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SYSTOLES IN TRANSLATION SURFACES

by Corentin Boissy & Slavyana Geninska

Abstract. — For a translation surface, we define the relative systole to be the length
of the shortest saddle connection. We give a characterization of the maxima of the
systole function on a stratum and give a family of examples providing local but non-
global maxima on each stratum of genus at least 3. We further study the relation
between the (local) maxima of the systole function and the number of shortest saddle
connections.

Résumé (Systoles dans les surfaces de translation). — Pour une surface de trans-
lation, nous définissons la systole relative comme étant la longueur d’une plus petite
connexion de selles. Nous donnons une caractérisation des maxima de la fonction sys-
tole sur une strate et donnons une famille d’exemples qui sont des maxima locaux
mais non globaux sur chaque strate de genre au moins trois. Nous étudions de plus des
relations entre les maxima (locaux) de la fonction systole et le nombre de plus petites
connexions de selles.
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418 C. BOISSY & S. GENINSKA

1. Introduction

This paper deals with flat metrics defined by Abelian differentials on com-
pact Riemann surfaces (translation surfaces). Such flat metrics have conical
singularities of angle (k + 1)2π, where k is the order of the zero of the corre-
sponding Abelian differential. A stratum of the moduli space of the Abelian
differentials corresponds to translation surfaces that share the same combina-
torics of zeroes, possibly including marked points.

A saddle connection on a translation surface is a geodesic joining two singu-
larities (possibly the same) and with no singularity in its interior. A sequence
of area 1 translation surfaces in a stratum leaves any compact set, if and only
if, the length of the shortest saddle connection tends to zero. The set of trans-
lation surfaces with short saddle connections and compactification issues of
strata are related to dynamics and counting problems on translation surfaces
and have been widely studied in the last 30 years (see, for instance, [9, 5, 4]).

In this paper, we are interested in the opposite problem: we study surfaces
that are as far as possible from the boundary and that would represent the
“core” of a stratum. For a translation surface, we define the relative systole
Sys(S) to be the length of the shortest saddle connection of S. Our primary
goal is to study global and local maxima of the function Sys when restricted to
area 1 translation surfaces. Note that our definition is different from the “true
systole”, i.e., the shortest closed curve that was studied by Judge and Parlier
in [8]. In the rest of the paper, for simplicity, if not mentioned otherwise, the
term “systole” will mean “relative systole”.

This kind of question also appears in other contexts. The maxima of the
systole function for moduli spaces of hyperbolic surfaces, where the systole is
the length of the shortest closed geodesic, have been studied by various authors,
for instance, Bavard [2], Schmutz Schaller [13], or more recently Balacheff,
Makover, and Parlier [1]. A related question is the maximal number of geodesics
realizing the systole, the so-called kissing number, see, for instance, Schmutz
Schaller [14], and Fanoni and Parlier [7].

In the context of area 1 translation surfaces, while the characterization of
global maxima for Sys seems to have been known for some time in the math-
ematics community, the existence of local maxima was unknown. We provide
explicit examples of local maxima that are not global in each stratum with
genus g = 2 with marked points or g ≥ 3. We also study the relation between
the (locally) maximal values of the function Sys and the (locally) maximal
number of shortest saddle connections.

The paper is organized as follows. In Section 2, we give some general back-
ground on translation surfaces. In Section 3, we study global maxima of the
function Sys for area 1 translation surfaces. We prove the following theorem
(see Theorem 3.3):
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SYSTOLES IN TRANSLATION SURFACES 419

Theorem. — Let S be a genus g ≥ 1 translation surface of area 1 and r > 0
singularities or marked points. Then,

Sys(S) ≤
(√

3
2 (2g − 2 + r)

)− 1
2

.

The equality is obtained if and only if S is built with equilateral triangles whose
sides are saddle connections of length Sys(S). Such a surface exists in any
connected component of any stratum.

This result was independently proven recently by Judge and Parlier [8] for
surfaces with one singularity; the authors are interested in the shortest closed
curves, but their proof should work in any strata in our context.

In Section 4, we study the local maxima of the function Sys that are not
global. With the help of explicit examples we prove the following result, which
is Theorem 4.7 in the text.

Theorem. — Each stratum of area 1 surfaces with genus g = 2 with marked
points or g ≥ 3 contains local maxima of the function Sys that are not global.

The examples are obtained by considering surfaces that decompose into equi-
lateral triangles and regular hexagons, with some further conditions (see The-
orem 4.1 for a precise statement).

In Section 5, we study the relation between (locally) maximal values of the
function Sys and the (locally) maximal number of shortest saddle connections.
We call a surface rigid if it corresponds to a local maximum of the number
of shortest saddle connections. While the connection is clear for global max-
ima (see Proposition 5.1), the situation is more complex for the local max-
ima. The examples that we provide for local maxima of the function Sys are
rigid. Even more, a surface that is a local maximum of the function Sys and
that decomposes into equilateral triangles and regular hexagons must be rigid
(Proposition 5.2). However, rigid surfaces are not necessarily local maxima (see
Proposition 5.3).

2. Background

A translation surface is a (real, compact, connected) genus g surface S with
a translation atlas, i.e., a triple (S,U ,Σ), such that Σ is a finite subset of
S (whose elements are called singularities) and U = {(Ui, zi)} is an atlas of
S \ Σ whose transition maps are translations of C ' R2. We will require that,
for each s ∈ Σ, there is a neighborhood of s isometric to a Euclidean cone,
whose total angle is a multiple of 2π. One can show that the holomorphic
structure on S \ Σ extends to S and that the holomorphic 1-form ω = dzi
extends to a holomorphic 1−form on X, where Σ corresponds to the zeroes of
ω and maybe some marked points. We usually call ω an Abelian differential.
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420 C. BOISSY & S. GENINSKA

A zero of ω of order k corresponds to a singularity of angle (k + 1)2π. By a
slight abuse of notation, we authorize the order of a zero to be 0; in this case,
it corresponds to a regular marked point. A saddle connection is a geodesic
segment joining two singularities (possibly the same) and with no singularity
in its interior. Integrating ω along the saddle connection we get a complex
number. Considered as a planar vector, this complex number represents the
affine holonomy vector of the saddle connection. In particular, its Euclidean
length is the modulus of its holonomy vector.

For g ≥ 1, we define the moduli space of Abelian differentialsHg as the mod-
uli space of pairs (X,ω), where X is a genus g (compact, connected) Riemann
surface, and ω a nonzero holomorphic 1−form defined on X. The term moduli
space means that we identify the points (X,ω) and (X ′, ω′) if there exists an
analytic isomorphism f : X → X ′ such that f∗ω′ = ω. The group SL(2,R)
naturally acts on the moduli space of translation surfaces by post composition
on the charts defining the translation structures.

One can also see a translation surface obtained as a polygon (or a finite union
of polygons) whose sides come in pairs, and for each pair, the corresponding
segments are parallel and of the same length. These parallel sides are glued
together by translation, and we assume that this identification preserves the
natural orientation of the polygons. In this context, two translation surfaces
are identified in the moduli space of Abelian differentials if and only if the cor-
responding polygons can be obtained from each other by cutting and gluing and
preserving the identifications. Also, the SL(2,R) action in this representation
is just the natural linear action on the polygons.

The moduli space of Abelian differentials is stratified by the combinatorics
of the zeroes; we will denote by H(k1, . . . , kr) the stratum of Hg, where

∑
i ki =

2g−2, consisting of (classes of) pairs (X,ω), such that ω has exactly r zeroes of
order k1, . . . , kr. This space is (Hausdorff) complex analytic (see, for instance,
[11, 15, 16]). We often restrict ourselves to the subset H1(k1, . . . , kr) of area 1
surfaces. Local coordinates for a stratum of Abelian differentials are obtained
by integrating the holomorphic 1-form along a basis of the relative homology
H1(S,Σ;Z), where Σ denotes the set of conical singularities of S.

3. Maximal systole

We recall that the systole Sys(S) of a translation surface S is the length
of the shortest saddle connection of S. The aim of this section is to prove
Theorem 3.3, which characterizes translation surfaces of area 1 with maximal
systoles. One key tool is Delaunay triangulation.

Let S be a translation surface. A Delaunay triangulation S is a triangulation
of S, such that the vertices are singularities, the 1-cells (the sides of the trian-
gles) are saddle connections and, for a 2-cell (triangle) T of the triangulation,
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SYSTOLES IN TRANSLATION SURFACES 421

the circumcircle of any representative T̃ of the universal covering does not have
any singularity in its interior.

In Section 4 of [12], Masur and Smillie prove the existence of Delaunay
triangulations for every translation surface S.

Lemma 3.1. — All shortest saddle connections of S are 1-cells in every De-
launay triangulation of S.

Proof. — Let σ be a saddle connection that is not included in a Delaunay
triangulation T . Denote by P,Q the extremities of σ. Let T ∈ T be the
triangle in T with P as a vertex and containing a subsegment of σ. Let P ′, P ′′
be the other vertices of T (see Figure 3.1).

•P
′′

•
P ′

•P σ
•Q

c

Figure 3.1. Illustration of Lemma 3.1

Consider the circumcircle c of T and the open arc of P ′P ′′ which does not
contain P . Each chord of c joining P to an element of this arc is of length
strictly greater than min(d(P, P ′), d(P, P ′′)) ≥ Sys(S). One of these chords is
in the direction of σ, and since there is no singularity in the interior of c, this
chord is a subsegment of σ. Therefore, σ is not a shortest saddle connection. �

The first statement of the following lemma is needed for the proof of the
next theorem. The second statement will be useful for Theorem 4.7.

Lemma 3.2. — Let C ⊂ H(k1, . . . , kr) be a connected component of a stratum
of abelian differentials with k1, . . . , kr ≥ 0.

1. There exists in C a surface S that decomposes into equilateral triangles
whose sides are saddle connections.

2. Furthermore, for each i, j we can find such a surface with a side of
an equilateral triangle being a saddle connection joining a singularity of
degree ki to a singularity of degree kj, with the convention that the two
singularities are different, if i 6= j and equal if i = j.
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422 C. BOISSY & S. GENINSKA

Proof. — We first prove (1). By Lemma 18 in [10] there exists in each con-
nected component of each stratum a surface with a horizontal one-cylinder
decomposition. Up to a shear transformation that creates a vertical saddle
connection, such surface can be described as a rectangle with the two vertical
sides identified that correspond to a saddle connection, and each horizontal
side decomposes into horizontal saddle connections (each one appearing on the
top and on the bottom). We can freely change the lengths of these saddle
connections, and hence we can assume that they are all of length 1 and get a
square tiled surface with singularities in each corner of the squares. Now we
rotate the vertical one until it makes an angle of π/3 with the horizontal ones
(see Figure 3.2), this gives the surface S required.

• • • • • • • •

•••••••••

•

• • • • • • • •

•••••••••

•

Figure 3.2. Surface with an equilateral triangle decomposition

The proof of (2) is a small variation of the above proof: observe first that
each singularity appears both on the top line and on the bottom line of the
cylinder. Recall that SL(2,R) acts on the connected component of the stratum
by linear action on the polygons. Then applying the matrix ( 1 n

0 1 ) and suitably
cutting and pasting we obtain a new rectangle. For a suitable n, there is a
vertical length 1 saddle connection joining the singularity of degree ki to the
singularity of degree kj , and the above argument finishes the proof. �

Theorem 3.3. — Let S be a genus g ≥ 1 translation surface of area 1 and
r > 0 singularities or marked points. Then,

Sys(S) ≤
(√

3
2 (2g − 2 + r)

)− 1
2

.

The equality is obtained if and only if S is built with equilateral triangles whose
sides are saddle connections of length Sys(S). Such a surface exists in any
connected component of any stratum.
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Proof. — For simplicity, instead of looking at a translation surface of area 1
and trying to determine the longest systole possible, we suppose that S has a
systole of length 1 and try to minimize the area A(S).

We consider a Delaunay triangulation of S given by saddle connections. By
Lemma 3.1 all shortest saddle connections of S are 1-cells in this triangulation.
Note that some triangles in the Delaunay triangulation might have a small
area.

We consider the Voronoi diagram of S. This is a partitioning of S into cells.
Each cell contains exactly one singularity and is the set of points of S that
are closer to that singularity than to any other. The boundary of each cell
consists of points that are equidistant to at least two singularities, in the sense
that there are at least two different distance realizing geodesics of equal length
connecting the point with a singularity (see Section 4 of [12] for reference).

The boundaries of the cells of the Voronoi diagram are parts of the orthog-
onal bisectors of the saddle connection in the Delaunay triangulation. Even
though the triangulation is not unique, the Voronoi diagram is.

We can compute A(S) as the sum of the areas of the triangles with one
of the vertices a singularity and its opposite side a side of the Voronoi cell
containing the singularity (see Figure 3.3). The height of such a triangle is a
half of a saddle connection, and hence, its length is greater than or equal to 1

2 .
Therefore, A(S) is greater than or equal to one half of the sum of the lengths
of all the sides of the Voronoi cells.

•A •B

•C

V(A)

Figure 3.3. A Delaunay triangle T = 4ABC, with the
Voronoi cell V(A) containing A. The area of the gray tri-
angle is at least 1

2 times the length of corresponding side of
the Voronoi cell.

For each triangle T in the Delaunay triangulation, we consider the sum σ(T )
of the signed distances from the circumcenter of T to its sides. The sum of the
lengths of all the sides of the Voronoi cells equals the sum of σ(T ) of all T in
the triangulation. We want to bound from below σ(T ) for each triangle T .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



424 C. BOISSY & S. GENINSKA

By Carnot’s theorem1 σ(T ) is equal to the sum of the inradius and the
circumradius of T (see, for instance, [6]). Hence, by Lemma 3.4, σ(T ) ≥

√
3

2
with equality if and only if T is equilateral of side 1.

The number of triangles in the triangulation is 2(2g− 2 + r). Hence A(S) ≥√
3

2 (2g − 2 + r) if the systole is of length 1. Thus, for a translation surface
of area 1, we have that the systole is at most

(√3
2 (2g − 2 + r)

)− 1
2 and can

be obtained only if S is built with equilateral triangles whose sides are saddle
connections of length Sys(S).

We conclude by using the first statement of Lemma 3.2. �

Lemma 3.4. — Let T be a nondegenerate Euclidean triangle with sides of length
at least 1. Then, the sum of the circumradius and the inradius of T is at least√

3
2 , with equality if and only if T is equilateral of side 1.

Proof. — Denote by R the circumradius and by r the inradius of T . First, we
note that when we shrink T , we decrease the sum R + r. So without loss of
generality, we can assume that at least one of the sides of T is of length 1. So
for the triangle T = 4ABC with 1 = AB ≤ BC ≤ AC, we take a point D on
the side BC so that BD = AB. Note that AD ≥ 1. For the inradius r̃ and
the circumradius R̃ of the isosceles 4ABD, we can see that r̃ ≤ r and R̃ ≤ R.
Indeed, the circumcenter of 4ABD is nearer to AB than the circumcenter of
4ABC and therefore R̃ ≤ R. To obtain that r̃ ≤ r we note that the incenter
of 4ABD is nearer to B than that of 4ABC.

For a triangle with sides 1, 1 and x, we can find the inradius and the cir-
cumradius with the help of the lengths of the sides:

R̃(x) =
√

1
4− x2 , r̃(x) = x

2

√
2− x
2 + x

,

with x ∈ [1, 2). For the sum (R̃+ r̃)(x) and its derivative, we obtain

(R̃+ r̃)(x) = 2 + 2x− x2

2
√

4− x2
, (R̃+ r̃)′(x) = 8− 6x+ x3

2
√

(4− x2)3
.

Since 8 − 6x + x3 = x(1 − x)2 + 2(2 − x)2 + x > 0 for x ∈ [1, 2), we have
that (R̃+ r̃)(x) is strictly increasing in the interval [1, 2) and hence obtains its
minimum for x = 1. Therefore, R + r ≥ R̃ + r̃ ≥

√
3

2 with equality exactly
when the triangle T is equilateral with side 1. �

4. Locally maximal systole

The question is if there exists local but not global maxima in any given stra-
tumH1(k1, . . . , kr) of translation surfaces of area 1. Note that such maxima are

1. Lazare Carnot 1753–1823.
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SYSTOLES IN TRANSLATION SURFACES 425

never strict since rotating a translation surface preserves the systole. We denote
by PH(k1, . . . , kr) the moduli space of translation surfaces in H(k1, . . . , kr) up
to rotation and scaling. The systole function is well defined in PH(k1, . . . , kr):
for [S] ∈ PH(k1, . . . , kr), we define Sys([S]) to be Sys(S), where S is any area 1
representative of [S].

In this section, we show examples of local maxima of the function Sys that
are not global and prove that such examples are realized in all but a finite
number of strata.

We need to first, for technical reasons, define a distance around a point in
H(k1, . . . , kr) and in PH(k1, . . . , kr). Let S0 ∈ H(k1, . . . , kr). Fix a basis of the
relative homology given by saddle connections that determines local coordinates
(v1, . . . , vk) around S0. Then for S in a sufficiently small neighborhood of S0,
we define d(S, S0) = maxi{|vi − vi0 |}.

We will identify a sufficiently small neighborhood of an element [S0] ∈
PH(k1, . . . , kr) with the subset of representatives in H(k1, . . . , kr) normalized
in the following way:

1. The first coordinate v1 is in ]0,+∞[.
2. The length of the shortest saddle connection is 1.

Then, the distance to [S0] is the distance in H(k1, . . . , kr) following this iden-
tification.

Theorem 4.1. — Let Sreg be a translation surface in H1(k1, . . . , kr), such
that when cut along its saddle connections of length Sys(Sreg), it decomposes
to equilateral triangles and regular hexagons so that:
• The set of the equilateral triangles without the vertices is connected.
• The boundary of each polygon is contained in the boundary of the set of
triangles.

Then, Sys(Sreg) is a local maximum in H1(k1, . . . , kr) and even a strict local
maximum in PH(k1, . . . , kr).

Remark 4.2. — The second condition of the above statement is equivalent to
the hexagons being neither adjacent nor self-adjacent.

The idea of the proof is the following: when deforming [Sreg] a little following
the normalization described above, the area of each triangle does not decrease,
and the area of each hexagon might decrease, but this will be compensated by
an increase coming from at least one triangle.

The next two lemmas are estimations of the variation of areas of hexagons
and triangles that are deformed in our context.

Lemma 4.3. — Let Hreg be the regular hexagon of sides of length 1. There
exists a positive constant c such that for every ε > 0 small enough and every
convex hexagon H = A1A2 . . . A6 with sides of lengths in the interval [1, 1 + ε]

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



426 C. BOISSY & S. GENINSKA

and diagonals A1A3, A3A5 and A5A1 of lengths in the interval [
√

3−ε,
√

3+ε],
we have Area(H) ≥ Area(Hreg)− cε2.

Proof. — We consider the convex hexagon H ′ = A1A
′
2A3A

′
4A5A

′
6 such that all

of its sides are of length 1 (see Figure 4.1 ). We see that Area(H) ≥ Area(H ′).

d1

d2

d3

Figure 4.1. The hexagonH and the new hexagonH ′ of side 1
(dashed line).

We note the lengths of the diagonals A1A3, A3A5 and A5A1 by d1, d2 and
d3, respectively. The area of the hexagon H ′ depends smoothly on (d1, d2, d3)
and admits a local minimum at the point (

√
3,
√

3,
√

3) (which corresponds to
the regular hexagon).

Therefore, by the Taylor–Young formula we obtain

Area(H) = Area(Hreg) + o(||(d1 −
√

3, d2 −
√

3, d3 −
√

3)||2).

Since for i ∈ {1, 2, 3} we have di ∈ [
√

3− ε,
√

3 + ε], and there exists a constant
c ∈ R such that

Area(H) ≥ Area(Hreg)− cε2. �

Lemma 4.4. — Let Treg be an equilateral triangle with sides of length 1. There
exists a positive constant c ∈ R such that for every ε > 0 small enough and
every triangle T with one of its sides of length 1 + ε and the other sides of
lengths in the interval [1, 1 + ε], we have that Area(T ) > Area(Treg) + cε.

Proof. — Let T = 4ABC and d(A,B) = 1 + ε and let C ′ be such that
d(A,C ′) = d(B,C ′) = 1. We have Area(4ABC) ≥ Area(4ABC ′).

By Heron’s formula, the area of 4ABC ′ is:

Area(4ABC ′) = 1
4
√

(3 + ε)(1− ε)(1 + ε)2 =
√

3
4 +

√
3

6 ε+ o(ε).

Therefore, there exists a constant c > 0 such that for all ε small enough, we
have Area(T ) > Area(Treg) + cε. �
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Lemma 4.5. — Let ABC be a nondegenerate triangle of sides of length l1 =
BC, l2 = AC, and l3 = AB. For ε small enough, let A′B′C ′ be a triangle
with sides of lengths l′1, l′2, l′3 such that for each i ∈ {1, 2, 3}, |li − l′i| ≤ ε. We
assume further that d(A,A′) ≤ ε, d(B,B′) ≤ ε, and C and C ′ are in the same
half-plane determined by AB. Then there is a constant J > 1 only depending
on l1, l2, l3 such that d(C,C ′) ≤ Jε.

Proof. — We consider first the translation τ of R2 of direction
−−→
A′A. We remark

that τ(A′) = A and d(B′, τ(B′)) < 2ε. Then we consider the rotation ρ
with center A and of angle ]BAτ(B′). We note X ′′ = ρ(τ(X ′)) where X ∈
{A′, B′, C ′} (see Figure 4.2). We remark that A, B, and B′′ are on the same
line and that

d(τ(C ′), C ′′) = d(τ(A′), τ(C ′))
d(τ(A′), τ(B′))d(τ(B′), B′′).

Since d(τ(B′), B′′) ≤ d(τ(B′), B) + d(B,B′′) < 2ε + ε, we obtain for ε small
enough a constant J1 = J1(l2, l3) such that

d(τ(C ′), C ′′) < J1ε.

A

B

C

A′

B′

C ′

A = A′′ B

C

B′′

C ′′

Figure 4.2. The triangles ABC, A′B′C ′, and A′′B′′C ′′.

We want to bound d(C,C ′′). For (M, t) in a neighborhood of (C, l3), we
consider the triangle AMNt whereNt is in the ray AB with d(A,Nt) = t and we
define φ(M, t) = (d(M,A), d(M,Nt), d(A,Nt)). The map φ is smooth, and its
Jacobian derivative at (C, l3) is invertible. Hence it defines a locally invertible
map and φ−1 is smooth. This implies that there is a constant J2 = J2(l1, l2, l3)
such that, for ε small enough,

d(C,C ′′) < J2ε.

Combining this with the above estimations, we obtain d(C,C ′) < (J1+J2+1)ε.
�
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Proof of Theorem 4.1. — We show directly that Sys([Sreg]) is a strict local
maximum in the projective stratum and replace Sreg by a surface, still denoted
Sreg, with the shortest saddle connections of length 1.

First, we remark that removing all shortest saddle connections of Sreg gives
a union of topological disks. Hence, we can find a basis of the relative ho-
mology that consists of shortest saddle connections (γ1, . . . , γk) and we can
assume that γ1 is horizontal and oriented from left to right. We use this basis
to fix local coordinates of the stratum H(k1, . . . , kr) and define a distance in
a neighborhood of Sreg. Recall that we identify a neighborhood of element
[Sreg] ∈ PH(k1, . . . , kr) with a subset U of H(k1, . . . , kr) satisfying the fol-
lowing conditions: the shortest saddle connection is of length 1, and γ1 stays
horizontal. For S ∈ U , we call a short saddle connection any saddle connection
that corresponds to a shortest saddle connection of Sreg.

Let ε > 0 be small enough and S ∈ U be such that ε = d(S, Sreg). Let us
define ρ(S) = Maxγ(l(γ)− 1) where the maximum is taken on all short saddle
connections of S. By hypothesis, ρ(S) ≥ 0.

In a more general setting, in Section 5.2 we prove that we have ρ(S) = 0 if
and only if S = Sreg. However, in the current proof we need a stronger result
(see the claim below).

We observe that since any short saddle connection γ is a linear combination
of {γ1, . . . , γk} in the relative homology group, then its corresponding affine
holonomy vγ satisfies |vγ − vγ,reg| ≤ Kε. Since there are only a finite num-
ber of short saddle connections, K can be made universal for all short saddle
connections. In particular, ρ(S) ≤ Kε.

We have the following facts:
1. The sides of each hexagon H in S corresponding to a regular hexagon
Hreg in the decomposition of Sreg are short saddle connections. By the
above observation, we can apply Lemma 4.3 to H for ε′ = 2Kε. Hence
there is a constant c1, such that

Area(H) ≥ Area(Hreg)− c1ε
2.

2. By Lemma 4.4, there exists at least one equilateral triangle Treg in the
decomposition of Sreg, such that for the corresponding triangle T in S
we have Area(T ) ≥ Area(Treg) + c2ρ(S), where c2 is a positive con-
stant. Furthermore, the area of each triangle in Sreg is not greater than
that of the corresponding triangle in S. Summing up the corresponding
contributions of the triangles, we obtain

Area(∪T ) ≥ Area(∪Treg) + c2ρ(S).

Claim. — There is a constant D, such that for ε = d(S, Sreg) small enough,
ε < Dρ(S). In other words: the lengths of short saddle connections control the
distance from S to Sreg.
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Summing up all contributions, assuming the claim, we see that the area of
S is greater than that of Sreg for ε > 0 small enough. Hence, Sreg is a local
maximum of Sys which is nonglobal since the surface Sreg is not built with
equilateral triangles whose sides are saddle connections.

Now we prove the claim. Recall that we assume that γ1 does not change
direction. Let δ = ρ(S).

Let γ ∈ {γ2, . . . , γk} be a saddle connection in the fixed basis. By hypothesis,
there is a sequence of pairwise distinct equilateral triangles T1, . . . , Tl (whose
sides are length 1 saddle connections) that form a “path” from γ1 to γ, i.e.,
such that

1. γ1 is a side of T1,
2. for each i ∈ {1, . . . , l − 1}, Ti and Ti+1 are adjacent,
3. γ is a side of Tl.

Observe that l is bounded from above by the total number N of triangles in
the decomposition of Sreg. Denote by vreg the affine holonomy of γ in Sreg and
by v the affine holonomy of γ in S. We will use Lemma 4.5 to bound |v−vreg|.

Using the developing map (see Figure 4.3), we can view the triangles (Ti)i
as a sequence of adjacent equilateral triangles of the plane, although in this
case the triangles might intersect. We deform the surface Sreg to obtain the
surface S. The triangles (Ti)i persist but are no longer necessarily equilateral.
Again, we can view them as a sequence of adjacent triangles (T ′i )i in the plane.

A1 = A′1 B1 B′1

vvreg

T1

T2

Figure 4.3. A sequence of adjacent equilateral triangles and
their perturbation
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Denote by T1 = A1B1C1 and T ′1 = A′1B
′
1C
′
1. We can assume that A1 = A′1

is the vertex that is not in T2 or T ′2, and B2, B
′
2 are such that the segments

A1B1 and A′1B
′
1 are horizontal (see Figure 4.3). More generally, for i > 1,

denote the triangle Ti by AiBiCi in such a way that AiBi is a side of the
previous triangle and that BiCi is a side of the next triangle, and we denote
the vertices of T ′i analogously. Using Lemma 4.5 we see that d(C1, C

′
1) < Jδ

(recall that since ρ(S) < Kd(S, Sreg) = Kε, we can assume δ to be arbitrarily
small). Since d(B1, B

′
1) < δ < Jδ we can apply Lemma 4.5 to the triangles T2

and T ′2 for the constant Jδ and we get d(C2, C
′
2) < J2δ. Since l is bounded

from above by N and δ can be chosen arbitrarily small, we get d(Cl, C ′l) < J lδ
and d(Bl, B′l) < J l−1δ. Finally, observe that v is given by the difference of the
coordinates of B′l and C ′l , and therefore:

|v − vreg| < (J l + J l−1)δ < 2.JNδ.
This concludes the proof of the claim and of the theorem. �

Example 4.6. — The surfaces given in Figure 4.4 are examples (with one hexa-
gon) of local maxima that are nonglobal in the strata H(2, 0k) and H(1, 1, 0k),
for k ≥ 1.

The above examples will be used in the next theorem to build examples in
most strata.

Theorem 4.7. — Let H be a stratum of area 1 and genus g ≥ 2 surfaces. We
assume that H is neither H(1, 1) nor H(2). Then H contains local maxima of
the function Sys that are not global.

We first prove the following lemma.

Lemma 4.8. — We consider the stratum H = H(m1, . . . ,mr, x, y) with
m1, . . . ,mr, x, y ≥ 0. We assume that there exists a surface S1 ∈ H that
satisfies the hypothesis of Theorem 4.1 and such that there is a shortest sad-
dle connection γ1 joining a singularity of degree x to a distinct singularity of
degree y. Then:

a) For any n1, . . . , nk, p, q ≥ 0 with p+ q +
∑
i ni even, there exists a local

but nonglobal maximum of Sys in the stratum H(m1, . . . ,mr, p+ a+ 1,
q + a+ 1, n1, . . . , nk).

b) For any n1, . . . , nk, p ≥ 0 with p +
∑
i ni even, there exists a local but

nonglobal maximum of Sys in the stratum H(m1, . . . ,mr, p+ x+ y + 2,
n1, . . . , nk).

Proof. — By Lemma 3.2, there is a surface S2 that decomposes into equilateral
triangles whose sides are saddle connections in H(p, q, n1, . . . , nk), and with a
shortest saddle connection γ2 joining a singularity of degree p to a (distinct)
singularity of degree q.
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Figure 4.4. Examples of local but nonglobal maxima

We can assume that γ1, γ2 are vertical and of the same length. Now we
glue the two surfaces by the following classical surgery: cut the two surfaces
along γ1 and γ2 and glue the left-hand side of γ1 with the right-hand side of γ2
and the right-hand side of γ1 with the left-hand side of γ2. We get a surface
in H(m1, . . . ,mr, p + a + 1, q + a + 1, n1, . . . , nk) that satisfies the hypothesis
of Theorem 4.1 and, hence, is a local but nonglobal maximum for Sys. This
proves Case a).

The proof of Case b) is the same by considering a surfaceS2 inH(p, n1, . . . , nk)
with a shortest saddle connection joining a singularity of degree p to itself. �
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Proof of Theorem 4.7. — Recall that examples of local but nonglobal maxima
of Sys in the strataH(2, 0k) andH(1, 1, 0k), for k ≥ 1, were already constructed
in Example 4.6. It remains to construct examples in all strata of genus at
least 3.

We start from the example S0,2 ∈ H(2, 0) given in Example 4.6. There is a
saddle connection joining the two singularities.
• By Case b) of Lemma 4.8, there is a local maximum in any stratum of
the form H(p+ 4, n1, . . . , nk) with p ≥ 0, k ≥ 0, and n1, . . . , nk ≥ 0.
• By Case a) of Lemma 4.8, there is a local maximum in any stratum of the
form H(p+ 3, q+ 1, n1, . . . , nk) with p, q ≥ 0, k ≥ 0, and n1, . . . , nk ≥ 0.

There remains to construct examples in strata with singularities of degree at
most 2. Now we consider S2,0,0 ∈ H(2, 0, 0) given in Example 4.6. There is a
saddle connection joining the two marked points.
• By Case b) of Lemma 4.8, there is a local maximum in any stratum of
the form H(2, 2, n1, . . . , nk) with k ≥ 0, and n1, . . . , nk ≥ 0.

Now we consider S1,1,0,0 ∈ H(1, 1, 0, 0) given in Example 4.6. There is a saddle
connection joining the two marked points.
• By Case b) of Lemma 4.8, there is a local maximum in any stratum of
the form H(1, 1, 2, n1, . . . , nk) with k ≥ 0, and n1, . . . , nk ≥ 0.
• By Case a) of Lemma 4.8, there is a local maximum in any stratum of
the form H(1, 1, 1, 1, n1, . . . , nk) with k ≥ 0, and n1, . . . , nk ≥ 0.

Finally, we have produced examples in all strata of genus g ≥ 2 except H(2)
and H(1, 1). �

Remark 4.9. — We remark that with these constructions we cannot build
local maxima in H(2) and in H(1, 1). Indeed, for H(2), we need one hexagon
and two triangles, and there is only one possibility that provides a surface in
H(2). However, in this case, the hexagon is self-adjacent (see Section 5 for a
proof that it is not a local maximum). For H(1, 1), we need one hexagon and
four triangles, and by checking all the possibilities, we see that we cannot build
the required example.

In a following paper [3], we prove that in these strata (and more generally
in any hyperelliptic connected components of strata) any local maximum is a
global maximum.

5. Number of shortest saddle connections

In this section, we explore the relations between the (locally) maximal values
of the function Sys and the (locally) maximal number of short saddle connec-
tions.

tome 149 – 2021 – no 2



SYSTOLES IN TRANSLATION SURFACES 433

5.1. Maximal number. — In the case of global maxima, the relation is clear,
as is shown in the next proposition.

Proposition 5.1. — The greatest number of shortest saddle connections of
a surface in H(k1, . . . , kr) is equal to

∑r
i=1 3(ki + 1), and this number is re-

alized if and only if the surface is a global maximum for the function Sys in
PH(k1, . . . , kr).

Proof. — Let S be a surface in H(k1, . . . , kr). We consider two shortest saddle
connections γ1 and γ2 in S starting at the same singularity.

Let us assume that the conical angle between γ1 and γ2 is less than π
3 . Then

• Either the not common ends of γ1 and γ2 can be connected by a saddle
connection, and as a consequence, this saddle connection is shorter than
γ1 and γ2.
• Or there is a saddle connection between γ1 and γ2 (starting at the same
singularity) that is shorter than them.

In both cases we have a contradiction, and hence, the maximal number of
shortest saddle connections starting at a singularity of order ki is 6(ki + 1).
This gives us that the total number of shortest saddle connections cannot exceed∑r
i=1 3(ki + 1).
This number is the number of 1-cells in the Delaunay triangulation. Hence,

by Lemma 3.1, the surface has this number of shortest saddle connections, if,
and only if, its Delaunay triangulation is given by equilateral triangles. By
Theorem 3.3 this situation corresponds precisely to the global maxima of the
function Sys. �

5.2. Locally maximal number: rigid surfaces. — For a given translation sur-
face, we would like to find a path joining this surface to a global maximum for
the function Sys. Following the above proposition, a greedy algorithm could
be to try to increase the number of shortest saddle connections until we reach
a surface with the maximal number. Unfortunately, this algorithm does not
always work.

We call a surface S in H(k1, . . . , kr) rigid, if there exists a punctured neigh-
borhood of [S] ∈ PH(k1, . . . , kr), where all surfaces have a strictly smaller
number of shortest saddle connections. As explained above, the global maxima
of the systole function are rigid surfaces.

An example of a rigid surface is every surface S that, when cut along its
shortest saddle connections, decomposes into equilateral triangles and polygons
with no singularities in the interior, satisfying the following conditions:
• The set of the equilateral triangles without the vertices is connected.
• The boundary of each polygon is contained in the boundary of the set
of triangles.
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Indeed, when deforming such a surface in such a way that the initial shortest
saddle connections stay of the same length, the set of triangles is isometrically
preserved, and therefore, the set of polygons is also isometrically preserved. In
particular, the examples of Theorem 4.1 are rigid surfaces.

We give another family of examples. Consider a surface S as above, but
instead of having one, it has two connected components of triangles. We further
assume that there is a polygon P, such that the sum of the affine holonomy
of the set of saddle connections of its boundary associated to each component
of the triangles is nonzero when orienting the saddle connections according to
the natural orientation of the ∂P. Indeed, as above, when deforming such a
surface in such a way that the initial shortest saddle connections stay of the
same length, then each connected component of the triangles is isometrically
preserved, and the condition on the holonomy implies that the boundary P
is unchanged, which rigidifies the whole surface. If, further, the polygons are
regular hexagons, we can adapt the proof of Theorem 4.1 to show that these
are also local but nonglobal maxima.

The examples given in Figure 5.1 show that it is not sufficient to be de-
composed into equilateral triangles and regular hexagons in order to be a local
maximum. In Figure 5.1, the shortest saddle connections remain of length 1
and, hence, the area of the triangles does not change, but the hexagon is de-
formed, and therefore, its area decreases. The first example has one connected
component of triangles, but the hexagon is self-adjacent. The second one has
two connected components of triangles. Note that the example in H(0, 0, 0) can
be easily modified to give a surface with true singularities (see Remark 5.4).

More generally, we have the following proposition:

Proposition 5.2. — Let S be a translation surface such that, when cut along
its saddle connections of shortest length, it decomposes into equilateral triangles
and regular hexagons. If the function Sys admits a local maximum at [S] ∈
PH(k1, . . . , kr), then S is rigid.

Proof. — We assume that S is nonrigid and deform the surface so that we keep
all shortest saddle connections of the same length 1. This deformation does
not change the metric on each triangle. Therefore, it must change the metric
on at least one hexagon, otherwise the metric would be globally unchanged,
and the transformation would be just a rotation. In particular, the area of
the deformed hexagons must strictly decrease, while the area of the triangles
(and the unchanged hexagons) remains the same. Hence the area of the surface
decreases and thus Sys([S]) increases. �

An interesting question is whether the converse of the above proposition is
true. We can also ask if, in general, any local maximum for Sys comes from a
rigid surface. Note that, in general, rigid surfaces do not necessarily give local
maxima, as shown in the following example.
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Figure 5.1. Examples of nonrigid surfaces in H(0, 0, 0) and H(2)

Proposition 5.3. — The translation surface given by Figure 5.2 is rigid but
it is not a local maximum for the function Sys in PH for n ≥ 3.

Remark 5.4. — Note that the translation surface given in Figure 5.2 con-
tains marked points in the set of singularities. We can easily make them true
singularities by operations analogous to the ones described in the proof of
Lemma 4.8.

Proof. — The fact that the surface is rigid is clear: when cut along the shortest
saddle connections, it decomposes into equilateral triangles and a non self-
adjacent polygon with no singularities in the interior in such a way that the
set of triangles is connected.
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Figure 5.2. Example of a rigid surface that is not a local maximum

Now, we deform the surface as shown in Figure 5.2: the only short saddle
connections that change are the horizontal ones in the parallelograms drawn
with thick sides (see the labels “1” and “n−1”) and their diagonals. The affine
holonomy of the saddle connection corresponding to the label “1” is changed
by adding −iε, and similarly, we add iε to the one corresponding to the label
“n− 1”.

Since all short saddle connections are kept to be of length at least one, we
need to check that the area of the surface decreases.

1. The area of each thick parallelogram increases exactly by the area of the
gray parallelogram in Figure 5.3, which is less than ε, and the two thick
parallelograms in Figure 5.2 are disjoints for n ≥ 3.

2. The area of the polygon decreases by (n− 1)ε+ (n− 2)ε = (2n− 3)ε.
Hence, the total area decreases if n ≥ 3. �
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length = 1
ε

Figure 5.3. Comparing of the areas of the two parallelograms
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