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LECTURES ON MINIMAL MODELS

S. HALPERIN






INTRODUCTION

Algebraic topology has, classically, meant the study of algebraic
invariants associated with topological spaces. These invariants (homology,
homotopy,...) are normally not 'geometric" in the sense that one canmnot
recover a space from them.

Although there is still no satisfactory algebraic description of
homotopy theory (over 2), the rational homotopy theory of Quillen and Sullivan
18 a practical and complete solution - if one is willing to forget torsion.
Here one models the homotopy category by the category of commutative graded
differential algebras (c.g.d.a.'s). Then to each c.g.d.a. one associates a
"minimal model" with the property that if two c.g.d.a.'s are connected by a
homomorphism which is an isomorphism of cohomology then the minimal models
are isomorphic.

The process space + c.g.d.a. + minimal model gives the minimal
model of a space. Its isomorphism class is an invariant of the weak homotopy
type of the space, S. Moreover, if S is a l-connected CW complex of finite

type then from the model one can recover a space S, and a continuous map

Q
S + S_ which induces isomorphisms ﬂi(S) eqQ-= ﬂi(SQ)-

Q

Minimal models have proved to be a powerful tool in the solution
of geonetric problems. While the fact that one can indeed recover SQ from
the model is undoubtedly the philosophic reason for the power of the machine,
this fact plays little direct role in the applications. Rather the two key
ingredients turn out to be:

(a) A detailed understanding of the algebraic behaviour

of the models, and

(b) A dictionary from classical topological invariants

to invariants of the models.
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My aim in these notes has been to provide a self-contained refer-
ence for many of the basic theorems needed for (a) and (b), in which complete,
formal proofs were given down to the last technical detail. I have also tried
to make the hypotheses as weak as possible and the conclusions as strong as
possible. While this approach tends to make for difficult reading, it does
(or so I hope!) result in a safely quoteable source for those whose main
interest is the applications.

For the sake of completeness I have also included (with proofs!)
many well known results and definitions (eg. simplicial sets in chap. 12,
Wl(M)-modules in chap. 16 and Serre fibrations in chap. 19). In fact, the
only prerequisite is some multilinear algebra and a little basic topology.

The material presented here divides naturally into three parts.

The first (chaps. 1 to 11) is pure differential algebra: suppose
n: (B’dB) -+ (E'dE)

is a homomorphism of c.g.d.a.'s (over a field k of characteristic zero).
Assume HO(B) = HO(E) = k, and B is augmented.

Then there is a commutative diagram of c.g.d.a. homomorphisms
(E'ds)

v

(B o XX,d) ———— (AX,dA)

(B.dp)

in which:
1) {¥* is an isomorphism.
ii) AX is the free commutative graded algebra over the graded
space X

i11) A certain "nilpotence-type' condition and a certain minimality



LECTURES ON MINIMAL MODELS

condition (cf. chap. 1) are satisfied by d.
Moreover the bottom row is uniquely determined (up to isomorphism).
The diagram above is called the minimal model for n (cf. chap. 6).

When B = k we have simply
s (AX,d,) * (Edp)

it is called the minimal model for (E,dE).

The second part of the theory is a functor M VwWw—+ (A(M),d) from
topological spaces to c.g.d.a.'s (over k) such that H(A(M)) is naturally
isomorphic with the singular cohomology H(M ; k). This is described in
chaps. 13 to 15. The minimal model of (A(M),d) is called the minimal model
for M.

The third part is the study of fibrations (chaps. 16 to 20).
Suppose F i—’ E LN B is a Serre fibration in which F, E, B are path
connected. Then we can form the model of A(T) : A(B) -+ A(E), obtaining

the commutative diagram:

A(T) A(Y)
A(B) A(E) A(F)

A(B) A(B) @ AX AX

in which ¥* is an isomorphism. The fundamental theorem of this part reads
20.3. - Theonem. Assume that ‘
i) Either H(B ; k) or H(F ; k) has finite type.
i1) 'nl(B) acts nilpotently in each HP(F s k).
Then a* is an isomorphism, and so a : AX + A(F) is the minimal

model for F.
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This theorem was proved first bybr. Grivel [G] in the case B is
l-connected. Another proof was given independently a little later by J.C.
Thomas (unpublished), again for the case B is l-connected. The proof given
in these notes follows the general idea of Grivel's proof, but the techni-
calities are substantially more complex. In particular, heavy use is made
of the notion of "local system over a simplicial set" (chap. 12) which is a
simplicial analogue of a sheaf.

Let AX + A(M) be the minimal model (over Q) of a path connected

space M. There are obvious linear maps
xP > Homy(m () ; €), P22,

Using theorem 20.3 it is easy to deduce the
Theonem. - Assume that
i) Each ﬂp(H) ® Q is a nilpotent finite dimensional ﬂl(H) module
for p 2 2).
1i) The minimal model for K(ﬂl(H) ; 1) has generators only in
degree 1.
Then the linear maps b S Homz(wp(H) s Q, p 2 2, are isomorphisms.

I had originally planned to include this and other applications,
but ran out of time. They will appear elsewhere.

The theory of minimal models is due to Dennis Sullivan, and his
paper "Infinitesimal Computations in Topology" [S] is the fundamental work
on the subject. Indeed the first two parts of these notes (chaps. 1 to 11
and 13 to 15) follow [S] very closely.

The reader who makes this comparison will discover that aside from
the occasional modification in the assertions of [S]) I have frequently merely
expanded the ideas there into formal proofs. (One exception is "de Rham's

theoren" in chap. 14 whose proof is based on that of Chris Watkiss (W]; another
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version of this proof is given by Cartan [C]. Other proofs abound in the
literature.) Of course the overlap of these notes with [S] covers only part
of [S]. I haven't touched solvable models, let alone the latter half of [S].

Another approach to minimal models is via localizations and
Postnikov towers. If M is a nilpotent space it can be localized to produce
a rational space HQ. The data which define the Postnikov decomposition of
Hl are exactly the data which define the minimal model of M, and so it
follows that the minimal model of M determines its rational homotopy type.
The theorem above on homotopy groups follows at once, at least for nilpotent
spaces. This approach is that of Friedlander et al. [F] and Lehmann [L2].
The resumé by Lehmann [Lll is particularly elegant and readable.

A different approach is taken by Bousfield and Gugenheim [B-G] who
provide a complete exposition in the context of the closed model categories
of Quillen. Other expositions (eg. [W-T]) are also available.

At least two other algebraic categories have been successfully used
to model rational homotopy theory: the iterated integrals of Chen [Ch] and
the category of graded differential Lie algebras. In the latter category
the notion of minimal model was introduced by Baues and Lemaire [B-L].

The recent book of Tanré [Tal provides a clear description of the
relation between these categories and goes very much further than the present
notes in describing topological invariants in terms of the model.

These notes are a greatly expanded version of lectures I gave at
Lille in 1976 and 1977 in the seminar on algebraic topology and differential
geometry. They first appeared in 1977 in the Publications Intermes of the
U.E.R. de Mathématiques, Université de Lille I and are presented here unchanged,
except for changes to the introduction.

The seminar discussions were, naturally, enormously helpful - I

want particularly tomention Daniel Lehmann and Chris Watkiss. My thanks also



S. HALPERIN

g0 to Mmes Tatti and Bérat for their careful typing of the manuscript, and
to the Université de Lille I, whose hospitality made the whole thing possible.
It is a great pleasure to be able, now, to say thank you to my Lille colleagues
not only for their hospitality that year, but for all the subsequent years as
well.

Finally, I should like to take this opportunity to express my warm
gratitude to my teacher, friend and colleague Werner Greub from whom I first

learned about commutative graded differential algebras and Koszul complexes.

July 1983
University of Toronto
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Chapter 0

Notation and conventions

All vector spaces, algebras, multilinear operations, ... in these notes
are defined over a fixed field k of characteristic zero. Occasionally we
specify k = Q, R or C.

All algebras are associative, and have an identity, 1, which is preser—
ved by homomorphisms.

By a graded vector space we mean 1 direct sum V = 2P>° w (note

that the sum is over the non negative integers). We write vt . 2P>° v,

Elements of VP are homogeneous of degree p. V has finite type if each

VP has finite dimension. If W is a second graded space then a linear map
¥ : V+W has degree r if 0(VP) cw’", p 2 0.

A graded algebra A = £p>0 AP is one which satisfies AP.A%C AP*e,

An augmentation of A is a homomorphism €, ¢ A + k such that eA(A’) = 0.

A derivation of degree p in A 1is a linear map, 6, of degree p such that

6(ab) = 9(.).b*(-l)pqa.6(b), ac Aq. b€ A. A is called n-connected if

A=k and AP = O, 1 £ p ¢« n. By a homomorphism of graded algebras we

mean a homomorphism of degree zero. A homomorphism ¢ : (A.:A) - (l“!) of
augmented graded algebras satisfies € " cni.

A homomorphism of graded algebras is called n-regular if it is an
isomorphism in degrees < n and injective in degree n. The tensor product
of graded algebras A and B is the graded algebra A 6 B with product

a €A
(a0b).(a' @b') = (NPT a2t @bb* , D€ s
a' e Al

b' e B.
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A commutative graded algebra (c.g.a.), A, is one which satisfies
ab = (-1)P%ba, ac AP, be Al 1f V:C+A and ¢: C~+ B are homomor—
phisms of c.g.a.'s the elements ay¥(x) @b -~ a @ Yy(x)b (a € A, x¢€ C,
b € B) span a graded subspace I C A ® B. In fact I is an ideal and we

write

A OC B=(A@B)I H

it is again a c.g.a.

A graded differential algebra is a graded algebra A together
with a derivation dA of degree 1 such that di = 0. The spaces ker dA’
Im dA are called the cocycle and coboundary spaces and the graded algebra

H(A,dA) = ker dA/Im dA

is called the cohomology algebra. It is sometimes written H(A). A homomor-
phism ¢ : (A,dA) -> (B’dB) of g.d.a.'s 1is a homomorphism of graded algebras

which satisfies §¥d,6 = dnﬁ. It induces a homomorphism of cohomology algebras,

A

written
¥ 1 H(A) - H(B).

1f 0’ is an isomorphism we sometimes write ¢ : (A'dA) —_— (B,dB).
(Note that { Vv~ ﬂ‘ is a covariant functor !).

A is called acyclic if H(A) = k. An ideal JC A (which is dA
stable) is called acyclic if H(J) = O.

The tensor product of g.d.a.'s A and B is again a g.d.a. with
- P P
dAGB(a 8 b) dAa b+ (-1)" a @ de . aeA, beB.

Multiplication defines an isomorphism H(A 8 B) = H(A) @ H(B).

10
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If (A’dA) is a8 g.d.a. and A is a c.g.a. then (A,dA) is called
a commutative graded differential algebra (c.g.d.a.). If C+ A and C~ B

are c.g.d.a. homomorphisms then A Oc B is naturally a c.g.d.a.,






Chapter 1

KS-extensions

1.1.- Definitions.- Let X be a graded space. AX will denote the

free graded commutative algebra over X :

odd.

AX = Exterior algebra (X even

) @ Symmetric algebra (X )

(Ak}()p is the subspace generated by X, Ao A x with Ii deg X, =P

we say the elements in (Ax)p have degree p.

Let A—= k be an augmented graded algebra. We define a graded

space Q(A) = ZP>0QP(A) (also written QA) by
Q(A) = ker c/ker e.ker ¢ ;

it is the space of indecomposables of A. We denote the canonical projection

(of graded spaces) by CA : ker € » Q(A).

An extension is a sequence of augmented c.g.d.a.'s
. i [
€ : (B'dB) —_— (C,dc) —_— (A.dA)

such that i and p preserve the augmentations and

i) A = AX for some graded subspace X C A, and A'X is the
augmentation ideal.

ii) There is a commutative diagram of algebra homomorphisms

(1.1 B fl=

13
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where f is an isomorphism and € is the augmentation for B. (We make no
requirement about how f behaves with the differentials). Note that
f(ker ¢ ® A+ B @® A+X) is the augmentation ideal for C.

We call the c.g.d.a.'s (B'dB)' (C,dc) and (A,dA) the base;

total space, and fibre of the extension.

The above definition involves the existence of two '"non-canonical
objects", namely X and f. The extension &, together with (X,f) will

be called a structured extension. We often use the structure to identify

C with B ® A. In this case the elements b ® 1 (= i(b)) and 1 8 a

(=£(1 & a)) will often be denoted simply by b and by a.

An extension is called elementary if there is a structure (X,f)

such that
(1.2) dc(x)c B.

Suppose {x“) is an ordered homogeneous basis for X. Then we will

ael

write A<a and Asu for the subalgebras generated by the Xg with 8 < a

(resp. B 5 a). Note that
(1.3) A A _0Ax

the isomorphism being multiplication in Asa'

An extension E is called a Koszul-Sullivan ( KS) extension if it

admits a structure (X,f) and a homogeneous basis {x !

olael of X, indexed by

a well-ordered set I such that
(1.4.) dC(xu) € B @O A<a' ae I.

An extension € is called positive if A is connected : (X-Ep>l Xp).
A KS-extension £ is called minimal if there is a structure

(X,f) and a well ordered homogeneous basis {x for X such that

)
a‘ael

14
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deg Xy < deg x, = g8 < a, and such that (1.4) holds.

If B =k we replace "extension" by "complex" in the definitionms,
obtaining KS-complex, minimal KS-complex.
1.5.- Remanks.-

1) If B+ C~+ A is a KS extension (resp. minimal KS)

then A is a KS complex (resp. minimal KS).

2)A KS-extension is a generalized sequence of elementary extensions.

Finally, a morphism between two extensions is a commutative diagram

B' c' A'

of homomorphisms of augmented c.g.d.a.'s ; it is written (y,¥,a) : E = E'.

1.6.- Example.- contractible extensions.

A contractibleKS extension B+ C+ A is one which admits a struc-

ture (X,f) and a decomposition X = ){l ® x2 such that
d : X, ——— X
Thus we can write

C=B86 (I\)(l DAXZ)

dc'dsﬁl*uBOdA

(uBb - (-))pb, be BP) and (A'dA) is the free c.g.d.a. generated by xl.

The ideal J C C generated by X‘ and X2 is acyclic :

.
H(J) =0

15
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and this shows that the projection C + B with kernel J induces an isomorphism

. .
of cohomology inverse to i .

If B=k we call C(=A) a contractible KS complex.

Suppose next that (X,f) 1is a structure for an extension

€ : B+ C- A, and that {xu)uel is a well ordered homogeneous basis for X.

1.7.- Lemma.- Let Vg € C be homogeneous elements such that
i) Py, = X,

ii) Yo f(1 0 xa) € f(B @ A<a)’ ae I.

Then a second structure (X,g) is defined by
g(1 @ xu) )

Proof : A unique homomorphism g : B @ A+ C is defined by
g(b ® 1) = i(b) and g(l @ xu) b Because of i) we have pog=1¢ 61 ;
it remains to show that g 1is an isomorphism.

Set 0=f' og. Then (b @ 1) =b @1 and ii) implies that
(1.8) d(1 @ Xg) - 18x €BOA

We show now that § : B@ A —— B @ A for all a.
sa . <a

If not there is a least a for which it fails ; since

B O A =
<a

—

im B @ A _, we have
< <8

|

™
1°}

x
V: B8A ———BOA
<a <a

Write B @ A‘a = (B 6 A(u) ] Axa and use (1.8) to complete the proof.

Q.E.D.

Consider next a morphism

(v,¥,1) : (B' +C' - A) +» (B~ C~A)

16
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between A-extensions £' and E. Assume that E' and € admit structures

4"
(X,f') and (X,f) and that (xa}ael is a well ordered homogeneous basis for

X such that :

i) dc,f'(l ] xu) cB' @ A<°

and
.. ' v "
ii) JYf'(1 @ xa) - f(1 0 xa) € £(BOA ).
1.9.- Lemma.- With the hypotheses above :
i) There is a second structure (X,f) for E such that
' -
JE'(1 8 x )= £(1 8 x ).
ii) With respect to this second structure E satisfies (1.4) and
¢ is given by ¢ = y 0 1.
iii) If ¢ (resp. w') is an isomorphism then ¢ (resp. 0‘) is an
isomorphism .
Proo
i) Define f by f (1 8 xa) - Pf'(1 @ xa). Then
- [ - n'f' -
pf(1 @ x ) pdf' (1 @ x) =o'f (1ex) =x
and

~ ~
£(1 0 xa) - f(1 0 xu) e f(B @ A(a)'

It follows that (X,f) is a structure on £ (lemma 1.7).

ii) Note that

d f(1 @ x ) = dcdf (1 ex)
- 0dc,f'(l 8 x,) ¢ ¥(B' @ A<u) Cf(BOA ).
iii) We may assume by i) and ii) that both E' and E satisfy equation

(1.4) with respect to (X,f') and (X,f), and that V=vy 0.

17
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Thus if ¢ is an isomorphism, so is . Now assume w. is an
isomorphism. It is enough to show that (y @ 1) : B' @ A *BS® A induces
a cohomology isomorphism for each a. If not, let o be the least a for

which it fails. Since w. is an isomorphism and

] = 11 ' . = 11
B' @ A<<x lim B' @ AsB ; B#O A(q 1_1' B 6 AsB ,
B<a <a

a direct limit argument shows that (v 8 )" : H(B' @ A_) = . HB e A

Set E' = B' @ A<a , E=B @ A(a , Y=V ®1: E'>E,

Then ¢y ® 1+ : B' @ Asa + B @ A<u can be identified with
Yy®1:E'"@@Ax ~E® Ax .
a a

Moreover d'x € E', dx € E.
a a

[ ' j - b
Set F ngk E' @ A'x  and F, {j‘k E® Ax .
Then E' @ Ax = lim F', E ® Ax = lim F, and so we need only
a — 'k a — 'k

prove that (y @ 1).I : H(Fi) = H(Fk).
Define (for k = 0,1 when deg X is odd and for all k when

deg x is even) projections FL + E' (and Fo~ E) by

k .
J
J 6. 8x — o .
j=0 ] a k

Then we have the commutative row exact diagrams of differential

spaces
O—Fk_]——’Fl'(—’E'——»O
‘y (- I} [V (- l Y
0-—»Fk_l—~Fk—'E — 0
Now the 5-lemma, plus induction complete the proof. Q.E.D.

18
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1.10.- Pullbacks.- We consider now a KS-extension B > C * A which
satisfies (1.4) for a structure (X,f) and a well ordered homogeneous basis

{x }

for X. Suppose in addition that
a ael

Vo (B'tdsv) — (B'dB)
is a homomorphism of augmented c.g.d.a.'s such that w' is an isomorphism.
1.11.- Proposition.- There is a KS-extension B' > C' + A and

a morphism (y,{,1) : E' +E such that

i) E' admits a structure (X,f') such that
1
dc.(l ) xu) e B' @ A<a

and

$(1 @ xu) -18 x, € B 6 A<u , a e 1.
ii) W' is an isomorphism.

Proof.- We set C' = B' @ A, f' = 1. We have to construct d

c.
L]
and ¢ so that B' - C' £, A' is a sequence of c.g.d.a.'s and so that

¢ is a morphism of extensions with i) holding.

We induct over I, as usual, starting off by setting ¢ = ¢y in B'

and d., = dB' in B'. Now assume ¢ and d are constructed in B' @ A(u

C c'

so that ¢ and dc. satisfy i) for all B8, B < a. Then by lemma 1.9,

- ' H
¢ : H(B' @ A(u) —— H(B ® A(Q).

But dc(l (] xa) is a dc-cocycle in B #® A<° . Thus there is a

d_,-cocycle ¢ ¢ B' 8 A and en element N ¢ B 8 A such that
C <a <a

19
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dg(1 8 x ) = ¥(®) - 4.

In particular, o, Qe Ay

Extend dg, and J to B' @ A, by setting
dc.(l [*] xa) = ¢ - dc,(l 8 oQ)

and

JQ1 8x)=18x + 2 - (1 8 o9)).

Then i) holds by definition. Straightfoward calculations show that

n

o0 =¢' 8, u)dc,-dcu), (' 1) 0dg, =d, o(c'® 1).

c'

The existence of de and ¢' in B' @ A now follows by
induction.

Finally, lemma 1.9. yields ii). Q.E.D.

to this structure and (X,f'), 0- vO 1 and

dc(lexa)ﬂBOA<u ;dc,(IOXB)cB °A<u

Proo{ :‘Apply lemma 1.9. Q.E.D.

1.12. - Example.- Suppose E:B+C+A is a KS-extension,

and HO(B) = k and Hq(B) =0, 0 <q<m (where we allow m = =).

m-l) m

Let B°c g" satisfy e dB(B « B and define a sub. c.g.d.a.

B" = k, B9=0, o0« q <m, " - space just chosen
B89 - Bq, q > m.

Then H'(B) = H'(B).

20
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Now we can apply the corollary to prop. l.1l to obtain a structure

(X,f) on E such that
i) Bea is d -stable
ii) dc(l e xa) € B#® A<a

and
iii) H"(B e a) —— H"(B @ A).

This will be called a normalized structure for E.

1.13. - Corollary.- Assume H(B) is connected and let B,

(X,f) be as above. Then
(1.14) dc(lea)-ledAacs"eA, acA.

- +
Proo§.- The left hand side is in (B @ A)N ker o= B 0 A.

Q.E.D.

1.15. - Conollany.- Assume H(B) 1is I-connected and let B,

(X,f) be as above. Then

1.16 - N j )
( ) dc(l @ a) ) dA ae€ Lis2 B A, aeA

21



Chapten 2

Reduction to a minimal extension

2.1.- Introduction.- In this chapter we consider a KS extension

E: B TN c -2+ 4

with augmentations €p* €¢ and Epr We always assume HO(C) = k ; then

HO(B) = k as well. However, we do not suppose HO(A) = k.

Recall from (1.1) the projection Byt ker €™ Q(A). If (X,f)

is any structure for E then N restricts to an isomorphism

g, X — Q(A).

Hence if ¢ € ker €\ (-A*x) we may regard ¢ as a polynomial
with no constant teim in the elements of X, and then cAO can be interpreted

as the "linear part" of ¢.

Observe that a differential Q(dA) is defined in Q(A) by

Q(dA)cA - zAdA .

The object of this chapter is to prove

2.2.- Tneonrem.- There is a minimal KS extension
~ ~
3 N ~
B—t— c-2—
. ~ A
and a contractible KS-complex R = AT ® AdT such that : if C@®@ R and A @R
denote the tensor products (as augmented c.g.d.a.'s) then there is a

commutative diagram of homomorphisms of augmented c.g.d.a.'s

Teol A 5 e ~
B — CeRrR—"1 . A0R
Il alo =y
B c A
1 o
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in which the vertical arrows are isomorphisms.
2.3.- Canogégﬁg.- ¥ induces an isomorphism
v H
Q(¥) : Q(A) @ Q(R) — Q(A).

2.4.- Conollony.- E 1is minimal if and only if Q(dA) =0; i.e., if
and only if Im dA consists of polynomials with no linear term.

In particular the isomorphism of cor. 2.3 induces an isomorphism
~ H
Q(a) ——— H(Q(A) .Q(dA)) .

Proof.- 1f E is minimal it follows directly from the definitions
that Q(dA) = 0. Conversely, assume Q(dA) = 0. Then because Q(v) 1is an
isomorphism and R 1is a contractible complex we conclude that R = k and so
E is minimal.

Q.E.D.

The rest of the chapter is devoted to the proof of theorem 2.2.

2.5.- Conventions.- We fix a connected c.g.d.a. B C B such that
H(B) = H(B) (cf. example 1.12). By a normalized structure we shall always mean
normalized with respect to B.

If U= Ej>0 vl is a graded space, then we write

%p b]
U Ejap vl .

The spaces U)p, U‘p. Usp are defined analogously. Note that AUsp is the
free c.g.a. on Usp, while (AU)SP is the subspace of AU of elements of
degree sp !

If K is contained in an ordered set I then for a € I

K<a = {v ¢ K|y<al. Ksu' K>n' Kau are defined analogously.
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2.6.- Lerma.- Suppose Q(dA) = 0. Let (X,f) be a normalized struc-

ture for £ satisfying (1.4) with respect to a well ordered homogeneous basis

{xc}ucl' Then if q = deg X

(2.7)

where

«q
dA x, € (AX )<u . ael.

Moreover if ¢ € Clwl

(p20) is a dc-cocycle and
, B, >...>8 , and Y e Axsp, then
¢ is a scalar : ¢ € k.

Proof.- We show first that (2.7) implies the rest of the lemma.

In view of (1.14) it does imply that

(2.8)

a £q
dc(l ) xu) € B & (AX )<° R ael,

where q = deg X - Hence B 8 AX’Y s dc-stable, q=0,1,...

Now we recall that B @ A~ B ® A induces a cohomology isomorphism,

and s0 ¢ = & +dQ, with & ¢ BOA and Qc B ® A. Then on e AP c AX%P,

which is dA-s:able by (2.7). Thus dAp Qe Axsp. and so

b= ) o.x_ + v . v e AxSP

We may thus, without loss of generality, assume that ¢ ¢ Be A, and we do.

In view of (2.8) this implies that
dc(l 8 0d) = dc(l @ pod-0)
cd.(Be Ax¥P)

cB e Ax*P.

Again because of (2.8) we conclude from this that
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n
a.(18 J o.x )eB e P,
€ g 1

A degree calculation shows that each °i € Ax°, and so because

of (2.8)

Venx® , i=1,...,0

dcoi €B
1

(i > 1) we have dc(l ) xg ) € B @ AY. Together with the relations above,
i

Let YC X be the subspace spanned by the xY y Y # B‘. Since Bi < B

this yields
dc(l ] 0]) . (1 e xel) € B @ AY.
In view of the isomorphism

BOAX =B e AY @ Axg
1

we obtain dc(l e Ol) = 0, and so ’I € k as desired.

It remains to prove (2.7). Assume it holds for all a <y, some Yy
with deg xY = q. Then dc(l e xY) is a cocycle in B @ A<Y' Since (2.7) holds
for a < y we can apply the second half of the lemma to this cocycle. This gives

dAxY - odc(l ] xY) - Axa + I $.x + v,

18,
1 Bi<8l i

o £q
where X € k, oi € (AX )<Y'W € (AX )<Y .

Hence (since Q(dA) = 0)

0= Q(d)E,x = A,x, + § (£,0.) ,x
A" Ay AB‘ g.<B Al A

Bi :
171

It follows that ) = 0. Hence 02 is a scalar and so zero. In this way we find
all the oi are zero :
dx = ye (Axsq)
ATy <y’
Q.E.D.
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Again consider the KS extension E. Choose a normalized structure
(X,f) satisfying (1.4) with respect to a well ordered homogeneous basis
(xu}cel' It is easy to arrange that the following condition hold as well :

There is a disjoint decomposition I = J UJ'U H and a bijection
/: 3+ 3 such that

Q(dA)CA X, =Ty X ’ aelJ

(2.9) and
i’
Q(d)g, x =0 , aeJ UH
Note that necessarily @' <a, a € J.

We shall assume henceforth that (2.9) holds.

2.10.- Lemma.- There are elements z € ker €c (a € 1) such that
i)z -1606x ¢BOA .
a a <a

1i) zA P za = cA xu

iii) If a ¢ J then dcza is in the subalgebra generated by
<
-
B e A<u (deg z = Pa)'

(iv) If o € J then dcza Sz is in the subalgebra Eu defined as
<p
. = a
follows : l-:u is generated by B @ A<u (po = deg za) and by the

elements zB such that deg zB = publ and B < a', and by the

with 8 ¢ J

elements ze, dczB <«

Proof.- We assume zY has been constructed for y < a and cons-

truct z, - First note that if we change the definition of xg to oz, and

if we change the definition of f(l1 8 XS) to f£(1 © xe) =z, (8 < a) then we

obtain a new structure (X,f) and basis (xy)vc! for X which still satisfy
(1.4.) cf. lemma 1.7.

Moreover, the algebras A‘Y are unaffected by this change, as
are the algebras generated by Afs . Finally, it follows from ii) that the

elements CA xY are also unchanged, and so (2.9) remains valid, as does the

statement of the lemma for y < a .
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Thus without loss of generality we may assume that

(2.11) zB-leB . B<a ,

and we make this assumption henceforth.

Now write (J(a)' = {8’ € J'/8 < a}. Then (J(a)' c Jlu , but equality

<
may fail. Let K be the complement of J(uU (J<u)l in 1<a :

!
I, =J ud v

<a <

Let Y and U be graded spaces with bases {yY}YCK and

such that =d nd d = d .
{u_} uc at deg yY eg xY a eg uY eg xY

u
Y ye:J((x

Let A(U @ dU) be the free c.g.d.a. over U (= contractible

KS -complex) -cf. exemple 1.6. Set
W=U®dUu®Y and S = U 6 dU.
Then an algebra homomorphism
g:B8 WoBOA_

is given by g(b) = b, g(uy) =186 X g(qu) - dc(l ] xy) and

g(y =108 x .
)
2.12.- Lemna. 3 is an isomrphism.

PR004.- g is surjective. We need only show | ® xY € Img, vy« a.

Suppose for scme A < a with deg X =p we know that 1 @ xY € Im g
whenever deg xY < p or deg xY =p and y < A. Then we show 1| @ x, € Im g,
and the result follows by induction.

But |1 8 x ¢ Img by definition, unless A = u', some u € J(c.

But then lemma 2.10 (iv) shows that 1| 6 X, - g(duu) € Img; 1l.e. ; 186 X, € Im g.
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g is injective. Define o : AW = by ou = x_,
<a Y Y

o(qu) - xY . a(yy) - xy. Then

100

BOAW —=—+ B @A
<a

Moreover (g-180) ¢ = 0 if ¢ € B or U or Y. Now because

g(AW) C B 8 AW we can write
+
(g7180) du =160+ y s YeB 84
Moreover, ¢ € ker ¢, and by (2.9)

A

7,6 = ;Ap(g-lﬁo)qu

A
A CRIC RS
= 0.

It follows that

+
(2.13) Im(g-160)C B @ A<° + B © ker CA .

Now suppose g fails to be injective, and let Q(¥0) be in ker g.

Write
»

n-ibieoi~w

where bi e B® are linearly independent, oi e A9 W are non zero, and

b P b]
€ ). B @ AW+ B" 8 ). AW,
ve lip Lisq
In view of (2.13), and the fact that (180)Q = (180-g)R , we have
j P 3
68d) € ). B @ AX + B" 6 ). A°X .
(160) zJ’P 2J’q

Since this relation is also satisfied by (18)y it is satisfied by

Ibi ® 0¢. ; hence for each i

o0, ¢ NIx n ¥, A x-o,
1 J’q
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a contradiction.
Q.E.D.

2.14.- Conollary.- A differential, d, is induced in B @ AW by
-1 .. . . . . .
d=g dcg. It coincides with dB in B and with the originally defined d

in A(U e dU).

2.15.- Remark.-Since B @ A, is d.-stable, g restricts to a

homomorphism

g:BeAN-BeaA_,

which, by the proof of lemma 2.12, is an isomorphism. In particular,
B O AW is d-stable, and gd = dc§.
Now reorder I by putting B8<<y if deg x8 < deg xY or if

deg x_ = deg xY and B < y. This is a new well ordering.

8

2.16. Lemma.- dyv € BO®AS @ (AY)<<V' In particular
BOAS—L— B @ AS 8 AY —— AY

is a minimal KS extension (with Y having the differential d given by

dn = nd.).

Prooj.- We show first that for v ¢ l<u

-1
(2.17) g (16 xy) € B®AS @ (AY)<;y'

Suppose this is proved for all B<y. If y € J then g-](IOxy) =us and
(2.17) is clear. If vy € K, g-l(IOXV) =y, and (2.17) is clear.
Suppose Yy = u', u € J<u. Suppose deg x_ = p+l.

Then by lemma 2.10 (iv) g-l(l@xy) is in the subalgebra generated
by duu, i, elements of degree <p, elements of the form g-‘(lﬁx)) with

A<<y , and elements in AS. All these elements are in B © AS 8 (AY)((Y.
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Thus (2.17) is proved.

But now if y € K then by lemma 2.10 (iii) dc(l ) xy) is in

the subalgebra generated by Be Afs . Hence by (2.17),
dy_ = g-‘d (18 x)
Y c Y
e BOAS @ (AY)<<Y'

Q.E.D.

2.17. Proof of £emma 2.10 cont'd. Consider the extension of lemma 2.16.

Since S is contractible, the inclusion B B ® AS induces an isomorphism

of cohomology. Thus we can apply prop. l.11 to obtain a KS extension
(2.18) B+BeAY ~ AY

and a homomorphism h : B @ AY » B ® AS ® AY (of. c.g.d.a.'s) such that
h(b) = b, and
h(1 @ - 16y €BeAS e (AY
( v, Yy ) .,

and
D(18y) ¢ Be wy) .-

- - .
(D is the differential in B @ AY). Moreover, h is an isomorphism.

In particular we can write

(2.19) dc(l ) xu) = (gh)¢ + ch ’

for some QN € B @8 A<u and ¢ ¢ B @ AY, with D¢ = O.
Now the extension 2.18 is minimal by the definition of «<«<.

Hence obviously Q(d) = 0, so we can apply lemme 2.6 to ¢. We obtain

no = olya1 ‘L °nyen v,

where yE_ € Yp’l (p=deg xo). Bl > La. > B“ , Y € AYSp, and Ql is a scalar.
i
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We choose ¢ and Q so that either all the ’i are zero, or so that 0| $0

and B, is as small as possible.

Next recall that ;Ap(\ri.\rz) = 0 for \yi € ker €c

This yields

T,pg h(1 0y ) =z, x + E A, T,x, + ) AT, X, .
A Y ATy B "AB ;B A B
Be < Bo:J<cl U(J<a)
Hence
n
(tyegh)¢ = ] €(o) 08 hiyg)
is] i
(2.20)
BTN W BCE bgt %g * Vgt Xg
/
< 8¢J<°u(1<a)

if 01 $# 0. ( ¢ is the augmentation for AY.).

On the other hand, if all the oi are zero then
(2.21) (cApg h)¢ = O.

Now define scalars o (8 € 1<u) by

A B A8
Bd«:
We define (finally) the element z by
z = 18x -0+ ) 180y x, .
Bel
<a

Then i) and ii) are satisfied by definition. It remains to verify

iii) if a ¢ J and iv) if a € J.

Case | : a ¢ J. In this case by (2.9)

Ly ® d.(1 8 x ) =Q(d,)e, x = 0.
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Were Ql # 0 we would combine (2.20) and (2.19) to obtain

¢
T ! B
geK v J oY (J<o)

<B <

R ICRINER:

== L ot x

which implies ¢, = O. Hence all the Oi are zero (since B, € K by definition)

1 1
This implies that ¢ ¢ B @ AY?  and so (g h)¢ is in the
subalgebra generated by Be Afz . On the other hand, since all the oi =0,

(2.21) and (2.19) imply that Q(dA)cA p R = 0, whence

og = 0 . B € J<°

Thus

d.(1 0, x,).

d.z =d. (1 8x -Q)+ E
¢ “a (o a 8¢) 8<a c g8 "8

The first term on the right is gh(¢), while the second is also in
the subalgebra generated by Be Afz, by the induction hypothesis.

It follows that iii) holds for zu.
Case 2 : a € J. In this case
Tp 0 Gl @ x)) =gy X,

Thus were the .i all to vanish we would obtain via (2.19) and (2.21) that

X = Qd) g0 0] 4

that °l ¢ 0.

xe. » which is impossible. It follows

geJ- %8 °a
<a

Now (2.19) and (2.20) yield

G, X o =6 L, ox o+ ) uy L, X+ g 0, &, X
A% 1 %4 % » V8 A 8 8 a ¥s'
1 BcK<Blu J<° V) (J<°) 8eJ
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Since 01 # 0 we can conclude that ¢ = | and B] =a' .,

1
Next observe that

dz, = (gh)e+ J d(100,x).
c%a BeImc 8 %8

Since 0, = ], and Bl =q',

¢e-10y,cBenP.ioe Yf;f o AY® .

Hence
ne-10y,cBeonse [nwP+a’e Yf;’].

Hence

gh¢-186 xa. € Ea.

Let B ¢ 1<u' Then dc(l e xs) € Eu by definition if B8 ¢ J<a’ and
dc(l ] xs) € Ea by lemma 2.10 iii) . Otherwise (by induction). Hence

dz -186 X1 € Ea' and iv) is proved.

Ca Q.E.D.

2.22. Proof of theorem 2.2.

Let z, (a € 1) be the elements of lemma 2.10. As at the start of
the proof of lemma 2.10 we can change the definition of x, (a e 1) and of

f so that
£O1 8 x) =z , ael ,

while retaining the conditions of the lemma and formula (2.9). We do this.

Let V and T be graded spaces with bases (vv} and

yeH

{e } respectively, with deg v, = deg x, and deg eY = deg xY.

ey yeJ

Let AT ® AdT be the free c.g.d.a. over T and set
We=T®dT 6V and R =T @ dT.

Define an algebra homomorphism g : B ® AW+ C by g(b) = b,

g(eY) =10 xy, g(dey) - dc(l ] xy) and g(vy) =180 xy.
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Then lemma 2.12 shows that g is an isomorphism, while corollary
2.14 shows that the differentials dB in B and d in AR extend to a
differential d in B ® AW such that gd = dcg.

Reorder I by putting B8 << a if deg x_ < deg x, or if

8

deg Xg = deg X, and B < a. This is a second well ordering. It follows from

lemma 2.16 that
de € BO® AR © (/\V)<<Y , y € H.

Hence if we endow AV with the differential d given by nd = dn , where

mn : BO® AR ® AV » AV is the projection, then
B8 AR—— B8 AR 8 AV—"n AV

is a minimal KS extension.
Since the inclusion B + B ® AR induces a cohomology isomorphism,
prop. 1.11 yields a minimal extension
N N
B—— B 8 AV —2— AV,

where, (if D 1is the differential in B 6 AV)

D(1 ® ",) € B (/\V)<<Y , vy € H.

We also obtain a homomorphism of c.g.d.a.'s
h : B®AV -+ B @ AR 8 AV

such that

h(b) = b

h(l v') -10 vY € BO® AR SO (AV)<<Y . y ¢ H.

Put (B @ AV, D) = (C, € and (V3 = K.
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Then the above minimal extemsion becomes

N
B—- § 2%

Extend h to a homomorphism of c.g.d.a.'s
A
h: C®AR——— B 8 AR 6 AV

by putting h(eY) = ey. eY € T. Lemma 1.7 implies that h 1is an isomorphism.
Finally, let ¥ =goh : C 8 AR —=— C.

Since Y is the identity in B it carries the ideal generated by : (ker :B)

isomorphically to the ideal genmerated by i (ker cB). These ideals are

respectively ker ?; ® AR and ker p. Thus Y induces an isomorphism of

c.g.d.a.'s ¢y : X @ AR —=— A such that the diagram of the theorem commutes.

Q.E.D.
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Chapter 3

The structure of a minimal extension

3.1.- Introduction.- In this chapter we consider a minimal KS exten-

sion

E:B—ie c—2» 4

with augmentations €gr € Epc We assume Ho(C) = k, and it follows that
HO(B) = k. We do not assume HO(A) = k, and indeed this may fail to be the
case.

We shall show how to decompose E into a countable family of

elementary extensions natural with respect to morphisms of extensions.

3.2.- The canonical filtrnations.- Define c.g.d.a.'s C

p’n
2 2

(p 2 -1, n20) contained in C, and subspaces Z: [ Cn (p 20, n0)

inductively as follows :

i) C_l.o =B
s n -1 n
ii) Zp =dc (cp—l.n) N (ker :c)

cos n
iii) cp,n subalgebra generated by cp-l,n and Z, p20, n20
iv) C-l,n - g cp,n-l' n > 0.
Thus for each n,
c ... ¢c < . C
Cin€ %,n Coun €
and
n n n n
c .
z,cz c... C Zp ... C (ker :C)
We set
2" v 2” , n>0
p P
Now recall the projection N ker €, Q(A) (from 1.1) and define subspaces
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Q:(A) c Q"(A) by

n n
QP(A) N o(Zp) s, P20, n3o0.

Thus
Q) ... CQ:(A) c ... Q.
Next, for p 20, n 20 let I cc be the ideal generated
p,n p,n
n . . . n .
by Cp—l,n ker €c Since CP’n 1s generated by ZP and Cp-l,n’ and since
n .
dc(Zp) c cp—l,n' it follows that
d.(C (=3 ¢ .
C( p,n) pPsn
Set
(3.3) A =

c /1 .
P,0 p,0 p,n

Then (giving AP n the zero differential) we obtain a sequence of augmented

c.g.d.a.'s

p,n : CP“.H pPHn p,n * P20, n20.

The main goal of this chapter is

3.4.- Theonem.- The extension E admits a structure (X,f) in

which each x° is decomposed as a direct sum X" - Ip)O X: , such that with
respect to (X,f)
. X ;
i - n [} > 0, 2 0.
i) ZP Cp-l.n ker € o (! P) , n P
. <n
i) c =BeAXe x:p) , n20, p2-l
iii) ¢, : xX® —= Q") n20, pzo.
A ‘p p » ’

Before proving the theorem we establish some consequences.

3.5.- Conollary.- The sequences Ep o Aare elementary extensions.
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Proogf.- Use the structure of theorem 3.4 to write
0 Ax" » P20, n2>0. Since 1 @ X: [ Z: we have

4.1 @ x:) SCpy

Moreover I = (C

n i i -
- o=1,n ker ¢.) © Ax:. This yields the commuta

tive diagrams

8 AX" ——— Ax"

C
,,,,,,,,/" pol.n P

(3.6) Cp_l,n B

p,n b P,n

Q.E.D.

. n
3.7.- Conollarny. Fix n >0 and p 2 -1. Let Q_](A) 0. Then
the following are equivalent :

n

N n
D QW = em.
ii) Q%(a) = Q:(A).

iii) 2® c ¢

p+l Tp,m’
iv) c-l,n#l - Cp,n .
Prood.~ In view of theorem 3.4 we have iv) <=> ii) and 1iii) <=> i).

Clearly 1ii) => i). On the other hand, if iii) holds then by definition,

n n L. . L.
CpOl,n Cp,n' and so ZP’2 Zp‘l' Continuing this way we obtain iv).
Q.E.D.
Now observe that dc restricts to a linear map
- n n+l
: —_— n .
dc Zp Cp-l.n ker d.
This map induces (in the obvious way) a linear map
o :2°/a — ker™ ' ) - ™.
pP,0 [ Cp-l n N ker e p-l,n
,
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On the other hand the inclusion C° N ker dc -+ Zz (n > 0) induces a linear

map
. n n n
Bn : Coker(H (c-l.n) - H (C)) » ZO// c®
-1,n
To simplify notations write
n+l n+l n+l

Kerp Ker(H (Cp_"n) = H (C) » m20, p20
and

Coker" = Coker(Hn(C_l'n) + H'(0) » n>0.

’ N

3.8.- Proposition.-

i) The homomorphism H(C

-1 o) T H(C) is an isomorphism in degrees
i

less than n and injective in degree n. If n = O it is an isomorphism in
degree n.
ii) The homomorphism H(Cp.n) + H(C) 1is an isomorphism in degrees
< n, if p »>0.
iii) The sequences
O*Cokern—B’Z:/cl-\lnL‘Kergﬂﬂo , n>0
’

are short exact.

iv) The linear maps

n
a 1 2 / n n = n+l
[ 1Y) P cp-l.n ker cc — Kerp
are isomorphisms if p >0 or if p=0 and n = O.
Proof.- Theorem 3.4 ii) shows that C: " cd it q < n. It follows
»

that H(Cp n) + H(C) 1is an isomorphism in degrees < n and injective in degree

n. Moreover, by definition if n > 0O
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" A ker d,czhcc s Pp20.

psn
n 2 n : . s
Thus for p > 0, H (Cp n) —— H (C). This proves i) and ii).
’
Finally, iii) and iv) follow at once from the definitionms.

Q.E.D.

3.9.- Conollary.- The homomorphism it H(B) - H(C) is n
regular (i.e., an isomorphism in degrees < n and injective in degree n+l)

if and only if A is n-connected.

Proog.- 1f A 1is n-connected then BP = cP (p £ n), whence
i* s n-regular.
Conversely, suppose i¥ s n-regular. We show that B = C_l ael
»

In view of theorem 3.4 ii) this implies A 1is n-connected.

Indeed if we know B = C_ (some m < n) then our hypothesis

l,m
. . m+] m ces :
implies Kero = 0 and Coker = 0. Thus by prop. 3.8 iii) and iv)

Hence by cor. 3.7 B = C—l,m - C-l,m*l . Q.E.D.

3.10.- Conollary.- The structure (X,f) of theorem 3.4 can be chosen

so that LX* is dA stable. In particular, since dA(Xo) = 0 we obtain

H(A) = AX° @ H(Ax’,dA).

E&ggﬁ.- Let (Y,g) be a structure satisfying the conclusions of
the theorem. Let EC B @ AY’ be a sub c.g.d.a. such that E 1is connected
and H(E) = H(B 6 AYO). Use the procedure of prop. l.1]1 to construct a new
structure (X,f) such that

i) x°=v° and £(1 @x) = g(1 %), xcX.

ii) There are isomorphisms of bigraded spaces,
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o : x: = Y: (n > 0) such that

x = o(x) € " e Y:P » X € X: .

and

£(1 8 x) - g(1 @ ox) ¢ g[B @ A(Y"0 y:P)] , x cX:

iii) If we use f to write C = B ® AX° 8 AX', then E @ AX' is
dc-stable.
<n n n n
Then f(B ® AX'" @ AX" ) = g(B @ - > =1, n > 0),
en f( sp) g( AY @ AY‘p) Cp.n (p2-l,n20)

and

£(1 @ x§) cg(le Y:) o =2z", n>o.

p-l,n p’
It follows that i) and ii) of theorem 3.4 are satisfied by (X,f).
Part iii) follows at once from i).
. +
Moreover, if x € X then
4. £01 @) ¢ £(E @ AX") = £(1 @ AX") + £E* o AX")

c£(1 @ Ax") + £(8* @ 2x° 0 AX").

It follows that d,x ¢ of(1 @ Ax*) = ax’. Q.E.D.
3.11.- Con0££g§1.~ Assume H(B) 1is l-connected, and that i' is

I-regular. Then

W
o

Q" =y, n

Proof.- First note that A is l-connected by cor.3.9. Let BcB
be a l-connected sub c.g.d.a. such that H(B) = H(B). Using the method of
prop. 1.11, choose a structure (X,f) satisfying the conclusions of theorem 3.4
so that B @ AX is d -stable.
- <n . .
Then B 6 AX® is l-connected. Hence for x € X" dc(l 8 x) 1is

a polynomial in elements x; with 2 g deg x, ¢n and elements bi € B with

2 ¢ deg bi' Since deg dc(l ® x) = n+l this yields

41



S. HALPERIN

d(1ex che Axsl

Hence 1 8 X"¢ Z: and so

Q"(a) = ¢

n n
RIEEFE R NI

Q.E.D.

3.12.- Remark.- The extension E is called nilpotent if

dim Qn(A)< © , n=0,1,2,... . In view of cor. 3.7 this is equivalent to

(3.13) dim Q:(A) <= all n20, pz20

and

(3.14) For each n 2> O there is some p 2 O such that

n
Q ., (a) QP(A).

n
p+l
If the h&po:heses of cor. 3.11 hold then (3.14) is automatic and

nilpotence is equivalent to (3.13).

3.15.- Conollary.- Suppose H(B) has finite type. Assume A is
connected and (3.14) holds. Then H(C) has finite type if and only if £ is
nilpotent.

Thus if the hypotheses of cor. 3.11 hold (and H(B) has finite type)

then H(C) has finite type if and only if £ is nilpo:ent.'

Prood.- Consider the elementary extensions Ep o Diagram (3.6)

_ AN n
shows that Q(Ap.n) z QP(A) / Qp-l(A)'

Now suppose dim Q:(A) < e for all n and p. Then so does

Q(Ap,n)' and hence Ap,n has finite type. It follows that if H(Cp_"n) has
finite type, so does H(Cp n)' Since (3.14) holds, cor 3.7 implies that

s
C*l.nol - Cp.n some p. Now by induction we obtain that H(Cp‘n) always has

finite type. But by prop. 3.8,
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u“(c_]'nﬂ) = H'(0).

Hence H(C) has finite type.

Conversely, assume H(C) has finite type. If H(Cp_] o) has finite
’

type then prop. 3.8 (iii) and iv)) shows that

(3.16) dim z“/n <o .
L N ker ¢
p-l,n c
Hance (cf. Theorem 3.4) dim Q;‘(A)/Q:_l(A) < o, and so dim Q(Ap n) < o, It
’
follows in this way that H(Cp'n) has finite type. Since c-l,nﬂ - Cp,n »

some p, H(

c-l,n#l) also has finite type. Thus each H(cp,n) has finite

type, and so each Qn(A)/Qn (A) has finite dimension.
P -l Q.E.D.

We turn now to the proof of theorem 3.4. It proceeds via several

lemmas.

3.17.- Lerma.- Let (X,f) be a structure for E and let (xu}ad
be a well ordered homogeneous basis for X such that (1.4) holds and

deg xu<deg Xg => a < B. Then
iy1ex"cz" , nzo0

ii) B @ Ax¥" = ¢

“tmer 0 P27
iii) v Qt(a) = Q"(a) , n:o0.
p P
Proog. -
g
1) Assume | 6 xe € 2 , B <a, where ns = deg xB. Let n = deg xo
Then dc(l L] xa) is a polynomial in elements from B and elements | 6 xg
i
(i= 1,...,m) with deg xg = ng £ n. By hypothesis for some p; (i=1,...,m)
i
and p > p.,
! n.
18x, €2 ‘cc .
i Pi P
H d.(18x)ecC dso 18x e¢2" ¢ 2"
ence d. o p.n’ and s o pel .
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ii) is generated by B and Z ",

c-l,n+l mgn

Since z"c c"c B @ AX*™ c B 8 AX®", we have

£n
C)ne © B O AXT

The reverse inclusion follows from i).
iii) Apply i). Q.E.D.
Now suppose (Y,g) 1is a structure for E, and (ya}utT is a basis
for Y such that the hypotheses of lemma 3.17 hold.
If deg y, =n we will say «a € Ip a if p 1is the least integer such that
»

for some scalars AB (B < a)

n
A E Ag Gy Vg € Q).
Lemma 3.17 iii) shows that

(3.18) 1= O IP-“ R
pn

this union is disjoint by definition. We define Y: to be the span of the Yo

with ae IV .
P

3.19.- Lemma.- For each p 2 -1 and n 2 0 an isomorphism
n >n, 2
: C e A(Y [ 2B ¢ — C
8.0 pon ( »p )

is given by gp n (¢ 0Y) =¢ . g(l @ ¥). Moreover, with respect to this

isomorphism
n >n
dc(l ) ya) € Cp'n ] (/\(Y)p oY ))<° ,
. n >n
if Yo € Y;p ey

Proof.- By induction. When p = -1, the statement follows at once
from lemma 3.17 1ii). Now we assume it holds for some pair (p-l,n), and prove

it for (p,n).
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To simplify notation denote Y?p ey ™ by U, and write

allgq
Then (ya}ueJ is a basis for U. Use 8pm1,n ©° identify
(3.20) Cpnpyn @ MU= C.

Let (Ep-l n.d) be the c.g.d.a. defined by
’

Ep-l,n - C/ ideal generated by

Cp-l,n N ker €
Then by hypothesis
(3.21) dc(l ] yc) € cp-l,n ") (AU)<° , aeJ
and so
(3.22) c LN BN

is a minimal extension.

3.23.- Subfemma.- Llet ¢ ¢ Z: and assume ¢ ¢ C:_l 0" With the
—_— ,
notation above, for some a € J,
o= A(108y)+Y,
where ) 1is a non-zero scalar and Y € C e (AU) .
p-l,n <a
Prooj.- We distinguish two cases.
Case ! : n=0 . Choose the least a such that ¢ ¢ C 8 (AU) .
=aee o0 . p-1,0 <a
Write
cp-l,O e (/\U)SCx - Cp-I.O ] (AU)<° e I\y°

and note that by (3.21) Cp_"O (] (AU)<° is dc-stable and contains dc(l 8 yu)'
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Now ¢ has the form

o .
i o o
o= J o oy ¢. € C e (AU
im0 a ’ i p-1,0 <a
where om $#0 and m > 1. (Note that each Oi has degree zero).

Applying dc we find that

m-| .
m . 1
de @y + iZo[dcoi+(1+1)oi 4.1 @ ya)] ®y,€C 10"

This implies that dCOm = 0 and so (because H°(c) = k) Om is a

non-zero scalar, A. Were m > | we would also have

d.(e _ +m ey ) = 0

which would imply om-l +m)\ O Y, € k; i.e., A =0. Thus m=1 and so

¢ =2(1 6 yu) + 00 with 00 € Cp_"o ] (AU)<a'
Case 2 : n > 0. Again choose the least a such that

[ 23 e (AU)‘Q. Then (for degree reasons)

cp—l.n

¢ = Oo [} Yot Y .

where ¢ and Y belong to C ® (\U) , and ¢ _ is a non-zero element
o p-1,n <a o

of degree zero.

As in case | this yields

(dc OJ Oy, *+ o - dc(l (] ya) +v¥eC ,

p-l,n

whence d_ ¢ = 0 and so ¢ is a non zero scalar.
C o ° Q.E.D.

3.24.- Proof of Lemma 3.19 cont'd.- Let K be the set of indices

a € J such that for some Y ¢ C ® (AU) ,
Qa p-i,n <a

10y +VY ¢ Zn .
a a P
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Denote 1 @y +Y by z and set w =n z . We extend the definition by
a a a a a
setting v, " Y, (aeJ but a ¢ K).
By lemma 1.7 a new structure (W,h) for the extension (3.22) is

given as follows : W has as basis the Wy o€ J and

z ,aeK
h(l @ wu) =

ey othervise.

Moreover, we have

(3.25 dch(l ") wa) - dczu € cp-l.n . a e K,

and

(3.26) dch(l ] wu) - dc(l ] ya) € C 0 '] (AU)(G, otherwise.

p-l,
N
Let H: be the span of the v, (a € K) and let U be the span
of the Yo (e €eJ but a ¢ K). Then
\
weuweu.
P

Since h : C n ") (AH)<a —— C

1 e (AU)<°. a € J; and since
p— 1]

p-l,n
“N
(W ¢ AU’; o () , aelJ,

it follows from (3.26) that

N
(3.27) 4 h(1 @y) eh(C_ o Aw: o (A)_ ). aeJ but afk.

ln
Next observe that sublemma 3.23 yields

n_ .n n Wy
(3.28) ZP Cp-l.n ker € o h(l ® p)

m .
Since C is generated by B and 2" @ zm Z° , we obtain
p=l,n p-1 <n
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.2 8 = Q" .
(3.29) CA p(Cp_l’n N ker ec) Qp-l(A)
We show now that

K=1
p,n

First suppose a ¢ K. Then z =108y + V¥ ¢ " , where
[ a a P

Yu € Cp-l,n ] (AU)<a. Since, clearly, Wa € ker € (3.29) implies that

G,y + L oA g,y € QA .
A’a B<a B A B P

Hence ae€¢ Y 1 . But also a € J, whence a € I :
qsp q,n p,n

KC1 .
p’n

On the other hand, suppose o € Ip ' Then

CpYa * A o
A gea '8 %a Vg € QP(A)'

It follows from (3.28) and (3.29) that

n n
Q,(A) = ¢, o h(1 e wz) * Q. ().

A

Moreover, for vy € K,

h(l © - 1 6 + v
¢, o h( wY) N o( yy) P v

A
syt L O fa Yt a8y e

Y

n
where CA QY € QP_'(A).

This yields

.
TR ) Xg Ca Vg * > tY(LAyY + J e g,y b e _ (a).

a
B<a Ye u<y

Suppose a ¢ K. If a >y for each y ¢ K such that N # O, then this

equation shows that
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g,y + L Aoy, e Qt (A).
NOMN I NSRS

This would give a e tU I _, which is impossible.
q,n
q<p .
But if vy > a for some y € K for which T $# 0 we conclude in
the same way that the largest such y is in \J 1 , which is equally

q<p q,n
impossible. Hence a =y, some y ¢ K ; i.e.

Since K =1 ,
p,n

A
U=Y" oY"

>p

Moreover, (3.28) shows that h carries Cp—l n ) AU? (isomorphically) onto
»

Cp ' If we denote this restricted isomorphism by h then

- -1, n >n
g8, ,=ho (h®1) CP n® l\(Y)p ey ) ~C.

Hence gp n is an isomorphism.

’

. . n >n
Finally, if yu € Y)p ey then

sp,n(] [} ya) = h(1 yu),
and so (3.27) reads

n >n
dc 8, o1 @) € gp.n(Cp'no[A(Y Lo PR

<a

3.30.- Proog 0f theorem 3.4.- Consider the spaces U: constructed

in sec. 3.24 above and set
L:-h('OV?)CC. n0, p20,

(where h is the isomorphism depending on p and n defined in sec. 3.24).
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Then formula (3.28) reads

n_ .n n
(3.31) Zp cp-l,n N ker €c @ Lp .

It follows that the spaces L: are linearly independent ; denote their direct

sum by

n n n
L Epzo Ly € C" Niker ..

Let L = Inzo,pao L: C C (direct sum). The inclusion L& C induces

an obvious homomorphism

y:BOAL™C

We show that ¢ restricts to isomorphisms

px-1,
<n n =
: BO =
Yo ML O L) — C o n20.
When p = -1 and n =0 this is true by definition.

1f it holds for some n and all p then by direct limits it holds for

¥

Thus we may assume p 2 O and that

b-1,n is an isomorphism, and
’

-1,n+1"’

have only to prove that is.
p,n

But in the notation of sec 3.24 we have an isomorphism
h:c e AW —F— 1 .
p-l.n P p,n

It restricts to an isomorphism

W —— 7,

n
P P
Moreover, the diagram
Be AL eL") e A"
<p P
¢
ony”! §
wp-l,n
c e a" c
p-l.n P E p,n
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commutes. Hence WP n is an isomorphism.
»
Since each ﬁp n is an isomorphism, so is . Thus p restricts
’

to an isomorphism b i AL ——s A, which carries A*L to ker €y

Define X = p(L) and X:-;(L:)-

Define f by
f(1ex) =91 ep ' , xex
Then f restricts to isomorphisms

f:BoAx"oex") ¢ .
£p PN

Moreover formula (3.31) reads

n o .n n
Zp (ker ec ! Cp—l,n) e £(1 0 Xp).

Thus parts i) and ii) of theorem 3.4 are proved. Part iii) follows at once

from i).
Q.E.D.
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Morphisms of extensions

4.1.- Intrwoduction.- In this chapter we consider a morphism-
v -
(¥,9,a) : € » £ Dbetween KS extensions :

v

v
. . .
2+ &L+ A and €:B—-—c-2—a.

T<
wC

We assume HO(E) =k = Ho(c). All augmentations are denoted by €.

Note that a linear map Q(a) : Q(Z) + Q(A) 1is defined by

Q(a) o ¢

=, 00

X

It satisfies Q(a) o Q(dy) = Q(d,) o a.
. A A

v
Henceforth we assume that E and E are minimal, and we use the

notation developed in chapter 3. Then our morphism induces worphisms

tp,n - € 0 (p 20, n20), written
v v v
. C C A
-1,n p,n pP.n
ap-l,nl ap,nl lap,n
C c A ’
p=l,n p,n pP,n

where Jp n is the restriction of V.
Moreover ¢ restricts to linear maps i: - Z:, and hence induces

linear maps

z P /En N ker ¢ P /Cn N ker ¢
p-l,n p-l,n
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S . . .
Further note that ¢ restricts to a linear map

p-1l,n
Y n+l n+l
GK“ : Kerp e Kerp », mn20, p 20,
while ﬁ. factors to give a linear map
) 'CO{(etn—’Ck n >0
Coker ° oker , n .
Clearly the diagrams
v v v
0 — Coker” ——— 27 /x —— ke —— 0
¢n
-1,n
(4.2) wCoker 021 IaKer
0 — Coker" -»z::/n —— ker?”! —— 0, n>o0,
-1,n
commute, as do the diagrams
v ~ v
z; _— xer;‘”
e N Ker ¢
p-1,n
(4.3) J, Ver
AN —_— l(er“M , p>0 or
e : ;
Cp-1,n" Ker e p=0, n=0.

Finally, observe that the linear maps

n n
1 2 —— (A
8P P Qp )

factor to yield isomorphisms

—— ")
N Ker ¢ F /Q“ (A)
n p-1
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Clearly Q(a) restricts to linear maps
G+ G+ Pea.
P P

Hence it induces maps

v
) 2 Q) . —— Q) ;
4 /qp_l(b % /&,

nv0, p20U. (lote : we set Qr_‘l(A) = = Qfl(x)!) the diagrams

5:/ _ Q:(K)/
E:-l N ker € Q:_l(X)
(4.4) Y Q(a)
,n — an
Lp/n. < QP(A)/n ’ nx0
Cp—l.n N ker ¢ Qp_l(A) p20

commute.

Our main aim is to prove

« « . .
4.5.- Theonem.- Assume that and V are isomorphisms. Then a

is an isowmorphism and each Q:(a) (n 20, p20) is an isomorphism.
We also prove :
; . . . C I .
4.6.- Tneonem.- Assume ¢ is an isomorphism, and ¢ is an isomor—

phism. Then ¢ 1is an isomorphism.

4.7.- Remark.-
1) We remind the reader we are dealing Wwith minimal extensions.

2) Further isomorphism theorems are established in chapter 7.

4.5.- Lerma.- Assume that the morphism (v,¥,a) satisfies that

each Q:(u) is an isomorphism. (We do not assume 0’ or w' is an isomorphism.)
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v
Then a is an isomorphism. Moreover E and E have structures
vV Vv
(X,f) and (X,f) which satisfy the conclusions of theorem 3.4 and with respect

to wnich
¢=y0a.

PROO§. -
It follows from (4.4) that each wz is an isomorphism. Now let
v

v Vv
(X,f) and (Y,g) be structures for E and E which satisfy the conclusions

of theorem 3.4. Then

b -(E“ 0 ker c)o b ) i:)

P p-l,n
and
2t -{cn N ker :\0(1 e Y"! .
P ypl,n [ pl
Hence an isomorphism o : i: ——E——’Y: (n 20, p20) is defined
oy
- v n v n
- n K .
V(1 8 x) 1 8 ox € Cp-l,n ker ¢ , X € kp
Clearly (apply ¢ )
+ <0 ¥n
a(k) -oke A (Y @ yfp) , X e x2.

This implies (same argument as in lemma 1.7) that o is an isomorphism.
ilow set
ook and X=X .
P P n,p p

Then A = AX. Define

f:BO®A~C
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by f(b) =b and
£(1 @ x) = Y(1 @ a-lx) N x € X.
It follows that

f1ex) -1080a '(x) e

N ker ¢, x e X°.
P I,n . P

Because o© u-l : X: = . Y: this implies (again as in lemma 1.7) that f is
an isomorphism. It also implies that (X,f) satisfies the conditions of theorem

3.4. It is clear from the definitions that f converts § to v @ a.

3.E.D.

v
4.9.- Lemma. Suppose t and E are elementary extensions, and

w' and Q(a) are isomorphisms. Then 0- is an isomorphism.

Proog. -

Since g and t are elementary,
n, v n, v n n
q (A) = QO(A) and Q(A) = QO(A). n 2 0.

It follows trivially that each Q:(a) is an isomorphism. Thus by lemma 4.8 we
vy vn v ven
can choose structures (X,f) and (X,f) such that dc(l ® X)) €CB® AX ,
4.1 @ ) cB8M", and ¢ = 6 a.
Now tie method of proof of lemma 1.9 shows that ﬂ' is an
isomorphism.

Q.E.D.

4.10.- Proog of theonem 4.5.

We shall show by induction that each 0; n and each Q:(a) is

an isomorphisu. Indeed if 0; n is an isomorphism for all p, then

« . * . . .
- lim ¢ is an isomorphism. Thus we may assume that for some p 2 O,
-1,n+} = "p,n
n 30, ﬁ:_l o and Q:_l(a) are isomorphisms, and we have to show that
’

) and Q:(a) are isomorphisms.
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. * \ . . :
Since wp-l n 30d V¥ are isomorphisms it follows that
’
L von+l = n+l
w‘“ H lerp ~=— Ker

and (if p=0, n>0)

v -
wc«:ker : (;okex":l —=— Coker".

Thus (4.2) and (4.3) show that

Yn n
Z ———y Z
® feo P /e
N ker ¢ c N ker €.
p-1l,n p-l,n

¥, :
Hence (4.4) implies that

Q% (a)

== . 0¥ z n
Q(a) : QP(A)/ . — QP(A)/ .
Qp-l“) p-1

We have assumed Q:_](u) is an isomorphism. It follows from the
equation above and this that Q:(u) is an isomorphism.
v
Next use structures (X,f) and (x,%) satisfying the conclusions

of theorem 3.4 to write

n v 4 vn
o =C ® AX_ and C =C d AX .
p.n p-l,n P pP,n p-l,n P

It follows that o and o induce isomorphisms
PN pP,n

,n

LP/ . = xﬂ
C N ker ¢ P
p-l,n

v
(and siwilarly for &), where X: is considered as a subspace of Ap o

v
If we compose these with the projections onto Q(Ap n) and

Q(Ap ) we obtain isomorphisms
’ £
2. A ) and 2° .0 )
-_— an —
pyn P N |

’ /Cn N ker ¢ "

2:
/En N ker r
p-l,n p-l,n
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These convert wz to Q(‘,’p,n)' and so Q(up.n) is an isomorphism.

v
Since Ep,n and Ep,n are elementary extensions, and since \o;—l,ui' assumed
to be an isomorphism, lemma 4.9 shows that 0; n is an isomorphism.
’
It follows by induction that each ﬁ; 2 and each Q:(a) is an
’

isomorphism. Now lemma 4.8 applies and shows that o is an isomorphism.

Q.E.D.
4.11.- Proof of theorem 4.6.

Since ¢ and w. are isomorphisms theorem 4.5 shows that a
and each Q:(a) are isomorphisms. But now lemma 4.8 applies and allows us

to write ¢ = ¢ 8 a. Hence { is an isomorphism.

Q.E.D.
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Homotopies and liftings

5.1.- Tne c.g.d.a. ((C,B)I,D).- Suppose U = Ip>0 W is a graded

space. The suspension of U, IU, is the graded space which coincides with v

as a vector space, but with degrees shifted down by |

- P
LU :PZO(XU) ,

and

cuP - P!,

The identity automorphism from Up‘l to (fU)P is written I and
called the suspension map ; we extend it to ° by setting $(u®) = o.

Now consider a KS extension
E: B2 -,

with augmentations and € . To simplify notation denote IQ, by
A

€p* ¢
QA and let A;A ] ADQA be the contractible complex generated by Q,. Denote
its aug<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>