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TOWARDS TEMPERED ANABELIAN BEHAVIOUR
OF BERKOVICH ANNULI

by Sylvain Gaulhiac

Abstract. — This work brings to light some partial anabelian behaviours of analytic
annuli in the context of Berkovich geometry. More specifically, if k is a valued non-
archimedean complete field of mixed characteristic that is algebraically closed, and C1,
C2 are two k-analytic annuli with isomorphic tempered fundamental group, we show
that the lengths of C1 and C2 cannot be too far from each other. When they are finite,
we show that the absolute value of their difference is bounded above with a bound
depending only on the residual characteristic p.

Résumé (Vers un comportement anabélien tempéré des couronnes de Berkovich). —
Ce travail met en lumière, partiellement, un comportement anabélien des couronnes
dans le cadre de la géométrie analytique de Berkovich. Plus précisément, si k est un
corps non-archimédien complet algébriquement clos de caractéristique mixte, et C1, C2
deux couronnes k-analytiques ayant des groupes fondamentaux tempérés isomorphes,
nous montrons que les longueurs de ces deux couronnes ne peuvent être trop éloignées
l’une de l’autre. Quand ces longueurs sont finies, nous prouvons que la valeur absolue
de leur différence est bornée par une expression ne dépendant que de la caractéristique
résiduelle p.
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Sylvain Gaulhiac, University of Alberta, Edmonton, Canada • E-mail : gaulhiac@
ualberta.ca
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2 S. GAULHIAC

1. Introduction

Anabelian geometry is concerned with the following question.

To what extent is a geometric object determined by its fundamen-
tal group?

It is within the framework of algebraic geometry that Grothendieck gave the
first conjectures of anabelian geometry in a famous letter to Faltings in 1983,
where the fundamental group is nothing other than the étale one. Some deep
results for hyperbolic curves have been obtained by Tamagawa and Mochizuki,
answering certain conjectures of Grothendieck. However, almost no results are
known for higher dimensions.

In the context of Berkovich analytic geometry, it is possible to define sev-
eral “fundamental groups” classifying, for instance, topological, finite étale or
étale (in the sense of [5]) coverings. However, the group that seems to best
capture anabelian behaviours of analytic spaces over non-archimedian fields is
the tempered fundamental group, introduced by Yves André in [2]. This group
classifies tempered coverings, defined as étale coverings that become topological
after a finite étale base change. Both finite étale and topological coverings are
examples of tempered coverings.

In [1], Yves André obtained for the first time some results of anabelian na-
ture related to the tempered fundamental group. A few years later, a huge
step was taken in this direction with some results of Shinichi Mochizuki ([14])
followed by Emmanuel Lepage ([9] and [10]). These results relate the funda-
mental tempered group of the analytification of an algebraic hyperbolic curve
to the dual graph of its stable reduction. If X is a hyperbolic curve defined
over some non-archimedian complete field k, the homotopy type of its ana-
lytification Xan can be described in terms of the stable model X of X. More
precisely, if Xs stands for the special fibre of X , the dual graph of the stable re-
duction of X, denoted GX , is the finite graph whose vertices are the irreducible
components of Xs, and whose edges correspond to the nodes (singularities in
ordinary double points) between irreducible components. If X denotes the nor-
mal compactification of X, a cusp of X is an element of X \X. Let us denote
by Gc

X the graph obtained from GX , adding one open edge to each cusp of
X, called the extended dual graph of the stable reduction of X. There exists
a canonical topological embedding Gc

X ↪→ Xan, which admits a topologically
proper deformation retraction Xan � Gc

X , and, thus, Xan and Gc
X have the

same homotopy type.
Using the language of semi-graphs of anabelioids and temperoids introduced

in high generality in [13] and [14], Mochizuki proves in [14] that the fundamental
tempered group of the analytification of a hyperbolic curve determines the dual
graph of its stable reduction:

tome 151 – 2023 – no 1



TOWARDS TEMPERED ANABELIAN BEHAVIOUR OF BERKOVICH ANNULI 3

Theorem 1.1 ([14], Corollary 3.11). — Let X1 and X2 be two hyperbolic curves
over Cp. Any outer isomorphism of groups ϕ : πtemp

1 (Xan
1 ) ∼−→ πtemp

1 (Xan
2 ) de-

termines, functorially in ϕ, a unique isomorphism of graphs: ϕ : Gc
X1

∼−→ Gc
X2

.

Mochizuki shows more precisely that it is possible to reconstruct the graph
of the stable reduction GX of a hyperbolic curve X from a (p′)-version
π

temp, (p′)
1 (Xan) of the tempered fundamental group.
A few years later, Emmanuel Lepage refined this result. He proved that

the knowledge of the tempered fundamental group of the analytification of a
hyperbolic curve X enables us to not only reconstruct the graph GX , but also,
in some cases, its canonical metric. This metric is such that the length of
an edge corresponding to a node is the width of the annulus corresponding
to the generic fibre of the formal completion on this node. It is, however,
necessary to restrict ourselves to Mumford curves, which are defined as proper
algebraic curves X over Cp, such that the normalized irreducible components
of the stable reduction are isomorphic to P1. This is equivalent to saying in
Berkovich language that the analytification Xan is locally isomorphic to open
subsets of P1,an, or that Xan does not contains any point of genus > 0.

Theorem 1.2 ([10]). — Let X1 and X2 be two hyperbolic Mumford curves over
Cp and ϕ : πtemp

1 (Xan
1 ) ∼−→ πtemp

1 (Xan
2 ) an isomorphism of groups. Then the

isomorphism of graphs ϕ : GX1
∼−→ GX2 is an isomorphism of metric graphs.

These two results deal with analytic curves that are of algebraic nature,
that is, analytifications of algebraic curves. Yet the theory of Berkovich ana-
lytic spaces is rich enough to contain many curves that are of analytic nature
without coming from algebraic curves. The most important examples of such
curves, which are still very simple to define, are disks and annuli. In the wake
of Mochizuki’s and Lepage’s results, one wonders whether similar anabelian
results exist for more general analytic curves without imposing any algebraic
nature. The generalisation of Mochizuki’s results for such analytic curves was
carried out in the article [7], whereas the investigation about some analogue of
Lepage’s result is partially answered in this present article.
Reconstruction of the analytic skeleton. For a quasi-smooth analytic curve X,
the good analogue of the extended dual graph of the stable reduction is the
analytic skeleton San(X), defined in 2.5. When the skeleton meets all the
connected components of X, there exists a canonical topological embedding
San(X) ↪→ X, which admits a topologically proper deformation retraction
X � San(X). Therefore, X and San(X) have the same homotopy type. The
restriction San(X)\ obtained from the skeleton by removing non-relatively com-
pact edges is called the truncated skeleton of X (see 2.8), and is the analogue of
the dual graph of the stable reduction. Let k be a complete algebraically closed
non-archimedean field of residual exponent p. In [7], 3.29, a certain of class of

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



4 S. GAULHIAC

k-analytic curves is defined, called k-analytically hyperbolic. Their interest lies
in the fact that for a k-analytically hyperbolic curve X it is possible to recon-
struct its truncated skeleton San(X)\ from the tempered group πtemp

1 (X), or
even from a prime-to-p version πtemp, (p′)

1 (X), obtained by taking the projective
limit of all quotients of πtemp

1 (X) admitting a normal torsion-free subgroup of
finite index prime to p. The reconstruction of San(X)\ from this group is given
by the following:
• the vertices correspond to the conjugacy classes of maximal compact
subgroups of πtemp, (p′)

1 (X);
• the edges correspond to the conjugacy classes of non-trivial intersections
of two maximal compact subgroups of πtemp, (p′)

1 (X).
The condition for a quasi-smooth k-analytic curve to be analytically hyper-

bolic is stated in terms of non-emptiness of the sets of nodes of the skeleton
and some combinatorial hyperbolic condition at each of these nodes. However,
the analytical hyperbolicity may not be enough to recover all the skeleton. In
order to recover also the non-relatively compact edges of San(X) is defined
in [7], 3.55, a sub-class of k-analytically hyperbolic curves called k-analytically
anabelian. A k-analytically anabelian curve is a k-analytically hyperbolic curve
satisfying a technical condition called ascendance vicinale, which enables us to
reconstruct open edges of the skeleton:

Theorem 1.3 ([7], 3.56). — Let X1 and X2 be two k-analytically anabelian
curves. Any group isomorphism ϕ : πtemp

1 (X1) ∼−→ πtemp
1 (X2) induces (func-

torially in ϕ) an isomorphism of semi-graphs between the analytic skeletons:
San(X1) ∼−→ San(X2).

Anabelianity of length? This present article concentrates more on the potential
anabelianity of lengths of edges of the skeleton of a k-analytic curve, inspired
from the result of Lepage cited above. There is a natural way to define the
length of an analytic annulus (see 2.19), invariant by automorphisms, which
makes the skeleton San(X) of a quasi-smooth k-analytic curve X a metric
graph. The question that naturally arises is the following:

Does the tempered fundamental group πtemp
1 (X) of a k-analyt-

ically anabelian curve X determine San(X) as a metric graph?
Before tackling the general case, it seems a priori simpler to study first the case
of a k-analytic annulus, even if this latter is not a k-analytically anabelian curve.
The (p′)-tempered group π

temp, (p′)
1 (C) of an annulus is always isomorphic to

the p′-profinite completion Ẑ (p′) of Z, but its total tempered group πtemp
1 (C)

depends on its length whenever k has mixed characteristic. The new question
arising is the following:

Does the tempered group πtemp
1 (C) of a k-analytic annulus C de-

termine its length?
tome 151 – 2023 – no 1



TOWARDS TEMPERED ANABELIAN BEHAVIOUR OF BERKOVICH ANNULI 5

In order to investigate this question, one is tempted to follow the scheme of
proof that Lepage develops in [10]. An idea would be to start from an “ovoid”
µp-covering of the annulus totally split at the middle of the skeleton, which
would be analytically anabelian. Then knowing how to compute the length
of any cycle would be enough to know the length of the annulus (by a limit
argument). Yet one quickly faces problems of analytic nature that do not
appear with Mumford curves: problems of detection of µph -torsors with trivial
Z/phZ-cochain. Indeed, if Y → X is a µn-torsor, associating to some edge
e of San(X), the growth rate of any analytic function defining locally this
torsor over e leads to a harmonic cochain on the graph San(X) with values
in Z/nZ. This growth rate corresponds to the degree of the strictly dominant
monomial (see remark 2.13) of the corresponding analytic function. Therefore,
when X is a quasi-smooth k-analytic curve, we show in Lemma 3.4 that there
exists a cochain morphism θ : H1(X,µn) → Harm(San(X),Z/nZ), for any
n ∈ N×. However, when n = ph with h > 1, it seems difficult to detect the
kernel of θ from πtemp

1 (X), which makes the hoped for scheme of proof illusory.
Nevertheless, the detection of ker(θ) when n = p is possible in some cases.

Theorem 0. — Let X be a k-analytic curve satisfying one of the two following
conditions:

1. X is an annulus;
2. X is a k-analytically hyperbolic curve of finite skeleton without a bridge,

without boundary or any point of genus > 0, with only annular cusps
and at least a finite-annular one, such that there is never strictly more
than one cusp coming from each node.

Then the set of µp-torsors of X with trivial Z/pZ-cochain, H1(X,µp)∩ ker(θ),
is completely determined by πtemp

1 (X).

This result uses resolution of non-singularities (section 4) coupled with a
characterisation of non-triviality of cochains in terms of minimality of splitting
radius at rigid points (Proposition 3.8). This characterisation can be re-phrased
set-theoretically with the splitting sets of torsors (corollary 3.10), which can
themselves be characterised from the tempered group by means of solvability
(Proposition 4.7).

As for the initial question about the potential anabelianity of lengths of an-
nuli, we found a partial answer, using the solvability of annuli (Proposition 4.6)
doubled with some considerations of splitting sets of µp-torsors.

Theorem 1. — Let C1 and C2 be two k-analytic annuli whose tempered fun-
damental groups πtemp

1 (C1) and πtemp
1 (C2) are isomorphic. Then C1 has finite

length if and only if C2 has finite length. In this case:

|`(C1)− `(C2)| < 2p
p− 1 .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



6 S. GAULHIAC

We also have d
(
p−1
p `(C1), pN×

)
> 1 if and only if d

(
p−1
p `(C2), pN×

)
> 1, and

in this case:

|`(C1)− `(C2)| < p

p− 1 .

2. Berkovich analytic curves

In this whole text, k will denote a complete algebraically closed non-archime-
dean field of mixed characteristic (0, p), i.e. char(k) = 0 and char(k̃) = p > 0,
where k̃ is the residue field of k. Let us assume that the absolute value on k
is normalized such that |p| = p−1. The field Cp := Q̂p with the usual p-adic
absolute value is an example of such field.

2.1. Points and skeleton of an analytic curve. — A k-analytic curve is defined
as a separated k-analytic space of pure dimension 1. We send the reader to the
foundational text [4] for references about analytic space, [3] for the cohomology
on analytic spaces, and [6] for a precise and systematic study of analytic curves.

We recall here some properties about analytic curves that will be important
in this text.

Any k-analytic curve endowed with the Berkovich topology, has very nice
topological properties; they are locally compact, locally arcwise connected and
locally contractible, which makes it possible to apply to it the usual theory
of universal topological covering. Moreover, k-analytic curves are real graphs,
with potentially infinite branching, as stated by the following proposition.

Proposition 2.1 ([6], 3.5.1). — Let X be a non-empty connected k-analytic
curve. The following statements are equivalent:

i) the topological space X is contractible;
ii) the topological space X is simply connected;
iii) for any pair (x, y) of points of X, there exists a unique closed subspace

of X homeomorphic to a compact interval with extremities x and y.
Moreover, any point of a k-analytic curve admits a basis of neighbourhood,
which is real trees, i.e. satisfies the equivalent properties above.

Remark 2.2. — Any real tree can be endowed with a topology called the
topology of real tree, which might be different from its initial topology. The
Berkovich topology on an open subset of an analytic curve that is a tree is
coarser than the topology of a real tree on this tree.

Points of a k-analytic curve. Let X be a k-analytic curve and x ∈ X. If H (x)
denotes the completed residual field of x, it is possible to associate to the

tome 151 – 2023 – no 1



TOWARDS TEMPERED ANABELIAN BEHAVIOUR OF BERKOVICH ANNULI 7

complete extension H (x)/k two transcendental values:

fx = degtr
k̃
H̃ (x),

ex = rangQ
(
|H (x)×|/|k×| ⊗Z Q

)
,

which satisfy fx + ex 6 1 (in accordance with the Abhyankar inequality).
The points of X can be classified into four types according to the following
transcendental values:

Definition 2.3. — A point x ∈ X is
1. of type 1, if H (x) = k (in this case fx = ex = 0),
2. of type 2, if fx = 1,
3. of type 3, if ex = 1,
4. of type 4, if fx = ex = 0, but x is not of type 1.

For i ∈ {1, 2, 3, 4}, let X[i] be the subset of X consisting of type-i points.

This definition of type-1 points holds here since we assumed that k is alge-
braically closed. In general, a point x ∈ X is of type 1 if H (x) ⊆ k̂, where
k̂ denotes the completion of an algebraic closure of k. Since k is algebraically
closed, type-1 points are exactly the rigid points, i.e. the points x ∈ X such
that the extension H (x)/k is finite. Since k is by assumption non-trivially
valued, X[2] is dense in X.
Preservation of type of points by finite morphisms. If f : X ′ → X is a finite
morphism of k-analytic curves, for any i ∈ {1, 2, 3, 4}, a point x′ ∈ X ′ is of
type i, if and only if f(x) is of type i.

A specificity of Berkovich geometry compared to rigid geometry is the exis-
tence of a boundary that is embodied in the space. It is possible to define two
boundaries of a k-analytic space: the analytic boundary Γ(X) and the Shilov
boundary ∂anX. However, specifically in the dimension 1 case, i.e. for ana-
lytic curves, these two notions coincide, which allows us to speak without any
ambiguity about the boundary of X ∂anX ⊆ X, potentially empty.
Description of the k-analytic affine line. A1,an

k . The analytification A1,an
k of

the (algebraic) affine line A1
k is the smooth, without boundary and connected

k-analytic curve whose points are the multiplicative semi-norms on the poly-
nomial ring k[T ] extending the absolute value of k. We shall give an explicit
description of A1,an

k . For r > 0 and a ∈ k, let B(a, r) = {x ∈ k, |x− a| 6 r} be
the closed ball (which is also open since k is non-archimedean!) of k, centred
in a and of radius r.
• Any element a ∈ k determines a multiplicative semi-norm on k[T ], the
evaluation at a, given by P ∈ k[T ] 7→ |P (a)|. It defines an element of
A1,an
k denoted ηa, or ηa,0. Then H (ηa) = k[T ]/(T − a) ' k, so ηa is a

rigid point.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



8 S. GAULHIAC

• Let a ∈ k et r > 0. Consider the map:

P ∈ k[T ] 7→ sup
b∈B(a,r)

|P (b)| = sup
b∈B(a,r)

|P |ηb
.

It actually defines an element of A1,an
k , denoted ηa,r and given by:

|P (ηa,r)| = max06i6n(|αi|ri) if P =
n∑
i=0

αi(T − a)i.

One can verify that ηa,r only depends on B(a, r) (i.e. ηa,r = ηb,r as soon
as b ∈ B(a, r)). There are two cases.

When r ∈ |k×|, H̃ (ηa,r) = k̃(T ), and |H (ηa,r)×| = |k×|, such that
ηa,r is a type-2 point.

When r /∈ |k×|, H̃ (ηa,r) = k̃, and |H (ηa,r)×| is the group generated
by |k×| and r, so ηa,r is a type-3 point.

• If B = (Bn)n∈N is a decreasing sequence of non-empty closed balls (i.e.
Bn+1 ⊆ Bn, for n ∈ N) of k. Let | · |Bn

be the unique point of A1,an
k

determined by Bn (i.e. | · |Bn = ηan,rn as soon as Bn = B(an, rn)). Then
the map:

P ∈ k[T ] 7→ inf
n∈N
|P |Bn

defines an element | · |B of A1,an
k .

If
⋂
nBn is a point a ∈ k, then | · |B corresponds exactly to ηa. If⋂

nBn is a closed ball centred in a ∈ k and of radius r ∈ R∗+, then | · |B
corresponds to ηa,r. It is also possible that

⋂
nBn is empty; in this case,

| · |B is a type-4 point.
This description is exhaustive; all the points of A1,an

k can be described in this
way.

Remark 2.4. — Points of type 4 exist if and only if k is not spherically com-
plete. A valued field is spherically complete when it does not admit any imme-
diate extension. The field Cp is not spherically complete, therefore there exist
in A1,an

Cp
some type-4 points.

The k-analytic projective line. P1,an
k is the analytification of the algebraic k-

projective line P1
k. It is a proper (compact and without boundary) quasi-smooth

connected curve. It admits a rigid point ∞ such that there exists a natural
isomorphism an k-analytic curve:

ρ : P1,an
k \ {∞} ∼−→ A1,an

k .

The k-analytic affine and projective curves are trees (see 2.1), so for each
pair (x, y) of points, there exists a unique closed subspace homeomorphic to a

tome 151 – 2023 – no 1



TOWARDS TEMPERED ANABELIAN BEHAVIOUR OF BERKOVICH ANNULI 9

compact interval (a segment) with extremities x and y. If a et b are in k, the
segment joining the rigid points ηa and ηb is:

[ηa, ηb] = {ηa,r}06r6|b−a| ∪ {ηb,s}06r6|b−a|.

The segment joining ηa and ∞ is [ηa,∞] = {ηa,r}06r6∞, with ∞ = ηa,∞.
The type of points of P1,an

k (or A1,an
k ) can be read on the tree:

• type-2 points are the branching points of the tree;
• type-3 points are the points where nothing special happens (their valence
is 2);
• type-1 or type-4 points are the unibranched points on the tree, the
“leaves”.

Analytic skeleton of an analytic curve. The following notion of analytic skeleton
of a k-analytic curve is the analogue in the analytic world of the dual graph of
the special fibre of the stable model of an algebraic k-curve.

A k-analytic disk is a k-analytic curve isomorphic to the analytic domain of
P1,an
k defined by the condition |T | ∈ I, where I is an interval of the form [0, r[

or [0, r] for some r > 0, or I = [0,+∞[.

Definition 2.5 (Analytic skeleton). — The analytic skeleton of a quasi-smooth
k-analytic curveX, denoted San(X), is the subset ofX consisting of points that
do not belong to any open k-analytic disk.

Proposition 2.6 (see [6], 1.6.13, 5.1.11). — Let X be a quasi-smooth k-
analytic curve.
• The analytic skeleton San(X) is a locally finite graph contained in X[2,3]
and containing the boundary ∂anX of X.

• If San(X) meets all the connected components of X, there exists a canon-
ical deformation retraction rX : X → San(X). In particular, X and
San(X) have the same homotopy type.

Remark 2.7. — In order to be coherent with the terminology of [14], in [7] we
used the term semi-graphs for graphs with potentially “open” edges, i.e. edges
that are either not abutting to any vertex or with only one extremity abutting
to one vertex. However, we will not make this terminological distinction in this
text to avoid some unnecessary heaviness and speak only about graphs instead
of semi-graphs.

Definition 2.8 (Truncated skeleton). — Let X be a quasi-smooth connected
k-analytic curve with non-empty skeleton San(X) and rX : X → San(X) the
canonical retraction. The truncated skeleton of X, denoted San(X)\, is the
subgraph of San(X) obtained from San(X) by removing the edges e, such that
r−1
X (e) is not relatively compact in X.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



10 S. GAULHIAC

Remark 2.9. — The edges e of San(X) such that r−1
X (e) is not relatively

compact in X are exactly the “open” edges of San(X). So in the terminology
of [7], San(X)\ is actually the biggest sub-semi-graph of the semi-graph San(X),
which is a graph.

Definition 2.10 (Nodes of the analytic skeleton). — If x is a point of a k-
analytic curve, its genus, denoted g(x), is defined as being 0 if x is of type 1, 3
or 4 and equals the genus of the residual curve (see [7], 3.1.4) Cx of x, when it
is of type 2. A point x ∈ San(X) is a node of San(x) if it satisfies one of the
following conditions:
• x is a branching point of San(X) (i.e. x is a vertex of San(x) and at
least three different branches of San(X) abut to x);
• x ∈ ∂anX;
• g(x) > 0.

2.2. Analytic annuli: functions, length and torsors. — We are going to define
and study the basic properties of k-analytic annuli, which are central in this
text.

If I = [a, b] is a compact interval of R>0 (possibly reduced to one point), let
CI be the k-analytic curve defined as an k-affinoid space by:

CI = M
(
k{b−1T, aU}/(TU − 1)

)
.

If I ⊂ J are compact intervals of R>0, there is a natural morphism CI → CJ ,
which makes CI an analytic domain of CJ . If I is an arbitrary interval of R>0,
we can define

CI = lim−→
J⊂I
CJ ⊂ Gan

m ,

where J describes all compact intervals of R>0 containing I. It would have
been equivalent to define CI as the analytic domain of P1,an

k defined by the
condition |T | ∈ I.
• Analytic functions. The k-algebra of analytic functions on CI is given
by:

OCI
(CI) =

{∑
i∈Z

aiT
i, ai ∈ k, lim

|i|→+∞
|ai|ri = 0,∀r ∈ I

}
.

• Boundary. If s < r ∈ R∗+, ∂anC{r} = {η0,r}, whereas ∂anC[s,r] =
{η0,s, η0,r}.

Definition 2.11. — A k-analytic annulus is defined as a k-analytic curve
isomorphic to CI for some interval I of R>0. Annuli are quasi-smooth curves.

Proposition 2.12 (Condition of invertibility of an analytic function, [6] 3.6.6.1
et 3.6.6.2). — Let I be an interval of R>0 and f =

∑
i∈Z aiT

i ∈ OCI
(CI) an
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analytic function on CI . The function f is invertible if and only if there exists
an integer i0 ∈ Z (necessarily unique), such that |ai0 |ri0 > maxi 6=i0 |ai|ri for
all r ∈ I.

Remark 2.13. — For an analytic function f =
∑
i∈Z aiT

i ∈ OCI
(CI), we will

say that f admits a strictly dominant monomial ai0T i0 , when there exists an
integer i0 ∈ Z such that |ai0 |ri0 > maxi6=i0 |ai|ri for all r ∈ I. Such a strictly
dominant monomial is unique, and i0 is the degree of this monomial. The last
proposition says that f ∈ OCI

(CI) is invertible if and only if it admits a strictly
dominant monomial, ai0T i0 , in which case, f is written as f = ai0T

i0(1 + u)
with u ∈ OCI

(CI) of norm < 1 on CI .

Let f ∈ OCI
(CI)× be an invertible function on CI , such that the degree i0

of its strictly dominant monomial is different from 0. Let ϕf : CI → A1,an
k

be the morphism induced by f , and Λ the map from R>0 to itself defined by
r 7→ |ai0 |ri0 .

Proposition 2.14 ([6], 3.6.8). — The map Λ induces a homeomorphism from
I to the interval Λ(I) of R>0, and ϕf induces a finite and flat morphism of
degree |i0| from CI to CΛ(I).

Definition 2.15 (Coordinate functions). — If C is a k-analytic annulus, a
function f ∈ OC(C) is a coordinate function when it induces an isomorphism of
k-analytic curves C ∼−→ CI , for some interval I of R>0.

Corollary 2.16 (Characterisation of coordinate functions, [6], 3.6.11.3 et
3.6.12.3). — An analytic function f ∈ OCI

(CI) is a coordinate function if and
only if f admits a strictly dominant monomial of degree i0 ∈ {−1, 1}. If this
is the case, f is invertible in OCI

(CI) and induces an analytic isomorphism
CI ' C|ai0 |Ii0 .

One can directly deduce the following corollary.

Corollary 2.17. — Let I and I ′ be two intervals of R>0; then CI′ is isomor-
phic to CI if and only if I ′ ∈ |k×| I±1.

Remark 2.18 (Algebraic characterisation of coordinate functions of annuli ([6],
3.6.13.1)). — Define OCI

(CI)◦◦ as the subset of OCI
(CI) consisting of functions

of norms strictly lower than 1 on CI . We saw that a function f ∈ OCI
(CI) is

invertible if and only if it admits a strictly dominant monomial, ai0T i0 . In this
case, it can be written as f = ai0T

i0(1 + u) with u ∈ OCI
(CI)◦◦, and |f | equals

|ai0 | · |T |i0 on CI . Consequently, the group

ZI := OCI
(CI)×/k× · (1 + OCI

(CI)◦◦)

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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is isomorphic to Z; such an isomorphism is given by the degree of the strictly
dominant monomial. From Corollary 2.16, a function f ∈ OCI

(CI) is a co-
ordinate function of CI if and only if it is invertible, and its class in ZI is a
generator of ZI .

Therefore, if C is any k-analytic annulus and f ∈ OC(C), f is a coordinate
function if and only if it is invertible and is sent to a generator of the free
abelian group of rank 1:

Z (C) := OC(C)×/k× · (1 + OC(C)◦◦).

Definition 2.19 (Length of an analytic annulus). —
If I is an interval of R>0, the length of the annulus CI is defined as:

`(CI) = logp
(

sup I
inf I

)
,

with `(CI) = +∞ whenever inf I = 0 or sup I = +∞.
The length of a general k-analytic annulus C, denoted `(C), is defined as the

length of CI for any interval I of R>0, such that C is isomorphic to CI . From
Corollary 2.17, we can see that this definition does not depend on the choice
of such I.

There exists a natural distance on the set of type-2 and type-3 points of P1,an
k ,

which is consistent with this definition of the length of an annulus. However,
we will not define it in this text.
Kummer torsors of an annulus. IfX is a k-analytic space and ` ∈ N× an integer
(in general, it is necessary to ask that ` is not 0 in k, but it is obviously the
case here since char(k) = 0), the Kummer exact sequence on Xét:

1 −→ µ` −→ Gm
z 7→z`

−→ Gm −→ 1

induces an injective morphism

OX(X)×/(OX(X)×)` ι
↪→ H1(Xét, µ`),

whose image will be denoted Kum`(X). It is known ([3]) that any locally con-
stant étale sheaf on Xét is representable. Consequently, H1(Xét, µ`) classifies
all the analytic étale µ`-torsors on X up to isomorphism. If f ∈ OX(X)×,
its image (f) in H1(Xét, µ`) by ι corresponds to M (OX [T ]/(T ` − f)). The
elements of Kum`(X) seen as analytic étale µ`-torsors will be called Kummer
µ`-torsors.

Example 2.20. — If I is a non-empty interval of R>0, the (invertible) function
T ` ∈ OCI

(CI)× induces a Kummer µ`-torsor CI → CI` , identifying CI with
M (OC

I`
[T ]/(T ` − S)), where S is the standard coordinate of CI` .
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Proposition 2.21. — Let C be a k-analytic annulus and ` ∈ N× an integer
prime to the residual characteristic p.

1. The group Kum`(C) is isomorphic to Z/`Z. This isomorphism is non-
canonical as soon as ` > 3 but becomes canonical when one fixes an
orientation of C.

2. Any connected component of a Kummer µ`-torsor of C is a k-analytic
annulus.

3. Any µ`-torsor of C is Kummer, which leads to an isomorphism:

H1(Cét, µ`) ' Kum`(C) ' Z/`Z.

Proof. — The proof of the two first points can be found in [6], 3.6.30 and 3.6.31.
The facts that k is algebraically closed and that ` is prime to p are necessary for
the first point, since it implies that the subgroup k× · (1 + OC(C)◦◦) of OC(C)×
is `-divisible. In terms of the group Z (C) defined in remark 2.18, this means
that `Z (C) ' (OC(C)×)` /k× · (1 + OC(C)◦◦). Therefore, there is a canonical
isomorphism:

Kum`(C) ' OC(C)×/
(
OC(C)×

)` ' Z (C)/`Z (C) ' Z/`Z.

The proof of the last point comes from [3], 6.3.5, where Berkovich shows that
any connected tame finite étale covering of a compact annulus is Kummer, and
that any µ`-torsor is tame since ` is assumed to be prime to p. It is easy to
extend it to the case when C is not compact since it is then identified with the
colimit of its compact subannuli. �

2.3. Tempered fundamental group. — Let X be a quasi-smooth strictly k-
analytic space (not necessarily a curve). As defined in [5], an étale covering ofX
is a morphism ϕ : Y → X, such that X admits an open covering X =

⋃
i∈I Ui,

such that for each i ∈ I:

ϕ−1(Ui) =
∐
j∈Ji

Yi,j ,

where each Yi,j → Ui is finite étale, with potentially infinite index sets. If X
is connected, an étale covering ϕ : Y → X is Galois when Y is connected, and
the action of the automorphism group G = Aut(ϕ) is simply transitive.

For instance, finite étale coverings, as well as topological coverings (for the
Berkovich topology), are étale coverings and are surjective. In [2], Yves André
defined the notion of tempered covering, defined as follows.

Definition 2.22. — An étale covering ϕ : Y → X is tempered if it is the quo-
tient of the composition of a topological covering and of a finite étale covering,
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i.e. if there exists a commutative diagram of k-analytic spaces:

Z
ψ

~~   
W

χ
  

Y,

ϕ
~~

X

where χ is a finite étale covering and ψ a topological covering. It is equivalent
to saying that ϕ becomes topological after pull-back by some (surjective) finite
étale covering. Let Covtemp(X) be the category of tempered coverings of X.

If x ∈ X is a geometric point, consider the fibre functor

Fx : Covtemp(X)→ Set,

which maps a covering Y → X to the fibre Yx. The tempered fundamental
group pointed at x is defined as the automorphism group of the fibre functor
in x:

πtemp
1 (X,x) := Aut(Fx).

The group πtemp
1 (X,x) becomes a topological group by considering the basis of

open subgroups consisting of the stabilizers (StabFx(Y )(y))Y ∈Covtemp(X), y∈Fx(Y ).
It is a prodiscrete topological group.

If x and x′ are two different geometric points, the functors Fx and Fx′ are
(non-canonically) isomorphic, and any automorphism of Fx induces an inner
automorphism of πtemp

1 (X,x). Thus, one can consider the tempered fundamen-
tal group πtemp

1 (X), defined up to a unique outer isomorphism.
If πalg

1 (X,x) (or πtop
1 (X,x)) denotes the group classifying pointed finite étale

(or topological) coverings ofX, the natural morphism πtemp
1 (X,x)→ πtop

1 (X,x)
is always surjective, and the natural morphism πtemp

1 (X,x) → πalg
1 (X,x) has a

dense image, such that πalg
1 (X,x) can be identified with the profinite completion

of πtemp
1 (X,x):

πalg
1 (X,x) = ̂πtemp

1 (X,x).

In dimension 1, when X is a k-analytic curve, the morphism πtemp
1 (X,x) →

πalg
1 (X,x) is injective (these results can be found in [2], 2.1.6). As a con-

sequence, the affine and projective lines A1,an
k and P1,an

k do not admit any
non-trivial tempered coverings:

πtemp
1 (P1,an

k ) ' πtemp
1 (A1,an

k ) ' 0.
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Definition 2.23 (Moderate tempered coverings). — Let Covtemp, (p′)(X) be
the full subcategory of Covtemp(X) consisting of tempered coverings that are
quotients of a topological covering and a Galois finite étale covering of degree
prime to p. In the same way as for the tempered case, it is possible to con-
sider a classifying group defined as the automorphism group of a geometric
fibre functor and well defined up to a unique outer automorphism; this group
π

temp, (p′)
1 (X) is called the moderately tempered group of X. It is naturally a

topological pro-discrete group.

Remark 2.24. — When X is a k-analytic curve, the group πtemp, (p′)
1 (X) can

be constructed group-theoretically from πtemp
1 (X) as the projective limit of

quotients of πtemp
1 (X) admitting a torsion-free normal subgroup of a finite

index prime to p.

2.4. Verticial, vicinal and cuspidal subgroups. — We recall here some notions
and terminology of [7] about k-analytically hyperbolic curves. Let X be a
quasi-smooth connected k-analytic curve with non-empty skeleton San(X) and
rX : X � San(X) be the canonical retraction. Let ΣX be the set of vertices of
San(X) (it is the set of nodes of San(X) in the language of [7]).

An edge e of San(X) can be of two different types.
• It is a vicinal edge whenever the connected component of X \ΣX asso-
ciated to e, i.e. r−1

X (◦e), is relatively compact in X, which is the same
as asking that each of the two extremities of e abuts to a vertex (it is a
“closed” edge).
• It is a cusp whenever the associated connected component of X \ΣX is
non-relatively compact in X; in other words when it is either a isolated
edge, or only one of its extremities abuts to a vertex.

Remark 2.25. — The connected component of X \ΣX associated to a vicinal
edge is always a k-analytic annulus. However, this might not always be the case
for cusps (see [7], Remark 2.18). A cusp whose associated connected component
of X \ ΣX is an annulus will be called annular.

Recall, from [7], that a finite étale covering ϕ : Y → X of a quasi-smooth
connected curve X is called moderate, if for any y ∈ Y , the degree [H (y)gal :
H (ϕ(y))] is prime to p, where H (y)gal stands for the Galois closure of the ex-
tension H (y)/H (ϕ(y)). The category of moderate covering of X is a Galois
category whose fundamental group is denoted πt

1(X), the moderate fundamen-
tal group of X, which is a profinite group.

Let e be an edge of San(X) and Ce the associated connected component of
X \ ΣX . Let πe = πt

1(Ce) be the moderate fundamental group of Ce. If v is a
vertex of San(X), the star centred in v, denoted St(v,X), is defined by

St(v,X) = {v} t
⊔
e

Ce,
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where the disjoint union is taken over all edges e of San(X) abutting to v. Let
πv = πt

1(St(v,X)) be the moderate fundamental group of St(v,X).
We saw in [7] that if X is k-analytically hyperbolic, for any component c

of San(X) (vertex or edge), there is a natural embedding πc ↪→ π
temp, (p′)
1 (X).

This comes from the fact that the semi-graph of anabelioids G(X,ΣX) is of
injective type and that there is a natural isomorphism πtemp

1 (G(X,ΣX)) '
π

temp, (p′)
1 (X) (see [7], Corollary 3.36).

Definition 2.26. — If X is a k-analytically hyperbolic curve, a compact sub-
group of πtemp, (p′)

1 (X) is called:
• vicinal if it is of the form πe for some vicinal edge e of San(X);
• cuspidal if it is of the form πe for some cusp e of San(X);
• verticial if it is of the form πv for some vertex v of San(X).

Remark 2.27. — The Kummer nature of moderate coverings of an annu-
lus implies that vicinal subgroups and cuspidal subgroups are always isomor-
phic to Ẑ (p′), even for non-annular cusps. However, a compact subgroup of
π

temp, (p′)
1 (X) cannot be vicinal and cuspidal at the same time . Verticial sub-

groups are always isomorphic to the prime-to-p-profinite completion of the
fundamental group of a hyperbolic Riemann surface (see [7], Corollary 3.23
and proof of 3.30).

For a k-analytically hyperbolic curve X, verticial and vicinal subgroups can
be characterised directly from the group πtemp, (p′)

1 (X); verticial subgroups cor-
respond exactly to (conjugacy classes of) maximal compact subgroups, whereas
vicinal subgroups correspond to (conjugacy classes of) non-trivial intersections
of two maximal compact subgroups. Therefore, one can reconstruct the trun-
cated skeleton San(X)\ from the tempered group π

temp, (p′)
1 (X) (so also from

πtemp
1 (X), since the first one can be deduced from the second one taking a

suited inverse limit; see 2.24).

3. Harmonic cochains and torsors

3.1. Splitting conditions of µp-torsors. —

Lemma 3.1. — Let ξ and ξ′ be two distinct pth-roots of unity in k (recall that
k is assumed to be algebraically closed). Then |ξ − ξ′| = p−

1
p−1 .

Proof. — Write Φp = Xp − 1
X − 1 =

p−1∑
i=0

Xi =
∏
ξ∈µ′p

X − ξ ∈ Q[X], for the pth cy-

clotomic polynomial, where µ′p stands for the set of the p−1 primitive pth-roots
of unity in k. The evaluation at 1 gives p =

∏
ξ∈µ′p

1−ξ. For ξ describing µ′p, all
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the 1− ξ have the same norm since they are on the same Aut(k/Qp)-conjugacy
class. Therefore, |1− ξ| = p−

1
p−1 , and we obtain the result since multiplication

by any pth-root of unity is an isometry of k. �

An étale covering ϕ : Y → X between two k-analytic curves totally splits
over a point x ∈ X, if for any y ∈ ϕ−1({x}), the extension H (x) → H (y) is
an isomorphism. When ϕ is of degree n, ϕ totally splits over x if and only if the
fibre ϕ−1({x}) has exactly n elements, which is the same as saying that locally,
over a neighbourhood of x, ϕ is a topological covering (see [2], III, 1.2.1).

The following proposition, which characterizes the splitting sets of the µph-
torsor given by the function ph√1 + T , will be of paramount importance in this
article.

Proposition 3.2. — If h ∈ N×, the étale covering Gan
m

z 7→zph

−−−−→ Gan
m totally

splits over a point ηz0,r satisfying r < |z0| =: α if and only if: r < αp−h−
p

p−1 .
More precisely, the inverse image of ηz0,r contains:

• only one element when r ∈ [αp−
p

p−1 , α];
• pi elements when r ∈ [αp−i−

p
p−1 , αp−i−

1
p−1 [, with 1 6 i 6 h− 1;

• ph elements when r ∈ [0, αp−h−
1

p−1 [.

Proof. — Let f : Gan
m → Gan

m be the covering given by f(z) = zp. Let z1 ∈ k×
and ρ ∈ R>0 satisfying ρ < |z1| (such that ηz1,ρ /∈]0,∞[). In order to compute
f(ηz1,ρ), notice that for any polynomial P ∈ k[T ]:

|P (f(ηz1,ρ)) | = |(P ◦ f)(ηz1,ρ)| = |P (T p)(ηz1,ρ)|
= sup
x∈B(z1,ρ)

|P ◦ f(x)|

= sup
y∈f(B(z1,ρ))

|P (y)|.

As k is algebraically closed, there exists ρ̂ > 0, such that f(B(z1, ρ)) = B(zp
1 , ρ̂ ),

which gives f(ηz1,ρ) = η
zp

1 ,ρ̂
.

In order to compute ρ̂, notice that ρ̂ = |(T − zp1)(f(ηz1,ρ))| = |(T p −
zp1)(ηz1,ρ)|, and:

T p − zp1 =
p∑
i=1

(
p

i

)
zp−i1 (T − z1)i =

p∑
i=1

γi(T − z1)i,

where γi =
(
p
i

)
zp−i1 , with:

|γi| =
{

1 if i = p

p−1|z1|p−i if 1 6 i 6 p− 1
.
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Therefore,
ρ̂ = |(T − zp1)(f(ηz1,ρ))| = max

16i6p
{|γi|ρi} = max{ρp, (p−1ρi|z1|p−i)16i6p−1}.

Since we assumed ρ < |z1|, we get ρ̂ = max{ρp, p−1ρ|z1|p−1}, that is to say:

ρ̂ =
{
p−1ρ|z1|p−1 if ρ 6 |z1|p−

1
p−1

ρp if ρ > |z1|p−
1

p−1
.

Consequently:

f(ηz1,ρ) =
{
ηzp

1 ,p
−1ρ|z1|p−1 if ρ 6 |z1|p−

1
p−1

ηzp
1 ,ρ

p if ρ > |z1|p−
1

p−1
.

Let us try to find the preimages by f of ηz0,r, where 0 6 r < α := |z0|. Define:

r̃ =
{
rpα−

p−1
p if r 6 αp−

p
p−1

r
1
p if r > αp−

p
p−1

.

From the above, if z̃0 is a pth-root of z0, then:
η
z̃0 ,̃r
∈ f−1 ({ηz0,r}) ,

and f−1 ({ηz0,r}) consists of all conjugates ηξz̃0 ,̃r
of η

z̃0 ,̃r
, for ξ ∈ µp. Therefore:

f−1 ({ηz0,r}) =

{ηξz̃0,rpα
− p−1

p
}ξ∈µp if r 6 αp−

p
p−1

{η
ξz̃0,r

1
p
}ξ∈µp

if r > αp−
p

p−1
.

Since |z̃0| = α
1
p , we have |ξz̃0 − ξ′z̃0| = α

1
p p−

1
p−1 as soon as ξ 6= ξ′ ∈ µp,

from Lemma 3.1. Thus, f−1 ({ηz0,r}) has a unique element if r > αp−
p

p−1 , p
otherwise.

For the general case, with h > 1, a recursive reasoning on h leads to the
conclusion. �

Figure 3.1. Covering Gan
m

z 7→z9

−−−→ Gan
m with p = 3, h = 2 and

z0 = 1.
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3.2. Cochain morphism. — We shall define the important notion of Z/nZ-
cochain associated to a µn-torsor. This is exactly from a close look at the
behaviours of such cochains of torsors that it will be possible, in Section 5, to
extract some information about lengths of annuli.

Definition 3.3 (Harmonic cochains). — Let Γ be a locally finite graph and
A an abelian group. A harmonic A-cochain on Γ is map c : {oriented edges
of Γ} → A satisfying the following two conditions:

1. if e and e′ correspond to the same edge with its two different orientations:
c(e′) = −c(e);

2. if x is a vertex of Γ: ∑
edges oriented towards x

c(e) = 0A.

The set of harmonicA-cochains ofΓ forms an abelian group denotedHarm(Γ, A).
In the following, we will simply write A-cochains or cochains when A is explicit.

Let X be a non-empty k-analytic curve with skeleton G = San(X) and
truncated skeleton G\ = San(X)\.

Lemma 3.4. — Let n ∈ N×.
• There exists a natural morphism:

H1(X,µn) θ−→ Harm(G,Z/nZ).

• In the case where X has a finite skeleton, does not have any point of
genus > 0, is without boundary and has only annular cusps, the image
of θ contains Harm(G\,Z/nZ) (seen as a subgroup of Harm(G,Z/nZ)
by prolongation of cochains by 0 on all cuspidal edges of G).

Proof. — The exact Kummer sequence gives the following exact sequence:

1→ OX(X)×/
(
OX(X)×

)n → H1(X,µn)→ nH
1(X,Gm)→ 1,

where nH1(X,Gm) denotes the n-torsion subgroup of H1(X,Gm).
Moreover, H1(X,Gm) = H1

top(X,Gm); any étale Gm-torsor is topological,
this comes from [3] (4.1.10).

Let h ∈ H1(X,µn) and h be its image in nH
1(X,Gm). Thus, if x ∈ X,

there exists an open neighbourhood U of x in X, such that h is trivial on U .
Then h|U comes from a function f ∈ OU (U )× defined modulo n-th powers.
There is a natural morphism OU (U )× θU−−→ Harm(San(U ),Z), which factorises
through:

OU (U )×/
(
OU (U )×

)n → Harm (San(U ),Z/nZ).
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This morphism θU can be constructed in the following way: if e is an oriented
edge of San(U ) and r is the canonical retraction of U on its skeleton, then
r−1(e) is isomorphic to some open annulus of P1,an

k defined by the condition
{1 < |T | < λ}, where the beginning of the edge corresponds to 1, whereas the
end corresponds to λ.

Let τ : {z ∈ P1,an
k , 1 < |T (z)| < λ} ∼−→ r−1(e) be such an isomorphism

and α ∈ OU (U )×. There exists a unique m ∈ Z, such that α ◦ τ is written
z 7→ zmg(z) with g of constant norm. This comes from the characterisation
of invertibility of analytic functions on an annulus, and m is the degree of the
unique strictly dominant monomial of α◦τ . It is enough to write θU (α)(e) = m;
this defines an element of Harm(San(U ),Z).

We have San(X) ∩ U ⊆ San(U ), but the inclusion can be a priori strict.
However, we shall show that the support of θU (f) (i.e. the set of edges e of
San(U ), such that θU (f)(e) 6= 0) is included in San(X) ∩ U . Let e be an
oriented edge of San(U ) not included in San(X). If y ∈ e, y belongs to an
open disk D of X. Then there exists a closed disk D0  D containing y in its
interior. As D0 is a closed disk, its Picard group Pic (D0) is trivial. Therefore,
the µn-torsor h|D0 is given by a function f0 ∈ OD0(D0)×. Moreover, any
invertible function on a closed disk has a constant norm, and hence the cochain
associated to f0 at a neighbourhood of y is trivial. In particular, θU ∩D0(f0) is
the trivial cochain on San(U ∩D0). Moreover, all these local constructions are
compatible between each other: θU ∩D0(f0) = θU ∩D0(f). Thus θU (f)(e) = 0,
so the support of θU (f) is included in San(X) ∩U .

These local constructions x 7→ θU (f) can be glued together to finally give a
morphism: H1(X,µn)→ Harm(G,Z/nZ).

For the second point, let us first explain how to embed X in the analytifica-
tion of a Mumford k-curve. Let X ′ be a proper k-analytic curve obtained from
X by prolongation of each cusp by a disk. Then X ′ is the analytification X an

of a Mumford k-curve X . Moreover G\ = San(X ′); the annular cusps of X no
longer appear in the skeleton of X ′ since they are prolonged by disks.

As G\ = San(X ′), from [10] we have a morphism θ : H1(X ′, µn) →
Harm(G,Z/nZ), whose image exactly equals Harm(G\,Z/nZ). If ι denotes
the embedding of X in X ′, there is a commutative diagram:

H1(X ′, µn) ι∗ //

θ

""

H1(X,µn)

θ

||
Harm(G,Z/nZ)

,

which is enough to conclude that Harm(G\,Z/nZ) ⊆ im(θ). �
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Remark 3.5. — As the morphism H1(X,µn) θ−→ Harm(G,Z/nZ) exists for
any n, we will now consider θ as a map:

θ :
⊔
n∈N×

H1(X,µn)→
⊔
n∈N×

Harm(G,Z/nZ),

which induces for each n ∈ N× a morphism H1(X,µn)→ Harm(G,Z/nZ).

3.3. Cochains and minimality of the splitting radius on an annulus. — Let C be
a k-analytic annulus of finite length, α ∈ k and ηα,0 = ηα (sometimes simply
denoted α) the associated rigid point of P1,an

k . We shall show that µp-torsors
with non-trivial cochains modulo p on C satisfy a minimality condition that
enables us to distinguish them from trivial cochain torsors.

Definition 3.6. — If X is a k-analytic curve and f ∈ H1(X,µn), let D(f)
denote the set of points of X over which the analytic torsor defined by f totally
splits.

Definition 3.7 (Splitting radius of a torsor on a rigid point). — Assume C is
the subannulus of P1,an

k defined by |T | ∈ I, where I is an interval of R>0. If
ηα ∈ C, for any torsor f ∈ H1(C, µp), let %f (α) be the splitting radius of f in
α, defined by:

%f (α) = sup {r ∈]0, |α|[, ηα,r ∈ D(f)} .

The following proposition shows how one can detect the triviality of the
Z/pZ-cochain θ(f) with this notion.

Proposition 3.8. — Fix the rigid point ηα ∈ C. Then %f (α) is minimal
exactly when the cochain of f ∈ H1(C, µp) is non-trivial modulo p, i.e. when
f /∈ ker(θ).

More precisely:
• f /∈ ker(θ) if and only if %f (α) = |α| p−

p
p−1 ;

• f ∈ ker(θ) if and only if %f (α) > |α| p−
p

p−1 .

Proof. — The exact Kummer sequence gives a morphism

OC(C)×/(OC(C)×)p ↪→ H1(C, µp),

which becomes an isomorphism when one restricts it to any compact subannulus
because of the triviality of the Picard group of any k-affinoid subspace. Up to
restricting C, one can assume f is given by a function g ∈ OC(C)×, which means
that the associated analytic torsor is defined by OC(C)[S]/(Sp − g).

Studying the splitting radius of f along the interval [ηα, ηα,|α|] amounts to
making a change of coordinate function t := T−α and studying the convergence
of p
√
g(t+ α).
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• Assume f /∈ ker(θ). There exists n ∈ Z\{0}, prime to p, such that g has
growth rate n, i.e. n is the degree of the strictly dominant monomial:
g(T ) = anT

n(1 + u(T )), with |u| < 1 on C. After normalisation (k is
algebraically closed), one can assume an = 1.

The series defining n
√

1 + T has a convergence radius equal to 1 since
n is prime to p. Therefore, there exists a function v(T ) of norm < 1 on
C, such that (1 + v)n = 1 + u, so g(T ) = (T (1 + v))n. As T (1 + v) is
a coordinate function, we can assume g(T ) = Tn. Since n is prime to
p, the two µp-torsors given by functions Tn et T have the same sets of
total splitting, so we can assume g(T ) = T . Then the result is given by
Proposition 3.2.

• Assume f ∈ ker(θ). This means that the degree of the strictly dominant
monomial of g (the growth rate) is 0 modulo p; there exists m ∈ Z, such
that g(T ) = a0T

mp(1 + u(T )), with |u| < 1 on C.
Up to division by Tmp (it is the class of g modulo (O(C)×)p that

determines the torsor f), we can take m = 0. Let us write

g(T ) =
∑
k∈Z

akT
k.

Thus, for all r ∈ I and k ∈ Z \ {0}, |ak|rk < |a0|. Up to normalisation
and restriction to a subannulus, we can assume that a0 = 1 and that
the extremities of the interval I (open or closed), are 1 − ε and 1, for
some ε ∈]0, 1[. In this case, for all k ∈ N×, we have |ak| < 1 and |a−k| <
(1 − ε)k. For all i > 0 and k ∈ Z, let us write

(
k
i

)
= k(k−1)...(k−i+1)

i! .
Using the generalised binomial expansion, we write:

g(t+ α) =
∑
k∈Z

ak(t+ α)k

=
∑
k∈Z

ak

∑
i>0

(
k

i

)
αk−iti


=
∑
i>0

(∑
k∈Z

ak

(
k

i

)
αk−i

)
︸ ︷︷ ︸

Ai

ti =
∑
i>0

Ait
i.

We have |α| 6 1 since ηα ∈ C, which implies |A0| = |a0| = 1. Writing
v(t) =

∑
i>1Ait

i, Proposition 3.2 states that the torsor f splits totally
on ηα,r as soon as |v(η0,r)| < p−

p
p−1 . Consequently, %f (α) > r if |Ai|ri <

p−
p

p−1 , for all i > 1. Therefore:

%f (α) > inf
i>1

{
i
√
|Ai|−1p−

1
i ( p

p−1 )
}
.
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Moreover, for all k ∈ Z \ {0}, |akαk| < 1. Then, all i > 1 satisfy
|Ai| < |α|−i, so:

i
√
|Ai|−1p−

1
i ( p

p−1 ) > |α| p−
1
i ( p

p−1 ).

We deduce:

%f (α) > min
{
|A1|−1p−

p
p−1 , |α| p−

1
2 ( p

p−1 )
}
> |α| p−

p
p−1 . �

Remark 3.9. — If h > 1, it is no longer true that %f (α) is minimal if and only
if f ∈ H1(C, µph) has a non-trivial Z/phZ-cochain, i.e. when f /∈ ker(θ). It is
not difficult to show that if f has a cochain prime to p, then:

%f (α) = |α| p−h−
1

p−1 .

However, if f ′ ∈ H1(C, µph) is the element corresponding to the function T p ∈
OC(C)×, then its Z/phZ-cochain θ(f ′) is non-trivial since it equals p, but one
can show that its splitting radius on α satisfies:

%f ′(α) > |α| p1−h− 1
p−1 = p%f (α) > %f (α),

implying that %f ′(α) is not minimal even though f ′ /∈ ker(θ). Moreover, if the
annulus C is, for instance, given by the condition |T | ∈]1 − ε, 1[ with ε > 0,
the torsor g ∈ H1(C, µph) given by the function 1 + T ∈ OC(C)× has a trivial
cochain, so it belongs to ker(θ), but its splitting radius on a rigid point α = ηα
is:

%g(α) = p−h−
1

p−1 .

Consequently, as soon as |α| ∈] 1
p , 1[, we have %g(α) < %f ′(α).

Corollary 3.10. — If f ∈ H1(C, µp), the triviality of the cochain correspond-
ing to f can be detected set-theoretically from the splitting sets of the different
µp-torsors on C:

• f /∈ ker(θ) ⇐⇒ D(f)[2] ⊆
⋂

f ′∈H1(C,µp)

D(f ′)[2],

• f ∈ ker(θ) ⇐⇒ ∃f ′ ∈ H1(C, µp),D(f)[2] * D(f ′)[2]

⇐⇒ ∀f ′ ∈ H1(C, µp) \ ker(θ),D(f)[2] * D(f ′)[2].

Proof. — It is a direct consequence of 3.8 coupled with the density of X[2]
in X. �

3.4. Characterisation of µp-torsors with trivial cochain. — So far, this study,
which gives a set-theoretic characterisation of µp-torsors with trivial Z/pZ-
cochain, has only dealt with k-analytic annuli. In order to extend these con-
siderations, we will need a definition and a few restrictions.
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Definition 3.11. — An edge e of a graph H is a bridge if an only if the
map π0(H \ {e}) → π0(H) is not injective, which happens when the edge e
“separates” several connected components of H \ {e}. The graph is said to be
without a bridge when none of its edges is a bridge.

Proposition 3.12. — Let X be a curve as considered in the second part of
Lemma 3.4, without boundary or points of genus > 0, of finite skeleton, with
only annular cusps. Assume, moreover, that G = San(X) is without a bridge,
and that there is never strictly more than one cusp coming from each node.

If f ∈ H1(X,µp), then f ∈ ker(θ) if and only if, for any vicinal edge e of
San(X) of associated annulus Ce, there exists fe ∈ H1(X,µp), such that:(

D(f)[2] \D(fe)[2]
)
∩ Ce [2] 6= ∅.

Proof. — The assumption that there is never strictly more than one cusp com-
ing from a node implies that a cochain c ∈ Harm(G,Z/pZ) is trivial if and only
if it is trivial on all vicinal edges of G.
• Assume that for any vicinal edge e of G of corresponding annulus Ce,
there exists fe ∈ H1(X,µp), such that:

(
D(f)[2] \D(fe)[2]

)
∩ Ce [2] 6= ∅.

Let fe | Ce
and f| Ce

be the restrictions of fe and f to Ce. Then we have
D(f| Ce

)[2] * D(fe | Ce
)[2]. With Corollary 3.10, this implies θ(f)(e) = 0.

It is true for any vicinal edge e, so θ(f) is the trivial cochain.
• Let f ∈ H1(X,µp), e a vicinal edge of annulus Ce, and assume f ∈

ker(θ). From 3.8, as θ(f)(e) = 0, we have D(f| Ce
)[2] * D(ge)[2], for all

ge ∈ H1(Ce, µp) of a non-trivial cochain.
It remains to show that there exists fe ∈ H1(X,µp) with a non-trivial

cochain at e.
From the assumption, the edge e is not a bridge of G, so it is also not

a bridge of G\. Thus, the evaluation at e:

Harm(G\,Z/pZ) eve−−→ Z/pZ

is non-zero. Let us choose ce ∈ ev−1
e (Z/pZ \ {0}), i.e. such that ce(e) 6=

0. From Lemma 3.4, the image of θ contains Harm(G\,Z/pZ). It is
enough to take fe ∈ θ−1({ce}); we have D(f| Ce

)[2] * D(fe | Ce
)[2], which

can be written as:(
D(f)[2] \D(fe)[2]

)
∩ Ce [2] 6= ∅. �

4. Resolution of non-singularities

In algebraic geometry, resolution of non-singularities consists in knowing
whether a hyperbolic curve X admits a finite cover Y , whose stable reduction
has some irreducible components above the smooth locus of the stable (or semi-
stable) reduction of X . Such techniques happen to be useful in anabelian
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geometry; see, for instance, [15]. If X0 is a geometrically connected hyperbolic
curve over a finite extension K of Qp, such that X0,Qp

satisfies such resolution
of non-singularities, then any section of πalg

1 (X0) → Gal(Qp/K) has its image
in a decomposition group of a unique valuation point.

In [11], Lepage shows that any Mumford curve over Qp satisfies a resolu-
tion of non-singularities and applies this result to the anabelian study of the
tempered group of such curves. He shows, for instance, that if X1 and X2 are
two Mumford curves over Qp, whose analytifications have isomorphic tempered
fundamental groups, then Xan

1 are Xan
2 are naturally homeomorphic ([11], The-

orem 3.9).

4.1. Definition and properties of solvable points. — Within the framework of
this article, we shall give an ad hoc definition of a solvable point and resolu-
tion of non-singularities in order to stay in the language of analytic geometry
without entering in the considerations of a (semi-)stable model.

Definition 4.1 (Solvable point). — LetX be a k-analytic quasi-smooth curve.
We will say that a point x ∈ X satisfies the resolution of non-singularities,
equivalently is solvable, when there exists a finite étale covering Y of X and
a node y of San(Y ) above x. This amounts to “singularising” x to some node
of some finite étale covering of X, whence the terminology. The set of solvable
points is denoted Xres.

Remark 4.2. — One always has Xres ⊆ X[2]. We will say that X satisfies
resolution of non-singularities when Xres = X[2]. In [11] (Theorem 2.6), Lep-
age shows that the analytification of any Mumford curve over Qp satisfies the
resolution of non-singularities.

Definition 4.3. — If f ∈ H1(X,µn), define D(f)res := D(f) ∩ Xres as the
set of solvable points of X over which the analytic torsor defined by f totally
splits.

Resolution of non-singularities has a specific anabelian flavour; from the
tempered group πtemp

1 (X), it is possible to determine the set of solvable points,
as well as the set of solvable points belonging to an annulus defined by a vicinal
edge, to the skeleton itself or to the splitting sets of analytic torsors on X.
Properties. If X is a k-analytically hyperbolic curve, the tempered fundamental
group πtemp

1 (X) enables us to determine:
• the set Xres of solvable points of X;
• if e is a vicinal edge of annulus Ce, the set Ce ∩Xres;
• the set San(X)res := San(X) ∩ Xres of solvable points belonging to the
skeleton;
• if f is a µn-torsor of X, the set D(f)res.
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More precisely, we have the following.

1. The decomposition groups Dx of solvable points of X in πtemp
1 (X) corre-

spond exactly to the maximal compact subgroups D of πtemp
1 (X), such

that there exists a open finite index subgroup H of πtemp
1 (X), such

that the image of D ∩H by the natural morphism H → H (p′) is non-
commutative.

2. Let e be a vicinal edge of San(X) and Ce the associated annulus. If Dx

is a decomposition group of a point x ∈ Xres, then x ∈ Ce if and only
if the image D (p′)

x of Dx by the morphism πtemp
1 (X)→ π

temp, (p′)
1 (X) is

open in some vicinal subgroup πe associated to e.
3. Let x ∈ Xres be a solvable point. Let D (p′)

x be a decomposition group of
x in πtemp, (p′)

1 (X), and Y a finite étale covering, such that there exists
a node y of San(Y ) above x, which amounts to considering an open
subgroup H of πtemp

1 (X) of finite index, such that πy = D
(p′)
x ∩ H (p′)

is non-commutative. Let ι be the morphism H (p′) → π
temp, (p′)
1 . Then

ι(πy) is an open subgroup of D (p′)
x . There are three possibilities.

• Case 1: x /∈ San(X), it is the case when ι(πy) is trivial.
• Case 2: x is a vertex of the skeleton; this is the case when ι(πy)
is not commutative. In this case, D (p′)

x = πx is the only verticial
subgroup containing ι(πy), and from Lemma 3.51 of [7], it is also
the commensurator of ι(πy) in πtemp, (p′)

1 (X).
• Case 3: x belongs to an edge e of San(X); this is the case when
ι(πy) is non-trivial and commutative. In this case, D (p′)

x = πe, and
πe is the only vicinal or cuspidal subgroup (according to the nature
of the edge e) containing ι(πy); it also equals the commensurator
of ι(πy) in πtemp, (p′)

1 (X).
4. Let f ∈ H1(X,µn) and Dx be a decomposition group in πtemp

1 (X) of a
point x ∈ Xres. Then the knowledge of πtemp

1 (X), of f (considered as a
morphism from πtemp

1 (X) to Z/nZ) and of Dx is enough to determine
whether x ∈ D(f).

The point (1), which appears in [11], is a consequence of ([12], Prop. 10):
if D is a compact subgroup of πtemp

1 (X), there exists x ∈ X and a decom-
position subgroup Dx of x in πtemp

1 (X), such that D ⊆ Dx. Therefore, de-
composition subgroups in πtemp

1 (X) of points of X are exactly the maximal
compact subgroups of πtemp

1 (X). The image D (p′)
x of Dx by the morphism

πtemp
1 (X)→ π

temp, (p′)
1 (X) is trivial if x does not belong to San(X), non-trivial

and commutative (in fact, isomorphic to Ẑ (p′))) if x belongs to an edge of
San(X), and non-commutative if x is a vertex of San(X).
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The point (2) comes from the following fact: if Y f−→ X is a finite étale Galois
covering of group G with a node y of San(Y ) resolving x ∈ Xrés, there exists
a canonical retraction San(Y )/G � f−1(San(X))/G ' San(X), and the sub-
graph f−1(San(X)) ⊆ San(Y ) is such that f−1(San(X))∩Yres is determined by
the data of πtemp

1 (X) and of an open subgroup of finite index H ⊆ πtemp
1 (X)

defining the covering f .
The point (3) can be interpreted as a consequence of Lemmas 3.6 and 3.8

of [11].
For the point (4), one needs to bear in mind the following fact: if Y f−→ X

is a finite étale Galois covering given by an open subgroup H ⊆ πtemp
1 (X),

the data of the morphism ι : H (p′) → π
temp, (p′)
1 (X) enables us to know the

preimage by f of a fixed node x ∈ San(X). In particular, when f is a µn-torsor,
the data of ι enables us to know whether f totally splits over x (cf. [10], prop.
7). Now, if x ∈ Xres, if Z

g−→ X is a finite étale Galois covering of group G with
a node z ∈ San(Z), which resolves x, and if f ∈ H1(X,µn) corresponds to the
analytic torsor Y → X, the pull-back Y ×X Z → Z inherits a natural action of
µn×G. Triviality of f over x can be read on the action of G×µn over f−1(x),
i.e. over the G-orbit of z.

4.2. Resolution of non-singularities for annuli and more general curves. — We
are going to show the resolution of non-singularities of annuli using some ar-
guments inspired by [11].

Let D ⊆ P1,an
k be a disk centred at 0. For n > 1, let ccan,n ∈ H1(Gan

k , µpn)
be the µpn -torsor Gan

k → Gan
k given by the multiplication by pn. Any invertible

function f ∈ OD(D)× defines a morphism f : D → Gan
k . Let cn := f∗ccan,n ∈

H1(D, µpn) be the pull-back of ccan,n along f . Let Yn → D be the corresponding
torsor. If α ∈ k defines a k-point of D, the ramification index of f at α is given
by: eα(f) = inf{k > 1, ak 6= 0} with f(T ) =

∑
k>0

ak(T − α)k.

Let r0(cn) = inf{r > 0, Yn is not split at η0,r0(cn)}. When r0(cn) exists, let
xn = η0,r0(cn) and yn ∈ Yn be above xn. Here is a result of Lepage about the
Artin–Schreier nature of the extension H̃ (xn) → H̃ (yn) and the asymptotic
behaviour of r0(cn) when n→∞.

Lemma 4.4 ([11], 2.3). — There exists κ ∈ |k×|, such that for n big enough:
• r0(cn) = κp

− n
e0(f) ;

• [H̃ (yn) : H̃ (xn)] = [H (yn) : H (xn)] = p;
• H̃ (yn) is isomorphic to the Artin–Schreier extension k̃(X)[T ]/(T p−T−
Xe0(f)) after identification H̃ (xn) ' k̃(X).
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Remark 4.5. — If e0(f) = pmd with d prime to p, it is known that the genus
of the Artin–Schreier curve given by T p − T = Xe0(f) is g = (d − 1)(p − 1)/2
(see [8], §2.2, eq.(8)). In particular, when e0(f) is not a power of p, for n big
enough, the residual curve Cyn

has genus > 1; in other words, g(yn) > 0. It
this situation, from the definition of the skeleton and its nodes, yn is a node of
San(Yn), so xn ∈ Dres.

Proposition 4.6. — Any k-analytic annulus C satisfies resolution of non-
singularities C[2] = Cres.

Proof. — Because of Corollary 2.17, one can assume without loss of generality
that C is isomorphic to CI ⊆ A1,an

k (notation of Section 1.2) for some interval I,
such that CI ⊆ D, where D is the open unit disk centered at 0. In other words,
if T is the standard parameter of A1,an

k , one can assume that there exists a
non-empty interval I ⊆ (0, 1), such that C is isomorphic to the analytic domain
of A1,an

k defined by the condition {|T | ∈ I}.
Let x ∈ C[2]. There exist α ∈ k with |α| ∈ I and r ∈ |k×|, such that x ∈ ηα,r.
Let f ∈ OD(D)×, such that the ramification index e0(f) is not a power of

p. One can, for instance, take f(T ) = 1 + TN with N > 1 prime to p; this
function is invertible on D by Proposition 2.12, and the ramification index is
N by definition. Let n be big enough such that Lemma 4.4 (related to f)
applies, and κp

− n
e0(f) < r. The coordinate function κ

r p
− n

e0(f) (T − α) induces
an isomorphism of annuli ι : C ∼−→ C′ with C ′ ⊆ D and ι(x) = η0,r0(cn) = xn. If
j : C′ ↪→ D is the natural inclusion, consider ι∗j∗cn ∈ H1(C, µpn), ie. the pull-
back along ι of the restriction to C′ of the torsor cn ∈ H1(D, µpn) associated
to f . Let Zn → C be the corresponding analytic µpn -torsor of C. As e0(f) is
not a power of p, from Remark 4.5, any point zn ∈ Zn above x is a node of
San(Zn), so we get x ∈ Cres. �

Let X be a quasi-smooth k-analytic curve of finite skeleton, without bound-
ary or points of genus > 0, with only annular cusps. We have seen that X
can be considered as a non-empty open subset of the analytification X ′ of a
Mumford k-curve. One cannot a priori conclude that X satisfies resolution
of non-singularities directly using Theorem 2.6 of [11] when the curve is not
defined over Qp. However, the proof of Lepage can easily be adapted to give
the following result.

Proposition 4.7. — Let X ⊂X an be a k-analytic curve that is a non-empty,
open subset of the analytification of a Mumford curve X minus a (non-empty)
disk. Then X satisfies the resolution of non-singularities.

Proof. — Since type-2 points are dense in X, X satisfying resolution of non-
singularities would imply Xres = X, where the overline stands for the closure
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in X an. As explained in ([11], Proposition 2.1), the converse is true, and X
satisfies the resolution of non-singularities if and only if X(k) ⊂ Xres.

Let x ∈ X(k). The assumptions on X ensure that its universal topological
covering Ω can be embedded in a disk D, such that Ω ⊂ D ⊂ P1,an

k . Let
z ∈ Ω(k) be a point over x. Let f ∈ OD(D)×, such that the ramification index
ez(f) of f at z is not a power of p (such an invertible function always exists).
Let cn = f∗ccan,n ∈ H1(D, µpn) be the pull-back of the canonical µpn-torsor
along f , and Yn → D the corresponding analytic torsor, considered also as a
torsor on Ω by restriction. From Lemma 4.4, for each n big enough, there exists
a node yn ∈ Yn of San(Yn) over a point zn ∈ Ω, such that the sequence (zn)n
converges to z, with g(yn) > 1. In particular, zn ∈ Ωres, and Ω satisfies the
resolution of non-singularities since Ω(k) ⊂ Ωres. Let xn be the image of zn in
X. We want to prove that xn ∈ Xres, which would be enough to conclude, given
the remark at the beginning of this proof and the fact that (xn)n converges to
x.

The idea is to “periodise” f on Ω, such that it descends to a finite cover
of X without changing the behaviours of the corresponding torsors around zn
much. Up to multiplying by a constant, one can assume f(z0) = 1, for some
z0 ∈ Ω(k). Consider the group Γ = πtop

1 (X) = Gal(Ω/X). For any normal

subgroup Γ′ ⊆ Γ of finite index, the product fΓ′(z) =
∏
γ∈Γ′

f(γ(z))
f(γ(z0)) converges

uniformly on every affinoid domain of Ω, defining an element of OΩ(Ω) that
descends to the finite topological covering Ω/Γ′ of X.

Let ε > 0, such that the canonical µpn-torsor ccan,n splits over the open disk
D(1, ε) (from 3.2, one can take, for instance, ε = p−n−

1
p−1 ). Being a free group,

Γ is residually finite, and there exists a decreasing sequence (Γm)m>0 of normal
subgroups of finite index satisfying

⋂
m>0 Γm = {1}. The sequence (fΓm

)m>0
converges uniformly to f on every affinoid domain of Ω, so there exists m such
that |fΓm

/f − 1|zn
< ε. Let c = f∗Γm

ccan,n ∈ H1(D, µpn) be the pull-back
of ccan,n along fΓm , and Y → Ω the corresponding analytic torsor restricted
to Ω. The condition |fΓm/f − 1|zn < ε implies that cn and c are isomorphic
over zn, so there exists a point y ∈ Y above zn of genus g(y) ≥ 1. Moreover,
fΓm

descending to the finite topological cover X ′ = Ω/Γm implies that there
exists a µpn-torsor c′ : Y ′ → X ′, whose pull-back along the topological cover
π : Ω → X ′ gives c, i.e. c = π∗c′. Since q : Y → Y ′ is a topological cover, the
image y′ = q(y) of y has a genus g(y′) > 1, so y′ is a node of San(Y ′). Since
y′ is situated above xn, and the composition Y ′ → X ′ → X is finite, xn is a
solvable point. �

Remark 4.8. — Let X be a quasi-smooth k-analytic curve of finite skeleton,
without boundary or points of genus > 0, with only annular cusps, and ι :
X ↪→ X an the embedding of X into the analytification of a Mumford curve
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obtained by prolongation of each cusp by a disk. It is easy to see that ι embeds
X into X an minus a non-empty disk if and only if X has at least one finite-
annular cusp, i.e. a cusp such that the corresponding component of X \ΣX is
an annulus of finite length, where ΣX stands for the set of nodes of San(X).

4.3. Anabelianity of the triviality of µp-torsors. — We are now up to proving
some tempered anabelianity of the triviality of cochains associated to µp-torsors
on a curve X: either when X is an annulus or a k-analytically hyperbolic curve
that is some open subset of the analytification of a Mumford k-curve.

Theorem 4.9. — Let X be a k-analytic curve satisfying one of the two fol-
lowing conditions:

1. X is an annulus;
2. X is a k-analytically hyperbolic curve of finite skeleton without a bridge,

without boundary nor any point of genus > 0, with only annular cusps
and at least a finite-annular one, such that there is never strictly more
than one cusp coming from each node.

Then the set of µp-torsors of X of a trivial Z/pZ-cochain, i.e. the set
H1(X,µp) ∩ ker(θ), is completely determined by πtemp

1 (X).

Proof. — Let us concentrate on the second case, when the curve is k-analytically
hyperbolic. The case of an annulus is treated in exactly the same way, inspired
from Corollary 3.10 and Proposition 4.6, rather than Propositions 3.12 and 4.7.

From 3.12, an element f ∈ H1(X,µp) belongs to ker(θ) if and only if, for any
vicinal edge e of San(X) of associated annulus Ce, there exists fe ∈ H1(X,µp)
such that: (

D(f)[2] \D(fe)[2]
)
∩ Ce [2] 6= ∅,

and one can always choose fe, such that θ(fe)(e) 6= 0. In this case, as soon as
α is a rigid point of Ce, the threshold point xα ∈]α, r(α)[ situated at a distance
p
p−1 of r(α) is split by f but not by fe; this comes from Proposition 3.8.
Therefore, xα ∈ D(f) \ D(fe), and as such points are solvable by Proposition
4.7 (xα is a type-2 point), we obtain:

xα ∈ D(f)res \D(fe)res.

In other words, we have f ∈ ker(θ) if and only if there exists fe ∈ H1(X,µp),
such that

(D(f)res \D(fe)res) ∩ Ce 6= ∅.(1)

From the properties of solvable points presented in 4.1, the setsD(f)res, D(fe)res
and Ce∩Xres are determined by the tempered group πtemp

1 (X), so the condition
(1) above can be detected from the tempered group, hence the result. �
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Remark 4.10. — The second condition on the curve X implies, from Theorem
3.63 of [7], that X is k-analytically anabelian and not only hyperbolic.

Corollary 4.11. — Let us stay within the framework of theorem 4.9. Let
h ∈ N×, and mod(p) : Harm(G,Z/phZ) → Harm(G,Z/pZ) be the reduction
modulo p of the Z/phZ-cochains. Then it is possible to characterize from the
tempered group πtemp

1 (X) the kernel of the composed morphism

mod(p) ◦ θ : H1(X,µph)→ Harm(G,Z/pZ).

Proof. — We have a commutative diagram:

H1(X,µph) θ //

��

Harm(G,Z/phZ)

mod(p)
��

H1(X,µp)
θ // Harm(G,Z/pZ)

,

where the first vertical arrow is induced by the exact sequence

1→ µph−1 → µph
π−→ µp → 1.

With the identification H1(X,µpi) ' Hom(πtemp
1 (X), µpi), this morphism is

nothing other than

Hom(πtemp
1 (X), µph) π∗−→ Hom(πtemp

1 (X), µp),

so it only depends on the tempered group πtemp
1 (X). The conclusion follows

from 4.9 and the commutativity of the diagram. �

5. Partial anabelianity of lengths of annuli

We shall show how all these set-theoretical considerations about the inter-
section of the skeleton of an annulus with the splitting sets of its µp-torsors
enable us to extract some information about the length of the annulus, before
giving an anabelian interpretation.

5.1. Lengths and splitting sets. — The following lemma enables us to deter-
mine whether the length of an annulus is > 2p

p−1 from the knowledge of its
µp-torsors of trivial cochains.

Lemma 5.1. — A k-analytic annulus C has a length strictly greater than 2p
p−1 if

and only if any µp-torsor of trivial cochains on C totally splits over a non-empty
portion of its analytic skeleton:

`(C) > 2p
p− 1 ⇐⇒ ∀f ∈ H1(C, µp) ∩ ker(θ),D(f)[2] ∩ San(C) 6= ∅.
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Proof. — Assume `(C) > 2p
p−1 and consider f ∈ H1(C, µp) ∩ ker(θ). As in the

proof of Proposition 3.8, up to restricting C (but only slightly, in order to keep
the condition on the length), one can assume that C is the subannulus of P1,an

k

given by the condition T ∈]1− ε, 1[ with 1− ε < p−
2p

p−1 , and that the µp-torsor
f is defined by a function g ∈ OC(C)× written as:

g(T ) = 1 +
∑

k∈Z\{0}

akT
k

︸ ︷︷ ︸
u(T )

,

with, for all k ∈ N×, |ak| < 1 and |a−k| < (1 − ε)k. The skeleton of C is the
interval ]η0,1−ε, η0,1[, and the corresponding analytic torsor totally splits over
a point η0,r ∈ San(C) as soon as |u(η0,r)| < p−

p
p−1 . Let k ∈ N×:

• if r < p−
p

p−1 , |akrk| < p−
kp

p−1 6 p−
p

p−1 ;
• if r > (1−ε) p

p
p−1 , |a−kr−k| < (1−ε)k(1−ε)−kp−

kp
p−1 = p−

kp
p−1 < p−

p
p−1 .

But we have 1 − ε < p−
2p

p−1 (from the assumption on the length of C), and
hence:

r1 = (1− ε) p
p

p−1 < p−
p

p−1 = r2.

Consequently, the torsor f totally splits over the non-empty interval ]η0,r1 , η0,r2 [
of the skeleton. From the density of San(C)[2] in San(C), we obtain that D(f)[2]∩
San(C) 6= ∅.

Reciprocally, if `(C) 6 2p
p−1 , one can check that the torsor given by the func-

tion g(T ) = 1 + T + (1− ε)T−1 never totally splits over any point of San(C).
�

It is actually possible to reduce by half the previous bound from a finer
condition requiring us to look at the set of µp-torsors, which totally split over
a neighbourhood of a fixed extremity. We need the following definition.

Definition 5.2. — Let C be a non-empty k-analytic annulus. Its skeleton
San(C) is an interval (open or closed), and let ω be one of its extremities. Let
H1
ω(C, µp) be the subgroup of H1(C, µp) of µp-torsors, which totally split over

a neighbourhood of ω, i.e. which totally splits over a subinterval of San(C) of
non-empty interior, and whose complementarity in San(C) is an interval that
does not admit ω as an extremity.

Lemma 5.3. — A k-analytic annulus C has a length strictly greater than p
p−1

if and only if, for any extremity ω of San(C):

Card

 ⋂
f∈H1

ω(C,µp)

D(f)[2] ∩ San(C)

 > 2.
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Proof. — Assume `(C) > p
p−1 and consider f ∈ H1

ω(C, µp). Up to restriction of
C (but only slightly, such that the condition on the length still holds), one can
assume that C is the subannulus of P1,an

k given by the condition T ∈]1 − ε, 1]
with 1 − ε < p−

p
p−1 . Let D0 be the closed k-analytic disk of P1,an

k centred in
0 and of radius 1, i.e. defined by the condition |T | ∈ [0, 1]. The annulus C is
then a k-analytic subspace of D0. From the assumption on f , it is possible to
extend f into a torsor f̃ ∈ H1(D0, µp) of D0, trivial over D0 \ C. Since Pic(D0)
is trivial (D0 is a k-affinoid space), f̃ is given by a function g ∈ OD0(D0)×
written as

g(T ) = 1 +
∑
k∈N×

akT
k

︸ ︷︷ ︸
v(T )

,

with |ak| < 1 for all k ∈ N×.
The skeleton of C is the interval ]η0,1−ε, η0,1], and the torsor f = f̃| C totally

splits over the point η0,r ∈ San(C) as soon as |v(η0,r)| < p−
p

p−1 .
For all k ∈ N× and r ∈ ]1− ε, p−

p
p−1 [, we have |akrk| < p−

p
p−1 , so |v(η0,r)| <

p−
p

p−1 . Thus, the interval ]η0,1−ε, η0,p−
p

p−1
[ belongs to D(f). As the reasoning

is independent of the choice of f ∈ H1
ω(C, µp), one obtains:

]η0,1−ε, η0,p−
p

p−1
[ ⊆

⋂
f∈H1

ω(C,µp)

D(f) ∩ San(C),

and the conclusion follows from the density of type-2 points in C.
Reciprocally, consider an annulus C of length `(C) 6 p

p−1 and assume there
exist two distinct points x1, x2 ∈

⋂
f∈H1

ω(C,µp)

D(f)[2] ∩ San(C). Let y ∈ ]x1, x2[

be a type-2 point. Let I be the connected component of San(C) \ {y}, which
does not abut to ω, and CI the subannulus of C of skeleton I. Up to exchanging
x1 and x2, one can assume x2 ∈ I. As the annulus CI has a length < p

p−1 , there
exists h ∈ H1(CI , µp), such that D(h) ∩ San(CI) = ]y, x2[. Therefore, h can be
extended into a torsor h̃ ∈ H1(C, µp) of C, such that D(h̃)∩San(C) = ]x1, y[ (or
[x1, y[, according to whether C is open or closed in x1). Then h̃ ∈ H1

ω(C, µp),
which leads to a contradiction since x2 /∈ D(h̃). �

Corollary 5.4. — From the tempered fundamental group of a k-analytic an-
nulus, it is possible to determine whether the length of the latter is strictly
greater than p

p−1 .
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Proof. — We showed in 4.6 that all type-2 points of C are solvable, so there is
the equality:⋂

f∈H1
ω(C,µp)

D(f)[2] ∩ San(C) =
⋂

f∈H1
ω(C,µp)

D(f)res ∩ San(C)res.

From the properties of solvable points presented in 4.1, the tempered group
πtemp

1 (C) characterises the sets D(f)res and San(C)res. Moreover, a torsor f ∈
H1(C, µp) belongs toH1

ω(C, µp) if and only if it totally splits over the set of type-
2 points of a non-empty neighbourhood of ω in San(C). But all the type-2 points
of San(C) are solvable, so H1

ω(C, µp) is itself characterized by the tempered
group. The result follows from Lemma 5.3. �

5.2. Results on lengths of annuli. — We are now in a position to state our
result of partial anabelianity of lengths of annuli. Even if we are not yet in
a position to know whether the fundamental group of an annulus determines
its length, the following result shows that the lengths of two annuli that have
isomorphic tempered fundamental groups cannot be too far from each other.
When the lengths are finite, we give an explicit bound, depending only on the
residual characteristic p, for the absolute value of the difference of these lengths.

Theorem 5.5. — Let C1 and C2 be two k-analytic annuli whose tempered fun-
damental groups πtemp

1 (C1) and πtemp
1 (C2) are isomorphic. Then C1 has finite

length if and only if C2 has finite length. In this case:

|`(C1)− `(C2)| < 2p
p− 1 .

We also have d
(
p−1
p `(C1), pN×

)
> 1 if and only if d

(
p−1
p `(C2), pN×

)
> 1, and

in this case:

|`(C1)− `(C2)| < p

p− 1 .

Proof. — Let n ∈ N× prime to p, and i ∈ {1, 2}. We know that all µn-torsors
of Ci are Kummer. Thus, annuli defined by torsors coming from H1(Ci, µn)
have length `(Ci)

n (with potentially `(Ci) = +∞).
Moreover, all the µn-torsors of Ci can be “read” on the tempered group

πtemp
1 (Ci) since H1(Ci, µn) ' Hom(πtemp

1 (Ci), µn). From Corollary 5.4 it is
then possible, from πtemp

1 (Ci), to know whether `(Ci)
n > p

p−1 , and to find the
smallest integer j step by step, such that:

`(Ci)
nj+1 6

p

p− 1 <
`(Ci)
nj

, i.e. such that nj
p

p− 1 < `(Ci) 6 nj+1 p

p− 1 .
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But the tempered groups of these two annuli are isomorphic, so such a j will
be the same for C1 and C2. In particular, for any N ∈ N× prime to p:

N
p

p− 1 < `(C1) ⇐⇒ N
p

p− 1 < `(C2),

which leads to the conclusion. �
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