
ASTÉRISQUE452

2024

EVOLUTION OF NETWORKS
WITH MULTIPLE JUNCTIONS

Carlo MANTEGAZZA, Matteo NOVAGA,
Alessandra PLUDA & Felix SCHULZE

SOCIÉTÉMATHÉMATIQUE DE FRANCE



Astérisque est un périodique de la Société mathématique de France
Numéro 452, 2024

Comité de rédaction

Marie-Claude ARnaud
Christophe BReuil
Eleonora Di Nezza
Colin GuillaRmou
Alessandra Iozzi
Éric Moulines

Alexandru Oancea
Nicolas RessayRe
Rémi Rhodes
Sylvia SeRfaty
Sug Woo Shin

Antoine ChambeRt-LoiR (dir.)

Diffusion
Maison de la SMF

B.P. 67
13274 Marseille Cedex 9

France
christian.smf@cirm-math.fr

AMS
P.O. Box 6248

Providence RI 02940
USA

www.ams.org

Tarifs

Vente au numéro : 60€ ($80)
Abonnement : Europe : 665€ ; hors Europe : 718€ ($1 077)

Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat

Astérisque
Société Mathématique de France

Institut Henri Poincaré, 11 rue Pierre et Marie Curie
75231 Paris Cedex 05, France

Fax : (33) 01 40 46 90 96
asterisque@smf.emath.fr • http://smf.emath.fr/

©Société Mathématique de France 2024

Tous droits réservés (article L 122-4 du Code de la propriété intellectuelle). Toute représentation ou reproduction
intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représentation ou reproduction par
quelque procédé que ce soit constituerait une contrefaçon sanctionnée par les articles L 335-2 et suivants du CPI.

ISSN : 0303-1179 (print) 2492-5926 (electronic)
ISBN : 978-2-85629-997-5
doi : 10.24033/ast.1225

Directeur de la publication : Isabelle Gallagher



ASTÉRISQUE452

2024

EVOLUTION OF NETWORKS
WITH MULTIPLE JUNCTIONS

Carlo MANTEGAZZA, Matteo NOVAGA,
Alessandra PLUDA & Felix SCHULZE

SOCIÉTÉMATHÉMATIQUE DE FRANCE



Carlo Mantegazza
Dipartimento diMatematica eApplicazioni, Università diNapoli Federico II,Napoli, Italy
carlo.mantegazza@unina.it

Matteo Novaga
Dipartimento di Matematica, Università di Pisa, Pisa, Italy
matteo.novaga@unipi.it

Alessandra Pluda
Dipartimento di Matematica, Università di Pisa, Pisa, Italy
alessandra.pluda@unipi.it

Felix Schulze
Mathematics Institute, University of Warwick, Coventry, United Kingdom
felix.schulze@warwick.ac.uk

Texte soumis le 4 juin 2018, accepté le 18 juillet 2023.

Mathematical Subject Classification. — 53E10, 35K51, 35B40.
Keywords. Geometric evolutions, Networks, Singularities.
Mots-clefs. Évolutions géométriques, Réseaux, Singularités.

carlo.mantegazza@unina.it
matteo.novaga@unipi.it
alessandra.pluda@unipi.it
felix.schulze@warwick.ac.uk


EVOLUTION OF NETWORKSWITHMULTIPLE JUNCTIONS

by Carlo MANTEGAZZA, Matteo NOVAGA,
Alessandra PLUDA & Felix SCHULZE

Abstract. — We consider the motion by curvature of a network of curves in the
plane and we discuss existence, uniqueness, singularity formation, and asymptotic
behavior of the flow.

Résumé. (Évolution des réseaux à jonctions multiples) — On considère le mouve-
ment par courbure d’un réseau de courbes dans le plan et on discute de l’existence,
l’unicité, la formation des singularités et le comportement asymptotique du flux.
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CHAPTER 1

INTRODUCTION

In this work we give an overview of the state-of-the-art of the motion by curvature of
planar networks of curves, collecting known results and showing several new ones.

Figure 1.1: A planar network of curves in a convex domain.

The problem, proposed by Mullins [12] and discussed first in [12, 16, 17, 47, 63], at-
tracted the interest of many authors in recent years [10, 15, 21, 34, 42, 51, 58, 62, 76,
77, 80, 82, 83, 89, 94–97, 106]. One strong motivation to study this flow is the anal-
ysis of models of two–dimensional multiphase systems, where the problem of the
dynamics of the interfaces between different phases arises naturally. As an example,
the model where the energy of a configuration is simply given by the total length of
the interfaces has proven useful to describe the growth of grain boundaries in a poly-
crystalline material (see [12, 47, 63] and http://mimp.materials.cmu.edu).
A second motivation is more theoretical: the evolution by curvature of such a net-
work of curves is the simplest example of mean curvature flow of a set which is es-
sentially singular. To consider such flow not only for smooth submanifolds but also
for non–regular sets, several generalized (weak) definitions of the flow have been in-
troduced in the literature [2, 16, 25, 35, 56, 101]. Anyway, while the smooth case was
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2 CHAPTER 1. INTRODUCTION

largely studied and understood (even if still not completely), the evolution of gener-
alized submanifolds, possibly singular (for instance varifolds), has not been analyzed
in great detail.
In his seminal paper, K. Brakke [16] proved the existence of a global (very) weak so-
lution, in a geometric measure theory context, called “Brakke flow”. Recently, the work
of Brakke has been improved by L. Kim and Y. Tonegawa [62] (see also [105]) in the
case of the evolution of grain boundaries in Rn (which reduces to the evolution of
networks when n = 2). They proved a global existence theorem and also showed
that there exists a finite family of open sets moving continuously with respect to the
Lebesgue measure, whose boundaries coincide with the space–time support of the
flow (for further results, see also the papers by K. Kasai and Y. Tonegawa [60] and
Y. Tonegawa and N.Wickramasekera [106]). Finally, in [61], Kim and Tonegawa also
proved a regularity result for 1–dimensional Brakke flows, showing that for almost
all times, the evolving network consists of a finite number of embedded curves of
class W2,2, meeting at junctions with angles of 60 or 120 degrees or with a common
tangent.
For another global existence result in any codimension and with special regularity
properties, obtained adapting the elliptic regularization scheme of T. Ilmanen [55,
56], we refer to the work of the last author and B. White [98]. Despite these recent
improvements, Brakke’s definition is anyway apparently too weak (possibly too gen-
eral) if one is interested in a detailed description of the flow.
A completely different definition of evolution is instead based on the so-called mini-
mizing movements: an implicit time–discrete variational scheme introduced in [2, 71]
(see also [14, 18, 26]). In this context, another discretization scheme was developed
and studied by S. Esedoglu and F. Otto [34], T. Laux and F. Otto [68, 69] (we motion
also the more recent development [36]).
Finally, wemention the “level set” approach tomotion by curvature by L. C. Evans and
J. Spruck [35] or, alternatively, Y. G. Chen, Y. Giga, and S. Goto [22], unfortunately not
suitable for the motion of networks since if at least a multi–point is present then an
interior region immediately develops (the so-called “fattening” phenomenon).
Even if all these approaches provide a globally defined evolution, the possible con-
clusions on the structure and regularity of the moving networks are actually quite
weak. To obtain a detailed description of the evolution and of the singularity forma-
tion, we tried to work in the smooth setting as much as possible. The definition of the
flow is then the first problem one has to face, due to the contrast between such desire
and the intrinsic singular geometric nature of a network. Consider for instance the
network described by two curves crossing each other, forming a 4–point. There are
actually several possible candidates for the flow: one cannot easily decide how the
angles must behave, moreover, it could also be allowed the four concurrent curves
to separate into two pairs of curves moving independently of each other and/or we
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CHAPTER 1. INTRODUCTION 3

could take into account the possible “birth” of new multi–points from such a single
one (all these choices are possible with Brakke’s definition). Actually, one would
like a good/robust definition of curvature flow giving uniqueness of the motion (at
least for “generic” initial networks) and forcing the evolving network, by an “instanta-
neous regularization” effect, with the possible exception of some discrete set of times,
to have only triple junctions with the three angles between the concurring curves of
120 degrees. This last property (which was experimentally observed for the growth
of grain boundaries) is usually called Herring condition. These expectations are sus-
tained also by the variational nature of the problem since this evolution can be consid-
ered as the “gradient flow” in the “space of networks” of the Length functional, which
is the sum of the lengths of all the curves of the network (see [16]). It must anyway
be said that such a space does not share a natural linear structure and such a “gradi-
ent” is not actually awell-defined “velocity” vector driving themotion at themultiple
junctions, in general. However, it follows that every point of a network different from
itsmulti–pointsmustmovewith a velocitywhose normal component is the curvature
vector of the curve it belongs, in order to decrease the Energy of the network (that is,
the total length here) “most efficiently” (see [16]). From this “energetic” point of
view, it is then natural to expect also that configurations with multi–points of order
greater than three or 3–points with angles different from 120 degrees, being unstable
for the length functional, should be present only in the initial network or that they
should appear only at some discrete set of times, during the flow. This property is
suggested also by numerical simulations and physical experiments, see [12, 17, 47,
63] and the grain growth movies at http://facstaff.susqu.edu/brakke. One may
hope that some sort of “parabolic regularization” could play a role here: for instance,
if a multi–point has only two concurrent curves, it can be easily shown (see [4, 6, 7,
46]) that the two curves become instantaneously a single smooth curve moving by
curvature.
We mention that actually, it is always possible to find a Brakke flow sharing such
property at almost every time (see [16]), by the variational spirit of its definition
which is the closest to the “gradient flow” point of view. However, as uniqueness
does not hold in this class, there are also Brakke flows starting from the same initial
network which keeps their multi–points, or loose the connectedness of the network:
for instance, a 4–point can “open” as in the right side of Figure 12.1, or separate in
two no more concurring curves, or it can “persists” to be a 4–point where the two
“crossing” curves move independently. Anyway, as we said, Brakke’s definition is
too “weak” if one is interested in a detailed description of the flow.
By this discussion it is then natural, due to their expected relevance, to call regular
the networks with only 3–points and where the three concurrent curves form angles
of 120 degrees. Then, following the “energetic” and experimental motivations men-
tioned above, we simply impose such regularity condition in the definition of a smooth
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4 CHAPTER 1. INTRODUCTION

curvature flow, for every positive time (at the initial time it could fail). If the ini-
tial network is regular and smooth enough, we will see that this definition leads to
an almost satisfactory (in a way “classical”) short–time existence theorem of a flow
by curvature. Trying instead to let evolve an initial non–regular network, various
complications arise related to the presence of multi–points or of 3–points not satis-
fying the Herring condition. Notice also that, even starting with an initial regular
network, we cannot avoid to deal also with non–regular networks when we analyze
the global behavior of the flow. Indeed, during the flow, some of the triple junctions
could “collide” along a “vanishing” curve of the network, when the length of the
latter goes to zero (hence, modifying the topological structure of the network). In
this case one has to “restart” the evolution with a different set of curves, possibly
describing a non–regular network, typically with multi–points of order higher than
three (consider, for instance, two 3–points collapsing along a single curve connect-
ing them) or even with “bad” 3–points with angles between the concurring curves,
not all equal to 120 degrees (think of three 3–points collapsing together with the “tri-
angular” region delimited by three curves connecting them). A suitable short–time
existence (hence, “restarting”) result for this situation has beenworked out in [58] by
T. Ilmanen, A. Neves and the fourth author and in [70] by J. Lira, R. Mazzeo, M. Saez
and the third author. In these papers, it is indeed shown that starting from any non–
regular network (with a natural technical hypothesis), there exists a “satisfactory”
flow of networks by curvature which is immediately regular and smooth, for every
positive time. Chapter 11 is devoted to this topic.
The existence problem of a curvature flow for a regular network with only one 3–point
andfixed end–points, called triod (seeDefinition 3.2), was first consideredbyL. Bronsard
and F. Reitich in [17]. To be precise, they consider as initial datum any regular C2+2α

triod satisfying some compatibility conditions at the triple junctions and show short–
time existence and uniqueness in the parabolic class C2+2α,1+α. In [63] D. Kinderlehrer
and C. Liu proved the global existence and convergence of a smooth solution if the initial
regular triod is sufficiently close to a minimal (Steiner) configuration.
After introducing regular networks, their flow by curvature, and some basic proper-
ties (Sections 2 and 2.3), we extend, in Chapter 3, the above well–posedness theorem
to general regular networks (Theorem 3.25). Moreover, we also show an analogous
result in suitable Sobolev spaces (Theorem 3.6).
In Chapter 4 we generalize to any regular network the integral estimates proved
in [82] for a triod, which are needed to prove Theorem 5.8 and will be actually used
throughout the whole paper. A consequence of such estimates is the fact that if the
lengths of the curves are bounded away from zero, as t goes to the maximal time T of
existence of the flow, the maximum of the modulus of the curvature must go to +∞
(Corollary 4.15 and Theorem 5.7).
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CHAPTER 1. INTRODUCTION 5

The uniqueness of the flow is quite delicate. Indeed, by Theorem 3.25, we only have
that, for initial regular networks of class C2+2α having the sumof the curvatures of the
three concurring curves at every triple junction equal to zero, there is uniqueness in
the parabolic class C2+2α,1+α. In Chapter 5, by combining Theorems 3.6 and 3.25 (the
first mainly for the uniqueness, the second for the existence) we then show a result
of existence/geometric uniqueness for short time of the flow of an initial network of
class C2 (Theorem 5.8), in a subclass of the curvature flows which are simply C2 in
space and C1 in time. In the same section, we will also see that the classical property
of parabolic equations of instantaneous regularization of solutions for positive times
also holds for the motion by curvature of networks, in a suitable sense.
The rest of the paper is devoted to the long-time behavior of the flow. For the sake of
simplicity, in the following overview, we will restrict ourselves only to the behavior
in the interior of a convex domain of a network flowing by curvature with fixed end–
points on the boundary of such set, while in the whole paper also the behavior at the
boundary (hence, at the end–points of the network) is analyzed in the same detail.
In Chapter 7 we recall Huisken’s monotonicity formula for mean curvature flow
which holds also for the evolution of a network and we introduce the rescaling pro-
cedures to get blow–up limit networks (discussed in Chapter 8) at the maximal time
of smooth existence. Then, to “describe” the singularities of the flow one needs to
classify such possible blow–up limits. In some cases, arguing by contradiction with
geometric arguments, this “description” can be used to exclude at all the formation
of singularities. Key references for this method in the situation of a single smooth
closed curve are [3, 50, 52, 53]. The most relevant difference in dealing with net-
works is the difficulty in using the maximum principle, which in the case of closed
curves is the main tool for getting pointwise estimates on the geometric quantities
during the flow. For this reason, some crucial estimates which are straightforward in
such case are here much more difficult to obtain and we had to resort to the integral
estimates of Chapter 4 (see also Section 10.3), which are similar to the ones in [3, 6,
7, 54], but require some extra work to deal with the triple junctions.
One can reasonably expect that an embedded regular network does not develop singu-
larities during the flow if its “topological structure” does not change (for instance, in
the case of a “collision” of two or more 3–points). Our analysis in Sections 8, 9 and 10
will show that if no “multiplicities” larger than one occur in the blow–up limit networks,
this expectation is indeed true. Under the assumption that the lengths of the curves are
bounded away from zero the only possible blow–up limits (withmultiplicity one by hy-
pothesis) are either a straight line, a halfline, or a flat unbounded regular triod (called
“standard triod”) composed of three halflines through the origin of R2 forming angles
of 120 degrees (see Proposition 8.30 and Chapter 10). Then, a local regularity theorem
for the flow (shown in [58]) together with such classification excludes the presence of
singularities. This result, which is in the spirit of White’s local regularity theorem for
mean curvature flow in [110], is presented in detail in Chapter 9.
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6 CHAPTER 1. INTRODUCTION

Thus, again in Chapter 10, we try to understand what happens at the maximal time,
knowing that some lengths of the curves composing the network cannot be uniformly
bounded away from zero, hence at least two 3–points get closer and closer.
First of all, we prove that under the hypothesis of multiplicity one of the blow–up lim-
its, if more than two triple junctions go to collide, then necessarily an entire region (the
interior of a “loop” of the network) vanishes, which implies that the curvature is nec-
essarily unbounded getting close to the singular time. Hence, if the curvature stays
bounded it must happen that (locally) we are in the case of two triple junctions (only)
going to collide along a vanishing curve, forming a 4–point in the limit. Vice versa, we
are then able to show that in such a situation the curvature remains bounded. As a
consequence, we conclude that the curvature is uniformly bounded along the flow if
and only if no region is collapsing and that in such case only local vanishing of single
curves can happen, with a formation of a 4–point in the limit. This is clearly particularly
relevant if the evolving network is a tree, that is, regions are not present at all. More in
detail, we first show that in such case, as t goes to the maximal time T, the networks
St converge in C1–norm (up to reparametrization) to a unique limit set ST which is a
degenerate (collapsed) regular network (see Definition 8.1), that is, a smooth network
possibly with multi–points of order higher than three and some collapsed parts “hid-
den” in its vertices. Then, we show that ST can have only 3–points with angles of 120
degrees or 4–points with angles of 120/60 degrees, like in the left side of Figure 10.1.
In the other situation, when the curvature is not bounded and a region collapses
(Section 10.3), we are able to obtain a weaker conclusion. Assuming the uniqueness
of the blow–up limit along any sequence of rescalings (which can be insteadproved in
the above case), we can show that, as t → T, the network St converges to some degen-
erate (see above) regular network, whose “non–collapsed” part ST is a C1, possibly
non–regular, network which is smooth outside its multi–points and whose curvature
is of order o(1/r), where r is the distance from its non–regular multi–points.
In several steps of the previous analysis the assumption of multiplicity one of the
blow–up limits is fundamental, we actually conjecture (Conjecture 10.1) that it holds
in general, but up to now we can prove it only in some special cases. Indeed, in
Chapter 14 we discuss a scaling invariant, geometric quantity associated with a net-
work, first proposed in [49] (see also [52]) and later extended in [15, 82, 89], consist-
ing in a sort of “embeddednessmeasure”which is positivewhen no self–intersections
are present. By a monotonicity argument, we show that this quantity is uniformly
positively bounded below along the flow, under the assumption that the number of
3–points of the network is at most two. As a consequence, in such case every possible
C1

loc–limit of rescalings of the networks of the flow is an embedded networkwithmul-
tiplicity one. We underline that it is not clear to us how to obtain a similar conclusion
for a general network with several triple junctions, since the analogous quantity, if
there are more than two 3–points, does not satisfy a monotonicity property.
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CHAPTER 1. INTRODUCTION 7

In Chapter 11 we state a short–time existence result for possibly non–regular initial
networks (that is, with multi–points of order greater than 3 and/or non–regular 3–
points), giving a flow that is immediately regular and smooth for every positive time.
This result, which clearly also provides a “restarting theorem”, was worked out inde-
pendently in [58] by T. Ilmanen, A. Neves and the fourth author (Theorem 11.9) and
in [70] by J. Lira, R. Mazzeo, M. Saez and the third author (Theorem 11.26), here we
only give an outline of the arguments in the proofs (which are quite technical). The
idea in Theorem 11.9 is to locally desingularize the multi–points and the non–regular
3–points via regular self–similarly expanding solutions. The argument hinges on a
new monotonicity formula, which shows that such expanding solutions are dynam-
ically stable, using the fact that the evolution of curves and networks in the plane
are special cases of the Lagrangian mean curvature flow (these ideas have already
been exploited by A. Neves in the papers [84–86]). Theorem 11.26 relies instead on
blow–up arguments from geometric micro–local analysis. In this case, the same regu-
lar self–similarly expanding solutions naturally arise from the underlying geometric
structure of the problem.
In Chapter 12 it is explained how to combine Theorem 11.9with the previous analysis
of the singularities in order to continue the flow after a singular time. Then, we ana-
lyze the preserved geometric quantities and the possible changes in the topology of a
network in passing through a singularity. This is applied in Chapter 13 to study the
long-time behavior of the flow, indeed, the restarting procedure allows us to define
an “extended” curvature flow with singularities at an increasing sequence of times.
An important open question is whether the maximal time interval of existence of
such flow is finite or not, where the main problem is the possible “accumulation” of
the singular times (if they are not finite, which actually we do not know). We men-
tion that in the special case of symmetric networks with only two triple junctions,
it can be shown that the set of singular times is necessarily finite, see [88]. Clearly,
if such “extended” flow can be defined for every time (as the Brakke flow obtained
by L. Kim and Y. Tonegawa in [62]), we ask ourselves if the network converges, as
t → +∞, to a stationary network for the length functional (a Steiner network). In
Proposition 13.6 we prove the convergence up to a subsequence of the family of the
evolving networks to a possibly degenerate one (some curves could disappear in the
limit), as t → +∞. If we then assume that such limit network is not degenerate,
with the help of Łojasiewicz–Simon gradient inequality, we are actually able to prove
the full convergence of the flow, in Theorem 13.11. We finally conclude Chapter 13
presenting a stability result: if a network is sufficiently close in W2,2–norm to a reg-
ular network S∗ composed of straight segments only, its motion by curvature exists
for all times and smoothly converges to a regular network still composed of straight
segments and with the same length of S∗.
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Up to now, the study of the behavior of the flow at the first singularity (and immedi-
ately after) is essentially complete when the network has at most two triple junctions,
see [76, 80, 82, 89], holding in this very special case the above mentioned multiplicity
one conjecture, as it is shown in Chapter 14. In Chapter 15 we will describe, up to the
best of our knowledge, the global evolution of such “simple” networks, which are
actually interesting since most of the relevant phenomena of the general case are al-
ready present. In particular, wewill see that the evolution of a tree–like networkwith
only one 3–point and three fixed end–points (called triod) is smooth and asymptoti-
cally converges to a Steiner network, if the lengths of the three curves stay uniformly
bounded away from zero.
The last section of the paper is devoted to collecting and presenting the main open
problems. Moreover, by courtesy of T. Ilmanen, we include an appendix with pic-
tures and computations of several examples of regular shrinkers, due to him and
J. Hättenschweiler.
We conclude this introduction by mentioning that there are several interesting vari-
ants and generalizations of the problem of the motion by curvature of networks
whose study is only at the beginning. For instance, one can consider the anisotropic
version of the flow, as in [13, 45, 64] and/or take into account the mismatch of the
orientation of the grain in the model [32, 33, 59].
The analogous problem in higher dimensions (and codimensions) is stillwidely open.
Besides the papers [62, 98], where a global weak solution in the Brakke sense is con-
structed, the short–time existence of a smooth and regular solution in three dimen-
sions has been established in [28] in some special cases and in [98, Section 7] for the
motion of a network in Rn with only triple junctions. In these cases, the analysis
of singularities and the subsequent possible restarting procedure are still open prob-
lems.
We also mention the works [37, 38] where a graph evolving by mean curvature and
meeting a horizontal hyperplane with a fixed angle of 60 degrees is studied. By con-
sidering the union of such graph with its reflection through the hyperplane, one gets
an evolving symmetric lens–shaped domain. We remark that in this particular case,
the analysis is simpler since the maximum principle can be applied.
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CHAPTER 2

NOTATION, DEFINITIONS AND BASIC COMPUTATIONS

Given a C1 curve σ : [0, 1] → R2 we say that it is regular if σx = dσ
dx is never zero. It is

then well defined its unit tangent vector τ = σx/|σx|. We define its unit normal vector
as ν = Rτ = Rσx/|σx| where R : R2 → R2 is the counterclockwise rotation centered
in the origin of R2 of angle π/2.
If the curve σ is of class C2 and regular its curvature vector is well defined as

k = τx/|σx| =
1

| σx|
dτ

dx
.

The arclength parameter of a curve σ is given by

s = s(x) =
∫ x

0
|σx(ξ)| dξ .

Notice that ∂s = |σx|−1∂x then τ = ∂sσ and k = ∂sτ, hence the curvature of σ is given
by k = 〈k | ν〉, as k = kν. We remind here that in the whole paper, we will use the word
“curve” both for the parametrization and for the set (image of the parametrization in R2).
Let T > 0 and γ : [0, 1]× [0, T) a time–dependent family regular C2 curve. Again, we
let τ = τ (x, t) be the unit tangent vector to the curve γ, ν = ν (x, t) = Rτ (x, t) be the
unit normal vector and k = k (x, t) = k (x, t) ν (x, t) its curvature vector, as previously
defined.

Here and in the sequel wewill denote by ∂x f , ∂s f and ∂t f the derivatives of a function
f along a curve γ with respect to the x variable, the arclength parameter s on such
curve (defined by s(x, t) =

∫ x
0 |γx(ξ, t)| dξ) and the time, respectively; ∂n

x f , ∂n
s f , ∂n

t f
are the higher order partial derivatives which often we will also write as fx, fxx . . . ,
fs, fss, . . . and ft, ftt, . . . .

We will call v = γt = Vν + λτ, λ = λτ and V = Vν respectively the velocity, the
normal velocity and the tangential velocity of the curve γ. The scalar V and λ are the
normal and tangential components of the velocity. It is easy to see that v = V + λ

and |v|2 = |V|2 + |λ|2 = (V)2 + (λ)2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



12 CHAPTER 2. NOTATION, DEFINITIONS AND BASIC COMPUTATIONS

2.1. Networks

Definition 2.1. — Let Ω be a smooth, convex, open set in R2. A network
S =

⋃n
i=1 σi([0, 1]) in Ω is a connected set in the plane described by a finite family of

C1, regular curves σi : [0, 1] → Ω such that

1. the “interior” of every curve σi, that is σi(0, 1), is embedded (hence, it has no self–
intersections); a curve can self–intersect itself only possibly “closing” at its end–points,
that is σi(0) = σi(1);

2. two different curves can intersect each other only at their end–points;

3. if a curve of the network touches the boundary of Ω at a point P, no other end–point of
a curve can coincide with that point.

If we interpret S as a planar graph, we call multi–points of the network the vertices
O1, O2, . . . , Om ∈ Ω where the order is greater than one. We call end–points of the net-
work the vertices P1, P2, . . . , Pl ∈ Ω of S (on the boundary or not) with order one.

We say that a network is of class Ck or C∞ if all the n curves are respectively of class Ck or C∞.

Remark 2.2. — We require Condition 3 for the sake of simplicity. It implies that the
multi–points can be only inside Ω and not on the boundary. The end–points can be
both inside or on ∂Ω.

P1
P3

P2

σ4

Ω

σ1

σ2

σ3

O1

O2

Figure 2.1: An example of “violation” of Condition 3 in the definition of
network.

The curves σi have (non–zero) finite lengths Li =
∫ 1

0 |σi
x(ξ)| dξ.

Definition 2.3. — Let S =
⋃n

i=1 σi be a network composed of n curves. We denote by

L = L1 + · · ·+ Ln

the global length of the network.
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2.1. NETWORKS 13

Definition 2.4. — An open network S =
⋃n

i=1 σi(I) in R2 is a connected set in the plane
composed of a finite family of C1, regular curves σi : I → R2, where I can be the interval
[0, 1] or [0, 1), such that

1. every “open” curve σi : [0, 1) → R2 is C1–asymptotic to a half-line in R2 as x → 1;

2. the “interior” of every curve σi is embedded (hence, it has no self–intersections). Only
the bounded curves σi : [0, 1] → R2 can possibly self–intersect by “closing” at their
end–points;

3. two different curves can intersect each other only at their end–points;

4. considering S as a planar graph, every end–point of a curve belongs to somemulti–point
of the network with order at least two;

As before we say that an open network is of class Ck or C∞ if all its curves are respectively of
class Ck or C∞.

Remark 2.5. — Since we called these unbounded networks “open”, we will adopt
theword “closed” for the previous networks in Definition 2.1which are bounded and
possibly have some end–points.

Given a network composed of n curves with l end–points P1, P2, . . . , Pl ∈ Ω (if
present) and m multi–points O1, O2, . . . Om ∈ Ω, we will denote by σpi the curves
of this network concurring at the multi–point Op, with the index i varying from one
to the order of the multi–point Op. This is clearly redundant as some curves coin-
cide, but it is a useful notation for the computations. A network of n curves with m
triple junctions only (without higher multiplicity junctions) will then be described
by the family (with possible repetitions) of curves σpi where p ∈ {1, 2, . . . , m} and
i ∈ {1, 2, 3}.
We now define a special class of networks that will play a key role in the analysis.

Definition 2.6. — We call a network (open or not) regular if all its multi–points
O1, O2, . . . Om ∈ Ω have order three and at each of them the three concurring
curves {σpi}i=1,2,3 meet in such a way that the external unit tangents τpi satisfy
τp1 + τp2 + τp3 = 0, which means that the three curves form three angles of 120 degrees at
Op (Herring condition).
We call a network non–regular if at least a multi–point has order different from three or if it
has order three but the external unit tangents of the three concurring curves {σpi}i=1,2,3 do
not satisfy τp1 + τp2 + τp3 = 0. We will call such a point a non–regular multi–point.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



14 CHAPTER 2. NOTATION, DEFINITIONS AND BASIC COMPUTATIONS

O1

O2

O5

O3

P1

P2

O6

O4

P7P8

P4

P3

P6

P5

Figure 2.2: A regular network.

Wewill simply omit the indices of the curves of the network anytime there is no need
to make them explicit.
Moreover, given St =

⋃n
i=1 γi([0, 1], t) a time–dependent family of regular C2 network

of curves, we will adopt the following convention for integrals,
∫

St
f (t, γ, τ, ν, k, ks, . . . , λ, λs . . . ) ds =

n

∑
i=1

∫ 1

0
f (t, γi, τi, νi, ki, ki

s, . . . , λi, λi
s . . . ) |γi

x| dx

as the arclength measure on every curve γi is given by ds = |γi
x| dx.

Sometimes we will also use the following notation for a time–dependent family of
networks

St =
n⋃

i=1

γi([0, 1], t)

with t ∈ [0, T) in Ω ⊆ R2. We let S ⊆ R2 be a “reference” network and suppose
that for every t ∈ (0, T) the network St is homeomorphic to S. We consider a map
F : S × (0, T) → R2 given by the “union” of the maps γi : Ii × (0, T) → Ω describing
the time–dependent family of networks in the time interval (0, T), that is St = F(S, t).

2.2. Motion by curvature

We are now ready to define the evolution by curvature of a C2 regular network, as-
suming that either it is open or all its end–points (if present) coincide with some
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2.2. MOTION BY CURVATURE 15

points P1, P2, . . . , Pl on the boundary of Ω. As we have already said, in the “closed”
case by Condition 3 in Definition 2.1 at most one curve of the network can arrive at
the point Pr. We require the network to be regular during the flow and we ask that
the end–points Pr ∈ ∂Ω stay fixed (Dirichlet boundary conditions). A similar problem
is given by letting such end–points “free” to move on the boundary of Ω, but asking
that the curves intersect orthogonally ∂Ω (Neumann boundary conditions).
In the “closed case”, themotion by curvature is the geometric gradient flow of the length
functional, that is, the sum of the lengths of all the curves of the network. Roughly
speaking, a (solution to the) flow by curvature of a network is a smooth family of em-
bedded, planar networks, such that the normal component of the velocity under the
evolution law, at every point of every curve of the evolving network is given by the
curvature vector of the curve at the point.

Definition 2.7. — We say that a family of homeomorphic, regular networks St, each one
composed of n curves γi(·, t) : Ii → Ω (where Ii is the interval [0, 1] or [0, 1) in case of
an open network), in a smooth convex, open set Ω ⊆ R2, moves by curvature in the time
interval (0, T) if the functions γi : Ii × (0, T) → Ω are at least of class C2 in space and C1

in time and for every x ∈ Ii, t ∈ (0, T), i ∈ {1, 2, . . . , n}, they satisfy

γi
t(x, t) = ki(x, t)νi(x, t) + λi(x, t)τi(x, t)(2.1)

=
〈γi

xx(x, t) | νi(x, t)〉
|γi

x(x, t)|2
νi(x, t) + λi(x, t)τi(x, t)

for some continuous functions λi.

Remark 2.8. — Notice that the normal velocity is given by the curvature vector of the
curve γi at every point.

Remark 2.9. — Another equivalent way to state evolution equation (2.1) is clearly

γi
t(x, t)⊥ = ki(x, t)νi(x, t) = ki(x, t) =

〈γi
xx(x, t) | νi(x, t)〉
|γi

x(x, t)|2
νi(x, t) .

Remark 2.10. — We spend some words on the above definition of motion by cur-
vature. The evolution equation (2.1) is not the usual way to describe the motion by
curvature of a smooth curve. Indeed, “classically” it is written as

(2.2) γi
t = ki = kiνi =

〈γi
xx | νi〉
|γi

x|
2 νi .

Both motions are driven by a system of quasilinear partial differential equations, in
our definition “admitting a correction” by a tangential term. The two velocities differ
only by a tangential component λi = λiτi. In the curvature evolution of a smooth
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curve, it is well–known that any tangential contribution to the velocity affects only
the “inner motion” of the “single points” (Lagrangian point of view), but it does not
affect the motion of a curve as a whole subset of R2 forgetting its parametrization
(Eulerian point of view). It can be shown that a flow of a closed curve satisfying
equation (2.1) can be globally reparametrized (dynamically in time) in order it satis-
fies equation (2.2). However, in our situation, such a global reparametrization is not
possible due to the presence of the 3–points. It is necessary to consider such extra tan-
gential terms to allow the motion of the 3–points also. Indeed, if the velocity would
be in normal direction at every point of the three curves concurring at a 3–point, this
latter should move in a direction which is normal to all of them, then the only pos-
sibility would be that it does not move at all (see also the discussions and examples
in [16, 17, 63, 79]).

Definition 2.11. — Given an initial, regular, C2 network S0, composed of n curves
σi : [0, 1] → Ω, with m triple junctions O1, O2, . . . Om ∈ Ω and (if present) l end–
points P1, P2, . . . , Pl ∈ ∂Ω in a smooth convex, open set Ω ⊆ R2, we say that a family
of homeomorphic networks St described by the family of time–dependent curves γi(·, t) is
a flow by curvature of S0 with fixed end–points in the time interval [0, T), if the func-
tions γi : [0, 1] × [0, T) → Ω are continuous, there holds γi(x, 0) = σi(x) for every
x ∈ [0, 1] and i ∈ {1, 2, . . . , n} (initial data), they are at least C2 in space and C1 in time in
[0, 1]× (0, T) and satisfy the following system of conditions for every x ∈ [0, 1], t ∈ (0, T),
i ∈ {1, 2, . . . , n},

(2.3)


γi

t = kiνi + λiτi withλi continuous functions motion by curvature
γi

x(x, t) 6= 0 regularity
γr(1, t) = Pr with 0 ⩽ r ⩽ l fixed end–points condition
∑3

j=1 τpj(Op, t) = 0 at every 3–point Op angles of 120 degrees

where we assumed conventionally (possibly reordering the family of curves and “invert-
ing” their parametrization) that the end–point Pr of the network is given by γr(1, t) (by
Condition 3 in Definition 2.1 this can be always done).
Moreover, in the third equation, we abused a little the notation, denoting with τpj(Op, t)
the respective exterior unit tangent vectors at Op of the three curves γpj(·, t) in the family
{γi(·, t)} concurring at the 3–point Op.

We also state the same problem for regular, open networks.

Definition 2.12. — Given an initial, regular, C2 open network S0, composed of n curves
σi : Ii → R2, we say that a family of homeomorphic open networks St with the same structure
as S0 (in particular, same asymptotic half-lines at infinity) described by the family of time–
dependent curves γi(·, t) is a flow by curvature of S0 in the time interval [0, T), if the
functions γi : Ii × [0, T) → R2 are continuous, there holds γi(x, 0) = σi(x) for every
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2.2. MOTION BY CURVATURE 17

x ∈ Ii and i ∈ {1, 2, . . . , n} (initial data), they are of class at least C2 in space and C1

in time in Ii × (0, T) (here Ii denotes the interval [0, 1] or [0, 1) depending on whether the
curve is unbounded or not) and satisfy the following system, for every x ∈ Ii, t ∈ (0, T),
i ∈ {1, 2, . . . , n},

(2.4)


γi

t = kiνi + λiτi withλi continuous functions motion by curvature
γi

x(x, t) 6= 0 regularity
∑3

j=1 τpj(Op, t) = 0 at every 3–point Op angles of 120 degrees

where, in the second equation, we used the same notation as in Definition 2.11.

Remark 2.13. — In Definitions 2.11 and 2.12 the evolution equation (2.1) must be
satisfied till the borders of the intervals [0, 1] and [0, 1), that is, at the 3–points and
the at end–points for every positive time. This is not the usual way to state boundary
conditions for parabolic problems (the parabolic nature of this evolution problem is
clear by Definition 2.7 – see also Remark 2.10 and it will be even clearer in Chapter 3)
where usually only continuity at the boundary is required. Anyway as is common in
parabolic problems, at every positive time such boundary conditions are satisfied by
any “natural solution”.
This property of regularity at the boundary implies that

(kν + λτ)(Pr) = 0, for every r ∈ {1, 2, . . . , l}

and

(kpiνpi+λpiτpi)(Op)=(kpjνpj+λpjτpj)(Op), for every i, j∈{1, 2, 3}, p∈{1, 2, . . . m}

(wherewe abused a little the notation), obtained by simply requiring that the velocity
is zero at every end–point and it is the same for any three curves at their concurrency
3–point.
Moreover, notice that inDefinitions 2.11 and 2.12 the evolution equation (2.1)must be
satisfied only for t > 0. If we want that the maps γi are C2 in space and C1 in time till
the whole parabolic boundary (given by [0, 1]× {0} ∪ {0, 1} × [0, T) in Definition 2.11
and [0, 1]× {0} ∪ {0, 1} × [0, T) or [0, 1)× {0} ∪ {0} × [0, T) in Definition 2.12), the
above conditions must be satisfied also by the initial regular network S0, for some
functions λ0 extending continuously the functions λ which are defined only for t > 0.

For the moment we focus on regular networks. Several difficulties arise when we
study problems (2.3) and (2.4) with non–regular networks as initial data. The is-
sues are related to the presence of multi–points: if there are multi–points Op of order
greater than three, there can be several possible candidates for the flow. Considering
for example the case of a network composed of two curves crossing each other (pres-
ence of 4–point); one cannot easily decide how the angle at the meeting point must
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behave, indeed one can allow the four concurrent curves to separate in two pairs of
curves, moving independently of each other and could even be taken into account
the creation of new multi–points from a single one.
If there are several multi–points during the flow some of them can collapse together
and the length of at least one curve of the network can go to zero.
In these cases, one must possibly restart the evolution with a different set of curves
and the topology of the network changes dramatically, forcing to change the “struc-
ture” of the system of equations governing the evolution. Anyway, a very natural
conjecture is that the curvature flow of a general network (under a suitably good def-
inition) should be non–regular only for a discrete set of times. We will get back to
this in the following sections.

Remark 2.14. — One can clearly obtain solutions to system (2.1) by requiring each
curve to fulfill the quasilinear partial differential equation:

γi
t =

γi
xx

|γi
x|

2 .

In this case

vi =vi(x, t)= γi
xx

|γi
x |

2 velocity of the point γi(x, t) ,

λi =λi(x, t)= 〈γi
xx | τi〉
|γi

x |
2 = 〈γi

xx | γi
x〉

|γi
x |

3 =−∂x
1

|γi
x |

tangential velocity of the point γi(x, t) ,

ki = ki(x, t)= 〈γi
xx | νi〉
|γi

x |
2 = 〈∂sτi | νi〉=−〈∂sνi | τi〉 curvature at the point γi(x, t) .

Definition 2.15. — A curvature flow γi for the initial, regular C2 network
S0 =

⋃n
i=1 σi([0, 1]) which satisfies γi

t = γi
xx

|γi
x |2

for every t > 0 will be called a special
curvature flow of S0. In this case, then we pass from the general system (2.3) to the
following:

(2.5)



γi
t(x, t) = γi

xx(x,t)

|γi
x(x,t)|2

special motion by curvature

γi
x(x, t) 6= 0 regularity

γr(1, t) = Pr with 0 ⩽ r ⩽ l fixed end–points condition

∑3
j=1

γ
pj
x (Op ,t)∣∣∣γpj
x (Op ,t)

∣∣∣ = 0 at every 3–point Op angles of 120 degrees

γi(x, 0) = σi(x) initial data

Remark 2.16. — There are classes of networks, whose topological structure is par-
ticularly simple, whose evolution by curvature has been extensively studied in the
literature.
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— When the network consists of a single closed embedded curve, its motion by
curvature was widely studied [5–7, 39–41, 46]: the curve evolves smoothly,
becomes convex, and shrinks to a point in finite time, becoming rounder and
rounder. Curves with an angle or a cusps (where the cusp is the most “del-
icate” situation) can be dealt with by means of the works of Angenent [5–7]:
the curve becomes immediately smooth, flowing by curvature.

— The case in which two curves concur at a 2–point of the network forming an
angle (or a cusp, if they have the same tangent) can be analyzed as we said
above: consider them as a single curve with a “singular” point (the angle) that
vanishes immediately under the flow.

— If a network is composed of a single embedded curve with fixed end–points, its
evolution by curvature is discussed in [52, 102, 103]. The curve converges to
the straight segment connecting the two fixed end–points in infinite time.

σ
P σ1

O

σ2 Q P2

P1

Ω

σ

Figure 2.3: Three special cases: a single closed curve, two curves forming
an angle at their junction and a single curve with two end–points on the
boundary of Ω.

2.3. Basic computations

We work out some basic relations and formulas holding for a regular network evolv-
ing by curvature, assuming that all the derivatives of the functions γi and λi that
appear to exist.

Lemma 2.17. — If γ is a curve moving by

γt = kν + λτ ,

then the following commutation rule holds

(2.6) ∂t∂s = ∂s∂t + (k2 − λs)∂s .
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Proof. Let f : [0, 1]× [0, T) → R be a smooth function, then

∂t∂s f − ∂s∂t f =
ftx

|γx|
− 〈γx | γxt〉 fx

|γx|3
− ftx

|γx|
= −〈τ | ∂sγt〉∂s f

= − 〈τ | ∂s(λτ + kν)〉∂s f = (k2 − λs)∂s f

and the formula is proved.

Then, thanks to the commutation rule of the previous lemma for an evolving curve
we can compute

∂tτ = ∂t∂sγ = ∂s∂tγ + (k2 − λs)∂sγ = ∂s(λτ + kν) + (k2 − λs)τ = (ks + kλ)ν ,(2.7)
∂tν = ∂t(Rτ) = R ∂tτ = −(ks + kλ)τ ,

∂tk = ∂t〈∂sτ | ν〉 = 〈∂t∂sτ | ν〉 = 〈∂s∂tτ | ν〉+ (k2 − λs)〈∂sτ | ν〉(2.8)
= ∂s〈∂tτ | ν〉+ k3 − kλs = ∂s(ks + kλ) + k3 − kλs

= kss + ksλ + k3 .

Moreover, as anticipated in Remark 2.14, when the tangential velocity is λ = 〈γxx | γx〉
|γx |3

,
the curve γ evolves according to

γt =
γxx

|γx|2
= kν + λτ ,

so we can also compute

∂tλ = − ∂t∂x
1

|γx|
= ∂x

〈γx | γtx〉
|γx|3

= ∂x
〈τ | ∂s(λτ + kν)〉

|γx|
= ∂x

(λs − k2)

|γx|
(2.9)

= ∂s(λs − k2)− λ(λs − k2) = λss − λλs − 2kks + λk2 .

We consider the curvature flow given by a family of regular, C∞ networks St, com-
posed of n moving curves γi with m triple junctions O1, O2, . . . , Om and l end–points
P1, P2, . . . , Pl .
As we said, we parametrize the curves of the evolving network so that γi(1, t) = Pi

whenever Pi is an end–point where a curve γi arrives. Consider instead a triple junc-
tion, say Op, where three distinct curves γp1, γp2 and γp3 meet. In general, we cannot
always impose that

(2.10) γp1(0, t) = γp2(0, t) = γp3(0, t) = Op(t)

for all p ∈ {1, . . . , m}, since (for instance) both the end–points of a curve could belong
to the same triple junction, or simply for combinatorial reasons (see the networks in
the following figure).
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P1

γ1

γ2

γ1
P2

P3

P4

P1

γ2

γ1

γ3
γ4

γ5

O1

O2

Figure 2.4: Examples of networks.

Actually, in general, there holds

γp1(x1, t) = γp2(x2, t) = γp3(x3, t) = Op(t) ,

for every p ∈ {1, . . . , m} and some x1, x2, x3 ∈ {0, 1}. Then, the fact that x1, x2, x3
could be either 0 or 1 affects how the 120 degrees angle condition at Op reads, that is,

(−1)x1 τp1(x1, t) + (−1)x2 τp2(x2, t) + (−1)x3 τp3(x3, t) = 0 .

For the sake of presentation and clarity, in the following analysis of the conditions
holding at any 3–point Op, with p ∈ {1, 2, . . . , m}, we will suppose that the three
curves are parametrized in such away that they all concur at Op for x1 = x2 = x3 = 0,
hence formula (2.10) holds.
Differentiating in time the concurrency condition

γpi (0, t) = γpj (0, t) for every i and j,

where γpi denotes the i–th curve concurrent at the 3–point Op, we get

λpiτpi + kpiνpi = λpjτpj + kpjνpj ,

at every 3–point Op, with p ∈ {1, 2, . . . , m} for every i, j ∈ {1, 2, 3}.
Multiplying these vector identities by τpl and νpl and varying i, j, l, thanks to the
conditions

3

∑
i=1

τpi =
3

∑
i=1

νpi = 0 ,

we get the relations

λpi = −λp(i+1)/2 −
√

3kp(i+1)/2

λpi = −λp(i−1)/2 +
√

3kp(i−1)/2

kpi = −kp(i+1)/2 +
√

3λp(i+1)/2

kpi = −kp(i−1)/2 −
√

3λp(i−1)/2

with the convention that the second superscripts are to be considered “modulus 3”.
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Solving this system we get

λpi =
kp(i−1) − kp(i+1)

√
3

kpi =
λp(i+1) − λp(i−1)

√
3

which implies

(2.11)
3

∑
i=1

kpi =
3

∑
i=1

λpi = 0

at any 3–point Op of the network St.
Moreover considering Kp = (kp1, kp2, kp3) and Λp = (λp1, λp2, λp3) as vectors in R3,
we have seen that Kp and Λp belong to the plane orthogonal to the vector (1, 1, 1) and

Kp = Λp ∧ (1, 1, 1)/
√

3 , Λp = −Kp ∧ (1, 1, 1)/
√

3 ,

that is, Kp = SΛp and Λp = −SKp where S is the rotation in R3 of an angle of π/2
around the axis I = 〈(1, 1, 1)〉. Hence it also follows that

(2.12)
3

∑
i=1

(kpi)2 =
3

∑
i=1

(λpi)2 and
3

∑
i=1

kpiλpi = 0 .

at any 3–point Op of the network St.
Now we differentiate in time the angular condition ∑3

i=1 τpi = 0 at every 3–point Op,
with p ∈ {1, 2, . . . , m}, by equation (2.7) for every pair i, j we get

kpi
s + λpikpi = kpj

s + λpjkpj .

In terms of vectors in R3, as before, we can write

Kp
s + ΛpKp = (kp1

s + λp1kp1, kp2
s + λp2kp2, kp3

s + λp3kp3) ∈ I .

Differentiating repeatedly in time all these vector relations we have

∂l
tK

p , ∂l
tΛ

p ⊥ I and ∂l
t〈Kp |Λp〉 = 0 ,

∂l
tΛ

p = −∂l
tSKp = −S∂l

tK
p ,(2.13)

∂m
t (K

p
s + ΛpKp) ∈ I ,

which, making explicit the indices, give the following identities at every 3–point Op,
with p ∈ {1, 2, . . . , m},

∂l
t

3

∑
i=1

kpi =
3

∑
i=1

∂l
tk

pi = ∂l
t

3

∑
i=1

λpi =
3

∑
i=1

∂l
tλ

pi = ∂t

3

∑
i=1

kpiλpi = 0 ,
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3

∑
i=1

(∂l
tk

pi)2 =
3

∑
i=1

(∂l
tλ

pi)2 for every l ∈ N,

∂m
t (k

pi
s + λpikpi) = ∂m

t (k
pj
s + λpjkpj) for every pair i, j and m ∈ N.

Moreover by the orthogonality relations with respect to the axis I we get also

∂l
tK

p∂m
t (K

p
s + ΛpKp) = ∂l

tΛ
p∂m

t (K
p
s + ΛpKp) = 0 ,

that is,

(2.14)
3

∑
i=1

∂l
tk

pi ∂m
t (k

pi
s + λpikpi) =

3

∑
i=1

∂l
tλ

pi ∂m
t (k

pi
s + λpikpi) = 0 for every l, m ∈ N.

Remark 2.18. — By the previous computations, for every solution in Definitions 2.11
or 2.12 at t > 0 the curvature at the end–points and the sum of the three curvatures
at every 3–point has to be zero and the same holds for the functions λ.
Then, a necessary condition for the maps γi to be C2 in space and C1 in time till
the whole parabolic boundary (given by [0, 1]× {0} ∪ {0, 1} × [0, T) in Definition 2.11
and [0, 1]×{0}∪ {0, 1}× [0, T) or [0, 1)×{0}∪ {0}× [0, T) in Definition 2.12) is that
these conditions are satisfied also by the initial regular network S0, for some functions
λ0 (see Remark 2.13) extending continuously the functions λ which are defined only
for t > 0. That is, for the initial regular network S0, there must hold

(kν + λ0τ)(Pr) = 0, for every r ∈ {1, 2, . . . , l}

and

(kpiνpi + λ
pi
0 τpi)(Op) = (kpjνpj + λ

pj
0 τpj)(Op), for every i, j ∈ {1, 2, 3}.

In particular for the initial network S0 =
⋃n

i=1 σi(Ii) the curvature at the end–points
and the sum of the three curvatures at every 3–point has to be zero.
These conditions on the curvatures of S0 =

⋃n
i=1 σi(Ii) are clearly geometric, that is

independent of the parametrizations of the curves σi but intrinsic to the set S0 and
they are not satisfied by a generic regular, C2 network.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024





CHAPTER 3

SHORT TIME EXISTENCE I

We want to study existence and uniqueness of the flow by curvature of an initial reg-
ular network with fixed end–points on the boundary of a smooth, convex, open set
Ω ⊆ R2, as in Definition 2.11.
First of all, we need to discuss what we mean by uniqueness of the flow in our geo-
metric context. If we consider an evolving network St, composed by curves γi solu-
tions of system (2.3), that is, satisfying γi

t = ki + λi and dynamically reparametrize
each curve γi

t with sufficiently regular maps φi : [0, 1]× [0, T) → [0, 1] (for instance,
C2 in space and C1 in time) such that φi(0, t) = 0, φi(1, t) = 1, φi(x, 0) = x and
φi

x(x, t) 6= 0 for every (x, t) ∈ [0, 1]× [0, T), we get another solution of system (2.3)
(see Remark 2.10). This fact is related to the geometric nature of the problem: if
γ̃i(x, t) = γi(φi(x, t), t), we have indeed

γ̃i
t(x, t) = ∂t[γ

i(φi(x, t), t)]

= γi
x(φi(x, t), t)φi

t(x, t) + γi
t(φi(x, t), t)

= γi
x(φi(x, t), t)φi

t(x, t) + ki(φi(x, t), t) + λi(φi(x, t), t)

= ki(φi(x, t), t) + λi(φi(x, t), t) + γ̃i
x(x, t)φi

t(x, t)/φi
x(x, t)

= k̃
i
(x, t) + λ̃

i
(x, t) ,

with
λ̃

i
(x, t) = λi(φi(x, t), t) + γ̃i

x(x, t)φi
t(x, t)/φi

x(x, t) .

Hence, being γ̃i(x, 0) = γi(x, 0) = σi(x), the flow of the networks S̃t given by the
curves γ̃i is another curvature flow for the initial network S0 =

⋃n
i=1 σi([0, 1]).

For this reason, the natural notion of uniqueness of the curvature flow is “up to dy-
namic reparametrizations”. It is then also clear that we could have considered our
networks simply as sets and their curvature flows as flows of sets that could be
parametrized in order to satisfy Definition 2.11. In [79] it actually followed this pos-
sible alternative point of view.
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Definition 3.1. — We say that the curvature flow St of an initial network
S0 =

⋃n
i=1 σi([0, 1]) is geometrically unique in some regularity class E, if all the curvature

flows in such class, solutions of system (2.3), with the same initial network, can be obtained
from each other using time–dependent reparametrizations.
More precisely, if St and S̃t are two curvature flows of S0, described by some maps γi ∈ E

and γ̃i ∈ E, there exists a family of sufficiently regular maps φi : [0, 1] × [0, T) → [0, 1]
such that φi(0, t) = 0, φi(1, t) = 1, φi(x, 0) = x, φi

x(x, t) 6= 0, γ̃i(x, t) = γi(φi(x, t), t)
for every (x, t) ∈ [0, 1]× [0, T).
If geometric uniqueness holds, any solution to the flow clearly describes a unique evolving
network, seen as a subset of R2, for every time t ∈ [0, T).

One of the difficulties in getting existence and uniqueness of solutions in the sense
of Definition 2.11 is the lack of the maximum principle, due to the presence of the 3–
points which behave as “boundary” points (whereas, by the Herring condition, from
a “distributional point of view” they behavemore like “interior” points). This means,
in particular, that differently from the case of the motion by curvature of a smooth
curve (or more in general, for the mean curvature flow of a smooth hypersurface –
see [78]) we do not have a (geometric) comparison principle for solutions, the usual
tool to show the uniqueness of the flow. This is the reason why we will have to re-
sort to integral a priori estimates, instead of pointwise ones (see Chapter 4), the most
“natural” ones in the smooth cases.
The “natural” initial regular networks are composed of curves of class C2 and the “natu-
ral” regularity of their flow is C1 in time and C2 in space. Unfortunately, without ad-
ditional requirements on the initial data, there is no hope of having a solution with
curves in C2,1([0, 1] × [0, T)). The problem is due to the way the evolving networks
approach the initial one since they become immediately smooth (up to reparametriza-
tion) for every positive time, by a “parabolic regularization” effect (that we will discuss
in Chapter 5) and satisfy some extra geometric properties which are stable under the
C2 convergence as t → 0 (see Remark 3.20 and the related discussion in Section 3.2).
Weakening such convergence at time zero of the flow, as we actually did in defining in
great generality the flow of an initial regular network in Definition 2.11, asking only for
the continuity of the curves γ as t → 0, could possibly result in the loss of uniqueness.
We actually conjecture that uniqueness does not hold even if we ask for the continuity
of the maps γx (or of the unit tangent vectors to the curves) up to time zero.
In Chapter 5, by means of the results of this chapter, we will then show a quite sat-
isfactory theorem of existence/geometric uniqueness for a short time of the flow of
a regular C2 initial network (Theorem 5.8) in a space of solutions which can be con-
sidered “natural” for the analytic/geometric peculiarities of the problem. It is well
known that from a PDE’s perspective, working directly with C2 initial data and look-
ing for solutions of class C1 in time and C2 in space is not a good choice, hence in this
chapter we start showing existence and uniqueness in suitable Sobolev and Hölder
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spaces. Then, by means of these two results (the first mainly for the uniqueness, the
second for the existence problem) and the estimates of the next chapter, wewill show
such Theorem 5.8. Indeed, roughly speaking, the space of flows C1 in time and C2 in
space are in a way “in the middle” between the flows in Sobolev and Hölder spaces:
if the initial datum of class only C2, hence not necessarily in the Hölder space C2+α,
either one uses the existence theorem in the Sobolev setting, or obtain a flow approx-
imating such initial datum in C2+α. Then, in the first case, one obtains a Sobolev
flow which could lack the property to be of class C2,1, in the second case, because of
the approximation procedure, one cannot use the uniqueness in the Hölder setting
to conclude. Moreover, as we said, in the same Chapter 5 we will also see that the
“classical” property of parabolic equations of “instantaneous regularization” of the
solutions for every positive time, also holds for the motion by curvature of networks.

The strategy of the proof is exactly the same for both the Sobolev and theHölder case, sowe
brieflydescribe it belowwithout specifying the spaces of the initial data andof the solutions,
which we will simply denote by I and ET , respectively. Then, in the next sections, we
will enter more into the details of both cases, in particular where they differ a little bit.
We will first prove existence and (standard) uniqueness for system (2.5) in such
spaces, giving the special curvature flow of an initial network, then we will show
the existence and geometric uniqueness for the curvature flow Problem (2.3) in
Definition 2.11 in the same spaces (“dropping” the continuity requirement on the
tangential velocity functions λi and allowing initial networks less smooth that C2, in
the Sobolev setting). For simplicity, we will deal in detail with the case of the sim-
plest possible network, a triod, and then we will explain how to adapt the arguments
to the case of a general regular network.

Definition 3.2. — A triod T =
⋃3

i=1 σi([0, 1]) is a network composed of only three C1

regular curves σi : [0, 1] → Ω where Ω is a smooth, convex, open subset of R2. These three
curves intersect at a single 3–point O and have the other three end–points coinciding with
three distinct points Pi = σi(1) ∈ Ω.
A triod is regular if the unit tangents of the three curves form angles of 120 degrees at the
3–point O.

P1
σ1

σ3

σ2

O

P3

P2

Figure 3.1: A regular triod.
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For the reader’s convenience, we state Problem (2.3) in the case of a triod (without
the continuity requirement on the functions λi).

Definition 3.3. — The one–parameter family of triods T =
(
γ1, γ2, γ3) is a flow by cur-

vature in the time interval [0, T] of the initial regular triod T0 =
(
σ1, σ2, σ3) ∈ I in a

smooth convex, open set Ω ⊆ R2, if the three maps γi ∈ ET satisfy the following system of
conditions for every x ∈ [0, 1], t ∈ [0, T], i ∈ {1, 2, 3},

(3.1)



γi
t = kiνi + λiτi motion by curvature

γi
x(x, t) 6= 0 regularity

γi(1, t) = Pi fixed end–points condition
γ1(0, t) = γ2(0, t) = γ3(0, t) concurrency condition
∑3

i=1 τi(0, t) = 0 angles of 120 degrees

and there holds γi(x, 0) = σi(x) for every x ∈ [0, 1].
Then, to show the existence of a solution of this problem, we consider system (2.5)
in the case of a triod, where we simply substitute kiνi + λiτi with γi

xx

|γi
x|2

, as the two

velocities differ only by a tangential component. As we said in Remark 2.14, this a
priori choice of the tangential velocity makes the problem a system of non–degenerate
quasilinear parabolic PDE’s.

Definition 3.4 (Special flow of triods). — The map γ = (γ1, γ2, γ3) is a solution of the
special flow in [0, T] with initial datum σ = (σ1, σ2, σ3) ∈ I if it belongs to the space ET
and satisfies the following system, for every x ∈ [0, 1], t ∈ [0, T) and i ∈ {1, 2, 3}

(3.2)



γi
t(x, t) = γi

xx(x,t)
|γi

x(x,t)|2 special motion by curvature
γi

x(x, t) 6= 0 regularity
γi(1, t) = Pi fixed end–points condition
γ1(0, t) = γ2(0, t) = γ3(0, t) concurrency condition
∑3

i=1
γi

x(0,t)
|γi

x(0,t)| = 0 angles of 120 degrees
γi(x, 0) = σi(x) initial data

Noticing that we can write the equations of motion as

(3.3) γi
t −

γi
xx

|σi
x|2

=

(
1

|γi
x|2

− 1
|σi

x|2

)
γi

xx = f
i
[γi

xx, γi
x] ,

for i ∈ {1, 2, 3} and the angle condition at the triple junction as (here σi
x = σi

x(0) and
γi

x = γi
x(0, t))

(3.4) −
3

∑
i=1

γi
x

|σi
x|

− σi
x〈γi

x | σi
x〉

|σi
x|3

=
3

∑
i=1

[(
1

|γi
x|

− 1
|σi

x|

)
γi

x +
σi

x〈γi
x | σi

x〉
|σi

x|3

]
= b[γx] ,

ASTÉRISQUE 452



CHAPTER 3. SHORT TIME EXISTENCE I 29

aiming at showing the existence and uniqueness of the solutions of system (3.2), we
are led to deal with the following linearization of such system, with right-hand side
data ( f , η, b, ψ) in suitable spaces:

(3.5)



γi
t(x, t)− γi

xx(x,t)
|σi

x(x)|2 = f i(x, t) t∈ [0, T), x∈ [0, 1], i∈{1, 2, 3}

γi(1, t) = ηi(t) t∈ [0, T], i∈{1, 2, 3}
γ1(0, t)− γ2(0, t) = 0 t∈ [0, T]

γ2(0, t)− γ3(0, t) = 0 t∈ [0, T]

−∑3
i=1

(
γi

x(0,t)
|σi

x(0)|
− σi

x(0)〈γi
x(0,t) | σi

x(0)〉
|σi

x(0)|3

)
= b(t) t∈ [0, T]

γi(x, 0) = ψi(x) x∈ [0, 1], i∈{1, 2, 3}

Then, to apply Solonnikov’s theory in [100] (see also [31] and [66]), precisely
Theorem 5.4 for the Sobolev case and Theorem 4.9 for the Hölder case, respectively,
we have to show that this system satisfies the so–called complementary conditions
(see [100, Page 11] or [31, Chapter I] where they are also called Lopatinskii–Shapiro
condition), which are a sort of “algebraic” relations between the evolution equation
and the “boundary” constraints at the 3–point and at the end–points of the triod
(see [17, Section 3]). It is in general not so easy to show them, but in our case,
the ones related only to the parabolic operator are almost immediate since it is un-
coupled, while the remaining ones follow by applying the argument at pages 10–12,
Lemma I.1 in [31, Section I.2]. Indeed, for this particular system, by such argument,
they hold if at the triple junction, for every λ ∈ C with <(λ) > 0, every solution
z = (z1, z2, z3) ∈ C2([0,+∞), C3) of the second order ODE’s system

λzi(s)− z̈i(s)
|σi

x(0)|2
= 0 for every s ∈ [0,+∞) and i ∈ {1, 2, 3}

z1(0) = z2(0) = z3(0)

∑3
i=1

(
żi(0)
|σi

x(0)|
− σi

x(0)〈żi(0) | σi
x(0)〉

|σi
x(0)|3

)
= 0

which satisfies lims→+∞|zi(s)| = 0 is the trivial solution and similarly, at the end–
points, every solution z = (z1, z2, z3) ∈ C2([0,+∞), C3) ofλzi(s)− z̈i(s)

|σi
x(0)|2

= 0 for every s ∈ [0,+∞) and i ∈ {1, 2, 3}

zi(0) = 0 for every i ∈ {1, 2, 3}

which satisfies lims→+∞|zi(s)| = 0 is the trivial solution.
These two conditions are clearly immediate to be checked, by directly writing the
solutions to the above ODE’s.
Then, holding such complementary conditions, by Solonnikov’s theory, the linearized
system has actually a unique solution for ( f , η, b, ψ) in suitable spaces if the initial
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datum ψ ∈ I satisfies some “compatibility conditions” which are different in the
Sobolev and Hölder cases. We will discuss them precisely in the next sections.
Introducing the spaces

ẼT =
{

γ ∈ ET
∣∣ γ1(0, t) = γ2(0, t) = γ3(0, t), for i ∈ {1, 2, 3}, t ∈ [0, T]

}
⊆ ET

FT =
{
( f , η, b, ψ) in suitable spaces and ψ∈I satisfies the compatibility conditions

}
the existence and uniqueness of solutions of system (3.5) is then equivalent to the
fact that the linear map LT : ẼT → FT , defined as

LT(γ) =


γi

t −
γi

xx
|σi

x |2
γi|x=1

−∑3
i=1

(
γi

x
|σi

x |
− σi

x〈γi
x | σi

x〉
|σi

x |3

)∣∣∣
x=0

γi|t=0


i∈{1,2,3}

is a continuous isomorphism.
To “get back” to the solutions of the special flow system (3.2), we then need “contrac-
tion” estimates in order to apply a fixed point argument.
We define the space

E
φ,P
T =

{
γ ∈ ẼT

∣∣ γ|t=0 = φ and γi(1, t) = Pi, for i ∈ {1, 2, 3}
}

and an operator NT : E
φ,P
T → FT that “contains all the information” about the non–

linearity of our problem, given by

NT(γ) =
(

N1
T(γ), γ|x=1, 0, 0, N2

T(γ), γ|t=0
)

where

N1
T(γ)

i = f
i
[γi

xx, γi
x] =

(
1

|γi
x(x, t)|2

− 1
|σi

x(x)|2

)
γi

xx(x, t),(3.6)

for i ∈ {1, 2, 3} and

N2
T(γ)= b[γx]=

3

∑
i=1

[(
1

|γi
x(0, t)|

− 1
|σi

x(0)|

)
γi

x(0, t)+
σi

x(0)〈γi
x(0, t) | σi

x(0)〉
|σi

x(0)|3

]
(3.7)

are the functions at the right hand sides of equations (3.3) and (3.4), respectively.
We then introduce the operator KT : E

φ,P
T → E

φ,P
T defined by KT(γ) = L−1

T NT(γ),
where LT is the map above. Hence, γ is a solution for system (3.2) if and only if
γ ∈ E

φ,P
T and

LT(γ) = NT(γ) ⇐⇒ γ = L−1
T NT(γ) = KT(γ) .
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Thus, there exists a unique solution to system (3.2) if and only if KT : E
φ,P
T → E

φ,P
T

has a unique fixed point and to get this, it is enough to show that KT is a contraction.
This clearly solves the existence problem of a curvature flow, Problem (3.1) in the
space ET , when the initial data belongs to I (as we said, if the solution is not C2 at
least – like it will happen in the Sobolev case – we must “drop” the requirement that
the “tangential” part of the velocity is continuous).
Finally,we will have to deal with the geometric uniqueness of the flow, that is, if Tt
and T̃t are two solutions in such spaces, at every time one is a reparametrization of
the other. To conclude, we will extend all the results to the case of a general regular
network.
The next two sections will be devoted to exhibiting the details of this strategy of proof
in suitable Sobolev and Hölder spaces, respectively obtaining Theorems 3.6 and 3.25.

3.1. Well–posedness in Sobolev spaces

We are going to show the existence and the geometric uniqueness of the solutions
when the initial datum is a regular network in the fractional Sobolev space W2−2/p,p

(notice that here we are allowing non–C2 initial regular networks).

Definition 3.5. — Let p ∈ (3,+∞). Given an initial, regular, W2−2/p,p network S0,
composed of n curves σi : [0, 1] → Ω, with m triple junctions O1, O2, . . . Om ∈ Ω and (if
present) l end–points P1, P2, . . . , Pl ∈ ∂Ω in a smooth convex, open set Ω ⊆ R2, we say
that a family of homeomorphic networks St, described by the family of time–dependent curves
γi(·, t), is a Sobolev–solution of the motion by curvature problem with fixed end–points for
S0, in the time interval [0, T), if (with a little abuse of notation, switching the variables t and
x inside γ)

γi ∈ W1,p([0, T); Lp([0, 1]; Ω)) ∩ Lp([0, T); W2,p([0, 1]; Ω)) ,

there hold γi(x, 0) = σi(x) (in the sense of traces), for every x ∈ [0, 1] and i ∈ {1, 2, . . . , n}
(initial data) and the following system is (weakly) satisfied for every x ∈ [0, 1], t ∈ [0, T),
i ∈ {1, 2, . . . , n},

γi
t = kiνi + λiτi motion by curvature

γi
x(x, t) 6= 0 regularity

γr(1, t) = Pr with 0 ⩽ r ⩽ l fixed end–points condition
∑3

j=1 τpj(Op, t) = 0 at every 3–point Op angles of 120 degrees

where we used the same notation of Definition 2.11.

The goal of this section is to prove the following theorem.
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Theorem 3.6. — Let p ∈ (3,+∞) and let S0 be a regular initial network of class W2−2/p,p.
Then, there exists a geometrically unique Sobolev–solution St of the motion by curvature
problem for S0, as in the definition above, in a maximal time interval [0, T).

We let p ∈ (3,+∞) and we define the solutions space

ET = W1,2
p ([0, T)× [0, 1]) = W1,p([0, T); Lp([0, 1])) ∩ Lp([0, T); W2,p([0, 1]))

endowed with the norm ‖·‖ET = ‖·‖W1,2
p ([0,T)×[0,1]).

To keep the notation simple, here and in the following we avoid writing the “target”
spaces of the vector-valued functions, that is, for instanceW1,2

p ([0, T)× [0, 1]); Rk)will
be simply denoted with W1,2

p ([0, T) × [0, 1]), as the dimension of such target vector
space is clear from the context.
The space ET is then the intersection of two Sobolev spaces of functions with values
in a Banach space.
Let m ∈ N, I ⊆ R be an interval and X be a Banach space. For 1 ⩽ p ⩽ +∞, the
Sobolev space of order m ∈ N is defined as

Wm,p(I; X) = { f ∈ Lp(I; X) | ∂k
x f ∈ Lp(I; X) for all 1 ⩽ k ⩽ m} ,

which is a Banach space with the norm

‖ f ‖Wm,p(I;X) =

(
∑

0⩽k⩽m
‖∂k

x f ‖p
Lp(I;X)

)1/p

.

Elements in the solutions space ET are thus functions f ∈ Lp([0, T); Lp([0, 1])) that
have one distributional derivative with respect to time ∂t f ∈ Lp([0, T); Lp([0, 1])).
Furthermore, for almost every t ∈ [0, T), the function f (t) lies in W2,p([0, 1]) and
thus has two space derivatives ∂x f (t), ∂2

x f (t) ∈ Lp([0, 1]). One then easily sees that
the functions t 7→ ∂k

x f (t) belong to Lp([0, T); Lp([0, 1])), for k ∈ {1, 2}.
The space I of initial data is the time–trace of ET , given by the fractional Sobolev space
W2−2/p,p([0, 1]). In general, if d ∈ N, p ∈ [1,+∞) and θ ∈ [0, 1] the Gagliardo semi–
norm of an element f ∈ Lp([0, 1]) is defined as

[ f ]θ,p =

( ∫ 1

0

∫ 1

0

| f (x)− f (y)|p

|x − y|θp+1 dx dy
)1/p

,

then, if s ∈ (0,+∞) is not integer, the fractional Sobolev space Ws,p([0, 1]) is given by

Ws,p([0, 1]) =
{

f ∈ Wbsc,p([0, 1]
) ∣∣ [∂bsc

x f
]

s−bsc,p < +∞
}

,

with the norm
‖ f ‖Ws,p([0,1]) = ‖ f ‖Wbsc,p +

[
∂
bsc
x f

]
s−bsc,p .
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For p ∈ (3,+∞) and α ∈ (0, 1 − 3/p ], the Sobolev embedding theorem [107,
Theorem 4.6.1 (e)] implies

W2−2/p,p([0, 1]) ↪→ C1+α([0, 1]) ,

thus, we have the continuous embeddings

W1,2
p ([0, T)× [0, 1]) ↪→ C([0, T]; W2−2/p,p([0, 1])) ↪→ C([0, T]; C1+α([0, 1])) .

In particular, any initial network in W2−2/p,p is of class C1, hence the angle condition
at every triple junction is pointwise well–defined (classical). Similarly, we specify the
spaces of boundary values, as for p ∈ [1,+∞), the operators

f 7→ f (·, 0) and f 7→ f (·, 1) from W1,2
p ([0, T)× [0, 1]) to W1−1/2p,p([0, T))

f 7→ fx(·, 0) from W1,2
p ([0, T)× [0, 1]) to W1/2−1/2p,p([0, T))

are linear and continuous (Theorem 5.1 in [100]).

Now, to showTheorem3.6, we “specialize” the line of proof illustrated in the previous
section to this Sobolev case, adding themissing details. As we said, wewill deal with
a triod and then we will explain how all the conclusions extend to general networks.

3.1.1.Well–posedness of the linearized system (3.5) andof the special flow (3.2). —
The first point to be made precise is what are the “compatibility conditions” that the
initial datum must satisfy so that the linearized system (3.5) has a unique solution.

Definition 3.7 (Linear compatibility conditions). — A functionψ = (ψ1, ψ2, ψ3) ∈ I

satisfies the linear compatibility conditions for system (3.5) with respect to the functions
η = (η1, η2, η3) and b if, for i, j ∈ {1, 2, 3}, there holds ψi(0) = ψj(0), ψi(1) = ηi(0) and

(3.8) −
3

∑
i=1

(
ψi

x(0)
|σi

x(0)|
− σi

x(0)〈ψi
x(0) | σi

x(0)〉
|σi

x(0)|3

)
= b(0) .

Then, the following proposition is a consequence of Theorem 5.4 in the book of
Solonnikov [100] (see also [66] and [31]) keeping in mind that we know that sys-
tem (3.5) satisfies the complementary conditions.

Proposition 3.8. — Let p ∈ (3,+∞). For every T > 0, system (3.5) has a unique
solution γ ∈ ET provided that f ∈ Lp([0, T); Lp([0, 1]), η ∈ W1−1/2p,p([0, T)),
b ∈ W1/2−1/2p,p([0, T)) and ψ ∈ W2−2/p,p([0, 1]) fulfills the linear compatibility con-
ditions stated in Definition 3.7, with respect to η and b.
Moreover, there exists a constant C = C(T) > 0 such that the following estimate holds:

‖γ‖ET ⩽C(‖ f ‖Lp([0,T);Lp([0,1]))+‖η‖W1−1/2p,p([0,T))+‖b‖W1/2−1/2p,p([0,T))+‖ψ‖W2−2/p,p([0,1])).
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This proposition can be restated by saying that the linear operator LT : ẼT → FT
defined as

LT(γ) =


γi

t −
γi

xx
|σi

x |2
γi|x=1

−∑3
i=1

(
γi

x
|σi

x |
− σi

x〈γi
x | σi

x〉
|σi

x |3

)∣∣∣
x=0

γi|t=0


i∈{1,2,3}

is a continuous isomorphism between the spaces
ẼT=

{
γ=(γ1,γ2,γ3)∈ET

∣∣γ1(0,t)=γ2(0,t)=γ3(0,t), for i∈{1,2,3} and t∈[0,T)
}
⊆ET

FT=

{
( f ,η,b,ψ)∈Lp([0,T);Lp([0,1]))×W1−1/2p,p([0,T))×W1/2−1/2p,p([0,T))×W2−2/p,p([0,1])

ψ satisfies the linear compatibility conditions of Definition 3.7 with respect to η and b

}
Moreover, it is possible to prove (Lemma 3.6 in [44]) that for every T0 > 0, there
exists a constant C(T0, p) such that

sup
T∈(0,T0]

∣∣∣∣∣∣∣∣∣L−1
T

∣∣∣∣∣∣∣∣∣
L (FT ,ẼT)

⩽ C(T0, p) .

As we said in the previous section, the well–posedness of the linearized system im-
plies the same for the special flow, by means of contraction estimates involving the
operator NT : E

φ,P
T → FT , given by

NT(γ) =
(

N1
T(γ), γ|x=1, 0, 0, N2

T(γ), γ|t=0
)

where N1
T and N2

T are defined by formulas (3.6) and (3.7), respectively and

E
φ,P
T =

{
γ ∈ ẼT

∣∣ γ|t=0 = φ and γi(1, t) = Pi, for i ∈ {1, 2, 3}
}

.

The following result is proved in [44, Theorem 3.7], it gives the existence and unique-
ness for the special flow of a regular initial triod in the Sobolev setting.

Theorem 3.9. — Let p ∈ (3,+∞) and let σ = (σ1, σ2, σ3) ∈ W2−2/p,p([0, 1]) describes a
regular triod. In particular,

L σ = L−1
1 (0, σ(1), 0, σ)

is well defined, as σ satisfies the linear compatibility conditions in Definition 3.7 with respect
to the functions t 7→ σ(1) and zero.
Then, there exists a positive time T̃ = T̃(σ), depending on mini∈{1,2,3}, x∈[0,1] |σi

x(x)| and
‖σ‖W2−2/p,p([0,1]), such that for all T ∈ (0, T̃), the system (3.2) has a solution E σ in ẼT
which is unique in

BM = {γ ∈ ẼT | ‖γ‖ET ⩽ M},

with
M = 2 max

{
sup

T∈(0,1]

∣∣∣∣∣∣∣∣∣L−1
T

∣∣∣∣∣∣∣∣∣
L (FT ,ẼT)

, 1
}

max
{
‖L σ‖E1 , ‖(N1

1 (L σ), σ(1), N2
1 (L σ), σ)‖F1

}
.
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3.1.2. Existence and geometric uniqueness. — Once we have obtained the existence
and uniqueness of solutions to the special flow (3.2), we can come back to the geo-
metric problem. The following theorem gives the “existence part” of Theorem 3.6.

Theorem 3.10. — Let p ∈ (3,+∞) and T0 a regular initial triod parametrized by
σ = (σ1, σ2, σ3) ∈ W2−2/p,p([0, 1]). Then, for some T > 0, there exists a Sobolev–solution
of the motion by curvature problem in Definition 3.5 with initial datum T0, in the time inter-
val [0, T).

Proof. Proposition 3.9 implies that there exists T>0 and a solutionE σ∈W1,2
p ([0,T)×[0,1])

to the special flow system (3.2) in [0,T] with E σ(0)=σ. Then, setting γ(x,t)=E σ(t)(x),
we have that Tt =

⋃3
i=1 γi([0, 1], t) is a Sobolev–solution to the motion by curvature

with initial triod T0 in [0, T).

Now we deal with the geometric uniqueness of the solution given by the previous
theorem.

Theorem 3.11. — Let p ∈ (3,+∞) and T0 a regular initial triod parametrized by
σ = (σ1, σ2, σ3) ∈ W2−2/p,p([0, 1]). If Tt, T̃t are two Sobolev–solutions to the mo-
tion by curvature problem in Definition 3.5 with initial datum T0, in the time intervals
[0, T) and [0, T̃), respectively, then Tt and T̃t coincides up to reparametrization, for all
t ∈ [0, min{T, T̃}). In particular, Tt is geometrically unique.

Proof. By Proposition 3.9, we have a Sobolev–solution γ = E σ of system (3.2) with
initial datum σ, which is unique in BM, with M as in such proposition. In particular,
it gives a Sobolev–solution Tt to the motion by curvature in [0, T) with initial datum
T0.
Suppose that there is another Sobolev–solution T̃t with initial datum T0 in [0, T̃),
parametrized by γ̃ ∈ ET̃ . We then want to show that there exists a family of
time–dependent diffeomorphisms φi(·, t) : [0, 1] → [0, 1] with t ∈ [0, T̂) for some
T̂ ⩽ min{T, T̃}, such that φi(·, 0) is the identity and the equality

γ̃i(φi(x, t), t) = γi(x, t)

holds in the space ET̂ , for every i ∈ {1, 2, 3}. In order to make use of the uniqueness
conclusion in Proposition 3.9, we construct the reparametrizations φ = (φ1, φ2, φ3)
in such a way that the functions (x, t) 7→ γ̃i(φi(x, t), t) are a solution to the special
flow in ET̂ with initial datum σ.
Then, formal differentiation shows that the reparametrizations φi need to satisfy the
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following boundary value problem:

(3.9)



φi
t(x,t)=

φi
xx(x,t)∣∣γ̃i

x(φi(x,t),t)
∣∣2 φi

x(x,t)2
−
〈

γ̃i
t(φi(x,t),t)− γ̃i

xx(φi(x,t),t)
|γ̃i

x(φi(x,t),t)|2

∣∣∣∣ γ̃i
x(φi(x,t),t)

|γ̃i
x(φi(x,t),t)|2

〉
φi(0,t)=0

φi(1,t)=1

φi(x,0)=x

We observe that the right-hand side of the motion equation in system (3.9) con-
tains terms of the form Qi(φi(x, t), t). To remove this dependence it is con-
venient to consider the associated problem for the inverse diffeomorphisms
ξ = (ξ1, ξ2, ξ3) given by ξ i(·, t) = φi(·, t)−1, for every fixed t ∈ [0, T̂). Indeed,
suppose that φ ∈ W1,2

p ([0, T̃) × [0, 1]; [0, 1]3) is a solution of system (3.9) with
φi(·, t) : [0, 1] → [0, 1] a C1–diffeomorphism, then it is easy to show that also ξ is of
class W1,2

p ([0, T̃)× [0, 1]; [0, 1]3) (and viceversa) and the formulas

ξ i
y(y, t) = φi

x(ξ
i(y, t), t)−1

ξ i
yy(y, t) = −ξ i

y(y, t)3 φi
xx(ξ

i(y, t), t)

yield the evolution equation

ξ i
t(y, t) =− φi

t(ξ
i(y, t), t)ξ i

y(y, t)

=− φi
xx(ξ

i(y, t), t)∣∣γ̃i
x(y, t)

∣∣2 ξ i
y(y, t)3 +

〈
γ̃i

t(y, t)− γ̃i
xx(y, t)

| γ̃i
x(y, t)|2

∣∣∣∣ γ̃i
x(y, t)∣∣γ̃i

x(y, t)
∣∣2
〉

ξ i
y(y, t)

=
ξ i

yy(y, t)∣∣γ̃i
x(y, t)

∣∣2 +

〈
γ̃i

t(y, t)− γ̃i
xx(y, t)

| γ̃i
x(y, t)|2

∣∣∣∣ γ̃i
x(y, t)∣∣γ̃i

x(y, t)
∣∣2
〉

ξ i
y(y, t) .

Hence, we have the following linear system for ξ,

ξ i
t(y, t) =

ξ i
yy(y, t)∣∣γ̃i
x(y, t)

∣∣2 +

〈
γ̃i

t(y, t)− γ̃i
xx(y, t)

| γ̃i
x(y, t)|2

∣∣∣∣ γ̃i
x(y, t)∣∣γ̃i

x(y, t)
∣∣2
〉

ξ i
y(y, t)

ξ i(0, t) = 0

ξ i(1, t) = 1

ξ i(y, 0) = y

for all t ∈ [0, T̃), y ∈ [0, 1] and i ∈ {1, 2, 3}.

We observe that this linear boundary value problemhas a very similar structure to the
linearization of special flow system (3.5), with a perturbation in the evolution equa-
tion of lower order. Then, checking that it satisfies the complementary conditions is
analogous and the compatibility conditions for the initial data are simply ψi(0) = 0
and ψi(1) = 1, which are clearly satisfied by ξ i(y, 0) = y.
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Hence, again by Solonnikov’s theory (Theorem 5.4 in [100]), we have a solu-
tion ξ i ∈ W1,2

p ([0, T̂) × [0, 1]), for some T̂ ⩽ T̃, such that for every t ∈ [0, T̂]
the map ξ i(·, t) : [0, 1] → [0, 1] is a C1–diffeomorphism. Then, the inverse
functions φi(·, t) = ξ i(·, t)−1 also belong to W1,2

p ([0, T̂) × [0, 1]) and solve sys-
tem (3.9). It is not difficult to show (see [44, Lemma 3.17]) that the composition
(x, t) 7→ γ̃i(φi(x, t), t) lies in ET̂ and by construction, it is a solution to the special
flow system (3.2) with initial datum σ. We may now choose a possibly smaller T̂
such that (x, t) 7→ γ̃i(φi(x, t), t) belongs to BM, hence it must coincide with γ re-
stricted to the time interval [0, T̂).
Let now T ⩽ min{T, T̃} be the infimum of the times in which T̃t is not a
reparametrization of Tt and suppose T < min{T, T̃}. Then, T̃T is obtained via a
reparametrization φ of TT and if we consider the flow obtained reparametrizing all
the networks Tt, for t ⩾ T, with the same fixed “static” reparametrization φ, we ob-
tain a Sobolev–solution with initial datum T̃T on some time interval [T, T + δ). Then,
by the previous discussion about uniqueness, it must coincide with the flow T̃t for
t ∈ [T, T + δ′), for some δ′ > 0. This clearly shows that for t ∈ [T, T + δ′), all the net-
works T̃t are reparametrizations of Tt, in contradiction with the infimum property
of T and we are done.

Putting together these two theorems, we obtain Theorem 3.6 in the special case of a
triod.

3.1.3. Extension to general regular networks. — We explain here how to generalize
the previous analysis for a triod to general networks.
We consider an initial regular network S0 composed of n curves, with l end–points
γk(t, 1) = Pk ∈ ∂Ω, for k ∈ {1, . . . , l} and m triple junctions O1, O2, . . . Om ∈ Ω. As
in Section 2.1 (recall the discussion just after Remark 2.5), we will denote by σpj, for
j ∈ {1, 2, 3}, the curves of this network concurring at Op, for every p ∈ {1, . . . , m}.
The equations of motion for the special flow system (2.5) for S0 and its linearization
do not differ from the version for a triod: formula (3.3) must hold for each curve γi

of the network,

γi
t(x, t)− γi

xx(x, t)∣∣σi
x(x)

∣∣2 =

(
1∣∣γi

x(x, t)
∣∣2 − 1∣∣σi

x(x)
∣∣2
)

γi
xx(x, t) ,

for every i ∈ {1, . . . , n} and we have formula (3.4) at each triple junc-
tion, that is, assuming that Op(t) = γp1(0, t) = γp2(0, t) = γp3(0, t) and
Op(0) = σp1(0) = σp2(0) = σp3(0),

3

∑
j=1

γ
pj
x

|σpj
x |

− σ
pj
x 〈γpj

x | σ
pj
x 〉

|σpj
x |3

=
3

∑
j=1

[(
1

|γpj
x |

− 1

|σpj
x |

)
γ

pj
x +

σ
pj
x 〈γx | σ

pj
x 〉

|σpj
x |3

]
,

where σ
pj
x = σ

pj
x (0) and γ

pj
x = γ

pj
x (0, t), for every p ∈ {1, . . . , m}.
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The analogous of the linearized system (3.5) is then the following,

(3.10)



γi
t(x, t)− γi

xx(x,t)
|σi

x(x)|2
= f i(x, t) t∈ [0, T), x∈ [0, 1], i∈{1, . . . , n}

γk(1, t) = ηk(t) t∈ [0, T], k∈{1, . . . , l}
γp1(0, t)− γp2(0, t) = 0 t∈ [0, T], p∈{1, . . . , m}
γp2(0, t)− γp3(0, t) = 0 t∈ [0, T], p∈{1, . . . , m}

−∑3
j=1

(
γ

pj
x (0,t)

|σpj
x (0)|

− σ
pj
x (0)〈γpj

x (0,t) | σ
pj
x (0)〉

|σpj
x (0)|3

)
=bp(t) t∈ [0, T], p∈{1, . . . , m}

γi(x, 0) = ψi(x) x∈ [0, 1], i∈{1, . . . , n}

for a general right hand side ( f , η, b, ψ), with η = (η1, . . . , ηl) and b = (b1, . . . , bm).
Hence, in order to apply again Solonnikov’s theory to get the well–posedness of this
linearized system, the necessary complementary conditions are simply the same that
we have seen for a single triple junction and only three end–points, repeated for each
3–point and end–point in this case and we can check all of them exactly in the same
way we did for a triod.
Then, the generalization of Definition 3.7 is as follows, which is simply asking that
equation (3.8) holds at every 3–point.

Definition 3.12. — Let p ∈ (3,+∞). A function ψ = (ψ1, . . . , ψn) of class
W2−2/p,p([0, 1]) satisfies the linear compatibility conditions for system (3.10),
with respect to given functions η = (η1, . . . , ηl) ∈ W1−1/2p,p([0, T) and b and
b = (b1, . . . , bm) ∈ W1/2−1/2p,p([0, T)) if, for every k ∈ {1, . . . , l} and p ∈ {1, . . . , m},
there holds ψk(1) = ηk(0) ψp1(0) = ψp2(0) = ψp3(0) and

−
3

∑
j=1

(
ψ

pj
x (0)

|σpj
x (0)|

−
σ

pj
x (0)

〈
ψ

pj
x (0) | σ

pj
x (0)

〉
|σpj

x (0)|3

)
= bp(0) .

The rest of the proof leading to Theorem 3.6 then follows analogously to the case of
a triod, in particular the version of Theorem 3.9 for general initial regular networks.
All this discussion concludes the proof of Theorem 3.6.

Remark 3.13. — We mention that a different argument to extend the conclusions
from the case of a triod to the one of a general network is to add some extra “fake
boundary points” in the middle of every curve “separating” it in two new curves
so that each curve of the resulting new family always connects one triple junction
and one boundary point. Then, imposing “artificial” boundary conditions on such
“fake boundary points” forbidding two of the new curves concurring there to form
an angle, we have a new systemwhich is “equivalent” to system (3.10) and easier (in
terms of notation) to be dealt with. Applying Solonnikov’s theory to such a system,
one then gets the same conclusion that we obtained above. This line was pursued
in [108], where the author carries on this procedure in full detail.
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3.2. Well–posedness in Hölder spaces

We want to show the existence and the geometric uniqueness of the flow,
Problem (2.3) in Definition 2.11, when all the curves of the initial regular net-
work belong to the Hölder space C2+2α, with α ∈ (0, 1/2) and satisfy some extra
conditions. We underline that this section is based on the results of Bronsard and
Reitich in [17] (see also [82]).
We do not need a particular definition for these flows, that we are going to callHölder–
solutions or Hölder–curvature flows , similarly as we did with Definition 3.5 for the
Sobolev case, since the initial data space I will be the Hölder space C2+2α([0, 1]),
which is a subspace of the “natural” space of initial C2 regular networks. Omitting,
as before, the target vector space for simplicity of notation, we have

I = C2+2α([0, 1])

and the solutions space,

ET = C2+2α,1+α([0, 1]× [0, T)) ,

with α ∈ (0, 1/2), endowed the norm ‖·‖ET = ‖·‖C2+2α,1+α([0,1]×[0,T)).
For the reader’s convenience, we recall the definition and some properties of
these parabolic Hölder spaces (see [100, Sections 11 and 13]). For a function
u : [0, 1]× [0, T] → R, we define the Hölder semi–norms

[u]β,0 = sup
x,y∈[0,1], t∈[0,T]

|u(x, t)− u(y, t)|
|x − y|β

,

and
[u]0,θ = sup

x∈[0,1] t,τ∈[0,T]

|u(x, t)− u(x, τ)|
|t − τ|θ

,

then C2+2α,1+α([0, 1] × [0, T]) is the space of the functions u : [0, 1] × [0, T] → R

having continuous derivatives ∂i
t∂

j
xu, for every i, j ∈ N with 2i + j ⩽ 2 and such that

the norm

‖u‖C2+2α,1+α([0,1]×[0,T]) =
2

∑
2i+j=0

∥∥∥∂i
t∂

j
xu
∥∥∥

∞
+ ∑

2i+j=2

[
∂i

t∂
j
xu
]

2α,0
+ ∑

2i+j=2

[
∂i

t∂
j
xu
]

0,α

is finite.
As we did for the Sobolev case in the previous section, we now “specialize” the strat-
egy of proof illustrated at the beginning to the Hölder case. Again, we first deal with
a triod and then we extend all the results to general networks.
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3.2.1. Well–posedness of the linearized system (3.5) and of the special flow (3.2). —
Differently from the Sobolev case, to get well–posedness of system (3.2) in the above
Hölder spaces, the initial datum cannot merely be a regular triod, but suitable “extra
conditions” are necessary.

Definition 3.14. — We say that the compatibility conditions of order 2 for system (3.2)
are satisfied by the (initial) C2 regular triod T0 =

⋃3
i=1 σi ([0, 1]), if at the end–points and

at the 3–point, there hold all the relations on the space derivatives, up to second order, of the
functions σi given by the boundary conditions and their time derivatives, assuming that the
evolution equation holds also at such points.
Explicitly, the compatibility conditions of order 0 at the 3–point are

σi(0) = σj(0) for every i, j ∈ {1, 2, 3}

and
σi(1) = Pi for every i ∈ {1, 2, 3},

that is, simply the concurrency and fixed end–points conditions.
The compatibility condition of order 1 is given by

3

∑
i=1

σi
x(0)

|σi
x(0)|

= 0 ,

that is, the 120 degrees condition at the 3–point.
To get the second order conditions, one has to differentiate in time the first ones, getting

σi
xx(0)

|σi
x(0)|2

=
σ

j
xx(0)

|σj
x(0)|2

for every i, j ∈ {1, 2, 3}

and
σi

xx(1)
|σi

x(1)|2
= 0 for every i ∈ {1, 2, 3} .

As in the Sobolev case, we consider the linearized system (3.5), which also needs
more conditions on the initial data in order to be well–posed.

Definition 3.15. — A function ψ = (ψ1, ψ2, ψ3) ∈ I satisfies the linear compatibil-
ity conditions of order 2 for system (3.5) with respect to the functions f = ( f 1, f 2, f 3),
η = (η1, η2, η3) and b, if ψ satisfies the linear compatibility conditions as in Definition 3.7
and, in addition,

ψi
xx(0)

|σi
x(0)|2

+ f i(0, 0) =
ψ

j
xx(0)

|σj
x(0)|2

+ f j(0, 0) for every i, j ∈ {1, 2, 3}

and
ψi

xx(1)
|σi

x(1)|2
+ f i(1, 0) = ηi

t(0) for every i ∈ {1, 2, 3} .
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Then, the following proposition (analogous to Proposition 3.8) is a consequence of
Theorem 4.9 in the book of Solonnikov [100] (see also [66] and [31]), as we know
that system (3.5) satisfies the complementary conditions.

Proposition 3.16. — Let α ∈ (0, 1/2). For every T > 0, system (3.5) has a unique solu-
tion γ ∈ ET provided that f ∈ C2α,α([0, 1]× [0, T]), η ∈ C1+α([0, T]), b ∈ C1/2+α([0, T])
and ψ ∈ C2+2α([0, 1]) fulfills the linear compatibility conditions of order 2 stated in
Definition 3.15. Moreover, there exists a constant C = C(T) > 0 such that the following
estimate holds:

‖γ‖ET ⩽ C
(
‖ f ‖C2α,α([0,1]×[0,T]) + ‖η‖C1+α([0,T]) + ‖b‖C1/2+α([0,T]) + ‖ψ‖C2+2α([0,1])

)
.

Arguing as in the Sobolev case, by means of contraction estimates, the work of
Bronsard and Reitich [17] then shows the well–posedness of the special curvature
flow system (3.2) in the Hölder setting.

Theorem 3.17. — For any initial, regular C2+2α triod T0 =
⋃3

i=1 σi([0, 1]), with
α ∈ (0, 1/2), satisfying the compatibility conditions of order 2, there exists a positive time T
such that system (3.2) has a unique solution in C2+2α,1+α([0, 1]× [0, T]). Moreover, every
triod Tt =

⋃3
i=1 γi([0, 1], t) satisfies the compatibility conditions of order 2.

Remark 3.18. — In [17] the authors do not consider exactly system (3.2), but the
analogous “Neumannproblem”. That is, they require that the end–points of the three
curves meet the boundary of Ω orthogonally.

3.2.2. Existence and geometric uniqueness. — Clearly, a solution of system (3.2)
provides a Hölder–solution to Problem (3.1).

Theorem 3.19. — For any initial, regular C2+2α triod T0 =
⋃3

i=1 σi([0, 1]), with
α ∈ (0, 1/2), in a smooth, convex, open set Ω ⊆ R2, satisfying the compatibility condi-
tions of order 2, there exists a Hölder–curvature flow of T0 of class C2+2α,1+α([0, 1]× [0, T))
in a maximal positive time interval [0, T). Moreover, every triod Tt =

⋃3
i=1 γi([0, 1], t)

satisfies the compatibility conditions of order 2.

Proof. If γi ∈ C2+2α,1+α([0, 1] × [0, T)) is a solution of system (3.2), then it solves
Problem (3.1) with

λi(x, t) =
〈γi

xx(x, t) | τi(x, t)〉∣∣γi
x (x, t)

∣∣2 =
〈γi

xx(x, t) | γi
x(x, t)〉∣∣γi

x (x, t)
∣∣3 .

Indeed, it follows immediately by the regularity properties of this flow that the rela-
tive functions λi belong to the parabolic Hölder space C2α,α([0, 1]× [0, T)) (hence, in
Cα([0, 1]× [0, T)), thus continuous) and all the triods Tt are in C2+2α, satisfying the
compatibility conditions of order 2.
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The property that these evolving triods are regular follows by the standard fact
that the maps γi

x are continuous, belonging to C1+2α,1/2+α([0, 1] × [0, T]) (see [65,
Section 8.8]), hence, being σi regular curves, γi

x(x, t) 6= 0 still holds for every x ∈ [0, 1]
and for some positive interval of time.
The fact that a curve cannot self–intersect or two curves cannot intersect each other
can be ruled out by noticing that such an intersection cannot happen at the 3–point
by geometric reasons, as the curvature is locally bounded and the curves are regular,
then it is well known for themotion by curvature that strongmaximumprinciple pre-
vents such intersections for the flow of two embedded curves (or two distinct parts of
the same curve). A similar argument and again the strong maximum principle also
prevent a curve from “hitting” the boundary of Ω at a point different from a fixed
end–point of the triod.

Remark 3.20. — Since every curve γi of a special curvature flow Tt satisfies γi
t =

γi
xx

|γi
x |2

for every t > 0, by the very Definition 3.14, every triod Tt is 2–compatible.
If instead we have simply a C2,1 curvature flow Tt, it is not necessarily 2–compatible
for every time. It only has to satisfy kν + λτ = 0 at every end–point and

(kiνi + λiτi)(O) = (kjνj + λjτ j)(O), for i, j ∈ {1, 2, 3} .

These relations imply anyway that for every evolving triod Tt the curvature is zero
at the end–points and the sum of the three curvatures at the 3–point is zero. We are
going to see that this implies that by reparametrizing Tt by a C∞ map we obtain a
2–compatible network.

The observations in this remark can be clearly extended to general networks, as well
as Definition 3.14.

Definition 3.21. — We say that a regular C2 network S0 =
⋃n

i=1 σi([0, 1]) is 2–compatible
if the maps σi satisfy the compatibility conditions of order 2 for system (2.5), that is
σi

xx = 0 at every end–point and

σ
pi
xx(Op)

|σpi
x (Op)|2

=
σ

pj
xx(Op)

|σpj
x (Op)|2

for every pair of curves σpi and σpj concurring at any 3–point Op (where we abused a little
the notation like in Definition 2.11).

Definition 3.22. — We say that a regularC2 network S0 =
⋃n

i=1 σi([0, 1]) is geometrically
2–compatible if the curvature is zero at every end–point and the sum of the three curvatures
at every 3–point is zero.
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By this definition, to be geometrically 2–compatible is a property invariant by
reparametrization of the curves of a network (it involves only the curvature, a ge-
ometric quantity invariant under reparametrization). Arguing as in Remark 3.20, we
immediately have the following proposition.

Proposition 3.23. — Given a curvature flow St of an initial regular C2 network
S0 =

⋃n
i=1 σi([0, 1]) all the networks St, for t > 0, are geometrically 2–compatible.

There is a clear relation between geometrically 2–compatible and 2–compatible net-
works that we give in the following lemma.

Lemma 3.24. — Let S0 =
⋃n

i=1 σi([0, 1]) be a geometrically 2–compatible network. Then,
it admits a regular reparametrization by a C∞ map such that it becomes 2–compatible.

Proof. We look for some C∞ maps θi : [0, 1] → [0, 1], with θi
x(x) 6= 0 for every x ∈ [0, 1]

and θi(0) = 0, θi(1) = 1 such that the reparametrized curves σ̃i = σi ◦ θi satisfy

σ̃i
xx

|σ̃i
x|2

=
σ̃

j
xx

|σ̃j
x|2

for every pair of concurring curves σ̃i and σ̃j at any 3–point and σ̃i
xx = 0 at every

end–point of the network. Setting λ̃i
0 = 〈σ̃i

xx |σ̃i
x〉

|σ̃i
x |3

this means

k̃i ν̃i + λ̃i
0τ̃i = k̃jν̃j + λ̃

j
0τ̃ j

for every pair of concurring curves σ̃i and σ̃j at any 3–point and k̃i ν̃i + λ̃i
0τ̃i = 0 at

every end–point of the network. Since the curvature is invariant by reparametrization,
using computations of Section 2.3 and the hypotheses on the curvature, these two
conditions are satisfied if and only if λ̃i

0 = 0 at every end–point of the network and

λ̃i
0 =

ki−1 − ki+1
√

3

at every 3–point of the network, for i ∈ {1, 2, 3} (modulus 3).
Hence, we only need to find C∞ reparametrizations θi such that at the borders of [0, 1]

the values of λ̃i
0 = 〈σ̃i

xx |σ̃i
x〉

|σ̃i
x |3

are given by these relations. This can be easily done since
at the borders of the interval [0, 1] we have θi(0) = 0 and θi(1) = 1, hence

λ̃i
0=

〈σ̃i
xx |σ̃i

x〉
|σ̃i

x|3
=−∂x

1
|σ̃i

x|
=−∂x

1
|σi

x ◦ θi|θi
x
=

〈σi
xx |σi

x〉
|σi

x|3
+

θi
xx

|σi
x||θi

x|2
= λi

0 +
θi

xx
|σi

x||θi
x|2

where λi
0=

〈σi
xx |σi

x〉
|σi

x |3
, thenwe can simply choose any C∞ functions θi with θi

x(0)= θi
x(1)=1,

θi
xx = −λi

0|σi
x||θi

x|2 at every end–point and

θi
xx =

(
ki−1 − ki+1

√
3

− λi
0

)
|σi

x||θi
x|2
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at every 3–point of the network (for instance, one can use a polynomial function). It
follows that the reparametrized network S̃0 =

⋃n
i=1(σ

i ◦ θi)([0, 1]) is 2–compatible.

We are then ready to deal with networks with general topological structure, having
as a goal the following final conclusion.

Theorem 3.25. — For any initial, regular C2+2α network S0 =
⋃n

i=1 σi([0, 1]), with
α ∈ (0, 1/2), in a smooth, convex, open set Ω ⊆ R2, which is geometrically 2–compatible,
there exists a geometrically unique Hölder– C2+2α,1+α([0, 1]× [0, T)) curvature flow St (in
the sense of Definition 3.1) in C2+2α,1+α([0, 1]× [0, T)), in a maximal time interval [0, T).
Moreover, all the networks St are geometrically 2–compatible.

We first extend the short–time existence Theorem 3.19 to regular, C2+2α initial net-
works which are geometrically 2–compatible, hence showing the “existence part” of
Theorem 3.25.

Proposition 3.26. — For any initial regular C2+2α network S0 =
⋃n

i=1 σi([0, 1]) which is
geometrically 2–compatible, with α ∈ (0, 1/2), in a smooth, convex, open set Ω ⊆ R2, there
exists a Hölder–curvature flow of class C2+2α,1+α([0, 1]× [0, T)) for a maximal positive time
interval [0, T).

Proof. By Lemma 3.24, we can reparametrize the network S0 with some C∞ maps θi to
make it 2–compatible. If the network S0 belongs to C2+2α the reparametrized one S̃0 is
still in C2+2α, thenwe can argue step–by–step exactly as we did in Section 3.1.3 for the
Sobolev setting, in order to extend Theorem 3.17 to general regular networks, getting
the unique special curvature flow γ̃i for S̃0 =

⋃n
i=1 σ̃i([0, 1]) =

⋃n
i=1(σ

i ◦ θi)([0, 1])
which is in C2+2α,1+α([0, 1] × [0, T)) for a maximal positive time interval [0, T).
Moreover, every network St =

⋃n
i=1 γi([0, 1], t) is 2–compatible.

If now we consider the maps γi given by γi(x, t) = γ̃i([θi]−1(x), t), we have that they
still belong to C2+2α,1+α([0, 1]× [0, T)) (as the maps [θi]−1 are in C∞), γi(·, 0) = σi

and

γi
t(x, t) = ∂t[γ̃

i([θi]−1(x), t)]

= γ̃i
t([θ

i]−1(x), t)

= k̃
i
([θi]−1(x), t) + λ̃i([θi]−1(x), t)τ̃i([θi]−1(x), t)

= ki(x, t) + λi(x, t) ,

with λi(x, t) = λ̃i([θi]−1(x), t)τ̃i([θi]−1(x), t). Hence, γi is a flow by curvature of the
network S0 in C2+2α,1+α([0, 1]× [0, T))

Finally, we address the geometric uniqueness of the flow in Hölder space, obtaining
Theorem 3.25.
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Proof of Theorem 3.25. By Proposition 3.26, we have a Hölder–curvature flow St of S0,
given by the family of moving curves γi. We first show that if S0 =

⋃n
i=1 σi([0, 1]) sat-

isfies the compatibility conditions of order 2 then the solution given by Theorem 3.19
(which is the special flow given by the extension of Theorem 3.17, as in the proof of
the previous proposition) is geometrically unique among the curvature flows in the
class C2+2α,1+α([0, 1]× [0, T)).
Suppose that γ̃i : [0, 1] × [0, T̃) → Ω is another maximal solution in
C2+2α,1+α([0, 1] × [0, T̃)) satisfying γ̃i

t = k̃i ν̃i + λ̃iτ̃i for some functions λ̃i in
C2α([0, 1]× [0, T̃)), we want to see that it coincides with γi up to a reparametrization
of the curves γ̃i(·, t) for every t ∈ [0, min{T, T̃}).
If we consider functions φi : [0, 1] × [0, min{T, T̃}) → [0, 1] belonging to
C2+2α,1+α([0, 1]× [0, min{T, T̃})) and the reparametrizations γi(x, t) = γ̃i(φi(x, t), t),
we have that γi ∈ C2+2α,1+α([0, 1]× [0, min{T, T̃})) and

γi
t(x, t) = ∂t[γ̃

i(φi(x, t), t)]

= γ̃i
x(φi(x, t), t)φi

t(x, t) + γ̃i
t(φi(x, t), t)

= γ̃i
x(φi(x, t), t)φi

t(x, t) + k̃
i
(φi(x, t), t) + λ̃

i
(φi(x, t), t)

= γ̃i
x(φi(x, t), t)φi

t(x, t) +
〈
γ̃i

xx
(

φi(x, t), t
)
| ν̃i(φi(x, t), t)

〉∣∣γ̃i
x
(

φi(x, t), t
)∣∣2 ν̃i(φi(x, t), t)

+ λ̃i(φi(x, t), t)
γ̃i

x(φi(x, t), t)∣∣γ̃i
x
(

φi(x, t), t
)∣∣ .

We choose now maps φi ∈ C2+2α,1+α([0, 1] × [0, T̂)) which are solutions for some
positive interval of time [0, T̂) of the following quasilinear PDE’s

(3.11) φi
t(x,t)=

〈
γ̃i

xx

(
φi(x,t),t

)
|γ̃i

x(φi(x,t),t)
〉

∣∣γ̃i
x
(

φi(x,t),t
)∣∣4 − λ̃i(φi(x,t),t)∣∣γ̃i

x
(

φi(x,t),t
)∣∣+ φi

xx(x,t)∣∣γ̃i
x
(

φi(x,t),t
)∣∣2∣∣φi

x(x,t)
∣∣2

with φi(0, t) = 0, φi(1, t) = 1 and φi(x, 0) = x (hence, γi(x, 0) = γi(x, 0) = σi(x)).
To find such reparametrizations φ, we consider, as in Section 3.1.2, the associated
problem for the inverse diffeomorphisms ξ = (ξ1, ξ2, ξ3) given by ξ i(·, t) = φi(·, t)−1,
for every fixed t ∈ [0, T̂).

ξ i
t(y, t) =

ξ i
yy(y, t)∣∣γ̃i
x(y, t)

∣∣2 +

〈
γ̃i

t(y, t)− γ̃i
xx(y, t)

| γ̃i
x(y, t)|2

∣∣∣∣ γ̃i
x(y, t)∣∣γ̃i

x(y, t)
∣∣2
〉

ξ i
y(y, t)

ξ i(0, t) = 0

ξ i(1, t) = 1

ξ i(y, 0) = y

for all t ∈ [0, T̃), y ∈ [0, 1] and i ∈ {1, 2, 3}.
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We already know, from Section 3.1.2, that this linear system satisfies the complementary
conditions, hence for the existence of a solution ξ ∈ C2+2α,1+α([0, 1]× [0, min{T, T̃})),
we only have to check that the compatibility conditions of order 2 (as in Definition 3.15)
for the initial data holds. By simplicity, we show it for a triod: in such case, they are
ψi(0) = 0 and ψi(1) = 1, which are clearly satisfied by ξ i(y, 0) = y and

ψi
yy(0)∣∣γ̃i

x(0, 0)
∣∣2 +

〈
γ̃i

t(0, 0)− γ̃i
xx(0, 0)

| γ̃i
x(0, 0)|2

∣∣∣∣ γ̃i
x(0, 0)∣∣γ̃i

x(0, 0)
∣∣2
〉

ψi
y(0) = 0

ψi
yy(0)∣∣γ̃i

x(1, 0)
∣∣2 +

〈
γ̃i

t(1, 0)− γ̃i
xx(1, 0)

| γ̃i
x(1, 0)|2

∣∣∣∣ γ̃i
x(1, 0)∣∣γ̃i

x(1, 0)
∣∣2
〉

ψi
y(0) = 0

where, putting ψi(y) = ξ i(y, 0) = y, we get the equations
(3.12)〈

γ̃i
t(0, 0)− γ̃i

xx(0, 0)
| γ̃i

x(0, 0)|2

∣∣∣∣ γ̃i
x(0, 0)∣∣γ̃i

x(0, 0)
∣∣2
〉

=

〈
γ̃i

t(0, 0)− σi
xx(0)

| σi
x(0)|2

∣∣∣∣ σi
x(0)∣∣σi

x(0)
∣∣2
〉

= 0

〈
γ̃i

t(1, 0)− γ̃i
xx(1, 0)

| γ̃i
x(1, 0)|2

∣∣∣∣ γ̃i
x(1, 0)∣∣γ̃i

x(1, 0)
∣∣2
〉

= −
〈

σi
xx(1)

| σi
x(1)|2

∣∣∣∣ σi
x(1)∣∣σi

x(1)
∣∣2
〉

= 0 .

Since σ satisfies the compatibility conditions of order 2 for system (3.2), we have
(Definition 3.14)

σi
xx(0)

|σi
x(0)|2

=
σ

j
xx(0)

|σj
x(0)|2

and σi
xx(1)

|σi
x(1)|2

= 0 ,

for every i, j ∈ {1, 2, 3}, hence the second equation above is immediately verified and
the vector v = γ̃i

t(0, 0)− σi
xx(0)

| σi
x(0)|2

is independent of i ∈ {1, 2, 3}. It follows,

〈v | ν̃i(0, 0)〉 =
〈

γ̃i
t(0, 0)− σi

xx(0)
| σi

x(0)|2

∣∣∣∣ ν̃i(0, 0)
〉

= k̃i(0, 0)−
〈

σi
xx(0)

| σi
x(0)|2

∣∣∣∣ ν̃i(0, 0)
〉

= 0

for every i ∈ {1, 2, 3}, which implies v = 0, thus equation (3.12) is also satisfied. In
the case of a general network, the above argument must simply be repeated for every
triple junction and every end–point (by means of Definition 3.21).
Then, again by Solonnikov’s theory (Theorem 4.9 in [100]), we have a solution
ξ ∈ C2+2α,1+α([0, 1]× [0, min{T, T̃})), for some T̂ ⩽ T̃, such that for every t ∈ [0, T̂]
the map ξ i(·, t) : [0, 1] → [0, 1] is a C1–diffeomorphism. Hence, the inverse functions
φi(·, t) = ξ i(·, t)−1 also belong to C2+2α,1+α([0, 1]× [0, min{T, T̃})) and are solutions
of system (3.11). Moreover, by arguing as in the last part of the proof of Theorem 3.11,
we can show that T̂ can be taken equal to min{T, T̃}.
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It follows that the reparametrizations γi(x, t) = γ̃i(φi(x, t), t) satisfy the special flow
system (3.2):

γi
t(x, t)=

〈
γ̃i

xx
(

φi(x, t), t
)
| γ̃i

x(φi(x, t), t)
〉∣∣γ̃i

x
(

φi(x, t), t
)∣∣4 γ̃i

x(φi(x, t), t)+
φi

xx(x, t)γ̃i
x
(

φi(x, t), t
)∣∣γ̃i

x
(

φi(x, t), t
)∣∣2∣∣φi

x(x, t)
∣∣2

+

〈
γ̃i

xx
(

φi(x, t), t
)
| ν̃i(φi(x, t), t)

〉∣∣γ̃i
x
(

φi(x, t), t
)∣∣2 ν̃i(φi(x, t), t)

=

〈
γ̃i

xx
(

φi(x, t), t
)
| τ̃i(φi(x, t), t)

〉∣∣γ̃i
x
(

φi(x, t), t
)∣∣2 τ̃i(φi(x, t), t)+

φi
xx(x, t)γ̃i

x
(

φi(x, t), t
)∣∣γ̃i

x
(

φi(x, t), t
)∣∣2 ∣∣φi

x(x, t)
∣∣2

+

〈
γ̃i

xx
(

φi(x, t), t
)
| ν̃i(φi(x, t), t)

〉∣∣γ̃i
x
(

φi(x, t), t
)∣∣2 ν̃i(φi(x, t), t)

=
γ̃i

xx
(

φi(x, t), t
)∣∣γ̃i

x
(

φi(x, t), t
)∣∣2 +

φi
xx(x, t)γ̃i

x
(

φi(x, t), t
)∣∣γ̃i

x
(

φi(x, t), t
)∣∣2 ∣∣φi

x(x, t)
∣∣2

=
γi

xx(x, t)
|γi

x(x, t)|2
.

We can then conclude that by the uniqueness part of (the extension to gen-
eral networks of) Theorem 3.17 that γi = γi for every i ∈ {1, 2, . . . , n},
hence γi(x, t) = γ̃i(φi(x, t), t) in the time interval [0, min{T, T̃}) and since this
“reparametrization relation” between any two maximal solutions of Problem (2.3) is
symmetric (by means of the maps ξ i), we have T̃ = T and we are done.
Assumenow that the network S0 is only geometrically 2–compatible, then the proof of
Proposition 3.26 gives a special solution γi given by γi(x, t) = γ̃i([θi]−1(x), t) where
θi are smoothmaps and γ̃i is a special solution as above for the 2–compatible network
S̃0 =

⋃n
i=1 σ̃i([0, 1]) =

⋃n
i=1(σ

i ◦ θi)([0, 1]) which is in C2+2α,1+α([0, 1]× [0, T)) for a
maximal positive time interval [0, T).
Suppose that γi : [0, 1] × [0, T̃) → Ω is another maximal curvature flow for S0

in C2+2α,1+α([0, 1] × [0, T̃)), satisfying γi
t = k

i
νi + λ

i
τi for some functions λ

i in
C2α([0, 1] × [0, T̃)). If we consider the maps γ̂i(x, t) = γi(θi(x), t), they give a
C2+2α,1+α([0, 1] × [0, T̃)) curvature flow of the initial network S̃0 which satisfies
the compatibility conditions of order 2, hence (by the above argument) T̃ = T
and the maps γ̂i and γ̃i only differ by reparametrizations given by some maps
φi ∈ C2+2α,1+α([0, 1]× [0, T)) with φi(x, 0) = x, that is,

γ̂i(x, t) = γ̃i(φi(x, t), t) .

It follows that

γi(x, t) = γ̂i([θi]−1(x), t) = γ̃i(φi([θi]−1(x), t), t) = γi(θi(φi([θi]−1(x), t)), t)
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which shows that the two flows γi and γi of the initial network S0 coincide up to the
time–dependent reparametrizations (x, t) 7→ (θi(φi([θi]−1(x), t)), t).
The last assertion follows by Proposition 3.23.

3.3. Initial data with higher regularity

We discuss the higher regularity of the flow when the initial network is of class C∞.

Definition 3.27. — We say that the compatibility conditions of every order for sys-
tem (2.5) are satisfied by an (initial) regular C∞ network S0 =

⋃n
i=1 σi ([0, 1]) and we call

such a network smooth, if at every end–points and every 3–point there hold all the relations
on the space derivatives of the functions σi, obtained repeatedly differentiating in time the
boundary conditions and using the evolution equation γi

t(x, t) = γi
xx(x,t)

|γi
x(x,t)|2

to substitute time

derivatives with space derivatives.
We say that a C∞ flow by curvature St is smooth if all the networks St are smooth.

It is immediate by this definition that every network St of a C∞ special curvature flow
of an initial regular network S0 is smooth for every t > 0.

Remark 3.28. — We underline that being a smooth network implies being regular and
C∞ (composed of C∞ curves), but it is way more restrictive than that. Analogously,
a smooth curvature flow of networks is not simply C∞ up to the parabolic boundary
(see Remark 3.20). Anyway, similarly as before (Proposition 3.23), every network of
a C∞ curvature flow can be reparametrized to be smooth.

If we assume that the initial regular network is smooth, we have the following higher
regularity result.

Theorem 3.29. — For any initial smooth network S0 in a smooth, convex, open set Ω ⊆ R2

there exists a unique C∞ solution of system (2.5) in a maximal time interval [0, T).

Proof. Since the initial network S0 satisfies the compatibility condition at every or-
der, the method of the previous section actually provides, for every n ∈ N, a unique
solution in C2n+2α,n+α([0, 1]× [0, Tn]) of system (2.5) satisfying the compatibility con-
ditions of order 0, 1, . . . , 2n at every time.
So, if we have a solution γi ∈ C2n+2α,n+α([0, 1]× [0, Tn]) for n ⩾ 1, then the functions
γi

x belong to C2n−1+2α,n−1/2+α([0, 1]× [0, Tn]) (see [65, Section 8.8]). Considering the
parabolic system satisfied by vi(x, t) = γi

t(x, t) (see [82, Page 250]), by Solonnikov
results in [100] vi = γi

t belongs to C2n+2α,n+α([0, 1] × [0, Tn]). Since γi
xx = γi

t |γi
x|2

with |γi
x|2 ∈ C2n−1+2α,n−1/2+α([0, 1]× [0, Tn]), we get also

γi
xx ∈ C2n−1+2α,n−1/2+α([0, 1]× [0, Tn]) .
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Following [74], we can then conclude that γi ∈ C2n+1+2α,n+1/2+α([0, 1]× [0, Tn]).
Iterating this argument, we see that γi ∈ C∞([0, 1] × [0, Tn]). Moreover, since for
every n ∈ N the solution obtained is unique, it must coincide with γi and we can
choose all the Tn to be the same positive value T.
It follows that the solution is in C∞ till the parabolic boundary, hence, all the compat-
ibility conditions are satisfied at every time t ∈ [0, T).

As a consequence, we have the following theorem.

Theorem 3.30. — For any initial smooth network S0 in a smooth, convex, open set Ω ⊆ R2

there exists a smooth curvature flow of S0 in a maximal positive time interval [0, T).

For C∞ networks we then introduce the concept of geometrically smoothness.

Definition 3.31. — We say that a network S0 =
⋃n

i=1 σi ([0, 1]) of class C∞ is geometrically
smooth if it can be reparametrized to be smooth.

Remark 3.32. — By arguments similar to the ones of Lemma 3.24, it can be shown
that, like for geometrical 2–compatibility, this property depends only on (some rela-
tions on) the curvature and its derivatives at the end–points and at the 3–points of a
C∞ network (see [82] for more details), that is, geometrical smoothness is again a ge-
ometric property (obviously invariant by C∞ reparametrizations, by the definition).
Moreover, as before (see Proposition 3.23), every C∞ curvature flow of an initial reg-
ular network S0 is actually composed of geometrically smooth networks St for every
t > 0.

The following short–time existence theorem holds, essentially with the same proof of
Proposition 3.26.

Theorem 3.33. — For any initial geometrically smooth network S0 in a smooth, convex, open
set Ω ⊆ R2 there exists a C∞ curvature flow of S0 in a maximal positive time interval [0, T).

An immediate consequence is the following corollary.

Corollary 3.34. — For any initial geometrically smooth network S0 =
⋃n

i=1 σi([0, 1])
in a smooth, convex, open set Ω ⊆ R2, there exists a geometrically unique solution of
Problem (2.3) in the class of maps C2+2α,1+α([0, 1] × [0, T)) in a maximal positive time
interval [0, T). Moreover, such a solution is C∞ and if the initial network is actually smooth,
it can be chosen to be a special curvature flow.

Remark 3.35. — Notice that it follows that any curvature flow as in the hypotheses
of the above theorem and corollary is a reparametrization (of class C2+2α,1+α in the
first case and C∞ in the latter) of the special curvature flow (which is C∞ under the
hypotheses of this corollary, by Theorem 3.29).
This corollary implies the geometric uniqueness of this flow in the class of smooth
maps.
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CHAPTER 4

INTEGRAL ESTIMATES

In this chapter, wework out some integral estimates for a special flow by curvature of
a smooth regular network. These estimateswere previously proved for the case of the
special curvature flow of a regular smooth triod with fixed end–points, in [82]. We
now extend them to the case of a smooth network with “controlled” behavior of its
end–points. An outline for such estimateswith controlled behavior of the end–points,
for a general curvature flow, appeared in [58, Section 7]. We advise the reader that
when the computations are exactly the same we will refer directly to [82, Section 3],
where it is possible to find every detail.
In all this chapter we will assume that the special flow by curvature is given by a C∞

solution γi of system (2.5), that is, there holds

γi
t(x, t) =

γi
xx (x, t)∣∣γi
x (x, t)

∣∣2 ,

(see Remark 2.14 and Definition 2.15 for the case of an initial C2 network). The es-
timates, which only involve geometric quantities and do not involve the tangential
velocities λi, hold also for any smooth flow (the ones where we do not use the special
form of the functions λi given by this equation). To use these estimates for a general
smooth flow, because of geometric uniqueness (see Corollary 3.34 and Remark 3.35),
one must reparametrize such a flow, preserving the boundary condition (4.1) below,
so it becomes special, then carry back the geometric (invariant by reparametrization)
estimates to the original flow. Alternatively, one can also directly prove these esti-
mates without reparametrizing first to a special flow, see [58, Section 7].
We will see that such a special flow of a regular smooth network with “controlled”
end–points exists smoothly as long as the curvature stays bounded and none of the
lengths of the curves goes to zero (Theorem 4.14).
We suppose that the special solution maps γi above exist and are of class C∞ in the time
interval [0, T) and that they describe the flow of a regular C∞ network St in Ω, com-
posed of n curves γi(·, t) : [0, 1] → Ω with m 3–points O1, O2, . . . , Om and l end–points
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P1, P2, . . . , Pl . We will assume that either such end–points are fixed or that there exist
uniform (in time) constants Cj, for every j ∈ N, such that

(4.1) |∂j
sk(Pr, t)|+ |∂j

sλ(Pr, t)| ⩽ Cj ,

for every t ∈ [0, T) and r ∈ 1, 2, . . . , l.
The first computation we are going to show is the evolution in time of the total length
of a network under the curvature flow.

Proposition 4.1. — The time derivative of the measure ds on any curve γi of the network is
given by the measure (λi

s − (ki)2) ds. As a consequence, we have

dLi(t)
dt

= λi(1, t)− λi(0, t)−
∫

γi(·,t)
(ki)2 ds

and
dL(t)

dt
=

l

∑
r=1

λ(Pr, t)−
∫

St
k2 ds ,

where, with a little abuse of notation, λ(Pr, t) is the tangential velocity at the end–point Pr

of the curve of the network getting at such point, for any r ∈ {1, 2, . . . , l}.
In particular, if the end–points Pr of the network are fixed during the evolution, we have

(4.2) dL(t)
dt

= −
∫

St
k2 ds ,

thus, in such case, the total length L(t) is decreasing in time and uniformly bounded above by
the length of the initial network S0.

Proof. The formula for the time derivative of the measure ds follows easily by the
commutation formula (2.6). Then,

dLi(t)
dt

=
d
dt

∫
γi(·,t)

1 ds =
∫

γi(·,t)
(λi

s − (ki)2) ds = λi(1, t)− λi(0, t)−
∫

γi(·,t)
(ki)2 ds .

Adding these relations for all the curves, the contributions of λpi at every 3–point Op

vanish, by relation (2.11), and the formula of the statement follows. If the end–points
are fixed all the terms λ(Pr, t) are zero and the last formula follows.

The following notation will be very useful for the next computations in this chapter.

Definition 4.2. — We will denote with pσ(∂
j
sλ, ∂h

s k) a polynomial with constant coefficients
in λ, . . . , ∂

j
sλ and k, . . . , ∂h

s k such that every monomial it contains is of the form

C
j

∏
l=0

(∂l
sλ)αl ·

h

∏
l=0

(∂l
sk)βl with

j

∑
l=0

(l + 1)αl +
h

∑
l=0

(l + 1)βl = σ,

we will call σ the geometric order of pσ.
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Moreover, if one of the two arguments of pσ does not appear, it means that the polynomial does
not contain it, for instance, pσ(∂h

s k) does not contain neither λ nor its derivatives.
We will denote with qσ(∂

j
tλ, ∂h

s k) a polynomial as before in λ, . . . , ∂
j
tλ and k, . . . , ∂h

s k such
that all its monomials are of the form

C
j

∏
l=0

(∂l
tλ)

αl ·
h

∏
l=0

(∂l
sk)βl with

j

∑
l=0

(2l + 1)αl +
h

∑
l=0

(l + 1)βl = σ.

Finally, when we will write pσ(|∂j
sλ|, |∂h

s k|) (or qσ(|∂j
tλ|, |∂h

s k|)) we will mean a finite sum
of terms like

C
j

∏
l=0

|∂l
sλ|αl ·

h

∏
l=0

|∂l
sk|βl with

j

∑
l=0

(l + 1)αl +
h

∑
l=0

(l + 1)βl = σ,

where C is a positive constant and the exponents αl , βl are non negative real values (analo-
gously for qσ).
Clearly we have pσ(∂

j
sλ, ∂h

s k) ⩽ pσ(|∂j
sλ|, |∂h

s k|).

By means of the commutation rule (2.6), the relations in the next lemma are eas-
ily proved by induction (Lemmas 3.7 and 3.8 in [82]), starting from the relations in
Section 2.3.

Lemma 4.3. — The following formulas hold for every curve of the evolving network St:

∂t∂
j
sk = ∂

j+2
s k + λ∂

j+1
s k + pj+3(∂

j
sk) for every j ∈ N,

∂
j
sk = ∂

j/2
t k + qj+1(∂

j/2−1
t λ, ∂

j−1
s k) if j ⩾ 2 is even,

∂
j
sk = ∂

(j−1)/2
t ks + qj+1(∂

(j−3)/2
t λ, ∂

j−1
s k) if j ⩾ 1 is odd,

∂t∂
j
sλ = ∂

j+2
s λ − λ∂

j+1
s λ − 2k∂

j+1
s k + pj+3(∂

j
sλ, ∂

j
sk) for every j ∈ N,

∂
j
sλ = ∂

j/2
t λ + pj+1(∂

j−1
s λ, ∂

j−1
s k) if j ⩾ 2 is even,

∂
j
sλ = ∂

(j−1)/2
t λs + pj+1(∂

j−1
s λ, ∂

j−1
s k) if j ⩾ 1 is odd.

Remark 4.4. — Notice that, by relations (2.13) at any 3–point Op of the network
there holds ∂

j
tλ

pi = (S∂
j
tK)pi, that is, the time derivatives of λpi are expressible as

time derivatives of the functions kpi. Then, by using repeatedly such relation and
the first formula of Lemma 4.3, we can express these latter as space derivatives of kpi.
Hence, we will have the relation

3

∑
i=1

qσ(∂
j
tλ

pi, ∂h
s kpi)

∣∣∣∣
at the 3–point Op

= pσ(∂
max{2j,h}
s Kp)

∣∣∣∣
at the 3–point Op

with the meaning that this last polynomial contains also a product of derivatives of
different kpi’s, because of the action of the linear operator S.
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We will often make use of this identity in the computations of the sequel in the fol-
lowing form,

3

∑
i=1

qσ(∂
j
tλ

pi, ∂h
s kpi)

∣∣∣∣
at the 3–point Op

⩽ ‖pσ(|∂max{2j,h}
s k|)‖L∞ .

Remark 4.5. — We state the following calculus rules which will be used extensively
in the sequel,

pα(∂
j
sλ, ∂h

s k) · pβ(∂
l
sλ, ∂m

s k) = pα+β(∂
max{j,l}
s λ, ∂

max{h,m}
s k) ,

qα(∂
j
tλ, ∂h

s k) · qβ(∂
l
tλ, ∂m

s k) = qα+β(∂
max{j,l}
t λ, ∂

max{h,m}
s k) .

We already saw that the time derivatives of k and λ can be expressed in terms of space
derivatives of k at any 3–point, the same holds for the space derivatives of λ, arguing
by induction using the last two formulas in Lemma 4.3. Hence, it follows that

∂l
spα(∂

j
sλ, ∂h

s k) = pα+l(∂
j+l
s λ, ∂h+l

s k) , ∂l
tpα(∂

j
sλ, ∂h

s k) = pα+2l(∂
j+2l
s λ, ∂h+2l

s k)

∂l
tqα(∂

j
tλ, ∂h

s k) = qα+2l(∂
j+l
t λ, ∂h+2l

s k) , qα(∂
j
tλ, ∂h

s k) = pα(∂
2j
s λ, ∂

max{h,2j−1}
s k) .

We are now ready to compute, for j ∈ N,

d
dt

∫
St
|∂j

sk|2 ds = 2
∫

St
∂

j
sk ∂t∂

j
sk ds +

∫
St
|∂j

sk|2(λs − k2) ds

= 2
∫

St
∂

j
sk ∂

j+2
s k + λ∂

j+1
s k ∂

j
sk + pj+3(∂

j
sk) ∂

j
sk ds +

∫
St
|∂j

sk|2(λs − k2) ds

=− 2
∫

St
|∂j+1

s k|2 ds +
∫

St
∂s(λ|∂j

sk|2) ds +
∫

St
p2j+4(∂

j
sk) ds

− 2
m

∑
p=1

3

∑
i=1

∂
j
skpi ∂

j+1
s kpi

∣∣∣∣
at the 3–point Op

+2
l

∑
r=1

∂
j
sk ∂

j+1
s k

∣∣∣∣
at the end–point Pr

⩽ − 2
∫

St
|∂j+1

s k|2 ds +
∫

St
p2j+4(∂

j
sk) ds + lCjCj+1

−
m

∑
p=1

3

∑
i=1

2∂
j
skpi ∂

j+1
s kpi + λpi|∂j

skpi|2
∣∣∣∣
at the 3–point Op

(4.3)

where we integrated by parts the first term on the second line and we estimated the
contributions given by the end–points Pr by means of assumption (4.1).
In the case that we consider the end–points P1, P2, . . . , Pl to be fixed, we can assume
that the terms CjCj+1 are all zero in the above conclusion, by the following lemma.

Lemma 4.6. — If the end–points Pr of the network are fixed, then there holds ∂
j
sk = ∂

j
sλ = 0,

for every even j ∈ N.
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Proof. The first case j = 0 simply follows from the fact that the velocity v = λτ + kν

is always zero at the fixed end–points Pr.
We argue by induction, we suppose that for every even natural l ⩽ j − 2 we have
∂l

sk = ∂l
sλ = 0, then, by using the first equation in Lemma 4.3, we get

∂
j
sk = ∂t∂

j−2
s k − λ∂

j−1
s k − pj+1(∂

j−2
s k)

at every end–point Pr.
We already know that λ= 0 and by the inductive hypothesis ∂

j−2
s k= 0, thus ∂t∂

j−2
s k= 0.

Since pj+1(∂
j−2
s k) is a sum of terms like C∏

j−2
l=0(∂

l
sk)αl with ∑

j−2
l=0(l+1)αl = j+1 which

is odd, at least one of the terms of this sum has to be odd, hence at least for one index
l, the product (l + 1)αl is odd. It follows that at least for one even l the exponent
αl is nonzero. Hence, at least one even derivatives is present in every monomial of
pj+1(∂

j−2
s k), which contains only derivatives up to the order (j − 2).

Again, by the inductive hypothesis, we then conclude that at the end–points ∂
j
sk = 0.

We can deal with λ similarly, by means of the relations in Lemma 4.3.

In the very special case j = 0 we get explicitly

d
dt

∫
St

k2 ds ⩽ −2
∫

St

|ks|2 ds +
∫

St

k4 ds −
m

∑
p=1

3

∑
i=1

2kpikpi
s + λpi|kpi|2

∣∣∣∣
at the 3–point Op

+ lC0C1

where the two constants C0 and C1 come from assumption (4.1).
Then, recalling relation (2.14), we have ∑3

i=1 kpikpi
s + λpi|kpi|2

∣∣
at the 3–point Op = 0, and

substituting the above,

(4.4) d
dt

∫
St

k2 ds ⩽ −2
∫

St

|ks|2 ds +
∫

St

k4 ds +
m

∑
p=1

3

∑
i=1

λpi|kpi|2
∣∣∣∣
at the 3–point Op

+ lC0C1 ,

hence, we lowered themaximumorder of the space derivatives of the curvature in the
3–point terms, particular now it is lower than the one of the “nice” negative integral.
As we have just seen for the case j = 0, also for the general case we want to simplify
the term ∑3

i=1 2∂
j
skpi∂

j+1
s kpi + λpi|∂j

skpi|2
∣∣
at the 3–point Op , in order to control it.

Using formulas in Lemma 4.3, we have (see [82, Pages 258–259], for details)

2∂
j
sk ∂

j+1
s k + λ|∂j

sk|2

= 2∂
j/2
t k · ∂

j/2
t (ks + kλ) + qj+1(∂

j/2−1
t λ, ∂

j−1
s k) · ∂

j/2
t ks + q2j+3(∂

j/2
t λ, ∂

j
sk) .
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We now examine the term qj+1(∂
j/2−1
t λ, ∂

j−1
s k) · ∂

j/2
t ks, which, by using Lemma 4.3,

can be written as ∂tq2j+1(∂
j/2−1
t λ, ∂

j−1
s k) + q2j+3(∂

j/2
t λ, ∂

j
sk) (see [82, Pages 258–259],

for details). It follows that
m

∑
p=1

3

∑
i=1

2∂
j
skpi ∂

j+1
s kpi + λpi|∂j

skpi|2λ

∣∣∣∣
at the 3–point Op

=
m

∑
p=1

3

∑
i=1

∂tq2j+1(∂
j/2−1
t λpi, ∂

j−1
s kpi) + q2j+3(∂

j/2
t λpi, ∂

j
skpi)

∣∣∣∣
at the 3–point Op

Resuming, if j ⩾ 2 is even, we have
d
dt

∫
St

|∂j
sk|2 ds ⩽ − 2

∫
St

|∂j+1
s k|2 ds +

∫
St

p2j+4(∂
j
sk) ds + lCjCj+1

+
m

∑
p=1

3

∑
i=1

∂tq2j+1(∂
j/2−1
t λpi, ∂

j−1
s kpi) + q2j+3(∂

j/2
t λpi, ∂

j
skpi)

∣∣∣∣
at the 3–point Op

.

Now, the key tool to estimate the terms∫
St
p2j+4(∂

j
sk) ds and

3

∑
i=1

q2j+3(∂
j/2
t λpi, ∂

j
skpi)

∣∣
at the 3–point Op

are the following Gagliardo–Nirenberg interpolation inequalities (see [87, Section 3,
Pages 257–263]).

Proposition 4.7. — Let γ be a C∞, regular curve in R2 with finite length L. If u is a C∞

function defined on γ and m ⩾ 1, p ∈ [2,+∞], we have the estimates

(4.5) ‖∂n
s u‖Lp ⩽ Cn,m,p‖∂m

s u‖σ
L2‖u‖1−σ

L2 +
Bn,m,p

Lmσ
‖u‖L2

for every n ∈ {0, . . . , m − 1} where

σ =
n + 1/2 − 1/p

m

and the constants Cn,m,p and Bn,m,p are independent of γ. In particular, if p = +∞,

(4.6) ‖∂n
s u‖L∞ ⩽ Cn,m‖∂m

s u‖σ
L2‖u‖1−σ

L2 +
Bn,m

Lmσ
‖u‖L2 with σ =

n + 1/2
m

.

After estimating the integral of every monomial of p2j+4(∂
j
sk) by mean of the Hölder

inequality, one uses theGagliardo–Nirenberg estimates on the result, concluding that∫
St
p2j+4(∂

j
sk) ds ⩽ 1/4

∫
St
|∂j+1

s k|2 ds + C
( ∫

St
k2 ds

)2j+3

+ C ,

where the constant C depends only on j ∈ N and the lengths of the curves of the
network (see [82, Pages 260–262], for details).

ASTÉRISQUE 452



CHAPTER 4. INTEGRAL ESTIMATES 57

Any term ∑3
i=1 q2j+3(∂

j/2
t λpi, ∂

j
skpi)

∣∣
at the 3–point Op can be estimated similarly.

Hence, for every even j ⩾ 2 we can finally write

d
dt

∫
St

|∂j
sk|2 ds ⩽ −

∫
St

|∂j+1
s k|2 ds + C

( ∫
St

k2 ds
)2j+3

+ C + lCjCj+1(4.7)

+ ∂t

m

∑
p=1

3

∑
i=1

q2j+1(∂
j/2−1
t λpi, ∂

j−1
s kpi)

∣∣∣∣
at the 3–point Op

⩽C
( ∫

St

k2 ds
)2j+3

+ ∂t

m

∑
p=1

3

∑
i=1

q2j+1(∂
j/2−1
t λpi, ∂

j−1
s kpi)

∣∣∣∣
at the 3–point Op

+ C + lCjCj+1 .

Recalling the computation in the special case j = 0, this argument gives the same
final estimate without the contributions coming from the 3–points:

(4.8) d
dt

∫
St

k2 ds ⩽ C
(∫

St
k2 ds

)3
+ C + lC0C1 .

Integrating (4.7) in time on [0, t] and estimating we get

∫
St
|∂j

sk|2 ds ⩽
∫

S0

|∂j
sk|2 ds + C

∫ t

0

( ∫
Sξ

k2 ds
)2j+3

dξ + Ct + lCjCj+1t

+
m

∑
p=1

3

∑
i=1

q2j+1(∂
j/2−1
t λpi(0, t), ∂

j−1
s kpi(0, t))

− q2j+1(∂
j/2−1
t λpi(0, 0), ∂

j−1
s kpi(0, 0))

⩽C
∫ t

0

( ∫
Sξ

k2 ds
)2j+3

dξ + ‖p2j+1(|∂
j−1
s k|)‖L∞ + Ct + lCjCj+1t + C ,

where in the last passage we used Remark 4.4. The constant C depends only on j ∈ N

and on the network S0.
Interpolating again by means of inequalities (4.6), one gets

‖p2j+1(|∂
j−1
s k|)‖L∞ ⩽ 1/2‖∂

j
sk‖2

L2 + C‖k‖4j+2
L2 .

Hence, putting all together, for every even j ∈ N, we conclude

∫
St
|∂j

sk|2 ds ⩽ C
∫ t

0

( ∫
Sξ

k2 ds
)2j+3

dξ + C
( ∫

St
k2 ds

)2j+1

+ Ct + lCjCj+1t + C .

Passing from integral to L∞ estimates, by using inequalities (4.6), we have the follow-
ing proposition.
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Proposition 4.8. — If assumption (4.1) holds, the lengths of all the curves are uniformly posi-
tively bounded from below and the L2 norm of k is uniformly bounded on [0, T), then the curvature
of St and all its space derivatives are uniformly bounded in the same time interval by some constants
depending only on the L2 integrals of the space derivatives of k on the initial network S0.
By using the relations in Lemma 4.3, one then gets also estimates for every time and
space derivatives of λ which finally imply estimates on all the derivatives of themaps
γi, stated in the next Proposition 4.10 (see [82, Pages 263–266] for details). Wediscuss
here explicitly how, in the hypotheses of this proposition, we deal with λ and the
“velocity” v = γt = kν + λτ of the flow.
At every 3–point Op we have ∑3

i=1(λ
pi)2 = ∑3

i=1(k
pi)2, by relations (2.12), hence the

squared modulus of the velocity v2 = |v|2 is uniformly bounded at every 3–point,
being k2 uniformly bounded by some constant C.
Then, since v2 is also uniformly bounded at the end–points of St, by assumption (4.1),
applying the maximum principle to the equation for v2, given by

∂tv2 = (v2)ss − 2λ2
s − 2k2

s − λ(v2)s + 2v2k2 ,

which follows from equation (2.9)

∂tλ = λss − λλs − 2kks + λk2

and equation (2.8), we see that if v2 gets larger than somefixed constant (independent
of time), then its maximum is taken in the interior of some curve of St and

∂tv2
max ⩽ 2v2

maxk2 ⩽ 2Cv2
max .

Hence, integrating this linear differential inequality, we obtain that v and hence λ are
also uniformly bounded as k and its derivatives in the time interval [0, T).

Remark 4.9. — Notice that the conclusion that v2 is uniformly bounded follows sim-
ply knowing that the curvature is uniformly bounded and assumption (4.1) holds. In
particular, for the case of an evolving network St with fixed end–points and uniformly
bounded curvature in an interval [0, T)

Proposition 4.10. — If St is aC∞ special flow of the initial network S0 =
⋃n

i=1 σi, satisfying
assumption (4.1), such that the lengths of the n curves are uniformly bounded away from zero
and the L2 norm of the curvature is uniformly bounded by some constant in the time interval
[0, T), then
— all the derivatives in space and time of k and λ are uniformly bounded in [0, 1]× [0, T),

— all the derivatives in space and time of the curves γi(x, t) are uniformly bounded in
[0, 1]× [0, T),

— the quantities |γi
x(x, t)| are uniformly bounded from above and away from zero in

[0, 1]× [0, T).
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All the bounds depend only on the uniform controls on the L2 norm of k, on the lengths of the
curves of the network from below, on the constants Cj in assumption (4.1), on the L∞ norms
of the derivatives of the curves σi and on the bound from above and below on |σi

x(x, t)|, for
the curves describing the initial network S0.

Now, we work out a second set of estimates where everything is controlled – still
under the assumption (4.1) – only by the L2 norm of the curvature and the inverses
of the lengths of the curves at time zero.
As before we consider the C∞ special curvature flow St of a smooth network S0 in
the time interval [0, T), composed of n curves γi(·, t) : [0, 1] → Ω with m 3–points
O1, O2, . . . , Om and l end–points P1, P2, . . . , Pl , satisfying assumption (4.1).

Proposition 4.11. — For every M > 0 there exists a time TM ∈ (0, T), depending only on
the structure of the network and the constants C0 and C1 in assumption (4.1), such that if
the square of the L2 norm of the curvature and the inverses of the lengths of the curves of S0
are bounded by M, then the square of the L2 norm of k and the inverses of the lengths of the
curves of St are smaller than 2(n + 1)M + 1, for every time t ∈ [0, TM].

Proof. The evolution equations for the lengths of the n curves are given by

dLi(t)
dt

= λi(1, t)− λi(0, t)−
∫

γi(·,t)
k2 ds ,

then, recalling computation (4.4), we have

d
dt

( ∫
St

k2 ds +
n

∑
i=1

1
Li

)
⩽ − 2

∫
St

k2
s ds +

∫
St

k4 ds + 6m‖k‖3
L∞ + lC0C1 −

n

∑
i=1

1
(Li)2

dLi

dt

= − 2
∫

St
k2

s ds +
∫

St
k4 ds + 6m‖k‖3

L∞ + lC0C1

−
n

∑
i=1

λi(1, 0)− λi(0, t) +
∫

γi(·,t) k2 ds

(Li)2

⩽ − 2
∫

St
k2

s ds +
∫

St
k4 ds + 6m‖k‖3

L∞ + lC0C1

+ 2
n

∑
i=1

‖k‖L∞ + C0

(Li)2 +
n

∑
i=1

∫
St

k2 ds

(Li)2

⩽ − 2
∫

St
k2

s ds +
∫

St
k4 ds + (6m + 2n/3)‖k‖3

L∞

+ lC0C1 + 2nC3
0/3 +

n
3

( ∫
St

k2 ds
)3

+
2
3

n

∑
i=1

1
(Li)3

where we used Young inequality in the last passage.
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Interpolating as before (and applying again Young inequality) but keeping now in
evidence the terms depending on Li in inequalities (4.5), we obtain

d
dt

(∫
St

k2 ds +
n

∑
i=1

1
Li

)
⩽ −

∫
St

k2
s ds + C

(∫
St

k2 ds
)3

+ C
n

∑
i=1

(∫
St

k2 ds
)2

Li

+ C
n

∑
i=1

(∫
St

k2 ds
)3/2

(Li)3/2 + C
n

∑
i=1

1
(Li)3 + C

⩽C
(∫

St
k2 ds

)3
+ C

n

∑
i=1

1
(Li)3 + C

⩽C

(∫
St

k2 ds +
n

∑
i=1

1
Li + 1

)3

,

with a constant C depending only on the structure of the network and on the constants
C0 and C1 in assumption (4.1).
This means that the positive function f (t) =

∫
St

k2 ds + ∑n
i=1

1
Li(t) + 1 satisfies the

differential inequality f ′ ⩽ C f 3, hence, after integration

f 2(t) ⩽ f 2(0)
1 − 2Ct f 2(0)

⩽ f 2(0)
1 − 2Ct[(n + 1)M + 1]

then, if t ⩽ TM = 3
8C[(n+1)M+1] , we get f (t) ⩽ 2 f (0). Hence,

∫
St

k2 ds +
n

∑
i=1

1
Li(t)

⩽ 2
∫

S0

k2 ds + 2
n

∑
i=1

1
Li(0)

+ 1 ⩽ 2[(n + 1)M] + 1 .

By means of this proposition, we can strengthen the conclusion of Proposition 4.10.

Corollary 4.12. — In the hypothesis of the previous proposition, in the time interval [0, TM]

all the bounds in Proposition 4.10 depend only on the L2 norm of k on S0, on the constants Cj
in assumption (4.1), on the L∞ norms of the derivatives of the curves σi, on the bound from
above and below on |σi

x(x, t)| and on the inverses of the lengths of the curves of the initial
network S0.

From now on we assume that the L2 norm of the curvature and the inverses of the
lengths of the curves are bounded in the interval [0, TM].
Considering j ∈ N even, if we differentiate the function

∫
St

k2 + tk2
s +

t2k2
ss

2!
+ · · ·+ tj|∂j

sk|2
j!

ds ,
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and we estimate with interpolation inequalities as before (see [82, Pages 268–269],
for details), we obtain

d
dt

∫
St

k2+ tk2
s +

t2k2
ss

2!
+ · · ·+ tj|∂j

sk|2
j!

ds

(4.9)

⩽− ε
∫

St

k2
s + tk2

ss+ t2k2
sss+ · · ·+ tj|∂j+1

s k|2 ds+C

+∂t

m

∑
p=1

3

∑
i=1

t2q5(λ
pi,kpi

s )+t4q9(∂tλ
pi,kpi

sss)+ · · ·+ tjq2j+1(∂
j/2−1
t λpi,∂j−1

s kpi)

∣∣∣∣
at the 3–point Op

+C
m

∑
p=1

3

∑
i=1

tkpi
s kpi

ss + t3kpi
ssskpi

ssss+ · · ·+ tj−1∂
j−1
s kpi ∂

j
skpi

∣∣∣∣
at the 3–point Op

in the time interval [0, TM], where ε > 0 and C are two constants depending only on
the L2 norm of the curvature, the constants in assumption (4.1) and the inverses of
the lengths of the n curves of S0.
We proceed as we did before for the computation of d

dt

∫
St
|∂j

sk|2 ds .
First, we deal with the last line,

3

∑
i=1

tkpi
s kpi

ss + t3kpi
ssskpi

ssss + · · ·+ tj−1∂
j−1
s kpi ∂

j
skpi

∣∣∣∣
at the 3–point

.

By formulas in Lemma 4.3 and by Remark 4.4, we can write, for any term

∑3
i=1 th−1∂h−1

s ki∂h
s ki
∣∣∣∣
at the 3–point

,

3

∑
i=1

th−1∂h−1
s ki∂h

s ki
∣∣∣∣
at the 3–point

=
3

∑
i=1

th−1q2h+1(∂
h/2−1
t λi, ∂h−1

s ki)

+ th−1∂h
s ki · qh(∂

h/2−1
t λi, ∂h−2

s ki)

∣∣∣∣
at the 3–point

⩽ th−1‖p2h+1(|∂h−1
s k|)‖L∞ + th−1‖∂h

s k‖L∞‖ph(|∂h−2
s k|)‖L∞

(see [82, Page 270], for details).
The term th−1‖p2h+1(|∂h−1

s k|)‖L∞ is controlled as before by a small fraction of the
term th−1

∫
St
|∂h

s k|2 ds and a possibly large multiple of th−1 times some power of the
L2 norm of k (which is bounded), whereas th−1‖∂h

s k‖L∞‖ph(|∂h−2
s k|)‖L∞ is the critical

term.
Again bymeans of interpolation inequalities (4.6) one estimates ‖∂h

s k‖L∞ , ‖ph(∂
h−2
s k)‖L∞

and ‖∂h
s k‖L2 with the L2 norm of k and its derivatives. After some computation

(see [82, Pages 270–271], for details), one gets
3

∑
i=1

th−1∂h−1
s ki∂h

s ki
∣∣∣∣
at the 3–point

⩽ εh/2
(

th
∫

St

|∂h+1
s k|2 ds + th−1

∫
St

|∂h
s k|2 ds + Cth

)
+ C/tθh

with θh < 1 and some small εh > 0.
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We apply this argument for every even h from 2 to j, choosing accurately small values ε j.
Hence, we can continue estimate (4.9) as follows,

d
dt

∫
St

k2+ tk2
s +

t2k2
ss

2!
+ · · ·+ tj|∂j

sk|2
j!

ds

⩽− ε/2
∫

St

k2
s + tk2

ss+ t2k2
sss+ · · ·+ tj|∂j+1

s k|2 ds+C+C/tθ2 + · · ·+C/tθj

+∂t

3

∑
i=1

t2q5(λ
i,ki

s)+ t4q9(∂tλ
i,ki

sss)+ · · ·+ tjq2j+1(∂
j/2−1
t λi,∂j−1

s ki)

∣∣∣∣
at the 3–point

⩽C+C/tθ +∂t

3

∑
i=1

t2q5(λ
i,ki

s)+ t4q9(∂tλ
i,ki

sss)+ · · ·+ tjq2j+1(∂
j/2−1
t λi,∂j−1

s ki)

∣∣∣∣
at the 3–point

for some θ < 1.
Integrating this inequality in time on [0, t] with t ⩽ TM and taking into account
Remark 4.4, we get

∫
St

k2 + tk2
s +

t2k2
ss

2!
+ · · ·+ tj|∂j

sk|2
j!

ds

⩽
∫

S0

k2 ds + CTM + CT(1−θ)
M

+
3

∑
i=1

t2q5(λ
i, ki

s) + t4q9(∂tλ
i, ki

sss) + · · ·+ tjq2j+1(∂
j/2−1
t λi, ∂

j−1
s ki)

∣∣∣∣
at the 3–point

⩽
∫

S0

k2 ds + C + t2‖p5(|ks|)‖L∞ + t4‖p9(|ksss|)‖L∞ + · · ·+ tj‖p2j+1(|∂
j−1
s k|)‖L∞ .

Now we absorb all the polynomial terms, after interpolating each one of them be-
tween the corresponding “good” integral in the left member and some power of the
L2 norm of k, as we did in showing Proposition 4.8, hence we finally obtain for every
even j ∈ N,

(4.10)
∫

St
k2 + tk2

s +
t2k2

ss
2!

+ · · ·+ tj|∂j
sk|2
j!

ds ⩽ Cj

with t ∈ [0, TM] and a constant Cj depending only on the constants in assump-
tion (4.1) and the bounds on

∫
S0

k2 ds and on the inverses of the lengths of the curves
of the initial network S0.
This family of inequalities clearly implies∫

St
|∂j

sk|2 ds ⩽
Cj j!
tj for every even j ∈ N.

Then, passing as before from integral to L∞ estimates by means of inequalities (4.6),
we have the following proposition.
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Proposition 4.13. — For every µ > 0 the curvature and all its space derivatives of St are
uniformly bounded in the time interval [µ, TM] (where TM is given by Proposition 4.11) by
some constants depending only on µ, the constants in assumption (4.1) and the bounds on∫

S0
k2 ds and on the inverses of the lengths of the curves of the initial network S0.

By means of these a priori estimates, we can now work out some results about the
smooth flow of an initial regular geometrically smooth network S0. Notice that these
are examples of how to use the previous estimates on special smooth flows to get the
conclusion on general flows or even only C∞ flows, as wementioned in the beginning
of this chapter.

Theorem 4.14. — If [0, T), with T < +∞, is the maximal time interval of existence of a C∞

curvature flow of an initial geometrically smooth network S0, then

1. either the inferior limit of the length of at least one curve of St is zero, as t → T,

2. or limt→T
∫

St
k2 ds = +∞.

Moreover, if the lengths of the n curves are uniformly positively bounded from below, then this
superior limit is actually a limit and there exists a positive constant C such that∫

St
k2 ds ⩾ C√

T − t
,

for every t ∈ [0, T).

Proof. We can C∞ reparametrize the flow St in order that it becomes a special smooth
flow S̃t in [0, T).
If the lengths of the curves of St are uniformly bounded away from zero and the L2

norm of k is bounded, the same holds for the networks S̃t, then, by Proposition 4.10
and Ascoli–Arzelà Theorem, the network S̃t converges in C∞ to a smooth network S̃T
as t → T. Then, applying Theorem 3.30 to S̃T we could restart the flowobtaining a C∞

special curvature flow in a longer time interval. Reparametrizing back this last flow,
we get a C∞ “extension” in time of the flow St, hence contradicting the maximality of
the interval [0, T).
Now, considering again the flow S̃t, by means of differential inequality (4.8), we have

d
dt

∫
S̃t

k̃2 ds ⩽ C
(∫

S̃t
k̃2 ds

)3
+ C ⩽ C

(
1 +

∫
S̃t

k̃2 ds
)3

,

which, after integration between t, r ∈ [0, T) with t < r, gives

1(
1 +

∫
S̃t

k̃2 ds
)2 − 1(

1 +
∫

S̃r
k̃2 ds

)2 ⩽ C(r − t) .
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Then, if case (1) does not hold, we can choose a sequence of times rj → T such that∫
S̃rj

k̃2 ds → +∞. Putting r = rj in the inequality above and passing to the limit, as
j → ∞, we get

1(
1 +

∫
S̃t

k̃2 ds
)2 ⩽ C(T − t) ,

hence, for every t ∈ [0, T),∫
S̃t

k̃2 ds ⩾ C√
T − t

− 1 ⩾ C√
T − t

,

for some positive constant C and limt→T
∫

S̃t
k2 ds = +∞.

By the invariance of the curvature by reparametrization, this last estimate implies the
same estimate for the flow St.

This theorem obviously implies the following corollary.

Corollary 4.15. — If [0, T), with T < +∞, is the maximal time interval of existence of a
C∞ curvature flow of an initial geometrically smooth network S0 and the lengths of the curves
are uniformly bounded away from zero, then

(4.11) max
St

k2 ⩾ C√
T − t

→ +∞ ,

as t → T.

Remark 4.16. — In the case of the evolution γt of a single closed curve in the plane
there exists a constant C > 0 such that if at time T > 0 a singularity develops, then

max
γt

k2 ⩾ C
T − t

for every t ∈ [0, T) (see [53]).
If this lower bound on the rate of blowing up of the curvature (which is clearly
stronger than the one in inequality (4.11)) holds also in the case of the evolution
of a network is an open problem (even if the network is a triod).

We conclude this chapter with the following estimate from below on the maximal
time of smooth existence.

Proposition 4.17. — For every M > 0 there exists a positive time TM such that if the L2

norm of the curvature and the inverses of the lengths of the geometrically smooth network S0
are bounded by M, then the maximal time of existence T > 0 of a C∞ curvature flow of S0 is
larger than TM.
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Proof. As before, considering again the reparametrized special curvature flow S̃t, by
Proposition 4.11 in the interval [0, min{TM, T}) the L2 norm of k̃ and the inverses of
the lengths of the curves of S̃t are bounded by 2M2 + 6M.
Then, by Theorem 4.14, the value min{TM, T} cannot coincidewith themaximal time
of existence of S̃t (hence of St), so it must be T > TM.
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CHAPTER 5

SHORT–TIME EXISTENCE II

In this chapter, we are going to prove the short–time existence and geometric unique-
ness of a curvature flow for a regular initial network S0 which is only C2 in a “natural
subclass” of the curvature flows which are simply C2 in space and C1 in time. Before
doing that, we discuss the property of parabolic regularization for the flow.

Let St =
⋃n

i=1 γi([0, 1], t) be a C∞ flow by curvature, we discuss what happens if we
reparametrize every curve of the network proportionally to arclength.
If we consider smooth functions φi : [0, 1] × [0, T) → [0, 1] and the reparametriza-
tions γ̃i(x, t) = γi(φi(x, t), t), imposing that |γ̃i

x| is constant, we must have that
|γi

x(φi(x, t), t)|φi
x(x, t) = Li(t) where Li(t) is the length of the curve γi at time t.

It follows that φi(x, t) can be obtained by integrating the ODE

φi
x(x, t) = Li(t)/|γi

x(φi(x, t), t)|

with initial data φi(0, t) = 0 and that it is C∞ as Li and γi are C∞.
Being a reparametrization, γ̃i is still a C∞ curvature flow, that is, γ̃i

t = k̃i ν̃i + λ̃iτ̃i,
we want to determine the functions λ̃i = 〈γ̃i

t | τ̃i〉. Differentiating this equation in
arclength and keeping into account that γ̃x(x, t) = Li(t)τ̃i(x, t), we get

λ̃i
s =

〈γ̃i
tx | τ̃i〉
|γ̃i

x|
+ 〈γ̃i

t | ∂sτ̃i〉 = 〈∂t(Liτ̃i) | τ̃i〉
Li + 〈k̃i ν̃i + λ̃iτ̃i | k̃i ν̃i〉 = ∂tLi

Li + (k̃i)2 .

This equation immediately says that λ̃i
s − (k̃i)2 is constant in space. Moreover, by

Proposition 4.1,
∂tLi(t) = λ̃i(1, t)− λ̃i(0, t)−

∫
γi(·,t)

(k̃i)2 ds

and that the values of λ̃i at the end–points or 3–points of the network are (uniformly)
linearly related to (hence also bounded by) the values of k̃i. Hence, we can conclude
that λ̃i

s is bounded by an expression involving Li(t) and ‖k̃(·, t)‖L∞ .
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We show now that the geometrically unique solution obtained starting from an initial
C2+2α network which is geometrically 2–compatible (which exists, as we proved in
Theorem 3.25) can be actually reparametrized to be a C∞ curvature flow for every
positive time (so that the geometric estimates of Chapter 4 can be applied). This
clearly can be seen as a (geometric) parabolic regularization property.

Theorem 5.1 (Existence, uniqueness and smoothness in Hölder spaces). — For
any initial, regular C2+2α network S0 =

⋃n
i=1 σi([0, 1]), with α ∈ (0, 1/2), which is

geometrically 2–compatible, the geometrically unique solution γi found in Theorem 3.25
can be reparametrized to be a C∞ curvature flow on (0, T), that is, the networks
St =

⋃n
i=1 γi([0, 1], t) are geometrically smooth for every positive time (see Definition 3.31).

Proof. We first assume that S0 satisfies the compatibility conditions of order 2 for the
special flow (namely, it is 2–compatible).
By analyzing the proof of Theorem 3.17 given in [17], one can see that the so-
lution to system (2.5) given by such theorem actually depends continuously in
C2+2α,1+α on the initial data σi in the C2+2α norm. Then, we approximate the network
S0 =

⋃n
i=1 σi([0, 1]) in C2+2α with a family of smooth networks Sj with the same end–

points, composed of C∞ curves σi
j → σi, as j → ∞. Hence, for every ε > 0, the smooth

solutions of system(2.5) for these approximating initial networks, given by the curves
γi

j(x, t) : [0, 1] × [0, T − ε] → Ω, converge as j → ∞ in C2+2α,1+α([0, 1] × [0, T − ε])

to the solution γi for the initial network S0. By the C2+2α–convergence, the inverses
of the lengths of the initial curves, the integrals

∫
Sj

k2
j ds and |∂xσi

j (x)| (from above
and away from zero) for all the approximating networks are equibounded, thus
Proposition 4.13 gives uniform estimates on the L∞ norms of the curvature and of
all its derivatives in every “rectangle” [0, 1]× [µ, TM), with µ > 0 and TM ⩽ T.
We now reparametrize every curve γi

j(·, t) and γi(·, t) proportionally to arclength by
somemaps φi

j and φi as above. Notice that, since γi
j and γi are uniformly bounded in

C2+2α,1+α, we have that themaps ∂xγi
j and ∂xγi are uniformly bounded in C1+2α,1/2+α.

Hence, by a standard ODE’s argument, the reparametrizing maps φi
j and φi above

are also uniformly bounded in C1+2α,1/2+α, in particular they are uniformly Hölder
continuous in space and time. This means that the reparametrized maps γ̃i

j con-
verge uniformly to γ̃i which is a (possibly only continuous in t) reparametrization
of the original flow. It is easy to see that these latter gives a curvature flow of the ar-
clength reparametrized network S̃0 =

⋃n
i=1(σ

i ◦ φi(·, 0))[0, 1]which then still belongs
to C2+2α.
As the curvature and all its arclength derivatives are invariant under reparametriza-
tion and the equibounded lengths of the curves, the above uniform estimates hold
also for the reparametrized maps γ̃i

j in every “rectangle” [0, 1]× [µ, TM). Moreover,
by the discussion about reparametrizing these curves proportional to arclength, it
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follows that we have uniform estimates also on λ̃i
j and all their arclength derivatives

for these flows in every “rectangle” [0, 1] × [µ, TM). Hence, the curves γ̃i
j, possibly

passing to a subsequence, actually converge in C∞([0, 1]× [µ, TM)), for every µ > 0,
to the limit flow γ̃i which then belongs to C∞([0, 1]× (0, T)) ∩ C0([0, 1]× [0, T)).
If S0 is only geometrically 2–compatible, this procedure can be applied for the flow of
its 2–compatible reparametrization, giving the same resulting flow, as the arclength
reparametrized flow is the same for any two flows differing only for a reparametriza-
tion (the fact that the flow of a C2+2α geometrically 2–compatible initial network is
a reparametrization of the flow of a 2–compatible C2+2α initial network is stated in
Remark 3.35).
The last step is to find extensions θi : [0, 1] × [0, T) → [0, 1] of the arclength
reparametrizing maps φi(·, 0) ∈ C2+2α which are in C∞([0, 1] × (0, T)) and satisfy
θi(x, 0) = φi(x, 0), θi(0, t) = 0, θi(1, t) = 1 and θi

x(x, t) 6= 0 for every x and t. This
can be done, for instance, by means of time–dependent convolutions with smooth
kernels. Then, the maps γi(·, t) = γ̃i([θi(·, t)]−1, t) give a curvature flow of the net-
work S0 =

⋃n
i=1 σi([0, 1]) which becomes immediately C∞ for every positive time

t > 0.

As for every positive time, the flow obtained by this theorem is C∞ and hence
every network St is geometrically smooth, again by Remark 3.35 this flow can be
reparametrized, from any positive time on, to be a C∞ special smooth flow.
This argument can clearly be applied to any C2+2α,1+α curvature flow St in a
time interval (0, T), being every network of this flow geometrically 2–compatible
(Proposition 3.23), simply considering as initial network any St0 with t0 > 0.

Corollary 5.2. — Given any C2+2α,1+α curvature flow in an interval of time (0, T), for
every µ > 0, the restricted flow St for t ∈ [µ, T) can be reparametrized to be a C∞ special
curvature flow in [µ, T).
In particular, this applies to any C2+2α,1+α curvature flow of an initial, regular C2+2α geo-
metrically 2–compatible network S0 =

⋃n
i=1 σi([0, 1]).

The parabolic regularization property of the flow also holds when the initial data is
of class W2−2/p,p. We have the following result for the special flow, whose proof can
be found in [44, Section 4].

Proposition 5.3. — Let γ ∈ W1,2
p ([0, T)× [0, 1]) be a Sobolev–solution to the special flow

in [0, T) with T > 0 and initial network in W2−2/p,p([0, 1]). Then, St =
⋃n

i=1 γi([0, 1], t)
are geometrically smooth for all positive times.

Remark 5.4. — The proof is based on the so called “parameter trick” of Angenent [6],
which has been generalized to several situations [72, 73, 93]. However, these works
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do not deal with fully non–linear boundary conditions like

3

∑
i=1

γi
x(0, t)

|γi
x(0, t)|

= 0

as in the special flow of networks. An adaptation of such “parameter trick”, allow-
ing also the treatment of fully non–linear boundary conditions, is presented in [43,
Section 6.6] and then modified for the application in the Sobolev setting in [44,
Section 4], to get the above result.

Thanks to the above proposition, we have a complete short–time existence, unique-
ness and parabolic smoothing result for Sobolev–solutions. Indeed, combining
Theorem 3.6 and Proposition 5.3 we have the following theorem.

Theorem 5.5 (Existence, uniqueness and smoothness in Sobolev spaces). — Let
p ∈ (3,+∞) and S0 be a regular network of class W2−2/p,p. Then there exists a max-
imal Sobolev–solution St∈[0,Tmax) to the motion by curvature with initial datum S0 in the
maximal time interval [0, T) which is geometrically unique. Furthermore, the networks
St =

⋃n
i=1 γi([0, 1], t) are geometrically smooth for all positive times.

We finally consider a general curvature flow. If we have a curvature flow St in [0, T)
which is C2 in space and C1 in time in [0, 1]× (0, T), then for every positive time µ,
the flow is of class C2,1([0, 1]× [µ, T)), in particular, it belongs to W1,2

p ([µ, T)× [0, 1]),
thus, it must coincide with the unique flow given by the previous theorem of the ini-
tial network Sµ. In particular, by parabolic regularization, it must be a geometrically
smooth flow. Being µ > 0 is arbitrary, this must hold for such flow on (0, T), hence
the flow is smooth for every positive time.
This argument extends Theorem 5.1 to every curvature flow.

Theorem 5.6. — Every curvature flow as inDefinition 2.11 is geometrically smooth for every
positive time.

A consequence of this “geometric” parabolic smoothing theorem is the extension of
Theorem 4.14 and Corollary 4.15 to any curvature flow. As before, we apply such
results to the reparametrized C∞ special curvature flow given by Corollary 3.34 (or
Corollary 5.2). The conclusions also hold for the original flow since they are con-
cerned only with the curvature and the lengths of the curves, which are invariant by
reparametrization.

Theorem 5.7. — Let T < +∞ be the maximal time interval of existence of a curvature flow
St which is C2 in space and C1 in time in [0, 1]× (0, T), then

1. either the inferior limit of the length of at least one curve of St is zero, as t → T,

2. or limt→T
∫

St
k2 ds = +∞, hence the curvature is not bounded as t → T.
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Moreover, if the lengths of the n curves are uniformly positively bounded from below, then this
superior limit is actually a limit and there exists a positive constant C such that∫

St
k2 ds ⩾ C√

T − t
and max

St
k2 ⩾ C√

T − t

for every t ∈ [0, T).

We can finally show the existence and geometric uniqueness of a curvature flow for
a regular initial network S0 of class C2, in a “quite natural” subclass of of the flows
which are C2 in space and C1 in time. The parabolic regularization allows us to use
the integral estimates of Chapter 4 to prove the existence of a solution to themotion by
curvature when the initial datum is a regular network of class C2, without requiring
any extra condition at the triple junctions and at the end–points. Geometric unique-
ness is then obtained from the well–posedness in Sobolev spaces.

Theorem 5.8. — For any initial C2 regular network S0 =
⋃n

i=1 σi([0, 1]) there exists
a solution γi of Problem (2.3) in a maximal time interval [0, T), which is continuous in
[0, 1]× [0, T) and such that

— the flow St =
⋃n

i=1 γi([0, 1], t) is a smooth flow for every t > 0,

— the unit tangents τi are continuous in [0, 1]× [0, T),

— the functions k(·, t) converge weakly in L2 to k(·, 0), as t → 0,

— the function t 7→
∫

St
k2 ds is continuous on [0, T).

Moreover, such flow is geometrically unique in the class N of the curvature flows of S0 which
are C2 in space and C1 in time, for t > 0 and such that

— the unit tangents τi are continuous in [0, 1]× [0, T),

— the integral
∫

St
k2 ds is locally bounded for t ∈ [0, T).

Proof. We can approximate in W2,2(0, 1) (hence in C1([0, 1])) the network
S0 =

⋃n
i=1 σi([0, 1]) with a family of smooth networks Sj, composed of C∞ curves

σi
j → σi, as j → ∞ with the same end–points and satisfying ∂xσi

j (0) = ∂xσi(0),
∂xσi

j (1) = ∂xσi(1).
By the convergence in W2,2 and in C1, the inverses of the lengths of the initial curves,
the integrals

∫
Sj

k2 ds and |∂xσi
j (x)| (from above and away from zero) for all the ap-

proximating networks are equibounded, thus Proposition 4.17 assures the existence
of a uniform interval [0, T) of existence of smooth evolutions given by the curves
γi

j(x, t) : [0, 1]× [0, T) → Ω.
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Now, for the same reason, Proposition 4.13 gives uniform estimates on the L∞ norms
of the curvature and of all its derivatives in every rectangle [0, 1] × [µ, TM), with
µ > 0.
This means that if we reparametrize at every time all the curves γi

j proportional
to their arclength, by means of a diagonal argument, we can find a subsequence
of the family of reparametrized flows γ̃i

j which converges in C∞
loc([0, 1] × (0, T))

to some flow, parametrized proportional to its arclength, γ̃i in the time interval
(0, T). Moreover, by the hypotheses, the curves of the initial networks σ̃i

j con-
verge in W2,2(0, 1) to σ̃i which are the reparametrizations, proportional to their ar-
clength, of the curves σi of the initial network S0. If we show that the maps γ̃i

are continuous up to the time t = 0 we have a curvature flow for the network
S̃0 =

⋃n
i=1 σ̃i([0, 1]) which then gives a curvature flow for the original network S0

in C∞([0, 1]× (0, T)), reparametrizing it back with some family of continuous maps
θi : [0, 1] × [0, T) → [0, 1] with θi

x 6= 0 everywhere, θi ∈ C∞([0, 1] × (0, T)) and
σ̃i(θi(·, 0)) = σi (this can be easily done as the maps θi(·, 0) are of class C2, since in
general, the arclength reparametrization maps have the same regularity of the net-
work).
Hence, we deal with the continuity up to t = 0 of the maps γ̃i. By the uniform L2

bound on the curvature and the parametrization proportional to the arclength, the
theorem of Ascoli–Arzelà implies that for every sequence of times tl → 0, the curves
γ̃i(·, tl) have a converging subsequence in C1([0, 1]) to some family of limit curves
ζ i : [0, 1] → Ω, still parametrized proportionally to arclength, by the C1–convergence.
Moreover, we can also assume that k(·, tl) converge weakly in L2(ds) to the curvature
function associated with the family of curves ζ i. We want to see that actually ζ i = σ̃i,
hence showing that the flow γ̃i : [0, 1]× [0, T) → Ω is continuous and that the unit
tangent vector τ : [0, 1]× [0, T) → R2 is a continuous map up to the time t = 0 (this
property is stable under the above reparametrization so it then will hold also for the
final curvature flow γi).
We consider a function φ ∈ C∞(R2) and the time derivative of its integral on the
evolving networks γ̃i

j, that is,

d
dt

∫
S̃j(t)

φ ds =
∫

S̃j(t)
φ(λ̃s − k̃2) ds +

∫
S̃j(t)

〈∇φ | k̃ + λ̃〉 ds

= −
∫

S̃j(t)
φk̃2 ds −

∫
S̃j(t)

〈∇φ | τ̃〉λ̃ ds +
∫

S̃j(t)
〈∇φ | k̃ + λ̃〉 ds

= −
∫

S̃j(t)
φk̃2 ds +

∫
S̃j(t)

〈∇φ | k̃〉 ds ,

where we integrated by parts, passing from first to second line.
Let us consider now any sequence of times tl converging to zero as above, such that
the curves γ̃i(·, tl) converge in C1([0, 1]) to some family of limit curves ζ i : [0, 1] → Ω
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(still parametrized proportionally to arclength) as above, describing some regular
network S and k(·, tl) converge weakly in L2(ds) to the curvature function associated
to the family of curves ζ i. Integrating this equality in the time interval [0, tl ] we get∫

S̃j(tl)
φ ds −

∫
S̃j(0)

φ ds = −
∫ tl

0

∫
S̃j(t)

φk̃2 ds dt +
∫ tl

0

∫
S̃j(t)

〈∇φ | k̃〉 ds dt

which clearly passes to the limit as j → ∞, by the smooth convergence of the flows
γ̃i

j to the flow γ̃i (and the uniform bound on
∫

S̃j(t)
k̃2 ds) and of the initial networks

S̃j(0) =
⋃n

i=1 σ̃i
j ([0, 1]) to S̃0 =

⋃n
i=1 σ̃i([0, 1]), hence,

∫
S̃tl

φ ds −
∫

S̃0

φ ds = −
∫ tl

0

∫
S̃t

φk̃2 ds dt +
∫ tl

0

∫
S̃t
〈∇φ | k̃〉 ds dt

By the uniform bound on the L2 norm of the curvature, we then get∣∣∣∣∫
S̃tl

φ(γ̃(·, tl)) ds −
∫

S̃0

φ(σ̃) ds
∣∣∣∣ ⩽ Ctl ,

where we made explicit the integrands, for the sake of clarity. Sending l → ∞ we
finally obtain ∣∣∣∣∫

S
φ(ζ) ds −

∫
S̃0

φ(σ̃) ds
∣∣∣∣ = 0 ,

that is, ∫
S

φ ds =
∫

S̃0

φ ds

for every function φ ∈ C∞(R2).
Since, both the networks S̃0 =

⋃n
i=1 σ̃i([0, 1]) and S =

⋃n
i=1 ζ i([0, 1]) are C1, reg-

ular and parametrized proportionally to their arclength, this equality for every
φ ∈ C∞(R2) implies that σ̃i = ζ i, which is what we wanted.
Notice that, the continuity of γi and τ also implies that themeasuresH 1 St weakly?
converge to H 1 S0, where H 1 is the one–dimensional Hausdorffmeasure, as t → 0.
Finally, integrating on [0, t) inequality (4.8) for the approximating flows γ̃i

j, and pass-
ing to the limit as j → ∞, we see that

lim sup
t→0+

∫
S̃t

k2 ds ⩽
∫

S̃0

k2 ds.

Since the function t →
∫

S̃t
k2 ds is lower semicontinuous, we then get that such func-

tion is indeed continuous on [0, T) (also at t = 0). Being such integral invariant by
reparametrization, this also holds for the flow γi. The same for the weak convergence
in L2(ds) of the functions k(·, t) to k(·, 0) as t → 0.
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Let now St be any curvature flow of S0 in [0, T), belonging to the class N of flows as
in the statement. By estimates (4.10) (with j = 2) we have

(5.1)
∫

S̃t
k2 + tk2

s ds ⩽
∫

S̃t
k2 + tk2

s + t2k2
ss ds ⩽ C hence ‖ks‖L2 ⩽ C/t1/2

for every t ∈ [0, T), with a constant C depending only on the inverses of the
lengths of the curves of the initial network S0 and on

∫
S0

k2 ds. Taking into ac-
count Proposition 4.11 uniformly bounding from below the lenghts of the curves
of the evolving network in a time interval [0, T̂] (with T̂ depending only on the
initial network), by means of Gagliardo–Nirenberg interpolation inequalities in
Proposition 4.7, we have the estimate

‖k‖L∞ ⩽ C‖ks‖1/2
L2 ‖k‖1/2

L2 + C‖k‖L2 ⩽ C‖ks‖1/2
L2 + C

where the constant is independent of t ∈ [0, T̂]. Hence, by inequality (5.1),

‖k(·, t)‖L∞ ⩽ C/t1/4 +C and
∫ T̂

0

∫
S̃t

k7/2 ds dt ⩽ C
∫ T̂

0
C/t7/8 +C dt ⩽ C

meaning that k ∈ L7/2([0, 1]× [0, T̂]). Reparametrizing the flow as at the beginning
of this chapter so that every curve becomes parametrized proportionally to its ar-
clength, we have a new flow γ̃i(x, t) = γi(φi(x, t), t) with |γ̃i

x| constantly equal to
Li(t), the length of the curve γi at time t ∈ [0, T), by means of reparametrizations
γ̃i(x, t) = γi(φi(x, t), t) solving the ODE’s

φi
x(x, t) = Li(t)/|γi

x(φi(x, t), t)|

with initial data φi(0, t) = 0. Moreover, we have seen that letting γ̃i
t = k̃i ν̃i + λ̃iτ̃i, we

have
λ̃i

s =
∂tLi

Li + (k̃i)2 .

This equation immediately says that λ̃i
s − (k̃i)2 is constant in space, then integrating

|λ̃(s, t)| ⩽ |λ̃(0, t)|+ |∂tLi(t)|+
∫

γi(·,t)
(k̃i)2 ds ⩽ C‖k̃(·, t)‖L∞ + C,

for every s ∈ [0, Li(t)], as |λ̃(·, t)| at the borders of any curve is estimated by
C‖k̃(·, t)‖L∞ ,

∫
γi(·,t)(k̃

i)2 ds is invariant by reparametrization and bounded by hy-
potheses and

|∂tLi(t)| =
∣∣∣∣λi(1, t)− λi(0, t)−

∫
γi(·,t)

(ki)2 ds
∣∣∣∣ ⩽ ‖k̃(·, t)‖L∞ + C.
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It follows

‖λ̃(·, t)‖L∞ ⩽ C‖k̃(·, t)‖L∞ + C = C‖k(·, t)‖L∞ + C ⩽ C/t1/4 + C,

hence, k̃, λ̃ ∈ L7/2([0, 1]×[0, T̂]). As a consequence, γ̃i
t = k̃i ν̃i+λ̃iτ̃i ∈L7/2([0, 1]×[0, T̂])

and being γ̃i
xx = k̃ν̃/(Li)2, also γ̃i

xx belongs to L7/2([0, 1] × [0, T̂]), hence this flow
γ̃ belongs to W1,2

7/2([0, T̂) × [0, 1]), thus it is geometrically uniquely determined, by
Theorem 3.6 (or 5.5).
This argument shows that any two curvature flows in the classN can be reparametrized
one to the other, that is, we have geometric uniqueness in this class andwe are done.

Remark 5.9. —

1. We underline that the initial network is not required to satisfy any compatibility
condition, but only to have angles of 120 degrees between the concurring curves
at every 3–point, that is, to be regular and C2. In particular, it is not necessary
that the sum of the three curvatures at the 3–points is zero.

2. As for every positive time the flow obtained by this theorem is C∞, hence
every network St is geometrically smooth, arguing as before (by means of
Remark 3.35), Corollary 5.2 applies: this flow can be reparametrized, from any
positive time on, to be a C∞ special smooth flow.

3. It should be noticed that if the initial curves σi are C∞, the flow St is smooth
till t = 0 far from the 3–points, that is, in any closed “rectangle” included in
(0, 1)× [0, T) we can locally reparametrize the curves γi to get a smooth flow
up to t = 0. This follows from the local estimates for the motion by curvature
(see [30]).

4. A natural question is whether uniqueness of the curvature flow of an initial
regular C2 network holds also “outside” of the subclass N , in the general class
of curvature flows as in Definition 2.11 (or possibly asking only the continuity
of the tangent vectors as t → 0). At the moment this is still an open problem.

Now that we have gained the short–time existence for an initial regular C2 network,
the next important question is what can be said if the initial network does not satisfy
the 120 degrees condition, that is, it is non–regular (even if all its curves are C∞). We
will face this question in Chapter 11 below. Clearly, the unit tangent vectors of any
curvature flow having as an initial network a configuration that does not satisfy the
120 degrees condition cannot be continuous up to time t = 0, being a curvature flow
C2 and regular for positive time. Anyway, notice that in the definition of curvature
flow, we require only that the maps γi are continuous in [0, 1]× (0, T) for some pos-
itive time T, hence one could hope to be able to find a curvature flow such that the
120 degrees condition is satisfied instantaneously, at every positive time t > 0, as it
happens for the geometrical smoothness in Theorem 5.1.
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In Chapter 11wewill also treat the problemof the evolution of a non–regular network
with multi–points of order greater than three. In this case, the continuity condition
at t = 0 has to be suitably stated, since, if we want the curvature flow to be regular
for every positive time, the collection of maps describing the network, as well as the
topological structure of the network, must change.
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CHAPTER 6

SMOOTH FLOWS ARE BRAKKE FLOWS

To continue the flow when at some time a curve collapses and possibly some multi–
points appear in the (limit) network, one can consider a more general (weak) defini-
tion of curvature flow.
As mentioned in the introduction, there exist several weak definitions of motion by
curvature of a subset of Rn. Among the existing notions, the most suitable to our
point of view is the one introduced by Brakke in [16], which in general lacks unique-
ness but at least maintains the (Hausdorff) dimension of the evolving sets.
We introduce now the concept of Brakke flow (with equality) of a network.

Definition 6.1. — A regular Brakke flow is a family of W2,2
loc networks St in Ω, satisfying

the inequality

(6.1) d
dt

∫
St

φ(γ, t) ds ⩽ −
∫

St
φ(γ, t)k2 ds +

∫
St
〈∇φ(γ, t) | k〉 ds +

∫
St

φt(γ, t) ds ,

for every non negative smooth function with compact support φ : Ω × [0, T) → R and
t ∈ [0, T), where d

dt is the upper derivative (the lim of the incremental ratios).
If the time derivative at the left-hand side exists and the inequality is equality, for every smooth
function with compact support φ : Ω × [0, T) → R and t ∈ [0, T), that is,

(6.2) d
dt

∫
St

φ(γ, t) ds = −
∫

St
φ(γ, t)k2 ds +

∫
St
〈∇φ(γ, t) | k〉 ds +

∫
St

φt(γ, t) ds ,

we say that St is a regular Brakke flow with equality.

Remark 6.2. — The original definition of Brakke flow given in [16, Section 3.3]
(in any dimension and codimension) allows the networks St to be simply one–
dimensional countably rectifiable subsets of R2, with possible integer multiplicity
θt : St → N and with a distributional notion of tangent space and (mean) curvature,
called rectifiable varifolds (see [99]). With such a general definition, the networks are
identified with the associated Radon measures µt = θtH 1 St.
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More precisely, the inequality

d
dt

∫
St

φ(x, t)θt(x) dH 1(x) ⩽ −
∫

St
φ(x, t)k2(x, t)θt(x) dH 1(x)

+
∫

St
〈∇φ(x, t) | k(x, t)〉θt(x) dH 1(x)

+
∫

St
φt(x, t)θt(x) dH 1(x) ,

must hold for every non-negative smooth function with compact support
φ : Ω × [0, T) → R and t ∈ [0, T), where H 1 is the Hausdorff one–dimensional
measure in R2.
These weak conditions were introduced by Brakke in order to prove an existence
result [16, Section 4.13] for a family of initial sets much wider than networks of
curves, but, on the other hand, it opens the possibility of instantaneous vanishing of
some parts of the sets during the evolution.

A big difference between Brakke flows and the evolutions obtained as solutions of
Problem (2.3) is that the former networks are simply considered as subsets of R2 with-
out anymention to their parametrization (that clearly is not unique). Thismeans that
actually a Brakke flow can be a family of networks given by the maps γi(x, t) which
are C2 in space, but possibly do not have absolutely any regularity with respect to the
time variable t.
An open question is whether any Brakke flows with equality, possibly under some
extra hypotheses, admits a reparametrization such that it becomes a solution of
Problem (2.3).
This problem is also related to the uniqueness of the Brakke flows with equality
(maybe further restricting the candidates to a special class with extra geometric prop-
erties).

Proposition 6.3. — Any solution of Problem (2.3) in C2,1([0, 1] × [0, T)) is a regular
Brakke flow with equality.
In particular, for every curve γi(·, t) and for every time t ∈ [0, T) we have

(6.3) dLi(t)
dt

= λi(1, t)− λi(0, t)−
∫

γi(·,t)
k2 ds

and
dL(t)

dt
= −

∫
St

k2 ds ,

that is, the total length L(t) is decreasing in time and it is uniformly bounded by the length
of the initial network S0.
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Proof. If the flow γi is in C∞([0, 1]× [0, T)), we have

dLi(t)
dt

=
d
dt

∫ 1

0
|γi

x| dx

=
∫ 1

0

〈γi
xt | γi

x〉
|γi

x|
dx

=
∫ 1

0

〈
∂xγi

t

∣∣∣∣ γi
x

|γi
x|

〉
dx

=
∫ 1

0
〈∂xγi

t | τi〉 dx

= 〈γi
t(1, t) | τi(1, t)〉 − 〈γi

t(0, t) | τi(0, t)〉 −
∫ 1

0
〈γi

t | ∂xτi〉 dx .

Then, approximating the maps γi with a family of maps γiε ∈ C∞ such that γiε → γi

in C1 and γiε
xx → γi

xx in C0, as ε → 0, we see that we can pass to the limit
in this formula and conclude that it holds for the original flow which is only in
C2,1([0, 1]× [0, T)). Finally, since ∂xτi = kiνi|γi

x|, we get

dLi(t)
dt

= λi(1, t)− λi(0, t)−
∫

γi(·,t)
k2 ds

as γi
t = kiνi + λiτi.

The formula for the derivative of the total length of the evolving network then follows
by the zero–sum property of the functions λi at every 3–point at the fact that all the
λi are zero at the end–points.
A similar argument shows that formula (6.2) defining a regular Brakke flow with
equality also holds.

Theorem 6.4. — If St is a curvature flow of a C2 initial network such that

— the unit tangents τi are continuous in [0, 1]× [0, T),

— the functions k(·, t) converge weakly in L2 to k(·, 0), as t → 0,

— the function t 7→
∫

St
k2 ds is continuous on [0, T),

then St is a regular Brakke flow with equality.

Proof. By the previous Theorem 6.3, we only need to check Brakke equality (6.2) at
t = 0.
For every positive time and for every smooth test function φ : Ω × [0, T) → R, we
have

d
dt

∫
St

φ ds = −
∫

St
φ k2 ds +

∫
St
〈∇φ | k〉 ds d +

∫
St

φt ds ,
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hence, it suffices to show that the right member is continuous at t = 0. By the hy-
potheses, the only term that really need to be checked is

∫
St

φ k2 ds, we separate it as
the sumof

∫
St

φ+ k2 ds and
∫

St
φ− k2 ds andwe show the continuity of these two terms

separately (here φ+ = φ∧ 0 and φ− = φ∨ 0). Thus, we assume that 0 ⩽ φ ⩽ 1, then,
by the weak convergence in L2(ds) of k(·, t) to k(·, 0), the integral

∫
St

φ k2 ds is lower
semicontinuous in t, that is,

∫
S0

φ k2 ds ⩽ lim inftl→0
∫

St
φ k2 ds for every tl → 0, but

if this is not an equality for some sequence of times, it cannot happen that
∫

St
k2 ds is

continuous at t = 0, indeed, we would have

lim
tl→0

∫
St

k2 ds ⩾ lim inf
tl→0

∫
St

φ k2 ds + lim inf
tl→0

∫
St
(1 − φ) k2 ds

>
∫

S0

φ k2 ds +
∫

S0

(1 − φ) k2 ds =
∫

St
k2 ds .

This concludes the proof.

Corollary 6.5. — The curvature flows whose short–time existence is proved in
Theorems 3.25 and 3.33 are regular Brakke flows with equality. The curvature flow of
an initial C2 regular network obtained in Theorem 5.8 is also a regular Brakke flow with
equality. Any curvature flow of a regular network is a regular Brakke flow with equality for
every positive time.

We conclude this chapter with the following property of Brakke flows.

Proposition 6.6. — For any regular Brakke flow with equality (hence, for every curvature
flow of a regular network) such that the curvature is uniformly bounded in a time interval
[0, T), the lengths of the curves of the network Li(t) converge to some limit, as t → T.
In particular, if the flow satisfies the conclusions of Theorem 5.7 at the maximal time of exis-
tence T, there must be at least one curve such that Li(t) → 0, as t → T.

Proof. If the curvature is bounded, by formula (6.3), any function Li as a uniformly
bounded derivative, as k controls λ at the end–points and 3–points of the network,
thus the conclusion follows.
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CHAPTER 7

THEMONOTONICITY FORMULA
AND THE RESCALING PROCEDURES

Let F : S × [0, T) → R2 be the curvature flow of a regular network in its maximal time
interval of existence. As before, with a little abuse of notation, we will write τ(Pr, t)
and λ(Pr, t) respectively for the unit tangent vector and the tangential velocity at the
end–point Pr of the curve of the network getting at such point, for any r ∈ {1, 2, . . . , l}.
A modified form of Huisken’s monotonicity formula for smooth hypersurfaces mov-
ing by mean curvature (see [53]), holds. It can be proved to start by formula (6.2)
and with a slight modification of the computation in the proof of Lemma 6.3 in [82].
Let x0 ∈ R2, t0 ∈ (0,+∞) and ρx0,t0 : R2 × [−∞, t0) be the one–dimensional backward
heat kernel in R2 relative to (x0, t0), that is,

ρx0,t0(x, t) =
e
− |x−x0 |2

4(t0−t)√
4π(t0 − t)

.

We will often write ρx0(x, t) to denote ρx0,T(x, t) (or ρx0 to denote ρx0,T), when T is
the maximal (singular) time of existence of a smooth curvature flow.
Proposition 7.1 (Monotonicity formula). — Assume t0 > 0. For every x0 ∈ R2 and
t ∈ [0, min{t0, T}) the following identity holds

d
dt

∫
St

ρx0,t0 (x, t) ds = −
∫

St

∣∣∣∣∣ k +
(x − x0)

⊥

2(t0 − t)

∣∣∣∣∣
2

ρx0,t0 (x, t) ds(7.1)

+
l

∑
r=1

[〈
Pr − x0

2(t0 − t)

∣∣∣∣ τ(Pr, t)
〉
− λ(Pr, t)

]
ρx0,t0 (Pr, t) .

Integrating between t1 and t2 with 0 ⩽ t1 ⩽ t2 < min{t0, T} we get∫ t2

t1

∫
St

∣∣∣∣∣ k +
(x − x0)

⊥

2(t0 − t)

∣∣∣∣∣
2

ρx0,t0 (x, t) ds dt =
∫

St1

ρx0,t0 (x, t1) ds −
∫

St2

ρx0,t0 (x, t2) ds(7.2)

+
l

∑
r=1

∫ t2

t1

[〈
Pr − x0

2(t0 − t)

∣∣∣∣ τ(Pr, t)
〉
− λ(Pr, t)

]
ρx0,t0 (Pr, t) dt .
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We need the following lemma to estimate the end–points contributions in this for-
mula (its proof is analogous to the one of Lemma 6.5 in [82]).

Lemma 7.2. — If t0 ∈ (0, T], for every r ∈ {1, 2, . . . , l} and x0 ∈ R2, the following
estimate holds∫ t0

t

∣∣∣∣〈 Pr − x0

2(t0 − ξ)

∣∣∣∣ τ(Pr, ξ)

〉
− λ(Pr, ξ)

∣∣∣∣ ρx0,t0(Pr, ξ) dξ ⩽ C ,

for every t ∈ [0, t0), where C is a constant depending only on the constant C0 in assump-
tion (4.1) (independent of t0 and t). It follows that the integral∫ t0

t

[〈
Pr − x0

2(t0 − ξ)

∣∣∣∣ τ(Pr, ξ)

〉
− λ(Pr, ξ)

]
ρx0,t0(Pr, ξ) dξ

exists and it is finite, for every t0 ∈ (0, T] and t ∈ [0, t0).
As a consequence, for every point x0 ∈ R2 and t0 ∈ (0, T], we have

lim
t→t0

l

∑
r=1

∫ t0

t

[〈
Pr − x0

2(t0 − ξ)

∣∣∣∣ τ(Pr, ξ)

〉
− λ(Pr, ξ)

]
ρx0,t0(Pr, ξ) dξ = 0 .

By formula (7.2) and this lemma, we can then write

∫
St

ρx0,t0(x, t) ds =
∫

S0

ρx0,t0(x, 0) ds −
∫ t

0

∫
Sξ

∣∣∣∣∣ k +
(x − x0)

⊥

2(t0 − ξ)

∣∣∣∣∣
2

ρx0,t0(x, ξ) ds dξ

+
l

∑
r=1

∫ t

0

[〈
Pr − x0

2(t0 − ξ)

∣∣∣∣ τ(Pr, ξ)

〉
− λ(Pr, ξ)

]
ρx0,t0(Pr, ξ) dξ ,

=
∫

S0

ρx0,t0(x, 0) ds −
∫ t

0

∫
Sξ

∣∣∣∣∣ k +
(x − x0)

⊥

2(t0 − ξ)

∣∣∣∣∣
2

ρx0,t0(x, ξ) ds dξ

+
l

∑
r=1

∫ t0

0

[〈
Pr − x0

2(t0 − ξ)

∣∣∣∣ τ(Pr, ξ)

〉
− λ(Pr, ξ)

]
ρx0,t0(Pr, ξ) dξ ,

−
l

∑
r=1

∫ t0

t

[〈
Pr − x0

2(t0 − ξ)

∣∣∣∣ τ(Pr, ξ)

〉
− λ(Pr, ξ)

]
ρx0,t0(Pr, ξ) dξ ,

for every t0 ∈ (0, T] and t ∈ [0, t0). Now we notice that the first line on the right side
of this formula is a monotone non increasing function in t ∈ [0, t0), the second line is
a constant and the third line converges to zero as t → t0, by Lemma 7.2. Hence, the
non negative function t 7→

∫
St

ρx0,t0(x, t) ds converges to some limit as t → t0. Then,
the following definition is well posed.
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Definition 7.3 (Gaussian densities). — For every x0 ∈ R2, t0 ∈ (0,+∞) we define the
Gaussian density function Θx0,t0 : [0, min{t0, T}) → R as

Θx0,t0(t) =
∫

St
ρx0,t0(·, t) ds

and, provided t0 ⩽ T, the limit Gaussian density function Θ̂ : R2 × (0,+∞) → R as

Θ̂(x0, t0) = lim
t→t0

Θx0,t0(t) .

which exists finite and non negative, for every (x0, t0) ∈ R2 × (0, T], by the above argument
(under assumption (4.1), or simply if the end–points Pr of the network St are fixed, hence
λ(Pr, ·) = 0).
We will often write Θx0(t) to denote Θx0,T(t) and Θ̂(x0) for Θ̂(x0, T).

Notice that the map Θ̂ : R2 → R is upper semicontinuous (see [76,
Proposition 2.12]), being given by the monotone limit of continuous functions
“perturbed” by a sequence of functions pointwise converging to zero.

7.1. Parabolic rescaling of the flow

For a fixed µ > 0 the standard parabolic rescaling of a curvature flow is given by the
map F above, around a space–time point (x0, t0), is defined as the family of maps

(7.3) Fµ
t = µ

(
F(·, µ−2t+ t0)− x0

)
,

where t ∈ [−µ2t0, µ2(T − t0)). Notice that this is again a curvature flow in the domain
µ(Ω − x0) with new time parameter t.
Given a sequence µi ↗ +∞ and a space–time point (x0, t0), where 0 < t0 ⩽ T, we
then consider the sequence of curvature flows Fµi

t in the whole R2 that we denote
with S

µi
t .

Recall that the monotonicity formula implies

Θx0,t0(t)−Θ̂(x0, t0)=

t0∫
t

∫
Sσ

∣∣∣k + (x − x0)
⊥

2(t0 − σ)

∣∣∣2ρx0,t0(·, σ) ds dσ

−
l

∑
r=1

∫ t0

t

[〈
Pr − x0

2(t0 − σ)

∣∣∣∣ τ(Pr, σ)

〉
− λ(Pr, σ)

]
ρx0,t0(Pr, σ) dσ .
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Changing variables according to the parabolic rescaling, we obtain

Θx0,t0(t0 + µ−2
i t)− Θ̂(x0, t0) =

0∫
t

∫
S

µi
s

∣∣∣ki − x⊥

2s

∣∣∣2ρ0,0(·, s) ds ds

+
l

∑
r=1

0∫
t

[〈
Pr

i
2s

∣∣∣∣ τ(Pr
i , s)

〉
+ λi(Pr

i , s)
]

ρ0,0(Pr
i , s) ds ,

where Pr
i =µi(Pr−x0) and ki and λi are the rescaled curvatures and tangential velocities.

Hence, sending i → ∞, by Lemma 7.2, for every t ∈ (−∞, 0) we get

lim
i→∞

0∫
t

∫
S

µi
s

∣∣∣ki − x⊥

2s

∣∣∣2ρ0,0(·, s) ds ds = 0 .

7.2. Huisken’s dynamical rescaling

We introduce the rescaling procedure of Huisken in [53] at the maximal time T.
Fixed x0 ∈ R2, let F̃x0 : S × [−1/2 log T,+∞) → R2 be the map

F̃x0(p, t) =
F(p, t)− x0√

2(T − t)
t(t) = −1

2
log (T − t)

then, the rescaled networks are given by

(7.4) S̃x0,t =
St − x0√
2(T − t)

and they evolve according to the equation

∂

∂t
F̃x0(p, t) = ṽ(p, t) + F̃x0(p, t)

where

ṽ(p, t) =
√

2(T − t(t)) · v(p, t(t)) = k̃ + λ̃ = k̃ν + λ̃τ and t(t) = T − e−2t .

Notice that we did not put the sign˜over the unit tangent and normal, since they
remain the same after the rescaling.
We will write Õp(t) = F̃x0(O

p, t) for the 3–points of the rescaled network S̃x0,t and
P̃r(t) = F̃x0(Pr, t) for the end–points, when there is no ambiguity on the point x0.
The rescaled curvature evolves according to the following equation,

∂tk̃ = k̃ss + k̃sλ̃ + k̃3 − k̃
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which can be obtained by means of the commutation law

∂t∂s = ∂s∂t + (k̃2 − λ̃s − 1)∂s ,

where we denoted with s the arclength parameter for S̃x0,t.
Remark 7.4. — It is easy to see that the relations between the two rescaling proce-
dures are given by

S
µ
t =

√
−2t S̃x0,log (µ/

√
−t) and S̃x0,t =

et

µ
√

2
S

µ

−µ2e−2t ,

in particular,
S

µ
−1/2 = S̃x0,log (µ

√
2) .

By a straightforward computation (see [53]) we have the following rescaled version
of the monotonicity formula.
Proposition 7.5 (Rescaled monotonicity formula). — Let x0 ∈ R2 and set

ρ̃(x) = e−
|x|2

2

For every t ∈ [−1/2 log T,+∞) the following identity holds
d
dt

∫
S̃x0,t

ρ̃(x) ds = −
∫

S̃x0,t

| k̃ + x⊥|2ρ̃(x) ds+
l

∑
r=1

[〈
P̃r(t)

∣∣∣ τ(Pr, t(t))
〉
− λ̃(Pr, t(t))

]
ρ̃(P̃r(t))

where P̃r(t) = Pr−x0√
2(T−t(t))

.
Integrating between t1 and t2 with −1/2 log T ⩽ t1 ⩽ t2 < +∞ we get

∫ t2

t1

∫
S̃x0,t

| k̃+x⊥|2ρ̃(x) ds dt =
∫

S̃x0,t1

ρ̃(x) ds−
∫

S̃x0,t2

ρ̃(x) ds

(7.5)

+
l

∑
r=1

∫ t2

t1

[〈
P̃r(t)

∣∣∣ τ(Pr, t(t))
〉
−λ̃(Pr, t(t))

]
ρ̃(P̃r(t) dt .

We have also the analog of Lemma 7.2 (see Lemma 6.7 in [82]).
Lemma 7.6. — For every r ∈ {1, 2, . . . , l} and x0 ∈ R2, the following estimate holds for all
t ∈

[
− 1

2 log T,+∞
)
,∫ +∞

t

∣∣∣〈 P̃r(ξ)
∣∣∣ τ(Pr, t(ξ))

〉
− λ̃(Pr, t(ξ))

∣∣∣ dξ ⩽ C ,

where C is a constant depending only on the constants C0 in assumption (4.1) (independent
of t).
As a consequence, for every point x0 ∈ R2, we have

lim
t→+∞

l

∑
r=1

∫ +∞

t

[〈
P̃r(ξ)

∣∣∣ τ(Pr, t(ξ))
〉
− λ̃(Pr, t(ξ))

]
dξ = 0 .
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CHAPTER 8

CLASSIFICATION OF POSSIBLE BLOW–UP LIMITS

In this chapter we want to discuss the possible limits of an evolving network at the
maximal time of existence. When the curvature does not remain bounded, we are
interested in the possible blow–up limit networks after parabolic or Huisken’s rescal-
ing procedure, using the rescaled monotonicity formula (see Chapter 7). In some
cases, such limit sets are no more regular networks, so we introduce the following
definition.

Definition 8.1 (Degenerate regular network). — Consider a tuple (G, S) with the fol-
lowing properties:

— G =
⋃n

i=1 Ei is an oriented graph with possible unbounded edges Ei, such that every
vertex has only one or three concurring edges (we call end–points of G the vertices with
order one);

— given a family of C1 curves σi : Ii → R2, where Ii is the interval (0, 1), [0, 1), (0, 1] or
[0, 1], and orientation preserving homeomorphisms φi : Ei → Ii, then S is the union of
the images of Ii through the curves σi, that is, S =

⋃n
i=1 σi(Ii) (notice that the interval

(0, 1) can only appear if it is associated with an unbounded edge Ei without vertices,
which is clearly a single connected component of G);

— in the case that Ii is (0, 1), [0, 1) or (0, 1], the map σi is a regular C1 curve with unit
tangent vector field τi;

— in the case that Ii = [0, 1], the map σi is either a regular C1 curve with unit tangent
vector field τi, or a constant map and in this case it is “assigned” also a constant unit
vector τi : Ii → R2, that we still call unit tangent vector of σi (we call these maps σi

“degenerate curves”);

— for every degenerate curve σi : Ii → R2 with assigned unit vector τi : Ii → R2, we call
“assigned exterior unit tangents” of the curve σi at the points 0 and 1 of Ii, respectively
the unit vectors −τi and τi.
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— the map Γ : G → R2 given by the union Γ =
⋃n

i=1(σ
i ◦ φi) is well-defined and

continuous;

— for every 3–point of the graph G, where the edges Ei, Ej, Ek concur, the exterior unit
tangent vectors (real or “assigned”) at the relative borders of the intervals Ii, I j, Ik of the
concurring curves σi, σj σk have zero sum (“degenerate 120 degrees condition”).

Then, we call S =
⋃n

i=1 σi(Ii) a degenerate regular network.
If one or several edges Ei of G are mapped under the map Γ : G → R2 to a single point
p ∈ R2, we call this sub–network given by the union G′ of such edges Ei, the core of S at p.
We call multi–points of the degenerate regular network S, the images of the vertices of multi-
plicity three of the graph G, by the map Γ.
We call end–points of the degenerate regular network S, the images of the vertices of multiplic-
ity one of the graph G, by the map Γ.
Remark 8.2. —

— A regular network is clearly a degenerate regular network.

— This definition will be useful to deal with the limit sets when at some time
a curve of the network collapses, namely, its length goes to zero (later on in
Chapter 10).

— Seen as a subset in R2, a degenerate regular network S with underlying graph
G, is a C1 network, not necessarily regular, that can have end–points and/or
unbounded curves. Moreover self–intersections and curves with integer multi-
plicities can be present. Anyway by the degenerate 120 degrees condition at the
last point of the definition, at every image of a multi–point of G the sum (possi-
blywithmultiplicities) of the exterior unit tangents (the “assigned” ones cancel
each other in pairs) is zero. Notice that this implies that every multiplicity–one
3–point must satisfy the 120 degrees condition.

Lemma 8.3. — Let S =
⋃n

i=1 σi(Ii) be a degenerate regular network in Ω and X : R2 → R2

be a smooth vector field with compact support. Then, there holds∫
S

∂s〈X(σ) |τ〉 dH
1
= −

l

∑
r=1

〈X(Pr) |τ(Pr)〉 ,

where P1, P2, . . . , Pl are the end–points of S, τ(P1), τ(P2), . . . , τ(Pl) are the exterior unit
tangents at Pr and H

1 is the one–dimensional Hausdorff measure, counting multiplicities.
Proof. This is a consequence of the degenerate 120 degrees condition, implying that
the sum of all the contributions at a multi–point given by the boundary terms after
the integration on every single curve is zero (as the sum of the exterior unit tangents
of the concurring curves). Thus the only remaining terms are due to the end–points
of the degenerate regular network.
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Definition 8.4. — We say that a sequence of regular networks Sk =
⋃n

i=1 σi
k(Ii

k) converges inC1
loc

to a degenerate regular network S =
⋃l

j=1 σ
j
∞(I j

∞) with underlying graph G =
⋃l

j=1 Ej if:

— letting O1, O2, . . . , Om be the multi–points of S, for every open set Ω ⊆ R2 with
compact closure in R2 \ {O1, O2, . . . , Om} the networks Sk restricted to Ω, for k large
enough, are described by families of regular curves which converge up to reparametriza-
tion to the family of regular curves given by the restriction of S to Ω;

— for every multi–point Op of S, image of one or more vertices of the graph G (if a core is
present), there is a sufficiently small R > 0 and a graph G̃ =

⋃s
r=1 Fr, with edges Fr

associated to intervals Jr, such that:

– the restriction of S to BR(Op) is a regular degenerate network described by a family
of curves σ̃r

∞ : Jr → R2 with (possibly “assigned”, if the curve is degenerate) unit
tangent τ̃r

∞,
– for k sufficiently large the restriction of Sk to BR(Op) is a regular network with

underlying graph G̃, described by the family of regular curves σ̃r
k : Jr → R2,

– for every j, possibly after reparametrization of the curves, the sequence
of maps Jr 3 x 7→

(
σ̃r

k(x), τ̃r
k (x)

)
converge in C0

loc to the maps
Jr 3 x 7→

(
σ̃r

∞(x), τ̃r
∞(x)

)
for every r ∈ {1, 2, . . . , s}.

We will say that Sk converges to S in C1
loc ∩ E, where E is some function space, if the above

curves also converge in the topology of E.

Remark 8.5. —

— If the limit regular network S is non–degenerate, the above convergence of a se-
quence of regular networks Sk to S is simply the C1

loc–convergence of the curves
of Sk to the relative ones of S. Anyway, in general, if S is a degenerate regular
network S, the above definition of C1

loc–convergence for a sequence of regular
networks Sk to S, is clearly stronger than that, by the last request at the second
point. Asking only the C1

loc–convergence of the curves of a sequence of regular
networks Sk would not guarantee that the limit degenerate network S is regular,
as the last point in Definition 8.1 could possibly not being satisfied by S.

— It is easy to see that if a sequence of regular networks Sk converges in C1
loc to a de-

generate regular network S, the associated one–dimensional Hausdorffmeasures,
counting multiplicities, weakly–converge (as measures) to the one–dimensional
Hausdorff measure associated with the set S seen as a subset of R2.

— If a degenerate regular network S is the limit of a sequence of regular net-
works as above, being these embedded, it clearly can have only tangent self–
intersections but not a “crossing” of two of its curves.
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— If S is the limit of a sequence of “rescalings” of the networks of a curvature flow
St with fixed end–points, it can have only one end–point at the origin of R2 and
only if the center of the rescalings coincides with an end–point of St, otherwise,
it has no end–points at all (they go to ∞ in the rescaling).

8.1. Self–similarly shrinking networks

Definition 8.6. — A regular C2 open network S =
⋃n

i=1 σi(Ii) is called a regular shrinker
if at every point x ∈ S there holds

(8.1) k + x⊥ = 0.

This relation is called the shrinkers equation.

The name comes from the fact that if S =
⋃n

i=1 σi(Ii) is a shrinker, then the evolution
given by St =

⋃n
i=1 γi(Ii, t) where γi(x, t) =

√
−2t σi(x) is a self–similarly shrinking

curvature flow in the time interval (−∞, 0) with S = S−1/2. Viceversa, if St is a self–
similarly shrinking curvature flow in the maximal time interval (−∞, 0), then S−1/2
is a shrinker.

O OO

Figure 8.1: Examples of regular shrinkers with zero or one triple junction:
a line through the origin, an unbounded triod composed of three halflines
from the origin meeting at 120 degrees, that we call standard triod and the
unit circle S1.

O

Figure 8.2: Another example of a regular shrinker with one triple junction:
a Brakke spoon.
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In these figures, there are drawn all the regular shrinkers with at most one triple
junction (see [51]). In particular by the work of Abresch and Langer [1] it follows
that the only regular shrinkers without triple junctions (simply curves) are the lines
through the origin and the unit circle. In the case of complete, embedded, regular
shrinker with two triple junctions it is not difficult to show that there are only two
possible topological shapes: the “lens/fish” shape and the Greek “Theta” letter (or
“double cell”), as depicted in the next figure (see also [9]).

O1

O2

γ2

γ1 γ4

γ3

O2

γ2

γ1

γ3

O1

Figure 8.3: A lens/fish–shaped and a Θ–shaped network.

It is well known that there exist unique (up to rotations) lens–shaped or fish–shaped,
embedded, regular shrinkers that are symmetricwith respect to a line through the ori-
gin of R2 (see [21, 97]). Instead, there are no regular Θ–shaped shrinkers (see [10]).

O O

Figure 8.4: The shrinking lens and the shrinking fish (up to rotations).

A “gallery” with these and other more complicated regular shrinkers can be found
in the Appendix.

Definition 8.7 (Degenerate shrinkers). — We call a degenerate regular network
S =

⋃n
i=1 σi(Ii) a degenerate regular shrinker if at every point x ∈ S there holds

k + x⊥ = 0 .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



92 CHAPTER 8. CLASSIFICATION OF POSSIBLE BLOW–UP LIMITS

Clearly, a regular shrinker is a degenerate regular shrinker and, as before, the maps
γi(x, t) =

√
−2t σi(x) describe the self–similarly shrinking evolution of a degenerate

regular network St in the time interval (−∞, 0), with S = S−1/2.

Definition 8.8. — A standard cross is a degenerate regular network given the union of two
straight lines intersecting at the origin of R2 and forming angles of 120 and 60 degrees, with
an underlying graph G as in the following figure. Its core consists of the degenerate curve
mapping the “central” curve of G constantly to the origin. The “assigned” tangent vector to
the degenerate curve is one of the two unit vectors that generates the bisector line of the 120
degrees angles.

C

O

G

Figure 8.5: A standard crosswith angles of 60/120 degrees and its underlying
graph G.

Remark 8.9. — As every non–degenerate curve of a degenerate regular shrinker (or
simply of a regular shrinker) satisfies the equation k + x⊥ = 0, it must be a piece
of a line through the origin or of the so called Abresch–Langer curves. Their classifica-
tion results in [1] imply that any of these non straight pieces are compact, hence any
unbounded curve of a shrinker must be a line or an halfline “pointing” towards the
origin. Moreover, it also follows that if a curve contains the origin, then it is a straight
line through the origin (if it is in the interior) or a halfline from the origin (if it is an
end–point of the curve).

For a degenerate regular shrinker S, in analogy with Definition 7.3, we denote with

ΘS = Θ0,0(−1/2) =
∫

S
ρ0,0(·,−1/2) ds

itsGaussian density (here ds denotes the integrationwith respect to the canonical mea-
sure on S, counting multiplicities). Notice that the integral Θ0,0(t) =

∫
St

ρ0,0(·, t) ds
is constant for t ∈ (−∞, 0), hence equal to Θ̂(0) for the self–similarly shrinking cur-
vature flow St =

√
−2t S generated by S, as above.
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The Gaussian density of a straight line through the origin is 1, of a halfline from the
origin is 1/2, of a standard triod T is 3/2, of a standard cross C is 2. The Gaussian
density of the unit circle S1 can be easily computed to be

(8.2) ΘS1 =

√
2π

e
≈ 1,5203 .

Notice that ΘT = 3/2 < ΘS1 < 2.
The Gaussian densities of several other regular shrinkers can be found in the Appendix.
We have the following two classification results for degenerate regular shrinkers, see
Lemma 8.3 and 8.4 in [58].

Lemma 8.10. — Let S =
⋃n

i=1 σi(Ii) be a degenerate regular shrinker which is a
C1

loc ∩W2,2
loc–limit of regular networks Si homeomorphic to the underlying graph G of S (as in

Definition 8.1) and assume that G is a tree without end–points. Then S consists of halflines
from the origin, with possibly a core at the origin.
Moreover, if G is connected, without end–points and S is a network with unit multiplicity,
this latter can only be

— a line (no cores),
— a standard triod (no cores),
— two lines intersecting at the origin forming angles of 120/60 degrees (the core is a

collapsed segment in the origin with “assigned” unit tangent vector bisecting the angles
of 120 degrees), that is, a standard cross (see Figure 8.5).

Proof. We assume that G is connected, otherwise, we argue on every single connected
component. By the hypothesis of approximationwith regular (embedded) networks,
G is a planar graph.
As we said in Remark 8.9, if a non–degenerate curve contains the origin, then it is a
piece of a straight line. Otherwise, it is contained in a compact subset of R2 and has
a constant winding direction with respect to the origin. Aside from the circle, any
other solution has a countable, non–vanishing number of self–intersections (all these
facts were shown in [1]).
We underline that the length of some curves of Si can go to zero in the limit, then
any core of the limit network is the union of some of these vanishing curves. Suppose
that the network S has a core at some point P ∈ S, then, at least an edge of G is
mapped into P and the length of at least one curve, let us say γi, goes to zero in the
limit. Being the graph G a tree, if N ⩾ 2 triple junctions are contained in the core,
then N + 2 curves (counted with multiplicity) with strictly positive length concur at
P. This fact can be easily proved by induction: if N = 2, then two triple junctions are
present in the core and hence the length of the curve connecting the two junctions has
gone to zero in the limit, but the other four curves emanating from the two different
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junctions have still positive lengths. We suppose now that the statement holds for
N = Ñ andwe show it for N = Ñ + 1. With respect to the situation in which Ñ triple
junctions are in the core, we add an extra triple junction O to the core, but to do so
one of the original Ñ + 2 curves emanating from the core has to go to zero. However,
the other two concurring curves to O have length bounded from below away from
zero and now concur to P, thus there are (Ñ + 2)− 1+ 2 = Ñ + 3 curves with strictly
positive length concurring at P and the claim is proved.
We can suppose (up to reparametrization) that for every i ∈ N, any curve
γi : [0, 1] → R2 of Si is parametrized with constant modulus of its velocity, equal
to its length. Then we get

lim
i→∞

sup
x,y∈[0,1]

|τi(x)− τi(y)| = 0 ,

indeed, given x, y ∈ [0, 1], there holds

|τi(x)− τi(y)| =
∣∣∣∣ ∫ s(y)

s(x)
∂sτi ds

∣∣∣∣ ⩽ ∫
γi

|ki| ds ⩽
(∫

γi

|ki|2 ds
)1/2

L(γi)
1/2

and we obtain the conclusion, by passing to the limit. Hence, the vanishing curves of Si
are straighter and straighter, as i → ∞ and for i ∈ N large enough, so we can assume in
the next argument that the unit tangent vectors are constant on each of such curves.
We describe the structure of the core. Let i ∈ N be sufficiently large and consider
the longest simple “path” of curves of Si that go to the core of S at P. We then orient
the path and follow its edges. The “assigned” unit tangent vectors (possibly changed
of sign on some edges in order to coincide with the orientation of the path) cannot
“turn” of an angle of 60 degrees in the same “direction” for two consecutive times
along the path, otherwise, since G is a treewith only triple junctions, without external
vertices and with non–compact branches, the approximating networks must have a
self–intersection (see Figure 8.6 below).

G S

The core of S

S

Figure 8.6: If the assigned unit tangent vector “turns” of an angle of
60 degrees in the same direction for two consecutive times, G has self–
intersections. An example of such a pair (G, S).
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Hence, if the assigned unit tangent vector “turns” of an angle of 60 degrees then it
must “turn” back, in passing from an edge to another along such longest path. This
means that at the initial/final point of such path, either the two assigned unit tangent
vectors are the same (when the number of edges is odd) or they differ of 60 degrees
(when the number of edges is even). By a simple check, we can then see that, in the
first case the four curves images of the four non–collapsed edges exiting from such
initial/final points of the path, have four different exterior unit tangent vectors at P
(opposite in pairs), in the second case, they have three exterior unit tangent vectors
at P which are non–proportional each other.

G

21

1

S G

1
1

1

1

S

Figure 8.7: Examples of the edges at the initial/final points of the longest
simple path in G and of the relative curves in S, the numbers 1 and 2 denote
their multiplicity.

If then there is a 3–point or a core at some point P 6= 0, since at most two of the four
directions in the first case above and at most one of the three directions in the second
case, can belong to the straight line through P and the origin, there are always at least
two distinct non–straight Abresch–Langer curves arriving/starting at P. Clearly, this
property holds also if there is no core, but P is simply a 3–point.
Let us consider S′ ⊆ S, which consists of S with the interior of all the pieces of straight
lines removed and let σi one of the two curves above. We follow σi till its other end–
point Q. At this end–point, even if there is a core at Q, there is always another dif-
ferent non–straight curve σj to continue moving in S avoiding the pieces of straight
lines (hence staying far from the origin). Actually, either the underlying intervals Ii
and Ij are concurrent at the vertex corresponding to Q in the graph G or there is a
path in G (collapsed in the core at Q) joining Ii and Ij. We then go on with this path
on S (and on G) till, looking at things on the graph G, we arrive at an already con-
sidered vertex, which happens since the number of vertices of G is finite, obtaining a
closed loop, hence, a contradiction. Thus, S′ cannot contain 3–points or cores outside
the origin. If anyway S contains a non–straight Abresch–Langer curve, we can repeat
this argument getting again a contradiction, hence, we are done with the first part of
the lemma, since then S can only consist of halflines from the origin.
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Now we assume that G is connected and S is a network with multiplicity one, com-
posed of halflines from the origin.
If there is no core, S is homeomorphic to G and composed only by halflines for the
origin, hence G has at most one vertex, by connectedness. If G has no vertices, then
S must be a line, if it has a 3–point, S is a standard triod.
If there is a core in the origin, by the definition of degenerate regular network it fol-
lows that the halflines of S can only have six possible directions, by the 120 degrees
condition, hence, by the unitmultiplicity hypothesis, the graph G is a tree in the plane
with at most six unbounded edges. Arguing as in the first part of the lemma, if N de-
notes the number (greater than one) of 3–points contained in the core, it follows that
N can only assume the values 2, 3, 4. Repeating the argument of the “longest path”,
we immediately also exclude the case N = 3, since therewould be a pair of coincident
halflines in S, against the multiplicity–one hypothesis, while for N = 4 we have only
two possible situations, described at the bottom of the following figure.

G S The core of S G S The core of S

G S The core of S G S

The longest
simple path

in the core of S

Figure 8.8: The possible local structure of the graphs G, with relative net-
works S and cores, for N = 2, 3, 4.

Hence, if N = 4, in both two situations above there is in S at least one halfline with
multiplicity two, thus such case is also excluded.
Then, we conclude that the only possible network with a core is when N = 2 and S

is given by two lines intersecting at the origin forming angles of 120/60 degrees and
the core consists of a collapsed segment which must have an “assigned” unit tangent
vector bisecting the two angles of 120 degrees formed by the four halflines.
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Lemma 8.11. — Let S =
⋃n

i=1 σi(Ii) be a degenerate regular shrinker which is C1
loc–limit

of regular networks homeomorphic to the underlying graph G of S (as in Definition 8.1) and
assume that ΘS < ΘS1 . Then, the graph G of S is a tree. Thus, S is either a multiplicity–one
line or a standard triod.

Proof. By the hypotheses, we see that G is a planar graph. We assume that G is not a
tree, that is, it contains a loop, then we can find a (possibly smaller) loop bounding
a region. If such loop is in a core at some point P, it is easy to see, by the degenerate
120 degrees condition, that such region has six edges and, arguing as in Lemma 8.10,
that there must always be at least two non–collapsed, non–straight Abresch–Langer
curves arriving/starting at P in different directions.
Then, if we assume that the complement of S in R2 contains no bounded components,
repeating the argument in the proof of the previous lemma, it follows that S consists
of a union of halflines for the origin and the loops of G are all collapsed in the core.
Then, by what we said above, there must be at least six halflines emanating from (the
core at) the origin. This implies that ΘS ⩾ 3, which is a contradiction.
Let now B be a bounded component of the complement of S and γ a connected compo-
nent of the sub–network of S which bounds B, counted with unit multiplicity. Since
γ is an embedded, closed curve, smooth with corners and no triple junctions, we
can evolve it by “classical” curve shortening flow γt, for t ∈ [−1/2, t0) where we set
γ−1/2 = γ, until it shrinks at some t0 > −1/2 to a “round” point x0 ∈ R2 (by the
works of Angenent, Gage, Grayson, Hamilton [5–7, 39–41, 46], see Remark 2.16).
By the monotonicity formula, we have∫

γ
ρx0,t0(·,−1/2) ds ⩾ ΘS1

and, by the work of Colding–Minicozzi [24, Section 7.2], there holds

ΘS =
∫

S
ρ0,0(·,−1/2) ds = sup

x0∈R2,t0>−1/2

∫
S

ρx0,t0(·,−1/2) ds .

Then,
ΘS ⩾

∫
S

ρx0,t0(·,−1/2) ds ⩾
∫

γ
ρx0,t0(·,−1/2) ds ⩾ ΘS1 ,

which is a contradiction and we are done.

8.2. Geometric properties of the flow

Before proceeding, we show some geometric properties of the curvature flow of a
network that we will need in the sequel.
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Proposition 8.12. — Let St be the curvature flow of a regular network in a smooth, convex,
bounded, open set Ω, with fixed end–points on the boundary of Ω, for t ∈ [0, T). Then for
every time t ∈ [0, T) the network St intersects the boundary of Ω only at the end–points, and
such intersections are transversal for every positive time. Moreover, St remains embedded.

Proof. By continuity the 3–points cannot hit the boundary of Ω at least for some time
T′ > 0. The convexity of Ω and the strong maximum principle (see [92]) imply that
the network cannot intersect the boundary for the first time at an inner regular point.
As a consequence, if t0 > 0 is the “first time” when the St intersects the boundary
at an inner point, this latter has to be a 3–point. The minimality of t0 is then easily
contradicted by the convexity of Ω, the 120 degrees condition and the nonzero length
of the curves of St0 .
Even if some of the curves of the initial network are tangent to ∂Ω at the end–points,
by the strong maximum principle, as Ω is convex, the intersections become immedi-
ately transversal and stay so for every subsequent time.
Finally, if the evolution St loses embeddedness for the first time, this cannot happen
either at a boundary point, by the argument above, nor at a 3–point, by the 120 de-
grees condition. Hence it must happen at interior regular points, but this contradicts
the strong maximum principle.

Proposition 8.13. — In the same hypotheses of the previous proposition, if the smooth,
bounded, open set Ω is strictly convex, for every fixed end–point Pr on the boundary of Ω,
for r ∈ {1, 2, . . . , l}, there is a time tr ∈ (0, T) and an angle αr smaller than π/2 such that
the curve of the network arriving at Pr form an angle less that αr with the inner normal to the
boundary of Ω, for every time t ∈ (tr, T).

Proof. We observe that the evolving network St is contained in the convex set Ωt ⊆ Ω,
obtained by letting ∂Ω (which is a finite set of smooth curves with end–points Pr)
move by curvature keeping fixed the end–points Pr (see [52, 102, 103]). By the strict
convexity of Ω and strong maximum principle, for every positive t > 0, the two
curves of the boundary of Ω concurring at Pr form an angle smaller than π which is
not increasing in time. Hence, the statement of the proposition follows.

We briefly discuss now the behavior of the area of regions enclosed by the evolv-
ing regular network St. Let us suppose that a (moving) region A (t) is bounded
by some curves γ1, γ2, . . . , γm and let A(t) its area. Possibly reparametrizing these
curves which form the loop ` =

⋃m
i=1 γi in the network, we can assume that ` is

parametrized counterclockwise, hence, the curvature k is positive at the convexity
points of the boundary of A (t). Then, we have

A′(t) = −
m

∑
i=1

∫
γi
〈γi

t | ν〉 ds = −
m

∑
i=1

∫
γi
〈kν | ν〉 ds = −

m

∑
i=1

∫
γi

k ds = −
m

∑
i=1

∆θi
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where ∆θi is the difference in the angle between the unit tangent vector τ and the
unit coordinate vector e1 ∈ R2 at the final and initial point of the curve γi, indeed
(supposing the unit tangent vector of the curve γi “lives” in the second quadrant of
R2 – the other cases are analogous) there holds

∂sθi = ∂s arccos〈τ | e1〉 = − 〈τs | e1〉√
1 − 〈τ | e1〉2

= k ,

so
A′(t) = −

m

∑
i=1

∫
γi

∂sθi ds = −
m

∑
i=1

∆θi

Being ` a closed loop and considering that at all the end–points of the curves γi the
angle of the unit tangent vector “jumps” of 120 degrees, we have

(8.3) mπ/3 +
m

∑
i=1

∆θi = mπ/3 +
m

∑
i=1

∫
γi

k ds = 2π ,

hence

(8.4) A′(t) = −(2 − m/3)π

(this is called von Neumann rule, see [109]).
An immediate consequence is that the area of every region fully bounded by the
curves of the network evolves linearly and, more precisely, it increases if the region
has more than six edges, it is constant with six edges and it decreases if the edges are
less than six. Moreover, this implies that if a regionwith less than six edges is present,
with area A0 at time t = 0, the maximal time T of existence of a smooth flow is finite
and

T ⩽ A0

(2 − m/3)π
⩽ 3A0

π
.

Remark 8.14. — Since every bounded region contained in a shrinker must decrease
its area during the curvature flow of such shrinker (since it is homothetically contract-
ing), another consequence is that the only compact regions that can be present in a
regular shrinker are bounded by less than six curves (actually this conclusion also
holds for the “visible” regions – not the cores – of any degenerate regular shrinker).
Moreover, letting a shrinker evolve, since every bounded region must collapse after
a time interval of 1/2, the area of such a region is only dependent on the number m
of its edges (less than 6), by equation (8.4), indeed

A(0) = A(0)− A(1/2) = −
∫ 1/2

0
A′(t) dt =

∫ 1/2

0
(2 − m/3)π dt = (2 − m/3)π/2 .
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This implies that the possible structures (topology) of the shrinkers with equi-
bounded diameter are finite.
It is actually conjectured in [51, Conjecture 3.26] that there is an upper bound for
the possible number of bounded regions of a shrinker. This would imply that the
possible topological structures of shrinkers are finite.

We explain now a geometric construction that we will use several times in the following.
We consider the curvature flow of network St in a strictly convex set Ω, with fixed
end–points on ∂Ω labeled by {P1, P2, . . . , Pl}, in a maximal time interval [0, T).

StH1
t

H2
t

H3
t

H4
t

P1

P2

P3

P4

O1

O2

Figure 8.9: A network St with the associated networks Hi
t.

We recall that as the curves composing the network are at least C2 and the boundary
points are fixed, at each Pr both the velocity and the curvature are zero, namely, the
compatibility conditions of order 2 (see Definition 3.22) are satisfied.
For every end–point Pi, we define the “symmetrized” networks Hi

t each one obtained
as the union of St with its “reflection” S

Ri
t with respect to Pi. As the domain Ω

is strictly convex and St is inside Ω, this operation clearly does not introduce self–
intersections in the union Hi

t = St ∪ S
Ri
t and the number of triple junctions of Hi

t
is exactly twice the number of St. Every network Hi

t is a regular network and the
flow is still in C2,1, thanks to the compatibility conditions of order 2 satisfied at Pi.
The evolution is clearly symmetric with respect to Pi. If we have that the flow St is
smooth then also all the flows Hi

t are smooth (see Definition 3.27) and viceversa.
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8.3. Limits of rescaling procedures

Given a sequence µi ↗ +∞ and a space–time point (x0, t0), where 0 < t0 ⩽ T,
with T the maximal time of smooth existence, we consider as before in Section 7.1,
the sequence of parabolically rescaled curvature flows Fµi

t in the whole R2, that we
denote with S

µi
t .

We know that, by rescaling the monotonicity formula (end of Section 7.1),

(8.5) lim
i→∞

0∫
t

∫
S

µi
s

∣∣∣k − x⊥

2s

∣∣∣2ρ0,0(·, s) ds ds = 0 ,

for every t ∈ (−∞, 0). We see now that this implies that there exists a subsequence
of parabolic rescalings which “converges” to a (possibly empty) degenerate, self–
similarly shrinking network flow.

Definition 8.15. — We say that a (possibly degenerate and with multiplicity) network S

has bounded length ratios by the constant C > 0, if

H
1
(S ∩ BR(x)) ⩽ CR ,

for every x ∈ R2 and R > 0 (H 1 is the one–dimensional Hausdorff measure counting
multiplicities).

Notice that this is a scaling invariant property, with the same constant C. The follow-
ing technical lemma is due to Stone [104].

Lemma 8.16. — For any µ > 0, let S
µ
t be the parabolically rescaled flow around some

(x0, t0) ∈ R2 × (0, T), as defined in formula (7.3).

1. There exists a constant C = C(S0) such that, for every x ∈ R2, t ∈ [0, T) and R > 0
there holds

H 1(St ∩ BR(x)) ⩽ CR .

That is, the family of networks St has uniformly bounded length ratios by C.
It follows that for every x ∈ R2, t ∈ [−µ2t0, 0], µ > 0 and R > 0, we have

H 1(S
µ
t ∩ BR(x)) ⩽ CR .

2. For any ε > 0 there is a uniform radius R = R(ε) such that∫
S

µ
t \BR(x)

e−|x|2/2 ds ⩽ ε ,

that is, the family of measures e−|x|2/2 H 1 S
µ
t is tight (see [27]).
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Proof. By Definition 2.4, if S0 is an open network, the number of unbounded curves
(C1–asymptotic to straight lines) is finite. Then, it is easy to see that, open or not, S0
has bounded length ratios, that is, there exists a constant C > 0 such that

(8.6) H 1(S0 ∩ BR(x)) ⩽ C′R ,

for all x ∈ R2 and R > 0. This implies that the entropy of S0 (see [24, 75]) is bounded,
that is,

(8.7) E(S0) = sup
x∈R2,τ>0

∫
S0

e−
|x−x|2

4τ

√
4πτ

ds = sup
x∈R2,τ>0

∫
S0

ρx,τ(·, 0) ds ⩽ C′′ .

Indeed, for any x ∈ R2 and τ > 0, changing variable as y = (x − x)/2τ, we have

∫
S0

e−
|x−x|2

4τ

√
4πτ

ds =
∫

S0−x
2τ

e−
|y|2

2
√

2π
ds

=
∞

∑
n=0

∫
S0−x

2τ ∩(Bn+1(0)\Bn(0))

e−
|y|2

2
√

2π
ds

⩽ 1√
2π

∞

∑
n=0

e−n2/2H 1
(S0 − x

2τ
∩ Bn+1(0)

)
=

1√
2π

∞

∑
n=0

e−n2/2H 1
( 1

2τ

(
S0 ∩ B2τ(n+1)(x)− x

))
=

1√
2π

∞

∑
n=0

e−n2/2H 1(S0 ∩ B2τ(n+1)(x)
) 1

2τ

⩽ 1√
2π

∞

∑
n=0

e−n2/2(n + 1)C′

=C′

since the series converges (in the last inequality we applied estimate (8.6)).
Then, by the monotonicity formula (7.1), for any x ∈ R2, t ∈ [0, T) and R > 0, by
setting τ = t + R2, we have

∫
St

e−
|x−x|2

4R2

√
4πR

ds =
∫

St
ρx,t+R2(·, t) ds ⩽

∫
S0

ρx,t+R2(·, 0) ds ⩽ C′′ ,

hence,

H 1(St ∩ BR(x)) ⩽
√

4πeR
∫

St∩BR(x)

e−
|x−x|2

4R2

√
4πR

ds ⩽
√

4πC′′eR .
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Since this conclusion is scaling invariant, it also holds for all the rescaled networks
S

µi
t and the first point of the lemma follows with C =

√
4πC′′e. The second point is a

consequence of the first one, indeed, we have∫
S

µi
t \BR(x)

e−
|x|2

2 ds =
∞

∑
n=1

∫
S

µi
t ∩(B(n+1)R(x)\BnR(x))

e−
|x|2

2 ds

⩽
∞

∑
n=1

e−n2R2/2H 1(Sµi
t ∩ B(n+1)R(x)

)
⩽C

∞

∑
n=1

e−n2R2/2(n + 1)R

= f (R)

and the function f satisfies limR→+∞ f (R) = 0.

Proposition 8.17. — Given a sequence of parabolically rescaled curvature flows S
µi
t , as

above, there exists a subsequence µij and a (possibly empty) degenerate regular self–similarly
shrinking network flow S∞

t such that for almost all t ∈ (−∞, 0) and for any α ∈ (0, 1/2),

S
µij
t → S∞

t

in C1,α
loc ∩ W2,2

loc . This convergence also holds in the sense of Radon measures for all
t ∈ (−∞, 0).
Moreover, for every continuous function with compact support in space–time
φ : R2 × (−∞, 0) → R there holds

(8.8) lim
j→∞

∫
(−∞,0)

∫
S

µij
t

φ(·, t) ds ds =
∫
(−∞,0)

∫
S∞
t

φ(·, t) ds ds ,

where ds denotes the integration with respect to the canonical measure on S∞
t , counting mul-

tiplicities and

(8.9) lim
j→∞

∫
S

µij
t

ρ0,0(·, t) ds =
∫

S∞
t

ρ0,0(·, t) ds = ΘS∞
−1/2

= Θ̂(x0, t0) ,

for every t ∈ (−∞, 0).

Proof. We follow ideas in Ilmanen [57, Lemma 8] and [56, Section 7.1].
By the first point of Lemma 8.16, for every ball BR centered at the origin of R2, we
have the uniform bound H 1(S

µi
t ∩ BR) ⩽ CR, for some constant C independent of

i ∈ N and t ∈ (−∞, 0). Hence, we can assume that the sequence of Radon measures
defined by the left side of equation (8.8) are locally equibounded and converges to
some limit measure in the space–time ambient R2 × (−∞, 0).
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Considering the functions

fi(t) =
∫

S
µi
t

∣∣∣k − x⊥

2t

∣∣∣2ρ0,0(·, t) ds ,

the limit (8.5) implies that fi → 0 in L1
loc(−∞, 0). Thus, there exists a (not relabeled)

subsequence such that the sequence of functions fi converges pointwise almost ev-
erywhere to zero. We call A ⊆ (−∞, 0) such a convergence set.
Then, for any t ∈ A, because of the uniform bound H 1(S

µi
t ∩ BR) ⩽ CR, we have that

for any R > 0 ∫
S

µi
t ∩BR

k2 ds ⩽ CR(t) ,

for a constant CR(t) independent of i. Hence, if t ∈ A, reparametrizing the curves of
the rescaled networks by arclength, we obtain curves inW2,2

loc with uniformly bounded
first derivatives, which implies that any subsequence of the networks S

µi
t admits a fur-

ther subsequence converging weakly in W2,2
loc , hence in C1,α

loc to a degenerate regular
network S∞

t . Moreover, such subsequence S
µij
t actually converges strongly in W2,2

loc by
the weak convergence in W2,2

loc and the fact that fi(t) → 0 in L1
loc. Finally, by the con-

vergence in C1,α
loc , the associated Radon measures λ

ij
t = H 1 S

µij
t weakly converge

to λ∞
t = H

1
S∞
t (where H

1
S∞
t is the one–dimensional Hausdorff measure re-

stricted to S∞
t , counting multiplicities).

Since the integral functional

S 7→
∫
S

∣∣∣k − x⊥

2t

∣∣∣2ρ0,0(·, t) ds .

is lower semicontinuous with respect to this convergence (see [99], for instance), the
limit S∞

t satisfies

k − x⊥

2t
= 0 ,

in W2,2
loc , hence, by a bootstrap argument, each non–degenerate curve of S∞

t is actually
smooth. Thus, for every t ∈ A the network S∞

t is a degenerate regular shrinker, up to
a dilation factor.
By a standard diagonal argumentwe can assume that for t in a dense countable subset
B1 ⊆ A the subsequence S

µij
t converges in W2,2

loc and C1,α
loc to a limit degenerate regular

shrinker S∞
t , with associated Radon measure λ∞

t = H
1

S∞
t , as above.

When t ∈ A \ B1 we consider as S∞
t the limit degenerate regular shrinker of an arbi-

trary converging subsequence of the networks S
µij
t and λ∞

t = H
1

S∞
t .
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When t ∈ (−∞, 0) \ A we instead consider as λ∞
t the limit Radon measure of an arbi-

trary weakly–converging subsequence of the Radon measures λ
ij
t = H 1 S

µij
t .

In this way we defined the limit network S∞
t for every t ∈ A and the limit Radon

measures λ∞
t for every t ∈ (−∞, 0).

If F is a countable dense family of smooth functions in the cone of non negative func-
tions in C0

c (R
2), by the above convergence and the rescaled monotonicity formula, it

follows that for every φ ∈ F , there holds (by Proposition 6.3 and formula (6.2))

d
dt

∫
S

µij
t

φ ds = −
∫

S

µij
t

φk2 ds +
∫

S

µij
t

〈∇φ | k〉 ds

= −
∫

S

µij
t

φ

∣∣∣∣ k − ∇φ

2φ

∣∣∣∣2 ds +
∫

S

µij
t

|∇φ|2
4φ

ds

⩽ 1
4

∫
S

µij
t

|∇φ|2
φ

ds

⩽ (max |∇2 φ|/2) λ
ij
t ({φ > 0})

⩽C(φ,∇2 φ) ,

where we used the estimate |∇φ|2/φ ⩽ 2 max |∇2 φ|, holding for every
φ ∈ C2

c (R
n) (where φ > 0), proved in [56, Lemma 6.6] and the uniform bound

H 1(S
µi
t ∩ BR) ⩽ CR, for some constant C independent of i ∈ N and t ∈ (−∞, 0).

Hence, fixing a single t0 ∈ (−∞, 0) \ B1, the function∫
S

µij
t

φ ds − C(φ,∇2 φ)t

is monotone non increasing once restricted to B1 ∪ {t0}. Passing to the limit (on the
t0–special subsequence such that λ

ij
t0

converges to λ∞
t0
) the same holds for the function

t 7→
∫

R2
φ dλ∞

t − C(φ,∇2 φ)t ,

restricted to B1 ∪ {t0}. By the arbitrariness of t0 ∈ (−∞, 0) \ B1, we then conclude
that such function is monotone non increasing on the whole (−∞, 0). Thus, for every
φ ∈ F the function t 7→

∫
R2 φ dλ∞

t has an at most countable set of (jump) discontinu-
ities, that we call Bφ. Hence, we have that outside a countable subset B =

⋃
φ∈F Bφ

of (−∞, 0), all the functions
t 7→

∫
R2

φ dλ∞
t

are continuous, for every φ ∈ F . This clearly implies that if t ∈ (−∞, 0) \ B, then
the value of the integral

∫
R2 φ dλ∞

t is uniquely determined and independent of the
t–subsequence chosen to define λ∞

t , for every φ ∈ F . An immediate consequence is
that (by the density of F ),
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— if t ∈ (−∞, 0) \ B, the Radon measure λ∞
t is uniquely determined and the full

sequence λ
ij
t converges to λ∞

t ,

— if t ∈ A, the network S∞
t is uniquely determined and the full sequence S

µij
t

converges to S∞
t in W2,2

loc and C1,α
loc ,

as j → ∞.
Then, we can conclude by a diagonal argument on the sequences of networks S

µij
t

when t ∈ B, that we have a subsequence (not relabeled) of µij such that for every

t ∈ A the networks S
µij
t converge in W2,2

loc and C1,α
loc and as Radon measures to S∞

t , as
j → ∞ and for every t ∈ (−∞, 0) we have λ

ij
t → λ∞

t as Radon measures.
By Proposition 6.3, every rescaled flow is a regular Brakke flow with equality, hence,
the integrated version of equation (6.2) holds, that is,
∫

R2
φ(·, t1) dλ

ij
t1
−
∫

R2
φ(·, t2) dλ

ij
t2

=
∫ t1

t2

[
−
∫

S

µij
t

φ(γ, t)k2 ds +
∫

S

µij
t

〈∇φ(γ, t) | k〉 ds +
∫

S

µij
t

φt(γ, t) ds
]

dt ,

for every smooth function with compact support φ : R2 × (−∞, 0) → R and
t1, t2 ∈ (−∞, 0).
By the W2,2

loc–convergence almost everywhere (for t in the set A) and the limit (8.5)
(which allows us to use the dominated convergence theorem)we can pass to the limit
to get
∫

R2
φ(·, t1) dλ∞

t1
−
∫

R2
φ(·, t2) dλ∞

t2

=
∫ t1

t2

[
−
∫

S∞
t

φ(γ, t)k2 ds +
∫

S∞
t

〈∇φ(γ, t) | k〉 ds +
∫

S∞
t

φt(γ, t) ds
]

dt ,

where ds denotes the integration with respect to the canonical measure on S∞
t , count-

ing multiplicities.
This shows that the function t 7→

∫
R2 φ(·, t) dλ∞

t is absolutely continuous on (−∞, 0)
and for almost every t ∈ (−∞, 0), there holds
(8.10)

d
dt

∫
R2

φ(·, t) dλ∞
t = −

∫
S∞
t

φ(γ, t)k2 ds +
∫

S∞
t

〈∇φ(γ, t) | k〉 ds +
∫

S∞
t

φt(γ, t) ds .

We then consider, for every t ∈ (−∞, 0), the Radon measures defined by

νt(D) = λ∞
t (

√
−2t D)/

√
−2t .
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It is easy to see that showing that λ∞
t = H

1
(
√
−2t S∞

−1/2) for every t ∈ (−∞, 0), is
equivalent to prove that the measures νt are all the same and this means that S∞

t is a
degenerate regular self–similarly shrinking network flow.
We have, for every smooth function with compact support ψ : R2 → R,∫

R2
ψ(x) dνt(x) =

1√
−2t

∫
R2

ψ
( x√

−2t

)
dλ∞

t (x) ,

hence, choosing φ(x, t) = ψ
( x√

−2t

)
, at every time t such that equality (8.10) holds

(almost every t ∈ (−∞, 0)), we have

d
dt

∫
R2

ψ(x) dνt(x) =
1

−2t
√
−2t

∫
S∞
t

ψ
( γ√

−2t

)
ds − 1√

−2t

∫
S∞
t

ψ
( γ√

−2t

)
k2 ds

+
1

−2t

∫
S∞
t

〈
∇ψ
( γ√

−2t

) ∣∣∣ k
〉

ds +
∫

S∞
t

〈
∇ψ
( γ√

−2t

) ∣∣∣ γ

4t2
〉

ds .

Substituting k = γ⊥/2t, we obtain

d
dt

∫
R2

ψ(x)dνt(x)=
1

−2t
√
−2t

∫
S∞
t

ψ
( γ√

−2t

)
ds− 1√

−2t

∫
S∞
t

ψ
( γ√

−2t

) 〈k|γ⊥〉
2t

ds

−
∫

S∞
t

〈
∇ψ
( γ√

−2t

)∣∣∣γ⊥

4t2
〉

ds+
∫

S∞
t

〈
∇ψ
( γ√

−2t

)∣∣∣ γ

4t2
〉

ds

=
1

−2t
√
−2t

∫
S∞
t

ψ
( γ√

−2t

)
ds− 1√

−2t

∫
S∞
t

ψ
( γ√

−2t

) 〈k|γ⊥〉
2t

ds

+
∫

S∞
t

〈
∇ψ
( γ√

−2t

)∣∣∣γ>

4t2
〉

ds

=
1

−2t
√
−2t

∫
S∞
t

[
ψ
( γ√

−2t

)
+ψ
( γ√

−2t

)
〈k|γ〉+

〈
∇ψ
( γ√

−2t

)∣∣∣ τ√
−2t

〉
〈τ|γ〉

]
ds,

where we denoted with γ> the tangential component of the vector γ ∈ R2, that is,
γ> = 〈τ | γ〉τ. Noticing now that

∂s

[
ψ
( γ√

−2t

)
〈τ | γ〉

]
=
〈
∇ψ
( γ√

−2t

) ∣∣∣ τ√
−2t

〉
〈τ | γ〉+ ψ

( γ√
−2t

)
〈 k | γ〉+ ψ

( γ√
−2t

)
〈τ | τ〉

=
〈
∇ψ
( γ√

−2t

) ∣∣∣ τ√
−2t

〉
〈τ | γ〉+ ψ

( γ√
−2t

)
〈 k | γ〉+ ψ

( γ√
−2t

)
,

we conclude
d
dt

∫
R2

ψ(x) dνt(x) =
1

−2t
√
−2t

∫
S∞
t

∂s

[
ψ
( γ√

−2t

)
〈τ | γ〉

]
ds

and this last integral is zero by Lemma 8.3 and the last point of Remark 8.5.
Since for every map φ : R2 → R the function t 7→

∫
R2 φ(x) dνt(x) is absolutely

continuous on (−∞, 0)with zero derivative almost everywhere, it is constant and we
are done.
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Equation (8.8) clearly follows by the convergence assumption on the sequence of
Radon measures in R2 × (−∞, 0) and this conclusion.
Finally, for every t ∈ (−∞, 0), by the second point of Lemma 8.16, we can pass to the
limit in the Gaussian integral and we get

lim
j→∞

∫
S

µij
t

ρ0,0(·, t) ds =
∫

S∞
t

ρ0,0(·, t) ds = ΘS∞
−1/2

,

since the right integral is constant in t, being S∞
t a self–similarly shrinking flow.

Recalling that (see Section 7.1)∫
S

µij
t

ρ0,0(·, t) ds = Θx0,t0(t0 + µ−2
ij

t) → Θ̂(x0, t0) ,

as j → ∞, equality (8.9) follows.

Remark 8.18. — We underline that even if the limit flow is composed of homothetic
rescalings of a single degenerate regular network, we cannot conclude that the con-
vergence of S

µij
t to S∞

t is in W2,2
loc and C1,α

loc for every t ∈ (−∞, 0) but only for almost
every t ∈ (−∞, 0). For the “other” times the convergence could be only as Radon
measures.

We deal now with the possible blow–up limits arising from Huisken’s dynamical
procedure. We recall that

ρ̃(x) = e−
|x|2

2 .

The following technical lemma is the exact analogue of Lemma 8.16 for Huisken’s
rescaling procedure. It follows in the same way by the first point of such lemma.

Lemma 8.19. — Let S̃x0,t be the family of rescaled networks, obtained via Huisken’s dynam-
ical procedure around some x0 ∈ R2, as defined in formula (7.4).

1. There exists a constant C = C(S0) such that, for every x, x0 ∈ R2,
t ∈

[
− 1

2 log T,+∞
)
and R > 0 there holds

H 1(S̃x0,t ∩ BR(x)) ⩽ CR .

2. For any ε > 0 there is a uniform radius R = R(ε) such that∫
S̃x0,t\BR(x)

e−|x|2/2 ds ⩽ ε ,

that is, the family of measures e−|x|2/2 H 1 S̃x0,t is tight (see [27]).
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Proposition 8.20. — Let St =
⋃n

i=1 γi([0, 1], t) be a C2,1 curvature flow of regular net-
works in the time interval [0, T]. Then for every x0 ∈ R2 and for every subset I of
[−1/2 log T,+∞) with infinite Lebesgue measure there exists a sequence of rescaled times
tj → +∞, with tj ∈ I , such that the sequence of rescaled networks S̃x0,tj (obtained via
Huisken’s dynamical procedure) converges in C1,α

loc ∩ W2,2
loc , for any α ∈ (0, 1/2), to a (possi-

bly empty) limit network which is a degenerate regular shrinker S̃∞ (possibly with multiplic-
ity). Moreover, we have

(8.11) lim
j→∞

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
1√
2π

∫
S̃∞

ρ̃ dσ = Θ
S̃∞

= Θ̂(x0) .

where dσ denotes the integration with respect to the canonical measure on S̃∞, counting mul-
tiplicities.

Proof. Letting t1 = −1/2 log T and t2 → +∞ in the rescaled monotonicity for-
mula (7.5) by Lemma 7.6 we get

+∞∫
−1/2 log T

∫
S̃x0,t

| k̃ + x⊥|2ρ̃ dσ dt < +∞ ,

which implies ∫
I

∫
S̃x0,t

| k̃ + x⊥|2ρ̃ dσ dt < +∞ .

Being the last integral finite and being the integrand a non negative function on a set
of infinite Lebesgue measure, we can extract within I a sequence of times tj → +∞,
such that

(8.12) lim
j→+∞

∫
S̃x0,tj

| k̃ + x⊥|2ρ̃ dσ = 0 .

It follows that for every ball BR of radius R in R2, the networks S̃x0,tj have curvature
uniformly bounded in L2(BR). Moreover by the first point of Lemma 8.19 for every
ball BR centered at the origin of R2 wehave the uniformboundH 1(S̃x0,tj ∩ BR) ⩽ CR,
for some constant C independent of j ∈ N. Then reparametrizing the rescaled net-
works in arclength, we obtain curves with uniformly bounded first derivatives and
with second derivatives in L2

loc.
By a standard compactness argument (see [53, 67]) the sequence S̃x0,tj of reparametrized
networks admits a subsequence S̃x0,tjl

which converges, weakly in W2,2
loc and strongly

in C1,α
loc , to a (possibly empty) limit regular degenerate C1 network S̃∞ (possibly with

multiplicity).
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Since the integral functional

S̃ 7→
∫
S̃

| k̃ + x⊥|2ρ̃ dσ

is lower semicontinuous with respect to this convergence (see [99] for instance), the
limit S̃∞ satisfies k̃∞ + x⊥ = 0 in the sense of distributions.
A priori the limit network is composed of curves in W2,2

loc but from the relation
k̃∞ + x⊥ = 0 it follows that the curvature k̃∞ is continuous. By a bootstrap argument,
it is then easy to see that S̃∞ is actually composed of C∞ curves.
By means of the second point of Lemma 8.19 we can pass to the limit in the Gaussian
integral and we get

lim
j→∞

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
1√
2π

∫
S̃∞

ρ̃ dσ = Θ
S̃∞

.

Recalling that

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
∫

St(tj)

ρx0(·, t(tj)) ds = Θx0(t(tj)) → Θ̂(x0)

as j → ∞, equality (8.11) follows.
The convergence in W2,2

loc is implied by the weak convergence in W2,2
loc and equa-

tion (8.12).

Remark 8.21. — A singularity inwhich the curvature is unbounded is called of Type I
if there exists a constant C such that

(8.13) max
St

k2 ⩽ C
T − t

for every t ∈ [0, T). Otherwise, the singularity is called of Type II.
If the singularity is of Type I, then the proof of this proposition gets easier
and we get a stronger convergence to the limit network. Indeed, thanks to the
Type I estimate (8.13) one obtains a uniform pointwise bound on the curvature
(and consequently on its derivatives) of the rescaled network (see [82, Section 6,
Proposition 6.16], for instance). Similarly, with the right choice of the sequence µij ,
the same holds also for Proposition 8.17.

Remark 8.22. — Even if the two rescaling procedures are different (and actually one
can use the more suitable for an argument) the family of blow–up limit shrinkers S̃∞

arising from Huisken’s one coincides with the family of shrinkers S∞
−1/2 where S∞

t is
any self– similarly shrinking curvature flow coming from Proposition 8.17. This can
be easily seen by Remark 7.4, since if S

µi
−1/2 → S∞

−1/2, then setting ti = log (
√

2µi)
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we have S̃x0,ti → S∞
−1/2, as i → ∞, hence S∞

−1/2 = S̃∞ for such sequence. Vice versa,
if S̃x0,ti → S̃∞, setting µi = eti /

√
2, by means of Proposition 8.17, we have a con-

verging (not relabeled) subsequence of rescaled curvature flows S
µi
t → S∞

t such that
S

µi
−1/2 → S̃∞, as i → ∞, hence S̃∞ = S∞

−1/2. As a consequence, for every blow–up
limit shrinker S̃∞ and any self–similarly shrinking curvature flow S∞

t there holds

Θ
S̃∞

= ΘS∞
−1/2

= Θ̂(x0) ,

by formulas 8.9 and 8.11.
Notice that in the first implication, for simplicity, we assumed the convergence at
time t = −1/2 of the parabolically rescaled flows, which actually is not guaranteed
by Proposition 8.17. To be precise one should argue by considering a time t, such that
the sequence of networks S

µi
t converges to S∞

t = λS∞
−1/2, for some factor λ > 0.

Remark 8.23. — By means of Proposition 8.20, it is easy to see that, if t0 < T, hence
the flow is smooth in [0, t0] and the curvature is bounded, we have Θ̂(x0, t0) = 0 if
x0 6∈ St0 , since every blow–up limit is clearly empty and that Θ̂(x0, t0) = 1, if x0 ∈ St0

and it is neither a 3–point nor an end–point of St0 , as every blow–up limit must be
a multiplicity–one line through the origin of R2 (see [78, Remark 3.2.15]). Then, by
means of the “reflection argument” at the end of Section 8.2, if x0 is an end–point there
holds Θ̂(x0, t0) = 1/2, being the Gaussian density of a halfline. Finally, if x0 ∈ St0

is a triple junction, we see that Θ̂(x0, t0) = 3/2, indeed, if Oi(t) is the 3–point such
that Oi(t0) = x0, since the curvature is bounded every blow–up limit shrinker must
be non–degenerate, without end–points and have zero curvature, moreover, it is a
tree locally around x0 as no region collapses (the flow is smooth up to t0). Being the
modulus of the velocity vi(t) of Oi(t) bounded by some constant C, for t ∈ [0, t0) we
have

|Oi(t)− x0| = |Oi(t0)− Oi(t)| =
∣∣∣∣∫ t0

t
vi(ξ) dξ

∣∣∣∣⩽ ∫ t0

t
|vi(ξ)| dξ ⩽ C|t0 − t| ,

which implies, after performing Huisken’s rescaling procedure, that its image Õi(t)

satisfy

|Õi(t)| = |Oi(t(t)− x0|√
2(t0 − t(t))

⩽ C|t0 − t(t)|√
2(t0 − t(t))

= C
√
(t0 − t(t))/2 ,

which tends to zero, as t → +∞. In particular, the image of the 3–point cannot “disap-
pear” in the limit regular shrinker (for instance, going to infinity), then Lemma 8.10
tells us that the only possible blow–up limit shrinkers are standard triods T which
have Gaussian density ΘT equal to 3/2.

The following lemma is helpful in strengthening the convergence in the previous
proposition.
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Lemma 8.24. — Given a sequence of smooth curvature flows of networks Si
t in a time in-

terval (t1, t2) with uniformly bounded length ratios, if in a dense subset of times t ∈ (t1, t2)

the networks Si
t converge in a ball B ⊆ R2 in C1

loc, as i → ∞, to a multiplicity–one, em-
bedded, C∞–curve γt moving by curvature in B′ ⊇ B, for t ∈ (t1, t2] (hence, the curvature
of γt is uniformly bounded), then for every (x0, t0) ∈ B × (t1, t2], the curvature of Si

t is
uniformly bounded in a neighborhood of (x0, t0) in space–time. It follows that, for every
(x0, t0) ∈ B × (t1, t2], we have Si

t → γt smoothly around (x0, t0) in space–time (possibly,
up to local reparametrizations of the networks Si

t).

Proof. Being γt a smooth flow of an embedded curve in B, we have Θ̂(x0, t0) = 1
(by Remark 8.23), hence, for (x, t) in a suitably small neighborhood of
(x0, t0) ∈ B × (t1, t2] we have that Θx,t(τ) ⩽ 1 + ε/2 < 3/2, for every τ ∈ (τ0, t)
and some τ0 > 0, where ε > 0 is smaller than the “universal” constant given by
White’s local regularity theorem for mean curvature flow in [110]. Then, in a possi-
bly smaller space–time neighborhood of (x0, t0), for a fixed time τ ∈ (τ0, t)where the
C1

loc–convergence of the networks Si
τ → γτ holds (such a subset of times is dense),

for i large enough, the Gaussian density functions of Si
τ satisfy Θi

x,t(τ) < 1+ ε < 3/2
(the Gaussian density functions are clearly continuous under the C1

loc convergence
with uniform length ratios estimate, by the exponential decay of backward heat
kernel). Hence, by Proposition 7.1, Lemma 7.2 and the subsequent discussion
(possibly choosing a larger τ), this also holds for every τ ∈ (τ, t). In other words,
Θi

x,t(t − r2) < 1 + ε < 3/2, for every (x, t) in a space–time neighborhood of (x0, t0),
0 < r < r0 and i > i0, for some r0 > 0. By Remark 8.23, this “forbids” the presence
of a 3–point of Si

t in such space–time neighborhood, hence we are dealing simply
with (classical) curvature flows of curves. Then, White’s local regularity theorem
gives a uniform, local (in space–time) estimate on the curvature of all Si

t, which
actually implies uniform bounds on all its higher derivatives (for instance, by Ecker
and Huisken interior estimates in [30]), around (x0, t0). Hence the statement of the
lemma follows (see also [110, Theorem 7.3]).

As a consequence, the convergence of S
µij
t to the limit degenerate regular self–

similarly shrinking network flow S∞
t in Proposition 8.17 is smooth locally in space–

time around every interior point of the multiplicity–one curves of the network S∞
t .

Moreover if S∞
t is non–degenerate (no cores) and with only multiplicity–one curves,

then actually S
µij
t → S∞

t smoothly, locally in space–time (also around the 3–points).
This can be shown by following the argument of the proof of Lemma 8.6 in [58] (see
anyway the proof in the special case of Lemma 9.1).
Analogously, also for Huisken’s dynamical procedure it can be shown that the con-
vergence of the rescaled networks S̃x0,tj to S̃∞ is locally smooth far from the cores and
non multiplicity–one curves of S̃∞.
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Notice that the blow–up limit degenerate shrinker S̃∞, obtained by Proposition 8.20
a priori depends on the chosen sequence of rescaled times tj → +∞. If such a limit
is a multiplicity–one line (or a halfline, if x0 is an end–point of the network), we
have Θ̂(x0) = 1 (Θ̂(x0) = 1/2 in the case of a halfline), then by White’s result [110,
Theorem 3.5], locally around x0 the curvature is uniformly bounded in time and the
flow is smooth up to time T (using the “reflection argument” at the end of Section 8.2,
if x0 is an end–point), hence, the limit is unique. In general, uniqueness of such a limit
is actually unknown.

Open Problem 8.25 (Uniqueness of Blow–up Assumption –U). — The limit degenerate
regular shrinker S̃∞ is independent of the chosen converging sequence of rescaled networks S̃x0,tj

in Proposition 8.20. More precisely, the full family S̃x0,t converges in C1
loc to S̃∞, as t → +∞.

In Chapter 10 wewill partially address this problem, concluding that it has a positive
answer in the case of tree–like networks (see Remark 10.34). Moreover, some positive
partial results were recently obtained in [91].

Remark 8.26. — A similar (actually equivalent, in view of Remark 7.4) problem can
be stated for the limit degenerate regular self–similarly shrinking flow S∞

t given by
a converging subsequence S

µij
t of the family of the parabolically rescaled curvature

flows S
µi
t in Proposition 8.17, about the independence of S∞

t of the sequence µi and
subsequence µij . Namely, do we have the full convergence of the family of flows S

µ
t

to S∞
t , as µ → +∞?

Remark 8.27. — A regular shrinker is said to be multiplicity–one if it has no cores
and none of its curves has multiplicity higher than one. In case the limit degener-
ate regular shrinker S̃∞ is actually a multiplicity–one regular shrinker (or the same
for the limit degenerate regular self–similarly shrinking flow S∞

t ) the above unique-
ness assumption implies that the singularity is of Type I (see the Remark 8.21 above).
Indeed, by Lemma 8.24 the convergence of the rescaled networks to S̃∞ is smooth
which implies that the curvature is locally uniformly bounded by C/

√
T − t.

It is then natural in view of this remarks to state also the following open problems.

Open Problem 8.28 (Non–degeneracy of the blow–up). —
— Any blow–up limit shrinker S̃∞ different from a standard cross (see Figure 8.5 and

Lemma 8.10) is non–degenerate (the same for the limit self–similarly shrinking flow S∞
t )?

— There can be curves with multiplicity larger than one?
— If S̃∞ is degenerate, there can be any cores outside the origin?

Open Problem 8.29 (Type I Conjecture). — Every singularity is of Type I (there exists a
constant C > 0 such that inequality (8.13) is satisfied, for every t ∈ [0, T)).
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8.4. Blow–up limits under hypotheses on the lengths of the curves
of the network

Proposition 8.30. — Let St =
⋃n

i=1 γi([0, 1], t) be the curvature flow of a regular network
with fixed end–points in a smooth, convex, bounded open set Ω ⊆ R2 such that three end–
points of the network are never aligned. Assume that the lengths Li(t) of the curves of the
networks satisfy

lim
t→T

Li(t)√
T − t

= +∞ ,

for every i ∈ {1, 2, . . . , n}. Then any limit degenerate regular shrinker S̃∞ obtained by
Proposition 8.20, if non–empty, is one of the following networks:
if the rescaling point belongs to Ω

— a straight line through the origin with multiplicity m ∈ N (in this case Θ̂(x0) = m);

— a standard triod centered at the origin with multiplicity 1 (in this case Θ̂(x0) = 3/2);

if the rescaling point is a fixed end–point of the evolving network (on the boundary of Ω)

— a halfline from the origin with multiplicity 1 (in this case Θ̂(x0) = 1/2).

Moreover, we have

(8.14) lim
j→∞

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
1√
2π

∫
S̃∞

ρ̃ dσ = Θ
S̃∞

= Θ̂(x0) ,

and the L2–norm of the curvature of S̃x0,tj goes to zero in every ball BR ⊆ R2, as j → ∞.

Proof. We assume, by Proposition 8.20, that the sequence S̃x0,tj of reparametrized net-
works converges in C1

loc ∩ W2,2
loc to the limit regular shrinker network S̃∞ composed of

C∞ curves (with possiblymultiplicity), which are actually non–degenerate as the bound
from below on their lengths prevents any collapsing along the rescaled sequence.
If the point x0 ∈ R2 is distinct from all the end–points Pr, then S̃∞ has no end–points,
since they go to infinity along the rescaled sequence. If x0 = Pr for some r, the set S̃∞

has a single end–point at the origin of R2.
Moreover, from the lower bound on the length of the curves it follows that all the
curves of S̃∞ have infinite length, hence, byRemark 8.9, theymust be pieces of straight
lines from the origin, because of the uniform bound H 1(S

µi
t ∩ BR) ⩽ CR, for every

ball BR ⊆ R2.
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This implies that every connected component of the graph underlying S̃∞ can con-
tain at most one 3–point and in such case such component must be mapped to a
standard triod (the 120 degrees condition must satisfied) with multiplicity one since
the sequence of converging networks is all embedded (to get in the C1

loc–limit a triod
with multiplicity higher than one it is necessary that the approximating networks
have self–intersections). Moreover, again since the converging networks are all em-
bedded, if a standard triod is present, a straight line or another triod cannot be there,
since theywould intersect transversally (see Remark 8.5). Vice versa, if a straight line
is present, a triod cannot be present.
If an end–point is not present, that is, we are rescaling around a point in Ω (not on its
boundary) and a 3–point is not present, the only possibility is a straight line (possibly
with multiplicity) through the origin of R2.
If an end–point is present, we are rescaling around an end–point of the evolving net-
work, hence, by the convexity of Ω (which contains all the networks) the limit S̃∞

must be contained in a halfplane with boundary a straight line H for the origin. This
excludes the presence of a standard triod since it cannot be contained in any halfplane.
Another halfline is obviously excluded, since they “come” only from end–points and
they are all distinct. In order to exclude the presence of a straight line, we observe that
the argument of Proposition 8.13 implies that, if Ωt ⊆ Ω is the evolution by curvature
of ∂Ω keeping fixed the end–points Pr, the blow–up of Ωt at an end–point must be a
cone spanning angle strictly less then π (here we use the fact that three end–points
are not aligned) and S̃∞ is contained in such a cone. It follows that S̃∞ cannot contain
a straight line.
In every case the curvature of S̃∞ is zero everywhere and the last statement follows
by the W2,2

loc–convergence.
Finally, formula (8.14) is a special case of equation (8.11).

Remark 8.31. — If the two curves describing the boundary of Ω around an end–
point Pr are actually segments of the same line, namely the three end–points are
Pr−1, Pr, Pr+1 aligned, the argument of Proposition 8.13 does not work and we can-
not conclude that taking a blow–up at Pr we only get a halfline with unit multiplic-
ity. It could also be possible that a straight line (possibly with multiplicity) through
the origin is present, coinciding with H. Moreover in such special case, it forces
also the halfline to be contained in H, since the only way to get a line, without self–
intersections in the sequence of converging networks contained in Ω is that the curves
that are converging to the straight line “pushes” the curve getting to the end–point
of the network, toward the boundary of Ω.

With the same arguments of the proof of Proposition 8.30, an analogous proposition
holds for the self–similarly shrinking limit network flow obtained by the parabolic
rescaling procedure.
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Proposition 8.32. — Under the hypotheses of Proposition 8.30, the degenerate regular self–
similarly shrinking network flow S∞

t , obtained in Proposition 8.17 by parabolically rescaling
around the point (x0, T) in space–time, is (if non–empty) one of the following “static” flows.
If the rescaling point belongs to Ω:

— a straight line through the origin with multiplicity m ∈ N (in this case Θ̂(x0) = m);

— a standard triod centered at the origin with multiplicity 1 (in this case Θ̂(x0) = 3/2).

If the rescaling point is a fixed end–point of the evolving network (on the boundary of Ω):

— a halfline from the origin with multiplicity 1 (in this case Θ̂(x0) = 1/2).

Open Problem 8.33. — Is it possible to classify in general all the possible limit degenerate
shrinkers S̃∞ or self–similarly shrinking flows S∞

t , obtained respectively by Huisken’s dynam-
ical procedure or by parabolic rescaling?

Remark 8.34. — If the evolving network is a tree, every connected component of a
limit degenerate regular shrinker (possibly with multiplicities) is still a tree. Hence
by Lemma 8.10 and the same argument of the proof of Proposition 8.30 such a net-
work has zero curvature and it is a union of halflines from the origin, possibly with
multiplicity and a core.

Remark 8.35. — In Chapter 10wewill discuss underwhat hypotheses the (unscaled)
evolving networks St converge to some limit (well–behaved) set ST ⊆ R2, as t → T
and what are the relations between such ST and any limit degenerate shrinker S̃∞ or
self–similarly shrinking flow S∞

t .
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CHAPTER 9

LOCAL REGULARITY

In this chapter, we first show that any smooth, curvature flow of regular networks
which is only C1

loc–close to the static flow given by a standard triod, is actually
smoothly close. An important ingredient here is the estimates from Proposition 4.11,
under the hypotheses (4.1), which make it possible to control the evolution of the
L2–norm of k locally.
Then this result together with the classification of tangent flows from Lemma 8.11
yield a local regularity theorem. As a consequence, locally (in space–time) around
the pointswith limitGaussian density not greater than 3/2, the curvature of the evolv-
ing network St is bounded and the flow is smooth, meaning that locally St converges
smoothly to a limit smooth network ST , as t → T.

Lemma 9.1. — Let T be the static flow given by a standard triod centered at the origin and
let Si

t for t ∈ (−1, 0) be a sequence of smooth curvature flows of networks with uniformly
bounded length ratios (see Definition 8.15). Suppose that the sequence Si

t converges to T in
C1

loc for almost every t ∈ (−1, 0), as i → ∞. Then the convergence is smooth on any subset
of the form BR(0)× [t̃, 0) where R > 0 and −1 < t̃ < 0.

Proof. As the length ratios are uniformly bounded, the exponential decay of the back-
ward heat kernels ρ0,0(·, t) and the C1

loc–convergence imply that for almost every
−1 < t < 0 we have∫

Si
t

ρ0,0(·, t) ds →
∫

T
ρ0,0(·, t) ds =

3
2
< +∞ ,

hence by (8.5) it follows that the sequence of functions

fi(t) =
∫
Si

t

∣∣∣ki −
x⊥

2t

∣∣∣2ρ0,0(·, t) ds ,

converges to zero in L1
loc(−1, 0).
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Arguing as in the proof of Proposition 8.17, we see that we can choose a further subse-
quence (not relabeled) such that Si

t → T in C1,α
loc ∩W2,2

loc for all t ∈ A where A ⊆ (−1, 0)
is a set of full measure. Choose R > 0, t̃ ∈ (−1, 0) and t0 ∈ A such that t0 < t̃.
Lemma 8.24, with a compactness argument, implies that the curvature of the net-
works Si

t with all its derivatives are uniformly bounded and the convergence Si
t → T

is smooth and uniform in
(

BR+1(0) \ BR(0)
)
× [t0, 0). We can thus introduce three

“artificial” boundary points Pr
i (t) ∈ Si

t ∩ (BR+1(0) \ BR(0)), r = 1, 2, 3, for t ∈ [t0, 0)
along the three rays such that the estimates (4.1) are satisfied, more precisely, we can
assume that

∂
j
sλi(Pr

i (t), t) = 0 and |∂j
ski(Pr

i (t), t)| ⩽ 1 ,

for all i ⩾ i0 and all j ⩾ 0.
Let T1 > 0 be the constant from Proposition 4.11 for M = 1 and let δ = T1/2. Then,
choose tl ∈ A, for l = 1, 2, . . . , N = [δ−1] + 1, such that

tl < tl+1 , |tN | ⩽ δ/2 and |tl+1 − tl | ⩽ δ/2,

for all 0 ⩽ l ⩽ N − 1.
By increasing i0, if necessary, we can assume that∫

Si
tl
∩BR+1(0)

k2
i ds ⩽ 1

and that Si
tl
is 1/100–close in C1,α to T on BR+1(0), for all l = 0, . . . , N and i > i0.

Proposition 4.13 then implies uniform estimates on ki and all its space derivatives on
BR(0) × [t̃, 0), for all i > i0. This clearly implies the convergence conclusion in the
statement.

Remark 9.2. — With a similar argument it can be shown that if Si
t converge as above

to a self–similarly shrinking regular network flow, non–degenerate and with unit
multiplicity, then the convergence is smooth and uniform on any compact subset
of R2 × (−1, 0) (Lemma 8.6 in [58]).

We now show a local regularity result in the spirit of the analogous White’s theorem
for mean curvature flow in [110], actually being an extension of such theorem to the
network flow, roughly saying that (like in the case of the motion of smooth curves)
the “regular” points are the oneswith limit Gaussian density smaller than ΘS1 (which
is greater than 3/2 and less than 2, see formula (8.2)).
We follow here the alternative proof of Ecker [29, Theorem 5.6].

Theorem 9.3 (Theorem 1.3 in [58]). — Let St for t ∈ (T0, T) be a curvature flow of a
smooth, regular network in R2 with uniformly bounded length ratios by some constant L (see
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Definition 8.15). Let (x0, t0) ∈ R2 × (T0, T) such that x0 ∈ St0 , then for every ε, η > 0
there exists a constant C = C(ε, η, L) such that if

(9.1) Θx,t(t − r2) ⩽ ΘS1 − ε ,

for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0) and 0 < r < ηρ, for some ρ > 0, where
T0 + (1 + η)ρ2 ⩽ t0 < T, then

k2(x, t) ⩽ C
σ2ρ2 ,

for all σ∈ (0,1) and every (x,t) such that t∈ (t0− (1−σ)2ρ2,t0) and x∈St∩B(1−σ)ρ(x0).

Proof. By translation and scaling we can assume that x0 = 0, t0 = 0 and ρ = 1. We
can now follow more or less verbatim the proof of Theorem 5.6 in [29].
We argue by contradiction. Supposing that the statement is not correct we can
find a sequence of smooth curvature flows of regular open networks S

j
t, defined for

t ∈ [−1 − η, 0], satisfying the above conditions for every (x, t) ∈ B1(0)× (−1, 0), but
with

ζ2
j = sup

σ∈[0,1]

(
σ2 sup

t∈(−(1−σ)2,0)
sup

S
j
t∩B1−σ

k2
j

)
→ +∞

as j → ∞.
Hence, we can find σj ∈ (0, 1] such that

ζ2
j = σ2

j sup
t∈(−(1−σj)2,0)

sup
Si

t∩B1−σj

k2
j

and yj ∈ S
j
τj ∩ B1−σj at a time τj ∈ [−(1 − σj)

2, 0] so that

ζ2
j = σ2

j k2
j (yj, τj) .

We now take
λj = |k j(yj, τj)|

(clearly λj → +∞ as j → ∞) and define

S̃
j
t = λj

(
S

j
λ−2

j t+τj
− yj

)
,

for t ∈ [−λ2
j σ2

j /4, 0], following the proof of Theorem 5.6 in [29]. We can then see that

(9.2) 0 ∈ S̃
j
0 , k̃2

j (0, 0) = 1
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and

(9.3) sup
t∈(−λ2

j σ2
j /4,0)

sup
S̃

j
t∩Bλjσj/2

k̃2
j ⩽ 4

for every j ⩾ 1. By direct computation, we have

Θ̃j
x,t(t) =

∫
S̃

j
t

ρx,t(·, t) ds =
∫

S
j
t

ρyj+xλ−1
j ,τj+tλ−2

j
(·, t) ds = Θj

yj+xλ−1
j ,τj+tλ−2

j
(t)

where t = t(t) = τj + tλ−2
j and Θj are the Gaussian densities relative to the flows S

j
t.

Since, by hypothesis, Θj
yj+xλ−1

j ,τj+tλ−2
j
(t) ⩽ ΘS1 − ε for every j ∈ N, yj + xλ−1

j ∈ B1(0)

and τj + tλ−2
j ∈ (−1, 0), we conclude that Θ̃j

x,t(t) ⩽ ΘS1 − ε, for j sufficiently large,
for all (x, t) ∈ R2 × (−∞, 0] and −λ2

j σ2
j /4 < t < t.

This implies that for every t ∈ (−λ2
j σ2

j /4, 0), we have

∫
S̃

j
t∩BR(0)

eR2/4t
√
−4πt

ds ⩽
∫

S̃
j
t∩BR(0)

e|x|
2/4t

√
−4πt

ds ⩽
∫

S̃
j
t

ρ0,0(·, t) ds = Θ̃j
0,0(t) ⩽ ΘS1 − ε ,

hence, for j sufficiently large,

(9.4) H 1(S̃
j
t ∩ BR(0)) ⩽ CR(t) = e−R2/4t

√
−4πt(ΘS1 − ε) .

Moreover, the family of networks S̃
j
t has uniformly bounded length ratios by L, since

this holds for the unscaled networks and such condition is scaling invariant.
Since λ2

j σ2
j = ζ2

j → +∞, by the length estimate (9.4), arguing as in Proposition 8.17,
we see that up to a subsequence, labeled again the same, for every t ∈ (−∞, 0), we
have

S̃
j
t → S̃∞

t

in C1
loc and weakly in W2,∞

loc , for almost every t ∈ (0,−∞), to a limit C1,1–flow S̃∞
t .

Actually, the uniform bound on the curvature, everywhere in space–time, implies
that such convergence holds for every t ∈ (−∞, 0] and it is locally uniform in time.
Such flow (which is not a priori a curvature flow) of networks is possibly degenerate,
that is, cores and higher density lines can develop, it moves with normal velocity
bounded by 4, by estimates (9.3) and it is not empty as 0 ∈ S̃

j
0 for every j ∈ N, hence

0 ∈ S̃∞
0 also.

Because of the uniformly bounded length ratios of the family of networks S̃
j
t and

the exponential decay of the backward heat kernels, we can pass to the limit in the
Gaussian densities, as j → ∞, that is,

Θ̃∞
x,t(t) = lim

j→∞
Θ̃j

x,t(t) = lim
j→∞

Θj
yj+xλ−1

j ,τj+tλ−2
j
(t) ⩽ ΘS1 − ε
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for all (x, t) ∈ R2 × (−∞, 0] and t < t, where we denoted with Θ̃j and Θ̃∞ the
Gaussian density functions relative to the flows S̃

j
t and S̃∞

t , respectively.
Moreover, 0 ∈ S̃

j
0 implies Θ̂j(0, 0) ⩾ 1, hence Θ̃j

0,0(t) ⩾ Θ̂j(0, 0) ⩾ 1 for every t < 0,
by monotonicity. It follows that Θ̃∞

0,0(t) = limj→∞ Θ̃j
0,0(t) ⩾ 1, thus,

Θ̂∞(0, 0) = lim
t→0

Θ̃∞
0,0(t) = lim

t→0
lim
j→∞

Θ̃j
0,0(t) ⩾ 1 .

We want now to show that S̃∞
t is actually a static self–similarly shrinking flow given

by either a multiplicity–one line or a standard triod.
As in Section 7.1, we consider the rescaled monotonicity formula for the curvature
flows S̃

j
t, that is, considered x ∈ R2 we have

Θ̃j
x,0(t1)− Θ̃j

x,0(t2) =

t2∫
t1

∫
S̃

j
s

∣∣∣k̃j −
x⊥

2s

∣∣∣2ρx,0(·, s) ds ds

hence, passing to the limit, as j → ∞, we get (here ds denotes the integration with
respect to the canonical measure on S̃∞

t , counting multiplicities)

(9.5) Θ̃∞
x,0(t1)− Θ̃∞

x,0(t2)= lim
j→∞

t2∫
t1

∫
S̃

j
s

∣∣∣k̃j−
x⊥

2s

∣∣∣2ρx,0(·,s)dsds⩾
t2∫

t1

∫
S̃∞
s

∣∣∣k̃∞− x⊥

2s

∣∣∣2ρx,0(·,s)dsds

for every t1 < t2 ⩽ 0 and x ∈ R2, by the lower semicontinuity of the L2–integral of
the curvature under theW2,∞

loc –weak convergence. It follows that theGaussian density
function Θ̃∞

x,0(t) is non increasing in t ∈ (−∞, 0], then, as we know that it is uniformly
bounded above by ΘS1 − ε, there exists the limit

Θ̂∞
x,0(−∞) = lim

t→−∞
Θ̃∞

x,0(t) ⩽ ΘS1 − ε .

Notice that Θ̂∞
0,0(−∞) ⩾ 1, as we know that Θ̃∞

0,0(t) ⩾ 1, for every t < 0.
Parabolically rescaling the flow S̃∞

t around the point (x, 0) (following the proof of
Proposition 8.17) by means of inequality (9.5), the uniform bound on the curvature
and the uniform bound on the length ratios, we obtain that the limit (which exists by
the monotonicity of t 7→ Θ̃∞

x,0(t))

Θ̂∞(x, 0) = lim
t→0

Θ̃∞
x,0(t) ⩽ Θ̂∞

x,0(−∞) ⩽ ΘS1 − ε

coincides with the Gaussian density of a limit degenerate regular shrinker (possibly
empty). Being such a limit bounded by ΘS1 − ε, the only possibilities are 0, 1 and 3/2,
by Lemma 8.11 (an empty limit, a line, or a standard triod).
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Since S̃∞
0 is not empty, we notice that if it contains a 3–point, let us say at x ∈ R2, then

by the bound on the velocity, also all the networks S̃∞
t contain a 3–point at distance

less than −5t from x. This implies that parabolically rescaling as above around x,
we get a limit self–similarly shrinking network flow with zero curvature and with a
3–point, then it must be a static standard triod and Θ̂∞(x, 0) = 3/2. We then take a
point x ∈ R2 such that Θ̂∞(x, 0) is maximum, hence either 1 or 3/2 by what we said
above and we consider the sequence of translated and rescaled flows for τ ∈ (−∞, 0]
defined as

S
n
τ =

1√
n

(
S̃∞

nτ − x
)

,

for n ∈ N.
This family of flows still has uniformly bounded length ratios (since this holds for
the flows S̃∞

t ) and rescaling the monotonicity formula for the flows S̃∞
t , for every

τ1 < τ2 < 0, there holds
τ2∫

τ1

∫
S

n
σ

∣∣∣kn −
x⊥

2σ

∣∣∣2ρ0,0(·, σ) ds dσ ⩽ Θn
0,0(τ1)− Θn

0,0(τ2) = Θ̃∞
x,0(nτ1)− Θ̃∞

x,0(nτ2) → 0

as n → ∞, since limt→−∞ Θ̃∞
x,0(t) → Θ̂∞

x,0(−∞) as t → −∞ (here we denoted with
Θn the Gaussian density functions relative to the flows S

n
τ).

Then, repeating the argument of the proof of Proposition 8.17, we can extract a sub-
sequence, not relabeled, of the flows S

n
τ converging in C1

loc ∩ W2,2
loc , for almost every

τ ∈ (−∞, 0), to a limit self–similarly shrinking flow S
∞
τ , as n → ∞, which is called

“tangent flow at −∞” to the flow S̃∞
t .

Since,
Θn

0,0(τ) =
∫
S

n
τ

ρ0,0(·, τ) ds =
∫

S̃∞
nτ

ρx,0(·, nτ) ds = Θ̃∞
x,0(nτ) ,

it follows that, passing to the limit as n → ∞ (again because of the uniformly bounded
length ratios and the exponential decay of the backward heat kernels), for almost
every τ ∈ (−∞, 0), there holds

Θ
S

∞
−1/2

= Θ∞
0,0(τ) = lim

n→∞
Θ̃∞

x,0(nτ) = Θ̂∞
x,0(−∞) ⩽ ΘS1 − ε

which implies that the limit flow S
∞
τ is not empty, as Θ̂∞

x,0(−∞) ⩾ 1 and it is a static
self–similarly shrinking flow, given by either a multiplicity–one line or a standard
triod, by Lemma 8.11.
If Θ∞

0,0(τ) = 1, then Θ̂∞
x,0(−∞) = 1 which forces Θ̃∞

x,0(t) to be constant equal to one
for every t ∈ (−∞, 0), since Θ̂∞(x, 0) must be equal to 1.
If Θ∞

0,0(τ) = 3/2, being S
∞
τ a standard triod, it follows that a 3–point is present in the

flow S̃∞
t , hence also in S̃∞

0 . Then, if we choose x to coincide with such 3–point, we
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would have Θ̂∞(x, 0) = 3/2 and again the Gaussian density Θ̃∞
x,0(t) is constant equal

to 3/2, for t ∈ (−∞, 0).
In both cases we conclude that S̃∞

t is a self–similarly shrinking flow around the point
x ∈ R2, by formula 9.5, given by amultiplicity–one line in the first case and a standard
triod in the second one.
If S̃∞

t is a line for every t ∈ (−∞, 0], hence with zero curvature, Lemma 8.24 implies
that the convergence of the flows S̃

j
t → S̃∞

t is locally smooth. This gives a contradic-
tion since, by formula (9.2), it would follow that 0 ∈ S̃∞

0 and k̃2
∞(0, 0) = 1.

If S̃∞
t is a static standard triod, then Lemma 9.1 gives a contradiction as before.

Remark 9.4. —

1. The result is still true if the flow is only defined on the ball B2ρ(x0), by localizing
Huisken’s monotonicity formula with a suitable cut–off function. This makes
the result applicable for curvature flows of networks with fixed end–points on
the boundary of a domain Ω ⊆ R2, once assuming that there are no boundary
points in B2ρ(x0)× (t0 − (1 + η)ρ2, t0). We refer the reader to [111, Section 10]
and Remark 4.16 together with Proposition 4.17 in [29].

2. By an easy contradiction argument, one can show that the bound on the curva-
ture, together with the 120 degrees condition and assumption (9.1), imply that
there is a constant ` = `(ε, η, ρ) > 0 such that for t ∈ (t0 − (1 − σ)2ρ2, t0) the
length of each curve of St which intersects B(1−σ)ρ(x0) is bounded from below
by ` · σρ. This implies, using Proposition 4.13, corresponding scaling invariant
estimates on all the higher derivatives of the curvature.

The following corollary is then an extension of White’s result [110, Theorem 3.5] to
the curvature flow St of a network in a smooth, convex, bounded open set Ω ⊆ R2,
with fixed end–points on ∂Ω.

Corollary 9.5. — If at a point x0 ∈ Ω there holds Θ̂(x0) ⩽ 3/2, then the curvature is
uniformly bounded along the flow St, for t ∈ [0, T), in a neighborhood of x0. Then, the flow
is smooth in such a neighborhood, in the sense that St converges smoothly to a limit smooth
network ST there, as t → T.

Proof. First, by Lemma 8.16, the family of networks St has uniformly bounded length
ratios. Then, as Θ̂(x0) = Θ̂(x0, T) ⩽ 3/2, by Proposition 7.1, Lemma 7.2 and the sub-
sequent discussion about the behavior of Θx0,T(t), there exists ρ1 ∈ (0, 1) such that
Θx0,T(T − ρ2

1) < 3/2 + δ/2, for some small δ > 0. The function (x, t) 7→ Θx,t(t − ρ2
1)

is continuous, hence, we can find ρ < ρ1 such that if (x, t) ∈ Bρ(x0)× (T− ρ2, T), then
Θx,t(t − ρ2

1) < 3/2 + δ, thus, again by by Proposition 7.1, Lemma 7.2 and the subse-
quent discussion (possibly choosing smaller ρ1 and ρ), also Θx,t(t − r2) < 3/2 + δ,
for any r ∈ (0, ρ/2), as clearly (t − r2) > (t − ρ2

1).
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This implies that if δ > 0 is small enough such that 3/2+ δ < ΘS1 =
√

2π/e ≈ 1,5203
(see equation (8.2)), for any t0 close enough to T the hypotheses of Theorem 9.3
(see the first point of Remark 9.4) are satisfied at (x0, t0), for η = 3/4 and
ε = ΘS1 − 3/2 − δ > 0. Choosing σ = 1/2, we conclude that

k2(x, t) ⩽ 4C(ε, 3/4)
ρ2

for every (x, t) such that t ∈ (t0 − ρ2/4, t0) and x ∈ St ∩ Bρ/2(x0). Since this estimate
on the curvature is independent of t0 < T, it must hold for every t ∈ (T − ρ2/4, T)
and x ∈ St ∩ Bρ/2(x0) and we are done.
We now show the smoothness of the flow up to time T in a neighborhood of x0. Since
the curvature of St is bounded in Bρ/2(x0), the modulus of the velocity vi(t) of any
triple junction Oi(t) in such ball is uniformly bounded by some constant D, hence,
if for t in an interval of time [t1, t2], such triple junction belongs to the ball Bρ/2(x0),
there holds

(9.6) |Oi(t2)− Oi(t1)| =
∣∣∣∣∫ t2

t1

vi(ξ) dξ

∣∣∣∣⩽ ∫ t2

t1

|vi(ξ)| dξ ⩽ D|t2 − t1| .

This implies that if for some t0 close enough to T, the triple junction Oi(t0) belongs
to the ball Bρ/4(x0), then it can no more “escape” from the ball Bρ/2(x0), hence such
estimate holds for every t ∈ [t0, T) implying that Oi(t) is a Cauchy sequence and
Oi(t) → xi, for some xi ∈ Bρ/2(x0). As a consequence, since the family of the
limit points {xi} of the triple junctions in Bρ/4(x0) is finite, possibly taking a smaller
ρ, we can assume that only x0 (possibly) belongs to such family. Hence, for any
δ ∈ (0, ρ/4), the annulus Aδ = Bρ/4(x0) \ Bδ(x0) does not contains triple junctions
Oi(t) for t larger than some t ∈ [0, T). This clearly means that the “restriction” of
the flow St to the open set Aδ is a smooth (classical) flow by curvature of curves in a
domain of the plane with uniformly bounded curvature. By standard estimates (for
instance, by Ecker and Huisken interior estimates in [30]) then St ∩ Aδ converges
smoothly to some limit family of embedded and non–intersecting smooth curves in
Aδ. Since this holds for every δ ∈ (0, ρ/4), we can conclude that St converges (pos-
sibly after reparametrization) in C1 to a degenerate regular network ST in Bρ/4(x0)

(with possibly a core only at x0) and locally smoothly in Bρ/4(x0) \ {x0}.
It is then easy to see, possibly considering a smaller ρ, that we can find ρ < ρ/8 such
that

— the network ST ∩ Bρ/4(x0) is connected;

— the curves of the networks St intersect transversally the circle ∂Bρ(x0).

Then, by the uniform bound on the velocity and the smooth convergence of St to ST in
Bρ/4(x0) \ {x0}, possibly choosing a larger t, we can conclude that for every t ∈ [t, T),
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— the “topologic structure” of St in Bρ(x0) is “stable” and that the network
ST ∩ Bρ/4(x0) is connected, that is, no “new” 3–points or pieces of curves can
“get into” Bρ(x0);

— the curves of the networks St intersect transversally the circle ∂Bρ(x0).

The last property implies then that condition (4.1) are satisfied (possibly after
reparametrizing the networks in order to deal with λ and its derivatives).
If now St ∩ Bρ(x0) contains more than a triple junction, all of them must converge to
x0, as t → T, by what we said above, moreover, by equation (9.6), we have

|Oi(t)− x0| ⩽ D|T − t| ,

hence, they images Õi(t), after performing Huisken’s rescaling procedure, satisfy

|Õi(t)| = |Oi(t(t)− x0|√
2(T − t(t))

⩽ D|T − t(t)|√
2(T − t(t))

= D
√
(T − t(t))/2 ,

which tends to zero, as t → +∞, in particular they cannot “disappear” in the limit
degenerate regular shrinker (going to infinity). This is in contradiction with the fact
that, by Lemma 8.11, since Θ̂(x0) ⩽ 3/2, the only possible blow–up limit shrinkers at
x0 are the empty set, a line or a standard triod, hence, with at most one triple junction.
Containing then St ∩ Bρ(x0) at most one 3–point, possibly choosing smaller ρ, ρ and
larger t, if St ∩ Bρ(x0) is not empty (when Θ̂(x0) = 0), it follows that we are deal-
ing, either with the (classical) motion with uniformly bounded curvature of a single
smooth curve (case without triple junctions, Θ̂(x0) = 1) or with themotion of a triod
(when Θ̂(x0) = 3/2) with uniformly bounded curvature and conditions (4.1) satis-
fied. Moreover, in both cases the lengths of all the curves of St ∩ Bρ(x0) are uniformly
positively bounded below, by the construction (the choice of ρ).
Then, if St ∩ Bρ(x0) is empty, there is nothing to show, in the case of the motion of
a single curve the flow is locally smooth up to time T, since the curvature is locally
bounded (again by using Ecker and Huisken interior estimates in [30]), while in the
case of an evolving triod, the local smoothness of the flow up to time T follows by the
estimates on all the derivatives of the curvature given by Proposition 4.13 (see the
second point of Remark 9.4).

This corollary can be extended to the points on the boundary of Ω by the “reflection
argument” at the end of Section 8.2.

Corollary 9.6. — If at a point x0 ∈ ∂Ω there holds Θ̂(x0) ⩽ 3/4, then the curvature is
uniformly bounded along the flow St, for t ∈ [0, T), in a neighborhood of x0. Then, the flow
is smooth in such neighborhood, in the sense that St converges smoothly to a limit smooth
network ST there, as t → T.
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CHAPTER 10

THE BEHAVIOR OF THE FLOW AT A SINGULAR TIME

By means of the tools of the previous sections we want to discuss now the behavior
of the network approaching a singular time.
Let T < +∞ be the maximal time of existence of the curvature flow St of an initial
regular C2 networkwith fixed end–points in a smooth, strictly convex, bounded open
set Ω ⊆ R2. Then, by Theorem 5.7, as t → T, either the curvature is not bounded, or
the inferior limit of the lengths Li(t) of at least one curve of St is zero.
Hence if all the lengths of the curves of the network are uniformly positively bounded
from below, the curvature is not bounded (actually again by Theorem 5.7) the maxi-
mum of the absolute value of the curvature goes to +∞). By Proposition 6.6 we also
know that if the curvature is uniformly bounded, all the lengths of the curves con-
verge as t → T, thus at least some Li(t) must go to zero.
We will then divide our analysis into the following three cases:

— all the lengths of the curves of the network are uniformly positively bounded
from below and the maximum of the modulus of the curvature goes to +∞, as
t → T;

— the curvature is uniformly bounded along the flow and the length Li(t) of at
least one curve of St goes to zero when t → T;

— the curvature is not bounded and the length of at least one curve of the network
is not positively bounded from below, as t → T.

In all three cases, the possible blow–up limits will play a key role, with the obvious
consequence that the fewer possibilities we have, the easier we can get conclusions.
In particular, it is crucial to exclude the onset of blow–up limits of multiplicity larger
than one, in particular “multiple lines”, exactly as in the study of the evolution of
a single smooth closed curve (see [52], for instance). In the case of curves this can
be done by means of some “embeddedness” or “non–collapsing” quantities (see [49,
52]) that actually inspired our results in Chapter 14.
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Unfortunately, in the case of regular networks proving that any blow–up limit has
multiplicity one without asking for any extra assumption is still an open problem,
maybe the major one.

Open Problem 10.1 (Multiplicity–One Conjecture – M1). — Every blow–up limit
shrinker arising from Huisken’s rescaling procedure or limit of parabolic rescalings at a point
x0 ∈ Ω is an embedded network with multiplicity one.

This conjecture is implied by the two equivalent statements in the following open
problem.

Open Problem 10.2 (Strong Multiplicity–One Conjecture – SM1/No Double–Line
Conjecture – L1). —

SM1: Every possible C1
loc–limit of rescalings of networks of the flow is an embedded network

with multiplicity one.

L1: A straight line with multiplicity larger than one cannot be obtained as a C1
loc–limit of

rescalings of networks of the flow.

While it is obvious that the first statement implies both M1 and L1, the fact that the
second one implies the first can be seen as follows: if SM1 does not hold, since the
networks of the flow are all embedded, any limit of rescalings Si can lose embedded-
ness only if two curves in the limit network “touch” each other at some point x0 ∈ R2

with a common tangent (or they locally coincide, if they “produce” a piece of curve
withmultiplicity larger than one). Then, “slowly” dilating the networks Si around x0,
in order that the distance between such two curves and x0 still go to zero, we would
get a multiplicity–two line, contradicting L1.
We will see in Chapter 14 some cases in which we are able to show that the strong
multiplicity–one conjecture holds:

— If during the flow the triple junctions stay uniformly far from each other, then
SM1 is true.

— If the initial network has at most two triple junctions, then SM1 is true.

Remark 10.3. — If M1 holds, the flow S∞
t in Proposition 8.17 is composed of em-

bedded, multiplicity–one network and the same holds for the limit network S̃∞ in
Proposition 8.20. In particular under the hypotheses of Proposition 8.30 any blow–
up limit network at a point x0 and singular time T, obtained by Huisken’s procedure,
or self–similarly shrinking network flow, obtained by the parabolic rescaling proce-
dure, is (if not empty) a “static” straight line through the origin (then Θ̂(x0) = 1)
or a standard triod (then Θ̂(x0) = 3/2), if the rescaling point belongs to Ω. If the
rescaling point is instead a fixed end–point of the evolving network on the boundary
of Ω, then such limit can only be a single halfline from the origin (and Θ̂(x0) = 1/2).
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Before analyzing the three situations above, we set some notation and we show some
general properties of the flow at the singular time.
We let F : S × [0, T) → Ω, with T < +∞, represent the curvature flow St of a regular
network moving by curvature in its maximal time interval of smooth existence. We
let O1, O2, . . . , Om the 3–points of S.
We define the set of reachable points of the flow as follows:

R =
{

x ∈ R2 ∣∣ there exist pi ∈ S and ti ↗ T such that lim
i→∞

F(pi, ti) = x
}

.

Such a set is easily seen to be closed and contained in Ω (hence compact as Ω is
bounded). Moreover the following lemma holds:

Lemma 10.4. — A point x ∈ R2 belongs to R if and only if for every time t ∈ [0, T) the
closed ball with center x and radius

√
2(T − t) intersects St.

Proof. One of the two implications is trivial. We have to prove that if x ∈ R, then
F(S, t) ∩ B√2(T−t)(x) 6= ∅. If x is one of the end–points, the result is obvious, other-
wise we define the function

dx(t) = inf
p∈S

|F(p, t)− x| ,

where, due to the compactness of S the infimum is actually a minimum and as t → T,
let us say for t > tx, it cannot be achieved at an end–point, by the assumption x ∈ R

and x different from an end–point, such a maximum cannot be either achieved at a
3–point, by the 120 degrees angle condition. Since the function dx : [0, T) → R is
locally Lipschitz, we can then use Hamilton’s trick (see [48] or [78, Lemma 2.1.3]),
to compute its time derivative and get (for any point q, different from an end–point,
where at time t the minimum of |F(p, t)− x| is attained)

∂tdx(t) = ∂t|F(q, t)− x| ⩾ 〈k(q, t)ν(q, t) + λ(q, t)τ(q, t), F(q, t)− x〉
|F(q, t)− x|

=
〈k(q, t)ν(q, t), F(q, t)− x〉

|F(q, t)− x| ⩾ − 1
dx(t)

,

since at a point of minimum distance the vector F(q,t)−x
|F(q,t)−x| is parallel to ν(q, t).

Integrating this inequality over time, we get

d2
x(t)− d2

x(s) ⩽ 2(s − t) for s > t > tx .

We now use the hypothesis that x is reachable (limti→T dx(ti) = 0) and we conclude

d2
x(t) = lim

i→∞
[d2

x(t)− d2
x(ti)] ⩽ 2 lim

i→∞
(ti − t) = 2(T − t) ,

for every t > tx.
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As a consequence, when we consider the blow–up limits of the evolving networks
by Huisken’s rescaling procedure around points of Ω, we have a dichotomy among
these latter. If the blow–up point belongs to R, this lemma ensures that any rescaled
network contains at least one point of the closed unit ball of R2, hence the limit of
any sequence is not empty (and clearly vice versa). If the point does not belong to R

any blow–up limit is empty, since the distance of the evolving network from the point
of blow–up is positively bounded below (by the very definition of R) and rescaling,
the whole dilated networks go to infinity. By Lemma 8.22, the same conclusion holds
for the self– similarly, shrinking curvature flows coming from the parabolic rescaling
procedure.

Lemma 10.5. — The family of blow–up limit shrinkers S̃∞ arising from Proposition 8.20
and the family of self–similarly shrinking curvature flows coming from Proposition 8.17 are
not empty, if and only if the blow–up point x0 belongs to R. It follows that the set of reachable
points of the flow coincides with {x ∈ Ω | Θ̂(x) > 0}.

We now show that, assuming the multiplicity–one conjecture, as t → T, all the 3–
points of the network St converge.

Lemma 10.6. — If M1 holds, there exists a radius R = R(St, x0) > 0, such that if a blow–
up limit regular shrinker S̃∞ (or S∞

−1/2) at the point x0 has no triple junctions in the ball
BR(0), then it is a line through the origin of R2 or the unit circle.

Proof. Assume that the conclusion is false, then there is a sequence Ri → +∞ and
blow–up limit regular shrinkers Si at x0, all different from a line or circle, such that
each Si has no triple junctions in BRi (0), for every i ∈ N.
As we said in the discussion above, any shrinker Si must intersect the unit circle,
hence, by the shrinkers equation (8.1), we can extract a subsequence of Si locally con-
verging in C1 to a non empty limit shrinker S without triple junctions at all. By the
work of Abresch and Langer [1], then S must be a line through the origin or the unit
circle and this latter case is excluded, since, for i large enough also Si would be a cir-
cle, which is a contradiction. If the limit S is a line, by the multiplicity–one conjecture,
its multiplicity must be one, being any limit of blow–up limits of St at the point x0
again a blow–up limit at x0.
Then, by the second point of Lemma 8.16, the contribution of Si \ BR(0) to the
Gaussian density of the whole Si is small as we want, for every i ∈ N, by choosing
a value R large enough, while, for sufficiently large i, the contribution of Si ∩ BR(0)
is smaller than one, as Si → S, which is a multiplicity–one line. Hence, we conclude
that the Gaussian density of Si is close to one for sufficiently large i, then Lemma 8.11
implies that Si is also a line through the origin, which is again a contradiction and we
are done.
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Remark 10.7. — It is actually possible to find a uniform value of R > 0 in this lemma,
also independent of the flow St (Tom Ilmanen, personal communication).

Lemma 10.8. — IfM1 holds, there exist the limits xi = limt→T Oi(t), for i ∈ {1, 2, . . . , m}
and the set {xi = limt→T Oi(t) | i = 1, 2, . . . , m} is the union of the set of the points x in Ω
where Θ̂(x) > 1 with the set of the end–points of St such that the curve getting there collapses
as t → T.

Proof. Let D = {x ∈ Ω | Θ̂(x) > 1}, O(t) = {O1(t), O2(t), . . . , Om(t)} and
P = {P1, P2, . . . , Pl}. Let R > 0 be given by the previous lemma and consider a
finite subset D ⊆ D , supposing that the set

ID =
{
t ∈ [−1/2 log T,+∞) | max

x∈D
d(x, O(t(t))) ⩾ R

√
2(T − t(t))

}
has infinite Lebesgue measure, there must be x0 ∈ D such that

Ix0 =
{
t ∈ [−1/2 log T,+∞) | d(x0, O(t(t))) ⩾ R

√
2(T − t(t))

}
has infinite Lebesgue measure. Hence, by rescaling with Huisken’s procedure
around x0, by Proposition 8.20, we can extract a sequence of times tj ∈ Ix0 such
that the rescaled networks S̃x0,tj converge in C1

loc to a line through the origin of R2,
by Lemma 10.6 (if the limit is the unit circle, the network is a closed curve and there
is nothing to prove, as there are no 3–points), since in any ball centered at the origin,
there cannot be 3–points, by the construction of Ix0 and holding M1. This clearly
implies that Θ̂(x0) = 1, contradicting the hypothesis x0 ∈ D , hence, ID must have
finite Lebesgue measure. It is then easy to see that this implies that the points of D

and thus of D , cannot be more than the number m of the 3–points of the evolving
network St.
If now we consider a small δ > 0, as every point x in the open set

Ωδ = Ω \
{

x ∈ Ω | d(x, D ∪P) ⩽ δ
}

satisfies Θ̂(x) ⩽ 1, by compactness and Corollary 9.5 (or White’s local regularity the-
orem in [110]), it follows that the networks Stj restricted to the set Ωδ have uniformly
bounded curvature and smoothly converge to a limit smooth network in Ωδ without
3–points, otherwise at any of such 3–points we would have a Gaussian density equal
to 3/2, larger than one.
This argument clearly implies that choosing δ small enough (as D ∪P is finite), ev-
ery 3–point Oi(t), for every i ∈ {1, 2, . . . , m}, has to “choose” a point xi ∈ D ∪ P to
stay close and actually converges there.
Finally, if x ∈ D , there must be a multi–point in any blow–up limit shrinker, oth-
erwise we can only have a line, by Lemma 10.6 (the unit circle is excluded, as we
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said before), that would imply Θ̂(x) = 1, against the definition of D . Hence,
for some i ∈ {1, 2, . . . , m} and tn → T there must hold Oi(tn) → xi that forces
limt→T Oi(t) = xi, by the previous discussion..
If the curve of St getting to an end–point Pr collapses along a sequence of times tj → T,
clearly, as before, for some k ∈ {1, 2, . . . , m} there must hold Ok(tj) → Pr = xk and
we have the same conclusion limt→T Ok(t) = Pr = xk.

10.1. Regularity without vanishing of curves

Let T < +∞ be the maximal time of existence and assume that the lengths of all the
curves of the network are uniformly positively bounded from below, hence as t → T
the maximum of the modulus of the curvature goes to +∞. We are going to show
that ifM1 holds, T cannot be a singular time, hence we conclude that this case simply
cannot happen. This conclusion justifies the title of this chapter: to have a singularity
(assuming the multiplicity–one conjecture) some curves must disappear.
Such result follows by the local regularity Theorem 9.3 (precisely, by Corollary 9.5,
see also the first point of Remark 9.4), implying that the curvature is locally bounded
around every point of Ω, as t → T. Indeed, performing a parabolic rescaling at
any reachable, interior point x0 ∈ Ω (at the other interior points of Ω the blow–
up limits are empty, so Θ̂(x0) = 0), since we assumed that the multiplicity–one
conjecture holds, by the discussion in Remark 10.3, we can obtain as blow–up lim-
its only a straight lines with unit multiplicity, so Θ̂(x0) = 1, or standard triods, hence
Θ̂(x0) = 3/2. By Corollary 9.5, we then conclude that the curvature is uniformly
locally bounded along the flow, around such point x0.
If we instead rescale at an end–point Pr we get a halfline and this case can be treated
as above by means of the “reflection construction” at the end of Section 8.2. That is,
for the flow Hr

t the point Pr is no more an end–point and a blow–up there gives a
straight line, hence implying that the curvature is locally bounded also around Pr, as
before.
By the compactness of the set of reachable points R, this argument clearly implies
that the curvature of the whole St is uniformly bounded, as t → T, which is a contra-
diction.

Proposition 10.9. — Assuming M1, if T < +∞ is the maximal time of existence of the
curvature flow of a regular network with fixed end–points, then the inferior limit of the length
of at least one curve is zero, as t → T.
Remark 10.10. — Proposition 10.9 can be seen as the global (in space) version of
the local regularity Theorem 9.3 which deals with the situation of a single 3–point.
Usually in analytic problems local and global (in space) regularity coincides, actually
in this case the tool to pass from one to the other is the validity of themultiplicity–one
conjecture.
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In all the analysis of the following sections we will assume that M1 holds. Moreover, we
assume that the bounded open set Ω is strictly convex.
We remark that, with minor modifications in the proofs, all the following results also hold for
the flow of open networks in R2, ignoring the conclusions about the behavior at the end–points
that are not present in such case.

By the above discussion, we will have to analyze the behavior of the flow St around
the points xi = limt→T Oi(t), limits of the triple junctions in Ω (see Lemma 10.8)
where Θ̂(x) > 3/2 and the end–points of St such that the curve getting there col-
lapses, as t → T. Notice that if a limit point xi is the limit of a single 3–point Oi(t),
then the other ones must “stay far” and locally around xi there cannot be the collapse
of a curve, then, by the same argument as above, we conclude that Θ̂(xi) = 3/2. It
follows that the only limit points xi ∈ Ω we have to deal with are the ones which are
limit of more than one triple junction, as t → T.

10.2. Limit networks with bounded curvature

The analysis in this case consists in understanding the possible limit networks that
can arise, as t → T, under the assumption that the curvature is uniformly bounded
along the flow. This to find out how to continue the flow (if possible) as discussed in
Section 10.4.
As we said, at least one curve of the network St has to “vanish”, approaching the
singular time T. We show that in this case, as t → T, assuming the multiplicity–one
conjecture, St converges to a unique limit degenerate regular network S, containing in
the interior of Ω only regular triple junctions or 4–points with four concurring curves
whose exterior unit tangents form four angles of 120, 60, 120 and 60 degrees (any of
them coming from two 3–points going to “collide” each other along a single isolated
collapsing curve) and at any end–point on ∂Ω, either a regular single curve or two
curves “exiting” from such end–point, forming an angle of 120 degrees among them
(coming from the single isolated collapse of the curve of the network getting there).
The cores of such limit degenerate regular network are thus given only by the isolated
collapsed curves.
We will see in Proposition 10.19 in the next section that viceversa, when locally only a
single isolated curve collapses, the curvature stays bounded (see also the example in
Proposition 10.31).

Proposition 10.11. — IfM1 holds and St =
⋃n

i=1 γi([0, 1], t) is the curvature flow of a reg-
ular network in Ω with fixed end–points in a maximal time interval [0, T) such that the curva-
ture is uniformly bounded along the flow, then the networks St, up to reparametrization propor-
tional to arclength, converge in C1 to some degenerate regular network ŜT =

⋃n
i=1 γ̂i

T([0, 1])
in Ω, as t → T.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



134 CHAPTER 10. THE BEHAVIOR OF THE FLOW AT A SINGULAR TIME

The non–degenerate curves of ŜT belong to C1 ∩W2,∞ and they are smooth outside the multi–
points. Moreover, denoting with ST the C1 network described by the family of the non–
degenerate curves of ŜT , every multi–point of the ST is either a regular triple junction or
an end–point of St or

— a 4–point where the four concurring curves have opposite exterior unit tangent vectors
in pairs and form angles of 120/60 degrees between them – collapse of a curve in the
“interior” of St,

— a 2–point at an end–point of the network St where the two concurring curves form an angle
of 120 degrees among them – collapse of the curve getting to such end–point of St.

Pr

Ω

Pr

Ω

Figure 10.1: Collapse of a curve in the interior and at an end–point of St.

Definition 10.12. — By their clear importance, we call regular 4–points the ones like in
this proposition.

Proof. By Proposition 6.6, since St is the curvature flow of a regular network,
there exist the limits of the lengths of the curves Li(T) = limt→T Li(t), for every
i ∈ {1, 2, . . . , n}. Moreover every limit of St is a connected, bounded subset of R2.
Recalling the third point of Remark 5.9 (or directly Corollary 5.2), we reparametrize
the networks so that the flow is a special smooth flow, then, by Remark 4.9, all the
velocities γi

t are uniformly bounded in space and time by some constant D, hence we
have,

|γi(x, t)− γi(x, t)| ⩽
∫ t

t
|γi

t(x, ξ)| dξ ⩽ D|t − t|

uniformly for any x ∈ [0, 1] and every pair t, t ∈ [0, T). This clearly implies that
γi(·, t) : [0, 1] → R2 is a Cauchy sequence in C0([0, 1]), hence the network St con-
verges uniformly to a limit family of continuous curves γi

T : [0, 1] → R2, as t → T,
composing the set ST =

⋃n
i=1 γi

T([0, 1]). As the curvature and the total length of all
St are uniformly bounded by some constant C, reparametrizing instead all the curves
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γi(·, t) proportionally to their arclength, getting the maps γ̂i(·, t) : [0, 1] → R2, these
latter are a family of uniformly Lipschitz curves with curvature uniformly bounded
in space and time, hence relatively compact in C1. It is then easy to see that for
every C1–converging subsequence, the curves γ̂i

T : [0, 1] → R2 of any limit family
ŜT =

⋃n
i=1 γ̂i

T([0, 1]) have the same supports of the curves γi
T : [0, 1] → R2 and either

are constant (the limits of collapsing curves) or are also parametrized proportionally
to arclength. Hence, this argument implies that the whole family of curves compos-
ing the networks St, reparametrized proportionally to arclength, converges in C1, as
t → T, to the family γ̂i

T composing ŜT . Clearly, by the uniform bound on the curva-
ture, all the curves γ̂i

T belong to W2,∞ and, by Lemma 8.24, they are smooth outside
the multi–points.
According to Definition 8.4, we have to deal now with the convergence of the unit
tangent vectors. We observe that if we denote with s the arclength parameter, we
have

(10.1)
∣∣∣∣∂τ̂i(x, t)

∂x

∣∣∣∣ = ∣∣∣∣∂τi(s, t)
∂s

∣∣∣∣Li(t) = |ki(s, t)|Li(t) ⩽ CLi(t) ⩽ C2 ,

for some constant C, hence, every sequence of times tn → T have a – not relabeled –
subsequence such that the maps τ̂i(·, tn) converge uniformly to some maps τ̂i

T .
If the curve γ̂i

T is a regular curve (that is, Li(t) does not go to zero), it is easy to see
that the limit maps τ̂i

T must coincide with the unit tangent vector field to the curve
γ̂i

T , hence, the full sequence τ̂i(·, t) converges to τ̂i
T .

If Li(t) converges to zero, as t → T, by inequality (10.1), the maps τ̂i(·, tn) converge
to a constant unit vector τ̂i

T which, if it is independent of the subsequence tn, it will
be the “assigned” constant unit vector to the degenerate constant curve γ̂i

T of the net-
work ŜT , as in Definition 8.1, then it follows (see Remark 8.5) that ŜT is a degenerate
regular network and that St converges in C1 to ŜT , as t → T.
We start dealingwith the behavior of the curves without end–points on the boundary
of Ω.
If a region is “collapsing”, that is, its area is going to zero, as t → T, being Ω strictly
convex, we have that the region must be completely “inside” Ω (not bounded by
curves getting to the end–points of the networks Pr which are all distinct, hence a
“collapse” on ∂Ω is impossible by the strong maximum principle) and, by the com-
putations in Section 8.2, it can have at most m ⩽ 5 bounding curves γ`(·, t) and its
area satisfies

A(t) = (2 − m/3)π(T − t)/2 ,

by equation (8.4). By Lemma 10.8 the 3–points of the region converge to some limit
points, as t → T, if these limits are not all coincident with a single point x0 ∈ Ω,
the limit family of C1 curves γi

T must bound a “region” with zero area not given
by a single point, hence there would be at least two non–degenerate (non–constant)
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curves with the same support, which is forbidden by the multiplicity–one conjecture
M1. Hence, we conclude that all such 3–points converge to the point x0 ∈ Ω and the
whole region vanishes at x0, as t → T. In particular, all the lengths of the bounding
curves γ`(·, t) also go to zero, as t → T. Since, by equation (8.3) we have

m

∑
`=1

∫
γ`

t

k ds = (2 − m/3)π > π/3 ,

it follows that we have a contradictionwith the fact that the curvature is bounded and
the perimeter of the region goes to zero. Hence, with bounded curvature, which is
our case, no regions can collapse, which implies that around every point the network
is locally a tree, as t gets close to T. Recalling now Lemma 10.8, we only have to check
things locally around every point x0 which belongs to the set of the limits of the triple
junctions {Oj(t)}, as t → T, since outside such (finite) set the network converges
smoothly to ŜT (which is composed of regular smooth curves there), by Lemma 8.24.
If the point x0 is the limit point of a single triple junction Oj(t), clearly locally around
x0 no curve is collapsing and the convergence of St to ŜT is smooth (see the com-
ments at the end of the previous section). Assuming then that the curve γi(·, t) (at
least) collapses with its end–points going to x0 and performing the Huisken’s rescal-
ing procedure at x0, we can only get as blow–up limit degenerate shrinkers which
are trees with zero curvature (being bounded, by the rescaling, the curvature con-
verges uniformly to zero). Moreover, these shrinkers have unit multiplicity since we
assumed M1, hence they must be among the ones of Lemma 8.10: a line, a standard
triod or a standard cross. The first two cases are clearly excluded, since it would hold
Θ̂(x0) ⩽ 3/2, then Corollary 9.5 would tell us that the flow is locally smooth and
there is no collapse of curves. Hence, the only possibility is a standard cross (which
has a core composed only of a collapsed curve), this actually implies that at x0 there
are no other collapsing curves other than γi(·, t) and only its end–points (among the
triple junctions) are converging to x0. Indeed, arguing as in Corollary 9.5, since there
holds

|Oj(t2)− Oj(t1)| =
∣∣∣∣∫ t2

t1

vj(ξ) dξ

∣∣∣∣⩽ ∫ t2

t1

|vj(ξ)| dξ ⩽ D|t2 − t1| ,

for every triple junction Oj(t) converging to x0, for every t1, t2 ∈ [0, T), hence

|Oj(t)− x0| ⩽ D|T − t|

for every t ∈ [0, T), we have that its image Õj(t), after performingHuisken’s rescaling
procedure, satisfies

|Õj(t)| = |Oj(t(t)− x0|√
2(T − t(t))

⩽ D|T − t(t)|√
2(T − t(t))

= D
√
(T − t(t))/2 ,
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which tends to zero, as t → +∞, in particular, all the triple junctions converging to x0
cannot “disappear” in the limit degenerate regular shrinker (going to infinity). As
the core of the standard cross is a single line (the underlying graph has only two triple
junctions), the above claim follows and the collapsing curve γi(·, t) is “isolated”. As
a consequence, around x0 the curve γi(·, t) collapses and other four curves γ`(·, t)
converge in C1 (smoothly outside x0), as t → T, to four regular curves γ`

T with an
end–point at x0, forming a 4–point. By the C1–convergence of the four curves and the
120 degrees condition at the two converging triple junctions, if for a sequence tn → T
we have that τ̂i(·, tn) converge to a constant unit vector τ̂i

T , this unit vector is uniquely
determined by the (unique) exterior unit tangents at x0 of the four concurring curves,
hence we conclude that τ̂i

T it is independent of the sequence tn → T, as we wanted
to show. Then, it is the “assigned” constant unit vector to the degenerate constant
curve γ̂i

T of the network ŜT , as in Definition 8.1. It follows (see Remark 8.5) that ŜT
is a degenerate regular network and that St converges in C1 to ŜT , as t → T.
By this argument, we can also conclude that x0 is a 4–point of ŜT (or of ST) where
the four concurring curves have opposite unit tangents in pairs and form angles of
120/60 degrees between them, as in the statement.
Finally, in the case of a collapsing curve arriving at an end–point Pr of St, we get the
statement of the proposition by considering the network Hr

t , obtained by the union
of St with its “reflection” with respect to the point Pr (see the end of Section 8.2) and
applying the previous conclusions to such network.

The next corollary follows from this proof.

Corollary 10.13. — Every core (there could be more than one) of ŜT is composed of a single
collapsed curve. In the case of bounded curvature, only “isolated” curves can collapse.

Moreover, during the proof, we also showed the following intuitive fact about a col-
lapsing region, that is, with its area is going to zero, as t → T.

Lemma 10.14. — IfM1 holds and a region is collapsing as t → T, then the curvature of the
network cannot be bounded.

Remark 10.15. — Notice that if at an end–point the two curves of the boundary of
the convex set Ω form an angle (or the whole network is contained in an angle whose
vertex is such end–point) with amplitude less than 120 degrees, then the collapse
situation described in Proposition 10.11 cannot happen at such end–point. This is,
for instance, the case of an initial triod contained in a triangle with angles less than
120 degrees and fixed end–points in the vertices.
The same conclusion holds, by the argument in the proof of Proposition 8.13, calling
Ωt ⊆ Ω the evolution by curvature of ∂Ω, keeping fixed the end–points of St, if the
angle formed by Ωt at such end–point becomes smaller than 120 degrees.
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Remark 10.16. — Notice that, even if ST is smooth outside its multi–points and W2,∞,
we cannot say at the moment that its curves are of class C2. This will be actually a
consequence of the analysis of the next section, see Theorem 10.26 and Remark 10.27.

All the previous arguments can be easily localized andwe have the following conclusion.

Proposition 10.17. — If M1 holds and the curvature of St is locally uniformly bounded
around a point x0 ∈ Ω, as t → T, the networks St, up to reparametrization, converge in C1

loc
locally around x0 to some degenerate regular network ŜT whose non–degenerate curves form
a C1 network ST , having possibly some non–regular multi–points which are among the ones
described in Proposition 10.11.
Moreover, the curves of ST belong to C1 ∩ W2,∞, in a neighborhood of x0, and are smooth
outside the multi–points.

Remark 10.18. — Referring to Remark 8.21, we can call these singularities with
bounded curvature Type 0 singularities. They are peculiar to the network flow, as
they cannot appear in the motion by curvature of a single curve.

10.3. Vanishing of curves with unbounded curvature

Suppose now that, as t → T, the curvature is not bounded and the length of at least
one curve of the flow St is not positively bounded from below. This last case is the
most delicate.
Performing, as before, any of the blow–up procedures, even assuming the
multiplicity–one conjecture, there can be several shrinkers as possible blow–up
limits given by Propositions 8.17, 8.20 and we need to classify them in order to un-
derstand the behavior of the flow St approaching the singular time T. In doing that,
the (local) structure (topology) of the evolving network plays an important role in
the analysis since it restricts the family of possible shrinkers obtained as blow–up
limits of St. A very relevant case is when the evolving network has no loops, namely,
it is a tree, studied in detail in [81]).

Proposition 10.19. — IfM1 holds and the evolving regular network St is a tree in a neigh-
borhood of x0 ∈ Ω, for t close enough to T, then the curvature of St is locally uniformly
bounded around x0, during the flow. Hence, the conclusions of Proposition 10.17 apply.

Proof. Let St be a smooth flow in the maximal time interval [0, T) of the initial net-
work S0. Let x0 ∈ Ω be a reachable point for the flow and let B be a ball containing x0
where St is a tree, for t close enough to T (we clearly only need to consider reachable
points).
Let us consider a sequence of parabolically rescaled curvature flows S

µi
t around

(x0, T), as in Proposition 8.17. Then, as i → ∞, it converges to a degenerate regu-
lar self–similarly shrinking network flow S∞

t , in C1,α
loc ∩W2,2

loc , for almost all t ∈ (−∞, 0)
and for any α ∈ (0, 1/2).
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Thanks to the multiplicity–one hypothesis M1 and to the topology of the network
(locally a tree, see Lemma 8.10), if we suppose that x0 6∈ ∂Ω, then S∞

t can only be the
“static” flow given by:

— a straight line;

— a standard triod;

— four concurring halflines with opposite unit tangent vectors in pairs, forming
angles of 120/60 degrees between them, that is, a standard cross.

By White’s local regularity theorem in [110], if the sequence of rescaled curvature
flows converges to a straight line, the curvature is uniformly bounded for t ∈ [0, T)
in a ball around the point x0. Thanks to Theorem 9.3 the same holds in the case of the
standard triod. Hence, the only situation we have to deal with to complete the proof
in this case is the collapse of two triple junctions at a point of Ω, when the limit flow is
given by the static degenerate regular network composed of four concurring halflines
with opposite unit tangents in pairs forming angles of 120/60 degrees between them,
a standard cross. We claim that also in this case the curvature is locally uniformly
bounded during the flow, around the point x0 (the next proposition and lemmas are
devoted to prove this fact).
If instead x0 ∈ ∂Ω, the only two possibilities for S∞

t are the static flows given by:

— a halfline;

— two concurring halflines forming an angle of 120 degrees.

For both these two situation the thesis is obtained by going back to the case in which
x0 ∈ Ω, with the “reflection construction” we described at the end of Section 8.2.

Remark 10.20. — Obviously, the conclusion of this proposition holds when S0 is a
tree (globally), since it remains so during the flow.

Proposition 10.21. — Let St be a smooth flow in the maximal time interval [0, T) for the
initial network S0. Let x0 be a reachable point for the flow such that the sequence of rescaled cur-
vature flows S

µi
t around (x0, T), as in Proposition 8.17, as i → ∞, converges, in C1,α

loc ∩W2,2
loc ,

for almost all t ∈ (−∞, 0) and for any α ∈ (0, 1/2), to a limit degenerate static flow S∞
t

given by a standard cross. Then,
|k(x, t)| ⩽ C < +∞

for all t ∈ [0, T) and x in a neighborhood of x0.
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We briefly outline the proof of this proposition. First, in Lemma 10.22 and 10.23, we
show that for any tree, if we assume a uniform control on themotion of its end–points,
the L2–norm of its curvature is uniformly bounded in a time interval depending on
its initial value. Moreover, we also bound the L∞–norm of the curvature in terms of
its L2–norm and of the L2–norm of its derivative.
Then, we prove that for a special tree, composed of only five curves, two triple junc-
tions and four end–points on the boundary of Ω open, convex and regular (see
Figure 10.2), uniformly controlling, as before, its end–points and the lengths of
the “boundary curve” from below, the L2–norm of ks is bounded until ‖k‖L2 stays
bounded. The statement of the proposition will follow by localizing these estimates.

Lemma 10.22. — Let Ω be a convex open regular set and S0 a tree with end–points
P1, P2, . . . , Pl (not necessarily fixed during its motion) on ∂Ω. Let St be a smooth evolu-
tion by curvature for t ∈ [0, T) of the network S0 such that the square of the curvature at the
end–points of St is uniformly bounded in time by some constant C. Then,

(10.2) ‖k‖2
L∞ ⩽ 4n−1C + Dn‖k‖L2‖ks‖L2 ,

where n ∈ N is such that for every point Q ∈ S0 there is a path to get from Q to an end–point
passing by at most n curves (clearly, n is smaller than the total number of curves of S0) and
the constant Dn depends only on n.

Proof. Let us first consider a network S0 with five curves, two triple junctions O1, O2

and four end–points P1, P2, P3, P4. In this case n is clearly equal to two. We call γi, for
i ⩽ 4, the curve connecting Pi with one of the two triple junctions and γ5 the curve
connecting the two triple junctions (see the following Figure 10.2).

P1

P2

P3

P4

γ1

γ4

γ2
γ3

γ5
O1

O2

Figure 10.2: A tree–like network with five curves.

Fixed a time t ∈ [0, T), let Q ∈ γi ⊆ St, for some i ⩽ 4. We compute

[ki(Q)]2 = [ki(Pi)]2 + 2
∫ Q

Pi
kksds ⩽ C + 2‖k‖L2‖ks‖L2 ,

hence, for every Q ∈ St \ γ5 we have

[ki(Q)]2 ⩽ C + 2‖k‖L2‖ks‖L2 .
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Assume now instead that Q ∈ γ5. Recalling that ∑3
i=1 ki = 0 at each triple junction,

by the previous argument we have [ki(O1)]2, [ki(O2)]2 ⩽ C + 2‖k‖L2‖ks‖L2 , for all
i ∈ {1, 2, 3, 4}, then it follows that [k5(O1)]2, [k5(O2)]2 ⩽ 4C + 8‖k‖L2‖ks‖L2 . Hence,
arguing as before, we get

[k5(Q)]2 = [k5(O1)]2 + 2
∫ Q

O1
kks ds ⩽ 4C + 8‖k‖L2‖ks‖L2 + 2

∫ Q

O1
kks ds ,

In conclusion, we get the uniform in time inequality for St

‖k‖2
L∞ ⩽ 4C + 10‖k‖L2‖ks‖L2 .

In the general case, since St are all trees homeomorphic to S0, we can argue similarly
to get the conclusion by induction on n.

Lemma 10.23. — Let Ω ⊆ R2 be open, convex and regular, let S0 be a tree with end–points
P1, P2, . . . , Pl on ∂Ω that satisfy assumption (4.1) and let St for t ∈ [0, T) be a smooth
evolution by curvature of the network S0. Then ‖k‖2

L2 is uniformly bounded on [0, T̃) by√
2
[
‖k(·, 0)‖2

L2 + 1
]
, where

T̃ = min
{

T, 1
/

8C
(
‖k(·, 0)‖2

L2 + 1
)2
}

.

Here the constant C depends only on the number n ∈ N of Lemma 10.22 and the constants
in assumption (4.1).

Proof. By inequality (4.4) we have

d
dt

∫
St

k2 ds ⩽ − 2
∫

St
k2

s ds +
∫

St
k4 ds +

m

∑
p=1

3

∑
i=1

λpi
(

kpi
)2
∣∣∣∣
at the 3–point Op

+ C

⩽ − 2
∫

St
k2

s ds + ‖k‖2
L∞

∫
St

k2 ds + C‖k‖3
L∞ + C .(10.3)

By estimate (10.2) and the Young inequality, we then obtain

‖k‖3
L∞ ⩽ Cn + Cn‖k‖

3
2
L2‖ks‖

3
2
L2 ⩽ Cn + ε‖ks‖2

L2 + Cn,ε‖k‖6
L2 ,

‖k‖2
L∞‖k‖2

L2 ⩽ Cn‖k‖2
L2 + Dn‖k‖3

L2‖ks‖L2 ⩽ Cn‖k‖2
L2 + ε‖ks‖2

L2 + Cn,ε‖k‖6
L2 ,

for every small ε > 0 and a suitable constant Cn,ε.
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Plugging these estimates into inequality (10.3) we get

d
dt

∫
St

k2ds ⩽ − 2‖ks‖2 + ‖k‖2
L∞‖k‖2 + C‖k‖3

L∞ + C

⩽ − 2‖ks‖2 + Cn‖k‖2
L2 + ε‖ks‖2

L2 + Cn,ε‖k‖6
L2 + Cn + ε‖ks‖2

L2 + Cn,ε‖k‖6
L2 + Cn

⩽C
(∫

St

k2ds
)3

+ C ,(10.4)

where we chose ε = 1/2 and the constant C depends only on the number n ∈ N of
Lemma 10.22 and the constants in condition (4.1).
Calling y(t) =

∫
St

k2 ds + 1, we can rewrite inequality (10.4) as the differential ODE

y′(t) ⩽ 2Cy3(t) ,

hence, after integration, we get

y(t) ⩽ 1√
1

y2(0) − 4Ct

and, choosing T̃ as in the statement, the conclusion is straightforward.

Lemma 10.24. — Let Ω ⊆ R2 be open, convex and regular, let S0 be a tree with five curves,
two triple junctions O1, O2 and four end–points P1, P2, P3, P4 on ∂Ω, as in Figure 10.2,
satisfying assumption (4.1) and assume that St, for t ∈ [0, T), is a smooth evolution by
curvature of the network S0 such that ‖k‖L2 is uniformly bounded on [0, T).
If the lengths of the curves of the network arriving at the end–points are uniformly bounded
below by some constant L > 0, then ‖ks‖L2 is uniformly bounded on [0, T).

Proof. We first estimate ‖ks‖2
L∞ in terms of ‖ks‖L2 and ‖kss‖L2 .

Fixed a time t ∈ [0, T), let Q ∈ γi ⊆ St, for some i ⩽ 4. We compute

[ki
s(Q)]2 = [ki

s(Pi)]2 + 2
∫ Q

Pi
kskss ds ⩽ C + 2‖ks‖L2‖kss‖L2 ,

hence, in this case,
[ki

s(Q)]2 ⩽ C + 2‖ks‖L2‖kss‖L2 ,

for every Q ∈ St \ γ5.
Assume now instead that Q ∈ γ5. Recalling that ki

s + λiki = kj
s + λjkj at each triple

junction, we get

k5
s (O

1) = ki
s(O

1) + λi(O1)ki(O1)− λ5(O1)k5(O1) ,
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hence,

|k5
s (O

1)| ⩽ |ki
s(O

1)|+ C‖k‖2
L∞

⩽ |ki
s(O

1)|+ C‖k‖L2‖ks‖L2 + C

⩽ |ki
s(O

1)|+ C (1 + ‖ks‖L2) ,

by Lemma 10.23. Then,

[k5
s (O

1)]2 ⩽ 2[ki
s(O

1)]2 + C
(

1 + ‖ks‖2
L2

)
and it follows

[k5
s (Q)]2 = [k5

s (O
1)]2 + 2

∫ Q

O1
kskss ds

⩽ 2[ki
s(O

1)]2 + C
(

1 + ‖ks‖2
L2

)
+ 2

∫ Q

O1
kskss ds

⩽ C + C‖ks‖2
L2 + 2‖ks‖L2‖kss‖L2 ,

since, by the previous argument, we have [ki
s(O1)]2, [ki

s(O2)]2 ⩽ C + 2‖ks‖L2‖kss‖L2 ,
for all i ∈ {1, 2, 3, 4}. Hence, we conclude

‖ks‖2
L∞ ⩽ C + C‖ks‖2

L2 + 2‖ks‖L2‖kss‖L2 .

We now pass to estimate ‖ks‖L2 . Making computation (4.3) explicit for j = 1, we
have
(10.5)

∂t

∫
St

k2
s ds ⩽ −2

∫
St

k2
ss ds + 7

∫
St

k2k2
s ds −

2

∑
p=1

3

∑
i=1

2kpi
s kpi

ss + λpi
(

kpi
s

)2
∣∣∣∣
at the 3–point Op

+ C .

Then, as in Chapter 4wework to lower the differentiation order of the boundary term
∑3

i=1 ki
ski

ss at each 3–point.
We claim that the following equality holds at each 3–point,

(10.6) 3
3

∑
i=1

λikiki
t = ∂t

3

∑
i=1

λi
(

ki
)2

.

Keeping in mind that, at every 3–point, we have ∑3
i=1 ki = 0 and λi = ki−1−ki+1

√
3

, with
the convention that the superscripts are considered “modulus 3” (see Section 2.3),
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we obtains

√
3

3

∑
i=1

λikiki
t =

3

∑
i=1

(
ki−1 − ki+1

)
kiki

t

=
3

∑
i=1

ki+1
(

ki+1 + ki−1
)

ki
t − ki−1

(
ki+1 + ki−1

)
ki

t

=
3

∑
i=1

[(
ki+1

)2
−
(

ki−1
)2
]

ki
t ,

and

√
3∂t

3

∑
i=1

λi
(

ki
)2

=
√

3
3

∑
i=1

λi
t

(
ki
)2

+ 2λikiki
t

=
3

∑
i=1

(
ki−1

t − ki+1
t

) (
ki
)2

+ 2
3

∑
i=1

(
ki−1 − ki+1

)
kiki

t

=
3

∑
i=1

[(
ki+1

)2
−
(

ki−1
)2

+ 2kiki−1 − 2kiki+1
]

ki
t

=
3

∑
i=1

[(
ki+1

)2
−
(

ki−1
)2

− 2(ki−1+ki+1)ki−1+2(ki−1+ki+1)ki+1
]

ki
t

= 3
3

∑
i=1

[(
ki+1

)2
−
(

ki−1
)2
]

ki
t ,

thus, equality (10.6) is proved.
Now we use such equality to lower the differentiation order of the term ∑3

i=1 ki
ski

ss.
Recalling the formula ∂tk = kss + ksλ + k3 and that ∑3

i=1 ki
t = ∂t ∑3

i=1 ki = 0, we get

3

∑
i=1

ki
ski

ss =
3

∑
i=1

ki
s
[
ki

t − λiki
s −

(
ki
)3]

=
3

∑
i=1

(
ki

s + λiki − λiki)ki
t −

3

∑
i=1

λi
(

ki
s

)2
+
(

ki
)3

ki
s

=
3

∑
i=1

(
ki

s + λiki)ki
t −

3

∑
i=1

λikiki
t −

3

∑
i=1

λi
(

ki
s

)2
+
(

ki
)3

ki
s

= −∂t

3

∑
i=1

λi
(

ki
)2/

3 −
3

∑
i=1

λi
(

ki
s

)2
+
(

ki
)3

ki
s ,

at the triple junctions O1 and O2, where we used the fact that ki
s + λiki is independent

of i ∈ {1, 2, 3}.
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Substituting this equality into estimate (10.5), we obtain

∂t

∫
St

k2
s ds ⩽ − 2

∫
St

k2
ss ds + 7

∫
St

k2k2
s ds +

2

∑
p=1

3

∑
i=1

2
(

kpi
)3

kpi
s + λpi

(
kpi

s

)2
∣∣∣∣
at the 3–point Op

+ C

+ 2∂t

2

∑
p=1

3

∑
i=1

λpi
(

kpi
)2/

3
∣∣∣∣
at the 3–point Op

⩽ − 2
∫

St

k2
ss ds + C‖k‖2

L2‖ks‖2
L∞ +

2

∑
p=1

3

∑
i=1

2
(

kpi
)3

kpi
s + λpi

(
kpi

s

)2
∣∣∣∣
at the 3–point Op

+ 2∂t

2

∑
p=1

3

∑
i=1

λpi
(

kpi
)2/

3
∣∣∣∣
at the 3–point Op

+ C .(10.8)

Using the previous estimate on ‖ks‖L∞ , the hypothesis of uniform boundedness of
‖k‖L2 and Young inequality, we get

‖k‖2
L2‖ks‖2

L∞ ⩽ C + C‖ks‖2
L2 + C‖ks‖L2‖kss‖L2

⩽ C + C‖ks‖2
L2 + Cε‖ks‖2

L2 + ε‖kss‖2
L2

= C + Cε‖ks‖2
L2 + ε‖kss‖2

L2 ,

for any small value ε > 0 and a suitable constant Cε.
We deal now with the boundary term ∑3

i=1 2
(
ki)3 ki

s + λi (ki
s
)2.

By the fact that ki
s + λiki = kj

s + λjkj, for every pair i, j, it follows that
(ks + λk)2 ∑3

i=1 λi = 0, hence,

3

∑
i=1

λi
(

ki
s

)2
= −

3

∑
i=1

(
λi
)3 (

ki
)2

+ 2
(

λi
)2

kiki
s ,

then, we can write

3

∑
i=1

2
(

ki
)3

ki
s + λi

(
ki

s

)2
=

3

∑
i=1

2
(

ki
)3

ki
s −

(
λi
)3 (

ki
)2

− 2
(

λi
)2

kiki
s

=
3

∑
i=1

2
[(

ki
)3

−
(

λi
)2

ki]ki
s −

3

∑
i=1

(
λi
)3 (

ki
)2

= 2(ks+λk)
3

∑
i=1

(
ki
)3

−
(

λi
)2

ki+
3

∑
i=1

(
λi
)3 (

ki
)2
−2λi

(
ki
)4

.

At the triple junction O1, where the curves γ1, γ2 and γ5 concur, there exists i ∈ {1, 2}
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such that |ki(O1)| ⩾ K
2 , where K = maxj∈{1,2,3} |kj(O1)|, hence at the 3–point O1

2(ks + λk)
3

∑
i=1

(
ki
)3

−
(

λi
)2

ki +
3

∑
i=1

(
λi
)3 (

ki
)2

− 2λi
(

ki
)4

⩽ CK5 + C|ki
s(O

1)|K3

⩽ C|ki(O1)|5 + C|ki
s(O

1)||ki(O1)|3

⩽ C‖ki‖5
L∞(γi)

+ C‖ki
s‖L∞(γi)‖ki‖3

L∞(γi)
.

We estimate now C‖k‖5
L∞(γi)

+ C‖ks‖L∞(γi)‖k‖3
L∞(γi)

via the Gagliardo–Nirenberg in-
terpolation inequalities in Proposition 4.7. Letting u = ki, p = +∞, m = 2 and
n = 0, 1 in formula (4.5), we get

‖ki‖L∞(γi) ⩽ C‖ki
ss‖

1
4
L2(γi)

‖ki‖
3
4
L2(γi)

+
B

L
1
2
‖ki‖L2(γi) ⩽ C‖ki

ss‖
1
4
L2(γi)

+ CL

‖ki
s‖L∞(γi) ⩽ C‖ki

ss‖
3
4
L2(γi)

‖ki‖
1
4
L2(γi)

+
B

L
3
2
‖ki‖L2(γi) ⩽ C‖ki

ss‖
3
4
L2(γi)

+ CL ,

hence,

C‖ki‖5
L∞(γi)

+ C‖ki‖3
L∞(γi)

‖ki
s‖L∞(γi) ⩽ C‖ki

ss‖
5
4
L2(γi)

+ C‖ki
ss‖

3
2
L2(γi)

+ CL

⩽ ε‖ki
ss‖2

L2(γi)
+ CL,ε .

Thus, finally,

2(ks + λk)
3

∑
i=1

(
ki
)3

−
(

λi
)2

ki +
3

∑
i=1

(
λi
)3 (

ki
)2

− 2λi
(

ki
)4

⩽ ε‖ki
ss‖2

L2(γi)
+ CL,ε

⩽ ε‖kss‖2
L2 + CL,ε .

Coming back to computation (10.8), we have

∂t

(∫
St

k2
s ds − 2

2

∑
p=1

3

∑
i=1

λpi
(

kpi
)2 /

3
∣∣∣∣
at the 3–point Op

)
⩽ −2

∫
St

k2
ssds + C‖ks‖2

L2 + ε‖kss‖2
L2 + CL,ε

⩽ −2
∫

St
k2

ssds + C‖ks‖2
L2 + 2ε‖kss‖2

L2 − CL,ε‖ki‖3
L∞(γi)

+ CL,ε

⩽ CL,ε

(∫
St

k2
s ds − 2

2

∑
p=1

3

∑
i=1

λpi
(

kpi
)2 /

3
∣∣∣∣
at the 3–point Op

)
+ CL,ε ,

where we chose ε < 1.
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ByGronwall’s Lemma, it follows that ‖ks‖2
L2−2 ∑2

p=1 ∑3
i=1 λpi (kpi)2 /3

∣∣∣
at the 3–point Op

is uniformly bounded, for t ∈ [0, T), by a constant depending on L and its value
on the initial network S0. Then, applying Young inequality to estimate (10.2) of
Lemma 10.22, there holds

‖k‖3
L∞ ⩽ C + C‖k‖3/2

L2 ‖ks‖3/2
L2 ⩽ C + Cε‖k‖6

L2 + ε‖ks‖2
L2 ⩽ Cε + ε‖ks‖2

L2 ,

as ‖k‖L2 is uniformly bounded in [0, T). Choosing ε > 0 small enough, we conclude
that also ‖ks‖L2 is uniformly bounded in [0, T).

Proof of Proposition 10.21. By the hypotheses, we can assume that the sequence of
rescaled networks S

µi
−1/(2+δ)

converges in W2,2
loc , as i → ∞, to a standard cross (which

has zero curvature), for some δ > 0 as small as we want.
Arguing as in the proof of Lemma 9.1, by means of Lemma 8.24, we can also
assume that, for R > 0 large enough, the sequence of rescaled flows S

µi
t con-

verges smoothly and uniformly to the flow S∞
t , given by the four halflines, in(

B3R(0) \ BR(0)
)
× [−1/2, 0). Hence, there exists i0 ∈ N such that for every i ⩾ i0

the flow St in the annulus B3R/µi
(x0) \ BR/µi

(x0) has equibounded curvature, no
3–points and a uniform bound from below on the lengths of the four curves, for
t ∈ [T − µ−2

i /(2 + δ), T). Setting ti = T − µ−2
i /(2 + δ), we have then a se-

quence of times ti → T such that, when i ⩾ i0, the above conclusion holds for
the flow St in the annulus B3R

√
2(T−ti)

(x0) \ BR
√

2(T−ti)
(x0) and with t ∈ [ti, T),

we can thus introduce four “artificial” moving boundary points Pr(t) ∈ St with
|Pr(t) − x0| = 2R

√
2(T − ti), with r ∈ {1, 2, 3, 4} and t ∈ [ti, T), such that the

estimates (4.1) are satisfied, that is, the hypotheses about the end–points Pi(t) of
Lemmas 10.22, 10.23 and 10.24 hold.
As we the sequence of networks S

µi
−1/(2+δ)

converges in W2,2
loc to a limit network with

zero curvature, as i → ∞, we have

lim
i→∞

‖k̃‖L2(B3R(0)∩ S
µi
−1/(2+δ)

)
= 0 , that is,

∫
B3R(0)∩ S

µi
−1/(2+δ)

k̃2 dσ ⩽ εi ,

for a sequence εi → 0 as i → ∞. Rewriting this condition for the non–rescaled net-
works, we have ∫

B3R
√

2(T−ti)
(x0)∩Sti

k2 ds ⩽ εi√
2(T − ti)

.

Applying now Lemma 10.23 to the flow of networks St in the ball B2R
√

2(T−ti)
(x0) in

the time interval [ti, T), we have that ‖k‖L2(B2R
√

2(T−ti)
(x0)∩St)

is uniformly bounded,
up to time

Ti = ti + min
{

T, 1
/

8C
(
‖k‖2

L2(B2R
√

2(T−ti)
(x0)∩Sti )

+ 1
)2
}

.
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We want to see that actually Ti > T for i large enough, hence, ‖k‖L2(B2R(x0)∩St)
is

uniformly bounded for t ∈ [ti, T). If this is not true, we have

Ti = ti +
1

8C
(
‖k‖2

L2(B2R
√

2(T−ti)
(x0)∩Sti )

+ 1
)2

⩾ ti +
1

8C
(
εi/
√

2(T − ti) + 1
)2

= ti +
2(T − ti)

8C
(
εi +

√
2(T − ti)

)2

= T + (2(T − ti))

(
2

8C
(
εi +

√
2(T − ti)

)2 − 1
)

,

which is clearly larger than T, as εi → 0, when i → ∞.
Choosing then i1 ⩾ i0 large enough, since ‖k‖L2(B2R

√
2(T−ti1

)
(x0)∩ St)

is uniformly

bounded for all times t ∈ [ti1 , T) and the length of the four curves that connect the
junctionswith the “artificial” boundary points Pr(t) are bounded below by a uniform
constant, Lemma 10.24 applies, hence, thanks to Lemma 10.22, we have a uniform
bound on ‖k‖L∞(B2R

√
2(T−ti1

)
(x0)∩ St) for t ∈ [0, T).

As we proved Proposition 10.21, Proposition 10.19 follows. An obvious consequence
is that evolving trees do not develop this kind of singularity, hence their curvature
flow is smooth till a curve collapses with uniformly bounded curvature. Moreover
it is also easy to see that if no region collapses, the network is locally a tree around
every point of Ω, for t close enough to T, so Proposition 10.19 applies globally.

Corollary 10.25. — If M1 holds and S0 is a tree, the curvature of St is uniformly bounded
during the flow (hence we are in the case of Proposition 10.11 in the previous section).

Combining Propositions 10.17 and 10.19, we have the following local conclusion.

Theorem 10.26. — If M1 holds and St is a tree in a neighborhood of x0 ∈ Ω, for t close
enough to T, the curvature is uniformly locally bounded and either the flow St is locally smooth
or, up to reparametrization proportional to arclength, converge in C1 locally around x0, as
t → T, to some degenerate regular network ŜT whose non–degenerate curves form a C2

network ST with a possibly non–regular multi–point which is among the ones described in
Proposition 10.11, coming from the collapse of single “isolated” curve of St.
Moreover, the curves of ST , in a neighborhood of x0, are smooth outside the multi–point.
Obviously, the conclusion holds when S0 is a tree.
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Proof. We only have to show that the curves of ST are actually C2. By means of
Lemma 10.24, ‖ks‖L2 is locally uniformly bounded on [0, T), which implies that the
convergence of the non–collapsing curves of St to ST , as t → T, is actually in C2

loc and
we are done. The smooth convergence outside the multi–points then follows by the
interior estimates of Ecker–Huisken in [30].

Remark 10.27. — We expect that, by extending the estimates of Lemmas 10.22, 10.23
and 10.24 to the higher order derivatives of the curvature, one should actually get the
smoothness of the curves of ST and of the convergence of the non–collapsing curves
of St to ST . Moreover, the collapsing curve should converges in C∞ to a constant map,
hence also the local convergence of St to ŜT would be actually smooth.

Corollary 10.28. — If M1 holds, the curvature is uniformly bounded along the flow for
t ∈ [0, T), if and only if no region collapses as t → T. Equivalently, in every neighborhood
St is a tree, for t close enough to T.

Proof. By Lemma 10.14 when the curvature is bounded, regions cannot collapse.
Viceversa, if no region collapses the network is locally a tree around every point
of Ω, hence by compactness and Proposition 10.19, the curvature is uniformly
bounded.

Remark 10.29. — This corollary holds also locally.

Corollary 10.30. — If M1 holds and no region collapses as t → T, the C2 network ST has
only multi–points like the ones described in Proposition 10.11, coming from the collapse of a
family of single “isolated” curves of St.

Another consequence of the previous analysis is the existence of Type 0 singularities
(see Remark 10.18).

Proposition 10.31. — If M1 holds, Type 0 singularities actually exist.

Proof. Let us consider an initial (regular) smooth network S0, which is centrally sym-
metric, in the convex domain Ω (also centrally symmetric) as in the following figure:

Ω

S0

M

Figure 10.3: The networks S0 and M.
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where in gray we drew the minimal network M connecting the four end–points of S0
on the boundary of Ω. Assuming that Ω is very “long and thin”, it can be shown that
M is the only “stationary” (regular andwith zero curvature) network connecting the
four end–points of S0.
ByCorollary 10.25, during the smooth curvature flow St of S0 (given by Theorem 3.29,
maintaining the central symmetry) the curvature is bounded and either a singularity
develops or the flow St is smooth for every positive time. Then, it is easy to guess and
actually it will be a consequence of Proposition 13.6 that, as t → +∞, the network St
converges in C1 to M, which is a contradiction because of their different structures.
Hence, at some time T < +∞ a Type 0 singularity must develop and the only possi-
bility is the collapse of the “central” curve of St, by its symmetry.

Bounded curvature is not actually the case if some loops are present in St, indeed
a region bounded by less than six curves possibly collapses, then in such case the
curvature cannot stay bounded, by Corollary 10.28.

t → T

St ST

Figure 10.4: Homothetic collapse of a (symmetric) pentagonal region of St
(five–ray star).

Determining what asymptotically happens in detail in the general case can be quite
complicated because of the difficulty in classifying all the regular shrinkers with
loops. Anyway, some special cases with “few” triple junctions can be fully under-
stood. We will show an example of this analysis in Chapter 15, considering net-
works with at most two triple junctions. We underline that the interest in these very
special cases is because of the multiplicity–one conjecture holds for such networks
(Corollary 14.10).
However, even if we cannot describe all the possible shrinkers S∞

−1/2 or S̃∞, arising
respectively from the parabolic or Huisken’s rescaling procedure at the singular time
T < +∞, we can get enough information in order to restart the flow by means of
Theorem 11.9 in the next section (actually by its extension discussed in Remark 11.19).
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The point is to connect the information on the possible blow–up limit networks S̃∞ to
the existence and the structure of a network ST which is the limit of St, as t → T.
We recall that assuming the multiplicity–one conjecture, by Lemma 10.8, there exist
the limits xi = limt→T Oi(t), for i ∈ {1, 2, . . . , m} and correspond to the (finitely
many) points in Ω where Θ̂(x0) > 1 and to the end–points of St such that the curve
getting there collapses as t → T.
We first discuss what happens around an end–point Pr of the network St if xi = Pr for
some (possiblymore thanone) i ∈ {1, 2, . . . , m}. As before,we consider thenetworkHr

t ,
obtained by the union of St with its “reflection” with respect to the point Pr (see the end
of Section 8.2). If Ω is strictly convex, by Proposition 8.13, every blow–up limit network
H̃r

∞, obtained rescaling around the end–point Pr, must be symmetric and contained in
the union of two cones for the origin of R2. Then, by an argument similar to the one
in the proof of Lemma 8.11, either H̃r

∞ is a tree, or it contains a loop around the origin,
which is clearly impossible by such property. Hence, we conclude that H̃r

∞ is a tree and
the same the blow–up limit network S̃∞, which means that we are in the previous case,
considered in Proposition 10.19, in particular, the curvature is locally bounded.
Then, by Proposition 10.17, Theorem 10.26 and Remark 10.27, we have a complete
description of the behavior of St locally around its end–point, as t → T.

Theorem 10.32. — IfM1 holds and the open set Ω is strictly convex, then in a neighborhood
of its fixed end–points on ∂Ω, the evolving regular network St is a tree, for t close enough to T
and its curvature is uniformly locally bounded during the flow. Hence, around any end–point
Pr either the flow is smooth, or the curve of St getting to Pr collapses and the network St locally
converges in C∞, as t → T, to two concurring curves at such end–point forming an angle of
120 degrees, as in the right side of Figure 10.1.

Remark 10.33. — We remark that the hypothesis of strict convexity of Ω can actually
be weakened by asking that Ω is convex and that there do not exist three aligned
end–points of the initial network S0 on ∂Ω.

We now deal with the situation of a point x0 = limt→T Oi(t), for some i∈{1, 2, . . . , m},
with x0 ∈ Ω. Assuming that around x0 ∈ Ω the network is not definitively a tree
for t close enough to T (which would imply that the curvature is locally bounded, by
Proposition 10.19), there must be at least one bounded region of St collapsing to x0
at the singular time. By the estimates in Section 8.2, then the area A(t) of any such
region must satisfy A(t) = C(T − t), for some constant C depending on the num-
ber of its edges. Hence, all the rescaled networks S̃x0,t must contain the rescalings
of such regions that will have a respective constant area. These rescaled regions can-
not “go all to infinity” and disappear in the blow–up limit network S̃∞, along any
converging sequence S̃x0,tj → S̃∞, otherwise Lemma 8.10 would apply and we could
repeat the argument of the proof of Proposition 10.19, concluding that the curvature
is uniformly bounded around x0.
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We now suppose that the full rescaled family of networks S̃x0,t converges to S̃∞, for
instance, if the uniqueness of blow–up assumptionU in Problem 8.25, that we recall here
below for the reader’s convenience, holds (see also Remark 8.26):

U: In Proposition 8.20, the full family of rescaled regular networks S̃x0,t converges
in C1

loc to the limit degenerate regular shrinker S̃∞, as t → +∞.
Equivalently, the full family of parabolically rescaled curvature flows S

µ
t con-

verges to the degenerate regular self–similarly shrinking flow S∞
t , as µ → +∞,

in Proposition 8.17.

Then, we can separate S̃∞ in two parts:

— a compact subnetwork M̃∞ of S̃∞, given by the union of the cores and the
bounded curves (which are pieces of Abresch–Langer curves or straight seg-
ments passing by the origin of R2),

— the union Ñ∞ = S̃∞ \ M̃∞ of the unbounded curves of S̃∞, which must be
halflines “pointing” towards the origin (but not necessarily containing it), by
Remark 8.9.

S̃∞

M̃∞

O

Figure 10.5: The subnetwork M̃∞ (in gray) of a 4–symmetric regular
shrinker S̃∞ (four–ray star).

Then, by rescaling–back (dynamically contracting) the flow S̃x0,t → S̃∞, by the
uniqueness assumption, the subnetwork Mt of St corresponding to the compact sub-
network of S̃x0,t converging to M̃∞, is contained in the ball BC

√
2(T−t)/2(x0) for every

t ∈ [0, T), for some constant C independent of t (dependent on M̃∞). In particular,
Mt completely collapses to the point x0, “disappearing” in the limit, as t → T.
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We want now to describe the local behavior of the rest Nt of the network St (corre-
sponding to the union of the curves of S̃x0,t neither collapsing, nor entirely going to
infinity, converging to the halflines of S̃∞), around the point x0, as t → T.

Remark 10.34. — Notice that, inspecting the proof of Proposition 10.11, it is easy to
see that the uniqueness assumption U holds at every point where the curvature is
locally uniformly bounded. In particular, it holds in general if the network is a tree,
by Corollary 10.25.

Proposition 10.35. — If M1 and the above uniqueness assumption U of the blow–up limit
shrinker S̃∞ hold, then, as t → T, the family γi

t of curves of Nt converges in C1(U) and in
C∞(U \ {x0}), where U is a neighborhood of x0, as t → T, to an embedded, possibly non–
regular network ST , composed of C1 curves γi

T concurring at x0.
The directions of the halflines of S̃∞ coincide with the inner unit tangent vectors of the limit
curves γi

T at x0, hence, these latter are all distinct.
Moreover, the curvature of every curve γi

T is of order o(1/r), as r → 0, where r is the distance
from the multi–point x0 ∈ ST .

Proof. Since rescaling the evolving networks St the inner unit tangent vectors at the
end–points of the curves in Nt do not change and Ñx0,t → Ñ∞, the inner unit tangent
vectors of the set of curves γi

t converge to the unit vectors generating the halflines of
S̃∞. More precisely, if the sequence of rescalings γ̃i

x0,t of a curve γi
t ∈ Nt converges

in C1
loc to a halfline Hi ⊆ Ñ∞, the inner unit tangent vectors at the end–point of γi

t
converge to the unit vector generating Hi, as t → T.
As, by Lemma 10.8 and the collapse of the subnetwork Mt, there is a neighborhood
U of x0, such that for every ρ > 0 in U \ Bρ(x0), for t close enough to T there are no
triple junctions, hence, by Lemma 8.24, the networks St converge in C∞

loc(U \ {x0}) to
a smooth network ST composed of smooth curves γi

T with an end–point at x0.
We notice that the smoothness of ST and of γi

T holds in U \ {x0}, not in the whole U.
We want to show that these curves are actually C1 in U, that is, till the point x0 and
that their curvature is of order o(1/r), where r is the distance from x0.
We consider one of the curves of Nt (dropping the superscript by simplicity, from
now on) γt, which converges (possibly, after reparametrization), as t → T, to a limit
C0 curve γT and such convergence is also in C∞

loc(U \ {x0}).
As the full rescaled sequence S̃t converges to the blow–up limit S̃∞, as t → +∞,
also the full sequence of parabolically rescaled flows S

µ
t converges in C1

loc for every
t ∈ (−∞, 0), as µ → +∞, to the limit self–similarly shrinking flow S∞

t =
√
−2t S̃∞

(see Remark 7.4). Then, the curves γ
µ
t , which are the parabolic rescalings of the

curves γt converge to the halfline H, as µ → +∞. We choose t0 < 0 and µ0 > 0
such that the parabolic rescalings M

µ
t of the subnetwork Mt of St are contained in

B1/2(0), for every µ > µ0 and t ∈ (t0, 0). Then, the rescaled curves γ
µ
t smoothly con-

verge (by Lemma 8.24), as µ → +∞, to the halfline H (which has zero curvature) in
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B4(0) \ B1(0), for every t ∈ [t0, 0). Moreover, repeating the above argument, we have
that, as t → 0, the curves γ

µ
t locally smoothly converge in B4(0) \ {0} to some limit

curves γ
µ
0 , smooth in B3(0) \ {0}, for every fixed µ > µ0.

We are now going to apply the following special case of the pseudolocality theorem for
mean curvature flow (see [58, Theorem 1.5]) and the subsequent remark.

Theorem 10.36. — Let γt, for t ∈ [0, T), be a smooth curvature flow of an embedded curve
in R2 with bounded length ratios by a constant D (see Definition 8.15) and let

Qr(x0, y0) = {(x, y) ∈ R2 | |x − x0| < r, |y − y0| < r} .

Then, for any ε > 0, there exists η ∈ (0, ε) and δ ∈ (0, 1), depending only on ε and D,
such that if (x0, y0) ∈ γ0 and γ0 ∩ Q1(x0, y0) can be written as the graph of a function
u : (x0 − 1, x0 + 1) → R with Lipschitz constant less than η, then

γt ∩ Qδ(x0, y0), for every t ∈ [0, δ2) ∩ [0, T),

is a graph over (x0 − δ, x0 + δ) of a function with Lipschitz constant less than ε and “height”
bounded by εδ.

Remark 10.37. — Then, the local estimates of Ecker and Huisken [30] imply that, for
every m > 0 there is a constant σ = σ(δ, ε, m) > 0 and a constant η = η(δ, ε, m) > 0
such that if the curvature of γ0 ∩ Qδ(x0, y0) is bounded by σ, then the curvature of
γt ∩ Qδ/2(x0, y0) is bounded by m, for every t ∈ [0, η) ∩ [0, T).

By a rotation, we can assume that H = {(x, 0) | x ⩾ a} and let H = {(x, 0) | x ⩾ 0}.
Taken any ε > 0, let η and δ be given by this theorem, we consider t1 ∈ (t0, 0) such
that t1 + δ2/8 > 0, then if µ is large enough, say larger than some µ1 > 0, the curve
γ

µ
t1

in B3(0) \ B1(0) is a graph of a function u over the interval [1, 3]×{0} ⊆ H (with a
small “error” at the borders), with gradient smaller than η > 0. Hence, its evolution
in the smaller annulus B2+δ(0) \ B2−δ(0) is still a graph over H of a function with
gradient smaller than ε, for every t ∈ [t1, min{t1 + δ2, 0}), hence for every t ∈ [t1, 0),
by the assumption on t1. Notice that, it follows that also γ

µ
0 in B2+δ(0) \ B2−δ(0) is a

graph of a function over H with gradient smaller than ε, when µ > µ1.
Rescaling back, since the C1–norm is scaling invariant, we see that γt, for
t ∈ [T + µ−2t1, T], can be written as a graph with C1–norm less than ε over x0 + H in
B(2+δ)/µ(x0) \ B(2−δ)/µ(x0), for every µ > µ1. Hence, this conclusion holds for every
pair (γt, t) in⋃

µ>µ2

(
B(2+δ)/µ(x0) \ B(2−δ)/µ(x0)

)
× [T + µ−2t1, T] ⊆ R2 × [0, T] ,

for every µ2 ⩾ µ1 and this union contains the set

A =B(2+δ)/µ2
(x0)×[T+µ−2

2 t1,T] \
{
(x,t)∈R2×[0,T]

∣∣∣ |x−x0|⩽
2−δ√
−2t1

√
2(T−t)

}
.
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Choosing now µ2 ⩾ µ1 large enough, we know that there exists some t2 > t1 such
that for every t > t2, the rescaled curves γ

µ2
t can be written as graphs with C1–norm

less than ε over H in the ball centered at the origin with radius 2 2−δ√
−2t1

. That is, for
t ∈ [T + µ−2

2 t2, T], the curve γt can be written as a graph with C1–norm less than
ε over x0 + H in the ball of center x0 and radius 2 2−δ√

−2t1

√
2(T − t), hence, for every

(γt, t) in

B =
{
(x, t) ∈ R2 × [T + µ−2

2 t2, T)
∣∣∣ |x − x0| < 2

2 − δ√
−2t1

√
2(T − t)

}
,

The union of the sets A and B clearly contains the set

B(2+δ)/µ2
(x0)× [T + µ−2

2 t2, T] \ {(x0, T)
}

,

hence, in other words, for every ε > 0 there exists a radius Rε > 0 and a time tε < T
such that the curve γt in the ball BRε(x0) can be written as a graph with C1–norm less
than ε, for every t ∈ [tε, T). Moreover, this also holds for the limit curve γT on the
union ⋃

µ>µ2

(
B(2+δ)/µ(x0) \ B(2−δ)/µ(x0)

)
= B(2+δ)/µ2

(x0) \ {x0} .

This fact, recalling that the inner unit tangent vector of the curve γt at its end–point
(the one going to x0) converges to the direction of H, as t → T, clearly shows that,
locally around x0, we can write γT as a graph of a function over x0 + H whose C1–
norm decays like o(1), as the distance from x0 goes to zero.
In particular, we conclude that all the curves γi

T , hence the limit network ST , are of
class C1 and that all the sequences of curves γi

t converge in C1 to γi
T (possibly after

reparametrization in arclength).
Arguing similarly for the curvature bymeans of Remark 10.37, we have that the curva-
ture of the curve γ

µ
0 in B2+δ/2(0) \ B2−δ/2(0) is smaller than any m > 0, if we choose

µ large enough, say µ > µ3 ⩾ µ2. It follows, rescaling back, that

µ−2 sup
ST∩B(2+δ/2)/µ(x0)\B(2−δ/2)/µ(x0)

k2 < m ,

for every µ > µ3. This implies that the curvature of ST is of order o(1/r), as r → 0,
where r is the distance from the multi–point x0 ∈ ST .
Finally, ST cannot have two concurring curve at a multi–point with the same unit
tangent, since this would imply that the limit shrinker S̃∞ had halflines ofmultiplicity
larger than one.

It follows by this proposition that the networks St converge in C1(U) to a degenerate
regular network ŜT having ST as non–collapsed part, with underlying graph homeo-
morphic to St and core given by the collapsing subnetwork Mt.
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Remark 10.38. — Notice that the limit Gaussian density Θ̂(x0) = Θ̂(x0, T) (see
Definition 7.3) at x0 (and time T) of the flow St is the Gaussian density of the blow–
up limit shrinker S̃∞ = S∞

−1/2 and can be different from the number of curves of ST
concurring at x0, divided by two. This does not happen when the network St is a tree
in a neighborhood of x0, for t close enough to T and the singularity is given by the
collapsing of a single curve producing a 4–point with angles of 60/120 degrees be-
tween the four concurring curves, as described in Proposition 10.11 (after applying
Proposition 10.19), in such case the blow–up limit shrinker is a standard cross and
the limit Gaussian density Θ̂(x0, T) is clearly equal to two.

We actually expect that the curvature of the curves in Nt and of ST is bounded, not
only of order o(1/r), close to the non–regular multi–points.

Open Problem 10.39. —

— The curvature of ST is bounded?

— The curvature of the subnetwork Nt is locally uniformly bounded around x0, as t → T?

We can finally describe the local behavior of the whole network St, as t → T, around
a point x0 ∈ Ω where St is not a tree for t close enough to T.

Theorem 10.40. — Let xi = limt→T Oi(t) ∈ Ω, for i ∈ {1, 2, . . . , m}, and let x0 one of
such points such that x0 ∈ Ω and the blow–up limit at x0, as t → T, is not a line, a standard
triod or a standard cross. Then, under the uniqueness assumptionU and the multiplicity–one
conjectureM1, there exists a C1, possibly non–regular network ST in a neighborhood U of x0,
which is smooth in U \ {x0} and whose curvature is of order o(1/r), as r → 0, where r is the
distance from x0, such that

Nt → ST in C1
loc(U) and St → ST in C∞

loc(U \ {x0}) ,

where Nt is the subnetwork of the non–collapsing curves of St.
Moreover, at themulti–point x0 of ST any two concurring curves cannot have the same exterior
unit tangent vectors.
The network ST is the non–collapsed part of a C1 degenerate regular network ŜT in U with
underlying graph homeomorphic to St and core given by the collapsed subnetwork Mt, which
is the C1–limit of St, as t → T.

Remark 10.41. — It is easy to see that, thanks to the uniformly bounded length ra-
tios of St, the one–dimensionalHausdorffmeasures associated to St weakly–converge
(as measures) to the one–dimensional Hausdorff measure associated to ST (see
Remark 8.5).
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10.4. Continuing the flow

We summarize in the following two theorems the behavior of the evolving regu-
lar network at a singular time, worked out in the previous sections, assuming the
multiplicity–one conjecture 10.1 and the uniqueness assumption 8.25.

Theorem 10.42. — IfM1 is true and the uniqueness assumptionU holds, then the (possibly
simultaneous) singularities, as t → T, of the curvature flow of a regular network St in a
strictly convex, open subset Ω ⊆ R2 are locally given by:

— the “isolated” collapse with bounded curvature of a “boundary curve” getting to a fixed
end–point on ∂Ω (regions cannot collapse to boundary point); indeed, around any end–
point Pr either the flow is smooth, or the curve of St getting to Pr collapses letting two
concurring curves forming an angle of 120 degrees at such end–point;

— the collapse with bounded curvature of an ”isolated” curve with the formation of a reg-
ular 4–point, locally around a point x0 ∈ Ω;

— the collapse with unbounded curvature locally around a point x0 ∈ Ω of a group of
bounded regions (each one of them with less than six edges), producing a possibly non–
regular multi–point.

If {y1, y2, . . . , yn, z1, z2, . . . , zm} are the points of Ω where such singularities occur (which
are a subset of the limits, as t → T, of the 3–points of St), where we denoted with yi the “cross”
or “boundary” singularities and with zj the other singularities, then there exists a possibly
non–regular C1 limit network ST such that:

— the network St converges locally in C1 to ŜT in Ω, as t → T, where ŜT is a degenerate
regular network having ST as non–collapsed part, moreover, the network St converges
locally smoothly to ST in Ω \ {z1, z2, . . . , zm});

— the non–collapsing subnetwork Nt of St converges locally in C1 to ST in Ω, as t → T,
moreover, the convergence is locally smooth in Ω \ {z1, z2, . . . , zm});

— the network ST is smooth in Ω \ {z1, z2, . . . , zm});

— every two concurring curves at a multi–point of ST have distinct exterior unit tangent
vectors;

— the curvature of ST is of order o(1/r), as r → 0, where r is the distance from the set of
points {zi}.

The case of a tree is special (for instance, the uniqueness assumptionU is not needed
in this case).
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Theorem 10.43. — IfM1 is true and the evolving regular network St is a tree (or no regions
are collapsing, as t → T), then the curvature is uniformly bounded and the only possible
singularities, as t → T, are given by the collapses of “isolated” curves in Ω, producing a
regular 4–point or the collapse of some “boundary curves” getting to the fixed end–points of
the network, letting two concurring curves forming at such end–point an angle of 120 degrees.
The network St converges locally smoothly with uniformly bounded curvature to a degenerate
regular network ŜT in Ω, as t → T, having a network ST as non–collapsed part, composed of
smooth curves with distinct exterior unit tangents at the multi–points. Such multi–points can
be only regular 3–points and regular 4–points in Ω and end–points on ∂Ω with two concurring
curves forming an angle of 120 degrees between their exterior unit tangents. Clearly. the non–
collapsing subnetwork of St converges locally smoothly to ST , as t → T.

The next step, after this description, is to understand how the flow can continue after
a singular time. There are clear situations where the flow simply ends, for instance if
all the network collapses to a single point, like a circle shrinks down to a point in the
evolution of a closed embedded single curve, see for instance the following example.

O1

O2

O3

O4

O1 = O2 = O3 = O4

t → T

St ST

Figure 10.6: AMercedes–Benz shrinker (see the Appendix) collapsing to a single point.

In other situations how the flow should continue is easy to guess or define. For instance,
the case when a part of the network collapses forming a 2–point, that can be also seen
simply as an interior corner point of a single curve (see the following figure).

O2
γ2

γ1

γ3

O1 O1 = O2

γ3

t → T

St ST

Figure 10.7: Collapse of both curves γ1, γ2 and the region they enclose to the
point O1 = O2, leaving a closed curve γ3, possibly with a corner at O1 = O2.
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Here, we can restart the flow by means of the work of Angenent [6] where the evolu-
tion of curves with corners is treated (see Remark 2.16). In general, one would need
an analogue of the short–time existence Theorem 5.8 for networks with 2–points or
with curves with corners. This will be actually a particular case of Theorem 11.9 in
the next section (see the beginning of Section 11.4).
Instead, a situation that really needs a “decision” about whether and how the flow
should continue after the singularity is depicted in the following figures.

Pr Pr

t → T

St ST

Figure 10.8: A limit networkwith two curves arriving at the same end–point
on ∂Ω.

P1

γ1 γ2O1
P1 = O1

γ2

t → T

St ST

Figure 10.9: Collapse of the curve γ1 leaving a closed curve γ2 with an angle
of 120 degrees at an end–point.

One can decide that the flow stops at t = T or that the curves become extremal curves
of a newnetwork thatmust have, for every t > T, a fixed end in the end–point Pr (this
would require some analogs of the short–time existence Theorem 5.8 for this class of
non–regular networks, which are actually possible to be worked out). Anyway, the
subsequent analysis becomes more troublesome because of such concurrency at the
same end–point, indeed, it should be allowed that, at some time t > T, a new curve
and a new 3–point possibly “emerges” from such end–point (it would be needed a
“boundary” extension of Theorem 11.9 in the next section).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



160 CHAPTER 10. THE BEHAVIOR OF THE FLOW AT A SINGULAR TIME

Another situation that also needs a decision, which in this case is easier, is described
in the following figures.

O1 O2

γ1
γ2

γ3

O2O1

γ2
γ1

t → T

St ST

Figure 10.10: Collapse of the curves γ3 and the region enclosed to the point
O3 leaving a curve γ2 with a 1–point as an end–point.

P1
γ1

γ2O1
P1

γ1

O1

t → T

St ST

Figure 10.11: Collapse of the curves γ2 and the region enclosed to the point
O1 leaving a curve γ1 with a 1–point as an end–point.

If the limit network ST contains a curve (or curves) which ends in a 1–point, it is actu-
ally natural to impose that such curve vanishes for every future time, so considering
only the evolution of the network of the rest of the network ST according to the above
discussion (cutting away such a curve will produce a 2–point or the empty set, in the
figures above, for instance).

Theorem 11.9 in the next section will give a way to restart the flow in the “nice” sin-
gularity situation described in Theorem 10.43, when the curvature remains bounded
and a single curve collapses to an interior point of Ω forming a non–regular network
with a regular 4–point..
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t → T

St ST

O1 = O2

O1

O2
γ

Figure 10.12: A limit “nice” collapse of a single curve γ producing a non–
regular network ST .

Finally if we are in the situation of a non–regular limit network ST described by
Theorem 10.42, after the collapse of a region of St, as t → T (see for instance the
following figures), in order to restart the flow one will need either an extension of
Theorem 11.9 (mentioned in Remark 11.19) or an improvement of Proposition 10.35
(the curvature of the non–degenerate limit curves is bounded).

t → T

St ST

t → T

St ST

Figure 10.13: Less “nice” examples of collapse and convergence to non–
regular networks.
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We conclude this chapter by discussing the (conjectural) “generic” situation of singu-
larity formation, in the sense that it should happen for a dense set of initial networks.
By numerical evidence (computing the lowest relevant eigenvalue of the Jacobi–field
operator of the candidates – Dominic Descombes and Tom Ilmanen, personal commu-
nication) the dynamically stable shrinkers (meaning that “perturbing” the flow, the
blow–up limit network remains the same) should be only the line, the unit circle, the
standard triod, the standard cross, the Brakke spoon, the lens and the “three–ray star”
(see the figure below).

O

Figure 10.14: A “three–ray star” regular shrinker.

Conjecture 10.44. — The “generic” singularities of the curvature flow of a network are
(locally) asymptotically described by one of the above shrinkers.

We remark that if rescaling around a singular point x0 we get one of the listed above
shrinkers, the limit network ST is locally quite “nice”. If the shrinker is a line or a
standard triod, there is no singularity. If it is a circle, it means that the flow ends
at the singularity. If it is a Brakke spoon, locally the flow produces a curve with an
end–point in Ω (see Figures 10.10 and 10.11), which we can reasonably “assume” it
disappears at subsequent times and we have to deal with an empty network or with
a curve containing an angle (as in Figure 10.7) that has a “natural” unique evolution,
immediately smooth. In the case of a standard cross, we can deal with the “new”
4–point by means of Theorem 11.9. If we get a lens, ST will be (locally) given by two
C1 curves (smooth outside x0) concurring at the singular point without forming an
angle (even if their curvature could be unbounded, getting to x0, if Problem 10.39 has
a negative answer). Finally, if the shrinker is a three–ray star, the limit network ST
is locally a triod at x0 with angles of 120 degrees, by Proposition 10.35 (also, in this
case, the curvature could be unbounded getting close to x0). Notice that in these last
two cases, even if apparently “nice”, we have to use Theorem 11.9 (and possibly its
extension mentioned in Remark 11.19) in order to restart the flow, since the curves
are not necessarily C2 up to x0.
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However, we remark that in all these cases (and in particular in the most “delicate”
ones: cross, lens and three–ray star, when we need to apply Theorem 11.9, or its
extension mentioned in Remark 11.19) the associated limit network ST (if not empty
and “cutting” away a curve if it ends in a 1–point in Ω) has either a regular 4–point
(with angles of 120/60 degrees) or a regular 3–point, or a 2–point with no angle. In
particular, the cone generated by inner unit tangent vectors of the concurring curves
at such point form, respectively, is either a standard cross, a regular triod, or a line.
Since, as wewill see in the next section, the curvature flowproduced by Theorem 11.9
is associated with a regular self–similarly expanding network (see Definition 11.1)
originating from such cone, which in these special cases it is unique (see the end of
Section 11.1 and Problems 11.31, 11.32, 11.33), it is natural to expect that also the flow
produced by such theorem is unique, which would give a unique “canonical” way to
continue the flow in the (conjectural) generic situation.
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CHAPTER 11

SHORT TIME EXISTENCE III – NON–REGULAR NETWORKS

In this chapter we consider the problem of defining and finding a curvature flow (as
smooth as possible) starting from an initial possibly non–regular network, that is,
having multiple points of order greater than three or triple junctions where the 120
degrees condition is not satisfied. Aswe have seen in the previous sections, this is nat-
urally related to the “restarting” of the flowafter a singularity. To dealwith such prob-
lem, we clearly need a definition of solution slightly different from Definitions 2.11
and 2.12 in a positive time interval [0, T), asking anyway that Definition 2.7 still holds
for every positive time.
We are going to present two short–time existence results for general networks, the
first by T. Ilmanen, A. Neves and the last author in [58], Theorem 11.9, the second
by J. Lira, M. Mazzeo, M. Saez and the third author in [70], Theorem 11.26. Both
theorems are based on the existence and the properties of the self–similarly expanding
networks and provide a “nice”motion by curvature if the initial datum belongs to the
class of non–regular networks with bounded curvature, such that at every multiple
point the exterior unit tangent vectors are mutually distinct. Notice that the second
assumption is not restrictive for the “restarting” problem, taking into account the
conclusions of Theorems 10.42 and 10.43.

11.1. Self–similarly expanding networks
Definition 11.1. — A regular C2 open network E is called a regular expander if at every
point x ∈ E there holds

(11.1) k = x⊥ .

This relation is called the expanders equation.

The name comes from the fact that if E is a regular expander, then Et =
√

2t E de-
scribes a self–similarly expanding curvature flow of regular networks in (0,+∞), with
E = E1/2. Viceversa, if Et is a self–similarly expanding curvature flow of regular
networks in the time interval (0,+∞), then E1/2 is a regular expander, that is, E1/2
satisfies equation (11.1).
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O O
O

Figure 11.1: Examples of tree–like regular expanders with 3, 4, 5 asymptotic
halflines (in gray).

By studying the ODE satisfied along each curve, one can easily show that an ex-
pander cannot be compact, all its curves are smooth and each noncompact curve
must be asymptotic to a halfline. Moreover, it is trivial that the family of the asymp-
totic halflines of the open networks of a self–similarly expanding curvature flow Et
is the same for all t ∈ (0,+∞) and, by a direct maximum principle argument, one
can prove exponential decay of the functions representing the network as graphs on
such halflines, outside a large ball.

Lemma 11.2. — Let P be a finite union of distinct halflines meeting at the origin and E a
regular expander, such that each noncompact curve of E is asymptotic in Hausdorff distance to
one of the halflines of P. Then, there exists an r0 > 0 large enough such that each noncompact
curve σ of E corresponds to a connected component of E \ Br0(0) and can be parametrized as

σ(`) = `eiω + u(`)ei(ω+π/2) for ` ⩾ r0.

where
{
`eiω | ` ⩾ 0

}
is a halfline of P and lim`→+∞ u(`) = 0. Moreover, the decay of u is

given by

|u(`)| ⩽ C0e−`2/2, |u′(`)| ⩽ C1`
−1e−`2/2, |u′′(`)| ⩽ C2e−`2/2

and
|u′′′(`)| ⩽ C3`e−`2/2, |u′′′′(`)| ⩽ C4`

2e−`2/2,

where each constant Ci depends only on r0, u(r0) and u′(r0).

Then, it is easy to see that for every smooth self–similarly expanding curvature flow
Et, letting P be the network given by the finite union of the distinct (common) asymp-
totic halflines of Et, meeting at the origin, we have Et → P, as t → 0, in C∞

loc(R
2 \ {0}).

We say that P is the generator of the flow Et or that Et is a (possibly not unique) cur-
vature flow of P in the time interval [0,+∞).
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Conversely, if we consider a network P given by a finite number of distinct halflines
meeting at the origin and we assume that we have a smooth curvature flow St for
t ∈ (0, T), such that St → P in C∞

loc(R
2 \ {0}), as t → 0, then the parabolically

rescaled flows
S

µ
t = µ Sµ−2t

also satisfy S
µ
t → P, as t → 0, for any µ > 0, since P is invariant under rescalings.

Thus, supposing that the flow St is unique in some “appropriate class” with initial
condition P, we obtain that T = +∞ and St = S

µ
t , for any µ, t > 0. This is like to say

that St =
√

2t S1/2, that is, St is a self–similarly expanding curvature flow of regular
networks, for t ∈ (0,+∞) and P is its generator. As we said, the family of distinct
(common) asymptotic halflines of all St coincides with the family of halflines of P.

Remark 11.3. — Notice that the generator of a self–similarly expanding curvature flow
of networks is uniquely defined, while, for a network P composed of a finite number of
halflines for the origin, there could be several self–similarly expanding curvature flows
of regular networks having P as a generator, as in the following figure.

O
O

Figure 11.2: An example of two different tree–like regular expanders (not in
the same “topological class” – see below)with the same asymptotic halflines
(in gray).

Given P =
⋃n

j=1 Pj, where Pj are halflines from the origin, in [96] it was shown that
for n = 3 there exists a unique tree–like, regular expander E asymptotic to P (if P is
a standard triod such an expander E is P itself), in the case n > 3 the existence of
such tree–like, connected, regular expanders was shown by Mazzeo–Saez [83]. This
result is based on the following simple lemma.
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Lemma 11.4. — A regular expander is a critical point of the length functional with respect
to the negatively curved metric

g = e|x|
2(

dx2
1 + dx2

2
)

.

Proof. See [83, Proposition 2.3] or [58, Lemma 4.1].

To be precise, such a network is a stable critical point of the length functional in (R2, g)
(where, as usual, it suffices to look at the length of the networks in any large ball
BR(0)).
The geodesic arcs and rays for the metric g are qualitatively similar to the geodesics
in the hyperbolic space, as one can expect, since the curvature of g is everywhere
negative. For instance, if Pi and P′

i are any two halflines emanating from the origin,
then there is a unique complete geodesic for the metric g which is asymptotic to these
halflines along its two ends. A way to see this is to consider the “geodesic compacti-
fication” of (R2, g) as a closed ball B. A limiting direction (i.e., the asymptotic limit
of any halfline Pi) then corresponds to a point qi ∈ ∂B. Thus, any P =

⋃n
j=1 Pj is

uniquely determined by the choice of n distinct points q1, . . . , qn ∈ ∂B.
We remind the reader that, given a collection of points q1, . . . , qn a solution of the so
called Steiner problem in (R2, g) is a connected set that contains the points q1, . . . , qn
andminimize the length functional (with respect to themetric g). One can prove that
for any collection of points q1, . . . , qn there exists a solution to the Steiner problem and
it is a “geodesic” and regular network. In particular, a minimizer of the Steiner prob-
lem is an expander.
This observation leads to the following result of Mazzeo–Saez [83, Main Theorem].

Proposition 11.5. — Let P =
⋃n

j=1 Pj be a set of halflines from the origin in R2 and
q1, . . . , qn the corresponding points (listed in cyclic order) on ∂B, as above. Then, the set of
expanding self–similar solutions of the network flow with initial datum P is in one–to–one
correspondence with the set of (possibly disconnected) regular networks on B with end–points
{q1, . . . , qn}, whose arcs are geodesics for the metric g.
Moreover, for each choice of P =

⋃n
j=1 Pj there exists at least one self–similar expanding

solution whose non–compact branches are asymptotic to the halflines Pj.

Another key fact is that two regular expanders with the same “topological structure”
and which are asymptotic to the same family of halflines, have to be identical.

Definition 11.6. — We say that two regular expanders E0 and E1 are asymptotic one to
each other if their ends are asymptotic to the same halflines.
We say that two regular expanders E0 and E1 are in the same topological class, if there is a
smooth family of maps

Fθ : E0 → R2, 0 ⩽ θ ⩽ 1
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such that F0 is the identity, F1(E0) = E1, the distance between any two triple junctions of
Fθ(E0) is uniformly bounded below and

lim
r0→+∞

sup
{
|∂Fθ(x)/∂θ|

∣∣ x ∈ E0 \ Br0(0)
}
= 0, for every 0 ⩽ θ ⩽ 1.

Notice that two regular expanders in the same topological class are asymptotic to
each other.

Theorem 11.7. — If E0 and E1 are two regular expanders in the same topological class, then
they coincide.

Proof. We work in the negatively curved metric in the plane

g = e|x|
2
(dx2

1 + dx2
2) ,

such that each curve of a regular expander is a geodesic in this metric.
Let {x0

i } and {x1
i } denote the triple junctions (a finite set) of E0 and E1, respectively.

As the networks are in the same topological class, we can rearrange the elements of
{x0

i } so that each x0
i is connected to x1

i by the existing deformation Fθ of E0 into E1.
Denote by xξ

i , for ξ ∈ [0, 1], the unique geodesic connecting these points.
For each ξ, we consider the network Eξ such that if x0

i is connected to x0
k by a geodesic,

then xξ
i is connected to xξ

k through a geodesic as well. To handle the noncompact
curves we proceed as follows. Let Pj denote a common asymptotic halfline to E0
and E1, which means that there are geodesics ψ0 ⊆ E0, ψ1 ⊆ E1 asymptotic to Pj
at infinity and starting at some points x0

i and x1
i respectively. Define then, for every

ξ ∈ (0, 1), the curve ψξ ⊆ Eξ to be the unique geodesic starting at xξ
i and asymptotic

to Pj. This gives a deformation of the curve ψ0 to ψ1.
Hence, we have constructed a smooth family of networks with only triple junctions
Eξ , for ξ ∈ [0, 1], “connecting” E0 and E1 and such that:

1. The triple junctions {xξ
i } of Eξ connect the triple junctions of E0 to the ones of

E1 and, for each index i fixed, the path xξ
i , with ξ ∈ [0, 1], is a geodesic with

respect to the metric g.

2. Each curve of Eξ is a geodesic of (R2, g).

3. There is r0 > 0 large enough so that Eξ \ Br0(0) has n connected components,
each asymptotic to a halfline Pj, for j = 1, 2, . . . , n. We can find angles ωj such
that each end of Eξ becomes parametrized as

Eξ(`) = `eiωj + uj,ξ(`)e
i(ωj+π/2) for ` ⩾ r0.

This follows from Lemma 11.2.
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4. The vector field along Eξ ,

Xξ(`) =
∂

∂ξ
Eξ(`)

is continuous, smooth when restricted to each curve and

|Xξ(`)| = O(e−`2/2), |∇Xξ(`)| = O(`−1e−`2/2),

uniformly in ξ ∈ [0, 1], where the gradient is computed along Eξ with respect
to the metric g.
Moreover,

αj,ξ(`) =
∂uj,ξ(`)

∂ξ

satisfies
|αj,ξ(`)| = O(e−`2/2) |α′j,ξ(`)| = O(`−1e−`2/2).

It is enough to provide justification for the second set of estimates. For ease of
notation we omit the indices j and ξ on αj,ξ and uj,ξ . By linearizing the equation
for an expanding graph, see [96, equation (2.3)], we have

α′′ = (1 + [u′]2)(α − `α′) + 2u′α′(u − `u′).

We can assume without loss of generality that α(r0) ⩾ 0. Moreover, it follows
from our construction that

lim
`→+∞

|α(`)|+ |α′(`)| = 0.

A simple application of themaximumprinciple shows that α can not have a neg-
ative local minimumor a positive local maximum. Hence, α ⩾ 0 and α′ ⩽ 0. We
can assume that u′ ⩽ 0 (see the proof of Lemma 11.2). The function β = α− `α′

thus satisfies
β′ = −`(1 + [u′]2)β − 2`u′α′ ⩽ −xβ

and integration of this inequality gives the conclusion.

Denote by L the length functional with respect to themetric g and consider the family
of functions

Wr(ξ) = L(Eξ ∩ B2r0(0)) +
n

∑
j=1

∫ r

2r0

e[`
2+u2

j,ξ (`)]/2
√

1 + [u′
j,ξ(`)]

2 d`− n
∫ r

2r0

e`
2/2 d` .

The decays given in Lemma 11.2 imply the existence of a constant C such that for
every r ⩽ r

(11.2) ‖Wr − Wr‖C3 ⩽ Ce−r ,
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so, when r → +∞, the sequence of functions Wr : [0, 1] → R converges uniformly in
C2 to a function W : [0, 1] → R. Furthermore, if ξ = 0 or ξ = 1, we have, combining
Lemma 11.2 with point 4 above, that

lim
r→+∞

dWr(ξ)

dξ
= 0 ,

thus, W has a critical point when ξ = 0 or ξ = 1.
A standard computation shows that on each compact curve of Eξ , we have (after
reparametrization proportional to arclength)

d2

dξ2

∫ b

a

√
g(E′

ξ , E′
ξ) dl =

∫ b

a
|E′

ξ |−1(|(∇E′
ξ
Xξ)

⊥|2 − Riem(Xξ , E′
ξ , E′

ξ , Xξ)
)

dl

+ |E′
ξ |−1g(∇Xξ

Xξ , E′
ξ)
∣∣∣b
a

=
∫ b

a
|E′

ξ |−1(|(∇E′
ξ
Xξ)

⊥|2 − Riem(Xξ , E′
ξ , E′

ξ , Xξ)
)

dl ,

where E′
ξ = dEξ/dl, we used property 1 above and all the geometric quantities

are computed with respect to the metric g (Riem is the Riemann tensor of (R2, g)).
Combining this identity with property 4, we have

d2Wr(ξ)

dξ2 =
∫

Eξ∩Br(0)
|E′

ξ |−2(|(∇E′
ξ
Xξ)

⊥|2 − Riem(Xξ , E′
ξ , E′

ξ , Xξ)
)

dl + O(e−r) .

As (R2, g) is negatively curved, more precisely, its Gaussian curvature is equal to
−e−|x|2 , the integrals above are bounded independently of r > 2r0. Therefore, by
means of estimate (11.2), we obtain

d2W(ξ)

dξ2 =
∫

Eξ

|E′
ξ |−2(|(∇E′

ξ
Xξ)

⊥|2 − Riem(Xξ , E′
ξ , E′

ξ , Xξ)
)

dl ⩾ 0 ,

where the last inequality comes form the fact that (R2, g) is negatively curved. It
follows that W : [0, 1] → R is a convex function with two critical points at ξ = 0 and
ξ = 1, hence, it is identically constant. The last formula above then implies that the
vector field Xξ must be a constant multiple of E′

ξ , hence, it must vanish at all triple
junctions. The fact that Xξ is continuous implies that Xξ is identically zero and this
proves that all the networks Eξ coincide, for ξ ∈ [0, 1], in particular E0 = E1, which
is the desired result.

Corollary 11.8. — If P =
⋃4

j=1 Pj is a standard cross, then there exists a unique, connected,
tree–like, regular expander asymptotic to P.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



172 CHAPTER 11. SHORT TIME EXISTENCE III – NON–REGULAR NETWORKS

Proof. In this case, it is easy to see that there are only two possible topological classes
of connected regular expanders asymptotic to P (analogous to the two situations de-
picted in Figure 11.2), but since every unbounded curve cannot change its convexity
(as for the shrinkers, by analyzing the expanders equation (11.1)), if two such curves
are contained in the angle of 120 degrees of the standard cross, when they concur at
a 3–point they must form an angle larger than 120 degrees, which is a contradiction,
hence such topological class is forbidden.
Thus, only one topological class is allowed and it contains only one regular expander
(with two symmetry axes), by Theorem 11.7.

We recall that the same conclusion of this corollary also holds when P is composed
of three halflines from the origin.

11.2. A short–time existence theorem for non–regular networks

The first result we present ([58, Theorem 1.1]) requires the notion of convergence in
the sense of varifolds and can be stated as follows.

Theorem 11.9. — Let S0 be a possibly non–regular, embedded, C1 network with bounded
curvature, which is C2 away from its multi–points and such that the exterior unit tangent
vectors of the concurring curves at every multi–point are mutually distinct. Then, there exist
T > 0 and a smooth curvature flow of connected regular networks St, locally tree–like, for
t ∈ (0, T), such that St for t ∈ [0, T) is a regular Brakke flow. Moreover, away from the
multi–points of S0 the convergence of St to S0, as t → 0, is in C2

loc (or as smooth as S0).
Furthermore, there exists a constant C > 0 such that supSt

|k| ⩽ C/
√

t and the length of the
shortest curve of St is bounded from below by C

√
t.

Remark 11.10. — To be more precise, we define the sets Gt as

Gt = {(x, τ(x, t)) | x ∈ St} ∪ {(x,−τ(x, t)) | x ∈ St} ⊆ R2 × S1 ,

for every t ∈ [0, T), where τ(x, t) is the unit tangent vector at x ∈ St. The convergence
of St → S0 in the previous theorem is in the sense of varifolds, that is, as t → 0, the
Hausdorff measures H 1 Gt converge to H 1 G0, as measures on R2 × S1 (see [99]
for the general definition). It is easy to see that this implies that H 1 St → H 1 S0,
as t → 0, as measures on R2, hence there is no instantaneous loss of mass of the net-
work at the starting time.
Around a non–regular multi–point the C1–convergence is not possible: for every
t > 0, the networks St are regular, so they satisfy the 120 degrees condition and
that would pass to the limit. Varifold–convergence is anyway a sort of “weak” C1–
convergence, slightly stronger than simply asking that H 1 St → H 1 S0, as t → 0.
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We aim to present now an outline of the proof of Theorem 11.9 which depends cru-
cially on an expander monotonicity formula implying that self–similarly expanding
flows are “dynamically stable”. The monotone integral quantity wewill consider has
been applied previously by A. Neves in the setting of Lagrangian mean curvature
flow [84–86]. Other main ingredients are the local regularity Theorem 9.3 and the
pseudolocality Theorem 10.36 (see [58, Theorem 1.5]). We underline that for curves
moving in the plane, this latter can be replaced by S. Angenent’s intersection counting
theorem, see [7, Proposition 1.2], [5, Section 2] and [8] for the proof.
By the assumptions at any multi–point of an initial network S0, the cone generated
(at such point) by the interior unit normal vectors of the concurring curves consist
of a finite number of distinct halflines. The natural evolution of such a cone is a self–
similarly expanding curvature flow, due to the scaling invariance of this particular
initial network. The strategy is then as follows: we “glue in”, around each possibly
non–regularmulti–point of the initial network S0, a (piece of a) smooth, self–similarly
expanding, tree–like, connected regular network at the scale

√
ξ (in a ball of radius

proportional to
√

ξ), corresponding to the cone generated by the interior unit tangent
vectors of the concurring curves of S0 at the multi–point, to obtain an approximating
C2 regular network S

ξ
0 (satisfying the compatibility conditions of every order, see

Definition 3.27). The curvature of S
ξ
0 is thus of order 1/

√
ξ and the shortest curve

has length proportional to
√

ξ. Then, the standard short–time existence result yields
a smooth curvature flow S

ξ
t up to a positive time Tξ .

To prove that these approximating flows exist for a time T > 0, independent of ξ, we
make use of the expandermonotonicity formula to show that the flows S

ξ
t stay close to

the corresponding self–similarly expanding flows, in an integral sense, around each
multi–point. This gives that the curvature is bounded by C/

√
t up to a fixed time

T > 0, together with a lower bound on the length of the shortest curve. Thus, we can
pass to the limit, as ξ → 0, to obtain the desired curvature flow.
Remark 11.11. — The Brakke flow provided by the above theorem is not necessarily
with equality (see Definition 6.1). Indeed, assume for instance that S0 is a standard
cross (see Figure 8.5) and φ a test function such that 0 ⩽ φ ⩽ 1, φ = 1 on B1(0)
and φ = 0 outside of B2(0). Let St =

√
2t S0 be the regular expander “exiting” from

S0 (which is the curvature flow given by Theorem 11.9). Suppose by contradiction
that St is a regular Brakke flow with equality. Since S0 has no curvature, by using
equation (6.2) we have

d
dt

∫
St

φ ds
∣∣∣
t=0

= −
∫

S0

φk2 ds +
∫

S0

〈∇φ | k〉 ds = 0 .

Anyway, by the mean value theorem for any t > 0 there holds∫
St

φ ds −
∫

S0
φ ds

t
= −

∫
Sθ

φk2 ds +
∫

Sθ

〈∇φ, k〉 ds ,
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for some 0 < θ < t. By the self–similarity property of St =
√

2t S0, it is then easy
to see that the first term on the right-hand side of this formula goes to −∞ and the
second one stays bounded, hence,

d
dt

∫
St

φ ds
∣∣∣
t=0

= lim sup
t→0

∫
St

φ ds −
∫

S0
φ ds

t
= −∞ ,

which is a contradiction.

Remark 11.12. — In writing this paper, we got informed that the hypothesis on the
non–coincidence of two (but no more than two) exterior unit tangent vectors can
actually be removed (Tom Ilmanen, personal communication).

Remark 11.13. — The a priori choice of gluing in only connected regular self–similarly
expanding networks, hence obtaining a connected network flows, has a physical
meaning: it ensures that initially separated regions remain separated during the flow
while using only tree–like self–similarly expanding networks excludes the formation
of new bounded regions.
Indeed, from a 7–point one could try (this is only conjectural, the line of Theorem 11.9
does not work in this case) to get a flow with a new heptagonal region, by gluing in
a symmetric self–similarly expanding network with a heptagonal region, following
the construction of Theorem 11.9 described above.
Anyway, it can be seen that all the connected, regular self–similarly expanding net-
works containing a bounded region must have at least seven unbounded halflines.
This because, by means of the same arguments of Section 8.2 (Remark 8.14), every
bounded region of a regular self–similarly expanding network is bounded by at least
seven curves. This clearly implies that from a multi–point of order less than six, the
flow produced by Theorem 11.9 is always locally tree–like, even if the line of proof
(and at the moment it is not) could be adapted to “glue in” any self–similarly expand-
ing network (that is, possibly also a non tree–like one, in general). It is then a natural
question if a multi–point with more than five (or possibly more than six) concurring
curve can appear in the limit network ST , as t → T, described in Theorem 10.42 of the
previous section. This is related to finding a regular (possibly degenerate) shrinker
with more than five (or maybe six) unbounded halflines.

Open Problem 11.14. — Do there exist (possibly degenerate) regular shrinkers with more
that five (or six) unbounded halflines?

11.3. The expander monotonicity formula

Let St be a curvature flow of tree–like regular networks. The tangent vector of St
makes with the x–axis an angle θt which, away from the triple junctions, is a well
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defined functionup to amultiple of π, sincewedonot care about orientation. Because
at the triple junctions, the angle jumps by 2π/3, there is a well defined function θt
which is continuous on St and coincides with θt up to a multiple of π/3. We identify
the plane R2 with C, thus

k = Jτ ∂sθt = ν ∂sθt ,

where J is the complex structure.
Let L = xdy − ydx be the Liouville form on R2. Since we assumed that St has no
loops, we can find a function βt, unique up to a time–dependent constant, such that

dβt = L |St .

We can modify the time–dependent constant so that the following evolution equa-
tions hold, see [58, Lemma 3.1].

Lemma 11.15. — The following evolution equations hold away from the triple junctions:

dθt

dt
= ∂2

s θt + ∂sθt 〈τ | X〉 ,

dβt

dt
= ∂2

s βt + ∂sβt 〈τ | X〉 − 2θt ,

where X = k + λτ is the velocity of the evolution.

Notice that this implies that the function αt = βt + 2tθt satisfies the evolution equa-
tion

dαt

dt
= ∂2

s αt + ∂sαt 〈τ | X〉 .

Furthermore, Jτ ∂sαt = ν ∂sαt = −x⊥ + 2tk, which exactly vanishes on a self–
similarly expanding network. With a computation similar to the one leading to
Huisken’s monotonicity formula (7.1), we arrive at the following result, see [58,
Lemma 3.2].

Lemma 11.16 (Expander monotonicity formula). — The following identity holds

d
dt

∫
St

α2
t ρx0,t0(x,t)ds=−

∫
St

2
∣∣x⊥−2tk

∣∣2ρx0,t0(x,t)ds−
∫

St
α2

t

∣∣∣∣∣k+(x−x0)
⊥

2(t0−t)

∣∣∣∣∣
2

ρx0,t0(x,t)ds,

for some constant C.

In the later applications, the evolving networks will be only locally tree–like, that is,
only locally without loops. In order to apply the above monotonicity formula, it will
need to be localized. We assume that St ∩ B4(x0) does not contain any closed loop for
all 0 ⩽ t < T. We define βt locally on St ∩ B4(x0) and we let φ : R2 → R be a smooth
cut–off function such that φ = 1 on B2(x0), φ = 0 on R2 \ B3(x0) and 0 ⩽ φ ⩽ 1.
Then, we have the following localized version of Lemma 11.16, see [58, Lemma 3.3].
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Lemma 11.17 (Localized expander monotonicity formula). — The following estimate
holds,

d
dt

∫
St

φα2
t ρx0,t0(x,t)ds⩽−

∫
St

φ|x⊥−2tk|2ρx0,t0(x,t)ds+C
∫

St∩(B3(x0)\B2(x0))
α2

t ρx0,t0(x,t)ds.

11.4. Outline of the proof of Theorem 11.9

Now let S0 be a non–regular initial network with bounded curvature. For simplicity,
let us assume that S has only one non–regular multi–point at the origin.
If themulti–point consists of only two curvesmeeting at an angle different from π (re-
member that a zero angle is not allowed), then, by the work of Angenent [5–7], there
exists a curvature flow starting at S0, satisfying the statement of Theorem 11.9: actu-
ally the angle is immediately smoothed and the two curves become a single smooth
one.
So we can assume that at the origin at least three curves meet and let τj, for
j = 1, 2, . . . , n, be the exterior unit tangent vectors. We denote with

Pj =
{
−`τj | ` ⩾ 0

}
the corresponding halflines and P =

⋃n
j=1 Pj. Since S0 has bounded curvature, we

can assume, by scaling S0 if necessary, that S0 ∩ B5(0) consists of n curves σj corre-
sponding to the tangents τj and if ωj is the angle that Pj makes with the x–axis, there
is a function uj such that σj can be parametrized (with a small error at the boundary
of the ball B5(0)) as

σj =
{
`eiωj + uj(`)e

i(ωj+π/2) | 0 ⩽ ` ⩽ 5
}

.

Notice that the assumption that S0 has bounded curvature implies

|uj(`)| ⩽ C`2 and |u′
j(`)| ⩽ C` ,

for some constant C.
As already mentioned, in [96] it was shown that for n = 3 there exists a unique tree–
like regular expander E asymptotic to P =

⋃n
j=1 Pj. In the case n > 3, the existence

of tree–like, connected, regular expanders was shown by Mazzeo–Saez [83].
We remind that, thanks to Lemma 11.2, there exists r0 > 0 such that outside the ball
Br0(0) the n noncompact curves γj of the regular expander E can be parametrized as

γj =
{
`eiωj + vj(`)e

i(ωj+π/2) | ` ⩾ r0
}

,

where the functions vj have the following decay:

|vj(`)| ⩽ C0 e−`2/2 , |v′j(`)| ⩽ C1`
−1 e−`2/2 , |v′′j (`)| ⩽ C2 e−`2/2 .
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Consider now the rescaled expander Eξ =
√

2ξ E, call σj,ξ be the curve of Eξ asymp-
totic to Pj, for every j = 1, 2, . . . , n, then

σj,ξ =
{
`eiωj + vj,ξ(`)e

i(ωj+π/2) | ` ⩾ r0
√

2ξ
}

,

and we have the estimates

|vj,ξ(`)|⩽C
√

2ξ e−`2/4ξ , |v′j,ξ(`)|⩽C`−1
√

2ξ e−`2/4ξ , |v′′j,ξ(`)|⩽Ce−`2/4ξ /
√

2ξ .

In particular, choosing ξ small enough, we have r0
√

2ξ < 4 and this holds in the
annulus A(r0

√
2ξ, 4) = B4(0) \ Br0

√
2ξ(0).

We now aim to construct the network S
ξ
0 by gluing Eξ =

√
2ξ E into S0 (more

precisely Eξ ∩ Br0
√

2ξ(0), for ξ small enough). We define the network S
ξ
0 that coin-

cides with Eξ in Br0
√

2ξ(0) and with S0 outside B4(0), while in the “gluing” annulus
A(r0

√
2ξ, 4), in a way we “interpolate” between the two networks. Precisely, letting

φ : R+ → [0, 1] be a cut–off function such that φ = 1 on (0, 1] and φ = 0 on [2,+∞),
we define S

ξ
0 in A(r0

√
2ξ, 4) via the graph function uj,ξ as follows, for ` ∈ [r0

√
2ξ, 4),

uj,ξ(`) = φ(ξ−1/4`)vj,ξ(`) +
(
1 − φ(ξ−1/4`)

)
uj(`) .

That is,

S
ξ
0 ∩ A(r0

√
2ξ, 4) =

{
`eiωj + uj,ξ(`)e

i(ωj+π/2) | r0
√

2ξ ⩽ ` ⩽ 4
}

(with a small error at the borders of the annulus A(r0
√

2ξ, 4)).
By construction, every network S

ξ
0 has the same regularity of S0, it is regular and sat-

isfies all the compatibility conditions of every order (see Definition 3.27), it is locally
a tree and it can be checked easily that it satisfies the following properties, for every
ξ smaller than some ξ0 > 0:

P1. There is a constant D1, independent of ξ, such that

H 1(Sξ
0 ∩ Br(x)) ⩽ D1r ,

for all x ∈ R2 and r > 0.

P2. There is a constant D2 independent of ξ, such that for every x ∈ S
ξ
0,∣∣θξ

0(x)
∣∣+ ∣∣βξ

0(x)
∣∣ ⩽ D2(|x|2 + 1) ,

where θ
ξ
0 and β

ξ
0 are the “angle function” and a primitive for the Liouville form

of the network S
ξ
0, as defined in Section 11.3.
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P3. The curvature of S
ξ
0 is bounded by C/

√
ξ and S

ξ
0 → S0 in C1

loc(R
2 \ {0}), as

ξ → 0.

P4. The connected components of P ∩ A(r0
√

2ξ, 4) are in one–to–one correspon-
dence with the connected components of S

ξ
0 ∩ A(r0

√
2ξ, 4) and there is a con-

stant D3, independent of ξ, such that the functions uj,ξ satisfy

|uj,ξ(`)|+ `|u′
j,ξ(`)|+ `2|u′′

j,ξ(`)| ⩽ D3

(
`2 +

√
2ξ e−`2/4ξ

)
,

for every ` ∈ [r0
√

2ξ, 4].

P5. The sequence of rescaled networks S̃
ξ
0 = S

ξ
0/

√
2ξ converges in C1,α

loc(Br0(0)) to
E, for α ∈ (0, 1), as ξ → 0.
Without loss of generality we can also assume that locally

lim
ξ→0

(θ̃ξ
0 + β̃

ξ
0) = 0 ,

where θ̃
ξ
0 and β̃

ξ
0 are relative to S̃

ξ
0.

Let S
ξ
t , for t ∈ [0, Tξ), be a maximal smooth curvature flow starting at the initial

network S
ξ
0 and let

Θξ
x0,t0

(t) =
∫

S
ξ
t

ρx0,t0(·, t) ds

be the Gaussian density function with respect to the flow S
ξ
t .

We fix ε0 > 0 such that 3/2 + ε0 < ΘS1 . The main estimate, which will imply short–
time existence, is given by the following proposition.

Proposition 11.18. — There are constants ξ1, δ1 and η1 depending on D1, D2, D3, E, r0
and ε0, such that if

t ⩽ δ1, r2 ⩽ η2
1 t, and ξ ⩽ ξ1 ,

then,
Θξ

x,t+r2(t) ⩽ 3/2 + ε0 ,

for every x ∈ B1(0).

We will sketch the proof after showing how this implies Theorem 11.9.

Proof of Theorem 11.9. Considering the smooth curvature flows S
ξ
t in the time interval

[0, Tξ), for some Tξ > 0, discussed above, we now aim to show that there exists T > 0
such that Tξ ⩾ T, for all ξ ∈ (0, ξ1) and that there are interior estimates on the curva-
ture and all its higher derivatives for all positive times, independent of ξ ∈ (0, ξ1).
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By [58, Theorem 1.5], there exists ε > 0 such that if S
ξ
0 can be written with respect to

suitably chosen coordinate system as a graph with a small gradient in a ball BR(x),
then S

ξ
t remains a graph in this coordinate system in BεR(x) with small gradient,

for t ∈ [0, εR2]. Combining this fact with the interior estimates of Ecker–Huisken
in [30] for the curvature and its higher derivatives, we can choose a parametriza-
tion of the evolving network and a smooth family of points Pξ

j ∈ S
ξ
t in the annulus

B1/2(0) \ B1/3(0) along each curve corresponding to Pj, for j = 1, . . . , n, such that

∂l
sλ(Pξ

j , t) = 0 and
∣∣∂l

sk(Pξ
j , t)

∣∣ ⩽ Cl ,

for all l ⩾ 0 with constants Cl independent of ξ for 0 ⩽ t < min{Tξ , δ}, where δ > 0
does not depend on ξ. Then, Corollary 4.12 gives estimates on the curvature and its
derivatives, independent of ξ and t, on S

ξ
t \ B1/2(0), for t ∈ (0, min{Tξ , δ}) (possibly

taking a smaller δ > 0).
To get the desired estimates on S

ξ
t ∩ B1/2(0) we now apply Proposition 11.18

and Theorem 9.3. Let ξ1, δ1, η1 be given by Proposition 11.18. If we choose
0 < t0 < min{Tξ , δ1, δ, 1/2} and x0 ∈ B1/2(0), Proposition 11.18 implies that if ξ < ξ1,
we have

Θξ

x,t+r2(t) ⩽ 3/2 + ε0 ,

for all x ∈ B1(0), t ∈ (0, t0) and r2 ⩽ η2
1 t. In particular, we see that if t ∈ (t0/2, t0),

choosing r2 ⩽ η2
1 t0

2(1+η2
1)

and setting t = t− r2, we have t < t0 ⩽ δ1 and r2 ⩽ η2
1 t. Hence,

the above estimate holds and it can be equivalently written as

Θξ

x,t(t − r2) ⩽ 3/2 + ε0 ,

for such pairs (t, r). Letting ρ =
√

t0/2 (notice that Bρ(x0) ⊆ B1(0)), such estimate
holds for all (x, t) ∈ Bρ(x0)× (t0 − ρ2, t0) and r ⩽ η2

1√
1+η1

ρ. Hence, by Theorem 9.3
with σ = 1/2, there exists a constant C, depending only on ε0 and η1 (by propertyP1
above, the length ratios are uniformly bounded) such that∣∣kξ(x, t)

∣∣ ⩽ C/
√

t0 ,

for every t ∈ (t0/8, t0) and x ∈ S
ξ

t ∩ B√
t0/8(0). Sending t → t0, we get∣∣kξ(x0, t0)
∣∣ ⩽ C/

√
t0 .

Hence, by the arbitrariness of x0, this estimates holds for all x0 ∈ S
ξ
t0
∩ B1/2(0) and

t0 small enough, together with the corresponding estimates on all higher derivatives.
Moreover, by the second point of Remark 9.4, there is a constant C1 > 0, depending
only on ε0 and η1, such that the length of the shortest curve of S

ξ
t0

is bounded from
below by C1

√
t0. By the arbitrariness of the choice, these estimates hold for every

t0 > 0 small enough.
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Together with the estimates on S
ξ
t \ B1/2(0) for every t ∈ (0, min{Tξ , δ}), this implies

that Tξ ⩾ T, for some T > 0, for every ξ ⩽ ξ1. By the estimates on the curvature,
which are independent of ξ, we can then take a subsequential limit of the flows S

ξ
t on

[0, T), as ξ → 0, to obtain a smooth limit curvature flow St in a positive time interval,
starting from the non–regular network S0.
Notice that, by [58, Theorem 1.5] and the interior estimates of Ecker–Huisken, away
from any multi–point, the flow St attains the initial network S0 in C2 (or in the class
of regularity of S0, if it is better than C2 away from the multi–point).
Furthermore, by the above estimate on the curvature and Theorem 9.3, we have∣∣k(x, t)

∣∣ ⩽ C/
√

t ,

for every x ∈ St. The estimate on the length of the shortest curve passes to the limit
as well.

Remark 11.19. — The conclusions of Theorem 11.9 also hold if the initial network S0
is a C1 non–regular network, smooth away from the multi–points where the exterior
unit tangent vectors of the concurring curves are mutually distinct and the curvature
is of order o(1/r), where r is the distance from the set of the multi–points of S0. The
modifications in the proof are not completely trivial, the details of such result will
appear elsewhere.

We will now give a sketch of the proof of Proposition 11.18. Since the estimates are
rather technical we only outline it and refer the interested reader to [58]. However
we want to underline the main three steps of the proof.

Step 1. Estimates far from the origin and for a short time.
The following estimates are a direct consequence of Huisken’s monotonicity for-
mula (7.1): the first one says that the flow is well controlled at a point x away from
the origin up to a time proportional to |x|2. This follows by observing that in the
annulus A(K0

√
2ξ, 1), where K0 is sufficiently large, the initial network S

ξ
0 is close to

the collection of halflines P for all 0 < ξ ⩽ ξ1. Even more, for 1 ⩾ |x| ⩾ K0
√

2(ξ + t)
we see that in B

(K0/2)
√

2(ξ+t)(x) the initial network is C1–close to a unit density line.
By the monotonicity formula, this gives a control up to time t.
The second one shows that if we “glue in” the regular expander at scale ξ, then we
get control in t up to a time proportional to ξ. This estimate follows from observing
that scaling the initial network S

ξ
0 by 1/

√
2ξ, each point on the network is uniformly

C1–close, in a ball of fixed size, either to a unit density line or to a standard triod. The
estimate then follows from the monotonicity formula.
For details of the proof see [58, Lemma 5.2].
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Lemma 11.20. —

— (Far from origin estimate) There are δ1, K0 > 0 such that if r2 ⩽ t ⩽ δ1, then

Θξ

x,t+r2(t) ⩽ 3/2 + ε0 ,

for every x with 1 ⩾ |x| ⩾ K0
√

2(ξ + t).

— (Short time estimate) There are ξ1, q1 > 0 such that if ξ ⩽ ξ1, r2, t ⩽ q1ξ, then

Θξ

x,t+r2(t) ⩽ 3/2 + ε0 ,

for every x ∈ B1(0).
It is convenient to introduce a rescaling of the flow which makes the expander “sta-
tionary”. We set (see property P5 above)

S̃
ξ
t =

S
ξ
t√

2(ξ + t)
,

and let
Θ̃ξ

x0,t0
(t) =

∫
S̃

ξ
t

ρx0,t0(·, t) ds .

Notice that

(11.3) Θξ

x0,t+r2(t) = Θ̃ξ
x0√

2(ξ+t)
, t+ r2

2(ξ+t)

(t) .

Remark 11.21. —

1. It follows from the second estimate in Lemma 11.20 that we need only to prove
Proposition 11.18 when t ⩾ q1ξ.

2. By formula (11.3) and the previous point, it suffices to find ξ1, δ1 and η1 such
that for every ξ ⩽ ξ1, q1ξ ⩽ t ⩽ δ1, r2 ⩽ η2

1 and y with |y| ⩽ 1/
√

2(ξ + t), we
have

Θ̃ξ

y,t+r2(t) ⩽ 3/2 + ε0 .

3. We set η2
1 = q1/(2(q1 + 1)). The second estimate in Lemma 11.20 implies that

for ξ ⩽ ξ1, t ⩽ q1ξ and r2 ⩽ η2
1 we have

Θ̃ξ

y,t+r2(t) ⩽ 3/2 + ε0 ,

for every |y| ⩽ 1/
√

2(ξ + t).
The first estimate in Lemma 11.20 implies that for r2 ⩽ η2

1 , ξ ⩽ ξ1 and
q1ξ ⩽ t ⩽ δ1,

Θ̃ξ

y,t+r2(t) ⩽ 3/2 + ε0 ,

for every y with K0 ⩽ |y| ⩽ 1/
√

2(ξ + t).
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Step 2. Controlling the asymptotic behavior of S̃
ξ
t .

By some rather delicate estimates, but which only use the asymptotics P4 and again
the monotonicity formula, one can show that the following holds (see Lemma [58,
Lemma 5.4]). It is important here that r1 does not depend on ν.

Lemma 11.22 (Proximity to P). — There are constants C1 and r1 such that, for every
ν > 0, we can find ξ2, δ2 > 0 such that the following holds. If ξ ⩽ ξ2, t ⩽ δ2 and r ⩽ 2, then

dist(y, P) ⩽ ν + C1e−|y|2/C1 if y ∈ S̃
ξ
t ∩ A

(
r1, (ξ + t)−1/8) ,

and
Θ̃ξ

y,t+r2(t) ⩽ 1 + ε0/2 + ν if y ∈ A
(
r1, (ξ + t)−1/8) ,

where A
(
r1, (ξ + t)−1/8) is the annulus B(ξ+t)−1/8(0) \ Br1(0).

The next step is to combine these estimates with the uniqueness of the regular ex-
pander in its topological class, given by Theorem 11.7 and a compactness argument
(see [58, Corollary 4.6]) to show the following:

Lemma 11.23. — Let C1 and r1 be the constants given by Lemma 11.22 and letE be a regular
expander. Set r2 = max{r0, r1, 1}, R =

√
1 + 2q1K0 + r2. Then there exist R1 ⩾ R,

ϱ, ν > 0 such that if S is a regular network with controlled length ratios such that:
1.
∫

S∩BR1 (0)
|k − x⊥|2 ds ⩽ ϱ,

2. S and E are in the same topological class (see Definition 11.6),
then S must be ε–close in C1,α(BR1(0)) to E, for a fixed α ∈ (0, 1/2) and a suitably small
ε > 0, depending on E.
Notice that ε has to be chosen sufficiently small, so that the monotonicity formula
guarantees a control of the Gaussian densities for a network C1,α–close to E.

Step 3. Application of the expander monotonicity formula.
The next lemma is essential to prove Proposition 11.18. Its content is that the prox-
imity of S̃

ξ
t to the self–similarly expanding curvature flow generated by E can be con-

trolled in an integral sense. This is the only point where the expander monotonicity
formula is used.
We notice that by property P5 above, we have that S̃

ξ
0 =

√
2ξ S

ξ
0 → E in C1,α

loc(Br0(0)),
as ξ → 0 and recall that the rescaled quantity

α̃
ξ
t = β̃

ξ
t + θ̃

ξ
t ,

of the expander monotonicity formula, converges locally to zero along this limit.
Localizing the expander monotonicity formula (Lemma 11.16), choosing (x0, t0) ap-
propriately and estimating carefully, one arrives at the following (see [58, Lemma
5.6]). Choose a > 1 such (1 + 2q1)/a > 1 and set q = q1/a.
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Lemma 11.24. — There are constants δ0 and ξ0 such that for every ξ ⩽ ξ0 and T0 ∈ [qξ, δ0],
we have

1
(a − 1)T0

∫ aT0

T0

∫
S̃

ξ
t ∩BR1 (0)

|k − x⊥|2 ds dt ⩽ ϱ .

Take δ0, ξ0 for which this lemma holds, consider also δ1, ξ1 for which Lemma 11.20
holds and ξ2 = ξ2(ν), δ2 = δ2(ν) given by Lemma 11.22. Set ξ3 = min{ξ0, ξ1, ξ2},
δ3 = min{δ0, δ1, δ2} and then, decrease ξ3 and δ3, if necessary, so that
(ξ3 + δ3)

−1/8 ⩾ 2R1, q1ξ3 ⩽ δ3.
Having all the constants properly defined, we can now finish the proof. Set

T1 = sup
{

T̃ | Θ̃ξ

x,t+r2(t) ⩽ 3/2 + ε0 for all x ∈ BK0(0), r2 ⩽ η2
1 , t ⩽ T̃

}
.

It suffices to show that T1 ⩾ δ3, for every ξ ⩽ ξ3. The first point of Remark 11.21
implies that T1 ⩾ q1ξ. Suppose that T1 < δ3 and set T2 = T1/a. Lemma 11.24 implies
the existence of t1 ∈ [T2, T1] such that∫

S̃
ξ
t1
∩BR1 (0)

|k − x⊥|2 ds ⩽ ϱ .

One can now check that all the conditions for the previous step are met with S being
S̃

ξ
t1
. Therefore, we obtain that S̃

ξ
t1

is ε–close in C1,α(BR1(0)) to E. Denote by Ŝ
ξ
l , for

l ⩾ 0, the curvature flowwith initial condition S̃
ξ
t1
. A simple computation shows that

Ŝ
ξ
l =

√
1 + 2l S̃

ξ

t1+lµ2 ,

where µ2 = 2(ξ + t1). Since S̃
ξ
t1

is ε–close in C1,α(BR1(0)) to E, we again use the
monotonicity formula to conclude that for every l ⩽ q1, we have

Θ̃ξ

x,t1+lµ2+r2(t1 + lµ2) = Θ̂ξ

x
√

1+2l , l+r2(1+2l)
(l) ⩽ 3/2 + ε0 ,

provided √
1 + 2l |x| ⩽ R1 − 1 and (1 + 2l)r2 ⩽ q1 .

Hence, for all t1 ⩽ t ⩽ t1(1 + 2q1), there holds

Θ̃ξ

x,t+r2(t) ⩽ 3/2 + ε0 ,

for every x in BK0(0) and r2 ⩽ η2
1 , which implies that T1 ⩾ t1(1 + 2q1). This is a

contradiction because

t1(1 + 2q1) ⩾ T2(1 + 2q1) = T1(1 + 2q1)/a > T0 .

This concludes the proof of Proposition 11.18.
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Remark 11.25. —

— Combining Theorem 11.9 and Theorem 5.8 (or Theorem 3.33, if S0 is geomet-
rically smooth) we have a curvature flow (in the sense of Brakke) smooth for
every positive time for every initial C2 network S0 (satisfying the hypothesis
that at every multi–point the exterior unit tangent vectors of the concurring
curves are mutually distinct – see anyway Remark 11.12).

— Notice that in the above proof, we do not perform the “gluing in” construction
at the regular 3–points of the initial network. Hence, since the approximating
flows are obtained from Theorem 5.8 (or Theorem 3.33 if S0 is smooth), the
convergence of St to S0, as t → 0, locally around a regular 3–point of S0 is the
one given by such theorems.
Clearly, one could apply the “gluing in” procedure also at the regular 3–points
(in such case the regular expander E to be “glued in” is simply a standard triod).
Then, a natural question is if the convergence of St → S0 locally around such
regular 3–point is at least C1 or better (depending on the regularity of S0 and the
level of compatibility conditions it satisfies) and what is the relation between
this curvature flow and the one instead obtained by Theorem 5.8.

— In the special situation when we want to use Theorem 11.9 to “restart” a limit
non–regular network ST , after a singularity at time T (if possible), far from
its multi–points O1, O2, . . . , Om such network is smooth, hence, St → ST in
C∞

loc
(
R2 \ {O1, O2, . . . , Om}

)
, as t → T.

11.5. Another approach to short–time existence of the flow for non–
regular networks

One may wonder if it is possible to define the motion by curvature of a non–regular
initial network without introducing the notions of varifolds and of Brakke flow. The
answer is actually positive, as it was shown in [70, Theorem 1.1].

Theorem 11.26. — Let S0 be an initial network where all curves are of class C2. Then, there
exists a time T > 0 and an evolving family of regular networks St for t ∈ (0, T), such that
St → S0, as t → 0, in a certain “strong” sense.
Moreover, the set of the possible flows is classified by the collection of all (appropriate) self–
similarly expanding networks coming out from each junction.

Remark 11.27. — The convergence toward the initial datum as t → 0, which we are
going to describe in detail below, in particular, implies that the set St converges to
S0 in Hausdorff distance or that the collection of maps (γ1

t , . . . , γN
t ) composing the

networks St converges uniformly to the family of maps (γ1
0, . . . , γN

0 ) that describes S0
(we underline that some of the γi

0 could be constant maps).
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The method used to prove the previous result relies on a central tool in geometric
microlocal analysis: the blow–up of the domain and range spaces. One interprets
the “non–regular” junctions as “singularities of the space” and “desingularise” them
by blowing–up the domain [0, 1] of each curve and the ambient R2. We are going to
try to describe the ideas and give an outline of the proof, addressing the interested
reader to the original paper [70] for the full detail.

For simplicity, we consider the special case of an initial network S0 = (γ1
0, . . . , γ4

0)

composed by only four curves, each one given by a smooth map [0, 1] → R2, meeting
at a non–regular junction γ1

0(0) = γ2
0(0) = γ3

0(0) = γ4
0(0). The eventual solution will

be an evolving network with five curves.
We first define the blow–up of the domain. We may regard the entire network as a
collection of mappings from a disjoint union of regions in the (x, t) plane. For any
j = 1, . . . , 4, let Qj = {(x, t) ∈ R2 | 0 ⩽ t, 0 ⩽ x ⩽ 1} be the domain parametrizing
the evolution of the initial curve γ

j
0. We introduce parabolic polar coordinates defined

near (0, 0) as

ρ =
√

t + x2 ⩾ 0, ω = arcsin(t/ρ2) = arccos(x/ρ) ∈ [0, π/2],

hence,
(t, x) = (ρ cos ω, ρ2 sin ω).

We define
Qj

h = [Qj, (0, 0); dt] ⊆ R × R+

as the set obtained by replacing the corner point (0, 0)with the corresponding “faces”
{ρ = 0, 0 ⩽ ω ⩽ π/2}. These are called the front faces of Qj

h and are denoted with Ff.
Each Qj

h has then as a boundary: a front face Ff, two side faces Lf, Rf and the bottom
face Bf (see the following figure).

(0, 0) (0, 1)
x

tt

Bf

Ff

RfLf

Figure 11.3: The spaces Qj and Qj
h.

The front face Ff is given by ρ = 0 in local parabolic polar coordinates; the left and
right faces are the vertical sides “above” the corresponding front facewhere ω = π/2
and the bottom face is the initial face t = 0, at ω = 0.
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The solution γj(t, x)will be defined on Qj
h rather than Qj. It has initial condition γ

j
0(x)

on Bf and satisfies the “matching” (Herring) conditions along the left and right faces.
Its behavior on the front face is the key issue to address.
The evolving network St will also include a new curve γ5 which is defined on the set
P5 = {(t, x) ∈ R2 | 0 ⩽ t, 0 ⩽ x ⩽

√
t}. The fact that this region shrinks to a point

at t = 0 corresponds to the fact that indeed the curve γ5(t, ·) disappears, as t → 0.
We also blow–up the region P5 parabolically at (0, 0), obtaining

P5
h = [P5, (0, 0); dt].

In parabolic polar coordinates defined exactly as above, this space has coordinates
(ρ, ω), with ρ ⩾ 0 and 0 ⩽ ω ⩽ arcsin(1/2) = π/6.
We then define

Qh =
4⊔

j=1

Qj
h, Q =

4⊔
j=1

Qj.

The space Qh
⊔

P5
h is the “desingularized domain” of the evolving network St.

Similarly, we now consider the blow–up of the range. The dilation properties of the self–
similar expanding networks suggest that the homogeneity in the range should also
be emphasized. In other words, we have to introduce the change of variable z ∈ R2 to
w = z/

√
2t in the range. We formalize this as follows. We define Z = R+

t × R2
z and

we consider the space Zh = [Z, (0, O); dt] obtained from Z by taking the parabolic
blow–up of Z at the junction O at t = 0. This parabolic blow–up is defined exactly
as before, by replacing each (0, O) with the inward–pointing spherical parabolic nor-
mal bundle. As above, this becomes more tangible in locally defined parabolic polar
coordinates. Suppose that O = (0, 0) and define

R =
√

t + |z|2, Θ = (t/R2, z/R) = (Θ0, Θ′),

then Zh has a front face Ff = {R = 0} and a bottom face Bf = {Θ0 = 0}. There is a
codimension-two corner where these two faces intersect.

x1

x2

t

x1

x2

t

Figure 11.4: From Z = R+
t × R2

z to Zh
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Now we regard each γj as a map into R+ × R2 via (t, x) 7→ (t, γj(t, x)). We “lift”
this map by blowing–up both the domain and the range. In other words, each “lift”
should be regarded as a map

γj(t, x) : Qj
h −→ Zh.

We thenwant to write the equation satisfied by the “lifted”map. In the computations
it is usually simpler to work in coordinate systems different than the parabolic polar
coordinates above, in particular, we introduce two sets of projective coordinates near
the front face at (0, 0). We define τ =

√
2t and s = x/

√
2t. Then, (τ, s) is a nonde-

generate coordinate system on Qj
h near Ff away from Bf, moreover, we may also use

these coordinates in P5
h near its front face where ρ = 0. Notice that in each Qj

h, we
have s ∈ [0,+∞), while in P5

h , 0 ⩽ s ⩽ 1. The variable τ is a defining function for
the front face in each of these cases, in the sense that it vanishes exactly on Ff and is
“comparable” with ρ on any compact set in Qj

h which does not intersect Rf and on
the entirety of P5

h . The variable s is a defining function for Lf or Rf and identifies the
interior of Ff with R+.
The (τ, s) coordinates are not valid near the bottom face where t = 0 and in particu-
lar, near the intersection of Ff and Bf. Near this corner we introduce an alternate set
of projective coordinates y = x and T = t/x2. These are singular along the positive
t–axis; the variable y is now the defining function for Ff and T is the defining function
for Bf.
There are useful projective coordinates for Zh too, namely

τ =
√

2t, w = z/
√

2t,

thus, τ = 0 is a defining function for Ff, while w is a projectively natural linear coor-
dinate for Ff. These coordinates are valid away from Bf. Thus (t, γj(t, x)) “lifts” to
(τ2/2, τqη j(τ, s)).
We now consider the evolution equation in terms of these blow–ups: we “lift” the
maps γj to maps between Qj

h and Zh by simply writing

(11.4) ∂tγ =
∂2

xγ

|∂xγ|2 ,

using the coordinate systems (τ, s) on Qj
h and (τ, w) on Zh.

We set γj = τη j, which corresponds to the introduction of the projective coordinate
on Zh and, for simplicity, we drop the superscript j for the time being. As we noticed
earlier, if γ is an arc in an expanding soliton, then η depends only on s.
Since ∂t = τ−2(τ∂τ − s∂s) and ∂x = τ−1∂s, equation (11.4) becomes

1
τ2 (τ∂τ − s∂s)(τη) =

τ−2∂2
s (τη)

|τ−1∂s(τη)|2 ,
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or finally,

(τ∂τ + 1 − s∂s)η =
∂2

s η

|∂sη|2 .

In particular, if γ is an expander, so η = η(s), this yields the dimensionally reduced
expander equation

∂2
s η

|∂sη|2 + (s∂s − 1)η = 0.

Clearly, the equations are complemented with suitable boundary conditions which
are naturally specified along all of the side faces.
Finally, it is not immediate how to specify an “initial” condition along any of the
front faces. To determine this, we remark that we expect the “lifted” map η j(τ, s) to
be bounded as τ → 0, hence, we assume that η j is actually smooth up to the front
face. This means that it has a boundary value η

j
0(s). Noticing that τ∂τη j|τ=0 = 0, we

deduce that
∂2

s η0

|∂sη0|2
+ (s∂s − 1)η0 = 0,

which is precisely the expander equation. In other words, expander arise naturally
as the initial conditions for the flow along the front faces.

Remark 11.28. — We can now specify in which sense St → S0 in Theorem 11.26. In
the blown–up spaces, the number of curves of the initial datum and of the evolving
network St for t > 0, coincides. Hence, we can consider a suitable convergence of
the maps γi

t to the initial ones γi
0, for each i, for instance, we can require that the

convergence is in C2, or even smooth, as t → 0.

Our last step is then solving the “lifted” PDE’s system. A rather delicate part of the
proof is the construction of approximate solutions, i.e., a family of networks Ŝt which
converges to the initial datum S0 andwhich satisfies the flow equations up to an error
that vanishes for all orders at t = 0. To do so, we proceed at follow: by blowing–up
the non–regular junctions we can determine the entire Taylor series of the solution
whose first term satisfies the expanders equation. We are then able to prove that,
once the first term of the series is determined, all the other term (up to an error)
can be obtained with a recursion argument. Thus, to determine the entire series one
choose a specific expander at the non–regular junction which actually captures the
geometry of the evolving network, in particular how the non–regular junction breaks
apart. Then, we still need to get rid of the rapidly vanishing error term to get an exact
solution. This is accomplished by an existence proof using a priori estimates.
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Remark 11.29. — It is clear from the strategy of the proof, that with this alternative
approach (and this quite strong definition of solutions) we have as many different
flows as choices, for every non–regular junction of the initial network, of a self–similar
expanders compatible with the junction. In particular, when at every junction there
exists a unique expander coming out from the cone P generated by the inner unit tan-
gent vectors of the concurring curves, the produced solution is unique. As a remark-
able example, there is a unique tree–like, connected, regular expander, asymptotic
to a standard cross, see Corollary 11.8 (composed of four halflines from the origin
with opposite directions pairs and forming angles of 120/60 degrees between them),
generated by the exterior unit tangents of the four concurring curves at the 4–point
which arises as the collapse with bounded curvature of a curve in the “interior” of St,
as t → T, described in Proposition 10.11. The same conclusion holds also when P is
composed of three halflines from the origin [96].
Hence, if all the junctions of the network are of these types, by means of this theorem,
the flow can be started (or restarted, for instance in the situation of the collapse of
single isolated curves with bounded curvature, as we said above) in a unique way.

Remark 11.30. —

— One could apply the procedure of Theorem 11.26 also at any regular 3–point
and in such case the associated regular expander is simply a standard triod,
hence the resulting flow is unique, moreover, it must coincide with the one ob-
tained by means of Theorem 5.8, as it can be shown that it is among the flows
of the class N defined in such theorem.

— When we use Theorems 11.9 or 11.26 to “restart” a limit non–regular net-
work ST after a singularity at time T (if possible), if such network is
smooth far from its multi–points O1, O2, . . . , Om, there holds St → ST in
C∞

loc
(
R2 \ {O1, O2, . . . , Om}

)
, as t → T, by the local estimates for the motion by

curvature (see [30]).

Differently from Theorem 11.26, it is not clear if Theorem 11.9 produces a unique
solution when the expander associated to every junction is unique. This is related to
the use of the varifold convergence to the initial network in place of a stronger one.

Open Problem 11.31. — If there is a unique regular expander asymptotic to the family of
halflines generated by the inner unit tangent vectors of the concurring curves to a multi–point
of S0, then does Theorem 11.9 produce a unique curvature flow?

We can also state the open problem in the specific case of a triod and of a standard
cross.
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Open Problem 11.32. — In the case of a single triple junction (possibly non regular),
Theorem 11.9 produces a unique curvature flow?

Open Problem 11.33. — If the inner unit tangent vectors of the concurring curves to a
4–point of S0 generate a standard cross, Theorem 11.9 produces a unique curvature flow?

We underline here that whatever procedure one decides to apply to have a curvature
flow of a general network such that the networks of the flow are regular for every
(small) positive time, uniqueness can be impossible, as is shown in the following
figure:

P4 P3

P1 P2

O

P4 P3

P1 P2

O1

O2

P4 P3

P1 P2

O1

O2

Figure 11.5: An example of non–uniqueness of the flow.

indeed, by the symmetry of the initial networkwith respect to rotations of 90 degrees,
the rotation of any admissible evolution must still be a solution.

Remark 11.34. —

— In general, given the set P composed of a finite union of n halflines for the origin,
with n > 3, there are many regular expander asymptotic to P, even restricting
ourselves to the class of the tree–like ones (see Figure 11.2, for instance). One
would like to have, at least for the “generic” family of halflines P, a sort of “se-
lection principle” to choose the “best” regular expander E at amulti–point with
more than 3 concurring curves, in both procedures.

— A simple uniqueness statement (which can hold, by what we said, only for a
“generic” initial network) for the curvature flow obtained by Theorem 11.9 or
by Theorem 11.26 is missing at the moment.
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Open Problem 11.35. — For a “generic” family of networks P given by n halflines for
the origin, does there exist a “selection principle” to choose the “best” regular expander E

asymptotic to P, to use in performing the procedure of Theorem 11.9 or Theorem 11.26?

OpenProblem11.36. — Inwhat class of curvature flows, for a “generic” initial non–regular
network S0, is the flow given by Theorem 11.9 or Theorem 11.26 unique?
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CHAPTER 12

RESTARTING THE FLOW AFTER A SINGULAR TIME

By means of the analysis of Section 10.4 and the description of the limit network ST
at a singular time in Theorems 10.42 and 10.43, we can continue the flow by applying
the “restarting” Theorem 11.9 (or possibly its extension, see Remark 11.19). We then
have an “extended” curvature flow for some positive time T′ > T (if we are not in
some of the situations, discussed in Section 10.4, when the flow “naturally ends” – for
instance, if the whole network collapses and vanishes, as t → T) which is a Brakke
flow (possibly without equality, see Remark 11.11) in the time interval (0, T′) and a
smooth curvature flow in (0, T) ∪ (T, T′).
The passage through a singularity when (locally) a single curve vanishes and two
triple junctions collapse forming a regular 4–point in Ω is particularly interesting,
as this type of singularities with bounded curvature, that we called of Type–0 (see
Remark 10.18), is the only possible one for the motion of a tree–like network, assum-
ing that M1 holds. We call this change in the structure of the network a “standard
transition” (see Figures 12.1, 12.2).
We recall that while the curvature stays uniformly bounded for t ⩽ T, it is of order
1/

√
T − t as t > T (and the “new” curve has length of order

√
T − t).

t → T t > T

St StST

Figure 12.1: The local description of a “standard” transition.
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t → T t > T

St StST

Figure 12.2: A “standard” transition for a Θ–shaped network (double cell).

We remark that such transition, passing by ST , is not symmetric: when St → ST , as
t → T−, the exterior unit tangent vectors, hence the four angles between the curves,
are continuous, while when St → ST , as t → T+, there is a “jump” in such angles,
precisely there is an instantaneous “switch” between the angles of 60 degrees and the
angles of 120 degrees at time T.

Remark 12.1. — Since there is a single expander “coming out” from the cone of
the inner unit tangent vectors generated by the four concurring curves, we expect
that by restarting the flow by means of Theorem 11.9, we get a unique evolution (see
Problem 11.33).

Coming back to the general situation, we list a series of facts when passing through
a singularity.

— The total length of the evolving network St is non increasing and continuous for
every t ∈ (0, T′). Hence as a Brakke flow in the time interval [0, T′) it does not
suffer from the phenomenon of “sudden mass loss” (see [16] and the recent
work [62]).

— For every x0 ∈ R2 and t0 ∈ (0,+∞), the Gaussian density function
Θx0,t0(t) : [0, min{t0, T′}) → R is still non-increasing. The same for the en-
tropy of St, see formula (8.7).

— The uniform bound on length ratios survives the “restarting” procedure with
the same constant.

These points follow easily by the (weak) continuity of the Hausdorff measures
H 1 St, see Remarks 10.41 and 11.10 (it is clear in the case of a standard transition).

— By the construction in the “restarting”Theorem11.9, no new regions are created
passing a singularity, their total number is non-increasing. In particular, a tree
remains a tree after restarting (even if its “structure” changes).
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— The number of curves of the network is not increasing. To be more precise, if
at least a region vanishes the total number of curves decreases by at least three.
In a standard transition, it remains the same.

— The number of triple junctions of the network is non-increasing. To bemore pre-
cise, if at least a region vanishes the total number of triple junctions decreases
by at least two. In a standard transition, it remains the same.

The fact that no new regions arise follows by the fact that we “desingularise” a multi–
point, in Theorem 11.9, by gluing in a tree–like, connected, regular expander (which
is an a priori choice, see Remark 11.13). In doing that, bymeans of Euler’s formula for
trees, we can see that if the multi–point has order n, being the number of the regions
equal to n, the number of triple junctions we will have in the restarted network in
place of the single multiple junction is equal to n − 2 and the number of curves is
2n − 3.
It is then easy to check the above statements if only one bounded region is collapsing
since it must be bounded by n curves. If instead, a group of regions is collapsing,
we can get the conclusion by applying the same argument to the bounded “macro–
region” thatwe obtain considering their union, whichwill be bounded by a piecewise
smooth loop (in away, we are “forgetting” the interior curves to such “macro–region”
which will anyway be “lost” in the collapse).
Clearly, all these facts say that, in a sense, the “topological complexity” of the network
is “non-increasing” passing through a singular time.
We finally mention here that also the bound on the “embeddedness measure” E(t),
which we will introduce in Chapter 14, survives the “restarting” procedure.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024





CHAPTER 13

LONG TIME BEHAVIOR

Since we can repeat the restarting procedure at every singular time, either the flow
naturally ends at some time T̂ (for instance, if the whole network collapses and
vanishes, as t → T̂) or we found ourselves in some of the situations described in
Section 10.4 where we have to decide how to continue the flow (related to the behav-
ior at the boundary of Ω), or we have an increasing sequence of singular–restarting
times Ti for the evolution of the network St. In this latter case it follows by the “topo-
logical” conclusions in the previous section that among these times Ti, the number of
the ones such that we have a non–standard transition is actually finite and depends
only on S0 (indeed, if a transition is non–standard, then at least one region vanishes
during the transition and S0 can have only a finite number of regions). Instead, we
cannot conclude the same for the number of standard transitions that a priori could
be infinite. Even worse, notice that Theorem 11.9 does not give any estimate on the
(short) time of existence of the restarted flow, which means that we are not able to
say in general if and when another singularity could appear after the restarting time.
In particular, we are also not able to exclude that the singular times (associated to
standard transitions) “accumulate”, not even for a tree–like network when all the
possible singularities are standard transitions.
The following figures show some examples of these (maybe) possible situations.

Figure 13.1: A tree–like network with four fixed end–points switching be-
tween its two possible topological classes.
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Figure 13.2: Standard transitions switching a lens–shaped network to an
“island–shaped” (with a bridge) one and viceversa.

Figure 13.3: Switching by standard transitions of a Θ–shaped network to an
“eyeglasses–shaped” one and viceversa.

In all these examples (where there is a sort of “duality” between the two involved
networks: lens–island, theta–eyeglasses and between the only two possible trees con-
necting four points) we do not know if this kind of “oscillatory phenomenon” can
happen infinitely many times.
Open Problem 13.1. — Let us assume that the “boundary” curves do not collapse during
the flow.
— The set of singular times is finite?

— The set of singular times is discrete (i.e. it has no accumulation points)?

— Can the flow be defined for every positive time?
Remark 13.2. — The last question concerns the possibility that the other two have a
negative answer. In such case, we could still hope to be able to find a “well–behaved”
limit network ST̂ , as t → T̂, even when the singular times Ti accumulate at T̂, to possi-
bly restart again the flowwith Theorem 11.9 or some extension. Indeed, by restarting
the flow at every singularity we can define an extended curvature flow of networks on
some maximal time interval [0, T̂). Then, either the whole network vanishes or there
is an accumulation of singular times at T̂, if it is finite. This extended curvature flow is
a Brakke flow, by Theorem 11.9 and actually, it is easy to see that only singular times
when a standard transition happens can accumulate at T̂ (the number of regions is
non increasing, hence the number of singular times when at least one of them col-
lapses is finite). We also mention that it would be quite interesting to compare this
extended curvature flow with the globally defined one introduced by L. Kim and
Y. Tonegawa in [62] .
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Remark 13.3. — In the recent paper [88], it is shown that the previous questions
have positive answers in the special case of axially symmetric networks with only
two triple junctions. More precisely, it is proved that the number of singular times
is necessarily finite. We point out that, under these conditions, there are only four
possible topological types of networks: the tree, the lens, the theta and the eyeglasses
(of “type A”) shapes, as in the following figure (see the discussion at the beginning
of Section 15.2).

Figure 13.4: The four possible types of axially symmetric networks with two
triple junctions: the tree, the lens, the theta and the eyeglasses.

We now discuss the long–time behavior of the curvature flow of a regular network,
assuming that there is no accumulation of the singular times or, even better, that the
flow definitely does not have singularities after some time. We see in the following
proposition that this latter case can only happen for networks without regions with
less than six edges.

Proposition 13.4. — Let [0, T) be the maximal time interval of existence of a smooth curva-
ture flow St of a network that has at least one loop ` of length L(t), enclosing a region of area
A(t) composed of m curves with m < 6. Then, T ⩽ 3A(0)

(6−m)π
and the equality holds if and

only if limt→T A(t) = 0. Moreover, if limt→T L(t) = 0, then limt→T
∫

St
k2 ds = +∞.
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Proof. Integrating in time the equation (8.4), we have

A(t)− A(0) =
(
−2π + m

(π

3

))
t .

Therefore, T ⩽ 3A(0)
(6−m)π

, with equality if and only if limt→T A(t) = 0.
Suppose now that limt→T L(t) = 0. Thenwe necessarily have limt→T A(t) = 0, hence

T =
3A(0)

(6 − m)π
. Combining equation (8.4) and Hölder inequality, we get

∣∣∣− 2π + m
(π

3

) ∣∣∣ = ∣∣∣dA(t)
dt

∣∣∣ = ∣∣∣ ∫
`t

k ds
∣∣∣ ⩽ (L(t))

1
2

(∫
`t

k2 ds
) 1

2
,

which gives ∫
St

k2 ds ⩾
∫
`t

k2 ds ⩾ (6 − m)2 π2

9L(t)
.

Since limt→T L(t) = 0, it follows that limt→T
∫

St
k2 ds = +∞.

Remark 13.5. —

1. If a loop is composed of six or more curves, then by equation (8.4), either the
enclosed area remains constant or increases during the evolution.

2. The previous proposition does not exclude the possibility that a singularity ap-
pears at a time T < 3A(0)

(6−m)π
.

3. We expect that, if T = 3A(0)
(6−m)π

, then the region is collapsing, hence, by
Corollary 10.28 the curvature cannot be bounded and we expect that
limt→T L(t) = 0 and limt→T

∫
St

k2 ds = +∞.

For a general network, even assuming that there is no accumulation of the singular
times, if the boundary curves do not collapse, we cannot anyway exclude that there
could be an infinite sequence of standard transitions with some loops present and
regions (with more that five edges) never collapsing. We now deal with tree–like
networks that after some time have no more singularities.

Proposition 13.6. — Suppose that St is a smooth curvature flow in [0,+∞) of a tree–like
network. Then for every sequence of times ti → ∞, there exists a (non relabeled) subse-
quence such that the evolving networks Sti converge in C1,α ∩ W2,2, for every α ∈ (0, 1/2),
to a possibly degenerate (and non–embedded) regular network with zero curvature, that is,
“stationary” for the length functional, as i → ∞.
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Proof. From equation (4.2) we have the estimate

(13.1)
∫ +∞

0

∫
St

k2 ds dt ⩽ L(0) < +∞ .

Suppose by contradiction that for a sequence of times tj ↗ +∞ we have
∫

Stj
k2 ds ⩾ δ

for some δ > 0. By the following estimate, which is inequality (10.4) in Lemma 10.23,
d
dt

∫
St

k2 ds ⩽ C
(

1 +
(∫

St
k2
))3

,

holding (in the case of fixed end–points) with a uniform constant C independent of
time, wewould have

∫
St̃

k2 ds ⩾ δ/2, for every t̃ in a uniformneighborhood of every tj.
This is clearly in contradiction with the estimate (13.1). Hence, limt→+∞

∫
St

k2 ds = 0
and, consequently, for every sequence of times ti → +∞, there exists a subsequence
(not relabeled) such that the evolving networks Sti converge in C1,α ∩W2,2, for every
α ∈ (0, 1/2), to a possibly degenerate regular network with zero curvature, as i → ∞.

Remark 13.7. — The previous proposition shows that, up to subsequences, the se-
quence of evolving networks Sti converge, as ti → +∞, to a “stationary” network for
the length functional (which is not necessarily a global minimum). We do not know
if such a stationary network can be non–embedded, that is, some segments have mul-
tiplicity greater than one and we underline that actually it can be degenerate, that
is, taking the limit of Sti when ti → +∞, one or more curves collapse, as shown in
the following example. Suppose that S0 is the regular network in Figure 13.5. It is a
smooth regular network composed of five curves, symmetric with respect to the hori-
zontal and vertical axes, the middle curve γ0 is a vertical segment and the remaining
four curves are convex, i.e., their oriented curvature has a sign. The network has four
end–points located at the vertices of a rectangle of sides of length 2 and 2

√
3.

√
3

1
γ1

γ0

Figure 13.5: The initial network S0.

Thanks to the symmetries, we can reduce to study the flow of S0 to the evolution of a
single curve, for instance, γ1. The flow St starting from S0 exists for every timewith no
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singularities, the length of each curve γi is strictly positive for any time, the curvature
of each curve γi is uniformly bounded and as t → +∞, the flow smoothly converges
to the degenerate network composed of the two segments joining the opposite pairs
of end–points and a core at the origin, given by the collapse of the vertical curve γ0,
whose length goes to zero, as t → +∞ (see [90]).

Open Problem 13.8. —

— Can the tree–like hypothesis be removed in Proposition 13.6?

— Is the limit network embedded?

— What are the possible degeneracies of the limit network? We conjecture that it belongs
to the class of networks described in Proposition 10.11, in particular, it is embedded and
it can only have as degeneracies some regular 4–points, hence each one with a core given
by a single isolated collapsed curve (as in the previous example).

Remark 13.9. — If we do not assume that the number of singularities is finite and/or
that the network becomes a tree, but only that the flow exists for every t ∈ [0,+∞),
being globally a Brakke flow (see the previous section), inequality (13.1) still holds
(by the defining formula (6.1)) and we can always find a sequence of networks Sti

converging in C1,α ∩ W2,2, for every α ∈ (0, 1/2), to a possibly degenerate regular
network with zero curvature, as i → ∞. As said before, such limit network could be
non–embedded.

It is natural to ask ourselves if actually, the full flow of networks St converges to a
limit network, as t → +∞ (moreover, as we said, we expect that such a limit network
is embedded and that the tree–like hypothesis in Proposition 13.6 is actually superflu-
ous). We are able to show the full convergence assuming that the limit network is not
degenerate. A key result to get such convergence is the following Łojasiewicz–Simon
inequality for regular networks, proved in [90].

Theorem 13.10. — Let S∗ = (γ1
∗, . . . , γn

∗) be a regular network composed of straight seg-
ments. Then, there exist CLS, ε > 0 and θ ∈ (0, 1/2] such that if S = (γ1, . . . , γn) is a
regular network of class W2,2 with the same topological structure, the same end–points of S∗
and such that

n

∑
i=1

‖γi − γi
∗‖W2,2 ⩽ ε ,

then,

(13.2) |L(S)− L(S∗)|1−θ ⩽ CLS

(∫
S

k2 ds
)1/2

.

We state now the convergence result.

ASTÉRISQUE 452



CHAPTER 13. LONG TIME BEHAVIOR 203

Theorem 13.11 (Theorem 5.3 in [90]). — Suppose that St is a smooth curvature flow in
[0,+∞) and let S∞ be a regular (non–degenerate) network with zero curvature, composed of
straight segments such that Stn → S∞ in W2,2, for some sequence tn ↗ +∞, as n → ∞.
Then, up to reparametrization, St → S∞ smoothly, as t → +∞.

We refer the reader to the original paper [90] for the proofs of these two results. We
just give here an idea of the application of the Łojasiewicz–Simon inequality in or-
der to get the full convergence of the sequence of networks. Let St = (γ1

t , . . . , γn
t )

be a smooth network flow defined on [0,+∞) and let S∞ = (γ1
∞, . . . , γn

∞) be the
regular C1,α ∩ W2,2–limit network along a sequence of times tn → +∞, given by
Proposition 13.6, which we assume to be non–degenerate. Then, by the evolution
equation of the length, we have

d
dt
(

L(St)− L(S∞)
)
= −

∫
St

k2 ds

and for all times for which ∑n
i=1 ‖γi

t − γi
∞‖W2,2 ⩽ ε, we get

− d
dt
(

L(St)− L(S∞)
)θ

= θ
(

L(St)− L(S∞)
)θ−1

∫
St

k2 ds

⩾ θ

CLS

( ∫
St

k2 ds
)−1/2 ∫

St
k2 ds

=
θ

CLS

( ∫
St

k2 ds
)1/2

,

where we used the Łojasiewicz–Simon inequality (13.2). Then, we can take
t̃ ∈ [0,+∞) and t2 > t1 ⩾ t̃ such that for every t ∈ [t̃, t2], there holds
∑n

i=1 ‖γi
t − γi

∞‖W2,2 ⩽ ε/4 and |L(St)− L(S∞)|θ ⩽ ε/4. We get( ∫ 1

0

(
γi(x, t2)− γi(x, t1)

)2

dx
)1/2

=

( ∫ 1

0

( ∫ t2

t1

γi
t(x, t) dt

)2

dx
)1/2

⩽
∫ t2

t1

( ∫ 1

0
(γi

t(x, t))2 dx
)1/2

dt

=
∫ t2

t1

( ∫
γi

t

k2 ds
)1/2

dt

⩽
∫ t2

t1

( ∫
St

k2 ds
)1/2

dt

⩽ CLS
θ

|L(St)− L(S∞)|θ <
εCLS
4θ

.

This implies that γi(·, t) : [0, 1] → R2 is a Cauchy sequence and from it we can deduce
the desired convergence.
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After all this discussion, the following questions are rather natural.

Open Problem 13.12. —

— In the hypotheses of Theorem 13.11, does the whole sequence of networks St converge in
C1,α ∩W2,2, for every α ∈ (0, 1/2), also if the limit network is a degenerate (embedded)
regular network with zero curvature, as t → +∞?

— The conclusions can be extended to the general situation described in Remark 13.9? For
instance, if the flow of networks has an infinite sequence of singular times going to+∞?

13.1. Stability

Exploiting the Łojasiewicz–Simon inequality (13.2), it is also possible to prove a sta-
bility result: if a flow starts sufficiently close to a regular networkwith zero curvature
composed of straight segments, then it exists for every time and smoothly converges
to a (possibly different) network with zero curvature.

Theorem 13.13 (Theorem 5.3 in [90]). — Let S∗ = (γ1
∗, . . . , γn

∗) be a regular network
with zero curvature, composed of straight segments. Then, there exists δ > 0 such that if
S0 = (γ1

0, . . . , γn
0 ) is a smooth regular network with the same topological structure and the

same end–points of S∗ such that
n

∑
i=1

‖γi
0 − γi

∗‖W2,2 ⩽ δ ,

the flow by curvature of the network S0 exists smooth for all times and smoothly converges, as
t → +∞, to a regular network S∞ = (γ1

∞, . . . , γn
∞) with zero curvature (that is, composed

of straight segments) satisfying L(S∞) = L(S∗).

Remark 13.14. — The special case in which S∗ is a triod was first considered in [63]
and one can actually adapt such proof to the case in which S∗ is an isolated critical
point of the length functional.

Remark 13.15. — It is not necessarily true that S∗ = S∞, but there are some cases in
which we are able to determine S∞:

— If the network S∗ is an isolated critical point of the length functional, then S∞

must coincide with S∗ and this is always the case if S∗ is a tree.

— Suppose that S∗ is a network composed of a regular hexagon H with area A∗
and six straight segments connecting the vertices of a bigger regular hexagon.
Then, S∗ is not an isolated critical point of the length functional, indeed, all the
networks composed of concentric hexagons and straight segments connecting
the end–points give a one–parameter family of critical points with the same
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length, see Figure 13.6. We underline that there are no other critical points of
the length functional with this topology and with the same end–points.

Figure 13.6: Three different networks with zero curvature with the same
end–points and topology. They all have the same length.

Suppose now that S0 is regular networkwith the same end–points and the same
topology of S∗, sufficiently close to S∗ and such that the area enclosed by the
loop is equal to A0. Then, S∞ coincides with S∗ if and only if A0 = A∗, as the
area enclosed by any loop of six curves is preserved during the evolution and
S∗ is the unique network with zero curvature and area A∗ among the possible
limit critical networks. We remark that if A0 6= A∗, we then have an example
where the limit network S∞ is different by S∗, indeed S∞ must be the unique
network of such family with a central regular hexagon of area A0.

We conclude this chapter with a couple of open problems.

Open Problem 13.16. — Is it possible to replace the W2,2–closedness condition in the sta-
bility Theorem 13.13 with some “small distance” condition between the networks that allows
also topological changes, for instance, the Hausdorff distance?

Open Problem 13.17. — It is possible to “identify” the limit network S∞ in the stability
Theorem 13.13, in general? This question is relevant in the non–trivial case when S∗ belongs
to a continuous family of critical points for the length functional.
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CHAPTER 14

AN ISOPERIMETRIC ESTIMATE

Given the smooth flow St = F(S, t), we take two points p = F(x, t) and q = F(y, t)
belonging to St. A couple (p, q) is “admissible” if the segment joining p and q does
not intersect the network St in other points. We call A the class of the admissible
couple. Given an admissible pair (p, q) we consider the set of the embedded curves
Γp,q contained in St connecting p and q, forming with the segment pq a Jordan curve.
Thus, it is well defined the area of the open region Ap,q enclosed by any Jordan curve
constructed in this way and, for any pair (p, q), we call Ap,q the smallest area of all
such possible regions Ap,q. If p and q are both points of a set of curves forming a loop,
we define ψ(Ap,q) as

ψ(Ap,q) =
A
π

sin
(π

A
Ap,q

)
,

where A = A(t) is the area of the connected component of Ω \ St which contains the
open segment joining p and q.
We consider the function Φt : S × S → R ∪ {+∞} as

Φt(x, y) =



|p−q|2
ψ(Ap,q)

if x 6= y and x, y are points of a loop;
|p−q|2

Ap,q
if x 6= y and x, y are not both points of a loop;

4
√

3 if x and y coincide with one of the 3–points Oi of S;
+∞ if x = y 6= Oi;

where p = F(x, t) and q = F(y, t).

Remark 14.1. — Following the argument of Huisken in [52], in the definition of the
function Φt we introduce the function ψ(Ap,q), when the two points belong to a loop
because we want to maintain the function smooth also when Ap,q is equal to A/2.
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In the following, with a little abuse of notation, we consider the function Φt defined
on St × St and we speak of admissible pair for the couples of points (p, q) ∈ St × St
instead of (x, y) ∈ S × S.
We define E(t) as the infimum of Φt between all admissible couple of points
p = F(x, t) and q = F(y, t):

E(t) = inf
(p,q)∈A

Φt

for every t ∈ [0, T).
We call E(t) “embeddedness measure”. We underline that similar geometric quanti-
ties have already been applied to analogous problems in [23, 49, 52].
The following lemma holds, for its proof in the case of a compact network see [23,
Theorem 2.1].

Lemma 14.2. — The infimum of the function Φt between all admissible couples (p, q) is
actually a minimum. Moreover, assuming that 0 < E(t) < 4

√
3, for any minimizing pair

(p, q) we have p 6= q and neither p nor q coincides with one of the 3–points Oi(t) of St.

Remark 14.3. — In the case of an open network without end–points, since the net-
work is asymptotically C1–close to a family of halflines (and during its curvature
motion such halflines are fixed), there holds that if the infimum of Φt is less than
a “structural” constant depending only on such halflines, then it is a minimum. By
means of such modification to this lemma, all the rest of the analysis of this chapter
also holds for the evolution of open networks, we let the details and the easy modifi-
cations of the arguments to the reader.

Notice that it follows that the network St is embedded if and only if E(t) > 0. Moreover,
E(t) ⩽ 4

√
3 always holds, thus when E(t) > 0 the two points (p, q) of a minimizing

pair can coincide if and only if p = q = Oi(t).
Finally, since the evolution is smooth, it is easy to see that the function E : [0, T) → R

is locally Lipschitz, in particular, dE(t)
dt > 0 exists for almost every time t ∈ [0, t).

If the curvature flow St has fixed end–points {P1, P2, . . . , Pl} on the boundary of a
strictly convex set Ω, we consider the flows Hi

t each obtained as the union of St

with its reflection S
Ri
t with respect to the end–point Pi, as we described at the end

of Section 8.2.
We underline that this is still a smooth curvature flow (as the compatibility condi-
tions of every order in Definition 3.27 are satisfied by St at its end–points) without
self–intersections, where Pi is no more an end–point and the number of triple junc-
tions of Hi

t is exactly twice the number of the ones of St.
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StH1
t

H2
t

H3
t

H4
t

P1

P2

P3

P4

O1

O2

Figure 14.1: A tree–like network St with the associated networks Hi
t.

We define for the networks Hi
t the functions Ei : [0, T) → R, analogous to the func-

tion E : [0, T) → R of St and, for every t ∈ [0, T), we call Π(t) the minimum of
the values Ei(t). The function Π : [0, T) → R is still a locally Lipschitz function
(hence, differentiable for almost every time), clearly satisfying Π(t) ⩽ Ei(t) ⩽ E(t)
for all t ∈ [0, T). Moreover, as there are no self–intersections, by construction, we
have Π(0) > 0. If we prove that Π(t) ⩾ C > 0 for all t ∈ [0, T), form some constant
C ∈ R, then, we can conclude that also E(t) ⩾ C > 0, for all t ∈ [0, T).

Theorem 14.4. — Let Ω be an open, bounded, strictly convex subset of R2. Let S0 be an
initial regular network with at most two triple junctions and let the St be a smooth evolution
by curvature of S0, defined in a maximal time interval [0, T).
Then, there exists a constant C > 0 depending only on S0 such that E(t) ⩾ C > 0, for every
t ∈ [0, T). In particular, the networks St remain (uniformly, in a sense) embedded during
the flow.

To prove this theorem we first show the next proposition and lemma.
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Proposition 14.5. — Let t ∈ [0, T) such that

— 0 < E(t) < 1/4,

— for at least one minimizing pair (p, q) of Φt, the curve Γp,q contains at most two triple
junctions with neither p nor q coinciding with one of the end–points Pi.

Then, if the derivative dE(t)
dt exists, it is positive.

Proof. By simplicity, we consider in detail only the case shown in Figure 14.2. The
computations in the other situations are analogous.

P1 O1

P2

Ap,q

Ω

A

O2

p

q

Figure 14.2: The situation considered in the computations of Proposition 14.5.

Let 0 < E(t) < 1/4 and let (p, q) a minimizing pair for Φt such that the two points
are both distinct from the end–points Pi. We choose a value ε > 0 smaller than the
“geodesic” distances of p and q from the 3–points of St and between them.
Possibly taking a smaller ε > 0, we fix an arclength coordinate s ∈ (−ε, ε) and a local
parametrization p(s) of the curve containing p such that p(0) = p, with the same
orientation as the original one. Let η(s) = |p(s)− q|, since

E(t) = min
s∈(−ε,ε)

η2(s)
ψ(Ap(s),q)

=
η2(0)

ψ(Ap,q)
,

if we differentiate in s we obtain

(14.1) dη2(0)
ds

ψ(Ap(0),q) =
dψ(Ap(0),q)

ds
η2(0) .

We underline that we are considering the function ψ because we are doing all the
computation for the case shown in Figure 14.2, where there is a loop. For a network
without loops the computations are simpler: instead of formula (14.1), one has

dη2(0)
ds

Ap(0),q =
dAp(0),q

ds
η2(0) ,

see [82, Page 281], for instance.
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As the intersection of the segment pq with the network is transversal, we have an
angle α(p) ∈ (0, π) determined by the unit tangent τ(p) and the vector q − p.
We compute

dη2(s)
ds

∣∣∣∣
s=0

= −2〈τ(p) | q − p〉 = −2|p − q| cos α(p)

dA(s)
ds

∣∣∣∣
s=0

= 0

dAp(s),q

ds

∣∣∣∣
s=0

=
1
2
|τ(p) ∧ (q − p)| = 1

2
〈ν(p) | q − p〉 = 1

2
|p − q| sin α(p)

dψ(Ap(s),q)

ds

∣∣∣∣∣
s=0

=
dAp,q

ds
cos

(π

A
Ap,q

)
=

1
2
|p − q| sin α(p) cos

(π

A
Ap,q

)
.

Putting these derivatives in equation (14.1) and recalling that η2(0)/ψ(Ap,q) = E(t),
we get

(14.2) cot α(p) = − |p − q|2
4ψ(Ap,q)

cos
(π

A
Ap,q

)
= −E(t)

4
cos

(π

A
Ap,q

)
.

Since 0 < E(t) < 1
4 < 4(2 −

√
3), we have

√
3 − 2 < cot α(p) < 0, which implies

(14.3) π

2
< α(p) <

7π

12
.

The same argument clearly holds for the point q, hence defining α(q) ∈ (0, π) to be
the angle determined by the unit tangent τ(q) and the vector p− q, by equation (14.2)
it follows that α(p) = α(q) and we simply write α for both.
We consider now a different variation, moving at the same time the points p and q, in
such a way that dp(s)

ds = τ(p(s)) and dq(s)
ds = τ(q(s)).

As above, letting η(s) = |p(s)− q(s)|, by minimality we have

dη2(0)
ds

ψ(Ap(s),q(s))
∣∣∣
s=0

=

(
dψ(Ap(s),q(s))

ds

∣∣∣∣∣
s=0

)
η2(0) and

d2η2(0)
ds2 ψ(Ap(s),q(s))

∣∣∣
s=0

⩾
(

d2ψ(Ap(s),q(s))

ds2

∣∣∣∣∣
s=0

)
η2(0) .(14.4)
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Computing as before,
dη2(s)

ds

∣∣∣∣
s=0

= 2〈p − q | τ(p)− τ(q)〉 = −4|p − q| cos α

dAp(s),q(s)

ds

∣∣∣∣∣
s=0

= − 1
2
〈p − q | ν(p) + ν(q)〉 = +|p − q| sin α

d2η2(s)
ds2

∣∣∣∣
s=0

= 2〈τ(p)− τ(q) | τ(p)− τ(q)〉+ 2〈p − q | k(p)ν(p)− k(q)ν(q)〉

= 2|τ(p)− τ(q)|2 + 2〈p − q | k(p)ν(p)− k(q)ν(q)〉

= 8 cos2 α + 2〈p − q | k(p)ν(p)− k(q)ν(q)〉
d2 Ap(s),q(s)

ds2

∣∣∣∣∣
s=0

= − 1
2
〈τ(p)− τ(q) | ν(p) + ν(q)〉+ 1

2
〈p − q | k(p)τ(p) + k(q)τ(q)〉

= − 1
2
〈τ(p) | ν(q)〉+ 1

2
〈τ(q) | ν(p)〉+ 1

2
〈p − q | k(p)τ(p) + k(q)τ(q)〉

= − 2 sin α cos α − 1/2|p − q|(k(p)− k(q)) cos α

d2ψ(Ap(s),q(s))

ds2

∣∣∣∣∣
s=0

=
d
ds

{
dAp(s),q(s)

ds
cos

(π

A
Ap(s),q(s)

)}∣∣∣∣∣
s=0

= (−2 sin α cos α − 1
2
|p − q|(k(p)− k(q)) cos α) cos

(π

A
Ap,q

)
− π

A
|p − q|2 sin2 α sin

(π

A
Ap,q

)
.

Substituting the last two relations in inequality (14.4), we get

(8 cos2 α+ 2〈p − q | k(p)ν(p)− k(q)ν(q)〉)ψ(Ap,q)

⩾ |p − q|2
{
(−2 sin α cos α − 1

2
|p − q|(k(p)− k(q)) cos α) cos

(π

A
Ap,q

)
−π

A
|p − q|2 sin2 α sin

(π

A
Ap,q

)}
,

hence, keeping in mind that tan α = −4
E(t) cos( π

A Ap(s),q(s))
, we obtain

2ψ(Ap,q)〈p − q | k(p)ν(p)− k(q)ν(q)〉+ 1/2|p − q|3(k(p)− k(q)) cos α cos
(π

A
Ap,q

)
⩾ − 2 sin α cos α|p − q|2 cos

(π

A
Ap,q

)
− 8ψ(Ap,q) cos2 α + |p − q|4 sin2 α

[
−π

A
sin
(π

A
Ap,q

)]
= − 2ψ(Ap,q) cos2 α

(
tan α

|p − q|2
ψ(Ap,q)

cos
(π

A
Ap,q

)
+ 4
)

+ |p − q|4 sin2 α
[
−π

A
sin
(π

A
Ap,q

)]
= |p − q|4 sin2 α

[
−π

A
sin
(π

A
Ap,q

)]
.(14.5)
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Wenow compute the derivative dE(t)
dt bymeans of theHamilton’s trick (see [48] or [78,

Lemma 2.1.3]), that is,
dE(t)

dt
=

∂

∂t
Φt(p, q) ,

for any minimizing pair (p, q) for Φt. In particular, dE(t)
dt = ∂

∂t Φt(p, q) and, we recall,
|p−q|2
ψ(Ap,q)

= E(t).
Notice that by minimality of the pair (p, q), we are free to choose the “motion” of the
points p(s), q(s) “inside” the networks Γs in computing such partial derivative, that
is,

dE(t)
dt

=
∂

∂t
Φt(p, q) =

d
ds

Φt(p(s), q(s))
∣∣∣∣
s=t

.

Since locally the networks are moving by curvature and we know that neither p nor q
coincides with the 3–point, we can find ε > 0 and two smooth curves p(s), q(s) ∈ Γs
for every s ∈ (t − ε, t + ε) such that

p(t) = p and dp(s)
ds

= k(p(s), s) ν(p(s), s) ,

q(t) = q and dq(s)
ds

= k(q(s), s) ν(q(s), s) .

Then,

(14.6) dE(t)
dt

=
∂

∂t
Φt(p,q)=

1
[ψ(Ap,q)]2

(
ψ(Ap,q)

d|p(s)−q(s)|2
ds

−|p−q|2
dψ(Ap(s),q(s))

ds

)∣∣∣∣∣
s=t

.

With a straightforward computation, we get the following equalities,

d|p(s)− q(s)|2
ds

∣∣∣∣
s=t

= 2〈p − q | k(p)ν(p)− k(q)ν(q)〉

dA(s)
ds

∣∣∣∣
s=t

= − 4π

3
dAp(s),q(s)

ds

∣∣∣∣
s=t

=
∫

Γp,q
〈k(s) |νξp,q〉 ds +

1
2
|p − q|〈ν[p,q] | k(p)ν(p) + k(q)ν(q)〉

= 2α − 4π

3
− 1

2
|p − q|(k(p)− k(q)) cos α

dψ(Ap(s),q(s))

ds

∣∣∣∣∣
s=t

= − 4π

3

[
1
π

sin
(π

A
Ap,q

)
−

Ap,q

A
cos

(π

A
Ap,q

)]
+

(
2α − 4π

3
− 1

2
|p − q|(k(p)− k(q)) cos α

)
cos

(π

A
Ap,q

)

where we wrote νξp,q and ν[p,q] for the exterior unit normal vectors to the region Ap,q,
respectively at the points of the geodesic ξp,q and of the segment pq.
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We remind that in general dA(t)
dt = −(2 − m/3)π where m is the number of triple

junctions of the loop (see formula (8.4)), hence, we have dA(t)
dt = − 4π

3 , since we are
referring to the situation in Figure 14.2, where there is a loop with exactly two triple
junctions.
Substituting these derivatives in equation (14.6) we get

dE(t)
dt

=
2〈p − q | k(p)ν(p)− k(q)ν(q)〉

ψ(Ap,q)

− |p − q|2
[ψ(Ap,q)]2

{
−4π

3

[
1
π

sin
(π

A
Ap,q

)
−

Ap,q

A
cos

(π

A
Ap,q

)]
+

(
2α − 4π

3
− 1

2
|p − q|(k(p)− k(q)) cos α

)
cos

(π

A
Ap,q

)}

and, by equation (14.5),

dE(t)
dt

⩾ − |p − q|2
[ψ(Ap,q)]2

{
−4

3
sin
(π

A
Ap,q

)
+

4π

3
Ap,q

A
cos

(π

A
Ap,q

)
+

(
2α − 4π

3

)
cos

(π

A
Ap,q

)
+

π

A
|p − q|2 sin2(α) sin

(π

A
Ap,q

)}
.

It remains to prove that the quantity

4
3

sin
(π

A
Ap,q

)
− 4π

3
Ap,q

A
cos

(π

A
Ap,q

)
+

(
4π

3
− 2α

)
cos

(π

A
Ap,q

)
− π

A
|p − q|2 sin2(α) sin

(π

A
Ap,q

)

is positive.
As E(t) = |p−q|2

ψ(Ap,q)
= |p−q|2

A
π sin( π

A Ap,q)
, we can write

4
3

sin
(π

A
Ap,q

)
− 4π

3
Ap,q

A
cos

(π

A
Ap,q

)
+

(
4π

3
− 2α

)
cos

(π

A
Ap,q

)
− π

A
|p − q|2 sin2(α) sin

(π

A
Ap,q

)
=

4
3

sin
(π

A
Ap,q

)
− 4π

3
Ap,q

A
cos

(π

A
Ap,q

)
+

(
4π

3
− 2α

)
cos

(π

A
Ap,q

)
− E(t) sin2(α) sin2

(π

A
Ap,q

)
.
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Notice that using inequality (14.3), we can evaluate 4π
3 − 2α ∈ (π/6, π/3), in partic-

ular, it is positive.
We finally conclude the estimate of dE(t)

dt and the proof of this proposition by separat-
ing the analysis into two cases, depending on the value of Ap,q

A .
If 0 ⩽ Ap,q

A ⩽ 1
3 , we have

dE(t)
dt

⩾ 4
3

sin
(π

A
Ap,q

)
− 4π

3
Ap,q

A
cos

(π

A
Ap,q

)
+

(
4π

3
− 2α

)
cos

(π

A
Ap,q

)
− E(t) sin2(α) sin2

(π

A
Ap,q

)
⩾
(

4π

3
− 2α

)
cos

(π

A
Ap,q

)
− E(t) sin2(α) sin2

(π

A
Ap,q

)
⩾
(π

6

)
cos

(π

3

)
− E(t) sin2

(π

3

)
> 0 .

If 1
3 ⩽ Ap,q

A ⩽ 1
2 , we get

dE(t)
dt

⩾ 4
3

sin
(π

A
Ap,q

)
− 4π

3
Ap,q

A
cos

(π

A
Ap,q

)
+

(
4π

3
− 2α

)
cos

(π

A
Ap,q

)
− E(t) sin2(α) sin2

(π

A
Ap,q

)
⩾ 4

3
sin
(π

A
Ap,q

)
− 4π

3
Ap,q

A
cos

(π

A
Ap,q

)
− E(t) sin2(α) sin2

(π

A
Ap,q

)
⩾ 4

3

(
sin
(π

3

)
− π

3
cos

(π

3

))
− E(t) > 0 .

Remark 14.6. — We want to stress here the reason why we are able to prove
Proposition 14.5 only when Γp,q contains at most two triple junctions and so
Theorem 14.4 only for networks with at most two 3–points. If we try to repeat the
computations of the final part of this proof considering a situation such that Γp,q

contains more than two triple junctions, as the value of dA(t)
dt changes according to

dA(t)
dt = −(2 − m/3)π, when m ⩾ 3, we only have dA(t)

dt ⩾ −π (instead of being
equal to −4π/3), which is not sufficient to get to the inequality dE(t)

dt > 0.

Lemma 14.7. — Let Ω be an open, bounded, strictly convex subset of R2. Let S0 be an initial
regular network with two triple junctions and let the St be the evolution by curvature of S0
defined in a maximal time interval [0, T). Then, there cannot be a sequence of times tj → T
such that, along such sequence, the two triple junctions converge to the same end–point of the
network.
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Proof. Let O1(t) and O2(t) be the two triple junctions of St and Pi the end–points on
∂Ω. Suppose, by contradiction, that limi→∞ Oj(ti) = P1, for j ∈ {1, 2}. Notice that if
St is not a tree, then it has the structure either of a “lens/fish–shaped” network (see
Figure 8.3) or of an “island–shaped” network.

O1 O2

γ1
γ2

γ3

γ4

P2

P1

Figure 14.3: An island–shaped network.

If we consider the sequence of rescaled networks H̃1
P1,tj

obtained via Huisken’s dy-
namical procedure applied to H1

t , as in Proposition 8.20, centered in P1, it converges
in C1,α

loc ∩ W2,2
loc , for any α ∈ (0, 1/2) to a (not empty) limit degenerate regular shrinker

H̃∞. We analyze the possible H̃∞ without using the multiplicity–one conjecture M1,
to avoid a “circular argument”. Moreover, we consider among all the possible blow–up
limits H̃∞, one with the maximum number of 3–points (which can only be 0, 2 or 4).
We first consider the case when H̃∞ (hence, also the underlying graph) is a tree, then
it is a symmetric family of halflines from the origin, by Lemma 8.10.
If H̃∞ has no 3–points, then it is a line through the origin, which means that in the
rescaling procedure all the 3–points go to infinity, hence it must be that the curves γi

of St not going to infinity, in the sequence of rescalings, satisfy

lim
j→∞

Li(tj)√
T − tj

= +∞ ,

then, repeating the argument of Proposition 8.30 (leading to Proposition 8.32), such
a line must have multiplicity one, being composed of the “reflection” of two halflines
with unit multiplicity.
If H̃∞ contains only two 3–points (hidden in its core at the origin), recalling the ar-
gument in the proof of Lemma 8.10, it is given by four halflines forming angles of
120/60 degrees.
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In both these two cases the curvature of the non–rescaled networks Ht (hence, of
St) is locally uniformly bounded around P1 (by White’s regularity theorem in [110]
and Proposition 10.21, which are both independent of M1), then (in the second case,
by arguing as in Lemma 8.24) the presence of another 3–point of St in a space–time
neighborhood of (P1, T) is “forbidden”, clearly contradicting the hypotheses.
The remaining case of four 3–points in H̃∞, is when the (symmetric) core of H̃∞ is
given by three degenerate curves (and four 3–points) at the origin. In this case it is
straightforward to see that S̃∞ contains a straight line through the origin, which is
not possible since S̃∞ must be contained in an angle with opening less than π, by the
strict convexity of Ω, as it is shown in Proposition 8.13.
If instead H̃∞ contains a loop (actually, two symmetric ones coming from a collaps-
ing loop in St, as t → T and its “reflection”), pushing a little the analysis in Section 8.1
(see also the Appendix), it could only have the structure of a Brakke spoon (see
Figure 8.2) or of a shrinking lens/fish (see Figure 8.4). Then, it would contains the
origin of R2 in its inside, which is clearly not possible in our situation of blow–up
around an end–point of the network St.

Remark 14.8. — As before, we remark that the strictly convexity hypothesis on Ω can
actually be weakened by asking that Ω is convex and that there does not exist three
aligned end–points of the initial network S0 on ∂Ω.

Proof of Theorem 14.4. If St is the evolution of a network with only one triple junction,
any of the evolving networks Hi

t has exactly two 3–points. Let t ∈ [0, T) a time such
that 0 < Π(t) < 1/4 and Π and all embeddedness measures Ei, associated to the
networks Hi

t, are differentiable at t (this clearly holds for almost every time).
Let Ei(t) = Π(t) < 1/4 and Ei(t) is realized by a pair of points p and q in Hi

t, we
separate the analysis in the following cases:

— If the points p and q of the minimizing pair are both end–points of Hi
t, by con-

struction |p − q| ⩾ ε > 0. Moreover, the area enclosed in the Jordan curve
formed by the segment pq and by the geodesic curve Γp,q can be uniformly
bounded by above by a constant C > 0, for instance, the area of a ball con-
taining all the networks Hi

t. Since ε > 0 and C depend only on Ω and on the
structure of the initial network S0 (more precisely on the position of the end–
points on the boundary of Ω, that stay fixed during the evolution and that do
not coincide), the ratio |p−q|2

ψ(Ap,q)
(or |p−q|2

Ap,q
, if p, q do not belong to a loop) is greater

or equal than some constant Cε = ε2

C
> 0 uniformly, hence the same holds for

Π(t).

— If one point is internal and the other is an end–point of Hi
t, we consider the

following two situations. If one of the two point p and q is in St ⊆ Hi
t and the
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other is in the reflected network S
Ri
t , then, we obtain, by construction, a uniform

bound from below on Π(t) as in the case in which p and q are both boundary
points of Hi

t.
Otherwise, if p and q are both in St and one of them coincides with Pj with
j 6= i, either the other point coincides with Pi and we have again a uniform
bound from below on Π(t), as before, or both p and q are points of H

j
t both

not coinciding with its end–points and Ej(t) = Ei(t) = Π(t) < 1/4, so we can
apply the argument at the next point.

— If p and q are both “inside” Hi
t, by Hamilton’s trick (see [48] or [78,

Lemma 2.1.3]), we have dΠ(t)
dt = dEi(t)

dt and, by Proposition 14.5, dEi(t)
dt > 0,

hence dΠ(t)
dt > 0.

All this discussion implies that at almost every point t ∈ [0, T) such that Π(t) is
smaller than some uniform constant depending only on Ω and on the structure of
the initial network S0, then dΠ(t)

dt > 0, which clearly proves the theorem in the case a
network with a single triple junction (see also [82, Section 4]).
Let now St be a flow of regular networks with two triple junctions. If there are no
end–points, the conclusion follows immediately from Proposition 14.5. Hence, we
assume that St has two or four end–points (in the first case there is a loop, and in the
second St is a tree), which are the only possibilities.
The analysis is the same as above, with only a delicate point to be addressed, that is,
in the last case, when the two points p and q of the minimizing pair are “inside” Hi

t
and we apply Proposition 14.5. Indeed, since Hi

t has four 3–points it can happen that
the geodesic curve Γp,q contains more than two 3–points, hence this case requires
special treatment. Notice that if the points p and q are both “inside” St ⊆ Hi

t, then
Proposition 14.5 applies and we are done. We then assume that p ∈ St, q ∈ S

Ri
t , and

Γp,q contains more than two triple junctions.
We want to show that there exists a uniform positive constant ε such that
|p − q| ⩾ ε > 0, which implies a uniform positive estimate from below on Ei(t),
as above. This will conclude the proof.
Assume by contradiction that such a bound is not possible, then, for a sequence
of times tj → T, the Euclidean distance between the two points pj and qj of the
associated minimizing pair of Φtj goes to zero, as j → ∞ and this can happen only
if pi, qi → Pi. It follows, by the maximum principle that the two 3–points O1(t) and
O2(t) converge to Pi on some sequence of times tk → T (possibly different from tj),
which is forbidden by Lemma 14.7 and we are done.

Remark 14.9. — Notice, by inspecting the previous proof, that in the case that St has
a single 3–point, the strict convexity of Ω is not necessary, convexity is sufficient.
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14.1. Consequences for the multiplicity–one conjecture

The quantity E(t) considered in the previous section is clearly, by definition, dilation
and translation invariant, moreover it is continuous under C1

loc–convergence of net-
works. Hence, if E(t) ⩾ C > 0 for every t ∈ [0, T), the same holds for every C1

loc–limit
of rescalings of networks of the flow St. This clearly implies the strong multiplicity–
one conjecture SM1.

Corollary 14.10. — If Ω is strictly convex and the initial network S0 has at most two triple
junctions, then the strong multiplicity–one conjecture SM1 is true for the flow St.

A by–product of the proofs of Proposition 14.5 and Theorem 14.4 is actually that also
the function Π(t) is positively uniformly bounded from below during the flow.

Corollary 14.11. — If Ω is strictly convex and the initial network S0 has at most two triple
junctions, then the strong multiplicity–one conjecture SM1 is true for all the “symmetrized”
flows Hi

t.

Remark 14.12. — Actually, in general, if we are able to show the (strong)
multiplicity–one conjecture for a curvature flow St in a strictly convex open set Ω,
then, by construction and Proposition 8.13, it also holds for all the “symmetrized”
flows Hi

t. This remark is in order since in the analysis of the flow St in the previous
sections, we used the “reflection” argument at the end–points of the network St, then
we argued applying M1 to the resulting networks Hi

t (to be precise, in Section 10.1
and in the proofs of Proposition 10.11 and of Proposition 10.19).

Another situation that can be analyzed by means of the ideas of this chapter is the
following.

Proposition 14.13. — If during the curvature flow of a network St the triple junctions stay
uniformly far from each other and from the end–points, then SM1 is true for the flows St and
all Hi

t. As a consequence, the evolution of St does not develop singularities.

Proof. We divide all the pairs of curves of the evolving network St in two families,
depending on the curve of a pair have a common 3–point or not. In the second case, by
means of maximum principle and the assumption on the 3–points, there is a uniform
constant C > 0 such that any couple of points, one on each curve of such pair, have
distance bounded below by C. Then, if the pair of points of St realizing the quantity
E(t) stay on such curves it follows E(t) ⩾ C′ > 0 for some uniform constant C′. In
case E(t) < C′, it follows that such a pair of points either stay on the same curve or
on two curves with a common 3–point. Hence, the “geodesic” curve Γp,q contains at
most one 3–point, since otherwise the distance between p and q would be at least C,
contradicting the fact that E(t) < C′. This implies that dE(t)

dt > 0 by Proposition 14.2.
Then, the strongmultiplicity–one conjecture follows for St and all the “symmetrized”
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flows Hi
t, by the same argument in the proof of Theorem 14.4, taking into account the

hypothesis that the triple junctions stay uniformly far also from the end–points.
It follows that the only possible singularities of the flow are given by the collapse of
a curve of the network, but this is excluded by the assumption.
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CHAPTER 15

THE FLOWOF NETWORKS
WITH ATMOST TWO TRIPLE JUNCTIONS

In what follows we present, up to the best of our knowledge, the description of the
evolution of the networks with at most two triple junctions. For simplicity, we let
them evolve in a strictly convex, open and smooth subset Ω ⊆ R2. These are not only
simple examples of a complete analysis of the flow, but they are interesting since
most of the relevant phenomena of the motion by curvature of networks are already
present.
All the results are based on the content of the previous sections. We underline
that in the current situations the strong multiplicity–one conjecture SM1 holds (see
Section 14.1), hence it is not necessary to assume it. We require instead the unique-
ness of blow–up assumptionU, stated in Problem 8.25, to hold, which is still conjectural,
even if some positive partial results were recently obtained in [90].
We recall that if the maximal time of smooth existence is finite, either a curve is van-
ishing with bounded curvature, or there exists at least a point x0 ∈ Ω where the
curvature is not bounded, that is, at least a region of the network collapses at such
point and we have there a blow–up limit network which cannot have zero curvature.
Since the multiplicity–one conjecture holds for these networks, when a region col-
lapses, also the loop that encloses the region must collapse, with its length going to
zero.

15.1. Networks with only one triple junction

If we consider the possible (topological) structures of regular networks with only
one triple junction, we see that there are only two cases: the triod and the spoon–
shaped network. The motion of a triod can be regarded as the simplest example of
the evolution by curvature of a tree–like configuration of an “essentially” singular
one–dimensional set, the motion of a spoon is the simplest one with a loop.
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Figure 15.1: Networkswith only one triple junction: triod and spoon network.

In what follows we present a complete description of the evolution of networks with
these two shapes (from [76, 82, 89]). We will see that in the case of the triod, we can
exclude the presence of singularities till the lengths of the three curves stay positively
bounded from below, while in the case of the spoon instead, a singularity develops.
As defined in Chapter 3, fixed a smooth, open, strictly convex set Ω ⊆ R2, a
triod is a network (a tree) T composed only of three regular, embedded C1 curves
γi : [0, 1] → Ω. These curves intersects each other only at a single 3–point O, that
is, γ1(0) = γ1(0) = γ1(0) = O and have the other three end–points P1, P2, P3 on
the boundary of Ω with γi(1) = Pi, for i ∈ {1, 2, 3}. The triod is regular if the three
concurring curves form angles of 120 degrees.
A spoon Γ = γ1([0, 1]) ∪ γ2([0, 1]) is the union of two regular, embedded C1 curves
γ1, γ2 : [0, 1] → Ω which intersect each other only at a triple junction O, with angles
of 120 degrees, that is, γ1(0) = γ1(1) = γ2(0) = O ∈ Ω and γ2(1) = P ∈ ∂Ω.
We call γ1 the “closed” curve and γ2 the “open” curve of the spoon and we de-
note with A the area of the region enclosed by the loop. A spoon is regular if
τ1(0) + τ2(0)− τ1(1) = 0, which means that the three angles at O are of 120 degrees.
For simplicity, wewill assume in the following that all the initial networks are smooth,
hence Theorem 3.30 applies and gives a smooth curvature flow in a maximal time
interval [0, T). As we discussed in the previous sections, to start the flow if the curves
of the initial network are only C2 but the Herring condition is still satisfied, we need
Theorem 5.8. If the initial network is not regular, we need to apply Theorem 11.9
to have a curvature flow. Anyway, in all these cases, the flow is smooth for every
positive time. If the network is regular, thanks to Theorem 5.8, we have uniqueness
(geometric uniqueness to be more precise, see Definition 3.1). If these networks with
only triple junctions are not regular but their curves are smooth, we still get geometric
uniqueness (see Remark 11.29).
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Collecting and specializing the results for a smooth initial network to the cases of a
triod or of a spoon (Theorem 3.30), we have the following proposition.

Proposition 15.1. — Let Ω ⊆ R2 be a smooth, open, strictly convex set, then, for any
smooth regular initial triod T0 or any smooth regular initial spoon Γ0 in Ω, there exists a
geometrically unique smooth (and special) curvature flow in a maximal time interval [0, T).

Before proceeding, we also recall that during the flow the evolving networks stay em-
bedded and intersect the boundary of Ω only at the fixed end–points (transversally),
see Section 8.2.

15.1.1. The triod. — Suppose that T < +∞, then, by Proposition 10.9, the lengths of
the three curves cannot be uniformly positively bounded from below. Hence, as Ω is
strictly convex, Corollary 10.25 and Theorem 10.32 imply that the curvature of Tt is
uniformly bounded and there must be a collapse of a curve to a fixed end–point on
∂Ω, when t → T, as depicted in the right side of Figure 10.1 or Figure 10.8.
Suppose instead that T = +∞. Then, by Proposition 13.6, for every sequence of times
ti → +∞, there exists a (not relabeled) subsequence such that the evolving triod Tti

converge in C1 to a possibly degenerate regular triod, embedded (by Theorem 14.4)
and with zero curvature, as i → ∞, that is, a Steiner configuration connecting the
three fixed points Pi on ∂Ω (which possibly have a zero–length degenerate curve,
for instance if the three end–points are the vertices of a triangle with an angle of
120 degrees). Moreover, as the Steiner configuration (which is length minimizing)
connecting three points is unique (if it exists), for every subsequence of times, we
have the same limit triod, hence, the full sequence of triods Tt converge to such limit,
as t → +∞.
We notice that there is an obvious example where the length of one curve goes to
zero in finite time: the case of an initial triod T0 with the boundary points Pi on
∂Ω such that one angle of the triangle with vertices P1, P2, P3 is greater than 120
degrees. In this case the Steiner triod does not exist, hence the maximal time of a
smooth evolution must be finite.
Instead, if the angles of the triangle with vertices P1, P2, P3 are all smaller than 120
degrees and the initial triod T0 is contained in the convex envelope of P1, P2, P3, then
no length can go to zero during the evolution, by Remark 10.15, the maximal time of
existence is +∞ and the triods Tt tend, as t → +∞, to the unique Steiner triod.
When the maximal time T is finite and a curve collapses to an end–point (see
Figures 10.1, 10.8 and the above discussion), it is not clear how to continue/restart
the flow. Indeed, although the curvature is bounded, Theorem 11.9 does not apply
and we need some “boundary” extension (see the discussion in Section 10.4, after
Figure 10.8).
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15.1.2. The spoon. — In Section 8.2 we discussed the behavior of the area A of a
bounded region enclosed by a loop of an evolving regular network. In the case of
the spoon, the loop is composed of one curve and there is only one triple junction.
Then, equation (8.4) gives A′(t) = −5π/3, which implies that the maximal time T
of existence of a smooth flow of a spoon is finite and T ⩽ 3A(0)

5π , where A(0) is the
initial area enclosed in the loop (see Proposition 13.4).
As t → T, the only possible limit regular shrinkers Γ̃∞ arising from Huisken’s rescal-
ing procedure at a reachable point x0 ∈ Ω are given by

— a halfline from the origin,

— a straight line through the origin,

— a standard triod,

— a Brakke spoon (see Figure 8.2).

This follows by the simple topological structure of Γt and the uniqueness (up to rota-
tion) of the Brakke spoon among the shrinkers in its topological class (see Section 8.6).
We remind that all the possible blow–up limits are non–degenerate networks with
multiplicity one, thanks to Corollary 14.10.
We first notice that, if the curve γ1 collapses, then the curvature clearly cannot be
bounded. Moreover, by Proposition 10.32, it is not possible that both lengths of γ1

and γ2 go to zero, as t → T.
Suppose that the length of the “open” curve γ2 is uniformly positively bounded from
below for all t ∈ [0, T], then the curve γ1 must collapse and the maximum of the
curvature goes to+∞ as t → T (indeed, limt→T

∫
St

k2 ds = +∞, by Proposition 13.4).
Then, if x0 = limt→T O(t), taking a blow–up limit Γ̃∞ at x0 ∈ Ω, we can only get a
Brakke spoon, since in the other cases (a halfline is obviously excluded) the curvature
would be locally bounded and the flow regular. Hence, as t → T, the length of the
closed curve γ1 goes to zero and the area A(t) enclosed in the loop goes to zero since
(as U holds) we have a limit network ΓT , as t → T, composed only by a C1 curve γ2

T
connecting P with x0 (and curvature going as o(1/dx0)), as in Figure 10.11. Moreover,
from the evolution law A(t) = A(0)− 5πt/3, we obtain that T = 3A(0)

5π .
If instead the length of the curve γ2 is not positively bounded from below then, as
t → T, by Proposition 10.32 such curve collapses to the end–point P, the curvature
stays bounded and the network Γt is locally a tree around every point, uniformly in
t ∈ [0, T). Hence, the region enclosed by the curve γ1 does not vanishes and the
triple junction O has collapsed onto the boundary point P, maintaining the 120 de-
grees condition and with bounded curvature (see Proposition 10.21). The networks
Γt converge in C1, as t → T, to a limit network ΓT , as in Figure 10.9.
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We actually do not have a natural way to restart the flow in the first situation. In the
second one, a natural “choice” is to assume that the flow ends and the whole network
vanishes for t > T.
We conclude this example with a couple of open questions.

Open Problem 15.2 (Special case of Problem 8.25). — Is the limit Brakke spoon obtained
in the previous theorem (in the second situation) independent of the chosen sequence of times
tk → +∞? That is, is the direction of its unbounded halfline unique?

OpenProblem 15.3. — Having inmind the “convexification” result for simple closed curves
by Grayson [46] (see Remark 2.16), a natural question is: if we consider an initial spoon
moving by curvature with the length of the non–closed curve uniformly positively bounded
below during the evolution, does the closed curve become eventually convex and then remain
convex?

These two open problems are related: the uniqueness of the blow–up limit (which
is a Brakke spoon, hence with a convex region) would imply that the region at some
time becomes convex and then remains so, by the smooth convergence of the rescaled
networks to the Brakke spoon (this follows from the argument of Lemma 8.6 in [58],
see the discussion just after the proof of Lemma 8.24).

15.2. Networks with two triple junctions

We consider now regular networks with exactly two triple junctions and we focus on
their topological classification. We parametrize the curves composing the network
by γi : [0, 1] → R2. At each 3–point either three different not closed curves concur
(for instance O1 = γ1(0) = γ2(0) = γ3(0)) or two curves, one of which closed (that
is O1 = γ1(0) = γ1(1) = γ2(0)). As we do not consider here open networks (with
branches that go to infinity asymptotic to halflines, see Definition 2.4), if a curve is
not closed (hence γ1(0) 6= γ1(1)), there are only two possibilities for its end–point
not concurring in O1: either it is an end–point on the boundary of Ω, or it belongs
to the other triple junction O2. If we repeat the above reasoning for every end–point,
we obtain all the cases shown in Figure 15.2.
When we say that a network has a loop `, we mean that there is a Jordan curve in S

that encloses an area A. For networks with two triple junctions, there are two cases
(see Figure 15.2):

— the loop ` is composed of a single curve γ : [0, 1] → R2, γ(0) = γ(1) forming
an angle of 120 degrees. The length L of ` coincides with the length of γ.

— the loop ` is composed of two curves γ1, γ2 : [0, 1] → R2, that meet each other
at their end–points and at both junctions there is an angle of 120 degrees. The
length L of ` is the sum of the lengths of the two curves.
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Figure 15.2: Networks with two triple junctions.

Proposition 15.4. — Let Ω ⊆ R2 be a smooth, open, strictly convex set, then, for any
smooth regular initial network in the above family, there exists a geometrically unique smooth
(and special) curvature flow in a maximal time interval [0, T). During the flow, the evolv-
ing networks stay embedded and intersect the boundary of Ω only at the fixed end–points
(transversally).

We first analyze the possible blow–up limits at a singular time of the evolution of
networks with two triple junctions of general topological type, then we discuss in
detail all the possible topologies, case by case.
It is crucial that all the possible blow–up limits S̃∞, arising from Huisken’s rescal-
ing procedure, are embedded networks with multiplicity–one, by Corollary 14.10 in
Chapter 14.

Proposition 15.5. — If the rescaling point x0 belongs to Ω, then the blow–up limit network
S̃∞ (if not empty) is one of the following (see Section 8.1):

— a straight line through the origin;

ASTÉRISQUE 452



15.2. NETWORKS WITH TWO TRIPLE JUNCTIONS 227

— a standard triod centered at the origin;

— a standard cross;

— a Brakke spoon;

— a shrinking lens;

— a shrinking fish.

If the rescaling point x0 is a fixed end–point of the evolving network (on the boundary of Ω),
then the blow–up limit network S̃∞ (if not empty) is one of the following:

— a halfline from the origin;

— two halflines from the origin forming an angle of 120 degrees (“half” of a standard
cross).

Proof. The limit (possibly degenerate) network S̃∞ has to satisfy the shrinkers equa-
tion k∞ + x⊥ = 0 for all x ∈ S̃∞ (see the proof of Proposition 8.20).
If we assume that S̃∞ is a degenerate regular shrinkers, it must be a standard cross,
if x0 ∈ Ω, or two halflines from the origin forming an angle of 120 degrees, when
x0 ∈ ∂Ω (“half” of a standard cross). Then, its core is composed of a single curve (con-
necting the two triple junctions or a triple junctionwith an end–point, by Lemma14.7)
“collapsed” in the limit.
If S̃∞ is not degenerate and the curvature k̃∞ is constantly zero, the network is com-
posed only of halflines or straight lines. Then, the possible regular shrinkers are ei-
ther a straight line through the origin or a standard triod, if x0 ∈ Ω, or a halfline, if
x0 ∈ ∂Ω.
If instead the curvature is not constantly zero and the network S̃∞ is not degenerate,
by the classification of regular shrinkers with two triple junctions, we can only have
either the Brakke spoon, the shrinking lens, or the shrinking fish. In all these three
cases, the center of the homothety is inside the enclosed region, hence x0 cannot be
an end–point on the boundary of Ω.

Proposition 15.6. — Let S0 be a network with two triple junctions and with a loop ` of
length L, enclosing a region of area A and let St be a smooth evolution by curvature of such
network in the maximal time interval [0, T). Then, T is finite and if limt→T L(t) = 0, there
holds limt→T

∫
St

k2 ds = +∞.

Proof. If a loop is present, by the above classification of the possible topological struc-
tures of the networks with two triple junctions, it must be composed of m curves,
with m < 6, hence, Proposition 13.4 applies.
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Theorem 15.7. — Let Ω ⊆ R2 be a smooth, strictly convex, open set. Let S0 be a compact
initial network with two triple junctions and with possibly fixed end–points on ∂Ω and let St
be the smooth evolution by curvature of S0 in a maximal time interval [0, T).
If the network S0 has at least one loop, then the maximal time of existence T is finite and one
of the following situations occurs:

1. the limit of the length of a curve that connects the two 3–points goes to zero, as t → T,
and the curvature remains bounded;

2. the limit of the length of a curve that connects the 3–point with an end–point goes to
zero, as t → T and the curvature remains bounded;

3. a region enclosed by a loop collapses with the length of the loop going to zero (since
SM1 holds), as t → T and lim

t→T

∫
St

k2 ds = +∞.

If the network is a tree and T is finite, the curvature is uniformly bounded and only one of
the first two situations listed above can happen. If instead T = +∞, for every sequence of
times ti → +∞, there exists a subsequence (not relabeled) such that the evolving networks
Sti converge in C1,α ∩W2,2, for every α ∈ (0, 1/2), to a possibly degenerate, regular network
with zero curvature (hence, “stationary” for the length functional), as i → ∞.

Proof. If a loop is present, by Proposition 13.4, the maximal time of smooth exis-
tence T > 0 is finite. If such time is smaller than the “natural” time at which
the loop shrinks (depending on the number of curves composing the loop, as in
Proposition 13.4), the network is locally a tree, uniformly for t ∈ [0, T). Hence, every
blow–up limit at any point x0 ∈ Ω cannot contain loops, then Proposition 15.5 shows
that it must have zero curvature, thus, by Proposition 10.19 the curvature of St is uni-
formly bounded along the flow and converges, as t → T, to a degenerate regular
network ST with vertices that are either a regular triple junction, an end–point, or

— a 4–point where the four concurring curves have opposite unit tangents in pairs
and form angles of 120/60 degrees between them (collapse of the curve joining
the two triple junctions of St);

— a 2–point at an end–point of the network St where the two concurring curves
form an angle of 120 degrees among them (collapse of the curve joining a triple
junction to such end–point of St).

The same conclusion clearly holds if S0 is a tree and T is finite.
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If instead the time T coincides with the vanishing time of a loop of the network, by
Proposition 13.4, the curvature is unbounded and there must exist a reachable point
for the flow x0 ∈ Ω and a sequence of times tj → T such that, the associate sequence
of rescaled networks S̃x0,tj , as in Proposition 8.20, converges in C1,α

loc ∩ W2,2
loc , for any

α ∈ (0, 1/2), to a limit degenerate regular shrinker S̃∞ that is either a Brakke spoon,
a shrinking lens, or a shrinking fish.
If T = +∞, hence S0 must be a tree, then St converges, as t → +∞, to a (possibly
degenerate) regular network with zero curvature (a stationary point for the length
functional), thanks to Proposition 13.6

To now proceed with a more detailed analysis of the behavior of the flow of these
networks, we consider each topological type separately.

15.2.1. The theta. — We call A1 the area enclosed by the curves γ1 and γ2 and A2
the area enclosed by γ2 and γ3, as in the following figure.

Ω O2
γ2

A1

A2

γ1

γ3

O1

Figure 15.3: Theta.

Let x0 ∈ Ω be a reachable point of the flow, from Proposition 8.20, we know that the
sequence of rescaled networks S̃x0,tj converges in C1,α

loc ∩ W2,2
loc , for any α ∈ (0, 1/2), to

a blow–up limit shrinker S̃∞. By Proposition 15.5, the possible S̃∞ are:

— a straight line through the origin;

— a standard triod;

— a standard cross;

— a shrinking lens;

— a shrinking fish,

where we excluded the Brakke spoon for topological reasons.
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We know from Proposition 13.4 that the maximal time T of existence of a smooth
flow is finite and bounded by 3

4π min{A1(0), A2(0)}. Indeed, from equation (8.4),
we know that the areas enclosed in the two loops are linearly decreasing in time,
precisely, A′

1(t) = A′
1(t) = −4π/3.

If T < 3
4π min{A1(0), A2(0)}, then the evolving network is locally a tree for all times,

hence the analysis of Sections 10.2 and 10.3 (in particular, Theorem 10.26) applies
and the curvature stays bounded while the length of only one curve is going to zero,
as t → T, forming a regular 4–point, where the two triple junctions converge.

Suppose that T = 3
4π min{A1(0), A2(0)}. Suppose by contradiction that

A1(0) = A2(0). Clearly the two regions should collapse both at T. Taking a
blow–up limit S̃∞ at a hypothetical vanishing point x0 ∈ Ω, such limit must contain
two contiguous regions with a common edge and with equal finite area. Indeed,
every rescaled network of the sequence S̃x0,t contain two contiguous regions and
the two loops cannot vanish in the limit (neither collapsing to a core because of the
enclosed constant area), since at least one is present in the possible blow–up limit
shrinker. Then, since there are no possible limit shrinkers with two bounded regions,
by Proposition 15.5, this situation is not possible.
So, in the case T = 3

4π min{A1(0), A2(0)}, the two areas A1(0) and A2(0) must be
different. The curvature cannot stay bounded, hence theremust exist a singular point
x0 ∈ Ω where S̃∞ is a non–straight shrinker, thus, a shrinking lens or a shrinking fish.
The resulting possible limit network ST , as t → T, will then be given by a C1 curve,
“closing” at x0, possibly forming an angle. As we supposed that the uniqueness of
blow–up assumptionU in Problem 8.25 holds, such angle is either the one between the
two “halfilnes” of the shrinking fish, if this is the blow–up limit shrinker, or the curve
is C1 (no angle), if the blow–up limit shrinker is a shrinking lens (see Figure 10.7).

In the first case, we “pass through” the (topological) Type-0 singularity by a standard
transition, as described in Chapter 12 (see Figure 12.1) and we actually conjecture
that this can be done in a unique way, see Remark 12.1. After the transition, the net-
work becomes eyeglasses–shaped (of “type A” or of “type B”, depending on whether
the collapsed curve was the central one, or one of the other two, respectively), as in
Figure 12.2 or in the left side of Figure 13.3.
In the case ST is a C1 closed curve with possibly an angle, by the results of Angenent
in [6] (see also [30]), we can (uniquely) restart the evolution by means of the “clas-
sical” curve shortening flow, obtaining an evolving closed embedded curve, which
becomes immediately smooth. After some time it becomes convex and then shrinks
in finite time to a “round” point of Ω, by the well–known works of Gage, Grayson
and Hamilton [39–41, 46].
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15.2.2. The eyeglasses. — We analyze the two different “types” of these networks,
as in the following Figure 15.4.
From equation (8.4) we know that the area enclosed by any loop is linearly decreas-
ing in time. Hence, being present some regions, by Proposition 13.4 it follows that
the maximal time T > 0 of existence of a smooth flow is finite and bounded by

3
5π min{A1(0), A2(0)}, where A1 and A2 are the areas of the regions respectively
enclosed by the curves γ1 and γ2, in the “type A” case, by 3A1(0)

5π , where A1 is the
area enclosed by the “internal” loop, in the “type B” case (in the case of collapse of
a region also its boundary loop must vanish, hence the “internal” region is forced to
collapse).

Ω

O1 O2
γ1 γ3

γ2

Ω

O2 O1
γ3 γ1

γ2

Figure 15.4: Eyeglasses – “type A” and “type B”.

Considering a reachable point for the flow x0 ∈ Ω, the possible blow–up limit
shrinkers S̃∞, as t → T, by Proposition 15.5 are:

— a straight line through the origin;

— a standard triod;

— a standard cross;

— a Brakke spoon,

where we excluded the shrinking lens and fish, since are not topological compati-
ble with the possible limits of eyeglasses–shaped network (limit regions cannot “in-
crease” the number of edges).
We first analyze the behavior of a “type A” eyeglasses–shaped network.
If T < 3

5π min{A1(0), A2(0)}, no region has collapsed, then the evolving network is
locally a tree for all times, hence (as in the analogous case for a Θ–shaped network),
the curvature stays boundedwhile only the length of the single “open” curve is going
to zero, as t → T, forming a regular 4–point, where the two triple junctions converge.
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If T = 3
5π min{A1(0), A2(0)}, then at last one of the two region collapses (with un-

bounded curvature) at some point x0 ∈ Ω and the blow–up limit shrinker S̃∞ must
be a Brakke spoon. We underline that, differently from the case of the Θ–shaped net-
work, if A1(0) = A2(0), we do not have an argument to exclude that both regions
collapse to a single common point, as t → T (even if it seems quite implausible).
Hence, we have the following possibilities, in the case of a collapse of a region, as
t → T:

— if A1(0) 6= A2(0), then the limit network ST is a spoon with an “open” C1 curve
ending at the collapse point, see Figure 10.10;

— if A1(0) = A2(0) and the two regions collapse at two different points of Ω, the
limit network ST is a C1 curve connecting such two points;

— if A1(0) = A2(0) and the two regions collapse at a common point of Ω, then the
limit network ST is a closed C1 curve, starting and ending at the collapse point
and there possibly forming an angle, if the length of the “open” curve does not
go to zero, otherwise, all the network collapses at such point, if also the length
of the “open” curve goes to zero.

Anyway, we conjecture that this last situation and in particular, a complete “vanish-
ing” of the network, as t → T, is not possible.

We now deal with a “type B” eyeglasses–shaped network.
From what we said above, if T < 3A1(0)

5π , no region has collapsed, then the evolving
network is locally a tree for all times, hence (as above), the curvature stays bounded
while only the length of the single “open” curve is going to zero, as t → T, forming
a regular 4–point, where the two triple junctions converge.

If T = 3A1(0)
5π , then the “internal” region collapses (with unbounded curvature) at

some point x0 ∈ Ω and the blow–up limit shrinker S̃∞ must be a Brakke spoon.
Since, arguing as in Proposition 13.4, we have that the area A2 of the region be-
tween the inner and the outer closed curve of the network satisfies A′

2 = −2π/3,
while A′

1 = −5π/3, if A1(0)/A2(0) > 5/2, we have a contradiction since A2 would
go to zero before A1 and this cannot happen (it would contradict what we said at
the beginning of this section). Hence, in this case, the initial areas must satisfy
A1(0)/A2(0) ⩽ 5/2.
If we have the equality A1(0)/A2(0) = 5/2, at time T, both regions are collapsing,
as t → T and they cannot “disappear” in the blow–up limit shrinker S̃∞, since in the
rescaled sequence they have constant area and, being one contained in the other, no
one of them can “go to infinity”. Hence, the blow–up limit shrinker would have two
regions, which is impossible, as it must a Brakke spoon, by Proposition 15.5.
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Thus, it must be A1(0)/A2(0) < 5/2 and the network cannot completely “vanish” at
a single point of Ω. We have instead that only the “interior” region collapses at a point
and the limit network ST is a closed C1 curve, starting and ending at the collapse point
and there forming an angle of 120 degrees, if the length of the “open” curve goes to
zero, otherwise, there is also a C1 curve connecting the collapse point with the angle
of the limit of the curve γ2 (see Figure 15.4), if the length of the “open” curve does
not go to zero.

In case of collapse of the “open” curve, for both types, we “pass through” the sin-
gularity as before, with a standard transition, getting a Θ–shaped network after the
time T (see the right side of Figure 13.3).
In the other cases, imposing that after the time T, all the “open” curves with a “free”
end–point vanish in the subsequent evolution, we have only to deal with the remain-
ing part of the network (if present) and we can restart the flow with the same argu-
ments discussed above for the limits at a singular time of a Θ–shaped network.

15.2.3. The lens. — The main difference between this case (and also the next ones)
with the theta and the eyeglasses cases, is that boundary points are present.

Ω

P1

P2

O1

A

O2
γ2

γ1
γ4

γ3

Figure 15.5: Lens.

This increases the list of the possible blow–up limit networks S̃∞. Indeed, by
Proposition 15.5, if the blow–up point x0 ∈ Ω, they can be:

— a straight line through the origin;

— a standard triod;

— a standard cross;

— a shrinking lens;

— a shrinking fish,
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where we excluded the Brakke spoon for topological reasons and, if x0 ∈ ∂Ω,

— a halfline from the origin;

— two halflines from the origin that form an angle of 120 degrees.

As we have a region with two edges in this network, the maximal time of existence T
is finite and bounded by 3A(0)

4π , by Proposition 13.4.

If T < 3A(0)
4π , no region collapses, the evolving network is locally a tree for all times

and the curvature stays bounded. Then, we can have two cases: either the length
of one of the two “central” curves goes to zero, or this happens for one or both the
“boundary” curves. In the first case, the limit network ST has a regular 4–point con-
nected with the two end–points and with a closed C1 curve, starting and ending at
such point, forming an angle of 60 degrees. In the second case, ST can have either two
curves between the two end–points bounding a region, or a curve from an end–point
with a triple junction at its other end, which is connected with the other end–point
by two curves bounding a region. At the end points, the curves form an angle of 120
degrees.

If T = 3A(0)
4π the central region is collapsing (with unbounded curvature) and the

sequence S̃x0,tj converges to a shrinking lens or to a shrinking fish, hence giving as
a limit network ST , either a C1 curve connecting the two end–points (if the blow–
up limit shrinker is a shrinking lens), or two curves from the two end–points to the
collapse point in Ω, where they form and angle like the one between the two “hal-
filnes” of the shrinking fish (if this is the blow–up limit shrinker). We remind that
the collapse at the same time of both triple junctions (and the central region) to an
end–point on ∂Ω is excluded by Lemma 14.7.

In the first case, we “pass through” the singularity as before, with a standard tran-
sition, getting an island–shaped network, after the time T (see the left side of
Figure 13.2).
If one or both the boundary curves collapses to an end–point, we actually do not have
a natural way to restart the flow (as in the case of the spoon, when the “open” curve
collapses).
If the central region collapses, hence ST is a piecewise C1 curve with possibly a single
angle and (fixed) end–points on ∂Ω, by the results in [30] and [6], we can (uniquely)
restart the evolution by means of the curve shortening flow with fixed end–points,
obtaining an evolving embedded curve, which becomes immediately smooth and
converges as t → +∞, to the segment connecting such end–points.
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15.2.4. The island. — As for the previous networks with a closed curve, for an
island–shaped network, themaximal time of existence T of a smooth flow in bounded
by 3A(0)

5π .

O1 O2
γ1 γ2

γ3

γ4

P2

P1

Figure 15.6: Island.

By Theorem 5.7, if the blow–up point x0 ∈ Ω, the blow–up limit networks S̃∞ can be:

— a straight line through the origin;

— a standard triod;

— a standard cross;

— a Brakke spoon,

where we excluded the standard lens and fish (as the limit cannot have a region with
more than one edge) and, if x0 ∈ ∂Ω,

— a halfline from the origin;

— two halflines from the origin that form an angle of 120 degrees.

If T < 3A(0)
4π , no region collapses, the evolving network is locally a tree for all times

and the curvature stays bounded. Then, we can have two cases: either the curve γ2 in
the figure collapses with O1 and O2 forming a 4–point, or the length of one of the two
“boundary” curves goes to zero. In the first case, the limit network ST has a regular
4–point connected with the two end–points and with a closed C1 curve, starting and
ending at such point, forming an angle of 120 degrees. In the second case, ST is
formed by the union of a spoon and a C1 curve connecting the two end–point. The
“open” curve of the spoon form an angle of 120 degrees with such connecting curve
at the end–point where they concur.
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If T = 3A(0)
4π , the region is collapsing (with unbounded curvature) and the sequence

S̃x0,tj converges to a Brakke spoon. Hence, since the collapse at the same time of
both triple junctions (and the central region) to an end–point on ∂Ω is excluded by
Lemma 14.7, the limit network ST must be either a triod composed by two curves
connecting the two end–points to the triple junctions and an “open” curve, or (if the
curve γ2 also collapses – see Figure 15.6) two curves from the two end–points to the
collapse point in Ω. In both cases the two “boundary” curves form an angle of 120
degrees.

In the first case, no region collapses, we “pass through” the singularity with a stan-
dard transition, getting an lens–shaped network, after the time T (see the right side
of Figure 13.2), if the “open” curve collapses in Ω. If instead, it is a “boundary” curve
which collapses, we do not have a natural way to continue the flow.
In the second case, as before, we “forget” the possibly present “open” curve, impos-
ing that after the time T it vanish and we can (uniquely) restart the evolution of the
piecewise C1 curve with a single angle by means of the curve shortening flow with
fixed end–points (as in the case of a lens–shaped networkwhen the central region col-
lapses), obtaining an evolving embedded curve, which becomes immediately smooth
and converges, as t → +∞, to the segment connecting such end–points.

15.2.5. The tree. — This is the only network with two triple junctions which does
not present loops. Consequently, it is the only case where we could have the global
existence of the flow.

P1

P2

P3

P4

γ1

γ4

γ2
γ3

γ5

O1

O2

Figure 15.7: Tree.

Being a tree, by the analysis of Sections 10.2 and 10.3 the curvature stays bounded till
a possible singular time and we can only have a formation of a 4–point or one or two
non–concurrent “boundary” curve collapse to their respective end–point, forming an
angle of 120 degrees. In this latter case, as we said, we do not have a natural way to
continue the flow, while in the first case, we have a standard transition, getting another
tree, with the only other possible structure with the same end–points (see Figure 13.1).
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If T = +∞ or the number of standard transition during the “extended” flow is finite,
St tends, as t → ∞, to the Steiner configuration of minimal length, connecting the
four fixed end–points.

15.2.6.The symmetric tree. — Following [88, 90], if we add a symmetry assumption,
we get a complete description of the evolution of a tree with two triple junctions.
Suppose S0 is the smooth regular network in Figure 15.8. The network has four end–
points located at the vertices of a rectangle, it is composed of five curves, symmetric
with respect to the horizontal and vertical axes, the middle curve γ0 is a segment.

γ1

γ0

Figure 15.8: A symmetric tree network.

Thanks to the symmetries, we can reduce to study the evolution of a single curve, for
instance, γ1. In this case one can prove (see [88]) that the network flow encounters
only a finite number of standard transitions, so that it is eventually regular and glob-
ally defined. The limit, as t → +∞, is therefore a Steiner tree or a standard cross
(only when the ratio between the longer and shorter side of the rectangle is equal to√

3). In the latter case, the length of γ0 goes to zero and the curvature of the network
remains bounded.

Remark 15.8. — Taking into account the discussion at the beginning of Chapter 13,
one should actually consider the flow of theta–eyeglasses and lens–island coupled, as
a standard transition “switches” the shape/topology of two networks from one to the
other (like for the only two possible trees connecting four points, as we said above),
as in the Figures 13.1, 13.2 and 13.3).
Let us assume that

i) singular times are finite;

ii) there is no collapse of “boundary” curves;

iii) any “open” curve generated by a singularity, immediately disappears when we
restart the flow;

then, at some time at least one region must collapse and
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— in the case theta–eyeglasses, either we get a closed curve with possibly an angle
that evolves smoothly by curve shortening flow and shrinks in finite time to a
“round” point of Ω, or the network completely vanishes (we actually think this
last scenario is not possible),

— in the case lens–island, we get a piecewise C1 curve with possibly a single angle
connecting the two end–points, which then evolves smoothly by curve shorten-
ing flow with fixed end–points and converges, as t → +∞, to the segment
connecting such end–points.

We observe that in both cases, these are the last singular times of the flows (before
the “vanishing” in the first case).
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OPEN PROBLEMS

In this chapter we recall some problems that we find the most important among the
several open questions scattered in the text.

1. Definition of the flow.
Our “parametric” approach gives a good definition for the curvature flow of a
network, compared with the existing notions of generalized evolutions for sin-
gular objects, more general but allowing weaker conclusions. The only unsatis-
factory point is that we impose the presence of only triple junctions and the 120
degrees angle condition. Thanks to them, we have the well–posedness of the
system of PDE’s (2.5), hence the short–time existence Theorems 3.6 and 3.25, in
Sobolev and Hölder spaces, respectively.
Nevertheless, one may wonder if these two conditions are automatically satis-
fied instantaneously, for every positive time, by choosing a different suitable
definition of the curvature flow of a network.

2. Multiplicity–one conjecture.
Maybe the main open problem in the subject is the multiplicity–one conjecture,
that is, whether every blow–up limit shrinker is an embedded network with
multiplicity one (see Problem 10.1).
Several of the arguments and results in this work depend on such conjecture,
we mention its fundamental role in the description of the limit network at a
singular time and, consequently, in the possibility to implement the restarting
procedure in order to continue the evolution, moreover, it is also a key ingredi-
ent in showing that the curvature of a tree–like network is uniformly bounded
during the flow for all times and that one has only to deal with “standard tran-
sitions” at the singular times (see Chapter 10).
At the moment, we are able to prove the (strong) multiplicity–one conjecture
only for networks with at most two triple junctions (see Chapter 14).
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3. Uniqueness of blow–up limits.
According to Proposition 8.20, the sequence of rescaled networks S̃x0,tj associ-
ated to a sequence of rescaled times tj → +∞, converges to a degenerate regular
shrinker S̃∞, only up to a subsequence. Analogously, in Proposition 8.17, the
sequence of rescaled curvature flows S

µi
t converges to a degenerate regular self–

similarly shrinking flow S∞
t , up to a subsequence.

One would like to prove that the limit degenerate regular shrinker S̃∞ (and/or
the degenerate regular self–similarly shrinking flow S∞

t ) is actually indepen-
dent of the chosen converging subsequences, that is, the full family S̃x0,t C1

loc–
converges to S̃∞, as t → +∞. This is what we called uniqueness assumption in
Problem 8.25 and it is fundamental for the conclusions of Proposition 10.35 and
Theorem 10.42, necessary to restart the flow when a region collapses at a singu-
lar time.
Some positive partial results were recently obtained in [91], in particular,
uniqueness holds if the blow–up limit shrinker is compact (some examples are
given in the Appendix).

4. Behavior when a region collapses.
The singularities when awhole region collapses and then vanishes are themost
difficult to deal with, in particular because the curvature is unbounded. We
are not able, at the moment, to give a complete picture of the behavior of the
evolving network, getting close to the singular time. A couple of conjectures
are stated in Problems 8.28 and 8.29, in particular, we expect that the non–
collapsing curves “exiting” from the collapsing regions (and converging to the
concurring curves at the newmulti–point of the limit network) have locally uni-
formly bounded curvature during the flow and that, anyway, such singularities
are actually all Type I singularities, see Remark 8.21 (in other words, the curva-
ture flow of embedded networks does not develop Type II singularities).
Anyway, hypothetically admitting the possibility of Type II singularities, one is
led to consider and try to analyze/classify also Type II blow–up limits (see [82,
Section 7]), which are actually “eternal” curvature flows of regular networks
(for instance, the “translating” ones, see [82, Section 5.2], that possibly coin-
cide with them).

5. Classification of shrinkers.
Several questions (also of independent interest) arise in trying to classify the
(embedded) regular shrinkers. Such a classification is complete for shrinkers
with at most two triple junctions [9–11], or for the shrinkers with a single
bounded region [10, 20, 21, 97], see the following figure.
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Figure 16.1: The regular shrinkers with a single bounded region.

A lot of numerical computations, partial results and conjectures can be found
in [51]. We mention the very natural question whether there exist reg-
ular shrinkers with more than five halflines. Moreover, interesting stabil-
ity/instability results were recently obtained in [19].

6. The set of singular times.
An important point to be understood, in order to define a curvature flow in a
maximal time interval, passing through singular times by means of the restart-
ing procedure described in Chapter 12, is whether the set of singular times is
discrete or even finite (as it happens for symmetric networks with two triple
junctions, see [88]), or if they can accumulate in some particular situation (see
Problem 13.1). In this latter case, at the moment we actually do not know how
to continue the flow.

7. Asymptotic convergence.
In the case of global existence in time of an “extended” curvature flow (see
Chapter 13), we would like to show the convergence of the evolving network,
as t → +∞, to a stationary network for the length functional (Problem 13.12).
At themoment, we are able to face this problem only under the assumption that
the structure of the network stops changing after some time, that is, there are
no singularities of the flow for large times, see [90].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024





APPENDIX

A REGULAR SHRINKERS GALLERY
(courtesy of Tom Ilmanen)

The following figures of regular shrinkers with their Gaussian density are based on
numerical computations due to J. Hättenschweiler (see [51] where one can also find
other positive and negative examples and several conjectures) and T. Ilmanen. We
remark that this is not an exhaustive list, only the shrinkerswith atmost one bounded
region are completely classified, by thework of Chen andGuo [21] (and actually they
are the only ones in this gallery whose existence is rigorously proved). Moreover,
all the shrinkers shown below have at least one symmetry axis, we do not know of
examples without any symmetries at all.

No regions:

Line
Θ = 1

Triod
Θ = 1.5
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1 region:

Circle
Θ=

√
2π
e ≈1.520

Spoon
Θ ≈ 1.699

Lens
Θ ≈ 1.789

Fish
Θ ≈ 2.026

3–ray star
Θ ≈ 2.031

Rocket
Θ = ?

4–ray star
Θ ≈ 2.295

5–ray star
Θ ≈ 2.606

2 regions:

Cisgeminate eye
Θ = ?

Cisgeminate 4–ray star
Θ = ?

3 regions:

Mercedes–Benz
Θ ≈ 2.532

1–rayMercedes–Benz
Θ ≈ 2.598

3–rayMercedes–Benz
Θ ≈ 2.762

Cisgeminate 3–ray star
Θ = ?
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4 regions:

3–leaf clover
Θ ≈ 3.064

2–ray 2–floc
Θ ≈ 3.249

5 regions:

4–leaf clover
Θ ≈ 3.234

2–ray 4–leaf clover
Θ ≈ 3.365

4–petal flower
Θ ≈ 3.474

6 regions:

5–leaf clover
Θ ≈ 3.455

3–floc
Θ ≈ 3.477

3–ray three–floc
Θ ≈ 3.517

5–petal flower
Θ ≈ 3.907

9 regions:

9–floc
Θ ≈ 4.194

3–ray 9–floc
Θ ≈ 4.321
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Non–embedded regular shrinkers:

Antispoon
Θ ≈ 2.365

Bowtie
Θ ≈ 2.503

Impossible regular shrinkers:

Conjecturally, by numerical evidence in [51], there are no regular shrinkerswith these
topological shapes. The only onewhose non–existence is rigorously proved is the first
one, the Θ–shaped (double cell) shrinker, in [10].
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We consider the motion by curvature of a network of curves
in the plane and we discuss existence, uniqueness, singularity
formation, and asymptotic behavior of the flow.

On considère le mouvement par courbure d’un réseau de courbes
dans le plan et on discute de l’existence, l’unicité, la formation des
singularités et le comportement asymptotique du flux.
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