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A rigidity theorem for transverse dynamics of real 
analytic foliations of codimension one 

Isao Nakai 

The purpose of this paper is to prove 

Theorem 1. Let (A/"Ti) , i = 1, 2, be real analytic and orientable foliations 
of n-manifolds of codimension 1 and h : (M^Ti) —» ( A f ^ , ^ ) a foliation 
preserving homeomorphism. Assume that all leaves of T\ are dense and there 
exists a leaf of T\ with holonomy group ^ 1, Z. Then h is transversely real 
analytic. 

This applies to prove the following topological rigidity of the Godbillon-Vey 
class of real analytic foliations of codimension one. 

Corollary 2. Let (M;, ^ ) , / i be as in Theorem 1. Then /**(GV(^2) = 
GV(^i) holds. 

Here GV(^i) € H3(M,R) denotes the Godbillon-Vey class of Ti, which 
is represented by the 3-form a A da with a C°° -1-form a on M such that 
d9 = 6 A a holds with a C°° -1-form 0 defining T. It is easy to see that the 
Godbillon-Vey class is invariant under C2-diffeomorphisms. Ghys, Tsuboi 
[9] and Raby [18] proved the invariance under C1-diffeomorphisms, while the 
invariance is known to fail in some C°-cases (see [5,9,11]). (Corollary 2 seems 
to admit the various generalisations allowing the existence of compact leaves. 
But we will not touch on those generalisations. See also the papers [5,7].) 

The proof of the C1 -invariance due to Ghys and Tsuboi is based on a certain 
rigidity for C1-conjugacies of transverse dynamics of foliations along compact 
leaves as well as minimal exceptional leaves cutting Cantor sets on transverse 
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sections. The proof of Theorem 1 is based on the topological rigidity theorem 

for pseudogroups of diffeomorphisms of R (Theorem 3(1)). 

To state Theorem 3 we prepare some notions. Let T+ be the pseudogroup 

of real analytic and orientation preserving diffeomorphisms of open neighbour­

hoods of the line R respecting 0. We call a mapping <f>: G — r + of a group G 

to the pseudogroup P£ a morphism if the set <f>(G)o of germs of <f)(f), f G G 

form a group and 6 induces a group homomorphism of G to d>(G)o- There­

fore <Kf ) - -u« f ) , o -><K f ) (u« f ) ) , ( u« f ) ) , is a real analytic diffeomorphism of open 

neighbourhoods of 0 G K. for / G G representing the germ of </>(/). We call 

<j>(G)o the germ of (/>(G) and say d is solvable (respectively commutative, etc) 

if </>(G)o is so. The orbit 0(x) of an x £R is the set of those xi joined by a se­

quence (u«f)),(u«(u«f))jhfd, with x = xo,.r,+i = ó(fi)(xj),Xi e Uftffri = 0 , . . . , / - 1 

for arbitrary ! > 0. The basin BQ(G) of 0 is the set of those x for which the 

closure of the orbit O(x) contains 0. If 4>{G) is non trivial, i.e. (j)(f) ^ id for an 

/ G G , B<l>(G) is an open neighbourhood of 0 [17]. Morphisms 

are topologically ( resp. Cr-) conjugate if there exists a homeomorphism (resp. 

C r-diffeomorphism) h : £7,0 —» h(U), 0 of open neighbourhoods of 0 such that 

u«f)),(u«f)),(u 

(u«f)),(u«f)),(u«f)),(u«f)),(u«f)),(u«f)),(u«f))(u«f)),(u«f)),(u«f)),, and ft o <j>(f) = ,/>(/) o ft 

holds on U^f) for all / G G. We call /? a linking homeomorphism (resp.linking 

diffeomorphism) and we denote h : d> —> 

T h e o r e m 3 ( T h e r ig idi ty t h e o r e m for ps eudogroups ) . Let <f>,yj : G — 

F£ be morphisms which are topologically conjugate with each other and h : 

</> —> V a Unking homeomorphism. 

(1) If (f>(G)o, V^(G)o are not isomorphic to Z and non trivial, the restriction 

h : 5<£(G) — 0 —* B^G) — 0 is a real analytic diffeomorphism. 

(2) If </>(G)oi V~>(G)o are non commutative, h is unique and there exist even 

positive integers i,j such that (u«f)),(u«f)),(u«f)),(u«f)),,(u«f)), is a real analytic 

diffeomorphism for e = ±1 . Here B« is the set of those x such that ex% G 

B<t>(G) and (u«f)), is the set of those x such that xJ(resp. - x3) G B^G) if m 

maps R€ to K+ (resp. R- ) . 
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Now we apply the above rigidity theorem to the analytic action of the 
surface group on the circle S1. Let Y>g be the oriented closed surface of genus 
g and T9 = 7Ti(S^). For r = 1 , . . . , oc and u, Difff.(51) denotes the group of 
orientation preserving Cr-diffeomorphisms of the circle. The suspension M of 
a homomorphism </> :T9 T DifFj. (S 1 ) is the quotient of S1 x D2 by the product 
Q x T with a discrete cocompaet subgroup T9 T C PSL(2, R) acting freely 
on the interior of the Poincaré disc D2. The second projection of S1 x D2 

induces the submersion of M onto Eg= D2/T with the fiber S 1 . Since the 
action </> x T respects the foliation of Sl x D2 by the discs x x D2,x E 5 1 , the 
suspension M is a foliated 5 1-bundle of which the fibres are the quotients of 
the discs. In this way the topology of foliated 5 1-bundles interchanges with 
that of the actions of T9 on S 1 . The Euler number eu(</>) of a homomorphism 
(j) :T9 Diff!^(51) is defined to be that of the 5 1-bundle associated to 0. 
The Milnor-Wood inequality [15,22].asserts 

\eu{ct>)\<\X(^g)\=,(u«f)),fhg. 

The Euler number enjoys the following relations with the orbit structure: 
(1) eu(</>) = 0 if there exists a finite orbit. 
(2) If eu(</>) ^ 0, there exist a minimal sei M CS1 of <j) , an x 6 M and 

an / E stab(x) such that (f)(f)\M ^ id [13], and if r = u all orbits are dense 
[6] (see also [16]), 

(3) If |eu(^)| = |x(S-) | and r > 2, all orbits are dense [6], 
where stab(rr) denotes the stabiliser of x consisting of / G T9 with <f)(f)(x) = 
x. Homomorphisms </>,!/>: I* DifF;(5 1) are Cs-conjugate if there exists 
a C5-diffeomorphism ft of 5 1 such that 4if) о h = h о <j>(f) holds for / G 
T9. We say Q,Y are topologically conjugate if s = 0, semi conjugate if h is 
monotone map of degree one (possibly discontinuous). We call h a linking 
homeomorphism and denote h : Q , Y . It is known that the Euler number 
(and the bounded Euler class) concentrate the homotopic property of the 
action, namely 

Theorem(Ghys [3] ).Q,Y are semi conjugate if and only if ,(u«f)),,(u«f)),(u«f)),, 
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in the bounded cohomology group ff6

2(r« : Z), where Xz € ^ ( D i f f ^ S 1 ) : 
Z) = Z is the generator, the bounded Euler class. 

Theorem (Matsumoto [13]). If en M = eu(V) = ±x(E, ) , 4,il> are semi 
conjugate, and if 2 < r, they are topologically conjugate with each other, 
and in particular, conjugate with a discrete cocompact subgroup of PSL(2 , R) 
naturally acting on S1 the boundary of the Poincaré disc. 

Theorem Ghys [8]. If a homomorphism Q :Tg- Diffj_(51) attains the 
maximum of \eu(Q)\ and 3 <r,Q is Cr-smoothly conjugate with a discrete 
cocompact subgroup of PSL(2 ,R) . 

In contrast to the above results, the properties of homomorphisms with 
|eu(*)| $ |x(Sp)| are less known (see [1G]). Applying Theorem 3 to the action 
of the stabiliser subgroup stab(:r) on (S 1 , x) for an x E S1, we obtain 

Corollary 4. Let /(0»/: T9 T9 T Diff^S 1 ) he homomorphisms with \eu(<f>)\, 
|eu(V>)| ^ 0, |x(E^)|, which are topologically conjugate, and h : T9 T ip a 
linking homeomorphism. Assume that for an x G 5 1 , the stabiliser subgroup 
stab(ar) C Tg of x is not isomorphic to Z and non trivial. Then h is a real 
analytic diffeomorphism and orientation preserving or reversing respectively 
whether eu(<f>) = eu(t/>) or eu(</>) = — eu(0). 

The statement remains valid for morphisms of groups G into Difff (S 1 ) 
replacing the condition on the Euler number by the existence of a dense orbit. 

The author would like to thank Matsumoto, Minakawa, Nishimori, Tsuboi 
and Moriyama for their helpful comments. 

2. SEQUENCE GEOMETRY 

In this paper /^ n^ denotes the rc-fold iteration / o . . . o / o f / : t f , - / ( 0 » ) 
in VI. Let X = {*,-}, y = {y,}, i = 1.2.... be monotone sequences of positive 
numbers decreasing to 0. Define the address function &ddy(x) of an x > 0 
relative to y to be the smallest integer /' such that yi < x. It is easy to see 

that addv(z) is a decreasing; function of x and /o...o/of/:tf,-/(0»//(0»/o...o/of/:tf 
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Define the address function add,v„y by 

add.vj;(0 = addy(ar,-) 

for i = 1,2, The address function enjoys the following inequality for a 
triple of sequences A', y and Z = {-/}. 

Proposition 6. Let X,y and Z — {z\\ be sequences of positive numbers 
decreasing to 0. Then 

add;y,2:(add.Yj?(i) — 1) /(0»/v,s(î) < /(0»/,z(sddx,y(i)) 

for X{ - 1 < y0. 

We say two functions P ,Q : NUO -> NUO are equivalent if there exist 
integers ci, ...,C4 such that 

Q(i + Cl) + c2< P(i) < Q(i + c 3) + c 4 

holds for all sufficiently large i. 
Now let <f> : G —• f+ be a morphism, and let /(0»//(0»//(0»//(0»//(0»/ be pos­

itive and sufficiently small and assume that xi = <f>(gYi\x0),yi = cl>(fYi\y0) 
are decreasing to 0 as i —• oo, replacing / , # by their inverses if necessary, and 
denote X = /(0»//(0»/(0»/ 

Proposition 7. The equivalence class of the address function addx,y is in­
dependent of the choice of the initial values .r0, IJQ. 

proof. To prove the statement let /(0»//(0»//(0»//(0»//(0/(0»//(0»/ and define the 
sequences X1\y' similarly with x'0< i/0. It is easy to see 

add.v..v(0 = i + c 

for sufficiently large i where 

c = 
add.v(^), if x0 > x'n 

1 — add.v(a?o) if x'0 > x0, XQ ^ x'j, j = 0 , 1 , . . . 

—add.Y'(#o) if x'Q > .r0, .r0 G A" 
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From Proposition 6 we obtain 

(i) addx,y(i + c — 1) < add.v,y(0 < add,y ( + c) 

for sufficiently large i. Similarly we obtain 

add^ /^ + d — 1 = (addyj^adcl .vj ; — 1) 

< add.v\.y 

< addyj^add.v j ; ) 

= add.v y + c' 

with 

/(0»/ 
a,ddy>(y0), if i/o > Vo 
1 - addy(yj), if i/o > Voif i/o > Voif i/o > Voi.. 
- a d d ^ ( ^ ) , if Vo > Vo, y0 e Z 

and by (1), 

a d d ^ y ^ + с — l )c ' — 1 < a d d . v / y (i) < &ddx,y(i + с) + d 

for sufficiently large i. This completes the proof. 

3. FORMAL INVARIANTS FOR NON SOLVABLE PSEUDOGROUPS 

It is shown in the paper [17] that the non solvable group <j>(G) contains 
diffeomorphisms </>(/), / G G with Taylor expansion at x = 0 

/(0»//(0»//(0»//O(0»//(0»//(0»/ 

K ^ 0 with i greater than an arbitrary large integer. So let 

/(0»//(0»//(0»O//(0»//(0»//(0»/ 

X 0, i < j for a g G G. We call the j the orders of the flatness for </>(/), < (̂g) 
respectively. By Proposition 6 the equivalence class of the address function 
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&ddx,y is independent of the choice of xo, IJQ. We denote the equivalence class 

by a d d ^ ) ^ / ) . 

First we consider the orbit y of y0 under <?!>(/)• It is known ([20]) that with 

a suitable analytic coordinate we may assume </>(/) has the Taylor expantion 

(0»//(0»//(0»//O(0»//(0»//(0»/(0»//(0»//(0»// 

which is formally conjugate with 

(0»//(0»//(0»//O(0»//(0»(0»///( 

The —iA/K is known as the residue of / . By a result due to Takens [20] 

there exists a C°° diffeomorphism A : R. 0 —• R, 0 i-flat at 0 such that A o 

0( / ) = </>'(/) o A holds on Uftf) shrinking U^jy Introducing the coordinate 

x = £¿,¿0*0 = x~% + A log x~l for x > 0, <j>'(f) induces the translation 

0( / ) = exp Kd/dx on the i-line at oc. Let yf

n = X(yn) and yn = fz\A(2/n) f ° r 

n = 0 , 1 , . . . . Then 

(a) yn = kf) ( nHyD = yo + nK. 

(The existence of the coordinate x with Property (a) is proved by the sectorial 

normalisation theorem [12,21] as well as the existence of the solution of Abel's 

equation by Szekeres [19]. Those results imply the existence of the nomalising 

diffeomorphism A real analyticity off 0. But the differentiability at 0 is not 

an obvious consequence. The analyticity of the conjugacy h off 0 in Theorem 

3(1) follows from that of A. In this paper the smoothness of h (Proposition 

9) is first proved and analyticity is proved by the uniqueness (Proposition 10) 

and the convergence of the formal conjugacy due to Cerveau and Moussu [2].) 

We apply the same argument to the slow dynamics (/)(g). Let /i : R, 0 — R, 0 

be a C°° diffeomorphism j-flat at 0 such that. // o <j)(g) = (j)'(g) o /j, holds 

on Uftg), where 
(0»//(0»//(0»//O(0»//(0»//(0»(0»// 

with a constant B. Let 
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add^),^/)(n) = -jTT- n7 +oadd^),^/-jTT- n7 +o On the i-line, <t>'{g) lifts to the 

translation 4>(g) = exp L d/dx at oo. 

Let x'n = ii{xn) and xn = Çj,B{x'n) f ° r ^ = 0 ,1 , . . . . . . . Then xn = x0 + nL, 
from which we obtain the estimate for the ^(ij)-orbit A,xn = (nL)- 1 / j + 
o(n 1/3 for n = 0 , 1 , To compare A' to y , let 

(b) 5„ = *"* + A log*"* = (nL)'» + o(n«/ J). 

From (a) and (b) we obtain 

(c) a d d ^ ) , ^ / ) ( n ) = -jTT- n7 +o(n7). 

Proposition 8. L7 /K and j are topological invariants for the pseudogroup 
generated by (j>{f) and 4>(g). 

Proof. Assume h is orientation preserving. The linking homeomorphism h 
sends the pairs of the orbits of .ro under 4>(f),<t>(g) to that of h(x0) under 
il>(f),il>{g), and those pairs have the same topological structure and define 
the same address function up to the equivalence relation. By (c) the i/j is 
the exponent of the address function and Lj /K is its coefficient, which are 
clearly invariant under the equivalence relation. If h is orientation reversing, 
an alternative argument goes through. 

4 . P R O O F OF T H E THEOREM 3 FOR NON SOLVABLE PSEUDOGROUPS 

First we prove Theorem 3 ( 1 ) for non solvable pseudogroups. If the linking 
homeomorphism h is orientation reversing, the homeomorphism — h is orien­
tation preserving and links </> to the reversed pseudogroup ^ ' consinting of 
the orientation preserving diffeomorphisms (n) = -jTT- n7(n) = -jTT- n7 E G 
defined by add^),^/)(n) = -jTT- n7 +o So we assume that h is orientation pre­
servine; throughout this section. Let add^),^/)(n) = -jTT- n7 +add^),^/ and 

^ ) ( x ) = x - 4 ( x i ' + 1 + . . . ) • First assume (ij) = (i',f) and h is orienta­

tion preserving for simplicity. By a linear coordinate transformation we may 
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assume AT = K' and then it follows L = V from Proposition 8. By an analytic 
coordinate transformation we may assume 

ф(/)(х) = X - 40r í + 1 + 
г 

(n) = -jTT- n7(n) = -jT 

Let A' : R, 0 -» R, 0 be a C°°-diffeomorphism j-flat at 0 such that A' o ip(f) = 

ip'(f) o A' holds on t/^(/)' where 

(n) = -jTT- n7(n) = -jTT- n7(n) 

Let (n) = -jTT- n7(n) = -jTT- n7 Since ó( / ) ( f , ) (*o) 0, we see K > 0. 
On the 5-line the diffeomorphism ô(rj) induces the "non-linear translation" 

4>(g)(x) = x + jL . ?V + o(x V ) 

from which 

(n) = -jTT- n7(n) = -jTT- n7(n) = -jTT- n7(n) = -jTT- n7 

from which 

(n) = -jTT- n7(n) = -jTT- n7(n) = -jTT- n7(n) = -jTT- n7(n) = -jTT 

holds at the end of the 5-line. The flow of the above limit vector field is 
approximated arbitrarily closely by the discrete dynamical system of type 

# / ) ( - n ) o t o < m > o < * ( / ) < » \ m = 0 , 1 , . . . 

with a sufficiently large n > 0 ([17]). 

Similarly the i>(f),tl'(g) define the vector field (n) = -jTT- n7 on the y-line. 

The lift h+: x - line, oo —> y — line, oo of the restiction /1+ of h to R + sends 
the orbit of 

^ ( / ) ( " n ) o ^ ) ( w ) o W ) W 
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to that of 
(n) = -jTT- n7(n) = -jTT- n7 

Therefore h+ is compatible with the above flows respecting time hence it is a 
translation by a constant a+ (see [17] for a detailed argument) and 

h+(x) = A / ( - 1 } o trM&A 0 X(*) + "+)> 

which is i-flat at 0. Similarly we can show that the restriction /i_ of h to R 
is of the form 

L W = A ' H ) o ^ , ( ( ) , , o A W + « . ) ) 

with a constant a?_, which is i-flat at 0. With both the above smoothness 
of h+ and h- we see that the linking homeomorphism h is a C*-smooth 
diffeomorphism on a neighbourhood of 0 and i-flat at 0. 

Proposition 9. The linking homeomorphism h is C°°-smooth on a neigh­
bourhood of 0. 

Proof. Since (f>(G)o is non solvable, the / can be chosen arbitrary large. There­
fore h is C°°-smooth at 0. The smoothness off 0 is clear by the form of h± 
above presented. 

By the proposition <f>(f) and x/)(f) are C°°-conjugate. Since the residues 
A, A' are invariant under formal conjugacy relation of germs of analytic dif­
feomorphisms, we obtain.4 = A' hence <j)(f) = V>(/) and 

f À'o/i+oÀ*- 1 ) = e x p =j±X on R+ 

( V o h- o A ( _ 1 ) = e x p ^ X on R~, 

where x denotes (n) = -jTT- n7 

Proposition 10. rv+ = Q'_ and the germ of h at 0 is unique. 

Proof Since h{+ 1] o</>(g)oh+ = t/>(g) and (n) = -jTT- n7(n) = -jTT- n7 hold on 
R + and R respectively at 0, we obtain the formal equalities 

TT- n(n) = -jTT- n7(n) = -jTT- n7 o exp -jTT- n7XjTT 
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and 

Â  ^ oexp — x o A , o ^ ( j ) oA / ( 1 } o exp— : —X 0 ^ = <£(/)• 
i i 

This shows that jTTjTTjTTjTTjT commutes with Q(g), and by formal 

calculation, it follows jTTjTTjTT (since i ^ j). Therefore h = A*-1) o 

exp f x 0 A • 

Next assume /*' = A^-1) oexp - f \ o A satisfies jTTjTTjTTjTTjTT 
Then it follows a — /3 from a similar argument. This shows the uiqueness of 
h. 

By a result due to Cerveau and Moussu [2], a formal conjugacy is con­
vergent to give a real analytic conjugacy for non solvable groups of germs of 
diffeomorphisms. Therefore the Taylor series of h at 0 is convergent to an 
analytic diffeomorphism h linking <j)(G)o to 0(G?)o. Then the uniqueness of 
the linking homeomorphism (Proposition 10) asserts that the germ of h is 
nothing but the h real analytic on a neighbourhood of 0. The analyticity 
propagates to whole B^Q) by the same argument in the proof of Theorem 1 
in §6. This completes the proof of Theorem 3 for the case (z,j) = (i1\f) and 
h is orientation preserving. 

Now we prove the theorem for general non solvable pseudogroups. Assume 
that </>(/), (f>(g) and V'(/)> ^(9) have the orders of flatness i, j and i',f respec­
tively. By Proposition 7, we may write /'//' = f/j = p/q with even positive 
integers j9, q. Define the lift jTTjTTjTTjTTjTTjTTjTTjTTjTTT 
# ( / ) ( * ) = (£<?K/)(^ P)) 1 / P for 6 = ± 1 , where U<t>*v(f) is the preimage of U<Kf) 
by x exp. Define the lift % : G - T% similarly. Then jTTjTTg) 
have the orders of flatness pi,pj respectively. The linking homeomorphism 
h lifts to the orientation preserving homeomorphism Ke = (e hUx*))1'* fg 

U; = {x\ ex? 6 U} to U*q = {y\ eyi e h(U)}, which is linking <f>; to rq for 

e = ± 1 . 

Proposition 11. (1) (j) is solvable if and only if (f)l is solvable if and only if 

jTT s solvable. 
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(2) B<t>% = ix\ exp e Bj,} for e = ± 1 . 

Proof. The homomorphism of pseudogroups which asigns jTTjTTjTT for 

f E G induces a group isomorphism of the germs d>(G)o to <f>l{G)0 ess € = 
± 1 . So Statement (1) is clear. Statement (2) for the basin follows from the 
definition. 

By the result obtained previously in this section, the lift K€ is a unique 
real analytic diffeomorphism. In particular h is unique and the restriction 
h : B^(G) — 0 — B^(G) — 0 is a real analytic diffeomorphism. This completes 
the proof of Theorem 3 for non solvable pseudogroups. 

5. P R O O F OF THEOREM 3 FOR SOLVABLE PSEUDOGROUPS 

Theorem 12 ([17]). A solvable subgroup H of the group of germs of analytic 
diffeomorphisms of R respecting 0 is C -conjugate with one of the following: 

(1) H consists of linear functions ax with the coefficients n in a subgroup 
L ofR*. 

(2) H consists oí jTTjTTjTTjTTjTTjjTTjTTjTf(a+l). with a in a subgroup 
A c R, l G A. Here f eHf(x) = x + K r i + i f ( a + l ) . and /(a) is the unique real 
analytic diffeomorphism with the Taylor expantion jTTjTTjTTjTTjTTf(a+l). 
such that / ( a ) o / = fo f(ai = f(a+l)jTTj. If A is dense in R, those f(a) are written 

as exp ax with an i-flat real analytic vector held \ on R. (for the definition 
of the a-times iteration f(a) see the papers [17.10].) 

(3) H consists of those /<a) and _/("+•'*) with n e A C R and a /3,2ß G A 
and f satisfies the relation jTTjTTjTT 

(4) H consists of those Г m (2) cìlìd f(
a+l).f(a+l). with a in a subgroup 

L C R*,a ¿ ¿ 1. Here / satisfies the relation cr lf(ax)= f(ax) for a G L and 

/3 : L —• R is a function and ves(f) = 0. i.e. f is formally and C°°-conjugate 

with exp jTTjTTjTTjTT 
In Cases (1),(2) and (3), the H is commutative, and in Case (4), H is non 

commutative but solvable. 
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Since the members of our pseudogroups 6(G), i/>(G) are all orientation pre­
serving, the germs (j>(G)o,'6(G)o are C^-conjugate to one of the H in Cases 
(1),(2) and (4). In the following we assume the germs are of the form in those 
cases and prove the the analyticity of the restrictions h+h- of the linking 
homeomorphism h to R + , R ~ on a neighbourhood of 0. The differentiabil­
ity propagates to whole B^G) — 0 by the same argument as in the proof of 
theorem 1 in §6. 

Case (1). Assume <j)(G)o ^ Z. This assumption is equivalent to that the 
linear term group LQ of Q(G)o is a dense subgroup of R*, in other words, all 
orbits are dense nearby 0. Let log LQ denote the subgroup of R consisting of 
the logarithms of the linear terms of 6(f), f € G. Since h sends the (f>(G)-
orbit of an x to the ^(G)-orbit of //(.?*)* // induces a homomorphism h of the 
subgroups log L<f, to log L^, which extends to a linear function kx. By this 
form we see log oho exp (x) is an affine transformation kx + /, from which 
h(x) = (exp l)xk for x > 0. A similar argument shows the analyticity of h-

Case (2). In this case the germs of 6(f)^ are of the form exp ax with 
a flat analytic vector field \ a n d ° hi a subgroup A C R. The hypothesis 
that (f>(G)o is not isomorphic to Z implies that A is a dense subgroup. Let 
A' C R be the group associated to i>(G). The correspondence of ^(G)-orbits 
and ^(G)-orbits in R + by h induces a linear transformation of A to A', which 
describes the h conversely. Therefore the /?,+ is real analytic off 0, and similarly 
it is shown that /i_ is analytic off 0. 

Case (4). Let 4>(G)Q C (G)Q denote the subgroup consisting of the i-flat 
germs of diffeomorphisms <t>(f){a\a £ A C R of 6(G), and ^(G)g C *p(G)0 

the subgroup consisting of j-flat germs of diffeomorphisms i/j(f)(a)a E A C R. 
It suffices here to prove the analyticity of h for the case i = j . 

Lemma 13. Let 4>(f),^(f) : R,0 —• R.0 he germs of analytic diffeomor­
phisms with the linear term x and the order of flatness i > 1, and let 
h : R, 0 —* R, 0 be a germ of homeomorphism such that h o <j)(f) = ^(f) o h. 
Then h is differentiahle at 0. 
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Proof. By C°°- coordinate change we may assume f(af(ax)f(ax)(ax)f(ax)f(ax) 
and 0 ( / ) = e x p - f T ^ T a / o a r , and by a linear coordinate transformation, 

K = L > 0 . These diffeomorphisms lift to the translations by K respectively 

on the i-line, x = Zi%A{x) = x-t+Alog x-i(x > 0 ) , and the y-line. f(ax(ax)f 
And these translations are conjugate by the lift h : x - line - y - /ine of /1 

So we obtain an extimate (ax)f(ax)) T\ < K , with a constant T, from which 

ЕГв(6\л(*) + Т + / 0 < Л ( . т ) (ax)f(ax)(ax0<Л(.т))f(ax) 

This implies the differentiability of h at 0. 

Next let <f>(g)(x) = ax-\ ,o ^ 0 , 1 be a diffeomorphism non commutative 
with (ax)f(ax) and é(g)(x) = a'x + ••• a' ф 0 . 1 . Bv assumption ilig) oh = ho(j>(g) 
holds, and by the differentiability of h at 0. we obtain a = a'. 

Lemma 14. Let h : R, 0 —• M, 0 be flie germ of a mapping commutating with 
a linear function ax. If h is differentiable at 0. h is linear. 

Proof. By the commutativity, h(ntx)/ntx = h(x)/x for all x and i = 0 , 1 , 
By the differentiability, h(x)/x is a constant independent of x. 

By the Poincare linearization theorem f(ax)f(ax)are analytically conjugate 
with ax. Here Lemma 1 4 applies to say that the germ of h at 0 is linear. In 
this situation the relation h o </>(/) = ij:(f) o h admits the unique linear map 
h. This completes the proof of Theorem 3. 

6 . P R O O F OF THEOREM IAND COROLLARIES 2 , 4 

Proof of Theorem 1. Let L be a leaf of T\ with holonomy group # 0, Z. Then 

the image h(L) has holonomy isomorphic to that of L and, by Theorem 4, 

h is transversely analytic on a deleted neighbourhood U — L of an x E L. 
Let xf G Mi be an arbitrary point. The leaf Lx> of T\ containing x' is dense 

by assumption, hence a point x" E Lx> is contained in U — L. Clearly the 

translation Tx>iX" along a path in Lx> sending the transverse section at x' to 

that of x" is analytic, and the germs of h at x\ x" link the Tx>iX» to the trans­

verse dynamics Th(x')h.(x") along h(LTi) = Lh(x)- Therefore the transverse 
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analyticity of h at x" induces the transverse analyticity on a neighbourhood 

of x1. This completes the proof of Theorem 1. 

Proof of Corollary 2. The Godbillon-Vey class GV(T) of T may be defined 

by the pull back p(T)*c of a cocycle c G i/3(2?rg?, R) of the classifying space 

BT^ of the pseudogroup RR of orientation preserving C°°-difFeomrphisms 

of open subsets of R by the classifying map p(T) : M —* BT^ ([1]). Since 

h(T) = T' and h is transversely real analytic, if follows p{T') o h = p{T') 

from which GV(T) = /z*GV(.T). This completes the proof of Corollary 2. 

Proof of Corollary 4- Let 0, ip : T5' —+ DifF^(51) be homomorphisms and 

/i : <j> —• ^ a linking homeomorhism. Let stab(.ro) C T9 be the stabiliser 

of an x0 G 5 1 . Then h links the restriction of d to stab(xo) to that of ^ . 

Assume that 0(stab(a*o)) is not isomorphic to Z and non trivial. Then by the 

rigidity theorem (Theorem 3), h is a real analytic diffeomorphism on a deleted 

neighbourhood U — Xo of x0 in S1. By a result due to Ghys [6], if |eu(<£)| ^ 0, 

all orbits are dense in S1. So, for any y G 5 1 , there is a g E G such that 

<K#)(2/) G 17 — ^o- Then the equality /? o <£(p) = xl'(g) o h implies that h is a 

real analytic diffeomorphism at y. This completes the proof of Corollary 4. 
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