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La chaire Lagrange

La chaire Lagrange est née d’une idée de Monsieur Jean-Claude Arditti,
Conseiller Scientifique prés ’Ambassade de France & Rome: il s’agissait
d’établir en France et en Italie un fonds permettant & un éminent mathémati-
cien de chaque pays de donner un cours dans une Université de ’autre pays,
commémorant ainsi la carriére de Joseph Louis Lagrange (1736-1813), né a
Turin et professeur dans cette ville, puis & Paris. En outre, ce fonds devait
permettre ’accueil d’un jeune chercheur de chaque pays dans une équipe de
lautre pays.

Cette initiative a recueilli le patronage des ministres frangais et italien
chargés de la Recherche, Messieurs Curien et Roberti; le Ministére Francais
de la Recherche et de la Technologie a assuré le financement francais de la
premiére année de ce programme, et en a confié la gestion scientifique et
administrative au Comité National Francais de Mathématiciens.

C’est le professeur A. Ambrosetti, de ’Ecole Normale Supérieure de Pise,
qui a été choisi pour inaugurer la chaire Lagrange: le présent volume est
issu du cours qu'’il a donné a I’Université Paris-Dauphine en mai et octobre
1991. La subvention du M.R.T. a permis en outre de financer une “Bourse
Lagrange” d’un an : cette bourse a été attribuée a Monsieur G. Pareschi.

Au nom du C. N. F. M. | je tiens & exprimer ma vive reconnaissance
au Ministére de la Recherche et de la Technologie pour avoir permis le
démarrage de ce programme, ainsi qu’a la Société Mathématique de France
pour avoir ménagé une place pour les cours de la Chaire Lagrange dans la
série des “Mémoires”.

Je forme le veeu que la qualité de 'ouvrage du Professeur Ambrosetti
contribue & inciter des organismes publics ou privés a nous aider a faire
vivre la Chaire et la Bourse Lagrange, renforgant ainsi une coopération
mathématique séculaire.

Jean-Michel Lemaire
Président du C.N.F.M.
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Critical points
and nonlinear variational problems

Antonio Ambrosetti (*)

Abstract. This monograph deals with critical point theory and its
applications to some classes -of nonlinear variational problems. The abstract
setting includes the Lusternik-Schnirelman theory and minimax methods for
unbounded functionals. Applications to elliptic boundary value problems,
Vortex theory, homoclinic orbits and conservative systems with singular
potentials are discussed.

Résumé. Cette monographie traite de la théorie des points critiques et
de ses applications 2 quelques classes de problémes variationels non linéaires. Le
cadre abstrait comprend la théorie de Lusternik-Schnirelman et les méthodes de
minimax pour des fonctionelles non bornées. Nous examinons des applications
a la théorie des problémes aux limites elliptiques, 4 celle du vortex, aux orbites
homocliniques, et aux systémes conservatifs avec potentiels singuliers.

(*) Texte regu le 13 décembre 1991
A. Ambrosetti, Scuola Normale Superiore, Piazza dei Cavalieri
56 100 Pisa, Italie
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Introduction

This monograph is based on a series of 12 Lectures given, partly in May
and partly in October 1991, at CEREMADE (University of Paris IX) in the
frame of the ’Chaire Lagrange’.

In these Lectures we intended to discuss some classes of nonlinear prob-
lems, variational in nature, with the common feature that their solutions
arise as saddle points of suitable functionals.

In the first part, from section 1 to section 5, we deal with the Theory of
Critical Points which provides the underlying abstract setting for the appli-
cations. Our review covers both the classical Lusternik- Schnirelman theory,
as well as the more recent min-max results, such as the Mountain-Pass and
the Linking theorems, that permit to handle unbounded functionals. In this
part, many proofs are omitted or simply outlined. In some more details we
have reported the proofs that do not require many technicalities or that are
slightly unusual.

The second part is concerned with applications to nonlinear variational
problems.

Semilinear elliptic boundary problems, which motivated much work in
critical point theory, are studied in sections 6 and 7. Existence and multi-
plicity results are discussed, depending on the behaviour of the nonlinearity
at zero and at infinity.

In section 8 we report on some recent papers dealing with elliptic equa-
tions with discontinuous nonlinearities which model several problems in
Plasma Physics. The approach we propose is rather simple and allows us to
obtain several precise results.

Another classical problem where discontinuous nonlinearities arise in a
natural way is the existence of vortex rings in an ideal axisymmetric fluid,
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discussed in section 9. A new feature of this problem with respect to the
previous ones is that it gives rise to a free boundary problem on an un-
bounded domain and the solutions are found using a limiting procedure.
Our discussion covers both the case of a superlinear ’vorticity function’, as
well as the case, perhaps more interesting, of a bounded ’vorticity function’.
A remarkable feature in the latter is that the solution is found as limit of
"Mountain-Pass’ critical points of the functionals related to the approximat-
ing problems. The limiting process converges just because of the specific
topological features of those Mountain-Pass critical points.

A similar approach is used in section 10 to prove a general result con-
cerning the existence of homoclinic orbits for a class of conservative systems
with n degrees of freedom.

In sections 11, 12 and 13 we report on some recent works dealing with
Conservative Systems with Singular Potentials. The systems we deal with
include, as particular cases, the classical problems of Celestial Mechanics,
like perturbation of Kepler’s problem or the N-body problem. These classi-
cal mechanical systems are studied here from the perspective of Nonlinear
Functional Analysis (or, more precisely, of the Calculus of Variations in the
Large) rather than that of Celestial Mechanics. Our main interest is not so
much in the stability or in other precise properties, perturbative in nature, of
specific orbits. Qur goal is rather to show that the Critical Point Theory can
be adapted to obtain solutions in the large of these classes of problems and
to understand which properties of the potentials play the role, and where.

In the second part, many proofs are given in detail, some others are
outlined, only a few are omitted for the sake of conciseness. For these
latters, however, precise references are given.

The Bibliography does not escape the usual rule of being incomplete. In
general, we have listed those papers which are more close to the topics dis-
cussed here. But, even for those papers, the list is far from being exhaustive
and we apologize for omissions. Further references can be found in [73], [98],
[120], or in the monographs [102] and [110].

This paper would never have appeared without the collaboration with
several collegues and friends. It is a pleasure to warmly thank all of them,
especially Vittorio Coti Zelati, Ivar Ekeland, Mario Girardi, Gianni Mancini,
Michele Matzeu, Giovanni Prodi, Paul Rabinowitz and Bob Turner.

I am greatly indebted to CEREMADE for the very kind hospitality.

Last, but not least, I would like to express my gratitude to Marino Badi-
ale, Maria Letizia Bertotti, Ugo Bessi, Anna Maria Candela, Monica Lazzo,
Pietro Majer, Lorenzo Pisani and Enrico Serra, for all the very stimulating
and fruitfull discussions.



1 Preliminaries

Let E be a (real) Banach space with norm || - || and f : E - R a C"
functional.

A critical (or stationary) point of f is a u € E such that df (u) = 0. We
say that ¢ € R is a critical level of f if there exists a critical point u of f
such that f(u) =c.

If E is a Hilbert space with scalar product (:|-), the gradient f' of f is
defined by setting

(f'(w)lv) =df(u)-v VveE. (1.1)

Hence, in this case, a critical point of f is nothing but a solution of the
equation

F(u)=0.

An operator A : E — E is called variational if there exists a functional
f € CY(E,R) such that 4 = f'.

A problem that is translated into a functional equation A(u) = 0 is called
a vartational problem whenever the operator A is a variational operator.

The following examples illustrate the typical kind of nonlinear variational
problems we will deal with in the sequel.

Example 1.1 Let @ C R" be a bounded domain with smooth boundary
90 and E = H}(Q).
Let p: @ x R — R be a continuous function such that

Ip(z, 5)| < a1 + as|s|* (1.2)
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where
N +2
£<
“N-2
From now on in the rest of the paper we will always consider the case N > 2;

if N = 1,2 the arguments can be carried over with minor changes.
Let P(z,s) = J; p(z,7)dT. Then

|P(2,5)| < as|s| + aqls|™.

if N>2 ,if N=1,2 [ is unrestricted .

Since £ +1 < 2 = 2*, then E = H}(Q) C L**(Q) (Sobolev embedding
theorem) and it makes sense to define ¢ : £ — R,

¢(w) = [ Plz,u(x))ds.
Moreover, using also (1.2), it is easy to verify that ¢ € C'(E,R) and

do(u)v = /Qp(:c,u)v dz.

See [25, Ch I, Section 2].
Let us remark, for future reference, that if £ < % then E is compactly
embedded into L**'(2) and this readily implies that the gradient ¢' of ¢ is

compact.
Let f € C'(E,R) be defined by setting

1 2
fw) = [ 51Vulds - g(w)
According to (1.1), if u € E is critical point of f then there results
(f'(w) = /{; [Vu- Vv —p(z,u)v]dz =0, Vve Hy(Q).
Hence u is a weak solution of the semilinear Dirichlet boundary value prob-

lem
—~Au = p(z,u) in Q
u = 0 on 00

If p is locally Holder continuous, a standard boot-strap argument shows that
u is, in fact, a classical solution. m

Example 1.2 Let V : R® — R be a C? potential and L a Lagrangian
function of the form

L(g,q) = Z aij(Q)qiqj -V(g)

1<i,j<n
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where dots denote time-derivatives and a;; € CY(R™,R) satisfy

zaij(Q)fifj 2 a|£|2 y > O’VE’ q€ R".

Setting Sr = [0,T]/{0,T},T > 0, and E = H"?(Sr,R"), let us define the
functional f : E — R by:

flu) = /0 " Lu, a)dt.

A critical point of f turns out to be a (weak and, by regularity, classical)
T-periodic solution of the Lagrangian system

doL oL

dtdq ~ 9q’
We anticipate that in sections 11, 12 and 13 we will deal with gravitational-
like potentials. They are not defined on all of R” but have rather singulari-
ties: an example is the Newtonian potential —|z|™!. The functional setting

appropriate to these classes of problems will be discussed in the sections
above.m

Let us remark explicitely that in the sequel the symbol L will be also
used with different meaning. For example, in Sections 6, 7, 8 and 9, it will
denote an elliptic partial differential operator.

Let M be a C' Riemannian manifold modeled on a Hilbert space E, and
let f € CY(M,R). A critical point of f (constrained) on M is a u € M such
that f3,(u) = 0. Here f}, stands for the gradient of f on M.

In the sequel we will deal with the specific case in which M is a manifold
of codimension 1 in E. By this we mean that there is a functional g €
C'(E,R) such that

M ={ue€ E:g(u) =0}

and ¢g'(u) # 0 V u € M. Here the tangent space to M at u is given by
T.M = {v € E: (¢'(u)|v) = 0} and a critical point of f on M isaue M
such that (f'(u)|v) =0 for all v € T, M. Hence u satisfies

f'(u) = Ag'(u)

for some A € R (Lagrange multiplier rule).
In applications, constrained critical points correspond to solutions of
variational eigenvalue problems

A(u) = AB(u)
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where A, B are variational operators.

Example 1.3 Let Q,E and P be as in Example 1.1, and set
=[P d
@) = [ P(z,u)iz

g(u) = /9 |Vul*dz — 1.

Then M is the Hilbert unit sphere {u € E : [ |Vu[?dz = 1} and the critical
points of f on M are the solutions of the semilinear eigenvalue problem

p(z,u) in Q
0 on 00

u

{ —AAu

In some cases it can be convenient to look for stationary points of f (i.e.
u € E such that f'(u) = 0) as critical points of f constrained on a suitable
manifold. Since in the sequel we will be interested to find nontrivial (i.e.
u # 0) critical points of f, we will consider this specific situation only.

Let E be a Hilbert space, f € C*(E,R) and set

My ={u€E:uto,(f (W) =0}
Proposition 1.4 Let g(u) = (f'(u)|u) and suppose
(¢'(w)|u) £#0 VYue M. (1.3)

Then f'(u) =0, u # 0, if and only if u is a critical point of f constrained
on Mf.

Proof If (1.3) holds, then My is a (C') manifold of codimension 1 in E. If
u € My is such that

f'(u) = Ag'(u)
for some X € R, it follows

(f (W)lw) = A(g' (w)[w).

Since (f'(u)|u) = g(u) =0 and (¢'(u)|u) # 0, then A =0 and f'(u) =0.
Conversely, it suffices to remark that any u € E, u # 0, satisfying
f'(u) = 0 belongs to My because g(u) = (f'(u)|u) =0. m
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Let E be, say, a Hilbert space, and let f € C'(E,R)be a functional
which is weakly lower semi-continuous, namely f(u) < liminf f(u,) for each
sequence u, — u, and coercive, namely

f(un) = o0 as |[lun|| = +oo.

Then it is well known that f is bounded from below and attains the (global)
minimum: there exists u* € E such that

£(u*) = min{f(u) : u € E}

Such a u* is obviously a critical point of f.

Besides variational problems whose solutions correspond to minima (or
maxima), there is a broad variety of cases where one looks for critical points
different from minima. This can happen either because the functional f
is not bounded from below (nor from above), or because f is not coercive,
or because the minimum (exists, but) is not relevant for the problem (for
example, it corresponds to the ”trivial” solution), or else for some of the
preceding reasons together. Another case arises when the problem inherits
a symmetry and one expects "many” critical points.

The main goal of the next 4 sections is to discuss some topological tools
that will allow us to handle these situations.
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Notation.

In addition to those introduced in the preceding section, we list here the
notation we will more ordinarily use in the rest of the paper.
If F is a Banach space and u € E, we set B,(u) = {v€ E: ||[v—u| < r}
and 0B,(u) = {v € E : ||v — u|]| = r}. For brevity, when u = 0 we will
simply write B, (resp. 8B,) for B,(0) (resp 8B,(0)).

Function Spaces. Let Q be an open subset of R". We denote:
Lr(Q), 1 < p < +oo : Lebesgue spaces;
[ ]p : norm in LP(Q);
H*?(Q): Sobolev spaces;
| - llep: norm in H*?(Q);

If M is a manifold on E (see section 1) and f € C*(Q, R), we set:
fe={ue M: f(u) <c}
fo={u€ M :a < f(u) < b);
K={ue M: fi;(u) =0};
K.={ue K: f(u) =c}.



2 Lusternik-Schnirelman theory.

The Lusternik-Schnirelman Theory is, jointly with the Morse Theory
(that will not be discussed in this paper), one of the most classical and
powerful tool in Critical Point Theory. In this section we will discuss those
results we will need in the sequel. For conciseness reasons we will not carry
out the details of many proofs, which would require several technicalities.
We will rather attempt to highlight the main ideas of the theory.

Let X be a topological space and AC X , A# 0. A map ¢ € C(4,X)
is a deformation if there is a homotopy h € C([0,1] x A, X) such that

h(0,:) = ¢ , h(1,-) = identity .

A is contractible (to a point uy) in X if there is a deformation ¢ € C(4, X)
such that ¢(u) = ug.
The category of A relative to X, cat(A; X), is the smallest integer k such
that
ACAU...UA4;

with A; closed and contractible in X, for each i = 1,...,k. If there are
no such integers, we set cat(A4; X) = +o0o. We set also cat(d; X) = 0, and
abbreviate cat(X) for cat(X; X).

The main properties of the category are collected in the following

Lemma 2.1 Let A,B C X.

(i) if AC B then cat(A; X) < cat(B; X);

(11) cat(AU B;X) < cat(A4; X) + cat(B; X);

(111) if p € C(A, X) is a deformation and A is closed, then

cat(p(A); X) 2 cat(4; X);
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(iv) let X be an ANR (Absolute Neighbourhood Retract) and K C X be
compact. Then cat(K; X) < +o0o and there erists a neighbourbood U of K
such that cat(U; X) = cat(K; X).

Examples 2.2 (i) Let S"! = {x € R": |z| = 1}. One has: cat(S""!) = 2.
(ii) Let T* = S* x S! x ... x S (k times) denote the k-dimensional torus.
There results cat(T*) = k + 1.

(iii) Let us consider the representation of Z; over R®

T(0) = id, T(1) = — id,

and let P* = S""!/Z, denote the corresponding projective space. As a
consequence of the Borsuk Antipodensatz [98, chapter 5] one proves that
cat(P") = n. In addition, if F is a separable, infinite dimensional Hilbert
space and

$*={ueE:|u=1},

letting
P =S5%/Z, ,

there results cat(P>) = +oo.

(iv) Let A denote the loop space of those u € H!(Sy,R") (see notation
introduced in Example 1.2) such that |u(¢)] = 1. It has been shown [76]
that cat(A) = +oco. m

The category can be employed to find critical levels of min-max type.
For all ¥ < cat(X), we consider the class A of all subsets A C X such
that cat(A; X) > k and define

Ck = Aieni[sup{f(u) tu € A} (2.1)

Note that since Ap O A4 then
afasl..fa<lcaa<....
In order to show that c’s are critical levels, we suppose that
(A0) X = M is a complete, C! Hilbert manifold and f € C'(M,R).

In addition, the following compactness condition introduced by Palais
and Smale [105] is in order. We say that (M, f) satisfies (PS), or simply
that (PS) holds, if
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any sequence {u,} C M such that

|f(un)] £ const. (2.2)
fu () — 0, (2.3)

has a converging subsequence.

Any sequence satisfying (2.2) and (2.3) will be called a PS-sequence.

Theorem 2.3 Let M, f satisfy (A0), (PS) and let f be bounded from below
on M:

f(“)Zao, VU’EM

Then:
(i) each cp < 400 is a critical level for f on M;
(%) ifci=ck=Cit1=...= Chym then cat(K;M) > m+1;

(#i) if c = +oo for some k, then sup{f(u) :u € K} = +o0.
In particular, f has at least cat(M) critical points on M.

If E is finite dimensional and M is compact, theorem 2.3 goes back to
Lusternik-Schnirelman [96]. For the extension to infinite dimension (under
the assumption that both f and M are C?) see, for example, [91] and [113].
Palais [104] handled the case of Finsler manifolds M modeled on a Banach
space (see also Browder [53]) and C! functionals. Finally, Szulkin [123] has
weakened the regularity assumption on M, showing that C? suffices.

In order to highlight the role of (PS), let us outline the proof of {ii). First
of all, one uses (PS) to deduce

Lemma 2.4 Let c € R and suppose (M, f) verifies (PS). Then
(i) K. is compact;
(%) for all € > 0 and any neighbourhood U of K, there exists @ > 0 such
that || fy(w)ll 2 a >0
forallue fite - U.

Using Lemma 2.4 (ii) one proves the following

Lemma 2.5 (Deformation Lemma) Let f be as in Theorem 2.3.

(i) IfK.=0,Vcée[a,b], then f* can be deformed in f°.

(i) Given c € R, ¢ € (0,3] and any neighbourhood U of K, there erist
§ € (0,¢] and o € C([0,1] x M, M)
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such that, for all § < d < 1, there results

0(0,u) =u, Yue M (2.4)
o(t,u)=u, VOLSt<1, Yug ftf (2.5)
flo(t,w)) < f(u), VOSt<1, VueM (2.6)
fle(l,u)<c—6 Yueft-U (2.7)

Roughly, if f is C?, o is found by using the flow generated by a Cauchy
problem like

d = X(o)
o(0) = u
where ¢’ = do/dt and X is the locally Lipschitzian vector field such that
X = —fi in the strip ¥ and X = 0 in the complement of the strip

fccf(‘f . If f is merely C? one uses the so called Pseudo-gradient Vector Fields
introduced in [104].
It is worth pointing out that (2.7) follows from Lemma 2.4 (ii).
Finally, the Deformation Lemma is used to define a deformation ¢ :=
o(1,-) with the property
p(A-U)cf*

for all A C f+¢ (6 > 0 small enough, U neighbourhood of K).

We are now in position to prove the claim (ii) of Theorem 2.3. Suppose,
by contradiction, that
cat(I(;; M) < m.

Since K, is compact (Lemma 2.4 (i)) we can use Lemma 2.1 (iv) to find a
neighbourhood U of K. such that

cat(U; M) = cat(K,; M) <m .
Using the definition of ¢ = ctym, there is A € Ag;, such that A C f+8. Let
A'=A-U. From Lemma 2.1 (ii) it follows that cat(A’; M) > cat(4; M) —
cat(U; M) 2 k+m — m =k, namely A’ € Ai. Then, for p(A’) one has:
o(A') € A (Lemma 2.1 (iii))

p(4') C f° (from (2.4))

These two relationships are in contradiction with the definition of ¢ = ¢;. m
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Remarks 2.6 (i) In order to show that a certain value ¢ € R is a critical
level, one can assume, instead of (PS), the following

(PS). any sequence {u,} € M such that f(u,) — c and f};(u,) — 0, has a
converging
subsequence.

Actually, (PS). suffices to prove the Deformation Lemma.

(i1) Let us state, for future reference, a result which can be deduced from the
Deformation lemma. Let a < b be such that (PS). holds for all ¢ € [a,b],
Ky = 0 and cat(f*; M) < +oo. Then cat(f* M) < +co.

To see this, let K& = K N fb. Since (PS), holds for all ¢ € [a,b], it
follows that K’ is compact. Let U be a neighbourhood of K? such that
cat(U; M) = cat(I; M) < 400 and let u be any point in K?. Applying
the Deformation Lemma with ¢ = f(u), and U as above, we find a § = §(u)
such that f*® — U can be deformed in f°7°. Let [c; — &, i + 6], 1 < i < m,
be a finite covering of [a, b], with ¢, + 6, < b. Using the properties of the
category, it follows that

cat(f5 %, M) > cat(f5+% — U; M) > cat(f<5%; M) — cat(U; M),

(1<i<m).

This, together with statement (i) of the Deformation Lemma, yields:
cat(f* M) = cat(fm+*m; M) < cat(f*~%; M) + m - cat(U; M)

< cat(f*; M)+ m- cat(U; M)

and the claim follows. m

Among the possible applications of Theorem 2.3 let us recall the case
when M is homeomorphic to the unit sphere S™ of an infinite dimensional,
separable Hilbert space E, through an even homeomorphism. If 0 ¢ M and
M = M/Z,, then M = P> and cat(M) = +oo. Let f € C'(E,R) be even.
Then f induces a C? functional f whose critical points on M correspond to
pairs of critical points (u,—u) of f on M. Then, if such an f is bounded
from below on M one finds

Theorem 2.7 Suppose (M, f) satisfy (A0) and (PS) and let f be bounded
from below on M. Moreover let 0 ¢ M, let M be homeomorphic to S
through an even homeomorphism and let f be even. Then f has infinitely
many (pairs of) critical points on M.
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Proof. It suffices to take into account the preceding discussion and note
that (M, f) satisfies (PS) whenever (M, f) does. Then Theorem 2.3 applies
to (M, f) and f has cat(M) = cat(P*) = +oo critical points on M. m

Remark 2.8 A counterexample [91, Chapter VI, section 4] shows that if
an even f is perturbed through a non-even functional f;, then f + €f; can
have only a finite number of critical points on, say S®. m

As another application of Theorem 2.3, let us consider a functional f :
E — R of the form

£(u) = Sl - 6(a)

where E is a separable, infinite dimensional Hilbert space and ¢ € C%(E,R).
Let ¥(u) = (¢'(u)|u). We suppose ¢ satisfies (A1):

(Al1) 30<0<3:¢(u)<0(¢(u)|u)V ue E;

(A1.2) #(0)=0and Vu#0, y(su) = o(s?) as s — 0;

(A1.3) Vu#0,s 2p(su) = +oo as s — +o0;

(Al4)  (¢(w)lu) < (¢"(wulu) Vu#0;

(A1.5) ¢ is weakly continuous; ¢’ and ¢' are compact.

Theorem 2.9 Suppose ¢ € C*(E,R) satisfies (A1) and is even. Then
f(u) = 3||ull* — ¢(u) has infinitely many (pairs of) critical points.

Proof. We use Proposition 1.4. Here one has
g(u) = [lull* = (¢'(w)lu)
and hence
My={u€E:u#0, |lul*=(¢'w)u)}
Using (Al.4), for all u € My there results
(' (w)lu) = 2lull* — (¢'(w)|u) - (¢" (w)ulu)

= (¢'(u)|u) — (¢"(u)ulu) <0. (2.8)
Moreover (A1.2) plainly implies

Jp>0:|lu| =2p Yue M . (2.9)
Using (Al.1) we find for all u € M;

F(u) = gl = ) 2 Slul ~ 6B ()
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1
= (5 - e) 2. (2.10)
In particular, since 8 < %, f is bounded below on M. Indeed, from (2.9)
fw)= (3-0)p>0 Vue M.
Next, we claim that (Mj, f) satisfies (PS). Indeed, let u, € My be such
that
f(un) £ const. (2.11)
0n = fiy(un) — 0. (2.12)
Since 6 < , (2.10) and (2.11) imply that ||un|| < const., and u, — @, up to
a subsequence. There results

£ () = llunll? = $(un) = (8 (ta)lin) = ().

Since ¢ is weakly continuous and ¢' is compact, it follows that f(u,) — f().
This, jointly with (2.9) and (2.10), yields f(@) > 0 and hence @ # 0. Next,
one has

n = f'(un) = Ang(un)

where A\, = (f'(un)|g'(un)) - ||¢'(un)||"2. Taking the inner product with u,
and recalling that (f'(un)|un) = g(un) = 0, we find

An(g'(un)ltn) = —(0nun). (2.13)
As u, — i, using the compactness of ¢' and ¢/, one has
(g'(un)ltn) = (¢ (n)tn) — (¢" (un)ttn|tn) —

— (¢(@)a) - (¢"(@)alz) < 0 (2.14)
because % # 0. Since o, — 0, (2.13) and (2.14) imply A, — 0. Taking into
account that f'(un) = un — ¢'(u,) and ¢'(un) = 2u, — ¥'(u,), it follows

(1=2X)un = @' (un) — A (un) + 04 -

Since A\, — 0, 0, — 0 and ¢, 9’ are compact, it follows that u, — @ (up
to a subsequence). This proves (PS).

Finally, let us show that M} is radially diffeomorphic to S® = {u € E :
lu|| = 1}. Indeed, V u € S* and s > 0, one has

16) = S9(su) = 1= (¢ (sw)lsu).
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Hence, by (A1.2 — 3), it follows that the equation v(s) = 0 has a solution
s > 0. This solution is unique, because

7(5) = = (8 (swlsu) - (" (sw)sulsw)] <0,

by (Al.4). Moreover, since ¢ is even, then My is symmetric with respect
to 0. Let My = M;/Zy. It follows that cat(My) = cat(P>®) = +oo, and
Theorem 2.7 applies. m

Example 2.10 Keeping the notation introduced in Example 1.1, we let
2 2
ul|* = Vul“dx

and suppose p € C?(R)! satisfies: (i) p(s) = s~'p(s) is convex; (ii) §'(s) > 0;
(i) p — O (resp. — +o0) as s — 0 (resp. +o00); (iv) p is odd; and (v) p,
sp'(s) and s?p”(s) satisfy the growth restriction (1.2). It is easy to check that
(A1) holds true and Theorem 2.9 applies, yielding the existence of infinitely
many solutions of
—Au = p(u) in Q
{ u =0 on 0N

Semilinear elliptic problems will be discussed in greater generality in Sections
6and 7. m

When dealing with even functionals on a symmetric (here symmetry
means Z,-symmetry) manifold, an alternative way to proceed is to define
on the class

Y ={AC E—{0}: A is closed and symmetric}

a map (called genus) v : & — N U {+oco} by setting v(0) =0 and, if A # 0,
by letting y(A) be the smallest integer k such that there exists ¢ € C(4, R¥),
¥ odd and ¥(u) # 0 V u € A. One sets also y(A) = +oo if there are no
integers with the above property.

The genus verifies properties similar to those listed in Lemma 2.1, namely

Lemma 2.11 Let A,B € ¥.
(1) if A is finite (and non-empty), then y(A) = 1;
(i) 1(A) < 2(B) if AC B;

for simplicity, p is taken to be independent of
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(i) v(AU B) < v(A) +(B);
(iv) ¥(p(A)) = v(A) if ¢ is continuous and odd;
(v) if K € T is compact then v(K) < o0 and there ezists a neighbourhood
U of K,

U €%, such that v(U) = v(K);
(vi) if N C R" is a bounded, symmetric neighbourhood of O then y(ON) =
n.

Let us recall that Property (vi) above follows from the Borsuk Antipoden-
satz. As a consequence one has

Y(S") =n

as well as

7(5%) = +oo.
When f is even and M € T is a C? submanifold of E (namely M = {u €
E :u # 0,9(u) = 0} with g € CY(E,R), ¢'(u) #0, for all u € M and g
even), one can use the genus to define critical levels of min-max type. Let

us outline the procedure, starting with the counterpart of (i) and (ii) of
Theorem 2.3.

Lemma 2.12 Let M € T be a C! submanifold of E and let f € C'(E,R)
be even. Suppose that M, f satisfy (PS) and let

& = AeigrfM [max {f(u) : u € A}].
V(A)2k

If ¢, € R then & is a critical value for f. Moreover if ¢ = ¢, = ... = Ckim
then v(K;) > m + 1. In particular, if m > 1 then K; contains infinitely
many critical points.

The proof can be carried out as in Theorem 2.3, taking into account
that: (a) since f is even and M = g~*(0), with g even, then f}, is odd and
the deformation ¢ found in the Deformation Lemma can be chosen to be
odd; (b) this allows us to use Lemma 2.11-(iv); (c) the property v(K;) > 1
implies that K; contains infinitely many critical points, in view of Lemma
2.11-(i).

Among others, let us remark that Lemma 2.12 permits to re-obtain The-
orem 2.3.

As an application of the preceding arguments, let us consider a functional

f € C'(E,R) of the form
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1 1
fu) = Zllull” - 5(Aulu) + 9(u) (2.15)
where
A € L(E,E) is positive, selfadjoint and compact (2.16)
9(u) = o((jull®) at u=0. (2.17)

Let 0 < p3 < pg < --- denote the characteristic values of A with corre-
sponding orthonormal set of eigenfunctions v;:

[L,'AU,' = .

Theorem 2.13 Let f € C'(E,R) be of the form (2.15) with A and g sat-
1sfying (2.16) and (2.17), respectively. Moreover suppose f is even, bounded
below on E and that (PS) holds.

Then f has at least k (pairs of) nontrivial critical points (u;,—u;), i =
1,---,k, whenever pr <1 < pry1. Moreover f(u;) < 0.

Proof. Consider the min-max levels ¢j defined in Lemma 2.12 (here it is
understood that M = E — {0}) and consider the sets

k k
Bk,s—-—'{ueM:U:zaiUi, Za?:ez}'

i=1 i=1

Plainly, By, ~ S*~! and thus y(B}.) = k. For u € By one readily finds

) = 5 31 = el +o(e?).

Since py < -+ < e < 1, it follows

flu) < %(1 - i—k)s2 +0(e?) <0 (2.18)

whenever € > 0 is small enough. Since ¥(Bic) = k, (2.18) implies that
¢ £ -+ £ & <0. Since f is bounded from below , then —oo < &. Lastly,
since (PS) holds, then by Lemma 2.12 f has at least k pairs of critical points;
they are nontrivial because f(u;) = & < 0. This completes the proof. m

Let us point out that the procedure discussed above can be carried over in
other problems which inherit a symmetry. For example, this is the case deal-
ing with autonomous Hamiltonian Systems, when the corresponding func-
tional f turns out to be S! invariant. We will not carry over this kind of
problems. The reader is referred, for ex., to [41].



3 The Mountain-Pass Theorem

The purpose of this section is to discuss min-max procedures to find
critical points for a class of functionals which are possibly unbounded, both
from above and from below.

The first case we will deal with concerns roughly a functional f, defined
on a Hilbert E, that has a strict local minimum, say at 0, is negative some-
where else, and satisfies (PS) (by this we obviously mean that condition
(PS) introduced in the preceding section holds, with M = E). A functional
of this kind has been considered in Theorem 2.10, and has the form

£(u) = 3l - 6(u)

where ¢ is "superquadratic” {see condition Al-i).

The main existence result, the so called Mountain-Pass Theorem [26], has
a large variety of applications to concrete problems arising in Mathematical
Physics.

A second case is concerned, roughly, with functionals of the form

() = 5 (Aulu) ~ 6(w)

where ¢ is still "superquadratic”, but A is possibly not positive definite. This
is also a case which arises frequently in applications and will be discussed in
Section 4 below.

Let E be a Hilbert ? space and let f € C!(E,R). We suppose that there
exist two points ug and u; € E and numbers p > 0 and a such that the
following conditions (A2) hold true:

Zmost of the results can be extended to Banach spaces with minor changes.
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(A2.1) f(u)>aforall u € 0B,(uy) = {u € E: ||u— uo| = p};
(A22) luo —w| > p;
(A2.3) f(uo) and f(u;) < a.

In correspondence to up and u; we define
I'={yeC([0,1],E) : (0) = uo and (1) = w}

and
c= (T, f) = inf lmax{f(7() :0< t S 1)]. (3.1)

Note that ¢ < +o0.
Theorem 3.1 Let f € C(E,R) satisfies (A2) and (PS).. Then f has a
critical point @ # 0, @ # uo, uy such that f(4@) =c > a.

Proof. Let o' = maz{f(uo), f(u1)}. Since ||up — u1|| > p then each y € T
intersects the sphere ||u — uo|| = p. Then (A2.1) and (A2.3) imply

c>inf{f(u):|lu—ul =p} 2 a>d.

To prove that c is a critical level, let us suppose, by contradiction, that
K. = 0. Letting ¢ = min{c — @,1}, an application of the Deformation
Lemma yields a 0 < § < c—a' and a ¢ = d(1,-) € C(E, E) such that

pu)=u, Yue ¢ Vé<d<c—d (3.2)

fle(w) <c—6 Yue fts (3.3)
Since both f(uo) and f(u1) are < @’ < ¢ — d, then (3.2) implies ¢(up) = up
and ¢(u;) = u;. Thus poy € I' V4 € I. By the definition of ¢, there exists
~ € I such that
max{f(y(t)):0<t <1} <c+é.
Using (3.3) it follows that max{f(p(7(t))) : 0 <t < 1} < ¢ — §, a contra-
diction because poy €. m

Remark 3.2 It has been shown [51] that (PS). can be substituted by the
following weaker condition:

(PS); whenever {u,} € M is a sequence such that f(u,) — cand fj,(u,) —
0 then c is a critical value of f. m

Theorem 3.1 has been improved in [83]. Let up,u; € E and C be a closed
subset of E. We say that C separates up and u, if they belong to disjoint
connected components of E — C. The following result holds:
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Theorem 3.3 Let f € C'(E,R)® and suppose there erist up,u; € E and
C C E, closed, such that C separates up and u,. Let T’ and ¢ be defined as
in Theorem 3.1; we assume f satisfies (PS). and

¢ = max {f(uo), f(u)}

flu)>c YueC .
Then there is & € C, such that f'(7) =0 and f(u) = c.

In some applications it will be useful to sharpen Theorem 3.1 by saying
something more on the nature of the critical point found through the min-
max procedure (3.1). If f € C?(E,R) and u is a critical point of f, we set
E® = ker f’(u) and let E~ (resp. E*) denote the subspaces where f”(u) is
negative (positive) definite. The Morse Index, m(u), of u is the dimension
of E- @ E°; u is said non-degenerate if E® = {0}.

Theorem 3.4 Let f € C*(E,R) satisfy (A2) and (PS). and suppose K,
is discrete. Then there exzists u* € K, such that m(u*) < 1. Moreover, if
K. = {u*} and u* is nondegenerate, then m(u*) = 1.

Theorem 3.4 has been found independently in [85] and [6], in the case
when u* is nondegenerate.

Let us sketch the arguments of the last statement. Without loss of
generality we can take u* = 0, By contradiction, let us suppose that m(u*) >
2. Then E = E~ @ E*, with dim E~ > 2 and each u can be written in a
canonical form u = u~ 4 u*, where u¥ € EF.

If u* = 0 is nondegenerate, by the Morse Lemma one has, up to a regular
change of co-ordinates

fu) = c—|lu™|I* + [lu*|* + R(w)

where R(0) = R'(0) =0.
Let U denote the neighbourhood of u* =0

U={u=u +ut:|u || <ea, |ut]| <G} (3.4)

3 Actually the regularity assumption f € C!(E, R) can be weakened using the Ekeland
e-Principle [72)].
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where 3 > a>0.
For all u € U, such that ||u*|| = 3, one has

fw) 2 c=a® +f* + o(a® + §°)
and hence, taking 8 > o > 0 small enough, one infers that
inf{f(u):ueU , |ut|=8}>d>c . (3.5)

Let 6 > 0 be such that § < d — c¢. By the definition of ¢ there exists y € T’
such that f(y(t)) < c+6 V0 <t <1. In correspondence to the same § > 0
and to U given by (3.4) we find ¢ € C(E, E) such that (cf. the Deformation
Lemma)

p(fr-U)c . (3.6)

Plainly, ¢ oy € I'. If v does not intersect U, (3.6) yields immediately a
contradiction. Then let ¢p,¢; € (0,1) be such that y(ty) = 2o and y(t;) =
z € OU while v(t) ¢ U VYVt <tyandt > t;. Since f(z) < c+6 < d,
(3.5) implies ||z; || = @ , ||zF|| < B for i =0,1. Let o; denote the segment
joining z; and 2. It is easy to see that fi,; < ¢+ 6. Lastly, if dim E~ > 2
we can connect 2, and z; by an arc 7 contained in U N E~. In particular,
fir < c. Let ¥ be the path which coincides with v for ¢ € [0,)] U [t;,1] and
with {go} U {01} U {7} elsewhere. One has that ¥ € T, fi5 < ¢+ 6 and
{#}NU = 0. Then, by (3.6), fipey < c— &, a contradiction. This shows that
m(u*) < 1. If m(u*) = 0, we could take a neighbourhood U of v* in such a
way that fisguv > d > c and the conclusion follows as before. m



4 Linking Theorems

Let E be a Hilbert space, E=V@®W withdimV < 4+oo andlet w € W
be given, with ||[@]| = R. We set

Dp = (BRﬂ Ve [0,11—1]

and consider a functional f € C!(E,R) satisfy (A43):
(A3.1) f(0) =0 and 3 @, 7 > 0 such that f(u) > a Yu € 0B, NW;
(A3.2) 3R> rsuchthat f(u) <0 Vue dDpt.

Let
['={he C(Dg,E):h(u) =u forall ue dDg}

The following Lemma can be proved by means of topological degree
arguments (taking advantage that dimV < +4c0).
Lemma 4.1 For allr < R and all h € ', there results

h(Dr)N (0B, NW) £ .

From Lemma 4.1 one infers that
max{f(h(u)): h € T} > inf{f(u) : u € 8B, N W} . (4.1)

Define
&= 'i'nf [max{f(h(u)): u € Dr}] .
ef

From (4.1) and using (A3.1) it follows that ¢ > a > 0. Suppose f satisfies
(PS): and let I{; = . We apply the Deformation Lemma with ¢ = ¢ and

48Dp stands for the boundary of Dy, relative to V @ R1.
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€ > 0 such that ¢—¢ > 0 yielding a deformation ¢ = 0(1,-). Since fisp, <0
(see (A3.2)), property (2.5) implies that @ o h € I for all A € I. On the
other hand there exists h € T' such that max{f(h(u)) : u € D} < c+6
(6 > 0 small enough). Using (2.7) one infers that

max{f(poh(v)):u€ Dp} <c—-6 ,

a contradiction because ¢ o h € .
This shows:

Theorem 4.2 Suppose E=V@®W , dimV < +o0 and let f € C}(E,R)
satisfy (PS): and (A8). Then f has a critical point @ such that f(@) = ¢ (>
0).

Complete proofs of the above statements can be found, for example, in [98].

Remarks 4.3 (i) If V = {0} Theorem 4.2 is nothing but the Mountain Pass
Theorem, with ug = 0 and u; = w.

(ii) As in Remark 3.2, also here (PS). can be substituted by the weaker
(PS); . m

A remarkable improvement of Theorem 4.2 is due to Benci and Rabi-
nowitz [45] who eliminated the condition dimV < +oco. To describe their
result, some preliminaries are in order. Let E be a Hilbert space, E = VW,
with V = W+ and let P,Q denote the canonical projections onto V and W,
respectively. Let

I'= {heC([0,1] x E,E) : h(0,u) =0 and Qh(t,u) = Qu— K(t,u),

where I € C([0,1] x E,W) is compact }.

Given Sand D C E,with D C E, E subspace of E, we say that S and 8D
link if for all h € I', h(¢, D)N S # @ provided h(t,0D)NS =0 , Vt e [0,1].

Theorem 4.4 Let f € C'(E,R) satisfy (PS) and:
(i)  f(u) = 3(Au|u) + ¢(u), where A = AP + A;,Q, A; are selfadjoint and
A € L(W, W);
(1) ¢ is compact;
(ii) there exist o« > 0 and S C E,D C E, E subspace of E such that
S C Va f|$ 2 a; D
is bounded, fiap < 0;S and 0D link.
Then f has a critical point u such that f(u) > a > 0.
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For the proof we refer to [45]. Here we limit ourselves to note that the
assumption of the theorem allows us to show, by using the Leray-Schander
topological degree, that

h(t,D)NS#0 Vte[0,1]

provided h € .






5 Lusternik-Schnirelman Theory for
Unbounded Functionals

In this section we will deal with the existence of multiple critical points
for even functionals which are not bounded (from above nor from below).
The discussion follows [26].

Let f € CY(E,R) and set B, = {u € E : f(u) > 0}. Our first result
deals with a class of functionals satisfying (A4):

(A41) f(O0)=0and3Ip,a>0:f(u)>0Vue B,—0,f(u)>a,Vue
0B,;

(A4.2) for any finite dimensional subspace E" C E, E" N E, is bounded;
(A43) f(-u) = f(u).

Remark 5.1 Assumption (A4.1) is nothing but (A2.1), while (A4.2) is the
natural generalization of (A2.2-3). m

Let H denote the class of maps h € C(E, E) which are odd homeomor-
phism and such that h(B;) C E,. Let us remark that H is not empty

because the map h, : u — pu belongs to H.
We set

I'n={ACZX:A is compact, and y(ANh(8B,)) > n, V h € H}

where ¥ = {4 C E— {0} : A is closed and symmetric} and v denotes the
genus (see section 2). The following lemma describes the properties of T',,.

Lemma 5.2 Let f satisfy (A4). Then
(i) Tn#0 for all n;
(Z'L) | PR el P
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(i) f A€, andU € B, withy(U)<r <n, then A~U €T,
() if ¢ is an odd homeomorphism in E such that ¢~'(E,) C E,, then
¢(A) € T, provided

A€eT,.

Proof. (i) By (A4.2) there exists R > 0 such that
A:=BrNE*DE'NE,.

Let h € H. Since h(B;) C Ej, it follows that A D E*Nh(B;), and therefore
ANh(8B,) = E" N h(8B,).

But h is an odd homeomorphism in E and hence E™ N h(B;) is a symmetric
neighbourhood N of 0, with boundary contained in E™ N h(8B;). Then
Lemma 2.11-(vi) implies that

(AN h(8By)) = v(E" N h(8B1)) 2 ¥(ON) = n.
Hence A € T, proving (i).
(ii) is trivial.
(iii) A — U is compact, and for every h € H there results

v([A - UlN h(8By)) = v([A — h(8By)] - U).
By Lemma 2.1-(iii) it follows
Y[A=REB=U) 2 (A - h(@By)) = 1(@) 2 n—1

and hence A—U e T,_,.
(iv) First of all, note that ¢(A) is compact. Moreover, if h € H and
¢ Y (E;) C Ey4, then o=t o h € H. Therefore, for all A € T, there re-
sults

(AN ¢~ o h(8B,)) > n.

Since ¢ is odd, Lemma 2.11-(iv) implies
Y(p(A) N h(0B1)) = Y(p(AN ™" 0 h(0B1))) 2 ¥(AN ™" 0 h(8B1)) 2 n,
and hence ¢(A) € I',,. This completes the proof of the Lemma. m

Remark 5.3 Each deformation 0, = o(t,-) such that f(o:(u)) < f(u), for
all t > 0 and all u € E satisfies 07 (E;) C E;. m
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Theorem 5.4 Let f € C'(E,R) satisfy (A4) and (PS). Then f possesses
finitely many critical points.
In particular, for each positive integer n, setting

b, = Aiglf.. max{f(u) : u € A},

there results:

(i)  bay1 = by = a >0 for all n;

(i1) each b, is a critical level for f;

(#) fb=b,=bpy1 = =bnyr, then y(Ip) 2> r +1.

Proof. Since h, € H, then AN OB, # § for any A € I',. Therefore
bn > inf {f(u):u€ 0B,} >2a>0

which, jointly with Lemma 5.2-(ii), proves (i).
Let us prove the stronger statement (iii). Let y(/;) < r and let U be a
symmetric neighbourhood of Kj such that (U € T and)

Y(U) =v(K) <.

Applying the Deformation Lemma, we find a homeomorphism ¢ = o(1,-)
and a § < a such that (see Remark 5.3)

¢ (E+) C By (5.1)

and
flp(u) <b—86 Yue ff**—U. (5.2)

Moreover ¢ is odd because f is even. By the definition of b = b,,, there
exists A € [ny, such that A C f**%. By Lemma 5.2-(iii) it follows that A=
A=TU e T,. In view of (5.1), Lemma 5.2-(iv) applies yielding ¢(A) € T\,.
Finally (5.2) implies

p(d) c f*~°

a contradiction with the definition of b = b,. This completes the proof of
the Theorem. m

In the remainder of this section we will discuss some weakening of (A4.1)
and (A4.2). The first case is to be related to the Linking Theorem 4.2. Let
us assume that E = V @ W, with d = dimV < 400, W = V1 and let
f € C'(E,R) satisfy f(0) =0 and
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(A4.1) 3 p,a > 0: f(u) > 0,Vu € (B, — {0}) N W and f(u) > aq,
Yue 0B,NW.

Let us define the counterpart of H and I',, by setting
H ={h € C(E,E): h is an odd homeomorphism, and h(B;) C E+ UB,}
and
[,={ACE:A is compact, and v(ANh(3B;))>n YheH).
As before, H # 0 because h, € H.

Lemma 5.5 If f satisfies (A4.1-2-3) then
(i) I:‘,, # 0 for all n;
(n) Fn+1 C‘.Fm' .
(i) fA€Tl, andU € Z, withy(U)<r <n, then A-U €T,_,;
() if ¢ is an odd homeomorphism in E such that o(u) = u for all u with
f(u) <0 and
@0 Y(B4) C Ey4, then p(A) € T, provided A € T,.

Proof. The proof of (iii) is exactly as that of Lemma 5.2-(iii) and (ii) is
trivial.To prove (i), let us first take n > d, and E® D V. Let A := B, N E".
Assumption (A4.1’) implies

AD (E.NB,)NE*>h(B))NE"

for any h € H. Then the same arguments used in Lemma 5.2-(i) show that
AeT, for n>d. For n < d, (i) follows from (i).

(iv) It suffices to show that ¢! o h € H, whenever h € H. Actually,
since ¢~ o h is plainly an odd homeomorphism, it remains to prove that
¢ 'oh(B;) C E+UB,. Indeed, by definition one has that h(B;) C E,UB,;
if h(B,) C E; then ¢~!(E,) C E, implies immediately ¢! o h(B;) C E,.
If h(B;) C B, but h(B,) is not contained in E,, then p(u) = u on the set
{u : f(u) < 0} implies that ¢~ o h(B;) = h(B;) C B,. This proves (iv) and
completes the proof of the Lemma. m

We are now in position to state a result which improves Theorem 5.4.
-For n > d, we define

by = Algrf {f(u): u € A}
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Theorem 5.6 Let f € C'(E,R) satisfy (A4.1-2-8) and (PS). Then f has
nfinitely many critical points. In particular, for all n > d there results:

(i) b1 2b>a>0

(i) each b, is a critical level for f;

(it) ifb=b, = =boy,, then v(I;) > r +1.

Proof. Let A € I, with n > d. Then, taking h = h, there results
Y(ANh,(0B,)) =v(ANEB,) > n > d. (5.3)

This implies that
(ANdB,)NW #0. (5.4)

To see this, we can argue by contradiction: if (AN8B,) N W = @, then,
denoted by P the canonical projection onto V| there results

P(ANdB,)c V- {0}.

Since dimV = d, then the definition of the genus would imply 4(ANdB,) <
d, a contradiction with (5.3).
From (5.4) and (A4.1%) it follows

b, > max{f(u):ue ANSB,} > a > 0.

The rest of the Theorem is proved as Theorem 5.4, remarking that Lemma
5.6-(iii) applies because the map ¢ given by the Deformation Lemma can be
obviously taken to satisfy ¢(u) = u for all u such that f{u) < 0. m

The next result deals, roughly, with a functional f which has a strict local
minimum at 0, is bounded from below and has a negative global minimum.
According to the Mountain-Pass Theorem, such an f possesses a second,
nontrivial critical point at a positive level. We will show that if f is even
and {u : f(u) < 0} has genus d, then f has 2d pairs of nontrivial critical
points.

Precisely, let us substitute (A4.2) with

(A4.2")  there exist a subspace V of E with dim(V) = d and a compact,
symmetric set

K C V such that f < 0 on K and 0 lies in a bounded component
in Vof V - K.
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Theorem 5.7 Let f € C'(E,R) satisfy (A4.1-2’-8) and (PS). Then each
b,, 1 < n < d, is a positive critical level for f, and f possesses at least d
pairs of non trivial critical points tu,, with f(xu,) > 0.

If, in addition, f is bounded below on E, then f possesses at least other
d pairs of nontrivial critical points v,, 1 < n < (i, with f(%v,) < 0.

Proof. To prove the first statement, let us remark that the only role played
by (A4-ii) was to show that ', # 0. We shall prove that this is still the
case for 1 < n < d, whenever (A4.2’) holds. Let again A = BpN E". For
R large and 1 £ n < d, (A4.2’) implies that A D K N E". Therefore the
component Q of E, N E™ containing 0 lies in A. Thus, for all A € H there
results AN h(0B;) D QN h(0B,) and hence

(AN h(8By)) 2 v(Q N h(8By)) 2 n.

The last inequality is due to the fact that QN h(0B;) contains the boundary
of a symmetric, bounded, neighbourhood of 0 in E. Then, repeating the
arguments of Theorem 5.4, the result follows.

Let f be, in addition, bounded from below on F and consider the min-
max level (see Lemma 2.12)

G = (%gkmax[f (u):u€ A].

Since K contains the boundary of symmetric, bounded neighbourhood of 0
in V, then v(K) = d and there results

¢; < max[f(u):u€K]<0.
As a consequence, for all1 < n < d one has &, < ¢; < 0 and each ¢, carries

a pair of nontrivial critical points. This completes the proof of the Theorem.
u



6 Semilinear Elliptic Dirichlet Problems

(D

As a first application of Critical point theory we will discuss here and
in Sections 7 and 8 some existence and multiplicity results for semilinear
elliptic problems.

Let us introduce the notation we will use throughout this and the fol-
lowing sections. We will deal with Dirichlet boundary value problems like

Lu = p(u) in Q
{ u =0 on 00 (D)

where, hereafter, it is understood that Q is a bounded domain in RY with
smooth boundary 992,
Lu= =) (aijus,)s

aij = a;; are smooth on © and 3 yo > 0 such that
3 aii(2)& > mwolé)? YzeQ , VEERN.
We will work on the Sobolev space E = H} (). Equipped with the norm
lull? = [ 3 osjue s do
and with corresponding scalar product
(@) = [ 3 aiusvs,do

E is a Hilbert space.



38 A. AMBROSETTI

Recall that the Poincaré inequality implies that ||-|| is equivalent to usual
H; norm || - [|s,2.

In the sequel (+|-) will denote the scalar product in L2.

Let A;,0 < A\; < Ay € X3 <.... denote the eigenvalues of

Lu = du z€Q
u = 0 z € 00

(repeated according to their multiplicity) and let ¢; denote a corresponding
orthonormal system of eigenfunctions. We take ¢; to be positive in (2.

For p € L>*(R), let Aj[p] denote the j—th eigenvalue of Lu = Apu with
zero Dirichlet boundary conditions.

As for the nonlinearity, we will consider, for simplicity, functions p in-
dependent of z, with the only exception of problems handled in subsection
6.B below. In Sections 6 and 7 we will always assume that p satisfies

(p0) p € C(R) and is locally Hélder continuous.

A. COERCIVE PROBLEMS. We will start with a class of nonlinearities (sat-
isfying (p0) and) such that

(p1) |p(s)| < a|s|+b,a,6>0 Vs€eR.

Let "
P(u) = ds.
(W= [ p(s)ds
Since (p0-1) hold then (cf. also Example 1.1)

#(w) = [ P(u(e))dz

defines a C! functional on E and the critical points of

£() = 3l - ()

on E are (weak and by regularity strong) solutions of (D) .

If a < A; then it is plain that f is coercive on E and weakly lower semi-
continuous, and has a (global) minimum, which gives rise to a solution of
(D).

On more precise information about the behaviour of p at u = 0 and at
infinity, it is possible to prove a multiplicity result.

Theorem 6.1 Suppose p satisfies (p0) and (p2):
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(p2.1) limsupp 4o 87'p(s) S a < Xy
(r2.2) p(s) = As — sh(s) with h(0) = 0.

Then there results

(i) if X > M1, (D) has at least a positive (negative) solution u* (resp. u~);
(i)  if X > Xg, (D) has at least a third solution i # u*, 4 # 0;

(iii) if p(—u) = —p(u) then (D) has at least k (pairs of ) nontrivial solutions
whenever X > A.

Proof. First of all we note that we can suppose, without loss of generality,
that p satisfies (p1) with a < A;. In fact, if 3 st > 0 (resp. s~ < 0) such
that p(s*) < 0 (resp. p(s~) > 0), we can substitute p with a locally Holder
continuous p such that p(s) < 0 V s > st (resp. p(s) >0 Vs < s7),
and |p| < const. By the maximum principle, any solution of the modified
problem
Lu = p(u) z€Q
u 0 T € 0N

satisfies s~ < u(z) < s* and hence solves (D).

To find a positive solution of (D) we can make another truncation, taking
a smooth p*, p*(s) = p(s) for s > 0 and p*(s) < 0 (and bounded) for s < 0.
Once again, by the maximum principle, any solution u of

Lu

u

satisfies u(z) > 0 in Q and hence solves (D). One has (f* stands for f with
p substituted by pt)

pt(u) in Q
0 on 9N

1 1
fHep) = 580@ll* = 5*Aenls + o(e?)

e2(\ = A)lgrl3 + o(?).

[

Then, if A > A, f(ep1) is negative for [¢] > 0 small enough and thus
ming f* < 0. It follows that the minimum is achieved at some u* # 0. By
the preceding remark ut > 0.
A similar argument yields a solution z~ < 0.
Next, let us prove (ii) under the additional assumption that p is differ-
entiable and
A=nN(u)>p'(v) Vu#0. (6.1)



40 A. AMBROSETTI

From Lu* = p(u*), namely

Lut = (A=h(w))ut z€Q
ut = 0 z €00

one infers that 1 is an eigenvalue of Lu = Apu, with p = (A — h(u*)), and
corresponding eigenfunction u*. Since u* > 0, then it follows that

M[A=h(ut)] =1.
From (6.1) and the comparison property of the eigenvalues, we infer
Mp'(wh)] > 1.

This means that (u* is non-degenerate and has) Morse index m(ut) = 0,
namely that u* is a minimum of f. Similar argument for u~. We now apply
the Mountain-Pass Theorem to f with up = u* and u; = u™, yielding a
critical point @ # u®. We claim that, whenever A > A, then @ # 0. To see
this, it suffices to note that the Morse index of 0 is > 2 provided A > Ay. If
the critical points of f are u*,u~ and 0, only, then theorem 3.4 would apply
yielding m(0) < 1, a contradiction.

The general case can be handled by a similar argument, up to a Lyapunov-
Schmidt reduction (see [19]).

Lastly, to prove (iii), we use Theorem 2.13, with the operator A defined
by the formula

((Axulv)) = Mulo).

Plainly p is a characteristic value of Ay whenever

Lu=p-du, 2€9Q, u=0, z €N

Thus the characteristic values of Ay are nothing but pu, = 3;\* and the con-
dition pp < 1 follows from the assumption A > A. m

Remarks 6.2. (i) When N = 1, much stronger results can be proved.
Indeed, from each Ay = Z;L: bifurcates a global branch of solutions of

{ — (a(z)u') Au — uh(u) in [0,T]

u(0) = uw(T)=0

and such a Sturm-Liouville problem has, for A > Mg, at least k nontrivial
solutions.
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(i1) It is an open question to see if the number of solutions of (D) increases
as A — +oo (of course, without any oddness assumption on p).

(iii) When p(u) = Au — uh(u) and (6.1) holds it has been shown [20] that
(D) has precisely 2 nontrivial solutions for all A; < A < A2. Moreover, if
)2 is simple then for Ay < A < Ay + ¢, € small enough, (D) has precisely 4
nontrivial solutions. m

B. ASYMPTOTICALLY HOMOGENEOUS PROBLEMS. Our next application
deals with the case when p is asymptotically homogeneous. Let

p(z,u) = fut — au™ + b(u) + h(z) (6.2)
where o, > 0 and
Jim f’? =0 (6.3)

When max{a, 3} < A1, f is coercive and (D) has always a solution.
If « = 8 = );, (D) becomes the problem at resonance

Lu = Mu+b(u)+h(z) in Q
u =0 on 00

which has been extensively studied, beginning with the paper by Landesman
and Lazer [92].

When a # 3, say a < 3, and there is at least an eigenvalue }; in ]a, ],
(D) is called "problem with a jumping nonlinearity” [78].

A first result is concerned with the case

(1<A1<,3<A2

and goes back to [24]. Under the assumption that p(z,s) is of class C?
with respect to s and p,(z,s) > 0 V (z,5) € @ x R, it is proved that
the Holder space Y = C%¥(Q2) can be split into two open components Y,
and Y3, with common boundary Y;, such that (D) has precisely 1,2 or no
solutions whenever h € Y1, h € Y, or h € Yj. Such kind of result is obtained
by means of a suitable ”Global Inversion Theorem” for maps-® € C?(X,Y)
which possess singularities S, (X,Y Banach spaces); such § is a manifold
of codimension one in X and ¥; turns out to be ®(S).

Let us take, for simplicity, h(z) = tp;(z), where t plays the role of a
parameter. In such a case, the preceding result can be expressed by saying
that 3 ¢ such that (D) has 2 solutions V ¢ < ty, 1 solution for ¢ = ¢y and no
solution for all t > ¢,.
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In [2] the convexity assumption on p has been eliminated at the expenses
of the sharpness of the result. See also [89].

The case # > A, has been investigated by Lazer and McKenna [93] by
using topological degree arguments in the case when A is simple.

Hereafter we expose a result of [6], which improves that of [93].

Theorem 6.3 Suppose p has the form (6.2) with b satisfying (6.3). If
a<A <A <fB, B#N,
then 3 t; such that (D) has at least 3 solutions for all t < t;.
Proof.First of all, let us consider the boundary value problem
Lu=fu+bu)+tps z€ Qu=0 z€ 00 (6.4)

Since B # Aj, then (6.4) has a solution @, for all t € R. This fact can be
easily proved by topological degree arguments.

Let us set :

=BT

By = —
A direct calculation shows that

Lo, = 35, + b(a@,).
Since 3 # A; and %‘l — 0 as |u| — oo one infers

[:ller < e

Then from #, = 7, + ;\1%5901 and B > Ay, it follows that 3 #; < 0 such that

>0 Vt<ih,. (6.5)
From (6.5) one deduces that @; actually solves

Lu, = Bu} — au; + b(@) + tor

and hence is a solution of (D). A similar argument shows that 3 #, < 0 such
that (D) has a negative solution 4, for all t < f,, and

t
-

wt=ﬁ,- (,91

is bounded in C* norm.
To complete the proof, the following Lemma is in order.
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Lemma 6.4 There ezists t; < 0 such that for all t < t, there results:
(i) m(&)=0;

(i) @ is nondegenerate and m(@;) = k, where k is such that A\, < (3.

Proof. Ast — —o0

Uy = Uy + (pl—)+00

t
M —-B
pointwise in Q. Then p,(z,%;) — B as t — —oo, uniformly in z, and the
continuity of eigenvalues yields

A
g

Similarly one has p,(z,%;) — « as t — —oco and

Aj [ps(@, @)] — Ai(8) =

(t = —o0).

Aj [p,(]}, '&t)] — )\j(a) = % (t — —OO).

Since & < A; and 8 > g, then 3 ¢; < min(, f), such that
Alps(ae)] > 1
)\k[ps(x,ﬁt)] < 1 < A}H_][p,(l‘,’l_tg)].
This proves the Lemma. m

Proof of Theorem 6.3 completed. Let us consider now the functional f
whose critical points give rise to solutions of (D). It is easy to see that (PS)
holds. For t < t; (given by Lemma 6.4) 4, is a local minimum of f because
m(t;) = 0. Moreover for s > 0 one has

Hspn) = 3%lnll = [ Plogn)d.

Since p has the form (6.2), b satisfies (6.3), ¢1 > 0 and h = t¢4, it follows:

1 1
f(S(pl) S 7)-32/\1 - 552,6 + CcoS — st
for some constant cg. Since 8 > J; it follows that f(s¢) — —o0 as s — +o0.
Therefore the Mountain Pass Theorem applies and yields a critical point
Uy # Uy (for all t < ;). Such a %; cannot coincide with @; indeed, otherwise,
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%; = 4; would be, by Lemma 6.4, nondegenerate and m(%;) = m(a;) > 2,
because § > A;. This would be in contradiction with Theorem 3.4. m

Remarks 6.5. (i) A counterexample [69] shows that if 3 > A (D) can have
only 4 solutions. This is obtained by perturbing a problem posed on an 2
such that Ay = A3 =... = A. Also here an interesting question is to study
the number of solutions of (D) when 3 — +oo0.

(ii) The case in which ]a, B[ contains an eigenvalue A; # A; has been studied,
for example, in [79]. m



7 Semilinear Elliptic Problems (II)

Here we will discuss Elliptic Dirichlet boundary value problems with
nonlinearities of the type Au + |u[" » with £ > 1. The section is divided
in 3 parts; the first two deal, respectively, with existence and multiplicity
results and mainly follow Section 3 of [26]. The latter is concerned with the
so called Critical Sobolev exponent, namely with the case £ +1 = 2*, We
will keep the notation of Section 6.

A. EXISTENCE RESULTS. The first problem we consider is the existence of
positive solutions for Dirichlet problems (D) when the nonlinearity p satisfies

(»3):

(p3.1) p e C(RY) is locally Hélder continuous and differentiable at 0;
(p3.2) 3r>0and¥b € (0,3) such that

P(u) < bup(u) Yu>r (7.1)

(p3.3) p(u) < @y +aguf, forall u > 0,1 < £ < M2 if N > 2 £is
unrestricted if N =1,2.

In the sequel a,,a,,... denote positive constants.

As anticipated in Section 1, we will consider the case N > 2 and, for
simplicity, we will deal with nonlinearities independent of z.

According to the discussion in Example 1.1, assumption (p3.3) allows us
to define ¢, f : E — R (E = H}(Q)) by setting

o(w) = [ P(u(x))dz
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£(u) = Sllul? - 6(w)

Moreover (¢ and hence) f € C!(E,R) and critical points of f give rise to
solutions of (D).
Let us remark explicitely that from (p3.2) it follows

P(u) > a;,u%, for u>r (7.2)

with % > 2. In this sense we say that such a p is "superlinear” as u — oco.
We want to prove

Theorem 7.1 Suppose p satisfies (p3) and let p(0) =0 and X :=p'(0+) <
A1. Then (D) has a positive solution.

First of all, dealing with positive solutions, we can assume, without loss of
generality, that p(u) = 0 for all u < 0. See the discussion in the proof of
Theorem 6.1.

We begin showing

Lemma 7.2 f satisfies (PS) on E.
Proof. First, let us remark that (7.1) yields
b(u) = / _, Pu@)dz + / ,, Plu(z))dz
< b+0 [ plu@)u(z)is
< b6 /Q p(u(@))u(z)dz = by + 6(¢' (u)]u). (1.3)

Let u, € E be such that f(u,) < b and z, = f'(u,) — 0. Using (7.3) it
follows

o
I\
N =

£(un) = 5 lluall® — ¢(un)

1 2 /
5 uall? = b2 = 66/ (un)un)

v

and hence 1
§||un||2 < by 4+ 6(¢' (un)|un)- (7.4)
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Since z, — 0, then for n large
|(znlun)] = [[lnll? = (&' () un)| < €lun]. (7.5)
Combining (7.4) and (7.5) we find
llunl® < 26(¢ (un)lun) + 205 < 26||unl|® + 20¢]|un|| + 2b3

Since 260 < 1 one deduces that |[u.|> < bs. Hence, up to a subsequence,

u, — % in E. Recall that, since £ < %i%, namely ¢ +1 < 2* then E is
compactly embedded in L***(Q2) and this, in turn, implies that ¢' is compact.
This and z, = u, — ¢ (u,) — 0 imply u, = ¢'(un) + 2, — ¢'(@). This proves

(PS).m
Proof of Theorem 7.1. By Lemma 7.2, (PS) holds. From (p3) one deduces

9(u)] < 1l + Bl (76)

Using the Poincaré and Sobolev inequalities it follows

A

R l® + sl (7.7)

l¢(w)] <

and hence . A
2 5 (1= 35 1P+ olul?)

Since A < A; then up = 0 is a strict, local minimum for f. Moreover, for
any z > 0, using (7.2), one deduces

ft2) = SN~ [ P(ta(a))ds

1
< -2—t2||z||2—bﬁt1/9/912|1/0—b7.

Since 3 > 2 then f(tw) — —oo as t — +oco and there exists ui, ||u;|| large
enough, such that f(u;) < 0. This suffices to apply the Mountain-Pass
Theorem to {, yielding a critical point u 7# 0. Such a critical point gives rise,
by the maximum principle, to a positive solution of (D). m

Condition A (= p'(0+)) < A; can be eliminated by using the Linking
Theorem instead of the Mountain-Pass Theorem.
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Theorem 7.3 Suppose p satisfies (p3.1) and
(p3.2)) 37 >0 and 6 € (0,3) such that P(u) < fup(u) V |u| >r;
(3.3) lp(u)| S a1 +arful, 1 <L< 3, (N >2)

N-2’
Let p(0) = 0. Then (D) has a nontrivial solution.

Proof. Let A\ < XA < Agy1 and set

V = span {¢1,---, ¢},
W = span {p; : j > k}.
Starting again from (7.3) and recalling that for w € W there results
lwl? > Melu}
(7.7) becomes
80)] < 3ol + bl (19)

Plainly (7.8) w = 0 is a strict, local mimimum for fw, namely that (A3.1)
holds. m

Remark 7.4 If A > )\, (D) might not have positive solutions at all. To
see this, let us consider the boundary value problem

—Au=du+u, z€Q; u=0, €N (7.9)
with1 < €< 2*—1and XA > A;. Let up > 0 be a solution of (7.9). Then
~Ayy = (/\ + uf,"l) up
shows that the first eigenvalue of —Av = p ()\ + uf,"l) v, with zero Dirichlet
boundary conditions, is 1 :
M [/\ + uo‘l] =1

Since A +u{~! > A > ), the comparison property of the eigenvalues gives
immediately rise to a contradiction. m

Remark 7.5 In [27], instead of using the Linking Theorem, the Mountain-
Pass Theorem has been emploied, jointly with the Dual Variational Princi-
ple. A somewhat similar argument will be discussed in some more details in
section 8.
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B. MULTIPLICITY RESULTS.  When p is odd Theorems 7.1 and 7.3 can
be greatly improved. Indeed, if this is the case, then

(u) = 3 lull - 8(w)

is even. Repeating the same arguments as before, one readily shows that f
satisfies (A4) if A < A; and (A4.1’-2-3) otherwise (with V = span {1, -, &},
whenever Ay < A < At41). Then Theorems 5.4 and 5.6 apply, yielding

Theorem 7.6 Suppose p satisfies (p3) and is odd. Then (D) has infinitely
many (pairs of) solutions.

Remark 7.7 The existence of infinitely many solutions was first proved
in [4] for a class of convex, superlinear nonlinearities, using Theorem 2.9,
instead of Theorem 5.4. m

A natural question is whether (D) possesses infinitely many solutions
when p is not odd. For perturbed problems like

Lu = |u" 'u+eh(z,u), 2€Q; u=0, z€ 0N (7.10)

a partial answer has been given in [5] proving, by means of perturbation
techniques, that (7.10) possesses an arbitrarly large number of solutions
provided ¢ is small enough. Here €+ 1 < 2* and h is assumed to satisfy the
same growth restriction as p in (p3.3).

Such a result has been improved in [35] and [119]. It is proved that

Lu=|uf'u+h(z,u), 2€Q; u=0, z€dQ (7.11)

has infinitely many solutions provided £+ 1 < ¢* where £* is strictly smaller
than 2*.

A further improvement has been obtained in [37] by means of Morse
theory.

Theorem 7.8 Let h € C*(Q x R) satisfy
|h(z,5)| < a1 + aa]s| ¥
3ae(0,2) ¢ | [ A < as +ailsl”

Ifl<i< NL,;",(};—Q—), then (7.11) has infinitely many solutions.
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Remark 7.9. When h = h(z) is independent of u, then the range of
permissable £ is

1<f€<

N-2"
On the other side, a result of [34] shows that

Lu=|u"u+h(z), 2€Q; u=0, z€ N

has infinitely many solutions for any £ + 1 < 2* and h is a residual set in
L}*(Q). m

Another strategy to find multiple solutions can be to use the specific
structure of the boundary value problem (D), rather than through a com-
parison with the model nonlinearity |u|*!u.

Let p satisfy (p3.1), (p3.2’-3’) and let p(0) = p’(0) = 0. Then one can
apply Theorem 7.1, with p substituted by its positive (respectively negative)
part py (resp. p-) to find a positive (resp. negative) solution u* (resp. u~)
of (D). These u* are critical points of the functionals fi corresponding
to p+. Suppose, in addition that one can use the procedure indicated in
Proposition 1.4 and Theorem 2.9, and that u* are non-degenerate minima
of fi constrained on M, (see notation introduced in Section 1). Here one
has

9+(u) =/n [%p;(U)u—pi(u)] dz.

Since u* do not change sign, it follows that T,,+ My, = T,+M;. As a conse-
quence, if fi(u*)[v,v] > 0 for all v € T+ My, then one also has

fo(ud)[v,v] >0 Vv e Tye M.

Since, plainly, fi(u®)[v,v] = f*(u*)[v,v], one deduces that u* are also non-
degenerate local minima for f constrained on M;. Using a Mountain-Pass
argument with base points at u* (or else using the Morse relationships) one
finds a third critical point of f on My, hence a third solution of (D).

In the general case, a third critical point of f can be found by means
of an appropriate linking argument, still starting from u®. See [128]. This
leads to

Theorem 7.10 Suppose p satisfies (p8.1-2’-3°) and let p(0) = p'(0) = 0.
Then (D) has at least 8 nontrivial solutions.
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We end this subsection with some remarks concerning
—Au=du+uftu, ze€Q; u=0, z€ 00 (7.12)

It has been proved in [42], see also [54] and [94] for extensions, that (7.12)
has multiple positive solutions provided 1 < £ < 2* — 1 and A < 0 and |}]
is sufficiently large. Precisely, the number of positive solutions of (7.12) is
bounded below from the Lusternik-Schnirelman category of Q. On the other
side, it has been shown in [117] that if Q is a ball in R" then (7.12) possesses
a unique positive solution, whenever 1 < £ < 2* — 1 and A € {0, \;).

C. CRITICAL EXPONENT. Let us begin with a celebrated Identity due to
Pohozaev {106). Let v, denote the unit outward normal at z € 8 and u,
the normal derivative of u along v.

Lemma 7.11 Let u be a smooth solution of (D). Then there results
2-N

N/ﬂP(u)dx + Lup(u)dm = %.[90 u2(z - v )do.

As a consequence one immediately has

Corollary 7.12 Ifz-v, > o0 on 9Q, namely if Q is star-shaped with respect
to 0, then the boundary value problem

—~Au=uf"u, z€Q; u=0, z€0Q
has only the trivial solution, whenever ¢ > % (N >2).

On the light of Corollary 7.12, few more words are in order concerning
(p3.3’). First of all, a growth restriction like (1.2), with £ < 2* — 1, is
needed in order to define the functional f on E. Corollary 7.12 shows that,
in general, one has to take £ < 2* — 1 in order (D) possesses nontrivial
solutions. On the other side, it does not exclude that (D) has non-trivial
solutions when (p3.3’) is violated but p is not homogeneous, or  is not
star-shaped. The latter question will not be discussed here: the interested
reader is referred to [36], [62].

As for the former, it suffices to consider problem (7.12) and remark that
it has nontrivial solutions bifurcating from the eigenvalues Ar of —A with
zero Dirichlet boundary conditions. In view of the specific feature of the
nonlinearity, such a bifurcation is backword and hence solutions of (7.12)
exist in any left neighbourhood of .
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A global existence result is a much more subtle question. For the equa-
tion
—Au=du+|u %, z€Q; u=0, redN (7.13)

the problem has been first faced by variational tools in [52]. Roughly, the
functional f defined above still makes sense, because u?>" € L!(Q2) whenever
u € H}(R2). But now Lemma 7.2 concerning the (PS) condition cannot be
carried out in the same way, because the embedding of H}(R2) in L*'(Q) is
not compact. Overcoming this difficulty, it is possible to show that

Lemma 7.13 Let

2

S =inf{||ul?® :ue€ H(Q),|uz =1}.

Then for any

1
C<]—V-S

Sz

f satisfies (PS)..

Lemma 7.13 leads to

Theorem 7.14 Let N > 3. Then (7.13) has a nontrivial solution whenever
A>0.
If N =3, there ezists Ao > 0 such that (7.13) has a solution for all A > ).

Remarks 7.15 (i) If A < A; one finds positive solutions and the result
goes back to [52]; the case A > A, has been studied in [55] and [28].

(ii) The Srikanth uniqueness result cited above is valid for (7.13), too. m



8 Elliptic Problems with Discontinuous
Nonlinearities

In this section we deal with a class of elliptic equafions with the specific
feature that the nonlinearity is discontinuous. They serve as model in several
concrete problems in Mathematical Physics. Postponing the case of vortex
rings in an ideal fluid, which will be discussed in Section 9, let us begin with
a Free Boundary Problem arising in Plasma Physics.

Example 8.1 Consider a cylinder with bounded cross-section & C RN,
containing a ionized gas. Let 7o denote the temperature of the lateral surface
of the cylinder; § > 7, that of discharge in the gas; ¥ the termal conductivity
and e, the electric field. Let us assume all these quantities are positive
constants.

Let v denote the variable temperature in the gas and ¢ = o(v) denote
the electrical conductivity. If we assume that

a(v)={o ifv<é

v ifv>4
then v satisfies

—Av = 0ifv<é

lel* .
—-Av = TU fv>é6 (81)
v = 79 on 0N

Let us point out that the discontinuity of ¢ at v = 6 is consistent with
the fact that the gas is ionized.
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Problem (8.1) is a Free Boundary Problem, because the region where
—Av # 0 is a-priori unknown. In order to trasform (8.1) in a Dirichlet
Boundary Value problem, let us introduce the Heaviside function 4 :

0 ifs<0
h(s)={ 1 ifs>0 (82)

The reason to define ~(0) = 0 will be clear later. However this choice will
not effect the results we will find. Setting u = v — 19, (8.1) becomes

~Au=p,(u), z€Q; u=0 z€IN (8.3)
where
pa(u) = h(%zt'-a)Q(u), (8.4)
o) = Luin)
a = 6— 70 -

In (8.3) the nonlinearity p, has a simple discontinuity at u = a and b,
p= L2t ollel +;°)|e|2 >0

is the size of the jump.
In general, let us consider a problem like

Lu=nh(u-—a)q(u), z€Q; u=0 z€IN (8.5)

where L stands for the linear second order, uniformly elliptic operator in-
troduced in Section 6, @ > 0, h denotes the Heaviside function (8.2) and ¢
satisfies (q1):

(ql.1) ¢ >0, g€ C(R), g is non-decreasing;
(ql.2) g¢(s) < as+ ¢p, with @ < A; and ¢y, a constant !.

We set
b=g(a), T =10,

and
Q={ze€Q:u(z)=a}.

lhereafter ¢g, c1,- -+ denote positive constants.
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A solution of (8.5) is an u € H}(Q) N H?() such that (8.5) holds a.e. in Q.
Let us explicitely point out that we do not exclude, in general, that |Q,]| > 0.
Setting p(u) = pa(u) = A(u — a)q(u), (8.5) becomes

Lu=p(u), z€Q; u=0 z €N (8.6)

By the maximum principle any non-zero solution u of (8.6) must satisfy
u(z) > 0 on Q and u(zo) > a at some zo € . This will be referred as a
nontrivial solution of (8.6).

By adding mu, m > 0, to both sides of (8.6), the nonlinearity becomes

Pm(u) = mu + p(u)
and is strictly increasing. Let p define the multivalued function
N _ | pm(s) ifs#a
5(s) _{ T =[ma,b+ma] ifs=a
obtained by filling up the jump of p at s = a.
Let p* denote the inverse of p:
p'(w)=s iff we p(s) (8.7)
and set "
P'(w) = L p*(r)dr.

From the properties of p,, it follows that p* is well defined on R, is continuous
and

p*(w) =a iff ma <w < pm(a)=ma+b. (8.8)
As for P*, one has that P* € C*(R); moreover (q1.2) implies
* 1 1 2
P*(w) > 3 axmy T 1wl (8.9)
Pw) < & 8.10
@ < 2. (5.10)

Let E = L*(Q) and let G € L(E,E) be the Green operator defined by
setting

Gw)=u<= (L+mu=w, ue H(Q)NH*Q)
For w € E we define

flw)= /n [P'(w) - %wG(w) dz.
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Plainly, f € C'(E,R).

Lemma 8.2 Let w € E be such that f'(w) = 0. Then u = G(w) is a
solution of (8.6), in the sense that u € H} ()N H*(Q) and Lu = p(u) a.e.
wn 2.

Proof. If f'(w) = 0 then p*(w) = G(w). By the definition of G, u =
G(w) € H}(Q) N H*(Q) and satisfies Lu + mu = w. From p*(w) = u and
(8.7) it follows that w € p(u), and hence

Lu + mu € p(u).

For z € Q@ — Q4, namely when u(z) # a, one has p(u(z)) = mu(z) +p(u(z)),
and this implies
Lu(z) = p(u(z)) (z € Q- Q). (8.11)

By a Theorem of Stampacchia [118] one has Lu = 0 a.e. on Q,. According
to the fact that h(0) = 0, it follows that
p(u(z)) = ma + h(0)g(a) =ma (s € )
and therefore
Lu =p(u), a.e.in Q.

This, jointly with (8.11), proves that u solves (8.6) in the sense specified
above. m

Remark 8.3 The idea of using a ”dual” functional like f goes back to Clarke
[57] and has been introduced to study Hamiltonian Systems. See [73]. The
discussion outlined above follows [8]. m

Lemma 8.4 There ezists vg € E such that f(vo) = minyeg f(u). For the
corresponding solution uy = G(vo), there results |Qq| = 0.

Proof. From (8.9) and the spectral properties of G it follows

1 11
[wfy — erfwh — = w3 . (8.12)

1
> 2
f(w)_2 a+m 2 M+m

Since a < A1, (8.12) implies that f is coercive and bounded from below on
E and, in a standard way, it follows that f attains its global minimum at
some vp. Let ug = G(vp); we claim that Q, = {z € Q : up(z) = a} has zero
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Lebesgue measure. To see this, let x denote the characteristic function of
Q.. There results

(f'(vo+ex) | x)
(" (v +ex) | x) — £(G(x) | x) = (G(wo) | x)
= /rzn p*(vo +ex)dz — E/Q xG(x)dz — /n., updz (8.13)

From Lug+mug = v and Lug(z) = 0 a.e. in Q, it follows that vo(z) = ma,
a.e. in §),. Hence, taking ¢ € (0,b), one finds

d%_‘f(vo +€x)

ma < vo(z) +ex(z) <ma+b, ae in Q.

Then, see (8.8), p*(vo(z) + ex(z)) = a a.e. in Q, and
/n P (00(z) + ex(2))x(@)dx = alfle| = /Q (). (814)

Moreover, setting z = G(x), it follows

GO I x) =/n [ Lz + m|2*] da. (8.15)
Inserting (8.14) and (8.15) into (8.13), one finds

d
T/ +ex) = —e [l#I* +mizlf] (8.16)
If |Q4] > 0, then ||2||?,|2]2 > 0 and (8.16) yields

d
ng(vo+6x) <0 (0<e<d)
a contradiction, because vy is a minimum of f. m

Remark 8.5 It is clear that the above arguments hold whenever v, is any
local minimum of f. m

If a > 0 then f has a local minimum at w = 0. Fixed b, when a > 1
then w = 0 will be the only critical point of f, see Remark 8.10-(i) below.
On the contrary, next lemmas show that, under an appropriate relationship
between @ and b, f possesses a pair of non-trivial critical points: a negative
global minimum and a Mountain-Pass critical point.

Let ¢ satisfy

Lo=XM\yp,;z€Q; ¢=0, z€ N
and be such that |¢]|. = 1.
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Lemma 8.6 Suppose that

2>l ;90:; . (8.17)

Then, for all m > 0 sufficiently small, f(bp) < 0.
Proof. Since 0 < bp(z) < b and

p'(w)<a, for 0Sw<b,

it follows
_ * __l 2
fop) = [ P'Ge@)dz ¥ (G() | ¢)
1 2
< balgh -5 ol <0 (818)

whenever (8.17) holds and m is small enough. This proves the Lemma. m
The next Lemma shows that f has a Mountain-Pass geometry.
Lemma 8.7 There ezist m*, p,ap > 0 such that

f(w)zaoa V’I.UGE, |w"_3L2=P-

Proof. Let ¢ = 2% +2 Since & = 3 — 2, the Sobolev Embedding Theorem
yields
IG(w)l2s < a1llGw]l2 -

From the elliptic theory we know that, for w € L(f2), there results
IG(w)llz,q < c2fwlq

Hence it follows
IG(w)l2s < eslwlq

and (note that 5= + % =1)
[ wGw)dz < wly - 16wl < aalul? - (8.19)

Next, we need to bound [, P*(w)dz from below. For this, recall that p* is
non-decreasing and such that

‘W) = 2 ifw<ma
P “la fma<w<ma+b
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Then it is possible to find # > 0, m > 0, small enough, and €,, > 0 such

that
pr(w) > Bguw™!, Yw>em.

P
¢ Bgwt!
1
I
i
I
i
|
! I 1
I I |
i ] !
! I !
1 ! I
| I !
ma’ ma+ b ;m w
As a consequence, one has
/ P(w)dz > / Blw|7dz.
Q |w|2€m
Let
Bm =P |w|%dz.
Jw|<em
Then, from

w"=/ w|%dz + wqu=/ w|¥dz + B .
fwla lwl>em al /leSem ful [wl>em el 2

it follows

[ Pr@w)ds 2 Bl = pn -
From (8.19) and (8.20) we deduce

1
f(w) 2 Blw|] - Ecalwlg = Prm
Since ¢ < 2, there exist p,ap > 0 such that

1
Blwl|] — 50311”[2 22 Y|w,=

p.

(8.20)

(8.21)

(8.22)
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Finally,
Bm =8 lw|?de < Bel|Q] — 0 as m — 0
|lwl<em

jointly with (8.19) and (8.20) yield
flw)2 a0, Vl|wlg=p
provided m is small enough. This proves the Lemma. m

Finally we prove a weak form of (PS) condition (see Remark 3.2).

Lemma 8.8 Let w, € E be a (PS), sequence (c € R). Then there ezists
z € E with f(2) = ¢, f'(z) =0, such that w, — 2.

Proof. From (8.12) and f(wn) — c, it follows that |wa|s < const., and,
up to a subsequence, w, — z, for some z € E. From f'(w,) — 0 and the
compactness of G, it follows that p*(w,) — v := G(z), strongly in L?(Q)
and a.e. in Q. Let I'={z € Q:v(z) = a} and @' = Q —T. Let us begin
studying the convergence in . First, p € C(R — {a}) and p*(w,) — v
a.e. in , imply w, — p(v) a.e. in . Plainly, |w| < |p*(w)|; this and
the convergence of p*(w,) in L*(Q) imply that there exists & € L*(Q2) and
a subsequence of w, such that (without relabeling) |w,| < h a.e. in Q.
Then the Lebesgue Dominated Convergence Theorem yields: w, — p(v) in
L2(€Y). Since one also has w, — z, one infers that w, — 2z in L>(Q'). Since
p* is asymptotically linear, it immediately follows

p*(wn) — p*(2) in L}(€Y), and L P (wn)dz — /Q P'(2)dz. (8.23)

On the other side, for a.e. £ € I, one has that 2(z) = mv(z) = ma and
hence p*(z(z)) = p*(ma) = a = v(z). This and the first of (8.23) imply

p*(z) =v, namely f'(z)=0.

In a quite similar way, taking into account the second of (8.23) and the
specific form of P*(s) for s € T, one finally finds that

/QP‘(wn)dx—-vlﬂP*(z)dx

namely that f(z) = c. This completes the proof of the Lemma. m

We are now in position to state
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Theorem 8.9 Suppose that (q1) and (8.17) hold. Then (8.6) has two, dis-
tinct, positive solutions ug # u;. Moreover Q,(uo) = {z € Q : yy(z) = a}
has zero Lebesque measure.

Proof. Let vy be the global minimum of f (Lemma 8.3). According to
Lemma 8.5, f(vy) < 0, whenever (8.17) holds. Hence vy # 0 and uy = G(vy)
is a non-trivial (positive) solution of (8.6) (see Lemma 8.2 and the preceding
discussion) and |Q,(uo)| = 0, see Lemma 8.3.

Lemmas 8.5, 8.6 and 8.7 allow us to apply the Mountain-Pass Theorem
(see also Remark 3.2), yielding a second critical point v; € E, with f(v;) > 0.
Hence u; = G(v1) # uo is a second non-trivial, positive solution of (8.6). m

Remarks 8.10 (i) When Q = Bg, a ball of radius R, it is easy to check that
l¢l1/|#)3 is bounded above by a constant independent of R. Hence, fixed a
and b > 0, (8.17) is satisfied whenever R > 0 is large enough, because the
first eigenvalue of L on Bg, A;(R), tends to zero as R — +oo. Dealing with
large balls, ¢ is assumed to be bounded, in such a way that (8.17) holds.
(if) Fixed Q and g¢, one has that p(u) = h(u — a)g(u) < M\u, provided a
is sufficiently large. It is plain that in such a case (8.6) has no positive
solutions at all. m

When  inherits some symmetry, Theorem 8.9 can be greatly improved.
Precisely, let  be symmetric with respect the plane z; = 0, say. Given
w(z), with w(z) = 0 on O, we denote by w* the Steiner symmetrization of
w with respect to z; (see, for ex., [40]); namely w*(z) which is even in z,
non-increasing for z; > 0 and such that

meas{z; : w*(z) > ¢} = meas{z; : |w(z)| > c}
for all ¢ > 0.

Theorem 8.11 Suppose that, in addition to the hypotheses of Theorem 8.9,
Q2 is Steiner symmetric. Then:

(i)  the critical points vy, v; are Steiner symmetric, and hence the same
holds for the corresonding solutions: vy = ug, u; = uj;

(1) 8% <0 forzy>0andi=0,1;

(#1) |Qa(w)| =0 fori=0,1.

Proof. Recall that the definition of w* yields

LPWW:LFW%L (8.24)
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Moreover, from (1] it follows that
(G(w) | w) £ (G(w?) | w?). (8.25)

From (8.24) and (8.25) we infer that a minimizing sequence w, can be re-
placed by its symmetrization w}, to obtain a symmetric minimum v = v;.

As for the Mountain-Pass solution, let us note that the map w — w*,
w € E = L*(), is a contraction in E, in particular it is continuous. Let
v € C([0,1], E) be any path used to find the Mountain-Pass critical level
(here the base points can be taken to be 0 and bp). Then v*(t) = (y(¢))* is
also a path and ’

7 (0) =0, (1) = (bp)" = bep.

If w* € v* corresponds to w € v, one has

I

oy L O |t
L”w)-la(@(w)'“’)
[P =5 6w v) = f(w)

fw?)

IA

and hence
max f < max f.
v ¥

We can now use the version of the Mountain-Pass Theorem (with condi-
tion (PS) substituted by (PS):), as in Remark 3.2), yielding a sequence of
symmetric w}, such that

f(w) = e, f(w;)—0.

By Lemma 8.8 one infers that w} — w and f(@) = ¢, f'(w) = 0. Then it
follows

zn = G(w}) — z := G(w).

This shows that (8.6) has a second symmetric solution, proving (i).
Statements (ii) follows by the weak maximum principle applied to du;/dz,
z; > 0; and (iii) follows from (i) and (ii). m

Theorems 8.9 and 8.11 are prompted for an application to the problem
discussed in Example 8.1. To be specific, we will consider the case in which
Q is Steiner symmetric. Here one has:

_(a+mn)lef

a=06—1, b 3
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and assumption (ql.2) holds whenever
le]* < A9 (8.26)

Since b e 5 o]
e (p 1

- = A, - 2L

a= 0 Tn T M
is satisfied for 6 € (79,7 +€), € > 0, then Theorem 8.11 yields two distinct,

symmetric solutions u(a), ui(a). If

a>T: = —T0|€|2
’ )\119 - |€|2

then Remark 8.10-(ii) shows that (8.3) has no positive solutions. Thus there
exists a maximal interval (79,71) such that (8.3) has two solutions for all
6 € (10,7). As 6 | 79, namely as a | 0, we claim that

ug(a) = @, wus(a) — 0
where 4 is the (unique) positive solution of

2
— Au = IeT(u + ‘I“o), x e Q, U= 0, r e on0. (827)

To prove the claim, we first note that p; (w) < p;,(w), whenever a; < ay,
and thus

far (W) £ foy (w). (8.28)

Here the subscript a highlights the dependence on the parameter a. We
write woq (resp. wi,) to denote the minimum (resp. the Mountain-Pass)
critical point of f,, and set u; o = G(wig), ¢ =0,1.
For all a € (0,a0), ap > 0 close to zero, (8.28) implies

fa(wO,a) S fao(wo,ao) <0
and thus there exists mg < 0 such that

f.,(wo,,,) — My, aS a l 0

and f,(woq) = 0. Then, arguments similar to those of Lemma 8.8 show that

wo, — W weaklyin L?
fo(li)) = my,

fo@) = 0.
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Since G is compact, then
Ug,qa = G(wo,.,) U= G(’li))

and  is the unique solution of (8.27).
Concerning the Mountain-Pass critical point w; 4, from

f(t9) S atleh ~ 52(Gle) | 9) (0t<Y)

we infer that

< 2
max f(tp) < ca

for some constant ¢ > 0 depending on ¢. Hence f,(w;,) — 0 as a | 0, and
arguments similar to the preceding ones yield

Ul,q = G(wlxa) — U= G(IIJ)

with fo(w) = 0. It readily follows that @, and hence @ are zero.
In conclusion, we have shown

Theorem 8.12 Let Q be Steiner symmetric and (8.26) hold. Then there
exists 11, To < 71 < +00 such that, setting a = § — 1y, there results

(i) for0 < a < 1 —1y problem (8.3) has two symmetric, positive solutions
Uga, Utas

(1) if a> 7, then (8.3) has no positive solutions;

(1)) asa |0, ups — @ and u;, — 0 in H,(Q), where 4 is the positive
solution of (8.27);

(iv) meas{x € Q:uiz(z) =0a} =0 fori=0,1.

Remark 8.13 Most of the preceding arguments can be carried over in much
greater generality. For example, it is possible to handle boundary value
problems of the type

Lu=pu)+h(z) z€Q; u=0 z €0
where p : R — R satisfies:

1) p is measurable and there exists a set A C R with no finite accumulation
points, such that p € C(R — A);
2) there exists m > 0 such that p(s) + ms is strictly increasing.
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In particular, Lemma 8.2 holds and solutions of (8.6) can be found by looking
critical points of a smooth functional f. According to Lemma 8.8, f satisfies
(PS) condition in a form which enables us to use the Mountain-Pass or
Linking Theorem. For more details and further applications, we refer to [8].
The material presented here is taken from [8] and [30]. Elliptic problems
with discontinuous nonlinearities have been investigated,for example, in [59],
[61], [121], [122]. m

In spite of the great power of variational methods, there are problems
in which it is more convenient to use nonvariational tools. Typical cases
are global branching phenomena, studied by means of topological degree
arguments. The following example illustrates a case where such an approach
can be usefullly employed. For brevity, we will be sketchy, referring to [12]
for some more detail.

It concerns the problem of finding the equilibria of a plasma confined in
a toroidal cavity, which leads to a free boundary problem of the form:

Given I >0, find a > 0, Q, C 2 and v € C*(Q) N C*(Q — Q,) such that

—Av = o(v), v20, in Q,

v = 0 on 09,
~Av = 0in Q-0 (8.29)
v = —a on 9N
—fangﬁ = 1T

Above, §, is the region filled by the plasma (the physically relevant case is
when , CC Q), o is a given function related to the electric field, n is the
unit, outer normal at 99, and I is the total current.

On o we suppose that:

(01) o0 € C*(R*,RY) is non-decreasing;
(02) 0(s) < @s + B, with & < A1, B > 0%
(03) o(0+)=0>0

Let us observe that, dealing with a plasma, it is rather natural to take a
nonlinearity o such that o(s) is strictly positive for all s > 0.
As before, setting p(s) = h(s)o(s), (h denotes the Heaviside function),

2hereafter A\; denotes the first eigenvalue of —A on 2 with zero Dirichlet boundary
conditions.
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and u = v + a, (8.29) becomes

{ @) —Au = p(u—a) in Q
) u = 0 on O (8.30)
(i) —fout =1

With this notation, Q, = {z € Q: u(z) > a} and Q, CC Q iff a > 0.
Let
To ={z € Q:u(z)=a}.

Theorem 8.14 Suppose (? is Steiner symmetric and let o verify (c1—2-3).
Given I > 0, let b satisfy b|Q| > I.

Then there exists a > 0 such that (8.30) has a symmetric solution v €
Ci(Q)NC?*(Q2 —T,) such that |T4| = 0, corresponding to a region Q, CC Q.

Proof. (Outline) First, we study the boundary value problem (8.30-i-ii):
taking a as a parameter, we estabilish the existence of a bounded, connected
branch S of solutions (a, u,) bifurcating from ¢ = 0, u = 0, with a behaviour
like that indicated in the figure below.

For (a,u) € S we define a real valued map h by setting
h(a,u) = — /an gl% = /ﬂp(u — a)dz.
Plainly, & is continuous on S, k(0,0) = 0. Moreover, if w is a positve solution
of (8.30-i-ii) with a = 0, such that (0,w) € S, then

h(0,w) = [ p(w)dz 2 b-19].

Since h is continuous, the assumption b|Q2| > I implies the existence of a
(@,@) € S, @ > 0 such that h(a@, @) = I. This proves that % is a symmetric
solution of (8.30) corresponding to a region €, CC 2, because @ > 0. m



9 Vortex Theory

This section contains a short discussion of a classical problem, the exis-
tence of stationary vortex rings in an ideal fluid, which can be formulated as
an elliptic problem with a discontinuous nonlinearity. We shall see that the
variational tools developed so far can be adapted to handle such a problem.

A. FORMULATION OF THE PROBLEM. Consider an ideal (namely invis-
cid and with uniform density) fluid in R3® and assume it has a cylindrical
symmetry. Let (7,6, 2) denote cylindrical coordinates and set

I ={(r,2) : r>0}.

In view of the symmetry and since the fluid is incompressible, there exists
a Stream Function, referred to as the Stokes stream function, ¥ : II — R,
¥ = ¥(r,z), such that the velocity field q and the vorticity curl q have

cylindrical components
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