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CHARACTERISATION OF THE POLES OF THE `-MODULAR
ASAI L-FACTOR

by Robert Kurinczuk & Nadir Matringe

Abstract. — Let F/Fo be a quadratic extension of non-archimedean local fields of
odd residual characteristic, set G = GLn(F ), Go = GLn(Fo) and let ` be a prime
number different from the residual characteristic of F. For a complex cuspidal repre-
sentation π of G, the Asai L-factor LAs(X, π) has a pole at X = 1, if and only if π
is Go-distinguished. In this paper, we solve the problem of characterising the occur-
rence of a pole at X = 1 of LAs(X, π) when π is an `-modular cuspidal representation
of G; we show that LAs(X, π) has a pole at X = 1, if and only if π is a relatively
banal distinguished representation, namely π is Go-distinguished but not | det( )|Fo -
distinguished. This notion turns out to be an exact analogue for the symmetric space
G/Go of Mínguez and Sécherre’s notion of banal cuspidal F`-representation of Go.
Along the way, we compute the Asai L-factor of all cuspidal `-modular representations
of G in terms of type theory and prove new results concerning lifting and reduction
modulo ` of distinguished cuspidal representations. Finally, we determine when the
natural Go-period on the Whittaker model of a distinguished cuspidal representation
of G is non-zero.
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482 R. KURINCZUK & N. MATRINGE

Résumé (Caractérisation des pôles du facteur d’Asai `-modulaire). — Soit F/Fo une
extension quadratique de corps locaux non archimédiens de caractéristique résiduelle
impaire. Posons G = GLn(F ), Go = GLn(Fo) et soit ` un nombre premier différent
de la caractéristique résiduelle de F. Pour une représentation cuspidale complexe π
de G, le facteur L d’Asai LAs(X, π) admet un pôle en X = 1 si et seulement si π est
Go-distinguée. Dans cet article nous résolvons le problème de l’occurence d’un pôle
en X = 1 de LAs(X, π) quand π est une représentation cuspidale `-modulaire de G:
dans ce cas LAs(X, π) admet un pôle en X = 1 si et seulement si π est relativement
banale distinguée; autrement dit π est Go-distinguée mais pas |det( )|Fo -distinguée.
Cette notion est l’analogue pour l’espace symétrique G/Go de la notion de cuspidale
banale introduite par Mínguez et Sécherre pour les F`-représentations de Go. En cours
de route, on calcule le facteur L d’Asai des représentations cuspidales `-modulaires
de G par la théorie des types, et on prouve de nouveaux résultats concernant le relève-
ment et la réduction modulo ` des représentations cuspidales distinguées. Finalement,
on détermine quand la Go-période sur le modèle de Whittaker d’une représentation
cuspidale distinguée de G est non nulle.

1. Introduction

Let F/Fo be a quadratic extension of non-archimedean local fields of residual
characteristic p 6= 2 and set G = GLn(F) and Go = GLn(Fo). An irreducible
representation of G is said to be distinguished by Go, if it possesses a non-zero
Go-invariant linear form. In the case of complex representations, the equality
of the Asai L-factor defined by the Rankin–Selberg method and its Galois
avatar ([3], [21]) provides a bridge between functorial lifting from the quasi-split
unitary group Un(F/Fo) and Go-distinction of discrete series representations
of G; a discrete series of G is a (stable or unstable depending on the parity
of n) lift of a (necessarily discrete series) representation of Un(F/Fo), if and
only if the Asai L-factor of its Galois parameter has a pole at X = 1 ([25], [10]),
whereas it is Go-distinguished, if and only if its Asai L-factor obtained by the
Rankin–Selberg method has a pole at X = 1 ([14], [1]).

Recently, motivated by the study of congruences between automorphic rep-
resentations, there has been great interest in studying representations of G on
vector spaces over fields of positive characteristic `. There are two very differ-
ent cases: when ` = p and when ` 6= p. This article focuses on the latter ` 6= p
case, where there is a theory of Haar measure that allows us to define Asai
L-factors via the Rankin–Selberg method as in the complex case (Section 7).

The aim of this article is to show that in this case, a connection remains
between the poles of Asai L-factor and distinction; however, this connection no
longer characterises distinction, but a more subtle notion, which we call a rela-
tively banal distinction. The easiest way to state that a cuspidal distinguished
`-modular representation is relatively banal is to say that it is not |det( · )|Fo-
distinguished, where |det( · )|Fo is considered as an F`-valued character, but
other compact definitions can also be given in terms of type theory, as well as
in terms of its supercuspidal lifts:
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Proposition 1.1 (Definition 6.2, Theorem 6.11 and Corollary 6.3). — Let π
be an `-modular cuspidal distinguished representation of G. Then, the following
are equivalent, and when they are satisfied, we say that π is relatively banal:

(i) π is not |det( · )|Fo-distinguished.
(ii) All supercuspidal lifts of π are distinguished by an unramified character

of Go.
(iii) q

n/eo(π)
o 6≡ 1[`], where eo(π) denotes the invariant associated to π in
[4, Lemma 5.10] (see Section 5.2).

Relatively banal for Go-distinguished cuspidal representations turns out to
be the exact analogue of the definition of banal cuspidal representations of Go
(see [24, Remark 8.15] and [23]) after one identifies the cuspidal (irreducible)
representations of Go with the ∆(Go)-distinguished cuspidal (irreducible) rep-
resentations of Go ×Go, where ∆ : Go → Go ×Go is the diagonal embedding,
as we explain in Section 8.3.

The main theorem of this paper characterises the poles of the Asai L-factor:

Theorem 1.2 (Theorem 8.1). — Let π be a cuspidal `-modular representa-
tion, then LAs(X, π) has a pole at X = 1, if and only if π is relatively banal
distinguished.

Note that the proof of the above theorem is completely different from the
proof of characterisation theorem in the complex case (see Remark 8.2 for
more on the comparison of the proofs). Here, we show that the Asai L-factor
of a cuspidal `-modular representation is equal to 1 whenever π is not the
unramified twist of a relatively banal representation using Theorem 6.11, which
is the characterisation of relatively banal in terms of supercuspidal lifts. Then,
when π is the unramified twist of relatively banal representation, following our
paper [18], we get an explicit formula for LAs(X, π) in Theorem 7.8 from the test
vector computation of [4], which due to the relatively banal assumption (more
precisely its type theory version) reduces modulo ` without vanishing. We then
deduce Theorem 1.2 from this computation, together with the computation of
the group of unramified characters µ of Go, such that π is µ-distinguished
(Corollary 5.17).

Finally, denoting by N the unipotent radical of the group of upper triangu-
lar matrices in G, by Zo the centre of Go and by No the group N ∩ Go, the
most natural Go-invariant linear form to consider on the Whittaker model of
an `-modular cuspidal representation π with respect to a distinguished non-
degenerate character of N trivial on No is the local period

Lπ : W 7→
∫

ZoNo\Go

W(h)dh.

In fact, this period plays an essential role in the proof of Theorem 1.2 over the
field of complex numbers (see Remark 8.2). One of the main differences in the
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484 R. KURINCZUK & N. MATRINGE

`-modular setting is that Lπ can be zero even when π is distinguished. Not
only do we show that it can vanish but we say exactly when it vanishes:

Theorem 1.3 (Theorem 8.3). — Let π be a cuspidal distinguished `-modular
representation of GLn(F). Then, the local period Lπ is non-zero, if and only if
the following two properties are satisfied:

(i) π is relatively banal.
(ii) ` does not divide eo(π); in other words, if π̃ is a lift of π, the `-adic

valuation of n is the same as the `-adic valuation of the number of
`-adic unramified characters µ̃o of Go, such that π̃ is µ̃o-distinguished.

This theorem is related to the vanishing modulo ` of a rather interesting
and subtle scalar related, after fixing an isomorphism C ' Q`, to a quotient of
the formal degree of a complex cuspidal representation of a unitary group by
the formal degree of its base change to GLn(F), see Remark 8.4 for a precise
statement.

In light of Theorem 1.2, the role of the Asai L-factor in the study of distin-
guished representations will be less important in the `-modular setting, as some
`-modular distinguished representations have Asai L-factors equal to 1 in the
cuspidal case already, and new ideas will be required already for non-relatively
banal distinguished cuspidal representations. We will focus on the general case
of distinguished irreducible `-modular representations, restricting it to small
rank in the paper [19].

Finally, we mention that this paper relies heavily on the results from [4]
and [27] and can be seen as a natural continuation of the themes developed in
these two papers. In particular, our section on lifting distinction for cuspidal
representations of finite general linear groups uses the same techniques as [27],
and the statements that we obtain here were known to the author of [27].

2. Notation

Let F/Fo be a quadratic extension of non-archimedean local fields of odd
residual characteristic p. For any finite extension E/Fo, we let | |E be the
absolute value, valE the additive valuation, OE denote the ring of integers of E,
with maximal ideal PE, residue field kE, and put qE = #kE. We put | | = | |F,
val = valF, O = OF, P = PF, k = kF, q = qF, | |o = | |Fo , valo = valFo ,
Oo = OFo , Po = PFo , ko = kFo and qo = qFo .

We let ` denote a prime not equal to p. Set Q` to be an algebraic closure of
the `-adic numbers, Z` its ring of integers, and F` its residue field.

Let G be the F-points of a connected reductive group defined over F and G
be the k-points of a connected reductive group defined over k.

All representations considered are assumed to be smooth. We consider rep-
resentations of G and G and their subgroups on Q` and F`-vector spaces and
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the relations between them. We let R denote either Q` or F`, so that we can
make statements valid in both cases more briefly. By an R-representation we
mean a representation on an R-vector space.

An R-representation of G or G is called cuspidal, if it is irreducible and does
not appear as a quotient of any representation parabolically induced from an
irreducible representation of a proper Levi subgroup. It is called supercuspidal,
if it is irreducible and does not appear as a subquotient of any representa-
tion parabolically induced from an irreducible representation of a proper Levi
subgroup. Over Q` a representation of G or G is cuspidal, if and only if it is
supercuspidal; however, this is not the case over F`, see [28, III] and [16] for
examples of cuspidal non-supercuspidal representations.

3. Background on integral representations and distinction

Definition 3.1. — Let G be a locally profinite group and H be a closed
subgroup of G. Let π be an R-representation of G and χ : H → R× be a
character. We say that π is χ-distinguished, if HomH(π, χ) 6= 0. We say that π
is distinguished, if it is 1-distinguished where 1 denotes the trivial character
of H.

We will mainly consider cases where H is the group of fixed points Gσ =
{g ∈ G : σ(g) = g} of an involution σ. In this case, for any subset X ⊂ G, we
set Xσ = X ∩Gσ.

Definition 3.2. — We call a triple (G,H, σ) an F-symmetric pair when
(i) G = G(F) with G a connected reductive group defined over F, and σ

is an involution of G defined over F.
(ii) H is an open subgroup of the group Gσ.

Themain symmetric pair of interest in this note will be (GLn(F),GLn(Fo), σ),
where σ is the involution induced from the non-trivial element of Gal(F/Fo).
Two important basic results concerning this pair, which we shall use later, are
the following ([9], [26] for Q`-representations, extended to R-representations in
[27, Theorem 3.1]):

Proposition 3.3. — Let π be an irreducible R-representation of GLn(F), then
dim(HomGLn(Fo)(π,R)) 6 1.

Moreover, if this dimension is equal to 1, then π∨ ' πσ.

Let K be a locally profinite group. An irreducible Q`-representation π of K
is called integral, if it stabilises a Z`-lattice in its vector space. An integral
irreducible Q`-representation π that stabilises a lattice L induces an F`-repre-
sentation on the space L ⊗Z` F`. When K is either a profinite group or the
F -points of a connected reductive F-group, the semi-simplification r`(π) = of
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486 R. KURINCZUK & N. MATRINGE

L⊗Z` F` is independent of the choice of L and is called the reduction modulo `
of π ([28, 9.6] in the profinite setting, where all representations are automati-
cally defined over a finite extension of F`, or [30, Theorem 1] in the context of
reductive groups). Given an irreducible F`-representation π of K, we will call
any integral irreducible Q`-representation π of K that satisfies r`(π) = π a lift
of π.

We shall see later that the distinction of cuspidal representations of G does
not always lift, i.e. that an `-modular cuspidal distinguished representation
may have no distinguished lifts. However, we have the following general result,
which shows that distinction reduces modulo `:

Theorem 3.4. — Let (G,H, σ) be an F-symmetric pair. Let π be an integral
`-adic supercuspidal representation of G and let χ be an integral character of H.
Then, if π is χ-distinguished, the representation r`(π) is r`(χ)-distinguished.

Proof. — Note that χ coincides with the central character of π restricted to H,
which is also integral on ZG ∩H (where ZG is the centre of G), and, hence, we
extend it to a character still denoted χ to ZGH: χ(zh) = cπ(z)χ(h). Note that
HomH(π, χ) = HomZGH(π, χ). By [15, Proposition 8.1] for χ = 1, extended
to general χ in [8, Theorem 4.4], for L a non-zero element of HomH(π, χ), the
map

v 7→ (g 7→ L(π(g)v))

embeds π as a submodule of indG
ZGH(χ). Now, by [30, Proposition II.3],

indG
ZGH(χ,Z`) is an integral structure in indG

ZGH(χ), and, hence, its intersec-
tion πe with π is an integral structure of π by [28, 9.3] (note that Vignéras
works over a finite extension of F`, but her results apply here because both
π and χ, and, hence, both π and indG

ZGH(χ) have E-structures by [28, Sec-
tion 4]). So, πe ⊂ indG

ZGH(χ,Z`), but the map Λ : f 7→ f(1G) is an element of
HomH(indG

ZGH(χ,Z`), χ), which is non-zero on any submodule of indG
ZGH(χ,Z`),

in particular on πe. Up to multiplying Λ by an appropriate non-zero scalar
in Q`, we can suppose that Λ(πe) = Z`, and Λ induces a non-zero element
of HomH(πe ⊗ F`, r`(χ)). The result follows. �

Remark 3.5. — If K′ is a closed subgroup of a profinite group K, (smooth)
finite dimensional Q`-representations of K are always integral and the image of
a lattice by a non-zero linear form on such a representation is obviously a lattice
of Q`, so the reduction modulo ` of a (K′, χ)-distinguished finite-dimensional
Q`-representation of K is (K′, r`(χ))-distinguished.

Remark 3.6. — The following observation sheds more light on Theorem 3.4
when G = GLn(F). Let π be an integral supercuspidal Q`-representation
of GLn(F), then its reduction modulo ` is (irreducible and) cuspidal, by [28,
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III 4.25]. This, however, is not true in general, see [16] for an example of an
integral supercuspidal Q`-representation whose reduction modulo ` is reducible.

Let K be a locally profinite group and K′ a closed subgroup. While, in
general, it appears to be a subtle question to ascertain when the distinction of
F`-representations of K lifts, there is, however, one elementary case where it
does: when the subgroup for which we want to study distinction K′ is profinite
of pro-order prime to `. In this case, an `-modular finite dimensional (smooth)
representation of K′ is semi-simple, and reduction modulo ` defines a bijection
between the set of isomorphism classes of integral irreducible Q`-representa-
tions of K′ and the set of isomorphism classes irreducible F`-representations
of K′, and we have:

Lemma 3.7. — Let K be a locally profinite group and K′ be a compact subgroup
of K. Suppose that the pro-order of K′ is prime to `. Let ρ be an finite-
dimensional integral Q`-representation of K and χ be a character of K′. Then,
ρ is χ-distinguished, if and only if r`(ρ) is r`(χ)-distinguished.

Remark 3.8. — If K is compact modulo centre, an irreducible Q`-representa-
tion of K is always finite-dimensional and is integral, if and only if its central
character is integral.

4. Distinction for finite GLn
For the rest of this section, we set G = GLn(k), where (as before) k denotes

a finite field of odd cardinality q. If k/ko is a quadratic extension of ko, we
denote by σ the non-trivial element of Gal(k/ko) and set Go = GLn(ko).

We recall the definitions of self-dual and σ-self-dual representations of G:

Definition 4.1. — (i) Suppose k/ko is a quadratic extension of finite
fields, then a representation ρ of G, over Q` or F`, is called σ-self-dual,
if ρσ ' ρ∨.

(ii) A representation ρ of G, over Q` or F`, is called self-dual if ρ ' ρ∨.

4.1. Basic results on distinction. — The following multiplicity one results are
[27, Remark 3.2 with the adhoc modification in the proof of Theorem 3.1,
Proposition 6.10 and Remark 6.11]:

Proposition 4.2. — Let ρ be an irreducible R-representation of G:
(i) If k/ko is a quadratic extension of finite fields, then or any character χ

of Go, dim(HomGo(ρ, χ)) ≤ 1.
(ii) If ρ is cuspidal, and r and s are two non-negative integers such that

r + s = n ≥ 2. Then, dim(Hom(GLr ×GLs)(k)(ρ, χ)) ≤ 1 for any
character χ of GLr ×GLs, and this dimension is equal to zero if r
and s are positive, and r 6= s.
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The final goal of this section is to understand when a cuspidal F`-represen-
tation of a finite general linear group that is distinguished by a maximal Levi
subgroup or by a Galois involution has a lift that does not share the same
distinction property.

The connection between (σ)-self-dual representations and distinction comes
from:

Lemma 4.3. — (i) A GLn(ko)-distinguished irreducible R-representation
of GLn(k) is σ-self-dual. Moreover, if ρ is supercuspidal, we have an
equivalence: ρ is σ self-dual, if and only if it is GLn(ko)-distinguished.

(ii) A supercuspidal representation of GLn(k) is self-dual, if and only if
either n = 1, and it a quadratic character, or if n is even, and it is
(GLn/2×GLn/2)(k)-distinguished.

Proof. — The first assertion of (i) follows from [27, Remark 3.2] and the second
from [27, Lemma 8.3]. The second assertion follows from [27, Lemmas 7.1 and
7.3]. �

4.2. Self-dual and σ-self-dual cuspidal representations via the Green–Dipper–
James parametrisation. — In this subsection, either k is an arbitrary finite
field, and we consider self-dual representations of GLn(k), or k/ko is quadratic,
and we consider σ-self-dual representations of GLn(k) where 〈σ〉 = Gal(k/ko).

Let l/k be a degree n extension of k. A character θ : l× → Q`
× is called

k-regular, if #{θτ : τ ∈ Gal(l/k)} = n, i.e. the orbit of θ under Gal(l/k) has
maximal size. According to [11], there is a surjective map

{k-regular characters of l× → Q`
×}

→ {supercuspidal Q`-representations of G}/'
θ 7→ ρ(θ).

The character formula given in [11] also implies:
(i) Two such cuspidal representations ρ(θ) and ρ(θ′) are isomorphic, if

and only if there exists τ ∈ Gal(l/k) such that θ′ = θτ .
(ii) The dual ρ(θ)∨ is isomorphic to ρ(θ−1).

(iii) If k/k′ is a finite extension and τ ∈ Gal(l/k′), we have ρ(θτ ) ' ρ(θ)τ .
The following is well known, and a similar proof to ours can be found in [27,

Lemmas 7.1 & 8.1]. In the greater generality of supercuspidal R-representa-
tions, we provide a proof as a warm-up:

Lemma 4.4. — (i) If there exists a σ-self-dual supercuspidal Q`-represen-
tation of G, then n is odd.

(ii) If there exists a self-dual supercuspidal Q`-representation of G, then n
is either 1 or even.
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Proof. — (i) Suppose that ρ is a σ-self-dual cuspidal Q`-representation
and write ρ = ρ(θ) for a k-regular character θ. Choose an extension
of σ to σ̃ ∈ Gal(l/ko). Then, as ρ(θ−1) ' ρ(θ)∨ ' ρ(θ)σ, necessar-
ily θσ̃ = (θ−1)τ , for some τ ∈ Gal(l/k). Hence, (τ−1 ◦ σ̃)2 fixes θ, so it
is 1, as θ is regular. This implies that τ−1 ◦ σ̃ is a ko-linear involution
of l, which extends σ. However, the cyclic group Gal(l/ko) contains
a unique element of order 2. If n were even, τ−1 ◦ σ̃ would belong
to Gal(l/k), and this is absurd, as it extends σ, which is not k-linear.

(ii) Suppose that ρ is a self-dual cuspidal Q`-representation and write ρ =
ρ(θ) for a k-regular character θ. In this case, reasoning as before,
necessarily θ = τ(θ−1), for some τ ∈ Gal(l/k), and it follows that τ2 =
1. Either τ = 1, hence, θ2 = 1, but there is a unique non-trivial
quadratic character of l×, which is, thus, fixed by all τ ∈ Gal(l/k),
and the trivial character of l× is also Gal(l/k)-invariant, so we deduce
that n = 1, as θ is regular. Or τ has order 2, and, hence, n =
# Gal(l/k) is even. �

We now recall the classification of cuspidal F`-representations of James [13].
We have a surjective map

{supercuspidal Q`-representations of G}/'
→ {cuspidal F`-representations of G}/'

ρ(θ) 7→ ρ(θ)
given by reduction modulo `.

Given a character θ : l× → Q`
× we can uniquely write θ = θrθs with θr of

order prime to ` and θs of order a power of `. James’ parametrisation enjoys
the following properties:

(i) Two supercuspidal Q`-representations ρ(θ), ρ(θ′) have isomorphic re-
ductions modulo `, if and only if there exists τ ∈ Gal(l/k), such
that θ′r = θτr .

(ii) ρ(θ) is supercuspidal, if and only if θr is regular.

4.3. σ-self-dual lifts of cuspidal F`-representations. — We now specialise to
the case k/ko is quadratic. Write Γ = Hom(l×,Q`

×), then Γ = Γs × Γr,
where Γs consists of the characters of `-power order, and Γr consists of the
characters with order prime to `.

We study σ-self-dual lifts of cuspidal F`-representations, and when n is
even, there are no σ-self-dual supercuspidal Q`-representations by Lemma 4.4.
Hence, without loss of generality, we can assume that n is odd. Moreover, as
reduction modulo ` commutes with taking contragredients and with the action
of σ, this implies that when the cuspidal representation ρ of G is not σ-self-dual,
it has no σ-self-dual lifts.
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For γ ∈ Γ, we set Gal(l/k)γ = {τ ∈ Gal(l/k) : γτ = γ}. Letting θ ∈ Γ we
can decompose θ = θrθs and we have Gal(l/k)θ = Gal(l/k)θr ∩ Gal(l/k)θs . In
particular, θ is regular, if and only if Gal(l/k)θr ∩Gal(l/k)θs = {1}.

Let lo be the unique subextension of l/ko of degree n as an extension of ko

and put Γo = Hom(l×o ,Q`
×). We have an embedding

i : Γo ↪→ Γ, i : γ 7→ γ ◦Nl/lo ,

by surjectivity of the norm. Hence, Γ+ = i(Γo) is a unique subgroup of the
cyclic group Γ of order qno − 1. Write σ̃ for the unique involution in Gal(l/ko),
which extends σ (as n is odd). By Hilbert’s theorem 90, we have

Γ+ = {γ ∈ Γ : γσ̃ = γ}.

On the other hand, the unique subgroup of the cyclic group Γ of order qno + 1
is

Γ− = {γ ∈ Γ : γ ◦Nl/lo = 1} = {γ ∈ Γ : γσ̃ = γ−1},

as the norm map is surjective. Note that (qno + 1, qno − 1) = 2 because q is
odd, so Γ+∩Γ− = {1, η}, where η denotes the unique quadratic character in Γ.
Moreover, if ` is odd:

(i) If ` | qno − 1, then Γs ⊆ Γ+.
(ii) If ` | qno + 1, then Γs ⊆ Γ−.

Before giving the full solution of the lifting σ-self-duality for `-modular cusp-
idal representations, we characterise `-modular cuspidal σ-self-duality in terms
of the Dipper and James parametrisation.

Proposition 4.5. — Let ρ be a cuspidal representation of G and suppose that n
and ` are odd, then ρ is σ-self-dual, if and only if θσ̃r = θ−1

r .

Proof. — Write ρ = ρ(θ) for a k-regular character θ and let σ̃ ∈ Gal(l/ko) be
the unique involution extending σ. One implication is obvious; for the other,
we thus suppose that ρ(θ) is σ-self-dual. Then, there exists τ ∈ Gal(l/k), such
that θσ̃τr = θ−1

r . This implies that τ2 = (σ̃τ)2 belongs to Gal(l/k)θr . On the
other hand, the order of τ is odd because n is, and, hence, τ also belongs
to Gal(l/k)θr , so θσ̃r = θ−1

r . �

We have the following complete result when ` is odd.

Proposition 4.6. — Assume that n and ` are odd. Let ρ be a σ-self-dual
cuspidal F`-representation of G.

(i) Suppose that ` is prime with qn − 1. Then, the unique supercuspidal
lift of ρ is σ-self-dual.
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(ii) Suppose that ` | qno − 1.
(a) If ρ is supercuspidal, and `a is the highest power of ` divid-

ing qn − 1, then there is a unique σ-self-dual supercuspidal lift
amongst the `a supercuspidal lifts of ρ. In terms, of Green’s pa-
rameterisation of supercuspidal Q`-representations, if ρ(θ) is a
lift of ρ, then ρ(θr) is the unique σ-self-dual supercuspidal lift
of ρ.

(b) If ρ is cuspidal non-supercuspidal, then none of its supercuspidal
lifts are σ-self-dual.

(iii) Suppose that ` | qno +1. Then all supercuspidal lifts of ρ are σ-self-dual.

Proof. — Write ρ = ρ(θ) for a k-regular character θ of l× and let σ̃ ∈ Gal(l/ko)
be the unique involution extending σ.

The set of isomorphism classes of supercuspidal Q`-representations lifting ρ
is then

{ρ(θrµ) : µ ∈ Γs, θrµ k-regular}/ ' .

Such a representation ρ(θrµ) is σ-self-dual, if and only if there exists τ ∈
Gal(l/k), such that (θrµ)σ̃ = (θ−1

r µ−1)τ . As θrµ is regular, this condition
implies that τ2 = (σ̃τ)2 is the identity, so that τ = Id as n is odd. So, ρ(θrµ)
is σ-self-dual, if and only if θσ̃r = θ−1

r and µσ̃ = µ−1, and the set of σ-self-dual
lifts of ρ is equal to

{ρ(θrµ) : µ ∈ Γs ∩ Γ−, θrµ k-regular}/ '

because the condition θσ̃r = θ−1
r is always satisfied due to Proposition 4.5. In

particular, when θr is regular, then all θrµ must be regular as well, and the
cardinality of the set of σ-self-dual lifts of ρ is that of Γs, namely, the highest
power of ` dividing qn − 1.

In particular, if ` is prime to qn − 1, then Γs is trivial, and this proves (i).
If ` | qno −1. Then Γs ⊆ Γ+, and Γs∩Γ− = Γs∩Γ−∩Γ+ = {1} because Γ+∩

Γ− = {1, η} and η /∈ Γs. Hence, if ρ is supercuspidal, i.e. if θr is regular,
then ρ(θr) is the unique σ-self-dual supercuspidal lift of ρ, whereas if ρ is
cuspidal non-supercuspidal, then it has no σ-self-dual supercuspidal lift, and
we have shown (ii).

Finally, suppose that ` | qno + 1, then Γs ⊆ Γ−, so all supercuspidal lifts of ρ
are σ-self-dual, and we have shown (iii). �

In the case ` = 2, we have:

Proposition 4.7. — Assume that n is odd and ` = 2. Let ρ be a σ-self-dual
cuspidal F`-representation of G, then it has a non-σ-self-dual lift.

Proof. — Write ρ = ρ(θ) for a regular character θ and let σ̃ ∈ Gal(l/ko) be the
unique involution extending σ.
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First note that qn − 1 = (qno − 1)(qno + 1), so the highest power of 2 di-
viding qn − 1, which is the order of Γs, does not divide qno + 1, as 2 also
divides qno − 1. In particular, Γs is not a subgroup of Γ−, so if µ0 is a gen-
erator of Γs, then σ̃(µ0) 6= µ−1

0 . Now we claim that ρ(θrµ0) is a non-σ-self-
dual lift of ρ(θ). First, it is supercuspidal; indeed, Gal(l/k)µ0 ⊂ Gal(l/k)θs
because θs is a power of µ0, and, hence, Gal(l/k)θr ∩ Gal(l/k)µ0 is trivial be-
cause Gal(l/k)θr ∩ Gal(l/k)θs is trivial. Moreover, suppose that ρ(θrµ0) was
σ-self-dual, then following the beginning of the proof of Proposition 4.6, this
would imply that both θr and µ0 belong to Γ−, which is absurd. �

4.4. Self-dual lifts of self-dual cuspidal F`-representations. — If there exists
a self-dual supercuspidal Q`-representation of G, then n is 1 or even by
Lemma 4.4. The case n = 1 is straightforward; a character is self-dual, if
and only if it is quadratic, and we treat it separately:

Proposition 4.8. — Suppose that n = 1. Then 1, η are the unique self-
dual supercuspidal Q`-representations of GL1(k). The reductions 1, η of 1, η,
respectively, are the unique self-dual cuspidal F`-representations of GL1(k).

(i) Suppose that ` - q− 1. Then 1, η have 1, η, respectively, as unique lift.
(ii) Suppose that ` | q−1 and let `a be the highest power of ` dividing q−1.

Then 1, η each have `a-supercuspidal lifts of which 1, η (respectively)
is the unique self-dual supercuspidal lift.

Note that case (ii) contains the case ` = 2, in which case 1 = η. So, in
particular in case (ii), non-trivial lifts of the trivial character of κ× always
exist.

Hence, for the rest of this section, we assume that n is even. Let σ′ denote
the unique involution in Gal(l/k) and l′o = lσ′ denote the σ′-fixed subfield.
Then we have an embedding

i′ : Hom(Gal(l′o/k),Q`
×) ↪→ Γ, i′ : γ 7→ γ ◦Nl/l′o ,

by surjectivity of the norm, so its image is the unique subgroup of Γ of or-
der qn/2 − 1:

Γ+ = {γ ∈ Γ : γσ
′

= γ}.

The unique subgroup of Γ of order qn/2 + 1 is, thus,

Γ− = {γ ∈ Γ : γσ
′

= γ−1},

their intersection is given by Γ+∩Γ− = {1, η}, as q is odd. As (qn/2 +1, qn/2−
1) = 2, we deduce that, if ` is odd:

(i) If ` | qn/2 − 1, then Γs ⊆ Γ+.
(ii) If ` | qn/2 + 1, then Γs ⊆ Γ−.
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The results concerning self-duality look very similar to those concerning σ-
self-duality; however, in one case, we only consider lifting of distinction.

Proposition 4.9. — Suppose that n = 2m > 2 is even and that ` is odd. Let ρ
be a self-dual cuspidal F`-representation of G.

(i) Suppose that ` is prime with qn − 1. Then the unique supercuspidal
lift of ρ is self-dual.

(ii) Suppose that ` | qn/2 − 1.
(a) If ρ is supercuspidal, and `a is the highest power of ` divid-

ing qn−1, then there is a unique self-dual lift of ρ amongst its `a
supercuspidal lifts. In terms of Green’s parameterisation of su-
percuspidal Q`-representations, if ρ(θ) is a lift of ρ, then ρ(θr) is
the unique self-dual supercuspidal lift of ρ.

(b) If ρ is cuspidal non-supercuspidal, then none of its supercuspidal
lifts are self-dual.

(iii) Suppose that ` | qn/2 +1 and that ρ is GLm(k)×GLm(k)-distinguished.
Then all supercuspidal lifts of ρ are self-dual.

Proof. — A lift ρ(θrµ) with µ ∈ Γs is self-dual, if and only if there exists τ ∈
Gal(l/k), such that θrµ = (θ−1

r µ−1)τ , and, hence, τ2 = Id, i.e. τ = Id or σ′. The
first case is impossible, as it would imply that θrµ is the quadratic character
in Γ, which would contradict its regularity. Hence, ρ(θrµ) is self-dual, if and
only if θσ′r = θ−1

r and µσ′ = µ−1. Thus, if θσ′r = θ−1
r , then the set

{ρ(θrµ) : µ ∈ Γs ∩ Γ−, θrµ regular}/ '

is a full set of representatives for the isomorphism classes of self-dual lifts of ρ
(and there are no self-dual lifts if θσ′r 6= θ−1

r ).
For parts (i) and (ii)(a), as θr is regular, the self-duality of ρ implies that

θσ
′

r = θ−1
r . Hence, parts (i) and (ii)(a) follow in the same way as their analogues

in Proposition 4.6. Part (ii)(b) is obvious, as Γs ∩ Γ− is trivial in this case.
Finally, (iii) holds, because in this case, distinction lifts by Lemma 3.7. �

When ` = 2, we have the exact analogue of Proposition 4.7 with the same
proof, replacing qno by qn/2.

Proposition 4.10. — Assume that n > 2 is even and ` = 2. Let ρ be a
self-dual cuspidal F`-representation of G, then it has a non-self-dual lift.

5. Type theory and distinction

From now on we set G = GLn(F), Go = GLn(Fo) and σ, the Galois invo-
lution. We use the Bushnell–Kutzko construction of cuspidal representations
of G [7], extended by Vignéras to the setting of cuspidal R-representations [28,
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§III]. We summarise the properties that we will use and refer the reader to [7]
and [28], for more details on this construction.

5.1. Properties of types. — Let π be a cuspidal R-representation of G. Then,
associated to it is a family of explicitly constructed pairs (J,λ), called extended
maximal simple types, where J is an open subgroup of G containing the centre
ZG of G with J/ZG compact, and λ is an irreducible (hence, finite-dimensional)
representation of J, such that

π ' indG
J (λ).

We abbreviate extended maximal simple type to type for the rest of the paper
and will say R-type when we wish to specify the field R considered.

Let (J,λ) be an R-type in π, i.e. associated to π as described above. Types
enjoy the following key properties:
(T-1) Two types in π are conjugate in G, [7, 6.2.4] and [28, III 5.3]
(T-2) The group J has a unique maximal compact subgroup J, and J has a

unique maximal normal pro-p-subgroup J1, cf. [7, §3.1] for the definitions
of these groups.

(T-3) There is a subfield E of Mn(F) containing F, the multiplicative group
of which normalises J, and J = E×J. (In fact, we have summarised this
construction in reverse; the extension E/F is part of the original data
used to construct the type.) The quotient J/J1 is isomorphic to GLm(kE)
with m = n/[E : F]. Moreover, E× ∩ J = O×E , hence J = 〈$E〉J is the
semi-direct product of J with the group generated by $E.

(T-4) Let (J,λ) be a type, let λ′ be a representation of J, set π = indG
J (λ) and

π′ = indG
J (λ′). If λ′ |J' λ |J, then (J,λ′) is a type, and the cuspidal

representation π′ is an unramified twist of π. Conversely, if (J,λ′) is a
type, and the cuspidal representation π′ is an unramified twist of π, then
λ′ |J' λ |J.

(T-5) The representation λ (by construction) decomposes (non-uniquely) as a
tensor product κ⊗ τ , where:
• τ is a representation of J trivial on J1, which restricts irreducibly
to J, and the representation of J/J1 induced by τ identifies with a
cuspidal representation of GLm(kE).
• κ is a representation of J, which restricts irreducibly to J1.

(T-6) The representation π is supercuspidal, if and only if τ induces a super-
cuspidal restriction on J/J1, [28, III 5.14].

(T-7) The pair (J,κ⊗ τ ′) is another type in π, if and only if τ ' τ ′.
(T-8) When R = Q`, the representation π is integral, if and only if λ is integral.
(T-9) The construction is compatible with reduction modulo ` in the following

sense: given a Q`-type (J,λ) with λ integral, (J, r`(λ)) is an F`-type,
and r`(indG

J (λ)) = indG
J (r`(λ)) is a cuspidal F`-representation, [28, III

4.25].

tome 148 – 2020 – no 3



POLES OF THE `-MODULAR ASAI L-FACTOR 495

(T-10) The construction lifts [28, III 4.29]: given an F`-type (J,κ⊗ τ ), there is
a unique irreducible Q`-representation η̃ of J1, which lifts κ |J1 , and we
can fix a extension κ̃ of η̃ with r`(κ̃) = κ. As all of the extensions of η̃
to J are related by twisting by a character trivial on J1, Property (T-7)
implies that the set of isomorphism classes of lifts of π = indG

J (κ ⊗ τ )
is in bijection with the set of isomorphism classes of lifts of τ by τ̃ 7→
indG

J (κ̃⊗ τ̃ ).
(T-11) We call a field extension E/F associated to a type in π as in (T- 3)

a parameter field for π. While there are potentially many choices, the
ramification index e(E/F), inertial degree f(E/F), and (hence) the de-
gree [E : F] are invariants of π as follows from [7, 3.5.1]. As such, we
write d(π) = [E : F], e(π) = e(E/F) and f(π) = f(E/F). We write m(π)
for n/d(π). These invariants are compatible with reduction modulo `;
for π an integral cuspidal Q`-representation we have

d(π) = d(r`(π)), e(π) = e(r`(π)), f(π) = f(r`(π)), m(π) = m(r`(π)).

5.2. Galois-self-dual types. — It was recently shown in [4] and [27] that the
construction of types also enjoys good compatibility properties with σ-self-
duality and distinction. Indeed, according to [4, §4], if π is a cuspidal R-repre-
sentation of G which is σ-self-dual, then one can chose a type (J,λ) in π such
that:

(SSDT-I) J (hence, J and J1) and E are σ-stable, and λ∨ ' λσ.
(SSDT-II) Set Eo = Eσ, then E/Eo is a quadratic extension, and we can

choose a uniformiser $E with σ($E) = $E, if E/Eo is unramified,
and σ($E) = −$E , if E/Eo is ramified as in [27, (5.2)].

(SSDT-III) κ, hence, τ , are σ-self-dual ([27, Lemma 8.9]).
The ramification index e(E/Eo) ∈ {1, 2} (and is equal to 1 if F/Fo is unram-

ified) is an invariant of π, and we write

eσ(π) = e(E/Eo).

Remark 5.1. — This latter invariant is also equal to the ramification index
of the extension T/Tσ, where T is the maximal tamely ramified extension of F
contained in E due to [27, Remark 4.15 (2)]. We use this fact when referring
to some results of [27].

In [4, §6.2], another invariant, a positive integer eo(π) dividing n defined
only in terms of the σ-stable group J, is associated to π. By [4, Lemma 5.10],
we have the following description:

eo(π) =
{

2e(Eo/Fo) if eσ(π) = 2 and m(π) 6= 1;
e(Eo/Fo) otherwise.
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Again, these invariants are compatible with reduction modulo `; for π an
integral σ-self-dual supercuspidal Q`-representation we have

eσ(π) = eσ(r`(π)), eo(π) = eo(r`(π)).

Definition 5.2. — We call a type λ = κ⊗ τ satisfying Conditions (SSDT-I)
to (SSDT-III) a σ-self-dual type.

Note that an immediate consequence of the existence of a σ-self-dual cuspidal
type in a σ-self-dual cuspidal representation is that in some cases, there are
no σ-self-dual cuspidal representations, as follows from [27, Lemma 6.9 and
Lemma 8.1]:

Lemma 5.3. — Let π be a σ-self-dual cuspidal R-representation.
(i) If eσ(π) = 1 and π is supercuspidal, then m(π) is odd.
(ii) If eσ(π) = 2, then m(π) is either equal to 1 or even.

A crucial property of σ-self-dual types is the following:

Proposition 5.4 ([27, Lemma 5.19]). — Let (J,λ) be a σ-self-dual type. Then
there exists a unique character χκ of Jσ trivial on (J1)σ, such that

Hom(J1)σ (κ,R) = HomJσ (κ, χκ),

and the canonical map

HomJσ (κ, χκ)⊗HomJσ (τ , χ−1
κ )→ HomJσ (λ,R)

is an isomorphism.

In many cases, it is shown in [27] that one can choose χκ = 1 above, including
the supercuspidal case:

Proposition 5.5. — Let π be a σ-self-dual supercuspidal R-representation and
(J,λ) be a σ-self-dual type of π, then one can choose κ such that χκ = 1.

Proof. — The only cases to consider are those that are not ruled out by Lemma
5.3, and the assertion then follows from [27, Propositions 6.15 and 8.10]. �

Remark 5.6. — Note that if R = Q` above, then π is an integral, and
(J, r`(τ )) is a σ-self-dual type for r`(π). Moreover, χr`(κ) = 1 if χκ = 1.
Indeed, dues to Remark 3.5 applied to (J/F×o ,κ), the representation r`(κ) is
distinguished, and, hence, χr`(κ) = 1 by the first part of Proposition 5.4.

5.3. Generic types and distinguished types. — There are, in general, more than
one Go-conjugacy class of σ-self-dual types in a σ-self-dual cuspidal R-repre-
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sentation (see [27, Section 1.11]). However, there is only one Go-conjugacy
class among those that contain a generic type in the following sense.

We denote by N be the maximal unipotent subgroup of the subgroup of upper
triangular matrices in G, and No = Nσ. Let ψ a non-degenerate character of
N. Note that such a character is always integral with non-degenerate reduction
modulo `, as N is exhausted by its pro-p-subgroups.

Definition 5.7. — Let (J,λ) be an R-type; we say that (J,λ) is a ψ-generic
type, if

HomN∩J(λ, ψ) 6= {0}.

We say that it is generic, if it is ψ-generic for some non-degenerate character
of N.

Remark 5.8. — Note that if µ is a character of G, and (J,λ) is a ψ-generic
type, then (J, µ |J ⊗λ) is also ψ-generic.

We will also use the following observation later.

Lemma 5.9. — A (J,λ) is an integral Q`-type, and ψ be a non-degenerate
character of N. If (r`(J), r`(λ)) is r`(ψ)-generic, then (J,λ) is ψ-generic.

Proof. — It is a consequence of Lemma 3.7, once one observes that J ∩N is a
(compact) pro-p group. �

If the type we consider is, moreover, σ-self-dual, we will only consider dis-
tinguished non-degenerate characters ψ of N, i.e. those that are trivial on No:

Definition 5.10. — A σ-self-dual R-type is called generic, if it is ψ-generic
with respect to a distinguished non-degenerate character ψ of N.

Our definition of a generic σ-self-dual type coincides with the definition given
in [27, Definition 9.1] (see the discussion after [4, Definition 5.7]). There are
two fundamental facts about these types: first, they always occur in σ-self-dual
cuspidal representations.

Proposition 5.11 ([4, Proposition 5.5]). — Let π be a σ-self-dual cuspidal
R-representation of G and let ψ be a distinguished non-degenerate character of
N; then π has a ψ-generic σ-self-dual type, which is, moreover, unique up to
No-conjugacy.

The second fact concerns distinguished representations, which are σ-self-dual
due to Proposition 3.3.

Theorem 5.12 ([4, Corollary 6.6], [27, Theorem 9.3]). — Let π be a σ-self-dual
cuspidal R-representation and (J,λ) a generic σ-self-dual type of π. Then π is
distinguished, if and only if λ is Jσ-distinguished.
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Definition 5.13. — We call a σ-self-dual type (J,λ) a distinguished type if λ
is Jσ-distinguished.

We have the following surprising result, which completes Theorem 5.12 and is
evidence of the interplay between genericity and Galois distinction for GLn(F):

Lemma 5.14. — A distinguished R-type is automatically σ-self-dual generic.

Proof. — Take a σ-self-dual type (J,λ) such that λ is Jσ-distinguished. Then,
indG

J (λ) is distinguished by Mackey theory and Frobenius reciprocity. However,
then by [4, Remark 6.7] (and the equivalence of our definition of generic type
with that given in [27, Defintion 9.1]), the type (J,λ) must be ψ-generic for
some distinguished non-degenerate character ψ of N. �

We end this section with the following important corollary of Proposition 5.4:

Corollary 5.15. — A σ-self-dual type (J,λ) is a distinguished type, if and
only if HomJσ (κ, χκ) and HomJσ (τ , χ−1

κ ) are non-zero, in which case both are
one-dimensional.

5.4. The relative torsion group of a distinguished representation. — For the
rest of this section, we fix π a distinguished cuspidal R-representation and
(J,λ) a distinguished type in π. We set $Eo = $2

E, if E/Eo is ramified,
and $Eo = $E, if E/Eo is unramified. When eσ(π) = 2, and m(π) = 2r is
even, we denote by w the element of J corresponding to

( 0 1r
1r 0

)
as in [27,

Lemma 6.19]. We define the relative torsion group of π to be the following
group:

Xo(π) = {µo ∈ Hom(Go,R×) : µo is unramified, HomGo(π, µo) 6= {0}}.

Theorem 5.16. — Let π be a cuspidal distinguished R-representation of G and
set $′ = $Ew, if eσ(π) = 2, and m(π) is even and $′ = $Eo otherwise. Then
we have:

(i) Let µo be an unramified character of Go, then µo ∈ Xo(π), if and only
if µo($′) = 1.

(ii) Let χo be an unramified character of F×o , then χo ◦det ∈ Xo(π), if and
only if χo($o)n/eo(π) = 1.

Proof. — Note that if eσ(π) = 2, thenm(π) is even or equal to 1 due to Lemma
5.3. Then, Jσ is generated by $′ and Jσ, due to [27, Lemmas 6.18, 6.19 and
8.7]. Let µo be an unramified character of Go and denote by µ an unramified
extension of it to G; hence, µo ∈ Xo(π), if and only if µ ⊗ π is distinguished.
Suppose that µ⊗π is distinguished, then (J,κ⊗ (µ⊗ τ )) is a σ-self-dual type,
which is, in fact, a distinguished type due to Remark 5.8 and Theorem 5.12, and
conversely, if (J,κ⊗(µ⊗τ )) is a distinguished type, then µ⊗π is distinguished.
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So, µo ∈ Xo(π), if and only if (J,κ⊗ (µ⊗ τ )) is a distinguished type, which is,
if and only if HomJσ (µ⊗ τ , χ−1

κ ) has dimension 1 according to Corollary 5.15.
However, HomJσ (τ , χ−1

κ ) has dimension 1 by the same corollary, but
HomJσ (τ , χ−1

κ ) is already at most one-dimensional due to Proposition 4.2, so
from these multiplicity one statements, we deduce that µo ∈ Xo(π), if and only
if HomJσ (µ⊗τ , χ−1

κ ) = HomJσ (τ , χ−1
κ ). Finally, this translates as: µo ∈ Xo(π),

if and only if µ($′) = 1 and proves (i).
Now, let χo be an unramified character of F×o and let χ be an unramified

character of F× extending it. If eσ(π) = 2, then F/Fo is ramified according to
[27, Lemma 4.14].

Suppose that eσ(π) = 2 and m(π) is even; we have:

χo(det(w′)) = χ(det($E)) = χ(NE/F($E))m(π) = χ($)f(E/F )m(π)

= χ($)n/e(E/F) = χ($)ne(F/Fo)/eσ(π)e(Eo/Fo)

= χ($)n/e(Eo/Fo) = χ($o)n/2e(Eo/Fo) = χ($o)n/eo(π)

due to [4, Lemma 5.10]. Otherwise, we have:

χo(det(w′)) = χo(NE/F($Eo))m(π) = χo(NEo/Fo($Eo))m(π)

= χo($o)f(Eo/Fo)m(π) = χo($o)n/e(Eo/Fo) = χ($o)n/eo(π)

due to [4, Lemma 5.10] again. �

It has the following two corollaries.

Corollary 5.17. — Let π be a distinguished cuspidal R-representation of G.
Write n/eo(π) = a(π)`r with a(π) prime to `. Then, Xo(π) is a cyclic group,
of order n/eo(π), if R = Q`, and of order a(π), if R = F`.

Corollary 5.18. — Let π be a distinguished cuspidal (hence, integral) Q`-
representation of G. Then, the homomorphism

r` : µo 7→ r`(µo)

is surjective from Xo(π) to Xo(r`(π)), and its kernel is the `-singular part of
Xo(π).

Proof. — It suffices to verify the assertion on the kernel. It is clear that the
`-singular part of Xo(π) belongs to the kernel of r`. Conversely, if r`(µo) = 1,
write µo = (µo)r(µo)s with (µo)r of order prime to ` and (µo)s of order a power
of `, then r`((µo)r) = r`(µo) = 1 so (µo)r = 1 because r` induces a bijection
between the group of roots of unity of order prime to ` in Q`

× and the group
of roots of unity in F`

×. �

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



500 R. KURINCZUK & N. MATRINGE

6. Relatively banal cuspidal representations of p-adic GLn
In [24] and [23], Mínguez and Sécherre single out a class of irreducible repre-

sentations called banal, for which the Zelevinski classification works particularly
nicely. For cuspidal representations, the following definition can be given ([24,
Remarque 8.15] and [24, Lemme 5.3]).

Definition 6.1. — A cuspidal F`-representation π is called banal, if qn/e(π) 6≡
1[`].

The following definition is new and is motivated by our cuspidal L-factor
computation later and an analogy with banal cuspidal representations and the
Rankin–Selberg computation of [18]. We show in Section 8.3 how it is a natural
analogue of banal for the symmetric pair (G,Go, σ).

Definition 6.2. — Let π be a distinguished cuspidal F`-representation. We
say that it is relatively banal, if qn/eo(π)

o 6≡ 1[`].

Theorem 5.16 (ii) has the following third consequence:

Corollary 6.3 (of Theorem 5.16). — Let π be a distinguished cuspidal F`-rep-
resentation, it is relatively banal, if and only if it is not |det( · )|o-distinguished.

Before stating the next lemma, we make the following observation, which
shows that the statement of the lemma in question (Lemma 6.6) is, indeed,
complete.

Remark 6.4. — For any character χ of Go, there are no χ-distinguished cus-
pidal R-representations π of G with eσ(π) = 2 when m(π) > 3 is odd, by
Proposition 5.4 and [27, Lemma 6.9].

While we have defined relatively banal distinguished representations in terms
of the invariant eo( ), we will use the following equivalent formulation:

Lemma 6.5. — Let π be a σ-self-dual cuspidal R-representation of G. Let E
be a σ-self-dual parameter field for π. Then,

(i) If eσ(π) = 1, then q
n/eo(π)
o = q

m(π)
Eo

(and is also equal to q
n/e(π)
o ,

if F/Fo is unramified, and qn/2e(π), if F/Fo is ramified).
(ii) If eσ(π) = 2 and m(π) = 1, then q

n/eo(π)
o = qEo (and is also equal to

qn/e(π) = qE).
(iii) If eσ(π) = 2 and m(π) > 2 is even, then q

n/eo(π)
o = q

m(π)/2
Eo

(and is
also equal to qn/2e(π) = q

m(π)/2
E ).
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Proof. — In all cases, we have qn/e(π) = q
m(π)
E . In case (i), qmEo

is the positive
square root of qmE . However, by [4, Lemma 5.10], we have

eo(π) = e(Eo/Fo) = e(E/Fo)/eσ(π) = e(E/Fo)
= e(E/F)e(F/Fo) = e(π)e(F/Fo).

If F/Fo is unramified, then q
n/eo(π)
o = q

n/e(π)
o is the positive square root

of qn/e(π). Now, if F/Fo is ramified, then qn/eo(π)
o = q

n/2e(π)
o and (i) is proved.

In case (ii) by [4, Lemma 5.10], again, we have
eo(π) = e(Eo/Fo) = e(E/Fo)/eσ(π) = e(E/Fo)/2

= e(E/F)e(F/Fo)/2 = e(π)e(F/Fo)/2.
However, e(F/Fo) = 2 by [27, Lemma 4.14], so eo(π) = e(π) and q = qo, which
proves case (ii).

Finally, in case (iii) by [4, Lemma 5.10], again, we have
eo(π) = 2e(Eo/Fo) = 2e(E/Fo)/eσ(π) = e(E/Fo)

= e(E/F)e(F/Fo) = e(π)e(F/Fo),
and e(F/Fo) = 2 by [27, Lemma 4.14], so eo(π) = 2e(π) and q = qo, which
proves case (iii). �

Immediately, from Remark 6.4 and Lemma 6.5, we have:

Corollary 6.6. — A banal distinguished cuspidal F`-representation of G is
relatively banal.

Remark 6.7. — A banal cuspidal F`-representation is supercuspidal. How-
ever, there are relatively banal distinguished cuspidal non-supercuspidal F`-
representations. For example, when n = 3 and ` 6= 2, the non-normalised
parabolic induction of the trivial representation of the Borel subgroup has a
cuspidal subquotient St(3) when q3

o ≡ −1[`], and when F/Fo is unramified, it
is relatively banal distinguished (see [19]).

Before proving the main result of this section, it will be useful to know
that there are no relatively banal distinguished cuspidal representations π
when eσ(π) = 1 and m(π) is even:

Lemma 6.8. — Let π be a cuspidal F`-representation of G, which is σ-self-dual.
Suppose that eσ(π) = 1, that m(π) is even, and qn/eo(π)

o 6≡ 1[`], then π is not
distinguished.

Proof. — Let (J,κ ⊗ τ ) be a σ-self-dual generic F`-type for π (Proposition
5.11) with σ-stable parameter field E. Suppose π is distinguished. Then,
by Theorem 5.12, we can suppose that κ ⊗ τ is distinguished as well. By
Proposition 5.4, τ is χ−1

κ -distinguished, and, hence, ρ = τ |J is seen as a
representation of GLm(π)(kE) is χ−1

κ -distinguished by the group GLm(π)(kEo),
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i.e. that ρ′ = χ ⊗ ρ is distinguished for an extension χ of χκ to k×E . Now,
by Lemma 6.5 and Lemma 3.7, ρ′ has a distinguished lift, which contradicts
Lemma 4.4. �

Remark 6.9. — Note that the statement of Lemma 6.8 is not empty, as σ-self-
dual representations π exist under the hypothesis eσ(π) = 1 and qn/eo(π)

o 6≡ 1[`];
for example, when n = 2 and F/Fo is unramified, the non-normalised parabolic
induction of the trivial representation of the Borel subgroup has a cuspidal
subquotient St(2) when q ≡ −1[`], which is σ-self-dual and eσ(St(2)) = 1,
as F/Fo is unramified.

Lemma 6.10. — Let (J,λ) be an R-type, such that J is σ-stable and put π =
indG

J (λ). If λ |J is distinguished, then π is the unramified twist of a distin-
guished representation. Conversely, suppose that, moreover, λ = κ ⊗ τ is
generic and that κ is distinguished and σ-self-dual, if π is the unramified twist
of a distinguished representation, then τ |J is distinguished.

Proof. — If λ |J is distinguished, then we can extend λ to a distinguished
representation λF of F×J by setting λF($F) = 1. The induced representa-
tion indE×J

F×J(λF) is distinguished, and because J/F×J ' 〈$E〉/〈$F〉 is cyclic,
all of its irreducible subquotients extend λF by Clifford theory, so one exten-
sion λE of λF to J is distinguished. Hence, indG

J (λE) is distinguished and an
unramified twist of indG

J (λ) by Property (T-4).
For the partial converse, by twisting by an unramified character without

loss of generality we can suppose that π is distinguished (and κ is the same).
Then, τ is σ-self-dual due to Property (T-7), and, hence, λ as well, and it is
distinguished because of Theorem 5.12. Then Proposition 5.4 implies that τ ,
and, hence, τ |J is distinguished. �

Relatively banal distinguished cuspidal F`-representations enjoy very nice
lifting properties:

Theorem 6.11. — Let π be a cuspidal and distinguished F`-representation
of G.

(i) Then π is relatively banal, if and only if all of its lifts are unramified
twists of distinguished representations.

(ii) If it is relatively banal, then it has a distinguished lift.

Proof. — Suppose that π is relatively banal distinguished. Choose a distin-
guished type (J,λ) in π and let π̃ be a lift of π. We can choose a type in π̃ of
the form (J, λ̃) with r`(λ̃) = λ by property (T-10). As ` is coprime to Jσ, we
can apply Lemma 3.7, and λ̃ |J is distinguished because so is λ |J. Hence, π̃ is
a unramified twist of a distinguished representation by Lemma 6.10, and this
proves one implication in (i).
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We now prove (ii). Suppose that π is relatively banal. By the implication
already proved in (i) we know that π has a lift π̃, which is µ̃o-distinguished for µ̃o
an unramified character of Go. Let µ̃ be an unramified character of G extending
µ̃o; then µ̃−1⊗ π̃ is distinguished. However, because π is distinguished, setting
µ = r`(µ̃), the representation µ−1 ⊗ π is µ−1

o -distinguished for µo = r`(µ̃o) =
µ |Go . Due to Corollary 5.18, µo has a lift µ̃o

′ ∈ Xo(µ̃−1 ⊗ π̃). Writing µ =
χ ◦ det, it is possible to extend µ̃′o to an unramified character µ̃′ of G such
that, if µ′ = r`(µ) = χ′ ◦ det, then χ′($) = χ($); indeed, as µ and µ′ both
extend µo, this is automatic, if F/Fo is unramified, whereas, if F/Fo is ramified
χ′($) = ±χ($) is automatic, and we can always change µ̃′ so that this sign
is +. With such choices, the representation µ̃′µ̃−1⊗π̃ is a distinguished lift of π.

It remains to prove the second implication of (i). Suppose that π is not
relatively banal, i.e. qn/eo(π)

o ≡ 1[`]. Suppose, for the sake of contradiction,
that all lifts of π are distinguished up to an unramified twist and let π̃ be a lift
of π. Under this assumption the argument used to prove (ii) shows that π has a
distinguished supercuspidal lift π̃. This lift has a distinguished type (J, κ̃⊗ τ̃ )
with χ

κ̃
= 1 due to Theorem 5.12 and Proposition 5.5, and we set κ = r`(κ̃)

and τ = r`(τ̃ ), so in particular, (J,κ ⊗ τ ) is a distinguished type due to
Remark 3.5 (and also Lemma 5.14). Proposition 5.4 together with Lemma 4.4
imply that if eσ(π) = 2, then either m(π) = 1 or it is even, and if eσ(π) = 1,
then m(π) is odd. Then, τ |J is distinguished according to Remark 3.5, but the
assumption qn/eo(π)

o ≡ 1[`] translated in terms of GLm(π)(kE) due to Lemma 6.5
together with Propositions 4.6 (ii), 4.7, 4.8 (ii), 4.6 (ii) and 4.10 imply that τ |J
has a non-distinguished lift τ̃ ′. This lift extends to 〈$o〉J to a lift of τ |〈$o〉J by
setting τ̃ ′($o) = 1. Then, by Clifford theory, because the quotient J/〈$o〉J '
〈$E〉/〈$o〉 is cyclic, the representation indJ

〈$o〉J(τ̃ ′) contains a lift of τ that
extends τ̃ ′, and we again denote it τ̃ ′. Then, the representation π′ = indG

J (κ̃⊗
τ̃ ′) is a supercuspidal lift of π. As κ̃⊗ τ̃ ′ reduces to the generic type κ⊗ τ , it
is generic due to Lemma 5.9, and, hence, it cannot be an unramified twist of a
distinguished representation according to the second part of Lemma 6.10. �

Remark 6.12. — Note that as an unramified character of Go always has an
unramified extension to G, Part (i) of Theorem 6.11 can also be stated as π is
relatively banal, if and only if all its lifts are distinguished by an unramified
character.

7. Asai L-factors of cuspidal representations

7.1. Asai L-factors. — Let N be the maximal unipotent subgroup of the sub-
group of upper triangular matrices in G, and No = Nσ. Let ψ be a non-
degenerate R-valued character of N trivial on No. Let π be an R-representation

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



504 R. KURINCZUK & N. MATRINGE

of G of Whittaker type (i.e. of finite length with a one-dimensional space of
Whittaker functionals) with Whittaker model W(π, ψ). We refer to [17, Sec-
tion 2] for more details as well as basic facts about Whittaker functions and
their analytic behaviour. For W ∈ W(π, ψ) and Φ ∈ C∞c (Fno ) and l ∈ Z, we
define the local Asai coefficient to be

IlAs(X,Φ,W) =
∫

No\Go
val(det(g))=l

W(g)Φ(ηng) dg,(1)

where ηn denotes the row vector ( 0 ··· 0 1 ), and dg denotes a right invariant
measure on No \Go with values in R. We refer the reader to [17, Section 2.2]
for details on R-valued equivariant measures on homogeneous spaces and their
properties. The integrand in the Asai coefficient has compact support, so it is
well defined and it, moreover, vanishes for l << 0. We define the Asai integral
of W ∈ W(π, ψ) and Φ ∈ C∞c (Fno ) to be the formal Laurent series

IAs(X,Φ,W) =
∑
l∈Z

IlAs(X,Φ,W)Xl.(2)

In exactly the same way as in [17, Theorem 3.5], we deduce the following lemma:

Lemma 7.1. — For W ∈ W(π, ψ) and Φ ∈ C∞c (Fno ), IAs(X,Φ,W) ∈ R(X) is a
rational function. Moreover, as W varies inW(π, ψ), and Φ varies in C∞c (Fno ),
these functions generate a R[X±1]-fractional ideal of R(X) independent of the
choice of ψ.

In the setting of the lemma, it follows that there is a unique generator
LAs(X, π), which is a Euler factor and is independent of the character ψ. We
call LAs(X, π) the Asai L-factor of π.

For s(X) of the form 1/P (X) for P (X) ∈∈ Z`[X] with non-zero reduction
modulo `, we write r`(s(X)) = 1/r`(P (X)). If P and Q are two non-zero
elements of k[X] for any field k, we write

1/P (X) | 1/Q(X) if P (X) | Q(X).

Lemma 7.2. — Let π be an integral cuspidal Q`-representations of G and π its
reduction modulo `.

(i) Then, LAs(X, π) is the inverse of a polynomial in Z`[X].
(ii) Moreover,

LAs(X, π) | r`(LAs(X, π))

with constant term equal to 1.

Proof. — The first part (i) follows from the asymptotic expansion of Whittaker
functions as in [17, Corollary 3.6]. The second part (ii) follows by imitating the
proof of [17, Theorem 3.13]. We recall the argument here: by definition, we can
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write the L-factor LAs(X, π) as a finite sum of Asai integrals; for i ∈ {1, . . . , r},
there are Φi ∈ C∞c (Fno ) and Wi ∈ W(π, ψ), such that

LAs(X, π) =
r∑
i=1

IAs(X,Φi,Wi).

By [17, Lemma 2.23] there are Whittaker functions Wi,e ∈ W(π, ψ) that take
values in Z`, such that Wi = r`(Wi,e), and clearly there are Schwartz func-
tions Φi,e ∈ C∞c (Fno ) that take values in Z`, such that Φi = r`(Φi,e). Moreover,

r∑
i=1

IAs(X,Φi,e,Wi,e) ∈ LAs(X, π)Q`[X±1] ∩ Z`((X)) = LAs(X, π)Z`[X±1],

and, hence, LAs(X, π) =
∑r
i=1 IAs(X,Φi,Wi) ∈ r`(LAs(X, π))F`[X±1]. �

As we shall see later, strict divisions occur.

7.2. Test vectors. — In [4], test vectors for the Asai integral of a distinguished
supercuspidal Q`-representation were given with the Asai integral computed
explicitly. The pro-order of a compact open subgroup of Go may be zero in F`,
and so one cannot normalise a right Haar measure with values in F` arbitrarily.
So, for compatibility with reduction modulo `, we need to be more careful
with normalisation of measures over Q`. We set K = GLn(O) and Ko = Kσ,
K1

o = In+Mn(Oo), and P the σ-stable mirabolic subgroup of G of all elements
with final row ( 0 ··· 0 1 ).

Definition 7.3. — A triple (J,λ, ψ) with (J,λ) a σ-self-dual R-type, and ψ
a distinguished non-degenerate character of N satisfying conditions (i) and (ii)
of [4, Lemma 6.8] will be called an adapted type.

Remark 7.4. — (i) In particular, if (J,λ, ψ) is an adapted type, the type
(J,λ) is a σ-self-dual ψ-generic type (in particular, ψ is distinguished).

(ii) By the proof of [4, Lemma 6.8], if π is a σ-self-dual cuspidal R-repre-
sentation, it contains an adapted type, the point of the remark being
that the N of [4, Lemma 6.8] can be chosen to be our N: the group of
unipotent upper triangular matrices in G.

Now let π be a σ-self-dual cuspidal R-representation and (J,λ, ψ) be an
adapted type of π. We associate to (J,λ, ψ) the Paskunas–Stevens Whittaker
function Wλ ∈ W(π, ψ) defined in [4, (6.3)]. Note that Wλ takes values in Z`
as soon as π is integral (see, for example, [18, Lemma 10.2]). One of the main
results of [4] is that this Whittaker function is a test vector for the Asai L-factor:

Proposition 7.5 ([4, Theorem 7.14]). — Let π be a distinguished supercuspi-
dal Q`-representation of G and Wλ be the explicit Whittaker function defined
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above. There is a unique normalisation of the invariant measure on No \ Go,
such that

IAs(X,1oFno
,Wλ) = (qo − 1)(qn/eo(π)

o − 1)LAs(X, π).

The volume of No ∩K1
o \K1

o is of the form pl for l ∈ Z with this normalisation.

Proof. — We start with Haar measures dg and dn on Go with values in Q`
normalised by dg(K1

o) = 1 and dg(No ∩K1
o) = 1, which, in turn, normalises the

measure (still denoted dg) on the quotient No \Go.
With this normalisation, which is the exact parallel of the normalisation

used in [18] for the analogue Rankin–Selberg computation, first of all we get an
extra factor of (qo − 1) on the top of the Tate factor defined before [4, Lemma
7.11]. Then there is a factor dk((Pσ ∩Kσ) \ Jσ), which appears in [4, Lemma
6.11], and we have

dk((Pσ ∩ Jσ) \ Jσ) = dk((Pσ ∩ (J1)σ) \ (J1)σ)|Jσ/(Pσ ∩ Jσ)(J1)σ)|.

As dk((Pσ ∩ (J1)σ) \ (J1)σ) is a (possibly negative) power of p, we can renor-
malise our measure to remove it. The image of P ∩ J modulo J1 is a σ-stable
mirabolic Pm(kE) of J/J1, and we thus have

|Jσ/(Pσ ∩ Jσ)(J1)σ)| = |GLm(kE)σ/Pm(kE)σ| = q
n/eo(π)
0 − 1

due to Lemma 6.5. �

Corollary 7.6. — Suppose that π is an unramified twist of a relatively banal
distinguished cuspidal F`-representation, and let π̃ be a supercuspidal lift of π.
Then,

LAs(X, π) = r`(LAs(X, π̃)).

Proof. — Let π̃ be such a lift. Due to Theorem 6.11 there is an unramified
character χ̃ of F×, such that π̃0 = (χ̃◦det)−1⊗ π̃ is distinguished. Let (J, λ̃, ψ̃)
be an adapted type of π̃o. Proposition 7.5 then implies that

IAs(X,1oFno
,Wλ) = (qo − 1)(qn/eo(π)

o − 1)LAs(X, πo).

Then, setting πo = r`(π̃o), we deduce that

LAs(X, πo) = r`(LAs(X, π̃o))

in the exact same way that [18, Corollary 10.1] follows from [18, Proposition
9.3]. We obtain the statement of the corollary by twisting π̃o by χ̃ ◦ det in this
equality, as it sends X to χ($o)X on the left-hand side and to χ̃($o)X on the
right-hand side. �
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7.3. Asai L-factors of cuspidal representations. — We first recall the compu-
tation of the Asai L-function of a cuspidal Q`-representation:

Proposition 7.7 ([4, Corollary 7.6] and Remark 7.7). — Let π be a cuspidal
Q`-representation. If no unramified twist of π is distinguished, then LAs(X, π) =
1. If π is distinguished, then

LAs(X, π) = 1
1−Xn/eo(π) .

This gives a complete description in the cuspidal case; as for an unramified
character χ : F× → K×, we have

LAs(X, (χ ◦ det)⊗ π) = LAs(χ($o)X, π).

Theorem 7.8. — Let π be a cuspidal F`-representation of GLn(F).
(i) If π is an unramified twist (χ ◦ det) ⊗ π0 of a relatively banal distin-

guished representation π0, then

LAs(X, π) = 1
1− (χ($o)X)n/eo(π) .

(ii) If π is not an unramified twist of a relatively banal distinguished rep-
resentation, then

LAs(X, π) = 1.

Proof. — If π is an unramified twist of a relatively banal distinguished repre-
sentation, the statement follows, for example, from Corollary 7.6 and Proposi-
tion 7.7.

If π is not an unramified twist of a relatively banal distinguished repre-
sentation, it has a supercuspidal lift π̃, which is not an unramified twist of
a distinguished representation due to Theorem 6.11. By Proposition 7.7 we
have LAs(X, π̃) = 1, and, hence, LAs(X, π) = 1 as LAs(X, π) | r`(LAs(X, π̃)) by
Lemma 7.2. �

Remark 7.9. — Note that when ` = 2, we are in case (ii) of Theorem 7.8,
and LAs(X, π) = 1. This can also be seen directly from the asymptotics of
Whittaker functions. Without entering the details as we do not need to, the
asymptotic expansion of Whittaker functions on the diagonal torus allow one
to express the Asai integrals in terms of Tate integrals for F×o , and these Tate
integrals are all 1 because q = 1[2], as shown in [22].

8. Distinction and poles of the Asai L-factor

8.1. Characterisation of the poles of the Asai L-factor. — We are now in posi-
tion to prove the main results of this paper:
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Theorem 8.1. — Let π be a cuspidal F`-representation of G. Then, LAs(X, π)
has a pole at X = 1, if and only if π is relatively banal distinguished. In this
case, the pole is of order `r, where n/eo(π) = a`r with a prime to `.

Proof. — If LAs(X, π) has a pole at X = 1, in particular LAs(X, π) is not equal
to 1, and, hence, the representation π is an unramified twist of a relatively banal
distinguished cuspidal F`-representation π0, say π = (χ ◦ det)⊗ π0, with χ an
unramified character of F×. Denote by χo the restriction of χ to F×o , then by
Theorem 7.8,

LAs(X, π) = 1
1− (χo($o)X)n/eo(π) = 1

(1− (χo($o)X)a)`r

which has a pole at X = 1, if and only if χo($o)n/eo(π) = 1. By Theorem 5.16
this implies that χo ◦ det belongs to Xo(π), i.e. that π = (χ ◦ det) ⊗ π0 is
distinguished. The converse is just Theorem 7.8. �

Remark 8.2. — Note that our proof of Theorem 8.1 is very different from the
proof over the field of complex numbers. In the proof above, the direction π
relatively banal distinguished implies LAs(X, π) having a pole at 1 is an im-
mediate consequence of Theorem 7.8 and works for complex representations as
well (in which case, we consider all cuspidal distinguished C-representations as
“relatively banal”) due to [4, Corollary 7.6]. Saying this is not enough to claim
a proof in the case of complex cuspidal representations different from the orig-
inal one given in [1, Theorem 1.4], as the way the equality of [4, Corollary 7.6]
is obtained is a consequence of [20, Proposition 6.3], which itself follows either
from [20, Theorem 3.1] or from [1, Theorem 1.4] and [14, Theorem 4], together
with the fact that the poles of the Asai L-factor are simple in the cuspidal case.
However, the first equality in [4, Theorem 7.14] is independent of the results
cited above, and it in particular implies that, if π is a cuspidal distinguished
C-representation, its Asai L-factor has a pole at X = 1. The proof of the other
implication that we give also works in the complex case, and is again different
from the original proof given in [14, Theorem 4]. Kable shows that, if LAs(X, π)
has a pole at X = 1, the rational function (1 − X)IAs(X,W,Φ) is regular at
X = 1 and that up to a non-zero constant independent of W and Φ its value
at X = 1 is given by

Φ(0)
∫

ZσNσ\Gσ
W(h)dh.

As by assumption the Asai L-factor has a pole at X = 1, the Gσ-invariant
linear form

Lπ : W 7→
∫

ZσNσ\Gσ
W(h)dh
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is non-zero. Note that to adapt this proof to the modular setting with R = F`
we would need to take 1−Xn/eo(π), where Kable takes 1−X (this does not matter
over C, as both polynomials have a simple zero at X = 1) to get the correct
order of the pole, although from Kable’s proof, one sees that the natural choice
is, in fact, 1−Xn. However, we claim that this cannot be done in general, as we
shall now see that the local period Lπ, although well defined for cuspidal F`-
representations, might vanish even for relatively banal distinguished cuspidal
F`-representations.

8.2. The Go-period of cuspidal distinguished representations. — Let π be a
cuspidal distinguished R-representation; we still denote by ψ a distinguished
non-degenerate character of N. There are two natural Gσ-invariant linear forms
on W(π, ψ). The first is

Pπ : W 7→
∫

Nσ\Pσ
W(p)dp

which is well-defined and non-zero due to [28, Chapter III, Theorem 1.1]. Al-
though it does not look Gσ-invariant, it is so by [4, Proposition B.23]. Let
(J,λ, ψ) be an adapted type in π. A natural test vector for this linear form is
the Paskunas–Stevens Whittaker function Wλ; we have Pπ(Wλ) 6= 0 according
to the proof of [4, Proposition 6.5].

The second is

Lπ : W 7→
∫

ZσNσ\Gσ
W(h)dh.

It is Gσ-invariant by definition, and well defined, as all W ∈ W(π, ψ) have
compact support on N \ P; they have compact support of ZN \ G due to the
Iwasawa decomposition G = PZK. By cuspidal multiplicity one for the pair
(P,Pσ) ([4, Proposition B.23]), Lπ is a multiple of Pπ, and the proportionality
constant between them turns out to be a very interesting quantity; this scalar
is related to the formal degrees of complex discrete series representations of
unitary groups (see [2] and Remark 8.4). When R = Q` the linear form, Lπ is
non-zero (Remark 8.2); here, we solve the problem of understanding when Lπ
is non-zero when R = F`:

Theorem 8.3. — Let π be a cuspidal distinguished F`-representation of G,
then Lπ is non-zero, if and only if:

(i) π is relatively banal.
(ii) ` does not divide eo(π).

Proof. — Due to the Iwasawa decomposition G = PZK, we have the equality:∫
ZσNσ\Gσ

W(h)dh =
∫

Kσ∩Pσ\Kσ

∫
Nσ\Pσ

W(pk)|det(pk)|−1
o dpdk.
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We introduce the power series

IAs,(0)(X,W) =
∑
l∈Z

(∫
Nσ\Pσ(l)

W(p)|det(p)|−1
o dp

)
Xl

where Pσ(l) = {p ∈ Pσ, valFo(det(p)) = l} which is, in fact, a Laurent polyno-
mial, as π is cuspidal, so that

Pπ(W) = IAs,(0)(1,W).

Now suppose that π is not relatively banal; then, π is |det( · )|o-distinguished,
and appealing to [4, Proposition B.23], it means that the linear form

Pπ,| det( · )|o : W 7→
∫

Nσ\Pσ
W(p)|det(p)|−1

o dp

is |det( · )|o-equivariant under the action of Go. So, in particular, up to possible
renormalisation of the invariant measure,∫

ZσNσ\Gσ
W(h)dh = vol(Kσ ∩ Pσ \Kσ)Pπ,| det( · )|o(W)

= (qno − 1)Pπ,| det( · )|o(W) = 0

as qn/eo(π)
o = 1.
So it remains to understand what happens when π is relatively banal. As

we said, by multiplicity one we know that Lπ = λPπ and we noticed that
Pπ(Wλ) 6= 0. Hence, Lπ = 0, if and only if Lπ(Wλ) = 0. However, following
the proof of [18, Theorem 9.1] at the end of [18, p. 19] or the proof of [4,
Theorem 7.14], one gets up to a possible renormalisation of invariant measures:

Lπ,X(Wλ) :=
∫

Kσ∩Pσ\Kσ
IAs,(0)(X, ρ(k)Wλ)dk

= (qo − 1)(qn/eo(π)
o − 1) 1−Xn

1−Xn/eo(π) .

Now, the value at X = 1 of Lπ,X is Lπ, so Lπ vanishes, if and only if 1−Xn
1−Xn/eo(π)

vanishes at X = 1. However, the order of the zero of 1 − Xn is the `val`(n),
whereas that of the zero of 1 − Xn/eo(π) is `val`(n/eo(π)). This means that, if π
is relatively banal, Lπ is non-zero, if and only if val`(n) = val`(n/eo(π)), i.e.,
if and only if ` does not divide eo(π). �

Remark 8.4. — Here, we explain how this vanishing result modulo ` is related
to the vanishing of the `-adic proportionality constant between L and P. For an
algebraically closed field C, write CuspC,dist(G) for the set of isomorphism
classes of distinguished cuspidal C-representations. Fix an isomorphism C '
Q`; this induces a bijection CuspC,dist(G)→ CuspQ`,dist(G), depending on the
choice of isomorphism.
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Let π ∈ CuspQ`,dist(G) and ψ : N → Z`
× be an Nσ-distinguished non-

degenerate character of N. Then, by [1, Corollary 1.2], there exists µ ∈ Q`,
such that

Lπ = µPπ,(3)

Let cπ denote the central character of π and ResP denote the restriction of
Whittaker functions to P. Then,

W(π, ψ) ⊂ indG
ZN(cπ ⊗ ψ) and ResP(W(π, ψ)) ⊂ indP

N(ψ),

the first fact being a consequence of the second, which has been known since [5].
Now letW(π, ψ)e denote the Z`-submodule ofW(π, ψ) consisting of Whittaker
functions with values in Z`. It follows from [30, Theorem 2] and [29, Theorem
2] thatW(π, ψ)e is a lattice inW(π, ψ), and ResP(W(π, ψ)e) = indP

N(ψ,Z`) is a
lattice in ResP(W(π, ψ)), reducing toW(π, ψ) and ResP(W(π, ψ)), respectively.

Finally, from [17, Section 2.2], there are appropriate `-adic and `-modular
invariant measures on ZσNσ \Gσ and Nσ \ Pσ, such that

r`(Lπ(We)) = Lr`(π)(r`(We)),(4)
r`(Pπ(We)) = Pr`(π)(r`(We))(5)

for all We ∈W(π, ψ)e and Pπ(ResP(W(π, ψ)e)) = Z`.
Evaluating Equation 3 on an element We ∈ W(π, ψ)e, such that Pπ(We) =

1, we deduce that µ ∈ Z`. Now, Theorem 8.3 and Equations 4 and 5 imply that
` divides µ, if and only if either r`(π) is not relatively banal or ` | eo(π). Run-
ning over all ` 6= p, we recover the radical of the p-regular part of µ (explicitly
using the type theoretic definition of relatively banal, Definition 6.2).

As was mentioned already, this scalar µ is a very interesting and subtle
quantity. By [2, Theorem 7.1], we have

Lπ = λ
d(ρ)
d(π)Pπ,

where λ is a constant independent of π, ρ is the cuspidal Q`-representation of
the quasi-split unitary group in n-variables defined over Fo which base changes
to π (stably or unstably depending on the parity of n), and d(ρ) and d(π)
denote the formal degrees of ρ and π, respectively, under the normalisation
of invariant measures of [12]. One could check that the formal degrees are
rational for our well-chosen measures (and λ as well), and preserved under the
bijection CuspC,dist(G)→ CuspQ`,dist(G).

While we have explained how Theorem 8.3 tells us exactly when µ vanishes
modulo `, we could also go in the other direction. By [12] and [6], the constant µ
could be computed explicitly, and its explicit description would give a different
proof of Theorem 8.3. It should be clear to the reader that the amount of work
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required for such a proof is much more considerable than that of the proof
given above.

8.3. Comparison of banal and relatively banal. — Finally, we compare our no-
tion of relatively banal distinguished with the notion of banal representation
introduced in [24] for cuspidal representations.

By [24, Remarque 8.15] a cuspidal F`-representation π of Go is banal, if and
only if

|det( )|o ⊗ π 6' π.
However, the map

b : π 7→ π ⊗ π∨

is a bijection between the set of (isomorphism classes of) irreducible represen-
tations of Go and the set of ∆(Go)-distinguished irreducible representations
of G′ = Go×Go, where ∆ is the diagonal embedding of Go into G′. In particu-
lar, π (seen as the distinguished representation b(π) of G′) is banal, if and only if
|det( )|o⊗b(π) = (|det( )|o⊗π)⊗π∨ is not distinguished. Note that | |o plays the
same role for the split quadratic algebra (Fo ×Fo)/Fo that | |o plays for F/Fo,
i.e. it is a square root of the absolute value on the bigger algebra. So, this
proves the exact analogy of banal cuspidal representations of Go and relatively
banal distinguished cuspidal representations of G according to Corollary 6.3.

The analogy can also be seen at the L-factor level; it follows from [18, The-
orem 4.9] that, if π ⊗ π′ is a cuspidal representation of G′, then the Rankin–
Selberg L-factor L(X, π, π′) (which can be thought of as the Asai L-factor
of π ⊗ π′) has a pole at X = 1, if and only if π ⊗ π′ is ∆(Go)-distinguished,
and π is banal, which is the exact analogue of Theorem 8.1 replacing banal
with relatively banal.

Finally, in terms of the type theory definition, a cuspidal representation π of
Go is banal, if and only if qn/e(π)

o 6' 1[`], but tracking down how e(π) is defined
with respect to π in terms of type theory (more precisely lattice periods) shows
that it plays the same role for the ∆(Go)-distinguished representation b(π) of
G′ that eo(τ) plays for a distinguished cuspidal representation τ of G.
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