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THE WAVE DIFFRACTED BY A WEDGE WITH
MIXED BOUNDARY CONDITIONS

Olivier Lafitte

Abstract. — We study the diffraction of a conormal wave by a curved wedge in R?,
each face + or — of the wedge being characterized by a mixed boundary condition
of impedance type d,u + z*(x)0;u = 0. We reduce the problem to a system on the
two traces of the diffracted wave on each face of the wedge. The principal matricial
symbol of this system is the matrix of the “straightened” system obtained with the
tangent diedra and with the boundary condition d,u + 2*(0)0;u = 0.

Résumé (L’ onde diffusée par une aréte avec conditions au bord mixtes)

Nous étudions la diffusion d'une onde conormale analytique par une aréte (ou un
diédre) a faces courbes, muni de conditions de type impédance sur chaque face, de la
forme 9,u + 2 (x)dyu = 0. Nous ramenons ce probléme & I'étude du systéme sur les
traces et les dérivées normales sur chaque face. Ce systéme a pour terme principal le
systéme obtenu en remplagant chaque face par la face tangente et les conditions au
bord par d,u+ 27 (0)9;u = 0 et nous montrons que le systéme principal est inversible.
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CHAPTER 0

INTRODUCTION

0.1. Statement of the problem

Let F = {(x,y) € R?, 2 > 0,b(z) < y < a(z)} be a wedge in R?, the curves
y = a(z) and y = b(x) are called in this paper the faces of the wedge. We assume
a(0) =b(0) =0, a(z) > 0> b(x) for x > 0:

B @)
YN {t=—1}
' Ay ={y=a()}
F
A ={y=0b(x)}

F1GURE 0.1. Wedge F, incident wave front set ¥;

The space domain is O :~R2 — F. We denote the faces of the wedge by Ay
and A_. With the notation Ay = {(z,y,t), y = a(z),t € R,z € R} and A_ =

{(z,y,t), y =0b(z), t € R, x € R}, we verify that AL = Ay N{x > 0}. The functions



2 CHAPTER 0. INTRODUCTION

a and b are assumed to be analytic functions on R. We define the exterior domain
1 = O x Ry. It will be convenient to consider that 00 = 90, U9O_ U {(0,0)}. In
all the sequel, p will denote the projection from R? x R; to R2.

The problem of diffraction by a wedge with Dirichlet or Neumann boundary con-
ditions has been studied by other authors before (starting with Poincaré [34], [35]
and Sommerfeld [40], then Garnir [19], Bernard [3], [5], [7], [8], Kaminetzki-Keller
(23], Bouche-Molinet [9], [30], Cessenat [12], Assous-Ciarlet [1]). However, these au-
thors considered a wedge with straight faces or a wedge whose faces are circular arcs
(Bernard [5]). The generalization to a curved wedge with analytic faces was done for
a Dirichlet boundary condition by Gérard and Lebeau [20]. Other authors studied
related problems: Kondrat’ev [24] considered more general boundary conditions and
a cone, as well as Eskin [17, 18] or Bernard [7]. Grisvard [21], Azaiez-Dauge [2],
Assous-Ciarlet-Sonnendrucker [1] studied elliptic problems outside polyhedra.

The results of Gérard and Lebeau were used by Burq [11] to obtain a control result
with open sets with corners. A generalization of the propagation result to a wedge in
R? is due to Lebeau [29)].

We generalize in this paper the results of [20] for more general boundary conditions.
We assume that each face of the wedge is characterized by an impedance boundary
condition, that we describe below by equation (6).

Let us consider an incident wave u;(x,y,t) € H{(R? x R;), solution of the wave
equation (A — 92 )u;(z,y,t) = 0. We assume that u; is conormal analytic to a surface
¥; such that ;N {t < 0} C Q, ;N {t =0} NI = {(0,0,0)} and wu,(x,y, —9)
is supported on the side of p(¥; N {t = —§}) C R? which does not contain F (see
Figure 0.1). The wave u; is the generalization of a plane wave)). This wave can be
written, in a neighborhood of t =z =y =10

1 [T
(1) uz(x7yat) = %/ ezw(t—ei(z,y))ai(x’y,w) dw + a(x,y,t)

where the function a is analytic in the neighborhood of (0,0,0) and 6;(0,0) = 0,
V0;(0,0) = (1,0). The symbol o; is analytic and satisfies

— 00

+oo
(2) sup/ (1 + |71®)|ei(z, y, T —is)|> dT < +oo0.

s20 J —oco

Let us define the impedance boundary conditions. For this purpose, we define,
when they exist, the two traces d4 and 0_, which are the normal derivatives on each
face of the wedge (unlike in [20], where the normalization coefficient was not present):

{ 01 f(2) = (1+ (a'(2))*) 720y f — ' ()02 f)|y—a(w)=o+

3
@) O f(x) = (1+ (¥'(2)*) /2 (¥ (@)0af = 0y f)ly—b()=0--

(D For example, when o4(z,y,w) = (1 + |w|)~3 and 0;(z,y) = x, u; is (up to a regularization) the
inverse Fourier transform of what is called a plane wave propagating in the z direction.
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0.1. STATEMENT OF THE PROBLEM 3

Notice that these derivatives are the exterior normal derivatives to the wedge F'; when
we consider the usual Green’s formula in O, the exterior normal derivatives to O are
—0+u.

0.1.1. The tangent straight wedge. — If the functions a(x) and b(x) are lin-
ear functions, the wedge is an angular sector, which is defined in polar coordinates
by —tan~! |[t(0)] < 6 < tan™! a’(0), and the exterior normal derivative to the wedge
is 77 0pu(r,tan" a’(0)) on the face y = a’(0)z and —r~'9pu(r,tan"1'(0)) on the
face y = b/(0)z. We shall write a = a’(0) and b = b'(0) to shorten the notations. The
angular sector associated with O is denoted by Ogy. We introduce Q5 = Oy x Ry to be
in accordance with the classical calculus on the diffraction by a wedge (J.M. Bernard
[8]). We verify that, when the situation is the one described in the figure below:

nm/2

—nm/2

F1GURE 0.2. Definition of n and ¢o

the face § = nn/2 is the face y = b'(0)x of the straight wedge we consider in our
hypothesis. The normal derivative d_ on this face is —r~19pu(r,n7/2), and the
boundary condition written in (4) of [8] is, on this face

r ' Opu(r, nm/2) + ik sin 0 u(r,nm/2) = 0.

This boundary condition is thus _u — iksin 7w = 0. In a same way, the boundary
condition on the other face ¢ = —nw/2 is

r1Opu(r, —nm/2) — iksin 0" u(r, —nw/2) = 0,

that is 0yu — tksinf~w = 0. Finally, the incident wave written in (1) of [8] is
u; = ethreos(@=d0)  The equation of the wave front associated with this representation,
assuming that the projection wave front at ¢ = —ty is away from the wedge, is t =
—rcos(¢ — ¢p). With this remark, we notice that (according to the Physics notation
for the Fourier transform in time of the incident wave) the corresponding incident
wave is

T or

which implies that the boundary condition in the (z,y,t) system of coordinates is

Ui(r, ¢,t) = i / etk(rcos(p—do)+t) qp
R
O1u —sin T dyula, = 0.

SOCIETE MATHEMATIQUE DE FRANCE



4 CHAPTER 0. INTRODUCTION

0.1.2. The boundary conditions for the problem. — The definition of 04 is
extended to functions of §2 (as being the quantity 7y (z) - Vu(z,y)).

Let 27 (x) and 2~ (z) be two complex functions, defined and analytic on R, satis-
fying(®

(4) Rz (x) >0, Rz~ (z)>0.

The condition ¥; N {¢t < 0} N 90 = @ implies the relations 9160,(0) < 0 (which are
fulfilled because b'(0) < 0 and a’(0) > 0).

Consider the diffraction of w; by the half space whose boundary is Ay and con-
taining the point (1,0). The condition
(5) 9:0:(0) — 25(0) #0
implies that the Dirichlet to Neumann operator d+u — 2¥0u — O+u is defined,
microlocally in a neighborhood of (0,0, 7, —70+6;(0)) € T*(A+). The condition (5)
rewrites 0.+0;(x) — zF(z) # 0 at a point (z,a(x)) of 0, = p(A,) (respectively
(x,b(x)) of 00— = p(A_)) and it is necessarily fulfilled for any point where u; is an
incident wave, that is a point of p(A) where 0,6;(x) < 0 or a point of p(A_) where
0_0;(x) < 0. This is a consequence of (4) and of the inequalities 9+6;(0) < 0, which
ensures that R(9+60;(0) — 2%(0)) < 0.

Let u € H} (R? x R;) be a solution of the wave equation in €, equal to u; for
all strictly negative t’s, satisfying impedance boundary conditions on each face of the
wedge. If it exists, it is the solution of the system (6) (which is the same system
as (1.4) of [20] with mixed boundary conditions):

(A=02)u=0inQ
(6) Ay u(x,t) — 27 (2)0su(x, a(x), t)
O_u(z,t) — 2z~ (z)Opu(z, b(x), )

Ult<o = Uile<o-

0
0

To this system, we associate the problem with constant coefficients in the tangent
straight wedge ¢, which is
(A —90%)u=0in Qo
Oru(z,t) — 27 (0)0pu(z, ax,t) = 0
O_u(x,t) — 27 (0)u(x, bx,t) = 0

Ult<o = Uilt<o-

(7)

In this paper, we prove that the wave u, in the neighborhood of t = 2 = y = 0, can
be written as the sum of two reflected waves (called ue + and ue,—) and of a diffracted
wave ug. The reflected waves u. + are described below and are computed classically.

(2)Note that the global condition on R is needed if we intend to construct a solution in O x Ry, but if
we assume the existence of a solution and we want to evaluate the influence of the edge (z,y) = (0, 0),
this condition is only necessary in a neighborhood of x = 0, hence at x = 0 if we are free of the
choice of the neighborhood of ¢t = 0.
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0.2. RIGOROUS ASYMPTOTIC BEHAVIOR OF THE SOLUTION 5

The diffracted wave ug is conormal analytic to {t = (22 + y?)'/2}, hence there exists
a symbol o4(x,y,w) such that

1 .
uile,.0) = o= [ 0 ou(a ) do

where o4 has an asymptotic expansion in inverse powers of w, of the same type as
the one obtained by Gérard and Lebeau in [20] for the diffracted wave associated
with a Dirichlet boundary condition. The traces u|a,, u|a_, O4u, O_u are solution
of a pseudodifferential system, which symbol is invertible in an algebra of pseudod-
ifferential operators. This solution is computed explicitly by the inversion of the
pseudodifferential system. We then prove the validity of the asymptotic expansion of
the solution. The leading order term of the solution of (6) is the leading order term
of the solution of the problem (7). This leading order term is computed ([8], [9], [3])
using Sommerfeld-Maliuzhinetz inversion formula [30], [31], [40].

The main difficulty which arises here is the fact that we have to control the so-
lution at the corner, arising from the fact that the boundary condition is not the
Dirichlet boundary condition. Another question one may ask is the problem of the
behavior of the trace on the boundary, to be able to compute the Calderon operators.
These questions make the generalization of the techniques of Gérard and Lebeau not
straightforward, as we shall see along this text.

0.2. Rigorous asymptotic behavior of the solution

We will see in Section 2.1 the conditions (29) such that the problem (7) is a well
posed problem. At each point (xo,yo,to,&0, M0, 70) such that xoyo # 0, the con-
dition (4) implies that the problem is a microlocally well posed problem, and the
condition (29) implies that the harmonic problem obtained after Fourier transform in
time of the diffraction problem is well posed for all w € C~ = {w € C, Sw < 0}.

We denote by z the function

(8) z:z+15+—|—z715‘_.

Kaminetzki and Keller [23], following the works of Sommerfeld [40], found for-
mally that the harmonic wave diffracted by the wedge was characterized by a term
e_iTT/(TT)l/Q.

Gérard and Lebeau [20] proved for Dirichlet boundary conditions that the front
Y = {t = (22 + y?)'/?} is a subset of the wave front set of the solution u. We prove
the same result for mixed boundary conditions. Both solutions u. and ug contribute
to the symbol on this front. A precise description of the principal symbol of ug and
of u. is given in Section 5.

SOCIETE MATHEMATIQUE DE FRANCE



6 CHAPTER 0. INTRODUCTION

0.2.1. Description o~f ue. — Let u, 4 be the solution of the wave equation obtained
by reflection of u; by Ay:
(9) { (A - 87522)’11@’4,({17, Y, t) = 07 y > G(IIJ)

O (i — s (1) — 2+ ()0 (s — ) (@, ala), £) = 0

and the wave u, _ diffracted by A
(10) (A - 87522)u7‘,—(x7 Y, t) = Oa y < b(l’)
0—(u; —up ) (x,t) — 27 ()0 (u; — ur,—)(z,b(x),t) = 0.

These two functions are (up to analytic functions a4 (x,y,t)) described by integrals
analogous to (1)

1 [T .
1) wpa(ey,t) / 0@ 63 (g, 7) dr + ag (2, . 0).

:% .

Introduce 6,(x) = 0;(z,a(z)) and 6y(x) = 0;(x,b(x)). The functions 61 are the
solutions of

(12) (V0.:)2 = 1,0 (05 +6,)(0,0) = 0, 0, (w,a(x)) = ba(a),
(13) (VO-)? =1,0-(0- +6:)(0,0) =0, 0 (w,b(x)) = Op(x),
following the notations of [20] p. 370. This allows to introduce the front of each wave:

Yy = {(t,x,y),t = 9+($,y)}, X_= {(t,x,y),t = 9_($,y)}
The symbols o7 (z,y, 7) are the solutions of the transport equations of [26] associ-
ated with the impedance boundary conditions®):

1
0,04 0,07 + 0,0, 0,07 + §A0+0j_ + (2i7) ' Aoz =0

(1) ()~ 0,0@)o (w.a(o). 7) + )
= (&) + 0,0z (o), ) + 227,
0:,0_0,02 + 0y0_0y07 + %Ae,ai + (2i7)"'AcZz =0
(15) (27 (x) = 0-0i(2))o= (x, b(x), T) + a*jii(x)
= (2~ (@) + 0_0;(x))oi (2, b(x), 7) + ‘9“;;’("3).

The relation (5) allows us to solve in the neighborhood of x = y = t = 0 the system
of transport equations (14), (15).
We introduce the functions

(16) Uy =u; — up g € Hb (R? x Ry).

(3)We used the relation 8160 (z) = —810;(z) and _0_ (x) = —d_6;(x) for any point of A} or A_
assumed to be in the lighted region.

MEMOIRES DE LA SMF 88



0.2. RIGOROUS ASYMPTOTIC BEHAVIOR OF THE SOLUTION 7

We denote by 04 and d_ the single-layer distributions on the face Ay and A_. We
denote also by ¢/, and ¢’ the double-layer distributions on the face A and A_. The
canonical representation of such distributions is given through an orthogonal repre-
sentation of T(z,a(z))RQ and of T(z,b(m))]Rz. For this purpose, we introduce the local
semi-geodesic transformations hy and h_ from [0, po] X [0, p1] to the corresponding
neighborhood of the boundary:

hi (2,n) = (2,a(z)) + s (—d(2),1)

1+ (@@)?)
" (V' (x), —1).

ho(@,n) = @) + T mEyn e

The transformation hy is a diffeomorphism of a neighborhood of (zg,0) into a neigh-
borhood of (g, a(xg)). Its inverse transformation is denoted by p4. Let g € D'(R).
The distributions ¢ ® §+ and g ® J_ are defined by the action on the test function
¢1 ® ¢1 € C3°(R?) equal to ¢y (z)¢2(n):

{ (9 61,00 @ 6) = g, (1+ (@ (@))2)/261)6(0)

(17)
(g@0-,61® p2) = (g, (1 + (V'(2))*)"/?¢1)$2(0).

In a similar way, we define, for g € D’(R), the distributions on R? denoted by g ® o
and g ® & through the relations

(g @8, 01® ¢2) = —(g, (1 + (' (2))*)/2¢1 > 042(0)
(9® 38,61 ® p2) = —(g, (1 + (V' (2))*)"/*¢1)0-2(0).

This way of defining the two boundary distributions is intrinsic. Note that we choose
here a way of orienting the boundary; in the case of y = a(x) = 0, we verify that

Let u. be the solution in R? x R of

(A - 87522)ue = u+(x, a(x)at)1m>0 0y 610— +u— (1’, b(x)7t)1$>0 ® 6/—
(18) + O04uq(2,1)1p50 @ 04 + O—u_(x,t) 150 ® 0—
ue|t<0 = Ui|t<0~

Introduce the fundamental solution of A — 832 supported in ¢ > 0, denoted by
(A —02);". We have

e = i + (A = 02)7 [y (,0(2), D) Laso © 8, + u_ (2, b(), ) Ly © 0]
+ (A - 8?2)11 [8+u+ ({E, t)].w>0 ® (5+ + O_u_ ({E, t)].w>0 ® (57]

SOCIETE MATHEMATIQUE DE FRANCE



8 CHAPTER 0. INTRODUCTION

0.2.2. Contribution of the jump at the corner. — For the description of the
solution and of w., we introduce the contribution of the jump between w4 (0,0,t)
and u_(0,0,t), 8 being any function identically equal to 1 in a neighborhood of 0,
say [—1,1], and compactly supported, and R being a small real number

(19) uo(x, y,t) = (A — 8%)7 [(u4-(0,0,£) — u_(0,0, t))o(%)h)oa;].

We shall see later on that the solution u satisfies uljo <00 € L?([0,T], H*(00)),
hence this jump is artificial, because it is introduced by the difference u4(0,0,t) —
u—(0,0,1).

From the relation (143) of the Appendix, and the regularity results of Lemma 6.5
of the Appendix, we check that ug is a distribution of LZ _ for which we have the jump
formula [ug|aq] = (u4(0,0,t) —u_(0,0,))0(x/R)1;>0. The distribution w., given by
the system (18), is associated with a trace on the boundary (defined by (u|a_,ula_))
which is in H'(A,) ® HY(A_). The distribution u, — ug writes:

e — g = (A — 02) 7 [(us (z, a(@), £) — (up (0,0,) — u,(o,o7t))9(%))5'+
+u_(2,b(x), )0 ] + (A — 92) 7 [01usdy + O_u_d_] +u;.

We consider the distribution on R? equal to

tr(z,t) = (ug (2, a(x), t) — (us(0,0,t) —u_(0,0,t))@(%))1z>o+u_(—x, b(—x),t)1.<0
The restriction of tr on RY x Ry (respectively on R* x R;) is a distribution of
L*(Ry, HE (R%)) (respectively of L?(Ry, HL (R*))), and tr(04,t) = tr(0_,t) =
u_(0,0,t). Hence tr(z,t) is an element of L?(R;, H'(R)). We apply the fundamental
solution on a Dirichlet trace which is in H'(9f2) and a Neumann trace in L?(R).
It is again a consequence of Lemma 6.5 of the Appendix and of the regularity of
(A —9%);" that @ = u, — ug is in H ().

The distribution . is convenient to take into account the behavior at the corner,
but will not be convenient to use the 2-microlocal propagation result, because the
trace of the distribution ue — u, is not Vi-outgoing according to the definition of
Gérard and Lebeau [20].

We introduce o4 (z,7) such that ui(z,a(x),t) = (1/27) [ o4 (z,7)e™¢=0a@) dr
(respectively u_(z,b(x),t) = (1/27) [o_(z,7)e™¢=0% =) dr).

The jump between u4(0,0,t) and u_(0,0,¢) cannot be avoided, because in general
we have 01 (0,7) # 0_(0,7). The traces of uy and of u_ used in what follows are
computed in Lemma 5.2 (Section 5.3). The analytic wave front set of u. is included
in the conormal set to the smooth part of ¥ U ¥4 UX_ (because u. is conormal
analytic to the smooth part of ¥4 U UX_). The detailed calculus of the symbols
is written in Section 5.

MEMOIRES DE LA SMF 88



0.2. RIGOROUS ASYMPTOTIC BEHAVIOR OF THE SOLUTION 9

0.2.3. Statement of the high frequency result. — Let 7+ € ]0,7/2[ and
v— €] —m/2,0] be defined by
(20) a'(0) = tanvy,, b'(0) =tan~y_.

The angle of the wedge F is v = v4 —y- € ]0,7[.
Let 0+ be the Brewster angles of the faces, defined for example by J.M. Bernard
in [5, p. 322 (2)):

(21) sinfy = 2*(0).(4
We get that
2siny4+ 1
=——0;0,0,7)(1 =)).
o+(0,7) sin 04 j:sin'yia(o 0 T)( +O(7))

Let OF = 0° xRy = [R? — (FU{(z,y), tan(y— — )z < y < tan(v4 + &)z})| x Ry.
We introduce the set QF = Qf N Qe N Q¢ where

A ={y="0(x)}
FIGURE 0.3. Region of validity of the high frequency result

~ Q% =R? x Ry when 3z%(0) # 0

— when 32%(0) = 0, Q% excludes the sector between the angles v — 6+ — ¢ and
Y+ — 0+ + ¢, and the sector v+ + 0+ —m—¢, v+ + 0+ — 7w +e¢

We prove in this paper that the asymptotic expansion of the wave is known in the
high frequency regime outside the corner for small times. In other words, we can find

($)More precisely, we should write sin 8F = zi(O) as in Section 0.1.1, because in the notations of
(8], the face — is the face called + here, as was noticed in Section 0.1.1. We drop this notation and
adopt the notation (21).

SOCIETE MATHEMATIQUE DE FRANCE



10 CHAPTER 0. INTRODUCTION

the analytic wave front set of u, and it is the union of the reflected wave front set and
of a diffracted wave front set (Corollary 1).

A precise description of the symbol of u on each front is available, and this is the
aim of the main Theorem:

THEOREM 1. — We assume Rz7(0) > 0, Rz~ (0) > 0. B
e For all e, there exists €1 such that, for 0 <t < &1 and (x,y,t) € Q°

(22) u(x,ynﬁ) = ue(x7yvt) + ud($7y7t)'

The distribution ugq +ug belongs to ngo/CQ(QE) and is conormal analytic with respect
tot =r, that is there exists a symbol o4(z,y,w) such that
L[t
Ud($»y7t) +U0($»y7t) = 2_/ elw(t_r)ad(x,y7(U) dw
7r

— 0o

where the symbol o4 satisfies

“+o00
SuPs>0/ 1+ |713)*2|oa(z,y, T —is)[> dT < +oo.

— 00
e There exists a function D(0,v4+,v—,04,0_), depending only on 04, 0_, vy, ~v_,
and 0 such that the symbol a%(z,y,T)
ei7r/4

Wai(07077)D(07’Y+7’Y*7 04,0-)

o%(rcosh,rsind, 1) = Liri>1
satisfies

—+o0
SuPszo/ (1+ |T|2)5/2|ad(ac,y,7' —is) — o(x,y, T —is)|*dr < 4o0.

— 00

The wave front set of the solution is thus known:

COROLLARY 0.1. — The function u, is conormal analytic to the smooth part of
S US4 USRS, US,,
and the function ug + ug € H3'?(QF) is conormal analytic to Bq.

Using explicit calculations of special functions, J.M. Bernard [5] computed the
diffraction coefficient for the diffraction of a plane wave by a straight wedge with
constant coeflicients mixed boundary conditions. This result gives the coefficient of
diffraction D(6,~y4,v—,0+,60—) (section 5).

As Gérard and Lebeau did, we transform (6) into a system of two relations on the
boundary between distributions constructed from the traces of © — u., and we prove
that the leading order term of this system is invertible if and only if the system (7)
is a well posed problem (Section 4). We prove that the system (42) (which is the
Fourier transform of the system (7) with a Fourier parameter equal to 7e %)
posed system (Proposition 2.1 in Section 4.7). This ends the proof of the validity of

is a well

MEMOIRES DE LA SMF 88



0.2. RIGOROUS ASYMPTOTIC BEHAVIOR OF THE SOLUTION 11

the computation. We apply the pseudodifferential calculus introduced by Gérard and
Lebeau and we deduce the leading term of the wave diffracted by a wedge.

We solved a few technical problems as well as fundamental ones. The key argument
which makes this paper work is the fact that u|sg € L*(R¢, H'(0O)). This is achieved
by proving that the trace of u on each face is in H 1(£i) and that u|po belongs to
H'/? (00) owing to the boundary condition. The most technical problems were caused
by the terms coming from the diffracted solution associated with the distribution
(A — 9%)7"(90%e), which normal derivative belongs to L?(90) when g € H'(00),
and is no longer in L*(00) when g € H'(0;0)® H'(0-0) and g(0)|o, 0 # 9(0)]s_o-
This regularity result is a consequence of a precise calculus of the Dirichlet to Neumann
operators. However, the Dirichlet to Neumann operators are more complicated than
the “Neumann to Neumann” operators K] and K introduced by Gérard and Lebeau
in [20]. These Dirichlet to Neumann operators are a sum of operators, which have
the same type of regularity as K I and K, acting on g and its tangential derivative.
Moreover, according to the jump between o4(0,0,7) and o_(0,0,7), it has been
necessary to include the resolution of a Helmholtz problem with a given jump of the
trace of u on 0f.

The second important tool is the generalization to the mixed impedance bound-
ary condition of the 2-microlocal propagation result obtained for Dirichlet boundary
condition.

The pseudodifferential system we obtain here is complicated, and cannot be in-
verted in the same simple way of Gérard and Lebeau; in particular the compatibility
condition at the corner has to be taken into account. However, we reduce the problem
of existence to the computation of the inverse of an operator where this compatibility
condition at the corner is absent.
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CHAPTER 1

EXISTENCE, UNIQUENESS, AND REGULARITY
OF THE SOLUTION

In this chapter, we prove that the problem of diffraction of a HllOC conormal analytic
wave is a well posed problem, through the Hille-Yosida theorem. We show that, under
a physical assumption, the system (6) is a good tool to study the diffraction of an
electromagnetic wave by a dielectric piecewise analytic object. Finally, we show that
the trace u|aq of the solution of (6) belongs to H*(9) and that the normal derivative
Onu belongs to L2(99), which enable us to use the techniques of Gérard and Lebeau.

1.1. Uniqueness and existence of a solution

Consider three positive real numbers T, to,d, with tg + 0 < T/3, and a function
B, C*°(R), compactly supported, with support in [—T,T], identically equal to 1
in [-T/2,T/2]. We introduce
(23) ﬂo(xay) = 90( (1’-'—6)2 +y2)ui(x7y’ _5)a

ﬂ1($7y) = 00( ($+§)2 +y2)8tui(x7y7_§)'

We consider the problem

(A=0%)u=0
Oru(x,t) — 27 (x)0pu(z, a(z),t) =0
(24) O_u(x,t) — 2z~ (x)Opu(x, b(x),t) =0
U(J?, Y, _6) = ﬂo(l’, y)
8tu($, Y, _5) = ﬂl (.’E7 y)
We have the proposition
PROPOSITION 1.0. — Under the conditions (4) and the conditions

Au; € L2 (R? x Ry), Opu; € HE L (R? x Ry),

the problem (24) is a Cauchy problem with mized boundary conditions. It admits an
unique solution which belongs to

E=CRy, H(O)NHY(O) NCHRy 4, HH(O)) N C*(Ry 4, L*(0)).
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This proposition proves that the problem (6) admits an unique solution, if it exists.
This does not prove the existence of a solution, because we have not enough regularity
conditions on the initial data to ensure the application of the Hille-Yosida theorem.
However, if we consider a function ¢s/2, regularization in time, compactly supported
for —§/2 <t < 6/2, and if we consider the initial data s = 0o(\/ (2 + 0)? + y2)ds /2 *
u;, the solution for ¢ > 0 of the problem (24) with initial data u|i«_s = Us|i<—s,
which exists because the initial data are regular enough in time, is equal to ¢s/3 * u,
where u is the solution, if it exists, of (6).

Now consider w;(z,y, —6) — Uo(x,y) and Oru;(x,y, —J) — ui(x,y). The support
of these two distributions is contained in the intersection of the half space whose
boundary is 6;(z,y) = —0 which does not contain (0,0) and the complementary of
the disk of radius T'/2 passing through the point (=, 0).

Note that u; is a solution of the d’Alembert equation, thus we know the contribution
at infinity. Let us define the distribution

. 0h(+/(z +6)2 + y?)
Si(x,y»t)zui($»y7t)[90( (z+06) +9°) + = (z+0)? 4+ y? }

r+6

] Yy
NEER A s ad

which is in L?(R? x R;), according to the fact that 6’ and #” are compactly supported
and u; € H} (R? x R;). We introduce the distribution h solution of

+ 265/ (@ + )7 + ) [ sy

(A - 832)h(x,y,t) = Si(x,y,t)
hlt=—5 =0
8th|t:_5 =0.

This distribution exists (see Wilcox [41]) because S; belongs to L?(R? x R;). Hence
w=h+u(1—0(/(x+6)?2+y?)) is a distribution in H} _(R? x | — 00, #y]) solution
of

(A=92)w=0
w(z,y, —6) = ui(z,y,—6)(1 — 0(\/(z + 0)* + y*))
Ovw(z,y, —0) = Opui(z,y, —0)(1 — 0(\/(z + 0)2 + y2)).

Then w + v is solution of (6) for ¢ < tg. The uniqueness of w + v is not obvious
with this method, because w and v depend on the truncation function. However,
given a T and a truncation 6, the distributions w and v are unique. The solution
of (6) for ¢ < ¢y is the superposition of the solution v of (24) and of the solution of
a free propagation problem in R? x | — oo, o], with initial conditions v(z,t, —J) =
ui(x,y, —0) — Uo(z,y), Ov(z,y, —0) = Owui(x,y,—0) — U1 (z,y). Asto+d<T/3,vis
identically 0 in B(0,T/3) x [0, to] (see Figure 1.1).
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o
Ay = {y = a(2)}
Support of
F
the Cauchy data
A > {y=0b(x)}

FIGURE 1.1. Support of the wave w

1.2. The application to the system of Maxwell equations

The situation described above is adapted for the high frequency scattering of an
electromagnetic wave by a wedge in R3, if we assume that the wedge is F' x R, and
that the wave front set of the incident electromagnetic field is the surface

Ei = {t = 01(x7y)’z € R} C R47

and that this incident field, solution of the Maxwell equations in a neighborhood W of
(0,0,0,0), is conormal analytic to 3; in W, supported in the part of R* characterized
by t> 0i($,y):

N 1 .
Ei(z,y,2,t) = o— /e”(tie%’y))gz‘(w, y,7)dr,

—

1 , -

Hi(z,y,2,t) = o /e”(t*ei(I’y))hi(x,y,T) dr.
7r

We omit from now the dependency in z. The boundary condition we assume on

each face of the wedge is computed using [27], and we make the following physical

assumption (which is not true for the case of a wedge filled with dielectric material

because the Calderén operator is well defined on H—1/2 (div, T), see Cessenat [13]).
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16 CHAPTER 1. EXISTENCE, UNIQUENESS, AND REGULARITY OF THE SOLUTION

HypoTHESIS 1.1

(H) The boundary condition on 02 x R, is the trace of the boundary condition on
each face 001 X Ry X R, and 00_ x Ry x R, induced by the incident electromagnetic
wave.

The Maxwell equations inside the dielectric write

rot B + u@tﬁ =0
rot H — 68tE =0.

Let Z be the pseudodifferential matrix operator taking into account the boundary
condition. When the time dependency is e~*"*, recall that the boundary condition
induced by a material of dielectric constants €, p, R(ep) > 0, S(ep) < 0 contained in
{(z,y,2), y < a(z), z € R, z € R} is given by the relation

ity NE = Op(Z(x,a(x),n, 7))y A (s A H)J

where

.
(5 @@
We introduce vy (z) = (ep — n?)"/2, Svy (z) > 0, that is

vi() = (ep— 1+ (040,(x))*) /2.

My = (—d'(z),1,0) and —n=Vb;(z,a(x)) — 04+0;(z)7i4(x).

In a similar fashion, we define v_(z) = (e — 1 + (0_6;(x))?)"/2. The eigenval-
ues of Zj, leading order term of Z, are u/vy(x) for the eigenvector Vo;(x,a(zx)) —
040;(x)74 (z) and vy (z)/e for the eigenvector €3, because the tangent space to the
boundary is spanned by these two vectors and €5 = (V6;(x, a(x))—0+0;(x)fi4 () )A7i 4.
The application of Z to a function characterized by a phase function of the form
e~"¢9(®2) (which is defined on the boundary) is given by the leading order term of
Z computed at the point n = —V¢ through the application of the stationary phase
lemma.

As we assume the behavior in time of the solution to be characterized by e'"*, we
get —v4 () in the eigenvalues, because we need to have the decay in the obstacle of the
form e~ #7sv+(@)l=im0i(z.a(x)) \When | — +oo0, this factor goes to 0 if R(—iTsvy (z)l) <
0, which implies, for 7 > 0, the choice s = —1.

We consider only the leading order term of the boundary condition, and we get

1
p (Hy+d(x)Hs)(x,a(z),t) (1+(a(;/((a:m)))2)1/2

Zolity A (it A H)) =

n@ (@@ | T
vi(2) 0
++TH3(x,a(x)7t) 0

1
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We deduce from this relation the boundary condition induced by the leading order
term:

Es(z,a(x),t) =

e 1+ @@
a'(z)Eo(x,a(x),t) + E1(z,a(x),t)  vi(x)
: (1+ (a/(x))Q)ll/Q - +€ Hs(z,a(x),1)

We use the Maxwell equations in the free space
rot E + /J()atﬁ =0, rot H — eg0E =0

and take the derivative in time of the two boundary conditions to obtain

OBz, ala), 1) = 1 —0yEs(z,a(x),t) + o' ()0 E3(x, a(z), t)

v (@) o (14 (a'(x))?)"/2
B g0 —a(x)0,Hs(x,a(x),t) + 0yHs(z,a(x),t)
OcHa(w, ale). 1) = = oy (L + (@(2)?)'/?

which writes
0y Hy(z, al2), 1) + 220 Hy (2, a(w), £) = 0

r

84 Bs(z, a(x),t) + ”*6—(9”)@153(3;, a(z),t) = 0.

T

As Svy(x) > 0, Ry (z) < 0, we check that
vy (z)

[hr
We add the usual condition $u, > 0 to obtain ®(v4 (x)/p,) < 0. Hence this boundary

condition is of the type (6) and satisfies the hypotheses of Theorem 1. The set up of
this section is summarized in

= |pr| 72 (Rvg Rty + Sv4Spar)

LEMMA 1.1. — The solution of the system of Mazwell equations in Q X R, assuming
that the incident electromagnetic wave is of the form (25) and that the boundary
condition is deduced from (H) is given when the solution of

(Aypy —c20%)Hs =0, Q x R, (Apy —c20%)Es =0, Q x R,
0ty + P g, 0, Ay xR, 0.8+ =@ o g, — 0, Ay xR,
Hsltw—5 = Hislt,—s Eslic—5 = Ei3lt,—s

is known. Thus we have
ug&ng = —8yE3
poOiHe = 0, E3
antE1 = 8yH3
508tE2 = —(9zH3

The divergence free condition is fulfilled as soon as the wave (E'l, ﬁl) satisfies it (it
is a Cauchy condition for a first order system of partial differential equations).
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18 CHAPTER 1. EXISTENCE, UNIQUENESS, AND REGULARITY OF THE SOLUTION

The Theorem 1 above implies the diffraction result for the system written in Lemma
1.1, which gives the electromagnetic field diffracted by a wedge filled with absorbing
dielectric material under the hypothesis 1.1. This gives the proof of the hypothesis
used by Bernard in [4].

1.3. Estimates on the boundary 00 x [0,T]

Consider u the solution, if it exists, of (6). We denote by u = ulq the distribution
extending u to R? x R;. The function u belongs to L2 (R? x R;) (unlike in Gérard
and Lebeau, because there is a jump of the trace of u). We define vy = (9+u)|z>0
as distributions in D’(AL), because u is a solution of the wave equation and the

boundary is non characteristic. We have

PRroproOSITION 1.1

(1) There exists a constant ¢ such that supp(vy) C {(¢,z), 0 < = < ct}.
(2) The distributions v+ belong to L*(Ry x [0,T7).

(3) The trace of the solution on the boundary belong to H'(952).

(4) The jump formula is valid:

(A - (932)@ = (v4d0y +v_0_) + (u|5+ 1m>0§f‘_ + U|5_1m>05/_).

1.3.1. Proof of the L? regularity. — The first item of Proposition 1.1 comes
from the fact that the distribution vy of D’'(AL) satisfies suppvs C {t > 0}. As we
have finite speed of propagation, the solution is 0 for (z2 + y2)'/2 > t, hence v, is
supported in (22 + (a(x))?)*/? < t and v_ is supported in (22 + (b(z))?)'/2 < t. We
denote by ¢! = min((1 + (a(z)/z)?)"/2, (1 + (b(z)/2)?)'/?) and we get the result.

We introduce a function y compactly supported in a subset of B(0,79) x| —T,T1,
equal to 1 in a neighborhood of (0, 0) and p. the product of x with a time regularization
f<(t). We introduce

Ue = PeU = X(x7yvt)[f5 *u](x,y,t) = X($7y7t) / fs(t/)u(xv%t - t/) dt’.

The distribution u. is now in C§°(] =T, T[, H'(0)). Asu € H} (Q), uc € H'(Q), and
we have uniformly in e the inequality ||uc| 1 (q) < C where C' is independent of €. As
ue is regular in ¢, 02 (p.u) is regular, as well as 9 (p-u)|an. These distributions belong
to H*(R? x R). Note that the norm in H!(R? x R) of these distributions can depend
on €.

We check that u. satisfies

Au. = [A, pJu + p-0iu
As we have p.02u = x(fe x 0hu) = x04(f- x u), where f. x u belongs to
Cse()—T,T[,H} (0)), we get p:0ihu € H'. Thus Au. € L*(2). From the results of

loc
Grisvard [21] (see Section 6.1.2), we can define in H~/2(9Q) the normal derivative
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of ue, because Au. € L?(Q) and u. € H'(Q). The normal derivative is defined
through the equality, for v € H'(Q)(W):

(26) <8nu5, U|3Q>H—1/2’H1/2 = <Aus, U>L2(Q) + <VU5, VU>L2(Q).

From the results of Dauge and Azaiez [2], and Costabel and Dauge [15], as v € ]0, |,
there exists £/ > 0 such that u. € H>T¢" because

™

u. € L3R, H' " #==-°(0)), Ve > 0.

We note that this implies in particular d,u. € L*(9) (with the norm possibly
depending on ¢) as well as dyu. € L?(99Q). The aim of the first part of this proof is to
show that the norm of d,u. in L?(01) is independent of e. For these distributions,
we have (Opue, Oruc|an) = (Onte, Oruc|aq).

Introduce

CL(E) = ((A - afz)uaa 8tu5) = ([A - afz,pg]u, 8tu€).

The operator [A — 8%, p.] is of order 24+ 0 — 1 = 1, bounded uniformly in & (be-
cause the family of operators of order 0 p. is uniformly bounded in ¢). Hence
I[A = 0%, pelullL2(0) < C1. We have of course [|Oyuc||p2(0) < C. Hence the term
a(e) is bounded uniformly in .

It is also a consequence of (26) that

<8nU5,U|3Q>H71/27H1/2 = <[A - 8t227p6]uav> + <vu€a VU> - <atu€78tv>
which implies the inequality
(O, vlo0)] < (I[A = 0%, pelll2() + 1 Vuell L2@) + 10l L2 @) [0l 1 (0)-

Hence there exists a constant D, independent of €, such that, with a good choice of
v € HY(), of given trace v|pg € HY?(99Q) (we know from Grisvard [21] that the
lifting lemma is valid from H/2(99) to H'(f2) for a polyhedral boundary)

[(Onte, vlon)| < Dlvloallg/2s0)-

The norm of d,u. in H~Y2(d9Q) is bounded independently of € by D.
Note now that (—0%u., dyu.) = 0, because dyu. is in C§°(] — T, T[, H}(O)). We
deduce the equality

a(a) = (Ausaatus) = —(VUE, vatus) + <8’nu€78tu6|39>
= —(VUE, vatus) + (8nusa 8tu6|89)

We check that [, Vu.Vu. dzdydt = %fR dt ([, [Vue|* dzdy) = 0. Hence
(Au£7 atus) = (anuaaatus|89)'

(D'We should perhaps say in L2([0,T], H'(©)) and speak of H~/2(50)
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Let . (z) = (1+(a'(2))2)"V/2(—a/ (), 1) and n_(x) = (1+(8'(2)))~V2(¥ (), -1).
We have the equalities

Tig - Vue = (0+x)(fe xu)la, + x[fe % Oqu
i Vue = (0-x)(fexu)la_ +xfe*0-u
Ontie|a, = (04 xla, — 27 (@)0x)(fe xu)|a, + 27 ()Opuc|a_
Onue verta_ = (0—x|la_ — 27 (@)0ex) (fe xu)|a_ + 27 (2)Dpuc|a_
We then get
Ontte + ap(x,t)(fe xu
el = e (o) = Ounla, —+ (@00
an € + - 7t 15 * — -
Ouicls = 2RO () = 0nda - (@0

We use now the relation a(e) = (Onue, Oruc|aq) and |a(e)| < Cp, Cp independent
of e, to get
|(Ontie, Opue/z) + (On,+ e, 74) + (On,—ue,m—)| < Co

where ry(x,t) = %@?(fa*uﬂﬁi'

As y is identically equal to 1 in a neighborhood of (z,y) = (0, 0), we verify that the
two distributions r, and r_ belong to Hé / 2(R+ x R;), identically 0 in a neighborhood
of the corner, and satisfy |7+ | g1/2(, xr,) < Cx independent of . Hence the distri-
bution r = r41a, +7_1a_ isin H/2(09), with norm bounded by C' = max(C5,C_).
This implies that

(On,4tte, 74) + (On,~te,7—) = <8nusar>H*1/2,H1/2 < C”(‘anus”H*l/?(aQ)-
We deduce the inequality
|(Onte, Onue/2)| < Co + C||Opuc|| g-1/2(00) < Co + CD.
For x in [—cto, ctg], we have 0 < ¢g < Rz < ¢; thus there exists a constant Dy,
independent of e, such that
Onuel|L2(00) < Do.

The first part of our regularity result is proven. We prove now that dg.,u € L2(99),
where the operator an is defined on Ay by (14 (a/(2))?)"Y2(9, + a/(2)0y)|y=a(a)
(and a similar definition on A_). For every real vector field X on R?, we can write

X on 00, almost everywhere, as X = (X - 7)0, + (X - F)@tan. The following equality
is true for v € H*(Q) (using the representation X = a1 (x,y)0; + az(z,y)dy):

(v, Xv)L2(0) = /Qv[alaw + a0y 0] dz dy dt
—— [ 0-tane)o + 0, (azv)o] ds iy

+/ [ ]oans + azlaany]|v]® do dt,
09
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hence ) )
R0, Xv) 2y = ——/ div X]o? - —/ (X - n)|olq do dt.
2 Ja 2 Joa

We also verify that ag(e) = R([02 — A, pJu, Xue) is uniformly bounded in e
because X u. is uniformly bounded in L?(£2) and the operator [A — 8%, p.] is bounded
uniformly from H!(Q) to L?(2). We have the equalities

R((0Z2— A)ue, Xu.) = ag(e)
= —R(Opue, XOpue) — R(Aue, Xu,)
= —R(Opue, XOue) + R(Vue, VXus) — R(Opue, Xue)
= —R(Orue, XOrue) + R(Vue, X Vue) + R(Vue, [X, V]ue) — R(Opue, Xue).

If we introduce

+ +

1
ai(e) = §/Qdiv X|0¢ue|* do dt dy,

ag.y(e) = / div X0, yue|? dz dt dy,
Q
az(e) = R(Vue, [X, V]ue),

these four terms are bounded uniformly in €. As u. is at least in H2T<" (0), the
traces of Oiue, Ozue, Oyue on the boundary are well defined, and we get

_ %((%ue, (X - n)hus) + %(@Cus, (X - n)dyus) + %((%us, (X - n)dyu.)
=(a—a1 —az2 — az —ay)(e).
We rewrite, on the boundary,
(Oous)? + (Oyue)?|as = (Osue)® + (Franue ).

There exists a vector field X and a constant dy # 0 such that X -n > d2 > 0 for almost
every point in 9Q. We proved previously that ||0suc||r2(aq) is bounded uniformly in ¢,
hence this leads to

(Orantie, X - natanus)L2(A+) + (Orante, X - natanua)L2(A_) <’

where C” is independent of e. This implies that O;anue is bounded in L?(AL.), indepen-
dently of €. As Oyu is equal to 9, u on each face (up to the impedance coefficient), we
obtain that u|a, € H'(Ay) and ula_ € H*(A_). As the support of u does not meet
the wedge for ¢t < 0, we verify that supp(u|a,) C {t > 0} and supp(u|a_) C {t > 0}.
Hence we define, for all 7 € C™, the partial Fourier transform in time of u|a_ , which
is a holomorphic function in 7 with values in H'(00,) (denoted by 4 (7,7)) and
u_(7,x) in a similar fashion. The distribution u|sq is supported in ¢ > 0 and be-
longs to L?(R, H'/2(90)) (see Simon [37] for this injection), hence its partial Fourier
transform in time is holomorphic in 7 on C~ with values in H'/2(0). From the fact
that 1+ € H'(004), we deduce the existence of u, (1) = lim, o u(z, a(z),7) and of
u_(7) = limy_,o u(z, b(x), 7).
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The last step here is to use Theorem 1.5.2.3 of [21]: the mapping from H'(O) to
H'Y2(00,) x HY/?(0O_) with the additional condition

o ds
| oo, (2(6) = slao_(x(=s) T < +2c,

where z(s) (0 < s < ¢§) parameterizes 00, and z(—s) (0 < s < 0) parameterizes
00_, is continuous. Hence we obtain the necessary relation u4(7) = u_(7) for all
7 € C~ (equality between holomorphic functions)(®). The distribution U(s,7) =
ug (2(8), T)1s>0 + u_(x(—5))1s>0 is thus, for all 7 € C~, in H'(R) which means that
u(z,7) € HY(OO) and is holomorphic in 7 € C~, because there is no discontinuity at
z=0.0),

The distribution w(z,t) = u|a, (z,t)1s>0 + ula_(—x,t) 1,0 satisfies Oyulaq equal
to (2%)710,,u on A+ hence dyw € L*(R x R;) and w € L?(R;, H'(R)), supported for
t > 0. Along with u|gq € L*(R, H'/2(00)), we obtain u|pq € H'(9S2). Additionally,
uls € L*(R) with support in ¢ > 0.

Recall the usual jump formula when € is an open set of regular boundary. The
exterior normal to  is called 7. Then

A(ulg) = (Au)lg + [Onhuldaq + [u]dhq-

We have to give a precise distribution of ¢’, which is
(27) ([Onuldoq + [uldhg, @) = /89 [[0nu)dloa — [u](7 - V)|aa] do.

In the case studied here (that is in the neighborhood of any regular point of the
boundary), the interior is O and the wave in it is u, the exterior is F, the wave in it
is 0, and the exterior normal unit vector to O is —fix. Hence [0pu] = —fiy - VO —
(—7x - Vu)] = dxu, [u] = [0 —u], and (7 - V¢)|ogo = —0+u. Hence the formula (27)
leads to (2 = O x Ry)

(A(ulg), ¢) = /8 [0u0lon — ulpads ] do

Hence (A—082%)(uln)—ulsadhg—v4+a, —v_0a_, distribution of H~%(2), is supported
by (0,0) x Ry ;. It is necessarily of the form S(t)d(g,0) with S € L?(R;), supported
fort > 0.

Let v be any C°°(R) function, with values in [0, 1], identically equal to 1 for z < zg
and 0 for x > yo (0 < xg < yo)- A choice of ¢ is done in the next Section. For 37 < 0,

() Note that, precisely, the equality u (t) = u_(t) is true in L2(R), and the equality of the Fourier
transform is true in 37 < 0 as usual L functions, because the distributions are supported in ¢ > 0.
(®)Note that a function w which is in H*(R, L?(0©)) is continuous in time, and is well defined in
L2(O) for all time t. Moreover, as these distributions are in L?(R, H'(80)), supported for t > 0, we
apply the same remark as above for their partial Fourier transform in time for 37 < 0. We can thus
speak of the value in time of such distributions as well as of the value of the Fourier transform.
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1.3. ESTIMATES ON THE BOUNDARY 90 x [0,T] 23

we introduce the distributions solution of the Helmholtz equation:

S(r)H" (rr)

)
US(x7va) = Z

and
P00, (@, y,7) = (A +72) " [als (1) (|x])p0 ]

we have

ulg — -7:_1(’05 + ¢1’Z(0,0,T))(x7y7t)
=(A—-0%);! [(ulae — w(0,0,0)(|x|)dhq + v40a, +v-0a_].

The distribution ulg admits a limit for (z,y) € O tending to a point of dO and
we proved previously that the trace u|sq was continuous on the boundary. The
distribution (Eu(070,t)(x, y, 1) is also continuous on the boundary.

From usual results on the boundary outside the corner points, the distribution

(A = 0%)3 [(ulon —u(0,0,8)(|x])) o0 + v40a, +v-0a_]

is also well defined at the corner. However, owing to the fact that Hél)(TT') is equiv-
alent to % log %7 the term vg is not continuous on the boundary for r = 0 if S # 0.
Hence S = 0 for 37 < 0. As the distribution S is supported for ¢ > 0, we have S = 0.
This ends the proof of the jump formula. The proof of Proposition 1.1 is complete.

The equality of the fourth item of Proposition 1.1 leads to the following definition,
which gives the boundary operators used throughout this paper:

DEFINITION 1.1 (Mirror operators)

e For f € L?(R,), we define the mirror operators (which are the normal derivatives
of the single-layer solutions associated with a density f on the boundary Ay (for the
lower index +) or on the boundary A_):

KL (), k) = (@)04 (A + 827 (Lzof (2!, K)i(2)0+))
KM (), k) = 9(@)0- ([A+ 8] (Lo f (¢, k) (a")04))
e For f € HY(R,), we define the mirror operators (which are the normal derivatives

of the double-layer solutions associated with a density f on the boundary Ay (for the
lower index +) or on the boundary A_)

RUH(F) (k) = 0(@)04 (A + 8] (Lo f (¢, k) (a)04)

REF(f) (@, k) = 9(@)0- (A + k27 (Lo f (27, k)(a')5L)).

o Let U € HY(0Q). To U is associated an element f of H'(R), which can be
split in two elements fy and f- of H'(Ry), such that fi(z') = f(z')1p>0 and

f=(@") = f(=2") 1w >0, satisfying the relation f1(0) = f_(0). We define the operators
R*EF through

x')é
x')é

REF(f) = REM(f4) + REF(f-).
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24 CHAPTER 1. EXISTENCE, UNIQUENESS, AND REGULARITY OF THE SOLUTION

Note that the operators K" and K7 ** are Neumann to Neumann operators (stud-
ied by Gérard and Lebeau) and the operators Ri’k, R;k are Dirichlet to Neumann
operators.

The aim of the sections that follow is to find a pseudodifferential expression for the
operators introduced in Definition 1.1 and to compute their asymptotic expansion, in
the pseudodifferential calculus written by Gérard and Lebeau in [20]. This will be
found in Lemma 4.2.

In the following section, we consider the operators of Definition 1.1 in the case of
a straight wedge; the operators will be denoted by small letters k, r instead of capital
letters K, R. The upper indices denotes the derivative we choose (04+,d_), the lower
index denotes the boundary on which the density is defined.
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CHAPTER 2

DIFFRACTION BY A STRAIGHT WEDGE

Let Fy = {(z,y) € R? tany_x < y < tanyix, x > 0}. Let Oy = R? — Fp,
Dy = {(z, tanyyz) € R%,x > 0}, D_ = {(x, tany_z) € R?,z > 0}. The normal
derivatives on 00y = Dy U D_ are

0 Onu|p, () = —04u(x) = (siny40,u — cos y40yu)(x, tany4.x)
(28) Onu|p_(x) = —0_u(x) = (—siny_0,u + cosy_0yu)(x, tany_x).
We verify that
Fy={(rcosf,rsinf), r € Ry, 0 € [y_, v+]}
Op = {(rcosb,rsinf), r e R}, 6 € |y, 2m +~v_[}.

Using the translation u(r,8) — u(r,0 — v_), we reduce Fy to Ry x [0,v4 — v—],
v+ — - < 7 and using the translation u(r,8) — u(r,0 — v4), we see that Oy =~
RY x 10,27 — y4 +7-[, 27 —y4 + 7= > 7.

For simplicity’s sake, we shall consider the set R* x]0, a, where a € ]0,27[, o # 7.

We consider the diffraction problem in Oy, the boundary condition on each face
of the wedge O¢ being d,u|p, + sinf1diu|p,. = 0. In Proposition 2.1, we prove a
regularity result under the assumption

(29) Rsinfy >0, Fsinh; x Fsinf_ > 0.

2.1. Existence of the solution of an elliptic problem

In this Section, we consider O =0, 3[ x R* for 0 < # < 27r. We denote by E the
space of distributions u(r, ) on [0, 8] x R4 such that:
1
B = {u e Cy([0, B H'(R)); ~pu € Co([0, B, LA(RF)); u(0,0) = u(0, §)}.

For x a C* function constant in the neighborhood of 0, we notice (as p. 420 of [20])
that [A, x] transforms E into L?. Gérard and Lebeau proved in Appendix D of [20],
the
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THEOREM 2. — Let 0 < 8 < 27 and w ¢ R.

(1) The problem (A +w?)u =0, ulpo = f € H(DO) admits an unique solution in
EnHY0).

(2) The problem (A + w?)u = 0, O,u = g € L*(00) admits an unique solution in
ENHYO).

and used the following result, from Grisvard [21]

LEMMA 2.1. — Let 0 < < 27 and w ¢ R.

(1) The problem (A+w?)u = f € L*(0), ulso = 0 admits in ENH"(O) an unique
solution.

(2) The problem (A+w?)u = f € L*(0), d,u = 0 admits in ENH(O) an unique
solution.

We easily deduce from these results the existence and uniqueness in £ N H!(O) of
a solution of (A + w?)u = h, d,u = g for h € L*(O) and g € L?(90).
We prove:

PRrROPOSITION 2.1. — Let w € C — R, more precisely Rw > 0, Sw < 0. Under the
condition (29) and the assumptions g+ € L*>(RT), h € L*(O), the problem:

(A+wHu=nh
(30) [iwsin0_u + Opul|o—=0 = g—
[iwsin O u + Opullo=p = g+

has a unique solution in EN H'.

We notice that this result is proven if there exists a solution U of the problem
(30) which satisfies the relation 9,,U € L?(00) (that is r=*0pU(r,0) € L?*(R,) and
r=19yU(r, ) € L*(Ry)). If such a U exists, the problem

(A+uwHV =h, 0,V =20,U

admits an unique solution V' € E N H'(O) through Theorem 2 and Lemma 2.1 and
the function w =V — U is solution of the problem

(A+wHw=0, Guw=0

which unique solution is 0 (Theorem 2). The function U is thus equal to V', hence U
is in £ N H'(O). The Proposition 2.1 is a consequence of

LEMMA 2.2. — The problem (30) admits a unique solution in H' for h € L*(O) and
g+ € L2(Ry). This solution satisfies Opu € L*(90).

The proof of Lemma 2.2 is in the Annex.
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2.2. THE MIRROR OPERATOR FOR A STRAIGHT WEDGE 27

2.2. The mirror operator for a straight wedge

Let C~ = {k € C, Sk < 0}. The partial Fourier transform in time of u(¢, x,y) €
D' (R x R?) is denoted by #(k, z,y), and we denote also by i (k, r,y) the distribution
u(Ak, z,y).

Form now, we drop the notation ® for distributions in D’(R?) whenever it is clear
that the definition is correct. We define, for £ € R and k € C—,

(31) fo=(K=&)"2 S >0

Using the notations of Definition 1.1 and the notations for the operators associated
with the straight wedge, we have

LEMMA 2.3

(1) Ezpression of the single-layer terms (operators computed by Gérard and Lebeau)
e For the regular terms (face + to face + or face — to face —)

K@) = e [ @R @) T el d = 50 ()
AR = o [ vl @) A e = Sof(@)

e For the singular terms (face + to face — or face — to face + )V

1 §
lm +k == 1z’ lm ! ! 5y — = Si
b (1)) = o [ [ Lsalisaf @0 @) osy - £ sinn)
_i—mlé i—2— (cos sin
X e cosy— g cos 77( ’YE"’ "YEO) d.’IJ/ dé—
1 k*,k k) = 1 / ’ f .
e>0k " (f)(x, k) = Trcos s Lorsolesof(2)Y(2")y(x)(cosy — §_OSHW)

. /e

X e*lcosw_ elco;-y_*_ (cos y&+sinv&o) dxl d§

(2) Ezpression of the double layer operators:

+k — 2207\ o8
PR ) ) = G [ 6P (W) () T de
(@ (€ cos 7 +Eg siny)
2 [ ifcosngo —sinn@)F (g (e T g
dmcosvy— Jr cosy—

(DNote that these two relations write

Losok T (7)o R) = il [ €O sy - & i) () de
T COS Y— &o cos y—

sk H (k) = T [ i Cm o o - £ nyr(—E) e
T COS Y4 &o COS Y4
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28 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

ok z>0¢($)/. e § | iz8cosatfoeiny)
" (g)(z, k) = prp— RZ(COS’V&J smvg)wgmcm Je
> i—26
el I e
T COS Y— COS y—

We identify in these two operators the regular and the singular part. We have the
relations

1 b
ik( )(33,143) = —g_‘_(O)E/ g%e Cos§y+ df

PRLACICH § \imsr
47r COS V4 / &o cos Y+ Je de
€ § | i
sz / P01 )) () ™ g

1/1(95) 5 ;j2(E cos v+Eq siny)

ok oy wix) s oy
r7"(g) = g-(0) o / (siny + & cosy)e’ d¢

ik-Q cos 1 ,L-l(E cos ’Y,JFEO sin )
_ 4¢( ) i / _f(¢g_)( § )6 cos vy df
T COS Y— r &0 Cosy_

¢ ; #(€ cos 7€ sin)

Y(a) e

o /R(sinfy + cos 75%)7:(5@ (Yg-))(

cosy—

2 (& cos y+€g sin v)
rM(g) = —g+(0)—wi:) /R (siny + g—ocos Me e

ik2(x) cos 1 ;2(Ecos yHeg siny)
+ M/ _]:(w )( 5 )6 BT |
R

dm cos 4 & I cosy
ir R(svarcosvfo)]-'(am,(qu”)(cosm)e
= (g)(x,k):gf(o)_/ > cosy_e' o d¢
Rfo
ik2(
IS VT
meosy-J &o cosy,

€ S
) / ST O (g0 o) ™ e

Lemma 2.3 is a consequence of Lemma 4.2 for the operators of order 0 and is the
result of Proposition 6.2 for the operators of order 1. The proof of these results is
written in Section 4.2. The boundary operators associated with the straight wedge
are given by the equalities (81), (82), (83), (84) of Lemma 6.5 below (reproduction of
the calculus of Gérard and Lebeau) in the case of the operators of type K for py = a,
p— =b, a(z) = ax, b(x) = bz, a = tanyy, b = tany_.

The operators kzik and k=* are (up to the localization v) equal to %Id.
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2.2. THE MIRROR OPERATOR FOR A STRAIGHT WEDGE 29

i ;
ﬂ(:) Iz g%e «s7+ d¢ (and more generally the dis-
tributions coefficient of g4(0) and g_(0) for the double-layer operators) are not in
L?(R), but belong to H!(R). Hence it will be useful to consider the operators

k‘2
ri:g(g)(x,k) = 47rcl(fsy /5 ( ) oty dg
(z ) 3 I3 ot
"‘1“t/‘2‘ (Oulg2 ) (e e
_— _ik*p(z)cosy [ 1 £ | inleeosritosing
P o) =~ [ R g (e de
jZ(Ecosy+Egsiny)
+ W/R(Sinv-l-cosvg—o)f(aw(w))(Cof’y_)e oy ¢
kg iKYz cosy [ 1 £ s cor v g sin )
1) = T [ e (e a
Y(x) cosy . 13 ¢ et oo yhegsin)
‘T/R(SHW+Cosvg—o)f(aw«(wgﬂ)(cosm)e
—k R LE ¢ et
r_o(9)(z, k) = — 47?0057_/5 cosy_) dé

coS Y+ £ , ¢ i gs2i—
R [E p0,00g- ) S0 ag

cos
proven in Proposition 4.3 to be operators from H!(R;) to L?(Ry).
We have the relation, for £k € C™:
(32) /(sin v+ £ Ccos v)ei s 7y (§ cos7HEosin) d¢ = C
R €o G

R $0

Yoos v '~/+ dC

This is a consequence of the change of variable { = £ cosy + &y sin~y. To prove (32) we
must take some care and differentiate between the two cases v < 7/2 and v > 7/2.
We introduce also ¢, = —&siny+&p cos~y. Simple algebra yields (¢x)%+(¢? = k?, hence
(. and —(, are candidates to be equal to the root of positive imaginary part of k2 — (2.
We first deform the contour of integration ¢ € R to & € Re®®. A simple perturbation
argument implies that we can take k € Ry. When & € Re'™, £cosy + siny € ',
which is a contour in the complex plane. Note that I'x_, =I'y and both contours are
described in opposite directions (the contour 0 < v < 7/2 is described from —oo to
+00).
For 0 <y <7/2, (k= (32 = (.. As d( = d€cosy — & d& = £5(o we obtain

o5~ (§cosy+Eo siny) dé— C ’Lcos T+ Cé—o dé‘

/ (siny + é cos W) @
Rei> r 50 C

€o
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30 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

The contour I'y is described from —oo to +00 (which means that it starts from the
branch in # < 0 to end with the branch in ® > 0), hence, as there is no branching
point or pole in the loop with (—ooe’®, 0oe’®), we obtain the equality (32).

For /2 < v < 7, (k* = (*)Y/? = —(, and d¢ = —%Cm hence

G

The result comes from the fact that I'y is described from R > 0 to & < 0 and is thus
replaced by (+o00e'®, —ocoei®).

This leads to the equalities
i (g) =rin(gr) + g (0-),
r=Mg) = o) + 176 (9-).

For the computation of the operators r, we consider the Mellin transform of both
the restriction of f € H(R) to R} and to R_, and of the derivative 9, f on R, and

on R_. We thus need to construct the space of holomorphic functions of z in Jz < 0
associated with H!(R). This is the aim of the next paragraph.

/ (sin~y + £ cos”y)eiﬁ(gwsv%o ) qe = —/ £eiﬁcg—odg.
Reio €o r, & 0

(33)

2.3. Identification of H'(R)

Let L be the space of holomorphic functions in z < 0, satisfying

“+o0
Sups<0/ |p(s + z'§)|2 d¢ < oo.

Let ¢ € L. There exists (from Paley-Wiener theorem) a function ®(z) € L?(R,) such
that

6(z) = /0 ” o) da.

The relation between ¢ and ® is bijective from L to L?(Ry).
The generalization of this result to the functions of H'(R) is given by

LEMMA 2.4. — The transformation (®(z)lg>0, ®(—)1ez0) — (¢4, ¢—) is a bijec-
tion from H(R) to the subspace of L x L, (L')?, defined through

(LY)? = {(¢+,0-) € Lx L,3cy € C, (26— + co, 24 + o) € L x L}

Proof. — For ® € HY(R), we define &, (z) = ®(x)l,>0 and ®_(z) = &(—2)1s50.
Both distributions ®, and ®_ belong to L?(R) and are supported in = > 0, hence
belong to H'(R).

The transformation
o

o e H'(R) — <¢+(z) - /0 o) da, b (2) = / O(—z)e*” dx) e (L')?

0
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2.3. IDENTIFICATION OF H'(R) 31

is a bijection. For ® € H!(R), the definition of ¢, and of ¢_ follows form the
equalities

o1 (2) = / e o(x)dr, o¢_(2)= / €O (—x) du.
0 0
The fact that ® € H'(R) implies that 9,® € L*(R), hence

b1 (2) = / €*0,®(x)dz, ¢_(2) = —/ e** 0, ®(—x) dx
0 0
belong to L. Using a classical integration by parts, we have

by (2) = —0(0) — 26(2), &-(2) = —®(0) — z_(2).

There exists a constant ¢g, equal to ®(0), such that ¢ + z¢4+ € L and ¢o + 2¢_ €
L, and ¢+ € L. Hence (¢—,¢;) € (L')2 As ¢4 (—i&) = [;° e ™ ®(z)dz and
¢_(—i&) = [;° €™ ®(—x) dx, the function ® belongs to L?(R) hence

B(&) = b (—i€) + ¢ (~ic)
(as the functions ¢4 and ¢_ belong to L, the limit, for s — 0 of ¢4 (s — i) exists in
L?). O

Let us start now from (¢, ¢_) element of (L')2. The limit lims_o(¢+(s — i&))
exists in L?(R), hence the distribution ®%, equal to the inverse Fourier transform of
the holomorphic function ¢ (s —4€), has a limit, as s — 0, in L*(Ry). Let &)j_(x) be
the inverse Fourier transform of (s — i§)¢4 (s — i€) + co. The relation

A|(s—if)¢+<s—if>+cO|2d§<c

independent of s, proves that &)j_ admits a limit in L2(Ry) as s — 0. The relation
Jlts+ €145 +i8) + colei=e =€ ag
R

d .
= (s+ )] / b (5 +i€)ei™E € g | + coe /45 (D)1/2
dx R [
implies that the distribution ®% is solution of the equation

d s B
(S+ %)@+ +Co(50 = (I)+(1‘)

Taking the limit as s — 0, the function ®, is in H!(R,) and its value at = = 0
is equal to ¢g. The same calculus holds for ®_, hence we constructed an element
of H1(R) with the value ¢y at 0. The uniqueness comes from the uniqueness of the
representation of L?(R) through L.

As a Corollary, we define and characterize the space of Fourier transforms of ele-
ments of H'(R,) (which are not necessary null at = = 0):
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32 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

COROLLARY 2.1. — The space L', subset of L, equal to
L'={¢p€L,3cecC,z+s 24(z) +c€ L}

is isomorphic to the space H'(R) of distributions f € L*(R.) such that the distri-
bution ¢ € C§°(RY) — —(f,0,¢) belongs to L*(R).

2.4. Expression of the boundary operators using the Mellin transform

Let 7 > 0. We introduce, for each £ € R, the complex number &, of positive
imaginary part defined through

€0 = (r2e 20 _ )12,
DEFINITION 2.1. — The four operators 197, I1™ TOT and TH™ used for the double-
layer operators are defined through

“+o00 2 —2i«
Jy@@:i/ A€ e i)

o) THiE G

zywwziﬂjﬁziwo

T27(@)e) = % /_:O Zti(E cosig—i— €. siny) TQegjm (=€)

Ty (9)(2) = % /_:O . +i(§cosi§+ ) [cosvé% + sin~]@(—if).

LEMMA 2.5. — These operators can also be written

ﬂﬂ@mz———+m/ ettztie) L gmwzo%w
I7(9)(z) = —— m / “zﬂf —g(—i€) g dt
TO(6)(2) = 217T +°°/ GHa+i(E cosr+Ea sm»%(ﬁ(_ig) dedt

T ]‘ oo z+1(§ cos sin
Ty (8)(2) = 5 / etlztilcosytea ”))[cosvf + siny]p(—i&) d€ dt.

The proof of Lemma 2.5 is based on the equalities, valid when Rz < 0 because

siny > 0 and Snf > 0O:

+oo ] 1
/ etZHi8) qp = —

(34) —+o00
/ dt et(zti(€cosy+ni siny)) _
0

1
z+ (& cosy 4+ nfsiny)
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2.4. EXPRESSION OF THE BOUNDARY OPERATORS 33

We give the action of the operators 197, IL7 T97 TLT on the imaginary axis.
Let &, € HY(R,),®_ € HY(R,), such that <I>+(O) = ®_(0). This means that the
distribution ®(z) = @ (2)1,50 + ®_(—2)1,<0 is element of H!(R).

We associate to ® the element of L x L x L x L equal to (¢, q~5+, gi)_,QNS_), where
61 (—i8) =By (), ¢ (i) =B (Z5),
Gi(—i€) = F(0,03) (=), d-(—i) = F(0,0_)(=5m).

Note that the only difference with the transform introduced in the previous paragraph
is the coefficient 1/ cos~yx.

(35)

LEMMA 2.6. — We have the equalities:
Fllo>004(A + T26_21a)_1(¢+5ﬁr +®_§)](X/cosvyy) =

1 ~ 1 -
5 [0 (64) 408 14 17 ()] (—iX)+ 5 cos s [;fj_ T3 (6)~TA7 (3-)| (=i%)

Fllos00— (A + e 2) "1 (@8, + _0")](X/cosy-) =

~ 1 ~
[~127(9-) oo LT (§)] (<iB) g o [ LTI (94)Th7(84)| (i%).

N =

Proof. — From the expressions of Proposition 6.2 (rewritten in Lemma 2.3), we notice
that

. ; 2 ,—2i
+. 7e "™ —ia ? it T€ = §
ry P, )(z,Te = —— [ doxe >+ P
+o- (), e™™) 47 COS Yy / a +(cosw_)

i £33 =
dze 57+ é(L_ 3 ).
€ Cosy

We consider the Fourier transform of this expression in X/cosv;, we use the change
of variable ¢ = x/cosv4 and we make use of the first relation of (34) to get

i ) d. 2, —2ix
Fllosort 5 @) (Seosn) = - [ T8 28, (2

dr | —iX4+1€ &, CoS Y+
L[ de & = £
4 | —ix + i€ §a}_(¢)+)(cosW+)'

The definition of q~5+ and of ¢4 lead to the relation
+,7e 1 1,707 0,7
Fllesort™ " (@) (B/cos74) = [5 o7 107 (64) — 517(64)] (~i5).

Along with the definition of r+ e m, this gives the relations of the lemma for the
pseudodifferential operators.
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34 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

We notice that, again with Proposition 6.2

) - 2 —2104
_ re—ia i 1 COs7y § i—2 —[€cosy+Eq siny]
’ q) — ¢) cos'y
n (1) (2, 7e™") = 4WCOSW+/ de” +(COSW+)€
1 . £ § | igE—[£cosy+Easina]
d 3 1 f@ CD*’Y
4 [ debing + conr S +><com>e

The use of the second relation of Laplace yields easily, again with ¢ = x/cosy_ and
with the introduction of ¢4 and ¢4, the expression

Fllosory™ " (@4))(5/cosv-)

i cos 7y e d¢
pm cosvCow / § P+(=i8) —iX 4 (£ cosy + & siny)

€13 (i de
€ ]¢+(_Z£) —iX +i(Ecosy + €y siny)

We recognize on the right hand side the operators 707 and T1'7, acting on z = —i%
and on the left hand side, the expression of

1
— 4—(:057_ / d¢[siny + cosy =

Fl1es00-[(A +7%¢7) 7 (@18 ()

The equality corresponding in Lemma 2.6 follows. O

Note that the relation ¢4 (z) = —®(0) — 202(2) Joaqs to the relations

COS Y+

Fllosod (A + 72672971 (@,8, + &0 )] (——)

COS Y4
=3[P0 = 2P0 (i)
F[laso0— (A + 72 %) "1 (D0, + ®_6" )] (Cof,y_ )
_lrcosy- " :
T2 [coswp (@+) = F (d)_)} (=i€)

where a formulation of the operators P” and P?® is given by the integrals

Pre)e) = 5 [ e g

PS(QS)(Z) 1 / (COS Yo — sm'yf)qS( Zg) de
21 Jp 24 i(Ecosy + & siny) '
pr o8yt
The operator | cos~_ ps CO_S;; is continuous from (L')? to L x L.
cos Y4
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2.5. The fundamental analytic system for the traces

One of the important steps of this paper is to prove that the operator associated
with the straight wedge is invertible. More precisely, we consider the equality of
Proposition 1.1 and we write an heuristic analysis:

(A —02)u=vy64 +v_6_ +ulsadhe,
which leads to the relation ((A — 02);' is the fundamental solution of the
d’Alembertian supported in ¢ > 0)

u=u; + (A= 0%); vpds +v_0_ + ulosndhg)

which implies the two relations
dyu=yu; + KI(vy) + KX (v-)+ R (ulon)
O_u=0_u; + K (vy) + K- (v_-) + R (ulaq)
Hence we need to solve the system

vi = 01up + K (vy) + KX (v-) + R (ulon)
vo =0_u; + K (vy) + KZ(v_) + R (uloq)
vy — 2 (@ )o(ula,) =0
v_ — 2z~ ()0 (ula_) = 0.

Considering the Laplace-Fourier transform in time and w = 7e~**, we obtain, for
the straight wedge, the system

fo=DE kT () + R () e g)
(36) fo=Di k70 (f)+E2T () +rTT (g)
f+ —isinf, re* gL =0
fo —isinf_re~i*g_ =0.

i

We finally compute the Fourier transform of the first and third lines of this system
at X/ cosvy4+ and of the second and fourth lines at ¥/ cosy_. With the notations

Vi (—i0) = F(f+) (57

’(/}7 (_710) = F(ff)(cosefy_
(37) , :
B (=i0) = F(g+)(77)
B-(=if) = F(9-)(go57)
and introducing the operators S = ke So = 2]{;,76—1'“7 T, = 27&:66_”7
T*, = 27{[7’66_1&, we obtain the system
v+ —S;t’(/J, _T—t,aﬁ+ _Tj,aﬁf = o+
(38) —Sq 4+ =T B+ 4 =T 8- — b
Yy —isinfyre™"G, -0
(Cs —isinf_re "3_ = 0.
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36 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

We prove in the next paragraph that this system admits, for (¢4,¢_) € L x L,
a solution (vy,%_) € L x L and (B4,3_) € (L')?, the space (L!)? being defined in
Lemma 2.4.

2.6. The invertibility in L x L of the analytic system

In this section, we use a solution in  x Q' of (A + 72e=%*)U = 0 to solve the
previous system. This is to be done constructing a solution which is continuous at the
corner (Proposition 2.2) for computing an element of (L')?, and deducing from this
construction the invertibility of a system related to (38) with a jump at the corner

(9+(0) # g_(0)) (Corollary 2.2).

PROPOSITION 2.2. — The system (38) admits an unique solution in L x L such that
By, B is associated with an element of H'(9S).

Proof. — We introduce
OLW = £(cos 720y — Sin V200 )Wy _tan s om0 2>0-
Similarly, we write the two traces on each tangent line that we need:
{W|D+,+ =Wly—stanvsi=0ot  Wlp, — = Wly_stany,—0-
W|D7,+ = W|yfa:tan'y,:0— W|D,,f = W|y7wtan'\/,:0+

Let O be the set R? — ({y = tanyyx, z > 0} U {y = tanvy_z, = > 0}). Suppose
that U is a distribution with the following properties:

e the distribution U is solution of the Helmholtz equation (A + e~%72)U = 0 in
the wedge Fy as well as in the space R? — Fy.

e the distributions .U and LU are in L?

e the distributions U|p, + and U|p, — are in H'(Dy).

If we denote by U the distribution defined in R2 equal to U on O, a consequence
of the formula (27) and of the regularity at the corner is that:

(39) (A+ 72 20U = (0,U —LU) @64 + (U|p, 4+ —Ulp,,—) @&,
+(0_U—-0*U)®6_+Ulp_ 4+ —Ulp_-)®d"

‘We introduce:

_ _ A9l
(40) {\I’i —aiU 8iU
G+ =Ulps +—Ulpy, -

For the simplicity of notations, we denote by CNJi the distribution which is the deriva-
tive in H'(Dy) of G4. The equality (39) rewrites:

(41) (A + 72720 =0, 6, + G 6, + U 5 +G_4,
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hence

i

00 (w,7) = K™ (Ty) + kf“’“‘@_) +rETe (@)
= 30+ KT (W) (G e (6
We note that
0:U(x,7) = .U — OLU + 01U = Uy + LU
This will give a system linking ¥4, G4 and LU
Let us consider the holomorphic functions defined by
) — g
v (i6) = F(02)(55)
B4(-18) = (G (o)
e = F(Ge)(57).

) = wa(—i€) + F(OLU)( 3 ). From Lemma 2.6,

COS Y+

We obtain ]—“(t’?iU)(COS,Yi
(V4,00 By, B, By, B—) satisfies

[%— — SFp_ +4I97(By) — cos v IL7(By)

T+ cosyy (— ST GTOT(BU) + Th7 (B )}

(—i€) = —2F(OLU) ()

cosy—

)
[0 = Satbs +i127(8-) cos - f”@ ) Cie) = —2F @ v) (=)

cos y—

+cosy_ (—=2224T97 (B ) + TL7(

CoSs Y4

We note that the system (38) is obtained with the boundary condition %1 —
iTe”sin @4 B = 0 and the source terms such that ¢4 (—i€) = F(—20LU)(=—).

COS Y4
When ¢4 are given in L x L, we introduce the distributions ®4 in L?(R,) such

that ¢4 (—if) = ]-"(fbi)(ﬁ). We have the relations

1
01U = —=d,.
2
The boundary conditions yield
U, —ire sinf Gy =0
that is
(03 —OLU —ite™sin04(U|p,. + — Ulp,.—) = 0.

It is thus equivalent to solve (38) and to solve:
e a Neumann boundary problem in the inner wedge:

1 1
(A + e 29U =0, aiU=—§<I>+7 8£U:—§<I>,.

e following the condition on the traces on the boundary in the outer space asso-
ciated with the boundary condition (which is the extension of the condition of [20]),
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38 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

we impose a condition on the traces on the boundary in the outer space associated
with the boundary condition, namely

04U —ie "rsin0,Ulp, + = 01U —ie “7sin0,Ulp, —
0_U —ie rsinf_Ul|p_ 4 =0 U —ie rsin_Ul|p_
The system of equations in the open set O is then

(A + 722U =0
(04 —0L)U —ite~"sin0, (U|p, + —Ulp,,—) =0
0

(42) (0- —0LU —ire @sin_(Ulp_ 4+ —Ulp_—) =
LU = —30_

Let ¢4 be given in L. When (42) has a solution U in O, we construct the function
U by (39) and ¢4 are given by the relations (40). The existence of the solution of
(38) is a consequence of the existence of a solution of (42), result given by

LEMMA 2.7. — The system (42) is a well posed problem. It admits a solution
U e Cy(R/2nZ, H'(R}))
such that
105U € Coll1-,74)s LR 1)) N Collys, 27 + -], LA(R)).

This solution satisfies U(0,7v+) = U(0,7-), and thus V(z) = U(z,v+)lz>0 +
U(—z,2m + v-)1lzy<o is element of H'(R).

Proof of Lemma 2.7. — From ¢ € L, we obtain &1 € L?(R.). Using, for w =
e~ ¢ RT, the point 2 of Theorem 2 (proven in [20]), we verify that the prob-
lem in the internal wedge (A + 7272 ) U = 0 in v < 6 < 7, with the Neu-
mann boundary condition LU = —1&, admits a unique solution U such that
r~1U, 8,U and r*9pU are in L?(R,). This solution U satisfies U(0,v4) = U(0,7-) =
0. We thus compute the traces of U on the internal boundary. The distributions
x+ = 0LU — ie_stineiUb_ztan,H:o; are in L?(Ry). It has been proven in
Proposition 2.1 that the problem (A + 72¢=%®)U = 0 with the boundary condi-
tion 0+U —ie " *78in0+U|,_ 4 tan =0+ = X+, which satisfies the hypothesis (29) for
« small enough, is a well posed problem and admits a solution U in H' N E. We de-
duce that the traces of this solution d+U in the external wedge are in L2(R, ) hence
¥+, such that 1y (—i¢) = Uy (—5—) belongs to L. Moreover W = 04U — 0LU. An

COS Y4
additional but crucial consequence of Proposition 1.1 is that Ulgqo is in H!(9Q°). As

Gi =Ulooy +—Uloo,,— is in H(DO), a consequence of Lemma 2.4 is that the holo-
morphic functions B4 (z) = [~ G+ (2)e** dz are in (L')%. Lemma 2.7 is proven. O

We obtained (¢4,1%_) € L x L and (B4,6-) € (L')% The system (38) admits a
solution in L x L x (L')2. This ends the proof of Proposition 2.2. O
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We prove the

COROLLARY 2.2. — Letly € L,l_ € L and Sy a given complex number. We consider
the system, for ¢ € L', ¢_ € L', ¢, € L, ¢¥_ € L:

Y 0T (¢y) — cos YL ILT(64) + cos i [~ ST (¢ ) + ThT(¢-)] = Iy

b
Yo 4107 () — cosy_ILT () + cosy_ [~ AT (gy) — TL7(64)] = I

cos vy

’(/J+ — Z'Teiia sin 6+¢+ =0
zf_ —ite ¥ sinf_¢_ = 9
O+ (2) + s 20+ (2) = ¢—(2) + i5—2¢-(2) + So

This system admits an unique solution.

We reduce this system to the system of Proposition 2.2. More precisely, we consider
a function [ € C§°(R) equal to 1 in a neighborhood of 0. Let R be a large number.
We introduce the distribution which belongs to L?(0), equal to

Up = (A + 7% ) irsinfie "I(x/R) 143004 + l(z/R)d,].

Note that this distribution takes into account a jump at the corner for the trace of
Uy on the boundary 00.

Let ®, and ®_ be two functions of H'(R, ) such that ®_(0) = &, (0) + Sp. The
distribution ®_ (—z)1_,>0 + (®4(z) + Sol(z/R))1.>0 is an element of H'(R), and
the distribution ®_¢" + (P () + Sol(x/R))1s»00", is constructed as corresponding
to an element of H!(9).

We consider ¥ € L*(R.), to which we associate ¥+ (z) = [ e¥?/ s 1: W (1) de.
Remember that

1 ) —2ia\—
§Sa¢1(—z£) = cos V£ F[ly=00+ (A + T2~ 2) 1(\IIJF§¥)}(M

This is an easy extension of the formula (5.7) p. 391 of [20] (according to the new
definition of the normal derivative used here). We also proved the equalities of Lemma
2.6.

Let us introduce the distribution, element of L?(O)

U= (A+72e ) Wiy + V0 + 0,0, +0_0"].
We consider the distribution V= U 4 SyUy. We verify
V = (A + e 2oyl {[\IIJr +iTsin el (x/R)1,5050)04 +¥_d_

+ (@4 + U(z/R) 1,508, + P8 |,
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40 CHAPTER 2. DIFFRACTION BY A STRAIGHT WEDGE

hence V € H*(R?*{y = ax,y = bz,x > 0}). On this distribution, we apply the jump
formula, through

Uy +irsinfiel(z/R)1y5050 = 04V — 0LV

V_=0_V-0Lv

@4+ Sol(z/R) o0 =Via, + — Vla, -

o = V|A_7+ — V|A_7_.
The main argument used in the proof of Proposition 2.2 is that, when 8}_V and 01V
are given in L?(R.), then the problem associated is solved in Q U . We use this
idea and identify 91V and 81V such that we reduce to the problem of Corollary 2.2.

Introduce the Fourier transform I of I. We note that

£ : ~ &R
) Lso)(— ) = ¢ (—
F(®4 + Sol(z/R) 20)(c057+) d+( Z§)+RSOZ(COS’}/+)
SO/ § e . . fR =~ §R
, B+ 20 1, = b (—i6) —
F(Ou + 0 @/ )Lz = Bai€) = So-+ il
F(Uy +ite "sing Sl(f)l )( § ) = h(—i€) + ite " sin 6, Sy RI( SR )
+ +o0il g lex0) (5 ) = +20 R
Introducing (for the simplicity of writing) I1(z), l2(z), l3(z) such that
ll(z)sz\( =R , oz :zll—(z)_l and I3(z) = ite " sin 0,1y (2),
COS Y4 COS Y4
we obtain
§ \_
F(O:V) ) =

1 . N
3 [1/1+ + I3+ cos 14 Sath— + [—iI0 T (¢4 + Sol) + cos v Iy T (d4 + Solz)]

oo [T (90) = T (6] (i)

£

cos y—

FO-V)(

) = 5[+ cos Sa(ws + Sols) + [127(6-) +cosyIE7(3)]

cosy

+cosy- [cos o~ iTy ™ (¢4 + Sola) — Tole(<2~5+ + Solz)]} (—1§).

Hence we have the relations
Py — o8y Satho +iIg T oy — cos Y Iy T oy — cos vy [T T o — Ty T ] = sty

. —cosy_Saty +il07¢_ — cos 77101"757 — cosy_ [ 4707, — T;’Tq~5+] = st_

COSs Y4
where
sti(z) = —2F (0L V)(———) + So(—iI%7ly + cosy, I-Tly — I3)
COS7Y4
st_(2) = —F(20LV)(—=—) + Sp cos 71— [Sals + ——L 7071, — TL71,].
coSY— COS7Y+
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We notice that Iy, I, I3 belong to L, hence the terms st and st_ belong to L
if F(20LV)(=%—) belong to L, which is equivalent to LV belong to L?(R;). We

COS Y+

denote by e the distributions of L?(R) such that

iz iz
) SuFes) ().

This analysis being done, assume that I, and I_ are given in L?(R, ). We consider
the distributions ®+ = I+ — Spex. They belong to L?(R,). From Lemma 2.7,
the system (42) admits a solution V € Cy(R/27Z, H'(R,)) which is continuous.
We compute ¥4 = 0.V — 0LV —irsinfie I(z/R)1y>050, ¥ = 0_V — 9LV,
Oy =Via, +—Vl]a,,— —Sol(x/R)1z>0, P— = V|a_ + —V|a_,—. These distributions
belong respectively to L?(R; ), L?(Ry), H'(Ry), H(R) and, in addition, ®(0) —
®_(0) = —Sp. Hence, according to (35), the Mellin transform of (¢4,¢_, @4, P_) is
in L x L x L' x L' and we have the relation of compatibility

G (2) + —— 4 (2) = ¢ (2) + é—(2) + So.

COS 7Yt CoSYy_
The proof of Corollary 2.2 is complete.

sta(z) = —Qf(Qa;V)(CO
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CHAPTER 3

MICROLOCAL PROPAGATION OF SINGULARITIES
FOR THE MIXED PROBLEM

The aim of this Section is to generalize the 2-microlocal regularity result that
Gérard and Lebeau obtained for the Dirichlet problem to a mixed boundary condition
satisfying the strong Lopatinskii condition. Throughout this Section, we will follow
the notations of [20]. The proof follows step by step the proof of Gérard and Lebeau,
but the result is not a consequence of their result.

We denote, in this section only, the normal coordinate(!) to the face £+ of the
wedge by ¢, and the “tangential” variables, including the time (denoted by x2), by x.
The same presentation may be done for the diffraction by the face —. In the case
useful for the propagation in R? x R;, we may have d = 2, and the boundary is of
dimension 2. In the semi-geodesic system of coordinates (¢, x) [26], the wave operator
can be written (up to a conjugation, using the traditional notation D; = %875):

P = D? + R(t,z,D,)

where, the boundary Ay being analytic, the coefficients of R, differential operator,
are analytic. We consider in this problem the mixed boundary condition

Ou+ Lu=0

where L is a tangential differential operator of order 1.

The boundary conditions studied in this paper corresponds to L = z%(21)0,,,
x1 is the variable on ¢t = 0, x2 is the time variable, and t is the normal variable
to the boundary. The result we prove is true only in the neighborhood of points
where the operator d; + L is elliptic thus invertible. However, if we return to the
boundary conditions used in this paper, we verify that the conditions $27(0) # 0 and
$27(0) # 0 imply that the operator d; + 2% 0,, is always elliptic if & # 0.

The model case of a constant impedance and a straight boundary. — The model case
is the wave equation in the upper half plane. The time variable is x5, the variable on
the boundary A = {t = 0} is denoted by x1, and the wave operator is

(De)* + (Day)? = (Day)?.

(D denoted by n in the introduction
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The boundary condition is (0; + ady,)u(0,21,22) =0, @ € R.

Let u be a solution in ¢ > 0 of the wave equation with the boundary condition.
The energy of u is E(u)(z2) = ft;o[(Dtu)z + (D, u)? + (Dy,u)?] dzq dt, and we have
Ozy (E(u))(z2) = a [(0p,u(0,21,22))* dz1. Hence the energy decreases if and only if
a < 0. The condition a < 0 leads to a well posed problem.

Now, let us consider an incoming wave u;(z1, z2,t) = eiTt+&1w1+6222) - We have
_ e¢§2[$2+ét+%z1]'

ui (21, 22,1) Hence the wave front of this plane wave is x5 =

—ét — g—;xl. This plane wave is incoming when x5 increasing implies ¢ decreasing.
Hence 7/&; > 0.

Let u, the reflected wave induced by u;. We have u,.(z1, z9,t) = Ae™TtHi&izititze:
and v = u; + u,. Hence A is solution of 7 — 74 + a(& + A&3) = 0, hence we have
(- &+ @) A = a+ 7/&. For all the points py = (0,9,£7,£9) of T*(9Q) such that
72 4+ 7(0,0,29,£7,£9) = 0 satisfying the inequality | — é + al > g9, we can compute
the reflection coefficient and we shall see that the Théoreme 3.1 of [20] is true in this
case.

We modify the proof of Théoreme 3.1 of [20] as follows. As usual, the cotangent
bundle to the boundary T*({t = 0}) is the union of the elliptic set &, the hyperbolic
set H, and of the glancing set G. If r¢(x, &) is the restriction to ¢ = 0 of the principal
symbol r(t, z, &) of R, we have

&= {($,§)7 To(.%‘,f) > 0}7 H= {(.%‘,f), To(x,f) < 0}7 g= {(xv§)7 To(.%‘,f) = 0}'

We prove a second microlocalisation theorem along an involutive submanifold of
T*({t = 0}) under the only assumption that this submanifold is transverse to the
Hamiltonian field.

We introduce, in a neighborhood of py = (z0,&) € T*({t = 0}), an analytic
real function s(z,§) such that s(z,A) = As(z,§), s(po) = 0, ds(po) N &odz # 0,
{ro,s}(po) # 0. The submanifold V' = s71(0) is an involutive submanifold in 7*({t =
0}), transverse in po to the Hamiltonian vector field H,,. We introduce SS‘Q;l( f) the
second microlocal analytic wave front set of f along V' ([28]) . We have

(po, £1) & SST!(f) = SS(f) N {£s >0} N W, = 2.

Notice that 1 indicates the “sense of propagation of SS(f) along V" in the neighbor-
hood of pg. The generalized bicharacteristics of P are constructed as usual (see [26]
for example). We introduce € = {rg, s}(po)/|[{ro, s}(po)|.

Recall the definition of f V-outgoing in po (definition 3.4 p 364 of [20]):

DEFINITION 3.1. — The distribution f(t,x) in {t > 0}, extendible distribution, solu-
tion of Pf =0, is V-outgoing in po when one of the following conditions is fulfilled:
i) po € E
it) po € H and if v+ are the two half-bicharacteristic curves of p (principal symbol

of P) passing through (t = 0,xq, £+/—70(z0,%0),&0) and contained in T*({t > 0}),
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we have
v+ NSS(f) =@ or ~_NSS(f)=2.

ii1) po € G and there exists € > 0 such that the conditions 0 <t <e, |p—po| < €
s(p) <0 imply (p,t,7) & SSp(f)-

This definition has to be compared with the definition of [25], where the ray was,
at the glancing point, tangent at the second order, and where we chose one of the two
characteristics v+ or y_. This definition of microlocally outgoing coincides with the
definition given by R. Melrose in [32].

Théoréme 3.1 p. 364 of [20] generalizes to the following theorem:

THEOREM 3. — If f is a distribution on M = RS x R, such that Pf = 0 and
f V-outgoing, then, for po € H UG, such that L(po) + (—r0(0,p0))*/? # 0 and
L(po) = (=70(0, p0))*/? # 0, we have

(po, =1) ¢ ST (e f + Lf)li=0) = (po, =1) & SST" (9. fle=0)-

If po is in &, there exists a pseudodifferential operator of order 0 such that
po ¢ SS(Ou — C(du + Lu)). For py € H, we denote by pi and p, the two
points of {(0,z,7,£), 7% + r(0,z,§) = 0} such that the projection (zo,&) of
this point on T*(9N) is po. These two points are (0,0, (—7(0,20,&))"/?,&) and
(0, z0, —(—7(0, 20, £0)) "2, &)

As f is V-outgoing, v+ N SS(f) = & or v— N SS(f) = &. Assume (for instance)
that vy N SS(f) = @. We have thus v— C SS(f). For

(43) (—r0(p0))"/* + L(po) #0,

there exists a pseudodifferential operator of order 0, in the neighborhood of pg, called
C, such that
po ¢ SS(Oyu — C(Oyu + Lu)).
In a similar fashion, this operator C is microlocally defined at py for v NSS(f) = @

and the condition L(po) — (—70(po))*/? # 0. This operator is the Calderon operator
(see [26]). This operator is defined under the condition :

(44) L(po) £ (=70(p))*/* # 0.

We use then the fact that pseudodifferential operators are 2-microlocal operators to
prove Theorem 3. Assume from now that py € G. There exists a canonical tangential
transform x, from a neighborhood of py in 7%(C%) to a neighborhood of 0 in T*(C%)
such that

i) x(T*(R%)) = Ay,, where the phase function ¢o(2) is

do(z) = ?Rzl %2 \szj
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This implies that
Agy = {(21,7', —iRz1, —S2")}

ii) the coordinate z; is the “good choice” of symplectic coordinates for ro and s,

that is for e = £1
ergox (2,0) = G +iz
sox '(z,¢) =iClo(2,¢), lola,, >0.

iii) x(po) = 0.

Let T}, be a Fourier-Bros-lagolnitzer transform associated with the canonical trans-
form y quantized by the analytic phase function g(z,x). The graph of y is thus
{(1’, _glma Zag;)}a and we have g(O,J?()) = Oa det glz/m(())xﬂ) 7é 0.

For ¢ € C§° (R9), supported in a neighborhood of g, identically equal to 1 near
g, we may define

Th(z,A) = / M ()b () dar.
Let f the function considered in Definition 3.1. We introduce

We consider the algebra of operators in the complex plane used by Gérard and Lebeau,
and for the reader’s convenience, we reproduce here some of the definitions and results
of Section 3.2 of [20].

Let I = [0,t0), U an open subset in T*(C%), K a compact subset of C/R. We
introduce A™(I,U, K) the space of formal series e = > -,(iA\)""e, such that
en(t,7,2,(,\) is holomorphic for ¢t € V', complex neighborhood of I, (z,({) € U and
such that

(46) len(t, 7,2, N)| < AB™l(L + 7)™,

We associate to e the sequence of holomorphic functions

k . _ A oo IA(t—s)T 1 oS t A d
(6740777‘7@) - % € J gen( 77—727(07 ) T.

If m > 0, there exists a decomposition

— 00

j=m

(47) e(t, 72,6, 0) = Y el(t, 2, N +e, (67,200
j=0

where e, € A=Y(I,U, K) and each ¢ is defined by

81]'6@7 07 Z, Cv >‘)

eh(t,2,¢,N) = ,
J]:

and e,; is the remainder term of the Taylor series, equal to

1
1 _ m
7—m+1/ # Tmtlle(t,TS,Z,C,A) ds.
0 m.:
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Fore € A™(I,U,K), m < 0, we define
ki(ea Cg;n,a)(t, 5,2, /\) = /{3(6, CO;n7a)(t7 5, %, /\)|i(t78)>07

which extends up to t = s. We have, for fgo k(e, Co;n, a)(t, s, z, \)v(s, 2z, \) ds, the
following definition: for m > 0,

to t
(48) k(eaCO;naa)(t757Z7/\)U(3aza)‘)d3:/ k+(6,Co;TL,OZ)(t,S,Z,)\)U(S,Z,A)dS
0 0
to j=m 1 . .
+ / E esCosm @) 5,2 (s, 2, ) s+ S (1) 2308 (1, 2, Co, N o()
j=0 '

The definition for m < 0 is obtained by putting the finite sum as empty. We associate
to e € A™(I,U, K) the differential operator

(49)  Op(e)(Co, C1, Co)ul(t, z,A) =

to 1
SN [ ke G a)(t s,z ) (50— o) uls,2 ) ds.
n<A/Cy 0 L
lo] <A/ C
We associate also the operator
-y —1n 1 a
(50) Ki(t75)(<0701a02) = Z (ZA) ki(eaCO;naa)(tvSazv)‘)(aaz _CO) :

|| <A/ C2

We note that we have the estimate, owing to the estimates on e,, and to the fact
that K is a compact of C — R, which implies that dist(K,R) > 0:
(51) 00k (e, Coim, @)t 5,2, N)| < CpA LB Ry 1olple= 3 sl dist(KR),

These differential operators satisfy the following results

LEMMA 3.1. — Let Ry > D > 0 such that

2 0¢

2¥Y < D.

10z COH <D

If ' is a subset of w such that dist(@’, Cw) # 0, we introduce Cy = 1/D dist(&’, Cw).
For Cy > 2B/e, Cy = Cy, u € C®°(I, Hy(w)), we have

Op(e) (o, C1, C2)(u) € C(I, Hy(w')).

sup
zZEW

Moreover, if C1 = 2B/e, C4 = Cy, there exists € > 0 such that
Op(€)(¢o, C1, Ca)(u) — Op(e)(¢o, O, Cs)(u) € C(I, Hy—(w')).

Proof. — See [20], p. 358 (Lemma 3.1). O
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LEMMA 3.2. — Let w, D, Ry w' be as in Lemma 3.1, and Cy the constant obtained in
Lemma 3.1.

For (¢, R}y, D) such that w x {|¢) — (| < Ry} C U, sup,, |29.¢— (| < D' < R{,we
introduce C) = 1/D'dist(w’, Cw) and for all Cy,C} greater than 2B/e, Cy > Cy,
Ch = C|, there exists € > 0 such that

Op(e)(Go, C1, C2) (1) — Op(e)(Cp, C1, C3) (u) € C (I, Hy—e (W)
Proof. — See [20], p. 359 (Lemma 3.2). O

LEMMA 3.3. — Let w’ C w. There exists CY,CY, such that, for all C; > CY, Cy >
C3, there exists € > 0 such that, for all u € C* (I, Hy(w)),

Op(e 0 ¢) (o, C1, C2)(u) — Op(e) (o, C1, C2)[0p(q) (G, C1, Co) ()] € C=(I, Hy—e(w'))

where the composition calculus is the usual one, g = e o q with

1
gn(t77—727<-7>\) = Z Wal,-agen’aéagch”(uZ7C»)\)
n'+n'+la|+l=n
Proof. — See [20], Lemma 3.3 p. 361. O

We notice that the differential operator (i)\)’lazj, whose symbol is ¢; in the an-
alytic calculus of Sjostrand, is associated with ey = (;, e, = 0 for n > 0 in the
definition above. If L is a pseudodifferential operator of order 1, the symbol in this
calculus of the operator - L is the symbol I(z,() = Lo x~!(z,{) = L(x*(z,()) such
that [(x(z,§)) = L(z,§).

There exists an analytic symbol ¢ defined in a neighborhood of ¢ € [0, to], (20, (o) =
(0,0), of the form

q(t; 2,6 A) =Y (A "ga(t, 2,0)
n=0
such that qo(¢, x(z,§)) = r(t,z,£) and that

X? 0p(g)(0,Cr, Co)(eP95%)) = 'R(t, 2, Dy)(eM95%)) 4+ 9EDb(t, 2, 2, M)

where the symbol b is analytic near (¢,2,0) and is bounded by e=¢* for an € > 0.
We introduce ¢_(z) the phase function equal to

1 134

5(§)<ezl)2 +3 D (Sz)?, it Rz >0,

5 Z(st)Q, if Rz1 < 0.
j=2

Consider f the function considered in Definition 3.1. The condition iii) of this defini-
tion implies that there exists € > 0 such that

SS(f)N{0<t<e/2, |p—pol <e/2, s(p) <0} =@.
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Let to € ]0,1[. As f is an extendible solution of Pf = 0, where P is a par-
tially hypoelliptic operator, there exists vy € R such that, for all £ > 0, f €
CH([0, to], H~*({lo] < a/2})).

Hence, by the properties of the Fourier-Bros-Iagolnitzer transform, we may choose
a neighborhood Qg of zp = 0 such that u € C([0, to], Hp, (0))-

We have (pg, —1) ¢ SS?;l(atf + Lf|t=0), which implies that there exists {2y small
enough such that

(52) VzeQ, |0u(0,z,A)+Op(Lo Xﬁl)(u(()wz,)\)” < ANMAL 20— (2)

As u is a solution of the problem, there exists g and 27 compact subset of €y such
that

(53) Op(Tz + (])(07 C'17 CQ)U € Cw([ov t0]7 H¢0*€0 (Ql))
We choose tg > 0 and we fix d; > 0 such that

2| €2d1 = 2 €y
(54) |Z| < 2dq, Rz < 0= deg > 0, ue COC([O,tQ],H¢O_52(Qo))
|z] < 2d1, Rz1 < 0,85 > 0= Fe3 >0, u€ C°([ty, to], Hpg—es (Q0))-

Let o > 0 be given. There exists a function 0, € C*°([—dy, +o0[) and three numbers
s1(a), s2(a), sz(a) such that —dy < sg(a) < s2(a) < s1(a) < 0 with the following
properties :

52 52
sup(0, 5 —a) <Ou(s) < 55 staz 0 ,(s) > s
2
Ou(s) = %, s=s1(a); 0L(s)>s, —di <s<si(a); Oa(s) =0, s € [s3(a),s2(a)].

Let also introduce a function ® € C*°(R, Ry ), such that ® is increasing, ®(dy) > di,
®(t) = 0 for t < dq/4. Using @, 0,(s) = 0,(s) — s2/2 and ¢y we construct ¢ (as in
[20]) for [Rz1| < dy and ((S21)% + |2/]?)V/2 < dy :
() = go(2) + Oa(R21 + 2(((321)* + [2])'/?)).
This is a phase function satisfying :
$(2) < do(2) ;5 ¢(2) = do(2) on Rz1 + D(y(2)) = s1(a).

Let y(z) = ((S21)% 4 |#/|?)"/2. We assume that ¢ is the phase function associated
with the canonical transform, such that

200, 200
i 0z =G i 021 =G
We deduce from this equality the relation
) ~ 1 gy Sz1
(1= —iRz + 0, (?Rzl + @(y(z))) ;(1 —1® (y(z))@)

This equality implies S(¢; +iz1) = —0/,(Rz1 + ®(y(2))) < 0.
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Recall that %%ﬂo = —3%’. We introduce, for 0 < § < 1, the phase function

¢s = 06¢ + (1= 6)¢o.
We have the following

LEMMA 3.4. — Let |V®|oo = sup{|®'(v)|, |y| < di}. There exists D > 0, indepen-
dent of a, such that, for 0 < § <1,

eSqo(t, z, %%) < 0S(izy 4 C1)[1 — DO(1 4 [VO|)t].
Proof. — Note that
2095 2090 209  Ogo 2
oy i~ Gas 9= 3[0a(Rz1 + D(y(2))) — R +2(y(2))] 70z, 2.
Hence we obtain
2095 2090 o w2 o
T0: io. TSatElFese
which leads to the inequality
2 .
(55) 702005 = 02160) | < 2101|1411 [S(C1 + i21)].
We have

2 1
;(8z1¢5—8z1¢0) == 6( z1¢ Z1¢0) = 5( iéRZl +Z§R251)+5[—3(C1 —|—ZZ1)];(1—Z(I)/)
Hence we obtain

2 .

g(az1¢5 - 821¢0) < §|%(Cl + ZZl)'(l + |V®|)

Using the equality erg(x~*(2,¢)) = (1 +iz1 = €qo(0, z, ¢), we obtain

2 . . .
€qo(0, 2, - iﬁf) z1+ —a;i)f =121 +6¢ + (1 —8)(—iRz1) =0(iz1 + (1) — Sz
Hence €3qo(0, z, fgff) 8S(iz1 + C1)-
We note that (z,7%2) = (2 ,f%) + (0,20.¢5 — 20.¢0), hence there exists a
constant Dg such that
_1,. 2095 ~1,. 209
1 1
i 2270 « zZ
X (Za i Oz ) X (Za i Oz )‘ X DO‘ z¢5 z¢0
< Do(1+ 2031)(1 + |V@[)[S(iz1 + G-

As qo(t, x(z,8)) = r(t,z,£), we get the equality

1
qolt, X(x.€)) = r(0,2,€) +1 /0 Dur(tu, . €) du

We use the hypothesis that D2 +r(t, x, D,,) is a differential operator of order 2. Hence
the principal symbol of D? +r(t,x, D) is 724", ;ai(t,7)6&5 = 72 +7r(t,z,£), which
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= i; Oraij(t, 2)&&;. We introduce (z5,&s) = X 1(z, %agf)
2). Hence

implies that 8t7‘(t z, &
and (z,€) = x (2, 25

1
r(t, x5,&) =10, x5,&s) +t/ Opr(tu, x5,&5) du
0

1
= T(Oa s, 55) + t/ [8tr(tu7 s, 55) - atr(tu7 z, f)] du + T(t, xZ, é-) - T(O7 x, f)
0
This yields

20 .
can(ts 2, 52) = d(i + 1) — 9

1
+ et/ [Opr(tu, x5,&s) — Opr(tu, x, &) du + er(t, x, &) — er(0, x, §).
0

As Ay, = {(z,2 ‘%0)} = x(T*(R%)), we get that (z,&) € T*(R?) hence Sr(t, x, &) =
Sr(0,2,£) =0, Wthh imply

2 0¢s

1
;E) =0S(iz1 +G) + et%{/o [Oer(tu, x5,Es5) — Opr(tu, z, &) du]

€Sqo(t, z,

We have
_ 20 _ 20
| dvay (b, 5) (€)s(65); Zatam (1, 2)6:65 | < Dafx (2, 2920) (2, 290
2,7

Thus there exists a constant D, independent of «, such that

20 .
‘ec\‘sqo(t,z, ;%) —6S(izy + Cl)‘ D6(1 + [VONHS(iz1 + (1)

and using the fact that $(iz; + (1) <0, that
2 0¢s

eSaot, 2, = 5=) <I8(iz1 + G)[L - DI(1 +[Ve])1)).

The lemma 3.4 is proven. |

We introduce then ¢; such that

(56) Dtr (1 + ]| (~a;,a) <

N | =

As we have the conditions (54), and as
$(2) < ¢o(2), ¢(2) = do(2) for Rz1 + B(y(2)) 2 s1()
there exists ag > 0 and > 0 such that, for all « € ]0, ag[, we have
u € C%([t1/2,t1), Hy({|Rz1| < du, [y| < di}))
u € C([0, t1], Hy({|Rz1| < di, |y| < d1,Rz1 < —di1/2}))
u € C([0,t1], Hy({|Ra1| < du, [y < du, |yl = di — BY})).
We introduce the sets

Qo = {|R21| < dy, [y(2)| <di}, Q3= {|Rz1| <5d1/6, |y| <di —3/3}.
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From Op(p)(0,C4,C2)(u) € C*([0,t0], Hpy—eo (1)) and from Lemma 3.1, if Cf
and C} are large enough, there exists 1 > 0 such that

(57) Op(p)(0,C1, C5)(u) € C*([0, ta], Hoy—e, (23))-
Let now « € )0, inf(ao, e1/2)[. We will prove that, for all § € [0, 1],
(58) u e C“([O,tl], H¢5 (QQ))

First of all, as we have, from (54) v € C*°([0, to], Hpy—=(Q0)) for |z| < 2d;. There
exists 3’ > 0 such that s1(a) — ' > sa(a), and we have, for Rz1 + (y(2)) > s1(«),
#(z) = ¢o(z), as well as, for every e small enough, u € C°([0,t0], Hpy—c(22)), Q2
being a small neighborhood of z, hence if ¢(z) < ¢o(z), we use € such that ¢(z) >
¢0(2) — €, hence u € C([0,t1], Hy(£2;)). Hence

u € C“([O,t1]7H¢(Qg n {%Zl > sl(a) — ﬂ/}))

Hence (58) is true for § small enough, because, for Rz; < s1(a) — ', we have 0, (s) <
0. (s1(a) — B") < 0. We denote by dy the largest value of § such that

Vo <b, weC™(0,t1], Hyy ().

Now, we have ¢s5(z) = ¢o(z) + d(¢(2) — ¢o(2)). For ¢ small enough, as we have
do(2) — p(2) < 8o (because —b, is bounded between s2/2 and the maximum value on
[s2(a), s1(a) — B'], hence bounded by dy) we may choose § small enough so that we
can take es = §dg. Note that ¢; plays no role here.

Assume that (58) is true for all 6 < dg, where dy € ]0,1[. We consider a point
20 = (29,9°) in Qo, with —3d;/4 < R2¥ < s1(a) — #//2 and |y| < dy — 3/2.

We have, for 7 € R, e3(72 + qo(t, 2,¢)) = €Sqo(t, 2,¢) < (¢ + i21). We choose
the neighborhood of (2, {y). For this point, we have I(¢? +i2y) = (R2{ + ®(y(2°))) —
0, (R2? + ®(y(29))) < 0 because R29 + &(y(2°)) < s1(a) — % + ®(dy — 5/2).

We choose 3’ and § such that ®(dy —3/2) < §'/2 and ' € ]0, s2(a) —s1(«)[. Hence
we have 3(¢Y +42y) < 0, and the neighborhood U we choose is such that we have
I(¢y +iz1) < (Y +129)/2. We then obtain Se(72 + qo(t, 2,¢)) < —|S(¢Y +i29)| /4.
The function |72 + qo(t, 2,¢)|/(1 + 72) has for limit 1 in 400, hence is, on the com-
plementary of a compact set in 7 € R, bounded below by 1/2. On the compact set,
it cannot vanish, thus is bounded below by a constant ¢;. We take ¢ = min(cy,1/2)
to obtain the inequality

172+ qo(t, 2, Q)| = c(1+72), V(2,¢) €U, te(0,t] and 7 € R.

The roots of 72 + qo(t, z,() stay in a compact set K of C — R. Owing to the
definitions, we can consider symbols on A™([0,t1],U, K).

From the usual theory for analytic symbols, e = (72 + q)~ € A=%([0,t],U, K).
We consider two neighborhoods of z°, denoted by w; C wy, and Ry > 0 such that
wo x {|¢° —¢| < Ro} C U, and |%aéilj — (0| < Dy < Ry. We may assume (choice of
0.) that |%%| < D < R, where R is a radius of convergence of the series defining
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q(t,z,¢) (inequality (46)). We consider, in (57), the constants C7 and C% such that
C1 = 2B/e, C% > 1/Ddist(Q3, CQy), where B is the constant for ¢ in inequalities of
the form (46). Let C§ = C4 + (Dy' + D~1)/dist(w1, Cwp). From Lemma 3.1, there
exists € > 0 such that

Op(72 + q(t, 2,¢))(0, C1, C3) (u) € C([0,t1], Hy,, —=(23)).
From Lemma 3.2, we deduce immediately that
(59) Op(72 + q(t, 2,¢)) (o, C1, C3) (u) € C([0,t1], Hypy —e(wn))-

This result is still true if Cf, C} are replaced by larger constants, by diminishing e.
The following steps of this proof is the proof of the following Lemmas:

LEMMA 3.5. — Let u € C™(I, Hy(2)). We have

OD() (G, €1, Co) (500 [(55.00) *u(5.00)] = Op(r€) (G, €1, Co)(w)
+ AT2[K T (t,0)0;u(0) — O KT (t,0)u(0) — K~ (t,t0)dsu(to) + 0K~ (t, to)u(to)].

LEMMA 3.6. — Introduce the complex number (q(t,z,¢))"/? such that we have
R(q(t,z,0))? > 0. The operator K+(0,0) is a pseudodifferential operator of order 1:

KT(0,0)= > (i\)'"™K},(0,0)
m2=0
where K§(0,0) satisfies, for v € Hy

[OP(KS(OaO))(CO,Cl,Cz) —Op (W)(<0701,02):| (v) € Hp—e.

The operator s K(0,0) is a pseudodifferential operator of order 2, whose principal
symbol is \? /2.

Proof. — We have
eo(t;7,2,¢) = (7" +q(t, 2,¢) ™"
(60) _ 1 [ 1 1
o 2i(g(t, z, OV L —i(g(t, 2,02 T+ i(g(t 2, 0)) 2L
The relation e o (72 + ¢) = 1 writes, for p > 1
1 (6% (0%
Z aawenat,zq =0.

la|+n=p

This leads to the choice of each e, for p > 1 because we have

1
(61) ep(t,m 2 ) == Y 08 endiq

le|+n=p
n<p—1
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The relations (60) and (61) show that there exists a sequence of analytic functions
rp(t, z,¢) and two sequences A, 4(t, z,(), Bp 4(t, 2, () such that

1 _ 1 ]
—i(q(t,z, Q)2 T+ilg (t 2, Q)12

B
N D T Y.
s T—l—zq/ (1 —ig/2)p

(62) ep(t,T,Z,C)Z’/‘p(t,Z,C) o

We have thus

1 1
2 ey = 02, - }
P T (6w OV T Tt il 2, Q)
+ ) Do Boa
e (T +igt/2)p (1 —igl/2)P

Identifying the term of the form (7 +1ig'/?)~" and the term of the form (7 —ig'/?)~!
(which are the only ones to give a 1residue)7 we deduce that

Tp + Z 07 0y .q = 0.
lal+n=p * '
and o = (2ig"/?)~!
‘We compute
kT (e, Coip, ) (t,s,2,\) = A +<>°1 eiA(t*S)Tiﬁo‘e (t,7,2,()dr
» G0 Dy 399 <y _27T - t—s>0 OZ!Cp”’O

The expression of e, given in (62) and a classical formula of residue on the contour
[-R,RJU{Re®, 0 <6 < 7} (because R(i(t — s)7) < 0 on the curve) around the pole
i(q(t, z,¢))"/? (owing to the fact that, uniformly on [0,¢1] x U, R(q(t, z,¢))"/? > 0)
yield:

1
(63)  KT(e.Coipoa)(ts,zA) = ide NI S (12 o).

The operator K (¢,t) is thus the operator of symbol

XY (A Pry(t, 2, Q)
p=0
because we can take the limit ¢t — s — 0.
The relation (63) shows that the principal symbol of K¥(¢,t), which is obtained
with p =0, is given by

1 A 1 1
Z k+(€7C0;0,0l)(t»t7Z,)\)(aaz—Co)a =3 Z Jag(CI(t»Z,C))fl/z(aaz—éb)a'
la|<A/C la|<A/C

This shows that KT (¢,t) is the usual analytic tangential pseudodifferential operator
2(q(t, 2,¢))~Y/? of order 1, where R(¢(0, z,())Y/2 > 0.
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Similarly, we have
1
aask+(e7 <07 07 Ol) = k+(_7—67 C07 07 Ol)

and the equality
T 1 1 1

TR0 2T s T etz )

leads to the fact that dsk™ (e, (o;0, @) is the operator of symbol —1(i))(i\) = A?/2.
We can also verify that it is Q(q’)\l/g (—iX(i(¢)'/?)). This ends the proof of Lemma
3.6. |

Proof of Lemma 3.5. — We want to prove

(64 Op(e)(Go, 1, Co)[(5500)u] = Op(r2€)(Go, C1, Co) )
+ %[Kﬂt, 0)0;u(0) — ds Kt (t,0)u(0) — K~ (¢, t0)du(to) + Os K~ (¢, to)u(to)].
Note that

Op(7—2€) (CO: Cla CQ)(”) (t’ 2y )‘)

to ) 1 o,
— Z (i/\)_"/ k:(TQe,Cg;n,a)(t,s,z,/\)[emzco(jﬁz) (e_lkzcou(s,z,)\))]ds.
n<A/Cy 0 !
[al<A/C2

We calculate each term. We have

™

+oo 1
B, Goima)(t, 5,2, ) = £ / TS O en (7 2, Go, A) dr

— 1 27 A oo i)\(t—s)rl «
= (aat) [% /_oo e aﬁgen(t,r,z,go,/\)dr

1 1
- (aﬁt)Qk’(e,Co;n,Oz) = (aas)Qk(eaCO;naa)'

We have the equality

to .
/ bre. i, ) 5,20 (259 (350 (e u(s, 2.)) ) dds
0

_ /0%(%892 (e Gusm. )t 5,2, )] (25 (50.)" (s, 2,0)) ds
= G e )55 0] (95 () (52202,
N (%)Qask*(e,Co;n7a)(t7f0»zv)‘) (e“zcoas(%az)a(efwcou(s’Z’)‘))>
_ (%P&k*(e, Cosmy@)(t,0, 2, X) (e“z@as(%az)“(e’“z““(svZ* )
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_ /Oto k(e,go;n’a)(t,s,Z,)\)[ z)\ZCo( {\8 )2(1:5\8 ) (efi/\zCOU(S,Z,)\))} ds

1 - IAZ 1
+ (a)Qask (E,CO;n,a)(t,to,Z,)\) (6 & CO(_)\
_ i 2 — . iAzCo 1 o —iAzCO
()205k (e,Cg,n,a)(t,O,z,)\)< (50:)" (e
— i 27+ . iAzCo i
(57K (e Gosme @)t to, 2, 1) (€70 (

i 21+ . iAzCo i Qs —iXzCo
+(Z)\) k (e,CO,n,a)(t,O,Z,A)<€ (Z)\az) (6 85u(5,z,/\))>

i
8z)a(e_i>‘z<° (s,2,N))
(s,2,N))
82) (e Az g u(s, z,A))

)
)
)

Note that, in the above equalities, we considered the integral fgo. From the
definition of the operator (48), it is in reality fot kt + ftto k=, with kT = Kkl
and k= = kl;cs. Hence, in the integration by parts, we see the terms k™ (¢,%9) —
k=(t,t) + kT(t,t) — kT(t,0). We use then the relations kT (¢,t) = k= (t,t) and
skt (t,t) = Osk™(t,t), which proves precisely the equality above. Using Definition
(50) of the operator K+ and of the operator K~ we obtain the relation (64), which
is the relation of Lemma 3.5. |

We have thus

[Op(1)(u) — Op(e) Op(7? + 4(t, 2, )] (o, C1, C2) (u)
= [Op(1) — Op(e) Op(q) — Op(e) Op(72)](Co, C1, C2) (u).

From the relation Op( ) (u ) = (m 0¢)?u(t) (case of Definition (49) and the expression
(48) for m =2 and €3 =1, e} = e = 0 and e~ = 0), and from the previous formula,
we get
(65) [Op(1) — Op(e) Op(7* + ¢)](¢o, C1, C2) ()

= [Op(1) — Op(e) Op(q) — Op(7%e)](u)

— AT [KH(t,0)0;u(0) — KT (¢, 0)u(0) — K~ (t,to)0su(to) + K~ (t,to)u(to)]

= [Op(eq) — Op(e) Op(q)](u)

— A2 [K T (t,0)0;u(0) — 0K T (t,0)u(0) — K~ (t,t0)0eulto) + K~ (t, to)u(to)]-

Using Lemma 3.3 of [20] for the composition of such operators, we have

[Op(eq) — Op(e) Op(q)](u) € C™([0,t1], Hyp,, —c(wi)-

We write the formula (65) for ¢; instead of ¢y, and we use this result. Hence we get

(66)  Op(1)u(t) — Op(e) Op(p)(¢o, Cr, Ca)ult)
+ ATKT(t,0)00u(0) — Os K (t,0)u(0) — K~ (¢, t1)0u(ty) + 0s K~ (t, t1)u(ty)]
€ COO([Ov t1]7 H¢50*€(w1))'
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CHAPTER 3. PROPAGATION OF SINGULARITIES 57

From this equality, by putting ¢ = 0 and using the inequality (51), we get

K‘(O,tl)&gu(tl) S H¢50_5, 85K_(0,t1)u(t1) S H¢50_5, thus

1

12K 7(0,0)0,u(0) = 95K (0,0)u(0)] +Op(1)u(0) — Op(e) Op(r +) (u)(0) € Hyy, -

As u is a solution of (72 + ¢)(u) = 0 (by hypothesis), the equality (59) holds. As

Op(1) =Id, this gives
1
ﬁ[Kﬂ0,0)@tu(O) — 95K7(0,0)u(0)] + u(0) € Hy,, -,

that is

(67)  KT(0,0)0:u(0,2,\) = 0,K(0,0)u(0, 2, \) — A?u(0, 2, \) + w(0, 2, \)

where w € Hy, —c(w1).

We introduce v = & (0yu + Ty (Lf))|¢=0. By the usual pseudodifferential calculus,
there exists an operator L, of principal symbol L(x~(z,¢)) = I(z,(), such that
v = L0u(0,2,\) + L(u(0, 2, ). We express the relation (67) in terms of v. The
strong Lopatinskii condition yields u(0,2,A) = (L)™'(v — L9;u(0,2,X)), and the
equality (67) leads to the two relations

[K+(0,0) + (%&K*(Q 0) +i\) o (z)*l](%atu(o,z, \)
- 1

K 00 i) e
—(Z,/\asK (0,0) +iN) (L) v—i—i/\w

1 - 1
[aaslﬁ(o, 0) + i\ + K*(0,0)Lju = K*(0,0)v — ~w.

The inequality for v in the hypothesis of Theorem 3 implied the relation (52):
[v(z,\)| < ANM Ao (2)
We use now the following result

LEMMA 3.7. — There exists a netghborhood UcU of (2°,¢o) in which the operator
K =K7"(0,0) + (£%0:K7(0,0) +iA\)(L) ™" is elliptic.

Proof. — We check that, owing to Lemma 3.6, the symbol of K in the analytic cal-
culus is
A 1 i1 , o
G007 P 2060~ MmO E g e ) 0z L

For (z,¢) = (2° (o), we have |¢(0,2,¢)| > ¢, and the operator (¢(0, z,¢))"/? is
elliptic on U. In a same way, l~(z, () is elliptic on U. The ellipticity of K on U is thus
equivalent to the ellipticity of I(z,¢) + i(q(0, z,¢))Y/? in U.

For z in a neighborhood of the glancing point (0, 0), we know that ¢(0, z, ¢) is small,
and going back to the beginning, as |%(0,0)| > 0, we can choose a neighborhood of
the point (0,0) such that |¢(0, z,{)| < |RI(0,0)]/2, which imply that the condition
1(z,¢)+i(q(0, z,¢))"/? # 0 is fulfilled. Hence the operator is invertible. The boundary

>

~
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58 CHAPTER 3. PROPAGATION OF SINGULARITIES

operator J; + L is elliptic in the neighborhood of a glancing point as soon as L is not
0 at the glancing point.

Note that this is a consequence of the fact that, for Rz > 0, the operator 7 + &2
is elliptic for 7 = 0, corresponding to glancing points. Lemma 3.7 is proven. |

Lemma 3.7 allows us to deduce the regularity of (iA)~1d;u(0, 2, \) in terms of the
regularity of v(z, A).
From the inequality
[v(z, \)| < AAM ro-(2)

for z € o small, we deduce that u(0,z,A) and 9;u(0, z, \) satisfy the inequalities,
owing to Lemma 3.7 and to the ellipticity of L:

1
|5 000, 2, )| < ANM Ao (2)
i
[u(0, 2, \)| < A" ANMHLAO=(2),
Hence 0;u(0) and u(0) are in Hy, —c(w3) where ws C wa. As Op(1)(u) = u, and
u € C%([t1/2,t1], Hy(w2)), we deduce that u € C([0,t1], Hp;, —c(w3)) because ¢ >
¢s, — € for € small enough.
Hence there exists dj > dp such that v € C°°([0,t1], Hy,, (w3)), which is contradic-
0

tory with the hypothesis that Jy is the largest § for which it is possible.
Hence we have

V(SE]O,I[, (S C“([O,tl],H%(QQ)).
The case of o = 1 is achieved by the fact that w € Hy, . and that the relations
on (i\)"19;u(0) and u(0) are still valid, and as ¢; > ¢_, we get, for z = (z1,2'),
Rz1 € [s3(a), s2(a)], [y(2)| < di/4

|0pu(0, 2, N)| <
(68)
|u(0, 2, \)| <

A/)\M+16A¢(z)
A//)\Me)\qﬁ(z) .

The result of Theorem 3 is proven in the neighborhood of the elliptic and hyperbolic
points, hence, if 2° = (29, (2)?), Sz # 0, as we get ero(x '(2,¢)) = —S2; for
(2,¢) € Ag,, we deduce that such points are either elliptic or hyperbolic, hence the
theorem is true and the inequalities (69) are valid for all z € Vj, neighborhood of zj.

|0pu(0, 2, \)

| <
(69)
(0,2, )] <

C/)\M+le)\¢,(z)
C//AM6A¢,(Z)'

Finally, for |y(z)| < d1/4 and Rz1 € [s3(a), s2(a)], we have ¢(z) = ¢_(z) = $(32)%
From (68) and (69
that the region [s3(«), 0] is large, we get (69) for z in a neighborhood of 0.

Hence (po, —1) ¢ SSv (9:fli=0) and (po, —1) ¢ SSp' (fli=0). The Theorem 3 is
proven.

), by the maximum principle, if we choose a small enough such
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CHAPTER 3. PROPAGATION OF SINGULARITIES 59

We deduce from that theorem that, by considering the waves uy constructed in
the Introduction, we have the same regularity result as in Proposition 3.1 of [20]. Let
fr = vy — 1;500+us. The following Proposition gives the analytic wave front set

of f:l:-
PROPOSITION 3.1. — For all g > 0, there exists 1 > 0 such that
SS(fx)N{z >0t >e1}

C{l6+ ——| < e} U{Jé + —— cosb| < o} U{J¢ —

COS Y+ COS Y4 COS Y+

cosfi| <ep}
and a point t > €1, (0,t,&,7) is not in SS‘z/’il(fi) when
T T
€+

| 2807 |£+ COS&:I:| 2507 |£_
In the particular case Ssin0,Isinf_ # 0 (which means that the boundary condi-

cosfy| > ep.
COS Y+ COS Y+ COS Y+

tion is absorbing), these conditions reduce to
SS(fx) N{z >0t > 1} C {|¢+ 7/cos 7| < &}
and a point (0,t,€,7), t > €1 is not in SS‘Q/i(fi) when |€ + 7/cosy+| = €o.
We denote by L. the operator in {2+ defined by
Lig(x,y,t) = (1+(a'(2))*) 7?0y — d/ (2)0:9) — =¥ ()00
Notice that fi|w>0 = 04 (u— ug)|z>0. We have

(70) (u—ux)|t<o = Ur,i|t<0»

(71) Li(u—ug)logsnz>o = 0.
We introduce the involutive submanifold Vi = T*(AxL xR)N{z = 0}, associated with
s(x) = x. Similarly, we introduce the involutive submanifold —Vy = T*(AL x R) N
{z = 0}, associated with s(z) = —x (we changed the orientation on the cotangent
space). A solution of (A — 8% )g = 0 is Vi-incoming if and only if g is —V4-outgoing
(following Definition 3.1).
We intend to show that u — ug is Vi-incoming. If this is true, then Theorem 3

proves that

(po, —1) ¢ SSY, (0 (u — us) — 2% (2) (u — ux)|aey )
and the condition
(72) 370, |(E(po)? = ro(0, p0)] > "
implies

(po, —1) & SSY (0 (u — ux)) NSS! (u — utloq, )-
It is important to notice that (72) is automatically fulfilled if S2*(0) # 0, because p is

real. This means that the impedance boundary condition correspond to an absorbing
material. It means also that the Brewster angles are complex.
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60 CHAPTER 3. PROPAGATION OF SINGULARITIES

The Proposition 3.1 is a consequence of Lemma 3.8.

LEMMA 3.8. — Ifp= (2,t,£,7), 0 < & < ct, | + 7/cosvy+| = o, the relations (70),
(71) imply
u — ug 18 Vi-incoming at p.

Proof of Lemma 3.8. — The argument of Gérard and Lebeau is valid, owing to an
analytic theorem of propagation of singularities for a mixed boundary condition, in the
neighborhood of points where this mixed boundary condition is elliptic, that is where
the Calderon operator exists. This result is a generalization of the usual theorem of
propagation of singularities for Dirichlet boundary conditions of Sjéstrand [38].

If p € £, the elliptic regularity shows that, owing to the boundary condition

O+ (u—us) — 25(u — us)|{z>opro0, =0
and the representation of the Calderon operator, the result of Proposition 3.1 is true.

If p ¢ £, we consider the half bicharacteristic of 92 — A starting at p, included in
Q4 in the direction of ¢ < 0(%).

e Let us assume first that |£ —7/ cos .| > €}y, where €] is to be given. There exists
€1 such that, for ¢ < e1, v does not cross the “real” boundary Ay before reaching
t < 0. The half-bicharacteristic 7 is constructed such that the distance to Ay is
decreasing along v in the neighborhood of A..

But the choice of the phase function #1 implies that, on the bicharacteristics in-
cluded in SS(u, +) N Q4, the distance to Ay is increasing along the bicharacteristic
parametrized by ¢. This shows that u, + is regular along .

— If x = 0, this means exactly (see Definition 3.1) that u — uy is Vi-incoming.

- If x > 0, we know that u — u4|tco = Ur+|t<o. By construction, the half-
bicharacteristic v enters the region ¢ < 0 while staying in D.. Hence there exists
€1 > 0such that yU{t > —e1} C D4, and thus on this part of the bicharacteristic there
is no interaction with the boundary. Hence as u, + is regular for —e; < ¢ < 0, from the

(2)To give a precise idea to the reader, we consider the (elementary) case where Ay = {y = 0},

D4 = {y > 0}, the normal variable to the boundary is y = n, and the bicharacteristic strips starting
from a point (¢, z, 0, 70, £0,m0) which is hyperbolic, that is ng = :‘:(Tg — 5(2))1/2, are
z(s) =z + 2&0s, n(s) =2nos, t(s)=t— 270s.
Hence the half bicharacteristic strips starting at (¢, z,70,&o) included in n > 0 are
x(s) =z + 2605, n(s) = £2(7¢ — {3)1/23, t(s) =t —27m9s, =+s>0.

This bicharacteristic is directed towards ¢ < 0 when —27ps < 0. Hence, for 79 > 0, the half bichar-
acteristic included in n > 0 directed towards ¢ < 0 is

z(s) =z + 2&0s, n(s) = 2(7—3 - 58)1/25, t(s) =t — 2108, s>0
and for 79 < 0, the half bicharacteristic included in n > 0 directed towards ¢t < 0 is
x(s) = x + 260s, n(s) = =208 — €2)Y?s, t(s) =t —2m0s, s<O.
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propagation of singularities theorem in an open set, we obtain that yNSS(u—uy) = &.
This means that v — vy is Vi-incoming.

e Consider the second case |§ —17/cosv+| < g). For g) small enough, it is geometric
to see that every half-ray 77 issued from p (there is no uniqueness because of the
glancing points) in the direction of ¢ < 0 is locally contained in & > 0. There is thus
a point of y1 in {¢ < 0} N {z > 0} such that u, 1 is regular.

~ When the point is hyperbolic, that is £ # 7 /cos vy, if &) is chosen small enough,
we know that the boundary operator L. is elliptic at p. From the conditions (70),
(71) and the theorem of reflection of singularities with a mixed boundary condition
which is elliptic (which is the case when |€ — 7/cos~y+| is small), we obtain that
SSp(u —ug) Ny = 2.

— For =0, u — uy is Vi-incoming if p is hyperbolic.
— For x > 0, we also get that u — uy is Vi-incoming.

— When the point is glancing, that is £~ = 7/c0os v, this means that

p=(0,t,7,7/cosvy).

We verify that the half rays v* starting from p stay in > 0 before entering ¢t < 0
(that is because v4 < 7/2 and y_ > —x/2). This means that there exists a point
of {t < 0} N {x > 0} where u, 1 is regular. Thus the same argument of propagation
of singularities for the mixed boundary problem (the boundary condition is elliptic
because we are at the glancing point) applied to this new point show that u — ug is
V.i-incoming.

Finally, there is no other assumption needed to prove that the wave u — uL is
V.i-incoming, hence Lemma 3.8 is proven. O

Note that is is not surprising that the points in the neighborhood of E = —7/cos v+
are not incoming, because it is near the tangent direction which excludes a propagation
in the good region.

Let us end the proof of Proposition 3.1. It is enough to apply Theorem 3 to the
wave u — u+, excluding the points of the form |(L4(p))? —70(0, p)| < &f, using Lemma
3.8.
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CHAPTER 4

REDUCED SYSTEM ON THE BOUNDARY

As in the section 5 of [20], we prove that the principal symbol of the system
calculating the normal derivatives on each face is the symbol associated with the
same system corresponding to the tangent plane wedge and the boundary conditions
where the coefficient of 9;u|a, is 2¥(0). This idea has already been used by J.M.
Bernard who proved (annex of [5] pp. 327-329) that for a convex boundary (for which
is known the source on the boundary), the boundary condition on the plane tangent
“face” of the diedra (given in (2) p. 322) and the boundary condition deduced on the
solution near the curved boundary (given by the expression A.9 p. 329) have the same
leading term. This was done using Maliuzhinets integral ([31]).

In a first part of this section, we shall introduce the unknowns and give their
microlocal regularity. In a second part, after introducing the F.B.I. transform in time
and the F.B.I. transform in z, we shall give the explicit calculation of the symbols.

Let e be a strictly positive number and E. the space of tempered distributions
u(t,x), supported in ¢ > 0, such that the partial Fourier transform in time of u,
Fu(k,z), is in L2(R?) for Sk < 0 and its norm is bounded by A(1 + |k|)Z|Sk|~¢.
This space of tempered distributions has been introduced in Definition 2.1 of [20].
The partial FBI in time of such functions is defined by

A A
(73) Tou(r,x,\) = (2—)1/2/ e”‘ka’\kg/z}"u(/\k,x) dk.
m Sk=—a
There is an inversion formula for this transformation, given by [20] (2.12).

Let W be an open subset of C, ¢ € C°(W,R).

DEFINITION 4.1. — We denote by Hg(W, L?) the Sjéstrand space of functions
f(w,z,\), holomorphic in w € W, L*(R) in x, defined for X > 1, such that for all K
compact subset of W, there exists A, B > 0 such that

sup He*’\‘t(w)f(w,-,)\)||Lz(R) < AN,
weK
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For k > 0, we define

(74) W, = {W eC, [RW| < |1+ SW| < x}.

Introduce ¢y > . The function ¢o(w) = +(Sw)? is the usual weight function of

Sjostrand (see Sjostrand [38]). The following Lemma gives the regularity of Tou for
a function supported in t > to:

LEMMA 4.1. — Let ¢(w) = ¢o(w) — 3(to — K)*>. For u € E., such that suppu is
contained in {t > to}, we have

Tou € Hy(W,, L?).
If K}, is a family of operators bounded on L?(R?) and satisfying the inequality
(75) Kkl < Ar(1+ [k])PH[SK|

for Sk < 0 and the family is holomorphic in k, 3k < 0, then K} defines an operator
from E., into F., 4. through

(76) F(Ku)(k,z) = Ki(Fu)(k,x).
We can compute ToKu with Proposition 2.2 of [20] p. 350, that we recall below:

PROPOSITION 4.1. — For u € E. and K from E¢ to Eeier, we have the identity
A [t T+ ) 2
ToKu— / dt / dr eATWTDATT R Tou(t — ir, - N) € Hy(W, L?)
T Jt_ T_

where to = £2K, 7+ = 1 £ 2k —i/A, and ¢p(w) = ¢o(w) — k2 /4.

The relation proven in Proposition 1.1 allows us to write a first system between
the trace on the boundary and the traces of the normal derivatives on each piece of
the boundary.

4.1. The fundamental identity

Let us introduce localizing functions in time ¢1, ¢2 and in space 1. We fix a tg > 0
small. The functions ¢1, ¢2 are in C§°(R¢) and ¢ € C§°(R) (they are defined as in
p. 351 of [20]):

e On a neighborhood of [0,%g], ¢1 =1 and ¢ = 0 for t > 2to,

e On a neighborhood of [0,%0/2], ¢2 = 1 and ¢ = 0 for ¢ > to,

e For —3cty < = < 3ctp, ¢ introduced above in Lemma 1.1, ¢ = 1, and ¢ = 0 for
|| = 4eto.

In particular, ¢1¢2 = ¢2 and (1 — 1)1 X logcz<er = 0. Recall that u is the solution
of (6) and u = 1gu.

From Proposition 1.1, we have

(A = 9%)u= (v464 +v-0-) + (ulondhg) = G
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with ult<o = uilt<o. As (A—0%)7" is the fundamental solution of (A—92) supported
in t > 0, we obtain the equahty (77) comparing the solution in ¢ < 0 and int>0:

(77) =i+ (A= 32) T fosby] + (A — 92)7 0] + (A — 02)7 uloadhel.

From this relation, we get

$ou = dou; + ¢2(A — ) dr1v104] + da(A — 0R) 10— ]
+ 62 (A — 92) M druloadg) + Si(,y,t).
with
Si(z,y,t) = ¢2(A = 02) 71 (1 = 61)G).

The support of G is contained in ¢ > 0, hence the support of (1 — ¢1)G is contained
in t > to + 0o, 6o > 0. Hence, as (A — 92 )+ is the outgoing solution, the support of
(A — 832);1(1 — ¢1)G is contained in ¢ > ty + dp, where ¢o = 0. Thus S; = 0.

We consider the normal derivative of this relation, and we take the partial Fourier
transform in time, which is valid because ¢jv+ € L?(R?) supported in ¢ > 0, hence
the partial Fourier transform in time of ¢ v+ exist and is holomorphic in &k < 0. We
check that

[ F(r1vL) (s k)l L2 my < Ct(1)/2Hvi¢1HL2(R+><R+)7

hence ¢1vL € Fy. From the boundary equality, ¢1uloq € Eo. Hence we have the
equality, after Fourier transform in time (denoted by @ or by F(u)), for k € C~:

G2 (k) x T = pa(k) x Ui + o (k) * (A + k) " F(¢1v4)04]
+ Ga(k) * (A + E2) " [F(drv_)5_] + da(k) * (A + k)" F(prulon)Sho)-
Recall that the operators K1*, K7 ** RT* and R~ are defined in Definition 1.1.
Hence we get
(78)  Ga(k) x 9 (@) F(Ds1) = ha(k) % KT F[F(prvs)] + da(k) x KTF[F(g10-)]
+ ba(k) * RYF[F(druloq)] + da(k) * v (2)0, ;.

(79)  p2(k) *9(2)F(O-u) = do(k) * K *[F(pr04)] + da(k) % K F[F(prv-)]
+ do(k) * RTF[F(druloq)] + do(k) * v(x)0_1

We state in the next section the results on the operators R** and Ki’k, KI’k. The
regularity results allow us, along with (76) to write the system deduced from the two
equalities with the operators R* and Ki, KF.
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4.2. Expression of the Neumann to Neumann operators

In this Section, we calculate using a residue theorem the operators Kl’ ’k, K ’k,
Ri’k, R;k defined in Definition 1.1. From the simple example of the function equal
to 1 on [0,1], and the distribution 9,[(A + k)~ (101 ® 8,_y)], which is equal to
two Dirac distributions concentrated at 0 and at 1, we check that the operators Rfk
and RE* send functions of H!(R.) to distributions of H~2~¢(R). However, we prove
that these operators send Hi(Ry) on L?(R.) and that the operators RT* and R=*
live from H!(R) to L?*(Ry). We need in what follows some definitions:

py (2, 2") (2 — 2') = a(z) — a(z’)

j(a,a')(x — a') = b(a) — bla’)

& =&+ pan

n = —pxl 4

Exw, o’ k&) = [RP(1+pd) — (&)

& = [k? — £2)1/2

the functions and dual variables allowing us to study the behavior of the faces of the
wedge, where S¢, > 0,3¢ > 0, SE_ > 0. We have n = “igliﬂ'li, &= & pen’ e

1+p3 1+p3
note that

A+pd) (R = —n?) = ()2 + ) —k*(1+42), (Q+pd)dén dy = d&E A dnf,

hence

dedy A i
B2 =& = (60)? — ()
The operators K have been calculated in [20] and we only reproduce the results in
the

LEMMA 4.2. — Let ot, 0=, s, s T the symbols equal to
/ +
U+ x,x',§+,k‘ — By —a ({IJ) i _
6t = G -
- - V(x) —p— &
o (z, 2", & k) = W(i +p-)
@6k = 1-d (@)
0
@GR =1+ (@)
0

Let

Yy —(z, 2,6, k) = (x — )¢+ (a(x) — b(2"))o,
’(/},,+(£L',LL'/7§, k) = (.’IJ - "I"/)f + (CL(.’IJ/) - b(x))fo

MEMOIRES DE LA SMF 88



4.3. THE DIRICHLET TO NEUMANN OPERATORS 67

We have, for f € L*(R4)

1

(81) KI*(D(k) = o

/ b)) f (')
Ry xR

a (/)2 1/2
. (({[:((a/((x)))é))l/g [1 + U+ (:L‘, ;L'/7 §f7 k)] da’ dg;r

(82) K-"(F)(w k) = — / Pla)(a') f (')l E

/ :,C/ 2 ]_/2
" ((111(;;/((9@))))2))1/2 [1+07 (@0, &7, b)) da’ dé;

—k 1

Lo K" (f) (2, k) = I Jos w($)¢(xl)f(x/)1z>01z,>oei1b7,+(w,m’,ﬁ,k)
(1+ (@(@))2 ,
@@k e de
19;20Ki,k(f)($,k) = % w(x)w(x/)f(x/)1I>01I/>Oei’¢)+,f(a:,a:',g,k)
R2
14 (B(@)2)V2 /
) ((1+((a'(éc))))2)1/2 sT7 (2, €, k) da’ dg
Equivalently,
v i(o—a)Ef +Hib(@)—a(a)) LtgEE
(83) K+’k(f) = —% 5 Rf(xl)w(x’)z/}(x’)e & +i(b L dgi‘_
YLELCIICH) 0 il IO ST
(TR 172 & T+
i(z—a")eT +i(a(a’)—b(a’)) D= o
(54 KU = i/ﬂ& Rf(x’)w(x/)¢(x/)e o ' s da’ dgg
y (14 (b (z))*)1/? [H— @ 1+d @
1+ (@@)2) 721 142 & T5 2

4.3. The Dirichlet to Neumann operators

The results of what follows are similar to (2.27), (2.28) and the system of equations
given from (2.29) to (2.42) of [20]. We prove in this Section the two
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PROPOSITION 4.2. — There exist distributions ST, S=, S* and S, of H™'(R) such
that, for f € H'(R4)

RY"f = REGf + f(0)SE

RE"f = RE6f + (0)SF

The operators Ri:g are operators from H*(Ry) to L?(R) and Ri:g are operators from
HY(R,) to L*(R4) whose expression is given in Proposition 4.3 below.

We introduce some new notations for the symbols:

(85)

Ly (z,2') =

L3 (x,2') =

1 [u+ —d(@)py —d(@) 1+ pid()l +u+a’(x’)}
1+ (@ (@))2L 1+pf  1+pd Lpd 1+pd

1 [u+—a’(w) L+ pgpd (@) | pg —ad(@) 1+ pyd(z )}
1+ (a/(@)2)V/2 L 1+ p2 1+ p2 1+ p2 14 pk

1 [(1 + pya (@) (1 + pya’(2'))
(14 (a/(x))?)1/2 14 pd

1 [uf — V(@) p- —b'(@) 1+pb(z)1+ ufb’(w’)]
L+ @ @)zl 1+p2  1+p2 1+ p2 L p2
B 1 {,u—b’(ac) 14+ pb'(z') po—V(a) 1—|—,u_b’(ac)}

1+ @))V2L 1+p2 142 1+ p? 1+ p?

1 {(1 +p-b'(2))(1 ‘HLb/(x/))]

(14 (¥ (x))?)'/2 1+ p2 '

and we introduce the symbols used here

(@' €6, ) = Dlayo@) [ 0. 0') + L o0y o
2

&t

k
o} @0 66 F) = D@L (0. Jla) = + 10t 0.0 6 )

gy (z, 2, & k) = ¢($)¢($/)[L5(x, ’)£+ L;(x,x/)%]
02(95790/751»k)=¢($)L3(x,x’)z/;(x’)§f Loy (w2 & R)
k) = m(?/(x)%)
ry (2,2, &, k) = 501+ 22
TR =
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PROPOSITION 4.3. — The operators Ri:g and Ri:g defined on HY(Ry) are defined
through the equalities

R = 1 [ o R ) 0 agk
+ X

4
1
+ - gt(a, o & kel 69, f da! det
T JRy xR
i )
LexoRE 6 (f) = o . Rewi?w(x)z/}(x’)r;;(x,x',é,k)1$>olx/>0f(x’)dx’ d¢
+><
1 .
s elwi’;¢(x)rit,¥(xa §7 k)1z201m’>08z’ (¢f)(33') dxl d§
4m R4 xR

These operators are operators from H'(R.) to L?(R) satisfying the relation (75) for
e = 3. We have, on Hi(R,), the equality R¥§ = R(jff = Ri’k. The same result
holds for the operators R and R~.

The main result we deduce from this relation is

THEOREM 4. — The operators 1,50R™ and 1,50R™ are well defined on HY(R). If
f € HY(R) is associated to fy € HY(Ry) and to f— in HY(Ry) (the first one be-
ing flz>o0 and the second one being f(—x)lg>0) and to f(0) (which is bounded by
£l e (m) ), they are respectively given by

13020R+(f) = 13520Ri,0(f+) + 1a:>0Ri_,0(f7) + f(O)T+

LezoR™(f) = Laso Ry o(f+) + lazoRZ o(f-) + f(0)T™
The distributions T and T~ are the restriction to R* of the distributions of L*(R)
given by

+
Ti l // T:t (1 + ui) + 3222 ﬂ:tazﬂ:t:| ey dx dfl
We begin with the proof of this theorem. The expression of the distributions SI
and ST, given in (151), (153) lead to the expression (154) for the distribution ST +S*.
The theorem 4 is a consequence of the results of regularity on Rio and on R;o of
Proposition 4.3 as well as the regularity of the distribution 7. For T, we notice

that the functions

k? &

(&) = a g2(&F) = 32§i

belong to L2(R51i), and that

/(1 16 [2)%]g,(€5) P dEE < oo for 25— 6 < —1.

hence its inverse Fourier transform is in H 2 ~¢(R), which imply that 7 is in H 2 ~¢(R).
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The expression of the distribution T is also easily computed using (151) and
(153). Note that, using integration by parts and the relation 8£l+§+ = & /€; and

0p&y = kP14 Oppiy /€4, We have

: 2

(T+,1) = ﬁ/ T, (2)l(2)e"s [1 UL g SOy de dey .
47 R2 gi fi

This relation will be used for the asymptotic expansion of the corner term. The proof

of Proposition 4.2 and of Proposition 4.3 is the aim of Sections 4.2 to 4.4. We use

the regularity result of Proposition 4.3 to write, from the equalities (78) and (79) the

system deduced from the jump formula.

We showed in Proposition 1.1 that ulso € H*(R; x d0). Hence u|go o j ! is a
distribution of H*(R?) supported in ¢t > 0. The support of the distribution u|so is
included in 0 < x < ct, hence the support of ¢1ulge is included in (¢, z) € [0, 2t0] x
[0,2cto]. The partial Fourier transform in time of ¢1u|so is thus bounded in H*(R),
independently of k. This imply

Pruloo € Eo, || F(druloo)llmm < A'.
The Proposition 1.1 shows that v+ € L2([0,T] x R..), which gives

prv+ € L.

We thus deduce, using the fact that R™* and R~* are bounded from H'(R) to
L?(R,) and satisfy the inequality (75) for e = 3 that we can apply R** to ¢1ulso
and that RT*(¢1u|p0) is bounded in L?(R,) and satisfy

(1 + kD4

+ok
| R (p1uloo)||L2m,) < C S

H]:(¢1U|8(9)||H1(R).

The inversion formula can be performed on R**(¢iulpo)(w,k), which defines
R*(¢1ulpo) € E3. Finally

2 R* (pruloo) € B3,  ¢2KT(¢1v4) € B, ¢poaKE(d1uloo) € Ei.
The system of equations (78) and (79) lead to
(88) {¢¢2v+ = ¢2001u; + da KL ($1v1) + do KX (¢10-) + ¢2RT (¢1ulo)
Yoov_ = daP0_u; + G2 K\ (p1v4) + P2 K~ (p1v-) + d2 R™ (P1ul0)

We consider the same localizing function as Gérard and Lebeau [20] (the function
6(z), which is C*, 0 for x < 1, 1 for > 2) and we show that, by multiplying (88)
by 6(x/c), we obtain, in L?(R. ), the equality

Voovy = Loz0dathOyu; + dalazo KT (d1v1) + d2loxo KT (d10-)
+¢21az0RY (¢1ulo)

Ypov_ = 1yz00200_u; + P2lu0K | (P1vy) + palazo K~ (Prv-)
+¢21l:>0R™ (P1ulo).

(89)
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We have computed another expression of the operators 1z>0K$’k and Ri’k. We
introduce the operators Q* and S*F (which are not exactly the same as the operators
introduced in [20] by the relations (2.32) p. 353 but differ only slightly, according to
the definition of the trace and the normal derivative we chose) through

= Ly )+ LQ*
(90) {Ki—(gw( ) @ (') + 3Q%)

+ 1
1z>0K:F = §Si’:F.

The Dirichlet to Neumann operators can be decomposed using the result of Propo-
sition 4.3 and Proposition 4.2. We have in particular, for ® € H'(R? x R), the
existence of &+ = ((Ly50® 051 0 j1) and &+ = (1500, @ 0 i) 0 j1).

We introduce the operators I+9, &1 R*F.0 R=F! on E, such that we have
the equalities, for ® € H!(99):

2RT(®) = 2T+ (2)®(0) + IT0(®T) + IT1(DF) + RH—0(d~) + RT—1(d7)

- 2R~ (®) = 2T (2)®(0) + I~ O(®~) + I~1(3~) + R—+0(d+) + R—H1(EH).

Comparing with the relations of Proposition 4.3, we have

e = 5= [ |l e Rt g
PPk =g [ a6 R ) a agt

. RYTO0(f) (2, k) = % e eV (@ SRt 0 (g of € k) f (o, k) da’ dE
REY(F)(, k) = % R+XRem’*’—(z’zl’g’k)r+’_’0(x,x',g,k)f(ac’,k) da’ ¢

with 7570z, 2/, €, k) = —ip(x)p(x')ry ™ (z, 2, &, k) + 717 (2, €, k)Y (x)0ptp(2) and
=0z, 2 € k) = (x) (2 )rT T (2, €, k) 1o50150 and similar relations lead to 1=,
I—', R—*t0 R—%! The system of equations on

¢¢1U+a¢¢lv—7 ¢¢1U(1‘,a(1’),t) = ¢¢1U|O+a ¢¢1U($7 b(l’),t) = ¢¢1U|O_

and the derivatives

¢¢1 (8zu + a/(x)ayu) = wd)latanU'O_p ¢¢1 (8zu + b/(x)ayu) = ¢¢18tanu|(9_
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is deduced from the system (89) and the identities, valid for f € L? supported in
0 < z < ct (using ¢1¢2 = ¢2). This system writes

(1= 1220Q") (Yp1v4)

—I0(pgrulao, ) — IT (Yd10ranulso, )

=St (Yrv-) = 2hotpd s + 1y
—RT0(Ypruloo_) — R (Yh10kanuloo_)

—2T%u(0,0,t)

(1= 1220Q7) (Y2v-)

—I_’O(WMUIao_) -1t (¢¢1atanu|8(9_)

=S (drvy) = 2¢990_u; +1r_.
—R™T0Wdrulpo, ) — R (Y1 0ranulso, )

—2T~u(0,0,t)

where

{7"+ = (1= ¢2)[1az0Q T (Wd1v4) + ST~ (Yh1v_) + 2RT (pruloo) — hdrv4]
r— = (1= ¢2)[lez0Q” (YPrv_) + ST (pprvy) + 2R (V1ulso) — Yd1v_]

The terms r1 are element of Fj, they are compactly supported in x (because of
1 in the operators and in the source term), supported in t > to/2 (because ¢o = 1
on [0,%0/2]). The system (93) is the system we base ourselves on. If we define the
operator T from Ey to Ey through

YR (F(ul-, k)(z, k) = ikFu(z, k)

that is T* = ik Id 2, the system we study for computing the solution is (93) to which
we add the two boundary relations. We use then that the support of d;¢; is included
in [to,2t] and that 1 — ¢ = 1 for t > to to conclude that (1 — ¢2)did1 2% (2)vulso,
has the same properties as the terms r1. The final system (obtained with the system
(93) and the impedance boundary conditions) is the following:

(1 = 1a20Q ") (W1v4) — ITC(Yo1ulso, ) — T (Wd10kantls0. )
—St7(pprv_) — ROO(Pruloo_) — R (Yd18kanuloo_)
—2T%u(0,0,t)

= 2020 u; + 14

(94) (1= 120Q7 ) (W2v_) — I 2(Yorulso_) — I (Yh1Okantt]oo )
—S7H(Pprvy) — ROT0(Pgrulao, ) — R (10kanulao., )
—2T~u(0,0,t)

= 20200 0_u; +1_
Yooy — Y (2t (2)pdruloo, ) = =21 (2)Puloo, (1 — ¢2)0ib1
Yrv- — Y27 (2)Yruloo ) = —27 (z)Yuloo_ (1 — ¢2)0¢1.
We seek a solution of (94), (Y¢1v4, Yd1v—, Yd1ulso, , Yd1ulso_) € L*(R?)x L*(R?)x
(H'(Ry x Ry) x HY (R4 X R¢))comp supported in ¢ > 0.
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This system will be modified in Section 5.4 to include the terms generated by wu.,
the classical reflected wave written in the Introduction.

4.4. Regularity of the operators Rig and ij,o

We generalize the results of Gérard and Lebeau, stated in Lemma 2.3 of [20], to
the operators Rfk and R**. This proof relies on Lemma 2.4 and Lemma 2.5 of [20]
which give the L? regularity of compactly supported symbols. Of course, we study
the regularity of the operators Ri:g (and the similar ones written from the relations
of Lemma 6.5). These operators satisfy

PROPOSITION 4.4. — The operators Rig and Ri:g are bounded from H'(R.) to
L%(R) of norm in C(H'(R, ), L?(R)) satisfying the inequality (75) for e = 3.

We associate to these operators, according to Definition (76), the operators from E.
to Eey3. The operators RTF and R™* are bounded in C(H'(R), L>(R)) and satisfy
the inequality (75) for e = 3.

‘We have

COROLLARY 4.1. — Note that a slight change of the definition may show that the
operators are bounded from E. to FE.y1 because we can perform the estimates before
the integration by parts in x'.

We state the two results of Gérard and Lebeau which will be used here.

LEMMA 4.3 (Lemma 2.4 of [20]). — Ifq(x,2’,&) is a symbol, compactly supported in
(x,2"), such that

10505 q(, 27, €) || < Crp
then the pseudodifferential operator of symbol q(x,z',€) is continuous on L*(R), and
we have

1 Op(@) 126 < col, e, Cuar)l e

Its proof comes from the fact that, on the support of the symbol, we can expand
f as a Fourier series which is in 12. We evaluate the action of Op(q) on the Fourier
series, and the condition [ < 2,1’ < 2 comes from the fact that ﬁ < +o0.

LEMMA 4.4 (Lemma 2.5 of [20]). — Let g.(x,y,&) be a compactly supported symbol
in (z,y) such that there exists a constant c1 and constants Cy such that, for ally > 0,
forl >0

sup |aiqs| < Cpe—rlytalel

The operator
Q@) = [ oy ) ) dy it
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is bounded from L*(Ry) to L?(R) and its norm is estimated, uniformly in e, by
C1, Cl7l g 2

Proof of Proposition 4.4. — We consider the equalities (150) (for the case of the pseu-
dodifferential operator) and (152) (for the case of the singular face-to-face operator)
proven above. We check that, for ¢y given, (z,2') € supp®, 1+ (uy(z,2'))? is
bounded. Hence there exists Dy > 0 such that, for |¢| > Do(1 + |k|), the real
part of (&7)? — k?(1 + p?) is positive, greater than (£)?, the real part of the
square root of this complex number (of positive real part) is greater than $|¢;|. This
writes S& > 1[&| for €] = Do(1 + |k|), hence & /&, is bounded by 1/2 and
€71 < 2/1€F| < 2/ Do(1 + [k)).

We split the integration in £ in two parts, the part where || < Do(1 + |k|) in
which we use L™ estimates on the compactly supported symbol, and the part where
|€E| > Do(1 + |k|), where we use the preceding lemmas. ()

Let us consider the other terms. The symbol U;1|§1+|>D0(1+\k\)’ T Liet > Do (14]k])
qr1|£f|>Do(1+\k\)’ ql—1\£1+|>Do(1+|k|) satisfy the assumptions of Lemma 4.3, while

the symbols %= ¢ Lict > pyagpy €% gtz ppaiby €% 0 gtz Dok
e r; Liet > Do (14k)) Satisfy the assumptions of Lemma 4.4. For example, we use the

fact that 0,/ (£4)71 = —%# to obtain, for [£] = Do(1 + |k|)
¥

M+ k]2 &M
D (€)Y < <
19 €)W S xS B a

hence
M(1+|k))? _ 8M
i S DR
sl 0
From Lemma 4.3, we deduce that there exists C' > 0 such that
1 i(z—az' )T
|- E/Rg Ly sgei@==)el qfl‘gf‘ZDo(lﬂk‘)ax/fdx/dngLz(R) < OO flarsol 22,
‘ 1
4

§+
Ham/i” <

i(w—a)efq o+ ragf /
/R2 € ' L2009 Vgt 5 pog ey f 2 € HL2(R) < COllflarzollL2m)-

(D The result obtained is not optimal in Sk; we may have the optimal result, based on the inequalities

N (sl 2o fo R k)
et 1< ocrern B @a) = + L 26l + 15 (@) H Ed
. . rio e B < p, (LD
et 1< mou o™ M s+ M (o0 )6l + M (2,2 H Ed

and the fact that the support of the integral is the support in z, z’ times the support llg_ |<Do (14 [k])°

hence the integral with a symbol ¢ truncated in ff satisfies (continuous injection)

| [[ aa'dettias’ ey sarete==nel

and we perform the inverse integration by parts to introduce these symbols.

2wy S (2DoR(1 + [E)|[tlloo [1f1| L2 (=)
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Along with the inequalities
‘ 1
4dm

i(z—z' )+ / +
/Rz Lors0e T G ety py g O f e’ A ‘LQ(R)

C(1+ |k)?
< W\\am'flm'%“m(n@),

1 : et
o i(x—z')€ , + ! e+
‘ in /R ¢ 12003 Lier<py e £ 42" A& HLW

C(1+[k])?
< W“flr?OHLQ(R)a

we deduce that Ri:g is bounded from H'(R,) to L?(R) and that there exists D, > 0
such that
(1+ [k

|SK[?

We thus define an operator Ri,o from F, to E.43 through the equality

k
IR ol e (ry) 222y ) < D

FIRT o (w)](k, x) = RLGIF W)k, ) ().

The case of the operators from a face to another face is similar. Denote the min-
imum of ﬁ on the support of 1) ® ¥ by d71, introduce the minimum ds > 0 of
T

L@ (uz') — ¥ (uz’)) du. Consider the constant co = 16, min(1, d2). We have
0 1

302 a6 ) = I T a5 o4 g,
+

Vn, 3D, [03(¢F — 2.&)| < Dalé (2" + o).

The second relation comes from 9,&, = py 0,y k?/€, and successive derivatives of
&y. This imply that, for all n and for 2’ > 0,

n/ i(¢T —(x—z').eF ol +
(95) |97 (e o )El)w(xl)w(x)ri)1|5f—|>D0(1+\k\)”L°°(z,k) < Dy @ Halel/z

Hence there exists a constant D, depending on ¢y, Dy, D1, D2, such that, if the limit
of R;;’g*s is denoted by R;:g,
ok (1+ k)
96) IR o(Hllzzw) < DW[\\flwolle(Rg + 1102 flarsollL2m,y))-
The proof of the inequalities for Rf:g and R::g is left to the reader. O

The last thing to be checked is the behavior of the corner terms in R and in
R™F. As the result will be used later, we intend to study it carefully.

Recall that the expression of the kernels of the operators Ri’k are written in Lemma
6.5. The result on Ri’k is a consequence of the calculus of this section, which shows
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that the operator

: eVEFry T (@ ! & k) ()1 () Lazolarsof () da’ A€

_f_ﬂ- R+XL
to= [ T (@, 6 k) Lazolersode ($(a) f(a') da’ d
T JRyxL

is continuous from H(R,) to L*(R) when L = {£ € R, |¢] = Co(1 + |k|)} and that,

2
before the integration by parts, the symbol obtained is bounded by (Hgl:ll) . Hence

the expression of Ri’k written in Lemma 6.5 and in Proposition 4.3 have the same
regularity and they have the same value for f € C§°(Ry), and moreover the same
value for f(0). Hence they are equal.

We introduce the operators on which we will perform the asymptotic expansion,

for f € HY(R?), f € L*(R?)

~ 1 ~
REG Dk = o [ e g mF e agg,
T JRy xR )
i k i(z—a')eF
SERR(f) (k) = - / Pa)(a)LE (x,2) e p(ar) da de,
AT Jr, xR E+
1 . A==
STo" (N k) = [ Owgi (e, & W) f(a') da’ e,
T JRy xR
such that
(97) RE6(f) = R0 ™ (00 flaz0) + S0 " (Flazo) + S1io™" (Flazo)-
Introduce

- 1 ) ,
REM (k) = 5 [ e S0 ()il ) (0,6 8)
R

7T o~
. fla') da’ dg
7 . ’
og)  SEN@R) = —o | e g ()0 () (2,06 )
1 f(a') da’ dg
ST k) = - / RO 50 0200 ()00 ()T (2,6, K)
R2
f(a)da’ d€.
‘We have
(99) REL(f) = REEF(00 flas0) + SE0F (flaso) + ST0F (fLozo)

which is a consequence of the equality (92).

All the operators involved have bounded symbols when £ is large. We note that the
operators introduced above in the relations (92) from Proposition 4.3 and written in
system (93), that is 170, It RT=0 Rt—1 are easily related with the operators
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introduced above through the equalities

FUTO(f) (@, k) = 250" + STV (F()(@)

FUI) (@, k) = 2R F () (@)
F(RYO0(f)(, k) = 2(S+2k+S+’1’k)(f(f))(x7k)
F(RT(f) (@, k) = 2REVE(F () (@)

Similar equalities hold for the operators corresponding to — upper indices.

The operators Si 2k and Si’l”C are not put together in this equality because they

differ through their order in k; in particular the symbol of the operator Si’g ’

for € = A and for k = Ak as A, while the symbols of S33"* are of order \.

We end this Section with a Lemma allowing us to perform the asymptotic expansion
of the operators Ri’k and Ri’k. This asymptotic expansion is complex valued, hence
we have to consider z,z’, £, k in C instead of R. More precisely, we allow z,z’ to be
“not far” from the real axis, £ to be complex. We have

k behaves,

LEMMA 4.5. — Let C; be the complex contour defined in Section 6.3, depending on
the parameters a',a”. There erists a constant Dy such that, for o’ < to < 1/Ds,
the symbols q; (v, 2, &5, k), o (x,2', &, k) are holomorphic in (z,2', k) for & € Cq,
max(|Rz|, | Rx'|) < beto, max(|Sz|, |S2'|) < 2a’/D1, |k — 1| < 4d’/D1 and satisfy

D,

D
|qf(x,x/,§1+,k)| < — |U;(x7x/7€f7k)| < -
al

(a)?

A similar result is available for the complex contour dilated by the coefficient <=1+

cosy—

in the ¢ direction and for the symbols q¢; and o5 .

Proof. — This Lemma is a consequence of & = ((1 + p2)k? — (&)?)Y/2, for which
we verify that, for k = 1 and = 2/ = 0, £ must be different from 1/cos~,, hence,
for ¢ € C1, we verify that there exists ¢ > 0 such that

1 y
> ca'.

+\2 _
(51 ) COS2 T4
If Dy is large enough, for &} € Cy, max(|§Rx|, |Rz'|) < 5ety, max(|Sz|, [S2'|) < 2a’ /Dy,
|k — 1| < 4a’/ D1, we obtain |£4] >
As the operator ¢ is of the form w( Y (z")[La (2, 2") + L1 (w, 2" )& /€4 ], we get the
result for the symbol qf’ . The result on the symbol 0; is a consequence of
5-0-
Ourq = O (Y(@)t(2") La(2,2")) + O (Y ()0 (2") Lo (2, 2 ))€+

@) (o, W”;ﬁ
+
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We verify that, for || > Co(1 + |k|)
£

e+ (a'(z) + SIV@a) azolorsol < e~colatadlel
0
iy K : S
e f—w(x)w(x)lx>olx/20|<€ ° :
0
As we have )
o0 e . 2 o0 d
/ dy / dge o |e|f(y)de = 2 [ LW
0 cJo Tty

which is bounded from L?*(R.) to L?(R,), we show that the operators ﬁik are
bounded from H!(R) to L*(R;) (the estimate on [£] < Co(1+]k|) is a L estimate).
O

4.5. Asymptotic expansions of the operators Ki’k and RIZIS

This section summarizes the formalism of Section 3 and Section 4 of [20], in which
the authors microlocalize the problem.

We notice that the main result of this section, proven in Proposition 4.5 and in
Proposition 4.6, leads to

COROLLARY 4.2

e The asymptotic expansion of the operators SI’Q’k, Si’l’k, Ri’l’k, Q™ follow the
same pattern and lead to similar symbols in the pseudodifferential calculus of Gérard
and Lebeau. The integrals obtained can be deformed on the contour C(+4) defined in
Section 6.3.

o The asymptotic expansion of the operators Si”Q’k, Si”l’k, RTMF and S+ follow
the same pattern and lead to similar symbols in the pseudodifferential calculus of
Gérard and Lebeau. The integrals obtained can be deformed on the contour C(I,b)

defined also in Section 6.3.

Hence we may be able to use again the same techniques as in [20].

We define the pseudodifferential operators used in this section. The operator Ty
which is the Fourier-Bros-Iagolnitzer (FBI) transform in time has been introduced
by (73). We introduce the partial FBI transform in z, the set W, was defined in
(74). In what follows, we consider A, € such that Asine > 4 and we denote by
U=w(A) ={2€C, argz € |n/2+¢,31/2 — €|, |z| = A}. Let w be a ¢ -sector,
that is U U w’, where A is given and w’ a bounded open set. For w of this form, we
denote by H,, the space of functions g(z, \) on w associated with the norm

o ) 1/2
ot Ml =supa ([ latoe” Vo) "+ gl

such that 3Cy > 0,]|g(-, \)||w < CoA“?. We say that g € H,, is negligible if there
exists C > 0 such that ||g(-, \)|, < Cre €1,
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We introduce X open set in C?. Recall that ¢o(w) = 1(Sw)?. The space
H(¢o, X,w) is the space of functions g(t, k, z, A), holomorphic for (¢, k) € X, living in
H,,, such that

3C2 >0,V (k) € X, gt k- Mo < 026/\026’\¢0(t7ik),
We say that g is negligible in H(¢o, X, w) if there exists Cs > 0 such that
V(LK) € X, [lglt.h, Nl < Cae™/Coh0lt=0),

We define a family of sectors w, such that d(ws,wS, ) = di(c’ — o) (¢/ > o) and we
simplify the notation with

(100) H,=H,,.
For the purpose of this paper, we define also
Hf =H,:

where w¥ = —L ;. We introduce the FBI transform in = as in Section 4.1 of [20].

o COS Y+

In particular, the FBI transform in x, denoted by T4, is described through (4.1) to
(4.5) of [20] p. 372, and a Gaussian localization operator J, is defined through (4.16)
of [20]. We reproduce these definitions here.

Let 12 € C§°, equal to 1 on supp(¢)), equal to 0 for |z| = 5ctg. For g € L2 (R),
supp(g) C R4, z € C, we define

Tig(zA) = / AN /20 (0 0(2) dor.
0

For h(z, A) holomorphic in z and p > 0, we introduce

(101) Jo(h)(z,A) = (%)1/2 /+p h(z + z, )\)e*/\““‘g/2 dz,
(102) T, ()(z\) = (%)1/2 /_p e_Amz/Qh(z + i) dx.

Properties of these operators To, T1, J,, J,; 1 are the following (from p. 374-375 of
[20]) :

— For w' C< w (that is w is a e-sector and w’ is a &’-sector, with &' > ¢), there
exists po such that, for p € ]0, po], J, and Jp’1 send H, into H,/, and these operators
are independent of p, up to a negligible operator R satisfying

3CVg € Hoy  |R(9)wr < Ce gl
— There exist two negligible operators R)* such that
JpoJ, b =1d+R,, J,tolJ,=1d+R).

— Moreover, J, is a quantization of the canonical transform (z,§) — (x — &, §).
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Let f(t,x) € L?, suppf C {0 < o < ct, 0 < t < 2to}. If we introduce F(w,z,\) =
(To @ T1)(f)(w, 2, A), we obtain, as a consequence of

A )
(103) (2_)1/2/ efg(ktfl(wft))Q dk =1
u Sk=—a
that
+oo 2 2
(104) F(w,z,\) = / eMez=a[2=(w=t)"/2) (1 +) dz dt.

The value at x = 0 is microlocalized through the

LEMMA 4.6. — Let f(t,x) € L*(R?), suppf C {0 < = < ct, 0 < t < 2t} and
1os00:f(t,x) € L?(R?). We introduce F(w,z,\) = (To @ T1) (1200, f). We have the
identity

(105) F(w,z,\) = =To(f(0,))(w, A) + (0, — A2)F(w, z, \) + r(w, 2, \)
where r(w, z, \) is bounded by %e_k/c.

This writes also

1 1~ 1 1

We deduce from this relation
(107)

T (LF A T (F N - Lnr0 N4 oA

P(X )(Z7w7 ) ==z P( )(w7Z7 ) - X O(f( ,'))(’LU, )+ Wr(waza 7p)

where the term T is bounded.

The equality (104) implies that
. —+oo o0
F(w,z,\) :/ dt/ dxe(’\“*/\ﬁ)/zwg(x)e*’\(w*t)2/28mf(x,t)
—o00 0
“+o0 e3¢} 5 5
= [t dvaulpe et g e e
—o00 0
oo - Azz—Az?)/2 A 2/2
- / ar / Az f(z, )0, [0 /2 gy ()] Nw=D?/
—00 0
o0 5
= —/ dt f(0,t)e Mw=07/2

+oo [eS) ) ,
—/ dt/ dz f(z,t)(Az — Ax)eP 22D/ 2y) ()= A w=0)7/2
oo 0

—+o0 [e'e)
—/ dt/ dacf(x,t)@mwz(J;)e(A“_MZ)/Qe_k(w_t)zﬂ.
—00 0
From the equality (103), we get that

(i)1/2/ oA [2=ikA(t=w) qp — e—A(w—t)2/2,
2m Sh=—a
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which imply that the first term above is

e A 2/9 A\1/2 k2 /24ikX e ik
—/ dt f(0,8)e Mw=7/2 = () / e /20 W/ dte™ ™ r(0,t) dk

—00 27 Sk=—a
= _TO(f(Ov t))(’LU, )‘)
On the other hand, we notice that

—+oo o0
0. F(z,w,\) = / dt/ dz )\xe/\”*’\ﬁmwg(x)e*/\(w*t)2/2f(x, t).
—00 0
We deduce then the identity (105). Hence we have the equality
1
T (=
P( )\ (

PV ,
— e lTo e T (w2 ) = (= [ ) S50, ) )

TO & Tl)(amf))(z7w7 /\) =

€
+

—X\o?/2
ToRT w,z+ p,A) — (To ® T W,z — P, A
\/m [( 0 1)(f)( P ) ( 0 1)(f)( P )]
which imply the equality (107), where the term 7 is equal to
F(w,z,)\,p) = (TO ®T1)(f)(w7z + P, )‘) - (TO & Tl)(f)(wvz - P )‘)
© pA2 w21 1
+2,0/ e 2 2 duXTo(f(O,-))(wJ\).
1

Let f(t,z) € H'(R x R), supported in {—ct < = < ct, t < 3tp}. Note that the
two distributions f(¢,2)1,>0 and 8, f(t,z)1.>0 are element of L?(R?), supported in
{0<z<et, t <3tp}. We define

F(w,z,\) = (To @ Th)(f(t, 2)1g30) (w, 2, A),

Fw,z,A) = (To @ Th) (0 f(t, ) 1z30) (w, 2, A).

It is a consequence of Proposition 3.1 that, if f(¢,x) is the trace of u — ug on the
boundary, considered as Lipschitz equivalent to R, the part Ry being associated with
A and the part R_ being associated with A_,

Sw)?
|F(w,z,A) ANBACFE 4225

de >0, A,B,0 >0, Vw € W3, Vz€C, N
|F(w, z, \)

| <
| < ANBHL NS a;

We note that, as 1 is flat in the neighborhood of 0, the symbol o; can be
replaced by the symbol L3 (z,2")(k%/&y) + i~ 10u (Lg (z,2") + L (2, 2))&F /€4,
and the symbol ¢;” by the symbol Lj (x,2') + L (z,2")& /€. We introduce the
symbols s5 (x,2", &5, k) = L (v,2)k%/& and s (z,2', &5, k) = 0p (L3 (z,2") +
L (z,2")¢] /€4). We use the asymptotic expansion of Gérard and Lebeau (Appendix
B, (B.1) to (B.22) of [20]) noticing that sj (z,2', A&, A\k) = Asg (z, 2/, &, k) and
st (z, 2, N, Mk) = s (z, 27, &, k) as well as ¢ (z, 2/, \&F, \k) = ¢f (z, 2/, & k).
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We define the elementary symbols

oy o vsy

(108) S;n,m(kag) ﬁ(o 0,¢, k)
pomg’

(109) G (k) = Tm!l(O,O,f,kz).
onomsy

Applying Proposition 4.1, which is Proposition 2.2 of [20], we compute (Tp ®
Tl)(Rjr',O)(f) using the relation, for f € E.,

A ty T4 ]
ToRYf — %/ dt/ AreN W=D (4 72 \) € Hy(W, L?).
t_ T_

We recall some definitions and results of [20] on the Sjostrand spaces used here,
namely Definition 2.2 and Lemma 2.2 and Proposition 2.2 p. 350 of [20].

Recall also that if R € Hg,(W,L?), then TiR € H(¢o, X4 p,,U) because Ty
sends continuously L? into Hy (the Sjostrand spaces are defined in Definition 4.1 and
following equalities). As

A ty T4 ]
Ty @ To(lasoRY o(f)) = o / dt / dre =024 + 2 \)+ Ty R,
t_ T

the remainder term is negligible. The application of Proposition 4.5 below yields the
asymptotic expansion of I. The same pattern applies to all the terms of the system
(94).

PROPOSITION 4.5. — There exists t}, and, for to € ]0,t}[ given, three constants
a', p,CY such that

i) I(t, k, 2, \) = Ty(Loso R0 To f) (t — ik, 2, \) € H(¢o, Xar/py, U)

ii) For Cy > eD1/a’, Cy > CQ, the function

r(t k2, \) = Ty (1psoRT AkTof)(L‘—zk 2, )
i 1 n 1 d¢ 1 m .
B ( 2 (32:) 27r/c PR $3.n,m (K €) (.92) JpF(—Zﬁ))

n<A/Cr,m<A/Ca

n d m .
Y G [ S a0 (500" )

n<A/C1,m<A/Ca

1 1 n 1 d 1 m . o=, .
a §J’;1< 2. (Xaz) 27r/c z—i—if f"m(k’f)(xaz) JPF(_Z£)>

n<A/C1,m<A/Ca

is negligible in H(¢o, Zq/p,,U).
These integrals can be deformed on the contour C(+) defined in Section 6.3. Note
that F is of “weight” X hence contributions of s3. and of q are of “weight” \.
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Note that, for f € E., verifying 0, f1,>0 € Ee, we have the identity Tp(9z fly>0) =
12002 (To(f)), because the integration is only in the time variable. As

1
4m // A& da’ s (z, 2", &7, Me)To f (t — ik, 2, \)
7
/\2
= E // d(f d{I;/ S;(x7x/7cf7k)T0f(t _ ik,x/7)\)

because sy (x, 2", \(;, \k) = As] (z, 27, ¢, k),

ﬁ / / A&t da’ si (z, 2/, &5, \e)To f ( — ik, 2/, \)
= %//déf da’ sf (z, 2/, ¢ k) To f(t — ik, a', \)
because 57 (z, 2/, A", Ak) = 57 (2,27, ¢, k) and
REGM(Tof)(t — ik, x,0) = ﬁ/ A& da’ g (w2, &7, M) Lars00u To f (E — ik, 2", )
- %//d<1+ da’ qf (z.2', ¢ k) To(Lorso0a ) (t — ik, 2/, \)

because ¢} (x, 2, \(", A\k) = ¢ (2, 2/, (], k), we get three different terms to evaluate.
The proof of this Proposition, identical to the proof of Proposition 4.1 of [20], is given
in Section 6.3 of the Appendix

The three sequences of operators s3,, . (k, &), s{,, . (k,€) and g7, . (k,€) lead to
the construction of the three sequences:

atab NG = 3 (5 [ Rt @ s -i9)).

—qf
jhm=n (4) # Fa& "

1 d¢ )
TN = D (= + k& —
52,n( ) )(f) = Z<27T /c(+)z+1632,nm(f)( 7£a Zg))a
1 d¢ .
kN (f) = o (— — 51 o () (K, &, —i€) ).
sm<>u>jg;l(%éﬁw+%% ()&, =i6))

The three symbols s3 (k,\), si (k,\) and g¢; (k,\) are valued in the chain of spaces
The case of the operators Rf:g is similar to the case of the operators S* ¥ of [20].
We introduce now the two phase functions

2 ) (xl)Q

O+ (@) = ifae) = (O)2)6 — T, 6-(2) = ~i(b(a') ~ ¥ (0)a')e — 5.
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Let

Tl n, m(f)(k 67 )

k21 1 nam | Aoy (z)+Ap_(z') 1+a’(x)b’(x’) m ’
?mma o (@) % 1@ +2)l=oao

L L pngm[posereroa (L@ L N mp
n! 8 o0 [ e o ((1+(a/(x))2)1/2>8z fx +Z)]|m:0,m/:0-

Let F(a/,z,\,t —ik) = F(t — ik, 2’ + z,\). We have the

PROPOSITION 4.6. — If t} and ty are given as in Proposition 4.5, there exists
1, ko, CY, CY such that, for k €10, ko], C1 = C?, Cy > CY
i) the function Ty(RTMTof)(t — ik, 2, \) is in H(¢o, X, U),

i) Ty (REMTof)(t — ik, z,\)

A 1, gl de ,
v5 2 G0 (55 [, 7T a0 & il +H 0)6))

n<A/C1

) 1 nt 1 dé ,
9 Z (Xaz) (% /C(l,b) Z+i(6 + a(0)&) 2nm( )(k & — (f+b(0)fo))>

m<A/Ca

is negligible in H(¢o, Xy, U). The contour used here is shown in Section 6.5.

This is the extension of proposition 4.2 of [20] for the operator S™F. We check
that the function 9,4 (z’) in the calculus instead of ¥ (z’) leads to a symbol which
%(a’(x) + &/&p) contributes to the
symbol after the asymptotic expansion We have the equalities rf’jF(x, ' A Ak =

rEF (e, 2! ¢ k) and v (2, 2! NG M) = T (2,2, k).
These two sequences of operators lead to the construction of the two sequences:

i (ks A)(f) =

is equal to 0, hence only the symbol

Y dg !
- X 0 [, T Ay i i+ ¥ 06))

e () =
_ i( L dé . e
2 (5 [, TS iy O DV O8)).

j+m=n

Notice that the symbols ~F(k, \) operate from Hy to Hy. The symbol 7= (k, \)
is an analytic symbol from the bounded operators of H; into H;'. We prove this
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Proposition in Section 6.3, and it is a reproduction of the proof of Gérard and Lebeau
[20].

The same results apply for the operators with the “minus” index.

Note that we have to write the asymptotic expansion of the operators S+
and Q*. The asymptotic expansion of these operators takes into account the term
(%)1/2 and the term (%)1/2 we added in the symbol to @ and to
S+ ~. Hence we obtain a slight modification of the expressions of the asymptotic
expansion (4.34) of [20] into

+
T1(1e0Q P NI f)(t —ir, 2, \) J;l ( Z (;@)ni / dg,

2 et
MmN/ Crn<A/Co ¢ 2 +igy

‘ ami: [(111%/(5))))22 )1/2(1 rot (o) - 1) (3

(and the term of order 0 obtained for m = n = 0 is still 0) and we modify the relation
(4.49) of [20] into

0.)" I, F(~igf))

— . 1 n d§+
NllooST A0 ime N = 3, (505 o, T e T e

m<A/C1,n<A/Ca

I(x'))2\ 1/2 m
o (L) -] o 10

o

nlm!

We end the asymptotic expansion by computing the expansion of the source terms
associated with the values at ¢t = 0 of the trace g(x,t) on the boundary, which belongs
to H'(R?). Note that this imply that g(0,¢) is bounded by the derivative of g, hence
we need to introduce G = (Tp @ T1)(g) 1230 and G = (Ty ® T1)(0z914>0). We intend
to compute

(To @ T1)(F 1T F(0,k))(z,1)).

We use again Proposition 4.1 (Proposition 2.2 of [20]), because the distribution
T is regular in k in the sense of the spaces F3, to obtain (here we gave the explicit
notation of 7% depending on k: T+*)

iy

To(F T g0.0) = 5 [

t_

T+ .
/ dtdr e”‘T(w_t)_>‘72T+’)‘T(x)ng(t —i1,0,\)+ R

the remainder term is in Hy(W, L?).
Recall that

<T+,)\T,l>:

] +

L ix.&f T, (@)l(z) X7 L+ p2 + 3440114 &4 dz dg;f
a7 Jgo© (A272(1+u2+)—(§f)2)3/2[ MR ) - @) TR
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We write
T, (z)r? 3 &

ta, €5 N) = [1 + 0, 1

&) = G ) - g T R ) g

We consider now the application of T;7. It concerns only the x variable, hence we
compute

S(t,7,2,\) = T (TH ) (2, \)Tog(t — it,0, ).

PROPOSITION 4.7. — We have the equality

- b T . 2
(oo TE T FO RN 0) = o= [ [ deared om0 50,750
™ Jt_ T_

where S has the following asymptotic expansion

1 : i 11 tp(&,A) def
S(t, 7, 2,A) ~ XTog(t—ZT,07)\)§Jp [ Z/ p|(/\az) o /c(+) Tt
n<A/Cy

where t,(&5,\) = (%)pt(O,gf,/\).
We also have

tt
(To @ Th)(2(x)12500:9(t, ) / / At dre?Tw=D=A Z(4 7 2 A)
with
o N | d¢ 972(0) .
~ 1 — _ z J— —
(111) Z(t,7,2,\) = iTAJ; [ <AZ/C (50-) %/Rzﬂ,g =, Gt =i, i€, V).

Apply the definition of 7% to I(z) = ei’\“*)‘ﬁ/zwg (7)14>0, which belongs to L?
(it is necessary to notice that because the expression of Tt is defined for functions
of C§°(R) but can be extended to such functions). Hence we have, changing & into

et
T(T) (e 0) = oA [ A [ e A e (o) do
T JR 0

The Taylor expansion of ¢ writes

=Ny N+1
Ho6h) = 3 (32)"H0.6D 5 + Tt (e, 6)
p=0 ’

and

: oo N+1
_ + Ae(zti6h) -AZE —v(eh)? T +
= 47T/Rd§1 /0 e ! 2 ! N tn(z, &)

is negligible in H(¢o, X, U) when v — 04 and N = O()), because the symbol
B, (x)/€3 is of the same type as 0. The only thing left in the calculus is

/ 51 ( & )/Oo gP (e HiEN)=Aa?/2 g
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‘We use the relation

A [T gy e = (o) 07
0

X ) r(z & A)

z+i&h
which is the result of Lemme 4.3 of [20], hence, as [J,,0.] = 0, we have, using the
appendix B of [20],

& +1 i P + /Oo p Az (z+ie ) —Az? /2
477/]Rd£1 p'(ax) t(oagl) o e ! dz
1

1,0 \p 1,o\p[ -1
H(%) t(O,ff)(X(‘?z) [‘]p (

We replace Tog(t—i7,0, \) by the relation obtained in Lemma 4.6 through the equality
(107), which imply

def )+ r(z+igt, V)]

—%Tl(TJ“AT)TOg(t T, 0,0) & Ty (T {Jp(iﬁ)(z, w,\) + 2J,(F)(w, 2, A)] .

Hence we have the asymptotic expansion of the contribution of the corner.
The second item of the proposition comes easily from Proposition 4.1 of [20] using
the representation

2(x)0g(z, t) :/ ei(I*I/)gz(x)atg(ux')dx’ d¢
RxR4
and the partial Fourier transform in time of dyu(t,z) which leads to a term of the
form AiTg(\1, ).
In the end of this Section, we write the leading order term of all the operators we
computed (and symbols we computed) coming from the system (94).
Introduce

(To @ T1)(Yo1v4)
(To ® T1) (Yd1uloo, ) _
(To ® 1) (Wruloo_) ;ZZ?Z o

X=| TooT)(op1v-) and L = o @)oo (1 — d2)9hds
1o o) = ()ulao (1 - 62)0s
(TO 0y Tl)(¢¢1atanu|8(9_) - 2)0tP1

To(¢1u(0,0,1))
Let B be the operator which symbol is

(112)  op(b) =
Id—op(gt) —op(i™®) —op(i™!) —op(st™) —op(r™ %) —op(rT ) —2t4
—op(s™F) —op(r— %) —op(r—"!) Id—op(q”) —op(i %) —op(i ') —2t-
1d ixop(zt) 0 0 0 0 0
0 0 0 Id idop(z™) 0 0

SOCIETE MATHEMATIQUE DE FRANCE



88 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

where the definition of op(z7) is straightforward owing to (111). The principal symbol
of b is given by the leading order term of each symbol, taking into account the behavior
in A. We obtain:

1 —z‘Asé*& 0 —q_f'& o —sT =My irdo 0
(113) bo=| % —AT100 200 1 —iAS300 —d10,00
1 irAzt(0) 0 0 0 0 0
0o 0 0 1 irAz=(0) 0 0

We notice that, in this symbol, we mixed some terms with A and other terms
without A, because, when we use the two last lines of the equality into the two first
lines, the terms 1 and —s™ transform into —i7Az*(0) and into it Az~ (0)st.

We also notice that it is equivalent to replace the two terms ¢t* and ¢~ by 0, because
in the final system, all terms will be of order A except for these two terms.

PROPOSITION 4.8. — The system (94) imply the equality BX = L, where B is the
matricial operator of symbol op(b) given in (112).

The operators op(q™t), op(qg™), op(it?) op(it1), op(s™ ), op(r™—0), op(r™—1),
op(s™ 1), op(r—0), op(r=1), op(i~?), op(i~t) written in this system admit an
asymptotic expansion.

The expression of the principal symbol is given in (118).

We remark that the second, third and last column of this system can be associated
with an operator acting on the trace u|po, and the fifth and sixth columns are the
representation of an operator acting on u|so_.

COROLLARY 4.3. — For the straight wedge, the total symbols obtained are exactly the
symbols with oo. The matriz (118) is the matriz of the system associated with the
straight wedge.

4.5.1. Calculus of ug. — We compute now the distribution ug(z,y, t) introduced
n (19). We consider its partial Fourier transform in time ug(z, y, 7), and we have:
04(0,0,7) —0_(0,0,7)

472
too gile—a)).Etily—a(e)m ot
/R dgdn/o A O R~ (2)8)

7:6\0(517,:%7) =

We notice that the calculus of this function is similar to the calculus done for Ri’k
and of R:_’k. We use exactly the same residue theorem as before in both contributions
(the one in y > a(x),y > 0 and the one in y < b(z),y < 0 for > 0), as well as in the
contribution in z < 0. The symbol obtained each time using the residue theorem is
equivalent to a constant when & or & goes to +00, hence the symbol obtained does
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not belong to L?. We note that, integrating by parts in 2’ the expression

+oo ) ,
/ d§/ so(z, 2, &, k)f(x' /R)e @Y 8k) qy
R 0
we get, with the equality

30(23, Jfl, 3 k) = 8m/¢(x, Y, J)/, fa ki)S_l(J?, Y, J)/, fa k) + Sl—l(xa Y, J)/, fa k);
where both symbols behave as 1/(1 + |£|) when & goes to +oo

+oo
/df/ so(z, 2, &, k)f(x' /R)e @8R qgf —
R 0
+oo ) ,
/ d¢ / shi(e,y,a', & k)f(a’ [ R)e! 02280 da!
R 0

“+o0
+i / d¢ / Dy (s_10(z'/R))e®= &R qg! 4 g / dési(z,y,0,&, k)e!?@v0.8k),
R 0 R

The last contribution is the less regular one, it is in L120c' The two other contributions
are in HIIOC. Hence we identified the leading order term of ug.

4.6. System of equations and microlocalisation of the sources

For our purpose in this section, we introduce the new unknowns that will be used
for the microlocal system. It is necessary to use these unknowns, so that we may be
able to remove the behavior of the classical reflected wave and the results of Section
2 of outgoing waves. Recall that we defined u, 4 in the introduction by (9) and (10)
and u+ = U; — Up +.

Let us denote by ]?i = vy — 1y500+us and by g+ = (u — us)|po,. Note that
9+(04,t) # g—(04,¢). Note also that u+|z, € H'(R?), hence the traces g4 and g
are both in H'(R% x R). We also get f € L*(R; x R).

We introduce fi = qﬁlfi, g+ = ¢1g+. We write the new unknowns for the mi-
crolocalized system

Fi = (Ty®Th)(f+)
Gz = (To ® T1)(9+)
G+ = (To®T)(p1(1a, 02 (uloo) — Oran(u+)lay))

(which means, for the last waves, that we took the derivative of a function in H'(V),
V being regular or not regular, which is in L?(V), and that we took afterwards the
restriction to a part of V).

It is clear that ¢1vx = ¢1fx + ¢1lo5002us and that ¢rulso = [¢19+ + drus],
where the bracket [ ] means that the corresponding distribution is the superposition
of the + part on A, and of the — part on A_.
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90 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

The system (94) writes, using the new unknowns and the representation of the
operators

fo = La0QF (f4+) — ST (f-) — 2T7u(0,0,1)
—I"%gy) = IM1(gy) = RH%g-) = RV 1(g-)
—STH(f) - = 1es0Q (=) — 2T~ u(0,0,t)
—R0(gy) — ROHI(Ga) — I 0g-) = 171G
I+ — T(z+(x)g+) = _Z+($)¢U|ao+(1 — $2)0: 1
f- =Tz (2)g9-) = =z~ (2)Yuloo_ (1 — ¢2)0 1.

= 2h+ +’I"+

=2h_+1r_

The modification is generated by the source terms, and we have

202001 u; — P10y uy + 1o50Q 1 (V101 uy) + ST (Y10 _u_)
hy = +IT70(Ydruy|oo, ) + I (Yd10kant oo, )

+RT0(Pru—po ) + R (Yd10kanu—oo )

20290_u; + ST (PP10+ut) — Yd10_u— — 1,50Q 7 (Pp20-u_)
ho = 4RO (prus oo, ) + R (Yd10knut]s0, )

+I(ppru_loo_) + I (b1 0ranu—]oo_)

The system of equations (93) becomes (as (3.109)):

(114)
f+ - 19:20Q+(f+) - S+’7(f*) - 2T+[g+(07t)] _ ~
“1O(ga) — IM(Ga) - RE0(g) - RY (g — e T e 00014
_S7’+(f+) +f- - 19020627(]‘;) - 2T?[97(07t)] ho + 2T*[u7(0, O,t)] +7

~R™"%g4) = R™PNgy) = I7°%(g-) = I1(9-)
with the relations:

7 = (1= 92)202¢01u; — (1 — g2)[1e0Qt (94) + ST (9-) + RT(9)]
- =—(1-92)[S7"(94) + Laz0Q (9-) + R~ (9)]-

Note finally that the compatibility condition between the traces g, and g_ is a
consequence of u(z,a(x),t) — u(z,b(x),t) goes to 0 when x goes to 0 and writes

(115) g+(0,t) —g—(0,t) = u_(0,0,t) — us(0,0,¢).

The asymptotic expansion of the right hand of the system (114) is given, as in the
section 4.5 of [20], by the expansion of (T x T1)(h4). There exists six symbols, of

MEMOIRES DE LA SMF 88



4.6. SYSTEM OF EQUATIONS AND MICROLOCALISATION OF THE SOURCES

the same order as o;, such that

O [u—(z,b(x),t)] = ik (z, k) t=00@) .

1 ,
8+’U,+(.’L',t) = % /Rikp+($,k)€lk(t70a(w)) dk
1 et (e
’U;+(!E,G(!E>,t) = %/Rqu(x,k)em(t 0a(2)) dk
1 N .
Dl (a, alz), 1) = 5;.A;ikq+(x,kﬁ¥k“‘0a“”)dk
1 ,
O_u_(z,t) = %/Rikpf(%k)elk(t—eb(r)) dk
1 ,
u_(x, b(z), ) = %/qu(%k)ezk(t—eb(z))dk
: /
27T R

‘We have the relations

p4(z,k) = 24 (2)[o} — o] (2, a(x), k)
p-(z,k) =27 ()07 —oi](z,b(z), k)
Q+(x7 k) = [Uj - Ul](x7 a(x)7 k)
q- (:L‘, k) = [U; - 01](‘%'7 b(x)7 k)
a—‘-(x’ k) - (9z0a(ac)q+(ac, k) + %895(]-0-(3:’ k)
q— (2, k) = —0.0p(2)q— (2, k) + 0,q_ (2, k)
We write
Pt (2, k) = py(2)oi(z,a(x),k)(1 + O(k™1))
4+ (z, k) = g1 (x)oi(z, a(z), k) (1 + O(k™1))
0+ (z, k) = 34 (x)oi(z, a(x), k) (1 + O(k™1))
p—(z, k) = p—(2)oi(z,b(x), k) (1 + O(k™1))
q-(z,k) = g (x)oi(z,b(x),k)(1 + O(k~1))
7 (v, k) = g (x)oi(z,b(x),k)(1 + O(k™1)),
where
22 (2)010;(x)

P£@) = O = 0,0,)

Q:t(x) - oE aiaz(x

CI~+(9C) - —Q+($)am9a($)»§— ({L‘) = —q- (x)aaseb( )

Note that
()= £ 4 (0) = ~2(0).ps(0) = — sin 0 (0).

sinfy £ sinvyy’

91
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92 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

We introduce To(¢é1uloo, ) (@, ) = To(¢(2)d1(-)lezo0utloo, (z,))(r) for exam-
ple. Making use of Proposition 4.1 we get

(To @ T1) (IO (hru oo, ) (w, 2, \) = % /u dt /a dy AT (w=t)=A7?

t T
Ty (I (To(bdrusloo, ) (-, AT))(E — T, A)

Making use of the definition of Ty, we obtain

Ty (IO (To(drus oo, ) (s A7) (t — T, \) =
()77 [ R (1O (i (Y1 (0, o, M)
Hence, for the calculus of this terms, is left the calculus of

Ty IO (F (i lasous|oo., ) (x, AK)].

which is a function of 7, k, z, A.
We get rid of the localization ¢; because, owing to the finite speed of propagation,
VP11p>0ut = Y1l>ous. Hence we compute

Ty (IO (9 () gy (- Ak)e M0 ()] (2, 0).
The same method applies to all the terms of the source term h,. We write
(To @ Th) (hy ) (w, 2, A) = (To @ Th)(2104u;) + 13 (w, 2, A) + 15 (w, 2, ) + o4 (w, 2, )

where

I3 (w,2,0) = (To @ T1)[120Q " (101 ut) — 14 uy]
+ (To @ T[T (Vrut oo, )] + (To @ T[T (10 (uy |00, )],

I3 (w,2,)) = (To @ T1) 1205~ (Y19-u-)]
+ (To @ T1)[RT ™ (Yru_|oo_ )] + (To @ T1) [RT ' (¥10: (u—|o0_))],

and the term (Tp ® T1)(210+u;) has been computed in [20].
We write each term by using Proposition 4.1, hence

t T
15 (w, 2, \) ~ A dt : dr eMT(w_t)_M2A+(t T, %, A)
2 (] 27T ] 2 DR )

t T
15 (w, 2, \) ~ A dt : dTe“‘T(“’*t)*)‘TZAﬂt T, %, A)
3 9~y 27T g’ 3 ) Iy <~y
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4.6. SYSTEM OF EQUATIONS AND MICROLOCALISATION OF THE SOURCES 93

(with the obvious definition of Ay and AJ). Then there exists two symbols
A (t,7,k, 2, \) and AT (¢, 7, k, 2, \) such that

AS(t,7,2,0) = (%)1/2 [\k_ eMk(t_”)_’\k2/2/\;(t,T,k,z,)\) dk
1+4k
~ (i)lﬂ/ ei)\k(tfir)fz\kQ/2)\+(t .k, 2, \) dk
271. 1—4r 2 I RS Nl )
AS(t,7,2,)) = (%)”2 [\ki M=) =M /23 (4 - 2 \) dE
A 172 b iN(t—iT) =Nk /2y +
- (%) /1—4& € )‘3 (taTaky'Zv)\) dk

We concentrate on the calculus of A and of A\J. The pseudodifferential calculus
of [20] p 382-387 is still valid. The analogous of Proposition 4.3 of [20] holds to
compute the symbol of h. Note that the total phase function is

2
d(w,t, 7, k) = T(w —t) +it> + k(t —iT) + z%

which critical point is (¢, 7, k) is (0, w, iw), of associated critical value ¢(w, 0, iw, iw)
= iw?/2. We then introduce ¢1(w) = —S(iw?/2) = 1((Sw)? — (Rw)?). We get
15 (w,2,\) € Hy,( Wy, H{"), as well as I (w, 2, \). The sign ~ used here means that

the difference can be neglected in Hy, (W, Hy). We have

PROPOSITION 4.9. — There exists t§ > 0 such that, for to € ]0,t}], there ewists
k,a',l,Cs, C2, p such that, for C > C}, C? > CZ, we have
1
(67 k2, \) = _/ b (6T k6,2, ) dgF
2T Je(
1

)\;(LT,]{,Z,A):_% c )
stany_

pi (t, 7k, € 2, \) dE

where ué" and ué" admit the following expansions:

1 n 1 /\—m—l
+ -1
o ~AJ E ~0, : :
o n@/cl,m@/cz(A ) [Zﬂff (& + k))m+

1 nam (7 —1 z')—z'
om0 (7 (a0 €k e O]

1 1 A—ml

+ -1 "
3 P ngA/C;ng/\/cz ()\ ) [z + (€ + tanvy; &) (i(€ 4+ tany_&y + k))m+!

1 . . _ . ’ ’
RO (NN i (3,01, €, 7,y Ao MO )=
n:
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94 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

with the symbols
ﬁ;(xvx/7§r777kv>\) =
1+ (a'(2'))%\1/2 , ~
[(%) [+ ot (@0, &, )] = ik (a7, Ak) — ik (', M)
2
.

+1 [L;’(ac, x') e

+ 200 (L (5,2') + LT (2,0 30 a4 (07, MB)

and

ﬁ;(xvx/7§77—7 kv >\) =

<1 + (V' (2'))?
1+ (a())?

1/2 , . , k% 14 d ()b (")
)0 @ik M) i
1

- WW(»@) +&/o)ikq-(a", Ak).

_ (2, \k)

The proof of this Proposition is a straightforward transcription of the proof of
Proposition 4.3 of [20] and we do not reproduce it here.
Note that we have

~t " . ) .
/“1“2 (070361 aT,k) . 4 7 T . 51
a0~ k() — + cosy4 ik,
¢+(0) © cos Y4 &+ ey
~ L )
pz (0,0, 7,k N ikz (0 , TT COSY . £
3 ( =0 ) - COS’Y(_) (cosyy — Sln’Y+§—0) + zf_ocosv_ +ik(sinyy + cos%rf—o),

We check that, when k& = 7 we have

fig (0,0,&1,k, k)
q+(0)

+
= —ikzt(0) 4+ icosy &y + cosyi(k + ff')%,
+

~+ — .
H3 (0707§7k7k7 )‘) kZ (0) +COSW*§0 —sm'y,f . 5
=1 COS — sin -
q_ (O) cos y_ ( T+ T+ fo )

+icosv_(cos'y+§£ +sinvyy ) (€ + tany_& + k).
0

The symbols associated with the expansion of h_ are given in a similar way by:

iy (o &) = (TEEE0E) (4 ) ik (o' )

2 1!\ B
s 1+a' (2" (x) au (' ) — 1

&0+ 0@)P)rs 72 (V' () = £/60)ikgy (2, Ak).

(14 (0'())?)
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4.6. SYSTEM OF EQUATIONS AND MICROLOCALISATION OF THE SOURCES 95

ﬁg(xaxla§;77—7 ka )‘) =

[(%) 1/2[1 +o (z,2',&,7)] — l}ikp_ (', k) —ikp_(2', \k)

+i[L5 @)+ 20005 @) + L (2,095 g 0, A
3 ) 5_ Z)\ T 2 ) 1 9 5_ — )
(L5 ety + Lf(x,x’)%]ikqi(x’, AR).
We get
~ + 2 \
HQ (O7Ov§77-7 k) :Zkz (O) (COS")/_ —|—sin7_£) _|_ZT_ 006’7
q+(0) COS Y+ €o o cos 4
(116) +(siny_ — cos'y_g)ik:
0
Az (0,060, 7k) ir? i L
q-(0) = e Ot e e

For 7 =k, we have

7y (0,0,€, k. k) kzT(0) 4+ cos y1.&o + sinyy & (cosy_ + siny é)

4+(0) N oS Y+ €o
(117) —l—z(gé cosy_ —siny_)[€ — & tanyy — ik]
0
0,060, kK)o heosy. L,
S R ikz=(0) +icosy_&_ +1 & (k+&0).

The calculus of I3 (w,z, ) and of I3 (w, z,\) is a consequence of successive appli-
cations of the stationary phase theorem. From

A 172 s iNE(t—iT)—Ak? /2
A;(t,T,Z,A)E(%) /14 PRI = ARE /23 (4 - e 2 N) dk

A 1/2 1+4k _ _i\2 _ il 2
~ (_) e A(t—iT) /26 Ak—i(t—iT)) /2A;(t ko2 )\) dk
271_ 1 ) ) ) )

—4k

we obtain

22 2 itT 1 32]9 .
AS(t, 7,2, \) ~ e M /2A 0 i) Z I 9l Ay (t, 7,7 +it, 2, \).
p<A/C1

As we have

A T iA D AT2HATZ fitr A AL
I (w,2,0) =~ 2—/ d’f/ dr ATOTOIATAT RN AL (1,7, 2, ),
t_ T_

™
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96 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

we obtain

)\ ty T4 ]
I35 (w,2,\) ~ e_M”z/QQ—/ dt e_’\tz/Q/ dr e_A(T_“”)z/QAg(t,T,z, A)
T Jt_ T

t
N / "t
P<A/Ch P Tt

T+ _ o2p
/ dTe_A(T_lw)z/Qw/\;(t,T,T—Fit,Z;/\).

The usual stationary phase theorem at 7 = iw and at ¢ = 0 yields

1 2

+ ~ - w2
CCERVERDY plgtrita+r ©

p<A/Ch

a<A/Co

r<A/Cs 924 92r 92

99 [P+ ;
8752‘1 8T2T [8k2p AQ (t7 nT + Zt, = A):| t:O,‘r:iw'

We deduce from this asymptotic expansion that the leading order term of l;’ is
given by

d¢f 1
co 2+ iE INE +iw)

AL 7id (0,0, &, iw, iw, \)e /2.

and the leading order term of l; is given by

de 1
Cltan~_) Z T 1(§ + tany4 &) iA(€ + tany-&o) + iw

13 (0,0, &, 4w, iw, )\)e_M”Q/Q.

A

Is left in this calculus the calculus of the term induced by Jdyu;. It is a consequence
of the expressions (4.69) and (4.70) of [20] that

A \1/2 /HQ"C Awk—Ak? /2 1 1 yni1
To@T1)(205u;) (w, 2, \) =~ 2( dk e k1 i
(To®T1) (204 us)(w, 2, A) (27T) e [n<;/c T (z(kz+zz))

. (92(6_>\§_D\k§‘1(z) (kA1 0;(x)oi(z, a(x), \k) + Oy 04(x, a(x), k:)\)])|m:0} .

The stationary phase theorem applied to this integral leads to a critical point at k =
iw, a critical value equal to e=***/2 hence the leading order term of (To®T1) (201 u;)

is 2’\?1#01-(0,0,1'/\10). We deduce from these relations the leading order term of
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4.6. SYSTEM OF EQUATIONS AND MICROLOCALISATION OF THE SOURCES 97

the source term L :

Aw2/2 20 si
e 0 _ 2wdisiny4(0) .
3 Ly (w,z,\) = itz 0:(0,0, i w)
1 gt 1 ~+ + g
— 0,0,&7, iw, 1w, A
27 Jor) = + 6 N +iw) 2 (0.0, )
1 1 1

~+ . .
o - - - 0,0, &, iw, iw, \).
2T Jo@tany) 2 T i(€ + tanvy4.§o) iA(§ + tany-§o + iw) Fis { ¢ )

Let us introduce the symbol ST, (w, z) such that
LY (w, 2,)) = M, (SL)oi(0,0, idw)e /2,
We have

1
§SI+(w,z) =

. e
sin yyw siny4 1 (wsinby — i — WCOoS Y+ ﬁ) déf

U)2
_ L cos Y+ &+ ]
w+z  sinfy +sinyg 27 Joq, INET +iw) (2 + &)
tany_

sinf_ —siny_
1 wsin §_(cos vy + sin 7+£%) + z?—; cosy + w cosy— (sin vy + cos vy 5%) a€]
21 Joq tan ) A€+ tany_&o + iw)(z + (£ + tan v, &p)) '
It is important to note that we cannot use the relations (116) to simplify the expression

of SI;(w,z), because if we apply the residue theorem around k = —&;7, we get an
integral which does not converge when |£;7| — oo. It is the same reason that compelled

+
us to write the boundary operator Ri using the symbols g and % instead of &, .
The expression of SI_(w, z), defined through

LY (w,2,)) = Ap(S1-)(w, 2)a:(0,0, iw/\)e_)‘“’2/2’

is given by
lSI_ (w,z) =
2 )
siny_w siny_ 1 wsinf_ — icosq'ﬂyiﬁ, — W COoS Y % dey
 z4w | sind_ —siny_ o c(-) z 4+ i€ i)\(iw—i—é“f)]
tan y4
B sin 04 + sin v .
1 wsin @y (cosy_ + Sinw,gi) + zlg—z cosy + wcos vy (siny_ — cosw,gi)
L _ o) Tlg P T o de]
27 Jo( tanvy) iA(€ — tan v &o + 1w) (2 + i(§ — tany_&p)

These functions will be used when writing the system in the holomorphic domain.

For the integral on C(4) or on C(—), we can respectively change fli to COSE,& , which
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98 CHAPTER 4. REDUCED SYSTEM ON THE BOUNDARY

imply &4 = —0—. We check that the symbol associated with % /. c(-) changes to

COS Y+
. . 2
2siny_ 1 1()51119,—22“—0—wcosw,giO cosvy_ d¢
sinf_ —sinvy_ 27 /o cosy_z + i€ iAE +iwcosy )

Note that
cos?y_(z —w)(z + w) — (€ —icosy_2z)(§ +icosy_z)
o +isiny_w

o —isiny_w =

and that

. w?
wsinf_ —i— —wcosy_ = =

€o §
w(sinf_ —sin~y_) — smwfg—(fo —isiny_w) — 5—(5 +icosy_w).
0 0
Hence

. a2 .
(wsinf_ — i — wcosv_g%)2 siny_w

sinf_ —sin~y_

2siny_w

2siny_w + - sirwf?(fo —isiny_w) — ?(f + icosy_w)],
0 0

sinf_ —sin~y_
the terms with £ + 7 cosy_w canceling in the integral, hence is left the calculus for
the residue at z cosy_ + i€ = (z + w) cosy— + i( + icosy_w).

The reflected solution u, 4+ is computed using the boundary condition, hence there
is a jump between u, (0,0,t) and u_(0,0,¢) when z+(0) # 27 (0). It is thus necessary
to check that the integral on C'(—) cancels with the source term (Tp ® T1)(20_w;),
which is the case.

4.7. Inversion of the principal symbol

The inversion of the principal symbol of the system (114) and the compatibility
condition (115) is done in this paper following the proof of Croisille and Lebeau [16].
We may not use the argument proposed by Gérard and Lebeau (Section 5 of [20])
mainly because the system is not of the form Id — A, which was studied using a partial
Neumann series (called a Bremmer coupling series by M. Van de Hoop [22]).

We apply (Tp ® T1) to the system (93). We use Proposition 4.5 and Proposition
4.6 for the microlocalisation of the left hand side of the system, and Proposition 4.9
for the microlocalisation of the right hand side. We notice that

(To @ Th) (hy ) (w, 2, A) = (To @ Th)(2104u;) + 13 (w, 2, A) + 15 (w, 2, ) + o (w, 2, \)
(To@T1)(h_)(w,z,\) = (To ® T1)(2¢0_u;) + 15 (w, 2, ) + 15 (w, 2, \) + 0~ (w, 2, ).

with If € Hy, (W,, HE), If € Hy, (Ws, HE). We seek a solution such that
Fy,G+,Gy € Hy (W, HE). Remember that si(w,z,\) = (Tp ® T1)(2¢0+u;) is
also known.
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Recall that the spaces H,, HF are defined in (100). If p is small enough, we verify
that J,Fe € Hoo (Wi, Hyy), JyGa € Hog(We, Hyy),JyGa € Hyy (Wi, Hy)) and
that

To(ly + 15 + 52 4 0% (w,2,))) € Hy, (W, Hy)3).

Moreover, the operators op(q¥), op(i*°), op(i*'!) send H¥ into HF (for 0 =1/3
or for o = 2/3 for example(®). The operators op(s™F), op(r®F9) and op(rtF0)
are regularizing; they send HY onto H2i/3. Let us introduce the operators My such

3

that
My f(z) = f(cosv+z).

The operators My send exactly H, to HE. We consider the operators, acting from
H, to H,/, through the relations

2
() (9)(2) = — / WA i)

P06 = 3 [ & o

0 _ 1 d¢ k>
T (k) g)(2) = 2 /p 2z +i(€cosy + & siny) fog( i€) g

1 de [
TR0 = 5 [ e e CTE +singl—ie) de

1 de e
SO = 3= | e Ty o8y — s a(—i€) de.

Hence the principal symbol of the operator of the system deduced from (112) by
considering only the equations on the quantities vy, ulgo. , Otantt|oo, and forgetting
the contribution of the corner is

1 S(k) —1°(k) —I'(k) —T°Fk) -T'(k)
~ | -Sk)I -T%k) -—-T%k) —I°%%k) —I*(k)
11 Bk)=M
(118) (k) 1 0 —iksinfy 0 0 0

0 I 0 —iksing_ 0 0

M

where M = (M+ M_ M, M_) and

(2) A remark that will be interesting is that a certain combination of these operators will be invertible

in H} for every o.
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The principal term of this system was obtained by considering the unknowns

(To@T1)(Wd1v4), (To@Th)(orv-), MNTo@Th)(Yrulso, ),
AMTo @ Th)(Yd1ulso_), (To @ T1)(¢d10tantlso, ), (To ® T1)(¢¥¢10kanuloo._ ).

and this scaling of selected unknowns by A leads to a well posed problem. We invert
the system of symbol equal to the principal symbol (118) and of right hand side equal
to Ly,L_,0,0 up to regularizing terms. This system is thus to be inverted from
(H, x H' x HY) & (H,, x H)' x H},) to (Hf x HP' x H )@ (H; x H; ' < H;)
(with o/ > o). For k in a neighborhood of 1, we consider k¥ = 1 and we denote by
& =(1- §2)1/2. The choice of the square root is given by the analytic continuation
in C — [1, +o0[ of the square root of 1 —ie — £2 of positive imaginary part. We prove
in this Section the proposition:

PROPOSITION 4.10. — The system B(1)F = L admits an unique solution in Hy x
H.

The main difference here with the method introduced in [16] is that the problem
considered is not the problem with straight boundaries, hence the spaces H, are not
the simple ones considered in [16], because we had to take into account the control
in W, of the position of the branching points (1 + u2)*/2 and (1 + p2)'/2, while in
[16] these branching points are always at 1/cos~y4.

We consider from now on the solution of the “principal system” B(1)Fy = L. Our
aim is to show that this system is invertible in (Hy x Hy"' x Hi Y@ (Hy x Hy "' x Hy).
The result for k£ # 1 and for the general system follows from the general results on
elliptic systems of the Section A of [20]. Notice that we removed from the solution
the incoming part of the diffracted wave, hence the 4+ components of Fy are V-
outgoing and the — components of Fy are V_-outgoing. Hence, L (z) and L_(z)
are holomorphic in C — [i,icc[. Introduce Ro¢(2) = ¢(e’®z). The modified sources
RyLy and R,L_ are holomorphic in 2z < 0. They belong to L. Let us introduce
the operator B®, which is the operator associated with 191, 13t S, Tl Tt
defined in Definition 2.1. Introduce the unknowns in (L x L')? that we denote by
(Fr,F_,G4,G4,G_,G_). Let ag be such that z%(0)e’® satisfies (4). For all a €
[0, ap], 2F(0)e’™ satisfies (4). Note that the choice of ag = /2 is not possible as in
[16] but the argument of [16] is valid.

From Corollary 2.2, the problem

B(1)F = R, L

(119) Jo(Gi(w, 2, \) — G_(w, 2, ) + Az, (G4 (w, 2, \) — G_(w, 2, \))
= To(ug (0,0, ) — u_(0,0,t))(w, \)

admits an unique solution.
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In this system, we took into account the condition at the corner, which was removed
from the operator B(k). However, the system B(1)F = L has, regardless of the corner
condition, a unique solution.

We denote by F,, o R, the solution of the problem (119) for a@ < ag. We have

LEMMA 4.7. — The set of functions F, defines without ambiguity an holomorphic
set of functions in
Uny = Uocagaolz, R(ze') < 0}.

Proof. — Let a € ]0, cv]. The solution F,,o0R, = [z — F,(e*2)] belongs to (L x L)
We have, by construction

Fia(2e'®) = 131Gy o — 101‘,16«%&

= L (e"2) 4 Sa(1)F_ o(26) + RO1G_ 4 (e'2) + RL'G_ o (€7 2)
= Z+ (Z)a
Fy o(2e") = isinf, e "G o(ze™).

The functions L4 and L_ are holomorphic in C — [0, ico[, hence z — Li(ei(o‘”‘/)z)
is holomorphic in Rz < 0. The operators S(1) and R%!, R%! are regularizing (send
functions of L to functions holomorphic in a larger domain equal to the union of a
bounded set of C and of {|z| > A,Argz € [Z — g0, 3F + £0]}), hence Zy(ze'') is
in L for o small. It is then enough to show that the operator on L' defined by
[isinfye~'> — I2YG , — IL'G L, is characterized by an Hilbert projector, as p. 48
of [16].

We check, because of the relation, valid for G , being the Laplace transform of a
function of Hj(R4), that G4 o(—i€) = i€G4 o(—i€). This imply the relation
1 / d¢ (ie‘sz+7a(—i£)
B 2m R ZT Zf ga
B 1 df i(e—Qia _52)

IN(Ga)(2) + 131 (G0)(2)

- é+,a(_i§)§%>

% R 2+ Zf ga G-‘-,a(_if)
_ 1[4 s
o ) z+z‘§’§“G+’°‘( %)

In this integral, we use the fact that G4 , is in L', hence the behavior at infinity
of the symbol is correct. Hence we modify slightly the integral around 0, such that
we have

0.1 11,5 1 d€ & ~ » 1 d¢ | .
RGN o) = 5 [ O o [ EitaCi i)

where ¢ > 0, D, is | — o0, —¢] U [—2e?,0 < 6 < 7] U [g, +-00[ and

Be =[-,ce]Ulee™,0< 0 < 7).

The contribution of B, gives the behavior at 0 when € — 0.
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We notice that Fy, = ie "*sin0{G, o. Moreover, as &, = aq(£) + iba (), with
ba(§) > 0. As by(§)an(§) = —sinacosa, if « is small, a,(§) < 0. The Lopatinskii
condition Rsinf,; > 0 imply that sinf, e — &, is never 0, and its real part is
bounded below by R(sin #.e~*). Hence, for o small, it is strictly positive.

The symbol of the Hilbert projector is non zero because sinf+e™** satisfies the
Lopatinskii condition. Hence the regularity of Zi(e’® z) imply the regularity of
Gi.a(ei®'2), Gi.a(€™'2), Fi o(e' 7). O

We know that Gy . is holomorphic in R(ze ") < 0 for |o/| < e. Hence,
deforming the contour of integration 12! onto Reio‘/7 we get that
1 dC 6—21'01—1'0/ o,
— — - G e’ (—i
o2 R e—ia 5 ZC Ca—i—a’ +,Ot( ( ())
1 m// e—2i(ata’) d¢ i
—e — —G e (—iC)).
5 | e i G (i)

This is the relation I (G o) (ze) = ¢ I%! (Ro Gy o)(2). The other opera-

ata’

194 (G0)(2) =

tors modify in a similar way. Hence we have
Ba_‘_a/(l)(Ra/Fa)(zem/) = Ra’La = La+a’

which means that R,/ F, = Fytq/. We then showed that the solution of the problem
for o + o’ was the extension of the problem for « to the set R(ze’*t’) < 0, which
proves that we can superpose the solutions. The Lemma 4.7 is proven.
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CHAPTER 5

CALCULUS OF THE DIFFRACTION COEFFICIENT

The calculus of the diffraction coefficient D(60,v4,v—,04,0_) of Theorem 1 is the
aim of this Section. This coefficient is obtained by comparing two coefficients, the
first one is the total diffraction coefficient (Section 5.2), and the second one is the
calculus of the diffraction coefficient included in u.(z,y,t) (calculated in Section 5.3).

This Section begins with a Proposition, used for computing the wave obtained by
the diffraction of a source on a half line. This result is used for the computation of @,
which is a sum of two terms of the form (A+72)"1(f*(z,7)1,50®0+ + g% (7, 7) 1450 ®
o).

5.1. Diffraction by a curved antenna

Let fi(z,t) and g4(z,t) two distributions supported in the set ¢ > 0, 0 < 2/,
(2")? + (a(2"))? < t2. They are typically traces of distributions supported in (2')? +
(y')? < t2. Assume, moreover, that ¢(t)f, is in L?2(Ry x R) and that ¢(t)g, is in
HY(R, x R).

Let Si(x,y,t) be the forward outgoing solution generated by fid4 + g4+d’,:

Si(@,y,t) = (A = 0f) T [f+04 + 940 ).
Let us introduce )
_ A [ 88 iwetive
A Jr &o o
for (z,y) such that (z,y,t) € QF, t < &1,y > 0. We denote by SGy(z,y,t) the inverse
Fourier transform in time at (x,y,t) € Q° of g4 (0, T)wo(z,y, 7).

wO(x7va) =

PROPOSITION 5.1. — We have the following results.

e The distribution Sy (z,y,t) — (A —02)1 [V, f+6+ + i, g+6] is analytic in QF N
{t < El},

e The distribution (A — 832);1[¢11f+5+ + 1,949 ] — SGo(x,y,t) is supported in
t >0, and, for ST < 0, its partial Fourier transform in time is of the form STy (z,y,T)
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equal to
; i(z—a’)é—i(y—a(z’))éo rh ~
— = [ det dn (@) 4! | Fo (@, ) (1 + (@ (1)) 2
471— 50 0

2
+igy (2, T)—

60 - 895/@]_(36’, T)

& e D0 ()]

e Introduce

1 ¢
AT (2,9, A7) = ——F fo (= Ay
COS 7Yt r
t t
—TgAfg+(—AT7x+ ) —g]—'(g;)(—)wix—i_ — ).

There exists a constant C > 0 such that
631'71'/4

8TAT
e For w € C such that —Rw > 0, we have

ST (z,y, A1) — e T 7‘_1/2AT+(x,y,/\,T)) <ATICeMTT,

To(A — 0%) Lorso?f ® 0y + ¥glaso ® 8, (w, 2, y, A) ~

3im/4
c S()\Tm+ay7—)\Tf,—)\’rg7)\’7'>|7-:i(w_r)

e)\7'2/2
(8TAT)1/2 r r r

Proof. — The support in time of S is contained in ¢ > 0, because the fundamental
outgoing solution is supported in ¢ > 0. Hence the partial Fourier transform in
time §+(x,y77) is holomorphic in 7 < 0. We have, denoting by o (2, 7,&,n) =
Fr(@,m)(1+ (d ()22 +igy (2, 7)(n — ! (2)8)

eil@—a")E+i(y—a(a’))n

— 772 0—+($/77—7§777)

~

1
Si(z,y,7) = W/RQXR d¢dnda’ o
+

We introduce the notation o = é:gg;:g‘ when y # a(z). We assume S7 < 0 and,
for £ € R, we introduce as before & = (72 — €2)1/2,3¢, > 0. As in Section 4.2,
the residue theorem selects the contribution of the pole in 7 located in the region
S(n(y — a(z")) > 0, hence we have n = a&y and the residue is 2mic. Hence
pile—a")e+ily—a(a’)lg

€o
Introduce I3 > 0 and )y, (z) a C§°(R) function, such that ¢, =1 on [—11/2,11/2],
¥, =0on |z| = l3. From Lemma 4.1, the contribution of
T(xay7t) = S+(.’L‘,y,t) - (A - 832)11[¢11f+5+ + wl1g+5;]

is negligible for the contribution on the front t = r. Let y > 0 be given. There exists
19 such that, for I; <1 and 2’ € supp ¢y, "Ry, y > a(z’). Hence o = 1 for y,2’. We

~

S+(33,y77') =

d¢da’ o (', 7,6 &)

7
4m RxR
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5.1. DIFFRACTION BY A CURVED ANTENNA 105

reduce to the evaluation of
i eilz—a")E+i(y—a(a’))éo

d 3

The method of the Section 4.2 applies to the calculation of this integral using
symbols bounded in L?(R¢). We shall use the two different equalities. Two ideas may
apply, because the form of the denominator has to be chosen in the integral, as we

§+(33,y77') - ?(J?,y,T) = ¢ll (1’/)0'_0_(1’/7',5,50)

4m RxR

see here.

(S0 — a'(z")§)* + (§ + d/(2")€0)? = T*(1 + (a/(2))?)

i(§o — a’(2")€)&0 = it? — i€(§ + a'(2')o).
and this yields two different forms of §+(:1c, y,7) — 7](z,y,7) as follows. Making use
of the first equality, we get

| eila=a)e+ily=a(@))to

(120) §+($7y77) —7/"\({17,y7’7') = _L dfde‘ "/}h ({IT/)
47 Jrxr, €o
n 21+ (d'(a")?)
/ 1 T NN2N\L/2 4 s (o0 T (
< (Pl M+ @ )2 i) g )
7 Oy [ei(z—z')f%-i(y—a(zl))fo] €+ Cl/(l‘/)fo
- — déda’ 2Ng (2, 7) X—.
Ar xR, f 3 wll( )g+( )50 _ a’(x’)§
From the second equality, we obtain
~ N i eilz—a")é+i(y—a(a’))éo
(121) S+(1’,y,7’) —T(l’,y,T) =T dfdﬂ?/ ¢ll($/)
4m RxRy &o
x (Fea' s+ @ @) 4 i (o' 7))
0
i O, [t (=2 )eFi(y—a(z’))éo R
L[ agar 2 Ly, @y ' ) =
AT Jrxr, o o
Introduce
H+ (xl7 f? T) =
N(TF (o 1 \N\2\1/2 |~ / iT? N / §
v @) (P D)0+ @ @D + G4 7) ) = B, ()34 (0 7))
We perform an integration by parts in 2’ on the last term of (121), which gives
~ N i eile—a")e+i(y—a(z’))éo
S+(33,y77') —T($,y,T) =T dfdl’/ H+(JZI,£,T)
4m RxR4 o
i et*€tyéo 3
—-—— [ d g+ (0,7)=.
1 Js £ & g+( )50

Note that the term involving g4 (0,7) in (120) is

i A€ petiye, § T tany4:8o\ ~
Y S T tanvieo 0,
(47F & o — tan 7+§>g+( ")
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QITEFYED ~

which has the same behavior as —4= [ d¢ = g+(0’7—)£% when £ — 4oo. This

term cancels with the same term arising in S_(x,y,7) when g_(0,7) = g4+(0,7). We
get

~ 1

d R . . e
S+ (J?, Y, T) - ?(J?, Y, T) = _E f_(f /0 dJ?/ em&«Hy&oefw: triale )&)H-F (JZ/, §7 T)

i eteetyo 13
- [ —aens

and we denote by

Jo(&7) = / e~ g (o €, 7)da.
0

Define ¢(¢) = € + yo. We verify that ¢/(€) = & — y&/& and ¢"(€) = —yr?/&}.
The phase ¢ admits a critical complex point at £/, = x/y, that is, using ST < 0 and
S > 0, £ = —7a/r, which comes from § = —7y/r. The contour of integration on
¢ is R. We deform this contour on ¥ = {S¢ = —Sra/r}. As y > 0, we verify that
we do not cross the branching points when deforming the contour because |z|/r < 1.
For I3 > 0 given, we divide ¥ into ¥;, = ¥ N{| + 7z/r|} and ¥\X,;,. For £ € 3;,, we
have £ = —7y/r + O(l3), which implies that there exists a constant rg > 0 such that

VEe X -3, |S¢(§)—|—’/‘%T| > rolo.

This constant rq is graphically estimated. In fact, 72 — £2 = 72 f—i —u? +2Z7u, which
describes a parabola, and the zone |u| > I3 excludes on this parabola a neighborhood
of 72y%/r? of size rjly (we are not at the minimum of the parabola), hence on the
square root of this curve we exclude a neighborhood of size roly (same reason).

‘We then link the constants {; used for the definition of §+ — 7 and this constant Iy
such that rgly > l1. As there exists C such that

+ocA +oo
mac ([ R a0, [ G @ AR

the contribution of ¥\, in §+ —7 is exponentially decreasing compared with e
We reduce then to the study of the integral on ¥;,. We have immediately, for £ € ¥;,,

+oo
0071 (2 AT da’) < C,

—ASTr

T
E+tanyi &y = —T(; +tan'y+%) + O(ly).
‘We assume

(122) (x,y,t) € Q°.

We write

~

G (2,y, Ar) — Py (2,9, A7) = / ge“(”“y&)h(kf, A7),
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We study J4 (A, A7). We have

T A = [ e (02, )

[=)

_ /OC efikazlffi)\ tan')ur&)fik(a(a:')7a'(0)a:')§0H+ (1’/, Af, )\7_) dz’.
0

We then check that <0=7+) < cose Yy denote by Dy a constant such that

cosy4 Y CcosvY4

VEeS,, (5 +tanyy & + r(% + %tan'wr)‘ < Dyls.

For Iy < A (22532052 ) (L g7 we have

Do cos v+
VEEN,, S(E+tanyi&) < —%Z%ii/?’.
We choose s such that SUPgey,, (€ +tanvy1 &) < s < —%Z/?’. We use
LEMMA 5.1. — For all ¢y > cosv4, there exists 1 > 0 such that the Fourier trans-

forms F (i, f+)(AT, M), F(u,g4) (AT, A ), F (11,0094 ) (AT, M) can be extended
holomorphically to the domain &' < —S1/co, where the following estimates hold

sup  sup / F (b f1) O, AE) [ €' < oo,
Rglf’is

A s<—=S7/co

A s<—=S7/co

sup  sup / IN2F (4, 92 ) 7, AE') 2 dE' < 4o,
Rglf’is

sup  sup / IF (O (th1,9:4)) (7, AE )2 €' < 400,
REI—iS

A s<—S7/co

Proof. — This behavior and these estimates comes from the fact that fi(z/,t) =0
for (z')? + (a(2))? > t? because of the finite speed of propagation. As we have
a(z') = (tanyy +O(ly))2’ for 2’ < 1y, we get that the support of f(2/,¢) is contained
in (2/)%(1 4 tan~2) + O(l) < t, which is (=2—)2(1 + O(l;)) < t*. As ¢ > cosv4,

COS Y4
tﬁg(f/f < 1/c3 for I3 < I}, which imply that the support

of fi is contained in =’ < cgt. The Fourier transform of a function whose support
is contained in ' > 0, t > 0 extends holomorphically to ¢ < 0, ST < 0 (by
the Paley-Wiener theorem), and the Fourier transform of a function supported for
a’ — ¢ot < 0 extends holomorphically to ¢ < —37/cp. We apply the Paley-Wiener
theorem on the distribution Lfy(u,t) = fy(cot — u,t), supported in u > 0, which
Fourier transform in u,t writes FLf (U, 7) = Ffy(=U,7 4+ coU). The distribution
F £+ belongs to L2(U,7) on each line SU < 0 . O

there exists 1 such that
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Return to the proof of Proposition 5.1. Using the inverse Fourier transform of
Hy (2, ¢, A7), we have the equality
Ho (o' 06 A7) = 2 / dg! ' (€ ~6—tan 74 €0) o —iX(a(a') ~a’ (0)a')éo
7 ’ 27 RE’ s
)

R @ @2 20, PO X F 0, ()3 087 A

0

 F (@, ()34 (2, 7)) OE, ”’g% .
‘We have thus
J+ ()‘67 )‘T) =
A

l
S ! dl’// dflei)\m/(f’—f—tan'y+§0)—i)\(a(z’)—a’(O)z’)fH_i_(Afl )\g AT)
271_ R X ) )

¢ —is

We expand e~iMal@)—tan 1280 i) the neighborhood of 2 = 0. We have

I
(A AT) /1/ eir' (t—g—tan vy &o)
R—is

8$' mr _iX(a(z')—tanyyz’
Z (m)! ()\tﬂ\g’)ﬂ.)(T) [e-Malz)—tany42)e0],
m<A/C

Hence, using

/ mH.
o[ e e ) = B (e any 60), 06, 0)
T JR—is m!
we obtain
i 83U’ mr _iX(a(z')—tanvirz')éo1qm
JeO§AT) = Y (=) em MmO FHL(ME + tany:£0), A, A7).
m<% '

We apply the stationary phase lemma in the relation

N ] d
S (.. A7) — P,y X) = - ff AR T (N, AT) + 1 (2, AT).

The critical point of z€ + y&y is & = —7a/r, with ¢"(&.) = ;T—z o(&) = —Tr,
&5 = —7y/r, which gives

Al 2 . )
S+($»y7)\7)ﬁ—ﬁ(r—j)wyz)l/ze”/‘*e*”r Z pn (T, Y, TINPTPAT™

m<

Q>

P

~ p—tTr 3im/4 - m—p_—p
~e e E am T,Y, TN~ T
V8mATr #(@9,7)

Q>
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We identify

x
010,0(15’%7') = J+(_)‘T;a)‘7-)

~ .7-"H+(—/\7'(E +2 tan vy, ), —TE, A)
roor r

1 0 —
~ Fo(oarstl=05)
COS Y4 COS Y4

JAT) — i/\T£.7:g+(—)\7'7COS(0 ~74) JAT)
y cos vy

x cos(f — v4)
— ZF(g' ) (= A ————5 7).
L) (A )
This ends the proof of Proposition 5.1, which is used to compute the contribution
of the source on each half-boundary, et precisely from the point (0, 0). |

In the following Section, we use the result of J.M. Bernard and other authors to
identify the total diffraction coefficient.

5.2. Calculus of the total diffraction coefficient

In the case of the Dirichlet boundary condition the problem of the diffraction of
an incident wave by a straight wedge was solved explicitly by Garnir [19]. This was
possible because the Green function of this problem could be computed by a change of
variables. However, in the case of a mixed boundary condition, such an explicit form
of the Green function is not known. Many authors, following Maliuzinetz [30], have
given a form of the diffraction coefficient, among them J.M. Bernard [5], D. Bouche
[9] and we present this method here. Let u; be a plane incident wave

“+o0
ui(z,y,t) = / e =D g0 (1) dr.

— 00

They obtained the

PROPOSITION 5.2. — The diffracted wave generated by a straight wedge with the
boundary condition Opu —sinfru = 0 on each face admits an asymptotic expansion,
and we have

+oo
ud(x,y,t) :/ 0-7‘!’(7-)617'(13*1‘C0827+7y51n2'y+)dT

— 00
+o0 +oo
+ / O.r— (T)eiT(t—m cos 2y —ysin 2y_) dr + / O'd(r, T)eir(t—r) dr
—oo -
We have ‘
D(97 V5V 0+7 97)6”‘—/4
(2m77r)L/2
The diffraction coefficient is computed through a special function ¥ that is given below

in (124).

aq(r,m) = 05(7)
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This method is valid for the Helmholtz equation, and we denote also by “wave” the
Fourier transform of the waves we studied.

The incident wave considered by Bernard [5] is u'(r, 0, k) = uge
represent the solution of the diffraction problem in | — v/2,v/2] as

ik s(0—6),
ikr cos( 0)7 and we

u(r,0,k) = /fa+9 Je'kr e da.

Under the assumption 6y = 0, we check that
1 o[ree

o ui(r,0,k)(1 + |k|?) " 2e =% dk

is the conjugate of an analytic conormal wave w;(x,y,t), where the function 6;(z,y) is
x and the symbol is o;(x,y, k) = uo/(1 + |k|?)?, which satisfies the hypotheses on o;
and ;. If we obtain the function f solution of the problem stated by J. M. Bernard,
the linearity of the Helmholtz operator shall lead to a solution of the problem (6) with
such an u;. The purpose of this paragraph is to give the construction of f associated
with an incident plane wave. The function f is assumed to verify the two relations

i) f(o) —uo/(a — o) is regular for |Ra| < v/2

i) | f(a) — f(£ioo)| < e~cISel for Ja — +oo.

If the solution u of the diffraction problem satisfies i) and ii), the function f verifies
the functional equality:

(123) (sinatsinfy)f(a+v/2) — (—sina+sinfy)f(—a£++/2) =0.

We need only to check that i) and ii) are satisfied for the solution of the problem we
study. Maliuzinetz [31] gives an inversion formula for f in terms of u. A solution
in terms of special functions has been found by Maliuzhinets in his PhD thesis and
can be found in [30]. Simple expressions of the special function involved were given
by Senior and Volakis [36] and Molinet [33], and the following formula is found in
Bouche and Molinet [9]. A review of the history of the results on the diffraction by a
wedge is given in [6]. We outline the expression below.
Let v = v4 —v—. We introduce a function W,:

o — 1 In(1 +t?tan? p——
(124) W, (u) = (cos ™ )1/2 exp( T 5 ’y/ ( 1 2 T-2) dt).
4 — 2 T (1 — #2) cosh(=—"argtht)

We consider the function (expressed both with the angle of the wedge we consider
~ and the exterior angle to the wedge ¥ = 2w — v = nm) :

U(a) =T (a+7+— o) (a—g—ho—)xy (a2 T gm0 (ot L= T,

2 2 22 2 2
v 37 v o, v 37 .
\I'(a)zll/,y(a+§—7+0+) Ao+ —5- )\I',Y(a—§+7—9+)\llﬂ,(a—§+§+9 ).
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5.2. CALCULUS OF THE TOTAL DIFFRACTION COEFFICIENT 111

We verify that the angles introduced in [9] are

g nmo_
9 9 T+
P=60—~_
™ 5
- hm=0—y 4~
7T2n+7r 00—~ 4—’2y
- =0y L2
5 T 0—~ +2 s
which leads to the relations
nmw T T
(125) (BT —m) = Uy (0 =7 — 0 — D)W (0— s — 0y — )
3 5
XU (0= 7o+ 0 = ) (0= 7 0~ )
nmw 3T 3T
(126) (B~ 4 m) = Uy(0 7 =04+ T (0 — 7y — 0, — )

X W (0—y_ +0_+ g)@m vy 0 — g).

The diffraction coefficient is then

D(ev T+ 7= 9+7 6*)eiﬂ/4
V2rkr

with

(127) D(O,75, 7=, 0+, 0-)0(3 = 74) =

U0 — % —27) (h— ’Y+'5"/—)
oA TET) ~con(F]  con( )~ con (B

This function depends on the angles  — v; and 6 — v_. We check that U(6 —~4) is
equal to ¥(0 — v_) when we exchange the Brewster angles of the faces + and —. We
notice that the special function which gives the diffraction coefficient is solution of
the functional relation (123). Note that finding a solution of the functional relation
(123) is closely related with the inversion of B(k).

From Maliuzhinets, we check that the diffraction coefficient has poles. We get
(from [30]) the relation (where ¥ = 2w — v denotes the exterior angle of the wedge)

m(m+ 2) 1
2y sin(wz/27)

U, (2 + (7 +37/2)) = +sin U, (7 —7m/2+2).

Hence the poles of ¥, are z = £(¥ + 37/2).
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112 CHAPTER 5. CALCULUS OF THE DIFFRACTION COEFFICIENT

We thus deduce that the poles of ¥ are given by the list

a=9+—|—7r—|—’~y/2
a=0, — 21 —37/2
a=—0_+421+37/2
a=—-0_—m—7/2
a=0_+m1+37/2
a=0_-2r—-7/2
a=—04+21+75/2
a=—-04 —7—3y/2.

As we consider ¥ at the points ® — 7/2 £ «, the list of poles of the diffraction
coeflicient is given by the following angles

O=dr+75+0L+7
b=t7r—-F+64 27
db=dr+4+2y-0_+7
db=+4tr—-0_—7
P=tr+29+60_+7
S=+r4+60_—-2nm
S=dr+4+2y—-04 +27
db=d+r—-0, —71—7.

We recover 0 by ® =0 —v_ and &+ =27+ 6 — ;4.

In particular, for admissible angles and assuming that the angle ¥ € |, 2x[, we
obtain ®=0_ —mor®=—-60_and ®+~v =0, — 7 and &+ = —6,. These angles
are complex when $27(0) # 0 or Sz (0) # 0.

COROLLARY 5.1. — When Sz1(0) =0 or Sz~ (0) = 0, we obtain the singular direc-
tions of Proposition 3.1.

5.3. Calculus of u,

The aim of this section is to compute the principal symbol of u., which is obtained
by

(A = 02)  (03uslars0 @ 0p + 0—u_lys0 @ 06— + uslyso @6, +u_lyso®5).
We write
ey, t) = ud (z,y,1) +ug (,y,1)
with
uf (2,y,1) = (A = %) Lo ur (2, ) @ 4 + uy (2, ala’), ') @ 8.

We prove in this section the
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LEMMA 5.2. — There exists symbols ox(x,y,7), p+(x,7), qx(x,7), q=(z,T), satis-
fying the inequality (2), such that

uz(z,y,t) = oi(z,y, 7)e Tt @V) 47

Opuy(z,t) = iTpy (z, 7)™t @) 47

q+(z, T)e”(t*e“(x)) dr

U4 (.%', a(x)7 t)

F=F[= F|= F|= F[= F[-F[-

Orluy(z,a(x),t)] iy (z, 7)™t 0a@) qr

O_u_(z,t) =

iTp_(z, T)e”(t_gb(m)) dr

u_(z,b(x),t) = q_(x,7)e ™0 @) 47

827 [U_ (1’, b(l’), t)]

iTq—(z, T)e”(t_eb(z)) dr

S S S

Note that u4(0,0,t) = 5 [0+(0,0,7)e™*" dr.
This is a consequence of the relations (1), (11), (16). We obtain

Ui(l"yﬂ') = O-i(x7ya7-) - Ui(x7yaT)

0
pi(w.m) = Z7E 0,040, (x,a(x).7)
p(em) = =5~ 000 (@,alz),7)
T

qu(va) = U+(;L‘,G(:L‘),T)

q—(z,7) = o_(z,b(x),7)

- _ Ouby + a’(x)8y9+a v alx). T 1 9zoy +d/(z)0yo 4

Gy (z, 1) = 0+ (@ @) +(z,a(z),7) it (1+ (a/(2))2)12
d(z) 9z

= P (2,7) + (L (0 (2)) 7] = 0alqp (2, 7))

(14 (a'(2))?)
 0x0- +b'(2)9,0- n 1 9po_ +V(2)0yo-

q(z,7) = 1 0@ o_(x,b(x),T) i (Lt (V(2)D)2

For example, we get, for py(x, 1)
o —2040;27 (x) 1 i
p+(.’li, T) - Z+ (1’) — 84.91(23) Ul(x7 a(x), T) + ir [8+0’1 8+0'+](.’IJ, T)'

Similarly,

1 .
we(oale).0) = 5= [ dre N 6 - 0% o ala). )
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Let us assume now

ue(xayat) = Ue7+(1‘,t) + u&—(xay)t) + Ue7d(1’,y,t)

1 [T 1 [T |
= [ e, () dr 4 o / GO (2 g r)dr
T J o T ) oo
1 [T,
+ 7. e g gz, y, ) dr.
™ — 00

As (zo,y0) € Q° satisfies 04 (zo,y0) # 70, there exists a neighborhood W, of
—i + 04+ (x0,y0), a neighborhood W_ of —i 4+ 0_(z0,y0), and a neighborhood W of
—1i 4 rg such that WNW,. =W NW_ = &. We thus consider w € W. The relation
Tov(w, z,y,\) = (%)1/2 ff:ggo eMTw=AT? /255y A7) dr will allow us to compute
the symbol associated with u.. Owing to the fact that the Fourier transform in time
of a wave conormal analytic is known, we get

1 (92"Je,i

— o3 (w=01(zy))* - 7 Tex
TOUe,:I:(waxay7A)_e 2 Z (2)\)”71' 8,7_271

(JZ, Y, Z)\(’LU — 01 (1‘, y)))a

n<A/C
— 2 (w—r)? 1 aQnUe,d .
Totte,a(w, z,y,\) = e~ 27" E Ww(x,y,z)\(w —7)).

n<A/C

The parametrix of the wave operator in the neighborhood of a point (xq, a(xg)), o > 0
allow us to compute the solution on ¥, 4, and it coincides with u4. This will give the
asymptotic behavior of the term obtained when the source term of the forward wave
equation is (1 —)S. To apply Proposition 5.1, we compute the Fourier transform of
1S using the phase function —iT04 (', a(z")). We have

LEMMA 5.3. — The Fourier transform in 2’ of the symbol
S(x/v §7 607 T) = iTl(.’L'/, §7 607 T)w(x/)1w’2067iT0+(I/’a(I/))
is defined and admits, for & # —7, an asymptotic expansion of the form

Sp(fla§7£077-)
D

where S, is a polynomial function of order at most p in &' and such that

50(5/7676077) = Z'Tl(oag7§077)'

In particular, if we consider
§—d'(z')éo
(14 (a’(2))2)1/2

S(2',€,&0,7) = Oruy (2, 7) +iuy (2, a(z’), 1)

we have
_ 2i7siny,04(0,0,7)

50(5/7675077) -

- - [sinfy + cos*y+§ —sinyy g—0]
sin 04 + sin v T T
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5.3. CALCULUS OF u. 115

We deduce the
PROPOSITION 5.3. — We hawve

D(977+77—a0+79—) =
D+(077+7'7770+797) + D7(077+7'7770+797) + Dd(97’)’+7’77»0+797)7

the two diffraction coefficients Dy and D_ (computed by the diffraction of the two
faces) are

sin y4 cos v+
cosyy — cos(f —v4)
siny_ cosy_

D+(677+7'7770+79*) = (Sin0+ —COS(G—’}q,))

D—(977+77—79+a0—): (sinO_—cos(O—y_)).

cosy— — cos(f — )
We have

. . cos(0—v4) . .cos(0—y-)
i (=i k) + F (=i i = k)]
Da(0,7+,7-,04,0-) = 56 k2 = 0:(0,0, k) - :

COROLLARY 5.2. — The diffraction coefficient Dy = D — Dy — D_ is not equal to 0.
The diffraction by the wedge is thus not the superposition of the diffraction by the
two antennas. There is a contribution, not equal to 0, from the point (0,0).

Proof of the Lemma and of the Corollary. — It is easy to check that there exists
I(2', &, &, T) such that

¢S(x/, f’ 50, 7—) — Z.Tl(x/, §7 50, T)lb(ac’)e_”h(zl*“(z'))_
The term [ is equal to

§—a'(2')éo
L+ (@ @) 7

I(a',€,60,7) = s(2/,7) + (07 — 0T)(a', a(2'), 7)

‘We check that
28+91 (0)01 (07 Oa T)

10,6,60,7) = =L+ O™ N 355 5.0y

[27(0) + cos 7+§ — sinvy, —50]
T T
Denote by M the operator

MF(z') =

o Fa)() |
0z’ L& 4+ 70,04 + / (27)0,04] (', a(z’)) ]

The Fourier transform F (&', €, &, 7) of S is

ll 3 ! ’ . Iy
F(S1m50)(€, €, €0,7) = F(a")y(a)e im0+ @ha@))—ia’e" qp
0
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Usual integration by parts leads to the formula, owing to @) (1) = 0 for all j > 0
7(¢51Z’>0)(§/7 fa §0a T) =

p=N l
MPF ! ) PN
Z (—i)p f, +(0) + (—i)N MNF(x/)eszOJF(m ,a(z'))—ix'€ d'.
T 0
p=0
MPF(0)

We note that T is a classical symbol in the variables (¢/,7), of order —p—1. We

thus gave an asymptotic expansion of the symbol of F(¢)S1,/>0). The leading order

term of the asymptotic expansion of the symbol of F(¢S1;>0) is given by
it04(0,0,7)

SO(£l7£a§07T): §/+T

We obtained the leading order term of the symbol as

[cos'y+§ - sin7+§—0 + sinvyy .
T T

2iTsiny4+0;(0,0,7)
(& + 7)(sin B4 + sinvyy)
From Proposition 5.1, we get

§=-r

The result of Proposition 5.3 follows. |

[sin0+ + COS’}/+§ —sinyy 6—0]
T T

x + ay cos(f — v4)
i Attt AN e 74
r cos Y+

&= —1cosl, & = —Tsinb.

5.4. Proof of Theorem 1

We consider the system of unknowns written in Section 4 in (93) and (94). It
has been shown that uy € H (R? x R;) and that fr € L% (Ay) with support in
{0 <z < Ct}.

We introduce Ly = J, (202001 u; 4+ IE +1F + 0+ + (To @ T1)(7+)). We notice that
f+ — 25(2)0g+(z) = 2% (z)[u — ux](z)¢) (t), hence it is supported outside t = 0.
We introduce REL = o)y + J,(Tp @ T1) (2% (z)[u — ux](z)¢} (1)), the terms o, are
the difference J,[(Ty ® T1)(2%0rg+)] — iXdop(2F)(Ty ® Th)g+. The system (94) of
Proposition 4.8 yields

J,Fy
jpg— L+

(128) Jyop(0)7; | et | = <RE>
J,CGy RE_
J,G_

Note that

(To® Ty)(hy) = (To © T)@bndyur) + 1 + 15 + 3 oty
+ + Ui 2 T3 e (z + w)n it

where 7 is negligible in Hy, (W, Hyy) (Sjostrand space defined by Definition 2.2. of
[20] p. 350) and where r,, satisfies the inequality

rn(w,\)| < D) [o(C)]"
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with 6(C) — 0 if C' — oc. N
The elements Ly belong to Hy, (W, Hzi/?)) The unknowns J,Fx, J,G+, J,G+ are
in H¢O(WH,H§/3). The symbols 5 F = Jpsi’{]p’l, FEF0 = Jpri’jF’oJ;l7 FijF’l =
Jpri’%ljp*i are defined from H;F/3 to H2i/3' The symbols g+ = pqu;17 it =
ini’lJp’l, it0 = ini’OJp*l are defined from Hf/3
the chain of spaces Hf ® H,, o € [1/3,2/3].
The principal symbol of Ly, denoted by LY., is given by

to Hli/S. This system is thus in

LY (w, 2,A) = AwJ,(SI+)0;(0,0, ixw)e 2"

The theorem 1 is a consequence of the invertibility of the system corresponding to
the principal term of the operator .J, op(b).J; !, which is B(1). Moreover, as we have
the equality (118), the principal symbol to be studied is

I —S(1) —1°1) —r1t() —-7°1) -T41) 0
-S(1) 1 -T7°Q) -T'(1) —-1°(1) —I'(1) O
1 0 —isinfy O 0 0 0
A1) =
(1) 0 1 0 0 —isinf_ 0 0|’
0 0 z 1 0 0o -1
0 0 0 0 z 1 -1

where the last column takes into account the term . (0,0,¢) — u—(0,0,¢) and the
two last lines express the relation between the Laplace transform of f and of 0, f,
for f € H'(R,). This construction of A(1) from B is natural owing to the definition

of G and G but has to be taken explicitly into account. As the operator A(1) is
invertible in the space (Hy x H; )® (by rearranging the unknowns), we obtain the

relation giving Fu, G4, Gy:

r SI,
G7 SI_
(129) a = M(A(1)™! 0
. 0
:zgjg; : gfﬁg; To[u4(0,0,-) —u_(0,0,-)]

The invertibility of A(1) in Hf x Hy is proven in Proposition 4.10. The symbol
A(1) depends only on the constants 61, 6_, vy, v—. Hence we get the solution of the
system

Ilgt g?

Ky - .
a5 o= )i
K_ 0
I?_ 0
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118 CHAPTER 5. CALCULUS OF THE DIFFRACTION COEFFICIENT

equal to
. 04,0 e
isinfp K 77707 (—i, 2)

[N e .
K++ Y+ (—Z, Z)

—ZKE%’G*’AH’V*(—Z',Z)
ising_ K700 (1 2)
000 yry—
K + Y+ (—Z,Z),
_ZK9+»9—»’Y+»’Y— (

—1i,2)
We denote by r = v/22 + y2 and 6 the usual polar coordinates. The wave diffracted
by the curved wedge with boundary condition is
; dk
usle,.0) = [ Mooy 5.
2
where the first term of the symbol o4 is ¢ with:

ook = 17 [0 — sin(® — 5, cos(0 )

+ (sinf_ — sin(f — y_))K_(cos( — v-))]
The end of the computation of the principal symbol of the diffracted solution follows
exactly the same pattern as in Section 6 of [20]. In particular, the regularity results

are the same.
We need to compute g+ and g_, defined, as in (6.11), by:

(130) gr = A+ 93] (frlaso ®05)

where the source fi is computed using the derivative in time and the normal deriva-
tive. The solution ug will be g+ + g—. We have:

— f+($/77)
g4 (z,y,7) = (A —72)7" <f+(96/77)1m'>0 ® 04 + Wlw’zo ® 5@)

Introducing

£ —d'(2")éo )
e @)1+ (@ @) 7)

we find, using fy(2/,7) = 5 I e €5, (¢, 7)d¢’ that, owing to Lemma 5.3

Al (I

We use Proposition 5.1 proven in Section 5 to obtain that
f(l’/, t)lm'>0
izt (ah)

o (r, Titay) (1 Lo COSY4T +sinyyy
cosyyV8rrr 11— Tiay sinfr

where the term o, is a remainder term of order A~ 1.

S+($/,§,§07’7—) = f+(x/77—)<1 +

cosyy §  sinyy §_0>
sinfy 7 sinfy 7/°

(A = 02) M [Lsof (2,6 @ 61 +

e3im/4

® 5” (z,y, \T) ~

—iTr

) +o
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We recall that the holomorphic function F. is known from f, through

—+oo o0
Fy(w,z,\) = / / ei’\(“_zzm_(w_t)zm)ﬂ_(x,t) dz dt
—00 0

_ (i 2/ e)\(msz2/2f(wft)2/2+i7't+i§'w)a+()\f/,)\7_) dz dt dé-/ dr.
27 R3 xRy
The critical point in ¢t is ¢t = w — 7, which implies, after the application of the

stationary phase theorem in 2/, 7, & for —Rw and —Rz large

Fy(w,z,\) = (%)3/2 /RS 1I>Oe/\(xzfa:2/2+i£'x)e/\72/2+i/\-rwa+()\5/,)\7_) dzde dr
2n 52m
= M Z 2”)\"4-1mn!m! 22"78'82"(52' (i)\w7i)\z)(iaw)m(e*/\ﬁ/z).
m,n<A/C
We thus obtain o4 (iAz, iAw) in terms of Fy (w, z, A) for —Rw > D, —Rz > D. Using
the maximum principle, we can propagate this equality to w = —iT, z = iT zt‘”ﬂ and
we obtain
a+(—/\7'x + ay’ A7) =~ Fy(—iT, ir? tay,/\)e_hzm.

Finally, by the maximum principle again, we can see that this equality is true for
7 € Ry, hence for 7 =1 and A = k > 0 we obtain

T+ ay LT+ ay

7k) = F“'(_i)Z

(131) or(—k ke k2,

We obtain the symbol of o once we have the symbol of Fy (given by (129)). Note
that Togy (w,x,y,7) is given by

)\ 1/2 oo—ia IANTW—AT2 IANTT [ IANTT
Togy(w,z,y,2) = (5-) / / eATOTAT AT TG (1, y, Ar)] dr

—oo—1ta
with €7"gy (z,y,7) is in L? in the variable 7. The stationary phase theorem in the
variable 7 (which is correct for —Rw > 0) whose critical point is 7. = i(w — r) yields
e—)\(w—r)z/263i7r/4

(132) Tog+(w, x,y, \) ~ ot (iA(w —1), —iA(w — r)“—ay).

8mri(w —r) r

—AMw—r)?/2 ,3in/4 b

(133)  Tog(w,z,y,)) ~ & o (iMw— ), —iAw — 1) ZEY,

8rrAi(w — r) r
Note that, if uq(z,y,t) = (2m)t [, oa(z,y, 7)™ dr, then

2n
e _ L 0Moa i —

(134) Toua(w,z,y,A) =€ 2 <Z,\;C (2A)"n! O 2n (@, y, iA(w = 7).

As ug = g4+ + g— + vy, where SS(v,) NEy = &, equalities (132), (133) and (134) yield,
for k € Ry:
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Equality (131) gives then
LT+ ay

0+(—kx+—ay,k) ~ e F2R (=i, k)
T
b b
o (kT gy ek 2p (i i Y g,
T r
Hence
3im /4 b
(135) k2R (=i, i T by b P (=i, 2 ).

oa(@,y, k) = V8rkr

We have to identify F, and F_. These functions are the scattering functions
associated with the normal derivative on each face, while the solution of the global
system involves both the normal derivative on each face and the trace on each face.
But, again from the system above, the normal derivative on the face + is equal to the
trace on the face + multiplied by the coefficient isin 61, hence we get all the terms
needed. We identified the diffraction term of Proposition 5.3. This ends the proof the
diffraction relation of Theorem 1.

The last item to prove is the result on ug + ug. In fact, the inversion of the system
(94) leads to the expression of fi, f_,g+,9—, and we get a jump condition, owing to
w(0-,b(0_),t) = u(04,a(04),t) and g4 (z,t) = u(z,a(x), t)—us(z,a(x),t), g_(x,t) =
u(z,b(x),t) — u_(z,b(x),t), hence g+ (0,t) — g—(0,¢) = u_(0,0,t) — us(0,0,¢). We
check that

g+0" +g-6" + (u4(0,0,t) —u_(0,0,8))0(x/R)d, =
(g+ + (u4(0,0,t) —u_(0,0,1))0(x/R))d, + g_d",
+

and that lim,_.o, (9+ + (u4(0,0,t) — u_(0,0,t))0(z/R)) = g+(0,t) + u(0,0,t) —
u—(0,0,t) = g—(0,t). The distribution

g8, + g8 + (uy (0,0,) — u_(0,0,0))8(x/ R)3,
writes h @ 0j, with h € H'(09), hence from Proposition 5.1 shows that ug + ug €
o *(QF). The proof of Theorem 1 is now complete.

loc
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CHAPTER 6

APPENDIX

6.1. Properties of the Helmholtz equations around corners

6.1.1. Single-layer and double-layer distributions for the Helmholtz equa-
tion in R2. — In this Section, we recall the already known results for the dis-
tributions of single and double layer for the Helmholtz problem in an open set with
boundary. This framework has been introduced to describe the influence of an electric
current and of a magnetic current on a boundary.

Recall that Gérard and Lebeau [20] only used the single-layer boundary distribu-
tions. In this Memoire, it is not enough to consider these distributions; we have also
to consider the double-layer distributions in order to take into account the jump of u
across the boundary. The approach here is entirely developed in the book of Colton
and Kress [14].

We begin by recalling that, in R2, the fundamental solution of the Laplace op-
erator, which is the distribution ®g(x,y) verifying Ay ®o(z,y) = y—s is Po(z,y) =
—5=log|z —y|,  # y. If Jy is the solution (usual Bessel function of order 0) which
is finite for ¢ — 0 of the differential equation tf”(t) + f'(¢t) + tf(¢t) = 0, and Yy
is the linearly independent solution of this same equation known as the Neumann
function of order 0, we introduce the Hankel function of order 0 of the first kind
Hél) = Jo +1Yy. The fundamental outgoing solution of the Helmholtz equation in R?
is then %Hél)(ﬂx —y|) = - (z,y).

Introduce a bounded set D whose boundary 0D is of class C?. The outgoing
unit normal vector n(x) is of class C! and is defined on any point of 9D. We can
apply Theorem 2.4 of [14] hence, for u, a solution in C?(R? — D) N C(R? — D) of
(A +7%)u = 0 in R?2 — D, which admits a normal derivative d,,u on the boundary
(defined as the uniform limit on 9D, for h — 04 of n(z) - Vu(z + hn(x))), we have

ur(z) = / 1y (4)Bn, B (2, ) — Brttr () (, )] ds(y).
oD
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From this representation, we introduce the single layer and double layer potentials,
for ¢ a function of L*(dD):

ul(9)(x) = [ o(y)®r(z,y)ds(y),

oD
ug(9)(x) = - O(Y)On, - (z,y) ds(y).
Assume ¢ € C°(0D). The function u?(¢) is continuous in R%. If we define, for
x € 0D, the distributions
Opu(d)(x) = limp o, n(z)Vug(¢)(z + hn(z))
Ipu(¢)(x) = limp_o, n(z)Vul(¢)(z — hn(x))

ui(¢) = - ¢(y) @ (z,y) ds(y)
Oul(x) = [ 0)on, @2y ds(y) ~ Lo(a)
oD
i) = [ 900, le.)ds(0) + 50(a)
Wi @@ = [ o), B (r.9) ds(0) + 300
Wi @) = [ 600, @ (2,9 ds(y) — 30().
oD

The integrals written here are improper integrals. There are properties of Holder
continuity for these integrals (Theorem 3.3 of [14]).
We define the operators

S§To(x) = 2 / B, (2, y)d(y) ds(y)

oD
K7(x) =2 /8 0,0, (w.)0() d5(y)

K'Tp(z) =2 /8D On, @-(z,y)¢(y) ds(y)

T §(x) = 20, /8 0,,2:(.9)0(3) ds(s).

The operator ST is bounded from L?*(dD) to H*(dD). If the boundary 0D is more
regular than C2, that is C2“, the operators K7, K™ are also bounded from L2(D)
into H'(AD), and T is bounded from H'(0D) to L?(0D).
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Introduce
W@ = [ 00,0 (09) ~iCP0.)ol) (o).
D
The potential u” solves the problem

{(A+T2)uT:01n]R2—D

(136) wlon = f € CO(AD)

if ¢ is solution of the impedance layer potential problem (¢ is a positive constant,
called the impedance of the problem)

(137) ¢+ K¢ —iCSe=2f.

This is a problem of the kind (I + A)¢ = 2f, A is a compact operator from C(9D)
to C(0D) under the previous hypotheses.

In [14], they construct the layer potential problem for an open set with a corner,
which angle is v, 0 < v < 27. We restrict ourselves to v € ]0,n[. The boundary
is thus the reunion of piecewise analytic parts, and is C? except at S. If x( is the
position of S, we reduce the problem to

u(x) =/ [[On, - (2,y) — iCPr(2,y)]¢(y) — On, oz, y)d(z0)] ds(y).
oD

The equation (137) is then

(138) (x) — d(zo) +2 / [0, @+ (2, ) — iC®r (2, 9)|6(y) ds(y)

oD
) / B, o, y) (o) dy = 2f
oD

We introduce the operator
Kod(w) =2 [ [0, B0(a.)0(s) - dfea)) ds(y)
D

and its truncated form Ko ¢ = ¢ Ko(¢¢), where 9 is a cutoff function null in |z —z¢| >
r, identically equal to 1 in the neighborhood of 0. Colton and Kress prove that there
exists a r such that ||Ko,|lcc,0 < 1. The singularity of ®, and of ®¢ in log|z — y|
induce a singularity for the normal derivative in 1/|z — y|. This singularity cancels in
the difference 0,,, @, — 0, Po. Hence for x ¢ 0D, the relations

/ (On, @7 — anyq)O)(x,y) ds(y) =0
oD
[ a@ydsim) =0
oD
lead to the equation replacing (138) for ¢(z) = ¢(z) — d(x0):

P+ Kod(x) +2 /8 0,00, 203(0) ds) ~2C | @ (a.)i) ) = 2f(a).
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Hence, with continuous data f, there exists a potential solution of (137). This solution
is continuous, but its derivative has singularities at the corner (as we may see in
Grisvard, [21], Dauge [2]...).

6.1.2. Existence and uniqueness of some variational problems. — In this
part of the Annex, we deal with the problems which are related to the existence of a
solution of the wave equation with the mixed boundary condition in a domain with
corners. We begin with the construction of the normal derivative. We introduce
O the bounded open subset of R? equal to (R? — F) N {|z| < R}. Tt is clear
that O admits a Lipschitz boundary, piecewise analytic (we may note that O =
C(R)UAR UARU{0,A;,A_}, where A is the intersection of Ay and of the
circle of radius R, and C(R) is the part of the circle of radius R linking A} and A_ in
R2—F'). Hence, from Theorem 1.5.1.3 of [21], the mapping u — u|se is well defined as
an operator from H!(OF) onto HY/2(00%) = H/?(C(R)) ® H/?(Al) @ HY?(AR).
Moreover, the mapping u — O,ulgor is well defined for v € H?(OF). The half
Green’s formula is true for a Lipschitz boundary (Lemma 1.5.3.7 of [21]):
Foru € H*(O®) and v € HY(O®), we have

(139) / (Au)vdx + Vu-Vudz = / Onuv|gor do.
OR OR dOR

We know that the space C§°(OF) is dense in E(A) = {u € HY(Of), Au € L*(O®)}
(Lemma 1.5.3.9 of [21]). Hence the relation for u € H2(OF) and v € H(OF) extends
(because H2(O) is dense in E(A, OF)) for u € E(A) and v € H'(OF) and defines
the normal derivative, for u € E(A,Of), in the dual space of HY/2(d0f) which is
H~1/2(0") through the equality (139). Here we made use of the fact that the right
continuous inverse of the mapping u — u|gor exists (which indicates that, for every
function ¢ in H'/2(0O™), there exists a function u of H'(OF) such that u|yor = ).

The extension to the non bounded set O = R? — F is straightforward.

For u € C§°(0), the mapping u — u|a,ua_ is continuous and extends to u €
H'(0), and has the same properties. There is no difference for the proof of the Green’s
formula for this unbounded domain. As C§°(]0, +o0]) is (up to the diffeomorphism)
dense in H'/2(A+) we may define by duality H—/2(d0). Hence we have

LEMMA 6.1. — The open set © on which we consider the result is either O or OF or

F. For every u € E(A,0) and v € HY(O), the normal derivative is defined through
the relation (139):

/Auvdx—i—/ VuVuvdz = (Oyu,v|e)
e )

where (, ) denotes the duality between H'/?(©) and H~'/%(0).
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The normal derivative being thus defined, we introduce the problem for u € H'(0O),

(140) (A+ w2)u(x,y7w) =finO
Onu(z,w) + iwzulgo = g on 9O
The last line is exactly (remember that Oru = —0ula.)
Opu —iwz " (x)u(w,a(z),w) = g4 (2, w), O_u—iwz(z)u(z,b(z),w) = g—(z,w).

We seek a solution of (140) for f € L*(0), g € H-Y2(00). Hence Au = f — w?u €
L?(0) and we may apply Lemma 6.1, the normal derivative is well defined.

LEMMA 6.2. — Under the condition
(141) Sw<0, Re)>0, R (x)>0, zF bounded
the problem (140) has a unique solution in H*(O).

Let ¢ € C§°(O). We have, if u is a solution

) o _ S _
w /Ougbdx /OVquSd:E—f— aoanu¢da /Ofgbdx

or, using the boundary condition

w2/ updx —/ VuVedz —|—/ (g —iwzu)pdo :/ fodx
o o 00 o
Introduce, for (u,v) € HY(O)

—a(u,v):wz/ uﬁdx—/ VuVﬁdx—iw/ zuv do
o o 00

L(v) = /O fodz — {g,v]00).

These two forms are continuous respectively on (H'(0))? and on H'(O). We have

R(—iwa(u,u)) = (—Sw) [|w|2/ |u|2dx+/ |Vu|2dx] +|w|2/ Rz|ul? do.
o o 20

We assume that (141) is fulfilled. We introduce the Hilbert space V, which is the

completed of C§°(O) for the norm

Ill* = ||U||%r1((9) + ||U|QOH%2(8O)'
This space is a Hilbert space, and the trace of u € V on 0O is uniquely defined.

This space is a subspace of H'(0O), and the definition of the trace coincides.
From the equality above, if we denote by

¢ =min (- Swlw|*, —Sw, |w|* min Rz", |w* min Rz") > 0,

we obtain R(—iwa(u, u)) = cl|ul| g1y = 0, hence, with |w|-[a(u,u)| = R(—iwa(u, u)),
and we deduce that the sesquilinear form a(u,u) is coercitive. Hence the problem

(142) a(u,v) = L(v), Yve HY (0)
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has a unique solution in H*(O) through the Lax-Milgram lemma. The lemma 6.2 is
proven.
e We assume w = —ip, p > 0. We have

§Ra(u7u):p2/ |u|2dx+/ |Vu|2dx+p/ Rz|ul* do
o o 80

The sesquilinear form a(u,v) is coercive in the ordinary sense and the problem (142)
has a unique solution in H*(Q). This is extended to the Neumann boundary condition.

We end this section with the Hille-Yosida theorem for the diffraction problem. We
prove

LEMMA 6.3. — Under the assumption u;li——s € HY(O), Owili=_s € HY(O),
(9?2ui|t:_5 € L?(0), the problem

(A= 0Z)u=0in O x]0,400]
U|t:—5 = Ui|t:—6

O+ 20;u =0 on 00 x |0, +o00|

admits an unique solution which is in the domain D(A), of class C* in time.

0 0 -10
_( 0o 0 0 -1

A_<—AO 00>'
0 -A0 0

Let

The wave equation with the boundary condition 9,u + z0,u|sq = 0 is equivalent, for
u regular enough, to (we write u = uy + iusg)

d ([ u uz 0
_<8tU1)+A<atU1):<8)
dt 6{112 6{112 0

() € (H(0))2 x L2(0)2, A () e (HY(0))? x L2(O)2,
D(A) — Y1 Y1

Ono + Rzyoloo — Szy1loo = 0,
Onx1 + Rzy1]oo + Szyoloo =0

with

From Lemma 6.1, the boundary condition is well defined in the domain D(A),
because z¢ and z1 are in E(A, O) hence we can consider their normal derivative. As
yo and y; are in H', we can consider the trace on 0. Using Lemma 6.1, we have,

To
with X = (;jg )
Y1

(A4 DX, X) (a1 (0))2x120)2 = (T0, o) 1 (0) + (Y0, Y0) m1(0) + (Y0, Y0)£2(0)
(W1, y1) 220y + (20, —Y0) 1 (0) H (w1, —y1) 51 (0)+ (Yo, —AZ0) £2(0)F (Y1, —AZ1)12(0)
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Making use of Lemma 6.1, we have

(A+ DX, X)) (0))2x2(0)2 = (%0, %0) i1 (0) + (T1, 1) 51 (0) + (Y0, Y0) L2(0)
+ (1, y1)12(0) — (0, %0) L2(0) — (%1, Y1) 12(0) — (Yoloo, Onzo) — (y1loo, Onz1)

(A+ DX, X)) (0))2x2(0)2 = (%0, %0) i1 (0) + (T1, 1) 51 (0) + (Y0, Y0) L2(0)
+ (1, y1)12(0) — (0, %0) L2(0) — (%1, Y1) 12(0) — (Yoloo, Onzo) — (y1loo, Onz1)

We consider first the boundary terms. We obtain

—(Yoloo, Ono) — (Y1]oo, 1)
= (Yolao, Rzyolao — Szyiloo) + (yilao, Rzyi|ao + Szyoloo)

= (Yolao, Rzyolao) + (Y1]oo, Rzy1]a0).

As (zo — $Y0, To— 390) 12(0) = (Z0, o) 2(0) — (0, Y0) 12(0) + 1 (Y0, Yo) 2 (0), We obtain
that, under the condition £z > 0, that A + I is accretive.

fo
Let us consider now the system (A + 2/)X = F, where F' = (gé), with f; €
g1
HY(O) and g; € H*(0O). This system, for X in D(A), is equivalent to the system

(140) with w = xo +iz1, f = =2(fo +if1), 9 = go + ig1 + (21 + iz2)(fo + if1),
w = —2i, yo = 2z — fo,y1 = 221 — f1. As the problem (140) has a unique solution
in H'(O) satisfying d,u € L*(00), Au € L*(O) we get a solution zg,z1 in H(O),
Azg, Az € L*(0), yo = 220 — fo € HYO), y; € H'(O), thus the solution is in
the domain D(A) = D(A + I). Hence the operator A + I is accretive and maximal,
thus, from the Hille-Yosida theorem [10], the problem of Lemma 6.3 with u; as in the
hypothesis and w;(z,y,t) supported in t < 6;(z,y) (hence u;(z,y,—0) is uniformly
zero on 0O, which implies that w;(z,y, —0) is in D(A+ I)) admits an unique solution
in C?(]0,00[, H! x L?) N C*(]0, +o0[, D(A)).

6.2. Calculus of the distributions on the boundary

6.2.1. Calculus of the Dirichlet to Neumann operators. — In this section, we
express the operators Rfk and R** with the same expression as (81), (83), (84), (82).
We denote by 04 f the limit for e — 0 of Dy f(z,a(x) + €) (rigorous way of defining
the trace on the boundary, according to [14]). We compute the wave ui(x,y,k)
(respectively u_) associated with a distribution f(x) on the face A4 (resp. A_), for
(z,y) outside A (resp. A_), that is

us(z,y, k) = (A+E) 7 (f® )

u_(z,y,k) = (A+E)"(fod).
‘We have
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LEMMA 6.4. — The following relations are true:
+
1 i(w—a)ef ie ELIEE
(14 (a'(x))®)Y20 uy (x,k) = lim — if(x)e PTETERE gy d¢f
e—04 47 RxR,
y [u+ - a’(x)§+ L1 +u+a’($’)f } [u+ —ad@) g | 1+pgd ()
T+p2 ! 1+ p2 1+p2 & 14 pu2
(14 (@' ())2) /20, u_(z, k) =
n
1 i(x—a')eF +i(a(z’)—b(z" )+ LTt
— lim —/ if(x’)e( S b g da’ dg;f
e=0+ 47 Jrxr,
e = o)y | Tpnal(e) LV | e VO
1+pt 1+ p2 1+ p2 1+p3 &4

Proof. — For y — a(z) > 0, using the Cauchy formula

.
1 i(e—a")EF +ily—a(e)) Ll T+
(143) u+(x,y,k):_/ e el ity —e() o
AT JrRxRr,
—_ a7 £ 1 1ol
« [M+ aéx)i +u+a2(ac )}f(x')dx’dff
L+pi & 14 p2
i(z—z' )T +i(a(z')—b(z’ —a(z %
(144) u_ (2, k) = —— iema el Hila(e) -0 v -a(e) Ly

4m RxR

X {1 +V @)y py V() & f(a') da’ g7

143 L+pd &y
As the support of f is included in [0, +oo[ and y — a(x) = & > 0, both relations define
C* functions through the Paley-Wiener-Schwartz theorem. We thus:
e compute, using (143) and (144), the derivative Dyuy and Diu_,
e show that this derivative has the limit corresponding to the usual one for ¢ — 0,
e > 0.

We have
n

Diug(z,y, k) = i/ ei(wfm’)feri(yfa(m))%M

+ Y+ ER 47T RXR+ (1+(a/(x))2)1/2

. ,u‘i‘ff +§+ / + ’ /J_‘_ff —|—£+ M+£]-F +§+

142 - — 0ty Oy (EoL T ot
[ ) (6 - @ - atea () )
L+pd & 1+ 12
—d'(2)d (/i+ —a'(2) i 1+ u+a’(x’))}
ol & 1+ p3
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hence
.
1 i(e—a")ef +ily—a(e) ELTE f(o0) da! deT
D k) =— vt e L
vut(z,y, k) 47 /Rxﬂhe ’ (1—|—(a'(x))2)1/2
e C)) Lt pya(z), \opg —d' (@) & 14 pid (@)
[[Z(l Ut ) (e e )
+py +p3 +up3 &+ +p
- N Y < pe&l + &4
+id @) (@@ - ) S — - 0@ ()
e 0 G 1t el (o)
L+pg &y 1+ pu%
ol () et 1 1( !
_a/(x)am<:u+ ag'x)i +/J+CL2(Z’)>:|
L py & LA p

‘We concentrate on the last terms. We use the relations
a'(x) — py = (x — 2") 0zt
(145) P <M+51++§+> . H+§f+f+a+<ﬂ+§f+f+>
R Tl 4pt N 14+

to obtain

+
1 i(z—a")ef +i(y—a(e)) LEEL TS Nda' dgt
Diuy(z,y, k) = _/ e( e e e )/ - 2511/2
AT Jrxr, (1+ (a/(x))?)
(@), 1t pd (@), e —d @) 1+ pd (@)
[[z( Ji+ 3 &+ 1_:2 §+)( +1 2 = 1+2 )
Hy Hny +uy o &y + pg
+ + +
- ok & _ prby &\ pa &l + 8y
+ia (x)(@zu+(x z') T+ 2 + Oupit(y a(x))@g( 1+ 2 ) T+ 2 )}
x<u+—a’<w’>£ Ll
T+pud & L+ pd
(e et 1 1!
_a/(x)aw(/'t+ agx )i —|—,u+a2(x )>:|
L+pg &4 L+p3

4
D+U+(x y k’) 1 / ei(wfm’)ff”ri(y*a(w))%m
s RxRy

Cdr (1+ (a/(x))?)1/2
(g —d(2) 1+ pya’(z') pr —d' (@) & 14 ppd(al)
HZ< 1+ p3 Sl 1+ p3 §>( 1+p & 1+ p3 )
pr bl 6\ pal + &
) ) T+ |
[u+ —d@)Eg 1+ u+a’(x’)}
L+pt & 1+ p3
_a/(x)aa:(/‘l’+ —d'(a’) & 1+M+a/($/))].

+ ia'(ac)(?gc,qu(?E;r ((x — a2+ (y—

L+pd & 143
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We finally check that (using 0,67 = —g p-Or iy )

L+ Apy M+—)\£}:
L+pd 143 &

ML= pd) =2pp 1 —py 20060 py(py — N KT
(14 p2)> (1+p2)2 & L+ &

(146) aw[

Oz it [

and (using J+&4 = —¢&F /€4 and O+ (&) =& /€1) we have

H+§f+f+(1+)\ﬂ+ H+—/\£)}
T+p2 1442 1442 &
B [)\(1 —#3) = 2p L= pd 2N g (py - /\)k’zfq
(1+43)? (1+p3)? 31

(147) Os [

which leads to

(148) 8, [ LT e — AL

}:_ " +[u+§f+§+<1+ku+ u+—A£>}
L1+p2 1442 & L 14k

L+pd  1+pd &y

We finally get

+
1 i(a—a')f +ily—a(@) 255 f(2!) da’ g

= =
D+u+(x,y,k’) 4n /RXR+6 (1-‘1-(0,/(.’1}))2)1/2
(g —d(x) oy 14 pyd(z) py —ad' (@) & 14 pyd (@)
Z( &+ 13 o

1+ p2 1+ p? 1+pd &4 1+ p2
H+§T+§+

{ ile—a )6l +ily—a(@) SR i & + & <u+ —d@) &g 14 pd @) )H
. S
1+ p2 1+p3 & 1+ p3

> +a' (2)0ppy

-0

34

which imply the result.
In a similar fashion,
.
1 i(z—a' )& +i(a(z’) ~b(z')+(y—a(z)) LT
e +1 T

D+U7({E,y7k):—E BxR
XIS+

. +
(L (e + ) ) - atoon (M)
NI S L4V (@ )y | py =V (@) &
— (@) 1—1HL2+ >>X< [ B R §>
L+ (2 )y u+—b’(x’)£>] f(a') da’ A&
112 L+p2 &/ (1 (0 (2))2)172

- a’(x)8w<
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hence
+
1 i(z—a’)ef +i(a(a")—b(z’ () AT ;§+
D+U,({E,y7k):—— 6( )5 +( ( ) ( )+(y ( ))) 1+u+
AT JrxRr,
X ZKM - a/(@%)
L+ 3 14 p2
t +
() (0 (0) = ) S — (ale!) = o) = ata))on (P
* +
X (1 H V(@ )y py V() i)
L+ud L+pd &
—d'(2)d (1 + V(") py L v (') i)] f(z')da’ A&
N1+ T+p2 &/ (14 (v (x))2)/?

We use the relation (145) to have

+ +
(o) = 04 S — (ala!) = bl 1y a2

BTG [ = o) + (ale!) — ba') + 5 — al)) gy (EEER))]

142 1+ p3
which leads, with (148), to
1 V(2! — b (x +
14 p3 L+p3 &4
+ 140 (2 — b (' +
A (2)Ou s {M+51 +2§+ ( + ($2)M+ P gl’ ) i)} '
1+ ps T+ ps T+p3 &4
We have then
n
j i(e—a')&f +ila(a’)—b(z')+e)) L TEL
Diu_(z,a(x) +¢,k) = - e ! VT
4m RxR
« [(/Mff—;@— _ a’(x)fr - M+f+> (1 V'@ )py LB b' (') £)+
1+ p2 1+ p2 1+ p2 1+p3 &
+
1 ile—a")&f Fila(e) bl )+e) LT g &F -
—,a/(x)azu+35+ [e 1 T <H+f1 +25+ —d(x & H;§+>H
f(z') da’ dgf
1+ (¥ (2))2)/2
The proof of Lemma 6.4 is complete. |
6.2.2. Transformation of the operators Rfk and RT*. — We notice that the

symbols of the operators of Lemma 6.4 are bounded, for &5 large, by |¢F|, which
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proves that they are operators of order 1. However, let
feH' ({y=a(x),z >0} N {y—blz),z > 0}).

To this distribution is canonically associated a distribution f of H!(R), and two

distributions f} and f_ of H'(R%), which are fi(z) = f(z)lsz0 = f(z,a(z), k)
and f_(z) = fl—x)lzc0 = f(z,b(z)). The distributions fileso and f_1,>¢ are not
element of H(R), because of the value f,(0) and of the value f_(0). Note that(?)
H'({y = a(z),z > 0} N {y — b(z),z > 0}) is associated with

{(f: f+) € LP(Ry) x L*(Ry), (1, f-) € H'(RY) x HY(RY), f+(0) = f-(0)}.

The contribution of the distribution on the boundary and the contribution of the
corner have thus to be explicitly written. Moreover, we must check that the distribu-
tion constructed with f € H'(0Q), which is 94 ((A + k?)71(f @ 8)g,)), is element of
L2().

Notice that

(x =2 )E+ (y —al@’))n = (z — 2")eL + (b(a") — a(a’))n + (y — b(x))n

and

(& —2")E+ (y — b(z'))n = (z — 2")& + (ala’) = b(z")n + (y — a(x))n.

We introduce the two phase functions

/1 N\ ¢+ / / /f'+§f + §+
oL (2,2, 65, k) = (z — )& + (a(a’) — b(a') + &) = —5>—
1+ ps
- - p-& — &
o (z, 2", €1 k) = (. — 2)& + (b(2) — a(2) — E)ﬁ
‘We prove
LEMMA 6.5. — There exists symbols qli, aQi, qsi, rsi, bounded for |§1i| large, given

by the relations (86) and distributions Si[ and SE, which are in H~Y(R), given by
(151) and (153) such that the action of the operators Rfk and R** is given by the
following relations:

RIF(f) (2, k) = f(0)ST + E/ of (z,2', &7, k)el@— & f(2) da’ def
R+ xR

1 . /
+ - af (@, 2 & k)8 g, () da’ de;t
T JRy xR

(DThe values of fi and of f_ are well defined because the distributions are element of L?(R4) N
H? (R%), hence the trace of these functions at the end is well defined.
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R () (k) = F(0)S™ + - / oy (@2, 6, k)G f(af) da’ déy
Ry xR

47
+ i ql_(x7x/7§1_,k)ei(w—m’)gl—am/f(x/) d.’IJ/ dfl_
AT Jr, xR
1 )
REM(f)(w, k) = f(0)ST + — lim ¢ (@, 2! & k)P 0, f () da’ def

T e—01,D' Jr, R

1 . ibt
B E EJéTD/ /]R+><Rr:(.%',$/,§i‘_, k)e i f(.%'/) da’ dfi‘_

1 .
RN ()@ k) = £(0)ST + — lim ¢z (w2’ &7 k)e's Oy f(a') da’ dég
AT e—04.D" Jp, xR

7

v E—»l(i)IRD/ /R+ «R Te (z, ', s k)ews_ f(l‘/) da’ dgy

This induces a definition of regular operators associated with the double layer
distributions:

DEFINITION 6.1. — The regular part of the Dirichlet to Neumann operators is given
by
+.,k ( i(x—z')eE
RES Nk = = [ oo gt et o) ar' agt
an Ry xR
1

- A==
— (@ & e O, () do dg
T JR, xR

. 1 -
RER(f)(a,k) = / ot (2, 2 €, k)ei®? O, f(2') da’ A&
4m R4 xR

R S A et

Proof of Lemma 6.5. — Introduce the following functions of (z,z") (additional to the
functions defined in (85)):
M (o, ') = 1 [1+u+a’($) L+ pgb'(@)  py —d (@) py —b'(x')}

’ A+ @@))2L T+pd 142 Ltpd 1+
M (2,a') = 1 [u+ —ad(z) 1+ p (@) py V() 1+ u+a’(w)]

’ (1+ (a'(x))2)1/2 H“%t 1+u%b , 1+ p2 1+ p3
MiF (2, a') = 1 [(u+—a($))(u+—b($ ))}

T T @@ T
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Mr(2.2') = 1 [1+MJN@1+MJNW)_u——dwﬂu——y@q
O T A+ @) 2l 142 1+ T2 1142
My () = 1 Vf—d@31+wﬂ@ﬁ uf—wm1+u4ﬂwq
2T A+ @)l 1t 1+ T2 L+
My (z,2) = 1 [(u— —a'(@))(p- — b’(x))]
P (L4 ((@)2)12 T+ p2 '

We note that the symbols involved in the expressions of (1 + (a/(x))?)/29, u, and
of (1+ (a’(x))?)"/?20,u_ obtained below in Lemma 6.4 are exactly

L& )P+ L3 + Lk

i MITE + My ETE + MR

In & wd - £
We verify the relations
(149)
AL (o St ) L (0, 0!)(&])? - L (0,0 € — L (2,0 )R
AT (o, S BBty L (a,a!)(67)? — Ly (3, 0)6 6 — Ly (@, 2K
AP (2,2, fi;’;f*, “ﬁf*) — M (z,0)€2 + My (w,")E4 & + My (2, 2')k2
A2 (!, S ISy M (') 4 My (2, 6+ My (o, 2 )R

Note that 0,/&4 = g,quawz,qu and Oy & = g—i,u,agg/u,. We introduce

m(z,2') = =1+ 0u(

pt(a(2”) — b(a') +6))

(=) — b( )1+/ﬁ

N a(x’) —b(a')+¢€
e
_ N —p_(a(z’) —b(z') +¢
m_ (z,2') = =14 0 ( T2 )

n_ (z,2') = (%/(M

)

1+ p2
tH(z,2') = -1 +aaz1,(1 ﬁ_:ﬁi-)
) = 00 ()
to(z,2)) = —1 —aagﬂll(l J/:_/ﬂ_)
sz (x,2') = 5830/(1 —|—,u2_)
‘We have
062 (0,0 € K) = 1 (.0") + €4 () + (ale”) = (e') + Vs D
00 (1,065 K) = € m (5,07) + € (0") + ale!) = W) + <o
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We denote by a and 8 the functions such that there exists functions v and 6
satisfying

+ + +
- +¢ ¢
A2 0 & — iy pay Y — Jafer + BT 0o + AT R22L 4 5Tk
_ (JT,JT, 1+/J/3_ ) 1+/J/3_ ) [ag §1 ﬂs f-‘-] d)a Ve §+ €

—2 § b p& — &
A+ (LL',.’I,'/, 1_|_u2 ’ 1_|_'u2

)ﬂ@q+&u%@+ﬁﬁg+@ﬁ

In a similar fashion, we denote by AX, B¥ T'* AT the functions such that

C AT (g & —uiéy M+51++§+)
+ b 9 1—'—#?‘_ 9 1—'—“3_

+ +
= [AT¢h + BFe )0y ((ac _ et 4P e +2§+> IRV
T+ pg +

LA £ +p-&- u—ﬁf—f—)
T 4 T 142

el T +£—> +ng2§i+A;k2.

=[AZ¢ + BIE )0 ((x —a)§ +e 1+ 2 _

These functions are given by the relations

of = —mEM +nEM;
: (m&)? + (n2)?
+ nE M + mEM;
C (mE)?+(n2)?
V2 (m,2') = —aZ (@, 2 ) s Op pa(ala’) — b(a') +¢)
0= (@, 2") = My (2,2') — (14 pd)mZaf — B ps0pps(a(@’) —b(a') +¢)
tELT + 517
© )+ ()
Bt — —sTLy +1FLy
)2+ (s2)
I'E(z,a') = —AF (2,2 )0 ps (a(2’) — b(2') +¢)
AF(z,a') = Ly (z,2) — (1 + p2)sE BE — BEps0pps(a(a') — b(2') + ).

SOCIETE MATHEMATIQUE DE FRANCE



136 CHAPTER 6. APPENDIX

We consider the expressions of Lemma 6.4. We have

.
1 i(z—z' §++i ptéy tey
Rk = tim o [T e o agy
RXR+

" [u+ —d(@) . 1+ u+a’(w’)§ } {u+ —d(@)g 1+ u+a’(w’)]
1+p2 ™ 1+ p? 1+p2 & 14 p2
) , Cuiefte

1 / TR LG A LG G LR e

RxR+ £+

‘We use the relation

LI + Lyl e + Lk? =

prél + &
1+ p3

k2&F

+ AT E?
&+

[Atef + B e (@ — o) +e B

hence

n
. 1 i(z—z’)ff—i—is—g—“tfl tet ) I §+ —|—§
Ri’k(f)(ac,k) = lim —/ e e [z@z/<(ac—x/)§f+6+1_li_7ui+>
k2 + k2
o +A:—Hf<x’>dx’d§f
£+ §+

i(z—a')ef +ie

&

+

X [Aj +Bj} +z‘[Fj

ny€fteq

il ) do’ de

= lim i/Mh [AngrBj]f(x’)aw/ (e

n
1 i(z—z")EF +ie P4&y T4 /{32£+ k2
+ lim —/ e el i[F* L +A+—}f(x’)dx’d§+-
e—=04+ AT Jrxr, : fi “ &y !

We use an integration by parts in the first term. We have

+
+ 1 (o) pie i o
(150) / 450 4 B pa) o (07T Y aw =
Ry &+ i
+ i(z—z)eT +i nyf ey
_/ aw’({Ai%+Bﬂf(x’>)e( T
Ry +
+ Zm£++’b “‘FET-FE‘F
— f(0) [Ai % + B } (2,00
+
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This leads to

RE*(f)(x k) =

lt+51 +5+

. 1 f i(z—z )51 +ie
_ _ +51 + 1442 ! 1o+
51—1>I(IJI+ 4 /]RXR+ Ou <[A6 &+ * B }f( ))6 vode d§1

et +51 +5+

o1 & iwg] +i
— +51 + 1442 +
f(0) Ehr& pm (A5 e + B )e +dgg

. (o’ f +i ry &y HE4 kg kg
+ lim L/ o T E [Fj S + A | f(a!) da’ deff
RxR4

e—04 47 §<2|» §+
Let us study the corner term. We introduce the sequence of functions

+&4

1 f i€y +16L
+. — +51 + 142 +
STe@) = —1- (A §++B) Tde
We have
i€ +i s“'*'&l +§+
(S 1) = //l +§1 +B+) T dgt da
Note that
Af (z,0) p &+ &
Atetr £ Bt Oy + 1
6§1+ s§+ 1+¢ a(1+2) (‘rfl +e 1—|—'ui )
_1
(B ear O () o e A0 sy
“l+e 8(1+2) 1+58(1+2) &

which imply the equality

.
(x)AZ (z,0) iwe ie S Tt
+,€ _ 144 +
(5150 = // §+1+58(1+2))>e + dzdg

8( ) FPTEE u+5f—+£+
1 1+# iz +ie >
- — +—+ 14u +
7T//l(ac —eA] T am( )>e + dedg
I
+
// Af(x 0) k2 iy O iy ”g“s“&é&r de de+
5 e rd&; .
1+ e04( 1+ 2 ) &5

The limit of such integrals exist when ¢ — 0. We verify that AJ (z,0) = —L{ (z,0)
and By (v,0) = —L3 (x,0). We have thus

)L 1 )
st = [[ersto (D) qragr 1 L [ costis o) ardsy
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which proves that

wer 5 (U@L (2,0) 1
(ST,1) = // &g, 57)dgcd§1++§L2+(o,0)l(o).

+
As L3(0,0) = 0, the distribution ST is element of H~*(R) and is equal to

)L (z,0
(151) (ST,1) = // intf %) da de; .
In a similar fashion, the symbol associated with the operator R is
k k2
ETNMER + MY & e, + My k] = 0,67 [as? + 8]+ 7 ;1 o
T +

and the phase function is ¢. We have similarly

/oc DT €% [ajg + 5;] F@)() da’ =
0 E+

. i T + B i
00 0D [t (0, 0) S (0] [ e 0 (100t o )
§+ 0 é‘
hence
+ +
: oo , A;’2(x,x’7 & —u45£+7 pt & Jg£+)
(152) - ﬁ/o 195 (@ 1) (o () 1Z+ )
1 -4 + §
e p— l¢s (m70751 »k) + 1 —+
47rf(0)€ [as (z, O)f + 3 }
i [T st e . ke Lk
i i PLANCE NS ’k)f(x/)¢(x/) [7 (x,x/) §1 15 a} Az’
+
1 [t / +
+ — el¢;(m7m ,ET,k)am/ [f(ﬂ?l)ib(ﬂil)(a:(l‘,l‘/)i +ﬂ;—>} dz’.
A Jo &+
We obtain
) 24+ 2
R = gig [ s e ) [y o) S 4 57
e=04 dm RxR4 + &+

e—04 47 S

where the distribution at the corner is the limit of S7¢ equal to

+ lim L /RXR el @' &l k) g, [f(ac’)lb(ac’)(a:(ac x )§1 —|—ﬁ+>} da’ + ST £(0)

540 = g [0 OG0 0 0 g

Noting that

it K2y
51 (1 + ) §+

1-—
B 5 (2,0, k) = &F +€aw(”+(x’0)>[(1 + p%)?
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which imply the relation
~ ~ . k?
ol & + BF e = al 0.(¢F (#,0,&7 k) + BF ey +5’Ys+a,
we obtain

(153) (S+,1) = %B}T(O)Z(OH—ﬁ / [ gfﬂ el 4y de
o (0,0) #

0) (because the phase

and this distribution is in H~ accordlng to &g ( )=
We have the relations &g (r) = o (z,0) and ﬁo () =

is ¢f (20,61, k) = 2& and m{ = % ni = f%55). Hence af (0,0) =

(1+a?)~1/2, which imply the existence of a function Ty such that o (x,0)+L7 (z,0) =
We obtain thus the relation

(ST 4 ST 1) = l/ eivet o, (ML) ) 0 qer
Am Jge &+

0
By (=,

Simple integrations by parts lead to

(154) (ST +5%,0)
i

= o [ et G i P er o T asagr.

& & &+
The two integrations by parts defined here lead to the expression of the symbols
used in Lemma 6.5 (using the symbols given in (86)):

o (0,0 & K) = b(@)e(e)of (@2 >2 1 6]
& (0,0, €5 k) = b)) oz (@,2) 2 + 6]
2 /{12
155) el e k) = b)) b (o) 551 + 05 o) ]
+
+i827’q;—(xaxla§i‘r7 k)
— I / — / k2£1 k2
ro (2", & k) = (@) P(z) [y (2, 27) & +6; (z, )57]
+i0prq- (z,2', &7, k).
O
6.2.3. Another representation of RjiF’k. — The expression of R™F involves the

phase function with (a(z’) —b(z’)). In order to be exactly in the framework of Gérard
and Lebeau, we need to find another expression of this operator involving the complex
number & = (k% —¢£2)'/2 with positive imaginary part. Recall that the phase functions
¥4 — and ¥—, + have been introduced in Lemme 4.2. We prove the
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PROPOSITION 6.1. — There exists ¢ > 0, q~5 > 0 and two contours Iy, Fqg described
in Figure 6.1 such that
LasoRTM(f) (2, k) =

_ 4 / e R B2(1 4 ol (2)l (2')
i Jpsr, (L+ (@(2))?)'7 &

(@) 1ps0t ()10 f(2") da’ d€

T+ @@ g

f(O) ) § eia:§+ia(a:)§0
TS KR ol

iy (z,a',&,k)
b [ W) S solersod (6 F) e
471— RXF¢(

1m>0R17k(f)(xa k) =
i / et -+ (@' E.k) k2(1 +a' (/)b (z))
RXF$ (

T 1+ (0(@)?) & V@) Lezov (@) lerzo fa') da' g

1 - @l &R ¢ NE () do!
55 e, TR (1)~ ) 0w one (0101 )

f(O) , f eizf—ib(z)fo
v [ Ve ) ar e

Proof. — From the relation

1 gile—aNEtily=b())n . .
w9 ) = g | g @il = V) d
we use the residue theorem to get, in y > 0 (because b(z") < 0 for z’ > 0)
1 - Neos /
u_(z,y,k) = —— ei@=a)E+ily=b(")eo [1 - b'(x')é} f(a')da’ d€.
4m R4 xR €o

We want to extend this integral to negative values of y, because we are not able to
compute the trace on y = a(x) and then restrict to > 0 without having informations
for this integral on y — a(x) > 0, —dp < & < dp. This is done by a deformation of the
integration contour in the variable &, which is R and avoids the branching points +k,
in the complex plane. This deformation is to be done in IS¢ < 0, because we want to
compensate the term R(iySEy) = —ySEp, which is positive when y < 0.

Assume that, for large values of &, the integral is to be deformed on ¢ =
— tan ¢|R¢|, ¢ €0, 7/2[. We note that

R(i(z —2")E +i(y —b(a")6o) = —(z — 2)I¢ — (y — b(2")) -

It is simple to see that £ = —¢&2(1 — k%/£?), hence we have, on the branch ¢ =
a(—cos¢ — ising), a > 0 (which is the negative branch), £y = a(icos¢$ — sin¢) +
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O(a™1'), and on the branch ¢ = a(cos¢ — ising), a > 0 (positive branch), we have
&0 = a(icos ¢ +sing) + O(a™!). Hence, for 2’ > 0,

(156) R(i(zr — 2')§ +i(y — b(2')&) = a[(v — ') sing — (y — b(a)) cos ] + O(a™")
<alrsing —ycosg] + O(a™1).

We construct then such a contour I' s, which is the interval [—2Rk, 2Rk], two vertical
lines linking the real axis at 2%k to the points —2i|Rk| tan ¢, and the two straight
lines 3¢ = — tan ¢|RE| (shown in Figure 6.1 below):

FIGURE 6.1. Contour I'z/3

We consider x € supp v, hence 5ctg > x > —5ctg, and thus, for ¢ty small enough,
there exists ¢g > 0 such that max @ = tan ¢g. We then consider £g > 0, and we
introduce ¢ = ¢g + £9. We have:

1 / e )Etily=b")eo (1 _ p/(5/)
R+XF¢

T i

u_(ac,y,k:) )f(xl) da’ df

£
€o
This expression extends holomorphically in y — tan ¢z > 0, owing to (156). The curve
y = a(x), —5cty < x < betp is included in this region, hence we can take the limits
and all kind of derivatives in the above equality.
We obtain
¢ ei(m—m/)§+i(a(m)—b(z’))fow(x)w(x/)f(x/) dz’ d§
[S0 — a'(@)€][§0 — V' (2)€]
1+ (a/(2))?)1/260

REF(f) (2, k) = —

am Jr, xTy

As we have the identity

[€0 — a(2)&][€o — V' (2')€] = (1 + ' (2)V/ (2))k* — [€ + ¥/ (a")&o][€ + a' (x)0),
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we recognize —0, 4 — = & + b'(2')€. Hence, in D/,

+.,k T __i e - k_2 o (oW (! 2oz Flz)) dz’
RO =~ [ i e W )l ) o

1 e+ - ’ f / / ’
e /R o TT @O @)+ £ w0 ) fa) da’ ae
£(0) eittia@t g
T G / T @+ g )

In this equality, the limit of the last term when we have ¢ = 0 is to be considered
as a distribution. We introduce the operator Rf’g( f) defined by

ROG(f)(a k) =
e’L"LZJ+,7 k2

S [ T g L @ e ) da ae

1 i+, - , ¢ / / ,
T /RMR 1+ (@(@)2) 2 [a (z) + 5—0]1#(%)@6/ (') f(z')) da’ dE.

A similar representation is available for the operator Rl’k. We leave the details
to the reader; in particular the integral in 7 is to be closed in 7 < 0. We find (the
contour I'y being constructed with ¢o = max —b(z)/z)

)

R (1) k) = P(ayp(a’) f(a')el eI b0 4y g

E Ry xT'z
[€o + V' (2)¢€][€0 + @' (2)¢]
So(1+(¥'(x)*) /2~

Making use of the identity
€0+ b (@)€][60 + o (2)€] = K21+ o' (') () — [€ — o' (")) € — V(2)50]
we obtain similarly

1 oy k_2 14+ d (2" )b (x)

RN () k) = — - e, [ s
1 [ é —V(x T aa:/(fw) 7
+ E R+Xrgew |:§0 b( )]w( )(1+(b/($))2)1/2 d df

N % /F $ pizE—ib(z)Eo Eo - b/(x)] de.
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The operator R;’g defined by

~_ y , , o k2 1 oW b/ ,
RS k) = —goten [ fotalpote)et i ot e
1 [ é o/ aa:/(fw) /
o Sy E YOO T Gy d
is also introduced. O

The symbols used here were introduced in (87) above and they are the symbols
involved in this new representation of Ri:g . For f € C§°(R%), for which f(0) =0, we
get explicitly from the above calculation (we have the right to consider the deformation
of the contour I'y or 1"5 on R because f € C§° and we use the dominated convergence
theorem).

6.2.4. Expression of the operators for straight boundaries. — From the ex-
pressions above, we deduce the expression of all the operators involved in the calculus
when a(z) = ax,a = tany; and b(x) = bxr = tany_z. We have (the operators are
denoted with small letters instead of capital letters in the general case)

PROPOSITION 6.2. — The boundary operators for the straight case are given by

i i(r—x' _£ k2
PR R) = o [T ' ag
— i//ei(ajfaj/)ﬁ éazlf(x/) d$ld§
4m €o

; . ’ 2
) k) = / / e >ﬁ’§—f<x’>dx/ de

B 47 cosy— 0
1 SN S o
- i(z I)cosw—_ , ’ /
47T//e §08z f(@")da' dg

) i—2—[€cos sin~]—i -2 k2
L / / ol eI T ) da

1 . . . B . z' ¢
L= // e [€ cos y+€o siny] =i coin— [sin”y—k COSV§£:| 8m,f(x/) dz’ e
0

4
L 1) /e—gs ot Cosvé} de
4 fg
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) cos sin — k
P (k) = -] / / o= (€ con o sinn] =i o ) de’ dg

47r COS Y+
1 _z , sin vl —i =€
— // leona G eosyHEosing]—igomr [Sin7+cosvg}8m/f(x')dx’ d¢
™

1O [t 4 o £

Vs 50] d

Proof. — We begin with the equalities coming from (149) and (86) written in the
straight case, the operators being given by Lemma 6.5. We have

PR = £ [[ e T e ag

4 cosyy

1 I +
- [ ) a cos
m Er

k) = o [[[ 5 g ag

T &_cosvy_
1 i(x—z')E] gf / ’ —
- — e 1 g—@I/f(x ) da’ cosy— d&; .
7r _

The change of variable £ = §1i cos v+, which imply &y = &4 cosy4, yields

u(z,y, k) = — iln — b¢)f(2') da’ A€ dn.

1 ei(@Etym) iz’ (E+bn)
dn? / — & —p
We introduce the change of variables £ + by = §~, n — b = 1, hence

2 EbT) +y(bELA)
+ 2

By = e T ) del i
w3, )——m/k2(1+b2)_(g)2_(ﬁ)2mf(x) ' dEdi

Note that the phase function is
(y — bx)ij + (z + by)€

hence when we consider y = ax and x > 0, the good deformation of the contour is in
37 > 0, which imposes that 7 = fg. We obtain, in y — ax > 0,2 > 0:

U,(.’L',y, = _—/e Tilljg ?JFZ;&) i Ef( )dx/dg

We deduce that, formally

y . S Y ~ ~ ~
Oyu_(x, k) =— ! C(:T’H /e“c oy [eos & tsinybo] —iz E[cos &0 — sinyE] f(x") dz'dE.
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~ - k:2 _ ~£
Note that & = oo oo & = hence we have

Oiu_(x,k) = — COZ;_ / @ ooy [cosvE+sin o] —ia’é [cosvg—ksin ’y} (—i€) f(2) da'dE
0

7 COS 7y /eiw%[c057£~+sin '\/Eo]—ia;’gﬁ (x/) dxldg

41 cosy—

0
After the integration by parts in the first term, we get

. cosvy_ = . =~ LT & .
8+u7 (x, k) _ COS’Y— /elz cos vy [COS’)’E“’Sln"‘/EO]_’Lm E |:COS'}/£ + Sin’}/] aa:/f(x/) dx/dé-

47 &
0) cosvy_ i SO5T— ol ain ~E. ¢ -
+ 7‘]0( ) i /ew oy, (o8 7EFsin o) [COS Wg + sin 7} d¢
47 &
i cosy 10520 [oos yEtsinyEo)—ia' €K, L, =
- — /e o8 Y+ = f(z") da’d¢g.
47 cosy— &
‘We revert to more usual coordinates with E = COSE , EO = 5,0 , and we have
v— cosy—

1 i—2—[cos sin —i=le .
8+U_ (1,, k.) — E /6 cosw+[ Y&+ 7o) cos y_ |:COS'}/§£0 + Sln’}/:| am,f(x/) dl’/ d§

[cos vgg + sin ”y} di

N f(0) cosy_ /em%[cowésﬁm'g’o}
0

47
. , . e 1.2
oSy i [ igy feosyétsinadol—igii £ k*
cosy_ 4w &o

f(&')da’ d€.

The method for the term J_wu is the same, based on the change of variables E = &+an,
n=—-al+mn. O

6.3. Asymptotic expansions of the DTN operators (from Gérard and
Lebeau)

In this Section, we reproduce the proofs of the asymptotic expansions of the opera-
tors of the type K Iand K™ as these expansions were done in the Appendix B of [20].
This is done here for the reader’s convenience so that the text is quite self-contained.
We recall that the e-sectors were defined in Section 4.5. We introduce the sequence
w, of d,-sectors used in [20] p. 375, that is a sequence such that (0 < §; < do)

0 = (1 —0)do + 01
o< 0 = 0y C wy
o <o = dws,Cwy) =di(c" — o)
We assume the existence of three constants ca, €2, do such that d(i,w,) > ea,
d(iy,Cw,) = ¢ for the points y € RN[—5,5]N[1 — 29,1 + 2e3], and w, C {Nz < da}.
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We introduce the weight function ®s (as in [20] p 373 (4.7)):
@5(u) =0, w<0

@5( )227 0<u5
Bs) =L - — L 62wz
2 21+ ) ’ ’

the constant ¢ being the constant obtained in Lemma 1.1. We introduce the weight
function (D(Si through

1 10
dE(2) =0, Rz € [0,d], |3z~ | >e0, 2| <
COS Y4 COS Y4
and @3 (2) = ®5(Rz) otherwise. Note that, if
1 9 x? 1 9
O(Rw, Rz) = sup [—=R(w —t)* + 2Rz — —] — =(Sw)
0Lzt 2 2

we have ®5(u) = ®(2,u). Then (this is Lemme 4.1 of [20]), for § = 3xe:
Forw € C, Rw < 3k, x € R, we have:

. (sw)2 "
H (T 1) (f)(w x—za,A)]' < D(2cto)*|| fllpem, e 2 @)

L2(R—ia)
1

|G

We introduce again W,, = {w € C, |Rw| < &, |1+ Sw| < £}. From Proposition 3.1,
there exists three constants A, B,d (with d < ctg) such that, for f € H'(R,), with
the two possibilities f = u — uy, or f = u —u_, which allows us to use Proposition
3.1

. (Sw)? z
az)’“[@o@n)(f)(w,x—za,mH < D(2eto)" | £l ey E .

Lo (R—ic)

EMMA 6.6. — For €1/3c, z € w c, |1+ Sw| < /¢, we have
L For § < C, Rw| <9 1) h
|(To @ T)(F)(w, 2, )| < AN 301225 (),
[(Ty @ T1)(9a f) (w, 2, )| < AN FLeZ (ST ATTE),

This lemma, (Lemma 4.2 of [20]), leads to the definition of the constant d, used in
the assumption on g5 and ds:

€0COsSYL < €2, dacosyi <d.
6.3.1. Expansion of pseudodifferential operators. — Introduce
I(t.k, 2, ) = Ti(Loso R (Tof)(t — ik, 2, A)
= Ti(LesoR} 0™ (Lar200 To f)) (t — ik, 2, )
+ T1(Le>0S 15 (ToN)(t = ik, 2,0) + Ti(Leso RIS (To f)
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The equality similar to (B.1) p. 400 of [20] is then

IV = /OO e)\mz—)\z2/2 [wz / dJ? d<+ iNx—x )(1 —v((] )2
0 C1
X i (0,2, G 1) (To (Lars00 ) (¢ — ik, 2/, N)) da
oo )2
_|_/ eAa:zf)\wz/2 > [wz (1‘)&/ dz’ dCi‘—eiA(azfa:')Cf'fl/(Cf—)Q
0 4

x s3 (z, 2", (k) (To(lerso f) (t — ik, 2’ /\))dx]

+/OO eka:zf)\wz/2 / dz’ / dC+ iXz—z' 71/(C1)
0 C1

x st (2, G k) (To(1 $/>0f)(t—zk,x7A))dx].

We have, in Sk < 0, I = lim,_o, 1Y = I + I + Iy = lim,_o, IV + lim,_o, I¥ +
lim, o, I§. We reproduce the proof of Proposition 4.1 of [20] (appendix B, (B.1) to
(B.27)) for the integral defining I} .

Let us write the Taylor expansion of ¢; (z,2', (], k) in the variable x in the neigh-
borhood of x = 0. We have

qf(x7x/7cf7k) =
p N+1 It N
Z o q (0,2,¢f, ) (N—|— ] 8mN+1q1 (sx,a’, (T, k)(1 —s)Vds.
n<N

Hence, if we denote by

17 > rz— 1‘2 1 xr— 1'/ +—l/
I px = / Arzoaa?f2 [%() / / det e a—a)eF e’
0

g+l N+1 -+ I+ N G
X [m/o niaay (sz, o', (7 k)(1 — ) ds] (To(Lar>00x f)(t — ik, z', N)) dx]

as well as

v > Aa:zf)\w2/2 ﬁ i / + iA(I*I/)C-F*V(C-F)z
Il,n—/o e X [n!wg(x)47r/dx/ ¢ e G

X Ot (0,0, G R)(To(LarsoDu f) (¢ — ik, ', X)) da,

such that, of course, I = > v LIy, + I g v+ we have, using an integration by
parts in z three times and the compactly supported C* function s (x), the relation,

SOCIETE MATHEMATIQUE DE FRANCE



148 CHAPTER 6. APPENDIX

valid for N > 3 (to cancel the terms coming at z = 0 from the integration by parts)

[e%s) /\a:z+i)\w(:f' 1 by N 5 a2
v i (~10.) uaa _/ dx// deF - G =xa?/2-w(C)
1,R,N = /0 z+z§1) ( by ) [1/12( )47T . o @)

N+ ol a;VNtlqu sx,x’,(f,k‘)(l—s)Nds] (To(Lars00a f)(t — ik, 2’, ) dz| .

Letting v go to 04, we get the limit because now it is absolutely converging as an
integral in ¢;". More precisely, for z € U and (;" € C1, we have the relation Rz —S¢ <
—Asine + a” < —2, and we use the holomorphy result of Lemma 4.5. This leads to
the estimate, using for z € U

/ g __ D
e 2+ T (L4 ]2)?

!
Nta N! 64/\Ct0a

W 1o Boarz00un /)t = ik Ml eges

Hence, for N = [Aa’/eD1], we get (D1N/a/\)N < eV < ee=?¢'/¢D1 | Hence

| hm I{ g n| < DAP(Dy/d’)

| im I{ g n| <

v—0g 0

N! 1
NN 1+ |z|2
For tp small enough, we have 1/eDy > 4cty, hence lim, o, Ii’7R7N is negligible in

H((ZSO) XK) U)
We now perform the asymptotic expansion on each term I7,. For this purpose,

DAP(Dy/d')* e M b 1| (T (150000 ) (E = ik, M) 22¢2, -

we introduce
Jin (Gt k A)
:/z/;(gc’)cl:c’e*WCl+ x 0% qy (0,2, ¢ k) (To(1er>00. f)(t — ik, 2, \)) do
such that )
., :/OOO dx/c d(fe’\“’/\%“/\qu”w(x)%e’”(qul,n(gf,t7k,)\).
A

We use Lemme B.1 of [20], which writes
We assume that Jin(Cf,t,k,)\) is a family of holomorphic functions for (t,k) €
X,., which is L? in the variable (; € C1, satisfying the estimate, for at least C < 0:
1L 0t ks Ml 20,y < Cem (D fa!) Aot =0),

Then

22 )\
> / do / A XN NG () e DT (G k)
Cy ™

n<Aa’ /eDy

is uniformly in v negligible in H(¢o, X, U).

MEMOIRES DE LA SMF 88



6.3. ASYMPTOTIC EXPANSIONS 2 149

Recall that the FBI transform 77 has an inversion formula

og(x) = 2);r /eMm_Mz/leg(ac —ia, ) da

which imply

) A ;
efz/\a:,q'wzg(x) _ /e“\m*’\ﬁ/leg(ac _ ZCI" —ia, /\) dao.

2
We apply this formula to g = Ty f (t — ik, 2’, A) which yields

TinlG .k, ) = 4 [ () da'eX X o g 0, ¢ )

X (To @ Ty (1400, f)(t — ik, 2" — ¢ —ia, \)) dz da.
> 1

Using an integration by parts for the formula of J,, 1, we obtain, with the help of
(1— )\—128(296/)2)(6”\”/) = (1+a?)e™**’ | the identity (which defines ji ,(¢Ht, &, N, 2/, @)

Jl,n(<f7 ta ky A) = dJ:/ dOlen
R2
)\ eZAO( 1 2 =z’ 2 2an  + +
= % - w( )d /1 o ( —ﬁa(m,)2> [e (=")*/ (9znq1 (0»$/»C1 ,k‘)

(To ® T1) (Lo 500w f)(t — ik, 2’ — iCf — ia, A))] da da.

We split C; in two parts, called C; and C;, with

Cr ={¢ e, ‘%Cf— ‘>1+D1t0}.

coS Y+

For ¢} € C{ and 2’ in supp ), we have R(2' — i(;” —ia) < 4ctg — a” < —1, owing
to the form of the contour C;, given in 6.3.2. Hence

D)\D —)\(m) /2(D /a )n—i—l Ao (t—ik) W-‘-”ﬂ

a?+1 7
owing to Lemma 4.1 of [20] which gives an estimate of (%@)k(To @Ty) f(w,z—io, A)
for f € L*(R?), supported in 0 < 2 < ct, 0 < 2t0
Introduce a function g, C§°(] — 20t07 2cto]), 0 <1, g=1on [—cto, cto] and
!/
_ ’ r . ’ « ’
(157) E—{(a,x),x =y +19(Q)WD—17 Yy €Supp¢}~

We have the inequality, replacing x’ by v’ +ig(y )W Br inddaz’ — A5 (I and

using %B—l <L

b

DA~ DU+ 2200 gyt ooy 1+ 2w
a?+1

il 2y <
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for (t,k) € X, (a,2") € ¥. We split ¥ into the part contained in {|y’| + |a| < 7},
called ¥y and X1, we get

Jl,n(g",t,k:,/\) = d2’ daji, + dz’ dajy .
21 E0

The family of functions Ji (¢t k,A) = Js, d@’ daji,, satisfies the hypothesis of
Lemme B.1 above, hence

/ dxx"/ dClJre’\“*)‘ﬁﬂ)‘wqr i67"(41Jr)2171 n(G5 k)
0 61 4dm '

/ da 2™ d<+ Azz—ATG- +1)\$C+ie*’/(ﬁf—)2 dJ?/ dajl,n
C_ 47T o

™

/ dx z"” / d¢ et A% bidad) %e_”(q)2']1,n(<f,t,k,)\)

is negligible in H (g, X, U). We reduced the problem to these two integrals.
For the integral on C;, we use R(z’ —i¢;" —ia) < 2’ + a’, hence we get

tall ey < DAP(Dy faryr1e > eainteivyexeatat o) 11 12

a?2+1 ’
From this inequality, if we deform the integral on R?
Jl,n(<f7 ta ky A) = dﬂjl dOlen
RZ
A ezkaw' 1 @) .
=T Jpe P(a') dz /1 P ( - ﬁagz’V) {e A 0mq (0,2, ¢ R)

(To @ T1 (1004 f)(t — ik, 2" — il —ia, \))| do da
on the same ¥ for (i € C{, we get, using the inequality

D)\D(D /a )n+1 Ao (t— zk)+AG||f+HL2(R2)

il paery < e

b

2 / /\2 / !
< —alul o a W) s ot g(y') d Ty

We use the result of [20] p. 403, that is G < 0. This is true because sup(a'd) =
sup(a’, 3kc) = sup(a’,3a’c/D1) < to. Hence the decomposition ¥ = g U X gives
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again the relation

Tin(GHt R \) / &' daji,
o

A , Ieikaz’ 1
v)dz 1+a2< A2

(To @ T1)((1ar 002 ) (t — ik, 2" — i —ia, \))| dvda

_ (m/)Q .
= I e Rz ) |67 T Olhua (0,9, G K)

is negligible in H (¢g, X, U).
Moreover, integrating by parts in the variable 2/, the contribution of %y yields a
term negligible in H(¢g, X, U), hence we get

)\ . ’ ’
(158)  Jin(Ghot ko N) — [ da! dajin = — [ () dalePror —AED?/2
o 47(' R2

O (0,2, ¢ B)(To @ T1)(Larz00u f)(t — ik, &’ — iC —iv, N)) dz dav.

Note that all this part has been done to prove that we could reduce to the integral on
a compact subset, which is ¥o. Note also that this is valid as well for ¢~ € ;" and
Ghecr.

We use now the assumption a’ < d. This proves that, for (z/,a) € %¢ and (;" € Cy,
we have

[(To @ Ty) (1ars00ar f)(t — ik, 2’ —i¢ —ia, \)| < DAder0t—iR),
O (Ty @ Ty (1500, f)(t — ik, 2’ — i — ia, \))| < DAAPot=R) p pmtt
| z ( Z 1
We write the Taylor expansion on 2’ = 0 of d%.q; (0,2, (;, k):

O i (0,0, K)

O (0,2, G k) = D = ! ()™
m<M :
(x/)M—i-l 1 o
n-m i
+ m/o 8wvf(w/)mqf(0,8$ 7Cf7k)(1 - 3) ds

for M = E(X/C5).
We plug the remainder term in the expression of J;,. It gives a term which is
negligible in H(¢o, X,;, U). Moreover, integrating by parts in « leads to

n+m + +
8z”(m/)mq1 (?707C1 k) 2i w(x/)dxleikam/—k(m/f&
m.: m PO

(159)  Jin(¢Ft kN +

1, \m . . :
(Xaz) (To ® Ty (Lar2002 f)(t — ik, 2’ — i —ic, N)) dwda + By + J7

where By is the sum of the terms on 9%, are negligible and J7 ; is the remainder
term, including the remainder term of the Taylor expansion in z’ and all the other
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terms (in particular on ¥, for ¢;” € Cif). The term Bj is bounded by
DAPMo(=i8)(D/a/y+1 S (D /aym 1A D5 D)
m<M
and the remainder term J127 A is bounded by
D)\Dez\q&o(tfik) (D/a/)n+1(D/a/)M+1)\7M/2(M/2)!.

Both terms are negligible in H(¢g, X,;,U), as soon as Cy > C3, where C3 can be
computed in terms of a’. Hence we can replace the integral on ¥y by an integral on
any contour localized in the neighborhood of (0, 0) this contour being a “good contour”
in the sense of Sjostrand for the phase function az’ + i(z')?/2.

We note now that, if we denote by H(t — ik, —i(;", \) the holomorphic function

(160)
A e
o P(a') da' e =MV T @ Ty (15000 f)(E — ik, 2’ — il —ia, N)) dz da
Yo
— Jp(To @ Ty (1000 f) (t — ik, —i(], N))
we have

O H (t — ik, N p2(c,y < Ce™MC DMmler®ot=ik)
z ( 1)

‘We have also the relation

161) A [ amp@ere e
0

3021,

where, for z € U, ¢ € Cy, |9ir| < Ce™Cj1/|z].
Replacing in the equality

T = / R / d’ / A HeE-aGE -6
’ 0 n! A7 Jw oo

X Ot (0, G ) (To (Lars00ar ) (E = ik, 2/, ) ]

s
z—l—i(f)_'_r(z_'—lcl )]

the relation (159) giving the asymptotic expansion of Ji ,,, and integrating in  using
(161), we get, as [J,!,d.] = 0 (which allows us to exchange the derivation and .J; ! in
(161)) and [J,, 0.] = 0 (which enables us to transform the following relation, written
using (160)):

ot i (0,065 k) o

™ (x! A / 1 _idax’ —X(z")?)2
ml o Eow(“d“
1. \m
(50)" (To & Ty (Larsoy f)(t = ik’ = iGF — ia, A))] dz da
o g (0,065 k) 1
e o (50:) ™ (T @ Ty (Larsour )t — ik, ~iG ).

We have only to let v go to 04. The remainder terms are negligible in H(¢g, X, U).
This is valid when CY is replaced by C; > CY = deD;/a’. This ends the proof of the

MEMOIRES DE LA SMF 88



6.3. ASYMPTOTIC EXPANSIONS 2 153

asymptotic expansion of I;. The asymptotic expansion of I and I3 follow the same
pattern. We have, when f is constructed from v — u4 on A:

A 1,\n1 d 1, \m .
n-ig (X G [ Stk 0G0) i)

is negligible in H(¢o, Z,//p,,U) and

1 1.0l d 1 \m .
Ig—EJpl< > (50 %/clzfigsi”””(k’f)(xaz) JpF(—z§)>

n<A/Ch
m<A/Cs

is negligible in H(¢o, Zs/p,,U). We have also for the terms with F, owing to

F(w,z,A) = (To @ T1) (12200 f) (w, 2, A) = T1 (13500 (To f)(w, z, A))(w, 2, A),

B O SRR Ly . [
I 2Jp < ()\az) 277/0 Z—|—i§q17"’m(k’§)(/\az) JPF( 7/6))
n<A/Cy 1
m<A/Ca

is negligible in H(¢o, Zq//p,,U). Proposition 4.5 is proven.

Let us consider now the singular terms, used in Proposition 4.6. We prove Propo-
sition 4.6, following step by step the proof of [20]: (B.28) to (B.113). Some steps may
be omitted here, the interested reader must refer to [20] for the completion of some
expansions.

We prove the result on the term

T (RTM(Tof))

where the operator RTM2 g given by the limit, when v — 04, of the integral:

+oo 5
(162) / dée ™ 2 (t, 2, €, \)j(t, 7, &, N)

— 00

with the relation

r2 (t,z,&,A) = /0 dz 1/;(x)%ek(z(z—mﬁ)%a(z)ﬁo—m2/2)

A [ e i
iTEN) = o / da’ p(z)e = AT ETNEIO T (10500, f (2 (E — ik, 2, N).
™ Jo
Recall that & = (k% — £2)1/2, Sk < 0, 3¢ > 0. We consider the contour C(). If
k<<l <1, for £ € C(l1), the function k — & can be extended to an holomorphic
function on |k — 1| < 3k, and there exists Do, D3, D4, D5, Dg positive constants,
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independent of I; and k, such that

S&o = —Daly
D3(1 +[Sk]) > |€o] = (I +x)/Ds
(163) (€ + tany-&) > Dar
(€ +tany-&) = ~l1/Ds = [€ —cosy-| < VIi
|€ + tany_&y — cosy_| < Dgly.
The inequalities on (€ 4 tany_§p) are obtained when considering the contour
{&+ tany_&p, & € C(l1)} shown in (172).
When we deform (162) on C(I1), we show that this integral is defined for (¢, k) € X,
and z € U. We also easily check the inequalities, obtained for ¢y small enough,

tan'y+x <a(2) < 3tan v, and 3tany_ 7 < b(a') < tany_ o
2 2 2 2
for (z,2') € (supp¢)?. Hence we obtain
b /
Rz +ie+ e < a4 pn <1 vt + ey < o
This imply the inequality
(164) 7 (t, &y &, 0)] < DAYAPUY | 1,500, f(t, )| 2w, e %0 ).

Let us write the Taylor expansion of the symbol contained in k, using the notation:

on(y, & kA) = (8y)"%eﬂ(a(w—mv+y)£o—y2/2_

CL/(.’IJ) + 6/50 eiA(a(a:)ftan yrx)o—x2)2
(14 (a/(2))?)!/2
" T — N
- Z _Un(07§7k7)‘) + %o—l\Hﬂ(yvgak?)‘) dy
n<N
Note that, for y € suppy, we have, if a is an holomorphic function on

{z,d(z,supp®) < p}, p small enough, the inequality

(y+ pe“’)Q}

R[i(aly + pe’”) = (y+ pe'”) tan ;)& — =

< R(ialy) ~ ytany:)%) — L+ Dlyp + p*)(1 + &)

Let ( = 2z + i€ +itany4&y. We get the inequality

0o ] T _ N
‘ / dxw(x)eAz(z+lE+tanﬂ{+EO) / %UN+1(ZJ,§J§’)\) dy
0 0 :

A R
0 0
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where

oy) = %(y(z+i§+i%§o)) + Dyp(1 +[])

< ySR(z + Dyp + it + z(? + D3,0>§0>.
We have ¢(y) < 0 if p < 1. Hence, the change x — y = w in the integral obtained in
the right hand side of the equality above yields

[ o N+1 2
/0 /0 dady () (i — y)V e WHW@!)(pNH)eADP (1+1¢0])

< D(N + 1)6)\Dp2(1+|§0|) /oilu uN PuRC
h pN+1 0

« DN AU sppraie
S ARy

For the choice of N + 1 = [A/Cp] with Cp > 1 and p? = (N + 1)/A(1 + &), we
obtain the inequality

R ot o N+1 2
/0 /0 dz dy () (z — y)N e y)%4+/\¢(y)(pN7+1)e>‘DP (1+]&ol)

<<W>N+l/2<m1z?_%\y|§o>N+l/2.

We fix Cy > eD, hence, using the second inequality of (163), we have
> N a@—pReiro@) Y 1) aps2aye
/0 /0 dz dy ¥(z) (@ — y)Ner=—v) (y)pNTe P> (1+160))
< De 290 (|Rz| + §g)~ VY2,

When [1tg < CLO7 using the inequality (164) we deduce that

oo —ve? > Az (z+i€+tan v &o) ¢ (.’IJ — y)N .
/ dfe /0 dx¢($)6 o A TUN+1(ya€7ka)‘)dy.](t77-7£a)‘)

is negligible in H (¢¢, X«,U), which allows us to consider only the Taylor expansion
up to the order N, with N = [A/Cy] — 1.

A similar calculus yields
(165)

‘/ dxw(x)emzﬂf“a“wfo)x—|an(o,g,k,A) < De ™2 (|Rz| + S¢o)~ /2,
0 n.

The asymptotic expansion relies on the expansion of j. Let
C(l1) N{S(§ + tany-&o) < —l1/Ds} =C(l) ™,
and C(I1) = C(l1)~ UC(l1)™. The aim of what follows is to prove:
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(1) for £ € C(lh) ™,

: ~ i AT m —)\#—i)\(b(z’)—tanﬂ/_z’)fo

gt k,§N) ~ o > W(am/) (6 )
m<A/CY

X (02)™(To © T1)(0ar f)(t — ik, —i(§ + tany_&o), A),

which is achieved by using the inversion formula for the F.B.I. transform 73, and
deforming the integral in (o, z’) € R x R4 obtained on the contour I'(ls) x Ry =
{B+il2(1+ SN} X Ry. with to+ 1 < 11 < 1,

(2) for £ € C(I1)™ we deform the integral obtained after using the inversion formula
on ¥ = {(a,2'), 2/ =y + ig(y’)ng, (a,y') € R?} where I3 is such that
0 < I3 < 1, and we prove that j(t,k,&,\) is estimated by the integral on X, the
remainder term being O(e)‘(qﬁo(t*ik)’l/c(r))). We use the stationary phase method to
obtain the asymptotic expansion of this term.

Proof of (1). — We check that, for « € T'(l2), we have

l
detg — — + 3o, [S€o| <2
Ds
deto2(tany- —lo) + 1, [0 < 2.

R(2" —i(€ + tany_&) —ia) <

This is a consequence of £ € R, |£] > 1+ 11, S& > 0. If we choose tg + 1o < 13 < 1,
we obtain that the leading term is —I;/Ds, hence

L

R(z' — i€+ tany_&) — ia) < D

where the constant Dj is not too different from Dj. This implies
(166) [|02"(To ® T1)(0a f)(t — ik, 2" —i(§ + tany_&o) —ia, M| L2(ry,)
< (Dg/ll)m+1m!€>\¢0(t_ik).

As we have the inequality, for ty < lo:

R(ia'a —i(b(z') — tany_a")€ — (2')%/2) < —a'l2(1 + &) + D5 ()|
S —1‘/[2/2

we write, for o € I'(l):
> i)\m/a—)\ﬁ—i)\(b(z’)—tan’y_r/)fo /
e 3 ¥(a')
0
(To @ Ty) (0w f)(t — ik, 2" —i(€ + tany_&y) — i, \) da’
* iz’ o (xl)m m | — (@)? —1 z’)—tan x’
= Z /0 da’ e —T o [e A iA@Y —tan - 280 ), (41

m
m<M

X (TO ® Tl)(am'f)(t - ik,l'/ - Z(f + tanv_fo) - ia’ )‘) =+ RM(t7 k7§7a7 A)a
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where Rjs is given by the integral Taylor formula. We perform an integration by
parts in Rj in the variable o/, such that the coefficient becomes —1/iAa. Hence, if p
(which is such that a is holomorphic on {z, d(z,supp ) < p}) verifies p < la, we get,

as
da \1/2 D
([ mm) < SN2
r(iz) | (l2(1 +[S&ol))
we obtain
DM +1)! ADp2(1 i
Ry (t k& a,N)|da < e ADP” (1+[€o ) +Ado (t—ik)
L 1Rtk 000 < e g

We choose M + 1 = [\/C}], with C} > 152, and p = (%)1/2. This imply

(167) / |Rpr|da < De=2C0(1 4+ |Sgo|)~M/2.
(I2)

Hence the contribution of Ry in (162) is negligible, thanks to (165).
Let us study now each term of the Taylor series. We use the relation

m)! I\

/000 da’ e (') @)™ _ (—_L)mJrl + ()

where, using again an integration by parts in 2’ and ¥ (0) = 1

1)@ a _ / (xl)m /
[7om (e ’)\a/ O (@) m! dz
6_212cto(1+\\f§o\) ( 71) )mil
)\|04| A2 (1 + [S6o))

because, on supp(1 — ), we have 2’ > 3cty.
Note now that, when p < [y,

(I —l xr an _fL‘l
||(am,) (e — A= —iA(b(a") —tany-2")go
(To @ T1) (0o f)(t — ik, 2’ — (£ + tany_&o) — iav, A)) |$/:OHL2(F(12))

ﬂ!e)\¢0(t7ik)+)\Dp2(1+|§o|)
pm ,

X

hence, choosing p = 1/2 « 1y, we obtain, using Cl < 12_2:

(xrien)

> ) el @llzzra (@) (e A ten -
ma/cy YT

. [(To ® Tl)(aa;/f)(t — 1k, - Z(f + tan'y,ﬁo) —ia, )\)]) |m’:0||L2(1"(l2))
< Dloef)\/Dloek(ﬁo(t*ik?).
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From (165), this term is negligible, hence

' A2 ! 1 “AEDE in(b(a’)—t 0%
J t,k,f,)\ = a_ / - m+ 8m/ (e 2 v z any—x )so
( )= > (50) F(12)( =) @)™ (

A 27
<C_

(To @ Ty)(0ur ) (t — ik, 2" — i(€ + tany_&) — i, /\)])|m/:0 do.

The residue theorem allows us to use the pole a = 0, for which we compute (owing
~m=1) the m-th derivative in « of

oy

to the term «
(aa:/ )m (efkgfik(b(w')ftan vy_z")éo

[(To @ T1) (0 f)(t — ik, & — i(€ + tany_&o) — icr, A)]) =0

This term is exactly
(_Z)m(awl) ( )\(z —iX(b(z")—tany_z")&o
(02)™[(To ® Ty) (@ f)(t — ik, 2’ — i(€ + tany—Eo), M)]) oo,
hence, as the residue is —27i, we get

)\ 22 . , ,
(168) (k&N = = S0 AT (e XU e
m<A/Cf

~(0:)™(To @ T1) (8w f)(t — ik, 2" —i(€ + tanv-&o), A)]) [or=o-
This ends the proof of the item 1 in the program. O

Proof of Point (2). — We notice that Tp(0, f) is equal to 0 if ' < 0 (functions
supported for 2’ > 0). Hence, for £ € C(I1)T, we have

gtk EN) = // (t,k, &, N2, o) do’ da

where

by eika:'oz 1
- (1—=8%)e"
27r1—|—012( /\2873)e

(To @ Th) (0w f)(t — ik, x — (€ +tany_§&p) — ia, \)

ot k&, N2 a) = M i) —tan -2 o) gy (1)

We use the same proof as the proof for the pseudodifferential terms, starting at
the contour ¥ (157). We use the result of [20], pp. 410-412, to obtain

9o 22
1 ., D ol eAbo(t—ik) NG
(169) ol k.6 N o) < DAPICELY

The aim of the proof is to obtain G < 0. This is done in (B.79) to (B.92) of [20].
Finally, the conditions we obtained on the constants are

k<ly, k<& <d L<DUP+1?%), 21 <1
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which is all right (and all the conditions we came across are satisfied) if
k<ly, k<ty<ly<l, k< min(ly? d).

The proof of point 2 was sketched. O

Now, we replace ¢ by the original symbol oy by integrating by parts, the boundary
terms being negligible, and we have

oot k, &, N o' a) = A ida’a g A(CR 4i(b(a") —tan y_a')Eo)

(") (To @ T1) (0w f)(t — ik, 2" — i(§ + tany_&o) — i, A).
Recall the inequality (k < d), which is a consequence of Lemma 6.6:
|0™ (To @ T1) (8ar f) (t — ik, 2’ — (€ 4+ tany_&o) — i, \)| < D™ HmlerPo(t=ik),

We use the stationary phase lemma on the phase function ¢(2’,2) = 2’z — # —
i&ob” (0)(2")?/2 using the symbol

U(t, k,f, \; J)/, Z) — e—i)\fo(b(z’)—tan'y_m/—b”(O)#)

(To @ Th) (0w f)(t — ik, 2" —i(€ + tany—&o) + 2, A).
The critical point is 2 = z = 0, the “laplacian operator” is
02 1 02
— — (14" (0)&) =5
0x'0z 2( b )60)8z2
and the stationary phase expansion yields

(170) it k&) =
A 9?

1 —-m 1 - 82 m -
2 g/:cw i [ax,az 5(1+ib (0)60)8Z2] ot k€07, 2) e —ao
mx 0

+ 0(6A¢0(t—“€)—>\/D).

The expansion obtained in (168) for £ € C(l;)™ can be rewritten in a straightfor-
ward manner:

(171) j(t, k, & N) =~ 21 > i,xm(a;az)m(e—A#ﬂ%”@’fo)v(t, k&N, 2))
m<A/Cl)

Hence (170) and (171) are quite similar. We intend to show now that both expan-
sions are equivalent (their difference is negligible). The asymptotic expansion is thus
valid for € € C(I1)~ UC(l1)™T.

The end of the proof of Proposition 4.6 is thus a consequence of the precise calculus
of the expansion of the stationary phase theorem using the operator

02 1 02

-7 /!

SOCIETE MATHEMATIQUE DE FRANCE



160 CHAPTER 6. APPENDIX

More precisely, considering the same formal computation as [20], we introduce the
polynomials in X:

Po(X)= 3 1x7"[ o +X82]mv

m! 0x'0z 022
m<A/C
1 —-m 82 m 7 2')?
)= 3 h ]
m<A/C

which are both polynomials of degree less that A/C, and we have, for p = p(m) =
(m/X)Y/3, the inequality

A1+ JADP\™
Po(A) - Qe < Y <T> < o & Hboi=ik)
A/20<m<A/C

which is true as soon as C' > 64(1 + |A])3e3P+3. Hence the result on the expansions.

The last step is to evaluate the term k in the integral (162). We obtain the expan-
sion as in the pseudodifferential case, using

A () de = (— Lyt
f v = (= 5" £ o,

The key inequality is obtained considering p = (n/A(1 + |&o|))

| > m(Qonl0,6k,X)| < De P,
n<A/Co

1/2.

Hence the expansion of Proposition 4.6 follows, using ¢ = £ + tanv,.&p.

= 1
o 18 COS Y4

6.3.2. Contours in the complex plane. — The modified sector w
Let

Wo.

1 1 c
Vp:{zE(C, |%z+ < , |Rz| < 2 }
COS7Y4 P COS Y4 p COS V4
For example, we may see Vj for ca = 2 and vy = 7/3:

—2i sV

FIGURE 6.2. Contour V,

The contour C; used in Proposition 4.5 is defined in the following figure:
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la
........................................... PR SO 2
1/COS'7+ a//
FIGURE 6.3. Contour C1
It is
1 1 " 1 " -
]—oo—m7 —l—m]U[ — 1l —1a"”, —l—l—za]
COS Y4+ COS Y4+ COS Y4+
1 . 1 . 1 . 1 7
U[ — 1l +ia, —|—l—|—za]U[ +1+1d, —|—l—za]
COoS Y4+ COS Y+ COoS Y+ COoS Y4+
Ul +1—ia". 4 o0 —id"[.
COS Y4

It is deformed on i0w} for all o, and finally it can be deformed on the contour C(+)
of the figure below, around iV; for z ¢ V4, because the branching points of the symbol
of IT or of QT satisfy —i€ € Vz. Thus the integral used in Proposition 4.5 can be
deformed on the contour C(+) below:

FIGURE 6.4. Contour C(+)
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We introduce the contour

- 5 5 5 .C2 5 (6] 3 .C2
C=]-co—glul=p-g-iglvl-7-ip 117
3 ¢ 3 3 3 3 3 &)
Vlmgmipgvlm gl g il
3 .Co 5 .Co 5 .Co 5 5
U[Z_FZZ,Z_FZZ]U[Z 11,4]U[1,+OO|:

FiGuRrE 6.5. Contour C

We notice that cosy;C(+) can be deformed on C, as well as the contour cos y_C(—),
C(—) being obtained as the contour on which we could deform for the calculus of @,
I%% 1%F Let C(1,tan~+) be the contours

(172) C(l,tanyy) =] —o00, -1 —=lU[-1—1,—-1 =1 —dl]U[-1 -1 —il,cosy+ — il]
Ulcosyy —il,cosyy +il]JU [cosye +il, 1+ 1+ dJU[L+ 1+, 1+ UL+ 1, +ool.

shown below:

FIGURE 6.6. Contour C(I,tanv+)

Let finally I be the contour introduced in [20] by (4.54), that we reproduce here
Let 7 be a complex number such that |7 — 1| < §/c. We define the two contours
C(tan~_) and C(— tan~ ), through:

(173) Cltany_) = {Ccosy_ — (72 = ()Y ?siny_, ¢ €T}
(174) C(—tanvy) = {Ceosyy + (72 = ¢*)/?sinyy, (€T}
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cos 7y 0 +1

FIGURE 6.7. Contour I

The integrals of st—, Rt~ RLA~ and s—F, RO—F, RL™F can be deformed
on C(Ftan~yi), which proves that the operators S* and R%*, R:* are represented
by the integrals on I' written in Definition 4.8.
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