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REVERSIBLE POISSON–KIRCHHOFF SYSTEMS

by Alexandre Boyer, Jérôme Casse, Nathanaël Enriquez
& Arvind Singh

Abstract. — We define a general class of random systems of horizontal and ver-
tical weighted broken lines on the quarter plane whose distribution are proved to be
translation invariant. This invariance stems from a reversibility property of the model.
This class of systems generalises several classical processes of the same kind, such as
Hammersley’s broken line processes involved in last passage percolation theory or such
as the six-vertex model for some special sets of parameters. The novelty here comes
from the introduction of a weight associated with each line. The lines are initially gen-
erated by spatially homogeneous weighted Poisson point process and their evolution
(turn, split, crossing) are ruled by a Markovian dynamics, which preserves Kirchhoff’s
node law for the line weights at each intersection. Among others, we derive some new
explicit invariant measures for some bullet models, as well as new reversible properties
for some six-vertex models with an external electromagnetic field.
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38 A. BOYER, J. CASSE, N. ENRIQUEZ & A. SINGH

Résumé (Systèmes de Poisson-Kirchhoff réversibles). — Nous définissons une classe
générale de systèmes aléatoires de lignes brisées pondérées, horizontales et verticales,
dans le quart de plan pour lesquels nous prouvons qu’il existe des lois invariantes par
translation. Cette invariance découle d’une propriété de réversibilité du modèle. Cette
classe de systèmes généralise plusieurs processus classiques du même type, comme les
processus de lignes brisées d’Hammersley apparaissant en percolation de dernier pas-
sage, ou bien comme le modèle à six-vertex pour des valeurs spécifiques de paramètres.
La nouveauté du papier vient de l’introduction d’un poids associé à chaque ligne. Les
lignes sont intialement distribuées suivant un processus poncuel de Poisson pondéré et
spatialement homogène, et leur évolution (virage, division, croisement) est décrite par
une dynamique markovienne pour laquelle le poids des lignes satisfait la loi des noeuds
de Kirchhoff à chaque intersection. Entre autres, nous obtenons de nouvelles mesures
invariantes explicites pour des modèles ballistiques ainsi que de nouvelles propriétés
de réversibilité pour des modèles à six-vertex avec champ électromagnétique externe.

1. Introduction

In his seminal work [21], Hammersley introduced his now famous broken line
process as a means to study the length of the longest increasing sequence in
a random permutation. This model of last passage percolation (LPP) enjoys
many remarkable properties and has since been thoroughly scrutinised [29, 30].
One possible construction of Hammersley’s process on the quarter plane [0,∞)2

is as follows: consider a unit intensity Poisson point process (PPP) on [0,∞)2.
Each atom of the point process “emits” a pair of particle/anti-particle with the
particle of charge +1 moving horizontally to the right and the anti-particle with
charge −1 moving upward. When the traces of two particles of opposite charge
meet, they both disappear. Then, the collection of all traces obtained with this
procedure is exactly Hammersley’s broken line process on the quarter plane (see
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REVERSIBLE POISSON–KIRCHHOFF SYSTEMS 39

(0, 0) (a, 0)

(0, b)

Figure 1.1. A realisation of Hammersley’s broken line pro-
cess in the rectangle [0, a] × [0, b]. The traces of particles
with charge +1 are represented in red, and those of the anti-
particles with charge −1 are represented in blue.

Figure 1.1 for an illustration of the construction). Let us note that, in view
of this construction, the system may be called “conservative” in the sense that
the total charge of the system remains null since particles and anti-particles
appear and disappear simultaneously.

In this paper, we introduce a new class of random processes, which we call
Poisson–Kirchhoff Systems (PKS) that generalise the construction described
above. Those processes again consist of random collections of weighted hor-
izontal and vertical broken lines living on the quarter plane [0,∞)2. As for
Hammersley’s broken line process, one may think of these lines as being the
traces of “charged” particles moving either horizontally (i.e. increasing their
x-coordinate) or vertically (i.e. increasing their y-coordinate). However, in this
new class of processes, particles may hold arbitrary charges and may randomly
turn, split or coalesce, according to a special Markovian dynamics that is still
conservative in the sense that the total charge remains constant. We show in
this paper that, when the parameters of the dynamics take a particular form,
the PKS process is spatially reversible. Then, it is possible to construct a trans-
lation invariant PKS process on the whole plane whose marginal distribution
along vertical and horizontal lines is (weighted) PPPs.

The paper is organised as follows. In Section 2, we define the PKS pro-
cess in a general setting and prove its existence under a uniform boundedness
assumption on the parameters.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



40 A. BOYER, J. CASSE, N. ENRIQUEZ & A. SINGH

In Section 3, we introduce a notion of reversibility for PKS processes, which
essentially says that the distribution of a PKS restricted to any rectangular box
is invariant by a rotation of 180◦. Then we present, in our main results, suitable
conditions that guarantee the reversibility and, therefore, the invariance of PKS
processes. We do it in three different frameworks according to whether the
distribution of the line weights is absolutely continuous with respect to the
Lebesgue measure, discrete or arbitrary.

The proof of this reversibility property is carried out in Section 5. The
state space of PKS processes is quite complicated, and in order to deal with
it, we introduce a family of parametrisations. It turns out that two different
parametrisations of this family define the same volume form. We apply this
result to two specific parametrisations: the first one associated to the dynamics
of the PKS and the second one associated to its reverse dynamics. Once we have
done this, a careful analysis shows that the densities associated to the dynamics
and to the reversed one in their respective parametrisations coincide under
the above-mentioned conditions. Interestingly, one can exploit this invariance
result in order to extend the proof of the existence of the PKS to unbounded
parameters.

In Section 6, we first show how Kirchhoff’s node law makes it possible to
define a notion of potential function associated with the faces of the tessella-
tion defined by a PKS. This potential function corresponds to the last passage
times in LPP. We then collect several LPP models that can be mapped to PKS
processes. In the sequel, we provide a (non-exhaustive) list of PKS processes
obtained for specific distributions of the line weights. From this list, we recover
several other classical models of statistical physics like bullet models [8, 22, 24]
or six-vertex models [4, 28]. In particular, we exhibit some new explicit invari-
ant measures for some bullet models, as well as new reversible properties for
some six-vertex models with an external electromagnetic field. Furthermore,
the special cases of Gaussian or Poisson distributions for the line weights pro-
vide new models with explicit dynamics that may be worthy of further study.

Finally, in Section 7, we look at basic geometric properties of the random
tessellation of the quarter plane induced by a PKS, such as the mean number
of connected components inside a rectangle and the mean number of nodes of
a typical connected component.

2. Poisson–Kirchhoff systems

The definition of a generic Poisson–Kirchhoff process relies on nine param-
eters. First, let λ0 be a non-negative number, which will be referred to as the
spontaneous creation rate. Let λV and λH be two functions from R to R+, called
vertical and horizontal split rate functions. Let τV and τH be two functions
from R to R+, called vertical and horizontal turn rate functions. Let p0 ∈ [0, 1]
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sW

sS

sE

sN

Figure 2.1. Kirchhoff’s node law at a crossing: two lines
come from the south and the west directions with respective
weights sS and sW . Lines exiting the intersection in the north
and west direction have respective weights sN and sE . The
sum of weights entering and exiting the intersection is con-
served: sS + sW = sN + sE .

be called the annihilation probability. Also let pV and pH be two functions from
R to [0, 1], called, respectively, vertical and horizontal coalescence probability
functions that satisfy, for any s ∈ R,

pV (s) + pH(s) + p01s=0 ≤ 1.(1)
Finally, let F = (F (s, ·) : s ∈ R) be a probability transition kernel on R, called
the division kernel, which satisfies:
• The map s 7→ F (s,B) is B (R)-measurable for any Borel set B ∈ B (R).
• B 7→ F (s,B) is a probability measure on (R,B (R)) for any s ∈ R.

The collection (λ0, λV , λH , p0, pV , pH , τV , τH , F ) represents the parameters
of the model. The three parameters (λ0, λV , λH) can be seen as splitting rates,
whereas (p0, pV , pH) can be seen as merging probabilities. We will see that
these two sets of parameters play a dual role. The two parameters (τV , τH)
have a symmetric role and describe how often vertical and horizontal lines
turn. Finally, the kernel F describes the distribution of the weights when a
line splits, or when two lines meet and split again.

We now define a random system of horizontal and vertical algebraic weighted
lines inside the quarter plane [0,∞)2, which preserves Kirchhoff’s node law at
every intersection (with respect to their weights), as prescribed in Figure 2.1.
As in the description of Hammersley’s process in Section 1, one can think of
those lines as the traces of charged particles moving either to the right or
upwards. Let us emphasise that, in our setting, the weight (i.e. charge) of a
line may be positive, negative or even null.

We define the initial condition of our process by specifying the positions
and weights of the vertical (or horizontal) lines that start from the x-axis (or
y-axis). To this end, we fix two sets of weighted points: CX on the positive
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42 A. BOYER, J. CASSE, N. ENRIQUEZ & A. SINGH

x-axis and CY on the positive y-axis. More precisely, an element of CX is of
the form ((x, 0), s) ∈ (R+ × {0}) × R. Similarly, an element CY is of the form
((0, y), s) ∈ ({0} × R+)× R. The two sets CX and CY can be taken randomly.
In order to avoid degeneracy, we will always assume that

the sets of points in CX and CY are locally finite a.s.,(LF)
i.e. there is no accumulation point on either axis.

We also take a PPP Ξ0 on (0,∞)2×R with intensity λ0 dx dy F (0,ds). From
the initial conditions CX and CY and the parameters (λ0, λV , λH , p0, pV , pH , τV ,
τH , F ), we construct a system of lines with the following rules:

1V . From each element ((x, 0), s) ∈ CX , we start a vertical line from the
point (x, 0) going up with weight s.

1H . From each element ((0, y), s) ∈ CY , we start an horizontal line from the
point (0, y) going right with weight s.

10. From each element ((x, y), s) ∈ Ξ0, we start an horizontal line from the
point (x, y) going right with weight s and a vertical line going up with
weight −s.

There are two kinds of events that occur during the dynamics. The first
kind concerns what happens to a single line, which may turn or split into two
lines.

2V . Along a vertical line of weight s:
(a) A split occurs at rate λV (s). When such an event happens, we pick

a random variable T ∼ F (s, ·), independent of everything else. As
a result of this split, the vertical line continues going up with new
weight s−T , and a horizontal line with weight T starts going right
from the point where the split occurs.

(b) The line turns to its right (i.e. to the east) at rate τV (s) keeping
the same weight and becoming a horizontal line.

2H . Along a horizontal line of weight s:
(a) A split occurs at rate λH(s). When such an event happens, we pick

a random variable T ∼ F (s, ·), independent of everything else. As
a result of this split, the horizontal line continues going right with
new weight T , and a vertical line with weight s−T starts going up
from the point where the split occurs.

(b) The line turns to its left (i.e. to the north) at rate τH(s) keeping
the same weight and becoming a vertical line.

The second kind of event corresponds to intersections of lines (which we
shall refer to as crossing events) when a horizontal line going right (i.e. coming
from the west) with weight sW meets a vertical line going up (i.e. coming from
the south) with weight sS . We apply the following rules:

3. (a) With probability pV (sS + sW ), the horizontal line stops and the
vertical line continues with weight sN := sS + sW .
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(b) With probability pH(sS + sW ), the vertical line stops and the hor-
izontal line continues with weight sE := sS + sW .

(c) With probability p01sS+sW=0, both lines disappear.
(d) On the complementary event, which happens with probability 1−

pV (sS+sW )−pH(sS+sW )−p01sS+sW=0, we pick a random variable
T ∼ F (sS + sW , ·), independent of everything else. Then, after
meeting each other, the weight of the horizontal line becomes sE :=
T , and the weight of the vertical one becomes sN := sS + sW − T .

Rules 1, 2 and 3 together with the initial set of weighted starting points CX
and CY define a random system of algebraic weighted lines, which we call a
Poisson–Kirchhoff System (PKS) with parameters (λ0, λV , λH , p0, pV , pH ,
τV , τH , F ) under the initial condition (CX , CY ). Let us note that, according to
the rules of the dynamics, the system is conservative; it satisfies Kirchhoff’s
node law (as in Figure 2.1) at every intersection, be it a split, a turn or a
crossing. An illustration of a PKS process is given in Figure 2.2.
Are PKS well defined? Without further assumptions, the process constructed
with the above procedure could be not well defined on the whole quarter plane.
Indeed, the previous construction can fail (i.e. blow up) if an accumulation of

(0, 0) (a, 0)

(0, b)

3,3

-1,8

-4,2

-5,3

-5,3

-7,9

0

-3,7

-1,3

-3,1

-3,1

-2,2

-0,7

0 3,7 6,8
-5,1

2,4 0

1,1 2,2 0,9

-5,3

2,6 0,1

-0,7

1,5

-1,5

1

-0,7

0,1

CX

CY

(a) Realisation of a PKS. (b) Simulation of a PKS on [0, 50] × [0, 50]
according to Model 16 of Table 6.2 (see Sec-
tion 6) with pV (s) = pH(s) = 0.4 and τV (s) =
τH(s) = 0.1, whose initial conditions (CX , CY )
are given by two independent PPPs.

Figure 2.2. Example of dynamics. Lines with positive
weights are shown in red and those with negative weights in
blue. The thickness of a line is proportional to the absolute
value of its weight.
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lines appears and prevents us from defining the process any further. From now
on, we will say that the PKS is well defined if, a.s., the construction above
has no accumulation points on the whole quarter plane (or equivalently, there
is only a finite number of lines intersecting any bounded region a.s.). The
following trivial example illustrates the problem.

Example. — Set λ0 = λV (s) = τV (s) = τH(s) = p0 = pV (s) = pH(s) = 0.
Set λH(s) = s2 and F (s, ·) = δs+1. Fix CX = ∅ and CY = {((0, 1), 1)}. Then,
the PKS starts from of a single horizontal line beginning at point (0, 1) on the
y-axis and with initial weight 1. This horizontal line never disappears and splits
infinitely many times, creating at each split a new vertical line with weight −1
while its own weight increases by 1. Thus, the splitting rate of the horizontal
line is equal to (n+1)2 after the n-th split. This means that the x coordinate of
the n-th split is equal to

∑n
i=1

ξi
i2 , where the (ξi) are i.i.d. exponential random

variables with mean 1. The previous sum converges a.s., which shows that the
PKS almost surely blows up.

Deciding whether a generic PKS is well defined seems tricky. However, the
following elementary result ensures that the PKS is well defined a.s. whenever
its jump rates are bounded. Later on, the main results in Section 3 will provide
examples of well-defined PKS with unbounded jump rates.

Proposition 2.1. — Assume that CX and CY satisfy assumption (LF) and
that

sup
s∈R

(λV (s), λH(s), τV (s), τH(s)) <∞.(2)

Then, the PKS is well defined on the whole quarter plane [0,∞)2 a.s.

Proof. — Let us first note that

{the PKS is well defined on the whole quarter plane}

=
⋂
a,b∈N

{the PKS is well defined inside the rectangle [0, a]× [0, b].}

Thus, we just need to prove that the PKS does not blow up inside any box
[0, a] × [0, b] a.s.. Let us fix such a box [0, a] × [0, b]. Let y1 < y2 < . . . < yN0

denote the y-coordinates of the points in CY located on the segment {0}× [0, b].
We just need to prove that the PKS is well defined a.s. inside [0, a] × [0, y1]
and then we can repeat the same argument, starting now from height y1, and
conclude, after N0 steps that the process is a.s. well defined on the whole box.

Let r := sups∈R(λV (s), λH(s), τV (s), τH(s)) <∞ andM0 denote the number
of weighted points of CX located on the segment [0, a] × {0}. We follow the
dynamics starting from the bottom side of the box and moving upward.

Initially, we start with M0 vertical lines going upward. The first split/turn
event occurs at some random height H1, which is stochastically larger than an
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0 a

Mi−1 = 4
Ui = 4, Vi = 1

Mi = 7

Ui+1 = 0, Vi+1 = 2
Mi+1 = 5

Hi

Hi+1

≥ ξi
Mi

Figure 2.3. In this example, the i-th event (green circle) oc-
curs at height Hi and is a split. The (i+1)-th event (also green
circle) occurs at height Hi+1 and is a turn. On the i-th event,
the horizontal line creates Ui = 4 new lines (blue dots) and
stops the Vi = 1 line (red dot). The (i+1)-th event stops the
1 line additionally to the one that turns (the two red dots)
and creates no line. The time between the i-th event and the
(i+1)-th event is greater than ξi/Mi, which is an exponential
random variable with mean 1/(2Mir).

exponential random variable with mean 1/(2M0r) (since all rates are bounded
by r). At height H1, a new horizontal line is created. This line creates U1 new
vertical lines (by splitting and at most one by turning) that will grow upward
and stops V1 ≥ 0 vertical lines coming from the bottom (including itself in
the case of a turn event); see Figure 2.3. Hence, after height H1, the process
continues to grow upward with M1 = M0 + U1 − V1 vertical lines. Similarly,
after the n-th split/turn event that occurs at height Hn, the process grows up
with Mn = Mn−1 + Un − Vn vertical lines.

Now, the height Hn of the n-th split/turn event is stochastically larger than
n−1∑
i=0

ξi
Mi

,(3)

where (ξi) are i.i.d. exponential random variables with mean 1/(2r), which are
independent of (Mi). But, note that since the width of the box is equal to a,
and the split and turn rate functions are bounded by r, the sequence (Ui)i≥1 is
stochastically dominated by a sequence (Wi)i≥1 of independent Poisson random
variables with parameter 2ar. This implies that the sequence of variables Mn,
which are individually bounded by M0 +

∑n
i=1Wi, grows at most linearly with

n, and so the sum given in (3) goes a.s. to infinity. Hence, the PKS process
cannot blow up before reaching height y1, as requested. �
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3. Reversible Poisson–Kirchhoff systems

Although the PKS is defined on the whole quarter plane, it is convenient
to consider its restriction to a box of the form [0, a] × [0, b] for a, b ∈ R∗+.
We denote by Da,b the image space of the PKS process restricted to the box
[0, a]× [0, b]. An element D ∈ Da,b is called a drawing in the box [0, a]× [0, b].
It consists of a finite collection of weighted vertical and horizontal segments
inside this rectangle, which furthermore satisfy the Kirchhoff node law at every
intersection (in the sense of Figure 2.1).

Given a drawing D ∈ Da,b, we define its reverse drawing D̂ ∈ Da,b, obtained
by rotating D by 180◦ around the center point (a/2, b/2). Let us note that this
rotation yields a valid drawing. An example of a drawing D and its reverse
D̂ is given in Figure 3.1. From now on, we shall denote by Da,b (or simply D
when the box considered is obvious) a random drawing that has the law of the
PKS process defined in Section 2.

Definition 3.1 (Reversibility). — A PKS is said to be reversible if there exists
a random initial condition (CX , CY ), such that for any a, b, Da,b

(d)= D̂a,b.

Another related notion is that of stationarity of the PKS, which will be
implied by the reversibility property in all the cases that we shall consider.

Definition 3.2 (Stationarity). — A PKS is said to be stationary if there
exists a random initial condition (CX , CY ), such that it is translation invariant.
Equivalently, this means that the law of a drawing does not depend on the
position of the box inside the quarter plane but only on its size. In that
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(0, b)
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Figure 3.1. An example of a drawing and, on its right, its reverse.
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case, the law of the initial condition (CX , CY ) is called an invariant probability
measure for the PKS.

We now give sufficient conditions on the parameters of a PKS to be reversible
under initial conditions (CX , CY ) taken as independent weighted PPPs. Thus,
from now on, we consider two non-zero finite measures νV and νH on R and
we will always assume that

CX is a PPP on (R+ × {0})× R with intensity dx dνV (s).
CY is a PPP on ({0} × R+)× R, independent of CX ,

and with intensity dy dνH(s).
(4)

Let us stress that νV and νH are not necessarily probability measures. In
particular, the positions of the vertical lines starting from the x-axis is a PPP
with intensity νV (R)dx. Similarly, the positions of the horizontal lines starting
from the y-axis is a PPP with intensity νH(R)dy.

We call the measures νV (or νH) the vertical (or horizontal) line weight mea-
sures. For technical reasons, we distinguish the following three cases, depending
on their properties:
• When νV and νH are both absolutely continuous with respect to the
Lebesgue measure (Section 3.1).
• When νV and νH are discrete measures with support included in Z
(Section 3.2).

• Finally, we discuss the extension of the previous results to arbitrary
measures (Section 3.3).

3.1. Lebesgue case. — We assume here that the line weight measures νV and
νH are two non-zero finite measures on R with Lebesgue densities gV and gH .
Thus, the initial conditions (4) now take the form:

CX is a PPP on (R+ × {0})× R with intensity dx gV (s)ds.
CY is a PPP on ({0} × R+)× R, independent of CX ,

and with intensity dy gH(s)ds.
(5)

Consider a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). The fol-
lowing assumptions ensure the existence of a reversible measure for the PKS
process.
(L1) The spontaneous creation rate is zero, i.e.

λ0 = 0.(6)
Indeed, since we are here in a continuous setting, case 3(c) of the dy-
namics (in Section 2) never occurs, so lines never annihilate. Therefore,
in order for the system to be reversible, there must be no spontaneous
creation of lines. Consequently, the annihilation probability p0 also does
not matter here (and can be taken to be zero).
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(L2) The coalescence probability functions pV and pH satisfy the two following
conditions with respect to the support of the measures νV and νH : for
any s ∈ R, we have

gV (s) = 0 ⇒ pV (s) = 0 and gH(s) = 0 ⇒ pH(s) = 0.(7)

(L3) The two turn rate functions τV and τH satisfy, for any s ∈ R,
τV (s)gV (s) = τH(s)gH(s).(8)

(L4) The two splitting rate functions λV and λH satisfy, for any s ∈ R,

λV (s) = pV (s) h(s)
gV (s) and λH(s) = pH(s) h(s)

gH(s) ,(9)

where h is defined by

h(s) := (gV ∗ gH)(s) =
∫
R
gV (s− t)gH(t) dt.

(L5) The division kernel F satisfies that, for any s ∈ R, the measure F (s, ·)
is absolutely continuous with respect to the Lebesgue measure, and its
density f(s, ·) is such that, for any t ∈ R,

f(s, t) = gV (s− t)gH(t)
h(s) ,(10)

provided that h(s) > 0. If h(s) = 0, then f(s, ·) can be any probabil-
ity density1 on R. Notice that this density has a simple probabilistic
interpretation: let XV and XH be two independent random variables
with density proportional to gV and gH , respectively; then f(s, ·) is the
density of the variable XH conditionally in the event {XV +XH = s}.

We can now state our main result.

Theorem 3.3 (Reversibility in the Lebesgue case). — Consider a PKS with
parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). If there exist two non-zero fi-
nite measures νV and νH on R with densities (according to Lebesgue measure)
gV and gH , such that the previous conditions (L1), (L2), (L3), (L4) and
(L5) hold, then this PKS under the initial condition (CX , CY ) as defined in
equation (5) is well defined and reversible in the sense of Definition 3.1.

Remark. — A PKS satisfying the conditions of Theorem 3.3 may have several
reversible measures. Indeed, suppose that there exists a positive constant r,
such that g̃V (s) = rsgV (s) and g̃H(s) = rsgH(s) are still the densities of finite
measures. Then Theorem 3.3 still applies by replacing gV and gH by g̃V and g̃H .
Consequently, the PKS admits another reversible distribution, given by the law
of two independent PPPs: one with intensity Leb⊗ ν̃V and the other one with

1. The distribution of f(s, ·) when h(s) = 0 does not matter. This is just to ensure that
f is well defined for all s ∈ R.
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intensity Leb⊗ν̃H . In that case, the PKS admits a family of reversible measures
parameterised by r in an open subinterval of R+.

This theorem is proved in Section 5.1. As stated in the next corollary, the
reversibility in this case implies the stationarity. Moreover, it also characterises
the law of the restriction of the process along any fixed decreasing curve.

Corollary 3.4. — Under the conditions of Theorem 3.3, the PKS is station-
ary as defined in Definition 3.2. In particular, the following properties hold:

(i) One of its invariant distributions is the law of two independent PPPs
(CX , CY ), where CX has intensity Leb⊗ νV , and CY has intensity Leb⊗
νH .

(ii) Let L be any broken line of [0, a] × [0, b] consisting only of eastern and
southern steps. Then, D restricted to L on its eastern steps is a Leb⊗
νV -PPP, and D restricted to L on its southern steps is a Leb⊗νH-PPP.
These two PPPs are independent.

(iii) Let L be any straight segment of R2: y = −αx + β with x ∈ [c, d] and
α ∈ (0,+∞). The restriction of D to its vertical (or horizontal) lines is
a Leb⊗ 1√

1+α2 νV -PPP (or. Leb⊗ α√
1+α2 νH-PPP). Moreover, these two

PPPs are independent.

Remark. — The last result (iii) can still be generalised to any rectifiable curve
γ(t) = (x(t), y(t)) from [0, 1] to [0, a]× [0, b], which is “decreasing” in the sense
that x′ ≥ 0 and y′ ≤ 0. Then, again, the restrictions of the horizontal and
vertical lines of the random drawing to this curve form independent inhomoge-
neous PPPs whose respective intensities with respect to dλ⊗ νV and dλ⊗ νH ,
where dλ denotes the length measure on the curve, at the point of parameter t,

are given by the formulas of Corollary 3.4 (iii) taking α = −y
′(t)
x′(t) .

Proof of Corollary 3.4. — We prove that the restriction of the process to any
box [x, x + a] × [y, y + b] has the same distribution as the one to the box
[0, a] × [0, b], by showing that they are similarly distributed on their left and
down boundaries. For this purpose, we first apply Theorem 3.3 to the box
[0, x+ a]× [0, y] and then to the box [0, x]× [y, y + b], as illustrated below.

0 x x+ a

y

y + b

11

22
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Indeed, the first application implies that the restriction of the process to
the segment [0, x+ a]× {y} is distributed as a Leb⊗ νV -PPP. Moreover, it is
independent of the restriction of the process to the segment {0} × [y, y + b].

Consequently, the second application applies and permits us to prove that
the restriction of the process to the segment {x} × [y, y + b] is distributed
as a Leb ⊗ νH -PPP. Moreover, this restriction is independent of the one to
the segment [x, x + a] × {y} since it only depends on the restrictions to the
segments {0} × [y, y + b] and [0, x] × {y}, as well as on the dynamics of the
process above y. �

Another nice consequence of Theorem 3.3 is that the reversibility property
makes it straightforward to extend the stationary PKS process defined on the
quarter plane R2

+ to a stationary process defined on the full plane R2. There
are several ways to do so. For instance, we can use (iii) of Corollary 3.4 and
start by initially choosing two independents Leb⊗ 1√

2νV -PPP and Leb⊗ 1√
2νH -

PPP on the anti-diagonal line y = −x. We start weighted vertical lines from
the atoms of the first PPP (with lines propagating in both top and bottom
directions). Similarly, we start weighted horizontal lines from the atoms of
the second PPP (with lines propagating in both left and right directions).
Then, conditionally on these initial lines, we construct independent processes
on the upper region x > −y and the lower region x > −y following the PKS
dynamic (c.f. Figure 3.2). The resulting process defined on the whole plane
R2 is translation invariant, and its restriction to any box (or quarter plane)
coincides with the reversible PKS defined above.

−2, 1

3, 2

−0, 3

−1, 1

2, 3

0, 6

PKS

PKS

Figure 3.2. Schematic construction of a reversible PKS pro-
cess on the full plane.

tome 151 – 2023 – no 1



REVERSIBLE POISSON–KIRCHHOFF SYSTEMS 51

3.2. Discrete case. — We call it a discrete case when all the line weights are in-
tegers. Let us start by noticing that, contrary to the Lebesgue setting, case 3(c)
of the dynamics can now occur since two lines with exactly opposite weights
can meet. This happens, for example, with Hammersley’s broken line pro-
cess (schematised in Figure 1.1); see [1, 11, 12, 20, 21] for additional details.
Therefore, in this section, the value of p0 matters, and λ0 may be non-zero.

Let νV and νH be two non-zero finite measures taking values in Z. We
consider the initial conditions:

CX is a PPP on (R+ × {0})× Z with intensity dx νV (ds).
CY is a PPP on ({0} × R+)× Z, independent of CX ,

and with intensity dy νH(ds).
(11)

We consider a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). The
following conditions ensure the reversibility of the process.
(D1) The spontaneous creation rate λ0 is related to the annihilation probability

p0 as follows:

λ0 = p0
∑
s∈Z

νV (−s)νH(s).(12)

(D2) The coalescence probability functions pV and pH satisfy two conditions
with respect to νV and νH ; for any s ∈ Z,

νV (s) = 0⇒ pV (s) = 0 and νH(s) = 0⇒ pH(s) = 0.(13)

(D3) The two turn rate functions τV and τH satisfy, for any s ∈ Z,

τV (s)νV (s) = τH(s)νH(s).(14)

(D4) The two splitting rate functions λV and λH satisfy, for any s ∈ Z,

λV (s) := pV (s) h(s)
νV (s) and λH(s) := pH(s) h(s)

νH(s) ,(15)

where

h(s) = (νV ∗ νH)(s) =
∑
t∈Z

νV (s− t)νH(t).

(D5) The division kernel F satisfies, for any s ∈ Z, for any t ∈ Z,

F (s, t) = νV (s− t)νH(t)
h(s) ,(16)

provided that h(s) > 0. If h(s) = 0, then F (s, ·) can be chosen to be
any probability measure.

We can now state the theorem in the discrete case.
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(0, 0) (a, 0)

(0, b)

2

2

1

-2

-3

0

-1

0

-1

3

0

3
1

(a) Typical lines of a discrete re-
versible PKS: pairs of lines can sponta-
neously appear and can also annihilate.
Particles of weight 0 may also exist.

(b) Simulation of a discrete PKS. In this par-
ticular model, we impose that vertical lines are
non-positive and that horizontal lines are non-
negative. Hence, only lines of weight 0 can turn.

Figure 3.3. Examples of a discrete reversible PKS. Lines
with positive weight are drawn in red and those with nega-
tive weight in blue. Lines with weight 0 are drawn in black.

Theorem 3.5 (Reversibility in the discrete case). — Consider a PKS with
parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). If there exist two non-zero finite
measures νV and νH on Z, such that the previous conditions (D1), (D2),
(D3), (D4) and (D5) hold, then this PKS under the initial condition (CX , CY )
as defined in equation (11) is well defined and reversible.

Corollary 3.4 also holds in this case.

Remark. — Let us note that Theorems 3.3 and 3.5 ensure that a reversible
PKS is well defined when the initial condition is given by one of its invariant
measures. It follows that the PKS is also well defined starting from any initial
condition that is absolutely continuous with respect to this invariant measure.
In the discrete case, one may check the stronger result that the reversible
PKS is, in fact, well defined for any deterministic initial conditions (CX , CY ).
This may not necessarily be true in the Lebesgue case, as it is possible to
construct forbidden “pathological” initial conditions, for example with lines
having opposite weights.

3.3. General case. — The Lebesgue and discrete cases described previously
represent the most natural settings for PKS. Yet, it should be possible to gen-
eralise the reversibility result to an even more general framework, as explained
below.
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Let us denote by AV (or AH) the set of atoms of νV (or νH) and set
A := AH ∩ (−AV ) =

{
s ∈ R : νH({s})νV ({−s}) 6= 0

}
.

In the absence of a common measure against which both νV and νH are
absolutely continuous, we shall make use of the Radon–Nikodym derivatives
with respect to νV and to νH in order to define the appropriate rate functions
that guarantee reversibility.

We recall that, according to the Radon–Nikodym theorem, given two ar-
bitrary finite measures µ and m there exists a unique decomposition of µ =
µ‖+µ⊥, such that µ‖ is absolutely continuous with respect to m and µ⊥ is sin-
gular with respect to m. Henceforth, we define the Radon–Nikodym derivative
of the measure µ according to the measure m as dµ‖

dm and denote it as dµ
dm .

Consider a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). Within
this general framework, the five conditions for reversibility take the form:
(G1) The spontaneous creation rate λ0 satisfies

λ0 = p0
∑
s∈A

νV ({−s})νH({s}).(17)

(G2) The coalescence probability functions pV and pH satisfy
pV ∈ L∞(R,B (R) , νV ) and pH ∈ L∞(R,B (R) , νH).(18)

(G3) The two turn rate functions τV and τH satisfy, for any s ∈ R,

τV (s) = τH(s)dνH
dνV

(s), or equivalently τH(s) = τV (s) dνV
dνH

(s).(19)

(G4) The two splitting rate functions λV and λH satisfy, for any s ∈ R,

λV (s) = pV (s) dη
dνV

(s) and λH(s) = pH(s) dη
dνH

(s),(20)

where η = νV ∗ νH is the convolution product of νV and νH , i.e. for any
A ∈ B (R),

η(A) =
∫
R2

1t+s∈A dνV (t) dνH(s).

(G5) The division kernel F satisfies, for any s ∈ R, for any t ∈ R,

F (s,A) =
∫
A

dν(t)
V

dη (s) dνH(t),(21)

where ν(t)
V is the t-translated measure2 of νV . The probability kernel

F can be also seen as the regular conditional probability of X ∼ νH
with respect to σ(X + Y ), where Y ∼ νV and Y is independent of X as
defined in [18, Section 4.1.3].

2. The t-translated measure ν(t)
V of νV is the measure defined by, for any A ∈ B (R),

ν
(t)
V (A) = νV ({x− t ∈ R : x ∈ A})
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Then, as in Theorems 3.3 and 3.5, a PKS with parameters (λ0, λV , λH ,
p0, pV , pH , τV , τH , F ), such that there exist two non-zero finite measures νV
and νH on R that satisfy the conditions (G1), (G2), (G3), (G4) and (G5)
is well defined and reversible under the initial condition (CX , CY ) defined in
equation (4). The proof of the previous statement is similar in spirit but much
more technical than for the Lebesgue and discrete cases. The main difficulty
being measurability problems stemming from the fact that we do not have
access to a reference translation invariant measure against which both weight
measures νV and νH are absolutely continuous. However, as was mentioned
before, in practice, PKS of interest are either discrete or continuous. The full
proof of this statement is omitted from the paper (but the scheme of proof and
the heuristic given below still apply).

4. Heuristic

Conditions (L1–L5), (D1–D5) and (G1–G5) seem technical and some-
what ad hoc at first glance. However, they appear naturally when studying the
PKS dynamics at the microscopic scale. Before providing the rigorous (and
technical) proof of the main theorems in the next section, we give below a
heuristic argument that will, hopefully, shed some light on the necessity of the
assumptions.

We look at the PKS process inside an “infinitely small” rectangle dx ×
dy, so that at most one event (split, turn, . . . ) can occur inside this region
simultaneously. In order for the PKS process to be reversible, the probability
of any elementary event must be equal to the probability of the corresponding
event when the dx×dy rectangle is rotated by 180◦. Thus, we can consider, in
turn, each of the 12 possible elementary events pictured in Figure 4.1 and check

1 2 5 6 9 10

3 4 7 8 11 12

Figure 4.1. The 12 local configurations: 4 self-dual configu-
rations (1–4) and 4 pairs (5–12).
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the relations that they entail on the parameters of the process. The first three
elementary events (empty square, single vertical line and single horizontal line)
are symmetric by rotation of 180◦, so they entail no condition.

4.1. Crossing. — Let us consider the elementary crossing event 4 of Figure 4.1
and its rotation by 180◦.

dx

dy

a

b c

a+ b− c

dx

dy

a

bc

a+ b− c

In order for reversibility to hold true, both configurations above should appear
with equal probability. This means that, given three test functions u, v and w,
the expectation of u(a)v(b)w(c) should be the same on both events. In view of
the PKS dynamics, this entails that:∫∫∫

u(a)v(b)w(c)dνV (a)dνH(b)F (a+ b,dc)

=
∫∫∫

u(a)v(b)w(c)dνV (a+ b− c)dνH(c)F (a+ b,db).

(22)

In particular, in the case of discrete measures, the above equation implies the
equality

νV (a)νH(b)F (a+ b, c) = νV (a+ b− c)νH(c)F (a+ b, b),(23)

whereas, in the Lebesgue case, it implies the relation on the densities:

gV (a)gH(b)f(a+ b, c) = gV (a+ b− c)gH(c)f(a+ b, b).(24)

It is not difficult to check (excluding possible degenerate cases) that equation
(24) (or (23) and (22)) is equivalent to (L5) (or (D5) and (G5)).

4.2. Horizontal turn versus vertical turn. — Let us now look at the comple-
mentary events 5 and 6 of Figure 4.1.

dx

dy

a

a

dx

dy a

a
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Just as in the previous section, the reversibility property implies that, for any
test functions u, it must hold that∫

u(a)τV (a)dνV (a) =
∫
u(a)τH(a)dνH(a).

Therefore, in the discrete case, we have

νV (a)τV (a) = νH(a)τH(a);

and in the Lebesgue case

gV (a)τV (a) = gH(a)τH(a).

The previous three equations are equivalent to (G3), (D3) and (L3), respec-
tively.

4.3. Spontaneous creation versus annihilation. — We consider the complemen-
tary events 7 and 8 of Figure 4.1.

dx

dy a

−a

dx

dy a

−a

In order for reversibility to hold true, they should have the same probability.
In particular, a in the picture above must be an atom of the measure νH and
−a an atom of νV . In the Lebesgue case, the probability of the left event is
zero, which implies that λ0 = 0, which is exactly (L1). In the general case, we
find that, for any such atom a, we must have

νV (−a)νH(a)p0 = λ0F (0, a),

which is, already assuming (G5) (or (D5)), equivalent to (G1) (or (D1)).

4.4. Split versus coalescence. — Let finally consider the two elementary events
9 and 10 of Figure 4.1:

dx

dy

a

b

a+ b

dx

dy

a

b

a+ b
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Using the same argument as before, we now find that, for any two test functions
u and v, it must hold that∫∫

u(a)v(b)pV (a+ b)dνV (a)dνH(b)

=
∫∫

u(a)v(b)dνV (a+ b)λV (a+ b)F (a+ b,db).

(25)

In the case of discrete measures, the above equation implies the equality

νV (a)νH(b)pV (a+ b) = νV (a+ b)λV (a+ b)F (a+ b, b),(26)

whereas, in the Lebesgue case, it implies the relation on the densities:

gV (a)gH(b)pV (a+ b) = gV (a+ b)λV (a+ b)f(a+ b, b).(27)

Similarly, now considering events 11 and 12 of Figure 4.1:

dx

dy
b

a

a+ b

dx

dy
b

a

a + b

We find that ∫∫
u(a)v(b)pH(a+ b)dνV (a)dνH(b)

=
∫∫

u(a)v(b)dνH(a+ b)λH(a+ b)F (a+ b,db),

(28)

which, in the discrete case, translates to

νV (a)νH(b)pH(a+ b) = νH(a+ b)λH(a+ b)F (a+ b, b)(29)

and in the Lebesgue case to

gV (a)gH(b)pH(a+ b) = gH(a+ b)λH(a+ b)f(a+ b, b).(30)

Under the assumption that (L5) holds, (27) and (30) are equivalent to (L2)
and (L4). The same holds true for the discrete and general cases.

The previous analysis shows that the five conditions of the previous sec-
tion are indeed necessary (excluding maybe some degenerate cases) to have
reversibility of the PKS process on the microscopic scale. In the next sec-
tion, we prove that those conditions are actually sufficient and, in fact, imply
reversibility on the macroscopic scale.
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5. Proof of reversibility

Here we prove Theorems 3.3 and 3.5. In the next two sections, we prove the
results assuming further that all the rates are uniformly bounded. Next, in the
last section, we show that we can bootstrap the results from the bounded rate
case to the general case by using an approximation procedure of a arbitrary
PKS by a sequence of PKS with bounded rates.

5.1. Proof of Theorem 3.3 with uniformly bounded rates. — Consider a PKS
in the Lebesgue case with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ), such
that there exist two non-zero finite measures on R with densities gV and gH ,
such that the conditions (6), (7), (8), (9) and (10) hold. We start this PKS
process with the initial condition (CX , CY ) as defined in equation (5).

In this section, we assume that the rates of the PKS are uniformly bounded,
that is to say they satisfy condition (2), which implies that the PKS is well
defined a.s. by Proposition 2.1. Hence, we just need to show the reversibility
of the PKS. The assumption of uniformly bounded rates will be relaxed in
Section 5.3.

Recalling the definition of a drawing and of reversibility in Section 3, we
want to prove that, for any non-negative measurable function Φ : Da,b → R+,

E [Φ(D)] = E
[
Φ(D̂)

]
,(31)

which exactly states that D and D̂ have the same law. However, the set of
all drawings that is infinite dimensional is not a very convenient space to work
with. To overcome this difficulty, we partition the set of drawings according
to their combinatorial nature, which will enable us to rewrite the expectation
above as a sum of expectations over finite dimensional spaces. Before doing so,
we introduce some notation and definitions that will help to understand the
combinatorial structure of a drawing.

It will be convenient to represent a weighted vertical (or horizontal) segment
σ as a triplet (σ−, σ+, s), where the endpoints are σ− = (x, y−) (or (x−, y))
and σ+ = (x, y+) (or (x+, y)) with y− < y+ (or x− < x+), and the weight is
s ∈ R.
Types of nodes. We can define 11 types of nodes that correspond to events in
the dynamics occurring inside the box as well as events on the boundary of the
domain. For each type of node, we introduce a notation as a pictogram for the
set of all nodes of this type.
• Vertical entry: a vertical entry is a boundary point (x, 0) on the
bottom side of the box, which has an outgoing segment σ ∈ D, σ =
((x, 0), (x, .), .). We denote this set by . Note that = {(x, 0) : ∃s ∈
R, ((x, 0), s) ∈ CX}.
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• Vertical exit: a vertical exit is a boundary point (x, b) on the top side
of the box, which has an outgoing segment σ ∈ D, σ = ((x, .), (x, b), .).
We denote this set by .
• Vertical split: a vertical split of D is a point (x, y) where three seg-
ments meet from the south, north and east, i.e. there exist σS , σN , σE ∈
D, such that σS = ((x, , ), (x, y), .), σN = ((x, y), (x, .), .) and σE =
((x, y), (., y), .). This corresponds to case 2V (a) in the dynamics defined
in Section 2. We denote this set by .

• Vertical turn: a vertical turn ofD is a point (x, y), where two segments
meet from the south and east, i.e. there exist σS , σE ∈ D, such that
σS = ((x, .), (x, y), .) and σE = ((x, y), (., y), .). This corresponds to
case 2V (b) in the dynamics. We denote this set by .

• Vertical coalescence: a vertical coalescence is a point (x, y), where
three segments are meeting from the west, south and north, i.e. there ex-
ist σW , σS , σN ∈ D such that σW = ((., y), (x, y), .), σS = ((x, .), (x, y), .)
and σN = ((x, y), (x, .), .). This corresponds to case 3(a) in the dynam-
ics. We denote this set by .

For all these kinds of nodes, we also define their obvious horizontal counter-
part: horizontal entry , horizontal exit , horizontal split , hor-
izontal turn and horizontal coalescence . Finally, we define a last
kind of node:
• Crossing: a crossing is a point (x, y) where four segments meet. This
corresponds to case 3(d) of the dynamics. Alternatively, this event can
be interpreted as a coalescence immediately followed by a split. We
denote this set by .

Skeleton and parametrisation of a drawing. We introduce the notion of the
skeleton of a drawing, which will be instrumental in the rest of the proof. We say
that two drawings D,D′ ∈ D have the same skeleton and denote it by D ∼ D′,
if there exist two increasing functions ψX from [0, a] to [0, a] and ψY from [0, b]
to [0, b], such that for any weighted segment σ = ((x−, y−), (x+, y+), s) ∈ D,
there exists a unique s′ ∈ R, such that

ψ(σ) :=
(
(ψX(x−), ψY (y−)), (ψX(x+), ψY (y+)), s′

)
∈ D′.

In other words, the skeleton represents the “combinatorial” structure of a draw-
ing, where we forget about the exact positions and weights of segments, so that
two drawings with the same skeleton can be mapped from one to the other
by changes of space and weight. Thus, two drawings with the same skeleton
S have the same numbers of segments ` = `(S), as well as the same number
of nodes of each type. Furthermore, a skeleton induces a graph whose edges
will be denoted (e1, . . . , e`) (for some arbitrary ordering) in the following. An
illustration of a drawing and its skeleton is given in Figure 5.1.
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Figure 5.1. An example of a drawing and, on its right, its
skeleton. In this example, ` = 26.

Let us note that a drawing D, given its skeleton S, is uniquely determined
once we specify the spatial positions of its segments together with their weights.
Thus, we shall now identify the set of all drawings D with skeleton S as a subset
of Rm+n+` and we shall represent a drawing D by a vector

(x1, . . . , xm, y1, . . . , yn, s1, . . . , s`) ∈ (0, a)m × (0, b)n × R`,(32)

where the (xi)’s are the m := | | + | | + | | horizontal coordinates of the
points in ∪ ∪ ordered increasingly, the (yi)’s are the n := | |+| |+| |
vertical coordinates of the points in ∪ ∪ ordered increasingly and the
(si)’s are the weights of the segments corresponding to the edges (ei) of the
skeleton S.

However, not all such vectors represent a valid drawing since the Kirchhoff’s
node law induces relations between segment weights, so the dimension of the
space generated by all valid vectors is smaller than m+ n+ `. More precisely,
its dimension is m+ n+ d, where

d = d(S) = `− (| |+ | |+ | |+ | |+ | |+ | |+ | |).(33)

Indeed, we notice that each internal node (i.e. a node belonging to ∪ ∪
∪ ∪ ∪ ∪ ) adds an independent linear constraint, coming from

Kirchhoff’s node law, which decreases the space dimension by 1. We can now
derive the following lemma:

Lemma 5.1. — For any skeleton S, the dimension of the set of admissible
weights of a drawing D with a given skeleton S is equal to:

d(S) = | |+ | |+ | |+ | |+ | |.
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Proof. — By counting the number of half-edges of S, which is equal to 2`(S),
we get:

2`(S) = (| |+ | |+ | |+ | |) + 2 (| |+ | |)
+ 3 (| |+ | |+ | |+ | |) + 4| |.

Indeed, each node in ∪ ∪ ∪ contributes to 1 half-edge, each node of
∪ to 2 half-edges, each node in ∪ ∪ ∪ to 3 half-edges and each

node in to 4 half-edges.
Moreover, remark that{
| |+ | |+ | | = | |+ | |+ | | (because both are equal to m),
| |+ | |+ | | = | |+ | |+ | | (because both are equal to n).

Consequently,

2`(S) = 2 (| |+ | |+ | |+ | |+ 2| |+ | |+ 2| |+ | |+ 2| |) .

Then, by using equation (33),

d(S) = (| |+ | |+ | |+ | |+ 2| |+ | |+ 2| |+ | |+ 2| |)
− (| |+ | |+ | |+ | |+ | |+ | |+ | |)

= | |+ | |+ | |+ | |+ | |. �

Define a parametrisation of a skeleton S by selecting d edges (eρ(1), . . . , eρ(d)),
where ρ is an injective mapping from {1, . . . , d} to {1, . . . , `}, such that the
knowledge of the weights on the edges eρ(1), . . . , eρ(d) together with Kirchhoff’s
node law entirely defines the weights of all edges in the skeleton. In particular,
a parametrisation defines an injective linear mapping DS,ρ : Rd(S) → R`(S),
whose image is the vector space generated by valid drawing vectors (i.e. satis-
fying Kirchhoff’s law at each node), and where the j-th coordinate corresponds
to the weight sρ(j) on the edge eρ(j), i.e.

DS,ρ((cj)j=1..d) = (si)i=1,...,`,(34)

with sρ(j) = cj , for any j.
A parametrisation related to the dynamics. A particular parametrisation ρS
related to the dynamics of the PKS defined in Section 2 is obtained by selecting
only the vertical (or horizontal) edges whose starting point belongs to (or
∪ ∪ ∪ ). In term of the dynamics, this means that we keep track of

the weights of the entry points and of the weights of the eastern edges when
split or crossing events occur.

It is clear that this subset of edges yields a valid parametrisation of a draw-
ing since this family has the correct cardinal d(S), and since all weights in
the drawing can be reconstructed iteratively by following the dynamics of the
process. See Figure 5.2 for an illustration.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



62 A. BOYER, J. CASSE, N. ENRIQUEZ & A. SINGH
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Figure 5.2. On the left, a drawing D with all its coordinates
in Rm+n+` and, on the right, the same drawing with its free
m+n+d coordinates chosen as in Section 5.1. In this example,
` = 26, m = 5, n = 7 and d = 11.

Using the parametrisation ρS , we can decompose the expectation E [Φ(D)]
in equation (31) with the following formula:

E [Φ(D)] =
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,DS,ρS (c))

)
αS
(
(x, y,DS,ρS (c))

)
,

(35)

where αS is to be thought of as the “density” of the drawing D in the event that
its skeleton is S (and when using the parametrisation ρS described previously).

Before expressing αS , we introduce the function q : R→ R+, which we will
refer to as the turn function defined, for any s ∈ R, by

q(s) := τV (s)

√
gV (s)
gH(s) = τH(s)

√
gH(s)
gV (s) by equation (8),

with the convention 0/0 = 0 in the formula above. Beyond simplifying the
expression of αS , the introduction of the additional function q will be of great
help in the proof of the invariance of αS by the reverse operation ·̂ (further
Lemma 5.5), since it will turn out to be invariant itself by this operation.

Lemma 5.2. — For any skeleton S and any drawing D whose skeleton is S
and identified to

(x1, . . . , xm, y1, . . . , yn, s1, . . . , s`)
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(see equation (32)), we have

αS(D) = (10<x1<x2<···<xm<a)e−
(∫

R
gV (s)ds

)
a(10<y1<y2<···<yn<b)e

−
(∫

R
gH (s)ds

)
b( ∏

σ=((x−,y−),(x+,y+),s)∈D

[
1x−=x+gV (s)

(
1(x−,y−)∈ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)
√
q(s)gV (s)

1(x−,y−)∈ +1(x+,y+)∈

pV (s)
(

1(x−,y−)∈ +1(x+,y+)∈

)
e−(τV (s)+λV (t))(y+−y−)

+ 1y−=y+gH(s)
(

1(x−,y−)∈ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)
√
q(s)gH(s)

1(x−,y−)∈ +1(x+,y+)∈

pH(s)
(

1(x−,y−)∈ +1(x+,y+)∈

)
e−(τH (s)+λH (t))(x+−x−)

])
( ∏

(x,y)∈

1 − pV (sW + sS) − pH(sW + sS)
h(sW + sS) 1((x,.),(x,y),sS)∈D 1((.,y),(x,y),sW )∈D

)
.

Proof. — The formula above is nothing more than a rearrangement of a prod-
uct of terms where each one represents the probability of a local event which,
put together, ensures that D is, indeed, a drawing with skeleton S chosen
according to the Poisson–Kirchhoff dynamics. Let us analyse each term sepa-
rately.

First of all, the two indicator functions 10<x1<···<x| |+| |+| |<a and
10<y1<···<y| |+| |+| |<b ensure that the (xi)i’s and (yj)j ’s are correctly ordered.

Secondly, the terms e−
(∫

R
gV (s)ds

)
a and e

−
(∫

R
gH(s)ds

)
b are, respectively,

equal to the probabilities that there is no other entry on the bottom and left
boundaries [0, a]× {0} and {0} × [0, b].

Thirdly, each segment σ = ((x−, y−), (x+, y+), s) ∈ D contributes to the
product through the terms

e−(τV (s)+λV (t))(y+−y−) or e−(τH(s)+λH(t))(x+−x−),

which represents the probability of non-splitting and non-turning along the
segment σ, depending on whether it is vertical or horizontal.

Finally, we look at the contribution to the density of each node (x, y) and
show how it can be decomposed into factors associated to each segment adjacent
to the node, and to the node itself when it is a crossing, i.e. when (x, y) belongs
to . We distinguish the following cases with respect to the node type, using
the notation sN , sE , sS and sW for the sizes of the northern, eastern, southern
and western segments, which are adjacent to (x, y):
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• If (x, y) ∈ , its northern segment σN , which is its only adjacent segment,
gets the contribution gV (sN ) = gV (sN )1(σN )−∈ coming from the vertical
entry of the boundary PPP.
• If (x, y) ∈ , no contribution is assigned to the southern segment, which is
its only adjacent segment, since it is an exit point.
• If (x, y) ∈ , the term λV (sS)f(sS , sE) = pV (sS)gH(sE)gV (sS − sE)

gV (sS) splits

into three terms, which are distributed on the three adjacent segments to
(x, y) as follows:
– the term gH(sE) = gH(sE)1(σE)−∈ on the eastern segment σE ,
– the term gV (sS − sE) = gV (sN ) = gV (sN )1(σN )−∈ on the northern seg-

ment σN ,
– the term pV (sS)/gV (sS) = pV (sS)1(σS)+∈ gV (sS)−1(σS)+∈ on the west-

ern segment σS .
• If (x, y) ∈ , the term

τV (sS) = q(sS)

√
gH(sS)
gV (sS) =

√
q(sE)gH(sE)

√
q(sS)gV (sS)
gV (sS)

splits into two terms, which are distributed on the two segments adjacent to
(x, y) as follows:
– the term

√
q(sE)gH(sE) =

√
q(sE)gH(sE)1(σE)−∈ on the eastern seg-

ment σE ,
– the term

√
q(sS)gV (sS)/gV (sS) =

√
q(sS)gV (sS)1(σS)+∈ gV (sS)−1(σS)+∈

on the southern segment σS .
• If (x, y) ∈ , the term pH(sS+sW ) = pH(sN ) = pH(sN )1(σN )−∈ is assigned
to its northern segment σN . Its southern and western adjacent segments get
no contribution.
• The contributions of nodes of horizontal type , , , and are
decomposed analogously as the nodes of vertical type above.
• If (x, y) ∈ , the term (1 − pV (sS + sW ) − pH(sS + sW ))gV (sN )gH(sE)

h(sS + sW )
splits into three terms, which are distributed as follows:
– the term gV (sN ) = gV (sN )1(σN )−∈ on the northern segment σN ,
– the term gH(sE) = gH(sE)1(σE)−∈ on the eastern segment σE ,

– the term 1− pH(sS + sW )− pH(sS + sW )
h(sS + sW ) is attached to the node itself,

– its southern and western adjacent segments get no contribution. �

Change of parametrisation. Formula (35) presents a decomposition of the ex-
pectation of Φ(D) in terms of the special parametrisation ρS defined above.
However, this formula is, in fact, valid for any parametrisation ρ thanks to the
following lemma:
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Lemma 5.3. — Let ρ and ρ′ denote two parametrisations of a skeleton S with
respective linear mappings DS,ρ and DS,ρ′ from Rd to R`. We have∣∣∣det

(
D−1
S,ρ ◦DS,ρ′

)∣∣∣ = 1.

Proof. — Notice that if ρ and ρ′ have the same image, then the application
D−1
S,ρ ◦DS,ρ′ is just a permutation, and the result is trivial. We will prove the

lemma in the case where ρ and ρ′ differ only by one coordinate. Then, the
general case will follow by choosing a finite sequence of parametrisations where
two consecutive parametrisations differ by exactly one coordinate.

Take now ρ and ρ′ such that they differ only by one coordinate. Without loss
of generality, we can assume that for all i ≤ d−1, ρ(i) = ρ′(i). Consider the set
of edges e in S, such that (eρ(1), . . . , eρ(d−1), e) is a parametrisation of S. This
set is necessarily connected. Indeed, if this were not the case, then we could
pick an edge in each connected component and add it to the parametrisation
since, according to the Kirchhoff’s node law, setting the weight of an edge can
only constrain the weight of edges in the same connected component. But this
would yield a parametrisation with more than d edges, which is absurd.

Consequently, there exists a path (e(1) = ρ(d), . . . , e(k) = ρ′(d)), such that,
for any i, e(i) and e(i+1) are adjacent in S. Now, for any i, let D(i) =
(eρ(1), . . . , eρ(d−1), e

(i)). Finally, we just need to check that |det((D(i))−1 ◦
D(i+1))| = 1. This is clearly the case because, according to Kirchhoff’s law
around the node shared by e(i) and e(i+1), we have s(e(i)) = ±s(e(i+1)) +∑d−1
i=1 λis(eρ(i)) for some fixed (λi). �

Corollary 5.4. — The formula (35) still holds true when replacing ρS by
any parametrisation ρ.

Proof. — Let ρ be any parametrisation of S. Carrying out a change of variable
c′ = D−1

S,ρ ◦DS,ρS (c) in equation (35) and applying Lemma 5.3, we get

E [Φ(D)] =
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,DS,ρS (c))

)
αS
(
(x, y,DS,ρS (c))

)
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc′ Φ
(
(x, y,DS,ρ(c′))

)
αS ((x, y,DS,ρ(c′))) . �

Reversibility. The last ingredient that we need to prove the reversibility of the
model is the invariance of the density αS by a rotation of 180◦.

Lemma 5.5. — For any skeleton S, for any drawing D with skeleton S, we
have α

Ŝ
(D̂) = αS(D).
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Proof. — The function αS(D) only depends on the length and weight of the
segments and on the crossings of the drawing D. To any segment σ =
((x−, y−), (x+, y+), s) ∈ D, we associate its reverse segment σ̂ = ((x̂−, ŷ−),
(x̂+, ŷ+), ŝ) ∈ D̂, where x̂− = a− x+, x̂+ = a− x−, ŷ− = b− y+, ŷ+ = b− y−
and ŝ = s (obviously, the weight of a segment does not change by a rotation
of 180◦).

In particular, for any i, x̂i = a − xm+1−i and ŷi = b − yn+1−i. Hence,
the terms in the first line of the expression of αS(D) in Lemma 5.2 and its
α
Ŝ

(D̂)-counterpart coincide.
Consider now a vertical segment σ. Its contribution in αS(D) equals

gV (s)
(

1(x−,y−)∈ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)√
q(s)gV (s)

1(x−,y−)∈ +1(x+,y+)∈

pV (s)
(

1(x−,y−)∈ +1(x+,y+)∈

)
e−(τV (s)+λV (s))(y+−y−).

The contribution of the reverse segment σ̂ to α
Ŝ

(D̂) is equal to

gV (ŝ)

(
1

(̂x− ,̂y−)∈̂∪̂∪̂∪̂−1
(̂x+ ,̂y+)∈̂∪̂)√q(ŝ)gV (ŝ)

1
(̂x− ,̂y−)∈̂+1

(̂x+ ,̂y+)∈̂
pV (ŝ)

(
1

(̂x− ,̂y−)∈̂+1
(̂x+ ,̂y+)∈̂) e−(τV (ŝ)+λV (ŝ))(ŷ+−ŷ−).

Let us show that both contributions are equal. Indeed, their fourth terms are
equal because s = ŝ and ŷ+ − ŷ− = y+ − y−. Their third terms are also equal
since, by Table 5.1,

pV (ŝ)

(
1

(̂x− ,̂y−)∈̂+1
(̂x+ ,̂y+)∈̂) = pV (s)

(
1(x+,y+)∈ +1(x−,y−)∈

)
.

Similarly, their second terms are equal since√
q(ŝ)gV (ŝ)

1
(̂x− ,̂y−)∈̂+1

(̂x+ ,̂y+)∈̂ =
√
q(s)gV (s)

1(x+,y+)∈ +1(x−,y−)∈
.

Table 5.1. Correspondence between each type of vertical
node and of crossing nodes as viewed in D or in D̂. Simi-
lar correspondences hold for horizontal nodes.

(x, y) ∈ D

(a− x, b− y) = (x̂, ŷ) ∈ D̂ ̂ ̂ ̂ ̂ ̂ ̂
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Finally, their first terms are equal since

1(x̂−,ŷ−)∈̂∪̂∪̂∪̂ − 1(x̂+,ŷ+)∈̂∪̂(36)

= 1(x+,y+)∈ ∪ ∪ ∪ − 1(x−,y−)∈ ∪

= 1(x−,y−)∈ ∪ ∪ ∪ − 1(x+,y+)∈ ∪

+ 1(x+,y+)∈ ∪ ∪ ∪ ∪ ∪︸ ︷︷ ︸
=1

− 1(x−,y−)∈ ∪ ∪ ∪ ∪ ∪︸ ︷︷ ︸
=1

,

where we used that the set ∪ ∪ ∪ ∪ ∪ collects all the nodes
ending a vertical segment and, similarly, the set ∪ ∪ ∪ ∪ ∪
collects all the nodes beginning a vertical segment. The same considerations
holds for horizontal segments.

Finally, the last terms contributing to αS are those that concern crossings
in . Let us consider a crossing (x, y) ∈ whose weights of its adjacent edges
are denoted by sS , sW , sN and sE . Its contribution to αS(D) equals

1− pV (sW + sS)− pH(sW + sS)
h(sW + sS) .

Similarly, the contribution of (x̂, ŷ) ∈ ̂ to α
Ŝ

(D̂) is equal to

1− pV (ŝW + ŝS)− pH(ŝW + ŝS)
h(ŝW + ŝS) .

But, ŝS = sN and ŝW = sE and, by Kirchhoff’s node law, sE + sN = sW + sS .
Hence, both contributions coincide again. �

We can now deduce Theorem 3.3 when λV , λH , τV and τH are uniformly
bounded.

Proof of Theorem 3.3 (uniformly bounded rates). — Let Φ : Da,b → R+ be a
non-negative measurable function. For any skeleton S, let (eρ(1), . . . , eρ(d)) be
a parametrisation of S. Choose any order on the set of edges of Ŝ. Now, for
any i, the edge eρ(i) ∈ S has a reverse edge in Ŝ, whose index in Ŝ is denoted by
ρ̂(i). The set (e

ρ̂(1), . . . , eρ̂(d)) is a parametrisation of Ŝ. In the next formula,
for a drawing D, we write indifferently ∧(D) or D̂.

E
[
Φ(D̂)

]
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
∧ (x, y,DS,ρ(c))

)
αS
(
(x, y,DS,ρ(c))

)
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x̂, ŷ,D

Ŝ,ρ̂
(c))

)
αS
(
(x, y,DS,ρ(c))

)
.

Now, we apply the change of variable from (x, y) to (x̂, ŷ). Recalling that
x̂i = a− xm+1−i and ŷi = b− yn+1−i, it follows that the absolute value of the
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Jacobian is equal to 1, and hence

E
[
Φ(D̂)

]
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,D

Ŝ,ρ̂
(c))

)
αS
(
(x̂, ŷ,DS,ρ(c))

)
(37)

(by Lemma 5.5)

=
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,D

Ŝ,ρ̂
(c))

)
α
Ŝ

(
(x, y,D

Ŝ,ρ̂
(c))

)
(38)

(by Corollary 5.4)

=
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,D

Ŝ,ρ
Ŝ

(c))
)
α
Ŝ

(
(x, y,D

Ŝ,ρ
Ŝ

(c))
)

(39)

(by re-indexation of Ŝ into S)

=
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,DS,ρS (c))

)
αS
(
(x, y,DS,ρS (c))

)
(40)

= E [Φ(D)] . �

5.2. Proof of Theorem 3.5 with uniformly bounded rates. — As above, we prove
the theorem under the assumption that the rates of the PKS are uniformly
bounded. The proof is mostly identical to that of Theorem 3.3 (the Lebesgue
case), so we shall only point out the changes needed to deal with the rules 10
and 3(c) of the dynamics. In particular, two new types of nodes need to be
considered.
• Spontaneous split: a spontaneous split is a point where two segments
meet coming from the north and east i.e. there exist σN , σE ∈ D, such
that σN = ((x, y), (x, .), .) and σE = ((x, y), (., y), .). This corresponds
to case 10 of the dynamics. We denote this set by . We remark that

= {(x, y) : ∃s ∈ Z, ((x, y), s) ∈ C0}.
• Double coalescence: a double coalescence is a point (x, y) where two
segments meet, coming from the west and south, i.e. there exist σW , σS ∈
D, such that σW = ((., y), (x, y), .) and σS = ((x, .), (x, y), .). This
corresponds to case 3(c) of the dynamics. We denote this set by .

The notion of skeleton is the same as that defined in Section 5.1. But, now,
the number of free horizontal coordinates is m = | | + | | + | | + | |, the
number of free vertical coordinates is n = | | + | | + | | + | |, and the
number of free weight coordinates is

d := `− (| |+ | |+ | |+ | |+ | |+ | |+ | |+ | |+ | |).

We can now derive the following lemma instead of Lemma 5.1.
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Lemma 5.6. — For any skeleton S, the dimension of the set of admissible
weights of a drawing D with a given skeleton S is equal to:

d(S) = | |+ | |+ | |+ | |+ | |+ | | − | |.

Proof. — The proof is the same as the one of Lemma 5.1, except that now the
number of half-edges of S is

2`(S) = (| |+ | |+ | |+ | |) + 2 (| |+ | |+ | |+ | |)
+ 3 (| |+ | |+ | |+ | |) + 4| |,

and the spatial dimensions expressions give
| |+ | |+ | |+ | | = | |+ | |+ | |+ | |

(because both are equal to m),
| |+ | |+ | |+ | | = | |+ | |+ | |+ | |

(because both are equal to n). �

As before, the set of all drawings D with skeleton S is identified as a subset
of Rm+n+`, and a drawing D is represented by a vector as in equation (32).
A parametrisation ρ of a skeleton S is the selection of d edges (eρ(1), . . . , eρ(d))
that permits us to define the weights of all edges.

As before, we define αS as the density of the drawing D in the event that
its skeleton is S, and the turn function q : Z → R+ by the following formula:
for any s ∈ Z,

q(s) := τV (s)

√
νV (s)
νH(s) = τH(s)

√
νH(s)
νV (s) ,

with the convention 0/0 = 0. As in Corollary 5.4, for any parametrisation ρ,

E [Φ(D)] =
∑

S∈D/∼

∫
Rm+n

dx dy
∑
c∈Zd

Φ
(
(x, y,DS,ρ(c))

)
αS
(
(x, y,DS,ρ(c))

)
,

where αS is given by the following lemma (instead of Lemma 5.2).

Lemma 5.7. — For any skeleton S, and any drawing D whose skeleton is S
and identified to

(x1, . . . , xm, y1, . . . , yn, s1, . . . , s`)
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(see equation (32)), we have

αS(D) = (10<x1<x2<···<xm<a)e−
(∑

s∈Z
νV (s)ds

)
a(10<y1<y2<···<yn<b)

e
−
(∑

s∈Z
νH (s)

)
b
e−p0h(0)abp

| |+| |
0( ∏

σ=((x−,y−),(x+,y+),s)∈D

[
1x−=x+νV (s)(1(x−,y−)∈ ∪ ∪ ∪ ∪ −1(x+,y+)∈ ∪ )

√
q(s)νV (s)

1(x−,y−)∈ +1(x+,y+)∈

pV (s)(1(x−,y−)∈ +1(x+,y+)∈ )
e−(τV (s)+λV (s))(y+−y−)

+ 1y−=y+νH(s)(1(x−,y−)∈ ∪ ∪ ∪ ∪ −1(x+,y+)∈ ∪ )√
q(s)νH(s)

1(x−,y−)∈ +1(x+,y+)∈

pH(s)(1(x−,y−)∈ +1(x+,y+)∈ )
e−(τH (s)+λH (s))(x+−x−)

])
( ∏

(x,y)∈

1 − pV (sW + sS) − pH(sW + sS) − p01sW+sS=0

h(sW + sS)

1((x,.),(x,y),sS)∈D1((.,y),(x,y),sW )∈D

)
.

Proof. — This argument is the same as that of Lemma 5.2, with some addi-
tional terms. First, the term e−p0h(0)ab is equal to the probability that there is
no other spontaneous split in the rectangle [0, a]× [0, b]. As before, we look at
the contribution of each node and distribute it to its adjacent edges or to the
node itself. We detail what happens for the three new kinds of nodes.
• If (x, y) ∈ , the term p0νV (−s)νH(s) splits into three terms:

– the term νV (−s) = νV (−s)1(σN )−∈ is assigned to the northern
segment σN ,

– the term νH(s) = νH(s)1(σE)−∈ is assigned to the eastern segment
σE ,

– the term p0 is attached to the node itself. All of these contributions
are found in the term p

| |
0 in αS .

• If (x, y) ∈ , the term p0 is assigned to the node itself. All these
contributions are found in the term p

| |
0 in αS(D). Its adjacent segments

get no contribution.
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• If (x, y) ∈ , such that sS = −sW , the term (1 − pH(0) − pV (0) − p0)
νV (−s)νH(s)

h(0) splits into three terms:

– the term νV (−s) = νV (−s)1(σN )−∈ is assigned to the northern
segment σN ,

– the term νH(s) = νH(s)1(σE)−∈ is assigned to the eastern segment
σE ,

– the term 1− pV (0)− pH(0)− p0

h(0) is attached to the node itself.

All of these contributions are located inside the terms
1− pV (sW + sS)− pH(sW + sS)− p01sW+sS=0

h(sW + sS) , where sS = −sW
in αS . �

Finally, to end the proof of the invariance by rotation of 180◦, we need to
prove that a lemma similar to Lemma 5.5 holds in our new case.

Lemma 5.8. — For any skeleton S, for any drawing D with skeleton S, we
have α

Ŝ
(D̂) = αS(D).

Proof. — This proof is the same as that of Lemma 5.5, with some new terms
to check. First, notice that = ̂ and = ̂ .

Hence, the contribution of the following factor in αS(D)

e−p0h(0)ab p
| |+| |
0

∏
(x,y)∈

1− pV (sW + sS)− pH(sW + sS)− p01sW+sS=0

h(sW + sS)

coincides with the same in α
Ŝ

(D̂)

e−p0h(0)ab p
|̂|+|̂|
0

∏
(x̂,ŷ)∈̂

1− pV (ŝW + ŝS)− pH(ŝW + ŝS)− p01
ŝW+ŝS=0

h(ŝW + ŝS) .

The first two terms are obviously equal; the last one is equal for the same
reason as in the proof of Lemma 5.5, noting that if sS+sW = 0, then ŝS+ŝW =
sN + sE = 0.

The last point to see is that the following indicator function has changed
1(x−,y−)∈ ∪ ∪ ∪ ∪ ∪ .

Nevertheless, that does not change the proof of the equation (36) because, now,
the set that collects all the ending nodes of a vertical segments is ∪ ∪ ∪
∪ ∪ ∪ , and the one that collects all the beginning nodes of a vertical

segments is ∪ ∪ ∪ ∪ ∪ ∪ . �

Finally, the end of the proof of Theorem 3.5 with uniformly bounded rates
is the same as that of Theorem 3.3 with uniformly bounded rates, since equa-
tions (37), (38), (39) and (40) are unchanged.
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5.3. From the uniformly bounded rate case to the unbounded case. — We now
prove the reversibility results without the bounded rate assumption. The ar-
gument below applies to both the discrete and the Lebesgue (and even the
general) case. The idea is that any PKS satisfying the reversibility assump-
tions can be constructed as a limit of reversible PKSs with uniformly bounded
rates. At the same time this proves that this PKS is well defined and reversible.

Let L be a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ), which
satisfies the assumptions of the main theorems, under the initial condition
(CX , CY ) as defined in equation (4). For any n ≥ 1, we define the set

S(n) := {s ∈ R, sup(λV (s), λH(s), τV (s), τH(s)) > n} .

In words, the set S(n) is the set of weights for which the split and turn rates
are larger than n. Note that

lim
n→∞

↓ S(n) =
⋂
n≥1
S(n) = ∅.

This is due to the fact that the rate functions λV , λH , τV and τH are never
equal to +∞ by the hypotheses given by equations (18), (19) and (20). Now,
we define the following notation: for any f : R→ R+,

f (n)(s) := f(s)1s/∈Sn .

We denote by L(n) the PKS with parameters (λ0, λ
(n)
V , λ

(n)
H , p0, p

(n)
V , p

(n)
H ,

τ
(n)
V , τ

(n)
H , F ) with initial condition (CX , CY ). The PKS L(n) has rates uniformly

bounded by n and satisfies the hypotheses of the theorem for the same measures
νV and νH .

Hence, by the version of Theorem 3.3 we have proved, which assumes the
boundedness of the rate functions, the PKS L(n) is well defined a.s. and re-
versible for the line weight measures νV and νH .

Now, we consider the process L(n) in the box [0, a] × [0, b]. We want to
estimate the number of lines of L(n) with weight s ∈ S(n) in this box, i.e. the
number of lines that, without truncation, would have split or turn rates greater
than n. For that, we will count the mean number of nodes in the box that have
at least one edge with a weight in S(n).

As the pair of independent PPPs with intensities Leb⊗ ν̃V and Leb⊗ ν̃H is
a stationary probability measure of L(n), for any small element of size dx×dy,
the probability to see a node such that the weight of its south edge or its west
edge is an element of S(n) is(

νV (S(n))νH(R) + νV (S(n))νH(R)− νV (S(n))νH(S(n))
)

dxdy.
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By integration on the box [0, a] × [0, b], we find that the mean number of
lines with weight in S(n) and that are a south or west edge of a node is(

νV (S(n)) νH(R) + νH(S(n)) νV (R)
)
ab.

Moreover, because L(n) is reversible, this quantity is also equal to the mean
number of lines with weight in S(n) and that are a north or east edge of a
node. By summing these two means and adding the mean number of lines that
enter in the box, we deduce the following upper bound

E
[
number of segments of L(n) inside [0, a]× [0, b] whose weight s ∈ S(n)

]
≤ ε(n) := 2

(
νV (S(n))νH(R) + νH(S(n))νV (R)

)
ab

+
(
aνV (S(n)) + bνH(S(n))

)
.

In particular, because it is an integer-valued random variable:

P
(
there exists a segment in L(n) of weight s ∈ S(n)

)
≤ ε(n).

As S(n) → ∅ when n → ∞, we have that ε(n) → 0. But, if L(n) does
not contain any line whose weight is in S(n), then L(n) and L coincide for the
trivial coupling. Then we deduce that
P (thePKSL is well defined, i.e. it does not explode, inside the box [0, a]× [0, b])

≥ P
(
thePKSL(n) does not have any segment ofweight s∈S(n)

)
≥ 1− ε(n).

This is true for all n, so the PKS L is well defined a.s. Moreover, the process
L is reversible with line weight measures νV and νH since it coincides with
probability converging to 1 with the reversible process L(n).

6. Examples

6.1. Potential function of a PKS. — By construction, a PKS induces a random
tessellation of the quarter plane into polygonal regions (which are the connected
components obtained after removing the lines of the process). We call these
connected components the faces of the tessellation. The fact that a PKS satis-
fies Kirchhoff’s node law at every intersection is equivalent to the existence of
a potential function associated with the faces of the random tessellation. More
precisely, we can associate to each face F a scalar value v(F ) in such way that
the following holds true.
• Let σ denote a horizontal segment in the PKS with weight s(σ). This
segment separates two faces of the tessellation. Let F denote the face
below σ and let F ′ denote the face above σ. Then, it holds that

v(F ′)− v(F ) = s(σ).(41)
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Figure 6.1. An example of the potential on each connected
component of a drawing.

• Let σ denote a vertical segment in the PKS with weight s(σ). This
segment separates two faces of the tessellation. Let F denote the face
on the left of σ and let F ′ denote the face on the right of σ. Then, it
holds that

v(F ′)− v(F ) = −s(σ).(42)

In other words, equation (41) states that crossing a horizontal segment by
moving upward increases the potential by the value of the weight of the seg-
ment. On the other hand, equation (42) states that crossing a horizontal seg-
ment while moving to the right decreases the potential by the value of the
weight of this segment. See Figure 6.1 for an illustration.

The consistency of equations (41) and (42) for any segment is straightforward
thanks to Kirchhoff’s node law; looking at Figure 2.1, we simply check that the
sum of the potential differences when going (say clockwise) around a node is
sW − sN − sE + sS = 0. Furthermore, it is clear that the potential function
v is unique up to an additive constant. By convention, we choose it to be
0 for the bottom left face containing the origin. Figure 6.2 shows 2D and
3D representations of the potential function for a PKS process obtained by
simulation with Gaussian line weights.
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(a) 2D visualisation

(b) 3D visualisation

Figure 6.2. Simulation of a reversible PKS on [0, 80]× [0, 80]
with parameters pV (s) = 0.5, pH(s) = 0.5, τV (s) = τH(s) = 0
and with line weight measures νV = νH = N (0, 1) (Model 16
in Table 6.2). Colours represent potential values: blue for
negative ones and red for positive ones.
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6.2. List of examples. — As explained above, a PKS can be seen either as a
weighted line process or as a potential function on faces of a random tessellation.
These dual points of view make it possible to recover several well-known models
appearing in the statistical physics literature, in particular classical models
related to last passage percolation (LPP) as explained in Section 6.3.

In the rest of this section, we compute the parameter of the reversible PKS
with line weight measures νV and νH for many usual continuous and discrete
distributions. A list of examples of reversible PKS is presented in Table 6.2.
Subsequently, we discuss further some of the models in this list that enjoy
special properties and that are connected to well-known models.

The usual distributions and their parametrisation considered here are sum-
marised in Table 6.1.

6.3. Models with monotone potential (LPP). — For a PKS that satisfies the
hypotheses of the main theorems, the weights of the vertical lines (or horizontal
lines) take their values in the support of νV (or νH) a.s. It follows that the
potential function v is monotone in its both coordinates when the measures
νV and νH have their support included in R+ and R−, respectively, or the
opposite. For instance, if Support(νV ) ⊂ R− and Support(νH) ⊂ R+, then
the potential v is non-decreasing in both its coordinates. This is the case for
Model 13 in Table 6.2 simulated in Figure 3.3b. Another example is that of
Model 14 whose associated potential is represented in the simulation in the
Introduction. As it turns out, such PKS with monotone potentials can often
be mapped to LPP models.
Standard Hammersley’s model. The standard Hammersley’s broken line process
described in the Introduction and illustrated in Figure 1.1 (and studied, for
instance, in [1, 11, 12, 20, 21]) is clearly a PKS whose dynamics is the one of
Model 2 with a = −1, b = 1 and p0 = 1.
Hammersley interacting fluid system. In [14, 13], a generalisation of the stan-
dard Hammersley’s model is introduced. As for the standard Hammersley’s
model, it starts with a unit intensity PPP on [0,∞)2 but here, to each atom of
the PPP a random positive number is also associated, chosen in i.i.d fashion,
with common probability distribution F on the positive real numbers. At each
atom of the PPP, a particle of positive weight equal to this number goes to
the right, and a particle of opposite weight goes up. When two particles of op-
posite weights collide, they both disappear; otherwise the particle of maximal
absolute weight continues with a weight equal to the sum of the weights before
the encounter and the other one disappears. When F is the Dirac measure
at 1, we recover the classical Hammersley process.

The Hammersley fluid model is a PKS with parameters λ0 = 1, λV =
λH = 0, τV = τH = 0, p0 = 1, pV (s) = 1s<0, pH(s) = 1s>0 and F (0; .) = F(.).
Note that we do not need to specify F (s, .) for s 6= 0 because pV (s)+pH(s) = 1
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and λV (s) = λH(s) = 0. However, in view of Theorems 3.3 and 3.5, the only
model in this class that is reversible corresponds to the usual Hammersley’s
process when the law F is a Dirac law.

We can also recover, within the framework of PKS, other LPP systems
defined on the discrete grid N2 by embedding these models on R2

+. In order
to do so, we impose the functions pV , pH , as well as the constant p0 to be all
identically 0. This assumption ensures that splits, annihilations and creation
events can never happen during the dynamics. Thus, each line on the initial
PPPs on the x- and y-axis survives forever, and the trace of all those lines define
a two-dimensional discrete grid (embedded in R2

+ with exponential spacing).
Exponential last passage percolation. Model 14, where −νV and νH are pro-
portional to exponential distributions, corresponds to the Exponential LPP
studied by [29].
Geometric last passage percolation. There are two cases of geometric LPP de-
pending on whether the geometric distributions start from 0 or 1. Both cases
have been studied [15, 25, 30] and both can be seen as special PKS models. In
Table 6.2, we have only detailed the case of the geometric starting from 0; see
Model 13.
Discrete Hammersley’s processes. In [3], two models are defined. Their second
model corresponds to Model 12, mixing a discrete Bernoulli distribution with
a geometric distribution. In that case, with the notation of [3], the probability

that a site contains a “cross” is equal to p = qV (1− qH)
1− qV qH

. Let us note that
their first model, however, cannot be mapped to a PKS. Indeed, the model
is still conservative (i.e. it obeys Kirchhoff law), but the transition kernel at a
crossing of lines depends not only on the total incoming weights but also on the
horizontal/vertical division of the global weight. Thus, in order to encompass
this first model, one would need to significantly generalise the definition of a
PKS process. This is doable, but it lies outside the scope of this paper.
Generalised last passage percolation. Let µ0 be a probability measure on N∗ (or
on R+ with density f0). Taking, for any A ∈ B (R+),

νV (−A) = νH(A) =
∑
i∈A

√
µ0(i)/Z,

where Z =
∑
i∈N∗

√
µ0(i) (or

νV (−A) = νH(A) =
∫
A

√
f0(s)ds/Z,

where Z =
∫
R∗
√
f0(s)ds), we recover the generalised LPP defined in [10].
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6.4. Bullet models. — We call bullet models the family of models where the
weight of the lines plays no role. These models can be obtained by taking νV
and νH proportional to δ0 (see Model 1 of Table 6.2) and the turn rate functions
τV = τH = 0. Some of them have been lingering in the scientific community
for a few years and are notoriously difficult to study out of equilibrium; see for
instance [8, 22] and references therein. In [7], some bullet models are proved
to be stationary. Some of them correspond to PKS processes with specific
parameters. For instance, setting νV and νH to be proportional to δ0 and
assuming that p0 = 0, the dynamics of the bullets can be formulated as follows.
When a horizontal and a vertical bullet meet:
• with probability pV (0), the horizontal bullet is destroyed and the verti-
cally one continues its course;
• with probability pH(0), the vertical bullet is destroyed and the horizontal
one continues its course;
• with probability 1 − pV (0) − pH(0), both bullets continue their course
(passing through each other).

Of course, taking the Dirac measure at 0 for the weight measure may appear
as cheating somewhat since the potential associated with the PKS is then
constant to 0. However, it is also possible to define bullet models by choosing
−νV and νH to be geometric or exponential measures instead of a Dirac measure
at 0. Indeed, for all these measures, it follows from Models 13, 14 and 15 that
the splitting rate of lines remains constant (i.e. does not depend on the weight
of the line). Thus, interestingly enough, this shows that some bullet model can
be interpreted as the trace of more complex, non-trivial, potential models.

6.5. Six-vertex model. — The six-vertex model is a standard model in statis-
tical physics, which was first introduced by Pauling in 1935 [28] to study ice in
two dimensions. From a mathematical point of view, it is a family of probability
measures on the set of orientations of the grid N ×N , such that there are only
two incoming edges around each node. Hence, there are only six possible local
configurations allowed. To each type i of a local configuration, we associate a
weight (an “energy”) wi; see Table 6.3. From these weights, we can define a
probability measure on the set of orientations of the grid N2 via the following
formula: for any orientation O,

P (O) = 1
Z

∏
(x,y)∈[0,N ]2

wtypeO(x,y),

where Z =
∑
O

∏
(x,y)∈[0,N ]2 wtypeO(x,y), and where typeO(x, y) ∈ {1, . . . , 6}

denote the type of the local configuration seen around the point (x, y) in the
orientation O; see Figure 6.3.

Usually, the model is studied with the assumption that there does not exist
an external electromagnetic field that implies that w1 = w2 = a, w3 = w4 = b
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Figure 6.3. A configuration of the six-vertex model in the
grid 4× 4. Its associated probability is 1

Z w
2
1 w

3
2 w

1
3 w

5
4 w

3
5 w

2
6.

and w5 = w6 = c. Such models of six and also eight-vertex models have been
deeply studied, and we refer the interested reader to [4, 5, 6, 9, 17, 19, 23, 26, 31]
and references therein.

Some six-vertex models with an external electromagnetic field turn out to be
special cases of PKS from Models 4 and 5, where pV = pH = τV = τH = 0 (to
get only crossings). Namely, we can construct a six-vertex model from PKSs
of type 4 and 5, in the following way:
• In the case of Model 4, to any horizontal segment with weight 0 (or 1)
of the PKS, we associate an oriented segment to the west (or to the
east) in the six-vertex configuration; similarly, to any vertical segment
with weight 0 (or 1) of the PKS, we associate an oriented segment to
the south (or to the north) in the six-vertex model.
• In the case of Model 5, to any horizontal segment with weight 0 (or−1) of
the PKS, we associate an oriented segment to the east (or to the west)
in the six-vertex configuration; and similarly, to any vertical segment
with weight 0 (or 1) of the PKS, we associate an oriented segment to
the south (or to the north) in the six-vertex model.

See Figure 6.3 for an illustration of these correspondences.

6.6. Gaussian and Poisson models. — Models 16 and 17 correspond to mod-
els with Gaussian and Poisson marginals, respectively. Both models have a
particularly nice explicit dynamics. These models are new to the best of our
knowledge and look interesting to study further. In model 17, one can show
that the potential has the same distribution as the difference of two independent
Poisson variables, which gives rise to a law of large number with fluctuation of
order n1/4 with asymptotically Gaussian distribution.
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Table 6.3. On the first line, the six local configurations al-
lowed. On the second line, their local “energy”. On the third
line, their correspondence with a configuration of Model 4: a
plain line stands for a line with weight 1 and a dotted line for
a line with weight 0. On the fourth line, their correspondence
with a configuration of Model 5: a plain line stands for a line
with weight 1 or −1 and a dotted line for a line with weight 0.

Type 1 2 3 4 5 6

Six-
vertex
model

“Energy” w1 w2 w3 w4 w5 w6

PKS
model 4

“Energy”
model 4

qV + qH −
2qV qH

qV + qH −
2qV qH

qH(1 − qV ) qV (1 − qH) qV (1 − qH) qH(1 − qV )

PKS
model 5

“Energy” 1 − qH − qV 1 − qH − qV qV qH (1 − qV ) · (1 − qV ) · qV qH

Model 5 + 2qV qH + 2qV qH (1 − qH) (1 − qH)

7. Statistical properties of the tessellation

In this section, we look at the basic geometric properties of the system of
lines generated by a reversible PKS satisfying the assumptions of Theorem 3.3
or 3.5. Here, we focus our attention on the case where p0 = 0. Indeed, if
p0 6= 0, the number of faces could be sub-quadratic according to the length a
of a square [0, a]× [0, a], as is the case for the Hammersley broken line process
(presented in the Introduction), where the number of faces is linear in a.
Number of faces and nodes. Let D ∈ Da,b be a drawing; we can associate
to this drawing a tessellation as the set of segments of D without notifying
their weight. We call a face of a tessellation T a connected component of
([0, a]× [0, b]) \ T .

Proposition 7.1. — Consider a reversible PKS such that its initial condition
(CX , CY ) is distributed according to two independent PPPs, respectively, on
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(R+×{0})×R with intensity dxdνV (s) and on ({0}×R+)×R with intensity
dy dνH(s), where νV and νH are two non-zero finite measures on R satisfying
conditions (17), (18), (19), (20) and (21). Then, the law of the tessellation
associated to this PKS is translation-invariant and satisfies the following.

(i) The mean number of faces that do not touch the northern or eastern
sides of [0, a]× [0, b], is ab νV (R)νH(R).

(ii) The mean number of nodes of each type is summarised in the table below:
Type Mean number

a νV (R)

ab
∫
R pV (s) (νV ∗ νH)(ds)

ab
∫
R τV (s) dνV (s) = ab

∫
R τH(s) dνH(s)

ab
∫
R(1− pV (s)− pH(s))(νV ∗ νH)(ds)

The mean number of horizontal nodes can be found by swapping H
and V , and a and b.

(iii) When a or b goes to infinity, the number of each type of node is almost
surely asymptotically equal to their re-scaled mean.

Proof. — We will first determine the mean number of each node deduce the
mean number of faces, so that we will first prove (ii) and then (i) and (iii).

(ii)
• Nodes of type or : by definition, the nodes are distributed ac-

cording to a PPP of intensity νV (R) on the x-axis. Thus, the mean
number of such nodes on the segment (0, a) × {0} is a νV (R). By The-
orem 3.3, the same holds for the mean number of nodes of type on
the segment (0, a)× {b}.

• Nodes of type or : we do the proof for . For any (x, y), the
probability to see in the box [x, x + dx] × [y + dy] a vertical line, a
horizontal line and a vertical coalescence is

dxdy
∫
R

∫
R
pV (s+ t) dνV (s) dνH(t) = dx dy

∫
R

∫
R
pV (u) dνV (s) dνH(u− s)

= dx dy
∫
R
pV (u) (νV ∗ νH)(du).

Hence, the mean number of nodes on type in [0, a]× [0, b] is∫
[0,a]

dx
∫

[0,b]
dy
∫
R
pV (s) (νV ∗ νH)(ds) = ab

∫
R
pV (s) (νV ∗ νH)(ds).

By Theorem 3.3, the same holds for the mean number of nodes of
type .
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• Nodes of type : similarly, the probability to see in the box [x, x +
dx]× [y, y+ dy] a vertical line of size [s, s+ ds] and a vertical turn (that
happens at rate τV (s)) is

dxdy τV (s) dνV (s) = dx dy τH(s) dνH(s).

We conclude by integration on R for s, [0, a] for x and [0, b] for y.
• Nodes of type : similar to the case of where we multiply by 1 −
pV (s+ t)− pH(s+ t) instead of pV (s+ t) since we are in the case 3(d)
of the dynamics of Section 2.

(i) Now, we have two ways to prove the mean number of connected compo-
nents that do not touch the northern or eastern sides of the rectangle, which
is the same as the ones that do not touch the southern or western sides of
the rectangle by Theorem 3.3. Note that any connected component has only
one north–east corner and one south–west corner. Hence, the mean number
of connected components is both equal to the mean number of nodes of types
∪ ∪ and to the mean number of nodes of types ∪ ∪ .
(iii) We treat the case where a is fixed and b→∞. By monotonicity, we can

assume that b is integer-valued. Let D be a random drawing on [0, a]×R+. For
any integer n ≥ 0, we denote byMn, the restriction of D to the segment [0, a]×
{n}. The process (Mn) is a Markov chain and, according to Corollary 3.4 (i),
it admits an invariant measure. Moreover, this chain is irreducible since the
empty set (no line going up) can be reached with positive probability from any
starting configuration. Thus, according to classical results on Markov chains
having an accessible atom (see [27, Section 15.1] and [2, Theorem 1]), this chain
is Harris recurrent, and the law of large numbers applies. �

Mean number of nodes and corners around a face. For any positive a, b, let D be
a random drawing of Da,b. Denote by F(D) the set of faces of the tessellation
of D. For a given face F we denote by sF and cF the number of nodes and of
corners (that are the nodes on the boundary of F whose angle is π/2 or 3π/2)
around the face F . This is illustrated in Figure 7.1. Here, we are interested in
sa,b (or ca,b), the mean number of nodes (or corners) of F(D), namely

sa,b =
∑
F∈F(D) sF

|F(D)|

(
or ca,b =

∑
F∈F(D) cF

|F(D)|

)
.(43)

Corollary 7.2. — The following almost sure limits hold:
(i) lim

b→∞
lim
a→∞

sa,b = lim
a→∞

lim
b→∞

sa,b

= 4 + 2
∫
R (pV (u) + pH(u)) (νV ∗ νH)(du) + 2

∫
R τV (u)dνV (u)

νV (R)νH(R) .

(ii) lim
b→∞

lim
a→∞

ca,b = lim
a→∞

lim
b→∞

ca,b = 4 + 4
∫
R τV (u)dνV (u)
νV (R)νH(R) .
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Figure 7.1. A connected component with 11 nodes (in blue
and red) and 8 corners (in red).

Remark. — When pV + pH = 1 and τV = τH = 0, all the nodes are of degree
3, and all faces are rectangles. Hence, our result recover the well-known fact
that the mean number of nodes per faces is equal to 6 and the number of
corners is obviously 4.

Proof. — First, we use point (iii) of Proposition 7.1 to go back and forth
between a.s. convergence and convergence of mean. Notice that since a and b
go to infinity, we do not care about counting the faces that touch the boundary
of a finite rectangle [0, a] × [0, b] or the nodes on it, because their proportion,
compared to the total number of nodes in the box, goes to zero as the box gets
larger.

(i) By definition:

sa,b =
∑
F∈F(D) sF

|F(D)| =
∑
F∈F(D) sF /a

|F(D)| /a .

And so by (iii) of Proposition 7.1,

lim
a→∞

sa,b =
lim
a→∞

E
[∑

F∈F(D) sF

]
/a

lim
a→∞

E [|F(D)|] /a .

But, by (ii) of Proposition 7.1, E [|F(D)|] = ab νV (R)νH(R) and

E

 ∑
F∈F(D)

sF

 = E [number of nodes with multiplicity]

= E [2(| |+ | |+ | |+ | |) + 3(| |+ | |+ | |+ | |) + 4| |]

= 2a νV (R) + 2b νH(R) + 6ab
∫
R

(pV (u) + pH(u)) (νV ∗ νH)(du)

+ 4ab
∫
R

(1− pV (u)− pH(u)) (νV ∗ νH)(du) + 4ab
∫
R
τV dνV (u)
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= 4ab
∫
R
(νV ∗ νH)(du) + 2ab

∫
R

(pV (u) + pH(u))(νV ∗ νH)(du)

+ 2a νV (R) + 2b νH(R) + 4ab
∫
R
τV (u)dνV (u).

Consequently,

lim
a→∞

sa,b = lim
a→∞

[
2
(∫

R (pV (u) + pH(u)) (νV ∗ νH)(du) + 2
∫
R τV (u)dνV (u)

νV (R)νH(R)

)

+ 4
∫
R(νV ∗ νH)(du)
νV (R)νH(R)︸ ︷︷ ︸

=1

+2 (b νH(R))−1 + 2 (a νV (R))−1

]
.

Now, taking the limit when b → ∞ leads to the wanted results for
lim
b→∞

lim
a→∞

sa,b. The same holds for lim
a→∞

lim
b→∞

sa,b.
(ii) Similarly for lim

b→∞
lim
a→∞

ca,b and lim
a→∞

lim
b→∞

ca,b. The difference is the term
in the numerator that becomes

E [2(| |+ | |+ | |+ | |+ | |+ | |+ | |+ | |) + 4| |] . �

The presence of double limits in this corollary is difficult to avoid. One
could wish to get results about averages taken on boxes [0, a] × [0, b] with a
and b having the same order of magnitude. But this type of result is related
to decorrelation properties of the process, which are more and more difficult to
prove as lines get closer to the diagonal, as we can see in Figure 6.2.

8. Perspectives

In this paper, we defined the Poisson–Kirchhoff model as a system of vertical
and horizontal broken weighted lines with a Markovian reversible dynamic that
preserves Kirchhoff’s node law. In doing so, we made several assumptions, some
of which could be relaxed, yet might still lead to tractable (and still reversible)
dynamics. For instance, one could look at the following.
• Models where the distribution of weights on crossing events depends on
the value of the two entries and not only on their sums. By relaxing
this condition, we would recover the first model of [3] as explained in
Section 6.3.
• Models where the measures νV and νH may have infinite mass. Relax-
ing the finite mass assumption should make it be possible to construct
systems that are self-similar, i.e. invariant by re-scaling of both space
and weights simultaneously. Such models will be obtained by choosing
gV and gH of the form s 7→ s−α.
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• More generally, one could consider models whose lines are no longer
vertical and horizontal but can instead make an angle with the axis. A
trivial example, with deterministic dynamics, is the Crofton model, also
called the Poisson line process [16].

Finally, another important question is that of the fluctuations of the poten-
tial for these models. For now, it is only known that the Hammersley processes
belong to the KPZ family class and have fluctuations of order n1/3 [11, 12].
On the other hand, it can be proved that Model 17 of Table 6.2 has Gaussian
fluctuations, as mentioned in Section 6.6. We believe that these are the only
two regimes of fluctuations and that the type of fluctuations depends on the
support of νV and νH . We conjecture that if the supports of both νV and νH
are, respectively, included, either in R+ and R−, or in R− and R+, then the
fluctuations should be Tracy–Widom but Gaussian otherwise.
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