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RESUME. Dans ce travail nous continuous notre etude de 1'operateur de
Harper, coshD+cosx dans L^(R), par des methodes d'analyse microlocale et
de renormallsatlon. On obttent une description assez complete du spectre dans
Ie cas ou h/2ir est irrationnel avec un developpement en fraction continue :
h/2Tr=1/Cqo+ 1 / (Q1+•• • ) )> si q,-€Z, IqJ^Co et CQ>O est assez grand. En
particulier Ie spectre est un ensemble de Cantor de mesure 0. Nos resultats
sont aussi valables pour certaines perturbations de 1'operateur de Harper et on
donne une application a 1'operateur de Schrodinger magnetique periodique sur
R2.

ABSTRACT. In this paper we continue our study of Harper's operator
coshD+cosx in L^R), by means of microlocal analysis and renormalization.
A rather complete description of the spectrum is obtained in the case when
h/2'rr is irrationnel and has a continued function expansion :
h/2TT=1/(qo+1/(qi+.-.)) with qj€Z, I qj ^CQ, provided that CQ>O is
sufficiently large. In particular, the spectrum is a Cantor set of measure 0.
Our results are also valid for certain perturbations of Harper's operator and an
application to the periodic magnetic Schrodinger operator on R2 is given.
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0. Introduction.
This work is a continuation of our study, started in [HS1,2], of the

spectrum of Harper's operator, by the use of semi-classical methods. If heR,
h ^0, then the problem is to study the union of the spectra, when 9 varies in
R, of the operators in JSO^Z),!2^)), given by,
(0.1) Heu(n)=^(u(n+1)+u(n-1))+cos(hn+9)u(n).

As a set, this union of spectra coincides with the spectrum of,
(0.2) Po=cos(hD^)+cos(x)
in ^(L^RU^R)), where D^i-^/ax, so that cos(hD^)=^(rh+t-h)» where
^u(x)=u(x-h). Inspired by ideas of Wilkinson [W1] , we obtained a partial
Cantor structure result for the spectrum, SP(PQ) of PQ under the assumption
that h/2rr is irrational and,
(0.3) h/2TT=1/(qi+1/(q2+...)), QjeZ, 1$ j<oo,
and
(0.4) Iqj I^Co,
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for some sufficiently large constant CQ. (See Theoreme 1 in [HS1].) Roughly,
our result was that if CQ>° and ^ C0>o is sufficiently large (as a function of
&o)> then outside ['Co'^ol the spectrum of PQ is contained in a union of
intervals, J, of width exp(-^ lq i l ) and such that the separation between
neighboring intervals (on the same side of l-Co^O^ 1S ^/Nll- ^ K] }s the

increasing affine function that maps Jj onto [-2,2], then outside [-Co^ol'
the set K,(J,nSp(Po)) can again be localized into a finite union of closed
intervals, having widths and separations of the same order of magnitude as for
the J, , but in terms of q^ instead of q^. This procedure can then be continued
indefinitely.

The proof of this result was obtained by applying first microlocal
analysis near a "potential well", i.e. a component of cos($)+cos(x)=jJl,
where JJL€[-2,2]\[-&o»col' 1n order to obta1n certain discrete eigenvalues,
well defined up to ©(e"1701 '1). It then followed that Sp(Po) is localized to
certain intervals, Jj, exponentially close to these eigenvalues. After that we
analyzed the tunnel effect between the potential wells, and this permitted us
to describe Sp(Po)nJj as the spectrum of a certain infinite "interaction"
matrix. Exploiting certain translation invariance properties of the resulting
matrix, we could then reduce the study of it's spectrum to that of P(x,h'D^),
the Weyl quantization of P(x,h^), (and by definition, the h'-Weyl quantization
of P(x,^),) where P=Pih is a sma11 perturbation of Po=cos(^)+cos(x). Here
h72Tr=1/(q2+1/(q3+..-))- ^or" P we could then start over again ... .

In this paper, we shall be able to eliminate the intervals, l-^o'^ol' and

obtain a fairly complete description of Sp(Po), under the assumption
(0.3),(0.4) with CQ>O sufficiently large. When trying to make this
improvement at the first level of the iteration scheme, an obvious difficulty is
that forjJL^O, PO^) ̂  close to the union of the lines ^=±x+(2k+1)TT,

keZ, and there is no more obvious localization into potential wells.
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As before, we can however study microlocal solutions of the
homogeneous equation, (PO~J^)U=O, and as a matter of fact, this was done
heuristically already by Azbel [AzL Away from the saddle points, (krr.iTT),
k+1c2Z+1 , the characteristic set, PO^OJI) is a smooth analytic curve, and
near a point in this part of the set, the microlocal kernel of (PQ-JJL) is a one
dimensional space, generated by a standard WKB solution. Near a saddle point
the space of microlocal solutions is two dimensional, and can be computed
more or less explicitly. If we choose for instance the point (O.iT), then an
element of the microlocal kernel near that point, is determined by its
behaviour near the open segments ](-Tr,2TT),(0,Tr)[ and ](0,Tr),(TT,0)[. Using a
microlocal study of PQ-^, we can then obtain a globally defined, well posed
"Grushin" problem,
(0.5) (Po-^l)u+R-u~=v, R^u^-^-.
where, u.veL^R), u^V^el^Z^C2). Roughly (thinking of the case, v=0),
the condition R^.u=v4' fixes the microlocal behaviour of u near all segments of
the form ]((k-1)Tf,(1+1)Tr),(kTr,lTr)[, k+1e2Z+l , and R-u~ provides a
one-dimensional inhomogeneity near each segment of the form,
](kTr,1'rr),((k+1)Tr,(1+1)Tr)[. Denoting the solution by,
(0.6) u^sEv+E+v4 ' , u~=E_v+E-^v^ ,
where all operators depend on JJL, it is easy to show that JJL belongs to the
spectrum of PQ if and only if 0 belongs to the spectrum of E- +. Now E- 4. may
be viewed as a block matrix, (E-+(o(,3))^ R^Z2 ' ^ere each entry is a 2x2
matrix. By the same procedure as for the matrix W above, we then see that
0€Sp(E-^.) iff OcSp(P), where P is a 2x2 matrix of h'-pseudodifferential
operators. After rescaling, we see that (in the most interesting spectral
region) P falls into a certain class of "strong type 2 operators". We also
define strong type 1 operators, as scalar h-pseudodifferential operators,
satisfying certain commutation relations and which are close to Po(x,hD).
Fortunately, the study of strong type 2 operators is often very close to the
study of s-type 1 operators, and we can again divide the problem into certain
potential well cases and a branching case.

An interesting feature is that we loose the linear dependence of the
spectral parameter, already after considering the first branching problem, so
we shall systematically work with operators P=PH, and define jJl-Sp(P) as
the set ofjJl such that 0 belongs to the spectrum o fF^ . Theorem 6.2 below
shows that the study of the ^-spectrum of a strong type 1
h-pseudodifferential operator sufficiently close to PQ can, when h is
sufficiently small, be localized into into a union of closed disjoint intervals,
such that the further study of the jJL-spectrum in each of these intervals leads
to an operator either of s-type 1 or 2. Theorem 9.2 gives the corresponding
result for s-type 2 operators. Theorem 9.3 is a combination of the Theorems
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6.2 and 9,2 and says that if we start with a strong type 1 operator
sufficiently close to PQ and If (0.3),(0.4) hold with CQ sufficiently large, then
we get a complete description of the ^-Spectrum by means of an infinite
sequence of localizations into finite disjoint unions of closed subintervals and
rescalings. From the additional quantitative informations stated after the
Theorems 6.2 and 9.2 about the lengths and separations of the various
intervals appearing in those theorems, combined with Theorem 9.3, we obtain
the following result (which expresses only a small part of the very precise
information that our methods produce).

Theorem 0.1. Let P=P(x,hD^) be a self-adjoint h-pseudodifferential operator
such that the corresponding Weyl symbol, P(x,$) extends holomorphically to
the "band" |Im(x,$)| <1 /& , and satisfies:
(0.7) P((x,$)+2rroO=P(x,e), for all o(ez2,
(0.8) P($,-x)=P(C,x),
(0.9) |P(x,$)-(cos($)+cos(x))|^&, when llm(x,$)l <1/e.
If (0.3),(0.4) hold with CQ>O sufficiently large, and 1 f O < c < C i with cpO
sufficienly small, then Sp(P) is of Lebesgue measure 0, has no Isolated points
and is nowhere dense. (The last statement means that Sp(P) is dense in no
non-trivial open interval.)

As already mentioned, the method produces a much more precise
description of the spectrum, which is unfortunately rather lengthy to
formulate in terms of a theorem, but the interested reader will be able to
extract that information from the proofs. This refined description will no
doubt be useful when studying the Hausdorff dimension of the spectrum as a
function of the sequence (q,-). From the point of view of applications, it is
important that our results apply also to small perturbations of Harper's
operator. In appendix e we show that under suitable assumptions, the
spectrum of a periodic magnetic Schrodinger operator is near the bottom a
Cantor set of measure 0.

In [HS2], the results of [HS1] where extended to the case when for some
N: |qj|^Cj\j(qp..,q^,Co) forj>:N+1, but still with the same incompleteness as
in [HS1]. We believe that the techniques of the present paper rather
automatically lead to a more complete Cantor structure result also in that
case. One could probably generalize the result even to the case when there is
a sequence l^j j<J2<J3<... of integers such that
lqjJ^Cj^-j^(qj^+i,...,qj^p, for suitable functions, CN.

The plan of the paper is the following:
Section 1 . Here we introduce and study certain auxiliary operators.
Section 2 contains a formal study of the iteration steps that we will
encounter, and we show that certain crucial symmetries are conserved.
Section 3. Here we treat the potential well problem for s-type 1 operators by
suitable modifications of the methods in [HS1].
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Section 4 treats the branching problem for strong type 1 operators and we
obtain a "renormalized" 2x2 system of h'-pseudodifferential operators.
Sections 5 and 6 contain some preliminary results for the renormalized
operator In section 4. It Is showed that after rescaling and depending on the
spectral region, the renormallzed operator is either of s-type 1 or 2. Theorem
6.2 gives the main iteration step for s-type 1 operators.
Section 7 treats the totally degenerate potential well case, which is the only
case genuinely non-scalar case for s-type 2 operators. Here we use some
ideas from [HS2L
Section 8 treats the non-degenerate potential well case for s-type 2
operators.
Section 9 is devoted to the branching case for s-type 2 operators. Theorem
9.2 gives the main iteration step for s-type 2 operators.

Various results are collected into 5 appendices:
Appendix a contains various general results in microlocal analysis. The
paragraph a.l recollects the approach of [Sll to analytic microlocal analysis via
FBI-transforms. We refer to that book for a more thorough treatment. In
paragraph a.2 we develop? a simple functional calculus for analytic
pseudodifferential operators. Paragraph a.3 may be of independent interest. It
gives a refined correspondence between unitary Fourier integral operators and
canonical transformations.
Appendix b. Here we give local normal forms for self-adjoint
pseudodifferential operators when the symbol has a saddle point or a
minimum. We only allow unitary conjugations and taking functions of the
operator. We believe that the results of this appendix will be useful in other
contexts.
Appendix c. Here we show that certain 2x2 systems of pseudodifferential
operators can be reduced to the case when the diagonal terms are scalars.
This is of use in section 7. See also [HS2].
Appendix d contains some justifications of the arguments in section 4.
Appendix e gives an application to magnetic Schrodinger operators. This is a
modification of the corresponding arguments in [HSIl. Since the symmetry
(0.8) was never assumed in [HS1], we have to add an extra symmetry to the
magnetic and electric fields and check that this leads to (0.8).

Some of the results of the present paper have been announced in [HS3]
We would finally like to thank A.Grigis for a large number of interesting

and stimulating dicussions with the authors during the preparation of this long
work.



1.Various operators with commutation relations.

In this section, we introduce various auxiliary operators, that will play
an important role later, and we study their commutation relations. Some of
this was already done in [HS1.2], but we think it is convenient to have a11 at
the same place. Let heR, h^O. All operators will act on L^R). The first
operators we study are natural h-quantizations of the translations:
(x,$)-^ (x,$)+2Tro(, o(€Z2 (and sometimes even in R2). Let x=X^ denote
the operator of translation by 2TT; i:u(x)=u(x-2Tr), let X* denote the
operator of multiplication by e2^^, and put
( 1 . 1 ) T^-C^T*0^, foro(€Z2 .

Sometimes, we shall also use that there is a natural extension of the
definition o fT^ to the case when «€R2, since there is an obvious definition
of real powers of X and t*. In a way, the crucial phenomenon that causes all
the interesting phenomena for Harper's operator, is that X and x* do not
commute in general. In fact, r^^expt-^Tr)2/^)'!:*0'!:- Let h'cR, be a
number such that,
(1.2) 2Tr/h=k+h72TT,
for some integer k. Then -i^l^expMh') X*9^, and more generally we get,
(1.3) TO(T^= e^z3l To^.
(1.4) T^= e^(o(.3)T^.
for o(,3eZ2, where cr denotes the standard symplectic form on R2, given by
o^x.^y.TD^y-xTl. (1-3) and (1.4) remain valid for o(,3€R2, provided that
we replace h' by (2Tr)2/h . The next operator we introduce is the unitary
Fourier transform y^=y, which can be viewed as an h-quantization of the
map K: R2—^2, given by,
(1.5) K(x,e)=(C»-x)-
Later on we shall also need the maps K^: R2 —»R2, defined as rotation by the
angle t, so that x=K-^/2. By definition,
(1.6) yu^^Trhr^Je-1^ u(x) dx, h>0.
and as already mentionned, y: L^R)-^ L^R) is unitary, y^y*, where
y* denotes the complex adjoint in the L^sense. It is easy to check,
(starting with the operators t and t*,) that,
(1.7) a^T^e-^I^Tx^oy.
for «€Z2, and the same relation with h' replaced by (2Tr)2/h, when o(€R2.

It will be useful in the following, to recall the relation between y and
the unitary group associated to the harmonic oscillator, R^th^^x2-^),
Dsf^d/dx). Let U^e1^^11. Since Uo=e''><2/f2h is in the kernel of R, we have
U^UQ=UO- on the other hand, we know (Leray [LD, that U.-^/^ and yare
metaplectic (unitary) operators with the same canonical transformation;
K-^/2, and hence that U-.^/2=ci)y, for some u) of modulus 1 . Since
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U--n72Uo=Uo and yuo=UQ, It follows that c0==1;
(1.8) U-.-n72=y=yh» ̂ ^
For later reference, it will also be convenient to know U^/4 explicitly. Using
that the phase ^(x^s-^/Z+CZ^^xy-y2/^ generates the correct
canonical transformation, namely K^/4, we first see that
0.9) U^^^^h-^Je^^y^iKy) dy,
for some constant C. In order to determine this constant, we again use that
U^/4Uo=UQ and that the corresponding integral in (1.8) can be evaluated
exactly, to obtain that, c=2~1/4Tr••1/2e iTr /8.

Let r denote the antilinear operator of complex conjugation; Fu= u . To
this operator we associate the transformation of phase-space;
(x,$) —> (x, -$). We notice that this transformation is anti-canonical, in the
sense that the Jacobian is equal to -1. As a general rule we shall associate
anti-canonical transformations to antilinear operators. The present
association is justified by the following fact. Let A=A(x,hD) be the h-Weyl
quantization of the symbol ACx.^eS^R^^acC^R2); for all j.kcN, there
exists Cj^ such that 19;l<9^a(x,$)| ̂ Cj^, for all (x,^)€R2}, defined by,
(1.10) Au(x)=(2Trh)-1JJe i(><-y)9/hA((x+y)/2.9)u(y)dyd9, h>0,
so that A is 0(1) as a bounded operator on L^(R) by standard theorems. (See
for instance [HS1] for a non standard proof.) When we want to distinguish more
clearly between the operator and its symbol, we shall sometimes write Op^tA)
or simply Op(A) for the operator. The justification of the association is then
given by,
( 1 . 1 1 ) rOp(A)=Op(B)r,
where B(x,$)=A(x,-$). Notice that r^id, so that ( 1 . 1 1 ) may take many
equivalent forms.

Thus in a way, r is a natural quantization of reflection in the x-axis.
We shall also need quantizations of other reflections, such as in some of the
lines lQ=(t(cos9,sin9); teR}. To define such reflections, it is natural to
rotate 19 by K-9 to the x-axis (IQ), then reflect in the x-axis, and finally
rotate back again. More precisely, the quantization of reflection ̂ 9 in IQ, is
defined by,
(i.iz) re= Ueru-e^
so that ro=r. This corresponds to ^Q^KQ^Q^-Q- From the definition of UQ,
it is easy to verify that,
(1 .13) rUe=U-er (.and classically, yo)<e=x:-eyo),
which gives rise to several obvious equivalent forms of (1 .12) . We get the
general relations,
(1 .14) FbUa=U^r^ , y^a^o^^ if2b-a=o(+23.
Now it is a general fact, that
(1 .15 ) U»eOp(a)UQ=Op(aoKe),
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and combining this with ( 1 . 1 1 ) , we get,
(1 .16) A<»re=rQ»B, if on the symbol level, Aoye=B.
Again, we notice that Fe^id, so (1.16) can take many equivalent forms.
Later, we shall make a particular use of V=def.^n74» whose associated
transformation is y-rr/^def.^ (x^)-^ (C.^)- ^"S that

V=U^/2°r=roU-.^/2, it is easy to check, using (1.7),(1.6) that,
(1 .17) VT^e^K^T^oOV.
We finally notice that,
(1 .18) (reuM^uTT^v), u.vcL2.



2.Formal study of the Iteration process.
In the process that we are going to study, there will appear infinitely

often one of the following two types of operators, namely;
Type 1 . P=P(x,hD^) Is a scalar pseudodifferential operator with the following
properties:
(2.1) P commutes with the operators J^, <X€Z2 .
This means that the Weyl symbol; P(x,^) of P 1s 2'rT-periodic both In x and In
e.
(2.2) py=yp*, yp=p*y.
This means for the Weyl symbol, that P»K= P, where K=)<-^/2 Is the map of
rotation of R2 by the angle -it/2. I.e. the canonical transformation
associated to y. We also assume a symmetry under reflection in x==$:
(2.3) PV=VP.
Here we recall that V quantizes the reflection map (x,$)—->($,x), and is an
anti-linear operator. At the very first Iteration step, P will be selfadjoint (for
real values of the spectral parameter p.), but that property will be lost later
on 1n the Iteration and will be replaced by:
(2.4) PfP and PP| are selfadjoint,
where P^ and P^ are bounded pseudo-differential operators, satisfying (2.1)
and :
(2.5) p^= yp^, ?^y= ypf.
(2.6) PjV= VPj,j=l,2.
In the beginning of the Iteration, we take P^ and P^ to be the identity
operator, and later, they will be elliptic near the characteristics of P.
Type 2. P Is a 2x2 system of pseudodifferential operators :

L2(R,C^ 3})—> L^R.C^ 4})» where the subscripts Indicate the coordinate
indices that we use for the two different copies of C2. We shall always think
of these indices, as defined modulo 4, and in order to simplify the notation we

2 2 2 2
write from now on ^odd^d 3)» (Deven=c{2 4)- Let T denote one of the

2 2 2 2
two operators T ^ : Codd""* ̂ ven orT2 : ^ven""^ °odd» where each one 1S

defined by the general formula (Tx),=Xj.-^. Then the operator T2, defined
either as T}T^ or T^T^ is given in the standard basis of C2 by the matrix :

(° ^). We then assume that P satisfies (2.1) and

(2.7) pyT=yTp*, p*yT=yTp.
(2.8) VP=PVT2.
Again, we assume that there are operators P\ and P^ satisfying (2.1), such
that (2.4) holds and we replace (2.5) and (2.6) by:
(2.9) PiyT=yTp^, p2yT=yTPf,
(2.10) VPj=PjVT2, j=1,2.
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It will be Important later on,to observe that these two relations and (2.4)
remain valid. If we replace P^, P^, by P^+tP, P^+tP for any real number t.

In this section, we study formally certain Grushin type problems for the
operator P either of type 1 or of type 2, and we shall see that we obtain In
each case a new "renormallzed" operator which Is again of one of the two
types. For each type there are two types of Grushin problems; either a
"potential well" problem or a "branching" problem. As we shall see, the
potential well problem leads always to a renormallzed operator of type 1 ,
(regardless of whether we start from an operator of type 1 or of type 2), and a
branching problem always leads to a renormallzed operator of type two. Hence
there are 4 cases to check. The richest one Is the branching problem for an
operator of type 2 (leading to a new operator of type 2), and the other 3 cases
are simple adaptations of this one. For an explanation of the terminology
"branching" and "potential well", we refer to later sections dealing with
more substantial (microlocal) analysis.
Case 1 . The branching problem for a type 2 operator. LetA
fo ^€L^(R;C^ 3}) be a function, whose form will be specified later, and In
some sense (that we do not need to specify yet) concentrated near the
segment ](O.Tr).(Tr,0)[. We put fo.j^^7')1"'^,!' forj€Z4=2/(4), and then

^J^o^O.j » ^Qr ^€'z-2' We put,
(2.11) R+u(o(,j)=(u|fo(j), ueL2, (o(,j)€Z2x(l,3),
From the choice of the f^ ,, It will be clear that R+:

A
L^R^Co^—^l^Z^d^}) Is a bounded operator. Similarly, we define a
bounded operator

R-: ^2(z2x{2,4})-•» L2(R;c|ven^ ̂

(2.12) R-u-= ^ "cc.j^.j.
Z2x(2.4)

From the definition of the f^ , and from the commutation relations,
that we have studied earlier, It follows that,
(2.13) Tyfo(j=exp(1V2<^') fcc+y.j.
We conclude that,
(2.14) TyR-=R.yy,yyR+=R+Ty,
where ^y: }2(^x[\,3)U2,4}))^ 12(z2x{1,3}({2,4})) Is defined by,
(2.15) yyw^.^expOh'y^l-yp) w(o(-y,j).
Using this together with (2.1), we obtain,
(2.16) y /Ty 0 \ = /Ty 0 \p,

0 yy/ 1 0 ^yJ

where,
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(2.17) TP-.
f? R^

^ + ° ^
Throughout this section, we shall assume that V is bijective L2x12—^
l^xi2 , and we denote the inverse by,
(2.18) 6= /E ^ \.

^E-E-^

Then, (2.16) remains valid, if we replace y by6. As a general fact, we
notice that ifE-^. is bijective with a bounded inverse, then P: \^•^\^ has
the same property, and the inverse of P is given by E^^tE-.^)""^-..
Conversely, if P Is bijective with a bounded inverse, then the same holds
for E-^, and the inverse is given by -R^.P~^R-. In particular, we know
that 0 belongs to the spectrum of P if it belongs to the spectrum of E-+.

The fact that G satisfies (2.16) implies in particular that
(2.19) yyE-+=E,+yy, yeZ2.
Now E-+ has a matrix E(o(,j;3,k), o(,^€Z2,J=2,4,k=1,3, and if we

identify }2('Z2x[},'5}^{2,4}))s l^Z^C^dtevenP' then we can a1so th1nk

of the matrix of E-^. as an infinite matrix of 2x2 blocks ; E-4.(o(,3)=
(E-+(o(,j;3,k)),=^ 4 (̂  3 . Analyzing the relations (2.19), we then get
the equivalent statement,
(2.20) E.+^^expd'h^^l-^p) f(<^-=P) »
where f is a matrix valued function on Z2. We will always be in the
situation when f is exponentially decreasing; ||f(oOII^C expMcd/C), for
some 00, so we assume this property from now on. Noticing as in
[HS1],section 6, that E-.+ is a convolution in the variables o^ and that after
a suitable conjugation, E-^. may be viewed as a convolution in the variables
«2» we can show that Oe Spec(E-+) iff OcSpec(Q), where Q:

L^dR^C^cP''^ L2(R; ^ven^ 1S the h'-Weyl quantization of the symbol,

(2.21) Q(x,$)=E f(o;) expMo^o^h'/^) e~ i<&(o()»(><^)>,
where &(x.€)=($,><)• Here we assume that 0<h'<2TT. (When h'==0, E-+ is a
convolution operator and the condition that 0 belongs to the spectrum is
equivalent to : OeQ(R2).) In view of the exponential decrease of f, we see
that Q is a well defined analytic matrix-valued function, 2'rr-periodic both
in x and in ^, so Q satisfies (2.1), if the J^ (as always on the renormalized
operator level) are defined with h replaced by h'. What we shall verify (in
each of the four cases), is that Q inherits all the invariance properties of P.
Before that, it will be convenient to make some general remarks about the
renormalization map :E«^—^Q, namely that this map respects
composition, and passage to the adjoint.
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Proposition 2.1. Let e:'Z2-^ Mat(nxi). and f^-^MatOxm) be
exponentially decreasing functions, so that we can define the composition
EoF, of the two matrices,
(2.22) E^/^expO'h'y^ryp) e(o(-y),
(2.23) F(y,3)=exp(lh'32(yr3i)) r(y-3).
Then,
(2.24) (EoF)(o:,^)= expdh^^r^l))^^-:^
where by definition,
(2.25) e»f(«-3)= Ey expdh^-^^ryi^ e(o(-y)f(y-3) .
Moreover, If we denote by Qg, Qp Qe»f» ^he renormallzed symbols, defined
as In (2.21), then for the corresponding h'-quantlzatlons, we have,
(2.26) Qe°Qf=Qe»f -
Proof. The proof Is by straight forward calculation: We have,

E<F(o(,^)= Sy expdh^y^o^i-yp+^z^l'^l^ e(<^-y)f(y-3)>
and In order to obtain (2.24),(2.25), It Is enough to check that,

y2 (o(1•'y1 )+32 (y1~31 )~32 (o(1"•31 )= (y2••^2xo(1"y1)•
If we compose the corresponding h'-Weyl quantizations, we find that

Qe^C^ SS e(o0 f(3) exp(-1(o(l0<2+3l32)h'/2) Ac<,3'
A^^= e-10(2X /2oe- io ( lh/Doe- l(c<2+32)x /2oe- i31h /D .eLT32X/2.

Using the relations:

e-io^h'Doe--^^2 = e1320(lh72oe"•132></2oe-•1<:<lh/D,
e-1o(2>< /2<»e~131h/D=e~10(231h72•e~131h/Doe~1c(2></2>

we see that,
Ao(,3==

ei(320(1-o(231)h72 e~1(o(2+32)x/2 e-1^!4-^11'0 e-1(o(2+32)></2 =
ei(320(1-o(2^1)h720ph/(e-1((o(2+32)><+(o(1+31)e).

where Oph'(-..) denotes the h'-Weyl quantization of ... . Hence,

Qe°Qf= ^y 9W e-^l^1172 Op^e-^^-yiC),
where,
g(y)= e^l^72 E^+^^ye(o()f(^)e-1(o<1c(2+3132-32c<1+o<231)h'/2.

Rewriting (2.25) on the form,
e»f(y)= ̂ ^y e1^132 e(c0f(3),

we see that g=e»f, which gives (2.26). •

For the passage to the adjoint, we have,

Proposition 2.2. Let F(o(,3)= e^^^r^f^-^), where f Is an
exponentially decreasing function with values In the space of nxm
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matrices. If F* denotes the complex adjoint of F in the sense of infinite
matrices , then,
(2.27) F^^e^^r^PgCo^). g(y)=e1h/y1V2 f(-y)*,
where f(o0* denotes the complex adjoint of f(o0 for each fixed c<. If Q<- and
Qg denote the corresponding renormallzed symbols, then we have
(2.28) Qg(x.$)=Q^x,$)* .
and hence the corresponding relation for the h'-quantizations,
(2.29) Qg=C^.
In other words, the map F —»Q^- respects passage to the complex adjolnts.

The proof of this result Is just a routine calculation, starting from the
fact that F*(oi:,3)=(F(3,oO)*, and we omit the details.

We now continue the study of the case 1 , and we shall next look at the
Fourier Invariance. From the commutation relations between the Ty and y,
and the definition of f^ ,, we obtain,

(2.30) ^•D^.r^^2^)^^
where we recall that x=x--TT/2' denotes rotation by the angle TT/2. From
this and the definition of Rj;, It Is easy to show that
(2.31) R+yT= 9R* (Implying yTR-= R^9),
(2.32) yTR^=R«9(1mp1y1ng 9R+=RtyT).
Here 9denotes (the only possible) one of the two operators :
I^ZZxO^))-^ ^2(22x(2,4}), ^2(22x(2.4})^ 12(22x(l ,3)),g1ven In
both cases by,
(2.33) 9w(o(,j)=e1h/o<lo(2 w^-^oO.j+l).
Combining (2.7) with (2.31),(2.32), we get,

^ T O \ ^ ^ / y T O \ / y T O \ / 0 - T O \ .
\o 9y \ o 9 / \ o 9 j \ o 9

which Implies the corresponding relations for 6:

(2.34/yT °\^^ f^^ e (^ o\, /yTo\ ^
\o 9 / l o 9 7 [o 9 y [ o 9

In particular, we obtain,^
(2.35) 9E-+=E*+9, 9Et+=E-+9.
More explicitly, the last relation means that,
(2.35) E(o(,3)= e^^l^^l^ToEtK^.^oO^oT-^
or In view of (2.20),
(2.36) f(K(oO)= T<f(oO*oT-1 .
Using the relations, ̂ -x, ̂ =5, )<S=-SK. we get for the
corresponding renormallzed operator,
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QoK(x,C)= ^ f(o0 e^l^72 e-1<&(o<)» )<(x'e)>=
E f(o0 e-^I^Z1172 e-^^^x.e)^
E fO^^oO) e^l^72 e-^(<^(x.$)>=

S f(x(o0) e^zh72 e1<&(oO,(x.C)>=
T( S f(o0 e^l^72 e-K^^x^^T-^ TQ*T-1 ,

(2.37) Q « K = T Q * T ~ 1 .
For the h'-quantizatlons, this means that y^QO^ TQ*T~ 1 , or rather,
(2.38) Q(yT)=(yT)Q*.
This Is precisely the relation (2.7) for the renormalized operator,(with the
only difference, that now ^denotes the h'-quantization).

We shall next study the invariance under reflection in the line x=$. In
view of (2.8), we shall assume that it is possible (subject to verification
later), to choose fo i such that,
(2.39) VT2foj=foj.
Using the various commutation relations between the operators y, J^, and

V, it is easy to check first that Vfo,2=lo,4' ^^O 3=lo 3 and then more

generally that,
(2.40) VT2fo(J==e1h/o(1c(2 fv(o(.j)» for j odd.

Vf^J==e1h^1^2 fv(o(.j)» for j even.
where v(o;,j)=(&(o0.2-j). From this it follows that,
(2.41) VR-.=R..V', R+VT2=V'R4.. where the antilinear operator V is
defined by,
(2.42) V'w(o:.j)= e^l^w^o;,?).
We notice that V^id. Combining (2.41),(2.42),(2.8), we get,

(^\ ^^T20 v
[ o ^ j \ o vy

which implies,

(2.43) e^^^^oV
\ o vy \ ° v/

In particular, we have,
(2.44) V ' E _ + = E«+ V ,
or more explicitly,
(2.45) E(v(o(,j),(v(3.k))= e1^!0^-:?!^) E(o(.j;3,k).
For the corresponding matrix f(o0=(f(o(;j,k)), we then get,
(2.46) f(S(oO;2-j.2-k)= e1h/o(10(2 f(o(;j,k),
which implies for the corresponding renormalized symbol, that
(2.47) Q(-e,-x;2-j,2-k)= Q(x.e;j,k).
This does not use quite the reflection that we want, but iterating (2.37),
we get Qo)<2= T^T"2, and this relation can be written explicitly as,
Q(-x,-^;j,k)=Q(x,^;j+2,k+2), and combining this with (2.46), we get
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Q($,x;4-j,4-k)=Q(x,$;j,k), which can be written In matrix form as,
(2.48) Q(^,x)=Q<T2 .
Here the left hand side Is the symbol of the operator V ^ Q o V , where we now
use the h'-Weyl quantization, so on the renormalized operator-level,
(2.48) can be written as:
(2.49) VQ=QVT2 .
This is the same relation (for the h'-quantizations) as (2.8).

To finish completely the case 1 , we have to find natural operators Q^
and Q^, satisfying the obvious analogues of (2.4),(2.9),(2.10). Under the
hypotheses above, we notice that the adjoint of P gives the Grushin
problem,
(2.50) P*u+R^u+=v, R*u=v- ,
which is well posed with inverse given by 6*;
(2.51) u^v+E^v-

u^=E^v+E*.^v-..
Let us take v=0 in these relations, and multiply the first equation of
(2.50), by P^. Using that P^P*=PP^, we get PP^u=-P^R*+u^. We can
view this as the first equation of a Grushin problem for P^u, and hence,
(2.52) P|u=-EP2R^u++E+R+Plu.

0=-E-P2R^u++E-.+R+Plu .
Substituting (2.51) with v=0 into the last equation of (2.52), we obtain,
E-P2R^.E*.4.v-.= E-.+R^.P^Etv-. for all v«, and this means that

E.^E-P^R^-)* is self-adjoint. If we replace (P,6,P^) in these arguments
by (y*,e*,Pf), we also get that E*+(E^PfR-J* is self-adjoint, or
equivalently, that (R*PiE+)*E-.^. is self-adjoint. Using the various
translation-invariance properties, it is easy to check that E-P^R^. and
R*P^E+ commute with 9"y, so we can define the corresponding
renormalized operators (by the same procedure as E -^—^Q) : Q^. and Q^.
From the propositions 2.1 and 2.2, it is then clear that QfQ and QQ^ are
self-adjoint and that Q], Q^ commute with the operators Ty (where we
now use the h'-quantizations). Moreover, if we repeat the arguments
leading to the other invariance properties for Q, we obtain the natural
analogues of (2.9) and (2.10), namely that,
(2.53) QiyT=yTQl. Q2yT==yTQ^,
(2.54) VQj=QjVT2, j=1,2.
In fact, with AI=R*PIE+. A^E^R^., we first find Ai9=9Al.
9A^=A^9. In general, if M and M' commute with the 0'y and M9==9M\ then
for the corresponding renormalized operators, we find,
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QrT^yTr^O'T^Qm/, and this implies (2.53). To see that we have
(2.54), we first notice that (V'ulv^^uj V'v)^, and that the analogous
relation for V has been obtained in section 1 . The commutation relations for
R± and V^T2,^, then give, R*V=V'R*, VT^^R^V'. Using this and
(2.43), we see that Ai commutes with V', j=1,2 . From this we get (2.54)
by the argument leading to (2.49).
This completes the study of the case 1 .

Case 2. The potential-well problem for a 2x2 system. Assume as in the
preceding case, that P is a type 2-operator. There are two subcases,
corresponding to whether the potential wells are associated naturally to
2TT22 or to 2Tr22+(Tr,Tr). Let us first reduce completely the second case
to the first one. Given P, P,, we put P^S^PS, P^S^PjS, where
S==T(I,JL). Using the commutation relations between Ty, y, V, it is easy
to check that (P'.P^.P^) satisfies the relations (2.1),(2.4),(2.7)-(2.10).
Since S is a natural quantization of the translation by (TT.TT), we get a
complete reduction to the subcase n°1. To describe the kind of
Grushin-problem that we shall study in this case, let fo } be an
[^-function suitably concentrated to the component of the characteristic
set of P in R2, which is "close to" (0,0) (in a sense that will be made
precise later). As we shall see later, it will be possible to choose fo } in
such a way that,
(2.55) (yT)2foj=±foj,
which we here take as an assumption. We now let the index j vary in
Z^=Z/(2), and put fo 2=(orT/)~% 1 » where for convenience T' is defined
as T when the +sign is valid in (2.55) and defined as iT in the other case.
Then in general, fo i^yT^'Jfo k, and since T^id, we also have
(T^^id. Following closely the case 1 , we define f^ j=T^fo i . and the
operators R+^dR^C2)--^ l2(Z2), R-: ^(Z2)-^ L^IR^C2), by:
(2.56) R+u(o0=(u|f^j).
(2.57) R-w=£w(o0f^2-
As in the earlier case, we shall assume that the corresponding operator y
is bijective and has bounded inverse C^f + i.^^-.)
Repeating the argument of the case 1 , we then obtain,
(2.58) TyR-=R-^Ty, R+Ty^yR^,

(2.59) ^yE-+=E^^y,

where Ov : I^Z2)—* I^Z2) is given by the obvious modification of (2.15),
and where we now notice that E-.^. is given by an infinite matrix
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(E-+(o:,^)), where E-+(o(,:p) are scalars rather than 2x2 blocks. We still
have (2.20) and we can define the renormalized operator as before, having
the crucial property that 0 belongs to the spectrum of P iff it belongs to the
spectrum of Q. Now Q is a scalar pseudodifferential operator instead of a
2x2 system. Repeating the earlier arguments, we also find,
(2.60) yT'R-^R^.9. R*yT'= 9R+,
(2.61) 9E-+=E*+9,
where 9: }2(Z2) •—> }2('Z.2) is defined by the obvious simplification of
(2.33). As before this leads to the relation Q o K = Q f o r the renormalized
symbol, and hence for the corresponding h'-quantizations,
(2.62) Qy=yQ*.
In order to treat the invariance under reflection in the line x=^, we add the
assumption that
(2.63) VT2foj=fo,l .
Then using the commutation relations and (2.63),(2.55), we get after a
simple computation,
(2.64) Vfo,2=ro,2-
Using again the commutation relations, we obtain from (2.63),(2.64),
(2.65) VT2f^= e^^Z fs(c<)j , Vfo(,2= e1^!^ fs(oQ,2 »
and as in the case 1 , this leads to
(2.66) VR_=R- .V / . R^VT^V'R^,

where the antilinear operator V' is defined by,
(2.67) V'w(o0= e^^l^w^oO).
Continuing as in case 1 , we then obtain (2.44), which now means more
explicitely that,
(2.68) E(S(oO,S(3))= e1h/(<:<10(:2~3132) E(o(,3).
For the corresponding matrix f(o0 , we then get,
(2.69) f(&(o0)= e^l0^ f(o0,
which implies for the corresponding renormalized symbol, that
(2.70) Q( -C»-x)= Q(x,C)-
This does not use quite the reflection that we want, but iterating the
relation Q < » K = Q , we get Q<»)<^= Q, and this relation can be written
explicitely as,
(2.71) Q(-x,-e)=Q(x.e),
and combining this with (2.70), we get,
(2.72) Q(e,x)=Q(x,e) .
Here the left hand side is the symbol of the operator V o Q o y , where we now
use the h'-Weyl quantization, so on the renormalized operator-level,
(2.72) can be written as:
(2.73) QV=VQ.
This is the same relation (for the h'-quantizations) as (2.3).

To finish completely the case 2, we have to find natural operators Q^
and Q^, satisfying the natural analogues of (2.4)-(2.6). The first part of
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the corresponding argument In case 1 is completely general, and as there,
we see that E.^E-P^R^)* and (R*PiE+)*E-..,.are self-adjoint. Again
E-P^R^and R*P^E^. commute with 9"y, so we can define the corresponding
renormalized operators Q^ and Q^. It is then clear that Q^Q and QQ^ are
self-adjoint and that Qp Q^ commute with the operators Ty (where we
now use the h'-quantizations). Moreover, if we repeat the arguments
leading to the other invariance properties for Q, we obtain the natural
analogues of (2.5) and (2.6), namely that,
(2.74) Qiy==yQl, Q^o^yof,
(2.75) VQj=QjV, j=1 ,2 .
This completes the study of the case 2.

Case 3. The branching problem for a tupe 1-operator. This case is a
complete repetition of the case 1 , with the obvious simplification that all
the invariance relations before renormalization. do not involve any
operators "T". As in case 1 , the renormalized operator is of type 2.

Case 4. The potential well problem for a type 1-operator. This case is a
complete repetition of the case 2, with the obvious simplification that all
the invariance relations before renormalization, do not involve any
operators "T". As in case 2, the renormalized operator is of type 1 .



3.The potential-well problem for a type 1 operator.
Let P be of type 1 , as defined 1n the section on the formal study of the

Iteration process, and let PpP^ be corresponding operators such that P^P,
PP^ are self adjoint et c . We shall assume that P, Pj depend analytically on a
real parameter jJl€l-4,4[, and more precisely that
(3.1) P=Oph(P(^,x.e)), Pj=Oph(Pj(jJL,x,e)).
where P.Pj- are holomorphic in D(c)= QJL; IjJil <4)x((x,$)€C2 ; |Im(x,$)l <1/e) ,
for some sufficiently small 00.In this domain and with the same c, we also
assume that,
(3.2) |P-(cos^+cosx-^JL)|^C, IPj-H^C, forOJL,x,$)€D(c).
We formalize this by introducing the following definition.
Definition 3.1. We say that (P.P^^) (or simply P) is of strong type 1 , if it is
of type 1 in the sense of section 2, and has the properties above. If (P,P^,P^)
is of strong type 1 , we let c(P) (or rather ^(P.PpP^)) be the infimum of all
00, such that (3.2) holds.

In this definition, P(x,$) and Pj-(x,$) may depend on many more
parameters than JJL . Then c(P) will depend on these parameters also. The goal
of this section (and the following ones) is to obtain results which are uniform
with respect to all these additional parameters, valid when c(P) is sufficiently
small. Among the additional parameters we may also have h, but the most
important h-dependence, and the only one that we explicitly take into account
in our notation, is the one resulting from the fact that we work with
h-quantizations.
Definition 3.2. If the operator P is bounded in some Hilbert space, and depend
on a parameter jJleM, then we define jJl-Sp(P) as the set of JJL in M, such that
OeSp(P).

In this section we shall assume that (P.P^^) is of strong type 1 , and
that 0<h^2ir. Notice that if c(P) is sufficiently small, the operators Pj- are
bijective on L2. so 0 belongs to the spectrum of'P iff it belongs to the
spectrum of H^=P^P (or equivalently, if it belongs to the spectrum of
H2=PPl). Recall that H^ and H^ are selfadjoint, and intertwined by y. In
particular,
(3.3) ^y2^^2^,
where we recall that y2 is a quantization of x2 which is the reflection in
(0,0). Also recall that,
(3.4) VHi=HiV,
where V is a quantization of reflection in the line x=$. V is antilinear and
v2=I. From (3.2) it follows that Hj also satisfy (3.2) with a new 00. in a
region defined as before with this new C. The new c tends to 0, when C(P)
tends to zero. The Weyl symbol H^ is real valued for real JJL and (3.3) and (3.4)
imply that H^JJL.X,^) is invariant under reflections in (0,0) and in the line
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x==C; Hi(-x,-^)=Hi(x.C), Hi(x.^)=Hi(e.x)= HI<S(X,$). Moreover HI is
2TT-periodic In x and in ^, and Hi(x,$)+jJL is on the real domain an arbitrarily
small perturbation in C2 of the symbol cos^+cosx. We start by discussing the
symbol H^+JJL on the real domain, following closely the argument of section 7
in [HS1L Modulo 2iT22 there are precisely 4 critical points of this symbol.
namely a non-degenerate maximum close to (0,0), a non-degenerate minimum
close to (TT.TT) and two non-degenerate saddle points close to (0,'rr) and
(TT.O) respectively. From the invariance under the map (x,$)—> (-x,-$). it
follows that the point of maximum is equal to (0,0). Using also the translation
invariance, we see that the symbol is invariant under the maps
(x,<p-»(2Tr-x,2Tr-^:), (x,0--»(-x,2TT-$), (x,^)->(2TT-x,-$). which are
respectively the reflections in (TT.TT), (O.TT) and (it,0). From this we conclude
that the point of minimum is (ir,Tr) and that the two saddle points are (0,-rr)
and (ir.O). The map & leaves H^ invariant and exchanges the two saddle
points, hence we have the same critical value at the two saddle points.
Summing up, we have,
Proposition 3.5. For real ii^s, the symbol H^ ofHi=PfP is invariant under
reflection in any of the points (kTT.Irr), k.leZ, under translation by 2TT in x or
in $, and under reflection in the line x=$ (and more generally in any of the
lines ^=±x+k2TT; keZ). Modulo 2TTZ2 there are precisely 4 critical points.
all non-degenerate; a maximum at (0,0) with Hi(0.0)+p,=2+®(e), a minimum
at (TT.TT) with Hi(Tf,Tr)+jJi=-2+0(c), and saddle points at (O.rr) and (rr.O)
with Hi(o,Tr)+p,=Hi(Tr,o)+^=©(c).

Let cOjl)=Hi(Tr,0)+>Jl=0(&). The discussion below will be uniformly
valid, provided that c(P)>0 is sufficiently small, that ^LSC(>JL)+CO for some
arbitrary but fixed t^O, and finally that 0<h<ho(&o) ^or some ho^o^0-
The assumption that jJls:c(jJl)+eo can also be written; H^TT.O^-CO' so the

real characteristic set of H^ avoids the saddle points (k-rTjTT), k+1e2Z+1 . For
\>c(jJl), let U^=U^(\) be the component of (H^+p.-^)"'1^) in R2, naturally
associated to o(€22, and let H^+JJL be a modification ofHi+p, obtained by
filling all the potential wells U^(C(JJI)+CQ) ̂  ̂  ̂  (0.0) but leaving H|
unchanged near UQ and in the compact domain to which UQ is the boundary. For
the moment, we can do this by standard C°°-theory as in section 2 of IHS1].
We know that the eigenvalues of H^+JJL in the interval [c(>JL)+eo,oo( are
simple, bounded from above by H^(0.0)+jJl+®(h), and mutually separated by a
distance ^h/Co for some constant CQ. Moreover, if we use (3.2) and ordinary
perturbation theory, we see that each such eigenvalue \()JL) will depend
analytically on JJL with a holomorphic extension (as well as for the
eigenfunction) to the strip HmjJil <h/Co. Moreover, in this strip, we have
d\OJl)/d>Jl=0(c). so ifjJl is close to \QJL) to start with, then there will be a
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simple real zero JJI==^ ofjJL-^jJl), and from now on we restrict the attention
to an Interval IjJLi-h/Co^i+h/CoL where we may choose CQ as large as we
like. It Is then clear that H^=H^+^JL-JJL has an Inverse of norm ©O/ljJL-jJLi I),
forjJl complex with 0<ljJl-jJlil <h/Co- If we do the "filling" with some care,
using quantizations of the modifying operators based on superpositions of
Gaussians, then we also know that the spectrum of H^+JJL In
]X(;JL)-h/Co,\(jJL)+h/Co[ for CQ sufficiently large, Is concentrated to an
exponentially short Interval! centered at XQJl), when jJl Is real. (More details
about gaussian quantizations will be given In section 4.) Let TTM be the
associated spectral projection. Writing Tr^ as a contour Integral with the
resolvent of H^+JJL, we see that the definition of TTM extends holomorphically
to HmjJiKh/Co, and we have lldTTu/d^lll =0(e/h).

We shall now fix JJI=;J^ for a while, and we start by recalling the
definition of certain distances as In [HSll. With U^==U^(jJ^), we now put
UJ=TT^(U(, j^))= the x-space projection of U(, ^). Then for x real between UQ
and U^ , the complex zeros of H^(x,^) are of the form ^(x)+2Trk±1^»^(x), keZ,
where ^(x) Is real and (x,^(x)) tends to a point of U(Q o)' when x tends to the
right boundary of UQ, and <I>^(x)^0. We then extend <3=>i to a C1 function on R,
such that ^{(x) Is 2Tf periodic and vanishes on UQ. Finally, we put
Di(x,y)=|e»i(x)-<i>i(y)|. Since Hi(-x,-C)=Hi(x,C), we obtain that <3?i Is odd,
and hence that Di(-x,-y)=Di(x,y). Let us define D^ associated to H^ In the
same way. As we shall see (or rather recall) solutions to the equation HjU=0
will often have weighted estimates In terms of Dj. Since y exchanges H^ and
H^, the Fourier transforms of solutions of H^u=0 will satisfy estimates In
terms of D^ and vice versa. Since our weighted estimates will allow for losses
=Q(g£/h) jor every 00, we can often replace D\ and D^ by one single
distance function by means of the following observation: We have that
Hi(x,$)=0 implies P(x,^). P(x,$), H^x,^) ==®(h), simply because on the
operator level, P^Pp"1^ and so on, and the composition formula for the full
symbols is reduced to multiplication, up to an error 0(h). If we add the
assumption that d^H|(x,^)^0, then there Is a unique ^=^+OW such that
H^(x,^)==0. Completing this argument with a simple discussion of what
happens in a small neighborhood of the x-projected wells, we see that
<i>2(x)-<i^(x)==o(1)0+ 1 x 1 ) uniformly, when h—» 0. Thanks to this we will
usually be able to replace D^ orD^ by D=(jgr^(Di+D^).

We choose "<P=^Po (^ere 0==(0,0)) the same way as the function go in
[HSll,section 4, to be a suitable Gausslan ofL^norm ©(h""^), such that
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(3.5) ^^JJLi^O has norm 1 '

(3.6) fo, yfo= ©(e--^),
in the sense that for every &>0, there is an h^>0, such that
||e(1-£)f/h^||=o(e&/h) for0<h<h^, and similarly for^fo. Here

f(x)=minj<^ D(U|<,x)+Volk|, where 0<Vo^So=def.D(0,2Tf). Without
changing the growth estimates for fo, we shall next modify this function in
order to fulfill some symmetry relations, required in our formal iteration
scheme. Microlocally, we know that fo is concentrated to a neighborhood of
UQ and by construction, we also know that H^fo is exponentially small in L2,
and in particular, it makes sense to say that fo belongs to the kernel of H^
microlocally near UQ. (See appendix a.) Now this kernel is one-dimensional (in
a sense that we leave to the reader to define, possibly after reading [HS1]),
and invariant under the operator y2. Hence, fo=±y2fo up to an exponentially
small error in L2, and without changing any of the essential properties of fo,
we can then replace this function by ^(fo^y^o^^u/i^Po^^O^- S1nce

y^=I, the new function fo will satisfy:
(3.7) y2fo=±fo.
We can also add symmetry under V. Microlocally near UQ o» we have Vfo^^fo
for some complex a) of modulus 1 , since V commutes with Hp Writing this as
Vo)ifo~o)2fo, (since V is anti linear,) we get approximate V-invariance by
replacing fo by uJ2fo> and this does not destroy any of the earlier properties.
If fo denotes this new function, we make a last modification by replacing fo by
^fo^^- Th1s w111 not a1ter (3•7)» since V and 72 commute, and we have
gained the property,
(3.8) Vfo=fo.
Recall now that the subscript 0 stands for 0 in 22, and in order to use the
notation of section 2, we put fo^ i=f(o, COJ^O' and ^rom th1s function, we
define f^ , for o(€Z2, j=1,2, as in case 4 of that section, (which is an
obvious modification of the case 2 in the same section,) as well as the
corresponding operators R+ and R-. The corresponding Grushin problem is
then,
(3.9) Pu+R-.u~=v, R+u=v+,
and we shall first study this problem microlocally near the potential well UQ
forjJl==;J^. We then get the problem,

(3.10) Pu+u-(0)fo,2=v,
(u|foj)=v+(0).

Since jJ.=jJli, we know that fo } is microlocally in Ker PfP==Ker P, and
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fo 2€KerPP^= (Im PP^-^dm P)-1-. Here we proceed formally and we leave
to the reader to give a precise sense to the arguments by Introducing the
convenient error-estimates and pseudodifferential cutoffs. (See also appendix
d, where a more complicated Grushin problem is treated.) In order to solve
(3.10), we write u=u'+xfo \, u'€(foj)-1-, v=v '+yfo^2 ' ̂ (fo^"^ ̂ ^^
x=(u|foj), y=(v|fo,2^ we not1ce ^hat- P^O.P"1""^^^'1" 1S rnicrolocally a
bijection, and that the inverse EQ is of Sd-^L^-norm ©(h"1). We then get
the microlocal solution,
(3 .11) u^oV'+v+Wfo.p

u-(0)=(v|fo,2)»
so the inverse of,

y=/PR- \
^R,O;

Ismicrolocallgoftheform, -
(3.12) 60=^0 Eo,+\=/ 'Eo R^\ =f0(h-1) ® ( 1 ) \

^0^0,-^ \Rf-Q} \0(1) 0 } '
and by standard microlocal cutoffs et c, (or by microlocal apriori estimates as
in appendix d,) we see that IP also globally has an inverse of the form (3.12)
up to an error ®(h00). and where the description of EQ is now only microlocal
near the wells U^. By ordinary perturbation theory, we see that if we let ;Jl
vary in the complex disc D(jJli,Coh) of center ̂  and radius CQ^ then y

defined above is still bijective, with an inverse,
(3.13) 6=^ £+ \= 0(h-1) .

V-^J
Representing G by a perturbation series in the usual way, we see that,
(3.14)E-+= ((P-Po)^!^^0^27^4-0^00^
where we put v=jJl-jJLi, P=PQJL,x,hD), Po=P(jJli,x,hD). Let us study the first
term to the right in (3.14). In view of (3.2), we have :
(3.15)fo,i=Pifo,i+®(0.
Using the selfadjointness of P^PQ and P()P^ and the fact that Poro,^0^00)
(and even exponentially small if we are careful), we see that
PoP|Plfoj=OCh°°), so Pifo^^fo^4-00100^ From th1s and (3-15) ' we

conclude that,
(3.16) foj^ro^4-0^4'0^00^
Since fo,2=(1)ylf0,l' and ((i)^:')21r0,1=lr0,1' we can Permute foj and fo^ 1n

(3.16). It follows that we may assume that uJ2^, so finally,
(3.17) fo^ifo.z-1-0^-1-001005-
(3.2) and Cauchy's inequality give,
(3.18) P-Po==-vI+0(cv),
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and from this and (3.17) we obtain:
(3.19) ((P-Po^ojIlo^^^^0^4-0^00^-
Substitution In (3.14) gives,
(3.20) E-4.=(Tv+®(Cv))I+®(v2/h3)+OChoo).
This gives Interesting Information about the behaviour of the diagonal part of
E-+ when v«h3, and this region contains the possible values of v In
[-h/Co»h/Co] such that 0 Is In the spectrum of P. We restrict the attention to
this region from now on. After a translation by ®(h00) (and even by an
exponentially small quantity), we may assume also that the diagonal part of
E-^ vanishes for v=0. This 1s possible since the diagonal part of E-+ Is
constant by translation invariance, real by reflection Invariance with respect
to x==^ (,see section 2, case 4, which is the analogue of case 2), and given by
(3.20). We recall (3.6) and the subsequent definition of f and of VQ. Thus, if
z(v)I is the diagonal part of E_ ^., we know that z(v) is real for real v, (since
z(v)=f(0) and we have (2.69),) and we may assume that
O^Oz^^Tv+O^vMi+O^/h3).

The next problem is to study the off diagonal part of E- 4.. Using the
techniques of section 7 in [HS11, it is clear that we have the following result:
Let F be a real C^-function with all derivatives in L°°, such that
(3.22) iF^l^dD^I-S)^,
(3.23) |F(Uk)-F(Uj)|^(1-S)volk-j|,
for some &>0. Then if F*((j,k))=F(Uj), y is bijective from
[.2(]R.:e2PM/^)x}2(e2p*/^) onto Itself for sufficiently small h, and the Inverse
6 is ®(h""1) in the associated operator-norm. (Here }2{e2p*/1^})={^:
we^ ^e}2]. We also have an analogous result with weighted spaces on the
Fourier transform side, and usina both results, we obtain,
(3.24) E-+(o(,3)=0(e-(1-6)vol^-3loo/h)^

for every S>0. Here |o(loo==max(|o(| I Jo^D- From this u follows that 0 can
belong to the spectrum only if |v l is exponentially small.

Recall that (R*PiE+)*E-4. and E^E-P^R^-)* are self adjoint. Put
AI=R*P^E+, A^E-P^R^-. The matrix of A^ Is given by

Ai^^^PiE+S^lf^^0^"0^^01^317^ ^o r a 1 1 s>o ' and ̂
translation invariance, A^o^o^A^O.O). For v=0, we get,

A^(0,0)=(P^fo i l fo 2^ ignoring errors which are ®(h°°), so
|A^(0,0)|>:const.>0. The reflection symmetry in x==^, implies that,
AjWoO.&^^e^'^i^-^i^A^o:,^), which Implies that Aj(c(,o0 is real
valued. For the corresponding renormalized operators Qj, it follows that
Q^AjtO.O+Ote"17^) in a complex strip |Im(x,$)l <1/CQh, and replacing Qj-
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by AjCOyCO^Qj this will imply after reseating In the ^-variable, that the part-
of (3.2) concerning Qj is satisfied with & replaced by CQh.

Following section 4 in [HS1], we shall now improve the estimates on
E-+(o(,3) when v=0, so that z(v)=E_+(o(,oO==0. Define &^€l2(Z2) by

&o((^)=1 when ^=^ and =° otherwise. Put go;j=E4.(&o^' g^^F^^o:)'
and notice that g^ , and their Fourier transforms satisfy the same growth
estimates as f^ j. Since R+E+=I, we get,
(9o(.ll^,1)=(E+&o(l^,1)=R+E+so:(3)=&o:,3 (Kronecker's delta):
(3.25) (go(.ilf3j)=^,p.
Similarly, using that R*E*=I:
(3.26) (go^l^^o^-
Applying, PE++R«E-+=0 to &R, we get
(3.27) Pg3,l+S:o^3E.-+(o(.3)f^2=°>
which with (3.26) implies that,
(3.28) (Pg3,1lgo(.2)=-E-+^3)•
Taking the adjoint of the identity E-.P+E-^.R^==0, and applying it to So we
get,
(3.29) P^g^-^o^E--^0^,!^,
which also implies (3.28).

We are looking for improved estimates for small values of o( and 3, so it
will be natural to adopt the following terminology; we say that
A(o:,p)=6(e'"a(o('3)/'h), where a is a real-valued function, if for every S>0,
and for every bounded set K in Z^, there is a constant 00, such that
|A(o(,3)| ̂ Ce^'1'^0^^'^, we shall also use the analogous terminology for
functions of one variable o(, and for functions of a real variable x we change
the earlier convention, into: u= ©(e""^^), if for every &>0 and every
compact set K in R, the L^-norm of uc^^ on K is bounded by a constant
times e^11, for sufficiently small h. In all that follows, the bounds near
infinity in x or in o(,3 will be unchanged, but play an important role in the
iteration process. Let us assume by induction that,
(H.1) E-+(o(,3)= 6(e~a(lc<'•3loo)/h), where a:H*—^R4. satisfies,
(H.2) 0^a(k+l)-a(k)^vo,
(H.3) |a(l)|^So=def.D(0.2Tr).
(H.4) |a(k)|>vok.
The assumption. (H) is satisfied with a(k)=VQk, and we also recall (3.24),
which gives additional information about E-+ near infinity. Our object is to
increase the function a. By translation invariance it is enough to assume (H.I)
for o(==0 or for 3=0, and also to prove (H.1) for a new function a for such
values of o(,3. Let us first study Pgo 1 and P*go ^ with the help of (3.27) and
(3.29). The two cases are completely parallel, so we concentrate on Pgo p
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We recall that g^j, f^j= ©(e-^x-^TrodVh^ ^ j-ollows from (3.27) and
(H.I) that,

pgo^==6(e-(a(0+r(x))/h)+2;«^Q©(e-(a(l3il)+Kx-2Tr3i))/h)^
so

Pgo, 1=6(6-^)^),
where F Is the even function given by,

F(x)= mIntBtO+Kx^mln^o^l^ll^x^TT^)).
Thanks to (H.2)-(H.4), we get for 2TTk:< 1 x 1 ^2TT(k+1):

F(x)=m1n(a(k)+D(2Trk,|xl).a(k+1)+D(2Tr(k+1),|x|)).
Here we use the convention a(0)=a(1). We also have the same estimate for
P*go 2^^ recall (3.28) for 3=0:
(3.30) E-+(c<.0)=-(Pgojlgo(.2)-
Assume ̂  ̂ 0 and for Instance that o(p0. We write,
(3.31) -E-+(o(,0)=

^pgo.1lgo(,2)+(go,1la~-)()P<go(,2)-(goJl[P*^lgo(,2)=I+"+I^-
Here y=l]-oo,\] ls the characteristic function of l-oo,\], where \ Is to be
chosen conveniently In ]0,2TTo^[.
Case 1 . o^=l. We choose \=iT, which gives the same estimate for I and II:
I+^=6(1)e'•(a( l)+vo)/^\ where now 0(1) simply means ©(e8^) for every
fixed S>0. To estimate III, we also follow [HS1], but with the following slight
simplification, based on the observation that [P*,^(l= 0-')()P*y-)(P*(1-<)().
This means that we can rely on the boundedness of P in weighted (^-spaces,
developed in [HS1],section?, and we obtain, [P*,^(lgo( 2=o(e"'D(><'2Tr)/h) Cor
X^TT, and sote"0^.0)^) ^orxsTT. From this we see that H^Ote"^711).
and hence, E.+^^^Oe-^^+Vo^oVh.
Case 2. o^ is even s2. If we choose \/2TT=o^/2, then we will get the same
bound for I and II, but for III we only get ©(e^o^i^), which is no
Improvement compared to the initial function a. Instead, we take
\/2iT=(o(i+1)/2, which will produce a worse bound for I and a better bound
for II, so it is enough to estimate I and III: We find I (and II) =
®(exp(-(a(«i/2)+vo0(i/2)/h)), and III=6(exp(-(vo(o(i-1)+So)/h)), so

E-+(o(,0)=6(1)e~m1n(so+vo(^1-0,a(o(1/2)+voo(1/2)/(\

Case 3. o^ is odd s3. We choose \/2Tr=o(]/2=[o^/2]+1/2. Then
1,11= ©(Oe-^^i^l^o^i-^i/Zl))/^
III=,©(l)e~ ( (o (1" l ) vo+So)/h^ go
E^^.(o(,0)=6(1)e••m1n(((o(l~1)vo+So),(a([o(1/2])+Vo(o(1-[o(1/2l)))/h^

Notice ^hat this estimate also covers the case II.
forking with Fourier transforms, we get the same estimates with o^

"epiac^d by o(^» so finally,
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E-+(o(,0)= ©(De-^l^looV^
where,

b(1)=min(a(1)+Vo.So),
b(j)==m1n(So+( J-1)vo,a([j72l)+Vo( j-tj/2l))/h, js2.

As in [HSll, we check that (H) Is verified with a replaced by b, and that after a
finite number of Iterations of this procedure, we get a function a(j) with
a(1)=So, a(j)>So forj>l. (An Infinite Iteration leads to a(j)=So+(j-1)vo.) In
other words, we have achieved that,
(3.32) E^^,^)=Q(e'~so/[}) ^or |o(-3loo=1 ' and ^(e-^o+^oVh) ̂ r

lo(-3loo^2,
for some IQ>O. Moreover, for o^==1, we have,

(3.33) E-+(o<,0)=(goJl[P*,yIgc(.2)+o< l)e~(so+co)/h=

-((p.xigojigo^)^1)^0^0^
with ^(=1]-oo t ]> W1th t- close to TT. In order to study the last scalar product,
we shall slightly modlfu the function Y (as In section 7 of [HSll. Let
Trs(K)=Cih~ie-^s(x)/h, where ^s(x)=^o0<-s), ^o(x)==1CoX2, with CQ>O
sufficiently large but fixed, and C^=C^(CQ) the constant such that Jrrs(x) ds=
1 , Putting K=J')((s)Trgds, It Is easy to check, using the growth estimates on
SO.I'QO^^SOJ'^QOI:^' that we can rePlace [P»Xl In (3.33) by 'y[P,Kly.
provided that CQ Is sufficiently large. Here yeC^has Its support near rr and
is equal to 1 near that point. (We now take t=TT.) As in section 7 of [HSll, we
obtain on the other hand,
(3.34) [P,Trsl=haQs/8s+Rs, for |x-s| + ly-sl <1 , x.ycC,
where,
Qs=Ch-3/2Je1((K-y)9+^s(x)+^Ps(y)))/hQ(^+y)^9^(x+y)-s^)d9,
Rs=h-3/2Jei«><-9)9+i(^><)+^s(y)))/hR(^+y),9^(><+g)-s,h)d9,

where Q is a realization of a classical analytic symbol of order 0, defined for
x,y In the region in (3.34), and for |Im9|<C(c), where c is the parameter in
(3.2) and C(&) tend to oo when t tends to 0. R is holomorphic and
=©(e''&o/'h), where CQ depends on CQ. We have,

(3.35) ^[P,Klt=h^Q^+J_^R^ds.
In view of the properties of the symbol of Rg, we see that the contributions
from the integral In (3.35) to ^[P.Kl^ (replacing [P,y] In (3.33)) Is negligible,
and we obtain,
(3.36) E.+^^—h^Q^ygojIg^^^"'^04'^^-
Now recall from [HSll that Q^ is the solution of a division problem, and that the
leading part q of the symbol Q, is obtained by:
(3.37) P(x,9+icr)--P(x,9-io')=CoO'q(x,9,o').
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As 1n [HS1], section 5, one can show that goj^oC'Oatx.l-Oe1^^ on
[x++S.Tr+&ol» gd^.Z^I^^'^1^00^ on [Tr-So^-^---^!' ^r every
&>0 and for some fixed B>Q>O, where a,b are realizations of elliptic analytic
symbols of order 0 , co^.Co^cf^OO), '^^(U(o^oP==^-'><+]' and^r^ are
the solutions of the eiconal equations, H^x^^O.H^x,^)^, satisfying
Irrnp'X), Im'̂ 0, ̂ (x)->0, ̂ (x)-^. when x \x+, y(x)-»0,
^(x)—^.-, when x/ '2Tr+x-. Here ̂  are the unique values, such that
(K^,^)€U(O o)- By symmetry considerations, we have
(3.38) Im(^(x)+^(x))=So, Re^(x)=Re-y(x)+const. .
Since. o^H^x^^^O, we obtain from (3.37) that qCx^O^O, and by analytic
stationary phase (see [S1]), we obtain
(3.39) yQ^goj^^dtx.^e1^^^^711, near X=TT.
where c^ has the same properties as CQ and c.^, and d is a realization of an
elliptic analytic symbol of order 0. By the continuity of Q^ in weighted
L^-spaces, we also have
(3.40) ^Q^^goj=6(e^s(x)+^(x))/h).
Combining this with the WKB-form of g(i,o),2' and Qf^s^110 stationary phase,
we get,
(3.41) (^QTr^SojISO^Z^^"30^ C3,C3 1 =6(1 ) .
When o(2:7?0. we use that g^^6'"1^2®2^10^7^^)^' an(l by contour
deformation, we obtain,
(3.42) (^QTr^go.iigo^z^0^50"^0^'
for some t^X).

Summing up the discussion so far, we have forjJL=jJlj in addition to
(3.24), that
(3.43) E-.+to^O^e-^o+^oVh)^ ^r | o ( | > 1 ,
(3.44) E,+(o(,0)=a(o()e•"so/h^ ^or |o( |=1, where a(o0,1/a(o0=6(1).
Here |o(|= |o( i l+lo(2l» and £o>o• The corresponding renormalized operator,
Q which is invariant under y2 and V, is then of the form
(3.45) Q=QQ+R,
where on the symbol level,
Q^=e-so/h(a(1,o)e--1e+a(-1.0)e^+a(0,1)e-1><+a(-1,0)e1><). and

R=0(e~(so+&o^ /h) in a complex strip |Im(x,$)l ^Co711- From the invariance
under y2 , we deduce that a(-o0=a(o0, and from the V-invariance, that
a(1,0)=a(-1,0), so with ao=a(1,0), we get,
Q^^Ze^o/^aQCOs^+aoCosx). We now recall that we have already found Qj,
j=1,2, such that QfQ and 00^ are self-adjoint and on the symbol-level,
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Qj^+OCe^o/h) (.or |Im(x.^)| :<£o/h. Th1s Implies that Im(ao)=CS)(e'"co/h^
so after multiplication of Q, by the real non-vanishing factor,
gSo/h(2Reao)~^, we are reduced to the case when
(3.46) C^cos^+cosx+OCe'^o711).
So farjJl has been fixed==jj^, and It only remains to study E-+ for neighboring
values. Combining (3.24) with (3.43),(3.44) and the Cauchy Inequalities, we
get for I^L-jJIi IssCo^
(3.47) E-+(c<,0)=®(e-(so+^o)/h)+Q(|^«^^/h)o(e-Volo(loo/h)^
Ms:2.
(3.48) E,+(o(,0)=a(o()e~so /h+®(|>JL-^l1l/h)6(e~volo:loo/h)^ ̂  |o(|=i.
Also recall that z(v)=E-+(0,0) has a simple zero at v=0 , i.e. forjJL=jJlp and
that the behaviour near v=0 is given bu (3.21). From these three facts, we
see that 0^ Spec(E-4.) If IjJL-jJLi I se^'^o)^ and h^h(&), where &>0 may be
arbitrarily small. We then restrict the attention to the values ofjJl such that
IjJL-jJLl I <e^""^°^^. As a new rescaled spectral parameter, we take,
jj^==e^o/h(2Reao)""^z(v). Then we get for the corresponding renormalized
operator, (given by (3.46) when jJl==jJlp)
(3.49) C^OJL'+cos^+cos^^^e^o/h)^ (-or |Im(x,^:)| ^Co711-
This together with the Information already obtained about the Q, shows that
(Q,Ql,Q2)» is of strong type 1 with C(Q)=h/Co.

Let us sum up the results of this section in the following
Proposition 3.4. Let (P.P^.P^) be of strong type 1 and 0<h^2rr. Then for
O^C(P)^CO^° sufficiently small, the symbol H^ ofPfP has non-degenerate
saddle points, all with the same critical value, cOJO-^Jl, where c(>Jl)=®(£(P))
is holomorphic in D(0,4)={jJl€C; I^Jll <4). There is a unique real value
)lQ=^(P)=Q(t(P)), such that JJlo~c(jJlo)=0. For every CpO, there exists
CpO, such the following holds when O^C(P)^C(), 0<h^1 /C^ ;
jJl-Sp(P)cU-N^^j^N^ Jj, where Jj are closed disjoint Intervals labelled in
increasing order (so that Jj-.̂  is the neighbor to the right ofJj), with the
following properties:

1° Ifa=infJ-N » b=sup J^, then a=-2+0(c(P))+0(h),
b=2+©(£(P))+0(h).

2° The distance between Jj and Jj.̂  is of the order of magnitude h.

3° Jo=UJlo~e1+o(h)»^0+e1+o(h)l' and ^Jo0^-5?^)-
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4° Forj^O, the length ofJj is e^j711, where Ij-l (that is of the same
order of magnitude as 1), and if ̂  —» )<,OJL)=^/ is a suitable
increasing affine map, then )<j(jJl-Sp(P)nJj)=jJl'-Sp(Q), where Q=Q,
is the h'-quantization of a strong type 1 symbol, with &(Q)—» 0 as
h-»0. Here 2Tr/h=h72-rr mod Z. 0<h^2TT. (When h'=0, the
h'-quantization is defined as the multiplication by Q on L^(R2).)



4. The branching problem for a type 1 operator.
Let (P.PI,?^) be of strong type 1 with e(P)^c>0 sufficiently small ,

0<h^2TT. We then recall from Proposition 3.3, that the Weyl symbol H^ of
H^=PfP has saddle points at (TT,0),(0,Tr) with the same critical value
cOJO-jJl, where c(^l)=®(c). In section 3, we studied potential well Grushin
problems for P when IcOJO-jJil s&o, for any fixed €Q>O, Provided that &>0,
and h>0 are small enough. In this section, we study the case when
lc(^l)-jJl|^£o» and ̂ o^' t>0' h>o are sufficiently small. The real
characteristics of H] are then included in a thin neighborhood of the union of all
segments s(o(,j), o(€22. j€24, where s(0,1) is the segment [(0,TT),(Tr,0)],
s^psK^.kstO.I)), s(o(,j)=(2TroO+s(0,j), where as before K denotes
rotation around (0,0) by the angle -Tf/2.

The new difficulty is then to make a microlocal study of the operators P. H^
and H^ near the saddle points (krr.lTr), k,1e2, k+1 odd. Because of the
invariance properties of our operators, it will be essentially enough to
concentrate on what happens near the point (O.TT). Let us start with Hp We
recall from Proposition 3.3 that the symbol H^ is invariant under reflection in
the point (O.TT). On the operator level, we have, CH^H^C, where C=TQ }CQ is
a quantization of reflection in (O,TT), and Co=y2 quantizes the reflection in
(0,0). The real symbol Hi+^-cOJl) has critical value 0 at (0,-nr) and applying
the results of the section b of the appendix, we obtain a real valued analytic
symbol f(jJL,t,h)=fo+fih+.. of order 0. defined forjJL.t near (0,0), with
^oO^'0^0' ^oO^0)/8^. and a unitary analytic Fourier integral operator
U, whose associated canonical transformation x^ maps a neighborhood of
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(0,0) onto a neighborhood of (0,'rr), such that,
(4.1) U^fOJI.Hi+^-cOJL^h^Po^^hD+hDx).
Moreover, we can arrange so that,
(4.2) CU=UCo,
and so that Kj maps the part of the negative ^-axis In the domain of
definition. Into a small neighborhood of s(0,1). Formally, we observe that If
u=Uv and u 1s a microlocal solution of H^usO (which Is equivalent to Pu=0),
then PoV=U''1f(>J.,JJl-c(JJl),h)Uv=f(^,^L-c(JJl),h)v microlocally near (0,0).
The map
(4.3) ^^JJl^fOJI^-cOJO.h)
Is Invertlble and Its Inverse Is given by,
(4.4) ^=g(^l',h),
where g Is a classical analytic symbol of order 0.

The relation (4.1) will also allow us to treat the Inhomogeneous
equation H^u=w microlocany near (0,-rr). Indeed, let t»~»k(jJl,t,h) be the
Inverse map (where k 1s an analytic symbol) of the map
s»->fOJL,s+jJl-cOJl),h). Then from (4.1), we get,
(4.5) U-^L^kOJL.Po^).
Now k(jJl,jJl',h)=0, where p/OJl,h) Is given by (4.3), and we can factorize:
k(jJl,t,h)=1(^,t,h)(t-jJl'(p,,h)), where 1(^.1,h) Is an elliptic analytic symbol of
order 0. Using this In (4.5), we get,
(4.6) U-^U^OJL.Po^KPo-p/).
Here 1(jJL,Po»h) is an elliptic operator, so we see that the microlocal Inversion
problem for H^ can be reduced to the corresponding one for PQ-JJL'-

We now write U==Ui and we shall see how to obtain an operator U^
which reduces H^. Let V be the antilinear operator, introduced In section 1 ,
and put A=vy, B==TQ iS^vy, which are antlllnear realizations of the
reflections in the ^-axis and In the line $=Tr respectively. Using the
Invariance properties for type 1 operators and the appropriate commutation
relations of section 1 , It is easy to check that
(4.7) A^I. B2^, B=CA=AC,
(4.8) AH^H^A, BHi^B.
put Ao=V=ry, and let Bo^j^/^r be a quantization of reflection in x+^=0.
Then we have,
(4.9) A ^ = I , B ^ = I , B o = C o A o .
(4.10) [Ao^ol^Bo^O^0-
Let U^ be the unitary operator defined by,
(4 .11) UiAo=AU2.
It is then easy to verify that we also have,
(4.12) UiBo=BU2,
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(4.13) CU2=U2CQ,

(4.14) Uf^.H^+JJL-cO^.^L^Po .

The next step will be to study PQ-^, and we start by exhibiting
suitable solutions to the homogeneous equation. The equation
(^(xD+Dx)-oOu=0 has four solutions u^.,u_,v+ v _ , given by:

(4.15) u±(x)=H(±x)|x|-i+^,y1V±(e)=H(±C)ICI~i•" i c<=u±(C).
where 3^ denotes the unitary Fourier transform defined in section 1 for h=1.
The last relation can also be written Vj^yf1]'^. The general solution in ̂
is of the form u=o(+u++o(_u-=^^v^.+3.v». where the coefficients are
related by,
(4.16) ^'*.(^

(4.17 ) A^=

r(^+ic<)(2Tr)-i([exp(Tro(/2-Tri/4)]ij+[exp(-TTo(/2+Tri/4)]i ^+
[exp(-Tr«/2+Tfi/4)l2j+ [exp(Trc</2-Tn74)]2 z),

where [a]j^ denotes the 2x2 matrix whose only non-vanishing element is a in
the j:th row and k;th column. Using the reflection identity
r(^+ioOr(^-ioO=-n7ch(TroO, we see that A^ is unitary (when o( is real).

In the case of solutions to (PO-JJI')U=O, we can apply the above with
o:=)J//h, but it will be convenient to make also two renormalizations. The
first one is due to the fact, that we prefer to work with y=yh instead of y^,
and the second renormalization is due the fact that we wish u+ to enjoy
additional approximate symmetry under reflections in the line x=^, when
p/>0. Assuming JJL'>O (which is no essential restriction, as we shall see
below), this leads to the choice,
(4.18)UQ(><^')=e1^ /(1•-10^')/2h+1Tr/8H(±x)lx|-i+^ //^

w^= y-1ruQ= Vu^.
Then using the method of stationary phase, (or (4.20) combined with the
complex version of Stirling's formula, that we shall recall later in this
section,) we check that,
(4.19) Vu^O+O^u^+OO^u0:,
uniformly for jj/ in any compact interval in ]0,oo[. From (4.16),(4.17), we
obtain that the general (temperate) solution u of (Po-^OusO can be written
u=c<+u^.+ c<«u°= y+w^+ y-w°, where,

(4.20) /y+\ == (h/jJLO^'/heKjJL'/h+TT^^^^ /^
v^-y V^-y

As a second preparation concerning PO-J^'> we study the
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Inhomogeneous equation. We look for an Inverse of this operator which
propagates singularities In the forward Hamilton field direction. Following a
well known procedure, we put,
(4.21) E^iVh^e-^Po-^O/h^a/h^Utdt,
where U^ can be constructed by the standard WKB-procedure for the strictly
hyperbolic Cauchy problem. We get,
(4.22) UtU(x)=(2Trh)-iJe1e'"tx-n/h e^'^-i) yu(-n) d-n=

eW/h-^e-tx).
When JJL' Is real, there Is no hope that E should be a globally L^-bounded
operator, but If we put Hs(]R.)={u€/6'; ^O^eL2), <^>=(1+^2)?,
LlOlO^ue/A'^^ueL2). then we shall see that E Is bounded:
H-.^-^L2!-.^ , for every S>0. The ^(Hl+^.L2!-.^) norm of U^ Is equal to
the SCL^.L^-norm of the Integral operator with kernel,
(4.23) kt(x,Tl)= (2Trh)-ieie"'tx1fl/h e-^1^7^^!-8^-!-5.
and if we estimate this L^-norm (brutally) with the corresponding
Hnbert-Schmldt norm, we get,
(4.24) IIUt«s(Hi/2.6.L2 1/2-6)^^"^ e-^+lm^/h).
Using this In (4.21), we obtain:
(4.25) llElls(H,/2.&,L21/2-6)ssc&h"3/2'^ Im^7h+^&>o-
In appendix d we have defined wavefront sets for microlocally defined
operators, and computed WF'(E).

Let UQ i be a WKB solution of Pu=0, defined microlocally near the
Interior, Int(s(0,D) of the segment s(0,l) defined above. Since PfP Is of real
principal type in this region, and since we work microlocally, and hence
neglecting exponentially small errors, we know that UQ } (in this region) is
unique up to a constant factor, and can therefore be expressed as a multiple of
U^w0 . Let Yo i€C§°(IR.2) be equal to 1 near(0,if)= the end point of the
segment s(0,1), equipped with the orientation of the Hamilton field of
cos^+cosx, and with support In the disc of radius (3/4)(2)zTT, centered at
(O,TT). (Following a general terminology, (TT,O) will be called the starting
point of the segment s(0,0.) Define ^o j and more Qenerally y^ii by the
relations,
(4.26) yo.j^1'^^,!' Xo^^Xo,;)^)-2^).
We also choose ^o ^ invariant under reflection In the point (O.TT), which
Implies that ̂  J=XB k ̂ the segments s(o(,j) and s(3,k) have the same last
end point. Taking a suitable quantization of y^ j using superpositions of
gauss1ans,(see below for more details,) we can also arrange so that on the
operator level,
(4.27) yoj^^^^^^'Xo.l' ^J^o^cC'Xoj'
and again )(o(,j=Xft,k ^ the segments s(«,j) and s(3,k) have the same end
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point. The scalar product (I[HI,Y() 1^0 I^O i) is well defined modulo an
exponentially small term, since we see that the essential contribution to this
expression must come from the intersection between the cut-off region,
)Co i(x»$)^(0»0 and the real characteristics of Hp close to s(0,1). It Is clear
that this scalar product can be evaluated by stationary phase, and we get
(i[Hl»5(o 1^0 1^0 1^°- After multiplication of UQ } by an elliptic analytic
symbol, depending on h and )JL' only, we may assume that,
(4.28) (nHi^oj^O.I^O.l)^-
W? ?h^11 thgn ?gu th3t Uo,1 is a normalized microlocal solution of H^u==0.
defined near 1nt(s(O.D). We notice that (4.28) Is essentially independent of
the choice of YQ 1 » because If X€C§° vanishes near both endpolnts of s(0,1),
and If y Is a corresponding gausslan quantization of y,
(T[Hi,^)uojluoj)=1(yuojlHiUo,i)-1(^HiUojluo,i)=0, since HIUQJ=O
microlocally near 1nt(s(0,1)).

We now put fo i=1(Hpyo ^UQ ], which makes sense (modulo an
exponentially small uncertainty) as a globally defined function on R,
exponentially decreasing outside the Intervall [S,TT-S], for some &>0, and
generate f^j and UQ( j as In section 2,
(4.29) fo.j=y1^ro,l>^c(J=To<foJ,
(4.30) "0.j=y1'' ju0.1'uo(.j=To(UO,j '
Here u^ ,• Is defined microlocally near1nt(s(o(,j)). Using the appropriate
Invariance and commutation relations of sections 1 ,2 , It Is easy to see that
UQ( , Is a normalized microlocal solution of HjU=0 Ifj Is odd and of H^u=0, Ifj
Is even. (More precisely, forj even we have (KH^X^ ilu^ Ju^ p=1, and forj
odd we have the same relation with H^ replaced by H^.) Moreover, we have,
(4.31)f^j=1[Hp^jlu^j . fc<j=i[H2,yo(jlUo(j .
for j odd and even, respectively.

With these functions f^ ,, we define R^. ,R- as In the case 3 of section
2. Microlocally, f^ , Is non-orthogonal to Ker P= Ker H^, when j Is odd, and
non-orthogonal to Ker P*=Ker H^i and hence not In Im P when j Is even. This
makes It plausible that the corresponding operator IP Is bijectlve. In order to
be completely In the case 3 of section 2, we have also to arrange so that (cf.
(2.39)),
(4.32) to,1=^0,1-
To have this we choose XQ 1 real-valued and such that YQ l °S=1-Xo 1 near

s(0,0. We also need to be more explicit about the choice of Gausslan
quantization. Let I=JiT^do( be a resolution of the Identity, where TT^=TT^ ^
has the kernel,
(4.33) ch-3/2e i((><-9)c(^+1(><~o(x)2/2+1(y-o(x)2/2)/h=

Ch-^v^v^y).
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Here 00. By definition, the Gauss quantization of XQ 1 1S then'
(4.34) YO.I^O.I^^O^-
Using that VQ Is Invariant under y,V,r, and that Vo(=To(/2TrvO» we check
that Ty^TT^Ty^^Tr^y, yTr^y-l=Tr^), v^v^^oO. This
shows that the Gauss quantization behaves as the Weyl quantization under
conjugation by Ty,y,V, and In particular, by the choice of XQ 1 ' we obtain,
(4.35) VXo.l^-'Xo.l. near s(0,1).
Using also that V commutes with H^, we obtain,

Vroj=-1V[HpXo.ll"0,1=^1^0,llVuoj.
After multiplication of UQ \ by a suitable scalar, we may assume that
VUQ I=UQ i, and then we get (4.32).
So far. (4.32) Is only a microlocal relation, but we can make It global and
exact by replacing foj by i(fo,l+Vfoj). and then we have modified fo i only
by an exponentially small quantity.

We shall next see how certain WKB-constderatlons near the branching
points, imply the wellposedness of our Grushin problem, and give the
possibility to compute the leading contributions to E-+ appearing in the
inverse ^ o fy . First we notice that microlocally, P^: KertH^)—^ Ker(Hp, PI:
Ker(Hp—»Ker(H2), and that these maps are bijective. Microlocally, near
Int(s(0,1)), we have the function UQ \, defined as a multiple of U^w 0 , and
since the function w° is defined globally, we can extend the definition of UQ ^
in Ker(P) to a full neighborhood of the branching point (O,TT), and then to
neighborhoods of Int(s(0,2)) and Int(s((0,1),4)), by standard WKB
constructions. We then have a microlocal solution UQ \, defined in a
neighborhood of Int(s(0,1))u((0,Tr))uint(s(0,2))ulnt(s((0,l),4)), which has
its wavefront set (defined in appendix d) concentrated to a much smaller
neighborhood of this set. Outside the point (O,TT), UQ i is of simple
WKB-form, and there are constants «,3,y,S, such that,
(4.36) "OJ^^O 2 nearlnt(s(0,2)),

"O.I^^^O.I)^ near Int(s((0,0,4)),
"(O.O^y^O^ near Int(s(0,2)),
"(O.D^^^O.I)^ near Int(s((0,1),4)).

Here, we have extended U(Q ^ 3 to a neighborhood of (O,TT), in the same way.
When ̂  is real, it is clear from the reduction to PO-J^» that o(,3,y,S exist
and are 0(1), and we shall compute these coefficients later.

Now consider the Grushin problem,
(4.37) Pu+R-u""=0, R+U=&Q p
where &o(j(3,k)=1 if (3,k)=(o(,j), and =0 otherwise. Microlocally. near
Int(s(0,0), an approximate solution is given by U=UQ \, still with u~=0. In
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order to get a global approximate solution, we extend UQ j across the
branching points (O,TT) and (TT,O) and then we truncate UQ i suitably on the
segments s(0,2),s((0,1),4),s(0,4),s((1,0),2). Let us discuss the details of
this only near (O.TT). Let ^(o 2 ^e a ̂ ^ff operator, =1 microlocally near
(--rr.O), and =0 near (O.TT), such that YQ 2PS=PS^O 2- Near ̂ ^^ we Put

u=(l-yo 2^0 i -Then near the interior of that segment,

PU^PO-XO^P^O^-^O^P^O^
-^PP^O^O^-^^O^O^WO^-

Similarly, let $(o ^ 4 have its support near (TT,2Tr), such that

^(0,l),4P^=Pl^(0,1),4- Then near s((0,1),4), we put. ^O-^o.l), 4^0,1'
and essentially the same calculation gives Pu=io:f(o \) 4 near that segment.
Similarly, we can extend u to a neighborhood of (-n',0), such that
Pu=const.fo 4» an(^ Pu=const.f(^ o) 2 respectively near the corresponding
segments. Summing up the discussion so far, we have solved the problem
(4.37) with exponentially small errors, and the corresponding u~ has only 4
non-vanishing components, out of which, we have computed 2. In appendix d
we show how to obtain from this discussion via some apriori estimates the
following result.
Proposition 4.1. For real yx, IP is bijective with an inverse
e=[EllJ+[E+]^2+^E-l2,1+(E-+l2,2=o(h"'3/2)• Moreover, E-,+=®(1), and
there is an to>0, such that,
(4.38) E^^.j^l^Ote^04-^'":?1^711) uniformly for all

(«,j),(3,k) such that s(o(,j)ns(3,k)= 0.
(4.39) E,+((0,0),2;(0,0),0=-i3, E,+((0,1),4;(0,0),l)=-io:,

E-+((0.0),2;(0,1),3)=-iy, E-.+((0,1),4;(0,1).3)=-i&.
Here the last two relations of (4.39) are proved as above by considering

the problem (4.37) with SQ \ replaced by &(o p 3.
In block matrix form we can write.

(4.40) E-+(o(,3)=e1h^2(«1-^1^(o(-3),
where f(c<) is exponentially small for |o(|>l. Using the invariance properties
(2.36),(2.46) (valid also in the case 3), we get,
(4.41) f(0)=[bl2 i+Ibl^ 3+[b)4 ^M^ 3 . and modulo ©(e^o/h);

f((l,0))==[al2j,f((-1,0))=[a"]4^,f((0,1))=[a]4j,f((0,-1))=[a]2,3.
Here, we see that,

a=E((0,l),4;(0,0),1)=E((0,-l),2;(0,0),3),
a=E((1,0),2;(0,0),1)=E((-1,0).4;(0,0),3),
b_=E((0,0),2;(0,0),l))=E((0,0),4;(0.0),3),
b=E((0,0).2;(0.0),3)=E((0.0).4;(0.0),l).

Comparing this with (4.39), we get, -io(=a, -i:p=b. Using also (4.40), we
get, -iy=f((0,-1);2,3)=a. -iS=f((0,0);4,3)=b, and hence,
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(4.42) o(=y, 3=8, a=-io(, b==-i3.
Before the actual computation, we shall see to what extent the matrix,

(^^\= /3c<\= i/ba\ ,\^&j ^ 3; ^ b) f
is unitary. Let VQ ^ be a normalized WKB solution of H^v=0 in the sense of
(4.28), defined near Int(s(0,0), and generate VQ( j, the same way as we
generated the u^,-. Then, in view of (2.2),(2.5), VQ( j is a normalized solution
of H2V=0 when j is odd, and of H^v==0, when j is even. Near Int(s(0,D), we
can write P^UQ I=^VQ } , where \ ,1/ \=®(1). Using (2.5), we get
P^u^ j=^v^ j, when j is odd, and P^u^ i=^v^ ,, when j is even. so from
(4.36), we get,
(4.43) UQ i=^3vo 2 nearlnt(s(0,2)),

UQj=Xo(V(oj)^4 near Int(s((0,1),4)),
"(OJ^^'^O^ nearlnt(s(0,2)),
"(O.IU^^O.I)^ near Int(s((0,1),4)).

Consider the general solution U=X^UQ 1+><3u(o 1) 3==y2VO 2+y4v(0 1) 4» °^
HIU=O, defined near (O.TT). Here we extend UQ \ near (TT.O) and VQ i near
(O,TT) and (rr.O) the same way as we did with UQ \ near (O.TT), by using
microlocal models. Then the coefficients x and y are related by

"̂ i)" •
Let X be a pseudodifferential cutoff, =1 near (0,ir) and with support close to
that point. From the trivial identity 0==(i[Hi,y]u|u), we get after summing the
non-exponentially small contributions from each of the four segments,
meeting at (O,TT): 0= Ix^ l 2 ^- Ix j l 3 - ly^ l 2 - ly4 l 4 +®(e~ & o/h)^
This means that,
(4.44) V3 y^= iX/13 ^is unitary up to an exponentially small error,

^ Sj ^a b;
in the sense that the adjoint of this matrix differs from the inverse by an
exponentially small term. It is then an easy exercise to see that there
are a', b' with a-a' and b-b' exponentially small, such that \ [b l a/ \

\^^j
is unitary.

We now attack the WKB-problem. We first notice that the problem
(4.36) is independent of the normalization of the function UQ \ (and of
condition (4.32)), so we may assume from now on that,
(4.45) UQJ=UI w° nearlnt(s(0,1)).
We choose,
(4.46) VQ i=U2W°.
This may affect \ in (4.43) by a factor of modulus 1 , since U^Uf^ maps
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normalized solutions o fH^usO onto normalized solutions ofH^vssO. Our main
problem, will then be to determine \o(, \3 in (4.43). We recall the definition
of the operators A,B,C,AO»BO,CQ, earlier in this section and the symmetry
relations between these operators and HpH^iPo^pU;?. Put,
(4.47) ^o^^OJ^erO^),
(4.48) ?o. 2=^0,1 €Ker(Hp.
The problem of determining \3, can then be decomposed into two problems;
(4.49) Find ̂  such that UQ \=\\^Q l^l^O 2 near Int(s(0,2)),
(4.50) find \2 such that AVO 1=^2VO 2 near Int(s(0,2)).
Then we will have \3=Xj\2. Notice that IX^I =1 since AVQ \ and VQ 2 have

the same normalization. In view of all our symmetry relations, the first
problem reduces to a similar one on the model, namely to find \^ such that,
(4.51) WQ -==\^Uo _ nearr'2,
where F} is the open negative $-axis, and ^j=)d'~1(^'p. Now the solution of
(4.51) is \i=o(« given by (4.20), wi thy-=1, y+=0, and we get.
(4.52) \1=(^7h)^'/h(2Tr)-?r(^-i>JL//h)e-^//h+^/2h.
For x>0, we can write,
(4.53) u^(x,JJl')=a(x,JJl/,h)e1^o(x^')/h,
where a is an analytic elliptic symbol, defined for x>0, IjJ/l ̂ const., of the
form,

a=e1Tr/8|xl-^c(JJl,h).
where c(jJl,h)>0 is a normalization factor, and

^o^^-^flO^+^gi^-
We have analogous representations foru°, yw^. In particular.

ywo(C)=a(-C^^h)e•-•1'Po(-C^')/^ $<o, and hence
y-"1wo=ae••1 'Po/h^ ^>o, so vo=U2y(ae"•1'Po/h) near s(0,l).

By stationary phase, we then obtain the representation,
(4.54) Voj=a(x,jJl.h) e^x'^,
microlocally near Int(s(0,1))\(a neighborhood of the starting point of this
interval). Here the new analytic symbol, a is defined for I^JL'I <const., and we
have the following geometric description of^p: Recall (4.14), which implies,

Uf^H^L^Po-J^.
where, g(t)=g(>Jl',t,h)=f(^,t+>Jl-c(^),h)-f(jJl,jJl-c(>Jl),h), so that g'(0)>0,
g(0)=0. Let K^ be an associated canonical transformation in the precise
sense of section a in the appendix. We may choose KU satisfying the natural
intertwining relation resulting from (4.13), and so that the corresponding
phase in U^ (generating K(J^,) is a classical analytic symbol. It is only after
these choices that the symbol and the phase in (4.54) are completely defined
by the stationary phase method, and if A^={(x,^(x))), then



42 B. HELFFER, J. SJOSTRAND

A^)=K(J^»K(A»^PQ). Since the symbol of gCH^) is goH^+Oth2), and K(J Is a
well adapted canonical transformation, we get g^H^Xu =x^-;J/+0(h2),
g»H2°)<u^K=-(x$+jJ/)+0(h2). It follows that ̂  satisfies an eiconal
equation: H2(x.^)=0, where H^H^+OCh2) is defined by
g»H2°K(j =x^-p/. Since JJL/>0, the real characteristics of H^ near (O,TT) is
the union of two disjoint curves, one which is close to s(0,l)us(0,2) and the
other which is close to s((0,1),3)Us((0,1),4). It is then clear that we can
extend the definition of^ to negative x as a solution of the eiconal equation.
Let <l>(x,y)=<i>(x,y,JJL/,h) be a generating function for the transformation
KU°)<- Since K(j(0,0)=(0,Tr), we have 8^<&(0,0)=TT, 8y<i>(0,0)=0, and we
may assume that e>(0,0)=0. Then '9(x)=vcM(^>(x.y)-^po(y^» and ^or x=0. ^he
critical point y(jj/) is the projection of (yOJI^'nOJl')); the intersection in the
4:th quadrant of the curves yTl+jJL^O and ()<u°)<)~^($-axis). The last curve
is of the form, 'Tl=-z(y,jJl'), with z analytic, z(0,jj/)==0, 9^2(0,^') close to 1 .
Using the reflection symmetries with respect to the points (O.TT) and (0,0),
we also see that z is an odd function of y. It follows that yOJL^jJL'sgOJL'),
where g is analytic with g(0)>0, and a simple calculation gives,
(4.55) •9(0)=0(jJL'),
and this is again an analytic function ofjJl'.

The transport equation for BQ will conserve the argument of BQ, thanks
to the fact that the eiconal equation for the phase makes use of the full Weyl
symbol H^+Oth2). (See appendix a.) Examining the geometry, we also see
that ^2e»>0, and with the representation of y^w0 above, this leads to:
arg(ao)=TT/8, if BQ denotes the leading part of a in (4.54). Here we assume
that the leading amplitude in U^yl at (0,0) is >0. (Substracting
^p(0)=®(jJl') from the generating function of this operator, we may even
assume that the right hand side in (4.55) is 0.)
Let (XH»XH) be the unique point of this form on the characteristics of H^,
close to (TT/2,Tr/2). Let us study (4.50) at the point -XH. Since
Au(x)=u(-x), we get,
(4.56) Avojt-x^a^jJL.Me-^^)^ .
On the other hand, by the method of stationary phase, we find,
(4.57) Vo,2(-X)Jl)=y'"1VO,1(-KJJl)=

J^.hKatx^.jJL.^+Oth^e1^^^^-^174-1^2^,
where J>0 is an elliptic symbol of order 0, defined for |p/| <const.. We
already know that \\^\ =1, and if we compare (4.56),(4.57),(4.50), we get,
(4.58) arg(\2)=xji/h-2^(x^,jJj/h+©(1).
where "0(1)" hides a real valued analytic symbol of order 0, defined for
IJJL'I :<const.>0. (With the additional normalizations indicated after (4.55),
we may reduce the 0(1) term to 0(h).)
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Here we can make the following geometric interpretation: Let A(jJl) be
the area of the domain limited by the ^-axis, Hf^O) and the line $=x. Let
B(jJl) be the area of the additional region, which is required to fill up the
triangle with corners, (0,0),(0,7T),(Tr/2,Tr/2). (We think of the appropriate
component of Hf^(O) as lying below s(0,1), otherwise just modify what we
just said by introducing domains with negative area!). Then
BOjD+AOj^Tr2/^. Since ̂ (O.^OOJi'), we have •vp(x^)=
JQ><^^P'dx+CS)(>Jl/)=A(JJl)+x^/2+©(JJL/). Hence,
(4.59) argt^^^AOJO+OOJiOVh+OO).
Combining this with (4.52), we get,
(4.60) ^3='\i\2=
(^7h)^7h(2Tr)-i^(^-iJJl7h)e(-1^+^^72-i2A(>Jl)+i®(JJlO)/h+i®(

(With additional normalizations indicated above, we may replace 0(1) by ®(h),
and suppress completely the ©(^L') term.)Here, we write,
-2AOJl)/h=-Tr2/2h+2BOJl)/h, Tr2/2h=h*/8=h78+kTr/2mod(2•Tr2), keZ4,
(where h* and h'clO^-Tr] are defined by 2T^7h=h*/2Tr==h//2Tr mod(2TT2),) and
we obtain,
(4.61) \3=(2Tr)"'ir(^-vJl7h)x
ei(>Jl'^og1/h+2B(JJl)+JJl/^ogJJL/)/h+TrJJL72h-ih*/8+i®(p.')/h+i®(1)
where 0(1) indicates a real valued analytic symbol of order 0, defined forjj/ in
a neighborhood of 0, and ©(p.') indicates a real valued analytic function defined
near 0. In order to evaluate the singularity of B(jJl) at JJL'=0, we let
y==x^(negative ^-axis), and let B'QJL) be the area obtained the same way as
BQJL), but with s(0,1) replaced by y. Then,
(4.62) B'(jJl)-B(p)=0(e),
is an analytic function ofp, and e is the parameter in the condition (3.2). By
canonical transformation, we see that B'(jJl) is equal to the sum of an analytic
function ^QJL'), and the area o f0<y^ l , 0^'n^min(z(y,jJl),jJl'/y), which
gives,
(4.63) B/(JJl)=-^/1ogJJl/+JJl/f(JJl/),
where f is analytic. We conclude that,
(4.64) 2BOJL)+^/^og.^/=2fOJl')p/+©(e).
so (4.61) gives,
(4.65) '\3= (2Tr)~ir(^-vJl7h)x
ei^'1og(1/h)/h+Tr^72h+i(®(jJl')+0(c))/h-ih*/6+i©(1)
where ©(^^.©(e) are analytic functions of)J/, and 0(1) is a real valued
analytic symbol of order 0.

We now recall Stirling's formula in the complex (see [0]):
(4.66) (2Tr)"^^(z)=e•"z2z"?(l+1/122+1/288z2+...),
valid uniformly asymptotically when lz| —»oo, arg(z)^Tr-&, for any &>0.
Writing the asymptotic sum in the parenthesis as e^2^2, where k is
holomorphic and bounded in any domain largzl^TT-S, |z| sconst., and
real-valued on the real axis, we get,
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(2Trr?r(^-vJi7h)=
e(-^+^JJL//h-i(JJL//h)^og(^-1^7h)+k(^-^^'/h)/(^-1^/h).

Here, ^og(^--^^/h)=^og(JJl//h)-1Tr/2+ih/2>Jl'+(h/JJ./)21(1h/)Jl/), where 1 1 s
holomorphic near 0, and real-valued on the real. We then get,
(4.67) (2TT)-ir(?-1jJL7h)=

e(^JJl//h-^(^7h)1og(JJl7h)-TrJJ.72h+i(h/JJlOF(JJl7h))^
where F is a bounded holomorphic function, defined In a domain,
|argz|<const.>0, lz|>const. Substitution into (4.65), gives for
;Jl7h>const.>0:
(4.68) \3=

e-^(JJl7h)1og(JJl')+^®(JJL/)/h+i®(&)/h+1®(1)-^h*/8+ 1(h/M/)FOJl7h)\
Here we recall that the 0-terms Indicate real-valued analytic symbols of
order 0, defined for JJL' In a small neighborhood of 0.

The reflection identity, r(z)r(l-z)=n7s1n(Trz), gives
r(^-1jJi7h)r(^+1jJi7h)=Tr/ch(Trp.7h). Combining this with (4.67) and Its
complex conjugate, we get foru7h^const;>0,

eTrJJL7h/2ch(Tr^7h)=e1(h/^)(F^'^)-F(JJl7h))^
from which we conclude that,
(4.69) Im(F(JJL7h))=®(JJL7h)e~2Tr^'/h
)Jl7h^const.>0. Reinsertion In (4.68), then shows that,
(4.70) \\ft\=\+Q((e~•2^^1/h).
Naturally, all our calculations, so far are valid only up to some exponentially
small error, ©(e"17^). After modification of \3,\« by such exponentially
small terms, we know that the matrix ( ^3 ^0( \ Is unitary.

\\<^ \S>)
This, means that
(4.71) IX^+IXod2^, arg(\3)-arg(\oO=±TT/2.
Combining (4.65) and the reflection relation, we know on the other hand,
that,
(4.72) IX^I^^chtTrjJ^h))-^^'^ (up to an exponentially small

error),
so from the first part of (4.71), we conclude that,
(4.73) l^l^^chtTrjj^h))-^-^7^
Combining this with (4.65) and the second part of (4.71), we get,
(4.74) ^«= (2Trr?r(|r-UJl7h)X

e1JJl'^og(1/h)/h-TrJJ.72h+^(®(^ /)+®(£))/h-1h*/8+^®(1)T^Tr/2
where the 0-terms are the same as In (4.65).

We shall next extend our asymptotic results to the case JJL'<0, by
symmetry arguments. For o(eR2, let y^T^yj^, so that y^ Is a
quantization of rotation around 2-rrc< by the angle -n72. Put
P=yo,^P(yo,^)""1 and define Pj, j=1,2, similarly. Define Hj as before. Then
»Tj can also be obtained from Hj by conjugation by yo,1- u is G^U ^o check
that, Tyyo^e^^V'^y^T^-^y), where the function 9 does not need to
be expllclted. From this relation we immediately obtain.
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^^(y^o^e^^y'^yc^Ty, and it Is then easy to check that,
(4.75) P, Pj commute with Ty for all y.

In order to investigate the Fourier invariance, we first find that
yy(0,^)=e~lh*/4yo,^ToJy. which implies,

e^^yo.^r^TojyCyo.^)""1. Using (2.5) it is then easy to check that,
yp^=P^y as well as the other parts of (2.2),(2.5) for P, P,.

In order to check the reflection invariance, we first see that,
Vyo.^T^o3'"17"-^^ ^Ich implies that, V(yo.^)•'l=T^oyT.l^V.
Then we get,

^^O^^-^O^.O^-^.O^ '̂"g th^ y2 commutes with P, we
get VP^PK-^V, where K=T^oy~1T--oy2=eiwyO,^J. Using the
translation invariance o fP, we get KPK""^?, and hence, VP=PV. This is the
analogue of (2.3) and the analogue of (2.6) is obtained the same way.

In conclusion, we have checked that P together with P, is of type 1 .
Since the symbols of these operators are obtained by rotation by -n72 around
(O.TT), we also see that -P'. P, satisfy the more precise assumption (3.2)
with ̂  replaced by -JJL. To make this even more precise, we also introduce
Ui=yo,|rUiy~1, which is a unitary Fourier integral operator such that

C U^= U]CQ, and whose associated canonical transformation is close to that of
U^. Since PQ and y anticommute, we get,
(4.76) Uf1 HI Ui—IOJL.-Po.hKPo+JJL'),
where 1 is the same function as in (4.6). This shows that all the results,
obtained above for P when ̂ '>0, are valid also for Fwhen ^<0.

Recall that the general microlocal solution of H^u=0 near (0,-rr), is of
the form u=X1Uo,1+ ?<3u(0,1),3=92VO,2+94 v(0,1),4> ̂ ^e
t(92>94)=(^x3l1,1+^c(l1,2+[xo(l2,1+^^l2,2) t(><1'><3)• '̂"S that ^he matrix
here is unitary, wege tx i= \5 , Xj=\3, i fy2=0, y4==1. In other words,
(4.77) ^O,!)^5^1^,! nearlnt(s(0,0),

and ^O.O^^^OJ)^"®81''1^^0^)^)-
The functions "o.^^O.^oj)^, ^0,1=^0,^"(o,1),4 are microlocally in
the kernel of H^ and H^ respectively. (We get here a permutation of the
indices 1,2, that will not cause any essential difficulty in the following.) From
these functions, we generate Uo(,j» ^o(,j as before. The analogue of problem
(4.43) is then to determine 3, o? such that,
(4.78) ^0,1=3^0,2 nearlnt(s(0,2)),

"0,1 =^^(0,1), 4 nearlnt(s((0,1),4),
S(0,1),3=°^0,2 nearlnt(s(0,2)),
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"(O.I). 3= 3^(0,1). 4 nearlnt(s((0,1),4).
Since >JL' has been exchanged with -JJL', we can apply the earlier results In the
case when JJL'<0, and obtain,
(4.79) ^(ZTr^r^+vJI'/Mx

e-1jj.'1og(1/h)7h-Tr>Jl'/2h-1h*/8+10(^')/h+1®(e)/h+1©(1)^
where as before the ©-terms are real valued analytic symbols, of order 0,
defined for JJL' In a neighborhood of 0.

Let us now relate 3 and 5. Applying ^o,? to the l"11^ relation of
(4.77), we see that we need to compare VQ^ and ^O^OJ- ̂  definition,
Vo.2=y"1yo,^oJyuo,1=T^^yuoJ, while ̂ o.^e-^^T-^^, so
we get,
(4.80) yo.^O,^"1^4^-
Comparing this with (4.77) and (4.78), we get,
(4.81) ^X^e-1^4,
which together with (4.79) gives for>Jl'<0,
(4.82) \o(=(2Tr)-'^r(^-1)JL'/h)x

e1}Jl /^og(1/h)/h-Tr^^2h-1h*/8+1®(^')/h+1®(£)/h+1®(1)TiTr/2.

This is the same type of expression as (4.74), but it is not Immediately clear
that the analytic symbols hiding in the 0-terms are the same. Using again the
unitarity, we obtain from (4.81) that a formula of type (4.65) is valid also for
}JL'<O, although we can not be absolutely certain that the 0-terms contain the
same analytic symbols.

After deformation to the case when P=Hi=H2=cos(hD)+cos(x)-)JL,
P,==1, and some more detailed computations following the same ideas, it is
possible to show in the model case and hence in general, that
(4.83) the + sign is valid in (4.71), hence the - sign is valid in (4.74).
In this model case, we can take UQJ=V()J, \=1. ForjJLsp/sO, we have

P=-P, so o?=o(, 3=3, and (4.81) gives, |o(|=l3l,
argo(+arg3+h*/4=2Tfk, k€Z. Since arg3=argo(+TT/2, we get,
argo(=Trk-Tt/4-h*/8, arg3=Trk+TT/4-h*/8 in this special case.

We shall next extend our results to the case when I Imp/1 ̂ h for some
t\<^. Recall that P, Pj depend holomorphically on }Jl. For complex }JL, we put,
HiOJl)=Pf(Ji)POJL), H2(p.)=P(jJL)P^(Jl) so that ̂  depend holomorphicany on
JJL. Restricting the attention to a square |Im)Jll<Co» lReUl<&o» (where &o>°
is small but fixed and independent of " t 1 1 in (3.2)), we first notice that we cgn
choose the WKB-solution UQ \, so that the phase depends analytically on JJL,
and so that the symbol is a classical analytic symbol with JJL and x as base
variables. Here x is restricted to some neighborhood of n72. (Earlier in this
section, the normalization of UQ ^ was choosen in such a way that the phase
had a logarithmic singularity at JJL^O, but this was for computational reasons
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only and did not affect the final results concerning the problem (4.43).) We
may also arrange so that UQ i Is normalized. We now restrict the attention to
a "strip" lIrrvJL'KCh. iRe^l'K&o. We have,
(4.84) 1=(uo,1(^)11IH1(^)>Xo,lI"0,1(^))•
Define f^ , and u^j as for real values of;Jl. Again f^ < is no more a microlocal
function, but we may arrange so that it depends holomorphically onjJl, and so
that we have the same growth estimates for f^j and yf^ j as in the case of
real JJL. Then (4.31) remains valid, and UQ( , is a microlocal solution of Hju=0
when j is odd and of H^usO, when j is even. We extend the definition of R« in
the obvious way, and we extend R+ holomorphically, by putting
(R4.u)(o(,j)=(u|u^,(j0). Restricting ̂  further, by imposing IjJL'K^h, with
0<e^<|r, we see that the existence of an inverse for the corresponding Grushin
problem can be proved the same way as in the case of real JJL, and the inverse
6 is ©(h"372) uniformly. Moreover, we see as before that the matrix
elements E-^(o(,j;3,k) satisfy (4.38). The coefficients a, b defined in (4.41)
are now holomorphic functions ofjj., and if we choose VQ \ by (4.45),(4.46),
then \•=:QW^^/^, where f is an analytic symbol of order 0, such that Imf is
of order ^-1. This implies that \^ and \oc. are holomorphic functions ofjJl of
at most temperate growth when h-*0, for I^J/Ke^h. lRejJl'|<&o. Put u='\3.
According to (4.65) there is a holomorphic function u+. defined on the same
rectangle and of temperate growth there, such that u-u^ is uniformly of
exponential decrease on the intersection r+ of our rectangle and the positive
real axis. Similarly, as indicated after (4.82), there is a function u- with the
same properties, such that u-u- is exponentially small on r., which is the
intersection of the negative real axis with our rectangle. From the maximum
principle, it follows that if we decrease slightly our rectangle by decreasing
&0 9"tl 6^, then u-u± is exponentially decreasing in
U±=Oj/€C,distOJL',rj;)^h). For instance to get such an estimate for u-u+
in a disc DtO.e^h), with c^ ^'Qhtly smaller than the original e^, we introduce
the subharmonic function g==1og|u-u^ I, and after some changes of scales, we
get a subharmonic function gwith only finitely many log-singularities,
defined in a neighborhood of the closure of the domain n==(z€C; lz|<l,
0<arg(z)<2ir), satisfying g(x)^-1 fo r0ssx<1 , g(z)^0 for |z|=l. By the
maximum principle, (comparing with the harmonic solution of the
corresponding Dirichlet problem,) we then obtain, g<o(<0 for Izl <&^/&p and
after reseating back, we get the required exponential decrease.

We also know that u^./u.-se18^''11^, where a is a real valued
analytic symbol of order 1 . From the exponential decrease of u-u^ on the
interval [-c^h^hl, it follows that a is exponentially small on the same
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Interval (after adding an Integer multiple of 2-rr). We conclude that a is a
realization of the 0 symbol, hence a is exponentially small on the whole
rectangle. The conclusion is then that we have extended the validity of (4.65)
to the whole rectangle. The same then holds for \o(, and we have proved,
Proposition 4.2. There is ^e^.hVh^ where f is an analytic symbol of
order ^0 such that Im f is of order ^ -1 , such that the following holds for
o(=a/i, 3=b/i: Let Co>° be sufficiently small, and let 0<&i<^. Then (4.65)
and (4.82) hold uniformly in the rectangle lIrTyJL'K^h, lRejJ/|<Co» where as
before, the ©-terms indicate realizations (possibly with an exponentially
small imaginary part) of real valued classical analytic symbols of order 0,
which are the same in both expressions. Moreover up to exponentially small
errors, we have (4.71), where the + sign is valid.

We shall next study the new self-adjoining operators. Let AI=R*P^,
A^E-P^R^., so that the operators QpQ^i defined in section 2, are the
renormalizations of A ^ , A^. Repeating the arguments of that section, we get
the following results (forming intermediate steps in the verification of the
properties (2.7).(2.8) forQ.Q^Q^.)
(4.85) 9A]=A^9, Ai9=9A^,
(4.86) V'Aj=AjV'.
The fact that Aj commute with the 0'y, implies on the block-matrix level.
that,
(4.87) Aj(o(,3)=e<M«i-3i)aj(o(-3),
and exploiting the properties (4.85),(4.86), we get,
(4.88) ai(x(oO)=Toa2(oO*oT-1. a^K-^o^T-^a^oO^T,
(4.89) By(&(o:);2-j,2-k)=eih/<<10(2a^(o(;j,k).
As with E-+, we see that a^(o0 is exponentially small, except for Io( |<1, and
for I o ( |==1 , the only non-exponentially small entries are a^((l,0);2.1),
ai/(0,0;4,l), a^((-1,0);4,3), a^((0,-l);2,3). Using (4.88), (4.89). it is
easy to check that we have,
(4.90) ai(0)=B2(0)= [xl2,l+[^2,3+^l4,l+[xl4,3-
Similarly, we get for l o ( l ==1 ,
(4.91) a^((1,0))=[zj2,i, a^((0,-1))=[z]2,3, a^((-1.0))s[z]4^,

a^((0,1))s[zl4j, modulo ©(e'^o/h) ̂  sorng Co>°-
(These relations could also have been obtained directly, by using (2.7),(2.8)
for Qj and studying the trigonometric polynomial of degree 1 in the Fourier
series expansion of the symbols Qj. Looking at higher order contributions, we
also see that there is no reason to suspect that Qj=Q^.)

The next problem is then to study x=Ay(0,2;0.1), z=A^((0,1),4;0,1).
Applying the definitions of the various operators, we get,
X=(P1E+^0.1)lro,2)=^3(P1"-^o,2)VO,2'^,2)'
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^(PlE+^OjXfCO.I)^)^^^?!"-^.!)^)^,!)^!^,!)^)-
Recall that the corresponding coefficients b,a for E-+, are given by

b=}~'}fi, asi""^, so we get the same coefficients, multiplied by a common
factor,

e=^X(Pl(l- -)(o.2)Vo,2lro,2)=^(P1"-<X(0,1),4)V(0,1),4lr(0,1),4)•
Recalling that ^VQ^P^O 2» we can a1so wnte

e=i(pi(i-xo,2)P^o,2iro,2)=^S(i-Xo.i)Pi"o,iiro,i)=
i(PSPia-Xo,i)"o. i i fo, i )»

where 5(fo,lPl=PlXo,1- Here P^PI maps Ker(Hp to itself, so P^UQ }=^o \
for some complex number JJL. Since V commutes with Pj and P?, and since

^OJ^O,^ we ̂  PSP^OJ^UO.P and hence ̂  is rea1- '̂"g O-^) Bnd
the fact that V2^,

(P^P10-<)(o,l)uoJlfoJ)=(V2P^P1(1-<)(oJ)uoJlfoJ)_____
=(VP5Pl(1-^Oj)"0.l lVro,lT = (P2PlXo,1"0,l iro,l).

Here we also used that V^ojV-^l-Xo,! and that V UO,1=UO,1» v^,1=^0,1-
Putting ^(PSPiO-Yoj^OjIlo,?' u rollows that

$+S"=(p^uojlfoj)=^(uojlfo,i)=jJi,
(proving again that JJL Is real). Since JJL^O by the enipticity of Pj, we deduce
that, Re^O, and hence that Ime^O. More precisely, we have showed that in
the same rectangle as In Proposition 4.2, we have, xsbe+OCe"17^^
z=a9+®(e'"1/co^ where 9 is an analytic symbol of order 0, such that Im9 is
elliptic. Here CQ>O. Recall that the renormalization Q o f E - + is the
h'-quantization of the symbol Q, given by (2.21), and that the
renormalizations Qj are obtained from A, by the formula,
(4.92) Qj(x,C)=2:o( ajtoOe-^K^hVZ e-K&(oO,(x,C)>.
We then get,
Proposition 4.3. There is a constant CQ>O, such that forjJl' in the rectangle
of Proposition 4.2 and for |Im(x,^)| ssl/Coh, we have,
(4.93) Q(x,e)=[b+ae- iCl2J+[b'+ae i><l2,3+[b'+ae-1><]4J+[b+ae1C]4^3

+(C)(e-1/Coh)^

(4.94) Qj(x,e)= [9b+9ae~1C]2J+[9b'+9ae1><]2,3+[9b'+9ae- l><l4J+
^b+^ae11^ 3+©(e••1/coh).

Here it is understood that a", b", 9 denote the holomorphic extensions of the
complex conjugates of a, b, 9 on the real domain.

We have already observed in section 2, that Qj may be replaced by any
real linear combination of Q and Qj with coefficients that do not depend on j.
Since Im9 is elliptic, this means that we may assume (4.94), where 9 is any
(convenient) complex number. Let us denote by Q° and Q°the explicit matrices
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appearing to the right In (4.93).(4.94). After modification of a,b, by
exponentially small quantities, which do not affect the validity of the last
proposition, we may assume that,
(4.95) arg(b)=arg(a)+TT/2,
so that ba/i>0, and b2-Q2=(\b\2+\^\2)e}2Q^^b\ Then we get,
(4.96) detQO(x.q=2Klb|2+|a|2)sin(2arg(b))+2ba'(cos(C)+cos(x))=

= 2ba((ba/i)-1(lb|2+ |a|2)sin(2arg(b))+cos(C)+cos(x)),
(4.97) detQ^x,$)=

2|9|2ba((ba/i)-1(|b|2+|al2)sin(2arg(9b))+cos(^)+cos(x)).
Recalling that b=3/i=(\3)/(\i), and similarly for a, we obtain from our
earlier results,
(4.98) b=(2Tr)-i^(^-iJJL7h)e1^/10g(1/h)''h+TrJJl'/2h+f(^/,h)/h^
(4.99) a=(2Tr)-i^(^-iJJL7h)e1^/109(1/h)/h-Tr^'/2h+f(JJL^h)/h-iTr/2^
where f is a classical analytic symbol of order ^0, such that Re(f) is of order
^ -1 . From this it follows that,
(4.100) la^+lbl^e21^)^, bayi^e^W^ch^jJi'/h),
when p, is real. Using this in (4.96), we get:
(4.101) det(QO)=2ba(2ch(Tr>Jl7h)sin(2a^g(b))+cos($)+cos(x))

The formulas (4.98),(4.99) are a little less precise than earlier
corresponding ones, but as we shall see later, they carry enough information,
in order to continue the renormalization procedure.

Let us finally formulate the main result of this section,
Proposition 4.4. Let (P.P^P^) be a strong type 1 operator with 0<h^2TT and
with O^C(P)^CO' where Co>° is sufficiently small. Define ;Jlo(P)=0(e(P)) as
in Proposition 3.4. There exists hpO, such that for 0<h^h^, we have an
analytic diffeomorphism JJI—»JJL' from a neighborhood ofjJio to a neighborhood
of 0 such that jJI'OJIo*^0^)- ̂ f 3nd its inverse are given by classical
analytic symbols of order 0. Moreover, for hpO and epO sufficiently small,
the jJi'-spectra of P and Q coincide in the interval [-&i,^], if Q denotes the
h'-quantization of the matrix symbol Q, given by (4.93). Here 2Tr/h=h72TT
mod(Z), 0<h'^2TT, and a, b are given by (4.98), (4.99) (satisfying also
(4.100)). For every OeC, there exist symbols Qj satisfying (4.94), such that
(Q,QpQ2) is a type 2 operator in the sense of section 2. (Here Q, also denote
the corresponding h'-quantizations.)



5. Preliminaries for the renormatized operator of section 4.
In section 4, we proved that the renormalization o fE-+ Is given by:

(5.1) Q(x,e)=[b+ae-1e]2J+[b'+ae1Xl2,3+lb'+ae-1><]4J+[b+^^e1C]4^3
+®(e••1/coh),

when lRejJl'1 <CQ» ll111^'! ̂ ih, for some sufficiently small &o anc^ h>0, when
£,1 is fixed in 10,^[. Here,
(5.2) b=(2Tr)-^^(?-i^7h)e1^7h)109(1/h)+^^72h+1^/'h)/h.
(5.3) a=(2Tr)-i^(^-i^7h)e^7^oga/h)-TrJJL//2h+if(^^h)/h-iTr/2,
where f is a classical analytic symbol of order :s0, such that Imf is of order
:<-1. After multiplication of Q by e11'"^11 times the identity matrix, we may
assume from now on that f is real valued. Then for real JJ/:
(5.4) la^+lbl2^, arg(b)-arg(a)=rr/2,
(5.5) Ib^e^72^^7^-^7^--!/2,
(5.6) la^e-^72^^7^--^7^-172,
(5.7) |a| |b|==1/2ch(Tr>Jl7h).
Using the complex version of Stirling's formula, we also had,
(5.8) b=e1^7h~i^7h)109^/)+i(h/^/)F^7h)+1^^h)/h.
forjj//hsconst.>0, where F(z) is a bounded holomorphic function in a sector
|Imzl<Re(z)/C, Re(z)>C, and,
(5.9) ImF()Jl7h)=®(1)(^7h)e-2Tr^7h,
when ^l'/h>C. This relation can also be differentiated with respect to >J/.

Consider the function Bsf^ogtb). Then for iRejJi'/hl <const.,
HmjJL'/hl^Ci, we get from (5.2):
(5.10) a^^h^logO/^+Oth-^O+oa^h^logO/h), h~> 0.
ForRep//hsconst.>0, |ImjJl7hl ^G], we can apply (5.8):

^^/B=-h-11ogJJl/+F/(JJl7h)/JJl'-h(^/)-2F()Jl7h)+^^/f(JJl',h)/h.
Restricting this to the real axis, we get for>Jl7h^const.>0:
(5 .11) ^^/B=(h-1^og(1/)Jl /)+0(h•~1))+iO(^ /- l+h-1+^ /h•"2)e--2TrA7h.
For complex JJL' with RejJL'/h^const^O, we get,

^^/B=-h-1^og^ /+0(|^'|--1+hl>Jl /|-"2+h~1),
which we can write as,
(5.12) a^B—h-^ogl^l+GXh-1).
Combining (5.10) and (5.12), we get,
(5.13) ^^/B=^r1^og((h+ IjJ/D-^+OOl-1),
and this relation is also valid for RejJi'/h^ -const. <0, and hence everywhere in
the rectangle lRejJl'1 <Co» I^J^'I <^ih. In view of (5 .11) . we also know that
Bu/ImB is ©(h^e-^7^) forjJl7h^const.>0.

Put,
(5.14) Qo(x.C)=(b+a'e- iC]2J+[b'+ae1><]2,3+[b'+ae- iX]4J+[b+a'e1e]4^3.
Then for real JJL', we get from (4 .101) and (5.7),(5.4),
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(5.15) detQo(x,C)=(^/ch(TrJJl7h))[2ch(Tr)Jl//h)s^n(2arg(b))+cos€+cosxl.
The real characteristic set of QQ Is non-empty precisely when,
(5.16) ch(TrjJl7h)s1n(2arg(b))€[-1,1],
Cases of special Interest appear when,
(5.17) ch(Tr>Jl7h)s1n(2argb)=-1, then (detQo^1(0)=2-^T22,
(5.18) ch(Tr>Ji7h)s1n(2argb)=l, then (detQo)'"1(0)=2Tr22+(Tr,Tr),
(5.19) ch(Tr;Jl7h)s1n(2argb)=0. then (detQo)'"1^) Is the union of the

lines ^±x=(2^+\)r(, keZ.
In order to understand the structure of the set of real JJL' such that (5.16)
holds, we split the discussion Into two cases:1°. ljJl7h| ^CQ, 2°,
IjJL'/hl sCo- Here CQ will be choosen sufficiently large In the discussion of
case 2°. In the discussion of the case 1° It may be arbitrarily large, provided
that h>0 Is sufficiently small.
1° |^l7hl=<Co>0. Put ^OJi'^^htTrjJL'/^e21^^). since
^M'arg(b)=(1+o(l))h'~11og(1/h), and by Cauchy's Inequalities,
0^/arg(b)=®(h""J1og(1/h)), It follows that,

^^(^'>h)/^(JJl',h)=21(1+o(l))h-11og(l/h),
^^(^^h)/^(^/,h)=-4(1+o(l))(h-1^og(1/h))2.

The curvature ofjj/—* ^OJl',h)€C^R2, Is given by,
|^^|-2Re(9^^^a'^^)=8(1+o(1))(h-11og(1/h))3,

so for h>0 small enough the curvature Is strictly positive. Moreover
I^OJL',h)|=ch(TrjJl7h)s1 with equality precisely forjJl'=0. Now (5.16) holds
precisely when Im^0j/,h)€[-l,1], so It follows that the set of p.' satisfying
(5.16) Is a union of closed Intervals of length — h/1og(1/h). All these Intervals
are disjoint except possibly two. This exceptional situation can appear only
when s1n(arg(b))=±l forjJl/=0, I.e. when arg(b(0,h))='n74+n'n72, ncZ. Then
the two Intervals have ^Jl'=0 as a common boundary point. In a region, where
ljJl7h|2sconst.>0, the distance between two consecutive Intervals Is of the
same order of magnitude as the length of these Intervals. In the region where
ljJl7hj Is small, IfjJl' Is between two Intervals, then the distance between
the two Intervals Is of the order of magnitude, (2h/log(1/h))|sh(ir^l7h)|.
Also, notice that ^JL'=0 always belongs to one of the Intervals.
2° ljJl7h|^Co>0. Then ch(TfjJl7h)sconst.>l, and we rewrite
(5.15),(5.16). as.
(5.15)' detQo=1[2s1n(2arg(b))+(ch(TrJJ.7h))••1(cosC+cosx)l,
(5.16)' s1n(2arg(b))e[-1/ch(Trp.7h).l/ch(TrjJl7h)l.
In the region |^l7h|sconst.>0, |s1n(2argb)| ^const.<1, we have,
l^^/s1n(2arg(b))|-h~11og(l/lJJl'l)»^^/(l/ch(TrJJl7h)), so the set ofjJi'
satisfying (5.16)' Is a union of closed disjoint Intervals, such that IfjJL' Is In
the separation of two such Intervals, then the separation Is of the order of
magnitude h/logO/ljJl'1), and If p.' Is In such an Interval, then the length of
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that Interval is (Z+oOMhe^l^l'^OogO/ljJi'l))"'1 whenh->0, IJJL'I^O,
h/lp/1-X).
Still In case 2°, we notice that either |b|/|a| sconst .>1, or
|a|/ |bl >:const.>l, and Q()(X,$) can never vanish completely for real x,$. In
other words, the worse that can happen Is that Q()(X,$) (or Q(x,^)) has a
1-dimensional kernel for some real x,$.

In the case 1°, let us look for the special situations when QQ may
vanish completely for some real ̂ ,x,^. Assuming we are at such a point,
since both a and b are =/0, we get from b+ae'^sb+ae^sO, that e'^se^,
so ^=kTT, keZ. Similarly, we must have X=ITT, IcZ. We then get
b+t-O^sO, b'+t-D^sO, and comparing the last equation with the complex
conjugate of the first one, we see that (-D^t-l)^, so k and 1 must have the
same parity. Since QQ is ZiT-periodic both in x and in ^, it suffices to study
the cases of complete degeneration at (0,0) and at (it.Tr). The complete
degeneration at (0,0) appears i f fb+a==0, and it is easy to see that this
happens precisely when JJ/==0, and arg(b(0,h))=3TT/4+nTT, ncZ. Complete
degeneration at (-rr.Tr) appears iff b-a"=0, which happens precisely when
JJL'=O and arg(b(0,h))=Tf/4+nTf. The complete degeneration is a rather
exceptional case, but if IjJL'/hl is small, then |a| % |b|, and Q()(O,O) and
QO^I^) become small respectively, when arg(b)%3TT/4+nTr, and
arg(b)%TT/4+nTr. These cases appear near the end-points of the intervals
given by (5.16)'.

We end this section by giving some qualitative statements, which are
more easy to carry on in a general iteration scheme. Let Po(a,b;x,$) denote
the matrix given by (5.14).
Definition 5.1. The triple of h-pseudodifferential operators (P.PpP^) Is of
strong type 2, if it is of type 2 and if for the symbols, we have
|P(x,C)-P(Ab;x,$)!=<£, IPj(x,C)-PoOa,ib;x.e)l^for |Im(x,C)l<1/c,
IjJLl <4. Here it is further assumed that P,P,,a,b depend holomorphically on JJL,
that a=a(^Jl) and b=b(^Jl) satisfy,
(5.20) la^+lbl2^, |arg(b)-arg(a)|=Tr/2, for p. real.
and
(5.21) bOJO^OKl+Ote^e1^1-1-0^),
where each 0(e) indicates a holomorphic term of modulus ^e, which is real
when JJL is real. We define &(P) to be the infimum of all c satisfying the above
inequalities, and we define C(P) as max(1/ |a(0)| ,1/ |b(0)|) .

In this definition the number 4 could easily be replaced by any fixed
strictly positive number.

From the discussion above and Proposition 4.4, it is easy to obtain the
following result,
Proposition 5.2. Let (P,???^) be a strong type 1 operator with 0<h^ho and
£(P)^CO» with ̂ ^O^ sufficiently small, so that we can define the new
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jJI'-variable as In Proposition 4.4. Fix O^Co<Ci. For Coh^ IJJL(/I ̂ h, we put
JJL'^OJL'-^O^"'11^^"1)- Then ^or 0<h^hp0 sufficiently sman, depending
on C^ and for \yill\<4, we can express jJL-Sp(P) in the ^"-variables as
^L"-Sp(Q), where (Q,Qj) is a strong type 2 h'-pseudodifferential operator
(with JJL replaced by JJL" in the definition above) with e(Q) —> 0 as h —> 0 and
with C-(Co)^C(Q)^C4.(Cp, where C± only depend on CQ and C^ respectively,
and where C-(Co)—» +00 when Co—> +00. We also recall that 2TT/h=h72TT
mod(Z), 0<h^2Tr.



6. Reduction to type 1 operators.
Let Q be as in section 5. We shall here study the case when IjJiVhl is

bounded from below by some sufficiently large constant. In the case when
^>0, we have |b|»|al and QQ is close to a constant matrix. In the case
p/<0, la|» |b|, and the variable part of QQ dominates. We shall first exhibit
some symmetries that show that the second case is actually equivalent to the
first one.

As before, we denote by Po(a>b;x,$) the expression (5.14) and we shall
use the same letters to denote the corresponding h'-Wey1 quantizations. We

2 2
recall that the matrix PQ maps € odd into ° even ' and define L:
2 2 2 2

^ven^^ven ' and M: €o^ """^odd' by
L=[e^-Wl^^[^-^W]^^, M= [e^<K)/2]^+[e^><-C)/2^ ^

Recalling the definition o fT : cSdd-^Sven' ^ven-^Sdd in section 2, we
check that,
(6.1) yTh=LyT, yTL=nyT.
A long but straightforward computation shows that for the h'-Weyl
quantizations,
(6.2) L<Po(a,b)=Po(e-1h74b',e-ih74a).M.
This gives in particular a unitary equivalence between the cases I b I » | a I and
la|«|b|. In order to complete the symmetry discussion, we let P,P\,PZ be
of type 2 as defined in section 2, and we define P'.P,', by:
(6.3) LP=P'M, LPj=Pj'M.
It is then straight forward to check that P', Pj commute with the Ty, that
Pf*P' and P'P^* are self-adjoint, and with the help of (6.1) and (2.7),(2.9),
we also obtain (2.7),(2.9) for P',Pj'. Finally, we check that,
(6.4) VL=LV, MVT^VT^,
and using (2.8),(2.10), we obtain the same relations for P',Pj'. Hence P'.P,' is
of type 2 and if P=Po(a,b)+0(c), Pj=Po(ea,eb)+0(c), then P'=
Pote-^^b.e^^a).^^ p^= p^e-ih^eb-.e-^^eD+o^). The
conclusion of this discussion is that it suffices from now on to consider the
case whenjJl7h>0.

Let Q be as in section 5. We shall now study Q for^j/ in the region
Ch^jJi'^l/C, where C is some sufficiently large constant. Let JJ/Q be in this
interval with sin(2arg(b(jJl'o)))=0. so that
(6.5) arg(b(jJl'o))=nTr/2,
for some nc2. We rescale by introducing a new variable ̂ ff,
(6.6) ^'-^/o=(h/^og(JJlo•1))JJl",
and restrict the attention to a region where IJJL") is bounded by a constant.
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For 1/C and h small enough, we then have,
(6.7) b(^/,h)=0+0(eJJl/'))b(>Jl'o,h)e^a+(S)^))^//,
(6.8) a(JJl/.h)=(l+®(c^^)a(^/o^)ei(1+o(£^/\
where 00 can be chosen arbitrarily provided that C and 1/h are sufficiently
large. Put S= |a(jJl'o»h)l. Then |bOJl'o,h)l ̂ I-S2)!, and choosing C (and 1/h)
large enough, we may assume that,
(6.9) Q(x,e)=Qo(x,$)+©(S2), |Im(x,$)|^1/e.
Recall (4.101),(5.7):
(6.10) det(Qo)=2ba"(|abl~1sin(2arg(b))4-cos($)+cos(x)).
This quantity is non vanishing for real (x,^) except when ̂ '^©(S), and the
same is true for det(Q), in view of (6.9).

Let b,^1"'"72, PQ o^C^0'^- Then P0 0 1S independent of (x,$) and
Ker(Po o^^O^' where eo=(2""?,(-l)n+12""2), and we also notice that PQ o
is equal to i" times a self adjoint matrix. We now define
R+^dR.̂ -^dR.), R_ : L^R)--^2^^2), by R+u(x)=(u(x)|eo)c2>

R-u~(x)=u-(x)eo- Let yo=^0,o]1,1+(R- l1,2+^R+l2,1 : L2(R;c2)xL2(R)-^
L2(R;c2)xL2(R), and define y similarly with PQ o ^Placed by Q. In view of
(6.7)-(6.9),
(6 .11) y-yo^s+l^l),
in the sense of L2 bounded operators, and also in the sense of Weyl symbols
defined on |Im(x,$)l ^1/c. (Here we work with the h'-quantization.) Now ^Q
has a bounded inverse, 6o=^oll I^O +^1 Z^^O -^2 1 » so u fQ^QWS from
(6.11) that the same is true for y. We write
y-1=6=[Eli I+IE+II z+l^-}z 1+(E-+l2 2- As ear11er> 0 belongs to the
spectrum of P iff it belongs to the spectrum of E- ̂ . We have the Neumann
series,
(6.12) e=eo(i-(y-yo)6o+((y-^o)6o)2----)-
In view of (6 .11) we get:
(6.13) e-eo=-eo(y-yo)6o+®(s2+lJJl / / l2) ,
for the symbols in the strip |Im(x,^)| ̂ 1/e. In particular,
(6.14) E-.^-EO^Q-PO^EO.+^^+I^I^

-Eo.-(Po-Po.o)EO,++o(&2+I^I2)
Here EQ +: u—> u(x)eo, EQ «:v—» (v(x)leo), so the first term of the last
member of (6.14) is equal to
(6.15) -((Po^^-Po.O^O^O^^O^^eolec^

-[b+t-O^b+a'cos^+M^acostx)].
Using that bOJl'o)=(1-&2)?in, aOJL'o)^!""'1, we get from (6.7).(6.8):

(6.16) b(JJL/)=(1+®(eJJl//))(1-&2)iine1(l+o(e»^",
(6.17) a(JJL/)=(1+0(£JJl//))&in~1e1( l+o(e))^//.
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Here all the ©-terms are real for ^ff real, and the ones In the exponents are
the same. Combining this with (6.15) and (6.14), we get,
(6.18) E-+(x,e)=in-l[2sin((1+0(e))JJl")+(-l)nS(cos($)+cos(x))]+

(S)(&2+lp/'12),
and possibly after increasing C, this relation remains valid in the complex
strip, IIm(x,e)l :<!/£-

For |^Jl"l»S, the first term in (6.18) dominates, so E-^. is bijective in
this region. When IjJl"! ̂ (Const.)S, we have,
(6.19) E-+=in-1S[(2/&)sin((l+®(e))^ /')+(-1)n(cos(C)+cos(x))+®(&)l.
for l lm(x,^)1^1/e. Introducing ±(2/&)sin((l+0(e))jJl") as a new spectral
parameter, we see that E-.^./d'"'"^) satisfies the first part of the condition
(3.2) for type 1 operators with a new parameter £, that can be chosen
arbitrarily small. As in section 2 we see that (R*PiE+)*E-+ and
E-^tE-P^R^)* are self-adjoint. Choosing 9==i for Q,' it is easy to check by
the same argument as above, that the self-adjoining operators ^""^^QiE^.
and i^E-Q^R^. after multiplication by a common real factor satisfy the
second part of (3.2). Moreover, it is easy to see that all the invariance
properties for a type 1 system are satisfied, so E-+ can again be studied by
applying the results of section 3 and 4. More precisely, we have,
Proposition 6.1. There exist ho,£o,Co>0 such that the following holds: Let
(P,Pl,P2) be a strong type 1 operator with c(P)$eo» and 0<h^ho. We can then
introduce the new ^'-variable as in Proposition 4.4, and for C>CQ, we have
jJI'-SptP^OJi^ChrsjJL'^l/ClCU^j^j^ Jj, where Jj are closed disjoint
intervals, labelled in increasing order such that the width of Jj is of the order
of magnitude he'^'^OogO/H'))"'1 (. where ^Jl'eJj). and the separation
between two consecutive intervals is of the order of magnitude hdogO/jJiO)"1

(.where JJL' is in the separation). Moreover, if Ky p/—»jJL" is a suitable
increasing affine map, then )<j(JjnjJl'-Sp(P))=jJl"-Sp(Q), where Q=Qj is a
strong type 1 h'-pseudodifferential operator with e(Q)—»0 as h.l/C-^0,
uniformly with respect to j and with respect to the choice of P as above, with
C(P)^CO. The analogous result holds in the region -1/C^jJl'^-Ch. Here
2TT/hsh72Tr mod(2), 0<h^2Tr.

It also follows from the discussion in this section, that if Q is a strong
type 2 h'-pseudodifferential operator, 0<h'<2TT, (and writing jj/ instead of
JJL), then ifC(Q)>:Co, where CQ is sufficiently large, and if c(Q)^o((C(Q)), for
some strictly positive decreasing function, o( on [Co,oo[, then ̂ '-Sp(Q)=uJj,
where Jj are closed disjoint intervals such that for each j, there is an affine
map KjSjJL'-^jJL". such that )<j(JjnJJl'-Sp(Q))=JJl//-Sp(Q). where Q=Qj is a
strong type 1 operator with c(Q)^3(C(Q)). Here 3(0-*0 as C—» +00.

Combining this with the propositions 3.4, 4.1 and 5.2, we get,
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Theorem 6.2. There exist €,Q>O and functions, F:]0,1]--»[1,oo[, ho:]0,1]—>
1 0 , 1 1 , o(: 10 ,1 ] 2 - ^10 .11 with o((c,h)~*0 when h—>0 for every fixed £, such
that if C€]0,1] , and P is of strong type 1 with &(P)^&o» 0<h^ho(c), then
^-Sp(P)CU-N_^j^j^ Jj , where Jj are closed disjoint intervals, labelled in
increasing order, such that for each j, there is an affine increasing map
KJ:;JL-->JJ/' such that:
a) ForjT'0, KjUjnjJi-SpCP^p/'-SpCQ), where Q=Qj is a strong type 1
h'-pseudodifferential operator with c(Q)^3(C).
b) Forj=0, Ko(JonjJL-Sp(P))=jJl"-Sp(Q), where for every JJLo^Xo^C^' Q

is a strong type 2 h'-pseudodifferential operator with c(Q)^o((c,h),
C(Q)$F(&), as a function 0^"= JJ.//-JJLo'€l--4,4[.

This is is the main result, concerning type 1 operators. We also notice
that in terms of the variables JJL' introduced in Proposition 4.4, the length of
the interval JQ is of the order of magnitude h (when C is fixed) and that the
lengths and separations of the other J/s in the domain of the jj/- variables are
given by Proposition 5,2. Finally outside the domain of the jJL'-variables, the
lengths are e""^^ with C, of the order of magnitude 1 and the separations are
of the order of magnitude h.



7.Type 2 operators close to the totally degenerate case.
Here and in the next two sections we shall consider a general

h-pseudodlfferentlal triple, (P,P\,P^) of strong type 2, and the corresponding
(original) spectral parameter will be denoted by JJL. Let Po(a,b;x,$) be as In
Definition 5.1. Using that lal^ \b\2=\, |arg(b)-arg(a)| =n72 we get for real
values of JJL,
(7.1) det(Po(a,b;x,C))=21<<(o^ ls^n(2arg(b))+cos(C)+cos(x)),
where o(=ba7l Is real and of absolute value ^1/2.

In this section, we are Interested In the case when P may come close to
the zero matrix for some real (x,^). As we saw In section 5, Po(a,b;x,^) may
vanish completely, only 1f I a I = |bl. In the case, arg(b)-arg(a)=TT/2, we saw
In section 5 that Po(a,b;x,^) vanishes completely at (x,^)=(0,0), when
arg(b)=3Tr/4+nTT, and at (TT.TT), when arg(b)=TT/4+nTr. These are the only
points of complete degeneration in that case. When |a| = |b| =2""a,
arg(b)-arg(a)=-n72, the same discussion shows that Po(a,b;x,^) vanishes
completely at (x,^)=(0,0), when arg(b)=Ti74+nTr, and at (TT.Tr), when
arg(b)=3Tr/4+niT, and that these are the only points where PQ vanishes.

The eight cases can be treated the same way and In order to fix the
Ideas, let us assume that
(7.2) arg(bOJl))-arg(aOJl))=TT/2,
and we wish to study P In a region where lbl%2'"z, arg(b)%3-n74. More
precisely, we shall assume that,
(7.3) arg(b(0))=3TT/4, I |b(0)| -2""i| ̂ C,
and the discussion below will be uniformly valid forjJl In some small fixed
neighborhood of 0, provided that e(P),c,h>0 are sufficiently small. Without
any loss of generality, we may assume that,
(7.4) £(P)^e.

Combining (7.3),(7.1) and Definition 5.1, we get.
(7.5) detPo(x,e)=1(1+®(£))[cos$+cosx-2+4^2+®(e)+®(JJl4)],
for KX,^)|,IJJI|<I/CO. where CQ is large but Independent ofe. When jJl Is
real, we also know that the expression Inside the bracket Is real. When ̂ -/t
Is larger than some constant, we see that (x,^) —> detPo(x,^) vanishes on a
Jordan curve around (0,0) which Is close to a circle of radius 8z|>Jll.

It Is easy to check that detPj^O, for \^\ ̂ I /CO,KX.C)I ̂ I/CQ.
Consider then the self-adjoint operator, Hi=PfP. On the symbol level,

(7.6) Hi(x.C)=PT(x.$)P(x,C)+®(h).
H^(x,$) Is a selfadjoint matrix for JJL and (x,^) real. Combining (7.5),(7.6) and
the fact that detP-detPo=®(£), (which follows from (7.4),) we get,
(7.7) detHl(x;e)=f(x,e,^)[cose+cosx-2+4JJl2+©(e)+©(JJL4)+®(h)^,
where f Is a non-vanishing real-valued analytic function. Assuming from now
on that 0<h^l/Co, we see that when JJL Is real and jJL^/(c+h) Is large, then
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detHi vanishes on a Jordan curve around (0,0), close to a circle of radius
SzljJil. According to our results on normal forms for systems in appendix c,
there exist classical analytic symbols Z(x,$,jJl.h), CiOJl,h), C^OJIih) of order
0, defined for IJJLI^I/CQ, KX,^)|^I/CO (and varying in a bounded set of
analytic symbols, ifP.Pj depend on additional parameters, but remaining
within the bounds that we have specified forP, and Pj), such that in the sense
of classical analytic pseudodifferential operators,
(7.8) U*HiU=[q]ij+[C2l2,2+1211, Z+^lz.l-
Here U is an elliptic classical analytic Fourier integral operator of order 0 as in
Proposition c.3, depending analytically JJL in the sense that it can be realized
with a phase ^p(x,y,9,p.) which is analytic in all variables, and with an
amplitude, a(x,y,9,^Jl,h), which is a classical analytic symbol. The principal
part ^(X^.JJL). (of Z) satisfies l^l-Kx.^l and r^.^X), and Cj are
real-valued. Again, ifjJl2/(e+h), is large, the determinant of the symbol of
(7.8) vanishes roughly on a circle of radius IjJil around the origin, and we
conclude that in the same region,
(7.9) qOJl,h)C20JL,h)^;Jl2.
Using that P(0,0)==0(e), when >JL=0, we also get,
(7.10) Cj(0,h)=®(e+h).
Let cj(jJl) denote the principal part of Cj. Considering the Taylor expansions
CjOJ.)=Cj(0)+Cj'(0)jJl+OOJl2), we get from (7.9), that,
(7 .11) ci'(0)c2'(0)>const.>0.
We may assume that Cj'(0)>const.>0, and we are then in the situation when
Cj are both strictly increasing functions ofjJl changing sign somewhere in the
interval [-C(&+h),C(e+h)l.

In order to study the operator (7.8), we first consider the operator
Z*Z. According to our results on normal forms for scalar pseudodifferential
operators in appendix b, we can find a real valued analytic symbol F=F(jJl,t,h)
of order 0, and a unitary Fourier integral operator W. such that,
(7.12)W-1FOJl,Z*Z,h)W=Po=^((hD)2+x2-h).
Using this, we can define the k:th eigenvalue of Z*Z (microlocally) by,
(7.13) F(jJl,\k,h)=kh,
provided that kh^l/Co (,where CQ>O is some new fixed constant). Since Z has
a one-dimensional kernel (microlocally), it is clear that XQ=O, and hence,
(7.14) FOJL,0,h)=0.
Recalling that a^F(jJl,0,h)>0, we let G=G(jJl,s,h) be the inverse of the map
t—»F, so that G is also a classical analytic symbol of order 0. Then (7.13),
can also be written,
(7.15) ^=GOJl,kh,h).
A normalized eigenfunction u^ o fZ*Z is obtained (microlocally) as a multiple of
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Wu^, where u^ is the k-th normalized eigenfunction of the harmonic
oscillator, PQS
(7.16) Z*ZUk='\|<Uj<.
Then,
(7.17) ZZ^Zu^^ZUk),
and for ksl, we have IIZu^jl s(h/Const.)2 , so we conclude that \p \2»-- - are

also among the eigenvalues ofZZ*. Conversely, let ZZ*V^=;JL^V((, microlocally,
near (0,0). Then (Z*Z)Z*V^==JJL^Z*VJ<, and since ||Z*vll ^(h/Const.)^||v|l, we
conclude that ̂  is an eigenvalue of Z*Z. The conclusion of this discussion is
that the low eigenvalues of ZZ* (defined modulo ®(e~^^) by reduction of ZZ*
to PQ) are the values \],\^,..,\^,.» , kh^l/Co. From here to (7.38), our
arguments are slightly heuristic. They could easily be made rigorous (to the
price of a few more pages ...), by introducing microlocal parametrix
operators, starting by introducing Tr^u=(u|u^)u^ and E^ (self adjoint), such
that IsTT^+E^Z^Z-'Xk). LetJ(ZZ*,\(<), k>1, andJ(Z*Z,^), ksO, denote the
corresponding 1-dimensional eigenspaces. If v^ denotes a normalized element
ofJ(ZZ*,\k), then,
(7.18) Zui<=o(kVk, Z*v|<=3i<Uk, o(k3k=\k.
for k>:l. Since o(j(=(ZUj<lv^)=(u|<IZ*Vk)=3j<, we may assume after changing
v^, that,

(7.19) c^Pk^2-
Suppose now that for some value ofjJl, the kernel of the operator (7.8) is
microlocally nonempty. In other words, there exist a normalized vector ^f.g).
such that microlocally,
(7.20) Cif+Zg=0, Z*f+C2g=0.
Here C^ and C^ are scalars, so if we apply Z* to the first equation, and use the
second one, we get, Z^ZgsC^C^g, and similarly, ZZ^fsC^C^f. This gives the
necessary condition,
(7.21) CiC2='X|<
for some k>:0, and when this condition is verified with ks:l, we must have
f=x^V(<, g=y^u^ for some x^.y^cC. The problem (7.20) is then equivalent to
the system,
(7.22) C^+o^y|<=0, ̂ k^Uk^'
which has a 1-dimensional space of solutions, since ̂ k^k^l^ in ^1S case-
When k=0, we have 0^2=0, and we notice in this case that we must have
(:2==0. In fact, otherwise C^^O, C^=0, and (7.20) becomes,
(7.23) Zg=0, Z*f+C2g=0.
Applying Z to the second equation and using the first, we get ZZ*f=0, and
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since ZZ* is bijective, we get f=0. Then since C^O, we get g=0 from the
second part of (7.23).

On the other hand, if C2=0, (7.20) becomes
(7.24) Cif+Zg=0, Z*f=0,
and the one-dimensional solution space is generated by f=0, g=UQ.

It follows from the earlier discussion, and in particular from (7.11) , that
the function jJl—^C^C^ has a strictly positive second derivative, and that the
minimum is ^0. Using also the fact that 8)j(\|<=0(\j<) uniformly for every
fixed j, we see that the values of p. such that C}G^\^ for some ksl, or
C2=0, are isolated and the gap between two consecutive values is of an order
of magnitude varying between h and h?, with the exception of one gap
(neighboring the value where C^=0) whose order of magnitude is at least of
the order of hi. At these values the microlocal kernel of H^ is 1-dimensional.
From now on we shall work near one of these values, jJlo> but our arguments
will be uniform, with respect to all such possible choices. ForjJl close to JJLQ,
H^ has a simple isolated (microlocally defined) eigenvalue E=E(jJl). We want to
study 8iiE(jJlo). The arguments in the section on reduction to normal forms of
systems still work, if we add one more parameter EcR, and give,
(7.25) U*(HI-E)U= [Cilij+IC^z^+^ll^-^^.l'
where now Z.Cj are analytic symbols in x,C,JJL»E and U depends analytically on
p.,E in the same way as explained after (7.8). Differentiating (7.25) with
respect to E, and putting (x,^)=(0,0), we get,
(7.26) a^Cj^O,
and more precisely, that Q^j are negative elliptic symbols of order 0.

When k=0, E(jJl)=EoOJL) is determined by C20Jl,EoOJL),h)=0, and in view
of (7.26) and the fact that BuC^X), we see that,
(7.27) 8^EoOJL,h)>0,
and more precisely, that C^EO is a positive elliptic analytic symbol of order 0.

When k^l, E=E^(jJl,h) is determined by,
(7.28) CiOJl,E,h)C20JL,E.h)=\|<OJL,E,h).
(Actually, there are two such solutions.) It is easy to see that
9u\j<,9E^|<=®(^|<), and if we differentiate (7.28), we get,

C^^C^+C^^+(C^C^C^^)Q^=Q(\^).
Here C^ and C^ have the same sign, and we may assume for instance that they
are both positive. Then C^jj^+C^a^ and -(C^^C^C^Q^) are both
positive and of the same order of magnitude as C^+C^^^^/Const. . It then
follows that,
(7.29) ^^EK=-(C1a^C2+C2aJJLC1+0(\k))/(C^^EC2+c2aEC1)^1•
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In order to control also the domain of definition of E(( as a holomorphic function
of)Jl, we add some arguments. Let fOJL,E)=qOJl,E)C20Jl,E)-\kOJl,E), which
is a bounded holomorphic function, defined in a 2-disc of fixed radius centered
^ (^0'°^ ^cre JJLo=J^o(°)1S one °^ the two rea1 solutions of
CiOJl,0)C20Jl,0)-\^(jJl)=0. The computation above is then valid forjJl=^lo»
E=0, and shows that a=^19EfOJlo»0)l^ 19nf(jJ.o»°)l ^ at least of the same
order of magnitude as \^. Moreover lf"I<const. . Then for I^Jl-jJiol^Sihi.
lEl^&^ha, where S^/S^, and S^ are sufficiently small, we have
|9EfOJL,E)-8EfOJlo>0)l«a> lf(p*>0)| ̂ (ConstJS^ahi , and it follows that
there is a unique solution E=E|((JJL) with \E^\ :s&2^2 °f the equation fOJL,E)=0.
Thus in addition to (7.29) we know that E|̂  is a well defined holomorphic
function of p. in IjJi-jJiol^hi/Const. such that lE|J:s(Const.)hi.

If we let •9o ^e a normalized element (defined microlocally near (0,0))
of the kernel of H^, then,
(7.30) 9^E(>Jlo)=(a^HiOJLo)^oW-

Next, we recall some invariance properties. From (2.7),(2.9), we get,
(7.31)HiyT=yTH2. t-^7^^™!-
Using (2.8),(2.10), we also get,
(7.32) HiVT^VT2^, \\^^\\^.

If^S=yT^o,then,
(7.33) H^^^0' i^icrolocang near (0.0),
and •̂  is also normalized. Here, we recall that T'=T, when the + sign is
valid in the general identity ̂ ^^^^PO' and that T'=iT in the - sign
case. Since P^o^' ^"^P^0? we have P^P^c^T^O2'0' so

(7.34) P^o=^^
for some non-vanishing o(€C. Similarly,
(7.35) Pl^=3^o»
for some non-vanishing 3eC. Combining this with (7.30), we get for^l=jJlo
(with 8=8^): 8E= WPpP^ol^o^^^W'Po^ 0+((8P^olPi^o>=
o(((8P)^pol^p$). Then using also (7.29), we conclude that,
(7.36) ia^(P^ol^)l"1. forjJl=jJlo.

We now have to pass from microlocal results near (0,0) to global
results. Still w1th^L=^o, let us define Uo, peC2 as the real component
close to 2TT3 ofdetHi(x,^)=0. In order to define a suitable distance, let us
recall that the "leading parts" of P,Pj are Po(a,b;x,^), and PQ j=
Po(ia,ib;x,$) respectively, and that with ba==io(, o(>0, we have,

detPo=2i(sin(2arg(b))+o(cos$+o(cosx),



64 B. HELFFER, J. SJOSTRAND

detPoj=2i(-sin(2arg(b))+o(cos$+o(cosx).
Since we are far from the "branching case" when sin(2arg(b))=0, we see that
del Pj9'0, near the complex characteristics of P. As in section 3, we then
define D(x,y)= |<^(x)-<l>(y)|, where <l>'(x)=0 on the projections of the potential
wells, and <I>'(x)=Im^(x), between these projections, where ^(x) is the
complex root with positive imaginary part of the equation det(H^(x,$))==0,
depending continuously on x, and such that (x,^(x)) tends to a point in U, Q,
when x decreases towards the projection of U, Q- Here U, Q 1S the closest
projected well to the left of x. In this definition, we have privileged H^ over
H^, but as in section 3, we use the fact that the roots of det(Hp are close to
those of deKH^), and that H^ and H^ are intertwined by yT, so defining D from
H^ would give no essential difference. Notice that D(x,0) is an even function of
x, since the characteristics of H^ are invariant under reflection in (0,0).

Because of the presence of possible real characteristics of H| far away
from those of P, we shall avoid the use of spectral projections of Hp The
treatment will therefore be slightly different from that in section 3. Let -vpo,
^ denote realizations of^po> ^P^' obtained by superpositions of Gaussians.
(To be more precise, let S: L2(R)—^H(C;e''2<i)o/h) ^e a globally defined
unitary FBI-transform with a quadratic phase (see appendix a and [S1]). Then
S^Q and S"̂  are well defined (modulo exponentially small contributions) as
elements of H^^e"2^^) in a neighborhood of n^o)<s(Uo o) > and

exponentially small outside that set. If ycC§°(C) has its support close to
TT^oKgtUo^o) and 1S G^"81 to ] "ear that set, then we can take as realizations,
S*(YS^o) and S*(^(S^$).) Then we may arrange so that,

(7.37) ^o^^O^^0^"^
where f is a Lipschitz continuous non-negative function, vanishing precisely
on -n^(U(^o)> ^ch that f(x)>:VoD(0,x)/D(0,2TT) and If^x)! ̂  |8^D(x.O)|. (To
get this near Tr^(Uo o) we repeat the arguments of the proof of Proposition
5.1 in [HS1].) Here 0<Vo^D(0.2TT). Recall that in section 3 we had a similar
function f with the crucial property that f(x)=D(0,x), in a neighborhood of
[--rr.Tr].

Since •^(^KyT)2^ microlocally, we may also arrange that the
realization -<po has the same property in the exact sense. This implies that
>P$=±(yT)2^. We can also arrange so that VT^Q^Q^ which implies that
V^S=^S.Put^=T^Po,^=To^, R+u(o0=(u|^), R_u-=£u^^.
Then as in section 3, we see that the corresponding operator P:
l^xi2-^^]2 isbijective for IjJL-jJLol ^h/Co, with an inverse ^=©(h~1) .
Let as usual E_+ denote the lower diagonal element of the square matrix of 6,



TYPE 2, NEARLY TOTALLY DEGENERATE 65

and let E-^.(o(,3) denote the corresponding matrix. From reflection and
translation invariance, we then see that E.^(c<:,c<)=z(^) is independent ofo(.
and real valued when ̂  is real. Using (7.36), we obtain as in section 3, that.
(7.38) 18^2(^)1-1, for^=jJlo,
and it also follows from the construction, that Z(JJIQ) is exponentially small.
After an exponentially small real correction ofjj.o» we ̂ y then assume that
zOJlo)=0. Cauchy's inequalities imply that z^O^O^""3), so for

l^-^oK^3! ̂  have ia^z(p.)-8^z(jJlo)l «1, and it follows that^o 1S the

only zero of zQJl) in this region, which is the only interesting one since it
follows from the results above that 0 may belong to the spectrum of PQ only if
p. is exponentially close to (one of the values) ^o- Repeating the argument of
section 3, we see that G=®(h""1) as an operator in
L2(R;e2FO<)/h)xi2(e2F*/h)^ where
(7.39) lF'(x)|^(|<^(x)|-&)+,
(7.40) lF(x)-F(2TTk)|^(1-S)f(x-2Trk), ke2,
where S>0 may be chosen arbitrarily small, and where f was introduced in
(7.37). Moreover F*(oO=F(TT^(U^)). Using the Grushin problem based on
^PO'^PS' we sha!1 now improve the functions ^o.^PS. Let ;JL=^o- As a new

function -9o, we take ^{)=aE+(&o)> where a is a normalization constant,
exponentially close to 1 . Then ^o==^>b microlocally near UQ o» ^d using the
boundedness of G in weighted spaces plus the fact that,
(7.41) P^b=-^3^-+(3,0)^,
we get:
(7.42) ^b^b^e'"^^
where f1 is even, and given by,
(7.43) f1(x)==min(D(0,x),Vo+f(K),minK^2\{o}|k|vo+f(x-27Tk)).
Here, we also use the fact that E^oc.^Ote^ol^-Ploo/h^ y^ich is a
consequence of the boundedness in weighted spaces.

From ̂ b we generate ̂ . \p^», as before, and we then consider the
new Grushin problem with R+.R- defined, using these new functions. Let G,
E-^ correspond to this new problem. After an exponentially small correction
of,Uo» u 1S then C1ear tha^ 6» E-+ will have the same properties as before,
but with f replaced by f1. Iterating this procedure, we obtain a sequence of
functions ̂ , ̂ §,.. , with.
(7.44) ^, y^= ©(e-^),
where,
(7.45) rk+l(?<)=min(D(0,x),Vo+fk(x),minl^z\(o)l1|vo+fk(><-2Trl)).

Here f°=f==VoD(0,x)/D(0,2TT), and if we put fM(x)=min^2(lllvO+D(2Trl»?<))»
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then It Is easy to check that f^fk^f00. We can rewrite (7.45) as
(7.46) ^(^mIn^O^A^)),
where A(f)=min(vo+f(x),min]-/oMlvo+f(x-2Tri)). Not1ce ^aty
A(min(c<,3))=min(A(oO.A(3)). If g°=f, gk+1=A(gk), then It Is easy to see
that, g1^)^!^^-!^!]!^^^^!). Now we claim that,
(7.47) f^mintf^.gk).
In fact, this Is true for k==0, and If it is true for some k, then f^4'^
mintf^.Atmintf00^1^ minCf^.Atf^ACgk^ mintf00^1), since
Atf00)^00. From the behaviour of g^ we see that if O<VI<VQ, and k is
sufficiently large, then f^min^v^HI +D(2Trl,x)). Then, after replacing VQ, by
some smaller number, and ^Q by '̂ , for some sufficienly large k, we may
assume that (7.37) holds with,
(7.48) f^min^zl^O4-^2^1^)-
Putting fo ^^o' ^0 2==^>S» we are now completely at the same point as in
section 3 at (3.24), and we can now repeat the arguments of that section
without any essential changes until (3.37). g^ j have the same growth
estimates as before, and WKB-representations. valid in the same intervals,
(7.49) go^CoO^W^x.h), go^CiODe^^btx.h),
where detPtx^'tx^detP^x^x))^, Cpcr^Ote^). for every S>0.
Notice that since on the symbol level, P*(x,$)=P(x',$)*, we have y'(x)='^'(x)
for real x, and hence we may assume that,
(7.50) Im(^p+-y)=So=D(0,2Tr), Re^=Re-y.
As in section 3, a and b are classical analytic symbols of order 0, but now
with values in C2. The leading parts B(), bo are non-vanishing, and satisfy,
(7.51)P(x,^(x))(ao)=0, P^x.y^xMtbc^P^^x))*^)^.
We still have (3.39), where d is an analytic symbol of order 0. If do(x) is the
leading part, then do(Tr)=q(Tr,^p'(Tr))ao(Tr)=Co(^^P(Tr,^)/(Tr)))(ao(Tr)), where
Co is a non-vanishing constant. Instead of (3.41), we have,

(7.52) (^OTT^SO.I Igo^^^k^"^0711'
where k is an analytic symbol of order 0, with leading part,
(7.53) O^-iT.^rOaoWlbodr)^.
Here botTDedmtPtTr^^Tr))))-1-. We claim that the expression (7.53) is non
vanishing. In order to prove this, we have to verify that
8^P(Tr,\p'(Tr))(ao(Tr))^ ImtPtTT.^'dr))). Working at the point (Tr^Tr)), we
start from COP•P=det(P)I, which we differentiate, and get,
(^a^P^P+^PoO^^^deKP))!. Here we know that a^det(P)^0. Since
Pao=0, we get, ^PoO^ao^S^deKPMao. If (a^P)(ao)eIm(P), there is a
vector CQ, such that O^P)(ao)=P(co)- Then, ̂ PoPtco)^^^^, or
equivalently, det(P)co=(9^det(P))ao. Here the left hand side vanishes, since
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det(P)==0, while the right hand side does not, so we have a contradiction. This
proves that k Is an elliptic symbol of order 0. Then we obtain (3.43),(3.44).
exactly as In section 3, and we can finish the discussion as In that section.

Summing up, we have,
Proposition 7.1. There exist ^o'^O'-^O^0 ' suc*1 ^a^ ^ f P 1 5 3 strong type 2
operator with e(P)=s&o' 0<h^ho, I lb(0)| -2""i| :<&o» arg(b(0))=-n74+n-n72,
for some neZ, we have: ^-Sp(P)n[--;JLo,jJlolCU-.(^^j^^ Jj- , where Jj are
closed disjoint Intervals of width e"1^^^, where Cj-^l, and the separation
between two consecutive Intervals Is at least h/C for some fixed 00. More
precisely, J, is exponentially close to a point J-, where the points J, are given
by Ci(Jj)C2(Jj)=G(Jj,lj|h,h) whenj^O, and by C^(SQ)=O whenj==0. Here Cp
C^ are analytic functions defined in a fixed neighborhood of 0, (varying in a
bounded set of such functions,) satisfying C|>:Const.>0, and G(p.,\,h) is a
real valued analytic symbol of order 0, satisfying 6(>Jl,0,h)=0, 9^G>0. For
eachj, there is an affine increasing map Kj:^—^^', such that
)<j(jJl-Sp(P)nJj)=^JL'-Sp(Q), where Q=Qi is an h'-pseudodifferential operator
of strong type 1 with e(Q)—>0 as h—»0, uniformly with respect to the other
parameters.



8. Simplu degenerate type 2 operators In the potential well case.
Let (P.P^.P^) be a strong type two operator with C(P)$CQ where CQ>O

Is fixed. Let [o;,3]c[-3,3] be an Interval such that,
(8.1) l lbOJl)|-2-i|+|arg(bOJl))-(Tr/4+nTr/2)|s1/Co,
(8.2) |arg(b(jJl))-nTT/2|^1/Co.
for every >Jl€[o(,3] and every neZ. Assuming c(P)^&o' 0<h^ho, where
&0>0> ho>0, we shall then study ;JL-Sp(P)n[o(,3l. The assumption (8.1)
Implies that we are not In the totally degenerate case, studied In the
preceding section, and the assumption (8.2) Implies that we are not In the
"branching case", that will be studied In the next section. In order to fix the
ideas, we may assume that s1n(2arg(b(jJl)))<0 on [o(,3l. Again P, j = 1 , 2 are
elliptic near the complex characteristics of P. Moreover, the selfadjotnt
operator H^ has the property that If det(H^(x,e))=0 for some real (x,^) close
to the characteristics of P, then Ker(H^(x,^)) Is one dimensional. The same
holds for H^. The part of the real characteristic set of H^ (forjJl real) which Is
close to the characteristics of P, 1s then either empty, or of the form
^eZ21^' where U^ Is either equal to 2Tfo(, or equal to a simple Jordan
curve around 2TTo(. We here assume that all points In [o(,3l are close to an
Interval where det(Po(a,b;x,^) may vanish for some real (x,^). Indeed, IfjJl Is
far from such a value then P Is elliptic and JJL 1s also far from jJl-Sp(P). In the
case when det(Hp has no real zeros, we see that det(H^(0,0)) 1s small and we
define U^ to be (2rro0.

Microlocany. near UQ Q, we can apply the results on
block-decomposition of systems, developed In [HS2] and In section a of the
appendix, to see that there Is unitary 2x2 system of classical analytic
pseudodlfferential operators, U=U(^l,x.hD,h), such that,
(8.3) U*HiU= [qlij+[hil2,2»
where q, h^ are scalar classical analytic selfadjoint pseudodifferential
operators of order 0. Moreover q is elliptic (near UQ o)-

We now restrict jJl to a neighborhood of a real value JJLQ, with the
property that UQ o i- 0- In the case when UQ Q==(O,O) forjJl=jJlo, then for
that value of>Jl, we have hi(0,0)=©(h), h{(0,0)=0(h), hf^O. 0)—I, and
^u^l ̂ 0- we ̂ y assume for simplicity that (^hpO. If UQ o 1S diffeomorphic
to a circle around (0,0) (forjJl=)Jlo), then h^ vanishes on a circle of distance
©(h) from UQ Q» t-^a^ we sha^^ from now on Identify with UQ o- on th1s circle
d^ ^h^ 9'0, and h^ is positive Inside the circle. Moreover ̂ \^\\ 7^0 on UQ o and

in order to fix the Ideas, we may assume that QnhpO. (All this follows from
the fact that h^ is close to a non-vanishing factor times det(Po).)
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Microlocally, near UQ o> tt1e eigenfunctions of hp associated to small
eigen-values can be obtained by WKB-constructions, and they are given by,
(8.4) F(jJl,E,h)=kh, keN,
where F is an analytic symbol of order 0, with leading part f(jJl.E), given by,
(8.5) fOJl.E)=VoK((x.C);h^E}).
(A more complete statement would require the introduction of microlocal
spectral projections and partial paramethces, as we also mentioned in section
7 after (7.17).)

At this point, we recall, that if T(E)=T(E,)Jl)>0 is the primitive period
of the H^-flow in h^=E, then T is analytic in (E,)JI) and,
(8.6) 3EVo1(h^E)=-T(E).

Hence, in the case when UQ Q 1S close to (0,0), we see how (8.4) follows
from the results in the end of Appendix b. In the case when UQ o 1S a circle,
the formula (8.4) was obtained in the analytic case in [HS1] , In the C°°
category, it was earlier proved by Helffer-Robert [ H R 1 . 2 1 . When
^.O^O.oO^o^ 1S a circle it is clear that fQJL.E) is analytic near OJLQ.O).
When UQ oO^o^ is a PO^t, we see that fQJL.E) is analytic near (}Jlo,Eo) when
-EO is small and positive. Integrating (8.6), and using the analyticity of
T(E,)JL), we conclude that fQJL.E) is analytic near OJLQ.O) in this case too. In
both cases we have,
(8.7) 9^f>0, B^O. for^l=^o. E=0.
Let us now assume that JJLQ is one of the interesting values, namely that,
(8.8) F(jJLo.O,h)=kh, for some keN.
For ljJl->Jlol/h<1/C, with 00 large enough, let E=E(jJl,h) be the solution of,
(8.9) F(jJl,E,h)=kh,
where k is the same number as in (8.8). In view of (8.7) this definition makes
sense, and E(jJl,h)=®(h) is holomorphic for IjJL-jJLol <h/C. Moreover,
(8.10) 9uE>°-
Since U is unitary, we get the same (microlocal) eigenvalues for Hp Let ^Q o
be a normalized function defined microlocally near UQ o» such that H1^0 0=0

forjJl=^o- we then have (7.30), and from this point on the discussion of
section 7 applies without any essential changes. We then obtain,

Proposition 8 . 1 . Let C Q > O . Then there exist Co>0, ho>0 such that if P is a
strong type 2 h-pseudodifferential operator with C(P)^C(), C ( P ) < C Q » 0<h<ho
and [o(,p]c[-3,3l is an interval on which (8.1) . (8.2) hold, (with the same
constant, CQ,) then ;Jl-Sp(P)n[o<,;plcu^j^ Jj , where Jj are closed disjoint
intervals, labelled in increasing order. The separation between J, and J,.̂  is
of the order of magnitude, h , and the width of J, is e"17^, where C,-1.
Moreover, for each j, there is an increasing affine map K,: ̂  —^JJL', such that
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Kj(jJl-Sp(P)nJj)=)Jl'-Sp(Q), where Q Is a strong type 1 h'-pseudodifferentlal
operator (depending on j), such that &(Q)—*0, when h-*0, uniformly with
respect to the other parameters.



5^ThjLbranch1ng problem for t^ipe 2 operators.
Let (P.PpP^) be a strong tgpe 2 operator such that.

(9.1) s1n(2arg(b(0)))=0 ; arg(b(0))=nTT/2, neZ.
If C(P)^Cp for some arbitrarg but fixed constant Cp then our studg win be
uniformly valid for l̂ l I ̂ JJLQ, e(P)^£o> 0<h^ho, where jJlo^o^O are strictly
positive and depend on Cp

We start by some general remarks on the reduction of certain 2x2
systems to scalar ones. Let H=H(x,hD) be a selfadjoint 2x2 system of
analytic pseudodlfferentlal operators defined near (XQ,^Q)€'T*'SL. We assume
that H(xo,Co) 1S °f rank ^ and t() s<•a^>'t with, we shall work microlocally near
(^O'Co)- Let us repeat some arguments developed for the block decomposition
of systems of pseudodlfferentlal operators. See [HS21. Let y be a small circle
around 0 with positive orientation and put,
(9.2) TT^TrD-^z-Hr^z.
Then TT Is an analytic pseudodlfferentlal operator whose Weyl symbol
satisfies,
(9.3) TKxo^o^0^2^ the orthogonal projection onto the kernel of

H(xo.eo)-
Moreover,
(9.4) TT*=TT, •TT^TT, HTT=TTH.
Let R be a 2xi system of pseudodlfferentlal operators of order 0, such that
TTR is elliptic. Then R*TTR Is a positive elliptic scalar pseudodlfferentlal
operator of order 0, and we put,
(9.5) S=TTR(R*TTR)~'^.
Then,
(9.6) S*S=I, TTS=S.
Similarly, we can construct a 2x1 system, S', such that
(9.7) S'*S'=I. (I-TDS'=S\
Since S'*S=0, S*S'=0, we see that the 2x2 system ^=(S S') Is Isometric,
and hence elliptic and unitary. Hence ̂  /f>*=l,
(9.8) SS*+ S / S'*=I .
Applying TT to this relation, we get, TTSS*=TT. Since (I-TT)SS*=0, we
conclude that,
(9.9) SS*=TT.
Similarly,
(9.10) S'S^I-Tr.
Put H=S*HS. Then,
( 9 . 1 1 ) SH=HS, HS*=S*H.
Here the two relations are equivalent and the first one follows from a straight
forward computation: SH=SS*HS=TTHS=HTTS=HS.

If u is a scalar function satisfying Hu=0 (near (xo,Co^» then W1th

v=Su, we get Hv=S Hu=0. Conversely, if v is a C2 valued function such that
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Hv=0, then TTv=v, SS*v==v, and u=S*v satisfies Hu=0. Hence the problems
Hv=0 and Hu=0 are equivalent (microlocally).

We now return to our type 2 operator P.PpP^. We know that P is
elliptic outside a small neighborhood of us(o(,j), and after replacing Pj by
(Re9)P+(Im9)P, for a suitable 9, we can assume that P, are elliptic in that
region. Define Hp H^ as usual. We shall make a reduction of Hj to scalar
operators in a neighborhood of Us(o(,j). In this region H^(x,^) is of rank 1
whenever det(H^(x,^)) vanishes. The invariance properties of P.Pj imply that,

(9.12) H^T=yTH2, ̂ yj=yj^,
(9.13) H^VT^VT2^, H2V=VH2,

(9.14) '^j^j'1'^ J = 1 » 2 » yeZ2.
Notice that (9.12) implies,
(9.15) [HpOm2]^.
We now concentrate on H^ for a while. We shall construct S^ in a neighborhood
of Us(o(,j) adapted to H^ as above, such that,
(9.16) (yi^S^ZSly2.
(9.17) V T 2 S ^ = ^ S 1 V ,
(9.18) TySi=SiTy.y€Z2 .
where "l=±1, win be determined below.

Suppose, that we have found a 2x1 system R of order 0, such that TT^R
is elliptic near Us(o<J), where "TT^ is the projection associated to H^ as in
(9.2), and such that,
(9.19) (yn^-LRO^
(9.20) VT^ZRV,
(9.21) TyR=RTy.
Taking the adjoints of these relations, and using the fact that (9 .13) - (9 .15)
carry over to TTp we see that R*TTjR and consequently (R*TT^R)~2 commute
with V.y2,^, and hence,
(9.22) Si=TTiR(R*TT^R)'~^,
has all the desired properties.

The problem is then to construct R satisfying (9 .19) - (9 .21) . Identifying
the Weyl symbol R(x,^) with R(x,^) (1)€(C2 , we see that the problem is to
construct an analytic vector R(x,^) such that Tr^x.^XRtx.d;))^, and such
that.
(9.23) R^T^oco,
(9.24) R=^T2^(R<»&),
(9.25) R^TH^'
where Co(x ,C)= ( -x . -C )> &(x,C)=(C.x) . rz^(x^)=(x^)-2T(^, and r
denotes complex conjugation in C2. Recall that & describes the reflection in
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where co(x,$)=(-x,-^), &(x,^)=(^.x). ^TTy^.^^x.^-^Try. and r

denotes complex conjugation In C2. Recall that & describes the reflection In
the line x=$, and that &=&oco=co°& is given by &(x,$)=(-^,-x) and
describes reflection in the line x==-^. (9.23),(9.24) imply,
(9.26) R=r(R<&),
and more generally, any two of (9.23).(9.24),(9.26) imply the third.

The first problem will be to construct a continuous vector, R(x,$)
satisfying (9.23)-(9.26). Let \(x^) be the small eigenvalue of H^x.C). The
ellipticity requireme'nt will then be fulfilled if we can find R(x.^)
non-vanishing in the kernel of H^(x,^)-'X(x.$)I, satisfying (9.23)-(9.26).

On the level of Weyl symbols (9.13)-(9.15) give,
(9.27) H^J^W^WT2,

(9.28) H^T^HpCo)!2,

(9.29) H^Try=Hi.
We conclude that FT2 maps Ker(Hi-\p(x,$) onto Ker(Hi-\)(&(x,C)), and that
T2 maps Ker(H^-\)(x,^) onto Ker(H^-\)(co(x,^)). From (9.27),(9.28). we
also get,
(9.30) Hi=r(H^&)r,
from which we conclude that F maps Ker(Hi-'X)(x,^) onto Ker(Hi-'X)(S(x,^)).
Let us shorten the notation by writing Ker(x,^) instead of Ker(H^-'X)(x,^). By
periodicity, Ker(0,Tr)=Ker(0,-7T), so T2 maps Ker(0,TT) onto itself. The
eigenvalues of T2 are 1 and -1 , so the restriction of T2 to Ker(0,TT) is ±1 and
we define 1 to be that number. We can compute z by putting p/=0 and
noticing that Ker(0,Tf) is then close to Ker(Po(0,TT)). Hence z is also given by
the restriction of T2 to this space. When ^1=0, we have, b= Ib j i 1 1 ,
a= la j i 1 1 ' 1 " 1 . An easy computation shows that Ker(Po(0,TT)) is generated by ^l
-1) when n is even, and by ^(1 1 ) , when n is odd. Hence 1=1 when n is odd and
equal to -1 , when n is even.

From the commutative diagram,

Ker(0,TT)

Ker(-TT,0) Kerdr.O)

FT^Y /r

Ker(d,-Tr).

where all maps commute with T2, we conclude that T^l also on the kernel
of H^-'X at the points (Tr,0),(0,-Tr),(-TT,0).
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We next notice that -IFT2 maps Ker(-n72,n72) onto itself. This map Is
antlllnear and conserves the C2 norm, so there is a non-vanishing element UQ
of Ker(TT/2,-n72) such that iFT^o^o. Put R(-n72,Tr/2)=Uo. We extend the
definition of R(x,$) by continuity to the closed segment s(0,1), in such way
that (9.24) holds. Then there is a unique way of extending the definition to
s(0,3) so that (9.23) holds, and it is also easy to check that (9.24) extends
to s(0,3). We then also have (9.26) on s(0.1)us(0,3). Now let
Vo€Ker(-TT/2,TT/2) be a non-vanishing element such that rvo=VQ. We put
R(-TT/2,Tf/2)=Vo and extend the definition by continuity to s(0,2) in such a
way that (9.26) holds on s(0,2) and so that R(x,^) takes the already
prescribed values at the endpoints of this segment. After that we extend to
s(0,4) by using (9.23). Then (9.23) holds on Us(0,j), and we get (9.26) on
s(0,4) and hence on Us(OJ). We have then obtained (9.23),(9.24),(9.26) on
us(0,j), and by construction, we have R(0,TT)=R(0,-Tr), R(Tr,0)=R(-Tf,0).
We can then extend the definition of R to Us(c(,j) in such a way that (9.25)
holds. If(x.$)=(y, -n)+2Try, (y.'n)€Us(0,j), then co(x.^)=co(y,'n) and
&(x,^)=S(y,'n) modulo 2-rTZ2, so we have (9.23)-(9.26) for the extension.

Let R be an analytic function defined in a neighborhood of Us(ot,j) such
that R-R is small on Us(o(,j) and such that (9.25) holds. Then R is close to
R==^( R+ZT2( Roco)), which satisfies (9.23) and (9.25). If
R'=^(R+^T2^(Ro&)). then (9.23),(9.25) remain valid, and we also obtain
(9.24). R' can be chosen arbitrily close to R (on us(o(,j)) so TT^R' is elliptic
near Us(o(,j). Writing R instead of R' we have then the required properties,
and as we have seen, this gives an operator S^ satisfying (9.16)- (9.18) and
(9.31) S^S^TTi. S^=I.
Put Hi=SfHiSi, so that,
(9.32) S^HI^SI, HiS^SfHp
Combining this with (9.16)-(9.18) and (9.13)-(9.15), we get,
(9.33) [y^H^O,
(9.34) [V,^]=0,
(9.35) [Ty,Hi]=0.
In view of (9.12), we next define the isometry S^ by,
(9.36) [TTS^S^y.
Then yTS^O'^Siy-^ISly:
(9.37) yTS2="LSiy.

If TT^ is the projection associated to H^ as in (9.2), we still have (9.12) after
replacing H^H^ by TT^TT^. Then S2S^=(yTSiy~1)(yTSiy-1)*=
yTSiy^ys^yTr^yTSiS^yTr^yTTT^yTr^Tr^
(9.38) S^S^TT^, S^S^I.
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Using (9.16)-(9.18), we get,
(9.39) (yT)2S2=-LS2y2,
(9.40) VS2=S2V,
(9.41)TyS2=S2Ty.

Put H2=SlH2S2, so that,
(9.42) S2H2=H2S2, 3^= H^S^.

In conclusion, Hp H^ have the same invariance properties as the operators
HpH2 or section 4.

We next recall that,
(9.43) det(Po)=2i|al |b|((sin(2arg(b)))/(|a| |b|)±(cos(C)+cos(x))),

and that det(P)=det(Po)+®(c). It is clear that H, are modulo 0(h) equal to
elliptic factors times det(P), so if we consider 4 :(sin(2arg(b)))/(|a| lb|) as the
new spectral parameter, JJL, then,
(9.44) Hj=aj(x.^)(cos($)+cos(x)+®(c)+®(h)-pJ.
where BJ are elliptic and real valued of order 0. It is no restriction to assume
that a,>0. Repeating the argument of section 4, we see that the symbol H] is
invariant under reflection in the point (O.TT), and that (0,rr), (rr.O), (0,-Tf),
(-TT,O) are non-degenerate saddle points for H^ with the same critical value
d(jJl). We have,
(9.45) a^dOJLXO.
and d(jJl) has a simple zero for some jJl=®(c)+©(h). After another change of
the spectral parameter, we may assume that d(jJl)=-^JL. ForjJl=0, we also
know that the real characteristics of H] close to the (complex)
characteristics of P, are contained in an arbitrarily small neighborhood of
us(o(,j), when e and h are sufficiently small.

Let Y^j be as in section 4, satisfying (4.26),(4.27).(4.34). Let UQJ
be WKB solution of H|U=O, defined microlocally near Int(s(0,D), and extended
to neighborhoods of (O.TT) and (TT.O), as in section 4. The choice of extension
is obvious, if we recall that,
(9.46) UQJ=SI UQJ,
where,
(9.47) H!UOJ=O.
We shall assume that UQ ps a normalized solution of (9.47). An easy
computation then shows that,

( i [H1 .yo ,1 ' u 0 .1 ' U O,1 )= ( 1 [ H 1» S T^O,1 s 1 l L ^ 0 .1 l u O,^ )= 1 '
since YQ I^T^O 1 ^ 1 1S QQ11^ ^° 1 near (0»'rT) and equal to 0 near (TT.O).
Hence UQ \ is a normalized solution of H^u=0. Notice that this notion has the
same invariance properties as in the scalar case.



76 B. HELFFER, J. SJOSTRAND

Imitating section 4, we define f^j, u^j by, foj^HpYo.l^O.P
(9.48) ro.j^^-Jfoj, "o.j^y'^-Juoj,
(9.49) fo(,j=To(foj, "O(J=TO("OJ-

Again, u^j Is a microlocal solution of H^u=0 i f j Is odd and of N^=0, If
j Is even. Repeating the arguments 1n section 4, (using the fact that we can
always reduce ourselves to the scalar case near the characteristics of P,) we
see that the corresponding Grushin problem for P Is well posed. In order to be
completely in the general framework of section 2, we need (2.39) rather than
(4.32). We obtain this by using that YQ P^^'^o 1 ne9r ̂ J) as 1n section
4: Since VT2 commutes with Hp we obtain:

VT2foJ=-iVT2[HpYoJl"0.1=i[H1, -)(oJlVT2UoJ.
Here VT^oj is also a normalized microlocal solution of H^u=0. The space of
these solutions being one dimensional, we may assume after multiplying UQ }
by a complex scalar, that VT^Q I=UQ p Then VT2^ i=fo i microlocally,
and as in section 4, we can turn this into an exact relation.

Introducing again the WKB problem, (4.36), we obtain Proposition 4 .1 ,
as well as (4.43),(4.44). Here \ has the same properties as in section 4, so
again the problem is to find \o(, \p satisfying (4.43). We recall here that
y=o(, &=3. Again VQJ is a normalized microlocal solution of P*v=0, and v^ ,
are generated from VQJ the same way as u^ j were generated from UQ i. Put
Voj=S^ VQJ, where VQ ps a normalized solution of H^v=0. Then it is
easy to check that,
(9.50) Uo(j=S^j. u^^^^^,3=^1 ^,3. ̂ ^^o^.
(9.51) Vo( j=S2Voj, v^2=SlVo(,2* ̂ ,3=^2^^^ ^,4=^}^,4'
Substituting this into the problem (4.43), we get the equivalent problem,
(9.52) SQ 1=^3^0 2 near Int(s(0,2)),

Uoj=Z'Xo< v'(oj)^4 near Int(s((0,1),4),

"(O.l)^^^ V0,2 near Int(s(0,2)).
^(0,1),3=^3 ^(0.1).4 near Int(s((0.1),4)).

It is then clear that the computation of \3, \c( in section 4 applies without
any change to \3, z'Xo(, and we see that Proposition 4.2 remains valid, with
only one modification: We can no longer state that the + sign is valid in
(4.71). The study of the new selfadjoining operators goes through almost
without any change, we just have to replace V by VT2 at certain places, and
we see that Proposition 4.3 remains valid. So does the discussion after that
proposition, with the obvious changes In (4.95),(4.99) due to the fact that
now arg(b)-arg(a)=±TT/2.

Summing up, we have,
Proposition 9 .1 . There exist functions, tQ:[},w[-^ 1 0 , 1 ] , )IQ:[\,W>[—^ ]0,H,
F:]0,1]->[1,oo[ , ho: ]0,1]x [1,oo[~»]0,1] , o?: l0 .1 ]x [1 ,oo[x ]0 .1 ] -^ l0 ,1 ] , with
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o((e,C,h)—>0, when h-^0 for every fixed (e,C), such that i f 0<c :<1 , C^l, and
P is a strong type 2 h-pseudodifferential operator with C(P)^C, c(P)^ EO^*
0<h^ ho(e,C), arg(b(0))=nTT/2 for some neZ, then

^-Sp(P)n[-p;o(C),po(c)^cu-N--:<j:<N+ J] » where Jj are closed disjoint
intervals, labelled in increasing order, such that for each j, there is an affine
increasing map Kj:jJl-^JJL" such that one of the following holds:
a) Kj(Jjn;Jl-Sp(P))=jJL"-Sp(Q), where Q=Q, is a strong type 1
h'-pseudodifferential operator with c(Q)^c.
b) Kj(Jjn^-Sp(P))=jji"-Sp(Q). where for every jJlo'€Kj(Jj). Q is of strong
type 2 with c(Q)^ 5(c,C,h), C(Q)^F(e), as a function ofjJi^=
^-J^el^^I.

Combining this result with the propositions 7.1 and 8 . 1 , we get the
following result, which is the analogue of Theorem 6.2 for type 2 operators,
Theorem 9.2. There exist functions. tQ:l},oo[-^ ]0 ,1 ] , F:l0.1]-^ [l.oo[,
ho : ]0 ,1 ]x [1 ,oo [ -^ ]o ,1 ] , o?: ]0 ,1 ]x [ l ,oo[x ]0 .1 ] ->10,1 ] , with <?(C,C,h)-^ 0,
when h-»0 for every fixed (c.C), such that i f 0 < c ^ 1 . Csl, and P is a strong
type 2 h-pseudodifferential operator with C(P)^C, 6(P)$ CQ^^

0<h^ ho(c,C), thenjJl-Sp(P)n[-3,3]CU«N,^j^N+ J] . where Jj are dosed
disjoint intervals, labelled in increasing order, such that for each j. there is an
affine increasing map K^^p/' such that one of the following holds:
a) ^(^^-^(P^^-SpCQ). where Q=Q, is a strong type 1
h'-pseudodifferential operator with c(Q)^c.
b) )<j(Jjn^-Sp(P))=>J//-Sp(Q), where for every ^CK^U^ Q is of strong
type 2 with c(Q)$<?(c,C,h), C(Q)^F(C), as a function ofp^
^-^l-^4!-

The discussion in section 7-9 also gave information about the sizes of,
and separations between the intervals: Let P be as in the theorem with c and
C fixed. Then the intervals Jj may be subdivided into groups, UJ,CUI(<, where
Ik are closed disjoint intervals of width -1 and at most Tr+®(c(P))+o(h). The
separation between two neighboring intervals is at least h^/(const.) and at
most TT/0+const.), where "const." indicate two strictly positive constants,
which only depend on C. In each 1^ there is at most one J,=Jj(^), such that b)
of the theorem applies, and Jj^) is of width -h and situated at a distance
©(£(P))+©(h) from the middle point of l^. This interval exists if the middle of
I(< is in [-3,31 and at a distance »c(P)+h from ±3. As for the other intervals
in I(<, their sizes and separations are as described after Theorem 6.2, with
only one modification: If I^Ia^a], and I^+^Ib.b'] are two consecutive
intervals such that b-a is very small (but larger than hi/const.), and a,b



78 B. HELFFER, J. SJOSTRAND

belong to some intervals J, and J,.̂  (,which we always can assume after
shrinking l^ and I(<+p» then if>Jl>b Is close to b and in the separation of two
consecutive J-intervals, the size of that separation is of the order of
magnitude, h/((b-a)+(jJl-b)). The analogous statement holds for the
separation between two consecutive intervals slightly to the left of a; just
replace y\-b by a-)Jl.

The theorems 6.2 and 9.2 may be combined Into an infinite Iteration
scheme. Without loss of generality, we may assume that the function F Is the
same In both theorems. Let C(p° be as 1n Theorem 6.2 and let
O^^mln^o^o^O^O'^O^) be sufficiently small, so that if 0<h^hp then

rr\QxWtQ^),oi(to,F(€,o)^))<€Q(P(tQ)). Then we obtain:

Theorem 9.3. Let 0<h^h^ and define h'€lO,2TT] by 2-n7h=h72Tr mod(Z).
Then,
(A) Let P be a strong type 1 h-operator with C(P)^C(). Then after

restriction to suitable sublntervals and after suitable affine maps,
the study ofjJl-Sp(P) can be reduced to the study of
jJL"-Sp(Q)n[-3,3], where Q Is either a strong type 1 h'-operator
with £(Q)^£(), or a strong type 2 h'-operator with t(Q)<. SQ^^O^'
C(Q)^F(Co).

(B) Let P be a strong type 2 h-operator with C(P)^ ̂ ^(t^)),
C(P)^F(CQ). Then forjJL-Sp(P)n[-3,3], we have the same conclusion
as In (A).
This theorem, together with the more precise quantitative information,

that we added after the theorems 6.2 and 9.2, give Theorem 0.1 in the
introduction, in the case when all the Qj In (0.3) are positive. The following
discussion shows how to extend this result to the case^hen q, have arbitrary
signs.

Let us first extend the definition of the auxiliary operators to the case
case when h<0. The definition of TQ(=TQ( ^ Is as before, and we check that,
(9.53) "^^=^(00,h»
where we recall that y(o0=(o^,-o(2). The extentlon of 7^ to negative h Is
given by:
(9.54) yh^O^TrlhD-^fe-1^^ ̂ ) dx.
Then,
(9.55) y-h=yh'1.
so If we put R^^^+x2- |h|, then also for negative h, we have,

(9.56) ^e-^^U^^h-
Here, we write U^ h=e1tR/ 'h• As before, we put:

(9.57) v^ryh^h'^u^/^hnJ-^.h .
and we notice that,
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(9.58) V_h=Vh^=a^Vh,

where y^ is Independent of h. If P(x,^) 1s a symbol, we still define the
h-Weyl quantization of P as the standard Weyl quantization of P(x.h^). By a
change of variables:
(9.59) P(x,hD)u(x)=(2Tr|h|)-1JJe1(><~y)9/hP(^(x+y).9)u(y)dyd9.
The commutation relations of section 1 then extend to the case, h<0. An
h-pseudodifferential operator can also be viewed as an
(-h)-pseudodifferential operator, and the relation between the corresponding
symbols Is simply: P=P«y. The rules for computing the symbols of of FPr,
VPV, y^Py are the same for negative h (provided that the conjugating
operators are quantized with the same h).

The definition of (strong) type 1 and 2 operators now extends naturally
to the case when h<0, and for type 1 operators, we have:
Proposition 9.4. If (P.PpP^) Is of (strong) type 1 in the sense of
h-pseudodifferential opertators, then the same is true in the sense of
(-h)-pseudodifferential opertators.
Proof. Let us first check that the invariance properties are satisfied also in
the (-^-quantization: Using (9.53), it is obvious that P and P, commute with
TQ( .^. Let y, V denote the h-quantizations and y-, V- the
(-h)-quantizations. Then combining (2.2),(2.5) with (9.55), we see that
(2.2),(2.5) hold with y replaced by y-. Since P,P, commute with V (by
(2.3),(2.6)) and with y2, they also commute with Vy^V-. Hence, if
(P.PpP^) is of type 1 as h-operators, the same is true in the sense of
(-h)-operators. Since cos(^)+cos(x) is even in ^, it is also clear that the
notion of strong type 1 operators is independent of the sign of h. •

For type 2 operators, the situation is a little more complicated. Recall
the definition of the operator T in section 2, and let S denote one of the two

operators S^: ^Q^d—^even' S2: ^ven "̂  ^dd' both ̂ en ̂  the ̂ ^^y
matrix, for the natural bases. Then S is real and,
(9.60) TST=S, S2=I , S^S-^S.
Proposition 9.5. If (P.PpP^) Is a type 2 h-operator, then (P, Pp P^)=
(SP*S,SP^S,SPfS) is a type 2 (-h)-operator.
Proof. Pf P=SP2s2p*S=SP2P*S=SPP^S, which is self adjoint. Similarly, we
see that P P|? is self adjoint. It is obvious that P, ?\. P^ commute with T^.
Let's check the Fourier invariance: P^-T= SP^sy-^ SPty-^T'"^
SP^T)"^ SO^TF1?^ y~lTSPiS= y-TP'|?. The remaining two Fourier
invariance relations are proved the same way. The three reflection invariance
relations are also proved the same way, so we only treat one case: P ]V-T^=
sp^sva^T^ ^:'2T2sp^sv= a^T^T^p^s^, p^.
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Proposition 9.6. If (P,P},P^) Is of strong type 2 with respect to jJl.h, then
( P.- PI,- P^) (defined in the preceding proposition) Is of strong type 2 with
respect to -jJl.-h, and we have e(P)=e(P). C(P)=C(P).
Proof. If P(x,^) denotes the h-symbol of P, then the (-h)-symbol of SP*S is
SP(x,-^)*S. Here we recall that S 1s given by the Identity matrix for the
standard bases, so from: P(x,^)=Po(a,b;x,$)+©(&), we get
SP(x,-$)*S=Po(a,b;x,-^)*+0(c)=Po(a',b;x,e)+©(&). The same
computations work for - Pp - P^, and the proposition follows. •

Propositions 9.4-9.6 permit to extend Theorems 6.2 and 9.2 to the
case when h and h' are In [-2TT,0[. (In the statements, we simply have to
replace all upper bounds on h by upper bounds on Ihl.) Also, If we start with
h>0, and 2Tr/hsh'/2Tr mod(Z) with Ih'KTT. h'^0, then the arguments of
sections 2-6 work without any changes, so Theorems 6.2 and 9.2 are valid
also If we suppress the assumption that h' should be positive. This also holds
for Theorem 9.3, and we then get Theorem 0.1.



a.Microlocal analysis.
In this section, we treat various generalities that win be needed 1n the

main text. We shall first recall the general approach to (analytic) microlocal
analysis, based on FBI (or generalized Bargmann) transforms in [S1] . Then we
develop a simple functional calculus for analytic pseudodlfferentlal operators,
and finally, we make some remarks on the Weyl quantization of symbols.
a .1 . FBI transforms and microlocal analysis. We shall essentially recall some
of the theory of [S1], with some modifications, In order to treat global
questions. As a general rule, the large parameter \ In [S1] will here be equal
to 1/h, with 0<h^2-rr.

Let ftcc" and let -^ be a continuous real valued function, defined on Q.
A function u(x,h) on Qx]o,2Tr] (or possibly with 2-rr replaced by some smaller
constant, >0) belongs by definition to the space H10^), If,
( a . 1 . 1 ) u Is holomorphic In x for every h,
(a.1.2) For every compact KCQ and every 00, there Is a constant

00. such that |u(x,h)| ̂ CeW^6^ on Kx]0,2TT].
We also define H^)(Q) to be the space of functions u on Qx]o,2TT] satisfying
(a .1 .1 ) , such that u(.,h) belongs to L^Q.e^^^dx)) for every h. Here L(dx)
denotes the Lebesgue measure on Q. Notice that the properties of belonging to
H^^ Is an asymptotic property, while the property of belonging to H^p(Q) is
of Interest for every h, (and sometimes we shall use the property uehW^) for
Individual h's or for a much smaller set of h's (by abuse of terminology)). We
call atx.M^o^a^x^ a (formal) classical analytic symbol (c.a.s.) of order
0, if the a^ are holomorphic in the same open set, Q and if for every compact
KCft. there Is a constant 00, such that la|<(x)| ̂ C^^ for every xeK ,
keN. (Sometimes we may also allow k to vary in the half Integers.) A
classical analytic symbol of order rncR is an expression of the form
h~ma(x,h), where a is a c.a.s. of order 0. If a is a c.a.s. of order m, then for
every open QCCf2. we can define a realization. acH 1 0 0^) , well defined
modulo ©(e"'17^) for some 00. (This is done by summing the first (const.)/h
terms in the formal sum giving a, and choosing the constant suitably. See [S1 ] ,
page 3, for more details.) In the main text we win also have lots of
parameters. A family of c.a.s. of order 0, a^(x,h), «€A on Q, is by definition
bounded If for every compact K in Q, we can choose a constant C as above,
which is independent of «. A c.a.s. a, of order 0 is elliptic, if the leading
term, BQ In its formal series expansion is non-vanishing.

We next define local FBI transforms (as in [S1] , chapter 7). Let ^p(x.y)
be a holomorphic function, defined in a neighborhood of (xotyo)^'^^11* such
that,
(a.1.3) ^'(xo^o)^^11^
(a.1.4) Inrnpyy(xo,yo)>0> (in the sense of symmetric matrices),
(a.1.5) det(^y(xo,yo))^0.
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Let t(x,y,h) be a realization of an elliptic c.a.s. . Let VCIR.", XCC" be small
neighborhoods of yo and XQ respectively, and let YcCo^CY) be equal to 1 in a
neighborhood of yo. Assuming these quantities chosen suitably, we can then
define for U€<©'(Y) , x e X ,
(a.1.6) TuO^h)^1^^ t(x,y.h))((y)u(y)dy.
and if u is independent of h, we get TueH^0^), where,
(a. 1.7) <I>(x)=supy^Y(-Im(^(x,y)).
The same conclusion is valid, if u=u^ depends on h, but some Sobolev norm of
u^ is of at most temperate growth when h—» 0 and bounded on every compact
h-interval.

Viewing T as Fourier integral operator, we can associate to it the
canonical transformation Ky:(y, - '<py(x,y))—> (x,'^(x,y)) from a complex

neighborhood of (yo^o^ onto a complex neighborhood of (xo ,Co^- ^ere

^0= -2i9<^(X())/9x, and more generally, if we introduce
A^=((x,-2ia<t>(x)/ax); x c X ) , then (locally near (XQ,^Q),) A^=Ky(R2n).

Using FBI-transforms, we get a convenient setting for the microlocal
theory of Fourier integral operators. We restrict the discussion to germs, but
using classical theorems on the resolution of the 9-operator, it is easy to
extend the discussion (by partitions of unity) to the case of pseudo-convex
domains equipped with plurisubharmonic weight functions.
Let ^>(x,y,©) be a non-degenerate phase function defined near
(xo^o^o^0^011^^ 1n the sense ̂ ^
1 ° ^p is holomorphic,
2° ^'Op-^d^P'e^ are independent on the set CQ defined by 6^=0.
We assume that (XO,^Q,Q())€C^, and put ^c^'^V^O'yo^o)' ^O^
^PX'^O'UO^O^ Then A^p=((x,^p^(x,y,e);y,-^py /(x.y,9)); (x,y.9)€C^)c
^"(x.O^^y,^) 1S a canonical relation, that is: a Lagrangian manifold for
^(x 0"°^ 'n)' where cr(^ ^ )=Sd^ jAdX j and similarly for O'(M ^). Let us
assume that A^p is the graph of a canonical transformation, and let <&(y) be a
plurisubharmonic C^ function defined near yo satisfying, ^(^'"^(^(yoVQy.
Then K(A<^)) is of real dimension 2n, and if the projection of this manifold to
C^ is a local diffeomorphism, then it has the form A^p, for some C2 function
^P. If we assume that the hessian ^"(XQ) is plurisubharmonic, then v? is
plurisubharmonic everywhere, and after changing ̂  by a constant, we have
^P(X)=V.C.(M Q)(-Im'^p(x,y,9)+<3>(y)). where v.c.(y Q).. means "critical value
with respect to the variables (y,9) of the function ..//, and where it turns out
that the critical value is taken at a non-degenerate critical point of signature
0, that is at a saddle point. Conversely, if we know that
(y»Q)—* -Irrpp(xo,y,©)+<i>(y) has a saddle point at (yo»^o^ then the c r 1 t 1 c a 1

value ^P, defined as above will be plurisubharmonic, and Avp=x(A^>).
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If a(x,y,9,h) is the realization of an c.a.s. in a neigborhood of
(xo'Uo^O^ then ^or suitable neighborhoods Y , X of yo and ^0 respectively, we
can define the Fourier integral operator,
(a.1.8) AuCx.^^JJe^'y'9^ a(x,y,9,h)u(y,h) dyd9,
as an operator A:!-!^10^)--^ H^10^), by choosing a suitable integration
contour, and introducing suitable cut-off functions. A different choise of
contour and cut-off will change Au only by a term which is exponentially small
in a neighborhood of XQ. There is a natural composition result for these
Fourier integral operators, and it is also possible to show that the class of
operators we get by varying a essentially only depends on X and on the
normalizing value ^(^Qi^o^o)- As a particular case, we get the classical
analytic pseudodifferential operators, when Xo=yo» N=n and

^p(x,y,9)=(x-y)9 . The standard quantization of a symbol a is then,
(a.1.9) AuCx.^^Trhr^Je1^^9'^ a(x,9.h) u(y) dyd9,
while the Weyl quantization of a symbol b is
( a . 1 . 1 0 ) Bu(x.h)=(2Trh)-'nJJe1(><~y)9/h b(^(x+y).9.h) u(y) dyd9.
The standard symbol, a and the Weyl symbol b are uniquely determined from
the operators A,B, and we get the same operator, A=B if and only if
( a . 1 . 1 1 ) b=e~1 h DxDe/2^ ^e^xDe^,
where we also know (by analytic stationary phase) that e^^x^® 7 ^ are order
preserving maps on the space of formal analytic symbols in an open set. We
say that the pseudodifferential operator A is of order m if the corresponding
symbol (either standard or Weyl) is of order m. In the natural composition
result for analytic ps.d.o. we then also know that the order of the
composition of two operators is equal to the sum of the orders of each factor.
The (standard or Weyl) symbol of the composition, C = A < > B is also given by the
standard composition formulas,
( a . 1 . 1 2 ) c=Eoo o(k!)-1(^^Dy)k(a(x.C)b(y,1n))|(y^)=(x^),

( a . 1 . 1 3 ) c=Eooo(k!)-1(^io'(D^,D^;Dy,D^))k(a(x.C)b(y,<rl))|(y^)=(x^),
for respectively the standard symbols and the Weyl symbols.

If A is a Fourier integral operator, with an elliptic symbol, associated
to the canonical transformation X, with x^yo^o^^O'^O^ ^^ we can ^ind

a Fourier integral operator B associated to X" 1 such that BoA=I , AoB=I , in
the sense that the pseudodifferential operators B<»A and A o B , defined
respectively near (yo^o^ and ^0*^0^ have ^'T^01 }- (This implies that the
corresponding realizations on suitable H^^-spaces, are simply the identity
operator modulo exponentially small errors). Applying this to the
FBI-transform, T in (a.1.6), we can find an "inverse^ S = T ~ 1 , of the form,
( a . 1 . 1 4 ) Svty.^^e-^'U^^x.y.hMx) dx,
and if we denote by m(t) and m(s) the orders of t and s respectively, then
m(t)+m(s)=n. If "f is a second FBI transform with Xftyoy'Ho^^ ^O* ^0^» and

if <^> and <£ denote the weightfunctions associated to T and f respectively, by
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(a.1.7) and it's analogue for f. then if U=U^€<©'(Y) is a family of distributions
of temperate growth, as specified after (a.1.7), and if U denotes the Fourier
integral operator composition "feS, we have near XQ, Tu^(x,h)=2UTu^(x,h)
modulo an exponentially small error in H^0^ Naturally, since the behaviour of
Tu^Cx.h) near XQ only tells us anything about the phase space behaviour of u^
near (yo^o^' ^here is no hope to be able to recover u^ from only that
information. This information is however sufficient, to predict the behaviour
of Tu^ near XQ, and it justifies the termino1ogy:"Let u=u^ be a distribution
defined microlocally near (yg, 'Ho)"- ̂  th1s we mean simply, that each time
we choose an FBI transformation T as above, then up to an exponentially small
uncertainty, we have an element Tu of class H^00 defined in a neighborhood of
XQ, the various elements being related by Tu=( ToT^bCTu).

If 9(y»'n»h) is a c.a.s. defined near (yo»'no^» ^en we can associate a
formal pseudodifferential operator A, using either the standard or the Wey1
quantization. By "Egorov's theorem", which is valid in our setting, B=TAT~ 1

is then again a pseudodifferential operator with a c.a.s. (either for the
standard or for the Wey1 quantization) defined near (xo,^o)» so we can define
the action o fB : H^100^)^ H^10^^)* where Qp and ̂  are suitably chosen
neighborhoods of XQ. In other words, we have then defined the action of A on
functions that are defined microlocally near (yo^o)- Similarly, if x is a real
canonical transformation from a neighborhood of (yo»'Ho^ on^0 a neighborhood
°f ^o'^O^' S1^" by ^he non-degenerate phase function, '<p(z,y,e), defined
near (zo.yo*^^ anc^ if a is a c.a.s. defined near the same point, then we can
define the action of the corresponding Fourier integral operator A, mapping
functions that are defined microlocally near (yo^o^ to functions defined near
(zQi^o^- Again, we have the natural composition results, including Egorov's
theorem.

Somewhere in the proofs of these results in [S1] , it is made use of a
certain resolution of the identity, which permits to represent a distribution
locally and not only microlocally as a superposition of Gaussians. Instead it
would have been possible to use a global FBI-transform, (which is essentially
a Bargmann transform). Such a transform is given by,
(a .1 .15) Tutx.h)^1^^^ t(h) u(y)dy, xcC", ueL^R"),
where ̂  is a second order polynomial, satisfying (a.1.3)-(a.1.5) (which now
automatically become global conditions), and where t(h) is of the form Ch"171,
C ^0. The function <^>, defined as before, now becomes a strictly
plurisubharmonic second order polynomial on C11. Choosing m=-3n/4 and C
suitably, we can arrange so that T becomes isometric: L^R")—* H^C") (by
verifying that T*T is the identity operator). Using also that the orthogonal
projection TT: L^C^e'^^Kdx))-* H^tC") has a simple explicit integral
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kernel, (that can be obtained by choosing a suitable contour when writing the
Identity as a pseudodifferential operator, see [S1]), It Is also easy to check
that TT*=TT=I on H^C"), so T is unitary. We also notice both in the global
and In the local case, that If T Is an FBI transform, then T7 Is also an FBI
transform. Here y denotes the unitary Fourier transform, defined In section 1 .
In the global case, It Is possible to choose'»? In such a way that <^> becomes
rotation Invariant, and Ty=1flT, where 1^v(x)=v(ix).
a.2. Functional calculus for analytic pseudodifferential operators.

Let P be an mj^mo matrix of formal analytic pseudodlfferentlal
operators of order 0, with a c.a.s. defined In a neighborhood of (xoCo^61^11-
Let p=po(x,^) be the principal symbol, that 1s the leading term In the
asymptotic expansion In powers of h, of the symbol of P. (Notice that p does
not depend on whether we take the standard or the Weyl quantization.) If
Z€C\Sp(p(xo,$o^' then (z-P)"1 Is a formal analytic pseudodlfferentlal
operator of order 0 whose symbol Is defined In a neighborhood of (XQ,^)- ^
F(z,h) Is a c.a.s. of order m, defined In a neighborhood of Sp(p(xo,^o))> then

we define F(P,h) as the formal analytic pseudodlfferentlal operator of order m,
given by,
(a.2.1) FCP.^^TrD-Vaft FCz^Kz-pr^z,
where 8ft Is the oriented C°° boundary of a small nelgborhood, ft, of
Sp(p(xo,eo^- when F is a polynomial In z, It Is easy to check that the
definition coincides with what one expects in that case. In the general case,
let fCz^""1 be the leading contribution to F (i.e; the principal symbol of F).
Then the principal symbol of F(P,h) Is Kptx.^h"'"'1. If G Is a second symbol
with the same properties as F, we check, by choosing a smaller ft In one of
the representations of F(P) or G(P), that,
(a.2.2) F(P,h)oG(P,h)=(FG)(P,h).
Finally, if F Is of order 0, and if G is a c.a.s. defined in a neighborhood of
Sp(f(p(xo,Co^' then we have*
(a.2.3) G(F(P,h))=(GoF)(P,h).
In fact, let o(, 3 be contours around Sp(f(p(xo,Co^ and ^(P^O'^O^
respectively, such that if zef>, then f(z) is in the Interior of «. Then,

GtFCPM^Trir1^ 6(w)(w-F(P))-1 dw=
(2Tr1r2JoJ^G(w)(w-F(z))-1dw(z-P)-1dz=
(2Tri)-1^ GoF(z)(z-P)-1dz= (GoF)(P).

We finally notice that if the various symbols depend on parameters, but vary in
bounded sets, then the same Is true for the resulting symbols.

The Weyl composition formula (a .1 .13 ) implies that
c=ab+(h/i)(a,b)+0(h2), when a and b are of order 0. Using this, it is easy to
verify that the symbol o f (z -P) - 1 is (z-Pfx^^+QCh2). in the case when P
is a scalar symbol, so if F is a symbol of order 0. then the Weyl symbol of
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F(P.h)isF(P(x.C).h)+©(h2).
a.3. Weyl quantization and conjugation by Fourier Integral operators.

The results of this subsection are valid either in the category of
ordinary classical C°° symbols on the real domain, when the corresponding
phase functions are real, or in the category of analytic symbols, either on the
real domain with real phase functions, or on the complex domain, with
complex phases. The assumptions in each case will be local and the obvious
ones. To fix the ideas we choose the real case (analytic or C°°). To start
with, we examine the simple case of conjugation by an elliptic factor. Let
P(x,^) be defined near (xoiCo^^211- (we could also let P be a classical
symbol of order 0). Let ^(x) be a real valued smooth function , defined near
XQ, such that ^S>f(xo)=^Q- Let p a1so denote ^he Weyl quantization of P. We are
then interested in the Weyl symbol of the pseudodifferential operator
Q=e-i^P(x)/h,p,ePp(x)/h^ which is defined near (><o»Co~^o) - we Proceed
formally, by first writing the integral kernel of Q as,
(a.3.1) KQ(x,y)=;e1((x'9)9-(^(x)-^(9)))/h p((x+y)/2.e) d9,

di^de/CZTTh)11.
Using the standard trick, we write,
^(x)->p(y)=(x--y)(^((x+y)/2)+®((x--y)2). After a change of variables, we
then get,
(a.3.2) KQCx.y)^1^-^9^ P(^(x+y),^(^(x+y))+9)+0((x-y)2) d9.
Here the 0-term contributes to the Weyl symbol of Q by 0(h2) (i.e. by a
classical symbol of order -2). so if we denote by Q also the Weyl symbol, then
we get,
(a.3.3) Q(x,^)=P(x,^+^(x))+0(h2).

If a=a(x,h)^ao(x)+a^(x)h+... is a classical symbol defined near XQ,
then by formal stationary phase,
(a.3.4) Q(a)-Q(x,0)a(x)+(h/i)(Q^(x.O)a'(x)+^Q, /^^(x,0)a(x))+0(h2).
Assume now that P is real valued, and that P(XQ,^Q)=O, P^(xo»Co)^0 - Let ̂
be real valued and satisfy the eiconal equation,
(a.3.5) P(x.^(x))=0.
We then want to construct a such that e~}^>^P(e}^>^Q)=0 (in the sense of
formal classical symbols). Then combining (a.3.3) and (a.3.4), we get the
leading transport equation,
(a.3.6) q^(x.0)a(/(x)+^:q^(x,0)ao(x)=0,
where q(x,^)=P(x,'<p'(x)+^) is real valued. It follows that BQ has constant
argument along each bicharacteristic curve, associated to P.^P.

We now attack the more general question of conjugation with F.I.O.'s.
Recall that if A,B are classical pseudodifferential operators of order 0, defined
microlocally near (0,0), and if C=[A,B], then for the corresponding Weyl
symbols (denoted by the same letters), we have,
(a.3.7) C=(h/i)(A,B)+®(h3).
We shall exploit this fact in order to give a refinement of Egorov's theorem.
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Let X be a canonical transformation from a neighborhood of (O.OeR211 onto
another neighborhood of the same point, and assume 1n order to fix the Ideas
that K(0,0)==(0,0). Then, we can find a smooth 1-parameter family of
canonical transformations, x^, t€ [0 ,1 ] , with the same properties, such that
)<0=id and K^=K. We have,
(a.3.8) at^t^'^HQ^K^x.C)).
where Q^ Is a smooth family of smooth real valued functions, defined in a
neighborhood of (0,0). (Here HQ denotes the Hamilton field of Q.) Let Q^ also
denote the corresponding Weyl quantization, so that Q* f=Q^, where the formal
adjoint is taken with respect to the standard inner product on L^dR."). We can
then define a family of unitary Fourier integral operators, U^ associated to K^,
defined microlocally near (0,0), and given by,
(a.3.9) hD^+Q^=0, UQ=I, where D^i-^/ai
Let P be a pseudodifferential operator of order 0, defined near (0,0), and
define P^ by,
(a.3.10) P^==U^P.
For the corresponding Weyl symbols, we claim that,
(a .3 .11 ) P^o)q=P+®(h2).
The interesting fact here (as well as in (a.3.3)) is that we have ®(h2) and not
just ®(h).

To prove ( a . 3 . 1 1 ) , we start by differentiating (a.3.10) with respect to
t: OtPpU^+P^(a^Up=O^UpP^ Then (a.3.9) gives, 3tPt=(i/h)[Pt.QtL and
using (a.3.7), we get for the corresponding symbols, <^P^={P^,Q^)+0(h2),
which we can also write as.
(a.3.12) 3tP^+HQ^Pt=0(h2).
Since a^P^K^x.C^^at^^t^C^+tHQ^PtK^t^e))* we conclude that.
(a.3.13) a^PtO^x.C)))^^2),
and after integration of this estimate, we get ( a . 3 . 1 1 ) .

We now consider the converse question of associating a suitable
canonical transformation to a given unitary Fourier integral operator. The
basic idea is that if
(a.3.14) Uu(x,h)=JJepP(><'y'9) /ha(x.y.e,h)u(y)dyd9.
is such an operator, where a is a classical symbol of order m, then we can
always replace ̂  by ^P+h^(x,y,9,h), where ̂  is a classical symbol of order
0, since the new amplitude, e'^a is again a classical symbol of order 0. One
then gets an associated canonical transformation, X which depends on h and
satisfies )<=)<o+®(h), where KQ is the standard one. In the main text, the
phase functions, will already depend on h in some complicated way (but
varying in a bounded set) so x will be as natural as KQ.

Let U be a unitary F.I.O. whose associated standard canonical
transformation, Kmaps (0,0) to (0,0). Taking an intermediate family of



B. HELFFER, J. SJOSTRAND

canonical transformations, x^ as above, we can then construct a smooth
family of unitary F.LO.'s, U^ such that UQ=I, U^=U. We then use (a.3.9) to
define the pseudodifferential operators Q^ of order 0. Then Q^=(h/1)(9^U^)U*^,
so Qt-Q^=(h/i)(OtUt)U^ +Ut(atLTt))=(h/i)8t(U^*)=0, so Q^ is self
adjoint. We can then define x^ by (a.3.8), with initial condition, Ko=id. Then
we still have (a .3 .11) , if P^ is given by (a.3.10), and for 1 = 1 , this shows that
if we associate to U the canonical transformation, x=Xp then if ?and P are
two pseudodifferential operators of order 0, related by,
(a.3.15) PU=UP,
then, for the Weyl symbols,
(a.3.16) PoX=P+®(h 2 ) .
By varying P, we see that x is uniquely determined modulo 0(h2). (This means
that in the correction of the phase -9 in (a.3.14) it is enough to take ^
independent of h.

It would be interesting to give a more explicit description of the relation
between a unitary F.I..O. and the corresponding canonical transformation, x
given (modulo ©(h2)) by the relations (a.3.15),(a.3.16). A reasonable guess
would be that if we write a given unitary FIO in such a way that the leading
amplitude has constant argument, (by adding a term h^(x,9) to the phase,)
then the corresponding phase gives the more precise canonical
transformation. We have not checked this however.

Let us here only investigate to what extent U is uniquely determined by
X. In the following we shall say that X is associated to U, if (a .3.15) , (a.3.16)
hold. Let us first notice that if X, is associated to U, for j= 1 ,2 , then U^eU^ is
associated to XpX^. Now let U and V be associated to the same canonical
transformation X. Then A=U<»V1 is a unitary pseudodifferential operator.
which is associated to the identity:
(a.3.17) [P.A]=®(h2).
for every pseudodifferential operator of order 0. This means on the symbol
level, that VA=0(h), so A=o)+0(h), for some uJeC of modulus 1 . Hence two
unitary FIO are associated to the same canonical transformation (in the
precise sense) iff there is a number oJeC with |o)| =1 , such that U=AV,
where A=o)+©(h).



J^Jtmnal forms for some scalar pseudodlfferentlal operators.
In this section, we shall give normal forms for some scalar, classical

analytic pseudodlfferentlal operators, valid near a critical point of the symbol.
Contrary to the usual case In the theory of local solvability and hypoellipticity
and so on, we do not (,at least not to start with,) admit multiplication by
elliptic factors, but only conjugation by Fourier Integral operators and passage
to a function of the operator. Thus the general question here is: "Given a
certain selfadjoint operator P, find a real function f and a unitary operator U,
such that U*f(P)U takes a simple form." There will be two cases (closely
parallel): the case when the symbol has a saddle point, and the case when the
symbol has a non-degenerate minimum. The second case has already been
treated In [HS2], but here we give a second approach especially adapted to the
analytic case.

We start with the saddle point (or "branching") case, and we consider
first on the level of principal symbols, the model symbol PQ=X$ °n C2. The
associated Hamilton field is Hp -xB/Qx-^a/a^. and

expdHpQKx.^^e^.e"^), teC.The flow is periodic with period To=2TTi. If
Po(x,e)=E i. 0, then (x,$)=exp(tHpQ)(y.y), where y2=E and

t=1og(x/y)+2Trik, keZ. The complex curve FQ: ^=x has the property that
exp(^ToHpQ)(ro)=ro- and as we just saw, every point with PC^X^^O* is of
the form expdHp^Ky.y) for suitable t and y. We also notice that FQ is the
complexification of its Intersection with R2. Let now p(x,^) be a real-valued
analytic function defined in a neighborhood of (0.0)€R2 and having a saddle
point at (0,0), with p(0,0)=0. If we let r^ and r- be the stable outgoing and
incoming manifolds for the Hp flow (see [AM]), we know (see for instance
[S2]), that r^ and r-. are analytic curves, intersecting transversany at
(0.0), and after composing p with a suitable real and analytic, canonical
transformation, we may assume that r+ is the x-axis and that r- is the
$-ax1s. Then, it is easy to see that we have reduced the problem to the case
when
(b.1) p(x,C)=a(x,e)xC,
where a>0 is a real-valued analytic function. Replacing p by f(p), where
f(t)=Ct, 00, we may assume that a(0,0)=1. If we replace x by
(const.)a(x,^)x, we get an analytic diffeomorphism, that transforms p onto
(const.)po. In particular, we know that the surfaces p=E^ and po=E7 have the
same topological structure when intersected with suitable neighborhoods of
(0,0), provided that E^ and E^ are non-zero and small. In particular p=E is a
connected curve for E ̂ 0, so if (XQ^Q) belongs to this curve and

expTHptxo^o^^O'eo) ^or some T € €» ^hen expTHp(x,^)=(x,$) for all (x,^)
on this curve, and T=T(E) is a period for the Hp flow, restricted to the energy
curve p=E. To see that such non-trivial periods exist, let E=jJl2 be small but
non-vanishing and make the change of variables (x,$)=(jjiy,jji'n). Put
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P^=JJl"'2POJLy,)Jl'^). Then (x,^) belongs to p^E) Iff (y,T1) belongs to p-^1 (1 ) .
Moreover, Hp is the direct image under the map (y,'n)—^ (x,^) °f Hp » so an

equivalent problem is then to study periods of the Hamilton flow of p^ in the
surface of energy 1 . Since pn=po+®(jJl) (uniformly in every fixed compact

set) we conclude that the Hp-flow in p'^E) has the period J(E)=JQ+Q(E}/2),
for small non-vanishing values of EeC. Since T(E) is holomorphic in E outside
the origin, we have a removable singularity at E=0. Hence E is holomorphic in
a full complex neighborhood of 0, and
(b.2) T(E)=TO+®(E).

Since p is real-valued, it is easy to see that T(E)=-TO+®(E) is a period when

E is real. On the other hand -T(E)=T(E)+0(E) is also a period, and since two
different periods cannot be too close to each other, they have to agree;
T(E)=-T(E), for E real, so T(E) is purely imaginary for real energies. By the
unique continuation property we get more generally,
(b.3) T(E)=-T(E).
when E is complex. W.e now look for a real canonical transformation, that
transforms p into PQ. An obvious necessary condition is that T(E)=TQ, for all
E, and we can easily reduce ourselves to this situation, by replacing p by fop ,
where f is the real-valued analytic function given by,
(b.4) df(E)/dE=T(E)/TQ, f(0)=0.
Hence, we shall assume from now on, that
(b.5) T(E)=TQ.

We next study the Hp trajectories for real times. For such a trajectory,
we have x'=(a(x,0)+©(^))x, ^=-(a(0,^)+®(x))^, and we first see that the
flow is expansive in x and contractive in ^, in the sense that for t>:s:
^(Dl^e^-^^^s)!, IC(t) l^e--( t--s) / c |^(s)|. (Here, we restrict the
attention to a trajectory which stays in a region: | x | ̂ IQ, 1 $ 1 ^&o» ^or some

sufficiently small CQ-) Consider now such a trajectory (x(t),^(t)), O ^ t ^ T ,
with |x(0)/^(0)|€[1/2,2l . Then |^(t)| ̂ 2 |x( t ) | , and we get.
x '=(1+©(x(t ) ) )x( t ) . Using that |x(t)| ̂ o^1"070* we can integrate the
earlier relation, and obtain,

x( t )=exp(t+0(1)Co V e-^-^^ds) x(0).
and hence,
(b.6) x(t)=e( t+o(&o))x(0).
Since the flow is 2TTi-periodic, this relation extends to the case when teC,
O^Ret^T. We also have an analogous estimate for ^(t). when Ret<0.

We next observe that, locally near (0,0),
(b.7) exp(^ToHp)(R2)==R2.
In fact, the set of conjugate points of the left hand side is equal to
expt-^r-oHpXR^ exp(^ToHp)(R2). since TQ is a period. Hence the left hand
side of (b.7) is invariant under complex conjugation. Since it is a
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twodimensional surface, close to R2 in the C1 topology, the only possibility Is
that we have equality in (b.7).

Let ro=((x, $);x=$) and recall that exp(^ToHpQ)(ro)=ro. Let f be a
real valued analytic function vanishing on FQ, with d^O.O^O, for instance
f=e-x. Then g=f<»exp(^ToHp) satisfies dg(0,0)=-df(0,0), and if we put
h=f-g. then dhCO.C^ZKO.CO^O. and hoexp(^T()Hp)=-h. Hence r^-^O) is
a complex curve, equal to the comlexification of a real analytic curve, tangent
to FQ at (0,0). We have,

(b.8) P[r=q2, Pojro^o)2*
where q.qo are holomorphic on r and FQ respectively, satisfying
dq(0,0)=dqo(0.0), qo(x.x)=x.

Let Uo=((x,$)€C2 ; I x l . l ^ l ^ & o ) for some sufficiently small C Q > O .
Then every (x.^cUoYpo-Uo) can be written (x,C)=exp(tHpQ)(p),
peroHUo.Here p is well-defined up to a choice of sign; we can replace p by
-p if we change t to t+TTi. Once the choice ofp is fixed, then t is well defined
up to a multiple of2-rri. We now define the map x: UoYpo'Ko)-^ U\p-1(0),
where U is a suitable small neighborhood of (0,0), by:
1° IfpeFo, then X(p)€r is given by q(x(p))=qo(p).
2° If (x,^)=exp(tHpQ)(p), as above, we put x(x,^)=exp(tHp)(x(p)).
Since I Ret I may be very large here, we have to verify (A); that exp(tHp(p)) is
well-defined and belongs to a small neighborhood of (0,0), and (B); that the
definition of x(x,^) does not depend on the choice ofp.t in the representation
of (x,^). Assuming (A), the verification of (B) is immediate, using that
exp(^ToHp)(r)=r, and that TQ is a period for the Hp flow. (A) follows from
(b.6) and its analogue for ^(t), which imply that K(x.^) is well-defined, and
even that lx(x,^)| ̂ e^O^Kx.C)! (if we use l^-norms). We have
constructed a single-valued bounded holomorphic map x:
^^Po'"'^0)^11^"^0)* which then clearly has a holomorphic extension to:
UQ—^U. Moreover, by construction,
(b.9) P<»K=po,
and x is symplectic, mapping the real domain into the real domain, and we
have dx(0,0)=id.
Let now P(x,^,h)-£j^o p,hJ denote a formal classical analytic symbol,
defined in a neighborhood of (0,0), with leading part PQ=P, and assume that
the corresponding formal pseudo-differential operator P(x,hD.h) is formally
self-adjoint.(We here take the classical quantization, but nothing changes in
the arguments, if instead we take the h-Weyl quantization.)

From what we have done so far, it follows that there is a formal unitary
Fourier integral operator, associated to the canonical transformation X, and a
real-valued analytic function f(t), with f(0)=0, f^O^O. such that Lr^DU
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has the principal symbol x^. From now on, we assume that already p=po=x^.
Since the Hp-flow is To-periodic, we find formally that,
(b.10) e-^O^^R,
where R is a formal analytic elliptic pseudodifferential operator of order 0.
Since To=2TTi is non-real, we have to be a little careful, in giving a sense to
(b.10). We do this in the following way. Let <i»o be a strictly subharmonic
quadratic form on C, close to 0. and define (as in [S1D;
A^»Q={(x,(2/i)9<^o^x); xeC). Then for t imaginary, we can define A<^» =
expdHpKA^), and <3>^ is again a strictly subharmonic quadratic form close to
0. Using the theory developped in the first sections in [S1], we can then define
unambiguously a classical Fourier integral operator U^e""11^1'1, that can be
realized as an operator from H ,̂ ^(fto), to H^100^). where QQ and Q!
are suitable complex neighborhoods of 0. As a matter of fact, this is just the
standard construction, except for the fact, that due to an embarrassing
imaginary part of the phase-function, there is no reasonable way to define
this operator acting microlocally in the usual L^ space. Nevertheless we have
^To^O' and we see that R is a pseudodifferential operator. If
o(=(o^,o^)€R2 belongs to a small neighborhood of the origin, we put
u^(x,h)=e1((x•~c<x)o<^ +i(x-o<x)2/2)/h^ j^^ ̂  o^ sufficiently close to
(0,0), the scalar products (UfUoJuo)^ are well-defined up to exponentially
small terms, and up to such a term, we have (U^u^luo)^ = (u^lt^uo)^ , as
we can see, using the selfadjointness of P and the fact that we now restrict
the attention to imaginary values of t. Since the functions u^ fill up a
microlocal neighborhood of (0,0) (,in a sense that can be made precise by
using an FBI-transform), it follows that R is formally self-adjoint, so the
principal symbol, r is either >0 or <0 on the real domain. As already
mentionned, U^ is formally obtained by the standard WKB-procedure, which in
this case gives us,
( b . 1 1 ) UtU(x)=(2Trh)-1;;e1(^( t.x>1rl)-y^) /ha(t,x.^.h)u(y)dyd-a.
where ^)(t,x,'n)=e~^xT(, and where a is a classical analytic symbol of order
0, determined by the standard transport equations. Notice that
^P(To,x,'n)=xTl as we could expect. Analyzing the first transport equation (as
we shall do below), we see that the leading part, BQ of a, satisfies,
BQ^O'0^0- Th1s supports the belief that r<0, but we have to be careful,
since the realization of the operators U^ involves the choice of certain
contours, and this may be responsible for an additional factor -1 . However,
we can deform P continuously into Po=^(xhD+hDx)=xhD+h/2i, and in the case
of PQ the corresponding group is given by U^u(x)=e~ t / '2u(e~ tx), so we see in
that case that R=-id. Hence, in general,
(b.12) r<0.
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It Is also easy to check that [P,Rl=0. Microlocally, where P is of
principal type (and hence reducible to hD), It is easy to see that R=F(P,h),
where F is an analytic symbol of order 0, elliptic and real valued on the real
domain. Since R and F(P,h) are both well defined analytic symbols on a
neighborhood of (0,0), which agree on some open set, they have to agree on a
full neighborhood of (0,0), and hence,
(b.13) R=F(P,h).
Since F Is negative on the real domain, there Is a real valued analytic symbol
G(t,h), of order 0, such that,
(b.14) e^O^'^-Fd.h) ,
and hence,
(b.15) e--1To(p+hG(p 'h)) /h=-1d.
Replacing P by P+hG(P,h), we have now reduced the problem of normal forms
to the case when,
(b.16) e-^oP^-ld.
Solving the first transport equation for BQ (cf (b .11) ) ,
(b.17) 9tao+x9^ao+1p-i(x,9^p)ao==0, ao(0)?=1.
we obtain, since we now know that ao(To,x)=-1:
(b.18) expdj^o p^(x(t),$(t))dt)= -1 .
or equlvalently,
(b.19) J^o p_i(x(t).$(t))dt=(2k-H)Tr, keZ.
In the case of PQ, we have p- . i=1/21, and k=0 In (b.19). This is then also true
In the general case, since by self-adjolntness the subprinclpal symbol
p- l-(1/21)9^po/9x9^= p-^-1/21, Is real, and TQ Is Imaginary. Hence In
general,
(b.20) J^o p_i(x(t).€(t))dt=Tr,
and In particular p.^(0,0)=1/21.

We next look for an elliptic pseudodlfferentlal operator RQ of order 0,
such that,
(b.21) PO^O^QP modulo an operator of order-2.
For the principal symbol ro, we then obtain the condition,
(b.22) i-^Hp^roMp-i-l/ZDro^,
so we can take
(b.23) ^e^,
where q solves,
(b.24) HpQ(q)=(p-.i-1/21).
Here we make a general remark on the equation Hp (a)=b. If b Is given, we
put a= -Jo^O-t/To) boexptHpQ dt, then

Hp^(a)= -JQTo(1~t/To)(d/dt)(boexptHpQ)dt=b-To~1JoT O boexptHp^ dt. We
have then a solution, If the last Integral vanishes. The vanishing of this
Integral Is also obviously a necessary condition for solvability. In the case of
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(b.24) the condition Is fulfilled, in view of(b.20), so a solution q exists.
Moreover, since p-^-1/21 Is real valued, we may choose q real. And this
means that we may choose RQ unitary In (b.21). We are now reduced to the
case when P-PQIS of order -2, and (b.16) holds. We then look for a
pseudodifferential operator R of order -1 , such that,
(b.25) Po(I+R)=(I+R)P.
We rewrite this equation as
(b.26) SR=P-Po,
where SR=PoR-RP. By a formal WKB construction, we can define e'"11^711.
acting on formal analytic pseudodlfferentlal operators, and since,
(b.27) e-113^ R = e-^o/h R eitP/h,
we see that e'^^R Is again a classical analytic pseudodtfferential
operator, and that
(b.28) e^o^/h^.
If B Is an analytic pseudodlfferentlal operator of order k, then,
(b.29) A=(i/h)JQTo (1-t /To) e-^^ B dt
1s an analytic pseudodlfferentlal operator of order k + 1 , and we have.
(b.30) SA= B-O/To^e-1^711 B dt.
As before, a necessary and sufficient condition, in order to solve SA=B. is
that the Integral in (b.30) vanishes. Let us verify this condition in the case of
(b.26):

J^To e~ i ts/h(P-Po)dt= Jjo e-^o/^p-p^eitP/h ^t=

JQ^d/dtKe-^o/h e1^^) dt= 0.
where the last equality follows from (b.16), which is also verified by PQ.
Hence, it is clear that we can find R of order -1 , solving (b.26). Changing
notations, we have now found an elliptic analytic pseudo-differential operator
R of order 0, such that,
(b.31) RP=PQR.
It remains to see that we can take R to be unitary. If we let R* denote the
complex adjoint of R, then, since P and PQ are formally selfadjoint, we get
from (b.31),
(b.32) PR*=R*PQ,
and hence,
(b.33) (R*R)P=P(R*R).

The operators (R^R)^72. defined by the functional calculus of appendix a,
then commute with P, and we put L^RtR^R)"172. Then.
(b.34) U^U^R^Rr^R^R^R)-^^ I.
so U is unitary, and an easy computation gives,
(b.35) PQU=UP.
Let us sum up what we have proved so far:
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Theorem b .1 . Let P(x,hD,h) be a formal classical analytic pseudodifferential
operator, of order 0, formally selfadjoint. with symbol defined in a
neighborhood of (0,0). Let p be the principal symbol, and assume that p has a
non-degenerate saddle point at (0,0) with critical value 0. Then there is a
real-valued analytic symbol; Fd.h)-^00^!)^. defined for t in a
neighborhood of 0, and a formal unitary analytic Fourier integral operator,
whose associated canonical transformation (in the classical sense) is defined
in a neighborhood of (0,0), and maps this point onto itself, such that
(b.36) U*F(P.h)U=Po=4(xhD+hDx).

To end this section, we study the case when P has additional
symmetries. We start with the most important case, when P commutes with
Co=y2, which is a Fourier integral operator, whose associated canonical
transformation is given by Co(x,^)=(-x,-^). and which satisfies C2o=\. We
notice that PQ also commutes with CQ, and the natural problem is then to
choose U in (b.36) so that U commutes with CQ. Examining the proof of the
theorem, we first observe that it is possible to choose U, such that the
associated canonical transformation, K(J commutes with CQ. We now fix such
a canonical transformation KQ and we let U^o) be the set of unitary Fourier
integral operators satisfying (b.36) (with a fixed F) with KQ as their
associated canonical transformation. If U,V€U(KO), then U^V is a
pseudodifferential operator which commutes with PQ, so by an argument
already given above,
(b.37) V^e^O'^,
where G is a real valued analytic symbol of order 0. (Here we work with
associated canonical transformations in the classical sense. We could also
have chosen the more precise correspondence of appendix a. The we would
have G=const.+(operator of order ^ -1) . ) Conversely, i fU€U(Ko), and V is
given by (b.37) with G as above, then V€U(KO).

We now fix U€U(KO). Then CoUCoeU(Ko), and hence C()UCo=
Ue^O'^.with G as above. Iterating this relation and using that C^I. we
get U^oUCoe^^^Ue126^^). and hence there are only two
possibilities, either G==0, or G=TT modulo a multiple of ZTT. In the first case.
we get CoUCo=U, or rather CoU=UCo. which is the desired commutation
relation. In the second case, we obtain CoU=-UCo. Let us apply this equation
to the function Uo(x)=e-><2/2h, noticing that CQU(X)=U(-X). We then have

Cc^o^O' and ^(^(x.^e^P^)711, where a is an elliptic symbol of order 0.
and^ is analytic with Im(^)>:0. We then get,
a^x.Me^-^—atx.^e1^)/^ which for x=0 contradicts the ellipticity
of a. Hence only the first case can appear, and we have proved.
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Proposition b.2. In addition to the assumptions of the preceding theorem, we
also assume that P commutes with Co=y^- Then it is possible to find U as in
Theorem b .1 , which commutes with CQ.

At least in the case of the first step in our general iteration procedure,
the operator P will satisfy more elaborate symmetry relations, that we also
want U to respect. We shall now assume in addition to the assumptions of
Theorem .1. , that,
(b.38) yp=-py. and rp=-pr.
where r=Fo denotes the operator of complex conjugation. This assumption
implies that the principal symbol p changes sign after composition by
K=K-^/2 or by reflection in one of the axes. It follows that p is invariant
under reflection in the line x==^, that is: p<»&=p, where &(x,^)=(^,x). Using
that poK=-p , it is easy to see that the period T(E), introduced in the
beginning of this section, is even, and hence the function f, such that the
period of ftp) 1s constant, is odd. This implies that the symmetries for p
deduced from (b.38), are also valid for f(p).In the earlier construction of
K=K(J, we can then take the curve r to be the curve ro:x=e- ^ ̂ en becomes
clear that Kj commutes with reflection in x=^ and with co=K2 . If we also
impose the condition that d)<j(0,0)=id, then we see that K(J is the unique
canonical transformation determined by this property and f(p)°)<(j=po,
Ku<»S=&o)<u. Now write: ^p^K^oKijo^^ -f(p)oK(j<»K= -PC^^PO*
K^oK^cXo^ )<~ 1 <»)<^JoCoo&o)<= K ~ 1 o c o o & < > K ^ J o K = SoK'^Ki joK, which

shows that K^oK^X has the same properties as x^j, and hence is equal to
K(J. In other words,
(b.39) K(J<»K=KOK(J.
We next reexamine the construction of the real valued analytic symbol F(t,h)
with leading part f, such that exp(-iToF(P,h)/h)=I. In fact, the requirement
that F be real-valued, implies that F is uniquely determined with this leading
part. If we supress the - sign in the last relation, and conjugate with y, we
get in view of (b.38): exp(-iTo(-F(-Po,h))/h)=I, and knowing that f is odd,
the earlier remark on the uniqueness of F, shows that F(-E,h)=-F(E,h). It
follows that F(P,h) satisfies (b.38). In the following, we may then assume
that F(E,h)=E, and work directly with P instead of F(P,h). We fix KQ=K(J as
above, and define U(KQ) to be the set of unitary Fourier integral operators U
associated to KQ, and such that PoU=U<»Po. In view of the properties of KQ,
we see that if U€U()<o)» ^en yuy^eUtXQ), so by an earlier argument,
(b.40) yuy-^u e^^o'^,
where G is real and of order 0. Testing this relation on the same function UQ
as before, we see that the leading part GQ(E) of G satisfies G(0)=0. Iterating
(b.40), and using that PQ satisfies (b.38), we get
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y2uy-2=yue16(PO»h)y~1=yuy-1e1G(--PO'h)=Ue1(G(PO'h)+6(•"PO'h^.
Conjugating this with y2 gn^ using that y^=1, we get
U=^Q^(G(PO^)^G(-PO^)), Hence G(Po,h)+G(-Po,h)=TTk, keZ. Since
G()(O)=O, we have necessarily that k=0, so
(b.41) G(-t.h)=-G(t,h).
We now look for V^e^Po^eUCKo) which commutes with y. A
straightforward calculation shows that yvy^ V if
G(t,h)=J(t,h)-J(-t,h)+2Trk for some keZ. In view of (b.41), we can take
J==^G and k=0. Thus, V commutes with 7 and In order to save notations, we
shall assume that already U commutes with y. Let V^e^Po'^eU^o) be a
second element which commutes with y. Then a simple computation gives the
sufficient condition on J: 0=J(t,h)-J(-t,h)+27Tk for some keZ. Taking 1=0,
we see that k must be 0, so the condition on J is simply that J be even. Now
look for VrrUe^Po'^, with J even, such that
(b.42) rvr=v.
First, we notice that rureU(Ko), so rur^e^Po'1^ with K real. Iterating
this and using that r2^, we get K(t,h)-K(-t.h)=2Trn. Again 1=0 implies
that n=0, so K Is even. A simple computation shows that (b.42) holds if
K(t,h)=J(t,h)+J(-t.h)+2TTn for some neZ. Since K is even, we can take
J=^K. We have proved,
Proposition b.5. In addition to the assumptions of Theorem b .1 , we assume
(b.38). Then in the theorem it is possible to take F to be odd, and U to
commute with y and r.
Remark b.4. If we assume that P=PN depends on the real parameter
jJleneighborhood of 0, In such a way that Pu^Ci^O 1S an analytic symbol in
jJl,x,^ . Then, possibly after shrinking the neighborhood in JJL, we can
construct U, F, depending analytically on JJL in the sense that all
phase-functions and canonical transformations are analytic in JJL, and a11
symbols remain analytic symbols after addition ofjJl as an independent
variable. This is valid for all the results above. Moreover, if P depends on
additional parameters o(, In such a way that P or PM varies in a bounded set of
analytic symbols, then all symbols, phases, and transformations, will also
vary In bounded sets.
Remark b.5. Assume that P=PN depends analytically on JJL as in the preceding
remark, that P^ is selfadjoint for real )JL, but that the assumptions of the
theorem are satisfied only forjJl=0. Let p^ denote the principal symbol of
PH. Then p^ has a saddle point ( xa»Ca) depending analytically on JJL, and
after conjugation by a unitary Fourier Integral operator, we may assume that
(XH,^H)=(O,O). Then PH~"PU(O»O) satisfies all the assumptions of the
theorem, so there is a real-valued analytic symbol F(jJl,t,h) and unitary
operators UH depending analytically on JJL, such that
U^^OJL.PH-pn^H^n^^U.j^Po. If "=UnV Is a microlocal solution of the
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equation PHU=O, then Pov=FOJL,-pn(Xn,^n).h)v, and conversely.
We shall now look at the second case when (0,0) is a non degenerate

minimum, so we keep a11 the assumptions of Theorem b . 1 , except that we
replace the assumption that (0.0) be a (non degenerate) saddle point by the
assumption that (0,0) is a non degenerate minimum for p, again with critical
value 0. Consider first the symbol Po^C^^2)* ̂ o^9^9^- Then the

Hamilton flow is periodic with period To=2TT. If ro=={(x,x)}, then every real
point (x,^) can be written (x,^)=exp(tHp )(y,y), for some real (y,y) and some
teR. Here y is unique up to the sign and once y has been fixed, t is unique up
to a multiple of ZTT. If we take (x,^) complex, we have the analogous result,
provided that PQ^C)^ O- Also notice that exp(^rToHp )(r"o)==ro.

Returning to the symbol p, we see as in the beginning of this section,
that there is a real and analytic function T(E), such that T(E) is a period for
the Hp flow restricted to the energy surface p"^(E), and we may assume that
T(E)=TO+®(E). Replacing p by f(p), where f^D^dVTo, we may assume
that,
(b.43) T(E)=TQ.
As before, we construct an analytic curve r tangent to FQ at (0,0), such that
exp(^ToHp)(D=r, and we write,

(b.44) Pjr^^ PolFo^O^
where q and qo are analytic on F and FQ respectively, and dq(0,0)=dqo(0,0),
qo(x ,x)=2~zx. Using this, we can proceed as before, and construct a real
valued analytic canonical transformation x, such that,
(b.45) poK=po, dK(0,0)=id.
(In the estimates'of the flows, the roles of Re(t) and Im(t) are now permuted,
and the stable manifolds for the Hp flow are now given by ^±ix=0.) This
means that we may assume that P=PQ.

Consider now the full operators. As a model operator, we take
Pos^hD)2^^2-^, and we notice that,
(b.46) e^'^O71^!,
where we no more have to use the H^> spaces to justify our arguments. As
before, we can construct a real valued analytic symbol 6(1,h) of order 0, such
that,
(b.47) e^O^4'116^'1^7^!.
Contrary to the earlier case, 6 is uniquely determined only up to an integer.
Replacing P by P+hG(P,h), we have then reduced the problem to the case
when,
(b.48) e^}JOP/^=l
Comparing the first transport equations, given by (b.46) and (b.47), we get,
(b.49) J^o p.i(x(t),C(t)) dt-J^o-l/Z dt=2TTk.
for some kcZ. After modifying G by an integer, we can assume that,
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(b.50) k=0.
We can then repeat the earlier arguments with almost no changes, and obtain,

Theorem b.6. Let P(x,hD,h) be a formal classical analytic pseudodifferentlal
operator, or order 0 ,formally selfadjoint, with symbol defined In a
neighborhood of (0,0). Let p be the principal symbol, and assume that p has a
non-degenerate minimum at (0,0) with critical value 0. Then there Is a
real-valued analytic symbol; Fd.h^Eo00^)^ defined for t In a
neighborhood of 0, and a formal analytic Fourier integral operator, which Is
unitary, and whose associated canonical transformation Is defined In a
neighborhood of (0,0), and maps this point onto itself, such that
(b.36) U^P.h^Po^hD)2^2-^.



c. Normal forms for 2X2-systems.
For typographical reasons, we denote by [A ] , (< , j ,k=1,2, the

2x2-matrix ^^^)}^^,^^z, with a^=A if (o(,p)=(j.k), and a^^=0
otherwise. We shall first discuss reductions to normal forms on the level of
principal symbols, and we start with the case of an analytic hermitian
2x2-matrix p(x,$), defined for (x.^) In a neighborhood of (0.0) In R2, which
satisfies,
(c .1) -^^(x.^^+C2, p(0,0)=0.
Here - denotes "of the same order of magnitude as". On the principal symbol
level, we allow transformations p—»a*pa, where a Is invertible and analytic,
as well as real, analytic canonical changes of variables which preserve the
origin. Applying the reductions of [HS2], we then have a first reduction to the
case when P=[^II 2+^l2,1+o^><'^2^ ^=^+i><• A)^ter ^placing ^ by
$+®((x,^)2), we can then write,
(c.2) P^.^IC^X.^IIJ+ICZ^.C^^-^II^^.I.
with Cj=®((x,^)2). We then look for apa2=®((x,^)), such that,

(c.3) ( I+[a1]1,2+ [a2l2,1)P( I + [a1^1,2+ [a2l2,1)*=[^ l1.2+^ / l2 ,1*
with t,'=^+0((x,^)3). To obtain (c.3), it Is enough to solve the system.
(c.4) c^+a^+a^+la^c^O,

C2+a^+a2^+ \Q^\2C}=0,
and we win then have ^ = ^ + a ^ C 2 + a 1 a 2 ^ + c 1 a 2 • The equations in (c.4) are
independent, so we may concentrate on the first one. We write,
(c.5) c^f^+f^+Zg^, ai=h$+i^.
It is then enough to find analytic function h,k such that,
(c.6) f+k+C2hk=0.

2g+h+h+C2(hh'+kk')=0.
Here g and c^ are real and since c^ is very small, if we shrink the
neighborhood of (0,0) under consideration, the implicit function theorem gives
a unique analytic solution of (c.6), if we impose the additional assumption that
h should be real.

Thus, a symbol p satisfying (c.1) can be reduced to,
(c.7) Po(x,C)=^]1,2+^l2.1^=C+^x+®((x»e)2)•
We now consider a new selfadjoint analytic symbol p=po+®(&), where ®(c)
refers to a perturbation whose L00 norm over a fixed complex neighborhood of
(0,0) is 0(C). Changing ^ by 0(e), we can then write,
(c.8) ptx.O^c^x^lij+lc^x.C^^-^ll^l^.l* ^j=®(^
and we look for a,=0(C) such that,

(c.9) (I+Iail^-'-^^.PP04-1^!!^-1-^^,!^
[cAj+k^^l. 2+1^2,1.

with ^-^=®(C2), Cj-cj^Ote), and cj^ is constant. More explicitly, we have
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to find aj=®(£), such that,

(c.10) c 1+ a 1^ + a iS+ lai^c^c^const.
C2+a2^+a2^+ I a^ I ̂ ^c^ const.

and again we may concentrate on one of the equations, for instance the first
one. Write ^=x+iy. and notice that x,y can be used as local coordinates. If
we write ai=f(x,y)+ig(x,y). then a^+a'^=2(fx+gy). and the first equation
in (c.10) takes the form,
( c . 1 1 ) q(x.y)+2(f(x,y)x+g(x,y)y)+C2(f2+g2)=d1=const.
Let us assume for simplicity, that Cj are holomorphic and bounded in
D^x^eC^lxKlJyKO, and that ||Cj|li_oo(o)^c. If F is a bounded
holomorphic function on D, we obtain by successive divisions and the
maximum-principle that F(x,y)-F(0,0)=A(x.y)y+B(x,y)x. where
II A II (_ 00^2 II F || i_ oo, ||B||^2||F|li_oo. As a first approximate solution of ( c . 1 1 ) .
we can take fpg^ holomorphic on D. with
2llfill,2||g^||:<||ci(x,y)-ci(0,0)||:<2c, such that,
(c.12) c i (x,y)4-2(f i (x,y)x+g^(x.y)y)=ci(0,0).
Then,
(c.13) ^+2( f1X+g1y)+C2( f 2 1+g 2 p=Cl (0 ,0 )+C2( f 2 1+g 2 1) . with
llc^f^+g2!)!! ^2C3. Assume by induction, that we have found f^.g^with
(c.14) ^-^(fkX+g^+c^f^+g^^d^+rk,

where dk is constant (and real), 2 1 1 ^ 1 1 , 2 1 1 g^ll ^M^. 1 1 ^ 1 1 ^m«. Then we choose
^k+l 'Sk+l rea1 W1 th>
(c.15) 2((fk+i-fk)x+(g^-g^)y)=-(rk(x,y)-r,<(0,0)).
(c.16) 2||fK+i-f«||,2||gk+i-g|<11^2||r«||^2mk,

so l l rk+1l l ' l lgk+1l l^Mk+ mk=def .Mk+1• Then.
(c.17) C1+ 2 ( rk+1X+gk+1y)+C2(( fk+ l ) 2 +(gk+1) 2 )=dk+1+r^p
where ̂ +}=^^(0,0), r^^c^^f^+l-f^+g^+l-g^). Here.
II ̂ k + 1 ~ ̂ k II ̂  (II Ik + i l l 4 - 1 1 ^ 1 1 ) 1 1 ^ + 1 " ^ II ^2(M|<+m|<)m(<, and similarly for
g^+l-g^ and hence, llr^ || ̂ ^(^+rr\^)rr\^=^^^.^ With the initial
choice fo=go=°» we have MO=O, mo=2c, and we are led to study the
recurrence relations,
(c.18) "^k+^^k-^k^k'

Mk+1=Mk+ mk •
Assume by induction that mj^21•'jc, O^j^k, which is certainly true for k=0.
Then M|^=mo+..+m^^4c, and

mk+i^cG^^c^ee^1-^4-1^^1-^-1-1)^ i f 48& 2 ^1 , so the
induction procedure goes through, if 00 is small enough, and f^.g^ converge
to f ,g; analytic solutions of the problem ( c . 1 1 ) with f , g=®(1 ) ( l l c ^ II + llc^ll).
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This implies a solution of the problem (c.10).
Now let P be a formally selfadjoint classical 2x2 pseudodlfferenttal

operator of order 0. We assume that the principal symbol p satisfies
Ip-Po l^C In a fixed complex neighborhood of (0,0), where po Is hermitian,
and satisfies (c.1). If 00 Is sufficiently small, the preceding discussion
implies that there is an elliptic scalar Fourier Integral operator U of order 0
and an elliptic 2x2-system of zero order pseudodifferential operators, A,
such that (AU)*P(AU) has the principal symbol
(c.19) ^lll.l4-^^^"1'^!!^4'!^,^ where Cj=©(£) are constants, and

^=e+ix+®((x,C)2)-
By further conjugations, we shall now see that we can arrange so that the full
symbol also has diagonal elements which are Independent of (x,^). We may
assume that already P has the principal symbol (c.19). Then,
(I+lA^ 2+^2)2 pPO+lA^ z^z\z^* w111 have th1s Property, if we can
find classical analytic pseudodifferential operators, Aj of order -1 , such that

(c.20) C^+A^Z*+ZA^*+A^C2A* i==cons t . ,
C2+A2Z+Z*A*2+A2CiA*2= const. .

Here, we have written P=[C^ i+IC^ 2+[z l1,2+[z*l2,1 ' so the P^^P81

symbol d of Ci is constant, and Z has the principal symbol ^. Again the two
equations can be treated separately, and it is quite easy to see that there are
classical pseudodifferential operators, Aj which satisfy these equations. The
difficulty, is to verify that A, are analytic pseudodifferential operators, i.e.
we have to show the usual growth conditions on the asymptotic expansions ofAj.

Let Q^, to^t^t i be an Increasing family of relatively compact open sets
in C2, such that dIst^.CYQ^s-t, for s>:t. If atx^.h)^0^^,^^ is
an analytic symbol defined on Q^ , we put A(x,^,D^.h)=a(x,^+hD^,h)=
EO^AI^X.^.D^) (as in [S1D. so that A(< is a differential operator of order
^k. Let f(<(A)^0, be the smallest constant such that HA^II^g^
fk(A)kk(s-t)k, to^Ks^tp where IIA(JI^ 5 denotes the operator norm o f A ^ :
HoKQ^nL^Qs^HoKQ^nL00^), and Ho1(Q) denotes the space of
holomorphic functions on Q. If a is an analytic function defined in a
neighborhood of Q^, then forp>0 sufficiently small, llal^def.^k^^ 1S

finite, and conversely, if the B(< are all holomorphic in Q^ and Ila||p<oo for
some p>0, then a is an analytic symbol in ft^ . We recall from [S1] , that if a
and b are analytic symbols, then llaobllp^ llallpllbllp. Here a<»b is the symbol
of the composition of the corresponding pseudodifferential operators.(In this
section we do not use the Weyl quantization, but rather the "classical" one.)

Before attacking (c.20), we analyze two simpler division problems. Let
f t f={x; |x| <t)x(^; |$| <t). We start by looking at division to the left by x. If
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a(0,^,h)=0, we can write a(x,^,h)=xb(x,^,h), where for the corresponding
operators A, B, we have A(<=XB|<. By the maximum principle, if
U€Ho1(Q^)nL00 , and ||u||^ denotes the corresponding L°° norm, then
llA(<u||^=t||B(<u||^, which Implies that llB(Jl^s=t~1 HAjJI^s^ to-1 llA(Jl^s,
and hence,
(c.21) l|b|lp^tQ-1||allp, when a=xb.

Next we look at division to the right by hD. Assume that a(x,0,h)=0.
Then we can write; a(x.hD,h)=b(x,hD,h)hD, or simply. a(x,^,h)= b(x.^,h)^,
which gives, A= Bo($+hD^)= Eo^B^x.^.D^K^+hD^
EQ^h^Bk+Bk-.^), with the convention that B_i=0. In other words, A(<=
^Bk+Bj^D^, or rather, ^B^A^-B^-iD^, and as in the case of division by x,

we obtain, llB|Jl^s:<to''1(IIAkllt s4'l^k-l^llf s^- Here* ̂  Cauchy's
inequality, llB^D^I^s^ fk-iOXk-O^^r-tr^-^s-rr1, f o r t< r<s .
Choosing r such that r- t=(k-1)(s-t) /k, we get llB^-iD^ 3^
fk-1(B)kk /(s-t)k , so tofkW^fk^+lk-l^- Multiplying this by pk and
summing overp, we get tollbllp^ II a II p+p II blip, and hence,
(c.22) llbllp^do-pr^lallp, 1 f p < t o and a=b^.
Lemma c . 1 . If a 1s an analytic symbol on ̂  of order 0, with lla||p<oo, for
some sufficiently small p>0, then we have a decomposition,
(c.23) a=a(0,0,h)+xc+b$,
where b and c are analytic symbols of order 0, with l lbl lp^2(to-p)~1 II a Up,
l |c| lp<2tQ"~1 | |B| lp. We also have lla(0,0,h)||p< Hal l ?, and the choice of b. c
is unique if we Impose the additional assumption, that c=c(x.h) is independent
o fe .
Proof. The estimate on lla(0,0,h)||p follows easily from the definitions. We
also have lla(x,0,h)||p^ llallp. With the additional condition that c Is
Independent of ^, it is clear that the unique choice of c, b is given by,
(c.24) xc(x,h)=a(x,0.h)-a(0,0.h). a(x,^,h)-a(x,0.h)=b(x,^.h)^.
Again, it follows from the definitions that ||cl lp<2to~1 Hal l? . (Notice that the
operator C associated to c is simply multiplication by (a(x,0,h)-a(0,0,h))/h,
so Ck=a(<(x,0)=Ai<(1)(x,0). Hence II C^ 1 1 ^ 3= llak(x,0)||^ ||a(JI f= IIA(<(1)II ̂
llAjJI^g.) The estimate of II blip follows from this and from (c.22). •

As a preparation for the handling of complex adjoints, we also need to
study the behaviour of the "p-norms", when we take commutators with x and
with hD^. Let us first estimate b=[x,a], where the composition is that of the
corresponding operators, and where a Is an analytic symbol of order 0 with
lla||p<oo for some p>0. Let A^h^^. B^h^. be the corresponding
operators Introduced before. Using the explicit form,
'^k^j+o^k^!)"1^0^]^^) ̂ ^ and similarly for B, one finds that
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Bk=i[8^Ak.^]=1(8^oAk-.i-A|<-p8^). Using that lia^llt^1/(s-t), we get
||B(JI ̂ u'^fi^tAKk-O^v''^'''1^, for all u,v>0 with u+v=s-t . choosing
u=(s-t)/k, v=(k-1)(s- t ) /k , we obtain f^(B)^2fk-i(A). (Notice that BQ=O.
since b is of order -1.) This implies that,
(c.25) ||[x,a]||p^2p||a||p.

The estimate of b=[hD,a], works the same way, since for the
corresponding operators A, B, we have, B^=[D^,A|^], and we obtain,
(c.26) ||[hD,a]|lp<2p||a|lp.

Now return to the decomposition (c.23). We write
a=a(0,0,h)+xc+hDb-[hD,b], where [hD,b] is of order -1 and
||[hD,blllp^2p||b|lp^4(p/(to-p))lla|lp. Taking? so small that
4p/(to-p)^1/2, we redecompose [hD,b] as in the lemma, et c. . Eventually
we then obtain the general decomposition,
(c.27) a=d(h)+xc'(x,h)+hDob'(x,hD,h),
where d, c', b' are analytic symbols of order 0, such that,
(c.2B) lldllp.llc'llpJIb'llp^Collallp, whenp^l/Co.
Here CQ>O only depends on to- Again, it is easy to see that d.c'.b' are unique
(with the requirement that c' should be independent of ^).

We can now combine decompositions and adjoints. If a is an analytic
symbol, we let a* denote the symbol corresponding to the complex adjoint,
and we put, II a 11? '= llallp+ II a* II p. Notice the general inequality:
II aob II Q<. II a II?'II blip'. Taking the adjoints of the decomposition (c.23), we
get a*=a(0,0,h)+xc*(x.h)+hDob*(x,hD,h), which is of the form (c.28). and
hence we get for the decomposition (c.23):
(c.29) llatO.O.^IIp'+llbllp'+llcllp^Collallp'.

We now return to the problem (c.20). There are analytic
pseudodifferential operators F,G of order 0 and F _ p G _ ] of order -1 , such
that,
(c.30) hD=FZ+Z*F*+F-p x=GZ+Z*G*+G»p
Moreover F-^ and G-^ are selfadjoint. Let a be an analytic symbol of order 0,
and let b,c be as in the decomposition (c.23). Substituting (c.30) into (c.23),
we get,
(c.31)a-const .=(bF+Gc)Z+Z*(bF+Gc)*+R(a),
where,
(c.32) R(a)=G[Z,c]+[b,Z*]F*+bF- i+G_^c+Z*[b,F*]+

Z*F*(b-b*)+Z*[G*.cl+Z*(c-c*)G*.
Now assume that a is selfadjoint. Then b-b* and c~c* are of order -I, and
hence R(a) is of order -1 and we obtain,
Lemma c.2. Let a be an analytic symbol of order m^O, defined in Q^ with
ll3llp'<00 forp<po, where po>0- If a is selfadjoint, we can find analytic
symbols A of order ^m and R(a) of-order ^m-1, such that
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(c.33) a=AZ+Z*A*+R(a)+const. ,

and llA|lp'+||R(a)|lp:sCol|a|lp, forp<min(po,1/Co). Here CQ Is Independent
of a, m, p.

If C, D are selfadjoint of order 0, and D has a constant principal part,
we next want to find an analytic symbol A of order -1 , such that
(c.34) AZ+Z*A*+ACA*=D+const . ,
which Is nothing but the second equation of(c.20) (with A=A2, D=-C^,
C=Cp. Trying A = A _ ^ + A - 2 + • • with A- j of order -j, we get by successive
use of Lemma c.2 the following recursive system:

A-iZ+Z^A'-^D-i+RCD-p+const. , (where D=D-i+const.),
A^2Z+Z*A,2=-R(D- i ) -A^ iCA*- i -R(R(D)+A_iCA"-0+const . .

A^-^A^^D.N+^D-isp+const..
where,

D,N=-R(D«N+p- (A,1CA < - ^ j+1+A^2CA•-N+2+. .+A^N+1CA•-p .
Putm(n,p)=||D_nl|^. Then forpcl/Co: IIA_JI^ cCim(n,p).
(*) m(N,p):< Com(N--1,p)+

CollCllp'(m(1,p)m(N-1,p)+m(2,p)m(N-2,p)+..+m(N-1,p)m(1.p)), and we
make the Induction hypothesis,
(N-1) mtk.p^Ek-^. k^N-1 .
This hypothesis is fulfilled for N - 1 = 1 . if EF>: IID^II / .
Substitution into (») gives,

m(N.p)^Co(IIC||^E2FN(E^^N-1'<-2(N-k)-2)+E(N-1)-2FN-l)^
CoC1llC| lpE2FN /N2+CoEFN-1(N-1)-2 ,

where q is a universal constant. The hypothesis (N) will then be satisfied, if
Coc1E I ICIIp+4Co/F^1. This can be achieved, if we first fix E sufficiently
small so that CoC^E l lCHp^^ , and then choose F sufficiently large. (We then
also get the induction hypothesis (1) . )

Hence there is a choice of E,F, such that mtk.p^Ek"'^ for all k^l. It
follows that A = A , i + A - 2 + - - is a well defined analytic symbol satisfying
(c.34). We have thus solved the second equation of (c.20). The first equation
can be handled the same way, and this completes the proof of:
Proposition c.3. Let PQ be hermitian and satisfy (c.O. Let P be a formally
selfadjoint 2x2 system of classical analytic pseudodifferential operators.
whose complete symbol is defined in some fixed complex neighborhood of (0,0)
in R2. Assume further that the principal symbol p satisfies, l ip-police, in
that neighborhood. Then if 00 is sufficiently small, there exist an elliptic
2x2 system, A of classical analytic pseudodifferential operators of order 0,
(with symbol defined in a fixed C-independent neighborhood of (0,0)), and an
elliptic scalar analytic Fourier integral operator of order 0, (whose associated
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canonical graph is closed in an ^-independent neighborhood of ((0,0),(0,0)),)
such that,
(c.35) (AU^ALO^Cilij+IC^z^-^ll.Z-^^lz.l'
where C^ and C^ are analytic symbols of order 0, independent of (x,^), and Z is
of order 0 with principal symbol ^=^+ix+0((x,^)2).



d. Parametrix for the Grushin problem of section 4.
We shall first develop a simple theory of WF and WF' in the microlocal

setting of section a .1 . Most of this material Is already In [S1] and In [GrS]. If
ftCC" is open, and <^>: f t—^RIs continuous, we slightly modify our earlier
definition, by letting H^100^) denote the space of functions, u(x,h) on
Qx]0,2TT], such that,
1 ° u Is of class C°° with respect to x. and for every compact set, KCQ,

there exist c==e«>0, and C=C«>0 such that I 8^u| ^C e^^""^711

on Kx]0,2TT].
2° For every compact set KCft and all 00, and o(, f>e N", there exists

a constant C=C«^^Q, such that, la^S^ul^C e^M^^/^ on
Kx]o,2Tr].
We also say that two elements Up u^ cH^10^^) are equivalent, and

write Ui=U2> If for every compact set KCQ, there exist C,c>0, such that,
(d.1) l u^ -u^ l ^C e^^-^^ on Kx]o,2rr].
If <i> Is strictly plurisubharmomc, and If ^'C CQ 1s strictly pseudoconvex,
then for every ueH^10^), there exists u'cH^10^^), holomorphic In x, such
that u=u' In H^OC(^). A family (u^) of elements In H^00^) Is said to be
bounded, If for U=UQ(, we can choose all constants In 1 ° and 2° Independent of
o(. Similarly, we define the notion of equivalent families.

If (u^) Is such a bounded family, we define Q((u^)), to be the largest
open subset ft 'CQ such that (u^)=0 In H^10^'), and we put
WF({uQ())=ft\Q((u^}). Restricting to a single element, we also get a definition
of WF(u), when ueH^10^).

We next extend these notions to the case of kernels, and for simplicity,
we only discuss the case of single elements, the extension to the case of
families being Immediate. Let ^>j€C(ftj,R), j=1 ,2 , where Qj is an open subset

of C^. Let p denote the map y—^^T, and put (<^+<l>2°p)(x,y)=
<l>l(x)+<i»2<»p(y). I fK(x,y,h)€H^oc^ ^ ^ ^ (^xp(^)), then we put
WF'(K)=((x.y); (x,y)€WF(K)}. WF'(K) Is the smallest closed set In ^XQ^,
such that e'-^^^^y))/^ K(x,y",h) Is locally uniformly of exponential
decrease In it's complement. We can associate to A a formal integral
operator,
(d.2) AuCx^^KCx^.h^y.^e^^yVhudy).
We shall write K=KA and WF'(A)=WF'(K). If U€H ^ lo^c (Q^) and if the
projection WF'(A)n(Q^xWF(u))3(x,y)—» xe^i Is proper, then Au Is well
defined up to equivalence In H^o ^(^i^ and WFCA^CWF^AXWF^)), where
WF'(A) Is Interpreted as a relation. The equivalence class of Au only depends
on the equivalence classes of A and of u. Similarly, if B Is given by a kernel
K=KB€H^O^ ^ 3 . p (Q^P^)). and If the projection,
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(WF'(A)xWF'(B))nQ1Xdiag(Q2x^2)XQ3~"'*Q1x f t3 is P^P6^ then we can

define the composed kernel,
(d.3) KA,B(x,2-,h)=;KA(x.y".h)KB(y,z',h)e-2<l>2(y)/hL(dy),
and we get WF'(A«»B)CWF'(A)<»WF'(B).

From now on, we assume that all domains are bounded, and that the
weight functions are analytic and strictly plurisubharmonic in a neighborhood
of the closure of the corresponding domains. For such a couple, (Q,<^>), it is
well known that there exists a unique holomorphic function ^P(x,y), defined in
a neighborhood of {(x,x); X € Q ) , such that ^(x,x)=e>(x) and that this function
has the property that,
(d.4) ^(cE>(x)+^(y))-Re^(x.y)- |x-y|2 .
A classical analytic pseudodifferential operator A of order m with symbol
defined in a neighborhood of A<^)| Q , can be realized by a kernel of the form,

(d.5) KA^J^atx.y.^e^^^^x.y),
where a is a classical analytic symbol of order m-^n, defined in a
neighborhood of {(x,x); xc^) . Here ^eC^C211) is equal to one near the set,
<(x,x); xef t) . This is obtained (see [S1D by representing A as a formal Fourier
integral operator with a suitable phase function, and then choosing a suitable
integration contour. In particular, when A=I, (d.5) become an approximate
Bergmann kernel. Using such an approximate Bergmann kernel, we can extend
the result above to the case when A is a Fourier integral operator of the type
considered in section a .1 , with an associated canonical transformation x
mapping A<^ to A<^ and such that ^l(xo)=-Im^p(xo,yo>9o)+<l)2(yo) ^
^Vo'^O^^O'Co)' and ^ ̂  1S the P^s used 1n the description of A. If Q^
and Q^ are suitable neighborhoods of XQ and yo respectively, then we can
realize A by a kernel of the form (d.5), where now ^P and a are defined in a
neighborhood of I\, which by definition is the (x,y)-projection of the graph of
the restriction of X to A^> , where Y is equal to 1 near I\ and where
^(<I>l(x)+^2(y))-Re^(x,y)^dist((x,y),I\)2. In particular, we see that
WF'(A)cr^.

Using this observation, and the fact that different representatives of a
microlocally defined function (as in section a .1 ) are related by elliptic Fourier
integral operators, we see that if u=u^ is a function, which is defined
microlocally in an open set VCR2", then we can define in a natural way, its
wavefront set WF(u) as a closed subset of V. In the case when u is a
distribution independent of h, defined in some open set XCR", and we take V
to be XxRn^ then WF(u)=(Supp(u)x(o))UWFQ(u), where WFg is the classical
analytic wavefront set. (See [S1] . ) Similarly, let VjCR2^ be open and let Tj
be FBI-transforms, permitting to represent microlocally defined functions in
^, as T,u, in H^1 ° .c (Qp. If K(x,y\h) is a kernel as above, then we can think of
K as a kernel of an operator, A, which takes certain functions, with compact
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wavefront set in V^ into functions, defined microlocally in V^ . and we get a
corresponding definition ofWF' (A) in V^xv^ . Using the natural change o f K
under changes of FBI-transforms, we see that this notion is independent of
the choice of such transforms, and concerning the possibility of defining Au or
A<»B we have the obvious analogous results to the one stated above for Kernels
and in the frame work of the H^10^ spaces.

As an example, we shall compute WF'(EM'), where E=E.j^ is the
parametrix of PQ-^, given by (4.21). Put,
(d.6) Uo^uO^e-^uCe-^),

so that Uo^t is unitary, and U^e^'^Uo^def. ̂ .t- we choose the global
unitary FBI-transform,
(d.7) Tutx.r^Coh'-^Je-^-y)2/^ u(y) dy.
where CQ>O is a suitable normalization constant, and where the associated
weight is,
(d.8) <i>o(x)=i(Imx)2.
and the associated canonical transformation is,
(d.9) KT^y.'rD-^y-i-rL'n).
The adjoint of T is then,
(d.10) T*v(y.h)=Co h-^Je-^-y)2^ y(z) e-2^o(z)/h L(dz).
so the kernel of TUo fT* is.

( d . 1 1 ) K^x.i ' .h)=|Col2e~ t / 2 ;e-F(x»z"»y)/hdy.
where,
(d.12) F(x.z',y)=^((x-y)2+(z --e- ty)2).
The gaussian integral can be computed, and we get,
(d.13) K^x.f^^h^e-'^O+e'-^rie'-6^^)^,
where,
(d.14) Gd.x.z^O+e-^r^z-e^x)2.
We get,
(d.15) ^o(><)+^o(z)+Re(G( t»x»z)=

^(l+e-^r^e^Rex-Rez)^^^'-1^)2).
from which it follows that,
(d.16) WF /(TUo^T*)c{(x,z); Rex=e tRez, Imx=e- tImz).
Using (d.9), we conclude that,
(d.17) WF /(Uo,t)C((x,C;y,-n)€R2xR2; x=ety. ̂ e'^).
Combining (d.13),(d.15), we also get,
(d.18) WF^Kjj^CCIosure of ((x.z)€C2 ; there exists t>0 with

Rex=e tRez, Imxse'^mz),
where, K^ is defined to be the kernel of.
(d.19) (i/h);oooTU^/^T*dt.
By contour deformation, we see that if
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(d.20) Rexo=e tORezo, Imxo=e~ tOImzo. for some to>0,
and If at that point,
(d.21) a^(i)Jl't-6(t,x,i))^0,
then (xo,zo) i WF'COCu'). In order to study this condition, we first notice that
the map t-^Re(G(t,Xo,Zo^ has a critical point at to, so It Is enough to study
a^Im(G) at (t()»xo,zo). ̂ ^"g use °t the relations (d.20), we get,

(d.22) ^^Im(G(to.Xo.Zo))="•(Im><0)(Re><0)'
so (xo,zo) i WF'(XH') If ̂  ¥ -(Imxo)(Rexo). Simnarly, for ̂ 0, we can
eliminate any point (XQ,ZO) ou^de the diagonal with
(Imxo)(Rexo)=(Imzo)(Rezo)==0, by contour deformation near oo. Forp/^0

(d.18) Improves to,
(d.23) WF^K^OcdiagtC^uKx^eC2; jJl'=-(Imx)(Rex), and there

exists tsO with Rex=e tRez. Imx=e'"tImz},
and forjJl'=0, we get,
(d.24) WF^KuOcdiagOC^uKx^cC2; (Imx)(Rex)=(Imz)(Rez)=0,

l lrnxl^llmzl. i R e x l ^ l R e z l . (Imx)(Imz)>:0, (Rex)(Rez)>:0).
Since Ky maps yHi^ to -(Imx)(Rex), we finally get for>Jl'=/0,
(d.25) WF /(E^Ocd1ag(R2xR2)u((x,£;;y,-n); x^=yn=>JL' and there

exists t>0, such that (x,^)=exp(tHpQ)(y,'n)).
Here Po(x^)=><e- ForjJl'=0, we get.
(d.26) WF(Eo)Cd1ag(R2x]R.2)u((x,C;y, -n);xC=y^=o> ICI^I 'nl .

I x i s l y l , xy^O. ^s:0).

Denote the right hand sides of (d.25),(d.26) for^JL'^O and p/=0 respectively
by rOJl'). If we use the notion of WF' for bounded families, we get,
(d.27) WF'aE^^I^jJL'clW^
for every compact Interval IeR. These results can easily be transported by
Fourier Integral operators, to give (unique) microlocal parametrices for P^P
and PP^* In section 4, near the branching point (O.TT) (as well as the other
branching points).

As a second preparation, we consider a formally self adjoint analytic
classical pseudodifferential operator. P of order 0, defined microlocally in an
open set OCR2, and such that the real principal symbol, p has the property
that p'^O^da.bD, is a ^characteristic strip. Microlocally In Qx^, we can
then define the forward and the backward parametrices, by.
(d.28) E^d/h^e-^^dt.

(d.29) Eb^^J-oo0 e'"'111^ dt.
We also put,
(d.30) ^ErEb^^J-oo00 e'1^711 dt.
Here e""1tp/h Is a microlocany defined unitary Fourier Integral operator,
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associated to the canonical transformation K^=exp(tHp). Working on the
FBI-side, It Is also easy to see (and well known) that G Is a Fourier integral
operator, of the form,
(d.31) 6u(x.h)=Ja(x,y,h)e iWx)-^y)) /hu(y)dy.
where the phase ̂  satisfies p(x,^'(x))=0. The relations PG=0, GP=0 give
two transport equations for a, and we conclude that a(x,y,h)=b(x,h)c(y,h),
where b,c are classical analytic symbols of order ^, satisfying P(^e^^)=0,
^(be""1^'^)^. Undoing the FBI-transform, we see that 6 is a Fourier
Integral operator associated to the canonical relation,
r=((exp(1Hp)(p),p)€Qx^; p(p)=0), and,
(d.32) Gu=1C(u|uo)uo, where
UQ is a microlocal normalized solution to PU()==O, and C=C(h) is an elliptic
c.a.s. of order 0. It is easy to see that G*= -G, so it follows that C is real
valued.

Writing, r=rfUF^, where Ir corresponds to t>:0 and 1"^ corresponds to
t^O, we also have,
(d.33) WF\E^Cd1ag(R2xR2)urp WF /(Eb)Cd1ag(R2xR2)u^b.
^PO^XP^O^O^O^' W1th PO^O^0 and t0>o ' th1s ^P1^8 that E<=G and
Eb==0 microloca11y, near (po'^O^ In order to determine C, we let \ be a
pseudodifferential operator of order 0, such the symbol is equal to 1 in a
neighborhood ofpo and equal to 0 nearjJio. (We may work with a gaussian
quantization of this symbol, so that YU is well defined microlocally, and
WF(^(u)cWF(u) for every microlocally defined function, u.) Put,
Ej-=(1-:)()Ec+E)-[P,YlEf. I fWF(u)CCQ, we know that Er can be applied to u,
and WF( E^u)CWF(u)urj-(WF(u)). We also know that Ej-P and PEj- reduce to the
Identity on such functions. Hence, E^u=ErP E<u. Since
PE^=(1- -)()-[P,^]E^+[P,<)(]E^=(1-Y), we get, E^E^I-^). Hence microlocally
near (po^o^' we have Ef=Ef==G. On the other hand we see from the definition
of Ep that E<=6[P,)(1G near the same point, so there we have G=G[P,^(]G.
This means that if WF(u) is close to ^IQ» then near Po» we have»
1C(u|uo)uo=(lC)2(u|uo)([P,-)(luoluo)uo. This means that iC^C^IIP.'Xluoluo),
and since UQ Is normalized, (1[P,y]uoluo)=1. Hence C=C2, and since C is
elliptic, we must have C = 1 . Hence,
(d.34) Gu=i(u|uo)uo,
if UQ is a normalized solution of PUQ=O.

We shall now establish the wellposedness of the Grushin problem of
section 4, by using a priori estimates. The first step will be to establish
microlocal estimates near Int(s(0,0), then near (O.TT), then near Int(s(0,2)).
Patching together these estimates, we get an estimate in a neighborhood of
the closed square with corners, (-TT/2±Tr,Tr/2±Tr), and combining translates
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of this we finally get a global a priori estimate.
Let D(r)=D((n72,-n72),r) be the open disc with center (Tr/2,-n72) and

radius r<TT/2z, sufficiently large so that WF(fo pCD(r). In D(r) we then know
that Hi, j=1,2, are of principal type and as above we can define the
corresponding forward and backward parametrices, E^P, E(/P, J^*2- Also
put 6^P= E/P-E^P. Once and for all, we fix a global FBI-transform, say (d.7)
and let <^>o be the corresponding weight function. For simplicity, we write
H(ft) Instead of H<|) (ft) and the corresponding norm win be denoted simply by
II II Q. By means of TT^oK-r, (where 'n^sC2^^)—^ Cx Is the natural
projection,) we shall Identify sets In R2 with sets In C. For simplicity, we
shall Identify operators, (A) with their conjugates under T, (TAT"1 ) . In the
case of pseudodifferential operators, If ft"c eft' are open with smooth
boundary, (and automatically pseudoconvex since we work in one complex
dimension,) and Q Is a formal analytic pseudodlfferentlal operator with Weyl
symbol defined in a neighborhood of ft' (I.e. near A<^> | Q' after conjugation by
T), then we can find a natural realization, H(ft')--^ H(ft"), (see [S1], [GrS],) and
two such realizations win differ by a term which is ©(e'^^) in norm for
some constant 00. Such a natural realization win always (tacitly) be chosen
and will be denoted by the same letter. At a later stage In our estimates, we
win have to specify the relation between the globally defined operator, P and
it's local realizations.

As a microlocal approximation near Int(s(0,D) of the full Grushin
problem, we consider the problem,
(d.35) Pu=v, (u|foj)=v+,
where U€H(D(r)), veH(D(r')), ve^ and r'<r with r-r' small. Composing the
first equation by P,*, we get with a new slightly smaller r':
(d.36) H^u-v+Uo^^P^v+oav+le-^^in^D^')),

(u-v+uojlfoj)=0.

NowH1Yo,1("-v+UoJ)= - ) (o,1P1* v + [H1> - )Co,1](u - v+UO,1)+ o ( l v+le - '1 / c h^
(where we work with the Gaussian realization of Yo p which has a natural
local realization,) and in in view of the properties of WF(YQ i^11-^1^ 1 ^ » we

can apply Ef=E^) to the last equation, and get,
(d.37) ^0,1^-^0,1)=

E f^O,1p1*v+E f [H1^0.1'(u-v+u0.1)+ o(e~1 / c h)("U I ID(r)+ lv+l) '
in H(D(r')), with a new slightly smaller r'. Here we notice that,
(d.38) E^Hp^o.ll^^+^.l^f^l^O.I'^-^O.P'
modulo the same error as in (d.37), In any subdomain of D(r') whose closure is
compact and disjoint from FjdH^o.^o 1^ ' where the last set by definition is
the union of WF([H^,Yo 1^ and ̂ e largest bicharacteristic segment of H^ with
both end points in WF([Hp^o \^- Here the 1ast set 1S d^^d ̂
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WF'([Hi,)(Qj])=((x,x): xcWFdHpYojl^- Now modulo the same type of
errors, the right hand side of (d.38) Is,
(1[H^^OJl(u~v+UO, P^O, 1^0.^("'"^"Ojl^O,?550' so 1n ^y compact set
disjoint from ^([HpYo^]), we get,
(d.39) Xoj(u-v^Uoj)=E/1)YojP,*v.
Similarly,
(d-39^) Yo.4("-^Uoj)-E,0)Yo.4Pi*v,
in the same set. Since E^^E^O (when suitably realized) have norms, ©0/h).
we get after combining (d.39),(d.39') with simple elliptic estimates outside
the characteristics o f H ^ , that

(d.40) llu-v+UoJllD(r /')\D(r /")^(c/h)(llpullD(r /)+e'~1/chllullD(r))'
for all solutions of (d.35), if r^<r"<r'<r and r'" is sufficiently large. Since
Iluoj || =0(h""2), we conclude that.

(d.41)||u|lD(r")\D(^')>:C(h-1||Pu|lD(^)+h-i|v^.|+e-1/ch||u|lD((.)).
Controling u in the annulus, we can apply a cut off operator \ with support in
D(r"), equal to I near the closure of D(r^):
(d.42) II[H,-X]u|lD(r')^C(h||u|lD(r«)\D(r'//)+e•"1/chllu|lD(r.)).
and if we write,

HIYU=')(HIU+[HI.^]U,
we deduce after applying E<- or E^:

ll^u|lD(r-//)^C(h-1||Pu|lD(^)+h-i|v+|+e-1/ch||u|lD(r)),
for all solutions of (d.35), when r" is large enough and 0<rtt<rf<r<r(/2^,
D(r)=D((Ti72,Tr/2).r).

We next write down an easy estimate near the branching point, which
follows from the fact that H^ and hence P has a left parametrix of norm
©(h"372) whose WF' can be obtained from the WF' of the parametrix of PO-J^
above, by applying the canonical transformation of Up (Here the estimate on
the norm follows from (4.25).) We now let D(r)=D((0,TT),r), 0<r<2iTT. If r' is
slightly smaller than r, we let P denote a realization. H(D(r) —> hKD^)). Let W
be the intersection of D(r)\D(rQ and a small neughborhood of
s(0,1)us((0,1),3). Then if r^r'. we easily get,
(d.44) llu|lD(^')^C(h-3/2||Pu|lD(r/)+h'-illu|lw+e•-1/chl|u|lD(r)),
for all U€H(D(r)).

We next move to Int(s(0,2)), so we now put D(r)=D((-Tr/2,TT/2),r),
with 0<r<TT/2, and r sufficiently large so that WF(fo p is contained in D(r). If
r' is slightly smaller than r, we consider the problem,
(d.45) pu+u-fo^=v in D(r'), ueH(D(r)). u~€C.
Let )( be a cut off operator with support in D(r") and equal to I near CKr^),
where r"'<r"<r'<r and r ' 1 1 is only slightly smaller tnan r. From (d.45) we get,
(d.46) (PulXuo^+^fo^lXuo^^l^O^)'



114 B. HELFFER, J. SJOSTRAND

where (to.2^0,Z^^0^"170^ and

(PulYuo^^lt^^O^^0^"170^!!1^^)- Hence,

l(Pulyuo,2)l^c(hillullD(r")\D(r/")+e''1/chllu"D(r))•
Using also that, Kvlyuo 2) l^ c h~ 211 v l lD( r ' ) 'w e9 e t^ r o m^ d • 4 6^
(d.47) |u~|^C(h""i||v|lD(^)+h?||u|lD(^')\D(r"/)+e''1/chllullD(r))•
Using this estimate and the fact that II fo ^ll =®(ha), we can return to
(d.45), truncate and apply Ey P* or E^P*, which gives,
(d.48) ||u|lD((^)+h~z|u~|^

C(h~ ] II v II D(r) + II u II D(r")\D(r'")4-e ~1 /ch 11 u II D(rP •
for the solution (u.u") of the problem (d.45).

Let ft be the open square with corners at (-TT72±(TT-+-&),n72±(Tr+&)),
where S>0 is so large that WF(f^ pcft, when
(o(,j)=(0,1),(0,3),((0.1).1),((0,1),3). but so small that WF(f^j)nft= 0, for
all other values of (o(,j) with j odd, and so that (O,TT) and (-TT.O) are the only
branching points in ft. Combining the three a priori estimates
(d.43),(d.44),(d.48) with simpler estimates in the elliptic region, we see
that if ft""ccft'ccft are slightly smaller squares, and if P is realized as an
operator H(ft)--^H(ft'), then i fU€H(f t )and v-^OJ), v-^O^). v^O.O.I),
v-^O.D^e C. u~(0,2)€C, and
(d.49) Pu+u-(0,2)fo,2=vinft ' , (u!fo(J)=v-^(o(,j) for (o(,j)=

(0.0,(0,3) .((O.D.I) , ((0,1) .3) ,

then we have the a priori estimate,

(d.50) ||u|lQ"+h-i|u-(0.2)|^
C(h-3 /2 | |v| lQ/+h-1E|v+(o(.j)|+®(e-1 /ch)l |u|lQ).

If we now consider the full Grushin problem,
(d.51) Pu+R_u~=v, R4.u=v^.,
and make an FBI-transform and restrict to ft', we have to take into account
two facts:
1 ° The full Weyl quantization of P can be realized first by taking A^) as an
integration contour, then using the fact that the symbol of P is holomorphic in
a neighborhood of A^) , we see that if PQ' ^ is the realization used in
(d.49), then we get,
(d.52) IIPQ',Q(u|ft)-Pu||^^Ce-1/Ch||u||^^^^^^)/^

where in general, Hull <• (when f is a function) will denote the L^-norm over C,
with respect to the measure e"'^^^L(dx). (It will be clear from the context
whether the subscript ... in II. II... denotes a domain or a function.
2° The terms u""(o:,j)f^i with j even (o:,j)^(0.2) will have some
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exponentially small Influence In Q'.
We then get,

(d.53) ^,^+"'"(0,2)^2 =v+w In Q',
(ulfo^^v-^.p+w-^.j), (o(. j)=(0,1).(0.3),((0,1),1),((0,1),3).

where,
llw||^^Ce-l/Ch(|iu||^^^^^^^||^|^^^|^),
lw+|^Ce-1/Ch|i,||^^^^^^

Here we write, (||u ||]2j)2=s^j e-2^ |u-(o(.j)|2. Applying (d.50) with
(v.v'1-) replaced by (v+w^+w-*-) gives,
(d.54) llu|lQ//+h-'^|u'-(0,2)|^

C(h-1i||v||^+h-lE|v+(«.j)|+e-1/Ch(|iu||^^^^^^nu-||^j^|/c))
Now write, Q=Q(0,2) and similarly for Q', n". Let m(o(,j) denote the middle
point or s(o(.j). For j even we put, ft(o(,j)= Q(0,2)+(m(o;,j)-m(0,2)}, and
simnariy for ̂ . Q". The estimate (d.54) remains valid, If we replace Q. Q'.
f t"byft(3,k). Q'O.k). Q"(3,k), and thake the norm, II || |o(-R| /c of u- to
the right. Squaring all these Inequalities and summing with respect to (3,k),
we get. (since the ft"(3.k) win cover C,)
(d.55) llu^+h-^lu-ll2^

C(h-3||v||2+h-2||v4-||2+e-1/ch(||u||2-^||u-||2),
where the norms are now the standard L2 and l^norms over R and 22

respectively. When h>0 Is sufriclently small, we can absorb the last two
terms to the right, and get,
(d.56) llu||2+h-1||u-||2<C(h-3||v||2+h-2||v+||2).
This shows that y Is Tnjectlve: L^xi2-^^!2 with closed range. Since a11
our estimates work equally well for P* which has the same structure, and
since Kery*=(ImiP)-L={0), we conclude that IP Is bijectlve with bounded
Inverse,

^ = /E E^ V
(^E.^

satisfying,
(d.57) HE||=®(h-3/2). | |E^||=©(h-1). ||E^ II =©(h-1) . | |E_^ || =©(h4).
Before Proposition 4 .1 , we constructed an approximate solution of
Pu+R_u~=0, R^^o^ satisfying these equations with exponentially small
errors. In view of (d.57), the approximate solution differs from the exact one
with exponentially small errors, in particular the computation of E_ +(c(J;0,1)
for (o(,j)=(0,2),((0,1),4) 1s correct up to an exponentially small error.

It remains to establish the exponential decrease estimates for
E(<^J;3,k) In Proposition 4 .1 , when s^.pns^.k)^. Let (u,u~) be a
solution of,
(d.58) Pu+R_u~=0, R^.u=&o l-
If ^(3,k) does not contain m(0,1), we get from (d.54):
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(d.59) llull^o^+h^lu-O.k)!2^
Ce-1 / c h ( | |u| |2^o+dist( . ,Q(3,k)) /C+l l " ' "112^2 , l . -^ l /c)»

so after increasing C, we get,
(d.60) llull^o^+h^lu-O.k)!2^

Ce~1/Chs:^^e-l(P.k)-(o<J)l /ch(||u||2Q'/(o(J)4-|u'(o(J)|2).
Write, 5=(o(,j), j?=(3,k), f(o0= llu||2Q"(o?)+ lu"(5)|2. g(o?)=f(5). If
(0,1)€Q(oO and =0 otherwise. Then (d.60) gives,
(d.61)r(3)^g(3)+Xf(3).
where K is the positlvlty preservtngjinyr operator,
(d.62) Xu(3)=Ce-1 /chE5e~l3~o( l / chu(5).
Since IIXll^(]i,]i)^C^e''^^*1, we get for h>0 sufficiently small,
(d.63) r^g+Xg+x2g+...,
and in particular,
(d.64) l l ( ) ^ -g)+l l ]1^C2e~1 / c h l lg l l ]1. 1^(5) is a function such that
ly(5)-y(3)|^|5-3l/2C, then we also get,
(d.65) ll(f-g)+ II ii^^e-^ll gllii^.
Recalling that E-^.(3;0,1)=u'~(p), we get the required exponential decrease
estimates from (d.64),(d.65). This completes the proof of Proposition 4 . 1 .



e^An^iicatlon to the magnetic Schrodlnoer operator.
The main results of this article apply to h-Weyl quantizations of

symbols, P(x,^) which are 2Tr-per1od1c in x and In $, close to cos(^)+cos(x)
(In the sense of strong type 1 operators) and which satisfy the following
Invariance properties,
(e.1) P is real valued (so that the corresponding operator, P Is self

adjoint).
(e.2) P(x,$)=P($,-x) (so that the operator P commutes with the

Fourier transform, y).
(e.3) P(x,-^)=P(x,^) (so that the operator P commutes with r,

where Fu(x)=u(x)).
In [HS1],§9.4 we saw that the study of the spectrum of the Schrodlnger

operator with periodic electric potential, V and periodic magnetic field, B
could be reduced to the study of an operator P satisfying (e .1) and (e.2) under
the following assumptions,
(e.4) (0) V(x+ajej)=V(x), B(x+ajej)=B(x), e^=(1 ,0 ) , e2=(0,l), ajeR.

(a) «»V=V,
(b) o(»B=B,

where o((xpX2)=(x2,-xp and o(»u=uoo('"1. A more Intrinsic formulation of
(e.4.b) Is:
(e.4.b)' «»O'B==OB,
where 0-5 Is the 2-form, Btx^ .x^dx^Adx^ . and o(»=(o(*)~"1, where * denotes
the standard pull-back operation. If f Is a function such that o(»a)^-o)A=df,
where aJ^A^dxi+A^dx^, then we saw In [HS1], that the magnetic
Schrodlnger operator PA^^j^^^x-"^)2-^^) commutes with the
operetor,
(e.5) F=e^/ho^ .
We also saw that P^ commutes with the two "translation operators". T^ and
T^, given by,
(e.6) Tj=e^j(xV^j=i,2,
where,
(e.7) Tj»g(x)=g(x-ajej), t j(x)=x+ajej
(e.8) d^j=(rj)^-o^.
and we also had,
(e.9) TiT2=e^/hT^Ti.

Here ̂  Is the magnetic flux through a base cell. After a modification of -<p, and
f by adding suitable constants, we obtained the following properties,
(e.10)(a) [TJ,PA]=O,

(b) [F,PAI=O.
(c) (P^)*=p^ (expressing the self-adjolntness of P^),
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(d) T^T^e^T^, h's^/h mod(2TTZ),
(e) F^=I ,
(f) T2' '1IF=FTp TiF=lFT2.

As in [HS1], we concentrate on a suitable interval containing an isolated piece
of the spectrum of P^, and we let TT denote the corresponding spectral
projection. We then constructed an orthonormal basis in F=TT(L^) of the form
(TK^)), where ^o 1S a suitable (approximate eigen-) function satisfying

(e.11) IF-yo=a)^0' W1th l ^ l ^ *
and,
(e.12) •^o^1"0^' where T^T^iT^.
The matrix of P^ restricted to F is then of the form,
m^ B^^A^B^o^-^o^ B^^d B" "^e B^U515 ^or ^1S ^B8 already been
treated in [HS1], and we shall here mainly discuss the additional symmetries
that will permit us to obtain (e.3). It follows from (e .10) - (e .12) , that m^ o
and w^p satisfy,
(e.13)(a) rn^^=m^^ (by (e.lO.c),

(b) w^^=e i h /y2(31-^1) w^+y^+y (cf (4.26).(4.27) in [HS1]) .

(c) wo<',3=e1h'(^10(2~:p1:e2)w)<(o:),K(p)* where KW=(^,-^)
(consequence of (e.10,b,f)).

We conclude that,
(e.14) w^^e^^od-^i)^-^),
with,
(e .15) (a) f(-j,-k)=f"(j,k)e1jkh/.

(b) Ko^e^^i^fO^oO).
Iterating (b) we get f(~o0=f(o0 and consequently, f(o<)=^(o()e1h/o( f10<2. Finally,
we saw that the operator TTP^TT is isospectral to P, the h^-Weyl quantization
of the symbol P(x,^) defined by,
(e.16) P(x.C)=SEf(j.k)e- ijkh72e-1( l<x+jC).
In addition to the 2Tr-periodicity of P(x,^), we get from (e.15), that P
satisfies (e.me^/The purpose of this appendix is to add a natural
symmetry assumption on B and V which will imply that P satisfies (e.5). The
natural idea is to find a suitable antilinear quantization of the map,
(e.17) y: (x^.x^—^x^-x^).
e==Id, «, y generate a finite subgroup, G of O ÎR.) (the orthogonal
2x2-matrices) of 8 elements: o(ky1, 0^k^3, O^l^l. In addition to (e.4) we
shall now assume,
(e.18)(a) y»V=V, (b) y»B=B.
The intrinsic formulation of (b) is,
(e.lBXb') y»o'B=-o'B.
The assumptions on o:, y in (e.4),(e.18) can be reformulated, by using the
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following two representations of G in C^^)*
(e.19) g-^Mo(g)=g, g-^M^g)^^)1^)!-!^^),
where k(g) is defined modulo 2Z by g^y^Q). The reformulation is then
that,
(e.20) Mo(g)»V=V, Mi(g)»Og=OB, fo ra l lgeG.

The aim is then to find a representation, TT^(g) of G on L^R2), which is
"pseudo linear" in the sense that TT^g) is linear when k(g) is even and
antilinear when k(g) is odd, and such that all the Tr^(g) commute with P^ and
satisfy suitable commutation relations with T^ and T^. After a gauge
transform we can assume from now on that:
(e.21) Mi(g)»oJA=o)A.
We put TT^(oO=F, T^(y)=r, where,
(e.22) I F u ( x p X 2 ) = u ( - X 2 , x p ,

(e.23) ru (xpX2)=u" (xp-X2) .
Also define Tj by (e.6),(e.7), where ^), is the unique solution of (e.8) with
(e.24) ^j(o)=0.
This is a natural normalization in view of the fact that 0 is a fixed point for
Tr^(G). Essentially as in [HS1],(9.4.24), we verify that,

(e.25) ^z^^Pp ^1=-tl»o^2' y^Pl=-^p ^2=^2»y»^2»
and this with (e.20) shows that we have (e.10) and,
(e.25) (a) [r ,P^]=0, (b) FT^T^r, rT^T^r, (c) riF=F-1r.
We recall how -^o was constructed in [HS1]. With a suitable function
^^(O.O) associated to a potential well, UQ we put UO=TT^O (and by the
choice of ^o* that we do ̂  recall here, we know that UQ is very dose to -<po
and of exponential decrease outside UQ). Putting UQ^T^UO, where
TO<:=T^O(1T2^2 we then obtained (^) as the orthonormalization of the basis
(u^) in the image of TT. We then had '^o(=T°^o- Now we ̂ y assume that
^^)o=a)1'VPo» l^l I ̂  since P^ commutes with r and since we may choose
the reference operator (in [HS1]) with only the well UQ, having the same
property. As in [HS1 ] we then have r^^^l^o and in view °r the

antilinearity of F we may assume that,
(e.26) F^o=^o.
without destroying the properties ( e . 1 1 ) . (e.12). Using (e.25.b), we get,
(e.27) r^^=^y(^).
Now observe that for u=Sz^-^€lm(TT), we have,
PATU= E m^^zy(^)^^. FPAU= ^rn^z^y(^)=
2::my(3),y(^)zy(o<)^3» ancl f^'0^ {[}}s and (e.25.a) we deduce,
(e.28) ^(oO.yO)^^-
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Putting 3=0 and combining with (e.14). we get,
(e.29) f=foy,
This Is exactly the condition that Implies (e.3) In view of (e.16). We have then
proved,
Proposition e . 1 . Under the assumptions (e.4),(e.18), (as well as the other
technical assumptions of Theorem 9.4.1 In [HS1],) the study of the spectrum
of PA In a suitable Interval containing the ground level of the modified 1 - w e 1 1
operator can be reduced by an afflne transformation to the study of the
spectrum of a strong type 1 self adjoint h'-pseudodifferential operator, P with
C(P)—*0. when h—>0.

This means that the results of the present paper are applicable, and if
h>0 is sufficiently small, then the spectrum of P^ near the ground level is a
Cantor set of Lebesgue measure 0. For the sake of completeness, we
formulate this as a theorem,
Theorem e.2. Let V. A ^ . A^eC^R^R) satisfy:
(H.I) V(x+aej)=V(x). V(-X2,xp=V(xi ,X2). V(xp-X2)=V(xpX2)
where a>0 is fixed and e^ . e^ is the canonical basis in R2,
(H.2) The same relations for B^xiA^-^Ap
(H.3) V has only one minimum mod(aZ2), namely 0, and this minimum

is non-degenerate.
Without loss of generality, we may assume that V(0)=0.
(H.4) Let d^ be the Agmon distance associated to Vdx2. Then the

points ao( in aZ^tO), which are closest to 0 with respect to this
distance, are precisely the ones with |o(| = |o^ I + lo^l =1 .
Moreover, between 0 and each such point, there is only one
minimal geodesic y=y^, which Is non-degenerate, and near this
geodesic, V and B are analytic.

Let <1> denote the flux of the 2-form o'g through the cell [0,a]2, and let
PfA^^hD^-tAp^hD^-tA^+V with the magnetic field IB. Let \^(h) be
the first eigenvalue of the harmonic oscillator (approximating P^ at 0),
(hD^-KA'iW.x^+thD^-KA^W.x^+^V^COx.x^

If£o>° 1S sufficiently small, and It I :<&o> I hi ^ho (with ho>0
sufficiently small), then the the spectrum of PIA^) 1n ^he interval
(E; lE-'X^h)!^3^2/^) can after an affine transformation be identified with
the spectrum of a strong type 1 self adjoint h'-pseudodifferential operator. P,
with h'=-t<l>/h mod(2TTZ). In particular, the results of this work apply, so if
h'/2TT Is Irrational and has an expansion as in (0.3).(0.4), with CQ>O
sufficiently large, then the piece of the spectrum under consideration is a
Cantor set of Lebesgue measure 0.
Remark e.5. The study of symmetries in a closely related setting appears in
the work of Wilkinson [W2-4].



Spectrum near h = 0 . For each h with
h/2n (= <p (h/2?i=p/q ; q<<-)0 . h/2n

e]0.0.0625[) . we present in Q the

spectrum of P,.. =cos hD^, + cos x in

J-0,').0.5[ on a horizontal line of

ordinate h/2n . This is a part of the

celebrated Hofstadter's butterfly

(presented in@) . The length of the

bands in the middle do not decrease

exponentially rapidly with h due to

a strong tunneling effect .
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