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THE HOMOLOGICAL THEORY

OF

MAXIMAL COHEN-MACAULAY APPROXIMATIONS

by

Maurice Auslander (Brandeis) and Ragnar-Olaf Buchweitz (Toronto)

Summary. Let R be a commutative noetherian Cohen-Macaulay ring which admits a
dualizing module. We show that for any finitely generated R-module N there exists a
maximal Cohen-Macaulay R-module M which surjects onto N and such that any other
surjection from a maximal Cohen-Macaulay module onto N factors over it. Dually, there
is a finitely generated R-module I of finite injective dimension into which N embeds,
universal for such embeddings. We prove and investigate these results in the broader
context of abelian categories with a suitable subcategory of "maximal Cohen-Macaulay
objects" extracting for this purpose those ingredients of Grothendieck-Serre duality theory
which are needed.

resume: Soit R un anneau commutatif, noetherien et de Cohen-Macaulay, tel que un
module dualisant existe pour R. On demontre que pour chaque R-module N de type fini
il existe un R-module M de profondeur maximale et un homomorphisme surjectif de M
sur N, tel que toute autre surjection d'un tel module sur N s'en factorise. De maniere
duale, il existe aussi un plongement de N dans un R-module 1 de type fini et de
dimension injective finie, universelle pour telles plongements. Nous demontrons et
examinons ces resultats dans Ie cadre des categories abeliennes avec une sous-categorie
convenable des "objets de Cohen-Macaulay maximaux", a cet effet mettant en evidence les
proprietes de la theorie de dualite de Grothendieck-Serre dont on a besoin.

§0. A Commutative Introduction

The aim of this work is to analyze the framework in which the theory of
maximal Cohen-Macaulay approximations can be developed. Instead of outlining right
away the abstract results, we want to start by describing the situation in the classical
case of a commutative local noetherian ring R with maximal ideal m and residue class
field k == R/m.

Assume that R admits a dualizing module u. Then R is Cohen-Macaulay, and
the finitely generated R-modules M which are maximal Cohen-Macaulay in the sense that
depthn»M = dimR can be characterized homologically as those modules for which
Ext^(M,&;) == 0 for i ^ 0.

Our main result can then be paraphrased as saying that R-mod, the category of
finitely generated R-modules, is obtained by glueing together the orthogonal subcategories
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of modules of finite infective dimension over R and the category of maximal Cohen-
Macaulay modules along their common intersection which is spanned by <y.

More precisely, let us recall that u is dualizing for the local ring (R,m,k) if and
only if it satisfies the following three conditions:

(i) a> is finitely generated and of finite injective dimension over R.

(ii) The natural ring homomorphism which is given by multiplication with scalars from R
on (»/, R —*• Hom^(cj,(s}) is an isomorphism.

(iii) For any integer i ̂  0, one has ExtJ^ (u,u) = 0.

Now our main results in this context are

Theorem A: (Existence of the decomposition). Let (R.m.k) be a commutative, local
noetherian ring with dualizing module u. For any finitely generated R-module N there
exist finitely generated R-modules MN and ^ together with an R-linear map

dN:MN ^ ^

such that

(a) The image of dN is isomorphic to N.

(b) MN is maximal Cohen-Macaulay and IN == KerdN is an R-module of finite injective
dimension.

(c) ^ is of finite injective dimension and M^ = CokdN is maximal Cohen-Macaulay.

(d) There exists an integer n ^ 0 such that dN can be factored into an injection
jiMN—^®" and a surjection pici/®"-^ . •

If dN = ^"TTN denotes the factorization of dN over its image N, we can arrange
the data given in the theorem into the following exact commutative diagram of R-
modules:

0 0
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Theorem B: (Essential Uniqueness)
(a) Assume given a second homomorphism d'̂ :M'̂  --*• 'l^ satisfying Theorem A for the

same module N. If the image factorization of d., is given as

M^ -^ N —^ 'IN,

there exist modules P, P' and Q., 'Q. which are each finite direct sums of copies of w,
and R-module isomorphisms /x, /e so that the following diagram commutes:

v ®o '^©o „
M'^SP—^—> N ———> 'I ®Q

.1 || I.
T 7T.,®0 " ^©0 4' ,M^ep'—^—- N ——^"©'Q.

N

(b) If f:M —*• N is any homomorphism from a maximal Cohen-Macaulay R-module M into
N, it factors over TTN. If g:N -*• J is any homomorphism from N into an R-module J
of finite injective dimension, it factors over i^ . m

7TM
These results suggest to call 0 -<• IN -<• MN —> N -» 0 a maximal Cohen-

N
Macaulay approximation of N and 0 -+ N —> l^ -»• M14 -*• 0 a hull of finite injective
dimension for N.

To give a simple illustration, consider the case where N itself is a Cohen-
Macaulay R-module, hence satisfying depthmN = dimN.
Set n = codepthn N = dim R - dim N. Then local duality theory implies:

(i) ExtJ^N.c*;) = 0 for i ^ n.

(ii) N" = Ext^(N,&;) is again Cohen-Macaulay of codepth n.

(Hi) N == Ext^N^.tj) = N".

Using this information, let
0 -. nn(N) -. R^n-i •dn^ ... -^ R^o ——> N" -. 0

be an exact sequence obtained by truncating a free resolution of N\ It follows that
On(N) is maximal Cohen-Macaulay and that dualizing with respect to u results in an exact
sequence

0 ——> u^ ——> ... dn^ (j^n-i ——> HomR(nn(N),&;) ——> N"" = N ——> 0.

Then Mn = HomR(nn(N),(*/) -"-> N is a desired maximal Cohen-Macaulay approximation of
N, and IN = Cok d'n-2 admits a finite resolution "by <*/". which shows that IN is of finite
injective dimension. The hull of finite injective dimension I14 is then simply the cokernel
of the u-dua\ of the next differential in the resolution of N ^ , namely
^ = Cok HomR(dn_i,cj).
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If R is a domain, for example, we get even more precise information:
(i) The rank of MM equals the alternating sum

(̂-l̂ bn.i + (-1)" rk N,

(ii) M^ == HomR(MN,^) = On(N) embeds into R^n-i,

(iii) MN contains no copy of u as a direct summand if and only if On(N), the n-th syzygy
module of N, contains no free summand.

It follows that one can attach new numerical invariants to an R-module N in this way.
The minimum number of copies of u necessarily contained in MN or 1̂  the rank of the
c»;-free summand of either MN or 1̂  their minimum number of generators and so forth.

Here, we are not concerned with these more detailed consequences of the
theory but rather with its general framework.

The first author first proved an essentially equivalent version of Theorem A but
for the category of additive functors on R-mod, see [Ausl], where the result was phrased
by saying that the category of maximal Cohen-Macaulay modules is "coherently (co-)finite".
The essential step then was to establish the representability of the functors involved.

This background illuminates our approach here. Although the primary
applications of the theory might be within the classical theory of rings and algebras, to a
large extent it can be developed in any abelian category C which admits a suitable
subcategory X of "maximal Cohen-Macaulay objects".

Here we establish sufficient conditions on X to guarantee the categorical
analogues of Theorems A and B. Section 1 deals with the decomposition theorem and
section 2 addresses the uniqueness question. Sections 3 and 4 investigate the
circumstances under which - in the terminology of the above example - the category of
modules with "finite (^-resolution" are all the modules of finite injective dimension.
Section 5 assembles a few remarks on finiteness conditions and section 6 contains more
examples, among other purposes highlighting the differences in the theory when applied
to either commutative or non-commutative rings.

§1. The Basic Decomposition Theorem

In this section we prove the basic decomposition theorem on which this paper
rests. Before stating the result, we give some definitions and notations.

Throughout, C will be an abelian category. By a subcategory A of C we will
always mean a full, additive and essential subcategory of C, so that A is closed under
finite direct sums in C and such that any object C in C which is isomorphic to an object
in A is already an object in A.

A subcategory of C is said to be additively closed (or karoubian in the
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terminology of [SGA IV] or [Qu]), if it is closed under direct summands in C, or,
equivalently. if any projector (p = p2) in the subcategory admits an image in that
subcategory. Any subcategory A of C admits an additive closure add A in C, consisting
of ail those objects C in C which are isomorphic to a direct summand (in C) of an object
in A. Clearly A is additively closed in C if and only if A == add A.

More generally, given any collection {CJ,ei of objects in C, there is a unique
smallest additively closed subcategory add {C^i containing each object Q, id. It can
be described by the following "universal mapping property": If F:C -+ D is any
additive functor from C into another additive category D such that F(CJ is a zero-object
in D for each id, then F(add {C^Lei) consists entirely of zero-objects.

In particular, (cf. also [He]), there exists the additive quotient category
TT-.C -^ C/add (C,Li, where C/add {QL<i has the same objects as C and v is a full,
additive functor which is the identity on objects.

The projection functor v is characterized by the property that any additive
functor F as before factors uniquely over v. Of course, even if C is assumed to be
abelian, as here, C/add {C»}^i need not to be so.

If A is an additively closed subcategory of C, the morphism groups in C/A are
given by

________Homc(Ci.C2)
Home/A (Ci.Cz) = ^ci-^l^ factors over an object in A}

Now suppose again that A is any subcategory of C in the sense fixed above.
We say that a sequence of morphisms ... -* Aj+i —«• A{ —»• Ai_i -» ... in A is exact, if when
viewed as a sequence in C it is exact.

Suppose C is an object in C. We define A-resol.dimC, the A-resolution
dimension of C, to be the smallest nonnegative integer n such that there exists an exact
sequence 0 -*- An -*• An-i -^ ... -» Ao -^ C -*• 0, with each A, in A, if such an integer
exists. We say that A-resol.dimC < oo if A-resol.dimC = n for some non-negative
integer n. The subcategory of C consisting of all C in C such that A-resol.dimC < oo
will be denoted A.

Finally, we say a subcategory B of A is a cogenerator for A if for each object A
in A there is an exact sequence 0 — * - A — * - B — * - A ' — » - 0 in A with B in B.

With these notations, we fix throughout the rest of this paper an additively
closed subcategory X of C which is furthermore closed under extensions, i.e. if
0 -» Ci -*• Cz -*• Cs -*• 0 is exact in C with Ci and €3 in X, then also Cz is in X. (In
the terminology of [Qu], for example, X is a karoubian exact subcategory of C.) Also we
assume given an additively closed subcategory u of X which is a cogenerator of X.

The paper is now devoted to studying how the categories X, cj, X and w are
related.
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All of our results depend on the following

Theorem 1.1. For each C in X there are exact sequences

0 -<• Yc -> Xc -- C -^ 0 and

O ^ C ^ ^ C ^ X C ^ O

with Yc and Y0 in u and Xc and Xc in X.

Proof. The proof proceeds by induction on X-resol.dimC and is based on the following
two easily proven observations.

Lemma 1.2. Suppose given exact sequences 0 - » K - » . X - » C - » ' 0 and 0 -»• K -»
Y1^ -^ X^ -+ 0 with X and X1^ in X and YK in u. Then in the pushout diagram

0 0

_1_1_ _
° _ 1 _ 1 J _ _ °
° T I c °

xr==x1

1 1
0 0

the exact sequence

O - ^ Y ' ^ U - ^ C - . O

has the property that YK is in u and U is in X.

Proof. As Y1^ is in u by assumption, it remains to be seen that U is in X. This follows
from the fact that both X and X^ are in X and X is closed under extensions. •

The other observation we need is the following.

Lemma 1.3. Suppose that we have an exact sequence 0 - » Y c — * - X c — » - C — * - 0 with Yc in
&/ and Xc in X. Let 0 -* Xc -*• W -^ X -+ 0 be exact with X in X and W in u. Then in
the pushout diagram
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0 0

1 In
0 ———- X. ———- W ———- X ———> 0

o — i — L I — o° I ! " °
0 0

the exact sequence
o . - . c - ^z - . x - .o

has the property that Z is in ay and X is in X.

Proof. As again X is in X by assumption, it is only required to prove that Z is in <y. But
in the exact sequence 0 -^ Yc -»• W -* Z -»• 0, we have Yc in u and W in o», so that Z
is in cj by definition of that category. •

The vroof of theorem I.I. follows now easily from these lemmas.

Suppose X-resol.dimC = n and let 0 —»• Xn —*•. . .—*• Xi —> Xo —*• C —«• 0 be
exact with each X, in X. If n = 0, we have that C is already in X. Since u is a
cogenerator for X, there is an exact sequence 0 — » - C — » W — * - X — * - 0 i n X with W in <j
which is one of our desired exact sequences. The other one is 0 -*• 0 -^ C -=-> C -*• 0.
Now suppose that n > 0 and set K = Imdo , so that we have exact sequences
0 -^ K -» Xo -«• C -» 0 and 0 -» Xn -^ ... -*. Xi -^ K — 0 with each Xi in X. By the
inductive hypothesis we know there is an exact sequence 0 - ^ • K — » • Y K — » • X K — * • 0 with
YK in u and XK in X. Therefore, by Lemma 1.2, the pushout diagram

0 ———> K ———- X. ———- C ———r 0i f I
0 ———> Y1^ ———r U ———> C ———> 0

has the property that U is in X. Hence we may choose 0 - * Y K - » • U - - » C - ^ • O a s one
of our desired sequences for C. From the existence of this exact sequence, it follows by
Lemma 1.3 that we also have an exact sequence 0 — * • C — » • Y C — ^ • X C — » • 0 with Y0 in u
and Xc in X. This finishes the proof of theorem 1.1. •

^cFor ease of reference, we call an exact sequence 0 —»• Yc —»• Xc —> C —»• 0
with Xc in X and Yc in w an X- approximation of C. Dually, we call an exact sequence
0 -^ C -^> ̂  -^ xc -^ 0 with Yc in u and Xc in X an u-hull of C.

From now on, we assume that X has the property that if
0 —». Xo -«• Xi —>• Xz --»• 0 is an exact sequence with Xi and Xz in X, then Xo is also in
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X, in addition to X being an additively closed subcategory of C which is closed under
extensions. (In D.Quillen's terminology, (loc. cit.), all epimorphisms from C in X are
admissible.)

It should be noted that in all our examples the categories X satisfy this
additional condition. As a consequence of this further hypothesis on X, we get the
following

Lemma 1.4. Suppose C in C has an ay-hull 0 -»• C -» Y0 -»• X0 -^ 0. Then it also admits
an X-approximation 0 -»• Yc -<• Xc -^ C -»• 0. Furthermore, Yc can be chosen such that
&/-resol.dimYc < cj-resol.dim Y0 if Y0 is not already in u.

Proof. Let 0 -»• Wn -<• Wn_i -»• ... —°> Wo -* Y0 -^ 0 be exact with the Wi in u. Then
we obtain the following pullback diagram

0 0i i
K ====== Ki i .0 ———> L ———> W. ———- Xc ———. 0i i i

0 ———> C ———- Y0 ———> Xc ———- 0i i
0 0

where K = Imdo. Since X0 and Wo are in X, the additional assumption yields that L is
in X too. By definition, K is in w and s o O - » K - * - L - * - C - * - O i s a n X-approximation of
C. Now set Yc == K and Xc == L. •

As a consequence of this lemma, we obtain the following characterization of the
objects in X.

Proposition 1.5. Let X be an additively closed and exact subcategory of C in which every
epimorphism is admissible. If u is a cogenerator of X, the following are equivalent for
an object C in C:
(a) C is in X.
(b) There exists an X-approximation 0 -*• Yc -*• Xc -- C --»• 0 of C.
(c) There is an c^-hull 0 -^ C -^ Y0 -^ Xc -^ 0 of C.

Proof. Since (a) implies (b) and (c) by theorem 1.1, it is only required to show that (b)
implies (a) and (c) implies (b).
(b) =^ (a): Since Yc is in u by assumption, there is an exact sequence
0 -*. Wn -^ ... -» Wo -^ Yc -*• 0 with each Wi in u. Since u is a subcategory of X. it
follows from the exact sequence 0 -> Wn -<•...-*• Wo -+ Xc -^ C -^ 0 that C is in X.
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(c) ==»> (b): This is just a restatement of Lemma 1.4. •

We end this section with three examples, illustrating the theory developed so
far.

Examvie 1. Let X -^ Spec k be a scheme of finite type over a field k. Assume that X
is equidimensional of dimension d and locally Cohen-Macaulay in the sense that Ox.x is a
local Cohen-Macaulay ring for each x in X. Let C be the category of coherent sheaves of
0^-modules and define X to be the subcategory of maximal Cohen-Macaulay coherent
sheaves, where a coherent Ox-module M is said to be maximal Cohen-Macaulay if for
every xcX one has depthn^ K = dim Ox.x ; i»x the unique maximal ideal of Ox.x.

It is then clear that if 0 -»• Mi -<- Mz -» ^3 —• 0 is an exact sequence in C.
then
(a) .Mz is in X if Mi and ^3 are in X, and
(b) Mi is in X if Mz and ^3 are in X.
Remark also that, by hypothesis, the structure sheaf Ox is in X and that consequently X
contains all locally free sheaves of Ox-modules. Conversely, a maximal Cohen-Macaulay
Ox-module is locally free on the regular locus Xreg C X. Moreover, C = X. and if C ^ 0
is in C, then X-resol.dimC - n if and only if n is the largest integer such that
£xt^(C.u^ ^ 0, where &;x is a dualizing sheaf for X.

Now assume that either X admits a very ample invertible sheaf X. or that X is
affine (in which case L = Ox in the following). Then X can be embedded into a
projective space over k, say i:X -» P^. with L = i*OjpN(l).

Denoting by ^ the smallest additively closed subcategory which contains the
family of objects {^^^"IncZ • u ^^s easily from Grothendieck-Serre duality theory
that <j^ is a cogenerator for X.

Proposition 1.6. For each coherent sheaf C of Ox-modules we have both an X-
approximation with respect to u^ of the form 0 - ^ Y c - ^ X c - r C - ^ O and an
&^-hull O^C-^-^-^O. •

Remark that in this example the category X depends only on the scheme X
whereas its cogenerator depends on the choice of both a dualizing module c^x and a
very ample sheaf L. Also the X-approximations and o^-hulls will vary with these
choices.

Next consider the following modified version of Example 1.

Examule 2. As in Example 1, we let X -*• Speck be an equidimensional Cohen-Macaulay
scheme over a field k. Let X'cX be the Corenstein locus of X, which is the set of all
points x in X for which Ox,x is a Corenstein local ring. Let X' be the subcategory of C,
the category of coherent sheaves of Ox-modules, consisting of those Cohen-Macaulay
sheaves .M such that Mx is Ox, x-free for all x in X'. It is clear again that X* is an exact
subcategory of C in which every epimorphism is admissible. Also X' consists of all those
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M in C for which .Mx is of finite projective dimension over Ox,x for each x in X'. This
implies that an exact sequence 0 -+ A -+• B -» C -*• 0 in C is in X' if any two of A,B or
C are in X'.

Again, any invertible sheaf of Ox—nodules is in X', and in particular for any
dualizing sheaf (^ and each very ample invertible sheaf jL on X, the category w^ defined
above is a cogenerator of X'. We leave it to the reader to give in this case the analogue
of Proposition 1.6.

Our final example in this section treats a not necessarily commutative version of
Gorenstein rings of finite Krull dimension.

Example 3. Let R be a ring with unit which is noetherian on both sides and such that
the infective dimension of R as a right module over itself is finite, say equal to d.

Take C == R-mod, the category of finitely generated left R-modules, and let X be
the subcategory consisting of all modules M in R-mod which satisfy Ext{^(M,R) = 0 for
i ^ 0.

Then X is certainly additively closed and has the property that an exact
sequence 0 -»• Mi -r Mz -»• Ms -*• 0 is in X as soon as either Mi and Ma or Mz and Ms
are in X. Hence X satisfies our general assumptions.

For u, take the subcategory of all finitely generated projective left R-modules.
Then u is by definition a subcategory of X which is additively closed.

For our theory to apply, we have hence to show that u constitutes a

cogenerator for X. To obtain this result we need our assumption on R. Namely, let
dj do

... —> Pj —> ... —> Pi —> Po —> M —> 0 be a projective resolution of a module
M in X. By definition of X, the dualized complex

0 —> M* —> Po -^> P*, —> ... —> P; -^ ...

is acyclic. But then our hypothesis furnishes the following more precise information.

Lemma 1.7. With notations and assumptions as above, for every module M in X one has

(a) For all integers j >_ 0, the right R-modules Kj = Ker dj satisfy Ext^(Kj,R) = 0 for
i ^ 0.

(b) M is reflexive, that is, the natural morphism of left R-modules M —*• M** is .an
isomorphism.

(c) If 0 —> L —> Q. --p-> M* —> 0 is an exact sequence of right R-modules with Q.
finitely generated projective. then L* satisfies Extj^(L*,R) = 0 for i ^ 0.

Proof, (a) As all the modules P* are finitely generated projective right R-modules, they
satisfy necessarily Ext{^(P*,R) = 0 for i -^ 0. But this implies that for any integer n ^ 0
one has natural isomorphisms Ext^(Kj_n,R) —> Ext^Kj.R) for any i > 0. Since by
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assumption Ext{[(-,R) = 0 as soon as k > d, it suffices to take n ^ d above to conclude
Extj^Kj.R) = 0 for all i > 0 and j ^ 0.
(b) This is a consequence of (a). By [A-B; 2.1.], for any left R-module M the natural
morphism M -^ M** fits into an exact sequence

0 ——> Ext^(D(M),R) ——> M ——> M** ——> Ext^(D(M).R) ——> 0,

where D(M) = Cok dg. But if M is in X. we have Cok d^ = Ker d^ and (a) shows that
the extreme terms of this exact sequence vanish, establishing (b).
(c) As M* = KO, part (a) implies that the sequence

(*) 0 ——> M" -^ Q* ——> L* ——> 0
is exact. From (b) we have M 's= M** and as M is in X, it follows already that
Ext}^(L*,R) = 0 for.i > 1. It hence only remains to be seen that Ext^(L*,R) = 0, or,
equivalently, that the dual sequence of (*):

0 ——> L" ——> (T -^ M*" ——> 0

is again exact. But this is obvious as both Q. and M* are reflexive right R-modules and
P" = P. •

Combining (b) and (c) of this lemma, we have now that any module M in X
embeds into the finitely generated protective module HomR(CLR) and that the cokernel,
isomorphic to L*, is again in X. This shows that <y is indeed a cogenerator for X.

Finally observe that X consists of all left R-modules N in C satisfying
ExtJJN.R) = 0 for all sufficiently large i, and that u is the category of all finitely
generated left R-modules of finite projective dimension.

Now Theorem 1.1 yields in this context the following.

Theorem 1.8. Let R be a ring which is noetherian on both sides and of finite injective
dimension as a right module over itself. Then for any finitely generated left R-module N
satisfying Ext^(N.R) == 0 for all sufficiently large i. there are modules YN andY1^ in
R-mod of finite projective dimension and modules XN and X^ in R-mod with
EXIJ^XN.R) == ExtJ^X^R) = 0 for i ^ 0 which fit into exact sequences

0 ——> YN ——> XN ——> N ——> 0 and

0 ——> N ——> Y1^ ——>X^ ——> 0. u

§2. Injective Cogenerators

Having established the existence of X-approximations and ay-hulls for a pair (X,u)
of subcategories as in the preceding section, the important question which remains is
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their uniqueness.
To see which conditions ought to be imposed, assume given two

X-approximations for the same object C in X, say 0 - r Y c - » - X c - * C - - » - 0 and
O — - Y C - - X C - » € : - * • 0. Then the least one should ask for is that these
X-approximations can be compared in the sense that there exists a morphism
<f> : Xc -*• X^ making the following diagram commutative

0———> Y- ———- X ———- C ———> 0i i'_i_
Apparently, the existence of such a comparison morphism is guaranteed as soon

as Ext^(Xc.Y'c) = 0.
Hence, for comparisons to exist and to yield an equivalence relation, it certainly

suffices to have that Ext^(X.Y) = 0 for all X in X and Y in <y. This section is devoted to
a study of this condition and its consequences. First, once again, some general remarks
and notations.

Let A and C be objects in C. As C is supposed to be abelian, the groups
Extc(A,C) are denned for all i ̂  0. If there is an integer n such that Ext^(A.C) = 0 for
all i > n, then the smallest nonnegative such integer n is called the A-injective dimension
of C, (notation: A-inj.dimC), or the C-projective dimension of A, (notation: C-proj.dimA).

Otherwise we set A-inj.dimC = 0 0 = C-proj.dimA . If B is a subcategory of C,
for each A in C we define A-inj.dimB to be the maximum (in Z u (oo)) of A-inj.dimB for
all B in B. Dually, for each C in C, we define C-proj.dimB to be the maximum of
C-proj.dimB for all B in B.

Clearly A-inj.dimB = B-proj.dimA.
Suppose now that A and B are subcategories of C. Then define A-proj.dimB to

be the maximum of A-proj.dimB for all A in A and B in B. We define dually A-inj.dimB
to be the maximum of A-inj.dimB for all A in A and B in B. Again, one has clearly
A-inj.dimB == B-proj.dimA.

If for two such subcategories A-inj.dimB = 0 = B-proj.dimA, we follow J.L.
Verdier. [SGA AYz. C.D.; 1.2.6.1.], and say that A is left orthogonal to B and B is right
orthogonal to A - with respect to the "augmented" bilinear Z-graded pairing induced by
(Ext ̂  (-. -)h>o on the monoid of isomorphism classes of objects of C.

Consequently, if A consists precisely of those objects A in C for which
A-inj.dimB = 0. we call A the left orthogonal complement of B in C, denoted A = -4^
Dually again, A1, the right orthogonal complement of A in C, is the subcategory-B
consisting of all objects B in C for which A-inj.dimB = 0.

One has obviously A C -KA1) and A C (^A)^ but not necessarily J<A -̂) = (-IA)-L.
If B' is a subcategory of B in C, then -^ is contained in -41' and similary for right
orthogonal complements. Remark also that by definition -̂ C, the left radical of C with
respect to the pairing (Ext};(—,—))i>o, consists precisely of all projective objects of C,



MAXIMAL COHEN-MACAULAY APPROXIMATIONS 17

whereas C1 the right radical of C, is given by all injective objects of C.
Furthermore, it is obvious that orthogonal complements are additively closed

and exact subcategories of C and that in a left orthogonal complement -41 all
epimorphisms are admissible, whereas in a right orthogonal complement A-1- all
monomorphisms are admissible.

Returning to our subcategories X and a; of C from the previous section, we say
that cj is an infective cogenerator for X if X-inj.dimi*/ == 0, that is. u C X-L. If there is a
cogenerator for X in X n X-L, we say also that the exact category X has enough relatively
injective objects.

Unless stated to the contrary, we assume from now on that u is an injective
cogenerator for X. Our next aim is to explore some important properties of X-
approximations and tj-hulls implied by this additional assumption.

We begin with the following relations between some of the dimensions we have
just introduced for an object C in X. These relations do not require that any
epimorphism in X is admissible.

Proposition 2.1. Given an object C in X, where X is an additively closed exact subcategory
of C and u is an injective cogenerator for X, the following are equivalent for any integer
n ^ 0.
(a) X-resol.dimC = n,
(b) C-inj.dim&j == n,
(c) C-inj.dimo? = n,
(d) Ext^C.Y) = 0 for all Y in u.

Proof'. Proceed by induction on n = X-resol.dimC, the case n = 0 being settled as
follows.
(a) =» (b) is true because cj is contained in X-L by assumption.
(b) ==> (c) follows from the usual dimension shift argument.
(c) ==» (d) is the definition of C-inj.dimoy.
(d) =»• (a): Since C is in X by the general hypothesis, there is an
X-approximation 0 -^ Yc —» Xc -^ C -. 0 which splits by (d). Hence C is a direct
summand of Xc in X and so C is in X.

The proof of the inductive step follows easily from what we have just shown
and is left to the reader. •

As an obvious consequence of this proposition we have

Corollary 2.2. X-inj.dinw =0. •

This corollary yields the following important properties of X-approximations and ay-hulls.



18 M. AUSLANDER, R.O. BUCHWEITZ

Theorem 2.3. Let 0 -^ Yc -^ Xc -^ C -^ 0 be an X-approximation for C in X. Then
for each X in X we have
(a) 0 -^ Homc(X,Yc) -<• Homc(X.Xc) -^ Homc(X.C) -» 0 is exact,
(b) TTC induces isomorphisms Ext^(X.Xc) -* Ext^(X,C) for all i > 0.

Proof: As X-inj.dimoy == 0, one has Ext{;(X,Yc) = 0 for all i > 0. •

The exact sequence 0 -<• Yc -»• Xc -»• C -» 0 is called an X-approximation
precisely because Hom<:(X,Xc) -»• Homc(X,C) -<• 0 is exact for all X in X. This property
of X-approximations of C gives rise to a weak sort of uniqueness for such
approximations as we now explain.

Let us call two morphisms f:B -c C and f':B' -» C in C equivalent if there are
morphisms g:B -» B' and h:B' -*• B such that f = f'g and f = fh. Also, we say that two
exact sequences 0 -+ A -»• B —^C and 0 -*• A -»• B'-̂ C are (right) equivalent, if f
and f are equivalent, which amounts to the same as saying that there is a commutative
diagram

0 ———> A' ———- B' —^ Ci i1
0———> A ———- B —^C

I !•i ig r II
0 ———- A' ———^ B' ——^ C

In particular, ide-hg factors over A and ide—gh factors over A', so that h.g become
inverse isomorphisms in C/^^^r^ ^\ .

As an immediate consequence of theorem 2.3 we obtain the following
uniqueness result.

Corollary 2.4. X-approximations for an object C in X are unique up to equivalence, that is,
any two X-approximations for C are (right) equivalent exact sequences. •

There are also similar results for ay-hulls of an object C in X as we now point
out.

Theorem 2.5. Let 0 -^ C —> Y0 -^ Xc -^ 0 be an <y-hull for C in X. Then for each Y
in <y we have the following
(a) 0 -^ Homc^X^Y) -^ Hom^Y^Y) -» Homc(C.Y) -<• 0 is exact,
(b) ^ induces isomorphisms Ext^Y^Y) -^ Ext^(C.Y) for all i > 0.

Proof: This follows again from the fact that X-inj.dimoy =0. •

The exact sequence 0 -»• C —> Y0 -*• Xc -^ 0 is called an ay-hull precisely
because Hom^Y^Y) -*• Homc(C.Y) -» 0 is exact for all Y in u. Again, this property
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gives rise to a weak sort of uniqueness for c^-hulls, similar to that already discussed for
X-approximations, as we now explain.

Dually to the above, we say two morphisms f:C —»• D and f:C —»• D' are
equivalent if there are morphisms g:D -*• D' and h:D' -*• D such that f == gf and f = hf.

f fAlso, we say that two exact sequences C ——>D —*• E —»• 0 and C—>D' —*• E' —» 0 are
(left) equivalent if f and f are equivalent, which is the same thing as saying that there is
a commutative diagram

C —^D ———- E ———> 0\\ , [ • i
C ———.D' ———> E' ———. 0i ^ i
C -——^D -——r E ———- 0

In particular, idp-hg factors over E and idp—gh factors over E', so that h and g
become inverse isomorphisms in C/^rffE E'l •

As an immediate consequence of theorem 2.5 we have the following uniqueness
theorem.

Corollary 2.6. ay-hulls for an object C in X are unique up to equivalence, that is, any two
cj-hulls are (left) equivalent exact sequences. •

We may reformulate and sharpen these uniqueness results slightly by
considering the situation "modulo u". This depends on the following simple observation.

Lemma 2.7. Let f:X -<- C be a morphism in C with X in X and C in X. Then the following
conditions on f are equivalenL
(a) f factors through an object in <y.
(b) f factors through an object in or.

Proof: As (b) is a priori a special case of (a), we need only to show that in fact (a)
implies (b). Hence assume that f == gh where h:X -». Y and g:Y -». C are morphisms in C
and Y is in u. By definition of u. there is an exact sequence 0 - ^ K - c W — Y - r O with
W in u and K again in u. By corollary 2.2, X-inj.dim u == 0 and so Ext^(X.K) = 0. This
shows that h, and then also f, factor over W in cj. •

Now choose for any object C in X an X-approximation
0 -. Yc -^ Xc -^> C -. 0 and an cj-hull 0 -^ C -lc-> Y0 ^ Xc -o 0, as well as for- any
morphism f:C -^ D in X liftings f*:Xc -^ XD and f^Y0 -<• Y° which exist by the above.

By the uniqueness results just established, it follows that given a second
morphism g:D -+ E in X, the differences g*f* - (gf)* and g*f* - (gf)* factor over objects
in or, hence become zero-morphisms in XA*/, the full subcategory spanned by X in C/w.



20 M. AUSLANDER, R.O. BUCHWEITZ

From this we obtain immediately the following

Theorem 2.8. Denote i: u -<• X and j:X —• X the natural inclusion functors. Then
(a) The induced functor }\\X/u -«. X/u is fully faithful and admits a right adjoint

f:X/u -*• X/(j which associates to an object C in X the chosen X-approximation Xc.
The adjunction morphism jij 'C -» C is given by the class of 7rc:Xc -» C in
Homx/^Xc.C).

(b) The induced functor i*: u/u -». X/u is fully faithful and admits a left adjoint
i*: X/u -c u/dj which associates to an object C in X the chosen cj-hull Y0. The
adjunction morphism C -+ i*i*C is given by the class of ^'.C -<• Y0 in Homx/^C.Y^.

(c) One has j'i* = 0 and FJ| = 0.

(d) The composition of the adjunction morphisms

J,J' -^>id^—>i.r

is zero in X/u.

Proof: The remarks preceding the theorem show that X_ and Y~ define functors from X
into XAj and u/u respectively. By the universal property of quotient categories these
functors factor over XAj, yielding j, and i*. To prove that ji is indeed right adjoint to
the inclusion functor f'.X/u -*• X/u, it suffices to give the natural isomorphisms
^x,c^Homx/(^(XJiC) —^ Homx/^O'X.C). Now composition with 7rc^Xc=jiC -<• C defines the
natural map Homx(X.Xc) — Hom»(X,C) which is surjective by theorem 2.3.(a). Let ^x.c be
the induced map on the quotient groups, which is hence still surjective. To prove that it
is injective, let f in Homx(X.Xc) be a morphism such that a-c^X -» C factors over some
object W in u. This means that there is a commutative diagram in C

0———<-Y^———^ —^C ———^ 0

rf t.
X —r-* Wh

As W is a priori in X and Yc is in u, corollary 2.2 applies once again to yield
Ext^(W,Yc) = 0 and hence to establish the existence of a morphism g':W -^ Xc such that
?rcg' = g. But then f-g'h satisfies ^(f-g'h) = ?i-c f-frc g')h = gh-gh = 0, so that f-g'h
factors over Yc. Then lemma 2.7 shows that f-g'h factors already over some object W
in u and hence the class of f-g'h in Homx/cj(X,Xc) is the zero-morphism. As g'h
factors over W in (j, its class is zero as well, which shows that f and f-g'h define the
same morphism in Homx/o/X.Xc) = Homx/o/XJi C). Hence already the class of f is the
zero-morphism and ^x.c is injective as claimed.

The definition of ^x,c ls natural in both arguments, so that the adjointness of ji
and j' is established. Furthermore, the construction of ^x.c shows that vc induces the
adjunction morphism j'jiC -+ C.
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This proves (a).
As the proof of (b) is completely analogous, it is left to the reader.
For (c), just remark again that by definition of <y, any object Y in u appears in an exact
sequence 0 - f K - * - W - - » . Y - » . 0 with W in u and K in &?. But this sequence serves as
an X-approximation for Y whence j'i*Y, the chosen X-approximation of Y, is isomorphic
to W in X/u. i.e. it is a zero object. This shows j'i* = 0 and i*ji == 0 follows then by
adjunction.
(d) follows now from (c), as one has by naturality the commutative diagram of morphisms
of functors

V^'^
t*0|J') [ [<•

iAl'T-^t(1.1*)*')T 1<1

in which the lower left corner is zero by (c). (In more concrete terms, (d) says that for
any object C in X there is a commutative diagram

7T.

"c —'-c

4 1.:
W ———-Y0

with W in u, and we have seen indeed in lemma 1.3 and the proof of theorem 1.1 that
^ can be obtained as the push-out of such a morphism j along n-c.) This finishes the
proof of theorem 2.8. •

The reader puzzled by the notations used in the preceding theorem should
compare it with the treatment of the "glueing of categories" in [BED; 1.4]. It shows that
in our situation one should think of X as being obtained by "glueing together the open
subcategory X and the closed subcategory <y along u ". What is missing for a complete
glueing in the sense of (loc. cit.) is the existence of the other adjoints j* and i'.

The statements (c) and (d) in theorem 2.8 also explain why we think of theorem
1.1 as a "decomposition theorem": an object C in X is decomposed • at least in X/cj -
into its X-approximation Xc and its ay-hull Y^ which belong to "orthogonal" subcategories
of X/u.

The property which is desirable but missing yet is that X and u should have u
as their common intersection. This will be addressed later on in Proposition 3.6.

For now, we return to the examples 1 and 2 of the previous section. As soon
as X -» Spec k is projective, u^ is not an injective generator in either X or X', as
Ext^Ox.^^X.0") == H^X,^®^") does not vanish for all integers n. None the less,
the following analogues of the results for injective cogenerators are valid for these
examples if one substitutes Cxt^A^E) for ExtJ^(A,fi).
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Lemma 2.9. With notations as in examples 1 and 2, the following are equivalent for a
sheaf .M in C.
(a) M is in X.
(b) €xt^(M.(^) = 0 for all i > 0.
(c) ^t^(M,<yx<g)L®") == 0 for all i > 0 and all n in Z.
(d) £xt'^(M,Y) = 0 for all i > 0 and Y in ^.

Proof: Easy consequence of the fact that the corresponding statements hold for Cohen-
Macaulay local rings with a dualizing module. •

Proposition 2.10. With the same assumptions and notations as above, let
0 -*• Yc -» Xc — C -*• 0 be an X-approximation for C in C.
Then we have for any M, in X:
(a) 0 -. HowoxCM.rc) -- Hom^(M.Xc) -^ Homo^M.Q -. 0 is exact.
(b) The induced morphisms €xt^{M.Xc) -^ €xt^{M,C) are isomorphisms for i > 0.

Proof: Immediate consequence of lemma 2.7. •

Remark that in Example 3 the category u is in fact an injective cogenerator as
by definition there X = 1^. Furthermore, in that example X/u is the category of left
maximal Cohen-Macaulay R-modules - in the sense that Ext^(M.R) = 0 for i ^ 0 - modulo
stable equivalence: two modules M and M' from X become isomorphic in X/w if and only
if there are finitely generated projective left R-modules P and P' such that M © F is
isomorphic to M' © P in R-mod.

We end this section with two more illustrations of situations where <u is an
injective cogenerator for X.

Example 4. Suppose R is a commutative noetherian Cohen-Macaulay ring in the sense that
all its localizations Rp at primes p are local Cohen-Macaulay rings. We say that a finitely
generated R-module M is maximal Cohen-Macaulay (MCM for short), if Mp satisfies depth
Mp = dim Rp for all primes p.

Now suppose that R is a Corenstein ring and that S is a commutative R-algebra
which is MCM as an R-module. Let C = S-mod be the category of finitely generated S-
modules and let X be the subcategory of C consisting of those S-modules M which are
maximal Cohen-Macaulay as R-modules. Then X satisfies the usual properties. Set
(JS/R = HompCS.R), which is a relative dualizing module for the algebra R -4. S. Then
&/ = add(c»;s/R} consists of all S-modules of the form HomR(P.R) with P finitely generated
projective over S. It is easily seen - and well-known - that u is an injective cogenerator
for X. Also, if the Krull dimension of R is finite, then X = C.

To acknowledge the scope of this example and to emphasize its relevance for
Crothendieck duality theory, we quote the following from [FGR; Cor. 5.9.].
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Theorem. Suppose S is a commutative ring with finite Krull dimension and with
connected prime spectrum. Then S admits a canonical module if and only if S is a
homomorphic image of a Gorenstein ring R such that S is maximal Cohen-Macaulay as an
R-module. •

Our final illustration of this section is the following variant of Examples 4 and

Example 5. Maintain the hypotheses on S and R from Example 4. Let X c Spec R have
the property that if p is in X, then Sp is a Gorenstein ring. or equivalently, (d/s/p)? is
Sp-free.

Set again C = S-mod and let X' consist of those S-modules M which are MCM
over R and satisfy furthermore that Mp is Sp-projective for all p in X. Then X' satisfies
the usual properties and contains cj == add^s/p). Again, u is an injective cogenerator for
X' and X' consists of all S-modules C such that proj.dims Cp < oo for all p in X.

§3. Exactness properties ofX and u.

We maintain our general assumption that X is an additively closed and exact
subcategory of C in which every epimorphism is admissible, and that &/ is an injective
cogenerator for X.

In this situation, we show that X is an additively closed subcategory of C which
has the property that an exact sequence 0 - - » - A — » - B — » - C — » - O i s i n X whenever two of
A, B and C are in X. This result is then used to prove that cj is an additively closed
subcategory of C having the property that an exact sequence 0 — * - A - » B - * - C — * - O i n C
is already in u if either A and C are in w or A and B are in &». Hence w is seen to be an
additively closed exact subcategory of C in which every monomorphism is admissible.

We begin with the following

Lemma 3.1. The category X is closed under extensions.

Proof: Suppose 0 - o A - c B - c C - f O i s a n exact sequence in C with A and C in X.
Proceed by induction on n = X-resol.dimC. Suppose n = 0, which means that C is in X.
As A is in X, there is an X-approximation 0 -*• YA -*- XA -^ A -»• 0 of A. Since C is in X,
we know by theorem 2.3, that the induced map Ext^(C.XA) -»• Ext^(C.A) is an
isomorphism. Hence there exists an exact commutative diagram
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0 0i i
Y ==== YA *A

o-J-J——c^o

o 0 — ' 1 — ! 1 — 0
° I i <: 0

0 0

Since XA and C are in X, the object Z is also in X. as that category is closed
under extensions. Now YA is in cj. hence in X, and it follows that B is in X as required.

Suppose now that n > 0 and let 0 —• L -+ Xo -<• C -^ 0 be exact with
X-resol.dimL = n-1. Since Xo is in X, we have that EXI^(XO.XA) -«• Ext^(Xo.A) is an
isomorphism by theorem 2.3, and so there exists an exact commutative diagram in C

0 0 0

o^'—LLoi" I i1 °
0———X,——— V — — — X . — — — 0

o—.Ll——.Lo
° 1 I I °

0 0 0

This shows that B is in X since V is necessarily in X and U is in X by the inductive
hypothesis, g

We now use the fact that X is closed under extensions to prove the following

Lemma 3.2. Let 0 -+• K --*. X -»• C -<• 0 be an exact sequence in C with X in X. Then C
is in X if and only if K is in X.

Proof: By definition, if K is in X then also C is in X. Hence assume that C is in X and let
0 -<• Yc -^ Xc -*• C -*• 0 be an X-approximation of C. Since X is in X, we have by
theorem 2.3 that Homc(X.Xc) -<• Homc(X.C) is surjective. Therefore we obtain a
commutative exact diagram
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°ZdZC
Since Yc is in df, we know there is an epimorphism W —»• Yc with W in u. Adding this
epimorphism to the foregoing diagram, we obtain the following commutative exact
diagram

0 0[ i
V ===== Vi i

0 ——4C®W——-X®W——> C ——> 0i i i
0 ———> Y^ ———- X^ ———- C ———- 0

0 0

where K©W -^ X©W is the sum of K -«• X and the identity on W. Since W and X are
both in X, we have that V is in X, as any epimorphism of C in X is admissible by
assumption. Therefore K®W is in X, since Yc and V are in X and X is closed under
extensions. We now show that this implies that K is in X. Since K©W is in X, we obtain
the following exact commutative diagram from an X-approximation of K®W

0 0i i
0 ———^KOW———1> z

\QW\QVf

[ [
0 ———- W ——i-KOW——- K ———> 0i i

0 0

Hence we have the exact sequence 0 —*• YK®W -+ Z —»• W —»• 0. Since W and
YK®W are in X, (in fact already in u), and X is closed under extensions, we have that Z is
in X as well. This implies that K is in X since XK®W is in X. This completes the proof of
the lemma. •
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We now apply the foregoing lemma to prove

Proposition 3.3. Suppose C is an object in X. Then the following are equivalent for any
integer n ^ 0:
(a) X-resol.dimC <, n,

(b) If 0 -<• U -<• Xn-i -^ ... -<• Xo -«• C -^ 0 is exact with Xi in X for i = 0,...,n-l, then U
is in X.

Proof: For n = 0 there is nothing to prove. So suppose n > 0. Assuming (a), repeated
application of lemma 3.2 shows that U is in X. Also we have
Ext^(U.W) = Ext^C.W) = 0 for all W in u since X-inj.dim(*/ = 0 and
X-resol.dimC <, n. Therefore by proposition 2.1, it follows that U is in X proving that
(a) implies (b). As (a) follows from (b) by definition of X-resol.dimC, we are done. •

As a first application of this proposition we prove the following

Proposition 3.4. X is an additively closed subcategory of C, that is X = add X.

Proof: Suppose Ci^Cz is in X for two objects Ci and Cz in C. Proceed by induction on
n = X-resol.dim (Ci®Cz). If n = 0, the summands Ci and Cz are in X as X is an
additively closed subcategory of C. Suppose n > 0. Since Ci®Cz is in X, there is an
epimorphism X -»• Ci^Cz -»• 0 with X in X. Therefore we obtain exact sequences
0 -». Li -4- X -»• Ci -»• 0 for i = 1,2 which yield the exact sequence
0 -c LiCLz -» XeX -»• CiCCz -+ 0. Now by Lemma 3.2, we know that LiCLz is in X
and proposition 3.3 shows that X-resol.dim (LiOLz) <, n-1. By the inductive hypothesis
Li and Lz are in X and another application of lemma 3.2 shows that then also Ci and Cz
are in X. •

We are now in position to establish one of the results promised in the
beginning of this section.

Proposition 3.5. An exact sequence 0 - » - A - » - B - » - C - » - 0 from C is in X if any two of A,
B and C are in X.

Proof: Since we already know that X is closed under extensions by lemma 3.1, it suffices
to show that if B is in X then A is in X if and only if C is in X. We first show that if A
and B are in X then C is in X. Choose an X-approximation O - + - Y B — » - X B - » B — » - O for
B. It gives rise to an exact commutative diagram
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0 0

(*) 0 ———r Yg ———- L

XB==XB

i i
0———- A ———- B ———»• C ———> 0i i

0 0

from which we get an exact sequence 0 -«. YB -^ L -^ A -* 0. It follows that L is in X
since YB and A are in X and X is closed under extensions. Therefore C is in X since Xs
is in X.

Suppose now that B and C are in X. Using lemma 3.2, the exact sequence
O — ' L - ^ X B - ^ - C - ^ O from (*) shows that L is in X. Applying the just established
result to the exact sequence 0 -^ YB -^ L ^ A -^ 0, it follows that A is in X. This
completes the proof of the proposition. •

We now turn our attention to u. We begin with the characterization of u as a
subcategory of X, proving that w = X-L n X in C.

Proposition 3.6. The following statements are equivalent for an object C in X.
(a) C is in u.
(b) X-inj.dim C = 0, that is: C is in X-i- n X.
(c) If 0 -»• Yc -<• Xc -» C -*• 0 is any X-approximation of C, then Xc is in &;.

Proof: That (a) implies (b) was seen in corollary 2.2, and it is obvious that (c) implies (a).
Hence we only need to show that (b) implies (c).
Since X-inj.dim C = 0 == X-inj.dim Yc. it follows that X-inj.dim Xc == 0. Our desired result
is therefore a trivial consequence of the following, which proves u = X n u.

Lemma 3.7. The following are equivalent for an object X in X.
(a) X is in u.
(b) X is in u.
(c) X-inj.dim X = 0.

Proof: Again it is obvious that (a) implies (b), and Corollary 2.2 shows that (b) implies
(c). It remains to prove
(c) ==»• (a): Let 0 -*• X -<• W -^ X' -» 0 be an exact sequence in X with W in u which
exists as u is a cogenerator for X. Then by (c) this sequence splits. Therefore X is a
direct summand of W which implies that X is in w as that category is assumed to be
additively closed.
This establishes lemma 3.7 and finishes the proof of proposition 3.6. •
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These results prove the following fact, already announced in the introduction to this
section.

Proposition 3.8. u is an additively closed and exact subcategory of C in which any
monomorphism is admissible. In more detail, let 0 —»• A —*• B -+• C —»• 0 be an exact
sequence in C. Then
(a) B is in a? if A and C are in u, and
(b) C is in u if A and B are in cj.

Proof: We know by now that cj == X^ n X in C. But the statements hold for X by
propositions 3.4 and 3.5, and as X-1- is a right orthogonal complement, it also is an
additively closed and exact subcategory of C in which every monomorphism is admissible.
As all these properties are stable under intersection in C, the result for u follows. •

We sum up the foregoing results as

Theorem 3.9. Let X be an additively closed and exact subcategory of an abelian category
C. Assume that
(i) all epimorphisms from C in X are admissible, and
(ii) X has enough relatively injective objects.

Let &j be an injective cogenerator for X. Then there results a diagram of
additively closed and exact subcategories of C

X ———> X ———- C

t J t(j ———>. dj ———> X-1-

such that
(a) each square is cartesian, i.e.: u = X n X-1- and (j = X n X-1,
(b) in X all mono- or epimorphisms from C are admissible,
(c) in X1 and <y all monomorphisms from C are admissible.

In particular, there is a unique injective cogenerator u for X in C, namely
u = x n X1. •

To reformulate it once again modulo u = X n X-1-, let us say that a sequence
0 —». A —»• B P> C —» 0 of additive functors between additive categories is exact if and
only if A is a full, essential and additively closed subcategory of B and p is equivalent
to the projection functor w : B -+ B/A.

With the notations of theorem 2.8 we have then the following
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Corollary 3.10. The adjoint pairs of functors (i*,i*) and (ji,j1) fit into the commutative
diagram of exact sequences of additive categories

0 ——>u/u-^-^ X/u -^—oX/cj ——r 0i , .11 , i
0 -——(J/&; <--—X/u -t-J—X/(j -—— 0

§4. The category u.

Our aim in this section is to describe under which assumptions u has the
further property that an exact sequence 0 - » - A - + - B - ^ C - + O i s i n < y i f B and C are in
07.

To investigate this problem, we first define d> to be the subcategory of C
consisting of all objects C in C which appear in an exact sequence
0 -»• C -*• Yo -^ ... ̂  Yn —• 0 with each Yi in u. Clearly such an object C is in X since
the Yj are in u C X and the kernel of an epimorphism in X is again in X by proposition
3.5. Also it is obvious that u is a subcategory of o>.

Lemma 4.1. The following statements are equivalent:
(a) An exact sequence 0 - « - A - » - B - < - C - + O i s i n ( j i f B and C are in <y.
(b) w = d>.
The proof is trivial. •

This simple observation explains the relevance of the category <J to our
problem about u. The following description of u is basic to the results in this
paragraph.

Proposition 4.2. For an object C in X the following are equivalent:
(a) C is in u,
(b) X-inj.dim C < oo.

Proof: (a) =» (b). Let 0 -» C -<• Yo -^ ... -^ Yn -^ 0 be exact with each Yi in &?. Since
X-inj.dim <y == 0, it follows by induction on n that X-inj.dim C <, n < oo.
(b) =»• (a): Since C is in X, it admits an cj-hull 0 -*• C -- Y0 -*• X° -<• 0. The assumption
that X-inj.dim C < oo and the fact that X-inj.dim Y0 = 0 imply that X-inj.dim X0 < oo.
Therefore if we show that an object X from X which satisfies X-inj.dim X < oo is '
necessarily in u, we will be done. Indeed we have the following more specific result.

Lemma 4.3. Let X be an object in X, n a nonnegative integer. Then X-inj.dim X ^ n if
and only if there is an exact sequence 0 -«• X -*• Wo -- Wi -^ ... -^ Wn -*• 0 with Wi in
&; for i = 0,...,n.
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Proof: The if-part follows as before from X-inj.dim &» = 0. Hence suppose that X-inj.dim
X == n. Since u is a cogenerator for X, we can construct an exact sequence
0 -, X -^ Wo — ... -«• Wn-i -^ X' -^ 0 in X such that each Wi is in u for i = 0,...,n-l.
As X-inj.dim cj = 0 and X-inj.dim X ^ n by assumption, it follows that for any integer i >
0 and all objects Z in X one has Ext^(Z.X') ^ Ext^Z.X) = 0. But by lemma 3.7 this
shows that X' is already in u as desired.
This concludes the proof of lemma 4.3 and proposition 4.2. •

As a first application we get the following.

Corollary 4.4. u is an additively closed subcategory of C with the property that an exact
sequence 0 - ^ • A - - » • B — * • C — * • O i s i n ( » > i f any two of A, B and C are in <•>.

Proof: Since X is additively closed, it contains with &> also add u. It then follows from
proposition 4.2 that d> - add €j. Also i f O - + • A — * • B — * • C - - * > O i s a n exact sequence in
C with two of A, B and C in u, then all of A, B and C are in X by Proposition 3.5. It
then follows from proposition 4.2 that they are all in u. •

As another immediate consequence of proposition 4.2 we get the following.

Corollary 4.5. The following are equivalent:

(a) <y == d>,

(b) If C is an object in X with X-inj.dim C < oo, then X-inj.dim C = 0.

Proof: Let C be in X. By proposition 4.2 we have that C is in &> if and only if
X-inj.dim C < oo. By Proposition 3.6 we have that C is in &» if and only if
X-inj.dim C = 0.
Hence the equivalence of (a) and (b). •

We now give criteria for the property u = u in terms of the categories u and X
themselves.

Proposition 4.6. The following are equivalent:

(a) df = &>.
(b) If 0 -<• C ̂  Wo -^ Wi -*. 0 is exact in C with Wo and Wi in u, then C is in u.
(c) If 0 ^ C -> Wo -*• Wi -<• ... -^ Wn -. 0 is exact with each Wi in u for i = 0,....n.

then C is in u.
(d) If X is in X and X-inj.dim X < oo, then X is in u.

Proof: (a) =» (b). Since Wo and Wi are objects in &/, they are in X, so C is in X. Clearly
C is in d> which means by the assumption that it is in u. Therefore C is in X n u
which category equals u by Lemma 3.7.
(b) ==» (c) by induction on n.
(c) =» (d). Suppose X is in X with X-inj.dim X < oo. Then by Lemma 4.3, we know there
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is an exact sequence 0 -»• X -*• Wo -<•...-«• Wn -*• 0 with Wi in u for i == O.....n.
Therefore by (c) we have that X is in u.
(d) =>• (a). Let C be an object in (*>. Then we can choose an X-approximation
0 -^ Yc -^ Xc -«• C -» 0 for C and proposition 4.2 shows that X-inj.dim C < oo. But
X-inj.dim Yc == 0 so that X-inj.dim Xc < oo. Therefore Xc is in u by the hypothesis (d),
which shows that C is in cj. •

Now we establish the following.

Proposition 4.7. Let C be an object in d>. Then (^-inj.dim C == X-inj.dim C.

Proof: Since u is a subcategory of X, we have that always cj-inj.dim C <, X-inj.dim C . So
it suffices to show that (j-inj.dim C ^ X-inj.dim C. As C is in u by assumption, we also
know from proposition 4.2 that X-inj.dim C is finite.

To begin with. we prove the proposition when C = X is an object in X n <•>. By
lemma 4.3, we have that then there is an exact sequence 0 -»• X -<• Wo -*•...-»• Wn -» 0
with each Wi in u for i = 0,...,n. Assume that (j-inj.dim X = 0. Since u-inj.dim u = 0, it
follows by induction on n that the exact sequence 0 -^ X -» Wo —• ... -»• Wn —• 0 splits.
Hence X is already in u which implies X-inj.dim X = 0. This result Shows furthermore
that oj-inj.dim X <, n if and only if there is an exact sequence
0 -*• X -*• Wo -*• ... -»• Wn -» 0 with each Wi in <y. But we have seen in lemma 4.3 that
the existence of such an exact sequence is equivalent to X-inj.dim X <, n. Hence we
have shown that u-inj.dim C = X-inj.dim C when C is in X n u.

Assume now that C is an arbitrary object in d>. Let 0 -+ C -^ Y0 — X0 -*. 0 be
an ay-hull of C. Since C and Y0 are in w by assumption, we get that Xc is in &) by
corollary 4.4. Suppose now cj-inj.dim C = 0. Then also u-inj.dim X0 = 0 which implies
that X0 is in u by our previous result. But our current hypothesis then implies that
Ext^X^C) == 0, which means that the chosen ay-hull of C splits. So C is a direct
summand of Y0 in w and is hence itself in &?. as u is additively closed by proposition 3.8.
Therefore X-inj.dim C = 0 by corollary 2.2 and we are done in this case.

Finally suppose c^-inj.dim C = n > 0. Since c^-inj.dim Y0 = 0, it follows that
cj-inj.dim Xc = n-L Therefore X-inj.dim Xc = n~l by our first result, which implies
that X-inj.dim C <, n. Hence (j-inj.dim C ^ X-inj.dim C for all C in (•>, which completes
the proof of the proposition. •

The following is an immediate consequence of our earlier results and
summarizes sufficient conditions for u = u to hold.

Corollary 4.8. Consider the following conditions:
(a) (j-inj.dim X = 0.
(b) cj-inj.dim X = 0,
(c) <»;-inj.dim u = 0,
(d) Every epimorphism W -» W -»• 0 in C with W and W in u admits a section.
(e) u == w.
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Then one has (a) <=>• (b) =»• (c) =^ (d) =»• (e).

Proof. As X and &) are subcategories of X, the implications (b) =»> (a) and (b) ==»• (c) are
trivial. That (a) ==>• (b) follows from the existence of an X-approximation
0 -» Yc -^ Xc -*• C -<• 0 for any object C in X and the fact that u-inj.dim u = X-inj.dim
u = 0. That (c) =»• (d) follows from the fact that the kernel K of any epimorphism W -^'
W —*• 0 between objects from u is by definition an object in <*>. But (c) implies
Ext^(W.K) = 0, whence the exact sequence 0 - » - K - » - W ' - » . W - » 0 splits. The remaining
implication (d) =^ (e) is a special case of proposition 4.2. •

Example 6. A special case in which u = u holds, has been investigated already by
A.Heller [He]. Following him let us say that X in C is a Frobenius category if it satisfies
our usual assumptions of being additively closed and exact in C with every epimorphism
from C in X being admissible and if furthermore u = X n X-L is also a projective
generator for X, which is equivalent to (^P being an injective cogenerator of X09.
This means hence that
(i) X-inj.dim u = X-proj.dim (j = 0 and

(ii) for every object X in X there exists both a monomorphism i : X -*• W as well as an
epimorphism p : W* -*• X with W, W in u such that the objects Kerp and Coki.
calculated in C, are again objects in X.

A.Heller himself gave already some examples of such categories and further such
categories are discussed in [Ha]. Also, it is clear from the definitions that in Example 3
the category X of maximal Cohen-Macaulay R-modules is Frobenius.

§5. Some remarks on the X-resolution dimension of X.

We define X-resol.dim X to be the maximum (including oo) of X-resol.dimC for all
objects C in X. This paragraph is devoted to interpreting some of our previous results
when X-resol.dim X is finite. So for the remainder of this section we assume
X-resol.dim X = d < oo.

Our remarks are based on the following observation.

Lemma 5.1. The following statements are equivalent for an object C in C.
(a) X-inj.dim C < oo,
(b) X-inj.dim C < oo.
Moreover, if X-inj.dim C = m < oo, then X-inj.dim C <, d+m .

Proof: Usual dimension shift argument. •

This lemma implies immediately the following.
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Proposition 5.2. Suppose C is an object in X.
(a) X-inj.dimC < oo if and only if C is in u.
(b) If C is an object in <y, then X-inj.dimC <, d .

Proof: (a): By lemma 5.1, we know that X-inj.dimC < oo if and only if X-inj.dimC < oo.
But by proposition 4.2, we know that X-inj.dimC < oo if and only if C is in &>.
(b): Since X-inj.dim u = 0 by corollary 2.2, the result follows from lemma 5.1. •

As a special case we obtain the following consequence.

Corollary 5.3. If X = C, then we have:
(a) C is in w if and only if inj.dimC < oo.
(b) If C is in u, then inj.dimC <, d. •

Remark that the injective dimension of an object C in C is defined here in terms of
vanishing of the functors Ext^(-.C). As soon as C itself has enough injective objects it
coincides with the notion obtained from the length of a shortest injective resolution.

Applying the foregoing result to our decomposition into X-approximations and
cj-hulls we have the following.

Corollary 5.4. Suppose again X = C and let 0 -»• Yc —• Xc -»• C -c 0 and
0 -* C -*• Y0 -»• X0 -» 0 be an X-approximation and an (j-hull of an object C in C
respectively. Then inj.dim Yc < inj.dim Y0 <, d or both Yc and Y0 are already
injective. •

Finally, consider the case where u = u. Then we have first the following
consequence of lemma 5.1.

Proposition 5.5. Suppose u ==(.). Then the following statements are equivalent for an
object C in X.
(a) C is in u.
(b) X-inj.dim C <, d.
(c) X-inj.dim C < oo.

Proof: (a) =» (b) by proposition 5.2.
(b) => (c) is trivial.
(c) ==> (a): Since X-inj.dim C < oo, we have that X-inj.dim C < oo.
Therefore C is in <•> by proposition 4.2. Hence C is in u since &> = u by assumption. •

As an obvious consequence of this proposition we have the following.
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Corollary 5.6. Suppose X = C and u = <y. Then the following conditions are equivalent
for an object C in C.
(a) C is in u,
(b) inj.dim C ^ d.
(c) inj.dim C < oo. •

§6. More Examples

In this section we describe various situations where the theory we have
developed is applicable.

First we consider a generalization of Example 4.

Example 7. Let R be a commutative noetherian Gorenstein ring of finite dimension d. Let
A be an R-algebra, not necessarily commutative, which is a maximal Cohen-Macaulay R-
module. Set C = mod-A, the category of finitely generated right A-modules, and let X be
the full subcategory of C whose objects are the A-modules which are MCM if considered
as R-modules. Then X is again additively closed, exact and has all its epimorphisms
admissible. Also we have that X = mod-A and that X-resol.dim X = d < oo.

As in Example 4, we let u consist of all A-modules isomorphic to HomR(P.R) for
some finitely generated projective A°P-module P. Again, u is just the additive closure of
<^A/R = HomR(A.R), and it is an injective cogenerator for X.

Applying the results in section 5. we have the following.

Proposition 6.1. Let C be in mod-A.
(a) inj.dim C < oo if and only if C is in <*>.
(b) If C is in ay then inj.dim C <, d.

Proof: See Corollary 5.3. •

As a consequence of this we obtain hence the following.

Corollary 6.2. Let C be in mod-A. Then 0 — Yc -^ Xc -»• C -^ 0, the X-approximation
of C, and 0 -^ C -^ Y0 -»• Xc -*• 0, the <y-hull of C, have the property that Xc and X0

are maximal Cohen-Macaulay R-modules and that inj.dim Yc <. d-1 and inj.dim Y0 <_ d. •

We now turn our attention to the question of when u = u in this context.

Proposition 6.3. The following statements are equivalent for A.
(a) (j = &>.
(b) If X is a A°P-module which is MCM as an R-module and such that

proj.dimAopX < oo, then X is a projective A°P-module.
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Proof: We know by Proposition 4.6 that d> = <y if and only if an exact sequence
0 -<. C -*• Wo -^ ... -^ Wn -^ 0 is in cj as soon as each Wi is in u for i == 0,...n.
(a) =4- (b): Suppose 0 -»• Pm -»•...-» Po -*• X -»• 0 is a projective resolution for a given
A011-module X which is MCM over R. Then

0 -»• HomR(X,R) -r HomR(Po.R) -^ ... -^ HoniR(Pn»,R) ^ 0

is exact in mod-A with each Hemp (Pi, R) in cj for i = 0,...,m. By (a) we have that
Homn(X,R) is necessarily in u. Therefore HoniR(X,R) s: HomR(P.R) for some protective
A01*-module P. which then yields X '== P.
(b) =»• (a): Suppose that X in mod-A is MCM over R and that
0 -^ X -^ Wo -<• ... -»• Wm -<• 0 is an exact sequence with Wi in u for all i = 0,....m.
Then 0 -»• HomR(Wm.R) -» ... -»• HomR(Wo.R) -» HomR(X.R) -^ 0 is exact and Hon^Wi.R)
is a projective A0"-module for each i. The A0"-module HomR(X.R) is still MCM as an R-
module and hence HomR(X.R) '5= P for some projective A011-module by our assumption.
As MCM's are reflexive, X '= HomR(P,R) and X is therefore in w. •

This proposition gives the following generalization of a result of
R. Sharp [Sh].

Corollary 6.4. Suppose A is a commutative ring. Then the following are equivalent for a
finitely generated A-module M.
(a) inj.dimA M < oo.
(b) There is an exact sequence 0 -<• Wm -+ ... -^ Wo -- M -*• 0 with Wi in u for all

i = 0,...,m.

Proof: The equivalence of (a) and (b) is nothing more than the statement that u == u.
But this follows from Proposition 6.3 since it is well-known for commutative rings, that a
maximal Cohen-Macaulay module of finite projective dimension is projective. •

However, if A is not commutative, it is not necessarily true that a A011-module
which is MCM over R and of finite projective dimension over A011 is necessarily
projective. For example, let R be a regular local ring of dimension d > 0 and let A be
the algebra of lower triangular nxn matrices over R with n ^ 2. Then A is a free and
finitely generated R-module and gl.dim A011 = d+1. Let

0 -. p^i -. Pd -....-. Po -» M -. 0

be a projective A011-resolution of a A0"-module M with proj.dinriAop M = d+1. Then
Im(Pd-»-Pd-i) is an MCM over R which is of projective dimension one over A011 and is
hence not A011-projective.

Example 8. Let k be a field and P == k[xo,...,Xn] a polynomial ring over k in n+1 variables
which we grade by assigning arbitrary positive integral weights to the variables. Let I be
a homogeneous ideal in P and set S == P/I which is hence a positively graded k-algebra.
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We assume that S is a Cohen-Macaulay ring. It is known then that there exists a
sequence yi,...,ym of homogeneous elements of strictly positive degrees in I which is a
regular k[xo,...,Xn]-sequence, and such that R = P/(yi,...,ym) has the same dimension as S.
As R is a complete intersection, it is a Corenstein ring and by construction the natural
surjection R —»• S —»• 0 is a degree-preserving homomorphism of rings. Let C = S-grmod
be the category of finitely generated graded S-modules with degree zero graded maps as
morphisms. Also let X be the subcategory of C consisting of all maximal Cohen-Macaulay
modules. In addition to the usual properties, X also satisfies X = C and
X-resol.dim X = n+l-m = d, the dimension of S.

Set <»7s/R == HomR(S.R), which is a dualizing module of S over R, and define u to
be the subcategory of C consisting of all (»/s/R(n) for n in Z. Then u is an injective
cogenerator for X. Moreover we know that X in X is of finite projective dimension if
and only if it is isomorphic to a direct sum ® S(ai).

As in the previous example, this implies cj s= u. We leave it to the reader to
write down in detail what this means for X-approximations. cj-hulls and modules of finite
injective dimension.

We now give our last example.

Examvie 9. Let A -» r be a ring homomorphism with A both left and right noetherian
and r a finitely generated projective A-module on both left and right. Let C == r-mod be
the category of all finitely generated left r-modules and let X consist of all M in C such
that M is a projective A-module. In addition to the usual properties, we have that X
consists of all N in C such that proj.dimA N < oo.

Define u to be the category of all modules isomorphic to HomA(P.A) for some
finitely generated projective r01'-module P. Then u is an injective cogenerator for X. In
general u ^ u, but if all the modules in u are projective r-modules, then we do have
u = u by Corollary 4.8 and in fact X becomes a Frobenius category, see Example 6.
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CONJECTURE JACOBŒNNE ET OPÉRATEURS DIFFÉRENTIELS*

Hyman BASS**

à Pierre SAMUEL

1.— Introduction et énoncés
Soient

A = t[x] C B = t[t}

deux algèbres de polynômes en n variables x = (x^,..., a?n) et < == (^ ,..., ^) . Nous supposons

que

l̂.̂ n)
(1) ^^J"1'

Alors la Conjecture Jacobienn affirme que A = B . La condition (1) entraîne que B est étale
(= plat et non ramifié) sur A , donc que toute dérivation de A se prolonge à B . Par exemple
< .̂ = 9 / 9 x , opère sur b = b(t) € J3 par

<9(:i;i,...,;c,.i ,6^,+i ,...,^)
^•œ-^^———^j-

On peut donc considérer A et B comme des modules sur l'algèbre de Weyl

F7=C[^,...,^^,..,^].

* Une exposition plus élaborée des résultats présentés ici se trouve dans [B].
** Travail subventionné en partie par NSF Grant DMS 85-03754.
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Dans W est contenue l'algèbre de Lie ^n(C) , de base e,, = x^. 0'J= l,...,7i) . Soit

^C ^n(C) une sous-algèbre de Lie.

1.1.— THEOREME. Si dim-p(̂ ) > n , alors B est un module de torsion sur l'algèbre enveloppante

U=U^.

En effet supposons que bç. B engendre un [/-module libre, Ub^ U. D'après le théorème
de Poincaré-Birkhoff-Witt, U est de croissance polynomiale de degré dim.p(^ . D'autre part

Ub C B et B est de croissance polynomial de degré Krull dim(B) == n , d'où dïm^g) < n (cf.

[B], Prop. (3.2)).
Ce résultat fournit la stratégie suivante pour approcher la Conjecture Jacobienne.

Choisissons une algèbre de Lie ^C ^a(C) de dimension > n et d'algèbre enveloppante

U = Ug. Alors la condition :

(2) B/ A est un [/-module sans torsion

entraîne, d'après (1.1), que A = B . Plus explicitement, (2) signifie que :

(2') Si ( ^ 6 U , ̂  0 , /€ B, et ^/€ A , alors /€ A .

Un élément non constant ^ du U est dit irréductible si dans toute factorisation
<f) == ̂  . ̂  dans U on a ^€ C ou ^6 ^ • ^a tiltration de Poincaré-Birkhoff—Witt montre

que tout élément de U est produit d'éléments irréductibles. Si on vérifie (27) pour <j)
irréductible alors il est vrai en général (par récurrence sur le nombre de facteurs irréductibles de
</>) . n suffit donc de considérer (2') pour ^ irréductible.

Quitte à remplacer x(t) par x(t) — x(0) , on peut supposer que x(0) = 0 . Alors la
condition (1) entraîne que les complétés A et B à l'origine coïncident. D'où les inclusions :

A=C[a;]c BC A=C[[a;]] .

Notons A^ le C—module des polynômes en x = (x^,..., x^) homogènes de degré d . On a

(3) A = © A,, c A = n Ad .
d>Q d>0
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Les opérateurs e „ = x^9. sont homogènes, donc les A^ dans (3) sont des [/—modules.

Soient ^ 6 U et f ç. B comme dans (2/). Ecrivons /= S /^ où f^ç. A^. On a
c>0

^/== S ^/^ avec ^6 A^ . La condition ^/e A signifie que ^ = 0 pour tout d> N ^
û>0

pour YV suffisamment grand. Si / / A A = S /^ on a //^A 6 A et ^(/-//^) = ° ; d'ailleurs

/e A<==> f-f(AT\ = 0 ; d'ailleurs /€ A4=> / - / f A A 6 ^ • Ainsi dans (2') on peut remplacer

l'hypothèse "^/6 A" par "^/=0".

NOTATION. Pour tout opérateur linéaire J9 sur un module V notons

y^Ker^—^ V) .

Avec cette notation, on voit maintenant que les conditions (2) et (2') sont équivalents à la
condition :

(2") E/^C A pour tout élément irréductible ^ de U= U .

Pour le cas n == 2 nous avons obtenu les résultats suivants. Posons x = x ^ , y == ^ ,

€x=a ;^î ' ^y"^' <?=a;4 î € : = e x + e y • ona

A=C[^]CBCA=(:M.

1.2.— PROPOSITION. B/A est un module sans torsion sur C[e,<5] . Plus précisément :

(a) E^= C M C A ^=C[[:r]].

(6) 5i ^ = ^(e,<$) ^ ^ (€ ,0)^ 0 alors E^ = À^ C A ^ dim^(A^) <oo .

1.3.—THEOREME. 5oî< ^ = ae^ — be y - c où a,6,ce î , û,6> 0 , pgdc(a,6) = 1 , c< 0 si

a = 0 , et c > 0 5î 6 = 0 . Posons u == x b y a ' . Alors

B{=^CMcA d A{ = ̂ t[M] ,

où (r,s) est le point de N2 le plus prés de l'origine sur la droite a x — b y = c .
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Appelons spécial linéaire tout élément ^ de la forme ^ = ûe^ — be — c comme dans

(1.3).

1.4.— THEOREME. B/A est un module sans torsion sur C[e^ ,€y] . Plus précisément soit ^ un

élément irréductible de C[e^ ,eJ . H y a trois cas possibles :

(a) J^ = À^ C A et dimx'(A^) < oo .

(b) II existe un k^ 0 dans C tel que H soit spécial linéaire (cf. (1.3))
^ dim^(A^) =00 mais tout /€ Â'. qui est algébrique sur t(x,y) appartient à A. En

particulier J3' C A .

Pour démontrer la Conjecture Jacobienne (pour n •= 2) il suffit, d'après (1.1), de montrer
que B / A est un module sans torsion sur

^=^x^y^]==^

où g désigne l'algèbre triangulaire supérieure de ^(C) .

1.5- THEOREME. Soit (/f == ̂  , €y ,6) eU et posons ^ == ^(e^ , €y ,0) 6 C[c^ , fy] .

Supposons que ^ ne soit pas multiple d'un élément spécial linéaire. Alors tout /6 À^ qui est

algébrique sur C(x^y) appartient à A . En particulier É^ C A .

Les démonstrations de (1.4) et (1.5) font intervenir le théorème de Siegel sur les courbes
algébriques ayant un nombre infini de points entiers, ainsi que le théorème de Fabry sur les séries
lacunaires.

2.— Deux lemmes préliminaires.
Soient A c B des anneaux commutatifs intègres de corps de fractions Fc E . Notons Ax

et Bx leurs groupes des éléments inversibles

F c E
U U .
A C B

2.1.— LEMME. Supposons que A soit factorieî, que B soit plat sur A , et que Ax = Bx . Alors
FH B = A (autrement dit, B/A est un A-module sans torsion).
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En effet soit p / q ç . Fn B où p.qç. A sont étrangers. Alors la suite 0 —> A/qA -^ A/qA
est exacte. Tensorisant avec le A—module plat B on trouve que la suite 0 —> B/qB —2-» B/qB
est exacte. Or p / q ç . B , c'est-à-dire j?6 qB , donc la dernière application injective est nulle ;
d'où qç. Bx = Ax et p / q ç . A.

Supposons maintenant que

A = © A^ , AQ == C ,
û>0

soit une C-algèbre factorielle graduée, que B soit étale sur A , que Bx = Ax (= C^ , et que
E soit unirationel sur C .

2.2.— LEMME. iStô u ç. A^ , rf > 0 , <cJ çuc n ne soit pas une puissance supérieure à 1 d'un

élément de A . Alors Ç.(u) est algébriquement dos dans E , et t(u)n B = t[u] .

En effet soit L la clôture algébrique de Ç.(u) dans E . Puisque E est unirationnel sur C
le théorème de Lùroth ([N], p. 137) entraîne que L est une extension rationnelle de C ,
L= <C(v) . Soit R= Ln B3 i[u]. Alors R est intégralement clos dans L (car B est
normal), donc L est le corps de fractions de R. De plus Rx c Bx == ̂  , donc R est une
algèbre de polynômes, et on peut choisir le générateur v de L tel que R = C[v]..

Notons P la dérivation "d'Euler" de A ; D(a) == ma pour ae A . Le prolongement de

D s. E laisse B invariant, car B est étale sur A . On a P(îi) = du, donc P laisse
invariant C(îi) , aussi bien que son extension algébrique L . Il s'ensuit que R= LU B est
Z>-invariant. Alors uç: R == t[v] , donc ^ = P(îA) = r i îA. D(v) . On voit ainsi que

deg^(jD(î/)) = 1 , D(v) = av-}- b (a€ C^ 6e C) . Quitte à remplacer v par v- û'^ , on peut

supposer que D(v) = av . Par suite jD(î/") = amv pour tout m > 0 . Puisque uç. t[v] est un
vecteur propre de D on conclut que u = ciP ou c6 C^^ et am = rf . On a donc ÎAB = (î/B)" .
D'autre part, par hypothèse, l'idéal uA n'est pas une puissance supérieure à 1 dans A .
Puisque B est étale, donc non ramifié, sur A l'idéal uB ne peut pas être non plus une
puissance supérieure à 1 . Donc m = 1, u = cv , et C[îA] = C[î/] ; d'où le lemme.
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2.3.— COROLLAIRE. Supposons ci-dessus que A = i[x^,..., x^] soit une algèbre de polynômes, et
n

soit o^ le prolongement de •n— à E . Alors

n 9,
.n BQ = (fe] ,
2—L

et C(a?i) est algébriquement clos dans E.

n o,
En effet on voit facilement que L = D Eç, est la clôture algébrique de C(a;i) dans E .

2=2 u

II suffit donc d'appliquer (2.2) avec u = x^.

3.— Les calculs en dimension 2 .
Revenons au cadre des résultats (1.2),...,(1.5) . On a

A = Ç.[x,y]c Bc A = t[[x,y]]

© A^ n Ad
d>Q d>.Q

où A^ désigne le C-module des polynômes en a;, y homogènes de degré d . Il nous suffit de

supposer que B soit étale sur A , que Bx = (^ , et que le corps de fractions de B soit
(uni)rationnel sur C .

Rappelons que 9^ = ̂  , <9y = ̂ ., ^ = ̂  , € y = = y 9 y , 6 = x9y , et e = e^ 4-Cy .

Ces dérivations opèrent sur les monômes par :

^W) = ̂ P^

(1) CyW)^^

l$W) = qxP^y^-1

Remarquons d'abord que

AJJ = A/ = C[^]
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et que
^=C[ . ]CA,

d'après (2.3), d'où (1.2)(a).
Prenons pour base de A^ les monômes :

yd j.d-i.. y,d-i ,,dA , £ y ,..., xy , y .

Alors les matrices de e^ et Cy sont diagonales, et celle de 6 est

(3) ë\

01
0 2 0

0 .

Soit ^ = f(e^ ,6y , <?) e C[e^ ,€y ,^] . On peut écrire ^ sous la forme :

N
^ = S ^•(e,,ey)^.

î=0

Alors la matrice de ^ sur A^ est triangulaire supérieure,

(4)

No(^o)^
1 ^o(^.l) *

0
Yo^ï"

Posons

^={(M)eC2 | ^,ç)=0}

Supposons que ^ o ^ O , de sorte que C est une courbe plane. Pour rie IN posons

^d={M^2 1 ^ + î = ^}
{(ri,0), (ri-l,l),...,(0,ri)}.
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Alors on voit que :

(Card(C'n N^) est la multiplicité de 0 comme valeur propre de particulier

(5) ̂ . En d i m ^ ( ( A ^ ) > C â r d ( C n YvJ

et ^ [ ^ est inversible <==> C7 n A^ = 0 .

Remarquons que :

A{=^){.

Par conséquent :
Les conditions suivantes sont équivalentes

,(a) A{ c A

(6) (b) d i m ^ ( A { ) < o o

Hc) Card((7n IN2) est fini.

Exemple : Supposons que ^ = ^(e) e C[e] (rappelons que e = ̂  + ey) , par exemple que

^ 6 C[e,<q . Alors les éléments de la diagonale de ^| . sont tous égaux à ^(d) . Puisque

^o ^ ° » ^oW ne s'annule que pour un nombre fini de valeurs de d , d'où les conditions de (6).
Cecic donne (1.2) (b).

Démonstration de (1.3). Considérons un élément ^ non constant de la forme
^ = ̂  = oe^ - b€y - c (a,6,ce C ) , et soit C la droite

C= {(M) 1 ap-bq= c] .

Pour montrer que E/^ c A il suffit, d'après (6), de traiter le cas où Ciï IN2 est infini, donc C

est une droite rationnelle. Quitte à multiplier ^ par une constante on peut supposer que a et b
sont des sentiers étrangers (donc c6 2 aussi) et que û, b> 0 (donc c < 0 si û = 0 , et c > 0
si 6 = 0 ) . Ainsi ^ est "spécial linéaire" au sens de (1.3). Soit (r,5) le point de (7n (N2 • le plus
près de l'origine. Alors
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(7)
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C(}^={(r,s)+n(b,a)\ne^} .

Â^ = a^q^]] , où u=xbya'.

47

(M) -• (^)z_Z

Posons ^ = = û c ^ - 6 C y , d e sorte que À^ = C[[u]] . Soit E le corps de fractions de B . Alors

£ç est une extension algébrique de C(î^) . D'autre part u = a;̂  n'est pas une puissance

supérieure à 1 d'un élément de A . Du lemme (2.2) on conclut que É' = t(u) . Soit alors

/6 ̂  . D'après (7) on a / = sf^gÇu) où g(u) 6 C[M] n Ec É^ = C(^) c t{x,y) . Donc

/6 C(a;,2/) n B = A , d'après le lemme (2.1) ; d'où (1.3).

Démonstration de (1.4) : Soit ^ = ^(c^ ,6y) un élément irréductible de C[e^ ,6y] , et posons

C= {(p,q)\ ̂ (p,q) = 0} . Puisque </»\ ̂  est diagonal on a

(8) A9 == n Wy^ .0 (M)e^2

Si Cn IN2 est fini (cf. (6)) on a le cas (1.4) (a). Supposons désormais que

(9) Cn IN2 soit infini.

Alors d'après un théorème classique de Siegel (cf. [L], Ch. 8) la courbe irréductible C est
rationnelle. De plus les résultats de Siegel nous permettent de donner une paramétrisation
rationnelle de C (cf. [B], Appendix E), à savoir :
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I I existe des fonct ions rationnelles p = p { t ) , q = q ( t ) dans Ç(^)
tel les que ((<) = ()(j?,ç) et Ciï (2 == { (j?(r ) , ç(r) ) | r 6 <} .
De plus on a l'un des cas .suivants :

(10) (a) p ( t ) , q{t) € <3[<] , i l s ont des coeff ic ients dominants > 0,
et ( p ( r ) , ç ( r ) ) 6 l2 =» r 6 1
(b) p ( t ) == P(t) / ( t^dr et ç ( < ) ^(^/(^-ûO6, où P , Ç e < ( < ]
sont de degrés > 2e , et rf est un en t ie r > 1 sans facteur carré.

Si ^ est linéaire c'est-à-dire si C est une droite, alors la démonstration de (1.3) nous donne le
cas (1.4) (b). Supposons donc que C ne soit pas une droite. Ceci entraîne que :

(11) Dans le cas (10)(a), l'un au moins de p(t) et q(t) est de degré > 2 .

Sous ces conditions on peut montrer que :

(12) Les points de Ciï IN2 "tendent rapidement vers l'infini".

(voir [B], Appendix E pour un énoncé précis).
Soit /6 À^ . D'après (8) et (10) on peut écrire

f^y)^a^y^\

où a^. 6 C et r parcourt les éléments de ( tels que (p(r) , ç(r)) e IN2 . Pour bç. C posons

f,(x) = îM =E û.^W e W ,
r r

où r(t) = ;?(<) + ç(Q . Si jf. A = C[a;,y] on a /^ C[a;] pour tout bç. C en dehors d'un

ensemble dénombrable. De plus si / est algébrique sur t(x,y) alors /(, sera algébrique sur

C(a?) pour tout sauf un nombre fini de valeurs de b .
Pour achever la démonstration de (1.4) il nous reste à montrer que tout /€ À9 qui est

algébrique sur C(x,y) est un polynôme (/£ A) . Supposons au contraire que /e À9 , ff A ,

et / soit algébrique sur C(x,y) . Choisissons b tel que /^ i Ç,[x] et /^ est algébrique sur

t(x) . Ecrivons
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00 "m
h= S V ,

w==0

où c^ e (^ et HQ < 7l! < ^ < • • • • Alors il résulte de (12) que

(13) n^/m—^œ lorsque m — » o o ,

Autrement dit /^ est une série "lacunaire". Il résulte alors du théorème de Fabry (1896) (cf.

[D], Ch. XI, 93.11) que tout point du cercle de convergence de f^ est singulier. Mais une

fonction algébrique ne peut avoir qu'un nombre fini de points singuliers. Par suite /^ converge

partout dans C . Mais une série partout convergente qui est algébrique sur Ç.(x) est un
polynôme (cf. [B], Prop. (D.l)). Cette contradiction conclut la démonstration.

REMARQUE. C'est R. Narasimhan qui m'a signalé le théorème de Fabry et son application dans ce
cadre. Je tiens à l'en remercier.

N
Démonstration de (1.5) : Revenons au cas général, </> = S ^.(^ ,c )61 , et

2=0

^= KM) 1 ^o(M) = 0} • Supposons que ^ n'est pas multiple d'un polynôme spécial linéaire
(au sens de (1.3)). Soit C= C^U ... U C^ la décomposition de C comme réunion de courbes

irréductibles. Notre hypothèse entraîne, vu la démonstration de (1.4), que pour tout i = 1,...,A
soit C',n IN2 est fini, soit les points de C,.n IN2 tendent rapidement vers l'infini. Ainsi si

A é °°/G Aj" , jt A, on a /= 2 /^ , où /^ 6 A^ et d^/m-^œ lorsque m—^oo . Comme
m=0 m m m

dans la démonstration de (1.4), on voit qu'une telle fonction ne peut pas être algébrique sur
C(^) .
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ZERO CYCLES AND THE NUMBER OF GENERATORS OF AN IDEAL

Spencer BLOCH, M. Pavaman MURTHY and Lucien SZPIRO

(to Pierre Samuel)

RESUME

Soit X une surface dans 1'espace afflne A sur un corps algebriquement clos k . On
montre que X est ensemblistement intersection complete si k = IF ou si X n'est pas

birationnelle a une surface projective de type general.
On donne aussi des exemples de varietes affines lisses de dimension n qui ne sont pas des

sous-varietes fermees dans A n. La plupart des resultats s'appuie sur les theoremes de Mumford
et de Roitman concernant Ie groupe de Chow CH^X).

ABSTRACT

Let X be a local complete intersection surface in A over an algebraically closed field k.
We show that X is set-theoretic complete intersection if k = T or if X is smooth and not
birational to a surface of general type.

We also give examples of smooth affine varieties of dimension n, not admitting a closed
immersion in A . Most of the results here depend crucially on the results of Mumford and
Roitman on the Chow group CTo(^).
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Introduction.

Let A; be a field and X a closed codimension two local complete intersection sub-scheme
oftheaffme n-space /S ̂  Let / be the defining ideal of X in A?[^,..., '̂J and suppose that

there is a surjection I / P —^ o/^, where ujy is the dualizing module of X. Then, the

Ferrand-Szpiro Theorem ([Sz], see Cor. 0.2 below) asserts that X is a set—theoretic complete
intersection. When X is a curve of dimension one, the surjection I / P —>-» u)-^ always exists

and thus Ferrand—Szpiro showed that a local complete intersection curve in A ^ is a

set-theoretic complete intersection. The question whether any local complete intersection
sub-scheme of A ^ is a set—theoretic complete intersection is open.

In sections 1 and 2, we examine this question for surfaces in A .It is shown that local
complete intersection surfaces in A -s: are set—theoretic complete intersections.

P
For a smooth surface X in A ^ (k algebraically closed), the existence of a surjection

//72 —^ u}y turns out to be equivalent to the vanishing of 6{ (q = Ci(nU) in the Chow group

of zero-cycles. In view of this, it follows by looking at the classification of surfaces, that if X is
not birationally equivalent to a surface of general type, then X is a set—theoretic complete
intersection (Th. 2.9). We also show that for a smooth affme variety X in ^, the ideal 1^ of

X in k[X^...^X^] is generated by n— 1 element if and only if H^ has a free direct summand

of rank one (Th. 1.11).
In section 3, we give a partial converse to the Ferrand—Szpiro theorem. More precisely, we

show that if Xc A is a smooth surface which is an intersection of two surfaces F^ == F^ = 0

such that at each point of X either F^ or F^ is smooth, then cj == 0 (Cor. 3.7). In section 4,

we prove a result about zero-cycles on the product of two curves, which enables us to produce
examples of surfaces X = C^ x C^ , with C^ smooth affme curves such that X does not admit

a closed immersion in A . Further for this example Hy is not generated by three elements

and hence X cannot be immersed in A . In section 3, for all n,d with 1< d< n<2d+l we
make examples of smooth d-dimensional affme varieties X such that X admits a closed
immersion in A , but not in A . Further for any embedding of X in ^?, the prime ideal
I{X) of X is not generated by m — 1 element. When d=2 this also provides an example of a
smooth surface in A with cj f 0 . The example in sections 4 and 5 are constructed by showing

that the appropriate obstructions in zero—dimensional Chow groups do not vanish.
In this paper we use extensively the results of Roitman ([Ro I], [Ro 2], [Ro 3]) and

Mumford ([Mum]) on the Chow group of zero-cycles. In section 5, we need a result about
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embedding of affme varieties (Th. 5.7). The simple and elegant proof of this theorem we have
included here is due to M.V. Nori. Our thanks are due to him for this proof which replaces our
earlier lengthly proof of Theorem 5.7. Thanks are also due to V. Srinivas for asking us a question
about embedding of affine varieties. Results in section 5 were rewritten and refined recently in
response to his question.

The work in this paper began in 1977. A part of this work was outlined in the survey article
[Mu 3]. A major portion of this work was done in 1978 when the first and second named authors
were visiting IHES and Ecole Normale Superieure at Paris, respectively, and the third named
author was at Ecole Normale Superieure. We are grateful to these institutions for hospitality and
support. The first two authors were also supported by NSF grants.

We have mentioned some of the recent work relevant to this paper in the form of
"remarks".

§0. Notations and preliminaries.

We consider only commutative noetherian rings. Let A be such a ring and /c A an ideal.
We recall that / is a complete intersection of height r if I is generated by an A-regular
sequence of length r. The ideal / is a local complete intersection of height r if for all maximal
ideals M containing Z , the ideal 7^-c A^r is a complete intersection of height r. The ideal /

is a set-theoretic complete intersection of height r if there is an ideal J such that \J = \I and
J is a complete intersection of height r. If Jc A is a local complete intersection of height r ,
we write 0/1 = Ext^(A/7,A). It is well known that o^ Hon^A^/^A/T). Note that if X is a

smooth affine variety and Vc X is a local complete intersection sub-scheme of codimension r
and I the defining ideal of V in the coordinate ring A of 7, then Ur is the module of

sections of o/y® u^1, where u)y and ^ are the canonical sheaves of V and X
respectively.

We recall the following result of Ferrand-Szpiro [Sz], which is crucial for this paper.

THEOREM 0 {Ferrand-Szpiro). Let A be a commutative noetherian ring and Ic A local complete
intersection ideal of height 2. Suppose there is a surjection /—»-*• o/r. Then there is an exact

sequence 0 -^ A—r P-^ J-^Q , with P a projective A-module of rank 2 (for proof see [Sz]
or [Mu 2]).

For a projective ^-module L of rank 1 , we write U1 = Z0" , 2/"" = Hon^L",^), n> 0 .
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REMARK 0.1. The existence of surjection J—^ u)r is easily seen to be equivalent to the

isomorphism I / P w a/r2® o/r, where u)~? = Hom^r^A/T). If every projective A/I-module

splits as a direct sum of a free module and a module of rank one (e.g. dim A / I = 1), then every
projective A/I-module P of rank r is completely determined by A1'? and hence in this case
the surjection J—^ o/r is immediate. This remark and the fact that projective modules over

polynomial rings over fields are free (Quillen—Suslin Theorem) led Ferrand—Szpiro to deduce
that local complete intersection curves in A are set—theoretic complete intersections. Later,
Mohan Kumar (MK1] generalized the Ferrand-Szpiro argument to show that any local complete
intersection curve in A is a set—theoretic complete intersection.

We do not know the answer even when n = 4 and V = V[I) is a smooth surface and k is
algebraically closed.

LEMMA 1.2. Let R == J^X^X^X^X^, where k is an algebraically closed field and 1C R a local

complete intersection ideal of height 2. Let A = R/I and let ujr== u = Extp(A,.R). Then

1) I/Pu A® of1

2) Consider the following conditions
a) w is generated by two elements.
b) I/P« t«;®o?
c) of2 is generated by two elements. We have a).==^ b) ==> c).

PROOF : 1) Since projective R-modules are free and I has projective dimension one, we have
an exact sequence 0 --*• R —+ R—+ J—^ 0 . Tensoring this sequence with A = R / I , we get
an exact sequence 0 —+ L —» A —» A — » I / P —^ 0 with L a projective A—module of rank
one. Thus in KQ(A), we have [ I / P ] = [A]4-[^] , and hence L« ^ I / P = of1. Since cancellation

holds for projectives over A [Su], we have I / P ^ A® or1.
2) a) ==> b). By (1), 7/72® A« A2® a/"1. Since u is generated by two elements, whe have

ifc>© u}~1» A2 . So

7/72® A« a/® cj-1® af^ a;® (^"1® A2)
» a/® a/'1® (a/® a/'1)« A® ^® a/"2 .

Now b) follows from [Su].
3) b) ==» c). 1) and b) imply that o/2® cj"^ A® uj. Hence

o^ ® a/"2 ® a/» £<^ ® A ® a/"1» A2 ® a».
Hence by cancelling (j, we have c/® a/"2^ A2 , i.e., u? is generated by two elements.
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REMARKS 1.3. SKQ^A) = ker(^o(A) -det^ Pic A) has no 2-torsion if char kf 2 [Le] or

(A/7) , is smooth (Prop. 2.1). Using this fact, it is not hard to show that, in these cases, the

implication c) ==> a) holds and hence a), b), c) are equivalent.

COROLLARY 1.4. Let Vc 0^ (k = 1s) be a smooth irreducible affine surface. Then V lies on a

smooth hypersurface.

PROOF : If I c R = h[X^X^] is the ideal of V, then we have I / P u Afe u}-1 (A = R / I ) .

Let /e / be a lift of / ^d let 72 = E" Rf^. Then /,/i,...,.L have no common zeros on

A — V . Hence by Bertini's theorem (as given in [Sw] applied to A—I^), there exist linear
polynomials h^...^h» such that SpecR/f'R is smooth and integral on A4—^, where

// = / + S- /i,/, . Since V is smooth and // is a lift of / it follows that Spec R / f ' R is

smooth at points of V . Hence the hypersurface // == 0 is smooth and integral.

REMARK 1.5. Recently it has been shown that (1.4) is true for smooth Ti-dimensional affine
varieties V in A20 ([Mu5]).

PROPOSITION 1.6. Let R, /, A and u be as in Lemma 1.2. Suppose u r is generated by two
elements for some rf 0 . Then I is a set-theoretic complete intersection.

PROOF : We may assume r> 0 . Let /6 / such that 1 / P w Afe o/r1 .Set J= f 4- Rf . It is

easy to see that J is a local complete intersection of height two. Further J / J f t w R/J.f^ ujj1

(use i) of Lemma 1.2), where / is the image of / in J / J 2 . Hence o/r1 = J/^-^Rf). By

Corollary 0.2 and Lemma 1.2, 2), it suffices to show that o/r1 is generated by two elements.

Since I / J is a nilpotent ideal in R / J it suffices to show that Uj1^ R / I is generated by two

elements. But

U^RII--^^-•f^huu•!•

Hence u j j 1 is generated by two elements and the proof of the proposition is complete.

THEOREM 1.7. Let k = Tp and Ic k[X^X^X^] a local complete intersection of height two.

Then I is a set-theoretic complete intersection.



56 S. BLOCH, M. MURTHY, L. SZPIRO

PROOF : Immediate from Proposition 1.6 and the following lemma.

LEMMA 1.8. Let K/^Sr be an algebraic extension and A a d'dimensional a/fine ring over K

(d> 0). Let L be a projective A-module of rank one. Then L r is generated by d elements
for some r>0 (depending on L).

PROOF : We prove the lemma by induction on d . Suppose the lemma is proved for d = 1 and
assume d > 1 . Without loss, we may assume that A is reduced, Spec A is connected and
L = Zc A is an invertible ideal. Then I / P is a projective A/J-module of rank one and
6imA/I==d-l. Hence by induction hypothesis ( I / P ) r == ^/f^ is generated by d-1
elements and hence J is generated by d elements (e.g. see [MK2]).

Thus we may assume d = 1 . Since Pic A commutes with direct limits, we may assume
K is finite. Let A' be the integral closure of A (in its total quotient ring) and F the
conductor ideal from A' to. A . Then A'/F is finite. Furthermore, Pic A' is finite
[We; p. 207, Th. 5-3-11]). Now the standard exact sequence [Ba, 5.6]
(A / /^*—+PicA-^PicA / ( (A / / JF < )*= units in A ' I F ) show that Pic A is finite. This proves
the lemma when d = 1 and the proof of the lemma is complete.

REMARK 1.9.' The proof of Lemma 1.8 works verbatim when k = 1. Also recently it has been
shown [MKMR] that cancellation theorem similar to [Su] holds for finitely generated rings over
1. Hence (1.2), (1.6) and hence (1.7) hold when R is replaced by 1[X^X^X^ or

^q[ l̂î 2^3^4r

THEOREM 1.10. Let k be an algebraically closed field and Ic R= k[X^...,X^] a local complete

intersection of height two and u}= u)^ = Ext^(^/J,2?). Then the following conditions are

equivalent.
a) I is generated by n—1 elements.
b) //72 is generated by n—1 elements.
c) u is generated by n—2, elements.

PROOF : a) ==^ b). Obvious.
b) ===> c). Put A = R / I . As in the proof of 1) of Lemma 1.2, we have [ I / P ] = JA© o/"1] in
J<o(A). Hence I / P e A^» A^"1® o/"1 for some l> 0 . Now b) implies that A-4'1®.^"1 is

generated by n-l+l elements. Let ( p : A71" —^ A ©a/"1 be a surjection with kernel At.
Then
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A"-2® A^-1 = A71-14'̂  Me A^1 e ̂  .

Since dim A = n-2 , by Suslin's cancellation theorem [Su], we get A11"2^ M® a/"1. This shows
that u~1 and therefore u is generated by 7i-2 elements.
c)=>a) . Since Ext^/,^)« uj, by [Mu2, p. 180], there exists an exact sequence
0—> A""2—^ P — + / — » 0 with P a projective -ft-module. Now a) is immediate by
Quillen—Suslin Theorem.

TilEOB.EMl.ll. Let Xc \̂ be a smooth affine variety of dimension d and I== I(X), the

defining ideal of X in A{^,...,J^J (k=1f:).Let A be the coordinate ring of X . Then the

following conditions are equivalent.
1) I is generated by n—1 elements.
2) I/P is generated by n—1 elements.
3) ^A/i. ̂  a. free direct summand of rank one.

PROOF : 1) ==» 2). Trivial.
2) ==> 3). We have I / P Q Hj^ A° . 2) implies that I / P e Qu A"-1 for some Q. Hence in

W. [̂ 1 = [A! + 1̂ • B^ ̂  ̂ A n A @ Q '
3) ==^ 2). Let n . » A © ( 3 . Then Z/72® A® Qa A0 . Therefore by [Su], J/72® (3« A"-1 and

hence 7/72 is generated by 7̂ -1 elements.
2) ==> 1). Suppose Ti-1 > rf+2 i.e., n> d+3 . Then by [MKl], I is generated by TI-I elements.
If n = ^+1 , / is principal and there is nothing to prove. Hence we may assume n = rf+2 . In
this case, the result is immediate from Theorem 1.10.

REMARK 1.12. By [Mu5], it follows that Condition 2 in Theorem 1.11 is equivalent to
c^(ny = 0 , where c^(n^) is the rfth Chern class of nj^- with values in the Chow group of

zero cycles (see also [MKM, Cor. 2.6]). In particular, for example if X is rational, I(X) is
generated by n—1 elements.

PROPOSITION 1.13. Let X be a smooth affine variety of dimension d over a field k (not
necessarily algebraically closed) with coordinate ring A. Suppoose X admits a closed immersion

d+2
m A ^ . Then ^/i/i. is generated by d+1 elements.
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PROOF : Let /C k[X^...^X^ be the prime ideal of X. Then, as in the proof of 1) of Lemma

1.2, I / P is stably isomorphic to A® uj~r1. Now I / P Q nj,» A^2 . So A e ^ e n . is stably

isomorphic to A^2 . So by Bass' cancellation theorem, we have n , © 0/r1^ A^1, i.e., nj< is

generated by d+1 elements.

§2. Smooth surfaces in A .

For an algebraic scheme X over an algebraically closed field k , we denote by A (X) the

group of j^-dimensional cycles modulo rational equivalence. If X is an irreducible scheme of
dimension n, we write AP(X) = A^.p(X). If X is complete, we denote by Aoo(^), the group

of zero cycles of degree zero modulo rational equivalence. The following proposition is an easy
consequence of Roitman's theorem (see [R03] and [Mi]) on torsion in AQ(X).

PROPOSITION 2.1. Let X be a smooth a f fine variety of dimension d> 2 over an algebraically
closed field k . Suppose dim X = 2 or char k = 0 . Then A^X) is torsion-free.

PROOF : Because of resolution of singularities, we may choose a smooth projective completion V
of X. Let V—X = U^^C^ = C , where C^ are irreducible sub—varieties of codimension one. We

may also assume that C, are all smooth. Since C is connected, we have an exact sequence

® Wi) —^ Aoo( V) —— A,W —— 0 .

Since AQQ^.) are divisible, AQQ(V)« Im y?© A^X). Further C generates Alb(V). (To see

this, cutting V by hyperplane sections, we may assume V is a smooth surface. Yhen by
Goodman's theorem [Go] C supports an ample divisor and hence generates Alb( V)). Thus, we
have a surjective map of abelian varieties, Alb((7,) —+-> Alb( V). This induces a surjective map

^:©Alb(C,)^,^—Alb(V)^^.

Thus we have the commutative diagram
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® ^00 (^i)tors ion — ' ^Oo( v) tors ion

^ 1"
© Alb((7,)^,^ —^ Alb(V)^,^ .

By Roitman's theorem ([Ro3] and [Mi]), the vertical maps are isomorphisms. Since ^ is
surjective, it follows that (Im y^s ion = ^oW tors ion and hence A()(^ is torsion-free.

REMARK 2.2. Proposition 2.1 is valid for any smooth affine variety X over k (k=k), in all
characteristics (see [Sr] and [Mu5]).

Let X be a smooth affine variety of dimension d with coordinate ring A . For a
projective module P , we denote by Cp(P) € AP(X), the pth chern class of P [Fu]. Suppose now

that dim X = 2 . It is weell known [MPS] that

Ao(^) == A\X) = SKo(A) dlf ker(7<o(A) -^ Pic(A).

If P is a projective A-module of rank r, it is not hard to see that ^(P) = class of

[A1'"1] + [A1'?] - [P] in SI<Q(A). In view of this and the cancellation theorem for projectives, we

have

REMARK 2.3. Let X be a smooth affine surface over an algebraically closed field k and let A be
the coordinate ring of X . Let P be a projective A-module of rank r. Then

1) c2(P)==0<=> Pw A^eA"?.

2) If P and Q are projective A—modules, then P« Q <==> rank P = rank (^;
^)=c,(Q),z=l,2.

3) Le Pic A is generated by two elements <=> L® ^"^ A2^ Ci(L)2 = 0 in A2^.

The following corollary is immediate from Proposition 2.1 and Remark 2.3.

COROLLARY 2.4. With the notation as in Remark 2.3, /^ Le Pic A . Ttoi the following conditions
are equivalent.

1) L is generated by two elements.
2) c^(L)2 = 0 in A\X).

^) L is generated by two elements for some rf 0 .
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COROLLARY 2.5. Let Xc A be a smooth affine surface. Let Ic R= I^X^X^X^X^ he its

prime ideal Then the following conditions are equivalent
1) I / P ^ ^© uf.

2) ^•=0 in A\X) (^<v= q(^r) is the canonical divisor of X).

3) rKjr= 0 for some rf 0 .

4) Ur is generated by two elements.

5) I is generated by three elements.
If further any of these conditions is satisfied then V is a set-theoretic complete intersection
in A .

PROOF : 2) <==> 3) ̂  4) <=» 5) is immediate from Corollary 2.4 and Theorem 1.10. Further,
I / P u A® o^1 by Lemma 1.3,1). Hence 1) holds if and only if

^(oye uf) = -2K^=Q^ K^= 0 .

The last assertion follows from Proposition 1.6.

REMARK 2.6. a) When dim X = n> 3 , and L € Pic X, it has been proved that L is generated
by n elements if and only if ^(L)" == 0 . For n == 3 see [MKM] and for arbitrary n see

[Mu5].
b) For further results about set-theoretic complete intersections see [Ly], [Bo] and [MK3].

For a smooth variety X, we write c^X) = ̂ (Hy) 6 A^X) and

c(X) = 1 + c^X) + c^X) +..., the total chern class of X. Following [F], let

s(X) = c(X)-1 = S.Q 5p(^), s^X) 6 Ap(X) be the total Segre class of H^. If X <-» /? is a

closed immersion with normal bundle Ny , then s(X) = c(JV)^, where Ny = dual of Ny .

LEMMA 2.7. Let X ci-^ /S be a smooth d-dimensional variety. Then s^.^(X) = 0 .

PROOF : By the self-intersection formula (cf. [Fu ; Cor. 6.3]), 0 = (i*i^[X\ = c^(AU). Hence

^d-nW = Cn-d(^) = 0 .
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LEMMA 2.8. Let V be a smooth projective minimal surface. Suppose there exist integers r , s
such that rc^U)2-^ sc^U) =0 {in A\U)) f or aU af fine open sets U of V. Then for any

smooth affine surface X birationally equivalent to V , rc^(X)2 + sc^(X) = 0 .

PROOF : If V is ruled, then A\X) = 0 and there is nothing to prove. Otherwise, let V be a
smooth projective completion of X. Then V dominates V birationally and therefore there
exists EC X , E = U,^ E ^ , E^ rational curves such that the affine surface U= X-E is an open

set of V. Let j: U c-^ X be the inclusion. Then we have the surjective ring homomorphism
j( iA(^)~^A(^).Now

f{rc,(X)2 + sc^(X)) = rc,W + s^U) = Q .

Since AQ(E) = 0 , we have f : A\X) ̂  A\ U). Hence rc^(X)2 4- sc^X) = 0 .

THEOREM 2.9. Let Xc ̂  (k= k) be a smooth affine surface. Then X is a set-theoretic

complete intersection in the following cases.
1) X is not birationally equivalent to a surface of general type.
2) X is not birationally equivalent to a projective surface in IP3 .
3) X is not birationally equivalent to a product of two curves.

PROOF : In view of Corollary 2.5, it suffices to check that rc^X)2 = 0 for some r > 0 . Let V

be a smooth projective completion of X. If X is birationally equivalent to a ruled surface, then
A2(X) = 0 , so c^X)2 = 0 and we are done. So assume that V is not birationally equivalent to

a ruled surface. First assume that V is a minimal surface. Then V is one of the following
types:

a) K(V) = 0 , 12q(V) = 0 . Thus 12c^(X)2 == 0 and c^X)2 = 0 by Proposition 2.1.

b) /t( V) = 1 ; there exists r such that r^ V)2 = 0 . Hence again c^X)2 = 0 , by

Proposition 2.1.
According to our hypothesis, if V is i) of general type, then V is a smooth surface in P3

or degree > 5 or ii) V = C^ x C^ where the Cj are smooth non-rational curves.

In case i), let r = deg C , C= V-X .Let i: X ̂  p3-C be the dosed immersion. If -h is
the restriction of a hyperplane to P3-^, then rh2 = 0 . Hence n*(/i)2 = 0 . Since c^X) is a

multiple of 2*(A), it follows by Proposition 2.1, that c^(X)2 == 0 .
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In case ii), let K ^ , i = 1,2 be the pullback to V== C^ x C^ of the canonical divisors on

C,. Then Cly= ^)© 0{K^. Then If, == 0 , z = l , 2 and C2(V)=^J<2> and

q(V) = (^+J^)2 = 2^<2 = 2^(V).
Now let X be any smooth affine surface in A satisfying the hypothesis of the theorem.

Then by Lemma 2.8 and the discussion above, either c^X)2 = 0 or c^(X)2 = 2c^(X) (the latter

holds when X is birational to product of two curves). But by Lemma 2.7,
SQ(X) == c^(X)2 - c^X) = 0 . Hence in any case c^(X)2 = 0 and the proof the theorem is

complete.

REMARK 2.10. If X is birational to product of two curves and is embedded in A , then
2c^(X) = c^(X)2 = c^X). Hence c^X) = c^X) = 0 .

REMARK 2.11. Mohan Kumer [MK3] has recently shown that if Xc S (n> 5) is a smooth affine
surface birational to a product of curves, then X is a set—theoretic complete intersection.

§3. A criterion for vanishing of cj .

In this section we give a partial converse to Corollary 2.5. We begin with the following well
known lemma.

LEMMA 3.1. Let A be a noetherian ring and M, N finite A-modules. Let a^,...,^ ^e a

N-regular sequence which annihilates M. Then Ext^(M,A)» Hom^(Af,YV/(^,...,^)^V).

PROOF : We use induction on r , the case r = 0 being trivial. Assume r > 0 and put
TV = N / x ^ N . By induction hypothesis,

Ext^M.Tv)« Hom^(M,Yv/(^,...,j,)^).

The exact sequence

0-^-SU^-^ TV-40

given
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Ext̂ M,̂ ) -. Ext̂ M.TV) -^ Ext̂ M,̂ ) -SL, Ext̂ (M,̂ ).

Since ^,...,a^ is a regular ^V-sequence annihilating M, we have Ext^M.TV) = 0 . Hence

Ext^(M,AO« Ext^-^M,^ » Hom(M,Ay(^,...,^)AO.

This completes the proof of Lemma 3.1.

COROLLARY 3.2. Let A be a noetherian ring and Ic A a local complete intersection of height r .
Let J bea complete intersection of height r contained in I . Then

ujrw Ex^(A/I,A)u Hom(A//,A/J) = J^-.

LEMMA 3.3. Let P be a projective A-module of rank r-1 generated by r elements. Then
del P = A1'"1? is generated by r elements.

PROOF : We have the surjection A1' —»-»P. This induces the surjection A1'« A^~lA^ —^ A1'-1?.

LEMMA 3.4. (Swan) Let P be a projective A'module of rank 1. Suppose P is generated by r
elements. Then ^P is generated by r elements for all n.

PROOF : We have a surjection A1' -^ P , so that P© ker </? ̂  A1. Taking duals, we see that
P* = P"1 is generated by r elements. Hence we may assume n > 0 . Let x^...,x^ generated

P . Set ^x = :cj8>...<8> x . Then e ,̂...®^ generate ^P: (check locally).
n t i mes

THEOREM 3.5. Let A be a noetherian ring and I a prime ideal which is a local complete
intersection of height r . Let J= (/i,...,/r) be a complete intersection of height r with

\J = I . Assume that for every maximal ideal MD /, the ideal J^ contains r-1 elements ofU
a minimal set of generators of I/M (i.e., dim^^Coker(.7 -^ I/MI) < 1). Let k(I) denote the

Ar
quotient field of A/'I and n= length ̂ (7 )̂. Then

1) o/^Ext^A/J.A) is divisible by n-1 in Pic A / 1 .
v ®n Ar

2) M}r is generated by r elements, where n= lengthy ̂ (•jj-).
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PROOF : By hypothesis for every maximal ideal MD / there existe ^,...,^6 A^r such that

^M^ ^—>9r)AM with ^-^r-l6 J ' so m AM/^"">g^-l^ ^M" ̂ M/^l'-^-^ ls a

principal prime ideal generated by the non-zero divisor ^ • since ^/(^n—^r-i) is

7-primary, J^= (^,...,^-p^)- Further
A. A.

^ = length,/ A ——— = length,/ A —— = 71.
^(4r)j ^^

Hence for every maximal ideal M, there exist ^,...,^ e A,^ such that ^71^= (^•••^rM/if an(^

J^= (^,...,^-1,^). So for ^ < n , (^+^)^ is generated by ,̂...,̂ .-1^ • In particular, /+J

is a local complete intersection of height r. Now by Corollary 3.2,

^= Hom(A//,A/J) = ( J : I ) / J . We claim that J:J= P-^J . Since ^[/= ^ T"-^^ = J, we

have to check this locally at maximal ideals MD /. In A , r , the equality reduces to

(^r-^r-l^?) : (^I'-^r) == (^•••^r-l^?'1)'

This is obvious since ^i,...,^. is a regular A.^-sequence. Hence (Jr= P ' ^ + J / J . By the local

description one also easily sees that I/P+J (in fact, all 2k+J/7k+l+J^, 1< k< n-1) are
projective A/I—modules of rank 1. Set L = I / P + J . Then we have a natural surjection of

®n-i (/? 70-14- j
Lt ——^-> ———T——— == UJr .

(p is in fact an isomorphism, since L and u}r are projective modules of rank 1. This establishes

1). We have the split exact sequence

n . ^ + J . / I r r.0 -* -p--^ 77-^ 72^77= ^-^ 0 •

Now -rr~ ls a projective A//—module of rank r-1 and is generated by r elements since J

is generated by r elements. So by Lemma 3.3, Q = det(~j^') is generated by r . elements.

Taking determinants, we see that ^ I / P == uf^w L® Q . Hence Qw L~1® o/r1 and therefore

-®n-l , _®n-l~1 , is®n-l < , _ ®-n
y « {L, ) <8> (^1) = a^1® ^-n = 0 -̂ .
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Since Q is generated by r elements, it follows by Lemma 3.4 that ^ n and hence ^n is

generated by r elements.

COROLLARY 3.6. Let Vc A be a closed smooth variety of codimension r . Suppose V is a
set-theoretic complete intersection of r hypersur faces H^ = (/, = 0), /,6 k[X^...^X^ 1 < i< r

with (/i,...,/r) containing r-1 minimal set of generators of I(V)p for all Pe V.

(I(V) = prime ideal of V in ,̂...,̂ J). If R^..H, = m7 then mFc^ = 0 m A^V).

PROOF : Let A be the coordinate ring of V and L be a projective A-module of rank 1. If L
is generated by r elements, we have L@ Pw A1', for projective A-modules P of rank r-1.
Now c(P) = (l+q(L))-1. Since rank P = M. , ^(P) = (-l)1'̂ )1' = 0 . By Theorem 3.5, ^m

is generated by r elements. Hence (mc^V)Y=Q in A^V).

COROLLARY 3.7. Let X c A ^ 6e a smooth affine variety of dimension r satisfying the

hypothesis of Corollary 3.6. TAen Ci( V)1' = 0 .

PROOF : Immediate from Corollary 3.6, Proposition 1.2 and Remark 2.2.

§4. Zero cycles on product of two curves.

If X is a smooth affine surface in A which is birationally equivalent to a product of
curves, then we have seen that c^(X)2 = c^(X) = 0 . Here we prove a result about zero cycles on

product of two curves which shows that there exists smooth affine curves C,, i = 1,2 such that

for X = C^ x Cg, c^(X)2 f 0 and c^(X) i- 0 . This gives in particular an example of a surface

not embeddable in A .

THEOREM 4.1. Let X = C^ x C^ , where C^ are smooth projective curves. Let A be a zero cycle

of positive degree on X . Suppose for all {P^P^ 6 X , there is a positive integer m (depending

on (Pi,?2) sucfl ^^ m^ ^ rationally equivalent to a zero cycle supported on

PI x C^U C^ x P^ . Let V= C{ x C^ , where C\ = (7, - Supp 7^(A), flttd p^ is the projection

of X onto C,, i = 1,2 . Then A^V) = 0 .
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PROOF : We write ~ for rational equivalence 'F\x(P^Py) 6 X . Suppose m A ~ D , with D

supported on ?i x C^ U Ci x P^ . Write P == £^ x P^ + ?i x 2^2 ' wnere tne î are zero cycles

on C, , i = 1,2 . We have

m^(A) - Pi + (deg D^ and m^c(A) - ̂  + (deg D^.

Reading these equivalences on C^ x Pg an^ ^ix ^2 respectively, we get

mp^(A) x P )̂ <. ̂  x P^ + (deg D^).(P^)

and
m(Pi x j^(A)) - Pi x ̂  + (deg D,).(P^).

Adding these two rational equivalences and restricting to V , we get

m deg A.̂ (P,,P2) = ̂ {D) = -^(m A) = 0 ,

where j : V ̂  X is the inclusion. Since this holds for all (P^Ps) € ^, we get that Ao( V) is

torsion. Hence A()(V) = 0 by Proposition 2.1.

COROLLARY 4.2. Z/e< X = C'i x (̂  , where C,- ore smooth projective curves of positive genus over

C . Let A &c a -?ero cycfe of positive degree. Then there exists a (P^Pa) € ^ such that

mi*(A) ^ 0 in Ao( V), for any m > 0 , wAcre V = €'{ x ^ , C .̂ = C',-{PJ , i = 1,2 , and

i: V c^ X is the inclusion.

PROOF : Since pg(X) > 0 , by [Mum], Ao( V) f 0 for any open set V of X . Now the corollary is

immediate from Theorem 4.1.

LEMMA 4.3. Let Xc ff\ be a smooth affine variety of dimension d . Let Ic k[X^..^X^] be the

prime ideal of X and A its coordinate ring.
1) If I is generated by r elements, then nji/i. has a free direct summand of rank n-r .

Consequently^ c^X) = 0 for i > d+r-n.
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2) E. n^/^ is generated by s elements, then s^X) = 0 for i < 2d-s , (s, = ith Segre

class).

PROOF: 1) If / is generated by r elements, then J/72® Lw A1' for some L. Hence
//72® Lw A"-^ A"« J/72® n^ . By [Su], n . » ^© A"-1' .

2) If n^ is generated by s elements, then ^ . © L » A 5 , for some L . Then I / P and L

are stably isomorphic.
Since rank L = s-d, we have s^(JO = c , ( I / P ) = 0 , for i > s-d, i.e. s^X) = 0 for

i< 2d-s.

COROLLARY 4.4. Z/e^ X = C^ x Q , wAere Cj are smooth projective curves of genus g^ > 2 ,

z = 1,2 over k = C . T^ere exists a (P^) 6 A" such that the affine surface V = C\ x ^ ,

^ = C, - {PJ , i = 1,2 Aas the following properties.

1)q(^0,C2(^0,q(V)^C2(^.

2) For o»y closed immersion V ̂  A n ^e pnzTie idea/ /(V) c C[ ,̂...,̂ ] of V is not

generated by n—1 elements.
3) Q,y is not generated by three elements. In particular, there does not exist any un

ramified morphism V—^ A .
4) V does not admit a closed immersion in A .
5) A2^ y is not genered by two elements.

PROOF : Fix canonical divisors K, on (7,. Let ~R, = p^K,), p,:X-^ C,, being the projection.

Then 7^+7^ is the canonical divisor and H^= ^(7^)© ^(7^) . Hence

c,(X)2 = 27^ , c^X) = 7 .̂7?2 = c,W - c^X).

Further, deg(7?i.7?2 = 4(^--1)(^-1) > 0 . Now 1) follows from Corollary 4.2, with A = 7 .̂7^ .

The assertions 2) and 3) are immediate from 1) and Lemma 4.3 since, c^(V)fQ, and

^y) = ̂  l/)2-^( ^) ^ 0 . Again 4) is immediate from Lemma 2.7, since 5o( V) ̂  0 . 5) follows
from Corollary 2.4, since q( V)2 ^ 0 .
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§5. Examples of surfaces in A 4 with c[ 4- 0 .

Let X be a smooth affine variety of dimension d . It is well known that X can be
2d+l

embedded in A . In this section in the range, d+1 < n< 2d+l, we give examples of affine
n n-i

varieties X admitting a closed immersion in K but not admitting a closed immersion in A .
These examples will also have c^(X) f 0 so that its ideals I(X) aree not generated by n-1

elements. When d = 2 , n> 4 , this also provides an example of a smooth surface in A 4 with
c^ 0 (cf. Corollary 3.7).

We first collect some facts which follow easily from Roitman's methods [Ro I], [Ro 2]. As
before, for a variety X , A^X) = group of zero cycles modulo rational equivalence.

LEMMA 5.1. [Bl] Let X be a smooth projective variety of dimension d over k = C . Let N> 0
be an integer, and let 7 : X x X —» AQ^X) denote the map ^(x^...,x^y^...,y^) = S ̂  - E ̂  .

Let Z be a non-singular variety and suppose given a morphism /= (/n/a) '- Z-^ X x X

such that the composition 'yo/: Z—^ AQ(X) is the zero map. Let ^6 r(Xfl^) be a q-form on

X for some q> 1 . Define a differential ujeT^W by a^E^p^), where

pj: X —» X is the projection on the ith factor. Then f\(u)) = f^) on Z .

LEMMA 5.2. Let X be a smooth projective variety over C . Let Y be any complete variety
(possibly reducible) of dimension q . Let i p : Y—^ X be a morphism such that the induced map
^ : Ao( Y) —*• AQ(X) is surjective. Then if^X^^) =0 for t > q .

PROOF : By using Chow lemma first and then resolution of singularities, we may assume Y is
smooth and projective. Let V^,...,}^. be irreducible components of Y. For r-tuple of

non-negative integers (c^,...,<^.) we put | a\ == S a, and Y = n^ Vf2 . (Here a, = 0

means that V, is omitted). For | a\ = n, the restriction to Y of ^: Y" —» A()(^), given

^ ^(yp-^n) = ^(2/1) 4••••+ ^(Vn^ mduces a morphism of ^: Y^-^A(X) in the sense of

[Ro2]. Similarly Y^X-^A(X) induced by Y ^ x X - ^ X , ((^i,...,^)^

(p(y^) +...+ </?(2/n)+a:) is a morphism. Hence

^An'V Y^X,\a\=n,\p\=n-l

za^n = {(V/^)l ̂ a) rat V^^}
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is o-closed (i.e., countable union of irreducible closed sets) [Ro2 ; Lemma 3]. Let p n

denote the projection of Z^ n on X. Since every x e X is in Im ̂

X= U Imp.o .
a,/?,7i 'a^

a =7i,| /?| =7i-l
72>1

Hence there exists an irreducible variety Zc V x Yn> X for some O,/?,TI , such that Z

dominates X (under projection). Let f:~Z-^Z be a desiingularization. Let p ,^ denote

projection of Z onto Y^ and Yg^ X respectively, o o / and ^o0/ composed with natural

product maps V^—^ and Vnx ^—» ̂ ° give the morphisms /^: ^—» ^n , i = 1,2 , such

that the composite

^ (/1?/2) , ^n ^ ^n_r,^(^

is zero, wheere 7 as in Lemma 5.1 is the natural difference map. Let UJG. ^(Xft1) with I > q

and u) = S ̂ (o;), p, : ̂ " x A' is the zth projection. Since dim V, < i, (y?| r,)*(o/) = 0 . Hence

j\(^) = 0 . On the other hand f^(u) == ^*((j), where g is the composite map

^-t, Z P^J') ^r. Hence by Lemma 5.1, f^(uj) = g*{uj) = 0 . Since we are in characteristic zero

and ~2 dominates X, we have u = 0 .

COROLLARY 5.3. Let X be a smooth affine variety of dimension d over C . Let X be a smooth
protective completion. Suppose lf{Xfl^) + 0 . Then A^X) is a non-zero torsion-free divisible

group.

PROOF : By Lemma 5.2, AQ^X-X) —> AQ(X) is not surjective. Hence A(X) f 0 . The rest follows
from Proposition 2.1.

REMARK 5.4. As in [MS], using Roitman's methods one can show that there is a homomorphism of
an abelian variety J-^ A(X) with countable kernel so that rank. A(X) = card C . But we do
not need this here.
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LEMMA 5.5. Let K be a field of characteristic zero. Let Hy denote the vector space of

homogeneous polynomials of degree r in X^...^. Then Hy is spanned over K by {Lr\L

linear polynomials in X^... ,J^ }.

PROOF : Exercise.

COROLLARY 5.6. Let X be a smooth affine variety of dimension d over C . Suppose A(X) is
generated by the intersection products c^(L^...c^L^), with L,6 PicX= A\X}. If AQ^X)^ 0 ,

then there exists an L € Pic X such that c^L^ + 0 in AQ(X).

PROOF : By Lemma 5.5 (with K= (), some integral multiple of c^L^...c^(L^) is an integral

linea combination of {c^L^Le Pic (X)). Since A^X) is torsion-free, the corollary is

immediate.

Next, we need the following result about embeddings of affine varieties. The proof we have
given here is due to M.V. Nori. This proof replaces our lengthy proof.

THEOREM 5.7. Let X be an integral variety of dimension d over an algebraically closed field.

There exists a smooth affine open set V of such that V admits a closed immersion in A

d+l
PROOF : (M.V. Nori). By taking a generic projection to A , we get a finite birational map

d+i
TT : X —» X ' , such that X' is a hypersurface in A and TT induces an isomorphism
Tr'^^g ) —» X^ on regular points. Hence we may assume that X is an integral hypersurface

d+i
(possibly singular) in A . Let A = k[x^...,x^x^ be the coordinate ring of X. Let

F=S7?,o/,^=0 be the equation of X, with /,€ ^,...,a?J and / o / O . F o r a n y

he A{a?i,...,a;j, put x^ = x^/(hfo). Then we have Ef^ /A^D^cM == ° • Dividing this

equation by hf^, we see that ^6 ,̂...,̂ ,̂ +1]. It is easily seen that A^ = k[x^...,x^x^].
d+i

Hence for any Ae A?[a;i,...,a;J, h+ 0 , Spec A , r admits a closed immersion A . Let h be any

nonzero element in Jn k[x^...,x^], when Jc A is the ideal defining the singular locus.'Then
d+i

Spec Arr is a smooth affine hypersurface in A .
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THEOREM 5.8. Let d,n be positive integers such that d+1 < n<2d. Then there exists a smooth
affine variety X of dimension D over C such that

n+l
1) X admits a closed immersion in A , but X does not admit a closed immersion

in /S .
2)c^(nU^O and the prime ideal I{X) of X in C[ ,̂...,̂ J for any closed immersion

X c-^ K is not generated by m—1 elements.
3) Hy is not generated by n—1 elements.

4) c^X)^ + 0 and A^J^ is not generated by d elements.

PROOF : Let V be a product of n elliptic curves. Clearly for any open set V of Y , A()( V) is

generated by the products q(Li)...Ci(Lj, with L,e Pic V. Further, by Lemma 5.2, since

jy°( V.A^ y) i. 0 , we get that A()( V) + 0 , for any open set V of Y ; By Theorem 5.7, choose
n+i

an affine open set V of Y such that V admits a closed immersion in A . In view of
Corollary 5.6, there exists an L 6 Pic V such that c^Lf- ^ 0 . Since V is affine, by Bertini's

theorem, we can choose "generic" D ^ , 1< i< n-d such that the Z), are smooth integral

divisors with OJ^D^)» L and X=n^^ D^ is a smooth integral variety of dimension d . We

claim that X has all the properties listed in the theorem. Let 1= I^C Oy be the defining ideal

of ^.Then 1= 0{-D^ +...+ ^(-jDj,.^). Hence J/72 is a direct sum of TI-^ line bundles each

isomorphic to i*(L), where i: X ̂  V is the inclusion. Hence the total chern class
c ( I / P ) = (l-^c^L))"^ . Since Hy and hence Q.y is trivial, we have

c(H^) = (1-^(2.))-"^ . Hence

Cn-dWP) = W^W^

CdW = c^) = (-l)̂ ,").̂ ^ = (V)^^

and

Since

ci(̂ ) = ci(n )̂ = (»i-d)̂ (L).

4^(2^ = c,{L)\W = c^cW^ = c,(LY^ 0 ,
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it follows that i^c^L)^^ 0 . Since n-d< d and A^{X) is torsion-free, it follows that ^(nU,

hd-uW == ^-d^/^) an^ ^(-^ are a^ non-zero in the Chow ring of X. Now 1) follows from

Lemma 2.7 and 2) and 3) are immediate from Lemma 4.2.

Since c^X)^ f 0 and for any He. Pic ̂ , H is generated by rf elements implies

c^H)d = 0 , it follows that A^ y is not generated by d elements.
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INTERSECTION KINGS OF SPACES OF TRIANGLES

Alberto COLLINO and William FULTON

In 1880 Schubert [12] described a space which compactifies the set of (ordered) plane
triangles, and described its intersection ring — giving a basis for the cycles in each dimension,
and giving algorithms for computing products. In 1954 Semple [13] gave a modern construction
of this space, which we denote X, as an algebraic submanifold of a product of projective and
Grassmann manifolds. Tyrrell [15] verified Schubert's prescription of the cycles and their
relations in codimension one, and calculated a few other intersection products. The aim of this
note is to complete this analysis. We give a formula for the Chow ring (or cohomology ring) of
this space: it is generated by seven classes in codimension one, with an ideal of relations
generated by twelve classes. In particular we verify that Schubert's basis is correct in all
dimensions, and the intersections are as he specified. It is interesting, however, that one of the
defining relations for the intersection ring is independent of those given by Schubert before he
lists the basis.

The proof is remarkably easy. Since the torus of diagonal matrices in SL(3) acts on X
with finitely many (72) fixed points, it follows from the work of Bialynicki-Birula [I], [2] that
the total Chow group A\X) of X is free on 72 generators. We define, purely algebraically, a
graded ring A* with seven generators and certain relations, and verify that A' has 72
generators - the same basis as given by Schubert. It is easy to verify that there is a
homomorphism from the ring A* to the Chow ring A'(X). Since the generator of A6 maps to
the generator of A6^, Poincare duality implies that this homomorphism is an isomorphism.

Because the algorithms for writing any classes in terms of the basic classes are given
explicitly, it becomes a simple algebraic exercise to compute any intersection products, and in
particular any enumerative formula, involving the basic 72 generators.

* Research partially supported by NSF Grant DMS-84-02209.
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Although modern machinery has often been used to give rigorous proofs of classical
formulas in enumerative geometry, this appears to us to be one of the rare instances where a
modern framework actually simplifies the classical calculations. Only part of the first few pages
of Schubert's calculations appear in this approach. Perhaps the most obscure part of Schubert's
paper (pp. 167—181), which may be regarded as a calculation of the Kunneth components of the
class of the diagonal on X^X, can be dispensed with, since this is equivalent to knowing the
intersection products of all pairs of generators in complementary dimensions.

In this paper we also compute the Chow ring of the space of triangles in a projective bundle
over a given variety. This includes the space of triangles in IP0 ; for n=3 a few equations were
included at the end of Schubert's paper [Sch]. As he implies, there are few new ideas needed for
this generalization ; the present framework makes it quite automatic.

Another approach to the computation of intersections on the space X of plane triangles
has been developed by Roberts and Speiser [9], [10]. They show how X can be constructed by
starting with P2 x (p2 x (p2 ^ and forming two blowups, followed by one blowdown. This allows
one to work out, although with some difficulty, any intersection products one may wish. That
approach requires delving considerably deeper into the geometry of the space X, which is of
independent interest. Our approach, on the other hand, gives the whole intersection theory on X
all at once, with minimal knowledge needed about its geometry, and no need to verify
intersection multiplicities of any but the simplest intersection products.

We were led to this idea by reading the preprint of Ellingsrud and Str0mme [5], who used
the Bialynicki—Birula theorem to compute the Chow groups of the Hilbert schemes of points in
the plane. The simple observation of the present note is that the same theorem will yield the
Chow ring of a variety, provided one can guess (say with the help of Schubert!) what the ring
should be, and one can produce a suitable homomorphism from this abstract ring to the actual
ring.

Le Barz [8] has used Hilbert scheme methods to construct a space of triangles in any
non-singular variety. We comment on this in §5.

Schubert gives many applications, of which we discuss only one : to calculate the number of
triangles which are simultaneously inscribed in a given plane curve C , and circumscribed about
a given plane curve D , assuming C and D are suitably general. Here Schubert makes an error
and gives an incorrect formula. This is remarkable not only because of the rarity of any errors in
Schubert's formulas, but also because the correct formula had been given a decade earlier by
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Caylay [3] ! Schubert's error was not in his discussion of the intersection theory of the space of
triangles. Rather, he ignored the fact that the dual of a smooth curve of degree greater than two
has singularities. When this is taken into account, the correct formula comes out.

The first section discusses the space X of complete triangles, reviewing that part of the
work of Schubert and Semple that we need. The second section is pure algebra, describing the
ring A' and giving algorithms for writing any element of A' as a linear combination of 72 basic
classes. The proof that A is the intersection ring of X is given in §3, and the application to
inscribed and circumscribed triangles in §4. The extension to higher dimensions, with a few
complementary remarks occupies §5. Appendix A contains some algebraic manipulations needed
for §2 (and for [12], but Schubert assumed the reader could supply them). Appendix B contains
the tables of intersection products of classes of complementary dimensions. In Appendix C we
prove a simple "Leray Hirsh" theorem for Chow groups of fibre bundles whose fibre is a variety
such as the variety of plane triangles, or any smooth project! ve variety with <C* action with
finitely many fixed points.

We thank Joe Harris for useful advice about the influence of plane curve singularities on
enumerative formulas, and Steven Kleiman for pointing us to Cay ley's paper.
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Section 1. The compactified space of triangles.

We follow Schubert's notation for ordered triangles in the plane. We sketch a typical
member of each type, according to dimension of the loci of such triangles.

A general triangle has vertices a, 6, c, with the opposite sides being lines a, /?, 7:

Dimension 6

Five—dimensional families:

e : the three lines coincide in one line denoted g , on which there are three vertices
a, 6, c.

r : dually, the three vertices coincide in a point s , through which pass three lines
Q.A7.

0a. : the two lines /? and 7 coincide in a line g , the two points b and c coincide in
a point s on g ; a is another point on g , while a is another line through s .

0b and Qc are defined similarly, by permuting the vertices and edges.

Dimension 5

^g • c t • ^ l ' • \^s.a.b.c

Aa b c ' /\ ^.b.c '.•3-

Type € Type r Type ̂
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Four—dimensional families:

a/a : one line g , with the two vertices b and c coinciding in one point s on g , with
a another point on g . Similarly for o/b and o/c .

^ : the dual specialization of type r , with /? = 7 = ^ ; similarly for ^ and o^ .

if) '. the three sides coincide in one line g , and the three vertices coincide in one point
s on g . In addition, a net of conies is specified, which contains the pencil of conies consisting of
g and an arbitrary line through s , and is contained in the web of conies consisting of all conics
which are tangent to g at s . (This net is therefore a plane in the P5 of conics, containing a
certain IP1 and contained in a certain P3).

Dimension 4

g • a - p . y

s - b - c

Type a/a

„ curvature

^ ^ \

\ s - a . b - c
T-^———

g • a -p « y

Type ip

Three-dimensional families :

The two special nets described in the following types TJ and C should be regarded as
exceptions from type ^.

T) : one line g , one point s on g ; the net of conics consists of those conics which contain
g as a component, i.e. consist of g and an arbitrary line.

^ : one line g , one point 5 , and the net of conics consists of those which are singular at
5 , i.e. consist of two lines through s .
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Dimension 3
curvature = 0 curvature = oo

/ s - a - b - c

g - <x -p - y

/s • a " b " c

1———•——————g - <x -p - r

Type rj Type C

The set X of complete triangles is the union of the set of 'general triangles and the special
triangles described in the above list. Schubert also described the topology of X, in the sense
that he specified which triangles are to be regarded as specializations of which other types :

uja. is a specialization of e and ^a »
^ is a specialization of r and 63.;

^ is a specialization of ffa., 0^ and Qc , but not a specialization of e or r ;
TJ is a specialization of type ^a , ^b and u)c and if), but not of 0^,0:3 or ^ ;

C is a specialization of type ^ , o/p and o/^ and ^, but not of Ua., ̂  or o/c .

Each complete triangle has an associated net of conies ; except for types ^ , rj and C ^ is
determined by the vertices and edges.

For a general triangle, the net is the net of conies passing through the three vertices a, 6, c
of the triangle.

For a triangle of type e or a/a , the net consists of all conics which contain the triple
line g.

For type r or 0)3., the net consists of conics which are singular at the point s.
For a triangle of type Oa., the net consists of all conics which are tangent to a at the

point s , and which pass through the point a.

Over the real numbers a net of conics contains a unique circle - the conic which passes
through the two circular points (1: ±i: 0) at infinity. With this interpretation the net of conics
corresponds to a radius of curvature ; if the three vertices of a triangle lie on a curve, and
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approach a non-singular point of the curve, the limiting circle will be the osculating circle to the
curve.

Semple [13] defined the space X to be the closure in the space

P2 x IP.2 x P2 x jp2 x P2 x p2 x Q ^

where G is the Grassmannian of planes in the IP5 of conies, of the locus consisting of all
(a, 6, c, a, ft 7, A) for which a, 6, c are the vertices, and a, A 7 the sides of a general triangle
as above, and A is the net of conies passing through the three vertices a, 6, c . He showed, by
straight—forward calculations in local coordinates, that X is a non-singular six-dimensional
subvariety of this product variety, and that the points of X are precisely of the types described
above, with the prescribed nets of conies and specialization relations. Each of the types makes up
a locally closed algebraic subvariety of X, of the dimension specified with its description.

The main goal of this note is to describe the intersection ring A\X) of X. Following
Schubert and Semple, we use the notations e , r , 0^ » ^c » ^ » etc. to denote the classes in
A'(X) determined by the closures in X of the corresponding loci of special triangles.

There are also classes in A^X) determined by subvarieties of X consisting of triangles in
special positions :

a : the vertex " a" is required to lie on a given line. This condition defines a hypersurface
in X, whose class is independent of the choice of line. In fact, a is the pull-back of the
generator of A1^2) via the projection to the first factor in the above product.

b and c are defined similarly, and are pull-backs from the second and third factors.
a: the side "a" is required to pass through a given point. This is the pull-back of the

generator of A^) via the projection to the fourth factor in the product. Similarly for 0
and 7.

d : the net of conies is required to meet a given net of conies. This is the pull-back of the
standard generator of A^G) via the projection to the last factor.

Tyrrell [15] proved that the relations among these divisor classes were as stated by
Schubert. To do this he has to compute some intersection products ; we give direct proofs of
these relations in §5. Among these relations are :
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(1) 6+c~a=r+^a
c+a-l3= ?4A
a+&-7= r+^c

(2) /?+7-o = e+^a
7+0-6 = e-t-^b
a+^-c = e+^c

(3) d = a+/?+7+r = a+6+c+e .

Some other relations are obvious from the definition, or the fact that the classes are pull-backs
from divisors on surfaces :

(4) fl3 = 63 = C3 = 03 = ̂  = ̂  = 0 .

From the fact that the vertex a is always contained in the side P , i.e. that the projection of X
to the product of the first and fourth factors IP2 x IP2 lies in the incidence variety gives the first
of the following relations :

(5) a/3 = a^ffi , 07 = a2+72 , 67 = &2+72 ,
ba = b^a2 , ca = c2+a2 , 07 = c2+72 .

Since the points b and c (and sides /? and 7) coincide on a triangle of type ^a , we have
equations

(6) Qa.b= &c, 0bC== Oba, Oca= Ocb,
Oa.0 = ̂ 7 , ^b7 = ̂  , 6c0i = ^c^ .

All the above, with the exception of the trivial equations (4), are among those given by
Schubert. A final equation which we shall need, however,

(7) 6 T = 0
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is not among those in Schubert*. It follows immediately from the definitions that the geometric
loci describing the types e and r have disjoint closures, because the nets of conies can never
coincide : those of type e have curvature 0, while those of type r have curvature oo .

* We cannot help commenting on the fact that Schubert omits such useful equations. It is now
universally agreed that what Schubert was doing is exactly equivalent to the modern calculation
of intersection products of cycles on manifolds, and we do not pretend to deny this. But to
anyone now calculating intersection products, the first relations written down would be that
products of classes determined by disjoint subvarieties are zero. In fact, Schubert only explicitly
writes down products of classes where at most one of the factors describes figures of a special
type ; all the other factors describe figures in special position with regard to given but variable
objects. Of course several classes invoking special type are more likely to meet improperly, and
perhaps, in the absence of foundations, he wanted to avoid such dangers.

It should also be pointed out that Schubert's equations given in the beginning of his paper
do not generate all equations in codimension > 2 ; the equation er = 0 is independent of the
equations he lists.
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Section 2. The algebraic intersection ring.

The ring A' is defined to be the polynomial ring in seven variables, subject to certain
relations. That is

A- =Z[a,6,c,a,/?,7^)AT

where / is the ideal generated by the polynomials listed in (1) - (4) :

(1) a3 , &3 , c3 , o3 , ft , ̂  ;

(2) a^-a2-^ , 07-02-72 , b-y-b2-!2,
ba-b^a2 , 00-02-0-2, c/^-c2-^ \

(3) (64-c+/?+7-o)(&-c), (o+c4-o4-7-c0(c-fl), (fl+M-a+/?-o)(a-6) ;
(M-c-4-/?+7-rf)(^--7), (a+c+o4-r-c0(r-^), (a+6+a+^-fi?)(o-^) ;

(4) (o--a-&--c)(o-o--/?-7) .

Remark. This list of generators for / is not minimal. In. fact, modulo relations (2), the six
equations in (3) are equivalent (see equation (A. 8) of the appendix) to the four equations

2a2^-ao^-a2-ad = 2b2+bft-|^2-bd = 2c2+c7-72-ca ,
2a24-aa-o2-^ = ̂ y^P-b2-^ = 272+07-72-70;

so two generators, say the first and fourth of (3), could be omitted. In addition, the six
generators in (1) can be replaced by any one of them (e.g., to see fl3= /^, combine a2?^ cft+af^
with a/?2= /?34-a2/?). When this is done one has 12 generators for / which are a minimal set of
generators. In fact, relations (2), (3), and (4) put 11 relations on the 28 monomials of degree 2,
so all of these equations are needed to get dim A2 = 17 . One may check that a relation (1) must
be added to cut the dimension of A3 from 23 to 22, or even to cut A' down to a
0-dimensional ring.

Note that the group G = (83 x ($2 acts on A* ; the symmetric group ($3 on three letters
permutes a, b and c and simultaneously a , 0 and 7; the group ($2 acts via the ".duality"
operation which interchanges a and a, b and /?, c and 7; all elements of G' fix d . The
generators of / are chosen so that / is clearly taken into itself by thic action of G .

For simplicity as well as to clarify the relations with geometry we define polynomials
e , r , Oa., Ob and 0c and express some of the generators of I in terms of them ; we set
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(i) e = d—a—b-c
r = d—a-ft-j
Q^ = b+c+0+^d
Ob = fl+c+a+7-rf
^ == a+b+a-}-/3-d.

The generators (3) and (4) for / can be written :

(37) ft^c), ^o), 0a{a-b) ;
^7), ^a), Oc(^-P) ;

(4-)

The same notation will be used for the corresponding elements a, 6, c, a, A 7, rf, e, r, ^a, Qbi 0ci
in A*. It follows immediately from the definitions that any of the elements e, r, fc» Ob Q1 0c
could have been used instead of d as the seventh generator of A', and that we have the
equations :

(ii) Oa. = b+c-oc-r = P+^-a-e
Ob = C+0—0-T = 74-Qt-&-C

6c == a+b-^y-r = a+P-c-e.

In addition, since 0a.b = 0a.c in A' by (3'), we denote this common element of A' by 0a.s ;
similarly ^ denotes Qa.0 = ^a7, and the same is done for ^ and ^c • That is, we define :

(iii) 0a.s = Q^ = :̂c , 0a.g = ^/? = ^7
^b5 = ^bC= ^b0 , Gb9= 0b7 = ^0'
^s = ffca = Ocb , 0cg = ^ca = 0 c 0 '

From equation (A.3) of Appendix A follow the equations ea = eff = 07, which we denote by
eg , and dually for r ; that is, we define :

(iv) eg = ea = e/3 = 67
r5 = ra = r6 = re .

Similarly (see (A.10)) ^2 = ^c2 = ̂ c is denoted ^a52, with analogous formulae for ^ and
^c • Likewise ra2 = r62 = ra6 = ..., denoted rs2, and dually for eg2:
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(v) ffa.s2 = ffa.b2 = 0a.c2 = 0a.bc
0bS2 = ffbC2 = ^2 = ^bCfl

QcS2 = 0ca2 = ^2 = Ocab
rs2 = ro2 = rb2 ==• re2 = rab = r6c = rca
eg2 = ea2 = e/?2 = 072 = ea/? = e/?7 = e7a.

Another simple calculation (A.5) shows that 0a.0b == QbOc = ^c^a , and this element is
denoted ^:

and we have (A.19) the formula ^a2 = ^b2 = ^06 =... which is denoted ^52, and similarly for
^2:

(Vii) ^2 = ^fl2 = ^2 = ^2 = ̂  = ^c = ^Cd

^2 = ̂ 2 == ̂  = ^<y2 = ̂ ^ = ̂ /y = ̂ ^ .

Finally note (A.27) that (^s2)a= (^2)/?= (^2)7, which is denoted ^s2^, and similarly
(A.19) for (^2)/?=(^2)7:

(vii) ^ = (^?2)a = (^s2)/? = (^2)/y
^^ =(^2)/? =(^2)7
^bS2^ = (^s2)a = (^52)7
^c52^ =(ffcS2)a == (^cS2)/L

For convenience we set

(viii) [*] = aU^2

in A6. We will see shortly that [*] is also equal to c^T2.

PROPOSITION. The ring A' is generated as an additive group over 1 by the 72 elements:

1 in AO

a, 6, c, a, A 7, rf in A1

a2, 62, c2, a2, /?2, 72, aa, 6/?, 07, r5, eg, ^s, ^s,
^c5, ^a^, 0b9, Oc9 m A2
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o2/?, 027, &2^ ^a, c2a, c2?, abc, a/?7, ea2, e&2, ec2,
ra2, T/?2, T72, <^2, T52, ^2, ̂ 2, ̂ 2,̂ 2, ̂ 2, ̂ 2

&2c2, c2a2, aU2, ^272, T^ (y2^ T.̂  ^S2^ TS2^,

eg2^ e^b, e^c, Q^g, Q^g, 9^g, p2, ̂ 2

C&2c2, 6C2a2, ea2&2^ 7-^2^2^ ^2^2^ ̂ 2^ ^2^

N

in A3

m A4

m A5

in A6 .

In fact, we give recipes to write any monomials in a,6,c,a,/?,7,rf in A' as integral linear
combinations of these 72 basic classes. Most of these rules are formulas of Schubert; the point is
simply to verify that they all follow algebraically from the basic relations (1) -- (4). We list and
verify those of Schubert's formulas which we need in Appendix A.

Because of the action of G = (83 x (82 on A', each relation that is proved to hold in A'
may give rise to up to 12 relations by applying the symmetries in G to it.

In this regard note that e and r are dual and fixed under (£'3 , that ^a, ^b, and Qc are
self-dual, and are permuted as the subscripts indicate by (83 ; ^ is self-dual; 9a.s and Oa.9 are
dual, as are rs and eg , 0o,s2 and 0a.g2, rs2 and e^, and ^52 and ipg2; we will see that O^g
and ^g are self—dual.

We note also that the set of proposed generators of each A* is closed under the action of
G . Except in degrees 3 and 6, this follows immediately from the previous paragraph. For degree
3 one needs to add the equation

(5) a/?2==(a2+/?2)/?=fl2/?,

which follows from (2) and (1). For degree 6, to show that 02/3272 = aU'^c2 , note first that

(6) a2^ = a(a^2) = a(a2/?) = 0 ,
(7) 0672 = (a2^2)^2^2) = aU2 ,
(8) abaft = (fl2+/?2)(62+a2) = aH^a^aW^b2^ .

Multiplying (8) by 72 and applying (6) and (7) it follows that

(9) a2/?272 == abap-f = Waft .

Now aWap = aha2/^ by (5), and by the duals of the preceding steps, this is a^c2, as
required.
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To show how the indicated elements generate in a given degree k , it suffices to show first
how to write monomials of degree k of the form ST, where S is a monomial in a, 6, c, and T
is a monomial in a, /?, 7, as a linear combination of the given elements. Using the action of G ,
one need only check one monomial in each C?-orbit; for example, by duality, it suffices to
consider deg(*S) > deg(T). Next, for each ST as above, but of degree k-1, one must show how
to write the product of ST with any one of the elements rf, e, r, &, ^b, or ^c» as a linear
combination of the given elements. To see this one uses the equations (i). Because of (4) we have

(10) d2 = (a+6+c+a+/?+7)fi? + (a4-b+c)(a+/?+7),

so we never have to consider products of any of these last elements. The details of these
computations are included in Appendix A. D

This makes the calculation of any product in A" a simple algebra exercise. In particular
one computes easily that the 7x7 , 17x17, and 22x22 matrices obtained by multiplying the
basic classes in A1 and A5, A2 and A4, A3 and A3, respectively and picking off coefficients of [*],
are all unimodular (see Appendix B).

In the next section we will construct a homomorphism from the ring A" to the Chow ring
A'(X). We will apply the following simple lemma to this homomorphism, to deduce that this
homomorphism is an isomorphism, and that the above classes form a basis for A' and A\X).

DEFINITION. A graded ring A' == A°© A1®...® A" will be called an n-dimensionsX Poincare
duality ring if A° has one generator [*] over 1, and each A1 has a finite number of

generators a^ ; in addition, for each i there should be integers a^ such that

api).a^)=^)[^

and the matrices (flp^) arc unimodular. We will call such a ring a strong Poincare duality ring

if, in addition, the generator [*] is not a torsion element (or zero) ; it follows that the elements

a^ form a basis for A1 over 1, and the product A 2 ® A"'2 -^ A" ^ 1 is a perfect pairing

over 1.

LEMMA. Let A' and R be n-dimensional Poincare duality rings, with B' assumed'strong.
Suppose ip' : A' —•> B' is a homomorphism of graded rings, and that y?" maps [*] onto [*] .

Then A' is also strong. Suppose that the total number of generators of A' is the same as the
number of generators of B'. Then (?' is an isomorphism.
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Proof: The first assertion is obvious, since a torsion element of A" could not map to a
torsion-free element of 5° . For the second, to see that (?' is injective, suppose a? 6 A1 and
^{x) = 0 ; choose ye A""2 with x.y = [*] . Then

MB = ̂ (MA) = ̂ W^'W = 0 ,

a contradiction. Since A' and R have the same ranks, each y?2 must map A2 onto a lattice
in B1. Consider the commutative diagram

Ai ® An-2 —»• A"
^U i^"-2 i(^

BI ® Ba-i —^ BO .

Since the bottom pairing is perfect over 1, the index of ^'(A2) in B1 must divide the
determinant of the matrix which describes the upper pairing. But this determinant is assumed to
be 1, so ^'(A2) = B1, as required. D
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Section 3. The Chow ring for plane triangles.

Let A' be the graded ring constructed in Section 2, and let A'(X) be the Chow ring of
the space X of complete triangles.

PROPOSITION. The Chow ring A'(X) is a free abelian group on 72 generators, and the canonical
map from A\X) to the homology ring ff{X) is an isomorphism.

Proof: This follows from the theorem of Bialynicki-Birula [I], [2], once we prove that a torus T
acts on X, with 72 fixed points ; this uses the fact that X is a non-singular projective variety.
The torus T is the group of diagonal matrices in •S'L(3), which acts on the projective plane by
linear transformations, and hence acts on X. The fixed points of this action are easy to list,
since the only fixed points of this action are the three points (1:0:0), (0:1:0), and (0:0:1), and
the only fixed lines are the axes joining them. There are 6 honest (ordered) triangles, obtained by
ordering these three points as vertices. There are 18 of type 63., 18 of type a/a , 18 of type ^ ,

6 of type T] , and 6 of type ^ . n

THEOREM. There is an isomorphism from A' to A'(X) which takes the elements a, 6, c, a, /?, 7,
and d to the classes described by Schubert (which are the pullbacks of the positive generators of
divisor classes via the projections to the six factors). In addition, the elements 6, r, <?&, Ob-> Oc in
A' map to the classes in A\X) of the closures of the corresponding loci in X . The classes
listed in the proposition of §2 map to a basis for A{X).

Proof: Map 1[ 0,6, c,o,/?,7,^ to A'(X)y with generators going to the pullbacks of the designated
hyperplane classes. To obtain a homomorphism from A' to A{X) it must be verified that the
generators of the ideal I map to zero, which was already proved in Section 1, the essential point
being the formulae relating the divisors e, r, ^a, ^b, Oc to the divisors a, 6, c, a, A 7, d proved
in [15] or §5 below. We proved in Section 2 that A is a Poincare duality ring with 72
generators. Since X is a smooth projective variety whose Chow ring is isomprphic to its
cohomology ring, A'{X) is a strong Poincare duality ring, and we know it has 72 generators. The
class [*] = aU'^c2 maps to the class of a point in X, namely that representing the unique
triangle with three given general vertices. By the lemma of §2, it follows that the map from A'
to A'(X) is an isomorphism. D

Remark. The classes of the closures of the loci described in Section 1 by the notations ^, a/a, ^b,
(JG, ^w ̂  ^r 7?' an(^ C ^^ correspond to the elements in A specified by Schubert. These

can be deduced from the formulae
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^ = Mb , ^a = e^a , ̂  = r^ , 77 = e^ , < == r^ ,

by the algorithms of Appendix A. To verify these formulae, it suffices to show that, at a generic
point of a locus on the left side of the equation, the two loci on the right meet transversally ; this
can be done in local coordinates, as in [13], [15], or [8].
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Section 4. Inscribed and circumscribed triangles

Among Schubert's applications is a calculation of the number of triangles which are
simultaneously inscribed in one curve C and circumscribed about another curve D, i.e., the
vertices lie on C and the sides are tangent to D. In this section we carry out this application,
while correcting an error of Schubert's.

Let V be the subvariety of the space of complete triangles consisting of those which are

inscribed in C. More precisely, V is the closure in X of the set of triangles with

non-collinear vertices which lie on C. As the image of a rational map from (7x <7x C to X,
V is an irreducible three-dimensional subvariety. Let v= v denote the class of [ V ] in

A^X). To compute the coefficients for v of the 22 basic generators, it will suffice to compute
the intersection of v with 22 independent elements of A^X).

LEMMA 4.1. If C is an irreducible curve of degree n with 8 ordinary nodes, and K ordinary
cusps as its only singularities, then

(i) the intersection numbers of v with the following classes are 0 : aU , a2/?, a^a ,
Oa.s2 , 0a.a2 , ea2 , rs2 , &,a2 , ra2 .

(ii) v.a2? = n( n-1)2 , v.aa2 == n^n-l) , v.eg2 = n(n-l)(n-2), v.abc = n3 ,
v.0a.sa = n2, v.0a.g2 = n(n-l).

(iii) i/.ra/?=2(?+3/c.

Proof: (i) all conditions but the last two require one of the vertices to be a fixed general point,
which would not be on C. For the intersection with 0a.a2 , a degenerate triangle of the form Oa.
is in V only if the line a is tangent to C at the point b=c. Since in this condition a is

fixed and general, so transversal to C , the intersection is empty. A similar argument works for
ra2.

(ii) For the first, the general line a meets C transversally, giving n{n-l) choices for the
points b and c; for each of these, the line ft is determined, and there are n—1 choices for the
point a on this line. The other cases in (ii) are similar.

(iii) For a triangle of type r to be in V it is necessary that the point 5 of r is the

limit of three non-collinear points of C. If 5 is a smooth point of C, the three lines must
come together in the tangent line to C at s . Two general points are fixed for the lines a and
0 to pass through. The only possibility for intersection therefore comes from the singular points
of C. We analyze these locally. Assume (0,0) = (0:0:1) is a node of C, that C has affme
equation of the form y2 = x2 + higher terms, and that a must pass through (0:1:0) and P



INTERSECTION RINGS OF SPACES OF TRIANGLES 93

must pass through (1:0:0). To get a triangle of type r as a limit of honest triangles with
vertices on C , two of the three vertices must move on one branch, one on the other ; the
limiting triangle has sides a: x== 0 ; /3 : y = 0 , and 7 : either y = x or y == —x . We must
show that each of these counts for 1 in the intersection product. It suffices to consider the first
case. Let y = x-\-g{x)^ y = —x+h(x) define the two branches, with g and h power series
vanishing to order at least two at the origin.

The four—dimensional variety Y of triangles with a passing through (0:1:0) and 0
passing through (1:0:0) can be parametrized by coordinates 5, t, n, v, where x = s , y = t are
equations for a and /? respectively, c=(s,Q, a==(s-v,t), b = (s,t+(l+^)v), and 7 has
equation y = (l+^)(a—s+v) + t . The intersection of Y with V is described by equations

t = s-v-^-g(s-v)
t-}-(l+u)v = s+g{s)
t == -s+h(s)

(the point b is on the first branch)
(the point a is on the first branch)
(the point c is on the second branch).

This curve is parametrized by 5 ; t = -s + higher terms, v = 25 + higher terms, and
u= (g(s)—g(s—v))/v=... . The hypersurface of triangles of type r is defined in Y by the
equation t;=0 . Since the order of v as a function of s is 1, the intersection multiplicity is 1, as
required.

Similarly for a cusp of C at the origin, say defined by y2 = sft + higher terms. Let Z be
the locus in X of triangles such that a passes through (l:p:(t), and /? passes through (l:y0),
for p and q general constants. The point P in Zfir will have sides a: Y=pX,
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l3:Y==qX^ 7 : y = 0 . We will parametrize the curve ^n7-, and intersect with theL>

hypersurface r.
Parametrize C near the origin by ^i-—» c^ = (i2^...). The point 6t is the other point

on CTl a , which has the parametrization

^-^=(^-J^3+,.^3+.,).

Similarly for oc , replacing p by ^. One verifies easily1 that the hypersurface rn Z is defined
near P by the equality of the a-coordinates of the points a and b . Pulling this hypersurface
back to the it-disk, one has the equation

^-j<3)-(^^j<3)+,.=(J-j)^+....

Since the order of vanishing in t is three, the intersection number is three2, as required, n

PROPOSITION. If C is an irreducible plane curve of degree n with only 8 ordinary nodes and K,
ordinary cusps as singularities^ then

[7J == 7i(7i-l)(ra2+7-/32+r72) + 2n(n-l)(̂  + hf- + 0cg2)

+ Tirs2 + (37i2-2ra)e^2 + n(n-l)(n-2)abc ,

where n = (n—1) — 26— 3/t is the class of C .

Proof: It suffices to check that both sides have the same intersection numbers with the 22 basis
elements of A^{X). For [l^], all but the intersection with a/?7 are listed in the lemma, up to

permutations. From Appendix A one can write raft in terms of the basic elements :

ra0 == c^a + c2/? + 2eg2 + 27-52 + efl2 + ^2 + ^52 + Q^ + 2^2 + ̂ 2 - a07 .

!Z has local coordinates (u,v,g,h\ where the sides have equations a: Y'=pX^-u\
/?: 7= qX+v , 7: Y= gX+h. One solves for the points a, b and c in terms of these
coordinates and checks that an equation for r is (v-h)(g-p) = (u-h)(g-q), which is
equivalent to equating the a-coordinates of a and b .

2 This follows from the projection formula for the parametrization from the disk to the curve.
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From the lemma, we derive

2^4-3/t = 2n(7i-l)(n-2) + n{n-l) - [V^.a^ .

One then checks the table (Appendix B) to see that the coefficients agree. D

By duality we have :

PROPOSTION. If D is an irreducible plane curve of degree m with only r ordinary bitangents
and i ordinary inflections (as singularities on the dual curve), and W is the locus of triangles

circumscribed about D , then

[W^ = m(w-l)(ea24-e62+cc2) + 2m(m-l)(0^-}-0^+0cS2)

+ meg2 + (3m2-2m)r52 + w(m-l)(m-2)a/?7,

where m is the class of D . Note that m = m(m-l)-2r—3^.

COROLLARY. With C and D as in the propositions, and in general position in the plane, the
number of triangles simultaneously inscribed in C and circumscribed about D is one-sixth of

2n{n-l)(n-2)m(m-l)(ih-2) + n(n-l)(n-2)m 4- m{m-l){m-2)h.

Proof: The fact that [^].[H^] is equal to the displayed number follows from the two

propositions and the tables for intersecting basic 3-cycles with each other. One must also verify
that V meets W transversally at points which correspond to honest triangles ; this follows

as usual from the transitive action of the projective linear group. One must use the actual
description of X to see that there are no others. For example, a triangle of type Oa. is in V ifc
the line a is tangent to the curve at the point b= c , and the point a is another point on C.
Dually, this triangle will belong to W if a is on D and the line /?=7 is tangent do D at

a , and a is another tangent to D . Thus, if 63. is in V» n W , a is one of the mn .points on

Cn D, a is one of the mn common tangents to C and D, and the tangent to D at a
meets a at its point of tangency to C ; this does not happen if C and D are in general
position. Similar arguments apply to other types of degenerate triangles, a
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Remarks. (1) Schubert's formula n(n-l)m(m-l)(2nm-3n-3ih+4) differs from the correct
answer by the quantity

(2<?+3/()w(m-l)(w-2) + {2r+3t)n(n-l)(n-2) .

If C is smooth — which Schubert presumably assumed — the first term can be ignored, but the
second term is non-zero when D is a smooth curve of degree > 3 (if degree C>. 3). Schubert
gives the intersection of [V^] with rap as zero, which is only correct if C is smooth ; the dual

formula for [F^].eo6==0 is false when D has flexes and bitangents, even if D is smooth.

(2) The formula of the corollary depends only on the degrees and classes of the two curves.
From this one might expect that the same formula is valid for curves with arbitrary singularities,
as is the case in the contact formula [7]. However, this is not the case. A singularity of the form
yP = x^ , with p < q coprime, contributes q(p-l)2 to the intersection product v.ra/3, while
its contribution to the class number formula - intersecting the curve with a polar curve — is only
$(p~l). For a discussion of variations of numerical invariants of singularities in families see the
article of Diaz and Harris [4].



INTERSECTION RINGS OF SPACES OF TRIANGLES 97

Section 5. Triangles in a projective bundle.

Let E be a vector bundle on a smooth quasiprojective variety S . Let
V= G^(E) = G^{E)) be the Grassmann bundle of 2-planes in the projective bundle ^(E) of
lines in E . Let U be the universal 3—plane bundle on Y , and P( U) the bundle of projective
planes. The space of triangles of ^{E) is defined to be the fiber bundle X over Y whose fiber
over a plane is the space of (complete) triangles in that plane. In this section we determine the
Chow ring A'(X) as an algebra over A'( Y), and hence as an algebra over A'(<S).

Take three copies of 1P(£/), with tautological sub-line bundles of U denoted A, B, and
C. Take three copies of (%(£/), with tautological sub-plane bundles of U denoted ,̂ ^ and
^. We can construct X globally as the closure in

P(^x/(^XYP(^XY%(^XYC?2(^Y%(^Y%(Sym2(^

of the set of honest triangles. Over any open set Y° of Y where U is trivial, X is the product
of y° by the triangle space discussed in §1. In particular we have the loci of triangles of special
type ^a, c, r, etc., and we denote the classes in A'(X) of such subvarieties by the same Greek
letters.

On X we have inclusions of vector bundles (denotes by the same letters)

A C ^ C U , A C ^ C U , B C ^ C U , B C ^ C U , C C ^ C U , C C ^ C U ,

corresponding to the inclusions of points in lines. We define classes in A^X) by :

^ = ci(£T)
a = ci(A'), 6==ci(B"), c==ci((7),
a = ci(^), 13 = ci(JZT), 7 = ci(r),

and define ^ = C2([T) € A2(^), ̂  == c^lT) e A3(^).

When 5' is a point, so Y is a Grassmann variety, /^i is represented by the condition that
the plane of the triangle meet a given linear space of codimension three, /Z2 the condition that
the plane meets a given codimension two space in at least a line, and ^3 the condition for the
plane to be contained in a given hyperplane. For Y= !P3 ^ we have //j = p.1, with ' p , the
condition for the plane to pass through a point; this is the notation used by Schubert [12], §11.



98 A. COLLINO, W. FULTON

The class a is represented by the condition for the vertex "a" to lie on a given hyperplane,
while a by the condition that the side "a" meet a given space of codimension two. The
notations for special triangles 0^ e, r, ^, have the same meaning as before.

LEMMA. The following equations are valid in A ' ( X ) :
(i) Oc = a+fr-r-7'
(ii) Oc = a+P-c-e—p,}.
(iii) a3 = ̂ la2-/^-^
(iv) ofi = 2^ia2-^<^-^a+^i^2-^3
(v) aft = (fi+l^-^0+fi2 •

Proof: For (i), we look at the locus where the points "a" and "6" coincide. This is given by
the vanishing of the composite map of line bundles

A-^ ̂ -. ^/B.

Thus this locus represents the class Ci(^/B) - ci(A) = -7+6+0 . On the other hand, the locus
where these two points coincide consists of all triangles of type Qc or type r (or the closure of
these two types) ; one checks easily, say in local coordinates (cf. [13]), that the map of line
bundles vanishes to order 1 along each of these divisors, which proves (i).

The proof of (ii) is similar, the locus where " a" and "/?" coincide being the zero scheme
of the composite

^/C-^ U/C-^ U / ^ .

This locus, which is Qc-\-e , therefore represents the class

ci(C//^> - ci(^/C) = (-p.i+0) - (-a+c) = a+P-c-fii.

Equation (iii) is just the universal equation for the tautological bundle A on the first copy
of IP(£/) ; i.e., U ® A" has a nowhere vanishing section. Likewise (iv) is from the universal line
bundle U/^ on the first copy of (%(£/) = IP(£T) ; i.e., IT ® ( U / ^ ) has a nowhere vanishing
section. Finally A c S gives a nowhere vanishing section of S ® A", which gives

C2(^)-^fl+ fl2==0 .

Since 0 = C2( U/ ^) = ̂  - ̂  + ffi - C2( ̂ ), (v) follows, n
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From (i) and (ii) we may set

d = a+/?+7+r = a+5+c+e+^i.

Hence

(vi) r = d—Of-ft-^ , and e = d—a—b-c-p,i,

and from the lemma, ^c = a+b-^-^d-a-ft-'y)^ or

(vii) ^c = a+6+a+/?-cL

Although we do not need this, in fact one has d= ci(iT), where D is the universal
subbundle on the Grassmann bundle G^Sym^U)). To see this, note that the canonical map of
rank three bundles

A02®^2®^82^

(which determines the map to the Grassmann bundle over the locus of honest triangles) vanishes
on the loci ^a, ^b, ^c, and r , the latter to order two. Hence

ci{D) - (2ci(A)+2ci(B)+2ci(C)) = fc+^+^c+2r ,

so Ci{D") = ^a+^+^c+2r-2a-2&-2c , which, by (i) and (vi), is d .

There is a duality map from X to X' = space of triangles in IP (£T). A. triangle A in X
determines a triangle A2 in X2. In terms of bundles, given A, B, (7, ̂  S, ^C U , the dual is
determined by A6, B6, C6, ̂  j^^c IT , where

A2 = Ker(£T -» ̂ ) , ^2 = Ker(£T --̂  ̂ ) , etc.

It follows that the duality map acts as follows on the classes :

a5 = &-p., o^= a-p., e^= T , T ^ = e , 0a^= Oa,,
^ = -/A , p,i = /z2, /4 = -̂ 3 , and d4 = CM/A .
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THEOREM. We have

A-(^)=A'(y)[a,6,c,a,A7,d]/J,

where I is the ideal generated by the polynomials listed in (1)-(4) below ; for each polynomial
listed, it is to be understood that the polynomials obtained by the action of the symmetric group
^3 on a, b, c and simultaneously a, 0, 7 are included:

(1) a3-/^2-!-/^-/^,
a3-2^la2+^a+/i2Q>-^l^2+/A3 ;

(2) aff-a^+^ff-^

(3) (b+c+0+-r-d)(b-c),
(6+c+/?+r^)(/?-7) ;

(4) (d-a-b-c-fii)(d-a-0-i).

Proof: Let B' = A'(Y), and define A' to be the graded algebra over B' with generators
fl,6,c,a,/?,7,d, and relations specified in the theorem. We have a canonical homomorphism of
graded fi'-algebras from A' to A'(X). Indeed, the lemma shows that relations (1) and (2)
map to zero ; by equation (vii), (3) follows from the fact that a=b and a=0 on the locus Oc .
Relation (4) follows from (vi), as before, and the fact that the loci e and r are disjoint.

Define elements r, e, ^a, ^b» Oc in A' by formulas (vi) and (vii). The formulas (iii)-(viii)
of §2 can be used to construct classes ^a5,...,^,...,^c52^, [*] in A* contains the 72 elements
named in the Proposition of §2. We call these 72 elements the basic classes. While completing
the proof of the theorem, we prove :

PROPOSITION. A'(X) is a free module over A'( Y) on the 72 basic classes.

Proof: If Ci»-»C72 are the basic classes in A'(^), the proposition follows from the
"Leray-Hirsh" theorem proved in Appendix C : the map

©2 A.(Y) -. A.(^) , © ai.--. S On /*(ai),

is an isomorphism, where / : X—^ Y is the projection. D
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The theorem now follows. Indeed, from Appendix A it follows that the 72 basic classes
generate the algebra A' as a module over the ring B\ From the proposition we have a
surjection A' —^ A'{X) of R-modules, and the second is free over B' on the images of these
72 generators. Hence the map is an isomorphism. D

Remarks. (1) Note that if E has rank e over 5, and Y= (%(£), then
A'(Y) = A'(5)[^i,/i2,/A3]/J where J is the ideal generated by three universal homogeneous
polynomials P\(^'i^c\(E),...,Ce(E}) of degrees i= e-2,e-l , and e , which express the
vanishing of a(E/U) for these indices, as Grothendieck showed (cf. [6], Ex. 14.6.6). Therefore
A'(X) is a polynomial ring in ten variables a,6,c,a,/?,7,^i,^2,/i3 over A'(5), modulo the ideal
generated by these three polynomials Pi together with the nineteen polynomials specified in the
theorem.

If S is allowed to be a singular variety, similar arguments show that the Chow group
A.{X) is a direct sum of 12e(e-l)(e-2) copies of A.(5).

The same results hold when A' and A. are replaced by cohomology H' and
(Borel—Moore) homology H. ; this version of the theorem follows from the standard
Leray—Hirsch theorem for fibre bundles.

(2) The full working out of intersection products in higher dimensions can be tedious, but
Appendix A contains a complete recipe for computing all such products. For a simple application
to triangles in three space, one can verify that the number of triangles each of whose sides meets
three given space curves is 8 times the product of the degrees of the nine given curves. To see
this ; note that the condition for the side a to meet a curve of degree n is the class na. We
are reduced to showing that oS/^T3 = 8 . But oft = ^fio^fjfta , so

ofl^ = 8/A3a/?7(o-/i)(/?-^)(r-^) = Wa2^2 = 8 .

(3) The method of this paper can be used in other situations where the intersection rings
are rather simple. For example, it can be applied to the space ^ of "infinitely small triangles",
which is the four-dimensional locus in the triangle space X whose class is denoted ^ above.
The pull-backs of divisors on X give the basic divisors on ^ : if i is the inclusion of ^ in
X, and we define

5=2*(fl)==^(6)=i*(c),
g=i^a)= !*(/?)=;*( 7),
7?==t*(e),
C-^r),
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while the pull-back of d is still denoted d . Equation (3) of §1 pulls back to the equation

35+??=3^+C= d .

PROPOSITION. (1) A'W == l[s,g^/K, where K is the ideal generated by sg-s2^2, (d-3s)(d-3g),
53, and (fi.

(2) The ranks of its cycles are 1, 3, 4, 3, 1 ; a basis for A'(^) is

1 ; 5 , g ; 52 , g2 , rfg , GS ; r)g2 , ^2 , ̂  ; ararf ri^ .

The intersection tables are

Products of A1 and A3 Products of A2 and A2

ng

cs

s2^

1

1

1

2s

.2

ng

cs

s

1

8

1

ng
l

cs

l

Proof: The relations in K pull back from basic equations on X , so one has a homomorphism
from l[s,g^/K to A'(^). Since ^ has twelve fixed points by the torus action, and the stated
classes clearly generate l[s,g^/K, and ds^g maps to the class of a point, the map is an
isomorphism. D

More generally, for the space ^ of infinitely small triangles in a varying plane 1P(£/), with
U as at the beginning of this section,

A'W==A\Y)[s^d\/K,

where K is generated by sg-s^-g^^g-^, (d-3s-p)(d-3g), 53-^52+^25-^3, and
^-2/^+/^+/Z2^l//2+^3 .
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(4) The results of this paper extend to arbitrary charateristic, avoiding only characteristics
2 and 3 for the discussion of inscribed and circumscribed triangles (§4). The theorem of
Bialynicki-Birula is still valid for the Chow groups, as discussed in [14].

(5) Le Barz [8] has given another construction of the space of plane triangles which
generalizes to give a space of triples of points in any smooth variety V . This space is the closure
of the space of honest triangles in the product of three copies of V , three copies of the Hilbert
scheme Hi^V of length two subschemes of 7, and one copy of HilbaV. Le Barz shows by
calculations in local coordinates that this closure is smooth.

In fact the variety constructed by Le Barz represents a natural functor. From this fact the
smoothness of the variety follows from a simpler calculation of its deformations. To use notation
which agrees with Schubert, the data given by a family of triangles in V parametrized by a
scheme S is a collection of subschemes o,6,c,a,/?,7,c? of Vx S , finite and flat over S of
degrees 1, 1, 1, 2, 2, 2, 3, with inclusions ac /3c d , ac 70 r f , and similarly for the
permutations by ©3 . The key condition of Le Barz is that the corresponding ideal sheaves
satisfy :

^(a).^(a)c I(d)

for each "vertex" a and its opposite "side" a.
This construction can be used for plane triangles in place of that of Semple, and can be

generalized to smooth families. It would be interesting to describe the cohomology of this space
in terms of the cohomology of V .
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Appendix A. Algebra

In this appendix we use the relations (1)-(4) of the main theorem of §5 to deduce formulas
that are valid in the ring A', and use these to give recipes to write any element of A' as a
^'-linear combination of the 72 basic elements. When R = 1 this specializes to the assertions
needed in §2. We put the terms involving the classes ^ in braces { } ; these terms are to be
ignored for the case of plane triangles. For formulae in low degree that are used frequently, we
have written out the term in braces : the recipes we give determine them in all degrees, but the
expressions become rather long to write out.

The equations labelled with a star •*• have all terms (outside braces) on the right appearing
in the proposed list of 72 generators ; they are also, modulo the terms in braces, equations which
appear in Schubert [12]. They give an effective algorithm for computing all products in these
intersection rings ; note that the terms in braces involved only elements of A' of lower degree.

Recall that the ring A' is defined as a polynomial ring in variables a, 6, c, a, /?, 7, d over
B' modulo relations (1)—(4). We sometimes denote the element ^\ of B' by p. for brevity.

We use freely the symmetry under the group ^3, and usually write only one equation to
represent the 1, 2, 3, or 6 equations resulting from the action of (83 . In fact B' has an
involution which takes

^i—^ -^ ^ ̂ i—^ ^ and ^3'—>-^ •

Then G = (83 x (Sa acts on A', compatibly with this involution ; the dual of an equation is
obtained by the substitutions :

ai—> a-fj,, ai—> a—^ , d\—> d-Ap..

It is easy to verify that the defining equations / are preserved by this duality operation, so G
acts as automorphisms of A*. We include a few of the most useful dual equations, labelled with a
prime / ; since dual statements follow formally, proofs will be omitted.

In the ring A' we have defined
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T = d-os-P-^r
e = d—a—b-c-fi
Qc = a+b+a+0-d.

These are preserved by the duality map : e\—> r , ri—> e , Qo.\—^ ^a •
By equation (3) we have O^a = Ocb, which we call QcS , and similarly OcOt = OcP is

called 9cg . All the equations (i)-(vii) in and after the Lemma in §5 are valid in the ring A*.

We shall need one more equation in degree one :

(A.I)* e+r+^b+^c = a+a+{-^} .

Proof: By (i) and (ii), (^c+r) + (^b+e) = (a+r-&) + (a+^-T-^) = a+a-p,.

We turn to degree two :

(A.2)* bc= a2+rs+&5+{-^a+/A2} .
(A.2-) /?7 = a2+€^+^^+{^} .

Proof: By (i) and (v), Oa.s+rs = (b-\-c-a)b = b'^+b^o^+b^-fjia+fJ.'i) = bc-a'^+fio^fi'i -

(A.3) ea = c^.
(A.37) ra==Tb.

Proof: By (ii), e = Q-{-0-c-p-0c , so ea= a2-{-ap-ca-p,a-0c0t= a2+a/?-(c24-a2-/Aa+/A2)-^(^-
(?c» = aft-c'^—^—ffc a. Interchanging the roles of a and /?, e/? = pQ-c2—?^-^? ' The equality
of ea and e/? then follows from the equation Oca = ^c/? •

By symmetry we therefore have ea = 6/? = 07 and ra = r6 = re ; these elements are
denoted eg and rs respectively.

(A.4)* ea = a^+aa-rs-ObS-OcS+t-^a} .
(A.4') ra= a^flQ-e^-^^-^c^+^a} .

Proof: ea+rs+0t,s+0cS = (e+r+^+^c)a = a^+aoi-^a by (A6).
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We now have more that enough equations to write any element of degree 2 in A' as a
linear combination of the 17 basic elements of A2 of degree two, following the discussion of
Section 2. For monomials S in a, b and c , use (A.2). For products ST of linear monomials
use the defining equation (2). For products Se use (A.4). As shown in Section 2, this finishes
the proof for degree 2.

It will be useful to make a few more calculations in degree two :

(A.5) Mb = Me .

Proof: 0^-Qc = (a+a-ft-r) - (a+^-T-r) = c-b+r-P ' The result follows by multiplying by ^a
and using the equations M = 0a.c and Q^ == ^a7 •

The element Mb = Me = Me is denoted ^. We list the equation for ^ which follows
from the preceding rules, although this is not needed here; the equation (4), that €T = 0 , is
needed :

(A.6)*
^ = ^a^+^^4-^^4-^a5+^b5+^c^a^^^C7+2r5+26^+{-^Q-/A/?-^7+^ri+2/A2}

(A.7)* M = /?24-72-fla+^5+^5+T5+{-^/?-/z7+2^2} .
(A.7') 69.0 = b2-}-c2-aa•}-^g-{•0cg+€9-{•{-p,a+2p,2} .

Proof: M = (l3+j-a-€-p)a = (a^/?2-^^) + (a^+i^-^+p^-a^-ea-fia =
^4.^24-a2-^+{-^^^2^2} by (ii) and (2). Substituting for ea from (A.4) finishes the
proof.

(A.8) w+bl^-fft-bd+W} = 2c2+C7-72-crf+{^7} .

Proof: 9^= (6+c+/?+7-c06= 62+6c+6/?+(&24-72-^7+^2)-^, so (A.8) is equivalent to the
equation Og,b = 0a.c .

Next we deduce some equations of degree three :

(A.9) a/?2 = a^P + {^^-^_^} .

Proof: at^ = /?(fl2+/?2-/^2) = a2/? 4- (2^/?2-^^-^+^-^)_^+^ ,
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(A.10) Oa.b2 = 0a.c2 = Oa.bc , ra2 = r&2 = rab .
(A.107) 6^ = Q^2 = fc/?7, ea2 = e^ = ea/?.

Proof: fc^ = ff&cb by (3), from which the first formula follows. The second is similar, using
(A.3) in place of (3).

These elements are denoted 0a.s2 , rs2 , 0a.g2 and eg2 respectively.

(A.ll)* b^ = 62a+r52+^52+{-^2+^&-^3} .

(A.11-) ^ = fl2^24-^24.{^} .

Proof. Multiply (A.2) by 5 , getting l^c = bo^+Tsb+ffa.sb-^ab+^b , and by (A.9) this is
(62A+{^a2-^2a+^2-^3})+7"52+^aS2-/z(62+a2-^a4-^2)+^2&.

(A.12)* a2a = rs2+€02+^52+^5244^-^3}) •
(A.12^) aa2 = e^2+ra2+^^2+^^+{-^2+^2 0+^20-^2+^3} .

Proof: Multiply (A.I) by a2 .

(A. 13)* Oa.sa= ab^eg^-TS^Ta^Obg^Ocg^^a^p.ao^^o^^a-^a+p.^-p'^ .

Proof: Multiply the equation Ga. = b+c-ci-r by ab , getting
Oa,sa = ab^abc-aba-rab = ab'^+abc-a^b^a^—tjia+fJ^-rs2 = a6c-aa2—rs2+{^ac^-/Z2fl} •
Applying (A. 12^) to replace aa2 in the right side of this equation gives (A. 13).

(A. 14)* O^a2 = a2/?+fl2^-ea2+{-2^fl2+^fl-^} .

Proof. Multiply 63. = 0+j-a-e-p. by a2, and use (iii) of the lemma.

(A.15)* Q^aa = ̂ -{-c^Ts^eg^Q^QcS^Q^Qcg2

+ {-^(62+c2+aa+e^+^+^) + /^(2a+2a+&+c+^+7-rf)-^2-^3} •

Proof: Multiply (A.7) by a, yielding
0a.aa = a/?2+a72-aa2+^sa+^c5a+rsa+{-^a^-^a7+2^2a} . The first two terms on the right of
this equation are known by (A.ll7), the third by (A.127). For the fourth and fifth terms we have
by (v), Obsa= 0bCQ= Q^c^O^ Q2-^0!+^ = ^52+^2-^^4-^^ ^ and similarly for the
sixth, rsoc = rca = rs2+7-02-^7-0+^2 r . (A15) follows by substituting these six expressions.
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(A.16) a&7= a^+b^+TS^ffcS^-^oft-^+f^a+^b^^} .

Proof: From (v) we have 067== 0(624-72-^74^2). Using (A.ll), (A.9), and (v) this becomes
(&27+r52+^cS2-/l^»2+^2^3)+(fl27+/A72-^2<y4-^2-^3) - ̂ ( o2+<y2-^+^) + ^o, ^ which simplifies
as required.

These formulae suffice to write any element of A3 in terms of the 22 basic elements of
degree three. Indeed, from (A.ll) and (1) we obtain any monomial S . From (A.16) and (A.12)
come all products ST. To obtain the products SQa., one has Qa.b2 = 9a.bc .== 0a.s2 , 0a.a2 by
(A.14), 0!,ab = 03.sa by (A.13). Finally, to obtain STffa., one has O^aa by (A.15),
0^b0 = 0a.c/3 = Al/?2-/^a/?+/^a from (v), and the remaining follow similarly using (v).

We also have

(A.17) ^a = ̂  .
(A.17') ^a==^.

Proof: ^a = McO = ^^c6 = ^6 by (3).

These elements are denoted ^s and ipg .

For later use we record another equation of degree 3, which follows from the preceding
prescription. The notation {...} indicates an expression involving /i^s and lower degree terms
in the basic classes. In the proofs we write = to denote that two expressions differ by a class of
the form {...}.

(A.18)* il)s = a6c-ra2-r/?2-r72-2r52-^:̂ --^2-^^2-^c^2+{.•.} •

Now for equations of degree four :

(A. 19) ff^P = 0^ , ipa2 = i)ab = ^2 ^ and ipa2 = t^ap = ^2.

Proof: The first equation follows immediately from the equation ffa.0 = ^a7 • The others follow
from the first, and the definition of ^.

These elements are denoted Q^g , ips2 and ^2 . Note that from (v) we have
Wb = O^c = O^g + {...} . Similarly ego2 = efa + {...} , and rsa2 = rs2^ + {...} .
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(A.20)* o2^2 = €g2a•}•TS2Q-^ObS2g+OcS2g+{...} .

Proof: Multiply (A.I) by (fta, getting cfta2^ (a+a)a2a= €a2Q+TS2a+0t)S2g•}-0cS2g , which
suffices, since ea2a= eg2a.

(A.21)* ^a2 = /?272-^2fl+{...} .

Proof: Multiply (A.14) by /?, getting ^2= a^+fl^r-^2 • But a2/?2= 0 and
fl2/?7= y^2 , as in equations (6) and (7) of §2, and the result follows.

(A.22)* aUc = /?272+^52^+^s2^+r52a+TS2^+rs27+^s2+{...} .

Proof: By (A.18),
^s ^sa = a^(>-Tsa2-Tsy-Tsil-Q-€g2a•-'0a.92a---0bg2cl-0c92a=
a2^»(?-r52Q-T52^-rs27-e^2a-^a2-^b52^-fc52^. Subtituting ^272 for Q^ffi+eg^a by (A.21),
one obtains (A.22).

(A.23)* fc52a = ^a52^+rs2/?+T527+^s2+{...} .

Proof: Multiplying (A.13) by b , one has
^&s2a= (03.sd)b= ayo-eg^b-^-rsa^-Obg^ffcg^E ab2(>-eg2b-TS2a-Obgb2-ffcS'ig , and one
concludes by substituting from (A.22) and (A.21).

The next three sets of equations are essentially equations (6), (7) and (8) of §2; the
equalities there become congruences here :

(A.24) a2^2 ={.,}.

(A.25) 0672 = a252+{..j ^ c^aft = a2/?2+{...} .

(A.26) abaft = aW+Q^+aW+b2^ .

To verify that the 17 basic elements generate in degree 4, one has all monomials S by
(A.22) and (1). For monomials ST we have 02^2 by (A.20), aHa^ aU^cfia2 by (v),
abca= abc^+aba2, which one has by duals of preceding equations ; using (A.12) one has

aUpE ab(a2+|^)= a{ eg2-}- ̂ +^24-^ g2) ̂  ^gia^s^Q^+Q^g ,
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and therefore also a2a/?= aa(fl2+/?2)= aaft ; likewise, using (A.24), 0257= aU^a2^2^ a^b2,
and similarly fl2^= ^2 ^ o6a/?= 02^2+62/52, and 0607= aH^a2^2 . It remains to show how
to obtain the product of each ST times one of the elements ffa., Ob or ^c • For o^b or o&c
use (A.23) ; for a2? use (A.21) ; one then has 067= 0^2+072 ; for (fta one has O^c^a = ^52^ ,
which completes the proof.

Among the equations in degree 5 we need

(A.27) ^ = ̂  .

Proof: This follows from (A. 17).

We denote this class by ^g . Note that ^a = ̂ b = ^2^+{...} .

(A.28)* QbS^2 = ra272+^-}-{...} .

Proof: By (A.23), (O^sH^a^ ebSlga'\•Tsla2•}-TS2a^l^)s2•Oi=. ra2^2-}-^ by (A.24) and (A.25).
And (^26)a= G^cba2^ ^c2&2== O^b2.

(A.29)* b^ = 662c2+ra2/?2+^2^+{...} .

Proof: By (A.9) and (A.20), W^ (&2/?2)c= egUc+ffcS^g . Now ^26c= 6^2 by (A.25), and,
by (A.23), ^cs2^= (^g+rs'^a+rs^+^aE Ta^+^g , using (A.24) and (A.25) again.

(A.30)* ab^2 = e62c2+7-a272+ra2/?2+2^2^+{...} .

Proof: By (vii), ab^E 62c2(e+r+^+^c-a)= cb'^c^ObS^+OcS'^c2, and one concludes by
(A.28).

To verify that A5 is generated by the required 7 classes, consider first products ST. Note
that we have a^c and fl2^ by (A.30) and (A.29), and aU2^ 02^2=0, aUcalE
a2&2c+a2ca2= a262c+a2c2<^ and similarly aHcp^ aHc^aH2?. This gives any product where
deg(5) = 5 or 4. When S is a cubic, the use of equation (2) and the resulting ap2 = a2? and
a2^2=o reduce to the previous cases: aU^2 =. aH21}, (flbp^ 0 , (fiba2^ a^a, aU^E
a2^4-a2^y2s a2^^ a2^/ys 02620+02^72= a2&2^ ^ 0^00=. aH^+c^a2^ aH^+aa2^,
abca2^ abc^a, and abca0=. abc^-^aba2?. Finally consider STr for 5' and T as above. This
is zero if deg(5) ^ 3 , and if deg(5) = 2 , it is r^r; for T= a0, one gets rc2a/?= ra2/?2 by
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(A.25); for r= a0 , one gets rc^ss ra2/?2 by (A.25); for r== a2 one similarly gets zero ;
this completes the proof in degree 5.

To see that [*] = o^c2 generates A6, we have a2b2cQ= a2b2c2-}-a2b2Q2^ [*], and
similarly aH2^^ 0 . For ST with deg(5) = 4 , for S= aU2, the products are zero if r= a2,
P or 72. Equation (A.26) yields o^a^E [*], and 02^7= aHa^E 0 . For 5'= a^c, the
product: with a2 is a^cas [*] ; with /?2 is= 0 ; with a/? is a^cp-^cfica2^ [*] ; with 0j
is= [*] by (A.24), (A.25) and (A.26). For products ST of cubic monomials, consider first
S = aU. The product with T is = 0 if T contains f51 or 72 , the product with 027 is
flZ^+fl^TZE 0 , with a2/? is a^a^s [*], and with 0^7 is a^c^+^a/^s M. Finally,
the product of a6c with a/?7 is (a2+/?2)(62+72)(c2+a2)s a2&2c2+a2/?272E 2[*]. Lastly, we
must consider products of ST with either e or r. If deg(5) > 3 , the product with r is = 0 ,
while if deg(T) > 3 , the product with e is = 0 .

Remark. This includes proofs of many of the formulas in Schubert [12], pp. 153—164. Most of
those not listed above are obtained by symmetry, i.e. the action of G. The two remaining
equations involving the above classes.

(A.31)* fcsa2 = /?272-^2fl+r52/?+rs27+^52+{...} ,

(A.32)* 7-5^7 = 72A2-e^264-r52a+^s2/^-^2+{•••} »

are obtained from the others by using the above prescription. In addition, these pages of
Schubert contain formulae for the classes u^a., ^b? ^c» ^a'^8' ^r ^ an(^ ^ • ^ese follow
similarly, starting from

a/a = effa. , ^a = ^a ' 7? = €^ ' C = ̂  •

For example, one deduces easily the formula

(A.33)* 3^H-?7 = 3^+C+{-^} ,

used for infinitely small triangles. In fact 3^5+77 = ^(a+6+c+e) = ^(d—p) =
^(a+/?+7+r)-/^ = 3^+C-/^^.
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Appendix B. Intersection tables of basic classes

By the preceding appendix, all products in the ring A' of §2 can be derived. In particular,
given two elements of complementary dimension we may compute an integer such that the
product of these elements is that integer times [*]. (The uniqueness of this coefficient then
follows from the theorem in §2).

Each entry in a table denotes the coefficient of [*] in the product of the entry labelling the
row and column.

Table for products of A1 and A5

oc p y d

eb^2

ec^2

2 2TP y

T^a2"

2 2Tap

4»s g
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Table for products of A2 and A4

b"
c^2

^b2

2 2p r
2 2r <x

a2?2

TS^t

TS^

TS^

e»2.

eg^

e^c

^s^

^

^

+s2

+g2

,2

1

b2

1

c2

1

2oc

1

32

1

r2

1

aa

1

bp

1

cy

1

TS

1

eg

1

^

1

-1

^

1

-1

^

1

-1

^8

1

-1

^e

1

-i

^e

i

-i
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Table for products of A3 and A3

^

c2r
b^y

b^oc

Ac

c2p
abc

<xpy
ea2

eb2

EC2

T0<2

Tp2

ry2

eg2
TS2

^2

^2

e,s2
e,g2

^2

e,g2

a2p

1

a2y

1

±?y

l

l̂ a

1

c2a

1

c^

1

.abo

1

2

1

<aP<

2
1

1

ea2

-1

-1

1

Eb^

-l

-l

l

£c2

-1

-1

1

TO?

-1

-1

1

TP2

-1

-1

1

ry2

-1

-1

1

^

1

jrs2

1

f^

1

^

1

^

1

^

1

V2

1

^

1
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Appendix C. A Leray—Hirsh theorem for Chow groups

We consider a smooth proper morphism /: X —^ Y which is locally trivial in the Zariski
topology, with fibre F . As in topology, we will assume that there are elements in the Chow ring
of the total space X which restrict to a basis for the Chow ring of the fibre, and we want to
conclude that these elements give a basis for A'X over A* Y , at least when Y is non-singular.
Unlike the situation in topology, however, there is no Kunneth theorem for Chow groups, so we
need to make rather strong assumptions on the fibre. We will assume that F has a filtration by
closed subschemes

F= Fo3 FI:)...D FT = 0

such that each Fj-\ Fi+i is a disjoint union of affine spaces. This assumption guarantees that
A'F is a free abelian group generated by the closures of these affine spaces (cf. [6] and [11]). We
will also assume that satisfies Poincari duality, i.e., the degree map from AoF to 1 is an
isomorphism, and, if d = dim(F), the intersection pairings

A^'F® AcH'F-f AdF^ AoF^ 1

are perfect pairings for all i. Any smooth projective variety with a action by the multiplicative
group C m with a finite number of fixed points satisfies these conditions ([I], [2], [14]). If the
ground field k has characteristic zero, Poincare duality is automatic from the existence of a
filtration, since, when k = C , the map from A'F to cohomology ffF is an isomorphism. In
positive characteristic one may use ^-adic homology and cohomology to prove analogous
statements, although one may need to take coefficients in a field. At any rate, these assumptions
are verified for many varieties which occur in enumerative geometry.

It follows easily from the definitions that if F is a variety over k which satisfies the
above conditions, then F^ = F®k K is a variety over K which also satisfies the conditions.

Let / : X—^ Y be a proper smqoth morphism of relative dimension d , locally trivial in
the Zariski topology, with fibre F satisfying the above conditions. We assume that for. all fibres
Xy , the restriction map from A'(X) to A'(Xy) is surjective ; this will be true for all fibres if it
holds for one point y in each component of 7, for example the generic point of each irreducible
component.
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PROPOSITION. Let ^i...^m be homogeneous elements of A'X whose restrictions to fibres form a
basis over 1. Then every element in A.X has a unique expression of the form

y OH/^i , <^e A.Y.

Equivalently, the homomorphism

y'.S^A.Y^A.X , ^(©ai)=£Cin/*ai,

is an isomorphism.
When Y is non-singular, this says that the Ci form a free basis for A'X as a module

over A' Y.

Proof: The proof of surjectivity of (p is the standard argument by Noetherian induction on the
dimension of Y . One can assume Y is a variety, with function field K; regard the generic
fibre X ^ F^k K as a variety over K . Since A.(X) is generated by the images of the (^ ,

one need only consider classes in A. X whose restriction to the generic fibre are zero. Such
classes will restrict to zero in A.^U) for some open U in V, hence will be in the image of
A.(/"1^), where Z is the complement of U in Y. By-induction one knows the result for
/-iZ—» Z , and the proof concludes as usual (cf. [6], §1.9).

For the injectivity of ip , let [*] € A^ be the generator corresponding to 1 6 1 by the
degree isomorphism. We may assume Y is connected. We first verify that if T] is any element
of A^X , and the restriction of 77 to a fibre is n[-k} , for some integer n, then /^(^n f*a) = na

for all a e A. Y . This too is standard. To prove it one may assume a = [V] , with V a variety,
then replace Y by V , in which case /^(^n f*a) must be n'[V\ for some integer n ' , one sees

that n' equals n by restricting to a fibre. Similarly one sees that f^(r}H f*a) = 0 if 776 APX

with p < d .
We relabel the elements ^- with double subscripts, so that ^pj are the elements which

are in A^X'. Since the restriction from A'X to fibres is assumed to be surjective, we may
choose elements ujpj in A^PX whose restrictions to fibres give the dual basis of the
restrictions of fpj , i.e., the restriction of t^pjCpk to a fibre is <?jjcM. Now if
Sij^ij-n /*aij = 0 , consider the maximum p for which some Qpk f 0 . By the previous
assertions

0 = A(o/pk(S Cij n /*aij)) = Uujpk^pk n f*apk) + 0 == apk ,

which concludes the proof. D
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TIGHT CLOSURE AND STRONG F-REGXJLARITY

by Melvin HOCHSTERi and Craig HUNEKEl

This paper is written in celebration of the contributions of Pierre Samuel to commutative
algebra.

1. Introduction.

Throughout this paper all rings are commutative, with identity, and Noetherian, unless
otherwise specified. In [HH1] and [HH2] the authors introduced the notion of the tight closure of
an ideal and the tight closure of a submodule of a finitely generated module for Noetherian rings
which are either of positive prime characteristic p or else are algebras essentially of finite type
over a field of characteristic 0. This notion enabled us to give new proofs, which are especially
simple in characteristic p , of a number of results (not all of which were perceived to be
particularly related) : that rings of invariants of linearly reductive groups acting on regular rings
are Cohen—Macaulay, that the integral closure of the n^ power of an n generator ideal of a
regular ring is contained in the ideal (the Briancon—Skoda theorem), of the monomial conjecture,
and of the syzygy theorem. The new proofs yield much more general theorems. For example, we
can show by these methods that if S is any Noetherian regular ring containing a field and R is
a direct summand of S as an R-module (we shall sometimes say, briefly, that R is a
summand of S to describe this situation : we always mean R —» S is A-split) then R is
Cohen-Macaulay. This result was not previously known in this generality. Moreover, this
illustrates the general principle that results proved using tight closure techniques but which do
not refer specifically to tight closure can be extended to the general equicharacteristic case by
using Artin approximation to reduce to a situation in which tight closure is defined.

1 jBoth authors were supported in part by grants from the TVational Science Foundation.
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One of the most important characteristics of tight closure is that in a regular ring every
ideal is tightly closed. We call the Noetherian rings all of whose localizations have this property
"F—regular". (The "F" in "F-regular stands for "Frobenius" : the reason for this usage will
become clear later). This is an important class of rings which includes the rings of invariants of
linearly reductive groups acting on regular rings. A key point is that if S is F—regular and R
is a direct summand of S as an R—module then R is F-regular. It turns out that, under mild
conditions (like being a homomorphic image of a Cohen—Macaulay ring or a weakening of the
requirements for excellence), F—regular rings, which are always normal, are Cohen—Macaulay as
well. This is the basis for our new proof that direct summands of regular rings are
Cohen-Macaulay in the equicharacteristic case.

Our objectives in this paper are, first, to recap briefly some of the features of tight closure,
and then to focus on the notion of a "strongly F—regular" ring. It turns out that rings of
invariants of reductive groups have, in fact, this stronger property, and that the stronger
property has numerous apparent advantages over F-regularity. We should point out right away
that we do not know whether the notions of F—regularity and strong F—regularity are really
different in good cases. It would be very worthwhile if it could be proved that the two notions
coincide.

2. A survey of tight closure.

Unless otherwise specified A , R, and S denote Noetherian commutative rings with 1. By
a "local ring" we always mean a Noetherian ring with a unique maximal ideal. RP denotes the
complement of the union of the minimal primes of R. I and J always denote ideals. Unless
otherwise specified given modules M and N are assumed to be finitely generated.

We make the following notational conventions for discussing "characteristic p". We shall
always use p to denote a positive prime integer. We shall use e for a variable element of IN ,
the set of nonnegative integers, and q for a variable element of the set { p ® : e € IN }.

If R is reduced of characteristic p we write R / ^ for the ring obtained by adjoining all
0th roots of elements of R: the inclusion map RC R 1^ is isomorphic with the map
F8: R —»• R, where q = pe^ F is the Frobenius endomorphism of R and F3 is the 6th

iteration of F, i.e. F^r) == r9 . When R is reduced we write R00 for the R—algebra Uq R lq.
Note that R00 is an exception to the rule that the rings we consider be Noetherian.

If 1C R and a ^ p 6 then T^l denotes (z'Q: ie 7) = F?(7)J?. If S generates / then
{i^:ieS} generates 71^.

We are now ready to define tight closure for ideals in the characteristic p case.
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DEFINITION. Let I C R of characteristic p be given. We say that a; 6 /*, the tight closure of /,
if there exists c€ R° such that cxfl € 71^ for all q^ 0 , i.e. for all sufficiently large q of the
form p6. If 1= I* we say that I is tightly closed.

Remarks. Note that if R is a domain, which is the most important case, the condition that
c€ R° is simply the condition that c^ 0 . Note also that if R is reduced then CXQG T1^1 iff
c^^e 7^1/^. Thus, if xe I* then for some c6 RQ we have that c^^e IR» for all q (this
condition gets stronger as q gets larger). This gives a heuristic argument for regarding x as
being "nearly" in I or, at least, IR00: it is multiplied into IR00 by elements which, in a formal
sense, are getting "closer and closer" to 1 (since 1/^—»0 as q—^oo).

We also note that if R is reduced or if I has positive height it is not hard to show that
xe. I* iff there exists c€ R° such that cx^e. 71^ for all q .

We extend this notion to finitely generated algebras over a field of characteristic 0 as
follows :

DEFINITION. Let R be a finitely generated algebra over a field K of characteristic 0 , ZC R, and
x 6 R. We say that x is in the tight closure I* of I if there exist an element c 6 R°^ a finitely
generated 1—subalgebra D of K , a finitely generated D—subalgebra R of R containing x

and c , and an ideal I of R such that I and RJI^ are D-free^ the canonical map

K® R —+ R induced by the inclusions of K and R in R is a K—algebra isomorphism^

I = I^R , and for every maximal ideal m of D , if K = D/m and p denotes the characteristic

of K , then <^x^e 1^ in R^ R^/mR^ for every q= p^ 0 , where the subscript K denotes

images after applying /c®p . // I== J* we say that I is tightly closed.

It is not even completely clear from this definition that I* is an ideal, although it is not
difficult to establish. Our attitude in this survey is as follows : we give a number of proofs in
characteristic p to illustrate how easy many arguments are while in characteristic 0 we state
results but omit discussion of the proofs (generally speaking, the arguments are rather technical
but hold few surprises).

We also note that if R is an algebra essentially of finite type over a field K of
characteristic 0, and 1C R, we can define the tight closure. Z*, of I as U (In B)*, where the

union is extended over all finitely generated T^ubalgebras B of R such that R is a
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localization of B. However, we shall not discuss the situation for algebras essentially of finite
type over a field in any detail in this paper.

The next result shows, among other things, how one uses tight closure to prove that direct
summands of regular rings are Cohen—Macaulay (C-M).

2.1. THEOREM. Let R, S denote Noetherian rings which are either of characteristic p or else
essentially of finite type over a field.

&) If R is regular, every ideal of R is tightly closed.
b) If RC S are domains and J is tightly closed in S then JD R is tightly closed in R.

(When R and S are not necessarily domains we may assume instead that R° C 5°).
c) Let RC S be domains such that every ideal of R is contracted from S (this holds, in

particular, if R is a direct summand of S as an R—module). If every ideal of S is tightly
closed then every ideal of R is tightly closed.

d) The tight closure of an ideal I of R is contained in the integral closure I~ of I .
e) If R is a locally unmixed homomorphic image of a C-M ring and x\,...,Xu 6 R have

the property that any t of the x's generate an ideal of height> t , then
(xi,...,Xn-i): ^nRC (xi,...,Xn-i)R*, where I : ̂ J= {r6 R: rJc I}.

Sketch of the proof in characteristic p . a) Suppose that 1C R, that R is regular, and that
XG I * — I . By localizing at a prime containing I : xR we may assume that (R^m) is local as

well. If c^ ^ for all q> q' then CCH (^:x^)=n (I:x)^ (the flatness of the

Frobenius endomorphism for regular rings implies that (r-^'.x^) = (Lx)^1) C n ,m<? = (0), so

that c = 0 .
b) is immediate from the definition of tight closure and c) is immediate from b).
d) (The reader may want to look at the discussion of integral closure given in (2.8) below

before going through this argument). We may use a). Suppose xe. /* and ce R° is such that
cx^ 6 /1<?J for all ^» 0 . Let h: R —^ V with ker h a minimal prime of R , where 7 is a
DVR.Then A(c)/i(a;)<?6 (IV)^l for all q^ 0 and A ( c ) ^ 0 , a n d s o h{x) 6 (IV)* = IV (since V
is regular), and we are done. On the other hand, we may argue directly as follows : Let
7= (;ci,...,a?h). Applying the discrete valuation v to the equation ca^ = St=i rqi x^ yields
v(c) 4- qv(x) > q rmn{v(xb):t}. Dividing by q and taking the limite as ^—»oo yields the result.

e) We shall not prove the result stated in full generality here : we refer the reader to [HH2].
However, we shall give the argument in the special case where the xi are contained in a regular
ring AC R and R is module-finite over A . In many good cases it is possible to reduce to this
case by localizing and completing R and then choosing A properly. In the interesting case
(where the xi do not generate the unit ideal) we may reduce to the situation where A is local,
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the Xi are part of a system of parameters for A , and R is module-finite over A . The
unmixedness hypothesis then translates into the condition that R be torsion—free as an
A-module. The result stated then follows from Lemma 2.2 below. QED.

2.2. LEMMA. Let R be a Noetherian ring of characteristic p module-finite and torsion-free over
regular domain A. Let /, J be ideals of A. Then IR: ^JRC {(I:^J)R)* and

mn JRC ((zn J)R)*.

Proof: Let F1^ At be an A—free submodule of R whose rank t is equal to the torsion—free
rank of R is an A—module. Then R/F is a torsion A-module, and we can choose a nonzero
element ce A such that cRC F . Let x^ IR: JR (resp. IRH JR). Then, for all q ,

3<i(.^R:^R (resp. MRFI A), whence ca^e ^F:J^ (resp. T^Fn J^F). Since F1L A

is A-free, we see cx^e (P-^'.^^F (resp. T^n J1^)^ and ̂  the flatness of the Frobenius
endomorphism of A we then have ca^e (Z^J)^FC ((J:^J)^)^1 (resp.

(Jn J)^IFC ((/n J)^)^l) for all q , which yields the desired result. QED

This also completes the proof of (2. Ie).

We next give a number of corollaries of (2.1) as well as some remarks about how it is used.

We first recall that a ring for which tight closure is defined is called weakly F-regular if
every ideal is tightly closed and F-regular if this is true in all localizations as well. The authors
do not know at present whether every weakly F—regular ring is F-regular. With this
terminology we have the following corollaries of Theorem 2.1.

2.3. COROLLARY. Every regular ring is F-regular.

2.4. COROLLARY. // R C S is a direct summand as an R-module and S is F-regular then R is
F-regular.

2.5. COROLLARY. A weakly F-regular ring which is a homomorphic image of a C—M ring is
C-M.

2.6. THEOREM. In the equicha.racteristic case, a direct summand of a regular ring (as in 2.3) is
C-M.
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2.3 is immediate from 2.1a and 2.4 from 2.1c. 2.5 is then clear from 2.1e. 2.6 is obvious
from 2.4 and 2.5 in the case where tight closure is defined. In the general case one reduces to the
case of complete local rings and then uses Artin approximation to prove a subtle generalization
of 2.1e which yields the result. We refer to [HH2] for details.

2.6 includes the result that rings of invariants of linearly reductive groups G over a field
K acting J^-rationally on a regular J<-algebra R have rings of invariants RG which are
C-M. See [HR1], [K], and [B], as well as the discussion of rational singularities following the
statement of the Briancon—Skoda theorem below. It is worth noting that in many cases in
characteristic p where the group is reductive but not linearly reductive and where, in fact, RG

is not a direct summand of R, it is nonetheless true that pC is F-regular : for example, the
rings defined by the vanishing of the minors of a given size of a matrix of indeterminates are
F-regular. See [HH2].

Itemark. The theory of tight closure permits a very substantial generalization of 2.1e. Under the
same hypothesis one may perform a sequence of operations including sum, product, colon, and
intersection on ideals generated by monomials in the Xi . If the ring is C-M (or, more
generally, if the x'i form a permutable regular sequence) then it is easy to compute the result of
these iterated operations : the Xi behave as though they were indeterminates. It turns out to be
extremely useful to be able to restrict the possibilitities for the answer in the general case, when
the xi are parameters but not necessarily a regular sequence. The key point is that the actual
ideal resulting from the iterated operations is in the tight closure of what one gets when the Xi
form a permutable regular sequence. We should note that there are some restrictions on the use
of colon in doing iterated operations : we are not giving the precise statement here. One very
special case of this is that (rf,...,^):^!...^)^ (a;i,...,a;n)*, which implies the monomial
conjecture (and, hence, the direct summand, canonical element, and new improved intersection
conjectures, all of which are equivalent: see [H3]).

Rfimark. If 1C R, tight closure is defined in R, and RC S , where S is regular and, for
simplicity, a domain, then I*S = I S . This is a remarkable consequence of the theory of tight
closure. For example, it implies in the situation of 2.1e that (xi,...,Xn.i)R: XnRC (a;i,...,a?n-i)5',

and similar remarks apply to the iterated operations discussed in the preceding remark.
Moreover, one can prove extremely powerful theorems parallel to this one in a somewhat
different direction as follows :

2.7. THEOREM (Vanishing theorem). Let AC R-L.S be excellent equicharacteristic rings such
that A, S are regular domains, f is injective, and R is module-finite over A . Let M be a
finitely generated A-module. Then the map
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To4(M,A) -^ To4(M,5)

is 0 for all i> 1 .

More general statements are given in [HH2], but (2.7) is already quite strong : the case
where M= A/(a;i,...,a;j), where the x^, are s.o.p. in A , and R is a direct summand of S
implies that summands of regular rings are Cohen-Macaulay, while the case where M= A / J
and S is a DVR dominating the local ring R implies the canonical element conjecture [H3].
The proof of 2.7 uses the notion of the tight closure of a submodule of a module : one shows that
certain cycles are in the tight closure of the boundaries and hence are boundaries once one passes
to the regular ring S , where every submodule is tightly closed. (In char. j?, if NC M we say
y6 M is in N* if there exists c6 R° such that for all ee IN , c(l®y) maps to 0 in J^(M/^V),
where F is the Peskine-Szpiro functor [PS, p. 330, Def. 1.2].)

To prove 2.7 in characteristic 0 a statement is needed which can be preserved while
applying Artin approximation: in consequence, we prove a more general result in which the
condition that / be injective is weakened to the condition that the image of Spec(5) in
Spec(R) meet the Cohen—Macaulay locus in Spec(^).

2.8. Discussion. We recall that an element a; of a ring R is integral over an ideal I provided
that there is an integer k > 0 and an equation xk + zi^-1 +...+ ijXJ +...+ ik-ix + ik = 0
where ij 6 I] for 1 < j< k . This is easily seen to be equivalent to the assertion that there is an
integer k> 1 such that ^ e I(I+Rx)k-^ and this holds iff (I+Rx)k = I(I+Rx)^ . From this it
is trivial to prove by induction on m that

(#) (I+Rx)k^ = I^(I-{-Rx)^

for every integer w6 IN . Thus, x is integral over / iff there exists a positive integer k such
that (#) holds for all me IN .

The integral closure I- of I is simply the set of elements integral over /, and is an ideal.
Another characterization of integral closure for ideals is given by valuations : let R be a

ring with finitely many minimal prime ideals (this is, of course, automatic when R is
Noetherian) and 1C R. Then x is integral over I iff for every homomorphism h of R into a
valuation domain V such that Ker A is a minimal prime of R, hxe IV. If R is Noetherian
the same result holds with V restricted to be a discrete valuation ring (by which we always
mean a rank one discrete valuation ring).

It is instructive to compare integral closure of ideals with tight closure. If x and y are
any two elements of a ring R then (a;",^")'? (a;11,̂ "1 .̂..,̂ -^2,...,̂ 11-!,̂ ") = (a:,!/)" since the
monomial x11'^1 satisfies 2ft - (a;")"-^")^ = 0 . On the other hand, if R is regular or
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F-regular, e.g. if R == I<[x,y] where K is a field, then (re", y0)* = (a;", y0), since every ideal is
tightly closed. Thus, the tight closure is, in general, much smaller than the integral closure. The
tight closure is a "tight fit" for the original ideal, which is the reason for the choice of the term.

Suppose we define the regular closure /eg of an ideal / in a Noetherian ring R as
follows : x € /e^ precisely if for every homomorphism h: R —*• S with S regular such that
Ker h is a minimal prime of R, h(x) e h(I)S . Roughly speaking, /eg is the largest ideal which
cannot be distinguished from / by maps to regular rings whose kernel is a minimal prime, just
as /" plays this role for maps to valuation rings.

A crucial observation is that /* C /eg whenever tight closure is defined : this is immediate
from the definition of tight closure and the fact that every ideal in a regular ring is tightly
closed. This explains much of the usefulness of I*. The trouble with working with /e^ itself is
that it appears to be very difficult to prove anything interesting about its behavior directly. We
have many useful results about /eg all of which are proved by studying /*. While f^ is
defined in mixed characteristic (where /* is not), we cannot prove anything really useful about
it. So far as we know it is possible that 7* = f^ when I* is defined : this appears to be a
difficult question.

We next note that the theory of tight closure provides an easy proof of the Briancon—Skoda
theorem, and, in fact, generalizes it. The theorem was first proved by analytic methods ([BrS])
and later by algebraic techniques ([LT], [LS]), but the argument below is simpler, and, in a
certain direction, improves the result.

2.9. THEOREM (generalized Briancon—Skoda theorem). Let R be a Noetherian ring for which tight
closure is defined and let I be an ideal of positive height generated by n elements. Then
(/")- C /* .

Hence, if R is weakly F—regular and, in particular, if R is regular, then (J^'C /.

Sketch of the proof in characteristic p . Let a = J" . If a is contained in the union of I* and
the minimal primes of R it must be contained in I* . If not choose y in a not in any minimal
prime of R. From (#) in Discussion 2.8 concerning definitions of integral closure we have
yk+me a^^(a+yR)k+lC am for a certain integer k> 1 and all me IN . Let c = y^, m = q = p6

and note that aft = /"<? C 71^ (since / has n generators), i.e. cy^ 6 P•ql for all q . QED

It is easy to deduce the result for arbitrary equicharacteristic regular rings from the
characteristic p case using Artin approximation.
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We have already observed that direct summands of regular rings are F—regular and so
C-M. This was the basis for our new proof that rings of invariants of linearly reductive groups
acting rationally on regular J^-algebras are C-M: see [HR1], [K], and [B]. The result of [B] is
actually that in the case of algebras finitely generated over a field of characteristic 0 and in the
analytic case, direct summands of rings with rational singularities have rational singularities.
This suggests a connection between F-regularity and rational singularity. We observe :

2.10. THEOREM. Suppose that R is of finite type over a field K of char. 0 and that 1= I* for
aU 1C R. If either: a) R has isolated singularities or b) R is ^-graded with RQ= K ,
m = .® Ri, and R has rational singularities except possibly at m, then R has rational

singularities.

In particular, F-regular surfaces have rational singularities. The authors conjecture that
all F-regular rings of finite type over a field of char. 0 have rational singularities. The converse
is not true : an example of [W] shows that a surface in char. 0 may have rational singularities
without even being of F-pure type in the sense of [HR2]. The proof of part a) depends on the
fact 2.9 that the conclusion of the Briancon-Skoda theorem is valid in a weakly F-regular ring.
A key point in the proof of 2.10a is that an ro-dimensional isolated singularity of a local ring
(R,m) of an algebra of finite type over a field of char. 0 is rational iff for every m-primary
ideal 1, 7""C I . (One may replace I by an ideal generated by a system of parameters on which
it is integrally dependent). An alternative equivalent condition for the isolated singularity to be
rational is that for some s.o.p. a?i,...,a;n whose normalized blow-up is regular,

(rf",...^")^,.,^) for all t.

Remark. As we shall see in the next section, a Gorenstein local ring has the property that I== I*
for all I iff the ideal generated by a single s.o.p. is tightly closed. If a Gorenstein local ring has
an isolated nonrational singularity it follows that the ideal generated by any s.o.p. is not tightly
closed. E.g. in I<[[X, Y,Z\]/(X^+ ys+ZQ = I<[[x,y,z]] the ideal generated by any two of the
elements j, y, z fails to be tightly closed: x^ (y,z)*-(y,z), y2^ (x,z)*-(x,z), and
^e(^)*-(a;,y).

3. Strongly jF-regular rings.

The notion of weak F-regularify for a ring R, that every ideal be tightly closed, is
clearly a valuable one, but has annoying technical drawbacks. One of the worst of these is that
we have not been able to prove that it passes, in general, to localizations. The situation is as
follows: the property of weak F-regularity passes to localizations at maximal ideals, and, in
the case of algebras of finite type over a field, to localizations at an element. In the Gorenstein
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case it passes to all localizations. However we have not, in general, been able to obtain the result
for localizations at an arbitrary prime, even for algebras of finite type over a field. For this
reason, we made the property of passing to localizations part of the definition of F-regularity.

In this section we shall study an a priori stronger property in characteristic p that may be
equivalent to F—regularity or even to weak F—regularity : we simply do not know. It is only
defined for reduced rings R such that R ^ is module—finite over R: however, this class
contains finitely generated algebras over a perfect field K and complete local rings R with
perfect residue class field K (one only needs that K / p be finite over J<), and so is not too
restrictive.

Throughout the rest of this section R denotes a reduced Noetherian ring of positive prime
characteristic p such that R ^ is module—finite over R (although we often reiterate this
hypothesis in stating theorems). Of course, R / ^ is then module—finite over R for all q = p6.

In this note we shall restrict attention to the domain case : very little is lost in doing so,
since, in general, a strongly F—regular ring is a finite product of strongly F—regular domains.

DEFINITION. We say that a domain R as above is strongly F-reaular if for every c G R° there
exists q such that the R-linear map R —^ R / ^ which sends 1 to c / ^ splits as a map of
R-modules, i.e. iff Rc1^^ B^l^ splits over R.

Remarks, a) The issue of whether a homomorphism of finitely generated modules over a
Noetherian ring splits is local and is unaffected by a faithfully flat extension of the base ring
(since the question can be translated into whether a certain map of Hom^s is onto : see [HI]).

b) If R C S and / : R —^ M is split by g , where M is an 5-module, then R C S
splits : send s to g{sf{l)).

c) In the definition above, if a splitting exists for one choice of c 6 R° and q then
RC R1/^ splits for every ^. (It suffices to split RC R1^ and hence RC R^-^: now useb)).

d) Note also that if R — ^ R 1 ^ sending 1 to c / ^ splits for one choice of q, the
map RC R 1^ sending 1 to c ' ^ splits for every q' > q: the map R—^ B~1^ described is
isomorphic to the map R^^ — ^ R 1 ^ sending 1 to c ' ^ and so that map splits over 7?^,
and this splitting may be composed with the ^-splitting RC R^l^ .whose existence we showed
in c).

The following result exhibits a number of the good properties of strong F—regularity.
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3.1. THEOREM. Let R be a Noetherian domain of positive prime characteristic p such that R1^
is module-finite over R.

a) R is strongly F-regular iff Rp is strongly F-regular for every prime (respectively,
for every maximal) ideal P of R. Hence, if R is strongly F-regular, so is S^R for every
multiplicative system S .

b) If S is faithfully flat over R and strongly F-regular then so is R .
c) If R is regular, then R is strongly F-regular.
d) If R is strongly F-regular, then R is F-regular.
e) If R' is strongly F-regular and R is a direct summand of R' as an R-module, then

R is strongly F-regular. In particular, a direct summand (as a module over itself) of a regular
ring is strongly F-regular.

f) If R is weakly F-regular and Gorenstein, then R is strongly F-regular.

Proof: a) First suppose that R is strongly F-regular. We show that ^R is strongly
F-regular for every S . Let a nonzero element c = c ' / s in ^R be given, where c' e R° and
56 S . Choose q such that h: R—^ ^1/^ sending 1 to c^^ has a splitting g . Then
(1/5 /^(^h) has as a splitting the map which sends x to (5^)(51/^). (Note that
(S-m^^^S-^l^ canonically).

On the other hand, suppose that R^ is strongly F-regular for every maximal ideal m
and let ce R° be given. For each maximal ideal m choose q(m) such that the map
^n -^ B^l^ ^ (R^^^m which sends 1 to c1/^) splits. One then gets a splitting for
the same q(m) on a Zariski open neighborhood. Taking a finite subcover and the supremum q
of the finite set of values of q(m) used in constructing it, we obtain a splitting of hm , where h
is the map R—^R^ sending 1 to c I q , for every maximal ideal m of R, and this implies
that h has a splitting.

b) Suppose ce R°. Choose q such that Sc^^C S1^ splits over S . Since S is faithfully
flat over R, Re lq^ R l q splits iff it splits after applying S® . But we get a splitting by

composing S®^^-^ S1^ with the map •S1/̂  5'c1/^ which splits the inclusion
sclfqcsl/q.

c) Suppose that R is regular. To prove F-regularity, it suffices to do so locally, by a). We
may assume without loss of generality that (R,m) is local. Since R is regular, R1^ is free
over R. Let ce R° be given and choose q so large that cf. m<?. Then c1/^ m(Rl/q) and
so is part of a free basis for R1^ over R. The existence of the required map is then obvious.

d) Suppose a? 6 /* and that ce RQ is such that ca^e 7̂ 1 for all q> ^.'Then
c /^e IR / q and we can choose q so large that there is an ^-linear map Rl/q^R
sending c l q to 1. Applying this map yields that xe I . Thus, /* = I for every ideal /.
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Let c€ R0 and an A'-splitting of the map R ' — ^ R ^ I ^ which sends c1^ to 1 be
given. Simply compose with an A-linear map splitting RC R/ and restrict the composition to
R / q to obtain the desired splitting.

f) The issue is local on the maximal ideals of R. Thus, it suffices to prove that if (A,m)
is a local Gorenstein domain which is weakly F-regular and R ^ is module—finite over R
then for every c6 R° , Re / q ^ R 1^ splits for sufficiently large q. Let a;i,...,a?d be a system of
parameters for R and let the image of ue R generate the socle in R/(xi,...,xd). By [HI,
Remark 2, pp. 30 and 31], since R is Gorenstein the map R—*M sending 1 to m splits iff-
[x[...xy)umf. {x[^,...,x^)M for all nonnegative integers t , and when M has depth d this
simply is the condition that urnf (xi,...,Xd)M. We see that it will suffice to choose q such that
uc ^f. {x{,...,xd)R / q , i.e. such that cu^f. ((.ri,...,^)^)1^- It is possible to do this, since
ut (xi,...,Xd)R = I and I is tightly closed. QED

Remark. The argument for part f) actually shows that a Gorenstein local ring is strongly
F-regular provided the ideal generated by a single system of parameters is tightly closed. We
remark that, quite generally, a Gorenstein local ring is F—regular (not just weakly F—regular)
if the ideal generated by one system of parameters is tightly dosed : it is not necessary that
F^^ be module-finite over R. See [HH2].

Remark. When R / p is module—finite over the domain R we can always choose c6 R° such
that (R /^c ^ (Re) / p is free over Re : for such a c , Re is regular and, hence, strongly
F-regular.

Remark 3.2. Suppose that R l p is module-finite over the domain R and that ce R° is such
that Re is strongly F-regular. Then for every d^ R° there is an integer q = ^e, an integer
00 and an ^-linear map Rl/q—^R which sends d1^ to c6. To see this, choose q
sufficiently large that there is an Ac-linear map g : (A^^c —^ Re such that g^^) = 1 .
Since ^1/^ is module-finite over R, ctg(Rl/q)C R for sufficiently large t , and then c^g
restricted to R / ,̂ has the required property. Notice that we may replace t by any larger
integer : in particular, we may assume that it is a power of p .

3.3. THEOREM. Let R be a Noefherian domain of positive prime characteristic p such that R l p

is module-finite over R.
a) Let c be any element of R° such that Re is strongly F-regular (such elements always

exist). Then R is strongly F-regular if and only if there exists q=pe such that
R^/^C R1/^ splits over R.

b) The set {Pe Spec R: Rp is strongly F-regular} is Zariski open in Spec R.
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Proof: a) The existence of such a c is proved in the first of the two remarks just preceding the
Theorem. Let d€ R° be given. Since Re is strongly F-regular, by Remark 3.2 we can choose
an ^-linear map R1/^ to R taking d1/^ to c^. The inverse of the iterated Frobenius
endomorphism gives an isomorphism of the map R C R I ^ with the map R / ̂  C R I ̂  q

and it follows that there is an ^/^-linear map of f^l^^ to J21/^ which sends
^./qq^q" ^ c^/^" == c1/^, taking (qq")^ roots. We may compose this with an ^^-linear
map of I^l^ to R1^ which sends 1 to 1 (and. hence, c1^ to c1/^), and then with the
Tt-linear map from R1^ to R which sends c1/^ to 1 guaranteed by the hypothesis. This
establishes part a).
b) Choose c 6 R° such that Re is strongly F-regular. Suppose J?p is strongly F-regular for

a certain prime P. Then we can choose q and a splitting of R c ^C (R ) / ^ or,

equivalently, of (Re "C R / q ) , and this splitting extends to a Zariski neighborhood, so that

for a certain df. P , we have a splitting of (Re "C R /^ , and it then follows from part a)
that R is strongly ^-regular for all primes Q with df. Q.QED

One of the apparently mysterious aspects of tight closure is the nature of the element c
such that csft e 71^ for all sufficiently large q. In the definition c is allowed to vary with both
x and /. As mentioned earlier, if R is reduced or if / has positive height one can replace the
condition "for all sufficiently large cf by the condition "for all q11.

It is natural to ask whether, for "good" choices of R, there is an element ce R° such that
for every ideal /C R and every element a; 6 R, xe. I* iff cxQ 6 71^ for all q. We refer to such
an element as a test element It is proved in [HH2, §6] that if R is module-finite, torsion—free
and generically smooth over a regular domain A then R has a test element, as does every
localization of R. We note that, in particular, every algebra essentially of finite type over a field
has a test element.

The constructions of test elements given in [HH2] provide only a very limited class. One of
the pleasant consequences of the theory of strong F-regularity is that one can use it to show
that every R such that R " is module-finite over R has a test element and, in fact, an
abundance of test elements : every element in the ideal which defines the locus of primes P
where R is not strongly F—regular has a power which is a test element. In particular, in the

case of an isolated singularity, there is a power of the maximal ideal defining the singular point
all of whose elements not in R° are test elements. This follows from :

3.4. THEOREM. Let R be a Noetherian domain of positive prime characteristic p such that R ' ^
is module-finite over R. Then every element c' of R° such that R , is strongly F-regularc
has a power which is a test element.
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More precisely, c' has a power c such that there is an R-linear map h of R ^ to R
which sends 1 to c , and for c 6 R° with this property such that Re is strongly F-regular, c3

is a test element

Proof: The existence of h follows from Remark 3.2 applied with d = 1 . We next observe that
the existence of h implies that for all q, there is an ^-linear map R l q —^ R which sends 1
to c2: ch works if ( ? = = ? , while given such a map g ' . R ^ — ^ R we get a map
g. ; p ^ / P Q ^ p 1 / ? by taking p^ roots which is jR^-linear and sends 1 to c2/^.
Multiplying by c^ ) 1 ^ yields a map which sends 1 to c and we may then apply h, for
h(c) = c2.

Now suppose XE I* . Then there is a ^6 R° such that dx^ e r-^ for all q. We must
show that c3 has the same property. As in Remark 3.2 we may choose q' and q" such that
there is an ^-linear map of R l q to R sending d ^ to c^ .Let q be a varying power
of p . Taking qq"^ roots we obtain an ^/^-linear map / of R1/^^ to ^1/^"
sending rf1/^^ to c1/^. Since dx^f qlt^ ^qq'T! takine q^q^h roots yields that
d1!^^ x^ I B ^ I ^ ^ . Applying the map / we find that c^^e IR1/^11 . From the first
paragraph we know that there is an ^-linear map g : R1^ —^ R sending 1 to c2 and hence
c to c3. It follows that there is an ^/^-linear map R1/^ -^ J?1/^ sending c1/^ to
(c3) / q . Applying this map we see that (c3)1/^ IR1^, and taking q^ powers yields exactly
the fact we need. QED
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SET-THEORETIC GENERATION OF IDEALS

N. MOHAN KUMAR

(Dedicated to Professor P. Samuel)

SUMMARY

We study the problem of whether a given surface in affine space is a set-theoretic complete
intersection. We show, in particular, that surfaces which are birational to a product of curves are
set—theoretic complete intersections.

RESUME

On etudie Ie probleme de savoir si une surface donnee dans un espace affine est une
intersection complete ensembliste. On demontre en particulier qu'une surface birationellement
equivalente a un produit de courbes est une telle intersection.
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§0. Introduction.

In this paper, we study set—theoretic generators of ideals in affine algebras. We will be
working over an algebraically closed field k . We will prove a sufficient condition for a smooth
surface X to be a set—theoretic complete intersection in K n> 5). This condition is trivially
satisfied by a birationally ruled surface. We will show that this condition is satisfied by surfaces
birational to product of curves. Spencer Bloch has recently shown to me that this condition is
also satisfied by surfaces birational to abelian surfaces.

Another problem we attempt in this article is whether a codimension one subvariety of a
smooth affine variety X of dimension n is set—theoretically defined by n— 1 equations. The
main interest in this problem, at least for the author, is that if this were not so, then one can
find stably trivial non-trivial bundles of rank n-1 on such varieties. To see why this case is
interesting, the reader may see [3]. Of course, the problem is easy when n=-1 or 2 . The real
difficulty is from n=3. We will show that when n> 3 , a subvariety as above is
set-theoretically the zeroes of a section of a stably free, rank n-1 module. For a precise
statement, see Theorem 2.

I thank Professors M. Raynaud and L. Szpiro for including me in the Samuel Colloquium. I
thank Professor M.P. Murthy for many discussions on the subject matter of this article and
Professor Spencer Bloch for showing me how my results apply to the case of surfaces birational
to abelian surfaces as well.

§1. Surfaces.

Let Xc ff\ be a smooth affine surface. Let A denote the coordinate ring of X. Let
P = the conormal module of X in /S .

THEOREM (Boratynski [1]) Xc A is a set-theoretic complete intersection if and only if the ideal
S+(P) = positively graded elements in R = 5(P), the symmetric algebra of P over A, is a

set-theoretic complete intersection in R .

We say that A satisfies (-*•) if for any ze. Ao(A) = zero—cycles modulo rational

equivalence, there exists Lp...,L^ 6 Pic A such that z = S^ (L^.L^ where (L.L) denotes the

intersection product in the Chow—ring.
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THEOREM 1. Let A be the co-ordinate ring of a smooth surface. Let P be any A-projective
module with rang P> 3 . Let R = S(P) = symmetric algebra of P over A and 1= .S+(P), the

ideal of positively graded elements. If A satisfies (*), then I is a set-theoretic complete
intersection in R.

To prove this theorem, we introduce the notion of modifications. Let the notation be as in
the theorem. A projective module Q over A is said to be a modification of P , written <3[P],
if

i) rank Q = rank P ,
ii) there exists an A—algebra homomorphism f: S(Q)—^ S(P) ^ such that

rad(/(^Q)) = ^(P).

REMARKS:
i) If Wil and %[%] then %[%].

ii) If P« Q® L where Le Pic A then (Q® ^[P] for any m> 1 .

The first remark is obvious and the second remark follows, once we use the natural map
5(^)^5(2.) for any m> 1 .

PROOF OF THE THEOREM : We need only to show that P can be modified to a free module. Let
L = del P . Since dim A = 2 and rank P> 3 , by Serre's theorem [9], there exists a projective
module Q such that P% Q® L-1 . Then det Q= J?2. By remark ii), Q® L~^2 is a
modification of P. Also det(($© L ) = A . Thus we may assume that det P= A . Let
c^(P) e Ao(A) be the second chern class of P. A()(A) is divisible [see e.g. [6], Lemma 2.3]. So

we may write c^(P) = 3^. Since A satisfies (•*•), we may write z = E^(^.Z^) with

L^ e Pic A . Now, the proof is by induction on n. If n = 0 , then z = 0 and by [5], P is free.

We will show that P can be modified to a projective module P ' with det P' = A and
^(P) = 3^, where z ' = £^(L,.2^). This will complete the proof.

For notational simplicity let M = L^ . As before we may write P = P^ © M. Let c

denote the total chern class. Then we have
a) c(p) = c(Pi).(l+c^).

By Remark ii), P^© M is a modification of P. Again we may write

PI® M02 = Pa® M-®1 . Then we have
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b) c(Pi).(l+2q(M)) = c(P2).(l-q(^)).

Again by Remark ii), Pg® M is a modification of P^ M and hence by Remark i),

a modification of P. Using a) and b) we may compute c(P^ © M ) and then we will get

c(P29 M^2) = Wz-Z{M.M).

Thus P ' = P^® M has all the properties we wanted to achieve. This finishes the proof of

the theorem.

COROLLARY 1. (Murthy) If Xc ^?, X a smooth surface which is birationally ruled, then X is a
set-theoretic complete intersection.

PROOF : For n< 4 . see [4].

PROPOSITION. If A is birational to a product of curves then A satisfies (•*•).

PROOF : Let A be birational to C^ x C^ where (7, are smooth projective curves. We may also

assume that C^'s have positive genus ; if not A is birationally ruled and so A satisfies (^)

trivially. Let Y be a smooth projective completion of X = Spec A . Then we have a birational
morphism TT : Y—>• C^ x Cg , by uniqueness of minimal models. Let Z denote the union of

exceptional curves of Y. Then Z is the union of rational curves. So the natural map
AQ(X) —+ AQ^X—Z) is an isomorphism. Also Pic X —» Pic (X-Z) is a surjection. Thus we need

only prove (•*•) for X an affme open subset of C^ x C^ .

Now, since AQ(X) is divisible, we may write any zero cycle z = 2t. Also, since X is

affine, we may write t as a sum of points of X. So it suffices to prove that for any point
p ^ X , 2p==(L.L) in AQ^X) where LePicX. Write p = (^2) 6 °\x ^2 • Then

M^ == ^ x ^2 and M^ = (^ x ^ are divisors on C^ x C^ . (M^.M^) = ^ and (M,.Af,) = 0 for

2=1,2 in AQ^C^ cy. Then (M^® Ma.Mi® M^) = 2p in Ao(Cix Cg). Restricting- M^ M^

to ^, we get the desired result.

COROLLARY 2. // X c S , is a smooth surface birational to a product of curves then X is a
set-theoretic complete intersection.
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PROOF : When n< 4 , this was proved by M.P. Murthy [4].

REMARK. Spencer Bloch has shown me that if X is a smooth affine surface birational to an
abelian surface, then it satisfies (*). So our theorem applies and it is also a set-theoretic
complete intersection.

§2. Divisors.

This section grew out of an attempt to decide whether stably trivial modules over a 3-fold
are trivial or not. Unfortunately, the following theorem that I prove is inconclusive.

For a module M , p,{M) will denote the minimum number of generators of M.

THEOREM 2. Let Yc X = Spec A be a divisor on a smooth variety X of dimension n over an
algebraically closed field. Assume n > 3 . Let I be the defining ideal of Y in X . Then there
exists an ideal P e l such that

i) rad P = rad I ;
ii) ^PiP^in-l,
iii) if n = 3 , there exists a stably trivial module of rank 2 mapping onto P ;
iv) if all stably trivial (rank 2) modules on all affine 3-folds over an algebraically closed

field are trivial then we have an P satisfying!) above with ^.(P} = n—1, for any n> 3 .

PROOF : We will first prove the theorem in the crucial case of n = 3 . The proof is a judicious
application of Ferrand construction [7].

To avoid confusion, let L denote the element in Pic A corresponding to the divisor Y .
That is, L is a module isomorphic to /. Choose a general homomorphism / : L —+ A so that,
P = f(L)-{-I is a local complete intersection ideal of height 2. Thus, we have the following
Koszul resolution for J ' :

M O--^2-^®/-^--^

[U1 denotes L®...® L, n times].
Since J ' is a local complete intersection ideal of height 2, J ^ J ^ is a prpjective module

of rank 2 over the one-dimensional ring A / J ' . So by Serre's theorem [9], we can'find a
surjective homomorphism, J ' / J ' 2 —*• L~6® A / J ' . Thus we have an exact sequence,

(a) 0 -»> KIP2 -4 PI?2 -. L-6® Al? -^ 0
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where J^c Kc J^ K an ideal of A . It is easy to check that K is also a local complete
intersection ideal of height 2 . So by the above reasoning, we can get another exact sequence

(b) 0 -^ J/J<2 -^ K / K 2 -. A/K-^ 0 .

Again J is a local complete intersection ideal of height 2 with I^c Jc K . So
rad J = rad K = rad J ' D /.

Claim : Ext^(./,L-4) ^ A/J.

Since J is a local complete intersection ideal of height 2, by local checking, one can see
that Ext^(J,L"4) is a projective module of rank one over A / J . So to prove the claim it suffices

to prove that Ext^(J,L-4)® A/J7 ^ A/^ since rad J= rad J\ One has

Ext^L-4) sf ^(Hom^/.^A/.T)) ® L-4 .

[See e.g. [10]]. Since one has a natural filtration

0 -^ I ^ I K J - ^ J / K J - ^ J / I < 2 -. 0 ,

a,nd 7/</J< is a projective module of rank 2 over A / K , we see that,

^(J/J2)® A/7^ J / K 2 ® I ^ I K J .

But

^/^J^ K/J® K / J w A/K<s A / K w A/K

from(b). Thus

l ( J / J 2 ) ® A / K » J/I<2® A / K ^ l(K/I<2)

from (b). A similar computation done with (a) will yield,

1{K/I<2)^ A|Jf ^ A(^/J2)® L-6 .

Putting these together, one will get
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Ext^L-4) ® A/.P ^ 1{K/I<2) ® L-4® A/P
^(.P/.P2)*®^6®^-4

^(.P/.P2)*®^2

^ExtV^2)-

But (*) implies Ext^L2) ^ A/.P, proving the claim. Thus, by Serre's construction [8] we get
an exact sequence,

0-^L^-^P-^J-^O

where P is an A-projective module of rank 2. Computing the chern classes, one has

q(P) = L-4 and ^(P) = [A/J] = 4[A/P] = 4(q(L).q(L)).

Thus c(P) = c(L"2® L-2). By [2], this implies that P is stably isomorphic to L"2® L"2 .
Tensoring the above exact sequence by L2 and noting that L ^ I , we get an exact sequence

O-^L-2--^?® L^A/^O.

If we take P = 72./, then rad 7' = rad 7, since rad J c I . Thus we have part iii) of the
theorem, as well as part i) for n == 3 . By [5], P® L2® A/P is free and thus we havee ii) for
n = 3 . iv) is now obvious for n = 3 .

Now, to do the general case, let dim A = n > 3 . Chosse a sufficiently general map,

y,: V L-2 -^ A ,
i

L as before, so that B = A/Im y? is a smooth 3-dimensional affine ring and 1^ = image of I in

B is a locally principal ideal of B . From the earlier part, we can find an ideal J^ of B such

that there exists an exact sequence of B-modules

(c) 0-^L-4® B-^Q->J^O

with J a local complete intersection ideal of B containing 1^ up to radical and ' Q a

B-projective module of rank 2, stably isomorphic to (2/"2® L"2) ® B . Let J = inverse image of
./i in A and let P = Aj. We will show that P has all the properties asserted in the
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theorem. Since rad ^ D 1^ , it is clear that rad // = rad /. By [5],

Q® B/J^(L-2® 2/-2)® B//i.

So we may find an element /e A , /= 1 (mod 7) such that

(?® B^(L-2® L-2)® Bf.

Notice that by our choice of /,

p / i - ^ i f / n 2 .
The map from Q® Bf -*• J^ can be lifted to a map (L-2® L-2)® Af -^ Jf . Also

im y?c Jf and im y?® Af + im ^ = Jf . So we get a surjective map, ®^1 L^2 —^ ̂  ; thus a

surjective map

(d) n®1 Af -^ Tj.Jf = 7f .

So ^ ( P / F 2 ) = fi(If/If2) < n-1. This proves ii).

If the hypothesis in iv) were satisfied then we could have chosen / = 1 . Then (d) implies
If = // is Ti-1 generated. This completes the proof of the theorem.
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LOCAL CHERN CLASSES, MULTIPLICITIES, AND PERFECT COMPLEXES

Paul ROBERTS

ABSTRACT : We define an invariant associated to a homomorphism of free modules and show,
first, that this generalizes the multiplicity in the sense of Samuel and, second, that in the
situation we are considering, the local Chern character of a perfect complex can be defined in
terms of this invariant. Some questions are raised as to the positivity of these numbers and
connections with mixed multiplicities are described.

One of the common methods in studying ideals and modules over a commutative ring has
been to define numerical invariants which reflect their properties. In this paper we look at a few
of these invariants, which have been defined in various contexts, and describe some relations
between them. Let A be a local ring with maximal ideal m, and let I be an ideal of A
primary to the maximal ideal, so that A / I is a module of finite length. This length is the
simplest invariant associated to the ideal, and it could be considered to be the most important
one, but Samuel [7] defined a somewhat more complicated one, called the multiplicity of /, and
showed that it was often more fundamental in studying both algebraic and geometric questions;
since then, of course, this has become a standard part of Commutative Algebra.

The comparison of invariants we discuss in this paper is analogous to the comparison of
length and multiplicity of an m-primary ideal. Take now a bounded complex of free
A—modules, which we denote F^ . In place of the assumption that / be primary, we assume

that the homology of F^ is of finite length. Again, there are two invariants one can associate to

F ^ . The first is the Euler characteristic, denoted \(F^), which is the alternating sum of

lengths of the homology modules. The second was defined by Baum, Fulton and MacPherson and
is defined in terms of the local Chern character. This theory has been extended by Fulton [2],
and certain applications have made it appear that here also this more complicated invariant may
be more fundamental in studying homological questions in Commutative Algebra (see Roberts
[5] [6]).
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We give here an alternative construction of this invariant. More precisely, we define an
invariant of a map of free modules (or of a matrix, if one chooses to look at it that way) with
certain properties (corresponding to finite length, specified below). On the one hand, if this map
goes to a rank one free module, the image is a primary ideal, and this is the multiplicity of
Samuel. On the other hand, the alternating sum of these is the local Chern character in the
second example. We define this, which we call the multiplicity of the homomorphism, in section
1, and, in the process, we show that the connection with multiplicities is more that simply an
analogy, since the definition itself is in terms of the so-called mixed multiplicities of ideals of
minors of the matrix. In section 2 we show that it does agree with the other invariants
mentioned above. In the third section we consider homomorphisms which can be put into a
complex of length equal to the dimension of the ring with homology of finite length and ask some
questions concerning the properties of this invariant in that case. Finally, in the last section, we
work out a couple of special cases to explain how one step of the construction works in practice.

We remark that one motivation behind this work was to investigate the contributions of
the individual boundary homomorphisms of a perfect complex (i.e. a bounded complex of free
modules) to the local Chern character. The fact that a complex can be divided up in this way
was proven in a construction of Fulton ([2], ex. 18.3.12) to prove his local Riemann—Roch
theorem. The construction we give here carries this out explicitly, specifies which locally free
sheaves occur in the decomposition in terms of determinants, and gives a formula for each
contribution in terms of mixed multiplicities. In addition, it .is applied to an independent map of
free modules, so that, in particular, it is defined whether the map fits into a perfect complex or
not. What this number means when the map does not fit into a perfect complex is not clear, but
it is interesting that an invariant like this can be defined in this generality.

1. The multiplicity of a homomorphism of free modules.
Let A be a local ring of dimension d and maximal ideal m, and let ^ : E — ^ F be a

homomorphism of free A-modules. We wish to assume that (|) is generically of constant rank,
and, to simplify the situation here, we assume that A is an integral domain. Let r be the
generic rank of (|). We define the support of (() to be the set of prime ideals of A for which the
localization at P is not split of rank r, by which we mean that it is not of the form

AS® A r — ^ A ^ ® A^

where the map is | An. Let e denote the rank of E and / the rank of F. We assume
^ 0 /

that the support of (|) is the maximal ideal of A. We wish to define a number associated to (|)
which satisfy the properties outlined in the introduction.
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Let M denote the matrix which defines ([). We assume that the bases are chosen so that
both the first r rows and the first r columns of M have rank r.

We first define two sequences of ideals associated to the matrix M. We note that these are
not canonically defined by the map itself, but depend on the bases chosen for E and F (or,
more precisely, on filtrations by free direct summands defined by them). First, for k= 0,1,..., r
we let e& denote the ideal generated by the k by k minors of the first k rows of M (for
k = 0 this is defined to be the unit ideal, i.e. A itself; we include this to avoid special cases in
later notation). Next, for k= 0,1,...,r we let fk denote the ideal generated by the r by r
minors of the first r columns of M which include the first k rows. Note that these ideals are
not necessarily m-primary. We also note that Cr and fo are, respectively, the ideals generated
by the r by r minors of the first r rows and the first r columns of M.

The invariant we define is in terms of mixed multiplicities, so we next recall some facts on
mixed multiplicities of sets of ideals. These were introduced for two ideals by Bhattacharya [1]
and later also by Teissier [8], and more recently the definition was extended to a set of d ideals,
where d is the dimension of the ring by Rees (see [3]). We briefly recall the situation we need
for our construction. This appears to by slightly different than that considered by Rees; he
considered d ideals (not necessarily distinct) such that it is possible to choose one element from
each of the ideals to form a system of parameters for the ring A. We require instead that at
least one of the ideals be m-primary. So let ai,...,an be n ideals of A such that aj is
m—primary. If all of the ideals were m—primary, there would be a polynomial P in n variables
of degree d such that we would have

P(5i,..,5n) = lengt^A/a?^52...^")

for large values of 5i,...,5n. In our case these lengths are not finite, so this does not make sense.
However, since aj is m—primary, there is still a polynomial P' in n variables of degree d — 1
such that we have

P-(5i,...,5n) = length(aflai2...a /̂afl+lai2...a252...a^)

for large values of si,...,5n. In the case in which all ideals are m—primary, this is the difference
P(5i + l,...,5n) — P(5i,...,5n) and one can recover those coefficients of P which invove at least
one factor of ai. In our case, this gives a well-defined coefficient for each term of the
polynomial for which at least one m—primary factor occurs. We summarize this in the following
definition :
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DEFINITION. Let ai,...,dn be n ideals of A such that ai,...,ajf are m-primary. We call the
mixed multiplicity polynomial of ai,...,ak; a^+i,...,an the homogeneous polynomial P in n
variables of degree d such that

(1) for i = 1,...,A; we have P(5i,...,5f + l,...,Sn) — P(si,...,Si,...,5n) = the part of degree d— 1
of the polynomial which gives the length of afl...afi...a^n/afl...af2+l...a^n. For large
Sl,...,Sn,

(2) all coefficients involving only the last n - k variables are zero.

We make two remarks on this definition. First, it might seem reasonable to call it the
Hilbert—Samuel polynomial in analogy with the case of one ideal; the terminology we have
chosen is because we have taken only the part of degree ,̂ and these coefficients are (up to
certain multinomial coefficients) the mixed multiplicities of the ideals. The second is that the
last condition, letting those coefficients which are not well-defined be zero, may seem arbitrary,
but it turns out to be exactly what is needed in our formula.

We give an alternative description of the coefficients of the polynomial which will be useful
later. We begin by taking the multigraded ring whose Si,...,5n component is af1 a^.^ai". In
conformity with the usual terminology for one ideal, we call this the Rees ring associated to
ai,...,an. By taking the projective scheme associated to this, one gets a scheme X proper over
Spec A with an imbedding into the product of projective space over Spec(A); this imbedding is
defined by choosing a set of generators for each of the ideals. Finally, on X there are invertible
sheaves of ideals 0(— Ai),..., 0[— An) associated to divisors Ai,...,An defined by the ideals
ai,...,dn. The coefficients of the mixed multiplicity polynomial can then be defined as the degrees
of the intersections of these divisors. More precisely, one has coefficient of

W...̂ ° = (-l)d-i(̂ ± )̂A ,̂.,A .̂

In this intersection product one must first take the exceptional divisor corresponding to an ideal
which is m—primary, which reduces the situation to a subscheme which lies over the closed point
of Spec(A), and then intersect with the other divisors. In ring—theoretic terms, this can be done
by first dividing the Rees ring by the image of one of the ideals which is m-primary, which
reduces the situation to a multigraded ring over an Artinian ring, and then dividing by generic
enough elements in appropriate graded pieces of the Rees ring (this works at least if the residue
field of A is infinite). The sign occurs because every intersection after the first is with one of the
hyperplanes coming from the embedding into a product of projective spaces, and this is the
negative of the corresponding exceptional divisor. The mixed multiplicity polynomial can thus be
expressed more simply as
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(~~l)d~l^)((^l 4- A252 +...+ AnSn)d-(Ak.lSk.l +...-4- AnSnW.

We remark that this expression is simpler, but that to actually compute the polynomial it
is necessary to compute the individual mixed multiplicities. On the other hand, sometimes some
of the divisors can be combined and this can be used to simplify the computations.

We now define the invariant of the homomorphism (|) in terms of mixed multiplicities of
the ideals cjc and fjc defined above plus some other ones defined in terms of these. Let k be an
integer between 1 and r. We consider the four ideals ejr-i, €k, ft-i, and fc. As described
above, there is a Rees ring associated to these ideals, as well as an associated projective scheme
A" proper over Spec(A) with four divisors which we denote j%-i, Ek, Fk-i, and Fk. Take the
map :

W-i -Ek)->0(Fk.i-Fk)

defined locally as follows : the scheme X is covered by affine pieces corresponding to choices of
one generator of each of the ideals e^-i, c^, fjc-i, and fjc. Choose four such generators to be the
determinants A^-i, Af, A[-i, and A^. The local expression for the map above is then

A E A F

multiplication by the element k k ~ 1 .
ALiA[

^E^F
LEMMA. The element ^ k •^ is in the coordinate ring defined by the generators

Aft - iAk
A^-i,Af,AL, and A[ of c^-i, e^, fk-i, and fa.

Proof: What must be shown is that the element in question can be written as a sum of quotients
with denominators Ajc-iA^ and with numerators products of elements in the original ring times
elements in e^-i and ffe. If the minor of M defining A[-i happens to included the ^h row,
this is easy to show by expanding A^ along the ^ row. If not, one must first expand A^
along the ^ row and then, for each element a of the ^ row of the minor defining Af, add
the corresponding row and column of this entry to the minor defining A^-i, and, using the fact
that this r + 1 by r+1 determinant must be zero, expand it along the column of a to
express it as a sum of other entries in that column multiplied by the corresponding cofactors.
When this is all worked out, all terms drop out except those for minors including the first k
rows, which are of the desired form.

We assume next that there are m-primary ideals Qk and Qk-i such that, with notation as
above, we have

0(Ek-i - Ek) -^ 0(Fk.i - Fk) ̂  0(Ek.i - Ek)<8> (0-> 0(Gk - Gk-i)).
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In many cases these ideals can be calculated explicitly — we give some examples below to
show how this works out in practice. We now let Pk be the mixed multiplicity polynomial
associated to g^, gjc-i; e^, cjc-i (we note that the first two of these are m—primary but the last
two might not be). Then our formula is :

r

mW=W I Pi:(l,-l,l,-l).
k=l

Actual computation of this number is fairly complicated, but we give some examples later
to show that it can be done. We note also that using the last form of the mixed multiplicity
polynomial this becomes

((Gk - Gk-i + Ek.i - Ek)^ - {Ek-i - EkW.

2. Relationships with other invariants.
First, to justify the term multiplicity given to this number, we must show that it agrees

with the definition of multiplicity of an ideal. We first do a more general case where the formula
simplifies considerably; this is the case of a homomorphism of maximal rank. Recall that
(|): E —> F is a homomorphism of free A—modules of ranks e and / respectively. We now
assume that r, the rank of (j), is equal to /, the rank of F. In this case the matrix defining ())
has r rows, and the ideals f^ defined in the last section are all principal (generated by the
same element, the first r by r minor) and this term cancels out in the formulas. Hence we can
omit this in the discussion and we left with 0(Ek-i — Ek) —> 0. In this case we can clearly let
Qk = ^k; these ideals are all m-primary in this case. We note that the formulas give
(Gk — Gk-i + Ek-i — Ek^— (Ek-i — Ek)^^ and in this case the first term is zero so that we are
left with — (Ek-i — Ek)4, thus if Qk represents the mixed multiplicity polynomial of e^, e^-i
then m((j)) = (3i(l,-l) +...+ Qr(l,-l).

Now we return to the multiplicity of an m—primary ideal in the sense of Samuel. In this
case we are in the above situation with r== / = 1; that is, we have a map from A6 to A
defined by a 1 by e matrix whose entries are a set of generators for the ideal. Thus the only
determinantal ideal which occurs is ei, which is simply the ideal we started with. Hence there
we are left with <9i(l,—l), and since the first ideal is trivial (this is just eo) this is just the
usual multiplicity of the ideal.

The other connection is with the local Chern character as defined by Fulton. We let now
F^ denote a bounded complex of free modules with support the maximal ideal of A (i.e. for

every prime ideal other than m, the localization is (split) exact). In this case one has a number



LOCAL CHERN CLASSES AND PERFECT COMPLEXES 151

associated to the complex, and if we let [A] denote the fundamental class of Spec(A) in the
part of the Chow group of Spec(A) of dimension d, this is c/i(Fj([A]). We refer to Fulton

([2]) Chapter 18) for a description of what this is well as the properties this invariant satisfies. It
is mostly these properties which we need in the proof we give below.

We first note that the condition on the support of F^ implies that the individual

homomorphisms of the complex, which we denote 61, (61 will be the map from Fj to Fj-i)
satisfy the hypotheses to make m(6i) defined. The formula we wish to prove is :

^(Fj([A])=£(-l)i(m(^)).

There are three main steps in this proof. Let n be the generic rank of 61. The first step is
to blow up the ideals of r-i by r-i minors of the matrices defining & to split the complex up
into maps of rank r, locally free sheaves on the blown up scheme X. Next, we show that, by
blowing up further, each of these pieces can be filtered with quotients maps of invertible sheaves
defined locally by determinants in the ideals e^ and fk. Finally, we put this together and
derive the formula given in the first section. This is similar to the process used by Fulton ([2],
Example 18.3.12) to prove his local Riemann-Roch theorem; he shows there that this can be
done, at least in theory, and we show here how to carry it out.

We first introduce some notation. We wish to construct a rank n locally free quotient Qi
of Fi and a rank n locally free subsheaf Ri of Fi-i (such that the inclusion of Ri into Fi-i
is locally split) such that the map 6i factors through a map pi from Qi to R'i. The first
step, as mentioned above, is to blow up the ideal of r'i by ri minors of the matrices defining
each of the maps 61. Call the resulting scheme X and denote the proper map from X to
Spec(A) by TT. If the quotients Qi and the subsheaves R-i as above exist, we have a short
exact sequence for each i:

0 --*• Ri^i —» Fi -^ Qi -+ 0.

Thus the complex can be broken up over X into the maps Qi ̂  Ri and it follows from the
additivity of local Chern characters on short exact sequences and the compatibility with proper
maps that we have

cA(F,)([A]) = 7r,(c/i(7r*(F,))([^)) = S ̂ (ch{Qi ̂  Ri)(W)).

To show that this decomposition does exist it suffices to do it for each i separately, and
we now return to our previous notation, replacing Fj, Fj-i, Qi, R^ pi and 6i by E, F, <3, R, p
and (|). Let M, as above, be the matrix defining (() and let / denote a set of r rows and J a
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set of r columns of M. For any choice of a set of rows K and a set of columns L we let
M,, denote the submatrix with entries from those rows and columns. We recall that we have

A,L

blown up the ideal of r by r minors of M. For each set of columns J we take the map
AQ—¥ AT defined by M~1 M (where e denotes all e columns; similarly for / below).

1,J 1,C

LEMMA. This matrix does not depend on the row I chosen.

Proof: We note that the matrix M"1 M has an identity matrix in the J columns, no matteri ,j 1)c

which I is chosen. Since the entire matrix M had rank r, if P is another set of rows, there is
a matrix N at least with entries in the quotient field of A such that

W^^Ae)-

But these are the same in the J columns, so N is the identity matrix and these two
matrices are the same.

It follows from this lemma that we can take I to be the first r rows of M Recall that
Cr is the ideal of r by r minors of the first r rows of M. It then follows from Cramer's rule
that the matrix M~1 M has entries in the part of the blow up of Cr corresponding to thei,j i,e
determinant in the J columns. Also, since the matrix M'^.M, contains an identity matrix in

1,J 1,C

the J columns this map is surjective. Thus we have a quotient onto a rank r locally free sheaf
over the blow up of Cr; this locally free sheaf has transition matrices from J to J ' given by
M.1 M (as above, this does not depend on 7).i,j i,j

We remark here that for this part it was only necessary to blow up Or, and not the entire
ideal of r by r minors of M. On the other hand, the ideal of all r by r minors is isomorphic
to the product Crfo, so it would have amounted to the same thing to blow up Cr and fo (which
we need to do in the next step) instead.

We next define a rank r vector bundle over the blow up of fo and a map which is locally
split into Af = F. The maps are indexed by sets / of r rows and the maps are given by
Mr M.1 . The transition matrices are M,, ,M"1 As before, it does not depend on whichj » " ^ i }j i,«i
column J is chosen. Furthermore, for each I and J, we can take these maps and put them
into a commutative diagram

Ac J^—4 At

W,e ^ T M^

AT —^ Ar.
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Denote the rank r quotient of E by Q and the rank r locally free subsheaf of F by R.
This diagram says that we have a map from Q to R defined locally by M . The support ofi,j
this map is a closed subscheme of X lying over the maximal ideal of A.

This construction shows that we can split up the complex F^ as claimed above, so we have

the formula

ch(F,)([A]) = ^(ch(^(F,)){W)) == S ̂ (ch(Qi ̂  R,)(W).

We note here that this would also give a definition of the multiplicity of a homomorphism
of free modules in terms of MacPherson's graph construction for morphisms of locally free
sheaves on a blown up scheme; we refer to Fulton ([2], Example 18.1.6) for this construction. In
addition, it follows from this part of the proof that the number we define does not depend on
choice of basis, since up to now we have blown up only the ideal of all r by r minors of M,
and this does not depend on the bases chosen.

We now come to the main part of this section, the fact that the formula we gave in
section 1 is the right one. To accomplish this we examine in detail a filtration of the map
p : Q —+ R with quotients maps of invertible sheaves.

We define a sequence of quotients Qk and Rk of Q and R respectively of rank k for
each k= l,...,r-l together with compatible maps from Qk to Rk induced by the map /?.
There will also be maps from Qk to Qk-i and from Rk to Rk'r, their kernels will be
invertible sheaves which we denote ^ and v^i. We then express 7r^(ch(Qi ̂  Ri)([X\)) in

terms of the induced maps from J$ to ^ and this will give the formula.
We first define the Qk's and the maps between them. This will be done by specifying the

transition maps between the local pieces of each locally free sheaf and the local expressions for
the maps between the different ones. First, these are defined on the scheme obtained by blowing
up certain determinantal ideals, and a' local affine piece is defined by choosing one of these, say
A , and taking the ring generated by all A7/A, where A' is also one of the generators of the
ideal. The matrices we define below will have entries which are quotients of determinants of this
form (this usually follows directly from Cramer's rule) and we will not go over this point again
at each point in the construction.

We first give the local expression for the map from Q to Qk. Choose a set L of k
columns of the matrix M. We denote the k by k matrix with entries the first k rows and the
columns in L by Mi . Choose also an r by r submatrix M of M. The local expression

KyLl 1,J

for the projection of Q onto Qk is then M.1 M. . The transition matrix on Qk from • L to

L' is ^~k\^kT The transition matrix from I,J to P , J ' is the identity map. We verify

this last statement: it must be shown that for 7,J and P ^ f as above, the diagram
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M;i M
Ar- —^J——I^ Ar

^L^J ^ ^ ^L^J-

A^ ———I-———> A^

commutes. Since the map in the top row does not depend on which set of rows I is chosen, we
can choose the first r rows, where the commutativity is clear.

It must also be verified that the projections are (locally) surjective; if J contains L, the
projection matrix contains a. k \)y k identity matrix, so this is obvious, and the general case
can be deduced by using the compatibility in the above diagram to change J.

To define the map from Qk to Qk-i^ we choose sets Lk of k columns and Ljc-i of
A;- 1 columns of M respectively and define the map locally to be given by (Mr -. )"W* .A—i.Lfc-l "»,L^

The fact that the required diagrams commute and the maps are locally surjective follows as
above.

We next define the rank k quotients Rk of R and the corresponding maps in this case.
It is more convenient here to construct the rank r — k locally free subsheaves which are the
kernels of the projections from R to Rk instead, so we do this. We denote this kernel Tr-k-

Blow up the ideal f^. The r by r determinants generating this ideal have their entries in
the first r columns and a set of rows containing the first k, we index this by the set N of r
rows. Choose one of these, and an r by r submatrix M , and define the imbedding of Tr-ki,j
into R locally by letting it be given by the matrix M M..1 \ r), where the last factor is an ri,j " ^ { ^ )
by r — k matrix with an identity matrix in the last r— k rows. This is, of course, the same as
taking the last r — k columns of M ,M.-1

1,J M,J

We next define the transition matrices for Tr-k- Take N and N' choices of r rows
containing the first k rows, and choose r by r submatrices M, , and M,, .,. We must theni,j i ,j
find a matrix P such that the following diagram commutes :

Ar-k ———p—————» Ar-k

^/^p) i i v%(°j
M M;i

AT ——Li-L-^———» Ar.

We define P to be the r — k by r — k submatrix of M M..} defined by choosing the

last r-k rows and the last r-k columns. Since the first k rows of M.,, and M.,, are
N,J N ,J

the same M, ,M~,1 , is of the formri,*i r< ,j
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I I Q\
\* P\

Hence one has

w^- wM = \wv^A^= v^pl-
Hence the diagram commutes.

We note also from this that the determinant of P is A../A.,,.
N' N

The maps from Tr-k to are (locally) split injections - this can be seen by comparing with
the case in which the rows of N other than the first k are contained in / using the above
compatibility.

The maps from Tr-k to Tr-k+i are defined locally by matrices defined analogously to the
transition matrices just described : fixing Nk and Nk-i, the map from Tr-k to Tr-k+i is
given by the lower right r — k + 1 by r—k submatrix of the matrix M M^1 . The

commutativity of the required diagrams is proven as above. Thus we have locally free sheaves
Rk together with compatible maps from Rk to Rk-i for ^== l,...,r, and we denote the
invertible kernels of these maps by ^i- We note that ^ can also be described as the cokernel
of the map from Tr-k to Tr-t+i.

We must next show that the original map defined by M defines compatible maps from Qk
to Rk^ and hence also from o^ to ^. We use the following lemma, which simplifies the
situation :

LEMMA. Consider the Rees ring of fo, fk, and let X denote the corresponding blow up. Then X
is covered by distinguished open sets corresponding to (I^N) where the rows of N other than
1,... ,A? are in I.

Proof: Fix /. This part of the blow up is covered by all (/,^V) if we put no condition on N
other than that it contain the first k rows. Thus it suffices to show that if a bigraded prime
ideal of the Rees ring which does not contain Ar (the Ay in degree (1,0)) contains A for

those N satisfying the condition of the hypothesis it contains all of them. If N has at least one
row which is neither one of the first k nor in J, we can use the Plucker identities to write
A Ay as a sum of products A Ap where each N' has one more row in common with /

than N does. Thus, using induction, one has that A Ay is in the prime ideal, and since Ay is

not, A must be in the ideal. This proves the lemma.
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We now fix J, N, and L with / and N as in the lemma. Let N denote the set of rows
of N other that 1,...,^ our assumption then states that N is contained in I. We define two
matrices U and V as follows :

t/=the k by A? submatrix of At;1 obtained by taking rows in I — N andi,j
columns 1,...,A;.

V==the A; by r—k submatrix of M M . - 1 obtained by taking rows in I — Ni,j n , j
and columns JV.

We claim that the map from Qk to Rk is locally defined by UM. . The factor M,

cancels M,^ in the projection from Q to Qk, and what must be proven is the commutativity

of the following diagram :

M
Ar -IiL-, Ar

^,J 1 1 (-/^
^ -J__ Ale.

In representing the local projection of R to Rk by (~J V) we have grouped the columns in N
at the end. Doing the same for M, -M-1 we represent the I - N rows of M ,M-1 as (U V).i,J r<,J l,J N,J v /

We then have :

/Mr \

the I - N rows of M = (U V)\ K^ = UM. + 7M, ,, or £/M. = (the /-^
!»<' ^^ ^ A?,J N,J A?,J

^,J

rows of M^ j.) - 7M^ j. This says that the above diagram commutes.

Since the rows and columns omitted from to get U correspond to rows of Jv, which are
common to both of them, the determinant of U is A /A . Hence the determinant of the map

from Qk to Rk is given locally by A, A, /A.- ,.
L 1,J N,J

We are now in a position to verify the formula we have for the mixed multiplicities. To do
this we list first the determinants of the transition maps for Qk and Rk and of the local
expression for the map from Qk to Rk. We give the determinants of maps which go from local
coordinates corresponding to L and N to those corresponding to L' and N\ From the
above discussion, these are, respectively :

For Qk : \1\.-

For Tr.k:\./\

For Qk^Rk:\^/\^
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We have defined the invertible sheaves ,4 and ^ as the kernel of the map Qk —»• Qk-i
and the cokernel of the map Tr-k —^ Tr-k+i respectively. Using the multiplicativity of the
determinant on short exact sequences gives us the transition maps on J$ and ^ and the map
from o^ to Ji; these are:

For .4: A A /A A .
"k ^k-1 ^k ^k-1

For ^ : A A /A.,,A,
^ ^-i ^ ^-i

For ^ -. ̂  : A A / A - A, .
Lk ^k-l ^k Lk-l

Now these determinants also define the transition maps for the invertible sheaves Ek and
Fk defined in the previous section; more precisely, the transition matrix for coordinates on
0(-Ek) are given by \\. (since the local generator at L is A and at L' is A , and

we have rA^ = ((A^/A^,)r)A^), and similarly for Fk. Putting this together, we have that

the map of invertible sheaves from «^ to ^ is :

0(-Ek 4- Ek.i) -^ 0(-Fk + Fk.i).

Under the assumptions of section 1 this can also be represented :

0(-Ek + Ek.i)® (0^0(Gk- Gk-i)).

Using the formula for the local Chern character of a map of invertible sheaves in terms of
the exponential map : this is, the local Chern character of a map of invertible sheaves

V1 U V1 Q

0(J9i)® (0-, OW is ( Z ^-)( L Ih) (see Fulton [2], Ch. 18), the additivity of local
iPO ' ipl

Chern characters and the fact we have proven, that the original map from Q to R has a
filtration with given subquotients gives the required formula.

3. Homomorphisms which can be extended to a perfect complex of Tnimmal length.
As mentioned in the introduction, one of the motivations behind this work was to study the

contributions to the local Chern character of a perfect complex from the individual boundary
maps of the complex. In particular, this was of interest for a perfect complex of length d, where
d is the dimension of the ring. It was shown in Roberts [6] that the number one obtains from the
local Chern character is positive when the local ring has positive characteristic (and some cases
which can be deduced from this one). The question which arises is whether the contributions of
the individual boundary maps are positive. We first show that this set of maps of free modules
can be described explicitly.
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PROPOSITION. Let (|) be a homomorphism of free modules with support m. Let i he the smallest
integer such that there exists a complex 0 —» Ei —+ ... —» EQ —^ E —^ F with homology supported
at m, and let j be the integer defined in the same way for the dual of (|). Then

1. i + j > d-1.
2. (() is a boundary map of a complex with homology of finite length and of length d if

and only if i+ j = d—1.

Proof: If both (() and its dual have resolutions as in the hypothesis, the resolution of (() and the
dual of the resolution of the dual of (() can be put together to give a complex with homology of
finite length and of length i 4- ;' + 1. Thus one direction of statement 2 is clear, and the other
direction and the inequality of statement 1 are easy consequences of the Peskine-Szpiro
Intersection Theorem.

If A is Cohen—Macaulay, there is only one possibility for the complexes of the hypothesis
of this Proposition, and that is to take free resolutions of the cokernels. It is also easy to see that
in these cases the complex is unique. Is this true in general ? In any case, if there are two
resolutions, there cannot exist a map from one to the other lifting the identity, since the
mapping cone would again violate the intersection theorem. Another question along the same
line is whether, as in the Cohen-Macaulay case, there is a unique best choice for the resolution
which can be determined at each stage; that is, for example, whether one can give a criterion for
what EQ must be in terms of (|) whithout extending the resolution further.

The other questions we raise here concern the positivity of the multiplicity in this case.
This is a question even for the case of a map of maximal rank considered in the second section;
this should be positive even though the formula involves negative terms. We have seen that there
the expression in terms of mixed multiplicities is particularly simple; it is S (3(1,-1) for certain
polynomials Q. One could ask if even these components are positive. For dimension 1 this is
easy since it is the difference of multiplicities and one ideal is contained in the other. For d = 2
it is deeper : in this case it follows from an inequality of Teissier [9] (proven in the general case
by Rees and Sharp [4]) which implies that for any two m-primary ideals this number must be
positive. It could be asked whether these numbers are always positive for any two m-primary
ideals where one is contained in the other, but Rees has given some examples (not determinantal
ideals of the kind which arise here, however) where they are negative. One could also ask, if (|)
can be extended to a perfect complex of length d, say

0-^Fd—^...-^Fo-^0,

and if it occurs as the map from Fj4i to Fi, whether (-l)^m((()) must be positive. We note
that it follows from the above proposition that the integer i is uniquely determined by (().
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4. The ideals Qk in some special cases.
We work out here two special cases. The first is the opposite extreme from the first one we

discussed in section 2; we here look at a homomorphism of rank one. In this case there is only
one map of invertible sheaves to consider, which we denote ^ —»• ./f. The map is defined after
blowing up the ideals generated by the first row and the first column of the matrix defining (|),
and denoting the matrix as (mjj), the map ^ —>• ,/f is locally defined (see the formula above)
by mijWiimn, and, since the matrix has rank one, wijwnmn = Wj'j. Thus if we let 9 be the
ideal generated by all entries of M and e = ei the ideal generated by the entries in the first
row, we have, using notation as above,

^-^ ̂  0(-E)® (0-. 0(G)).

Hence the multiplicity is defined in terms of the mixed multiplicities of e and 0. If one
( X Y\

works out the formula, for example, for the matrix over k[[X,Y,Z,W\]/(XW-YZ), one
[z w}

finds

m(([)) = (G'3-3G'2£'+3G'£2)
= (2 - 3(2) - 3(0)) (this is shown by looking at the Rees ring)
= -4.

We next show a simple example of a Koszul complex; we do the case of the middle
morphism in of the Koszul complex on three elements, and we take these elements to be a
regular system of parameters, denoted X, V, Z, for regular local ring. In this case, since each
end gives the multiplicity of the maximal ideal of a regular local ring, which is 1, the total
alternating sum must be 6, and this term occurs in odd degree, the answer must come out to be
- 4. This map has rank two and there are two terms in the formula. The matrix is :

-Y -Z (L
X 0 -Z\.
0 X Y )

The ideals are as follows :

co : the unit ideal.
ei:(V,Z)
t2:(XY^YZ)

fo : (^XY,XZ)
fi: (XY,XZ)

h: W
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In this case the ideals Qk can be found easily; they are :

go : the unit ideal
gi:(^y,^
02:(^,W

The formula can be simplified a little since 0(G'i - Gi) ^ 0(Gi) ^ (9(^2), and we get

w(())) = ch{ 0(-E^ ® (0 -^ 0{ Gi)) d- ch( 0(-E2+Ei) ® (0 -^ 0( Gi))
= (G^-^GiEi 4- 3G'iE?) 4- ((^-S^E'l-G^) + ̂ G^-W^E^G^))
= (1-3(1) + 3(0)) + (1-3(1-1) + 3(0-24-1))
= -4.
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