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A Finiteness Theorem for Isogeny Correspondences 

Alexandra Buium 

0. Introduction 

Let Ag,n be the moduli space of principally polarized abelian varieties 

over C of dimension g > 2 with level n structure, n > 3; we will view Ag,n as an 

algebraic variety over C. Moreover, let Y C Ag,n be a curve (by which we will 

understand an irreducible, closed, possibly singular subvariety of dimension 

1). By an isogeny correspondence on Y we will understand an (irreducible, 

closed, possibly singular) curve Z C Y x Y for which there exists a quasi-

finite map Z1 —• Z from an irreducible curve Z1 with the property that the 

two abelian schemes over Z' deduced bv base change via 

Z' Z CY xY ^->Y ¿ = 1,2 

Qp2- = i-th projection) are isogenous. Note that two abelian schemes over Z* 

are called isogenous if there exists a surjective homomorphism between them 

with kernel finite over Z'\ so we do not require our isogenics preserve, say, 

polarizations. 

The question which we address in this paper is: how many isogeny cor

respondences can exist on a "sufficiently general" curve Y C Ag,n! 

It is easy to see that there exist "lots" of curves Y C Ag^n carrying in

finitely many isogeny correspondences: more precisely, the union of all such 

S. M . F. 
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A. BUIUM 

Y's in Ag,n(C) is dense in the complex topolog}' of Ag^n(C) (see the Propo

sition from Section 1). Nevertheless, our main result here will imply in par

ticular that "most" curves Y C Ag,n carry at most finitely many isogeny 

correspondences (see Theorem 1 below). 

Indeed, let C(Ag,n) be the set of all (irreducible, closed, possibly singular) 

curves in Ag^n; we will put a natural topology on C(Ag,n) which we call 

the Kolchin topolog}' such that C(Ag,n) becomes an irreducible Noetherian 

topological space and then we will prove in particular the following: 

Theorem 1. There exists a dense Kolchin open subset Co of C(Ag,n) such 

that any curve Y belonging to Co carries at most finitely many isogeny cor

respondences. 

Remark. If a curve Y C A<̂ n carries at most finitely many isogeny corre

spondences Z then any such Z must have only finite orbits. 

Let's define in what follows the Kolchin topology on C{Ag,n). More 

generally one can define the Kolchin topology on the set C(A) of all (irre

ducible, closed, possibly singular) curves embedded in a given (irreducible, 

possibly singular) algebraic variet}' A over C. Indeed, we consider first the 

"jet scheme" jet (A), cf. [Bi]; recall that this is by definition an A-scheme 

with a C-derivation 6 of its structure sheaf, characterized by the fact that 

for any pair (Z, d) consisting of an A-scheme Z and a C-derivation d on 0^ 

there is a unique horizontal morphism of A-schemes Z —> jet (A); "horizon

tal" here means "commuting with 6 and cT. For instance, if A = An = 

Spec C[yi,..., yn] then jet (A) = Spec C{yi,..., hn } where C{yi,..., yn } is 

the ring of ^-polynomials in j /x , . . . , yn with coefficients in C (which by defi

nition is the ring of polynomials with coefficients in C in the infinite family 
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A FINTTENESS THEOREM FOR ISOGENY CORRESPONDENCES 

of variables i > 0, 1 <j < n, with C-derivation 6 sending y^ into ŷ "1"1̂ ). 

Now for any Zariski closed subset H of jet (A) we denote by C#(A) the set 

of all curves Y G C(A) such that the image of the natural horizontal closed 

immersion jet (Y) —* jet (A) is contained in H. One easily checks that the 

sets CH(A) are the closed sets of a topology which we call the Kolchin topol

ogy (one has to use the non-obvious fact that jet (Y) is an irreducible scheme 

which follows from correctly interpreting a theorem of Kolchin, [K] p. 200). 

We will check in Section 2 below that C(A) with the Kolchin topology is an 

irreducible Noetherian topological space. 

Remark. Intuitively a subset of C(A) is Kolchin closed if it consists of all 

curves Y G C(A) which "satisfy a certain system of algebraic differential 

equations on A " . As the proof of Theorem 1 will show, the "system defining" 

C(AG,N) \ Co has "order 6" (i.e. "comes from jets of order 6") and is highly 

nonlinear. 

Actually we can do much better than in Theorem 1, namely we can 

"bound asymptotically" (for Y G Co) the number of isogen}' correspondences 

on Y "counted with certain natural multiplicities" (see Theorem V below). 

We need more notations. For any curve Y C AG^N we denote by p{Y) the genus 

of a smooth projective model of Y. Moreover, for any isogeny correspondence 

Z C Y x Y we let [Z : Y]?; denote the degree of the map Z C Y x Y Y, 

i = 1,2 and put i(Y) UZ : Yh = UZ : Y], G NU {oc}, where Z runs 

through the set of all isogeny correspondences on Y (we put i(Y) = 0 if this set 

is empty). This i(Y) is the "number of isogeny correspondences counted with 

multiplicities": for alternative descriptions of i(Y) we refer to Lemmas 1 and 

2 from Section 1. Finally, we shall lix a smooth projective compactification 
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Ag,n of Ag^n and a very ample line bundle 0(1) on Ag,n; then for any curve 

Y C Ag,n we shall denote by deg(Y) the degree of the Zariski closure of Y in 

Ag,n with respect to 0(1). 

We can state the following strengthening of Theorem 1: 

Theorem 1\ There exist a dense Kolchin open subset Co of C(Ag,n) and 

two positive integers mi? ra2 such that for all Y G Co we have 

i(Y) < m1 deg(y) + m2p(Y) 

Remark. A careful examination of the proof leads to an explicit value for 

m2. But determining such a value for mi seems much harder. 

We close this introduction by giving a consequence of Theorem 1'. To 

state it note that the set A^n(C) of C-points of A9,n has a natural equivalence 

relation on it given by isogeny: two points in A9,n(C) will be called isogenous 

if the corresponding abelian C-varieties are isogenous. Each isogeny class in 

Ap,n(C) is dense in the complex topology because it contains the image of 

a Sp(2#,Q)-orbit on the Siegel upper half space. For any y G A^n(C) we 

denote b}' Iy C A^n(C) the isogeny class of y. Then Theorem 1' will imply 

the following: 

Theorem 2 There exist a dense Kolchin open subset Co of C{AQ,n) and two 

positive integers mi, ra2 such that for all Y G Co and for any point y G Y(C) 

outside a certain countable subset of Y(C), the set Y(C) fi Iy is finite of 

cardinahty at most mi deg(Y) + m2p(Y). 

Remark. As the proof will show, the countable subset of Y(C) appearing in 

the above statement can be taken simply to be the set of all points in Y(C) 
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whose coordinates lie in the algebraic closure of the smallest field of definition 

of the embedding Y C Ag,n. 

The paper is organized as follows. In Section 1 we make some remarks 

on isogeny correspondences and we deduce Theorem 2 from Theorem 1'. In 

Sections 2 - 4 we introduce and review a series of concepts from [Bi, B2, B3] 

and provide complements to that material; a rough sketch of the strategy of 

the proof of Theorem 1' is given at the end of Section 2. The main body of 

the proof of Theorem V is contained in Sections 5 - 7 . 

Acknowledgement. The author is indebted to P. Deligne for his inspiring 

comments and suggestions. An earlier version of the present paper was written 

while the author was visiting the University of Paris VII and (as a Humboldt 

Fellow) the University of Essen. The final version of the paper was written 

while the author was a member of the School of Mathematics at the Institute 

for Advanced Study in Princeton (NSF Grant No. DMS 9304580). Thanks go 

to all these institutions for hospitality and support. Last but not least thanks 

go to Dottie Phares for her excellent typing job. 

1. Some easy remarks on isogeny correspondences 

Let k C F be an extension of algebraically closed fields of characteristic 

zero, k ^ F; in applications we shall be interested in both situations when 

F = C and k = C. 

Let Ak denote the moduli ^-scheme of principally polarized abelian va

rieties over k of dimension g > 2 with level n structure, n > 3. For any curve 

Yfc C Ak (i.e. irreducible closed fc-subvariety of Ak of dimension 1) we 
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may introduce exactly as in Section 0 the notion of isogeny correspondence 

Zk C Yk x Yk on Yk and we may define i(Yk) similarly. On the other hand, 

we may consider on the set Ak(F) of F-points of Ak the equivalence relation 

given by isogeny: two points in Ak(F) are called isogenous if the correspond

ing abelian F-varieties are isogenous (over F). For y G Ak(F) we denote b}' 

Iy,F C Ak(F) the isogen}' class of y. 

Lemma 1. Let Yk C Ak be a curve and y G Yk(F) \ Yk(k). Then we have: 

i(Yk) = cKd(Yk(F)nly,F) 

Proof: Let L = k(Yk) be the field of rational functions on Yk and let So:L —> F 

be the fc-embedding corresponding to y. Since Yk(F) fl Iy,r C Yk(F) \ Yk(k) 

each point in Yk(F) fl Iy,r identifies with a ^-embedding e: L —> F; note that 

the compositum of the fields SoL and sL in JP is algebraic over both s^L 

and sL (because the abelian F-variety corresponding to e, being isogenous 

to the one corresponding to £o, must be defined over an algebraic extension 

of SoL). Therefore the ideal ker(£0 0 e:L 0k L —* F) in L L is non

zero so it corresponds to a curve Zk(s) C Yk x Yk which clearly is an isogeny 

correspondence. We have constructed a map s i — • Zk(s) from the set Yk(F)f) 

IY^F to the set of all isogeny correspondences on Yk which is clearly sur jective 

and whose fiber at an isogeny correspondence Zk C Yk x Yk has precisely 

[Zk ' Yk]i elements. This closes the proof of the Lemma. 

Lemma 2. Let Yk C Ak be a curve, fix a k-embedding s: L = k(Yf,) —• F, let 

X be the abelian F-variety deduced via £ and for any a G Aut(F/k) denote 
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by X° the abelian F-variety deduced via o from X. Consider the groups 

G(X) = Aut(F/sL) 

G\X) = {a e Aut(F/k); X° is isogenous to X} 

Then i(Yk) equals the index [G'(X):G(X)]. 

Proof: Let y G Yk(F) Yk(k) be defined by e. Then clearly Yk(F) fl R i 

identifies with the coset set Gf(X)/G(X) and conclude by Lemma 1. 

Let's show how Theorem 1' from Section 0 implies Theorem 2. Denote 

Ag,n simply by A and assume Co,rai,m2 are as in Theorem V. For any 

Y G Co let k C C be a countable algebraically closed field of definition of the 

embedding Y C A and let Yk C Ak be the embedding of fc-varieties giving rise 

to Y C A; then Yk(k) is a countable subset of Y(C). Let y G Y(C) \ Yk(k); 

by Lemma 1 (applied to F = C) we have 

card(Y(C)nlj,) = i(Yk) < i(Y) < mi deg(y) + m2i?(y 

which proves Theorem 2. 

We close this section by proving the following assertion (which was made 

in Section 0): 

Proposition. The union in Agi77,((C) of all curves carrying infinitely many 

isogeny correspondences is dense in the complex topology of Ag,n(C). 

Proof: Step 1. Note that there exists at least one curve Y C A = Ag,n card

ing infinitely many isogen}' correspondences. Indeed, let E —» S = AQ \ {0,1} 

be the Weierstrass elliptic family, let X = E Xs . . . X 5 E (g times) be viewed 

as a principally polarized abelian scheme over S and make a base change 
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S' —• S, S' some irreducible curve over C, such that X1 := X x# S' —> 5 ' has 

a level n structure. Then the closure Y in A of the image of the naturally 

induced map S' —• A has z(Y) = oc (e.g. use Lemma 1). 

Step 2. Consider any curve Y C A with z(Y) = oc (which exists by 

Step 1). Then, starting from Y, we shall produce a family of curves Yz 

with i(Yz) = oc and whose union is dense in the complex topology of A(C). 

Indeed, let k C C be a countable algebraically closed field of definition for 

the embedding Y C A and let Yk C Ak be the embedding of fc-varieties from 

which Y C A is deduced; upon enlarging A: we may assume i{Yk) — oc. Take 

an}' point y G Y(C) \ Yfc(fc) and consider the isogeny class Iy = Iy^ of y in 

A(C). For any point z e Iy let Yfcz denote the Zariski closure in Ak of the 

image of the morphism SpecC —• Ak defined by z and let Yz C A be the 

curve over C obtained from Ŷ f by base change k C C; clearly z G Y^(C). 

We claim that i(Y£) = oc. This will close the proof of the Proposition, for 

then i(Yz) = oc and Iy C UYZ(C) the union being taken for all z G Iy] but 

Iy is already dense in the complex topology of A(C). To check the claim 

let Xy, Xz be the abelian C-varieties corresponding to z\ since they are 

isogenous, Gf(Xy) = G'(XZ) (notations as in Lemma 2). Now let L, Lz be 

the fields of rational funcitons on Yk, Y£ and let s: L —> C, ez: Lz —• C be the 

&-embeddings defined by and respectivefy. Since Xy, Xz are isogenous 

the compositum of the fields sL and ezLz in C is finite over both sL and 

szLz. In particular, one of the indices [G'(Xy):G(Xy)] and [G'(A^): G{XZ)\ 

is finite if and only if the other is so. Now our claim follows from Lemma 2 

and our Proposition is proved. 
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2. Introducing the <5-field U 

The most economic wa}' of presenting the proof of Theorem 1' is to use 

the setting of <5-fields and the theory of Ritt-Kolchin which goes with them [K] 

(a <5-field is by definition a field JF of characteristic zero with a fixed derivation 

on it always to be denoted by 6: F —* F). 

Instead of dealing with many ^-fields it is still better to deal with one 

universal <5-field in Kolchin's sense; for convenience we recall the definition of 

this concept. First there is an obvious notion of morphism of ^-fields and of 

<5-subfield (morphisms of ^-fields are by definition field homomorphisms which 

commute with the fixed derivations). If F\ —» F2 is a morphism of ^-fields we 

say that F2 is ^-finitely generated over F\ if there exist # 1 , . . . , xn G F2 such 

that F2 is generated as a field by F\ and the elements blx^ i>0 ,1 < j < n . 

A <5-field U is called universal if for any <5-subfield F\ of it which is <5-finitely 

generated over (Q) and for any morphism of ^-fields F\ —> F2 with F2 ^-finitely 

generated over F\ there is a morphism of 6-fields F2 —> U over Fi. By [K] p. 

134 there exists a universal <5-field U whose constant field {x G U\ 6x = 0} 

has the same cardinality as C hence is isomorphic to C. From now on we 

fix such an f7, identify its constant field with C and write x', x"x"',... 

instead of 6x, <52x, <53rr,... for x G U. For any C-variety A the set A(U) of 

its L^-points has a natural topology called the Kolchin topology defined as 

follows (cf. [Bi]): for any Zariski closed subset H of jet (A) let AJJ(U) denote 

the set of all points Spec U —• A in A(U) whose unique horizontal lifting 

Spec?/ —> jet (A) has the image contained in H. Then the sets AH(U) are 

by definition the closed sets of the Kolchin topology on A(U) (note that this 

is what Kolchin calls in [K] the <5-C-topology and is slightly different from 
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the topology considered in [Bi] where we do not assume the open sets are 

"defined over constants"). By [K] p. 200 if A is irreducible in the Zariski 

topology then A(U) is irreducible in the Kolchin topology. Moreover, by 

a theorem of Ritt [R] p. 10 the Kolchin topology on A(U) is Noetherian. 

Note that if we are given a morphism of algebraic C- varieties A—>B then the 

induced map A(U) —> B(U) is continuous in the Kolchin topology of A(U) and 

B(U). Moreover, any map AM(U) = UM —* AN(U) = UN whose components 

are defined by ^-polynomials / 1 , . . . , fn £ C{j/i , . . . , ym} is continuous in the 

Kolchin topology. Coming back to the set C(A) of curves in A, it is easy to 

see that the Kolchin open sets of C(A) defined in Section 0 are precisely the 

sets of the form CQ(A) = {Y £ C(A); Y(U) n ft ^ 0 } where ft is Kolchin 

open in A(U) (to check this just apply the "£-NullsteUensatz" [K] p. 148). 

Noetherianity of Kolchin's topology on A(U) already implies Noetherianity 

of the Kolchin topology on C(A). Let's check that C(A) is irreducible in the 

Kolchin topology. It is sufficient to check that CQ(A) ^ 0 whenever 0 ^ 0 . 

We may assume A is affine. Then by Noether normalization we ma}' easily 

assume A is the affine space AN. Now if CQ(A) is empt}' for some non-empty 

C A(U) = UN there exists a non-zero ^-pofynomial P £ C{j/i , . . . , hn} 

such that for an}' choice of polynomials / 1 , . . . , /n GC[t] we have the equality 

P(fi(t),..., fn(t)) = 0. By [K] p. 99 this implies P = 0, a contradiction. 

Now Lemma 1 (applied to k = C and F — U) shows that Theorem 1' is 

implied by the following: 

Theorem 1". There exist a dense Kolchin open subset Co of C(Ag,n) and 

positive integers ml5 m2 such that for any curve Y £ Co and for any isogeny 
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class I C Ag^n(U) \ Ag,n(C) we have: 

card(Y{U) H I) < mi deg(y) + m2jp(y) 

From now on we concentrate ourselves on Theorem 1". The very rough 

idea of its proof is the following. We will find Kolchin open sets fii, fi2 of 

Ag,n(U), positive integers mi, m2 and a map b:Qi —> U which is "constant on 

isogeny classes'' such that for any curve Y C Ag,n with y(J7)nfiiflfi2 7^ 0 we 

have that Y(U) fl fii = y(tf) \ y(C) and the restriction of 6 to Y(U) \ y(C) 

is given by a rational function on Y of degree at most mi deg(y) + m2p(y). A 

moment's reflection shows that this implies Theorem 1" (see the first lines of 

Section 6 for a few more details). The map b will be constructed in Section 6 

as a (quite explicit) differential algebraic invariant of "<5-Hodge structures" of 

abelian {/-varieties. The latter structures will be introduced in Section 3 and 

morally they are a differential algebraic (simplified) version of usual variations 

of Hodge structure. An argument different from ours for the existence of the 

map b was given by P. Deligne in a letter to the author [D]. 

3. Review of some 5-linear algebra 

We shall "recall" and complete some discussion made in [B2] on "<5-Hodge 

structures". Let D = U[6] = T,U6l be the ring of linear differential operators 

on U generated by U and 6. By a <5-Hodge structure (of weight 1 and dimen

sion g) we understand a pair (V, W) consisting of a Z)-module V of dimension 

2g over U and of a [/-linear subspace W of V of dimension g. We have an 

obvious notion of isomoprhism of (5-Hodge structures and we denote by Hg the 

set of isomorphism classes of such objects. We say that (V, W) has (5-rank g if 

the J7-linear map W C V —^ V —* V/W is an isomorphism (where V —> Vis 
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the multiplication by 6 in the D-module V) and we denote by Hg9^ the set of 

isomorphism classes of 6-Hodge structures of <5-rank g. There is a natural map 

$: H(g9) -> A9(U) = U9 defined as follows. For any (5-Hodge structure (V, W) 

of 6-rank g choose a {/-basis w i , . . . , wg of W; then w\,..., wg, 6w\,..., 6wg 

will be a {/-linear basis for V hence one can write 

62w + a6w + (5w — 0 

where a,/3 G g\g(U) are suitable g x g matrices and w is the transpose of 

(wi,...,wg). Then we define $ by attaching to (V,W) the characteristic 

polynomial 

det(xlg-j) x9 + v1x9'1 H + 

of the matrix 7 = /3 — a2/4 — c//2 (where we identify polynomials as above 

with vectors (v i , . . . , G £/0). It is trivial to check that changing the basis 

w\,..., wg of W amounts to replacing the matrix 7 b}' a matrix conjugated 

to* it so $ is well defined. Now let 

"Mn M12 
M2i M22 e gb,(i7), G e\g(u) 

By [Kl pp. 420-421, there exists a matrix 

B Bu B12 
B21 B22 

e GL2o(U) 

such that B' — MB and B is unique up to right multiplication by a matrix 

in GL2£,(C). It is trivial to check that deg M12 ^ 0 if and only if 

det Bll B\2 7^0 
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Let ghg(U)^ be the set of all matrices M G ghg(U) with det M12 ^ 0. 

There is a natural map T: ghg{U)^ -» Hgg) defined as foUows. For any M G 

ghg(Uy9^ let V = J72^ (viewed as a £>-module via the D-module structure of 

each factor) and let W be the {/-linear subspace of U2g spanned by the rows 

of the g x 2g matrix (£11,-812) where B G GL2g(U) is such that B' = MB. 

By the above discussion on determinants (V, W) has (5-rank g. By uniqueness 

of B up to GL2^(C)-action the isomoprhism class of the 6-Hodge structure 

(V, W) depends only on M and not on the choice of B; so we got a well defined 

map r as desired. It is an easy exercise of linear algebra to compute explicitly 

the composed map $ o T:gh9{Uf9) -+ hP(U) = U9; the result is 

&(Г(М)) = dettelo - 7 where 

7 = /3 - a2/4 - ct ¡2 

a — -M[2MX2 - Mn - Mi2M22M121 

(3 = -M(i + MinM^Mu + M12M22M7}Mn - M12M21 

So we see that $ o T is defined by g rational fractions whose denominators are 

powers of det M12 and whose numerators are (^-polynomials with coefficients 

in Q in Ag2 variables; in particular $oT is continuous in the Kolchin topolog}'. 

Intuitively it should be viewed as a (highly) non-linear differential operator 

of order 2. 

4. Review of internal versus external Gauss-Manin connection 

In this section we review some material from [B2] and [B3], chapter 5; we 

refer to loc. cit. for details of proof. 

Let Y be a smooth C-variety and TY = Spec (Qy) its tangent bundle; 
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then there is a natural map V: Y([f) —• (TY)(U) continuous in the Kolchin 

topology defined as follows. 

One first defines it for Y = A^; here we identify 

AN(U] UN, (TAN)(U) = U2N 

and put V(i*i, . . . , upj) = ( i / i , . . . , WJV, ^ i , . . . , u'N). Next if Y C is a closed 

subvariety and we embed TY naturally into TAN then we define V:Y(U) —> 

(TY)(?7) to be the restriction of the analogous map for A^. Finally if Y 

is arbitrary we define V be gluing the V's of its affine pieces. Note that if 

y G Y(U) then Vy can be veiwed as vector in the Zariski tangent space TyYu 

of Y\j \ = Y ®c U at y. Of course, there is an intrinsic definition of V but we 

won't need it here. 

Now let X —* Y be a smooth projective morphism of smooth C-varieties, 

let y G Y(U) be a point and Xy the fiber at y. Then we dispose of an 

"internal'' Kodaira-Spencer map 

fìt:T>ercU-*H1(Xy,T) 

associated to the morphism Xy -+ Spec J7 (here T denotes the tangent sheaf) 

and also of an "external" Kodaira-Spencer map 

p^:TyYv ^ ННХУ,Т, 

associated to the morphism Xu —» Yy. One can easily prove the following 

formula: 

(*) Yu^Hl(Xy,T) 
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Similarly we dispose of an "internal" Gauss-Manin connection 

V ^ r D e r c t f • Endc(#èR(Xy)) 

and (assuming for simplicity that Y is affine) of an "external" Gauss-Manin 

connection 

Vext:Dert,0(ytO EnduiHh^Xu/Yu)) 

See [Ka] for background on Gauss-Manin connection. On the other hand 

the trivial lifting of 6 from U to Xu, Yu induces an endomorphism 6* G 

Endc(Hj)ii(Xu/Yu))- For any 0(Yt/)-module E and any cp G E let's agree to 

denote by (p(y) the image of cp in E/myE where my is the maximal ideal of 

the local ring of Yu at y. For instance, if (p G H°(Yu,T) is a vector field then 

cp(y) G TyYu is the corresponding tangent vector; if <£> G H°(Yu, 0) is a global 

1-form then ,cp(y) is an element in the dual of TyYu while if ^ G HjyR(Xu/Yu) 

is a relative de Rham class then (p(y) G H^R(Xy) is the corresponding de 

Rham class on the fiber. With this convention let co G H^R{Xu /Yu) and let 

6y G H°(Yu,T) be such that 0y(y) = Vy. Then one can prove the following 

formula ([B3] Chapter 5): 

(**) vLnt(*)Mj,)) 
#t:DercE/->ff1(X1,,T) 

Prom now on let X/Y be an abelian scheme of relative dimension g >1. 

The space Hl{Xy,T) naturally identifies with Hom/y(H°(Xy,Q),Hl(Xy, 0)) 

so for each element of this space we may speak about its determinant which 

will be a [/-linear map between the g-th exterior powers of H°(Xy.Q) and 

H^Xy.O). Then formula (*) easily implies that the set Y^](U) of all // G 

Y(U) such that det p)"x,(fi) / 0 is a Kolchin open subset of Y(U) (which 
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may of course be empty but which is certainly non-empty when Y = Ag,n 

and X —> Y is the universal abelian scheme because in this case any g-fold 

product of an elliptic curve with j-invariant belonging to U \ C provides an 

example of y for which det />*nt(<5) ^ 0 ). 

A key role in what follows will be plaĵ ed by the map h:Y(U) —> Hg 

defined to attaching to each y G Y(U) the 6-Hodge structure represented 

by ( V, W) where V = H^R(XY) (viewed as a D-module via V1^) and W = 

H°(XY,Q). Using the relation between "Kodaira-Spencer" and "Gauss-Ma

nin" as explained in [Ka] we see that / i_1(iJ^) = Y^9\U) so if the latter is 

non-empt}' we dispose of an induced map 

h:Y(g)(U)-+H(0) 

The map h has the remarkable (easily checked) property that if y, z G Y(U) 

are such that XY and XZ are isogenous then h(y) = h(z). In particular 

Y^9\U) is saturated with respect to the isogeny equivalence relation. 

Assume in addition that H^R(X/Y) and H°(X,QX/Y) are free Q(Y)-

modules (this is anyway the case if we replace Y by the Zariski open sets 

of a covering of it which will be allowed later). Then take an 0(Y)-module 

basis UJ of the first module having the form u;i , . . . , u>g, <^+i, . . . where 

the first g elements form a basis of the second module. For any vector field 

r G Der^O(Yu) on Y\j we may write Vext(r)cj = (N,T)OJ where A7" is a 

2g x 2g matrix of 1-forms on Y. The latter defines a morphism of C-varieties 

TY —> gk^(C) which at the level of {/-points gives the map still denoted by 

N:(TY)(U)^Sh9(U) 

sending each tangent vector t 6 TyYu into the matrix (N(y),t). Denote 

by (TY)^(U) the preimage via N of Qhg(U)^; it is a Zariski open subset 
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of (TY)(U). Then one checks using (**) that the map h:Y^g)(U) H(g9 

coincides with the composition: 

r o JV o V: Y(°\U) . (TYfa){U) #t:DercE/->ff1(X 

In particular the composition 

X = $oh:Y{9\U) • H{g9) A°(U) = U9 

is continuous in the Kolchin topology. Intuitively x should be viewed as a 

"third order non-linear differential operator". 

5. The case dim Y=l 

Assume Y is an irreducible (possible singular) curve over C; we will 

sj'stematically apply the preparation made in Section 4 to the smooth locus 

of Y. Choose a non-zero C-derivation r of the function field C(y); then r 

induces a {/-derivation of the function field U(Yu) of Y\j so we may (and will) 

also view r as a rational vector field on the smooth locus of Y\j. Of course r 

has neither zeroes nor poles in Y(U) \ Y(C) and all singularities of the curve 

YLr lie in y(C). 

For any y G Y(U) \ Y(C) we denote by y1 the unique element in U* = 

C7 \ {0} such that Vy = yfr{y). Moreover we simply denote b}' y", yin,... the 

usual derivatives of y' as an element of U. An}' element cp in the function field 

C(Y) will be systematically viewed as a rational map cp: Y(U) yP^}{U) = 

U; if cp 7^ 0 then obviously (p has neither zeroes nor poles in Y(U) \ Y(C). 

For any (p G C(y) and an}' y G Y(U) \ Y(C) we have the following (easily 

checked) formula: (p(y)' = y'(r(p)(y). 
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Assume we are given an abelian scheme X/Y of relative dimension g > 1. 

Formula (*) from Section 4 (applied to the smooth locus of Y) says that for 

any y e Y(U) \ Y(C) we have 

pint(s) РГ(У'ТШ y'pext(r)(y) 

where pext:DeiuO(Y) -> H1{X,TX/Y) is the natural "external" Kodaira-

Spencer map of X / Y , TX/Y = relative tangent sheaf of X / Y . Exactly as 

in Section 4 we may consider the determinant det/>ext(r) which identifies 

with an element in C(Y). (Recall we assumed Y small enough, so that the 

various vector bundles appearing in section 4 are trivial.) If we assume this 

rational function is non-zero then it has neither zeroes nor poles in Y ( U ) \ 

Y(C); so we get by the above equalities that if Y^9\U) is non-empty then 

y(*)(E7) = Y{U)<Y(C). Assume from now on that Y^(U) £ 0 (equivalent^ 

that det/9ext(r) ^ 0 in C(Y)). There is a finite set of closed points S C Y 

containing all singular points of Y, all zeroes and poles of r and of det pext(r), 

such that if Yi = Y \ 5, X \ = inverse image of Yi, we have a basis of the free 

0(Yi)-module ff£R(Xi/Yi) of the form 

w i , . . . , w f l , V e x t ( T V i . , V e x t ( r K 

where u>i,..., LJQ is a basis of the free 0(Yi)-module H°(XuSlx/Y). Note 

that Yi(U) \ Yi(C) = Y(U) \ Y(C). Then the map N: (TY)(U) -* ghg(U) 

from Section 4 has the form: 

ur(y 0 
uN21(y) 

Ulg for all u € 17, yeY^U) 

where N21, N22 are g x g matrices with entries in Q(Y\). Now we compute 

the image of any y € Y(U) \ Y(C) via the map 

Y = $ o r o j V o V : Y ( 9 ) ( r / ) (TY)i9HU) gi 2 «(t0 ( e ) HLG0) - + U° 
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Using the formula of $ o V from Section 3 plus the above formula for AT, we 

get that x(y) equals the characteristic polynomial of 7 = /3 — a2/4 — a'/2 

where 

<* = -y"{y'yXh - y'N2i{y) 

/3 = -(y>)*N21(y) 

Substituting the expressions of a and (3 in that of 7, we get 

1 = a{y)Ig + {y'fR{y) 

where a(y) = y"'/2y' - (3/4)(y"/y')2 is the "Schwartzian'' of y and R. is some 

g x g matrix with entries in O(Yi). In case g = 1 we simply get: 

x(y) = ^(y) + (y')2.R(?/), y € Y(*7) \ y(C) 

for some regular function i? £ So if, moreover, Y = A1 \ {0,1} 

and X is the Weierstrass elliptic curve over Y, then by universality of [7 the 

map x: U x C —• ?7 is sur jective. Coming back to arbitrary' # > 1 and taking 

products of g elliptic curves with various j-invariants in U \ C, one sees that 

the map x: Agg,n(U) —» U9 is surjective too. 

6. The basic "fifth order map" 

The main idea in what follows is to construct non-empty Kolchin open 

sets and Qp of Q := A^g}n(U) and a map b:Qo —• A1 (17) = f/ with the 

following properties: 1) for an}' points y, z £ belonging to the same 

isogeny class in Agjl(U) we have b(y) = and 2) for any curve Y C Ag%n 

with Y(L0 H QD 0 fiP ^ 0 we have Y(f/) fl fiD = Y(f/) \ Y(C) and there 

53 



A. BUIUM 

exists a rational function s G C(Y) \ C such that the restrictions of 6 and 

s to Y(U) n Y(C) coincide (this makes sense because s viewed as a rational 

map Y(U) yA1^) = U has all its poles contained in Y(C)). Then 

we will prove that there exist an effective divisor W C A and two positive 

integers mi, m2 such that upon letting Çlw = Ag,n(U) \ W(U) we have that 

deg s < mi deg(Y) + rn2p(Y) whenever Y(U) C\QD DQP D Qw i=- 0. This 

construction will end the proof of Theorem 1". Indeed, let Co be the set of all 

Y G C(AG,N) such that Y(U)nQDnilPnQw ^ 0; if J C Ap,n(t7)\Ap,n(C) is 

any isogeny class then for Y G C0 we have JnY(I7) = Jn(y( t / ) \y (C)) hence 

/ H Y(U) will be contained in a fiber of the restriction of b to Y (U) \ Y(C) 

hence in a fiber of the restriction of s to y(17) \ Y(C), consequently 

card(/ny(i7)) < deg s < mi deg(y) + rri2p{Y) 

and Theorem 1" will be proved. In this section we construct our "basic map'' 

6; intuitively b will appear as a "non-linear differential operator of order 5". 

In the next section we will construct W and estimate deg s. 

Start by considering the maps D,T,E\A9(U) —• Al(U) defined as fol

lows: for v = (vi..., vg) G Ug, 

D{v) = D(x9 + vxx9'1 H + vg)= disc(j:5 + mx9'1 -\ + vg) 

T(v) = -vx 

E(v) = 4g(g - l)D(v)(D(v)" - A(g - l)T(v)D(v)) - (2g - l)2{D{v)'f 

where "disc,? means "discriminant". Note that D and T are regular maps of 

algebraic varieties while E is not; yet E is continuous in the Kolchin topology 

(intuitively E is a non-linear differential operator of order 2). Consider the 
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Kolchin open set tip = \ x""1(£>"1(0)) of Ag,n(U) (which is non-empty 

because the map x: Q —> U9 appearing at the end of Section 4 is surjective) 

and also consider the Zariski open set A9D(U) = A9(U) \ Z>-1(0) . Then we 

may consider the maps S:AgD(U) -+ A1 (17), P:A9(U) -» A^C/) defined by: 

S(v) = Eivyb-V/Div)20^-1)*1, 

P(v) = (Eivy^-^yDiv)29^-1^1 - E(v)9^9-1\D(v)29^9-1^1y20^-1)*1, 

The maps S and P are continuous in the Kolchin topology so we may con

sider the Kolchin open set tip = Q \ x"1(^>"1(0) ) which is non-empty also 

by subjectivity of ^:fi —• U9. Now we define our "basic map" to be the 

composition 

b = SoX:tlD-*A?D(U)^Ar(U) 

Clearly b maps each pair of points belonging to the same isogeny class into the 

same point (because \ nas this property). Now let Y C Ag,n be a curve with 

Y(U) fl QD fl Op ^ 0; in particular, by Section 5, Y^\U) = Y(U) \ Y(C). 

Also by Section 5 we have 

X(y) = det(xl„ - a(y)Ig - {y'fB(y)), y e Y(U) \ Y(C) 

where B, is some g x g matrix with entries in the function field C(Y). In 

particular we get: 

(*) T(X(y)) = ti(a(y)Ig+(y')2R(y)) 9<y)Hy')2Ay) yeY(U)^Y(C) 

where t = tri? £ C(Y) and "trv denotes of course the trace of a matrix. 

Using the behavior of the discriminant of a polynomial with respect to linear 
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changes of variable, we get 

(**) 

DMy)) D(de t ( (x -o (y ) ) I9 - (y ' )2R(y ) ) ) - D(det(xl0 - (y'YB.(y))) : 

: fo')2**-1^), y E Y(U) \ Y(C) 

where d = D(det(xlg - B)) € C(Y). Since Y(U) n CtD # 0 there exists 

y0 e Y(U) \ Y(C) such that £>0t(i,o)) ^ 0; by (**) d # 0 in C(Y). Since d 

viewed as rational function on Y(U) has neither zeroes nor poles in Y(U) \ 

Y(C), it follows from (**) that D(\(y)) ^ 0 for all j/ G Y(*7) \ Y(C) hence 

Y(U)(IQd = Y(U) n ^(C). Now a tedious but straightforward computation 

with formulae (*) and (**) yields: 

(***) E(X(y)) = (y'r9(9-1)+2e(y), y 6 Y(U) \ Y(C) 

where e = 4g(g - l)d(r2d - 4(g - l)td) - (2g - l)2(rd)2 G C(Y). Prom (**) 

and (***) we get: 

(****) 
Kv) = S(x(y)) s(y) y € Y(U) v Y(C) 

where S = efl(fl-l)/d2S(fl-l)+l € C(Y) We claim that s ^ C, equivalently, 

rs 7̂  0. But, indeed, deriving (****), we get 

y'(Ts)(y) = P(x(»))/Ö(X(»))4Ä(|I"1)+2, y G Y(J7) \ y(C) 

Since Y(£/)nftr>nQp ^ 0, there exists G y ( t / ) \ y ( C ) such that P(x(l/i)) ^ 

0 and D(x(yi)) 7̂  0 so we must have (rs)(j/i) 7̂  0 hence rs / 0 as an element 

of C(Y) and our claim is proved. 

To conclude the proof of Theorem 1" we need to bound deg s in terms 

of deg(y) and p(Y) which will be done in the next section. 
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Remark. The main point in the last step of the proof above was the "mira

cle" that, for y £ Y(U) \ Y(C), both D(x(y)) and E(x(y)) were expressible 

in the form of a product of some power of y' with a sutiable rational function 

in C(Y). In case of D(x(y)), this "miracle" is the reflection of remarkable 

properties of the discriminant. In a similar way the "miracle" for E(x(y)) is 

the reflection of remarkable properties of what may be called the "differential 

resultant" of two ^-polynomials; this interpretation is of course irrelevant for 

the proof (but it was quite relevant for the way we were led to the somewhat 

tricky definition of E). Deligne's arguments in [D] avoid this "miraculous" 

point in our proof. 

7. Bounding deg s 

First let's recall various trivial facts related to degrees on curves. Let L 

be a function field of one variable over C of genus p . Then for any / £ L 

we define deg / = deg( / )oo (where (/)<» is the negative part of the principal 

divisor associated to / of the smooth projective model of L) if / ^ 0 and 

deg / = 0 if / = 0. This is of course nothing but the "usual height" of the 

point (1 : / ) on the projective line. Similarly if OJ £ £l\j£ is a 1-form we let 

degu; = deg(a;)oo if OJ ^ 0 and deg a; = 0 if OJ = 0. Finally, if r £ DercL, 

r / 0 we write degr = deg(r)00. Here (o;)oo, (^)oo have the obvious meaning 

analogue to (/)«>• It is trivial to check that: 

(i) deg(r, OJ) < deg r + deg OJ 

degfoj< deg / + degcj 

deg rf < deg r + 2 deg / 

deg(/i + /2) < deg /1 + deg f2 
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deg /1 /2 < deg f± + deg /2 

Note that by Riemann-Roch there always exists r G DercL, r ^ 0 with 

degr < 2p. For any matrix M = (fij),fij G L it will be convenient to denote 

by deg M the maximum of the numbers deg fy. 

Now let us come back to the set C(A) of curves in A — AG,N and recall 

that we have fixed a projective compactification A of A and a very ample line 

bundle 0(1) on A. For any two functions (p,ip:C(A) —• N and any subset C 

of C(A) we write <p(Y) <C '0(Y), Y G C if and only if there exists a constant 

m > 0 such that <£>(Y) < ra^(Y) for all Y G C". 

After these notational preparations we ma}' proceed to proving the exis

tence of the desired bound for deg s. 

Let X/A be the universal abelian scheme over A, let i?, be the field of ra

tional functions on A and let XR = X x ,4Spec B. Pick an}' i?-basis u>i , . . . , uj2g 

of i f¿R(Xiг/ i?) such that u ; i , . . . ,OJ9 is an i?-basis of H°(XR, Q) and write 

Veni = P(v) = (Eivy^-^yDiv 1 <i,j<2g 

where V is the Gauss-Manin connection of XR/B,. There clearly exists an 

integer N > 1 and a divisor W on A whose associated line bundle is 0(iV) 

such that, upon letting V be A \ W, the following hold: 

1) VCA, 

2s <*>!?••• ? w2p is a basis of the 0(V)-module H^R(X/A)v, 

3) wi , . . . ,u)g is a basis of the 0(V)-module of relative regular 1-differentials 

of XIA over V, 
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4) LJij are regular on V, 

5) (<^f?)oo < W f°r all h j (where (̂ ¿7)00 1S the divisor of poles of Uij on A) 

Put W = W CiA and let's check that with this W we have 

d e g s < d e g ( Y ) + p ( Y ) , Ye Co 

which will close the proof of Theorem 1". Recall from Section 6 that we 

defined C0 to be the set of all Y G C(Ag,n) such that Y(U)nQDnnPnQw # 0; 

moreover we defined s by the formula s = e ^ - ^ / d 2 ^ - ^ 1 G C(Y). Now if 

Y € Co and if ûij are the restrictions of Uij to y , then obviously we have 

deguij < deg(y), Y G Co 

Using formulae (i) we easify check that the matrices A^i, N22 in Section 5 

ma}' be chosen to satisfy 

deg N2U deg iV22 < deg(Y) + p(Y), y G Co 

Clearly the matrix i? in Section 5 can be expressed explicitly in terms of A^i, 

N22; using (i) again we get 

deg i ? < d e g ( Y ) + p ( y ) , Y G Co 

Finally, if t, d, e, s are as in Section 6, we deduce step by step (using (i)) that 

deg t,deg d,deg e,deg s < deg(y) + p(Y), Ye Co 

and Theorem 1" is proved. 
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