, x′, ξ+1 , τ)] − 1
]
ikp+(x′, λk)− ikp+(x′, λk)

+ i
[
L+

3 (x, x′)
τ2

ξ+
+

1
iλ
∂x′(L+

2 (x, x′) + L+
1 (x, x′)

ξ+1
ξ+

)
]
q+(x′, λk)

+
[
L+

2 (x, x′) + L+
1 (x, x′)

ξ+1
ξ+

]
ikq̃+(x′, λk)

and

µ̃+
3 (x, x′, ξ, τ, k, λ) =
(1 + (b′(x′))2

1 + (a′(x))2
)1/2

(1 − a′(x)ξ/ξ0)ikp−(x′, λk) + i
k2

ξ0

1 + a′(x)b′(x′)
(1 + (a′(x))2)1/2

q−(x′, λk)

− 1
(1 + (a′(x))2)1/2

(a′(x) + ξ/ξ0)ikq̃−(x′, λk).

The proof of this Proposition is a straightforward transcription of the proof of
Proposition 4.3 of [20] and we do not reproduce it here.

Note that we have

µ̃+
2 (0, 0, ξ+1 , τ, k)

q+(0)
= −ikz+(0) +

i

cos γ+

τ2

ξ+
+ cos γ+ik

ξ+1
ξ+

,

µ̃+
3 (0, 0, ξ, τ, k, λ)

q−(0)
=

ikz−(0)
cos γ−

(cos γ+ − sin γ+
ξ

ξ0
) + i

τ2

ξ0

cos γ
cos γ−

+ ik(sinγ+ + cos γ+
ξ

ξ0
).

We check that, when k = τ we have

µ̃+
2 (0, 0, ξ+1 , k, k)

q+(0)
= −ikz+(0) + i cos γ+ξ+ + cos γ+i(k + ξ+1 )

ξ+1
ξ+

,

µ̃+
3 (0, 0, ξ, k, k, λ)

q−(0)
= i

kz−(0) + cos γ−ξ0 − sin γ−ξ
cos γ−

(cos γ+ − sin γ+
ξ

ξ0
)

+ i cosγ−(cos γ+
ξ

ξ0
+ sinγ+)(ξ + tanγ−ξ0 + k).

The symbols associated with the expansion of h− are given in a similar way by:

µ̃−
2 (x, x′, ξ, τ, k) =

(1 + (a′(x′))2

1 + (b′(x))2
)1/2

(1 + b′(x)ξ/ξ0)ikp+(x′, λk)

+ i
τ2

ξ0

1 + a′(x′)b′(x)
(1 + (b′(x))2)1/2

q+(x′, λk)− 1
(1 + (b′(x))2)1/2

(b′(x)− ξ/ξ0)ikq̃+(x′, λk).
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µ̃−
3 (x, x′, ξ−1 , τ, k, λ) =
[(1 + (b′(x′))2

1 + (b′(x))2
)1/2

[1 + σ−(x, x′, ξ−1 , τ)] − 1
]
ikp−(x′, λk)− ikp−(x′, λk)

+ i
[
L−

3 (x, x′)
τ2

ξ−
+

1
iλ
∂x′(L−

2 (x, x′) + L−
1 (x, x′)

ξ−1
ξ−

)
]
q−(x′, λk)

+
[
L−

2 (x, x′) + L−
1 (x, x′)

ξ−1
ξ−

]
ikq̃−(x′, λk).

We get

(116)

µ̃−
2 (0, 0, ξ, τ, k)

q+(0)
= i

kz+(0)
cos γ+

(cos γ− + sin γ−
ξ

ξ0
) + i

τ2

ξ0

cos γ
cos γ+

+(sinγ− − cos γ−
ξ

ξ0
)ik

µ̃−
3 (0, 0, ξ−1 , τ, k)

q−(0)
= −ikz−(0) +

iτ2

cos γ−ξ−
+ cos γ−

ikξ−1
ξ−

.

For τ = k, we have

(117)

µ̃−
2 (0, 0, ξ, k, k)

q+(0)
= i

kz+(0) + cos γ+ξ0 + sinγ+ξ

cos γ+
(cos γ− + sin γ−

ξ

ξ0
)

+i(
ξ

ξ0
cos γ− − sin γ−)[ξ − ξ0 tan γ+ − ik]

µ̃−
3 (0, 0, ξ−1 , k, k)

q−(0)
= −ikz−(0) + i cosγ−ξ− + i

k cos γ−
ξ−

(k + ξ−1 ).

The calculus of l+2 (w, z, λ) and of l+3 (w, z, λ) is a consequence of successive appli-
cations of the stationary phase theorem. From

Λ+
2 (t, τ, z, λ) 3

( λ
2π
)1/2
∫ 1+4κ

1−4κ
eiλk(t−iτ)−λk2/2λ+

2 (t, τ, k, z, λ) dk

3
( λ
2π
)1/2
∫ 1+4κ

1−4κ
e−λ(t−iτ)2/2e−λ(k−i(t−iτ))2/2λ+

2 (t, τ, k, z, λ) dk

we obtain

Λ+
2 (t, τ, z, λ) 3 e−λt2/2eλ(

τ2
2 +itτ)

∑

p"λ/C1

1
p!λp

∂2p

∂k2p
λ+

2 (t, τ, τ + it, z, λ).

As we have

l+2 (w, z, λ) 3 λ

2π

∫ t+

t−

dt

∫ τ+

τ−

dτ eiλτ(w−t)−λτ2+λ τ2
2 +itτλ−λ t2

2 Λ+
2 (t, τ, z, λ),
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we obtain

l+2 (w, z, λ) 3 e−λw2/2 λ

2π

∫ t+

t−

dt e−λt2/2

∫ τ+

τ−

dτ e−λ(τ−iw)2/2Λ+
2 (t, τ, z, λ)

3
∑

p"λ/C1

1
p!λp

e−λw2/2 λ

2π

∫ t+

t−

dt e−λt2/2

·
∫ τ+

τ−

dτ e−λ(τ−iw)2/2 ∂
2p

∂k2p
λ+

2 (t, τ, τ + it, z, λ).

The usual stationary phase theorem at τ = iw and at t = 0 yields

l+2 (w, z, λ) 3
∑

p"λ/C1
q"λ/C2
r"λ/C3

1
p!q!r!λp+q+r

e−λw2/2

· ∂
2q

∂t2q

∂2r

∂τ2r

[ ∂2p

∂k2p
λ+

2 (t, τ, τ + it, z, λ)
]

t=0,τ=iw
.

We deduce from this asymptotic expansion that the leading order term of l+2 is
given by

λJ−1
ρ

∫

C(+)

dξ+1
z + iξ+1

1
iλ(ξ+1 + iw)

µ̃+
2 (0, 0, ξ+1 , iw, iw, λ)e−λw2/2.

and the leading order term of l+3 is given by

λ

∫

C(l,tan γ−)

dξ
z + i(ξ + tan γ+ξ0)

1
iλ(ξ + tanγ−ξ0) + iw

· µ̃+
3 (0, 0, ξ, iw, iw, λ)e−λw2/2.

Is left in this calculus the calculus of the term induced by ∂+ui. It is a consequence
of the expressions (4.69) and (4.70) of [20] that

(T0⊗T1)(2∂+ui)(w, z, λ) 3 2
( λ
2π
)1/2
∫ 1+2κ

1−2κ
dk eiλwk−λk2/2

[ ∑

n"λ/C

1
λn+1

( 1
i(k + iz)

)n+1

· ∂n
x (e−λ

x2
2 −iλkθa(x)[−ikλ∂+θi(x)σi(x, a(x), λk) + ∂+σi(x, a(x), kλ)])|x=0

]
.

The stationary phase theorem applied to this integral leads to a critical point at k =
iw, a critical value equal to e−λw2/2, hence the leading order term of (T0⊗T1)(2∂+ui)
is 2λ sin γ+w

w+z σi(0, 0, iλw). We deduce from these relations the leading order term of
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the source term L+:

eλw2/2

λ
L0

+(w, z, λ) =
2w∂+ sin γ+(0)

iw + z
σi(0, 0, iλw)

+
1
2π

∫

C(+)

dξ+1
z + iξ+1

1
iλ(ξ+1 + iw)

µ̃+
2 (0, 0, ξ+1 , iw, iw, λ)

+
1
2π

∫

C(l,tanγ−)

1
z + i(ξ + tan γ+ξ0)

1
iλ(ξ + tan γ−ξ0 + iw)

µ̃+
3 (0, 0, ξ, iw, iw, λ).

Let us introduce the symbol SI+(w, z) such that

L0
+(w, z, λ) = λJρ(SI+)σi(0, 0, iλw)e−λw2/2.

We have
1
2
SI+(w, z) =

sin γ+w

w + z
− sinγ+

sin θ+ + sin γ+

[ 1
2π

∫

C(+)

(w sin θ+ − i w2

cos γ+ξ+
− w cos γ+

ξ+1
ξ+

) dξ+1
iλ(ξ+1 + iw)(z + iξ+1 )

]

− tan γ−
sin θ− − sin γ−

·

[ 1
2π

∫

C(l,tan γ−)

w sin θ−(cos γ+ + sin γ+
ξ
ξ0

) + iw2

ξ0
cos γ + w cos γ−(sin γ+ + cos γ+

ξ
ξ0

)
iλ(ξ + tan γ−ξ0 + iw)(z + i(ξ + tan γ+ξ0))

dξ
]
.

It is important to note that we cannot use the relations (116) to simplify the expression
of SI+(w, z), because if we apply the residue theorem around k = −ξ+1 , we get an
integral which does not converge when |ξ+1 | → ∞. It is the same reason that compelled
us to write the boundary operator R+

+ using the symbols k2

ξ+
and ξ+1

ξ+
instead of ξ+.

The expression of SI−(w, z), defined through

L0
−(w, z, λ) = λJρ(SI−)(w, z)σi(0, 0, iwλ)e−λw2/2,

is given by

1
2
SI−(w, z) =

− sinγ−w

z + w
+

sin γ−
sin θ− − sin γ−

[ 1
2π

∫

C(−)

w sin θ− − i w2

cos γ−ξ−
− w cos γ−

ξ−1
ξ−

z + iξ−1

dξ−1
iλ(iw + ξ−1 )

]

− tanγ+

sin θ+ + sin γ+
·

[ 1
2π

∫

C(l,tan γ+)

w sin θ+(cos γ− + sinγ− ξ
ξ0

) + iw2

ξ0
cos γ + w cos γ+(sin γ− − cos γ− ξ

ξ0
)

iλ(ξ − tan γ+ξ0 + iw)(z + i(ξ − tan γ−ξ0)
dξ
]

These functions will be used when writing the system in the holomorphic domain.
For the integral on C(+) or on C(−), we can respectively change ξ±1 to ξ

cos γ±
, which
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imply ξ± = ξ0
cos γ±

. We check that the symbol associated with 1
2π

∫
C(−) changes to

2 sinγ−
sin θ− − sin γ−

1
2π

∫

C

w sin θ− − iw2

ξ0
− w cos γ− ξ

ξ0

cos γ−z + iξ

cos γ− dξ
iλ(ξ + iw cos γ−)

.

Note that

ξ0 − i sinγ−w =
cos2 γ−(z − w)(z + w)− (ξ − i cosγ−z)(ξ + i cosγ−z)

ξ0 + i sinγ−w

and that

w sin θ− − i
w2

ξ0
− w cos γ−

ξ

ξ0
=

w(sin θ− − sin γ−)− sinγ−
w

ξ0
(ξ0 − i sinγ−w) − w

ξ0
(ξ + i cos γ−w).

Hence

(w sin θ− − iw2

ξ0
− w cos γ− ξ

ξ0
)2 sinγ−w

sin θ− − sinγ−
=

2 sinγ−w +
2 sinγ−w

sin θ− − sin γ−
[− sinγ−

w

ξ0
(ξ0 − i sinγ−w) − w

ξ0
(ξ + i cos γ−w)],

the terms with ξ + i cosγ−w canceling in the integral, hence is left the calculus for
the residue at z cos γ− + iξ = (z + w) cos γ− + i(ξ + i cosγ−w).

The reflected solution ur,± is computed using the boundary condition, hence there
is a jump between u+(0, 0, t) and u−(0, 0, t) when z+(0) *= z−(0). It is thus necessary
to check that the integral on C(−) cancels with the source term (T0 ⊗ T1)(2∂−ui),
which is the case.

4.7. Inversion of the principal symbol

The inversion of the principal symbol of the system (114) and the compatibility
condition (115) is done in this paper following the proof of Croisille and Lebeau [16].
We may not use the argument proposed by Gérard and Lebeau (Section 5 of [20])
mainly because the system is not of the form Id−A, which was studied using a partial
Neumann series (called a Bremmer coupling series by M. Van de Hoop [22]).

We apply (T0 ⊗ T1) to the system (93). We use Proposition 4.5 and Proposition
4.6 for the microlocalisation of the left hand side of the system, and Proposition 4.9
for the microlocalisation of the right hand side. We notice that

(T0 ⊗ T1)(h+)(w, z, λ) = (T0 ⊗ T1)(2ψ∂+ui) + l+2 (w, z, λ) + l+3 (w, z, λ) + o+(w, z, λ)

(T0 ⊗ T1)(h−)(w, z, λ) = (T0 ⊗ T1)(2ψ∂−ui) + l−2 (w, z, λ) + l−3 (w, z, λ) + o−(w, z, λ).

with l±2 ∈ Hφ1(Wκ, H
±
1 ), l±3 ∈ Hφ1(Wκ, H

±
1 ). We seek a solution such that

F±, G±, G̃± ∈ Hφ0(Wκ, H
±
1 ). Remember that s±(w, z, λ) = (T0 ⊗ T1)(2ψ∂±ui) is

also known.
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Recall that the spaces Hσ, H±
σ are defined in (100). If ρ is small enough, we verify

that JρF± ∈ Hφ0(Wκ, H
±
2/3), JρG± ∈ Hφ0(Wκ, H

±
2/3),JρG̃± ∈ Hφ0(Wκ, H

±
2/3) and

that
Jρ(l±2 + l±3 + s± + o±(w, z, λ)) ∈ Hφ1(Wκ, H

±
2/3).

Moreover, the operators op(q±), op(i±,0), op(i±,1) send H±
σ into H±

σ (for σ = 1/3
or for σ = 2/3 for example(2)). The operators op(s±,∓), op(r±,∓,0) and op(r±,∓,0)
are regularizing; they send H∓

1
3

onto H±
2/3. Let us introduce the operators M± such

that
M±f(z) = f(cos γ±z).

The operators M± send exactly Hσ to H±
σ . We consider the operators, acting from

Hσ to Hσ′ , through the relations

I0(k)(g)(z) =
1
2π

∫

C

k2

ξ0

dξ
z + iξ

g(−iξ)

I1(k)(g)(z) =
1
2π

∫

C

ξ

ξ0

dξ
z + iξ

g(−iξ)

T 0(k)(g)(z) =
1
2π

∫

Γ

dξ
z + i(ξ cos γ + ξ0 sinγ)

k2

ξ0
g(−iξ) dξ

T 1(k)(g)(z) =
1
2π

∫

Γ

dξ
z + i(ξ cos γ + ξ0 sinγ)

(cos γ
ξ

ξ0
+ sin γ)g(−iξ) dξ

S(k)(g)(z) =
1
2π

∫

Γ

dξ
z + i(ξ cos γ + ξ0 sinγ)

(cos γ − sin γ
ξ

ξ0
)g(−iξ) dξ.

Hence the principal symbol of the operator of the system deduced from (112) by
considering only the equations on the quantities v±, u|∂O± , ∂tanu|∂O± and forgetting
the contribution of the corner is

(118) B(k) = M̃





I S(k) −I0(k) −I1(k) −T 0(k) −T 1(k)
−S(k) I −T 0(k) −T 1(k) −I0(k) −I1(k)
I 0 −ik sin θ+ 0 0 0
0 I 0 −ik sin θ− 0 0



M

where M̃ =
(
M+ M− M+ M−

)
and

M =





M−1
+

M−1
−

M−1
+

M−1
+

M−1
−

M−1
−




.

(2)A remark that will be interesting is that a certain combination of these operators will be invertible

in H±
σ for every σ.
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The principal term of this system was obtained by considering the unknowns

(T0 ⊗ T1)(ψφ1v+), (T0 ⊗ T1)(ψφ1v−), λ(T0 ⊗ T1)(ψφ1u|∂O+),

λ(T0 ⊗ T1)(ψφ1u|∂O−), (T0 ⊗ T1)(ψφ1∂tanu|∂O+), (T0 ⊗ T1)(ψφ1∂tanu|∂O−).

and this scaling of selected unknowns by λ leads to a well posed problem. We invert
the system of symbol equal to the principal symbol (118) and of right hand side equal
to L+, L−, 0, 0 up to regularizing terms. This system is thus to be inverted from
(H+
σ′ ×H+,1

σ′ ×H+
σ′)⊕ (H−

σ′ ×H−,1
σ′ ×H−

σ′) to (H+
σ ×H+,1

σ ×H+
σ )⊕ (H−

σ ×H−,1
σ ×H−

σ )
(with σ′ > σ). For k in a neighborhood of 1, we consider k = 1 and we denote by
ξ0 = (1 − ξ2)1/2. The choice of the square root is given by the analytic continuation
in C− [1, +∞[ of the square root of 1− iε− ξ2 of positive imaginary part. We prove
in this Section the proposition:

Proposition 4.10. — The system B(1)F = L admits an unique solution in H+
0 ×

H+
0 .

The main difference here with the method introduced in [16] is that the problem
considered is not the problem with straight boundaries, hence the spaces Hσ are not
the simple ones considered in [16], because we had to take into account the control
in Wκ of the position of the branching points (1 + µ2

+)1/2 and (1 + µ2
−)1/2, while in

[16] these branching points are always at 1/cosγ±.
We consider from now on the solution of the “principal system” B(1)F0 = L. Our

aim is to show that this system is invertible in (H+
0 ×H+,1

0 ×H+
0 )⊕(H−

0 ×H−,1
0 ×H−

0 ).
The result for k *= 1 and for the general system follows from the general results on
elliptic systems of the Section A of [20]. Notice that we removed from the solution
the incoming part of the diffracted wave, hence the + components of F0 are V+-
outgoing and the − components of F0 are V−-outgoing. Hence, L+(z) and L−(z)
are holomorphic in C − [i, i∞[. Introduce Rαφ(z) = φ(eiαz). The modified sources
RαL+ and RαL− are holomorphic in )z < 0. They belong to L. Let us introduce
the operator Bα, which is the operator associated with I0,1

α , I1,1
α , Sα, T 0,1

α , T 1,1
α

defined in Definition 2.1. Introduce the unknowns in (L × L1)2 that we denote by
(F+, F−, G+, G̃+, G−, G̃−). Let α0 be such that z±(0)eiα0 satisfies (4). For all α ∈
[0, α0], z±(0)eiα satisfies (4). Note that the choice of α0 = π/2 is not possible as in
[16] but the argument of [16] is valid.

From Corollary 2.2, the problem

(119)






Bα(1)F = RαL

Jρ(G̃+(w, z, λ)− G̃−(w, z, λ)) + λzJρ(G+(w, z, λ)−G−(w, z, λ))
= T0(u+(0, 0, t)− u−(0, 0, t))(w, λ)

admits an unique solution.
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In this system, we took into account the condition at the corner, which was removed
from the operator B(k). However, the system B(1)F = L has, regardless of the corner
condition, a unique solution.

We denote by Fα ◦Rα the solution of the problem (119) for α " α0. We have

Lemma 4.7. — The set of functions Fα defines without ambiguity an holomorphic
set of functions in

Uα0 = ∪0<α"α0{z, )(zeiα) < 0}.

Proof. — Let α ∈ ]0, α0]. The solution Fα◦Rα = [z 4→ Fα(eiαz)] belongs to (L×L1)2.
We have, by construction

F+,α(zeiα)− I0,1
α G+,α − I1,1

α G̃+,α

= L+(eiαz) + Sα(1)F−,α(zeiα) + R0,1
α G−,α(eiαz) + R1,1

α G̃−,α(eiαz)

= Z+(z),

F+,α(zeiα) = i sin θ+e−iαG+,α(zeiα).

The functions L+ and L− are holomorphic in C − [0, i∞[, hence z 4→ L±(ei(α+α′)z)
is holomorphic in )z < 0. The operators S(1) and R0,1, R1,1 are regularizing (send
functions of L to functions holomorphic in a larger domain equal to the union of a
bounded set of C and of {|z| ! A, Arg z ∈ [π2 − ε0,

3π
2 + ε0]}), hence Z+(zeiα′

) is
in L for α′ small. It is then enough to show that the operator on L1 defined by
[i sin θ+e−iα − I0,1

α ]G+,α − I1,1
α G̃+,α is characterized by an Hilbert projector, as p. 48

of [16].
We check, because of the relation, valid for G+,α being the Laplace transform of a

function of H1
0 (R+), that G̃+,α(−iξ) = iξG+,α(−iξ). This imply the relation

I0,1
α (G+,α)(z) + I1,1

α (G̃+,α)(z) =
1
2π

∫

R

dξ
z + iξ

( ie−2iαG+,α(−iξ)
ξα

− G̃+,α(−iξ)
ξ

ξα

)

=
1
2π

∫

R

dξ
z + iξ

i(e−2iα − ξ2)
ξα

G+,α(−iξ)

=
1
2π

∫

R

dξ
z + iξ

iξαG+,α(−iξ)

In this integral, we use the fact that G+,α is in L1, hence the behavior at infinity
of the symbol is correct. Hence we modify slightly the integral around 0, such that
we have

I0,1
α (G+,α)+ I1,1

α (G̃+,α) =
1
2π

∫

Dε

dξ
z + iξ

ξα
ξ

G̃+,α(−iξ)+
1
2π

∫

Bε

dξ
z + iξ

iξαG+,α(−iξ),

where ε > 0, Dε is ]−∞,−ε] ∪ [−εeiθ, 0 " θ " π] ∪ [ε, +∞[ and

Bε = [−ε, ε] ∪ [εe−iθ, 0 " θ " π].

The contribution of Bε gives the behavior at 0 when ε→ 0.
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We notice that F+α = ie−iα sin θ+G+,α. Moreover, as ξα = aα(ξ) + ibα(ξ), with
bα(ξ) > 0. As bα(ξ)aα(ξ) = − sinα cosα, if α is small, aα(ξ) < 0. The Lopatinskii
condition ) sin θ+ > 0 imply that sin θ+e−iα − ξα is never 0, and its real part is
bounded below by )(sin θ+e−iα). Hence, for α small, it is strictly positive.

The symbol of the Hilbert projector is non zero because sin θ±e−iα satisfies the
Lopatinskii condition. Hence the regularity of Z±(eiα′

z) imply the regularity of
G±,α(eiα′

z), G̃±,α(eiα′
z), F±,α(eiα′

z).

We know that G+,α is holomorphic in )(ze−iα−iα′
) < 0 for |α′| " ε. Hence,

deforming the contour of integration I0,1
α onto Reiα′

, we get that

I0,1
α (G+,α)(z) =

1
2π

∫

R

dζ

e−iα′z + iζ

e−2iα−iα′

ζα+α′
G+,α(eiα′

(−iζ))

=
1
2π

eiα′
∫

R

e−2i(α+α′)

ζα+α′

dζ

e−iα′z + iζ
G+,α(eiα′

(−iζ)).

This is the relation I0,1
α (G+,α)(zeiα′

) = eiα′
I0,1
α+α′(Rα′G+,α)(z). The other opera-

tors modify in a similar way. Hence we have

Bα+α′(1)(Rα′Fα)(zeiα′
) = Rα′Lα = Lα+α′

which means that Rα′Fα = Fα+α′ . We then showed that the solution of the problem
for α + α′ was the extension of the problem for α to the set )(zeiα+α′

) < 0, which
proves that we can superpose the solutions. The Lemma 4.7 is proven.

MÉMOIRES DE LA SMF 88



CHAPTER 5

CALCULUS OF THE DIFFRACTION COEFFICIENT

The calculus of the diffraction coefficient D(θ, γ+, γ−, θ+, θ−) of Theorem 1 is the
aim of this Section. This coefficient is obtained by comparing two coefficients, the
first one is the total diffraction coefficient (Section 5.2), and the second one is the
calculus of the diffraction coefficient included in ue(x, y, t) (calculated in Section 5.3).

This Section begins with a Proposition, used for computing the wave obtained by
the diffraction of a source on a half line. This result is used for the computation of ûe,
which is a sum of two terms of the form (∆+τ2)−1(f±(x, τ)1x>0⊗δ±+g±(x, τ)1x>0⊗
δ′±).

5.1. Diffraction by a curved antenna

Let f+(x, t) and g+(x, t) two distributions supported in the set t ! 0, 0 " x′,
(x′)2 + (a(x′))2 " t2. They are typically traces of distributions supported in (x′)2 +
(y′)2 " t2. Assume, moreover, that φ(t)f+ is in L2(R+ × R) and that φ(t)g+ is in
H1(R+ × R).

Let S+(x, y, t) be the forward outgoing solution generated by f+δ+ + g+δ′+:

S+(x, y, t) = (∆− ∂2
t2)

−1
+ [f+δ+ + g+δ

′
+].

Let us introduce
w0(x, y, τ) = − i

4π

∫

R

dξ
ξ0

ξ

ξ0
eixξ+iyξ0

for (x, y) such that (x, y, t) ∈ Ωε, t " ε1, y > 0. We denote by SG0(x, y, t) the inverse
Fourier transform in time at (x, y, t) ∈ Ωε of ĝ+(0, τ)w0(x, y, τ).

Proposition 5.1. — We have the following results.
• The distribution S+(x, y, t)− (∆− ∂2

t2)
−1
+ [ψl1f+δ+ +ψl1g+δ′+] is analytic in Ωε ∩

{t < ε1}.
• The distribution (∆ − ∂2

t2)
−1
+ [ψl1f+δ+ + ψl1g+δ′+] − SG0(x, y, t) is supported in

t ! 0, and, for ,τ < 0, its partial Fourier transform in time is of the form ST+(x, y, τ)
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equal to

− i

4π

∫
dξ

ei(x−x′)ξ−i(y−a(x′))ξ0

ξ0

∫ l1

0
ψl1(x

′) dx′
[
f̂+(x′, τ)(1 + (a′(x′))2)1/2

+ iĝ+(x′, τ)
τ2

ξ0
− ∂x′ ĝ+(x′, τ)

ξ

ξ0
− ĝ+(x′, τ)

ξ

ξ0
∂x′ψl1(x

′)
]

• Introduce

AT+(x, y, λ, τ) =
1

cos γ+
Ff+

(
− λτ x + tan γ+y

r
, λτ
)

− τ r

y
λFg+

(
− λτ x + tan γ+y

r
, λτ
)
− x

y
F(g′+)

(
− λτ x + tan γ+y

r
, λτ
)
.

There exists a constant C > 0 such that
∣∣∣ST+(x, y, λτ) − e−iλτr e3iπ/4√

8πλτ
r−1/2AT+(x, y, λ, τ)

∣∣∣ " λ−1Ceλ*τr.

• For w ∈ C such that −)w < 0, we have

T0(∆− ∂2
t2)

−1[1x′>0ψf ⊗ δ+ + ψg1x′>0 ⊗ δ′+](w, x, y, λ) 3

eλτ
2/2 e3iπ/4

(8πλτ)1/2
Ŝ
(
λτ

x + ay

r
,−λτ x

r
,−λτ y

r
, λτ
)
|τ=i(w−r)

Proof. — The support in time of S+ is contained in t ! 0, because the fundamental
outgoing solution is supported in t ! 0. Hence the partial Fourier transform in
time Ŝ+(x, y, τ) is holomorphic in ,τ < 0. We have, denoting by σ+(x′, τ, ξ, η) =
f̂+(x′, τ)(1 + (a′(x′))2)1/2 + iĝ+(x′, τ)(η − a′(x′)ξ)

Ŝ+(x, y, τ) =
1

(2π)2

∫

R2×R+

dξ dη dx′ ei(x−x′)ξ+i(y−a(x′))η

τ2 − ξ2 − η2
σ+(x′, τ, ξ, η)

We introduce the notation α = y−a(x′)
|y−a(x′)| when y *= a(x). We assume ,τ < 0 and,

for ξ ∈ R, we introduce as before ξ0 = (τ2 − ξ2)1/2,,ξ0 > 0. As in Section 4.2,
the residue theorem selects the contribution of the pole in η located in the region
,(η(y − a(x′)) > 0, hence we have η = αξ0 and the residue is 2πiα. Hence

Ŝ+(x, y, τ) = − i

4π

∫

R×R+

dξ dx′ ei(x−x′)ξ+i|y−a(x′)|ξ0

ξ0
σ+(x′, τ, ξ, ξ0)

Introduce l1 > 0 and ψl1(x) a C∞
0 (R) function, such that ψl1 ≡ 1 on [−l1/2, l1/2],

ψl1 ≡ 0 on |x| ! l1. From Lemma 4.1, the contribution of

r(x, y, t) = S+(x, y, t)− (∆− ∂2
t2)

−1
+ [ψl1f+δ+ + ψl1g+δ

′
+]

is negligible for the contribution on the front t = r. Let y > 0 be given. There exists
l01 such that, for l1 " l01 and x′ ∈ suppψl1 ∩R+, y ! a(x′). Hence α = 1 for y, x′. We
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reduce to the evaluation of

Ŝ+(x, y, τ)− r̂(x, y, τ) = − i

4π

∫

R×R+

dξ
ei(x−x′)ξ+i(y−a(x′))ξ0

ξ0
ψl1(x

′)σ+(x′τ, ξ, ξ0)

The method of the Section 4.2 applies to the calculation of this integral using
symbols bounded in L2(Rξ). We shall use the two different equalities. Two ideas may
apply, because the form of the denominator has to be chosen in the integral, as we
see here.

(ξ0 − a′(x′)ξ)2 + (ξ + a′(x′)ξ0)2 = τ2(1 + (a′(x′))2)
i(ξ0 − a′(x′)ξ)ξ0 = iτ2 − iξ(ξ + a′(x′)ξ0).

and this yields two different forms of Ŝ+(x, y, τ) − r̂](x, y, τ) as follows. Making use
of the first equality, we get

(120) Ŝ+(x, y, τ) − r̂(x, y, τ) = − i

4π

∫

R×R+

dξ dx′ ei(x−x′)ξ+i(y−a(x′))ξ0

ξ0
ψl1(x

′)

×
(
f̂+(x′, τ)(1 + (a′(x′))2)1/2 + iĝ+(x′, τ)

τ2(1 + (a′(x′))2)
ξ0 − a′(x′)ξ

)

− i

4π

∫

R×R+

dξ dx′ ∂x′ [ei(x−x′)ξ+i(y−a(x′))ξ0 ]
ξ0

ψl1(x
′)ĝ+(x′, τ)

ξ + a′(x′)ξ0
ξ0 − a′(x′)ξ

.

From the second equality, we obtain

(121) Ŝ+(x, y, τ) − r̂(x, y, τ) = − i

4π

∫

R×R+

dξ dx′ ei(x−x′)ξ+i(y−a(x′))ξ0

ξ0
ψl1(x

′)

×
(
f̂+(x′, τ)(1 + (a′(x′))2)1/2 + iĝ+(x′, τ)

τ2

ξ0

)

+
i

4π

∫

R×R+

dξ dx′ ∂x′ [ei(x−x′)ξ+i(y−a(x′))ξ0 ]
ξ0

ψl1(x
′)ĝ+(x′, τ)

ξ

ξ0
.

Introduce

H+(x′, ξ, τ) =

ψl1(x
′)
(
f̂+(x′, τ)(1 + (a′(x′))2)1/2 + ĝ+(x′, τ)

iτ2

ξ0

)
− ∂x′(ψl1(x

′)ĝ+(x′, τ))
ξ

ξ0
.

We perform an integration by parts in x′ on the last term of (121), which gives

Ŝ+(x, y, τ) − r̂(x, y, τ) = − i

4π

∫

R×R+

dξ dx′ ei(x−x′)ξ+i(y−a(x′))ξ0

ξ0
H+(x′, ξ, τ)

− i

4π

∫

R

dξ
eixξ+yξ0

ξ0
ĝ+(0, τ)

ξ

ξ0
.

Note that the term involving ĝ+(0, τ) in (120) is
( i

4π

∫
dξ
ξ0

eixξ+iyξ0 ξ + tan γ+ξ0
ξ0 − tan γ+ξ

)
ĝ+(0, τ)
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which has the same behavior as − i
4π

∫
dξ eixξ+yξ0

ξ0
ĝ+(0, τ) ξξ0 when ξ → ±∞. This

term cancels with the same term arising in Ŝ−(x, y, τ) when ĝ−(0, τ) = ĝ+(0, τ). We
get

Ŝ+(x, y, τ) − r̂(x, y, τ) = − i

4π

∫
dξ
ξ0

∫ ∞

0
dx′ eixξ+iyξ0e−ix′ξ−ia(x′)ξ0H+(x′, ξ, τ)

− i

4π

∫
dξ

eixξ+yξ0

ξ0
ĝ+(0, τ)

ξ

ξ0

and we denote by

J+(ξ, τ) =
∫ ∞

0
e−ix′ξ−ia(x′)ξ0H+(x′, ξ, τ) dx′.

Define φ(ξ) = xξ + yξ0. We verify that φ′(ξ) = x − yξ/ξ0 and φ′′(ξ) = −yτ2/ξ30 .
The phase φ admits a critical complex point at ξ/ξ0 = x/y, that is, using ,τ < 0 and
,ξ0 > 0, ξ = −τx/r, which comes from ξ0 = −τy/r. The contour of integration on
ξ is R. We deform this contour on Σ = {,ξ = −,τ x/r}. As y > 0, we verify that
we do not cross the branching points when deforming the contour because |x|/r < 1.
For l2 > 0 given, we divide Σ into Σl2 = Σ∩ {|ξ+ τx/r|} and Σ\Σl2 . For ξ ∈ Σl2 , we
have ξ0 = −τy/r + O(l2), which implies that there exists a constant r0 > 0 such that

∀ ξ ∈ Σ− Σl2 , |,φ(ξ) + r,τ | > r0l2.

This constant r0 is graphically estimated. In fact, τ2− ξ2 = τ2 y2

r2 −u2 +2x
r τu, which

describes a parabola, and the zone |u| ! l2 excludes on this parabola a neighborhood
of τ2y2/r2 of size r′0l2 (we are not at the minimum of the parabola), hence on the
square root of this curve we exclude a neighborhood of size r0l2 (same reason).

We then link the constants l1 used for the definition of Ŝ+− r̂ and this constant l2
such that r0l2 < l1. As there exists C such that

max
( ∫ +∞

0
|f̂+(x′, λτ)|2 dx′,

∫ +∞

0
λ2|ĝ+(x′, λτ)|2 dx′,

∫ +∞

0
|∂x′ ĝ+(x′, λτ)|2 dx′

)
" C,

the contribution of Σ\Σl2 in Ŝ+− r̂ is exponentially decreasing compared with e−λ*τr.
We reduce then to the study of the integral on Σl2 . We have immediately, for ξ ∈ Σl2 ,

ξ + tan γ+ξ0 = −τ
(x
r

+ tanγ+
y

r

)
+ O(l2).

We assume

(122) (x, y, t) ∈ Ωε.

We write

Ŝ+(x, y, λτ) − r̂+(x, y, λτ) =
∫

dξ
ξ0

eiλ(xξ+yξ0)J+(λξ, λτ).
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We study J+(λξ, λτ). We have

J+(λξ, λτ) =
∫ ∞

0
e−iλx′ξ−iλa(x′)ξ0H+(x′, λξ, λτ) dx′

=
∫ ∞

0
e−iλx′ξ−iλ tan γ+ξ0−iλ(a(x′)−a′(0)x′)ξ0H+(x′, λξ, λτ) dx′.

We then check that cos(θ−γ+)
cos γ+

" cos ε
cos γ+

. We denote by D0 a constant such that

∀ ξ ∈ Σl2 ,
∣∣∣ξ + tan γ+ξ0 + τ

(x
r

+
y

r
tan γ+

)∣∣∣ " D0l2.

For l2 " 1
D0

( cos ε/3−cos ε
cos γ+

)(−,τ) we have

∀ ξ ∈ Σl2 , ,(ξ + tanγ+ξ0) < −,τ cos ε/3
cos γ+

.

We choose s such that supξ∈Σl2
,(ξ + tan γ+ξ0) < s < −*τ cos ε/3

cos γ+
. We use

Lemma 5.1. — For all c0 > cos γ+, there exists l1 > 0 such that the Fourier trans-
forms F(ψl1f+)(λτ, λξ′), F(ψl1g+)(λτ, λξ′), F(ψl1∂x′g+)(λτ, λξ′) can be extended
holomorphically to the domain ,ξ′ < −,τ/c0, where the following estimates hold

sup
λ

sup
s<−*τ/c0

∫

Rξ′−is
|F(ψl1f+)(λτ, λξ′)|2 dξ′ < +∞,

sup
λ

sup
s<−*τ/c0

∫

Rξ′−is
|λ2F(ψl1g+)(λτ, λξ′)|2 dξ′ < +∞,

sup
λ

sup
s<−*τ/c0

∫

Rξ′−is
|F(∂x′(ψl1g+))(λτ, λξ′)|2 dξ′ < +∞.

Proof. — This behavior and these estimates comes from the fact that f+(x′, t) = 0
for (x′)2 + (a(x′))2 > t2 because of the finite speed of propagation. As we have
a(x′) = (tan γ+ +O(l1))x′ for x′ " l1, we get that the support of f+(x′, t) is contained
in (x′)2(1 + tan γ2

+) + O(l1) " t, which is ( x′

cos γ+
)2(1 + O(l1)) " t2. As c0 > cos γ+,

there exists l11 such that 1+O(l1)
cos2 γ+

< 1/c2
0 for l1 " l11, which imply that the support

of f+ is contained in x′ " c0t. The Fourier transform of a function whose support
is contained in x′ ! 0, t ! 0 extends holomorphically to ,ξ′ < 0, ,τ < 0 (by
the Paley-Wiener theorem), and the Fourier transform of a function supported for
x′ − c0t " 0 extends holomorphically to ,ξ′ < −,τ/c0. We apply the Paley-Wiener
theorem on the distribution Lf+(u, t) = f+(c0t − u, t), supported in u ! 0, which
Fourier transform in u, t writes FLf+(U, τ) = Ff+(−U, τ + c0U). The distribution
Ff+ belongs to L2(U, τ) on each line ,U < 0 .
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Return to the proof of Proposition 5.1. Using the inverse Fourier transform of
H+(x′, λξ, λτ), we have the equality

H+(x′, λξ, λτ) =
λ

2π

∫

Rξ′−is
dξ′eiλx′(ξ′−ξ−tan γ+ξ0)e−iλ(a(x′)−a′(0)x′)ξ0

·
[
F((1 + (a′(x′))2)1/2ψl1 f̂+)(λξ′, λτ) + F(ψl1(x

′)ĝ+)(λξ′, λτ)
iτ2

ξ0

−F(∂x′(ψl1(x
′)ĝ+(x′, τ)))(λξ′, λτ)

ξ

ξ0

]
.

We have thus

J+(λξ, λτ) =

λ

2π

∫ l1

0
dx′
∫

Rξ′−is
dξ′eiλx′(ξ′−ξ−tan γ+ξ0)−iλ(a(x′)−a′(0)x′)FH+(λξ′, λξ, λτ).

We expand e−iλ(a(x′)−tan γ+x′)ξ0 in the neighborhood of x′ = 0. We have

J+(λξ, λτ) 3 λ

2π

∫ l1

0

∫

R−is
dt eix′(t−ξ−tan γ+ξ0)

·
∑

m"λ/C

(x′)m

m!
FH+(λt, λξ, λτ)

(∂x′

λ

)m[e−iλ(a(x′)−tan γ+x′)ξ0 ].

Hence, using

λ

2π

∫

R−is
eix′(t−ξ−tan γ+ξ0) (x′)m

m!
FH+(λt, λξ, λτ) = im

∂m
t H+

m!
(λ(ξ + tan γ+ξ0), λξ, λτ)

we obtain

J+(λξ, λτ) 3
∑

m" λ
C

im

m!
(∂x′

λ

)m[e−iλ(a(x′)−tan γ+x′)ξ0 ]∂m
t FH+(λ(ξ + tan γ+ξ0), λξ, λτ).

We apply the stationary phase lemma in the relation

Ŝ+(x, y, λτ) − r̂(x, y, λτ) = − i

4π

∫

Σl2

dξ
ξ0

eiλ(xξ+yξ0)J+(λξ, λτ) + r1(x, y, λτ).

The critical point of xξ + yξ0 is ξc = −τx/r, with φ′′(ξc) = r
τ

r2

y2 , φ(ξc) = −τr,
ξc
0 = −τy/r, which gives

Ŝ+(x, y, λτ) 3 − i

4π
(2π
r2
λτy2
)1/2

eiπ/4e−iτr
∑

m" λ
C ,p" λ

C

αp,m(x, y, τ)λ−pτ−pλ−m

3 e−iτre3iπ/4 1√
8πλτr

∑

m,p" λ
C

αm,p(x, y, τ)λ−m−pτ−p.
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We identify

α0,0(x, y, τ) = J+(−λτ x

r
, λτ)

3 FH+(−λτ(x

r
+

y

r
tan γ+),−τ x

r
, λ)

3 1
cos γ+

Ff+(−λτ cos(θ − γ+)
cos γ+

, λτ)− iλτ
r

y
Fg+(−λτ cos(θ − γ+)

cos γ+
, λτ)

− x

y
F(g′+)(−λτ cos(θ − γ+)

cos γ+
, λτ).

This ends the proof of Proposition 5.1, which is used to compute the contribution
of the source on each half-boundary, et precisely from the point (0, 0).

In the following Section, we use the result of J.M. Bernard and other authors to
identify the total diffraction coefficient.

5.2. Calculus of the total diffraction coefficient

In the case of the Dirichlet boundary condition the problem of the diffraction of
an incident wave by a straight wedge was solved explicitly by Garnir [19]. This was
possible because the Green function of this problem could be computed by a change of
variables. However, in the case of a mixed boundary condition, such an explicit form
of the Green function is not known. Many authors, following Maliuzinetz [30], have
given a form of the diffraction coefficient, among them J.M. Bernard [5], D. Bouche
[9] and we present this method here. Let ui be a plane incident wave

ui(x, y, t) =
∫ +∞

−∞
eiτ(t−x)σ0(τ) dτ.

They obtained the

Proposition 5.2. — The diffracted wave generated by a straight wedge with the
boundary condition ∂nu − sin θ±u = 0 on each face admits an asymptotic expansion,
and we have

ud(x, y, t) =
∫ +∞

−∞
σ+

r (τ)eiτ(t−x cos 2γ+−y sin 2γ+) dτ

+
∫ +∞

−∞
σ−r (τ)eiτ(t−x cos 2γ−−y sin 2γ−) dτ +

∫ +∞

−∞
σd(r, τ)eiτ(t−r) dτ

We have

σd(r, τ) = σ0
0(τ)

D(θ, γ+, γ−, θ+, θ−)eiπ/4

(2πτr)1/2

The diffraction coefficient is computed through a special function Ψ that is given below
in (124).
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This method is valid for the Helmholtz equation, and we denote also by “wave” the
Fourier transform of the waves we studied.

The incident wave considered by Bernard [5] is ui(r, θ, k) = u0eikr cos(θ−θ0), and we
represent the solution of the diffraction problem in ]− γ/2, γ/2[ as

u(r, θ, k) =
1

2πi

∫

C
f(α+ θ)eikr cosα dα.

Under the assumption θ0 = 0, we check that

1
2π

∫ +∞

−∞
ui(r, θ, k)(1 + |k|2)−2e−ikt dk

is the conjugate of an analytic conormal wave ui(x, y, t), where the function θi(x, y) is
x and the symbol is σi(x, y, k) = u0/(1 + |k|2)2, which satisfies the hypotheses on σi

and θi. If we obtain the function f solution of the problem stated by J. M. Bernard,
the linearity of the Helmholtz operator shall lead to a solution of the problem (6) with
such an ui. The purpose of this paragraph is to give the construction of f associated
with an incident plane wave. The function f is assumed to verify the two relations

i) f(α)− u0/(α− θ0) is regular for |)α| " γ/2
ii) |f(α)− f(±i∞)| " e−c|*α| for ,α→ ±∞.
If the solution u of the diffraction problem satisfies i) and ii), the function f verifies

the functional equality:

(123) (sinα± sin θ±)f(α± γ/2)− (− sinα± sin θ±)f(−α± γ/2) = 0.

We need only to check that i) and ii) are satisfied for the solution of the problem we
study. Maliuzinetz [31] gives an inversion formula for f in terms of u. A solution
in terms of special functions has been found by Maliuzhinets in his PhD thesis and
can be found in [30]. Simple expressions of the special function involved were given
by Senior and Volakis [36] and Molinet [33], and the following formula is found in
Bouche and Molinet [9]. A review of the history of the results on the diffraction by a
wedge is given in [6]. We outline the expression below.

Let γ = γ+ − γ−. We introduce a function Ψγ :

(124) Ψγ(u) =
(
cos

πu

4π − 2γ
)1/2 exp

(2π − γ
π2

∫ 1

0

ln(1 + t2 tan2 πu
4π−2γ )

(1− t2) cosh(4π−2γ
π argtht)

dt
)
.

We consider the function (expressed both with the angle of the wedge we consider
γ and the exterior angle to the wedge γ̃ = 2π − γ = nπ) :

Ψ(α) = Ψγ(α+
γ̃

2
+
π

2
−θ+)Ψγ(α−

γ̃

2
− π

2
+θ−)Ψγ(α−

γ̃

2
+
π

2
−θ−)Ψγ(α+

γ̃

2
− π

2
+θ+),

Ψ(α) = Ψγ(α+
γ

2
−3π

2
+θ+)Ψγ(α+

γ

2
−π

2
−θ−)Ψγ(α−

γ

2
+

3π
2
−θ+)Ψγ(α−

γ

2
+
π

2
+θ−).
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We verify that the angles introduced in [9] are





Φ′ − nπ

2
=
γ

2
− γ+

Φ = θ − γ−
Φ− πn

2
+ π = θ − γ− +

γ

2
Φ− πn

2
− π = θ − γ− +

γ

2
− 2π

which leads to the relations

(125) Ψ(Φ− nπ

2
− π) = Ψγ(θ − γ− − θ+ − π

2
)Ψγ(θ − γ+ − θ+ − 7π

2
)

×Ψγ(θ − γ− + θ− − 3π
2

)Ψγ(θ − γ+ + θ− − 5π
2

)

(126) Ψ(Φ− nπ

2
+ π) = Ψγ(θ − γ− − θ+ +

3π
2

)Ψγ(θ − γ+ − θ+ − 3π
2

)

×Ψγ(θ − γ− + θ− +
π

2
)Ψγ(θ − γ+ + θ− − π

2
).

The diffraction coefficient is then

D(θ, γ+, γ−, θ+, θ−)eiπ/4

√
2πkr

with

(127) D(θ, γ+, γ−, θ+, θ−)Ψ(
γ

2
− γ+) =

Ψ(θ − γ++γ−
2 − 2π)

cos(π
2+π(θ−γ+)

2π−γ )− cos(π
2−πγ+
2π−γ )

−
Ψ(θ − γ++γ−

2 )

cos(π
2−π(θ−γ+)

2π−γ )− cos(π
2−πγ+
2π−γ )

.

This function depends on the angles θ − γ+ and θ − γ−. We check that Ψ(θ − γ+) is
equal to Ψ(θ− γ−) when we exchange the Brewster angles of the faces + and −. We
notice that the special function which gives the diffraction coefficient is solution of
the functional relation (123). Note that finding a solution of the functional relation
(123) is closely related with the inversion of B(k).

From Maliuzhinets, we check that the diffraction coefficient has poles. We get
(from [30]) the relation (where γ̃ = 2π − γ denotes the exterior angle of the wedge)

Ψγ(z ± (γ̃ + 3π/2)) = ± sin
π(π ± z)

2γ̃
1

sin(πz/2γ̃)
Ψγ(γ̃ − π/2 ± z).

Hence the poles of Ψγ are z = ±(γ̃ + 3π/2).
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We thus deduce that the poles of Ψ are given by the list





α = θ+ + π + γ̃/2
α = θ+ − 2π − 3γ̃/2
α = −θ− + 2π + 3γ̃/2
α = −θ− − π − γ̃/2
α = θ− + π + 3γ̃/2
α = θ− − 2π − γ̃/2
α = −θ+ + 2π + γ̃/2
α = −θ+ − π − 3γ̃/2.

As we consider Ψ at the points Φ − γ̃/2 ± π, the list of poles of the diffraction
coefficient is given by the following angles






Φ = ±π + γ̃ + θ+ + π
Φ = ±π − γ̃ + θ+ − 2π
Φ = ±π + 2γ̃ − θ− + π
Φ = ±π − θ− − π
Φ = ±π + 2γ̃ + θ− + π
Φ = ±π + θ− − 2π
Φ = ±π + 2γ̃ − θ+ + 2π
Φ = ±π − θ+ − π − γ̃.

We recover θ by Φ = θ − γ− and Φ + γ̃ = 2π + θ − γ+.
In particular, for admissible angles and assuming that the angle γ̃ ∈ ]π, 2π[, we

obtain Φ = θ− − π or Φ = −θ− and Φ + γ̃ = θ+ − π and Φ + γ̃ = −θ+. These angles
are complex when ,z+(0) *= 0 or ,z−(0) *= 0.

Corollary 5.1. — When ,z+(0) = 0 or ,z−(0) = 0, we obtain the singular direc-
tions of Proposition 3.1.

5.3. Calculus of ue

The aim of this section is to compute the principal symbol of ue, which is obtained
by

(∆− ∂2
t2)

−1(∂+u+1x′!0 ⊗ δ+ + ∂−u−1x′!0 ⊗ δ− + u+1x′!0 ⊗ δ′+ + u−1x′!0 ⊗ δ′−).

We write
ue(x, y, t) = u+

e (x, y, t) + u−
e (x, y, t)

with

u+
e (x, y, t) = (∆− ∂2

t2)
−1[1x>0∂+u+(x′, t′)⊗ δ+ + u+(x′, a(x′), t′)⊗ δ′+].

We prove in this section the
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Lemma 5.2. — There exists symbols σ±(x, y, τ), p±(x, τ), q±(x, τ), q̃±(x, τ), satis-
fying the inequality (2), such that

u±(x, y, t) =
1
2π

∫
σ±(x, y, τ)eiτ(t−θ±(x,y)) dτ

∂+u+(x, t) =
1
2π

∫
iτp+(x, τ)eiτ(t−θa(x)) dτ

u+(x, a(x), t) =
1
2π

∫
q+(x, τ)eiτ(t−θa(x)) dτ

∂x[u+(x, a(x), t)] =
1
2π

∫
iτ q̃+(x, τ)eiτ(t−θa(x)) dτ

∂−u−(x, t) =
1
2π

∫
iτp−(x, τ)eiτ(t−θb(x)) dτ

u−(x, b(x), t) =
1
2π

∫
q−(x, τ)eiτ(t−θb(x)) dτ

∂x[u−(x, b(x), t)] =
1
2π

∫
iτ q̃−(x, τ)eiτ(t−θb(x)) dτ

Note that u±(0, 0, t) = 1
2π

∫
σ±(0, 0, τ)eitτ dτ .

This is a consequence of the relations (1), (11), (16). We obtain

σ±(x, y, τ) = σi(x, y, τ) − σz
±(x, y, τ)

p+(x, τ) =
∂+σ+

iτ
− ∂+θ+σ+(x, a(x), τ)

p−(x, τ) =
∂−σ−

iτ
− ∂−θ−σ−(x, a(x), τ)

q+(x, τ) = σ+(x, a(x), τ)

q−(x, τ) = σ−(x, b(x), τ)

q̃+(x, τ) = −∂xθ+ + a′(x)∂yθ+
(1 + (a′(x))2)1/2

σ+(x, a(x), τ) +
1
iτ

∂xσ+ + a′(x)∂yσ+

(1 + (a′(x))2)1/2

=
a′(x)

(1 + (a′(x))2)1/2
p+(x, τ) + (1 + (a′(x))2)1/2[

∂xσ+

iτ
− ∂xθ+q+(x, τ)]

q̃−(x, τ) = −∂xθ− + b′(x)∂yθ−
(1 + (b′(x))2)1/2

σ−(x, b(x), τ) +
1
iτ

∂xσ− + b′(x)∂yσ−
(1 + (b′(x))2)1/2

For example, we get, for p+(x, τ)

p+(x, τ) =
−2∂+θiz+(x)

z+(x)− ∂+θi(x)
σi(x, a(x), τ) +

1
iτ

[∂+σi − ∂+σ
z
+](x, τ).

Similarly,

u+(x, a(x), t) =
1
2π

∫

R

dτ eiτ(t−θi(x,a(x)))(σi − σz
+)(x, a(x), τ) dτ.
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Let us assume now

ue(x, y, t) = ue,+(x, t) + ue,−(x, y, t) + ue,d(x, y, t)

=
1
2π

∫ +∞

−∞
eiτ(t−θ+(x,y))σe,+(x, y, τ) dτ +

1
2π

∫ +∞

−∞
eiτ(t−θ−(x,y))σe,−(x, y, τ) dτ

+
1
2π

∫ +∞

−∞
eiτ(t−r)σe,d(x, y, τ) dτ.

As (x0, y0) ∈ Ωε satisfies θ±(x0, y0) *= r0, there exists a neighborhood W+ of
−i + θ+(x0, y0), a neighborhood W− of −i + θ−(x0, y0), and a neighborhood W of
−i + r0 such that W ∩W+ = W ∩W− = ∅. We thus consider w ∈ W . The relation
T0v(w, x, y, λ) =

(
λ
2π

)1/2 ∫∞−ia0

−∞−ia0
eiλτw−λτ2/2v̂(x, y, λτ) dτ will allow us to compute

the symbol associated with ue. Owing to the fact that the Fourier transform in time
of a wave conormal analytic is known, we get

T0ue,±(w, x, y, λ) = e−
λ
2 (w−θ±(x,y))2

∑

n"λ/C

1
(2λ)nn!

∂2nσe,±

∂τ2n
(x, y, iλ(w − θ±(x, y))),

T0ue,d(w, x, y, λ) = e−
λ
2 (w−r)2

∑

n"λ/C

1
(2λ)nn!

∂2nσe,d

∂τ2n
(x, y, iλ(w − r)).

The parametrix of the wave operator in the neighborhood of a point (x0, a(x0)), x0 > 0
allow us to compute the solution on Σr,+, and it coincides with u+. This will give the
asymptotic behavior of the term obtained when the source term of the forward wave
equation is (1−ψ)S. To apply Proposition 5.1, we compute the Fourier transform of
ψS using the phase function −iτθ+(x′, a(x′)). We have

Lemma 5.3. — The Fourier transform in x′ of the symbol

S(x′, ξ, ξ0, τ) = iτ l(x′, ξ, ξ0, τ)ψ(x′)1x′!0e
−iτθ+(x′,a(x′))

is defined and admits, for ξ′ *= −τ , an asymptotic expansion of the form
∑ Sp(ξ′, ξ, ξ0, τ)

(ξ′ + τ)p+1

where Sp is a polynomial function of order at most p in ξ′ and such that

S0(ξ′, ξ, ξ0, τ) = iτ l(0, ξ, ξ0, τ).

In particular, if we consider

S(x′, ξ, ξ0, τ) = ∂+u+(x′, τ) + iu+(x′, a(x′), τ)
ξ − a′(x′)ξ0

(1 + (a′(x′))2)1/2
,

we have

S0(ξ′, ξ, ξ0, τ) =
2iτ sinγ+σi(0, 0, τ)

sin θ+ + sin γ+
[sin θ+ + cos γ+

ξ

τ
− sin γ+

ξ0
τ

].
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We deduce the

Proposition 5.3. — We have

D(θ, γ+, γ−, θ+, θ−) =

D+(θ, γ+, γ−, θ+, θ−) + D−(θ, γ+, γ−, θ+, θ−) + Dd(θ, γ+, γ−, θ+, θ−),

the two diffraction coefficients D+ and D− (computed by the diffraction of the two
faces) are

D+(θ, γ+, γ−, θ+, θ−) = − sin γ+ cos γ+

cos γ+ − cos(θ − γ+)
(sin θ+ − cos(θ − γ+))

D−(θ, γ+, γ−, θ+, θ−) = − sin γ− cos γ−
cos γ− − cos(θ − γ−)

(sin θ− − cos(θ − γ−)).

We have

Dd(θ, γ+, γ−, θ+, θ−) =
i

2
e−k/2

[F+(−i, i cos(θ−γ+)
cos γ+

, k) + F−(−i, i cos(θ−γ−)
cos γ−

, k)]
σi(0, 0, k)

.

Corollary 5.2. — The diffraction coefficient Dd = D−D+−D− is not equal to 0.
The diffraction by the wedge is thus not the superposition of the diffraction by the
two antennas. There is a contribution, not equal to 0, from the point (0, 0).

Proof of the Lemma and of the Corollary. — It is easy to check that there exists
l(x′, ξ, ξ0, τ) such that

ψS(x′, ξ, ξ0, τ) = iτ l(x′, ξ, ξ0, τ)ψ(x′)e−iτθ+(x′,a(x′)).

The term l is equal to

l(x′, ξ, ξ0, τ) = s+(x′, τ) + (σi − σ+
z )(x′, a(x′), τ)

ξ − a′(x′)ξ0
τ(1 + (a′(x′))2)1/2

.

We check that

l(0, ξ, ξ0, τ) = −(1 + O(τ−1))
2∂+θi(0)σi(0, 0, τ)
z+(0)− ∂+θi(0)

[
z+(0) + cos γ+

ξ

τ
− sin γ+

ξ0
τ

]

Denote by M the operator

MF (x′) =
∂

∂x′

[ F (x′)ψ(x′)
ξ′ + τ [∂xθ+ + a′(x′)∂yθ+](x′, a(x′))

]
.

The Fourier transform F(ξ′, ξ, ξ0, τ) of S is

F(ψS1x′!0)(ξ′, ξ, ξ0, τ) =
∫ l1

0
F (x′)ψ(x′)e−iτθ+(x′,a(x′))−ix′ξ′ dx′.
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Usual integration by parts leads to the formula, owing to ψ(j)(l1) = 0 for all j ! 0

F(ψS1x′!0)(ξ′, ξ, ξ0, τ) =
p=N∑

p=0

(−i)p MpF (0)
ξ′ + τ

+ (−i)N

∫ l1

0
MNF (x′)e−iτθ+(x′,a(x′))−ix′ξ′ dx′.

We note that MpF (0)
ξ′+τ is a classical symbol in the variables (ξ′, τ), of order −p−1. We

thus gave an asymptotic expansion of the symbol of F(ψS1x′!0). The leading order
term of the asymptotic expansion of the symbol of F(ψS1x!0) is given by

S0(ξ′, ξ, ξ0, τ) =
iτσ+(0, 0, τ)
ξ′ + τ

[
cos γ+

ξ

τ
− sin γ+

ξ0
τ

+ sinγ+

]
.

We obtained the leading order term of the symbol as
2iτ sin γ+σi(0, 0, τ)

(ξ′ + τ)(sin θ+ + sinγ+)
[
sin θ+ + cos γ+

ξ

τ
− sin γ+

ξ0
τ

]

From Proposition 5.1, we get

ξ′ = −τ x + ay

r
= −τ cos(θ − γ+)

cos γ+
, ξ = −τ cos θ, ξ0 = −τ sin θ.

The result of Proposition 5.3 follows.

5.4. Proof of Theorem 1

We consider the system of unknowns written in Section 4 in (93) and (94). It
has been shown that u± ∈ H1

loc(R
2 × Rt) and that f̃± ∈ L2

loc(∆±) with support in
{0 " x " Ct}.

We introduce L± = Jρ(2φ2ψ∂±ui + l±2 + l±3 + o± + (T0 ⊗ T1)(r̃±)). We notice that
f± − z±(x)∂tg±(x) = z±(x)[u − u±](x)φ′1(t), hence it is supported outside t = 0.
We introduce RE± = o′± + Jρ(T0 ⊗ T1)(z±(x)[u − u±](x)φ′1(t)), the terms o′± are
the difference Jρ[(T0 ⊗ T1)(z±∂tg±)] − iλ op(z±)(T0 ⊗ T1)g±. The system (94) of
Proposition 4.8 yields

(128) Jρ op(b)J−1
ρ





JρF+
JρF−
JρG+
JρG−

JρG+

JρG−



 =

(
L+
L−

RE+
RE−

)

Note that

(T0 ⊗ T1)(h+) = (T0 ⊗ T1)(2ψφ1∂+ui) + l+2 + l+3 +
∑

n"λ/C

rn(w, λ)
(z + w)n+1

+ r

where r is negligible in Hφ0(Wκ, HU ) (Sjöstrand space defined by Definition 2.2. of
[20] p. 350) and where rn satisfies the inequality

|rn(w, λ)| " Deλφ1(w)[θ(C)]n

MÉMOIRES DE LA SMF 88



5.4. PROOF OF THEOREM 1 117

with θ(C) → 0 if C →∞.
The elements L± belong to Hφ1(Wκ, H

±
2/3). The unknowns JρF±, JρG±, JρG̃± are

in Hφ0(Wκ, H
±
2/3). The symbols s̃±,∓ = Jρs±,∓J−1

ρ , r̃±,∓,0 = Jρr±,∓,0J−1
ρ , r̃±,∓,1 =

Jρr±,∓,1J−1
ρ are defined from H∓

1/3 to H±
2/3. The symbols q̃± = Jρq±J−1

ρ , ĩ±,1 =
Jρi±,1J−1

ρ , ĩ±,0 = Jρi±,0J−1
ρ are defined from H∓

1/3 to H±
1/3. This system is thus in

the chain of spaces H+
σ ⊗H−

σ , σ ∈ [1/3, 2/3].
The principal symbol of L±, denoted by L0

±, is given by

L0
±(w, z, λ) = λwJρ(SI±)σi(0, 0, iλw)e−

λ
2 w2

.

The theorem 1 is a consequence of the invertibility of the system corresponding to
the principal term of the operator Jρ op(b)J−1

ρ , which is B(1). Moreover, as we have
the equality (118), the principal symbol to be studied is

A(1) =





I −S(1) −I0(1) −I1(1) −T 0(1) −T 1(1) 0
−S(1) I −T 0(1) −T 1(1) −I0(1) −I1(1) 0

I 0 −i sin θ+ 0 0 0 0
0 I 0 0 −i sin θ− 0 0
0 0 z 1 0 0 −1
0 0 0 0 z 1 −1





,

where the last column takes into account the term u+(0, 0, t) − u−(0, 0, t) and the
two last lines express the relation between the Laplace transform of f and of ∂xf ,
for f ∈ H1(R+). This construction of A(1) from B is natural owing to the definition
of G and G̃ but has to be taken explicitly into account. As the operator A(1) is
invertible in the space (H+

0 × H−
0 )3 (by rearranging the unknowns), we obtain the

relation giving F±, G±, G̃±:

(129)





F+

F−
G+

G−
−zG+(z)−G+(0)
−zG−(z)−G−(0)





= M(A(1))−1





SI+

SI−
0
0

T0[u+(0, 0, ·)− u−(0, 0, ·)]




.

The invertibility of A(1) in H+
0 × H−

0 is proven in Proposition 4.10. The symbol
A(1) depends only on the constants θ+, θ−, γ+, γ−. Hence we get the solution of the
system

A(1)





K+
K−
K+

K+
K−

K−



 (z) =




SI+
SI−

0
0
0
0



 (−i, z)
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equal to 



i sin θ+Kθ+,θ−,γ+,γ−
+ (−i, z)

Kθ+,θ−,γ+,γ−
+ (−i, z)

−zKθ+,θ−,γ+,γ−
+ (−i, z)

i sin θ−Kθ+,θ−,γ+,γ−
− (−i, z)

Kθ+,θ−,γ+,γ−
− (−i, z),

−zKθ+,θ−,γ+,γ−
− (−i, z)





We denote by r =
√

x2 + y2 and θ the usual polar coordinates. The wave diffracted
by the curved wedge with boundary condition is

ud(x, y, t) =
∫

eik(t−r)σd(x, y, k)
dk

2π
,

where the first term of the symbol σd is σ0
d with:

σ0
d(x, y, k) = i

σi(0, 0, k)
(kr)1/2

[
(sin θ+ − sin(θ − γ+))K+(cos(θ − γ+))

+ (sin θ− − sin(θ − γ−))K−(cos(θ − γ−))
]

The end of the computation of the principal symbol of the diffracted solution follows
exactly the same pattern as in Section 6 of [20]. In particular, the regularity results
are the same.

We need to compute g+ and g−, defined, as in (6.11), by:

(130) g± = [−∆ + ∂2
t2 ]

−1(f̃±1x>0 ⊗ δ+)

where the source f̃± is computed using the derivative in time and the normal deriva-
tive. The solution ud will be g+ + g−. We have:

g+(x, y, τ) = (−∆− τ2)−1
(
f+(x′, τ)1x′!0 ⊗ δ+ +

f+(x′, τ)
iτz+(x′)

1x′!0 ⊗ δ′+
)
.

Introducing

S+(x′, ξ, ξ0, τ) = f+(x′, τ)
(
1 +

ξ − a′(x′)ξ0
τz+(x′)(1 + (a′(x′))2)1/2

)
,

we find, using f+(x′, τ) = 1
2π

∫
R

eix′.ξ′σ+(ξ′, τ) dξ′ that, owing to Lemma 5.3

F(ψS)(ξ′, ξ, ξ0, τ) =
σ+(ξ′, τ)
τ − ξ′

(
1 +

cos γ+

sin θ+
ξ

τ
− sin γ+

sin θ+
ξ0
τ

)
.

We use Proposition 5.1 proven in Section 5 to obtain that

(∆− ∂2
t2)

−1
[
1x′!0f(x′, t)⊗ δ+ +

f(x′, t)1x′!0

iτz+(x′)
⊗ δ′+
]
(x, y, λτ) 3

e−iτr e3iπ/4

cos γ+

√
8πτr

σ+(τ, τ x+ay
r )

1− x+ay
r

(
1 +

− cosγ+x + sin γ+y

sin θ+r

)
+ σs

where the term σs is a remainder term of order λ−1.
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We recall that the holomorphic function F+ is known from f+ through

F+(w, z, λ) =
∫ +∞

−∞

∫ ∞

0
eiλ(xz−x2/2−(w−t)2/2)f+(x, t) dxdt

=
( λ
2π
)2
∫

R3×R+

eλ(xz−x2/2−(w−t)2/2+iτt+iξ′x)σ+(λξ′, λτ) dxdt dξ′ dτ.

The critical point in t is t = w − iτ , which implies, after the application of the
stationary phase theorem in x′, τ, ξ′ for −)w and −)z large

F+(w, z, λ) =
( λ
2π
)3/2
∫

R3
1x!0e

λ(xz−x2/2+iξ′x)eλτ
2/2+iλτwσ+(λξ′, λτ) dxdξ′ dτ

= e−λw2/2
∑

m,n"λ/C

1
2nλn+mn!m!

∂2n∂2mσ+

∂2nτ∂2mξ′
(iλw, iλz)(i∂x)m(e−λx2/2).

We thus obtain σ+(iλz, iλw) in terms of F+(w, z, λ) for −)w > D,−)z > D. Using
the maximum principle, we can propagate this equality to w = −iτ, z = iτ x+ay

r , and
we obtain

σ+(−λτ x + ay

r
, λτ) 3 F+(−iτ, iτ

x + ay

r
, λ)e−λτ

2/2.

Finally, by the maximum principle again, we can see that this equality is true for
τ ∈ R+, hence for τ = 1 and λ = k > 0 we obtain

(131) σ+(−k
x + ay

r
, k) 3 F+(−i, i

x + ay

r
, k)e−k/2.

We obtain the symbol of σ+ once we have the symbol of F+ (given by (129)). Note
that T0g+(w, x, y, τ) is given by

T0g+(w, x, y, λ) =
( λ
2π
)1/2
∫ +∞−ia

−∞−ia
eiλτw−λτ2/2+iλτr[eiλτr ĝ+(x, y, λτ)] dτ

with eiτr ĝ+(x, y, τ) is in L2 in the variable τ . The stationary phase theorem in the
variable τ (which is correct for −)w < 0) whose critical point is τc = i(w− r) yields

(132) T0g+(w, x, y, λ) 3 e−λ(w−r)2/2e3iπ/4

√
8πrλi(w − r)

σ+(iλ(w − r),−iλ(w − r)
x + ay

r
).

(133) T0g−(w, x, y, λ) 3 e−λ(w−r)2/2e3iπ/4

√
8πrλi(w − r)

σ−(iλ(w − r),−iλ(w − r)
x + by

r
).

Note that, if ud(x, y, t) = (2π)−1
∫

R
σd(x, y, τ)eiτ(t−r) dτ , then

(134) T0ud(w, x, y, λ) = e−
λ
2 (w−r)2

∑

n"λ/C

1
(2λ)nn!

∂2nσd

∂τ2n

(x, y, iλ(w − r)).

As ud = g+ + g− + vr, where SS(vr)∩Σd = ∅, equalities (132), (133) and (134) yield,
for k ∈ R+:

σd(x, y, k) =
e3iπ/4

√
8πkr

[σ+(−k
x + ay

r
, k) + σ−(−k

x + by

r
, k)]
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Equality (131) gives then

σ+(−k
x + ay

r
, k) 3 e−k/2F+(−i, i

x + ay

r
, k)

σ−(−k
x + by

r
, k) 3 e−k/2F−(−i, i

x + by

r
, k).

Hence

(135) σd(x, y, k) =
e3iπ/4

√
8πkr

e−k/2[F+(−i, i
x + ay

r
, k) + F−(−i, i

x + by

r
, k)].

We have to identify F+ and F−. These functions are the scattering functions
associated with the normal derivative on each face, while the solution of the global
system involves both the normal derivative on each face and the trace on each face.
But, again from the system above, the normal derivative on the face + is equal to the
trace on the face + multiplied by the coefficient i sin θ±, hence we get all the terms
needed. We identified the diffraction term of Proposition 5.3. This ends the proof the
diffraction relation of Theorem 1.

The last item to prove is the result on ud + u0. In fact, the inversion of the system
(94) leads to the expression of f+, f−, g+, g−, and we get a jump condition, owing to
u(0−, b(0−), t) = u(0+, a(0+), t) and g+(x, t) = u(x, a(x), t)−u+(x, a(x), t), g−(x, t) =
u(x, b(x), t) − u−(x, b(x), t), hence g+(0, t) − g−(0, t) = u−(0, 0, t) − u+(0, 0, t). We
check that

g+δ
′
+ + g−δ

′
− + (u+(0, 0, t)− u−(0, 0, t))θ(x/R)δ′+ =

(g+ + (u+(0, 0, t)− u−(0, 0, t))θ(x/R))δ′+ + g−δ
′
−,

and that limx→0+(g+ + (u+(0, 0, t) − u−(0, 0, t))θ(x/R)) = g+(0, t) + u+(0, 0, t) −
u−(0, 0, t) = g−(0, t). The distribution

g+δ
′
+ + g−δ

′
− + (u+(0, 0, t)− u−(0, 0, t))θ(x/R)δ′+

writes h ⊗ δ′∂Ω with h ∈ H1(∂Ω), hence from Proposition 5.1 shows that ud + u0 ∈
H3/2

loc (Ω̄ε). The proof of Theorem 1 is now complete.
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CHAPTER 6

APPENDIX

6.1. Properties of the Helmholtz equations around corners

6.1.1. Single-layer and double-layer distributions for the Helmholtz equa-
tion in R2. — In this Section, we recall the already known results for the dis-
tributions of single and double layer for the Helmholtz problem in an open set with
boundary. This framework has been introduced to describe the influence of an electric
current and of a magnetic current on a boundary.

Recall that Gérard and Lebeau [20] only used the single-layer boundary distribu-
tions. In this Memoire, it is not enough to consider these distributions; we have also
to consider the double-layer distributions in order to take into account the jump of u
across the boundary. The approach here is entirely developed in the book of Colton
and Kress [14].

We begin by recalling that, in R2, the fundamental solution of the Laplace op-
erator, which is the distribution Φ0(x, y) verifying ∆yΦ0(x, y) = δy=x is Φ0(x, y) =
− 1

2π log |x − y|, x *= y. If J0 is the solution (usual Bessel function of order 0) which
is finite for t → 0 of the differential equation tf ′′(t) + f ′(t) + tf(t) = 0, and Y0

is the linearly independent solution of this same equation known as the Neumann
function of order 0, we introduce the Hankel function of order 0 of the first kind
H(1)

0 = J0 + iY0. The fundamental outgoing solution of the Helmholtz equation in R2

is then i
2H(1)

0 (τ |x − y|) = Φτ (x, y).
Introduce a bounded set D whose boundary ∂D is of class C2. The outgoing

unit normal vector n(x) is of class C1 and is defined on any point of ∂D. We can
apply Theorem 2.4 of [14] hence, for uτ a solution in C2(R2 − D̄) ∩ C(R2 − D) of
(∆ + τ2)u = 0 in R2 − D̄, which admits a normal derivative ∂nu on the boundary
(defined as the uniform limit on ∂D, for h → 0+ of n(x) · ∇u(x + hn(x))), we have

uτ (x) =
∫

∂D
[uτ (y)∂nyΦτ (x, y)− ∂nuτ (y)Φτ (x, y)] ds(y).
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From this representation, we introduce the single layer and double layer potentials,
for φ a function of L1(∂D):

uτs(φ)(x) =
∫

∂D
φ(y)Φτ (x, y) ds(y),

uτd(φ)(x) =
∫

∂D
φ(y)∂nyΦτ (x, y) ds(y).

Assume φ ∈ C0(∂D). The function uτs(φ) is continuous in R2. If we define, for
x ∈ ∂D, the distributions

∂nuτs(φ)(x) = limh→0+ n(x)∇uτs (φ)(x + hn(x))
∂′nuτs(φ)(x) = limh→0+ n(x)∇uτs (φ)(x − hn(x))

uτd,+(φ)(x) = limh→0+ uτd(φ)(x + hn(x))
uτd,−(φ)(x) = limh→0+ uτd(φ)(x − hn(x))

we have, on the boundary

uτs(φ) =
∫

∂D
φ(y)Φτ (x, y) ds(y)

∂nuτs(x) =
∫

∂D
φ(y)∂nyΦτ (x, y) ds(y)− 1

2
φ(x)

∂′nuτs(x) =
∫

∂D
φ(y)∂nyΦτ (x, y) ds(y) +

1
2
φ(x)

uτd,+(φ)(x) =
∫

∂D
φ(y)∂nyΦτ (x, y) ds(y) +

1
2
φ(y)

uτd,−(φ)(x) =
∫

∂D
φ(y)∂nyΦτ (x, y) ds(y)− 1

2
φ(y).

The integrals written here are improper integrals. There are properties of Holder
continuity for these integrals (Theorem 3.3 of [14]).

We define the operators

Sτφ(x) = 2
∫

∂D
Φτ (x, y)φ(y) ds(y)

Kτφ(x) = 2
∫

∂D
∂nyΦτ (x, y)φ(y) ds(y)

K
′,τφ(x) = 2

∫

∂D
∂nxΦτ (x, y)φ(y) ds(y)

T τφ(x) = 2∂nx

∫

∂D
∂nyΦτ (x, y)φ(y) ds(y).

The operator Sτ is bounded from L2(∂D) to H1(∂D). If the boundary ∂D is more
regular than C2, that is C2,α, the operators Kτ , K

′,τ are also bounded from L2(∂D)
into H1(∂D), and T is bounded from H1(∂D) to L2(∂D).
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Introduce

uτ (x) =
∫

∂D
[∂nyΦτ (x, y)− iζΦτ (x, y)]φ(y) ds(y).

The potential uτ solves the problem

(136)
{

(∆ + τ2)uτ = 0 in R2 −D
u|∂D = f ∈ C0(∂D)

if φ is solution of the impedance layer potential problem (ζ is a positive constant,
called the impedance of the problem)

(137) φ+ Kφ− iζSφ = 2f.

This is a problem of the kind (I + A)φ = 2f , A is a compact operator from C(∂D)
to C(∂D) under the previous hypotheses.

In [14], they construct the layer potential problem for an open set with a corner,
which angle is γ, 0 < γ < 2π. We restrict ourselves to γ ∈ ]0, π[. The boundary
is thus the reunion of piecewise analytic parts, and is C2 except at S. If x0 is the
position of S, we reduce the problem to

u(x) =
∫

∂D

[
[∂nyΦτ (x, y)− iζΦτ (x, y)]φ(y) − ∂nyΦ0(x, y)φ(x0)

]
ds(y).

The equation (137) is then

(138) φ(x) − φ(x0) + 2
∫

∂D
[∂nyΦτ (x, y) − iζΦτ (x, y)]φ(y) ds(y)

− 2
∫

∂D
∂nyΦ0(x, y)φ(x0)dy = 2f

We introduce the operator

K0φ(x) = 2
∫

∂D
[∂nyΦ0(x, y)[φ(y)− φ(x0)] ds(y)

and its truncated form K0,rφ = ψK0(ψφ), where ψ is a cutoff function null in |x−x0| !
r, identically equal to 1 in the neighborhood of 0. Colton and Kress prove that there
exists a r such that ‖K0,r‖∞,0 < 1. The singularity of Φτ and of Φ0 in log |x − y|
induce a singularity for the normal derivative in 1/|x− y|. This singularity cancels in
the difference ∂nyΦτ − ∂nyΦ0. Hence for x /∈ ∂D, the relations

∫

∂D
(∂nyΦτ − ∂nyΦ

0)(x, y) ds(y) = 0
∫

∂D
Φτ (x, y) ds(y) = 0

lead to the equation replacing (138) for φ̃(x) = φ(x)− φ(x0):

φ̃(x)+K0φ(x)+2
∫

∂D
∂nyΦτ−∂nyΦ0φ̃(y) ds(y)−2iζ

∫

∂D
Φτ (x, y)φ̃(y) ds(y) = 2f(x).
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Hence, with continuous data f , there exists a potential solution of (137). This solution
is continuous, but its derivative has singularities at the corner (as we may see in
Grisvard, [21], Dauge [2]. . . ).

6.1.2. Existence and uniqueness of some variational problems. — In this
part of the Annex, we deal with the problems which are related to the existence of a
solution of the wave equation with the mixed boundary condition in a domain with
corners. We begin with the construction of the normal derivative. We introduce
OR the bounded open subset of R2 equal to (R2 − F ) ∩ {|x| " R}. It is clear
that OR admits a Lipschitz boundary, piecewise analytic (we may note that ∂OR =
C(R) ∪ ∆R

+ ∪ ∆R
− ∪ {O, A+, A−}, where A± is the intersection of ∆± and of the

circle of radius R, and C(R) is the part of the circle of radius R linking A+ and A− in
R2−F ). Hence, from Theorem 1.5.1.3 of [21], the mapping u → u|∂O is well defined as
an operator from H1(OR) onto H1/2(∂OR) = H1/2(C(R))⊗H1/2(∆R

+)⊗H1/2(∆R
−).

Moreover, the mapping u → ∂nu|∂OR is well defined for u ∈ H2(OR). The half
Green’s formula is true for a Lipschitz boundary (Lemma 1.5.3.7 of [21]):

For u ∈ H2(OR) and v ∈ H1(OR), we have

(139)
∫

OR

(∆u)v dx +
∫

OR

∇u · ∇v dx =
∫

∂OR

∂nuv|∂OR dσ.

We know that the space C∞
0 (ŌR) is dense in E(∆) = {u ∈ H1(OR),∆u ∈ L2(OR)}

(Lemma 1.5.3.9 of [21]). Hence the relation for u ∈ H2(OR) and v ∈ H1(OR) extends
(because H2(OR) is dense in E(∆,OR)) for u ∈ E(∆) and v ∈ H1(OR) and defines
the normal derivative, for u ∈ E(∆,OR), in the dual space of H1/2(∂OR) which is
H−1/2(OR) through the equality (139). Here we made use of the fact that the right
continuous inverse of the mapping u → u|∂OR exists (which indicates that, for every
function ψ in H1/2(∂OR), there exists a function u of H1(OR) such that u|∂OR = ψ).

The extension to the non bounded set O = R2 − F is straightforward.
For u ∈ C∞

0 (Ō), the mapping u 4→ u|∆+∪∆− is continuous and extends to u ∈
H1(O), and has the same properties. There is no difference for the proof of the Green’s
formula for this unbounded domain. As C∞

0 (]0, +∞[) is (up to the diffeomorphism)
dense in H1/2(∆±) we may define by duality H−1/2(∂O). Hence we have

Lemma 6.1. — The open set Θ on which we consider the result is either O or OR or
F . For every u ∈ E(∆,Θ) and v ∈ H1(Θ), the normal derivative is defined through
the relation (139):

∫

Θ
∆uv dx +

∫

Θ
∇u∇v dx = 〈∂nu, v|Θ〉

where 〈 , 〉 denotes the duality between H1/2(Θ) and H−1/2(Θ).
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The normal derivative being thus defined, we introduce the problem for u ∈ H1(O),

(140)
{

(∆ + ω2)u(x, y, ω) = f in O
∂nu(x, ω) + iωzu|∂O = g on ∂O

The last line is exactly (remember that ∂±u = −∂nu|∆±)

∂+u− iωz+(x)u(x, a(x), ω) = g+(x, ω), ∂−u− iωz(x)u(x, b(x), ω) = g−(x, ω).

We seek a solution of (140) for f ∈ L2(O), g ∈ H−1/2(∂O). Hence ∆u = f − ω2u ∈
L2(O) and we may apply Lemma 6.1, the normal derivative is well defined.

Lemma 6.2. — Under the condition

(141) ,ω < 0, )(z+(x)) > 0, )(z−(x)) > 0, z± bounded

the problem (140) has a unique solution in H1(O).

Let φ ∈ C∞
0 (Ō). We have, if u is a solution

ω2

∫

O
uφ̄dx−

∫

O
∇u∇φ̄dx +

∫

∂O
∂nuφ̄dσ =

∫

O
fφ̄dx

or, using the boundary condition

ω2

∫

O
uφ̄dx −

∫

O
∇u∇φ̄dx +

∫

∂O
(g − iωzu)φ̄dσ =

∫

O
fφ̄dx

Introduce, for (u, v) ∈ H1(O)

−a(u, v) = ω2

∫

O
uv̄ dx−

∫

O
∇u∇v̄ dx− iω

∫

∂O
zuv̄ dσ

L(v) =
∫

O
f v̄ dx− 〈g, v|∂O〉.

These two forms are continuous respectively on (H1(O))2 and on H1(O). We have

)(−iω̄a(u, u)) = (−,ω)
[
|ω|2
∫

O
|u|2 dx +

∫

O
|∇u|2 dx

]
+ |ω|2

∫

∂O
)z|u|2 dσ.

We assume that (141) is fulfilled. We introduce the Hilbert space V , which is the
completed of C∞

0 (Ō) for the norm

‖|u‖|2 = ‖u‖2
H1(O) + ‖u|∂O‖2

L2(∂O).

This space is a Hilbert space, and the trace of u ∈ V on ∂O is uniquely defined.
This space is a subspace of H1(O), and the definition of the trace coincides.

From the equality above, if we denote by

c = min
(
−,ω|ω|2,−,ω, |ω|2 min)z+, |ω|2 min)z−

)
> 0,

we obtain )(−iω̄a(u, u)) ! c‖u‖H1(O) ! 0, hence, with |ω| · |a(u, u)| ! )(−iω̄a(u, u)),
and we deduce that the sesquilinear form a(u, u) is coercitive. Hence the problem

(142) a(u, v) = L(v), ∀ v ∈ H1(O)
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has a unique solution in H1(O) through the Lax-Milgram lemma. The lemma 6.2 is
proven.

• We assume ω = −ip, p > 0. We have

)a(u, u) = p2

∫

O
|u|2 dx +

∫

O
|∇u|2 dx + p

∫

∂O
)z|u|2 dσ

The sesquilinear form a(u, v) is coercive in the ordinary sense and the problem (142)
has a unique solution in H1(O). This is extended to the Neumann boundary condition.

We end this section with the Hille-Yosida theorem for the diffraction problem. We
prove

Lemma 6.3. — Under the assumption ui|t=−δ ∈ H1(O), ∂tui|t=−δ ∈ H1(O),
∂2

t2ui|t=−δ ∈ L2(O), the problem





(∆− ∂2
t2)u = 0 in O × ]0, +∞[

u|t=−δ = ui|t=−δ
∂nu + z∂tu = 0 on ∂O × ]0, +∞[

admits an unique solution which is in the domain D(A), of class C1 in time.

Let

A =
( 0 0 −1 0

0 0 0 −1
−∆ 0 0 0
0 −∆ 0 0

)
.

The wave equation with the boundary condition ∂nu + z∂tu|∂Ω = 0 is equivalent, for
u regular enough, to (we write u = u1 + iu2)

d

dt

( u1
u2
∂tu1
∂tu2

)
+ A

( u1
u2
∂tu1
∂tu2

)
=
(

0
0
0
0

)

with

D(A) =






( x0
x1
y0
y1

)
∈ (H1(O))2 × L2(O)2, A

( x0
x1
y0
y1

)
∈ (H1(O))2 × L2(O)2,

∂nx0 + )zy0|∂O −,zy1|∂O = 0,
∂nx1 + )zy1|∂O + ,zy0|∂O = 0





.

From Lemma 6.1, the boundary condition is well defined in the domain D(A),
because x0 and x1 are in E(∆,O) hence we can consider their normal derivative. As
y0 and y1 are in H1, we can consider the trace on ∂O. Using Lemma 6.1, we have,

with X =
( x0

x1
y0
y1

)
,

((A + I)X, X)(H1(O))2×L2(O)2 = (x0, x0)H1(O) + (y0, y0)H1(O) + (y0, y0)L2(O)

+(y1, y1)L2(O)+(x0,−y0)H1(O)+(x1,−y1)H1(O)+(y0,−∆x0)L2(O)+(y1,−∆x1)L2(O)
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Making use of Lemma 6.1, we have

((A + I)X, X)(H1(O))2×L2(O)2 = (x0, x0)H1(O) + (x1, x1)H1(O) + (y0, y0)L2(O)

+ (y1, y1)L2(O) − (x0, y0)L2(O) − (x1, y1)L2(O) − 〈y0|∂O, ∂nx0〉 − 〈y1|∂O, ∂nx1〉

((A + I)X, X)(H1(O))2×L2(O)2 = (x0, x0)H1(O) + (x1, x1)H1(O) + (y0, y0)L2(O)

+ (y1, y1)L2(O) − (x0, y0)L2(O) − (x1, y1)L2(O) − 〈y0|∂O, ∂nx0〉 − 〈y1|∂O, ∂nx1〉

We consider first the boundary terms. We obtain

−〈y0|∂O, ∂nx0〉 − 〈y1|∂O, x1〉
= 〈y0|∂O,)zy0|∂O −,zy1|∂O〉+ 〈y1|∂O,)zy1|∂O + ,zy0|∂O〉
= 〈y0|∂O,)zy0|∂O〉+ 〈y1|∂O,)zy1|∂O〉.

As (x0− 1
2y0, x0− 1

2y0)L2(O) = (x0, x0)L2(O)−(x0, y0)L2(O)+ 1
4 (y0, y0)L2(O), we obtain

that, under the condition )z ! 0, that A + I is accretive.

Let us consider now the system (A + 2I)X = F , where F =
( f0

f1
g0
g1

)
, with fi ∈

H1(O) and gi ∈ H2(O). This system, for X in D(A), is equivalent to the system
(140) with u = x0 + ix1, f = −2(f0 + if1), g = g0 + ig1 + (z1 + iz2)(f0 + if1),
ω = −2i, y0 = 2x0 − f0, y1 = 2x1 − f1. As the problem (140) has a unique solution
in H1(O) satisfying ∂nu ∈ L2(∂O), ∆u ∈ L2(O) we get a solution x0, x1 in H1(O),
∆x0,∆x1 ∈ L2(O), y0 = 2x0 − f0 ∈ H1(O), y1 ∈ H1(O), thus the solution is in
the domain D(A) = D(A + I). Hence the operator A + I is accretive and maximal,
thus, from the Hille-Yosida theorem [10], the problem of Lemma 6.3 with ui as in the
hypothesis and ui(x, y, t) supported in t < θi(x, y) (hence ui(x, y,−δ) is uniformly
zero on ∂O, which implies that ui(x, y,−δ) is in D(A+ I)) admits an unique solution
in C2(]0,∞[, H1 × L2) ∩ C1(]0, +∞[, D(A)).

6.2. Calculus of the distributions on the boundary

6.2.1. Calculus of the Dirichlet to Neumann operators. — In this section, we
express the operators R±,k

+ and R±,k
− with the same expression as (81), (83), (84), (82).

We denote by ∂+f the limit for ε → 0 of D+f(x, a(x) + ε) (rigorous way of defining
the trace on the boundary, according to [14]). We compute the wave u+(x, y, k)
(respectively u−) associated with a distribution f(x) on the face ∆+ (resp. ∆−), for
(x, y) outside ∆+(resp. ∆−), that is

u+(x, y, k) = (∆ + k2)−1(f ⊗ δ′+)

u−(x, y, k) = (∆ + k2)−1(f ⊗ δ′−).

We have
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Lemma 6.4. — The following relations are true:

(1 + (a′(x))2)1/2∂+u+(x, k) = lim
ε→0+

1
4π

∫

R×R+

if(x′)e
i(x−x′)ξ+1 +iε

µ+ξ+1 +ξ+
1+µ2

+ dx′ dξ+1

×
[µ+ − a′(x)

1 + µ2
+

ξ+1 +
1 + µ+a′(x′)

1 + µ2
+

ξ+
][µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

]

(1 + (a′(x))2)1/2∂+u−(x, k) =

− lim
ε→0+

1
4π

∫

R×R+

if(x′)e
i(x−x′)ξ+1 +i(a(x′)−b(x′)+ε)

µ+ξ+1 +ξ+
1+µ2

+ dx′ dξ+1

×
[µ+ − a′(x)

1 + µ2
+

ξ+1 +
1 + µ+a′(x)

1 + µ2
+

ξ+
][1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

]
.

Proof. — For y − a(x) > 0, using the Cauchy formula

(143) u+(x, y, k) =
1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(y−a(x))

µ+ξ+1 +ξ+
1+µ2

+

×
[µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

]
f(x′) dx′ dξ+1

(144) u−(x, y, k) = − 1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(a(x′)−b(x′)+(y−a(x)))

µ+ξ+1 +ξ+
1+µ2

+

×
[1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

]
f(x′) dx′ dξ+1 .

As the support of f is included in [0, +∞[ and y−a(x) = ε > 0, both relations define
C∞ functions through the Paley-Wiener-Schwartz theorem. We thus:

• compute, using (143) and (144), the derivative D+u+ and D+u−,
• show that this derivative has the limit corresponding to the usual one for ε→ 0,

ε > 0.
We have

D+u+(x, y, k) =
1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(y−a(x))

µ+ξ+1 +ξ+
1+µ2

+
f(x′) dx′ dξ+1

(1 + (a′(x))2)1/2

[
i
[µ+ξ

+
1 + ξ+

1 + µ2
+

− a′(x)
(
ξ+1 − a′(x)

µ+ξ
+
1 + ξ+

1 + µ2
+

+ (y − a(x))∂x

(µ+ξ
+
1 + ξ+

1 + µ2
+

))]

×
[µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

]

− a′(x)∂x

(µ+ − a′(x′)
1 + µ2

+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)]
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hence

D+u+(x, y, k) =
1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(y−a(x))

µ+ξ+1 +ξ+
1+µ2

+
f(x′) dx′ dξ+1

(1 + (a′(x))2)1/2

[[
i
(µ+ − a′(x)

1 + µ2
+

ξ+1 +
1 + µ+a′(x)

1 + µ2
+

ξ+
)(µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)

+ ia′(x)
(
(a′(x)− µ+)

µ+ξ
+
1 + ξ+

1 + µ2
+

− (y − a(x))∂x

(µ+ξ
+
1 + ξ+

1 + µ2
+

))]

×
[µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

]

− a′(x)∂x

(µ+ − a′(x′)
1 + µ2

+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)]
.

We concentrate on the last terms. We use the relations

(145)
a′(x) − µ+ = (x − x′)∂xµ+,

∂x

(µ+ξ
+
1 + ξ+

1 + µ2
+

)
= −∂xµ+

µ+ξ
+
1 + ξ+

1 + µ2
+

∂ξ+1

(µ+ξ
+
1 + ξ+

1 + µ2
+

)

to obtain

D+u+(x, y, k) =
1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(y−a(x))

µ+ξ+1 +ξ+
1+µ2

+
f(x′) dx′ dξ+1

(1 + (a′(x))2)1/2

[[
i
(µ+ − a′(x)

1 + µ2
+

ξ+1 +
1 + µ+a′(x)

1 + µ2
+

ξ+
)(µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)

+ ia′(x)
(
∂xµ+(x− x′)

µ+ξ
+
1 + ξ+

1 + µ2
+

+ ∂xµ+(y − a(x))∂ξ+1
(µ+ξ

+
1 + ξ+

1 + µ2
+

)µ+ξ
+
1 + ξ+

1 + µ2
+

)]

×
(µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)

− a′(x)∂x

(µ+ − a′(x′)
1 + µ2

+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)]

D+u+(x, y, k) =
1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(y−a(x))

µ+ξ+1 +ξ+
1+µ2

+
f(x′) dx′ dξ+1

(1 + (a′(x))2)1/2

[[
i
(µ+ − a′(x′)

1 + µ2
+

ξ+1 +
1 + µ+a′(x′)

1 + µ2
+

ξ+
)(µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)

+ ia′(x)∂xµ+∂ξ+1

(
(x− x′)ξ+1 + (y − a(x))

µ+ξ
+
1 + ξ+

1 + µ2
+

)µ+ξ
+
1 + ξ+

1 + µ2
+

]

×
[µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

]

− a′(x)∂x

(µ+ − a′(x′)
1 + µ2

+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)]
.
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We finally check that (using ∂xξ
−1
+ = − k2

ξ3+
µ+∂xµ+)

(146) ∂x

[1 + λµ+

1 + µ2
+

+
µ+ − λ
1 + µ2

+

ξ+1
ξ+

]
=

∂xµ+

[λ(1− µ2
+)− 2µ+

(1 + µ2
+)2

+
1− µ+ + 2µ+λ

(1 + µ2
+)2

ξ+1
ξ+

− µ+(µ+ − λ)
1 + µ2

+

k2ξ+1
ξ3+

]

and (using ∂ξ+1 ξ+ = −ξ+1 /ξ+ and ∂ξ+1 (ξ−1
+ ) = ξ+1 /ξ3+) we have

(147) ∂ξ+1

[µ+ξ
+
1 + ξ+

1 + µ2
+

(
1 + λµ+

1 + µ2
+

+
µ+ − λ
1 + µ2

+

ξ+1
ξ+

)
]

=

−
[λ(1− µ2

+)− 2µ+

(1 + µ2
+)2

+
1− µ2

+ + 2µ+λ

(1 + µ2
+)2

− µ+(µ+ − λ)k2ξ+1
ξ3+

]

which leads to

(148) ∂x

[1 + λµ+

1 + µ2
+

+
µ+ − λ
1 + µ2

+

ξ+1
ξ+

]
= −∂xµ+∂ξ+1

[µ+ξ
+
1 + ξ+

1 + µ2
+

(1 + λµ+

1 + µ2
+

+
µ+ − λ
1 + µ2

+

ξ+1
ξ+

)]

We finally get

D+u+(x, y, k) =
1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(y−a(x))

µ+ξ+1 +ξ+
1+µ2

+
f(x′) dx′ dξ+1

(1 + (a′(x))2)1/2

[
i
(µ+ − a′(x)

1 + µ2
+

ξ+1 +
1 + µ+a′(x)

1 + µ2
+

ξ+
)(µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)
+ a′(x)∂xµ+

· ∂ξ+1
[
e

i(x−x′)ξ+1 +i(y−a(x))
µ+ξ+1 +ξ+

1+µ2
+

µ+ξ
+
1 + ξ+

1 + µ2
+

(µ+ − a′(x′)
1 + µ2

+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

)]]

which imply the result.
In a similar fashion,

D+u−(x, y, k) = − 1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(a(x′)−b(x′)+(y−a(x)))

µ+ξ+1 +ξ+
1+µ2

+

×
[
i
(µ+ξ

+
1 + ξ+

1 + µ2
+

− a′(x)
(
ξ+1 + (a(x′)− b(x′) + y − a(x))∂x

(µ+ξ
+
1 + ξ+

1 + µ2
+

)

− a′(x)
µ+ξ

+
1 + ξ+

1 + µ2
+

))
×
(1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

)

− a′(x)∂x

(1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

)] f(x′) dx′ dξ+1
(1 + (b′(x))2)1/2
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hence

D+u−(x, y, k) = − 1
4π

∫

R×R+

e
i(x−x′)ξ+1 +i(a(x′)−b(x′)+(y−a(x)))

µ+ξ+1 +ξ+
1+µ2

+

×
[
i
[(µ+ξ

+
1 + ξ+

1 + µ2
+

− a′(x)
ξ+1 − µ+ξ+

1 + µ2
+

)

+ ia′(x)
[
(a′(x)− µ+)

µ+ξ
+
1 + ξ+

1 + µ2
+

− (a(x′)− b(x′) + y − a(x))∂x

(µ+ξ
+
1 + ξ+

1 + µ2
+

)]]

×
(1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

)

− a′(x)∂x

(1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

)] f(x′) dx′ dξ+1
(1 + (b′(x))2)1/2

We use the relation (145) to have

(a′(x) − µ+)
µ+ξ

+
1 + ξ+

1 + µ2
+

− (a(x′)− b(x′) + y − a(x))∂x

(µ+ξ
+
1 + ξ+

1 + µ2
+

)

=
µ+ξ

+
1 + ξ+

1 + µ2
+

∂xµ+

[
(x − x′) + (a(x′)− b(x′) + y − a(x))∂ξ+1

(µ+ξ
+
1 + ξ+

1 + µ2
+

)]

which leads, with (148), to

− a′(x)∂x

[1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

]

= a′(x)∂xµ+

[µ+ξ
+
1 + ξ+

1 + µ2
+

(1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

)]
.

We have then

D+u−(x, a(x) + ε, k) = − i

4π

∫

R×R+

e
i(x−x′)ξ+1 +i(a(x′)−b(x′)+ε))

µ+ξ+1 +ξ+
1+µ2

+

×
[(µ+ξ

+
1 + ξ+

1 + µ2
+

− a′(x)
ξ+1 − µ+ξ+

1 + µ2
+

)(1 + b′(x′)µ+

1 + µ2
+

+
µ+ − b′(x′)

1 + µ2
+

ξ+1
ξ+

)
+

1
i
a′(x)∂xµ+∂ξ+1

[
e

i(x−x′)ξ+1 +i(a(x′)−b(x′)+ε))
µ+ξ+1 +ξ+

1+µ2
+

(µ+ξ
+
1 + ξ+

1 + µ2
+

−a′(x)
ξ+1 − µ+ξ+

1 + µ2
+

)]]

· f(x′) dx′ dξ+1
(1 + (b′(x))2)1/2

.

The proof of Lemma 6.4 is complete.

6.2.2. Transformation of the operators R±,k
+ and R±,k

− . — We notice that the
symbols of the operators of Lemma 6.4 are bounded, for ξ±1 large, by |ξ±1 |, which
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proves that they are operators of order 1. However, let

f̃ ∈ H1({y = a(x), x ! 0} ∩ {y − b(x), x ! 0}).

To this distribution is canonically associated a distribution f of H1(R), and two
distributions f+ and f− of H1(R∗

+), which are f+(x) = f(x)1x!0 = f̃(x, a(x), k)
and f̃−(x) = f(−x)1x"0 = f̃(x, b(x)). The distributions f+1x!0 and f−1x!0 are not
element of H1(R), because of the value f+(0) and of the value f−(0). Note that(1)

H1({y = a(x), x ! 0} ∩ {y − b(x), x ! 0}) is associated with

{(f+, f+) ∈ L2(R+)× L2(R+), (f+, f−) ∈ H1(R∗
+)×H1(R∗

+), f+(0) = f−(0)}.

The contribution of the distribution on the boundary and the contribution of the
corner have thus to be explicitly written. Moreover, we must check that the distribu-
tion constructed with f̃ ∈ H1(∂Ω), which is ∂+((∆ + k2)−1(f̃ ⊗ δ′∂Ω)), is element of
L2(Ω).

Notice that

(x− x′)ξ + (y − a(x′))η = (x − x′)ξ1− + (b(x′)− a(x′))η + (y − b(x))η

and

(x− x′)ξ + (y − b(x′))η = (x− x′)ξ1+ + (a(x′)− b(x′))η + (y − a(x))η.

We introduce the two phase functions

φ+
ε (x, x′, ξ1+, k) = (x− x′)ξ+1 + (a(x′)− b(x′) + ε)

µ+ξ
+
1 + ξ+

1 + µ2
+

φ−ε (x, x′, ξ1−, k) = (x− x′)ξ−1 + (b(x′)− a(x′)− ε)µ−ξ
−
1 − ξ−

1 + µ2
−

We prove

Lemma 6.5. — There exists symbols q±1 , σ±2 , q±ε , r±ε , bounded for |ξ±1 | large, given
by the relations (86) and distributions S±

+ and S±
− , which are in H−1(R), given by

(151) and (153) such that the action of the operators R±,k
+ and R±,k

− is given by the
following relations:

R+,k
+ (f)(x, k) = f(0)S+

+ +
i

4π

∫

R+×R

σ+
2 (x, x′, ξ+1 , k)ei(x−x′)ξ+1 f(x′) dx′ dξ+1

+
1
4π

∫

R+×R

q+
1 (x, x′, ξ+1 , k)ei(x−x′)ξ+1 ∂x′f(x′) dx′ dξ+1

(1)The values of f+ and of f− are well defined because the distributions are element of L2( +) ∩
H1( ∗

+), hence the trace of these functions at the end is well defined.
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R−,k
− (f)(x, k) = f(0)S−

− +
i

4π

∫

R+×R

σ−2 (x, x′, ξ−1 , k)ei(x−x′)ξ−1 f(x′) dx′ dξ−1

+
1
4π

∫

R+×R

q−1 (x, x′, ξ−1 , k)ei(x−x′)ξ−1 ∂x′f(x′) dx′ dξ−1

R+,k
− (f)(x, k) = f(0)S+

− +
1
4π

lim
ε→0+,D′

∫

R+×R

q+
ε (x, x′, ξ+1 , k)eiφ+

ε ∂x′f(x′) dx′ dξ+1

− i

4π
lim

ε→0+,D′

∫

R+×R

r+
ε (x, x′, ξ+1 , k)eiφ+

ε f(x′) dx′ dξ+1

R−,k
+ (f)(x, k) = f(0)S−

+ +
1
4π

lim
ε→0+,D′

∫

R+×R

q−ε (x, x′, ξ−1 , k)eiφ−
ε ∂x′f(x′) dx′ dξ−1

− i

4π
lim

ε→0+,D′

∫

R+×R

r−ε (x, x′, ξ−1 , k)eiφ−
ε f(x′) dx′ dξ−1

This induces a definition of regular operators associated with the double layer
distributions:

Definition 6.1. — The regular part of the Dirichlet to Neumann operators is given
by

R±,k
±,0(f)(x, k) =

i

4π

∫

R+×R

σ±2 (x, x′, ξ±1 , k)ei(x−x′)ξ±1 f(x′) dx′ dξ±1

1
4π

∫

R+×R

q±1 (x, x′, ξ±1 , k)ei(x−x′)ξ±1 ∂x′f(x′) dx′ dξ±1

R±,k,ε
∓,0 (f)(x, k) =

1
4π

∫

R+×R

q±ε (x, x′, ξ±1 , k)eiφ±
ε ∂x′f(x′) dx′ dξ±1

− i

4π

∫

R+×R

r±ε (x, x′, ξ±1 , k)eiφ±
ε f(x′) dx′ dξ±1

Proof of Lemma 6.5. — Introduce the following functions of (x, x′) (additional to the
functions defined in (85)):

M+
1 (x, x′) =

1
(1 + (a′(x))2)1/2

[1 + µ+a′(x)
1 + µ2

+

1 + µ+b′(x′)
1 + µ2

+

− µ+ − a′(x)
1 + µ2

+

µ+ − b′(x′)
1 + µ2

+

]

M+
2 (x, x′) =

1
(1 + (a′(x))2)1/2

[µ+ − a′(x)
1 + µ2

+

1 + µ+b′(x′)
1 + µ2

+

+
µ+ − b′(x′)

1 + µ2
+

1 + µ+a′(x)
1 + µ2

+

]

M+
3 (x, x′) =

1
(1 + (a′(x))2)1/2

[ (µ+ − a′(x))(µ+ − b′(x′))
1 + µ2

+

]
.
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M−
1 (x, x′) =

1
(1 + (b′(x))2)1/2

[1 + µ−b′(x)
1 + µ2

−

1 + µ−a′(x′)
1 + µ2

−
− µ− − a′(x′)

1 + µ2
−

µ− − b′(x)
1 + µ2

−

]

M−
2 (x, x′) = − 1

(1 + (b′(x))2)1/2

[µ− − a′(x′)
1 + µ2

−

1 + µ−b′(x)
1 + µ2

−
+

µ− − b′(x)
1 + µ2

−

1 + µ−a′(x′)
1 + µ2

−

]

M−
3 (x, x′) =

1
(1 + (b′(x))2)1/2

[ (µ− − a′(x′))(µ− − b′(x))
1 + µ2

−

]
.

We note that the symbols involved in the expressions of (1+ (a′(x))2)1/2∂+u+ and
of (1 + (a′(x))2)1/2∂+u− obtained below in Lemma 6.4 are exactly

i

4π
L+

1 (ξ+1 )2 + L+
2 ξ

+
1 ξ+ + L+

3 k2

ξ+
and − i

4π
M+

1 ξ
2
+ + M+

2 ξ
+
1 ξ+ + M+

3 k2

ξ+
.

We verify the relations
(149)




A+,2
+ (x, x′, ξ

+
1 −µ+ξ+
1+µ2

+
, µ+ξ

+
1 +ξ+

1+µ2
+

) = −L+
1 (x, x′)(ξ+1 )2 − L+

2 (x, x′)ξ+1 ξ+ − L+
3 (x, x′)k2

A−,2
− (x, x′, ξ

−
1 +µ−ξ−
1+µ2

−
, µ−ξ

−
1 −ξ−

1+µ2
−

) = −L−
1 (x, x′)(ξ−1 )2 − L−

2 (x, x′)ξ−1 ξ− − L−
3 (x, x′)k2

A+,2
− (x, x′, ξ

+
1 −µ+ξ+
1+µ2

+
, µ+ξ

+
1 +ξ+

1+µ2
+

) = M+
1 (x, x′)ξ2+ + M+

2 (x, x′)ξ+ξ+1 + M+
3 (x, x′)k2

A−,2
+ (x, x′, ξ

−
1 +µ−ξ−
1+µ2

−
, µ−ξ

−
1 −ξ−

1+µ2
−

) = M−
1 (x, x′)ξ2− + M−

2 (x, x′)ξ−1 ξ− + M−
3 (x, x′)k2

Note that ∂x′ξ+ = k2

ξ+
µ+∂x′µ+ and ∂x′ξ− = k2

ξ−
µ−∂x′µ−. We introduce






m+
ε (x, x′) = −1 + ∂x′(

µ+(a(x′)− b(x′) + ε)
1 + µ2

+

)

n+
ε (x, x′) = ∂x′(

a(x′)− b(x′) + ε

1 + µ2
+

)

m−
ε (x, x′) = −1 + ∂x′(

−µ−(a(x′)− b(x′) + ε)
1 + µ2

−
)

n−
ε (x, x′) = ∂x′(

a(x′)− b(x′) + ε

1 + µ2
−

)

t+ε (x, x′) = −1 + ε∂x′(
µ+

1 + µ2
+

)

s+
ε (x, x′) = ε∂x′(

1
1 + µ2

+

)

t−ε (x, x′) = −1− ε∂x′(
µ−

1 + µ2
−

)

s−ε (x, x′) = ε∂x′(
1

1 + µ2
−

)

We have

∂x′φ+
ε (x, x′, ξ+1 , k) = ξ+1 m+

ε (x, x′) + ξ+n+
ε (x, x′) + (a(x′)− b(x′) + ε)µ+∂x′µ+

k2

ξ+

∂x′φ−ε (x, x′, ξ−1 , k) = ξ−1 m−
ε (x, x′) + ξ−n−

ε (x, x′) + (a(x′)− b(x′) + ε)µ−∂x′µ−
k2

ξ−
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We denote by α±
ε and β±ε the functions such that there exists functions γ±ε and δ±ε

satisfying

A+,2
− (x, x′,

ξ+1 − µ+ξ+
1 + µ2

+

,
µ+ξ

+
1 + ξ+

1 + µ2
+

) = [α+
ε ξ

+
1 + β+

ε ξ+]∂x′φ+
ε + γ+

ε k2 ξ
+
1

ξ+
+ δ+ε k2

A−,2
+ (x, x′,

ξ−1 + µ−ξ−
1 + µ2

−
,
µ−ξ

−
1 − ξ−

1 + µ2
−

) = [α−
ε ξ

−
1 + β−ε ξ−]∂x′φ−ε + γ−ε k2 ξ

−
1

ξ−
+ δ−ε k2.

In a similar fashion, we denote by A±
ε , B±

ε ,Γ±
ε ,∆±

ε the functions such that

−A+,2
+ (x, x′,

ξ+1 − µ+ξ+
1 + µ2

+
,
µ+ξ

+
1 + ξ+

1 + µ2
+

)

= [A+
ε ξ

+
1 + B+

ε ξ+]∂x′

(
(x− x′)ξ+1 + ε

µ+ξ
+
1 + ξ+

1 + µ2
+

)
+ Γ+

ε k2 ξ
+
1

ξ+
+ ∆+

ε k2

−A−,2
− (x, x′,

ξ−1 + µ−ξ−
1 + µ2

−
,
µ−ξ

−
1 − ξ−

1 + µ2
−

)

= [A−
ε ξ

−
1 + B−

ε ξ−]∂x′

(
(x− x′)ξ−1 + ε

−µ−ξ
−
1 + ξ−

1 + µ2
−

)
+ Γ−

ε k2 ξ
−
1

ξ−
+ ∆−

ε k2.

These functions are given by the relations






α±
ε =

−m±
ε M±

1 + n±
ε M±

2

(m±
ε )2 + (n±

ε )2

β±ε =
n±
ε M±

1 + m±
ε M±

2

(m±
ε )2 + (n±

ε )2

γ±ε (x, x′) = −α±
ε (x, x′)µ±∂x′µ±(a(x′)− b(x′) + ε)

δ±ε (x, x′) = M±
3 (x, x′)− (1 + µ2

±)m±
ε α

±
ε − β±ε µ±∂x′µ±(a(x′)− b(x′) + ε)

A+
ε =

t±ε L±
1 + s±ε L±

2

(t±ε )2 + (s±ε )2

B±
ε =

−s±ε L±
1 + t±ε L±

2

(t±ε )2 + (s±ε )2

Γ±
ε (x, x′) = −A±

ε (x, x′)µ±∂x′µ±(a(x′)− b(x′) + ε)

∆±
ε (x, x′) = L±

3 (x, x′)− (1 + µ2
±)s±ε B±

ε −B±
ε µ±∂x′µ±(a(x′)− b(x′) + ε).
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We consider the expressions of Lemma 6.4. We have

R+,k
+ (f)(x, k) = lim

ε→0+

1
4π

∫

R×R+

e
i(x−x′)ξ+1 +iε

µ+ξ+1 +ξ+
1+µ2

+ if(x′) dx′ dξ+1

×
[µ+ − a′(x)

1 + µ2
+

ξ+1 +
1 + µ+a′(x′)

1 + µ2
+

ξ+
][µ+ − a′(x′)

1 + µ2
+

ξ+1
ξ+

+
1 + µ+a′(x′)

1 + µ2
+

]

= lim
ε→0+

1
4π

∫

R×R+

e
i(x−x′)ξ+1 +iε

µ+ξ+1 +ξ+
1+µ2

+ if(x′)
[L+

1 (ξ+1 )2 + L+
2 ξ

+
1 ξ+ + L+

3 k2]
ξ+

dx′ dξ+1 .

We use the relation

L+
1 (ξ+1 )2 + L+

2 ξ
+
1 ξ+ + L+

3 k2 =

[A+
ε ξ

+
1 + B+

ε ξ+]∂x′

(
(x− x′)ξ+1 + ε

µ+ξ
+
1 + ξ+

1 + µ2
+

)
+ Γ+

ε
k2ξ+1
ξ+

+ ∆+
ε k2

hence

R+,k
+ (f)(x, k) = lim

ε→0+

1
4π

∫

R×R+

e
i(x−x′)ξ+1 +iε

µ+ξ+1 +ξ+
1+µ2

+

[
i∂x′

(
(x−x′)ξ+1 +ε

µ+ξ
+
1 + ξ+

1 + µ2
+

)

×
[
A+
ε
ξ+1
ξ+

+ B+
ε

]
+ i
[
Γ+
ε

k2ξ+1
ξ2+

+ ∆+
ε

k2

ξ+

]]
f(x′) dx′ dξ+1

= lim
ε→0+

1
4π

∫

R×R+

[
A+
ε
ξ+1
ξ+

+ B+
ε

]
f(x′)∂x′

(
e

i(x−x′)ξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+

)
dx′ dξ+1

+ lim
ε→0+

1
4π

∫

R×R+

e
i(x−x′)ξ+1 +iε

µ+ξ+1 +ξ+
1+µ2

+ i
[
Γ+
ε

k2ξ+1
ξ2+

+ ∆+
ε

k2

ξ+

]
f(x′) dx′ dξ+1 .

We use an integration by parts in the first term. We have

(150)
∫

R+

[
A+
ε
ξ+1
ξ+

+ B+
ε

]
f(x′)

1
i
∂x′

(
e

i(x−x′)ξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+

)
dx′ =

−
∫

R+

∂x′

([
A+
ε
ξ+1
ξ+

+ B+
ε

]
f(x′)

)
e

i(x−x′)ξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dx′

− f(0)
[
A+
ε
ξ+1
ξ+

+ B+
ε

]
(x, 0)e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+
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This leads to

R+,k
+ (f)(x, k) =

− lim
ε→0+

1
4π

∫

R×R+

∂x′

([
A+
ε
ξ+1
ξ+

+ B+
ε

]
f(x′)

)
e

i(x−x′)ξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dx′ dξ+1

− f(0) lim
ε→0+

1
4π

∫

R

(
A+
ε
ξ+1
ξ+

+ B+
ε

)
e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dξ+1

+ lim
ε→0+

i

4π

∫

R×R+

e
i(x−x′)ξ+1 +iε

µ+ξ+1 +ξ+
1+µ2

+

[
Γ+
ε

k2ξ+1
ξ2+

+ ∆+
ε

k2

ξ+

]
f(x′) dx′ dξ+1 .

Let us study the corner term. We introduce the sequence of functions

S+,ε
+ (x) = − 1

4π

∫

R

(
A+
ε
ξ+1
ξ+

+ B+
ε

)
e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dξ+1 .

We have

〈S+,ε
+ , l〉 = − 1

4π

∫∫
l(x)
(
A+
ε
ξ+1
ξ+

+ B+
ε

)
e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dξ+1 dx.

Note that

A+
ε ξ

+
1 + B+

ε ξ+ =
A+
ε (x, 0)

1 + ε∂x( µ+
1+µ2

+
)
∂x

(
xξ+1 + ε

µ+ξ
+
1 + ξ+

1 + µ2
+

)

+
(
B+
ε − εA+

ε

∂x( 1
1+µ2

+
)

1 + ε∂x( µ+
1+µ2

+
)

)
ξ+ − ε A+

ε (x, 0)
1 + ε∂x( µ+

1+µ2
+

)
k2µ+∂xµ+

ξ+
,

which imply the equality

〈S+,ε
+ , l〉 = − i

4π

∫∫
∂x

( l(x)A+
ε (x, 0)

ξ+(1 + ε∂x( µ+
1+µ2

+
))

)
e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dxdξ+1

− 1
4π

∫∫
l(x)
(
B+
ε − εA+

ε

∂x( 1
1+µ2

+
)

1 + ε∂x( µ+
1+µ2

+
)

)
e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dxdξ+1

+
ε

4π

∫∫
l(x)

A+
ε (x, 0)

1 + ε∂x( µ+
1+µ2

+
)
k2µ+∂xµ+

ξ2+
e

ixξ+1 +iε
µ+ξ+1 +ξ+

1+µ2
+ dxdξ+1 .

The limit of such integrals exist when ε → 0. We verify that A+
0 (x, 0) = −L+

1 (x, 0)
and B+

0 (x, 0) = −L+
2 (x, 0). We have thus

〈S+
+ , l〉 =

i

4π

∫∫
eixξ+1 ∂x

( l(x)L+
1 (x, 0)
ξ+

)
dxdξ+1 +

1
4π

∫∫
eixξ+1 l(x)L+

2 (x, 0) dxdξ+1
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which proves that

〈S+
+ , l〉 =

i

4π

∫∫
eixξ+1 ∂x

( l(x)L+
1 (x, 0)
ξ+

)
dxdξ+1 +

1
2
L+

2 (0, 0)l(0).

As L+
2 (0, 0) = 0, the distribution S+

+ is element of H−1(R) and is equal to

(151) 〈S+
+ , l〉 =

i

4π

∫∫
eixξ+1 ∂x

( l(x)L+
1 (x, 0)
ξ+

)
dxdξ+1 .

In a similar fashion, the symbol associated with the operator R+,k
− is

ξ−1
+ [M+

1 ξ
2
+ + M+

2 ξ
+
1 ξ+ + M+

3 k2] = ∂x′φ+
ε

[
αε
ξ+1
ξ+

+ β+
ε

]
+ γ+

ε
k2ξ+1
ξ2+

+ δ+ε
k2

ξ+

and the phase function is φ+
ε . We have similarly

∫ ∞

0
∂x′φ+

ε eiφ+
ε

[
α+
ε
ξ+1
ξ+

+ β+
ε

]
f(x′)ψ(x′) dx′ =

if(0)eiφ+
ε (x,0,ξ+1 ,k)

[
α+
ε (x, 0)

ξ+1
ξ+

+β+
ε (x, 0)

]
+i

∫ ∞

0
eiφ+

ε ∂x′

(
f(x′)ψ(x′)

[
α+
ε
ξ+1
ξ+

+β+
ε

])

hence

(152) − i

4π

∫ +∞

0
eiφ+

ε (x,x′,ξ+1 ,k)f(x′)ψ(x′)
A−,2

+ (x, x′, ξ
+
1 −µ+ξ+
1+µ2

+
, µ+ξ

+
1 +ξ+

1+µ2
+

)

ξ+
dx′

=
1
4π

f(0)eiφ+
ε (x,0,ξ+1 ,k)

[
α+
ε (x, 0)

ξ+1
ξ+

+ β+
ε

]

− i

4π

∫ +∞

0
eiφ+

ε (x,x′,ξ+1 ,k)f(x′)ψ(x′)
[
γε(x, x′)

k2ξ+1
ξ2+

+ δε
k2

ξ+

]
dx′

+
1
4π

∫ +∞

0
eiφ+

ε (x,x′,ξ+1 ,k)∂x′

[
f(x′)ψ(x′)

(
α+
ε (x, x′)

ξ+1
ξ+

+ β+
ε

)]
dx′.

We obtain

R+,k
− (f) = − lim

ε→0+

i

4π

∫

R×R+

eiφ+
ε (x,x′,ξ+1 ,k)f(x′)ψ(x′)

[
γε(x, x′)

k2ξ+1
ξ2+

+ δε
k2

ξ+

]
dx′

+ lim
ε→0+

1
4π

∫

R×R+

eiφ+
ε (x,x′,ξ+1 ,k)∂x′

[
f(x′)ψ(x′)

(
α+
ε (x, x′)

ξ+1
ξ+

+ β+
ε

)]
dx′ + S+

−f(0)

where the distribution at the corner is the limit of S+,ε
− equal to

S+,ε
− (x) =

1
4π

∫

R

[α+
ε (x, 0)

ξ+1
ξ+

+ β+
ε (x, 0)]eiφ+

ε (x,0,ξ+1 ,k) dξ+1 .

Noting that

∂xφ
ε
+(x, 0, ξ+1 , k) = ξ+1 + ε∂x(µ+(x, 0))

[ 1− µ2
+

(1 + µ2
+)2

ξ+1 +
−2µ+

(1 + µ2
+)2

ξ+ +
k2µ+

(1 + µ2
+)ξ+

]
,
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which imply the relation

α+
ε ξ

+
1 + β+

ε ξ+ = α̃+
ε ∂x(φ+

ε (x, 0, ξ+1 , k)) + β̃+
ε ξ+ + εγ̃+

ε
k2

ξ+
,

we obtain

(153) 〈S+
− , l〉 =

1
2
β̃+

0 (0)l(0) +
i

4π

∫

R2
∂x

[ α̃+
0 l(x)
ξ+

]
eixξ+1 dxdξ+1

and this distribution is in H−1, according to α̃+
0 (0) = α+

0 (0, 0) *= 0.
We have the relations α̃+

0 (x) = α+
0 (x, 0) and β̃+

0 (x) = β+
0 (x, 0) (because the phase

is φ+
0 (x, 0, ξ+1 , k) = xξ+1 and m+

0 = µ+(a−b)−1−µ2
+

1+µ2
+

, n+
0 = a−b

1+µ2
+

). Hence α+
0 (0, 0) =

(1+a2)−1/2, which imply the existence of a function T+ such that α+
0 (x, 0)+L+

1 (x, 0) =
xT+(x).

We obtain thus the relation

〈S+
+ + S+

− , l〉 =
i

4π

∫

R2
eixξ+1 ∂x(

xl(x)T+(x)
ξ+

) dxdξ+1 .

Simple integrations by parts lead to

(154) 〈S+
+ + S+

− , l〉

=
i

4π

∫

R2
l(x)eixξ+1 [T+(x)

(ξ+1 )2

ξ3+
− i∂x(

T+(x)
ξ2+

)ξ+1 + ∂x(
xT+(x)
ξ+

)] dxdξ+1 .

The two integrations by parts defined here lead to the expression of the symbols
used in Lemma 6.5 (using the symbols given in (86)):

(155)






q+
ε (x, x′, ξ+1 , k) = ψ(x)ψ(x′)[α+

ε (x, x′)
ξ+1
ξ+

+ β+
ε ]

q−ε (x, x′, ξ−1 , k) = ψ(x)ψ(x′)[α−
ε (x, x′)

ξ−1
ξ−

+ β−ε ]

r+
ε (x, x′, ξ+1 , k) = ψ(x′)ψ(x)[γ+

ε (x, x′)
k2ξ+1
ξ2+

+ δ+ε (x, x′)
k2

ξ+
]

+i∂x′q+
ε (x, x′, ξ+1 , k)

r−ε (x, x′, ξ−1 , k) = ψ(x′)ψ(x)[γ−ε (x, x′)
k2ξ−1
ξ2−

+ δ−ε (x, x′)
k2

ξ−
]

+i∂x′q−ε (x, x′, ξ−1 , k).

6.2.3. Another representation of R±,k
∓ . — The expression of R+,k

− involves the
phase function with (a(x′)−b(x′)). In order to be exactly in the framework of Gérard
and Lebeau, we need to find another expression of this operator involving the complex
number ξ0 = (k2−ξ2)1/2 with positive imaginary part. Recall that the phase functions
ψ+,− and ψ−, + have been introduced in Lemme 4.2. We prove the
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Proposition 6.1. — There exists φ > 0, φ̃ > 0 and two contours Γφ, Γφ described
in Figure 6.1 such that

1x!0R
+,k
− (f)(x, k) =

− i

4π

∫

R×Γφ

eiψ+,−(x,x′,ξ,k)

(1 + (a′(x))2)1/2

k2(1 + a′(x)b′(x′))
ξ0

ψ(x)1x!0ψ(x′)1x′!0f(x′) dx′ dξ

+
1
4π

∫

R×Γφ

eiψ+,−(x,x′,ξ,k)

(1 + (a′(x))2)1/2
(a′(x) +

ξ

ξ0
)ψ(x)1x!01x′!0∂x′(ψ(x′)f(x′)) dx′ dξ

+ ψ(x)1x!0
f(0)
4π

∫

Γφ

(a′(x) +
ξ

ξ0
)

eixξ+ia(x)ξ0

(1 + (a′(x))2)1/2
dξ.

1x!0R
−,k
+ (f)(x, k) =

− i

4π

∫

R×Γφ

eiψ−,+(x,x′,ξ,k)

(1 + (b′(x))2)1/2

k2(1 + a′(x′)b′(x))
ξ0

ψ(x)1x!0ψ(x′)1x′!0f(x′) dx′ dξ

+
1
4π

∫

R×Γφ

eiψ−,+(x,x′,ξ,k)

(1 + (b′(x))2)1/2

(
b′(x)− ξ

ξ0

)
ψ(x)1x!01x′!0∂x′(ψ(x′)f(x′)) dx′ dξ

+ ψ(x)1x!0
f(0)
4π

∫

Γφ

(
b′(x) − ξ

ξ0

) eixξ−ib(x)ξ0

(1 + (b′(x))2)1/2
dξ.

Proof. — From the relation

u−(x, y, k) = − 1
(2π)2

∫
ei(x−x′)ξ+i(y−b(x′))η

ξ20 − η2
f(x′)i[η − b′(x′)ξ] dx′ dξ dη

we use the residue theorem to get, in y > 0 (because b(x′) " 0 for x′ ! 0)

u−(x, y, k) = − 1
4π

∫

R+×R

ei(x−x′)ξ+i(y−b(x′))ξ0
[
1− b′(x′)

ξ

ξ0

]
f(x′) dx′ dξ.

We want to extend this integral to negative values of y, because we are not able to
compute the trace on y = a(x) and then restrict to x ! 0 without having informations
for this integral on y − a(x) > 0, −δ0 " x " δ0. This is done by a deformation of the
integration contour in the variable ξ, which is R and avoids the branching points ±k,
in the complex plane. This deformation is to be done in ,ξ < 0, because we want to
compensate the term )(iy,ξ0) = −y,ξ0, which is positive when y < 0.

Assume that, for large values of ξ, the integral is to be deformed on ,ξ =
− tanφ|)ξ|, φ ∈ ]0, π/2[. We note that

)(i(x− x′)ξ + i(y − b(x′)ξ0) = −(x− x′),ξ − (y − b(x′)),ξ0.

It is simple to see that ξ20 = −ξ2(1 − k2/ξ2), hence we have, on the branch ξ =
a(− cosφ − i sinφ), a > 0 (which is the negative branch), ξ0 = a(i cosφ − sinφ) +
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O(a−1), and on the branch ξ = a(cosφ − i sinφ), a > 0 (positive branch), we have
ξ0 = a(i cosφ+ sinφ) + O(a−1). Hence, for x′ ! 0,

(156)
)(i(x− x′)ξ + i(y − b(x′)ξ0) = a[(x− x′) sinφ− (y − b(x′)) cosφ] + O(a−1)

" a[x sinφ− y cosφ] + O(a−1).

We construct then such a contour Γφ, which is the interval [−2)k, 2)k], two vertical
lines linking the real axis at ±2)k to the points −2i|)k| tanφ, and the two straight
lines ,ξ = − tanφ|)ξ| (shown in Figure 6.1 below):

1

k = 1− i.01

Figure 6.1. Contour Γπ/3

We consider x ∈ suppψ, hence 5ct0 ! x ! −5ct0, and thus, for t0 small enough,
there exists φ0 > 0 such that max a(x)

x = tanφ0. We then consider ε0 > 0, and we
introduce φ = φ0 + ε0. We have:

u−(x, y, k) =
1
4π

∫

R+×Γφ
ei(x−x′)ξ+i(y−b(x′)ξ0(1 − b′(x′)

ξ

ξ0
)f(x′) dx′ dξ.

This expression extends holomorphically in y− tanφx > 0, owing to (156). The curve
y = a(x), −5ct0 " x " 5ct0 is included in this region, hence we can take the limits
and all kind of derivatives in the above equality.

We obtain

R+,k
− (f)(x, k) = − i

4π

∫

R+×Γφ
ei(x−x′)ξ+i(a(x)−b(x′))ξ0ψ(x)ψ(x′)f(x′) dx′ dξ

[ξ0 − a′(x)ξ][ξ0 − b′(x′)ξ]
(1 + (a′(x))2)1/2ξ0

.

As we have the identity

[ξ0 − a′(x)ξ][ξ0 − b′(x′)ξ] = (1 + a′(x)b′(x′))k2 − [ξ + b′(x′)ξ0][ξ + a′(x)ξ0],
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we recognize −∂x′ψ+,− = ξ + b′(x′)ξ0. Hence, in D′,

R+,k
− (f)(x, k) = − i

4π

∫

R+×Γφ

eiψ+,−

(1 + (a′(x))2)1/2

k2

ξ0
(1+a′(x)b′(x′))ψ(x)ψ(x′)f(x′) dx′ dξ

+
1
4π

∫

R+×Γφ

eiψ+,−

(1 + (a′(x))2)1/2

[
a′(x) +

ξ

ξ0

]
ψ(x)∂x′(ψ(x′)f(x′)) dx′ dξ

+ ψ(x)
f(0)
4π

∫

Γφ

dξ
eixξ+ia(x)ξ0

(1 + (a′(x))2)1/2

[
a′(x) +

ξ

ξ0

]
.

In this equality, the limit of the last term when we have φ = 0 is to be considered
as a distribution. We introduce the operator R̃+,k

−,0(f) defined by

R̃+,k
−,0(f)(x, k) =

− i

4π
1x!0

∫

R+×R

eiψ+,−

(1 + (a′(x))2)1/2

k2

ξ0
(1 + a′(x)b′(x′))ψ(x)ψ(x′)f(x′) dx′ dξ

+
1
4π

∫

R+×R

eiψ+,−

(1 + (a′(x))2)1/2

[
a′(x) +

ξ

ξ0

]
ψ(x)∂x′(ψ(x′)f(x′)) dx′ dξ.

A similar representation is available for the operator R−,k
+ . We leave the details

to the reader; in particular the integral in η is to be closed in ,η < 0. We find (the
contour Γφ being constructed with φ̃0 = max−b(x)/x)

R−,k
+ (f)(x, k) = − i

4π

∫

R+×Γφ
ψ(x)ψ(x′)f(x′)ei(x−x′)ξ+i(a(x′)−b(x))ξ0 dx′ dξ

[ξ0 + b′(x)ξ][ξ0 + a′(x)ξ]
ξ0(1 + (b′(x))2)1/2

.

Making use of the identity

[ξ0 + b′(x)ξ][ξ0 + a′(x)ξ] = k2(1 + a′(x′)b′(x)) − [ξ − a′(x′)ξ0][ξ − b′(x)ξ0]

we obtain similarly

R−,k
+ (f)(x, k) = − i

4π

∫

R+×Γφ
f(x′)ψ(x′)ψ(x)eiψ−,+

k2

ξ0

1 + a′(x′)b′(x)
(1 + (b′(x))2)1/2

dx′ dξ

+
1
4π

∫

R+×Γφ
eiψ−,+

[ ξ
ξ0
− b′(x)

]
ψ(x)

∂x′(fψ)
(1 + (b′(x))2)1/2

dx′ dξ

+
f(0)
4π

∫

Γφ

eixξ−ib(x)ξ0
[ ξ
ξ0
− b′(x)

]
dξ.
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The operator R−,k
+,0 defined by

R̃−,k
+,0(f)(x, k) = − i

4π
1x!0

∫

R+×R

f(x′)ψ(x′)ψ(x)eiψ−,+
k2

ξ0

1 + a′(x′)b′(x)
(1 + (b′(x))2)1/2

dx′ dξ

+
1
4π

∫

R+×R

eiψ−,+
[ ξ
ξ0
− b′(x)

]
ψ(x)

∂x′(fψ)
(1 + (b′(x))2)1/2

dx′ dξ

is also introduced.

The symbols used here were introduced in (87) above and they are the symbols
involved in this new representation of R±,k

∓,0 . For f ∈ C∞
0 (R∗

+), for which f(0) = 0, we
get explicitly from the above calculation (we have the right to consider the deformation
of the contour Γφ or Γφ on R because f ∈ C∞

0 and we use the dominated convergence
theorem).

6.2.4. Expression of the operators for straight boundaries. — From the ex-
pressions above, we deduce the expression of all the operators involved in the calculus
when a(x) = ax, a = tan γ+ and b(x) = bx = tan γ−x. We have (the operators are
denoted with small letters instead of capital letters in the general case)

Proposition 6.2. — The boundary operators for the straight case are given by

r+,k
+ (f)(x, k) =

i

4π cos γ+

∫∫
ei(x−x′) ξ

cos γ+
k2

ξ0
f(x′) dx′ dξ

− 1
4π

∫∫
ei(x−x′) ξ

cos γ+
ξ

ξ0
∂x′f(x′) dx′ dξ

r−,k
− (f)(x, k) =

i

4π cos γ−

∫∫
e

i(x−x′) ξ
cos γ−

k2

ξ0
f(x′) dx′ dξ

− 1
4π

∫∫
ei(x−x′) ξ

cos γ−
ξ

ξ0
∂x′f(x′) dx′ dξ

r+,k
− (f)(x, k) = − i

4π
cos γ
cos γ−

∫∫
e

i x
cos γ+

[ξ cos γ+ξ0 sin γ]−i x′ξ
cos γ−

k2

ξ0
f(x′) dx′ dξ

+
1
4π

∫∫
e

i x
cos γ+

[ξ cos γ+ξ0 sin γ]−i x′ξ
cos γ−

[
sin γ + cos γ

ξ

ξ0

]
∂x′f(x′) dx′ dξ

+
f(0)
4π

∫
e

i x
cos γ+

[ξ cos γ+ξ0 sin γ]
[
sinγ + cos γ

ξ

ξ0

]
dξ
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r−,k
+ (f)(x, k) = − i

4π
cos γ
cos γ+

∫∫
e

i x
cos γ−

[ξ cos γ+ξ0 sin γ]−i x′ξ
cos γ+

k2

ξ0
f(x′) dx′ dξ

+
1
4π

∫∫
e

i x
cos γ−

[ξ cos γ+ξ0 sin γ]−i x′ξ
cos γ+

[
sin γ + cos γ

ξ

ξ0

]
∂x′f(x′) dx′ dξ

+
f(0)
4π

∫
e

i x
cos γ−

[ξ cos γ+ξ0 sin γ]
[
sinγ + cos γ

ξ

ξ0

]
dξ

Proof. — We begin with the equalities coming from (149) and (86) written in the
straight case, the operators being given by Lemma 6.5. We have

r+,k
+ (f)(x, k) =

i

4π

∫∫
ei(x−x′)ξ+1

k2

ξ+ cos γ+
f(x′) dx′ dξ+1

− 1
4π

∫∫
ei(x−x′)ξ+1

ξ+1
ξ+

f(x′) dx′ cos γ+ dξ+1 ,

r−,k
− (f)(x, k) =

i

4π

∫∫
ei(x−x′)ξ−1

k2

ξ− cos γ−
f(x′) dx′ dξ−1

− 1
4π

∫∫
ei(x−x′)ξ−1

ξ−1
ξ−
∂x′f(x′) dx′ cosγ− dξ−1 .

The change of variable ξ = ξ±1 cos γ±, which imply ξ0 = ξ± cos γ±, yields

u−(x, y, k) = − 1
4π2

∫
ei(xξ+yη)−ix′(ξ+bη)

k2 − ξ2 − η2
i[η − bξ]f(x′) dx′ dξ dη.

We introduce the change of variables ξ + bη = ξ̃, η − bξ = η̃, hence

u−(x, y, k) = − 1
4π2

∫
ei x(ξ−bη)+y(bξ+η)

1+b2
−ix′ξ

k2(1 + b2)− (ξ̃)2 − (η̃)2
iη̃f(x′) dx′dξ̃dη̃.

Note that the phase function is

(y − bx)η̃ + (x + by)ξ̃

hence when we consider y = ax and x ! 0, the good deformation of the contour is in
,η̃ > 0, which imposes that η̃ = ξ̃0. We obtain, in y − ax > 0, x ! 0:

u−(x, y, k) = − 1
4π

∫
e

i x+by

1+b2
ξ+ y−bx

1+b2
ξ0−ix′ξ

f(x′) dx′dξ̃.

We deduce that, formally

∂+u−(x, k) = − i cosγ+

4π

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]−ix′ξ[cos γξ̃0 − sin γξ̃]f(x′) dx′dξ̃.
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Note that ξ̃0 = k2

ξ0 cos2 γ−
− ξ̃ ξ

ξ0
, hence we have

∂+u−(x, k) = −cos γ−
4π

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]−ix′ξ
[
cos γ

ξ̃

ξ̃0
+sin γ

]
(−iξ̃)f(x′) dx′dξ̃

− i

4π
cos γ
cos γ−

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]−ix′ξ k2

ξ̃0
f(x′) dx′dξ̃

After the integration by parts in the first term, we get

∂+u−(x, k) =
cos γ−

4π

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]−ix′ξ
[
cos γ

ξ̃

ξ̃0
+ sin γ

]
∂x′f(x′) dx′dξ̃

+
f(0) cos γ−

4π

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]
[
cos γ

ξ̃

ξ̃0
+ sin γ

]
dξ̃

− i

4π
cos γ
cos γ−

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]−ix′ξ k2

ξ̃0
f(x′) dx′dξ̃.

We revert to more usual coordinates with ξ̃ = ξ
cos γ−

, ξ̃0 = ξ0
cos γ−

, and we have

∂+u−(x, k) =
1
4π

∫
e

i x
cos γ+

[cos γξ+sin γξ0]−i x′ξ
cos γ−

[
cos γ

ξ

ξ0
+ sin γ

]
∂x′f(x′) dx′ dξ

+
f(0) cos γ−

4π

∫
e

ix
cos γ−
cos γ+

[cos γξ+sin γξ0]
[
cos γ

ξ̃

ξ̃0
+ sin γ

]
dξ̃

− cos γ
cos γ−

i

4π

∫
e

i x
cos γ+

[cos γξ+sin γξ0]−i x′ξ
cos γ−

k2

ξ0
f(x′) dx′ dξ.

The method for the term ∂−u+ is the same, based on the change of variables ξ̃ = ξ+aη,
η̃ = −aξ + η.

6.3. Asymptotic expansions of the DTN operators (from Gérard and
Lebeau)

In this Section, we reproduce the proofs of the asymptotic expansions of the opera-
tors of the type K+

+and K+
− as these expansions were done in the Appendix B of [20].

This is done here for the reader’s convenience so that the text is quite self-contained.
We recall that the ε-sectors were defined in Section 4.5. We introduce the sequence
ωσ of δσ-sectors used in [20] p. 375, that is a sequence such that (0 < δ1 < δ0)

δσ = (1 − σ)δ0 + σδ1

σ < σ′ =⇒ ω̄σ ⊂ ωσ′

σ < σ′ =⇒ d(ωσ, Cωσ′) = d1(σ′ − σ)
We assume the existence of three constants c2, ε2, d2 such that d(i, ωσ) ! ε2,
d(iy, Cωσ) ! c2 for the points y ∈ R∩ [−5, 5]∩ [1− 2ε2, 1+2ε2], and ωσ ⊂ {)z " d2}.
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We introduce the weight function Φδ (as in [20] p 373 (4.7)):





Φδ(u) = 0, u " 0

Φδ(u) =
u2

2
, 0 " uδ

Φδ(u) =
u2

2
− 1

2(1 + c2)
(u − δ)2, u ! δ,

the constant c being the constant obtained in Lemma 1.1. We introduce the weight
function Φ±

δ through

Φ±
δ (z) = 0, )z ∈ [0, d], |,z − 1

cos γ±
| ! ε0, |z| " 10

cos γ±
and Φ±

δ (z) = Φδ()z) otherwise. Note that, if

Φ()w,)z) = sup
0"x"ct

[−1
2
)(w − t)2 + x)z − x2

2
]− 1

2
(,w)2

we have Φδ(u) = Φ( δc , u). Then (this is Lemme 4.1 of [20]), for δ = 3κc:
For w ∈ C, )w " 3κ, x ∈ R, we have:
∥∥∥
( 1
λ
∂z

)k[(T0 ⊗ T1)(f)(w, x − iα, λ)]
∥∥∥

L2(R−iα)
" D(2ct0)k‖f‖L2(R+)e

λ (%w)2
2 +λΦδ(x)

∥∥∥
( 1
λ
∂z

)k[(T0 ⊗ T1)(f)(w, x − iα, λ)]
∥∥∥

L∞(R−iα)
" D(2ct0)k‖f‖L2(R+)e

λ (%w)2
2 +λΦδ(x).

We introduce again Wκ = {w ∈ C, |)w| < κ, |1+,w| < κ}. From Proposition 3.1,
there exists three constants A, B, d (with d " ct0) such that, for f ∈ H1(R+), with
the two possibilities f = u − u+, or f = u − u−, which allows us to use Proposition
3.1

Lemma 6.6. — For δ " ε1/3c, z ∈ C, |)w| " δ/c, |1 + ,w| " δ/c, we have

|(T0 ⊗ T1)(f)(w, z, λ)| " AλBe
λ
2 (*w)2+λΦ±

δ (z),

|(T0 ⊗ T1)(∂xf)(w, z, λ)| " AλB+1e
λ
2 (*w)2+λΦ±

δ (z).

This lemma, (Lemma 4.2 of [20]), leads to the definition of the constant d, used in
the assumption on ε2 and d2:

ε0 cos γ± < ε2, d2 cos γ± < d.

6.3.1. Expansion of pseudodifferential operators. — Introduce

I(t, k, z, λ) = T1(1x>0R
+,λk
+,0 (T0f))(t− ik, z, λ)

= T1(1x>0R
+,1,λk
+,0 (1x′!0∂x′T0f))(t− ik, z, λ)

+ T1(1x>0S
+,1,λk
+,0 (T0f))(t− ik, z, λ) + T1(1x>0R

+,2,λk
+,0 (T0f))
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The equality similar to (B.1) p. 400 of [20] is then

Iν =
∫ ∞

0
eλxz−λx2/2 ×

[
ψ2(x)

λ

4π

∫

R

dx′
∫

C1

dζ+1 eiλ(x−x′)ζ+1 −ν(ζ+1 )2

× q+
1 (x, x′, ζ+1 , k)(T0(1x′!0∂x′f)(t− ik, x′, λ)) dx

]

+
∫ ∞

0
eλxz−λx2/2 ×

[
ψ2(x)

iλ2

4π

∫

R

dx′
∫

C1

dζ+1 eiλ(x−x′)ζ+1 −ν(ζ+1 )2

× s+
2 (x, x′, ζ+1 , k)(T0(1x′!0f)(t− ik, x′, λ)) dx

]

+
∫ ∞

0
eλxz−λx2/2 ×

[
ψ2(x)

λ

4π

∫

R

dx′
∫

C1

dζ+1 eiλ(x−x′)ζ+1 −ν(ζ+1 )2

× s+
1 (x, x′, ζ+1 , k)(T0(1x′!0f)(t− ik, x′, λ)) dx

]
.

We have, in ,k < 0, I = limν→0+ Iν = I1 + I2 + I3 = limν→0+ Iν1 + limν→0+ Iν2 +
limν→0+ Iν3 . We reproduce the proof of Proposition 4.1 of [20] (appendix B, (B.1) to
(B.27)) for the integral defining Iν1 .

Let us write the Taylor expansion of q+
1 (x, x′, ζ+1 , k) in the variable x in the neigh-

borhood of x = 0. We have

q+
1 (x, x′, ζ+1 , k) =

∑

n"N

∂n
xnq+

1 (0, x′, ζ+1 , k)
xn

n!
+

xN+1

(N + 1)!

∫ 1

0
∂N+1

xN+1q
+
1 (sx, x′, ζ+1 , k)(1− s)Nds.

Hence, if we denote by

Iν1,R,N =
∫ ∞

0
eλxz−λx2/2 ×

[
ψ2(x)

λ

4π

∫

R

dx′
∫

C∞

dζ+1 eiλ(x−x′)ζ+1 −ν(ζ+1 )2

×
[ xN+1

(N + 1)!

∫ 1

0
∂N+1

xN+1q
+
1 (sx, x′, ζ+1 , k)(1− s)Nds

]
(T0(1x′!0∂x′f)(t− ik, x′, λ)) dx

]

as well as

Iν1,n =
∫ ∞

0
eλxz−λx2/2 ×

[xn

n!
ψ2(x)

λ

4π

∫

R

dx′
∫

C∞

dζ+1 eiλ(x−x′)ζ+1 −ν(ζ+1 )2

× ∂n
xnq+

1 (0, x′, ζ+1 , k)(T0(1x′!0∂x′f)(t− ik, x′, λ)) dx
]
,

such that, of course, Iν1 =
∑

n"N
1
n!I

ν
1,n + Iν1,R,N , we have, using an integration by

parts in x three times and the compactly supported C∞ function ψ2(x), the relation,
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valid for N ! 3 (to cancel the terms coming at x = 0 from the integration by parts)

Iν1,R,N =
∫ ∞

0

eλxz+iλxζ+1

(z + iζ+1 )3
×(− 1

λ
∂x)3
[
ψ2(x)

λ

4π

∫

R

dx′
∫

C∞

dζ+1 e−iλx′ζ+1 −λx2/2−ν(ζ+1 )2

×
[ xN+1

(N + 1)!

∫ 1

0
∂N+1

xN+1q
+
1 (sx, x′, ζ+1 , k)(1− s)Nds

]
(T0(1x′!0∂x′f)(t− ik, x′, λ)) dx

]
.

Letting ν go to 0+, we get the limit because now it is absolutely converging as an
integral in ζ+1 . More precisely, for z ∈ U and ζ+1 ∈ C1, we have the relation)z−,ζ+1 "
−A sin ε + a′′ " −2, and we use the holomorphy result of Lemma 4.5. This leads to
the estimate, using for z ∈ U

∫

C1

dζ+1
|z + iζ+1 |3

" D

(1 + |z|)2

| lim
ν→0+

Iν1,R,N | " DλD(D1/a′)N+4 N !
λN

e4λct0a′

1 + |z|2 ‖(T0(1x′!0∂x′f)(t− ik, ·, λ))‖L2(R+).

Hence, for N = [λa′/eD1], we get (D1N/a′λ)N " e−N " ee−λa′/eD1 . Hence

| lim
ν→0+

Iν1,R,N | "

DλD(D1/a′)4
N !
NN

1
1 + |z|2 e−λa′( 1

eD1
−4ct0)‖(T0(1x′!0∂x′f)(t− ik, ·, λ))‖L2(R+).

For t0 small enough, we have 1/eD1 > 4ct0, hence limν→0+ Iν1,R,N is negligible in
H(φ0, Xκ, U).

We now perform the asymptotic expansion on each term Iν1,n. For this purpose,
we introduce

J1,n(ζ+1 , t, k, λ)

=
∫

R

ψ(x′) dx′ e−iλx′ζ+1 × ∂n
xnq+

1 (0, x′, ζ+1 , k)(T0(1x′!0∂x′f)(t− ik, x′, λ)) dx

such that

Iν1,n =
∫ ∞

0
dx

∫

C1

dζ+1 eλxz−λx2
2 +iλxζ+1 xnψ(x)

λ

4π
e−ν(ζ

+
1 )2J1,n(ζ+1 , t, k, λ).

We use Lemme B.1 of [20], which writes
We assume that J1

1,n(ζ+1 , t, k, λ) is a family of holomorphic functions for (t, k) ∈
Xκ, which is L2 in the variable ζ+1 ∈ C1, satisfying the estimate, for at least C < 0:

‖J1
1,n(·, t, k, λ)‖L2(C1) " Ce−λ/C(D1/a′)n+1eλφ0(t−ik).

Then
∑

n"λa′/eD1

∫ ∞

0
dx

∫

C1

dζ+1 eλxz−λx2
2 +iλxζ+1 xnψ(x)

λ

2π
e−ν(ζ

+
1 )2J1,n(ζ+1 , t, k, λ)

is uniformly in ν negligible in H(φ0, Xκ, U).
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Recall that the FBI transform T1 has an inversion formula

ψ2g(x) =
λ

2π

∫
eiλxα−λx2/2T1g(x− iα, λ) dα

which imply

e−iλx,ζ+1 ψ2g(x) =
λ

2π

∫
eiλxα−λx2/2T1g(x− iζ+1 − iα, λ) dα.

We apply this formula to g = T0f+(t− ik, x′, λ) which yields

J1,n(ζ+1 , t, k, λ) =
λ

4π

∫

R2
ψ(x′) dx′eiλα−λ(x′)2/2∂n

xnq+
1 (0, x′, ζ+1 , k)

× (T0 ⊗ T1(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ)) dxdα.

Using an integration by parts for the formula of Jn,1, we obtain, with the help of
(1− 1

λ2 ∂2
(x′)2)(e

iλαx′
) = (1+α2)eiλαx′

, the identity (which defines j1,n(ζ+1 t, k, λ, x′, α))

J1,n(ζ+1 , t, k, λ) =
∫

R2
dx′ dαj1,n

=
λ

2π

∫

R2
ψ(x′) dx′ eiλα

1 + α2

(
1− 1
λ2
∂2
(x′)2

)[
e−λ(x

′)2/2∂n
xnq+

1 (0, x′, ζ+1 , k)

(T0 ⊗ T1)((1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ))
]
dxdα.

We split C1 in two parts, called C−
1 and C+

1 , with

C−
1 = {ζ+1 ∈ C1,

∣∣∣)ζ+1 − 1
cos γ+

∣∣∣ ! 1 + D1t0}.

For ζ+1 ∈ C−
1 and x′ in suppψ, we have )(x′ − iζ+1 − iα) " 4ct0 − a′′ " −1, owing

to the form of the contour C1, given in 6.3.2. Hence

‖j1,n‖L2(C−
1 ) " DλDe−λ(x

′)2/2(D1/a′)n+1eλφ0(t−ik) ‖f+‖L2(R2)

α2 + 1
,

owing to Lemma 4.1 of [20] which gives an estimate of
(

1
λ∂z

)k(T0⊗T1)f(w, x− iα, λ)
for f ∈ L2(R2), supported in 0 " x " ct, 0 " t " 2t0.

Introduce a function g, C∞
0 (]− 2ct0, 2ct0[), 0 " g " 1, g = 1 on [−ct0, ct0] and

(157) Σ =
{
(α, x′), x′ = y′ + ig(y′)

α

(1 + α2)1/2

a′

D1
, y′ ∈ suppψ

}
.

We have the inequality, replacing x′ by y′+ ig(y′) α
(1+α2)1/2

a′

D1
in iλαx′−λ (x′)2

2 and

using g(y′)
(1+α2)1/2

a′

D1
" 1:

‖j1,n‖L2(C−
1 ) " DλDe−(λ2 )[(y′)2+( a′

D1
α2

1+α2 (g(y′)2)](D1/a′)n+1eλφ0(t−ik) ‖f+‖L2(R2)

α2 + 1
,
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for (t, k) ∈ Xκ, (α, x′) ∈ Σ. We split Σ into the part contained in {|y′| + |α| " r},
called Σ0 and Σ1, we get

J1,n(ζ+1 , t, k, λ) =
∫

Σ1

dx′ dαj1,n +
∫

Σ0

dx′ dαj1,n.

The family of functions J1
1,n(ζ+1 , t, k, λ) =

∫
Σ1

dx′ dαj1,n satisfies the hypothesis of
Lemme B.1 above, hence

∫ ∞

0
dxxn

∫

C1

dζ+1 eλxz−λx2
2 +iλxζ+1

λ

4π
e−ν(ζ

+
1 )2J1,n(ζ+1 , t, k, λ)

−
∫ ∞

0
dxxn

∫

C−
1

dζ+1 eλxz−λx2
2 +iλxζ+1

λ

4π
e−ν(ζ

+
1 )2
∫

Σ0

dx′ dαj1,n

−
∫ ∞

0
dxxn

∫

C+
1

dζ+1 eλxz−λx2
2 +iλxζ+1

λ

4π
e−ν(ζ

+
1 )2J1,n(ζ+1 , t, k, λ)

is negligible in H(φ0, Xκ, U). We reduced the problem to these two integrals.
For the integral on C+

1 , we use )(x′ − iζ+1 − iα) " x′ + a′, hence we get

‖j1,n‖L2(C+
1 ) " DλD(D1/a′)n+1e−λ

(x′)2
2 +λφ0(t−ik)+λΦδ (x

′+a′) ‖f+‖L2(R2)

α2 + 1
,

From this inequality, if we deform the integral on R2

J1,n(ζ+1 , t, k, λ) =
∫

R2
dx′ dαj1,n

=
λ

4π

∫

R2
ψ(x′) dx′ eiλαx′

1 + α2

(
1− 1

λ2
∂2
(x′)2

)[
e−λ

(x′)2
2 ∂n

xnq+
1 (0, x′, ζ+1 , k)

(T0 ⊗ T1(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ))
]
dxdα

on the same Σ for ζ+1 ∈ C+
1 , we get, using the inequality

‖j1,n‖L2(C+
1 ) " DλD(D1/a′)n+1eλφ0(t−ik)+λG ‖f+‖L2(R2)

α2 + 1
,

where

G " −g(y′)
α2

(1 + α2)1/2

a′

2D1
− (y′)2

2
+Φ+

δ (y′+,ζ+1 + i(α(
g(y′)

(1 + α2)1/2

a′

D1
−1)−)ζ+1 )).

We use the result of [20] p. 403, that is G < 0. This is true because sup(a′δ) =
sup(a′, 3κc) = sup(a′, 3a′c/D1) 9 t0. Hence the decomposition Σ = Σ0 ∪ Σ1 gives
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again the relation

J1,n(ζ+1 , t, k, λ)−
∫

Σ0

dx′ dαj1,n

=
λ

4π

∫

R2
ψ(x′) dx′ eiλαx′

1 + α2

(
1− 1

λ2
∂2
(x′)2

)[
e−λ

(x′)2
2 ∂n

xnq+
1 (0, x′, ζ+1 , k)

(T0 ⊗ T1)((1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ))
]
dxdα

is negligible in H(φ0, Xκ, U).
Moreover, integrating by parts in the variable x′, the contribution of ∂Σ0 yields a

term negligible in H(φ0, Xκ, U), hence we get

(158) J1,n(ζ+1 , t, k, λ)−
∫

Σ0

dx′ dαj1,n =
λ

4π

∫

R2
ψ(x′) dx′eiλαx′−λ(x′)2/2

∂n
xnq+

1 (0, x′, ζ+1 , k)(T0 ⊗ T1)(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ)) dxdα.

Note that all this part has been done to prove that we could reduce to the integral on
a compact subset, which is Σ0. Note also that this is valid as well for ζ+1 ∈ C+

1 and
ζ+1 ∈ C−

1 .
We use now the assumption a′ 9 d. This proves that, for (x′, α) ∈ Σ0 and ζ+1 ∈ C1,

we have

|(T0 ⊗ T1)(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ)| " Dλdeλφ0(t−ik),

|∂m
z (T0 ⊗ T1(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ))| " Dλdeλφ0(t−ik)m!Dm+1.

We write the Taylor expansion on x′ = 0 of ∂n
xnq+

1 (0, x′, ζ+1 , k):

∂n
xnq+

1 (0, x′, ζ+1 , k) =
∑

m"M

∂n+m
xn(x′)mq+

1 (0, 0, ζ+1 , k)
m!

(x′)m

+
(x′)M+1

(M + 1)!

∫ 1

0
∂n+m

xn(x′)mq+
1 (0, sx′, ζ+1 , k)(1− s)M ds

for M = E(λ/C2).
We plug the remainder term in the expression of J1,n. It gives a term which is

negligible in H(φ0, Xκ, U). Moreover, integrating by parts in α leads to

(159) J1,n(ζ+1 , t, k, λ) +
∂n+m

xn(x′)mq+
1 (0, 0, ζ+1 , k)
m!

λ

2π

∫

Σ0

ψ(x′) dx′eiλαx′−λ(x′)2/2

( 1
λ
∂z

)m(T0 ⊗ T1(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ)) dxdα + B1 + J2
1,M ,

where B1 is the sum of the terms on ∂Σ0 are negligible and J2
1,M is the remainder

term, including the remainder term of the Taylor expansion in x′ and all the other
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terms (in particular on Σ1 for ζ+1 ∈ C±
1 ). The term B1 is bounded by

DλDeλφ0(t−ik)(D/a′)n+1
∑

m"M

(D/a′)m+1λ−me−
r2a′λ
DD2 Dmm!

and the remainder term J2
1,M is bounded by

DλDeλφ0(t−ik)(D/a′)n+1(D/a′)M+1λ−M/2(M/2)!.

Both terms are negligible in H(φ0, Xκ, U), as soon as C2 ! C0
2 , where C0

2 can be
computed in terms of a′. Hence we can replace the integral on Σ0 by an integral on
any contour localized in the neighborhood of (0, 0) this contour being a“good contour”
in the sense of Sjöstrand for the phase function αx′ + i(x′)2/2.

We note now that, if we denote by H(t− ik,−iζ+1 , λ) the holomorphic function

(160)
λ

2π

∫

Σ0

ψ(x′) dx′eiλαx′−λ(x′)2/2(T0 ⊗ T1(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ)) dxdα

− Jρ(T0 ⊗ T1(1x′!0∂x′f)(t− ik,−iζ+1 , λ))

we have
‖∂m

z H(t− ik, .λ)‖L2(C1) " Ce−λ/CDmm!eλφ0(t−ik).

We have also the relation

(161) λ

∫ ∞

0
xnψ(x)eλx(z+iζ+1 )e−λx2/2 =

( 1
λ
∂z

)n[J−1
ρ (

1
z + iζ+1

) + r(z + iζ+1 , λ)]

where, for z ∈ U , ζ+1 ∈ C1, |∂j
zr| " Ce−λ/Cj!/|z|.

Replacing in the equality

Iν1,n =
∫ ∞

0
eλxz−λx2/2 ×

[xn

n!
ψ2(x)

λ

4π

∫

R

dx′
∫

C∞

dζ+1 eiλ(x−x′)ζ+1 −ν(ζ+1 )2

× ∂n
xnq+

1 (0, x′, ζ+1 , k)(T0(1x′!0∂x′f)(t− ik, x′, λ)) dx
]
,

the relation (159) giving the asymptotic expansion of J1,n, and integrating in x using
(161), we get, as [J−1

ρ , ∂z ] = 0 (which allows us to exchange the derivation and J−1
ρ in

(161)) and [Jρ, ∂z ] = 0 (which enables us to transform the following relation, written
using (160)):

∂n+m
xn(x′)mq+

1 (0, 0, ζ+1 , k)
m!

λ

2π

∫

Σ0

ψ(x′) dx′eiλαx′−λ(x′)2/2

( 1
λ
∂z

)m(T0 ⊗ T1(1x′!0∂x′f)(t− ik, x′ − iζ+1 − iα, λ))
]
dxdα

3
∂n+m

xn(x′)mq+
1 (0, 0, ζ+1 , k)
m!

Jρ
( 1
λ
∂z

)m(T0 ⊗ T1(1x′!0∂x′f)(t− ik,−iζ+1 , λ))
]
.

We have only to let ν go to 0+. The remainder terms are negligible in H(φ0, Xκ, U).
This is valid when C0

1 is replaced by C1 ! C0
1 = deD1/a′. This ends the proof of the
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asymptotic expansion of I1. The asymptotic expansion of I2 and I3 follow the same
pattern. We have, when f is constructed from u− u+ on ∆+:

I1 − i
λ

2
J−1
ρ

( ∑

n"λ/C1
m"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ
z + iξ

s+
2,n,m(k, ξ)

( 1
λ
∂z

)m
JρF (−iξ)

)

is negligible in H(φ0, Za′/D1 , U) and

I3 −
1
2
J−1
ρ

( ∑

n"λ/C1
m"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ
z + iξ

s+
1,n,m(k, ξ)

( 1
λ
∂z

)m
JρF (−iξ)

)

is negligible in H(φ0, Za′/D1 , U). We have also for the terms with F̃ , owing to
F̃ (w, z, λ) = (T0 ⊗ T1)(1x!0∂xf)(w, z, λ) = T1(1x!0∂x(T0f)(w, x, λ))(w, z, λ),

I2 −
1
2
J−1
ρ

( ∑

n"λ/C1
m"λ/C2

( 1
λ
∂z

)n 1
2π

∫

C1

dξ
z + iξ

q+
1,n,m(k, ξ)

( 1
λ
∂z

)m
JρF̃ (−iξ)

)

is negligible in H(φ0, Za′/D1 , U). Proposition 4.5 is proven.
Let us consider now the singular terms, used in Proposition 4.6. We prove Propo-

sition 4.6, following step by step the proof of [20]: (B.28) to (B.113). Some steps may
be omitted here, the interested reader must refer to [20] for the completion of some
expansions.

We prove the result on the term

T1(R+,λk,2
− (T0f))

where the operator R+,λk,2
− is given by the limit, when ν → 0+, of the integral:

(162)
∫ +∞

−∞
dξe−νξ

2
r2(t, z, ξ, λ)j(t, τ, ξ, λ)

with the relation

r2(t, z, ξ, λ) =
∫ ∞

0
dxψ(x)

a′(x) + ξ/ξ0
(1 + (a′(x))2)1/2

eλ(x(z+iξ)+ia(x)ξ0−x2/2)

j(t, τ, ξ, λ) =
λ

2π

∫ ∞

0
dx′ ψ(x′)e−iλx′ξ−iλb(x′)ξ0T0(1x′!0∂x′f(t, x′)(t− ik, x′, λ).

Recall that ξ0 = (k2 − ξ2)1/2, ,k < 0, ,ξ0 > 0. We consider the contour C(l1). If
κ 9 l1 9 1, for ξ ∈ C(l1), the function k → ξ0 can be extended to an holomorphic
function on |k − 1| < 3κ, and there exists D2, D3, D4, D5, D6 positive constants,
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independent of l1 and κ, such that

(163)

,ξ0 ! −D2l1
D3(1 + |,k|) ! |ξ0| ! (l21 + κ)/D3

,(ξ + tan γ−ξ0) ! D4κ
,(ξ + tan γ−ξ0) ! −l1/D5 =⇒ |ξ − cos γ−| "

√
l1

|ξ + tanγ−ξ0 − cos γ−| " D6l1.

The inequalities on ,(ξ + tan γ−ξ0) are obtained when considering the contour
{ξ + tan γ−ξ0, ξ ∈ C(l1)} shown in (172).

When we deform (162) on C(l1), we show that this integral is defined for (t, k) ∈ Xκ
and z ∈ U . We also easily check the inequalities, obtained for t0 small enough,

tan γ+

2
x " a(x) " 3 tanγ+

2
and

3 tanγ−
2

x′ " b(x′) " tan γ−
2

x′

for (x, x′) ∈ (suppψ)2. Hence we obtain

)(z + i(ξ +
a(x)
x
ξ0)) " −4 + Dl1 " −1, )(−i(ξ +

b(x′)
x′ ξ0)) " Dl1.

This imply the inequality

(164) |j(t, k, ξ, λ)| " DλdeλDl1t0‖1x′!0∂x′f(t, x′)‖L2(R+)e
λφ0(t−ik).

Let us write the Taylor expansion of the symbol contained in k, using the notation:

σn(y, ξ, kλ) = (∂y)n a′(y) + ξ/ξ0
(1 + (a′(y))2)1/2

eiλ(a(y)−tan γ+y)ξ0−y2/2.

a′(x) + ξ/ξ0
(1 + (a′(x))2)1/2

eiλ(a(x)−tan γ+x)ξ0−x2/2

=
∑

n"N

xn

n!
σn(0, ξ, k, λ) +

∫ x

0

(x− y)N

n!
σN+1(y, ξ, k, λ) dy.

Note that, for y ∈ suppψ, we have, if a is an holomorphic function on
{z, d(z, suppψ) " ρ}, ρ small enough, the inequality

)
[
i(a(y + ρeiθ)− (y + ρeiθ) tan γ+)ξ0 −

(y + ρeiθ)2

2

]

" )(i(a(y)− y tan γ+)ξ0)−
y2

2
+ D(yρ+ ρ2)(1 + |ξ0|).

Let ζ = z + iξ + i tanγ+ξ0. We get the inequality
∣∣∣
∫ ∞

0
dxψ(x)eλx(z+iξ+tan γ+ξ0)

∫ x

0

(x− y)N

n!
σN+1(y, ξ, k, λ) dy

∣∣∣

"
∫ ∞

0

∫ x

0
dxdy ψ(x)(x − y)Neλ(x−y)-ζ+λφ(y)(N + 1)ρ−N−1eλDρ2(1+|ξ0|),
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where

φ(y) = )
(
y
(
z + iξ + i

a(y)
y
ξ0
))

+ Dyρ(1 + |ξ0|)

" y)
(
z + D3ρ+ iξ + i

(a(y)
y

+ D3ρ
)
ξ0
)
.

We have φ(y) " 0 if ρ 9 1. Hence, the change x− y = u in the integral obtained in
the right hand side of the equality above yields
∫ ∞

0

∫ x

0
dxdy ψ(x)(x − y)Neλ(x−y)-ζ+λφ(y) (N + 1)

ρN+1
eλDρ2(1+|ξ0|)

" D
(N + 1)
ρN+1

eλDρ2(1+|ξ0|)
∫ ∞

0
du uNeλu-ζ

" D(N + 1)!
(−λρ)ζ)N+1

eλDρ2(1+|ξ0|).

For the choice of N + 1 = [λ/C0] with C0 < 1 and ρ2 = (N + 1)/λ(1 + |ξ0|), we
obtain the inequality
∫ ∞

0

∫ x

0
dxdy ψ(x)(x − y)Neλ(x−y)-ζ+λφ(y) (N + 1)

ρN+1
eλDρ2(1+|ξ0|)

"
(D(N + 1)

λ

)N+1/2( 1 + |ξ0|
|)z|+ ,ξ0

)N+1/2
.

We fix C0 ! eD, hence, using the second inequality of (163), we have
∫ ∞

0

∫ x

0
dxdy ψ(x)(x − y)Neλ(x−y)-ζ+λφ(y) (N + 1)

ρN+1
eλDρ2(1+|ξ0|)

" De−λ/2C0(|)z| + ,ξ0)−(N+1)/2.

When l1t0 9 1
C0

, using the inequality (164) we deduce that
∫ +∞

−∞
dξe−νξ

2
∫ ∞

0
dxψ(x)eλx(z+iξ+tan γ+ξ0)

∫ x

0

(x − y)N

n!
σN+1(y, ξ, k, λ)dyj(t, τ, ξ, λ)

is negligible in H(φ0, Xκ, U), which allows us to consider only the Taylor expansion
up to the order N , with N = [λ/C0]− 1.

A similar calculus yields
(165)∣∣∣
∫ ∞

0
dxψ(x)eλx(z+iξ+tan γ+ξ0) x

n

n!
σn(0, ξ, k, λ)

∣∣∣ " De−n/2(|)z| + ,ξ0)−(n+1)/2.

The asymptotic expansion relies on the expansion of j. Let

C(l1) ∩ {,(ξ + tan γ−ξ0) " −l1/D5} = C(l1)−,

and C(l1) = C(l1)− ∪ C(l1)+. The aim of what follows is to prove:
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(1) for ξ ∈ C(l1)−,

j(t, k, ξ, λ) 3 λ

2π

∑

m"λ/C′
0

λ−m

m!
(∂x′)m

(
e−λ

(x′)2
2 −iλ(b(x′)−tan γ−x′)ξ0

)

× (∂z)m(T0 ⊗ T1)(∂x′f)(t− ik,−i(ξ + tan γ−ξ0), λ),

which is achieved by using the inversion formula for the F.B.I. transform T1, and
deforming the integral in (α, x′) ∈ R × R+ obtained on the contour Γ(l2) × R+ =
{β + il2(1 + |,ξ0|)} × R+. with t0 + l2 9 l1 9 1,

(2) for ξ ∈ C(l1)+ we deform the integral obtained after using the inversion formula
on Σ = {(α, x′), x′ = y′ + ig(y′) α

(1+α2)1/2 l3, (α, y′) ∈ R2} where l3 is such that
0 < l3 9 1, and we prove that j(t, k, ξ, λ) is estimated by the integral on Σ0, the
remainder term being O(eλ(φ0(t−ik)−1/C(r))). We use the stationary phase method to
obtain the asymptotic expansion of this term.

Proof of (1). — We check that, for α ∈ Γ(l2), we have

)(x′ − i(ξ + tan γ−ξ0)− iα) "





4ct0 −

l1
D5

+ 3l2, |,ξ0| " 2

4ct02(tan γ− − l2) + l2, |,ξ0| " 2.

This is a consequence of ξ ∈ R, |ξ| ! 1 + l1, ,ξ0 > 0. If we choose t0 + l2 9 l1 9 1,
we obtain that the leading term is −l1/D5, hence

)(x′ − i(ξ + tan γ−ξ0)− iα) " − l1
D′

5

where the constant D′
5 is not too different from D5. This implies

(166) ‖∂m
z (T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ)‖L2(Γl2 )

" (D′
5/l1)m+1m!eλφ0(t−ik).

As we have the inequality, for t0 9 l2:

)(ix′α− i(b(x′)− tan γ−x′)ξ0 − (x′)2/2) " −x′l2(1 + |,ξ0|) + D′
5(x′)2|,ξ0|

" −x′l2/2

we write, for α ∈ Γ(l2):
∫ ∞

0
eiλx′α−λ (x′)2

2 −iλ(b(x′)−tanγ−x′)ξ0ψ(x′)

(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ) dx′

=
∑

m"M

∫ ∞

0
dx′ eiλx′α (x′)m

m!
∂m

x′

[
e−λ

(x′)2
2 −iλ(b(x′)−tan γ−x′)ξ0ψ(x′)

× (T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tanγ−ξ0)− iα, λ)
]

+ RM (t, k, ξ, α, λ),
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where RM is given by the integral Taylor formula. We perform an integration by
parts in RM in the variable x′, such that the coefficient becomes −1/iλα. Hence, if ρ
(which is such that a is holomorphic on {z, d(z, suppψ) " ρ}) verifies ρ9 l2, we get,
as

(∫

Γ(l2)

dα
|α|2
)1/2

" D

(l2(1 + |,ξ0|))1/2

we obtain
∫

Γ(l2)
|RM (t, k, ξ, α, λ)| dα " D(M + 1)!

(λρ)M+1(l2(1 + |,ξ0|))M+1/2
eλDρ2(1+|ξ0|)+λφ0(t−ik).

We choose M + 1 = [λ/C′
0], with C′

0 < l−2
2 , and ρ = ( M+1

λ(1+|ξ0|))
1/2. This imply

(167)
∫

Γ(l2)
|RM | dα " De−λ/2C′

0(1 + |,ξ0|)−M/2.

Hence the contribution of RM in (162) is negligible, thanks to (165).
Let us study now each term of the Taylor series. We use the relation

∫ ∞

0
dx′ eiλx′αψ(x′)

(x′)m

m!
= (− 1

iλα
)m+1 + rm(α)

where, using again an integration by parts in x′ and ψ(0) = 1

|rm(α)| =
∣∣∣

1
λα

∫ ∞

0
∂x′(eiλx′α(1− ψ(x′))

(x′)m

m!
dx′
∣∣∣

" 1
λ|α|e

−2l2ct0(1+|*ξ0|)λ
( D

λl2(1 + |,ξ0|)

)m−1

because, on supp(1− ψ), we have x′ ! 3ct0.
Note now that, when ρ9 l1,

∥∥(∂x′)m
(
e−λ

(x′)2
2 −iλ(b(x′)−tanγ−x′)ξ0

(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ)
)
|x′=0

∥∥
L2(Γ(l2))

" m!
ρm

eλφ0(t−ik)+λDρ2(1+|ξ0|),

hence, choosing ρ = ( m
λ(1+|ξ0|))

1/2 9 l2, we obtain, using C′
0 9 l−2

2 :

∑

m"λ/C′
0

∫

Γ(l2)
dα‖rm(α)‖L2(Γ(l2))

∥∥(∂x′)m
(
e−λ

(x′)2
2 −iλ(b(x′)−tan γ−x′)ξ0

· [(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tanγ−ξ0)− iα, λ)]
)
|x′=0‖L2(Γ(l2))

" D10e
−λ/D10eλφ0(t−ik).
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From (165), this term is negligible, hence

j(t, k, ξ, λ) 3
∑

m" λ
C′

0

( λ
2π
)2
∫

Γ(l2)
(− 1

iλα
)m+1(∂x′)m

(
e−λ

(x′)2
2 −iλ(b(x′)−tan γ−x′)ξ0

· [(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ)]
)
|x′=0 dα.

The residue theorem allows us to use the pole α = 0, for which we compute (owing
to the term α−m−1) the m-th derivative in α of

(∂x′)m
(
e−λ

(x′)2
2 −iλ(b(x′)−tan γ−x′)ξ0

· [(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ)]
)
|x′=0.

This term is exactly

(−i)m(∂x′)m
(
e−λ

(x′)2
2 −iλ(b(x′)−tan γ−x′)ξ0

· (∂z)m[(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0), λ)]
)
|x′=0,

hence, as the residue is −2πi, we get

(168) j(t, k, ξ, λ) 3 λ

2π

∑

m"λ/C′
0

λ−m∂m
x′
(
e−λ(

(x′)2
2 +i(b(x′)−tan γ−x′)ξ0)

· (∂z)m[(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0), λ)]
)
|x′=0.

This ends the proof of the item 1 in the program.

Proof of Point (2). — We notice that T0(∂x′f) is equal to 0 if x′ < 0 (functions
supported for x′ ! 0). Hence, for ξ ∈ C(l1)+, we have

j(t, k, ξ, λ) =
λ

2π

∫∫

R2
σ(t, k, ξ, λ; x′, α) dx′ dα

where

σ(t, k, ξ, λ; x′, α) =
λ

2π
eiλx′α

1 + α2
(1− 1

λ2
∂2

x′)e−λ(
(x′)2

2 +i(b(x′)−tanγ−x′)ξ0)ψ(x′)

· (T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ)

We use the same proof as the proof for the pseudodifferential terms, starting at
the contour Σ (157). We use the result of [20], pp. 410-412, to obtain

(169) |σ(t, k, ξ, λ; x′, α)| " DλD ‖∂x′f‖L2

1 + α2
eλφ0(t−ik)eλG.

The aim of the proof is to obtain G < 0. This is done in (B.79) to (B.92) of [20].
Finally, the conditions we obtained on the constants are

κ9 l3, κ9 δ1 < d, l4 " D(l1/2
1 + l1/2

3 ), δ21l4 9 l3
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which is all right (and all the conditions we came across are satisfied) if

κ9 l3, κ9 t0 9 l2 9 l1, κ9 min(l1/2
3 , d).

The proof of point 2 was sketched.

Now, we replace σ by the original symbol σ0 by integrating by parts, the boundary
terms being negligible, and we have

σ0(t, k, ξ, λ; x′, α) =
λ

2π
eiλx′αe−λ(

(x′)2
2 +i(b(x′)−tan γ−x′)ξ0)

· ψ(x′)(T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tan γ−ξ0)− iα, λ).

Recall the inequality (κ9 d), which is a consequence of Lemma 6.6:

|∂m
z (T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tanγ−ξ0)− iα, λ)| " Dm+1m!eλφ0(t−ik).

We use the stationary phase lemma on the phase function φ(x′, z) = x′z − (x′)2

2 −
iξ0b′′(0)(x′)2/2 using the symbol

v(t, k, ξ, λ; x′, z) = e−iλξ0(b(x′)−tan γ−x′−b′′(0) (x′)2
2 )

· (T0 ⊗ T1)(∂x′f)(t− ik, x′ − i(ξ + tanγ−ξ0) + z, λ).

The critical point is x′ = z = 0, the “laplacian operator” is

∂2

∂x′∂z
− 1

2
(1 + ib′′(0)ξ0)

∂2

∂z2

and the stationary phase expansion yields

(170) j(t, k, ξ, λ) =

λ

2π

∑

m"λ/C′′
0

1
m!
λ−m
[ ∂2

∂x′∂z
− 1

2
(1 + ib′′(0)ξ0)

∂2

∂z2

]m
v(t, k, ξ, λ; x′, z)|x′=z=0

+ O(eλφ0(t−ik)−λ/D).

The expansion obtained in (168) for ξ ∈ C(l1)− can be rewritten in a straightfor-
ward manner:

(171) j(t, k, ξ, λ) 3 λ

2π

∑

m"λ/C′
0

1
m!
λ−m(∂′x∂z)m(e−λ

(x′)2
2 (1+b′′(0)ξ0)v(t, k, ξ, λ; x′, z))

Hence (170) and (171) are quite similar. We intend to show now that both expan-
sions are equivalent (their difference is negligible). The asymptotic expansion is thus
valid for ξ ∈ C(l1)− ∪ C(l1)+.

The end of the proof of Proposition 4.6 is thus a consequence of the precise calculus
of the expansion of the stationary phase theorem using the operator

∂2

∂x′∂z
− 1

2
(1 + ib′′(0)ξ0)

∂2

∂z2
.
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More precisely, considering the same formal computation as [20], we introduce the
polynomials in X :

PC(X) =
∑

m"λ/C

1
m!
λ−m
[ ∂2

∂x′∂z
+ X

∂2

∂z2

]m
v

QC(X) =
∑

m"λ/C

1
m!
λ−m
[ ∂2

∂x′∂z

]m
[eiλX(x′)2v]

which are both polynomials of degree less that λ/C, and we have, for ρ = ρ(m) =
(m/λ)1/3, the inequality

|PC(A)−QC(A)| "
∑

λ/2C"m"λ/C

(4(1 + |A|)eD

C1/3

)m
" e−

λ
C +φ0(t−ik)

which is true as soon as C ! 64(1 + |A|)3e3D+3. Hence the result on the expansions.
The last step is to evaluate the term k in the integral (162). We obtain the expan-

sion as in the pseudodifferential case, using
∫ ∞

0
eiλζψ(x)

xn

n!
dx =

(
− 1
λζ

)n+1 + rn(ζ).

The key inequality is obtained considering ρ = (n/λ(1 + |ξ0|))1/2:
∣∣∣
∑

n"λ/C0

rn(ζ)σn(0, ξ, k, λ)
∣∣∣ " De−λ/D.

Hence the expansion of Proposition 4.6 follows, using ζ = ξ + tan γ+ξ0.

6.3.2. Contours in the complex plane. — The modified sector ω±
σ is 1

cos γ±
ωσ.

Let
Vρ =

{
z ∈ C,

∣∣,z +
1

cos γ+

∣∣ " 1
ρ cosγ+

, |)z| " c2

ρ cos γ+

}
.

For example, we may see V4 for c2 = 2 and γ+ = π/3:

V4−2i

Figure 6.2. Contour Vρ

The contour C1 used in Proposition 4.5 is defined in the following figure:
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1/cosγ+ a′′

a′

Figure 6.3. Contour C1

It is

]
−∞− ia′′,

1
cos γ+

− l − ia′′] ∪
[ 1
cos γ+

− l − ia′′,
1

cos γ+
− l + ia′]

∪
[ 1
cos γ+

− l + ia′,
1

cos γ+
+ l + ia′] ∪

[ 1
cos γ+

+ l + ia′,
1

cos γ+
+ l − ia′′]

∪
[ 1
cos γ+

+ l − ia′′. +∞− ia′′[.

It is deformed on i∂ω+
σ for all σ, and finally it can be deformed on the contour C(+)

of the figure below, around iV6 for z /∈ V4, because the branching points of the symbol
of I+ or of Q+ satisfy −iξ ∈ V8. Thus the integral used in Proposition 4.5 can be
deformed on the contour C(+) below:

1/cosγ+

z

iV6

Figure 6.4. Contour C(+)
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We introduce the contour

C =
]
−∞,−5

4
]
∪
[
− 5

4
,−5

4
− i

c2

4
]
∪
[
− 5

4
− i

c2

4
,−3

4
− i

c2

4
]

∪
[
− 3

4
− i

c2

4
,−3

4
]
∪
[
− 3

4
,
3
4
]
∪
[3
4
,
3
4

+ i
c2

4
]

∪
[3
4

+ i
c2

4
,
5
4

+ i
c2

4
]
∪
[5
4

+ i
c2

4
,
5
4
]
∪
[5
4
, +∞

[
.

−1

1

Figure 6.5. Contour C

We notice that cosγ+C(+) can be deformed on C, as well as the contour cos γ−C(−),
C(−) being obtained as the contour on which we could deform for the calculus of Q−,
I0,k
− , I1,k

− . Let C(l, tanγ±) be the contours

(172) C(l, tanγ±) = ]−∞,−1− l] ∪ [−1− l,−1− l − il] ∪ [−1− l − il, cosγ± − il]

∪ [cos γ± − il, cosγ± + il] ∪ [cos γ± + il, 1 + l + il] ∪ [1 + l + il, 1 + l] ∪ [1 + l, +∞[.

shown below:

cos γ±−1

1

Figure 6.6. Contour C(l, tan γ±)

Let finally Γ be the contour introduced in [20] by (4.54), that we reproduce here
Let τ be a complex number such that |τ − 1| " δ/c. We define the two contours

C(tanγ−) and C(− tanγ+), through:

C(tan γ−) = {ζ cos γ− − (τ2 − ζ2)1/2 sin γ−, ζ ∈ Γ}(173)

C(− tanγ+) = {ζ cos γ+ + (τ2 − ζ2)1/2 sin γ+, ζ ∈ Γ}.(174)
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cos γ 0 +1

Figure 6.7. Contour Γ

The integrals of s+,−, R0,+,−, R1,+,− and s−,+, R0,−,+, R1,−,+ can be deformed
on C(∓ tanγ±), which proves that the operators S± and R0,±, R1,± are represented
by the integrals on Γ written in Definition 4.8.
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