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DEL PEZZO SURFACES OF DEGREE FOUR
B.E. KUNYAVSKII, A.N. SKOROBOGATOV, M.A. TSFASMAN

Résumé.— Les intersections de deux quadriques dans ]P4/c (c'est—a—dire les surfaces de Del Pezzo

de degré 4, soit lisses, soit "singuliéres") constituent la premiére classe de surfaces rationnelles
dont l'arithmétique est non—triviale. L'arithmétique de telles surfaces X dépend de leurs
propriétés algébriques (combinatoires) et géométriques, propriétés que l'on peut lire sur l'action
du groupe de Galois Gal(k/k) sur le groupe de Picard Pic X (ici ¥ est une cloture séparable
de k et X= Xx k k). Pour étudier ces propriétés, nous donnons des formules générales pour

certains invariants cohomologiques importants. Ces formules nous permettent d'établir la liste
des cas "intéressants", c'est—a—dire des cas ou ces invariants sont non—triviaux. Nous étudions
les équivalences birationnelles entre divers types de surfaces rationnelles de degré 4, tant en
termes géométriques que combinatoires. Puis nous exhibons de nombreux exemples explicites (y
compris tous les cas "intéressants") et nous donnons une méthode générale de construction de
tels exemples. Nous étudions aussi les propriétés de rationalité du tore de Néron—Severi.

Summary.—Intersections of two quadrics in |P14€ (i.e. smooth and "singular" Del Pezzo surface of

degree four) form the first non—quasi~trivial class of rational surfaces. The arithmetic of such
surfaces depends on their algebraic (combinatorial) and geometric properties, reflected in the
Galois action on Pic X. To study these properties we obtain general formulae for some
important cohomological invariants. Using these formulae we list all the interesting cases (when
the invariants are non—trivial). We investigate birational interrelations between various types of
rational surfaces of degree four, both in geometric and combinatorial terms. Then we provide a
lot of explicit examples (including all interesting cases), and give a general method to construct
such examples. We also establish rationality properties of Néron—Severi tori.
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INTRODUCTION.

Various mathematical objects are presented in this paper, such as root systems, integral
representations of Weyl groups, Galois cohomology, algebraic tori in semisimple groups, conic
bundles, and some elements of the inverse Galois problem. Any of these is interesting enough to
deserve a special study, but their role in this paper is due to their direct or indirect relationship
to the main hero — the Del Pezzo surface of degree four — to its geometry, algebra, combinatorics
and arithmetic.

A Del Pezzo surface of degree four is a smooth intersection of two quadrics in I]";C (i.e. a

system of two homogeneous quadratic equations in five variables). This surface is rational, i.e.
the field of rational functions on it over the algebraic closure of the ground field is a purely
transcendental extension. Therefore, its study naturally belongs in the context of the theory of
rational varieties. Moreover (cf. for example the review [29]), we suppose Del Pezzo surfaces of
degree four to be a proving ground for almost all the modern methods in this theory. We also
hope that in the near future the theory of Del Pezzo surfaces of degree four will be able to answer
all its main questions, a too daring hope for more complicated surfaces (such as, for example,
cubic surfaces in P}).

Some results of this paper were previously announced in [25] and [24]. Let us describe its
contents.

In section 0 we introduce some necessary definitions, give some motivations, and
formulate main results. The first section is purely algebraic, here we calculate cohomology groups
for Weyl groups and their subgroups with coefficients in weight lattices and their sublattices
generated by roots. The results obtained in section 1 are applied in section 2 to the study of some
algebraic tori and their stable invariants. These tori include maximal tori in classical semisimple
groups of adjoint type and Néron—Severi tori of rational surfaces. The third section is mostly
geometric : here we study quadric pencils in I}’;c, conic bundles, birational transformations, and

so on. The fourth section is more of a combinatorial style : in the first of two possible situations
we present the complete list of all possible cases, and for each of them we calculate the main
cohomological invariants. In the second situation, which is much more complicated, we do not
give a complete list of cases, but in section 5 we actually present all the cases when the most
interesting invariant does not vanish. Section 6 is devoted to explicit constructions of many
examples of Del Pezzo surfaces of degree four; we give a general method to produce such
examples, as well as examples of conic bundles. Section 7 deals with the problem of stable
rationality of Néron—Severi tori of Del Pezzo surfaces of degree four.
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Our notation is mostly standard. By © we denote the duality of free Z—modules, i.e.
N°=Hom(MNZ), and by * we denote the duality of finite abelian groups, i.e.
M* = Hom(M,Q/I). The ground field % is always perfect, char. k# 2. If k is finite, we
suppose that its cardinality is not too small.

We wish to express our gratitude to J.—L. Colliot~=Théléne, D.F. Coray, A.A. Klyachko,
Yu.l. Manin and V.E. Voskresenskii for their interest in our work and for many stimulating
discussions.

The typescript was prepared by Mme Le Bronnec (Unité Associée 752 du C.N.R.S.). We
are most grateful to her for her careful typing and for complying with our many requests.



0
DETFINITIONS, MOTIVATIONS AND RESULTS.

Here are some definitions (for details see [29]).
A surface X over a field k is rational if the field of rational functions on X = X x k k is

purely transcendental (k¥ being the algebraic closure of k). The integer d = (K}"() is called the

degree of X, its rank is defined as the rank of Pic X (which is a free Z—module). The free
I-module Pic X of rank (10—d) is equipped with the natural action of the Galois group
g = Gal(k/k), preserving the scalar product (the intersection pairing) and the canonical class
K X This action defines a representation p:g— Auto(Pic X), Aut, being the group of

automorphisms preserving the scalar product and X X

The splitting group of X is G = Im p; the splitting field K is the field of invariants of
the kernel :

K= 6= Gal (K/K).

The Enriques—Manin—Iskovskih classification shows that there are two types of
k-minimal rational surfaces. A Del Pezzo surface X is a smooth complete geometrically
integral surface with ample anticanonical class — Ky ; the degree of a Del Pezzo surface always

satisfies 1< d< 9. A smooth rational curve on X with self—intersection —1 (an exceptional
curve) is called a line; if — K X is very ample, such a curve actually becomes a line after the

anticanonical embedding. A rational surface of the second type is a conic bundle, i.e. a surface X
having a k-morphism f: X— C, whose base C and generic fibre are rational curves. For a
Del Pezzo surface X of degree d< 6 there is an isomorphism Aute(Pic X) ~ W(E,_,), where

W(Eg_d) is the Weyl group of a root system EZ’ {=9—-d (weset Es=Ds, Es= Aq,

E3 = Aax Ay; root systems FEy, Eg,...,E3 are obtained from Eg by deleting one by one the
vertices from the long end of its Dynkin diagram). For a conic bundle f: X — C the class of a
fibre is obviously g-invariant, thus Imp belongs in fact to the subgroup Aut,(Pic X)

consisting of all automorphisms preserving the scalar product, the canonical class, and the class
of a fibre. The conic bundle is called standard if every degenerate geometric fibre is a pair of
exceptional curves meeting transversally. A standard conic bundle X has (8—d) degenerate
geometric fibres (therefore, —w < d<8) and Aut,(Pic X) ~ W(Ds_ 2+ For a Del Pezzo

surface the action of g on Pic X is uniquely determined by its action on the set of exceptional
lines. For a standard conic bundle this action is determined by the action on the set of
components of degenerate geometric fibres.
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The main goal of this paper is to squeeze out everything possible of what the "algebra" of
rational surfaces (in particular, of Del Pezzo surfaces of degree four) can give for the
understanding of their arithmetic. By "algebra" we mean such properties of a surface over a
non—closed field which depend neither on the ground field % nor on the splitting field K of X,
but depend only on the group G = Gal (K/k) and on its‘action on divisors and other geometric
objects. It is well known (28] that this action quite often determines the Brauer group of the
surface : Br X/Brk~ H'(g, Pic X) (it is so, for example, when & is local or global of
characteristic zero). Besides, this action determines some very important cohomological
birational invariants, namely

LU (G, Pic X) = Ker [H (G, Pic X) — HGHi(<g>, Pic X)], i=12
¢

In section 1 we find explicit formulae for these invariants. For a global field % the cardinalities
of l_l_l:,( G, Pic X) give upper bounds for several purely arithmetical invariants such as the

kernels of restriction maps CHy(X) — I CHy(X,) and BrX/Brk—1I BrX /Brk,,
v v

v ranging over all the places of k. A condition of k—minimality of X, a necessary condition of
stable k-rationality of X, necessary conditions for X to be k—birationally equivalent to some
(nonisomorphic) k-minimal surfaces, and the like can also be naturally described in terms of the
action of g on Pic X. In interesting cases the conjugacy class of the splitting group G of X
in the group Aute(Pic X) ~ W(R) is itself “almost" a birational invariant. To be precise,
whenever d< 4, the conjugacy class of G (modulo the action of such automorphisms of W(R)
which are induced by automorphisms of the root system) is in fact a birational invariant [40]. All
these facts induce a thorough study of subgroups of W(R), especially while the same
cohomological invariants play a significant role in the arithmetic of algebraic tori [43].

The study of the arithmetic of rational varieties with the help of the descent theory of
Colliot—Théléne and Sansuc leads to "standard conjectures" (see [9], [29]). In particular, & being
a number field, the set of k—points on a rational surface X is conjecturally described in the
following way :

1) X has a k-point iff

a) X hasa k,—point for any place v of , and

b) the Brauer—Manin obstruction to the Hasse principle is trivial.
Now we suppose X(k)# 0.
2) X(k) consists of a finite number of R—equivalence classes.
3) Each class is the image of the set of k—points of some k-rational variety Y of
greater dimension under a A—morphism f: Y — X.
4) X(k) is densein II X(kv) iff the Brauer obstruction to weak approximation vanishes.
v
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5) There is an injection from the set of R—equivalence classes into the group Ay(X) of

classes of zero—cycles of degree zero modulo rational equivalence.
6) There is an exact sequence of Colliot—Théléne and Sansuc :

0— LU (5y) — 4o(X) =@ 4(X,) — H'(kPic X",

where Sy is the torus dual to the g-module Pic X  (Néron—Severi torus),

LLI'(Sy) = Ker [HY(G,Sy) —-vt HY(G,, Sy)], * denoting the duality of finite abelian groups.

In some cases these conjectures are trivially satisfied. Namely, rational surfaces of degree
more than four form a quasi—trivial class (in the sense of [29]) : if X(%) is not empty, X is
k-rational; for a number field % the smooth Hasse principle holds. The same is of course valid
for non—k—minimal surfaces of degree 4. The less the degree, the more complicated is the study
of rational surfaces. Thus k—minimal surfaces of degree four are the simplest non—quasi—trivial
varieties. That is why they are interesting and deserve thorough study.

Nowadays there are only few classes of non—quasi—trivial k—minimal rational surfaces of
degree four for which the "standard conjectures" are known to hold (see, however, the note at
the end of this section). Let us state it in more detail. There are two types of A—minimal
surfaces of degree four [20] : namely, Del Pezzo surfaces of degree 4 of rank 1 and standard
conic bundles of degree 4 of rank 2. The latter are anticanonically mapped to P4, either this

map is an isomorphism having a smooth Del Pezzo surface of degree 4 of rank 2 for its image,
or its image is a singular intersection of two quadrics X’ having two conjugate singularities and
such that the line joining the singularities does not lie on X’ (following [14] such a surface is
called an Iskouskih surface). Let Y be a smooth model of X’. Due to a remarkable paper [12]
we know that "standard conjectures" hold on Y.

THEOREM A. DBvery k-minimal Iskovskih surface is k-birational to a k-minimal Del Pezzo
surface of degree 4 of rank 2.

Thus "standard conjectures" are also proved for some Del Pezzo surfaces. Whenever X(k)
is non—empty we are able to find out necessary and sufficient conditions for a k—minimal Del
Pezzo surface to be birational to an Iskovskih surface. It is convenient to formulate these
conditions in terms of the action of G on the graph of lines I' and on the graph of pencils of
conics A, which we are now going to describe.

A Del Pezzo surface X of degree 4 has 16 lines. The vertices of the intersection graph
I' of these 16 lines are drawn in Figure 1.
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[ ] L[] L] [ ]
N b4 L45 a3
L] L[] ] [ ]
{3 b3 {35 2N
[ ] [ ] [ ] [ ]
1) ) Los {34
* [ ] [ ] L]
45 s 4 q

Figure 1 : Graph I’

Each vertex is joined to the other vertex in the same row on the same side of the vertical
line, and to just one vertex of each pair on the other side, the left—hand (right—hand) vertex of
each pair being joined to the left—hand (right—hand) vertex in the same row and to the
right—hand (left—hand) vertex in other rows. Thus {5 is joined to 45,6 , &3, lesa and O34
The notation of vertices comes from the fact that X is the blow—up of the plane P2 in five
points z,...,7; of which no three are collinear. The 16 lines are : the five blown—up curves which

we denote by t’i, the 10 lines of P? joining pairs of points (zi,:cj) denoted by ez'j’ and the

inverse image of the conic ¢ through all five points.
The automorphism group Aut I' @ W(Es) = W(Ds) acts transitively on joined pairs of
vertices. In I' there are 10 subgraphs of type L (Figure 2).

Figure 2 : Graph X

The complement to a subgraph of type X is of the same type. Therefore the set of such
subgraphs is itself a graph A (Figure 3).

' [ q3 '" '8
it % a3 4 %

Figure 3 : Graph A
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Two vertices of A are joined iff the corresponding graphs of type L have no vertex in
common. A vertex of A is denoted q;- if the corresponding subgraph Ez‘ contains the joined

pair (g, t’i) (it determines 2:. uniquely), q; corresponds to the complementary subgraph 21

It is easy to see that Aut A~ W(Bs) = (1/2)°4 S5, S5 acting on joined pairs of vertices (i.e.
on lower indices of q*i ), and (Z/2)° being generated by ci,...,c;, where ¢; interchanges g;

with ¢; leaving the remaining 8 vertices invariant.
Let us remark that substituting e; for ¢} and -e; for ¢; we get the action of W(Bs)
5
on the standard realization of the root system Bs in RS (ey,...,e; being the basis of R).

There is an embedding Aut I' = Aut A; an element of Aut A belongs to the image of
Aut T iff it is a product of an even number of ci's and an element of S5, i.e. the image

coincides with W(Ds) embedded into W(Bs) in the usual way.
These combinatorial designs can be interpreted geometrically. A Del Pezzo surface X of
degree four is anticanonically embedded into Il’k. There is a pencil of quadrics @

parametrized by IPI‘c such that the image of X liesin any @, for A€ k and coincides with the
intersection of any two quadrics of the pencil. Let Q, and Qoo be smooth, Q) = Qp + A an'
A quadric @, is singular iff A is a root of the characteristic polynomial P(A) = det Q. Since

- 4
X is smooth, P()A) has only simple roots in %, corresponding to 5 quadratic cones Qic IPE’

i=1,..,5 Let v; be the vertex and Q‘;c ﬂ’% be the base of Qi (each Qi is defined over

KA i))' Over the algebraic closure % of the ground field QI; ~ l]’%x IP}c has two pencils of lines,
therefore Qi has two pencils of projective planes; intersecting with X each pencil produces a

pencil of conics on X. Denote these pencils g and G the components of the singular fibres

of the pencil ¢ (respectively q;) form the subgraph 2; (respectively Ez)

Let us define another graph A. The vertices of A are those of I', those of A, and one
more vertex e. If two vertices both belong either to I', or to A, and are joined there, then
they are joined in A. The vertex e is joined with all the vertices of A (and is not joined with
any vertex of T), ¢;e A (respectively g;) is joined exactly with the vertices of E;.C r

(respectively Z;). Now we see that- A is just the intersection graph of the 27 lines on a cubic

surface. In fact, let us fix any line on a cubic surface (denote it by €). Then all the remaining
lines are divided into two subgraphs, one formed by lines meeting e, the other by the rest.
Contracting e we see that the second subgraph is just I' (16 lines on a Del Pezzo surface of
degree four). Now on a Del Pezzo surface of degree four blow up a point which does not lie on
any line. This point lies on exactly one conic of each pencil q*i ; their inverse images on the
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cubic are lines. The intersection graph of these 10 lines is just A. It can be checked that
Aut A ~ W(Eg) (cf. [28], IV, 1.9).

Now let us show how different properties of a Del Pezzo surface of degree 4 can be
described in terms of G—action on T, A, or A. According to [20] a k-minimal Del Pezzo
surface of degree four is either of rank 1, or of rank 2. The latter occurs iff there exist two
complementary subgraphs of type £ such that each G-orbit belongs to one of them. It is
clearly equivalent to the existence of two G—invariant vertices ¢; and ¢; in A (for some 1i).

Let such an i be equal to 1. In our notation it corresponds to the decomposition of I' into two
M -
subgraphs X, and L, each of them consists of vertices lying on one side of the vertical line.

G—-invariant pencils of conics ¢; and ¢ equip X with two different structures of a conic
bundle. In particular, GC Aut,(Pic X) ~ W(D,). Let Ei be a subgraph of A obtained by
deleting two vertices q} and ¢;- In terms of A the condition kX =2 reads as follows :

there exists 4, 1< i< 5, such that the G-orbit decomposition of A is a subdecomposition of
4.
the decomposition into 21. , Ei , Zi and three one—vertex graphs ¢}, ¢; and e Note that each

vertex of S:- (respectively of Z;-, of Ez’) is joined to ¢ (respectively g;, e) and is not joined
to ¢; and e (respectively to g; and ¢ to ¢ and q;). According to [30] the maximal
subgroup of W(Es) leaving the set {q'i '@ > e} invariant is isomorphic to
W(F,) ~ W(D,)% S5, S; being the automorphism group of the Dynkin diagram D,.

If X(k)# 0 and there exists a "good" k—point £ on X (i.e. z does not lie on any line),
then the G-graph A is realized as the intersection graph of the 27 lines on the blown—up
surface. If, moreover, 7k X =2, contracting G—invariant line q; or ¢; wegeta surface X;

the splitting group G’ of X’ is the image of G under some automorphism of W(D,)
induced from an automorphism of the root system D,.

It is worth noticing that because of its purely combinatorial definition the G-graph A
can be considered for any Del Pezzo surface X of degree 4 (including those having no good
k-point).

THEOREM B. Let X be a k-minimal Del Pezzo surface of degree 4. If X is k-birationally
equivalent to an Iskovskih surface, then vk X =2 and the following cquivalent conditions hold
(q;- and ' being the pencils defined over k) :

i) in A thereis a G-orbit consisting of two joined vertices, other than q;- G and e;
ii) the group h(G), h being an automorphism of W(D,) induced from an automorphism of

the root system D4, has an orbit of two joined vertices in T;
iil)  thegroup h(G), h being as above, has an orbit of two joined vertices, other than q‘;. , and

4 in A.
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If X(k) is non-empty, these conditions are also sufficient for X to be k-birationally
equivalent to an Iskovskih surface.

COROLLARY. Let X be @ k-minimal Del Pezzo surface of degree four having no k-points. If X
is k-birationally equivalent to an Iskovskih surface, then vk X =2 and in A thereisa G-orbit
of two joined vertices, other than q;. and g;-

In fact, the vertices of A are those of T, A, and {e} (the three latter subgraphs being
G-invariant). Therefore the G—orbit of two joined vertices is either in T', orin A. In the first
case, joined vertices correspond to two intersecting lines on X, and the intersection point is
defined over k, which contradicts the condition X(k) =9.

In the case X(k) =@ we do not know any necessary and sufficient condition. Let us give
another version of Theorem B.

THEOREM B’. Let X = Q,N Qw be a smooth k-minimal Del Pezzo surface of degree4, such that
X(k)=0. If X is k-birationally equivalent to an Iskovskih surface, then the polynomial
P()) = det (Q, + '\Qm) has at least two roots \;, A€ k, and the discriminant of the quadratic
form corresponding to one of these roots, say Q>‘1 = Q)+ A Qw , restricted to a hyperplane

such that this restriction is not degencrate, is a square in k. If, in addition, the second quadric
Q>‘2 has a smooth k-point, this condition is also sufficient.

A Del Pezzo surface X of degree 4 is k—minimal iff T has no G-orbit consisting of
disjoint vertices. Such groups G are called minimal. For a minimal G all the possible orbit
decompositions of I' are classified [28]. There are 19 types (see Figure 4 on the next page).
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Now we return to the "standard conjectures". The extension class of the obvious exact
sequence 1 — E* — k(X)* — E(X)*/k* — 1 is an obstruction to the non—emptiness of X(),
since a k-point enables one to define a section k(X)* — k* ("value at the point"). This is the
so—called elementary obstruction [10].

Let k be a number field. If X(kv)#(l) for all places v of k then the elementary

obstruction is equivalent to the Brauer—Manin obstruction attached to a subgroup of
Br X/Br k=~ H\(g, Pic X), namely to 6(X) = Ker [Br X/Brk— II Br Xv/Br kv]'
v
If this obstruction vanishes, there exists a universal torsor on X. Chebotarev's density
1 -
theorem shows that b(X)¢C |||, (G, Pic X).

Now let Ay(X) be the group of zero—cycles of degree zero modulo rational equivalence.
From the results of Bloch [2], Colliot—Théléne and Sansuc [9], and Colliot—Théléne [4] it follows
that []]Ag(X) = Ker [A(X) — IT Ay(X)] is a subfactor of the group dual to [_Ui (G, Pic X)

v
(see section 2).
= 2 -

Thus we see that the calculation of l_[_]:, (G,Pic X) and |||, (G, Pic X), carried out
further on, gives significant information about 6(X) and ||]|Ay(X), the latter invariants being
of arithmetic nature. In several papers [25], [26] and [29] the group dual to U_]f, (G, Pic X) was
denoted by A[|[(Sy), Sy being the algebraic k-torus dual to the g-module Pic X (the

Néron—Severi torus of the surface X). This notation is due to the Voskresenskii exact sequence
[43] :

0— A(Sy) = ALLI(Sy) — LU (S =0,

- where (_Ul(SX) = Ker [H!(G,Sy) —@ H'(G,, Sy)], and A(Sy) is the weak approximation
v

defect. The group A[]](Sy) can be also defined as dual to H !(k, Pic WSx)), V(Sy) being a
smooth compactification of the Néron—Severi torus S X This fact can be interpreted in terms of
Galois modules. The groups (_]_I:,( G, Pic X) and [_[_]:,( G, Pic X) are invariants of the class of

stable equivalence of the Néron—Severi torus.
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THEOREM C. Let GC W(Ds). If |_U:,(G, PicX)# 0 or UJ;(G, Pic X)# 0, then G is
conjugate to one of the following groups:

N° Group Decom;;;’) g (ia tion L :’ LLJ i

1 Gz = <czea(12),c102(34)> =~ (Z/2)3 VIII /2 1/2
G;,s = <cieaczea(12),c100(34)> ~ (2/2)3 VIII /2 1/2
Gis = <ce,caca(12)> = (2/2)3 ‘ IX /2 1/2

2 Grs = <(12)(34),a0(13)(24)>~ 1/2 x 1 /4 XI1v 0 Z/2
G = <ae12)(34),c20(13)(24)>21/2 x1/4 XI1v 0 I/2
Gas = <acyeie3(12)(34)> ~7/2x 1/4 XV 0 7/2

3 G35 = <ccg,caca(12),(34)> ~ (Z/2)3 IX /2 0

4  Grs = <aeyeies(12)(34),(13)(24)> XV 0 I/2

5  Gre = <cea(12)(34),c203(13)(24)> ~ Qs XV 0 (Z/2)2

Here (% is the quaternion group of order 8. The first three groups are united under
N* 1, and the second three groups under N* 2, since their conjugacy classes are obtained from
one another by automorphisms of W(D,) induced from automorphisms of the root system Dj.
The proof of Theorem C is based on listing all conjugacy classes of minimal subgroups in
W(D,). For the group W(Ds) we fell short providing the complete list. However it is possible
to find all the groups G with ||] (G, Pic X) # 0.

TlIE(Z)R.Ell D. There are 8 conjugacy classes of subgroups GC W(Ds), G ¢ W(D,), such that
Ul o(G, Pic X)# 0. For all these groups I_L]i(G, Pic X) =1/2; four of them have orbit

decomposition of type XVII, the other four of type XIX.
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In a remarkable paper [1] stably k-rational but not k-rational Del Pezzo surfaces of
degree four were constructed. It is in fact possible to give a precise description of such surfaces of
rank 2.

THEOREM E. Every stably k-rational but not k-rational Del Pezzo surface of degree four of
rank 2 is k-birationally equivalent to a cubic (from [1]) given by

y2__az2 = P(z),

P(z) being an irreducible polynomial of degree 3, whose discriminant equals a, and a being
not a square in k.

For the surfaces of rank 1 the result is weaker :

THEOREM I". If @ Del Pezzo surface of degree four of rank 1 is stably k-rational but not
k-rational, then its splitling group is conjugate to onc of the three groups I, I, Is. All these
groups have orbit decomposition of type I

Actually, we prove that for a minimal GC W(Ds), G ¢ W(Ds), a G-module Pic X is
a direct summand of a permutation G-module iff G is conjugate to one of I, I, I3
Conjecturally, it follows that Ay(X) and X(k)/R are trivial, and Xx, Y is k-rational for

some k—variety Y.
It is natural to ask when a Néron—Severi torus is k-rational for a surface of a given type
(in such a case all invariants are trivial). For the surfaces of rank 2 here is the answer :

THEOREM G. a) Néron-Severi tori of types I, IV, V, VI, VII are always k—rational;
b) Néron-Severi tori of types III, VII, XII, XIII, XV are never stably k-rational;
c) for types IX and XIV there ezist both k-rational and not stably k-rational tori.

All the calculations of this paper leave us a bit up in the air without concrete examples of
Del Pezzo surfaces of degree four having prescribed splitting groups. To construct such examples
we develop the method given in [26] (unfortunately, the exposition there lacks detail).

To construct a surface over & with a prescribed splitting group G we must first
construct a Galois extension K/k such that Gal (K/k) ~ G. In fact, this is enough to construct
a conic bundle :

THEOREM H. Let G be a subgroup of W(Dn), and let k be an infinite field, Char. kY 24G. If

there ezxists a Galois estension K[k such that Gal (K/k)~ G, then there ezists a conic bundle
X/k of degree 8 — n with splitting field K (and splitting group G), and X(k)# 0.
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To construct a k—minimal Del Pezzo surface of degree 4 with a prescribed (up to a
conjugation) splitting group GC W(Ds) we act in the following way.

First we construct a A—minimal conic bundle Y (with 4 degenerate fibres if G is
conjugate to a subgroup of W(D,) and with 5 degenerate fibres otherwise) such that the
Galois action on the graph of components of degenerate fibres coincides with the action of
GC W(Ds) on the graph A.

This can be done by the help of Theorem H, but sometimes it is better to do it in some
other way (one should look that Y has a k—point). The equation for Y is usually either of the
form

¥ — a2 = P(2)
or of the form
V2 — 12 = P(z)

(the latter occurs if we use Theorem H).

Now we want to transform Y into a Del Pezzo surface of degree four. It is always
possible.

If Y has 5 degenerate fibres, we use a result of Iskovskih (cf. [21], Theorem 5) saying
that Y is anticanonically embedded into ‘P?c as a cubic V with a k-line ¢ lying on it, such

that the projection from ¢ gives us the conic bundle structure.

Blowing down ¢ we obtain a Del Pezzo surface X of degree 4. As we have explained
above, G—action on I' (the graph of lines on X) corresponds to G—action on A (the graph of
components of degenerate fibres of Y), and everything is all right.

If Y has 4 degenerate fibres (i.e. GC W(Dy)), as we have already explained there are
two cases : either Y embeds anticanonically into I}"]‘c as a smooth Del Pezzo surface, or its

anticanonical image is an Iskovskih surface. Unfortunately, even in the first case the surface Y
is not the one we are looking for, since the action of G on the lines can differ from the
prescribed action of GC W(Ds) on TI'. Blowing up a good k—point we get a cubic V with a
k-line ¢’ on it. The projection from ¢’ gives us a pencil of conics, the components of its
degenerate fibres form a graph A‘. The group GC W(Ds) must act on A’ leaving two
vertices invariant, thus V has two additional k-lines. Projecting from one of them we get the
pencil we started with, G acts on the components of its degenerate fibres as on A. Blowing
down this line we "spoil" the original pencil and get a Del Pezzo surface X of degree four. The
G-action on its graph of lines I' corresponds to the prescribed G—action on A. In the case of
an Iskovskih surface Theorem A is not enough, while the G-action may be wrong, but its proof
in the simple case Y(k)# @ is enough. Blow up a good k—point and blow down the fibre passing
through it. We get a smooth Del Pezzo surface of degree 4 with the "same" (from the point of
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view of G-action on the components of degenerate fibres) pencil of conics. Then we act just as
in the smooth case.
In this way we obtain

THEOREM L. Let G be @ minimal subgroup of W(Ds), and let k be an infinite field,
Char. kf 24G. If there exists a Galois extension K/k such that Gal (K/k)~ G, then there
ezists a Del Pezzo surface X/k of degree4 with the splitting field K (and splitting group G).

The developed method enables us to construct examples of Del Pezzo surfaces of degree 4
over {, whose splitting groups are the maximal groups for each of the 19 types. The same can
be done for all the "interesting" groups (i.e. groups mentioned in Theorems C, D and F). The
same technic leads to an example of a conic bundle which is not split by any extension of
degree 2™

Note. After this paper had been completed several significant results concerning standard
conjectures were obtained by different authors. Let us give a brief account here. All the standard
conjectures listed at the beginning of this section were proved for Del Pezzo surfaces of degree 4
of rank 2. Conjectures 1, 4, 6 were proved by Salberger in a series of papers [32], [33], [34] and
[35]. Conjecture 2 is proved in [11], conjectures 3 and 5 in [13]. In a letter [34] Salberger also
states that he can prove Conjecture 6 for arbitrary Del Pezzo surfaces of degree 4. See also a
forthcoming paper of Colliot—Théléne, Salberger, and Skorobogatov on weak approximation for
intersection of two quadrics, were Conjecture 4 is proved for arbitrary Del Pezzo surfaces of
degree 4.
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1
COHOMOLOGICAL PROPERTIES OF ROOT SYSTEMS.

Let us briefly recall the basic properties of root systems. Let V= R", andlet V-’ beits
dual vector space. By <,> we denote the canonical pairing V@ V- — R. Let R be a reduced
root system, i.e. a finite subset of V, generating V, and satisfying the following properties :

1) for any a€ R there exists ave V’ such that < @,av> =2, and the reflection

Su i T T—<1,0Y> a preserves R,

2) a¥(R)c I for any € R,

3)if a€ R, then 2a¢ R.
Elements of R are called roots; the group of automorphisms of V preserving R is denoted by
A(R); its normal subgroup W(R) generated by the reflections s, is called the Weyl group.

The set {av] a€ R} forms the dual root system RY. Let S= {ail 1< i< n} be a basis of R,

i.e. a set of linearly independent roots, such that any root is an integral linear combination of
some elements of S with coefficients either all positive or all negative. The additive subgroup of
V generated by R is denoted by Q(R) : elements of the Z-module P(R) = Q(RY)° are called

weights, elements w; of the basis of P(R) dual to the basis {a‘zfl 1< i< n} of Q(RY) are

called fundamental weights. Let x(R)= P(R)/Q(R); the cardinality of =(R) equals the
determinant of the Cartan matrix det(< a; a}'. >1<4,5< n)- In what follows we use the notation

for roots and weights introduced in [3], ch. VI, § 4.

We define FEs = D5, Ey= Ay, E3 = A;x Ay, these symbols being vacant; the root
systems Er,..., B3 are obtained from FEg by consecutive intersecting with hyperplanes given by
<ows>=0, <auw,>=0, and so on (cf. [3]). This procedure is equivalent to deleting of

consecutive vertices in the Dynkin diagram starting from its long end.
PROPOSITION 1.1. n(R) is canonically isomorphic to H(W(R), Q(R)).
We give a simple proof of this statement due to A.A. Klyachko.

Proof : Let ¢ be a crossed homomorphism W(R) — Q(R), it is uniquely determined by its

. i 2 = = 2 = i
values :p(sai) for a;e S. Since sai 1 we have 0 tp(sai) saigo(sai)+<p(sai), ie.

o(s a-) = m,a; for some integer m, . Conversely, to each n—tuple {mi}’ m,€ I, we associate
]

n
the crossed homomorphism ¢(g) = (1-¢) ¥ m; w;, w; being fundamental weights. Let

=
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n

W, = r m; w; . It is clear that this correspondence between crossed homomorphisms and
=1

weights is a bijection, and ¢ is a coboundary iff w,€ Q(R).

Let us recall that «(R) is trivial iff R is Eg, Fs or Gz. The two latter systems will
not be considered in this paper.

DEFINITION 1.2. Let R be a root system such that m(R) is cyclic (i.e. R# D, p- Define the
W(R)-module M(R) as the extension of the trivial module T by Q(R) given by a generator ¢
of Ext ;V(R)(Z’ Q(R)) = HY(W(R), QR)) = n(R). In particular, M(Eg)= Q(Es)® L.

LEMMA 1.3. If =(R) is isomorphic to I/2, 1/3 or I/4 (i.e. R is one of the root systems
Ay Ay A3, B, C, Dy, +10 Eg, E;), then the isomorphism class of M(R) = M(R) does not

depend on .

Proof : Under the assumptions of the lemma the generator ¢ is unique up to a sign. Hence it
suffices to prove that ¢, = — ¢, implies Mwl(R) = Mlpz(R). The exact sequence

M 0— QUR) — My(R) — T —0

is split as a sequence of ZI—modules, and there exists an isomorphism of Z-modules

My (R)~ Q(R)® L. An element g€ W(R) acts on (a,n), a€ Q(R), n€l, as follows :

g(eyn) = (ga + ny(g),n). An isomorphism f:QR)®I— QR)O L such that
f(a,n) = f(a,—n) is an isomorphism of W(R)-modules :

flg(ayn)) = flga + n ¢)(9),n) = (9a + n py(g), — n) = (92— n py(9),— n) = ¢(f(a,n)).
PROPOSITION 1.4. H'(W(R), M,(R)) = 0.

Proof : Let 6:I— HYW(R), QR)) be the boundary homomorphism in the long
cohomological exact sequence provided by (1). Then §1)=¢ (up to a sign), hence § is
surjective. It follows that H'(W(R), M,(R)) = H'(W(R),L) = 0.
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We would also like to have an analog of M,(R) for R= D,, in particular when n is
even, (D,;) being isomorphic to (Z/2)% Recall that W(D,) is a subgroup of W( C,), and
the W(D,)-module Q(D,) is obtained from the W(C,)-module Q(C,) by the restriction of
the group (cf. [3]).

LEMMA 1.5. HY( W(D,), M(C,)) = 1/2.
Proof : Consider (1) for R = C,, and let the exact sequence of W(Dn)—modules
0— QD) — M(C,) —I—0

be obtained from it by restriction to W(Dn). The "restriction—inflation" exact sequence implies
that  res: H( W(Cn)’ Q(C’n)) — HY( W(Dn), Q(Dn)) is an injection (there are no

W(R)—invariant elements in Q(R)). Therefore the boundary homomorphism maps 7 onto a
subgroup of H 1(W(Dn), Q(D,)) isomorphic to Z/2. Since |a(D )| =4 we have

HY(W(D,), M(C,)) = 1/2.

DEFINITION 1.6. Define a W(Dn)-modulc N(Dn) as the non-trivial extension of T by the
W(D,)-module M(C,).

PROPOSITION 1.7. H'(W(D,), N(D,)) = 0.

Proof : Proceed as in the proof of 1.4.

Convention 1.8. Let R= A, or E . We omit the subscript ¢ in My(R), assuming that ¢
is always chosen so that its corresponding weight w, coincides with v, (in the notation of
Bourbaki (3]). In view of Lemma 1.3 we also omit the subscript ¢ in My(R), R being one of

the root systems Bn, Cn, D2n 1

Remark 1.9. Let R= A4, , then w + w, =0 (mod Q(R)). Hence M(A,) is isomorphic to the

extension of I by Q(An) such that its cocycle corresponds to the class of w, via the
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isomorphism of 1.1. This extension can be easily described. Indeed, let Z[S, +1/Sn] be the
W(An)—module induced from the trivial W(An_1)~module I. The group W(A n) ® 541
permutes the elements of the canonical basis CICRE g(ei) = eg(y) It is easy to see that
the submodule of Z[$, 1 /S,] consisting of the elements with the zero sum of coordinates is
isomorphic to Q(4,). We claim that the class of the extension z[s, 1 /8] corresponds to w;.
Indeed, if n——mne is a section of the augmentation map IS, /S, ]— T, then
o(g) =e o(1) G hence w, = w; (see the proof of 1.1). In particular, the W(A,)-modules

M(A,) and Z[Sn_l_l/Sn] are isomorphic.

THEOREM 1.10. There ezist ezact bilinear W(R)-invariant pairings M(R)x M(R') — 1 and
MD,)x NM(D,) — T estending the natural pairing Q(R) x Q(RY) — 1 given by the Cartan

matriz.

Proof : First let R be An, Bn’ Cn’ D2n 41 OF En’ then the Z-module M(R) is isomorphic
to Q(R)® L. The explicit action of W(R) is given by g¢(e,n) = (g9a + n ¢(g),n), where

w(g) = W= g Wy Let ¢e€ Ext IiV(R)(Z’ Q(R)) = H(W(R), Q(R¥)) be the class of the

extension
(2) 0— QRY) — MR) —1—0

and let w, € P(RY) be the corresponding weight. To make our pairing b W(R)-invariant one
has to set b ((0,1), (&0)) == < wya>, b((ev0), (0,1)) = — <a,w, >. It remains to define

m = b((0,1),(0,1)) so that the determinant of the pairing equals + 1. Let us do it in each
particular case. Let R = An )y Wp = Wy =W, Set m =1, then

2 -1 0 0 0 0
-1 2 -1 0 0 0
0 -1 2 0 0 0

(3) det . =1
0 0 O 2 -1 0
0 0 0 -1 2| -1
00 0 0 1

Let R= Cn’ then by Lemma 1.3 we can choose w,=w; and wy= w, (cf. [3], ch. VI, § 4,

n® 5,6). Set m =1, then
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2 0-1 .. 0 0} -1
02 0 .. 00 0
-1 0 2 .. 0 0 0
4) det C =
0 0 0 2 2 0
0 0 0 -1 2 0
00 0 0 1| 1)
Let R= En, then w, =wy= Wy Againset m= 1.
2 0-1 0 .. 0 O 0
0 2 0 -1 . 0 0 0
-1 0 2 0 . 0 0 0
0 -1 0 2 .. 00 0
(5) det C. =-1
00 0 0. 2 -1 0
0 00 0 .. -1 2{-1
000 0 0 ... 0 -1 1)

Finally let R = D2n+1 and w,=wy, = W1 Then

2 -1 0 0 0 O 0
-1 2 -1 . 0 0 O 0
0.-1 2 . 0 0 0 0
(6) det c. =4m—(2n+1) =+ 1
0 0 0 .. 2 -1 -1 0
0o 0 0 .. -1 2 0 0
0 0 0 .. -1 0 2} -1
00 0 .. 00 I m

4m being the multiple of 4 closest to 2n + 1.
Now let R =D, (for arbitrary n). Define a quadratic form on N(Dn) by the matrix

2 -1 .. 00 0| -1 0
-1 2 .00 0| 00
(7) .
0 0 241 -4] 00
0 0 ..-1 20| 00
0 0 .. -1 0 2 0 -1
oT0 00 0] 10
0 0 0 04| 00

using the fact that (for any n) (D ) 18 generated by the classes of w; and w, ([3], ch. VI,
§ 4, n* 8). The determinant of (7) equals —1.

Remark 1.11. The signatures of the quadratic forms (5) and (7) equal (»,1) and (n+1,1),
respectively.
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PROPOSITION 1.12. The W(DZn +1)-modules N(D2n +1) and M(D. )® L are isomorphic.

2n+1

Proof : Consider the diagram of W(D, n +1)—-modules :

9 0
T
|
i
z = A
i
|
0 — M(Cypyy) —  MDypyy) — T — 0

2
r |
H

0 — ADgpy)) —  MDyyy) — T — 0
r B\

(=}
o - - -

Here the left column is obtained from (1) by the restriction to the group W(D2n +1), the
middle row is the definition of MD,, +1), and the bottom row is just (1). Let
pe HY( W(Dy, 1) Dy, 1)) =T/4 and  ye H‘(W(Dzn_*_l), M(Cy, )} =T[2 be the
classes of the row extensions. Since H*( W(D,,, +1),I) =0 we have 9 = ay(p). There exist

splittings of I—modules : M(DZn+1) > Q(Dzn+1)e I and M ] M(02n+1)e> I, where

DZn+1)
Hawn) = (ga+ngp(g),n) and  g(a’,n) = (ga'+ny(g)n), g€ W(D,, . 1), @€ QDy, 1),
a’ e M(C,, +1)’ ne I. It follows that f:(en)— (a(a),n) is a homomorphism of
W(D2n +1)—-module; f s injective, and coker(f) ~1. The corresponding short exact

sequence of W(D2 " +1)-—modu]es splits since
1 — 1 —_
Extpyn,, )\ BMDay 1)) = H WDy 1), M(Dyy 1)) =0

by 1.4. The proposition is proved.

Let ¢(D,,) be the subgroup of AD,, +1) generated by the roots og,...,ap, 41 be by

all elements of the basis excepting the root a;, which corresponds to the extreme vertex of the
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long end of the Dynkin diagram ([3], ch. VI, tables). In other terms, Q(D,,) = Ker ¢,
€ : QD n +1) —+ I being defined by a+— ¢(a) = < @, w; >. The corresponding embedding

) is called standard. In what follows by W(D2n) — W(D.

W(Dyy) <= W( on+1

D2n+1 ) we

mean the standard embedding.

LEMMA 1.13. The W(D, )-modules M(C,,) and Q(D,, +1), obtained by the restriction of the
groups to W(D,_), are isomorphic.

Proof : Since both modules are extensions of 7 by Q(D, n)‘ it is enough to check that their

cocycles coincide. The exact sequence of W(D, n)—modules
0— QCy,) — M(Cy)) — T—0

corresponds to the unique nontrivial cocycle ¢e H 1(W(02n)’Q(C2n)) ~1/2. Its restriction
res p € H( W(Dy n)’ Q(Dzn)) ~(Z/2)? corresponds to the weight w, (it follows from the fact
that (C,,) is generated by the fundamental weight w; of C, , which coincides with the
fundamental weight w; of D, , cf. [3], ch. VI, tables). On the other hand let n+—— n a; be
a section of the homomorphism ¢, : Q(D,,, +1) — I (o being a root of D, n +1)‘ The class of

the extension

1
—I—0

0 — QDyy) — @Dypyy)

is thus given by 9%(9) = ¢y —g &, = — (w—gw;), where w, is the first fundamental weight of
D2 w
PROPOSITION 1.14. The W(D2n)—module N(D2n) is isomorphic to the W(D, n)-module
M(D2 n +1) obtained by the restriction to the group W(D2 n)

Proof : Both modules are extensions of Z by M( C2n) ~ Q(D ) (Lemma 1.13). In view of

2n+1
1.5 and 1.6 it is enough to check that the extension of W(D2 n)—modules

)—»Z——»O

(8) 0— QDyy ) — M(Dyp
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is non—trivial. By functoriality the class of the exact sequence (8) is the restriction of
the extension  class 7 of (1). By definition @ generates
HY(W(Dy, 1 1), @Dy, 1) = P(Dy, 1)/ Q(Dy, ) (see 1.1). Using the 1-l—correspondence

between crossed homomorphisms and weights we can assume @(g) = (1=g)wy,, +1° If the

restriction of ¢ to W(DZn) is a coboundary, then ¢(g) = (1—g)r for ge W(Dzn),

W(D,,)
re Q(D2n+1). Then w,, . ,—T€ P(D2n+1) w <w;>. Now notice that the class of

Wopp1 T Mw in P(D2n+1)/Q(D2n+1) ~Z/4 is of the form 1+ 2m (mod 4) ([3], Ch. VI,

tables), thus, it is not zero.

PROPOSITION 1.15. Let R = R'. The group of automorphisms of M(R) (and of N(D,))

preserving the unimodular quadratic W(R)-invariant form obtained in Theorem 1.10, and acting
trivially on the orthogonal complement to Q(R), is isomorphic to the Weyl group W(R).

Proof : The group of orthogonal automorphisms of Q(R) is A(R). If R= Ay, By or Eg, then

A(R) = W(R). Let R=A , E or Dy, 1» then A(R)/W(R) =~ Z/2. Suppose for a moment

that (1) is exact as a sequence of A(R)-modules. Then the class of the extension (1) (considered
as an exact sequence of W(R)~modules) belongs to H( W(R), Q(R))A R) By Proposition 1.1

this group is isomorphic to (P(R)/ Q(R))A(R)/ W(R) (since  W(R) acts trivially on
P(R)/Q(R) ([3], Ch. VI, §1, proposition 27)). According to the tables in [3], Ch. VI,
A(R)/W(R) ~T/2 acts on the cyclic group P(R)/Q(R) via multiplication by —1. Hence, if the

order of n(R) = P(R)/Q(R) is greater than 2, then (P(R)/ Q(R))A(R)/ W(R) is a proper
subgroup of (P(R)/Q(R)), and does not contain its generator. This contradicts Definition 1.2. If
the order of 7(R) equals 2, then R= A; or E;, but in these cases A(R) = W(R).

Now let R=D, , then A(D ))/W(D)~1/2 (if nt4), and A(D,)/W(D,)~S; ([3],
W(D

)
Ch. VI, § 4). Since MD,) " ~T® T we have an exact sequence of W(Dn)—modules :
(10) 0— QD) — N(D,) — 1o T—0

(the map N(D,) — T@ T is dual to the injection 7@ I < N(D,), N(D ) being autodual by
Theorem 1.10). From H 1( W(Dn),N(Dn)) =0 it follows that the boundary map ¢ is surjective,

hence the class of the extension (10)

ve By (0L, QD) = HY(WD,), &(D,)® HWD,), AD,))
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is of the form ¢ = (p,,9,), where ¢, and ¢, generate H‘(W(Dn), QD)) If (10) were an
exact sequence of A(Dn)—modules, then ¢ would be a restriction of some class from

HY(A(D,), Q(D,))® HI(A(D,), D)), ie.

(D,) A(D,)/ W(D,)

A
by € H(WD), QD) = (P(D)/QD,)

If n iseven then P(D))/Q(D;)=(Z/2)" If n=4, then A(D,)/W(D,)=S; acts on

P(D,)/Q(D,) permuting nonzero elements, and (P(D,)/ Q(D4))A(D VAUCHIES n# 4,

. A(D)/W(D,)
then A(D,)/W(D,)=1/2 permutes w, and w, ie. (P(D,)] AD,))

. A(D,)/W(D,)
n is odd, then (P(D,)/Q(D,))~T/4, and (P(D,)/QD,) ~T/2. Tt follows

that ¢, and ¢, do not generate P(Dn) /Q(Dn). It is a contradiction, and the proposition is

2 7/2. I

proved.
In what follows the group G is always assumed to be finite.

DEFINITION 1.16. Let N be ¢ G-module of finite type, then for i=12 by U_]:;(G,N) we

denote the kernel of the restriction to all cyclic subgroups :

WAGN = Ker[H(G,N) — T HY(<g>,N).
€G

Recall that a permutation G-module is a direct sum of G-modules Z[G/H], H being a
subgroup of G; the G-modules N; and N, are called similorif N,® M, and N,® M, are

isomorphic for some permutation modules M; and M, [43].
LEMMA 1.17. If M is a permutation G-module, then ]_]_j:;(G,M) =0, i=1,2.

Proof : The assumption implies H'(G,M) = 0 (Shapiro's lemma), thus it is enough to prove the
second assertion in case M = I[G/H). Note that the restriction of the G-module Z{G/H] to H
(respectively to <h>) always contains the trivial module 7 as a direct summand (it
corresponds to the trivial coset H). Hence the kernel of the restriction map
HYG, 1[G/H) — th H?<h>,I[G/H)) is embedded into the kernel of the restriction map

HYH 1) — hHHH Y(<h>, T), the latter being trivial because of the canonical isomorphism
€

H¥(G, T) = Hom(G, §/1).
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COROLLARY 1.18. The groups H'(G,N), LU;(G,N) and U_]i(G,N), as well as the groups
HYG,N°), I_J_]:,(G,N") and [_[_]i(G,N") are invariants of the similarity class of the
G-module N.

This digression being over we come back to the modules related to root systems.

PROPOSITION 1.19. Let GC W(R), then
LWa(GMR) = LUGPR),  LLa(GMEB) = [LIo(G.QR).
Likewise, if GC W(D,), then
LWe(GMDY) = LLa(GRD,),  LUAGND,) = LL(GD,).
Proof : Dualizing the exact sequence (2) we obtain

(11) 0— 7 — M(R) — P(R) — 0.

By the last lemma ||| :,( G,I) =0, and we get the following diagram :

0 0
1 l 1 l
LoGMEB)  — (Wu(GPR) — 0
! | |
0 — HYGME) — H'GPR) — HYG])

| | |

0 — I HY<g>,MR) — 0O HY<g>MR) — T H?<g>I).
g€ a g€ G pe;

The first statement follows immediately. In the case of M(R) the second statement is proved in
the same way. In the case of N(Dn) the proof is the same with the exact sequence (11) replaced

by (10).

COROLLARY 1.20. Let GC W(A,) =S, |, then |11o(G,QA,)) = LLJa(G,P(4,)) = 0.

Proof : According to Remark 1.9 M(A n) is a permutation module.
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The remaining part of this section is devoted to the computation of [_U;( G,P(R)) and
LUa(G.Q(R)) for R=B_, C, or D

The pair (Q(Bn), W(Bn)) can be identified with a free Z—module of rank n and the
automorphism group of a quadratic form, which can be written as zf .t I?z in some basis
€131 Cypr We call such a basis standard.

The group W(B,) is generated by S, (permuting the coordinates) and reflections
¢;: o s—2(z,¢)e;. Therefore W(B,) is a semidirect product W(B,) = (1/2)"x S

where Sn acts on ¢ by permuting the subscripts. There exists a character

g: W(Bn) — {1} having W(Dn) for its kernel, a(cz-X 6, o cik. a)= (—l)k, where a€ S .

Let us denote the natural epimorphism W(Bn)———b Sn by pr, and set I={1,2,..,n}.
Let GC W(B,), then [ is a union of orbits of pr(G), we denote them by

IG,k’ IIG,k' =, k=1,.1t The G-module Q(Bn) is a direct sum of Q(Bnk), Q(Bnk)
being generated by e, for i€ I, . The representation of G in Q(Bn) yields a
’ k

homomorphism 0§ ;. : G— W(Bnk). Finally we define x .= 0o 0 L€ Hom(G,Z1/2).

LEMMA 1.21. Let <g> be the cyclic subgroup of W(Bn) generated by g. All the characters

X<g> k oTe trivial iff g is conjugate in W(Bn) to an element of S,

s
Proof : Let I= kil I 9>k be the partition of I into pr{g)—orbits, pr(g) = py--Pg being the

‘ S
decomposition of pr(g) into independent cycles. Then ¢ is of the form g= ];I Cy.p,» where
1
Ck= Cz'l"'ci for some elements il,...,i

m
— (_1\™ . . . .
Xego k= (=1)™. Let us check that if m is even then cil...cz.m (12..my) is conjugate to

m € I<g>,k' Therefore 0<g>,k= Ckpk, and

(12..m) in W(Bnk). Consider the action of cil...cim (12..ny)  on the set

{el,...,en » =€ ey }. There is one orbit if m is odd, and two orbits if m is even. In the
k k

latter case one can choose any orbit for a new basis of Q(Bnk). If & transforms {el,...,enk}

; ; -1 -
into the new basis, then A (12...nk)h = cz-l...cim (12"’"k)'



COHOMOLOGICAL PROPERTIES OF ROOT SYSTEMS 29

Before we go over to the main results of this section, let us comment on some properties
of the W(Bn)—module Q(Bn). The above description of this module implies that it is induced

from the one—dimensional G-module <e>, G =< CpyeenrCyy >)an_1. In particular, by
Shapiro's lemma, H'(W(B,),Q(B,)) = H'(G,<e>) = H'(<¢;>,<e>) = 1/2. Note also, that
the W(Bn)—module Q(B,) is autodual since the quadratic form zf+...zfl is unimodular. Also

1 2
Wo(GQB)) = [Lu(GQB,)) =0 (cf. Remark 2.7).
THEOREM 1.22. Let GC W(B,) = W(Cn)’ and let G, be the minimal normal subgroup of G
containing every g€ G conjugate in W(Bn) to an clement of S o Then

La(G,Q(C,)) = Hom (G/ Gy, T/2)/< x g 1o Xy >

Note, that the case of GC W(Dn) is included in the theorem, since the W(Dn)—modules
QC,) and Q(D,) are isomorphic.

Proof : Consider the exact sequence

0—T— M(C))— QB,)—0

dual to (1) for R= B, (here we use the autoduality of Q(Bn)). Using the canonical

isomorphism H %(G,I) = Hom (G,Q/I) we get the commutative diagram whose columns, middle
row and bottom row are exact :

0 - WaGMe))  — 0

| | |

HYG,QB,)) &  Hom(G/T) — HYGMC))  — H¥GQB,)

1 o | |

JHee B b Hon(sp D) — (<> MG)) I H#(<5>05,)
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We put zero in the right hand column since || ] i( G,Q(B,)) = 0. Looking at the diagram

we see that

[_Uf,(G,M(Cn)) ~Im aN Im B/Im (Bo 7) =Im an Im f/Im (ao §)C HG Hom (<¢>, Q/2).
g€

It is not difficult to compute H I(G,Q(Bn)) using the decomposition of the G-module
(B,) into the direct sum of G-modules Q(Bnk) for all pr(G)-orbits I, . Every

G-module @Q(B, ) is induced from any one—dimensional module < e; >,%,.€ I~,. The
ny i k= "Gk
largest subgroup preserving < e; > actson < eik> either trivially or not. In the former case
k

we have

HI(G7Q(Bnk)) = H‘(ag’k(G)) Q(Bnk)) =0,

whereas in the latter

H(GA(B, ) = H0g G, (B, )) =1/2

If the latter case takes place for k= 1,...,s, and the former one for k= s+ 1,...,¢, then surely
HY(G,Q(B,)) = (1/2)°.

Now let us compute the map 4. Let ag, be the generator of H ‘(G,Q(Bn )R
’ k

LEwMA 1.23. Ko ) = X p

Proof : The restriction map  H( W(Bnk)’ Q(Bnk)) — H 1(0G7 KG), Q(Bnk)) is an
isomorphism, hence by functoriality it is enough to prove the assertion for 0 (G = W(Bn ).
! k

In the rest of the proof we fix k, and omit the subscript ¥ when it is not misleading. Let
1 6W
HY(W(B,), M(C,)) — HY(W(B,), Q(B,)) —% Hom (W(B,), ¢/I)

be a piece of the long exact sequence. According to Proposition 1.5, H!( W(B,), M(C,)) =0,
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hence &y, is injective. Let ay;, be the generator of H'( W(B,), AB,)) =~ I/2. We claim that

the character 6W(aW) of W(Bn) is trivial on S, . Indeed, the following square commutes :

1 ‘5W
HYWB,), qB,) —— Hom(WB,), 4/I)

res l res l

HY(S, QB))  —— Hom(S, 4D

Since the S —module Q(B,) is induced from the trivial S ;—module 7 we have
HY(S,, Q(B,)) =0, thus Syfay) is trivial on S . Recall that W(B,) = (I/2)"xS,. The
triviality of 6W(aW) on Sn implies that JW(aW)(ci) does not depend on i. Since 5W is
injective, §W(aW) is a nonzero character. From c% =1 we conclude that
Sylay) € Hom(W(B,),1/2) and  édpfepy)(c)=-1, ie  bpfapy)=o0.  Therefore
Nogp) = xG -

Completion of the proof of the theorem : Let x € Hom(G,Z/2) and o(x)e Imf= II Imf

eG f
(cf. (12)). Lemma 1.23 shows that Im ﬂg =0 iff all X<g> k 1€ trivial. Hence ofx)(g) =0 for

all ¢ conjugate to elements of Sy If ¢ does not satisfy this property then Im ﬂg ~1/2, and
for any xe€ Hom(G,Z/2) we have a(x) g€ Im ﬂg. Thus we have proved that

x € Hom (G, Q/I) is subject to the condition a(x)€ Im 8 if x€ Hom (G, Z/2) and x(g) =1
for any g conjugate in W(Bn) to an element of S . Let G, be the normal subgroup

generated by such elements g€ G, then x is a pullback of some x’€ Hom(G/Gy, Z/2).

Therefore

LLI (G, M(C,)) = Hom (G/ Gy, 1/2)/Im § = Hom (G/Gy1/2)/ < XG XG>

The Weyl group W(Bn) injects naturally into W(B,_,,) as the stabilizer of e

n+1
In fact, if ge W(B,) and

n+1

There also exists a natural injection ¢: W(B n) — W(D, +1).

o(g) =1 let usset p(g) =g, andif o(g) =—1 let p(g)=g. Corl
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PROPOSITION 1.24. For any GC W(Bn) we have [_Llf,(G, Q(Cn)) = UJi(tp(G), Q(Dn+1))'

Proof : Clearly ¢(G), = ¢(G,) since any ge G, satisfies o(g) = 1. Furthermore, the set of

characters {x AG) ) coincides with {xG §} DPlus one more character xo corresponding to the
i
¢(G)—action' on <epi1> By definition Xo(w(9)) = a(g) = I;I X K9) ie.
1 b
<XgpoXg e =< X(p(G’) 1""’X(p(G) pXo > Now the proposition follows from Theorem

1.22.

EXAMPLE 1.25. Let the set {1,...,4n} be the union of 4 nonintersecting sets I= {z’s}, J={ji}h

M={m}, and L={{}, s=1,.,n Let G,C W(B,,) be generated by a = Ciscjs (mt)

and f,=C, Cy (igj)y Gy~ (@/2)*™ We daim that |115(G,, Q(C,,) = (@/2)™ In fact,
s s

(Gy), is generated by a S and G, /(G,)

o T/2)" All XGn,i related to orbits {i,j;} and

2

{myt}, s=1,..,n, aretrivial on G, hence ||],(G,, AC,,)) =~ (T/2)"
Our next goal is to compute UJ:,(G:P(Bn))- This includes the computation of
L[_];(G,P(Bﬁ)) since the W(Dn)—modules P(Dn) and P(Bn) are isomorphic. Note that

1
P(C,) = Q(B,)° = Q(B,), and hence [113(G,P(C,) = 0.
Let us introduce some notation. Let a, , denote the generator of H (G, Q(B,, )) if this
’ k

group is nonzero, and let a, be the sum of all oGk in HYG, Q(B,))) =@ HY(G, Q(Bnk))'

By I g we denote the union of pr(g)-orbits I <>k such that x <g>.k is a nontrivial

character of <g>.

t
THEOREM 1.26. Let GC W(B,), andlet I={1,2,..,n} = U I, be the partition of I into
k=1 % .
pr(G)-orbits. Let F be the subgroup of H‘(G,Q(Bn)) consisting of L oG JE {1,2,...,t},
keJ

such that for any g€ G either (U I~ NI =0 or I C U I.,. Then
kes GF g 9" key Gk

We (GPB,) = F/< ag>.
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Proof : The exact sequence (1) generates the diagram

0 0 0 W (G.M(B,))
| | . | |
GMB)) — I —  HGQB) —  HGMB)) — 0

| | | |

I H(<g>,MB)) — I I — T H(<g>,QB.) — 0 H(<g>,M(B.)) —s
yeG(g (8,) e geG(gQ(")) gea(g (B,))

It follows that U_j:D ( G,M(Bn)) is isomorphic to the subgroup of H( G,Q(B,)) consisting of
IEJ ey J ¢ {1,2,...,s}, such that 7[k§J aG,k] € Im f,, modulo Im 6. In order to compute

6, and B, let us first investigate the case of G = W(B). Then
t
Im & = HY(W(B,),Q(B,)) =< ag> Now let [= kil Igk be a partition of I into

pr( G)—orbits. The restriction map

v: HY(W(B,),QB)) — HAWB, ), QB,) = HWE, ), &B,))

is an isomorphism. Indeed, the following diagram commutes :

HYW(B,), AB,)) —i— Hom(WB,), D)

7] °

HY(WB, ), qBy)  —L— Hom( W(B, ), /D)

(cf. (12)). According to Lemma 1.23, Imé=< o>, and ao § is injective, thus 7 is
also injective, hence it is an isomorphism. It follows that

3
HY(W(B,), _Q(Bn))—okg1 H ‘(W(Bnk), Q(Bnk)) is -just the diagonal injection. Now let
GC W(B,) be an arbitrary subgroup, Iy being pr{G)—orbits. The restriction map
t )
1 1 . . . — . .
1;11 H (W(Bnk)’ AB,)) — H (G,Q(Bn)) is surjective, hence Im § = < a,>. Likewise

(Im ﬂl)g= < a<g>>.
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It follows that 9( £ e, )eIm B iff (4( £ @ =a or 0. Now it is enough
ke GF &, 6= o<g> 5

to note that if IGk is a union of  pr(g)—orbits i=1,..,m, then

I<g>,ki’

m
(%aG,k))g = izl a<g>,ki :



2
ALGEBRAIC TORI AND RATIONAL SURFACES.

V.E. Voskresenskii has suggested the following approach to the classification of rational
varieties ([43], Ch. IV, see also [29], § 4). Consider the natural action of the group g = Gal (k/k)
on Pic X, which is a free Z—module of finite rank (in the discrete topology this action is
continuous). If two smooth projective varieties are k—birationally equivalent, the corresponding
Picard modules are similar. Let us associate to X the similarity class of the g—module Pic X.
The varieties X and Y are called stably equivalent if X kﬂ)z is k—birationally equivalent to

Yx kll”;: for some m,neN. Let £ be the commutative semigroup consisting of stable

equivalence classes of smooth projective rational varieties with the semigroup law given by
Xx E Y. Then the map X+ [Pic X] can be extended to a homomorphism £ — J#]

denoting the semigroup of similarity classes of Z—free g—modules of finite rank.
Let T be an algebraic torus, i.e. a k-form of the algebraic group (Gm k)n, let

T = Hom(Tx kl_c, G, p) be its character module, and let X, be a smooth projective

compactification of T. Associating T to T we obtain the (anti)—duality between the category
of algebraic k—tori and that of continuous (in the discrete topology) Z—free g—modules of finite
rank. We say that a k—torus 7T is split by an extension L/k if Tx g L= (G, L)". Let

G = Gal (L/k), then the category of algebraic k—tori split by L is dual to that of torsion—free
G-modules of finite type. In what follows we shall (by a natural abuse of language) speak about
a torus dual to a G-module N without pointing out either the ground field, or the splitting
field. We denote the dual torus by .

According to [43], Ch. III, § 6 there always exists the minimal field L splitting a given
torus. Moreover, L/k is a Galois extension.

DEFINITION 2.1. The minimal eztension L/k splitting a torus T is called the minimal splitting
field of T or, if there is no ambiguity, the splitting field of T. The group G = Gal (L/k) is
called the splitting group of T.

It is clear that G is nothing but the image of the representation of g acting on T.
Let 4 be the semigroup of stable equivalence classes of k—tori split by L/k let
G = Gal (L/k), andlet p be the homomorphism J— 4 such that p(T) = [Pic )_(T]. The

main theorem ([43], 4.60; [6]) states that p maps J isomorphically to the subsemigroup of 4
consisting of flasque G-modules (a module F is called flasque if H (G’,F) =0 for any
subgroup G’ C G). Thus, a hard geometric problem is reduced to an algebraic one. In
particular, any invariant of the similarity class p(T) = [Pic X T] is also a k—birational invariant

of the torus 7. This is the case, for example, for the invariant H '(G,p(T)).
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The class p(N) can be defined without any reference to the dual torus. There exists a
flasque resolution of G—modules, i.e. a short exact sequence

(13) 0— N S F——0,
where S is a permutation G—module, and F is a flasque one. Then p(N) = [F).

PROPOSITION 2.2. Let N be a torsion-free G-module of finite type,

then H(G,p(N)) = [Llo(G.N).

Proof : (See also (8]). Le¢ 0— N— S— F— 0 be any flasque resolution. We have a
commutative diagram :

| |

We(GR) — ey — 0
| l |
0 — Hl(GvF') - HZ(GJV) - H2(G13)

l | l

0 — II HY(<g>F) — I HY<g>N) — I H?<g>9).
.G € aq € G

It follows that LU:,(G,N) = LU;(G,F). By periodicity, we get

H 1(2< ¢>,F) = HY(<g>,F); F being flasque, the latter group vanishes. Consequently,
L o(G,N) = HY(G,F) = HY(G,p(N)).
The G-module F is defined up to addition of a permutation G-module, the same is

also true for the dual G-module F©° Let us write down a flasque resolution for
F°:0~+ F°— 8§ — F,— 0. Then F, is also defined up to addition of a permutation

G-module, i.e. the similarity class [p(p(N)°)] is well—defined. The following result was
communicated by A.A. Klyachko.

PROPOSITION 2.3. H Y(G,p(p(N)°)) = ||| ;( G,N °).

Proof : By Proposition 2.2 we have U_]i( G,F°) = HYG,F,). Dualizing (13) we get the exact

triple of G—l;nodules 10— F%— §°— N°—0; acting as in the proof of Proposition 2.2, we
1
see that ]| (G,F°) = [||,(G,N), asrequired.
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COROLLARY 2.4. The groups U_Ji(G,N) and U_];(G,N %) are k-birational invariants of the

torus dual to a G-module N.

Remark 2.5. One can construct many other k—birational invariants of the dual torus applying
Corollary 1.18. However, these two ones have some a.dvazntage being expressed in terms of the
G-module N itself. Besides, as we explain below, ||| (G,N) contains some information on

arithmetic properties of the dual torus (in the case of a global ground field).

Remark 2.6. Let A be a linear algebraic group defined over %, and let T be a maximal
k-torus in A. The Galois group g= Gal (k/k) acts on T fixing the set of roots of A
corresponding to T. If A is semi—simple and R is the corresponding root system, then Tisa
subgroup of finite index in the weight lattice P(R), moreover T contains the lattice Q(R)
generated by the roots of R. Under the additional assumption that A is an inner k—form, G
can be embedded into the Weyl group W(R), and we are in the situation of § 1. Theorems 1.22
and 1.26 compute the birational invariants of a maximal k-torus T in a classical group of
adjoint type (an inner form), since in this case T'= Q(R).

Remark 2.7. Let us explain how to prove that [_U:,( G, QAB)) = [_[_]f,( G, (B,)) = 0. To this
end it is enough to establish the k-rationality of the torus T dual to the W(B,)-module
Q(Bn), and to apply Corollary 2.4. However, it is clear that T can be embedded into a k—form
of (IP;C)n as an open subvariety. V.E. Voskresenskii has shown ([44]) that this variety is

k-rational iff it has a k—point.

Now let us go over to the main object of the paper — to rational surfaces. The study of
rational surfaces has three different aspects. The first one is their geometry over an algebraic
closure of the ground field. This is one of the well-understood themes of classical algebraic
geometry. The second problem to deal with is to study the action of the Galois group on divisors
or on some other geometric objects associated to a surface. This part is of algebraic (or
combinatorial) nature. It is somewhat parallel to Voskresenskii's approach to tori. The results of
this theory are essential for the third stage of the study, this one of arithmetic nature. On this
stage one studies rational points on a surface (computing Manin's obtruction to the Hasse
principle, computing the group CH%(X), etc...). One can find a more detailed account of this
subject in [28], [29], [7], [9], [10]. Here we are going to show how the results of § 1 can be
interpreted from the geometric point of view, and point out some consequences, useful for the
study of zero—cycles on a surface; for the details see the next section.

The set of all rational surfaces is, in general, too numerous for a more or less explicit
description. However, many properties (and among them the most interesting ones) do not
depend on a particular choice of a surface in its k—birational class. Therefore we can restrict
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ourselves to studying k—minimal models, i.e. smooth complete surfaces for which any birational
k-morphism to a smooth surface is an isomorphism. All the minimal models over an
algebraically closed field are well-known : these are P? and ruled surfaces F, with n20,

n# 1. If the ground field is not closed, then the classification is much more complicated. Let us
recall some necessary definitions.

DEFINITION 2.8. A smooth rational surface X such that - K X is ample is called a Del Pezzo
surface. The number n= (K)Z{) is called the degree of X; for n> 3 the divisor - K X is very
ample and embeds X into IPZ. The surface X = Xx kE is ﬂ’% with (9 —n) points in general

position blown-up (it means that no three points lic on a line, no five points lic on a conic, etc...,
cf. [29], 2.1.1).

Examples : A Del Pezzo surface of degree 9, i.e. a k-form of P% is called a Severi—Brauer

surface. Among Del Pezzo surfaces there are some complete intersections : that is the case when
the degree is equal to 3 (a smooth cubic in IPZ‘), or to 4 (asmooth intersection of two quadrics

in Pg).
If X is a Del Pezzo surface of degree n, the structure of the Picard group Pic X is

clear : as an abelian group it is just a direct sum of (10 —n) copies of Z; a generator & is the
proper transform of the class of a line in ﬂ’i , and other génerators [i are the classes of the

blown—up points.

The quadratic form given by the intersection pairing is diagonal in this basis:
9—n
-3 2.

i=1 !
The Galois group g acts on X, hence it also acts on Pic X. The action preserves K X
(which is defined over k) and the intersection pairing. It is clear that if D can be contracted by

a k-morphism, then its class belongs to the g—invariant part of Pic X. Therefore the condition
(Pic X)¥ ~ T guarantees k-minimality of X. This is one family of k—minimal rational surfaces.

DEFINITION 2.9. Let Y be a surface endowed with a morphism [ onto a rational curve C, and
suppose that Y is a k-form of Fn with m points blown-up, no fibre of f containing more

than one of these points. Then Y is called a (standard) conic bundle with m degenerate fibres.
The integer (K %,) = 8 —m 1is called the degree of the conic bundle Y.
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Let Oy/ c be the relative tangent bundle, then RC f, 9y/ c isa locally free sheaf of
rank 3 embedding Y into P(R? f, Oy/ c). Each irreducible fibre is a conic, and a degenerate

fibre is a pair of lines meeting transversally. Recall that a conic bundle f:Y— C is called
relatively k—minimal if its fibres contain no contractible lines. In other words, there exists no
k—morphism h: Y— Y’ such that the surface Y” is smooth and is not isomorphic to Y,
where f’: Y’ — C is a conic bundle over the same base C, and f= f’o A.

The Picard group of Fn is isomorphic to Z® Z, let us denote its generators by ¢, and

s, the first one being the class of a fibre of the projection onto P!, and the second one being the
class of the exceptional section. We have (£2) =0, (4,s) =1, (s*) =—n. Therefore Pic X is

the direct sum of Pic Fn and m copies of Z, the generators of the latter groups being the

classes of the blown—up points. Denote them by £;,...,¢, ; we have (¢ i N4 ]) =-4; i

LEMMA 2.10. For m?2> 1 there ezists a basis £, £, ll,...,lm in the lattice Pic Y such that {, is
the class of a fibre of f, and ll,...,lm are the classes of the components of degenerate fibres,

one from each. We have (Z_%) = (L li) =0 for i2 1, and (£, lo) =1

Proof : Set [; = lo—l then all the intersection numbers are as before except for

i )
(s l'z-) =1-(s ti). Therefore we can set (s, lz-) =0 for i21. Set s =5+ { + ¢, then all

the intersection numbers are as before except for (s’2) = (s?) + 1. Iterating this substitution we
obtain the required result.

PROPOSITION 2.11 ([21]). Any k-minimal rational surface is isomorphic to one of the following
list : ﬂ’i , @ quadric Qc IP?c with (Pic Q)® ~1, Del Pezzo surfaces X of degree n (n#7)

with (PicX)¥=1. Ky, conic bundles Y of degrece n (n#3,5,6,7, and Y# F;, for
n=28) with (Pic V)9~7e L.

Let us remark that if (Pic ?)g ~7® I, then for n# 8 this group is generated by & and
v
The condition (Pic V)9~7.401.K y 8uarantees relative k-minimality of Y,

K

although, in general, such a surface must not be k-minimal. However, by Proposition 2.11 a
relatively A-minimal but non—k-minimal conic bundle can appear only if its degree is equal to
3,5,6, 7Tor8.
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THEOREM 2.12. a) Let X be a Del Pezzo surface of degree (9 —n) with 3< n< 8, then there
ezists an isomorphism o : Pic X — M(En) mapping the intersection form to the quadratic form

(5) multiplied by —1, and such that the orthogonal complement to o(K ) in M(En) is Q(E,).

b) Let Y be a conic bundle with n degenerate fibres, then there exists an isomorphism
g:PicY— N(Dn) mapping the intersection form to the quadratic form (7) multiplied by —1,

and such that the orthogonal complement in N(Dn) to the sublattice generated by o K Y) and
o(by) is Q(Dn)‘

Proof : According to Remark 1.11 the quadratic forms on M(E,) and N(D,) are indefinite

and, by Theorem 1.10, unimodular. The signature of each form is equal (up to a sign) to the
signature prescribed by the Hodge index theorem. Therefore they are isomorphic (as quadratic
forms) to the intersection forms on Pic X and Pic Y, respectively.

Using the Gram—Schmidt orthogonalization we can construct the isomorphism o

satisfying the required condition. Let ay,...,a, be a basis of the root system E,, and let

n
{al,...,an,ﬁ} be a basis of M(En) such that the matrix of the quadratic form coincides with
(5). Set o(t,) = b, o(t, 1) =a,+5, 10(ly) = ag+...+a, + b,
o(t) = oy + ogt..ta, + B, o(f) = o + oy + 204 + 3(ay+...Fay) + 30.

Induction shows that 4 is an isomorphism of quadratic forms. Besides,

n
Ky=— 36, + 151 ¢,

o(Ky) = (n-9)8—2a; —3ay — dag — _34 (10-i)a; = (n—9)(b+w,)
1=

(see the formulae for fundamental weights in [3], Ch. VI). Since <§, ap> + <wp, 0> =0 for
all 4, it follows that o(Ky) is orthogonal to AE,)-

The construction of an isomorphism o : Pic ¥ — N(D,) is similar. Let aj,...,a, bea
basis of the root system D, and let {a yeons Qs By 1} be a basis of M(D,) such that
<0, a> =—<w, o>, <7, 0> =-<w,a>, i.e. in this basis the matrix of the quadratic
form coincides with (7). Set o)) =4, oly)=F=a, ollg) =+ + ..,
o(t) =B+ o+t a

o(f) =28+ 2(a) +t oy )+, +a, ol )=1 A

n—-1’ n—2
straightforward computation shows that ¢ is an isomorphism of quadratic forms. By the
adjunction formula we have (K ) =-2 and (K pf) =—1 for i2 1, on the other hand,
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n
(K}) =8—n, therefore Kyy=-2(¢_;+¢) + 1}_231 4. It follows that
n
o(—2¢_; + iﬁl t)=-27+ 0B+ (n-l)oy+..+a, . Note that o(fy) = 2(B+w)),

n
o(=2¢_; + I ¢)=n(f+w) —2(r+w,). The theorem is proved.
=1

COROLLARY 2.13. The group of automorphisms of the lattice Pic X (respectively of PicY)
preserving the intersection form and K e (respectively K Y and () is isomorphic to the Weyl

group W(Eg—n) with n equal to the degree of the Del Pezzo surface X (respectively to
W(Dm) with m equal to the number of degenerate fibres of the conic bundle Y).

Proof : Follows from Proposition 1.15.

DEFINITION 2.14. The image of the Galois group g under the action on Pic X is called the
splitting group of the rational surface X. The fized field of the kernel of this action is called the
splitting field of X.

This definition is analogous to Definition 2.1.
According to Corollary 2.13 the splitting group G is a subgroup of W(R) with R= D,

or E, and the G-module Pic X is isomorphic to M(E,) or N(D,). As in the case of

maximal tori in adjoint groups, the problems arising here concern the study of the module
M(R). However, if two surfaces are k-birationally equivalent, the corresponding Picard modules
are similar; therefore, any invariant of the similarity class [Pic X] is also a birational invariant
of X. This is the case for H'(GPicX), [|J}(G,PicX), and [|]2(G,PicX). From
Section 1 it is clear how to compute the latter invariants.

Note by the way that the tori dual to the W({R)—modules M(R) and Q(R) are stably
equivalent. This follows from Voskresenskii's theorem ([43], Ch. VI, §2) and the exact
sequence (1).

DEFINITION 2.15. Let X be a rational surface defined over o field k. The algebraic torus dual to
the g-module Pic X is called the Néron-Severi torus of X.

All these invariants play an important role in studying arithmetic properties of a surface.
Let k be a global or a local field of characteristic 0, and let X be a rational variety (complete

and smooth), then there exists an exact sequence

0 — Pic X — (Pic X)? — Br k— Br X — H(k, Pic X) — 0,
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where Brk is the Brauer group of % (the group of classes of central simple algebras), and
BrX= H’ét(X, Gm X) is the cohomological Brauer group of X (it coincides with the group of

classes of Azumaya algebras on X) (cf. (28], [10]). Let k& be a number field. We say that the
Hasse principle holds for X if the condition X(kv)# ¢ for every place v of the field k implies
X(k)# 9. Each class A€ BrX determines the map "value at a point" : X(k) — Brk, and
X(kv) — Brk, Local class field theory yields an embedding inv, : Br k, = Q/Z. Define the

map i, : Il X(kv) — Q/T by iA(z) =X z'nvv(Az ). The reciprocity law states that if z€ X(k),
v v v
then X inv, (A ) =0. Therefore, if X(k )# @ for every v but n _ Keri, =0, then
v V7 v AeHY(kPicX) A
the Hasse principle fails to hold for X. This obstruction is called the Manin obstruction to the
Hasse principle.

PROPOSITION 2.16 ([10]). Let B(X) denote the group of classes of locally constant Azumaya
algebras modulo constant algebras (5(X) is the image in H'(kPic X) of the kernel of
BrX— 1l BrX, /Brk). Then B(X)C [l]; (G, Pic X).

v

Proof : We have an exact sequence

0 — B(X) — H(G, Pic X) — I #Y(G,,, Pic X),
v

where G is the splitting group of X, and G y i the splitting group of X y From Chebotarev's

density theorem it follows that for every g€ G there exists a valuation v such that
G, = <g>.

Remark 2.17 ([10]). Let % be a number field, and assume X(k)#0 for every v. Then

Manin's obstruction associated to b(X) vanishes if and only if the exact sequence of g—modules
1 — B — B(X)* — E(X)*/k* — 1

splits.

Conjecturally, if we restrict ourselves to rational surfaces, then Manin's obstruction to the
Hasse principle is the only one. Thus, if H!(k, Pic X) = 0, then the Hasse principle holds for X
(see [36] for discussion of some results in this direction).

On the other hand, let X be a rational surface, and let CHy(X) denote the Chow group
of zero—cycles on X. Let  Ay(X) = Ker [CHy(X) 48—~ 7]  be the group of zero—cycles of
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degree 0. Let SX be the Néron—Severi torus of X. There exists Bloch's homomorphism
$:Ay(X)— H ‘(k,SX), cf. [2]; if k is local or global, then ¢ is injective [4]. Let &k be a
number field. Then there exists the commutative diagram with exact rows, defining || ]A4,(X)

and [[]*(Sy) :

0 — [[JA4p(X) —— AX) — ?}Ao(xv)

! | |

0 — YSy) —— H'(kSy) — 0 H'(k,
v

S4) .

Tate-Nakayama duality implies that []]'(Sy) and U_Jz(k,s'X) = ||k, Pic X) are dual to
each other ‘as finite abelian groups (|||%(k, Pic X) denotes the kernel of the map

H*(k, Pic X) — II H"’(kv, Pic X)).
v

PROPOSITION 2.18. There ezists a natural embedding of groups
(14) LLJ?(k, Pic X) = [1J2(G, Pic X).
Proof : It is analogous to the proof of Proposition 2.16.

Conjecturally, there exists the following exact sequence

0— LLJ(Sy) — Ao(X) = Ag(X,) — H'(k, Pic X",
v

reducing the computation of Ay(X) to the computation of Ay(X v) [9] (cf. the note at the end

of Section 0).
To conclude this section, let us return to tori and recall Voskresenskii's theorem ([43],
Ch. VI, § 7) which computes the cokernel of the homomorphism (14). Let G be a linear

algebraic group over a global field k, and let G(k) be the topological closure of the image of
G(k) under its diagonal embedding into II G(k,). The group A(G)=1I G(k,)/ G(k) is called
v v

the weak approzimation defect, it is a birational invariant of G. Let T be an algebraic torus,
then the quotient ||]2(G,T)/|1)%(G,T) is dual to A(T).
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3
INTERSECTIONS OF TWO QUADRICS IN IP;‘c AND CONIC BUNDLES

Recall that for d= (K)z() 2 3 the anticanonical class — K- embeds a Del Pezzo surface
X into [Pz, and the image is a smooth surface of degree d. According to Theorem 2.12 the
orthogonal complement to Ky in Pic X is the lattice Q(En) generated by roots, here
n=9-d, 3¢ n<8. For d=4 this fact has a nice geometric interpretation.

It is well known that a Del Pezzo surface of degree 4 is defined in IP?C as a geometrically
integral smooth intersection of two quadrics X = @Q,N @,. Let us consider the entire pencil of
quadrics containing X: Q= Qo+ A Q,, A€k Assume @, and Q. to be nonsingular.
Singular quadrics of the pencil correspond to the roots of the polynomial P()) = det(@,). Since
X is smooth all the roots A, of P(A) are distinct [31], therefore precisely 5 quadrics of the
pencil @ are singular. These are cones over smooth quadrics Q? in ﬂ’% By v; we denote the
vertices of these cones. Since QI; S ﬂ’ix ll’;c, we have Pic Q? » Pic @;~ I® 7. This group is

. and a projective line

generated by classes of projective planes passing through the vertex v;

belonging to one of the two pencils on !P;Cx IP;C. We denote these classes by h:. and h;.. Each
of the planes intersects X in a conic qii N @, (by abuse of notation we denote by qi; both the

conic and its class in Pic X).

PROPOSITION 3.1. In Pic X the following relations hold :
a) -Ky= q;-+ G forany i,

2 2 )
b) (¢;)=(q;) =0, (¢;. ¢) =2 forany i,

c) (q*i . qj.) =1 for it j (for all combinations of signs + and —).

Proof :
3
a) Choose L« !I’TCC ﬂ’% in a special way. Namely, let L contain i and let the projection of

L from v; be tangent to Q. Then LN Q;= kU h;, hence Ln X = g}u g;
b) The projection from v; represents X as a double covering of Q‘- y PTy X— Q?. Hence if

oAb
{, me Pic Q;» then (pr’; L. pr"; m)X= 2(£.m)ng , and b) follows.
i
c) By definition of qii we have (qiz. . qj-) x= (h*i . qj.) e) = (h*i . hj)ll"* =1
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COROLLARY 3.2. The orthogonal complement to K X in Pic X is generated by q:;- - q?- for all

possible choices of + and — Equipped with a quadratic form (intersection pairing), this lattice
is isomorphic to Q(D;) with the usual quadratic form given by the Cartan malriz.

Proof : It is easy to check that the intersection matrix of ¢i—¢;, 61— ¢, & —d, ¢ — 0,
¢: — ¢¢ is the Cartan matrix of the root system D,. The discriminant of this lattice equals 4.

The intersection pairing defines a unimodular quadratic form on Pic X, hence the discriminant
of the orthogonal complement to K equals (K%) =4 since Ky is not divisible in Pic X. It

follows that Kj{ is generated by q*i - q*]. .

Let us extend the W(Dg)-action on Q(D;) = {7€ Pic X| (1.K y) =0} to the entire
group Pic X so that K x s W(Ds)—invariant. Then the set {qi, gi,...,&, ¢} with
W(D,)—action can be identified with the graph A (cf. § 0, Fig. 3).

Now let us consider the configuration of lines on X. Note that the projection of
11 z 1
QI; ~ lP7cx [PTc onto any factor equips X with a conic bundle structure over IPE. Its fibres are

conics of the pencil g; (respectively of qz) In view of 3.1 a) it is natural to call ¢; and ¢;

complementary pencils. Degenerate conics in any of these pencils can be described for example in
the following way.
4
Let us choose a coordinate system (z,...,2,) on 11’7c such that v;= (1,0,0,0,0). Then Qi

is given by a quadratic form in z,,...,z, , and @, after a suitable linear change of coordinates is

given by 12— Q; (2y,.-.,7,). The projection pr; from v, pr;: (Zgs ByyerrsTy) b= (Ty5eesy),

b

makes X a double covering of the quadric given by Q; =0 with the equation

72 = Q¢(2y,...,5,), ramified along a smooth elliptic curve C= Q4 n Q? . Let (=~ IP;c lieon X.
Then pri(l):lPi lies on Q?. However pr;‘(ﬂ’i):(fu ¢ only if IP;U is tangent to C. The
number of such lines belonging tP one family on Il’%x IP;C equals the number of ramification
points of the covering C— IPE, which is given by the projection of IP;cx IP% to the

corresponding factor, that is 4. Above these 4 lines there lie 4 pairs of lines on X, which
constitute the degenerate fibres of one of the two complementary pencils of conics. The entire set
of these 16 lines forms the configuration described by the graph I' ([28], Ch. IV, § 4; cf. § 0,
Fig. 1). Recall (28], Ch. IV) that the classes of lines in Pic X are precisely the classes ¢ such
that (LK X) = ({%) =-1. Each class contains only one line. This gives an injection

W(D;) = Aut I', which in fact is an isomorphism.
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The Galois group g= Gal(k/k) acts on T. It is often useful to know the partition of T
into g-orbits. For example, H!(k, Pic X) depends only on the partition ([28], Ch. IV, 9.3).
Recall that X is k-minimal (section 2) iff there is no g—invariant set of pairwise
nonintersecting lines on X, i.e. there is no g—invariant subgraph of I' with the property that
any two vertices of it are not joined.

DEFINITION 3.3. A subgroup GC W(D;) is called minimal if T has no G-orbit such that any two

vertices of it are not joined.

This property holds for a splitting group G of X iff X is A—minimal.
The complete list of all possible partitions of I' into G-orbits for minimal subgroups
GC W(D;) is obtained in (28], Ch. IV, table 2 (see § 0, Figure 4). The types are always

numerated as in Figure 4. A type A is called a subtype of a type B, if after the action of a
suitable element of W{(D;) the partition of type A becomes a subpartition of the partition of

type B.
Starting with the list of all possible types V.A. Iskovskih [20] proved that if a Del Pezzo
surface X of degree 4 is k-minimal then either (Pic X)8=1. Ky, or (Pic X)¥~I01 In

the latter case (Pic )’()gl is generated by q‘;. and ' for some i. Thus X has two different

conic bundle structures, each defined over k. Since the property of being a component of a fibre
of such a conic bundle is g—invariant, the partition of ' into g—orbits is a subpartition of the
following one : the 16 lines are divided into two orbits, each containing 8 lines, such that each
orbit consists of lines which project to one family of lines on the quadric QI;: Cix Gy,

Ci~2Cyx IP%. This partition is of type XV (see Figure 4). On the other hand, accor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>