
Astérisque

V. P. KOSTOV
Regular linear systems on CP1 and their monodromy groups

Astérisque, tome 222 (1994), p. 259-283
<http://www.numdam.org/item?id=AST_1994__222__259_0>

© Société mathématique de France, 1994, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1994__222__259_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


REGULAR LINEAR SYSTEMS ON CP1 A N D THEIR 

M O N O D R O M Y GROUPS 

V.P. KOSTOV 

1. INTRODUCTION 

1.1 

A meromorphic linear system of differential equations on CP 1 can be pre­

sented in the form 

X = A(t)X (1) 

where A{t) is a meromorphic on C P 1 n x n matrix function, " • " = d/dt. 

Denote its poles a i , . . . , a p +i , p > 1. We consider the dependent variable X 

to be also n x n-matrix. 

Definition. System (1) is called fuchsian if all the poles of the matrix-

function A(t) axe of first order. 

Definition. System (1) is called regular at the pole a,j if in its neighbour­

hood the solutions of the system are of moderate growth rate, i.e. 

I W - a ^ l ^ O d t - a ^ ) , Ni E R, j = 1,...., p + 1 
Here || • || denotes an arbitrary norm in gl(n, C) and we consider a restriction 

of the solution to a sector with vertex at ctj and of a sufficiently small radius, 

i.e. not containing other poles of A(t). Every fuchsian system is regular, see 

[1]. The restriction to a sector is essential, if we approach the pole along a 

spiral encircling it sufficiently fast, then we can obtain an exponential growth 

rate for | |X | | . 

Two systems (1) with the same set of poles are called equivalent if there 

exists a meromorphic transformation (equivalency) on C P 1 

X h+ W(t)X (2) 

S. M. F. 
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with W E 0(CPl\{au...,ap+l}) and detW(t) jt 0 for t e C P 1 ^ ! , . . . ^ ^ } 
which brings the first system to the second one. A transformation (2) changes 
system (1) according to the rule 

A(t) _> -W-\t)W(t) + W-\t)A{t)W(t) (3) 

1 . 2 

The monodromy group of system (1) is defined as follows: fix a point a ^ ay 
for j = 1,..., p + 1, fix a matrix J5 G GL(n, C) and fix p closed contours on 
CP1 beginning at the point a each of which contains exactly one of the poles 
cij of system (1), see Fig. 1. The monodromy operator corresponding to such 
a contour is the linear operator mapping the matrix B onto the value of the 
analytic continuation of the solution of system (1) which equals B for t = a 
along the contour encircling a;-; we assume that all the contours are positively 
orientated. Monodromy operators act on the right, i.e. we have B H+ BMJ. 
The monodromy operators Mi, . . . ,Mp corresponding to ai,...,ap generate the 
monodromy group of system (1) which is a presentation of the fundamental 
group 7r1(CP1\(a1, . . . , ap+1) into GL(n, C); we have 

MP+1 = (MX....M,)-1 (4 

for a suitable ordering of the points a;- and the contours, see Fig. 1. 

It is clear that 

1. the monodromy group is defined up to conjugacy due to the freedom in 
choosing the point a and the matrix B. 

2. the monodromy groups of equivalent systems are the same. 

The monodromy group of a regular system is its only invariant under mero-
morphic equivalence. 

Capital Latin letters (in most cases) denote matrices or their blocks; by i* 
we denote diag(l , . . . , 1). 

1 . 3 

It is natural to consider GL(n, C)p as the space of monodromy groups of regular 
systems on CP1 with p +1 prescribed poles (because the operators M i , . . . , Mp 
define the monodromy group of system (1)). Condition (4) allows one to con­
sider Mp+i as an analytic matrix-function defined on GL(n, C)p. Of course, in a 
certain sense, M i , . . . , Mp+i are 'equal', i.e. anyone of them can play the role of 
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Mp+i. We define an analytic stratification of (GL(n, C))p by the Jordan normal 
forms of the operators M i , . . . , Mp+i and the possible reducibility of the group 
{ M i , . . . , Mp}. Fixing the Jordan normal form of M i , . . . , Mp is equivalent to 
restricting the matrix-function Mp+i = (Mi.-.Mp)"1 to a smooth analytic 
subvariety of GL(n, C)p, but if we want to fix the one of Mp+i as well, then 
we a priori can say nothing about the smoothness of the subset of GL(n, C)p 
(called superstratum) obtained in this way. The basic aim of this paper is to 
begin the study of the stratification of C?L(n, C)p and the smoothness of the 
strata and superstrata. 

Throughout the paper 'to fix the Jordan normal form5 means 'to define the 
multiplicities of the eigenvalues and the sizes and numbers of Jordan blocks 
corresponding to each of them', but not to fix the eigenvalues as well; this is 
called 'to fix the orbit'. 

2 The stratification of the space 
of monodromy groups 

Definition. Let the group { M i , . . . , M p } C GL(n,C) be conjugate to one in 
block-diagonal form, the diagonal blocks (called big blocks) being themselves 
block upper-triangular; their block structure is defined by their diagonal blocks 
(called small blocks). The restriction of the group to everyone of the small 
blocks is assumed to be an irreducible matrix group of the corresponding size. 
The sizes of the big and small blocks are correctly defined modulo permutation 
of the big blocks (if we require that the sizes of the big blocks are the minimal 
possible) and define the reducibility type of the group. 

Example : The reducibility type 
A B O 
0 C 0 
0 0 Q 

has two big 
A B 

0 C 

and Q) and three small blocks (A, C and Q). 

Definition. A stratum of GL(n, C) is its subset of matrices with one and 
the same Jordan normal form. A group { M x , . . . ,MP} C GL(n, C) defines a 
stratum of GL(n, C)p: the stratum is defined by 

1) the reducibility type of the group; 
2) the Jordan normal forms of the small and big blocks of the matrices 

M i , . . . , Mp+i and the ones of the matrices Mj themselves; 
3) two groups whose matrices M i , . . . ,MP are blocked as their reducibility 

type belong to the same stratum if and only if the corresponding Mj are conju­
gate to each other by matrices (in general, different for the different j) blocked 
as the reducibility type. 
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A stratum is called irreducible if its reducibility type is one big and at the 
same time small block. 

A reducible stratum is called special if there exists a pair of small blocks of 
the same size, belonging to one and the same big block, such that the restric­
tions of the matrices Mj to them have the same Jordan normal form for all 
j = l , . . . , p + l. 

Remark: Suppose that the definition of a stratum doesn't contain 3). Then 
some of the reducible strata defined in this way will turn out to be reducible 
analytic varieties (see the example below; note the double sense of 'reducible'). 
The good definition of a stratum is obtained when the strata defined above 
are decomposed into irreducible components if this is possible. After such a 
decomposition we obtain again a finite number of strata. 

Example: Let the reducibility type be P Q 
0 R 

, P, Q and R being 3 x 3 . 

Let M 2 , . . . , Mp+i have distinct eigenvalues. Let Mi = 

A 
0 
0 
0 
0 
0 

1 
À 
0 
0 
0 
0 

0 
0 
A 
0 
0 
0 

0 
0 
b 
A 
0 
0 

0 
0 
0 
1 
A 
0 

0 
a 
0 
0 
0 
A 

For a = 0, b ^ 0 and for a # 0, b = 0 the Jordan normal forms of the P— and 
Q—block of Mi and of Mi itself are the same (Mi has one eigenvalue - A -
and three Jordan blocks, of sizes 3, 2 and 1 respectively). In the first case the 
dimension of the intersection of the subspace invariant for Mi upon which Mi 
acts as one Jordan block of size 3 with the subspace invariant for all operators 
Mj is equal to 1, in the second case it is equal to 2. It can be checked directly 
that the two matrices (corresponding to (a, b) = (*, 0) and (a, b) = (0, *), * ^ 0) 
aren't conjugate to each other by a matrix blocked in the same way. 

Remark: The following example shows that the definition of a stratum 
of GL(n, C ) p is still not good - there exist several connected components for 
irreducible strata in which every operator Mj, j = l,..., p has one eigenvalue 
only. On the other hand-side, let there exist M ;- with at least two different 
eigenvalues. Consider two systems belonging to the same stratum. One can 
deform continuously the sets of their eigenvalues, i.e. perform a homotopy 
from the first into the second set, keeping their product equal to 1 and their 
multiplicities unchanged, i.e. different (equal) eigenvalues remain such for ev­
ery value of the homotopy parameter. Whether for any such homotopy there 
exists a homotopy of the monodromy group, irreducible for every value of the 
homotopy parameter - this is an open question. 
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Example: The monodromy groups of the following three systems axe ir­
reducible. Every monodromy operator Mi,M2, M3 is conjugate to one 3 x 3 -
Jordan block. The eigenvalues of Mi and M2 are equal to 1, the ones of M3 in 
the first case are equal to 1, in the second case - to e4'"/3, in the third case -
to e2"'/3. By tjt j = 1,2,3 we denote l /(t - a,-). 

X = 
0 1 0 
0 0 1 
0 0 0 

t + 
0 - 1 0 
0 0 0 
1 0 0 

<2 + 

0 0 0 
0 0 - 1 

- 1 0 0 
t1 X 

X = 
0 1 0 
0 0 1 
0 0 0 

«1 + 

0 -26 /27 0 
0 0 0 
1 - 1 / 3 1 

*2 + 

0 - 1 / 2 7 0 
0 0 - 1 

- 1 1/3 - 1 
E X 

X = 
0 1 0 
0 0 1 
0 0 0 

*1 + 

0 -19 /27 0 
0 0 0 
1 - 4 / 3 2 

*2 + 

0 - 8 / 2 7 0 
0 0 - 1 

- 1 4/3 - 2 
T3 X 

Definition. Consider a subset E of GL(n, C) consisting of matrices blocked as 

a given reducibility type. A stratification of this set is defined by 
1) the Jordan normal forms of the small blocks, taking into account whether 

two small blocks have common eigenvalues or not 
2) two matrices with the same reducibility type and orbits of the small 

blocks belong to the same stratum if and only if they can be conjugated with 
one another by a matrix blocked as the reducibility type. 

Lemma 2 .1 . Any stratum from this stratification is a connected smooth 
algebraic variety. 

The lemma is proved at the end of Section 3. 

Definition. A superstratum of GL(n, C)p is defined by the Jordan normal 
forms of the matrices Af i , . . . , Mp+i. Hence, every superstratum consists of a 
finite number of strata. 

Evidently, every stratum and superstratum is locally an analytic subvariety 
of (GL(n,C)y. 

Theorem 2.2. 
1) All irreducible strata are locally smooth analytic subvarieties ofGL(n, C)p. 
2) All strata and superstrata in which at least one of the matrices Mj, 

j = 1 , . . . ,p + l has n different eigenvalues are globally smooth irreducible semi-
analytic subvarieties of GL(n,C)p ('semi-analytic' means 'defined by a finite 
number of equalities and by inequalities of the kind P ^ 0'). 

3) A reducible group { M i , . . . , M p } (in block upper-triangular form, same 
as the reducibility type) is a singular point of its superstratum only in case that 
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i/Qiiy? • • • Î Qssj are the restrictions of Mj to the small blocks of the reducibility 
type, then there exist linear relations of the kind 

aivar tiQiij + . . . + a5var tvQssj = 0 , j = l , . . . , p + l , a* E Z 

Here }var tr' denotes the possible variation of the trace when every eigenvalue 

varies independently (equal eigenvalues have equal variations) and the stratum 

to which { M i , . . . , Mp} belongs is fixed. Hence, the singular points of a super­

stratum are contained in one or more of its reducible strata - last equalities 

mean that for a fixed reducibility type the multiplicities of the eigenvalues of the 

small blocks Qkkjij = 1 , . . .p + 1 for which a* ^ 0 remain the same. 

4) Every reducible stratum is locally a smooth analytic variety. 

5) An upper-triangular group with Mj having one eigenvalue only , j = 

1 , . . . ,p + 1, is a singular point of its superstratum. 

3 Proof of Theorem 2.2. 

0°. We prove 1) in 1° - 3°, 2) and 3) in 4° - 7°, 4) in 8° - 13° and 5) in 14°. 
The proofs of the lemmas involved are given after the proof of the theorem. 

1°. Prove 1) (see 1° - 3°). Fix the Jordan normal forms ofMu..., Mp. This 
defines a smooth subvariety T of (GL(n, C))p. If we fix the Jordan normal 
form of Mp+i (or, equivalently, of M^x) , then this defines a smooth analytic 
subvariety S of GL(n, C). Let the group M = { M i , . . . , Mp} be irreducible. 
We prove that the differential of the mapping 

(Mu..., Mp) H . Mp+1 = ( M j . . . Mp)"1 

is non-degenerate at M ; in fact, we prove (what is equivalent) that the differ­
ential of the mapping 

(MU...,MP)»M£1 = M1...MP (*) 

is such, see 2° — 3°. Hence, the graph of the mapping (*) is a smooth analytic 

subvariety of T x GL(n, C) , transversal at M to the smooth analytic subvariety 

U = T x <S; therefore their intersection is locally a smooth analytic subvariety. 

2°. The differential of (*) is the sum of two terms - the first (denoted by $p) 

is obtained when Mj are conjugated by matrices of the kind Gj = I+eYj, i.e. we 

move infinitesimally along the orbit without changing the eigenvalues. Hence, 

$p is the coefficient before e in the product GilMiG\... G~ lMpGp. Note 

that for small values of e the group {G^M^x,.. .,G~lMpGp} is irreducible. 

The second term (denoted by Ap) is obtained when we change infinitesimally 
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the eigenvalues (every eigenvalue changes independently, for every MjJ = 

1,...,J>). 
3°. Lemma 3 .1 . 

«p(M;Y)s*p(Af1,... ,Afp;y1,... ,yp) = 

= [M1,y1]M2...Mp + M1[M2,y2]M3...Mp + . . . + M1...Mp_1[^Y, p] : 

= Mi.. .Afp*p(iV1,.. . lJVp;Zll. . . ,Zp) 

where *p = [TV^Zx] + . . . + [NpiZp] , Zj = SjlMjlYjSj , JV;- = SjlMjSj , 
5;- = M i + 1 . . . Mp, j = 1 , . . . ,p - 1, Sp = J . Hence, the groups { M i , . . . , Mp} 
and {Nij..., iVp} coincide. 

The lemma is checked directly. 

Lemma 3.2 . Let Mj = QjlJjQj where Qj G GL(n, C) and J;- ts tfie 
Jordan normal form of Mj. Then 

AP(M,V) = y1M2. . .Mp + M1y2M3.. .Mp + . . . + M1M2...Mp_1yp 

tu/iere V} = QjxDjQj, Dj being a diagonal matrix whose diagonal entries are 
the variations of the eigenvalues of Mj, i.e. of the diagonal entries of Jj (equal 
eigenvalues have equal variations). We have 

Ap = Mi... MPKP , KP 
p 

i=1 
SfM^VjSj Sj = Mj+l...Mp , SP = I 

The lemma is checked directly. 

Lemma 3.3 . Let the group { M i , . . . ,MP} be irreducible. Then for every 
matrix L E gl(n,C), tr^Mp+iL) = 0 there exist matrices Y i , . . . . , l^ such that 
L == $P(M; Y ) , see Lemma 3.1. 

Lemma 3.4. For every d G C there exist matrices V i , . . . , Vp, see Lemma 
S.2., such that *r(Mp+iAp(M; V ) ) = d. 

The first statement of the theorem follows from Lemmas 3.3. and 3.4. 
Really, for L e gl(n,C) choose VU..., VP such that tr(Mp+xAp(M;V)) = 
t^Mp+iL). Hence, tr (M^\(L - Ap)) = 0 and we can choose Y1?.. . ,YP such 
that L- Ap = $ p ( M ; Y ) . 

4°. Prove 2) and 3). To this end we use a similar idea to the one of the 
proof of 1). We show for what groups M the tangent spaces to the graph of (*) 
(denoted by T(*)) and to the variety ZY, see 1°, are transversal. The space TU 
contains the tangent space to T , therefore it suffices to find the cases when the 

265 



V P. ROSTOV 

sum of the projections of the spaces T(*) and TU into GL(n, C) , the space of 
M ^ \ , is the whole space gl(n, C) . Similarly to Lemmas 3.1. and 3.2. we find 
that the projection of TU into GL(n, C) is equal to 

Ap+l{Mp^uYp+uVp+l) = [M^YP+1] + Vp+1 

where Yp+i G gl(n, C) and if Mp+X = Qp+i^p+iQp+i) «Vfi being the Jordan 
normal form of M-1p+1, Qp+1 G GL(n,C) , then Vp+1 = Qp_£1Z)p+1Qp+1, £>p+1 
being diagonal, whose diagonal entries are the variations of the eigenvalues of 
Mj£v Hence, the two varieties U and the graph of (*) are transversal if and 
only if every matrix L G gl{p>, C) can be presented as 

I = £p(M;Y,V,yp+1,Vp+1) = 

$ P ( M ; Y ) + A P ( M ; V ) + A ^ M ^ Y ^ , Vp+l) (**) 

Present (**) with Yp+i = Vp+1 = 0, i.e. with Ap+i = 0, in the form 

L' = (Mx. . .MPYlL = £ P ( M ; Y ; V ) = tfP(N; Z ) + K P ( M ; V ) (***) 

From now on we most often consider equation (***) instead of equation (**) 
(if we can solve (***), then we can solve (**) ). 

5°. Let the reducible group M be in block upper-triangular form (same 
as the reducibility type). Decompose any matrix A G gl(n, C) in blocks, the 
decomposition being induced by the sizes of the small blocks of the reducibility 
type. Then for the following ordering of the blocks operator £'p, see (***), 
is block upper-triangular: if the blocks axe denoted by Qjt5, k (s) being the 
number of row (of column) of blocks, then QklSl precedes Qk2s2 if and only if 
ki — Si < ¿2 ~ $2 01 ki~ Si = k2 — S2 and k\ < k2. Hence, it suffices to consider 
the action of C'p upon matrices Y), V), j = 1 , . . . ,p + 1 whose elements outside 
a fixed block are equal to 0. 

Lemma 3.5 . Denote by Qijk the restriction of Mk for k = 1 , . . . ,p or Mp+X 

for k = p + 1 to the block Qij. Then equation 

p+1 

fc=i 
QukZk — ZkQjjk = A 

has a solution for any matrix A G^(n, C) if and only if the two following 

conditions donJt hold simultaneously: 

1) Qu and Qjj are of the same size (denoted by I); 

2) there exists a matrix B G GL(Z, C) such that B~lQakB = Qjjk for 

k = 1 , . . . ,p (hence, for k = p + 1 as well). 

266 



REGULAR LINEAR SYSTEMS 

Note that for i > j the left hand-side of the equation gives the restriction 
of the image of operator C'p to the block Qx;- (KP has no influence upon blocks 
under the diagonal). Conditions 1) and 2) together are a private case of the 
non-smoothnes condition from 3) of the theorem. 

The block upper-triangular form of operator C'p implies that one could try 
to solve equation (***) successively for each block, in the opposite order of 
the blocks. If we fail at one of them, then, probably, we can't solve equation 
(**) ('probably' means that solving equation (***) is not equivalent to solving 
equation (**)). If conditions 1) and 2) from the lemma hold simultaneously, 
then it doesn't follow from Lemma 3.5. that we can solve (***). If they don't, 
but the non-smoothness condition from 3) of the theorem holds, then we can 
solve equation (***) restricted to all blocks Qij under the diagonal, i.e. with 
i > j. For i = j operator typ can give a solution only for matrices V with 
trl/^.,. = 0. Hence, operator KP must be used to make the trace of L'|Qii equal 
to 0 and he'll fail to do it for all small blocks simultaneously exactly if the 
variations of the traces of the small blocks are linearly dependent. 

7°. We proved in 6° that for strata verifying the non-smoothness condition 
from 3) of the theorem equation (**) possibly can't be solved and, hence, the 
variety ZY, see 1°, might not be transversal to the graph of (*). We prove now 
that non-transversality would imply local non-smoothness of their intersection. 
Introduce in GL(n,C) local coordinates q = (gi,...,gn2) such that at the 
intersection point of U and the graph of (*) the projection of U into GL(n, C) , 
i.e. <S, should be given by equations qi = ... = qs = 0, s =dim«S. Hence, the 
points of non-transversal intersection of the graph of (*) and U axe the ones 
where the differential of (*) degenerates and we have qi = ... = qs = 0. These 
are the singular points of the intersection of the image of (*) with {qi = ... = 
qs = 0} , i.e. with U. 

If a superstratum of (GL(n, C))p contains among the Jordan normal forms 
of My, j = 1 , . . . ,p + 1 one with distinct eigenvalues, then their variations are 
independent and we never have conditions 1) and 2) of Lemma 3.5. fulfilled 
together. On the contrary, if there is at least a pair of equal eigenvalues in 
every My, j = 1 , . . . ,p + 1 , then it is always possible to find a reducibility type 
such that conditions 1) and 2) of Lemma 3.5. will be fulfilled together. 

Irreducible strata and superstrata in which at least one of the operators 
Mj is with distinct eigenvalues are connected. Really, let this be Mp+i. The 
image of (*) is a semi-algebraic subset of GL(n, C) for every fixed set of Jordan 
normal forms of M x , . . . , Mp. The differential of (*) is non-degenerate, hence, 
the image is an open subset of GL(n, C). Hence, if the Jordan normal forms 
of M i , . . . , M p are fixed, then the points of the graph of (*) for which Mp+1 is 
not with distinct eigenvalues is locally a proper subvaxiety of the graph. This 
completes the proof of 2) and 3) of the theorem. 
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8°. Lemma 3.6. Let the group M be reducible. Then in its neighbourhood 
U € (GL(n, C))p there exists a holomorphic and holomorphically invertible 
matrix C such that it conjugates every group of the intersection of U with the 
stratum to which M belongs to one blocked as the reducibility type. 

The proof of 4) is similar to the one of 1). We consider the mapping (*) 
defined for M i , . . . , M p blocked as the reducibility type, making use of the 
lemma. Denote the set of these matrices by E. Consider the following subset 
of (E)*: the multiplicities of the eigenvalues of every operator M i , . . . , M p and 
their distribution among the small blocks are fixed and the Jordan normal 
forms of the small blocks as well. Denote this set by T' and consider (*) as a 
mapping (*):T' H-> E. For M~+x G E fix the multiplicities of its eigenvalues, 
their distribution among the small blocks and the Jordan normal forms of the 
small blocks. This defines a subset S' C E. 

Lemma 3.7. T1 andS' are smooth analytic subvarieties. 

The intersection of the graph of (*) with S' x T' (denote it by TV) consists 
of a finite number of strata of (GL(n, C))p (not necessarily of a single one). 
Really, though the eigenvalues of Mj and the Jordan normal forms of their 
small blocks are fixed, the Jordan structures of Mj depend on the elements in 
the blocks above the diagonal as well. 

Example : Consider the matrix 

A 1 a b 
0 A c d 
0 0 A 1 
0 0 0 A 

For c 7̂  0 it is conjugate 

to one 4 x 4 Jordan block. For c = 0, a + d ^ 0 it is conjugate to a matrix with 
one 3 x 3 - and one 1 x 1-block, for c = a + d = 0 it is cojugate to a matrix with 
two 2 x 2-blocks. 

9°. In the case of non-special strata we have 

Lemma 3.8. Every reducible non-special stratum consists of a finite num­
ber of smooth analytic varieties. 

10°. We prove 4) of the theorem for reducibility types with one big block 
only; for such with several big blocks the proof is similar. The proof is carried 
out by induction with respect of the number k of small blocks. Let k = 2. Set 

Mj = Pi Qi 
0 Rj 

Let the stratum be special, i.e. the Jordan normal forms 

of Pj and Rj be the same for j = 1 , . . . ,p + 1 (for non-special strata the answer 
is given by Lemma 3.8.). By Lemma 3.5., equation (***) in which all matrices 
are block upper triangular (as Mj) can't be solved only if the sizes of Pj and 
Rj are equal and we have B~lPjB = Rj , j = 1 , . . . ,p + 1 for some matrix B. 
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Really, we first solve equation (***) for the diagonal blocks as in the irreducible 
case and then for the block B. 

Let Pj = Rj, j = 1 , . . . ,p + 1. Denote by C the space of matrices blocked 

as 
А В 
О С 

Then we have 

Lemma 3.9. The image of operator C'p restricted to C is either C or C fl 
{N E C\ti(N\B) = 0} . The second case occurs only if Qj = [D,Pj] for some 
matrix D, j = 1 , . . . ,p + 1. 

Lemma 3.10. Let Mj = Pi Qt 
0 A 

be conjugate to Pt 0 
0 Pj 

Then 

Qj = [JD;- ,PJ] for some square matrices Dj. The opposite implication is also 
true. 

Hence, for k = 2 the only case in which equation (***) can't be solved is 

the one when Mj can be simultaneously conjugated to the form Pi о 
0 Pi 

But in this case the reducibility type has two big blocks. 

11°. Let the reducibility type contain к > 3 small blocks. Let in the block 
decomposition induced by the sizes of the small blocks С U D be the set of 
blocks in the first row, B U D - the one of blocks in the last column and A 
- the set of all other blocks on and above the diagonal, see Fig. 2. Item 3) 
from the definition of the stratification of (GL(n, C))p implies that once the 
stratification of the restriction of the group M to A is defined, its definition for 
М|лив, M | A U C > M|AUBUCU£> does not change the one of M | A . 

Fix a stratum of M | AU в ^ d a stratum of МЦис such that their restrictions 
to A coincide. The stratification of M\AUBUCUD imposes (for every stratum) 
analytic conditions on the block D. The restrictions MJ\D, j = 1, •. •, p, consist 
of a finite number of smooth analytic varieties for every stratum of E, see 
Lemma 2.1.. In (*) Mp+1|p is presented as an analytic function of M b . . . , MP 
restricted to the corresponding strata. To prove the local smoothness of М | я 
it suffices to prove that the graph of Mp+i\r> is transversal to the level sets 
MP+I\DD where Mp+1 is restricted to some stratum of E, as in the proof of 1). 

12°. Introduce the following notation for the blocks of M;-: 

P Qi 02 . . . Q*-2 D 
0 Г [/2 . . . Uk-2 Si 
0 0 V ... Нк-2 s2 

0 0 0 . . . W Sk-2 

0 0 0 . . . 0 R 
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