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EQUISINGULAR UNFOLDINGS OF FOLIATIONS
BY CURVES
Jean Francois MATTEI and Marcel NICOLAU*

0. Introduction. Let F denote a holomorphic foliation by curves with iso-
lated singularities on a complex surface M. The first author constructed in
[M] a versal equisingular unfolding, parametrized by a smooth space of pa-
rameters K1°°, of the germ of the foliation F' at one of its singular points g;.
The aim of this paper is to show the existence of a versal equisingular unfold-
ing of the global foliation F' when Af is compact. In this case the parameter
space K. of the versal unfolding can be singular. The problem of finding
conditions on F' assuring the triviality of any unfolding has been considered
by X. Gomez-Mont in [G-M].

An equisingular unfolding of F is an unfolding admiting a reduction of the
singularities “with parameters”. It is claimed in [M] that there is a one-to-
one correspondence between equisingular unfoldings of F' and locally trivial
unfoldings (cf. Definition 1.6) of the reduction F of F preserving the divisor
which comes from the singular points of F. So we are led to construct a versal
locally trivial unfolding of a (possibly non saturated) foliation by curves. The
construction of the versal space is carried out in the first two sections. The
key point is the identification of locally trivial unfoldings with a certain type
of deformations of the complex structure of the underlying manifold. Then
we consider the relationship between the global versal space K, and the local
versal spaces K!°°. We show that under some cohomological assumptions
K. is smooth and naturally identified with the product []J K°¢. Finally we
apply the above results to show that any equisingular unfolding of a germ of
algebraic foliation is still algebraic.

1. Locally trivial unfoldings of foliations by curves.

Let M be a n-dimensional compact complex manifold and let TM be its
holomorphic tangent bundle. Given a holomorphic vector bundle E over M
we denote by O(E) the sheaf of germs of holomorphic sections of E. In
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particular Op = O(C) and Oy = O(TM) are respectively the sheaves of
germs of holomorphic functions and holomorphic vector fields on M.

By a (singular) holomorphic foliation on M we mean a locally free O y-
submodule F' of ©s which is closed under the Lie bracket of vector fields.
The singular locus S(F) of F is the analytic subset whose complementary
M — S(F) is the maximal open set on which F defines a foliation in the usual
sense, i.e. without singularities. The foliation F is called saturated if one has

T'(U,0)NT(U - S(F).F) = (U, F)

for any open subset U C M. It is well known that a foliation F is saturated if
and only if codimS(F') > 2. In fact it follows from Hartogs’ extension theorem
that if there is given an analytic subset © C M of codimension greater than
one and a non singular foliation F’ on A/ — T then there is a unicuely defined
saturated foliation F' on M which coincides with F/ on M — X. In particular
S(F) C .

A foliation by curves is a locally free subsheaf F of © 4 of rank one. There-
fore a foliation by curves is determined by a pair (L, x) where L is a line bundle
over M and K : L — TM is a non identically zero bundle morphism. The
bundle morphism & induces an injective morphism of sheaves O(L) — Oy
and we identify O(L) with its image in ©3;. Then S(F) is the set of those
points z € M for which k : L. — T.M is the zero map.

In an equivalent way a holomorphic foliation by curves can be defined
by a collection of local holomorphic vector ficlds & € T'(U;,©pr) such that
U = {U;} is an open cover of M and &; = uj; - & on U; N U; for suitable non
vanishing holomorphic functions wj;. Then L is the line bundle associated to
the 1-cocycle {uj;}. Moreover, if o; : U; — L are non vanishing sections with
0;j = uj; - 0; then kK : L — TM is the bundle morphism determined by the
condition & o 0; = &;. The singular locus S(F') is just the union | JSing(¢;)
where Sing(&;) is the subset of U; where ; vanishes.

To any foliation F' there is naturally associated a saturated foliation *F'
which coincides with F' outside S(F). In the case of a foliation by curves
SF can be described as follows. Assume that F is defined by local vector
fields &; € T'(U;, © i) where each U; is holomorphically equivalent to an open
polidisc A of C*. Let z!,...,z" be the coordinates on U; induced by the
identification U; = A and set & = ) £70/d=". Let v; be a m.c.d. of the
functions &!,..., €7 and define & = ¢; i/vi- Then codim(Sing(é;)) > 2. Since
the foliation on U; N U; defined by { j is saturated there is a holomorphic
function 4;; such that & = 1;; { jon U; NUj. Furthermore the functions 4;;
do not vanish. If not Sing(é ;) would he of (odlmension one. Hence the local

vector fields &; define a saturated foliation *F called the saturation of F.
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1.1. Example. Let a saturated foliation F' and an analytic hypersurface
D on M be given. One can find an open cover {U;} of M with the property
that there exist §; € I'(U;, Opr) and h; € T'(U;, Ou) such that the collection
{&:} defines F and h; = 0 defines D on U; (i.e. if f € I'(W,Op) vanishes
on D then f = X-h; on WNU;). Set n; = h; - &. The collection of vector
fields {7;} defines a non saturated foliation by curves F'? with singular locus
S(FP) = DU S(F) and whose saturation is just F. With more generality
and for any given positive integer k € N* one can define the foliation F*-P
as the foliation by curves defined by the local vector fields ngk) = (h)F - &
In section 3 we will consider locally trivial unfoldings of foliations by curves

obtained in this way.

From now on F' will be a fixed foliation by curves on a compact manifold
M defined by a pair (L,k). Let Q be an open neighbourhood of 0 in C™.
The product 2 x M is endowed with a holomorphic foliation Fy of the same
codimension as F' obtained as the product of F' by the foliation on (2 consisting
of a single leaf; i.e. Fy is the foliation defined by the subsheaf pri©@q @ pr3 F
of Oqxm. Here pr; and pr, denote respectively the natural projections from
Q2 x M onto the first and second factors. We call Fy the trivial unfolding of
F parametrized by Q.

1.2. Definition. Let W be an open subset of @ x M and let ¥ : W —
U(W) C Q x M be an C-analvtic diffeomorphism over the identity of Q0 such
that the restriction of U to W N ({0} x M) is the identity. We say that ¥
is a relative automorphism of the trivial unfolding Fq if there is a bundle
morphism ! : (T x L)|W — (T x L)|¥(1V) over ¥ such that the diagram

(TQx L)W X (TQ x TM)|W

\wl lw.

(TQ x L)|¥(W) ~25, (TQ x TM)|¥(W)
is commutative, where ¥, denotes the tangent map of ¥,

1.3. Remark. Let ¥ be a local biholomorphism over the identity of Q
and inducing the identity on {0} x A{. Suppose that ¥ maps the singular
locus S(Fq) of Fg identically into itself and preserves the foliation Fy outside
S(Fq). If the foliation F is saturated then ¥, induces a bundle morphism ¥#
fulfiling the conditions required in the above definition. This is no longer true
in general if the foliation is not saturated and in this case ¥ need not to be an
automorphism of the trivial unfolding. Nevertheless there is a particular type
of non saturated foliations for which this property still holds. It is considered
in Proposition 1.5.
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Assume ¥ : W — ¥(W) is a holomorphic diffeomorphism such that W,
U(W) are subsets of Q x U where U is a coordinate open subset of M, with
coordinates z = (2},...,2"), on which F is defined by a holomorphic vector
field £&. Let s = (s!,...,s™) denote the linear coordinates on Q. Then ¥ is a
relative automorphism of Fy, if and only if it is of the form U (s, 2) = (s, ¥ (s, 2))
where 1) is a holomorphic map such that (0. z) = z and fulfiling

(1) $u€ = (uo T ¢,
(2) df*a;iu:(v,‘oql_l)-& for p=1,...,m,

for suitable functions u,v, on W. For example, if ¢ = ¢(t,z) denotes the
local flow of € and 0 = o (s, z) is a holomorphic function with ¢(0, 2) = 0 then
U(s, z) = (s,p(0(s, 2), 2)) is a relative automorphism of the trivial unfolding.
The following proposition states that any relative automorphism of Fy is
locally of this form.

1.4. Proposition. Let ¥(s,z) = (s,¢(s,z)) be a relative automorphism of
Fq with domain W C Q x M. Assume U =1 N ({0} x M) is an open subset
of M holomorphically equivalent to an open polidisc on which F is defined by
a holomorphic vector field £. Let o = ©(t. z) be the local flow associated to €.
Then there is a holomorphic function 0 = o (s, z) defined in a neighbourhood
W' of U in W with 0(0,z) = 0 and such that v¥'(s,z) = ¢(o(s, z),z) on W'.

Proof. Because of (2) a function o = o(s, =) fulfils the required conditions if

and only if o is a solution of the total differential equation (with parameter
zeU)

0
(3) 5’;0[;[(313) = 7’;1(3*‘:)
0(0,2) =0.

The existence of such a function o outside the singular locus S(Fg) of Fn can
be easily seen by using local coordinates w!,...,w™ such that £ = §/0w™. In
particular the integrability condition of the equation (3), i.e.

Ov, Ov,
) ds” ~ Osh
is fulfiled outside S(Fq). But equalities (4) must then also be verified on the
singular set by continuity. So the complex Frobenius theorem with holomor-

phic parameters applies showing that (3) has a unique solution defined in a
neighbourhood of {0} x U in W. 1

Let F*'D denote a foliation of the type defined in Example 1.1. A relative
automorphism of (F¥'P)gq is also a relative automorphism of Fy. The converse
is not true in general. In the following proposition we consider a particular
situation in which the converse still holds. It will be used in section 3.

for v =1,...,m,
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1.5. Proposition. Assume F is saturated and let D be a hypersurface of
M. Let ¥ be a given relative automorphism of Fqo. If ¥ is the identity on
Q x D then it is also a relative automorphism of the trivial unfolding (FP)gq.

Proof. Using the notation in the above proposition we can write ¥ locally
as ¥ = ¢(o(s,z),2) for a given function o. Suppose D is defined by the
equation h(z) = 0, set £ = h - £ and denote by ¢ = @(t, z) the local flow of
€. Then $(t,2) = $(a(t, 2), z) where a = a(t, z) is the holomorphic function
determined by the equation

%(ti(t,:) = h(P(t, 2))
a(0,z) =0.

Since z = ¢(t,2) for any z € D we have a(t,z) =0 for z € D — S(F'). The
foliation F' being saturated D—S(F') is dense in D. So a(¢, -) must vanish on D.
From this fact we deduce that a(t, z) = I(z)-b(#, =) with b(t, z) = t+2b(t, 2).

The maps ¥(s,) are also the identity on D by hypothesis. The above ar-
gument also shows that o(s,z) = h(z)-7(s,z). The implicit function theorem
implies the existence of a function 6 = 4(s, z) defined for small s such that
7(s,z) = b(6(s, 2),2). So we can write ¥'(s,z) = 3(6(s, z), 2) showing that ¥
is a relative automorphism of (F' Dya. 1

Let U C M be open. Two relative automorphisms ¥ and ¥’ of F, whose
domains contain {0} x U are identified if they coincide in a neighbourhood of
{0} xU in 2 x M. The set Go(U) of these equivalence classes is a group under
the composition of automorphisms. When U runs over the open subsets of M
the family {Gq(U)} defines a sheaf Gg of non abelian groups over M.

In order to obtain a versality theorem for locally trivial unfoldings we
are led to consider (germs of) analytic spaces as spaces of parameters. So
the general space of parameters we will be the germ (5,0) at 0 € C™ of a
(possibly non reduced) analytic space S defined by S = supp(Ogq/Z) where
is a coherent sheaf of ideals of Oq. The restriction Fs of F to S x M will be
called the trivial unfolding of F parametrized by S. The restrictions to S x M
of the elements of Gg form a sheaf of non abelian groups over M denoted by

Us.

1.6. Definition. A (germ of) locally trivial unfolding (F, M, x, S, ) (some-
times simply denoted by F ) of F parametrized hy (S.0) is given by an analytic
space M, a proper C-analytic morphism 7 : M — S and a holomorphic iso-
morphism ¢ : M — My := ©~1(0) in such a way that there exists an atlas
{(W;, #:)} of M, where ¢; : W; — &(1V;) C S x M are C-analytic diffeomor-
phisms, fulfiling

(l) p1‘10¢,' =T,
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(1) ¢i|Mo =71,
i) ¥;; = ¢io¢'.'l is a section of Gs.
J J

For s close to zero M, := n~1(s) is a compact complex manifold and we
can think of 7 : M — § as a family of deformations of the complex manifold
M = M,. The restriction F; of F to M, is a foliation by curves locally
isomorphic to F' = * Fy.

1.7. Remark. Let M be a complex manifold, 7 : M — € a proper holo-
morphic map and ¢ : M — My := 771(0) a biholomorphism. Let a saturated
foliation F on M which is transverse to the fibres of 7 (outside S(F)) be
given. Then ¢ induces a well defined saturated foliation ¢*F on M. Therefore
in the case of saturated foliations one can define the (general) notion of un-
folding of F' parametrized by the smooth space  as a 5-tuple (F, M, 7,Q,:)
where the foliation F is saturated and transverse to the fibres of 7 and such
that *F = F.

Two locally trivial unfoldings (F. M. 7. S.1) and (F',M' 7", S,//) of F
parametrized by (S,0) and defined respectively by the atlas {(W;, #;)} and
{(W}], #})} are said to be isomorphic if there is a C-analytic isomorphism over
the identity of S, ® : M — M/, such that: (i) ®os = ¢ and (ii) ¢} 0 ® o ¢;!
are sections of Gg.

The underlying analytic space M of a locally trivial unfolding F is obtained
by glueing together open subsets of S x A/ by means of relative automorphisms
U;; € T(U; NU;,Gs). Assume that & are local vector fields defining F on
U; and let ¢; = ¢;(t, z) denote the corresponding local flows. By virtue of
Proposition 1.4, ¥;; = (pr;, ¢;j) where ¢; is of the form

Yij(s,2) = pi(oij(s.2).2)

for suitable functions o;;. Given 9/9s € TyS. let 0£(9/0s) denote the coho-
mology class of the cocycle associating to U; N U the section of O(L) given

by
OU;J' >
= (2 )&
s=0 ( 05 s=0

The C-linear map or : ToS — H'()M.O(L)) defined in this way only depends
on the isomorphism class of the unfolding and is called the Kodaira-Spencer
map of F.

Given a morphism of germs of analytic spaces f : (T,0) — (S, 0) the fibered

Nij
bis = 03)

product T'x s M is constructed by means of sections ‘Ilfj = (pr1,¢{j) of Gr
where ’l/){j = t;; o (f x 1). In this way Txs.M is endowed with a locally
trivial unfolding f*F of F parametrized by (T.0) called the pull-back of F
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by f. A locally trivial unfolding (F, M, x, S, ) of F is called versal if for any
other locally trivial unfolding (F', M’,7’,5’,.) of F there is a morphism of
germs of analytic spaces f : (S’,0) — (S,0) such that: (i) 7' and f*F are
isomorphic and (ii) dof is unique. In this case the Kodaira-Spencer map of
F is an isomorphism. If the morphism f itself and not only its linear part is
unique then the unfolding F is called universal

We end this paragraph by showing that any locally trivial unfolding is
globally differentiably trivial. This is a consequence of the existence of the
“exponential map” stated in the proposition below. This exponential map
is also used in the proof of the versality theorem 2.5. Let (F, M, x,S,¢) be
a locally trivial unfolding of F defined by an atlas {(W;,¢;)} of M as in
Definition 1.6. Assume that F is defined on U; = «~1(W; N M,) by a local
vector field &; and let p; = ¢;(t, z) be the associated flow. Let us consider
S x L as a vector bundle over S x Al and let. 4 : § x M — 8§ x L denote the
zero section. In this situation we have

1.8. Proposition. By shrinking S if necessary we can find an open neigh-
bourhood V of v(S x M) in S x L and a C*™° map gr : V — M over the
identity of S and holomorphic with respect to S such that the restriction of
$:; 0 gr to VN p~L(U;) can be written in the form

(5) gr(s,z,t) = (s.pilai(s.z.1), 7))

where t denotes the linear coordinate on L|U; induced by the choice of €; and
a; = ai(s,z,t) is a C> function depending holomorphically on s and t and
fulfiling

(6) a;(0.2,0) =0
0(1,‘ - _
(7) - (0.2.0)=1.

Proof. A straightforward computation shows that the condition for the map-
ping gr to admit a local writing like (5) does not depend on the choice of &;
nor on the choice of ¢;. Thus there is a globally defined sheaf S over S x L
whose elements are the germs of such mappings. The restriction Sy of S to
M = v({0} x M) is locally isomorphic to the sheaf S over {0} x C"* x {0}
which is the restriction of the sheaf over S x C* x C whose elements are the
germs of C* functions a = a(s, z.t) depending holomorphically on s and ¢
and fulfuling conditions (6) and (7).

By means of partitions of unity one sees that Sy is locally soft (“mou”).
This implies that Sy is globally soft (cf. [G, th. 3.4.1]) and it admits a section
on y({0} x M). Since v({0} x M) has a fundamental system of paracompact
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neighbourhoods in § x L the above section can be extended to a section of
S on a neighbourhood V of y({0} x Al) (cf. [G, th. 3.3.1]). Because of the
compacity of M the domain V can be taken as a neighbourhood of y(S’ x M)
in §' x L for a suitable neighbourhood S’ of 0 in S. §

1.9. Corollary. By shrinking S if necessary we can find a C* diffeomor-
phism gr : S x M — M over the identity of S and holomorphic with respect
to S which takes the leaves of the foliation F in {s} x M onto the leaves of
Fy in M,.

Proof. Set gr =gro~. I

2. Locally trivial unfoldings of F' as families of complex structures
on M.

For a given holomorphic vector bundle E over M let A%*(E) denote the
space of differential forms on A of type (0. k) with valuesin E, i.e. A%*(E) =
C>(M, AFTM*QFE). Set T = TAM&TM. We recall that a complex structure
7 on M close to the original one is given by an involutive subbundle 70! of
T such that 7 = T'0 @ T%! and T°!' N TAI = 0. Here 7% = TO.I, In this
situation there is a unique element w € A%'(TA[) such that T°! = T9! :=
(id — w)(TM). Involutiveness of TO! is equivalent to the integrability of w,
i.e. to the condition dw — 1/2[w,w] = 0. Thus complex structures on M close
to the original one are parametrized by a neighbourhood of zero in the space

J defined as )
J ={w e A>N(TA)|dw - E[uw] = 0}.

Given a family of deformations 7 : M — S of the complex manifold M =
My = n~'(0) and a differentiable trivialization g : S x M — M (i.e. a
diffeomorphism over the identity of S, depending holomorphically on S and
fulfiling g|{0} x M = id ) there is a family of complex structures on M for
which ¢ is holomorphic. This family of complex structures is parametrized
by a family {w,} of elements of .J depending holomorphically on S and such
that wy = 0. We will say that {w,} is the family of elements of J associated
to M and the differentiable trivialization g. Conversely, given a holomorphic
family {ws} of real analytic elements of .J with wy = 0 there is a (uniquely
determined) family of complex structures on A/ which is parametrized by {ws}
(cf. [W, Prop. I1.3.2] and [D]).

Given w € J close to zero and a diffeomorphism h of M which is C'-close
to the identity we will denote by " = w o I the unique element of .J such that
h: My — M, is holomorphic.

Let us consider now the pair (L, ~) defining the foliation by curves F on
M. The bundle morphism & induces injective C-lincar maps & : A%¢(L) —
AR (TM). We will identify A% (L) with its image in A%*(TAI). In this way
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the elements of Jp = J N A%!(L) close to zero can be thought as a certain
type of complex structures on M. In this paragraph we will see that locally
trivial unfoldings of F' are naturally parametrized by families of elements of
JF.

A diffeomorphism h of M which is C!-close to the identity will be called
tangent to F if, in any local chart (U,z = (z!,...,z")) of M on which F is
defined by a vector field &, it can be written

(8) h(z) = (=), 2)
where b = b(z) is a certain differentiable function close to zero and ¢ = (¢, 2)
is the local flow associated to &.

2.1. Proposition. Let w € .Jp be close to zero and let h be a diffeomor-
phism of M tangent to F. Then v» = w o h belongs to Jp.

Proof. The statement heing purelv local we can assume that M is just the

domain of the local chart (U,z = (z',...,z")) in which h is given by (8).

Clearly ¥ = w o h is integrable so we only have to see that i belongs to
A%L(L). In order to prove this we need the following identities

9) onP = €7 .01 for 3=1,...,n

(10) ha€ = (14 £(D) - § +E(D) - €.

The first one follows directely from the chain rule. The second equality can
be easily checked on U—Sing(£) by taking local coordinates {w?,...,w"} on

which ¢ = 8/0w™. Then (10) must also be verified on Sing(£) by continuity.
From (10) one gets the identities

(11) §(h) = 1+£< ) - €7,
(12) E(h%) = &(b) - 37

Let us writew = Y, wrdZ* @€ = PIERY wrE?dz*©0/02° and let (1,. .. C"
be w-holomorphic local coordinates. They must verify d¢* = w(¢®), that is

ace 50C¢°
(13) 0?”\ = Zw)\fﬁgi_u.

3

The vector 1-form ¢ is determined by the condition that the functions (%o h
are 1-holomorphic, i.e.

(14) (¢ oh) = (¢ oh).

293



J. F. MATTEI, M. NICOLAU

We want to prove that ¢ can be written ¥ = 3, ¢sdz® ® & where 95 are
C® functions. If this were the case then equality (14) could be written, using

(13),

1) > %;;(éh" + ) wagPont)
B A

OhP o
ZWZP +Z£* 5" )%

[ad

0 6 g a¢
where 9° = 3", 1sdz%. Since (-817
use of (9) and (11), that (15) is equivalent to

ﬂ(5b+Zw,\57f\ fﬁ (14 &(D) + Zw)‘f(h)‘ ) - °.
A

is an invertible matrix we see, making

But the expression

b + waah*—uu b)+ Zme(h*» ¥

defines ¢° as a differential form of type (0.1) because the function (14+&0)+
S, wxa&(h*)) does not vanish by hipothesis. Thus ¢ = 1° ® £ is an element
of Jr fulfiling (14). This concludes the proof. §

2.2. Remark. Let {w,;} be a family of elements of Jr with wy = 0 and
depending holomorphically on s € S and let h; be a holomorphic family
of diffeomorphisms of M tangent to F' such that hg = id. Then the same
argument shows that ¢ = w; o i is a holomorphic family of elements of Jp.

Let gr be the exponential map for the unfolding F constructed in Propo-
sition 1.8. The restriction gr of gr to the zero section is a differentiable
trivialization of M. In this situation we have

2.3. Proposition. The family {ws} of elements of J associated to M and
gF Is in fact a family of elements of .Jp.

Proof. By construction the composition ¢; o gr. where ¢; : W; — S x M is a
local chart of M defining the locally trivial unfolding F, is a diffeomorphism
tangent to F. The restriction of {w,} to g7'(1V;) coincides with 0,0 (¢; 0 gr)
which, by virtue of Remark 2.2, is a family of integrable local sections of
TM" ® L. Here 0, denotes the family of .J which is constantly equal to
zero. |
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2.4. Proposition. Let {ws} be a given holomorphic family of real analytic
elements of Jp with wy = 0. Then there exist a locally trivial unfolding
(F,M,7,S,1) of F and a real analytic trivialization g : S X M — M such
that {ws} is the family of vector 1-forms induced by M and g.

Proof. For a given point € S x M let W, C S x M be a coordinate neigh-
bourhood of z in which Fs is defined by a vector field £ with associated local
flow ¢ = ¢(t,z). We will construct a structure of C-analytic space on the
topological space S x M by giving, for any point x € S x M, a local chart
¢z : Wy — S x M, where W, C W/ is a neighbourhood of z, with the prop-
erties: (i) ¢, is holomorphic when we consider on W, the complex structure
defined by {w;s}, and (ii) ¢, can be written in the form

bz(s,2) = (s5.0(b(s.2). 2))

where b = b(s, z) is a real analytic function depending holomorphically on
s € S such that b(0,z) = 0. Then the compositions ¢, o qb;,l will be sections
of Gs and we will obtain an analytic space M endowed with a trivial unfolding
F of F. The differentiable trivialization will then be given by the map which
identifies S x M with the topological space which underlies M.

Assume z € S x M does not belong to the singular locus S(Fs) of Fg.
In a neighbourhood of z we can find local coordinates (s,w!,...,w™) with
£ = 8/0w™. Then ¢(t,w!,...,w") = (w',...,w" +t). Since the elements of
{ws} are real analytic one can prove as in [W, Prop. I11.3.2] that there is a
real analytic function @™ = w"(s,w!,...,w") depending holomorphically on
S with w™(0,w!,...,w") = w" such that (s,w',...,w" "1, %") is a system of
local coordinates holomorphic with respect to {ws} on a certain neighbour-
hood of z. In this case we set

b(s,w,...,w") = " (s.w!,... w") — w"

getting ¢, (s, wl,...,w") = (s,wl,...,w" "1, w").

Let now z € S(Fs). On W] set £ =3 ;£P9/0:° and w, = 3, wadz* ® ¢
where w) = wy(s, 2). Let us consider on 1V/ x C the non-singular vector field
£= £+0/0t. Themap ¢ : W, xC — TV, xC given by @(s, z,t) = (s, ¢(t, 2), 1)
is a holomorphic diffeomorphism fulfiling ¢, (9/t) = €. The family {@,} of
real analytic vector 1-forms on T/ x C defined as

Ws = Zw,\(lf’\ C)é
A

is holomorphic with respect to S and integrable. Let W; and W, stand for
W, xC and W, endowed with the complex structure defined by {@,} and {w,}
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respectively. The canonical projection 7 : W; — W; is holomorphic. Asin the
non-singular case one can see that, if we consider on W/ x C the only complex
structure for which ¢ : W, x C — )’/\VIL is holomorphic, then there is a real
analytic function z"+! = 2"*1(s, 21,..., 2", t) holomorphic with respect to S
such that (s,zl,...,2", z"*!) is a system of holomorphic local coordinates.
Let b = b(s, z1,...,2") be the function defined by the condition

2" (s, 2t 2 (s, 2) =0

and set (s, z1,...,2") = (s,2',...,2",b(s,z1,...,2™)). Then the composi-

tion ¢, = m o ¢ o ¢ fulfils the required conditions. |

The above propositions illustrate the way in what locally trivial unfoldings
of F' can be thought as a certain tvpe of deformations of the complex structure
of M. Namely those parametrized by holomorphic families of clements of Jg.
Kuranishi’s theorem (cf. [K]) states the existence of a versal space for the
deformations of a complex structure on a compact manifold. The proof of this
theorem given by Douady in [D] can be adapted here to obtain the following

2.5. Theorem. Let F be a foliation by curves on a complex compact
manifold M. There is a germ of analytic space (Ky,.,0) parametrizing a versal
locally trivial unfolding F of F.

2.6. Remarks. (i) As in the proof of Kuranishi’s theorem one can see
that there is an open neighbourhood V of 0 in H!(A, O(L)) and an analytic
map ® : V — H?(M,O(L)) such that (L},,0) is identified with the germ
at 0 of ®-1(0). Moreover the jet of order two of ® at 0 is the quadratic
map v — [v,v]. This implies in particular that I, is smooth in the case
H?(M,O(L)) = 0. Here the braket [, ] refers to the structure of graded Lie
algebra on H*(M,O(L)) induced by the inclusion of sheaves O(L) < O .

(ii) Throeugh the proof of the theorem one sees that if H(M,O(L)) = 0
then the unfolding F is universal.

Sketch of the proof. Let us fix a real analytic Hermitian metric on L and a
real analytic Riemannian metric on A/. From these metrics one constructs an
Hermitian product on A%*(L) in a standard way. The differential complex

A%0(L) 2 A0 (L) 2 0Ly — . — A(L)
is elliptic and if we denote by 9 the adjoint operator of & with respect to the

above Hermitian product then the Laplacian A = 99 4 90 is a real analytic
elliptic operator. The space

N ={we A (L)| (I« - %[ww]) + 0w = 0}
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is a finite dimensional submanifold whose tangent space at 0 is the space
H! = H'(M,O(L)) of harmonic elements of A%!(L). The elements of N
are real analytic because they are solutions of an elliptic equation with real
analytic coefficients.

Let (K}, 0) be the germ at 0 of the intersection Ky, = NNJp. The analytic
space Ky, can also be defined as (cf. [K, p. 83])

K, = {w € N | Hw,w] = 0}

where H denotes the orthogonal projection of A%2?(L) onto the space HP?
of harmonic elements. A neighbourhood of 0 in K}, can be thought as a
holomorphic family of real analytic elements of Jr. Proposition 2.4 implies
that this family defines a locally trivial unfolding F of F' parametrized by the
space K, itself.

Let gr denote the exponential map for the unfolding F constructed in
Proposition 1.8. Given n € A%°(L) close to zero then h, = gron is a
diffeomorphism of M tangent to F. By virtue of Proposition 2.1 there is a
map

p: A"(L) x Ky, — Jp

defined in a neighbourhood of (0, 0) such that p(n,w) = woh,. One can adapt
here Douady’s proof of Kuranishi's theorem to see that p is an isomorphism
when restricted to E x K. where E is a subspace of A°°(L) complemen-
tary to ker{0 : A%%(L) — A%Y(L)} = HO(M.O(L)). From this fact and
Proposition 2.3 it follows the versality of the unfolding F. §

3. Equisingular unfoldings.

In this paragraph we assume that M has dimension 2 and that the foliation
by curves F is saturated. In this case the singular locus S(F) is a finite set
{q1,...,qx} C M. We recall that F is called reduced at a singular point g; if
there are local coordinates w!,w? centered at ¢; such that F is defined in a
neighbourhood of g; by a vector field with a 1-jet of the form

w! i— + Aw __0_
Jw! w?
where A € C is not a strictly positive rational number.

There is a procedure of reduction of the singular foliation F' similar to
the reduction of singular plane curves (cf. [S]). More precisely there exist
a compact manifold M, a divisor D C M, a saturated foliation F on M
and a holomorphxc map @ : M — M with the following propertles (1)
maps M-D biholomorphically onto Al — {q,... ,(Ik} identifying FIM D

with FIM — {qi,...,q¢}, (i) the singularities of F' are reduced and (iii) if
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z€D-S(F ) then the leaf of F through z is transverse to D or contained
in D if z is a regular point of D and is a local irreducible component of D if
z is a singular point of D. Furtheremore the 4-tuple (F M D, w) which is
called the reduction of F is unique up to isomorphism. We denote by Dy the
union of all the irreducible components of D which are dicritical, i.e. those
components which are generically transverse to F.

An unfolding (F, M, n,Q,¢) of F parametrized by an open neighbourhood
Q of 0in C™ (cf. Rema.rk 1.7) is said to be equisingular if there exist a
complex manifold M a hypersurface D C M., a saturated foliation .7:' on
M and a holomorphic map IT : M — M such that: (i) IT maps M=D
biholomorphically onto M — S(F) identifying F I.M D with F|M - S(F),
(ii) F is transverse to the fibres of m o IT outside its singular locus and (iii)
the restriction of (.7-' .M D,II) to n~'(0) = (M) is the reduction of Fy.
Then the 4-tuple (.7-' .M D, IT) is unique up to isomorphism and is called the
reduction of F. Because of the unicity of the reduction of a foliation there
is a biholomorphism Y from M onto (7 o IT)~!(0) making commutative the
diagram

H;;\;{

| |
M — M

and such that T*F = F. We can thus think of the 5-tuple (F, M,%',Q,T)
as an unfolding of the reduction F of F. Here 7@ = mo II. As above Dy will
denote the union of all the dicritical irreducible components of D.

The first author proved in [M] that any unfolding of a germ of foliation at
a reduced singularity is trivial. From this fact he deduces that for any equi-
singular unfolding F of F' the corresponding reduction Fisa locally trivial
unfolding of F. Furthermore, if ¢ : .M — Q x M are the local charts trivializ-
ing F then the compositions (j) ;o d’,. are the identity on ©Q x Dg. This implies
using Proposition 1.5 that FDo is in fact a locally trivial unfolding of FDo,
It is also shown in [M, Lemme 1.3.1] that, conversely, given a locally trivial
unfolding F' of FDo parametrized by Q there is an equisingular unfolding F
of F also parametrized by © such that its reduction F is the saturation 3(.7-' "
of F'. These facts suggest the following

3.1. Definition. An equisingular unfolding of F' parametrized by a germ
of analytic space (S,0) is a locally trivial nnfolding (FPo, M, 7, S, T) of FDo

where (F, M, D, w) is the reduction of F and FP0 has the meaning of exam-
ple 1.1.
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Because of the above remarks in the case S is smooth the above definition
of equisingular unfolding is equivalent to the first one. The notion of versal
equisingular unfolding has an evident meaning and its existence is a corollary
of Theorem 2.5.

3.2. Theorem. Let F be a foliation by curves with isolated singularities
on a compact surface M. There is a germ of analytic space (K,,0) which
parametrizes a versal equisingular unfolding of F'.

3.3. Remarks. (i) The space I is nothing but the parameter space K.
of the versal locally trivial unfolding (f T’°,A7,%,f(,,,'f) of FDo. So the
tangent space of K. at 0 is naturally identified with H l(JT/f , O(f/)) where L
is the line bundle associated to the foliation by curves FDo_ Furthermore if
H2(M,O(L)) = 0 then K, is smooth.

(ii) In the case I, is smooth there is an equisingular unfolding in the first
sense (F, M, m, K¢,t) of F whose reduction is just “‘(.7? Do), Then any other
equisingular unfolding of F' parametrized by a smooth space is a pull-back of

F.

For a given germ of singular foliation by curves on (C2,0) there is a versal
equisingular unfolding of it parametrized by a (germ of) smooth space. This
local versal space is constructed by the first author in [M]. In our situation and
using the above notation the parameter space '1°¢ of the versal equisingular
unfolding of the germ of F' at a singular point g; turns out to be isomorphic to
HY(D;, O(L)) where D; = w~!(q;). The versality property of the local versal
spaces K1°¢ induces a “localization” map

-loc -loc

(16) X:Ke — NP x ... x KP°.

In certain cases the map Yy is in fact a biholomorphism. More precisely

3.4. Theorem. Let F be a foliation by curves with isolated singularities on
a compact surface M defined by a pair (L, x). Assume that H'(M,O(L)) = 0.
Then the differential map doy of \ at 0 is an isomorphism. Moreover if
H?(M,O(L)) also vanishes then I, is smooth and v is an isomorphism.

Proof. For each ¢ = 1,...,k let B; and B be open neighbourhoods of ¢;
identified by a suitable local chart to the polydiscs A(1) and A(1/2) of C? of
polyradius 1 and 1/2 respectively. Assume that the open sets B; are disjoint.
Set U = UB;, V = M — UB; and define B; = @ Y(B;), U = w=}(U) and
V = w~}(V). Notice that any section of L on I'NV can be extended because
of Hartogs’ theorem to a section on U. Using this fact and the identifications
induced by w the Mayer-Vietoris secuence gives
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0 — H'(M,0(L)) S HY(T,0@) @ H'(V.0(L)) & B (UnV,0(L)) —
- BX(M,0@)) % BXU, o) @ BHX(V.0(L) & HAUAV,0(L)) — 0.

The intersection U NV is the union of two Stein open subsets. Thus
H2(UNV,0(L)) = 0. A theorem by Andreotti and Grauert [A,G] states that
H*(U,0(L)) = @:-;1 H*(B;,O(L)) is isomorphic to @;;1 H*(D;,0(L)) and
also implies that the restriction of 3* to H*( U, O(f,)) is the zero map. It
is also proved in [M] that H?(D;, O(Z)) = 0. Using now the Mayer-Vietoris
sequence which computes H*(M,O(L)) by means of the decomposition M =
U UV one can see that H!(M,O(L)) = 0 implies that the restriction of 3! to
H(V,O(L)) is injective and therefore o' maps H' (M, O(L)) isomorphically
onto @le HY(D;,O(L)) but this map is just the differential doy of x at O.
The same exact sequence also shows that in the case H2(M,O(L)) = 0 then
the restriction of ' to H'(V, O(L)) is surjective and H2(V,O(L)) = 0. This
implies H2(M, O(L)) = 0 concluding the proof. §

Let us apply the above result to the case of a foliation by curves on P2.
Recall that line bundles Ly an P? are classified by its Chern class d € Z 2
H?2(P2,Z) and that there are non identically zero morphisms Ly — TP? if
and only if d < 1 (cf. [G-M,0-B]). It is also known from Serre’s computations
that H(P2?, O(L)) = 0 for any d € Z and that H*(P%, O(L)) = 0 for d > -3.
So we obtain

3.5. Corollary. Let F = (L4, k) be a foliation by curves on P? with isolated
singularities qi,...,qk. Let K. (resp. L!°°) denote the parameter space of
the versal equisingular unfolding of F (r: esp of the germ of F' at q,) Then
the tangent map at 0 of the localization morphism x : K¢ — K°¢ x - - - x Ky loc
is an isomorphism. The map Y itself is an isomorphism if d = 1 O 1 -2.

3.6. Remarks. (i) Asit is pointed out in [G-M,0-B] the foliations by curves
on P? having an associated line bundle L, with Chern class d = 1,0, -1, -2
are those obtained respectively by projectivization of the vector fields

0 0 . 0
X —4’\10 +. \20~ +«\3‘a?
on C? such that X;, X5 and X3 are homogeneous polinomials of degree 0,1, 2
or 3.
(ii) The space K, is not smooth in general as it is shown by the examples

studied by I. Luengo in [L].

Finally we come back from global to local foliations and using the above
methods we obtain
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3.7. Theorem. Let ¢ be a polynomial vector field on C? having an isolated
singularity at the origin. Let F¢ denote the germ of foliation by curves at
0 defined by €. Then any equisingular unfolding of F is algebraic. More
precisely the versal equisingular unfolding of F¢ is given by an integrable
holomorphic differential form

w=a(z,t)dz +b(z.t)dz2 + ZC’(Z t)d

on an open subset C2 x U of C> x CP where p is the dimension of the versal
space and a, b, c¢; are functions which are polvnomials with respect to the
coordinates z = (z1, z2) of C>.

Proof. The foliation F¢ extends to a foliation by curves F on P? having only
isolated singularities at ¢; = 0.¢2..... qr. Let (f ,J’\f\f ,D,w) denote the re-
duction of F. Let us chose a straight line C' in P? which do not meet any
singular point of F. There is a positive number m € N* such that the line
bundle associated to the foliation F™ ¢ (c¢f. Example 1.1) is Ly, i.e. its Chern
class is zero. Set C = w~}(C). Then the argument used to prove the above
theorem can be repeated to show that the parameter space K’ of the versal
locally trivial unfolding (.7-' m ‘,J\A # L'.Y) of F™ ‘€ is smooth and can be
identified with the product Al°¢ x --- x L'}°°. Moreover one can prove as in
[M, Lemme 1.3.1] that there is an eqmsmgulm unfolding (in the first sense)
(F,M,r,K' 1) of F whose reduction is just the saturation of F™ €. Then
F is algebra.lc and the germ at zero of the restriction of F to the subspa,ce
K¥° x {0} x - -+ x {0} of K’ is the versal equisingular unfolding of F¢. §
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