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La chaire Lagrange

La chaire Lagrange est nee d'une idee de Monsieur Jean-Claude Arditti,
Conseiller Scientifique pres PAmbassade de France a Rome: il s'agissait
d'etablir en France et en Italie un fonds permettant a un eminent mathemati-
cien de chaque pays de donner un cours dans une Universite de Fautre pays,
commemorant ainsi- la carriere de Joseph Louis Lagrange (1736-1813), ne a
Turin et professeur dans cette ville, puts a Paris. En outre, ce fonds devait
permettre Paccueil d'un jeune chercheur de chaque pays dans une equipe de
Fautre pays.

Cette initiative a recueilli Ie patronage des ministres fran^ais et italien
charges de la Recherche, Messieurs Curien et Robert!; Ie Ministere Frangais
de la Recherche et de la Technologie a assure Ie financement fran^ais de la
premiere annee de ce programme, et en a confie la gestion scientifique et
administrative au Comite National Fran^ais de Mathematiciens.

C^est Ie professeur A. Ambrosetti, de PEcole Normale Superieure de Pise,
qui a ete choisi pour inaugurer la chaire Lagrange: Ie present volume est
issu du cours qu^il a donne a 1'Universite Paris-Dauphine en mat et octobre
1991. La subvention du M.R.T. a permis en outre de financer une "Bourse
Lagrange" d'un an : cette bourse a ete attribuee a Monsieur G. Pareschi.

Au nom du C. N. F. M. , je tiens a exprimer ma vive reconnaissance
au Ministere de la Recherche et de la Technologie pour avoir permis Ie
demarrage de ce programme, ainsi qu'a la Societe Mathematique de France
pour avoir menage une place pour les cours de la Chaire Lagrange dans la
serie des "Memoires".

Je forme Ie voeu que la qualite de Fouvrage du Professeur Ambrosetti
contribue a mciter des organismes publics ou prives a nous aider a faire
vivre la Chaire et la Bourse Lagrange, renfor^ant ainsi une cooperation
mathematique seculaire.

Jean-Michel Lemaire
President du C.N.F.M.
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Critical points
and nonlinear variational problems

Antonio Ambrosetti (*)

Abstract. This monograph deals with critical point theory and its
applications to some classes of nonlinear variational problems. The abstract
setting includes the Lusternik-Schnirelman theory and minimax methods for
unbounded functionals. Applications to elliptic boundary value problems,
Vortex theory, homoclinic orbits and conservative systems with singular
potentials are discussed.

Resume. Cette monographic traite de la theorie des points critiques et
de ses applications a quelques classes de problemes variationels non lineaires. Le
cadre abstrait comprend la theorie de Lusternik-Schnirelman et les methodes de
minimax pour des fonctionelles non bomees. Nous examinons des applications
a la theorie des problemes aux limites elliptiques, a celle du vortex, aux orbites
homocliniques, et aux systemes conservatifs avec potentiels singuliers.

(*) Texte recu le 13 d6cembre 1991
A. Ambrosetti, Scuola Normale Superiore, Piazza dei Cavalieri
56 100 Pisa, Italic
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Introduction

This monograph is based on a series of 12 Lectures given, partly in May
and partly in October 1991, at CEREMADE (University of Paris IX) in the
frame of the 'Chaire Lagrange5.

In these Lectures we intended to discuss some classes of nonlinear prob-
lems, variational in nature, with the common feature that their solutions
arise as saddle points of suitable functionals.

In the first part, from section 1 to section 5, we deal with the Theory of
Critical Points which provides the underlying abstract setting for the appli-
cations. Our review covers both the classical Lusternik- Schnirelman theory,
as well as the more recent min-max results, such as the Mountain-Pass and
the Linking theorems, that permit to handle unbounded functionals. In this
part, many proofs are omitted or simply outlined. In some more details we
have reported the proofs that do not require many technicalities or that are
slightly unusual.

The second part is concerned with applications to nonlinear variational
problems.

Semilinear elliptic boundary problems, which motivated much work in
critical point theory, are studied in sections 6 and 7. Existence and multi-
plicity results are discussed, depending on the behaviour of the nonlinearity
at zero and at infinity.

In section 8 we report on some recent papers dealing with elliptic equa-
tions with discontinuous nonlinearities which model several problems in
Plasma Physics. The approach we propose is rather simple and allows us to
obtain several precise results.

Another classical problem where discontinuous nonlinearities arise in a
natural way is the existence of vortex rings in an ideal axisymmetric fluid,
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discussed in section 9. A new feature of this problem with respect to the
previous ones is that it gives rise to a free boundary problem on an un-
bounded domain and the solutions are found using a limiting procedure.
Our discussion covers both the case of a superlinear 'vorticity function', as
well as the case, perhaps more interesting, of a bounded 'vorticity function5.
A remarkable feature in the latter is that the solution is found as limit of
'Mountain-Pass5 critical points of the functionals related to the approximat-
ing problems. The limiting process converges just because of the specific
topological features of those Mountain-Pass critical points.

A similar approach is used in section 10 to prove a general result con-
cerning the existence of homoclinic orbits for a class of conservative systems
with n degrees of freedom.

In sections 11, 12 and 13 we report on some recent works dealing with
Conservative Systems with Singular Potentials. The systems we deal with
include, as particular cases, the classical problems of Celestial Mechanics,
like perturbation of Kepler's problem or the N-body problem. These classi-
cal mechanical systems are studied here from the perspective of Nonlinear
Functional Analysis (or, more precisely, of the Calculus of Variations in the
Large) rather than that of Celestial Mechanics. Our main interest is not so
much in the stability or in other precise properties, perturbative in nature, of
specific orbits. Our goal is rather to show that the Critical Point Theory can
be adapted to obtain solutions in the large of these classes of problems and
to understand which properties of the potentials play the role, and where.

In the second part, many proofs are given in detail, some others are
outlined, only a few are omitted for the sake of conciseness. For these
latters, however, precise references are given.

The Bibliography does not escape the usual rule of being incomplete. In
general, we have listed those papers which are more close to the topics dis-
cussed here. But, even for those papers, the list is far from being exhaustive
and we apologize for omissions. Further references can be found in [73], [98],
[120], or in the monographs [102] and [110].

This paper would never have appeared without the collaboration with
several collegues and friends. It is a pleasure to warmly thank all of them,
especially Vittorio Coti Zeiati, Ivar Ekeland, Mario Girardi, Gianni Mancini,
Michele Matzeu, Giovanni Prodi, Paul Rabinowitz and Bob Turner.

I am greatly indebted to CEREMADE for the very kind hospitality.
Last, but not least, I would like to express my gratitude to Marino Badi-

ale, Maria Letizia Bertotti, Ugo Bessi, Anna Maria Candela, Monica Lazzo,
Pietro Majer, Lorenzo Pisani and Enrico Serra, for all the very stimulating
and fruitfull discussions.



1 Preliminaries

Let E be a (real) Banach space with norm || • || and / : E —> R a C1

functional.
A critical (or stationary) point of / is a K G £* such that <y(^) = 0. We

say that c G R is a critical level of / if there exists a critical point u of /
such that f(u) = c.

If E is a Hilbert space with scalar product (•[•), the gradient /' of / is
defined by setting

(f\u)\v) = df{u) . v Vi;€^. (1.1)

Hence, in this case, a critical point of / is nothing but a solution of the
equation

f'(u) = 0 .

An operator A : E —>• E is called variational if there exists a functional
/ (E C\E, R) such that A = f.

A problem that is translated into a functional equation A(n) = 0 is called
a variational problem whenever the operator A is a variational operator.

The following examples illustrate the typical kind of nonlinear variational
problems we will deal with in the sequel.

Example 1.1 Let Q C R^ be a bounded domain with smooth boundary
9flnndE=H^W.

Let p : Q x R — ^ R b e a continuous function such that

1^,5)1^1+021^ (1.2)
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where
7 V + 2

^ <: Tr—7. ^ N > 2 , if N = 1,2 ^ is unrestricted .
./V ~~ jL

From now on in the rest of the paper we will always consider the case N > 2;
if N = 1,2 the arguments can be carried over with minor changes.

Let P{x,s) = ^p(x,r)dr. Then

^s^^a^+a^.

Since £ + 1 ̂  ^2 = 2^ then JE; = ̂ W C ^(Q) (Sobolev embedding
theorem) and it makes sense to define <f>: E —> R,

</>{u)= I P(x,u(x))dx.
JQ

Moreover, using also (1.2), it is easy to verify that (f> € C^-E^R) and

d(/)(u)v == / p(x^u)v dx.
Jo,

See [25, Ch I, Section 2].
Let us remark, for future reference, that if £ < ̂ j then E is compactly

embedded into -Z/4'1^) and this readily implies that the gradient (f>' of (j) is
compact.

Let / <E C\E,R) be defined by setting

fW^f^Wdx-W.

According to (1.1), if u € E is critical point of / then there results

(f'(u)\v) = / [V2i • Vv - p(x, u)v} dx = 0, V v € H^fl).

Hence u is a weak solution of the semilinear Dirichlet boundary value prob-
lem

{ —An = p(x^u) in fl,
u = 0 on <9Q

Ifp is locally Holder continuous, a standard boot-strap argument shows that
u is, in fact, a classical solution. •

Example 1.2 Let V : R" -^ R be a C1 potential and L a Lagrangian
function of the form

L^ ^) = S ^J^W - v((l)
i^tj^"



PRELIMINARIES 9

where dots denote time-derivatives and a,j e C'^R/^R) satisfy

E%W '̂ ̂  a^2 , ^ > 0,V^ g € R".

Setting ST = [0,r]/{0,r},r > 0, and E = ̂ (S^R"), let us define the
functional / : E —»• R by:

/(u)= f L(u,u)dt.
Jo

A critical point of / turns out to be a (weak and, by regularity, classical)
T-periodic solution of the Lagrangian system

d 9L _QL_
~dt~9q ~~ ~9q'

We anticipate that in sections 11, 12 and 13 we will deal with gravitational-
Hke potentials. They are not defined on all of R" but have rather singulari-
ties: an example is the Newtonian potential —|.c|~1. The functional setting
appropriate to these classes of problems will be discussed in the sections
above.a

Let us remark explicitely that in the sequel the symbol L will be also
used with different meaning. For example, in Sections 6, 7, 8 and 9, it will
denote an elliptic partial differential operator.

Let M be a C1 Riemannian manifold modeled on a Hilbert space E, and
let / G (^(M, R). A critical point of / (constrained) on M is a u G M such
that f'^{u) = 0. Here /^ stands for the gradient of / on M.

In the sequel we will deal with the specific case in which M is a manifold
of codimension 1 in E. By this we mean that there is a functional g G
C^.R) such that

M = {u G E : g(u) = 0}

and g ' { u ) 7^ 0 V u G M. Here the tangent space to M at u is given by
T^M = {v € E : Q/(^)|iQ == 0} and a critical point of / on M is a u e M
such that (f'(u)\v) == 0 for all v C T^M. Hence u satisfies

f'(u) = \g'(u)

for some A G R (Lagrange multiplier rule).
In applications, constrained critical points correspond to solutions of

variational eigenvalue problems

A(u) = \B(u)
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where A, B are variational operators.

Example 1.3 Let ft,£1 and P be as in Example 1.1, and set

f(u)=^P(x,u)dx

g(u)= ( IVz^Ac-l.
JQ

Then M is the Hilbert unit sphere {u e E : f^ ̂ u^dx == 1} and the critical
points of / on M are the solutions of the semilinear eigenvalue problem

f -AAn = p(x,u) in f2
1 u = 0 on <9Q^ =

In some cases it can be convenient to look for stationary points of / (i.e.
u e E such that f'{u) == 0) as critical points of / constrained on a suitable
manifold. Since in the sequel we will be interested to find nontrivial (i.e.
u -^ 0) critical points of /, we will consider .this specific situation only.

Let E be a Hilbert space, / e C^E.R) and set

Mf = {u e E : u ̂  0, (f'(u)\u) = 0}.

Proposition 1.4 Let g(u) = (f'(u)\u) and suppose

(g^u^^O V z x e M y . (1.3)

Then f(u) == 0, u ̂  0, if and only if u is a critical point of f constrained
on Mf.

Proof If (1.3) holds, then Mf is a (C1) manifold of codimension 1 in E. If
u 6 Mf is such that

f'{u) == \g'(u)
for some A 6 R, it follows

(fW^^X^g'^u).

Since (f(u)\u) = g(u) = 0 and (g'(u)\u) ̂  0, then A = 0 and f(u) == 0.
Conversely, it suffices to remark that any u e E, u ^ 0, satisfying

f'{u) = 0 belongs to Mf because g(u) = (f(u)\u) = 0. •
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Let E be, say, a Hilbert space, and let / € C^jE^R^be a functional
which is weakly lower semi-continuous, namely f(u) ̂  liminf/(^n) for each
sequence u^ —^ n, and coercive, namely

f(un) -»• +00 as |[̂ || -^ 4-oo .

Then it is well known that / is bounded from below and attains the (global)
minimum: there exists u* 6 E such that

/(^) = min{/(tA) : u e E}

Such a u* is obviously a critical point of /.
Besides variational problems whose solutions correspond to minima (or

maxima), there is a broad variety of cases where one looks for critical points
different from minima. This can happen either because the functional /
is not bounded from below (nor from above), or because / is not coercive,
or because the minimum (exists, but) is not relevant for the problem (for
example, it corresponds to the "trivial" solution), or else for some of the
preceding reasons together. Another case arises when the problem inherits
a symmetry and one expects "many" critical points.

The main goal of the next 4 sections is to discuss some topological tools
that will allow us to handle these situations.
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Notation.

In addition to those introduced in the preceding section, we list here the
notation we will more ordinarily use in the rest of the paper.
If E is a Banach space and u C E, we set Br{u) = [v e E : \\v - u\\ < r}
and 9Br(u) = {v € E : \\v - u\\ = r}. For brevity, when u = 0 we will
simply write Br (resp. 9Br) for Br(Q) (resp 5^(0)).

Function Spaces. Let Q be an open subset of R". We denote:
1^(0), 1 <: p <, 4-00 : Lebesgue spaces;
| • |p : norm in I^(^);
H^^): Sobolev spaces;
|| • ||jfc,p: norm in ^'^(0);

If M is a manifold on E (see section 1) and / 6 C^Q, R), we set:
f^{u e M : f(u) ̂  c};
/^={^ e M : a ̂  /(u) ^ 6};
J<={^ e A.f : /^(tz) = 0};
K,={ueK:f(u)=c}.



2 Lustermk-Schnirelman theory.

The Lustermk-Schnirelman Theory is, jointly with the Morse Theory
(that will not be discussed in this paper), one of the most classical and
powerful tool in Critical Point Theory. In this section we will discuss those
results we will need in the sequel. For conciseness reasons we will not carry
out the details of many proofs, which would require several technicalities.
We will rather attempt to highlight the main ideas of the theory.

Let X be a topological space and A C X , A -^ 0. A map (p G C{A,X)
is a deformation if there is a homotopy h 6 C'([0,1] x A, X) such that

/i(0, •) = (p , h(l, •) = identity .

A is contractible (to a point Uo) in X if there is a deformation (p € C(A,X)
such that (p(u) = UQ.

The category of A relative to X^ cat{A\ X), is the smallest integer k such
that

A C Ai U ... U Ak

with Ai closed and contractible in X, for each i = 1,..., k. If there are
no such integers, we set cat(A',X) = +00. We set also cat(9',X) = 0, and
abbreviate cat(X) for cat(X',X).

The main properties of the category are collected in the following

Lemma 2.1 Let A,B C X.
(i) ifACB then cat(A', X) <, cat{B\ X);
(ii) cat(A U B; X) <, cat(A', X) + cat(B', X);
(Hi) if(p C C(A,X) is a deformation and A is closed, then

ca^(A);X)^c<A;X);
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(iv) let X be an ANR (Absolute Neighbourhood Retract) and 1C C X be
compact. Then cat(1C\ X) < +00 and there exists a neighbourhood U of 1C
such that cat(U\X) = cat{K,\X).

Examples 2.2 (i) Let 5"-1 = [x e R" : \x\ = 1}. One has: cat^-1) = 2.
(ii) Let T18 = S1 x S1 x ... x S1 (k times) denote the ^-dimensional torus.
There results cat^) = k + 1.
(iii) Let us consider the representation of Za over R"

T(0) = id, T(l) = - id,

and let P" = ^""^/Zs denote the corresponding projective space. As a
consequence of the Borsuk Antipodensatz [98, chapter 5] one proves that
ca^P") == n. In addition, if E is a separable, infinite dimensional Hilbert
space and

5°° = {u € E : [HI = 1} ,

letting
POO==500/Z2 ,

there results cat(P°°) = +00.
(iv) Let A denote the loop space of those u e .^(-ST^R^) (see notation
introduced in Example 1.2) such that \u(t)\ = 1. It has been shown [76]
that cat(A) = +00. •

The category can be employed to find critical levels of min-max type.
For all k <^ cat{X), we consider the class Ak of all subsets A C X such

that ca^(A; X) >, k and define

c, = mf [sup{/(u) : u C A]}. (2.1)
Ae^t

Note that since Ak D Ak+i then

c\ <: C2 <: . . . ̂  Ck <: Ck+i <:....

In order to show that c^s are critical levels, we suppose that

(AO) X = M is a complete, C1 Hilbert manifold and / C C^M.R).

In addition, the following compactness condition introduced by Palais
and Smale [105] is in order. We say that (M,/) satisfies (PS), or simply
that (PS) holds, if
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any sequence {un} C M such that

|/("n)|^ const. (2.2)

/M("n) -+ 0. (2.3)

has a converging subsequence.

Any sequence satisfying (2.2) and (2.3) will be called a PS-sequence.

Theorem 2.3 Let M,f satisfy (AO), ( P S ) and let f be bounded from below
on M:

/(n)^ao, VneM.

Then:
(i) each Ck < +00 is a critical level for f on M;
(ii) if c := Ck = cjb+i = ... = Ck+m then cat(Kc', M) >. m +1;
(Hi) if Ck = +00 for some k, then sup{/(u) : u 6 K} = +00.
In particular, f has at least cat(M) critical points on M.

If E is finite dimensional and M is compact, theorem 2.3 goes back to
Lustemik-Schnirelman [96]. For the extension to infinite dimension (under
the assumption that both / and M are C2) see, for example, [91] and [113].
Palais [104] handled the case of Finsler manifolds M modeled on a Banach
space (see also Browder [53]) and C1 functionals. Finally, Szulkin [123] has
weakened the regularity assumption on M, showing that C1 suffices.

In order to highlight the role of (PS), let us outline the proof of (ii). First
of all, one uses (PS) to deduce

Lemma 2.4 Let c C R and suppose (M,/) verifies (PS). Then
(i) Kc is compact;
(ii) for all £ > 0 and any neighbourhood U of Kc there exists a > 0 such
that\\fM\\^a>0

for all u € f^ - U.

Using Lemma 2.4 (ii) one proves the following

Lemma 2.5 (Deformation Lemma) Let f be as in Theorem 2.3.
(i) If Kc = 0, V c G [a, 6], then /6 can be deformed in /a.
(ii) Given c 6 R, £ G (0, ~] and any neighbourhood U of Kc there exist
6 G (0, e[ and a C C([0,1] x M, M)
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such that, for all 6 < d < j, there results

cr(0,n) ==n, V u € M (2.4)

a(^)==n, VO^^ l , V z z ^ /^ (2.5)

f(a(t,u}) <, f(u), V O ^ ^ l . V z z e M (2.6)

/(a(l,u))<c-6, V ne/^-^ (2.7)

Roughly, if / is C2, a is found by using the flow generated by a Cauchy
problem like

f a' = X(a)
\ <r(0) = u

where a' = da/dt and X is the locally Lipschitzian vector field such that
X = —f'M m tne ^P f^i an^ ^r = 0 in the complement of the strip
f^. If / is merely C1 one uses the so called Pseudo-gradient Vector Fields
introduced in [104].

It is worth pointing out that (2.7) follows from Lemma 2.4 (ii).
Finally, the Deformation Lemma is used to define a deformation y? :=

<7(1, •) with the property
^(A-iocr-6

for all A C /c+6 (6 > 0 small enough, U neighbourhood of J<c).

We are now in position to prove the claim (ii) of Theorem 2.3. Suppose,
by contradiction, that

cat(K^M) <, m.

Since Kc is compact (Lemma 2.4 (i)) we can use Lemma 2.1 (iv) to find a
neighbourhood U of Kc such that

cat(U',M)= cat{Kc', M) <, m .

Using the definition of c = Ck+m^ there is A C Ak-^m such that A C /c+6. Let
A! ==_A - U. From Lemma 2.1 (ii) it follows that cat(A'; M) >_ caf(A; M) -
cai{U\ M) >, k + m - m = k, namely A' € A- Then, for y?(A') one has:

^(A') G Ak (Lemma 2.1 (iii))

^(A') C r6 (from (2.4))

These two relationships are in contradiction with the definition of c = Ck. •
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Remarks 2.6 (i) In order to show that a certain value c e R is a critical
level, one can assume, instead of (PS), the following

(PS)c any sequence {u^} e M such that /(^n) —>• c and /^(^n) ~^ O? nas a

converging
subsequence.

Actually, (PS)c suffices to prove the Deformation Lemma.
(ii) Let us state, for future reference, a result which can be deduced from the
Deformation lemma. Let a < b be such that (PS)c holds for all c G [a,&],
Kb = 0 and cat^'.M) < +00. TAen cat^'.M) < +00.

To see this, let K^ = K H /^. Since (PS)c holds for all c 6 [a,6], it
follows that K^ is compact. Let U be a neighbourhood of K^ such that
cat(U\M') = ca<(J^;M) < +00 and let u be any point in K^. Applying
the Deformation Lemma with c = f{u), and U as above, we find a 6 = 6{u)
such that f^6 - U can be deformed in f0'6. Let [c, - ̂ -, c» + ^-], 1 ̂  z ^ m,
be a finite covering of [a, 6], with Cm + <^m ^ ^- Using the properties of the
category, it follows that

c^CT-^M) >: cat^f^61 - U;M) ̂  cat^-^'.M) - cat(U;M),

(l<:i^ m).

This, together with statement (i) of the Deformation Lemma, yields:

ca^(/6; M) == cat^^'.M) ̂  cat{f^~61; M) + m • ca^((7; Af)

^ ca^/0; M) + m ' cat(U; M)

and the claim follows.

Among the possible applications of Theorem 2.3 let us recall the case
when M is homeomorphic to the unit sphere 5'°° of an infinite dimensional,
separable Hilbert space E, through an even homeomorphism. If 0 ^ M and
M = M/Z2, then M ̂  P°° and cat(M) = +00. Let / C C^(E, R) be even.
Then / induces a C1 functional / whose critical points on M correspond to
pairs of critical points (n, —u) of / on M. Then, if such an / is bounded
from below on M one finds

Theorem 2.7 Suppose (M,/) satisfy (AO) and (PS) and let f be bounded
from below on M. Moreover let 0 ^ M, let M be homeomorphic to S°°
through an even homeomorphism and let f be even. Then f has infinitely
many (pairs of) critical points on M.
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Proof. It suffices to take into account the preceding discussion and note
that (M, /) satisfies (PS) whenever (M, /) does. Then Theorem 2.3 applies
to (M,/) and / has cat(M) = cat(P°°) = +00 critical points on M. •

Remark 2.8 A counterexample [91, Chapter VI, section 4] shows that if
an even / is perturbed through a non-even functional /i, then / + ef\ can
have only a finite number of critical points on, say S°°. •

As another application of Theorem 2.3, let us consider a functional / :
E —> R of the form

/M-jlHI2-^)
where E is a separable, infinite dimensional Hilbert space and (f> G C2(E^ R).

Let ^(u) = (<^(2z)|u). We suppose (j> satisfies (Al):
(Al.l) 3 0 < 9 < j : <f>{u} <, e(<f>'{u)\u)\/ u e E ' ,
(A1.2) (^(O) = 0 and V u ̂  0, ^(su) = o(s2) as s -^ 0;
(A1.3) V u ̂  0, s-2^^) —^ +00 as s -^ +00;
(A1.4) (<f>'(u)\u) < {<i>"{u)u\u) V u + 0;
(A1.5) (f) is weakly continuous; (j)' and ^' are compact.

Theorem 2.9 Suppose <f> G ^(-E^.R) satisfies (Al) and is even. Then
f(^u) = -m|2 — <f)(u) has infinitely many (pairs of) critical points.

Proof. We use Proposition 1.4. Here one has

g(u) = |H|2 - (^(u)|u)

and hence
Mf={ueE:u^O, IHI^ ((f>'(u)\u)}.

Using (A1.4), for all u 6 Mf there results

(g\u)\u) = 2|H|2 - ̂ '(u)\u) - ̂ "(u)u\u)

= (<?!>'(u)|M) - (<f>"(u)u\u) < 0. (2.8)

Moreover (A1.2) plainly implies

3 p > 0 : |H| >. p V u <= Mf . (2.9)

Using (Al.l) we find for all u 6 Mf

/(") = jiMI2 - ̂ (") ̂  jiMI2 - 8(4>'(u)\u)
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=(J-^)lH12. (2.10)

In particular, since 0 < j, / is bounded below on Mf. Indeed, from (2.9)
f{u) >. (t- 0) p > 0 V u € Mf.

Next, we claim that (M/,/) satisfies (PS). Indeed, let Un e Mf be such
that

f(un) <: const. (2.11)

^n == /M(^n) -̂  0. (2.12)

Since 0 < ̂  (2.10) and (2.11) imply that \\Un\\ ̂  const., and ̂  — u, up to
a subsequence. There results

f{Un) = JIM2 - ̂ ,) = J(^(^)|^) - ̂ ,).

Since ^ is weakly continuous and <^ is compact, it follows that f(v,n) -^ f(u).
This, jointly with (2.9) and (2.10), yields f(u) > 0 and hence u ̂  0. Next,
one has

n̂ = f'(Un) ~ A,^^,)

where An = (/'(^Ol^n)) • llp^^n)!!"2. Taking the inner product with ̂
and recalling that (/'(un)]^) = g(u^) = 0, we find

>n(g\u^\Un) == -(^|^). (2.13)

As Un —sk u, using the compactness of (f>' and ^/, one has

Q/(^)K) = (^(^)|^) - (^(^)^|^) ̂

-.(^(z2)|u)-(^(zx)^)<0 (2.14)
because u ̂  0. Since ̂  -^ 0, (2.13) and (2.14) imply A» -^ 0. Taking into
account that f(un) = ̂  - <^n) and ^(^) = 2^ - ̂ /(^), it follows

(1 - 2A,)^ = ̂ (^) - A^'(^) 4- ̂  .

Since \n —^ 0, ̂  -^ 0 and <^ , •0' are compact, it follows that Un —^ u (up
to a subsequence). This proves (PS).

Finally, let us show that Mf is radially diffeomorphic to 5'°° = {u e E :
IMI = 1}. Indeed, V u € 5°° and s > 0, one has

7(5) =^g(su)= l-^'(su)\su).
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Hence, by (Al.2 — 3), it follows that the equation 7(s) = 0 has a solution
s > 0. This solution is unique, because

Y(5) = 4 [(^MM - (<l>"(su)su\su)} < 0,s

by (Al.4). Moreover, since (j) is even, then My is symmetric with respect
to 0. Let Mf = M//Z2. It follows that cat(M^) = cat(P°°) = +00, and
Theorem 2.7 applies. •

Example 2.10 Keeping the notation introduced in Example 1.1, we let

|[d|2 = / |Vzz|2^
Jn

and suppose? ^ C'^R)1 satisfies: (i) p(5) = s~lp(s) is convex; (ii) p ' ^ s ) > 0;
(iii) j9 —>• 0 (resp. —>• +00) as s —>• 0 (resp. +00); (iv) p is odd; and (v) p,
5p'(5) and s2?"^) satisfy the growth restriction (1.2). It is easy to check that
(Al) holds true and Theorem 2.9 applies, yielding the existence of infinitely
many solutions of

f -Au = p(u) in n
[ u = 0 on <9Q

Semilinear elliptic problems will be discussed in greater generality in Sections
6 and 7. •

When dealing with even functionals on a symmetric (here symmetry
means Z2-symmetry) manifold, an alternative way to proceed is to define
on the class

S == {A C -S — { 0 } : A is closed and symmetric}

a map (called genus) 7 : S —> N U {+00} by setting 7(0) = 0 and, if A ̂  0,
by letting 7(A) be the smallest integer k such that there exists zp € C(A, R^),
^ odd and i^(u) -^ 0 V u G A. One sets also 7(A) = +00 if there are no
integers with the above property.

The genus verifies properties similar to those listed in Lemma 2.1, namely

Lemma 2.11 Let A,B e S.
(i) if A is finite (and non-empty), then 7(A) = 1;
W 7(A)^7(5)^ACB;

l{oT simplicity, p is taken to be independent of x
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(in) 7(AU5)$7(A)+7W;
(iv) 7(<^(A)) ^ 7(A) i/ (p is continuous and odd;
(v) if K. € S t5 compact then ̂ (fC) < +00 and there exists a neighbourhood
U ofK,

U €'S, such that ^(U) = 7(JC);
(vi) if AT C R" i5 a hounded, symmetric neighbourhood ofO then 7(cW) =
n.

Let us recall that Property (vi) above follows from the Borsuk Antipoden-
satz. As a consequence one has

7(5"-1) = n

as well as
^S°°) = +00.

When / is even and M e S is a C1 submanifold of E (namely M = {u e
E : u ^ 0,g{u) == 0} with g € C\E,R), g\u) ̂  0, for all u e M and g
even), one can use the genus to define critical levels of min-max type. Let
us outline the procedure, starting with the counterpart of (i) and (ii) of
Theorem 2.3.

Lemma 2.12 Let M C E he a C1 submanifold of E and let f € G^.R)
be even. Suppose that M, f satisfy ( P S ) and let

Ck = inf [max [f{u) : u 6 A}].
ACEOM l ' v / J J

7(A)^

If Ck C R then Ck is a critical value for f. Moreover if c = Ck = ... = Ck+m
then 7(J<c) ^ m + 1. In particular, if m > 1 then Kc contains infinitely
many critical points.

The proof can be carried out as in Theorem 2.3, taking into account
that: (a) since / is even and M == ^(O), with g even, then f^ is odd and
the deformation y found in the Deformation Lemma can be chosen to be
odd; (b) this allows us to use Lemma 2.11-(iv); (c) the property ^{Kc) > 1
implies that Kc contains infinitely many critical points, in view of Lemma
2.11-(i).

Among others, let us remark that Lemma 2.12 permits to re-obtain The-
orem 2.3.

As an application of the preceding arguments, let us consider a functional
/ eC^E.R) of the form
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fW == ^IMI2 - 2(^1^ + ̂ (n) (2-15)
where

A e L(E,E) is positive, selfadjoint and compact (2.16)
g(u) = o(|H|2) at u = 0. (2.17)

Let 0 < /zi ^ ^2 <: ' ' • denote the characteristic values of A with corre-
sponding orthonormal set of eigenfunctions v,:

p,iAvi = Vi .

Theorem 2.13 Let f C C^E.R) be of the form (2.15) with A and g sat-
isfying (2.16) and (2.17), respectively. Moreover suppose f is even, bounded
below on E and that (PS) holds.
Then f has at least k (pairs of) nontrivial critical points (^,,—u,), i =
1, • • • , k, whenever /^ < 1 <, ̂ -n. Moreover /(iz.) < 0.

Proof. Consider the min-max levels Cj defined in Lemma 2.12 (here it is
understood that M = E - {0}) and consider the sets

B^=(ueM:u==^a^ i>?=52}.
^ »=i »=i J

Plainly, B^ ^ ̂ -1 and thus ̂ (B^) = k. For u G Bk,e one readily finds

/(^——EO-1^2^2).z t=i ^*
Since ^ <, ' • ' <, ̂  < 1, it follows

/(^^(l--1)^^2)^ (2.18)
L l^k

whenever £ > 0 is small enough. Since 7(B^) == k, (2.18) implies that
ci <, • • • <, Ck < 0. Since / is bounded from below , then -oo < Ci. Lastly,
since (PS) holds, then by Lemma 2.12 / has at least k pairs of critical points^
they are nontrivial because f(ui) = c. < 0. This completes the proof. •

Let us point out that the procedure discussed above can be carried over in
other problems which inherit a symmetry. For example, this is the case deal-
ing with autonomous Hamiltonian Systems, when the corresponding func-
tional / turns out to be S1 invariant. We will not carry over this kind of
problems. The reader is referred, for ex., to [41].



3 The Mountain-Pass Theorem

The purpose of this section is to discuss min-max procedures to find
critical points for a class of functionals which are possibly unbounded, both
from above and from below.

The first case we will deal with concerns roughly a functional /, defined
on a Hilbert £1, that has a strict local minimum, say at 0, is negative some-
where else, and satisfies (PS) (by this we obviously mean that condition
(PS) introduced in the preceding section holds, with M = E). A functional
of this kind has been considered in Theorem 2.10, and has the form

/(^=jiHr-^)
where <f> is "superquadratic" {see condition Al-i).

The main existence result, the so called Mountain-Pass Theorem [26], has
a large variety of applications to concrete problems arising in Mathematical
Physics.

A second case is concerned, roughly, with functionals of the form

f(u) = J(An|zi) - cj>(u)

where <f> is still "superquadratic", but A is possibly not positive definite. This
is also a case which arises frequently in applications and will be discussed in
Section 4 below.

Let E be a Hilbert 2 space and let / e C^E, R). We suppose that there
exist two points UQ and u^ e E and numbers p > 0 and a such that the
following conditions (A2) hold true:

2most of the results can be extended to Banach spaces with minor changes.
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(A2.1) f{u) ̂  a for all ^ € 9Bp(no) = {^ € E : \\u - UQ\\ = p};
(A2.2) ho-MI || >P;
(A2.3) f(uo) and /(izi) < a.

In correspondence to HO and u\ we define

F = {7 e C([O^E) : 7(0) = uo and 7(1) = M

and
c = c(r,/) = ̂  [max{/(7(t)) : 0 ^ ̂  1}]. (3.1)

Note that c < +00.
Theorem 3.1 Let f G C .̂R) satisfies (A2) and (PS)c. Then f has a
critical point u ̂  0, U^UQ^U^ such that f(u) = c>, a.

Proof. Let a' == max{f(uo),f(ui)}. Since \\UQ - u^\\ > p then each 7 G F
intersects the sphere ||u — no|| = P- Then (A2.1) and (A2.3) imply

c ̂  inf{/(n) : \\u — UQ\\ = p} ^ a > a' .

To prove that c is a critical level, let us suppose, by contradiction, that
Kc = 0. Letting £ = min{c — a'^}, an application of the Deformation
Lemma yields a.0 < 6 < c— a' and a y? = (r(l, •) G C'(i?, £1) such that

y(u)=u, Vue/0-^ ^ 6 < d < c - a 1 (3.2)

/(^))<c-(? Vzxe/^ 6 . (3.3)

Since both /(^o) and /(^i) are ^ a' < c — rf, then (3.2) implies <^(ito) = KO
and ^(^i) = t<i. Thus ( p c j ^ F V 7 € r . By the definition of c, there exists
7 C r such that

max{/(7(^)) : 0 <. t^ 1} ̂  c + 6.

Using (3.3) it follows that max{/(y?(7(t))) : 0 <: t <, 1} < c - <$, a contra-
diction because 95 o 7 e F. •

Remark 3.2 It has been shown [51] that (P5')c can be substituted by the
following weaker condition:

(PS)^ whenever {v,n} € M is a sequence such that f{un) —> c and f^(un} —>
0 then c is a critical value of /. •

Theorem 3.1 has been improved in [83]. Let UQ, i^i G E and C be a closed
subset of E. We say that C separates UQ and u\ if they belong to disjoint
connected components of E — C. The following result holds:
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Theorem 3.3 Let f 6 (^(i^R)3 anrf suppose there exist UQ^UI 6 E and
C C E, closed, such that C separates UQ and u^. Let T and c be defined as
in Theorem 3.1; we assume f satisfies (PS)c and

c=max{/(no),/("i)}

f(u)>,c \/ueC .

Then there is u e C, such that f^u) = 0 and f(u) = c.

In some applications it will be useful to sharpen Theorem 3.1 by saying
something more on the nature of the critical point found through the min-
max procedure (3.1). If / 6 ^(.E^R) and u is a critical point of /, we set
E° = ker f"(u) and let E~ (resp. £4') denote the subspaces where f"(u) is
negative (positive) definite. The Morse Index, m(n), of u is the dimension
oi E~ Q EQ\ u is said non-degenerate if E° = {0}.

Theorem 3.4 Let f e C^E^R) satisfy (A2) and (PS)c and suppose Kc
is discrete. Then there exists u* G Kc such that m(u*) <^ 1. Moreover, if
Kc == {u*} and u* is nondegenerate, then m(u*) = 1.

Theorem 3.4 has been found independently in [85] and [6], in the case
when u* is nondegenerate.

Let us sketch the arguments of the last statement. Without loss of
generality we can take u* = 0. By contradiction, let us suppose that m(u*) ^
2. Then E = E~ © £1"1", with dim£'"" >, 2 and each u can be written in a
canonical form u = u~ + zz4', where u^ ^ E^.

If u* =0 is nondegenerate, by the Morse Lemma one has, up to a regular
change of co-ordinates

f(u)=c-\\u-\\2+\\u+\\2+R(u)

where R(0) = R(0) = 0.
Let U denote the neighbourhood of u* = 0

U={u=u- +u^ :|M|<a , M|<^} (3.4)

actually the regularity assumption / G (^(i?, R) can be weakened using the Ekeland
e-Principle [72].
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where f3 > a > 0.
For all u G U^ such that \\u^\\ == /?, one has

/(^c^+^+^a2^2)

and hence, taking ft > a > 0 small enough, one infers that

inf{/(n) : n € & , H^H = /?} ^ rf > c . (3.5)

Let 6 > 0 be such that 6 < d — c. By the definition of c there exists 7 6 F
such that f('j(t)) ^ c + < $ V 0 ^ ^ ^ 1 . I n correspondence to the same 6 > 0
and to U given by (3.4) we find y C C(E, E) such that (cf. the Deformation
Lemma)

^(/c+6 - U) C r6 . (3.6)

Plainly, (p o 7 G F. If 7 does not intersect i7, (3.6) yields immediately a
contradiction. Then let <o,^i ^ (0,1) be such that 7(^0) = ZQ and 7(^1) =
2;i € W while 7(t) ^ £7 V ^ < to and < > ^i. Since /(^-) ^ c 4- 6 < d,
(3.5) implies ||2:,~|| = a , H^H < ft for z = 0,1. Let o-, denote the segment
joining Zi and 2;,~. It is easy to see that f^ <: c + 6, Lastly, if dim I?" ^ 2
we can connect ZQ and zf by an arc r contained in 9U H E ~ . In particular,
/|r < c. Let 7 be the path which coincides with 7 for t G [0, to} U [<i, 1] and
with {ao} U {<7i} U {r} elsewhere. One has that 7 G F, /^ <, c + 5 and
{7} n ^7 = 0. Then, by (3.6), f\^ <, c- 6, a contradiction. This shows that
m(u*) <, 1. If m(u*) = 0, we could take a neighbourhood U of u* in such a
way that /|̂  >, d> c and the conclusion follows as before. •



4 Linking Theorems

Let E be a Hilbert space, E = V © IV with dim V < +00 and let w e TV
be given, with ||w|| == R. We set

DR=(BRHV)^[Q,W]

and consider a functional / e C^E'.R) satisfy (A3):
(A3.1) /(O) == 0 and 3 a, r > 0 such that f(u) >_ a V u e 9Br H TV;
(A3.2) 3 J? > r such that /(iz) <, 0 V ^ G <9Z^R4.

Let
F = {/i € C(^, £') : h(u) = u for all u e ^PA}

The following Lemma can be proved by means of topological degree
arguments (taking advantage that dim V < +00).
Lemma 4.1 For all r < R and all h e F, there results

h(Dn) n (9B, n TV) ̂  0 .

From Lemma 4.1 one infers that

max{/(/i(tz)) : h 6 F} $: inf{/(n) : u e <9B, H W} . (4.1)

Define
c = inf [max{/(/i(u)) : n c D^}] .

From (4.1) and using (A3.1) it follows that c ̂  a > 0. Suppose / satisfies
(p<g)^ and let ^c = 0. We apply the Deformation Lemma with c = c and

^ODn stands for the boundary of Dp, relative to V © Rw.
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e > 0 such that c- e > 0 yielding a deformation y == cr(l, •). Since f\Qo^ ^ 0
(see (A3.2)), property (2.5) implies that (p o h e F for all h e F. On the
other hand there exists h e F such that max{/(/i(n)) : 2^ e JD^} <, c + <$
(6 > 0 small enough). Using (2.7) one infers that

max{/(<^ o /i(ii)) : u € 2^} ̂  c - ̂  ,

a contradiction because y? o /i e F.
This shows:

Theorem 4.2 Suppose E =V^W , dimY < +00 and /e< / e (^(j^R)
5a '̂5/y fP-^c and (A3). Then f has a critical point u such that f(u) = c (>
0).

Complete proofs of the above statements can be found, for example, in [98].

Remarks 4.3 (i) If V = {0} Theorem 4.2 is nothing but the Mountain Pass
Theorem, with UQ ==. 0 and u\ = w.
(ii) As in Remark 3.2, also here (PS\ can be substituted by the weaker
(PS): . m

A remarkable improvement of Theorem 4.2 is due to Benci and Rabi-
nowitz [45] who eliminated the condition dimY < +00. To describe their
result, some preliminaries are in order. Let E be a Hilbert space, E = Yd) TV
with V = W^ and let P, Q denote the canonical projections onto V and W\
respectively. Let

F = {h e C([0,1] x E , E ) : /i(0, u) = 0 and Qh(t, u) = Qu - K(t, u),

where K e C([0,1] x E,W) is compact }.

Given S and Z) C E, with D c E, E subspace of E, we say that S and 9D
link if for all h e F, h(t, D) H S ^ 0 provided h(t, 9D) H S = 0 , V ^ € [0,1].

Theorem 4.4 Le< / e C .̂R) .sa^ (W^ and:
(i) f(u) = ̂ (Au\u) + 4>(u), where A = Ai? + AzQ, A, are selfadjoint and
A,eL(W,W);
(ii) (/)' is compact;
(Hi) there exist a > 0 and S C E, D C E, E subspace of E such that
5cV,/ j5^a;D

is bounded, f\Qr> <: 0; S and 9D link.
Then f has a critical point u such that f(u) >_ a > 0.
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For the proof we refer to [45]. Here we limit ourselves to note that the
assumption of the theorem allows us to show, by using the Leray-Schander
topological degree, that

h(t,D)nS^^ V f € [ 0 , l ]

provided h 6 F.



s



5 Lusternik-Schnirelman Theory for
Unbounded Functionals

In this section we will deal with the existence of multiple critical points
for even functionals which are not bounded (from above nor from below).
The discussion follows [26].

Let / € C^R) and set E+ = {u e E '. f(u) >: 0}. Our first result
deals with a class of functionals satisfying (A4):
(A4.1) / (0 )=Oand3/9 ,a>0: / (^ )>0 ,V2zeBp-0 , / (^ ) ^ a . V z z G
9B^
(A4.2) for any finite dimensional subspace £'" C E, E" H E+ is bounded-
(A4.3) f(-u) =f(u).

Remark 5.1 Assumption (A4.1) is nothing but (A2.1), while (A4.2) is the
natural generalization of (A2.2-3). •

Let K denote the class of maps h e C(E, E) which are odd homeomor-
phism and such that h(B^) C £'+. Let us remark that H is not empty
because the map hp : u —> pu belongs to H.

We set

Fn = {A C S : A is compact, and j(A H h(9B^)) >_n, V h € H}

where S = {A C E - {0} : A is closed and symmetric} and 7 denotes the
genus (see section 2). The following lemma describes the properties of I\.

Lemma 5.2 Let f satisfy (A4). Then
(i) Fn^ 0 for all n;
(a) r,-n c r,;
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(in) if A € I\ and £7 € S, w^/i 7(^7) ̂  r < n, then A-U € 1^-,;
(̂  if y? is an odd homeomorphism in E such that y^^E^) c £+, then
(p(A) € Fn provided

Aer,.
Proof, (i) By (A4.2) there exists R > 0 such that

A :== B^ n ̂  D ̂ n n £4 .

Let /i G ̂ . Since h(B^} C ^+, it foUows that A D J^n^Bi), and therefore

A^h(^Bz)=En^}h(^B^,).
But /i is an odd homeomorphism in E and hence E^ H ^(-Si) is a symmetric
neighbourhood J\f of 0, with boundary contained in E" H h(9B^). Then
Lemma 2.11-(vi) implies that

7(A n h(OBz)) = 7(£?yl n /i(<9Bi)) ̂  7(0^) = n.

Hence A G Fn proving (i).
(ii) is trivial.
(iii) A—U is compact, and for every h C H there results

^[A—U] H /^Bi)) = 7([A-^(^i)]-(7).

By Lemma 2.1-(iii) it follows

7([A - h(9B,)} - U) ̂  7(A - h(9B,)) - ̂ (U) ̂ n-r

and hence A — U € Fn-r-
(iv) First of all, note that <^(A) is compact. Moreover, if h € H and
^-l(^+) C £'+, then <^-1 o h G ?<. Therefore, for all A C F^ there re-
sults

7(Any?~ lo/l(^Bl)) >_ n.
Since <^ is odd, Lemma 2.11-(iv) implies

7(^(A) n h{9B,)) = 7(^(A H ̂ -1 o /i(9Bi))) ^ 7(A H ̂ -1 o /i(^i)) ^ n,

and hence y?(A) G I\. This completes the proof of the Lemma. •

Remark 5.3 Each deformation o-< == a(i, •) such that f((Tt(u)) <, f(u), for
all t >. 0 and all u e E satisfies ff'f^(E+} C E+. m
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Theorem 5.4 Let f e C^E.R) satisfy (A4) and (PS). Then f possesses
infinitely many critical points.
In particular, for each positive integer n, setting

bn = inf max{/(^) : u e A},
A€in

there results:
ft) ^n+i >. bn >, a > 0 for all n;
(ii) each bn is a critical level for f;
(Hi) if b = hn = 6n+i = • • • = b^+r, then ^(Kb) ̂  r +1.

Proof. Since hp e U, then A H QBp ̂  0 for any A € I\. Therefore

^n >: inf{/0i) : M e 95p} ^ a > 0

which, jointly with Lemma 5.2-(ii), proves (i).
Let us prove the stronger statement (iii). Let -y(Kb) <, r and let U be a

symmetric neighbourhood of K^ such that (U C S and)

7(^) = 7W) ̂  r.

Applying the Deformation Lemma, we find a homeomorphism (p = <r(l ,-)
and a 6 < a such that (see Remark 5.3)

^(J^) C E+ (5.1)

and
f^(u))<b-6, Vuef^-U. (5.2)

Moreover ^ is odd because / is even. By the definition of b == b^+r, there
exists A e I\.̂  such that A C /6+6. By Lemma 5.2-(iii) it foUows that A :=
A - U ^ Fn. In view of (5.1), Lemma 5.2-(iv) applies yielding y?(A) € Fn.
Finally (5.2) implies

^(A) C /6-^

a contradiction with the definition of 6 = b^. This completes the proof of
the Theorem. •

In the remainder of this section we will discuss some weakening of (A4.1)
and (A4.2). The first case is to be related to the Linking Theorem 4.2. Let
us assume that E = V e W, with d = dimV < +00, W = V1 and let
/ € C^E.R) satisfy /(O) = 0 and



34 A. AMBROSETTI

(A4.15) 3 p,a > 0 : f(u) > O^u e (B, - {0}) H W and /(^) > a,
\/ue9B,nw. v / - 5

Let us define the counterpart of H and I\, by setting

7i= {he C(E, E) :h is an odd homeomorphism, and h(B^) C £+ U ~B~}

and

Fn = {A C E : A is compact, and j(A n h(9B^)) ̂  n V /i e TiC}.

As before, U ̂  0 because /^ G 7Y.

Lemma 5.5 Iff satisfies (A4.1'-2-3) then
(i) fn ̂  0 /or a« n;
(a) r^+i cjn;
^ if A e r^ anj (7 C S, wz^ 7(17) ̂  r < n, then A-U e fn_,;
^ ?/ y? ^ an odd homeomorphism in E such that y(u) == u for all u with
f(u) < 0 and

^~l(^+) C £•+, then (p(A) G F^ provided A C F^.

Proof. The proof of (iii) is exactly as that of Lemma 5.2-(iii) and (ii) is
trivial.To prove (i), let us first take n >, d, and E" D V. Let A := ~Bp n E".
Assumption (A4.15) implies

A D (E+ n Bp) n ̂ n D /i(Bi) H E"

for any /i e TY. Then the same arguments used in Lemma 5.2-(i) show that
A e In tor n ̂  rf. For n < c?, (i) follows from (ii).

(iv) It suffices to show that (p~1 o h e 7Y, whenever h e U. Actually,
since ^~1 o h is plainly an odd homeomorphism, it remains to prove that
^-1 o h(Bi) CE+U Bp. Indeed, by definition one has that /i(Bi) C E+ UB;;
if /i(Bi) C ^+_ then ^~l(£'+) C ^+ impUes immediately (p~1 o h(B^) c E+\
If h(Bi) C Bfi but h(Bi) is not contained in E+, then <^(iz) == u on the set
{?/ : f(u) < 0} implies that y-1 o h(Bi) = h(B^ C 'Bp. This proves (iv) and
completes the proof of the Lemma. •

We are now in position to state a result which improves Theorem 5.4.
For n > d, we define

bn = inf {f(u) : u € A}
•^•€1 n
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Theorem 5.6 Let f e C^E.R) satisfy (A^.l^-S) and (PS). Then f has
infinitely many critical points. In particular^ for all n> d there results:
(i) ^4.1 ^ bn >: a > 0
(ii) each bn is a critical level for f;
(Hi) if b = br, = . • • = b^r, then ̂ (J^) >. r + 1.

Proof. Let A 6 I\i with n > d. Then, taking h •==. hp there results

7(A n Ap(<9Bi)) = 7(A n 9Bp) >_n>d. (5.3)

This implies that
(An9Bp)nw^9. (5.4)

To see this, we can argue by contradiction: if (AH 9Bp) H W = 0, then,
denoted by P the canonical projection onto V, there results

P(An9Bp)cV-{0}.

Since dimV = d, then the definition of the genus would imply 7(An 9Bp) <:
d, a contradiction with (5.3).
From (5.4) and (A4.15) it follows

bn >i max{/(zx) : u e A H 9^} ^ a > 0.

The rest of the Theorem is proved as Theorem 5.4, remarking that Lemma
5.6-(iii) applies because the map (p given by the Deformation Lemma can be
obviously taken to satisfy (p{u) = u for all u such that f(u) < 0. •

The next result deals, roughly, with a functional / which has a strict local
minimum at 0, is bounded from below and has a negative global minimum.
According to the Mountain-Pass Theorem, such an / possesses a second,
nontrivial critical point at a positive level. We will show that if / is even
and {u : f(u) < 0} has genus d, then / has 2d pairs of nontrivial critical
points.

Precisely, let us substitute (A4.2) with

(A4.2^) there exist a subspace V of E with dim(y) == d and a compact,
symmetric set

1C C V such that / < 0 on K, and 0 lies in a bounded component
in Vof V - 1C.
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Theorem 5.7 Let f 6 C^E.R) satisfy (A4.1-2f~3} and (PS). Then each
bn, 1 <: n <: d, is a positive critical level for /, and f possesses at least d
pairs of non trivial critical points ±Un, with /(db^n) > 0.

If, in addition, f is bounded below on E, then f possesses at least other
d pairs of nontrivial critical points ±Vn, 1 ^ n <, d, with /(±^n) < 0.

Proof. To prove the first statement, let us remark that the only role played
by (A4-ii) was to show that Tn ^ 0. We shall prove that this is still the
case for 1 <: n <: d, whenever (A4.25) holds. Let again A = Bp H E". For
R large and 1 ̂  n ^ J, (A4.2') implies that A D K, H ^n. Therefore the
component Q of E+ H E^ containing 0 lies in A. Thus, for all h 6 H there
results A H h(9B^) D S 0 /i(9Bi) and hence

7(A n /i(<9Bi)) >. 7(3 n /i(9Bi)) >: n.

The last inequality is due to the fact that QC\h(9B\} contains the boundary
of a symmetric, bounded, neighbourhood of 0 in E. Then, repeating the
arguments of Theorem 5.4, the result follows.

Let / be, in addition, bounded from below on E and consider the min-
max level (see Lemma 2.12)

Ck= inf max[/(u) : u C A].
-y(A)^fc

Since JC contains the boundary of symmetric, bounded neighbourhood of 0
in V, then 7(/C) = d and there results

cj <: max [f{u) : u € /C] < 0.

As a consequence, for all 1 ̂  n <: d one has Cn <: cj < 0 and each Cn carries
a pair of nontrivial critical points. This completes the proof of the Theorem.



6 Semilinear Elliptic Dirichlet Problems
(i)

As a first application of Critical point theory we will discuss here and
in Sections 7 and 8 some existence and multiplicity results for semilinear
elliptic problems.

Let us introduce the notation we will use throughout this and the fol-
lowing sections. We will deal with Dirichlet boundary value problems like

Lu = p(u) in f2
u = 0 on 9^1 W

where, hereafter, it is understood that Q is a bounded domain in R/^ with
smooth boundary 9f2,

Lu=-^(aijU^

a,ij = dji are smooth on f^ and 3 fiQ > 0 such that

E ̂ (^ ̂  M(\2 v .c e n , v ̂  € R .̂
We will work on the Sobolev space E = H^(^l). Equipped with the norm

IMI2 = / ^^xiU^dx

and with corresponding scalar product

{(u\v))= J^dijU^dx

E is a Hilbert space.
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Recall that the Poincare inequality implies that || • || is equivalent to usual
ffo1 norm || • ||i,2.

In the sequel (•|-) will denote the scalar product in L2.
Let A,, 0 < AI < Aa ^ A3 ^ ... denote the eigenvalues of

f Lu = \u x e 0
[ u == 0 x e <90

(repeated according to their multiplicity) and let (pi denote a corresponding
orthonormal system of eigenfunctions. We take y?i to be positive in Q.

For p 6 Z°°(^), let \j[p\ denote the j—ih eigenvalue of Lu == Xpu with
zero Dirichlet boundary conditions.

As for the nonlinearity, we will consider, for simplicity, functions p in-
dependent of .r, with the only exception of problems handled in subsection
6.B below. In Sections 6 and 7 we will always assume that p satisfies

(pO) p € C'(R) and is locally Holder continuous.

A. COERCIVE PROBLEMS. We will start with a class of nonlinearities (sat-
isfying (pO) and) such that

(pi) \p{s)\ <, a\s\ + b, a, b > 0 V s € R.

Let
P(u) = j^ p(s)ds.

Since (p0-l) hold then (cf. also Example 1.1)

<f>(u} = I P(u(x))dx
*/i2

defines a C1 functional on E and the critical points of

f(u} = ||H|2 - w

on E are (weak and by regularity strong) solutions of (D) .
If a < AI then it is plain that / is coercive on E and weakly lower semi-

continuous, and has a (global) minimum, which gives rise to a solution of
(D).

On more precise information about the behaviour of p at u = 0 and at
infinity, it is possible to prove a multiplicity result.

Theorem 6.1 Suppose p satisfies (pO) and (p2):
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(p2.1) limsup^.,.^ s~lp(s) :< a < Ai;
(p2.2) p(s) = \s - sh(s) with A(0) = 0.

Then there results
(t) i/A > Ai, (D) has at least a positive (negative) solution u^ (resp. u~);
(ii) if \ > Az, (D) has at least a third solution u ̂  ̂ ±, u ̂  0;
^ ifp(-u) = -p(zi) ^en (̂  has at least k (pairs of) nontrivial solutions
whenever X > \k.

Proof. First of all we note that we can suppose, without loss of generality,
that p satisfies (pi) with a < Ai. In fact, if 3 s^ > 0 (resp. s~ < 0) such
that j?(54-) <, 0 (resp. pQr) >_ 0), we can substitute p with a locally Holder
continuous p such that p(s) < 0 V s > 54- (resp. p(s) > 0 V s < 5-),
and \p\ <, const. By the maximum principle, any solution of the modified
problem

f Lu = p{u) x G 0
"[ u = o .r e an

satisfies 5~ :< u(x) <, s^ and hence solves (D).
To find a positive solution of (D) we can make another truncation, taking

a smoothp4-, p+ (s) = p(s) for s >, 0 andp-^) < 0 (and bounded) for s < 0.
Once again, by the maximum principle, any solution u of

f Lu = p^^u) in Q
\ u == 0 on <9Q

satisfies zz(.r) > 0 in Q and hence solves (D). One has (/+ stands for / with
p substituted by p^)

^(^i) = ĵ ill2 - ĵ i|j + o(e2)

=^2^l-A)|^|j+o(^).

Then, if A > Ai, f(e^) is negative for \e\ > 0 small enough and thus
miliE /+ < 0. It follows that the minimum is achieved at some ^+ ^ 0. By
the preceding remark u^ > 0.

A similar argument yields a solution u~ < 0.
Next, let us prove (ii) under the additional assumption that p is differ-

entiable and
\-h{u)>p'(u) Vz^O. (6.1)
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From Lu^ =p(^+), namely

f Lu^- == (A - h(u^))u^- x e n
[ H+ == 0 .re 90

one infers that 1 is an eigenvalue of LK = Xpu, with p = (A — ^(u4')), and
corresponding eigenfunction u4'. Since iA"1" > 0, then it follows that

Ai[A-/ i (^)]=l .

From (6.1) and the comparison property of the eigenvalues, we infer

Ai[pW]>l-

This means that (u^ is non-degenerate and has) Morse index m(u+) = 0,
namely that u"1" is a minimum of /. Similar argument for u~. We now apply
the Mountain-Pass Theorem to / with UQ = u^ and u\ = u~ ^ yielding a
critical point u -^ ir^. We claim that, whenever A > \^ then u -^ 0. To see
this, it suffices to note that the Morse index of 0 is ^ 2 provided A > As. If
the critical points of/ are u^\uT and 0, only, then theorem 3.4 would apply
yielding m(0) <. 1, a contradiction.

The general case can be handled by a similar argument, up to a Lyapunov-
Schmidt reduction (see [19]).

Lastly, to prove (iii), we use Theorem 2.13, with the operator A\ defined
by the formula

((AA^)) = X(u\v).

Plainly /2 is a characteristic value of A\ whenever

Lu == /z • AK, x e n, u = o, x c 3Q.
Thus the characteristic values of A\ are nothing but /ik = ^2L and the con-
dition p,k < 1 follows from the assumption A > \k. •

Remarks 6.2. (i) When N = 1, much stronger results can be proved.
Indeed, from each \k = ̂ r bifurcates a global branch of solutions of

f -(a(x)u')' = \u-uh(u) in [0,T]
{ u(0) = u(T)=0

and such a Sturm-Liouville problem has, for A > Ajb, at least k nontrivial
solutions.
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(ii) It is an open question to see if the number of solutions of (D) increases
a^ A —> +00 (of course, without any oddness assumption on p).
(iii) When p(u) = \u - uh(u) and (6.1) holds it has been shown [20] that
(D) has precisely 2 nontrivial solutions for all Ai < A ^ Aa. Moreover, if
A2 is simple then for Aa < A < Aa 4- 5, e small enough, (D) has precisely 4
nontrivial solutions. •

B. ASYMPTOTICALLY HOMOGENEOUS PROBLEMS. Our next application
deals with the case when p is asymptotically homogeneous. Let

p{x, u) = /^+ - au~ + b{u) + h(x) (6.2)

where a,/3 > 0 and

lim ^=0. (6.3)H—-oo s v /

When max{a,/9} < Ai, / is coercive and (D) has always a solution.
If a = /? = Aj, (D) becomes the problem at resonance

f Lu = A^ 4- 6(^) + h(x) in Q
l ^ = o on an

which has been extensively studied, beginning with the paper by Landesman
and Lazer [92].

When a ̂  /3, say a < /?, and there is at least an eigenvalue Xj in ]a,/?[,
(D) is called "problem with a jumping nonlinearity" [78].

A first result is concerned with the case

a < Ai < /3 < Aa

and goes back to [24]. Under the assumption that p(x,s) is of class C2

with respect to s and pss(x,s) > 0 V (x,s) C 0 x R, it is proved that
the Holder space Y = C0^^) can be split into two open components YQ
and V2, with common boundary Vi, such that (D) has precisely 1,2 or no
solutions whenever h e Y^, h eY^ 01 h eYo. Such kind of result is obtained
by means of a suitable "Global Inversion Theorem" for maps-^ 6 C^X.V)
which possess singularities <?, (X,Y Banach spaces); such S is a manifold
of codimension one in X and Vi turns out to be ^(S).

Let us take, for simplicity, h(x) = t^(x), where t plays the role of a
parameter. In such a case, the preceding result can be expressed by saying
that 3 IQ such that (D) has 2 solutions V t < to, 1 solution for t = to and no
solution for all t > to.
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In [2] the convexity assumption onp has been eliminated at the expenses
of the sharpness of the result. See also [89].

The case ft > X^ has been investigated by Lazer and McKenna [93] by
using topological degree arguments in the case when Aa is simple.

Hereafter we expose a result of [6], which improves that of [93].

Theorem 6.3 Suppose? has the form (6.2) with b satisfying (6.3). If

a < A i < A 2 < / ? , f3^\j,

then 3 t^ such that ( D ) has at least 3 solutions for all t <t^.

Proof.First of all, let us consider the boundary value problem

Lu = f3u + b(u) +1^ xe n;n==0 x^ <9Q (6.4)

Since 0 ̂  A,, then (6.4) has a solution u<, for all t e R. This fact can be
easily proved by topological degree arguments.

Let us set
vt=ut--^—^-

A direct calculation shows that

Lvt = 0Vt + b(Ut).

Since (3 ̂  Xj and 6^1 -^ 0 as [u| -^ oo one infers

ll^llci <:c.

Then from ̂  = ̂  + j^yi and f5 > Ai, it foUows that 3 ?o < 0 such that

Ut^O V^?o. (6.5)

From (6.5) one deduces that Uf actually solves

Luf = /3u^ - au^ + b(ut) +1^

and hence is a solution of (D). A similar argument shows that 3 to < 0 such
that (D) has a negative solution ^, for all t <, to, and

Wt = Ut - -.—————<^i
Ai — a

is bounded in C1 norm.
To complete the proof, the following Lemma is in order.
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Lemma 6.4 There exists t^ < 0 such that for all t < <i </iere results:
(i) m(ut} == 0;
^ Ut is nondegenerate and m(ut) = k, where k is such that \k < f3.

Proof. As t —»• —oo

Ut = Vf + T————-9?1 -> +00AI — /?

pointwise in Q. Then ^(.r,^) —^ as ^ -^ -oo, uniformly in x, and the
continuity of eigenvalues yields

A,h.(^^)]-A,(/?)=^ (^-.-oo).

Similarly one has ps(x^Ut) —^ a as t -^ —oo and

\j \ps(x,Ut)} -^ \j(a) = -1 (^ -^ -oo).

Since a < Ai and /? > Ajfc, then 3 ^i < min(?o, ?o), such that

Aih.(^)] > 1

AAh.^.^)] < 1 < >k+i[p.(x,Ut)}.

This proves the Lemma. •

Proof of Theorem 6.3 completed. Let us consider now the functional /
whose critical points give rise to solutions of (D). It is easy to see that (PS)
holds. For t < t^ (given by Lemma 6.4) Uf is a local minimum of / because
m(ut) = 0. Moreover for s > 0 one has

fM=^2M2-fP(s^)dx.

Since p has the form (6.2), b satisfies (6.3), (p\ > 0 and h == ̂ i, it follows:

/(^i) ̂  -^Ai - J52/? + cos - st

for some constant Co. Since /3 > Ai it follows that f(s^) —^ —oo as 5 —> 4-oo.
Therefore the Mountain Pass Theorem applies and yields a critical point
Ut 7^ Ut (for all t < ti). Such a Ut cannot coincide with u<; indeed, otherwise,
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Uf = Ut would be, by Lemma 6.4, nondegenerate and m(u<) = m(ut) >_ 2,
because /? > As- This would be in contradiction with Theorem 3.4. •

Remarks 6.5. (i) A counterexample [69] shows that if /? > \k (D) can have
only 4 solutions. This is obtained by perturbing a problem posed on an f2
such that Aa = ^3 = ... = Ajfc. Also here an interesting question is to study
the number of solutions of (D) when /? —^ +00.
(ii) The case in which ]a, /3[ contains an eigenvalue \k 7^ Ai has been studied,
for example, in [79]. •



7 Semilinear Elliptic Problems (II)

Here we will discuss Elliptic Dirichlet boundary value problems with
nonlinearities of the type Xu + \uf~1 u with i > 1. The section is divided
in 3 parts; the first two deal, respectively, with existence and multiplicity
results and mainly follow Section 3 of [26]. The latter is concerned with the
so called Critical Sobolev exponent, namely with the case £ 4-1 = 2*. We
will keep the notation of Section 6.

A. EXISTENCE RESULTS. The first problem we consider is the existence of
positive solutions for Dirichlet problems (D) when the nonlinearity p satisfies
(p3):

(p3.1) p € C^R4') is locally Holder continuous and differentiable at 0;
(p3.2) 3 r > 0 and 6 € (0, ^) such that

P(u) <, Oup(u) V u >, r (7.1)

(p3.3) p(u) ^ ai + 02^, for all u > 0, 1 < i < ^±j, if N > 2, i is
unrestricted if N = 1,2.

In the sequel fli, 02,. . . denote positive constants.
As anticipated in Section 1, we will consider the case N > 2 and, for

simplicity, we will deal with nonlinearities independent of x.
According to the discussion m Example 1.1, assumption (p3.3) allows us

to define <^, / : E -^ R (E = H^)) by setting

</>(u) = / P(u(x))dx
JQ
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/(") = jiMI2 - W
Moreover (<^ and hence) / € C1 (i?, R) and critical points of / give rise to
solutions of (D).

Let us remark explicitely that from (p3.2) it follows

P(zi)^03^, for u>,r (7.2)

with - > 2. In this sense we say that such a p is "superlinear" as u —> oo.
We want to prove

Theorem 7.1 Suppose p satisfies (p3) and let p(0) = 0 and X :=p'(0+) <
AI . Then (D) has a positive solution.

First of all, dealing with positive solutions, we can assume, without loss of
generality, that p(u) = 0 for all u < 0. See the discussion in the proof of
Theorem 6.1.

We begin showing

Lemma 7.2 / satisfies (PS) on E.

Proof. First, let us remark that (7.1) yields

^(u) = / P(u{x))dx + I P(u(x))dx
Ju^r Ju^r

^ ' &i + 0 f p(u(x))u{x)dx
Ju>_r

^ h + 9 I p(u(x))u(x)dx = 62 + 0((/>'(u)\u). (7.3)
Jn

Let Un € E be such that /(un) 5: b and Zn = /'("„) —> 0. Using (7.3) it
follows

b > /(Mn)=jK||2-^(Un)

s JKH2-^-^'^)!^)

and hence
Jhnll^^+^'^n)!^). (7.4)
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Since Zn —^ 0, then for n large

|(^|^)| = ||M2 - (^'(Un)\Un)\ <, ^1^11. (7.5)

Combining (7.4) and (7.5) we find

|M2 ^ 2^(^)|^) + 2&3 ^ 2^|M2 4- 2^K|| + 2&3

Since 2^ < 1 one deduces that ||^n||2 ^ ^4- Hence, up to a subsequence,
Un -^ u in E. Recall that, since ^ < ^j, namely ^ + 1 < 2", then E is
compactly embedded in Z^'1'1^) and this, in turn, implies that (j)' is compact.
This and Zn = Un — (j)'(un} —> 0 imply Un = (f>'(un) 4- ^n —^ ^(^A). This proves
(PS). •
Proof of Theorem 7.1. By Lemma 7.2, (PS) holds. From (p3) one deduces

^(«)I^Hi+^K}. (7.6)

Using the Poincare and Sobolev inequalities it follows

l^l^lK+^hr1 (7.7)

and hence
/("^(i-^iHi'+oaMi2).

Since A < Ai then UQ ==• 0 is a strict, local minimum for /. Moreover, for
any z > 0, using (7.2), one deduces

f(tz) = ^\\z\\2 - f^P(tz(x))dx

^ ^N2 - ̂ /j^r - &T .
Since j > 2 then f(tw) —> —oo as t —> 4-00 and there exists z^i, \\u-[\\ large
enough, such that f(ui) < 0. This suffices to apply the Mountain-Pass
Theorem to f, yielding a critical point u ̂  0. Such a critical point gives rise,
by the maximum principle, to a positive solution of (D). •

Condition A (= j/(0-!-)) < Ai can be eliminated by using the Linking
Theorem instead of the Mountain-Pass Theorem.
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Theorem 7.3 Suppose? satisfies (p3.1) and

(p3.2') 3 r > 0 and 6 e (0, j) such that P(u) ̂  0up(u) V \u\ ̂  r;

fr^ b(n)| ̂  ai + a2|<, 1 < ^ < ̂ ( N > 2)
Letp{0) = 0. Then (D) has a nontrivial solution.

Proof. Let \k ^ A < Ajk+i and set

y=5p(m{^i,...,<^},

W = span {(pj :j > k}.

Starting again from (7.3) and recalling that for w e W there results

IHI2 ̂  Wl
(7.7) becomes

I^MI^J^IIw^+^llwll^1. (7.8)

Plainly (7.8) w = 0 is a strict, local mimimmn for fw, namely that (A3.1)
holds. •

Remark 7.4 If A >, Ai, (D) might not have positive solutions at all. To
see this, let us consider the boundary value problem

- A^ = \u + u1, x e Q; u = 0, x e 9fl (7.9)

with 1 < £ < y - 1 and A ^ Ai. Let UQ > 0 be a solution of (7.9). Then

-Auo = (A + <~1) zzo

shows that the first eigenvalue of -A^ = ^ (A 4- ̂ -1) z;, with zero Dirichlet
boundary conditions, is 1 :

\l[X+ut-l]=l.

Since A -+- u^~1 > A ^ Ai, the comparison property of the eigenvalues gives
immediately rise to a contradiction. •

Remark 7.5 In [27] , instead of using the Linking Theorem, the Mountain-
Pass Theorem has been emploied, jointly with the Dual Variational Princi-
ple. A somewhat similar argument will be discussed in some more details in
section 8.
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B. MULTIPLICITY RESULTS. When p is odd Theorems 7.1 and 7.3 can
be greatly improved. Indeed, if this is the case, then

/(") = jiMI2 - <^(»)
is even. Repeating the same arguments as before, one readily shows that /
satisfies (A4) i f A < A i and (A4.1?-2-3) otherwise (with V = span {y?i, • • • , <^},
whenever \k < A ^ Aj^+i). Then Theorems 5.4 and 5.6 apply, yielding

Theorem 7.6 Suppose p satisfies (p3) and is odd. Then (D) has infinitely
many (pairs of) solutions.

Remark 7.7 The existence of infinitely many solutions was first proved
in [4] for a class of convex, superlinear nonlinearities, using Theorem 2.9,
instead of Theorem 5.4. •

A natural question is whether (D) possesses infinitely many solutions
when p is not odd. For perturbed problems like

Lu== ̂ ^u+eh^x.u), xefl', u = 0, x e <9Q (7.10)

a partial answer has been given in [5] proving, by means of perturbation
techniques, that (7.10) possesses an arbitrarly large number of solutions
provided e is small enough. Here (. + 1 < 2* and h is assumed to satisfy the
same growth restriction as p in (p3.3).

Such a result has been improved in [35] and [119]. It is proved that

Lu^^u^u+h^x.u), x 6 f^; Z A = = O , x € 9^ (7.11)

has infinitely many solutions provided £ +1 ̂  £* where £* is strictly smaller
than 2*.

A further improvement has been obtained in [37] by means of Morse
theory.

Theorem 7.8 Let h 6 C0'^ x R) satisfy

\h(x,s)\ ̂ a^+a^\s\^

3 a 6 (0,2) : \rh(x,t)dt ^03+04^.

If 1 < t < ̂ '^'^, then (7.11) has infinitely many solutions.
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Remark 7.9. When h == h(x) is independent of u, then the range of
permissable t is •<«^.
On the other side, a result of [34] shows that

Lu=\u\t~lu+h(x), x 6 f2; IA=O, x e 9^1

has infinitely many solutions for any t 4- 1 < 2* and /i is a residual set in
L\fl). »

Another strategy to find multiple solutions can be to use the specific
structure of the boundary value problem (D), rather than through a com-
parison with the model nonlinearity ̂ ^u.

Let p satisfy (p3.1), (pS^-S5) and let p(0) = ^(0) = 0. Then one can
apply Theorem 7.1, withj9 substituted by its positive (respectively negative)
part p^. (resp. p-) to find a positive (resp. negative) solution u^ (resp. u~)
of (D). These u± are critical points of the functionals /± corresponding
to p±. Suppose, in addition that one can use the procedure indicated in
Proposition 1.4 and Theorem 2.9, and that ^± are non-degenerate minima
of /^ constrained on Mf^ (see notation introduced in Section 1). Here one
has

g±(u) == ̂  |^P±(^ -P±(^)j dx.

Since u^ do not change sign, it follows that Tu±Mf^ = Tu±Mf. As a conse-
quence, if /^(^±)^, v} > 0 for all v C T^±Mf^ then one also has

f±(u±)[v,v}>0 \/veT^±Mf.

Since, plainly, /±(^=b)[^,^] = /"(^M^^L one deduces that u± are also non-
degenerate local minima for / constrained on My. Using a Mountain-Pass
argument with base points at u± (or else using the Morse relationships) one
finds a third critical point of / on My, hence a third solution of (D).

In the general case, a third critical point of / can be found by means
of an appropriate linking argument, still starting from u±. See [128]. This
leads to

Theorem 7.10 Suppose p satisfies (p3.1-2'-3') and let p(0) = p'(0) == 0.
Then (D) has at least 3 nontrivial solutions.
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We end this subsection with some remarks concerning

- An = \u + {u^u, x e n; M = = O , xe9Q (7.12)
It has been proved in [42], see also [54] and [94] for extensions, that (7.12)
has multiple positive solutions provided 1 < t < 2* — 1 and A < 0 and |A[
is sufficiently large. Precisely, the number of positive solutions of (7.12) is
bounded below from the Lusternik-Schnirelman category of 0. On the other
side, it has been shown in [117] that if Q is a ball in R^ then (7.12) possesses
a unique positive solution, whenever 1 < £ < V — 1 and A G (0, Ai).

C. CRITICAL EXPONENT. Let us begin with a celebrated Identity due to
Pohozaev [106]. Let Vs denote the unit outward normal at x € 9^1 and Uy
the normal derivative of u along ^.

Lemma 7.11 Let u be a smooth solution of (D). Then there results

r 2 — N r 1 fN / P(u)dx + ——— / up(u)dx = - / u^{x ' ^)da.
JQ L JQ i JQ^l

As a consequence one immediately has

Corollary 7.12 If x' i/s ^ o on 9^1, namely if^l is star-shaped with respect
to 0, then the boundary value problem

-Au = W-^u, x C ^2; u = 0, x € 9Q

has only the trivial solution, whenever q >, ̂ j (N > 2).

On the light of Corollary 7.12, few more words are in order concerning
(p3.3'). First of all, a growth restriction like (1.2), with £ <: 2* - 1, is
needed in order to define the functional / on E. Corollary 7.12 shows that,
in general, one has to take i < 2* — 1 in order (D) possesses nontrivial
solutions. On the other side, it does not exclude that (D) has non-trivial
solutions when (pS.3^) is violated but p is not homogeneous, or fl is not
star-shaped. The latter question will not be discussed here: the interested
reader is referred to [36], [62].

As for the former, it suffices to consider problem (7.12) and remark that
it has nontrivial solutions bifurcating from the eigenvalues \k of -A with
zero Dirichlet boundary conditions. In view of the specific feature of the
nonlinearity, such a bifurcation is backword and hence solutions of (7.12)
exist in any left neighbourhood of Ajb.
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A global existence result is a much more subtle question. For the equa-
tion

- Au = Xu + H2^, a; 60; u=0, x 6 <9Q (7.13)

the problem has been first faced by variational tools in [52]. Roughly, the
functional / defined above still makes sense, because u2' e L1^) whenever
u e H^(fl). But now Lemma 7.2 concerning the (PS) condition cannot be
carried out in the same way, because the embedding of H^f^l) in 1^(0) is
not compact. Overcoming this difficulty, it is possible to show that

Lemma 7.13 Let

5=m/{[M|2 ^e^^HJ:^!}.

Then for any »<^
/ satisfies (PS)c.

Lemma 7.13 leads to

Theorem 7.14 Let N > 3. Then (7.13) has a nontrimal solution whenever
X > 0 .
If N = 3, there exists \o > 0 such that (7.13) has a solution for all \ > \o.

Remarks 7.15 (i) If A < Ai one finds positive solutions and the result
goes back to [52]; the case A >, Ai has been studied in [55] and [28].

(ii) The Srikanth uniqueness result cited above is valid for (7.13), too. •



8 Elliptic Problems with Discontinuous
Nonlinearities

In this section we deal with a class of elliptic equations with the specific
feature that the nonlinearity is discontinuous. They serve as model in several
concrete problems in Mathematical Physics. Postponing the case of vortex
rings in an ideal fluid, which will be discussed in Section 9, let us begin with
a Free Boundary Problem arising in Plasma Physics.

Example 8.1 Consider a cylinder with bounded cross-section ^ C R^
containing a ionized gas. Let TO denote the temperature of the lateral surface
of the cylinder; 6 > TQ that of discharge in the gas; i? the termal conductivity
and e, the electric field. Let us assume all these quantities are positive
constants.

Let v denote the variable temperature in the gas and a = a(v) denote
the electrical conductivity. If we assume that

, , f 0 if v < 6
^^{v if.;5

then v satisfies

-Av = 0 if v <: 6
|d2

-Av == iJ-̂ ; i i v > 6 (8.1)
v = TO on 90,

Let us point out that the discontinuity of a at v = 6 is consistent with
the fact that the gas is ionized.
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Problem (8.1) is a Free Boundary Problem, because the region where
—Af 7^ 0 is a-priori unknown. In order to trasfonn (8.1) in a Dirichlet
Boundary Value problem, let us introduce the Heaviside function h :

^-{;^S (-)
The reason to define h(0) = 0 will be clear later. However this choice will
not effect the results we will find. Setting u = v — TO, (8.1) becomes

-An==pa(^), xefl; M = = O xe9^ (8.3)

where

p^u) = h{u-a)q(u\ (8.4)
|e|2

QW = -^+ro),

a = 8 - TO .

In (8.3) the nonlinearity pa has a simple discontinuity at u = a and 6,

fr=(^M>o
is the size of the jump.

In general, let us consider a problem like

Lu = h{u - a)q(u), x 6 ^2; u = 0 x e <9Q (8.5)

where L stands for the linear second order, uniformly elliptic operator in-
troduced in Section 6, a > 0, h denotes the Heaviside function (8.2) and q
satisfies (ql):

(ql.l) q >, 0, q G C'(R), q is non-decreasing;
(ql.2) q(s) <, as + Co, with a < Ai and Co, a constant 1.

We set

and

6=g(a), r==[0,6]

Oa = {.P € ft : ̂ (.r) = a}.
1 hereafter Co, ci, • • • denote positive constants.
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A solution of (8.5) is an u e H^) n H2^) such that (8.5) holds a.e. in Q.
Let us explicitely point out that we do not exclude, in general, that \fla\ > 0.

Setting p(u) = pa(u) = h(u — a)q(u), (8.5) becomes

Lu=p(u), . ref t ; ^ = 0 x e9Q. (8.6)

By the maximum principle any non-zero solution u of (8.6) must satisfy
u{x) >_ 0 on Q and u(xo) > a at some XQ € 0. This will be referred as a
nontrivial solution of (8.6).

By adding mu, m > 0, to both sides of (8.6), the nonlinearity becomes

pm(u) =mu+p(u)

and is strictly increasing. Let p define the multivalued function

v(s}=( pm<<8) i f 5^a
J r v / [ T = [ma, 6 + ma] if s = a

obtained by filling up the jump of p at s = a.
Let j9* denote the inverse of p:

p*{^)==s iff uj CpO?) (8.7)

and set
P^)=j[V(r)^.

From the properties ofpm it follows thatp* is well defined on R, is continuous
and

p*(o;) = a iff ma <.uj <. .pr̂ 0) = ma + ̂ - (^)

As for P*, one has that P* € ^(R); moreover (ql.2) implies

W ^ JoT^2"^ ^
^(^ ^ ^. (8.10)

Let E = L2^) and let G e L(E,E) be the Green operator defined by
setting

G(w) = u <<==̂  (L + m)u = w, ue^Wn^W

For w 6 I? we define

/(w)=/[?>)-^wGH] Ac.
^n L z j
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Plainly, feC^E.R).

Lemma 8.2 Let w e E be such that f(w) = 0. Then u = G(w) is a
solution of (8.6), in the sense that u € l^W n H2^) and Lu = p[u) a.e.
in 0.

Proof. If f'(w) = 0 then p\w) = G(w). By the definition of G, u =
G(w) G H^W H H2^) and satisfies Lu + mu = w. From p*(w) == u and
(8.7) it follows that w G p(^), and hence

Lu + rnu € p(^).

For a: G ^ — Qa? namely when ^(.r) 7^ a, one has p(^(.r)) = mu(.r) 4-.p(^(a*)),
and this implies

Lu(x) == p(u(a:)) (a: 6 ^ - Qa). (8.11)

By a Theorem of Stampacchia [118] one has Lu = 0 a.e. on Qa. According
to the fact that h(0) = 0, it follows that

Pm(u{x)) == ma + ̂ (O)g(a) = ma (.re fta)

and therefore
Lu==p(u), a.e. in ^a.

This, jointly with (8.11), proves that u solves (8.6) in the sense specified
above. •

Remark 8.3 The idea of using a "dual" fanctional like / goes back to Clarke
[57] and has been introduced to study Hamiltonian Systems. See [73]. The
discussion outlined above follows [8]. •

Lemma 8.4 There exists VQ G E such that f(vo) = minuet; fW' For the
corresponding solution UQ = G{vo), there results [Oa[ = 0.

Proof. From (8.9) and the spectral properties of G it follows

^i^^-^^A^11- (8J2)

Since a < Ai, (8.12) implies that / is coercive and bounded from below on
E and, in a standard way, it follows that / attains its global minimum at
some VQ. Let UQ = G(vo)\ we claim that Qa = [x G 0 : uo(x) = a} has zero
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Lebesgue measure. To see this, let \ denote the characteristic function of
fta- There results

^/(^o+^) == (fl{^+ex)\x)

= ?0 + ex) | X) - e (G(x) \ X) - (G(v,) \ ^)
= / P*(vo +e\)dx -e f \G(^)dx - f uodx(8.13)

JUg, «/f2 J^la,

From LUQ +muo = VQ and Luo(x) = 0 a.e. in Qa, it follows that Vo(x) = ma,
a.e. in f^a. Hence, taking e 6 (0,6), one finds

ma <, vo{x) + e\(x} <, ma + 5, a.e. in fla '

Then, see (8.8), p*{vo(x) + ^^(.r)) = a a.e. in fta and

/ P'(vo(x)+£^))x(x)dx=a\fla\= [ uo(x)dx. (8.14)
•'"a JQa

Moreover, setting z == G(^), it follows

(<?(x) I X) = / \z • ̂  + m|^|2] dx. (8.15)

Inserting (8.14) and (8.15) into (8.13), one finds

^/(^o + ex) = -^ [|M|2 4- m|^|j] . (8.16)

If 10,1 > 0, then [H|2, |^| j > 0 and (8.16) yields

^ / (^o+£x)<0 ( 0 < 5 < 6 )

a contradiction, because VQ is a minimum of /. •

Remark 8.5 It is clear that the above arguments hold whenever VQ is any
local minimum of /. •

If a > 0 then / has a local minimum at w = 0. Fixed 6, when a > 1
then w = 0 will be the only critical point of /, see Remark 8.10-(i) below.
On the contrary, next lemmas show that, under an appropriate relationship
between a and 6, / possesses a pair of non-trivial critical points: a negative
global minimum and a Mountain-Pass critical point.

Let (p satisfy

L^=Aiy?, \x e 0; 9?=0, x G 50

and be such that |<^|oo = 1.
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Lemma 8.6 Suppose that

b ^ o \ l^l1 rs i7\
a^HT ^^

T/ien, /or all m > 0 sufficiently small, f(by) < 0.

Proof. Since 0 < h^{x) <, b and

p*{uj) <, a, for 0 ̂  a; $ 6,

it follows

/(6y) = I P^b^dx-h2^)}^
jn 2

^ &"Mi-1 —~{v^<o (8•18)
2 Ai + Tn

whenever (8.17) holds and m is small enough. This proves the Lemma. •

The next Lemma shows that / has a Mountain-Pass geometry.

Lemma 8.7 There exist m*,/9,ao > 0 such that

f(w) >, ao, V w € £1, |w| -JN = p.

Proof. Let q = ^^. Since ^r = 1 - -^, the Sobolev Embedding Theorem
yields

|<?(W)|2. $ Ci||Gw||2,, .

From the elliptic theory we know that, for w 6 Z^(f2), there results

\\G(w)\\^ ^ cM

Hence it follows
IG^W)^ ^ CsK

and (note that 7^ + 1 = 1)

/ wG(w)dx <, \w\q - \G(w)\^ <, C3\w\^ . (8.19)

Next, we need to bound f^ P*(w)dx from below. For this, recall that p* is
non-decreasing and such that

* / ^ f ^- if a; < map [u j ] = < m - '"v | a if ma <, uj <^ ma + b
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Then it is possible to find f3 > 0, m > 0, small enough, and €m > 0 such
that

P'M ̂  W\ Vo;^^.

As a consequence, one has

( P\w)dx> ( ft^dx.
h ~~ J\w\>em

Let

Then, from

/3^=f3 [ \w\^dx.
J\W\<,£m

= / |w|g^+ / |w|^.Z;= / {W^dx+ftrn .1^= / |w|g^+ / |w
' J\W\^€m J\W\<€m^|ty|^Cm ^|w|<£ni ^|iy|^Cm

it follows
I P\w)dx^0\w\^-^.

JQ •
From (8.19) and (8.20) we deduce

/(w)^^H^-JC3|w|,2-^

Since q < 2, there exist p,a'o > 0 such that

/^-JC3H^2ao VH,=p.

(8.20)

(8.21)

(8.22)
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Finally,
/3m=f3 I \w\Ux <, / |̂n| -^ 0 as m -4 0

J\W\<€m

jointly with (8.19) and (8.20) yield

f{w) ̂  ao, V \w\q == p

provided m is small enough. This proves the Lemma. •

Finally we prove a weak form of (PS) condition (see Remark 3.2).

Lemma 8.8 Let w^ € E he a (PS)c sequence (c G R/ Then there exists
z C E with f(z) = c, f(z) = 0, such that w^ — z.

Proof. From (8.12) and /(wn) -> c, it follows that |wn[2 <: const., and,
up to a subsequence, w^ -^ z, for some z € E. From f(wn) —>• 0 and the
compactness of G, it follows that ^(w^) -^ v := G(z), strongly in L2^)
and a.e. in ^. Let F == {x e ^ : v(x) = a.} and ff = Q - F. Let us begin
studying the convergence in Q'. First, p e C(R - {a}) and p*(wn) -^ v
a.e. in Q, imply Wn -^ p(v) a.e. in Q'. Plainly, |̂ | ^ b*^)!; this and
the convergence ofj^Wn) in L2(^) imply that there exists h e L2^) and
a subsequence of Wn such that (without relabeling) [wj ^ /i a.e. in Q.
Then the Lebesgue Dominated Convergence Theorem yields: Wn —^p(v) in
I2^1). Since one also has w^ -^ z, one infers that w^ —^ z in .^(f^). Since
p* is asymptotically linear, it immediately follows

P'{wn)-^p^z) inL2^), and j^P^(w^)dx-^ fp\z)dx. (8.23)

On the other side, for a.e. x e F, one has that ^(.r) = mv(x) = ma and
hence p\z{x)) ==^(ma) = a = z;(.r). This and the first of (8.23) imply

p * ( z ) = v, namely f(z) = 0.

In a quite similar way, taking into account the second of (8.23) and the
specific form of P*{s) for s e T, one finally finds that

/ P^w^dx -^ I P^(z)dx
«/f2 JQ

namely that f(z) = c. This completes the proof of the Lemma. •

We are now in position to state
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Theorem 8.9 Suppose that (ql) and (8.17) hold. Then (8.6) has two, dis-
tinct, positive solutions UQ •^ u\. Moreover ^la(uo) = {x 6 0 : Uo(x) = a}
has zero Lehesgue measure.

Proof. Let VQ be the global minimum of / (Lemma 8.3). According to
Lemma 8.5, /(^o) < 0, whenever (8.17) holds. Hence VQ ^ 0 and UQ = G(vo)
is a non-trivial (positive) solution of (8.6) (see Lemma 8.2 and the preceding
discussion) and |Qa(^o)| = 0, see Lemma 8.3.

Lemmas 8.5, 8.6 and 8.7 allow us to apply the Mountain-Pass Theorem
(see also Remark 3.2), yielding a second critical point v^ G E^ with /(^i) > 0.
Hence KI = G(v^) ̂  UQ is a second non-trivial, positive solution of (8.6). •

Remarks 8.10 (i) When 0 = Bj?, a ball of radius 7?, it is easy to check that
M i/M I ls bounded above by a constant independent of R. Hence, fixed a
and b > 0, (8.17) is satisfied whenever R > 0 is large enough, because the
first eigenvalue of L on BR, Ai(J?), tends to zero as jR —> 4-00. Dealing with
large balls, q is assumed to be bounded, in such a way that (8.17) holds.
(ii) Fixed Q and g, one has that p(u) = h(u — a)q(u) < \\u^ provided a
is sufficiently large. It is plain that in such a case (8.6) has no positive
solutions at all. •

When n inherits some symmetry, Theorem 8.9 can be greatly improved.
Precisely, let Q be symmetric with respect the plane x\ = 0, say. Given
w(:r), with w(x) === 0 on ^Q, we denote by w* the Steiner symmetrization of
w with respect to x-^ (see, for ex., [40]); namely w*(x) which is even in .TI,
non-increasing for x^ > 0 and such that

meas{x^ : w*(x) > c} ==• meas{x\ : \w(x)\ > c}

for all c > 0.

Theorem 8.11 Suppose that, in addition to the hypotheses of Theorem 8.9,
fl, is Steiner symmetric. Then:
(i) the critical points VQ, v\ are Steiner symmetric, and hence the same
holds for the corresonding solutions: UQ = u^, u\ = u\;

(n) H^ < ° /or x^ > ° and l = °^1!
(Hi) | na (^) |=0 /orz=0, l .

Proof. Recall that the definition of w* yields

/ P"(w)dx = / P'(w')dx. (8.24)
JQ Ja
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Moreover, from [1] it follows that

(G(w) | w) ̂  (G(w') |w'). (8.25)

From (8.24) and (8.25) we infer that a minimizing sequence Wn can be re-
placed by its symmetrization w^ to obtain a symmetric minimum VQ = i^.

As for the Mountain-Pass solution, let us note that the map w —^ w*,
w e. E = ̂ (Q), is a contraction in £", in particular it is continuous. Let
7 e (7([0, !],£?) be any path used to find the Mountain-Pass critical level
(here the base points can be taken to be 0 and by). Then Y(t) = (7^))* is
also a path and

7*(0)=0, 7*(1)=W=^.
If w* C 7* corresponds to w 6 7, one has

/(w*) = /PW-^W^IW*)
Jo 2

^ /'P^w)1^)^)^^)
Jn z

and hence
maxf < max/.
7' 7

We can now use the version of the Mountain-Pass Theorem (with condi-
tion (PS) substituted by (P<S')^), as in Remark 3.2), yielding a sequence of
symmetric w^ such that

/«)-.c, /'(w:)-.0.

By Lemma 8.8 one infers that w^ —k w and f(w) = c, f'(w) = 0. Then it
follows

z^:=G(w^-^z:=G(w).

This shows that (8.6) has a second symmetric solution, proving (i).
Statements (ii) follows by the weak maximum principle applied to 9ui/9x^,
XT, > 0; and (in) follows from (i) and (ii). •

Theorems 8.9 and 8.11 are prompted for an application to the problem
discussed in Example 8.1. To be specific, we will consider the case in which
ft is Steiner symmetric. Here one has:

. < , , , , (fl+Tp)H2

a = o - T o , 6=———-———
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and assumption (ql.2) holds whenever

H2 < Ail?. (8.26)

Since

^liL-^^A^a ^ 6 - To " " 1 Mj

is satisfied for 6 e (ro, TO 4- ^), ^ > 0, then Theorem 8.11 yields two distinct,
symmetric solutions ^o(a), ^i(a). If

a > f := 7-oK

Ai^-leP

then Remark 8.10-(ii) shows that (8.3) has no positive solutions. Thus there
exists a maximal interval (ro,ri) such that (8.3) has two solutions for all
^ € (ro, 7-1). As 6 [ TO, namely as a [ 0, we claim that

uo(a) —^ u, HI (a) —>• 0

where u is the (unique) positive solution of

ie'2
-Au==-^-(^+To), xefl; u=0, xeQ^l. (8.27)

To prove the claim, we first note that p^(^) <, p^(^), whenever ai <, a^
and thus

fa,(w) ̂  fa,(w). (8.28)

Here the subscript a highlights the dependence on the parameter a. We
write wo,a (resp. w^a) to denote the minimum (resp. the Mountain-Pass)
critical point of /a, and set u^ == G(w^), i = 0,1.
For all a C (0,ao), ao > 0 close to zero, (8.28) implies

/a(^o,a) ̂  /ao(Wo,ao) <0

and thus there exists mo < 0 such that

/a(^o,a) -^ mo, as a [ 0

and /a(wo,a) = 0. Then, arguments similar to those of Lemma 8.8 show that

^o,a —^ w weakly in L2,
/o(w) = mo ,
/o(w) = 0.
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Since G is compact, then

UQ ̂  = G(wo^a) —> u =• G{w)

and u is the unique solution of (8.27).
Concerning the Mountain-Pass critical point w^a, from

/(^) ^ a<Hi - J^(G(^) | ̂ ) (0 ̂  t^ b)

we infer that
max f(^) < ca2
o<«6- v • / ~ ~

for some constant c > 0 depending on y. Hence fa(w\^a) —> 0 as a [ 0, and
arguments similar to the preceding ones yield

^i,a = G'(^i,a) -^ = G(w)

with fo(w) = 0. It readily follows that w, and hence u are zero.
In conclusion, we have shown

Theorem 8.12 Let Q, be Sterner symmetric and (8.26) hold. Then there
exists TI, TO < TI < +00 such that, setting a •==• 6 — TO, there results
(i) forQ < a < TI—TO problem (8.3) has two symmetric, positive solutions
UQ,a, ^l,a;

(ii) if a > r, îen (8.3) has no positive solutions;
(Hi) as a J, 0, ^o,a —^ ^ o^ î,a —+ 0 m H^(^l)y where u is the positive
solution of (8.27);
(iv) meas{x 6 ̂  : Ui^a{x) = a} = 0 /or i = 0,1.

Remark 8.13 Most of the preceding arguments can be carried over in much
greater generality. For example, it is possible to handle boundary value
problems of the type

Lu = p{u) + h(x) x CO; ^ == 0 x e9fl

where p : R —> R satisfies:

1) p is measurable and there exists a set A C R with no finite accumulation
points, such that p € C(R — A);
2) there exists m >_ 0 such that p{s) + ms is strictly increasing.
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In particular, Lemma 8.2 holds and solutions of (8.6) can be found by looking
critical points of a smooth functional /. According to Lemma 8.8, / satisfies
(PS) condition in a form which enables us to use the Mountain-Pass or
Linking Theorem. For more details and further applications, we refer to [8].
The material presented here is taken from [8] and [30]. Elliptic problems
with discontinuous nonlinearities have been investigated,for example, in [59],
[61], [121], [122]. •

In spite of the great power of variational methods, there are problems
in which it is more convenient to use nonvariational tools. Typical cases
are global branching phenomena, studied by means of topological degree
arguments. The following example illustrates a case where such an approach
can be usefullly employed. For brevity, we will be sketchy, referring to [12]
for some more detail.

It concerns the problem of finding the equilibria of a plasma confined in
a toroidal cavity, which leads to a free boundary problem of the form:

Given I > 0, find a >, 0, Qp C 0 and v € C1^) H C2^ - Op) such that

—Av = <7(t;), v ^ 0, in ftp
v == 0 on (90p

-/^v = 0 in n-Op (8.29)
v = —a on 3Q

• IQ^I j^ = J

Above, Qp is the region filled by the plasma (the physically relevant case is
when Qp CC ^2), o~ is a given function related to the electric field, n is the
unit, outer normal at 50, and I is the total current.

On a we suppose that:

(al) a E C^R'^R4') is non-decreasing;

(a2) a(s) <, as + 0, with a < Ai, 0 > O2;

(a3) cr(0+) = b > 0
Let us observe that, dealing with a plasma, it is rather natural to take a
nonlinearity a such that a{s) is strictly positive for all s >_ 0.

As before, setting p{s) = h(s)a(s), (h denotes the Heaviside function),

Hereafter Ai denotes the first eigenvalue of —A on fl. with zero Dirichlet boundary
conditions.
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and u = v + a, (8.29) becomes

( (0 -Au = p(ix-a) in 0
(^) ^ = 0 on 90 (8.30)

(m) -J^ = I

With this notation, Op = {x e ft : u(x) >, a} and Qp CC 0 iff a > 0.
Let

Fa = {.r € Q : n(:c) = a}.

Theorem 8.14 Suppose fl is Steiner symmetric and let a verify (<7l-2-3).
Given I > 0, let b satisfy 6|n| > J.

TTien </iere ea:z'5<5 a > 0 such that (8.30) has a symmetric solution v C
C^(0) H C^fi - Fa) such that \Ta\ = 0, corresponding to a region flp CC Q.

Proof. (Outline) First, we study the boundary value problem (8.30-i-ii):
taking a as a parameter, we estabilish the existence of a bounded, connected
branch S of solutions (a, Ua) bifurcating from a = 0, u = 0, with a behaviour
like that indicated in the figure below.

For (a, u) e S we define a real valued map h by setting

h(a, u) = - / u = / p(u - a)dx.
JOQ 9n J^i ' '

Plainly, h is continuous on <?, h(0,0) = 0. Moreover, if w is a positve solution
of (8.30-i-ii) with a = 0, such that (0, w) € <S, then

/i(0,w)= / p(w)dx>_h'\^l\.

Since h is continuous, the assumption 6|Q| > J implies the existence of a
(a,i2) € «?, a > 0 such that h(a,u) == J. This proves that u is a symmetric
solution of (8.30) corresponding to a region Op CC 0, because a > 0. •



9 Vortex Theory

This section contains a short discussion of a classical problem, the exis-
tence of stationary vortex rings in an ideal fluid, which can be formulated as
an elliptic problem with a discontinuous nonlinearity. We shall see that the
variational tools developed so far can be adapted to handle such a problem.

A. FORMULATION OF THE PROBLEM. Consider an ideal (namely invis-
cid and with uniform density) fluid in R3 and assume it has a cylindrical
symmetry. Let (r, ^, z) denote cylindrical coordinates and set

n = { ( r , ^ ) : r > 0 } .

In view of the symmetry and since the fluid is incompressible, there exists
a Stream Function, referred to as the Stokes stream function, ^ : n —»• R,
^ == v^(r,2), such that the velocity field q and the vorticity curl q have
cylindrical components

0^ , 1 9^I 1 (9^ 1 9^\
[^ J ^ ' { J ' ' r ~ 9 r )q = [~~rJz-°-~r'9r,

curl q = (O, —L'Sf , o)

where
T - 9 ( l 9 \ y

'9r\r~9r]+~9?•
Streamlines in any plane 6 = const. are level curves of ̂  and ^(r, z) = const.
are the stream surfaces of the fluid.
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Let QJ = —r~1^. The laws of hydrodynamics require that r~1^ be
constant on each stream surface ^ = const. ^ namely that

—-^=PW
where p : R'̂ ' —>• R4' is a given vorticity function.

A vortex ring- is a axi-symmetric region 7^ such that uj = 0 on R3 — 7^,
while o^ 7^ 0 on 7^. In terms of the Stokes function ^, the existence of a
vortex ring leads to find a set A C II, the cross section of the vortex ring,
or the vortex core, such that

-L^ ==0 in n - A
-L^! = r2?^) in A (9.1)

We shall also require that ^ € C^II - 9 A) H C^II). In order to add
boundary conditions to (9.1), let us note that 9 A and, by the symmetry, the
axis {r = 0} are stream lines. We will set

^ == 0 on <9A; and ^ = -k on {r = 0}. (9.2)

where the constant k ^ 0 measures (up to the factor 27r) the flux rate
between the boundary 9A of the vortex core and the stream line {r = 0}.
Finally, a condition at infinity is in order. We shall demand that

q -^ (0,0, -W) as r2 4- z2 -> oo (9.3)

From the physical point of view, (9.3) means that the vortex moves upward,
with respect to the fluid (assumed at rest at infinity) with propagation speed
W. In terms of the Stokes function, (9.3) leads to require that

19^ . 19^ ,,, 2 2 ^ ^—r- -^ 0, —— -^ -W, as r2 + z2 -^ oo. 9.4
r 9z r or

The problem (P) of finding a vortex ring can be now formulated as follows:

(P) given W > 0, k ^ 0 and the vorticity function p^ to find a set A C II
and ̂  C C ÎI - 9A) H C^n) which solves (9.1-2-4).

As in Section 8, it is convenient to make a change of variables, to obtain
a Dirichlet boundary value problem. Let

^JIVr^ (9.5)
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denote the stream function relative to the field (0,0,-IV). We introduce
the reduced stream function fp by setting

^(r,z)=^(r,z)+^o(r^).

Since Lzpo = 0, (9.1) together with the boundary conditions (9.2) and (9.4)
becomes

-L^ = 0 in II-A
-L^ = r2?^ - ̂ o) in A
^(0,0 = 0
^|V^| -. 0 as r2 4-^-^oo

where ^(^m2
If we extend p by p{s) = 0 for s <, 0, see Section 8, we finally find

( -L^ = r2p(f^^} - ipo) in 11
^M = 0 (9.6)
^|V^| ^ 0 as r2-^2-^ oo

If ^ is a solution of (9.6) then ^ = zp - ̂ o solves (P), and

A^ = {(r, ^) G n : ̂ (r, 2;) > ^o(r, ̂ )}

is the corresponding vortex core. For brevity, we will say that ^ solves (P).
Since p ^ 0, the maximum principle implies that any nontrivial solution

^ of (P) is positive, ^(r,z) > ipo(r,z) for some (r,z) e n, and hence A^,
will be not empty.

B. THE HILL SPHERICAL VORTEX. When k == 0 and p = h, the Heaviside
function (i.e p(s) = 1 for s > 0), an explicit solution of (P) was given by
Hill, see [32]:

i f ^ f 12wr2^-32r^l} ifr^^a2

^z)=\ ^2" a32 a ) ; ,
^ 2 (,.2-^2)3/2 II ' "T ^ > 0'

where the value of a, a = ^IV, is chosen in such a way that ̂  is C1 across
the circle r2 •}- z2 == a2.
The corresponding vortex core is a sphere of radius a and is referred to as the
Hill Spherical Vortex. More recently, Amick and Fraenkel [32] have shown
that ipii is the only solution of (P), with p = h and k = 0.
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C. BIFURCATION RESULTS. The existence of small vortex rings bifurcating
from the Hill vortex has been proved in [103] and [33]. Let us outline the
arguments of the latter paper. Roughly, one assumes p = h and takes A; as a
bifurcation parameter. Problem (P) is approximated by Dirichlet problems
C^n,^) on balls Dp = {(r^z) : r2 + z2 < R2} with piecewise linear vorticity
functions pn- Degree theoretical arguments provide the existence of a global
branch S,,̂  of nontrivial solutions to (Pn,R) emanating from ^jy. Limiting
procedures as R —>• oo and pn —> p yield the existence of an unbounded
branch S of nontrivial solutions of (P) bifurcating from ^H • It is also shown
that any solution ^ € S is even in z, 9^/9z < 0 for z > 0 and that the
vortex core A^ is bounded.

It is worth pointing out that in [33] no control on the behaviour of S for
k —> oo is given; thus, in spite of its global nature, their resul provides the
existence of solutions of (P) for k small, only.

D. GLOBAL RESULTS. The first global existence result to (P) is due to
Fraenkel and Berger [77]. Actually, they introduce a real parameter A, and
consider rather than (P), the nonlinear eigenvalue problem

f -L^ = Ar2p(^--0o) in II
^z) == 0 (9.7)

I ^|V^I -^ 0 as r 2 ^ -^ 2 —^ oo

and prove

Theorem 9.1 Suppose p : R4" —> R"̂  satisfies (p4):
(p4.1) p is non-decreasing and locally Lipschitz continuous;

(p4.2) 0 < p{s) $ ci + c^ for some m > 0, Ci, 03 > 0 and s > 0.

Then there exists A G R and ^ solving (9.7) and such that

(i) ^ is even in z and 9'^/Qz < 0 for z > 0;
(ii) the vortex core A^ is not empty and bounded;
(in) ^(EC^n-aA^nc'^n).
Proof, (outline) Step 1. Problem (9.7) is approximated by

- L^ = \r2p(^^; - zpo) in BR; ^ = 0 on 9Bp. (9.8)

Let ER denote the Hubert space obtained as the closure of C§°(Bji) under
the norm

||<= f^ufdrdz.
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Setting P(u) = f^ p{s)ds, solutions ^p of (9.8) are found as

max{ ( P(u - ̂ o)rdrdz : u € Ep, \\u\\\ == 1}.
JBn

Here A enters as a Lagrange multiplier.

Step 2. Since ^p is a maximizer , one shows that ^p = ^, the Steiner
symmetrization of ̂ , see Section 8. This fact permits to prove that there
exists a,/? > 0, independent of R, such that

A^ C D := ^(r, z) C n : ̂ - < r < a, |^| < /?l (9.9)

Step 3. The uniform bound (9.9) and the fact that ||̂ ||̂  = 1 yield the
existence of a ̂  C ^{D) such that ̂  —> i/i in C^D) as .R —> oo. Such a ^
can be extended outside -D to a solution of (9.7). •

A first existence result for (P), namely when no parameter arises, has
been obtained in [101] and, indipendently, in [21].

Theorem 9.2 Let W > 0, k > 0 be given. Suppose that p : R4' —)• R"1'
satisfies, in addition to (p4.1 — 2), the following assumptions:

(p4.3) p(0) =0 and is convex for s > 0;

(p4.4) </iere e:n5<5 ^ G (0, j) 5nc/i <W P(s) <, Osp{s), for s > 0.

TTien ('P) /ia5 a solution ̂  such that A^ is not empty and bounded. More-
over, ̂  is even in z, 9ip/9z < 0 for z > 0 and rp G C ÎI - 9A^) H C ÎI).

Proof. (Outline, see [21]) We consider again the approximated problems
(Pp), taking A == 1 in (9.8). Let fp : Ep -^ R,

/^)=llK-/ P(u-^)rdrdz.
L JBR

Assumptions (p4.3 — 4) allow us to use the method discussed in Proposition
1.4, see also Theorem 2.9. Let us explicitely remark that for k > 0, p is flat
in a neighbourhood of s = 0 and hence the arguments of Theorem 2.9 apply.
As for the smoothness condition (the nonlinearity was assumed C1 there),
it can be overcome by a simple limiting process. A solution tpp of (Pp) is
then found minimizing fp constrained on

MR = Mf^ = {u (E ER - {0} : |M|̂  = / up(u - ^o) rdrdz}.
JB^

Precisely, one shows
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Lemma 9.3 For all R > 0, (Pp) has a solution ^p such that fp^p) =
m^MfifR- Moreover
(i) ^R = ̂ R;
(ii) there exists C > 0 such that \\^R\\R <: C for all R > 0.

Proof of Lemma 9.3. (i) Since ||̂ ||/z <: \\^R\\R and /^ P(^R-^o)rdrdz =
/B ^(^PR ~~ fpo)rdrdz, one deduces that fp^p) ̂  fR^p)' Therefore, it suf-
fices to show that ̂  € A^R. To see this, we note that

11^11]? - / M^R - ̂ )rdrdz ^ ||̂ ||̂  - / ^(^ - ̂ rdrdz == 0.
JJ3/i ./B.R

The properties of MR yield a t* e (0,1] such that f^ € M^. Since fR^tu)
is increasing for 0 <: t <: 1, u 6 Ma (see Theorem 2.9), it follows

fRW) ̂  fR(t^R) ̂  fR^R)

with strict inequality if t* < 1. Since fp achieves the minimum on MR at
^A, then t* = 1.
(ii) Fixed R = J?o, we extend ^g to all II by setting ^Ro(r^z) = 0 for
(r, z) ^ Bpo. Since p(s) = 0, V 5 <, 0, one immediately finds that ^ppo C MR,
for all I? ̂  J?o- Then, according to (2.10) of section 2, it follows

W^(|-^ 'fpW^-o) l^(^o)=(|-^) 'fR^R^^C.

Proof of Theorem 9.2 completed. Lemma 9.3 allows us to repeat the
limiting process sketched in Theorem 9.1, yielding a solution of (P) with the
required properties. •

Remarks 9.4 (i) The fact that ^p is symmetric would also follow from a
more general result of Gidas, Ni and Nirenberg [80].
(ii) using the variational characterization of i^p it is possible to show that
the approximated vortex core A^ is connected. Recently, it has been shown
[131] that, for the planar vortex problem, the vortex core is connected. We
do not know a proof of this fact for vortex rings in R3. •

The assumptions of Theorem 9.2 require that the vorticity function p is
continuous and superlinear at infinity (condition (p4.4)). In particular, the
case oi p == h and k > 0 cannot be covered by Theorem 9.2. A much more
general, global existence result has been proved in [29]:
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Theorem 9.5 Suppose p : R4" —^ R'1' satisfies (p4.1 — 2).
TTien </ie vortex problem (P) has a solution ̂  which satisfies (i)-(ii)-(iii) of
Theorem 9.2.

For the sake of brevity we will not carry over the details of the proof, but
rather we shall outline the main steps. See [29] for details.

Step 1: approximated problems. Let us suppose,to be specific, that the
vorticity function p is bounded in such a way that one can exploit the ar-
guments introduced in Section 8. Precisely, Theorem 8.11 and Remark 8.10
apply yielding the existence, for all R > 0 sufficiently large, of two sym-
metric solutions (pp and z^p to {Pp). The former correspond to the global
minimum, the latter to a Mountain-Pass critical point of the correspond-
ing dual functional. Actually, solutions of (Pp) are found in [29] using a
"direct" functional like fp. However, this does not effect the arguments,
because critical points of the dual functional give rise to critical points of
fp (in an appropriate sense, because it is in general not smooth), with the
same variational characterization.

Step 2: estimates. The limiting process requires some care. First of all
one remarks that the solutions corresponding to the minimum, <^R, does
not converge and has, indeed, the Z^-norm divergent. Consequently, any
possible uniform estimate, like (iii) of Lemma 9.3, will not be an a-priori
estimate related only to the fact that we are dealing with a solution of
C^)» but rather it shall depend on some specific feature of such a solution.
Indeed, the idea here is to use the Mountain-Pass characterization of ̂  to
obtain a uniform estimate. Roughly, letting c{R) = /^(^), one verifies that
c(-) is non-increasing, hence a.e. differentiable and there exists a sequence
Rn —>• oo such that Rnc{Rn} —>• 0. Then one shows that at each R where
c(R) is differentiable there results

||^||^al(c(A)+2^|c/(a)|4-a2)

with ai,a2 constants independent of R. Plainly, this implies the required
uniform estimate for z^p.

We shall see in more details the preceding arguments, discussing the
existence of homoclinic orbits for a second order conservative system, see
Section 10 below.

Step 3: limiting process. Once we have the preceding uniform bound one
can repeat the limiting process as in Theorems 9.1 or 9.2, to find a solution
of (P) with the required properties. •
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E. LIMITING BEHAVIOUR OF THE VORTEX CORE. Consider a planar ideal
fluid filling a bounded region ^l C R2. In such a case, the problem of finding
a stream function ^ and a vortex core A C 0 can be formulated as a free
boundary problem of the form

-A^(a?) = 0 x e 0 - A
-A^(;r) = Ap(^), ^ > 0 x € A

^(a?) = 0 a? e 9A
^(a:) = -^o(x) x e9fl

(9.10)

Above, x = (a:i,a;2) € R2, A is the usual Laplace operator in R2 and ^o(x)
is a given function which is the counterpart of ^o- Let us point out that
the real parameter A introduced in (9.10) is, in contrast to (9.7), prescribed:
actually, we are interested in the behaviour of the solutions of (9.10) as
A —> oo. Limiting process of planar vortices has been studied in [46] when
A is a-priori unknown, as in Theorem 9.1. Below, we prefer to follow the
approach of [31] where A is a prescribed parameter, which is the natural
setting in this kind of limiting questions.

As usual, it is convenient to transform (9.10) into a Dirichlet problem.
Let qo be the solution of

f -Ago == 6 in ft
\ qo = ^o on ^ ^•1^

We set ^ = ̂  + go and extend p to all R putting p(s) = 0 for s <: 0. Then
(9.10) becomes

f -A^ = Ap(^-go) in f2
\ ^ = 0 on 9Q (9'12)

Let us suppose that p satisfies (p4.1 — 2 — 3 — 4). Then arguments similar
to those of Theorem 9.2, leads to show that, for each A (9.12) possesses a
positive solution ^\, with corresponding vortex core A\ = {x G 0 : ̂ \ >
qo}. Precisely, letting fx{u) = ^\\u\\2 -\f^P(u - qo)dx, u e H^(fl) and
MA = {u € ^(^-{O} : |H|2 = Xf^up(u-qo)dx}, ̂  is found as miriMjx.
This variational characterization leads to show that A\ is connected (see
Remark 9.4-ii). Moreover there results

°W = f\W -^ 0 as A -^ oo. (9.13)

Let us remark that (9.13) follows by means of a comparison between (9.12)
and a model problem

f - A ^ = \p^-qo)mBc^ - .
t ^ = 0 on 9B (9-14)
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where B is a ball, p(s) = aos"1, m > 1, (s > 0) and go = maa;ngo.
If f\ and M\ denote the functional (resp. the manifold) corresponding to
(9.14), one shows that c(A) := min^^f\ —> 0 as A —> co. Choosing ao in
such a way that ao^"* < j?(^), one has c(A) ^ c(A) and (9.13) follows. Since
c(A) ^ (^ - OW\\\2 (cfr. (2.10)), there results

H ^ I I ^ O as A-^oo. (9.15)

The above arguments allow us to control the asymptotic behaviour of
stream function ̂ \ and the vortex core A\. Let G denote the Green operator
of —A in Q with zero Dirichlet boundary conditions and let

h(\) = A / p(zfj\ - qo)dx.
JAj,

Theorem 9.6 Let ^o > 0 on 9^1 be smooth and suppose p satisfies (p4.1 --
2 — 3 — 4 ) . Then (9.12) has a positive solution ̂ \ such that, as \—> oo:
(i) diam ̂ ) -^ 0;
(ii) let x(\) be any point in A\; then

^°-G(.,rr(A))^0 in H^^l<^p<2.

The arguments to deduce (i) and (ii) from (9.13-14) are the same as those
employed in [46]. •



s



10 Homoclinic Orbits

In this section we will investigate the existence of homoclinic orbits for
a class of second order conservative systems

q+V'(q)==0. (10.1)

Assuming that V'(0) = 0, we say that a solution q of (10.1) is a homoclinic
orbit (to the equilibrium q = 0) if q G C^R.R") solves (10.1), q(t) ̂  0 and

qW -^ 0, q{t) -> 0 (t -^ ±00).

Recently, homoclinic orbits have been faced by critical point theory and
existence and multiplicity results (when V depends on time in a periodic
fashion) have been obtained; see Remark 10.6 below. In the sequel we will
follow [11] showing how the approach used to prove Theorem 9.5 applies
here, too. The potentials we deal with, have a strict local maximum at
x = 0 and are negative in a bounded, deleted neighbourhood of x = 0.
Precisely, we consider a system of the type (10.1) with

V(x) = ~(Ax, x) + W(x) (10.2)

and assume (VI):

(Vl.l) A is a symmetric and positive definite constant matrix;

(V1.2) W C ^(R^R), W'(x) = o(\x\) as x -. 0;

(VI.3) there exists a bounded open set Q, C R" such that:
(i) 0 € ^ ,
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(ii) V(x) < 0 in 0 - {0}, and
(iii) V = 0 on 9ft;

(V1.4) (V'(rc),a:) >0on<9ft.

Our goal will be to show that (10.1) has a homo clinic orbit whenever V
has the form (10.2) and satisfies (VI). As anticipated before, the procedure
we will use is similar to that employed in Theorem 9.5: the homoclinic will
be found as limit of solutions of approximating Dirichlet boundary value
problems on intervals [--r,T] as T —>• oo.

A. APPROXIMATING PROBLEMS. First of all, it is convenient to replace V
with a bounded potential. Precisely, by (VI. 3) there exists R > 0 such that
ft C BR\ moreover, using (VIA) we can find UQ > 0 and U G G^R/'.R)
such that

U{x) = V(x) for all x € ft (10.3)
U{x) > 0 for all x ^ ft (10.4)
U(x) = Uo for all \x\ >: R. (10.5)

Let ET = I:fol([-T\TLRn) endowed with the norm

11/J |2 __ f |/;,|2/J4M2T=f_^q\2dt.

Consider the functional /r 6 C^jE^R-) defined by setting

/r(") = JIHJJ- - .M"),

where

<M^)== /_^^(u) == /T U(u(t))dt
J-T

Critical points of /r give rise to solutions of

q(t) + ^(g(<)) = 0, -T < t < T; q(-T) == g(T) == 0. (10.6)

Since U is bounded, then plainly fr is bounded from below, coercive and
satisfies (PS). Moreover one has

Lemma 10.1 For all T > 0 sufficiently large, fr has two nontrivial critical
points: a global minimum WT and a Mountain-Pass critical point VT, such
that /r(^r) < 0 < /r(^r)' Moreover jJTy {wr^dl —> oo as T —^ oo.



HOMOCLINIC ORBITS 79

Proof. Since 0 is bounded and (10.4) holds, there exists z e H^([-l, I], R")
such that

a := / U{z(t))dt > 0.j—i
Letting zr(^) := i(^) and ai = j||^||j=i, there results

MZT) = ̂  ̂  \^dt - T f^ U{z(t))dt = ^ai - Ta. (10.7)

From (10.7) it follows that for T > 0 large enough, /r achieves its global
minimum at some wy, with /r(wr) < 0. In addition, (VI.1 - 2) and (10.3)
immediately imply that u = 0 is a strict local minimum for /r. Hence the
Mountain-Pass Theorem applies and yields a second, nontrivial critical point
VT such that

c(T) := fr(vT) = inf sup fr^t))
'yer'ro^Ki

where
Fr == {7 e G([0,1], ET) : 7(0) = 0, 7(1) = M.

Finally, from the definition of U, there exists a > 0 such that U(x) <: a\x\2

and hence there results

a [ |wr|2^ ̂  / ?7(wr)^ > -/r(wr).
J—T J—T

This and (10.7) immediately imply that ̂  |wr|2^ -^ oo as T -> oo, and
the proof of the Lemma is completed. •

B. UNIFORM ESTIMATES. The following Lemma provides the estimate,
uniform in T, we need to show that VT converges to a homoclinic orbit of
(10.1). The proof will also indicate in a more detailed way the kind of the
arguments sketched in the proof of Theorem 9.5, Step 2.

Lemma 10.2 There exists a constant a* > 0 and a sequence Tn —^ oo such
that for the Mountain-Pass critical points v^ = VT^ one has

Kllj^ <: ^' (10.8)

Proof. The proof will be divided into several steps. In the following it is
understood that T is large enough, in such a way that Lemma 10.1 holds
true.
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Step 1. First of all we remark that any u e ET can be extended to a function
in ^(R.R"), simply by setting u(t) == 0 for all \t\ > T. It immediately
follows that FT, C Fr, whenever Ti ^ T^ and hence there results

cW)^c(ri), vri^r2.
As a consequence, c(r) is a.e. differentiable and there results

r° \^{T)\dT ^ c(To) - liminfc(r) <, c(7o) < oo.
JIQ T—^oo

Thus there exists a sequence Tn —> oo such that

WT,) -^ 0. (10.9)

Step 2. For 5 < 1 and close to 1 and u e ET, respectively v G 2^r, we set
Us(t) := n(^) and v^t) := i;(s^). The maps u -^ u,, and v -^ Vs define an
isomorphism between ET and £'57- as well as between Fy and F^. Then one
readily infers

c(sT)= inf sup /,r(^). (10.10)
^T u(E7[0,l]

Step <3. Let T > 0 be such that c(') is differentiable at T. According to
(10.10) there exists 7* € Fr such that

sup /,r(^) ^ c(5r) + e(\ - s) (0 < s < 1, 0 < e < ̂ ). (10.11)
u€r[o,i] 5

Let u 6 7'![0,1] be such that

fr(u) > c(T) - e(l - s). (10.12)

We claim that
WT ^ ^(T) (10.13)

where
^(r)=c(r)+7y(r)[+i.

Indeed, combining (10.11) and (10.12) we find

fsT(u,) - fT(u) ̂  c(sT) - c(T) + 2^(1 - s). (10.14)

By a direct computation, one has

\MT=1W
s
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as well as

^r(^) = J^U(u^))dt=

= s - ]^U(u(t))dt=s^T{u).

Then it follows

/,r(fi,) - /r(&) =(!-,) (j||fi,||̂  + ̂ (&,)) . (10.15)

Inserting (10.15) into (10.14) we infer, for s T 1,

Jll^r + ̂ r(«,) <, ̂ J^) + 2, < r^^ ̂  3^

and this in turn implies

gMr+^INL'r S ^r(".)+r|c'(r)|+3^

^ ^c(5r)+r|c'(r)|+4f. (10.16)
Letting s "f 1, one has

'?=-?-11^0

and hence (10.16) implies

WT <: c(T) + r|c'(r)| + 5f ^ K(T)
proving (10.13).

step 4: The ̂ P^5 of ^r) imply that there exists a* > 0 such that
K(T) ̂  a for all T > 0 sufficiently large. For e* > 0, let us define

.̂ = {u e ET : IHIj, ̂  a*, |/r(u) - c(T)\ ̂  e*}.

If we show that for all e* > 0 and small enough there results

^f. yT(un = ° (10.17)

the lemma will follow. Indeed, in such a case, there exists a sequence ̂  e N,
such that fM -. 0. Since (PS) holds, then, up to a subsequence, «,
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converges to some UT in ET, with /j^r) = 0 and [|^r||i1 <: o * ' Taking a
sequence Tn —»• oo where c(-) is differentiable, the lemma follows.

It remains to prove (10.17). For this, we can argue by contradiction. Let
£* > 0 be such that

l l / rMII>^ V ^ e A ^ .
By the Deformation Lemma (cfr. Lemma 2.5) we can find an 5, with 0 <
£ < £o := mm{£:*,c(r), ^}, and a homeomorphism a : ET —»• ET such that

(r{u) =u if|/r(^)-c(r)|^o
/r(<7(ix)) <:fT(u) foraLb (10.18)
/r(<7(^)) ^c(T)-e for allu € A^ H/^(r)+£ (10.19)

Let 7* € FT be such that (10.11) holds (it is understood that e < EQ ). Then
for all u e 7*[0,1] one has

fr{u) <, f,T(u,) <, c(sT) + £(1 - s) ^ c(T) + e. (10.20)

If there is a u e 7*[0^] such that f^u) ^ c(T) - e(l - s) then (10.13)
implies that u G A^* (indeed, one plainly has \fr(u) - c(T)\ < £*), and
(10.19) yields /r(^)) ^ c(r) - e(l - s). This and (10.18) imply that
^(Kr^i.M^T^7"))) ^ c(T) - ̂ (1 - 5), a contradiction with the definition
of c(T). This proves (10.17) and completes the proof of the Lemma. •

C. EXISTENCE OF HOMOCLINICS. According to Lemma 10.2, let us consider
a sequence of critical points v^ := VT^ which give rise to solutions of (10.6).
As a consequence, the energy

hn=^Vn(t)\2+U(v^t)) (10.21)

is independent of t. Integrating (10.21) on the interval [-7^, In] and recall-
ing that v^ satisfy the estimate (10.8), we find

2|7n/z,| ^ j[|^+|^1 U(vn)dt\

^ a++1/^ u^dt\' (10-22)

Since [ ̂  U(vn}dt\ <, c(Tn) and c(Tn) <: const. (see point (a) in the proof
of Lemma 10.2), then (10.22) implies (\Tnhn\ <, const., and hence) h^ -^ 0.
Since ^(±7n) = 0 and (7(0) = 0, (10.21) yields

^=||^(±T,)|2.
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Let us remark that, actually, hn > 0, otherwise Vn(±Tn) = 0 and Vn(±Tn) =
0 would imply Vn(t) ̂  0, a contradiction.

Lemma 10.3 There exists 6 > 0 such that ||^n||oo >. 6 > 0.

Proof. From the preceding remarks it follows

J l̂̂ )!2 = ^(^-(U^V^V^t))

= 2h^-2U(v^t))-(Ut(v^v^t))
> -2(7(^)) - {^(^)),z^)). (10.23)

Using (VI.1 - 2) and (10.3), we can find a 6 > 0 such that B{, C 0 and

-^(^-(^..r} =
2(A(^) - W(x) - {W'{x\ x} ^ 0 V .r e ̂  . (10.24)

Since ̂ M^|2 <. 0 at points r where [|^||oo = M^)|, (10.23) and (10.24)
imply that ||^n||oo >. ̂  as required. •

In the sequel it is convenient to make a rescaling of time and define
VnW = Vn(t - Tn) in such a way that 2/n(0) = 6. Plainly, yn are solutions
of (10.6) in an open interval 1^ with |̂ | == 2T^, ^(^) ^ 0 for all t ^ 1^
satisfy the energy relationship (10.21) and are such that

r° M^^c*. (10.25)
J—00

From (10.25) it immediately follows that, up to a subsequence, y^ —^ y in
L^(R,R"). Moreover z/n -> y weakly in L^R.R") and one has

j^yWdt^ const. (10.26)

Moreover, since ?/„ solve (10.6) and U is bounded, then one easily finds that,
again up to a subsequence, y^ —^ y in ^'^(R.R"). Hence y is a weak
and, by regularity, strong solution of (10.6). In addition, (10.21) and the
preceding discussion yield

J12/M12 + U(y(t)) = ̂  (j|^)|2 + UW))) = ̂  ̂  = 0. (10.27)

From (10.27) it follows that U(y(t)) <, 0 and thus, according to (10.3-4),
y(t} e ̂  and hence U(y[t)) = V(y(t)), namely y is a solution of (10.1). Let
us also remark that y(t) ̂  0, because z/(0) = Um^oo |2/n(0)| = 6.

In order to show that y is a homoclinic orbit, it remains to show that
y(t) —> 0 as t —> ±00. This follows from the next lemma.
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Lemma 10.4 y(t) € ^(R.R").

We will not carry over the details of the proof of this lemma, which is rather
technical, but limit ourselves to outline the arguments. For more details, we
refer to [11]. Using the assumptions on V, one can find positive p , £ , 6 , and
subsets Bp^Cp and Dp of Q such that:

W(x) ̂  e\x\2 V x^Bp^{\x\ <p} (10.28)
{V'{x),x} >.6>0 V xeDp=={xe(:l:dist(x,9fl)<p} (10.29)

and Cp = Q, — {Bp U Dp}. In the sequel the dependence on p will be
understood. Let 7-5, respectively rc,rp denote the interval [t : y(t) 6 B}
(resp. € C, € -D). From (^l.l) we infer there exists a > 0 such that
{A(x),x) >, a\x\2. Then, taking into account (10.28), one finds

\ai [y^dt ^ 1 / {A(y(t))^t)}dt=
2 JTB 2, JTB

= 1 / \yW\'^dt+ I W{y(t)-)dt<^
£.1 JTB JTB

<, const. + e f Wt^dt. (10.30)
JTB

Taking p possibly smaller, we can suppose that £ < ja and (10.30) yields

/ ^(t^dt < ai . (10.31)
J T B

Next, since V{x) <, —/3 < 0 on C, then one immediately has

f3 ' measure) <: [ -V(y(t))dt < a^ . (10.32)
JTC

Finally, using (10.29), one shows that TT) does not contain any unbounded
interval J; otherwise, from (10.1) it would follow (let, for example J =
[r,+oo))

/ l^l^^l^^ll^^l+Hmsupl^)!!^)! ̂
JJ t^oo

^ i^'w^y^' (10-33)
Since (10.27) and U <, const. imply that both \y(t)\ and \y(t}\ are bounded
(t G R), then (10.33) and (10.29) give rise to a contradiction. Actually, with
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some more care, one shows that meas^) is finite. This, (10.31) and (10.32)
imply that f°°^ ̂ (t^dt < oo, and the proof of the Lemma is complete. •

We are finally in position to prove

Theorem 10.5 Suppose that V has the form (10.2) and satisfies (VI).
Then (10.1) possesses a homoclinic orbit.

Proof. As anticipated before, it remains only to show that y(t),y(t} —> 0
as t —> ±00. Indeed, integrating

\yW\<.W\+\^y(r)dr\

on [t — j, t + ̂ } and using the Holder inequality, one infers

W\ ^ J^\y{s)\ds+f^\^y{r)dr\ds

^ OC412/(s)12rfs) + C d}y(r)}dr dsa fi.1 \ l/2
^ 2 ^^f+^ds) .

This, jointly with (10.26), Lemma 10.4 and (10.27), show that limt-^oo y(t) =
0, as well as linit-^boo |2/(^)| = 0, proving the theorem. •

Remark 10.6 A result quite similar to Theorem 10.5 has been found
by completely different methods in [112]. In a preceding paper [111] the
existence of homoclinic orbits was proved under the additional assumption
that W <, 0{W'(x),x) for some 0 < 0 < j and all x ^ 0. Homoclinics
for first order Hamiltonian systems are discussed in [86] still under a super-
quadraticity assumption on the Hamiltonian. Dealing with time depending
potentials: V(t-{-T^x) = V(t,x), the existence of multiple homoclinic orbits
have been proved in [66] and [114] for first order convex Hamiltonian systems,
and in [67] for second order systems with a super-quadratic potential. •

Remark 10.7 Similar arguments allow us to prove the existence of a
homoclinic orbit for a class of Potentials V which possess a singularity at
some p 6 f2 — {0}. Roughly, we can handle the case when V e C^R" —
{j?},R), satisfies the preceding assumptions and behaves like — ^ . a , with
a ^ 2, near the singularity x = p. For results on homo clinics for other,
different classes of singular potentials we refer to [124] and, as far as a
multiplicity result is concerned, [49]. •
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11 Conservative Systems with Singular
Potentials (I)

These last 3 sections deal with the existence of periodic motions to a
class of Lagrangian systems with Singular Potentials arising in Celestial
Mechanics. One of the main purposes will be to provide a suitable variational
framework for this kind of problems.

Min-max methods and Linking Theorems, such as those discussed in
Sections 1-5, have been usefully employed to find nonlinear oscillations of a
broad class of first order Hamiltonian systems like

f p= -H,(p,q)
U= H?(P^ (n'l)

when the Hamiltonian H(p, q) = H : R/1 x R" —)• R is smooth.
Referring the reader to the recent books [73] [98] and [120] as well as to

the extensive bibliography therein, let us limit ourselves to a short overview,
only.

a. Solutions with prescribed period. These results deal with the existence of
periodic solutions of (11.1) having a prescribed period T > 0 and cover both
the case in which H is super-quadratic, as well as that one of sub- quadratic
or quadratic growth. See, for example [3, 107].

The question of the minimality of the period has also been studied, see,
for example, [22, 58, 74, 81]. These latter results are based upon a remark-
able procedure, the Dual Variational Principle [57], which is widely discussed
in Ekeland's book [73].
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b. Solutions with prescribed energy. When (11.1) is an autonomous system,
the Hamiltonian If is a constant of the motion and it makes sense to seek
periodic solutions having prescribed energy: H(p, q) = h. The case in which
H is smooth and H^^h) is a compact hypersurface in R2" has been exten-
sively investigated. Let 0/» C R2" be bounded and such that H~~^(h) = c?Q/».
If Q/i is convex (resp., star-shaped with respect to (p,<?) = (0,0), i.e. radi-
ally diffeomorphic to the unit sphere {|p|2 + \q\2 = 1}) the existence of one
closed orbit of (11.1) such that H(p(t)^q(t)) = h has been established in
[130] (resp., [108]). Variational tools in connections with Symplectic Geome-
try have permitted to greatly improve such a result. For example, if H^(h)
is a compact hypersurface in R2" and p ' Hp > 0 for all (p,g) € H^^h),
p 7^ 0, then (11.1) has a periodic solution with energy h [87].

c. Multiple trajectories on an energy surface. If H G C2, -^(0,0) =
IT (0,0) = 0 and ^(0,0) is positive definite, Weinstein [129] and Moser
[99] have shown there exist n distinct modes of vibration on the surface
H = e, for any € > 0, small enough, improving the celebrated Lyapunov
Center Theorem . A remarkable extension in the large of such a local result
is reported below and is due to Ekeland and Lasry [75] (see also [23] for a
different proof, and [45] for an improvement).

Suppose that ft/i is bounded, convex and let

r2 = mf{b|2 + |g|2}, R2 = sup {H2 + M2}
H-W H-^{h)

If R2 < 2r2 then (11.1) possesses n geometrically distinct periodic orbits
with energy h.

The proof makes use of the Lusternik-Schnirelman theory for S1 invariant
functionals in connection with the Dual Variational Principle.

In contrast with the results outlined above, which deal with regular
Hamiltonians, defined on all of R2", we will discuss in the sequel Conserva-
tive Systems like

q+V\q)=0 (11.2)
where the potential V is, roughly, of the form V(x) ̂  —as-i with a > 0.

Conservative Systems with those singular potentials include, for example,
Kepler's Problem and (see Section 13 below) the N-body Problem, which
are a classical subject of Celestial Mechanics. See also Examples 11.3 for
other examples.

It is worth pointing out that the point of view from which these problems
have been studied in Celestial Mechanics is quite different from ours. For
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example a typical question has been to estabilish stability or other qualita-
tive properties of orbits. These matters have been usually studied by means
of perturbation techniques, which give rise to rather precise results but, in
general, they work for specific classes of problems, such as the Kepler one,
or the restricted 3-body problem.

On the other side, systems like (11.2) have a variational structure and it is
natural to attempt to handle them by means of the Calculus of Variations in
the Large. Our point of view will be the usual one in Nonlinear Functional
Analysis: we will try to provide a general framework which allows us to
understand the common features of various classes of potentials, mainly
depending upon their behaviour at the singularity and at infinity. The
results will be global in nature and will cover a large class of gravitational-
like potentials, including the classical ones as particular cases.

Postponing to section 12 the study of periodic motions of (11.2) with
prescribed energy, let us begin discussing the problem

(Pr) Given T > 0, find T-periodic solutions of (11.2).

Remark 11.1 Problem (Pr) makes sense even if V = V(t^x) and V(t +
T,x) •==• V(t^x) (in such a case V stands for |̂ ). For the sake of notations,
the t-dependence will be always understood hereafter. •

Set Q = R" - {0} and let us consider a potential V 6 C^R x Q, R)1. Since
the potentials we deal with have a singularity at x = 0, the meaning of
solution has to be clarified.

Let

E = H^^ST^).

The norm and the scalar product in E will br denoted, respectively, by || • [|
and (•!•). For u 6 E we set Cn = {t € [0,r] : u{t) = 0}. Let

L^^JH2-^).

denote the Langrangian. We say that u G E is a generalized solution of (Pr)
whenever the following conditions are satisfied:
(i) u e E and ff L(u, u)dt < +00;
(iii) Cu has zero measure;
(iii) for all t^ Cn u € C2 and solves (11.2).

1 The case in which fl, = R" — K, K compact, can also be handled, see Remark 11.9
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When V is autonomous, we shall also require:
(iv) there is a constant t such that \\u(i}^ + V(u(t)) == i for all t^ Cn.

Using a terminology borrowed from Celestial Mechanics, we will say that
u is a non-collision (collision, resp.) orbit whenever Cy = 0 (resp. ^ 0).

We shall work on the Hilbert space E. For future refence we set W =
{w € E : ffw(t)dt = 0} and E = R" 9 W. Correspondingly, let us write
u = ^ + w, with ^ = ^ u(t)dt and w 6 l^. Recall that for w e TV, |w|j is a
norm equivalent to the 171'2 one. Moreover one trivially has

Hoo^v^Hz (11.3)

for all w e W.
The Variational principle we will employ is nothing but the classical

principle of the Least Action. Let

A={ueE:u(t)^0 W<E[0,r]},

and define functionals /, ip : A —> R by setting

^{u)= [v{u)dt,

f(u)= F L^u^dt^^u^^^u).
JQ ^i

One immediately cheks that / € C^A.R) and that any u e A such that
f(u) == 0 is a non-collision solution of (Pr). In other words, such an u is a
classical solution of (11.2) which does not cross (or fall into) the singularity
a;==0.

In order to highlight the kind of problems one meets, let us take the model
potential V{x) = -|.r|-°', with a > 0, so that the functional / becomes

^r^ffp'-
Plainly, inf^A f(u) = 0 but / does not achieve the minimum on A

and hence one needs to look for critical points of / by means of min-max
techniques. In particular, since cat(A) == +00 (see Example 2.2-(iv)), it is
natural to try to use the Lusternik-Schnirelman theory. Nevertheless, in
order to apply those tools, one has to overcome two main difficulties: first
of all, since / is defined on the open dense subset A C E, one has to control
the behaviour of / on the boundary <9A; second, the (PS) condition does
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not hold, in general: for any sequence Xm € R" - {0} such that \Xm\ —^ +00,
one has /(a-m) —> 0 as well as f(xm) —> 0.

In particular, because of the former problem, it is convenient to distin-
guish in the sequel two cases, according to the behaviour of V at x = 0: in
subsection A we will deal with potentials V(x) ̂  —|.r|~°' near x = 0, with
a ^ 2 (referred to as Strongly Attractive Potentials or as Strong Forces);
in subsection B we will be concerned with the case 0 < a < 2 (Weakly At-
tractive Potentials or Weak Forces) which includes, among other examples,
the Kepler problem. We anticipate that the results on the Strong Forces,
apart of being interesting in itself because of applications to physically in-
teresting cases (see Examples 11.3), will serve as a basic tool for the Weakly
Attractive Potentials. In a last subsection C we will deal with perturbation
results.

A. STRONGLY ATTRACTIVE POTENTIALS. Let us start with a key lemma
which relates the behaviour of V at x = 0 with the behaviour of / at 9A.
Lemma 11.2 Suppose that V satisfies
(SF) 3 a,p > 0 such that V(x) <, -a\x\~2, V O < |a;| < p 2.

Let Um € A he a sequence such that Um —>• u, weakly in E and uniformly,
and let u 6 9 A. Then one has

^(.Um) -^ -00 .

Proof. We will prove the lemma under the stronger assumption that V(x) <,
— a | x | ~2 for all x -^ 0 (the general case can be handled with small changes),
so that one has

[V^t)dt^-a.^.^dt. (11.4)

We will show the last integral diverges whenever Um -^ u 6 9A (weakly and
uniformly). Without loss of generality, we can assume that u C 9A — {0}:
otherwise, Um -^ 0 uniformly on [0, T] and the result follows trivially. Let
so, 5i G [0,r] be such that u{so) = 0, whereas u(si) ̂  0. There results:

^-"c <- f::^<-
___s [r^if-LT^r- '"•5)

^t is understood that assumption (SF), as well as the following (V2.1), etc., holds
uniformly in t.
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Since Um -> u weakly and ^m(5o) -^ 0, ^(^i) -^ n^i) ^ 0, (11.5) readily
implies that ff |^m|~2 —^ +00 and the lemma follows from (11.4). •

Before going on, let us indicate some problems of Celestial Mechanics in
which Strong Forces arise.
Examples 11.3 (i) The relativistic correction, in static conditions, to a
gravitational potential like -^j +7?7, U smooth, leads to a potential of the
form (see [95]) V(x) == (1 + a)(-^ + 7^) - ̂ (-H + 7^)2, where a, b are
constants of the order of c~2, c being the speed of light. Plainly, such a V
satisfies (SF).

(ii) Consider a particle x € R3 attracted by a solid body S according to
Newton's law. Let 7,, i = 1,2,3, denote the moments of inertia of S. The
body S attracts the particle x with a force which can be obtained integrating
over 5 the attraction forces (see [90, Chapter V]) of each element dS. The
corresponding potential is given by (up to constants)

^)=—-^+o(M-4)
I I I I

where A is a matrix depending on J,. The remainder term 0(|.r|~4) and A
are zero if and only if the solid is spherical (i.e. if Ji = ^ = h)' If this is
not the case, V satisfies (SF).m

As anticipated before, the (PS) condition does not hold at level c = 0.
A condition which guarantees that this is the only level where (PS) fails, is
given in the following lemma.

Lemma 11.4 Suppose that V satisifies (SF) and

(V2.1) V(x) -^ 0 and V ' ( x ) -> 0 as \x\ -. oo.

Then (PS)c holds, whenever c > 0.

Proof. Let Um be a sequence such that

/(^m) = •d^m|j - ̂ (Um) -^ C > 0 (11.6)

and
f'(Um)-^0. (11.7)

Since sup^ V < 4-00, then ip is bounded above on A and from (11.6) one
infers that

l^ml j <: ai 3 . (11.8)
^ere and in the following sections 12 and 13, ai, 02,... denote positive constants.
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Letting Um = ^m 4- w^, with ^rn € R" and w,n € W, one immediately
deduces from (11.8) there exists w 6 W such that

Wyn —^ w, weakly in E, (11-9)

up to a subsequence.
Moreover, we claim that |^m| <. o-i- Otherwise, |^m| —^ -hoo, (11.3) and

(11.8) imply that
|^m(^)| —>- +00, uniformly, (11.10)

and hence, from (^2.1)

/V(z^)).w^)^-.0 (11.11)
Jo

as well as
^(um) -^ 0 . (11.12)

Then, using (11.7), (11.9) and (11.11) it follows

l^nlJ = (/'M^m) + fv'^a)) . w^)^ -. 0.
Jo

and this, jointly with (11.12), yields

/(^m)=JKjJ-^)-^0,

a contradiction.
Since \^m\ <. ̂ 2 and recalling (11.9), it follows that Um = ^m+^m —^ ^+^

(up to a subsequence), for some $ G R". From (11.6) and Lemma 11.2 one
has that u := ^ + w e A and, by a standard argument, one shows that
Um —> u strongly, completing the proof. •

Remark 11.5 The preceding proof actually shows that every (PS) sequence
Um = ^m + ^m? such that \^rn\ is bounded, has a converging subsequence. •

Since the (PS) condition does not hold at the level c = 0 we need to evaluate
the topology ofsublevels /£, e > 0, small enough. This will be done by means
of the Lusternik-Schnirelman category (see Section 2).

For r > 0 let S(r) = {x € R" : \x\ >. r}. Plainly, ca^(S(r);A) = 2.

Lemma 11.6 Let V satisfy (^2.1) (actually, V(x) —> 0 as \x\ —> +00 would
suffice) and

(V2.2) V(x) < 0 for all x € ^

Then there exists e* > 0 such that ca^/^; A) = 2 for all 0 < e <: e * .
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Proof. We start showing:

(a) Let u = ^ + w be such that f(u) <, 1. Then

|w|oo<\/2T.

To see this, it suffices to note that (V2.2) implies ^(u) < 0 Vn € A and
hence from f(u) <^ 1 it follows

JHJ<||^IJ-^)=/(^1.

Thus |w]oo <: VT ' |w|2 < \/2T.
Next, we claim:

(b) For all r > 0, 3 e(r) > 0 such that V 0 < e <: e{r) there results

/(^+w)^=^|>r.

Indeed, otherwise, there exists ro > 0 and a sequence Um = ^m + Wm C A
such that

/(^m) ^ ̂  (11.13)m
l ^ m l ^ r o (11.14)

From (11.13), point (a) above and (11.14) it follows

\Um(t)\ <: ro •}-V2T = a^

Letting Vo = sup{V(.c) : \x\ <: 03} < 0, we infer

/(^n)^- rV{u^{t))dt^-TV^
Jo

in contradiction with (11.13), whenever m is large enough. This proves (b).
To complete the proof of the Lemma, let r* == \/2T + 1. According to

(a) and (b), there exists E* > 0 such that for all u == ^ + w G /£ one has:

|C| > r" and \w\^ < \/2T, (11.15)

whenever £ <: e*. For (s, u) G [0,1] x f€, (e <, £"), u == ^ + w, let y?(5, zz) =
^ + 5w. From (11.15) it follows that

^ + sw(^)| ^ |$| - |w|oo > r* - V^T = 1 .
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Therefore y(s,u) € A for all u G /ff, £ <. £*. Hence y? defines a deformation
on A such that <^(1, u) = S(rlft) and Lemma 2.1-(iii) implies that cat(f€; A) :<
ca^(S(r*);A) = 2. Since, as a consequence of (^2.1), S(r) C /e, whenever
r > 0 is sufficiently large, there results cat(f€\A) >, 2, too, and the lemma
follows. •

We are now in position to state:

Theorem 11.7 Suppose V e C^R x Q,R) is I'-periodic in t and satis-
fies (SF) and (V2)4. Then problem (Pr) has infinitely many non collision
solutions.

Proof. As recalled before, cat(A) = -hoc, hence Ak = {A 6 A : ca<(A;A) ^
k} is not empty for each integer k and we can define the min-max levels (see
(2.1))

Ck = inf [sup{/(iz) : u C A}] .
A^Ak

According to Lemma 11.5, Ck >. e* for all k ^ 3, otherwise there would
exists A C f^ such that A C As. Then ca^(/^;A) >. caf(A;A) ^ 3, a
contradiction. Since {PS)c holds for all c > 0 (Lemma 11.3), it follows that
any c^, k ^ 3, is a critical level for /. Let us explicitely point out that the
arguments of Section 2 can be carried over in the present case, because of
(SF). Indeed, as a consequence of Lemma 11.2 one has that /a H 9 A = 0
for all a. •

Assumption (V2.2) can be weakened.

Theorem 11.8 Suppose V G C^R x Q,R) is T-periodic in t and satisfies
(SF), (V2.1) and

(V2.27) There exists R > 0 such that V(x) < 0 for all \x\ > R.

Then problem (Pr) has infinitely many non-collision solutions.

Proof. (Sketch) Only Lemma 11.6 needs to be substituted. Roughly, argu-
ing as in points (a) and (b) therein, one shows there exists r* > 0 such that
|$| ̂  r*, whenever u = ^ + w e f € , £ > 0 small. It follows that /£ = Ff U 1 ,̂
where

^ = { " = ^ + w e / £ : | ^ | < r • } ,
^={u=fi+w€fe•.W>rf}.

Hereafter (V2) means both (V2.1) and (V2.2)
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Note that both 1̂  and FI are invariant with respect to the steepest descent
flow (see the Deformation lemma in Section 2). Plainly, the arguments of
Lemma 11.6 can be still used to show that

ca<(r|;A)=2. (11.16)

As for r^, we can assume without loss of generality that

cat(T^ A) < +00. (11.17)

Otherwise, taking into account that, according to Remark 11.5, (PS) con-
dition holds on I^, we would already find infinitely many critical points in
r?.

From (11.16) and (11.17) it follows that ko := ca^/^A) < +00. As in
Theorem 11.7, we infer that Ck > e > 0 for all k > ko and this suffices to
apply the Lusternik-Schnirelman theory, showing that any cjb, k > ko is a
critical level for /. •
Remark 11.9 The arguments outlined before closely follow the paper [13],
where the Morse Theory has been used instead of the Lusternik-Schnirelman
one. Among other results contained therein, let us recall here the following
ones:

(a) The existence of infinitely many non-collision solutions of (Pr) can
be proved substituting (V2.25) with:
(V2.277) there exists R > 0 such that V'(x) . x < 0 for all |.r| > R.

(b) It is possible to show that (Pr) possesses a sequence of solutions uie
such that f(uk) —> +00.

(c) It is possible to handle potentials V which are defined on an open set
0 = R" — K^ K being compact. In such a case one has to work on the loop
space

\i< = [u e E : u(t) i K, v t e [o,r]}
It is easy to see that cat^A^) = +00 and the preceding arguments can be
carried over with minor changes. •

Remarks 11.10 (i) In the case of planar systems (i.e when n = 2) the
existence of infinitely many solutions can be proved in a more direct way.
Indeed, in such a case, A equals the disjoint union of infinitely many compo-
nents Aj = {u 6 A : i(u) = j, where i denotes the index of the loop u with
respect to 0. The functional / is coercive on each Ay, j > 0, and solutions
Kj-can be found as min^A, fW}' See [82], where a condition like (SF) has
been introduced. See also [56].



SINGULAR POTENTIALS (I) 97

(ii) The existence of one T-periodic solution for n-dimensional systems has
been proved in [84], indipendently from [13] and using different methods. •

Among possible extensions of Theorems 11.7 and 11.8, it is worth men-
tioning a result [97] dealing with

g+ag+^ ,g)=0 . (11.18)

Theorem 11.11 Suppose V e C^Rx Q,R) is T-periodic in t and satisfies
(SF) and

3 c, R > 0 : V(x) ̂  c, V'(x) . x <, c, V \x\ > R\ (11.19)

Moreover, let a < (Ir)2. Then problem (11.18) has infinitely many T-periodic
solutions.

Referring to [97] for the proof and for a complete discussion, we limit our-
selves to some remarks, only. First, when a > 0, the corresponding func-
tional / is no more bounded from below; however, under the assumptions
listed above, one can still prove that ca^/^A) is finite for all A G R. Sec-
ond, if V merely satisfies (11.19) instead of (V2.1), one proves there exists
AO such that (PS)c holds for all c ^ \o. Let us point out that examples
show that if a ^ (|?)2 then cat^f^; A) can be infinite; and (PS) can possibly
fail (for any range of c) if (11.19) is violated. •

IfVis autonomous, i.e. V = V{x), any point ofX = {x G 0 : V(x) = 0}
is a (trivial) solution of (Pr) and the preceding existence results require some
more discussion. For simplicity we will deal with the case in which V satisfies
(V2.2).

Theorem 11.12 Suppose V e C^Q.R) is autonomous and satisfies {SF)
and (V2). Moreover, let X = {x € ^ : V'(x) = 0} he compact. Then
problem (Pr) has infinitely many nontrivial solutions.

Proof. Let b 6 R be such that b > max^f. Without loss of generality we
can suppose Kb = 0. Recall that, from Lemma 11.6, there results

ca<(/£*;A)=2.

Moreover (PS% holds for all c > 0 (Lemma 11.4). Then Remark 2.6-(ii)
applies with a = E* and therefore fci := ca^/^A) < +00. For all k > k^

actually, condition (11.19) is slightly stronger than the assumptions in [97]
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there results cie > b and hence each Ck carries a critical point u of /, with
u ^ X, which gives rise to a nontrivial solution of (11.2). •
Remark 11.13 When V is autonomous the existence of infinitely many
nontrivial solutions can be proved directly, once one knows the existence of
one nontrivial solution. Indeed, let u^ be a non-constant, periodic solutions
of (Pr), and let T' <, T be its minimal period. The preceding theorems
(applied with J- instead of T) yield the existence of a periodic solution u^
of (11.2) with period ̂  (in particular T-periodic). Plainly, u^ ^ u^ because
their minimal periods are different. Repeating this argument, one finds
infinitely many nontrivial solutions of (Pr)- •

B. WEAKLY ATTRACTIVE POTENTIALS. Here we will be concerned with
potentials which do not satisfy (SF). In such a case, Lemmas 11.2 and 11.4
do not hold any more and, in particular, / might attain finite values at 9 A.
For example, in the case of Kepler's problem, namely when V(x) = —H~ 1 ,
any u{t) == ^ • f2/3 near t = 0 (^ € R" - {0}) belongs to 9A and is such that
f(u) < +00. Moreover, collision orbits could arise (it suffices to think again
to Kepler's problem).

In order to overcome these problems, one can use an approximation
argument, taking advantage of the results of subsection A.

Let us consider the perturbed potential (for simplicity, we will deal with
autonomous potentials, only)

V,(x}=V{x)~—— (6>0) (11.20)
Fl

and the corresponding functional

/<(")= \\u\l- [v,(u)dt.

Let Ck(6) denote the min-max levels

Ck{6) = inf [sup{/6(n) : u € A}] .
Ae.Ak

Let V e C^Q.R) satisfy (V2) and

V(x)-^-oo as \x\-^0. (11.21)

Then Lemmas 11.2, 11.4 and 11.6, jointly with the arguments of Theorem
11.7, yield, for all 6 > 0 and k >, 3, the existence of critical points u^k € A
of fs such that

fM = Ck(6) .
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In the sequel we will fix k >_ 3, and set us = u^k. We will also denote by Ck
the min-max level cjk(O), corresponding to /, as well as c = cjb(l). Plainly,
for all 0 < 6 < 1 one has / < fs < /i, and hence:

Ck <: Ck(6) ̂  c. (11.22)

Next, we bound from below Ck by means of Lemma 11.6, yielding

Ck >. £' > 0 . (11.23)

Let us point out that Lemma 11.6 only requires assumptions (V2), not (S'F),
and therefore applies to our potential V.

Putting together (11.22) and (11.23) we find

0<^/6(^)^c . (11.24)

Let us = ^ + wg, with wg € W, From the right-hand side of (11.24) it
follows

|̂2 ^ c (11.25)

-^ V6W})dt<,c. (H.26)

Moreover one has:
1^1 ̂  b (11.27)

for some b G R. Otherwise from

|̂ M| >. |̂ | - |W^|^ ^ |^[ -VT\W6\2 ̂  1^1 -V^T,

one infers that \us(t)\ -^ oo, uniformly. Since

/^(^) = ̂ Wl-f^ Vs(u6{t))dt =^^TV^U6(t)yw6(t)dt-fTV6(u6(t))dt,

(V2.1) implies that /<$(^) -> 0, in contradiction with the right-hand side of
(11.24).

From (11.25) and (11.27) it follows that us converges (up to a subse-
quence) weakly in E and strongly in L°° to u* e E. We claim that u* is a
generalized solution of (Py). To see this, let us remark that us satisfy

^+y;(^)=0 (11.28)
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together with the energy relationship

^(t^+VMt))^^. (11.29)

From (11.22) it follows

c>lf6(u6)^-^V(u6)dt. (11.30)

Let J = C^. Since V(x) < 0, (11.30) implies

- / V(us)dt ^ c. (11.31)

Since us -^ 0 uniformly in J, (11.31) immediately implies that |<7| = 0.
Furthermore, it is easy to see that us —^ u* in ^([O.r] - «/, R") and that

y+V(^)=o, v < e [o,r]-j.
Finally, f(u*) < +00 and condition (w) readily follows from (11.24) and
(11.29), respectively. •

The existence of generalized solutions of (Pr) has been proved in [38] by
a different min-max procedure. Actually, an additional argument, on the
line of Remark 11.13, leads to show:

Theorem 11.14 Let V <E C^Q.R) satisfy (V2) and (11.21). Then (Pr)
has infinitely many generalized solutions.

Remark 11.15 Theorem 11.14 deals with autonomous Potentials. When
V depends on time the preceding arguments lead to possibly obtain the
existence of one generalized solution of (Pr)» only. The existence of infinitely
many generalized solutions of (Pr) for time depending potentials has not
yet been obtained and it would be an interesting question to pursue. In this
direction, a multiplicity result will be discussed in subsection C below by
means of perturbation techniques. •

An important problem to be investigated is the regularity of the collision
orbits and their behaviour near the singularity. An interesting result in this
direction has been recently found by Coti Zeiati and Serra [68] who have
shown that, for a large class of Potentials, Theorem 11.14 can be greatly
improved.
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Theorem 11.16 Suppose V(x) = -H"0' 4- U(x) with a > 0 and U G
C^R^R). Then the collision set Cu of any generalized solution u of (Py)
is at most finite.
I^ in addition, U satisfies:

( U(x) <0, V^eR" ;
^ U(x) and U'(x) —^ 0 as |;r| -> 4-00
[ 3 r > 0 and (p € (^([O, r], R) such that U(x) = y(\x\) for 0 < |.r| < r.

TOen:
(i) if 1 < a < 2, <Aere exists a non collision orbit of (Pr)/
^n^ if a = 1, there exists a generalized solution u of (Pr) with at most a
collision t^, and

u(t 4- to) = u(to - t).

For a slightly more general statement and proofs, we refer to [68]; see also
[125].

Let us remark that statement (ii) generalizes what happens in the case of
Kepler's Problem: collisions enter the singularity in finite time; the system
being reversible, u(—t) is a solution whenever u is so, thus a periodic collision
orbit will be obtained reversing the time in a trajectory falling into x = 0.
The fact that for perturbed Kepler's Problem any collision orbit inherits
such a property would be interesting to be proved.

C. PERTURBATION RESULTS. When V has the form

V(x)=———+£U(x) (11.32)
|.T|

with a > 0 and U smooth, perturbation arguments can yield the existence
of multiple non collision orbits for \e\ small. An interesting feature is that
these results do not depend on the fact that V is a Strongly or Weakly
Attractive Potential.

The main abstract tool is a result proved in [17] (see also [60], [70])
dealing with perturbation in Critical Point Theory. Indeed, letting

/o^jf^M^^}^ (11.33)

and
<j)(u) = / U(u)dt, (11.34)

Jo
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the functional fe corresponding to V given by (11.32) has the form

M = fo{u) + £(f>(u) (11.35)

and one can try to find critical points of fe near those of /o, provided \£\ is
small.

Let us remark that critical points of fo arise in manifolds because /o is
0(n)-invariant 6.

Let E be a Hilbert space, T> an open subset of E and / G C^P.R). A
subset Z C T> is said a non-degenerate critical manifold of / if:

(a) Z is a compact, connected C1 manifold and f ' ( z ) = 0,V z C Z\
(b)T,Z=Ker[ff{(^)]^^eZ.

Hereafter, TyM denotes the tangent space to the manifold M at x 6 M.
The following result is a particular case of Theorem 2.1 of [17], and is

sufficient for our applications.

Theorem 11.17 Suppose fo,(/> € C^A.R) and let Z be a nondegenerate
critical manifold of /o • ^ addition, let f^ be a Fredholm operator of index
zero for all z C Z. Then 3 e > 0 and a neighborhood U of Z such that
V 0 < \e\ < £ the perturbed functional fo + £(f> has at least cat(Z) critical
points inU.

Proof. (Sketch) Let Nz (resp. Rz) denote the Kernel (resp. the Range) of
f'Q^z). Since, for all z G Z, fo(z)'^s a Fredholm map of index 0, then one
has

E=N,eR. ( z e Z ) .
Using the Implicit Function Theorem and the fact that Z is compact, one
finds a neighborhood U of Z in E and maps P,Q € C^^.E) such that,
V u 6 U^ one has u = Pu 4- Qu and

Pu e Z, Qu € Rpn.

Let
z^={ueu:f,(u)eNp^}.

One proves that for £ sufficiently small, Ze is diffeomorphic to Z and (hence)

(T.Z,)1 ̂  Tp,Z,V 2z € Ze. (11.36)

actually, in some cases (such as when a = 1) the manifold of critical points inherits
other symmetries.
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Let u G Ze be a critical point of fe constrained on Ze. Then

f'^u) € (T^. (11.37)

By the definition of Ze and since Z is non-degenerate (see (b) of the preceding
definition) there results

fe(u)eNp^=Tp^Z.

This, jointly with (11.36) and (11.37), implies that f'^u) = 0. In other
words, seeking critical points of fe in U is equivalent to look for critical points
of fe constrained on Ze. Since Ze is compact, the Lusternik-Schnirelman
theory applies and fe has at least cat(Ze) = cat(Z) critical points in U,
whenever \e\ is small enough. •

Remark 11.18 If fe is invariant under the action of a group Q which acts
freely on Z, one will obtain the existence of at least cat(Z/Q) critical points
near Z. •

Theorem 11.17 is prompted for seeking T-periodic solutions of

^+a |^2+^ /^)=o (1L38)

In the sequel /o,<^> and fe are given by (11.33), (11.34) and (11.35), respec-
tively.

Set u = ̂ , and let R > 0 be such that ^R2^ = a.
Consider the set

z = [z(t) = R^ + ̂ —t] : a e c", ^ $ = j ,^. ̂  = 0}

where $ denotes the complex conjugate of ^ G C" and • stands for the scalar
product in C". One immediately verifies that any z G Z is a solution of the
unperturbed equation

9+a^=^ (n^)

hence a critical point of /o. Moreover one has

Lemma 1 1 . 1 9 If a -^- 1 then Z is a nondegenerate critical manifold of fo.

Proof. It remains to prove that condition (b) above holds true. For the
sake of brevity, we shall be sketchy; for details we refer to [14, Lemma 2.1].
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First, it is immediate to check that v G Ng (we are keeping the notation
introduced in the proof of Theorem 11.17) whenever v is T-periodic and
satisfies

-v=|^[^;-(a+2)^] (11.40)

If Vk denote the Fourier coefficients of v {v^k = ^b), one proves that (11.40)
yields

^+2 • € = (p^2)Li ̂  • ( V k € Z
^3^"=0 (11.41)
7(^.^==0 VA;€Z-{-1 , -3}

where
7W=^^4-2^+a-l] .

Now, if a > 0, a ̂  1, then 7(A-) 7^ 0 for all k e Z - {-1, -3} and (11.41)
yields that v G Nz provided

f ^=0 , V A ; € Z - { ± 1 }
j V k ' ^ + v . k ^ = 0 V A ; € Z (11.42)
[ Vk^=0 V A ; G Z

Since the preceding condition defines nothing but the tangent space T^Z, it
follows that NZ = T^Z and hence Z is a non-degenerate critical manifold for
/o."

We are now in position to prove:

Theorem 11.20 Let V be of the form (11.82) where U is of class C2 and
a> 0, a^ 1. Then
(i) Equation (11.38) has at least 3 T-periodic solution near Z, provided
\e\ is small enough;
(ii) If U is autonomous, then (11.38) has at least n (n >_ 3) distinct
T-periodic solutions near Z, provided \e\ is small enough.

Proof, (i) Since Z is diffeomorphic to Ti^""1, and cat^S^) >. 3 (see
[14, Appendix] for a proof), the result follows from Theorem 11.17.
(ii) If U is autonomous, fe is invariant under the 0(2), too, and we can
apply Theorem 11.17, jointly with Remark 11.18. Since it is known that
cat(Z/0(2)) = ca^riS^/C^)) ^ n (n ^ 3), see [88, Prop.2.3.3] 7, then f,

actually, for the correct statement see ref. [Al 1, pag.151] cited in [88].
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possesses at least n critical points near Z. They correspond to geometrically
distinct T-periodic solutions of (11.38) because they are close to Z and hence,
by continuity, they have minimal period T. •
Remarks 11.21 (i) Instead of Z, one can find periodic solutions of (11.38)
near each Z^ = {z(t) = R^e^ + ̂ -imwt] : ^ € C",^ ̂  = j,^. ̂  = 0},
m ̂  1 integer. Indeed, if m2^2^?2"1'0' = a, Zm is a critical manifold of /o and
it is non-degenerate provided a ̂  1.
(ii) The perturbation result stated in Theorem 11.20 is in fact a bifurcation
result, in the sense that solutions of (11.38) ^branch ofT from those of the
unperturbed problem (11.39) satisfying an averaging condition. Roughly,
the possible 'bifurcation points5 are the z G Z which are the critical points
on Z of the averaged potential ^ U(z(t))dt. See [14, Section 5] for more
details.
(iii) Theorem 11.20 can be extended to cover a class of Potentials of the form
V{x) = ^{\x\) + eU{x) where \ € C^OO.+oot.R). See [14, CRAS Note]. •

The preceding discussion does not cover the case of the perturbed Kepler
problem

q+——+eU\q)=0 (11.43)

Indeed, in such a case, the Kepler equation

?+y ,=0 (11.44)

has, in addition to the circular orbits given by Z, elliptic orbits and collision
orbits and Z is merely a submanifold of a larger manifold of solutions.

In order to overcome this difficulty, we shall assume that U is even in x.
If this is the case, let us consider the subspace

E, = [u e E : u(t + T ) = -u{t)}

and set
A*. = E^ n A.

In the sequel fe denotes the same functional as before, with a = 1.

Lemma 11.22 Let U be even in x. Then u € A* is a critical point of fe
whenever u is a critical point of fe on E^.

Proof. Since U is even, one immediately verifies that /^ G £'*. Thus, if
u e A* is such that fe(u) e (.E*)1 then fe(u) = 0. •
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After remarking that Z C A^, the preceding Lemma allows us to work on
£*. We consider again Z with a = 1; if R satisfies uj^R3 = 1, then any z G Z
is a solution of (11.44). As in Lemma 11.19 one still shows that v e N^ H E^
provided (11.41) holds true. In the present case -y(k) = k(k+l)(k+2)/(k+3)
and j(k) ̂  0 for all k e Z - {-1, -3}, k even. Since v C E^ then v^ = 0
and one infers that the Fourier coefficients of v satisfy (11.42). This shows
that Z is non-degenerate critical manifold for /o on E^. Then Theorem 11.17
applies and yields:

Theorem 11.23 Let U be of class C2 and be even. Then:
(i) the perturbed Kepler problem (11.43) has at least 3 T- periodic solution
near Z, provided \e\ is small enough;
(ii) If U is autonomous, then (11.^3) has at least n (n >_ Z) distinct
T-periodic solutions near Z, provided \e\ is small enough.

Remark 11.24 As in Remark 11.21-(ii), the critical points of the averaged
Potential f^ U(z)dt are the possible bifurcations of periodic solutions of
(11.43). •
Remark 11.25 Existence of noncollision orbits for potentials verifying
a condition like -a\x\~01 ^ V{x) <, -b^^ has been studied in [71]. It
is shown that such a solution exists provided that, roughly, b — a is small
depending on a and a > 1 (when a == 1 the potential V is assumed to be
even, like in Theorem 11.23 above. For other results of this kind, see [115]
and [126]. •
Remark 11.26 All the preceding results deal with second order Conser-
vative Systems. Extension to first order Hamiltonian Systems would be an
interesting question to pursue. A result in this direction is discussed in [18]
by means of perturbation techniques like the preceding ones, jointly with
a local Dual Variational Principle. Applications to the restricted 3-body
problem are also given. •



12 Conservative Systems with Singular
Potentials (II)

In this section we will deal with autonomous Conservative Systems

$+n<?)=o, (12.1)
with singular potentials V, looking for periodic solutions q of (12.1) having
prescribed energy h e R:

ji^)r+w))=/t. (i2.2)
As in the preceding section, we will be concerned with attractive potentials
V(x) which behave like —Ircj"" (a > 0) near x = 0 and thus solutions
of (12.1) can be possibly generalized solutions, according to the definition
given in Section 11. In the sequel, a (generalized) periodic solution of (12.1)
satisfying (12.2) will referred'to as a (generalized) solution of Problem (Ph)-

The material is divided into 3 subsections. The first two are taken from
[15] and contain a Variational Principle and, respectively, the main existence
results. The last one is concerned with perturbation results.

We will keep the notation introduced in section 11, with T = 1. So
n = R" - {o},

J^^GS^R"), A={ueE :u(t)^Q V^e51},

and so on.

A. A VARIATIONAL PRINCIPLE. We begin introducing a slightly unusual
Variational Principle. Let V € ^(ft, R) and define F € C^A, R) by setting

F(u) = 1 [ 1 iufdt. A/i - V(u)]dt. (12.3)
2 Jo JQ
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The functional F can be seen as the geometric mean of the (averaged) Ki-
netic and Potential energies.
Lemma 12.1 Let u e A be such that F^u) = 0 and F(u) > 0. Let

"'-^y ("•<)
Then q(t) := u{ujt) is a solution of (P/i).

Proof. If F'(u) = 0 then

( f1 u. vdt)(h + ̂ (u)) - ̂ Hj . [ 1 V\u) ' vdt = 0, V z; € .̂
Jo 2 Jo

Using (12.4), it follows

(J1 f1 u' vdt - f1 V'iu) • vdt =0, V v C E.
Jo Jo

Hence u is a (weak, and by regularity, strong) solution of

^u+V'^^O (12.5)

and q(t) = u{<jjt) solves (12.1). Moreover, from (12.5) it follows that

^JK^+m^EEC,

for some constant c. Integrating over [0,1] we find

^lHj+/l^"(<))^=c•
Z JO

Taking into account (12.4) there results c = h and q satisfies (12.2). •

The above principle has been used in [127] to prove the existence of
brake orbits for symmetric conservative systems with smooth potentials V G
C^R", R). For a much more general result on brake orbits, see, for example,
[109].

It will be clear later on (see Remark 12.11) that it is convenient to modify
the Variational Principle illustrated in Lemma 12.1. For this purpose, we
will follow the procedure discussed in Proposition 1.4.

Let
G(^^)=/l[v(^.)+ly/(^^).^

Jo 2
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Since

then
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Mn = [u € A : G(u) == h}.

(F/(^|u)=Hj.[/^--G(^]

(r(?/)|^)=OV^€M^. (12.6)

Let us remark that F\MH has the form

F(u) = ̂ Hj . /' V'(u} . ̂  (u € Mh). • (12.7)
4 Jo

For future reference we point out :
Remark 12.2 If Um —>• u weakly in E and uniformly, and Um^u e A, then
G(^m) -^ G{u) and ff(^) -. ̂ (n). •

The following lemma plays the same role of Proposition 1.4.

Lemma 12.3 Let Mh ̂  0 and suppose
(V3.1) 3V'(x) • x + V^x^x ' x ̂  0 V x C ̂  .
T/ien Mh is a C1 manifold of codimension one in E and any critical point
u G Mh of F constrained on M^ is a critical point of F.

If, in addition, V satisfies
(V3.2) v\x)'x>^ v.ren,
then F(u) = 0, u 6 M/», if and only if u(t) ^constant.

Proof. Using (V3.1) one infers

{G'(u)\u) == [\3V'(u) ' u + V"{u}u • u]dt ̂  0 V u € MH. (12.8)
Jo

Taking into account (12.6) and (12.8), the first statement follows as in Propo-
sition 1.4. Moreover, if (V3.2) holds true, then (12.7) immediately implies
that F{u) = 0 iff \u\^ = 0, namely iff u(t) is identically constant. •

From Lemma 12.3 we deduce a modified Variational Principle.

Lemma 12.4 Suppose that Mh ^ 0 and that (VS. 1-2) hold. Let u e Mh
he a non constant critical point of F\Mh an^ ̂  UJ ^e given by (12.4)- Then
q(t) = u(ut) is a solution of (P/»).
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Remarks 12.5 (i) When V is the model potential V(x) = —[.rl"0', then
G(u) = (f - l)Jo1 H"^. hence if a > 2, then M^ ^ 0 whenever h > 0,
while if a < 2, then M/» ^ 0 whenever h < 0.
(ii) Being modelled on A, M^ is possibly not closed in E. For example,
when a = l , and h < 0, M/» contains all the set S of noncollision solutions
of Kepler^s problem, having energy /i, namely the circular and the elliptic
ones. Plainly, the collision orbits with the same energy h belong to the
closure of S but not to M^. On the contrary, it is possible to show that for
a class of Potentials verifying the (SF) condition, M/i is closed in E (see [15,
Lemma 3.3]). •

B. EXISTENCE RESULTS. Remarks 12.5 suggest that it is again convenient
to distinguish between the Weakly and the Strongly Attractive Potentials.
For the sake of brevity, we will discuss below the Weakly Attractive case,
only. For the case of Strong Forces we refer to [15, Section 3] and [43].

We shall suppose that V € C^Q.R") satisfies, in addition to (V3.1 - 2)
the following:
(V3.3) 3 a, 0 C (0,2) and r > 0 such that

f i) V'(xYx >. -aV(x) \/xC^
\ ii) V'(x) • x <, ~/3V(x) V 0 < \x\ <, r

(V3.4) liminf |̂ +oo [^(a-) + ̂ V\x) • x\ >_ 0.

As a first consequence of (V3.2 — 3) let us show that there exists ai > 0
such that

V(x) ̂  —a-, V 0 < H ̂  r. (12.9)
I I

To see this, let \y\ = r and define (p == (py : (0,1] —^ R by setting y{s) =
V(sy). By (V3.2) and (V3.3- (ii)) it follows that V(x) < 0 for all 0 < |.r| ^
r, namely that (p(s) < 0. Using (V3.3 — (i)) one finds

^(s) = V'{sy) • y ̂  -^sy) = -\(s).
s s

Since (p(s) < 0, it follows that

and hence

y'(s) ^ _a
y(s) s

^(s)<, -1^(1)1^. (12.10)
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Let x € Q, \x\ <, r, and set y = r^j. Then V(.r) = V(^y) == <^(^) and
(12.9) follows from (12.10).

Lemma 12.6 If (V3) holds then MH ^ 0 for all h < 0. Moreover, for all
k e N, <Ae da55 ̂  = {X C MH : cat(X',Mh) ^ ^} is not empty. In
particular, there results cat(Mh) == +00.

Proof. For all u C A the map s —+ G(su) is strictly increasing in view of
(12.8). Moreover, (^3.4) implies

HminfG'0?tz) > 0.
s—••4-00 v / ~

For s -^ 0, (V3.3 - (n)) and (12.9) yield
r1 1

G(5U) = / [V{SU) + -V^) • ̂ ]^
*/o ^

^ (1 - ̂  /"1
 y(^^ ̂  -al(l - ̂  /1 ̂ d<

 = -ffl2s-a-Li JO Z JO o u

I FT r / \ . — T r// \ 1 »*

/•I /5 rl
f y(5Zi)^<-ai(l-^) /

JO v / ~ v 2 ' J O 5a|^A|<

and thus G(su) —^ -oo as s —> 0. Since h < 0, it follows that for any
u 6 MH there exists a unique s{u) G R such that s(u)u 6 Af/». In addition,
(12.8) implies that s(u) is continuous. For all k € N, let Y C A be compact
and such that cat(Y; A) >^ k (the existence of such an Y is guaranteed by
the result of [76], see Example 2.2-(iv) ). Set a(u) = s(u)u and X = a(Y).
Then the properties of the category (see Lemma 2.1 ) yield

cat(X\Mk} >, cat(X;A) >: cat(Y,A) >. k

and X 6 ̂ , proving the lemma. •

Taking into account Remark 12.5-(ii), we need to control the behaviour of
F at 9Mh. For this we will proceed as in the preceding section and consider
the perturbed potential

V,(x)=V(x)-——
I I

Let us denote by Fg the functional defined in (12.3) with Vg instead of V.
The following remark is in order

Remark 12.7 Since V and Vg differ by a term which is homogeneous of
degree —2, it follows immediately that

W + \V,{x) . x = V(x) + ̂ V'(x) • x.
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and therefore (FgU\u) = (F'(u)\u). In other words the manifold M/» remains
unaffected by the change of V with Vs. Moreover, since Vg plainly satisfies
(V3.1 — 2), then Lemma 12.3 applies and any critical point ug G MH of F^
constrained on Mh such that F^{us) > 0, gives rise to a solution of

^us+V'^^U^— = 0 (12.11)
1^1

^j\n^+V{u,)--^ == ^ (12.12)

where
. ^[h-V^dt6 = —n^p—• (i2.i3)

2P6J2

Our strategy will be the following one: first, we will use the Lusternik-
Schnirelman theory to find critical points ug of Fg on M/» which are solutions
of approximated problems (12.11-12); the second step will consist in showing
that us —>• ^, UJ6 -^ ^o 7^ O and that z gives rise to a generalized solution of
(^).

Let us begin proving that Fs satisfies (PS) on M/». For this, two Lemmas
are in order. The former highlights the advantage of working with a modified
Potential satisfying (SF).

Lemma 12.8 Let 6 > 0. Then any sublevel F^ = {u C M^ : Fs(u) <, b} is
closed.

Proof. We will prove a slightly stronger statement: for any sequence
{um} C F^ such that Um -^ v, weakly in E and uniformly in [0,1], one
has that v 6 F^. To prove this it suffices, according to Remark 12.2, to
show that v 6 A. We argue by contradiction and suppose that v € 9 A.
First, let us consider the case in which v(t) = 0. Then Um —^ 0 uniformly
and using (V3.3 - (u)) and (12.9) it follows

h == ^{V^^V'^Yu^dt^
Jo z

^ (1 - ̂ ) F V(.u^)dt ̂  -as I 1 Kl-^.2 Jo ' J o

Since Jo1 l^ml"0'^ —> +00, the preceding inequality gives rise to a contradic-
tion.
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Let Um € 9A — {0}. In particular Um(t) is not identically constant (the
only constant loop in 9A is 0) and hence

0 < Hj <: limmf|njj . (12.14)

Since Vg satisfies condition (SF), then Lemma 11.2 and (12.14) yield

F^um) = ̂ Ij . [\h - V6{um)}dt -. +00,
Z JO

while Um € F^. •

Lemma 12.9 jy {^m} C F^ then 3 0,4 > 0 such that |nm|J <: 0-4 and
|^m|oo <: ^4-

Proof. Since Um € M/i and using (V3.3 — (z)), then it follows

h = /'[y^) + ̂ V^) • ̂ ]d( ̂  (1 - i) /1 ̂ '(^) • Un,dt,
Jo 2 2 a Jo

and thus
^ V^m) • ^mA ^ as = ̂ ^ (> 0)

Then, from Um € -Fj' we infer

b^Fs(u^) = ^l^lj I'Vs^'u^dt^
4 Jo

^ ^-l^1^^)'^^^^!^^ .
proving the upper bound for |iim|J.

Let Um = ^m 4- Wm, where ^rn = Jo1 ^'mdt. From the preceding step we
infer that Wm —> w uniformly (up to a subsequence). If |^m|oo —^ +00
then, as in the proof of Lemma 11.4, it follows that |^m| —> +00 and hence
|^m(0| —> +00 uniformly in t. Then (^3.4) implies

HminfG(^) >, 0,
m—^oo

while G(um) = h < 0, because ^^ 6 A^.
The contradiction proves the upper bound for |t<m|oo- •

We are now in position to prove
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Lemma 12.10 Fs satisfies (PS) on Mh.

Proof. Let u^n be any P5-sequence. By Lemma 12.9 it follows that \\u^\\ <,
as and thus, along a subsequence, u^ -> u, weakly and uniformly. Lemma
12.8 implies that u e A. At this point, one shows in a standard way that
^(^m) -»• 0 implies that u^ strongly converges to u, up to a subsequence.

Remark 12.11 In general, F& does not satisfy (PS) (on A). To see this, let
us consider a potential V(x) == -\x\~01 with 0 < a < 1 and let u^n = r^e12^
with Tm G R (we use complex notation). If r^ —^ 0, one has

F,(u^) == 27^2^(/^ 4- r^ + 6r^2) -. 2^6.

Moreover there results

(^m)h) = ^u^'vdt\(h+r^+6r^) +

+ 27^2^(-a^a-2 - 25r^) ̂  ̂  . i;̂ .

If ^i denotes the first Fourier component of v, it follows with straigth calcu-
lation that

(^m)h) = 4^^ (h + (1 - ̂ )r^} -> 0

whenever 0 < a < 1. Hence (P5)e does not hold, with c = 2^, because
such a Um is a (PS) sequence whose limit is 0 ̂  A. Similarly, one can show
that condition (P5% is violated along any sequence like u^ = r^e127^ with
c = 2&27^25. It is worth pointing out how this example shows that here
there is an additional advantage of working on the manifold M/». Actually,
not only we can deal with a functional bounded from below, but also any
problem concerning the (PS) condition is eliminated: indeed, the sequences
where (PS) fails, do not belong to the manifold. We anticipate that for a
class of symmetric potentials satisfying V(x) ^ -\x\~a, with 1 <, a < 2
the corresponding ^ satisfies (PS). We will see this in the next section,
discussing a class of N-body problems. •

As a consequence of the preceding Lemmas'we have

Lemma 12.12 There exists (infinitely many) us C A satisfying (12.11-12),
with ujs given by (12.13).
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Proof. Since (PS) holds true, the Lusternik-Schnirelman theory applies
(here the completeness of the manifold is substituted by Lemma 12.8, which
plainly suffices). We will refer to Theorem 2.3. Let Let Ck,s denote the k-
th min-max critical level: cjb^ = mfxeXk maxy FS' We claim that Ck,s > 0
whenever k ^ 3. Indeed, otherwise we have Ci^ = • • • = cjko,6 = 0 for
some ko >, 3. Then Theorem 2.3-(ii) implies that cat(Ko'^Mh) ^ A-o. But,
according to Lemma 12.3-(ii), u e Ko iff u(t) is identically constant. In
other words one has that Ko = S'""1 and hence cat(Ko'^Mh) = 2. The
contradiction proves that cj^ > 0 for all k ^ 3. Then the arguments of
Lemma 12.1 show that each critical point at level Ck,s gives rise to a solution
of (12.11-12). •

Remark 12.13 Lemma 12.12 has an interest in itself. Indeed, it provides
the existence of a noncollision orbit with energy h < 0 for the relativistic
correction of Keplerian potentials, discussed in Example 11.3-(i). •

In the sequel we fix A;, say k = 3 and set cs = 03^, us = Uz^'
We now provide the estimates to perform the limiting process as 8 —> 0.

Lemma 12.14 (i) \\us\\ ^ 07 and 3 z G E such that u& —^ z weakly in E
and uniformly;
(ii) z(t) ̂  0 and V(z(t)) ̂  h;
(Hi) 3 UJQ > 0 such that 0/5 —»• UJQ -

Proof, (i) Let c = cs=i. Since Vs(x) >, V(x) - l;^-^ Vs^(x)), one
immediately has eg <^ c and using Lemma 12.9 the result follows.
(ii) If V(z(t)) = h then z(t) + 0 for all t and V(us) (resp. V'(^) • us)
uniformly converges to V(z) (resp. V ' ( z ) ' z). As a consequence one has
that G(u^) —> G(z). Since ug € Mh then G(us) = h and we infer

h = G(z) = I 1 V(z)dt + 1 f1 V\z) ' z d t = h + 1 f1 V\z) ' zdt.
Jo 2 Jo 2 Jo

Hence Jo1 V ' ^ z ) • zdt = 0, in contradiction with (V3.2).
Let us show that z(t) ̂  0. If not us —^ 0 uniformly and as in the proof

of Lemma 12.8 we have: h = G(u^) $ (1 — f) /o1 V(us)dt^ a contradiction,
because the last integral —> —oo.
(iii) We will show that 3 ̂ u > 0 such that c^ <^ uj^ <^ ^- By (ii) there
exists a closed interval J, with [J| > 0 such that z(t} ̂  0,V(z{t)) ̂  h for
all t G J . Integrating (12.12) on J we obtain

^J^\u^dt+^VMdt=h\J\.
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By (i), fj \u^dt <, a^ and thus

^^^^[h-Vf(ue)]dt. (12.15)

Since H(u,) -^ V(z) and, by (12.12), V((u,) ̂  /i then

/[/i - V(z)]dt = lim /[A - y,(^)]df ^ 0,
*/J o—^0 j.7

and the definition of J imply that /i - fj V(z)dt > 0. Then (12.15) yields,
for 6 close to 0:

1 9
^6 >. ̂  > 0.

Finally, from (12.13) and c^ <, c it follows

^2 ̂  Jo1^-^^]^ ̂  c, c
6 iHJ il̂ ll - il̂ ll

Let ys(t) := us(u^t). If ̂  -+ 4-00, the preceding inequality implies that
both \us\2 -> 0 and \ys\2 -^ 0, thus z == $, with $ 7^ 0, V(^) 7^ /i, according
to point (ii) above. From the definition of ys it follows that

h^^y^+V^t))

Hence
h = ̂ \W\l + f1 Vs(ys)dt -^ f1 V(^dt = V^),

£t JO Jo

a contradiction. •

Using Lemma 12.14, an argument quite similar to that already discussed
in the proof of Theorem 11.14 leads to show:

Theorem 12.15 Suppose that V e C .̂R) satisfies (V3). Then for all
h < 0 there exists a generalized periodic solution of (P/»).

Remark 12.16 It would be possible to prove that the collision set Cu is at
most finite (for a class of potentials like those discussed in Theorem 11.16).
A more general result similar to Theorem 11.16, however, it is not yet known.
•

From (12.2) it follows that any possible solution q of (P^) satisfies V(q(t))<,
h. Therefore it makes sense to find an existence result in which the assump-
tions are made in V(x) <, h, only. Let_jD/» denote the connected component
of [x C n : V(x) ̂  h] such that 0 C -DA.
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Theorem 12.17 Let h < 0 be given. Suppose that Dh is compact and that
(V3.1—2—3) hold true for allx 6 A». Moreover, let us assume that V G C4

in a neighbourhood of QD^ and that maXjc^ffD^[V"(x)x • x] < 0. Then (P/»)
possesses a generalized periodic solution.

We do not carry over the details of the proof, referring to [15, Theorem
5.1]1. Roughly, it is possible to extend V in ft — P/i in such a way that the
extended potential V verifies (V3) for all x C 0 and satisfies V{x) > h on
f2 — Dh. Then the solution obtained by means of Theorem 12.15 is confined
in Dh and hence solves (P/»).

The following example illustrates possible applications of Theorem 12.17.

Example 12.18 Let U : R" —> R be smooth and let h < 0 be given. Let
us consider the Kepler problem

q+——+U'(q)=0 (12.16)

where U is smooth on R". If we look for solutions of (12.16) in the form
q(t) = k^y(kt), k C N, we are led to

kw^+——+k^Ut^y)^0.

For p, = — j the preceding equation becomes

y 4- —— + k-^U'(k-^y) = 0. (12.17)

Given any h < 0, one immediately verifies that Theorem 12.15 applies,
provided k is sufficiently large (depending on /i), yielding a solution y of
(12.17) with energy h. As a consequence, q(t) = A;"2/3 y{kt) (has the same
energy, and) is a periodic solution of (12.16). •

C. PERTURBATION RESULTS. The abstract Theorem 11.17 can also be used
to study perturbed problems like

^+a^2+eutW = ° (12t18)

|h?12+^+^) = h (12.19)

1 Let us point out that there is a misprint at pag. 359, line 12 of [15]: instead of
S(() < 1 there should be 5(0 < -|
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Since the arguments are close to those of Section ll.C, we will be sketchy.
For more details we refer to [10].

Let Fo,F,e C'2(A,R) be defined by setting

W = JMJ.^+^

W = ^I'/^^-^-^Wt

Hereafter it is understood that U G (^(R^R).
Let R > 0 be such that

^-l)R-=h.

Then, setting

Z =={.(<) =^6^ 4-^-^1 :^C",^== 1,^=0}

one has that F^) = 0, V z e Z. To show that Z is a non- degenerate
critical manifold one argues as in Lemma 11.19. In the present case, v G
Ker[F^(z)} = N^ whenever

"^"^ + ̂ R~a^z £ z ' v d t - 27^2.R2<(^ = 0

where Vo(^) = —l.rl"0'.
Using Fourier series, it follows that N^ = T^Z provided a ̂  1. If a = 1,

one works on the space of anti-periodic functions E^ (see notation introduced
in Section ll.C) and proves that Z is non-degenerate for FQ constrained on
£'*. As a consequence, one deduces the following results, which are the
counterpart of Theorems 11.20-(ii) and 11.23-(ii).

Theorem 12.19 Suppose that U € C^R^R). If a > 0, a ^ 1, then
(12.18-19) has, for e small, at least n closed (non-collision) orbits near Z.
The same conclusion holds if a = 1 and U is even.

Remarks 12.20 (i) We can repeat, with obvious changes, what has been
pointed out in Remark 11.21. In particular, the preceding result can be
interpreted as a bifurcation result, the possible bifurcation of periodic so-
lutions being the critical points of the averaged functional jj U(z(t\)dt on
Z.
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(ii) Theorem 12.19 can be extended to perturbed Lagrangian systems with
Lagrangian of the form

L(q, 9) = |l9l2 - X(H) + ̂ i(9, q) (12.20)

where \ € ^(O, +00) and

A(g,g) = jfi(<M)-^(<?)

£?(<?. <?) = E b'^ ̂  = ̂ . e C^R", R)
*'J

17 € C^R^R)

Systems of this type model, for example, a class of restricted N-body prob-
lems (see [10, Section 4]).
(iii) The case a = 1 in Theorem 12.19 deals with perturbed Kepler's prob-
lems. With respect to Example 12.18, it is now assumed that U is even. On
the other part, Theorem 12.19 contains a multiplicity result and permits to
locate the solutions. In particular, it is worth pointing out that the solutions
found in Theorem 12.19 are not collisions, being close to Z.
(iv) Periodic solutions of autonomous perturbed Kepler's problem have been
investigated, among other things, in [100] from the bifurcation point of view.
Using a regularizing transformation, it is discussed the branching off from
orbits which can possibly be different from circular, but the bifurcation is
proved under the assumption that the averaged potential is a Morse function.
•
(v) Concerning the existence of multiple geometrically distinct periodic or-
bits of (P/i), some results have been obtained, under the condition that
^M"" <: V(x) <, HX^ and a, b are sufficiently close. See [9, 47, 48, 126].
However, a result like the Ekeland-Lasry Theorem (see Section 11) is far to
be proved.
(vi) The case in which V(x) ̂  -M"" - \x\~0, with 0 < a < 1 < f3 has been
discussed in [7]. •
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13 A class of N-body problems

The variational framework and the arguments of the Sections 11 and
12 can be adapted to obtain the existence of periodic motions for a class
of mechanical systems, including the N-body problem. Such a topic will
be discussed in this last section. For the sake of conciseness we will deal
with periodic solutions with prescribed energy, only. For the existence of
generalized solutions with prescribed period the reader is referred to [39] for
a 3-body problem and to [65] for a class of symmetric N-body; see also [50,
116] for some results concerning the existence of non-collision orbits.

Our model is the classical N-body problem which describes the motion
of N bodies a-i, • • • , XN in R3 with masses mi, • • • , m^, under the mutual
gravitational attraction. The trajectories of these bodies are the solutions
of the Conservative System

rriiXi + K,(^i, • • • , XN) = 0, (1 ^ i <: N)

where
T// \ 1 \-^ m,m,V(^,...,^)=-^————.

z iyLj F* X3\

Motivated by this problem, we let X = (.TI, • • • , x^) e R37^ (one could take
Xi 6 R^ for any d > 0 as well; all the following results remain unaffected),
^ = R3 — {0}, and consider potentials of the form

V(X)=l^V^-x,)
L w

where, for all 1 $ i j ^ N, Vij € G^ft.R) satisfies (V4):
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(V4.1) V^x)=V^(x) Vxe^
(V4.2) 3 a e [1,2), /3 6 (0,2) and r > 0 such that

V^{x) . x ^ -aV^(x) > 0 V x e 0 (13.1)

.̂(a:). re ^ -WjCc) V 0 < M ̂  r (13.2)

(V4.3) Vij(x) -^ 0 as \x\ -^ +00.

Here and always in the sequel we will use the same notation for scalar
products and euclidean norm, both in R3 and in R3^.

Given h < 0, we look for periodic solutions Q = (^i, • • * , q^) of

Q+V\Q) = 0 (13.3)

\\Q(t)\2 +V(Q(t)) = h (13.4)

As in Sections 11 and 12, by a solution we mean a generalized solution.
Plainly, Vij(x) = -H""1 satisfies (V4), with a == /3 = 1.
Let us introduce the functional set up. We put EN = ^^(S^R3) x

... x ^(S^R3) (N times), E^ = {u e ̂  : ̂ (< 4- j) = -1 )̂} and

A^ = {u = (^i,-..,^) G ̂  : Ui(t) ̂  u,(t), V^, V z ̂ j}.

As a norm in E^ we will take

IHÎ EÎ
»=1

The corresponding scalar product will be denoted by (•!•). Let us recall that,
for all 1 <: i <: N^ \Ui [2 >. 4|n,|oo and hence

IMI ̂ a,\u(t)\ V^€[0, l ] . (13.5)

As in Section 12, closed orbits of (13.3-4) will be found using a limiting
procedure.

Let

^^i——.wi^-^-i
and set, for 6 > 0,

Ve(X) = V(X) - 6R(X).
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Define F<, e C^A^R), by

T-i / \ 1 1 1 n'2 / rW=^\\u\\^ j^h-V,(u)\dt.

We will use the following Variational Principle which plays the role of Lemma
12.1.

Lemma 13.1 For all 6 > 0, let us e A^ be a critical point ofFs such that
Fs^us) > 0. Then, letting

. !S[h-VM]dt
6 =——iiNI2—— ( ) w)

and Qs(t) = u^(t^f), one has:

Qs+Vs(Qs) = 0 (13.7)

JW)|2 +Ve(Qs(t)) = h (13.8)

Proof. As in Lemma 12.1, one has

^s(us\v) - [ l Vs(us) • vdt = 0 V v € E^'. (13.9)
•JO

From (V4.1) it follows that V(X) = ̂ (-^) and hence, as in Lemma 11.22,
(13.8) is satisfied for all v e E. This shows that (13.7) holds. The energy
relationship (13.8) follows as in lemma 12.1. •

Critical points of Fs at a positive level will not be found as constrained
critical points on MH (no assumption like (^3.1) is made here), but rather
using directly the Mountain-Pass Theorem.

First, let us remark, for future references, that (V4.2) implies (see the
arguments in Section 12, before Lemma 12.6) there exist constants 03, as > 0
such that (taking r possibly smaller)

f 0 V^{x) ^ -a,\x\-ft V 0 < | ^ | ^ r
\ii) V^(x) ^ -03^1-° V 0 < M^ r, (16'l[]>ii) Vij(x) ^ -a^-0 ^ 0 < \x\ ̂  r.

V\X)-X ^ -aV(X)>0 (13.11)
V\X)-X ^ -/3V(X)^0<\x,-x,\<^r. (13.12)

as well as
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Moreover (13.10-ii) yields

vw ^ ~w\-v °< kt ~ x j } ̂ r' (13'13)
The following Lemma shows that Fs inherits the Mountain-Pass geometry.

Lemma 13.2 There exists 60 such that Fs satisfies (A2) for all 0 < 6 <, 6o.

Proof. From (13.13) and (13.5) it follows there results, for |[u|| small
enough,

W ^ JIM2. j^[h-V(u)}dt^

^ J^112 • 1^ + ̂ '^ ̂  jll^ll2 + ̂ IMI2-".
Since a < 2 it follows there exist a, p > 0 such that

Fs{u)^a V ^ G A ^ , |M|==/9, V 6 > 0 ,

proving (A2.1).
Let ^, 77 C R3 be such that |^| = [^| = 1 and $ • 77 = 0. Set

Zk{t) =^cos(27r(^4-^))+77sin(27r(f4-^)) (1 ^ ^ ^ TV)

and 2(f) == (2'i(^), • • • , 2^(1)). Let us remark that

\Zi(t) - Zj(t)\ = d (independent of t) (13.14)

and hence

^^Si^)-1^"^ (13J5)

From (13.14), (13.15) and (V4.3) if foUows, V i + j :

V^(szi-sz,) -^ 0
R{sz) -> 0

as s —> +00. Then one has

f1
liminf / Vs(sz) > 0.
s-^+oo Jo ' / ~~
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Since h < 0 and \\z\\ > 0 we deduce that

Fs(sz) —)• -oo (s —^ 4-00)

and any u\ == s-^z^ with 5i > 0 and sufficiently large, satisfies Ff(ui) < 0.
On the other side, (13.10-i) and (13.15) imply, for s i 0,

Vs(sz) >: -aes~0 - 6a7S~2

Then one has
s2

Fs(sz) <, —IMI2^ + a-!S~0 + 6aes~2) = ashs2 + a^s2'0 + ̂ 10.

Since /3 < 2, it follows that there exist SQ > 0 and SQ > 0 such that \\SQZ\\ < /?,
^(^) < a, V 0 < 6 <, 60. This suffices for (A2.3) with UQ = SQZ. m

Next we are concerned with the {PS) condition.. Let Uk G A^ be such
that

F6{uk) - ^ c > 0 , (13.16)
Fs{uk) -> 0. (13.17)

Wesetak=(Fs(uk)\Uk).

Lemina 13.3 \\Uk\\ ^ an.

Proof. Using (13.11) we deduce

^ = ll^ll2/1^-^^)-^^)'^]^^Jo Z

^ n"fcii2 A/t-o-^m^)]^ (13.18)
JO Z

From (13.16) one has b ̂  Fs(uk) for some 6 > 0, and hence

- ||M12 ̂  ̂ (^)^ ^ b - |/iK||2. (13.19)

Inserting (13.18) into (13.19) we find

^ ^ /i||^||2 - (1 - ̂ )^||^||2 + 012 == ̂ ||̂ ||2 + ai2.

Since /i < 0 and |(7jb| <, \\Uk\\ ||F^(^)|[, the Lemma follows. •

Next Lemma prevents phenomena like those seen in Remark 12.11. It is
just here where condition (13.1) with a ̂  1 plays the role.
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Lemma 13.4 There exists bo > 0 such that \u^ ^ 60.

Proof. By contradiction, let ji^oo -^ 0. We set

^ == - I'V^dt,Jo

Ak = jM2[A+^],

5fc = M2/"1^)^,
JO

Ck = f V\Uk)'Ukdt.

Since F^) = Ajfc + j^Bjb, we will reach a contradiction with (13.16) when-
ever we show that limsupAfc <, 0 and Bk -^ 0.
Step 1: limsupAjb ^ 0. Since |̂  -. 0, it follows from (13.12) that
Ck <. Wjfc, and hence

^ = II^H2^ + ̂  - JG,] >, H^H 2^ + (1 - j)^]. (13.20)

Then it turns out that

^JtT^-'^1'-
Since ̂  -^ Q and ̂  -. +00 (because \Uk |oo -^ 0), it follows that lim sup Ak ^

Step 2: Bk -> 0. Define ^,^,^,7^ by setting

rk = t^]^^"^^
^k = |^|oo=^(rjfc)

There results

log^ = f^loglu,!^/1^,^
rfc Jt,. ds 0' • Jo \uk\ ~

, , r / i i T/2 f .1 i -[i/2
^ k•12^M ij ^""^•^CT • ^^

înce |̂ |̂  ̂  0 then A + ̂  > for k large. Then F<(̂ .) > \6Bk and if
-^ -> +00, then (13.21) would imply Ff(uk) -» +00, a contradiction. This
shows that

Rk ,
7^ ^ "M- (13.22)
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Using again (13.20) and (13.13) we infer

^^ Kll^+ais I^Uk^dt}.
JO

Let us remark that h + 015 f^ |^|~°'^ > 0 because |^|oo -» 0. Therefore

11^(^)11
^^h+a^Uk^dt

thus
B 11^(^)11 2 / 1 , ,-2,,
Bfc ^ (ft+a^KW 70 {uk{ dt-

Since n, <, \Uk(t)\ ̂  Rk, it follows

Bk ̂  " '̂"'î Srr
and (13.21), a ^ 1, jointly with ||^(^)|| -> 0 imply that Bk -^ 0, as
required. This completes the proof of the Lemma. •

We are now in position to prove

Lemma 13.5 Fg satisfies (PS)c for all c > 0.

Proof. From Lemma 13.3 it follows that Uk —>• u* weakly and uniformly,
along a subsequence. Lemma 13.4 implies that u*(t) ̂  0. If u* 6 <9A^ then
Jo1 Vs(uk)dt —^ -oo, because Vg satisfies the (SF) condition. Moreover u* ^
const. and hminf|[^|[ ^ 11^11 > 0. Hence Fs(uk) —^ +00, a contradiction,
which proves that u* 6 A^. It is now a standard procedure to show that Uk
strongly converges (up to a subsequence) to u*. •

As a consequence, we can state

Lemma 13.6 For all 0 < 6 < 60, Fs possesses a critical point Uf, G A^ such
that F^ug) > 0.
Moreover there exist a, A > 0 such that a <, \\u^\\ <, A, for all 0 < 6 ̂  60.

Proof. Lemmas 13.2 and 13.5 allow us to use the Mountain- Pass Theorem,
in a slightly modified version (see [16] for more details), finding a critical
point us e A^ of Fs such that cs = F^us) > 0. The min-max characteriza-
tion of cs easily implies ||̂ || <: A. Moreover, if ||̂ || -^ 0 then |^|oo -^ 0
and, from (13.12),

h = f\V(us) + ̂ V'W . u,\dt <, (1 - p) [ 1 VWdi
JQ 2, 2 Jo
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Using (13.13), the right hand side tends to —oo, a contradiction. •

According to Lemma 12.1, Q&(t) = us(^t) solves (13.7-8), with ̂  given
by (13.6). The same arguments of Lemma 12.13 show that ^ —> u^o ^ 0
and us -^ z in E. Setting Q(t) = z(c^ot) it follows that Q is a generalized
solution of (13.3-4).

In conclusion one has

Theorem 13.7 Let V(X) = \ E^ V^-x,) and V^ satisfy (V4). Then
for all h < 0 problem (13.3-4) has a generalized periodic solution.

Remark 13.8 With respect to the results of Section 12, Theorem 13.7 deals
with potentials such that, roughly, V,j ^ -[^1-°', with 1 <: a < 2. On the
other side, we do not assume any condition like (V3.1). It would be possible
to find an existence result for (13.3-4) assuming that V^ satisfy (V3) and
(V4.1). •

Remark 13.9 As indicated in Remark 12.20-(ii), using the perturbation
techniques like those discussed in Sections ll.C and 12.C, one can prove
the existence of multiple noncollision orbits for a class of restricted N-body
problems. See [10, Section 4]. See also [64] concerning the existence of
T-periodic solutions. •
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