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GLOBAL SOLUTIONS FOR SMALL NONLINEAR
LONG RANGE PERTURBATIONS
OF TWO DIMENSIONAL SCHRODINGER EQUATIONS

Jean-Marc Delort

Abstract. — Let Q1,Q2 be two quadratic forms, and u a local solution of the two
dimensional Schrédinger equation (i0: + A)u = Q1 (u, Vzu) + Q2(u, V,u). We prove
that if @1 and Q2 do depend on the derivatives of u, and if the Cauchy datum is
small enough and decaying enough at infinity, the solution exists for all times. The
difficulty of the problem originates in the fact that the nonlinear perturbation is a
long range one: by this, we mean that it can be written as the product of (a derivative
of) u and of a potential whose L space-norm is not time integrable at infinity.

Résumé (Solutions globales pour des perturbations nonlinéaires a longue portée de
I’équation de Schrodinger en dimension 2)

Soient @1, Q2 deux formes quadratiques et u solution locale de I’équation de Schro-
dinger en dimension 2 d’espace (i0; +A)u = Q1(u, Vzu)+Q2(u, V). Nous prouvons
que si Q1 et Q2 dépendent effectivement des dérivées de u, et si la donnée de Cau-
chy est assez petite et assez décroissante a l'infini, la solution existe globalement en
temps. La difficulté du probléme réside dans le fait que la perturbation nonlinéaire
est & longue portée, en ce sens qu’elle s’écrit comme un produit (d’une dérivée) de u
par un potentiel dont la norme L* en espace n’est pas intégrable lorsque ¢ — +oc0.

© Mémoires de la Société Mathématique de France 91, SMF 2002






CONTENTS

Introduction .. ... ... . 1
1. The nonlinear Schrédinger equation .................................. )
1.1. Statement of main results .......... ... .. 5
1.2. First reductions .. ..... ... i 6
2. Linear estimates ............ .. 9
2.1. Symbolic calculus and applications ............ ... ... i 9
2.2. Spaces of distributions and linear inequality ............. ... ... ... ... 14
3. Nonlinear estimates ........... .. 29
3.1. Estimates for products .. ... 29
3.2. Conjugation by an oscillatory exponential ........................ ... .. 45
4. Proof of the main theorem ........... ... . .. .. .. ... .. 63
4.1. Main redUctions .. .. ...ttt 63
4.2. Existence of the global solution ........... ... ... .. i 84

Bibliography .. ... .. 93






INTRODUCTION

This paper is devoted to the proof of existence of global solutions for a nonlinear
Schrodinger equation in two space dimension with small Cauchy data. Consider the
equation

(10 + A)u = F(u, Vyu,u, V)

uli=o = €ug

where t € R, z € R?, F is a polynomial vanishing at least at order 2 at 0 and € > 0.

The problem of local existence for the above equation with a general nonlinearity
and for small Cauchy data (i.e. small €) in a convenient Sobolev space has been solved
by Kenig, Ponce and Vega [19]. Hayashi and Ozawa [18] obtained local existence in
one space dimension for large Cauchy data. The case of any space dimension was
treated by Chihara [4]. More recently, Kenig, Ponce and Vega [20] proved the similar
result for a generalized Schrédinger equation, i.e. an equation in which A is replaced
by a more general operator.

We are interested in this paper in global solutions for small enough €. When the
space dimension is larger or equal to 3, and F vanishes at least at order 3 at 0,
Chihara [5], [6] proved that there is a global solution if the data are small enough in
a (weighted) Sobolev space. He also proved the same result in two space dimensions
under a convenient restriction on the cubic part of the nonlinearity.

For quadratic nonlinearities, and space dimension larger or equal to three, global
existence for small data has been obtained under convenient assumptions on the non-
linearity. The most recent results are due to Hayashi and Hirata [10], Hayashi and
Kato [11], Hayashi, Miao and Naumkin [12]. We refer the reader to the introduction
of [15] for a detailed discussion of these results as well as further references.

The results we have mentioned so far could be qualified of “short range” type
ones. By this, we mean the following: the nonlinearity F' can be written as a sum
of products of a nonlinear potential V (u, V, u,u, V,u) times u or V,u or w or V1.



2 INTRODUCTION

Denote by k > 1 the order of vanishing of V' at the origin. Since linear solutions of the
Schrédinger operator decay in L™ like t~%/2 when t — 400, we see that V computed
on such a solution decays like t—%%4/2 when t — 400. We say that F is a short range
perturbation of the linear Schrodinger equation if this quantity is integrable when
t — +oo ie. if kd/2 > 1. All the results we have indicated above fall into this
category.

We are interested in this paper in the long range case, more precisely in the limiting
case kd/2 = 1. There are only two such possibilities: either the space dimension d
is 1 and F' is cubic, or d = 2 and F' is quadratic. The former case has been solved
in general by Hayashi and Naumkin [14]: they found a sufficient condition on the
cubic nonlinearity under which solutions are global for small enough Cauchy data in
a weighted Sobolev space. Their method relies on the use of the smoothing property
of Doi [9]. They could also in [17] reduce a particular quadratic nonlinearity to a
cubic one, thus obtaining global existence in this case as well.

The case of quadratic nonlinearities in two space dimensions is studied by Cohn [7]
for a very specific nonlinearity, and by Hayashi and Naumkin [15], [16] in the special
case of real analytic Cauchy data. Such an assumption allows one to avoid the difficulty
of the loss of one derivative in the right hand side of the equation.

Our aim in this paper is to study this quadratic two dimensional problem when the
Cauchy datum lies in a weighted Sobolev space. We are thus obliged to cope with the
problem of recovering the derivative lost in the right hand side. We state our main
theorem of global existence in the first chapter, together with precise assumption on
the quadratic nonlinearity we consider. Let us just describe here our general strategy
in the special case

(D: + D2)u = u(Ds,u)
where D; = %875, D, = %8%,7 j = 1,2, and where the datum is given at ¢t = 1, the
solution being looked for on {t > 1}. We first take new coordinates T'=t, X = z/t
and look for u in terms of a new unknown w(7', X) through u(t,z) = %eiIg/‘Ltw(t, x/t).
We get for w an equation of form

D% L o x Dx, Xy
where § = T X?2/4. Let us take a simplified model forgetting the X;/2 term above:
DY\ 1 eerx), [ Dxi

Remark that Dx; is the translation in the new coordinates of the operator tD,, —x; /2,
which is of constant use in the study of global problems for nonlinear Schrédinger
equations with small Cauchy data. Consequently, smoothness relatively to Dx will
play an essential role. The form of the right hand side of (0.2) shows immediately what
are the difficulties we will encounter. First of all, we have a loss of a Dx /T derivative
in the nonlinearity. To remove this problem, we shall use the Kato local smoothing
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INTRODUCTION 3

property in the version due to Kenig, Ponce and Vega [20], adapted to our long time
framework. Secondly, the right hand side of the equation contains the oscillating
factor e, which cannot have any Dx-smoothness uniformly as time 7" — +oo0. To
treat these oscillating contributions, we introduce spaces of the following type

(0.3) {ve L? (Dx/VT)*(Dx/T)* v e L?}

where s and s’ are integers. The smoothness relatively to Dx /T corresponds to what
is gained by the local smoothing property — and to what is lost in the nonlinearity
wD;fl w. The smoothness relatively to Dy / VT should be understood as a weak
version of smoothness relatively to tD, — x/2 for u(t,z). This type of derivative
is natural for the problem because of the form of §(T, X) = (VTX)?/4. To study

products of elements in (0.3), we will need to have s and s’ large enough. There will be
i _ VTX i
2

no problem to ensure that for s’, but as D—\/%e we cannot expect the right
hand side of (0.2) to be in a space of type (0.3) with a positive s. Consequently, instead
of trying to find directly w in a space of type (0.3), we shall look for w as an expansion
w = v+V; (v)e?® where v and V; (v) will be essentially in a space (0.3) with large enough
s,s', and where V; (v) will moreover decay like (v/T| X |)~2 when vT| X | — +00. When
plugging such an expression in e?(7:X )w(%w), one gets a first contribution of form
ew(T’X)v(%v), and remainders decaying like (v/TX)~2. One will choose V; (v) as
a function of v such that (Dp + ?—%)(Vl e'?) equals %v(%v)em modulo remainders.
This is possible because @ is a non characteristic phase for the operator D + ?—%. In
that way, one gets an equation

D% 1
(04) (DT + W) V= fR

where R will be a combination of terms e"™? with coefficients decaying at least like
(VTX)~2. Since (VT X)~2¢"™? has some smoothness relatively to Dy /+/T uniformly
in T' (actually, this expression accepts two Dx /v/T derivatives), this shows that we
have gained some smoothness in comparison with the right hand side of (0.2). Actually
one has to repeat such a method once again, to reduce the equation to (0.4) with a
right hand side R = R(v, DTXU) with values in a space of type (0.3) with s ~ 4.
This last equation can then be solved globally using the local smoothing property as
mentioned before.

Our paper is organized as follows. In the first chapter, we state our main theorem
and perform first reductions. The second chapter is devoted to the proof of the local
smoothing inequality that will be essential in the rest of the article. We make use of
Littlewood-Paley decompositions to define convenient Sobolev spaces, and to prove
the smoothing inequality as a consequence of propagation of singularities. Section 3 is
devoted to nonlinear estimates. We make extensive use of the ideas of paradifferential
calculus of Bony [1] to study nonlinear operators acting on the Sobolev spaces defined
in chapter 2. We also prove results concerning products or conjugation of an element
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4 INTRODUCTION

of such a Sobolev space with an oscillatory exponential. Section 4 gives the proof
of the theorem. We perform the method of elimination of oscillatory exponentials
outlined above. The main tool is again paradifferential calculus, which allows us to
decompose the right hand side of the equation as a sum of a nice term, and of a really
oscillating contribution, that we eliminate using the non charactericity of the phase.
Since the true equation is (0.1) rather than (0.2), we use weighted versions of the
Sobolev spaces defined in chapter 2 to treat the contribution coming from X in the
right hand side of (0.1). When all oscillatory contributions have been cancelled, the
proof of the theorem, as well as the description of the asymptotics of the solution,
follow from standard arguments.
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CHAPTER 1

THE NONLINEAR SCHRODINGER EQUATION

1.1. Statement of main results

Denote by (t,z) = (t,x1,22) coordinates on R x R?, D, = 12 D, = %a%_,’

D, = (Dy,,D,,). Let us denote by Q1(Xo, X1, X2), @2(Xo, X1, X2) two polynomials
in three indeterminates, with complex coefficients, homogeneous of degree 2, satisfying
the following assumption:

(1.1.1) @1 and @9 vanish identically along (X7, X2) = (0,0).
We will be interested in solutions to the following Schrédinger equation
(1.1.2) (D¢ 4+ D?)u = Q1 (u, Dyu) + Qo(T, Dyu).

We want to prove global existence for small Cauchy data. Since (1.1.2) is invariant
under translations relatively to the time variable, we can without any loss of generality
take Cauchy data at ¢t = 1 instead of ¢t = 0, and study solutions for ¢ > 1. Our initial
datum will have to be smooth enough and will have to decay rapidly enough at infinity.
We thus introduce for M € N

HM(R?) = {u € L*(R?); Va, 8 € N2, |a| +|0] < M, 2*0Pu € L*(R?)}

1.1.3
(1.1:3) ={uec HY(R?); Vy € N? || < M, 27u € HM7(R?)}

where HM (R?) denotes the usual Sobolev space. Remark that the first characteriza-
tion of HM(R?) implies that if A is any real number, H* (R?) is invariant under the
transformation

(1.1.4) u—s ey,

Let us state our main result:

THEOREM 1.1.1. — There is My € N with the following properties: for any even
integer M > My, there is ¢g > 0 such that for any ug in the unit ball of HM+4(R?),

and any € € 10,e¢[, equation (1.1.2) with Cauchy datum uli=1 = eug has a unique
global solution u € C°([1, +oo[, HM (R?)).
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REMARKS

— The problem of local existence for equation (1.1.2) has been solved by Kenig,
Ponce and Vega [19] for small Cauchy data. Local existence for arbitrary Cauchy data
has been proved by Hayashi and Ozawa [18] in one space dimension, by Chihara [4]
in higher space dimension, and by Kenig, Ponce and Vega [20] when A is replaced by
a more general operator. The uniqueness assertion of our theorem follows from the
local uniqueness obtained by these authors (see [20], theorem 1.2). Consequently, we
will have to prove only global existence.

— The number Mj in the statement of the theorem has to be taken large enough
to apply the aforementioned results of uniqueness. For the proof of existence in the
large, we will just have to assume My > 6.

— In the statement of the theorem, there is apparently a loss of smoothness between
the assumptions made on the Cauchy data — uy € HM*4(R?) — and the conclusion
saying that at time ¢ the solution u(t, -) belongs to H (R?). This comes from the fact
that the above spaces are not optimal to solve our problem. An optimal statement,
without any artificial loss of smoothness, will be given in theorem 4.2.1 after several
reductions and the definition of convenient spaces.

The solution of theorem 1.1.1 has the same asymptotic behaviour as linear solu-
tions.

THEOREM 1.1.2. — Under the assumptions of theorem 1.1.1 there is a L*° function
Voo (), satisfying (1 + |z))Mve(z) € L™, and such that for any § € ]0,1/2[ the
solution u has the following asymptotic behaviour:

=0t 9, t — +oc.
L°°(dz)

(1.1.5) H (1+ E])M (u(t,x) - %eiﬁ/%m(x/t))

1.2. First reductions

We look for a solution to (1.1.2) in new coordinates

(1.2.1) T=t X:%

and take as a new unknown the function w(7, X) related to u through the relation
(1.2.2) u(t,z) = %ei$2/4tw(t7x/t).

Let us set

(1.2.3) 0T, X) = sz, Z; = D;j + % i=1,2, Z=(Z1,2).

MEMOIRES DE LA SMF 91



1.2. FIRST REDUCTIONS 7

Then
1 .
Dmu(ta Jf) = Teze(T’X) (Zw) (Ta X) |T:t,X:w/t

(1.2.4) ) D2

(Dt =+ Di)u(tv JZ) = feze(T’X) |:DT =+ T—)2(i|w(T’ X)|T:t,X:w/t'
We deduce from these relations that u is a solution of (1.1.2) if and only if w solves

D% L io(r,x) U _siorx)n (— 7

(1.2.5) (DT + W)w =g Q1 (w, Zw) + Te Qo (W, Zw).

Since the transformation u — e~"/4y leaves HMH4(R?) invariant, as remarked be-
fore, the initial condition for (1.2.5) will be

(126) w|T:1 = EWy

with wp given in a fixed ball of HM+4(R?).

Let us indicate what will be our general strategy to find a global solution to (1.2.5)
for small Cauchy data. If, in the right hand side of (1.2.5), we had no oscillating
=31 a proof similar to the one of [8] for global existence for the non-
linear Klein-Gordon equation would work: namely, we could look for a solution w in
a Sobolev space of smooth enough functions of X, endowed with norms depending
conveniently on 7. One would then have to prove L? inequalities for these Sobolev
norms, and to supplement them by an L estimate deduced from the equation. The
only new difficulty, in comparison with the Klein-Gordon case, would come from the
loss of one derivative in the right hand side, and we would have to compensate for

factor like €%, e

this loss using the smoothing property of the equation.

The oscillating factors e?, e 3% prevent us from applying directly such a strategy:
actually, taking D x-derivatives of such exponentials makes appear a T'X factor, which
has bad behaviour as T' — +o00. In other words, we cannot expect to put the right
hand side of (1.2.5) in any space of smooth functions in X uniformly in " — +o0.
The idea will be to use the fact that the phases # and —30 are non-characteristic for
the operator Dy + D% /T?. We shall use this property looking for the solution w
as w = v+ Vie? + V_ge 3% where Vi, V_3 will be expressions in terms of the new
unknown v. These functions Vi, V_3 will have the same smoothness as v, but will
enjoy better decay assumptions when v/7T'|X | — +o0, and will be chosen to cancel the
worst contributions to the right hand side of (1.2.5). In that way, we will reduce (1.2.5)
to an equation on v, in which the right hand side will no longer contain any harmful
oscillating factors, and to which the strategy discussed above can be applied.

REMARK. — Let us comment on the assumptions on the nonlinearity. The fact that
we exclude nonlinearities of type B(u, D,u; %, Dyu), where B is a bilinear form, comes
from the fact that they would induce in the right hand side of (1.2.5) terms in e~
where —0 is a characteristic phase for Dy + D% /T? when T — +o0. Because of that,
we could not get rid of these terms by a normal form method as indicated above. We
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8 CHAPTER 1. THE NONLINEAR SCHRODINGER EQUATION

believe that this difficulty is not just a technical one: if one tries to find asymptotic
solutions through an ansatz inspired by the asymptotics of linear solutions, the same
problem appears, preventing one from constructing an asymptotic series as a formal
solution.

The second restriction on the nonlinearity coming from (1.1.1), namely the fact
that terms like u? or T2 are excluded, is related to the fact that # has a critical point
at X = 0. Because of that 6 is a really oscillating factor only when v/T|X| — +oo0,
and the normal form method alluded to above can be carried out only in a region
VT|X| > 1. To be able to treat the contribution of the domain v/7'|X| < 1, we need
some extra-vanishing of the non-linearity at X = 0, which is provided by at least
one Z-derivative of w. We have no conjecture on what happens when (1.1.1) is not
satisfied. We remark anyway that in three space dimension Hayashi and Naumkin [13]

have been able to get global solutions for nonlinearities of type u? or @2.
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CHAPTER 2

LINEAR ESTIMATES

In the rest of that paper, we will only use the coordinates introduced in (1.2.1). We
will thus employ the notation (¢,x) instead of (T, X) without any risk of confusion.
The aim of this chapter is to introduce, using dyadic decompositions, the spaces of
distributions in which we will look for the solutions of equation (1.2.5). The first
problem will be to prove a linear estimate in these spaces for solutions of D; + D2/t
reflecting the Kato smoothing property. We will do so adapting to our long time
framework the method used by Kenig, Ponce and Vega [20] in the local in time
setting.

2.1. Symbolic calculus and applications

The spaces we shall introduce in the following section will be of uniformly local type.
Their definition will rely on the use of cut-off functions relatively to the z-variable. On
the other hand, to be able to prove smoothing estimates in those spaces, we shall have
to decompose their elements using pseudo-differential partitions of identity invariant
under the hamiltonian flow of the Schrodinger operator. To simplify the study of the
interaction of these different localizations, we first establish some general results. We
shall use throughout the whole paper the notation (z) = (1 4 22)'/2.

DEFINITION 2.1.1. — A (Cy, Np)-temperate weight (for a given positive constant Cy
and a given Ny € N) will be a C* function 4 : R? x R? — R, (z,¢) — A(x,&),
satisfying for any (z,&) € R??, any (y,n) € R??

Az, §) N Aly,n)
Aly,n)  A(z,§)

DEFINITION 2.1.2. — Let A be a temperate weight. We shall denote by S(A~>°) the
space of all smooth functions (z,&) +— a(x,£), defined on R? x R?, with values in C,

(2.1.1) Az, €) > 1, < Co({x —y) + (€ — ).
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such that for any N € Nyn € N
(2.1.2) lala,Nn Lef sup  sup |A(x,§)N8§‘8?a(x,§)| < 4o00.
le+IBl<n (2,8)

We define in the obvious way the notion of a bounded family of symbols.

REMARK. — Since A > 1, it follows that S(A~>) C S§,. Consequently, by the
Calderén-Vaillancourt theorem [2], any pseudo-differential operator with symbol in
S(A~>°) is bounded on L?(R9), its operator norm being controlled in terms of a
semi-norm (2.1.2) of the symbol.

We will need a result of symbolic calculus. If A and B are two (Cy, Np)-temperate
weights, if a € S(A~™>°), b € S(B~>), we denote by a#b the symbol of the operator
a(z, D) o b(z, D), given by the oscillatory integral

(2.1.3) a#b(z, ) = Ld/e—iyfa(x,n — Ob(x — y, n) dyde.

(2m)
In the same way, the adjoint a(z, D)* of a(z, D) has symbol a*(z,n) given by
1 )
(2.1.4) a*(z,1) = 57 /6_”’56(% —y, 1 — &) dydg.
(2m)¢

THEOREM 2.1.3. — For any Co > 0, No € N, N € N, n € N, there are C,, > 0
and n' € N such that the following two statements are true:

(i) For any couple of (Co, No)-temperate weights A, B and for any a € S(A™>°),
b e S(B™%), one has ab € S((AB)™>°), af#tb — ab € S((AB)~°°) with the following
estimates

lablap,N.n < O plala,nnlblB,Nn

<
(2.1.5) ,
la#tb — ablap N < Oy p|0cala, N n/|0xb] B N -
(ii) For any (Co, Ng)-temperate weight A and for any a € S(A~*°), one has a* €
S(A™°°) with the estimate

(2.1.6) |a" —ala,Nn < O nl0z0cala, N

Proof. — (i) The proof of such a result is quite classical. We just have to pay attention
to the fact that C]/V,n depends on Cy, Ng, N, n but not on the weights themselves. The
first inequality (2.1.5) is clear. To prove the second one we write

(2.1.7)  a#b(x,n) — ab(x,n) = (271r)d /e‘“’g(a(ac,n €)= alw,n)b(x — v, n) dyde
+ oz [ ¢ ol )0 = o)~ bl )

where both integrals are oscillatory ones. The last contribution is zero, as the coef-
ficient of the exponential does not depend on £ and vanishes for y = 0. In the first
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2.1. SYMBOLIC CALCULUS AND APPLICATIONS 11

integral, let us write a(z,n — &) — a(z,n) = —€a(x, &, n) with

1
w6 = [ Oa)an =) dr
We have if |a] + |8] + 7] < n
1
02000}, E1)] < Oyl [ Al €)Y
0

< |OnalannAlz,n) =N Gl ()N

by (2.1.2), (2.1.1). By integration by parts, the first contribution to the right hand
side of (2.1.7) is

(2.1.8)

(2.1.9) ! p /e”ygﬁ(w,é,n)(Dmb)(w—yﬂ7) dydg.

(2m)
Let Li(y, D¢) = (y) " 2(1—y- D¢), La(€, Dy) = (£)"2(1—&- D,). Integrating by parts,
we get that (2.1.9) equals

@ /e’iyg(tLl(.%Ds))k(th(f»Dy))k[&'(%f,n)(Dxb)(w —y,m)] dyds.

Using (2.1.8), and the analogous inequality
|8§‘87€Dxb(x —y,n)| < |8wb|B,N,nB(xvn)_NCév<y>NON
for |a| + |8] < n, we see that the modulus of (2.1.10) is smaller than
Ck,N/<y>7k+N°N<§>7k+N°N dyd€(A(z,)B(z, 1)~ |0yal a,nk|0:0] 5,5 1

If k is large enough relatively to N, we get the inequality

(2.1.10)

la#b — ablap,n,0 < Cn,k|Opala,N,k|0:b] B, Nk

where Cy  depends on IV, Cy, Ny but not on A nor B. The derivatives of a#b — ab
being estimated in the same way, the conclusion follows.
(ii) The proof is similar. O

ExXAMPLE. — We will consider in the following families of weights Ags(z,§), or
Ay s(t,z,€), depending on parameters g € Z%, § € 10, 1], and eventually ¢ € [1, +oo],
satisfying (2.1.1) with Cy and Ny uniform in ¢,d,q. We will then consider symbols
aq.5(z,€) or ags(t, x, &) satisfying for any «, 3 € N¢

(2.1.11) 1020 aqs(t, 2,6)| < Cap o™ TP A (2, 6)~N

with Cy g,n independent of g, 4.
In other words, we will have for any a, 3 € N4, n € N

(2.1.12) sup 1020 aqs(t, ) a,s.nm = O 5 — 0.
q,

This introduction of § gives us, according to (2.1.12) and (2.1.5), (2.1.6), a class of
symbols in which we do have a symbolic calculus when § — 0.
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12 CHAPTER 2. LINEAR ESTIMATES

As an example, let us take ¢ € C5°(] — 1,1[¢), 0 < ¢ < 1, such that if we set
bq(7) = ¢(x —q) we have 3 ;a4 dg(x) = 1. For 6 € ]0,1] put ¢g,5(x) = ¢q(dz). If we
set Dy s(x,€) = (dx — q), we see that (2.1.1) is satisfied by this weight with a uniform
(Co, No). Moreover, ¢q 5(x) satisfies (2.1.12) with Ay s replaced by Dy 5.

We will need the following proposition:

PROPOSITION 2.1.4. — Let Ag5(t,x,€) be a family of weights satisfying (2.1.1) with
a uniform (Co, Ng). Assume moreover that there is Ny € N, C1 > 0 with

(2113) ZAq,J(tvxag)i !

foranyt > 1,6 €10,1], (z,6) € RT x R%. Let a,5(t,-) € S(Ags(t,-)~>°) satisfying
(2.1.12). Assume that there is a positive constant ¢ such that Eq lag.s(t,z,8))* > ¢
foranyt > 1,6 €10,1], (z,€) € R x RY. Let r € [1,400]. There is 5o >0, C >0
such that for any & € ]0,00], any interval I C [1,+o00[, any u € L*(I x R?) one has
the estimate

1 Han(t)%ﬁ(x)u(t,x)HLz(ﬁdm)

(2.1.14) H Z 16p.61 1 () ag.s(t, 2, D)ult 2) |72 (4t 4y )1/2

&%

< C |10 ps ot 2) 2 s 0

&
where £, means the £" norm relatively to p.
Ifu e C’O([l, +oo[, L2(R%)), one has for any t the inequality

s @)utt @)z .,

1/2
(2.1.15) < ”(Z 60,5005t D)ult, )3 (a)) ”Z
a P

< C|l¢p.s(x)ult, )|

with a constant C independent of t.
The last inequality in (2.1.14), (2.1.15) holds without the assumption lag.s|? = c.

Proof. — Let us write L3 for L?(%dz) over the interval I. We have
dt
(2.1.16) ZH@M%, t,, D)“HLZ —/<Z aqs(t, @, D)" ¢p,5a%5(t7x7D)u7u>?
I

Let us define

(2117) bqﬁ(t’x’g) = |aq,5(t,x,§)|2,b5(t,x,§) = quﬁ(t’x’g)'

q
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2.1. SYMBOLIC CALCULUS AND APPLICATIONS 13

Then by € S(A, ;") and satisfies (2.1.12). Moreover, assumption (2.1.13) implies
that bs € S(1) and satisfies |8§‘8§b5(t,x,§)| < ColoHIBlL By assumption, we also
have bs > ¢

Since aq,s € S(A,5°): ¢p,s € S(D,5°) with Dy s = (dx—p), and since these weights
satisfy condition (2.1.1) with umform (Co, No), properties (2.1.5) and (2.1.6) imply
that

(2.1.18) aq,s(t, 2, D)) 5aq,5(t, w, D) = ¢y 5bqs(t, x, D)pps + Rpq.s(t, 2, D)

where Ry 4.5(t,z,&) € S((Aq.6Dp,s)~ ). Moreover, since aqs(t,x,&) and ¢, s satisfy
estimates of type (2.1.12), inequalities (2.1.5), (2.1.6) imply that the semi-norms of
Rp.q.6 are O(6?) when § — 0 uniformly in p,¢. Summing (2.1.18) in g we get

(2.1.19) Z aqs(t, x, D)*¢§’5aq,5(t, x,D) = ¢p 5bs(t, z, D)pp s + Ry s(t, x, D)

where, because of (2.1.13), Rps(t,2,§) € S(D,5°), the semi-norms of this symbol
being O(4?%) uniformly in p. Define now

1/2

Cs(t,,€) = [bat 0, ) = 5]

Since bs > ¢, we get that Cs(t,x,&) € S(1) with estimates |8§8§C§;| < Célel+Isl
Applying again theorem 2.1.3, we see that

(2.1.20) bs(t,z, D) = Cs(t,z, D)*Cs(t,z, D) + gId + Rs(t,z, D)

where Rs € S(1), with semi-norms in this space O(62), § — 0. Plugging into (2.1.19)
we get, changing the notation for R, s,

* * C
(2.1.21) Y ags(t,x, D) ¢ 5a4.6(t, 2, D) = ¢y 5C5 Cops + 50p6p.5 + Bps(t w, D)

q

where Ry s(t,z, &) € S(D,§°), with semi-norms O(6?) uniformly in p. The right hand
side of (2.1.16) is thus bounded from below by

dt dt
@12) 5 [t F + [ (st DG
and from above by

dt

2123) 3 [16,s@utn)ltsun T+ [ ICstpsut.0)san T
dt

+ /(Rp,(s(t, z, D)u,u) n
I

Since Cs(t, x, D) is bounded on L? uniformly in §, the conclusion will follow from the
following lemma. O
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14 CHAPTER 2. LINEAR ESTIMATES

LEMMA 2.1.5. — With the above notations,

1/2

dt
/(Rpﬁ(t, x, D)u, u)Y
I

(2.1.24) H <08 Hlll1 1(t)bpstllpaqazan |,

for a uniform constant C' > 0.

Proof. — Write
(2.1.25) /I<R 5(t, z, D)u, u) ZZ/ (Do 5(2) Rp,5he,5(de,5u), dor w)‘f

where qNSg,g = (E((Sx — ¢) for a function qNS € C°(RY), (E = 1 close to Supp ¢. Since
Rys(t,x,§) € S(D,5°), de.s € S(Dy5°), we deduce from theorem 2.1.3 that the sym-
bol Ri’g(t, x, ) of the operator q~54/,5 oRy5(t,z, D) oq~5475 lies in S((De,6Dp,sDer 5) ).
Moreover, its semi-norms are O(62) when 6 — 0 uniformly in p, £, ¢’ since the same
is true for Ry, 5(t, x,&) i.e. we have

(2.1.26) 1020F RS (t,2,€)| < Capn0*(8x — )N (52 — )N (2 — p) =N

with a constant independent of § and p,¢,¢’. We deduce from that the uniform
estimates

(2.1.27) 0207 RS (t,2,€)] < Ca g n0* (£ —p) N (0 —p) =N

whence a similar estimate for the £(L?) operator norm of Ry, s(t,z, D). We deduce
from (2.1.25)

1/2
<C6 Y p— O NI () besull 2 e g
4

dt
/(Rp,g(t, x, D)u, u)Y
I

The conclusion of the lemma follows from this inequality. O

2.2. Spaces of distributions and linear inequality

Let us introduce the dyadic decompositions that will be used in the rest of that
paper. Following for instance [3] chapter 2, we choose ¢ € C§°(R? — {0}), ¢ >
Supp ¢ C {£;3/4 < [¢] < 8/3} and x € C5°({&; [¢] < 4/3}), x = 0, x =1 close to 0
such that

X(§) + 20 »(2778) =1
(2.2.1) j—J'1 > 2= Suppp(2~7) N Suppp(27) = @

>
j = 1= Suppx N Suppp(2~ J) .
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2.2. SPACES OF DISTRIBUTIONS AND LINEAR INEQUALITY 15

We denote by Aj, j € N (resp. A_;) the Fourier multiplier with symbol p(277¢)
(resp. x(€)) so that Z;’;’il Aj; =1d. For j € N, we set

j—1
(2.2.2) Si= Y Ar=x(27D).
k=-—1

For ¢ € N set I'y(¢) =]1{2z<t<2e+1}.

DEFINITION 2.2.1. — Let s, s, a, @’ be real numbers, r € [1, +00].

(i) Omne denotes by F>%,  the space of all distributions w belonging to

L2 ([1,400[,S'(R?)) such that there is a constant C > 0, a sequence (cjq)jq

indexed by j > —1, ¢ € Z%, satisfying 2002, lcjq™)?/" < 1, such that

(22.3)  |lgq(@)Ajule(t)]| L2 (a2 az)
< chq2(j7€/2)a(1 + 2]’7@/2)757&2(]’7@)0/(1 + 2j7€)7s'7a'

for any j > —1, g€ Z%, ¢ € N.

(ii) One denotes by H>,  the space of all distributions u belonging to

!
a,a’,r

L2 ([1,4+00],S'(RY)) such that there is a constant C' > 0, a sequence (cjq)jq

loc
indexed by j > —1, ¢ € Z%, satisfying 2002, |lcjql™)?/" < 1, such that
(2.2.4)  [|g(@)Ajule(t)]| Low (at,12 (dx))
< Cqu2(j7€/2)a(1 + 2]?@/2)7570(2(]’7@)0/(1 + 2j7€)7s'7a'

for any j > —1, ¢ € Z%, ¢ € N.

(iii) One denotes by H>*, the space of all distributions u belonging to

—a,a’

L2 ([1, +00[,S'(RY)) such that there is a constant C' > 0, and a sequence (c;);

loc

in the unit ball of 2, with

(2.2.5)  [|Ajule(t)|| oo (at,L2(da))
< chz(j_g/Q)a(l +2j—£/2)—s—a2(j—£)o/(1 + 2j—£)_s/_a/
for any j > —1,¢ € N.

We define the norms in these spaces as the best constant C' > 0.

‘We will use the notation

(2.2.6) sl = (3 (Slewl’))"

J q
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16 CHAPTER 2. LINEAR ESTIMATES

The definition of the above space is clearer if we write it in the following equivalent

way: a distribution w is in Fa’a . if and only if there is a family of L2 (1, 4+oc[)-

functions (c;q4(t));q and C >0 such that

(2.2.7)  [|dq(x)Ajult, )| L2 (dx)

2] « 2] —S—« 2] OL/ 2] —5/—0/
<Cet) (=) (1+= =) (1+= :
w0 (%) (+)  (7) (%)
sup lciq(£)Te(t)||L2(ae/e) is in the unit ball of E?f;.

One has a similar characterization of H '* . replacing in the last condition the

L?(dt/t)-norm by the L> one, and of H®’ by

ozo/’

< (3 () () (3

with (¢;); in the unit ball of ¢2. The difference between spaces H>* , and H. s

(o % \T
is that the latter imposes some z-decay when |x| — +oo (for ro< +oo). Since
1Aju(t, 7. < C X, llogAjult, )||7. we have an injection H,; S/ 2 C ﬂzsa/

The meaning of condltlons (2.2.7) is as follows: the weight in the right hand side
corresponds to two types of derivatives: a stronger one D, /v/t and a weaker one D, /t.
The indices s, s’ represent the amount of such derivatives available when 27 /+/t or 27 /t
go to infinity. The indices a, o/ measure the behaviour when 27/y/t < 1 or 27/t < 1.
The weaker derivative D, /t is the one to which the Kato smoothing property will
apply, uniformly in ¢, when solving the linear Schrédinger equation. As a last remark,
let us say that the above spaces do not depend on the choice of ¢, x, ¢.

Let us remark that in definitions (2.2.3), (2.2.4), (2.2.7), we could reverse the orders
of ¢, and A;:

oot (TESP. HZ’S/ ,) if and
only if there is a family of L% ([1,+00[)-functions (resp. a family of LIOC([I,—FOO[)—
functions) (cjq(t))jq and C > 0 such that

PROPOSITION 2.2.2. — A distribution u belongs to F*

(2.2.8) [|Ajdqu(t, )l L2(ax)

e (3 () () (-0)

with supy ||cjq()Le(t)|| L2(ae/e) (resp. supy||ciq()Te(t)| L@y = licigllLoe(ar)) in the
unit ball of E?EZ.

Proof. — Assume that (2.2.7) is satisfied and let us prove (2.2.8). Choose ¢ €
C(RY), ¢ = 1 close to Supp¢, ¢ € C(RY — {0}), # = 1 close to Supp ¢,
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2.2. SPACES OF DISTRIBUTIONS AND LINEAR INEQUALITY 17

X € Cs°(R%), X = 1 close to Supp x, and define ¢,(z) = ¢(z — q), A; = G(279D),
jeN, Ay =X(D). Write
(2.2.9) Ajdqu = Z Z Ajdg(z A ¢q( (g () Ajru).
q j'=>-1
It is enough to show that for any N € N, there is Cy > 0 with
(2:2.10) 186485 b¢ | cz2) < Onla — )~ N2V

since the assumption (2.2.7) implies that

1$q (@) Ajrult, )| L2 (ax)

) , 2] « 2] —S—« 2] O/ 2] —S/—OL/
< O2=3"Noe, () [ 2= 14+ 2 il 14+ =
Cj'q ( ) \/l_f + \/Z t + t

for some large enough Ny. To prove (2.2.10) we write for any function w
(2211) Ajoy(2)Aydy ()
= ZZZ 6p(D)Ajbg() 8 (D)A j1 b ()60 (D)) (D)w).

Remark that ¢p(§)<p(2ﬂ§) € S(Dp(&)™*°) where Dp(§) = (£ — p), with semi-norms
uniformly controlled in p. In the same way ¢, (€)3(277°€) € (D (£)~°), by () €
S(Dyi (£)7°), dg(x) € S(Dy(x)™>), ¢y () € S(Dy (x)~), with uniform control of
semi-norms. By theorem 2.1.3, the operator inside the bracket in the right hand side
of (2.2.11) is given by a symbol in S(A4, p/ p g9 (x,€) ™), with

(2.2.12) App a0 (4,§) = Dp(§) Dpr (§) Dy (§) Dy () Dy (),

its semi-norms being controlled uniformly in p,p’,p”, q,¢’. Since (2.2.12) is bounded
from below by c¢(p — p/)1/%(p — p")*/?(q — ¢'), and since in the summation (2.2.11),
p (resp. p') stays of magnitude 27 (resp. 27'), the fact that the £(L?)-norm of an
operator is bounded by the semi-norms of its symbol implies that

18 6g(2)Aj by (w)w]3 5

2
<C)y [ZZW'H’@ ) Np—p")y V(g q’>N¢p~<D>sz}

Y ="V Vlgp (D)wl| 2

p”’

2
< 02—2N\j—j’\<q _ q/>—2N

4
where we used almost orthogonality in p. This inequality implies (2.2.10) and con-

cludes the proof.
The reverse implication (2.2.8) = (2.2.7) is shown in a similar way. O

Our main objective is to prove the following version of the Kato smoothing property
in the framework of the spaces introduced in definition 2.2.1.
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18 CHAPTER 2. LINEAR ESTIMATES

THEOREM 2.2.3. — Let 5,5, a,a’ be real numbers satisfying

(2.2.13) %+Ol/<0, s+a>=0, s +ao>=0.

Take vy € HT (R, f € Fi:il,jll/z. Then the solution v of the linear problem
D? 1

(2.2.14) (Dt + t—2>v =<
v]i=1 = o

belongs to ﬂiso:/ N Fizz//folo/z and we have the smoothing inequality

(2.2.15) el e + N0l g2 < Cllwollgosor + 1L

a,a’ oo a,a’l,1

The main step in the proof will be to obtain estimates for dyadic frequency cut-offs
of v. For § €10,1], ¢ € Z¢, we use the notation ¢, s(z) = ¢(dz — q) introduced before
proposition 2.1.4 and T'y(t) =1 (e cseei1y.

THEOREM 2.2.4. — There is § € |0, 1] and for any § € 0, ] a positive constant Cs
such that for any vy, f, v, satisfying the assumptions of theorem 2.2.3, any j € Z,
j=z-1,anyfl eN

(2216)  sup [ Te(t)p.s (@) A0 24
p

< Cs(1+ 2775712 Ajuo ]| 12

4
j—0\—1/2 j—my\—1/2 )
+O127) S a2 [T 00,58 120 |,

The proof of this theorem will be done in several steps. Define first

ag,5(t,2,8) = g 5(z +26(3 — 1)) = d(d(z +26(3 — 1)) — q)
Ags(t,x,€) = (6(x +26(§ — 1)) — q).

We see that A, s is a family of (Cy, Ny)-temperate weights, with constants Cy, No
uniform in ¢ € Z% § € ]0,1], and that this family satisfies (2.1.13). Moreover
agslt=1 = ¢q5(x) and aqs5 € S(A;go), the semi-norms of these symbols in these
spaces being controlled uniformly in ¢, §. More precisely, we have for N € N;n € N

(2.2.17)

(2.2.18) sup [9207 ag.s]a, 5.vm = OB, 5 — 0.
q

The symbols a, s are essentially constant along the bicharacteristics of Dy + D2 /%, so
that they will enjoy nice commutation properties with this operator. More precisely,
denote

(2.2.19) bos(t,2,8) = —(A¢) (0 (x+2¢ (2 —1)) —q).
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2.2. SPACES OF DISTRIBUTIONS AND LINEAR INEQUALITY 19

‘We have
D? 52
(2.2.20) [Dt + t—;,aq,g(tm, D)| = t—2bq,5(t,x, D)

whence the equation

D? 1 52
(Dt + t—2>aq75(t7x, D)Ajv = gaq,g(t,x, D)A; f + t—zbq,g(tw, D)Ajv

aq75(ta xZ, D)Ajv|t:1 - ¢q,5($)Aero.

The first step of the proof is to get an upper bound for the left hand side of (2.2.16)
in terms of aq,5(¢, ¢, D)Aj v cut-off in convenient time domains.

(2.2.21)

PROPOSITION 2.2.5. — Choose ¢ € C(RY), v = 1 on [-2,2]%, ¢ > 0, and for
q€Z% §€)0,1] set vg5(t, &) = ¥(20&(3 — 1) — q). Denote by Ej the dyadic cut-offs
introduced at the beginning of the proof of proposition 2.2.2. There is 6y € ]0,1] and
C > 0 such that for any 6 € 10,8¢], any j = —1, any compact interval I C [1,+0o0],
any v € L2 _([1,+oo[, L?(dz)) one has

loc

(2:2.22) sup ||y s(2)A0(t,2) 35 < C sup 3 [[Ygmps(t. D)Ajaq s(t, 2, D)Asu][3s

peZ4 peZ4 qezd
where L} = L*(I, % dx).

To prove this proposition, we shall decompose ¢, s(x)A;v(t,z) as an almost or-
thogonal sum using (ag4,5)q- Each term of this decomposition will have microlocal
support contained inside Supp ¢, s(z) N Supp ag,s(t, x, &), which will imply a (¢,£)-
localization, given by 14_p s in the right hand side of (2.2.22). This can be visualized
on the following picture where, at fixed £, we represent u = % — 1 as a function of x:

[/

Supp wqu,a

Supp ag,s

I
I
|
T
upp @p,s Supp ¢q,s

The formal proof will use the following lemma.

LEMMA 2.2.6. — Let Ags(t,z, &) be a family of temperate weights with uni-
form constants (Co, No), satisfying for some Ny € N, Ciy > 0 the inequal-
ity Zqu,g(t,x,f)’Nl < Ch, uniformly in t,6. Let r € [l,400]. Denote
Dy o(2) = (62 — ).

Let Rg,q,5(t, 2, &) be a family of symbols of S(A, 5° Dy s(x)~>°) with semi-norms
in these spaces bounded uniformly in § €10,1], q,q¢' € Z%. There is C > 0 such that
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for any w € L2 _([1,+o0[, L?(dz)), any compact interval I,

(2.2.23) H(Z Baaltz. Dyul2y)

< CH||¢q/,5wHL§ ‘

-
@q,

If Rys(x,€) is a family in S(A_5°) at fized t, with uniformly bounded semi-norms,
there is C > 0, and for any w € L*(R?)

(2.2.24) Z | Ry.5(x, D)wl||2: < Olwl|2-.
Proof. — We decompose w =} ¢, s(z)w and write

(2.2.25) Y [R5t D)wlf?
q

d
Z/ ¢p6 JRq.q,5(t, 2, D)" Ry,q 6(t$D)¢p5]¢p5w by, 6w> t

Pp’,q

By theorem 2.1.3, the operator between brackets L (t, x, D) has symbol

q q 6
LZ’f; 5(t,2,€) € S(A Dy 5(x) "> Dy s(2) "Dy (x) ™)

with uniformly controlled semi-norms. Since for N > Ny,
(2.2.26) ZAQ, t,2,6) N Dy 5(x) N Dy 5(x) N Dy s(x) N

<On{d —p) N —p) 7Y,

Lp P (t,x,€) is in S, with semi-norms controlled by the right hand side of
q,q9’,0 0,0
(2. 2 26), uniformly in 6. We deduce from (2.2.25)

Z |1 Rq,q,6(t z, D) w”L2 ZZCN 7 —p) N _p/>7N||¢p,5w”L§HQSP’JU’”L?

q

from which (2.2.23) follows. One gets (2.2.24) applying the fixed time version of
(2.2.23) to Ry s(t,2,6) = ¢y 5(x) Ry s(2,€) and r = 2. O

Proof of proposition 2.2.5. — By proposition 2.1.4, for small enough §y we have

(2.2.27) sup [[ép,5(2) Aj0(t,2) |72 < Csup Y [l dp,s(x)ag,s(t z D)Ajol|7s.
p p
q

Remark that if (¢,z,¢) is in the support of ¢, 5(z)aq,s(t, x, &) one has dx —p € Q,
§(z +2¢(1 — 1)) — q € Q, where Q is the cube | — 1, 1[%, whence 94—, 5(t,£) = 1. We
thus write

(2.2.28) bp,s(w)ags(t, v, D)A; = dps(x )aqﬁ(taxaD)(Ej¢q—p,5(taD))Aj'
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The family aq,6(t, z,€) has semi-norms in S(A_5°) uniformly bounded (where Ay is
defined by (2.2.17)) and moreover, for N € Nyn € N

(2.2.29) sup [020 aq.s(t, 2,€)| 4, 580 = O(31°1H17) 5 — 0.
q

The family ,—p s(¢,£)P(277€) has semi-norms uniformly bounded in the space of
symbols S(1) = 57 ;. By theorem 2.1.3 we see, taking (2.2.29) into account,

p,5 () aqs(t, 2, D))[Ajtg—ps(t, D))
= ¢p,5(x)[zj¢q—p,5(t: D)][aq@(t, Z, D)] + 5Rq,p,5(t: z, D)

where Ry ps(t, 2, €) isin S(A, 5% Dy 5(x)~>°) with uniformly bounded semi-norms. We
deduce from (2.2.27) and from lemma 2.2.6 with r = oo

sup 6.5 () A;0]12s < Csup 3 [ pos (8 D) g (8, 7, D)A o2
P P
q
+ 082 sup ||, (2) A0 7.
P
The conclusion follows taking § small enough. O

COROLLARY 2.2.7. — With the above assumptions and notations, there is C' > 0
such that for any & €]0,8), £ € N, v € L ([1, o0, L?)

loc
(22:30)  sup [Ca(t) s (2) Ao (1) | st an
p
9(t—j)/2 1/2
< Ci - , 2,
< Cinf (1.~ )(;||sgp|re<t>f<aq,5<t,w,D>Ajv><t,§>|L @)

where we denoted by F the Fourier transform in x.

Proof. — By proposition 2.2.5, the square of the left hand side is smaller than

(2231)  Csup 3 ILe(t)g-pa(t, D)Ajag s(t, 2, DYA0(t, ) e gy

d
PEZ q

The general term of this sum is bounded by Plancherel by

dt

C/Sttlp|F4(t)]-'(aq,5(t7x,D)Ajv)(t7§)|2 d¢ x /I‘g(t) .

This gives (2.2.30) when 1 < 2¢=9/2//5. In the other case, we can always assume
j = 0. Using that on the support of 14_p 5(t,§) we have the inequality

126¢(+ — 1) — (¢ — p)| < K,
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we estimate the general term of (2.2.31) by
o 5 ,.dt
IPe(t)tg—ps(t,£)P(277) Flags(t, x, D)Aju)(E, )7 dE—

<C?’ /11{|25£<u71>—<q7p>\<K}Fe(1/u)
x P(277)F(aq,s(1/u, z, D)Ajv)(1/u, &) d€ du

o—j

<025 [ sup PO (aga(t, 2, D)AE,OF dé
t

where the last inequality follows from the fact that u stays in an interval of length
K/§|¢], with K independent of p, q, 8, and || ~ 27. This concludes the proof. O

The factor 2(=7)/2 in the right hand side of (2.2.30), represents the gain coming from
the smoothing property of the operator. The next step is to estimate the right hand
side of (2.2.30) using the equation. To simplify notations let us set

(2.2.32) Viq = aq,5(t, 2, D)Ajv, fiq = aqs(t,x,D)A;f
vjo-q = ¢q,60jv0, Tjq = bgs(t,z, D)Ajv.

PROPOSITION 2.2.8. — There are § € 10,1], C > 0 such that for any § € ]0, do], any
—1, €N, ve L ([1, +oo], L?) one has

(22:38) [l sup [Te(t)ia (4, €)1

(AT HHZ JriBa 1%

Proof. — Equation (2.2.21) may be written

L2(dg)

6{21:|

2 2
(2234 (D1 + 55 )t ) = Falt.6) + Salt.6)

Vjq(1,€) = 621,(5)
whence

Ujq(t,€) = eXp(z’§ — €289, (€)
i [l (€3 - 1)) [t + St

which implies for any £, any ¢ € N,

d
sup [Ty (£)554(, €)| < |+Z Rl |—+62Z i RECTHOnTE
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2.2. SPACES OF DISTRIBUTIONS AND LINEAR INEQUALITY 23

Taking the L?(d¢) norm and the ¢2 norm, and setting

a@:”prWAﬂ@ALQ
””quHLz(dE Hg2 HH Z/ |qu § §)|: 12(d¢) | o
Bi(s) = HHTJ(I )z d§)||gz

we get the inequality

L
(2.2.35) ag < ag+06% /F
m=0

Applying the second and the first inequalities (2.1.15) with » = 2, we have by definition
of Tjqs Vjq

Bi(s) < CllAG(s: )z < C[[[1Bsq(s, )l 22(ag) |2

with a constant C' independent of s. Plugging into (2.2.35), we get an inequality

14
(2.2.36) g < ag + 08 Y a2

m=0

Using that ag; is increasing in ¢, we deduce from (2.2.36) that if ¢ is small enough
oy < 2ag; which is the conclusion. O

The last step of the proof is to estimate the right hand side of (2.2.33).

PROPOSITION 2.2.9. — One has the following estimates, for a uniform constant C':

231 || [raiFae ol

L2(dg)

Cmf[ }}:Hr D696, Fll 1221 a0)
peZd
foranymeN, j > —1.
Proof. — We use the notation 9, s(¢,€) introduced in the statement of proposi-

tion 2.2.6. We also denote by z’/;m;(t,é) the function defined like 4, 5(¢,€), replacing
1 by a function ¢ € Cgo(]Rd), ¥ > 0,19 =1 on Suppyp. Write

(2.2.38) / m ()] fiq(t 5 <C ) Z/ )libr,s(t, §)p(27 '/f)qu(t,i)l%

rezd j’
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24 CHAPTER 2. LINEAR ESTIMATES

where (277'¢) should be read x(€) when j' = —1. The general term of the above
sum can be estimated by

(2.2.39) (/( &)y s (t, )T ()dt)

t
. =R /
x ( / Lo (8) 805 (t, €)2p(277 f>2lqu<t7f>|2%)l :

By the same computation as in the proof of corollary 2.2.7, the first factor is smaller
than C'inf[1,2(m~7)/2 /\/5]. The left hand side of (2.2.37) will be smaller than

1]

”ZHF s (t: D)y (82 D) e |

i/2

(2.2.40) ZCmf[ =

Let us write
(2.2.41) T ()r5(t, D)Ajrag.s(t, z, D)A; f
= 3" N K7t o(t 2, D) (T (8o 5(D) by s (2) A5 £)

000 p

where
(2.2.42) K}l (ta,D)

= Dty 5(t, D)o 5(D)ag.s(t, #, D)A ;b 5(D)p.s(x)der 5(D).
We write

(2.243) [T (£)r.6(t, D)Ajrag s(t, 2, D)A; f | 2 a gy

< CHH > Kﬁ,’i/,’Zf,p,q(t,x,D)(Fm(t)¢g,,75(D)¢p75(x)Ajf)‘

El,e”,p

12(4ds) | 2

since the ¢-sum is an almost orthogonal one. By theorem 2.1.3 and (2.2.42) the symbol
Ké,’z/,’zll,p,q(t7x7§) € S(A~>) where

= (206(+ — 1) — r)(86 — 0)(8(x + 26(3 — 1)) — q)(86 — ¢')(dx — p)(d€ — £")

with uniformly controlled semi-norms. This implies that the symbol is in S(1) = 5,
with semi-norms controlled by

(2.2.44) OnQ@U (3 =1) =)y N =)y N0y N —(qg—p) N

uniformly in § € ]0,1],¢ > 1. At fixed ¢, the £(L?) operator norm of Kg:g,/”;,,p,q(t, x, D)
is thus smaller than (2.2.44). Moreover, since (2.2.42) implies that ¢ (resp. ¢') is of
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2.2. SPACES OF DISTRIBUTIONS AND LINEAR INEQUALITY 25

magnitude 27 (resp. 27), the (£ — /)N term of (2.2.44) provides a 2~ Ni=7'l factor.
At fixed ¢, we thus have

(2245) 3|3 KE G (62 D) Tt 5(D)ys(@)A; £)|

L2(dz)
e// el’p
<On Y @G 1) =)y N =0y Ne—0)y N —(g—p)N
EI,ZN,p
x 27 NI Dy, (8) e 5(D) s () A F(E, )| 12 () -
Denote by

K ) = | S0 KT gt DY T 5(D) s (2) 85|
(2.2.46) p

Vo p(8) = 1T (O)ber,6(D)bp.6 () A; f (£, )| L2 -
The norm to estimate in (2.2.40) is by (2.2.43) bounded from above by

L2(da)

O [POL2A0)
e//

L2(dt/0 2|,

Using (2.2.45), this last term can be controlled by

(2.2.47) ‘ZH Do =) N = (g —p)) N2 NI
T
1" l_ _ 2N | 0 2% 1/2
< /<2€<t D=0, OFF) [
Put
) 1 B . dt\1/2
(22.48) Binr= ([ @G -1 =11 0P )

5Jp Hﬂ[”rp”

T

We have an upper bound for (2.2.47)

2—N|J_J ‘ ZH Z<£—£N>—N<r_ (q_p)>_Nﬂg”7T7p 2
. o ellez
< C2—N\j—j’\‘ ) NBL, v

< 02 Nli=i \ZHZ Nﬁa’p B

<27 NN 1B e
p
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< C2 NS (ZZ/W"(% -1)- 7‘>_2N|75“7p(t)|2%>1/2

oo

< C27N‘j7j/| Z ||Fm¢p,5(x)AijL2(%dm)'

p

Going back to (2.2.40) we see that we proved that the left hand side of (2.2.37) is
smaller than

CZ inf[Q(mfj')ﬂ/\/& 1]27N|j7j'\ Z Hrm(t)%a(x)AijLz(%dz).
J’ D

The conclusion of the proposition follows. O

Proof of theorem 2.2.4. — One has just to apply corollary 2.2.7 followed by proposi-
tion 2.2.8 and proposition 2.2.9, remarking that we have a bound for || HUA?q Ol L2(ag) llez
in terms of ||Ajuvg||L2. O

Proof of theorem 2.2.3. — From now on, we shall fix § small enough so that inequality
(2.2.16) of theorem 2.2.4 holds true. We can then, in the left and right hand sides of
(2.2.16), replace ¢p 5 by ¢p, loosing a bigger constant in the right hand side. Let us
prove first that ||v]| o412 is smaller than the right hand side of (2.2.15). We deduce

a,a’ 00

from (2.2.16) that for any ¢
(2.249) 27U=B)(1 4 295 )Fogm U0 (1 4 93 =) 5 Dy (1) 3y Ao | ot 4
< Cajo|| Ajuo 2270+

L
+C Z bj€m27(jfm/2)oz(1 + 2j7m/2)s+a2f(jfm)o/(1 + 2j7m)s'71/2+o/

m=0

% [T @) £l 2 4.0

&
with
aje = 27j(s+s'+a+o/)+€(a+2a')/2(1 + 2j7€/2)s+a(1 + 2j7€)s’+a'
bj@m _ 2(£—m)(a+20/)/2(1 + 2j—£/2)s+a(1 + 2j—m/2)—s—a
% (1 + 2]’—2)5/—0—0/(1 + 2j—m)—s/—o/'

Since s +a > 0, s’ + o’ > 0, we get ajy < C21*+2)/2 and by, < 9(t—m)(a+2a)/2
Since § + o’ <0, we get taking the E?E;C norm of (2.2.49)

L
o172 < Cllvol| gs+sr +C Z 2(£_m)(a+2a/)/2||f||Fs,s’—1/2
’ a,al,1

a,a’ 0o

v
m=0

< Cllvoll grsvsr + I f]

Fs,s’—1/2).

a,a’,1
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We still have to prove that v € ﬂzso:, Using inequality (2.1.15) with » = 2 we get for
any fixed ¢

[Ajo(t, )2 (de) < C|lopAjv(t, )l L2(de) v
(2:2.50) < O|||[lgpaq(t. 2, D)A;UE  r2am |,
qlle?
< O||IF (aglt, 2, DA E Ol 2qag) |,

Using notations (2.2.32), for ¢ in the support of I',(t), we can bound ||A;v(t, )| L2 by
(2.2.33), whence using estimate (2.2.37) the inequality
e;J'

L
ITe®)Az0(t, e < C[I185u0llz + 32 (1+ 272 T ()8p 25 2 a0
m=0

Arguing as for inequality (2.2.49), we deduce from that

1ol et < Cllleolgesr + 11 prsre] -
—a,a’ a,al 1

This concludes the proof of theorem 2.2.3. O
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CHAPTER 3

NONLINEAR ESTIMATES

3.1. Estimates for products

The aim of this section is to study regularity of products in the framework of spaces
F*®, and H>®, introduced in definition 2.2.1. Let us define a few more notations:

’ ’
o, , T o, ,T

let x € C5°(R%), x =1 close to 0.

DEFINITION 3.1.1. — One denotes by ﬁi’i,m (resp. Ezsa) the space of those v €
H®®, (resp. in ﬂi“’;,) such that

(3.1.1) (g (@)X (D/ V)0 (t, 2)|| L= (atda) g €
(resp.
(3.1.2) x(D/Vt)u(t,x) € L= (dtdx)).

The above definition depends on the choice of x except in the case o’ > d/2, which
is the only one we will encounter:

LEMMA 3.1.2. — Assume o' > d/2. Then definition 3.1.1 is independent of the
choice of x. More generally, if ¥(t,§) is a smooth function satisfying Suppy C
{(t,6); €] < CVt} and \8?w(t,£)| < Oat™1P172 for any 3 € N?, we have forv € Hyo

(resp. v € ﬁisa/)

(3.1.3) (g (@)ib(t, D)vl| Lo (atax))g € lg-

(resp.

(3.1.4) Y(t, D)v € L (dtdz).)

If, moreover, a+ 2o/ > 0, then f[j‘i,r = H;’,“Z:,J, (resp. EZZ, = ﬂii,) and one has

more precisely

(3.1.5) (16 (@) x(D/VE)oll Lo (atdw)a € £
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(resp.

(3.1.6) Ix(D/Vtyw € L*=(dtdx))

for any 6 € [0,min(§ + o 0‘7 - %)[

Proof. — For v satisfying (3.1.1), write

(3.1.7) Gqt)(t, D)o = dqb(t, D)X(D/VE)o + ¢gib(t, D)(1 — x)(D/Vt)v.

We shall again denote by qNSq/ the function &, (z) = gg(x —¢') for (E € O5°(RY), qS
close to Supp ¢. Let us remark that an operator of form K};,q, = ¢q(z)oy(t,D)o ¢
has a kernel whose modulus is bounded from above by

(318)  Ct*(1+Vilz—y|) >N |g(@)l|dg (v)| < C1>(1+Vilz—y)) N g—a) N

whence

=1
(x)

Onlg—q)™
Cnt¥* (g — ')V,

(3.1.9) [FeMmres

NN

1K g ll2re L)

We estimate the first contribution to (3.1

T) by
l¢q¥(t, DYx(D/Vt)ol| L= < Z 1(6q(t, Dby ) (dq x(D/VE) Lo (ataa)
(3.1.10) N
< Z Cnl(a— ) Vo Xx(D/VE)| o (dtdr)
q/
which shows that this sequence is in £} because of assumption (3.1.1). The second
contribution to the right hand side of (3.1.7) is estimated at fixed ¢ by

l¢qe(t, DY(1 = X)(D/ V)l L=
<> Z 1(@qtb(t, DY(L = X)(D/VD) ) (bgr Bj0) (E: )| s ()

where the j-sum is restricted to indices satisfying C1v/f < 27 < Cyv/t. By (3.1.9), we
get the upper bound

3111 > > PYg— ) Vleg Aot )z an)
q ]2J~\/_
<N 2 ) N (20 VD2 /1)
a4 §i20 v/

for a sequence (cjq)jq in €347, using the definition of HZ‘;/,T The supremum in ¢ of
this last quantity is smaller than Cc;, with (c}), € £} since o’ > d/2.

Finally, when a + 20/ > 0, [[¢qx(D/Vt)v|| 1 (4s) is bounded from above by the
sum in the right hand side of (3.1.11), extended to 27 < Cv/t i.e by

. ! ’ C
Do ey, < )
27 <CVt
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3.1. ESTIMATES FOR PRODUCTS 31

for 0 < § < min[§ + o/, a2 — 4] and (c,)q € ("

The proof for v € H a,a’ is similar and simpler. O

We will study products of elements of F ;Z o H 2’,i,’r using Bony’s paraproducts [1].
Define for u,v € S'(R9)

(3.1.12) Too =Y Sj1ulv.
j=z1

The series converge in &’(R?) and each of its terms has Fourier transform supported
inside a ring of size C27. Moreover, we set

(3.1.13) R(u,v) = Z AjulNjv

7,3"13-3"1<1
when the above series converges. We will use the same notations when u,v depend
on the parameter ¢ € [1, +0o[. When (3.1.13) has a meaning, one gets Bony’s decom-
position of the product uwv:

(3.1.14) wo =T, + Tyu+ R(u,v).

We will also use notations similar to (3.1.12), (3.1.13) in a slightly more general
framework. Assume we are given constants C; > 0, Cy > 0 and families of C*

functions (¢;(£))jen, (x;(§)) en satisfying
Supp ¢;(§) C {0712 < |¢] < 127}, |90p;(6)| < Cp27717

(3.1.15) ' ; ,
Supp x;(€) € {&: 16l < G227}, (92, (€)] < G277,

We will use the generic notation T,v and R(u,v) for operators

T =Y (xj-n (D)u)(e;(D)v)
JjZN1
(3.1.16) ~

Ruw)= S (o (D)u)(ey (D))
3,3"315—3'|<N2
with Ny, Nz €N, with N; large enough so that the Fourier transform of each contri-
bution to T v be supported inside a ring of size 2/. In the definition of R we also
eventually allow low frequency contributions of type (xo(D)u)(¢; (D)v), |i'| < Na,

(2 (D)u)(xo(D)v), |j| < N2

PROPOSITION 3.1.3
(i) Let u € Loo(dtdx) and v € F>° (resp. v € HY s ). Then Tyv and T,v are

OLOLT Oéa/r
in F>*, (resp. H?, ).

Oéa ,T Oéa T
(i1) Let 84,85, 5,05, 15,7 = 1,2 be indices with rj € [1, —|—oo] Assume of >
d/2,s1 # d. Letu € HZI 211 BRLIRS Fa2 22 -y (TSP U E H52’52) Then Tyv and
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T belong to F>* (resp. J2 500 ) where

’ ’
o, ,T [N ST

a=oaz+ (a1 +2a))y, o =adj,

d
(3.1.17) s=s3—(d—s1)y, §=sy—[-51— §]+,
1 1
— =min[l, — + —]
™ 2

Proof
(i) For fixed t we write

(3.1.18)  [|g(2) A5 (Tuv)(t )2y S D N6a(@) A (Sjr—1uljo)(t, )| 2 (an)
3'313=3"1<No

for a large enough integer Ny. The general term of the above sum is smaller than

ST 11(6g80g ) (Sjr—1udy () Aj0) () L2 a0)-
ql

Using that the £(L?) operator norm of the composition d)quQNSq/ is smaller than
Cn{q—¢')~N we get for (3.1.18) the upper bound

Yo Y Onla—d) VIS rulli=lldg () Ajro(t ) L2 -

@ j'ili=3|<No
Since ||Sj—1ullpe < C|luljr~ the result follows multiplying by a cut-off I';(¢) and
computing the L2(dt/t) (resp. L°°(dt)) norm.
(ii) To argue in the same way, we need an estimate for quantities like

16gSiult, )l Lo (da)-

LEMMA 3.1.4. — Letu € H®, witha' > d/2, s #d. We have for any j and any t

’
a,o’,r

the estimate

(3.1.19)  |¢q(2)S;jult, )| Lo (az) < qu(gj/\/g)(a+2a’)+(1 + 2j/\/g)7(a+2a/)++(d7s)+
x (1427750 lu] o

where (cjq)jq 15 a sequence in {3°0.

Proof — Consider first j,t with 2/ < v/t. When a + 2o’ < 0, we argue as in (3.1.10)
to obtain

6gSiu(t, Lo (azy = 16gSix(D/VE)u(t, )| Lo (dx)
< (64869 ) (Gg X(D/VEYu(t, )| L ()

<Cn Y (g =) NMigg x(D/VEult, ) L= (an)

q
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and we use condition (3.1.1) of the definition of H;Z .~ to get an upper bound in

terms of a £} sequence. When « + 20’ > 0, we write instead
¢gSjult, Moo < Y deArult, )l (ar)
k<j—1

D7 1(0gArdg) (bgr Akl L (az)

k<ji—-1 ¢

(3.1.20)

where ﬁk is such that ﬁkAk = Ay. Since the £(L?, L>) operator norm of ¢q£kq~5q/
is smaller than C2F%/2(q — ¢/)~N we get the upper bound

(31.21) C Y 22’“‘”2 V7V log Arult, )] 22
k<j—1 ¢
<C 30 D la—d) PR VR ) ey
k<j—1 ¢

with (crg/ kg € (347, We write (3.1.21) as (29 /v/£)*+2%"d;, with

djq = Zﬂ{k<j—1}2’6%%(%0‘/)#(%2&/)0@

with (¢}, )kq in €305, Since a + 2/ > 0,a' > d/2, (djq)jq is a €54y sequence.
Consider next the case Cv/t < 27 < Ct. Arguing as in (3.1.20), (3.1.21) we get the
upper bound

1¢gSjult, ML= < ll¢gx(D/VEyult, )| Lo (ar)
+On D D 2Ma =) Ny Arult, ) e
CVi<2kL2i-1 ¢
The first term in the right hand side is smaller than a £j sequence, uniformly in ¢, by
definition of H>®

a,a’,r?

(3.1.22) SOSTH vieatcarcon (0 — @)V 2HV2@E VD) ey
q k

and the second one is smaller than

When §—a' > 0, the supremum in ¢ of (3.1.22) is smaller than the sum ), 2’“(%’“/)0;@
for a 30 sequence (cj,)kq, and so smaller than a £} sequence since o > d/2.
When § — o' <0 and d < s, the supremum in ¢ of (3.1.22) is smaller than

S ey 2D g < S0,
k k
which is a £ sequence. Assume now 5 —a' < 0 and d > s. We write (3.1.22) as

2
(29 /)42 d;q with

v _s o —4d
d qg= Z]l {C\/E<2k<2j<0t}2(k J)(d )(2k/t) 2c;€q'
k

SOCIETE MATHEMATIQUE DE FRANCE 2002



34 CHAPTER 3. NONLINEAR ESTIMATES

The supremum in ¢ is smaller than C')",1 {kgj,l}Q(k_j)(%_”al)c;q which is a £3(]
sequence. This gives again (3.1.19).
Finally, consider the case C't < 27. We estimate

|6gSjult, )= < l|oax(D/tult, )| (ar)
+Ox > S 2R — )NV by Agult, ) g

Ct<2k<2i ¢

The first term is estimated by the right hand side of (3.1.19), as easily seen reproducing
the computations of the two preceding cases. We are left with estimating

Z 2kd/2(2k/\/i)—s(2k/t) qu (2]/t) s']4 Z (2 k/\/_)d s /

Ct<2k <27 Ct<2k <27

for a Ezﬁr, sequence (¢ )kq- If d — s > 0, the last sum is smaller than (27 //t)d=s iy
for a 6362 sequence (cj,)jq. If d—s < 0, the supremum in ¢ of that sum is smaller than

2k(d=5)/2¢/ which is a ¢” sequence. In both cases, this gives the upper bound of
k kq q
(3.1.19). |

End of the proof of proposition 3.1.3. — When v € F:z’
term of the right hand side of (3.1.18) by

we estimate the general

ar’

D 1(848i6q) (Sqr Sy —1) (g jrv) (t, ) | 12 ar)

<Cn Y {a =) Ny Sy—rult, M=l dg Ago(t, )l L2 an)-

q/
We just have to apply lemma 3.1.4 to get the conclusion.
When v € ﬂizz’zzé, we bound the general term of the right hand side of (3.1.18) by

> 104204 ) (S Sir—1u)(B5r0) () 2(a0)

<On Y (a= ) Nbg Sy—rult, ) p= | Ajo(t, )| 2 (ax) -

q/

and we apply again lemma 3.1.4. |
We will now prove an estimate for the remainder.

PROPOSITION 3.1.5
(i) Let (s1, 8}, a1,0q,r1), (2,85, aa, b, r2) be real numbers satisfying
S1+ 83+ +sh >0, s1+4s2>a)+ah

(3.1.23) , , )
ar o+ oy <0, ;21 j=12
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Let u € F*% (resp. u € Hsl’sl) and v € H>™, Then R(u,v) belongs to

ala sT1 — 1, OLQOL T2
Féz - (resp. to sz ) With
! ! ! d
s =51+ 82 —d, s:sl+32+§
(3.1.24) a=a;+ay+d, o =a]+ah— 3

1 1 1
— =min[l, — + —].
r 1 T2

(#) Let us assume instead of (3.1.23)

S1+ 82+ +sh >0, s1+4s2>a)+ah

(3.1.25) d
aj +af <0, a'2>§, r;=1, j=1,2

and suppose that v € H>®2 . We then have R(u,v) € F> s’ (resp. R(u,v) €

ag,aly,T2 ay,ad,r

) for the values of s,s',r given by (3.1.24).

04101 sT2

Proof. — We will estimate for u € F 1’51

a1, ,T1

(3.1.26) PqAjR(u,v) Z Z Y ¢q ¢q’AkU)(¢q’Ak'U)]
kK4
|k~ |<1
kzj—No

where Ny is a large enough integer. At fixed ¢, the L?(dx) norm of the general term
of (3.1.26) is bounded from above by

(3.1.27) Cnla — ')V 21Y2|| g Agu(t, )| 2(da) | bg A v(t, )| 12 ) -

We multiply this expression by I'y(¢) and compute the L?(dt/t) norm in function of
[6g Axul'e(t)]] 22t 4y and of [|¢g ApvLe(t)|| L (at, L2(dx))- By definition of the spaces,
we get an upper bound given by an expression Cn(q — ¢') ™™ djreq with

(3128) djqu’ — 2jd/22(k—2/2)(0¢1+a2)(1 4 2]6—2/2)—51—52—041—012

« 2(1@—2)(0/14-0/2)(1 + 2k—£)—s’1—s’2—a’1—a/20kq/
with (ckq kg € 6}662,7 where we used that |k — k'] < 1. We must show that

(3.1.29) Z dikeg < 02(j76/2)&(1_|_2j7€/2)fsfa2(j7€)a'(1+2jf€)fs/,a,cgq/
kzj—No

with (¢}, )jq in the unit ball of (367, C (3¢}, and where (&, @) = (a,a’) in case (i),
and (a N’) (a1, ) in case (ii).
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Case j = £. — We have

S ey <C Y U2 ke g ()
(3.1.30) k>j—No k>j—No
< C2 U205 ¢t

with (/) € E}E;/ because of assumptions (3.1.23) or (3.1.25), s and s’ being given
by (3.1.24). This gives (3.1.29) both in cases (i) and (ii).

Case £ > j > {/2. — We have

(3.131) D djrey < OEEEE
k=j—No
+ Z 97d/29—k(s1+s2—a) —ah) gl (52 —a/ —aj)

ki€>k>j—No

Clkq’

where the first contribution is given by the sum (3.1.30) taken for k& > ¢ instead of
k > j — No, and where (cj, )eg € £3€;,. The right hand side of (3.1.31) is smaller
than

Ca—U=t/D(srts2—d)gli=H(el+ab=d/2) ¢ [gU=O(sr+se—al=ab) o]

because of (3.1.23), (3.1.25). The sequence between brackets is smaller than a E;E;,
sequence independent of ¢. This gives the estimate (3.1.29) in cases (i) and (ii),
remembering for the last one that af > d/2.

Case £/2 > j. — We first treat case (i). We have

(3.1.32) Y djweg < CRIETEGIRG y 9iEmE(@Fel) )
kzj—No
+ Z 2jd/22k(a1+a2+a/l+o/2)2—é(a1+a2+2(a/1+o/2))

ki/2>k>j—No

Ckq’

where the first two terms are given by the sum (3.1.31) taken for &k > ¢/2 instead of
k > j — No, and where (cj,)eq, (¢fy)eq are in €307, Using (3.1.23) we get for the
right hand side of (3.1.32) the estimate

C2li=t/2) (1 taz+d)9(j—1) (o) +ay—d/2)

(3.1.33) ~ [2*(]’*@/2)(Ot1+0t2+0/1+0/2)2*%(51+82*0/1*0/2)Czq,
Ut/ e rartat el o]
with (€jg/)jqr € £j£7,. The term between brackets is smaller than a sequence indexed
by (4,4’), independent of ¢, and belonging to é;ég,. This gives conclusion (3.1.29) in

case (i). In case (ii), we estimate the L?(dz) norm of the general term of (3.1.26)
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using (3.1.27) when k > ¢/2, and writing

(3.1:34)  [[($4Ajq ) (S Art) (S Aur0)] (2, )| 2

< Cla—q) Vo Arult, )z b Arvt, )l
when £/2 > k > j — No. The assumption (||¢gx(D/Vt)v||r=)q € £;? implies that
there is (cq)q € {7 such that for any & with &' < £/2 4+ N1, [[¢g Apv|pe < cq-

Consequently, if we multiply (3.1.34) by I's(t) and compute the L?(dt/t) norm, we
get an upper bound of form Cn{q — ¢’}

_ 2(’67@/2)0(1 2(’67@)0{’1 Chy

€lig with

€kiq

with (ckg kg € €34y, To finish the proof, we must show that

(3.1.35) Z €keg + Z djkeq

k;t/2>k>j—No k)2
is smaller than the right hand side of (3.1.29) with & = a3, @ = o). The contribution
of the second sum in (3.1.35) is smaller than the first two contributions in the right
hand side of (3.1.32) i.e. to

Coli=t/ D (=00 [93(d/2—al)g(i=t/ (e —ar—al)g, ]

with (Ceg)eqr € £3€7,, and the term between brackets is smaller than a sequence in
€307, because of the assumption (3.1.25) oy > d/2,c1 + o4 < 0. The first sum in
(3.1.35) is smaller than

02(1’4/2)%2(%4)&1[ 3 2<kfj><a1+a;>0kq,]
kil/2>k>j—No

and the term between brackets is a é?ég, sequence since a3 + o4 < 0. This concludes

the proof in the case u € F°" s

[e5] Otl ,’I‘1

To prove (i) and (ii) for u € H 1’51,1 we write instead of (3.1.26)

/1,

G DNR(u,v) = Y Y (0 g)[(Aku) by Apv)].
k,k q
lk—k'|<1
k>j—No

The L?(dx) norm of the general term of the above sum is smaller than
On(a = a) N2 Agult, ) £ (an) b Aot ) L2 (am)-

We multiply this expression by I';(¢) and compute the L°°(dt) norm in function

of ||Apul(t, )| Lo (at,12(dz)) and of ||¢g Apv(t, )Te(t)| oo (dt,12(dz))- We get an upper
bound given by (3.1.28) with a sequence (cxg')rg in £3077 instead of (3£}, The rest
of the proof is then identical as above. O

‘We will also need:
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ProrosiTIiON 3.1.6
(i) Let k1 €N, ko € N, 5,5 a, & be real numbers satisfying
s+ 8 > 2Kk + |ka|, §>2K1+d

(3.1.36) , ,
$>2k+a+2a, a+da <d/2.

Let m € Z*,r € [1, +00], andwEF” (resp.weH“ ). Then

(3.1.37) R(w, (tDt)Kl (Dz/t)nzeime) c Fas a2nrl .8’ — ko
(resp.
(3138) R(U}, (tDt)m (DI/t)ﬁz eime) HZ a2/-crl,s 7N2)

(i) Let k1 € {0,1}, |ke| =1,8,8",a,a’ be real numbers satisfying
s+8 >2k+1, s>2k1+0a, s>2k —2+2(a+2d +2)

(3.1.39) d d
—5—1<a+0/, 2a+3a’+1<§.

Then if B=2(a+a' +1), we F3* ,  (resp. w € Ha’ ) one has

(3140) R( (tDt)fil (D /t)ﬁz zm@) c F/BS O‘21‘11,8 -1
(resp.
(3141) R(w’ (tDt).m (Dm/t)ng eime) H; a2mrl,s 71)

The same results hold true for R instead of R.
Proof. — We write with f = (tDt)'“(D Jt)rzetm?

(3.1.42) b R(w, f)(t YD (04D (b Asw)(Ap f)).
kK q’
lk—k'|<1

We first treat case (i). Remark that since

. tr? . 1 2 .
tD, (™) = m%elme = [Tz + im} etm?

we have

D:\"™ , gk \ #t 7ok 172!
HAk((tDt)m (T) esz)HLm(d : <C (1 + %) <?>
(3.1.43)

D }{2‘ 2k} d/2 2k7 2&1 2k7 ‘Iizl
Au(tDey (2] e <c(= 14+ = =) .
oo (%) el < (7)) (%)

This shows in particular that it is enough to prove (3.1.37), (3.1.38) in the special
case k1 = ko = 0, to which one can reduce changing the values of s,s’. We deduce
from (3.1.42) that for p = 2 (resp. p = 00)

(3.1.44) ||¢quR(w,f)Fg(t)||Lp( 2(dz)) S CZ q—q¢)Nd djeq
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with
i d
(3.145) djeg = Y 22 dgTe(t) Akl pogae 2oy Ak FTe(t) ]| oo (22
bk
J—No<k<l—j
k—k'|<1
+ Y 16 Te(£) Arwll L (ar 12 (az)) | Ak fTe ()]l Lo (dtda) -

k., k'

k>j—No

k30—

k=K' |<1

We estimate (3.1.45) in the following cases:

Case j > €. — In this case, only the second sum in (3.1.45) remains. It is bounded
from above by

Z 27(k7€/2)57(k7€)s'ckq/ < 027(]’7@/2)57(]’7@)3'09(1/
k=j—No
for £20" sequences (Ckq kgt (€4 )iq'> since s+s' > 0. This gives the needed conclusion.
Case £ > j > £/2. — Again, only the second sum of (3.1.45) contributes. We get the
upper bound

¢
Z 27(k7€/2)s+(k7€)a'ckq/ + 2765/202(1/
k=j—No
¢
— 9= (—/2)s+(-0 [ 3 ol 4 9G-06=ay,
k=j—No
for €267 sequences (Ckg )kqrs (Cpy )eq, and since s > o, the expression between brackets
is a E?f;, sequence, which gives the result.

Case £/2 > j. — The first sum in (3.1.45) is bounded from above, using (3.1.43), by

/2 y—
i 2jd/22(k—£/2)a+(k—£)(a’+d/2)qu/+ Z] 2jd/22—(k—£/2)s+(k—£)(a/+d/2)ckq/
k=j—No k=0/2
0/2
:2<j—e/2>a+u—e>a’[ 3 plRE/zmasal bt/
k=j—No
L—j
+ Z 2(j+k7€)(d/27o¢70/)+(k:7€/2)(a+20/78)qu/
k=£/2

and since d/2 > a+a’, s > a+2a/, the term between brackets is smaller than a é?ég,
sequence independent of /. This gives the wanted estimate. We still have to study
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the contribution to the second sum in (3.1.45). We get an upper bound
‘
C2(j7€/2)oz+(j7€)o/[ Z 9= (+k=0)(s—a/)+(j—£/2)(s—a—2a )qu,
k=L—j
+Z2 (k=0)(s+5")+(i—£/2)(s—a—2a’)—j(s—a’)

k>L

Clkq’

Since s > o’,s > a + 2a’,5 + s’ > 0, the term between brackets is in E?E;,. This
concludes the proof of the proposition in case (i).

To treat case (ii), let us remark first that assumption (3.1.39) implies the first
two relations (3.1.36). Moreover, conclusions (3.1.40), (3.1.41) coincide with (3.1.37),
(3.1.38) when the frequency j in the left hand side of (3.1.44) satisfies j > £/2. Since,
in case (i), the estimates of (3.1.44) when j > £/2 used only the first two relations
(3.1.36), we see that we just need to study the case j < ¢/2. We can also reduce to
k1 = 0, replacing s by s — 2k1. Using (3.1.43) with |k2| = 1, we estimate the first
sum in (3.1.45) by

2/2
9(i—4/2)B+(i ) [ng t/2)(a+o/+§+1)9=(i—t/2)(2a+30/+1=$)g—i, ,
k=3
—j
+ Y 2 (gD (42220 4 ) g gy
k=0/2

Since by (3.1.39), a + o/ + £ +1 > 0 and 2a + 30/ + 1 — ¢ < 0, the first sum inside
the bracket is a E?f;/ sequence. When the coefficient of (k + j — ¢) in the second sum
is strictly positive, we also get that this sum is a E?EZ, sequence since, by (3.1.39),
s> —2+2(a+ 2a’ +2). When the coefficient of (k + j — ¢) is non-positive, we get
for this sum an upper bound

(3.1.46) Cz(j_é/Q)(%_1_2a_30/_5)2_j62q/

with (¢}, )eqr € 7€}, 6 > 0 when the coefficient of k + j — £ is zero, § = 0 otherwise.
Since ¢ —1—2a—3a/ > 0, we see that the supremum in £ > 2j of (3.1.46) is in Gl
Let us estimate now the second sum in (3.1.45): using (3.1.43), we get the estimate
¢
9(i—£/2)B+(—0)a [ Z 9— (k—é)(s—l—o/)2—(j—2/2)(2(a+2a’+2)—5—2)2—j(s—a/)ckq/
——

k J

—+oo
+ Z 27(k7€)(s+s 71)2(376/2)(s+272(a+2a +2))27](37a )qu/
k=¢

When s — 1 — o’ > 0, the first sum is smaller than

9 U—t/D(Rlat2a 4D =Ny iet
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with (¢j,)eqr € €€}, so smaller than a £3¢], sequence using assumption (3.1.39) and
< £/2. When s — 1 — o/ <0, we get an upper bound

Q(I—4/2)(s+2=2(et20'42)) g (s ) 4id .,

with § > 0 arbitrarily small, which gives again a é?ég, upper bound using s > o/. For
the second sum, we have s+ s’ > 1, whence again an upper bound in terms of a é?ég,
sequence. [l

We want to deduce from the preceding results a statement concerning products. Let
us set the following definition.

DEFINITION 3.1.7. — Let s,5’, a, &’ be real numbers, r € [1,+0o0], M € N. Denote
by £ =min[l, 1 + 1]. We set
s "+1/2
ES S — Ha a T m FS yS

a,a’,r

,s ,s ss+12
EY,  =HY, nEStY

(3.1'47) aa ,T ’ tj,sa/ ,T ~SS/ aa ,T
Eiz Ne HSS ~mF;Z+rl/27 Ea’a r:Hoz’a’ijZ—i_rl/Q
5.148) ot (M) = {w€ B ¥y €Nl < Matu e BTN
£, (M)y={ucESS, sVyeN, |y| < Ma"ue B0 101
s) 8;‘; (M) —{ueEaa AV EN, ] < Matue By )
E (M) = {ue By i Wy €Ny < Moatue B
COROLLARY 3.1.8. — Let 3,8, a,a/,01,02,01,04 be real numbers, M € N, A € Ry
a parameter, satisfying
+ 02 d
"> d/2, > o L, M>s —X+=
(3.1.50) ol >df2 s>t S TATY

0; 20, s—o;#d, 096[0,1], i=1,2 s>d.

(i) Assume moreover

(3.1.51) —(2a'+1) <a< —(a +1).
Then if y € N4 |y| <2M —d—1, uy € 82;;1;1/ THM), ug € 52 ;2; “7(M) and if
,_o1tos oitoy ]y, d
(3.1.52) 545 > 5 + 5 + 5 + 2
we have that xVuius € Eﬂ a/(’{) where
(3153) /8\28—01—02, ﬂz?(a-ﬁ-o/-i—l)
~

d
§(y) =8 —max(o},00) —[1+X—s" + |y +5+ E]Jr
where § > 0 is arbitrarily small.

(it) Assume (3.1.50), (3.1.52) and
(3.1.54) a+ao <0.

~s5—01,8 ~s5—03,8 —0'2

Eaa oo UI(M), U €€ of oo (M), one has x7ujuy € B3

a,a’,1 °

Then if u; € €

SOCIETE MATHEMATIQUE DE FRANCE 2002



42 CHAPTER 3. NONLINEAR ESTIMATES

We prove first:

=l

with x7u € Ea o for |yl <d+1. Then for any

\T

LEMMA 3.1.9. — LetueEz;,
§>0,uecEY 7

Proof. — Write for g € Z%, ¢ € N

H%Ajurf(t)||L°°(dt,L2(dz))<C<q>_d_1 Z 127 g Ajule(t)]| oo (£2)
[v|<d+1

<Cl)™ " D0 AL E W ()| e e

l[yl<d+1

(3.1.55)

where ﬁj,ﬂ, is a family of Fourier multipliers defined by a cut-off satisfying conditions

(3.1.15). If we use (2.2.5) for v and 27w (replacing s’ by s’ — |7y]) in the right hand

side of (3.1.55), and then interpolate with (2.2.5), we obtain that u € Hi’;,jld_d
S Sl 1_d— . . . .

The fact that u € Fa:a,trf 70 proved in the same way. One proves similarly that

lpgx(D/vt)u| L~ < C{g)~¢~1. This concludes the proof. O

Proof of corollary 3.1.8. — We will prove at the same time assertions (i) and (ii). We
set @ = a + 2 in case (i) and @ = « in case (ii). We decompose

(3.1.56) ug = Ty uo + Tyyur + R(ug, us).

Let y € N9 |y| <2M —d — 1. If |y| < M — d — 1, we remark using notation (3.1.16)
that 77T, us may be written as a linear combination of expressions of type T(ﬂ up) U2
with |v/| < |y|- Actually, arguing by induction, only the case |y| = 1 has to be
considered. One then writes

:L‘Tulu2 = Z([l‘, Sj71]u1)(Aj’U,2) + T(mul)’U,Q
izl

and remarks that [z, S;_1] = x;(D) for a function y;(§) satisfying the second condi-
tion (3.1.15).
By assumption, we have

~s—01,5' =y —|v'|=|7"]

(3.1.57) 2 g € Ez 000

for 7| < d + 1. By lemma 3.1.9, we deduce z7'u; € EZ a‘flis —o1=Il-d-s

~ ’ ’ ’
s—o1,8' —o1—|y'|—d—¢
a,a’1

for any § > 0. We apply proposition 3.1.3 (ii) and get

s—oa—(d—s+01)4,8'—oh—[—s +ol +|v|+5+ 4]+
at(&+2a’)4,a/,1 .

(3.1.58) 2Ty, us € E

Since s > d, o} € [0,1], o1 > 0 and, in case (i), a+(&+2o/) = a+(a+2a +2) > 3,
we see that this last space is contained inside Eg’ a,(ﬁ{) in case (i), and in Es’S ,(A{) in case

(i1). When |y| > M — d, we decompose v = 1 + 72 with |[y1| =M —d — 1 [v2] < M
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and write 7T, us as a linear combination of terms fl’v(zﬂul)(a:’yé ug) with |v1| < |ml,

|75 < |y2|. We get that 27T, us is then inside

s—og—(d—s+o s —oh— —[—s' 40!+ +5+2
(3.1.59) D P A

Since
d d
|’Y2|+[—3/+0/1+|71|+5+§]+ <[5 +A+1+y+6+ §]+

as —s' + A+ 1+4|y1|+ ¢ > 0 by (3.1.50), we get that (3.1.59) is contained in E;’i,(;{)

in case (i) and in Eii,(ﬂi) in case (ii).
e

The proof that 277T,,u; belongs to Ej,, ;" (resp. Eii,(?) in case (i) (resp. in
case (ii)) is similar: one has just to replace in (3.1.58), (3.1.59) the first lower index
by & + (o + 2a’)4, which is larger than § (resp. «) in case (i) (resp. case (ii)).

Let us study R(ui,us2). For |y| < 2M —d — 1, we write 7 R(u1, u2) as a linear
combination of terms of type R(z" uy, 272usy) with |y |+ |y2| < 7], || < M —d —1,

~s5—02,5' —oy—|72|

[v2] < M. We will thus have 272uy € E

!
Hao,a! 00

5,5 ()

and by lemma 3.1.9 7wy €
pronsmoiminl=d=d  pemons’=ai=iml=d=3 1 e (i), we apply (i) of proposi-
a,a’,1 a,a’,1 ’ PPy prop

tion 3.1.5. We check that for § > 0 small enough,

25s+2s — (01 +02) — (01 +05)—d—56—1|y] >0
(3.1.60) 2s — (01 + 02) > 20/
20 +a +1) <0

because of assumptions (3.1.50), (3.1.51), (3.1.52), i.e. all conditions (3.1.23) are sat-
isfied. Consequently R(z" u1,x"2us) belongs to

E257(01 +02)—d, 28— (o +04)—|y|—6— <
2a+2+d,2a'—d/2,1

which is contained, since s > d and o/ > d/2, inside Eg’i,(ﬂ{). This concludes the proof

of the fact that z7ujus € E;:i,(’{) in case (i) since (3.1.51) implies g + o > 0 whence
E;:i/(:{) = E;:i/(:{) by lemma 3.1.2.

In case (ii), one has to check (3.1.25) to apply proposition 3.1.5 i.e. to verify condi-
tions (3.1.60) with the last inequality replaced by o + o' < 0, o’ > d/2. This follows
again from (3.1.50), (3.1.52), (3.1.54), and implies that R(z" u1, 27 uy) € Eig;,(ﬁi)

To conclude the proof of the corollary, we still have to get the L estimate involved
in the definition of Eﬁi,(ﬁi) i.e. we must show that if |y| < 2M —d—1 and x € C5°(R?),
Supp x C B(0,1),

(3.1.61) (g (@)X (D/ V) (@ uruz) | Lo atda)a € -
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Consider A(t,D) = 3} or-10,7 A% and split v = 71 + 72, with the inequalities
|71 < M —d —1, |y2| < M. We have
(3.1.62)  ¢g(x)x(D/VE)((a7 ur) A(t, D) (2" us))
= > @DV (@ un) Ap(aus))].
kK
[k—k'|<No

2k >10v%

for a large enough integer Ny. The general term in the sum (3.1.62) may be written

(3.1.63) D b (@)X (D/VE) by [ A (27 1) Ag (272 u2)].

For fixed ¢, the L*°(dz) norm of (3.1.63) is smaller than

(3.1.64) On Y {a—a) Nt gg A (@ ur) ()| 2 | Ar(aus) (¢, )| 2.

q/

The L norm of (3.1.62) is thus smaller than the ¢’ sum of Cn{q — ¢')~" times

2k —2s+(o1+02) 2k 2a’
> () ()
/i ;

ksVi<2k <t
o ok —2s+(01402) ok —2s"+ (o1 +0%)+|v|+d+6
A - ,
P ) BN €

kjt<2k

2o 2k
< e | —
Z <\/z_€

) —2s+(01+02)+2a’
ksvi<2k <t

Clkq’

+ Z $E+ T2 s

kit<2k

ok —2(s+s")+(o1+0o2+0]+0b)+|y|+d+6

for a positive § and a £3f}, sequence (ckq )rq - Since, by (3.1.50), o/ > d/2, s >
o + % > % + %, and because of (3.1.52), we see that the last expression
is smaller than C'), 2_’“5/(:;“1/, for some positive ¢’, i.e. the L* norm of (3.1.62) is
smaller than a éé sequence. We are thus reduced to the study of

16g[x(D/VE) (27 ur) (Id — A(t, D)) (2" uz))]|| =
Repeating the preceding reasoning, we further reduce ourselves to
l¢g[x(D/VE)((I1d = A(t, D)) (2" ur)(Id — A(t, D)) (27> uz))]|| o -

We get that this sequence is in £} applying lemma 3.1.2 with 4 (t,£) = 1 — A(t,£).
This concludes the proof. O
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3.2. Conjugation by an oscillatory exponential

Our aim in this section is to study expressions of type

(3:2.1) e MT,((1 = x)(D/VE)e™)

’
S,8

where m € Z* and w € Ea,a,ﬂ,. We want to show that (3.2.1) has essentially the same

smoothness as w. This will follow from the fact that making act a D, /vt or a D, /t

derivative on (3.2.1) gives either a term like (3.2.1) — with w replaced by %w or Zew

— or two contributions coming from the action of the derivative on the exponentials,
that will compensate each other modulo remainders.
Let us introduce some notations:

DEeFINITION 3.2.1. — For u € R, v € R, one denotes by X# the space of smooth
functions (¢,€) — a(t, &) defined on [1,4+o0c[ x R? with values in C, satisfying the
following inequalities

1\ p=|vl
(3.2.2) |(t00)* (VEde) alt, €)] < CM(@(l + @) ) 14+ & :
t t NG
for any v when |¢| > ¢v/t, and for 4 = 0 when |¢] < ¢Vt
We shall also denote by S* the space of usual symbols of order p i.e. smooth
functions b satisfying for any v € N¢
(3.2.3) |07b(x)| < C ()~ IHn,
PROPOSITION 3.2.2. — Let 5,8, a, 0,7, u, p,v be real numbers satisfying
rel,+], a+a <d/2, o >d/2
(3.2.4)
p>pu=0, v=0.

Let a(t,€) € 3,7 and b(x) € S*. Assume moreover that for some ¢ > 0,
(3.2.5) Suppa C {(t,£); |¢] > eVt}.
and that
o , , d o , , o d
(3.2.6) <§+a >0, a+ao +§>O>or<§+a <0, a+a« +§+V>O>.
Then if w € EZ’E;/’T, we have for any m € Z*

(3.2.7) e~ Mb(Vtx) T, (a(t, D)e™?) € E;jgj;;j’ C E;,*a”,;w'

where ¢ is any number in |0, min(p — p, d, % —a—d)[

We write by definition of paraproduct

(3.2.8) e~ MOb(Vtx)Tyla(t, D)e™] = Z(Sk_lw)gk
%
(3.2.9) gr = e~ ™b(Vtx)a(t, D) Ay (™).
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The assumption (3.2.5) implies that in the right hand side of (3.2.8) the summation
is taken for k satisfying 2¥ > cv/t. We begin by the following lemma:

LEMMA 3.2.3. — For any N € N, one has the following estimates, uniformly in
t>1, k with 28 > \/t:

(3.2.10)  [|Ajgk(t, )| L2

< Ovo—it 9i+k\ ¢ 1+2j+k -N 2 —ptu 2k +ﬁ 11"
SN t t NG t t

(3.2.11) [|S;gx(t, )|l

9tk ¢ 9i+k\ ~¢ s ok \ TPTH [ ok ok\ 11"
< 1 — —(1+=
(%) (50) ()[R0 T)

Proof. — Compute the Fourier transform of b(v/tz)e ™" as the oscillatory integral

L 1
(3.2.12) /e—”’f—lmmz/“b(\/%x) de = Welf”mtB(g/\/Z)
where
(3.2.13) B(n) = /e*imﬁ/‘*b(x —2n/m) dz.

If L=(1+m?2%)~Y(1—2ma- D,), so that L(e’imw2/4) = e~"m7*/4 e have
|("L)*[b(z — 2n/m)]| < Ci(x) ™" (1 + |z — 2n/m)"

whence, integrating by parts in (3.2.13), the estimate B(n) < C{n)*. Treating the
derivatives in the same way, we get that B € S*. We now write the Fourier transform
of gi as a multiple of

Cim B e—inz/mt
F(em (i) * |alt, e (2™ n) 5]
that is, using (3.2.12), (3.2.13),
o (2R enon £ — 2k
&7 /mt [ 2 —2i202 n k
(3.2.14) e ( ; ) /e B( 7 >gp(n)a(t,2 n) dn.

Integrating by parts in  we obtain an estimate of the modulus of (3.2.14) by
d -N —17v -
2k 2k 2k 2k 2k 77
c(Z) (12 ~(1+= =
t t t t Vit

where we used (3.2.2), B € S*, 2 > c\/t, and where ¢; has the same support as
. Consider first N’ with u — N’ < 0. When the integration is made over a domain
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|€ — 2Fn| > c2F for a small ¢ > 0, we get an upper bound

s el (29[22 T ()

On the other hand, the contribution of the integration for | — 2¥n| < ¢2* gives, since
this implies |¢| ~ 2%, and since —2N 4+ N’ < —N,

d —-17Y —p—N
B BT E)
t t t Vit

which is still of form (3.2.15) changing the value of N.

On the other hand, for N’ such that u — N’ > 0, we get immediately an upper
bound of type (3.2.15), changing the value of N.

Inequality (3.2.10) (resp. (3.2.11)) follows from estimate (3.2.15) computing the
L? (resp. L') norm of A/Jac(f) over a ring (resp. a ball) of radius 27. O

Proof of proposition 3.2.2. — We decompose (3.2.8) as

Yo Tp(Skaw)+ Y RlgrSk-iw)+ Y Ts yubh

ki2k>cvt ki2k>cvt k;2k>cvt

and we shall estimate successively for a fixed j
(3.2.16) > AT (Sko1w))

k;2k>cvt
(3.217) Y. Ai(R(gr, Sp-1w)

k;2k >c\/t

(3.2.18) D Aj(Ts wgr).

k;2k>c\/t

The assumptions on a,b of proposition 3.2.2 will enter the proof only through the
estimates (3.2.10), (3.2.11). Since the parameters p and p appear in the right hand
sides of these inequalities only in the difference p — p, we can without reducing the
generality assume pu =0, p > 0.

Estimate of (3.2.16). — We write the product of (3.2.16) with a function ¢, as

(3219) Z Z Z d)qA ¢q 19k)¢q A Sk 111))
li—3d |<N0 2 >C‘/_
2j—No

for a large enough integer Ny. We multiply by T'y(¢) and compute the Lp(%, L?(dx))
norm for p =2 or p = oo of (3.2.19). We get an upper bound

(3.2.20) Z Z ZCN (0= ¢")ITe(t) (S5 —198) | L= (araa)

<N, 2k>c22/2
[7— J| o x ||To(t)

k2j—No AjrSe1wll Lo ae 12(da)y-
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The last norm in the above formula is bounded from above by

(3.2.21) CU—/Dat (=0’ (1 4 9i—t/2)=s=a(] 4 9i=t)=F—a"¢

with 3 = 5" if p=o00 and & = &' +1/2 if p = 2, (¢4 )jo in the unit ball of £3(7,. On
the other hand, we have by (3.2.11)

(32.22) Y Te(t)Sj 19kl Lo (atdn)

k
k>£—No
k>2j—No

< Z 2(j+k—£)d(1 + 2j+k—£)—d2—(k—£/2)p(2k—2(1 + 2k—£)—1)u.

k
k>£—No
k>j—No

Denote by ¢’ any positive number with ¢’ < min[p,d]. When £/2 > j, this last sum
is smaller than

3 o-let/2e 3 QUHk=0)d—(k—/2)p  (r9(i—t/2)¢'
k>0—j kil—5>k>£/2—No

When j > ¢/2, we have the estimate
Z o= (k=t/2)p < r9=(i—4/2)p

kzj—No
We see that (3.2.22) is smaller than
(3.2.23) 20—t/ (1 4 97 =4/2)=p=¢
Consequently, (3.2.20), (3.2.21), (3.2.22), (3.2.23) show that (3.2.16) belongs to
s+p,
Ea—o—z’ a’,r*
Estimate of (3.2.17). — We write the product of (3.2.17) with a function ¢, as
(3.2.24) > Z Z 6a850q) (A5 91) (b By Si—1w))

A
17 —J”|<No 2k>c\/_
3'2j—No >j" —=No

for a large enough integer Ny. We multiply by I';(t) and compute the LP(4, L2(dz))
norm for p =2 or p = co of (3.2.24). We get an upper bound

(3225 > Z ZCN ¢—q)"

/J”j\<1v k>0/3—No
SN, k23" =No

X 22| Ay gkl Lo (at,£2 () I Te (V) bgr A Sk1l Lot 1240y

for a large enough Ny. We use (3.2.10) to estimate the first norm in (3.2.25) and
remind that the second norm is bounded from above by (3.2.21) with j replaced by
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j" ~ j'. Consequently, (3.2.25) is smaller than

(3.2.26) Y S S Onlg— )N 2U RGN/ (g i oty N
Sy S
Jj'2j—No k;j’—NOO
—(k—t k—¢ k—t\—1100 (i —£/2)as (i —£)a’
w 9~ ( /2)P[2 (14 2k~ 9" —t/2)ag (" —£) Cirgt
since the terms in s, § of (3.2.21) can always be compensated for by (14 27" +k=¢)=N
as k > g — Np. This expression is smaller than

Z Z Cn g — q/>—ch,q,2(j—j’)d/2+(j’—4/2)a+(j’—€)a’(1 4 27/ —t/2)=Ntd
q/

-/

J
§2i=No Z D' +h=0)d (] 4 9i'Hh—t)—dg—(k—t/2)p[gh—(] 4 gh—E)=1]v

k
k>£/2—No
k>j'—No
< Z Z Cn{q — q/>—NCj,q,2(j—j )d/2+('—=4/2)a+(j —L)a
j/ q/
§'2j—No

x 20 =t/ (1 4 9 —t/2)=p=('=N+d

by the estimate (3.2.23) of (3.2.22). If we take ¢ < min[¢’
upper bound of type

7% — a — o], we obtain an

CC}qQ(j—E/Q)(a+C)+(J'—€)0/ (14 2/4/2)=N

for any N’ € N, with (¢, )jq in £5£;. This shows that (3.2.17) is in Erootee

a+C,a’ 7"
Estimate of (3.2.18). — We write the product of (3.2.18) with a function ¢, as
(3.2.27) Yoo D D (@200 )(@g Syr-1Sk-1w) (A gr)
j/ k q/

. . k
li—i'|<No 2">evit

for a large enough integer Ny. We multiply by I',(t) and compute the LP(4, L2(dz))
norm for p =2 or p = co. We get the upper bound

(3228) > > > Onla—d) NbeSy-1Sk-1wle(t)l| po(az o (an)

J’ k q
1<y k>t/2-No
=7 <N X A grTe(t) || oo (dt, 2(da)) -

We consider first the case a/2 +a’ > 0, a4+ a’ 4+ d/2 > 0. Let us show that for some
pio € N and some sequence (cjg/)jq in €3¢}, we have the estimate

(3.2.29) H¢q/5j/,15k,1w1—‘g(t)HLP(%’Lm(dw))
< Ccjy 2j'd/2+(j'*@/2)a+(j'*@)0/(1 + 2j'*€/2)uo.
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‘We write

[6qSj—1Sk—1wLe ()| Lo (2t Loo (dar))
< CNZ Z <q/ _q//>7N2k/d/2||¢q”Ak/er(t)||LP(%7L2(dm))'
q// k/<]/72
When j' < £/2 we get an estimate of type
Z 2k’d/2+(k’7€/2)a+(k’76)0/c;{/ql
k<G -2
for some (3,07, sequence (cj o )rg. Since g+ a+a >0, (3.2.29) follows. When
j' > €/2, we estimate the left hand side of (3.2.29) by
Z 2k’d/2+(k’76/2)a+(k’7€)a’c;c/ql n Z 2k’d/2+(k’fé)o/f(k’fé/2)mc;c/ql2(j'7€/2)u2
k' <£/2 K 30/2<k!
for large enough pq and po. This is smaller than
£ d £ d

255—50/"'(]'/—%)#262’(1/ — 21/%+(J’/—€)a’CZq,2(J’/—%)(uz—o/—5)

for some £7(7, sequence (¢f,,)eg', whence (3.2.29).
Next, we compute from (3.2.10)
Z 12 grLe ()] Loe (at,z2)
k>€/2—No
(3.2.30) < IR N gUlHk=0d () 4 gi k=) =No=(k=t/2)p
k>€/2—No
< (97429120 (1 4 97 ~E/2)-N+d=C'

where ¢’ is any number ¢’ < min[p,d]. Then (3.2.29) and (3.2.30) show that (3.2.28)

is smaller than
chqg(j—@/Q)(OH-C')2(]’-2)0/(1 4 i t/2)=N
for any N’ i.e. the contribution of (3.2.18) is in E;’r@f;ﬁr.

Let us now study the case § + o' <0, a4 o' + % + v > 0. We have
(3231) D> [ArgTe(®) Lo (ar.z2)
k>£/2—No

< o294 Z 2(j’+k—£)d(1_|_2j’+k—£)—N2—(k—%)p[2k—£(1_|_2k—£)—1]u'
k>0/2—No

When j' < £/2, we estimate the sum by
Dy 9+ (h=t/2p5'v ™ g Hh- N )t/ (kO

k30/2—No<k<t—j’ kik>0—j'
»lie 2 1t
< 02U —t/2)¢=j'v
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with ¢’ < min(p,d). When j' > £/2, the sum is smaller than
S oUWt/ D0y ¢ O /DN~

k;k>€/2—No
for a convenient N'. Consequently, (3.2.31) is smaller than
(3.2.32) CN,Q(J"—E/2)C'(1 + 2j’—£/2)—N2—j/(u+d/2)
for any N. If we use (3.1.19), we get also
(3.2.33) 60 Sjr -1 SkwT ()| o poe (amyy < C(L+ 27 2 o0y,
with (cjq)jq in £5°€. Combining with (3.2.32), we obtain that (3.2.28) is smaller than

CNQ(J'%/?)(O#C')HJ*@)&'(1 4272 Ne

with cjq = 205+ i0tstatal)e, - Since 2 4o/ < 0, v+ 4 +a+ad >0,
this sequence is smaller than a EQET sequence independent of ¢. This shows that
contribution (3.2.18) is in E;rﬁfaoor

We have proved up to now that (3.2.7) belongs to E5eS B We still

a+¢,a’,r a,al,r
have to show that we can replace E by E.
When § +a’ > 0, lemma 3.1.2 together with the assumption o’ > d/2, shows that
these two spaces are identical. Let us assume now that § + o’ < 0. By (3.2.8) we
have to estimate the quantity

(3.2.34)  @gx D/\/—< > Sk 1w9k>

k;2k>cv/t

> 6ax(D/VHI(x(D/10VE) Sk 1w)gs]

k;2k >cv/t

+ Y Gx(D/VH(1 = X(D/10v))Sp—1w)gs]

ki2k>cvt

with x € C5°(R%), Supp x C B(0,1),x = 1 on B(0,1/2). The first term in the right
hand side may be written

(3.2.35) D> (Gax(D/VE$g ) (69 X(D/10VE) Sk 1w)ge).
k q

Since w € E**

a,al,r?

we have, by lemma 3.1.2

(3.2.36) ||¢q/X(D/10\/Z)SkflwHLOO(dtdm) < Cey

for a constant C' and a (7, sequence (cy )y independent of k. Moreover, by (3.2.11)
and the assumption p — p > 0, 375 ors oz 9kl Lo (dtdry < C. We thus deduce from
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(3.2.35), (3.2.36) that the first term in the right hand side of (3.2.34) has L® norm
in £7. The last sum in (3.2.34) may be written

(32.37) DN (gx(D/VSe) (S (1 = x)(D/10VE) Sk 1w)(1 = x)(D/VE)gi].
k q

as follows from inspection of the supports of the Fourier transforms. We estimate
(3:2.38) [[(¢q (1 = X)(D/10VE)Sk—1w(t, )| o (ax)
<SS Y onld — ¢ Vg Apw(t, ) .

q" ke /t<2k <2k—1

When 2F < t we get an upper bound

’ it / O/ / H
wase [ 2° 2" W(dja—aty [ 2 ’
> (B (2) s § o (2),

k' eV/t<2k <2k—1 k' jeV/t<2k <2k—1

where (¢ )7 1s in E%,EZ, and pg is chosen large enough. If 1o + % —a’ >0, we get
an upper bound of type

k(d/2 /) Qk Ko 2k Ho
C2 -« C/ ’ — < CE | —F=
w () <o (%)

where (¢ kg € L3t} (Cq)q € €7 independent of k, t.
When 2% > ¢, we control (3.2.38) by

7\ Ho r\ —S ’ —s'
ok’ (d/2—a’) i ok'd/2 i ﬁ
Z \/1_‘; Ck'q’ + Z \/E 7 Ck'q'

K sev/t<2k <t k7 t<2k <2k—1

which is also controlled by C'cy (%)MO. We thus have

2k Ho
60 (1 = 0)(D/1VDSe10(t, )| ety < O (%)

for some 19 and some £}, sequence (¢4 )y . Moreover we deduce from (3.2.10)

11 =) (D/VOgkll L (ar) < C D 22| A gkl L2(aw) < Cn (25 /D).
27 >c/t
We deduce from these two inequalities that the L>(dxdt) norm of (3.2.37) is smaller
than a £ sequence. This shows that the L°°(dxdt) norm of (3.2.34) is in ¢ and
concludes the proof of proposition 3.2.2. |
Our next objective is to estimate quantities of type
(3239) Ta(t,a:)wb(t7 D)eimg

where m € Z*, a(t,z) is a smooth function of z satisfying for any v € N¢

(3.2.40) (D2 /VE) alt,2)] < Co (L + Vila])™ 7171 + |a])™
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and where b(t, €) is in X722, using the notations of definition 3.2.1.

PROPOSITION 3.2.4. — Let my, m}, ma,v be real numbers satisfying the inequalities
m1 < 0,m) <0, and let a be a symbol verifying (3.2.40) and b € 72,
(i) Take s,s',a,a’,r such that s,s',a,a’ € R, r € [1,+00],

d d
(3.2.41) —d<a—|—o/<—§, s<a+2d, s+s<-1/2, V=3
Let w € EZ’:";,,T be such that a(t,z)w € EZ’,“;/,,T. Then (3.2.39) belongs to
B

(it) Assume instead of (3.2.41),
d d 1
(3.2.42) —§<oz+o/, s<o/—§, s+s'<—§, v =0.

and a(t,z)w € B (3.2.39) belongs to the space

’
a,a’ r?

Then if w € EZ’S/

’
, , ,alr
Es—ml—mg,s —m]
a+d,a’,r :

We can in the above statements replace operator T' by operator T of (3.1.16).

We first prove the following lemmas:

LEMMA 3.2.5. — Let a be a symbol satisfying (3.2.40) with m; < 0, mj <0, b €
X2 m e Z*. We have the following estimates

(3.2.43)
4 2j v+d/2 2j —v+m) 2j mi+mao

||a(t7x)Ajb(t, D)61m9||L2(dz) <C (?> (1 + ?) (1 + %)

(3.2.44)
. 2j v 2j 7u+m’1 2j mi1-+ma

lalt, 2)Asb(t, D)E™ | e gy < C (7> (1 ; 7) (1 ; $> .

Proof. — Remark first that since my < 0, m} < 0, (3.2.40) implies that
27\ ™ 2\ ™

(3245) ||Il{|m|202j/t}a(t,x)HLoo <C (1 + %) (1 + 7) .

Moreover, a direct computation and the assumption b(¢,£) € X2 shows that

i\ v+d/2 L\ —V S\ M2
. 27 27 27
A;b(t, D)e™? o <C(= 14+ = 1+ —
18;b(t D)™ | 2ar) (t) (+t) (+ﬁ)

, 21\ " 271\ " 27\ "
Ajb(t,D)e™ || poeany < C [ =) (14 = 1+==) .
A D)l <€ (5) (14 5)  (1+%)

Together with (3.2.45), these inequalities show that (3.2.43), (3.2.44) hold true if we
replace in the left hand side a(t,x) by 1 {j3>c2i 13a(t, ). Consequently, we are left
with estimating in L? or L® the quantity

(3.247)  [qaj<camyalt, 2) At D)e™| < O fjaj<cas iy Asb(t, D)™,

(3.2.46)
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where we used that a is bounded since my < 0, m}j < 0. When 27 < +/t, the wanted
upper bound follows from the above estimate of the L? or L° norms of A;b(t, D)e™?.
When 27 > V/t, we write A;b(t, D)e'™? as a constant multiple of

i\ 9 ) 27 g2 o
B24s) [ Moo, T - (%) [ e ae

where Ej(t7§) = p(€)b(t,27¢) is supported in a fixed ring of size 1 and satisfies by
(3.2.2) for any v € N4

I 27\ 29\ " 27\
o eoi<e, (2) (1:2) (10 2)"

Define the operator
(3.2.50)  Lj(t,a,&, Dg) = [1+ 2% (x — 27T L2711 4 27 (2 — 27TL.£) . D]

Remark that when ¢ € Supp g and x stays in the domain |z| < €27/t with ¢ small

enough, this operator is of form L; = a?(tmc,f) + a}(t,x,g) - D¢ where a?7al are

J
smooth coefficients satisfying for £ = 0,1 and v € N¢

(3.2.51) 10 a(t,2,6)| < C,(1+27/VE) 2.
Consequently, *L; is of the same type, and integrating by parts, we write (3.2.48) as
N
DY » Je2 ~
(3.2.52) (W) /eﬂlzf—zmi JEL)Mb,(t, €) de

when z stays in the domain {|z| < ¢27/t}, for any M € N. It follows then from
(3.2.49), (3.2.51) that (3.2.47) is smaller than

29\ " 21\ N
CONTfi)<c2i/ty <7> (1 + %)

for any N. This implies immediately an upper bound of the L (resp. L?) norm
of this quantity by the right hand side of (3.2.44) (resp. (3.2.43)) and concludes the
proof. O

LEMMA 3.2.6. — If s is a real number, define sh = s'+ 4,5, =s'. Forr € [1,+00],
setrog =1, oo =T, with T defined in definition 3.1.7.

(i) Let s, s, o,/ ;1 be real numbers, with r € [1,+00], and assume that

(3.2.53) —d<a+d <—d/2, s<a+2d, s+ <-1/2.

If w e EZ’,“;/,,T, one has the following estimates for p =2 or p = co:

(3:250)  [gg(@X(D/VOUT )|y ey < CIU—UDFU=0C =g
when £/2 < j < L,

(3.2.55) 164 (2)S;wle(t)]| o ooy < C27 547,
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when j < /2,
(3.2.56) 6 (@)X (D/VOWTA(t) o (as 2y < C230—HD=50=0 ¢,
when € < j

(3.257) [l ¢g(@)(1 — x(D/VD)Suwl (D) poar 1)
< 02 50—/ +[ - (1_‘_23'76) ozfspch

when £/2 < j, where (cjq)jq (resp. (cq)q) is a sequence in the unit ball of K?&f (resp.

" )(u) Assume instead of (3.2.53)

(3.2.58) —d2<a+d, s<d —d/2, s+s5 <-1/2.

If w eEaa . one has for p=2 or p = oo,

(3.2.59) 164(2)X(D/VEWT e (#)] o gy < C270HDFE=O0 =20,
when £/2 < j < L,

(3.2.60) 16q (@) SjwTe(t)] 1o a2 ooy < C2U—BIHG=00"¢, 9%

when j < £/2, and (3.2.56), (3.2.57) when respectively £ < j and £/2 < j, for some
sequence (Cjq)jq @ the unit ball of (30},

Proof. — Let us prove first (3.2.54) and (3.2.55). We estimate, with some N; € N,
164 (@)X (D/VOwLe(t)l| o2t 1)

<D0 D @e@X(D/ VDG ) by Agrwle(8)) | e oy
(3.2.61) 0 j§I<E/2+ N

<Y O g )N by Al (0 o g,

q j/;j/<€/2+N1

Using the definition of E we get the upper bound

(3.2.62) Cxn Z Z 94'd/2 (q— q/>—N2a(j'—£/2)+o/(j’—é)cj,q,
q' j'53'<E/2+ N1
for a E?,E 7 sequence (cjrq)jrq - In case of assertion (i) of the lemma, under assumption

.2.53), (3.2. is smaller than C2~2 cy for a sequence (), is last
3.2.53), (3.2.62 ller than C2- 52—’ ¢/ 0y w)q- This 1
expression may be written

OS2 )

with

Cigt = 2](37(1 +d)2€(7s/27d7(x/2)cg.
This quantity is smaller than 2’j(o‘+o‘l+d)c’ when 3/2 + d+ a/2<0,0/2<j<{ and
than 20(s/2—« ‘“/Q)C when s/2 +d + a/2 0,£/2 < j < £. In both cases, becaube
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of (3.2.53), we get an upper bound by a e?eff sequence, whence (3.2.54). One proves
(3.2.55) in the same way.

Let us now prove inequality (3.2.59) of assertion (ii) of the lemma. Because of
(3.2.58), the quantity (3.2.62) is smaller than C22(3~*)eq, with (ceg)eq € £30]. We
write this upper bound C2-5U—¢/2+G=0(e"~d/2) ¢, with

Car = 20 /Dol 4a/2) g,

Since s —a’ 4+ d/2 < 0, the supremum for ¢ < 2j of this sequence is in E?EZ. This gives
the conclusion (3.2.59). One gets (3.2.60) by a similar computation.
Let us prove now (3.2.56). Arguing as in (3.2.61) we write

(3:2.63) [dq(2)x(D/VE)wLe(t)l| o ar 2y

ST Y lgmdy e,
q' §5'<b/2+ N1

Let us consider first the case a + ¢/ < 0. Then the right hand side of (3.2.63) is
smaller than 02*5""40‘/“50; where (c)q € 03, € = 0 if @ + o’ <0, € > 0 arbitrarily
small if & + o/ = 0. We write this quantity C2-U=t/2)s=(=D)s, Cjqe Where

(3.2.64) Cjqe = 2o g B (o420 kst 28, =28) o 9i(e40) o/

if £ < j and 0 = max[s + s}, 5 — § — @|. The assumptions (3.2.53) or (3.2.58) imply
that 6 < 0, so the right hand side of (3.2.64) is in (3¢} if ¢ < —d, whence (3.2.56) in
this case. When a + o’ > 0 we are necessarily in case (ii) and the right hand side of
(3.2.63) is smaller than 02*%"‘/02(1 for a (70} sequence (cq)eq- We write this quantity

2_s(j_£/2)_5;(j_z)chg, with for £ < j

- - S C(l
— 2](s+s/p)2—%[s+25/p+0/]cleq < 97 max[s—i—s/p,‘E—T]C/

Cjqt lq*

Since by (3.2.58) s + ), < 0, s < ', the supremum in £ < j of this last sequence

belongs to é?ég. This concludes the proof of (3.2.56).

Finally, let us prove (3.2.57) in cases (i) and (ii). We write

(3.2.65) [lég(@)(1 — X)(D/VDS WL e(t) | o s 2,
< 6= )D/VDE) G Ay T o) o 2

q' §8/24+N1<j' <51

<OvY ( > (g—g)~ VUm0,

a " §'5/24+ N1 < <inf(€,j-1)

b Y ey oy,
JH<G'<jy
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where (¢jiq)jrq € (347, and where we used the definition of E; . When j—1<,

aar

since in both cases ( ) and (i) & — s > 0, we get for (3.2.65) the upper bound
—L)a' g—s(j—L/2
C2l—0)a 9=s(i—L/ )C;'q

2 pr /
for a 507 sequence (cf,

obtain the upper bound

)iq- When £ < j — 1, using that s + s, <0, ' —s > 0 we

Co—s(—/2)—s,(5—0) [}y + CZqQ(SJrS/P)(j_Z)]
for a (307 (vesp. 7(y) sequence (c},)jq (vesp. (cf,)eq). The conclusion follows from
these estimates. O
Proof of proposition 3.2.4. — We want to estimate
(3.2.66) Pq A [Ta(t,e)wb(t, D)e ™ |Te(t)
in L2(%, L?(dz)) and L>(dt, L*(dz)). We study successively the following cases.
Estimate for j < £/2. — We write for |j — j'| < Ng, Np a fixed integer, and p = 2 or
p =00
(3.2.67)  [l¢gAz[Sj—1(a(t, 2)w)Te(t) Az b(t, D)e™ ]| sz 12y
<Y COnla—a)Vlloy Sy-alalt, @)wlle(t)l| o ae )
7

x || A [b(t, D)e™]|| Loo(r2).

In case (i), we use inequality (3.2.55) (for aw instead of w) together with (3.2.43) with
v =d/2. We get the upper bound

(3.2.68) O2-sa—ta 2(j—€)d — 02(1—4/2)(a+2d)2(j—€)a’ch

with (cq)q € £g" and cjq = 279"+ d)e, a sequence in (205", as we have a+a/+d > 0
by (3.2.41). In case (ii), we apply (3.2.60) together with (3.2.43) with v = 0. We get
the upper bound

(3.2.69) C2l—t/2a+(i—0)a ¢ 2Jd/22(J 0d/2 _ o(i—t/2)(at+d)+(i—0)a’

Ciq

for a (204" sequence (cjq)jq- The expressions (3.2.68), (3.2.69) show that (3.2.66)
belongs to the spaces indicated in the statement of the proposition.

Estimate for £/2 < j < . — For j’ with |j — j/| smaller than some given integer Ny,

we write
(3.2.70) (@) Ay (b(t D)) = Uy - Vi
where, if ¢(t,z) = (1 + tz? ) m1/2(1 + 22)7™1/2 e set
1 c(t,x)Sj/,l(aw)
(3.2.71) o
Vi = c(t,x) " Ay [b(t, D)e"™?].
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We further decompose, choosing No such that j” > j' + Ny and j > ¢/2 imply

(1= x)(D/Vt) ATy = ATy,

(3.2.72) Up =U, +U+ Y Ul
'//>j/+N2
Ujs = c(t,x)Sj—1[ax(D/V)u]

Ujr = c(t, 2) Sy la(l = X)(D/V)Sj v, 0]
3" = (t, 2)S;_1[al ]
when ¢ is in the support of T'y(¢). We have the estimate

(3.2.73) ||¢q(x)Uj/Vj/F€(t)HLP(%,L?(dz))
< g (@)U ()l ot Lo day Vi Do) oo (at, 12 (d0))
+ [|¢pg () U T (t )HLP( 122(da) Vi Le(®) || Lo (dtder)

+ Z [ pq(x UJ Fé() 4t 12 (da)) HV Lo (t)] oo (dtda)-

J"zy
We write
¢qu/" = Z Kjqq [(ﬁq/x(D/\/z_f)w]
q/
(3.2.74) ¢qu/'C = Z Kjrqq [0q (1 — X)(D/\/E)Sj’+N2w]

g UJJ' Z i'qq’ Ajrw]

where the operator Kj/qq, (resp. K, Vg

/) is given by

(3.2.75) Kjrggw(z) = ¢q(x)c(t,x)2j'd/h(2j/(x—y))a(t,y)gﬁq'(y)w(y) dy
(resp.

(3:276) K] yulz) = 6y()et. )2 [ 12 (o~ 9))a(t.)B ;0 (Gy ()ulw) dy)

for h € S(R?) with he C&°(RY). Let us remark that the kernel kjrqq (z,9) of Kjrgq
satisfies for any V € N

sup / ko (2,)| dy < Crv (g — /)™,

(3.2.77) !

sup / lejragr (2,9 dz < Cnlg — ),
Yy

since, on the domain |y| > e|z| (¢ > 0) |c(t,z)a(t,y)] < C as my < 0,m} < 0, and
on the domain |y| < e|z|, the decay of h compensates the growth of ¢(¢,x), since
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21" > ¢2¢/2 > ¢4/T on the support of I'y(t). Consequently, for t ~ 2¢, o € [1, +0c]
(3.2.78) | Kjrqq lere,zoy < Cnig—q )N

for any N, uniformly in j’, ¢, ¢’. By integration by parts, we can write (3.2.76)

(3.2.79)  ¢g(w)c(t, z)2 / @7 DYM (2 (@ — y))alt, y)]
x (277" Dy) ™M Ay [y (y)w(y)] dy
for any M € N. Since, by (3.2.40),
IDya(t,y)| < CEIV2(L + Vely))™ (1 + [y)™

and, for ¢ ~ 2/, Vi < 02/2 < €27, we deduce from (3.2.79) that the kernel £, ,(z,1)

-1
of K]?,qq, satisfies

sup/ |k§/qq’ (x,y)| dy < CN<q — q/>7N2*N(j”*j/)’
(3.2.80) ¢ y .
Sup/ k1 g (2, 9)| dz < Cn (g — ¢ ) NoNG"=ID),
Yy

whence, for t ~ 2¢, o € [1, +00]
(3.281) IK2 e oy < Onlg — oy N2 NG5,
Let us estimate the first contribution to the right hand side of (3.2.73). Using (3.2.74),
(3.2.78) we see that
Hd)q(x)U]l"Fé(t)HLP(%,L‘X’(dx)) IVirTo(O)|l oo (dt, 12 (da))
<Cv Y (a—a) Ny (x)X(D/\/Z)U’Fé(t)||Lp(%,Loo(dz))

q/
X [V To(t)|| Loo (at,L2(da)) -
Applying (3.2.54) and (3.2.43) with a = ¢, v = d/2 in case (i) (resp. (3.2.59) and
(3.2.43) with a = ¢71,v = 0 in case (ii)), we get the upper bound
(3.2.82) 2 (s—m1—m2)(i—£/2)9(i—t)a Ciq

in both cases, for a e?egp sequence (cjq);q- This is the wanted conclusion. To study the
second contribution to the right hand side of (3.2.73) we write using again (3.2.74),
(3.2.78)

16g(@)USTe(t) | Lo (ar, L2 (da)) IV Te(®) | oo (asdz)
<Cn Z(CI — ") N¢g () (1 - X)(D/\/E)Sj'Jerwré(t)HLP(%,LZ(dx))

q/
X |V Lo ()] Loo (dtde)-
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Since (3.2.44) with a = ¢~! implies in any case || Vj T¢ () || oo (dpdr) < C20 /D matma)
we obtain from (3.2.57) the upper bound

2 (m=ma) =t/ gl=0a ot
for a (204" sequence (c},)jq- This is again the wanted conclusion.

To study the third contribution to the right hand side of (3.2.73), we write using
(3.2.74), (3.2.81)

(3.283) D [6g(@)U) Te(Oll o r2amp Vi Te(®)ll L= (atar)

i35

<ONY L D> la—d) V2N gy (@) AgrwTe(b) | ot 2 dy)
¢y X [V Te(t)]| Lo (atdz)-

Using (3.2.44) and the definition of B>, we estimate (3.2.83) by

a,a’ T

OnS S g — oy N NG 25U 00 (1 gy
q’ j“)jl X 2(j/—£/2)(m1+m2)

< 02—(J'—Z/Q)(S—ml—mz)Q(j—f)O/C;,q

with a E?MZ? (resp. E?K;p) sequence (cjrq )jrq (vesp. (cj,)jq). This gives the wanted
conclusion.

Estimate for ¢ < j. — Using decomposition (3.2.72), we estimate

(3-2.84) loqUy Vi Te(t)l oar 12y < 10U Te(®)ll 1o (ar 12y ITe() Virll oo (ara
+ 10U Te()| Lo (az,12) ITe () Vir | oo (avar)
+ Y 116Ul Te()ll poar, p2y ITe()Virll oo (atar)

=5
We estimate the first term in the right hand side using (3.2.74), (3.2.78), (3.2.56) and
(3.2.44) by

(3.2.85) Cgf(sfml*mz)(j*@/Q)*(S;*mi)(jff)ch
for a E?K;p sequence (cjq)jq- This is the wanted conclusion. The second contribution
to the right hand side of (3.2.84) is estimated in the same way, using (3.2.57) instead
of (3.2.56). Finally, the third contribution is smaller, by (3.2.81), (3.2.44) and the

definition of E**,  than

a,a’,r?

On 3 g gy Vo NG =g D5 =08, o= /D (mama)

’

"3 q

for a ¢2, 077 sequence (¢jug)juq - This is again smaller than (3.2.85), which concludes
the proof of the proposition. O
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We close this chapter with a corollary of proposition 3.2.4 which will be used in the
rest of this paper. Remind that we defined in definition 3.1.7 spaces £2°, (M),

£, (M)

COROLLARY 3.2.7. — Take d =2 and let b(t,§) € X2, Letm € Z*, M € 2N. Let w
be an element of £7,, (M) such that for a given u € [0,4], (Vtz)tw € En oy (M).

Assume

(3.2.86) —2<a+d <-1, s—pu<a+2d, s+s—-—pu-M<-1/2, v=1
or

(3.2.87) —l1<a+d, s—p<ad -1, s+s—-—pup—M<-1/2, v=0.
Then under assumptions (3.2.86), (resp. (3.2.87)) Tub(t,D)(e"™%) belongs to
ESTiao (M) (resp. €375, (M)).

Proof. — Take v € N? with |y| < M. We have to show that the expression
2YTwb(t, D)(e"™?) belongs to EPTmas =l (resp. E5-™2° 1) Using the notations

a+4,a’,r a+2,a,r
introduced in (3.1.16), we can write this expression as a linear combination of

quantities T, b(t, D)(e"™?) for |7'| < |y|. Write 27w = a@ with
alt,z) =27 (14 22) M2 (Vi)
W = (Viz)" (1 4 22)M/ 2.
We see that a satisfies (3.2.40) with m; = —pu <0, m) = —M +|7/| < =M + |y| < 0.
Moreover, by assumption, @ € E57%* ™™ When (3.2.86), (resp. (3.2.87)) is satisfied,

a,a’,r

(3.2.88)

we deduce from (i) (resp. from (ii)) of proposition 3.2.4 that T,zb(t, D)(e"™?) belongs
to EZ;ZZ’,S;T_M (resp. EZ;;ZL’,S;T_M) which is the wanted conclusion. O
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CHAPTER 4

PROOF OF THE MAIN THEOREM

4.1. Main reductions

Let us recall that we have seen in section 1.2 that theorem 1.1.1 will be proved if
we succeed to construct a solution to the equation

D? 1. 1 . _
(4.1.1) (Dt + t—;)w = ZelG(t,m)Ql(w’ Zw) + 26—319(1&@)@2(@, Zw).

wli=1 = cwp
defined for ¢ > 1, when ¢ is small enough and wy stays in the unit ball of HM+4(R?).

Using the definition of Z = % + 5 and the assumptions on @1, @2, we can rewrite
the first equation (4.1.1) as

D? 1 _ —3i
(4.1.2) (DH— ) == Y 4w, B ¢t 4 1 = Y (@ Bem)are
[v]<2 |7\<2

where v € N, || < 2 in the summation, and ¢] (Yp, Y1), g3 (Yo, Y1) are homogeneous
of degree 2 in (Yo, Y1), their degree in Y7 degy, g; 7(Yp, Y1) satisfying the relation

(4.1.3) 0 <degy, ¢/ (Yo, Y1) + 7] <2, j=12
The spaces we will use to look for a solution are the spaces 522 (M) and Sa o (M)

introduced in (3.1.49). Let us recall their definition

& (M )Z{UEE” Vye N, |y < Mx”’veEss M}

a,a’,r a,o’ 7’7 a,alr

(4.1.4)

~s,5"
&

vl
oz,a/,r(

)—{UEE VyeN? |y < Mac”veEaar}.

Oy Ot ’I‘7
Since we have relations
’
77 = E Ay (Dy f8)Y 27
R S

z) = Z by (Do /)T 27

YA <y
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with coefficients a.s , by~ uniformly bounded for ¢ > 1, we see that these spaces
are also characterized by

goii’,r( ) - {U € Ea ,al r’

Vy e N |y < MZ“’UEESS M}

OLOLT

(4.1.5)

~s,s’ =7l

éa,a/,r(M):{UEEQ7,O¢’,T;V’YGNd7 |’7| M Z’yveEaa NE }

~SS

We also have an 1nJect10n & (M) cCc €&

OLOLOO —OLOLOO

(M) because of the corresponding

~s,s

property H a2 CH,
The indices 8,8, o, M used in (4.1.4), (4.1.5) will be fixed satistying the following

conditions

A a+2d +4>s>a' +2>3, at+td <-1, M=s+s—-4>6
1.6

( ) a+2d +4>s>2(a+2d +2).

Remark that the conditions concerning («, «’) read

(4.1.7) 2<ata < -1, o>1, %+a’<0

i.e. (o, ) has to stay in the shaded area in the following figure and s must stay in the

at+d=-2 a+a =-1 a/24+a' =0

two intervals defined in (4.1.6). One should think of (a, a’) as being close to (—4, 2),
and in the shaded area, and s being close to 4 — 0, in the intervals (4.1.6). The fact
that s has to be pretty large is imposed by the nonlinear estimates we will need to
study the right hand side of (4.1.2). We cannot hope to put this right hand side in a

space £ss

o0 , (M) for such a large s: in fact, this would impose to be able to make act

on it s ﬁ derivatives, which is incompatible (if one wants uniform time estimates)
with the presence of the exponentials e, e73%. To get around this difficulty, the
main idea is to get rid of these exponentlals exploiting the fact that their phases are
non-characteristic for the operator D, +
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We fix now s, s, a,a’, M satisfying (4.1.6), we take p € ]0,2[, close enough to 2,
and introduce the following notations:

~s,s’ ~s5—2k,s’
G={v€&qa (M) (D)0 € Eq o 0 (M), k=0,1,2}

G = {f € &5 HM); tDf € 5271 (M)}

(4.1.8) oo o
V={Ve& T (M); tDV € £55, (M), Vee S*, Vye N? || < 1,
c(Vtz)(D/t) (tD,)*V € 5;122@77;?7’“1*5/‘1—"*'(1\4), k=0,1}

where the index [ is defined in terms of a by

(4.1.9) B=2(a+a +1).
We will look for the solution w of (4.1.2) as

(4.1.10) w=uv+ Vie? +V_3e73%

with v € G, V1,V_3 € V. This expression should be understood as the beginning of
an expansion of w, since the definition of V in (4.1.8) shows that Vi, V_5 will decay
like ﬁ/fx)”‘. The two functions Vi, V_3 will be determined as functions of v in order
to cancel the worst oscillating terms in the right hand side of (4.1.2). Let us compute
the expression we get when substituting (4.1.10) in the right hand side of (4.1.2). Set
the following notations for sets of indices

(4.1.11) L ={-4,-2,2,0}, Ib={-5-1,3}
Denote by V' the pair (V1,V_3). We have the following lemma:

LEMMA 4.1.1. — There are

— quadratic polynomials P;(Yo, Y1), P;3(70, Y1) in two indeterminates, indexed by
v € N2, satisfying

(4.1.12) 0 < degy, Py + 7/ <2, 0 < degy, P;° + || <2,

— quadratic  polynomials P;”(Yg,WO,YO,WO;Yl,Wl,Yl,Wl) i indetermi-
nates Yy, Yoy € C, Y1,Y 1, Wy, Wy € C2, W,W, € C* , linear in the variables
(Yo,Y0,Y1,Y1) and (Wo, Wo, Wy, W), indexed by m € I and v € N2, satisfying

(4.1.13) 0 < degy, w, v, I+ <2,

— quadratic polynomials P,;"(WmWo;Wth) indexed by m € I and v € N?
satisfying

(4.1.14) 0 < degy, 3w, Py + <2,
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such that, if w is given by (4.1.10) we have

> gl (w, Bw)a?e® + > g} (W, Pw)a7e " = 51 + Sy + Sy
lvl<2 lvl<2
= Z PA} (v, Zv)a7e® + P73 (v, Ly)zre 3"
<2 <2
(4.1.15) lvI< _WI B 4
Sy = Z Z Pm V,u,V; %v, %V, %ﬁ, %V)x“’elmg
mel |y]|<2
Sg = Z Z P (V. "V % %V)x“’eimg.
mels |y]|<2

The lemma is proved substituting (4.1.10) into the left hand side of (4.1.15) and
sorting terms according to the degree of homogeneity in (v, 7, ’? v, %v) Our first
task will be to write S, S3,S3 in (4.1.15) making appear the main contributions and

remainders. We have to introduce some notations.

DEFINITION 4.1.2. — A quadratic remainder will be a continuous function v — R(v)
(resp. (v,V) — R(v,V), resp. V +— R(V)) defined on the open unit ball of G (resp.
G X V, resp. V), with values in G’ vanishing at the origin, and such that one has the
following estimates for v,v" in the unit ball of G (resp. (v, V), (v/,V’) in the unit ball
of G x V, resp. V,V’ in the unit ball of V)

[R(v) = R()llgr < C(llvllg + V'llg)llv = v'llg
IR, V) = R, V')llgr < Cll(v, V)llgxv + (0", V') l[gxv)
x[[(v =",V = V')lgxv
IR(V) = R(V)llgr < CUIVIIv + IVIWIV = V'[lv.
(Actually V is not endowed with a norm, but with a family of semi-norms. We should
thus speak not of the unit ball of V, but of a bounded set, and not use a notation like

Il Ilv. Anyway, to avoid introducing some more notations, we shall use such an abuse
of notations).

(4.1.16)

Remind that we defined in definition 3.2.1 the class ¥ of symbols b(t, £). Let us
denote by &, £, £” three generic spaces. We set the following definition:

DEFINITION 4.1.3. — A quadratic symbol A(v,t, &) with values in £ ® ¥, such that
tD:A € & ® ¥#, and (tD;)?A € £” ® B4, will be a linear combination of functions

v = a(v)b(t, &) with b € ¥ and where a is a function defined on the unit ball of G,
with values in £, vanishing identically at v = 0, and such that
la(v) = a(v)lle < Cllvllg + IV'llg)llv = 'llg
(4.1.17) [tD¢(a(v) — a(v'))ller < C([lvllg + [[v'[lg)llv —v'llg
1(tD¢)?(a(v) — a(v))]ler < C([lvllg + [[v']lg)lv — v'llg

MEMOIRES DE LA SMF 91



4.1. MAIN REDUCTIONS 67

for any v,v’ in the unit ball of G.
We use a similar terminology for symbols A(v, V,¢,€) defined on the unit ball of
g xV.

Before beginning the study of equation (4.1.2) let us introduce a last notation. If
A =a®b with a a function of (¢,z) belonging to a space £ and b a symbol in XH,
we shall denote by Op® (A) the paradifferential operator of symbol A, defined using
(3.1.12) by

(4.1.18) Op® (A)u = Ty(1,2) (b(t, D)u).
— B
We shall also use the generic notation Op (A) for the operator
B ~
(4.1.19) Op (A)u = Top,2)(b(t, D)u).

The study of equation (4.1.2) will be done in several steps. For each of them, we
will present the underlying idea on the example used in the introduction, namely the
equation

2
(4.1.20) (Dt + %)w = %e“ﬁ;(%w)
where D, denotes generically one of the derivatives D,,. The right hand side in the
above equation is one of the contributions to the right hand side of (4.1.2).

Step 1: Expression of the equation in terms of v,V

Let us indicate the idea of this first step, when w solves (4.1.20), and when we look
for it as w = v + Vi€ with some V; to be determined in function of v in a foregoing
step. The assumptions v € G,V; € V mean essentially that v,V are smooth, and
moreover that V) decays essentially like (v/#x)~2. We plug the expression for w in
(4.1.20) and get

D2 1 Do 1 541 Dy D,
(De+ 35 o = oot g o4 Vi
1 59, Dy D? -
(4.1.21) e (Dt n t—;)(Vl(v)e“g)
+ other terms.

We look at the different terms in the right hand side of this equation and explain how
they appear in (4.1.26) — which is the expression we shall obtain in general. First of
all write

D, . D, w0 < Da :
(4.1.22) Vi—Vie O =T (VlTvl) + R(e 9 V17V1) + Ty, 2y € 9.

Since V7 is smooth, so is Vl%Vl (with a loss of one D, /t-derivative). Consequently,
the first two terms in the right hand side of (4.1.22) are smooth, i.e. will contribute
to the R-term in (4.1.26). The third term in the right hand side of (4.1.22) is also
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smooth: this will be the contains of lemma 4.1.9. Actually, modulo remainders, it can
be written

Tiayviy(vinzp,ve o (VER) ).

Since (vtx)~*e' accepts four D, /v/t-derivatives, and since V; decays essentially like
(v/tx)~2, this expression will belong to G’ (this uses the fact that the index s satisfies
s < 4). Consequently we get again a R-type contribution to (4.1.26).

Let us look now at

D, . D, 0 Dy -
4.1.23 v=20ve"? =T (v=2v) + R(e?, v=20) + T b. e?.
t t t v

The first two terms in the right hand side can be handled as above, and give a
R-contribution to (4.1.26). The last term Tv&vew has no chance at all of being
smooth, as v has no decay (unlike V7). We thus tkeep this term in the right hand side
of (4.1.26), writing it as Op® (A, (v))e? where A, (v) = vE=24 is a symbol independent
of £. Finally, arguing in the same way, we decompose the e?*-term in (4.1.21) as a
term of type Op® (A (v, V))e*? and a R(v, V)-like term.

Let us turn now to the general case. Our main goal in this first step will be the
proof of the following proposition.

PROPOSITION 4.1.4. — Set M’ = 2M — 5. There are

— a real number p €10, 2],
— quadratic symbols A, (v,t,€), m = 1,—3, with values in the space

E (M) @B+ EXS (M) @ 5,

’
alsl

such that, for k = 1,2, (tDy)*A,,(v,t, &) belongs to

g872k:,8/71(M/) ® 28 + g872k,8/71(M/) ® 2?7

B,a’,1 a,a’,1

— quadratic symbols A, (v,V,t,§), m € I — {0}, with values in the space

g‘;:i,jll(M’) ® X0 4+ £ L (M) ® 9, such that for any c € S¥, ' € [0,4] and

a,a’ 1
k=0,1
(4.1.24)
(V) (tDy)F A (v, V,t,6) € E5 T TH M) @ 5§+ 251 TN (M) @ 5,

— two bilinear forms (v, V) — H;(v,V), j = 1,2, defined on G x V with values in
£S5, (M +1), satisfying, for k=0,1, ce S*, u/ €0, ]

’
a,a’,1

(4.1.25) le(Vtz)(tDy)* H;(v, V)|

s asgny < Clolsl Vv,

— quadratic remainders v — R(v), (v, V) — R(v,V) defined on the unit ball of G
and G X V respectively, satisfying the conditions of definition 4.1.2,
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such that if (v, V') satisfies the equation

(4.1.26)

(D 2)o=1 S [0t )@) — (Dot ) (e

me{1,-3}

+% S 0B (A (v, Vi 1,6))(e™?)

mGh—{O}

1
+ = Z:c] (0, V) + R()—l—zR(v,V),

then w given by (4.1.10) is a solution to (4.1.2).

The proof will be made of several lemmas showing that S, S2, S5 in (4.1.15) can
be reduced to terms in the right hand side of (4.1.26).

LEMMA 4.1.5. — We fiz X > 2 close to 2. Let v1,72,7 € N? with |y1| < 1, || <1
|| < 2M — 3.
(i) Let v1, va be two elements of G. Then for k =0,1,2

(4.1.27) (ED) [ (D 01) (D)2 2)]
belongs to the space Es o?,kls “OF =240+ e |v1|+ 72| > 0, and to the space
E;a%lfls ~OFh = +2+5) when v1 = v9 = 0 for any 6 > 0. Moreover the norm of

(4.1.27) in these spaces is estimated by C|lv1]g|lvz2llg-
(i) Let vi € G, vy € V. Then for k=0,1, c€ S*, i/ € [0, 4]

(4.1.28) o(v/Ew)(tDy) [ ((D/£) 1) (D /1) 2v5)]
belongs to the space Es_az,kl_”/’5/_(>\+W|_sl+2+6)+_1 when |y1| + 72| > 0 and to the
space EZ jkl o = Ot =824 p o y1 =72 =0 for any § > 0. Moreover the

norm of (4.1.28) in these spaces is estimated by C|lv1]|gl|v2]|v-
(iii) Let vy €V, vy € V. Then for k=0,1, c€ S*, i/ € [0, ]

(4.1.29) e(VE)(tD) 2 (D /1) 1) (D /1) 02)

belongs to the space Eﬁ az,kl wos' O 1= 4240 =1 ey [71] + |v2] > 0 and to the
space Ea a%k e L L 1 =9 =0, and for c € S 1/ € [0, ]
(4.1.30) c(Vtx)[2" (D /) v1) (D /) ?vs)]

belongs to the space ES 2“ s' = (A+ Y| =s' +246) 1 —1

Es 21’ 8" —( A7 |—s +2+5
a,a’,1

when |y1|+ |y2| > 0 and to the space

* when 1 = v = 0. Moreover the norm of (4.1.28) in these
spaces is estimated by C|lv1||v|ve|v.
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Proof
(i) The quantity to study may be written as a combination of expressions 27 wyw,

with

~s—2ky,s" —|v1]

(M) C &

~s—2ky,s" —|v1|
Ca+2|y1],a’,00 (

wyp = (tDt)kl(%)"“vl eé

Sa,a’+[v1],00

M)
~5—2ka,s" —|v2| ~s5—2ko,s" —|v2|
w2 = (tDt)kQ(%)’mrUQ S éa,a’+\’yz|,oo (M) C §a+2\'\/2|,a’,oc (M)
for k1 + ko = k. When |y1| + |y2| > 0, one of the first lower indices of the above
spaces equals o + 2, so we can apply (i) of corollary 3.1.8 with o; = 2k;, a;» = |-
One checks that assumptions (3.1.50), (3.1.51) are satisfied because of (4.1.6) and of
A > 2. Moreover, condition (3.1.52) is satisfied as long as

1
s+s >2+ §(|7/| + [yl + ref) +1

(since o1+09 < 4), which is true since s+s' = M+4, |y'| < 2M —3. By (3.1.53) we get
that 27 wyws is in the wanted space. When v, = v2 = 0, we use (ii) of corollary 3.1.8,
and get also the conclusion of the lemma, since in this case max(o{,o5) = 0.

(ii) We write expression (4.1.28) in terms of 27 wjwy with

S5—2k1,s"—|n|

(M)ycé&

Ca+2|y1],a’ 00

~s—2kq,s’ —
wy = (tDt)kl(%)’hvl c 55 1,8 =l

S0’ +|71],00

(M)
k Fs—p' —2k,s — o5 =2k2,5" |2
w2 = C(\/Zx)(tDt) 2(%)7202 € g(i+g|72\,;/,i>o th(M) - §o¢+2\"/2|,o/,oo (M)
for k1 + ko = k, where the last inclusion in the first line comes from the definition of
the spaces. We then apply corollary 3.1.8 as in the proof of (i), taking here o4 = 2k,
09 = 2ko + 1/ which still satisfies o1 + 09 < 4 since k < 1, p/ < 2.
(iii) In this case, (4.1.29) is estimated as (4.1.28). For (4.1.30), we write this
expression in terms of 27 wiws where, if ¢; € St with crco = c,
wj = ¢;(Vix)(2) vy € £ L ()

and we apply again corollary 3.1.8. |
Let us study now term S; of (4.1.15).

LEMMA 4.1.6. — Set M' = 2M — 5. There are quadratic symbols A, (v,t,€), m =
1, =3, with values in 55’;,?11(M’) ® L) + 82:2,?11 (M) ® XV such that for k = 1,2,
(tDy)* A, € 8;;2,’,“1’8 M) @ %l + 82;2,”“1’8 “HM") @ %9, and a quadratic remainder
v — R(v) such that

(4.1.31) Si= Y OpP(An(v,t,9)(e™) + R(v).

me{l,—-3}

Proof. — We will study the case of contribution P (v, (D/t)v)e®z” to Si, the other
contribution being treated in the same way. Because of (4.1.12) such an expression
is a linear combination of quantities of type ((D/t)"v)((D/t)"2v)z"e? for v1, 72,3
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satisfying |v1] < 1, |2 < 1, 0 < |y1| + |v2] + |3l < 2. We decompose such an
expression as

(4.1.32)  Op®(@e”)[((D/1)"0)((D/t)2v)] + R(z>e”, ((D/t) " v)((D/t)2v))
+ OpP((D/t) v(D/t)"2v)(x72e) = Wy + Wo + W,

To show that W is a quadratic remainder, we just have to prove by definition of G’
that for any v € N? with |y| < M, any k = 0,1, any v1,v2 € G,

(4.1.33) (tDt)kx"’OpB(x% eie) [(D/t) v1)((D/t)?v9)]

belongs to E;_az,kl’s _M_l, and that its norm in this space is estimated by

Cllvillgllva]lg. Remark that it follows from formula (3.1.12) that when we mul-
tiply a paraproduct T,,b by x, 2T,b may be written, commuting « with the A;’s, as
a linear combination of terms of type Tpb, T, (xb). In the same way, an expression

T(2q)b is a linear combination of expressions T,b, T,(xb). Applying this to (4.1.33),
we see that this term may be written as a linear combination of expressions

(4.1.34) Op® (275 (£D)¥ (7)) [(ED4)*" a7 (D /£) 1) (D /£)?v3)]

with &' +k" =k, |[7/| < |y|+1 < M+1 < 2M =3, 4 = 0 when |y1|+|y2| > 0,74 =1
when (v1,72) = (0,0). We apply (4.1.27) to the term inside the bracket of (4.1.34).
Since s’ = M +4—s > 5 as M > 5, assertion (i) of lemma 4.1.5 shows that this
term belongs to Es;z,’fl =T When || + |y2| > 0, and to Ezfa%kl Sl
(71,72) = (0,0). Moreover, we have the estimate

psieng e = [ (222) (B ) e

WANIEA J N\ 2k’
<o) )T
t Vi
We conclude that when |y1| 4 |y2| > 0,4 =0, (4.1.34) is in E;;Q,]fl’s/_l’”_l and when
(71,72) = (0,0), |44 =1, (4.1.34) is in

s—2k,s' —|y|—1 s—2k,s' —|y|—1 s—2k,s' —|y|—1
Ea,a’+1,1 c Eoz+2,o¢’,1 - E,B,o/,l .

when

This is the wanted conclusion, which shows that Wj is a quadratic remainder.

Let us show that W is also a quadratic remainder, proving that for any v € N2,
|v| < M, any k= 0,1, any v1,v3 € G
(4.1.35) (tD)*xYR(x2 €%, (D /t) vy (D /t)"vy)

belongs to E;j,kl’s/_l’”_l, with estimates by ||v1]|g|lv2llg. As for (4.1.33), we can write

(4.1.35) as a linear combination of quantities
(4.1.36) R((tDy)¥ 275¢™ (tD)*" 27 (D /t) 01 (D /)2 v5)

with ' + k" =k, || < |7+ 1 < M+1<2M =3, v, = 0if [y1|+ 2] > 0, |4 = 1 if
(v1,72) = (0,0). We have seen above that w = (£Dy)*" " (D /)Y v (D/t) 7203 belongs
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to E;j,’fl“’sliwlfl when [y1| + [y2| > 0 and to EZ;?,’?;’SLM when (y1,72) = (0,0).
In the first case, we apply (i) of proposition 3.1.6 with k1 = k', ko = 0 and «, (resp.
s, resp. ') replaced by 8 (resp. s — 2k”, resp. s’ — |y| —1). By (4.1.6), conditions
(3.1.36) are satisfied, so (4.1.36) belongs to E;Taz,’fl’slfwlfl. When (v1,72) = (0,0), we
use (ii) of proposition 3.1.6 with k1 = k' < 1, ko = 74 and s (resp. s’) replaced by
s —2k" (vesp. s’ —|y|). Since (4.1.6) is satisfied, assumptions (3.1.39) are realized, so
(4.1.36) again belongs to ES;Z,]?I’S/_l’”_l . This gives the conclusion.

Finally, let us show that W3 gives a contribution to the sum in the right hand side
of (4.1.31). This term is the quadratic form associated to the bilinear form

(4.1.37) OpB((D/t)" vy (D/t)"2wq) (272 ™).

Consider first the case v3 = 0 whence |y1| + |72] > 0. We write then (4.1.37) as
Op®(a(t,z) @ b(t,£))(e?) where b = 1 € X3, and where a = (D/t)" v (D/t)vy
satisfies by lemma 4.1.5 (i) for k = 0,1,2 (tD;)*a € 8;;2,’,61’8/71(M’). In other words,
Wy is of form Op®(A1)(e?) for a quadratic symbol A;. When 5 # 0, we take
X € C§°(R?), x = 1 close to 0 and decompose (4.1.37) as

(4.1.38)  OpB((D/1)"u1(D/t)2uax(¢/0) ((2D/t)e)
+ OpB (D) 01 (D /1) (1 — X)(E/0)((2D/1)*e™).

The first term in (4.1.38) may be written Op®(a @ b)(e??), with b = x(£/t)(2¢/t)7,
element of XY, and a = (D/t)"v;(D/t)"2vy. We just have to use lemma 4.1.5 (i),
to conclude that (tD;)*a € Eifaz,lfl’sl_l(M’), i.e. that @ ® b is a quadratic symbol of
wanted type.

The second contribution to (4.1.38) may be written as a linear combination of
terms
(4.1.39) Op” (™ (D /1) 0n (D/1) 0 (1 — X)(E/1)(")
with |4 < 1if [y1] + 2] > 0, |74 < 2 if 11 =42 = 0. For v € N? with |y| < M’, we
have |y| + |74 < M’ +2 < 2M — 3. Again, lemma 4.1.5 (i) shows that (4.1.39) may
be written Op®(a @ b)(e??) with b = (1 — x)(£/t) € X9, (tDy)*a € gsfzk’s/fl(M’) for

a,a’ 1

k = 0,1, 2. This concludes the proof of the lemma. O
We study now the contribution to Sz in (4.1.15) indexed by m € I — {0}.

LEMMA 4.1.7. — Set M’ = 2M —5. Denote by S} the contribution to Sy given by the
second sum (4.1.15) limited tom € Iy —{0}. There are quadratic symbols A, (v, V,t,&)
m € Iy — {0}, with values in gs”‘;/,’_ll (M) @)+ gii,_ll (M"Y @39, satisfying (4.1.24),
and there is a quadratic remainder R(v, V) satisfying the second condition (4.1.16),

such that

(4.1.40) Sy=>_ Op%(An(v,V,t,€)(e™) + R(v, V).
mel; —{0}
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Proof. — The general term of S} may be written
(4.1.41) (D/t)" ) (D /)2 V) (x72 ™)

where |y1] < 1, |y2] <1, 0 < || + |v2] + |v3] < 2, and where v (resp. V) should be
read indifferently v or ¥ (resp. V or V). We decompose (4.1.41) as

Op®( ™) [((Z) o) (F)2V)] + R(z™e™, () 0)((2)72V))

4.1.42 .
e +OPP (B u(B) =V ) @),

Remark that the assumption V' € V implies

~s5—2k,s’

(tD)*V € E255 (M) c &

a,a’ ;0o “a,a’ ;00 (M)v k= 07 ]-7
i.e. V satisfies the same assumptions as v. Consequently, the proof of the preced-
ing lemma implies that the first two terms in (4.1.42) provide a contribution to the
quadratic remainder R(v, V') (the fact that v admits two ¢D; derivatives by definition
of G, instead of only one for V, does not play any role, since this is not used in the
study of the first two terms in (4.1.32)). Let us study the last term in (4.1.42). When
vg = 0, 0 |y1] 4 |v2| > 0, (i) of lemma 4.1.5 implies that for k = 0,1, ¢ € S*,
' € 0,pu], a=(D/t)"v(D/t)2V satisfies
c(vtw)(tDy)*a € E5 25 71 ().

Consequently, the last term of (4.1.42) is of type Op®(a ® b)(e"™) with b € X9, i.e.
satisfies (4.1.24). When ~3 # 0, write the last term in (4.1.42) as
(4.1.43)  Op°((D/t)"w(D/t)2V x(¢/1))

+ Op5(

(2D /mt)™ eimg)
D/t)*v(D/t)2V (1 = x)(£/1))(a7*e"™7).
The first term may be written Op®(a ® b)(e?™?) with a symbol
b(t,€) = x(&/)(2¢/tm)™* € ¥,
since || > 1, and with a satisfying

(4.1.44) c(Viz)(tDy)*a € 25 ()

a,a’ 1

(
(

for k = 0,1, c € ¥, i’ € [0, ] by (ii) of lemma 4.1.5. The second contribution to
(4.1.43) may be written as linear combination of terms

Op (75(D/t)" u(D /)2 Vxa (€/8)) ()

where x1 € C* is bounded as well as its derivatives, x1 = 0 close to 0 and |v4| < |73
This may be written as Op®(a ® b)(e"™?) with b = x1(£/t) € £ and a satisfying
(4.1.44) because of (ii) of lemma 4.1.5 and of the fact that we have s’ > 5, since
s'=M+4—sand M > 5. The conclusion of the lemma follows. O

Let us examine now the non-oscillating contribution to Ss.
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LEMMA 4.1.8. — The sum EMQ 7( V,o,V; %Ua

wl@

V, %E, %V) may be written
(4.1.45) Z z;Hj(v,V)+ R(v,V)

where H; satisfies (4.1.25) and R(v,V) is a quadratic remainder.

Proof. — The general term of the expression to be studied is of type
(4.1.46) ((D/t)"0)((D/t)"2V)a?

for |y1| <1, |72 < 1,0 < |n| + 72| + [v3] < 2, and where v (resp. V) Should be
read indifferently v or T (resp. V or V). When |y1| + 72| > 0, and so |y3| < 1, (ii) of
lemma 4.1.5 shows that this expression belongs to G’, and so provides a contribution
to the quadratic remainder R(v,V). When 71 = v = 0, we have 1 < |y3] < 2, so
we can write (4.1.46) Z 12;H;(v, V) where Hj is of form 2730V for ~4 satisfying
[v%] < |v3] =1 < 1. By (11) of lemma 4.1.5, and the assumption s’ > 5, which follows
from M > 5, we obtain

c(VEz)(tDy)FH; € E5725 1 (M + 1)

a,a’,1
force SH, 1 e [0, p], which is the wanted conclusion. |
Finally, let us study contribution S5 to (4.1.15).

LEMMA 4.1.9. — If u is in |0, 2[ close enough to 2, the contribution Ss to (4.1.15) is
a quadratic remainder R(V') satisfying the last condition (4.1.16).

Proof. — We write S3 as a linear combination of expressions

(4.1.47) (D) V)(D /)2 V)e'™?

with m € I, 0 < |y1| + |72| + |73] < 2, and where again one should read indifferently

V or V for V. We decompose (4.1.47) as

Op® (&™) [(R) V)(R)2 V)] + R(@@e™, (2)1V)((£)2V))
+O0p° ()" V()2 V)(a7ee™).

We have seen in the proof of lemma 4.1.7 that V satisfies the same assumptions as v,
and so that the first two terms are quadratic remainders of type R(V). We are thus
left with the study of the bilinear term in (V', V") € V x V

(4.1.49) Op®(((D/)" V) (D/1)=2V")) (a™e™?).

When 73 = 0, 80 |y1]|+ 72| > 0, lemma 4.1.5 (iii) shows that w = (D/t)"V'(D/t)=2V"
satisfies

(4.1.48)

(Viz)w e E8 o?,”ls M), (Viz)“tDyw € ES a2, i _1(M).
We can exploit these decay assumptions on w to prove that (4.1.49) is actually a
remainder: one checks immediately using (4.1.6) that if g is chosen in ]0,2[ close
enough to 2, assumption (3.2.87) is satisfied for w (replacing in (3.2.87) («, u, s") by
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(8,2u,s" — 1)) and for tD;w (replacing in (3.2.87) («, s,s’) by (8,s — 2,8 —1)). We
thus deduce from corollary 3.2.7 that

Op® (w)(e™?) € E57, L (M) C £y (M)

al,l
Op® (tDyw)(e™?) € £5.57, (M) C €525 1 (M).
Since Op® (w)(tDye"™) belongs also to this last space, and since the norms in these
spaces are estimated by C||V’||yv||V”|lv, this shows that (4.1.49) is a quadratic re-

mainder.
When 73 # 0, we write (4.1.49) as a combination of terms

OpB(((D/t)"‘/l V/)((D/t)’yzvl/)x(g/t))[(QD/mt)fygeimH],
Op® (2" ((D/t)" V') (D/1)2V")x1(&/1)[e™”)

with x; € C®(R%), bounded as well as all its derivatives, y1 = 0 close to 0,
and |v5] < |vys|- All these expressions can be written as quantities of type

B ,
Op (w(t,x)b(t,€))(e™?) with b € X9, and w satisfying, because of (iii) of lemma 4.1.5,

(4.1.50)

(Viz)™w € £ 057N (M), (Vix)# (1D w € £ 5 (M),

Since (3.2.86) (with s’ replaced by s’ — 1) is satisfied by (4.1.6), we get from corol-
lary 3.2.7 that (4.1.50) belongs to &35, | (M) C €55, (M), and its image by ¢D,
to &5y (M), O
Proposition 4.1.4 now follows from (4.1.2), (4.1.10), (4.1.15) and lemmas 4.1.6 to 4.1.9.

Step 2: Cancelation of main oscillating terms

We want now to choose Vi, V_3 to eliminate in the right hand side of (4.1.26) the
main oscillating contributions, namely Op®(A4,,)(e"™?), m = 1,—3. In the case of
example (4.1.20), the oscillating term to get rid of is T(U%U)ew. To do so, we remark
that an explicit computation shows that

D2 . 1 .
(4151) <Dt =+ t—2w> 6“9 — ;A(t’ D)619

where A(t,&) = 2§ + i is an elliptic symbol of order 2 in ¢/v/t. We thus set
(4.1.52) Vi(v) = e T, b, (A(t, D)~ e™).

The equality (4.1.51) allows one to prove that modulo remainders
D3 i 1 i
(Dt + t_2> [Vi(’l})e 9] = ET(U%U)Q 0

i.e. this choice of V; eliminates the Op®(A;)(e’) contribution to (4.1.26) (this is the
contains of lemma 4.1.11). Moreover V; will satisfy the wanted decay and smooth-
ness requirements: this is established in general in proposition 4.1.10. The idea is
that A(t, D)~ e in (4.1.52) admits two D, /v/t-derivatives. But when acting on an
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oscillatory exponential ¢’ a gain of (D, /+/t)~2 in smoothness is equivalent to a gain
of (v/tx)~2 in decay. Let us now proceed to the general case.

PROPOSITION 4.1.10. — There exists for m = 1, —3 Lipschitz functions v +— Vi, (v)
defined on the unit ball of G, with values in V, vanishing at 0, and quadratic symbols
vi— Al (v,t,€) with values in

(4153) ng a2/ 125—1 )®Z—2 £+ZEZ a2/ 1@5—1(M/)®21—2—Z
£=0
satisfying

a,a’,1

1
(4.1.54) tD,A!, eZega‘% T M et Y & T M) e et
=0

such that for m =1, —3

2
(4.1.55) (Di+ T2 ) (Vine™) = OB (A (0., ) ()~ OB (A, 0,1, )) ().

We first prove the following lemma.

LEMMA 4.1.11. — Let £ € N, m € Z — {0,—1}, k € {1,2}, M’ = 2M — 5.
(i) Let A(t,x,&) be a symbol satisfying for ' =0,--- |k

(4.1.56) (D" Ae &2 M) ozt
(resp.
(4.1.57) (tD)F A € & L2 1 (M) @ 259,

There are B(t,z,§),C(t,x,&) satisfying

1
(tD)*' B e Zss U2y @ Tt 2 K =0,k

a,a’,1
(4.1.58) -
(tDt)k‘/C c Z EZ oﬁ 1[’_2]{;/_2 s —1(M ) ® 21757@/72’ k/ _ O, o ’k _q
(resp.
1
(tDt)k/B c Z 8; ae/ 1@ —2K',s 71(M/) ® 20—2—2’_2, K = 0,k
(4.1.59)

(tD)¥ C e Zss(f,12‘2’“‘25‘1(1\4’)@234—”—2, K =0, k—1)
=0

with B supported in the domain {&;|€| > cv/t}, and such that

@16y (Dy+22) 100 (B = Lopayen) + Lopt(c)en)

Moreover, the semi-norms of B and C are controlled linearly by the semi-norms of A.
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(ii) Assume that A satisfies for k' = 0,1, and any ¢ € S*, i/ € [0, 4]

(4.1.61) c(Vix)(tD,)¥ A€ E LT M) @ Bt
(resp.
(4.1.62) c(Wiz)(tD)¥ A € E5 LT M) @ 2.

Then the symbols B and C sa,tz'sfy for any ¢ € S*, i’ € [0, ]

c(Viz)(tD;)¥ B € Z EXLTT T M @ u T K = 0,1
el

(4.1.63)
VB & 3 E a3
=0
(resp.
c(Viz)(tD,)¥ B € Z Ex LT M et K =0,1
(4.1.64) v=0

\/_{L' Ce Z gs a@/ 1@ 7;1,'72,3'71(M/) ® EO_Z_[_Q).

Proof. — The lemma asserts that if A is given, we can find a B, which has the same
smoothness and a better £/v/t-decay than A, so that (4.1.60) is true, with a remainder
C that is two degree less regular than A but has a better £/v/t decay.

Assume that A satisfies (4.1.56). Take y € C§°(R?), x = 1 close to 0 and write

Alt,z,€) = A(t, 2, €)(1 — x(§/VD) + A(t, 2, €)x(&/ V).
We incorporate the last term in C i.e. we assume that A vanishes for |¢| < cv/t. For
m € Z—{0,—1}, set

52
(4.1.65) At €) = (1 —) S o4
so that (Dt + ?—;) e = LA, (t,D)e"™?. We define
_ ~1_oDs € A
(4.1.66) B(t,z,§) = At z, ) An (L, €) \/E Aty z, ) - \/— m(t,€)7°
Then B satisfies (4.1.58), and a direct computation shows that
2

(D -+ 22)[0pB(B) ()] ~ 0p8(4) (™) = 0pB(C) (™)
with D2

O(t,z,€) = (tDt—i— —)(B(m,g)) 4—%4(15 x g)(\ff f[)A

which satisfies (4.1.58). The proof under assumption (4.1.57) is identical. Assertion
(ii) of the lemma follows from the above expressions for B and C. g
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REMARK. — We use in the above proof the assumption m # —1 in an essential
way. If m = —1, A, (¢,€) is no longer of order 2, and we can no longer make the
asymptotic construction in the proof of the above lemma. In other words we are not
able to eliminate oscillatory terms of type Op® (A)(e~%). These terms do not appear
in the right hand side of our equation (4.1.26) because of the restrictive assumption
on the form of the nonlinearity in the right hand side of (1.1.2).

Proof of proposition 4.1.10. — We apply lemma 4.1.11 (i) to the symbol A =
Ap,m = 1,-3, with k = 2, £ = 0. We denote by —A/ the symbols C of
lemma 4.1.11: they satisfy conditions (4.1.53), (4.1.54). Consequently, if we set

Vin = €= OpB(Byy) ()

where B, satisfies (4.1.58), or (4.1.59), we just have to see that V,, is a Lipschitz
function of v on the unit ball of G, with values in V. The Lipschitz dependence will
follow from the fact that A,,, and thus B,,, are Lipschitz in v by construction. The
main fact to prove is that V,,, fulfills the conditions (4.1.8) defining V. We will make
use of proposition 3.2.2. Consider first the case corresponding to (4.1.58) i.e.
1

(4.1.67) (tD)¥ B € Y E LT M) @ 22,

=0
We apply proposition 3.2.2 with p=2or p=3,v=1,b=1, u = 0. We check that
because of (4.1.7), condition (3.2.4) and the second condition (3.2.6) are satisfied. We
deduce from (3.2.7) that

"'5—0—2,5/—1 "'5—0—2,5/—1
Vm € Ea+2—0,a’,1 CE ,al)l :

Writing for v € N2, |y| < M, 27V, as a linear combination of expressions
e~ mPOpB (27 B,y ) (e7™?) for |7/| < ||, and using (4.1.67), we get in the same way
that V,,, € £5507 H(M).

Let us study now the derivative

(4.1.68) DV, = e "™ Op® (tD; B,y (™) — e~ mitx? /4, Op® (B,)] (™).

Using (4.1.67) and proposition 3.2.2, we get that the first term in the right hand side
belongs to 5;’,2/?11 (M). Going back to the definition of Op®(-) we see that the last
term in (4.1.68) is the opposite of

(4.1.69) e” 0N " S 1 B (t,x, D)[mta? /4, Aj](e™7).
J

If for Aj = (277 D), we set Al = (V) (279D), A® = (Ap)(279D), we have that

(4.1.70) [me

5 ;e = [ - TIVPAR iall (277D)| ().
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Since B,, is supported in {|¢| > c¢v/t}, the sum in (4.1.69) is restricted to 29 > cv/t,
B .
so (4.1.70) shows that (4.1.69) is of type e~"?Op (B,)(e"™?), and so belongs to
os+2,s'—1 os,s'—1
Estrs TN M) c €55, (M).
To study

(4.1.71) c(Vtx)(D/t) (tD) Vi, k=01, |y <1

with ¢ € S#, we argue as above when v = 0: we apply proposition 3.2.2 remarking

that in (3.2.7) we can take ¢ > 0 since u < 2. We get that (4.1.71) belongs to
§s+2—p—2k,s’—1
a,a’,1

(4.1.72) (D /) [e(vEx) (tDy)*Vin] + %cl(\/zx)(tDt)ka

where ¢; € S#71. The first contribution belongs to

Ss+2—p—2k,s' —1—|v| Ss+2—p—2k,s" —1—|v|
Eoarthylin (M) C &€, 1y (M)

(M). When |y| =1 in (4.1.71), we write this expression as

which is the wanted conclusion. To study the second contribution, we apply again
proposition 3.2.2 with u replaced by p — 1. In this case, in (3.2.7), we can take { =1
since 1 — 1 < 1 whence ¢; (vVtx)(tD;)*V,, € giﬁ;(,’ffl)*%’s/*l(M). Coming back to
the definitions of these spaces, we deduce that the second term in (4.1.72) belongs to
the same space as the first one.

When instead of (4.1.67) one assumes that
1
(tDt)k‘/Bm c Z(‘:Z:f/j]?k ,8 —1(M/) ® 207572
=0
(i.e. when we study the case corresponding to (4.1.59)), we use proposition 3.2.2 with

v =0, and « replaced by 5. We remark that the first condition (3.2.6), which reads
§+ o' >0, 8+a +1>0 is satisfied by (4.1.6). We deduce from (3.2.7) with { = 0+

(which is possible as ¢ — 8 — o/ > 0) that
(4.1.73) (tDy)" Vi € 5027771 (1)

which is the wanted conclusion. The study of (4.1.71) when = 0 is similar, and shows
that this term belongs to 5;;2,7_1“_%’5 “H(M). When |y| = 1, we use decomposition
(4.1.72). The first term will belong to

Ss+2—p—2k,s" —1—|v| Ss+2—p—2k,s'—1—|v|
5,8,0/—}-1,1 (M) - 5,8—0—2,0/,1 (M)

which gives the conclusion as 8+ 2 > a + 2. To study the second contribution to

(4.1.72), we remark first that

(VI (tD) Vi € E5LT T ) € ST

again by (3.2.7) and since (4.1.6) implies 3 > o+ 1. Exploiting the 1/v/ factor in the

second term of (4.1.72), we see that this expression belongs to 52122;%*12’” s}

This concludes the proof. O
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COROLLARY 4.1.12. — There exists:

— for m =1, -3 Lipschitz functions v — V,,(v) defined on the unit ball of G, with
values in V, vanishing at v =0,

— for m =1, =3 quadratic symbols v — Al (v,t,&) with values in (4.1.53), satisfy-
ing (4.1.54),

— for m € I — {0}, quadratic symbols v — Al (v,t,§) satisfying for k = 0,1,
ce S, i elo,u
(4.1.74)  c(Vtx)(tDy)* AL (v,t,€)

€ E T M @B+ ELIT T M @ 3,

— A function v — H(v) = Z?:l x;H;(v) where H;(v) are defined on the unit ball

of G, vanish at 0, and satisfy for k =0,1, ce S¥, i € [0, u], v,v" in this unit ball

(4.1.75)  [le(VEz)(tDe)*[H;(v) — H; (V)]

ST ey
< C(llvllg + V' llg)llv = 2'llg,
— A quadratic remainder v — R(v) defined on the unit ball of G, with values in G,
such that, if we set I = {1,-3}U (I —{0}) ={—4,-3,-2,2,1} and

(4.1.76) F(v) =Y Op®(A),(v,1,£)(e"™’) + H(v) + R(v),
mel

for any element v of the unit ball of G which is a solution of

D? 1
(4.1.77) (Dt + t_2) v= ;F(v)7
the function w given by (4.1.10) is a solution to (4.1.2).

Proof. — We define V;,,(v) by proposition 4.1.10 and denote V (v) = (V1(v), V_3(v)).
We just have to see that if v satisfies (4.1.77) with a convenient definition of A/, H, R
in (4.1.76), then (v,V) is a solution to (4.1.26). By (4.1.55), the first sum in the
right hand side of (4.1.26) is %Zme{l,—S} Op®(A4’ )(e™?). For m € I, — {0} we
define A/ (v,t,€) = An(v,V,t,£). Since v — V(v) is Lipschitz with values in V,
(4.1.24) implies that A], satisfies (4.1.74) for m € I, — {0}. We define also the
function Hj(v) satisfying (4.1.75) from the bilinear forms of (4.1.25) by the formula
H;(v) = Hj(v,V(v)). Since v — V(v) is Lipschitz, (4.1.75) follows from (4.1.25). In
the same way, if we substitute V(v) into the last term R(v, V) of (4.1.26), we get a
quadratic remainder. A solution v to (4.1.77) thus allows us to construct a solution
(v, V) to (4.1.26), and so a solution w to (4.1.2). O

Our next task is to find a global solution to (4.1.77) for small enough Cauchy data. We
cannot do that directly on equation (4.1.77): actually we want to find a solution v,
which belongs in particular to E®® In the right hand side, R(v) belongs to

a,a’ 00"
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E;’Slfll C Efysoifll c F** Y2 The smoothing property of theorem 2.2.3 tells us

o a,al,1
that the corresponding linear solution belongs to Ei’,solz/,om which is nice. The trouble
comes from the Op® (A’ )(e"?) terms in (4.1.76). We cannot hope to put these terms
in F;:Z:,Tllm. In fact, when m = 1, -3, A’ belongs to 20_2: this means that the gain
of smoothness we can get when applying OpB(A’m) to €™ is at most 2 i.e. these
s —1/2

. S
terms cannot be in any £’ |

space for s > 2. In the same way, for m € I — {0},
A! is a symbol of order 0, which decays like (v/tz)~2*0 relatively to space. Since the
action of Dw/\/z_f over ¢ results in a loss of v/%z, this shows that the best that can be
expected for OpB (A’ )(e"™?) (m € I,) is to lie in a FSIZ//}l/Q space with s < 2. On the
other hand, because of conditions (4.1.6), we do need to be able to solve our problem
in a space of that type with s > 2 (actually s close to 4). Because of that we will
exploit again the fact that the phases of oscillations in (4.1.76) are non-characteristic

ones to further reduce the equation.

Step 3: Last reduction of the equation

Up to now, we have eliminated by an appropriate choice of V' the first line in the
right hand side of (4.1.26). We still have to eliminate the Op® (A, (v, V,t,£))(e™?)
terms (or equivalently, the terms of type Op® (4!, (v,t,€))(e"™) in (4.1.76)). In the
case of example (4.1.20) these are coming from the rectangular terms in (4.1.21) i.e.
are expressions of type Op? (As (v, V))(e2?), where Ay (v, V) is bilinear. In particular,
this Ay decays like (v/tx)~2, which means that the corresponding term admits two
D, //t-derivatives. This is not enough to incorporate it to the remainders in (4.1.26),
since the latter have to accept about four of these derivatives. In this third step, we
thus repeat the procedure of step 2, to get rid of these last annoying terms.

PROPOSITION 4.1.13. — There ezists a function v — K (v) (resp. v — R(v)) defined
on the unit ball of G, with values in g22f1(M) (resp. £34y 1(M)), such that for any
v, v’ in the unit ball of G

1 (0) = K (0l g gy < Cllo=llg(llvllg + [1Vllg)

a,al,

4.1. - -
(4L78) |(w) - B(w)|

ev, any < Clo=lo(vls + 1l0),

and satisfying the following: if v and v’ are two elements of the unit ball of G, solutions
to

2 ~
(4.1.79) (Dt + %)(v _ K@) = %H(v’) + %R(v’)
then (v,v") solves
2
(4.1.80) (Dt + %)v - %F(v’)

where F' and H are defined in (4.1.76).
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Proof. — We have to define K (v') in such a way that the contribution

> 0P (AL ) (™)
mel
in (4.1.76) is canceled. Apply first lemma 4.1.11 (i) to A/, m = 1,—3. Since then

Al belongs to (4.1.53), and tD,A!, to (4.1.54), we get from this lemma symbols B],
and C/, satisfying for m =1,-3

B, 625551“‘1 Veomgt S ) o e
(4.1.81) =0

a,o’,1

C/ 625;Q%1€871 ®Z4€+28846871 )®21747€.

When m € I — {O}, A;n satisfies (4.1.74) and lemma 4.1.11 (ii) provides symbols By,
C!, such that for c € S¥', 1/ € [0, 1]

(4.1.82)

(\/_xB’ EZE a—és—l( ®E__ Z a—a/l—es—l )®El—2—e

£=0

(\/_x C/ c Zg; o ;2 é,slfl( ® 202 14 + Z aia/ ;2 Z,Slfl(Ml) ® 21727€'
=0
With these notations, we set
V)= 0pP(B,) (™)
mel
= > 0P(C)(e™)
mel
and (4 1.60) shows that (4.1.80) implies (4.1.79) if we can prove that K (v') belongs
to 52 2/ 1 (M) and R;(v") to 5;’,2:11(M) (the quadratic estimates (4.1.78) follow then
from the linear dependence of (4.1.83) in B/, C/,, and the quadratic nature of these
terms).
Consider first the contribution to K (v') coming from terms of type Op® (B!, )(e"™?),
m =1, —3. Condition (4.1.81) implies

Bl 628;(;%1@5 ®E4A€+ZES4ES ®E4A€

(4.1.83)

a,o’,1

We apply corollary 3.2.7 with b € Ea B (resp. S Ef B ), @ = 0, s replaced by
s—4—4{, M replaced by M’ = 2M —5, and we check that conditions (3.2.87), (3.2.86)
which read respectively

—1<B+4+d, s—4—f<ad -1, s+s8—-4—0—-—M <-1/2
2<a+d <-1, s—4—l<a+2d, s+s—4—4—-—M <-1/2

MEMOIRES DE LA SMF 91



4.1. MAIN REDUCTIONS 83

are satisfied because of (4.1.6). We deduce that the corresponding contribution to
K(v') belongs to £, o1 (M). Since (o + 2) + o > 0, the last assertion of
lemma 3.1.2 implies that this space equals 8a+2 o 1(M) C gisa/,l(M) Let us ex-

amine now the contribution to K (v') coming from Op®(B!,)(e"™?),m € I, — {0}. We
deduce from (4.1.82) that for ¢ € S

1 1
\/_JZB/ Z a/12 Es ®E__ Z~2a/12 Es )®21_2_£~
=0 =0

We apply corollary 3.2.7. We check that conditions (3.2.87), (3.2.86) are satisfied
if € ]0,2[ is taken close enough to 2, because of (4.1. 6) We obtain that the
corresponding contribution to K (v') is in 8a+/2 wa(M) C EZ ‘;, ().

Next, let us consider R, (v'). To study the contribution coming from Op®(C” )(e'™?),

= 1,—3, we use assumption (4.1.81) together with corollary 3.2.7. We get that these
terms belong to ngil,fll(M). For the contribution of Op®(C’,)(e"™?), m € I, — {0},
we use (4.1.82) and corollary 3.2.7 and get the same conclusion. The proposition is
proved. O

To close this chapter, we prove a lemma concerning the quantity F'(v) defined in
(4.1.76).

LEMMA 4.1.14. — Denote by S(v) the difference S(v) = F(v) — H(v). For v,v' in
the unit ball of G, we have the following inequalities:

YD) (S(v) = S(v")]
k=0

1
D I(ED)*(E(v) — F(u")))

k=0

5212,712]‘3/(M) < C”U - UIHQ(HUHQ + ||U/||g)
(4.1.84)

iz gy < Cllo = ool + 10/ lo):

Proof. — In (4.1.76) we have, because of the definition (4.1.8) of ',
R(v) € &35, (M) = £ YN M) © £y (M)
1DR(v) € 507 (M) = &5 05 (M) € & 5 (M)

where the equality between £ and £ spaces follows from g +a’ > 0 and lemma 3.1.2.
Consequently, the contributions of R(v) to the left hand sides of (4.1.84) satisfy the
wanted conclusion.

Since H(v) € E35, (M) € .25 (M), tDH(v) € E5.25 1 (M) C &35 (M)
by (4.1.75), the contribution of H (v) to the left hand side of the second inequal-
ity (4.1.84) satisfies also the inequality. We are thus reduced to the study of

SOCIETE MATHEMATIQUE DE FRANCE 2002



84 CHAPTER 4. PROOF OF THE MAIN THEOREM

S mer OPP (AL, (v,t,€))(e™7). For m =1, -3, (4.1.53) and (4.1.54) imply

1 1

(4.1.85) (tD)* AL, € Y& (M sy 4+ Y & i (M) e s
£=0 £=0

We apply corollary 3.2.7 with u = 0, s replaced by s — 4 — 2k — £, M replaced by M’,

and « replaced by [ for the contributions of the first sum in (4.1.85). One checks that

(3.2.86) and (3.2.87) (with « replaced by () are satisfied because of (4.1.6), whence

the conclusion

OpB((tD)F AL (™) € 57525 (M) + &25.257 (M)

B+2,a/,1 a+4,0/,1
—2-2k,s’ Ss—2—2k,s'
C&amy T (M)=E5 077" (M).
Since Op®(A’,)(tD;e"™?) belongs also to gg_ji/ (M) , as one sees writing tD;(e"™?) =

2 .
L (zm + %) e'™? and applying again corollary 3.2.7, we see that the contributions

of (tD)FOpB (AL )(e"™), m =1, =3 to (tD;)*S(v), k = 0,1 belong to 5;;%32’“’ (M).
The fact that these contributions satisfy the first inequality (4.1.84) follows from the
quadratic nature of A,.

Let us consider now Op®(A’, )(e"™) for m € I, — {0}. By (4.1.74), for k = 0,1,
p €0, 4]

(4.1.86)  (VEn)" (tD)F AL, € £ 1T (M) @ B0+ £ 0T (M) @ 5.

,al 1 a,o’,1
We apply again corollary 3.2.7 with s replaced by s — 2k — 2, ma = 0, « replaced by §
for the contribution of the first term in the right hand side of (4.1.86). If 1 €]0,2[ is

close enough to 2, conditions (3.2.86), (3.2.87) are satisfied by (4.1.6), and we obtain
Op® (LD A7) (™) € £5 03 (M)

which again gives the wanted conclusion. [l

4.2. Existence of the global solution

The main remaining step in the proof of theorem 1.1.1 is to prove the following
result: denote by Gy the space

Go = {ve HYT'(R?); Vo, | < M, (D +2/2)"v € HMF4P1)
= {v e HM*(R?); Vv, |y| < M, 27v € HM 411}
THEOREM 4.2.1. — There is g9 > 0 such that for any vo € Gy with ||vollg, < €0, the
problem
D? 1 1~
(4.2.1) (Dt n t—Q) (v = K(v) = 1H@) + 1 R(0)
vli=1 = vo

has a global solution v € G.
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We shall construct v using the standard iterative scheme

(4.2.2) (Di+ %) (W K(0") = %H(v”) + %E(UV)

v 21 = o

for v > 0, v° being defined as the solution to (Dt + ?—E) 19 =0, v%)4=1 = vy. The

main step is to prove:

PROPOSITION 4.2.2. — There is a constant C > 0 such that if v belongs to the unit
ball of G, V"1 satisfies

(4.2.3) v g

[0 ="l

Clllvollg, + 0"15] (v > 0)

<
<Ol = v Mgl Hig + 1vllg) (v > 1).

The above inequalities imply in a standard way the existence of a global solution
v € G to (4.2.2) if the Cauchy data are taken small enough. To prove the proposition,
we will study successively the different components of the norms of G.

LEMMA 4.2.3. — The norm |[v 1|

v+1l_ v ,
(M) (resp. the norm ||v v |§Z’Sﬂ/ (X,(M))

’
5,8
£l oo

is estimated by the right hand side of the first (resp. second) inequality (4.2.’3)

Proof. — Since Z commutes to D; + ?—57 we deduce from (4.2.2) that for any v €
N2yl < M

Dg v+1 v 1 v 1 D)V
(Dt + t—2)(2% ~ ZK(") = ;2T H@W) + 127 R(0"),

Since by corollary 4.1.12 H(v¥) € gs’slfl(M) and R(v") € 5;:2//T11(M), the char-

a,a’,1
acterization (4.1.5) of these spaces shows that Z7H(v¥) and Z7R(v") belong to
’ [ oy
Ei’;/_,ll’”_l - Fj:i,’ll’” 2, their norms in these spaces being controlled by C|lv”||Z.

The smoothing inequality (2.2.15) of theorem 2.2.3 implies

(424) |27 = K(v"))]

oottt < C[1Z27@ 4 = K@iz | grovr-1

~a,a’ 0

+ 127 H (v")]

e I 1Z7R)I| oo -3
a,al 1 a,al 1

if the inequalities (2.2.13) are satisfied i.e. §+a’ <0,s+a >0, s —|y|+a’ > 0. The

first two of these inequalities follow from (4.1.6). Since |y| < M = s + s’ — 4 the last

one is satisfied if s < o 44, which follows also from (4.1.6). The last two norms in the

right hand side of (4.2.4) are controlled by C(||H (v”)| £ () + | R(v¥)] 5;,1:11(1\4))

and so by C|[v” |3 because of the properties of H and R listed in (4.1.75) and (4.1.78).
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In the first term of the right hand side we have

v+1 TN\
| Z7 v le=1ll groser—1v1 = H(Dm—f' 5) UOHHHS,_M < lvollg,
127K (o) le=1ll a1 < NZTE @) goror-io
v V2
<K@ >||5~Z;;,71(M) <Ol
Consequently, (4.2.4) implies
1270 | o101 S 127K (v Moo 121+ llvollg, +Clv" 13

which implies the Wanted estimate for ||v*+1| using again inequality (4.1.78)

g;;//,oo(M)
and the injection 822 M) C 5250 oo(M). The estimate for v* ! — v" is obtained

in the same way using the equation

(Dt ZeY et -0 — () - K1)

= S(HOY) ~ HE ™) + 3 (R) - Re'™)
([l
LEMMA 4.2.4. — The norm Y, H(tDt)kUV+l|§~:j,’f;f(M) (resp. the mnorm
Zi:l ||(tDy)* (vt — vy)‘ii__j,k_;/(M)) is estimated by the right hand side of the

first (resp. second) inequality (4.2.3).

Proof. — By proposition 4.1.13, a solution (v”,v"™1) of (4.2.2) solves also
D2 1

(4.2.5) (Dt + ) T = S FY)

whence commuting Z7, |y| < M to the equation

D2
(4.2.6) tDy (270t = _Tf(zm”“) + Z7F(vY)

(tDy)} (270" 1) = _(tDt)DTg(ZW“) +tDy(ZTF(v")).

We have )
1 2 ~s5=2,8 —|y] _ ~s—2,5"—|v]
t (Z’YUV+ ) € EZ+2€1/ (L’CY‘ = Ea+2 a’ 00 - Ea,a’,oo
when v**! € 52‘; 0o(M).  Consequently, e (Z’Yv”+1)| e is controlled in
terms of [jv¥*! [P _(uy and so, by lemma 4.2.3, by the right hand side of the

first inequality (4 5. 3) By lemma 4.1.14, the quantity || Z7F(0")[| ze-2.2-15 is also

aaoo

controlled by C[v”[|. The first equality (4.2.6) thus shows that ||tDyv"*!|

525

£aa’,00(M)
is estimated by the wanted quantity. One studies in the same way (tDy)?v”+! and
(tDy)k (vt — oY),k =1,2. O
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The preceding lemma shows that to estimate the left hand side of (4.2.3) we just
instead of the £5° (M)

oo(M) Za,a’ ;00

need to bound ||v and [[vV T —v

oo (M)
norms Wthh have been yet studled in lemma 4.2.: 3 In other words, we must consider
for [v] <

IX(D/VO(Z 0" ) || Lo (ataa)
Ix(D/VE(Z7 (0" F = 0")) || Lo (dtda) -

LEMMA 4.2.5. — The first (resp. second) norm (4.2.7) is estimated by the right hand
side of the first (resp. second) inequality (4.2.3).

(4.2.7)

Proof. — We shall prove that there is § > 0, and for any v € N? with |y| < M, a
constant C' > 0, such that for any ¢t > 1

v C v
(125 IDIX(D/VOZ 0" ] < slilvollgs + 10715,

v v ¢ v v— v v—
IDX(D/NVHZ (0 = o] < gl = 0" (17 lg + v lg)-

The control of (4.2.7) by the right hand side of (4.2.3) will follow from the time
integration of the above inequalities (and the fact that at ¢ = 1 we have a trivial
estimate for x(D)(Dz + 5)7vo).

To prove (4.2.8), we deduce from (4.2.5) the equalities

(429) DINDVHZ W = 32 x (3 ) e

() B (B

(4.2.10) Dx(D/Vt)ZY (" T — ") =

l\3|s.

Gv(g)er
-(5) D2 ot - o)+ 2 () 7 = Fe)

Vi) ot
We have that % X (%) Z ¥+ and X(%) DT“%Z’W’“ belong to the space
E:f;zmoo Since § + 14 o > 0, property (3.1.6) of lemma 3.1.2 implies that

the modulus of the first two terms in the right hand side of (4.2.9) is bounded by
Ct=1=||v _(y and so by the right hand side of the first inequality (4.2.8),

using lemma 4 2 3 One has a similar statement for the first two contributions
to the right hand side of (4.2.10). Let us study now the contribution of F(v"),
F(w) — F(v'=1). We decomposed in lemma 4.1.14 F(v*) = H(v") + S(v¥) with
ShY) e gg;%il(M) whence x(D/vt)Z7S(v") € E;Zo 1o Using B/2 + o/ > 0 and

property (3.1.6) we get for —|X( ) Z7S(vY)| an estimate by the right hand side
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of the first equation (4.2.8). A similar statement holds true for the contributions of
S(v”) — S(v¥~1) to (4.2.10). To conclude the proof, we need to estimate

1
(4.2.11) z|x(D/\/E)ZVH(v”)|
1
(4.2.12) SXDNVDZ (H) = Hw ).
Using the definition of Z, we can write

(4213)  ZTH@)=2"H@")+ Y. taye(Dy/t) (@ H(v"))

, v ,/’;{ s
Y Iy
[v"]+€>0
for convenient coefficients a, .~ ¢. By corollary 4.1.12, we know that H(v") €

g‘s’s/_l(M), whence

’
a,a’,1

1 S,S 1
“Da /1" (@ H@")) € Byo 0 B T

if |v"| + ¢ > 1. We then deduce from (3.1.6) the inequality, for || + |v'| + ¢ < ||,
Y'|+¢>0

XDV (D (7 HW)| < SIHE)

Fs, s’—1(M) < t_gHUV”g

for some 6 > 0, where the last inequality comes from (4.1.75). To estimate (4.2.11) by
the right hand side of the first inequality (4.2.8), we just have to study the first term
in the right hand side of (4 2.13). Write H(v) = Y_7_; x;H;(v). We know by (4.1.75)

that (viz)H;(v) € £ ¢ (M +1). We shall deduce below from that the inequality

a,o’,1
(4.2.14) |27 H,; (v")| < C(Vtz) " [v” 3.
This will imply

X(D/Vt)z;a7 Hy(v")]

o2 (V) ™M oo gy 10" 13

<
< Ot~ V2|v” 2.

This shows that the contribution of 27 H (v”) to the left hand side of (4.2.11) is
controlled by the right hand side of the first equation (4.2.8).
To prove (4.2.14), write that w = (v/tz)xVH;(v) € Ei_al,sl ~1l"and decompose

bq(z)w = ¢g(x) D/\/_ thw + Z Z Ak¢q ) (@g Agw).

q Kk 2k>cf

By definition of E° )" 7‘“", the first term is smaller than C'ey||v”[|Z for a £' sequence
(cq)q- The modulub of the second contribution is bounded, using the definition of
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Hz;yll:slflv\ by
(4215) CY {a—dYN D 2Xog Arw(t, ) L2 (aw)
q k;2k>c/t
_ 2k —s+1 2k o
calBXa-0( X Far(%) ()
; Vit t
q kieV/t<2k <t
9k \ —s+1 ,9k\ —s'+|v]
+ Y () )T
kit<2k \/z t

for a 30}, sequence (ckq )rgr- Since by (4.1.6) s > o/ +2 >3, 5+5 — |y -2 >
s+ —M—2> 2, we bound (4.2.15) by a £} sequence times |[v”||Z, whence (4.2.14).

The corresponding estimate for (4.2.12) being obtained in the same way, this con-
cludes the proof of lemma 4.2.5. O

Lemmas 4.2.3, 4.2.4, and 4.2.5 imply immediately proposition 4.2.2, by definition of
the norm on G. As remarked earlier, theorem 4.2.1 is then an immediate consequence
of proposition 4.2.2.

Proof of theorem 1.1.1. — If we are given vy € Gy with small enough norm in that
space, theorem 4.2.1 provides a solution v € G defined for ¢t > 1 to (4.2.1). By

proposition 4.1.13, v is then a solution to
2

(Dt + %)v = %F(v)
and by corollary 4.1.12, the function w = v + Vi (v)e®® + V_z(v)e =3 is a solution to
(4.1.2), hence to (4.1.1), defined for ¢t > 1. Since this in turn implies theorem 1.1.1,
the only thing we still have to prove is that for any wy € HM*+* in a small enough
neighborhood of 0, there is vy in a small enough neighborhood of 0 in HM+* c G,
such that

(4216) wo = Vg + ‘/1(1)0)6”2/4 + V73(00)673im2/4.
([l

LEMMA 4.2.6. — The map vp — wo given by (4.2.16) is a local diffeomorphism from
a neighborhood of 0 in HM** to a neighborhood of 0 in HM+4.

Proof. — Since multiplication by e leaves HM+4 unchanged, we just have to
see that vy — Vp,(vg), m = 1,—3 is bounded from HM** to HM*+* and satisfies
[ Vi (v0) lgar+4 < Cllvol|2 44 when vy stays in the unit ball of H¥*4. The conclu-
sion will then follow from the local inversion theorem.

Remind the construction of V7, V_3 at fixed time ¢ = 1: in lemma 4.1.6, we de-
fined symbols A,, m = 1, —3, which are at ¢ = 1 linear combinations of expressions
a® b where b(§) is a symbol of order 0, and a is a quadratic expression of type

a =27 (DY vo)(DF?vo) with [y1] < 1, [re] <1, 0 < |y|+ [r2| + |3 < 2. One gets
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immediately that a € HM*3. One then constructs from A, symbols B,,, through
formula (4.1.66), which at t = 1 gives

Bn e HM P @ 572+ HMP2 @ 570
and one define V,,,(vg) as
Vin(v0) = ¢~ /0P8 (B, ) (/).

Then proposition 3.2.2, applied at ¢ = 1, shows that V;,, € HM**. Moreover, since
A, is quadratic in vg, we have the wanted quadratic estimate. This concludes the
proof. O

Proof of theorem 1.1.2. — Using the change of unknown (1.2.2), we have to find v,
such that for any v € N? with |y| < M

(4.2.17) |27 (w(t, ) — voo () || Lo (dz) = O(t™0), t — 4.

By (4.1.10), w(t, x) = v(t, 2)+V1e?+V_3e73 where Vi, V_3 liein V C 55;2};{‘1(1\4).
We shall choose the indices in (4.1.6) as optimal as possible i.e. (a,a’) close to
(—4,2), in the shaded area of the figure of page 64. Then s will be close to 4
and 8 =2(a+ o' +1) will be close to —2. If |y| < M, m = 1,—3, we thus have

"V, € E;Z%’i/_l_l’” whence by (3.1.5)

IX(D/ V2 Vil oo 4wy = Ot ), t — +o0
for any ¢ €]0,1/2[. Moreover

I =)DV Vil <C - ) 2° (ﬁ> o (ﬁy

t
kievi<2k <t \/E
Z 2k —s—2 2k 78/+1+"Y|
e () (%)
kjt<2k \/E t
using Sobolev injections and the definition of E;f,’i/_l_hl. Since s > o' —1, s+ >

M > |y|, we get an O(t~?) upper bound. Consequently, the asymptotic behaviour of

27w will be given by the one of z7v. Since v € &, o, (M), we have for |y| < M

—a,a’,oc(

ok \ 7" fok\
(1 =)(D/VD2 |y <C - Y 2 (W) (7)
ksevi<2k <t

Loy o (2_) (2_)'
kit<2k \/E t

and since s > o/+1, s+8 > M+1 > |y|+1, we get a O(t~°%) estimate for this term also.
We thus have to study x(D/vt)(z7v). Since any term of type x(D/vt)((D/t)z" v),
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1| < |y| — 1 will be also O(t7%) in L (still because %(x“/v) € ES’SLW‘fl), we

=a+2,a’ ,00
reduce ourselves to the study of x(D/v/t)(Z7v). But it follows from (4.2.8) that
(42.15) IDU(D/VD(Z )] < CE 18
for any 6 € ]0,1/2[ (the fact that ¢ can be taken as close as we want to 1/2 follows
by inspection of the proof of lemma 4.2.5, using that we took (o, ') near (—4,2)).
We deduce from (4.2.18) that x(D/v/t)(Z7v) has a limit in L> when t — 400, and
that the distance between the function and its limit is O(¢t=%). This concludes the
proof. O
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