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Introduction

This book is the collection of talks given in the conference on operator algebras
held in Orléans in July 1992. Orléans has always been a privileged place for operator
algebras thanks to Frangois Combes and Claire Delaroche whose kindness and devotion
to the subject played a determinant role.

The content of the book describes the recent advances and several major topics of
the theory of operator algebras.

First the theory of quantum groups which after the early work of Kac, Takesaki,
Enock and Schwartz and Woronowicz is undergoing rapid changes. A very simple defi-
nition of these objects was obtained by Baaj and Skandalis, simply as a unitary operator
V in the tensor square of a Hilbert space, H ® H satisfying suitable multiplicativity
conditions. This very fruitful point of view is analysed by Baaj in the special case of
the quantum group E,(2) of Woronowicz with special relevance to the modular theory.
The equally important deformation aspect of quantum groups ties up (in the paper of
Bauval) with continous fields of C*-algebras. The papers of Boca and Landstad deal
with actions of compact quantum groups on C*-algebras, analysed in the ergodic case
by Boca and in the case of single crossed product by Landstad. Finally Vainerman
analyses double cosets of compact quantum groups with respect to subgroups and com-
putes corresponding characters in terms of q-orthogonal polynomials.

The second topic widely covered in this book is the analysis of operator algebras
associated to free groups, in which the seminal work of Voiculescu on free probability
theory plays a dominant role. This work of D. Voiculescu is a major step towards
the classification of type II; factors beyond the hyperfinite case and the theory has
already provided many unexpected results. In his paper Voiculescu gives in particular
an explicit way to compute the spectrum of convolution operators on the free group.
Radulescu’s paper gives a simple presentation of a III, factor whose associated II;
factor is the I1; factor of a free group with infinitely many generators.

The II; factors associated to Fuchsian groups should belong to the class of I, fac-
tors “next to hyperfinite” and this question is analysed in the paper of de La Harpe
and Voiculescu. P. de La Harpe and his collaborators have obtained general results in
particular on simplicity for C*-algebras and von Neumann algebras of discrete groups
and a general review is given in de La Harpe’s paper.



Finally S. Popa analyses the free analogue of central sequences for II; factors and
shows that certain universal commuting squares involving amalgamated free products
appear asymptotically in any inclusion of finite index, a result of great interest in the
theory of subfactors.

The third topic which is quite active at present is the entropy for automorphisms of
I factors, a subject reviewed in Stgrmer’s paper. After my initial work with Stgrmer
this subject has evolved slowly due to the difficulty of making explicit computations
of entropy. But a number of new results involving, in particular, Narnhofer, Thirring,
Stgrmer and Sauvageot make it quite lively at present.

Thanks to the work of Effros, Haagerup, Pisier and their collaborators, the notion
of operator space has found many interesting applications and has become a bridge
between operator algebras and Banach spaces. The paper of Pisier develops the notion
of exactness in this context, parallel to the well-known work of E. Kirchberg.

Finally, the papers of Blanchard, Brown and Bekka-Vallette deal with questions re-
lated to the K-theory of C*-algebras. The first analyses the notion of tensor product of
two C*-algebras over C(X), the second deals with the subtle nuance between homotopy
and equivalence of projections in general C*-algebras; the third shows that the natural
morphism C*(H) — M(C*(G)) associated with a group inclusion H — G is in most
cases of interest not injective.

A. Connes
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RESUMES DES EXPOSES

S. BAAJ : Regular representation of the quantum E,(2) group of Woronowicz

Let H be a Hilbert space. In this article, under appropriate “regularity” conditions,
we associate to every multiplicative unitary V € L(H® H), a pair of Hopf C*-algebras
in duality. We show that the regular representation of the quantum E,(2) group of
Woronowicz is a multiplicative unitary satisfying our conditions and we calculate its
covariant representations. We also calculate the Haar measures of E,(2) and its Pontr-
jagyn dual and we give their modular theory.

A. BAUVAL : Quantum group - and Poisson - deformation of SU(2)

We endow Woronowicz’s family of quantum groups (SU,(2)),cr. With a structure
of continuous field, and use the underlying continuous field of C*-algebras to construct
a deformation of Poisson-SU(2). We prove that this Poisson-deformation is, in some
sense, unique. This enables us to compare it with the one constructed by Sheu.

M.E.B. BEKKA, A. VALETTE : Lattices in semi-simple Lie groups, and multipli-
ers of group C*-algebras

Let I be a lattice in a non-compact simple Lie group G. We prove that the canonical
map from the full C*-algebra C*(T') to the multiplier algebra M(C*(G)) is not injective
in general (it is never injective if G has Kazhdan’s property (T'), and not injective for
many lattices either in SO(n,1) or SU(n,1)). For a locally compact group G, Fell in-
troduced a property (W F'3), stating that for any closed subgroup H of G, the canonical
map from C*(H) to M(C*(G)) is injective. We prove that, for an almost connected G,
property (W F3) is equivalent to amenability.

E. BLANCHARD : Tensor products of C(X)-algebras over C(X)

Given a Hausdorff compact space X, we study the C*-(semi)-norms on the algebraic
tensor product A ®aig,c(x) B of two C(X)-algebras A and B over C(X). In particular,
if one of the two C(X)-algebras defines a continuous field of C*-algebras over X, there
exist minimal and maximal C*-norms on A ®ai4,c(x) B, but there does not exist any
C*-norm on A ®ay,0(x) B in general.

F.P. BOCA : Ergodic actions of compact matriz pseudogroups on C*-algebras

A generalization of the classical finiteness theorem of Hgegh-Krohn, Landstad and
Stgrmer for ergodic actions of compact groups on operator algebras is proved for actions
of compact matrix pseudogroups on C*-algebras. This, together with the Takesaki-
Takai type duality result of Baaj and Skandalis, show that the reduced C*-crossed
product of a unital C*-algebra by an ergodic action of a compact matrix pseudogroup
is a direct sum of C*-algebras of compact operators.

L.G. BROWN : Homotopy of projections in C*-algebras of stable rank one
S. Zhang has suggested the study of the following question for a particular projection



p in a C*-algebra A: Is every projection which is unitarily equivalent to p necessarily
homotopic to p? It was shown by Effros, Kaminker and Zhang that the answer is yes
if A is a unital or non-unital purely infinite simple C*-algebra, and by Zhang that the
answer is yes if A has real rank zero and (topological) stable rank one. We show that
the answer is yes whenever A has stable rank one. We also give an example where A is
extremally rich and of real rank zero and the answer is no. A second theorem makes an
additional hypothesis which rules out such examples. In addition the paper discusses
the concept of extremal richness and its K-theoretic consequences.

P. DE LA HARPE : Operator algebras, free groups and other groups

The operator algebras associated to non commutative free groups have received a
lot of attention, by F.J. Murray and J. von Neumann, and by later workers. We review
some properties of these algebras, both for free groups and for other groups such as
lattices in Lie groups and Gromov hyperbolic groups. We have also collected a list of
open problems.

P. DE LA HARPE, D. VOICULESCU : A problem on the II;-factors of Fuchsian
groups

We discuss a problem concerning the von Neumann algebra W3(T') of a Fuchsian
group I' which is finitely generated and non elementary. The problem is to find how
such an algebra is related to the factors in the Dykema-Radulescu family (L(F}));<;<co
interpolating continuously the non abelian free group factors.

M.B. LANDSTAD : Simplicity of crossed products from ergodic actions of compact
matriz pseudogroups

The result that, for an ergodic covariant system (M, p, G) over a compact group G,
the crossed product M x,G is a simple C*-algebra iff the multiplicity of each = € G in
p equals dim(7), is generalised to ergodic actions of the compact matrix pseudogroups
defined by S. L. Woronowicz. The crossed product turns out to be simple iff the gquan-
tum dimension equals the quantum multiplicity for each irreducible representation of
the pseudogroup. As in the group case, the crossed product is then isomorphic to the
algebra of compact operators.

G. PISIER : FEzact operator spaces

We study the notion of exactness in the category of operator spaces, in analogy with
Kirchberg’s work for C*-algebras. As for C*-algebras, exactness can be characterized
either by the exactness of certain sequences, or by the property that the finite dimen-
sional subspaces embed almost completely isometrically into a nuclear C*-algebra. Let
E be an n-dimensional operator space. We define dsx (E) = inf{||ul|s||u"||c} where
the infimum runs over all isomorphims u between E and an arbitrary n-dimensional
subspace of the algebra of all compact operators on £;. An operator space X is exact iff
dsk(F) remains bounded when E runs over all possible finite dimensional subspaces of
X. In the general case, it can be shown that dsx(E) < y/n (here again n = dim(F)),
and we give examples showing that this cannot be improved at least asymptotically.
We show that dsi(E) < C iff for all ultraproducts F = ILF;/U (of operator spaces) the



canonical isomorphism (which has norm < 1) vg: I(E Qmin F;)/U — E ®min (IIF;/U)
satisfies |[vg'|| < C. Finally, we show that dsx(E) = dsx(E*) = 1 holds iff E is a point
of continuity with respect to two natural topologies on the set of all n-dimensional op-

erator spaces.

S. POPA : Free-independent sequences in type 11, factors and related problems

We prove that, unlike central sequences (i.e., commuting-independent sequences)
which in general may or may not exist, free-independent sequences exist in any separa-
ble type II; factor. More generally, we prove that certain universal commuting squares
involving amalgamated free products appear asymptotically in any inclusion of finite
index.

F. RADULESCU A type III, factor with core isomorphic to the von Neumann alge-
bra of a free group, tensor B(H)

We construct a type III factor by using the free product construction introduced by
Voiculescu and show that its core is L(Fy) ® B(H). We prove that M,(C) * L*°[0,1] is
a type III, factor if My(C) is endowed with a nontracial state (depending on A).

E. STORMER. : Entropy in operator algebras

We give a survey of the theory of dynamical entropy in operator algebras as it was
by the end of 1992. Since then Problems 4.2 and 6.6 in the article have been solved,
the first positively by D.Voiculescu and the second negatively by Narnhofer, Thirring
and the author.

L. VAINERMAN : Hypergroups structures associated with Gel’fand pairs of compact
quantum groups

Double cosets of compact quantum groups with respect to their subgroups are con-
sidered and cases of a Gel'fand pair and a strict Gel'fand pair are distinguished. It is
shown that every strict Gel’fand pair of compact quantum groups generates a normal
commutative hypercomplex system with a compact basis and a commutative discrete
hypergroup which are in duality to each other. The examples of strict Gel’fand pairs
of compact quantum groups are considered and characters of the corresponding hyper-
groups are described in terms of g-orthogonal polynomials.

D. VOICULESCU : Operations on certain non-commutative operator-valued random
variables

In the context of free products with amalgamation over an algebra B, additive and
multiplicative free convolution are studied. Analogues of the R- and S- transforms
are obtained. Applications to the B-free central limit theorem and to the spectra of
convolution operators on free groups are considered.
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REPRESENTATION REGULIERE DU GROUPE QUANTIQUE
DES DEPLACEMENTS DE WORONOWICZ

Saad Baaj

Introduction

Soit H un espace de Hilbert. Un unitaire V qui agit dans H @ H est dit
multiplicatif s’il vérifie la relation pentagonale Vi3Vi3Vas = Vi3Vi2. Un unitaire
multiplicatif V est dit régulier [4] si 'adhérence normique C(V) de la sous-algébre
C(V) = {(tdQw)(ZV) /| w € L(H)«} de L(H) ou T est la volte, coincide avec la
C*-algébre des opérateurs compacts K dans H ; il est dit irréductible [4] s’il existe un
unitaire U € L(H) vérifiant les conditions :

a)U?=1et (Z1QU)V)3 =1
b) Punitaire ¥ = S(U®1)V(U®1)T est multiplicatif.

Dans [4], en collaboration avec G.Skandalis, nous avons associé a tout unitaire
multiplicatif régulier V, deux C*-algebres de Hopf (Sv,g"‘\/) en dualité, généralisant
ainsi le cas des C*-algebres de Hopf (C,(G), C*, ,(G)) associées a un groupe localement
compact G. Comme nous ’avons annoncé dans [4], I’hypothése de régularité, qui
correspond en fait & la dualité de Takesaki-Takai pour les produits croisés de C*-
algébres, n’est pas toujours vérifiée. Citons ’exemple suivant qui sera développé ailleurs
[5]. Soit G un groupe localement compact, & tout couple (G1,G2) de sous-groupes
fermés de G, d’intersection triviale et tel que ’ensemble GG, soit un ouvert dense
dans G, on peut associer, comme [4] dans le cas G = G1 G2, un unitaire multiplicatif
V qui correspond au biproduit croisé de [17]. Dans ce cas, 'algébre C(V) est le produit
croisé Co(G)H,.4(G1 X G3) ol le sous-groupe G (resp. G2) agit par translation & droite
(resp. & gauche) dans G. Remarquons que la C*-algebre C,(G)X,..(G1 X G2) contient
la C*-algeébre des opérateurs compacts. Cependant, si G # G1Ga, cette C*-algébre
admet plus d’une représentation et donc, dans ce cas, 'inclusion K C E(_Vj est stricte.
Notons cependant que 'unitaire multiplicatif V est irréductible.

Dans cet article, nous dégageons deux conditions plus faibles que les conditions de
régularité et d’irréductibilité de [4], qui nous permettent de realiser les constructions
de [4] et d’obtenir la plupart de ses résultats. La premiére condition que nous avons
appelée “semi-régularité”, revient a4 demander que ’adhérence normique de C(V)
contienne la C*-algébre des opérateurs compacts. Une conséquence de cette hypothése
est que C(V) est auto-adjointe et donc par la preuve de (cf. [4] 3.5), I’algébre réduite Sy
et algébre réduite duale Sy sont également auto-adjointes. D’autrepart, nous disons
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S. BAAJ

A

que 'unitaire multlphcatlf V est “équilibré” s’il existe un unitaire U € L(H) tel que
U? =1 et que I'unitaire V = S(UQ® 1)V(U®1)T soit multiplicatif.

Si V est un unitaire multiplicatif équilibré et semi-birégulier, i.e V et V semi-
réguliers, nous montrons (paragraphe 3) que les C*-algébres Sy et Sy peuvent
étre munies de structures de C*-algébres de Hopf bisimplifiables naturelles. Nous
montrons également que les constructions et les résultats de ([4] appendice) restent
valables dans ce cadre. En particulier, si W est I'unitaire multiplicatif associé & une
représentation covariante (cf. [4] appendice) d’un unitaire multiplicatif V satisfaisant
aux conditions précédentes, l'algébre réduite Sw (resp. l'algebre réduite duale Sw),
munie du coproduit §(z) = W(z@1)W* (resp. §(z) = W*(1@z)W) est une C*-algébre
de Hopf isomorphe a la C*-algebre de Hopf Sy (resp. Sv).

Notons que dans le cas non régulier, on ne peut espérer obtenir la dualité
de Takesaki-Takai pour les produits croisés de C*-algébres. Cependant, comme
I'hypothése de semi-régularité implique la “régularité au sens faible”, i.e I’adhérence
faible de la sous-algebre C(V') coincide avec L(H), la méthode de [11] s’adapte dans le
cadre des unitaires multiplicatifs irréductibles semi-biréguliers pour établir la dualité
de Takesaki pour les produits croisés d’algébres de von Neumann.

Dans le paragraphe 4, nous étudions un exemple important d’unitaire multiplicatif
irréductible, semi-birégulier mais non régulier : la représentation réguliere du groupe
quantique [25,26] des déplacements E,(2) de Woronowicz. Rappelons qu’étant donné
un nombre réel p > 1, la C*-algebre de Hopf (4, §) des “fonctions continues sur E,(2)
tendant vers 0 & 'infini” est [25] le produit croisé A = C,(C,)x,Z ou C, = {2z € C/
lz]e uZ} U {0}, pour laction définie par a(f)(¢) = f(p~1¢). Il est facile de deviner [3]
une mesure positive v sur I’espace C,, telle que le poids dual ([15], [22]) correspondant
® soit une mesure de Haar pour E,,(2). La preuve de 'invariance a gauche et a droite
de cette mesure de Haar est alors basée sur I’expression de ce poids ® comme une
somme de formes positives sur A et sur le calcul du produit de convolution de ces
formes.

Comme nous le montrons dans un cadre assez général au paragraphe 2, a toute C*-
algebre de Hopf munie d’une mesure de Haar, nous associons une isométrie pentagonale
qui correspond dans le cas des groupes & la représentation réguliere. Dans le cas du
groupe quantique E,(2), l'isométrie V obtenue est un unitaire multiplicatif semi-
régulier mais non régulier. Comme on peut s’y attendre dans une “situation avec
mesure de Haar”, la représentation réguliére V' est irréductible. Nous montrons que la
C*-algebre de Hopf réduite (Sv, 6y) coincide avec (A4, 6) et que la C*-algebre de Hopf
réduite duale Sy munie du coproduit opposé est isomorpAhe a la C*-algebre de Hopf
[26] des “fonctions continues sur le dual de Pontrjagyn E,(2) tendant vers 0 a I'infini”
au sens de Woronowicz.

Par les résultats du paragraphe 3 et la moyennabilité de E,(2) et de E;(\2), nous
savons que les représentations (resp. coreprésentations) de V sont les représentations
de la C*-algebre Sy (resp. Sy). S’appuyant sur la description (théoréme 4.10) de
l’'unitaire multiplicatif V' comme multiplicateur de la C*-algebre Sy ® Sy, on peut

12



GROUPE QUANTIQUE DES DEPLACEMENTS DE WORONOWICZ

déduire la description [26] des représentations du groupe quantique E,(2) donné par
Woronowicz.

Une autre conséquence de la moyennabilité de E,(2) est que le produit croisé
réduit Sy xg‘\/ coincide avec 1/e\produit croisé “max”. Il s’ensuit que les représentations
de la C*-algebre B = Sy xSy coincident avec les représentatons covariantes [4] de
l'unitaire multiplicatif V. Nous montrons que la C*-algebre B est une extension
des opérateurs compacts par les compacts. Il en résulte que V n’admet que deux
représentations covariantes : la représentation réguliere et une deuxiéme que nous
décrivons.

Nous terminons le paragraphe 4 par le calcul des mesures de Haar duales et de leur
théorie modulaire. Pour déduire les mesures de Haar duales & partir de la mesure de
Haar @, on peut procéder comme dans le cas classique des algébres de Kac ([12], [13],
[16], [24]), i.e construire des algebres hilbertiennes a gauche et montrer que les poids
correspondants ([8], [22]) vérifient les propriétés d’invariance voulues. Pour garder a cet
article une longueur raisonnable, nous avons préféré procéder directement en donnant
les formes positives sur Sy qui permettent d’exprimer les mesures de Haar duales
comme somme de formes positives; le calcul de leur produit de convolution permet
alors comme dans le cas de ®, de montrer les propriétés d’invariance . Nous montrons
ensuite que les théories modulaires de ® et des mesures de Haar duales 3 et T vérifient
la conjecture de ([21] paragraphe 6.).

S’appuyant sur une conséquence du formulaire de [21], nous montrons que le poids
® ® ® est une mesure de Haar invariante & gauche et & droite sur le double quantique
(4], [28]) de E,(2). Procédant comme dans le cas classique, on peut déduire dans
ce cas les mesures de Haar duales et montrer que leur théorie modulaire satisfait le
formulaire de [21].

Enfin, dans une premiére appendice, nous rassemblons les propriétés que nous
avons utilisées dans le paragraphe 4, des coefficients de Fourier (4(m,n))(;, n)yez? de
la suite de fonctions notée (U(m,.))mez introduite par Woronowicz dans [25]. Dans
une seconde appendice, nous complétons la preuve du théoréme 4.2 et nous montrons
l'unicité de la mesure de Haar de E,(2).

Durant ’élaboration de cet article, j’ai bénéficié de nombreuses et fructueuses
discussions avec G.Skandalis sur ce sujet ; je ’en remercie treés sincérement.

1. Préliminaires

Dans ce paragraphe, nous fixons les notations constamment utilisées dans la suite
et nous rappelons quelques définitions.

Soit E un espace de Banach et X C E un sous-ensemble de E. Nous notons X

'adhérence de X dans E et nous désignons par lin X 'espace vectoriel fermé engendré
par X dans E.

Tous les produits tensoriels de C*-algébres, sauf mention expresse du contraire,

13
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sont supposés munis de la norme spatiale (produits tensoriels ”min”).

Soit A une C*-algébre, nous notons A la C*-algebre obtenue & partir de A par
adjonction d’un élément unité et M(A) la C*-algébre des multiplicateurs [18] de A. Si
J est un idéal bilatere fermé de A, on pose M(A,J) = {m € M(A) /| mA+ Am C J}.

Un homomorphisme de C*-algebres m : A — M(B) est dit non dégénéré si, pour
une unité approchée (e;) de A, m(e;) — 1 pour la topologie stricte.

1.1. DEFINITION. — (cf. [4]) Une C*-algébre de Hopf est un couple (A, §) ott A est une
C*-algébreet 6: A - M(AQA+A®A; A ®A) est un homomorphisme non dégénéré,
appelé le coproduit de A, vérifiant (id ® §)§ = (§ ®id) 6. Une C*-algébre de Hopf est
dite bisimplifiable si on a A ® A = Tin §(A)(1 ® A) = lin §(A)(A ®1).

Soit H un espace de Hibert, si T € L(H ® H), on définit Ty,,Ty3,T23 €
L(HQH®H ) comme dans [4]. On note £ € L(H®H) la volte donnée par £((®n) = n®E
et on pose Ty = LT,

Pour T € L(H QH) et w € L(H)s, on définit les opérateurs (id ® w)(T) et
(w ®1d)(T) par les formules :

(€| ((d@w)(T)n) = w(0gT6y) , (¢ |(w@id)(T)n) = w(8';TH;)
ou 6¢, 0, € L(H, HQH) sont définies par 8¢(n) = 6, () =€ @ .

1.2. DEFINITION. — (cf. [4]) Un unitaire V € L(H®H) est dit multiplicatif s’il vérifie
la relation pentagonale :

Vi2Vi3Vas = Va3 Vi

Si V € L(H®H) est un unitaire multiplicatif et w € L(H )., on pose L(w) =
(w®id)(V) et p(w) = (id @ w)(V). L’algebre réduite [4] (resp. 1’algébre réduite duale)
Sy (resp. 3’;) de V est par définition I’adhérence normique dans L(H) de la sous-
algebre A(V) = {L(w) / w € L(H)+} (resp. A(V) = {p(w) / w € L(H)+}). Quand

aucune confusion n’est possible, on note simplement S et S ces algébres.

Une représentation [4] (resp. coreprésentation) de V' dans l'espace de Hilbert
K est un unitaire X € L(K @ H) (resp. X € L(H @ K)) vérifiant la relation
X12X13Va3 = Vo3 X1o (resp. Vi X13Xa23 = X23V12). Dans ce cas, pour tout w € C(H)*,
on pose px(w) = (id ® w)(X) (resp. Lx(w) = (w ®1td)(X)); V'espace vectoriel
Ax = {px(w) /| w € L(H)\} (resp. Ax = {Lx(w) /| w € L(H),}) est une sous-
algebre ([4] A.3) de L(K); on note alors Sx (resp. Sx) son adhérence normique dans
L(K).

Une représentation covariante ([4] appendice) de V' dans un espace de Hilbert K
est un couple (X,Y) ou X est une représentation et ¥ est une coreprésentation de
V dans le méme espace de Hilbert K vérifiant la relation de covariance Y12Vi3X23 =
Xa23Y12.
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2. Mesure de Haar sur une C*-algébre de Hopf

Dans ce paragraphe, nous associons a toute C*-algebre de Hopf munie d’une
mesure de Haar, une isométrie pentagonale qui correspond dans le cas des groupes
3 la représentation réguliére. Notons que notre définition d’une mesure de Haar est
moins restrictive que celle de [14]. Auparavant, nous rappelons quelques notations et
résultats de la théorie 7] des poids sur une C*-algébre.

Un poids [7] @ sur une C*-algébre A est une application de A4 dans [0, o] telle
que ®(z + y) = ®(z) + ®(y) pour z,y € Ay et B(Az) = A®(z) pour A >0et z € Ay.
Un poids @ est dit semi-fini (normiquement) si le sous -espace vectoriel :

Mo = {21 — 22 +i(z3 —74), T € A, B(z;) < 0} =N3Na

ouNg = {z € A/P(z*z) < 00}, est dense dans A.

Si @ est un poids sur une C*-algébre A, sa représentation [9] GNS (A¢, Hs,7s)
est définie de la fagon suivante. L’idéal & gauche Mg de A, muni du produit scalaire
(z | y) = ®(z*y), est un espace préhilbertien. Soient Hg le séparé complété de
cet espace préhilbertien et Ag l'application canonique de g dans Hg ; posant
7e(a)(As(z)) = Ag (az) pour a € A et © € Ng, on obtient une représentation e
de la C*-algebre A dans I’espace de Hilbert Hg.

Si @ est un poids normal semi-fini fidéle sur une algébre de von Neumann M, on
note [22] o le groupe d’automorphismes modulaires de M associé.

Soit ® est un poids s.c.i et semi-fini sur une C*-algébre A, alors [9] la
représentation 74 est non dégénérée et [7,9] & admet un prolongement canonique
noté @, a I'algebre de von Neumann M = ng(A)", donné par :

®(z) =sup{f(z), f € M}, fome < B}

<§ est donc un poids normal semi-fini (pour la topologie ultrafaible) sur M vérifiant
® o mg = ®. D’aprés [1], on a également pour tout z € My :

®(z) = inf{l / il existe a; € A t.q mg(a;) — = (ultrafort) et ®(a;) — I}

Soient ®, ¥ des poids s.c.i et semi-finis sur une C*-algébre A, alors le produit
tensoriel ® @ ¥ des poids ® et U est le poids s.c.i et semi-fini sar A ® A défini par
QU =(2®V)o(re ®Ty), ot ® ¥ désigne le produit tensoriel des poids normaux
[22] sur le produit tensoriel d’algebres de von Neumann.

2.1. LEMME. — (cf. [9], [14]) Soient M une algébre de von Neumann, B une sous-C*-
algeébre de M faiblement dense dans M et ® un poids normal, semi-fini ultrafaiblement
et fidéle sur M. Posons ¢ = ®|B* et supposons que ¢ soit normiquement semi-fini.
Notons He (resp. Hg) l'espace de la représentation GNS du poids ® (resp. ¢). Si
le groupe & un paramétre d’automorphismes modulaires (o) laisse B invariante et
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définit par restriction, un groupe & un paramétre d’automorphismes normiquement
continu de la C*-algébre B, alors l'isométrie U : Hy — Hg définie par U Apz = Asz
est un unitaire qui entrelace les représentations w4 et 4|B de B.

Démonstration. Soit (u;) une suite généralisée dans zm; normiquement bornée telle
que u; — 1 fortement. Posons v; = % /e_t2 of(u;) dt. On avj € im;’ et [22] pour
tout 2 € C, on a 02 (v;) — 1 pour la topologie *-forte. Pour tout y € 91y, on a :

Ag yv; = anrq,(af%(vj)JQ Asy— Asy

Soit alors (bx) une suite généralisée dans B qui converge fortement vers y, comme
brv; € My pour tout k et tout j, le vecteur Ag y est dans 'image de 'isométrie U.
]

Soit A une C*-algebre et soit ¥ un poids s.c.i et semi-fini sur A, supposons que le
prolongement canonique ¥ de ¥ & l'algébre de von Neumann M = my(A) soit fidele
et que le groupe d’automorphismes modulaires (o} ) laisse la C*-algebre B = my(A)
invariante et définit par restriction, un groupe d’automorphismes de B normiquement
continu, alors d’aprés le lemme précédent, l'isométrie U : Hy — Hyg définie par
UAyy = Ay my(y) est un unitaire qui entrelace les représentations my et my o my. De
méme, il résulte de (2.1) que 'isométrie naturelle U : Hy ® Hy — Hygy définie par
U(Avz @ Ay y) = Augy (z ® y) est un unitaire. On identifie également 1’espace de
Hilbert Hygygy au produit tensoriel Hy @ Hy @ Hy...

2.2. DEFINITION. — On appelle mesure de Haar a gauche (resp. a droite) sur une
C*-algébre de Hopf (A, 6), un poids ® : Ay — [0,00] s.c.i et semi-fini vérifiant :

a) ® est fidéle sur I’algébre de von Neumann M = 74 (A)" _

b) 0'?(7&}(14)) = ms(A) et pour tout a € A la fonction t — o%(me(a)) est continue
normiquement.

c) Pour tout a € A et toute forme positive f sur A, on a ®(a x f) = || f||®(a) (resp.

®(f xa) = ||fl12(a)).
Rappelons que si (A, §) est une C*-algebre de Hopf, a € A, f, f' € A*, on pose :
axf=(f®1id)(6(a)), fra=(1d® f)(é(a)), fxf' =(fRf)oé

2.3. PROPOSITION. — Soit (A, §) une C*-algébre de Hopf munie d’une mesure de Haar
& droite 0.

a) Pour tout z,y € Ny, on a (¥ @ ¥)((1 @ y*)é(z*z)(1 @ y)) = ¥(z*z)¥(y*y).

b) Pour tout a € Nygy et tout y € Ny, ona (TRIRY)((1910y*)(id®)(a*a)(1®
18y)) = (¥ ® ¥)(a"a)¥(y"y).

Démonstration. Posons f = y¥y*, f est une forme positive sur A et on a ||f|| =
U(y*y). Par [19], il existe une famille de formes normales positives (w;)ier sur M telle
que ¥ = Zw;. On en déduit ([22] 8.3) que (¥ ® ¥) = Z(w,- ® ), d’ot :

i i
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(TR U)((1ey")i(z"z)(1® 7)) = Z(wx' ®¥)o (my ® 1y )((1®y")b(z"z)(1 ® 7))
= Z\I!(y*(z'x *W; 0 Ty)Y)
= Zf(m*x *w; 0 my))

= Z(wi omy)(f *z*z)
i
=¥(f*z"z) = Y(y"y)¥(c*z) < o0
d’ou le a).
Démonstration analogue pour le b).

Avec les notations ci-dessus, notons V' 'isométrie dans ’espace de Hilbert Hy ®
Hy = Hygy définie par :

V(Ayz @ Ay y) = Aygu (8(2)(1 @ y))
ou z,y € Ny. Nous avons :
2.4. THEOREME. — L’isométrie V vérifie la relation pentagonale Vi3Vi3Va3 = Va3 Vi,.
Pour la preuve de ce résultat, on a besoin de :

2.5. LEMME. — Pour tout a € Nygw et tout z € Ny, on a VasAvgugy (a ® 2) =
Avowey((id® 6)(a)(1®1® 2)).

Démonstration. Il est clair que si a appartient au produit tensoriel algébrique 9y ©Ny,
on a par définition de V :

Vas Avgwew(a® 2) = Avguer((td® 8)(a)(1® 1 ® 2))

Dans le cas général, soit (a,) une suite dans le produit tensoriel algébrique My © Ny
telle que (2.1) Aygw an — Awygw a. Par (2.3), on a :

Avoreu((1d @ 6)(an)(1@1@ 2)) - Avouew((id® 6)(a)(1®1® 2))

démonstration du théoréme. Pour z,y,z € Ny, on a par le lemme précédent :

VasViz (Ay 2 @ Ay y ® Ay 2) = VasAwguer ((6(2)(1® ) ® 2)
= Avguev (6%(2)(1® (6(y)(1 ® 2)))
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D’autrepart, soit (b,) une suite dans le produit tensoriel algébrique 9ty ® Ny telle que
Avgy bn — Avgy (6(y)(1® 2)),on a:

Vi2VisVas (Av 2 @ Av y ® Ay 2) = ViaVis Ay 2 ® Awgyw (6(y)(1 ® 2))
= lim Vi2Vis Avgwev (¢ ® bn)

Jim Viz Avgueré(z)13(1 @ br)
= lim Avgueub’(z)(1®b,) (par (2.5))

Pour tout u € 93?'\1,", on a avec les mémes notations :

Jim Averewd’(z)(u® ba) = lim (1y ® Ty ® 1¢)(8%(2)) Avevew(u ® bn)
= (my @ Ty @ 1y )(6*(2)) Avguew(u ® (5(y)(1® 2))

Par densité normique dans AT des éléments u de z_m; tels que 7y (u) soient analytiques
pour le groupe d’automorphismes modulaires (o} ), on déduit :

Jim Avguews®(z)(1® ba) = Avgwew (67(2)(1® (5(y)(1® 2)))

2.6. Remarque. — Soit (A 6}{une C*-algebre de Hopf.
1) Si ¥ est une mesure de Haar & droite sur (4, §), la condition a) de (2.2) entraine

que ’espace des vecteurs bornés a droite relativement 4 la représentation GNS du
[9] systéme hilbertien & gauche (A, Ny, sy) ob sy(z,y) = ¥(z*y), est [9] dense
dans Hy ; procédant comme par exemple dans [12], on montre facilement que
V € L(Hy) ® M ot M est algébre de von Neumann engendrée par my(A).

2) Si @ est une mesure de Haar & gauche sur (4, 4), alors on montre de méme que
la formule V*(Ag £ @ As y) = Asge (6(y)(z @ 1)) définit une co-isométrie V de
Pespace de Hilbert Hg ® Hg qui vérifie la relation pentagonale ; on a evidemment
que V € M @ L(H) ou M est 'algebre de von Neumann engendrée par 7 (A).

3) Si ¥ est une mesure de Haar & droite sur (A4, §), alors pour tout z € Ny et toute
forme f € A*,ona (f*z) € Ny et T((f*z)*(f*z)) < || f||> ¥(z*z) ; voir par exemple
(23],[13]).

3. Unitaires multiplicatifs semi-réguliers

Le but de cette partie est de montrer qu’avec des hypotheéses de régularité
et d’irréductibilité plus faibles que celles de [4], les algébres de Banach Sy et Sy
canoniquement associées & un unitaire multiplicatif V', restent munies d’une structure
de C*-algebre de Hopf bisimplifiable (cf.[4] 3.). Sous les mémes hypothéses, nous
étudions également les représentations covariantes de ces unitaires multiplicatifs.
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Commengons par la définition suivante :

3.1. DEFINITION. — On dit que 'unitaire multiplicatif V dans H est semi-régulier si
I’adhérence normique de I’algébre C(V') contient la C*-algébre des opérateurs compacts
K. On dit que V est semi-birégulier si V est semi-régulier et que I’adhérence normique

de l’espace vectoriel {(w ® id)(2V) [ w € L(H)} contient K.

Si V est semi-régulier, il est clair que ZV*Z est semi-régulier. Si deux unitaires
multiplicatifs sont équivalents et que 1'un est semi-régulier, l’autre Pest.

Nous verrons au paragraphe 4 que la représentation réguliére du groupe quantique
E,(2) de Woronowicz est unitaire multiplicatif semi-régulier mais non régulier. Cepen-
dant, dans le cas unifere ( i.e 1 € A(V)) , nous allons montrer que la semi-régularité
d’un unitaire multiplicatif V' entraine sa régularité .

On a:

3.2. PROPOSITION. — Soit V un unitaire multiplicatif dans H semi- régulier, S et S
les algébres de Banach associées.

a) L’adhérence normique de la sous-algébre C(V') de L(H) est auto-adjointe.
b) S et S sont des sous-C*-algébres de L(H).

Notons d’abord que si I'adhérence normique de C(V') est stable par I'involution, S et
S le sont également par la méme preuve que ([4] 3.5) ; d’ou1 le b) . Pour démontrer le
a), on a besoin de :

3.3. LEMME. — Soient H un espace de Hilbert, B une sous-algébre normiquement
fermée de L(H) et By une sous-algébre de B normiquement dense. Supposons que les

ensembles B§ By et BoB} soient contenus dans B. Alors B est une sous-C*-algébre de
L(H).

Démonstration. Il suffit de montrer que B§ C B. Or, pour tout = € By, il existe une
suite de polynémes (P,) telle que P,(0) = 0 pour tout n et que « soit limite normique
de (zPp(z*z)). Comme P,(z*z)z* € B,onaz*€ B.

démonstration de la proposition

Posons By = C(V) et notons B son adhérence normique dans L£L(H). Nous allons
montrer les ensembles B§ By et ByBg sont contenus dans B. Pour w,w' € L(H)x, on
a:

(ld ® w)(EV)*(zd ® w')(EV) =(Zd ® w' ® w*)(V;{szl;;Z]g‘/]g)
=(1d@w' @ w*)(T12V33V13Z23)

Il résulte du calcul précédent que si z,y € By, alors z*y appartient & ’adhérence
normique de P’espace vectoriel engendré par {(id®a®p)(L12V33(a®b®1)Vi3) [ a,B €
L(H).; a,b € K}. Oril résulte de la semi- régularité de V et de ([4] 3.1) que ’adhérence
normique de I’espace vectoriel engendré par {(a ® 1)V(1 ®b) / a,b € K} contient la
C*-algebre K ® K. On en déduit que z*y € lin {(id ® a ® B)(Z12V%3Vi2Vis) [ o, B €
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L(H)y}. Comme V33V13Vis = Vi3V3,, on a z*y € B. Remplagant V par SV*%, on

obtient également que zy* € B.
L]

3.4. Remarque. — Si X est une coreprésentation (resp. représentation) de ’unitaire
multiplicatif semi-régulier V' dans un espace de Hilbert K, alors la sous-algebre ([4]

A.3) Sx (resp. S x) est une sous-C*-algébre de £(K); la preuve est la méme que dans
([4] A.3).

Nous ne savons pas si la semi-régularité d’un unitaire multiplicatif V' suffit pour
munir la C*-algébre S (resp. S) , via le morphisme §(z) = V(z @ 1)V*) (resp.
é(z) = V*(1 ® z)V) , d’une structure de C*-algebre de Hopf. Cependant, si S ou
S est unifére, c’est le cas car alors 'unitaire multiplicatif est régulier. Pour la preuve,
montrons le résultat suivant :

3.5. LEMME. — Soient V un unitaire multiplicatif, X une coreprésentation (resp.
représentation) de V dans un espace de Hilbert K. On a :

n(C(V)*01)X(K0o1)=X(K0Ax)
(resp.lin (10 K)X(10C(V)*) = (Ax 0 K)X)

Démeonstration. Pour w € L(H).,k € K,0on a:

(1d@w ®id)(Vi,Z12X13(k ®1® 1)) =(ld @ w ® id)(V}, X23Z12(k © 1 @ 1))
=(Zd Qw® id)(X13X23V;2212(k ®R1® 1))

On conclut grace a I'égalité V*L(K 0K) =K QK.
L’assertion resp. résulte de celle-ci en remplagant V par XV*Z et X par X *.E.

3.6. PROPOSITION. — Soit V un unitaire multiplicatif dans H de type compact (resp.
discret). Si V est semi-régulier, alors V est régulier.

Démonstration. Notons d’abord qu’ on a par ([4] 3.1), lin (K@1)V(KO1) = K © A(V).
Si V est semi-régulier, (3.5) entraine que K® S C V(K ® S). Si V est de plus de type
Pn

compact, alors pour tout k € Kona V*(k®1) = li_r'xc}o Z(kj ® s;) avec kj € K et

J
SjGS.

Pn
Pour tout §,n € H, posons alors t = (id @ wky¢)(XV) et t, = 203;5,;:1.,, pour
J
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tout entier n. Pour tout a, 3 € H, nous avons :

(a| (t—tn)B) =(@® b | (EVYB@E) — 3 (a | s3E)(kin | B)

J

(k@ 1) =Yk ® ;) (n®a) | FE)
J

donc ||t — t,|| — 0 quand n — oo et V est régulier.

L’assertion resp. résulte de celle-ci en remplagant V' par LV*% .

n
Par les résultats de [4], V est en fait (& la multiplicité prés), irréductible.
3.7. DEFINITION. — On dit qu’un unitaire multiplicatif V dans H est équilibré s’il
existe un unitaire U € L(H) tel que :
a) U?=1.

b) L’ unitaire V = S(U ® 1)V(U @ 1) est multiplicatif.

Par abus de langage (et de notation), nous dirons que le couple (V,U) est un unitaire
multiplicatif équilibré s’il vérifie les conditions de la définition précédente.

3.8. Remarque. — On déduit immédiatement de la définition de V que si (V,U) est
un unitaire multiplicatif équilibré, V' est semi-birégulier ssi V et ¥ sont semi- réguliers.
Notons aussi que 'unitaire V = S(1QU)V(1QU)L = (U® U)W (U®U) est également
multiplicatif.

Dans la proposition suivante, nous donnons des propriétés algébriques des co-
représentations et représentations d’un unitaire multiplicatif équilibré (V,U). Pour
cela, si X est une coreprésentation (resp. représentation) de V , nous posons X =

(1@ U)X21(1®U) (resp. X = (U ® 1)X2,(U ® 1)). Nous avons :

3.9. PROPOSITION. — Soient (V,U) un unitaire multiplicatif équilibré dans H et X
une co-représentation (resp. représentation) de V' dans un espace de Hilbert K.

a) ‘712X13‘7T2 = X13Xp3 (resp. ‘7§3X13‘723 = X12X13)
b) 5553‘/13)?23 = X12Vis (resp. -X:12V13X;:2 = V13X23)

¢) in (KO 1X(C(V)*©1)=Tin (K0 Ax)X
(resp. lin (10C(V))X(10K) =Tin X(Ax © K))
Démonstration. a) Cf. [4] A.7 b).
b) En conjuguant I'égalité 1712X131~/‘{2 = X13X2; par l'unitaire 1QU ®1)%; ,on
obtient V]2X32VT2 = X32X13 ) d’ou V13X23V;3 = X23X12 . On démontre de méme
’assertion (resp.).
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c) Pour w € L(H)4,0on a:

(1dRw®id)(k®1®1)X13V1,E12) =(ld ®w @ id)((k ® 1 ® 1)V, X13X23512)
=(idQ@w @ id)((k® 1® 1)V, 12 X33 X13)

On conclut grace & 'égalité (K @ K)V*E = K @ K.
L’assertion resp. résulte de celle-ci en remplacant V par ZV*T et X par TX*X.
n

3.10. PROPOSITION. — Soient (V,U) un unitaire multiplicatif équilibré et semi-
birégulier, X une coreprésentation (resp. représentation) de V. Nous avons :

a) X € M(K® Sx) (resp. X € M(Sx ® K)).

b) X € M(5® Sx) (resp. X € M(5x ® S)).
Démonstration. a) Remarquons d’abord qu’ on a par ([4] 3.1), K ® Sx = lin (K ®
1)X(K®1). Comme V est semi- régulier, grace a (3.5), on a donc K®Sx C X(K®Sx).

L’unitaire multiplicatif V étant également semi- régulier , on a aussi par (3.9 ¢)) ,
K®Sx C(K®Sx)X. Donc X est un multiplicateur de X ® Sx.

L’assertion resp. résulte de celle-ci en remplagant V par ZV*X et X par ZX*X.

b) Il résulte clairement du a) qu'on a V € M(K ® S). Remplacant V par V, on en
déduit que V € MK® S) Par (3.9 a)), on a Xp3 = X{3V12X13V7,. Comme Vs
et X3 sont des multiplicateurs de K ® S®sS X, il en va de méme pour Xo3.

L’assertion resp. résulte de celle-ci en remplagant V par EV*X et X par ¥X *.2.

3.11. COROLLAIRE. — Soit V un unitaire multiplicatif équilibré et semi-birégulier, S
et S les C*-algébres associées.

a) VeMIS®S).

b) Les adhérences des espaces vectoriels engendrés par {V(z®1)V*(1Qy) / z,y € S}
et {(V(z®1)V*(y®1)/ z,y € S} sont toutes deux égales a S® S.

c) Les adhérences des espaces vectoriels engendrés par {V*(1®z)V(1Qy) / z,y € S}
et {V*(1Qz)V(y®1l)/z,y € S} sont toutes deux égales & 58

Démonstration. a) résulte clairement de (3.10 a)).

b)Pourae K,we L(H)x et ye S,ona:

V(L(aw) ® V¥ (1@ y) = (w ® id ® id)(V12Vi3(a ® 1 @ y))

Par (3.10 a)) I'espace vectoriel engendré par {V(a®y) / a € K,y € S} est dense dans
K®Ss.
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Poura € K,w e L(H). et y€ S,ona:

(¥ DV (L(wa) @ NV* = (w®id®id)((a @y ® 1)V15V13)

Par (3.10 a)) P’espace vectoriel engendré par {(a®y)V / a € K,y € S} est dense dans
K®Ss.

L’assertion c) résulte de b) en remplagant V par ZV*L.

Maintenant on a exactement comme dans ([4] 3.8) :

3.12. THEOREME. — Soit V un unitaire multiplicatif équilibré et semi-birégulier.
Munie du coproduit § donné par é(z) = V(z ® 1)V*, l'algébre réduite S de V
est une C*-algébre de Hopf (1.1) bisimplifiable. Munie du coproduit § donné par
3(1:) = V*(1 ® z)V, l'algébre réduite duale S de V est une C*-algébre de Hopf
bisimplifiable.

Si V est un unitaire multiplicatif semi-régulier, alors on peut construire comme
dans [4] les C*-algebres pleines S, et S,. Si de plus, V est équilibré et semi-birégulier,
ona:

3.13. THEOREME. — (cf. [4] A.6) Soit V un unitaire multiplicatif équilibré et semi-
birégulier, alors les C*-algébres pleines S, et S, sont munies naturellement de struc-

tures de C*-algebres de Hopf bisimplifiables. De plus, les coreprésentations unitaires
de la C*-algébre de Hopf S (resp. S) correspondent exactement aux représentations

de la C*-algébre S, (resp. Sp).

Grace a (3.10), la preuve est la méme que celle de ([4] A.6).

~ Enfin, pour affirmer avec ces hypotheses que V' est en fait un multip\lica.teur de
Sp Qmaz Sp et que les relations V]g‘/l;;‘/g;; = ‘/23‘/12 et ‘/231/121/13 = V13‘/23 ont lieu
respectivement dans £(Sp®maz H ®maz ®Sp) €t L(Sp @maz Sp @ H), il suffit de montrer

le résultat suivant :

3.14. LEMME. — Soit V un unitaire multiplicatif dans ’espace de Hilbert H.

a) Si (K, X) est une représentation et (K,Y) une coreprésentation de V dans le
méme espace de Hilbert K vérifiant (Y12, X23] = 0 dans L(H ® K ® H), alors nous
avons [X71,Y21X1,Y5,,893V3] =0 dans L(K @ H Q@ H).

b) Si (K,X) est une représentation et (K,Y) une coreprésentation de V dans le
méme espace de Hilbert K, alors nous avons [X3,Y23X12Y33,524V24] = 0 dans
LKRHRK®H).
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Démonstration. a) Nous avons :

X12Y21X12Y 51503 Vo3 =X23 X 13Y31 X13Y 3, Vas
=23 X13Y31X13V23Y 5, Y5
=L X13Y51 X1, Vas X12Y 5, Y5,
=Y23 X 13X 12 Y31 V2sY 5, X12Y 3,
=T23 X 13X 12V23Yo1X12Y 3, = 23 Va3 X1, Y01 X125,

b) Posons K' = KQK et X' = X135 (resp. Y' = Y13) dans L(K'®H) (resp. L(HRK').
Il est clair qu’on a [Y},, X33] = 0 dans L(H®K'QH) ; le b) résulte alors du a) appliqué
aX'etY'

n

En s’appuyant sur le lemme précédent, il est facile de voir que les assertions
b), c¢) et d) du lemme A.7 et la proposition A.8 de [4] sont vraies pour un unitaire
multiplicatif équilibré et semi-birégulier.

Passons mantenant aux représentations covariantes de tels unitaires multiplicatifs.

Notons d’abord qu’a toute représentation covariante (X,Y) dans un espace de
Hilbert K d’un unitaire multiplicatif semi-régulier, on peut associer (3.14 b)) un
unitaire W € L(K ® K) donné par Wi3 = X},Y23X12Y3, dans L(K @ H ® K).
Comme dans ([4] A.10), on montre que W est multiplicatif et que (Y, X) est une
représentation covariante de W dans ’espace de Hilbert H.

3.15. LEMME. — Soient V' un unitaire multiplicatif dans H et (X,Y") une représentation
covariante de V dans ’espace de Hilbert K. Nous avons :

C(V) 0 K(K) =Tin (10 K(K))X2a1(K © 1)Y (1 0 K(K))

Si de plus V est semi-régulier, ’'unitaire multiplicatif W dans K associé a (X,Y) est
semi-régulier.

Démonstration. Pour k € K(K) et w € L(H)x, nous avons (1d @ id@w)(1® k Q@
1)Y3,X21513Y12X33). On conclut grace a Iégalité lin {(id®w)(X) /w € L(H).} =K.

Supposons maintenant que V soit semi-régulier. Comme (Y, X) est une représentation
covariante de W on a par le résultat précédent lin (C(W)OK) = lin (10K)Y21(K(K)®
1)X(1 ® K). Nous avons K(K ® H) C lin (C(W) ® K). En effet, il suffit de montrer
qu’un opérateur compact z € K(K ® H) de la forme z = (1Q® h1)X*(k @ h2)X(1® h3)
ou k € K(K), h; € K, appartient & lin (C(W)®K). Or, par la semi-régularité de V, on
peut supposer qu’ on a X*(k® hy) = (1 ® ¢)Y21(k' ® 1) avec ¢ € C(V) et k' € K(K),
d’ou la semi-régularité de W. .
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3.16. LEMME. — Soit (X,Y) une représentation covariante dans l’espace de Hilbert
K de l'unitaire multiplicatif semi-régulier V, notons W I’unitaire multiplicatif dans K

associé. Nous avops_.  _-
a) Sw = Sy et Sw = Sx.

b) Sv =Tin {(w' ®id)(X) / w' € L(K).} et Sy =Tin {(id @ w')(Y) / w' € L(K).}.
Démonstration. a) Y étant une représentation de W dans H, I’adhérence normique
dans £(K) de ’espace vectoriel engendré par {(w@w'®id)(Y13Wa3) / w € L(H)x,w' €
L(K)+«} est Sw. Or, la relation de covariance X1,Wi3Y23 = Y23X12 entraine que
l’adhérence normique dans L£(K) de l’espace vectoriel engendré par {(v' ® w ®
1d)(Wi3Y23) /| w € L(H),,w' € L(K).} est Sy. Comme Sw et Sy sont des sous-
C*-algebres de L(K), il y a égalité.

La deuxiéme égalité résulte de la précédente en remplagant V par LV*E et (X,Y)
par (ZY*Z,ZX*L).

b) (Y, X) étant une représentation covariante de W dont ’unitaire multiplicatif associé

est V, le b) résulte alors du a).
]

3.17. LEMME. — Soient (V,U) un unitaire multiplicatif équilibré, (X,Y) une représen-
tation covariante de V. Nous avons :

a) Yiz = (YX)33Vi3(Y X)2a.
b) Xa3 = (Y X)12Vaa(Y X)1.
Si, de plus, V est semi-régulier, nous avons :
c) YasWis Xa1 = X1 Yas.
d) YsaWisX12 = X12Ys2.
e) Wis = (YX )2 Yas(YX)3,.

Démonstration. a) résulte de (3.9 b)) et de la propriété de covariance; on démontre
de méme le b).

L’assertion resp. (3.9 b)) peut s’ecrire également V31X21)?32 = }?321/31 dans L(H ®
K ® H). Dans L(H @ K @ K @ H), nous avons :
YisWas X42 Y13 =K13X;13’13X21Y;3X42Y13

=X3YisY13 X51 X

=X3, Vi1 V13V Xz X 42

=X42V:15‘::2YI3X42V41

=XV VsV = XipYasVig
d’ou le ¢). En conjuguant c) par l'unitaire (1 ® U ® 1), on obtient d). L’assertion e)
résulte de c) et du fait que Y est une représentation de W.
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Comme conséquence des résultats précédents, nous avons :

3.18. THEOREME. — Soient V un unitaire multiplicatif dans H équilibré et semi-
birégulier et (X,Y) une représentation covariante de V dans I’espace de Hilbert K.

Notons W I'unitaire multiplicatif dans K associé. Nous avons :
a) Munie du morphisme 8w (resp. §w) donné par éw(z) = W(zx ® 1)W* (resp.

5/;;\;/(3:) = W*(1®z)W), la C*-algébre Sw (resp. §1;) est une C*-algébre de Hopf
bisimplifiable.
b) II existe un unique isomorphisme de C*-algébres de Hopf 7 (resp. &) de Sy (resp.
Sv ) sur Sw (resp. Sw) vérifiant (id @ n)(V) =Y (resp. (7 ® id)(V) = X).
c) (TRm)(V)=W.
Démonstration. La coreprésentation Y de V étant stablement équivalente (3.17 a)) a la
coreprésentation réguliére, il existe un unique isomorphisme = de C*-algébres de Sy sur
(3.16 a)) la C*-algebre Sy = Sw vérifiant 7(Ly(w)) = Ly (w), donc (id®@7)(V) =Y.
Remplagant V par ZV*E et (X,Y) par (EY*E,EX*T), on déduit de ce qui
précéde un unique isomorphisme 7 de C*-algebres de Sy sur la C*-algebre Sx =Sw
vérifiant 7(py(w)) = px(w), donc (7 ® id)(V) = X. Appliquant (T ® id ® 7) & la
relation pentagonale Vi3 Vi3Va3 = V23V, on obtient 1'égalité W = (7 @ 7)(V).
Soit z = (w' ® id)(X) ot w' € L(K)., nous avons :

W(r(z) @ 1)W* =(w' ® id ® id)(Wos W1, W3,)
=(w' ® 1d ® id)(W1,Wy3)
=(w' ®id®id) (T ® 1 ® 7)(Vi2Vi3)
=(r@n)(V(Ly(w' o7)@1)V*)
= (7 @ m)(6v(z))
Par (3.12) et le calcul précédent, il résulte que Sw, munie de éw(z) = W(z @ 1)W*,

est une C*-algébre de Hopf bisimplifiable, et que 7 est un isomorphisme de C*-algébres
de Hopf de (Sv, év) sur (Sw,déw).

Le reste de ’assertion (resp.) se déduit comme précédemment. .

Grace aux résultats du paragraphe 4, on voit qu’avec les hypotheéses précédentes,
Punitaire multiplicatif W n’est pas toujours (stablement) équivalent & V. Cependant,
nous avons :

3.19. PROPOSITION. — Soient (V,U) un unitaire multiplicatif dans H semi-régulier
et équilibré, (X,Y’) une représentation covariante de V dans ’espace de Hilbert K ;
notons W l'unitaire multiplicatif dans K associé. Alors 1 ’unitairf multi'PIicatif Wi3Was
dans K @ K est stablement équivalent & 'unitaire multiplicatif Y12V24Y ], dans K@ H.

Démonstration. Montrons d’abord que l’unitairg multiglicatif (cf.3.21) Wi3Y,3 dans
K ® H est équivalent a 'unitaire multiplicatif Y1,V54Y ], dans K ® H. Nous avons
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dans ((KQHR®K®H):

(?X)w(?X)34W13Y23(?X)I2(?X)§4 =(?X)34?12Y23?;2(?X);4
=Y12V34Y2sVau V3, V%, = V12 Vau V'Y,

Il suffit donc de montrer que 'unitaire multiplicatif W;3W,3 dans K@ K est stablement
équivalent 3 I'unitaire multiplicatif W13Y23 dans K ® H. Pour cela, soit T € L(K ®
H,H @ K) Punitaire défini par T = s(YX)}; ot s € L(K @ H,H @ K) est la volte.
Nous avons, d’aprés (3.17) , dans LHQH)ou H=KQHQK :

Ts6TosW1aWasT53 T = WiaTosWos T3 = Wis Yo

3.20. COROLLAIRE. — Soit (V,U) un unitaire multiplicatif dans H semi-régulier et
équilibré vérifiant [Vi3,V,3] = 0. Alors V' est stablement équivalent a Wi3Wa3, ot W
est 'unitaire multiplicatif associé & toute représentation covariante (X,Y) de V dans
un espace de Hilbert K.

Démonstration. On a avec les notations de (3.9), [?12, V23] = 0, d’ott le résultat.

3.21. Remarque. — Si V est un unitaire multiplicatif dans H et X une coreprésentation
(resp. représentation) de V dans l’espace de Hilbert K, il est facile de voir que 'unitaire

X23Va24 (resp. Vi3X53) dans K ® H (resp. H ® K) est multiplicatif.

Nous terminons ce paragraphe par un résultat (3.23) dans le cas irréductible (cf.[4]
6.2), qui nous sera utile au paragraphe 4.

Donnons nous un unitaire multiplicatif irréductible (V,U) et supposons que V'
soit semi-birégulier, i.e V' et V semi-réguliers. Nous avons :

3.22. LEMME. — L’unitaire V est un multiplicateur de la C*-algébre C(I7) K.

Démonstration. Pout tout w € L(H ). et tout k € K, nous avons :

(ld@w ®id)(VisZ12Vi2(1®@ 1@ k) = (id ® w ® id)(T12Vas Vi2(1 ® 1 @ k)
= (id®w ® id)(T12Vi2 Vas(1 @ 1 @ k)

on conclut grace a ’égalité V(K @ K) =K @ K.

Il résulte clairement du lemme précédent qu’on a lin A\(V)C (17) =C( 17)

3.23. PROPOSITION. — Soit (V,U) un unitaire multiplicatif irréductible et semi-
birégulier. Alors I’espace vectoriel fermé engendré par {L(w') p(w) [/ w,w’ € L(H).}

est une C*-algébre qui coincide avec la fermeture normique de I’algébre C(I?)
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Démonstration. Par 'irréductibilité ([4] 6.2 a)) de V' il est facile de voir qu’on a :

Tin {(id@w)(VV) [ w e L(H),} = UC(V)U =C(V)
Remplagant V par V dans (3.22) et utilisant (3.10), on obtient :

c(?/) =Tin {(id®w)(z @ V)VV) [ w € L(H)x, € A(V)}
= lin {L(w") p(w) [ w,w" € L(H).}

3.24. Remarque. —

a) Soit V un unitaire multiplicatif équilibré et semi-birégulier. Si la C*-algebre de
Hopf S agit dans une C*-algébre A par une coaction §,4, alors comme dans le
cas régulier ([4] appendice), on peut définir le produit croisé “max” AXmazS
c’est la C*-algébre dont les représentations sont données par les couples (7,u)
ou m: A — L(K) est une représentation de A dans ’espace de Hilbert K, et
u € L(K ®S) est une coreprésentation unitaire ([4] 0.3) de S vérifiant la condition
de covariance (7Qid)(64(a)) = u(m(a)®1)u* pour tout a € A.

Comme dans le cas des groupes, on a un plongement canonique 7 : A —
M(AXnazS) (resp. 9: S — M(AXpq285)). Procédant comme dans ([4] A. 6) on
peut montrer qu’il existe un unitaire W € M(AmmazS ®S) tel que Axma,S =
lin {n(a)(1d@w)(W) / a € A,w € L(H),}.

Si de plus l'unitaire multiplicatif V' est moyennable ([4] appendice), par les
résultats de (3.17), il est facile de montrer qu'on a AXmqeeS = AXS.

b) Avec les hypothéses de (3 23), le produit croisé réduit S x5 est isomorphe & la C*-
algebre lin {p(w) L(w') / w,w' € L(H).} et donc contient la C*-algebre des opérateurs
compacts. En effet, pour tout w € £(H)s, on a ([4] 6.1 (2)) V5(L(w))V* =1Q L(w)
et ([4] 6.5 c)) [V,1 ® p(w)] = 0. Notons que dans le cas oti 'unitaire multiplicatif
est de plus moyennable, on a SHS = SXmazS ; dans ce cas les représentations de la
C*-algeébre S x5 sont les représentations covariantes de 'unitaire multiplicatif V.

4. Groupe quantique E,(2) de Woronowicz

Dans ce paragraphe, nous montrons que la représentation réguliere de E,(2) est
un unitaire multiplicatif semi-birégulier (mais non régulier) et irréductible. Pour cela,
nous commencons par construire la mesure de Haar du groupe quantique E,(2). Nous
donnons ensuite les représentations covariantes de cet unitaire multiplicatif et nous
montrons que la C*-algébre S XS = SXmasS est une extension des compacts par les
compacts. Enfin, nous explicitons la théorie modulaire des mesures de Haar de E,(2)
et de son dual de Pontrjagyn.

Une partie des résultats de cette section ont été annoncés dans (3] ; nous donnons
également les preuves de ces résultats.
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a) Mesure de Haar du groupe quantique E,(2)

Commongons par rappeler la définition de la C*-algébre de Hopf [25] des “fonc-
tions continues sur E,(2) tendant vers 0 & I'infini” que nous noterons dans la suite

(A,6).

Fixons un nombre réel 4 > 1 et posons C, = {z € C/ | z |€ p?} U {0}. La
C*-algébre A est la C*-algebre universelle engendrée par un unitaire v € M(A) et
un opérateur normal n de spectre C, , affilié ([2], [25]) & A, vérifiant v*nv = un.
Autrement dit, A est le produit croisé A = Co(C,)NZ par l'action a de Z dans C,
définie par a(f)(¢) = f(p7¢) -

Dans tout ce qui suit, nous notons L la représentation (fidéle) de A dans [2(Z?)
définie par L(v) = 1 Q vg ® vg et L(n) = vp @ ng ® 1 ol vy (resp. ng) est opérateur
dans 1?(Z) défini par voen, = ent1 (resp. noen = p"en); (€n) étant la base canonique

de 1%(Z).

Le coproduit é est I'unique homomorphisme non dégénéré de A dans M(A ® A)
vérifiant §(v) = v®v et §(n) est la fermeture de 'opérateur v@n+nQ® v* , voir [25].

Fixons maintenant quelques notations qui seront constamment utilisées dans ce
paragraphe. Posons H = [%(Z3). Pour tout a,b,c € Z, nous notons wg . la forme
& — (ecatba | L(T)eop0) sur A ol (eq,c) désigne la base canonique de 1?(Z?). Pour
tout 7,7 , notons f; j € Co(C,) la fonction a support dans {z € C,/ | z |= p'} définie
par fij(z) = (l—zl-)] si | 2z |= p'. 1l est clair que wqp (Vi fjk(n)) = 63}. et que la
forme  — (€q,b,c | L(z)ear b o) sur A coincide avec la forme 6§:§:wc_cf,b:,a_a'. Enfin,
pour tout £ € H , notons w;¢ la forme wg ¢ o L.

o o]

Posons & = Z yzjwojo. Il est clair que ® est un poids s.c.i et normiquement
— 00
semi-fini sur A. Soit M = L(A)"l’algébre de von Neumann engendrée par L(A); par
abus de notation, nous notons également ® le poids normal et ultrafaiblement semi-fini
sur M défini par z — Z/ﬂ" (€ono |T€ono)-
n

Soit v la mesure positive sur C, définie pour toute fonction f€ C,(C)) a valeurs
positives par :
v(f) =) u™" /Slf(u" ¢) d¢
n

ou d¢ désigne la mesure de Haar normalisée de S*.

4.1. PROPOSITION. — Avec ces notations nous avons :
a) Le poids ® sur M est le poids dual ([15], [22]) de la mesure v.

b) La formule e;jx = pk_qu>kaj_k,i(n) identifie I’espace de Hilbert Hg de la
représentation GNS de @ & H et la représentation me correspondante a L.
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c) L’opérateur modulaire Ag et l'opérateur Js canoniquement associés & ® , sont
respectivement donnés par Age;jr = ,u2ke,~jk et Joeijk = e_ij—k,—k-

d) of(L(A) = L(A) et pour tout a € A, t — d¥(L(a)) est normiquement continue.

Démonstration. a) Soit E : M — L*®°(C,,v) l'espérance conditionnelle associée a
) M — 3 —
Paction a. On a We,,gie0m0 © £ = Wegnoieono POUT tout entier n, donc & o E = &. Par

ailleurs, pour tout f€ C,(C,), on a (egko | f(n)eoro) = /lf(,uk ¢) d¢, donc si f est &
valeurs positives, on a & f(n)) = (f) d’ou le a). s

b) Soit T I'opérateur unitaire de H sur Hy définie par T'(e;jx) = ,uk‘qu,kaj_k,,-(n),
il est facile de voir qu'on a mg(v) = TL(v)T* et que pour f € C,(C,), on a
me(f(n)) = TL(f(n))T".

c) résulte de a), b) et de [15]; d) se déduit facilement de a),b) et c).

4.2. THEOREME. — Le poids ® est une mesure de Haar & gauche et a droite pour la
C*-algébre de Hopf (A, §).

Démonstration. Vérifions d’abord que le poids ® satisfait les conditions a) et b) de
(2.2). Pour cela, par (4.1 a) et d)), il suffit de montrer que le prolongement canonique
® de ® & l'algébre de von Neumann M coincide avec le poids ¥ sur M dual de la
mesure v. On a ® = o L = v o L sur At, comme & est [1] le régularisé s.c.i de @, il
résulte que ® o 07 = @. Par [19), il est clair que 7 = ®.

Pour montrer la condition c) de (2.2), nous allons d’abord calculer le produit de
convolution des formes wgpe.

Soit g, la fonction continue [25] sur C, définie par :

14
9u() = ]1;[0 T+ poic
2” . .
et soit A(m,n) = — gu(p™e)e™™ dt | le nieme coefficient de Fourier de la

2m
restriction de g, au cercle {z € C,/ | z |= p™}.

4.3. PROPOSITION. — Nous avons :
_ ca—a' ! b X ] b
Wabe * Wa'ple! = 5c+c' A(b -b,n—- ) A(b —-b+a—-a,n—-0+ C)wc+a’,n,c+c'
n

Démonstration. Posons a =v@n , b=nQ® v*. Il est facile de voir que les opérateurs
a et b vérifient les conditions de ([28] thm.2.3); donc §(n) = a + b= g,(c)agu(c)* ou
¢ est Popérateur normal fermeture de l'opérateur p~'a=1b. Pour tout ¢,j, k nous en
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déduisons :
6(fjk(n)) = gu(C)fﬂ’cc(V ® n)g,(c)*
= gu(c)(v* ® fir(n))gu(c)*
Y A(l-n,j—n)A(l—n+k,j—n+m)
l,m,n
(VE"™ fim(0) ® V™™ fo k—m(n))
En évaluant la forme wape * Warprer = (Wabe ® Warb'er) 0 6 €n & = Vifjk(n) , on

obtient I’égalité cherchée. .

4.4. LEMME. — Soit (¢€H de composantes (€4p.) relativement a la base canonique de
H. Pour toutn € Z ,ona:

a) we * Wono = Z wer,a avec &t = 26""’6“ *abcA(b—n,a+m—n)eqmta,c

m,p,q a,b,c
b—c
b) wono * we = § : Wwen.n avec 6;':&" = E 5;+65q fabcA(n -bm-—a- b) €a,m—a,c-
m,p,q a,b,c

Démonstration. Calculons d’abord f *w;,, ot f est la forme définie par f(z) = (eqp,c |
L(z)eqr pr,cr). Nous avons :
Frwono =84 5 Wec! 1 aa’ * Wono

=555, ZA(b —n,m—n)A(Y ~n+a—a',m—n+a —a)We m aa’

5” 5H ZA(b’—n a'+m—n)A(b—n,a+m—n)w, ¢ mia’ oo’

—5H,5H ZA —n,a +m—n)A(b—n,a+m—n)we, i e oL (1)

[
,mta’,c

Pour tout entier N > 0 et tout p,q € Z , soient xn la fonction caractéristique
de l’ensemble { (a,b,c) € Z3/ |a|+|b|+]|c|< N } et I} la fonction définie par
l’l,\z(a, b,c) = xn(a,b, c)5;"’ 677 €abe , posons :

g‘;,q;lN = Zlﬁ;(aa b, c) A(b -n,a+m— n) €a,m+a,c:

a,b,c
Par (A.3) on a Z €52, — ”’q’N||2 = E | £2pc 2= 0 quand N — oo d’ont
m,p,g p+H+d>N
Z wepe = 1\}1_1}1@ Z Wepa,N - D’autrepart, par (1), nous avons :
m’p’q m’PYq

E Wep,a,N = Z Z xn(a,b, C)XN(ala b',c') Eabe arbrer Wea,b,cieqr 3t of 0 L*wono

m,p,q ab,ca’b ¢
qui converge normiquement quand N — 00 vers wg*wono , d’olt le a).

Démonstration analogue pour le b).
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4.5. LEMME. — Soit £ € H un vecteur de composantes (€,5c) relativement & la base
canonique de H. Supposons que pour tout p,q , on ait Z,u“ [€a,a4p,a+q |< 00 (resp.

a

ZNC |€ctp,c+q,c]< 00) , alors pour tout t€ AT , on a :
B(erwe) = [|E°B(z) (resp. (wexa) = ||€]*® (<))

Démonstration. Nous avons avec les notations du lemme précédent :

B(z*rwe) = Z,u% (werwono)(z) = Z I wera ()

m,n,p,q

_ Z u2n Z‘S;,;b,a—c abe A(b—n,a+m —n)wena e, 1. (L(2))

m,n,p,q a,b,c

Par (A.2) , nous en déduisons :

B(arwe) = B pEmY 8o b Lype(—p) T T A(—p—m, n— m—a)

m,n,p,q a,bc

WER ey mia,(L(T)) (1)

Par (A.2) , nous avons également :

lezme 2 = 3760757 |£ase [P A(b— n,a+m — n)?

a,b,c

= Z&;’—qb,a—c |€abc |2 “2(a+m—n)A(_p —m,n—m— a)z

a,b,c

< pPm=m) Zﬂza |€a,a=pa—q|*< 00
a

Comme zlA(x,n)|< o0 , il vient que :

n

YE Y bt Labe( W) T T APy n = M=) Went e e, (L(2))

a,b,c

= Z&;;}b,a—c £abc(_iu)a+m Z(_u)nA(—p—m, n—m-—a) wﬁfg?n;ea,mﬂ,c([’(w)) (2)

a,b,c

En remplagant €59, par son expression dans la base canonique de H, nous obtenons :

YW ACp—m,n—m—a) e, eq e, (L(2))

n
1
= Y e e (M e ieampae (D))

’ ’
a’,b’,c
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Tenant compte de (1),(2) et de I’égalité précédente , nous avons :

Barwe) = X T el 4 (2)

m,p,qa,b,c

= ZZ |€abc |2 ”2(a+m) “‘"eo,m+a,o(w) = ”6”2 CI)(:L')

m a,b,c

Démonstration analogue pour I’assertion (resp.).

4.6. LEMME. — Pour toute forme positive normale w € L(H), et tout = € At , nous
avons :

P(z+wo L) = ®(wo L*xz) = w(1) ®(z)

Démonstration. 1l suffit de montrer que pour tout £ € H , nous avons ®(r*we) =
®(we*z) = ||€]|? ®(z). Nous allons montrer que ®(z*we) = ||£||> ®(x); la preuve de
légalité ®(we*z) = ||€]|? B(x) étant tout & fait analogue.

Supposons que ®(z) < oco. Pour tout N > 0, posons yy = E p2" (Wono * )
H<N
Alors la suite croissante d’opérateurs positifs (L(yy)) converge faiblement vers ®(z).1.

En effet, pour tout n € H a support fini, nous avons grace a (4.5) :

wa(yn) = Y K" wono (z¥wy) < B(zrwy) = |In]* &(z)
<N

Nous en déduisons que supy || L(yn)|| < oo, donc la suite (L(yn)) converge faiblement
vers un opérateur positif y. Mais, pour tout n € H a support fini, on a par (4.5) :

wain(y) = sup wy(L(yn)) = &(z * wy) = |Inl|* @(2).
donc y = ®(z).1. Pour tout £ € H , nous avons alors :
B(rrwe) = Zuz" wono (T *we)
n
= sup Z 12" Wono (z*we)
<N
=supwe(yn) = 1€11* @(=)
Pour terminer la preuve, il suffit de montrer que si n € H est non nul et vérifie

O(z*wy) < oo , alors ¥(z) < oo.

Par (4.5), nous avons ®(z *wppp) = ®(z). Si  est un vecteur de H non nul de
composantes (7,pc), Nous avons :

O(z* wy) = B(z*wn*wooo) = Z Q(x*w”f’;qo)
m,p,q ‘
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Fixons m,p, ¢ et posons nh% = ¢£; d’aprés (4.4) et (A.2), les composantes (£q5c) de &
sont données par :

abe = 6::'c'm’a_qna,a..p,a_qA(a —p,a+m)
= 5:Im’a_q Na,a—p,a—g (= )atm A(-p—m,—a—m)

Il est clair qu’on peut trouver m,p, ¢ de fagon que le vecteur 171’,;?0 = £ soit non nul et
vérifie les hypotheses de (4.5). On a alors :

I7oll” @(2) = @(z+wns,) < B(awwy) < o0
L]

Pour terminer la preuve du théoréme, nous montrons dans ’appendice B que pour
toute forme positive f sur A , nous avons ®(zx f) = ®(f*z) = ||f|| ®(z) pour tout
S A+.

Notons V l'isométrie multiplicative (2.4) de ’espace de Hilbert Hg ® Hg définie
pour tout z,y € Ng par V(Asz®Asy) = Aagad(z)(1®y). Il est évident que pour tout
z € A nous avons (L ® L)(6(z))V = V(L(z) @ 1) Pour montrer que V est surjective,
notons d’abord qu’a travers l'identification H = Hg donnée par (4.1b)), nous avons :

V(eabe ® €ay:) = »_ ' T HVA(Lb—c —y)A(a+1,b—y +m)
I,m
(ec+m,a+y+l—m,a—m ® ez+a—c—m,y—m,z—m)
Introduisons 'unitaire V'€ L(H ® H) défini par V{eqbc @ €ryz) = €abc @€z y+c—a,z4c—a
. Alors la formule précédente nous dit exactement que VV™ = g¢,(X)g.(Y) ou
X = v*(n*)"' @ v*n* (resp. Y = —(vono @ ny ' ® v3) ® v*n*), donc V est un unitaire
multiplicatif dans H et nous avons pour tout z€ A , (L ® L)(8(z)) = V(L(x) ® 1)V*.

Posons W = g,(X)V et @ = —(no @ vo ® 1) dans H; remarquons que les
opérateurs normaux X et Y vérifient les conditions de ([28] thm.2.3) et que la fermeture
de I'opérateur normal =1 X 1Y est égale a l'opérateur Q @ 1y.

4.7. PROPOSITION. — Avec ces notations, nous avons :

a) V= (9.(Q)®11)W(9.(Q)" ® 11).

b) V est semi-régulier mais non régulier.
c) Sy = L(A)
Démonstration. a) Par ([28] thm.2.3), nous avons
9u(X)gu(Y) = (9,(Q) ® 1)gu(X)(9(Q)* ® 1)

Comme V”et ¢,(Q) ® 1y commutent, on a donc V = (g,(Q) ® 15)W(9,(Q)* ® 1m).
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b) En s’appuyant sur la formule :

W(eabc ® ezyz) = ZA(C —a—-b+ Y, n)ea+n,b—n,c—n ® €z—n,y+c—a—n,z+c—a—n
n

il est facile de voir que l’adhérence normique E de l’espace vectoriel { (id ®
W)(EW) / we€ L(H).} coincide avec celle de { Tryzizryr2 [ (2,y,2) € Z3,(2',y',2") €
Z3} ol chaque opérateur Tyy,; 1y, est défini par Trysiary's €abe = 62:’;¢"’_°A(z -
¢, =Y')eata' bty otz Par (A4 b)), on a K(H) C E donc K(H) C C(V). Comme

lim A(a,0) =1, l'inclusion est stricte.
a——00

c) Par le a), il est facile de voir que Sy = lin { Lapc / (a,b,¢) € Z%} ou chaque
opérateur Ly est défini par Lopc €zy; = A(y + a,b)ez_p ytc,z4c- Par (A4 b)), on
a donc Sy C L(A). D’autrepart, par (A.4 b)) et le théoreme de Stone-Weierstrass,
Pespace vectoriel engendré par les produits finis de fonctions sur C, de la forme
g(u®2) = f(z)z? et g(0) =0 ot fEC,(Z) et j€Z, et g(uz) = A(z,0) et g(0) = 1, est
dense dans Co(C,). Il en résulte que L(A) C Sy.

]
Soit U l'unitaire dans H défini par Uegpc = (—1)%€q,5—c,—c. Nous avons :
4.8. PROPOSITION. — (V,U) est un unitaire multiplicatif irréductible et semi-
birégulier.
Démonstration. 1l est clair que U = U* et que U? = 1. Montrons que 'unitaire

V =S(U ®1)V(U ® 1)X est multiplicatif.

Soit V' la co-isométrie dans He ® Hg définie pour tout z,y €Ny par V'*(Apz ®
Asy) = Aega(6(y)(z®1)). Par la coassociativité de §, V' est multiplicative. A travers
Iidentification H = Hg, on trouve :

V(eabc ® ezyz) = Z /-ty+l_nA(b —-—Tr—y— l,n -1 - y)A(b -y,n — y)

lLn

(ea—l,b—z—z—l,c—z—z—l, ® ez+l,n,z+l)

Utilisant la formule précédente et (4.1b)), on vérifie directement que V' = V.
Procédant comme dans (4.7b)), on montre que V' est semi-régulier, donc V' est semi-
birégulier.

Il reste & montrer I'égalité VVV = (U®1)Z ot V = 2(1@ U)V(1 @ U)S.
Utilisant (A.2 et A.3), on trouve :

V1~/'(e,,;,c ® egyz) = Z(—l)"""’A(a +z,-n)A(a+n,a+n+k)
k,n

(ek,a+b—a—k,a+b-a—y—k ® 5a+z-—k,b—a—n-—k,c+z—k)

35



S. BAAJ

ol on a posé @ = b—c+ z —y — z. En composant avec V et en utilisant (A.2), on
obtient :

I7V\7(eabc ® €gyz) = Z(—l)l(—,u)_"_"“A(a +z,-n)A(—z+n—-lLa+n-1)

I,n

(e-l,—1:+y—z—l,—z—z—l ® ea+z+l,b,c+:¢:+l)
Par (A.2et A3),on a Z(—u)"’_'"“A(a +z,-n)A(—z+n—1lLa+n—1)=6F, don

finalement 17V17(eabc ® €eryz) = (—1)% €r,y—z,—z @ €ape- .

Comme conséquence de (3.10), V est un multiplicateur de la C*-algebre $®S.
Nous allons préciser cette propriété.

Notons o' I'action de S* dans C 5z = {z € C/ |z |*€ p%} U {0} définie pour
f € Co(Cm) par &' (f)(C) = f(27%C) et posons B' = Co(C /z) Mo S*. Soit z — u,
le plongement de S! dans M(B'); pour tout A € C\{0}, on obtient par prolongement

analytique un multiplicateur non borné u) de B’. Notons b’ la fonction ( — ( sur
C /i ; avec ces notations nous avons :

4.9. PROPOSITION. — II existe un unique homomorphisme p de B' sur S vérifiant
pluy) = ng ® 1 ® ny' et p(b') est 1’opérateur normal fermeture de l’opérateur
1

1 1
-1 - -1 3 -1,3
(vo'ng 2 ®wvony ! @uvond) — (vg'ng @ ny ' ® von? ) dans H.

-1
Demonstmtwn Montrons d’ abord que p(b') est bien défini. Soit X' = vylng? @
vong 1@ vono et Y' = —v; no ®ng 1'® vong . Il est facile de voir que les opérateurs
normaux X' et Y' dans H, vérifient les conditions de ([28] thm.2.3), donc la fermeture
Yy 1 1 1

Z' de l'opérateur (vy'ng ? @ vong ' @uond ) — (vy'nd @ngy! @ ven?) est un opérateur
normal. De plus, comme la fermeture de lopérateur p~!X'"'Y’ est 'opérateur
Q = —(no ® vo ® 1), par ([28] thm.2.3) nous avons ¢,(Q)*Z'g,(Q) = X'. Nous en
déduisons que la représentation p de B' dans H est bien définie et unique.

Pour voir que la C*-algébre S est I'image de p, introduisons 'opérateur unitaire
T dans H définie par Teqhe = €qtbtepbtc- 1l est facile de voir que T*X'T =
vy 2ng ®vono '@1 et T*9,(Q)*(no®1®ny 1 )gu(Q)T = T*(ne®1®n; )T = ne®1®1.
Nous avons S = lin {pv(wijk) / (3,3,k) € Z®}. Utilisant (4.7), on vérifie directement
que les représentations B' — L(H) : z — T*g,(Q)*p(2)9,(Q)T et 5o L(H):z—

T*9,(Q)*z9,(Q)T ont méme image, d’ou le résultat. .

Dans toute la suite, posons b = p(b') et x = p(u;!). Il résulte de (4.9) que les

opérateurs b et x sont affiliés & S. Notons également A la fonction sur C »\{0} définie
par h(p™z) = 27™.

4.10. THEOREME. — Nous avons V = g,,(b*x'§ Q@ v*n*)h(x 1 @ V).
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Démonstration. Il suffit de remarquer qu’avec les notations de (4.7), la fermeture de
opérateur b*x~% @ v*n* coincide avec celle de X + Y. Par ([28] thm.2.3), nous avons :

gu(b*x~F @ v¥n*) = g,(X)gu(Y) = VV™

D’autre part, il est clair que V'= h(x~™! @ v). .

Notons 3 la représentation de S dans L(1%(Z?)), apparue dans la preuve de (4.9),
donnée par z — T*¢,(Q)*zg,(Q)T ou T désigne toujours l'unitaire de L(H) défini
par Teqpc = €atbtebbtec-

4.11. COROLLAIRE. — La C*-algébre de Hopfgv munie du coproduit opposé 8 =gob
est isomorphe a la C*-algébre de Hopf des “fonctions continues tendant vers 0 a 'infini”
sur le dual de Pontrjagyn de E,(2) (au sens de Woronowicz).

Démonstration. Soit (B, ®) la C*-algebre de Hopf des "fonctions continues tendant
vers 0 & l'infini” sur le dual de Pontryagin de E,(2), voir [26]. Il résulte de (4.9) que
la représentation 3 définit un isomorphisme de C*-algébres de S sur B. Pour montrer
que B est un morphisme de C*-algebres de Hopf, introduisons la représentation v de
S dans L(I2(Z?)) définie par v(v) = vy' @ 1 et 4(n) = ny' ® vo. Alors par (4.10),
(B®7)(V) est la représentation fondamentale W donnée par Woronowicz. Il en résulte

que (3 est un isomorphisme de C*-algebres de Hopf.
n

4.12. Remarque. — S’appuyant sur (4.7a)) et (A.2 et A.3), on peut voir que g(b) =
V*(1 ® b)V est 'opérateur normal ([28] thm.2.3) fermeture de I'opérateur b @ x¥ +
x~* ®@b. Ce résultat est également une conséquence du corollaire précédent et de [26].
D’autrepart, il est facile de voir qu’on a §(x) = x ® x.

b) Représentations de Sx5

Nous allons montrer que la C*-algebre S %5 est une extension de la C*-algebre K
des opérateurs compacts par K, donc n’admet que deux représentations. Il en résulte
que (3.24) l'unitaire multiplicatif V n’admet que deux représentations covariantes : la
représentation réguliére (V,V) et une deuxiéme (X,Y), dont I'unitaire multiplicatif
correspondant est non régulier et non irréductible, que nous expliciterons.

Commencons par décrire la C*-algébre S xS

Par (3.24), nous savons que la C*-algebre S xS s'identifie & I’espace vectoriel
fermé engendré par les opérateurs { L(w) p(Wf) / w,J € L(H )« }, nous en déduisons
un plongement canonique de la C*-algebre S (resp. 5) dans M(S x35). En particulier
les opérateurs L(v), L(n), b, x sont ([2], [25]) affiliés & Sx 5. Notons simplement dans
cette section v (resp. n), 'opérateur L(v) (resp. L(n)), posons u = Phasen , w = uv
et soit y I’opérateur normal fermeture ([28] thm.2.3) de 'opérateur b—vn lxz ; nous
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verrons plus loin que les opérateurs u, y et w sont également affiliés a la C*-algébre

SXS.

Nous avons :

4.13. THEOREME. — La C*-algébre SxS est une extension de la C*-algébre K des
opérateurs compacts par K.

Par (3.23 et 3.24 b)), il résulte de l'irréductibilité de V' et de (4.7b)) que la C*-
algebre Sx8 contient K ; pour montrer que le quotient de SxS par K s’identifie
également & K, nous allons introduire une C*-algébre D (qui est clairement une
extension de K par K), et montrer que I’extension D de K par K est canoniquement
isomorphe & celle définie par Sx5 et 1'idéal K C SXS.

Pour toute fonction f € Co(Z xZ x(Z U {—o0})), notons Ty 'opérateur dans H
défini par Ty eqpc = f(a — ¢, b, ¢) eqpc. Nous avons :

4.14. PROPOSITION. — §%8 = lin (K + {u'vi T} | f € Co(ZxZ x(ZU{-o0})),(3,5) €
z?}).

Démonstration. Posons E = lin (K+{u’ v/ T} }) et montrons que E C $x5. Ecrivant
que les opérateurs v* f, .(n) piji v fy',2»(n) appartiennent & SX.S et utilisant (A.2),
on obtient que les opérateurs T de la forme :

Teabc = 5:—0 62 A(C + Z,yl - y) €atz'y'c

ol z,z'y,y’ et z sont des entiers arbitraires, appartiennent 3 $x.5. Par (A4 b)), il est
clair que E C SxS.

Pour montrer 'autre inclusion, nous avons besoin du lemme suivant :

4.15. LEMME. — Pour tout (z,y,z) € Z* et tout n € Z, posons ®,(b,c) =
A(n+z,b+z)A(b—c+y,n — c+ z). Nous avons :

3 ®a(b,0)? < et e
b

Démonstration. Par (A.2 et A.3), nous avons :
D Ba(bye)? = > pH A(n—b,—b— ) A(b—c+y,n—c+ 2)’
b b

< Z/fm’“) Ab—c+y,n—c+2)?
b
= petz—y) Zuzb A(b,n — c+ 2)*
b

_ #2(z+z—y) #2n
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Fin de la démonstration de la proposition . Par (4.7a)), la C*-algebre $%3 est Pespace
vectoriel fermé engendré par les opérateurs Lgy, pv(wijk), oUt Lzy. (resp. pv(wijr))
est Dopérateur défini par Ly, eqpc = A(T + b,y) €ayptzct+z (resp. py(wijk) €ade

=(-DFSEZE Y ()" A —i—j,b—i— j)A(b—c—j,n — c— j — k) €a—k,n,ctk)-
n

Pour montrer qu’un opérateur T de la forme T' = L.y, pi;x appartient & E, il suffit
de montrer, grace a (A.2) et au lemme précédent, que pour chaquen € Z,ona T, € E,
ot T, est un opérateur de la forme Ty, ez = 6%_. 6] A(c+j,n—k—y) €a—k,n,c4+k- Or,
siy =n — k, T, est clairement un opérateur de E; si par contre y # n — k, par (A.4

b)) T, est compact. .

Soit & 'action du groupe S* x Z sur I'espace C, /z x Z définie par a;n(9)(¢,p) =
9(27%¢,p — n) ol g € Co(C sz x Z). Posons C = Co(C gz x Z)x(S* x Z) et soit
(2,n) = u, 5 le plongement de S* x Z dans M(C); notons y' (resp. p) la fonction
(¢,p) = ¢ (resp. (¢,p) = pP ) sur C s x Z. Munissons la C*-algebre C de l'action du
groupe Z donnée par ’automorphisme v de C' défini par :

Y(9)(¢p) = 9(n™ ¢ p+1), g € Co(Cyp X Z) ; Y(uzn) =2 tsn
Posons finalement D = C'XZ. Nous avons :

4.16. LEMME. — D est une extension de K par K.

Démonstration. Soit J I'idéal de D défini par C s \ {0}. Comme C_/; \ {0} s’identifie
4 Z x S?, Iidéal J est isomorphe a K ainsi que le quotient de D par cet idéal.

démonstration du théoréme

Il suffit de construire un homomorphisme surjectif 7 : D — S x5 de C*-algebres tel
que 7(J) = K ol J est I'idéal de D défini par C s \ {0}.

Soit 7 la représentation de C dans H définie par 7(y') = —va'lné @ny' ® von:f
, m™P) =|n|=1®n ®1 et m(uy,1) = x'w = wx™'. Pour tout z € C, on
a m(y(z)) = v*7m(z)v; nous en déduisons une représentation de D dans H notée
toujours 7. La description de la C*-algébre xS donnée par (4.14) permet de voir

sans peine que (D) = $x5 et que 7(J) = K. .

4.17. COROLLAIRE. — L’opérateur normal y est affilié & la C*-algébre S x5,

Démonstration. L’opérateur y' est affilié a la C*-algébre D et on a n(y') =y. .

Explicitons pour terminer la représentation covariante de V' correspondant a

I’homo-
morphisme quotient p: Sx5 — .S'><1§/1C ~ K.
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Soit 6 (resp. 5) la représentation de S (resp 5 ) dans [2(Z?) définie par §(v) =
1 ® vo et 6(n) = vo ® ng (resp. O(b) =vy'ng ? ® von, 3 o (x) = ny' ® ng). Posons
=@®id)(V),Y =(id® ) (V) et W' = @@ 0)V).

4.18. PROPOSITION. — L’homorphisme quotient p est la représentation de S xS cor-
respondant & la représentation covariante (X,Y) de V. De plus I'unitaire multiplicatif
W' associé est non régulier et non irréductible.

Démonstration. 1l est clair que X (resp. Y') est une représentation (resp. coreprésenta-
-tion) de V. Par un calcul directe utilisant (4.7) et (A.2 et A.3), on obtient la relation
de covariance Y12 V13 X523 = X23Y12. Nous avons :

WI(Cab ® ezy) = Z A(y - a,n)ea+n,b—n ® €z—n,y+b—a—n
n

S’appuyant sur la formule précédente, il est facile de voir que W' est non régulier
et que le commutant de Sy est commutatif, donc W' est non irréductible. Soit p'
la représentation (3.24) de Sx5 dans 1*(Z?) correspondant a cette représentation

covariante ; on a p'(y) = 0, donc p'(S xS ) = K(1%(Z?) et p' est unitairement équivalente
ap.
]

c) Mesures de Haar duales et théorie modulaire

Pour expli/citer les mesures de Haar duales, introduisons la famille (w?¥?) de formes
continues sur Sy définie par

wzyz(PV(wijk)) = (—.“)_k ’5z z, P AG+T -y, k) = (f-zy+z,2-2 | PV(wijk)fO,y,—r)
ou fzyz = gn(Q)ezyz-

4. 19 PROPOSITION. — Nous avons :
— -z ,T—2,y,2— z'

fz'y'z"fz'yl = y —y 99—y SUI'SV.

b) W™ xw®¥' ¥ = ZA(y' —z—y,n)A[Y —z —y+2' +z,n+ z) Wty —Eomt
n

Démonstration. Nous avons Sy = lin{ pv(wij/(i,j, k) €Z3 }. Utilisant (4.7a)), il est
facile de vérifier I’égalité a) pour tout & = py (wjj).

b) Pour tout i, j, k, posons T = py(w;j) ; nous avons :

W w7 (T) =(w™* @V Qwijk)(VigVasViz)
=(w®¥* QuwT Y Qwijk)(VisVas)

=(We_, y4s,s-si€0.y, -« OWe

—2y 42!zl —2!3€0,y!  — 2! ®wijk)(Wl3W23)
=Y A(j—2' -y, n)A(— o'~ z—y—n,m)8,* 6,765 .857%,

n,m
—6’;_',_'2, 5z+z, A(j—2'—y',—2"YA(j— 2’ — z—y+2',-2)
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Utilisant (A.2), on obtient A(j —z'—y',—=') = A’ +y —j, ' +y' —2' —j) et
A(j—z—2'—y+2',—2) = A(z+3'+y—2'—j, —=+z+2'+y—2'—j). Nous en déduisons :
w”z*wzly'z’(T) = 5';:_;, & Aty +z—a—i—j,y' +2—a—i—j)A(z4+y—i—j,y—i—j)
Posons £ = y'—z—y+2+4+2' ,a =242 ,n=y'—z—y,B=2",y=c+2'—y'+i+j,on
obtient grace & (A.4 a)) :
WTY? *wz'yl,:(T) =6’;;i, 6’:+z, A(E+B—y—na—y)A(a—y—nB—y—n)
=634 85 ()77 Y () T AE n+ @) A(pn+B)A(E—nn+7)

=621, 85 () S A(G nta) Al n+B)A(nt, E—n) (A2 2)

- ZA(y' —z—y,n)A(Y' +2' —z—y+2, n+z)w’+’l’y"""”+"(T)
n

Posons 7 = Z,u"“—% w®? et avec les notations de (4.9), F= p(uy).
a,b

4.20. PROPOSITION. —  Avec les notations précédentes, nous avons : )
a) T est une trace s.c.i, semi-finie normiquement sur Sy et fidéle sur le bicommutant

de §v-
b) 3= T(f‘l.) et ¥ = T(ﬁ) sont des poids s.c.i, semi-finis normiquement sur Sy
et fidéles sur le bicommutant de Sy.
c) La formule Ag pv(wabe) = (=1)°p~b"Ce_,44b,0 identifie I'espace de Hilbert
Hj de la représentation GNS de ® a H = I*(Z3) et la représentation

L3
correspondante 3 py .

d) L’opérateur modulaire Ay et I'opérateur Jg canoniquement associés a ®, sont
respectivement donnés par A3 €abe = 2% eqpc €t J@ eabe = (—1)% e—a p,c.

e) pv(F) est affilié au centralisateur du poids ® et on a B(F2.) = 7.

Démonstration. a) Par un calcul directe, on voit que pour ¢ = py(wijk), on a
z € N; NN} et que les formes z7 et 7z se prolongent de fagon unique au bicommutant
de S. Tl en résulte que T est semi-finie. Utilisant l'inclusion USU C §' donnée par ([4]
6.5 c)), on voit facilement que 7 est fidéle sur I’algébre de von Neumann Sy”. Comme
pour tout z = py(wiji) et tout y = py(wirjixr), on a 7(zy) = 7(yz), T est une trace
sur Sy”.

b) Par (4.9), on sait que F= p(u,) est affilié & la C*-algebre S;le b) résulte alors du
a) et de [19].

c) Résulte de (4.3), pv(wabe)* = (—p) "¢ pv(wap,—c) €t d’un calcul directe.
d) et e) résultent du a) et du b); voir [22].
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I résulte facilement de (4.19 b)) que pour tout z,y on a T * W 290 = (resp.
w90 « & = @) ; en particulier on a ¥ * w0 = T (resp. w00 + & = ®). Procédant
comme dans (4.2), on montre :

4.21. THEOREME. — Le poids & (resp. U est une mesure de Haar & gauche (resp. a
droite) sur la C*-algébre de Hopf Sy .

Nous avons muni chacune des C*-algébres de Hopf Sy et Sy canoniquement
associées a I'unitaire multiplicatif irréductible (V U), de mesures de Haar : Sy admet
une mesure de Haar & & gauche et a droite; Sy admet une mesure de Haar <I> a
gauche et une mesure de Haar Ta droite, cette derniére étant un poids de densité F' F?
relativement & &. D’autrepart, le carré de 'antipode « (resp. %) engendre un groupe a

un paramétre d’automorphismes (x?2)%* (resp. (k?)™) sur Sy (resp. .S' v) implémenté par
Popérateur autoadjoint positif K (resp. K ) donné par K = /\(F)p(F) (resp. K= K1)

Il résulte alors de (4.1) et (4.20) qu’on a (cf. [21]) :
4.22. PROPOSITION. — a) U = J, J5 =
b) les opérateurs modulaires des po1ds $ @ et T sont donnés par:
= NF)p(F™), Bg = XEFp(F™), Av = X(F)p(F).
c) 600f =((k*)*®02)0b6= (02 @(k?)"™) 06 sur Sy.

d) 500% = ((R2)*®0%) 05, 600¥ = (0¥ ® (R2)~*)0b sur Sy.
e) Vor®(V*) = p(F2i4) @ 1.

Procédant comme dans [4], on peut construire le double quantique de tout unitaire
multiplicatif irréductible (V,U) semi-birégulier : on obtient un unitaire multiplicatif
irréductible semi-birégulier.

Dans le cas du groupe quantique E,(2), ’algébre réduite .S ®5 (et algebre réduite
duale) admettent des mesures de Haar.

4.23. THEOREME. — le poids ® ® & est une mesure de Haar & gauche et a droite pour
le double quantique de E,(2).

Démonstration. Soit 7: S Q 55598 linversion donnée par 7(z®y) = V(y®z)V",
il suffit de montrer que QI) ®@P)or =2Q 9. Or par (4.22 e)), pour tout  on a
(D((2®@®)o7): D(2® D)), =1, ol (D((@® ®)or): D(®®T)), désigne la dérivée
de Radon-Nikodym [10] du poids (<I> ®®) o7 relativement au poids & ® T sur Dalgebre

de von Neumann S”"® 5" .
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Appendice A

Dans cette premiére appendice, nous donnons les preuves des propriétés des
coefficients A(m, j) utilisées principalement dans le paragraphe 4.

Considérons ’espace vectoriel réel (de dimension 2) E des suites (8(m, J))(m,j)ez
3 valeurs dans R vérifiant pour tout (m,j) :

(E.1) b(m —1,5) W = b(m, j) +b(m,j + 1) g™
(E.2) b(m,j) =b(m —1,5) u™ + b(m — 1,5 — 1) ™~

Nous avons :

A.1 Lemme - Soit (b(bm,j)) une suite de E. o

0,) b(mvj) = (_/‘)] (m = "'.7) = b(—m,] - m) = (_:u)] " b(]7m)

b) Les nombres b; jx = (—p)~7 b(s — k,j — k) sont invariants par permutation des
entiers ¢, j, k.
Démonstration. Posons u(m,j) = (—p)? b(m — j,—j) (resp. v(m,j) = b(—m, j — m)).
Il est facile de voir que les suites u(m,j) et v(m,j) appartiennent & E. Comme
u(m,0) = b(m,0) et v(0,5) = b(0,5) pour tout m,j € Z, on a donc u = b = v;

les autres assertions se déduisent immédiatement de ce résultat.
»

Dans le paragraphe 4, nous avons noté g,, la fonction introduite par Woronowicz
dans [25], définie par :

oo

R = B e
gﬂ(C) - Jl=]0 1 + ﬂ—1_2j<_

La fonction g, est continue sur C, et, pour tout m € Z, la fonction z — g,(u™z)
définie sur S, se prolonge en une fonction méromorphe [25] dans C\{0} dont les péles
sont les nombres —u™ =9 ou ¢ = 1,3,5,.... Nous noterons dans ce qui suit g,(m,.)
ce prolongement ; dans [25], il est noté U(m,.). Rappelons également qu’ on a posé
A(m, j) pour le jiéme coefficient de Fourier de la restriction de la fonction g, au cercle

{z€Cul |z |=pum).

A.2 Proposition - Nous avons :
a) La suite (A(m,j)) appartient ¢ E.

b) mlin_loo A(m,j) = 6{; uniformément en j.
¢) Si (b(m,j)) est une suite bornée de E et vérifie lim b(m,0) = 1, alors nous
m——00
avons b(m,j) = A(m,j) pour tout (m, ).
Démonstration. a) Pour z de module 1, on a g,(m,Z) = gu(m, z), on en déduit que

A(m, j) est réel. La relation (E.1) (resp. (E.2)) résulte de la relation g,(m — 1, uz) =
(14 A" 271) g (m, 2) (resp. gu(m, 2) = (1+ 4™ 2) gu(m — 1,5~ 2), voir [23].

b) Résulte de lim g,(p™ z) = 1 uniformément en z de module 1.
m——oo
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c) Il résulte de a) et b), qu’il suffit de montrer qu’ il existe une suite de E non bornée.
Remarquons que toute suite (b(m, j)) de E est déterminée par la suite (b(m, 0)). Posons
alors ¢,;, = b(m,0). Il résulte de (E.1) et de (E.2) que la suite (¢, ) vérifie la relation

de récurrence : _
Cm+1 = —Cm-1+ Crn(2 — K 2m)
AN
Posons A = =2 et soit N > 1 un entier tel que W < 1. Notons (z,,) la suite

définie par zy =0, n41 = 1 et la relation de récurrence précédente. S’appuyant sur
I’égalité :
m-—1
ITm —Tm—1 =1 — Ty — Z/\JQI]

i=1

il est facile de montrer que la suite (z,,) est non bornée.
L]

Nous rassemblons dans la proposition suivante quelques propriétés de sommabilité
de la suite(A(m,n)).

A.3 Proposition - Nous avons :

a) Pour tout entiers m,z € Z, on a ZA(m,n + z) A(m,n) = 6.

n

b) Pour tout entiers n,y € Z, on a ZpZm A(m +y,n) A(m,n) = u>" 63
m

¢) Pour tout entiers a;, h; (1 =1,2), on a :

> A(ar,n + h1) A(az,n + he) A(ar — n,az — n) = A(hy, hs) A(as + ha,az + hy).

Démonstration. a) Pour tout z de module 1, on a |g,(u™ 2) |= 1; le a) résulte alors
de I’égalité de Parseval.

b) Par (A.2), on a A(m,n) = (—pu)"~™ A(n,m); le b) découle alors immédiatement
du a).

c) Fixons hy,hy et posons a(m,j) = ZA(m,n + h1)A(j,n + h2)A(m — n,j — n)

(resp. B(m,j) = A(m+ hg, 5+ hy)). Il résulte de (E.1) et de (E.2) que les deux suites
(a(m,j)) et (B(m,3)) vérifient les deux relations de récurrence :

(B.1)  b(m —1,) g *m=hr = b(m, j) p= + b(m, j + 1) pm!
(E'.2) b(m,j)pt =b(m —1,j)p~7 +b(m — 1,5 — 1) g7 Hhe

Par le a), il est clair que la suite (a(m, j)) est bornée. Il résulte alors de (A.2 c)) que
les deux suites (a(m, 7)) et (B(m,j)) sont proportionnelles. Posons alors a(m,j) =
A(h1, hy) B(m, j) o A(hy, he) € R. Or pour tout m € Z, on a ZlA(m,n) |< 00; en

faisant j = —hy, il découle alors de (A.2 a) et b)) qu’ on a :
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lim > A(m,n + hi)A(=h1,n + ho) A(m — n,—hy — n) = A(=hy, —hy + hs)
= A(hy, hy).

comme lim A(m+ h,0) =1, on a bien A(hy, h2) = A(hy, ha).
m——00

A.4 Remarques -
a) Il résulte d’un calcul facile s’appuyant sur (A.2 a)) que la formule :
ZA(al,n + h1) A(ag,n + hy) A(a; — n,az —n) = A(h1, he) A(ay + ha,az + hy).

est équivalente a la relation :

D (—w) Az, n+a) A(y,n +b) A(z —y,n +¢)

=(-p)fAla—c—yb—c—y) Alb—c—y+z,a—c)

b) Soit n € Z, posons g,(a) = A(a,n). Pour tout j € Z, notons 7; 'opérateur de
translation par j et soit A, 'algébre des polynémes sans termes constants en
{rjgn | § € Z}. Si n # 0, il résulte facilement du théoréme de Stone-Weierstrass
que Dalgebre A, est dense dans C,(Z). Dans le cas ou n = 0, on voit de méme
que A, est dense dans C,(Z U {—00}).

Appendice B

Dans cette seconde appendice, nous complétons la preuve du théoréme (4.2) et
nous montrons I'unicité de la mesure de Haar de E,(2). Nous conservons les notations
du paragraphe 4.

B.1 Lemme - Soit f une forme linéaire positive sur Sy. Alors pour tout € € H, il eziste
une famille (&) (resp. (€!) dans H telle que f+we = 3, we; (resp. we * f = 3, wer)
et [IFII1 €N = D II&l® ( resp- IAIINENE =D NEN>

Démonstration. On a par (3.10), V € M(Sy ® K) et pour tout z € Sy, on a aussi
6(z) = V*(1®z)V. Notons alors (my, Hg, £¢) la représentation GNS de la forme positive

f et posons (7§ ® id)(i})(ff ®¢) = Zni ® &;, ou (n;) est une base orthonormée de

i
'espace de Hilbert Hy. On a alors pour tout = € Sy :

(f xwe)(@) = (f @ we)(8())
= <& ®& (s @id)(V) (1@ ) (rs ®id)(V) >
= E< £i,z€i >
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L’assertion resp. se démontre de la méme fagcon en remarquant (3.10) que V €

MK ® Sv) et (3.12) que §(z) = V(2 ® 1)V* pour tout z € Sy.

]
fin de la démonstration de (4.2). Soit f une forme positive sur A = Sy, posons
f *wooo = Zw& avec ||f|| = ¥_;|é||%. Par (4.6), on a alors :
®(zxf) =(z* f*wooo)

= Z‘P(z‘*u’&)

= D _ll&iI*e(z) = [I£]| @(<)
On montre de méme que ®(fx*z) = || f|| &(z).

L]

B.2 Remarque - : Soit ¢ un poids s.c.i normiquement sur A. Alors pour tout ¢ € H,
il existe une famille de vecteurs (¢;) (resp. (n;) de H telle que wg * ¢ = Zw& (resp.
i

P*we = Zwm. En effet, par [19)], il existe une famille de formes positives sur A telle
i

que ¢ = Z fi; il suffit alors d’appliquer B.1 aux formes wg * f; et f; * we.
i

B.3 Proposition - Soit ¢ un poids s.c.i et semi-fini normiquement sur A invariant @
gauche, i.e pour tout vecteur § de H on a we * ¢ = ||€||2 ¢. Si ¢ est invariant par le
groupe & un paramétre d’automorphismes (k2)%, alors il ezite A > 0 tel que ¢ = A ®.
Démonstration. 1l résulte de la formule (4.22 c)) § 0 0? = (62 ® (k?)7*) 0 6 et de
linvariance de ¢ par (x2)" qu’ on a ¢ = oa? pour tout ¢. Il en résulte que ¢ = ¢o E
ou E : A — Cy(C,) est I'espérance conditionnelle associées & I’action duale donc,
¢ étant semi-fini, sa restriction & Co(C,)* est une mesure positive qui le détermine
complétement. Comme (x2)*(n) = p?*n et que ¢ = ¢ o (x?)*, la restriction de ¢
a chaque cercle {z € C, / |z|= p’} est proportionnelle & sa mesure sa mesure de
Haar. Soit «; € [0, 0] le facteur de proportionnalité, posons 3; = aj ™%/ ; nous allons
montrer que la suite (3;) est constante.

Par ([3] 2.), on a pour tout ¢, j entiers fjo(n) * woio = ZA(z —n,j —n)? fno(n).

Par invariance a gauche de ¢, on en déduit :
aj = ZA(z —-n,j—n)’a,
n

=Y Ali-jn—j)?pUMa, par (A2)
n

donc B; = ZA(z — j,n — j)? Bp. Comme les entiers i,j sont arbitraires, on a

n
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donc :

ﬂj = ZA(i,n - ])2 ﬂn
= ZA(——’i, n —j - i)z ﬂn par (AZ)

= Bitj
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Quantum group— and Poisson-

deformation of SU(2)

Anne Bauval

Introduction

Woronowicz ([W1], [W2]) defined a family (in the set-theoretical sense) of quantum
groups (SU,(2)) ,er.- (For p = 1, the C*-algebra A, underlying SU,(2) is merely the
algebra C(SU(2)) of continuous functions from the classical group SU(2) into C).
“Forgetting” the group structure of SU(2), Sheu ([S1]) used the Weyl calculus to
construct a continuous deformation of the Poisson structure of C*°(SU(2)), where the
fibres are precisely the C*-algebras A,.
Unifying these two points of view, we shall do the following :

1) put Woronowicz’s SU,(2)’s together into a continuous field of quantum groups,
I i3

(82) construct a deformation of Poisson-SU(2) in the underlying continuous field of
C*-algebras A,,

(83) prove that such a deformation is unique among deformations fulfilling suitable
requirements,

(§4) prove that Sheu’s deformation fulfills these requirements, and compare it in detail
with our deformation.

Paragraphs 2, 3 and 4 will be achieved by working, as Sheu did, at the more ele-
mentary level of Poisson-deformations of the disc, which is a “slice” of SU(2).

1 Continuous structure on the family of quantum
groups SU,(2)

Definition 1.1 ([W1], [W2]) For any p € R, A, is the enveloping C*-algebra of the
involutive C-algebra A, defined by two generators a,,v, and relations :

1) T = o ()

2,) XY Bvuoy (4,)
g au7; = ”7;‘:";‘ (5u)

and if p # 0, the quantum group SU,(2) is defined by the unitary matriz

( a,  —pY,
Tu o
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In order to endow the family of these SU,(2)’s with a structure of continuous field
of quantum groups ([B1], [B2]), we just have to endow the family (A,),cr+ with a
structure of continuous field of C*-algebras in such a way that the sections u — a,,
p + 7, are continuous. (We shall even do a little more : this field will also be defined
at p=0).

Definition 1.2 A is the universal C*-algebra defined by three generators c,~,pu and
relations :

waryr =1 T )
aa* + ply*y = 1 (2 T N
T ® ay' = py'e (5)
g commutes with a,y (6)
-1 <p< (7).

A is the *-subalgebra generated by a,v, p.

The restriction of the parameter p to [—1;1] is harmless since for g # 0, there
is an isomorphism of quantum groups (not only of C*-algebras) between SU,(2) and
SU1/u(2) (sending o, to ay/,* and 7, to —%71/#‘) : using this isomorphism it is then
easy to extend to R the field on [—1;1] which we are going to construct.

Moreover, such a restriction of the parameter is necessary, otherwise the generator
4 would not be bounded, hence the involutive algebra defined by these generators and
relations would not have a C*-envelope.

We shall construct a field of C*-algebras over [—1;1], using the natural morphism
from C([—1;1]) into the center of A. (This morphism is given by relations (6) and (7)).
By a slight generalization of the Dauns-Hofmann theorem, proved by Dupré and Gilette
([DG], proposition 1.3 and corollary 2.2) and quoted in [Ri], there is a unique upper
sermni-continuous field related to the C([—1;1])-C*- algebra A in the following way.

Definition 1.3 ¢ is the upper semi-continuous field of C*-algebras on [—1;1] such that :

o the fiber of € at x is A/zA (z denotes here both a point in [—1;1] and the ideal of
functions in C([—1;1]) vanishing at this point)

o the total space Uy¢(-1;1)A/TA of § is endowed with a topology such that the con-
tinuous sections of £ are the sections of the form x — a mod z A, for any a € A.

Using the universal properties of A and of the A,’s, one easily proves the following
relationship between our field £ and Woronowicz’s family (A,)ue[-1;1)-

Proposition 1.4 For any u € [—1;1], the fiber at p of the field £ is naturally isomor-
phic to the C*-algebra A,. This family of isomorphisms identifies the two continuous
sections of the field ¢ associated to a,y € A with the two sections p — ay, p — v, of
the family (Au)ue[-15]-

Before introducing another field { with more elementary fibers, and proving the
(lower) continuity of both fields ¢ and (, let us first get rid of the case u < 0 : we shall
prove that the study of £_1,q may be reduced to the study of {0,y (and conversely),
by a property with “fractal” flavour.
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Proposition 1.5 Let ¢;; (1 < 4,j < 2) be the canonical generators of My(C) and
i, A, — My(C) ® A, the morphism defined by :

iu(o-y) = (€12 + €21) @ @y, 1u(Y-4) = (€11 — €2,2) ® -
For any u € R, i, is an embedding.

Proof. Let D be the subalgebra of My(C) ® My(C) generated by the two elements
P = €11 €11 + €22 B €22 and Q = €12 Q€12 + €21 ® €21 and similarly, D' the
subalgebra generated by P/ = €1, ® €22 + €22 Q@ €11 and Q' = €12 @ €21 + €21 @ €12
Let ¢ : D — C be the morphism such that ¢(P) = ¢(Q) = 1. One easily checks
that the image of j = (idpg(c) ® i-4) 0 i, is included in (D & D') ® A-, and that
(((p (©) 0) ® idA_“) Oj = idA_“.

We shall now reduce the study of the A,’s (quantum SU(2)) to the study of more
elementary C*-algebras B, (quantum disc). Let us recall the two results which naturally
led us to this reduction.

Theorem 1.6 ([W2] appendiz 2) A, is isomorphic to Ao, for any p €] —1,1[.

The isomorphism T}, : A, = Ao was defined by Woronowicz as follows :

— T (1-p?)u?"
Tuaw) = 5% V1=p2nt2 4\ [imn
and T,(7.) = Lilos"ag™ s

Theorem 1.7 ([S1] proposition 1.1) Let
0 — C(D) — C(D)-=C(T) — 0

*n . n+1
[ e 1)

be the ezact sequence of the unit disc and
0—K— C'(S)-a—(]»C(T) —0

be the Teeplitz exact sequence. Set By = C(D) and By = C*(S). Forp=1 or 0, A, is
isomorphic to the algebra of continuous functions f : T — B, such that o,(f(u)) does
not depend on u € T.

For p = 1, the isomorphism consists in identifying SU(2) with a family of discs
(Dy)ueT, glued together along their boundary circle :

(u,Z) € T x D is identified to ( ch —%tc ), with ¢ = /1 - Z)%.
(This “slicing” of SU(2) is compatible with the Poisson structure, cf §3 and 4).

For p = 0, let us recall the Teeplitz exact sequence. C*(S) is the C*-algebra
generated by the unilateral shift operator §. SS* is equal to 1 — p, p being a rank
one projection. The closed ideal of C*(S) generated by p is the algebra K of compact
operators, and C*(S)/K is isomorphic to C(T), the isomorphism sending the unitary
generator (S mod K) € C*(S)/K to idr.

In both cases g =1 or 0, the embedding A, — C(T, B,) sends

a, to (u— a,) and Yu to (u = u7,), with

(Z = 1-121)
p.

[+3}
o7

(Z = Z)7 71
S*, 70
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Using the proof of theorem 1.6, one gets the following “generalization” of theorem 1.7
for free (we pass from the case p = 0 to the “more general” case |u| < 1 by a rather
silly renaming ; the only nontrivial assertion of the following corollary is the first one,
which justifies this renaming).

Corollary 1.8 For |u| < 1, let us denote by

® @,,7, the elements of C*(S) defined as series in @o,7, by the same formulas as
in theorem 1.6, where T,(a,), Tu(7,) were defined as series in ag, 7o

o B, the involutive subalgebra generated by @,,7, and

e B, its closure in C*(S).

For |u| < 1, B, is equal to C*(S) and the closed ideal of B, generated by ¥, is
K. Moreover, for —1 < p < 1, there is a morphism o, : B, — C(T) such that
o,(@;,) = idt and such that the sequence

0— K — B,2C(T) —0

is exact, and A, is isomorphic to the algebra of continuous functions f : T — B, such
that o,(f(u)) does not depend on u € T.

Remark. For y = 1, the morphism ¢y : C(D) — C(T) which we are choosing is not
the mere restriction but (in order to make the notations fit together) o1(f)(v) = f(7).
This remark will be important in lemma 4.5.

Since 7, = p > 0, the definition of 7, as a series makes it self adjoint. If x > 0

we even get : 5, > 0, hence (under the identification of A, given above) |y,| =
g Yu " u

|(u — uﬁu)l = (u + 7,). Using this fact and the universal property of A,, one easily
proves the tollowing proposition.

Proposition 1.9 For0 < pu <1, B, is isomorphic to the universal C*-algebra defined
by generators @,,5, and relations :

the relations (1,)—(5,) (cf definition 1.1)

the additional relation : 7, > 0.

Remark. Instead of adding a relation and looking at B, as a quotient of A,, one may
also prove (but this will not be used) that B, is isomorphic to the C*-subalgebra of
A, generated by a,, and characterize B, as the universal C*-algebra defined by one
generator o, and one relation (deduced from relations (1,) and (2,,) by eliminating ~,)
(INN)).

Paraphrasing definitions 1.2 and 1.3 and proposition 1.4, we can now define the field
of B,’s.
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Definition 1.10 o B is the C*-algebra defined by generators @,7 and & and rela-
tions :
aa+y =1 () ¥>0 (3
aa+py =1 (2 @7 = pya ()
7 commutes with @,5 (6)
0 <E< 1 (T

o B is the involutive subalgebra of B generated by @,7, and

o ( is the (upper semi-continuous) field on [0;1] associated to B, with fibers B,.
Proposition 1.11 ( is trivial on [0;1) and £ is trivial on (—1;1).

Proof. By uniqueness of the field defined by a total family of sections ([DG], proposition
1.3), in order to prove the first assertion it suffices to show that for any b € B (viewed
as a continuous section b of () the restriction of b to [0;1) is a continuous section of
the trivial field C*(S) x [0;1) i.e. bis a continuous map from [0;1) to C*(S). It is
sufficient to prove this for b = @ or b = 7. This is then a consequence of the definition
of @,,¥, in corollary 1.8. This proves the first assertion. The trivialness of £ on [0;1) is
then a consequence of corollary 1.8, and its trivialness on (—1;0] may be deduced from
this and from proposition 1.5. (There is also a direct proof of the second assertion,
analogous to that of the first one).

Before studying the behaviour of these two fields at the extreme points, let us make
explicit the representations of the B,’s and A,’s deduced from the canonical represen-
tation of C*(S) by corollary 1.8. S acts on the space H with Hilbert basis (e,),cn by
S(en) = €n41, @ = S and J, = p hence by definition of @,, 7, (corollary 1.8) we get,

for |u| <1:
au(en) = V1 —p*res 7,1(6") = u"en.
(From this faithful representation of B, on H we deduce a faithful representation 7, of
C(T, B,) (hence of A,) on L*(T,H) : since a,(u) = @, and 7,(u) = vy, (Yu € T), we
get, on the basis (z,bnk)kez neN of L?(T, M) defined by v, x(u) = u¥e, :
a, Q/)n k \/1—"_r¢n—l k 7;1(1;/)11,1:) = ”n¢n,k+l-

(r-, and m, are related by the morphism ¢, defined in proposition 1.5 : m, o, is
equivalent to m_, @ 7_,). Let us treat similarly the case p = 1. (7-; and m will
be related by the same formula hence it is sufficient to check that m; is faithful, which
will be obvious by construction). The representations of B, and A, for p = 1 will be

constructed as direct sums : @ o, for Byand 7, = & o, for A,. Let us first
te[0;1] tefon] M

define 0, and o7 ,. For any ¢ € [0;1], let o1, be the representation of By = C(D) on
H' = L?*(T) given by restricting an element of C(D) to the circle of radius v/1 — ¢2
and making this element of C(T) act on H’ by multiplication. Since @;(Z) = Z and

7,(Z) = \/1 — | Z|?, we get, on the basis (e’ wnez of H' defined by e (v) = v™" :
or(@)(ey) = V1I—tle,y  014(T)(er) =t
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i From this representation o1 of By on H' we deduce a representation o}, of C(T, B)
(hence of A;) on L*(T,H’). On the basis (¥}, )k nez of L*(T,H') defined by ¢}, ,(u) =

k!
u“e,,

Ui,t(al)(’p;,k) =V1-# ;—l,k Oi,t('yl)("/):z,k) = t’/’;,kﬂ-

The definitions of o_;; and o’ , , are analogous, but with ¢ multiplied by (—1)".

These representations of the A,’s (for |u| < 1) are the ones used in [W2] (theorem
1.2) to show that {afyTyi"|k,m,n € N} U {azfymy:"|k,m,n € N,k # 0} is a linear
basis of A,, for 0 < || < 1. This theorem is deducible from the following lemma, which
may be proved by the same arguments, using the representations of the B,’s which we
just presented.

Lemma 1.12 Let Bt = {@?7llp, € N} and S, = {@?7l|p,q € N,p # 0}.
For 0 < |u| <1, B, := B} U B, is a linear basis of B,.

There remains to prove the lower semi-continuity of { and ¢ at the extreme points.
It is not really necessary to prove it here, since it will be a corollary of our theorem 4.1.
But a direct proof, applying the ideas of [Ri] to the continuous field of Haar measures,
may be found in the two preprints [S2] and [NN], which I did not yet know at Algop in
July. I thank E.Blanchard for explaining to me [B1] and [B2], and A.Sheu, G.Skandalis
and G.Nagy for sending me [S2], [NN], and [N1], [N2], and I include the sketch of this
proof, for the reader’s convenience.

Proposition 1.13 ([S2], [NN]) The field { is lower semi-continuous at 1 and the field
¢ is lower semi-continuous at +1.

(Sketch of) proof. As in the proof of proposition 1.11, the properties of £ may be either
deduced from those of ¢ or proved directly by the same method. So we just have to
prove the lower semi-continuity of ¢ at 1. For |u| < 1, let %, be the state on B, defined
by the same formulas as the Haar measure h, on A, ([W1], appendix 1) :

o0
hu(b) = (1= ) 3_ 1™ (enlblen)) -

n=0
Let %, be the normalised Lebesgue measure on the disc. (The state h, on A, C C(T, B,)
is obtained from the state &, on B, by integrating along the circle T. Conversely, view-
ing B, as a subalgebra of A, as in the remark after proposition 1.9, &,, is obtained from
h, by restriction). One proves that %, is a continuous field of states by checking con-
tinuity on polynomials b € B. By faithfulness of the associated G.N.S. representations,
this yields lower semi-continuity.

2 Poisson-deformation of SU(2)

Let us reformulate the two definitions of a “strict deformation” and of an “operator
deformation” ([S1] p. 223). The first one corresponds to Rieffel’s definition, the second
one is a more flexible version, allowing to consider Sheu’s construction as a deformation.
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Definition 2.1 Let C be an involutive Poisson C-algebra, endowed with a C*-norm.
A Poisson-deformation of C is :

(a) a continuous field of C*-algebras (Ch)ogpc., Such that Co is the completion of C,
(b) for any f € C, a section (h — pi(f)) such that po(f) = f

satisfying :

(c) the p(f)’s form a total family of continuous sections of this field

(d) lim 2@l = {f,9}  (Vf,g €C)

(e) the map p is linear

(f) for any h, the map py, is injective
and satisfying moreover one of the two conditions :

(SD) for any h, pr(C) is closed under multiplication (“strict deformation”)

(OD) p preserves the involution (“operator deformation”).

Remarks.
e C is then necessarily commutative

e In Rieffel’s original definition ([S1]), one starts from a Poisson manifold M and
chooses to deform some Poisson subalgebra C of C5°(M) (smooth bounded func-
tions), such that C contains the subalgebra C°(M) (smooth functions with com-

pact support). In our case C will only be dense in C(M) (and M will be compact),
but C will not contain C*(M).

e In this reformulation, the data (a) and (b) are redundant : the topology of the
field is fully determined by the total family of continuous sections.

¢ The limit in condition (d) has a meaning in the total space of the field.

¢ Condition (a) is much stronger than Rieffel’s original definition ([S1]). One part
of this strength is irrelevant : we could have required the field to be continuous
only as a field of Banach spaces outside A = 0 (this would have caused no change
in the rest of this paper). But the other part is crucial : at h = 0 we really want
the multiplication and the involution to be continuous.

e This way of reformulating the definition forced us to make condition (f) explicit,
whereas the injectivity of the p,’s was originally implicit. This condition does
not seem relevant (the rest of the paper is true if we drop it), but we shall keep

it since it will be fulfilled in our case. (This property is sometimes technically
useful, to check condition (SD) : see [S1], [N1]).
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We shall construct such a deformation for M = SU(2) and C = A;. It will be
both a strict- and operator- deformation, in contrast with Sheu’s one which was only
an operator deformation. But Sheu deformed the whole algebra C*(SU(2)), whereas
our A, is only dense in C(SU(2)).

“The” Poisson structure on SU(2) will always be the one chosen by Sheu [S1] and
described by Lu and Weinstein [LW]. In order to deform it, we first deform the unit disc
D, which is a “slice” of it (theorem 1.7). The restriction to A; of the Poisson bracket
on C*(SU(2)) is completely determined by :

i
27101,
0.

{1, 07} —inm, {e1,m}
{al"ﬁl} %7;013 {717 71‘}

Hence it is induced by the Poisson bracket on B; defined by :

{a, a5} = -7}, {@,m} = iy

(These two brackets are related by : {f,g}(u) = {f(u),g9(u)} Vf,g € A;,YueT.)

The main trick to deform these brackets is to notice that in the field ¢, if we choose a
good change of parameter like h(p) = 1 —p?, condition (d) is fulfilled for (f, g)=(an,a})
or (@,7,) as soon as p,(@) = @, pu(a7) = @, and p,(7,) = 7,. (This comes from
the relations between @, and 7,,).

There remains to choose p(f) for any polynomial f in the (commuting) variables
@1, 0,7, By lemma 1.12, it suffices to define p(f) for any element f of the linear basis
B1. p(f) may be chosen as a polynomial in the (non commuting) variables @, @*,%, and
must be such that p(f); = f. We shall present the simplest example of such a p, and
prove that it yields a deformation. (The proof will use a combinatoric property of this
choice, but many other choices satisfy this property).

Proposition 2.2 Let p: By — B be the linear involutive map such that
p(@7) =7 (¥p,q €N).

(¢, p) is a strict- and operator- deformation of By, for u € (0;1] and for any change of
parameter h(p) equivalent to 1 — p? when p — 1-.

Proof. All conditions except (d) are fulfilled by construction. ((c) and (f) are true by
lemma 1.12). Let us prove (d). It suffices to prove it for f,g € B, and we shall do
this by induction on the length £(fg) = £(f)+ £(g) of the “word” fg on the “alphabet”
{e1,a},7,}- I £(fg) <2, (d) holds by construction. If £(fg) > 2 we have £(f) > 2 or
£(g) > 2, let us say for instance £(f) > 2. Take z,y € B of lengths < £(f) such that
f ==y and p(f) = p(z)p(y). From these two equalities we deduce :

{f,9} ={y, 9} + {z, 9}y,

and  [p(f), p(9)] = p(z)[p(y), p(9)] + [p(2), P(9)]p(¥)-
Since £(yg) < £(fg), we may assume (by induction) that iz_r:r(l) M)i—;:’—"(gn = {y,g}. Since

p(z) is a continuous section of { such that po(z) = x, the upper semi-continuity of ¢ at

h = 0 entails :

fim Ph(z)[/’hi(;;’),l’h(g)] = o{y, g}.
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Similarly (using £(zg) < £(fg)), we get :

i 122(2):20)]4(0)

h—0 lh

= {z,9}y,

and add up these two equalities.

Corollary 2.3 Let p' : Ay — A be the linear involutive map such that
pafyin’) = o”y'y"  (Vp,g,r €N).

(&,p') is a strict- and operator- deformation of Ay, for p € (0;1] and for any change of
parameter h(p) equivalent to 1 — pu? when p — 1.

Proof. By proposition 2.2, Vf,g € A, im(z) 2 f“)z;l” EI0)) {f(u),g(w)}, hence

iintz) L, (fz;:" (g)](u) = {f,g9}(u). A careful inspection of the proof of proposition 2.2
reveals that this holds uniformly in u € T.

Remark. Extending the field as explained just after definition 1.2 and letting p tend to
1 from above, one gets a deformation of the opposite Poisson structure of SU(2).

3 Relative uniqueness of the Poisson-deformation
of R?

We shall prove that the Poisson-deformation of B; we have just constructed is, in some
sense, “the only one”. (We referred to R? in the title because, as will be explained in
the next paragraph, B, is isomorphic to a Poisson-subalgebra of C*(R?)).

Theorem 3.1 Let (O,7) be an operator deformation of By such that :
e O is trivial on R*, with fiber C*(S)
® oo(7h(tn)) = o1(@) for any h #0
o 7,(®) = RS, for any h # 0, with Ry selfadjoint, diagonal in the basis (en)neN
for which S(en) = €nt1.

Then © is isomorphic to (.

Remark. In fact we shall use the continuity of © (in lemma 3.2) but only the upper
semi-continuity of {, hence we do not need proposition 1.13.

Proof. Let us set h = 1 — u? and abbreviate izné zp —yp = 0 by z,, < yp. We must
prove that Vb € By, mh(b) < p,(b). Let wp = mh(@1), and vy = 7(¥F,). It suffices to
prove that (1) ws, < @, and (2) vy < ¥,. Let us first assume (1) and deduce (2) from
it. Using only the upper semi-continuity of ( and ©, since 7, = /T — @, we get :
72 < 1—-a@, < 1 — whwy, < v} hence 5, X |va], and since vy = 7; > 0 we get :

vp X |vp|. This yields (2). Let us now prove (1). Let y,(k) be /1 — p2(*+1) and @, be
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the operator such that Q,(e.) = ya(h)e,. Since 7 is a Poisson-deformation, we have :

[ ]

ﬂ,;——wz- < 1 — wjwy, hence (1 — wywy) — p*(1 — wjws) = o(h), which (by elementary
calculus) leads to : R? < ;24 From this, using the hypothesis that R} is equal to 1
modulo K, we deduce R;, < @, by the following elementary lemma. Since @, = Q,S*
by §1 (before lemma 1.12), this yields (1).

Lemma 3.2 Let z,(h),y.(h) € R, forn € N and h € [0,¢], be such that :
o z2(h) — y2(h) — 0 when h — 0, uniformly in n,

o for any fized n, y,(h) is an increasing positive function of h, with limit 0 at h = 0,
and x,(h) is a continuous function of h,

o for any fized h, the sequence z,(h) is eventually positive.

Then x,(h) — yn(h) — 0 when h — 0, uniformly in n.

4 Comparision with Sheu’s deformation

Let us recall the deformation defined in [S1]. Let the unit disc D be equipped with the
Poisson structure deduced from the usual one on R? by the change of variables :
(zeR) - (Z = I_zi 1 —e /2 ¢ D).

The Poisson structure on SU(2) is related to this Poisson-D by the “slicing” described
after theorem 1.7, and Sheu’s deformation of Poisson-SU(2) is naturally deduced from
the following deformation of Poisson-R2.

Let S° be the algebra of Weyl symbols of order 0 on R?. For any a € S° and any
h > 0, let Wj(a) be the operator on L?(R) defined by

Wilayu(y) = gz [ Al (v +9)/2) exp(Z) o) da dy)

with  A(z,y) = a(y, 2).

(In [S1], A = a. We rectify the formula according to [Vo], in order to really get,
as claimed by Sheu, a deformation of the Poisson-bracket on R? defined by {f,¢} =
OLf 029 — 0,f 019 and not of the opposite one. The only point of [S1] spoiled by this
mistake is proposition 2.1, which we shall put right in our lemma 4.5).

Wi (a) is unitarily equivalent to W}(a) := W(as), with W = W; and ax(2) = a(vh2)
([S1] p.224), and Sheu proved that W) is a deformation of S°. Hence W} is also a
deformation of S°. We call ¢’ the continuous field associated to W} and ¢’ the continuous
field associated to the induced deformation of C*®(SU(2)).

Theorem 4.1 The fields ( and ' are isomorphic ; so are the fields £ and €'.

Proof. The second point is a consequence of the first one, which comes from theorem 3.1
and from lemma 4.2, 4.5 and 4.6 below.
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Lemma 4.2 (' is trivial on R**, with fibers C*(S).

Proof. The fibers are C*(S) by [S1] (proposition 2.1). By Howe’s proof of theo-
rem 3.1.3 in [Ho|, there exists a constant C such that for any a € S°, if we define
lall ups = maz (|07all,, we get : IW(a)ll < Cllallsupas

hence for any h > 0, [Wi(a) — Wi(@)l = IW(as — a0 < Cllon = aclpy — 0, hence
the map (t — W/(a)) is continuous at h.

Remark. The above proof is inspired by [S1], page 225, first paragraph, which contains
a hint of proof for the fact that the map (¢t — W;(a)) is also continuous (Sheu uses
a weaker seminorm on S° but this does not matter). So the field associated to W}
is, like (', trivial on R**. But these two fields on R are different (see remark 2 after
lemma 4.5).

Lemma 4.3 (' is upper semi-continuous at 0.

Proof. (This fact was already proved in [S1] p.225, hence this lemma is not necessary,
but it is worth noticing that the inequality we just mentionned yields a much simpler
proof). Call f, the product on Sp such that Wi(f)Wi(g) = Wi(firg). Let a € S°
and € > ||a|l. Choose M such that ||alje < M < € and let ¢ =1/M? — |a|* and
r(h) = c*fnc + a*fra — M2, When h — 0, L%l = '—@;—r@ is bounded in S~% ([Vo] p.
124), hence r(h) — 0 for the semi-norms of $~2 and a fortiori for the semi-norm || ||,
defined in the proof of the previous lemma. Therefore, we also have r(h), — 0 for this
semi-norm. This yields :

|Wh(a)||? - [Wi(a)*Wa(a)|| — |M? — Wi(c)*Wa(o)ll
[Wh(a)*Wh(a) + Wi(c)*Wh(c) — M?||
Wa(r §h))|| = HW'( ()OI = IIW(r(R)u)l

C”T( h"supllh 0 ?

so for h small enough, ||W}(a)|| = ||[Wi(a)| <e.

Let us recall ([Gu], §7 and 8) some facts and notations needed for the next three
lemmas. Let m be the gaussian measure on C, defined by :

IAN I INIA

dm(z,y) = %e-@’ﬂ"’) dz dy.

(By the change of variable described at the beginning of this paragraph, m corresponds
to the normalized Lebesgue measure on D). The Fock space F is the Hilbert subspace
of L*(C,m) of holomorphic functions. For any A € C, let £y(2) = e** : this defines
€x € F. The Bargmann transform is an isomorphism between F and L2(R), which
sends the “Berezin basis” (e)))ec of F to the “Berezin basis” (cyfy)rec of L*(R), with
fi(z) = exp(v/2 Az — %2-) and c) is a constant (such that the Bargmann transform is
umtary) The Bargmann transform also sends the Hilbert basis (e},),en of F defined

by e.,(z) = 2"/V/n! to the Hilbert basis (en)nen of Hermite functions in L2(R.).
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Any bounded operator T% on F is completely determined by its “Berezin symbol”
o defined by :

- (Tue)\’ 6#) — —Xu H
O'Tl()\,/l) = W = e (T 6,\,5,_,).
(We take Guillemin’s notations, where (f, g) is linear in f and antilinear in g). (Since
the map o74(, p) is holomorphic in g and antiholomorphic in ), it is determined by its
restriction to the diagonal, denoted by o7y again).
If T is the operator on L?(R) related to T" by the Bargmann transform, the Berezin
symbol of T may be calculated by :

e~ (Otn)?/2
on = UL S (T,

This holds in particular when T = A, is the operator associated to a Weyl symbol
A€ 8° (i.e. A, =W(a), with A(z,y) = a(y,z)).

Lemma 4.4 With the preceeding notations,
i)

o) = e [ (@) dmz2)
ii)

inf(m,n) (=1)* L ki

(W(a)(em), en) = Vm!n! kz_% H(m — B)l(n — k)’

with
I, = / a(z)(V22) (V2z)* dm(z).
Proof. 1) Let us generalize and rectify Guillemin’s calculus ([Gu] pp. 186-187). By
definition of A, = W(a) and of f),

z? 4+

(Al = o= [ Ao, T )exp (VA 4 p2) = 5L ip(e — ) dacyd.

If we make the change of variable ¢ = ’—42'1 with = and p fixed, the integral above becomes

1 - )
- / A(p, g)[- - Jexp(2v2 Xq — 2¢* — 2ipq) dq dp,

with  [...]= /exp((\/i(y -X) +2(g+ip))z —2?) dz =
VE (2 g+ in),
hence (after some simplifications) (A.(f), f.) =
exp((A + #)*/2)

T2 [ A @en(-(VEA =~ (= ip)(VEu — (g~ ip)) dq dp
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and the result follows.
ii) From i) we deduce :

\/‘ )\z \/5;17)"

] —
(Afsl\’eﬂ' = ]

dm(z).

sion becomes : r
—
(—LFX s,
rislk! ’

—/\I-l Z /4 Irs

|
r,820 r S

‘/ r.1>0
Since a is bounded and [, ;50 M,—’\Ll‘—/_—s—]— m(z) = Vl;e(|’\|+|“|)2/2 < 00, this expres-

hence (Akey,e,) is equal to the series (with inﬁnite bi-radius of convergence)

mf(m,n) 1) I._ -

5% e

m,n>0

But it is also equal to

Im

5 (en e (Abe e enen) = 3 S Ab(en), e

m,n>0 m,n>0

with bi-radius at least (1,1) (since |(A(el,),es)] < ||A%|]). The result follows by

identification.
Lemma 4.5 For anya € S° and h > 0, ao(Wj(a)) = o1(a).

Proof. This lemma rectifies the proposition 2.1 of [S1], which states an analogous
formula but with o instead of oy : o(a)(v) = him a(rv), o1(a)(v) = o(a)(V) (see our
remark after corollary 1.8). The mistake in [S1] came from two reasons : the wrong
orientation (which we compensated by replacing a by A in the definition of W), and
the use of an erroneous formula in [Gu], which we just rectified in lemma 4.4.i : in [Gu]
p. 187, the result must be replaced by

"Aa(a:;'l %) / A(p, q)e™ @ ~@+)" dm(q — ip) = (€72 A)(=b, a),

hence U(AE.) =e 2?8, with B(z,y) = .A(—\/-y, \/_5")

In formula 8.20 p.187 of [Gu] and in the subsequent pages A must be replaced by B.
Apart from this, the proof is the same as in [S1] so we do not repeat it.

Remarks.

1. If we do not replace a by A, i.e. if we deform the opposite Poisson bracket, (as

Sheu did) we find oo(W}(a))(2) = o(a)(i 2), not o(a)(2).

2. From this lemma we deduce : go(Wy(a)) = o1(a(.,h.)). This shows that one
cannot hope izn(z) Whi(a) — Wi(a) = 0 to hold in general (i.e. for all a € S°),
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because this would imply izn}) b(—seebtihsing ) — p(cosf 4+ i sinf) (uniformly in )

cos20+h2sin?6
for all b = oy(a) € C(T). This may be roughly expressed by saying that the two
(isomorphic) fields on R* associated to W, and W}, which both consist of the
same trivial field on R**, “glued” to the same C*-algebra at A = 0, are “not glued
in the same way”.

3. The isomorphism between W} (S°) and C*(S), proved in [S1] proposition 2.1 and
used in ourlemma 4.2, can now be made explicit in its correct version : it is simply
an equality, when C*(§) is realized as a concrete algebra of operators on L%(R),
letting S be the unilateral shift operator on the Hilbert basis of Hermite functions
en. Moreover, oo(W}(@1)) = 01(@1) = (2 = Z) = 0¢(S*), thus modulo compact
operators, Wj (@) is congruent to §* = @,. By definition of B, (corollary 1.8),
W;(S9) is also equal to B, and Wj(a,) is congruent to @, (modulo compact
operators), for any values h > 0 and p € (—1;1).

Lemma 4.6 Let (e,),cN be the Hilbert basis of L*(R) of Hermite functions and S be
the unilateral shift on this basis. Wi(@,) is of the form R,S* with Ry, selfadjoint and
diagonal in this basis.

Proof. @ (z) = Bl 1 —e-l?"/2, hence (taking the polar decomposition z = pu)

(@)n(pu) = u b(hp*) with b(t) = V1 —e-t/2. More generally, let us apply the re-
sult of lemma 4.4.ii to a symbol a;, such that a,(pu) = u?b(hp?) for some integer d and
some function b. Under this hypothesis, I, will be equal to

/ur—a—db(hPZ)(\/i p)r+s dm(pu),
hence it will be 0 if r # s + d, and
Topa = / b(ht)(2t)*Hi et dt.

Hence (W(ain)(em),en) =0 if m # n+ d and

inf(n+d,n)

1)k1n+d kn—k
1/ In! z
(W((lh en+d n + d n k'(n n d_ k)‘(n — k‘)'

will be real if b takes real values.

Now we may consider that p and W' are two deformations of Poisson-B; within the
same field ¢’, and that for any a € By, pi(a) — Wj(a) — 0 when h — 0% (using the
identification of ¢ and (’ given by theorem 4.1 and the identification of the Poisson-disk
and Poisson-R?). Moreover, the product induced by W}, (on B,, and even on S°) admits
an asymptotic expansion. The following last proposition gives an analogous asymptotic
expansion for the product induced by p, and a nice description of pi(a) — W (a) for
“good choices” of p — h(p) (among functions equivalent to 1 — p? when g — 17, cf
proposition 2.2)
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Proposition 4.7 Let ¢ : By — B, be the linear map such that

)
*

)

i(p-1)q@&7 VYpgeN
—o(f) Vf € By,

and C = { , } + 0p, with dp(f,g) = fe(g) + ¢(f)g — ¥(f9)-
i) pa(f)en(9) = pr(fg + 2C(f,9)) + o(h)

i) If h =255 + o(h?) (or p = 1302 + o(h?), which is equivalent), then

Q

<2

o(

1
and ¢

x.,

pr(f) = WS + () +olk) VS € By

Proof. For f,g € By (cf lemma 1.12), one easily finds C(f, g) such that (i) holds, using
the relations between @, and 7, (definition 1.10). (I do not reproduce this calculus here
because it is not nice-looking, except that C'(g*, f*) = —C(f, g)* since p is *-preserving).
Let D = C —{, } (hence D(g*, f*) = —=D(f,9)*). One may check by induction on
p,¢,p',q € N that

@@} = 30d - a)ar " A and o
@3, a7y} = 271” [(pd’ + qv' + 2pp )" — 2pp'ay " ).

Then one may calulate D(f,g) for f € Bf and g € B, and check that it is equal to
0¢(f,g). This proves (i). We shall prove (ii) in three steps : prove that it holds for
f =7, (step 1) and for f = @; or @} (step 2), and then use (i) to extend (ii) to any
f € By (step 3).

Stepl. Applying the formulas of the proof of lemma 4.6 to a(z) = ¥,(z) = e~ 1" we

get :
(-t
(1+ )+

Comparing this with 7,(e,) = p"e,, one easily gets that if u = i;: : + o(h?) then

Wi (71)(en) = €n.

T = (14 HAWLT) +olk) = Wi(T, + 5 p(7)) +o(h).

Step 2. Let w, = Wj(@) and let z,(h) be the real numbers such that wp(ent1) =
zn(h)e,. The application of the formulas of the proof of lemma 4.6 leads to rather
complicated results for ¢ = @; (in order to get the exact values of z,(h)), but the

results are much simpler for a = @? :

"&)(e = nt3 - (1—h/2)"+1
Wi (@y)(en+2) 2/t D t2) (1+h/2)"+2( (2n+3))] "

Using the fact that w? = W} (@?) +o(h), the above formula proves that for A sufficiently
small, Vn € N, z,(h)zn+1(h) > 0 hence (since Jim zn(h) = 1) the numbers z,(h) are
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all positive. This simplifies the proof of theorem 3.1 in the particular case 7 = W'
(making lemma 3.2 superfluous). Moreover, this allows a refinement of this proof : if
(1 — wpwp) — p2(1 — wjwy) = o(h?) (instead of only o(k)) then (by the same calculus)
wy, — @, = o(h) (instead of only €(k)). Using asymptotic expansions [Vo], an elementary
calculus shows that this condition (1 — wpw}) — p?(1 — wiws) = o(h?) is obtained when
1—p? — 2(1 + p?) = o(h?). Thus we get

&, = Wi(@) + o(h) = Wi(@ + p()) +olh).

Since W’ and p are *-preserving and ¢(@}) = —p(@;) = 0, we deduce the same property
for a7.

Step 3. More generally, let p and W’ be two deformations, in the same field, of some
algebra B; generated by some subset X, such that Vf,g € By,

pr(f) Wi(f) +e(h)
pn(f)en(9) = pu(fg+ FEC(f,9)) + o(h),
Wi(H)Wi(g) = Wi(fg+ ! LAC'(f,9)) +o(h),

C = C' + Oy for some linear map ¢, and (ii) holds for any generator f € X. In order
to extend (ii) to any f € B, it suffices to show that if (ii) holds for f and g then it
holds for fg. Let us do it :

pu(f9) = Pr(£pnlg) - on(FC(f,9)) +o(k)

Wi (f + Fo(N))Wilg + Fel9)) — Wi(13EC(£,9))) + o(h)
Wh(f9+"'[f<P( )+ @(f)g +C'(f,9) — C(f,9)]) + o(h)
Wi(fg+ Fe(fg)) + o(h).

Remark. The first assertion (i) in this proposition gives another way to prove proposi-
tion 2.2.
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Lattices in semi-simple Lie groups, and
multipliers of group C*- algebras

Mohammed E. B. BEKKA and Alain VALETTE

1 Introduction, and some history.

Let G be a locally compact group, and H be a closed subgroup. Viewing L}(G) as
a two-sided ideal in the measure algebra M(G), and viewing elements of L'(H) as
measures on G supported inside H, we obtain an action of L'(H) on L!(G) as double
centralizers. It is easy to check (see e.g. proposition 4.1 in [Rie]) that this action extends
to an action of the full group C*-algebra C*(H) as double centralizers on C*(G); this
corresponds to a *-homomorphism jg : C*(H) = M(C*(G)), where M(C*(G)) denotes
the multiplier C*-algebra of C*(G). We now quote from p. 209 of Rieffel’s Advances
paper [Rie]:

It does not seem to be known whether this homomorphism jy is injective. It will
be injective if and only if every unitary representation of H is weakly contained in the
restriction to H of some unitary representation of G [Fe2]. J.M.G. Fell has pointed
out to us that the example that he gave in which this appeared to fail (p. 445 of [Fe2])
depended on the completeness of the classification of the irreducible representations of
SL3(C) given in [GeN], and there is now some doubt that this classification is complete
[Ste].

Probably this quotation requires some word of explanation. In [Fe2], Fell studies
extensions to the topological framework of Frobenius reciprocity for finite groups. Thus
he introduces a list of weak Frobenius properties, the last and weakest one being (WF3):

The locally compact group G satisfies property (WF3) if, for any closed subgroup
H of G, every representation o in the dual H is weakly contained in the restriction s
of some unitary representation = of G.

Property (WF3) is indeed equivalent to the injectivity of jg for any closed subgroup
H; for completeness, we shall give a proof in Proposition 2.1 below. In §6 of [Fe2], Fell
wishes to show that even (WF3) may fail, by taking G = SL3(C) and H = SLy(C); to
this end he appeals to the incomplete description of G given in [GeN]; Fell’s proof was
recently corrected in Remark 1.13(i) of [BLS].

In this paper, we take for G a semi-simple Lie group with finite centre and without
compact factor, and as closed subgroup a lattice I'. In section 3, we prove:

THEOREM 1.1 Let G be a semi-simple Lie group without compact factors, with finite
centre and with Kazhdan’s property (T). Let T be an irreducible lattice in G, and let o
be a non-trivial irreducible unitary representation of I' of finite dimension n. Then o
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determines a direct summand of C*(I') which is contained in the kernel of jr : C*(T') —
M(C*(Q)); this direct summand is isomorphic to the algebra M,,(C) of n-by-n matrices.

If G is a non-compact simple Lie group with finite centre, then G has property (7T)
unless G is locally isomorphic either to SO,(n,1) or SU(n,1) (see [HaV]). For these
two families, we prove in section 4:

THEOREM 1.2 Let G be locally isomorphic either to SO,(n,1) or SU(n,1), for some
n > 2. Let T be a lattice in G. Denote by f‘f the set of (classes of) irreducible, finite-
dimensional unitary representations of I'. If the trivial representation 1r is not isolated
in I'y (for the induced Fell-Jacobson topology), then infinitely many elements of f‘f are
not weakly contained in the restriction to T' of any unitary representation of G. In
particular jr : C*(I') = M(C*(G)) is not injective.

In view of Theorems 1.1 and 1.2, it seems natural to formulate the following

Conjecture. If T' is a lattice in a non-compact semi-simple Lie group G, then
jr : C*(T') = M(C*(Q)) is not injective.

This conjecture means that, if p is a representation of G which is faithful on
M(C*(G)) (e.g. take for p either the universal representation of G, or the direct sum of
all its irreducible representations), then p|r is never faithful on C*(I'); this has bearing
on a question of de la Harpe in his paper in these Proceedings (see immediately after
Problem 13 in [Har]). In §5, we give examples of lattices I' in SO,(n, 1) or SU(n, 1) such
that 1r is not isolated in I'f; this is the case for any lattice in SL,(IR), any non-uniform
lattice in SL,(C), and any arithmetic lattice in SO,(n,1) for n # 3, 7.

In the final §6, we come back to property (WF3) and show that it always fails for
almost connected, non-amenable groups:

THEOREM 1.3 Let G be an almost connected, locally compact group. The following
properties are equivalent:

(i) G has Fell’s property (WF3);
(i) G is amenable.

Observe that Theorem 1.3 cannot hold for any locally compact group. Indeed, any
discrete group G satisfies property (WF3) since, given a subgroup H of G, one checks
easily that C*(H) is a C*-subalgebra of C*(G) = M(C*(G)).

We thank M. Boileau, M. Burger, B. Colbois, T. Fack, F. Paulin and G. Skandalis
for useful conversations and correspondence. P-A Cherix has nicely done the final
TeXification and proofreading.

A word about terminology: as usual, semi-simple Lie groups are assumed to be
connected and non-trivial; group representations are assumed to be unitary, strongly
continuous, and on non-zero Hilbert spaces.
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2  On multipliers of C*-algebras.
For a C*-algebra B, we denote by M(B) its multiplier algebra.

PROPOSITION 2.1 Let A, B be C*-algebras, and let j : A — M(B) be a *-
homomorphism. The following properties are equivalent:

(i) j is one-to-one;
(i) for any o € A, there exists a non-degenerate *-representation = of B such that o
is weakly contained in % o j, where & denotes the extension of = to M(B);
(iii) any o € A is weakly contained in {7 o j |7 € B}.

Fell’s property (WF3), mentioned in §1, is deduced from property (ii) above by
taking B = C*(G) and A = C*(H), for any closed subgroup H of the locally compact
group G.

Proof of Proposition 2.1. (i) = (ii) Let us assume that j is injective, so that we
may identify A with a C*-subalgebra of M(B). Let 7 be a faithful representation of B.
It is known that the extension 7 of = to M(B) is also faithful ([Ped], 3.12.5). Thus any
representation of A is weakly contained in the restriction of # to A.

(ii) = (iii) This follows from decomposition theory. R

(iii) = (i) Assume that (iii) holds. Fix a non-zero element z of A; choose o € A
such that o(z) # 0. Our assumption says that Kero contains N,z Kertt o j =
Ker(@,ep 70J); in particular z & Ker(@,cp5 70j). It follows that j(z) # 0, i.e. that
J is one-to-one.

3 Proof of theorem 1.1

We slightly generalize Theorem 1.1 in the following form:

THEOREM 3.1 Let G be a non-compact semi-simple Lie group with finite centre
and with Kazhdan’s property (T). Let T' be an irreducible lattice in G, and let o be
an irreducible representation of T' of finite dimension n, which is not contained in the
restriction to I' of a unitary, finite-dimensional representation of G. Then o determines
a direct summand of C*(T') isomorphic to the algebra M, (C) of n-by-n matrices, which
moreover is contained in the kernel of jr : C*(T') — M(C*(G)).

Observe that Theorem 1.1 is an immediate consequence of Theorem 3.1: indeed, if
G has no compact factor, then any unitary, finite-dimensional representation of G is
trivial.

Proof of Theorem 3.1. Since G has property (T), so has I' (see [HaV], Théoréme
4 in Chapter 3). Let o be an irreducible representation of T, of finite dimension n.
By Theorem 2.1 in [Wan), o is isolated in the dual I', hence determines a direct sum
decomposition of C*(T'):

C*(T')=J & M,(C)

where J is the C*-kernel of o.
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We assume from now on that o is not contained in the restriction to I' of a unitary,
finite-dimensional representation of G, and wish to prove that the direct summand
M;,(C) lies in the kernel of jr : C*(T') = M(C*(G)). Suppose by contradiction that jr
is non-zero on M,(C). Choose 7 € G such that # o jr is non-zero, hence faithful on
M, (C) (here % denotes the extension of 7 to M(C*(G)), as in Proposition 2.1). Then
the C*-kernel of # o jr is contained in J, which means that ¢ is weakly contained in the
restriction 7|p . As o is isolated in I, this implies that o is actually a subrepresentation
of 7|r (see Corollary 1.9 in [Wan]). Our assumption shows that = is infinite-dimensional.
Two cases may occur:

(a) = is a discrete series representation of G (if any); this would imply that o is an
irreducible subrepresentation of the left regular representation of I', which in turn
implies that I is finite - and this is absurd.

(b) 7 is not in the discrete series of G; then, by a result of Cowling and Steger
(Proposition 2.4 in [CoS]), the restriction «|r is irreducible, which contradicts the
fact that o is a finite-dimensional subrepresentation.

With a contradiction reached in both cases, the proof of Theorem 3.1 is complete.
We thank G. Skandalis for a helpful conversation that led to a more explicit version of
Theorem 3.1.

Remark. Let us show that there are countably many finite-dimensional elements
o € I satisfying the assumptions of Theorem 3.1.

Thus, let G/Z(G) be the adjoint group of G; this is a linear group. Denote by I'y
the image of I in G/Z(G); as a finitely generated linear group, I'; is residually finite
(see [Mal]); a non-trivial irreducible representation o of I that factors through a finite
quotient of I'; cannot be contained in the restriction to I' of a finite-dimensional unitary
representation of G.

This argument shows that Ker[jr : C*(I') — M(C*(G))] contains the C*-direct
sum of countably many matrix algebras.

4 The cases SO,(n,1) and SU(n,1).

We begin with the following result, which is certainly known to many experts (see
[Moo], Proposition 3.6; compare also with [Mar], Chap. III, (1.12), Remark 1).

PROPOSITION 4.1 Let G be a simple Lie group with finite centre, and let ' be a
lattice in G. Denote by « the quasi-regular representation of G on L*(G/T), and by 7o
the restriction of v to L:(G/T) = {f € L*(G/T)| < f|1 >=0}.

(a) There exists N € IN such that the N-fold tensor product v§" is weakly contained
in the left regular representation A\ of G.

(b) The trivial representation 1g is not weakly contained in vo.

Proof. (a) Suppose first that G has Kazhdan’s property (7). Then, by Theorems
2.4.2 and 2.5.3 in [Cow], there exists N € IN such that 7®" is weakly contained in
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Mg for any unitary representation 7 of G which does not contain 1g. This implies the
result.

Suppose now that G is locally isomorphic either to SO,(n,1) or to SU(n,1). Let
K be a maximal compact subgroup of G. Let G; = {r € Gl 7|k contains 1k} be
the set of all spherical representations of G. Observe that G, is open in G (because
7 € G, if and only if there exists ¢ € H, such that fK < w(k)¢|é > dk # 0). For a
unitary representation o of G, set Suppo = {r € G | m is weakly contained in o}. By
Proposition 3.6 in [Moo), the existence of N € IN such that o®" is weakly contained
in Ag is equivalent to 1 ¢ Suppo N Gy (the proof of this uses the explicit description
of the unitary duals of SO,(n,1) and SU(n,1)). So we must prove that 1g is not in
Supp o N G, or, equivalently, that 1 is isolated in Suppy N G;.

Recall the standard parametrization of G;. Let p be half the sum of the positive
roots associated with a maximal split torus of G. Then G; identifies (topologically)
with ¢IR* U [0, p], the representations 7, with s € iIR* being the spherical principal
series representations, those m, with s €]0, p[ being the spherical complementary series
representations, and 7, being the trivial representation 1g.

Let X be the Riemannian symmetric space associated with G. The Laplace-Beltrami
operator A on X is invariant for the left action of G, so it descends to a positive,
unbounded operator on L?(I'\X). It is well-known that =, is weakly contained in v if
and only if p? — s? belongs to the spectrum of A on L%(I'\X) (see §4 of Chap. Iin
[GGP] for G = SL,(R) and I uniform, or Theorem 1.7.10 in [GaV] for the general
case; note that this Theorem is stated there for the quasi-regular representation of G
on L?(X), but the proof extends word for word to our representation 7).

Denoting by A;(I'\X) the bottom of the spectrum of the restriction of A to the
orthogonal of constants in L2(I'\ X ), we see that our result follows from A;(T'\X) > 0. In
turn, this is a consequence of the facts that the continuous spectrum of A on L%(T'\ X) is
the half-line [p?, oo[ (see [OsW]), and that its discrete spectrum is a sequence increasing
to oo (see Theorem 3 in [BoG]). In our case, A\;(G\X) > 0 can also be deduced from
the fact that Ay(M) > 0 for any complete Riemannian manifold M with finite volume
and pinched negative sectional curvature (see [Dod]).

(b) This follows from (a) and non-amenability of G.

Proof of Theorem 1.2

We shall use several times Fell’s inner hull-kernel topology, which is defined on sets
of unitary (not necessarily irreducible) representations of a locally compact group (cf.
[Fel], section 2): a net (7;);es of representations converges to a representation = if and
only if 7 is weakly contained in {r;|j € J} for each subnet (m;);es of (m)ier.

Assume that G and I satisfy the assumptions of Theorem 1.2. We are going to show
that Fell’s property (WF3) fails for the pair (G,T); i.e., we shall produce some o € I'
such that o is not weakly contained in the set {r|r|7 € G}.

Since 1r is not isolated in Ff, there exists a sequence (0, )nen in I‘f — {1r} that
converges to 1 .

1st step: There exists a sequence of integers n; < n, < ..., and spherical comple-
mentary series representations ,, of G such that =, is weakly contained in Ind3a,,
for any k, and klim o, = lg .
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Indeed, by continuity of induction ([Fel], Theorem 4.1),
lim Indfo, = IndS1p = .

n—00

Since 1¢ is a subrepresentation of v, we also have
..If.rﬁ lnd?an =1g.

This implies that there exists integers ny < n; < ..., and irreducible representations ,,
of G such that ,, is weakly contained in IndZo,, for any k, and such that him 7., =

1 (cf. proof of Lemme 2, §1, in [Bur]). Since the spherical dual @, is open in @, and
since G is not amenable, we can clearly assume that =,, is either 1g, or a spherical
complementary series representation. To exclude the case 7,, = lg, we are going to
show that 1g is not weakly contained in IndSo,,; this can be viewed as a form of
Frobenius reciprocity.

Indeed, since oy, is finite-dimensional, o,, does not contain 1g weakly. Moreover,
we know by Proposition 4.1(b) that 1 is isolated in Suppy. Hence, by a result of
Margulis ([Mar], Chap. III, (1.11)(b)), 1 is not weakly contained in IndSo,,. This
proves the 1st step.

Let 7, € G be a sequence as above. By Proposition 4.1(a), there exists N € IN
such that 4®" is weakly contained in Ag. Since !112 Tn, = lg , We see that W%N is
not weakly contained in Ag for I € IN big enough. Fix such an /, and set o = 0,,, and
T ="y .

2nd step: o is not weakly contained in {p|r: p € G}. Indeed, assume by contra-
diction that there exists a sequence p, € G with Lim pxlr = o.

Then ,{i’ﬁ IndZp,|r = IndSo. Hence, since 7 is weakly contained in IndZo :

lim Ind¥(palr) = 7.
But
IndZ (palr) = pa ® Indf1r = po ® (Pn ® Y0)-
Since m is irreducible, this implies (upon passing to a subsequence) that either
bm pn®yo=mor lim p, =m.

We first exclude the case lim p, ® o = 7. Indeed, (pn ® 70)8Y = p&N @ A8V is
weakly contained in Ag. Hence, lim p, ®yo = 7 would imply that 78N = lim (pn ®
70)®" is weakly contained in Ag; this would contradict our choice of .

It remains to exclude the case lim p, = 7. Since the set G = {ms| s €]0,r[} of

all spherical complementary segi%s representations is open in G and since 7 € élc, we
can clearly assume that p, € G; for all n. Then, there exists s, €]0,r[ such that, for
all n:

pn € {75 :0 <8< 3}
Therefore, there exists M € IN such that p® is weakly contained in Ag, for all n € IN.

Hence
. M
o®M = lim (p2")Ir
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is weakly contained in Ap. Since 0®M is finite-dimensional, this contradicts non-
amenability of G. This concludes the proof of Theorem 1.2.

Remark: In our previous paper [BeV], Theorem 1.2 was already proved for G =
PSLy;(IR) and T the fundamental group of a closed Riemann surface of genus 2.

5 Some examples of lattices in SO,(n,1) and SU(n,1).

Let T be a lattice in a simple Lie group locally isomorphic either to SO,(n,1) or
SU(n,1). Let us denote by I'y, the set of elements of I' that factor through some finite
quotient of T'.

DEFINITION 5.1 We say that T satisfies property (*) if the trivial representation
1r is not isolated in T tq, for the induced Fell-Jacobson topology.

Our property (*) is precisely the negation of property (T'; R(S)) in the notation
of Lubotzky-Zimmer [LuZ], where a lucid discussion of this property appears on pp.
291-292. Since Iy, is a subset of Ff, it is clear that, if I satisfies (*), then 1r is not
isolated in I's; note the question at the bottom of p. 291 of [LuZ] whether or not the
converse implication holds.

The purpose of this section is to give examples of lattices with property (*), i.e. for
which Theorem 1.2 is true. We begin with a sufficient condition for property (*).

PROPOSITION 5.2 IfT has a finite index subgroup I', that maps homomorphically
onto 7L, then T’ has property (*).

Proof. Let (xm)men be a sequence of non-trivial characters of finite order of 7,
viewed as characters of I',, that converges to the trivial character. Set:

T = Ind?oxm .

Claim: =, factors through some finite quotient of I'. Indeed, since x,, has finite order,
the subgroup Ker x,, of ', has finite index in T', so there exists a normal subgroup N,,
of I, of finite index and contained in Ker x,,. Then =, factors through the finite group
I'/N,. , which establishes the claim.

The rest of the proof is similar in spirit to the first step of the proof of Theorem 1.2,
but considerably easier: by continuity of induction, the sequence (7, )men converges
to the quasi-regular representation A, of T' on [3(I'/T,). Since ), contains the trivial
representation lr, we may select for any m € IN an irreducible component oy, of 7, in
such a way that the sequence (o,,)men converges to 1r in I'. By the claim, each oy,
lies in I fas ﬁnally, no o, may be trivial, by Frobenius reciprocity. This shows that 1
is not isolated in I'y,.

Because T is finitely generated, the condition that I, maps homomorphically onto
ZZ is equivalent to the non-vanishing of the first cohomology H(T,,C). This is known
to have deep representation-theoretic consequences, as it gives information on the de-
composition of L*(G/T,) into irreducibles (see the whole of Chapter VII in [BoW], and
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especially Propositions 4.9 and 4.11). There is a conjecture, sometimes attributed to
Thurston (see e.g. [Bor], 2.8), according to which any uniform lattice T in SO,(n,1)
(n > 2) admits a finite index subgroup T', such that H*(T',,C) # 0. Next proposition
summarizes what we know about this problem, both in the uniform and non-uniform
cases.

PROPOSITION 5.3 The following lattices T' in SO,(n,1) admit a finite index sub-
group T, such that H'(T,,C) # 0, and hence satisfy property (*):

(1) any lattice in PSLy(IR) ~ SO,(2,1);
(ii) any non-uniform lattice in PSLy(C) ~ SO,(3,1);
(it) any uniform lattice T in PSLy(C) such that, for some z in the 3-dimensional
real hyperbolic space H3(IR), the orbit T'.x is invariant under some orientation-
reversing involutive isometry of H3(IR);

(iv) any arithmetic lattice, provided n # 3, 7; any non-uniform arithmetic lattice,
without restriction on n.

Proof. The proof is compilation; however, it makes constant use of Selberg’s lemma
asserting that any lattice has a torsion-free subgroup of finite index.

(i) A torsion-free lattice in PSL,(IR) is either a surface group (in the uniform case)
or a non-abelian free group (in the non-uniform case); in any case, it surjects onto
Z.

(i1) Any torsion-free non-uniform lattice in PSL,(C) surjects onto Z, by Propositions
5.1 and 3.1 in [Lub].

(iii) See Theorem 3.3 and Corollary 3.4 in [Hem]. Explicit examples of such lattices
are given in §4 of [Hem).

(iv) The first statement is the main result of [LiM]. For the second one, combine the
main result in [Mil] with the remarks on p. 365 of [LiM].

Concerning uniform lattices in PSL,(C), it seems appropriate to mention here the
connection with a somewhat (in)famous question which is for sure due to Thurston
(question 18 in [Thu]): does any complete, finite-volume, hyperbolic 3-manifold have a
finite-sheeted cover that fibers over the circle $S'? An affirmative answer would imply
that any lattice I' in PSL,(C) satisfies property (*) (indeed, let I'y be a torsion-free
subgroup of finite index in T; then T'; is the fundamental group, m;(M), of a complete
finite-volume hyperbolic 3-manifold M; if N is a finite-sheeted cover of M which fibers
over S, then I', = m(N) is a finite-index subgroup of I'; that maps onto 71(S*) = ZZ).
For an example of a compact hyperbolic 3-manifold that does not fiber over S but
with a finite-sheeted cover that does, see example 2.1 in [Gab]'.

1Clearly, for a 3-dimensional closed hyperbolic manifold M, fibering over S* is a much stronger
condition than having non-zero first Betti number. Algebraically, this can be seen by Stallings’fibration
theorem [Sta]: if N is a normal subgroup of 71(M) such that m;(M)/N = ZZ, then N comes from a
fibration of M over S if and only if N is a finitely generated subgroup. Also, surface groups in (M)
that come from some finite-sheeted cover of M fibering over S! (so-called virtual fibre groups) have
been characterized algebraically in Corollary 1 of [Som].
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In contrast with Proposition 5.3, we are not aware of any "large” class of lattices in
SU(n,1) that satisfies property (*). Essentially the only result we know is that, for any
n > 2, there exists a uniform arithmetic lattice ' in SU(n,1) such that H(T',C) # 0
(see Theorem 1 in [Kaz], or Theorem 1.4(b) in [Li]).

To conclude, let us indicate why, for a given lattice ' in SO,(n,1), it is usually
difficult to check that T satisfies property (*). Assume that I' is arithmetic. It is then
easy to construct elements of I' sq ¢ take a congruence subgroup I'(p) and consider
irreducible representations of I' that factor through the finite group I'/T'(p) (for I' =
SLy(7L), these are representations that factor through some SLy(Z/nZ)). Denote by
T 4rith, the subset of elements in I'y, that factor through some I'/T'(p); then it follows
from Selberg’s inequality (see [Sel] for n = 2, and corollary 1.3 in [BuS] for n > 2) that
the trivial representation 1p is isolated in I’ arith - Thus, if T verifies property (*), any
non-stationary net in I 4 that converges to 1r will have to leave I arith €ventually.

We have been informed by M. Burger that, in unpublished work with P. Sarnak,
similar phenomena have been obtained for a large class of arithmetic lattices in SU(n,1).

6 Proof of Theorem 1.3

We begin with hereditary properties of the class of groups satisfying Fell’s property
(WF3).

LEMMA 6.1 Let G be a locally compact group with property (WF3).

(a) Any closed subgroup of G has property (WF3).
(b) Let K be a compact normal subgroup of G; then G/ K has property (WF3).

Proof. (a) is obvious. To see (b), denote by p : G — G/K the quotient map. Let L
be a closed subgroup of G/K; fix € L. Set H = p~'(L) and o = 70 (p|y). Let 7 be a
representation of G on a Hilbert space H such that 7|y weakly contains o. Let HX be
the space of K-fixed vectors in H. Since K is a normal subgroup, HX is an invariant
subspace of 7, and we denote by 7, the restriction of 7 to H¥. Since K is compact and
o is irreducible, it is easy to see that o is weakly contained in m,|g. But 7|y can be
viewed as a representation of L = H/K, that weakly contains 7.

Next lemma is probably well-known.

LEMMA 6.2 Let G be a Lie group, and let S be a semisimple analytic subgroup. The
closure S of S is reductive.

Proof. We begin with a

Claim: Let h be a finite-dimensional Lie algebra, and let s be a semisimple ideal;
then there exists an ideal j of A such that h = s@j. Indeed, let Der(s) be the Lie algebra
of derivations of s. Since s is an ideal in h, we have a Lie algebra homomorphism:

a:h— Der(s) : X — ad(X)),
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the kernel of which is precisely the centralizer of s in h; set j = Kera. Since s is
semisimple, Der(s) is canonically isomorphic to s, so that « is onto and h = s @ j; this
establishes the claim.

To prove Lemma 6.2, denote by s and h the Lie algebras of S and S respectively.
Clearly Ad(z)(s) = s for any z in S, so by density the same is true for any « in S.
This shows that s is an ideal in h. By the claim, there exists an ideal j of h such that
h =s@® j. To see that h is reductive, it is enough to prove that j is central in h. But,
for X € j, we have Ad(z)(X) = X for any z in S; again by density, this remains true
for any z in S; so X is central in h.

Proof of Theorem 1.3 It is easy to see that any amenable group G satisfies
property (WF3); indeed, for a closed subgroup H of G, by amenability of H any
representation of H is weakly contained in the left regular representation of H, which
is itself contained in the restriction to H of the left regular representation of G see also
Corollary 1.5 in [BLS] for another proof.

Let us now prove the converse, namely that any almost connected locally compact
group G with property (WF3) is amenable. In this proof, the stability of amenability
under short exact sequences will be used constantly.

1st step: reduction to the connected case. Let Gy be the connected component
of the identity of G. By Lemma 6.1(a), Go has property (WF3). If G, is amenable,
then so is G, since G/Gy is compact.

2nd step: reduction to the Lie group case. Let G be a connected group with
property (WF3). By the structure theory for connected groups, G admits a compact
norrnal subgroup K such that G/ K is a Lie group. By Lemma 6.1(b), G/K has property
(WF3). If G/K is amenable, then so is G, since K is compact.

3rd step: reduction to the reductive case. Let G be a connected Lie group
with property (WF3). Let G = RS be a Levi decomposition, with R the solvable radical
and S a semisimple analytic subgroup. Then the closure S is reductive with property
(WF3), by Lemmas 6.1(a) and 6.2. If S is amenable, then so is S/(SN R) = G/R,
hence so is G.

Coda. Let G be a connected, reductive Lie group with property (WF3). The
adjoint group G/Z(G) is a semisimple Lie group without centre, so it decomposes as a
direct product

G/Z(G) =Gy x--- x Gy

of simple Lie groups without centre. To prove that G is amenable, we have to show
that G; is compact for j = 1,---,n. So suppose by contradiction that some Gj, say G,
is not compact. By root theory, G; then contains a 3-dimensional analytic subgroup
L which is locally isomorphic to SL,(IR). Because G} is centreless, hence linear, L is
closed in G, (any semisimple analytic subgroup in a linear group is closed, see Theorem
2 in [Got]). By the proof of Theorem 3 in [BeV], there exists a lattice T in L and a
representation 7 € I's such that  ® 7 is not weakly contained in the restriction to I' of
any unitary representation of L. Denote by p : G — G; the homomorphism obtained
by composing the quotient map G — G/Z(G) with the projection of G/Z(G) onto G,.
Set H = p™'(T) and o = 70 (p|g). Because H is closed in G, we find by property
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(WF3) a net (p;)ies in G such that
lim,- p;lH =0.

Then:

limi(pi @ pi)lH =0 ®7.
But, since p; is irreducible, the representation p; ® p; of G is trivial on Z(G), so it
factors through a representation m; of G/Z(G). Last formula then reads:

lim; 7r,'|[* =T7QT

and this contradicts our choice of G and 7.
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Tensor products of C(X )-algebras over C(X)

Etienne Blanchard

0 Introduction

Tensor products of C*-algebras have been extensively studied over the last decades
(see references in [12]). One of the main results was obtained by M. Takesaki in [15]
where he proved that the spatial tensor product A ®min B of two C*-algebras A and B
always defines the minimal C*-norm on the algebraic tensor product A ®,i, B of A and
B over the complex field C.

More recently, G.G. Kasparov constructed in [10] a tensor product over C(X) for
C(X)-algebras. The author was also led to introduce in [3] several notions of tensor
products over C(X) for C(X)-algebras and to study the links between those objects.

Notice that E. Kirchberg and S. Wassermann have proved in [11] that the subcat-
egory of continuous fields over a Hausdorff compact space is not closed under such
tensor products over C(X) and therefore, in order to study tensor products over C'(X)
of continuous fields, it is natural to work in the C(X)-algebras framework.

Let us introduce the following definition:

DEFINITION 0.1 Given two C(X)-algebras A and B, we denote by I(A, B) the
involutive ideal of the algebraic tensor product A ®,y B generated by the elements
(fa) @ b—a ® (fb), where f € C(X), a€ A and b€ B.

Our aim in the present article is to study the C*-norms on the algebraic tensor
product (A ®qy B)/Z(A, B) of two C(X)-algebras A and B over C(X) and to see how
one can enlarge the results of Takesaki to this framework.

We first define an ideal J (A, B) C A®a, B which contains I(A, B) such that every
C*-semi-norm on A a1y B which is zero on Z(A, B) is also zero on J(A, B) and we
prove that there always exist a minimal C*-norm || ||, and a maximal C*-norm || ||p
on the quotient (A ®q, B)/J (A, B).

We then study the following question of G.A. Elliott ([5]): when do the two ideals
Z(A, B) and J (A, B) coincide?

The author would like to express his gratitude to C. Anantharaman-Delaroche and
G. Skandalis for helpful comments. He is also very indebted to S. Wassermann for
sending him a preliminary version of [11] and to J. Cuntz who invited him to the
Mathematical Institute of Heidelberg.
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1 Preliminaries
We briefly recall here the basic properties of C(X)-algebras.

Let X be a Hausdorff compact space and C(X) be the C*-algebra of continuous
functions on X. For z € X, define the morphism e, : C(X) — C of evaluation at z
and denote by C(X) the kernel of this map.

DEFINITION 1.1 ([10]) A C(X)-algebra is a C*-algebra A endowed with a unital
morphism from C(X) in the center of the multiplier algebra M(A) of A.

We associate to such an algebra the unital C(X)-algebra A generated by A and
u[C(X)] in M[A® C(X)] where u(g)(a® f) =ga® gf fora € A and f,g € C(X).

For z € X, denote by A, the quotient of A by the closed ideal C,(X)A and by a,
the image of a € A in the fibre A,. Then, as

llaz|l = inf{|I[1 - f + f(=)]all, f € C(X)},

the map z — ||a,|| is upper semi-continuous for all @ € A ([14]).

Note that the map A — @A, is a monomorphism since if a € A, there is a pure
state ¢ on A such that ¢(a*a) = ||a||?>. As the restriction of ¢ to C(X) C M(A) is a
character, there exists z € X such that ¢ factors through A, and so ¢(a*a) = ||a,||%.

Let S(A) be the set of states on A endowed with the weak topology and let Sx(A)
be the subset of states ¢ whose restriction to C(X) C M(A) is a character, i-e such
that there exists an z € X (denoted = = p(yp)) verifying ¢(f) = f(z) for all f € C(X).
Then the previous paragraph implies that the set of pure states P(A) on A is included
in Sx(A).

Let us introduce the following notation: if £ is a Hilbert A-module where A is a C*-
algebra, we will denote by L4(€) or simply £(€) the set of bounded A-linear operators
on &£ which admit an adjoint ([9]).

DEFINITION 1.2 (/3]) Let A be a C(X)-algebra.

A C(X)-representation of A in the Hilbert C(X)-module £ is a morphism =« :
A — L(€) which is C(X)-linear, i.e. such that for every ¢ € X, the representa-
tion 7, = 7 @ e, in the Hilbert space &, = € Q., C factors through a representation of
A.. Furthermore, if 7, is a faithful representation of A, for every z € X, w is said to
be a field of faithful representations of A.

A continuous field of states on A is a C(X)-linear map ¢ : A — C(X) such that
for any ¢ € X, the map ¢, = e, 0 p defines a state on A;.

If 7 is a C'(X)-representation of the C(X)-algebra A, the map = — ||7;(a)|| is lower
semi-continuous since (¢, 7(a)n) € C(X) for every £, € €. Therefore, if A admits a
field of faithful representations =, the map z — ||a;|| = ||7z(a)|| is continuous for every
a € A, which means that A is a continuous field of C*-algebras over X ([4]).

The converse is also true ([3] théoréme 3.3): given a separable C'(X)-algebra A, the
following assertions are equivalent:

1. A is a continuous field of C*-algebras over X,
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2. the map p: Sx(A) — X is open,

3. A admits a field of faithful representations.

2 C*-norms on (A ®,, B)/J(A,B)

DEFINITION 2.1 Given two C(X)-algebras A and B, we define the involutive ideal
J(A, B) of the algebraic tensor product A ®,, B of elements a € A ®ay B such that
a; =0 in Ay ®qqy B for everyz € X.

By construction, the ideal Z(A, B) is included in J (A, B).

PROPOSITION 2.2 Assume that || ||g is a C*-semi-norm on the algebraic tensor
product A ®q, B of two C(X)-algebras A and B.
If || lg is zero on the ideal I(A, B), then

llallg =0 for all a € J(A, B).

Proof: Let Dg be the Hausdorff completion of A gy B for || ||g. By construction, Dg
is a quotient of A ®max B. Furthermore, if C, is the ideal of C(X x X) of functions
which are zero on the diagonal, the image of Ca in M(Djp) is zero.

As a consequence, the map from A ®max B onto Dp factors through the quotient

ABc(x)B of A ®max B by Ca X (A @umax B).

But an easy diagram-chasing argument shows that (A%c( x)B)e = Az @max By for
every ¢ € X ([3] corollaire 3.17) and therefore the image of J(A,B) C A Qmax B in

M .
A®c(x)B is zero. O

2.1 The maximal C*-norm

DEFINITION 2.3 Given two C(X)-algebras A; and A;, we denote by || ||a the C*-
semi-norm on Ay Quy Az defined for a € Ay Qqy Ay by

llallar = sup{||(of Omax 05)(@)|,z € X}
where o7 is the map A; — (A;)..

As || ||am is zero on the ideal J(A;, Az), if we identify || ||ar with the C*-semi-norm
induced on (A; a4 A2)/ T (A1, Az), we get:

PROPOSITION 2.4 The semi-norm || || is the mazimal C*-norm on the quotient
(Al ®alg A2)/o.7(A1, Ag)

Proof: By construction, || ||a defines a C*-norm on (A1 QaigA2)/J (A1, A2). Moreover,
as the quotient A, %C( x)Az of A1 ®max A2 by Ca X (A} ®max A2) maps injectively in
M
x?X(A1®C(X)A2)I = zéex( (Al).t ®rmax (A2).z')’
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M

the norm of A;®c(x)Az coincides on the dense subalgebra (A; ®a, A2)/J (A1, A3)
with || |[». But we saw in proposition 2.2 that if || || is 2 C*-norm on the algebra
(A ®a1g B)/J (A, B), the completion of (A ®ay B)/J (A, B) for || ||z is a quotient of

M
A®C(X)B. m}

2.2 The minimal C*-norm

DEFINITION 2.5 Given two C(X)-algebras A; and A;, we define the semi-norm
| lm on A1 ®aig Az by the formula

llellm = sup{ll(6] ®min 05)()ll, = € X}

where of is the map A; — (A;), and we denote by A1<§C(X)A2 the Hausdorff completion
of Ay ®aig Az for that semi-norm.

Remark: In general, the canonical map (Aléni)c(x)Ag), — (A1)z ®min (A2) is not a
monomorphism ([11]).

By construction, || ||m induces a C*-norm on (A; ®ay A2)/J (A1, A2). We are going
to prove that this C*-norm defines the minimal C*-norm on the involutive algebra

(A1 Buig A2)/ T (A1, As).

Let us introduce some notation.

Given two unital C'(X)-algebras A; and A, let P(A4;) C Sx(A;) denote the set of
pure states on A; and let P(A;) xx P(A;) denote the closed subset of P(A;) x P(A2)
of couples (wy,ws;) such that p(w;) = p(ws), where p : P(A;) — X is the restriction to
P(A;) of the map p : Sx(A;) = X defined in section 1.

LEMMA 2.6 Assume that || ||g ts a C*-semi-norm on the algebraic tensor product
A1 Quig Az of two unital C(X)-algebras Ay and A; which is zero on the ideal J(A;, A2)
and define the closed subset S3 C P(A;) xx P(A;z) of couples (wq,ws) such that

|(w1 @ wa)(@)| < llalls for all @ € Ay @aig As.

If Sg # P(A1) xx P(A;), there ezist self-adjoint elements a; € A; such that a;Qa, ¢
J (A1, Az) but (w1 @ w2)(a1 ® az) = 0 for all couples (wy,ws) € Sp.

Proof: Define for i = 1,2 the adjoint action ad of the unitary group U(A4;) of A; on
the pure states space P(4;) by the formula

[(ad,)w](a) = w(u*au).

Then Sp is invariant under the product action ad x ad of U(A;) x U(A2) and we can
therefore find non empty open subsets U; C P(A;) which are invariant under the action
of U(A;) such that (U x Uz) NS =0.

Now, if K; is the complement of U; in P(A;), the set

Kil = {a € A; | w(a,) =0forallwe K,}
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is a non empty ideal of A; and furthermore, if w € P(A;) is zero on K;*, then w belongs
to K; ([8] lemma 8,[15]).

As a consequence, if (¢1,¢2) is a point of Uy X x Us, there exist non zero self-adjoint
elements a; € K} such that ¢;(a;) = 1. If = = p(p;), this implies in particular that
(a1)z ® (az); # 0, and hence a; ® a; € J(A;,A;). O

LEMMA 2.7 ([15] theorem 1) Let A, and A; be two unital C(X)-algebras.
If the algebra A, is an abelian algebra, there exists only one C*-norm on the quotient

(Al ®alg A2)/J(Al’ A2)

Proof: Let || ||z be a C*-semi-norm on A; ®qy Az such that for all a € A; ®aiy As,
llells = 0 if and only if @ € J(A;, Az).

If p € P(Ap) is a pure state on the Hausdorff completion Ag of A; @y Az for the
semi-norm || ||, then for every a1 ® a; € Ay ®aiy A2,

plar ® az) = p(a1 ®1)p(1 ® a2)

since A; ® 1 is included in the center of M(Ag). Moreover, if we define the states w,

and w; by the formulas w;(a1) = p(a; ® 1) and wy(a2) = p(1 ® az), then w;, is pure since

p is pure, and (w1,w;) € P(A;) xx P(Az2). It follows that P(Ag) is isomorphic to Sg.
In particular, if a; ® a; € A; ®qy Ay verifies

(w1 ® wy)(ay ® a3) = 0 for all couples (wy,w;) € Sg,

the element a; @ a; is zero in A and therefore belongs to the ideal J(A;, A;). Accord-
ingly, the previous lemma implies that P(A;) xx P(A;) = Ss = P(Ap).

As a consequence, we get for every a € A; ®ay Az

lallz = sup{p(a*a),p € P(Ap)}
= sup{(w1 ® wg)(a‘a), (wl,wg) € P(Al) Xx P(Az)}

But that last expression does not depend on || ||, and hence the unicity. O

PROPOSITION 2.8 ([15] theorem 2) Let A; and A, be two unital C(X)-algebras.
If || I is a C*-semi-norm on A; @uy Az whose kernel is J (A1, Az), then

Va € Ay @ayg Az, lalls 2 [lalm-

Proof: If we show that Sz = P(A;) xx P(A2), then for every p € Sg and every a in
A; Qalg Az, we have p(s*a*as) < p(s*s)||al|3 for all s € A; ®a1y Az. Therefore

llalln? = sup{|(|(al Bumin 03)()[%,z € X}
w @ wy)(s*a*as)
{ wl ®UJ2)(3*3) (wl,W2) € P(Al) Xx P(Ag) and
8 € A1 Qaig A; such that (w; @ wy)(s™s) # 0}

< lallg?.

85



E. BLANCHARD

Suppose that Sz # P(A;) xx P(Az). Then there exist thanks to lemma 2.6
self-adjoint elements a; € A; and a point z € X such that (ay); ® (az); # 0 but
(w1 ® wy)(a; ® az) = 0 for all couples (wy,w;) € 5.

Let B be the unital abelian C(X)-algebra generated by C(X) and a, in A;. The
preceding lemma implies that B{Xn)c( x)Az maps injectively into the Hausdorff completion
Ap of Ay ®quy A, for || ||

Consider pure states p € P(B;) and w; € P((A;);) such that p(a;) # 0 and
wa(az) # 0 and extend the pure state p ® w, on B(%C(X)Az to a pure state w on Ag. If
we set wy(a) = w(a ® 1) for a € Ay, then w; is pure and w(a) = (w1 ® wy)(a) for all
a € A; Qg A; since w and w, are pure ([15] lemma 4). As a consequence, (wy,w;) € Sp,
which is absurd since (wy @ wz)(a1 ® a;) = p(a;)wz(az) #0. O

PROPOSITION 2.9 Given two C(X)-algebras A, and A, the semi-norm |||, de-
fines the minimal C*-norm on the involutive algebra (A1 Qaiy A2)/ T (A1, A2).

Proof: Let || || be a C*-norm on (A; ®aiy A2)/T(A1,A2). Thanks to the previ-
ous proposition, all we need to prove is that one can extend || ||g to a C*-norm on
(A1 Qatg A2)/ T (A1, Az), where A; and A; are the unital C(X)-algebras associated to
the C'(X)-algebras A; and A; (definition 1.1).

Consider the Hausdorff completion Dg of (A; ®ay A2)/ T (A1, A2) and denote by ;
the canonical representation of A; in M(Dg) for i = 1,2. Let us define the representation
7 of A;in M(Dg @ A; @ A, ® C(X)) by the following formulas:

Tl +u(f))(a® a1 Das®g) = (m(b1) +9)a® (b1 + flar ® faz & fg
Ta(br +u(f))(a@ a1 @a; @g) = (m(b2) +9)a® far1 @ (b2 + f)a: @ fyg
For : = 1,2, let ¢; : A; — C(X) be the map defined by

gila+ u(f)] = f for a € A; and f € C(X).

Then using the maps (&1 ® €3), (€1 ® id) and (id ® €;), one proves easily that if o €
Ay Qaig Az, (1 ® F2)(a) = 0 if and only if a belongs to J(A;, A).

Therefore, the norm of M(Dg ® A; ® Ay @ C(X)) restricted to the subalgebra
(A1 aig A2)/ T (A1, Az) extends || ||g. O

Remark: As the C(X)-algebra A is nuclear if and only if every fibre A; is nuclear ([12]),
A%C( x)B ~ A<7§)C( x)B for every C(X)-algebra B if and only if A is nuclear.

3 When does the equality Z(A, B)=J (A, B) hold?

Given two C(X)-algebras A and B, Giordano and Mingo have studied in [6] the case
where the algebra C(X) is a von Neumann algebra: their theorem 3.1 and lemma 1.5
of [10] imply that in that case, we always have the equality Z(A, B) = J (A, B).

Our purpose in this section is to find sufficient conditions on the C'(X)-algebras A
and B in order to ensure this equality and to present a counter-example in the general
case.
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PROPOSITION 3.1 Let X be a second countable Hausdorff compact space and let
A and B be two C(X)-algebras.
If A is a continuous field of C*-algebras over X, then I(A, B) = J(A, B).

Proof: Let us prove by induction on the non negative integer n that if

s = 2 a,~®b,-€J(A,B),

1<ikn
then s belongs to the ideal Z(A, B).

If n = 0, there is nothing to prove. Consider therefore an integer n > 0 and suppose
the result has been proved for any p < n.

Fix an element s = Z a; @b, € J(A,B) and define the continuous positive
1<i<n
function h € C(X) by the formula A(z)'® = 3 ||(ax)z||*
The element a} = h~*a) is then well defined in A for every k since afar < A'°.
Consequently, the function fi(z) = ||(a})s|| is continuous.

For 1 < k < n, let Dy denote the separable C(X)-algebra generated by 1 and the
ai*aj, 1 < j < m, in the unital C(X)-agebra A associated to A (definition 1.1). Then
Dy is a unital continuous field of C*-algebras over X (see for instance [3] proposition
3.2).

Consider the open subset S¥ = {¢p € Sx(Dy)/ ¥lai*a}] > ¥(f2/2)}. If we apply
lemma 3.6 b) of [3] to the restriction of p : Sx(Dx) — X to S¥, we may construct a
continuous field of states wy on Dy such that wy[a}*a}] > f2/2.

Now, if we set s’ = Y;a! ® b;, as (a},* ® 1)s’ belongs to J(Dx, B),

(r ®id)(a}" ® 1)3] = wilak" gl + T wrlei el = 0.
J

Noticing that f2 is in the ideal of C(X) generated by wi[a}*a}], we get that f2bi belongs
to the C(X)-module generated by the b;, j # k, and thanks to the induction hypothesis,
it follows that (f2 ® 1)s’ € (A, B) for each k.

But k2 = ¥, f? and so h* < n ¥, f{ is in the ideal of C(X) generated by the f2,
which implies

s=(h*®1)s € I(A,B). O

Remarks: 1. As a matter of fact, it is not necessary to assume that the space X satisfies
the second axiom of countability thanks to the following lemma of [11]: if P(a) € C(X)
denotes the map z — ||a || for @ € A, there exists a separable C*-subalgebra C(Y)
of C(X) with same unit such that if Dy is the separable unital C*-algebra generated
by C(Y).1 C A and the a}*a}, 1 < j < n, then P(D;) = C(Y). Furthermore, if
® : X — Y is the transpose of the inclusion map C(Y) — C(X) restricted to pure
states, the map D/(Cy)(Y)D) — A, is a monomorphism for every z € X since A is
continuous.
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Consider now a continuous field of states wi : Dy — C(Y) on the continuous field Dy
over Y;if ¢/ ® d’ € Dy ®qyy B is zero in A, ®qy B, for z € X, then ¥ wy(¢?)(z)ds =0

in By, which enables us to conclude as in the separable case.

2. J. Mingo has drawn the author’s attention to the following result of Glimm ([7]
lemma 10): if C(X) is a von Neumann algebra and A is a C(X)-algebras, then P(a)? =
min{z € C(X)4, z > a*a} is continuous for every a € A. Therefore we always have in
that case the equality Z(A, B) = J (A, B) thanks to the previous remark.

COROLLARY 3.2 Let A and B be two C(X)-algebras and assume that there ezists
a finite subset F = {z1,---,2,} C X such that for all a € A, the function z — ||a,|| is
continuous on X\F'.

Then the ideals T(A, B) and J(A, B) coincide.

Proof: Fix an element o = };¢;<, @i ® b; € A ®q1y B which belongs to J(A, B). In
particular, we have ¥ ;(a;); ® (b,-)-z—= 0in A; Qqg B; for each z € F.

As a consequence, thanks to theorem III of [13], we may find complex matrices
(AT%)i; € M,(C) for all 1 < m < p such that, if we define the elements ¢f' € A and
di* € B by the formulas

=3 /\K’ka; and d! = by — > A;::jbj’

we have (c}');,, = 0 and (d}*),,, = 0 for all £ and all m.

Consider now a partition {fi}1<i<, of 1 € C(X) such that for all 1 < I,m
filzy) = &,m where § is the Kronecker symbol and define for all 1 < k < n the
elements ¢, = Y, fmclt and dy = Y, fndl. Thus,

a = (L6 ®d)+ (Tijm A0 @ fmb))
= (Tia®d) + (T;¢ ;) + (Sijom AT5(@: ® finbs — fmai ® b))
and there exists therefore an element 3 € I(A, B) such that a — # admits a finite
decomposition Y; a! ® b; with a! € Co(X\F)A and b, € Co(X\F)B.
But Co(X\F)A is a continuous field. Accordingly, proposition 3.1 implies that
a—f € I(Co(X\F)A,Co(X\F)B) CI(A,B). O

Remark: If N = N U {00} is the Alexandroff compactification of N and if A and B are
two C(IN)-algebras, the corollary 3.2 implies the equality Z(A, B) = J (A, B).

Let us now introduce a counter-example in the general case.

Consider a dense countable subset X = {an}neN of the interval [0,1]. The C*-
algebra Co(N) of sequences with values in C vanishing at infinity is then endowed with
the C([0,1])-algebra structure defined by:

Vf e C([0,1]), Va = (a,) € Co(N), (f.@), = f(an)ay, for n € N.

If we call A this C([0,1])-algebra, then A, =0 for all z & X.

Indeed, assume that z ¢ X and take a € A. If ¢ > 0, there exists N € N such
that |a,| < € for all n > N. Consider a continuous function f € C([0,1]) such that
0< f<1, f(z) =0 and f(a;) =1 for every 1 <i < N; we then have:
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ozl < 1I(1 = flall <e.

Let Y = {b,}.eN be another dense countable subset of [0,1] and denote by B the
associated C([0, 1])-algebra whose underlying algebra is Co(IN).

Then, if XNY = @, the previous remark implies that for every « € [0, 1], A;®qiy B, =
0 and hence, J(A, B) = A ®,, B. What we therefore need to prove is that the ideal
I(A, B) is strictly included in A ®q, B.

Let us fix two sequences a € A and § € B whose terms are all non zero and suppose
that o ® B admits a decomposition ¥"<;<k[(fie') ® B — o ® (fiff')] in A ®aiy B. Then

for every n,m € N,

anﬂm = Z a:zﬂ:n[ft(an) - fz(bm)]

1<i<k

Now, if we set ¢;(a,) = o /a, and ¥;(b,) = B./B, for 1 < i < k and n € N, this
equality means that for all (z,y) € X xY,

1 = Ticice¥hi(@)ei(y)fi(z) = fiy)]-

But this is impossible because of the following proposition:

PROPOSITION 3.3 Let X and Y be two dense subsets of the interval [0,1] and let
n be a non negative integer.

Given continuous functions f; on [0,1] and numerical functions ¢; : X — C and
@i Y — C for 1 <i<n, if there exists a constant ¢ € C such that

Ve ) X XY, T h@nw)lie) - i) =
then ¢ = 0.

Proof: We shall prove the proposition by induction on n.

If n = 0, the result is trivial. Take therefore n > 0 and assume that the proposition
is true for any k < n.

Suppose then that the subsets X and Y of [0,1], the functions f;, ¥; and ¢;, 1 <
¢ < n, satisfy the hypothesis of the proposition for the constant c.

For z € X, let p(z) < n be the dimension of the vector space generated in C™ by

the (pi(v)[fi(2) = i), . VEY-
If p(z) < n, there exists a subset F(z) C {1,...,n} of cardinal p(z) such that for
every j € F(z):

0i (W) fi(2) = fi(¥)] = Tier N (2)pi()lfi(z) — fily) forall y € Y,
where the \! (z) € C are given by the Cramer formulas. As a consequence,

Siero (#0) + Tigr @) i)li(e) - )] = .
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Now, if p(z) < n for every z € X, there exists a subset F C {1,...,n} of cardinal
P < n such that the interior of the closure of the set of those « for which F(z) = F is not
empty and contains therefore a closed interval homeomorphic to [0,1]. The induction
hypothesis for k¥ = p implies that ¢ = 0.

Assume on the other hand that zo € X verifies p(zo) = n. We may then find
Y1, Yn in Y such that if we set

ai,i(2) = ¢i(y;)lfi2) — filyi)),
the matrix (a; (o)) is invertible. There exists therefore a closed connected neighbor-
hood I of o on which the matrix (a;;(z)) remains invertible.
But for each 1 < j < n, ¥ a;j(z)¥i(z) = c and therefore the ;(z) extend by the

1]
Cramer formulas to continuous functions on the closed interval I.

For y € Y NI, let ¢(y) denote the dimension of the vector space generated in C™ by
the (¢i(@)[fi(z) = fiy)]) ...,z € XN L.

If ¢(y) < n for every y, then the induction hypothesis implies ¢ = 0. But if there
exists yp such that ¢(yo) = n, we may find an interval J C I homeomorphic to [0,1] on

which the ¢; extend to continuous functions; evaluating the starting formula at a point
(z,2) € J x J, we get c=0. O

4 The associativity
Given three C(X)-algebras A,, A, and A3, we deduce from (3] corollaire 3.17:
(A1 B A2)Box) Asle = (A o) A2)s Gumas(A3)s = (A1)z Buuax(A2)e G (As)s
which implies the associativity of the tensor product -®¢(x)- over C(X).
On the contrary, the minimal tensor product 'éo( x)- over C(X) is not in general
associative. Indeed, Kirchberg and Wassermann have shown in [11] that if N = NU{oo}

is the Alexandroff compactification of N, there exist separable continuous fields A and
B such that

(Agc(f\j)B)oo # Aoo ®min Boo-

If we now endow the C*-algebra D = C with the C(N)-algebra structure defined by
f.a = f(o0)a, then for all C(N)-algebra D', we have

0 if n is finite,

[D®C(ﬁ)DI]"‘ = { (Do i n=o00.

Therefore, [(A(%C(ﬁ)B)g)c(ﬁ)D]w ~ (A@C(ﬁ)B)w whereas [A%C(ﬁ)(B(%C(ﬁ)D)]w is
isomorphic t0 As ®min Boo-

However, in the case of (separable) continuous fields, we can deduce the associativity

of -%C( x)- from the following proposition:
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PROPOSITION 4.1 Let A and B be two C(X)-algebras.
Assume 7 is a field of faithful representations of A in the Hilbert C(X)-module £,
then the morphism a @ b — w(a) @ b induces a faithful C(X)-linear representation of

A®c(x)B in the Hilbert B-module € ®c(x) B.
Proof: Notice that for all z € X, we have (£ ®¢(x) B) ®p B, = &; ® B.

Now, as B maps injectively in By = @zex Bz, L8(€ ®c(x) B) maps injectively in
®rexLp,(Ez ® B:) C L,(€ ®cx) B ®p By) and therefore if o € A Qqiy B, we have
l|(x ® id)(e)|| = sup (72 ® id)(az)l| = llalm. O

Accordingly, if for 1 < ¢ < 3, A; is a separable continuous field of C*-algebras
over X which admits a field of faithful representations in the C(X)-module &;, the

C(X)-representations of (Aléc(x)Ag)gc(x)As and A, é%c(x)(Az&(x)As) in the.Hilbert
C(X)-module (& @c(x) &2) Qc(x) €3 = &1 ®c(x) (&2 Qc(x) €3) are faithful, and hence

the maps A; ®min A2 Omin Az — (AlfgC(x)Az)%ax)Aa and A; ®min A2 ®min 43 —
Algc(x)(A2§>c(x)A3) have the same kernel.
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Dedicated to Professor Masamichi Takesaks
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Let G be a compact group acting on a unital C*-algebra M. The action is said to
be ergodic if the fixed point algebra M reduces to scalars. The first breakthrough in
the study of such actions was the finiteness theorem of Hgegh-Krohn, Landstad and
Stgrmer [HLS]. They proved that the multiplicity of each 7 € G in M is at most dim(~)
and the unique G-invariant state on M is necessarily a trace. When combined with
Landstad’s result [L] that finite-dimensionality for the spectral subspaces of actions of
compact groups implies that the crossed product is a type I C*-algebra (and in fact, as
pointed out in [Wal] is a direct sum of algebras of compact operators), the finiteness
theorem shows that the crossed product of a unital C*-algebra by an ergodic action of
a compact group is necessarily equal to @;K(H;).

The study of such actions was essentialy pushed forward by Wassermann. He devel-
oped an outstanding machinery based on the notion of multiplicity maps, establishing
a remarkable connection with the equivariant K-theory. This approach allowed him to
prove, among other important things, the strong negative result that SU(2) cannot act
ergodically on the hyperfinite II; factor [Wa3].

The aim of this note is to study ergodic actions of Woronowicz’s compact matrix
pseudogroups on unital C*-algebras, extending some of the previous results. In this
insight we prove in §1 the analogue of the finiteness theorem. More precisely, if G =
(A,u) is a compact matrix pseudogroup acting ergodically on a unital C*-algebra by
a coaction ¢ : M — M ® A such that o(M)(1pm ® A) is dense in M ® A, then
there is a decomposition of the *-algebra of o-finite elements into isotypic subspaces
Mo = @,5Ma, orthogonal with respect to the scalar product induced on M by the
unique o-invariant state w. Moreover, the spectral subspaces M,, are finite dimensional
and dim(M,) < M2, M, being the quantum dimension of a € G. If the Haar measure
is faithful on A, then M, is dense in the GNS Hilbert space H,,.

Although w is not in general a trace, we prove the existence of a multiplicative
linear map © : My — M, such that w(zy) = w(O(y)z) for all z € M,y € M, and
O is a scalar multiple of the modular operator F, when restricted to each irreducible
o-invariant subspace of the spectral subspace M.

The crossed products by such coactions are studied in §2 where we prove, using
the Takesaki-Takai type duality theorem of Baaj and Skandalis [BS], that they are
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isomorphic all the time to a direct sum of C*-algebras of compact operators. As a
corollary, if a compact matrix pseudogroup with underlying nuclear C*-algebra acts
ergodically on a unital C*-algebra M, then M follows nuclear.

We are grateful to Masamichi Takesaki for discussions on [BS] and [Wor], to Gabriel
Nagy for valuable discussions on this paper and related topics and to the referee for
his pertinent considerations. Our thanks go to Magnus Landstad for his remarks on
a preliminary draft of this paper. After a discussion with him, I realized that the
dimension of the spectral subspace of  is bounded by M2, improving a previous rougher
estimation.

§1. The isotypic decomposition and finiteness of multiplicities for ergodic
actions

We start with a couple of definitions.

Definition 1 ([BS]) A coaction of a unital Hopf C*-algebra (A, A4) on a unital C*-
algebra M is a unital one-to-one *-homomorphism o : M — M®A (the tensor product
will be all the time the minimal C*-one) that makes the following diagram commutative

M S  MeA
o1 , T idp ® A
MoA Z% MeapA

A C*-algebra M with a coaction o of (A,A4) is called an A-algebra if o is one-to-
one and o(M)(1pm ® A) is dense in M Q A.

Definition 2 The fized points of the coaction o : M — M @ A are the elements of
M ={z € M|o(z) =z®1a}. The coaction o is called ergodic if M° = Cl .

We denote by M* the set of continuous linear functionals on M.

Definition 3 ¢ € M* is called o-invariant if
(@ ¥)(o(x)) = (¢ @ ¥)(z ® 14) = P(14)d(z) for all ) € A*.

Let G = (A,u) be a compact matrix pseudogroup group with comultiplication
Ay:A— AQ® A, smooth structure A and coinverse & : 4 — A (cf [Wor]). Then A* is
an algebra with respect to the convolution ¢*9 = (¢Q®v)A4, ¢,9 € A* and there exists
a unique state h on A, called the Haar measure of G, so that ¢ *x h = h* ¢ = ¢(14)h
for all ¢ € A*. Let M be a unital C*-algebra which is an A-algebra via the coaction
0: M — M® A and consider § = (idp ® h)o.
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Lemma 4 i) 0(z) € M for all z € M. Moreover 0 is a conditional expectation from
M onto M°.

i) If o is ergodic, then 0(z) = w(x)lpm and w is the only o-invariant state on M.

Proof. 1) Note that

o(6(z)) = o((idm @ h)(o(z)) = (o ® h)(o(z))
= (idp Q@ idy @ h)(0 @ id4)(0(x))
= (1dm ® (3da @ h)A4)(o(z)), z € M.

Since (td4 ® h)(Aa(a)) = h xa = h(a)l,, a € A ([Wor, 4.2]), we obtain further :

(1 ® ) ((idm ® (ida ® h)A4)(y ® a))

= (1 ® ¥2)(y ® (ida ® h)(Aa(a)))

(Y1 ® ¥2)(y ® h(a)14) = P1(y)2(14)h(a)
(1 ® ¥2)((1dpm ® h)(y ® a) ® 14),

for all y € M,a € A,¢p; € M*,p, € A*. Therefore for z € M,p; € M*, 4, € A*

we have :

(%1 ® $2)(0(0(2)) = (¥1 ® 2)((idm ® h)o(e) @ 14) = (¥1 ® ¢2)(6(2) ® 14)

and consequently o(6(z)) = 0(z) ® 14 for all £ € M. 6 is a norm one projection
since

8(z) = (idp ® h)(0(2)) = (idu @ W)z ®1) =2, T € M.

ii) Let ¢ € A*. Then we get for all z € M :

(W@ Y)(o(z)) = ((idm @ h)o @ ¥)(o(z))

(idm ® P)((idpm ® h)o @ id4)(o(z))

(tdm @ P)(1dm ® h @ 1d4)((0 ® idg)o(z))
(idpm ® ¥)(idpm ® (h ® ida)As)(o(z))

= ¢(La)(idm @ h)(0(2)) = P(1a)w(2),

therefore w is a o-invariant state on M. Finally, assume that ¢ is a o-invariant state

on M. Then for all z € M :
¢(z) = (¢ ® h)(a(z)) = ¢((idp ® h)(0(2))) = ¢(6(2)) = $(w(z)lm) = w(z). O

Remarks. 1). The proof of the previous statement doesn’t use the faithfulness of
o but only the equality (o @ idy)o = (idpy ® Aa)o.

2). Since the tensor product of two faithful completely positive maps is still faithful
[T], it follows that if o is one-to-one and h is faithful on A, then w is a faithful state on

M.
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3). Although one can easily pass from a compact matrix pseudogroup to the reduced
one, which has faithful Haar measure, as indicated at page 656 in [Wor], it turns out
that the Haar measure is faithful in several important examples (e.g. on commutative
CMP, on reduced cocommutative CMP or, cf. [N], on SU,(N)).

Denote by H. the completion of M with respect to the inner product (z,y); =
w(y*z) and let M acting on H,, in the GN S representation. Consider the C*-Hilbert
module H,, @ A with the A-valued inner product (z, ® a,y, ® b)a = w(y*z)b*a, for
z,y € M, a,b € A, which can be viewed as M ® A in the Stinespring representation of
the completely positive map w ® id4. Define also V: H, ® A — H, ® A by :

V(Z(IL‘,)W ®a;) = Ed(.’l:,‘)(lw ® ai)9 z; € M,a; € A.

1 i

Lemma 5 V is a unitary in L(H, @ A) = M(K(H,) @ A) (the multipliers of the
C*-algebra K(H,) ® A) and o(z) = V(z @ 14)V*, z € M.

Proof. For any ¢ € A*,a,b € A, denote by ¢(a - b) € A* the linear functional
#(a - b)(z) = ¢(axbd), z € A. The o-invariance of w yields :

((w ®1d4)((1m ® b*)o(z)(1m ® a)) = (w @ (b - a))(o(2))
= ¢(b* - a)(1a)w(z) = d(b*a)w(z), =€ M,a,b€ A, ¢ € A%,

therefore we have for all a,b € A,z,y € M :

(V(zo ® ), V(g ® b)) = (0(2)(1w ® @), 0(y) (1w ® b)) 4
= (W@ ida)(1m ® b)o(y"z)(1m ® @) = w(y"e)b*a = (¢, ® 4,4, ® b)4

and V follows isometry on H, ® A. Furthermore V is unitary since o(M)(1um ® A)
is dense in M ® A and the relation V(z ® 14) = o(z)V, z € M, is obvious. o

Definition 6 ([BS]) A corepresentation of the Hopf C*-algebra (A,A,) is a unitary
VeL(HvQA)=MK(Hv)® A) such that
Vi2Vas = (ideryy ® Aa)(V).
All the corepresentations throughout this paper will be unitary unless specified
otherwise. Note that in the case when dimHy < oo V is called in [Wor] a (finite di-
mensional) representation of the quantum matrix pseudogroup G = (A, u). Thus the

representations of the quantum matrix pseudogroup G = (A, u) are the corepresenta-
tions of (A,A,) and we will call them simply the corepresentations of A.

Lemma 7 The unitary V from Lemma 5 is a corepresentation of A.
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Proof. Let T = (idg,) ® Aa)(V) € L(HL @ A® A) = M(K(H,) ® A® A). Since
1, ® 14 is fixed by V, then (V(1, ® 14),z% ® 14)a = (w(z-) @ td4)(V) = w(z)14 and

consequently :

(W(z-) ® idaga)(ider,) ® Da)(V) = (w(z-) ® Ay)(V)
= AA((w(z') ®1dA)(V)) = AA(UJ(.’L‘)IA) = w(:c)lA®A, z € M.

Then, for any a,a’,b,b' € A :

(T(l,®a®b),z,a @b)a (w®idaga)((z* @ a™* Q@ V™*)T(1m ® a ® D))
(a™ ® b*)((w(z*) ® idaga)(T))(a ® b)

w(z*)a*a @ ¥*b=(1,0a®b,z, ®a @),

therefore T(1, ® a ® b) = 1, ® a ® b. Furthermore, since T is unitary, we also have
T*(1,a®b) =1,®a®band for any z € M,a,be A:

Vi2Vis(z, ® a ® b) = Vip(0(2)13(le ® a ® b)) = (0 ®ida)(a(z))(lo ® a ® b)
= (1dm ® A4)(o(2))(l, ®a® )
=T(z®14,Q14)T*(1.®a®bd) =T(z, ®a®b).

Remark 8 Let W € L(Hw ® A) be a corepresentation, Hy C Hw be a closed subspace
of Hw and denote by P the orthogonal projection from Hw onto Hy. If (P @1ids)W =
W(P®ida), thenV = W(PQid,) € L(HyQA) is by definition a subcorepresentation of
W. Clearly V* = W(Pt Qid,), where Pt = Ipq,,) — P, is also a subcorepresentation
of W.

For V € M(K(Hv)®A) and p € A* define as in [Wor] V, = (idcn,)®p)V € L(Hy).
Then Lemma 6 yields for any p,p’ € A :

V,Vy = (id@p)(V)(id® p)(V) = (id® p ® p')(ViaVis)
= (1d® p® p)(id ® Ax)(V) = (id ® (p % p))(V) = Vpupr.

One checks immediately as in [Wor, 4.3] that E = V}, is the projection of Hy onto
the subspace {£ € Hv | V,§ = p(14)€ , Vp € A*} of all V-invariant vectors of Hy.

The tensor product of the corepresentations V € L(Hy ® A) and W € L(Hw @ A)
is defined as in the finite dimensional case by V O W = Vi3Wy3 € L(Hy @ Hw ® A)
and is still a corepresentation since

(d@ AA)(VOW) =(id® As)(Vis)(id ® As)(Waa)
(VisWaz)12(ViaWas)13 = (V O W)io(V © W)is.

When dimHw < oo, W¢ denotes as in [Wor] its contragradient corepresentation,
acting on the conjugate Hilbert space Hy,.

Lemma 9 If the Haar measure is faithful on A and V € M(K(Hv) ® A) is a corepre-
sentation of A such that (V © o), =0 for alla € G, then V = 0.
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da
Proof. Denote d, =dim(a). Then a = 3 e;; ® uf, ui; € A, where {eij}1<iji<da
ig=1 ==

da
is the matrix unit of £(Ha) and o° = 3. el @ u%’ € L(H,) ® A. If ¢;; denotes the
=1

linear functional on £(H,,) defined by ¢;;(ef;) = 6,16, we obtain for all ¢ € L(Hy), :
(¢ ® bij @ ida)(idcnyany) ® h)(V © o) = h((¢ ® ida)(V)ugy).

Since {uf}, ; i<q. ocg I8 @ linear basis in A, then (¢ ®@ida)(V)a) = 0 for alla € A
and therefore for all a € A. But h is faithful on A hence (¢ ® ids)(V) = 0 for all
é € L(Hy ). and therefore V = 0. D

Corollary 10 i) If the Haar measure is faithful on A, then there are no irreducible
infinite dimensional corepresentations of A.

it) All the finite dimensional corepresentations (not necessarily unitary) of A are
smooth (compare with a related question at page 636 in [Wor)).

Proof. i) Let V be an infinite dimensional corepresentation of A on Hy. By the
previous Lemma, there exists a € G such that (V ® o), # 0. Pick a nonzero element
S € Ran(V®ac). Since a is finite dimensional, S € Mor(e, V). But KerS is a-invariant
and « irreducible, thus S is one-to-one and we get the V-invariant finite-dimensional
subspace RanS C Hy, contradicting the irreducibility of V.

ii) Consider now a finite dimensional corepresentation V of A, not necessarily uni-
tary. The statement in the previous Lemma holds true, thus either V is completely
degenerate or there exists o € G such that (V © o), # 0 and 0 # S € Mor(a, V). It
follows that Hy contains a V-invariant subspace X = RanS and V | is equivalent to
a, therefore it is smooth, irreducible and nondegenerate. By [Wor, Prop.4.6] K has a
V-invariant complement and the process continues until we write Hy as a direct sum
of linear subspaces Hy = @;H; @ Ho, each subspace being V-invariant, V |5, being
equivalent to a corepresentation from G and V |3, completely nondegenerate. ]

The statements in the previous Corollary are implicit in S. L. Woronowicz, Tannaka-
Krein duality for compact matrix pseudogroups, Invent. Math. 93(1988), 35-76, as the
referee informed as.

For any o € G consider as in [Wor, §5] po € A%, pa(@) = Muh((f1 * Xa)*a). Then
Pa * Pp = 8appo for all a, B € G. Therefore, if U € M(K(Hy) ® A) is a representation
of A, P, = U,, = (idcy) ® pa)(U) are mutually orthogonal projections, but they
are not self-adjoint in general. Consider also the bounded linear maps P, : M — M,
P,(z) = (1dm ® pa)(o(z)). Then we have for all z € M :

PoPp(z) = (idm ® pa)(o((idm ® pp)(o(2)))
= (1dm ® pa)((idmaa ® ps)(o ® ida)(o(x)))
= (idpm ® po)(((dmga ® ps)(idm ® Ay)(o(2)))
= (tdm ® pa(ida ® pp)Aa)(o(z))
= (idm ® (pa * pp))(0(x)) = bapPa(z).

98



ERGODIC ACTIONS OF COMPACT MATRIX PSEUDOGROUPS

We denote by M, the closed subspace Pa(M) of M, o € G and call it the spectral
subspace associated with a.

The following lemma contains a couple of properties of the functionals p, € A%,
a€QG.

Lemma 11 i) My = M2 foralla € G.
i) (h ® ppc ® pa)(Aa(a)1284(b)13) =0 for all a,b € A, # B in G.

Proof. i) Let £ € M,. Then z = (idpm ® pa)(o(z)) and we have to check that
z* = (idpm @ pac)(o(z*)). Obvious computations which are implicit in [Wor, 5.6] show
that (f1* Xac)* = Xa* f-1 and My = Mye, where M, = f_1(Xo) = fi(Xa), therefore we
have for any a € A :

Moh((f1 * Xa)*a) = Mah(a*(fi * Xa))
Moh(a™(fi % Xa * f-1 % [1)) = Mah((Xa * f-1)a")
Moh((f1 * Xae)"a") = Mach((f1 * Xae)"a") = pac(a”).

This shows that z* = ((dm ® po)(0(2))* = (tdm ® pac)(0(2)*) = (1d M ® pac)(o(z*)).

Pa(a)

ii) Since span{u,J}K' i<dymed is norm dense in A it is enough to take a = uj;, b = uf,

for some 7,0 € G and to remark that :
(h ® ppe ® pa)(Da(uf)12Ba(uf)is)
dy d
= (h ® por @ pa) (T, L v, @ u; @ uy)

Z E h (uzruks )6[3“16[7 6010631

r=1s=1

h(ﬂf’, ufy) = h(uu ufy) = 0. =
Corollary 12 w(Ps(y)*Pa(z)) = w(Pa(z)Ps(y)*) = 0 for all z,y € M,a # B in G.

Proof. Denote zo = P,(z),yo = Ps(y). By the previous lemma zj € RanP,. and
ys € RanPge. Then we obtain :

o(z0) = o((idm ® pa)(0(2))) = (idmea ® pa)(idm @ Aa)(o(z))
= (tdp ® (1dg ® pa)Aa)(o(x))

and the similar relations for the pairs (z3, a°), (vo, 8), (¥, 3°). The o-invariance of
w and the previous relations yield :

w(y5zo) = (w® h)(a(y5)o(20))
= (W @ h)((1dm ® (ids @ ppe)Aa)(0(y"))(idrm B (id4 ® pa)A4)(o())),
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which is equal to 0 by Lemma 11 ii) since we have for any a,b € A :

h((2da ® pp-)(Aa(a))(ida ® pa)(Aa(b)) = (h ® ppe ® pa)(Aa(a)1284(b)13) = 0.
The equality w(zoys) = 0 follows similarly. o

The previous corollary actually shows that the spectral subspaces M,, a € G
are mutually orthogonal with respect to both scalar products (z,y)2. = w(y*z) and
(2,Y)1,0 = w(zy*) on M.

The next statement is the analogue of the decomposition of a representation of a
compact Lie group into isotypic subrepresentations.

Proposition 13 i) The spectral subspaces M, a € G are o-invariant. Moreover
U(Ma) C Ma ®Aa = SPan{xij ® U% ' Ty € Maa 1 S l,] S da}

and if V is a finite dimensional o-invariant subspace of M,, then a is the only irre-
ducible subcorepresentation of o |v.

it) Any finite dimensional subspace of M, is contained in a finite dimensional o-
invariant subspace of M,. ~

iii) If the Haar measure is faithful on A, then My = span{M, | a € G} is dense
in the Hilbert space H,,.

Proof.

i) Remark first that
o(Pa(z))

o((idm ® pa)(0(2))) = (idmea ® pa)(idm @ As)(o(z))
(ldM ® (2dA ® pa)AA)( (.’L’)) z € M.

Since (id4 ® pa)(Aa(A)) C Ay it follows that o(My) C M ® A,. Using again the
density of span{Ag | B € G} in A and the equality

(pa ® ZdA)(AA( :])) = 5aﬁu,] (ZdA ® pa)(AA( z]))?

we obtain (p, ® tda)A4 = (ida @ py)A 4 and furthermore

(Pa ®ida)(o(z)) = ((idm @ pa)o ®ida)(o(x))
= (idm ® pa ® id4)(0 @ 1d)(0(z))
= (1dpm @ pa ® ida)(1dp ® As)(o(z))
= (idm ® (pa ® ida)A4)(0(2)) = 0(Pa(z)), TEM.

This shows in particular that 0(M,) C My ® As. If V C M, is finite dimensional
and o-invariant, then o |y contains only copies of a since (1dpm ® po)(0(z)) =z, z € V.

ii) It is enough to prove that for any z € M,, there exists V; C M, finite dimen-
sional o-invariant space that contains z. Set V, = {(:dm ®p)(c(z)) | p € A*}, subspace
of M, which contains = since ¢ = (idm ® pa)(o(z)) and is finite dimensional since
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o(z) = Z z;; @ uf; for some z;; € M,. Therefore V;, C span{z;; | 1 < 4,5 < ds} and
1 ]—
finally V, is o-invariant since for any p, p’ € A*, £ € M we have :

(ids ® p')(o((ids ® p)(@(2)) = (idmt © o) ((idias @ p)ids ® As)(o(a))
= (idp ® p'((ids ® p) 0 A))(0(a)) = (idu ® (¢ % p))(0(2)).

iii) One can easily check as in the case when both corepresentations are finite di-
mensional that for any @ € G and any corepresentation V € L(Hy ® A) of A we still
have:

Mor(e,V) ={¢ € Hv ® H, = L(Ha, Hv) | (V © )€ = p(14)¢, Vp € A*}
= (Voo )h(Hv OHy).

Assume now that My # H,. Then, since U lTio' is a subcorepresentation of U it
follows that there exists V € L£(Hy ® A) corepresentation of A with 0 # Hy C H,6Mo.
By Lemma 9 there exists 3 € G such that (V ® °), # 0 and we find a nonzero
S € L(Hp, Hv) with (S ® id4)B = V(S ® id4). Since KerS is S-invariant and S
irreducible, S follows one-to-one. But RanS is a finite dimensional V-invariant subspace
of Hy, thus 8 < V. Since Hy is orthogonal to Mo we have (idg1,) ® po)(B) = 0 for
all a € é, therefore 8 = 0 by [Wor, 5.8]. But o is one-to-one, thus V is nondegenerate
and we get a contradiction. Consequently My = H,,. a

Proposition 14 M, is a *-algebra and M Mg C span{M, | v X a © B} for all
a,feG.

Proof. Fix a,f € G,u® € a,u® € f and Hy C My, Hp C M, irreducible finite

dimensional o-invariant subspaces. Let {e;}1<i<d, and { fr}lsrsdp be orthonormal basis
da dg

in H, and respectively Hz such that o(e;) = E e; @ u% and o(f,) = L fo @ ub.
s=1

The restriction of o to H, (respectively to ’Hg) Vo i Ho » Ho® A (respectively
Vp Hp — Hp®A) implements u (respectively u®). Then V:HQHs » Hya@Hp®A,
V(z®y) = Va(2)13V5(¥)2s = 0(2)130(y)2s implements u* @u?. Consider the onto linear
operator S : H, @ Hg — spanH,Hg, S(z ® y) = zy. Since :

da dp dg dg
Viei®f) =3 3 eife®@uiul, =(§1 & @ u)(X, es ®ub)

J=1s=1

=o(e)o(fy) = o(eifr) = 0S(e; ® fr),

the following diagram is commutative

Ho®Hy —— HoOMH;®A
sT T s@id,
spanHHg — spanH.Hp ® A.
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Therefore S € Mor(u® © u®,0 |spantan,) and any irreducible subcorepresentation
of & |spant,a1, should appear in a® B, hence decomposing the last corepresentation into
irreducible components we get M, Mg C span{M., | v 2 a® f}. My is *-closed since
Mye = M, by Lemma 11. O

Denote by H; the completion of A with respect to the scalar product (a,b)s) =
h(b*a), a,b € A and consider W(z, ® an) = (0(z)(1m ® a))(lo ® 11), = € M,a € A.
Clearly W € L(H, ® H}) is a unitary. Since p, = Muh((f1 * Xa)**) and f; * xo € A, it
follows that p, € L(H4). and p, coincides on L(H;) with the vector form M,( 14, (fi*
Xa)h)2,n- Therefore it makes sense to consider p(a) = (iden,) ® po)(W) € L(Hu). A
straightforward computation yields for any z,y € M :

(Pa(@)wr Yuw)2 = w(y Pa(z)) = w(y"(idpm ® pa)(o(2)))

= w((idm @ pa)((y* ® 14)o(z)))

= (w ® pa)((y* ® 14)0(z)) = (w(y™) @ A(Ma(fi * Xa)*))o(2)
(o(z)(1o ® 1), Y0 ® Ma((f1 * Xo)*In)2,weh

(W(xw ® 1h)7 Yo @ M, ((fl * Xa)* h> 2,w®h

((ideny) ® pa)(W)zw, yu)2 = (p()(2w), Yu)2-

We obtain :

Remark 15 P, extends to the bounded operator p(a) € L(H,,) and p(a) is a projection
from H,, onto H, = {z, | ¢ € M,}. Moreover, it is easy to see that p(c) is self-adjoint.

do da . ~
Lemma 16 ié:l uly K2 (ul;) = bpgla = Z:llc2(u§’;,)u§’; foralla € G,1 <p,q<d,.

Proof. Using the antimultiplicativity of & and k(ug) = u$; we obtain :

da da da
E u:i K’Z(u?i = Z fc(u?;)ﬁ(uf;i) - Z IC( qz 1p = K’(Z )ulp pq]-A
=1 =1 i=1 i=1

da 2 . do

Z K (uf-;,)u?; = E fc(u;",-/c(u?;,)) = pgla. 0

=1 =1

Theorem 17 If G = (A,u) is a compact matriz pseudogroup and M is a unital C*-
algebra with an A-algebra structure given by the ergodic coaction 0 : M — MQA, then
the spectral subspaces M are finite dimensional and dimM, < M2.
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Proof. Leta € @ and fix u* € a acting on H, and an orthonormal basis {1, ..., &4, in
H, such that u®(§;) = E & @ud. Let i, ..., Vv C M, be mutually (, )2, orthogonal

irreducible o-invariant subspaces and let Uy € L(Ha, Vi), 1 < k < N be unitaries
such that oUy = (Ui ® ida)a. Denoting ef ) = = Uié; it follows that e(k) ,e&k) is an
orthonormal basis in V; and

(1) a(el?) = E ® @ ug,

r=1

thus

da de da
(L) = Y Welrguuy = Y el @1,

i=1 i,r,8=1 r=1

and ?‘; eﬁk)efl)" € Clpm
Moreover, the equality (F, ® ids)a = a*°F, and the previous Lemma yield :
o E (P UF U ) = o P UF: (60)
= £ o) UF; U} @ idg)a()
=S o U,F-IU;*(e“)) ® K2(u)
= E e U F7UF (D) ® Z u®*k?(u®)

r s=1

3 eBrUFS U (D) ® 14,
=1
thus
dg do
@ R eVUFSU () = oS 6 UES U (E]) i
= E(Ul LU (e (l)), ( ))2w1M S Tr(F7N)1pm = SuMolpm.

Since the modular operator F, associated with u® is positive ([Wor, 5.4]), the matrix
C = ((F;'%:,¢5))i; € Maty,(C) is positive definite.

Denote C'/% = (\;;)ij, T = ): /\meg) and X = (z) € Maty, N(M). Then

da da da
S U = 3 (P e = 35 Tl el = 3 anan,
i=1 1,J=1 r,i,j=1 r=1

or in other words X*X = M,I in M ® Matn(C). This yields XX* < M,I in
MQ® Mat, (C).
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Consider the positive linear functional ¢ € Maty,(C)., ¢(Y) = Tr(C~'Y), Tr being
the normalized trace on Mat,, (C). Then
da da
¢l = ¢(I) = Tr(C™") = 3 (C™")i = P (Fabi, &) = Tr(Fa) = Ma

=1 i=1

and the last inequality yields :

da N
M2 2 o ® ¢l IXX° 2 @O XX = 8§ lequlzacs)
'J: =
N da
= T B A hew(eWed) = 3 3 ufelel)
k—l ',],r s=1 k=1r=1

5> 113,
k=1r=1

This inequality plays a crucial role since it shows that if W, C M, is a o-invariant
subspace and Ay, the positive invertible operator on W, (with respect to ( , )., ) such
that (Aw,(2),¥)2w = (%,¥)10, T,y € W,, then

(3) Tr(Aw,) < M2.

Consider now a finite-dimensional o-invariant subspace W C Mg and let Ay be
the unique positive invertible operator on W with (Aw(z),y)2w = (Z,Y) 1w, T,y € W.
Since (My, Mp)1,, = 0 for a # B, it follows that Ay invariates each spectral subspace
W, of W and

(4) Tr(Aw) = ¥ Tr(Aw,) < Y M2

a<W a<W

If in addition Aw is *-invariant and Jz = z*, z € M, then

(JAZIZ,¥)20 = (¥ A (T N1w = (¥ 220 = (2,010 = (Aw(2),¥)20, =,y € W.

Therefore JAy'J = Aw and in particular if ) is an eigenvalue of Aw with multi-
plicity my, so is A~! with the same multiplicity. It follows that

(5) Zm,\)\ my+ Y ma(A+ A7) 2 my+ Y 2my = dim(W).

A>1 A>1

Finally let V C M, be a finite-dimensional o-invariant subspace. Since V* C M it
follows that W = V +V* is o-invariant. If « is self-conjugate, then W Cc M,, W = W*
and therefore dim(V) < dim(W) < M2. In the case when a # o in G the sum V+V*is
orthogonal and by (4) and (5) we get  2dim(V) = dim(W) < M2+ M?2. = 2M2. O

The next statement describes the modularity of w.

Proposition 18 There exists © : My — M, linear multiplicative map such that
w(zO(y)) = w(yz), € M,y € Mo. Moreover © invariates all the irreducible o-
invariant subspaces of Mo and is a scalar multiple of the modular operator F, on such

a subspace of M, for all a € G.
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Proof. Let V} o VN be the mutually orthogonal irreducible o-invariant subspaces
of M, and let e k, .,e¢{") be an orthonormal basis in Vk (d = dim(a)) such that

cr(e,(-k)) = E e @u, 1 <i<dl<k<N. Then Ee,(k)e,(l)' € M?, therefore
r=1 i=1

d
there exist Ay € C, 1 < k,I < N such that ¥ egk)egl)* = Axlym. The matrix A =

=1

(Akt)1<ki<1,n is positively definite, hence there exists a unitary S = (sk1)1<k1<N €
MatN(C) and Aj,...,Ay > 0 such that SAS* = diag()y,...,An). Replacing e by
E sipel?) we get :

=

d
6) Y e = gudilp, 1<kISN.
i=1
Fix now 1 < k,! < N and consider Ty : Vi = Vi, Ti(z) = Z w(me(l)")e(l) z € V.
Combining the o-invariance of w, the orthogonality relations (5. 25) in [Wor] and (6) we

getfor1 <1< d:

" d
Tuel” = ¥ w(e?e)e = 2 (o b)) o uguss)e!)

d d u®

= 5 w(ePed) i fiun)e) = w(ebedn) e
q i Jp=1

= S 5 ﬁ(u;-:-)eﬁ“ = e (idpy @ fi)(o(e)),

thus Ty = (sz ® f1) o 0. We check now that T} = Ty, € Mor(o |v,,0° |v,)-
The previous formula for T}, yields :

M (idpe ® ((f1 ® ida)An))o

A .
oTy = —A/—;:a((sz ® fi)o) = A

and

(T ®ida)o = dm ® fi)o ®ida)o = %(idm ® ((fr @ ida)A4))o.

Ak
Al
Since k%(a) = f_; *a * f1, a € A we also have :

(idp @ K?)(idpm ® (ida ® fr) 0 An)(y ® a) =y @ k*(fr*xa) =y ® (a* f1)
=(dm @ (f1®idg) 0 Ay)(y®a), yeEM,acA,

hence (T} ® id4)o = (idp @ k%)oTy = 0°Ty on V4.

But Mor(a,a) = {\F, | A € C}, therefore w(e,(k)ey)') = A, (Fy)ji- Comparing
the previous relation with (7) we get :

K k) () OkiAk Okt Ak My (@
(e, M = wl(ee") = JEEF)i = PR, )2
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thus w(zy*) = uw(y*O(z)) = w(y*O(z)) for all z € Vi,y € Vi, where we let
O |v,= T’\f—Fa € L(Vik). The orthogonality of the spectral subspaces M, implies now
that w(zy) = w(yO(z)) for all z € Mo,y € M. Clearly O is linear by definition and
follows multiplicative by the previous equality. a

§2. The structure of the crossed product

Using the finite dimensionality of the spectral subspaces M, we prove that the
reduced C*-crossed product N’ = M x, A (as defined in [BS]) of a unital C*-algebra
M by an ergodic coaction of a compact matrix pseudogroup G = (A4, u) with faithful
Haar measure h on A, turning M into an A-algebra, is isomorphic to a direct sum
of algebras of compact operators, generalizing Proposition 2 in [L] and Corollary 2 in
[Wal, §1.4]. The main ingredient is the Takesaki-Takai duality type theorem of Baaj
and Skandalis and the line of the proof follows Wassermann’s one for the case when
A = C(G), the commutative C*-algebra of continuous functions on a compact group G
and N = M x, G.

Remark first that A is an A-algebra via the comultiplication Ay : A — A® A, that
A4 is ergodic and that A is the A 4-invariant state on A. Denote H = H;, and consider
as in Remark 15 the operator V € L(H @ H), V(ar ® by) = (Aa(a)(14a ® b))(1r @ 14),
a,b € A. Then V is a biregular irreducible multiplicative unitary. Moreover, the partial
isometry U (no relationship with the unitary associated to the coaction o in §1) in the
polar decomposition T'= U | T' | of the closure of the preclosed operator Ty defined by
To(an) = k(a)n, @ € A is a unitary on H with U2 = Ip. In fact Uzp = (f1 * &(z))n,
z € A and (H,V,U) is a Kac system (see [BS, §6]). Consider the reduced C*-crossed
product N = M x, A, defined in [BS, §7] as the C*-algebra generated by products
of type or(z)(14a ® p(w)), = € M,w € L(H).. Then, there exists a dual coaction
0 = Opgy, 7 ON N, which transforms this way into an A-algebra Let A acting in
the GNS representation of h on H and denote op(z) = (idp ® AdU)(o(z)), z € M,

Mw) = (1deny @ w)(V), w € L(H).. Then, by Theorem 7.5 in [BS], M x, A identifies
with the norm closure of span{ogr(z)(1pm ® AM(w)) | z € M,w € L(H).}, M Q K(H)
with the closure of span{ogr(z)(lm ® Mw)a) | z € M,w € L(H).,a € A} and denoting
o'(z @ k) = Vaao(2)13(1m @ k ® 14)V55, ¢ € M, k € K(H), the double crossed-product
((M x, A) x5 A,5) is isomorphic to (M ® K(H),0") as A-algebras. Moreover, the last
two equalities in the proof of that theorem show that via the previous identification
Mx, AcC(M®K(H)).

The proof of the structure of the crossed-product will make use of the next Lemma:

Lemma ([Wal, §1.4]). Let A be a (not necessarily unital) C*-algebra with an ap-
proximate identity p; < p; < ... consisting of finite rank projections (i.e. dim(p;Ap;) <
00). Then A is isomorphic to a direct sum of algebras of compact operators.

Theorem 19 Let G = (A, u) be a compact matriz pseudogroup and let M be a unital
C*-algebra which is an A-algebra via the ergodic coaction o0 : M — M @ A. Then
M x, A~ ®;K(H;).
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Proof. Replacing A by its reduced C*-algebra, the crossed product M x, A is still
unchanged (we owe this remark to the referee), thus one may assume that that the Haar
measure is faithful on A. For each a € G consider the projections p(a) from H onto H,
defined in Remark 15. Since p(a) = (idgm) ® pa)(V) and po € L(H), it follows that
p(@) € A. But M is unital, therefore 14 ® p(a) € N = M x, A. Since Y pla) =13

a€G
in the strict topology, it follows that writing G = U,F, with card(F,) < co we get an
approximate unit p, = p(F,) = Z}; p(a), n > 1 of N. Finally we check that each
a€lyn

p(F,) has finite rank, or equivalently that dim(p(a)Np(r)) < oo for all a, 7 € G. Since
Im®p(a) € N and N C (M ® K(H))*', we obtain :

p(@)Np(r) C p(a)(M ®K(H))"'p(r) C (M@ p(a)K(H)p(r))” = (M ® L(Hx, Ha))".

If ap € G is fixed, then o’ |pm_coc(HaHa) 18 @ corepresentation of A that coincides
0
with the tensor product corepresentation o |se @00 |c(#,,H,) and therefore

(idmecc) ® h)(0' (MG ® L(Hr, Ha))) = Ran(a s OF0 |ertr pa)n
= Mor(a |M3,Jo |c(H,,Ha))T-

Since there are only finitely many ap € G that appear in 0o |c(H,Ha), the space

(M@ L(Hz, Ha))' = (idpm @ h)(0'(M®L(Hr,Hy))) follows finite dimensional. 0

Remark 20 Although we didn’t use it in proving the last theorem, it is easy to check
that in fact M x, A = (M ® K(H))*' via the realization of the crossed-product in
MQK(H).

This is the case since the canonical conditional expectation £ = (idmgk ) ® h)o’
carries total sets in M ® K(H) onto total sets in (M ® K(H))°'. In particular the set
S ={E(or(z)(1m ® A(w)a)) | € M,w € L(H).,a € A}

is total in (M ® K(H))’". But the formula for o’ and (ids ® h)Aa(a) = h(a)ly,
a € A, yield for any z € M,w € L(H).,a € A:

E(or(z)(1m ® A(w)a))
= (1dmex(r) ® h)((0r(z)(1m @ A(w)) ® 14)(1m ® As(a))
= oRr(2)(1m ® A(w))(1m ® (1de(n) ® h)As(a))
= h(a)or(z)(1m ® A(w)),

therefore S C M x, A. O
Let B and C be unital C*-algebras, G = (A,u) be a compact matrix pseudogroup

with A nuclear and ¢ : C — C ® A be a unital *-morphism. By the associativity of the
maximal tensor product and the nuclearity of A, the diagram :
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G =1dB Qmax 0
B ®max C — B ®max (C® 4) = (B Omax C) ® 4

2 T T 10B@maxC ® A4 = 1dp ®max (idc ® A4)

tdB ®max (‘7 ® idA)
B®max (CQ®A)=(BOmaxC)® A — (BOmax C)® A® A= B®max (C®AQA) ,
is commutative although & may not be one-to-one in general (note that & ®maxids =
tdBQ@max(0®id4)). But Lemma 4.1 i) holds true in such a case, thus E= (1dB@maxc®h)5
is a conditional expectation from B ®max C onto (B ®max C)° and it turns out that
E = idp Qmax F, where E = (idc ® h)o is conditional expectation from C onto C?. In
particular, this shows

Remark 21 (B ®max C)° = B @max C°.

The next statement, whose proof follows the line of [Wa2, Lemma22], shows that if
A is nuclear, then M itself follows nuclear.

Proposition 22 Let (M,0) be an A-algebra such that M x, A and A are nuclear
C*-algebras. Then M is nuclear.

Proof. We prove that given any unital C*-algebra B, the natural *-morphism 6
that maps B ®mpax M onto B ® M is one-to-one.

Consider the coaction o' : MK (H) - M®K(H)Q A and define as in the previous
remark 6/ : B @max (M ® K(H)) = B @max (M @ K(H)) ® A.

The map © = 0 ® idx(3) : B Omax (M @ K(H)) - B® M ® K(H) is A-equivariant,
i.e. (idp®0’)® = Bo’ and using the canonical conditional expectations onto fixed point
algebras

E” : B @max (M ® K(H)) = (B ®max (M ®K(H)))” = B @umax (M ® K(H))”
and
E"%" . B M@K(H) = (B® M@ K(H))"*#®" = B® (M ® K(H))",
we get QE° = Eits87'Q, Consequently
(Kerd ® K(H))” = Ker(B @umax (M ® K(H))” -2 B® (M @ K(H))").
Since (M ®K(H))”' ~ M x, A is nuclear, it follows that (Kerf ® K(H))” = 0 and

therefore Kerf = 0. 0O

Corollary 23 If G = (A,u) is a compact matriz pseudogroup, the C*-algebra A is
nuclear and M is a unital C*-algebra which is an A-algebra via an ergodic coaction,
then M s nuclear.
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Simplicity of crossed products from ergodic
actions of compact matrix pseudogroups.

Magnus B. Landstad

Appendix to: "Ergodic Actions of Compact Matrix Pseudogroups on C*-algebras” by
Florin Boca.

Introduction. For an ergodic covariant system (M, p, G) of a compact group G it was
shown in [L2,Theorem 8] and [Wal,Theorem 15] that the crossed product M x,G is a
simple C*-algebra (or a factor in the von Neumann algebra case) <= the multiplicity
of each 7 € G in p equals dim(7), and in this case M X, G is isomorphic to the algebra
of compact operators on L?(G). We shall here study the corresponding result for an
ergodic coaction (M, o, A) of a compact matrix pseudogroup G = (A, u) with faithful
Haar measure as defined in F. Boca’s article.

The main tool used in the group case is the construction of a fundamental eigen-
operator U € M(M ® C*(G)) satisfying p, ® i(U) = Ul ® L, for z € G. We shall
construct a similar operator Y in Lemma Al. In the group case the multiplicity of
each 7 € @ in p is always < dim(7), hence U can be considered a partial isometry
over L((M,w) ® L*(G), with w the invariant trace on M. Since the bound M, of
the multiplicity obtained in Theorem 17 can be larger than d,, we have to be more
careful with the domain and the range of the eigenoperator Y, it turns out that Y is a
partial isometry from a subspace of L%(M,w) ® L?(A, k) onto L}(M,w) @ L} (M,w),
here h and w are the canonical invariant states on A, respectively M. It also has to
be taken into account that the invariant state w is not a trace. It was shown above in
Proposition 18 by F. Boca that the modular operator © leaves the finite dimensional
spaces M, invariant and that @|M, = A, ® F,, where F, is the fundamental matrix
corresponding to a and A, is a N x N-matrix, N being the multiplicity of « in 0.

The main result, Theorem A, can then be stated as follows: M x, Ais a simple
C*-algebra <= Tr(A,) = Tr(F,) for all & € G, and in this case M X, A is isomorphic
to the algebra of compact operators on L?(M,w). Therefore, if we define the quantum
dimension of a to be Tr(Fy), it is natural to define the quantum multiplicity of a in o
as Tr(Ay). We then get a generalisation of the result for ordinary compact groups.

All unexplained notation and references are as.in Boca’s article.

These results were obtained through many discussions with Florin Boca during the
author’s stay at the University of California, Los Angeles in early 1993, and I would also
like to thank for the hospitality and support from the Departmernt of Mathematics.
My stay there was also supported by the Norwegian Research Council.

Notation. Let H, = a-part of H, = L*(A, k), this is generated by {(uf)lé,j < d}
and has dimension d?. Similarily we have that M, = a-part of M has dimension dN.
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Define the following partial isometries:
Af i Ho = Hoa o Af((ug)n) = 8uugy)n  i,5 < d
BY: Mo~ Mo BE((ef)) = 65(el)s 0,7 < N
Cf:Ha = Mo C((ui)h) = 8n(el))s i< N, j<d.

The following formulas should then be easy to verify:

A AR = 6nAJ BBy, = $1Bj,
B CR A, = 6ikbimC3, C’°’ W =8B CZCR = 6 A5
With P, the ortogonal projction H, — M, and V as in Remark 15, let V(a) =

P,®1V = VP,®1. Then over H,@H, we have that V(a)((uf;)r®an) = A(u?;-)lh®ah =
Tk(uf)n ® ug;an. So we have that

V(e) = ¥ A% @ uli.
ik

Definition. ¢ Q3 is the action on M QK given by c ®i(m® k) = 0(m)131 @k ®1, so
o' = Ad(Vy3)o ®1. Next, let \; be as in Proposition 18, i.e. ¥; efk)efl) = 8 A1 and
take
=AM @ 08 € M@ L(Hay M)
ik

Lemma Al.

(1) Y(@)Y(a)* = Ly ® lgma)
(2) e®i(Y(a))=(Y(2)®1)(1®V(a))
(3) Z satisfies (2) <= Z = (1® D)Y(a) for some D € L(M,)

Proof: (1): Y(a)Y(a)* =% A;%/\I_%efk)ey)* ® B = 1pm @ 1e(Ma)-
Then for (2):

c@i(Y(a) = LA @Ceous
= zAk=(e<’°’®ck,®1)(1®A @us) = (Y(a) @ 1)(1 ®@ V(a)).

And for (3): If Z € M ® L(Hqa, M, ) satisfies (2), then the " M-part” of Z must be
in Mg, ie. Z € My ® L(Hq, My), s0 we can write Z = ¥ el!) ® E;, for some maps
E. € L(Hay M,). If (2) holds we get

Z e(l) ® El"' ® u]" Z e(l) ® El]Aa ® uar’

thus Ei;AS = §;,E;,. Taking D =} /\’Eﬂ * € L(M,) we get

ZAk’e(k) ® M E;,C5*Ci;
= T ByAy = ze‘%Ek =2z

(1® D)Y(a)
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An element Z satisfying (2) is called an a-eigenoperator for the action. So Lemma
Al tells us that Y(a) generates all a-eigenoperators by the formula (3). We shall also
need the universal eigenoperator Y = "% Y («), this is a map from H,, @ H;, to H,QH,,
satisfying

0®i(Y)=)/12‘/23 YY‘=1M®1M

It then follows that o/(Y*aY') = Y50 @ i(a)Y); for all a.

Lemma A2. Let © be as in Proposition 18 and let ©, be its restriction to M,. With
A, the matrix given by (Ag)ulm = -A;—a jeﬁk)egl)‘ we have

(1) Tr(O4) = Tr(031)

(2) Tr(0,) = Tr(Aa)Ms =3 Ak

(3) Tr(07') = Tr(A;Y)M, = M2 ;!
(4) Tr(Awe) = My ¥ A

Proof: (1) follows from the fact that ©(z) = Az => ©(z*) = A~'z*. In Proposition 18
it is proved that ©, = A, ® F,, hence (2) and (3). Combining these three properties
with the fact that My = M}, then M, = M, and (4) follows.

]

We are now ready to prove the main result:

Theorem A. With the same assumptions as in Theorem 19 and if M, # 0 for all «,
then the following conditions are equivalent:

(1) N=Mx, A isasimple C*-algebra
(2) N=K(H.)

(3) Y(a)*Y(a)=1pm® lep, foralla € G
(4) Tr(Ay) = Tr(F,) for all a € G.

Proof: (3) = (2): In this case Y is a unitary eigenoperator between H, ® H; and
H, ® H,, so

N = (MOKMY)Y = [V (M&K(H,)Y]" = Y5(M® K(H.))"® Y,
=YM? ® K(H,)Yiz = Y51 ® K(H, )Yz & K(H,).

Note that from Lemma 4 there is a conditional expectation from M onto M?, so we
have that (M ® K(H,,))°® = M° @ K(H,).

(2) = (1) is obvious.

(1) = (3): If NV is simple, so is 1 ® p(a)N1 @ p(a)., = (M ® K(H,))”. Now
J =Y (a)*1 @ K(M,)Y () is a 2-sided ideal in (M ® K(Ha))":

If A€ K(H,), B € (M®K(H,))” then Y(a)B satisfies (2) in Lemma Al, so
Y(a)B =1@® CY(a) for some C € K(M,). Therefore Y(a)*1 @ AY (a)B = Y(a)*1 ®
ACY(a) € J, and since J* = J, J is a 2-sided ideal.

If 7 = {0} then M, = {0}, so simplicity gives us that J = (M ® K(H,))’". Thus
1€ J, hence Y(a)'Y(a) =1.

(3) < (4): Since Y(a)*Y () always is a projection and w is faithful, we have for all
a:
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(3) = w@i(Y(a)Y(a))=1lpn) <= TAtw(eM) A% = 1201,
= At =1 = Tr(Axe) = My < Tr(Age) = Tr(Fye).

0
Remark. Tr(F,) = M, is called the quantum dimension of a. jFrom Theorem A
it then seems reasonable to call Tr(A,) the quantum multiplicity of a in o. Since
Y(a)*Y («) always is a projection we have from the proof of (3) <= (4) the following:

Corollary. With (M,o,G) as in Theorem 19 one has always Tr(A,) < Tr(F,) with
equality <= (1)-(4) in Theorem A hold.

Addtional reference:

[L2] M. B. Landstad, Operator algebras and compact groups. Proc. of the Int.
Conf. in Operator Algebras and Group Representations in Neptun (Romania) 1980,
Monographs and Studies in Math. 18, vol.II (1984), 33-47, Pitman.

M.B. Landstad

University of Trondheim, AVH,
N-7055 Dragvoll, Norway
email address:
magnus.landstad@avh.unit.no
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HOMOTOPY OF PROJECTIONS IN
C*-ALGEBRAS OF STABLE RANK ONE

LAWRENCE G. BrRowN!

1. DISCUSSION AND INTRODUCTION

My talk at the Orleans conference concerned extremally rich C*-algebras, based
on joint work with G. K. Pedersen. A unital C*-algebra A is called eztremally rich
if its closed unit ball, A;, is the convex hull of its extreme points, and a non-unital
C*-algebra A is eztremally rich if and only if .Z, the result of adjoining an identity, is
extremally rich. For other equivalent definitions and most of the properties the reader
is referred to our forthcoming papers [4] and [5]. The theory of extremal richness is
not involved in the first theorem of this paper, but some of it will be discussed in this
section, mainly for heuristic purposes and partly as a research announcement.

A theorem of Rgrdam [15] implies that every C*-algebra of stable rank one is
extremally rich. In fact tsr(A) = 1 if and only if A is extremally rich and every
extreme point of A; is unitary. (The second condition is a kind of finiteness condition
- see further discussion in §3. Of course every unitary is extremal.) There is an
intermediate concept, isometric richness, and 4 is isometrically rich if and only if it is
extremally rich and every extreme point of A; is an isometry or co-isometry. Thus for
prime C*-algebras, in particular for primitive or simple C*-algebras, isometric richness
is equivalent to extremal richness. Rgrdam [16, 4.5] and Pedersen [12, 10.1] state
(without the terminology) that every purely infinite simple C*-algebra is extremally
rich. In fact a simple C*-algebra is extremally rich if and only if it is either purely
infinite or of stable rank one.

A guiding philosophy is that if a property of C*-algebras A is known both when
A is purely infinite simple and when tsr(A) = 1, then one can hope to prove it for
A extremally rich. This hope is substantially realized with respect to the invari-
ance properties of extremal richness (strong Morita equivalence, passage to heredi-
tary subalgebras, behavior under extensions) and with respect to certain non-stable
K-theoretic properties, but this hope is very possibly wrong with respect to other
non-stable K-theoretic properties. Moreover, the facts stated in the abstract show
that it is wrong with respect to the question of Zhang stated there, though there is
a way to re-formulate the question (see §3). Actually the issue of how close is the
relationship between extremal richness and non-stable K-theory is very much up in
the air. Conceivably all of the results already proved could be special cases of more

1This work was done while the author was visiting the University of Copenhagen and was partially
supported by a grant from the Danish Research Council.
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general results that do not mention extremal richness, but this seems unlikely to me
at present.

A (possibly non-unital) C*-algebra A is said to have weak cancellation if whenever
p and ¢ are projections in A ® K such that each of p, ¢ generates the same (closed,
two-sided) ideal J and p and ¢ have the same image in Ko(J), then p ~ ¢q. Here
K is the C*-algebra of compact operators on a separable infinite-dimensional Hilbert
space and ~ denotes Murray-von Neumann equivalence. Of course, C*-algebras of
stable rank one satisfy the strong cancellation property that if p and ¢ have the
same image in Ko(A), then p ~ ¢ (Blackadar [1, 6.5.1]). (I am here not stating the
cancellation property in quite the usual way, but the discrepancy is only technical and
not important when tsr(A4) = 1.) A related fact is that tsr(4) = 1 implies that the
natural map from Ko(J) to Ko(A) is injective. This is a known result (folklore) for
which I do not know a reference, and the corresponding statement for extremally rich
C*-algebras is false. Cuntz [7] showed that purely infinite simple C*-algebras have
weak cancellation.

A unital C*-algebra A is said to have K;-surjectivity if the natural map from
U(A)/Up(A) to K,(A) is surjective, K;-injectivity if this map is injective, and K-
bijectivity if it is bijective. Here U(A) is the unitary group of A and Uy(A) the
connected component of the identity. Cuntz [7] showed that purely infinite simple
C*-algebras have K;-bijectivity (the same is true of Aif Ais non-unital), and Rieffel
[14] showed that tsr(A) = 1 implies Kj-bijectivity.

It will be shown in [5] that every isometrically rich C*-algebra has weak cancellation
and also every extremally rich C*-algebra of real rank zero. There are other positive
theorems, but it is not known whether every extremally rich C*-algebra has weak
cancellation. Every extremally rich C*-algebra with weak cancellation also has K-
surjectivity and certain other properties. It was shown by Lin [10] that every C*-
algebra of real rank zero has Kj-injectivity. There is presently no real evidence of a
relationship between K-injectivity and extremal richness.

Zhang [21] formulated the question of the abstract as follows. For a projection p
inAlet G, = {upu™ :u €U (A)}. The question is whether Gp is connected. Note
that a projection ¢ is in G, if and only if ¢ ~ pand 1 — ¢ ~ 1 —p. Thus if tsr(A) =1,
q is in G if and only if ¢ ~ p. Also the results of Cuntz [7] show that if A is purely
infinite simple, then ¢ is in G, if and only if ¢ ~ p and either p=¢=1o0r p# 1 and
g # 1. It is well known that if p and ¢ are homotopic projections in A (i.e., p and ¢
are in the same connected component of the set of projections of A), then ¢ = upu™!
for some u in Up(A) or Us(A). All of this must be kept in mind since the results in
the literature prior to [21] are not formulated in the same way.

2. FIRST THEOREM AND EXAMPLE

The proof of the theorem has much in common with the proof of the quoted result
of Effros and Kaminker [8, 2.4]. A different proof, perhaps more suggestive, is sketched
in §3.

Theorem 1. If p is a projection in a C*-algebra A and if tsr(A) = 1, then G, is
connected. In other words, unitarily equivalent projections in A are homotopic.
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Proof. Without loss of generality we may assume A is unital. Let I be the ideal of A
generated by p, and let B = I + C- 1. Then tsr(B) = 1 by results of Rieffel [13]. Let
q be an element of G,. Since ¢ ~ pin A, gisin I and ¢ ~ pin I. Thus q is unitarily
equivalent to p in B (as indicated above, because of the cancellation property for
B). Let u be in U(B) such that ¢ = upu™!, and let a be the image of u in K1(B).
Because pIp is a full hereditary C*-subalgebra of I the natural map frgm Ki(pIp)
to K;(I) is a bijection (see the following remark). Also K;(B) = K1(I) = Ky1(I).
Thus « is the image of an element 3 of K;(pIp). Now tsr(pIp) = 1 (see the following
remark) and hence f is the image of a unitary v, in U(pIp) by a result of Rieffel [14]
(K;-surjectivity). Let v = v; + 1 —p and w = uv™!. Then w is in U(B), ¢ = wpw™!,
and the image of w in K;(B) is 0. Thus the K;-injectivity result of [14] implies w is
in Up(B). This clearly implies that ¢ is homotopic to p.

Remark. I have not been able to find a reference for the fact that inclusions of full
hereditary C*-algebras induce isomorphisms of K-groups in full generality. Paschke
[11, 1.2] proves this when both algebras are o-unital. The general case can be deduced
from this by using direct limits of separable subalgebras.

I also do not know a reference for the fact that tsr(A) = 1 implies tsr(B) = 1 when
B is a hereditary C*-subalgebra of A, though surely this fact is known. If I is the
ideal of A generated by B, then tsr(I) = 1 by Rieffel [13] and I is strongly Morita
equivalent to B. Rieffel also proves in [13] that the property tsr = 1 is preserved
by stable isomorphism, which is the same as strong Morita equivalence when both
algebras are o-unital. A proof that the property tsr = 1 is preserved by strong Morita
equivalence in general will be found in [4], and also a direct (and short) proof that
tsr = 1 passes to hereditary subalgebras can be obtained from [4].

EXAMPLE. Let {e, : n € Z} be an orthonormal basis for a Hilbert space H. Let U in
B(H) be the bilateral shift defined by Ue,, = en41, let P in B(H) be the projection
on {e, : n > 0}, and let Py be the projection on {e, : n > 0}. Let A = {T € B(H):
PT(1 - P),(1 — P)TP € K}. Then A is a C*-algebra, U,P,P, € A, UPU™! = P,,
and P is not homotopic to Py in A.

Only the last assertion needs proof. Note that A D K and A/K = Q @ Q, where
Q is the Calkin algebra. Thus every element V of Up(A) has an image v; @ vz in
Q@ Q and vy,vy € Up(Q). It follows that PV P and (1 — P)V(1 — P) have index
0 as operators on PH and (1 — P)H. In particular, U ¢ Uy(A). But if P and
Py were homotopic, there would be V in Uy(A) such that VPV~! = P,, and thus
V = UW with WP = PW. Since the last equation implies W € Up(A), we have a
contradiction.

Now A has real rank zero but is not extremally rich. That RR(A) = 0 follows from
the facts that RR(K) = RR(A/K) = 0 and projections lift. That A is not extremally
rich follows from [4] and the fact that there is an extremal element u in A/K which is
not the image of an extremal element of A. Namely, u = v @ v* where v is a proper
isometry in Q. To get the promised example, we replace A with a C*-subalgebra
B such that U and P, and hence Py, are in B. Then P and P, are still unitarily
equivalent projections in B which are not homotopic.
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Let D in B(H ) be defined by De,, = A™e,, where ) is a complex number of absolute
value 1 which is not a root of unity. Note that D is unitary and DP = PD. Let

B, = C*(PD,PUP) and B, = C*((1- P)D,(1 - P)U(1 — P)).

Then B, D K(PH) and B, D K((1 - P)H), since PUP and (1 — P)U(1 — P) are
respectively a unilateral shift and a backward shift. Since DU = AUD, it is easy to
see that B;/K(PH) =& C*(uy,d;) and By/K(1 — P)H) = C*(uy,d;), where u; and
d; are unitary and d;u; = Au;d;. Then C*(u;,d;) and C*(uz,d;) are isomorphic to
the same irrational rotation algebra C. That tsr(C) = 1 and RR(C) = 0 follows a
fortiori either from Blackadar, Kumjian, and Rgrdam [2] or from Elliott and Evans
[9]. (This subject has a distinguished history, and various combinations of earlier
papers could have been used for constructing an example.) Now let B = {T' € A :
PTP € B; and (1 - P)T(1-P) € By}. Thus K C B and B/K = C & C. Since
RR(K) = RR(B/K) = 0, to show that RR(B) = 0 we need only show that every
projection in B/K is the image of a projection in B (see [3, 3.14], [18, 2.4], or |20,
2.3]). The fact that projections always lift when the ideal is K follows from a well
known result of Calkin [6]. It will be shown in [4] that whenever a C*-algebra B has
an ideal which is a dual C*-algebra such that the quotient algebra is isometrically
rich, then B is extremally rich. This applies to the algebra called B here. Note also
that B is primitive, so that B is even isometrically rich.

3. MORE DISCUSSION AND SECOND THEOREM

Let p be a fixed projection in a unital C*-algebra A. Proposition 3.2 of Zhang [21]
implies G, is connected if and only if the natural map from

U(pAp)/Uo(pAp) ® U ((1 — p)A(1 - p)) /Uo ((1 — p)A(1 — p))

to U(A)/Uy(A) is surjective.

Now let I and J be the ideals of A generated by p and g, respectively, and let
s(I,J) be the natural map from K;(I) ® K1(J) to K1(A). Then it is clear from the
previous paragraph that a necessary condition for connectedness of G, is that certain
elements of K;(A), namely those in the image of U(A)/Uy(A), be in the range of
s(I,J). If A has K,-surjectivity, it is necessary that s(I, J) be surjective. Note that
s(I, J) is surjective if and only if the natural map from Ko(INJ) to Ko(I)® Ko(J) is
injective and that this is so if tsr(A) = 1 (or merely if either tsr(I) = 1 or tsr(J) = 1).
If s(I,J) is surjective and if both pAp and (1 — p)A(1 — p) have K;-surjectivity, then
for any u in U(A) there is a v such that vp = pv and uv™! is in the kernel of the
map from U(A)/Uy(A) to K;(A). (Here we use the facts that Ky(pAp) = K,(I),
K,((1 — p)A(1 — p)) = K;(J), cf. proof of Theorem 1.) Then if also A has K;-
injectivity, we see that G, is connected.

Thus if we make enough hypotheses about K;-surjectivity and —injectivity, then G,
is connected if and only if s(I, J) is surjective. Of course, the example in the previous
section was deliberately constructed so that s(I, J) would not be surjective. Now the
surjectivity of s(I, J) strikes me as an interesting condition, but it may be desirable
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to eliminate it from consideration in order to concentrate on the non-stable K-theory.
This can be done by making some additional hypothesis. I note that the cited results
of Effros-Kaminker and Zhang explicitly assumed that p # 0 and p # 1 and that if
A is simple this is equivalent to I = J = A. Thus the following theorem seems a
reasonable offering.

Theorem 2. If A is a (not necessarily unital) extremally rich C*-algebra of real rank
zero and if p is a projection in A such that either p generates A as an ideal or 1 —p
generates A as an ideal, then G, is connected.

Proof. The results about extremally rich C*-algebras announced in §1 and the K-
injectivity result of Lin [10] imply all the K;-surjectivity and —injectivity needed.
Since G, is homeomorphic to G;_,, both the proof given for Theorem 1 and the
argument sketched above can be adapted to the present situation.

Theorem 2 is certainly not a best possibly result, as is clear from the above, but
it seems unpleasant to state a theorem with a lot of ad hoc hypotheses even if that
theorem would be stronger. I think attempts to formulate the optimal theorem should
wait until more is known. Some speculative discussion follows.

Although none of the results in this paper suggests it, it seems possible that there
is a theorem on connectedness of G, in which the main hypothesis is RR(A) = 0. It
could be that RR(A) = 0 and surjectivity of s(I, J) suffices, or perhaps RR(A) =0
and some finiteness hypothesis. I am not making any conjectures, just suggesting
questions.

With regard to finiteness, the theory of extremal richness in [4] and [5] emphasizes
the fact that there is more than one useful finiteness condition for non-simple C*-
algebras. There are at least four concepts, which I define only in the unital case for
simplicity:

(F1) A has a faithful family of finite traces.

(F2) A is finite if it contains no proper isometries.

(F3) A is residually finite if every quotient algebra is finite.
(F4) Every extreme point of A; is unitary.

Then each of (F1) and (F3) implies (F4), which in turn implies (F2); and neither of
(F1) and (F3) implies the other.

Question 4.16 of Rieffel [13] asks whether tsr(M(A)) = tsr(A) if M(A) is finite in
a suitable sense (open-ended). For a straightforward example let A be a non-unital
finite matroid C*-algebra. Then tsr(A) = 1; and tsr(M(A)) = oo, since M(A)/A
is purely infinite simple. Also M(A) is not extremally rich, though it is of real rank
zero. M(A) has a faithful finite trace but obviously is not residually finite.
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OPERATOR ALGEBRAS, FREE GROUPS
AND OTHER GROUPS

PIERRE DE LA HARPE

1. INTRODUCTION.

Let I be a group. We denote by C[T'] the group algebra of complex linear combi-
nations of elements of I', given together with the involution

X = Zz,y'yt—»X* = ZZ,"y—l .
~Y€r ~€r
The operator algebras of interest here are various completions of C[I']. Non abelian
free groups are among the most studied examples of groups in this context. We
denote by F), the non abelian free group on n generators, where n is either an integer,
n > 2, or n = 00, meaning an infinite countable number of generators.

Our guiding principle is that the special case of free groups indicates typical be-
haviours which hold in many other cases of geometrical interest. This has suggested
the three main aspects of the report below :

a survey of some properties of operator algebras associated to the F), ’s,
an exploration of ”geometric” groups giving rise to algebras with similar
properties,
a list of open problems (some of them are numbered, from 1 to 19,
and others appear in the text).

We shall concentrate on groups I' which are lattices in semi-simple Lie groups
([Rag], [Mas]) or hyperbolic [Grl], and on algebras which are either von Neumann
algebras or C*-algebras. But we shall mention on occasions other groups and other
algebras. Unless explicitely stated otherwise, I' denotes a countable group and
operator algebras are separable in the appropriate sense.

Many important developments are left untouched. In particular, we say very little
on K-theory and KK-theory related to group C*-algebras, and nothing at all on the
Novikov conjecture.

It is a pleasure to thank M. Bekka, G. Skandalis, A. Valette and D. Voiculescu
for many helpful discussions. I have also benefited of the expert comments of various
colleagues on a first draught of this work, and I’'m most grateful for this to E. Bédos,
M. Cowling, E. Ghys, T. Giordano, P. Jolissaint, V. Jones, E. Kaniuth, S. Popa, F.
Radulescu, F. Ronga and A. Sinclair.
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2. THE VON NEUMANN ALGEBRA W(I).

2.1. Generalities.

For a Hilbert space H, we denote by L(H) the involutive algebra of bounded
operators on H and by U(H) the group of unitary operators on H. Any unitary
representation m : I' — U(H) of a group I gives rise to a morphism of involutive
algebras C[I'] — L(H) which is again denoted by 7, and defined by

™ (Z zﬂ) =Y zym(y) .

~v€r ~er

We denote by W}(T') the weak closure of 7 (C[[']) in £(H).
Consider in particular the space I?(T') of square summable complex valued functions
on I' and the left regular representation

A:T = U (IX(T))

where (A(7)€) (z) = £(y~'z) for all 7,2 € T and for all ¢ € I?(T'). The weak closure
W3(T) of A(C[I']) is the von Neumann algebra of T.

There is a finite normal trace 7 : W}(I') — C which extends the map C[I'] —» C
given by 3. cp 247 — 21, and this trace is faithful. Thus the von Neumann algebra
W3 (T) is finite, of the form Wi @ Wi = (&2, W;) & Wi with each W; of type I,
say with unit e;, and with Wy of type II;, say with unit e.

One has e = 0 if and only if I contains an abelian group of finite index. Let I'y
denote the subgroup of T of elements with finite conjugacy classes and let DT’y denote
its commutator subgroup; then one has e = 1 if and only if either [[ : T'f] = oo
or [I' : Tf] < oo and |DTf| = co. See [Kan], [Sm1] and [Tho]. In case I' is finitely
generated, one has either e = 0 or e = 1. (This appears in [Ka2], but it is also a
straightforward consequence of [Kan]. Indeed e # 1 implies I : I'f] < oo by [Kan,
Satz 1]; as I'y is also finitely generated in this case, the centre of I'y is of finite index
in I'y [Tom, Corollary 1.5], and thus also in T'; consequently e = 0.) But there are
already in [Kap] examples, due to B.H. Neumann, which show that one may have
0 # e # 1. Here is one of these examples : for each i € N, denote by D; a copy of
the dihedral group of order 8 and by C; its center, which is of order 2 and which is
also its derived group; let B be the direct sum of the B; ’s and let C be the subgroup
of elements (ci)ieN € B such that ¢; € C; for each 7 € N and HieN ¢; = 1; this B.H.
Neumann example is the quotient A/B; its von Neumann algebra is the direct product
of C (with 7 (e;) = 1/2) and of a factor of type II; (with 7(e) =1/2).

For a group I', Kaplansky has observed that 7(e;) is the inverse of the order of
the derived group of I' [Kap, Theorem 1]. There are formulas giving 1 — e [Fo2].
The sum 1 — e = Y e; is finite, and indeed e; = 0 whenever i> > |['/Ty| [Sm2].
When e # 1, one has Wy ~ W;(T'/Ty), where the von Neumann kernel I'y of T is
defined as ), Ker(r : T — U(n)), the intersection being over all finite dimensional
representations of I' [Sch, Satz 1].
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Let T be a group such that 0 # e # 1; I do not know whether there exists a
group I'y; naturally associated to I' and such that Wir ~ W3 (T'11). Here is a similar
question : let T" be a group such that W3(T') is not a II;-factor but contains a central
projection c such that ¢cWy(T') is a II;-factor; does there exist a group I'c naturally
associated to I' and such that ¢tW3(T') =~ Wy (T.) ?

Observe that, in case I is a hyperbolic group, I'y is precisely the so-called virtual
center of ', denoted by Z,;.+(T') in [Chal.

2.2. Free groups.

Historically, the first examples of factors of type II; are given by Murray and
von Neumann in [MNI], as crossed products which involve abelian groups (indeed
subgroups of R) acting ergodically on appropriate spaces. Several years later, they
give a new construction which is ”considerably simpler than our previous procedures,
but it is clearly related to them” [MNIV, Introduction, §5]. Among other things, they
show the following results. Recall that a group I' has infinite conjugacy classes, or
in short is icc, if all its conjugacy classes distinct from {1} are infinite; for example,
F, isicc for all n > 2.

Theorem 1 (Murray and von Neumann).
(i) Let T’ be a group. Then W3(T') is a factor if and only if T is icc.
(ii) For each n > 2 the factor W(F,) does not possess Property Gamma.

This is shown in [MNIV] : see Lemma 5.3.4 for (i), Definition 6.1.1 for Property
Gamma and §6.2 for (ii) when n = 2; moreover Lemma 6.3.1 shows that W} (I'; *T'3)
is a factor which does not possess Property Gamma whenever I'; [respectively I'z] is a
group containing at least two [resp. three] elements (the star denotes a free product).
About the meaning of (ii), let us recall that a von Neumann algebra M does not have
Property Gamma if and only if it is full, namely if and only if the group Int(M) of
its inner automorphisms is closed in the group Aut(M) of all its automorphisms (see

[CoT4, Corollary 3.8] and [Co76, Theorem 2.1]).

Though we do not consider twisted crossed products in this report, let us at least
mention that many of the results discussed here have ”twisted formulations”. For
example, for claim (i) of Theorem 1 above, see [Pac, Proposition 1.3].

Claim (ii) suggests immediately the following, which is Problem 4.4.44 in [Sak].

Problem 1. Does it happen that Wy(F,) ~ Wy(F,/) forn%n' ?

Though Problem 1 is still open, progress has been obtained recently, using Voicu-
lescu’s theory of freeness in noncommutative probability spaces (see among others
[Vo2], [VDN] and [Sk2]). For example, one must have

either W (Fy,) = Wy (Fy) for all n,n' such that 2 < n,n’ < 0o

or WY (Fy) % WX (Fyn) for all n,n' such that 2 <n < n' < co.

This has been first proved for n,n’' < oo, independently by K. Dykema and F. Rad-

ulescu; moreover, this holds for n,n' < co by [Ra5, Corollary 4.7]. Let us also mention
that
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Wi(xazila) = W3(Feo)

whenever I', is a nontrivial amenable group for all n > 1 (see [Vo2, Corollary 3.5
and [Dy2, Corollary 5.4]), and that

W *T') = Wi (Fy)

when I' , T' are infinite amenable groups [Dy2, particular case of Corollary 5.3]. See
also [HaVo].

One of the novelties connected with the results above is the discovery, due inde-
pendently to K. Dykema [Dyl] and F. Radulescu [Ra4], of a continuous family of
II-factors L(F,) interpolating the free group factors. In the next theorem, we de-
note by M; x M, the II;-factor which is the reduced free product of two finite factors
M, My; this is a crucial notion in Voiculescu’s approach [Vo2].

Theorem 2 (Dykema, Radulescu, Voiculescu). For each extended real number
r such that 1 < r < oo, there exists a II;-factor L(F,) such that
L(F,)x L(Fy) = L(Fy4) for all r,r' €]1, 00],
p(L(F) @ My(C)) ~ L(Fy44-2(r—1)) for any r €]1,00] and any
projection p € L(F,) ® M,(C) of trace v €)0, oo|
(where n is large enough),
L(Fy,) =~ WY(Fy) for all n € {2,3, ...,00},
L(F,)®M =~ L(F.) ® M for all r,r' €]1,00[ whenever M is
either L(H), or R, or W}(F),
the isomorphism class of L(F,) @ L(F,) depends only on (r — 1)(r' — 1),
for all r,r' €]1, 00).

In the theorem, £(H) denotes the factor of type I, and R denotes the hyperfinite
factor of type II;; moreover p is of trace v for the trace of value 1 on the unity of
L(F;). The first result quoted after Problem 1 is in fact

either L(F,) =~ L(F,) for all r,r' such that 1 < r,r' < oo
or L(F;) % L(Fy) for all r,r' such that 1 <r <r' < o0 .

Let us mention that some attention has been paid to free groups on uncountably
many generators : if Fi1 denotes such a free group, then W3 (Fi1) hasn’t any "regular
MASA?”; also (we anticipate here on Section 3) the reduced C*-algebra C5(Fu), which
clearly is not separable, has only separable abelian *-subalgebras [Pol, Section 6].

2.3. Other groups.

Considerable effort has been devoted to understand whether various factors of the
form Wj(T') are or are not isomorphic to each other. The oldest result of this kind
follows from Claim (ii) of Theorem 1 above on one hand and from the consideration of
locally finite groups which are icc on the other hand; this result, which is the existence
of two non isomorphic factors of type II;, is recorded as the achievement of Chapters
V and VI in [MNIV, Theorem XVI]. Later, the same construction I' — W3(T') has
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been used by D. McDuff to show that there are uncountably many pairwise non
isomorphic type II; factors (see [McD] or [Sak, 4.3.10]).

We shall review now how some properties of an icc group are reflected in properties
of the corresponding factor.

2.4. Injectivity.

For an icc group I', A. Connes has shown that Wy (T') is the unique injective factor
of type I, if and only if T is amenable [Co76, in particular Corollary 7.2].

There is a very large number of pairwise non isomorphic icc amenable countable
groups. Let us mention icc locally finite groups, as in [MNIV, Lemma 5.6.1], and icc
solvable groups, such as the group

FK={(3 ;’)EGLg(K) : aeK*,beK}

where K is a countable infinite field (the so-called az + b group associated to K). It is
known that there exist uncountably many pairwise nonisomorphic groups which are
locally finite and icc (indeed simple) [KeW, Corollary 6.12]. It is also easy to check
that two groups I'x and I'xs as above are isomorphic if and only if the fields K and K'
are isomorphic, and there are uncountably many pairwise nonisomorphic countable
fields (examples : the fields Ks = Q ((,/P)pes) where S is a set of prime numbers;
Ks ~ Kg if and only if § = §’, as it follows from Kummer’s theory [Bou, V, p.
85, Théoréme 4]; I am grateful to M. Ojanguren for explanations on this). There are
many other ways to construct uncountable families of icc amenable groups; the way
suggested in [Wat] provides groups with pairwise nonisomorphic C*-algebras.
Yet all these groups provide the same factor.

2.5. Fullness.

The proof in [MNIV] of Theorem 1.ii above uses arguments which go much beyond
free products. Indeed, one has the following, for which we refer to Effros [Efl] and
to [BdH]. As the terminology is unfortunately not uniform (compare [Pat, page 84]),
let us recall that, here, a group is inner amenable if there exists a finitely additive
measure y : P(I' = {1}) — [0, 1] defined on all subsets of I — {1}, which is normalized
by u(I'—{1}) = 1 and which satisfies u(yDy~!) = u(D) forally € ['and D C T—{1}.
A group which has a finite conjugacy class distinct from {1} is inner amenable.

Proposition 1 (Effros). IfT is a group which is not inner amenable, the algebra
W3(T') is a full factor.

Problem 2. Does there exist an icc group I' which is inner amenable and such that
the von Neumann algebra W3 (T') is a full factor ?

There are many examples of families of groups which are known to be not inner
amenable, and thus to give rise to full factors. Here are some of them.
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Let G be a connected semi-simple real Lie group without centre and without com-
pact factor. It is a simple corollary of Borel density theorem that a lattice T in G is an
icc group. (See e.g. [BkH, Proposition 2], which proves a slight strengthening of this;
for the density theorem, see [Bol] or [Zim, Theorem 3.2.5].) Also I' is not amenable
(indeed, C.C. Moore has shown this for any Zariski-dense subgroup of G [Zim, 4.1.11
and 4.1.15]). It can be shown that such a lattice I' is never inner amenable, so that
W3(T) is a full factor; this carries over to lattices in adjoint semi-simple Lie groups
over local fields [HS3].

In case G is moreover a simple real Lie group of rank one, it is also known that
an icc subgroup of G which is discrete (not necessarily a lattice) and which is not

amenable cannot be inner amenable (Georges Skandalis, private communication of
December, 1992, and [Sk1)).

Let now I' be a group which is hyperbolic and non elementary (a hyperbolic group
is said to be elementary if it contains a cyclic subgroup of finite index). Such a group
is not necessarily icc, for example because there may exist a subgroup I'g of T' such
that T' is the direct product of I'y and of a non trivial finite subgroup. Consider
however

'y ={y €T : the centralizer of 4 in I is of finite index in T'}.

Then Iy is a finite normal subgroup in I' and the quotient I';,. = I'/Ts is icc [Cha,
cor. 2.2.2]. If T' is moreover torsion free (this implies I'y = {1}), then I is icc and is
not inner amenable [Har4], so that W3(T') is a full factor. I do not know if this holds
under the more general condition 'y = {1}.

Let B,, denote the Artin braid group on n strings, let C,, denote its centre (which
is isomorphic to Z) and let DB,, denote is commutator group. It has been shown in
[GiH] that W3(B,/Cr) and W3(DBy) are full factors for all n > 3. From the same
paper, we repeat here the following,.

Problem 3. Let K C S? be a piecewise linear knot which is not a torus knot and let
I'k denote the fundamental group of the knot complement S* — K. Show that Tk is
icc and not inner amenable.

One may of course repeat for the groups above the question of Problem 1 : in par-
ticular, if K and K' are two such knots, when are W}(T'x) and Wy(T' k) isomorphic
? (Compare with Problems 4 and 6 below.) One may also formulate similar problems
for other classes of groups appearing in geometry, such as mapping class groups, or
infinite irreducible Coxeter groups which are neither finite nor affine. (The latter
have free subgroups [Har3]; for many examples, see the references quoted in [Har5,
nos 78-81].) Ditto for various notions of generic or random groups [Cha], [Gr2, § 9].

2.6. Fundamental groups.
The fundamental group of a factor M of type II; with trace 7 is the group of
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positive real numbers

F(M) = {t € R} : there exist a projection e € M @ L(H)
such that 7(e) =t and e(M ® L(H))e ~ M}
= {t €R% : there exists a € Aut(M ® L(H))

such that 7(a(z)) =tr(z) forall z€e M ® L('H)}

defined by Murray and von Neumann. Chapter V of [MNIV] ends with the dis-
appointing observation that ”as to F(M), we know nothing beyond Theorem XV”
(which shows that the fundamental group of the injective IT; factor is R} ). Today,
we know at least two more things

if I' has Kazhdan Property (T), then F (Wy(T')) is a countable subgroup
of R% (see [Co80], and [Po&] for a generalization),

the fundamental group of W3 (F) is R} [Ral]; more precisely there
exists a one parameter group () ¢y<o, Of automorphisms of
M = W3(Fw) ® L(H) such that T(as(z)) = tr(z) for all t € R}
and = € M, where 7 denotes the canonical trace on M [Ra2].
In particular W3(T') % W(I") if T has Property (T) and if I is amenable or is Fo.

Problem 4. Does one have F (Wx(I')) = F(WyX(F;)) whenever I is one of the
following groups ?

a non elementary Fuchsian group,

a lattice in SO°(1,n) or in PSU(1,n) for some n > 2,

a quotient B, /C, of a braid group by its centre (n > 3).

Dykema and Radulescu have shown that

either F (W3(Fy)) = {1} for all n such that 2 <n < oo,

and then WY (Fy,) % W (Fyn) for all n,n' € {2,3,...} such that n # n’,
or F(W3(Fn)) = R} for all n such that 2 < n < oo,

and then WY (F,) = Wy (Fy) for all n,n' € {2,3,...}.

Then Radulescu has shown that the second possibility implies W3(F,) ~ W3(Fs)
for all n > 2. For Fuchsian groups, see [HaVo].

2.7. Jones’ invariants.

Let M be a separable factor of type II;. V. Jones has defined the invariant
I(M) = {r €[1,00] : there exists a II;-subfactor N of M with index r }

and has shown that it satisfies the following properties :

r1,7T2 € I(M) = rirq € I(M),
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{n2}n=1,2,... U {OO} - I(M)v
for each ¢ € F(M) one has ¢ + 2 + 271 € I(M),

I(M) C {4cos? X nesa,.. Y400l =I(R),

where R denotes the injective II;-factor. Moreover, if I' is an icc group

(L) cZ(wx(D))
where I(I') = {n € N : there exists a subgroup of I of index n}. For all this, see
[Jo83]. It is also known that

I(M) is countable if M has Property (T),

for example if M = W3}(T') for an icc group I' with Property (T) (see [PiP], and a
generalization in [Po5]).
A recent computation of Radulescu shows that

I(W3(Fo)) = I(R).
Moreover, let s € Z( R) be the index of a subfactor of R with trivial relative commutant
obtained by iteration of Jones’ "basic construction” from a commuting square; then
s € IT(W3(Fyn)) for each n > 2; in particular T (W3(F,)) N [1,4] = I(R) N [1,4] for
each n > 2. For all this, see [Ra3], [Ra5].

Problem 5. Let I' be an icc group which has Kazhdan Property (T). Compute
F(W3(T)) and I(W3(T)).

The question about F (W3(T')) appears in [Co90, section 3.10, probléme 3] and
[Co93, Section V.11]. One could of course add a (probably even more difficult) prob-
lem about the invariant C(M) = {r € [1,00] : there exists a II;-subfactor N of M
with index r and with trivial relative commutant}.

2.8. The constants of Cowling and Haagerup.

In their work on completely bounded multipliers, M. Cowling and U. Haagerup
have defined constants A(T') , A(G) , A(M) € [1,00], associated respectively to
a discrete group I', a second countable locally compact group G and a finite von
Neumann algebra M. Moreover :

A(G) = 1if G is amenable,

A(T) = A(G) if T is a lattice in G,

A(T) = A(W3(T)),

A(M;) < A(M,) if M, is a subalgebra of the finite algebra M,

A(G) = 1if G is locally isomorphic to one of SO(1,n) or SU(1,n)
for some n > 2,

A(G) = 2n —1if G is locally isomorphic to Sp(1,n) for some n > 2,

A(G) = oo if G is a connected simple real Lie group with finite centre
which is non compact and which is of real rank at least 2.
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This provides many examples of pairs of lattices Iy C Gy and I'; C G2 such that
W3(Ty) is not isomorphic to any subalgebra of W3(T'z). For all this, see [Haa3] and
[CoH], as well as [LHa] for the universal covering of SU(1,n); there is also a nice
review by Cowling [Cw1]. Let us finally mention that A(G) = 1 for a locally compact
group acting properly on a locally finite simplicial tree (a result of Szwarc, see [Va3,
Proposition 6]) or for various free products of amenable groups amalgamated onver a
common open compact subgroup [BoP], and that A(T') = 1 for a Coxeter group I in
the so-called "right-angled” class [Vad]; it is believed that A(T') = 1 for any Coxeter
group I'.

Superrigidity a la Margulis suggests the following problem, again due to A. Connes.
See [Co90, section 3.10, probléme 2], [Co93, Section V.11], and also the last question
in [CoH] about lattices in Sp(1,11) and in Fy(_30).

Problem 6. Let I';,T'; be two icc groups which have Kazhdan Property (T). Show
that W3(T'y) and W3(T';) are isomorphic if and only if T'y and I'; are isomorphic.

Here is a related problem concerning rigid groups. I believe it is also due to A.
Connes.

Problem 7. Find an icc group I' such that any automorphism of the factor W (I")
is inner.

If such a group I' exists, it has to be perfect and any automorphism of I itself has
to be inner [Behl, Theorems 5.1 and 5.2], [Kal, Remark 2.3].

There is a notion of Property (T) for von Neumann algebras [CoJ] which is well
adapted to the groups we discuss here : if a group T is icc, or more generally if
the subgroup TI'y of these elements of I' which have a finite conjugacy class is finite,
then W3(T") has Property (T) if and only if I has Property (T). But Jolissaint has
observed that, if I' is a group which has Property (T) and which is such that T'y is
infinite, then W3(T') does not have Property (T) of [CoJ]. (See [Jo3], which gives also
a characterization in terms of W}(I') of Property (T) for an arbitrary group I'; for
examples, due to Serre, of groups I' which have Property (T) and which have infinite
centres, see [HaVa, § 3.d].)

It is known that a II;-factor with Property (T) cannot be isomorphic to a subfactor
of W3(Fz) [CoJ, Corollary 4]. Moreover, if T is a group which has Property (T), any
homomorphism from I' to the unitary group of Wy (F3;) has an image whose strong
closure is a compact subgroup of U (W;(F3)); this is a particular case of a result in
[Rob].

One may ask whether there exists a sequence (T}) = (T) , (T2), ... of strength-
enings of Property (T) such that, if I' or W3(T') has and if I’ or W3(I") has not
Property (Ty), then W3(T') cannot be a subfactor of Wx(I'). (This is a suggestion of
M. Gromov.)

Let us finally repeat here an old problem which is still open (see e.g. [Po4, § 4.3]).

Problem 8. Let M be a factor of type II; which is not injective. Does there exist
a subfactor of M isomorphic to Wy (Fz) ?
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2.9. The x invariant and other invariants.

For any factor M with separable predual, A. Connes has defined an abelian Borel
group x(M), which is the centre of the image in the outer automorphism group
Out(M) = Aut(M)/Int(M) of the group Int(M) of approximately inner automor-
phisms of M. He has shown that x(M) = {1} if M is the injective factor of type
I or if M = W3(F,) for some integer n > 2. The invariant is meant (among other
things) as an obstruction to a factorization as a tensor product of a full factor and
a hyperfinite factor. A. Connes has constructed examples M such that x(M) # {1}
(some of these examples can be realized as group factors, but this is not used for the
computation of their xy ). He has also used the invariant y to show that there exist
factors of type II; which are not anti-isomorphic to themselves, and in particular not
of the form W3(I'). See [Co75], as well as [C76b, Section 3.10], [Jo79], [Jo80] and
[Kaw]. It seems appropriate to formulate explicitely the following question.

Problem 9. What can be said about x (W5 (T')) for other icc groups T" ?

In [Po2], S. Popa has made a detailed study of the maximal injective von Neumann
subalgebras of W (F;). He has shown in particular that each free generator of F,
generates such a maximal injective subalgebra, abelian and isomorphic to W3(Z) ~
L°°(S'). He asks moreover the following problem.

Problem 10. Classify up to isomorphism the maximal injective von Neumann sub-
algebras of the II;-factors.

Let us define a factor M of type II; to be tensorially indecomposable if it
cannot be written as any tensor product A ® B of two factors A, B of type II;. In
[Pol, Corollary 6.6], Popa shows that the nonseparable factor Wx(Fh) of a free group
Fyy on uncountably many generators is tensorially indecomposable. In [Po6], he asks
for examples of separable II;-factors which have this property, and asks in particular
the following.

Problem 11. Are the W3(F,) ’s tensorially indecomposable ?

Among other invariants of factors of the form M = Wjy(I') which should be
investigated, obvious candidates are cohomology spaces, in particular H¥(M, M)
and H¥(M, M,), where the subscript c indicates cohomology with norm-continuous
cochains and where M, denotes the predual of M. For example, one has H¥(M, M) =
{0} for all £ > 1 if M is hyperfinite, and more generally if M is isomorphic to its
tensor product with the hyperfinite I1;-factor; does this hold in general ? (it does for
k = 1). See [Rin], [CoT8]. Recently, A. Sinclair and co-workers have observed that the
Gromov bounded cohomology group Hf(T) injects in H¥ (I*(T),1!(T)) for all k > 2,
so that one has for example H? (I'(F,),l*(F,)) # {0}. There is now some effort to
try and produce an example with

H? " 4 (W), Wi(T) # {0}

but all this is quite conjectural at the time of writing. (Moreover specialists don’t all
agree about which way to conjecture; see for example [Po6].)
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Here is another open problem, stated in [FaH], slightly related to cohomology
considerations : if v is a free generator of F,, does there exist X,Y € Wy(F;) such
that A(y) = XY =YX ?

A more exotic project would be to study homotopy groups of the unitary group
(with the strong topology) of II;-factors of the form M = W;(T'); such a unitary group
is contractible if M is hyperfinite or if I' = Fy, [PoT]. The homotopy groups of the
unitary group of a II1-factor M with respect to the norm topology are known; firstly
II; (U(M)norm) = R by [ASS]; secondly IT2g41 (U(M)norm) = Iy (U(M)norm) = R
and Iy (U(M)norm) = {0} for all k > 1 by [Scl]; see also [Sc2].

Finally, we would like at least to mention the impressive entropy computations of
E. Stgrmer for automorphisms of the factor W3 (Fu) [Sto].

2.10. Other representations.

Let T be an irreducible lattice in a connected semi-simple real Lie group G without
centre and without compact factor, let p be an irreducible unitary representation of
G and let p|T" denote the restriction of p to I'. If p is not in the discrete series of
G, then p|I" is irreducible [CoS, Proposition 2.5], so that W}in(I') = £L(H,) by Shur’s
Lemma. If p is in the discrete series, then W (I') ® W}(T') by [GHJ, Section 3.3.c].

Let I' be an infinite group such that C}(T') is simple (see below) and let M be
an infinite hyperfinite factor (e.g. a Powers factor Ry for some A €]0,1[). It follows
from a result of O. Maréchal that there exists a representation 7 of I' which is weakly
equivalent to the regular representation and such that W}(I') & M [Mar]. It is also
known that any properly infinite von Neumann algebra is of the form W} (PSLy(Z))
[Beh2], and that the same holds for large classes of finite von Neumann algebras

[Beh3].

In case I' = F,,, finite factors of the form W}*(F,,) are precisely the II;-factors which
can be generated by n unitaries. In particular, any icc group I' given together with a
set of n generators provides a factor M = W3(I') and a representation 7 : Fy, = I' —
U (I*(T)) such that W}(F,) = M. For example, for each k > 2, the group PGL(Z)
can be generated by 2 elements [CxM, Chapter 7]; thus there exists a representation
7 of F; such that W}(F;) ~ W{(PGL(Z)). I don’t know of any II;-factor which
could not be generated by two unitaries (see also the end of 4.1 below); nor do I know
of any Il -factor without Cartan subalgebras. (If a II;-factor with separable predual
has a Cartan subalgebra, then it is generated by two unitaries [Po3, Theorem 3.4];
however, given such a factor M, the existence of a Cartan subalgebra of M is ”in
general” an open problem.)

Given a group I' and a class of von Neumann algebras, an ambitious project is to
classify the representations 7 of T' such that W*(T') is in the given class. The appro-
priate kind of classification is up to quasi-equivalence : 7 and 7' are quasi-equivalent
if there exists an isomorphism ® from W3*(T') onto W3 (T') such that ®(7(v)) = «'(y)
for all 4 € T. For the class of finite factors, such a classification can be rephrased
in terms of normalized characters of finite type, namely of functions of positive type
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¢ : T — C which are normalized (£(1) = 1), central (£(vy') = €(7'y)) and indecom-
posable (¢ = a€’ + (1 — a)é" with a €]0,1[ and ¢',£" normalized central of positive
type implies { = £’ = ¢""); see [DC*, corollaire 6.7.4 and proposition 17.3.5].

In case I is locally finite, factors of the form W}(T') are either the injective II;-
factor or finite dimensional factors. Characters have been classified for a few groups
such as the group S(o0) of permutations with finite supports of an infinite countable
set, and related groups. These results are due to Thoma, Vershik-Kerov and Nazarov

[Naz].

3. THE REDUCED C*—-ALGEBRA C5(T'), AND SIMPLICITY.

3.1. Generalities.

Notations being as in the beginning of Chapter 2, the norm closure of 7 : C[['] —
L(H) is denoted by C3(T'). In particular, if 7 is the left regular representation ),
one obtains the reduced C*-algebra C(I") of I'. One may also choose the universal
representation m,, of I' (say here that =, is the direct sum of all cyclic representations
of T, up to equivalence), and one obtains the full C*-algebra C*(T") of I'. For any
representation m, one has a natural morphism from C*(T') onto C%(T") which is again
denoted by 7. One has in particular a morphism C*(T') — C3(T'), and this is an
isomorphism if and only if I is amenable, by a theorem of Hulanicki and Reiter [Ped,
Th. 7.3.9].

In the classical case I' = Z, the algebra C3(T') ~ C*(I") is isomorphic via Fourier
transform to the algebra C(T) of continuous functions on the one-dimensional torus
T. This carries over to any discrete abelian group I' and its compact Pontryagin dual
: CX(T) = C(T).

The oldest published reference I know involving reduced C*-algebras of locally
compact groups is [Seg].

3.2. Free groups.

The following result was published in 1975 [Pow], seven years after it was found
[Va2, page 489]. Recall first that a normalized trace on a C*-algebra A with unit is
a linear map 7 : A — C such that 7(1) = 1, 7(a*a) > 0 and 7(ab — ba) = 0 for
all a,b € A4; it follows that |r(a)| < ||a|| for all a € A [DC*, Proposition 2.1.4]. The
canonical trace on the reduced C*-algebra of a group I' is the extension to Cx(T')
of the map C[I'] — C which applies ). . 27 to z1, as in 2.1 above.

Theorem 3 (Powers). The reduced C*-algebra C5(F,) of a free group onn > 2
generators is simple and has a unique normalized trace.

There is a proof in Appendix 2 below. Another formulation of this theorem is
that any unitary representation = of F, which is weakly contained in the regular
representation A of Fy, is in fact weakly equivalent to A, and in particular is such that
Cr(F,) = C3(Fy); for more of this point of view, see [BkH]; it is moreover true that
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m and ) as above are approximately equivalent in the sense of [Vol, see in particular
Corollary 1.4].

There is no analogue to Problem 1 here because computations of K;-groups show
that the algebras C}(Fy,) are pairwise nonisomorphic [PiV, Corollary 3.7]. Concerning
pairs I'1, I’y of non-isomorphic groups such that C3(I'1) & C5(I'2), there are several
known examples but apparently no systematic study. Let us describe two classes of
such examples, the algebras being commutative in one case and simple in the other.

Let first I' be any infinite countable abelian torsion group. Its Pontryagin dual
I’ is compact, metrisable, totally disconnected and without isolated point [because
the locally compact abelian group I' is respectively discrete, countable, torsion, and
infinite]. Consequently I, viewed as a topological space, is homeomorphic to the
triadic Cantor set K. Hence the C*-algebra of I' is isomorphic to the C*-algebra C(K)
of continuous functions on K, and thus does not depend on the detailed structure of
T.

The second example is due to G. Skandalis. Let Fj, F, be two non isomorphic finite
abelian groups of the same order, say n, for example Z/4Z and (Z/2Z) x (Z/2Z). We
identify both C*(F1) and C*(F,) to the same algebra A, isomorphic to C". For
i € {1,2}, set I'; = F; x Z. The full C*-algebra of I'; is canonically isomorphic to
a free product with amalgamation over C, and one has more precisely C*(T;) =~
A x C*(Z) in the sense of [Bro]. Moreover, the canonical trace 7; : C*(I';) — C is
independent on ¢ when viewed as a map A x C*(Z) — C. Consequently the ideal
Ki = {z € C*(T) | ri(z*z) =0} and the quotient C3(I';) = C*(I';)/K; are both
independent on i. On the other hand, Proposition 2 below shows that Cx(T';) is a
simple C*-algebra with unique trace.

There exists however an uncountably infinite family (T',),c; of countable groups
such that the C*-algebras C}(T',) are pairwise non-isomorphic, each being simple with
a unique normalized trace; this follows easily from McDuff’s result quoted in 2.3 above

[AKL, Corollary 9].

It is known that some group Banach algebras determine the group I'. (Examples
: LY(T'), A(T) and B(T); this holds indeed for a locally compact group; see [Lep],
[Wal], [Wa2] and [Wen].) But we do not discuss these algebras further here.

3.3. Other groups with simple reduced C*-algebras.

Theorem 3 has begotten many generalizations : see among others [Ake], [AKL],
[Bel], [Be2], [BCH], [BN1], [BN2], [Har2], [HSk], [HoR], [PaS], [Ros]. Let us indicate

some of these results.

Proposition 2. Let I’ be a group which admits at least one of the following descrip-
tions :

(a) a free product T'y * 'y where [I';| > 2 and |T'y| > 3,

(b) a Zariski-dense subgroup in a semi-simple connected real Lie group without
centre and without compact factor,
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(c) a group PSL(n, K) for some integer n > 2 and for some field K which is either
of characteristic zero, or of characteristic p and not algebraic over F,,.

(d) a group of K-rational points G(K) for some field K of characteristic zero and
for some connected semi-simple algebraic group G defined over K,

(e) a torsionfree hyperbolic group which is not elementary.
Then C3(T") is simple with unique normalized trace.

See [PaS] for (a), [BCH] for (b) and (d), [HoR] and [Ros] for (c), and [Har4] for
(e). In (b), the subgroup is not supposed to be discrete in the ambient Lie group,
but it is viewed as a discrete (possibly uncountable) group in the statement about
CX(T"). There is also in [BCH] a proof of (c) for the particular case of a field K of

characteristic zero.

The following repeats [Har2, Section 2, Question (2)]. (Question (3) of the same
reference, same section, has been answered in [Bel].)

Problem 12. Does there exist a group I' such that C5(T') is simple but has several
traces? or such that C3(I') has a unique trace but is not simple ?

We collect below two observations resulting from a conversation with A. Valette.
Before these, consider an amenable normal subgroup N of a group I'. As the iden-
tity representation of N is weakly contained in the regular representation of N, one
sees by induction from N to I' that the regular representation of I'/N (viewed as a
representation of I') is weakly contained in the regular representation of I'. In other
words, one has a morphism of C*-algebras 7 from C3(T") onto C5(I'/N). This applies
for example to the normal subgroup I'y of elements with finite conjugacy classes in
T, which is an amenable group [ Tom, Corollary 1.5].

Observation 1 : if C}(T') is simple, then I' is an icc group, and more generally any
amenable normal subgroup N of T is reduced to {1}. Indeed, the morphism 7 defined
above has to be injective, so that N = {1}. Observe also that, if I' was not icc, the
centre of Cx(T') would be strictly larger than the scalar multiples of the identity (the
characteristic function of any finite conjugacy class of ' is in this centre).

Observation 2 : if C5(T') has a unique trace, then (again) any amenable normal
subgroup N of T is reduced to {1}. Indeed, the composition of the morphism 7 and
of the canonical trace of C}(I'/N) has to coincide withthe canonical trace of CX(T').

All this being said, problems of simplicity of reduced C*-algebras of groups should
not conceal other problems. In particular, it would be pleasant to know ”many”
examples of groups I' which are not C5-simple but for which two-sided ideals of
C5(T) are classified in some way (a few examples appear in Theorem 4 of [BCH]).
The corresponding program for the Fourier algebra A(T") of a discrete group I is the
subject of [For, see in particular Theorem 3.20].

3.4. Other representations

The diversity of C*-algebras of the form C}(F,) has no limit. Indeed, let A be a
separable C*-algebra with unit acting in some Hilbert space H, and assume that A
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is generated as a C*-algebra by a finite or infinite sequence (aj, az,...) of length n.
As any element in a C*-algebra with unit is a linear combination of unitaries [Ped,
1.1.11], there is no loss of generality if we assume that the a; ’s are unitary. Consider
now a free set of generators s; of F,,, and define a representation = : F,, — U(H) by
7(si) = ai. Then Ci(F,) = A.

In particular, there are C*-algebras with unit of the form C}%(T') which cannot be
reduced C*-algebras of discrete groups. A specific example is the algebra COK acting
on a separable infinite dimensional Hilbert space, which is generated by the identity
and by the compact operators : it is C%(F;) for an appropriate 7 [HRV1, Section A],
and it cannot be of the form C}(T'). (Indeed, assume firstly that I' has an element ~y
of infinite order. Then 7 generates a sub-C*-algebra isomorphic to C* (v%) ~ C(T),
so that the spectrum of v is the circle T. But the spectrum of any element in C® K
is countable, and thus C(T) cannot be isomorphic to a subalgebra of C @ K. Assume
secondly that I" has an element < of some finite order k > 1. As I is infinite, it follows
that any kth root of 1 appears in the spectrum of 4 with infinite multiplicity. This
cannot happen in C® K.)

It would be interesting to understand better, for a given group T,

(i) which are the algebras of the form C%(I"),
(ii) what are the automorphism groups of these Cx(T"),
(iii) for which m these algebras C%(I") are simple.

About (ii), it is known that Inn(A)/Inn(A) is uncountable for any separable C*-
algebra A which does not have continuous trace, e.g. for A = Cx(I') whenever I is
not of type I. (See [Phi, Theorem 3.1], and compare with Problem 7 above.) It is also
known that Inn (C%(F:)) /Inng (C;(F:)) is non trivial, where Tnnq(A) denotes the
closure of the group of inner automorphisms of A determined by unitaries connected
to 1 in the group of automorphisms of the C*-algebra A, closure for the topology of
pointwise convergence [EIR, 4.13].

About (iii), see Proposition 4 of Appendix 2.

Representations of free groups are discussed in [FTP]; see also [FTN], [Sz1] and
[Sz3].

In a remarkable paper of the early 50’s, Yoshizawa has constructed an irreducible
representation 7 of F; which weakly contains any irreducible representation of Fj,
namely which is such that the natural morphism C*(F;) — Cx(F3) is an isomor-
phism [Yos, § 3]. In other words, the C*-algebra C*(F},) is primitive, namely has a
representation which is both irreducible and faithful [Ped, 3.13.7].

Problem 13. What are the groups with primitive full C*-algebras ?

Let T" be a group given as a discrete subgroup of some Lie group G. A natural
way to obtain representations of I is to consider a representation p of G and its
restriction p|I" to I'. If T and G are as in 2.10 above, it is a natural question to ask
about properties of C;|I‘(P)' Here is a partial and easy answer, from [BkH] : let G be
a simple connected real Lie group which is non compact and with centre reduced to
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{1}, let p be a unitary representation of G in the principal series and let I be a lattice
in G; then C3r(T) ~ CX(I).

Another natural representation of I' to consider is py,|T', where p,, denotes the
universal representation of the Lie group G; if this is again a non compact simple
connected real Lie group without centre, it is conjectured that C*(T") — C;unlr(r) is
never an isomorphism, and this has been proved in many cases (e.g. if G has Property

(T)) in [BeV].

4. THE C*-ALGEBRAS C3(T') AND C*(T') : SOME OTHER PROPERTIES.

4.1. Nuclearity and other finiteness conditions.

Given two C*-algebras A and B, there are in general several ways to complete the
algebraic tensor product of A and B to obtain a C*-tensor product. The algebra A is
said to be nuclear if these ways coincide, for any B. For more on this, see [La2] and
[Ta2]. Nuclearity for C}(T') is settled by the following result (of which (ii) has the
remarkable property that the ”only if” part does not extend to the locally compact
case).

Theorem 4 (Takesaki, 1964, and Lance, 1973).
(i) The algebra C5(F3) is not nuclear.
(ii) Let T" be a group. Then C}(T') is nuclear if and only if T' is amenable.

It follows easily from Claim (ii) that C*(T') is nuclear if and only if I is amenable.
(Indeed, if T' is amenable, then C*(T") is isomorphic to C}(T'), which is nuclear. If
C*(T') is nuclear, then C}(T") is nuclear, because any quotient of a nuclear algebra is
nuclear by a result of Choi and Effros [La2], so that I is amenable by (i1).)

Besides amenability <=> nuclearity, there are only few known exact translations
between properties of I' and properties of C5(T') or of C*(T"). For example, does

T finitely generated VEER Cx(T') finitely generated

hold ? One may ask what is the smallest number of generators for C3(I") or C*(T'). S.
Wasserman [Was2, Section 6] has observed that this number is at least 2 for C*(F3),
because C*(F3) has a quotient isomorphic to C(T?) and because the 2-torus T? is not
planar. On the other hand, it is known that W}(F3) and the hyperfinite II;-factor
are both singly generated [Sai, Theorem 2.3 and following example].

And does
T locally finite & C3(T) approximately finite (AF)

hold ? Known examples of groupoid C*-algebras which are AF for non obvious reasons
[Kum] may suggest that < does not hold.
What about

I' f.g. and of polynomial growth < C3(T) ess. of polynomial growth
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(”f.g.” holds for finitely generated and ”ess.” for essentially) ? See [KiV] for algebras
of essential polynomial growth.
The answer to the question

T’ residually finite VRN C*(T') residually finite dimensional [ExL]

is negative, but can one slightly change the question to have an affirmative answer
? The negative answer follows from properties of the group I' = SL(2,Z[1/p]) where
p is a prime, as shown to me by M. Bekka. Indeed, one one hand T is residually
finite because it is both finitely generated and linear [Mal]. On the other hand I' does
not have Kazhdan’s Property (T) because T is dense in SL(2,R) [HaV, Propositions
1.6 and 3.6], but the unit representation of I' is isolated in the set of all its finite
dimensional unitary representations [LuZ]; these facts imply that finite dimensional
representations of C*(I') do not separate elements of this C*-algebra. However, I do
not know whether < holds or not.

What are the properties of C5(T'), or of C*(I"), which are equivalent to the group
being finitely presented ? with solvable word problem ? hyperbolic ? small cancella-
tion ? of finite cohomological dimension (say over Q) ? a torsion group ? solvable ?
Dually, what are the properties of I' which are equivalent to C5(T") being simple ?
generated by one element ? to C*(T') having Hausdorff spectrum ? (These lists can
be extended at will.)

4.2. Exactness.

The C*—algebra A is said to be exact if, given any short exact sequence
0—-J—-B—->B/J—>0
of C*—algebras, the sequence
0-A®J>A®B—->AQ®(B/J)—0

is also exact, where ® denotes the minimal (or spatial) tensor product. For a proof
of the following result, we refer to [Wasl], [Kil], [Ki2], [Ki3] and [HRV2].

Theorem 5 (S. Wassermann, Kirchberg and others).

(i) The algebra C*(F3,) is not exact.

(ii) Let T be a group; assume that I' is isomorphic to a subgroup of some locally
compact group G such that C*(G) is a nuclear C*-algebra. Then C*(T') is exact if
and only if " is amenable.

Recall that the C*-algebra C*(G) of a locally compact group G is nuclear as soon
as G is almost connected [Co76].

In sharp contrast, there is no known example of a group I' such that C}(T) is
not exact. For example, let I be a group and assume that I' embeds as a discrete
subgroup in some second countable locally compact group G having a closed amenable
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subgroup P with G/P compact (a connected real Lie group G would do); then C}(T")
embeds in the nuclear C*-algebra C(G/P)x T, and in particular C3(T) is exact. (This

is an unpublished result of A. Connes which was circulating in the 1980 Kingston’s
Conference.) Also C5(T') is exact for any hyperbolic group I' (unpublished result of
Hilsum-Renault-Skandalis).

Problem 14. (i) If T is any group (not necessarily isomorphic to a subgroup of a
C*-nuclear locally compact group) such that C*(T') is exact, does it follow that T is
amenable ?

(ii) Does there exist a group I' such that C3(T") is not exact ?

Question (ii) is the open problem (P1) of [Ki3].
4.3. Non-existence of idempotents.

Given a torsionfree group T', it is an old question to know whether C['] may have
zero divisors, and in particular idempotents distinct from 0 and 1. This is often
attributed to Kaplansky : see [Kou, Problem 1.3], and also [Far]. The oldest result I
know on this is that of Higman [Hig, particular case of Theorem 12].

Theorem 6 (Higman). The algebra C[F,] has no zero divisor.

Here is a more recent result, which is a particular case of [Fol, Theorem 9] and [Bas,
§ 9]: if T is a torsionfree finitely generated linear group, then C[I'] has no idempotent
distinct from 0 and 1.

A C*-algebra distinct from C has always zero divisors (this is easy to check via
functional calculus) but it is a conjecture going back to Kadison and Kaplansky that

C5(T') has no idempotent, except 0 and 1

for any torsionfree group I'. This would follow from a more general conjecture of P.
Baum and A. Connes [BaC] which involves the K-theory groups K;(C5(T")). For all
this, see the discussion in [Va2].

Theorem 7 (Pimsner-Voiculescu). For each n > 2, the C*-algebra C3(Fy) has
no idempotent distinct from 0 and 1.

Theorem 7 has first appeared in [PiV]. There is a very nice proof of it in [Co86,
Section I.1], in terms of a Fredholm module over C5(F3) associated to the standard
action of F; on the homogeneous tree of degree 4. (Theorem 7 for F,, follows from
the result for F; because F,, is a subgroup of F3.) Conne’s proof is so nice that minor
variations of it have appeared in semi-popularization journals [Ef2]. There is another
proof by Cuntz [Cu2], using the €asy result that C*(F;) has no idempotent [Cho],
[Cul].

It has been shown that C}(I') has no idempotent distinct from 0 and 1 for T'
a torsionfree discrete subgroup in a connected Lie group whose semi-simple part is
locally isomorphic to a product of compact groups, of Lorentz groups SO(n, 1) [Kas],
and of groups SU(n,1) [JuK]. The published proofs use KK-theory.
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The following problem suggests another approach which could work for more
groups. It appears in [Co90, section 2.5, probléme 11]. It is open even if G is one
of the groups SO(n,1) or SU(n,1) dealt with by Kasparov and Julg. This has been
explained to me by P. Julg and A. Valette.

Problem 15. Let T’ be a torsionfree subgroup of a connected semi-simple real Lie
group G. Show that C5(T") has no idempotent distinct from 0 and 1 by analyzing the
appropriate Fredholm module and its Chern character.

The same problem holds for an arbitrary torsionfree hyperbolic group.

We refer to [Co90] for explanations about the "appropriate” Fredholm module; see
also page 77 of the same reference, and [Co93, Section IV.3].

Let us mention that the following algebras have also been shown to be without non
trivial idempotent

C3(T) for T abelian torsionfree (this is Pontryagin Theory [Va2, Theorem 2]),
C3(T) for T locally nilpotent torsion free [KaT] (see also [Jil, Theorem 5.1]),

C;(T) for ' a discrete subgroup of a connected simply connected solvable group

[BaC],
C3(I') for various groups I' acting on trees as in [Pim],
I}(T) for T torsionfree hyperbolic [Ji2, Theorem 4.2],

C*(T) for a group I' which is free [Cohl], [Cho], or a free product of torsionfree
abelian groups [Cul], or a free product of torsionfree amenable groups (and a few
other cases) [JiP].

Note that C*(T') does have non trivial projections if ' has Property (T) by [Val];
see also [Va§].

These no idempotent results have applications on the structure of various spectra :
one appears in [Sun]; another one is the observation (suggested to me by L. Guillopé)
following Theorem 8 below. Let I' be a group given together with a symmetric proba-
bility measure, namely with a function p : ' — [0,1] in I}(T") such that p(y~1) = p(v)
for all ¥ € T' and such that 3 _ . p(y) = 1. To avoid trivialities, assume moreover
that the support of p generates I'. The Markov operator of the associated random
walk on T is the operator M(p) : I3(T') — I?(T") of convolution to the right £ — £ % p.
It is obvious that M(p) is self-adjoint and that ||[M(p)|| < 1, it is easy to check that
[IM(p)|] = maz{X € R : Xis in the spectrum of M(p)} (see [HRV1, Lemma 8]), and
it is a result of H. Kesten that ||M(p)|| = 1 if and only if T' is amenable [Ke2]. For p
equidistributed on a symmetric set S of generators of I', this has been reformulated
in terms of ”cogrowth” by Grigorchuck and Cohen (see [Coh2], [Sz2], [Woe]).

Theorem 8 (Kesten). Let I be a group generated by a finite set S = {s1,...,8,}
withn > 2. Let p: I' — [0,1] be defined by p(v) = F‘STJIS?‘I ify € SUS™! and
p(v) = 0 otherwise. Then :

(i) one has |[M(p)|| 2 3v2n -1,
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(ii) T is free on S if and only if ||M(p)|| = 1v2n =1,
(iii) if T' is free on S, then the spectrum of M(p) is the interval
[-iv2n -1, 1/2n 1)

Suppose now moreover that I' is such that C}(T') has no idempotent distinct from
0 and 1, and let p: I' — [0, 1] be a symmetric probability measure as above. It is an
immediate corollary of functional calculus that

the spectrum of M(p) is an interval

as it is the case in Theorem 8.iii. About the following problem, see [KaV] and [HRV1].

Problem 16. Compute the spectrum and the multiplicity function of M(p) for other
pairs (T',p), for example when T' is a Fuchsian group; compute also the spectral
measure of M(p).

It is easy to check that the spectrum of M(p) is finite if and only if the group
I is finite [HRV3, Section 2.1]. One may also consider non-symmetric probability
measures; it is then an open problem to know whether there exists a pair (T, p) with
I’ infinite and the spectrum of M(p) finite [HRV3].

Of course, group C*-algebras in general do have projections. For an analysis of the
case of C}(Z/nZ * Z/mZ), see [ABH].
5. RAPIDLY DECREASING FUNCTIONS ON A FINITELY GENERATED GROUP.

Let T’ be a group given together with a length function L : I' — R . For simplicity,
we will moreover assume here that I' is generated by a finite set S and that, for
each v € T, the length L(y) is the smallest integer n such that v = s;...s, with
81,y 8n € SU ST, For each s € R, define the Sobolev space

H’(F)={§:I‘—+C

Zl5(7)|2(1+L(7))23 < oo}

~€T

which is a Hilbert space for the obvious scalar product. The space of rapidly de-
creasing functions on I' is the Fréchet space

H®(I)= (] H(T).
s€R

It is easy to show that the isomorphism classes of these spaces do not depend on the
choice of the finite generating set S.

By definition, H>(T") is a subspace of I2(T"). But H*°(T') need not be a convolution
algebra. (There may exist {,n € H®(I') such that the convolution £ 7, which is
always well defined and in ¢(T'), is not in H*°(T') : this happens for example if I is
amenable and not of polynomial growth [Jol, Proposition B].)
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Proposition 3. Let I' be a finitely generated group.

(i} The space H>®(T') is a subspace of Cx(T') if and only if it is a subalgebra of
cx(m).

(i) If the conditions of (i) hold, then the inclusion H*(T') C CX(T') induces an
isomophism in K-theory.

We refer to [Jol] and [Jo2] for the proof. Claim (ii) is due to A. Connes, and is
an important step in one application of these ideas to differential topology [CoM]. A
finitely generated group is said to have Property (RD) if it satisfies the conditions
of Claim (i). The following appears in [Haal, Lemma 1.5]; see also [CaH], and the
exposition in [Haa2).

Theorem 9 (Haagerup). Let n be an integer such that 2 < n < oo; then H*(F,) C
CX(Fy), and in particular H®(F,) C C3(Fn).

Various groups have been shown to have Property (RD), and it is in particular the
case for groups of polynomial growth, for which H*(T") C C3(T") for some s depending
on the growth, and for hyperbolic groups, for which H?(TI') C C3(T') (see mainly [Jol],
and also [JoV] and [Har4]). The known proofs are quite different for these two classes,
and it is an interesting open problem to find an argument covering both Z" (say) and
hyperbolic groups. More generally, we formulate the following question (even though
the hope for a positive answer is very small).

Problem 17. Let I' be a lattice in G = PSL,(R) such that G/T' is compact (and
n > 3); does I' have Property (RD) 7

The cocompactness hypothesis is crucial, because PSL,(Z) does not have Property
(RD) as soon as n > 3 [Jol, Corollary 3.1.9]. The question of Problem 17 is also open
for most Coxeter groups.

Other rapid decay algebras have been introduced by Ogle [Ogl].

APPENDIX 1. ON FREE GROUP.

It is almost a tautology to say that free groups play a central role in combinatorial
group theory, but this should not conceal the important role of free groups in other
parts of mathematics. As an example of an old appearance of free groups in traditional
subjects, we may quote Schottky groups, which are free subgroups of PSL,(C) [Kle,
page 200].

Here are three criteria for recognizing free groups. For the first one, a convenient
reference is the recent book of Serre [Ser, § 1.3], though the result itself is quite old
: it appears for example in [Rei, Section 4.20], but it is, of course, very difficult to
claim that something is not due to Poincaré” [ChM, page 96].

Criterium 1. A group which operates freely on a tree is a free group.

Let us also recall the result of Stallings and Swan according to which a torsionfree
group which has a free subgroup of finite index is itself a free group [Swa].

We state now the "Table Tennis Lemma”, essentially due to F. Klein: see [Mac],
[Tit] and [Harl].
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Criterium 2. Let G be a group acting on a set X, let I'y,T'; be two subgroups of G
and let X, X, be two subsets of X; assume that [['y| > 3. Assume that

7(X2)CX1 for all 7€F17 7#1v
Y(X1)C Xy forall yeTy, vy#1.

Then the subgroup I" of G generated by I'y and T’y is isomorphic to the free product
I'1+T'; of T'y andT'y. (In particular, ifT'; and T, are free of rank ny and n, respectively,
then T’ is free of rank n = ny + ny.)

The next ”quasi-geodesic criterium” is due to Gromov [Grl, 7.2.C]; see also [GhH,
§ 5.3], or the much shorter proof in [Del].

Criterium 3. Let T' be a é-hyperbolic group and let 41,7, € T' be such that the
word-length relations

IVl > |yl +26+1 for je{1,2}
77z 2 max (Inl,|el) +26+1 for ene{1,-1}

hold. Then the subgroup of I' generated by 71,72 is free of rank 2.

This criterium is related to the following fact (see [Grl, 5.3.B] and [Del]). Let I" be
a hyperbolic group which is torsionfree and non elementary. Then there exists a finite
sequence I'y,...,T'x of subgroups of I' such that any pair of elements of I generates a
subgroup which is either free of rank two or conjugated to one of the T';’s.

For other examples of free subgroups of geometrically significant groups, see among
many others [BeL, appendice] [Bo2], [DeS], [Gla], [Harl], [Hau], [MyW] and [Wag).

APPENDIX 2. PROOFS OF THEOREM 3 AND PROPOSITION 2(e).

The litterature contains a large number of proofs of Theorem 3 (see e.g. the
references quoted before Proposition 2). On one hand, most of these proofs are minor
variations of Powers’ original proof. On the other hand however, each proof extends
to some other groups than free groups. The following proof is convenient for the
discussion below of some research activity on this subject between 1975 (Powers’
paper) and now (see also [BCH]). Our first lemma is straightforward.

Lemma 1. Let X,..., X} be a finite sequence of operators on a Hilbert space such
that the image subspaces Im(X}), ..., Im(X}) are pairwise orthogonal. Then

< Al .
X1 + o + Xi]| < \/Flrgggkll-’f]ll
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Proof of Theorem 3.
Write T for Fi,.

Step one. Let 7. denote the canonical trace on CX(I'). Let J be a non-zero two-
sided ideal in C;(T') and choose V € J , V # 0. Upon multiplying V by some
z € C, z # 0 and by some v € ', we may assume that V = 1+ W where 7.(W) = 0.
We shall show that J contains a sum of conjugates of V which is an invertible element,
and that any trace on C3(I") vanishes on W.

Let € be a real number such that 0 < € < 1. As Ar (C[I]) is dense in C}(T), we
may choose X € Ar (C[I']) such that || X — W|| < € and 7.(X) = 0. We may write
X=3, eF ?z&, where F'is a finite subset of I' — {1} and where the z, ’s are complex
numbers.

Step two. Choose a system {sj,...,s,} of free generators of I'. For a large enough
number m, the reduced words sT*zs] ™ begin and end with a non-zero power of s, for
all z € F (this is [Pow, Lemma 4]). Let C be the subset of I" of reduced words which
begin by s7™ (followed by a non-zero power of some s; , j # 1, or by nothing at all)
and set D =T — C. Then one has zC N C =  for all z € F. For each integer j > 1,
set v; = s}s7"; one has ;D N v;D = ) whenever i # j.

Step three. Choose an integer k > 1. For each j € {1,...,k}, let P; denote the
orthogonal projection of 1?(T') onto the subspace I?(y;D) of functions I' — C with
supports inside v;D. As tCNC = @ for all ¢ € F, one has (1 —Pj)*ij'yj‘l(l—Pj) =0.
Thus
X; =Xy

Xyl =P X'+ (P;X")* with
Vi X + (BX) {X;-’ = X*y; (1 - Py)

for each j € {1,....,k}. Set ¥ = %El<j<k 'ij'yj'l. As ;D N~;D = 0, Lemma 1
implies o
1

1 2
Vi< 21 20 BXG I+l 3 XS < =l X1

1<5<k 1<i<k

x>~

For k large enough, one has consequently ||Y|| < 1 and

[\

1 _
[y oWt S IW=-X||+|Y] <% <1.
1<5<k

w

It follows that %215]'97]"/7]'—1 =14 %EKK,C 7jW7]7'1 is invertible. As this
element is obviously in J, one has J = C}(I"). Thus C}(T) is a simple C*-algebra.
Step four. Let T be any normalized trace on CX(T'). One has

(W) —r(X)| < IW-X| < e

and |7(X)| = |7(Y)| < % || X || . As this holds for all € > 0 and for all k > 1, one
has 7(W) = 0. Thus 7 = 7., and C}(T') has a unique trace.
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One strategy of proof of Proposition 2 is to extend the validity of the previous
proof.

A first attempt has been do define a Powers group as a group I' which possesses
the following property :
for each finite subset F C T' — {1} and for each integer k > 1
there exist a partition I' = C'[[ D and elements v;,...,7¢ in T
such that tCNC =0 forallz € Fand ;DNy;D=0foralli: #j
in {1,...,k} .

Step two in the previous proof shows precisely that Fj, is a Powers group.
Lemma 2. IfT is a Powers group, the C*-algebra CX(T") is simple with unique trace.
Proof. see steps one, three and four in the previous proof.

The conclusion of Lemma 2 can be proved with weaker hypothesis. For example, in
the definition of ”Powers group”, one could replace "for all finite subset F C T' — {1}”
by "for all finite subset F' inside a conjugacy class distinct from {1}”, so that the
lemma applies to the so-called "weak Powers groups”. (And direct products such as
F, x F; are weak Powers groups which are not Powers groups; see [BN1, Proposition
1.4] and [Pro, Proposition 3.2].) Or one may consider reduced crossed products A x, T’
where A is a C*-algebra with unit which does not have any non trivial I-invariant
ideal nor any I-invariant trace [HS2]. Or one may also cope with twisted reduced
crossed products A x., I', where ¢ : ' x I' = U is a 2-cocycle with values in the
unitary group of the centre of A [BN2], or even in the unitary group of A itself [Bel],
[Be2].

Now comes (at least) some geometry. Let ' be a group acting by homeomorphisms
on a compact topological space . Say the action is strongly faithful if, for every
finite subset FF C I' — {1}, there exists wy € Q such that zwy # wp for all z € F.
Recall that the action is minimal if every orbit 'w is dense in Q. Say that v € I is
hyperbolic if there exist two fixed points s.,r, with the following properties : given
neighbourhoods S of sy and Ry of r, in §, there exists an integer k¥ > 1 such that

’YI(Q —-5,) CRy and ’Y—I(Q - R,) C Sy

for all integers | > k. Two hyperbolic elements 4,7 € T are transverse if the
four points sy , ry , Sy , Ty are distinct. Say finally that the action of I' on
is strongly hyperbolic if, for each integer £ > 1, there exist pairwise transverse
hyperbolic elements v1, ...,y¢ in I

Lemma 3. Let T' be a group acting by homeomorphisms on a compact space §2.
Assume that the action is strongly faithful, minimal and strongly hyperbolic. Then
I’ is a Powers group.

Proof. see [Har2, Lemma 4).

PROOF OF PROPOSITION 2(e). It follows easily from the three previous lemmas.
See [Har2] and [Har4] for more details.
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Similar arguments may be used to prove Proposition 2(a), or 2(b) in case the
ambient Lie group has real rank 1. It is probably possible to extend this proof to
any hyperbolic group I' with virtual centre I'y reduced to {1}. For this it should be
checked that the action of such a group I' on its Gromov boundary OT is strongly
faithful.

However it does not seem possible to extend the proof above to cover, for example,
groups such as PSL,(Z) and PSL,(R) when n > 3. (There is an argument in [Ha2]
for n = 3, but it does not work when n > 4.) This suggest the following problem.

Problem 18. Given a group I' and an element v € T' of infinite order, describe obs-
tructions to the existence of a compact space ) on which I' acts by homeomorphisms
in such a way that v is hyperbolic. Particular problem : ' = PSL,(Z) withn > 3.
(These obstructions vanish if T' is hyperbolic; see e.g. [GhH, § 8.2].)

A second attempt to extend the validity of the proof of Theorem 3 has been in
terms of the following notions. Say that a group I' is naively permissive if, for any
finite subset F C I' — {1}, there exists an element y € I" of infinite order such that
the canonical morphism < z,y >—< z > * < y > is an isomorphism for each = € F
(where < z,y > [respectively < ¢ >, < y >| denotes the subgroup of I' generated by
{z,y} [resp. z,y]). One may observe that Lemma 6.3.2 or [MNIV] says that a naively
permissive group is an icc group. We leave it to the reader to check that a torsionfree
non elementary hyperbolic group is naively permissive.

One may show on one hand that C3(I") has a unique normalized trace and that it
is a simple C*-algebra if T' is naively permissive. One may show on the other hand
that some of the groups of Proposition 2 are naively permissive [BCH]. However the
following is still open.

Problem 19. IfT is as in Proposition 3, is I naively permissive ? In particular, is
PSL,(Z) naively permissive for alln > 2 ?

A third attempt to extend the validity of the proof of Theorem 3 is in term of other
permissive properties of groups. For this and for the proof of Proposition 2, we refer

to [BCH].

Finally, in connection with Section 3.4, we state and prove the following, due to

M. Bekka.

Proposition 4. Let G be a non compact simple connected real Lie group without
centre, let p be an irreducible representation of G distinct from the trivial represen-
tation of G in C, let T’ be a lattice in G and let p|I’ denote the restriction of p toT.
Then C;IF(P) does not have any non trivial two sided ideal of finite codimension.

Proof. Let 7 be a representation of I' such that C%(T") has a non trivial two-sided
ideal J of finite codimension. The closure of J is non trivial (because C}(T') has a
unit) and self-adjoint [DC*, proposition 1.8.2]; denote by A the C*-algebra quotient
C%(T")/J. There exists an integer n > 1 and a quotient of A isomorphic to M,(C). The
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resulting C*-morphism C*(I') — M, (C) defines a finite dimensional representation
o : ' — U(n) which is weakly contained in 7, and we write this o < 7.

Let now p be as in the statement to be proved. There exists a real number p such
that p is of class LP. (See [Cw2, théoreme 2.5.2, lemmes 2.2.5 et 3.1.2] if the Lie group
is of real rank 1; see [Cw2, théoréme 2.4.2] if the Lie group is of real rank at least 2.)
This implies that there exists an integer k¥ > 1 such that the tensor product p®* is
weakly contained in the regular representation Ag of G. (See [Cw1], [CHH] and [How,
pages 288 and 285].)

Suppose now ab absurdo that 7 = p|I". Then
o®F < 7®k = (p®k) IT < Ag|T < Ar

where the last weak containement Ag|I' < Ar follows from [DC*, proposition 18.3.5].
As 0®F is finite dimensional, this implies that T is amenable, which is absurd.
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A PROBLEM ON THE II;-FACTORS OF FUCHSIAN GROUPS

P. DE LA HARPE anNp D. VOICULESCU

Unexplained notations are as in the previous paper [Har].

Let G = PSL,(R) be viewed as the group of orientation preserving isometries of
P, the Poincaré half-plane (= the connected simply connected complete Riemannian
manifold of dimension 2 and constant curvature —1). Consider in G a discrete sub-
group I' (= a Fuchsian group) which is finitely generated and not elementary (namely
neither a finite group nor a finite extension of Z). If I';,I'; are two such groups
which are isomorphic as abstract groups, then it is known that their covolumes (in
the sense defined below) are equal. Very briefly, the question we ask is : does one
have W3(T') ~ L(F;) for the appropriate r 7 Let us recall some classical facts, precise
the meaning of "the appropriate”, and list cases where the answer to the previous
question is known to be positive.

The group T is described by the following data : integers ¢, ¢, s, > 0 and integers
V1, Vg 2> 2, submitted to the unique condition

1 : ! 1
gCov(P)=2g—2+s+t+Z(1—f> > 0.

v
7=1 7

The data are summarized in the signature (g : v1,...,vg; 8, %) of the group, written also
(g958,t)if ¢ = 0. In case I' is a lattice in G (a lattice is automatically finitely generated
and non elementary), then ¢t = 0 and I is completely described by its signature, up to
conjugation by an orientation preserving quasiconformal homeomorphism of P.

Algebraically, the group I" has a presentation with 2g + ¢ + s + t generators
a, b], ceey ag, bg, €1y eeey eq,pl, «eeyPDsy hl, ceey ht
and 1 + ¢ relations
g q s t
Ha,'b,'ai_lbi_l Hej HpthI =1,
i=1 j=1 k=1 =1

e?:l (1<j<9).

There are precisely ¢ classes of maximal finite cyclic subgroups of I', each of these
classes containing a group generated by one of the e; ’s. (In particular, I is torsionfree
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if and only if ¢ = 0.) Each parabolic element of T' is conjugated to exactly one power
of exactly one of the p; ’s.
It is easy to check that the conjugacy classes of I' distinct from {1} are all infinite,

so that the von Neumann algebra Wy(T') is a II;-factor. Moreover, it is a full factor
(see [Har]).

Geometrically, the group I' has a limit set Lr in the boundary 0P of P. (The
space P U 9P is naturally homeomorphic to a closed 2-disc, and 8P = RU {oo} ~ §!
if P = {z € C|Im(z) >0} .) The Nielsen region N is the hyperbolic convex hull of
Lr in P U OP. The inside part N = N NP is a I-invariant closed subset of P. The
quotient N/T" is a Riemann surface obtained from a compact surface of genus g with
t connected components in its boundary by removing s inner points. Moreover there
are distinct points i, ..., 4 in the interior of N/T' such that the covering N — N/T
has ramification of order v; over z; (and no other ramification point). The number
Cov(T") defined above is then the hyperbolic area of N/T, and one has Cov(T') =
—2mx(N/T), where x denotes the appropriate Euler-Poincaré characteristics, in the
sense of orbifolds. (This is a consequence of Gauss-Bonet formula, and this explains
also why Cov(I';) = Cov(T'z) if I'y,T'; are isomorphic as abstract groups.) There is
also a purely algebraic way to define the Euler-Poincaré characteristics of the virtually
torsion-free group I, described in [Ser]. (This is straightforward if G /T is not compact,
because then I' contains a free subgroup of finite index; if G/T" is compact, see n° 3.2
in [Ser].)

Observe that N/T' is compact if and only if s = 0. Observe also that, for Fuchsian
groups which are finitely generated (as discussed here), the four following are equiva-
lent : N = P, the group I is a lattice in G (namely the space P/T is of finite aerea),
the Fuchsian group I is ”of the first kind” (namely Lr = 0P), t = 0 in the signature
of T'.

Here are a few examples of signatures and related groups:

(1) (9;0,0) = T = II,(X,), where X, denotes a closed surface
of genus ¢,

(2) (g;s,t) with s+t >0 =T is isomorphic to the free group Fog4s4¢-1,
(3) (0:2,v;1,0) with v >3 =T ~ (Z/vZ)x(Z/2Z) is one
of the Hecke groups,
(4) (g:v1y.vg;8,t) with s +¢ >0 == T is a free product
of cyclic groups Fy, * (F 1<j<q(Z/v;Z)), withn =29 + s+t — 1.
Of course, (4) generalizes both (2) and (3). For all this, see e.g. [Bea] and [Gre].

The following is a wild formulation of the problem to understand how far the factors
W3 (Fuchsian groups) are from the W3 (free groups). The factors L(F,) are defined
by K. Dykema [Dyl] and F. Radulescu [Rad] for all real numbers r such that r > 1

and for r = 0.
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Problem. Let I' C PSLy(R) be a finitely generated Fuchsian group as above, and
set r = 1+ 5=Cov(T"). Does one have W}(T') ~ L(F;) ?

In the torsion-free case (the group is then either free or the fundamental group of
a closed surface), the problem can be rephrased as

W3(IL(3,)) % W (Fag—1) -

For the groups of example (4) above with ¢ = 1, the conjecture holds by [Voi, Theorem
3.3]. For the Hecke groups of (3), it holds by [Dy2, Corollary 5.3]; more precisely, if
T ~ (Z/vZ) % (Z/2Z), then W}(T') ~ W3 (F3/2-1/») - The general case of (4) holds
by [Dy2, Proposition 2.4].

REMARKS. (i) A factor M of type II; with trace 7 is said to have the Haagerup
Approzimation Property if the identity on the Hilbert space L2(M,T) can be approx-
imated by compact unital trace-preserving completely positive maps. Let I' be an
infinite conjugacy class group, and assume that there exists a function ¢ : I' - R
which is conditionally of negative type and which tends to infinity at infinity. For
each integer n > 1, the function ¢, = ezp (-—%w) is of positive type by Schoenberg’s
Theorem, and thus defines a multiplier on W3(T') which is completely positive (see
e.g. [CaH, Proposition 4.2]). It follows that the factor W3(T") has the Haagerup Ap-
proximation Property. Examples of such groups I' include non abelian free groups
[Haa], various groups acting on trees or real trees, infinite Coxeter groups, and dis-
crete subgroups of Lie groups in the families SO(1,n) and SU(1,n); see e.g. [HaV,
chapitres 5, 6].

The problem phrased above is a way of testing how much the class of full I;-
factors which have the Haagerup Approximation Propery is larger than the class of
free group factors. A similar problem appears in [Pop].

(i) As covolumes of lattices in G are related to Murray-von Neumann coupling
constants [GHJ, Section 3.3.d], there may be an approach to the problem above using
the index of appropriate subfactors.

(i) It is known that a Fuchsian group I' which is not finitely generated is a free
product of an infinite sequence of cyclic groups. For such a group, one has W3(I") ~

W3(Fx) by [Dy2, Corollary 5.4].
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EXACT OPERATOR SPACES

Gilles Pisier

Plan

§1. Exact operator spaces.

§2. Ultraproducts.

§3. How large can dsk(E) be?

§4. On the set of n-dimensional operator spaces.

§5. On the dimension of the containing matrix space.

Introduction

In this paper, we study operator spaces in the sense of the theory developed
recently by Blecher-Paulsen [BP] and Effros-Ruan [ER1]. By an operator space, we
mean a closed subspace E C B(H), with H Hilbert. In the category of operator
spaces, the morphisms are the completely bounded maps for which we refer the reader
to [Pal]. Let E C B(H), F C B(K) be operator spaces (H,K Hilbert). A map
u: E — F is called completely bounded (c.b. in short) if

sup 1Im,, ® ull M, (E)—Ma(F) < 0

where M,(E) and M, (F) are equipped with the norms induced by B(¢3(H)) and
B(£3(K)) respectively. We denote

lulles = sup ([ Im, ® ullm,(E)—M.a(F)-
n>1

The map u is called a complete isomorphism if it is an isomorphism and if « and u™!
are c.b.. We say that u: E — F is a complete isometry if for each n > 1 the map
In, @ u: Mp(E) — My(F) is an isometry. We refer to [Ru, ER2-7, B1, B2] for more
information on the rapidly developing Theory of Operator Spaces.

We will be mainly concerned here with the “geometry” of finite dimensional
operator spaces. In the Banach space category, it is well known that every separable
space embeds isometrically into £.,. Moreover, if E is a finite dimensional normed
space then for each £ > 0, there is an integer n and a subspace F' C £% which is (1+¢)-
isomorphic to E, i.e. there is an isomorphism u: E — F such that |Ju] |lu™!|| < 1+e.
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Here of course, n depends on ¢, say n = n(¢) and usually (for instance if E = £5) we
have n(e) — oo when ¢ — 0.

Quite interestingly, it turns out that this fact is not valid in the category of
operator spaces: although every operator space embeds completely isometrically into
B(H) (the non-commutative analogue of £y) it is not true that a finite dimensional
operator space must be close to a subspace of M, (the non-commutative analogue of
£%) for some n. The main object of this paper is to study this phenomenon.

We will see that this phenomenon is very closely related to the remarkable work
of E. Kirchberg on exact C*-algebras. We will show that some of Kirchberg’s ideas
can be developed in a purely “operator space” setting. Our main result in the first
section is Theorem 1, which can be stated as follows.

Let B = B(4;) and let K C B be the ideal of all the compact operators on £5.

If X,Y are operator spaces, we denote by X ®puin Y their minimal (or spatial) tensor
product. If X C B(H) and Y C B(K), this is just the completion of the linear tensor
product X ® Y for the norm induced by B(H ®2 K).

Let A > 1 be a fixed constant.
The following properties of an operator space X are equivalent:
(1) The sequence
{0} = K Qmin X = B @min X = (B/K) ®min X — {0}
is exact and the map
Tx: (B ®min X)/(K @min X) = (B/K) @min X
has an inverse Tx' with norm ||T%"|| < X.

(ii) for each € > 0 and each finite dimensional subspace E C X, there is an integer
n and a subspace F' C M, such that d(E, F) < A+ €.

Here d.4(E, F) denotes the c.b. analogue of the Banach-Mazur distance (see (0) below
for a precise definition.) We will denote by dsi(E) the infimum of dcy(E, F') when F
runs over all operator spaces F' which are subspaces of M} for some integer k.

One of the main results in section 2 can be stated as follows (see Theorem 7

below).

Consider F C M} with dim F = n and k > n arbitrary, then for any linear isomorphism
u: €% — F* we have _ _
= l[ullesllu™lles > n[2(n — 1)1/2]7.

In particular this is > 1 for any n > 3. Here the space F* is the dual of F' with its
“dual operator space structure” as explained in [BP, ER1, B1, B2].

Equivalently, if we denote by E} the operator space dual of £, (this is denoted by
max(£}) in [BP]) then we have

n
M D> —.
dSK(El)— 2\/;:'f
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We also show a similar estimate for the space which is denoted by R, + C, in [P1].
Moreover, we show that the n-dimensional operator Hilbert space OH, (see [P1])

satisfies
n

2v/n —1
These estimates are asymptotically sharp in the sense that dsx(E}') and dgx(R,+Ch)
are O(n!/?) and dsx(OH,) is O(n!/*) when n goes to infinity.

Later on in the paper, we show that the operator space analogue of the “Banach
Mazur compactum” is not compact and we prove various estimates related to that
phenomenon. (The noncompactness itself was known, at least to Kirchberg.) We
will include several simple facts on ultraproducts of finite dimensional operator spaces
which are closely connected to the discussion of “exact” operator spaces presented in
section 1. Let us denote by OS, the set of all n-dimensional operator spaces. We
consider that two spaces E, F' in 0S,, are the same if they are completely isometric.
Then the space OS,, is a metric space when equipped with the distance

dsk(OHn) 2 ( )2,

6(E’ F) = logdcb(Ea F)

We include a proof that OS, is complete but not compact (at least if n > 3) and we
give various related estimates. As pointed out to me by Kirchberg, it seems to be an
open problem whether OS, is a separable metric space.!

In passing, we recall that in [P1] we proved that de(E, OH,) < n!/? for any E
in OS,, and therefore that

sup{ds(E,F) | E,F € 0S,} =n.

Actually, that supremum is attained on the subset HOS, C 0S,, formed of all the
Hilbertian operator spaces (i.e. those which, as normed spaces, are isometric to the
Euclidean space £3). We also show that (at least for n > 3) HOS,, is a closed but
non compact subset of OS,. Perhaps the subset HOS, is not even separable.! In
section 5, we show the following result. Let E be any operator space and let C > 1
be a constant. Fix an integer k¥ > 1. Then there is a compact set T' and a subspace
F C C(T) ®min My such that d(E,F) < C iff for any operator space X and any
X o
u: X — E we have llles < Clelle,

where ||lullx = ||u]| a1, (x)— Mu(B)-

Notation: Let (E,,) be a sequence of operator spaces. We denote by £o.{Ey,} the
direct sum in the sense of /o, of the family (E,). As a Banach space, this means
that €oo{Em} is the set of all sequences z = (z,) with z,, € E,,, for all m with
sup,, |tm||E,, < oo equipped with the norm ||z|| = sup,, ||zm||E,,.- The operator
space structure on {o{E,, } is defined by the identity

Vn Mu(leo{Em}) =Leo{M.(En)}.

1 See the Note added at the end of this paper.
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Equivalently, if E,, C B(Hpm) (completely isometrically) then £o{E;} embeds
(completely isometrically) into B(®. Hr) as block diagonal operators.

We will use several times the observation that if F' is an other operator space
then £oo{Em} ®min F embeds completely isometrically in the natural way into
Loo{Emn ®min F'}. In particular, if F is finite dimensional these spaces can be completely
isometrically identified.

Acknowlegement. I am very grateful to E. Kirchberg for copies of his papers and
for several very stimulating conversations. I also thank the referee for his corrections.

§1. Exact operator spaces.

Let E, F be operator spaces. We denote

(0) dey(E, F) = inf{JJullcsllu™ ||cs}

where the infimum runs over all isomorphisms u: E — F. If E, F are not completely
isomorphic we set dep(E, F) = co. This is the operator space version of the Banach
Mazur distance. We will study the smallest distance of an operator space E to a
subspace of the space K = K({;) of all compact operators on £;. More precisely, this
is defined as follows

(1) dsk(E) = inf{d.(E, F) | F C K}.

Let F be a finite dimensional subspace of K. By an entirely classical perturbation
argument one can check that for each ¢ > 0 there is an integer n and a subspace
F c M,, such that d.(F, F ) < 1+e¢. It follows that for any finite dimensional
operator space E we have

(1)' dSK(E) = inf{dcb(E, F) | FcM, n> 1}.

In his remarkable work on exact C*-algebras (cf. [Ki]) Kirchberg introduces a quantity
which he denotes by locfin(E) for any operator space E. His definition uses completely
positive unit preserving maps. The number dsi(E) appears as the natural “c.b.”
analogue of Kirchberg’s locfin(E). Note that dsix(F) is clearly an invariant of the
operator space E and we have obviously

(1" dsk(E) < dsk(F)dw(E, F)

for all operator spaces E, F.

Let X be an operator space. We will say that X is exact if the sequence
(2) {0} = K Qmin X = B ®min X = (B/K) ®@min X — {0}

is exact. In other words, X is an exact operator space if the natural completely

contractive map
B ®@min X — (B/K) ®min X
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in onto and its kernel coincides with K ®@min X.

Note in particular that every finite dimensional space is trivially exact. Following
Kirchberg, we will measure the “degree of exactness” of X via the number ex(X)
defined as follows: we consider the map

(3) Tx: (B ®min X)/(K ®min X) - (B/K) ®min X
associated to the exact sequence (2) and we define
(4) ez(X) = || Tx |l

Clearly ex(X) is a (completely) isomorphic invariant of X in the following sense: if X
and Y are completely isomorphic operator spaces we have

(4) ex(X) < ex(Y)dep(X,Y).

The main result of this section is the following which is proved by adapting in a rather
natural manner the ideas of Kirchberg [Ki]. One simply needs to substitute everywhere
in his argument “completely positive unital” by “completely bounded” and to keep
track of the c.b. norms. The resulting proof is very simple.

Theorem 1. For every finite dimensional operator space E, one has
5) ex(E) = ds (E).

More generally, for any operator space X

(6) ex(X) = sup{dsk(E) | E C X,dim E < oo},
and X is exact iff the right side of (6) is finite.

Remarks. (i) If X is a C*-algebra then the maps appearing in (2) are (C*-algebraic)
representations. Recall that a representation necessarily has closed range and becomes
isometric when we pass to the quotient modulo its kernel (cf. e.g. [Ta, p.22]). Hence
if X is a C*-algebra (2) is exact iff the kernel of the map

B Quin X — (B/K) ®min X
coincides with K ®pin X.

By a known argument, a sufficient condition for this to hold is a certain “slice map”
property (cf. [W2]) which is a consequence of the CBAP (see [Kr]). (Recall that X
has the CBAP if the identity on X is a pointwise limit of a net of finite rank maps
u;: X — X with sup; ||ui||e < 00.)

Thus it is known that the reduced C*-algebra of the free group Fy with N
generators (N > 2) is exact, because by [DCH] it has the CBAP. On the other hand,
it is known ([W1]) that the full C*-algebras C*(Fx) are not exact. This can also be

163



G. PISIER

derived from Theorem 7 below after noticing that the space EJ = (¢%)* appearing in
Theorem 7 is completely isometric to a subspace of C*(F,). By the same argument
(using Corollary 10 below) if an operator space E is completely isometric to the space
OH, introduced in [P1], then the C*-algebra generated by E is not exact if n > 3.

(ii) As explained to me by Kirchberg, if X is a C*-algebra then we have ex(X) < oo
iff ex(X) = 1. Indeed since (3) is a representation, it is isometric if it is injective. This
shows if a C*-algebra is completely isomorphic to an exact operator space then it is
exact as a C*-algebra.

We will use the following simple fact.

Lemma 2. Let E be a separable operator space. There are operators P,: E — M,
such that

(1) |Pnlles < 1 for all n.

(ii) The embedding J: E — £x{M,} defined by J(z) = (Pn(z))nen is a complete
isometry.

(iii) For all k < n, there is a map agn: M, — My with ||akn||lcs < 1 such that
Pr = apnPy.

(iv) Assume E finite dimensional. Then for some ny > 1, the maps P, are injective
for all n > ny.

Proof. We can assume E C B({;). Then let @,: B(¢3) — M, be the usual projection
(defined by Qn(eij) = €5 if ¢, 7 < n and Qn(e;j) = 0 otherwise). Let P, = Qn . Then
(1), (ii), (iii) and (iv) are immediate. |

The point of the preceding lemma is that we can write for all N > 1 and all (a;;)
in MN(E)

() I(aii)lan () = Hm T 1(Palais)limn(mn)-
Indeed, by (ii) we have
Cais)llaa ey = sup (Pn(ai))llarw a1,

and by (iii) this supremum is monotone nondecreasing, whence (7).

The following two lemmas are well known to specialists.
Lemma 3. If X,Y are exact operator spaces and if X C Y, then ez(X) < ez(Y).
Proof. We will identify B ®min X (resp. (B/K) ®min X) with a subspace of B ®min ¥’
(resp. (B/K) ®min Y). Consider u in the open unit ball of (B/K) ®min X. By

definition of ez(Y’), there is an element v in B ®min Y such that ||v|| < ez(Y) and if
¢: B®min Y = (B/K) ®min Y is the canonical mapping, we have ¢(v) = u. On the
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other hand, since X is exact we know there is a @ in B ®min X such that ¢(@) = u. Note
that by exactness Ker ¢ = K ®min Y, hence v — i € K @min Y. Let p, be an increasing
sequence of finite rank projections in B tending to the identity (in the strong operator
topology). Consider the mapping 0,: B — B defined by o,(z) = (1 — pa)z(1 — pn).
Clearly ||on||ct < 1 and for all  in B we have o,(z) — 2 € K. Moreover, for all z in
K we have ||o,(z)|| — 0. More generally, by equicontinuity, for any w in K ®min ¥’
we have ||(6, ® Iy)(w)||k®.y — 0 when n — oo.

Hence for any ¢ > 0, for some n large enough we have ||(0, ® Iy)(v — @)|| < €.
Therefore,
(on ® Iy )il| < [lonllesllv]l + & < ex(Y) +e.

But on the other hand, 1—(0,QIy )t = ((1—0,)®Iy )i € KQmpinX since & € BQminX.
Hence dist(@, K @min X) < ez(Y) + € and we conclude ex(X) < ex(Y) + €. ||

Lemma 4. Let X be an operator space. Then sup{|T5"||| E C X, dimE < oo} is
finite iff X is exact and we have

(8) ex(X) =sup{||T5'|| | E C X,dimE < co}.

Proof. Let A be the right side of (8). By Lemma 3 we clearly have A < ez(X) hence
it suffices to show that if A is finite X is exact and (8) holds. Assume A finite. Then
clearly Tx is onto. Let ¢: B®min X — (B/K)®min X be the natural map. Consider u
in Ker(q). By density there is a sequence u, in BQX such that ||u —u,|| < 27". Then
llg(un)]l < 27™. By definition of A (since u, € B ® E, for some finite dimensional
subspace E,, C X and ||T§"1 || < A) there is v, in B ® X which is a lifting of g(un) so
that ||vp]l < 27" and u, — v, € K @ X. Therefore ||u — (un —vp)|| <277 +27"X so
that u = lim(u,, — v,) € K @ X. This shows that Ker(¢) = K Qmin X. Thus we have
showed that A < oo implies X exact. By definition of T;l it is then easy to check
that || Tx| < X [

Lemma 5. For any operator space X

9) ex(X) < sup{dsk(E) | E C X,dim E < oo}.

Proof. By the preceding lemma it suffices to show that a finite dimensional operator
space E satisfies || T;'|| < dsk(E).

Now consider F' C M,,. By Lemma 3 and by (4)" we have
IT5 || = ex(E) < ex(F)day(E, F)
< ex(M,)ds(E,F)
but trivially ez(M,) = 1 hence we obtain ||T5"'|| < de(E, F) and taking the infimum
over F, |IT5|| < dsk(E). |
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Proof of Theorem 1. Let E C X be finite dimensional. We will prove
dsk(E) < ex(E).

This is the main point. To prove this claim we consider the maps P,: E — M,
appearing in Lemma 2. Let E, = P,(E) C M,. For n > ny we consider the
isomorphism u,: E — E, obtained by considering P, with range E, instead of M,.
Since E is finite dimensional u;! is c.b. for each n > ny. We claim that we have

(10) limsup ||u;? || < ex(E).
n—oo

(From (10) it is easy to complete the proof of Theorem 1. Indeed, if (10) holds, we
have

dsk(E) < limsup [|unlles||uz’lep < ex(E).
n—00
By (9) we have conversely ez(E) < dsk(E), whence (5). Then by (8) X is exact iff

the right side of (6) is finite and (6) follows from (8). Thus to conclude it suffices to
prove our claim (10).

Consider €, > 0 with €, — 0. For each n > ng, we choose h, in My(,)(E) such that

(11) I(IM,ny ® n)bnll My oy (En) = 1 @0d [|Bnllaty By > Iluzlles = €n-

Then we form the direct sum By = £oo{Mj(n)} and consider the corresponding element
h = (hn)n>n, in Bi ®min E = Leo{Mi(n)(E)}.

Let Ky C B; be the subspace formed of all the sequences (z,) with z, € M) which

tend to zero when n — co. By suitably embedding B; into B(¢;) and K into K(£;)
we find that the natural map

Tl: (Bl Qmin E)/(Kl ®min E) - (BI/KI) ®min E
satisfies (note that it is an isomorphism since dim E < o)
(12) 1T < ITg || = ex(B).

Let ¢: By ®min E = (B1 ®min E)/(K1 ®@min E) be the quotient mapping. Observe that
we have clearly

(13) lim sup [hn|| < [lg(h)]]-
n—oo

On the other hand we have g(h) = Ty 'Ti¢(h) hence

(14) gl < ITTHH I Tag(R)]
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and since J: E — £oo{En} is a complete isometry (cf. Lemma 2) we have

(15) I Tag(P)I| = I(IB, /x; ® J)T1g(R)(B1 /K1) @mintos {Em}-

Let ¢1: By ®min £ — (B1/K;) ®min E be the natural map. Clearly ¢; = Tyq, and the
right side of (15) is the same as the norm of the corresponding element in the space
Loo{(B1/K1) ®min Em}, hence the right side of (15) is equal to

sup [|(Zp,/k, ® tm)a1(R)(B1/ K1) @min B
which is clearly

< SI’;‘lp liﬂsolip ”(IMI;(n) ® um)(h")”Mk(n)(Em)'

For m < n, we have by Lemma 2 u,;, = amntn with ||@amn|lcs < 1. By (11) this implies

I(I0e(my @ wm ) (Bl My (Emn) S NIy @ Un) (Bl Moy (E) = 1-

Hence we conclude that (15) is < 1. By (12), (13) and (14) we obtain that
limsup ||u;!||cs = limsup ||hy|| < ex(E). This proves (10) and concludes the proof
n— o0

n—oo

of Theorem 1. |

Remark. The reader may have noticed that our definition of exact operator spaces
is not the most natural extension of “exactness” in the category of operator spaces.
However the more natural notion is easy to describe. Let us say that an operator space
X is OS-exact if for any exact sequence of operator spaces (note: here the morphisms
are c¢.b. maps)

{0}-Y;-Y, -Y; - {0}

the sequence
{0} — Y Qmin X = Y2 @min X — Y3 Omin X — {0}

is exact.

Then we claim that X is OS-exact iff there is a constant C' such that for any
finite dimensional subspace E C X, the inclusion ig: E — X admits for some n
a factorization of the form

ig: E-5M,-5X
with |lale||8lles < C.
Equivalently, this means that there is a net (u;) of finite rank maps on X of the form
u; = bja; with a;: X — M, and b;: M,, — X such that

sup ||a;[cs||billcs < 00 and wui(z) — z

for all z in X.
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This result was known to E. Kirchberg and G. Vaillant. It can be proved as follows.
First if X is OS-exact, it is a fortiori exact in the above sense so that by Theorem 1

there is a constant C; such that dsi(F) < C; for all finite dimensional subspaces
EcX.

Secondly, if X is OS-exact, there is clearly a constant Cy such that for any pair of finite
dimensional operator spaces E; C E; (so that Ei* C E}) we have an isomorphism

T: (E3 ®min X)/(Ei @min X) — (E3/E{) Omin X
such that | T71|| < C,.

In other words, since EJ ®mumin X = cb(E3, X) we have an extension property associated
to the following diagram:

E,
NV
)
EE 5 X

More precisely, for any v: E; — X there is an extension v: F; — X such that
I9]les € Cq||v||cs- Consider now an arbitrary finite dimensional subspace E C X.
Let ¢ > 0. Consider Ey C M, such that there is an isomorphism u: E; — E with
llullesllules < dsk(E)+e < Cy+e.

Using the preceding extension property (with E, = M,) we find an operator
b: M, — X extending u and such that ||b||cs < Ca||u|lcs- Let a: E — M, be the
operator u~! considered as acting into M,,. Then :g = ba and

llallesliBlles < Collullesllu™ llcs < C2(C1 +€).

This proves our claim. Note in particular that if X is a C*-algebra, it is OS-exact iff
it is nuclear, by [P1, Remark before Theorem 2.10].

In the category of Banach spaces one can define a similar notion of exactness
using the injective tensor product instead of the minimal one. Then a Banach space is
“exact” iff it is a Loo-space in the sense of [LR]. We refer the reader to [LR, Theorem 4.1
and subsequent Remark].

§2. Ultraproducts.

The notion of exactness for operator spaces is closely connected to a commutation
property involving ultraproducts. To explain this let us recall a few facts about
ultraproducts. Let (F;);er be a family of operator spaces and let I be a nontrivial
ultrafilter on I. We denote by F =1F, /U the associated ultraproduct in the category
of Banach spaces (cf. e.g. [Hei]). Recall that if dim(F;) = n for all 7 in I, then the
ultraproduct F clearly also is n-dimensional.

Clearly F can be equipped with an operator space structure by defining
(16) M, (F) = IM,(F,)/U.
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It is easy to check that Ruan’s axioms [Ru] are satisfied so that F with the matricial
structure (16) is an operator space. Alternatlvely, one may view F; as embedded into
B(H;) (H; Hilbert) and observe that F Cc IIB(H;)/U. Since C*-algebras are stable by
ultraproduct we obtain F embedded in a C* -algebra. It is easy to see that the resulting
operator space structure is the same as the one defined by (16). Note that (16) can
be written as a commutation property between ultraproducts and the minimal tensor
product, as follows

(17) My, @min [T /U] = TI[My, @min Fi] /U

It is natural to wonder which operator spaces E can be substituted to M, in this
identity (17). It turns out that this property is closely related to the invariant dsx (E),
as we will now show.

We first observe that there is for any finite dimensional operator space E a
canonical map

(18) vg: T(E @min Ei)/U — E @min E
with ||vg|| £ 1. Indeed, we clearly have a norm one mapping
(18)’ E Qmin eoo{Ei} — E @min E

but if E is finite dimensional E @min Loc{Ei} = Looc{E ®min Fi} and the map (18)’
vanishes on the subspace of elements with ¢/ limit zero. Hence, after passing to the
quotient by the kernel of (18)’, we find the map (18) with norm < 1. More generally
(recall the isometric identity F* Quin E = cb(F, E), cf. [BP, ER1]) if (E;);er (resp.
(F3)ier) is a family of n-dimensional (resp. m-dimensional operator spaces), we clearly
have a norm one canonical map

(18)" ch(E;, F})JU — cb(E, F),
where E = I1E;/U and F = IIF; JU.

Proposition 6. Let E be a finite dimensional operator space and let C > 1 be a
constant. The following are equivalent.

(i) dsk(E) < C.
(ii) For all ultraproducts F = IIF;/U the canonical isomorphism (which has norm
<1)
VE: H(E ®min Fz)/u — E @min (HF,/U)

satisfies ||vg'|| < C.

(iii) Same as (ii) but with all ultraproducts (F;);er on a countable set and such that
supdim F; < dim E.
i€l
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Proof. First observe that if G C F are operator spaces then we have isometric
embeddings

G®min ﬁ - F®min ﬁ

and
H(G ®min F.)/L( — H(F ®min F,)/U

Therefore in the finite dimensional case we have clearly ||vg'|| < |[vF*-
(i) = (ii): Assume (i). Then consider G C M, isomorphic to E. We have clearly
llvas. Il = 1 by (16), hence we can write

o5l < deb( B, G)llvg’ | < dev( B, G)llvag, |

S dcb(Ea G)

hence ||vg'|| < dsk(E), whence (ii).
(i1) = (iii) is trivial.
(iii) = (i): This is proved by an argument similar to the proof of (10) in Theorem 1.
We merely outline the argument. Let u,: E — E, = P,(E) be given by Lemma 2, as

in the above proof of (10). For n > ny we consider u,!: E, — E and we identify u !
with an element of E} ® E. Recall |[u;||Es@mnE = llun'||cb(E,,E)- Then

()l Es @mnE)u = lim llug o

and on the other hand since J is a complete isometry and since we have the
monotonicity property (7) we have

1(un nll(Es /)@minE = SUP |(Pmun )l (1 ES /1) ©min Mm
m
= suplim || Py || B2 @ min Mom
m nUu

< suplim||amn]|lcs < 1.
m nU

Hence (iii) implies lilrln”u;l”cb < C if U is any nontrivial ultrafilter on N, and we

conclude dsk(E) < li&n llunllcollunlles < C. [ |

§3. How large can dsi(F) be?

We now wish to produce finite dimensional operator spaces E with dsk(E) as
large as possible. It follows from Theorem 9.6 in [P1] that for any n-dimensional
operator space E we have

dsk(E) < /n.

We will show that this upper bound in general cannot be improved, at least asymptot-
ically, when n goes to infinity. We will consider the space £, with its natural operator
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space structure. We will denote by E7* the dual in the category of Banach spaces, so
that as a Banach space EJ is the usual space £}, however it is embedded into B(H)
in such a way that the canonical basis ey,...,e, of E satisfies for all ay,...,a, in

n

Ze;@ai

1

(19)

= sup
Y

zn:u,'@)ai
1

where the supremum runs over all unitary operators u; in B.

E?®minB unit'ary BQ®minB

Another remarkable representation of EJ appears if we consider the full C*-
algebra C*(F;) of the free group with n generators. If we denote by é1,...,6n
the generators of F, viewed as unitary operators in C*(F,) in the usual way then
IS 6: ® aillcx (¥, )@min B 1 €qual to (19), which shows that the map u: E} — span(§;)
which takes e; to §; is a complete isometry. OQur main result is the following,.

Theorem 7. For alln > 2
n
dsk(E}) > ———.
sk ( 1)_2 —

Hence in particular dsg(E}) > 1 for all n > 3.

Remark. It is easy to check (this was pointed out to me by Paulsen) that dsx(ET) =
1 for n = 2. Indeed, in that case (19) becomes (after multiplication by u;?)

le1®a1+e2®@az|| = sup |[I®a1+u® a

u unitary

and since (I, u) generate a commutative C*-algebra, this is the same as

sup ||a1 + zaz||

z|=1

2€C
which shows that E? is completely isometric to the span of {1,e'*} in C(T). Therefore
(since C(T) is nuclear) dsk(E?) = 1. We will use an idea similar to Wassermann’s
argument in [W1]: we consider the direct sum M = M; & M, & - - -, or equivalently
M = £,{M,} in our previous notation, and we denote by Iy, the set

Iy ={(zq) € M | lilr}l To(ZhTo) = 0}

where 7, is the normalized trace on M, and where I is a nontrivial ultrafilter on
N. Then the group von Neumann algebra VN(F,,) is isomorphic to a von Neumann
subalgebra of the quotient N = M/Iy. It is well known that N is a finite von Neumann
algebra with normalized trace 7 given by 7(z) = lilzln Ta(To) where z denotes the

equivalence class in N of (z4). Let us denote by
o M- M/Iy
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the quotient mapping.

In the sequel, we will make use of the operator space version of the projective
tensor product introduced in [ER5]. However, to facilitate the task of the reader,
we include in the next few lines the simple facts that we use with indication of proof.
Consider a finite dimensional algebra M} equipped with the normalized trace which we
denote by 7. We denote by Ly (7) the space M} equipped with the norm ||z||; = 7(|z|).
Let E be an operator space. Since My = L;(7)* we have (L,(7)® E)* = M(E*). We
then denote by L;(7) ®A E the space Li(7) ® E equipped with the norm induced on
Li(7) ® E by M(E*)*. We will use the following two facts which are easy to check:

(a) If F C E (completely isometric embedding) then L1(7) @ F C L1(7) @A E
(completely isometric embedding).

(b) If E = E} and e;,e€3,...,¢, is the canonical basis of EJ = £2*, then for any
Z1,...,Zpn in Li(7) we have

Z$i®8i

1

n
= lzillzyo-
1

L1 (T)@A E;‘

(c) We have a norm one inclusion
My(E) » Li(7) @A E.

These facts can be checked as follows:

(a) follows by duality from the isometric identity
My(F*) = My(E*/F+) = My(E*)/My(F*).

(b) follows again by duality from the identity
M (€5,) = £5o(My).

(c) follows from the inequality V ;; € E* Vz;; € E

Y &z

ij<k

(d) k! S (i)l ) 1CEii) M2y -

The latter inequality can be checked using the factorization of c.b. maps (cf. [Pal,

p. 100]) since ||(&ij)lla,(E+) = I1(&ii)llebcr,m,y:  if 11(€i5)lI M, 5=y < 1 then we can
write &;;(z) = (7(z)z;, ;i) with m: E — B(H) restriction of a representation and with
zj,y; € H such that |} a;z;]| <1 and |3 aiyi|| <1 whenever ) |aj|* < 1. This
implies (3 llz;1> 3 lly:ll*)!/* < k whence

|3 €itai)| = [ neii)es w0 < Kl@illam ey
which proves the inequality (d).

We denote below by C(F,) the reduced C*-algebra associated to the left regular
representation for the free group F, with n generators. Then the key result for our
subsequent estimates can be stated as follows.
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Theorem 8. Fix n > 2. There is a family of unitary matrices (u$) with uy € M,
(i =1,...,n, a € N) and a nontrivial ultrafilter U on N such that for all m > 1 and
all z,,...,z, in M,, we have

n

Zu?’@w.‘

=1

<
Ll("'a )@A Mg

(20) lim

Z/\(yi)@)l‘i

C;(Fn)®mian

Remark. By results included in [HP], the right side of (20) is

n 1/2
< 2max { Zz,zf } .
1

Proof of Theorem 8. As explained in [W1], for each ¢ there is a unitary u; = (u{)aeN
in M such that ®(u;) = A(gi). Let us denote

n 1/2

z : *
T;T;

1

k)

b= Z/\(g,') Rx; € C;(Fn) ®min Mm.

Then 3 u; ® z; is a lifting of b in M ® M,, and M,,(VN(F,)) embeds isometrically
(see [W1]) into My, (M/Iy) or equivalently into My, (M)/Mm(Iu). It follows that we

have
ll8]] = inf {

Hence there is a sequence (Y*)yen with ¥v* € M, (M, ) satisfying

Y zi@uit+y |7€Mm(IU)}'
i=1

My (M)

Vi,j<m Jim 7o (v v5) =0
and such that u
n
(21) lim |2 @ ug +7° < ol
=1 Mm(Ma)

Now observe that Mp,(My) = Ma(My,). We will use the norm one inclusion (see fact
(c) above) Mo(Mpm) — L1(7a) @A M. Note that the inclusion Ly(7q) — L1(7o) has
norm < 1 so that

Hm {[v*|| 21 (r)@a M, = 0.

0—1;00
Therefore (21) yields
(22) Y DONTECEY I
which is the announced inequality. |

To prove Theorem 7, we will use the following lemma.
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Lemma 9. Consider the operator

T,: £y, — Cx(F,)

defined by Ty(a1,...,an) =Y, a;A(gi). Then for any m, any n-dimensional subspace
1
F Cc M, and any factorization

F*
a/ b\,
T
e _ Cx(F,)
with T, = ba we have
(23) n < |lal|cs|bllco-

Proof. Consider a,b as above. We identify b: F* — C5(Fn) with an element of
F ®minCX(Fy). Then we can write b = E r;®A(g;) with z; € F such that a*(z;) = e;.
(Recall that e; is the canonical basis of E1 (£2)*.)

Now by Theorem 8 we have

im |30 uf @ <
T DONTCEY N

By fact (a) recalled above, this implies

n
i[5 @1, 0, < e
m|[Y wr o, o <lbla

hence since ||a*||cs = ||a|cs

i owe)

This gives the conclusion since a*(z;) = e; and by fact (b)

DICEL

< la bl cp-
poonzn < lallallblle

n
: =Y " fug =
"mm)@wr y il =

Remark. The same operator T, as in Lemma 9 was already considered in [H]. By
[H, Lemma 2.5] we have ||Ty||ldec = n, but this does not seem related to (23).

Proof of Theorem 7. By [AO] (see [H] for more details) we have ||T,||cs < 2v/n —1,
hence for any F' C M,, we can write by (23)

(24) 1 < || Tallesdes(F7, €5)
(25) n < | Tallsden(F*, Ep)

174



EXACT OPERATOR SPACES

where E} = span{\(g;) | i = 1,...,n} in C}(F»). Since dep(F*,€%) = des(F,€5.")
and £%.* = E}' we obtain

n(2vn - 1)_1 < dcb(Fa E;‘)

so that Theorem 7 follows.

Remark. By the same argument we have
dsk(EX") > n(2vn = 1)1

Here again this is > 1 if n > 3 but dsg(E)") = 1 if n = 2 for the same reason as
above for ET'. We can also derive an estimate for the n dimensional operator Hilbert
space which is denoted by OH,. This space was introduced in [P1] to which we refer
for more details. It is isometric to £3 and has an orthonormal basis (6;)i<n such that
for all a;,...,a, in B we have

n n 1/2
(26) Y b:®a =) uea

1 OH,®minB 1 B@minﬁ
Corollary 10. For each n > 2, we have
(27) dsx(OHp) > [n(2v/n —1)71]!/2.

Proof. By (26) we have (we denote simply by || || the minimal tensor norm everywhere)

”Z 0; ® ,\(g,-)” = ”Z Ag:) ®m”1/2
and by [AO] we have

3 Mgi) @ Ng)|| = 2vn — 1.

Hence we have a factorization of T, of the form egoi»OH,,—"»E,, with |[b]|2, <

2v/n — 1. On the other hand

n 1/2
lallo = la*lle = | > es @ <2
1 EP®minE}
hence we have by (23)
n < dsk(OHy)llallcol|b| o
which implies (27). |

Remark. It is easy to verify that these estimates are asymptotically best possible.
More precisely, we have with the notation of [P1], dsx(E}) < dep(E}, Rn) < /1.
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Similarly, dsk(E2") < des(EX", Rn) < /n, and finally dsx(OHy) < dey(OHp, Ry N
Cr) < nl/4,

Remark. It is natural to raise the following question: Is there a function n — f(n)
and a constant C such that for any E in OS, satisfying dsx(F) = 1, there is a
subspace F C M, with m < f(n) and dep(F,E) < C? It is easy to derive from
the preceding construction that the answer is negative (contrary to the commutative
case with £% in the place of M,). A negative answer can also be derived easily from
the fact (due to Szankowski [Sz]) that the space of compact operators on ¢ fails the
uniform approximation property.

Remark. It is rather natural to introduce the following quantity for E in OS,..
dosk(E) = inf{ds(E, F)}

where the infimum runs over all the spaces F' which are quotient of a subspace of K,
i.e. there are S; C S; C K such that F = §;/S,. Clearly dgsk(F) < dsk(E). We
do not know much about this new parameter. Note however that in view of the lifting
property of ET we have by Theorem 7

n
dosk(EY) 2 ———.
osklFl) 2 5 0m=

Moreover, it can be shown that OH, embeds completely isometrically into the direct
sum Loo(Ry)® Loo(Cr), and a fortiori into Loy (M2, ), so that dgsx(OH,) = 1, indeed
this follows from the identity OH, = (Rn,C#r)1/2 proved in [P1, Corollary 2.6]. Note
that for the quotient of a subspace case, the identity between (1) and (1)’ might no
longer hold, so that it might be necessary to distinguish between the quotients of a
subspace of K and those of M, for some n > 1.

§4. On the metric space of all n-dimensional operator spaces.

It will be convenient in the sequel to record in the next statement several
elementary facts on ultraproducts.

Proposition 11. Let E and F be two n-dimensional operator spaces. Let (E;)ier
and (F;)ier be two families of n dimensional operator spaces. Let U be an ultrafilter
onI and let E | F be the corresponding ultraproducts.

(i) We have

(28) d(E, F) < liLIln dy(E;, Fy).

Moreover, if dcy(E;, F;) — 1 then Eis completely isometric to F.
(ii) If F; = F foralli € I then Fis completely isometric to F'.
(iii) Ifdep(Ei, F) — 1 then Eis completely isometric to F.
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(iv) Ifde(E,F) =1, then E and F are completely isometric.

Proof. We have isomorphisms u;: E; — F; such that Vi = Uy ! satisfies ||u;lcs < 1
and hrn llvilles = 11m dcs(E;, F;). Then the maps a: E—Fandéo: F> E (associated

respectlvely to (u,) and (v;)) are inverse of each other and satisfy ||é|c||]lcs <
lill;n deb(Ei, F;). Hence we have (28). The preceding also shows that @ is a complete

isometry between E and F when li&n deo(E;, F;) = 1, whence (i). But on the other

hand it is easy to check that, if F; = F for all ¢, then F and F are completely isometric
via the map T: F — F defined by T(z) = lill}l z; if = is the equivalence class of (z;)

modulo U. This justifies (ii). Then (iii) is clear. Finally, taking E; = E and F; = F
for all 7 in what precedes, we obtain (iv). (Actually, (iv) is clear, by a direct argument
based on the compactness of the unit ball of cb(E, F).) |

In this section, we will include some remarks on the set OS, formed of all n
dimensional operator spaces. More precisely OS,, is the set of all equivalence classes
when we identify two spaces if they are completely isometric. We equip OS,, with the
metric

8(E, F) = Log duy(E, F).

This is the analogue for operator spaces of the classical “Banach-Mazur compactum”
formed of all n dimensional normed spaces equipped with the Banach-Mazur distance.

However, contrary to the Banach space situation the metric space OS,, is not
compact. The next result was known, it was mentioned to me by Kirchberg.

Proposition 12. The set OS,, equipped with the metric Log d. is a complete metric
space, but it is not compact at least if n > 3.

Proof. We sketch a proof using ultrafilters. Let (E;) be a Cauchy sequence in OSn.
Let E be an ultraproduct associated to a nontrivial ultrafilter 4 on N. Then by the
Cauchy condition for each € > 0 there is an 79 such that for all 7,7 > iy we have

Log dcb(E,',Ej) S E.

By Proposition 11 this implies V 7 > ¢
Log dcb(E'a E;)<e

hence E; — E when i — 0o and OS,, is complete.

We now show that OS, is not compact by exhibiting a sequence without
converging subsequences if n > 3. Consider any space Ey in 0S5, such that

(29) dsi(Ep) > 1.
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We know that such spaces exist if n > 3 by Theorem 7 and Corollary 10.

By Lemma 2, we can find a sequence of spaces E; C M; with dim F; = n such that for
any nontrivial ultrafilter on N the ultraproduct E = IIE; JU is completely isometric
to Eo. (Indeed, this is clear by (7).) Assume that some subsequence of E; converges
in OSy. Then, by Proposition 11 (ii), its limit must be E which is the same as Ep. In
other words the subsequence can only converge to Ey but on the other hand by (29)
we have (since E; C M;)

Viel 1<dsk(Eo)<de(Eo,E;),
which is the desired contradiction. ||

Remark. It is well known that every separable Banach space E embeds isometrically
into the space of all continuous functions on the unit ball of X* equipped with the
weak*-topology. Let us denote simply by C the latter space, and let k: E — C be the
isometric e1~nbedding. Given P, as in Lemma 2, we can introduce ﬁn: E -5 C®e M,
by setting Pn(z) = (k(z), Pa(z)). Then each P, is an isometric isomorphism of F into
En C c
®oo M,. Moreover the embedding J: E — loo{E,} is a completely isometric em-
bedding with the same properties as in Lemma 2. Finally the C*-algebras C ®o, M,

are nuclear. Using this it is easy to modify the preceding reasoning, replacing E, by

E, (note ds K(E ) = 1 since C @oo M, is nuclear) and to demonstrate the following

Corollary 13. Let Ey be any n dimensional operator space such that dsy(FEo) > 1.
Then the (closed) subset of OSy, formed of all the spaces isometric to Ey is not compact.

Remark. Actually we obtain a sequence E; of spaces each isometric to Ey and such
that E, is completely isometric to E = IIE; /U but dey(E;, Eg) /4 0. More precisely
(in answer to a question of S. Szarek), the preceding argument shows that the “metric
entropy” of OS, is quite large in the following sense: Let § = dsx(E,) with Ej as in
Corollary 13. Then for any € > 0 there is a sequence F; in OS,, such that

deo(Ei,E;) > 6 —¢ forany ¢ #j.

(Moreover, E; is isometric to Ey and the ultraproduct E = IIE;/U is completely
isometric to Ep). This suggests the following question: does there exist such a sequence
if § is equal to the diameter of the set OS,, (or of the subset of OS,, formed of all the
spaces which are isometric to E)? If not, what is the critical value of §7

Corollary 13 is of course particularly striking in the case Ey = OH,, it shows
that the set of all possible operator space structures on the Euclidean space €7 is very
large. We refer to [Pa2] for more information of the latter set.

These results lead to the following question (due to Kirchberg).

Problem. Is the metric space OS,, separable!?

1 See the Note added at the end of this paper.
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Equivalently, is there a separable operator space X such that for any ¢ > 0 and
and any n-dimensional operator space E, there is a subspace F' C X such that
d(E,F)<1+¢€?

More generally, let E be an n-dimensional normed space. Let OS,(E) be the subset
of OS,, formed of all the spaces which are isometric to E. For which spaces E is
the space 0S,(E) compact or separable? Note that OS,(E) can be a singleton, this
happens in the 2-dimensional case if E = ¢% or E = ¢2_, however it never happens if
dim(E) > 5 (see [Pa2, Theorem 2.13]).

We will now characterize the spaces Ey for which the conclusion of Corollary 13
holds. We will use the following simple observation.

Lemma 14. Fixn > 1. Let E =T1IE; /U be an ultraproduct of n-dimensional spaces.
Then (E)* = IIE} /U completely isometrically.

Proof. Let F; be a family of m-dimensional spaces with m > 1 fixed and let F be
their ultraproduct. It is well known that

(30) B(E;,F,)/u = B(E,F)

isometrically. Now observe that for any integer k we have (by [Sm]) for any
u: E — My, associated to a family (u;)ier with u; € B(E;, My)

”u“Cb = ”IMA-. ®u”Mk(§)—»Mk(Mk)'

By (30) it follows that

llulles = Lim 1T, ® will My ()= Ma(a)-

Hence
el o3 pryy = ligm lusilleace:, pa) -
Equivalently R
Mi((E)*) = IMx(E})/U
= M(ILE} [U)
and we conclude that (E)* and IIE? /U are completely isometric. |

Corollary 15. Consider E in OS,. The following are equivalent:

(i) dsk(E) = dsk(E*) = 1.

(ii) For any sequence E; in OS,, such that E = I1E; [U is completely isometric to E
we have

lim des(E, Bi) = 1.
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(iii) Same as (ii) with each E; isometric to E.

Proof. Assume (ii) (resp. (iii)). Then the proof of Proposition 12 (resp. Corollary 13)
shows that necessarily dsx(E) = 1. By Lemma 14 it is clear that (ii) and (iii) are self
dual properties, hence we must also have dsi(E*) = 1. Conversely assume (i). We
will use Proposition 6 together with the identity E ®min F = cb(F*, E) valid when F
is finite dimensional. By Proposition 6 and Lemma 14, if dsx(E) = 1 we have

(31) Ich(E;, E)/U = cb(E, E)

whenever E is an ultraproduct of n dimensional spaces. Now if dsx(E*) = 1 this
implies

cb(E:, E*)/U = cb(E*, E*)
hence after transposition

(32) ch(E, E;)/U = cb(E, E).

It is then easy to conclude: let u: E > Ebea complete isometry. Let u;: E; — E be
associated to u via (31) and let v;: E — E; be associated to u™! via (32) in such a
way that ||ul|cs = lilrln||ui||cz. =1and |[u™!|s = 1i11}1||v,~||c,, =1.

Then Ig = lilrln u;v; hence we have li&n lIE — uivi]| = 0, hence (u;v;)~! exists for i large
and its norm tends to 1, so that u ! exists and (since li&n |lvi]| < 00) li&n lluit| < oo,
whence li&n lu7! — v;]| = 0. Since all norms are equivalent on a finite dimensional
space, we also have lillln lIE — uivi]lee = 0, finally (repeating the argument with the

cb-norms) we obtain libn lu;* — vi]les = 0 and we conclude that

i )<l i -1 <1
h&ndcb(E’ Ei) < h&n““z"cb”u: flev <1
This shows that (i) = (ii) and (ii) = (iii) is trivial. |

Remark. The row and column Hilbert spaces R, and C, obviously satisfy the
properties in Corollary 15. Also, the two dimensional spaces ¢2 and ¢2,, which (see
[Pa2]) admit only one operator space structure (so that any space isometric to either
one is automatically completely isometric to it), must clearly satisfy these properties.
At the time of this writing, these are the only examples I know of spaces satisfying

the properties in Corollary 15.

It is natural to describe the spaces appearing in Corollary 15 as points of continuity
with respect to a weaker topology (on the metric space OS,) which can be defined as
follows. For any k¥ > 1 and any linear map u: E — F between operator spaces, we
denote as usual

lulle = lIm, ® Ellpy(2)—Me(F)-
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Then for any E, F in OS, we define
di(E, F) = inf{||u|lallu™"|l+}

where the infimum runs over all isomorphisms u: F — F.

We will say that a sequence {E;} in OS, tends weakly to E if, for each k > 1,
Log di(E;, E) — 0 when ¢ — co. This notion of limit clearly corresponds to a topology

(namely to the topology associated to the metric § = 3. 2~*Log di) which we will
k>1
call the weak topology. Let us say that E, F' are k-isometric if there is an isomorphism

u: E — F such that Ip, ® u is an isometry. Clearly this holds (by a compactness
argument) iff dx(E, F) = 1. Moreover (again by a compactness argument) E and F
are completely isometric iff they are k-isometric for all ¥ > 1. This shows that the
weak topology on OS, is Hausdorff. We observe

Proposition 16. Let E and E; (i = 1,2...) be operator spaces in OSy. Then E;
tends weakly to E iff for any nontrivial ultrafilter U on N the ultraproduct E = I1E; /U
is completely isometric to E.

Proof. Clearly if E; tends weakly to E then E is k-isometric to E for each k > 1,
hence F is completely isometric to E. Conversely, if E; does not tend weakly to E,
then for some k > 1 and some ¢ > 0 there is a subsequence E,; such that

(33) di(En;,E) >1+4+¢ forall ¢#j.

Let U be an ultrafilter refining this subsequence, let E be the corresponding ultra-
product, and let u: E — E be any isomorphism. Clearly there are isomorphisms
u;: E; — E which correspond to u and we have for each £ > 1 (by compact-
ness) [lulls = limjuillx and [lu}[lx = lim Jlu7|le. Therefore we obtain by (33)

dk(E, E) > 1+ ¢ and we conclude that E and E are not completely isometric. |

We can now reformulate Corollary 15 as follows

Corollary 17. Let i: OS, — OS, be the identity considered as a map from OS,
equipped with the weak topology to OS, equipped with the metric d,,. Then an
element E in OS, is a point of continuity of 1 iff dsi(E) = dsx(E*) = 1.

§5. On the dimension of the containing matrix space.

It is natural to try to connect our study of dsi(E) with a result of Roger Smith
[Sm]. Smith’s result implies that for any subspace F C M} we have for any operator
space X and for any linear map u: X — F

(34) llelles < flusllx-
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More generally, if T is any compact set and F C C(T) ®min My then we also have
(34).

Now let E be any finite dimensional operator space. For each k¥ > 1 we introduce
8x(E) = inf{dcp(E,F) | F C C(T) @min M}
where the infimum runs over all possible compact sets T'.
Note that dsk(E) = inf 6;(E).
k>1
Clearly if C = 6ix(FE), then by (34) we have for all u: X — E
(35) llulles < Cllullx.

It turns out that the converse is true: if (35) holds for all X and all u: X — E then
necessarily 6x(E) < C. This is contained in the next statement which can be proved
following the framework of [P2], but using an idea of Marius Junge [J].

Theorem 18. Let E be any operator space and let C > 1 be a constant. Fix an
integer k > 1. Then the following are equivalent:

(i) There is a compact set T and a subspace F C C(T) ®min My such that
dw(E,F)<C.

(ii) For any operator space X and any u: X — E we have

llelles < Cllulle-
(iii) For all finite dimensional operator spaces X, the same as (ii) holds.

Proof. (Sketch) (i) = (ii) is Smith’s result [Sm] as explained above. (ii) = (iii) is
trivial. Let us prove (iii) = (i). Assume (iii). Note that (for & fixed) the class of spaces
of the form C(T) ®min Mk is stable by ultraproduct, since the class of commutative
unital C*-algebras is stable by ultraproducts. In particular we may and will assume
(for simplicity) that E is finite dimensional. Let G be an other operator space and
consider a linear map v: E — G. We introduce the number ai(v) as folows. We
consider all factorizations of v of the form

E - ) Quin My = G
where N > 1 is an arbitrary integer, and and we set
ax(v) = inf{||allcs|[bllcs}
where the infimum runs over all possible N and all possible such factorizations.

182



EXACT OPERATOR SPACES

Now, using Lemma 2 and an ultraproduct argument it suffices to prove that for any
n, any € > 0 and any map v: E — M, there is an integer N > 1 and a factorization
of v of the form

E - eé\lo ®min Mk _b’ Mn

with [lallcs|Bllcs < C(1 + €)l[v]|ch-

In other words, to conclude the proof, it suffices to show that if (iii) holds we have for
alln and all v: E — M,

(36) ak(v) < Cl|vl|cp

Now we observe that (for any G) ay is a norm on ¢b(E, G) (left to the reader, this is
where the presence of £Y is used). Hence (36) is equivalent to a statement on the dual
norms. More precisely, (36) is equivalent to the fact that for any T: M, — E we have

(37) ltr(vT)| < Cllvllebai(T),
where aj is the dual norm to ag, i.e.

ap(T) = sup{jtr(vT)| | v: E - My, ax(v) <1}.
We will now use the operator space version of the absolutely summing norm which
was first introduced in [ER6]. In the broader framework of [P2], these operators are
called completely 1-summing and the corresponding norm is denoted by 7y. We will
use a version of the “Pietsch factorization” for these maps which is presented in [P2].

As observed by M. Junge, in the present situation the proof of Theorem 2.1 and
Remark 2.7 in [P2] yield a factorization of T of the following form

M, %5 X %E
where X is an n?-dimensional operator space and where the maps w and u satisfy
m(w) <1 and |lulli < oj(T).
Hence if (iii) holds we find
m1(T) = m(vw) < Jlullpni(w) < [lulles < Cllullk < Cai(T).
But since T is defined on M, we clearly have by definition of 7
ltr(vT)| < 1 (vT) < 73(T)][v]less
hence we obtain (37). |

Junge’s idea can also be used to obtain many more variants. For instance let
k > 1 be fixed. Consider the following property of an operator space E: There is a
constant C' such that for any n and any bounded operator v: M, — M, we have

lv® IE|| M, (E)—M.(E) < Cllvlle = Cllv]| M, (M) = Mo (M)
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Then this property holds iff there is an operator space F' completely isomorphic to E
with dey(E, F') < C such that for some compact set T', F is a quotient of a subspace of
C(T) ®min My. In particular if k = 1 this result answers a question that I had raised
in the problem book of the Durham meeting in July 92. Here is a sketch of a proof:
By ultraproduct arguments, an operator space E satisfies dey(E, F') < C for some F
subspace of a quotient of C(T') ®min My for some T iff for any integer n and any maps
vi: M} — E and vy: E — M, we have

ag(vav1) < Cllvi|les|lvalcs-

Equivalently, this holds iff
ltr(vav1T)| < Cllv|ep|vzllcbak (T')

for any T: M, — M). The proof can then be completed using the factorization
property of aj as above. (See [Her| for similar results in the category of Banach
spaces.)

We refer the reader to M. Junge’s forthcoming paper for more results of this kind.

Note. (added December 11 1993) In a very recent joint paper with Marius Junge,
we prove that OS, (and even HOS,) is non-separable when n > 2. See [JP].
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Free-independent sequences in type II; factors
and related problems

by Sorin Popa

Dedicated to Professor Ciprian Foias, on his 60°th birthday

Introduction

We will show in this paper that, unlike central sequences (i.e., commuting-indepen-
dent sequences) which in general may or may not exist, free-independent sequences
exist in any separable type II; factor.

More generally, we will in fact prove the following:

Theorem. Let N C M, be an inclusion of separable type II, factors. Assume
there exists an increasing sequence of von Neumann subalgebras N C M,, C M, such
that U M, = M., and such that N' N M, is finite dimensional for all n. Then there

exists a unitary element v = (v,), in the ultrapower algebra N ([D1]) such that

Mo VoM v* = M, * oM v".
o0 o0 lenMoo o0

Here P, % P, denotes the finite von Neumann algebra free product with amalgama-
tion, with its free trace m %7, where (P1,71), (P2, T2) are finite von Neumann algebras
with their corresponding finite, normal, faithful traces, and with B ¢ P,, B C P; a
common subalgebra such that 7, = 75, ([Po6], [V2]).

In the particular case when N C M = M, are factors and N'NM = C, for example
when N = M, the amalgamated free product is a genuine free product ([V1]) and any
element of the form vzv*, z € M is free with respect to M. Thus we get:

Corollary. If N C M is an inclusion of type II; factors with trivial relative commu-
tant then there exist unitary elements (u,), in N that are free independent with respect
to M, ie., such that T(uk) =0, Vn, Vk#0, and Jim T(ukbyuk2b, - - - uktby) = 0 for
any £ >1and any by, ---,bpe M, 7(b;)=0, 1<i<Ll—1, ki, ks -,k €Z\{0}.
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Since the notion of “independent events” in classical probability theory becomes
“free independence” in the noncommutative probability of ([V3]), our result on the
existence of free-independent sequences can be regarded as the “free” analogue of the
results on the existence of nontrivial central sequences in a factor ([D1], [McD], [C2])
or a subfactor ([Bi]). There are thus some notable differences between central and
free-independent sequences: Nontrivial central sequences may not exist in general, but
they always form an algebra while free sequences always exist, though the set of all
such sequences doesn’t form an algebra. Also, the existence of noncommuting central
sequences in a factor M implies that M splits off the hyperfinite type II; factor, i.e.,
M ~ M ® R, but, although all factors have free-independent sequences, neither the
hyperfinite nor the property T factors ([C3]) are free products of algebras (cf. [MvN],
[Po5]). Along these lines note also that, while taking the free product M * R of a
property T factor M by R cancels the property T for M * R, the fundamental group of
M * R will remain countable (cf. [Po5]), yet M ® R will have fundamental group R}.
Thus, as also pointed out in ([V1,3]), the analogy between tensor and free products
seems, in certain respects, rather limited.

The above theorem was first stated, without a proof, in Sec. 8 of [Po6]. But in
fact it was obtained prior to the rest of the results in [Po6]. It was this theorem that
led us to the construction of irreducible subfactors of arbitrary index s, N°(Q) C
M*(Q), by using free traces on amalgamated free product algebras. Indeed, when
suitably interpreted the theorem shows that such inclusions N*(Q) C M*(Q) can be
asymptotically recovered in any other irreducible inclusion of same index s.

The paper is organized as follows. In Sec. 1 we prove the technical results needed for
the proof of the theorem. The proofs are inspired from (2.1 in [Po4]), where a slightly
weaker version of the results here were obtained. The proofs rely on the local quantiza-
tion principle ([Pol, 7]) and on a maximality argument, like in [Po4]. Conversely, the
results in [Pol, 7] are immediate consequences of the theorem and its corollary, giving
some sharp estimates as a bonus. This fact will be explained in Sec. 2, where the main
result of the paper, a generalization of the above stated theorem, is proved, (see 2.1)
and some more immediate corollaries are deduced. We expect it in fact to be useful for
approaching some other problems as well, an aspect on which we comment in Sec. 3.
Thus, we speculate on the possibility of having a functional analytical characterization
of the free group algebras, on the indecomposability of such algebras and their possible
embedding into other algebras. We also include a construction of separable type II;
factors M with the fundamental group F(M) countable but containing any prescribed
countable subset of (0,00), e.g., with F(M) D Q.

We are grateful to D. Voiculescu for stimulating us to write down the proof of

the result announced in Sec. 8 of [Po4], through his constant interest and motivating
comments.
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1 Some technical results

In what follows all finite von Neumann algebras are assumed given with a normal, finite,
faithful trace, typically denoted by 7. For standard notations and terminology, we refer
the reader to [Po6, 7).

We will also often use the following:

1.1. Notation. Let B be a von Neumann algebra. If v € B is a partial isometry
with v*v = vv*, S C B is a subset and k < n are nonnegative integers then denote

sgv""éfsandsgvndé‘{bo FoubilbeS, 1<i<k=1, b, beSU{l}and ve
{1 <5l < n}}-

The next lemma is the crucial technical result needed to prove the theorem in this
paper:

1.2. Lemma. Let N C M be an inclusion of type II; von Neumann algebras.
Assume N' N M is finite dimensional. Let € > 0, n a positive integer, F C M a finite
set and f € N a projection of scalar central trace in N such that Enip(b) = 0, for all
b e fFf. Then there exists a partial isometry v in fN f such that:

7(f)

a) v*v = vv* and its central trace in N is a scalar > 5

b)  lEwem(a)ll, <&, €0 Fbm

Proof. Let § > 0. Denote € = 6, ¢ = 2F+t1g_;, k> 1. Let W = {v € fN f|v partial
isometry, v*v = vv*, the central trace of v*v in N is a scalar, and ||[Ennm(2)]|, <
exT(v*v), forall1 <k <n, z € F*"}. Endow W with the order < in which v; < v,
iff v; = vyvivy. (W, <) is then clearly inductively ordered. Let v be a maximal element
in W. Assume 7(v*v) < 7(f)/4. If w is a partial isometry in pNp, where p = f — v*v,
and if u = v + w then for z = b, i7_’°r1 u;b; € FF™ we have

k l
(1) z = bo [Jwibi + 3> 2 [] wi2
=1 2 ) j=1

where k > £ > 1, @ = (iy,...,%) withl <4 < - <4 <k, wy; = v’

if v, =0, 2z bovy by - - - bi, _1p, z;- = pbivi 41+ vyy,p, for 1 < j < £ and
zy = pbiVi41---vibe and where the sum is taken over all £ = 1,2,---,k and all
i = (f1,...,0).
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By (A.1.4 in [PoT]), given any a > 0 there exists a projection g in pNp, of scalar
central support in pNp (and thus in N), such that

(2) llgzq — Eviemnp(2)qlls prrp < @Tomp(q)

for all z of the form z;, for some £ > 2, some © = (i1, --,) and 1 < j < € —1.

In the case £ = 2 and ¢; =1, i, =k, if we take the partial isometry w € pNp so
that w*w = ww* = ¢, then we get for z = pbyvyb; - - - v_1bp_1p:

(3)  I[En'am(bowibyvaby - - - vy bp_ywichy)||,
< |lwibyvgbs - - - br_qwi|,
llgbrv2b; - - - be_a g,
llgzglly = llgzqll1,pp,7(p)
(N Evnmyp(2)allipnsy + @Torsp(a)) 7(p)
(| Evromyp(2)ll,omao7(9) /() + a(9)/7()) 7(p)
(1 Ewonn()llim(p)™* + a) 7(q).

(VAN

But since for £ € N'N M, v and p = vv* commute with z we get by taking into
account that vbyvaby - - - vp_1b—1v* € Ff'" and byvby - - - vg_1 b1 € Ff'z'" the following
estimate:

(4)  I1Ennm(2)]

sup{|r(zz)llz € N'N M, |z|| <1}

sup{|7(pb1vgby - - - vx_1bea2)||lz € N'N M, |jz|| < 1}
sup{|7(b1vgby - - - vg_1bpaz)|lz € N'N M, |z < 1}

+  sup{|T(vbiveby - - vk_1bkrvT)||[z €N'N M, |z|| <1}
| Enran (Brvzbs - - - vi—1be—1)],

+  ||Enam(vbivgby - - - by v”)|l,

< gga7(V'V) + exT(v™V).

IA

By combining (3) and (4) and noting that 7(v*v) < 7(f)/4 implies 7(v*v)/7(p) <
7(f)/3, it follows that if we take a < §/3 < (ex — €x—2)/3 then we get:

(5) | Enreom (Bowrbrvabs - - - vp—1be—1wibi)||, < 2/3ex7(q).

Note now that z = pbyvabs - - - vxk_1bx_1p is the only element of the form z; for which
i —1; = k — 1 and that it appears in the sum (1) only once, in the writing of the
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element bow;byvab; - - - Vp_1bp—1wibr = bowyzwibi. For all other elements z; with £ > 2
we have 1 —7; < k — 1.

Thus, if the partial isometry w € pNp is supported on ¢ like before, i.e., w*w =
ww* = ¢ then we get:

(6) || Ennm(zow, ziwiy 25 - - wi,zp) ||,

S "wi:. ziwh”l .
= |lgzqll = llgz19ll M7 (P)
< (B2 allpms + aToas(9)) 7(p)

(1Exon (2)Ih7(p)™ + @) 7(g).

Since b, vip141 " Vig—1bi,—1 € F271-1" with 43 —4; — 1 < k — 3, and
by, v 410541+ Vi1 by v* € Fi270F00 with 4, —4; +1 < k — 1, we obtain like in (3),
(4) that

(7) IEnem(z)ll; < (Ek-1 + €x-a)T(v™).

Combining (6) and (7) we obtain for 7(v*v) < 7(f)/4 and for a < §/3 < (k-1 —
€k—3)/3, the estimate:

(8) | Enen(zowi, 23wiy 25 - - wiy ), < 2/3ek-17(g)-
k (k
Since 2¥+t1g,_; = g, and since there are at most E <> = 2¥ — k — 1 elements in

=2
the sum in (1) for which ¢ > 2 and i, — i; # k — 1, we get

@ X X

2 i2—t1#k—1

4
EN'ﬂM (20 H w,~J Z;)

J=1

< 2/3(2'“ —k —1)ex-17(q)
< 1/3ex7(q) — (2k + 2)/3ek-17(q).

Finally, from the sum on the right hand side of (1) we will now estimate the terms
with £ = 1. These are terms which are obtained from byv;b;v3b; - - - vib; by replacing
exactly one v; by w;, so there are k of them. Note at this point that for the above
estimates we only used the fact that w*w = ww* = ¢ and not the form of w. We will
make the appropriate choice for w now, to get the necessary estimates for these last

191



S. POPA

terms. To do this, note that for any finite set of elements Y C M, any integer n > 1
and any 3 > 0 there exists w € ¢N¢q, w*w = ww* = ¢, such that

(10) Ir(w'z)| < Br(q), Vz €Y, 0<]i|<n.

To see this, take for instance A C ¢N¢q to be a maximal abelian algebra which
since ¢Ngq is of type II; will be diffuse, thus it will contain a separable subalgebra of
the form L>°(w, u) and let wo be its generator, so that 7(wg') = 0 for all m # 0.
Thus w§* tends weakly to 0 so that w = wj for large enough m will do. If we take
Y = {bjvj41-- vibrel boviby -+ - vj_1bj_qwj|l < j < k, 7,s,p}, where {€’},,s is a
matrix unit for N’ N M, then by (10) we get for w; € {w?|0 < |j| < n}

(11) | Enam(boviby -+ - vj—1bj_1w;bjvjqy - - - kb )|,

sup{|7(boviby - - - vj_1b;_1w;bjvj41 - vkbeT)| |z € N'O M, ||z|| <1}
Y 1T (Boviby - - - vj_1bj_1w;ibjvjyy - - - vibrel,)|

pIrY’

< (dimN'n M)B7(q).

NI

Thus, if 3 is chosen such that
k(dimN' N M)B < (2k +1)/3ek—1, Vk<n

then by adding up (5), (9) and (11) we get from (1) the following estimates for = €
Ffr, 1<k<n:

k
”ENInM(z)”l < | Ennam (boHv;b.-)
i1 .
. t .
+ Y (1 Envom | 26 [T wi, 2}
2 4 =1 )
+ 3 | Ennr (boviby -+ w; -+ veb )|
J
< gr(v™)

+2/3ex7(q) + 1/3ex7(q) — (2k + 2)/3ek-17(q)
+(2k + 2)/35k—1
= gr(v'v+q) = &t((v+ w)*(v + w)).

But this contradicts the maximality of v € W.

We conclude that 7(v*v) > 7(f)/4. If é is taken so that ¢, < ¢ then the statement
follows. Q.E.D.

192



FREE-INDEPENDENT SEQUENCES IN TYPE 1l FACTORS

1.3. Lemma. Let {N,, C M.} be a sequence of inclusions of type I, von
Neumann algebras with dim(N!, N M,,) < oo, for all m. Let w be a free ultrafilter on
N. Given any nonzero projection f in IIN,, of scalar central support and any countable
set of elements X C Il M, with Epy N ATl Mm(b) =0, for allb € fX f, there exists a

nonzero partial isometry v € f (g N,.)f such that v*v = vv* has scalar central support
in IIN,, and such that for all n, all k < n and all z € X,'f'" one has:

Proof. Let f = (fm)m be a representation of f in IIN,,, with f, € N,, projections of
scalar central support. Let X = {z*}; and let z¥ = (z*), be a representation of z* in
I}Mn, with Eniapm, (2X) = 0, for all k. For each n apply Lemma 1.2 for the inclusion

N, C M,, the positive element ¢ = 27", the integer n, the projection f, and the finite
set X, = {z¥|k < n} to get a partial isometry v, in f, N, f, such that v;v, = v,v} has
central trace in N, a scalar > 7(f,)/4 and

"EN.'.'”'Mn(w)"l <277, z € leJn(Xn)ﬁ,’.n.

Then v = (v,) clearly satisfies the conditions. Q.E.D.

1.4. Lemma. Let {N, C M2}, be a sequence of inclusions of type II; von
Neumann algebras and assume that for each n there exists an increasing sequence of
von Neumann subalgebras {MJ}; of M™, containing N, such that MZ = m and
N} N M} is atomic for each k. Let w be a free ultrafilter on N. Given any countable

set Y C IIMZ with Eg N ngM:o(b) = 0, for all b € Y, there exists a unitary

element v € l;INn such that 7(w) = 0 for any word w of alternating letters a;,b; (i.e.,
w = arbjazby -+, or w = biaybeay - -+, ending either with b; or a;) where b; € Y and
where each q; is of the form v™, for some n; # 0, we have

Proof. Since Y is countable there exist k; < k2 < ... and p, € N, N M}, such that Y C

l}pnM,:‘"pn, and N, p, N p, M. pn is finite dimensional for each n. Let W = {v € 1;[ N, |v

partial isometry, v*v = vv* has scalar central support in I Na,  Epppv A p s (z) =0,
w n oW

for all k£ < n and all z € Y*"}, where M, = M. Endow W with the order given
by v1 < vg iff v; = vovjvy. Then (W, X) is clearly inductively ordered. Let v be a
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maximal element of W. Assume v is not a unitary element and let f = 1 — v*v # 0.
Then Emn,ynmm,)(fzf) =0, for all z € X « kL(Jn Yvk’". Indeed, because for y €
(IIN,)' N (II M) we have 7(fz fy) = 7(fzy) = 7((1 —v*v)zy) = 7(zy) — T(vv*Y) = 0,
since either z € Yvk'" begins or ends with a nonzero power of v (when = = bov, b, - - - v by

with either by or by equal to 1) or vazv* € Y2 so both 7(zy) =0, 7(vzv*y) =0 by
the fact that v € W and by the definition of W.

Thus Lemma 1.3 applies to get a nonzero partial isometry u € f HN of such that
u*u = uu* and Eqn,ynmm,)(z) = 0forall z € Y XEn, But then v+u EW, v+u>

v and v + u # v, thus contradicting the max1ma.hty of v.

We conclude that v must be a unitary element and it then clearly satisfies the
conditions. Q.E.D.

2 The main results

We can now deduce the main result of this paper:

2.1. Theorem. Let {N, C ML}, be a sequence of inclusions of type II; von
Neumann algebras. Assume that for each n there exists an increasing sequence of sub-
algebras {MJ'}, in M2, generating M2, containing N,, and such that N! N M} is
atomic for each k. Let {P;}; be a countable family of separable von Neumann subalge-
bras ofl} M, with a common subalgebra B C P; such that E(IJ NN (HM:)(PJ') =B

for all j, ie.,, (IIN,) N P, = B, Vi, and such that for each¢ P;, (IIN,) N (IIM2})
and B satisfy the commuting square condition of ('[Po3]) Then there exists a unitary
element v in H N, such that V v Pl = ;v’P v, i.e. the algebras vi Pju™! generate

an amalga.mated free product over B.

Proof. Since {P;}; are all separable, there exists a countable set Y C U P;, with
J
Eqn,ynmu,)(z) = Ep(z) = 0 for € Y, dense in the norm || ||, in the set U(P; ©
J

B). Thus, if v satisfies the conditions in the conclusion of Lemma 1.4 for the set Y,
then v/ Pju~7 will clearly generate an amalgamated free product over their common
subalgebra B. Q.E.D.

Note that Theorem stated in the introduction is just the case N, = N, M} = M,
for all n of Theorem 2.1 and that its Corollary is then trivial. Another feature of
Theorem 2.1, the proof of which relied almost entirely on the local quantization principle
of [Pol, 7], is that it can be used to get back that theorem, with some sharp estimate,
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coming from direct calculation (in the norm || ||, case) and from the spectral estimates
in ([V1]) (in the norm || || case).

2.2. Corollary. Let N C M be an inclusion of type 11, factors with trivial relative
commutant and let w be a free ultrafilter on N. Let B C M“ be a separable von
Neumann subalgebra. Given any n there exists a partition of the unity {p;}1<i<n in
N¥, with projections of trace 1/n, such that:

(i) For any z € B, with 7(z) = 0, and any t, one has:

Ipizpillz = ll=ll21/n7(p:)-

(i1) For any projection f € B, with 7(f) <1 —1/n, and any ¢ one has:

lpi(f = 7(F)V)pill = 1/n = 20(f)/n + \/4r(£)(1 = 7(f))1/n(1 = 1/n).

(iii) For any unitary element v € B, with either T(v¥) =0, Vk #0, or v™ =1 for
some m > 2 and 7(v¥) =0, 0 < |k| <m, and any i one has:

lpivpi|| = 4/n(1 = 1/n).

Proof. By Theorem A there exists a separable diffuse abelian subalgebra A in N“ which
is free with respect to B. Then [V1] applies to get (ii) and (iii). Direct calculations

then give (i), since ||pizpil|? = 7(pizpiz*p;) = T(pizz*pi)7(pi) = ||z||27(pi)?. Q.E.D.

2.3. Remark. Foreachn, N C M an inclusion of type II; factors with trivial

relative commutant and £ € M an element with 7(z) = 0 let c,(N C M;z) = inf{ f]

lpszpillZ|{p: }1<i<n C N partition of the unity with projections of trace l/n} Let ¢, =
sup{c,(N C M;z)[N C M, N'NM =C and z € M as above}. The above Corollary
shows that ¢,(N C M;z) <1/n,forall N C M and z € M, |z||, < 1. If one takes

M = N x B for some B without atoms then for any z € B, |z||, =1, 7(z) =0,
n

and any partition {p;}1<i<n in N, as above, ‘21 llpizpil|? = 1/n. Thus ¢, = 1/n. This
<ig Z

shows in particular that 1/n + ¢, with ¢ arbitrarily small, are the best constants a for

which given any inclusion N C M, with trivial relative commutant and any ¢ € M as
above, one can find projections g of trace 1/n so that ||gzq||* < ar(qg).

2.4. Corollary. IfN C M, with NN M = Cl, and w are as in the preceding
corollary, then for any z € M“, 7(z)1 € " {uzu*|u € U(N¥)}.
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Proof. Since any x € MY is in the norm closure of the linear combinations of projections
in M* and since by (i),b) of Corollary 2.2 we have the statement forz = f a projection,

by taking u = X\'p;, \ = exp2mi/n and by using that E pifpi = % E uk fuk, it
follows arguing like in Dixmier’s theorem ([D2]) that we get the statement for any

z € M“. Q.E.D.

Let us finally deduce here the result stated without proof in (8.1 of [Po6]), which
we already mentioned in the introduction.

2.5. Corollary. Let N C M be an inclusion of type II; factors of finite index
[M : N] = s. Assume N C M is extremal ([PiPol,[Po7)), i.e., EN:nM(eo) € C1 for
eo C M a Jones projection (i.e., En(eo) = s7'1). Let N ¢ M C M, & M, C

be the associated Jones tower and M., = gm be its enveloping algebra. Denote
by R = vN{ei,---}, R® = vN{es,---}. If Qo C M“ is a separable von Neumann
algebra then there exists a unitary element v € N“ such that Q = vQov* and R
generate the algebra M? (Q) = (Q ® Rs);{aR in a way that identifies @ C Q V R with

RQ~(Q®C)+xC C M(Q)and RC QV R with R~ Cx R C M:(Q). Moreover
MZ (Q) makes commuting squares with N¥, M* and MY, n > 1, and one has
NCAML@Q) = N*(Q), M“nML(@Q) = M (Q), M2NML(Q) = MiQ), n>1,
where N*(Q) C M*(Q) C M;(Q) C - -- are the subalgebras of M2 (Q) defined in [Po6].

Proof. Since N C M is extremal, Eprnn,(e1) € Cl, so that Epyrnp, (R) = R® C
M'N M, and the conditions of Theorem 2.1 are fulfilled for P, = Qo V R®* and P, = R
and B = R’. The rest follows by the definitions of M;:(Q) in [Po6]. Q.E.D.

3 Some problems and comments

3.1. Embeddings of L(F,). The following is a problem for which the above results
may be useful. It was first posed in [Po5] and it can be regarded as the operator algebra
analogue of von Neumann’s problem on the embeddings of free groups into nonamenable
groups.

3.1.1.Problem. Does any nonhyperfinite type II; factor contain copies of L(IF;)?
Do all the non T factors, or at least the property T factors, necessarily contain copies
of L(F;)?

Upon inspection of the proof of 2.1 one can see that a main obstruction for getting
back in M the asymptotically free sequences in M“ seems to be to obtain a “rigidity”
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type result that would insure 7(w) = 0 for any word w in u and v once one has some
u’, v’ for which 7(w') = 0 for words w’ in u’,v’ of length less than some n. The necessary
rigidity feature could be provided by the property non I' (or T') assumption on the factor
M. Related to this, note that if u € M is the generator of a Cartan subalgebra A of M
then by 2.1 there are v € M“ which are free with respect to u but there are no such v
in M. Indeed, if N C M is any von Neumann subalgebra of M that contains A then A
is Cartan in N (see e.g. [JPo]]), but if N = {u,v}” with v free with respect to u then
A is singular in N (see e.g. [Po2]).

3.2. Functional analytical characterization of L(F,).  We recall that there
exists no satisfactory functional analytical characterization of the free group factors.

Related to this, we propose here, the following working conjecture (see also [dIHV]
and [dIH] in these Proceedings for related problems and comments):

3.2.1. Problem. Are all separable non T (or full [C1]) type II; factors which have
the Haagerup approximation property mutually isomorphic? Are all non I’ subfactors
of L(F,,) isomorphic to L(F.,)?

Recall that M has the Haagerup approximation property [H] if the identity on M
can be approximated by compact unital trace-preserving completely positive maps, in
the point-| ||z topology. Note that this property is clearly inherited by subalgebras.
One can strengthen this property in the above assumption by requiring the compact
maps to have only unitaries from M as eigenvectors.

While at this stage this problem seems hopelessly difficult, due to Voiculescu’s
noncommutative probability approach, the problem of the mutual isomorphism of the
L(F,),2 < n < oo, which is a particular case of 3.2.1, may soon be resolved. In fact,
by the recent results in [Ral, 2, 3], in order to show that all the L(F,) are isomorphic
it is necessary and sufficient to prove that for some n the fundamental group of L(F,)
is nontrivial or that L(F,) ® B(H) ~ L(F) ® B(H). A related problem that was not
yet solved is whether L(F,) ® R is isomorphic to L(F.,) ® R or not and whether this
would be sufficient to insure the isomorphism of L(F,) with L(F,).

3.2.2. Problem. Are all non I type II; factors with the Haagerup approximation
property stably isomorphic?

3.2.3.Problem. If M is non I' and is approximable by subfactors isomorphic to
L(F.) is then M itself isomorphic to L(Fs)? Is at least the stabilized version of this
true?

Related to this note that by [C4] there are plenty of examples of nonisomorphic
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nonhyperfinite type II; factors M with M ~ M ® R (and even factorial M' N M, i.e.,
without hypercentral sequences) which have the Haagerup approximation property.

If one seeks to give a negative answer to 3.2.1 then a class of factors that could
be tested are the factors M*(Q) of [Po6], since they are non I' by [Po6] and have the
Haagerup approximation property when @ has it by [Bo]. For each @ = L(F,), as
defined in [Ra2], [Dy] for z € (1, 0], and for each s € {4 cos? r/n|n > 4}, the factors
M*(Q) were proved to be of the form L(F,), for some y € (1,00] depending on = and
s, in [Ra2]. But for s > 4 and/or Q = L(F,) = L*°(T,u), @ = R, the problem
of identifying M*(Q) (or its generalizations [Ba], [Ra3]) as some L(F,) is still open.
If answered positively, this would prove the existence of irreducible subfactors of any
index s >4 in L(F,), 1<z < oo.

3.3. Primeness (or indecomposability) for factors. (see also [dIH]). Besides
implying the mutual isomorphism of all L(F,), 2 < n < oo, a positive answer to
3.2.1 would imply that L(Fyx) ® L(F,) ~ L(F), ¥ < x,»> < oo, in particular that
the type II; factors that are associated to free groups are decomposable i.e., that can
be written as a tensor product of type II; factors, in other words, that they are not
“prime”. However, the result in [Po2] showing that for uncountable sets of generators
S the type II; factors L(Fs) are prime (or indecomposable) gives an indication that the
same result may be true for finitely and countably many generators as well. Thus, the
algebras L(F,) ® L(F,,) are good candidates for giving a negative answer to Problem
3.2.1 and the following seems important to settle:

3.3.1.Problem. Are L(F,), 2 < n < oo, prime factors? Do there exist separable
prime factors at all? Do property T factors have a decomposition into a (unique?)
product of prime factors?

In case L(F,) turns out to be prime, then one probably has to add primeness to the
conditions in Problem 3.2.1.

On the other hand, as many situations show, results holding true in nonseparable
situations can hardly suggest what the answer to the similar separable situation would
be, and vice versa. We will illustrate this by two examples:

For instance, it is showed in [Pol] that if M C P are separable type II; factors
with M’ N P = C then M contains maximal abelian subalgebras of P But that if M is
non I' and P = M¥ then no maximal abelian subalgebra of M is maximal abelian in
M« (although M' N M“ = C). So if M is regarded as a union of an increasing net of
separable type II; factors M; that contain M then for each i there is a masa of M; in
M but at the limit there is none.

Let us consider a second example when a certain property that holds true in a
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separable situation “blows” when passing to nonseparability, showing one more time
that one could hardly guess whether or not L(F,) are prime, just from the fact that
L(Fs) are prime for uncountable sets S.

We first need 2 simple observations:

3.3.2.Lemma. If N C M are type II, factors and N has the property T then
NN M = (NN M)~.

Proof. If = (z,) € N'N M*, then lim ||[y, z,]||2 = 0, for any element y € N, so that
by the property T of N this holds true uniformly for y € M, ||y|| < 1. Thus ([Po5])
tim 22 — Bnvear(z.)]| = 0 QED.

3.3.3.Lemma. If M is a type I, factor then F(M) C F(M").

Proof. Let t € F(M), 0 <t <1, andt, € (0,1)N F(M) be such that lim¢, = ¢.
Let p, € F(M) be projections with —22L- = ¢, and 0, : p.M,, ~ (1 — p,)M(1 — p,)

7(1-pn)
onto isomorphisms. Then p = (p,) € M¥, 7(p) =t and 6 =[]0, is an isomorphism
of pM*“p onto (1 — p)M“(1 — p). Thus t € F(M"). Q.E.D.

3.3.4.Corollary. If M is a separable type II, factor containing a subfactor @)
with the property T such that Q' " M = C then any separable subfactor P C M“ that
contains () has countable fundamental group, although M* itself may have fundamental
group (0, c0).

Proof. By [Po6], given any s € (0,00) there exists a separable type II; factor M*
containing a subfactor ) with the property T and trivial relative commutant, and
having s in its fundamental group. If s;,s; € (0,00) are so that the multiplicative
group generated by sy, sz in (0, 00) is dense in (0,00) then let M = M** @ M*?, which is
separable, has the subfactor Q) ® Q with the property T and trivial relative commutant,
and has fundamental group containing s, sz, thus dense in (0, 00). Then the above two
lemmas apply, together with the result in [Po5], which shows that separable factors that
contain a subfactor with the property T and trivial relative commutant have countable
fundamental group. Q.E.D.

At this point it is worth mentioning a trivial consequence of the above construction:
while in [Po6] we proved that given any finite set of elements S C (0,00) there exist
separable type II; factors with the fundamental group countable but containing that
finite set, we can now prescribe countable sets as well.
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3.3.5. Corollary. Given any countable set S C (0, 00) there exist a separable type
I1, factor M with countable fundamental group F(M) containing the set S. In partic-
ular, by taking S to contain all the positive rationals, one gets examples of separable
type II; factors M with F(M) countable and such that Mpx,(M) ~ M for all n.

Proof. Let @ be a type II; factor with the property T, s;,s2 € (0,00) generating a
dense multiplicative subgroup in (0,00) and let N = M*(Q) ® M**(Q) ([Po6]). Since
s; € F(M*(Q)) we have that s;,s2 € F(N), so that F(N“) = (0,00), by 3.3.3. Let
S = {tp,}n. For each n there exists a t,-scaling automorphism 6, of N* ® B(H). Let
M be the von Neumann algebra generated by

U{OR02 - 0 (N @ BH))|j = 0,k1,..., b > L,is,...,i; € Z}.
Then M is separable and 6,(M) = M, for all n.

Since M D N ® B(H), there exists M D N, a separable type II; factor, such that
M = M ® B(H). Since Q@ ® Q has the property T and (Q ® Q) N N = C, by 3.3.2
QRQRQ)NM C (R®Q) N N = C. Thus M has countable F(M). But since
6.(M ® B(H)) = M ® B(H) and 0, is t,-scaling the trace, we obtain that t, € F(M),
thus S C F(M). Q.E.D.

Added in the proof It was pointed out to us by D. Bisch and V. Jones that a result
similar to Corollary 3.3.5 was already obtained by V. Ya. Golodets and N. I. Nessonov
in their paper ” T-property and nonisomorphic full factors of type II and III”, J. Funct.
Analysis, 70 (1987), 80-89, by using a different method.
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