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ON THE MONODROMY MAP FOR LOGARITHMIC
DIFFERENTIAL SYSTEMS

by Marian Aprodu, Indranil Biswas, Sorin Dumitrescu
& Sebastian Heller

Abstract. — We study the monodromy map for logarithmic g-differential systems
over an oriented surface S0 of genus g, with g being the Lie algebra of a complex
reductive affine algebraic group G. These logarithmic g-differential systems are triples
of the form (X, D, Φ), where (X, D) ∈ Tg,d is an element of the Teichmüller space of
complex structures on S0 with d ≥ 1 ordered marked points D ⊂ S0 = X and Φ is
a logarithmic connection on the trivial holomorphic principal G-bundle X × G over
X, whose polar part is contained in the divisor D. We prove that the monodromy
map from the space of logarithmic g-differential systems to the character variety of
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544 M. APRODU, I. BISWAS, S. DUMITRESCU & S. HELLER

G-representations of the fundamental group of S0 \D is an immersion at the generic
point in the following two cases:

1. g ≥ 2, d ≥ 1, and dimC G ≥ d + 2;
2. g = 1 and dimC G ≥ d.

The above monodromy map is nowhere an immersion in the following two cases:
1. g = 0 and d ≥ 4;
2. g ≥ 1 and dimC G < d+3g−3

g
.

This extends to the logarithmic case the main results in [5], [2] dealing with nonsingular
holomorphic g-differential systems (which corresponds to the case of d = 0).

Résumé (Sur la monodromie des systèmes différentiels logarithmiques). — Nous étu-
dions la monodromie des g-systèmes différentiels logarithmiques au-dessus d’une sur-
face compacte orientée S0 de genre g, où g désigne l’algèbre de Lie d’un groupe de Lie
complexe affine réductif G. Ces g-systèmes différentiels sont des triplets de la forme
(X, D, Φ), où (X, D) ∈ Tg,d est un élément de l’espace de Teichmüller de structures
complexes sur S0, avec d ≥ 1 points marqués ordonnés D ⊂ S0 = X et Φ est une
connexion logarithmique sur le G-fibré holomorphe trivial X × G au-dessus de X et
dont la partie polaire est contenue dans le diviseur D.

Nous démontrons que l’application de monodromie définie sur l’espace des g-sys-
tèmes différentiels logarithmiques et à valeurs dans la variété des caractères de G-repré-
sentations du groupe fondamental de S0\D est une immersion au point générique dans
les deux cas suivants :

1. g ≥ 2, d ≥ 1, et dimC G ≥ d + 2;
2. g = 1 et dimC G ≥ d.
L’application de monodromie ci-dessus n’est en aucun point une immersion dans

les deux cas suivants :
1. g = 0 et d ≥ 4;
2. g ≥ 1 et dimC G < d+3g−3

g
.

Ceci étend au cas logarithmique les résultats principaux de [5], [2] qui traitent le
cas des g-systèmes différentiels holomorphes non singuliers (qui correspondent ici au
cas d = 0).

1. Introduction

The study of the Riemann–Hilbert mapping, which associates to a flat (al-
gebraic or holomorphic) connection its monodromy morphism from the funda-
mental group is a classical topic in algebraic and analytical geometry (see, for
instance, [8], [17], and references therein).

We recall the setup and results of [5] and [2], the predecessors of this pa-
per. Let G be a connected reductive affine algebraic group defined over C,
with dimG > 0, and let g be the Lie algebra of G. A g-differential system
is a pair of the form (X,Φ), where X is a complex structure on a compact
oriented smooth surface S0 of genus g, and Φ is a holomorphic connection on
the trivial holomorphic principal G-bundle X × G over the Riemann surface
X. A g-differential system (X,Φ) is called irreducible if Φ is not induced by a
holomorphic connection on X ×P for some proper parabolic subgroup P of G.
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MONODROMY MAP FOR LOGARITHMIC DIFFERENTIAL SYSTEMS 545

Since any holomorphic connection on a Riemann surface is flat, associating the
monodromy representation to a holomorphic connection we obtain a map from
the space of irreducible g-differential systems to the irreducible G-character
variety Hom(π1(S0), G)ir/G. This monodromy map is actually holomorphic.

The main result of [5] says that, if g = 2, this Riemann–Hilbert monodromy
map is a local diffeomorphism from the space of irreducible g-differential sys-
tems into the irreducible G-character variety, for G = SL(2,C). Being inspired
by [5], in [2] it was shown that, for all g ≥ 2, the above monodromy map is
an immersion on an open dense subset of the space of irreducible g-differential
systems, for all reductive groups G with dimCG ≥ 3.

Our aim here is to study the Riemann–Hilbert monodromy mapping for
logarithmic g-differential systems, where g is as above. These logarithmic g-
differential systems are defined by triples of the form (X,D,Φ), where (X,D) ∈
Tg,d is an element of the Teichmüller space of complex structures on S0, with
d ordered marked points D ⊂ S0 = X (see Section 3), and Φ is a logarithmic
connection on the trivial holomorphic principal G-bundle X×G over X, whose
polar part is contained in the divisor D.

We prove the following (see Theorem 4.4):

Theorem 1.1. — Assume that 3g − 3 + d > 0 and d ≥ 1. The Riemann–
Hilbert monodromy mapping from the above space of irreducible logarithmic
g-differential systems to the character variety of irreducible G-representations
of the fundamental group of S0 \D is an immersion at the generic point in the
following two cases:

1. g ≥ 2 and dimCG ≥ d+ 2;
2. g = 1 and dimCG ≥ d.
The Riemann–Hilbert monodromy mapping from the above space of irre-

ducible logarithmic g-differential systems to the character variety of irreducible
G-representations of the fundamental group of S0 \D is nowhere an immersion
in the following two cases:

1. g = 0;
2. g≥ 1 and dimCG<

d+3g−3
g (in particular, when g= 1 and dimCG<d).

We note that Theorem 1.1 gives a complete answer only when g = 0 or g = 1.
For given g ≥ 2 and G, there are finitely many cases of d that are not addressed
in Theorem 1.1. When g = 1 and d = 0, from the first part of Theorem 1.1 it
follows that the monodromy mapping from the space of irreducible logarithmic
g-differential systems is an immersion at the generic point; see Remark 4.6.

Theorem 1.1, extends to the class of logarithmic g-differential systems, the
main result in [2] which deals with the nonsingular holomorphic g-differential
systems (corresponding to the case d = 0). Notice that the hypothesis 3g −
3 + d > 0 in Theorem 1.1 implies that the above Teichmüller space Tg,d has
positive dimension.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



546 M. APRODU, I. BISWAS, S. DUMITRESCU & S. HELLER

Given a reductive complex affine algebraic group G0, by setting G to be the
product group Gm0 , m ≥ 1, we can make its dimension arbitrarily large.

The proof of Theorem 1.1 is based on a transversality result in the moduli
space BG of quadruples of the form (X,D,EG,Φ), where
• (X,D) ∈ Tg,d,
• EG is a holomorphic principal G-bundle on X such that EG is topolog-
ically trivial, and

• Φ is a logarithmic connection on EG whose polar part is contained in D.
A key ingredient of this transversality condition is proved in Lemma 4.7,

which is an adaptation to the logarithmic case of Theorem 1.1 in [10] (where
its proof is attributed to R. Lazarsfeld).

The article is organized as follows. Sections 2 and 3 are preparatory: they
introduce the concept of logarithmic connections on holomorphic principal
bundles, the above moduli space BG of quadruples (X,D,EG,Φ), and the G-
character variety. We describe the infinitesimal deformation space of quadru-
ples (the tangent space of BG) as the first hypercohomology group of a certain
2-term complex (see Proposition 3.2). Section 4 is devoted to the proof of the
main result (Theorem 4.4) and deals with the transversality, in the tangent
space of BG, between the isomonodromy foliation and the subspace of logarith-
mic g-differential systems. This transversality condition, which is equivalent
to the monodromy map being an immersion on the space logarithmic of g-
differential systems, is proved by combining a criteria given in Lemma 4.3 (also
Proposition 4.5), with Lemma 4.7 (dealing with the case g ≥ 3) and Lemma
4.9 (dealing with the case of g = 2).

2. The logarithmic Atiyah bundle

Let X be a compact connected Riemann surface. Let
D := {x1, · · · , xd} ⊂ X(1)

be d distinct points, with d ≥ 2. For notational convenience, the divisor x1 +
. . .+ xd of degree d on X will also be denoted by D. For a holomorphic vector
bundle V on X, the holomorphic vector bundles V ⊗OX(D) and V ⊗OX(−D)
will be denoted by V (D) and V (−D), respectively. The holomorphic tangent
and cotangent bundles of X will be denoted by TX and KX , respectively.

Let G be a connected complex affine algebraic group with dimG > 0. The
Lie algebra of G will be denoted by g. Let

p : EG −→ X(2)
be a holomorphic principal G-bundle over X. The action of G on EG produces
an action of G on the holomorphic tangent bundle TEG of EG. The quotient

At(EG) := (TEG)/G −→ X(3)
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is the Atiyah bundle for EG [1]. Let dp : TEG −→ p∗TX be the differential of
the map p in (2). Let

ad(EG) := kernel(dp)/G ⊂ (TEG)/G(4)

be the adjoint bundle for EG. Note that this holomorphic vector bundle,
kernel(dp) is identified with the trivial holomorphic vector bundle EG × g −→
EG using the action of G on EG. Hence ad(EG) coincides with the vector
bundle EG ×G g −→ X associated to EG for the adjoint action of G on g.

Thus we have a short exact sequence of holomorphic vector bundles on X

0 −→ ad(EG) −→ At(EG) d′p−→ TX −→ 0,(5)

where At(EG) is defined in (3), and the projection d′p is induced by dp; the
sequence in (5) is known as the Atiyah exact sequence. Define

At(EG)(−logD) := (d′p)−1(TX(−D)) ⊂ At(EG),(6)

where d′p is the homomorphism in (5). So, from (5) we have the logarithmic
Atiyah exact sequence

0 −→ ad(EG) ι0−→ At(EG)(−logD) d̂p−→ TX(−D) −→ 0,(7)

where d̂p is the restriction of the homomorphism d′p to At(EG)(−logD), and
ι0 is given by the homomorphism ad(EG) −→ At(EG) in (5). We have the
following commutative diagram of homomorphisms

0 −→ ad(EG) ι0−→ At(EG)(−logD) d̂p−→ TX(−D) −→ 0,
‖

yι yι′
0 −→ ad(EG) −→ At(EG) d′p−→ TX −→ 0,

(8)

where ι and ι′ are the natural inclusion maps.
A logarithmic connection on EG with polar part in D is a holomorphic

homomorphism

Φ : TX(−D) −→ At(EG)(−logD)

such that

d̂p ◦ Φ = IdTX(−D),(9)

where d̂p is the surjective homomorphism in (7).
Since we have ι′ ◦ d̂p = (d′p) ◦ ι (see (8)), and ι′(y)(TX(−D)y) = 0 for every

point y ∈ D in (1), for a logarithmic connection Φ on EG, from (9) we have

ι′ ◦ d̂p ◦ Φ(TX(−D)y) = ι′(y)(TX(−D)y) = 0,
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for every y ∈ D. Consequently, from the commutativity of (8) we conclude
that (d′p) ◦ ι ◦ Φ(TX(−D)y) = 0. This implies that

ι ◦ Φ(TX(−D)y) ⊂ ad(EG)y ⊂ At(EG)y(10)
(see (8)). On the other hand, TX(−D)y = C by the Poincaré adjunction
formula [13, p. 146]; for any holomorphic coordinate function z on X around y
with z(y) = 0, the map C −→ TX(−D)y defined by λ 7−→ (λdzz )(y) is actually
independent of the choice of the coordinate function z. The element

(ι ◦ Φ)(y)(1) ∈ ad(EG)y
(see (10)) is called the residue of Φ at y; see [8].

Fixing X, the infinitesimal deformations of the principal G-bundle EG are
parametrized by H1(X, ad(EG)) [9].

We recall that the infinitesimal deformations of the d-pointedRiemann surface
(X,D) are parametrized byH1(X,TX(−D)). The infinitesimal deformations of
the above triple (X,D,EG) are parametrized byH1(X,At(EG)(−logD)) [3], [6],
[7], [9], [15].

The following lemma is standard (see [3, Section 2.2] and [15]).

Lemma 2.1. — 1. The homomorphism of cohomologies

d̂p∗ : H1(X,At(EG)(−logD)) −→ H1(X,TX(−D)),

induced by the projection d̂p in (7), corresponds to the forgetful map
from the infinitesimal deformations of the triple (X,D,EG) to the in-
finitesimal deformations of the pair (X,D) obtained by simply forgetting
the principal G-bundle.

2. The homomorphism of cohomologies
ι0∗ : H1(X, ad(EG))) −→ H1(X,At(EG)(−logD)),

induced by the homomorphism ι0 in (7), coincides with the map from
the infinitesimal deformations of the principal G-bundle EG to the in-
finitesimal deformations of the triple (X,D,EG) obtained by keeping the
pair (X,D) fixed.

3. Logarithmic connections and isomonodromy

3.1. Logarithmic Atiyah bundle. — Since At(EG) := (TEG)/G (see (3)), the
subsheaf At(EG)(−logD) ⊂ At(EG) corresponds to a subsheaf of the sheaf of
G-invariant holomorphic vector fields on EG. We will have occasions to use the
following description of this subsheaf of the sheaf of G-invariant holomorphic
vector fields on EG.

Let
D̃ := p−1(D) ⊂ EG
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be the divisor, where p is the projection in (2). Let

TEG(−log D̃) ⊂ TEG
be the corresponding logarithmic tangent bundle. We recall that this subsheaf
is characterized by the following property: A holomorphic vector field v, de-
fined on an open subset U ⊂ EG, is a section of TEG(−log D̃) if and only
if for every holomorphic function f on U that vanishes on D̃ ∩ U , the func-
tion v(f) also vanishes on D̃ ∩ U . Since the divisor D̃ is smooth, it follows
that TEG(−log D̃) is a locally free OEG -submodule of TEG. Consequently,
TEG(−log D̃) is a holomorphic vector bundle on EG. The above characteriz-
ing property of TEG(−log D̃) immediately implies that the Lie bracket opera-
tion of locally defined holomorphic vector fields on EG preserves the subsheaf
TEG(−log D̃).

To describe TEG(−log D̃) locally, take a point x ∈ D̃. Let (z1, z2, · · · , zm) be
holomorphic coordinate functions on EG defined around x such that z1 = p ◦ z
for some holomorphic coordinate function z on X around p(x), and also zi(x) =
0 for all 1 ≤ i ≤ m; here p denotes the projection in (2). Then TEG(−log D̃)
around x is generated by the holomorphic vector fields z1

∂
∂z1

, ∂
∂z2

, · · · , ∂
∂zm

.
The action of G on TEG, induced by the action of G on EG, actually pre-

serves the subsheaf TEG(−log D̃). It is now straightforward to check that

At(EG)(−logD) = TEG(−log D̃)/G.(11)

Let

Φ : TX(−D) −→ At(EG)(−logD)(12)

be a logarithmic connection on EG. Let

Φ̃ : At(EG)(−logD) −→ ad(EG)(13)

be the holomorphic homomorphism uniquely determined by the following con-
ditions:

1. Φ̃ ◦ ι0 = Idad(EG), where ι0 is the injective homomorphism in (7), and
2. kernel(Φ̃) = Φ(TX(−D)).

In view of (4) and (11), the homomorphism Φ̃ in (13) produces a G-invariant
surjective holomorphic homomorphism

Φ′0 : TEG(−log D̃) −→ kernel(dp),(14)

where p is the projection in (2).
Let w be a holomorphic vector field on an open subset U ⊂ X that vanishes

on U ∩D. In view of (11), the section Φ(w) of At(EG)(−logD)
∣∣
U
corresponds

to a unique G-invariant holomorphic section of TEG(−log D̃)
∣∣
p−1(U) satisfying

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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the condition that
dp(Φ(w)) = p∗w

(as sections of p∗TX)); let

Φ(w)′ ∈ H0(p−1(U), TEG(−log D̃)
∣∣
p−1(U))(15)

denote this section constructed from w.

Lemma 3.1. — Let v be a G-invariant holomorphic section of the logarithmic
tangent bundle TEG(−log D̃)

∣∣
p−1(U). Then the following three statements hold:

1. The holomorphic section Φ′0([Φ(w)′, v]) of kernel(dp) is G-invariant,
where Φ′0 is the homomorphism in (14), and Φ(w)′ is the section of
TEG(−log D̃)

∣∣
p−1(U) constructed above from w.

2. For every holomorphic function h on U ,
Φ′0([Φ(h · w)′, v]) = (h ◦ p) · Φ′0([Φ(w)′, v]).

3. If v = Φ(v1)′ for some holomorphic section v1 of T (−D)
∣∣
U
, then

Φ′0([Φ(w)′, v]) = 0.

Proof. — As noted before, the Lie bracket operation of locally defined holo-
morphic vector fields on EG preserves the subsheaf TEG(−log D̃). Since the
homomorphism Φ′0 in (14) is G-invariant, and Φ(w)′ is G-invariant, while v is
given to be G-invariant, it follows that Φ′0([Φ(w)′, v]) is also G-invariant.

To prove the second statement, consider the identity
[Φ(h · w)′, v] = (h ◦ p) · [Φ(w)′, v]− v(h ◦ p) · Φ(w)′.

Since Φ′0(Φ(w)′) = 0, where Φ′0 is the homomorphism in (14), the second
statement follows from this identity.

The third statement follows from the fact that any holomorphic one-dimen-
sional distribution is integrable. �

In view of (4) and (11), from Lemma 3.1(2) we get a homomorphism

Φ̃ : TX(−D)⊗At(EG)(−logD) −→ ad(EG).
Then the homomorphism
Φ̃⊗IdTX(−D)∗ : At(EG)(−logD)TX(−D)⊗TX(−D)∗ −→ ad(EG)⊗TX(−D)∗

produces a homomorphism
Φ̂ : At(EG)(−logD) −→ ad(EG)⊗ TX(−D)∗ = ad(EG)⊗KX(D)(16)

using the duality pairing TX(−D)⊗ TX(−D)∗ −→ OX .
Let C• be the two-term complex of sheaves on X

C• : C0 := At(EG)(−logD) Φ̂−→ C1 := ad(EG)⊗KX(D),(17)
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where Φ̂ is the homomorphism constructed in (16), and Ci is at the i-th position.
From Lemma 3.1(3), we know that

Φ̂ ◦ Φ = 0.

Consequently, the logarithmic connection Φ in (12) produces a homomorphism
of complexes

ΦC : TX(−D) −→ C•,(18)

where TX(−D) is the one-term complex concentrated at the 0-th position, and
C• is the complex in (17). In other words, we have the commutative diagram

TX(−D) : TX(−D) −→ 0
ΦC
y yΦ

y
C• : C0

Φ̂−→ C1

(19)

3.2. Character variety. — Let Tg,d denote the Teichmüller space of compact
connected Riemann surfaces of genus g with d ordered marked points, where
d ≥ 1. We will always assume that 3g − 3 + d > 0. This Tg,d is a complex
manifold of dimension 3g − 3 + d. We recall a description of Tg,d, which will
be used here. Let S0 be an oriented C∞ surface of genus g and let D0 ⊂ S0
be d ordered distinct points. Let C(S0) denote the space of all C∞ complex
structures on S0 compatible with the given orientation of S0. Let Diff0

D0
(S0)

denote the group of all orientation preserving diffeomorphisms
β : S0 −→ S0

such that
• β(x) = x for every x ∈ D0, and
• β is homotopic to the identity map of S0 through a continuous family
of diffeomorphisms βt of S0, 0 ≤ t ≤ 1, such that βt(x) = x for all t and
all x ∈ D0.

The group Diff0
D0

(S0) acts on C(S0) by pushing forward complex structures
using diffeomorphisms. Then we have

Tg,d = C(S0)/Diff0
D0

(S0).
We now assume the complex connected affine algebraic group G to be re-

ductive. The complement S0 \D0 will be denoted by S′0. Let
RG(S′0) := Homir(π1(S′0), G)/G(20)

be the irreducible G-character variety for S′0; the space Homir(π1(S′0), G) con-
sists of all homomorphisms γ : π1(S′0) −→ G such that γ(π1(S′0)) is not con-
tained in any proper parabolic subgroup of G. We note that RG(S′0) does not
depend on the choice of the base point needed to define the fundamental group
of S′0. Since π1(S′0) is finitely presented, the complex algebraic structure of G

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



552 M. APRODU, I. BISWAS, S. DUMITRESCU & S. HELLER

produces a complex algebraic structure on RG(S′0), so RG(S′0) is a complex
affine variety. It is, in fact, a smooth complex orbifold. We have

dimRG(S′0) = (2g + d− 1) · dimCG− dimC[G,G].(21)

For more details of the above dimension count the reader is referred to [11]
and [20, Proposition 49] (to which the monodromy around the poles should be
added).

3.3. Monodromy of logarithmic connections. — A logarithmic connection Φ
on a holomorphic principal G-bundle EG −→ X is called irreducible, if there
is no holomorphic reduction of structure group EP ⊂ EG

∣∣
X\D to some proper

parabolic subgroup P ⊂ G, over the open subset X \ D ⊂ X, such that Φ is
induced by a holomorphic connection on EP .

The above definition of irreducibility needs clarification, because in the spe-
cial case where EG is the trivial holomorphic principal G-bundle, and D is
the zero divisor — so the logarithmic connection Φ is holomorphic, meaning
it has no poles — this definition of irreducibility is, a priori, weaker than the
definition, given in the Introduction, of irreducible holomorphic g-differential
systems. More precisely, in the definition, given in the Introduction, of irre-
ducible holomorphic g-differential systems, the principal P -bundle is required
to be the trivial bundle X × P −→ X, while the above definition does not im-
pose any other condition on EP apart from the condition that the logarithmic
connection Φ is induced by a logarithmic connection on EP . We will show the
following:

Let Φ be a holomorphic connection on the trivial principal G-bundle

E0
G := X ×G −→ X,

and let EP ⊂ E0
G be a holomorphic reduction of structure group to P over X,

such that Φ is induced by a holomorphic connection on EP . Then EP is the
trivial principal P -bundle X × P −→ X.

To prove the above statement, first note that a holomorphic reduction of
structure group EP ⊂ E0

G to P is given by a holomorphic map φ : X −→ G/P .
For this map φ, we have

φ∗T (G/P ) = ad(E0
G)/ad(EP ).(22)

If EP admits a holomorphic connection ΦP , then ΦP induces holomorphic
connections on both ad(E0

G) and ad(EP ). This implies that

degree(ad(E0
G)) = 0 = degree(ad(EP )),

and hence from (22) it follows that

degree(φ∗T (G/P )) = 0.(23)
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Since the anticanonical line bundle K−1
G/P on G/P is ample, from (23) we

conclude that φ is a constant map. Consequently, P is the trivial principal
P -bundle X × P −→ X.

Let

ϕ : BG −→ Tg,d(24)

be the moduli space of irreducible logarithmic connections on topologically
trivializable holomorphic principal G-bundles. So, BG is the moduli space of
quadruples of the form (X,D,EG,Φ), where
• (X,D) ∈ Tg,d,
• EG is a holomorphic principal G-bundle on X such that EG is topolog-
ically trivial, and
• Φ is an irreducible logarithmic connection on EG whose polar part is
contained in D.

The map ϕ in (24) sends any (X,D,EG,Φ) to the pair (X,D). The moduli
space BG is a smooth complex orbifold.

Any logarithmic connection on a Riemann surface X is flat because∧2(TX)∗ = 0 (consequently, its curvature two-form vanishes identically). So,
considering monodromy representation of logarithmic connections, we get a
holomorphic map

θ : BG −→ RG(S′0),(25)

where RG(S′0) is constructed in (20).
We will prove that a logarithmic connection is irreducible if and only if the

corresponding monodromy representation is irreducible.
First, let EG be a holomorphic principal G-bundle on X equipped with a

logarithmic connection Φ, such that Φ is not irreducible. So, there is a proper
parabolic subgroup P ⊂ G, a holomorphic reduction of the structure group of
EG
∣∣
X\D to P , given by a subbundle EP ⊂ EG

∣∣
X\D, and a holomorphic con-

nection ΦP on EP , such that the logarithmic connection on EG induced by ΦP
coincide with Φ. Since the monodromy of ΦP coincides with the monodromy
of Φ, the monodromy of Φ is contained in P , and hence the monodromy repre-
sentation for Φ is not irreducible. To prove the converse let Φ be an irreducible
logarithmic connection on a holomorphic principal G-bundle EG on X. Take
a point x0 ∈ X \ D and fix a point z0 ∈ (EG)x0 in the fiber of EG over x0.
Taking parallel translations of z0 along all possible homotopy classes of loops
based at x0 we get the monodromy representation

HΦ : π1(X \D,x0) −→ G

of Φ. Assume that the image ofHΦ is contained in a parabolic subgroup P ( G.
Let S ⊂ EG

∣∣
X\D be the subset obtained by taking parallel translations of z0
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along all possible homotopy classes of paths starting at x0. Then

EP := SP ⊂ EG
∣∣
X\D

(recall that G acts on EG) is a holomorphic reduction of the structure group
of EG

∣∣
X\D to P over X \D. The logarithmic connection Φ produces a holo-

morphic connection on the holomorphic principal P -bundle EP , which, in turn,
induces Φ. Consequently, the logarithmic connection Φ is not irreducible. Thus,
a logarithmic connection is irreducible if and only if the corresponding mon-
odromy representation is irreducible.

3.4. Isomonodromy. — Let

dθ : TBG −→ θ∗TRG(S′0)

be the differential of the map θ in (25). The map θ is a holomorphic submersion,
meaning that dθ is surjective. The kernel of dθ

I := kernel(dθ) ⊂ TBG(26)

is a holomorphic foliation on BG; it is known as the isomonodromy foliation.
For any point (X,D) ∈ Tg,d, the restriction of θ to ϕ−1((X,D)), where ϕ is

the projection in (24), is a holomorphic local diffeomorphism. Consequently,
for any point z ∈ BG, the differential of ϕ

dϕ(z) : TzBG −→ Tϕ(z)Tg,d,

when restricted to the subspace Iz ⊂ TzBG in (26) produces an isomorphism

Iz
∼−→ Tϕ(z)Tg,d.

Therefore, there is a unique holomorphic homomorphism

L : ϕ∗TTg,d −→ TBG(27)

such that
• dϕ ◦ L = Idϕ∗TTg,d , and
• L(ϕ∗TTg,d) ⊂ I, where I is constructed in (26).

Since for any point (X,D) ∈ Tg,d, the restriction of θ to ϕ−1((X,D)) is
a holomorphic local diffeomorphism, it follows that L actually satisfies the
condition that

L(ϕ∗TTg,d) = I.(28)

Proposition 3.2. — Take any point z = (X,D,EG,Φ) ∈ BG.
1. The tangent space to BG at z is the first hypercohomology

TzBG = H1(X, C•),

where C• is the complex in (17).
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2. The homomorphism

L(z) : Tϕ(z)Tg,d = H1(X,TX(−D)) −→ TzBG = H1(X, C•)

in (27) coincides with the homomorphism of hypercohomologies

ΦC∗ : H1(X,TX(−D)) −→ H1(X, C•)

induced by the homomorphism ΦC in (18).

For the proof of Proposition 3.2, the reader is referred to [18, Proposition
3.8] (Proposition 3.4 of the arxiv version of [18]), [7, p. 1417, Proposition 5.1],
[6], [16], and [4].

4. Monodromy map on logarithmic differential systems

4.1. Logarithmic differential systems. — As before, G is a connected complex
reductive affine algebraic group with dimG > 0, and

ds := dimC[G,G].(29)

Consider the moduli space BG in (24). Let

T(G) ⊂ BG(30)

be the locus of all (X,D,EG,Φ) such that the holomorphic principal G-bundle
EG on X is holomorphically trivial. Note that EG is topologically trivial by
the definition of BG; also by the definition of BG the logarithmic connection Φ
is irreducible. The subset T(G) in (30) is a complex subspace.

Proposition 4.1. — The complex space T(G) in (30) is a complex orbifold of
dimension (g + d− 1) · dimCG− ds + 3g − 3 + d, where ds is defined in (29).

Proof. — Let $ : Cg,d −→ Tg,d be the universal Riemann surface equipped
with the universal divisor D ⊂ Cg,d of relative degree d over Tg,d. Let K −→
Cg,d be the relative holomorphic cotangent bundle for the projection $. Let
ϕ′ : T(G) −→ Tg,d be the restriction of the map ϕ in (24).

For any Riemann surface X, the space of all logarithmic connections on
the trivial holomorphic principal G-bundle X × G −→ X with a polar part
contained in D ⊂ X is the vector space H0(X,KX(D))⊗ g, where g is the Lie
algebra of G. Consequently, T(G) is the quotient of an open dense subset of
the total space of $∗(K⊗OCg,d(D))⊗ g by the adjoint action of G; the group
G acts trivially on $∗(K ⊗OCg,d(D)), and it has the adjoint action on g.

Take a point

w ∈ $∗(K ⊗OCg,d(D))⊗ g

that defines an irreducible logarithmic connection on the trivial principal G-
bundle. The adjoint action of the center of G on g is trivial. The isotropy
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subgroup of [G,G] for the action of [G,G] on w is a finite subgroup of [G,G].
The proposition follows from these. �

Let
θ̂ : T(G) −→ RG(S′0)(31)

be the restriction to T(G) ⊂ BG of the monodromy map θ in (25). We are
interested in the following question: When is the map θ̂ an immersion over an
open dense subset of T(G)?

Remark 4.2. — In [2], it was proved that θ̂ is an immersion over an open
dense subset of T(G), if g ≥ 2, d = 0, and dimCG ≥ 3. From this, it can be
deduced that θ̂ is an immersion over an open dense subset of T(G), if g ≥ 2,
d = 1 and dimCG ≥ 3. To see this, first note that there is no logarithmic
one-form on a compact Riemann surface X with exactly one pole, because the
residue has to be zero. So the space T(G) in (31) for d = 1 coincides with
T(G) for d = 0. On the other hand, the natural map from the space RG(S′0)
in (31) for d = 0 to the space RG(S′0) for d = 1 is an embedding; this natural
map corresponds to restricting any flat G-connection on S0 to the open subset
S′0 = S0 \D0 of it. Therefore, we conclude that the map θ̂ is an immersion over
an open dense subset of T(G), if g ≥ 2, d = 1 and dimCG ≥ 3.

4.2. The main theorem. — We first state a lemma of linear algebra that will
be used in the proof of Theorem 4.4.

Lemma 4.3. — Let β : V −→W be a linear map between two finite dimensional
complex vector spaces. Let S1 and S2 be two subspaces of V such that

1. kernel(β) ⊂ S1, and
2. the homomorphism β

∣∣
S2

: S2 −→W is injective.
Then dimS1 ∩ S2 = dim β(S1) ∩ β(S2).

Proof. — Since β
∣∣
S2

is injective, the restriction β
∣∣
S1∩S2

is injective. For any v ∈
S2 with β(v) ∈ β(S1), there is an element w ∈ S1 such that β(v) = β(w). But
then v − w ∈ kernel(β) ⊂ S1, and hence v ∈ S1. Consequently, the restriction
β
∣∣
S1∩S2

is realized as an isomorphism between S1 ∩ S2 and β(S1) ∩ β(S2). �

Theorem 4.4. — Assume that 3g − 3 + d > 0 and d ≥ 1. The map θ̂ in (31)
is an immersion over a nonempty open dense subset of T(G) in the following
two cases:

1. g ≥ 2 and dimCG ≥ d+ 2;
2. g = 1 and dimCG ≥ d.
The map θ̂ in (31) is nowhere an immersion in the following two cases:
1. g = 0;
2. g ≥ 1 and dimCG < d+3g−3

g .
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Proof. — First assume that g = 0. The trivial holomorphic principal G-bundle
over CP1 is rigid [19], [14]. In other words, in any holomorphic family of a holo-
morphic principal G-bundle over CP1, parametrized by a complex manifold Z,
the locus of points of Z over which the principal G-bundle on CP1 is holomor-
phically trivial is an open subset of Z. Therefore, the map θ̂ in (31) is nowhere
an immersion. We note that this also follows from the fact that

dimT(G)−RG(S′0) = d− 3 > 0

if g = 0 (see (21) and Proposition 4.1).
So, we assume that g ≥ 1.
If g ≥ 1 and dimCG < d+3g−3

g , then from (21) and Proposition 4.1, we have

dimT(G)−RG(S′0) = 3g − 3 + d− g · dimCG > 0.

Hence the map θ̂ in (31) is nowhere an immersion in this case also.
So, we assume that at least one of the following two holds:
1. g ≥ 2 and dimCG ≥ d+ 2;
2. g = 1 and dimCG ≥ d.
The map θ̂ in (31) is an immersion over the subset of T(G) over which the

homomorphism ∧e
dθ̂ :

∧e
TT(G) −→ θ̂∗

∧e
TRG(S′0)

is fiber-wise nonzero, where e = dimC T(G) and dθ̂ is the differential of the
map θ̂. Therefore, to prove the theorem, it suffices to show that there is a
point z ∈ T(G) such that the differential at z

dθ̂(z) : TzT(G) −→ T
θ̂(z)RG(S′0)(32)

is injective; recall that T(G) is irreducible.
Take a point

z = (X,D,EG,Φ) ∈ T(G).(33)

We recall that I(z) = kernel((dθ)(z)) (see (26)). The homomorphism dθ̂(z)
(see (32)) is injective if and only if

I(z) ∩ TzT(G) = 0;(34)

note that both I(z) and TzT(G) are subspaces of the tangent space TzBG.
We will use Lemma 4.3 to prove that (34) holds when z is chosen suitably.
We recall from Proposition 3.2(1) that TzBG = H1(X, C•), where C• is the

complex in (17). We also recall that the infinitesimal deformations of the triple
(X,D,EG) are parametrized by H1(X,At(EG)(−logD)). Let

ρ : H1(X, C•) −→ H1(X,At(EG)(−logD))(35)
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be the forgetful map that sends any infinitesimal deformation of the quadruple

z = (X,D,EG,Φ)

in (33) to the infinitesimal deformation of the triple (X,D,EG) obtained from it
by simply forgetting the logarithmic connection. We shall describe ρ explicitly.

Let A• be the one-term complex with At(EG)(−logD) at the 0-th position.
Consider the homomorphism H of complexes

C• : At(EG)(−logD) Φ̂−→ ad(EG)⊗KX(D)
H
y ‖

y
A• : At(EG)(−logD) −→ 0

(36)

where C• is the complex in (17). Let

H∗ : H1(X, C•) −→ H1(X,A•) = H1(X,At(EG)(−logD))(37)

be the homomorphism of hypercohomologies induced by this homomorphism
of complexes. Then the homomorphism ρ in (35) coincides with H∗ in (37).

In Lemma 4.3, set V = H1(X, C•), W = H1(X,At(EG)(−logD)), β = H∗
(see (37)), S1 = TzT(G) (see (30)), and S2 = I(z) (see (26)).

We will show that the hypotheses in Lemma 4.3 are satisfied.

Proposition 4.5. — For the above data, the two conditions in Lemma 4.3
hold.

Proof of Proposition 4.5. — The first condition in Lemma 4.3 says that

kernel(H∗) ⊂ TzT(G).(38)

To prove (38) we will identify the kernel of H∗. For this, observe that the
homomorphism of complexesH in (36) fits in the following short exact sequence
of complexes:

0 0 0y y y
A′• : 0 −→ ad(EG)⊗KX(D)y y ‖

C• : At(EG)(−logD) Φ̂−→ ad(EG)⊗KX(D)
H
y ‖

y
A• : At(EG)(−logD) −→ 0y y y
0 0 0
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This short exact sequence of complexes yields the following long exact sequence
of hypercohomologies:

−→ H1(X,A′•) = H0(X, ad(EG)⊗KX(D)) ν−→ H1(X, C•)
H∗−→ H1(X,A•) = H1(X,At(EG)(−logD)) −→ · · · .

The above homomorphism ν corresponds to moving the holomorphic connec-
tion on the trivializable holomorphic principal G-bundle EG, keeping the triple
(X,D,EG) fixed. This immediately implies that (38) holds.

The second condition in Lemma 4.3 says that the restriction of the homo-
morphism H∗ to I(z)

H∗
∣∣
I(z) : I(z) −→ H1(X,At(EG)(−logD))(39)

is injective.
To prove that the homomorphism in (39) is injective, from (28) we conclude

that H∗
∣∣
I(z) is injective if the composition of homomorphisms

H1(X,TX(−D)) L(z)−→ H1(X, C•)
H∗−→ H1(X,At(EG)(−logD))(40)

is injective, where L(z) is the homomorphism in (27). From Proposition 3.2(2)
we know that L(z) = ΦC∗ . Therefore, the composition of homomorphisms in
(40) coincides with the homomorphism of cohomologies

Φ∗ : H1(X,TX(−D)) −→ H1(X,At(EG)(−logD))

induced by the logarithmic connection Φ : TX(−D) −→ At(EG)(−logD) in
(33). But from the definition of a logarithmic connection we know that
• the homomorphism Φ is fiber-wise injective, and
• Φ(TX(−D)) is a direct summand of At(EG)(−logD).

Consequently, the above homomorphism Φ∗ is injective. Hence the composition
of homomorphisms in (40) is injective. This implies that the homomorphism
in (39) is injective. This completes the proof of Proposition 4.5. �

Continuing with the proof of Theorem 4.4, in view of Proposition 4.5, from
Lemma 4.3 we conclude that the statement in (34) is equivalent to the following
statement:

H∗(I(z)) ∩H∗(TzT(G)) = 0,(41)

where H∗ is the homomorphism in (37).
Fix a holomorphic trivialization of the principal G-bundle EG in (33). Using

it we will identify EG with the trivial holomorphic principal G-bundle X ×
G −→ X. So ad(EG) is the trivial holomorphic vector bundle X × g −→ X,
where g is the Lie algebra of G, and also

At(EG)(−logD) = ad(EG)⊕ TX(−D) = X × g⊕ TX(−D).(42)
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Let Φ0 be the trivial logarithmic (in fact, it is holomorphic) connection
on the trivial holomorphic principal G-bundle X × G −→ X. Note that the
trivial holomorphic connection on EG does not depend on the choice of the
trivialization of EG. The homomorphism

TX(−D) −→ At(EG)(−logD)

that defines Φ0 coincides with the inclusion map

TX(−D) ↪→ ad(EG)⊕ TX(−D) = At(EG)(−logD)

(see (42)). So we have

Φ = Φ0 + δ,(43)

where

δ ∈ H0(X,KX(D)⊗ g) = H0(X,KX(D))⊗ g;

recall that ad(EG) = X × g.
Consider the infinitesimal deformations of the triple (X,D,EG) in (33) such

that the principal G-bundle remains trivial, but the pair (X,D) moves. These
correspond to the image of the homomorphism

H1(X,TX(−D)) −→ H1(X,At(EG)(−logD))
= H1(X, ad(EG))⊕H1(X,TX(−D))

(see (42) for the decomposition) given by the identity map of H1(X,TX(−D))
and the zero map of H1(X,TX(−D)) to H1(X, ad(EG)). In other words, these
correspond to the image of the homomorphism of cohomologies

H1(X,TX(−D)) −→ H1(X,At(EG)(−logD))

induced by the inclusion map TX(−D) ↪→ ad(EG)⊕TX(−D), which is defined
using (42).

Consequently, the subspace in (41)

H∗(TzT(G)) ⊂ H1(X,At(EG)(−logD)) = H1(X, ad(EG))⊕H1(X,TX(−D))

coincides with the subspace

0⊕H1(X,TX(−D)) = H1(X,TX(−D)) ⊂ H1(X,At(EG)(−logD))
= H1(X, ad(EG))⊕H1(X,TX(−D)).

Consider the section δ in (43). Using the natural duality pairing

TX(−D)⊗KX(D) −→ OX
it produces a homomorphism

δ̂ : TX(−D) −→ OX ⊗ g = ad(EG).(44)
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Let
δ̂∗ : H1(X,TX(−D)) −→ H1(X,OX)⊗ g = H1(X, ad(EG))(45)

be the homomorphism of cohomologies induced by δ̂ in (44).
We will now show that the subspace in (41)
H∗(I(z)) ⊂ H1(X,At(EG)(−logD)) = H1(X, ad(EG))⊕H1(X,TX(−D))

coincides with the subspace

{(δ̂∗(v), v) | v ∈ H1(X,TX(−D))} ⊂ H1(X, ad(EG))⊕H1(X,TX(−D)),

where δ̂∗ is the homomorphism in (45).
To prove this, let

ι0∗ : H1(X, ad(EG)) −→ H1(X,At(EG)(−logD))(46)
be the homomorphism of cohomologies induced by the homomorphism ι0 of
sheaves in (7). We note that ι0∗ coincides with the natural map that sends any
infinitesimal deformation of EG (keeping (X,D) fixed) to the corresponding
infinitesimal deformation of (X,D,EG), where only EG is moving.

Consider the homomorphism ΦC in (18) constructed from the connection Φ.
Let

Φ0,C : TX(−D) −→ C0
•(47)

be the homomorphism as in (18) constructed for the trivial connection Φ0 on
EG; here C0

• is the complex as in (17) for the trivial connection Φ0. From (43),
it follows immediately that

H ◦ ΦC −H0 ◦ Φ0,C = ι0 ◦ δ̂,(48)

where δ̂, H, and ι0 are the homomorphisms in (44), (36), and (7) respectively,
while H0 is the homomorphism for the trivial holomorphic connection Φ0 con-
structed as in (36) (by substituting Φ0 in place of Φ in the construction of H).
As in Proposition 3.2(2), let

Φ0,C
∗ : H1(X,TX(−D)) −→ H1(X, C0

•)(49)

be the homomorphism of hypercohomologies induced by Φ0,C in (47). From
(48) we conclude that

H∗ ◦ ΦC∗ −H0
∗ ◦ Φ0,C

∗ = ι0∗ ◦ δ̂∗,(50)

where δ̂∗, H∗, Φ0,C
∗ , ι0∗ and ΦC∗ are the homomorphisms in (45), (37), (49),

(46), and Proposition 3.2(2), respectively, and
H0
∗ : H1(X, C0

•) −→ H1(X,At(EG)(−logD))(51)
is the homomorphism of hypercohomologies induced by the homomorphism
H0 in (48). Note that both sides of (50) are actually homomorphisms from
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H1(X,TX(−D)) to H1(X,At(EG)(−logD)). Also, note that from the decom-
position in (42), it follows immediately that the homomorphism ι0∗ in (50) is
injective. In fact, the decomposition in (42) realizes H1(X, ad(EG)) as a direct
summand of H1(X,At(EG)(−logD)).

Now consider the homomorphism
L(z) : T(X,D)Tg,d −→ TzBG

in (27) constructed for the connection Φ in the expression of z in (33). Let
L0 : T(X,D)Tg,d −→ T(X,D,EG,Φ0)BG

be the homomorphism as in (27) constructed for the trivial connection Φ0.
From Proposition 3.2(2), we know that

H∗ ◦ L−H0
∗ ◦ L0 = H∗ ◦ ΦC∗ −H0

∗ ◦ Φ0,C
∗ ,(52)

where H∗ and H0
∗ are the homomorphisms in (37) and (51) respectively; recall

that TzBG = H1(X, C•) and T(X,D,EG,Φ0)BG = H1(X, C0
•).

Combining (50) and (52) it follows that

H∗ ◦ L−H0
∗ ◦ L0 = ι0∗ ◦ δ̂∗,(53)

where δ̂∗ is the homomorphism in (45).
It was noted earlier that the decomposition in (42) realizes H1(X, ad(EG))

as a direct summand of H1(X,At(EG)(−logD)).
Therefore, from (53) and (28) we conclude that the subspace in (41)
H∗(I(z)) ⊂ H1(X,At(EG)(−logD)) = H1(X, ad(EG))⊕H1(X,TX(−D))

(see (42) for the above decomposition) coincides with the subspace

{(δ̂∗(v), v) | v ∈ H1(X,TX(−D))} ⊂ H1(X, ad(EG))⊕H1(X,TX(−D)).
On the other hand, it was shown earlier that the subspace in (41)
H∗(TzT(G)) ⊂ H1(X,At(EG)(−logD)) = H1(X, ad(EG))⊕H1(X,TX(−D))
coincides with the subspace
0⊕H1(X,TX(−D)) =H1(X,TX(−D))⊂H1(X, ad(EG))⊕H1(X,TX(−D)).
Combining these two we obtain an isomorphism

η : kernel(δ̂∗)
∼−→ H∗(I(z)) ∩H∗(TzT(G))(54)

that sends any v ∈ kernel(δ̂∗) ⊂ H1(X,TX(−D)) to
(0, v) ∈ H1(X, ad(EG))⊕H1(X,TX(−D)) = H1(X,At(EG)(−logD)).
Consequently, (41) holds if and only if we have

kernel(δ̂∗) = 0,(55)

where δ̂∗ is the homomorphism constructed in (45).
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Take any subspace

V ⊂ H0(X,KX(D)).

Let H1(X,TX(−D))⊗ V −→ H1(X,OX) be the homomorphism constructed
using the duality pairing TX(−D)⊗KX(D) −→ OX . Let

FV : H1(X,TX(−D)) −→ H1(X,OX)⊗ V ∗(56)

be the homomorphism given by it. From the construction of δ̂∗ in (45) we see
that

kernel(δ̂∗) = kernel(FV ),

where V ⊂ H0(X,KX(D)) is the image of the homomorphism

Hδ : g∗ −→ H0(X,KX(D))(57)

given by δ in (43); note that since δ ∈ H0(X,KX(D)) ⊗ g, it produces a
homomorphism Hδ as in (57) by sending any w ∈ g∗ to w(δ) ∈ H0(X,KX(D)).
Consequently, (55) holds if and only if

kernel(FHδ(g∗)) = 0,(58)

where Hδ and FHδ(g∗) are the homomorphisms constructed in (57) and (56),
respectively.

It is evident that there is an element z = (X,D,EG,Φ) ∈ T(G) such
that (58) holds if and only if there is a subspace V ⊂ H0(X,KX(D)), with
dimV ≤ dim g, satisfying the condition that the homomorphism FV in (56) is
injective. Indeed, choosing a homomorphism

δ′ : g∗ −→ H0(X,KX(D))

for which V ⊂ δ′(g∗), consider the element δ ∈ H0(X,KX(D))⊗ g given by δ′.
Then the logarithmic connection (X,D,X×G,Φ0 + δ) satisfies (58), where Φ0
is the trivial holomorphic connection on X ×G −→ X.

First assume that g = 1 (hence, by hypothesis, d ≥ 1) and dimCG ≥ d. This
implies that

dimH0(X,KX(D)) = d ≤ dimCG.

So, in this case, there is a subspace V ⊂ H0(X,KX(D)), with dimV ≤ dim g,
for which the homomorphism FV in (56) is injective, if the homomorphism

FH0(X,KX(D)) : H1(X,TX(−D)) −→ H1(X,OX)⊗H0(X,KX(D))∗(59)

is injective; if the homomorphism in (59) is injective, then we may take V to
be H0(X,KX(D)) itself, and the homomorphism FV is injective.

The homomorphism in (59) is injective if the dual homomorphism

F ∗H0(X,KX(D)) : H0(X,KX)⊗H0(X,KX(D)) −→ H0(X,K⊗2
X (D))(60)
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is surjective. Now, since dimH0(X,KX) = 1, the homomorphism in (60) is
injective. On the other hand, we have

dimH0(X,KX(D)) = d = dimH0(X,K⊗2
X (D)),

so the homomorphism in (60) is an isomorphism; in particular, it is surjective.
This proves the theorem when g = 1 and dimCG ≥ d.

Now assume that g ≥ 2 and dimCG ≥ d+ 2.
Since dim g ≥ d+2, we conclude that there is an element z = (X,D,EG,Φ) ∈

T(G) such that (58) holds if there is a subspace V ⊂ H0(X,KX(D)), with
dimV ≤ d + 2, for which the homomorphism FV in (56) is injective. From
Lemmas 4.7 and 4.9 (see also Remark 4.10), it follows that such a subspace V
exists. This completes the proof of the theorem. �

Remark 4.6. — From Theorem 4.4, it follows that when g = 1 and d = 0,
the map θ̂ in (31) is an immersion over a nonempty open dense subset of T(G).
Indeed, from Remark 4.2, we know that T(G) for d = 0 coincides with T(G)
for d = 1. On the other hand, RG(S′0) for d = 0 is embedded into RG(S′0) for
d = 1. From Theorem 4.4, we know that the map θ̂ in (31) is an immersion
over a nonempty open dense subset of T(G) if g = 1 and d = 1. Therefore, the
same holds when g = 1 and d = 0. Recall that dimG > 0.

In view of Remark 4.2, we assume that d > 1 when g > 1.

Lemma 4.7. — Take integers g > 1 and d > 1. Then for any compact con-
nected nonhyperelliptic Riemann surface X of genus g ≥ 3, and any effective
divisor D on X of degree d, there exists a subspace W ⊂ H0(X,KX(D)), with
dimW = d+ 2, such that the homomorphism constructed in (56)

FW : H1(X,TX(−D)) −→ H1(X,OX)⊗W ∗

is injective.

Proof. — For a compact Riemann surface X of genus g and an effective divisor
D on X of degree d, denote the holomorphic line bundle K⊗2

X ⊗ OX(D)) by
K2
X(D). For any subspace V ⊂ H0(X,KX(D)), let

F ∗V : H0(X,KX)⊗ V −→ K0(X,K2
X(D))

be the dual of the homomorphism FV in (56).
We need to show that there is a W with dimW = d+ 2 such that the above

homomorphism
F ∗W : H0(X,KX)⊗W −→ H0(X,K2

X(D))(61)
is surjective.

Consider the natural homomorphism
J : H0(X,KX)⊗H0(X,KX(D)) −→ H0(X,K2

X(D)).(62)
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We will now show that under our assumptions, the homomorphism J in (62)
is surjective. To this end, we apply [12, Theorem (4.e.1)] and see that it suffices
to prove that

h1(X,OX(D)) ≤ g − 2.(63)

When D is nonspecial, (63) evidently holds. So we suppose that D is special.
In order to prove (63), first assume that d ≥ 4. Then Clifford’s theorem (see
[13, p. 251]) says that h0(X,OX(D)) ≤ d/2+1. Now using the Riemann–Roch
theorem we get that

d+ 1− g = h0(X,OX(D))− h1(X,OX(D)) ≤ d

2 + 1− h1(X,OX(D)).

This implies that (63) holds, and hence J is surjective in this case by [12,
Theorem (4.e.1)].

Assume now that d = 2 or d = 3. Since X is not hyperelliptic, if d = 2,
then we have h0(X,OX(D)) = 1. If d = 3, Clifford’s theorem implies that
h0(X,OX(D)) ≤ 2. Then the Riemann–Roch theorem implies that (63) holds
in both these cases. Applying [12, Theorem (4.e.1)], we infer that J is surjective
in these cases as well.

Consequently, we have obtained the surjectivity of the map J in (62) for any
pair (X,D), as in the lemma.

From the commutative diagram

H0(X,KX)⊗H0(X,KX(D)) J //

��

H0(X,K2
X(D))

��
H0(X,KX)⊗H0(X,KX(D))/H0(X,KX) // H0(X,K2

X(D))/H0(X,K2
X)

we notice that the surjectivity of J implies the surjectivity of the map

H0(X,KX)⊗ (H0(X,KX(D))/H0(X,KX)) −→ H0(X,K2
X(D))/H0(X,K2

X).

Consider U ⊂ H0(X,KX(D)) of dimension (d−1) such that U ∩H0(X,KX) =
{0} inside H0(X,KX(D)). Then the map

U −→ H0(X,KX(D))/H0(X,KX)

is an isomorphism, and hence the induced map

H0(X,KX)⊗ U −→ H0(X,K2
X(D))/H0(X,K2

X)(64)

is surjective.
On the other hand, since X is nonhyperelliptic, [10, Theorem 1.1] (whose

proof is attributed to Lazarsfeld) shows that for a general subspace W0 ⊂
H0(X,KX) of dimension 3, the multiplication map

H0(X,KX)⊗W0 −→ H0(X,K2
X)(65)
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is surjective. Set
W = W0 ⊕ U ⊂ H0(X,KX(D)).

The surjectivity of the maps in (64) and (65) implies the surjectivity of
F ∗W : H0(X,KX)⊗W −→ H0(X,K2

X(D)),
which concludes the proof. �

Remark 4.8. — Lemma 4.7 is optimal in the following sense. If W ⊂
H0(X,KX(D)) is a subspace such that the intersection W ∩ H0(X,KX) in-
side H0(X,KX(D)) is at least three-dimensional, and H0(X,KX) ⊗ W −→
H0(X,K2

X(D)) is surjective, then dimW ≥ d+2. This claim is easily obtained
by reverting the argument in the proof of Lemma 4.7.

Lemma 4.7 excluded the case of g = 2. This is dealt with separately below.

Lemma 4.9. — Let X be a compact connected Riemann surface of genus 2 and
let D be an effective divisor of degree d > 1 such that D 6∈ |KX |. Then the
multiplication map

H0(X,KX)⊗H0(X,KX(D)) −→ H0(X,K2
X(D))

is surjective.

Proof. — We start with the short exact sequence
0 −→ TX −→ H0(X,KX)⊗OX −→ KX −→ 0,

twist it by KX(D), and take the corresponding long exact sequence of coho-
mologies
H0(X,KX)⊗H0(X,KX(D)) −→ H0(X,K2

X(D)) −→ H1(X,OX(D)) −→ .

By the hypothesis, we have H1(X,OX(D)) = 0, and hence from this exact
sequence of cohomologies, it follows that the multiplication map is surjective.

�

Remark 4.10. — Note that, under the hypotheses of Lemma 4.9, the Riemann–
Roch theorem implies that h0(X,KX(D)) = d+ 1 < d+ 2.
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