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ON THE FINITENESS OF P-ADIC CONTINUED FRACTIONS
FOR NUMBER FIELDS

by Laura Capuano, Nadir Murru & Lea Terracini

Abstract. — For a prime ideal P of the ring of integers of a number field K, we
give a general definition of a P-adic continued fraction, which also includes classical
definitions of continued fractions in the field of p-adic numbers. We give some necessary
and sufficient conditions on K ensuring that for all but finitely many P, every α ∈ K
admits a finiteP-adic continued fraction expansion, addressing a similar problem posed
by Rosen in the archimedean setting.

Résumé (Sur la finitude des fractions continues P-adiques pour les corps de nombres).
— Soit P un idéal premier de l’anneau des entiers d’un corps de nombres K. On
donne une définition générale de fraction continue P-adique qui inclut les définitions
classiques de fractions continues p-adiques. On présente des conditions nécessaires et
suffisantes sur K qui assurent que pour tous idéaux P sauf un nombre fini, chaque
élément α ∈ K ait une expansion finie en fraction continue P -adique. Ces résultats
abordent dans le contexte p-adique un problème qui avait été posé par Rosen dans le
cas archimédien.
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1. Introduction

The classical continued fraction algorithm provides an integer sequence
[a0, a1, . . .] that represents a real number α0 by means of the following recursive
algorithm: an = bαnc

αn+1 =
1

αn − an
if αn − an 6= 0,

for all n ≥ 0, where b·c denotes the integral part of a real number. The an’s
and αn’s are called partial and complete quotients, respectively. It is easy to
see that, for classical continued fractions, the procedure eventually stops if
and only if we start with a rational number, and, in the case of irrationals,
they provide the best rational approximations of the number; this is one of the
reasons why the study of continued fractions is very important in diophantine
approximation and transcendence theory.

Motivated by this property, Rosen [34] posed the problem of finding more
general definitions of continued fraction expansions characterizing all the ele-
ments of an algebraic number field K by means of finite expansions and pro-
viding approximations of elements not in the field by means of elements in K
(as well as classical continued fractions that provide rational approximations of
irrational numbers). In [34], Rosen gave an example of such continued fractions
in the special case of Q(

√
5), using expansions of the form

a0 +
b1

a1ϕ+
b2

a2ϕ+
b3

. . .

,

where ϕ is the Golden ratio, bn = ±1, and the an ∈ Z satisfies the property that
anϕ is the integer multiple of ϕ nearest to the respective complete quotients.
This is a special case of the so-called Rosen continued fractions, introduced by
the same author in [33], where ϕ is replaced by irrational numbers of the form
2 cos πq with q ≥ 3 an odd positive number, with the aim of studying Hecke
groups.

The characterization of the real numbers having a finite Rosen continued
fraction is still an open problem, see, e.g., [1, 9, 18] for further details. In [5],
Bernat defined another continued fraction expansion in Q(

√
5), slightly differ-

ent from the Rosen one, proving that also these continued fractions represent
Q(
√

5) uniquely. Very recently in [27], the authors generalized a Bernat con-
struction defining the so-called β-continued fraction with the aim of studying
when the elements of Q(β) have a finite representation, where β is any qua-
dratic Pisot number. More specifically, the authors proved that, if β is either
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a quadratic Perron number or the square root of a positive integer, then ev-
ery element of Q(β) has a finite or eventually periodic β-continued fraction
expansion. Moreover, assuming a conjecture by Mercat [29], there exist only
four quadratic Perron numbers β, such that the elements of Q(β) have a finite
β-continued fraction expansion.

The problem of Rosen can be naturally translated into the context of p-adic
numbers Qp; indeed, starting from Mahler [26], continued fractions have been
introduced and studied in Qp by several authors. In this context, however,
there is no natural definition of a p-adic continued fraction, since there is no
canonical definition for a p-adic floor function. The two main definitions of
a p-adic continued fraction algorithm are due to Browkin [7] and Ruban [35];
they are both based on the definition of a p-adic floor function

s(α) =
0∑

n=k
xnp

n ∈ Q, where α =
∞∑
n=k

xnp
n ∈ Qp,

where the xn’s are the representatives modulo p in the interval (−p/2, p/2)
for the Browkin definition and in the interval [0, p − 1] for the Ruban defini-
tion. These continued fractions have been widely studied by several authors
in terms of quality of the approximation, finiteness, and periodicity; see, e.g.,
[2, 4, 8, 10, 11, 39, 21, 32, 36]. In this setting, however, many differences to
the classical case arise; for example, none of these definitions provide good
approximations as in the real case, and no analogue of Lagrange’s theorem
holds for both Browkin and Ruban continued fractions, and, hence, the prob-
lem of finding a standard definition for a p-adic continued fraction still remains
open. However, it has been proved that rational numbers always have a finite
Browkin continued fraction expansion [8] and a finite or eventually periodic
Ruban continued fraction expansion [21].

In this paper, we consider the p-adic analogue of the Rosen question. Given
a number field K and a prime ideal P in its ring of integers OK , we give a very
general definition of P-adic continued fractions; with this definition, the partial
quotients are the values of a P-adic floor function s, which is a locally constant
function from the P-adic completion of K to the ring of {P}-integers of K.
We will call the data τ = (K,P, s) a type and we will introduce the notion
of continued fractions of type τ . With this definition, Browkin and Ruban
continued fractions arise as particular p-adic types for Q. If every element
of K has a finite (or periodic) τ -expansion, then we shall say that the type τ
enjoys the continued fraction finiteness (CFF) (or continued fraction periodicity
(CFP)) property. Moreover, we shall say that the field K enjoys the P-adic
CFF (or CFP) property if there exists a CFF (or CFP) type τ = (K,P, s). It
is well known that Q satisfies the p-adic CFF property for every odd prime p
because of the finiteness of Browkin continued fraction expansions of rational
numbers (see [7]).
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746 LAURA CAPUANO, NADIR MURRU & LEA TERRACINI

In the first part of the paper, we prove a sufficient condition for a type to
have the CFF (or CFP) property using general properties of the multiplicative
Weil height of algebraic numbers and of the norms of matrices. This result
allows us to study the P-adic CFF property when K is a norm-Euclidean field;
in particular, we prove that a norm-Euclidean field with Euclidean minimum
< 1 satisfies the P-adic CFF property for all but finitely many prime ideals P.
Furthermore, for certain Euclidean quadratic fields K, we provide some more
effective constructions by exploiting the form of unitary neighborhoods covering
a fundamental domain of OK as done in [17].

In the last part of the paper, we study the CFF property of P-adic continued
fractions in relation to the structure of the ideal class group for number fields,
which are not necessarily norm-Euclidean. First, we show that, if the num-
ber field K satisfies the P-adic CFF property for all but finitely many prime
ideals P, then OK is a PID, giving examples of number fields for which the
CFF property fails to hold. Moreover, under milder hypotheses, we show that
it is possible to ensure the CFF property for continued fractions associated to
(almost all) primes belonging to a norm-Euclidean class, in the sense of [23].
Finally, for a general number field, we show that the obstruction to the CFF
property depends on the existence of infinitely many partial quotients with
P-adic valuation equal to −1.

We conclude this Introduction by pointing out some open problems and
directions for future work. First, effectiveness: our main results assert the
existence of CFF types for a given number field, but in general it is not easy to
define them explicitly. The construction of types satisfying the CFF property
and the analysis of their properties, such as the study of the arithmetic of partial
quotients, or of the dependence between the length of a finite continued fraction
and the height of the algebraic number that it represents, are interesting topics
that have left as outside of the scope of the present work. Moreover, it would
be nice to obtain a full characterization of number fields K satisfying the P-
adic CFF for a given ideal P. We show that a necessary condition for CFF is
that the ideal class group K is generated by the class of P. We do not know
if this condition is also sufficient, but we do not have arguments against this
possibility.

Finally, it would be nice to investigate periodicity. Although we state a suffi-
cient condition for a type to enjoy the CFP property, the present paper focuses
specifically on finiteness. Nevertheless, periodicity is also a very interesting
question, and an algebraic characterization of the elements represented by a
periodic expansion (relative to a given type) would be a challenging objective.

2. Notations and prerequisites

For every rational prime p, let | · |p be the p-adic absolute value, normalized
in such a way that |p|p = 1

p . The archimedean absolute values on R or C will
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be denoted by | · | or by | · |∞, respectively. We will denote by K an algebraic
closure of any field K.

Let K be a number field of degree d over Q and let OK be its ring of integers.
We fix a prime ideal P of OK lying over an odd prime p. Let MK be a set
of representatives for the places of K. For every rational prime q and every
v ∈ MK above q, let Kv ⊆ Qq be the completion of K with respect to the
v-adic valuation and let Ov be its valuation ring; we put dv = [Kv : Qq]. Let
| · |v = |NKv/Qq (·)|

1
dv
q be the unique extension of | · |q to Kv. Then the product

formula ∏
v∈MK

|x|dvv = 1

holds for all x ∈ K× ([6, Prop. 1.4.4]). We recall the definition of multiplicative
Weil height that will be useful in the paper.

Definition 2.1. — For α ∈ K, the (multiplicative) Weil height is defined as

H(x) =
∏

v∈MK

sup(1, |x|v)
dv
d .

Notice that all but finitely many factors of the infinite product are equal
to 1, and, hence, H(x) is well defined. Moreover, thanks to the choice of the
normalization, the definition does not depend on the number field K, and,
hence, it extends to a function H : Q→ [1,+∞). The function H satisfies the
following important properties (see [6]):

Proposition 2.2. — For every nonzero x, y ∈ Q, we have:
a) H(x+ y) ≤ 2H(x)H(y);
b) H(xy) ≤ H(x)H(y);
c) H(xn) = H(x)|n| for all n ∈ Z;
d) H(σ(x)) = H(x) for all σ ∈ Gal(Q/Q);
e) Northcott’s theorem: there are only finitely many algebraic numbers

of bounded degree and bounded height;
f) Kronecker’s theorem: H(x) = 1 if and only if x is a root of unity.

3. P-adic continued fractions

In this section, we show, given a number field K and a prime ideal P of OK ,
how to define a general P-continued fraction. Our general definition will gen-
eralize the classical definitions of p-adic continued fractions given by Browkin
and Ruban.
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3.1. P-adic floor functions and types. — Let P be a prime ideal of OK , lying
over an odd rational prime p and let v0 ∈MK be the place corresponding to P.

Definition 3.1. — A P-adic floor function for K is a function s : Kv0 → K,
such that

a) |α− s(α)|v0 < 1 for every α ∈ Kv0 ;
b) |s(α)|v ≤ 1 for every non-archimedean v ∈MK \ {v0};
c) s(0) = 0;
d) s(α) = s(β) if |α− β|v0 < 1.

We recall the strong approximation theorem in number fields [12, Theorem
4.1].

Theorem 3.2. — Let K be a global field andMK = S∪T ∪{w} be a partition
of the places of K with S finite. For every v ∈ S, let av be an element in Kv

and let εv ∈ R>0. Then, there exists an x in K, such that
|x− av|v < εv for every v ∈ S,

|x|v ≤ 1 for every v ∈ T.

By strong approximation (or some other arguments), P-adic floor functions
always exist, and there are infinitely many.

We define

OK,{v0} = {α ∈ K | |α|v ≤ 1 for every non-archimedean v 6= v0 inMK}.

Then, we can regard aP-adic floor function as a map s : Kv0/POv0 → OK,{v0},
such that s(POv0) = 0, and which is a section of the projection map Kv0 →
Kv0/POv0 . Therefore, the choice of a P-adic floor function amounts to choos-
ing a set Y of representatives of the cosets of POv0 in Kv0 containing 0 and
contained in OK,{v0}.

We shall call the data τ = (K,P, s) (or (K,P,Y)) a (P-adic) type.

3.2. Types arising from generators of P. — In the case P is principal, there
is a more natural way of defining a floor function associated to P. Indeed, let
π ∈ OK be a generator of P and let R be a complete set of representatives
of OK/P containing 0. Then, every α ∈ Kv0 can be expressed uniquely as a
Laurent series α =

∑∞
j=−n cjπ

j , where cj ∈ R, for every j. It is possible to
define a P-adic floor function by

s(α) =
0∑

j=−n
cjπ

j ∈ K.

We shall denote the types τ = (K,P, s) obtained in this way by τ = (K,π,R)
and we will usually call them special types.

tome 150 – 2022 – no 4
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Example 3.3 (Browkin and Ruban types over Q.) — Two main special types
when K = Q and π = p odd prime have been studied in the literature:
• the Browkin type τB = (Q, p, {−p−1

2 , . . . , p−1
2 }) (see [2, 3, 4, 7, 8, 11]);

• the Ruban type τR = (Q, p, {0, . . . , p− 1}) (see [10, 21, 35, 38]).

Remark 3.4. — The absolute Galois group Gal(Q/Q) acts on the set of types;
indeed, if τ = (K,P, s) is a type, then σ ∈ Gal(Q/Q) induces a continuous map
Kv0 → Kσ

v′0
, where v′0 ∈ MKσ corresponds to Pσ. Then τσ = (Kσ,Pσ, sσ) is

also a type, where sσ = σ ◦ s ◦σ−1. In particular, if K/Q is a Galois extension,
and σ belongs to the decomposition group

DP = {σ ∈ Gal(Q/Q) | Pσ = P},

then τσ = (K,P, sσ) is again a P-adic type.

3.3. P-adic continued fractions associated to types. — In this section, we give
the definition of a P-adic continued fraction algorithm associated to P-adic
types and prove some general properties for these continued fractions, gener-
alizing the analogous well-established properties in the case of Browkin and
Ruban.

Let τ = (K,P, s) be a type and put

Ys := im(s).

Then, Ys is a discrete subset of Kv0 .

Definition 3.5. — Let τ = (K,P, s) be a type. A continued fraction of type
τ is a possibly infinite sequence

[a0, a1, . . .]

of elements of Ys, such that |an|v0 > 1 for n ≥ 1.

We define the sequences (An)∞n=−1, (Bn)∞n=−1 by putting
A−1 = 1, A0 = a0, An = anAn−1 +An−2,

B−1 = 0, B0 = 1, Bn = anBn−1 +Bn−2,

for n ≥ 1. By using matrices, we can write

An =
(
an 1
1 0

)
for n ≥ 0,(1)

Bn =
(
An An−1
Bn Bn−1

)
for n ≥ 0;

then,

Bn = Bn−1An = A0A1 . . .An.
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Notice that
det(An) = −1, det(Bn) = (−1)n−1.

We define the nth−convergent to be

Qn = An
Bn

= a0 +
1

a1 +
1

. . . +
1
an

for n ≥ 0.

Let [a0, a1, . . .] be a continued fraction of type τ ; then, an easy induction shows
that

|Bn|v0 =
n∏
j=1
|aj |v0 .(2)

We notice that the sequence of the convergents (Qn)n∈N converges P-adically;
indeed, it is easy to see that |Qn − Qn−1|v0 = 1

|Bn|v0 |Bn−1|v0
. Then the claim

follows by (2), because of the hypothesis that |an|v0 > 1 for every n ≥ 1.
Conversely, every α ∈ Kv0 is the limit of a (unique) continued fraction of

type τ obtained by applying the following algorithm:
α0 = α,
αn+1 = 1

αn−an ,

an = s(αn).
(3)

Then, we have the following:

αn = an + 1
αn+1

.

The sequence [a0, a1, . . .] obtained by applying (3) is called the continued frac-
tion expansion of type τ of α. For any n ≥ −1, we define

Vn := An − αBn.(4)

The following properties are easily proved (see [11, Section 2]).

Proposition 3.6. — For every n ≥ 1, one has:
a) Vn = anVn−1 + Vn−2;
b) αnVn−1 + Vn−2 = 0;
c) |Vn|v0 =

∏n+1
j=1

1
|aj |v0

;

d) Vn = (−1)n+1∏n+1
j=1

1
αj

;
e) αnBn−1 +Bn−2 =

∏n
j=1 αj ;

f) α = αnAn−1+An−2
αnBn−1+Bn−2

;
g) |αn|v0 = |an|v0 > 1.
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3.4. The quality of the P-adic approximation. — Given α ∈ Kv0 , for every
n ≥ 1, let us put εn(α) := |Vn−1|v0 , with the convention that ε0(α) = 1. Notice
that, for every i = 0, . . . , n, we have

εn(α) = εi(α)εn−i(αi).(5)

Proposition 3.7. — Given α, α′ ∈ Kv0 , let [a0, . . . , ak, . . .], [a′0, . . . , a′k, . . .] be
the continued fraction expansions of type τ of α and α′, respectively. Assume
that the length of the expansion of α is greater than or equal to n. If |α−α′|v0 <
εn(α)2, then the length of the expansion of α′ is greater than or equal to n and
ai = a′i for every i = 0, . . . , n.

Proof. — We argue by induction on n. The claim is certainly true for n = 0,
since

|x− y|v0 < 1⇔ s(x) = s(y).

Suppose now that |α−α′|v0 < εn+1(α)2. First, for n = 0, we have that a′0 = a0;
moreover, we observe that the hypothesis implies |α−α′|v0 <

1
|a1|v0

= |α−a0|v0 .
Applying the properties of the non-archimedean absolute values, we have

1
|a′1|v0

= |α′ − a0|v0 = max{|α′ − α|v0 , |α− a0|v0} = |α− a0|v0 = 1
|a1|v0

,

so that |a1|v0 = |a′1|v0 . By (5) we have εn+1(α) = 1
|a1|v0

εn(α1); hence,

|α1 − α′1|v0 =
∣∣∣∣ 1
α− a0

− 1
α′ − a0

∣∣∣∣
v0

= |a1|2v0
|α− α′|v0 <

n+1∏
j=2

1
|aj |2v0

= εn(α1)2.

Applying the inductive hypothesis, we have that ai = a′i for i = 1, . . . , n + 1,
which concludes the proof. �

The next proposition proves that, if the nth-convergents of α and β are the
same, then the two numbers are v0-adically close. More precisely, we have the
following result:

Proposition 3.8. — Let e be the ramification index of Kv0/Qp. Assume
α, β ∈ Kv0 be such that Qαn = Qβn. Then |α− β|v0 <

1
p

2n
e
.

Proof. — Notice that the hypothesis Qαn = Qβn is equivalent to saying that
the first n + 1 partial quotients of α and β are equal. We argue by induction
on n. The claim is certainly true for n = 0, so we assume that n ≥ 1 and
Qαn = Qβn. This implies that a0 = s(α) = s(β) and Qα1

n−1 = Qβ1
n−1, so that

|α1 − β1|v0 <
1

p
2(n−1)

e

. Since |α1β1|v0 ≥ p
2
e , we have

|α− β|v0 =
∣∣∣∣a0 + 1

α1
− a0 −

1
β1

∣∣∣∣
v0

= |α1 − β1|v0

|α1|v0 |β1|v0

<
1

p
2(n−1)+2

e

= 1
p

2n
e

,

which proves the claim. �

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



752 LAURA CAPUANO, NADIR MURRU & LEA TERRACINI

4. Finiteness and periodicity

Let τ = (K,P, s) be a type. It is clear by the construction that every fi-
nite continued fraction expansion of type τ represents an element in K, but
the converse is not true in general. Motivated by a question of Rosen in the
archimedean case, we are interested in giving necessary and sufficient condi-
tions such that a type satisfies the property that every element of K has finite
continued fraction expansion of type τ .

Following [27], where the authors address the Rosen problem in the archi-
medean case, we introduce the following definitions.

Definition 4.1. — a) We say that τ satisfies the continued fraction finite-
ness property (CFF) (or the continued fraction periodicity property
(CFP)) if every α ∈ K has a finite (or finite or periodic) τ -expansion.

b) We say that the field K satisfies the P-adic continued fraction finiteness
property (CFF) (or the P-adic continued fraction periodicity property
(CFP)) if there is a type τ = (K,P, s) satisfying the CFF (or CFP)
property.

In the following sections, we show that the Browkin and Ruban continued
fractions satisfy the CFF and CFP property, respectively.

4.1. Browkin expansion of rational numbers. — In [7, §3], Browkin proved
that, for every odd prime p, every rational number has a finite Browkin p-
adic continued fraction expansion. Although not explicitly stated, the proof
also gives a quantitative estimate for the length n of the expansion; namely, if
α = ps xy with s, x, y ∈ Z and (x, y) = 1, then n does not exceed |x|∞+2|y|∞+1.
We present here a slightly different proof improving the bound for n.

Lemma 4.2. — Let (tn)n∈N be a sequence of real numbers ≥ 0, such that there
exist c0, c1 ∈ R>0 satisfying

tn+2 < c1tn+1 + c0tn,

and let x̃ be the (unique) positive real root of the polynomial

f(X) = X2 − c1X − c0.

Then,
a) |tn|∞ ≤ max{t0, t1x̃ } · x̃

n for every n ∈ N;
b) if c0 + c1 < 1, we have that |tn|∞ → 0.

Proof. — The first assertion follows easily by applying an induction on n. To
prove part b), first notice that, since x̃ > 0 and

x̃ = c1 + c0
x̃
,
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then c1 < x̃. If c0 + c1 < 1, then f(1) = 1 − (c0 + c1) > 0, so that 0 < x̃ < 1,
and we can conclude that c1 < x̃ < 1. Therefore,

x̃ < 1⇔ c1 + c0 < 1.

Then, the claim follows from part a). �

Proposition 4.3. — Let α ∈ Q and write α = x0
y0
, with y0 ∈ Z not divisible

by p and x0 ∈ Z
[ 1
p

]
. Then, the Browkin p-adic continued fraction expansion of

α is finite, and its length is strictly bounded by
log(max{|x0|∞, |y0|∞})

log
(
p(
√
p2+16−p)

4

) .

Proof. — Consider the sequence (Vn)n∈N defined by (4) and put yn+1 = y0Vn.
By Proposition 3.6 c) we have yn ∈ Z[ 1

p ] ∩ pnZp = pnZ. Moreover, by Proposi-
tion 3.6 a) the yn’s satisfy the recurrence

yn+1 = anyn + yn−1,

with |an|∞ < p
2 . Then,

yn
pn ∈ Z and, by applying Lemma 4.2, we have

|yn|∞
pn

<
1
2
|yn−1|∞
pn−1 + 1

p2
|yn−2|∞
pn−2

< Mx̃n,

where M = max
{
|y0|∞, |y1|∞

p

}
and x̃ = 1

4p (
√
p2 + 16 + p) is the positive

root of the polynomial X2 − 1
2X −

1
p2 . It follows that yn = 0 for x̃n ≤ 1

M .
Furthermore, we have

|y1|∞
p

= 1
p
|x0 − a0y0|∞ <

1
p
|x0|∞ + 1

2 |y0|∞;

therefore,

M < max
{
|y0|∞,

1
2(|x0|∞ + |y0|∞)

}
≤ max{|x0|∞, |y0|∞},

so that yn = 0 for x̃n ≤ 1
max{|x0|∞,|y0|∞} , that is for n ≥ −

log(max{|x0|∞,|y0|∞})
log(x̃−1) ,

as wanted. �

4.2. Ruban expansion of rational numbers. — In [35], Ruban introduced a p-
adic continued fraction corresponding to the type τR = (Q, p, {0, . . . , p − 1}),
proving that the continued fraction expansions coming from this type enjoy
nice ergodic properties. However, it is easy to see that the Ruban type cannot
satisfy CFF, since negative rational numbers cannot have a terminating Ruban
continued fraction. In this setting, Laohakosol [21] and, independently, Wang
[38] proved that τR satisfies CFP, proving in particular that, if a rational
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number is a nonterminating τR-expansion, then the tail is equal to
[
1− 1

p

]
.

However, none of these arguments were effective; more recently, in [10] the
authors gave a quantitative estimate for the length of the expansion in the case
that this is finite and an estimate on the length of the pre-periodic part in
terms of the height of the rational number.

4.3. The main tools. — For x ∈ C, we define

θ(x) = 1
2

(
|x|∞ +

√
|x|2∞ + 4

)
;

then, we have the following inequality:

|x|∞ ≤ θ(x) ≤ |x|∞ + 1,

and the map θ is a bijection from [0,+∞) to [1,+∞) whose inverse is given by
y 7→ y− 1

y . In this section, we will prove that, given a type (K,P, τ), a suitable
bound involving the values of θ on the elements in the image of s and on their
conjugates will guarantee that the type satisfies the CFF (or CFP) property.

We first need the following lemma:

Lemma 4.4. — Let (an)n≥0 be any sequence of complex numbers and let
(vn)n≥−1 be a sequence of complex numbers satisfying, for every n ≥ 2, the
recurrence formula:

vn = anvn−1 + vn−2.

Then for every n ≥ 0,

max{|vn|∞, |vn−1|∞} ≤
√
|vn|2∞ + |vn−1|2∞ ≤

√
|v0|2∞ + |v−1|2∞ ·

n∏
j=1

θ(aj).

Proof. — For any complex matrix M , let us consider the operator norm

‖M‖ = sup
v6=0

‖Mv‖
‖v‖ ,

where ‖v‖ denotes the Euclidean norm of a complex vector. The following facts
are well known (see, for example, [20, Chapter 5]):
• ‖M1 ·M2‖ ≤ ‖M1‖ · ‖M2‖;
• ‖M‖ =

√
|γ|∞, where γ is the dominant eigenvalue of M ·M∗ (here,

M∗ denotes the transpose conjugate of M).
In particular, we see that, for every a ∈ C,∥∥∥∥(a 1

1 0

)∥∥∥∥ = θ(a).
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Let An be the matrix defined as in (1); then, for every n ≥ 1,∥∥∥∥( vn
vn−1

)∥∥∥∥ =
∥∥∥∥An(vn−1

vn−2

)∥∥∥∥ ≤ ‖An‖ ∥∥∥∥(vn−1
vn−2

)∥∥∥∥ = θ(an)
∥∥∥∥(vn−1
vn−2

)∥∥∥∥ ,
so that

max{|vn|∞, |vn−1|∞} ≤
∥∥∥∥( vn
vn−1

)∥∥∥∥ ≤ ∥∥∥∥( v0
v−1

)∥∥∥∥ · n∏
j=1

θ(aj). �

Theorem 4.5. — Let τ = (K,P, s) be a type. Let Σ be the set of embeddings
of K in C, and let us denote by

ντ = sup
{∏

σ∈Σ θ(aσ)
|a|dv0

v0

∣∣∣ a ∈ Ys, |a|v0 > 1
}
.

Then,
a) if ντ ≤ 1, then τ satisfies CFP;
b) if ντ < 1, then τ satisfies CFF.

Proof. — Let α ∈ K; we notice that, for every σ ∈ Σ, the sequence V σn satisfies
the recurrence formula

V σn = aσnV
σ
n−1 + V σn−2,

for every n ≥ 1, so by Lemma 4.4, there exists a suitable C > 0 (depending on
α), such that ∏

σ∈Σ
sup{|V σn |∞, |V σn−1|∞} ≤ C

n∏
j=1

∏
σ∈Σ

θ(aσj ).(6)

Since Vnαn+1 + Vn−1 = 0, and recalling that Vn ∈ K, we have that

H(αn+1)d = H

(
−Vn−1

Vn

)d
=

∏
v∈MK

sup
{∣∣∣∣Vn−1

Vn

∣∣∣∣dv
v

, 1
}
,

=
∏

v∈MK

sup{|Vn|dvv , |Vn−1|dvv }.

Using that, for every non-archimedean place v 6= v0, we have that
|Vn|v ≤ max{|An|v, |Bn|v|α|v} ≤ max{|α|v, 1},

and that |Vn|v0 < |Vn−1|v0 , we can bound from above the previous quantity
obtaining

H(αn+1)d ≤ H(α)d · |Vn−1|
dv0
v0

∏
σ∈Σ

max{|V σn |∞, |V σn−1|∞},
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and, applying (6), we have

≤ C ·H(α)d · |Vn−1|
dv0
v0

n∏
j=1

∏
σ∈Σ

θ(aσj )

≤ C ·H(α)d · |Vn−1|
dv0
v0 νnτ

n∏
j=1
|aj |

dv0
v0 .

Since Vn−1 = (−1)n
∏n
j=1

1
αj

by Proposition 3.6, we have |Vn−1|v0 =
∏n
j=1

∣∣ 1
aj

∣∣
v0
,

and, therefore,
H(αn+1)d ≤ C νnτ ·H(α)d.

Let us suppose that ντ ≤ 1; by the Northcott finiteness theorem, the αn’s vary
in a finite set, so that either the continued fraction expansion of type τ for α
is finite or there exist m,n ∈ N, such that αm = αn, so that the expansion is
periodic. This proves part a). As for b), we see that if ντ < 1, then either α
has a finite expansion or H(αn) eventually becomes zero, and the latter is a
contradiction. �

4.4. A particular case: CFF and CFP properties for special types. — When
the type τ = (K,π,R) is special, i.e., the floor function is essentially given by
the choice of a generator of P and by the choice of a set of representatives R as
explained in Section 3.2, Theorem 4.5 gives a more explicit criterion to detect
CFP and CFF properties, which is the following result.

Theorem 4.6. — Let τ = (K,π,R) be a special type and let Σ be the set of
embeddings of K in C. For every σ ∈ Σ, let Lσ = max{|cσ|∞ | c ∈ R}, and
λσ = |πσ|∞. Assume that, for every σ ∈ Σ,

λσ > 1 and Lσ ≤ (λσ − 1)
(

1− 1
λ2
σ

)
;

then,
a) τ satisfies the CFP property;
b) if, moreover, Lσ < (λσ − 1)

(
1− 1

λ2
σ

)
for at least one σ, then τ satisfies

the CFF property.

Proof. — Recall that, for a special type τ = (K,π,R), every a ∈ R has the
form

∑0
j=−k cjπ

j . Then, for every a ∈ R and every σ ∈ Σ, since by hypothesis
λσ > 1, we have

|aσ|∞ ≤ Lσ
k∑
j=0

1
λjσ
≤ Lσλσ
λσ − 1 ,
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which using the hypothesis, gives |aσ|∞ ≤ λσ − 1
λσ

, so that θ(aσ) ≤ λσ. Then,
under the assumption |a|v0 > 1, we have∏

σ∈Σ θ(aσ)
|a|dv0

v0

≤
∏
σ∈Σ λσ

|a|dv0
v0

≤ |NK/Q(π)|∞ · |π|
dv0
v0

and, writing dv0 = ev0fv0 , where ev0 is the ramification index and fv0 the
residual degree at v0, we further have

≤ pfv0 · 1

p
dv0
ev0

≤ 1;

hence, ντ ≤ 1, and we can apply part a) of Theorem 4.5, which proves a).
Let us now assume that there exists an embedding σ0 ∈ Σ, such that Lσ0 <

(λσ0 − 1)
(
1− 1

λ2
σ0

)
; then, |aσ0 |∞ ≤

Lσ0λσ0
λσ0−1 < λσ0 − 1

λσ0
, and, hence,

θ(aσ0) ≤ θ
(
Lσ0λσ0

λσ0 − 1

)
< λσ0 .

Let us put J := 1
λσ0
· θ
(
Lσ0λσ0
λσ0−1

)
< 1. Then, the same calculation as before

shows that ∏
σ∈Σ θ(aσ)
|a|dv0

v0

≤ J ·
∏
σ∈Σ λσ

|a|dv0
v0

≤ J < 1,

so that ντ < 1 and the conclusion follows by applying part b) of Theorem 4.5.
�

5. The CFF property for norm-Euclidean number fields

Let K be a number field of degree d, and let us denote by r1, r2 the number
of real and complex embeddings of K. For every 1 ≤ i ≤ r1, let σi be the real
embeddings and, for every 1 ≤ j ≤ r2, let (τj , τ j) be the r2 pairs of complex
embeddings. We denote by Σ the whole set of embeddings.

In what follows, we shall denote by | · | the standard complex absolute value.
Let

i : K −→ Rr1 × Cr2

λ 7−→ (σ1(λ), . . . , σr1(λ), τ1(λ), . . . , τr2(λ))
be the canonical embedding of K and

` : K× → Rr1+r2

be the logarithmic embedding, i.e., the composition L ◦ i, where
L : Rr1 × Cr2 −→ Rr1 × Rr2

(x1, . . . , xr1 , y1, . . . , yr2) 7−→
(

log(|x1|), . . . , log(|xr1 |),
2 log(|y1|), . . . , 2 log(|yr2 |)

)
.
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For x = (x1, . . . , xr1 , y1, . . . , yr2) ∈ Rr1 × Cr2 , let us define

N(x) =
r1∏
i=1
|xi| ·

r2∏
j=1
|yj |2;

then, N(i(a)) = |NK/Q(a)|, for every a ∈ K.
In what follows, we want to deepen the study of types in the case of norm-

Euclidean number fields; in this setting, we will see that the existence of P-adic
types satisfying CFF is related to the notion of Euclidean minimum of the field.

5.1. Euclidean minimum. — We recall the definition and main properties of
the Euclidean minimum.

Definition 5.1. — Let α ∈ K; the Euclidean minimum of α is the real number

mK(α) = inf
{
|NK/Q(α− γ)| | γ ∈ OK

}
.

The Euclidean minimum can be extended to K ⊗Q R ' Rr1 ×Cr2 as in the
following definition.

Definition 5.2. — Let x ∈ Rr1 × Cr2 . The inhomogeneous minimum of x is
the real number

mK(x) = inf {|N(x− i(γ))| | γ ∈ OK} .

It is clear that mK(α) = mK(i(α)), for every α ∈ K. Moreover, mK induces
an upper semicontinuous map of the torus Rr1×Cr2/i(OK), which is a compact
set; therefore, mK is bounded and attains its maximum. Then, also mK is
bounded on K, and we can give the following definitions:

Definition 5.3. — The inhomogeneous minimum of K is the positive real
number

M(K) = sup{mK(x) | x ∈ Rr1 × Cr2}.

The Euclidean minimum of K is the positive real number

M(K) = sup{mK(α) | α ∈ K}.

By the above definition it is clear that M(K) ≤M(K). Moreover, it is easy
to see that K is norm-Euclidean if and only if mK(α) < 1, for every α ∈ K.
Therefore K is norm-Euclidean if M(K) < 1 and it is not norm-Euclidean if
M(K) > 1. The following nontrivial result holds:

Theorem 5.4 ([13, Theorem 3]). — If K is a number field, then M(K) =
M(K).
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5.2. The CFF property for norm-Euclidean number fields. — In order to prove
our main results about the CFF property for norm-Euclidean fields, we shall
impose conditions on a P-adic type τ allowing us to suitably bound the quan-
tity ντ defined in Theorem 4.5. In particular, to apply Theorem 4.5 we need
to control the size of

∏
σ∈Σ θ(aσ) for a ∈ Yτ such that |a|v0 > 1.

First, let us notice that

|NK/Q(a)| <
∏
σ∈Σ

θ(aσ) <
∏
σ∈Σ

(|aσ|+ 1),

and we can regard the latter expression as a sum∏
σ∈Σ

(|aσ|+ 1) = |NK/Q(a)|+ F (|aσ|, σ ∈ Σ).

We shall exploit norm-Euclidean properties of the field to bound |NK/Q(a)|;
on the other hand, in order to bound the second addend F , we need more
refined conditions allowing us to control each archimedean absolute value of
a and not only their product. For this purpose, the following lemma will be
useful:

Lemma 5.5. — There exists T0 > 0 (depending only on K), such that, for
every a ∈ K×, there exists u ∈ O×K satisfying, for every σ ∈ Σ,

|(au)σ| ≤ T0
d

√
|NK/Q(a)|.

Proof. — We denote by H the hyperplane in Rr1 × Rr2 defined by

x′1 + . . .+ x′r1
+ 2y′1 + . . .+ 2y′r2

= 0,

and we denote as before by ` : K× → Rr1+r2 the logarithmic embedding. Since
`(O×K) is a lattice in H, there exists T > 0 such that, for every b ∈ H, there is
u ∈ O×K with ‖b + `(u)‖∞ < T , where ‖ · ‖∞ is the sup norm in Rr1+r2 .

For a ∈ K×, let us take

b = L

(
i(a)

d
√
|NK/Q(a)|

)
= `(a)−

log(|NK/Q(a)|)
d

(1, . . . , 1);

by construction, b ∈ H, and, hence, there exists u ∈ O×K such that ‖b +
`(u)‖∞ < T . This implies that, for every σ ∈ Σ,∣∣∣∣∣log

(∣∣∣∣∣ (au)σ
d
√
|NK/Q(a)|

∣∣∣∣∣
)∣∣∣∣∣ =

∣∣∣∣∣log
(∣∣∣∣∣ aσ

d
√
|NK/Q(a)|

∣∣∣∣∣
)

+ log(|uσ|)

∣∣∣∣∣
≤ ‖b + `(u)‖∞ < T,

so that |(au)σ| < T0 d
√
|NK/Q(a)| for a suitable T0, as wanted. �
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For α ∈ OK , ε > 0 and x ∈ Rr1 × Cr2 , we define
Uε(α) = {y ∈ Rr1 × Cr2 | |N(i(α)− y)| < ε}.

Then Uε(α) is an open subset of Rr1 × Cr2 .

Theorem 5.6. — Assume that K is a norm-Euclidean number field, such that
M(K) < 1. Then, the field K satisfies the P-adic CFF-property for all but
finitely many prime ideals P of OK .

Proof. — The image of OK in Rr1 × Cr2 ' Rd is a lattice; we denote by
D ⊆ Rr1×Cr2 a compact fundamental domain for i(OK). Since by assumption
the Euclidean minimum M(K) < 1, we have by Theorem 5.4 that D is covered
by open neighborhood of radius 1, i.e., D ⊆

⋃
γ∈OK U1(γ). Since D is compact,

and the U1(α)’s are open, there exists a finite number of elements α1, . . . , αs
of OK and a real 0 < ε̃ < 1, such that D ⊆

⋃s
i=1 Uε̃(αi). Let P be a prime

ideal of OK ; we put q = NK/Q(P) = |OK/P|, and, by Lemma 5.5, we choose
a generator π of P, such that |πσ| < T0 d

√
q for every embedding σ ∈ Σ.

We define a P-adic floor function s as follows: let us consider a nontrivial
coset α+POv0 ⊆ Kv0 ; by strong approximation, it contains an element α′ ∈ K,
such that |α′|v ≤ 1 for every non-archimedean v ∈ MK and v 6= v0. Then,
α′ ∈ OK [ 1

π ]. By translating α′

π by a suitable element of OK , we find a β ∈
OK [ 1

π ], such that i(β) ∈ D and α′ ≡ πβ (mod P). Since D is covered by⋃s
i=1 Uε̃(αi), there exists αi ∈ OK , such that NK/Q(β − αi) < ε̃. Then, for

every γ ∈ α+ POv0 , we put s(γ) := π(β − αi).
We want now to apply Theorem 4.5 to show that the type associated to

this floor function satisfies the CFF property for all but finitely many prime
ideals P of OK . To prove this, let a = π(β − αi); then, NK/Q(a) ≤ ε̃q. Since
i(β) ∈ D, which is a compact set, and the αi are finitely many, there exists
H > 0 depending only on K, such that |βσ −ασi | < H for every σ ∈ Σ, so that
|aσ| < H|πσ| < HT0 d

√
q. It follows that, for every subset S ( Σ,∏

σ∈S
|aσ| ≤ (HT0)|S| d

√
q|S|.

Therefore,∏
σ∈Σ

θ(aσ) <
∏
σ∈Σ

(1 + |aσ|) =
∑
S⊆Σ

∏
σ∈S
|aσ| = NK/Q(a) +

∑
S(Σ

∏
σ∈S
|aσ|

≤ ε̃q +
∑
S(Σ

(HT0)|S| d
√
q|S| ≤ ε̃q +H1

d
√
qd−1

for a suitable H1 depending only on K, hence∏
σ∈Σ

θ(aσ) < ε′q for q � 0,

for a suitable ε′ < 1.
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Since |a|dv0
v0 ≥ | 1π |

dv0
v0 = |NK/Q(π)|−1

p = q, we find that ντ < 1 for p � 0.
Then the claim follows from Theorem 4.5. �

Remark 5.7. — We point out that the condition M(K) < 1 in Theorem
5.6 is verified for “almost all” norm-Euclidean number fields. Indeed, in [13,
Corollary 2], it is shown that a norm-Euclidean number field with M(K) = 1
must have unit rank r = r1 +r2−1 ≤ 1. Since d = r1 +2r2, the only exceptions
can occur in the following three cases:

a) K is quadratic;
b) K is cubic with negative discriminant;
c) K is a totally complex quartic field.

All quadratic norm-Euclidean fields have M(K) < 1; this is easily checked for
imaginary quadratic fields; for real quadratic fields, it is shown in [25, §1.3] that
the only K such that M(K) = 1 is Q(

√
65), which is not Euclidean. On the

other hand, Davenport proved in [15, 16] that norm-Euclidean fields satisfying
b) or c) are finitely many.

6. Some more effective results for quadratic fields

In the case of quadratic fields, we can give more explicit results, proving
effective bounds on the prime ideals P of K, such that K satisfies the P-adic
CFF property. Moreover, in some cases, we will show how to construct explicit
examples of types satisfying the CFF property. We start our investigation with
the case of imaginary quadratic fields.

6.1. Imaginary norm-Euclidean quadratic fields. — Let K = Q(
√
−D) with

D a square-free integer > 0. It is known that

M(K) =
{
D+1

4 if D ≡ 1, 2 (mod 4)
(D+1)2

16D if D ≡ 3 (mod 4)

(see, for example, [22, Prop. 4.2]). It follows that the only norm-Euclidean
quadratic imaginary fields are Q(

√
−D), with D = 1, 2, 3, 7, 11 and M(K) < 1

in each of these cases.

Proposition 6.1. — Let K = Q(
√
−D) be a imaginary quadratic norm-

Euclidean field. Let P be a prime ideal of OK with odd residual characteristics.
Put λ =

√
NK/Q(P). Then

a) if
√
M(K) < 1− 1

λ2 , then K satisfies the P-adic CFF property.
b) if

√
M(K) <

(
1− 1

λ

)2 (1 + 1
λ

)
, then there exists a special type τ =

(K,π,R) satisfying the CFF property.
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Proof. — Let P be a prime ideal of OK with odd residual characteristic p and
let π be a generator of P. First, notice that NK/Q(π) is either p or p2, according
to the decomposition of p in OK .

a) Assume that
√
M(K) < 1 − 1

λ2 . Since K is norm-Euclidean, for every
α ∈ Kv0 , there is a representative β of α

π (mod Ov0), such that β ∈ OK,{v0}
and |NK/Q(β)|∞ ≤ M(K). Therefore, applying the same construction as
in Theorem 5.6, there is a type τ = (K,P, s), such that |NK/Q(a)|∞ ≤
M(K)|NK/Q(π)|∞, for every a ∈ Ys, such that |a|v0 > 1, that is, |a|∞ ≤√
M(K)λ < λ− 1

λ ; hence

θ(a) ≤ θ(
√
M(K)λ) < λ,

and the claim follows by Theorem 4.5 b).
b) Arguing as above we see that there is a complete set of representatives R

of OK/P, such that |c|∞ ≤
√
M(K)·λ for every c ∈ R. Let L = max{|c|∞ | c ∈

R}. Then by hypothesis

L < (λ− 1)
(

1− 1
λ2

)
,

and if σ is the complex conjugation, then |xσ|∞ = |x|∞, for every x ∈ K;
therefore, Theorem 4.6 b) can be applied to the type (K,π,R), which concludes
the proof. �

The following list summarizes the behavior of the CFF property for imagi-
nary norm-Euclidean fields K = Q(

√
−D):

D 1 2 3 7 11
CFF property for p ≥ 3 5 2 3 7
CFF special type for p ≥ 7 23 11 13 127

6.2. Real norm-Euclidean quadratic fields: some explicit constructions. — It is
well known that a real quadratic field Q(

√
D) is norm-Euclidean if and only

if D = 2, 3, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 (see, for example, [19]). In
[17], the authors give an explicit proof of the theorem by showing that, in
each of these cases, the fundamental region is covered by (finitely many) unit
neighborhoods of the plane, giving the precise list for every of these fields.
Using this in combination with the construction of the proof of Theorem 5.6,
one can show how to construct explicitly a P-adic floor function for a prime
ideal P of OK .

Let K = Q(
√
D) be a real norm-Euclidean field; we consider the plane

embedding given by
j : K −→ R2

a+ b
√
D 7−→ (a, b);

tome 150 – 2022 – no 4



CONTINUED FRACTIONS FOR NUMBER FIELDS 763

this gives a representation of the elements of K as the points of the plane with
rational coordinates.

Under this plane embedding, the algebraic integers correspond to the lattice
points Z2, if D ≡ 2, 3 (mod 4), and to the mid-lattice points 1

2Z
2 if D ≡ 1

(mod 4).
For any λ ∈ OK , we define the neighborhood of λ in K of radius ε to be the

set
Vε(λ) = {β ∈ Q(

√
D) | |NK/Q(β − λ)| < ε};

using the plane embedding, this maps to
Vε(x, y) = {(r, s) ∈ Q2 | |(r − x)2 −D(s− y)2| < ε},

where (x, y) = j(λ). Notice that these are infinite X-shaped regions in the
plane bounded by conjugate hyperbolas.

It is then clear that, since we are assuming K to be norm-Euclidean, each
β ∈ Q(

√
D) lies in the neighborhood Vε(λ) for some λ ∈ OK , i.e., each point

(r, s) ∈ Q2 lies in some neighborhood Vε(x, y) in the plane, where (x, y) = j(λ)
for some λ ∈ OK .

Let P be a prime ideal in OK ; we can associate to every generator π ∈ P
a type τπ = (Q,P, sπ), where the floor function sπ is defined by the following
algorithm. Given a coset α + POv0 in Kv0 , we can find, by strong approx-
imation, an element α′ ∈ K belonging to this coset, such that |α′|v < 1 for
every non-archimedean v ∈MK \{v0}; in particular, α′ ∈ OK [ 1

π ]. We can now
translate α′

π by a suitable element µ ∈ OK , so that i(β) := i(α′ − µ) belongs
to the region

F (D) :=
{

(r, s) ∈ Q2
∣∣∣ −1

2 < r ≤ 1
2 , −

1
2 < s ≤ 1

2

}
,

and such that β is unique. We call F (D) a fundamental region. Notice that
α′ ≡ πβ (mod P). By [17] we have that F (D) is covered by a finite number
of neighborhoods or radius ε < 1 (depending on D) Vε(xk, yk); hence, j(β) lies
in (at least) one of these neighborhoods. We choose a neighborhood Vε(x′, y′),
such that j(β) lies in it and, for every γ ∈ α+ POv0 , we put

sπ(γ) := π(β − j−1(x′, y′)).

Example 6.2. — Let us consider the case D = 17; since D ≡ 1 (mod 4), then
OK = Z

[ 1+
√
D

2
]
. Let us divide the fundamental region F (17) into six subsets,

namely:
• F1 = {(x, y) ∈ Q2 | 0 < r ≤ 1/2, −1/4 < s ≤ 1/4};
• F2 = {(x, y) ∈ Q2 | −1/2 < r ≤ 0, −1/4 < s ≤ 1/4};
• F3 = {(x, y) ∈ Q2 | 0 < r ≤ 1/2, 1/4 < s ≤ 1/2};
• F4 = {(x, y) ∈ Q2 | 0 < r ≤ 1/2, −1/2 < s ≤ −1/4};
• F5 = {(x, y) ∈ Q2 | −1/2 < r ≤ 0, 1/4 < s ≤ 1/2};
• F6 = {(x, y) ∈ Q2 | −1/2 < r ≤ 0, −1/2 < s ≤ −1/4}.
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Then, F (17) is equal to the union of these regions, and the union is disjoint,
and, hence, every β ∈ F (17) belongs to one Fk. We now have to associate
to every Fk a unit neighborhood V (x, y) that covers the corresponding region;
this can, of course, be done in many ways.

We use an argument analogous to [17]. By easy calculations we have that the
point (1/2, 1/4) ∈ F1 lies in the top boundary of the neighborhood V13/16(1, 0),
and, hence, the preimage of every point in F1 satisfies NK/Q(β − 1) ≤ 13/16.
Similarly, the point (1/2, 1/4) lies on the bottom boundary of the neighbor-
hood V13/16(1, 1/2), and, hence, F3 is contained in its closure. Using the sym-
metry properties of F (17), it is easy to see that F2 ⊂ V13/16(−1, 0), F4 ⊂
V13/16(1,−1/2), F5 ⊂ V13/16(−1, 1/2), and F6 ⊂ V13/16(−1,−1/2). For every
k = 1, . . . , 6, let us denote by δk the preimage in OK of the center of the corre-
sponding neighborhood, i.e., δk := j−1(xk, yk). Using this, we can perform the
algorithm described above.

Given a prime ideal P ⊂ Ov0 , choose a suitable generator π of POv0 . Then,
for every coset α+POv0 , choose α′ ∈ α+POv0 ∩OK [1/π] and translate it by
an element µ ∈ OK , so that the image of β := α − µ lies in the fundamental
region; then j(β) ∈ Fk, for some k = 1, . . . , 6.

Take any γ ∈ α+ POv0 ; then, we denote

sπ(γ) := π(β − δi).

Let us show, for example, that if p is an odd prime that is inert in OK , then
this choice of the floor function gives rise to a type satisfying the CFF property.

If p is inert, then we can take π = p, and, hence, NK/Q(P) = p2. To
apply Theorem 4.5, we have to estimate θ(aσ), for every a ∈ Ys, such that
|a|v0 > 1 and every embedding σ of K into R, which are exactly the identity
and the one sending

√
17 to −

√
17. By the above choice of the neighborhoods

covering the fundamental region and the corresponding construction of the
floor function, we have that for every β ∈ Fk and for every center of the
corresponding neighborhood δk, |βσ − δσk | ≤

√
5/4, and NK/Q(βσ − δσk ) ≤ 1/4;

hence for every a, we have NK/Q(a) ≤ 13
16p

2.
It follows that∏

σ∈Σ
θ(aσ) <

∏
σ∈Σ

(1 + |aσ|) ≤ 1 +
√

5
2 p+ 13

16p
2.

Since |a|dpp ≥ p2, we have that ντπ < 1 if

1 +
√

5
2 p+ 13

16p
2 < p2,

which holds for every prime p ≥ 3. We finally point out that a similar argument
involving another choice of the generator of the prime ideal P can be used in
the case where p splits, as is done, for example, in Lemma 6.4.

tome 150 – 2022 – no 4



CONTINUED FRACTIONS FOR NUMBER FIELDS 765

6.3. The CFF property for Q(
√

2). — It is well known that K = Q(
√

2) is
norm-Euclidean. We can regard K as a subfield of R, so that Σ = {id, σ}, and
σ is the embedding sending

√
2 in −

√
2. The fundamental unit is u = 1 +

√
2.

This section is devoted to proving the following result.

Theorem 6.3. — The field Q(
√

2) has the P-adic CFF property, for every
prime ideal P of odd residual characteristics.

Let P be a prime ideal in OK with residual characteristics p > 2. We
can associate to every generator π of P a (not uniquely determined) type
τπ = (Q,P, sπ) as follows: choose a coset α + POv0 in Kv0 ; choose b ∈ K,
such that |b−α|v0 < 1 and |b|v ≤ 1 for every non-archimedean v ∈MK \ {v0};
then we can write b = A

πk
, for some k ≥ 1. By dividing A by πk+1, we can find

β ∈ OK , such that A
πk+1 = β + γ, with γ = x+ y

√
2, x, y ∈ Q, |x|∞, |y|∞ ≤ 1

2 .
Then, we can see that γ ∈ OK [ 1

π ] and, if we put a = πγ, we find |a− α|v0 < 1
and |a|v ≤ 1 for every non-archimedean v ∈MK . We define sπ(α+ P) = a.

We denote by NK/Q(P) = pf (f ∈ {1, 2}) and we put λ = |π|∞, λσ =
|πσ|∞ = pf

λ . Then we have

|a|∞ ≤
1
2

(
1 +
√

2
)
λ, |aσ|∞ ≤

1
2

(
1 +
√

2
)
λσ,

and

NK/Q(a) = pf (x2 − 2y2) ≤ 1
2p

f .

Hence,

θ(a)θ(aσ) < (|a|∞ + 1)(|aσ|∞ + 1) ≤ |NK/Q(a)|∞ + |a|∞ + |aσ|∞ + 1

≤ 1
2p

f + 1
2

(
1 +
√

2
)(

λ+ pf

λ

)
+ 1.

By imposing the last quantity to be less than pf , we obtain

λ+ pf

λ
< (
√

2− 1)(pf − 2),

that is, Fp(λ) < 0, where

Fp(X) = X2 − (
√

2− 1)(pf − 2)X + pf .

It follows by Theorem 4.5 that the type τπ has the CFF property for every λ
satisfying Fp(λ) < 0.

Lemma 6.4. — Assume that the residual characteristic p satisfies:
• p ≥ 41 if p splits in OK ;
• p ≥ 11 if p is inert in OK ;

then, the P-adic CFF property holds for K.
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Proof. — If p is inert in OK , take π = p in the above considerations. Then
λ = p, and we see that Fp(p) < 0, except for p = 3, 5. Therefore, the type τp
satisfies the CFF property.

Assume now that p splits and let π be the unique generator of P, such
that 0 < π ≤ √p and uπ >

√
p. It follows that

√
p

u < λ <
√
p, and it is

straightforward to verify that Fp(λ) < 0 for p ≥ 71. Therefore, the type τπ
satisfies the CFF property for a splitting p ≥ 71.

It remains to consider the cases p ∈ {31, 41, 47}, p splitting. In this cases,
it is straightforward to see that by setting π = 1 + 4

√
2, 3 + 5

√
2, 5 + 6

√
2,

respectively, we fulfill the requirement Fp(λ) < 0, so that we get types τπ
satisfying the CFF property also in these last cases. �

In order to complete the proof of Theorem 6.3 it remains to consider the
residual characteristics p in the set S = {3, 5, 7, 17, 23}. Notice that
• p is inert for p = 3, 5;
• p splits for p = 7, 17, 23.

Moreover, in these cases, Fp(X) is strictly positive over R, so that the above
technique is not applicable. For the prime in S, the following proposition holds.

Proposition 6.5. — Let p ∈ S and P be a prime ideal in OK with residual
characteristics p. There exists a generator π of P, such that the type τπ =
(Q(
√

2),P, sπ) satisfies the CFF property.

Proof. — Let us choose a generator π of P minimizing the distance from √p;
for example,
• for p = 3, 5 we set π = p;
• for p = 7, 17, 23, we choose π such that 1 < π < p and λ+λσ is minimum,
where λ = |π|∞.

Let α ∈ Kv0 be such that |α|v0 > 1 and put a = sπ(α). Our goal is to show
that there exists ε < 1, such that

|θ(a)θ(aσ)| ≤ εpf ,
so that we can apply Theorem 4.5 to prove the theorem. By recalling the
construction of τπ, this amounts to showing that the inequality

Z̃(x, y) = θ((x+
√

2y)π)θ((x−
√

2y)πσ) ≤ εpf

holds on the square {(x, y) | − 1
2 ≤ x, y ≤ 1

2}. By symmetry, it suffices to
bound Z̃ on the square {(x, y) | 0 ≤ x, y ≤ 1

2}. By denoting X = x + y
√

2,
Y = x− y

√
2, this amounts to showing that

Z(X,Y ) = θ(Xπ)θ(Y πσ) ≤ εpf ,
on the parallelogram P delimited by the lines

r1 : X − Y = 0, r2 : X − Y =
√

2, s1 : X + Y = 0, s2 : X + Y = 1.
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Since Z is increasing in the variable X, its maximum on P must be achieved
on the sides lying on the two lines r2 and s2. We are, thus, led to show that
the two functions

Z1(X) = θ(Xπ)θ((
√

2−X)πσ),
Z2(X) = θ(Xπ)θ((X − 1)πσ)

are bounded by ε p on the two intervals I1 = [
√

2
2 ,

1+
√

2
2 ] and I2 = [ 1

2 ,
1+
√

2
2 ],

respectively. The function Z1 is increasing on I1, and, therefore, it achieves its
maximum in X = 1+

√
2

2 .
We split the interval I2 in two sub-intervals I ′2 = [ 1

2 , 1] and I ′′2 = [1, 1+
√

2
2 ];

the function Z2 is increasing on I ′′2 , and, therefore, its maximum is achieved in
X = 1+

√
2

2 . It follows that the values of Z over P are bounded by the maximum
between Z1( 1+

√
2

2 ), Z2
( 1

2
)
, Z2( 1+

√
2

2 ) and the local extremal values of Z2. A
direct calculation shows that the derivative of Z2 has a unique zero in

T = 1
2

(
1 + 4π

2 − (πσ)2

p2

)
,

and it is straightforward to show that

Z1

(
1 +
√

2
2

)
, Z2

(
1
2

)
, Z2

(
1 +
√

2
2

)
, Z2(T ) ≤ εpf ,

for a suitably chosen ε < 1. The claim follows by applying Theorem 4.5. �

7. The CFF property, class group, and Euclidean ideal classes

All the previous results about the CFF property concern norm-Euclidean
number fields. In the following, we investigate more deeply the relationship
between CFF property and the structure of the ideal class group Cl(K), with
the aim of showing that our hypothesis is not too restrictive. In what follows,
for every fractional ideal I, we will denote its class in Cl(K) by [I].

Proposition 7.1. — Assume that the field K satisfies the P-adic CFF prop-
erty. Then, Cl(K) is cyclic, generated by [P]. In particular, if P is principal,
then OK is a PID.

Proof. — Let n0 be the order of [P] in Cl(K) and let η be a generator of Pn0 ;
then, OK,{v0} = OK [ 1

η ]. Since K satisfies the P-adic CFF property, then every
element of K can be expressed as a quotient A

B of elements in OK,{v0}, such
that A and B are coprime in OK,{v0}, i.e., the ideal generated by A and B in
OK,{v0} is trivial. This implies that a power of η can be written as an OK-linear
combination of A and B, and, hence, the class of the fractional ideal generated
by A and B is a power of [P]. Now, let I be any ideal of OK ; then I admits a
set of generators of cardinality 2, i.e., I = (α, β); see, e.g., [30, §1.1 Cor. 5]).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



768 LAURA CAPUANO, NADIR MURRU & LEA TERRACINI

By applying the above argument to α
β we find by [14, Proposition 18] that [I]

is a power of [P] in Cl(K). �

Corollary 7.2. — Assume that the field K satisfies the P-adic CFF property
for all but finitely many prime ideals P. Then OK is a PID.

Proof. — This is a direct consequence of Proposition 7.1 since every class of
ideals contains infinitely many prime ideals (see, for example, [30, §7.2, Corol-
lary 6 and p.93 for notation]). In particular, our hypothesis ensures that K
satisfies the P-adic CFF property for at least one principal ideal P. �

Proposition 7.1 allows us to give examples of number fields K for which the
CFF property fails to hold. For example, if K = Q(

√
−D) is an imaginary

quadratic field, and r is the number of the distinct prime divisors of its dis-
criminant, then Cl(K) maps onto (Z/2Z)r−1 (see [30, Theorem 8.23]); hence
it is not cyclic for r ≥ 3. It follows that such fields do not satisfy the P-adic
CFF property for any prime P.

Remark 7.3. — If Cl(K) is cyclically generated by [P], then OK,{v0} is a PID.
By assuming the generalized Riemann hypothesis, it is Euclidean [37, Theorem
10] (not necessarily with respect to the norm) and, therefore, it satisfies the
Euclidean chain condition [31, §14.1], i.e., every α ∈ K can be expressed as a
finite continued fraction

α = b0 +
1

b1 +
1

. . . +
1
bn

= [b0, . . . , bn], with bi ∈ OK,{v0} for i ≥ 0.(7)

If the CFF property holds for K, then every α ∈ K admits a representation of
the form (7) satisfying the following additional properties, i.e.,
• |bi|v0 > 1 for i > 1;
• if |b0|v0 < 1, then b0 = 0;
• if bi ≡ bj (mod P), then bi = bj .

We conclude our work by presenting two results that attempt to go beyond
the Euclidean assumption that we made in this paper. The following Theo-
rem 7.4 extends Theorem 5.6 to prime ideals lying in a norm-Euclidean ideal
class in the sense of [23]. For a fractional ideal I of K, we will consider the
following property:

if β ∈ K, there exists α ∈ I such that |NK/Q(α− β)| < NK/Q(I).
This property depends only on the class [I] in Cl(K); such a class is called a
norm-Euclidean class. Theorem 0.3 of [23] shows that Cl(K) contains at most
one norm-Euclidean class and if there is one, it generates Cl(K). As it is shown
in [28], for an ideal class C one can give an analogous definition of Euclidean
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minimum MC and of inhomogeneous Euclidean minimum MC ; moreover, if the
rank r = r1 + r2 − 1 of units is > 1, one has MC = MC . In particular, if r > 1,
then a class C is norm-Euclidean if and only if MC < 1.

We notice that nonprincipal Euclidean classes exist, for example, for fields
like Q(

√
−15) and Q(

√
−20) (see [23, Prop. 2.1]), and Q(

√
10), Q(

√
15),

Q(
√

85) (see [23, 2.5]); other examples can be found in [24].
For number fields having norm-Euclidean class with inhomogeneous Eu-

clidean minimum < 1, one can generalize the proof of Theorem 7.4 to prove
the following result.

Theorem 7.4. — Let K be a number field and assume that K has a norm-
Euclidean ideal class C, such that MC < 1. Then K satisfies the P-adic CFF
property for all but finitely many P ∈ C.

Remark 7.5. — If r = r1 +r2−1 > 1, then it is known thatMC = MC < 1 for
every norm-Euclidean class C. On the other hand, there are examples where
MC = 1, when r ≤ 1 (see [24, 28]). It would be nice to replace the hypothesis
MC < 1 in Theorem 7.4 with the more natural hypothesis MC < 1; however,
unlike the case C = OK , we do not know if an analogue of Theorem 5.4 is true
for an arbitrary norm-Euclidean ideal class.

Proof of Theorem 7.4. — FixQ a prime ideal in C and let D = DQ ⊆ Rr1×Cr2

be a fundamental domain for the lattice i(Q). Since D is compact, there exists
a finite set α1, . . . , αs ∈ Q and ε < 1, such that D ⊆

⋃s
i=1 UεNK/Q(Q)(αi).

For every prime ideal P in C, we choose, by Lemma 5.5, an element γP ∈ K,
such that γPQ = P and |γσP|∞ ≤ T0 d

√
|NK/Q(γP)|∞, for every σ ∈ Σ. Then,

DQ = i(γP)D is a fundamental domain for i(P). We construct a type τP =
(K,P, sP) by mimicking the proof of Theorem 5.6: given a coset α + PvP in
KvP we find a representative β ∈ DP ∩ OK,{vP} = γP(D ∩ OK,{vP}); then
|NK/Q(γ−1

P β − αi)|∞ < εNK/Q(P), for some i = 1, . . . , s, which implies that
|NK/Q(β − γPαi)|∞ < εNK/Q(P). We define

a = sP(α+ PvP) = β − γPαi.
By construction we have

|NK/Q(a)|∞ < εNK/Q(P).(8)
Moreover, since D is bounded and the αi are finitely many, there exists a
constant C (depending on Q), such that

|aσ|∞ ≤ C|γσP|∞ ≤ CT0
d

√
|NK/Q(γP)|∞ = CT0

d
√
NK/Q(Q)

d

√
NK/Q(P).(9)

As in the proof of Theorem 5.6, from (8) and (9), we conclude that∏
σ∈Σ

θ(aσ) <
∏
σ∈Σ

(|aσ|+ 1) < εNK/Q(P) for NK/Q(P)� 0.
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Therefore, ντP < 1, for NK/Q(P) � 0, so that τP satisfies the CFF property
by Theorem 4.5. �

For an arbitrary number field K, we have the following result.

Theorem 7.6. — Let K be a number field. Then, for all but finitely many
prime ideals P, there exists a type τP = (K,P, sP) with the following property:
if α ∈ K and the continued fraction τP-expansion [a0, a1, a2, . . .] for α is infi-
nite, then aj ∈ P−1 for infinitely many j ∈ N.

Proof. — Fix an ideal class C and let MC be the inhomogeneous Euclidean
minimum of C; let ε > MC . As in the proof of Theorem 7.4, we can fix a prime
ideal Q ∈ C and construct for every P ∈ C a type τP = (K,P, sP), such that
every a belonging to the image of sP satisfies conditions (8) and (9). Then, it
is easy to see that there exists a suitable constant TC < 1, depending only on
the class C, such that, for every δ > 0,∏
σ∈Σ

θ(aσ) ≤
∏
σ∈Σ

(|aσ|+ 1) < εNK/Q(P) < TCNK/Q(P)1+δ for NK/Q(P)� 0.

Since Cl(K) is finite, we deduce that there is a constant T < 1 depending only
on K, such that, for all but finitely many prime ideal P of OK and every a in
the image of sP, we have∏

σ∈Σ
θ(aσ) < TNK/Q(P)1+ε.

Now assume by contradiction that there exists α ∈ K, such that the continued
fraction τP-expansion [a0, a1, a2, . . .] of α is infinite and such that aj 6∈ P−1,
for all but finitely many j ∈ N. Possibly taking the tail of the expansion, we
can assume that aj 6∈ P−1, for every j ∈ N; this implies that

sup
j

{∏
σ∈Σ θ(aσj )
|aj |vP

}
≤ sup

j

{∏
σ∈Σ θ(aσj )

NK/Q(P)2

}
≤ T < 1,

which gives a contradiction by Theorem 4.5. �
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