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DEL PEZZO SURFACES OF DEGREE FOUR
B.fi. KUNYAVSKII, A.N. SKOROBOGATOV, M.A. TSFASMAN

Resume.— Les intersections de deux quadriques dans IPf (c'est—a-dire les surfaces de Del Pezzo

de degre 4, soit lisses, soit "singulieres") constituent la premiere classe de surfaces rationnelles
dont 1'arithmetique est non—triviale. L'arithmetique de telles surfaces X depend de leurs
proprietes algebriques (combinatoires) et geometriques, proprietes que 1'on peut lire sur 1'action
du groupe de Galois Gal(A?/^) sur Ie groupe de Picard Pic X (ici k est une cloture separable
de k et X = X ^ . k ) . Pour etudier ces proprietes, nous donnons des formules generales pour

certains invariants cohomologiques importants. Ces formules nous permettent d'etablir la liste
des cas "interessants", c'est—a-dire des cas ou ces invariants sont non—triviaux. Nous etudions
les equivalences birationnelles entre divers types de surfaces rationnelles de degre 4, tant en
termes geometriques que combinatoires. Puis nous exhibons de nombreux exemples explicites (y
compris tous les cas "interessants") et nous donnons une methode generate de construction de
tels exemples. Nous etudions aussi les proprietes de rationalite du tore de Neron—Severi.

Summary.—Intersections of two quadrics in IPf (i.e. smooth and "singular" Del Pezzo surface of

degree four) form the first non-quasi-trivial class of rational surfaces. The arithmetic of such
surfaces depends on their algebraic (combinatorial) and geometric properties, reflected in the
Galois action on Pic X. To study these properties we obtain general formulae for some
important cohomological invariants. Using these formulae we list all the interesting cases (when
the invariants are non-trivial). We investigate birational interrelations between various types of
rational surfaces of degree four, both in geometric and combinatorial terms. Then we provide a
lot of explicit examples (including all interesting cases), and give a general method to construct
such examples. We also establish rationality properties of Neron—Severi tori.
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INTRODUCTION.

Various mathematical objects are presented in this paper, such as root systems, integral
representations of Weyl groups, Galois cohomology, algebraic tori in semisimple groups, conic
bundles, and some elements of the inverse Galois problem. Any of these is interesting enough to
deserve a special study, but their role in this paper is due to their direct or indirect relationship
to the main hero — the Del Pezzo surface of degree four - to its geometry, algebra, combinatorics
and arithmetic.

A Del Pezzo surface of degree four is a smooth intersection of two quadrics in Pf (i.e. a

system of two homogeneous quadratic equations in five variables). This surface is rational, i.e.
the field of rational functions on it over the algebraic closure of the ground field is a purely
transcendental extension. Therefore, its study naturally belongs in the context of the theory of
rational varieties. Moreover (cf. for example the review [29]), we suppose Del Pezzo surfaces of
degree four to be a proving ground for almost all the modern methods in this theory. We also
hope that in the near future the theory of Del Pezzo surfaces of degree four will be able to answer
all its main questions, a too daring hope for more complicated surfaces (such as, for example,
cubic surfaces in P?).

Some results of this paper were previously announced in [25] and [24]. Let us describe its
contents.

In section 0 we introduce some necessary definitions, give some motivations, and
formulate main results. The first section is purely algebraic, here we calculate cohomology groups
for Weyl groups and their subgroups with coefficients in weight lattices and their sublattices
generated by roots. The results obtained in section 1 are applied in section 2 to the study of some
algebraic tori and their stable invariants. These tori include maximal tori in classical semisimple
groups of adjoint type and Neron-Severi tori of rational surfaces. The third section is mostly
geometric : here we study quadric pencils in IPf , conic bundles, birational transformations, and

so on. The fourth section is more of a combinatorial style : in the first of two possible situations
we present the complete list of all possible cases, and for each of them we calculate the main
cohomological invariants. In the second situation, which is much more complicated, we do not
give a complete list of cases, but in section 5 we actually present all the cases when the most
interesting invariant does not vanish. Section 6 is devoted to explicit constructions of many
examples of Del Pezzo surfaces of degree four; we give a general method to produce such
examples, as well as examples of conic bundles. Section 7 deals with the problem of stable
rationality of Neron-Severi tori of Del Pezzo surfaces of degree four.
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Our notation is mostly standard. By ° we denote the duality of free 2-modules, i.e.
y/0 = Hom(^VJ), and by * we denote the duality of finite abelian groups, i.e.
M* = Hom(M,(/Z). The ground field k is always perfect, char. kf 2. If k is finite, we
suppose that its cardinality is not too small.

We wish to express our gratitude to J.-L. Colliotr-Thelene, D.F. Coray, A.A. Klyachko,
Yu.I. Manin and V.E. Voskresenskil for their interest in our work and for many stimulating
discussions.

The typescript was prepared by Mme Le Bronnec (Unite Associee 752 du C.N.R.S.). We
are most grateful to her for her careful typing and for complying with our many requests.



0
DEFINITIONS, MOTIVATIONS AND RESULTS.

Here are some definitions (for details see [29]).
A surface X over a field k is rational if the field of rational functions on X = X x j, k is

purely transcendental (k being the algebraic closure of k). The integer d=(Kj^) is called the

degree of X, its rank is defined as the rank of Pic X (which is a free 1—module). The free
Z-module Pic X of rank (10-d) is equipped with the natural action of the Galois group
0 = Gal(^/A?), preserving the scalar product (the intersection pairing) and the canonical class
7<y. This action defines a representation p : g—» Auto(Pic X), Auto being the group of

automorphisms preserving the scalar product and Ky .

The splitting group of X is G = Im /?; the splitting field K is the field of invariants of
the kernel:

K^k^^; G = Gal ( K / k ) .

The Enriques—Manin-Iskovskih classification shows that there are two types of
^minimal rational surfaces. A Del Pezzo surface X is a smooth complete geometrically
integral surface with ample anticanonical class — K^r; the degree of a Del Pezzo surface always

satisfies l ^ d < 9 . A smooth rational curve on X with self—intersection —1 (an exceptional
curve) is called a line, if — K^r is very ample, such a curve actually becomes a line after the

anticanonical embedding. A rational surface of the second type is a conic bundle^ i.e. a surface X
having a A -̂morphism / : X —• C, whose base C and generic fibre are rational curves. For a
Del Pezzo surface X of degree d< 6 there is an isomorphism Auto(Pic JY) ^ ^(^o^)? where

W ( E Q . ) is the Weyl group of a root system E » , I = 9 - d (we set 2% = D^ , E^ = A^ ,

£3 = A2 x At; root systems £7 , E^...^ are obtained from EQ by deleting one by one the
vertices from the long end of its Dynkin diagram). For a conic bundle f: X—* C the class of a
fibre is obviously g-invariant, thus Im p belongs in fact to the subgroup Aut^Pic X)

consisting of all automorphisms preserving the scalar product, the canonical class, and the class
of a fibre. The conic bundle is called standard if every degenerate geometric fibre is a pair of
exceptional curves meeting transversally. A standard conic bundle X has (8-d) degenerate
geometric fibres (therefore, ~oo < d< 8) and Auti(Pic X) ^ W ( D o . ) . For a Del Pezzo

surface the action of 0 on Pic X is uniquely determined by its action on the set of exceptional
lines. For a standard conic bundle this action is determined by the action on the set of
components of degenerate geometric fibres.
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The main goal of this paper is to squeeze out everything possible of what the "algebra" of
rational surfaces (in particular, of Del Pezzo surfaces of degree four) can give for the
understanding of their arithmetic. By "algebra" we mean such properties of a surface over a
non-closed field which depend neither on the ground field k nor on the splitting field K of X,
but depend only on the group G = Gal ( K / k ) and on its^ction on divisors and other geometric
objects. It is well known [28] that this action quite often determines the Brauer group of the
surface : Br X/Br k ̂  H \Q, Pic X) (it is so, for example, when k is local or global of
characteristic zero). Besides, this action determines some very important cohomological
birational invariants, namely

LU^,Pic^=Ker[^((9,Pic;?)---4 n H\<g>, Pic ^)], 2=1,2.
9^G

In section 1 we find explicit formulae for these invariants. For a global field k the cardinalities
of LU^^ pic -^) S^6 upper bounds for several purely arithmetical invariants such as the

kernels of restriction maps CH^X) —^ n CH^X^ and BrX/Brk-^Il B r X i B r k ,

v ranging over all the places of k. A condition of Jb-minimality of X, a necessary condition of
stable A-rationality of X^ necessary conditions for X to be A-birationally equivalent to some
(nonisomorphic) A^-minimal surfaces, and the like can also be naturally described in terms of the
action of o on Pic X. In interesting cases the conjugacy class of the splitting group G of X
in the group Auto(Pic X) ̂  W(R) is itself "almost" a birational invariant. To be precise,
whenever d< 4, the conjugacy class of G (modulo the action of such automorphisms of W(R)
which are induced by automorphisms of the root system) is in fact a birational invariant [40]. All
these facts induce a thorough study of subgroups of W(R), especially while the same
cohomological invariants play a significant role in the arithmetic of algebraic tori [43].

The study of the arithmetic of rational varieties with the help of the descent theory of
Colliot-Thelene and Sansuc leads to "standard conjectures" (see [9], [29]). In particular, k being
a number field, the set of ^-points on a rational surface X is conjecturally described in the
following way :

1) X has a Appoint iff
a) X has a k-point for any place v of ,̂ and

b) the Brauer—Manin obstruction to the Hasse principle is trivial.
Now we suppose X(k) i- 0.
2) X(k) consists of a finite number of ^-equivalence classes.
3) Each class is the image of the set of A-points of some A-rational variety Y of

greater dimension under a A?-morphism / : Y—^X.
4) X(k) is dense in II X ( k ) iff the Brauer obstruction to weak approximation vanishes.

11
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5) There is an injection from the set of -̂equivalence classes into the group AQ(X) of

classes of zero-cycles of degree zero modulo rational equivalence.
6) There is an exact sequence of Colliot-Thelene and Sansuc :

0 ̂  LU\^) - W ~.e Ao(^) -^ HWc J?)*,

where Sv is the torus dual to the g-module Pic X (Neron-Severi torus),

UJ^^) = Ker [H\G,S^ -^© H^G , 5^)], * denoting the duality of finite abelian groups.

In some cases these conjectures are trivially satisfied. Namely, rational surfaces of degree
more than four form a quasi—trivial class (in the sense of [29]) : if X(k) is not empty, X is
A?-rational; for a number field k the smooth Hasse principle holds. The same is of course valid
for non—A -̂minimal surfaces of degree 4. The less the degree, the more complicated is the study
of rational surfaces. Thus A?-minimal surfaces of degree four are the simplest non-quasi-trivial
varieties. That is why they are interesting and deserve thorough study.

Nowadays there are only few classes of non-quasi-trivial A -̂minimal rational surfaces of
degree four for which the "standard conjectures" are known to hold (see, however, the note at
the end of this section). Let us state it in more detail. There are two types of A?-minimal
surfaces of degree four [20] : namely, Del Pezzo surfaces of degree 4 of rank 1 and standard
conic bundles of degree 4 of rank 2. The latter are anticanonically mapped to IPf , either this

map is an isomorphism having a smooth Del Pezzo surface of degree 4 of rank 2 for its image,
or its image is a singular intersection of two quadrics X' having two conjugate singularities and
such that the line joining the singularities does not lie on X' (following [14] such a surface is
called an Iskovskih surface). Let V be a smooth model of X ' . Due to a remarkable paper [12]
we know that "standard conjectures" hold on Y.

THEOREM A. Every k-minimal Iskovskih surface is k-birational to a k-minimal Del Pezzo
surface of degree 4 of rank 2.

Thus "standard conjectures" are also proved for some Del Pezzo surfaces. Whenever X(k)
is non-empty we are able to find out necessary and sufficient conditions for a -̂minimal Del
Pezzo surface to be birational to an Iskovskih surface. It is convenient to formulate these
conditions in terms of the action of G on the graph of lines F and on the graph of pencils of
conies A, which we are now going to describe.

A Del Pezzo surface X of degree 4 has 16 lines. The vertices of the intersection graph
r of these 16 lines are drawn in Figure 1.
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Figure I : Graph F
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Each vertex is joined to the other vertex in the same row on the same side of the vertical
line, and to just one vertex of each pair on the other side, the left-hand (right-hand) vertex of
each pair being joined to the left-hand (right-hand) vertex in the same row and to the
right-hand (left-hand) vertex in other rows. Thus 45 is joined to 4 , i\, ^23 i ^24 and t^.
The notation of vertices comes from the fact that X is the blow-up of the plane IP2 in five
points ^,...,^5 of which no three are collinear. The 16 lines are : the five blown—up curves which

we denote by i-, the 10 lines of P2 joining pairs of points ( x ^ x - ) denoted by ^ , , and the

inverse image of the conic q through all five points.
The automorphism group Aut r s W(E^) = W(D^) acts transitively on joined pairs of

vertices. In F there are 10 subgraphs of type S (Figure 2).

Figure 2 : Graph E

The complement to a subgraph of type £ is of the same type. Therefore the set of such
subgraphs is itself a graph A (Figure 3).

î fh 6 ^5

^ ^2 ^ ?4 ^5

Figure 3 : Graph A
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Two vertices of A are joined iff the corresponding graphs of type E have no vertex in
common. A vertex of A is denoted ^+ if the corresponding subgraph £. contains the joined

pair (q, ^.) (it determines E .̂ uniquely), q~^ corresponds to the complementary subgraph S^..

It is easy to see that Aut A ^ W(B^) = (Z/2)5^ ^5 , S^ acting on joined pairs of vertices (i.e.
on lower indices of o. ), and (2/2)5 being generated by ^,...,€5, where ^ interchanges ^

with q~ leaving the remaining 8 vertices invariant.

Let us remark that substituting e, for q- and - e. for q~, we get the action of W(B^)

on the standard realization of the root system B^ in R5 (ei,...,^ being the basis of IR ).

There is an embedding Aut F c-^ Aut A; an element of Aut A belongs to the image of
Aut r iff it is a product of an even number of c.s and an element of SQ , i.e. the image

coincides with W(D^) embedded into W(B^) in the usual way.
These combinatorial designs can be interpreted geometrically. A Del Pezzo surface X of

degree four is anticanonically embedded into IPf. There is a pencil of quadrics Q^

parametrized by (P» such that the image of X lies in any <3\ ^r A 6 ^ and coincides with the

intersection of any two quadrics of the pencil. Let QQ and Q be smooth, Q^ = QQ + X Q .

A quadric Q^ is singular iff A is a root of the characteristic polynomial P(A) = det Q^. Since

X is smooth, P(A) has only simple roots in ,̂ corresponding to 5 quadratic cones O.clPj^,

i= 1,...,5. Let v- be the vertex and Q^C P. be the base of Q. (each 0. is defined over

A(A.)). Over the algebraic closure k of the ground field ( :?•^ IP j^xB)^. has two pencils of lines,

therefore Q, has two pencils of projective planes; intersecting with X each pencil produces a

pencil of conies on X. Denote these pencils (f- and q~; the components of the singular fibres

of the pencil q- (respectively q~) form the subgraph E. (respectively S-).

Let us define another graph A. The vertices of A are those of F, those of A, and one
more vertex e. If two vertices both belong either to F, or to A , and are joined there, then
they are joined in A. The vertex e is joined with all the vertices of A (and is not joined with
any vertex of F), ^.e A (respectively q~) is joined exactly with the vertices of S.C F

(respectively S,). Now we see that A is just the intersection graph of the 27 lines on a cubic

surface. In fact, let us fix any line on a cubic surface (denote it by e). Then all the remaining
lines are divided into two subgraphs, one formed by lines meeting e, the other by the rest.
Contracting e we see that the second subgraph is just F (16 lines on a Del Pezzo surface of
degree four). Now on a Del Pezzo surface of degree four blow up a point which does not lie on
any line. This point lies on exactly one conic of each pencil ^ ; their inverse images on the
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cubic are lines. The intersection graph of these 10 lines is just A. It can be checked that
Aut A ^ W{EQ) (cf. [28], IV, 1.9).

Now let us show how different properties of a Del Pezzo surface of degree 4 can be
described in terms of G—action on F, A , or A. According to [20] a A?-minimal Del Pezzo
surface of degree four is either of rank 1, or of rank 2. The latter occurs iff there exist two
complementary subgraphs of type E such that each G-orbit belongs to one of them. It is
clearly equivalent to the existence of two ^--invariant vertices (f. and ^ in A (for some z).

Let such an i be equal to 1. In our notation it corresponds to the decomposition of r into two
subgraphs E^ and \, each of them consists of vertices lying on one side of the vertical line.

G-invariant pencils of conies q\ and q[ equip X with two different structures of a conic

bundle. In particular, GC Auti(Pic 1) ^ W(D^). Let £ .̂ be a subgraph of A obtained by

deleting two vertices q^ and q,. In terms of A the condition rk X = 2 reads as follows :

there exists z, 1 < ? < 5 , such that the G-orbit decomposition of A is a subdecomposition of
the decomposition into E, , £., S, and three one-vertex graphs q*-, q~ and e. Note that each

vertex of S .̂ (respectively of S^., of E .̂) is joined to q~ (respectively q * , e) and is not joined

to q^ and e (respectively to q^ and e, to q. and q~). According to [30] the maximal

subgroup of W[EQ) leaving the set { ^ , ^ , e } invariant is isomorphic to

W(F^) ^ W(D^)>SS^ , ^3 being the automorphism group of the Dynkin diagram D^.

If X(k)f9 and there exists a "good" ^-point x on X (i.e. x does not lie on any line),
then the G-graph A is realized as the intersection graph of the 27 lines on the blown-up
surface. If, moreover, rkX=2, contracting G'-invariant line .̂ or q~. we get a surface X'\

the splitting group G' of X' is the image of G under some automorphism of W(D^)

induced from an automorphism of the root system D^.

It is worth noticing that because of its purely combinatorial definition the G—graph A
can be considered for any Del Pezzo surface X of degree 4 (including those having no good
k-pomt).
THEOREM B. Let X be a k-minimal Del Pezzo surface of degree 4. If X is k-birationally
equivalent to an Iskovskih surface, then rk X = 2 and the following equivalent conditions hold
(q^ and q. being the pencils defined over k) :

i) in A there is a G-orbit consisting of two joined vertices, other than ^+., q . , and e;

ii) the group h{G}, h being an automorphism of W(D^) induced from an automorphism of

the root system D^ , has an orbit of two joined vertices in T;

iii) the group h(G), h being as above, has an orbit of two joined vertices, other than q^ , and

q ] , in A.
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If X(k) is non-empty, these conditions are also sufficient for X to be k-birationaUy
equivalent to an Iskovskih surface.

COB.OLLAB.Y. Let X be a k-minimal Del Pezzo surface of degree four having no k-points. If X
is k-birationally equivalent to an Iskovskih surface, then rk X = 2 and in A there is a G-orbit
of two joined vertices, other than q* and q~'.

In fact, the vertices of A are those of r, A, and [e] (the three latter subgraphs being
G-in variant). Therefore the G-orbit of two joined vertices is either in F, or in A. In the first
case, joined vertices correspond to two intersecting lines on X, and the intersection point is
defined over k, which contradicts the condition X(k)==9.

In the case X(k) =0 we do not know any necessary and sufficient condition. Let us give
another version of Theorem B.

THEOREM B'. Let X=QoH Q^ be a smooth k-minimal Del Pezzo surface of degree^, such that
X(k) =0. // X is k-birationally equivalent to an Iskovskih surface, then the polynomial
P(\) = det (QQ + \Q^) has at least two roots Ai , \2 e k, and the discriminant of the quadratic

form corresponding to one of these roots, say Q^ = QQ 4- A^ Q , restricted to a hyperplane

such that this restriction is not degenerate, is a square in k. If, in addition, the second quadric
Q\ has a smooth k-point, this condition is also sufficient.

A Del Pezzo surface X of degree 4 is A-minimal iff r has no G-orbit consisting of
disjoint vertices. Such groups G are called minimal. For a minimal G all the possible orbit
decompositions of F are classified [28]. There are 19 types (see Figure 4 on the next page).
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Figure 4
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Now we return to the "standard conjectures". The extension class of the obvious exact
sequence 1 —»Jk* —+ k(X)* —» A:(^*/P —»1 is an obstruction to the non-emptiness of X{k\
since a Appoint enables one to define a section k(X)* —^ P ("value at the point"). This is the
so-called elementary obstruction [10].

Let A? be a number field. If X(k ) ^ 0 for all places v of k, then the elementary

obstruction is equivalent to the Brauer—Manin obstruction attached to a subgroup of
Br X/Br k ̂  ^(0, Pic ^), namely to 6(^) = Ker [Br X/Br k-^TLBr X^/Br k^.

v
If this obstruction vanishes, there exists a universal torsor on X. Chebotarev's density

theorem shows that 5(^) C [JJ^ (G, Pic 1).

Now let AQ^X) be the group of zero-cycles of degree zero modulo rational equivalence.

From the results of Bloch [2], Colliot-Thelene and Sansuc [9], and Colliot-Thelene [4] it follows

that LU AQ^X) = Ker [A^X] -» n Ao(A' )] is a subfactor of the group dual to |JJ ̂  (G, Pic X)
v

(see section 2).
Thus we see that the calculation of UJ^(G',Pic^) and LLJ^ (G', Pic X), carried out

further on, gives significant information about b(X) and LU^oW' the latter invariants being
2 —of arithmetic nature. In several papers [25], [26] and [29] the group dual to |JJ^ ((?, Pic X) was

denoted by AUJ(5^), S^r being the algebraic A—torus dual to the g-module Pic X (the

Neron—Severi torus of the surface X}. This notation is due to the Voskresenskil exact sequence
[43]:

o -, A(S^) -^ ALU(^) -* LLJ1^) ̂  o,

where LU1^) = Ker [H\G,S^ -^© H\G , 5'x.)], and A(S.r) is the weak approximation
v

defect. The group A[JJ(5^) can be also defined as dual to H\k, Pic V(^)), V{S^) being a

smooth compactification of the Neron—Severi torus Sy. This fact can be interpreted in terms of
1 — 2 —

Galois modules. The groups ULJ^G', Pic X) and LUu>(^ ^lc ^0 are invariants of the class of

stable equivalence of the Neron-Severi torus.
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THEOREM C. Let GC W(D4). If UJ ̂ (G', Pic J)^ 0 or ^(G.Pic X)f Q, then G is

conjugate to one of the following groups:

N-

1 G'3,6

G-
3>6

G^

2 G'7,5

C?7
7»5

G'2,3

3 G'3,5

4 G'7,3

5 G'7,6

Group

= <C3C4(l2),CiC2(34)> ^ (2/2)3

= <CiC2C3C4(l2),CiC2(34)> ^ (2/2)3

= <CiC2,C3C4(12)> ^ (2/2)3

= <(12)(34),ciC2(13)(24)>^ 2/2x2/4

= <CiC2(12)(34),C2C3(13)(24)>^2/2 x2/4

= <ciC2,ciC3(12)(34)> ^ 2/2 x 2/4

= <ClC2,C3C4(l2),(34)> 2^ (2/2)3

= <CiC2,CiC3(12)(34),(13)(24)>

= <ciC3(12)(34),C2C3(13)(24)> ^ Qs

Decomposition
type

VIII

VIII

IX

XIV

XIV

XV

IX

XV

XV

UJol

2/2

2/2

2/2

0

0

0

2/2

0

0

LU!

2/2

2/2

2/2

2/2

2/2

2/2

0

2/2

(2/2)2

Here Qs is the quaternion group of order 8. The first three groups are united under
N' 1, and the second three groups under N" 2, since their conjugacy classes are obtained from
one another by automorphisms of W[D^) induced from automorphisms of the root system D^.
The proof of Theorem C is based on listing all conjugacy classes of minimal subgroups in
W[D^). For the group W(Ds) we fell short providing the complete list. However it is possible
to find all the groups G with UJ^^, Pic X) + 0.

THEOREM D. There are 8 conjugacy classes of subgroups GC W(D^), G^ W{D^), such that
UJ^(G', Pic X) f 0. For all these groups LU^ p[c -̂ ) = 2/2; four of them have orbit

decomposition of type XVII, the other four of type XIX.
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In a remarkable paper [1] stably A^-rational but not ^-rational Del Pezzo surfaces of
degree four were constructed. It is in fact possible to give a precise description of such surfaces of
rank 2.

THEOREM E. Every stably k-rational but not k-rational Del Pezzo surface of degree four of
rank 2 is k-birationally equivalent to a cubic (from [1]) given by

y2-azi=P(x^

P(x) being an irreducible polynomial of degree 3, whose discriminant equals a, and a being
not a square in k.

For the surfaces of rank 1 the result is weaker :

THEOREM F. // a Del Pezzo surface of degree four of rank 1 is stably k-rational but not
k-rational, then its splitting group is conjugate to one of the three groups Ji, h, h. AH these
groups have orbit decomposition of type I.

Actually, we prove that for a minimal GC W(D^\ G^ W(D^)^ a G-module Pic X is
a direct summand of a permutation G—module iff G is conjugate to one of /i, /2, h-
Conjecturally, it follows that AQ(X) and X(k)/R are trivial, and A'x, Y is A?-rational for

some A?-variety Y.
It is natural to ask when a Neron—Severi torus is A?-rational for a surface of a given type

(in such a case all invariants are trivial). For the surfaces of rank 2 here is the answer :

THEOREM G. a) Neron-Severi tori of types II, IV, V, VI, VII are always k-rational;
b) Neron-Severi tori of types ffl, VIH, XII, Xffl, XV are never stably k-rational;
c) for types DC and XTV there exist both k-rational and not stably k-rational tori.

All the calculations of this paper leave us a bit up in the air without concrete examples of
Del Pezzo surfaces of degree four having prescribed splitting groups. To construct such examples
we develop the method given in [26] (unfortunately, the exposition there lacks detail).

To construct a surface over k with a prescribed splitting group G we must first
construct a Galois extension K / k such that Gal ( K / k ) ^ G. In fact, this is enough to construct
a conic bundle:

THEOREM K Let G be a subgroup of W(D), and let k be an infinite field, Char. A?/ 2 # G. If

there exists a Galois extension K/k such that Gal (K/k) ^ G, then there exists a conic bundle
X/k of degree 8—n with splitting field K (and splitting group G), and X(k)f^.
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To construct a A—minimal Del Pezzo surface of degree 4 with a prescribed (up to a
conjugation) splitting group GC W{D<o) we act in the following way.

First we construct a A-minimal conic bundle Y (with 4 degenerate fibres if G is
conjugate to a subgroup of W{D^) and with 5 degenerate fibres otherwise) such that the
Galois action on the graph of components of degenerate fibres coincides with the action of
GC W{D^) on the graph A.

This can be done by the help of Theorem H, but sometimes it is better to do it in some
other way (one should look that Y has a A—point). The equation for Y is usually either of the
form

y2 - az2 = P(x)

or of the form

^-^=P(a;)

(the latter occurs if we use Theorem H).
Now we want to transform Y into a Del Pezzo surface of degree four. It is always

possible.
If Y has 5 degenerate fibres, we use a result of Iskovskih (cf. [21], Theorem 5) saying

that Y is anticanonically embedded into Pi as a cubic V with a Mine t lying on it, such

that the projection from t gives us the conic bundle structure.
Blowing down i we obtain a Del Pezzo surface X of degree 4. As we have explained

above, G—action on F (the graph of lines on X) corresponds to G-action on A (the graph of
components of degenerate fibres of Y), and everything is all right.

If Y has 4 degenerate fibres (i.e. GC W(D^)}, as we have already explained there are
two cases : either Y embeds anticanonically into IPf as a smooth Del Pezzo surface, or its

anticanonical image is an Iskovskih surface. Unfortunately, even in the first case the surface Y
is not the one we are looking for, since the action of G on the lines can differ from the
prescribed action of GC W(Ds) on F. Blowing up a good A-point we get a cubic V with a
Mine i' on it. The projection from i' gives us a pencil of conies, the components of its
degenerate fibres form a graph A'. The group GC W{D^) must act on A' leaving two
vertices invariant, thus V has two additional A—lines. Projecting from one of them we get the
pencil we started with, G acts on the components of its degenerate fibres as on A. Blowing
down this line we "spoil" the original pencil and get a Del Pezzo surface X of degree four. The
G—action on its graph of lines r corresponds to the prescribed (S—action on A. In the case of
an Iskovskih surface Theorem A is not enough, while the G—action may be wrong, but its proof
in the simple case Y(k) + 0 is enough. Blow up a good A—point and blow down the fibre passing
through it. We get a smooth Del Pezzo surface of degree 4 with the "same" (from the point of
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view of G'-action on the components of degenerate fibres) pencil of conies. Then we act just as
in the smooth case.

In this way we obtain

TIIEO&EM I. Let G be a minimal subgroup of W(D^), and let k be an infinite field,
Char. k j [ 2 # G. If there exists a Galois extension K/k such that Gal (K/k) ^ G, then there
exists a Del Pezzo surf ace X/k of degree^ with the splitting field K (and splitting group G).

The developed method enables us to construct examples of Del Pezzo surfaces of degree 4
over (, whose splitting groups are the maximal groups for each of the 19 types. The same can
be done for all the "interesting" groups (i.e. groups mentioned in Theorems C, D and F). The
same technic leads to an example of a conic bundle which is not split by any extension of
degree 271.

Note. After this paper had been completed several significant results concerning standard
conjectures were obtained by different authors. Let us give a brief account here. All the standard
conjectures listed at the beginning of this section were proved for Del Pezzo surfaces of degree 4
of rank 2. Conjectures 1, 4, 6 were proved by Salberger in a series of papers [32], [33], [34] and
[35]. Conjecture 2 is proved in [II], conjectures 3 and 5 in [13]. In a letter [34] Salberger also
states that he can prove Conjecture 6 for arbitrary Del Pezzo surfaces of degree 4. See also a
forthcoming paper of Colliot—Thelene, Salberger, and Skorobogatov on weak approximation for
intersection of two quadrics, were Conjecture 4 is proved for arbitrary Del Pezzo surfaces of
degree 4.
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1
COHOMOLOGICAL PROPERTIES OF ROOT SYSTEMS.

Let us briefly recall the basic properties of root systems. Let V= R71, and let V' be its
dual vector space. By <,> we denote the canonical pairing V® V' —^ R. Let R be a reduced
root system, i.e. a finite subset of V, generating V, and satisfying the following properties :

1) for any a 6 R there exists ^6 V' such that < 0,0^ > = 2, and the reflection
s^: x\—> x - < x, Qv > a preserves R,

2) a^(R)c 1 for any a€ R,
3) if a€ R, then 2a^ R.

Elements of R are called roots; the group of automorphisms of V preserving R is denoted by
A(R), its normal subgroup W(R) generated by the reflections s^ is called the Weyl group.

The set {a^ ae R} forms the dual root system J^. Let S={a.\ 1< i< n} be a basis of R,

i.e. a set of linearly independent roots, such that any root is an integral linear combination of
some elements of S with coefficients either all positive or all negative. The additive subgroup of
V generated by R is denoted by Q(R) : elements of the Z-module P(R) = (^(R^)0 are called
weights, elements .̂ of the basis of P(R) dual to the basis {a^ [ 1 < i< n} of (^(R^) are

called fundamental weights. Let 7r(R) = P(R)/Q(R)', the cardinality of TT(R) equals the
determinant of the Cartan matrix det(< a^ o^ >^. ^ ) . In what follows we use the notation

for roots and weights introduced in [3], ch. VI, § 4.
We define £5 = DQ , £'4 = A^ , £3 = Ai x A^ , these symbols being vacant; the root

systems £7 ,..., Ez are obtained from Eg by consecutive intersecting with hyperplanes given by
< a,o/g > = 0, < a,o^ > = 0, and so on (cf. [3]). This procedure is equivalent to deleting of

consecutive vertices in the Dynkin diagram starting from its long end.

PROPOSITION 1.1. 7r(R) is canonically isomorphic to H\W(R), Q(R)).

We give a simple proof of this statement due to A.A. Klyachko.

Proof : Let (p be a crossed homomorphism W(R) -^ Q(R), it is uniquely determined by its
values (p(s^) for a^ S. Since ^ = 1 we have 0 = (p(s^) = s^ ip(s ) 4- (p(s ), i.e.

<^(5^) = m^. for some integer m^. Conversely, to each n-tuple {m.}, w.e 2, we associate

n
the crossed homomorphism ip(g) = (1 - g) S m^ uj^, a/, being fundamental weights. Let
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n
a / - £ w.a/ . . It is clear that this correspondence between crossed homomorphisms and

r 2=1 l l

weights is a bijection, and (p is a coboundary iff o^€ Q(R)'

Let us recall that v(R) is trivial iff R is EQ , ^4 or G'2. The two latter systems will
not be considered in this paper.

DEFINITION 1.2. Let R be a root system such that 7r(R) is cyclic {i.e. Ri- A^J. Define the

W(R)-module M^(R) as the extension of the trivial module 1 by Q(R) given by a generator y

of Ext^(2, Q(R)) = H\W(R), Q(R)) = 7r(R). In particular, M(Es) == Q(Es)^ 1.

LEMMA 1.3. // v(R) is isomorphic to 1/2, 2/3 or 2/4 {i.e. R is one of the root systems
Ap A^, A^, B , C , DC) .p EQ, E^), then the isomorphism class of M(R) = M^(R) does not

depend on y.

Proof : Under the assumptions of the lemma the generator (p is unique up to a sign. Hence it
suffices to prove that ^ = - ̂  implies M^ (R) = M^ (R). The exact sequence

(1) 0 —. Q(R) —. M^R) —.2—^0

is split as a sequence of 1—modules, and there exists an isomorphism of 1—modules
M^(R)^ Q(R)^1. An element ge W(R) acts on (a,n), a€ Q(R), TIG 2, as follows :

^(a,n) = (ga+ ny(g),n). An isomorphism f:Q(R)^l—>Q(R)®1 such that
/(a,7i) = /(a,-7i) is an isomorphism of W( ̂ -modules :

/(^(^)) = /(^ + n <^),n) =(ga+n ̂ (g), - n) = (ga- n ̂ (g),- n) = g(f(a,n)).

PROPOSITION 1.4. H1(W(R),M^R))=0.

Proof : Let 8:1—> Hl(W(R)^ Q(R)) be the boundary homomorphism in the long
cohomological exact sequence provided by (1). Then 6(1) = y (up to a sign), hence 6 is
surjective. It follows that H\W(R), M^(R)) <-4 H\W(R),1) = 0.
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We would also like to have an analog of MJ^R} for R = D , in particular when n is

even, ^(^91.) being isomorphic to (2/2)2. Recall that W(D ) is a subgroup of ^(C'J, and

the ^(D )-module (9(J9 ) is obtained from the W{C )-module Q(C ) by the restriction of

the group (cf. [3]).

LEMMA 1.5. H \ W(D^), M( Cy) = 1/2.

Proof: Consider (1) for R = C and let the exact sequence of W(D J-modules

0 —— Q(D^) —. M(Cy ̂  2—. 0

be obtained from it by restriction to W(D ). The "restriction-inflation" exact sequence implies

that res: H\W{C ), Q(C ))—> H\W{D ), Q{D^)) is an injection (there are no

IV(7?)-invariant elements in Q(R)). Therefore the boundary homomorphism maps 1 onto a
subgroup of H t ( W ( D ) , Q ( D ) ) isomorphic to 2/2. Since [ v(D)\ = 4 we have

H1(W{D^M{C^=1/2.

DEFINITION 1.6. Define a W(D)-module N(D) as the non-trivial extension of 1 by the

W(D ^module M(C ).

PROPOSITION 1.7. Hl(W(D^, N(D^)) = 0.

Proof: Proceed as in the proof of 1.4.

Convention 1.8. Let R = A or E . We omit the subscript (p in M^(R), assuming that <p

is always chosen so that its corresponding weight u^ coincides with uj (in the notation of

Bourbaki [3]). In view of Lemma 1.3 we also omit the subscript (p in M (R), R being one of

the root systems B^ C^ ^n+l-

Remark 1.9. Let R = A , then o/i 4- u = 0 (mod Q(R)). Hence M(A ) is isomorphic to the

extension of 2 by Q(A ) such that its cocycle corresponds to the class of o/i via the
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isomorphism of 1.1. This extension can be easily described. Indeed, let 1[S n/^ ] be the

W{A )—module induced from the trivial W(A _.)-module 1. The group W{A ) ^ S , . ,

permutes the elements of the canonical basis e,,...,e ,, : g ( e ) = e / .\. It is easy to see that

the submodule of ^[^^.i/^J consisting of the elements with the zero sum of coordinates is

isomorphic to Q{A ). We claim that the class of the extension 1[S , - ^ / S ] corresponds to uj^.

Indeed, if n\—> n e^ is a section of the augmentation map 1[S n / S ]—^ 2, then

(p(g) = e /- . \ — ^ , hence ^ == uj^ (see the proof of 1.1). In particular, the W{A )-modules

M(A ) and 1[S «,j.i/*S' J are isomorphic.

THEOREM 1.10. There exist exact bilinear W{R)-invariant pairings M(R) x M(7 )̂ —^ 1 and
N(D^) x N(D^) —> 1 extending the natural pairing Q(R) x (3(7^) —> 1 given by the Cartan

matrix.

Proof: First let R be A , B , C , D^ ., or E , then the 2-module M(R) is isomorphic

to Q(R)® 1. The explicit action of W(R) is given by g(a,n) = {ga + n y(g),n), where
^9) = ̂  - 9 ^g . Let ^ e Ext ̂ )(Z, Q(^)) = ^ ̂  ̂ (^), <3(^v)) be the cla^s of the
extension

(2) 0 —> Q{K1} —> M(RV

and let (j^€ P(RV) be the corresponding weight. To make our pairing b I^(/?)-invariant one

has to set b ((0,1), (a,0)) = - < u^a >, b ((^,0), (0,1)) = - <av,a^ >. It remains to define

m = b ((0,1),(0,1)) so that the determinant of the pairing equals ± 1. Let us do it in each
particular case. Let R = A , uj^== u^= u . Set m = 1, then

(3) det

2
-1

0

0
0
0

-1
2

-1

0
0
0

0 ...-1 ...
2 ...

0 \.'.
0 ...
0 ...

0
0
0

' 2
-1
0

0
0
0

-1
2

-1

°1
0
0

0
-11J

= 1

Let R = C^ then by Lemma 1.3 we can choose ^ = ̂  and ^ == u (cf. [3], ch. VI, § 4,

n" 5,6). Set m = 1, then
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(4) det

' 2
0

-1

0
0

[ u

0
2
0

0
0
0

-1 ...
0 ...
2 ...

0 '..;
0 ...
0 ...

0
0
0

' 2
-1
U

0
0
0

-2
2

-1

-1}
0
0

0
0lj

== 1

Let R = E . then ^ = ̂  = a/ . Again set m = 1.

(5) det

f 2

0
-1

0

0
0
0

0
2
0

-1

0
0
0

-1
0
2
0

0
0
U

0
-1
0
2

0
0
0

... 0

... 0

... 0

... 0

... 2

... -1

... 0

0
0
0
0

-1
2

-1

0
0
0
0

0
-1lj

Finally let R = D^^ and ^ = ̂  = o^_^. Then

(6) det

2
-1

0

0
0
0
U

-1
2

-1

0
0
0
0

0
-1
2

0
0
0
U

... 0

... 0

... 0

... 2

... -1

... -1

... 0

0
0
0

-1
2
0
0

0
0
0

-1
0
2

-1

0
0
0

0
0

-1
m

=4w- (271+1) =± I

4m being the multiple of 4 closest to 2n + 1.
Now let R = D^ (for arbitrary n). Define a quadratic form on N(D ) by the matrix

(7)

2
-1

0
0
0

-1
0

-1
2

0
0
0
0
0

... 0

... 0

... 2

... -1

... -1

... 0

... 0

0
0

-1
2
0
0
0

0
0

-1
0
2
U

-1

-1
0

0
0
0
1
0

0
0

0
0

-1
0
0,

using the fact that (for any n) TT(D^) is generated by the classes of u. and u ([3], ch. VI,
§ 4, n" 8). The determinant of (7) equals -1.

Kfimark 1.11. The signatures of the quadratic forms (5) and (7) equal (n,l) and (Ti+1,1),
respectively.
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PROPOSITION 1J2 The W(D \ -7 ,î)-̂  ̂ ^ „ ̂ ^^^ ̂ ^

^Consider the diagram of ^ )̂-modules:

^^-i)-- ^)r0 ?
0 — — ^ ) ^ ̂

Z —— 0

I ——» 0

0 0

Here the left column is obtained from (l) bv th

——e ro. is the deHnition of ^ y he rwoa to the group w^ the

———^^:).^,).^ '̂e :̂6 T————— -t (1)- Let

classes of the row extensions. Since H^WiD ) . 2n+l ^^^ ' 2/2 be the

splittings of 2-modules : M(D ) ̂ n 2B+1 = 0 we have ^= ̂ ^^ There ̂

(̂̂ ),, and 2^. ̂ f' ̂ 2B+1)2M(^^2' ^rey\U ,71) - (^a'+W^fo) w) /,c IMD \

—6^^), » .̂ Itfono.sthat /.(. ^J6^2"4-^' ae<3(^)•

.̂.)-̂  / ̂ ^ 00^'",;: is a homomorphism of

seouenceof (̂̂ ,̂)-.odui. splits since ' WIIWas short exact

^^^l)^^^^)) = ̂ ^^ ,̂), ̂ ^^ . o

by 1.4. The proposition is proved.

Let ^^n) be the subgroup of Oin \
^^.^J^^,^''^'- ̂ ••^. ̂

•».t .„ '"••d.~.«W,oll,.»î ,̂ ^^
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long end of the Dynkin diagram ([3], ch. VI, tables). In other terms, ^(^oj = K^ ^i,

€1: 0(^9»,4.i) —^ 2 being defined by a\—> e^a) = < a, uj^ >. The corresponding embedding

W(<D^ ̂  ̂ 27H-l) is cajled standard' In what follows ̂  (̂̂  ̂  ̂ ^2^+1) we

mean the standard embedding.

LEMMA 1.13. The W{D^ ^-modules M^oJ and Q^n+l^ Gained by the restriction of the

groups to ^{D^}, are isomorphic.

Proof : Since both modules are extensions of 1 by Q(D^ ), it is enough to check that their

cocycles coincide. The exact sequence of W(D^ )-modules

o—^a^—>M(a^)—+^—^o

corresponds to the unique nontrivial cocycle </?€ H1(W(C^),Q(C^) ^1/2. Its restriction

res y € H1(W(D^ ), O(^nJ) ^ (2/2)2 corresponds to the weight 0/1 (it follows from the fact

that 7r(^oJ is generated by the fundamental weight ^ of Cn , which coincides with the

fundamental weight ^ of -Do , cf. [3], ch. VI, tables). On the other hand let 711——> n a^ be

a section of the homomorphism e^: Q(D^ , , ) —^ 1 (<^ being a root of D^ ,J. The class of

the extension

o—W^—WW—— 2— 0

is thus given by ip(g) = ̂  — g a^ •= — (o/i-^), where o/i is the first fundamental weight of

^«

PROPOSITION 1.14. The W(D^)-module N(D^) is isomorphic to the W(D^)-module

M(D^ , . ) obtained by the restriction to the group W[D^ ).

Proof : Both modules are extensions of 1 by M(C^ ) ^ Q(D^ J (Lemma 1.13). In view of

1.5 and 1.6 it is enough to check that the extension of W(D^ )-modules

(8) 0 -. Q(D^) -. M(D^) -. 1 -. 0
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is non-trivial. By functoriality the class of the exact sequence (8) is the restriction of
the extension class (p of (1). By definition y generates
H^W<<D2n+l^ ^2714-1) == ̂ TH-l)/^^ (see Ll)- wm^ the 1-1-correspondence
between crossed homomorphisms and weights we can assume y(g) = (1-^)^ . , . If the

restriction of (p to ^(^) is a coboundary, then ip(g) == (l-g)r for ^€ W(D^ ),
P7fjD )

r6 ^^Tl+l)' Then ^271+1 ~ r€ ^271+1) 2ra = ̂ 1̂  Now notice that the ^SS ^

^TH-I"*"^! m ^Ti+l)/^^!^ z/4 isof theform 1 + 2 m (mod 4) ([3], Ch. VI,
tables), thus, it is not zero.

PROPOSITION 1.15. Let R = R^. The group of automorphisms of M(R) (and of N(D ))

preserving the unimodular quadratic W{R)-invariant form obtained in Theorem 1.10, and acting
trivially on the orthogonal complement to Q(R), is isomorphic to the Weyl group W(R).

Proof: The group of orthogonal automorphisms of Q(R) is A(R). If R = Ai, Ej or £'8, then
A(R) == W(R). Let R = A^, EQ or D^^, then A{R)/ W(R) ^ 2/2. Suppose for a moment

that (1) is exact as a sequence of A(^)-modules. Then the class of the extension (1) (considered
as an exact sequence of W( ̂ -modules) belongs to H1{W(R), QiR))^. By Proposition 1.1

this group is isomorphic to (P{R) / QW)^^ Iw^ (since W(R) acts trivially on
P{R)/Q(R) ([3], Ch. VI, §1, proposition 27)). According to the tables in [3], Ch. VI,
A(R)/W(R)^1/2 acts on the cyclic group P(R)/Q(R) via multiplication by -1. Hence, if the

order of <^) = P(R)/Q(R) is greater than 2, then (P(R)/Q(R))AW/WW is a proper
subgroup of (P(R)/Q(R)), and does not contain its generator. This contradicts Definition 1.2. If
the order of ir(R) equals 2, then R = A^ or E^ but in these cases A(R) = W(R).

Now let R=D^, then A(^)/ W(D^ ^ 2/2 (if n+ 4), and A(D^)/W(D^)^S^ ([3],
^ J

Ch. VI, § 4). Since N[D^) - ^ 2© 2 we have an exact sequence of W(D )-modules :

^O) 0 —. Q{D^) —. N(D^) —. 2© 2 —. 0

(the map ^v(D^) —> 2© 2 is dual to the injection 2© 2 <-^ M^)> M-0 ) being autodual by

Theorem 1.10). From H^W(D^,N(D^)) = 0 it follows that the boundary map <? is surjective,
hence the class of the extension (10)

^ ̂ WiD^ ^ ̂ )) = ̂ W^ Q{D^ H\W(D^ Q(D^)
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is of the form ^=(<^,<^ where ^i and ^2 generate H\W{D^Q{D^). If (10) were an

exact sequence of A(D )-modules, then ^ would be a restriction of some class from

H\A{D^ Q{D^)^H^A(D^ Q(D^ i.e.

A(D} A(D^IW{D)
^ ^e H\W(D^ Q(D^) n = (P(D^/Q(D^) n

If n is even then P{D^)/Q(D^) ^ (2/2)2. If n =4, then AQDJ/ ̂ (DJ ^ ̂  acts on

P(D^)/QW permuting nonzero elements, and (P(^)/ Q^))^4^^^ = 0. If y^ 4,
A(P )/W(D )

then A(D^)/W(D^^1/2 permutes ^ and o/i, i.e. (P(D^/Q(D^)) n n ^2/2. If

A(J9 )/W(D )
n is odd, then (P(D^/Q(D^)) ^ 2/4, and {P(D^)/Q(D^) n n ^1/2. It follows

that < î and ^ do not generate P(Z> )/Q{D ). It is a contradiction, and the proposition is

proved.
In what follows the group G is always assumed to be finite.

DEFINITION 1.16. Let N be a G-module of finite type, then for 2= 1,2 by \\}^{G,N) we

denote the kernel of the restriction to all cyclic subgroups:

U^,yV)=Ker[^((^—— n H\<g>,N)].
(ft. G

Recall that a permutation G—module is a direct sum of G—modules 1[G/H\^ H being a
subgroup of G; the G-modules N^ and N^ are called similar if N^ © M^ and N^ ® Mg are

isomorphic for some permutation modules M^ and M> [43].

LEMMA 1.17. // M is a permutation G-module, then UJ^(G',M) =0, i= 1,2.

Proof : The assumption implies H1(G,M) = 0 (Shapiro's lemma), thus it is enough to prove the
second assertion in case M= 1[G/H\. Note that the restriction of the G—module l[G/If\ to H
(respectively to <h>) always contains the trivial module 1 as a direct summand (it
corresponds to the trivial coset H). Hence the kernel of the restriction map
H\G, 1[G/H\)—> n H2(<h>, I[GIH\) is embedded into the kernel of the restriction map

heH
H\H, 1) —^ n H2(<h>, 2), the latter being trivial because of the canonical isomorphism

h^H
^(G^^Hon^G.t/Z).
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COROLLARY 1.18. The groups H\G,N), |JJ ̂ (G,N) and [1J^(G',AO, 05 well as the groups

H\G,N°}, [1]^G,N°) and [i]^(G,N°) are invariants of the similarity class of the
G-module N.

This digression being over we come back to the modules related to root systems.

PROPOSITION 1.19. Let GC W{R), then

[I]^GMR)) = LLJ^(<W)), [I]I(GMR)) = LUl(^W)).

Likewise, if GC W(D^), then

LU (̂̂ )) = LJ (̂̂ )), \H^N(D^) = LU^(^Q(^)).

Proof: Dualizing the exact sequence (2) we obtain

(11) 0 —^1 —^ M(R) —> P(R) —> 0.

2
By the last lemma [i]^(G,l) == 0, and we get the following diagram :

0 0
1 1

LUJ^M(A)) —. Ljl(^W)) — o
1 1 1

0 —— H\G,M(R}) —— HW(R)) —— HW)

1 i 1
0 —. n H\<g>,M(R)} —. n H\<g>,M(R)) —. n H\<g>J.).

9^G geG g^G

The first statement follows immediately. In the case of M(R) the second statement is proved in
the same way. In the case of N{D^) the proof is the same with the exact sequence (11) replaced

by (10).

COROLLARY 1.20. Let GC W(A^) ^ S^ then LU^C(^)) = L1<1(^P(^)) = 0.

Proof: According to Remark 1.9 M(A ) is a permutation module.
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The remaining part of this section is devoted to the computation of \11^(G,P{R)) and

LLl!(^W)) tor R=B^C^or D^

The pair (<3(^), ^(^)) can be identified with a free 2-module of rank n and the

automorphism group of a quadratic form, which can be written as x2 +...+ x2 in some basis
Cp...,c^. We call such a basis standard.

The group W(B^) is generated by S^ (permuting the coordinates) and reflections

c^: x\—^ x - 2(a;,e^.. Therefore W(B^) is a semidirect product W(B^) = (2/2)"xi S ,
where ^n acts on °i ^y P̂ 111111'111^ the subscripts. There exists a character
a : w(B^) —> {±1} having W(D^) for its kernel, a(c^ c. ... .̂ . a) = (-1) ,̂ where A 6 S .

Let us denote the natural epimorphism W(B )—>S by pr, and set I== {1,2,...,71}.

Let GC W(B^), then / is a union of orbits of pr(G), we denote them by
IG,k^IG^=nk^ k=l^t• The ^-module Q(B^) is a direct sum of Q(B ), Q(B )

R k
being generated by e^ for ;€ I Q ^ . The representation of G in Q(B ) yields a

homomorphism 0^: G—> W(B^ ). Finally we define Xg^ ao 0^^ Hom(G',2/2).

LEMMA 1.21. Let <g> be the cyclic subgroup of W(B^) generated by g. All the characters

X<.> ^ are trivial iff g is conjugate in W(B ) to an element of S .

s
Proof: Let 1= U I ^ ^ be the partition of / into pr(^)-orbits, pr(g) =/?..../? being the

c

decomposition of p r ( g ) into independent cycles. Then g is of the form g= n C . p . where
k=l K k

c^\"\ ^ some elements ^,..,^6 1^^. Therefore ^^= C^ and

x<g>,k== ̂ l)w Let us check that if m is even then c^...c. (12...71,) is conjugate to

(12...7^) in W(B^ ). Consider the action of .̂ ...c^. (12.. .n,) on the set
K 1 m

{^,...,e^ , •-Cp...,-e^ }. There is one orbit if m is odd, and two orbits if m is even. In the
K K

latter case one can choose any orbit for a new basis of Q(B ). If h transforms {ei,...,e }
K k

into the new basis, then /^(^...njA == c. ...c. (12.. .n.).
h ^m K
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Before we go over to the main results of this section, let us comment on some properties
of the H^)-module Q(B^). The above description of this module implies that it is induced

from the one-dimensional G-module <e^>, G=< Ci,...,c >)^S ,. In particular, by

Shapiro's lemma, H\W{B^,Q{B^) =-- H\G,<e,>) = H\<c,>,<e,>) = 1/2. Note also, that

the IV(^)-module Q(B^) is autodual since the quadratic form x^+.^x2 is unimodular. Also

[1]^Q(B^) = LifeC(^)) == 0 (cf. Remark 2.7).

THEOREM 1.22. Let GC W[B^ = W{C^ and let GQ be the minimal normal subgroup of G

containing every g^ G conjugate in W(B ) to an element of S . Then

llĵ e(^)) = Horn (G/C?o, Z/2)/< XG^. XG^ >'

Note, that the case of GC W(D^) is included in the theorem, since the W(D )-modules
Q(C^) and Q(D^) are isomorphic.

Proof: Consider the exact sequence

0 —^ l __ M( C^) —. Q( B^ —. 0

dual to (1) for R = B^ (here we use the autoduality of Q(B )). Using the canonical

isomorphism H\G,1) = Horn (G^/l) we get the commutative diagram whose columns, middle
row and bottom row are exact:

o - LU!(^(cy) -. o1 i iH\G^Q(B^ ^ Hom(G,(/20 -. H\G^M(C^ ^ H\G^B^

7[ , ^ I In ^<g>^)) ^ n Eom(<g>w) ^ n iP(<g>McJ) - n ^(<^>,C?(BJ)
9^^ geG g^G g^ G "
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We put zero in the right hand column since [\^(G,Q(B^) = 0. Looking at the diagram
we see that

2
HUG^Cy) ^ Im an Im 0/lm (0o 7) = Im an Im 0/lm (ao 6) C n Horn (<g> (/2)

S^G

It is not difficult to compute H\G,Q(B^)) using the decomposition of the G-module

Q(B^) into the direct sum of G-modules Q(B^) for all pr{ G')-orbits /^.. Every
K ^

G'-module Q(B^ ) is induced from any one-dimensional module < e. >, 2 , 6 1^ ,. The
k ^k '

largest subgroup preserving < .̂ > acts on < .̂ > either trivially or not. In the former case
K K

we have

H\G,Q^)) = H^tl^G), Q(B^)) = 0,

whereas in the latter

H\G,Q{B )) = H^SQ^G}, Q(B^)) ̂ 1/2.
k ' k

If the latter case takes place for k == 1,...,5, and the former one for k = s + 1,...,^, then surely
H^G^B^^l^)8.

Now let us compute the map 6. Let a^ be the generator of ff\G,Q(B )),
/?

A?= 1,...,5.

LEMMA 1.23. ̂ )=^.

Proof : The restriction map H\W(B^ ), e(BJ) —. H^O^G\ Q(B^)) is an

isomorphism, hence by functoriality it is enough to prove the assertion for 0^ AG) = W(B ).
Cr,A v Tli.

In the rest of the proof we fix k, and omit the subscript k when it is not misleading. Let

H\W(B^ M(C^)) ——— HWB^ Q^)) ̂  Horn (W(B^ W

be a piece of the long exact sequence. According to Proposition 1.5, H1(W(B ), M(C )) = 0,
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hence 6^ is injective. Let a^y be the generator of H\W(B^, Q(B )) 2; 2/2. We claim that

the character 6^(a^) of W(5^) is trivial on 5 . Indeed, the following square commutes :

H \ W(B^ Q^)) -^ Hom( W(B^ </2)

res | res [

H ̂  ̂ )) ———— Hom(^'W

Since the ^-module Q(B^) is induced from the trivial S ,-module 1 we have

H\S^ Q(B^)) == 0, thus 6^(a^) is trivial on S^. Recall that W(B ) = (2/2)^.9 . The

triviality of <^a^) on S^ implies that <^0jy)(^) does not depend on i. Since 6r^- is

injective, ^^(fl^y) is a nonzero character. From c2. = 1 we conclude that

^a^)eViom(W(B^l/2) and ^o^)(^)=-l, i.e. ^o^) = a. Therefore

^)=^-

Completion of the proof of the theorem : Let ^6 Hom(G',2/2) and a(^) 6 Im /? = n Im /?
^G ^

(cf. (12)). Lemma 1.23 shows that Im /? - 0 iff all ^ ^ are trivial. Hence a(x){g) = 0 for

all g conjugate to elements of 5 .̂ If g does not satisfy this property then Im /? ^ 2/2, and

for any \ e Hom( G', 2/2) we have a(^) 6 Im B . Thus we have proved that

^6 Horn (G, (/2) is subject to the condition a(^) e Im /? if ^e Horn (G, 2/2) and ^(^) = 1
for any g conjugate in W(B^) to an element of S . Let Go be the normal subgroup

generated by such elements ge G, then \ is a pullback of some \' € Hom(G'/G'o, 2/2).
Therefore

LLj!(^ M(C^)) = Horn (G/^o, 2/2)/Im 6= Horn (G/G^1/2)/< XG^.XG ^.

The Weyl group W(B^) injects naturally into W{B^^) as the stabilizer of e ,.

There also exists a natural injection y?: F7(^) <—» F7(^ ^). In fact, if ge W{B ) and

a(g) == 1 let us set ip(g) = ,̂ and if a(g) = - 1 let <^(^) = g . c ...
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PROPOSITION 1.24. For any GC W(B^ wehave []Jil(G, Q{C^)) == [[]^(G), Q(D^)).

Proof: Clearly (p(G)Q = y(Go) since any ge. GQ satisfies a(g) = 1. Furthermore, the set of

characters [X^Q\ iJ coincides with {x/5jJ plus one more character \o corresponding to the
t

^-action on < e^>. By definition XoW) = ̂ ) = n XQ^ i.e.

< 'X-GV'^Gt^ = < x^p(G) \'1"">X^D{G\ ^xo >' Now the P^osition follows from Theorem
1.22.

EXAMPLE 1.25. Let the set {!,...,4n} be the union of 4 nonintersecting sets 1= {i }, J= {j },

M=={77^}, and L = {^}, S=I,...,TZ. Let G^c tV(^) be generated by a^ = C^ C. (w^)
5 ^

and ^ = ^ro ̂  (Ws)' GnsW2)2n• we claim that lil̂ n. ̂ (^n)):i (^Z)" In fact,
5 5

(G^ is generated by a^ and G^/(G^)^ (1/2)^ All ^ .̂ related to orbits {i^} and

{w^}, 5=l,...,n, are trivial on G', hence [l]l(G^ Q(C^)) ^ (l^f.

Our next goal is to compute [1]^(G,P{B^)). This includes the computation of

\A]^(G,P(B^)) since the iy(^)-modules P(D ) and P(B ) are isomorphic. Note that

P(Cy = 0(B^)° = Q(B^ and hence UJ^^-P(^)) = 0.

Let us introduce some notation. Let a^ , denote the generator of H l(G, Q(B )) if this
« K

group is nonzero, and let a^ be the sum of all a^, in H^G, Q(B ))=Q H^G, Q(B )).

By / we denote the union of pr(^)-orbits I^ ^ such that ^ , is a nontrivial

character of <g>.

t
THEOREM 1.26. Let GC W(BY and let 1= {l,2,...,n} = U J.,, be the partition of I into

k=l ^K .
pr(G)-orbits. Let F be the subgroup of I^(G,Q(B^)) consisting of £ a ^ ^ , JC {1,2,...,Q,

k^,J
such that for any ge G either ( U 7^ , )n J = 0 or I c U 1^.. Then

k^J ^K 9 g k^J (JiK

Ujl(C?,P(^))=F/<fl^>.
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Proof: The exact sequence (1) generates the diagram

0 0 0 LU^(^X^))1 l ., l [
ffl(G,M{B^)) —> 1 ——> ffl(G,Q(B^)) —> ffi(G,M(B^)) —» 0

1 '! , ' l
s iei.<f>MB.« — n I — n s'(<s>M».)) — n if{<!»Me,» —

^cCr ^eCr ^e Cr ^cG'

It follows that LLU^X^)) is isomorphic to the subgroup of H\G,Q(B^)} consisting of

^ ^^G'JS;' t/ c ^^'—'^^ such that 7 S o^, ̂  6 Im/?i, modulo Im ^. In order to compute

<^ and /?i let us first investigate the case of 07= W{B ). Then

lm8^= H\W(B^,Q(B^)=<aQ>. Now let J = U J^ be a partition of / into

pr(G)-orbits. The restriction map

^:H\W{B^Q{B^) —— ̂ i(^ ), Q{B^)) = H\W(B^ ), C(^ ))
K K K

is an isomorphism. Indeed, the following diagram commutes :

H \ W(B^), Q(B^)) -L^ Hom( W(B^), (/Z)

n "I
H'(W(B^)> QW -J-^ Hom( ̂ (^ )> W

(cf. (12)). According to Lemma 1.23, I m t f = < < T > , and ao £ is injective, thus 7 is
also injective, hence it is an isomorphism. It follows that

H\W(B^,Q(B^)^ n H\W(B^), <?(̂  )) is just the diagonal injection. Now let
K—1 A? A?

GC W(B^) be an arbitrary subgroup, J^ being ;pr((7)--orbits. The restriction map
t
n H\ ̂ (^ ), Q(B^)) —^ H\G,Q{B^) is surjective, hence Im ^ = < a^ >. Likewise

(Im/^=<a^>.
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It follows that T( S a^) € Im 0 iff (^( S aG^g= a<g> or °' Now it is enough

to note that if /^ is a union of pr(^)-orbits / , , 2=l, . . . ,m, then

m(7(a(?A=,ila<,>,A,•



2
ALGEBRAIC TORI AND RATIONAL SURFACES.

V.E. Voskresenskil has suggested the following approach to the classification of rational
varieties ([43], Ch. IV, see also [29], § 4). Consider the natural action of the group o = Gal ( k / k )
on Pic X, which is a free Z-module of finite rank (in the discrete topology this action is
continuous). If two smooth project! ve varieties are A-birationally equivalent, the corresponding
Picard modules are similar. Let us associate to X the similarity class of the g—module Pic X.
The varieties X and Y are called stably equivalent if ^x^^ is ^-birationally equivalent to

V X . P ^ for some m, ne. IN. Let Jf be the commutative semigroup consisting of stable

equivalence classes of smooth projective rational varieties with the semigroup law given by
X ^ . Y . Then the map X\—> [Pic X] can be extended to a homomorphism ^ — + ^ ^

denoting the semigroup of similarity classes of Z-free g-modules of finite rank.
Let T be an algebraic torus, i.e. a k-iorm of the algebraic group (G »)71, let

TTtr.A'

r = H o m ( r x , ^ , G .) be its character module, and let Xrp be a smooth projective

compactification of T. Associating T to T we obtain the (anti)-duality between the category
of algebraic k-tori and that of continuous (in the discrete topology) 2-free g-modules of finite
rank. We say that a A^-torus T is split by an extension L / k if T ^ . L ̂  (G^j)11- Let

G = Gal ( L / k ) , then the category of algebraic A-tori split by L is dual to that of torsion—free
G—modules of finite type. In what follows we shall (by a natural abuse of language) speak about
a torus dual to a G-module N without pointing out either the ground field, or the splitting
field. We denote the dual torus by N.

According to [43], Ch. Ill, § 6 there always exists the minimal field L splitting a given
torus. Moreover, L / k is a Galois extension.

DEFINITION 2.1. The minimal extension L/k splitting a torus T is called the minimal splitting
field of T or, if there is no ambiguity, the splitting field of T. The group G = Gal (L/k) is
called the splitting group of T.

It is clear that G is nothing but the image of the representation of g acting on T.
Let JC be the semigroup of stable equivalence classes of A?-tori split by L / k , let

G= Gal ( L / k ) , and let p be the homomorphism JC-* ^ such that p(T) = [Pic XrA. The

main theorem ([43], 4.60; [6]) states that p maps JC isomorphically to the subsemigroup of Jf
consisting of flasque G—modules (a module F is called flasque if {{^(G^F) = 0 for any
subgroup G' C G'). Thus, a hard geometric problem is reduced to an algebraic one. In
particular, any invariant of the similarity class p( T) = [Pic X^ is also a A-birational invariant

of the torus T. This is the case, for example, for the invariant H i(G,p( T)).
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The class p(N) can be defined without any reference to the dual torus. There exists a
flasque resolution of G—modules, i.e. a short exact sequence

(13) 0 — — ^ N — — > S — — » F — — ^ 0 ,

where S is a permutation (T-module, and F is a flasque one. Then p(N) = [F[.

PROPOSITION 2.2. Let N be a torsion-free G-module of finite type,
then Hl(G,pW)=[i]^G,N).

Proof : (See also [8]). Let 0 — ^ N — ^ S — ^ F — ^ O be any flasque resolution. We have a
commutative diagram:

0 0

LLJ^ —— [1]^G.N) —— 0

1 1 1
0 ——> H\G,F) ——> H\G,N} ——> H\G,S)

\ [ . !
0 ——. n H\<g>,F) ——c n H\<g>,N) ——> H H\<g>,S).

g^G geG g^G

It follows that LU^^M = \1]^(G,F). By periodicity, we get

H\<g>,F) = H~\<g>,F)\ F being flasque, the latter group vanishes. Consequently,
IH^.YV) = H\G,F) = H\G,pW).

The G-module F is defined up to addition of a permutation G—module, the same is
also true for the dual G—module F°. Let us write down a flasque resolution for
F° :0 -^F°—»5 ' i—»Fi—»0 . Then F^ is also defined up to addition of a permutation

G-module, i.e. the similarity class [p(p( N)0)] is well-defined. The following result was
communicated by A. A. Klyachko.

PROPOSITION 2.3. Hl(G,p(p(N)o))= [i]^(G,N0).

Proof: By Proposition 2.2 we have [i]^(G,F°) = H\G,F^. Dualizing (13) we get the exact

triple of (^-modules : O-^F0--^0—^0-^; acting as in the proof of Proposition 2.2, we
see that \^G,F°) = |jLll(^°), ^required.
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COROLLARY 2.4. The groups [^^(G.N) and []_\^(G,N°) are k-birational invariants of the

torus dual to a G-module N.

Remark 2.5. One can construct many other A-birational invariants of the dual torus applying
Corollary 1.18. However, these two ones have some advantage being expressed in terms of the
G-module N itself. Besides, as we explain below, LUJ^^ contains some information on

arithmetic properties of the dual torus (in the case of a global ground field).

Remark 2.6. Let A be a linear algebraic group defined over k, and let T be a maximal
A^-torus in A. The Galois group g = Gal ( k / k ) acts on T fixing the set of roots of A
corresponding to T. If A is semi-simple and R is the corresponding root system, then T is a
subgroup of finite index in the weight lattice P(R)) moreover T contains the lattice Q(R)
generated by the roots of R. Under the additional assumption that A is an inner A?-form, G
can be embedded into the Weyl group W(R), and we are in the situation of § 1. Theorems 1.22
and 1.26 compute the birational invariants of a maximal A?-torus T in a classical group of
adjoint type (an inner form), since in this case T = Q(R).

Remark 2.7. Let us explain how to prove that LU^(G', Q(B )) = LU^(G', Q(B )) = 0. To this

end it is enough to establish the ^-rationality of the torus T dual to the W{B )—module

Q(B^), and to apply Corollary 2.4. However, it is clear that T can be embedded into a A?-form

of (IPy^ as an open subvariety. V.E. Voskresenskil has shown ([44]) that this variety is

A^-rational iff it has a Ay-point.
Now let us go over to the main object of the paper — to rational surfaces. The study of

rational surfaces has three different aspects. The first one is their geometry over an algebraic
closure of the ground field. This is one of the well-understood themes of classical algebraic
geometry. The second problem to deal with is to study the action of the Galois group on divisors
or on some other geometric objects associated to a surface. This part is of algebraic (or
combinatorial) nature. It is somewhat parallel to Voskresenskii's approach to tori. The results of
this theory are essential for the third stage of the study, this one of arithmetic nature. On this
stage one studies rational points on a surface (computing Manin's obtruction to the Hasse
principle, computing the group CH\X), etc...). One can find a more detailed account of this
subject in [28], [29], [7], [9], [10]. Here we are going to show how the results of § 1 can be
interpreted from the geometric point of view, and point out some consequences, useful for the
study of zero-cycles on a surface; for the details see the next section.

The set of all rational surfaces is, in general, too numerous for a more or less explicit
description. However, many properties (and among them the most interesting ones) do not
depend on a particular choice of a surface in its A?-birational class. Therefore we can restrict
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ourselves to studying A?-mimmal models, i.e. smooth complete surfaces for which any birational
A?-morphism to a smooth surface is an isomorphism. All the minimal models over an
algebraically closed field are well-known : these are IP2 and ruled surfaces F with n> 0,

ni- 1. If the ground field is not closed, then the classification is much more complicated. Let us
recall some necessary definitions.

DEFINITION 2.8. A smooth rational surface X such that - K^r is ample is called a Del Pezzo

surface. The number n = (K^) is called the degree of X; for n> 3 the divisor - K^r is very

ample and embeds X into IP? . The surface X = X-x , k is IP, with (9 — n) points in general

position blown-up (it means that no three points lie on a line, no five points lie on a conic, etc...,
cf. [29], 2.1.1).

Examples : A Del Pezzo surface of degree 9, i.e. a k-ioirn of IP?, is called a Severi-Brauer

surface. Among Del Pezzo surfaces there are some complete intersections : that is the case when
the degree is equal to 3 (a smooth cubic in IPp, or to 4 (a smooth intersection of two quadrics

in ^).

If X is a Del Pezzo surface of degree ?i, the structure of the Picard group Pic X is
clear : as an abelian group it is just a direct sum of (10 - n) copies of Z; a generator h is the
proper transform of the class of a line in IP? , and other generators t- are the classes of the

blown-up points.
The quadratic form given by the intersection pairing is diagonal in this basis:

9—71•?-,?/••
The Galois group g acts on X^ hence it also acts on Pic X. The action preserves Ky

(which is defined over k) and the intersection pairing. It is clear that if D can be contracted by
a A^-morphism, then its class belongs to the g—invariant part of Pic X. Therefore the condition
(Pic X)^ ^ 1 guarantees A?-minimality of X. This is one family of ^-minimal rational surfaces.

DEFINITION 2.9. Let Y be a surface endowed with a morphism f onto a rational curve C, and
suppose that Y is a k-form of F with m points blown-up, no fibre of f containing more

than one of these points. Then Y is called a (standard) conic bundle with m degenerate fibres.
The integer (K^) = 8 - m is called the degree of the conic bundle Y.
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Let QY/C 1ae the relative ̂ 6^ bundle, then R° f^Qy/C is a ̂ ^ ^ree shea^ °^
rank 3 embedding Y into ^(RQ f^ ©y/n)- Each irreducible fibre is a conic, and a degenerate

fibre is a pair of lines meeting transversally. Recall that a conic bundle f : Y-—^ C is called
relatively k—minimal if its fibres contain no contractible lines. In other words, there exists no
A?-morphism h: Y--+ Y' such that the surface Y' is smooth and is not isomorphic to V,
where /' : Y' —^ C is a conic bundle over the same base (7, and / = /' o h.

The Picard group of F is isomorphic to 1 ® Z, let us denote its generators by IQ and

5, the first one being the class of a fibre of the projection onto P1, and the second one being the
class of the exceptional section. We have (^2) = 0, (IQ,S) =1, (52) = - n. Therefore Pic X is

the direct sum of Pic F and m copies of 2, the generators of the latter groups being the

classes of the blown—up points. Denote them by ^ir--»^» we have (^. ,0 = — J- •.

LEMMA 2.10. For m> 1 there exists a basis L^ ^' ^'"^rn in the lattice Pic Y such that IQ is

the class of a fibre of f, and ^,...,^ are the classes of the components of degenerate fibres,

one from each. We have (^_2) = ( ^ . , 1) = 0 for i> 1, and (^_p L) = 1.

Proof : Set t- = L — I , , then all the intersection numbers are as before except for

(s, £.) == 1 - (5, ^.). Therefore we can set (s, 1) = 0 for 2 ^ 1 . Set 5' = 5 + ^ + ^, then all

the intersection numbers are as before except for (s72) = (s2) + 1. Iterating this substitution we
obtain the required result.

PROPOSITION 2.11 ([21]). Any k-minimal rational surface is isomorphic to one of the following
list: (P2,, a quadric Qc IP? with (Pic Q)0 ^ 2, Del Pezzo surfaces X of degree n (nf 7)

with (Pic ^)0 = 1. K^ , conic bundles Y of degree n (n+ 3, 5, 6, 7, ared V^ F^, for

n=S) with (Pic P)0^®!

Let us remark that if (Pic Y)0 ^ 2® 2, then for n^ 8 this group is generated by IQ and
Ky

The condition (Pic P)0 ^ 2 . ̂ o© Z . Ky guarantees relative ^minimality of V,

although, in general, such a surface must not be A^-minimal. However, by Proposition 2.11 a
relatively A-minimal but non—A^-minimal conic bundle can appear only if its degree is equal to
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THEOB.EM 2.12. a) Let X be a Del Pezzo surf'ace of degree (9 - n) with 3< n<. 8, then there
exists an isomorphism a : Pic X—^ M(E' ) mapping the intersection form to the quadratic form

(5) multiplied by —1, and such that the orthogonal complement to ff{Ky) in M(E ) is Q(E ).

b) Let Y be a conic bundle with n degenerate fibres^ then there exists an isomorphism
a : Pic Y—^ M^U mapping the intersection form to the quadratic form (7) multiplied by — 1,

and such that the orthogonal complement in N(D ) to the sublattice generated by o'(Ay) and

^o) is Q(D^).

Proof: According to Remark 1.11 the quadratic forms on M{E ) and N(D ) are indefinite

and, by Theorem 1.10, unimodular. The signature of each form is equal (up to a sign) to the
signature prescribed by the Hodge index theorem. Therefore they are isomorphic (as quadratic
forms) to the intersection forms on Pic X and Pic V, respectively.

Using the Gram-Schmidt orthogonalization we can construct the isomorphism a
satisfying the required condition. Let a?..., a be a basis of the root system E , and let

{a-.,...,a .0} be a basis of M(E^ such that the matrix of the quadratic form coincides with

(5). Set (T(^) = A a(^) = ̂  4- A ... ,<7(^) = a3+...+a^ + A

<7(^) = <^ 4- 03+...+a^ 4- A cr(^) = a! + ^2 + ̂ 3 + 3(a4+>••-t-a7l) + 3^

Induction shows that cr is an isomorphism of quadratic forms. Besides,

^r-^+J/,-
n

a(K^) = {n-9)0 - 2<^ - 3o^ - 4a^ - S (lO-z)^. = (n-9')(0+u )
2=4

(see the formulae for fundamental weights in [3], Ch. VI). Since </?, a-> + <u , a> = 0 for

all z, it follows that a(K^) is orthogonal to Q(E ).

The construction of an isomorphism a : Pic V-^ A^D ) is similar. Let a,,...,a be a

basis of the root system D^ and let {ap...,a^, A 7} be a basis of M(D ) such that

<A <^> = - <o/p a^>, <7, a^> = - <o '̂, a^>, i.e. in this basis the matrix of the quadratic

form coincides with (7). Set a(^) = A ^(^) = A = ^, a(^) = /? + ̂  + a^,...,

^(^) = 0 + ̂  +...+ a^, <7(^) = 2A 4- 2(^ 4-...+ a^) + a^ 4- a^, (7(Gi) = 7. A

straightforward computation shows that a is an isomorphism of quadratic forms. By the
adjunction formula we have (KyQ=-2 and (J<y^.)=-l for ^1, on the other hand,
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n
(K^r) =8-71, therefore Ky= -2(<_^+^) 4- S ^. It follows that

n
<7(- 2^ + S .̂) == - 27 + TI/? + (^-l)ai+...+a^. Note that <7(^) = 2(/?-K^),

71
<r(-2^ + S ^.) = 7i(/?4-o/J - 2(74-0; ). The theorem is proved.

COROLLARY 2.13. The group of automorphisms of the lattice Pic X (respectively of Pic P)
preserving the intersection form and Ky (respectively Ky and t^ is isomorphic to the Weyl

group W(EQ^ with n equal to the degree of the Del Pezzo surface X (respectively to

W(D ) with m equal to the number of degenerate fibres of the conic bundle Y).

Proof: Follows from Proposition 1.15.

DEFINITION 2.14. The image of the Galois group g under the action on Pic X is called the
splitting group of the rational surface X. The fixed field of the kernel of this action is called the
splitting field of X.

This definition is analogous to Definition 2.1.
According to Corollary 2.13 the splitting group G is a subgroup of W(R) with R = D

or E^, and the G—module Pic X is isomorphic to M(E ) or N(D ). As in the case of

maximal tori in adjoint groups, the problems arising here concern the study of the module
M(R). However, if two surfaces are A'-birationally equivalent, the corresponding Picard modules
are similar; therefore, any invariant of the similarity class [Pic X\ is also a birational invariant
of X. This is the case for H\G,Pic X), [JJ^ (G, Pic X), and LU^(^Pic^). From

Section 1 it is clear how to compute the latter invariants.
Note by the way that the tori dual to the W( ̂ -modules M(R) and Q(R) are stably

equivalent. This follows from Voskresenskil's theorem ([43], Ch. VI, § 2) and the exact
sequence (1).

DEFINITION 2.15. Let X be a rational surface defined over a field k. The algebraic torus dual to
the Q-module Pic X is called the Neron-Severi torus of X.

All these invariants play an important role in studying arithmetic properties of a surface.
Let A: be a global or a local field of characteristic 0, and let X be a rational variety (complete
and smooth), then there exists an exact sequence

0 -^ Pic X-^ (Pic J)0-^ Brk-^ BrX-^ H\k, Pic X) ~» 0,
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where Brk is the Brauer group of k (the group of classes of central simple algebras), and
Br X = ^/(^ ^ v) is the cohomological Brauer group of X (it coincides with the group of

classes of Azumaya algebras on X) (cf. [28], [10]). Let A: be a number field. We say that the
PIasse principle holds for X if the condition X(k ) ^ 0 for every place v of the field k implies

X(k)f 0. Each class A 6 Br X determines the map "value at a point" : X(k) —» Brk^ and
X(k) —» Br k . Local class field theory yields an embedding inv : Brk ^ (/2. Define the

map I A : n X(k ) —> (/2 by i A x ) = E iriv (A ). The reciprocity law states that if j£ ^(A?),

then S inv,(A} = 0. Therefore, if X(k ) / 0 for every v but n Ker i. = 0, then
z; v x v A^H\kf\cX) A

the Hasse principle fails to hold for X. This obstruction is called the Manin obstruction to the
Hasse principle.

PROPOSITION 2.16 ([10]). Let B(^) denote the group of classes of locally constant Azumaya
algebras modulo constant algebras (H(̂ ) 15 the image in Hl(kyP'lc.X) of the kernel of
BrX-^IlBrX^/Brk^ Then -E(X) C [i]^(G,P'icX).

Proof: We have an exact sequence

0 -^ UX) -» H\G, Pic X) -^ n H\G , Pic X),
v

where G is the splitting group of X, and G^ is the splitting group of X . From Chebotarev's

density theorem it follows that for every ge. G there exists a valuation v such that
G,=<g>.

Remark 2.17 ([10]). Let A? be a number field, and assume X(k )+ 0 for every v. Then

Manin's obstruction associated to b(^) vanishes if and only if the exact sequence of g-modules

1 -, p -, k(X)* ̂  k{X)^l¥ -^ 1

splits.
Conjecturally, if we restrict ourselves to rational surfaces, then Manin's obstruction to the

Hasse principle is the only one. Thus, if H\k, Pic X) = 0, then the Hasse principle holds for X
(see [36] for discussion of some results in this direction).

On the other hand, let A' be a rational surface, and let CHQ(X) denote the Chow group
of zero-cycles on X. Let AQ(X) = Ker [CH^X) de^ > 2] be the group of zero-cycles of
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degree 0. Let Sy be the Neron—Severi torus of X. There exists Bloch's homomorphism

<^ : AQ(X)-^ Hl(k,S^), cf. [2]; if k is local or global, then <|) is injective [4]. Let k be a

number field. Then there exists the commutative diagram with exact rows, defining |_J AQ^X)

and LU1^)^

0 ——. UJAoW ——^ AoW ——^®Ao(Jn
v

I i i
0 —— LU1^) —— H\k,S^) —— © ̂ (V^) •

Tate-Nakayama duality implies that [JJ ̂ S^) and |_[J ̂ .S^) = UJ \k, Pic A') are dual to

each other as finite abelian groups (|JJ \k^ Pic X) denotes the kernel of the map

If{k, Pic X) -^ n Ip[k , Pic X)).
v

PROPOSITION 2.18. There exists a natural embedding of groups

(14) LLJ^Pic^) c—— LUS(^Pic^.

Proof: It is analogous to the proof of Proposition 2.16.

Conjecturally, there exists the following exact sequence

0 - LU1^) - W -^ Ao(^) ̂  H\k, Pic ~X)\

reducing the computation of AQ(X) to the computation of A^(X ) [9] (cf. the note at the end

of Section 0).
To conclude this section, let us return to tori and recall Voskresenskii's theorem ([43],

Ch. VI, § 7) which computes the cokernel of the homomorphism (14). Let G be a linear

algebraic group over a global field A;, and let G(k) be the topological closure of the image of

G(k) under its diagonal embedding into n G(k ). The group A(G) = n G(k )/ G(k) is called
v v

the weak approximation defect it is a birational invariant of G. Let T be an algebraic torus,
then the quotient [\}l(G,T)l\\]\G,T) is dual to A{T).
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3
INTERSECTIONS OF TWO QUADRICS IN ̂  AND CONIC BUNDLES

Recall that for d = (K^) ̂  3 the anticanonical class - Ky embeds a Del Pezzo surface» •/*-
X into IP^, and the image is a smooth surface of degree d. According to Theorem 2.12 the

orthogonal complement to K^ in Pic X is the lattice Q(E^) generated by roots, here
n = 9 - d, 3 < n < 8. For d = 4 this fact has a nice geometric interpretation.

It is well known that a Del Pezzo surface of degree 4 is defined in IPf as a geometrically

integral smooth intersection of two quadrics X== <%n Q^. Let us consider the entire pencil of

quadrics containing X: Q^ = % + A ̂  , A 6 k. Assume % and %, to be nonsingular.

Singular quadrics of the pencil correspond to the roots of the polynomial P(A) = det(O). Since

X is smooth all the roots A^. of P(\) are distinct [31], therefore precisely 5 quadrics of the

pencil Q^ are singular. These are cones over smooth quadrics Q\ in IP]- By v. we denote the

vertices of these cones. Since Q^ P^x P^, we have Pic Q\ ̂  Pic Q^ 2© 2. This group is

generated by classes of projective planes passing through the vertex v^ and a projective line

belonging to one of the two pencils on P ^ x l P ^ . We denote these classes by h' and h\ Each

of the planes intersects X in a conic ^.n % (by abuse of notation we denote by .̂ both the
conic and its class in Pic X).

PROPOSITION 3.1. In PicX the following relations hold:
a) - K^ = .̂ + .̂ /or ony i,

b) (^2) = (^2) = 0, (^.. )̂ == 2 /or any 2,
c) (^, • ^) = 1 for if j (for all combinations of signs 4- and -).

Proof:
o ^

a) Choose ^^CJP^ in a special way. Namely, let L contain ^., and let the projection of
2/ from .̂ be tangent to .̂ Then Ln ^.= A^u ^., hence 2 / 0 ^ = ^ 0 .̂.

b) The projection from .̂ represents ^ as a double covering of Q., pr.-.X^Q^. Hence if
,̂ we Pic Q\, then (pr^ ^. pr^ m)^ = 2(^.m) ^ , and b) foUows.

^i
c) By definition of q\ we have (^.. <^ = (/^.. ^.)^ = (^.. ̂ .)̂  = i.
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COROLLARY 3.2. The orthogonal complement to Ky in Pic X is generated by q • — q • /or a^/

possible choices of + flTirf —. Equipped with a quadratic form (intersection pairing), f/it5 lattice
is isomorphic to Q(D^) with the usual quadratic form given by the Cartan matrix.

Proof : It is easy to check that the intersection matrix of q\ — q^, q[ - q^ , q^ — q^ , ^3 — q\,

^4 — q^ is the Cartan matrix of the root system D^. The discriminant of this lattice equals 4.

The intersection pairing defines a unimodular quadratic form on Pic J?, hence the discriminant
of the orthogonal complement to K^ equals (Kjr) = 4 since K^r is not divisible in Pic X. It

follows that K^ is generated by <f. - (f..

Let us extend the ^(zy-action on Q{D^) = {76 Pic X \ (7.7<x.) = 0} to the entire

group Pic A so that Ky is W( Zy-invariant. Then the set {q[, ^,...,^5, ^5} with

H^iy-action can be identified with the graph A (cf. § 0, Fig. 3).

Now let us consider the configuration of lines on X. Note that the projection of
Q. ^ I P . x P. onto any factor equips X with a conic bundle structure over IPj^. Its fibres are

conies of the pencil q- (respectively of q - ) . In view of 3.1 a) it is natural to call- q*. and q~.

complementary pencils. Degenerate conies in any of these pencils can be described for example in
the following way.

Let us choose a coordinate system (XQ^...^) on IP, such that t/ .= (1,0,0,0,0). Then Q.

is given by a quadratic form in ^,...,^4 , and QQ after a suitable linear change of coordinates is

given by X^-QQ (^,...,^4). The projection pr^ from v^, pr^: (a;o, a;!,...,^)^—* (^,...,3:4),

makes X a double covering of the quadric given by Q, == 0 with the equation

.̂  = C?o(^,...,a:4), ramified along a smooth elliptic curve C ^ - Q Q ^ Q ^ . Let ^ PJ^ lie on X.

Then pr(() ̂  IP- lies on Q^. However pr'.^-) = ^U i' only if IP- is tangent to C. The

number of such lines belonging tb one family on I P . x IP, equals the number of ramification

points of the covering '̂"""^t» which is given by the projection of I P . x IP. to the

corresponding factor, that is 4. Above these 4 lines there lie 4 pairs of lines on X, which
constitute the degenerate fibres of one of the two complementary pencils of conies. The entire set
of these 16 lines forms the configuration described by the graph F ([28], Ch. IV, § 4; cf. § 0,
Fig. 1). Recall ([28], Ch. IV) that the classes of lines in Pic X are precisely the classes I such
that (^v) = [t2) = — 1. Each class contains only one line. This gives an injection

W(D^) ̂  Aut F, which in fact is an isomorphism.
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The Galois group o= Gal(k/k) acts on r. It is often useful to know the partition of F
into g-orbits. For example, H{(k^ Pic X) depends only on the partition ([28], Ch. IV, 9.3).
Recall that X is A?-minimal (section 2) iff there is no g-invariant set of pairwise
nonintersecting lines on X^ i.e. there is no g—invariant subgraph of F with the property that
any two vertices of it are not joined.

DEFINITION 3.3. A subgroup G C W(D^) is called minimal if T has no G-orbit such that any two

vertices of it are not joined.

This property holds for a splitting group G of X iff X is ^-minimal.
The complete list of all possible partitions of F into (7-orbits for minimal subgroups

GC W(D^} is obtained in [28], Ch. IV, table 2 (see §0, Figure 4). The types are always

numerated as in Figure 4. A type A is called a subtype of a type B, if after the action of a
suitable element of W(D^) the partition of type A becomes a subpartition of the partition of

type B.
Starting with the list of all possible types V.A. Iskovskih [20] proved that if a Del Pezzo

surface X of degree 4 is Ay-minimal then either (Pic X)0 = 1. Ky, or (Pic^)0^?®?. In

the latter case (Pic JY)9 is generated by (f- and q~ for some i. Thus X has two different

conic bundle structures, each defined over k. Since the property of being a component of a fibre
of such a conic bundle is g-invariant, the partition of F into g-orbits is a subpartition of the
following one : the 16 lines are divided into two orbits, each containing 8 lines, such that each
orbit consists of lines which project to one family of lines on the quadric Q° ^ C^ x C^,

C'i ^ C^ ^ Pj^ . This partition is of type XV (see Figure 4). On the other hand, according to 2.13

the group of automorphisms of Pic X, preserving Ky and the intersection pairing, is

isomorphic to W(D^). From 3.2 it follows that no element of W(D^) acts trivially on the set of

rational equivalence classes of conies ^±. Considering the intersection matrix of (f' obtained in

3.1 wo see filial, this action is the "usual" action of W(D^) on graph A (see § 0). The stabilizer

of q[ in W{D^) is isomorphic to W(D^. This injection was called standard in § 1. Summing

up we get the following statement.
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CO&OLLARY 3.4. Let X be a k-minimal Del Pezzo surface of degree 4. The following conditions
are equivalent:
i) rk(Plc^)Q=rkP\cX=2,

ii) the type of the partition of F into G-orbits is a subtype of type XV,
iii) the splitting group G of X is conjugate to a subgroup of W(D^) = <C2C3,(23),(2345)>;

iv) there exists a k-morphism f : X — ^ C onto a rational curve C, representing X as a
conic bundle with 4 degenerate fibres,

v) if X = QQ n Q^ , QQ and Q^ being nonsingular quadrics, then

a) the polynomial det(<% 4- A QJ has a root \^ in k,

b) for any hypcrplane H such that the restriction of (% = QQ + A^ <9^ ^0 H is

nonsingular, we have det (<%| rr) e (Jfc*)2.

Proof: The equivalence of i), ii), iii) and iv) is proved above. Let us prove that.v) is equivalent
to iii). The pair {^, q[} is g-invariant, hence the quadric (% is defined over k. The

equivalence of v) b) to the property of q\ and q[ to be individually g-invariant follows from
the following fact.

LEMMA 3.5. Let Q be a smooth quadric in IP?, then Pic Q^ lei iff det Qe. (A*)2.

Proof : The quadratic form Q can be reduced to a diagonal form (x^ - ax^) - b(x^ - cx^),

det Q = ac&2. The two families of lines on Q are then given by the equations :

J^+Vfl^ = t(x^ 4-Ye 2:4)

U-Va^ =bt~l(x^-^x^

(x^+^ax^ = t(x^-^x^

U-vfl^ = bt'\x^ +Vca;4)

Each family is o-invariant iff l^fa) = ^c), i.e. a = cr2 for some r6 k.

Itemark 3.6. As we have already mentioned, the image of the standard embedding of W(D^)
into W{D^ preserves q\ and hence the fundamental weight ^ = ^ ([3], Ch. VI, 4.8).

Proposition 1.14 states that the W(D^) -module M(D^) is isomorphic to N(D^) (this also

follows from the above geometric description of Del Pezzo surfaces of degree 4 with
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Pic X^ 1+1). Let us also note that a subgroup GC W(D^), which in fact belongs to W(D^),

is minimal iff rk N(D^ = 2.

The remaining part of this section is organized in the following way. First we recall a
result of Iskovskih describing all relatively A^-minimal conic bundles of degree 4. The study of
anticanonical models of these surfaces leads us to the conclusion that any such surface is
A^-birationally equivalent to a Del Pezzo surface of degree 4. This is valid when k is large
enough, for example, infinite; as we suppose it to be throughout this paper. If k is small, there
exists a unique counterexample, for ^ = = ^ 3 [41]. This provides an answer to a question of

Iskovskih ([22], § 2, remark 1). Then we try to obtain some necessary and sufficient conditions
for a Del Pezzo surface of degree 4 to be A'-birationally equivalent to an Iskovskih surface.

Here are some useful facts extracted from the proof of proposition 1 of [20]. The
anticanonical class — K^r of a relatively A?-minimal conic bundle X defines a A^-birational

morphism h: X-^ Y, such that either h is an isomorphism, Y being a Del Pezzo surface, or
it contracts a curve from the class - ̂ -2 ̂  to a singular point (here IQ € (Pic JY)0 is the

class of a geometric closed fibre of /: X—^ C). In the latter case this curve splits over a
quadratic extension of k into two absolutely irreducible smooth rational curves, each of them
having self-intersection -2. Hence Y has two singularities (double points of type A^

conjugate over k. In the former case (when h is an isomorphism) the linear system
|-/^-2^j is empty.

Note that according to Proposition 2.11 any relatively A-minimal conic bundle of
degree 4 is A-minimal. In this case (Pic X^ = 1 Ky 4-1 IQ.

DEFINITION 3.7 [14]. An Iskovskih surface is a geometrically integral intersection of two quadrics
Y in IP ,̂ having precisely two conjugate double points, with the property that the line joining

them does not lie on Y.

PROPOSITION 3.8. The anticanonical model of a relatively k-minimal conic bundle of degree 4,
such that |-J^-2^| is not empty, is an Iskovskih surface. Conversely, the minimal

desingularization of an Iskovskih surface has a conic bundle structure defined over k, such that
if IQ is the. class of a fibre, then \ - K^ - 2 IQ\ is not empty.

Proof: The Riemann—Roch theorem gives

h°(X, ^(-2K^) - h\X, ^(-2K^) + h\X, ^(-2^)) = 3(7^) +1=13.
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By Serre duality h\X, ^(-2A^)) == h°(X, ^(37^)) = 0, since (K^.O) < 0 for some curves C

on .̂ Let us prove that h^X, ff(-2K^)) = h\X, ^(3K^)) = 0. Let C be a curve from

| - 2/<J . There is an exact sequence of sheaves

(15) 0 ——^ ̂ (^- °) ——1> ^(K^ ——' ^(^)0 ^7——¥ 0.

Since X is rational, Serre duality yields h\X^{K-^) = h\X,0) = 0. On the other hand

h\X,0(K^e ^y = h°(C^(K^)\ ^) = 0 since (K-^. 0) < 0. Now the long cohomology exact

sequence provided by (15) implies h\X^(K^- C)) = ^(X^^Ky)) = 0. Therefore we have

hQ(X^(-2K^))=13. Let Y be the image of X in IPf. Since A0((p^(2)) = 15, Y is

contained in at least two quadrics QQ and Q^. The degree of Y equals 4, thus

y== ^n Q . An effective curve from | — Ky—li^ is clearly contracted to a singular point

on Y, since ( — / < ^ . — J < ^ - - 2 ^ ) = 0 ; the two singular Appoints correspond to the two

components. The singularities are rational of type A^, since the self—intersection of each

component equals — 2. Suppose that the line v joining the singular points lies on Y. Let b be
its class in Pic X. We have (- K ^ . b) = 1, (- Ky- 2^o . b) = 2, hence (^.6) is not an

integer. The contradiction proves our claim.
Let us prove the converse. In the pencil of quadrics defining Y there exists the unique

(and hence defined over k) quadric containing the line v joining the singularities of Y.
Indeed, the condition that a quadric Q contains a point x € v\ Y gives one linear restriction on
the coefficients of Q. Therefore (since xf. Y) such Q is unique, we denote it by QQ. Three

different points of v lie on Q^ hence v C QQ. The line v intersects Q transversally, and

the intersection points are both singular on Y= QoC[ Q . Thus vC (Oo)sing' Since

Wsing^ Q^ ^ing and V^gC v, we see that v = ( ̂ sing-

The same method shows that there are no more quadrics of rank 3 in the pencil
Q\ = QQ + A Q , and the polynomial A"2 det Q^ has no multiple roots. Assume Q to be

smooth. Let M be the 2-dimensional /^-vector space such that IP(M) = v. Since Q | „ is

nondegenerate, QJ ^± is also nondegenerate (M^ is the orthogonal complement to M with

respect to Q ). Let XQ and ^ be the orthogonal coordinates on M, and x^ x^ and x^ be

the coordinates on M1. Then Q is of the form x^ - ax[ + Q'(x^x^) = 0, and Qo is

given by Qo^x^) = 0. Consider the projection pr from v, pr: Y\ Y^ -^ (%c IP(M1).
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Since Yg^ c v, a look on the Jacobian matrix of Y reveals that the set QQ = Q' = 0

consists of 4 distinct points. The equations show that the fibres of pr are conies, and exactly 4
of them are singular. Let Y be the proper transform of Y with respect to the blow-up centred
at Yging- Clearly Y is the minimal desingularization of V, and pr can be lifted to a

morphism /: Y—*QQ defining a conic bundle structure of degree 4 on V. The two

components of the exceptional curve are conjugate over k. By the adjunction formula — Ky

is the class of a hyperplane section on V. Therefore - Ky is the proper transform on Y of

this class. By e 6 Pic Y let us denote the class of the exceptional curve, then the equations
(e.Ky) = ° and (^o) = 2 "^y e6 I ~ KY~ 2 ̂ '

Remark 3.9. The second part of the proof was influenced by the proof of lemma 2a of section 9 of
[12].

Note also that theorem 7.2 of [14] states that if a singular intersection of two quadrics
Yc IPf is A—minimal (in the sense that its minimal desingularization is A—minimal), then Y is

an Iskovskih surface.

Remark 3.10. Assume that there is a A—rational point on the conic QQ. Then up to a linear

transformation QQ is of the form ^ x^ — x\ = 0. Let x^ = 32, ^3 = t2, x^ = xt be a rational

parametrization, i.e. an isomorphism QQ ^ IPj, . Substituting these expressions into the equation

of QQ we get a surface

(16) x^axi=P^t)

P(x^t) being a homogeneous polynomial of degree 4 without multiple roots. The natural smooth
compactification of the affine conic bundle (16) is called a (generalized) Chatelet surface (cf. [7]).
This compactification can be constructed in the following way. Let

and
y^-az^f^t2

Y'l-aZ2=f{\-v) T 2

be the equations defining surfaces in IP^x A , . Let us glue them in P j x (A,\0), putting

y= Y, z = Z , t=\2T, x=X~1. The fibre over ^=00 is smooth iff the leading coefficient of
f(x) is not zero.
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The condition Oo(A?) ^ 0 is equivalent to the condition that the class IQ of a closed

geometric fibre of /: y—» Q^ is defined over k, i.e. ^ 6 Pic V. This is equivalent to

Pic Y= (Pic Y)3, i.e. to the condition that the natural homomorphism Brk—^Br Y is
injective (cf. the exact sequence after 2.15). Both conditions are clearly satisfied if Y(k) + 0. We
reformulate Proposition 3.8 as follows.

COROLLARY 3.11. The minimal desingularization X of an Iskovskih surface satisfying any of the
equivalent properties:
i) Pic .Y= (Pic JO9;
ii) the natural map Brk—^BrX is injective;
is isomorphic to a (generalized) Chatelet surface.

COROLLARY 3.12. Any relatively k-minimal (generalized) Chatelet surface is biregularly
isomorphic to the minimal desingularization of some Iskovskih surface.

Proof: Let us write the equation of the Chatelet surface X in the form

^-^=PM4

The curve on X given by x^ = 0 is g-invariant. It is easy to check that its class is just

-J^-2 <,

Remark 3.13 : It is not difficult to obtain the equations of two quadrics defining the
anticanonical model of X. Let y2 - az2 = P(x) be the equation of the (generalized) Chatelet

4
surface X. Set u = a;2. If P(x) = S a, x\ 04 i. 0, then the anticanonical model is the

z=0 *
intersection of two quadrics Y:

ry2 — a22 = OQ + Q.IU + 04 u2 + a^x 4- a^xu
[x^u

Remark 3.14 : Consider an Iskovskih surface V, and let X be its minimal desingularization.
The group of automorphisms of Pic X preserving K^ , ^ and the intersection pairing, is the

Weyl group W(D^) (Corollary 2.13). The splitting group G of X acts on degenerate fibres of

/: X-^ C, hence on the 4 singular points of these fibres. Here is a funny statement (the proof
is left to the reader). Let x^...,x^ be the intersection points of the 4 pairs of lines on Y. Let
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<%, (% and % be the quadrics of rank 4 in the pencil Q^ = QQ + A Q , 1/1, ̂  1/3 being

their singular points (the vertices of the cones). Then the points v. are the intersection points of

the lines joining ^ and j. (see Figure 5).

In particular it follows that G acts on {v^ v^ 1/3} via the map G ̂  W(D^) -°—^ S^ -^—^ S^

where a is the natural projection corresponding to the action on {a^,...,:^}, and 0 is the

factorization by Klein's Vierergruppe.
The proper transform on X of a conic on an Iskovskih surface is also called a conic.

LEMMA 3.15. Let Z be a Del Pezzo surface of degree 4 (respectively, an Iskovskih surface). Let
q^, i = 1,...,5, be the one-dimensional linear systems of conies on Z cut by the planes lying on

the quadrics Q^ of rank 4 of the pencil Q^= Qo+XQ^ (respectively, let ^ and .̂,

i= 1,2,3, be the one-dimensional linear systems of conies on Z cut by planes lying on the
quadric QQ of rank 3 and on the quadrics Q. of rank 4 in the pencil Q\=QQ+\Q).

Then any conic on Z belongs to one of these families.

2
Proof : Let L^ P^ be the plane passing through a conic qc Z. Since Z contains no plane,

there is a unique quadric Q in the pencil Q^ which contains x e L \ Z. Then Q contains any
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line I passing through a;, since it contains 3 distinct points of L Thus Q contains L. This
can happen only if rk Q < 4.

If Z is a Del Pezzo surface, rkQ=^ and Q=Q, for some z, z==l,. . . ,5. If Z is an

Iskovskih surface, then either rk Q = 3 and Q = Qo, or rk Q = 4 and Q= Q- for some !',

2=1,2,3.

Let us fix some notation. Let TT : X —^ V be the minimal desingularization of an
Iskovddh surface. Let / : X —» QQ be the natural conic bundle over the base of the cone defined

by the unique quadric QQ of rank 3. By Re Qo we denote the minimal subscheme outside of

which / is smooth, i.e. R C QQ consists of 4 points over which the fibres of / are singular.

On X there are two irreducible curves S^ and S^ with (61) = (.Sy = —2 (the inverse images

of singularities of P). Let Sv be the A-subscheme of X such that Sv= ^iU S^.

We say that a curve C on X is a line (respectively, a conic) if it is a proper transform of
a line (respectively, of a conic) on Y.

LEMMA 3.16. There exists a positive number N such that if card k > N and X is a minimal
desingularization of an Iskovskih surface Y defined over k, then the following properties hold.

a) If X(k) f 0, then there exist k-points on X which do not lie on lines of X.
b) If X(k) =0 and X(R) f 0 for some quadratic extension K/k, then there exists a

Q-invariant pair of points x^ € X such that each of them does not lie on lines of X, and they

do not lie both on one conic of X.
c) Let X(I^) =0 for all quadratic extensions K/k. Then there exists a g-invariant

A-tuple of points x^...,x^ X, such that f(x^f f{x^ for if j, none of these points is mapped

to a singularity of Y, and there does not exist a Q—invariant pair of irreducible curves W^ and

W^ on X with (^..y=l, (^.)=2, (^..^)=-4, and W^ W^= {x^..^}

(scheme-theoretically).

Proof : a) If k is infinite, the statement follows from the J^-unirationality of X (cf. [14],
Lemma 7.1), therefore ^-points on X are Zariski-dense. If k is finite it is enough to use the
Lang—Weil theorem.

b) First of all note that if k is finite, X(k) is always non-empty (cf. [28], IV.5.1,
Corollary 1); therefore in what follows we suppose that k is infinite.

Let us first prove that X^ is Z^-unirational. If Y has a smooth A-point, we just use

the same lemma of [14]. The only case left is when all the ^-points of X are mapped to the
singularities of Y. In this case each singularity is defined over K, the 4 lines passing through
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one of them are globally Gal (7<//^-invariant. Contracting these lines on X we obtain a ruled
surface. The only section having negative self-intersection is the inverse image of the other
singular point of Y. This is a smooth /^-rational curve with self-intersection -2. Contracting
it we obtain a quadratic cone with a K—point on its base.

In what follows we use Weil's descent variety ^yjp^), cf. [45]. We need the following

SUBLEMMA 3.17. Let L/k be a finite Galois extension of degree m.
a) Let Z be an L-unirational L-variety. Then ^/J^) is a k-unirational k-variety.

b) Let X be a k-variety such that X^ is L-unirational. Then SmX is k-unirational.

Proof: a) The dominant map A^ —r Z yields a dominant map ^mn ̂  ^r/JA^) -^ R. /,(Z).

b) By definition, Rom^R^^X^)) ^ Rom^S^X^) for any ^-scheme S. There is a

natural map R^i^j) —^ S^X which can be defined on A-points as

TT : Hom(Spec k,R^{X^} ̂  Hom(Spec(L<^ k),X^) ^ X^ -. Hom(Spec k, S^X),

sending a (L«^ A:)-point, which is an ordered m-tuple of A-points, to this very m-tuple

unordered. This morphism is dominant since dim^S^) == ^mJ^r/J^r)) and it is finite.
The sublemma is proved.

Now we can complete the proof of b). Consider bad A-points of ^/^J, i.e. such that

the corresponding pair x^x^ X (we can also view x^ as conjugate elements of X(I<)) does

not satisfy the conditions of the lemma. We are going to prove that bad ^points of R^/ilXr.)

are contained in a Zariski-closed subset of smaller dimension. Then from Sublemma 3.17 and
A-unirationality of X^ , it will follow that good ^-points are dense on R^/il^r^ which will
prove b).

First of all it is clear that ^/^((^)^) is closed in R^i^X^) and does not coincide
with it.

Let a be the non-trivial element of Gal(/</A;), it becomes a J^-automorphism of
RK|k^xI^' Let us ^rst look at the case when x and ax both belong to a conic from the pencil
^ , z =1,2, or 3. If x and ax also belong to a conic from the pencil L ,^. or q~., j^ z, then

since (^. .^) = (^.. q^) == l (cf. Proposition 3.1) we have either x = ax which is not true, or

these two conics have a component in common. But this component is a g-invariant line, which
is impossible since X is A^-minimal. Assume that there is no conic from the pencil q~
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containing x and ax. The Galois group g acts on the set of conic pencils by permutations.
Since q* is the class of the unique conic containing the g-invariant pair (a:, ax), we have

^.€ (Pic X^. However this contradicts (Pic J)0 = 1K^-{- 1L (Proposition 2.10).

We have proved that x and ax are necessarily the two intersection points of a conic
from the pencil q* and a conic from the pencil q-. It follows that the line joining the images of

x and ax on Y passes through the vertex v • of the cone Q.. Let us prove that the set of

points x satisfying this property is Zariski-closed in R^l^x^- Note that QI is defined over

k. Let the coordinates XQ,...,X^ be such that q. is a quadratic form in ^,...,3:4 and

v,== (1,0,0,0,0). The anticanonical model Y of X is given by ^(^,...,^4) = Qo(xQ,...^) = 0.

We can assume that QQ is of the form x^ + Co (^•••^4)' where QQ is a quadratic form of

rank 2. Since x, ax^ and v. are collinear, it follows that

a(x) = a(xo,x^x^x^x^) = (-XQ.X^X^X^X^, where by abuse of notation we denote by x its

image on Y. This defines a Zariski-closed set V^. It is clear that V^f ^KI^J^ which is

enough to check over k.
Likewise if x and ax both lie on a conic from the pencil /o , then this conic is

g-invariant. In particular, if the coordinates are chosen in the same way as in the proof of
Proposition 3.8, then a(x^) = x^ , a(x^) = ^3 , a(x^) = x^. Let V^ be the closed subset of

R^I^Xr^ defined by these equations. Again V^f ^-KI^T^ which is clear if one checks it

on ^—points.
c) We want to find a Appoint x= (^i,...,^) on S^X, outside the following closed

subsets : Vi = {x | /(a?,) = f(x^ for some if j, 1 < ij< 4}, V^ = [x \ /(a?.) e R for some

z, i = 1,...,4}, V^ = S^S^ , and V^ which is the closure of the union of all W^H W^ , where

W- are curves satisfying the conditions of the lemma. It is clear that l^ U V^ U ^3 f S^X (just

check it over k). If we prove that V^f S^X then our claim will follow from Sublemma 3.17

and L-unirationality of Xr , where L is the residue field of a closed point of degree 4 on X,
4

whose image on Y is smooth. Indeed, under our assumptions a A-point on S^X \ U V- gives
z=l l

rise to such a point of degree 4.
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First note that the conditions (W^ .L) = 1, (W. .K^) = -4 determine the class of the

curve W, in Pic X up to a finite number of possibilities. In fact, since W. is a section of /,

(H^. ./j is either 0, or 1 for any component L of a degenerate fibre. From Lemma 2.10 it

follows that the class in Pic X is uniquely determined by its intersection numbers with / . ,

^'=0,1,...,4, and with K^. Let us fix one possible class of W^ in Pic X, call it D.

Let us proceed over k. We see that lP(X^(D)) = H°(X^(K.r-D)) = 0 since

(K^ -D.D) =-6 < 0, D being the class of a curve. We claim that ^(X^^D) = 0. Consider

the exact sequence
0 —> 0{K^-D} —^ 0{K^) —^ 0[K^ «> 0 ̂  —> 0.

We have H\X^[K^)} = 0. Since (K^.D) == -4 < 0,

H°(X^(K^9 0^} = H°(W^(K^) = 0,

and the long cohomology sequence gives H\X^(D)) = 0. The Riemann-Roch theorem now
gives

dim H°(X^(D)) = {D.D-K^I^ + 1 = 4 .

Hence dim | W^\ = 3.

Let K / k be the quadratic extension over which D is defined. Consider the open subset
T of | W^\, whose J^-points are curves C^, such that C^n Q consists of 4 distinct

A-points (here Qe | W^\ is the conjugate curve). The morphism h: Rr^.( T) -^ S^X

mapping C^ to C^ H C^ goes from a 6-dimensional variety, hence it is not dominant. Now

remark that V^ is the union of a finite number of images of such maps, hence V^ i- S^X. The

lemma is proved.
Let /: X—* C be a conic bundle.'Assume that we are given a g—invariant set P of

points of X, which do not lie on geometric degenerate fibres of X—^C, and such that each
fibre contains at most one point of P. Then we can define the elementary transformation
centred at P, eirrip \ X---—^ X^ as the composition of the blow-up centred at the points

of P and the blow-down of the proper transforms of the fibres containing these points. Then
X' is a conic bundle over the same base C, and the generic fibres of X and X' are
isomorphic.
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THEOREM 3.18. Let X be the minimal desingularization of an Iskovshih surface Y over k.
a) If X(k) f 0, then an elementary transformation centred at a good k-point of X (i.e.

at a point which does not lie on any line) transforms X into a Del Pezzo surface of degree 4 on
which there lies a k-pair of intersecting lines.

b) If X(k) =0 and X(/<) ^ 0 for some quadratic extension K/k, then an elementary
transformation centred at a good Q-invariant pair of points of X (i.e. at a pair of points
x^ 6 X such that each of them does not lie on any line and is not mapped to a singular point of

V, and they do not both lie on any conic) transforms X into a Del Pezzo surface of degree 4.
c) If X{K) = 0 for any quadratic extension K/k, then an elementary transformation

centred at a good Q-invariant ^-tuple of points of X (i.e. one satisfying the conditions
described in part c) of Lemma 3.16) transforms X into a Del Pezzo surface of degree 4.

Therefore (if the cardinality of k is large enough) an Iskovskih surface is always
birational to a del Pezzo surface of degree 4/

Note that the elementary transformations are well defined since by definition good points
do not belong to degenerate fibers, a good pair of points does not lie in a fibre, and a good
4—tuple of points is mapped to 4 distinct ^—points on the base.

Proof : a) We give two different proofs. The first one is based on the Proposition 1 of [20]. It
implies that a relatively A?-minimal conic bundle Z= elm X is a Del Pezzo surface iff the

linear system |-J<^-2^| is empty. Assume that it is not. Let s^ be a curve from

|-7< ,7—2^o| , and s^ be a curve from |—Ay-2^o| (the anticanonical map contracts s^ to the

singularities of Y). Let ^: X' —*• X be the blow-up of a good point xe X(k). Let

a^: X' —*• Z be the blow-down to z 6 Z(k) of the proper transform of the fibre containing x.

Then a^ = -K^, 4- a'^x)-^, cr^ = -K^, + ^(z)-^, (cr^i. or^) = -2, which is

impossible since a\s^ and a^ are curves. Thus |-J^-2^[ and |-J<7-2^| cannot be

both non-empty.

The other proof has the advantage that it does not require the relative A-minimality of
/: X —+ C. The two components of a curve from | —Ky — 2^ol are conjugate and do not

intersect each other, therefore a good point a? 6 X(k) does not lie on this curve. The remaining
part of the proof is valid over any extension L of k. Since a? is a good point, the projection
from x maps Y birationally onto a cubic surface V', this map being the blow-up of x
(isomorphic on Y\x). The cubic V' has precisely two singular points, which are the images
of the two singular points on Y. The line / joining them lies on P. Clearly, / is the image
of the conic from the pencil IQ containing x and the singularities of Y. Let X' —^ P be the
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minimal desingularization of Y ' , then the proper transform of / is an exceptional curve of the
first kind. Let X' —» X" be the contraction of this curve, then X" is smooth. In theorem 1.3b
of [14] it is proved (using the Nakai—Moishezon criterion) that ~Ky» is ample, hence X" is

isomorphic to a Del Pezzo surface of degree 4.
b) Let x = (x^) be a good g-invariant pair of ^-points of X satisfying the

assumptions of the theorem. Let L = k(x^) = k(x^). Over L, elm decomposes into twox
elementary transformation elm and elm . Let Z= elm (X). According to the second proofa-i .eg a;i

of a) Z is a Del Pezzo surface of degree 4. It remains to prove that elm (x^) is a good point

on Z, and that an elementary transformation of a Del Pezzo surface centred at a good point is
again a Del Pezzo surface. Assume that elm (x^) lies on a line l^ C Z, which in this case is a

section of the conic bundle / / : Z-^ C. Let ZE Z(L) be the image under elm of the fibre ofA!
/ containing x^. There are two possibilities :

1) ze /i. Then the self—intersection of l ^ ^ e l m ^ ) on X equals -2 (note that elm is the

inverse of elm ). Hence the anticanonical map contracts ^ to a singular point, thus

contradicting the choice of x = (x^).

2) zt \. Then the self-intersection of ^ = elm (l^) on X equals 0, hence by the genus

formula we have (-^v. y = 2. Thus ^ is a conic, which again contradicts the choice of

x = (x^x^. Therefore elm^ (x^) does not lie on any line of Z, i.e. is a good point.

Let us finally show that the elementary transformation centred at a good point maps Z
onto a Del Pezzo surface. Indeed, blowing up a good point we get a smooth cubic surface, the
proper transform of the fibre being a line. Contracting a line on a smooth cubic surface we obtain
a del Pezzo surface of degree 4.

c) Let x=(x^...,x^) be a good o-invariant 4-tuple; set L = k(x^), then [L:!^ = 4.

Let Z= elm^X). Since Z is a relatively minimal conic bundle with 4 degenerate geometric

fibres, it is either a Del Pezzo surface, or the minimal desingularization of an Iskovskih surface.
Let us exclude the second possibility. In fact, let 5^6 |-/^-2/o|; we know that

S^ = S, U S^ , ^ being irreducible, (5J) = -2, (^.. K^ = 0, (^.. y = 1, (S,. ̂ ) = 0, S,

and 62 are conjugate over k. We know that elm~1 = elm for some g-invariant 4-tuple

V = (2/i,-^4). ^1)=^
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Since y^.. .,2/4 are all conjugate and 5'in5'2=0, there are only two possibilities : either

each S, contains two points from 2/p...,2/4 , or each S- contains none. Now we proceed over k.

It is easy to see that (5^) = (F^.) 4- c.- (4-c.), where c, is the number of y<s lying on 6'.;

(^../^)=-2-(1^.), (^../o)=l. If C i = C 2 = 2 , then (^)=-2, (^.J^)=0. This

means that W^ and W^ are contracted into singularities under the anticanonical map. On the

other hand, since two of the points {3/1,..., 2/4} do not lie on S^ , two of the points {a^,...,^}

lie on W^, which contradicts the assumption that none of them is mapped to a singularity

of V. If q == €2 = 0, then W^ and W^ satisfy the assumptions of Lemma 3.16, which also

gives a contradiction. Thus Z is a Del Pezzo surface.
By Lemma 3.16 there always exists a good point, pair, or 4-tuple; and the theorem is

proved.

LEMMA 3.19. On a Del Pezzo surface X of degree 4 through a point there can pass at most two
lines.

Proof: Let XE X(k), and let 0^ be the tangent space to X in x. If x^ i and ^C X, then

clearly £c Xn 0 .̂ If XH Q^v contains more than two lines, then 0 yC X. Indeed in

this case ©^ ^ belongs to any quadric of the pencil Q\= QQ+ \ Q . Since X is irreducible,

the lemma is proved.

THEOREM 3.20. a) Let X be a k-minimal Del Pezzo surface of degree 4 containing two
conjugate intersecting lines (in this case the intersection point is defined over k, hence
X{k) f 0). Then X is birationally equivalent to an Iskovskih surface.
b) Let X be a k-minimal Del Pezzo surface of degree 4, X = QQ n Q . Let the following

conditions hold:
1) the polynomial det((% 4- A Q^) has at least two roots X^ and \^ in k,

2) the determinant of the restriction of the quadratic form (% = QQ + A^ Q to a

hyperplane H (such that Ker((%) $ H) is a square in k,

3) the quadric Q^ = QQ + X^ Q^ has a smooth k-point. Then X is birationally equivalent

to an Iskovskih surface (X(k) can be empty).
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Proof: Let us prove that the birational map inverse to the map described in Theorem 3.18 a)
gives the required birational equivalence. Namely, let s be a curve on X, splitting in X into
two lines. Let q be the pencil of conies on X containing s as a degenerate conic. Let
f ' . X — ^ C be the conic bundle structure on X^ corresponding to the pencil of conies
complementary to q. Let us blow up the intersection point x of the components of s.
Consider the proper transform of the fibre of / containing x. It is nonsingular according to
Lemma 3.19. Let us contract it to a point y. Denote the blow-up of x (respectively of y) by
(TI : X' -^ X (respectively by a^ : X' —^ Y). Let us prove that | - Ky- 2^[ is not empty,

which is enough to show that Y is an Iskovskih surface. By ^(s) denote the proper transform

of s. Clearly a^a^s)) e \-Ky-2^\. Indeed, s=-Ky-^ (here h is the class of a fibre

of /), and the multiplicity of a; on s equals two. Hence

a^(S) = ̂ (5) - 2 a[\x) == - a^K^) - t, - 2 a[\x) = - K^ - I, - a,\x)

=-K^-2^+a,\y),

since ^ = a-^x) + a^(y) 6 Pic X ' ' . It follows that a^a^s)) = - Ky- 2^, and we are done.

b) The quadric Q^ of rank 4 is a cone with a vertex i^, its base being a nonsingular quadric

Q a C P J I . There is a smooth ^-point on (% if Q^)^0, i.e. iff there exists a Mine i such

that ^ € ^ C (?2. Since Q^(k)f^, Appoints are dense in ( ,̂ thus we can choose t in such a

way that ^n (% = {x^}, x^ x^. Since O^IP^x IP-, there exists a g-invariant pair of

projective planes (^ ^) in % such that h^[\h^=t Let ^ =/^ n Q^ be the pair of conies

on X cut by /^ and /^. Since (Pic J?)0^ Ze 2, the condition 2 of the theorem implies that

(Pic X)9 is generated by the classes of q\ and q[ (cf. comments before Proposition 3.5).

Consider the conic bundle structure f: X—^ C related to one of these pencils, say, to q\. By

Proposition 3.1 c) (q^q^) = 1, hence ^ ^d ^ are sections of /. The birational map inverse

to that of theorem 3.18 blows up x^ and x^ and contracts the proper transform of the fibres

passing through ^ and x^ to some points y^ and y^. Let a^: X' —^ X and 0-2 : X' -+ Y

be the corresponding monoidal transformations. Let us prove that [ - Ky- 2^| is not empty.
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The multiplicity of x^ or ^ on the e111^ ^2 "1" ^2 equals two, therefore

^(^ + ^2) = ^(- Kx) - ̂ i^i) + ^(a^)) (we have - K^ = ^ + ^ in Pic ^). Since
^(- J^) = - K^ + (T^) + a^), we have

<^2 + '72") = - KX- - ̂ i1^) + ^i^)) = - KX- ~ ̂  + ^(^i) + ̂ (^
Thus ^(cr;1^ + ^2)) = - ̂ y- 2^ and we are d011^

COK.OLLA&Y 3.21. a) The birational transformation (inverse to that introduced in Theorem 3.18 a)
maps a k-minimal Del Pezzo surface of degree 4 onto an Iskovskih surface iff the graph T
contains a g-orbit of precisely two vertices. Equivalent the type of the decomposition of F
into Q-orbits is a subtype of type DDL
b) If the inverse of the birational transformation introduced in Theorem 3.18 b maps a
k-minimal Del Pezzo surface of degree 4 onto an Iskovskih surface, then Q acts on the set of
10 conic pencils q^ in such a way that q\ and q[ are individually Q-invariant (this is

equivalent to the existence of a Q-invariant conic pencil on X)^ and there exists a Q-orbit
[<tf q^ for some j+ 1.

Remark 3.22 : The conclusions of a) and b) of Corollary 3.21 look somewhat similar. This can be
explained as follows. Assume ^(A?)^0, then there is a good Jb-point x on X ([28], ch. IV,
8.1). Let a : V—+ X be the blow-up of this point; Y is a smooth cubic surface. The point x is
contained in a unique conic from the pencil q\ (respectively from q[). Let 4 and ^ be the

proper transforms of these conies on V, naturally ^ and 4 are lines. If (Pic -?)0 ^ Ze 1 as it

was assumed in Corollary 3.21, then ^ and ^ are defined over k. Therefore there is a triangle

of Mines on V, namely ^, ^ and a~\x). Planes containing any of the three Mines cut

three pencils of conies on V, having 5 degenerate fibres each. For example, planes containing ^

cut a pencil birationally equivalent to the pencil q[ on X, equipped with an additional

degenerate fibre ^U a~\x). Planes containing 4 cut a pencil birationally equivalent to the

pencil q\ on X, equipped with an additional degenerate fibre ^U a~\x). Finally, planes

passing through a~\x) cut a pencil of conies on Y with degenerate fibres o-'^^U o"1^),

!=2,...,5, and ^U 4 = ^(^U a'^). Contracting any of the lines ^, ̂  and a~\x) we get

a Del Pezzo surface X ' . If we contract ^ or 4, then X' is not necessarily isomorphic to X.
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The splitting group G^/ is obtained from Gy by the action of an automorphism of W(D^)

induced by an automorphism of the root system D^ [40]. Let us call such automorphisms of

W{D^ admissible, they constitute a group denoted by Aut'W^). The factor of Aut'W^)

over the group of inner automorphisms of W(D^) is isomorphic to 63 ([40], 3.1). On the other

hand, according to Proposition 4.3 of [40], if G = h(G^) for some Ae Aut^ W(D^\ X^k) + 0,

and card k is large enough, then there exists a Del Pezzo surface X of degree 4, which is
^-birational to X ' , and G^= G (see [40] for precise statements).

COR.OLLARY 3.23. A k-minimal Del Pezzo surface X of degree 4, X{k}+ 0, is birationally
equivalent to an Iskovskih surface iff (Pic )̂0 ^ 2© 2, and the following equivalent conditions
hold:

i) for some Ae Aut' W(D^) there exists an h(G^)-orbit of T consisting of two joined

vertices^
ii) for some he. Aut7 W(D^ there exists an h(G^)-orbit of A consisting of two joined

vertices, other than q\ and ^ (i.e. generators of (Pic ^)0).

Proof: If X is birationally equivalent to an Iskovskih surface, then X is birationally equivalent
to a Del Pezzo surface of degree 4 such that F has an orbit of two vertices (Corollary 3.21 a).
Then (Pic X^^lQl. According to [40], rk (Pic ^)0 and the conjugacy class of the splitting
group G^ in W{D^) modulo Auf W(D^) are birational invariants. Conversely, if F has an

/i(^)-orbit of two vertices, then assuming X(k)f^ we can transform X into a Del Pezzo

surface Y of degree 4 such that <7y= h(G^) ([40], 4.3). Now use Corollary 3.21 a). It

remains to prove the equivalence of i) and ii). We do it by the following combinatorial argument.
Let (Pic^) =lq[^lq[, and let r = ^ u E [ be the decomposition of F introduced in

section 0. Let A = E^U {^, q[]. The group of automorphisms of A (the graph also introduced

in section 0; the set of its vertices is E^U S;U S^U {e, ^, ^}), preserving the triangle

{^ ̂  ^i}» is canonically isomorphic to the automorphism group A(D^) of the root system D^

(cf. [30]); A(D,) = W(F^) = W(D,)X!S^ ([3], Ch. VI, § 4). This group permutes e, ^, ^, and

acts on W(D^) by admissible automorphisms. Since each vertex of E^ (respectively of S{, S^)

is joined with e (respectively with q[, q\), and is not joined with the two remaining elements of

{^ ̂  Q]}. A{D^) permutes E^, E^, S;. Therefore if one of these graphs has an /i(G')-orbit of

two joined vertices, then for a suitable h' 6 Aur W(D^) any of the two other graphs also has an
^(Gy-orbit of the same type.
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COROLLARY 3.24. Assume that a k-minimal Del Pezzo surface X of degree 4 is birationally
equivalent to an Iskovskih surface, and X(k) = 0. Then the graph A has a G^-orbit of two

joined vertices, other than q\ and q\.

Proof : The surface X is A'-birational to a surface Y satisfying the assumptions of Corollary
3.21 b). Since G^ modulo the action of Aut' W(D^ is a ^-birational invariant, Gy= h(Gy)

for some he Aut' W(D^). The graph E^ = A \ [q\, q[} contains a G y -orbit of two joined

vertices. Since A (D^) acts on A permuting S^, Sj[, S^, in one of these graphs there is a

Gv -orbit of two joined vertices. If this orbit belongs to r = S^ U S ,̂ then the intersection

point of the corresponding lines is defined over A;, contradictory to X(k) =0; therefore it
belongs to S^, and we are done.

We see that Corollary 3.21 b) gives a necessary condition for a A^-minimal Del Pezzo
surface of degree 4 to be birationally equivalent to an Iskovskih surface. On the other hand, a
sufficient condition is given by Theorem 3.20 b). Let us reformulate it in the following way. If a
A-minimal Del Pezzo surface X of degree 4 is an intersection of two quadrics given in
homogeneous coordinates (a;, y, -?, ^, u) by

Qi(x, y, z, t) = Q^x, y, z, u) = 0

where det Q^ 6 (Ar^)2, and (% represents 0, then X is birationally equivalent to an Iskovskih

surface. If, in addition Q^ also represents 0, then X is birationally equivalent to a Chatelet

surface (Corollary 3.11).
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4
SUBGROUPS OF W[D^.

In this section we show that the algorithms given by Theorems 1.22 and 1.26 are efficient
2 1enough to compute [l]^(GfQ(R)) and [i]^{G^Q(R)°); the root system R= D^ serves us as

a model. From the geometric point of view D^ corresponds to Del Pezzo surfaces of degree 4

with Pic X ̂  1 © 2, since the splitting group Gy can be naturally represented as a subgroup of

W(D^) (cf. § 0). Minimal subgroups (in the sense of Definition 3.3) correspond to A'-minimal

surfaces. We shall list all such subgroups, and compute []]^(G,Q(D^)) and [i]^(G,Q(D^)0)

(in the case where G is not minimal, both invariants vanish, see Corollary 4.3).
Let us recall several facts we need. The Weyl group W(D^) is given by its generators and

relations using the Dynkin diagram D^ ([3], Ch. VI, § 4). Embedding W(D^) into the group of

automorphisms of the integral quadratic form x\ + a^ + a;j 4- a^, we shall write its elements as

products of permutations from S^ and reflections c- associated to the coordinate hyperplanes.

The generators of W(D^) corresponding to the vertices of the Dynkin diagram can be chosen as

it is shown in Figure 6.

(34)
^ i - - -

(1 2) (2 3)

C3C4(3 4)

Figure 6

It is easy to check that the centre Z(W(D^)) coincides with <q Cg °3 °4> ^ 2/2. Let

Aut' W(D^) be the group of such automorphisms of ^(^4) which are induced by

automorphisms of the root system D^ itself, i.e. by conjugations in
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A(D^) = ^(2)4) XI 53= ^(ly. We call such automorphisms of W(D^) admissible. Let Inn be

the subgroup of inner automorphisms of W(D^), clearly Inn W^) = W(D^)/Z( W(D^}. One

can prove (see, for example, [40], Proposition 3.1) that the factor group
Aut' W(D^)/lnn W(D^) 2 S^ coincides with the group of automorphisms of the Dynkin

diagram D^.

PROPOSITION 4.1. Let GCW(D^ aeAut-^DJ, then UJ^^W) = LU»IW)> PW\

and ULJ^W)) = LU^(^ QW).

Proof: We claim that the G-module 0(0^ obtained from Q(D^) by twisting it by the

automorphism <7, is isomorphic to Q(D^). Indeed, a is induced by a conjugation in A(D^),

which is the group of orthogonal automorphisms of Q(D^). The second assertion now follows.

The first one is obtained by duality.

This result being granted we can consider subgroups (7C W(D^) up to the action of the

group of all automorphisms of W(D^) while computing LU^^OW) and LUtl^O^)0)'

In particular, since W(D^ is a normal subgroup of W(C^), it is sufficient to classify subgroups

GC W(D^) up to a conjugation in W(C^). Let us now proceed with the classification.

PROPOSITION 4.2. Let G be a non-minimal subgroup of W(D^) lying in W(D^. Then the

algebraic torus dual to the G-module Q(D^) is stably k-rational

Proof: In view of [43], 4.16, it suffices to prove ^-rationality of the torus dual to the G—module
M(C^). This module can be represented by the extension (7) :

0 ——^ 1 ——^ M( 64) ——^ Q(B^) ——^ 0.

By 3.6 G is not minimal if and only if there exists a G—invariant element in Q(B^). Let {e.}

be the standard basis of Q{B^). Since G permutes elements of the set {ei,...^, — Ci,...,— £4}
r^

and Q(B^) ^ 0, it follows that Q(B^) can be decomposed into a direct sum of a permutation

G-module P and a G—module Q(B_) where m < 4. Note that the image of the G-action

on Q(B^) lies in ^{D^). The extension (7) can be written as a pair of exact sequences
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(17) 0 ——— 1 ——— X—— Q(B^) ——— 0,

(18) 0 ——. X——^ M(C^) ——> P——> 0,

the sequence (18) being the definition of X. One can easily show that X^M(C ). We thus
obtain a short exact sequence of G-modules

0——^Q(^)——>X——>1——>0

(it is just the exact sequence (1)). Applying [43], 4.16 again, we see from (17) and (18) that the
torus dual to M(C^) is stably equivalent to the torus dual to Q(D ). All the tori of dimension

1 or 2 are ^rational ([43], Ch. IV, § 9), hence it is enough to treat the case m = 3. Since the
root system D^ is isomorphic to A^ and Q(A^) is the kernel of the homomorphism

^/•^l —^ 2 sending all base elements to 1, it follows that the dual torus is A-rational
(cf. 1.9).

COROLLARY 4.3. Let G be a non-minimal subgroup of W(D^) lying in W(D^). Then

[11^QW)=^(G^(D,))=0.

Let us begin to list minimal subgroups of W(D^). Let p r : W(D^) -^ S^ denote the

natural epimorphism as in § 1. Denote by G^C 64 the group pr(G), and let

G C <qc2,C2C3,C3C4> be the kernel of pr:G^GB. Certainly, GA is G^-invariant. Our

algorithm is organized as follows. Given GA and GB we find all possible extensions

(19) \^GA^G-^GB-^\.

Assume that G is generated by permutations a,/? then G= <aCr, 0 C r , G^, where I

and J are multiindices : 1= (z'p...,^), ^==0p...,^). Multiplying c^ and Cj by elements of

G we exclude coinciding groups and groups which are conjugate in W{C^). Let us assign two
indices to each subgroup GC W(D^) (to be more precise, to its conjugacy class in W(C^).

The subscript i indicates that G3 is the !-th element in the following sequence {H} of

conjugacy classes of subgroups in 64 : 1, <(12)>, <(12)(34)>, <(12),(34)>, 2/3, 63, Z/4, V^

D^ A^ 64 (i = 0,1,...,10). In what follows by V^ D^ A^ we denote Klein's Vierergruppe
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<(12)(34),(13)(24)>, the dihedral group <(1234), (13)>, and the alternating group,
respectively. The second index j is the number of G- • in the list of subgroups G with given

GB=H^

PROPOSITION 4.4. There are exactly 50 distinct minimal subgroups of W(D^) considered up to a

conjugation in W(C^. They are given by the following list:
GiQ= ̂ i^ ̂  ̂ > x Hi (l = Q^)-)10)! ^1= <c^c^> x H^ (i = 0,...,10);
Gr - ̂ i^ ̂ ^ G? - <°\^ ̂ > x <(12)>; G - <c^ c^l2)>\U)& 1)2 l)d

G - <c^ CiC4(12)>; G - <qc2, c^(12)>', G - <c^, ̂ ^ x <(12)(34)>;
1)4 1)0 2.i2.

G - <Ci%, CiC3(12)(34)>; G - <CiC3,(12)(34)>; G - <CiC3(12)(34)>;
2)3 2)4 2)5

0 = ̂ i^ C3C4> x ^3; G - <CiC3(12),(34)>; G - <CiC3(12), c^(34)>;
0)6 0)0 0)4

ff - <CiC2, 63^(12), (34)>; ff - <C3C4(12), Cifi2(34)>; if i= 4, rten ̂  1;
0)0 0)0

G - <Wl2), CiC,(13)>; ff - <C3C4(12), c,C4(13)>; G - <c^,(1234)>;
5)2 5)3 6)2

G - <c^, (12)(34), (13)(24)>; G - <c^,c^(12)(3A), (13)(24)>;
7)2 7)3

G - <(12)(34), CiC3(13)(24)>; G - <(12)(34), qc,(13)(24)>;
7)4 7)5

G^= <cic;,(12)(34), ^C3(13)(24)>; (?^= <CiC3, (1234), (13)>;

G - <(1234), Cic,(12)(34)>; 0 - <(1234), CiC,(13)>; G - <(1234), CiC2C3C,(13)>;
8)3 8)4 8)5

G^= <(123), c^(124)>; G^= < ̂ (234), (1234) >.

Proof : Let us exploit the following practical criterion for minimality of G'C W(D^) : any

G-orbit from the set {e^ 63, 63, 64, -^, -62, -63, -64} is stable under multiplication by -1.

The case i= 0 is obvious. Let i= 1, i.e. GB= H^ = <(12)>. If GA= <c^, c^>, then

G = <c,(12), G >, where I is a multiindex. Multiplying by an element of G we reduce Cr

to 1 or CiC3. If G = <CiC2>, then c^ can be reduced to 03^4 or c^c^c^ otherwise G

would be non-minimal. The obtained groups are conjugate under c^. For the remaining GA no

new minimal group appears, except for G = <C^C^CA> and <7= G . Let 2 = 2, i.e.
B 1}1

G? = ̂  = <(l2)(34)>. This case can be treated in a similar way. Let z = 3 , i.e.

GB=H^= <(12),(34)>. If GA = <qc2, C3C4>, then G== <c/12), c^(34), G'A>, and

multiplying by elements of G , we reduce Cr and C r to 1 or c^. If G — <c^>, then
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CjG <qc2, C3C4>, otherwise (c^(34))2 = ^4^ 0 Therefore, conjugating by 03 and

multiplying by c^ (if necessary) we can reduce Cj to 1. Besides, Cr= c^ or ^03 (by

minimality). However in the second case, q^^e <ciC3(12), (34)>, which does not agree

with the condition G = <c^>. If G = <c^c^>, then no new group appears apart from

^3,1' and if ^ = 1} then tlle only mimmal group is G . All the other cases are treated along
the same lines.

As above we say that the group W(D .) is embedded into W(D ) in a standard way

if it is realized as the subgroup of W(D^) fixing the fundamental weight ^ (= ^).

DEFINITION 4.5. Let the inclusion y: W(B^) = W(C^) -^ W(D^) be the extension of the

standard inclusion of W(D^)'. if an element g is such that a(g) = -1, then set (p{g) = c^.g

[here ̂ -̂ ) = (-1)^ P^ ̂ ) .

LEMMA 4.6. If the group W(D^) is embedded into W(D^) in a standard way, then its

normalizer in W(D ) coincides with ip(W(C J).

Proof: This is quite clear.

Let F be the incidence graph of lines on a Del Pezzo surface of degree 4, and let G' be a
minimal subgroup of W(D^). In [27] there is a description of 19 possible types of the

decomposition of F into G-orbits (cf. § 0). The graph F is presented on Figure 1. Each vertex
is meant to be joined with the vertex in the same row and on the same side of the vertical line,
and with exactly one more vertex from each pair lying on the other side of the vertical line-
moreover the left (right) vertex from each pair is joined with the left (right) vertex from the pair
in the same row, and with the right (left) vertices from the pairs in other rows. The vertices of r
are denoted by .̂, ̂ ., q (1 < ij< 5, ^ j). From the geometric point of view I . corresponds

to one of 5 blown-up points on P2, ^. corresponds to one of 10 lines joining the points, and

q corresponds to the conic through all the five points. The group W(D^) acts on F in the

following way: ^5 permutes indices, and c^ is the reflection with respect to the vertical line.

Note that having classified subgroups of W(D^) up to a conjugation in W(C^\ we have also

classified them up to a conjugation in W(D^) (see Lemma 4.6).
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PROPOSITION 4.7. Let G be a minimal subgroup of W(D^) lying in W{D^). Then the

decomposition of F into G-orbits belongs to one of the 12 types: D-IX and XD—XV from
Figure 4.

Proof : It is enough to determine the decomposition type for each of 50 groups listed in
Proposition 4.4. Here is the result : groups of type II: G , G , G ; of type III:

4)1 5)1 5)3

.̂l' l̂O.l' G^' 0{ type Iv : l̂' of type v : G^ G^ of type VI : l̂' of type vn :

G^ of type VIII: G^G^ of type IX: G^G^G^G^G^G^ of type XII:

G^ of type XIII: G^G^G^ of type XIV : G^G^G^G^G^ of type XV:

G. , G , G , G , G , G , G' , G , G , G , G (to check this it is convenient to^)0 1)3 1)4 2,3 3)3 3)4 5)2 7)3 7)6 8)4 9)2 v

conjugate all the groups by the elements (15) before considering the action on F).

DEFINITION 4.8. Given a decomposition type of the graph r, the maximal subgroup of W(D^)

preserving the decomposition type is called its maximal group of automorphisms.

COROLLARY 4.9. The maximal groups of automorphisms of the types which are subtypes of type
XV are listed below:

Aut(II) == G , Aut(III) = G , Aut(IV) = G ,
5)1 10)1 0)1

Aut(V) = G , Aut(VI) = G , Aut(VII)= G ,7)4 2)1 1)1
Aut(VIII)= G , Aut(IX) = G , Aut(XII)= G ,

3)1 3)2 7)1
Aut(XIII)= G , Aut(XIV) = G , Aut(XV) = G .8)1 v / 8)2 v / 10)0

Our next goal is to find out how admissible automorphisms of W(D^ act on the set of

subgroups of W(D^). Let p, be the admissible outer automorphism of W(D^) marked by the

dotted arrow in Figure 6, and let 0 be the composition of p, and the conjugation by (14)(23). It
is not difficult to see that 0 acts on S^ = <(1234),(12)> trivially and sends qc^ to

C3C4(12)(34). By v we denote the admissible outer automorphism of W(D^) arising from the

conjugation by c^ in W(D^) (the choice of the index i is of no importance since we are

interested in outer automorphisms only up to inner ones). Both 0 and v are of order 2,
together they generate Aut' W(D^)/lnn W(D^) ^ 63.
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PROPOSITION 4.10. In W{D^) there are exactly 67 conjugacy classes of minimal subgroups. The

group A\l\,/W(D^) acts on 16 classes trivially. The other classes are divided into 17 orbits

containing 3 classes each.

Proof: a) Let us list 16 subgroups representing the conjugacy classes with the trivial action of
Aut'P^Z^). To begin with, such are G.Q for i> 7. Indeed, ( /(^',o)=^? ,o since ^z'O

contains all c.c.; 0(G»r\) = G - n since G-.o contains V^ and c^ 0^304. Next, such are also

G^ (2=0,1,4,5). Indeed, v{G^ = G^ since ^ G - ^ C ^ fixes some me {1,2,3,4}, thus

c commutes with G,.p ^(^',•1) = ^• •1 smcQ ^ acts on <c^c^> x 64 trivially. One can

easily check that G , (7 , G , G , G' are also invariant under Aut^l^Z^). The
2,2 2,5 3,2 3,5 5,3 v 4/

invariance of G' ,6' and G can be verified in a bit more tedious way.
7,3 7,6 9,2

b) In order to verify the second statement of the proposition we break up the set of 34
subgroups remaining in the list of Proposition 4.4 into pairs, such that groups in each pair are
transformed into each other by an admissible outer automorphism of W{D^. This being done,

for one of the groups in each pair we shall point out the admissible outer automorphism of order
2 fixing the conjugacy class of the group. It will be thus shown that each orbit of
Aut^ tV(Pj/Inn W{D^) on the set of conjugacy classes of subgroups of W{D^ contains either

one or three elements. In the following formulae v • denotes the conjugation by c • .

v o 0(G ) = G , v o 0{G ) = G , y o Q{G ) = G , v o Q{G ) = (? ,
3 v 0,0' 7,1 3 v 0,2' 2,1' 3 ' l.O7 8,1 3 v 1.2' 3,1

v o 0(G ) = G , v o 0(G ) = G , v o 0(G ) = G , v o 0(G ) = G ,
3 v 2,0/ 7,2' 3 v 3,0/ 8,2' 3 x 4.07 9,1' 3 v 5,0/ 10,2'

v o 0{G ) = G , v o 9{G ) = G , v o ff(G ) = G , v o 9{G ) = G ,
3 v l^7 6,1 3 v 1.47 8,5 1 v l^7 3,6 3 v 2,37 7,5

v o 0(G )= G , v o Q{G ) = G , Q(G )= G , G(G )= G , 0(G )= G .
2 ' 5,2/ 10,2' 3 ' 3,3/ 8,4' v 3,4' 6,2 v 7,47 2,4 N 6,07 8,3

Now let us remark that the conjugacy classes of €?•„ are invariant under j/ since 6'.,.2,U l,U

contains all the elements of the shape c -c, (the conjugation of a permutation by c • coincides

with multiplication by some c.c,). The conjugacy classes of Gr. ., G. ., G. ., G. • are also• J u,./ •1•^J •tl.7 ^.j
^-invariant since pr(G) = G C 84 fixes some element of {1,2,3,4}. One can immediately see
that the classes of G , G , G , G are also ^-invariant.

2,3 3,3 3,4 7,4

As the following result shows, in fact one needs not require the minimality of a subgroup.

COROLLARY 4.11. Each orbit of Aut' W(D^) on the set of conjugacy classes of subgroups of

W(D^) contains one or three elements.
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Proof: We have already proved the statement for minimal subgroups. Non-minimal subgroups
can be divided into 4 types (after conjugating in W(C^), if necessary) : the subgroups fixing d,

those permuting ^ and e^, those permuting e^ e^ 63 and finally those permuting

CD ^2» e^ e^' Let us show that in all cases there exists an admissible outer automorphism of

order 2 fixing the conjugacy class of the subgroup. In the first case, one can take v\
(conjugation by q), in the third case, one can take ^4; in the fourth case where GC S^ one

can take 6. It remains to deal with the groups of the second type. The maximal group of this
type which includes all the others is <(12),(34),C3C4>. Its conjugacy class is stable under 0.

The other subgroups of this type are <C3C4(12),(34)>, <(12),C3C4>, <C3C4(12)> (up to a

conjugation in W(C^)). The second and the third subgroups are ^-invariant, and the first

subgroup can be transformed into the second one by Q.
Let us remark that we have no explanation of this phenomenon.
Now let us go over to the direct computation of [[]^(G,Q(D^)) for G'C W(D^).

LEMMA 4.12. Let G be generated by some elements^ each conjugate to an element of S^ in

W(C,). Then LU^W^))=0.

Proof: It follows immediately from Theorem 1.22.

TllEOREM4.13.jr/ G'C W(D^) is such that [i]^(G,Q(D^)) ̂  0, then it can be transformed by an

admissible automorphism of W(D^ into one of the following groups:
G^ ^4(12), qc2(34)>, G^= <CiC2, qc3(12)(34)>, G^= <c,^ qc3(12)(34),(13)(24)>

(for these groups LU^^QW) = 2/2) or G^= <qc3(12)(34),C2C3(13)(24)> (forthis group

\A]l(G^Q(D,)) = (Z/2)2).

Proof : Let us exclude all the groups satisfying the condition of Lemma 4.12 as well as their
transforms under Aut' W(D^) from the list of Proposition 4.4. It is clear that the condition of

Lemma 4.12 is satisfied for G^ (i> 6) and for G., (!'=2,3or i> 6) (it is enough to check

that G is generated by permutations p and by elements of the form Crp with the index set /

contained entirely in the union of orbits of /?, such that each orbit contains an even number of
elements o f / . See Lemma 1.21). The groups G = <C3C4(l2), (1234)>= <C3C4(234), (1234)>,

°7^ G^ G^ G^ ^8,5 = <(1234)? ̂ ^(l^ == <(1234), c^C4(12)(34)> also satisfy
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the condition. Let us look at the list of conjugacy classes of subgroups of W(D^) with

non-trivial action of Aut^ W(D^) (see the proof of Proposition 4.10), taking into account that

the action of Aut'H^Dj does not affect LU^W^)) (Proposition 4.1).

We see that the only cases to examine are in fact G and G
3»6 2,3

Now consider conjugacy classes stable under Aut' W{D^). Here the condition of Lemma

4.12 is satisfied for G^ (i> 7), G G G G . The groups G and G' are cyclic,
o ) -'- °'~ ",5 9»2 0,1 2»5

and [1]^G,Q(D^)) = 0 by definition. It remains to examine the groups G.. (i= 1,4,5),

°^ °7^ G^^' If G is one of the 6roups G?! i' G ' G ' then °Q (the ̂ mal closure of
the elements conjugated to permutations) is isomorphic to 2/2,2/3,63 respectively, and G/GQ

is generated by the image of c^c^. However, among the characters \Q . there is one defined

by the action of ge G on 64 which is stable under pr(G). This character is non-trivial on

^^4, therefore it immediately follows from Theorem 1.22 that LJJ^^^^)) = 0 for G..

{i = 1,4,5). Likewise G^ = ̂ c^), ̂ (l^ ^ ^3, (C?^^ = <CiC3(132)> ^ 2/3; the

factor G'5^/(G'5^)Q = 2/2 is generated by the image of €304(12). Among \n . there is the

same character as above, and it is non-trivial on €304(12). Therefore in this case we also have
\\\^GQ(D,))=0.

Old

Now it remains to carry out the computations for the groups G G G G ' as
2,3 3,6 7,3' 7,6'

above we use Theorem 1.22. We have G = <c^ qc3(12)(34)> ^ 2/2 x 2/4, (G ) = 1,

"^^W^^o 'm ̂  W2^- on the other hajld' the orbits of P^G ) are { l>2} and2,3

{3,4}. The corresponding characters \Q^ and \Q^ are trivial on c^ and non-trivial on

qc3(12)(34). Since XQ^= XG^ it follows that LU^G^W)) = 2/2. Consider
G^ <C3C4(12), c^(34)> ^ (2/2)2; we have {G^^ <c,W^\W)>,

Hom(C?^/(G^,2/2)=2/2. The orbits of pr(GJ are {1,2}'a^d {3,4}; the arising

characters ̂  and ̂  are both trivial, hence [l]l(G^Q(D^)) =1/2 (cf. Example

1.25). Next G^ <c,c^ c^(12)(34),(13)(24)> = <c^, qc3(14)(23), (13)(24)>, since

c^.c^(12)(34).(13)(24) == ^^(14)(23). Therefore, (G ) 3 <C2C3(14)(23), (13)(24)>. Let
7,3 0

us show that here in fact we have an equality. The group <C2C3(14)(23), (13)(24)> is dihedral,

it contains 8 elements. One can easily write them down and verify that the product of any
element by c^ is not conjugate to a permutation. Thus, G / ( G ) = 2/2, and since the

7,3 7,3 0
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2
unique character ^^i(^) = det(^) is trivial, we obtain UJu)(G' jQ(^^)) = 2/2. For

(7 = <qc3(12)(34), C2C3(13)(24)> we have Hom(G' , 2/2) 2; 2/2)2. Let us show that G
7»6 7»6 7»6

contains no element conjugate to a permutation. In fact G is isomorphic to the quaternion
7i6

group {± 1,± i',± j,± k}, and the elements 1, c^(12)(34), C2C3(13)(24), C3C4(14)(23) and

c^c^ exhaust (up to inversion) all the elements of G , hence (G ) = 1. The unique
7»6 7»6 0

character \Q ^(g) = det(^) is trivial, therefore [i]^(G ,Q(D^)) ^ (2/2)2.

COROLLARY 4.14. If GC W(C^) is such that LU^^^^))^ °» then G is conjugate to

<c^ C3(12)>.

Proof : Proposition 1.24 shows that we are in fact in the situation of Theorem 4.13. Since
pr(y(G)) has a fixed point in {1,2,3,4}, (p(G) is conjugate to G in W(C^).

1)5

Now let us compute LU^W)0) = LLJ<1(<^W) ^or all GC W(D^).

LEMMA 4.15.// c,w^ G, then LU^^OW) = 0.

Proof : Recall that if ge G, then 7 , . . denote orbits of the group <pr(g)>, and I^9^'>j 9
denotes the union of all I , such that \... , is a non-trivial character of the group^y-^fj ^s^fj
<g>. Therefore, /., . . ^ . = / is the entire set {1,2,3,4}. According to Theorem 1.26, in<^c^c^c^>

order to compute [\}J^G,Q{D^)°) we consider the group of all linear combinations of a^jr

which satisfy the following condition (for any g) : the union of 1^ » with the same indices k

either contains I , or is disjoint from it. Then we factorize this group by Q.Q = S Q.Q j, .

Taking g = c^c^ we see that the only linear combination satisfying the condition of Theorem

1.26 is an Q.Q itself, hence \\\\{G,Q(D^} = 0.

LEMMA 4.16.// G contains an element of the form c,c.(^)(jQ, ij,k,l 6 {1,2,3,4} being distinct,

then UJ^O(^4)°)=0.

Proof: Similar to the proof of Lemma 4.15.
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LEMMA 4.17. // pr(G) is a transitive subgroup of S^ then [1]^(G,Q(D^)°) = 0.

Proof: It trivially follows from Theorem 1.26, since H\G, Q(B )) = 1/2 is generated by OQ.

THEOK.EM 4.18. Let GC W{D^) be such that [i]^(G,Q(D^)0) f 0, then G can be transformed

by an admissible automorphism of W(D^) either into G = <C3C4(12),qc2(34)>, or into
3)6

G - <(;iC2,(34),C3C4(12)>. Intoth cases, [1]^G,Q(D^°) = 1/2.
0)0

Proof: Among all the conjugacy classes stable under Aut' W(DA) only G and G do not
3)5 5)3

satisfy the conditions of Lemmas 4.15-4.17. Next, one can also immediately see that all the
Aut' W(D^)-oib\ts consisting of three elements contain at least one group satisfying the

condition of one of Lemmas 4.15 .̂17, except for the orbit containing G .
3)6

Let G=G. - <ci&i, 03^(12), (34)>, then F=H\G„ (?(BJ) ^ (Z/2)2,
3)5 3)5

LU^(^ QW°) = F/<a^> = 1/2.

For G = <c^(12), c^(13)> we have H\G , Q(B^)) ^ (Z/2)2, however,
5)3 5)3

F== <OT> because / fi^^ {^'^} mtersects both {1,2,3} and {4} which are orbits of

p r { G ) . Hence ^(G Q(D,D = 0.
0)0 0)0

For G = <C3C4(12), c.c.(3^> we have H\G , Q(B.)) == (1/2)2 = F, hence
3)6 3)6

LUl(^^)°)=z/2.
Let us conclude this section with one more application of the classification of subgroups of

m^).
THEOREM 4.19. // a Del Pezzo surface X of degree 4 with Pic X ̂ 1^1 is stably k-rational
but is not k-rational, then it is birationally equivalent to a cubic surface given by

(20) y2-az2=P(x),

P(x) being an irreducible polynomial of degree 3, whose discriminant is equal to a, af. (A^)2.

Proof : Suppose X is stably A^-rational. Let L / k be the splitting field of X, and let
G^ = Gal(L/k) be its splitting group. Then the G'^-module Pic X is a direct summand of a

permutation G'j^-module (see the beginning of section 2, or [43], 4.35). Therefore for any
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subgroup GC Gy we have ^(G, Pic X) = 0. Assume that ^ is ^-minimal, i.e. G^ is a

minimal subgroup of W{D^) (then ^ is A-irrational [20]). According to Manin,

H\G, Pic X) depends only on the decomposition type of the graph F into (5-orbits. He
computed this invariant for all the types ([28], Tab. 3). Note, that G = <c^c^> is of type

IV, hence H\G , Pic X) ^ (Z/2)2. Next, G = < €304(12), ^(34) > is of type VIII, hence
0;1 3,6

H\G ,Pic^)=2/2. Finally, G = <c^ €304(12) > is of type IX, hence
3)6 1,5

H\G , Pic }C) = 2/2. Now observe that c^c^ is contained in G^ and G^ ̂  for all z,

and al^ in G^, G^ G^ G^ G^ G^ G^ G^ G^ G^, G^ G^ G^, G^, G^

G , G , G , G , G . The group G is of type IX. Therefore it only remains to consider
7)6 8»2 8,3 8,4 9,2 ° 3,5

^ ^ Gr^ ^ ^09- The group G -<c^c,c^l2)> contains1,4 5,2 5,3 8,5 10,2 1,4

<c^C2, c^12^ = G ' The y0^ G = <CiC4(12), qc3(13)> also contains G^ ^ The
group G = <(1234), qc2C3C4(13)> contains <(13)(24), qc2C3C4(13)> which is conjugate in

8,5
W(D^) to the group <qc2C3C4(13)(24), C2C4(13)> = G . The group

3,6

G = <C3C4(12), (1234)> contains G . Thus, any stably ^-rational A?-minimal Del Pezzo
10,2 3,6

surface X of degree 4 with Pic X ̂  Ie 1 has the splitting group Gy= G ^ 63. This group
•A. 5,3

always has the decomposition of F of type II, in particular, there exists a G^ -orbit consisting

of two joined vertices (see Figure 4). To them there correspond two lines on X meeting in a
point x which is thus defined over k. Let us fix a conic bundle structure / : X -^ C. Arguing
as in the proof of Theorem 3.20 a), let us blow-up x and blow-down the transform of the fibre
of / passing through x. We obtain an Iskovskih surface which (by Corollary 3.11) is
isomorphic to a generalized Chatelet surface given by

^-fl^^).

Note that Gy acts on the components of singular fibres in the same way as it acts on singular

fibres of /, i.e. as on the 8 vertices of r all lying on the same side of the vertical line. One
immediately checks that this action is conjugate to the C?^-action on the graph

£5 = A\{^, q~] (it can be deduced from the fact that the conjugacy class of Gy= G is
5 5 , •—• 5,3

Aur W(D^)—invariant). Since pr(Gy)= pr(G ) ^ 63, the polynomial R(x^t) has a linearA , 5,3

factor. A linear change of x and t yields the equation

y^ - a z ' 2 = t . P(x,t)
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where deg P(x,t) = 3. From the explicit action of G^r one can easily deduce that

a= discr P(x,t) (mod (A*)2). The birational transformation y = yt, z ' = zt provides the
equation ^y^—az1) = P{xft\ it is just the equation of a cubic surface written in homogeneous
coordinates. This proves the theorem under the assumption of A?-minimality of X.

Assume that X is not A^-minimal. Then X contains a G'j^-invariant set of mutually

skew lines. Blowing them down we get a Del Pezzo surface of degree at least 5. For such surfaces
the following alternative holds : either Z is Ay-rational, or Z(k) =0. By the assumption X is
not A?-rational; on the other hand, any stably ^rational variety has a Appoint. This proves the
theorem.

Remark 4.20. In the remarkable paper [1] it is proved that the surface (20) is actually stably
A?-rational.
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SUBGROUPS OF W(D^)

2
This section is devoted to the computation of the invariant [i]^(G,Q(D^)) for all the

subgroups GC W(Dr,) that are not contained in W{D^. From the geometric point of view

such groups correspond to Del Pezzo surfaces of degree 4 with Pic X = 1. Together with the
results of the preceding section it completes the computation of |JJ ̂ ( G^ Pic X) for all Del

Pezzo surface of degree 4.
However, the group W(D^) has no admissible outer automorphisms (see, for example,

[40], Proposition 3.1), i.e. this case is characterized by lower degree of symmetry than that of
subgroups of W{D^. The methods used in this section are quite different from those employed

in section 4.
Let us return for a while to an arbitrary torsion-free G—module N of finite type, and let

G be a finite group.

LEMMA 5.1. Let U be a normal subgroup of G, and suppose that Hl(U,N) = 0. Then

I LLl!(^v)l < I LU!(^v)l + \H\GIU^ ^)|.

Proof: The statement follows from the commutative diagram

0 0

^ ^
[JJG,.̂  —— LlJJt̂

1 1
(21) 0 ——> H^G/U,^) ——>. H\G,N) ——> H^N)

[ I
n H2(<g>,N) ——» n H\<g>,N),

ge-G 56 U

the vertical sequences being exact by definition, and the horizontal one arising from the
Hochschild—Serre spectral sequence on account of the condition H\ U,ff) = 0.

LEMMA 5.2. Let G = y-xi V, and suppose that H\U,N) = 0. Then
I LU^GWI ^ I UJ^W^I + I LU^^OI +\Hl(V,N/NU)\.
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Proof: If follows from (21) that | LU^^I < I 111̂ (̂ 1 + I A !» where A is the kernel of

composite homomorphism H\V,N ) —^ H\G,N) —+ n H\<g>,N). The exact sequence of
^=(7

y-modules 0 -^ A^-o A^ N/^-^ 0 implies that ] A| < | ^(V^N/N^ + | B|, B being
the image of A in ^( 7,YV). From the commutative diagram

0 ——o A ——o H^V.N^ ——^ n H2(<g>,N)
9^G

1 i i
0 ——— LL^(^V) ——— ^^^A) —— n H\<g>,N)

g^v

it follows that BC UJ^(I^V).

Recall that the G'j^-module Pic X is isomorphic to M(D^) because of 2.12 a), and that

LU^(^M(^))= [i]^QW).

COROLLARY 5.3. Let GC W(D^), and suppose that M(D^) ^ 1 [this property characterizes

minimal subgroups of W(D^) not lying in W(D^)). Assume that U is a subgroup of G of

index 2, such that U is a minimal subgroup of W(D^) and H1(U,M(D^) = 0. Then

\[I]I(GM^))\<\[I]IWM(D,))\.

Proof : In view of 5.1, it is enough to show that M^)^ M^D^^ ^ 2© 2 is a
_ G^nW(D^)

permutation P7(zy-module. It can be done in the following way : (Pic X) is

generated by K^ and IQ, Ky being the canonical class of X, and IQ being the class of a fibre

of the conic bundle, therefore - Ky — IQ is the class of the fibre of the complementary conic

bundle, and the group W(D^) interchanges ^ and - K^r—i^. We can express the same thing

in another way : the PV( ̂ -invariants are generated by sums of lines corresponding to the

joined pairs of vertices of the graph F lying on the left and on the right of the vertical line, and
the group W(D^) interchanges these pairs.

COROLLARY 5.4. Let G = U^ VC W(D^), and let both U and V be non-minimal subgroups of

WW. If ^(y,M(P5)/M(J%)^)==0, then U^WO) = 0-



Proof : In view of [28] (Ch. IV, 7.7) we have H\U,M(D^) = 0 (U being a non-minimal

subgroup of W(D^)).

COROLLARY 5.5. Let G = UX VC W(D^), and let M^D^^l. Suppose that

H\U,M(D^ =0. Let V be a subgroup of S^ which, is embedded into 65 C W(D^). Then

\[I]I(GMD,))\<\[I]I(UMW\.

Proof: Let us employ Lemma 5.2. We have [_|J J V,M(D^)) = 0 since Q{D^) is a permutation

7-module. Besides, M(D^/M(D^W{D^= P(Do) is the weight lattice (see the exact sequence

(11)). As a submodule of Q(B^)^ ( this lattice is generated by Q(B^) with the element

•^+...+65) added to it. One can take {e^e^e^(e^...-}-e^)} for a basis of P(D^). Since

S^ permutes the first four elements and fixes the last one, it follows that P(D^) is a

permutation V-module, in particular, H\ V,M(D^)/M(D^) u) = 0.

Let G be a minimal group, G $ W(D^). According to Figure 4 the decomposition of r

into G'-orbits belongs to one of the following types : I, X-XI, XVI-XIX. Any more or less
complete list of such groups would be, probably, too lengthy, therefore in this section we act in
the following way. We compute the maximal groups of automorphisms of all the types, then we
establish ^-rationality of the torus dual to G—module Q(D^) whenever the decomposition type

of G is XVI (or its subdecomposition). For the remaining types (except for type I) we use
enumeration of cases excluding some series of groups with [_|J J G,M(D^)) = 0.

PROPOSITION 5.6. The maximal groups of automorphisms of the types, which are not subtypes of
type XV, are:

Aut(I) =<C2C3C4C5,(15)>x <(23),(34)>, Aut(X) = <C2C3C4C5,(15)>,

Aut(XI) = <qC2C3C4,CiC5(23)>, Aut(XVI) = <C2C3C4C5,(15)> x <(34)>,

Aut(XVII) = <C3C4,(34)> x <C2C5,(25),(12)>, Aut(XVIII) = <(12)(34),C2C5(1243)>,

Aut(XIX) = W(D^).

Proof: One can immediately check that the above generators preserve corresponding types. Note
that a vertex in any horizontal row of F is joined to a unique vertex in the first row. It follows
that the action of any element g preserving all the rows (type X) is determined by its action on
an arbitrary row. However, a row viewed as a graph is nothing but a square, hence Aut(X) is at
most the dihedral group.
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Any element of Aut(I) is equal to a product of an element of Aut(X) by an element of
5g= <(23),(34)>, since Aut(X) (respectively ^3) determines the law of permutation for the

columns (respectively for the rows).
The group Aut(XVI) is a proper subgroup of Aut(I), and <c^c^c^(15),(34)> is a

Sylow 2-subgroup of Aut(I) whose index in Aut(I) is equal to 3, hence these two subgroups
coincide.

To compute Aut(XVII) we note that any permutation from 65 fixes the vertex q of F.

Therefore, if CjpE Aut(XVII), then C r € {^^c^c^c^c^}. All these elements belong to

Aut(XVII), hence p also belongs to Aut(XVII), i.e. p e {1,(34),(12),(25)}.
We begin the computation of Aut(XVIII) by observing that this group contains no

element of order 5 or 3. Indeed, an element of order 5 is conjugate to (12345), and its orbits
on F are of lengths 5,5,5,1, hence such a decomposition cannot be a subdecomposition of type
XVIII. Elements of order 3 are conjugate to (125). F should have been decomposed into two
orbits of 8 elements each in such a way that (125) preserves this decomposition, and each
vertex is joined with three vertices in its own orbit and two vertices in the other. One easily
checks, that there is no way to do so, other than the decomposition of type XVII. The latter is
not equivalent to the decomposition of type XVIII. Thus, Aut(XVIII) is a 2-group. We have
Aut(XVIII)n <c^c^c^c^c^c^> = <c^c^c^>, hence the index of Aut(XVIII) in a Sylow

2-subgroup of W{D^) is at least 23. The order of a Sylow 2-subgroup of W(D^) is equal to

27, and the group <(12)(34), C2C5(1243)> is isomorphic to the dihedral group of order 2 . It

follows that Aut(XVIII) = <(12)(34), C2C5(1243)>.

Finally, since the decomposition of type XI is a subdecomposition of type XVIII, in order
to prove that Aut(XI) = <c^c^c^ qc5(23)> ^ (Z/2)2 it is enough to show that Aut(XI)

contains no element of order 4. There exists only one element of order 4 in Aut(XVIII) (up to
an inversion), and it does not preserve the decomposition of type XI.

PROPOSITION 5.7. Let G = Aut(XVI) = < c^^ C5,(15),(34)>, then the algebraic torus dual to the

G-module Q{D^) is rational over the ground field.

Proof : Recall that Q(D^) is isomorphic to Q(C^) as a P7(£y-module; it is a submodule of

index 2 in Q{B^. Let {ei,...,^} be the standard basis of Q(B^), then Q(C^) is defined by

the condition that the sum of all coordinates is even. Let q= e^ — 65, e^= e^ — 65, £3= e^ + e^,
€4= h ~ e^ ^ ^ ~ ^3 be a basis °^ Q^b)' we immediately observe that the G—module
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Q{D^) can be decomposed into the direct sum of the G-module generated by e^, e^ €3 and the

G-module generated by 64, eg. Respectively, the dual torus is a product of a two-dimensional

torus by a three-dimensional one. According to [43], all the two-dimensional tori are rational
over the ground field. Consider the G-module <c^e^>. Let us remark that (34) 6 G acts

trivially. We claim that this G-module is isomorphic to the kernel of the homomorphism
2[<C2C3C4C5,(15)>/<(15)>] —o 1 mapping elements of the canonical basis to 1. Let us define
this isomorphism explicitly :

/(^i) = ^^5 . <(15)> - <(15)>,

A ̂ 2) = Cg^Cs . <(15)> - c^c^ . <(15)>,

/(^) = ^3^5 • <(15)> - qc5 . <(15)>.

It follows that the torus T dual to <€i, €2, e^> is rational : indeed, let kc Fc L be the

extensions corresponding (in the sense of Galois theory) to the subgroups
<W^(15)>D <(15)>D {1}, then T== ^p/k^m^^m^^ where Rp,^ denotes Weil's
descent [45]. T admits an open embedding into IP? , thus it is A^-rational (see also [43], 4.8).

COROLLARY 5.8. Let Gc W(D^) provide the orbit decomposition of F of type X, XI or XVI.

Then the algebraic torus dual to Q(D^) is rational over the ground field. In particular,
2

ULU^W^)) = °- ff ^ decomposition of T into G-orbits is of type I, then

Lu^wy) = o.

Proof: If G provides the orbit decomposition of type X, XI or XVI, then the statement is quite
clear, G being a subgroup of Aut(XVI). Let GC Aut(I) == <^c^(15)>x <(23),(34)>.

As it has been already noted, Aut(XVI) is a Sylow 2-subgroup of Aut(I). Therefore, if (7(2)
isaSylow 2-subgroup of G, then [l]l(G(2),Q(D^)) = 0. Obviously, H\G,Q{D^) can be

embedded into II H\G{p\Q[D^ and K^[H\G,Q{D^ ̂  n H\<g>,Q{D^)\ can be
* 9^- G

embedded into n ̂ [H\G{p\Q{D^ ̂  n H\<g>,Q{D^)}. For every pf 2 the group
P f. G(p)

G(p) is cyclic (this follows from the fact that | W(D^)\ = 27.3.5), hence

LU^(^),^5))=0.

It remains to investigate groups of types XVII, XVIII, XIX. We begin with type XVIII.
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PROPOSITION 5.9. Let the orbit decomposition of T defined by G be of type XVIII, then G is
conjugate to one of the following groups : G^ = Aut(XVIII) = <(12)(34),C2C5(1243)>,

GI = <C2C5(1243)> or G^ = <C2C4(14)(23),C2C5(14)>.

Proof : Aut(XVIII) ^ DQ is the dihedral group of degree 8, i.e. <a,b\ a8 = baba = b = 1>. We

are interested in its subgroups of order 8 because such is the orbit length for the decomposition of
type XVIII. If G does not coincide with <o>, then Gn <a> = <a2>, hence G is either
<a2,b>, or <a2,ab>. However, <o2,6> = <C2C4(14)(23),(12)(34)> coincides with the group

Aut(V), i.e. does not belong to type XVIII. The group G^ = <a2,ab> is of type XVIII.

COROLLARY 5.10. Let the orbit decomposition for G be of typeXVLH., then []]^(G,Q(Dr,)) = 0.

Proof : The statement is trivial for the cyclic group G^', G^ contains the subgroup

<a2,b> = Aut(V) of index 2, and G'3 contains the subgroup < 0204(14) (23 )> = <a2> also of

index 2. The latter is conjugate to G and thus belongs to type V (Proposition 4.7). Since
2)5

minimal subgroups of type V have the property H^^G^M^D^)) = 0, we can apply Corollary 5.3.

It remains to use Theorem 4.13.
Let us go over to the groups of type XVII. Let A = <C3C4,(34)>, and let

B = <(12),(25),CiC5>, then Aut(XVII) = A x B. Looking at the graph F we immediately see

that neither A, nor B is a minimal subgroup of W{D^). Now we need the explicit action of

W(D^) on M(iy. We have a decomposition of 2-modules : M(D^) ^ Q(D^) © 2, let /? be a

generator of 1.
If a€ Q(D^), then g acts on a in the usual way, and g0 = /? + ^5— g ^5, where 0/5

is the fundamental weight corresponding to the vertex at the short end of the Dynkin diagram
(cf. section 1). In the standard basis {^,...,65} we have 0/5 = i(^+...+e5), therefore, if

ge ^5, then g0 = /?, and if g = c^c • , then gft = ft + e^ + e, -

THEOREM 5.11. Let the orbit decomposition for G be of type XVII, and let LLU^O^)) ^ °»

then G is conjugate to one of the following groups : H^= <CiC5(12)(34),C2C3C4C5(34)>,

^2= <C3C4,CiC5(12)(34)>, ^3= <c^c^c^W>, OT H^= <C3C4,(12),C2C5(34)>; JOT these

groups UJ ̂ (G, QW) =1/2.
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Proof : Set G ̂  = Gn A, and denote the group GA/AC B by Gn, then G can be

represented as an extension 1—+ G A-^ G—+ GD—+ 1.
c1 r^

Let G = G ^ x G ^ , then M{D^) B^<e^>, hence M{D^)/M(D^) B is a trivial

G^-module. Corollary 5.4 now states that for such groups \_[]^(G,M(D^)) = 0. Note that if

G A = A, then G = G. x Go.

Let G^ = <(34)> or <C3C4(34)>. One may assume that G .==<(34)> , otherwise

one can conjugate in W(D^), for example by c^. In this case, (7= <(34)> x G^, where

G' C <C3C4(34)> x B; we have M^)^ 3 <e3- e4>, hence M(D^/M(D^G/ is a trivial

< (34) >-module. Since neither <(34)>, nor G' is minimal, one can apply Corollary 5.4 again.
Let G ̂  = 1, then G ̂  G^C B. The orbit length for the decomposition of type XVII is

equal to 8, and B is isomorphic to S^ hence Gn is isomorphic either to 64 or to D^. Let

G^n=B=<(125),(15),CiC5>, and let G= <(125), p,(15)^c^>. Since {yc^(m)f = ,̂ it

follows that ^ == 1. The only /z for which G' is minimal is p, = c^c^ i.e.

G = <(125),qc5,C3C5(15)>. Let us compute [i]^(G,Q(D^)) according to the recipe of Theorem

1.22. Since GQ = <(125),qc5> is isomorphic to A4, we have Hom(G/G'o,2/2) = 1/2, the

character ^ ^ given by the G-action on {63,-63} is non-trivial on G, hence
^

LUJG,0(A,)) = 0. Let G^ = <(15),C2C5> be the dihedral group, then G = <p,(15)^c^>

with /^e A. Now one has to analyse all the possible cases. If fJ, = 1, (34) or €304(34), then

G cannot belong to type XVII. Consequently, fi = €3^4, and there remain three possibilities :

<C3C4(15),C2C5>, <C3C4(12),C2C3C4C5> and <C3C4(15),C2C3C4C5(34)>. For each of these groups

we have Go = 1. In the first case, \g^ corresponding to the G-action on {^3, -63} is non

trivial on 0304(15) and trivial on ^, and \Q^ corresponding to the action on {^.-Cg} is
t\

trivial on €304(15) and non-trivial on €205, i.e. \\\^G,Q{D^} = 0. In the second case, one

can use similar arguments. In the third case, the orbits of pr(G) are {3,4}, {1,5} and {2}.

The character corresponding to the first of these is trivial on G, and two others coincide, hence

UJ ̂ (G, Q(D^)) = Hom(GJ/2)/(Z/2) = 2/2. Thus we obtain H^

Now consider the case where G. = <C3C4>, then G = G . x G 7 with

G' C <(34)> x B. Since the orbit length for the decomposition of type XVII is equal to 8, the
order of G' is divisible by 4, i.e. G' ^ Go is isomorphic to one of the following subgroups of

B ^ ^4 : <CiC2,(12)>, <CiC5(12)> ^ 2/4, <c^c^> ̂  V^ <c^(l^)> ̂  D^ A^ S^. In the
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first case, G is contained in <C3C4,(34),qc2,(12)> and cannot belong to type XVII. Let

Go ̂  At. The group A^ is generated by its elements of order 3, let 7 be one of them. Suppose

for a moment that /z€ A is such that ^76 G', and let /^ 1; then (/^y)3 = /^ 6 A which

contradicts the assumption G A = <C3C4>, therefore (7^= <C3C4> x A^ = G^ x Gp>, and we

are in the situation considered at the very beginning of the proof. Assuming that Gg ^ 2/4 we

get H^ = <c^c^c^(12){3^)>. For this group we have : (^z)o= ^»

Hom(^2/(^2)o>2/2) ^ (z/2)2- The orbits of P^) are {^L {^L {^ let us denote tne

corresponding characters by XG^XQ^XG^- They are trivial on 03^4, and XQ^XG^ are

non-trivial on qc5(12)(34), hence

L)^<?W) == Hom(^/(^)o^/2)/<X^i, X^2' ^C7,3> = 2/2-

Assuming that Gn ^ ^4 = <qc2»^C5> and excluding the case G = 6-4 x Cn we get (up to a

conjugation) H^ <c^c^c^(^)>. Here (^3)0 = 1, and Hom^/^o^) ^ (Z/2)3.

The character corresponding to the action of the group on {eg, — e^} is trivial on all the

generators except the second one, and the one, corresponding to the action on {e^, — 65}, is

trivial on all the generators except the third one. Finally, each \Q , is trivial on 0304, hence

{ll^^QW) ̂  C2/2)3^2/2)2 = ^/2- Assuming that 60 = D^ we have several possibilities :

^4= <C3C4,CiC2(34),(15)>, <C3C4,qc2,(15)(34)>, and <C3C4,qc2(34),(15)(34)>.

In the last two cases, GQ= <C3C4,qc5,(15)(34)>, and the character corresponding to {1,5} is
I )

non-trivial on c^ and c^(34)^ hence LUu)^'^^))= ^ ' ^n tne ^her hand,
(^4)0 = <(15),qc5>, the character corresponding to {2} is non-trivial on 0^(34), and all

2
the characters are trivial on €304 and (15), hence [i]^(H^Q(D^)) = 1/2. Consider the very

last case, where G^= B and G = <c^c^(125)^c^fi(12)> with v and p. being equal either

to (34) or to 1. Since (i/c^(125))3 = v, it follows that v = 1. Finally,

G= <C3C4,(125),CiC2,(12)(34)>, and one can see that G= GQ, hence UJ^^^^)) = 0.

The theorem is proved.
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THEOREM 5.12. Let a group GC W(D^) act on the graph F transitively (i.e. its orbit
c)

decomposition is of type XIX). // [1]^(G,Q(D^)) + 0, then G is conjugate to one of the

following groups: J^ = <C3C5(12),CiC5(1324)>, ^ = <c^c^(l^)>,

J^ = <CiC2,C3C5(12),(13)(24)>, ./4 = <qc2,C3C5(12),CiC5(34)>; for these groups

LU^M(^))=Z/2.

This class of subgroups of W(D^) is especially numerous, and the proof will be divided

into several steps. As in section 4, let G denote the kernel of the homomorphism
pr: W[D^) —» S^ restricted to G, and let GB denote its image. We shall list all the subgroups

G C <c^c^^c^c^c^>, and look through all possible (7's for each G . The transitivity

of the G—action on r implies that | G'| is divisible by 16. Furthermore, the order of a Sylow
2-subgroupof 5g is equal to 8, hence G f 1. Note, by the way, that a Sylow 2-subgroup of

65 is conjugate to the dihedral group D^ therefore it lies in S^.

LEMMA 5.13. Let G ' ' ^ ( l / 2 ) \ then LUJ^W)) = 0-\.l^Let GA^{1|<1)\ then LLl!(^W) = 0-

Proof : In view of the argument used in the proof of Corollary 5.8, it is enough to show that
[1]^(GW.QW) =0, where G(2) is a Sylow 2-subgroupof G. Since G(2)Bc 64, one can

apply Corollary 5.5, taking U= G(2)A and V== G(2)3. One easily checks that GA ̂  (2/2)4

is of type XIX, in particular, H\G ,M(D^)) = 0. The immediate application of Theorem 1.22

yields UJJG' ,Q{D^)) = 0, and Corollary 5.5 gives the statement of the lemma.

LEMMA 5.14.2^ ^ = <qc2,C2C3,C3C4>, then Uj!(^(^5))=0.

Proof : The group G is contained in S^ realized as a permutation group on {1,2,3,4}, since

G is stable under conjugations by elements of G . Let us assume that GB is generated by
permutations a and /?, then we have to consider three cases : <GA,c^a,|^>, <GA,a,c^|^>,

and <<? ,c^a,c^0> = <G ,c^a,a0> (multiplying by elements of G , one can always

write the generators in such a form). Note that according to Theorem 4.13 we have
\A]^(G,Q(D^)=0 for subgroups GC W(D^) containing GA. Our group G contains a

subgroup U of such a form : U= <G?A,/?>, <G?A,a> or ^^a/^. It is not difficult to see
that U is a minimal subgroup of W(D^) with the orbit decomposition of type XV, in

particular, H\U,M{D^) = 0. By Corollary 5.3 we conclude that [i]^G,Q(D^)) = 0.
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LEMMA 5.15. Let GA=<c^^>x<c^>, then LU^W) = 0.

Proof : In this case, GB^ <(12),(23)> x <(45)>. Indeed; if a€ ^ normalizes GA and

<7^ <(12),(23),(45)>, then there exist zje {1,2,3} such that o<2) 6 {1,2,3} and a(j) 6 {4,5}.

Consequently, a cf^t G which is absurd. Thus, G= <GA,c^ a,/?,7>, where a, /?, 7

generate G3 (otherwise, GC <G?A,(12),(23),(45)> = Aut(XVII)).

Suppose first that G is a 2-group. If G?B=<(12)>, then G= <GA,c^(12)>. Let

U== <CiC4(12),qc3>, it is the group G from Proposition 4.4. It belongs to type XV

(Proposition 4.7), in particular, H\U,M(D^} = 0. According to Theorem 4.13 we have

UJ^(C/,M(^))=0. Corollary 5.3 now yields [\^{G,M(D^) = 0. If G8 = <(12)(45)>, then

C?= <GA^(12)(^)> = <C2C3,qc4(12)(45)>, since

C2C3.CiC4(12)(45).C2C3.(qc4(12)(45))-i = c .̂

^
Let us compute LLU^OPs)) using Theorem 1.22. We have G'o = 1, Hom(G',2/2) 2; (Z/2)2;

the character associated to the G-action on {63, - e^} is non-trivial on ^ and trivial on

qc4(12)(45), and the character associated to the orbit {4,5} is, on the contrary, trivial on c^

and non-trivial on CiC4(12)(45). Consequently, LU^W) = 0. If G'5=<(45)>, then

G= <G ,CiC4(45)>. Set U= <c^c^(^)>, this group is conjugate to G and thus
1?3

belongs to type XV. Applying Corollary 5.3 we get UJJ^X^))^. If

0?^= <(12),(45)>, then G== <GA^12)^)>, <C?A(12),qc4(45)> or

<GA,qc4(12),(12)(45)>. Let U= <GA^(12)>, <GA^c^)> or <GA^12)>,

respectively. As we have just proved, LU^WMA))) = 0- Since these groups belong to type

XIX, we have H\U,M(D,)) = 0. Set V= <(45)>, <(12)> or <(12)(45)>, then

G = C/xi V. By Corollary 5.5 we conclude that [i]^(G,M(D^)) = 0.

If G is not a 2-group, a Sylow 2-subgroup G(2) is either of type XIX (and has been
considered above), or of type XVII (because (5(2) contains GA belonging to type XVII). In
the latter case, we can write G(2) = G(2)^ x G(2)^ (in the notation of the proof of

Theorem 5.11), hence LJLl!^),^)) = 0 (Theorem 5.11).
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LEMMA 5.16. There are no groups GC W(D^) with transitive action on r, and G conjugate to

<c^^>, <c^^c^> or <c^>.

Proof : Arguing as in the proof of the previous lemma we see that in the first case, G is
contained in <(12),(23),(45)>. However, C? { Aut(XVII), hence G contains an element of

D
the form €104(12). The order of G is divisible by 4, therefore G also contains either (45)

or €405(45). The squared product of this element and the preceding one does not lie in G',

which leads to a contradiction. In the second case, G^C <(12),(34),(45)>. If /A(34) € G, then
multiplying by an element of G , we reduce p. to 1 or to c^. If i/(12) € G, then we can

assume that v = c^c^ or €305. Multiplying c.c (12) by (^), where {ij^k] = {3,4,5}, we

get (c.c.(12)(2A?))2 == c.c., which contradicts the assumption on G . Finally, if

GA=<c^>, then GB'C <(12),(34),(45)>, and the order of G8 is not divisible by 8.

We have investigated all the subgroups of <c^ c^, €304,04 c^> except for <c^c^c^>

and <c^c^>.

LEMMA 5.17. Let G = <c^c^>, and suppose that [i] ̂ {G,M(D^)) f 0, then G is conjugate

to J, == <C3C5(12),c^5(1324)>, and ULl!(G',M(̂ )) = 2/2.

Proof: Obviously, G^C <(12),(1234)>; G8 is either ^4 or 5'4, since | G^ is divisible by

8. Let G = 5'4. If 76 G is a 3-cycle and c.c •76 G, then both z and .7 are from

{1,2,3,4} (indeed, c.Cc 76 G implies (c-c^e (7, which is impossible). Therefore, denoting

the natural projection G'—^ by pr, we see that U'= pr~\A^ is an index 2 subgroup of

G, lying in W(D^). Besides, U is conjugate in W(D^) either to G' or to G , belonging
9u 9)2

respectively to type III or XV; in particular, H\U,M{D^) = 0. According to 4.13 we have

UJ ; ,̂M(iy ) = = ( ) , hence (by 5.3) [l]l(G,M{D^) = 0. Now suppose that

G?B=P4=<(12),(1324)> and G == <c^c^ /^(12), i/(1324)>. If i/ does not contain 05,

conjugating by an element of < qc^, 0303,0304,04 Cg> we obtain ^==1 , then p, = €305 or 0405.

These elements are conjugate under (12)(34)eG', i.e. G= <03C5(12),(1324)>; G contains

qc3 = (c3C5(12)(1324))2, which contradicts the choice of G^. Thus i/=c.c.. If /A = 1 or

CiC2, then multiplying (c^(1324))2 = y,(12)(34) by /A(12) on the right and looking at the
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A
square of this product, we see that ^3046 (7, which again contradicts the choice of G .

Consequently, p, = c^ or c^. These elements are conjugate under (34) which maps

<c.c.(1324)> to <c.c.(1324)>. The conjugation by (12) fixes 0305(12), maps CiC5(1324)

to <C4C5(1324)>, and <C2C5(1324)> to <C3C5(1324)>. Now we must analyse two groups. The

first one is ^ = <C3C5(12),qc5(1324)>. Let us apply Theorem 1.22. We have {J^Q = 1; orbits

of pr(J^) provide a unique non-trivial character, hence [i]^{G,M(D^)) = (2/2) /(1/2) = 1/2.

The other group is G== < €305(12), c^c^(1324:)>. One can check that G is conjugate to

Aut(XVIII).

LEMMA 5.18. Let G = <qc2,C3C4>, and suppose that LU^6'^2^)) ^ °> ^e71 Gr is conjugate

either to J^ = <CiC2,qc5(1324)>, or ^ ^3 = <c^, c^(12), (13)(24)>, or ^0

J4=<c^,C3C5(12),qc5(34)>, anrf UJ^^M^)) = 2/2-

Proof: We have G'^C <(12),(1324)> since G8 is contained in S^ = <(12),(1234)> but

contains no 3-cycle. Since | G^l =4, it follows that G'5 = 2/4, V^ D^ or <(12),(34)>. If

GB = <(1324)>, then G = J^ = <qc2,CiC5(1324)>. We have (^3)0 = 1»

Rom(J^/(J^)Q,l/2) ^ (2/2)2; the characters of J^ arising from the orbits {1,2,3,4} and {5}

coincide, therefore LU^X^)) = 2/2. If 6^= <(12)(34),(13)(24)>, then

G'= <qc2,/^(13)(24),^(14)(23)> with ^ and v ranging over the set {^.,c^c^c^}. If

p. = qcg, then (qc5(13)(24))2 = c^ which is impossible. Therefore, p, and z/ can only be

equal to 1 or 0^3, but in these cases, Gc W{D^. If

G8 = <(12),(1324)> = <(12),(13)(24)>, then G = <CiC2,^(12),^(13)(24)>, where

/^e {^^c^c^c^} and ^6 {l,qc3}. Conjugating by 03 we reduce i/ to 1. Since

G^W{D^, it follows that p. = c^ or €305. Consider G = <CiC5(12),(13)(24)>. We have

GQ = <(13)(24),C2C3(14)(23)> ^ ^4; G/GQ ^ 1/4: is generated by the image of ^(1324),

Rom(G/Go,l/2) ^ 1/2, and the character associated with {5} is non-trivial, hence

ULJ^W^))=0.

Consider G = J^== <c^(12),(13)(24:),c^>. We have

(J3)o = <(13)(24),<^C3(14)(23)> ^ D^
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^/Wo ^ (z/2)2 is generated by the images of c^ and 03^(12), however the characters

given by the orbits {1,2,3,4} and {5} of pr(J^) = D^ coincide, hence LU^^M^)) = 2/2.

It remains to treat the case 6'^= <(12),(34)>. Here G= <G?A,/l(12),^/(34)> with /i and ^
from {1,^5,0305,^3}. If /i = 1, then (for any v) G does not belong to type XIX. The case

z/= 1 is similar. If p, = 0103, then £/= <G?A,qc3(12)> = G' belongs to type XV, and

Uj!(^M(^5))=0. By Corollary 5.3 we see that U^(<^W) = 0. The case ^=0^3 is

similar. The remaining groups are G= <c^(12),c^(3^)>,

^ == <CiC5(34),C3C5(12),qc2>, < 0^5(12), 0^5(34), €3 C4>, and < €305(12), 0305(34), c^>. The last

two groups do not belong to type XIX. Further, GQ = 1, Hom^/G'o.Z^) ^ (Z/2)2; the

character corresponding to {1,2} is non-trivial on ^05(12) and trivial on 0305(34), and vice

versa for the character corresponding to {3,4}, hence [i]^(G,M{D^)) = 0. We have (J^Q = 1,

Hom(./4/(./4)o,2/2) ^ (2/2)3; the character corresponding to {1,2} is non-trivial on the first

generator and trivial on the others, the character corresponding to {3,4} is non-trivial on the
second generator and trivial on the others, and the character corresponding to {5} is the
product of two preceding ones. Thus LU^^M^)) = 2/2.

The theorem now follows from Lemmas 5.13-5.18.
On account of Proposition 1.24 we can restate Theorems 5.11 and 5.12 as follows.

COROLLARY 5.19. a) Let GCW(C^), Gt W(C^) = <(12),(123),q>,

Gt ^4) = <(12),(1234),qc2>, and let UL1^9(^))^ 0, then G is conjugate to one of

the following groups:

<Ci(12)(34),C2C3C4(34)>, <C3C4,q(12)(34)>, <c^c^c^M)>, <C3C4,(12),C2(34)>,

<qc2,C3(12),Ci(34)>, <C3(12),Ci(1324)>, <qc2,q(1324)>, or <CiC2,C3(12),(13)(24)>,

for which LU^GWJ) = 2/2.

b)^/ GC W(D^) is not conjugate to G- C ^(CJ), then LU^^OW) = 0.

We end this section with an analog of Theorem 4.19 (unfortunately, a less precise one) :

THEOREM 5.20. If a Del Pezzo surface X of degree 4 with Pic X ^ 1 is stably k-rational but
not k-rational, then its splitting group G^ is conjugate to one of the following groups :
I! = <(234),C2C3C4C5(23),qc5>, 4 = <(234),C2C3C4C5(15)(23)> or/3 = <(234),(15),C2C3C4C5(23)>.
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Proof : Our arguments are similar to those used in the proof of Theorem 4.19. Stable rationality
of X implies that the (^/-module Pic X is a direct summand of a permutation Gj^-module,

hence for any subgroup G'C Gy we have H\G, Pic X) = 0. Therefore, a minimal group G^

can only belong to one of the types I, XVIII, XIX (see Table 3 in [28], Ch. IV), and the case of
non-minimal groups can be treated in the same manner as in Theorem 4.19. Assume that G^

is of type XIX. In the proof of Theorem 5.12 we have listed all the subgroups
G^C <c^c^^c^c^c^> which can appear as Ker(pr), where p r ' . G ^ — ^ S ^ is the natural

projection. Any subgroup from that list contains <c^c^> = Aut(IV) for which

^(AuHlV^M^)) ^ (2/2)2 and thus does not satisfy the necessary condition. If G^ is of

type XVIII, then, according to Proposition 5.9, Grr is conjugate to Gp G^ or G^. All these

groups contain c^c^c^ Hence G^ is of type I. Recall that

Aut(I) = <C2C3C4C5,(23),(234),(15)>. Since G^ is of type I, | G^\ is divisible by 12 (the

length of an orbit). Since c^c^c^f. G^, there remain two possibilities for G^: 1 or <c^>.

In the first case, G= </i(23),?7(234),^(15)>. Since /^,^6 <c^c^c^>, it follows that

77=1, and ^ = = 1 or c^. If p. = 1 or q^, then G^ is non-minimal. If p = c^c^ or

qc2C3C4, then (/^(23).^(15))2 = c^e G^ which contradicts the assumption G^=l.

Therefore, there are no groups G^C Aut(I) with G^-= 1. In the second case G^== <c^>,

G8 can be one of the following groups : <(23),(234)>, <(234),(15)>, <(23),(234),(15)> or

<(234),(23)(15)>. We get respectively : 1^ == <^c^(23),(234:),c^>,

G = <(234),C2C3C4C5(15)>, G- = <(23),(234),C2C3C4C5(15)>, ^3 = <C2C3C4Cs(23),(234),(15)>,

G" = <C2C3C4C5(15),(234),(23)(15)>, ^ = <(234),C2C3C4C5(23)(15)>. Note that G, Gf and

G" contain the group <c^c^c^(15)>^ which belongs to type X, and

^^^^(l^M^)) ^ (Z/2)2.

Remark 5.21. All the Sylow subgroups of 1^ 1^ and ^3 are non-minimal, therefore for any

group UC I - its Sylow subgroups are non-minimal too. Hence H\U{p)^M{D^) = 0, therefore

H\U,M(D^)=Q.

According to [17] if all G(p) are cyclic for p > 2 and (7(2) is either cyclic or dihedral,
then the following statement holds : if H\U,N) = H'^U.N) = 0 for any subgroup UC G,
then the G—module N is a direct summand of a permutation module. In our case, we have
M(D^) ̂  M(D^)°, therefore, if G^ is conjugate to Jp ^ or ^ then the G'^-module Pic X

is a direct summand of a permutation G'jy-module.



6
CONIC BUNDLES AND DEL PEZZO SURFACES OF DEGREE 4

WITH PRESCRIBED SPLITTING GROUPS.

In this section we are interested in the following problem : given a subgroup G'C W(D )

does there exist a conic bundle with n geometric degenerate fibres having G for its splitting
group ? (and in the same problem for Del Pezzo surfaces of degree 4). The answer is provided by
Theorem 6.3 (respectively, by Corollary 6.10). The developed machinery is then applied to
various problems. We prove the existence of a ^-minimal conic bundle which is not split over
any extension of degree 271, thus answering a question of Colliot-Thelene and Coray [5]. We
also construct (more or less explicitly) Del Pezzo surfaces of degree 4 whose splitting groups are
either the maximal groups of automorphisms of the 19 types (see subsection 2), or the groups
with non-vanishing invariants (see subsection 3).

1. General method.

LEMMA 6.1. Let Z be a generalized Chatclet surface, i'.c. a natural smooth compactification of the
affine surface given by

(22) ^-a^/Cc),

where deg f(x) = 2n , and f(x) has no multiple roots (cf. Remark 3.10, or [7]). Let Lr denote

the splitting field of the polynomial f(x). If ^~at L r , then G^ 1/2 x G r .

Proof. Obviously, the minimal field over which all the components of singular fibres are defined
is the compositum of Lr and ^/~o) ; and the statement of the lemma follows.

Let f(x) = a^ x m +...+ OQ be a polynomial without multiple roots, and let

^m^ ° ' a^ ° • we defme surfaces w! and ^2 ^y the equations

y2-^ =f{x)t2 ,
Y^-X^ = ^/(A-1)^2

in 1P^ x A^. We patch them together in P^ x (A^ 0) by the map : y = Y , z=\Z , t= X171 T ,

x = A"1 , and get a smooth compact surface W. Its projection onto the a;—axis equips W with
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a structure of a conic bundle over B , . The fibres at x = 0 and x == oo are degenerate, their

components are defined over k^/'do) and A^o^ ), respectively.

Quite similarly, let f(x) = O Q ^ I I -c +...+ OQ be a polynomial without multiple
2 1

roots with a^n f 0 , OQ ̂  0 . Let us define surfaces V^V^C B » x A, by the equations

2W =/(^2 ,
A^-22 = A2771'4"1^-1^2,

and patch them together in IP^x (A,\0) by the map y = V, z = Z, t = A771 T, x = A"1. We

get a smooth compact surface V ; the projection onto the a-axis defines on V a structure of a
conic bundle over IP. . The components of the degenerate fibres at x = 0 and x = oo are

defined over A(/O()) and A(V—fln , 1 ) , respectively.

LEMMA 6.2. The splitting group of the conic bundle W (respectively of V) is just the Galois group
of the compositum of the fields A^/flo)> ^09 ) (respectively, k(^—a^ i-\))^ an^ ^t€ splitting

field of the polynomial f(x2).

Proof. The components of the degenerate fibres at the points xf 0,oo are defined over the field
obtained from k by adjoining /a.", a. being the roots of f(x).

In what follows in the case when f(x) = a x71 +...+ OQ is such that OQ^. (A*)2 and (or)

(-1)71 a^e (A*)2 we consider the conic bundle Z obtained by contracting rational components

in the fibres at x = 0 and (or) x = oo (Z being a relatively A—minimal model of the conic
bundle W or V).

THEOREM 6.3. Let G be a subgroup of W(D ), and let k be an infinite field, char. k)( 2%G.

Then there exists a conic bundle X/k of degree S-n with splitting group G iff there exists a
Galois extension L/k with Gol(L/k) ̂  G .

Proof. Recall that since char. k)( # (7, any A'-representation is a direct sum of irreducible
A—representations (Maschke's theorem), and each irreducible A—representation injects into the
regular A-representation ([42], §§ 105, 108). We have GC W(D )c W(B ). Consider the

W( ̂ -module Q^f) with the standard basis ^,.. . ,e; recall, that the set
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{ei,...,^,-ei,...,-^J is IV(B^)-invariant (see §1). Let V be a ^-representation of G
s m-

obtained by tensoring the G-module Q{B ) by k , V= Q(B ) ^ - n k . Let V== © © I V . .
'" n IL 2=1 ;=i ^

be the decomposition into irreducible ^—representations of G such that W- • and W-, ., are

isomorphic iff t = = r . Set ^=: v^ ^d let <^ . : V•<^^G\ be an injection. Let

^F^'^^-
<")J
Now let L/^? be a Galois extension with Gal{L/k) ^ G . By the existence of a normal

basis ([42], § 67) the G-modules k[G\ and L are isomorphic. Let a: k[G\ —» L be any
G'-isomorphism. Set

5 m ,
^-^V^)

where ^.€ k will be chosen further on. We claim that the set {a^...,a , - ai,...,-a } C L is

G—invariant, and the map e.i—> a. commutes with the action of G. Indeed,

^w=E/ya(^(^)• since gem=±eg{m)- we have ^m^^^m)' therefore

^m = ±oiq(m\' Now let us show that for ̂ ^^y general 6.. the sets {e^...,e ,-Ci,...,-e }
and {ai,...,a^,-ai,...,—a } contain the same number of elements. If it is not so, then either

^ = ~aJYl ^or some m •> l•e' o!rn = ^ ' or °^ = ± ̂  ^or some ^ r ' ^n tne ^lrst case we ̂ ^
s2 bijoi({f>i^^ = ° for a11 2 ' because a(<^(^)) are different direct summands of the

G-module L. Thus to ensure that a i- 0 for all w it suffices to choose 6.. so that

S1 ^.a(^.(e^7))^ 0 for all w and i such that the vector (^'lr••^w^) is non-zero.
^l
Likewise to ensure that ^^ for all r^ ^ it suffices to choose 6.. so that

E 2 b^0i((p^± e^)) = 0 for all r^ and 2 such that the vector

2 1 2 1 ^a ^i
^r ± £/ '•••^r ± ^ ) is ^"^ero. Therefore, for each i we have to choose

m.
(^•p...,^^)6 A? outside a finite number of hyperplanes. This is clearly possible for any

infinite k .
Now let Z / k be a conic bundle, obtained from the conic bundle given by

(23) ^^(-l)^ (x-d^)
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by contracting A?-lines in the fibres at x == 0 and x = oo . This is possible since
n n ^
H oje (A*)2 , because H c^.e L ' = k (recall that GC F7(£) )). To complete the proof with

n
the help of Lemma 6.2 we remark that the polynomial n (a~a.)(aH-a.) is split in L , and is

not split in any subfield of L . Indeed, if it were so, then there would exist ^6 G , gt-\ , such
that ga^ = o .̂ for all i , but in this case ge. = e., therefore g=l. The theorem is proved.

In fact this theorem holds for arbitrary k of char k+ 2.

PROPOSITION 6.4. Let A,...,4 6c independent variables, K= </p...,/ ),

/M = (-^^^^^^"^••^^^(-l)71/^, onrf ̂  a come bundle Z over a field K be a

relatively K-minimal model of the natural smooth compactification of the affine surface
y^-xz^^ f(x). Then the splitting group of Z is the Weyl group W(D ).n

Proof. Let g be a semisimple Lie algebra of the type D . We identify Q with the algebra of

square matrices g of order 2n satisfying g = -s^g, s , where (in the basis ei,...,e ,-6 ,...,-€i)

all entries of the matrix 5 are equal to zero except for 5-, n = s^ n _. =...= s^ , = 1 (see

[3], VIH.13.4). Let a denote the tautological representation of 3 , let y = ^i+...+^ H be a

general element of the Cartan subalgebra f) (here H. denotes the difference of elementary

matrices E^ ^ - E_^ _^). Then the characteristic polynomial of the endomorphism a(y) is of the

form h(t) = t271 + F^t271-1 +...+ F^^(y)t + F^(y\ where (up to a sign) F^y) is the i-th

elementary symmetric function in ,̂..,̂ ,- ,̂,.,-^ , in particular, F^^(y) = 0 . Moreover,

^W^) = ̂ (^ = (-^^(^ = (-l)^p/(^))2 . Set F(y) = P/(5y), then ^(y)>-^2^-2^)

and F(y) are algebraically independent and form a basis of the space of W(D )-invariant

polynomial functions on b ([3], loc. cit.).lt means that the Galois group of the polynomial
h(t) = t^ + F^271-2 +...+ F^_/ + (-1)̂  2 over k(F^F^F) is isomorphic to

IV(£)^). It remains to apply Lemma 6.2.

COROLLARY 6.5. Let k be a number field, then for any n there exists a conic bundle over k with
n degenerate fibres and with the Weyl group W(D^) for its splitting group. Moreover, there

exists a conic bundle over a suitable finite extension with any given subgroup GC W(D ) for its
splitting group.
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Proof. One applies Hilbert's irreducibility theorem.

Remark 6.6. Let f(x) = (^)n(xn•}-flXn~l-\-...-}•f .x+f ) and consider the associated conic

bundle Z over A^/i,...,/ ) with (n+1) degenerate fibres. From analogous results on the

invariant polynomial functions on the Lie algebra of type C it follows that G^== y?(W[Cy,)),

ip being the inclusion W(C) —^ ^(^+1) defined in 1.24.

PROPOSITION 6.7. There exists a conic bundle X defined over an algebraic number field k such
that for any extension L/k of degree 2^ the surf ace X r = X ^ , L is not L-rational

Proof. Let G ^ A^ be the subgroup of 65 of index 2. It is simple, and it contains neither a

subgroup of index 2 (since any such subgroup would have been normal), nor a subgroup of index
4 (since | A^\ = 60 , and any subgroup of order 15 is cyclic). Consider an icosahedron I whose

centre is placed at the point (0,0,0) of IR3 . It is well known that its group of rotations is Ag .

Let {vi,...,^—^—}—^} be the set of 12 vertices of /. The action of A^ on this set defines an

injection i p : A^ •=-»• W[Bg), whose image in fact belongs to W{Do). Indeed, the character

<7 : W(Bo) —» {±1} , Ker a = W(DQ^ is trivial on <^(Ag) since any character of a simple group is

trivial. We set G = ^(Ag). According to Corollary 6.5 over a suitable number field k there

exists a conic bundle X with 6 geometric degenerate fibres such that G^ = G . Let us prove

that X enjoys the required property. Indeed, since G^r is transitive on the set of components

of degenerate fibres, X is relatively A—minimal, hence A-irrational [21]. Assume that Xr is

Zr-rational for some extension L / k of degree 2m. Then the splitting group of Xr is a

subgroup of G of index 2 , but according to the beginning of the proof ^==0 . Therefore Xr is

also relatively Zr-minimal, hence L-irrational. This contradiction proves the proposition.

Remark 6.8. The proposition just proved answers in the negative a question of Colliot-Thelene
and Coray [5].

We end this subsection with an analog of Theorem 6.3 for Del Pezzo surfaces of degree 4.
Let Z be a conic bundle of degree (8-n), where ?i=4 or 5, let IQ 6 Pic Z be the class of

a geometrically closed fibre. We choose one component in each singular fibre and denote these
components by ^,...,^ . The action of the splitting group Gy on the set of components

{^/o-^,.../ /o-^ } induces an inclusion 0: Gy *-» W(D\ defined up to a conjugation in
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W(B^). Let ^ be a standard embedding of W(D^) into W(D^) as the stabilizer of ^ . If

7i=5 , any conjugation in W(B^) is an inner automorphisme of W(D^), therefore the conjugacy

class 0(Gr7)C W(D^) is well-defined. If n=4 , a conjugation in W{B^) might be an outer

automorphism of W{D^^ but according to Lemma 4.6 it is reduced to a conjugation in the

normalizer of ^(W(D^)) in W(D^)^ hence the conjugacy class ^oQ{Gy) is well-defined again.

PROPOSITION 6.9. Let G be a minimal subgroup of W(D^j. If G is conjugate to a subgroup of
(^

^( W(D^), i.e. M(D^) ^ 2© 1, then in order to construct a Del Pezzo surface of degree 4 with

the splitting group G it suffices to construct a conic bundle Z with 4 degenerate fibres, such
that ^oQ(Gy) is conjugate to G and Z(k)f 0 . If G is not conjugate to a subgroup of

/-i
^( W(D^)), i.e. M(D^) ^ 1, then in order to construct a Del Pezzo surface of degree 4 with the

splitting group G it suffices to construct a conic bundle Z with 5 degenerate fibres, such that
0( Gy) is conjugate to G .

Proof. According to [21] (Theorems 4 and 5) a relatively minimal conic bundle Z with 5
degenerate fibres is isomorphic to a smooth cubic surface with a A—line I . Its blow-down X is
a Del Pezzo surface of degree 4. The conic bundle structure on Z is related to a pencil of conies
cut by planes passing through 1. Singular conies of this pencil are exactly the pairs of
intersecting lines on Z each of them meeting t. They are the proper transforms of the conics on
X passing through x . There are 10 pencils of conics <f. on X (see 3.1, 3.15), and exactly one

conic of each pencil passes through x . It follows that the splitting group Gy = G^C W{D^)

acts on the components of the singular conics on Z in the same way as it acts on the set
{^pfc—^s)^} » i - e . on the graph A (cf. §0). We have proved the proposition in the case when

M(D^^1.

We now assume that a relatively A—minimal conic bundle Z has 4 degenerate fibres,
and Z(k) f 0 . Then according to [20] (Proposition 1) Z is either isomorphic to a Del Pezzo
surface of degree 4 or to an Iskovskih surface. In the first case, the blow-up of a good (i.e. not
lying on the lines) point is a cubic surface equipped with a conic bundle structure, and we are in
the situation considered above. In the second case, we perform an elementary transformation and
apply Theorem 3.18 a) ; after that everything again reduces to the case of Del Pezzo surfaces of
degree 4 considered above. As before it is easy to check that contracting a Mine on Y which
is a 2-section of the conic bundle under consideration, we obtain a Del Pezzo surface X of
degree 4 with G^ conjugate to G .
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COROLLARY 6.10. Let G be a minimal subgroup of W(D^), and let k be an infinite field,

char. k j [ 2 ft G. Then there exists a Del Pezzo surface X/k of degree 4 with the splitting group
G iff there exists a Galois extension L/k, such that Gol(L/k) ^ G .

Proof. Apply Theorem 6.3 for yi=5 . Clearly the conic bundle (23) has a Appoint (for example
in the fibre at x=0). Now apply Proposition 6.9.

2. Maximal groups of the 19 types.

PROPOSITION 6.11. Let G, denote the maximal group of automorphisms of type i ,

GC y?( W(D^)). A Del Pezzo surface of degree 4 over ( with the splitting group G. is obtained

by a birational transformation from a generalized Chatelet surface y^—a^ = f^x) for the

following polynomials: f^(x) = x^+x-l), f^(x) = x^x+l , f^x) = x(x-b^) (x-b^) {x-b^),

f,(x) = (^)(^c2), f,(x) = xix-c^-b)^ f,(x) = (^-6)(^-c), f^x) = x4^ ,

f^(x) = a^+fc, where ^d does not lie in the splitting field of f (x)^ b and c are sufficiently

general rationals, b,f b. for if j .

Proof. In view of Corollary 4.9, the maximal groups of automorphisms of types II, III, IV, VI,
VII, VIII, XII and XIII are conjugate to subgroups of W{D^) of the form < c^c^ c^ GB> , GB

being a subgroup of 64 . Hence by Lemma 6.1 the only thing to do is to construct prescribed

polynomials of degree 4 (which is standard) and to choose a , such that /a does not lie in the
splitting field of the polynomial. For types IV, VI—VIII the construction of f(x) is quite
elementary. For type II one should take f{x) = (x-b)h(x), where h(x) is an irreducible
polynomial of degree 3 whose discriminant is not a square. For type XII one can take an
irreducible polynomial f(x) of degree 4 with its resolvent cubic splitting over k into linear
factors, for example, f(x) = x^^ . For type XIII take an irreducible polynomial f(x) such that
the Galois group of its resolvent cubic is isomorphic to 1/2 , and f{x) itself is irreducible over
()(/?), 6 denoting the discriminant of f(x). One can take f(x) = x^b , i.e. a "general" binomial
of degree 4 (see, for example, [23], Ch. II). Finally, for type III we need a polynomial f(x) with
Gt^ 5'4 , i.e. a "general" polynomial of degree 4, for example, f(x) = x^—x+l (its discriminant is

not a square,, and its resolvent cubic is irreducible).
Since all our polynomials f{x) are monic, the point a ; = o o , y = l , ^ = 0 is a rational

point of Z .
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THEOREM 6.12. Let Z. be a conic bundle over ( which is defined as a relatively minimal model of

the natural smooth compactification of the surface y^—xz1 = /.(a:), where

A(J) = (fl-r^+a), f^x) = ̂ ^(l^flW^+^l+fl2)4,

f^x) == (J2-2(a+6)a;+(fl-6)2)(^2-2(c+(^).c+(^2), /io(^) = (^-^(^^^(^ac2),

fnW = aib-x^^a+^x+b2^!)2)^ f^x) = ((x-a)2 ̂ 2)2 - b\a2-^

Ux) = x^x+l , A^) = (^fl)(^4-2a(l+6)^fl2(l-^2), /^) = (A-^hr^+l),

AsM^-S, U^= -r̂ -H,

/or general enough a,b,c^ ( . TAcTi Z- is birationally equivalent to a Del Pezzo surface of

degree 4, whose splitting group coincides with the group of automorphisms of type i .

Proof. Denote by G. the Galois group of the polynomial /•(r2), and let L. be its splitting

field. Then ^ = ((V^TV^^o), G'i = < a,/?,7> , a multiplies ^fl by "̂IHV""1!),

/?: /^Ti—> -V^, 7: V^i—^ -V^. Straightforward computation shows that G^ acts on the

components of singular fibres of Zi as follows: a= c^c^(lb)('2M), 0 == c^c^c^(2^),

7 = (24). These elements generate Aut(I).
Further, the roots of f^) are ±V5(l±az), ±V?(atz), Lg = ((V^,z), G'g is isomorphic to

the dihedral group. Complex conjugation acts on the components of the fibres as (12)(34), and
the element <7:V?i—^V7»—as €204(14) (23). Together they generate Aut(V) = G

7»4

The roots of fg(x2) are ±(Vafc^ , ±(^^~a). Clearly its Galois group is isomorphic to

(Z/2)4. It can be immediately identified with Aut(IX) = G .
3)2

The conic bundle Z^ has 5 singular fibres : 4 fibres at the roots of f^(x) and the fifth

fibre at x==0 . The group G^ is isomorphic to the Galois group of the polynomial x^—a , i.e. to

the dihedral group ; it is generated by complex conjugation and the transformation
<7:Vai—^ i^~d. The splitting field of the fibre at x=0 is ((v^o). It is contained in
L^Q = ((/a,!'), hence Gr^== G^ . Complex conjugation acts on the components of the fibres as

c^f^ , and a as 02030405(15), these elements generate Aut(X).

The conic bundle Z^ has 5 singular fibres : at the roots of /n , at x = 0 , and x = oo .

^n = ((V0^ contains the splitting fields of the fibres at x = 0 and x = oo , hence

G7 = G^ ^ (Z/2)2. The generators of Gy act on the components of the fibres as 0^020304 and

0405(23), generating Aut(XI).
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Denote c = b\d1 - i&2), d = ^2, then the roots of /^(rc2) are ±j otj AVc . Let us find

G'̂  . Denote by K== ((VcJ 6?+Vc,J rf-Vc) the normal closure of the extension ((Vcjd-h/c). The

group Gal(/</()) is isomorphic to the dihedral group ; it is generated by the transformations

a:/ci—^-Vc, /?:Jrf+Vci—»• -^ rf-h/c . Since (o4-jrf+Vc)(a-^+Vc)€ (J<*)2 and
i—— j—— i

{a-\-\d-^~c)(a-\d-^~c) 6 (J<*)2, ^4= 7<ya^AVc) is biquadratic over J^. Thus, G^ can be

represented by an extension 1 —»(Z/2)2 -+ G^ —o ^4 —»• 1 ; it is generated by a , /? and

7 : - j o+^j (f+Vci—^—j o-hj ̂ +/c . These elements act on singular fibres as (23)(45), (25), and
c^Cr,, generating Aut(XIV) = G . Note that the components of the singular fibres at x = 0

8»2

and x =00 are defined over ( , hence Gy== G^ = Aut(XIV).

Now let us show that G^ = W(D^) = Aut(XV). The polynomial /^(a?) modulo 2 is a

square of an irreducible polynomial of degree 4, and splits modulo 3 into the product of
irreducible polynomials ^4-1 and a;6-a;4+^2+l of degrees 2 and 6. It shows that G^ contains

the elements (1234) and ^04(123) generating W(D^).

The surface Z^ has 5 singular fibres : 4 fibres at the roots of f^(x) and the fifth fibre at

x=0 : L^Q = ((Va,^, G^Q ^ 1/2 x D^ . The splitting field of the fibre at x=0 is contained in

L^Q . The action of generators of G^ on the components of the fibres can be easily written.

The leading coefficient of f^(x) equals -1 , /^(O) = 62, hence Z^ has 5 singular fibres.

If b 6 (j is sufficiently general, G^ is the direct product of splitting groups of polynomials

x^+b2 and -^-a^+l , which (as we shall prove below) are isomorphic to (Z/2)2 and
W(D^) 2; ^4 , respectively. Indeed, x^+x-l is irreducible over ( (being irreducible modulo 2),

its discriminant is not a square in ( , hence its Galois group is 63 . On the other hand, x^+x-1

splits modulo 3 into the product of a linear factor by an irreducible factor of degree 2 :
a^+a-ls (x+l^-x-l) (mod 3), hence a^-a-lE (^-{-l)^4-^-!) (mod 3). But A-l and
x4-^-! are irreducible mod 3 ; it means that the Galois group of the polynomial a^+a?-l
contains an element acting on the components of the fibres as ^(23). Since its map onto ^3 is

an epimorphism, this group contains W(D^). It coincides with W(D^), since the product of the

roots of x^+x—l is a square in (j.
The group G^ is isomorphic to the dihedral group of order 16, L^ = ((^,0,

G'ig = <a,/?> , where a:v^'—^ W^» and 0 denotes complex conjugation, a acts on the
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components of singular fibres over a^O as 02(1243), and /?-as c^c^U). The splitting field

of the fibre at x==0 is ((V2)c L^, hence a== €205(1243), /?= q^^U). These elements

generate Aut(XVIII) while (12) (34) = a^a .
Finally, in order to prove that G^g = Aut(XIX) it is enough to show that : 1) the Galois

group of ^-x-l is ^5 ([42], Ch. 8, § 66); 2) a^-^-l does not split into a product of two

irreducible polynomials of degree 5. Indeed, it follows from the first statement that the natural
map p r : G^g -^65 is an epimorphism. Suppose that its kernel G^g is non-trivial. Since the

product of the roots of x^-x-l is a square in ( , G^g is contained in W(D^). Conjugating by

permutations from ^5 we conclude that G^g = <c^^c^c^> , i.e. G^g = W(D^). If

G^ 9 = 1 , then G i g ^ 65 . Let us show that in this case the set {e^-e^...,e^-e^} decomposes

into two 0-orbits (that corresponds to splitting of xio-32-l into a product of two irreducible
polynomials of degree 5). ^ = <(12345),(12)> . All the elements of W{D^ of order 5 are

conjugate to each other, hence ^^((12345)) is conjugate to (12345). Let pr~\(12)) = c/12).

Since (c/12))2 = 1 , it follows that c^= ̂ , where /^6 {l.c^} , ̂  {l,^ 04; ̂  c^} . /A=I

because (c/12)(12345))4 == 1 . Let ^^((345)) = c/345). However, pr-^^)) commutes with

P^((345)), therefore ^=1 , hence G^g = <(12),(12345)> . It remains to prove the second

statement. In view of Gauss' lemma it is enough to do it in l[x}. One can employ the method of
indeterminate coefficients, taking into account that the values of both factors at x=l should be
equal to ± 1 .

3. "Interesting" groups.

In this subsection we obtain examples of Del Pezzo surfaces of degree 4 with prescribed
"interesting" splitting groups. We call a group G^ interesting in one of the following cases :

either |_[J^ (G^.Pic X) + 0, or |JJ^ (^,Pic X) i. 0 , or the G^-module Pic X is a direct

summand of a permutation G^-module. In the latter case, the surface X can happen to be a

counterexample to the Zariski conjecture. In order to construct a Del Pezzo surface with a
prescribed splitting group we (due to 6.9) write down an equation of a corresponding conic
bundle with 4 or 5 degenerate fibres (cf. §0).

We begin with interesting groups corresponding to Del Pezzo surfaces X of degree 4 with
P i c ^ Z © 2 .
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THEOREM 6.13. Any subgroup GC W(D^) with ULÎ W^)) + 0 or [i]^(G,Q(D^°) f 0 ca»

&e realized as a splitting group of a Del Pezzo surface of degree 4 over () .

Proof. Let the conic bundles ^4,...,^ be given by the following equations :

W f-^ =(^-a)(^-6),

(^2) yW = ^-^-H,

(^3) ^-^ = x^a^a2,

(^4) 2/2-^2 = (^-2aa:+c2)[a;2-2(a2-c2+fr).l;4-(a2-c2-6)2] .
(Till the end of this section o,6,c,... denote sufficiently general rationals).

Let us show that the splitting groups of these surfaces are respectively :
<(12)qc2C3C4,(34)qc2C3C4> ^ G <c^c^(12)W> ^ G ,

3»6 2)3

<CiC2,CiC3(12)(34),(13)(24)> a G <c^(34),c^(l2)> ^ G .
<>o 3»5

The right hand side of the equation of X. is denoted by f{x).

The surface X^ has been investigated in [26].

Consider X^. Let us denote by p. a primitive root of unity, fi16 == 1 . The Galois group of

()(/i)/( is isomorphic to 1/2 x 2/4 , its generators being p : fi\—^ ^ and a : fn—-» ^ .

The roots of /a(^) = /-^-H are ±J^/2 , ± z J^/^ .

On account of the equality p. = (j2+A+-^2-V?)/2 , the degenerate fibres of ^2 at
x = 2+V^, 2-V?, -2-h^, and -2^ are split over ((^-/A7), ((^-/i3), <(/i+^7), and (!(/l5+/A3),
respectively.

We see that p acts on the components of degenerate fibres as c^, and a acts as
qc3(12)(34).

The case of ^3 is similar. The roots of f^x2) are ±^o.J^/?, ±z^a.^V?; the

generators of G^ are /? , a , and r with p and o- as above, and r:^ai—n'-^a acting as

CiC2(14)(23).

The roots of f^(x2) are ±\ (a^^S^), ±{\~a^^^. The generators of G^ are

(^^-^ -V15) = (34), (^=^^ -Vo2=c?) = (12)(34)c3C4 , \{a^~a^) h—. -Ja+vfl21^) = c^

(since (a+^=^(a-^a^) is a square,- (7^ (Z/2)3).
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The only remaining group is G .As was remarked in the proof of Theorem 4 13 G
06 7,6

is isomorphic to the group of quaternions of order 8. Let L/( be a Galois extension,
Gal(L/() ^ G^^ (such extensions are described, for example, in [16]). Now use Theorem 6.3 to
complete the proof.

Now let us go over to interesting subgroups GC W(D^), G $ W{D^.

THEOREM 6.14. Any subgroup Gc W(D,) with Uj!(^W) ^ 0 can be realized as a splitting

group of a Del Pezzo surface of degree 4 over ( .

Proof. According to Theorems 5.11 and 5.12 there are (up to a conjugation) 8 subgroups
GC W(D^ Gt W(D^) with LU^^)) + 0 . Let us write down the equations of the
corresponding conic bundles :
(Yi) y2-^ = -[^-2(a-l)a:+(a+l)2](^-a)(a;+fl),

(^2) V2-^ = -[^+4(fl2+262)a;+4(fl2-262)2](r2+4a;+2)(a?-2),
(^3) y2-^ = -(^-o)(^(^-^)[^•-2(a4-l)cJ+c2(a-l)2],

(^4) V2-^ = -[^-26(a-l)a;4-62(a-t-l)2](^2--fl)(a;+a),
W 2/2-^=^-32,

W y2-^2 = ̂ -i6a,
(V,) y2-:^2=(^2-a)(;^2+a62).

In order to check that their splitting groups are H^, J^J^ (in the notation of 5.11 and

5.12) one has to find the roots of f^) and to show that G^ acts on the components of

degenerate fibres in the required way. It can be done quite as in Theorem 6.13. The only
remaining group in the lists of Theorems 5.11, 5.12 is ^ = <c^c,c,(im)> . Since ^ is an
extension of the abelian group <(1324)> by the abelian group <c^c^> , ̂  is solvable (cf.

Lemma 5.18). Therefore there exists a Galois extension L/^ , Gal(L/() ^ ̂  (see [39]). Now we
complete the proof using Theorem 6.3.

Let us go over to interesting groups which may correspond to stably (-rational but not
(-rational Del Pezzo surfaces of degree 4 (these groups are listed in Theorem 5.20).
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THEOREM 6.15. Let Z^Z^Z^ be conic bundles given over (j by the following affine equations :
(Z,) y^xz2 = -(^(r^),

(^2) y^-xz2 = -(.c3+2a^+aVa;-fl3^)(^2-2r.c+5),

(Z,) y2-^=-(^-3)(r^3).

In the second case, let the following conditions hold: 1) a is not a square ; 2) the polynomial
x^+px+q is irreducible over ( ; 3) SjS^ is a square (^ = discr^x^+px+q) =-^:p3—27qi,
3^ = discr^x^—^rx-^-s) = 4(^—5)); 4) s/ S^ is a square ; 5) a/^ is a square.

Then the splitting group of Z. coincides with I. (in the notation of Theorem 5.20).

Proof. For Z^ and Z^ the verification is immediate. Let us consider Z^ . Denote the roots of

x^-\- px+q by 6 - (2=1,2,3). Applying the Viete formulae we see that the roots of

A-2ap;^4-aVa-aV are ae2 . Let /</( be the splitting field of x^-2 rxi+ s , then the splitting

field of the surface is L = K( 61,62,63) (since conditions 3 and 5 yield V O G I!). The conditions

imposed on the coefficients ensure that Gal(A7() ^ Z/4 and Gal(L/7<) ^ 1/3 . Now let us show
that G = Gal(L/() acts on the singular fibres in the required way. Let us numerate the singular

fibres in such a way that the splitting field of the ^-th fibre is ((-jr+V^), ((6j\/o), ((62/0),

(1(63^0), and <!CJr4-V5), respectively. According to the Cardano formulae 6^ = u-\-v,

J r^q __ _ / ^ — _

€^=QU+o2v, 63 = o^u+av , where o^==l, o^l , ^=3-j+L—V^', ^=3^-i+L1§V'^[•

Let p (respectively, a) be the generator of Gal(/</() (respectively, of Gal(L/7<)), then G can
be represented as a semidirect product <cr>xl <p> . In fact a acts via cyclic permutation of
6 . s , i.e. o-=(234). Further, p acts in the splitting field K via the cyclic permutation

\ r+^~s\—> \ r-Vsi—> —\ r+Vsi—> —j r-Vs . In view of conditions 3-5 the product a. 5 is a
square, hence p maps -/a to -\/a and therefore interchanges the components of the second,
third and fourth fibres. On the other hand, p sends /5^ to -V^ because of condition 4, hence

p transposes u and v , and therefore also 63 and 63 , i.e. the third and the fourth fibres.

Summing up, we conclude that p = C2C3C4C5(15)(34), as required.

It is worth remarking that conditions 1-5 can be easily fulfilled, one can take, for
example, p=-4:, ^=1 , a==r=229 , 5=4.229 ; we get the surface

y^-xz2 = -(a?-1832^2+839056a;-12008989)(r2-458a:+916)

(probably, the example is not the simplest one). It is an interesting question whether this surface
is actually stably (-rational.
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7
RATIONALITY PROBLEM FOR NERON-nSEVERJ TORI.

Let T be an algebraic torus defined over a field k, and let L be its splitting field,
G = G&\(L/k). The character lattice T admits the following resolution of G-modules (a
canonical sequence [43, 4.53], or a flasque resolution [6]) :

(24) 0——>T——>S——>F——>0,

where 6' is a permutation module, and F is a flasque module, i.e. H'^^U^F} = 0 for any
UC G (cf. the discussion at the beginning of section 2). According to the basic result of
Voskresenskil [43, 4.60] the torus T is stably A?-rational if and only if the G—module F is
similar to a permutation module. The goal of this section is to show that in some simple cases
this theorem provides quite a practical method to establish the ^irrationality of some tori.

The exact sequence (24) can be constructed explicitly in terms of torus embeddings (cf.
for example, [44]). The crucial point is the proof of the non-triviality of the similarity class [F].
We establish this by going over from F to F® j 1 and applying the Krull-Schmidt unique

decomposition theorem which holds in the category of 1 [(^-modules, 1 denoting the ring of

p-adic integers, G being a p-gioup [15, 76.26].

THEOREM 7.1. Let GC W(D^) and suppose that the decomposition of the graph T into G-orbits

is of type III, Vffl, XH, Xffl or XV. Then the algebraic k-torus dual to the G-module Q(D^) is

not stably k-rational

Proof : Consider G^= <CiC2C3C4,(1234)> or G^ ^= <CiC2C3C4,(12)(34),(13)(24)>. These

groups are contained in G = G = <c^c^c^l2),(1234:)>. Let us construct the resolution

(24) for the latter group following [44]. We have to choose the G-invariant fan £ in the weight
lattice

^ = Hom(r,ZO = Rom(Q(D^l) = P(PJ.

This lattice is volume-centered, i.e. it is the cubic lattice with centres of all the cubes added to
it. Consider the vectors ê ., ^=-e. (z=l,...,4), and all the vectors / r= i ( E e.4- S e.),

i'€J l j^1 •7

/C {1,2,3,4}, 7 = {1,2,3,4} V. We construct the fan S as follows : let the vectors e., e. , fr

form the 1-skeleton of E; the vector f^ divides the simplex with the edges e . ,2 '6 / and e . ,
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j'6 7 into four cones. This procedure yields a G—invariant partition of 1R4 into 64 cones; the
corresponding toric variety X^ is (P1)4 with 16 points blown up. The permutation module S

generated by the edges of S is of rank 24, the rank of F = Pic X^ is equal to 20. The

resolution (24) is thus constructed.
Consider the exact sequence of W(C )-modules :

0 —— 1 —— M(Cy -^ P(C^) —— 0

a\ ^c
Q{^)

Let us recall that the restriction of the pairing M(R) x M(R^) —* 1 to Q(R) x Q(R^) coincides
with the usual Cartan pairing. It follows that bo a = c, where a is the natural embedding
Q(R) —» M(R), (c(a))(/f) = <0t^>. This provides a commutative diagram of
W(CJ-modules :

0 0 0

1 t t
0 ——. Q(C^) -c-^ Q(B^) ——> 1/2 ——> 0

n i» T
o — 9(cy -a-^ M(^) — i — o

I ? I
0 ——^ 2 —-. 1 ——. 0

T T
0 0

and a commutative diagram of the cohomology groups of [/-modules (U being either G
7»1

or G ) :
6)1

Hom(£/,(/2)

u .
0 ——— 2/2 ———. H^U,^)) ———. H\U,Q(B^ ——» Hom(£/,Z/2)

t < ? r
H\U,Q{C^ ——— H\U,M(C^) ———. 0.
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Here H\U,Q{B^)) = 1/2, and Lemma 1.23 yields ^ = 0 . Thus ^ = 0, therefore

\H\U,Q(C,))\ =4.

Now let us compute ^{U.S}. It is easy since we know the permutation basis of S. Here

is the result. If £/= G t h e n 5= 2[^]© 2[£/]© © 2[<7/^.], where | H\ = 4, therefore
< u 2=1 z

A°(£/,5)2;(2/4)4 and rk Su = Q. If £/= G^, then 5= 2[^]© 2[^]© 2[^© © 2[£//^,

where | fl\ =2, | ̂ .| =4, therefore A°(^)^2/2x (2/4)2 and rkSU=Q.

Let us tensor the resolution (24) by the ring of 2-adic integers 1^ and apply the

unique decomposition theorem, which holds in the category of 22^-modules, U being a

2-group [15, 76.26]. Suppose for a moment that T is stably rational, then the ^/-module F is
a direct summand of a permutation ^-module. Then F® 1^ is a permutation 22[£/]-module

(cf. [17]). We know the structure of U, and the ranks of F and F ,̂ therefore we can list all
the possible decomposition types of F® 2g into indecomposable modules. Since

^)([/,2[(7/^)=^)(^2)^2/|^, to compute H°(U,F) = ̂ °(£/,F® 1^ it suffices to know the

ranks of indecomposable components of F® 1^ (tensoring by 1^ does not change the

cohomology of a 2-group). If U == G , then the following cases are a priori possible :

a) (8,8,1,1,1,1), then A°( U,F) ^ (2/8)4;
b) (8,4,4,2,1,1), then ^(U.F) ^ (2/8)2x 2/4 x (2/2)2;
c) (4,4,4,4,2,2), then H°(U,F) ^ (2/4)2x (2/2)4;
d) (8,4,2,2,2,2), then A°(£/,F) ^ (2/4)4x 2/2.
Comparing the orders of the groups in the exact sequence

(25) 0 ——. A°( U,S® 22) ——. A°( [/,F® 2s) ——. H \ £/, T® 2^ __. 0,

we notice that cases a), c), d) are impossible. Case b) is also impossible, since (2/4)4 cannot
be embedded into (2/8)2 x 2/4 x (2/2)2.

Now let U== G^. Then the following ranks of indecomposable components of F<8> 22
are a priori possible :

a) (8,4,4,2,2), then A°( (7,F)^ (2/4)2 x (2/2)2;
b) (8,8,2,1,1), then H°(U,F) ^ (2/^x 2/4;
c) (4,4,4,4,4), then H°(U,F) ^ (2/2)5.

Now, (25) leads to a contradiction in all cases.
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Summing up, we have proved that tori corresponding to G and G are not stably
6)1 7)1

A-rational. The same is obviously true for tori with splitting groups G , G , G , G ,
1»5 3)6 2)3 7)5

2 •»G , G because in these cases the birational invariant [JJ ^( G', T) is non-zero. In a similar
7)6 7)3

way, the torus with the group G is not stably A?-rational because LJLL^ »^°) =2/2
3)5 3)5

(Theorems 4.13 and 4.18). Let us show that all the other groups of types III, VIII, XII, XIII and
XV from the list of Proposition 4.4 contain one of the above groups; this is sufficient to prove
Theorem 7.1. We can consider subgroups of W[D^) up to the action of Aut^ W(D^) since the

dual tori are stably equivalent (Proposition 4.1). In fact G . Q contains G which is

transformed into G by an automorphism of W(D^). The group G = <(123),qc2(124)>
7)1 9)2

contains (123)^^(124) = C2C3(13)(24) and (123)c2C3(13)(24)(132) = qc3(12)(34), these two

elements generate G ; G and G contain G ; G D G ; G and G contain0 7)6 1)2 1)4 1)5 10)2 3)6 3)3 3)4

G which is transformed into G by an outer automorphism from Aut'H-T^). Other
1)3 6)1 - ' v 4/

groups of types considered are transformed by an outer automorphism from Aut7 W(D^) into

one of the above groups. The theorem is proved.
To complete the picture let us present the following result.

THEOREM 7.2. Let GC W(D^) and suppose that the decomposition of the graph F into G-orbits

is of type II or IV—VII. Then the algebraic torus dual to the G-module Q(D^) is rational over

the ground field.

Proof : The A-rationality of tori of types IV and VII follows from Proposition 5.7. The
A-rationality of the torus corresponding to the unique group G of type VI is proved in [26].

Let G = Aut(II) = G = <{12)^23),c^c^>. Let us choose the following basis in
5)1

Q(D^) : c, = 64 — e. (i = 1,2,3), 64 = 64 - e^ — e^ — 63 (e, being the standard basis of Q{B^)).

The group 63 = <(12),(23)> permutes c.'s, and the element c^c^c^ changes their signs. It

follows that the dual torus admits an open embedding into a k-iorm of (Pi.)4) therefore it is

^-rational [44]. Let G= Aut(V) = G = <(12)(34),CiC3(13)(24)>. Let us choose the basis

61 = 64 - 63, 62 = 61 4- eg) €3= eA~ ̂  €4 = e! ~ ^3 m G^)) tnen tne G—module Q(D^) is
a direct sum of G—modules of rank 2 : Q(D^) == <e^e^><s <e^e^>, and all the two

dimensional tori are A^-rational [43, 4.74]. The theorem is proved.
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Remark 7.3. Both A-rational and Mrrational tori occur among the tori corresponding to the
groups of types IX and XIV.

In fact, Aut(XIV) D Aut(IX) D G . On the other hand, the torus corresponding to G
3»6 0»2

is A?-rational [26]. For the torus corresponding to the group G of type XIV the situation is
2)4

quite similar.
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Resume

Les intersections de deux quadriques dans Ft (c'est—a-dire les surfaces de Del Pezzo de

degre 4, soil lisses, soit "singulieres") constituent la premiere classe de surfaces rationnelles dont
1'arithmefcique est non—triviale. L'arithmetique de telles surfaces X depend de leurs proprietes
algebriques (combinatoires) et geometriques, proprietes que 1'on peut lire sur 1'action du groupe
de Galois G&\(k/k) sur Ie groupe de Picard Pic X (ici k est une cloture separable de k et
X= X ^ , k ) . Pour etudier ces proprietes, nous donnons des formules generales pour certains

invariants cohomologiques importants. Ces formules nous permettent d'etablir la liste des cas
"interessants", c'est—a-dire des cas ou ces invariants sont non-triviaux. Nous etudions les
equivalences birationnelles entre divers types de surfaces rationnelles de degre 4, tant en termes
geometriques que combinatoires. Puis nous exhibons de nombreux exemples explicites (y compris
tous les cas "interessants") et nous donnons une methode generate de construction de tels
exemples. Nous etudions aussi les proprietes de rationalite du tore de Neron—Severi.


