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Abstract — On a complex manifold X, we construct the functors - % Ox and Thom(-,0x)
of formal and moderate cohomology from the category of R-constructible sheaves to that
of Dx-modules. It allows us to treat functorially and in a unified manner C* functions,
distributions, formal completion and local algebraic cohomology.

The behavior of these functors under the usual operations on D-modules is system-
atically studied, and adjunction formulas for correspondences of complex manifolds are
obtained.

This theory provides a natural tool to treat integral transformations with growth
conditions such as Radon, Poisson and Laplace transforms.

Résumé — Sur une variété complexe X, nous construisons les foncteurs - %ﬁ Ox
et Thom(-,0x) de cohomologie formelle et modérée de la catégorie des faisceaux
R-constructibles 3 valeurs dans celle des Dx-modules. Cela permet de traiter fonctori-
ellement et de maniere unifiée les fonctions C°, les distributions, la complétion formelle
et la cohomologie locale algébrique.

On étudie systématiquement le comportement de ces foncteurs pour les opérations
usuelles sur les D-modules, et on obtient des formules d’adjonction pour les correspondances
de variétés complexes.

Cette théorie fournit les outils naturels pour traiter les transformations intégrales avec
conditions de croissance comme les transformations de Radon, Poisson et Laplace.
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Introduction

“Algebraic analysis”, following Mikio Sato’s terminology, is an attempt to treat
classical analysis with the methods and tools of Algebra, in particular, sheaf theory
and homological algebra. This approach has proved its efficiency, especially when
applied to the theory of linear partial differential equations (see [S-K-K]), which has
become, in some sense, a simple application of the microlocal theory of sheaves (see
[K-S]). However, while this sheaf theoretical approach perfectly works when dealing
with holomorphic functions and the various sheaves associated to it (hyperfunctions,
ramified holomorphic functions, etc.), some important difficulties appear when
treating growth conditions, which is quite natural since such conditions are obviously
not of local nature. However, as is commonly known, classical analysis is better
concerned with distributions and C°°-functions than with hyperfunctions and real
analytic functions.

These difficulties have been overcome by the introduction of the functor
Thom(-,0x) of temperate cohomology in [Kag| and its microlocalization, the functor
Tuphom(-,0x) of Andronikof [An]. The idea of Thom(-,0x) is quite natural: the
usual functor R Hom(F,Ox) may be calculated by applying Hom(F,-) to B%, the
Dolbeault complex with hyperfunction coefficients, which is an injective resolution of
Ox. If B is replaced by ‘Db%, the Dolbeault complex with distribution coefficients,
one gets a new functor which is well-defined and behaves perfectly with respect to F’
when F' is R-constructible. If X is a complexification of a real analytic manifold M
and if one chooses for F' the orientation sheaf on M (shifted by the dimension), then
the sheaf of distributions on M is recovered (this was already noticed by Martineau
[Mr]). If Y is a closed complex analytic subset of X and if one chooses F' = Cy,
one recovers RI'y)(Ox), the algebraic cohomology of Ox with support in Y. The
functor Thom(-,0x) is an inverse to the functor Sol(-) := R Homg, (-,0x) in the
Riemann-Hilbert correspondence, and this was the motivation for its introduction
in [Kag). However, as we shall see below, it has many other applications.

The functor Thom(-,0x) being well understood, and corresponding —roughly
speaking— to Schwartz’s distributions, it was natural to look for its dual. This is
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2 MASAKI KASHIWARA AND PIERRE SCHAPIRA

one of the aims of this paper in which we shall introduce the new functor - <v§> Ox of
formal cohomology In fact, we shall treat in a unified way both functors, Thom(-,0x)
and - ® Ox, starting with an abstract result. We show that a functor v defined on
the category ¥x of open relatively compact subanalytic subsets of a real analytic
manifold X with values in an abelian category and satisfying a kind of Mayer-
Vietoris property, extends naturally to an exact functor on the category R-Cons(X)
of R-constructible sheaves (see Theorem 1.1 for a precise statement). The functor
U + Thom(Cy, Dbx) := Dbx /T x\vyDbx as well as the functor U CU%VQ KY =
the subsheaf of 6 consisting of sections vanishing up to infinite order on X \ U
satisfy the required properties, and thus extend as exact functors on R-Cons(X).
When X is a complex manifold, the functors Thom(-,0x) and - ® Ox are the
Dolbeault complexes of the precedlng ones. When X is a complexification of a
real analytic manifold M, (C M ® Ox is nothing but €37 and if Y is a closed complex
analytic subset of X, Cy ® 0 x is the formal completlon of Ox along Y. Moreover, if
F is an R-constructible sheaf, then RT'(X; F® Ox) and RT. (X;Thom(F,Qx[dx]))
are well-defined objects of the derived categories of F'N-spaces and DF N-spaces
respectively, and are dual to each other (see Proposition 5.2, and its generalization
to solution sheaves of @-modules, Theorem 6.1).

In this paper, we present a detailed study of the usual operations (external
product, inverse and direct images) on these functors. Of course, the results
concerning Thom were already obtained in [Kag|, but our treatment is slightly
different and more systematic. Our main results are the adjunction formulas in
Theorems 7.2, 7.3 and 10.8. In order to prove Theorem 7.3 we have made use of the
theory of Ox-modules of type FN or DFN of Ramis-Ruget [R-R] (see also [Ho])
and we thank J-P. Schneiders for communicating his proof of Theorem 8.1.

Applications of our functors will not be given here. Let us simply mention that
the adjunction formulas appear as extremely useful tools in integral geometry (see
[D’°A-S;], [D’A-S3]) and representation theory (in the spirit of [K-Sm|) and the
specialization of the functor of formal cohomology leads to a functorial treatment
of “asymptotic developments” (see [Co]). Finally, in a forthcoming paper, we shall
apply this theory to the study of integral transforms with exponential kernels, and
particularly to the Laplace transform.

A preliminary version of this paper appeared as a preprint in RIMS-999, Research
Institute for Mathematical Sciences, Kyoto University (1994).

IM. Kashiwara and P. Schapira, Integral Transforms with Ezponential Kernels and Laplace
Transform, RIMS-1102 (1996).
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1. Functors on R-Constructible Sheaves

We shall mainly follow the notations of [K-S] for derived categories and sheaf theory.
In particular, if A is an additive category, we denote by C®(A) the additive category
of bounded complexes of A, and by K®(A) the category obtained by identifying with
0 the morphisms in C®(A) homotopic to 0. If A is abelian we denote by D?(A)
its derived category with bounded cohomologies, the localization of K°(A) by exact
complexes. We denote by @ the canonical functor from K°(A) to D(A). We
define similarly C*(A) or K*(A) (x = + or —) by considering complexes bounded
from above or below. If R is a ring or a sheaf of rings, we write for short C*(R),
etc. instead of C®*(Mod(R)), etc.. For example, if X is a topological space, D®(Cx)
is the derived category with bounded cohomologies of sheaves of C-vector spaces on
X.

Let X be a real analytic manifold and denote by R-Cons(X) the abelian category
of R-constructible sheaves of C-vector spaces (see [K-S] for an exposition). Denote
by R-Cons.(X) the thick subcategory consisting of sheaves with compact support.

Let ¥x be the family of open relatively compact subanalytic subsets of X and
let us denote by the same letter ¥x the category whose objects are the elements of
$x and the morphisms U — V are the inclusions U C V, U and V in ¥x. Then
U — Cy gives a faithful functor

Fx — R-Cons.(X).

Let A be an abelian category over C. This means that Homa (M, N) has a structure
of C-vector space for M, N € A, and the composition of morphisms is C-bilinear.
Let ¥ : $x —> A be a functor, and consider the conditions:

(1.1) $(0) =0;
(1.2) for any U, V in $x, the sequence
YOUNV)=>y9pU)ey(V) = yp(UUV) =0

is exact;

SOCIETE MATHEMATIQUE DE FRANCE



4 MAsakl KASHIWARA AND PIERRE SCHAPIRA

(1.3) for any open inclusion U C V in ¥x, ¥(U) — ¥(V) is a monomorphism.

Theorem 1.1. —

(a) Assume (1.1) and (1.2). Then there is a right exact functor, unique up to an
isomorphism,

¥ : R-Cons.(X) — A
such that ¥(Cy) ~ ¥(U) functorially in U € ¥x.
(b) Assume (1.1), (1.2) and (1.3). Then ¥ is ezact.
(c) Let 1 and o be two functors from Fx to A both satisfying (1.1) and (1.2),

and let U1 and ¥y be the corresponding functors given in (a). Let 6 : 11 — g
be a morphism of functors. Then 6 extends uniquely to a morphism of functors

@2‘1’1—)‘1’2.

(d) In the situation of (a), assume that A is a subcategory of the category Mod(Cx)
of sheaves of C-vector spaces on X, and that A is local, that is: an object
F of Mod(Cx) belongs to A if for any relatively compact open subset U there
exists F' in A such that Fly ~ F'|y.
Assume further that ) is local, that is: supp(w(U)) C U for any U € ¥x.
Then v extends uniquely to R-Cons(X) as a right exact functor ¥ which is
local, that is, U(F)|ly ~ ¥(Fy)|u for any F € R-Cons(X) and U € ¥x.
Moreover the assertion (b) remains valid, as well as (c), provided that both ¢
and 2 are local.

Proof. Let Vect denote the category of C-vector spaces and let ¥x" be the category
of contravariant functors from ¥x to Vect. Let £ : R-Cons(X) — ¥x" denote the
canonical functor. Let P be an object of ¥x " satisfying the following two conditions
similar to (1.1-2).

(1.4) P(0) = 0;
(1.5) for any Ui, U; € ¥x,
0 — P(U,UU2) = P(Uh) ® P(Uz) » P(U; NU,)
is an exact sequence.

Lemma 1.2. — Assume that P € PxV satisfies (1.4) and (1.5). Then for any
V € x, the composition
(1.6)

Homg, v (£(Cy ), P) = Homvect(£(Cv)(V), P(V)) = Homvyect(C, P(V)) ~ P(V)

is an isomorphism.
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MODERATE AND FORMAL COHOMOLOGY... 5

Proof. Let us first remark that P(LU;) ~ @P(U;) for a finite disjoint family {U,}
of objects in ¥x. Also recall that any relatively compact subanalytic subset has a
finite number of connected components.

Let us prove the injectivity of (1.6). For U C V let us denote by 1y the canonical
element of {(Cy)(U). Then the map (1.6) is given by Homg,v(¢(Cy),P) 2 a —
a(V)(1y) € P(V). Let a be an element of Homg, v (£(Cy), P). Assuming that
a(V)(1y) € P(V) vanishes, we shall prove that a(U) : T'(U;Cy) — P(V) vanishes
for any U € ¥x. By the above remark, we may assume that U is connected. If U is
not contained in V then £(Cy)(U) = 0 and hence a(U) = 0. If U is contained in V,
then £(Cy)(U) is a one-dimensional vector space generated by 1y. Then a(U) =0
follows by the commutative diagram

§Cv)(V) —— P(V)

! !

¢§(Cv)(U) — P(U)

in which the left vertical arrow sends 1y to 1y.

Let us prove the surjectivity by tracing backwards the arguments above. Let a
be an element of P(V). For a connected U € ¥x, define a(U) as follows. When U
is not contained in V, set a(U) = 0. When U is contained in V, define a(1ly) to
be the image of a by the restriction map P(V) — P(U). For a general U € ¥x,
letting U = UU; be the decomposition of U into connected components, we set
a(U) = ®a(U;). Then we can see easily that a belongs to Homg, v(£(Cv), P) and
the map (1.6) sends « to a. O

Now we are ready to prove Theorem 1.1. First we assume that 1) satisfies the
condition (1.1) and (1.2), and we shall prove (a) in Theorem 1.1.
For an object M € A and U € ¥x, we set

P(M)(U) = Homa (y(U), M).

Then P(M) is an object of $xV and it satisfies the conditions (1.4) and (1.5). Now
we shall show

(1.7) For any F € R-Cons.(X), the functor ¥(F) : M — Homg,v({(F), P(M)) is
representable by an object of A.

If F =Cy for V € Px, then ¥(F) is represented by ¢(V) by Lemma 1.2. Hence
if F is a finite direct sum of sheaves of the form Cy, then ¥(F) is representable.
Every F € R-Cons¢(X) is the cokernel of a morphism F; — F3 in R-Cons¢(X),
where F; and F are finite direct sums of sheaves of the form Cy. Since ¥(F) and

SOCIETE MATHEMATIQUE DE FRANCE



6 MASAKI KASHIWARA AND PIERRE SCHAPIRA

U(F3) are representable, ¥(F) is represented by the cokernel of U(F;) — ¥ (Fy).
This completes the proof of (1.7).

Thus we obtained the functor ¥ : R-Cons.(X) — A and it is obvious that ¥
satisfies the desired condition.

We shall show (b). Namely assuming (1.1), (1.2) and (1.3), we shall show that
U(F) — ¥(F') is a monomorphism if F — F’ is a monomorphism in R-Cons.(X).
There is a finite family of {U;};=1,.. » of relatively open subanalytic sets and
morphisms f; : Cy, — F' such that F’ = Y. Imf;. Set Fy = F+ Y :_; Im f;.
It is enough to show that U(F)) — ¥(Fk+1) is a monomorphism. Hence replacing
F and F’ with Fj and Fj;, we may assume from the beginning that F' = F +1Im f
for some f : Cy — F'. Let us consider the commutative diagram with exact columns
and rows:

0 0 0
| | |

0 > 0 F — F —F 0
| | |

0 » K sy FopCy —— F —— 0
| | |

0 y K sy Cy —— F'/JF —— 0

! ! !

0 0 0
Since K is a subobject of Cy, it is equal to Cy for some subanalytic open subset
V c U. Applying ¥ to the diagram above, we obtain a commutative diagram :

0 0 0
| |

00— 0 —— Y(F) — YF) ——0
|
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MODERATE AND FORMAL COHOMOLOGY. .. 7

The rows are exact by (1.3) and the right exactitude of ¥, and the columns are
exact except the right one. Hence the right column is also exact.

The property (c) is obvious by the construction above. The assertion (d) follows
easily from supp(¥(F)) C supp(F). This completes the proof of Theorem 1.1. [

Now we consider a stronger condition than (1.2)
(1.8) For any U, V in ¥x, the sequence
0->ypUNV)=pU)ey(V) > ¢p(UUV) =0

is exact.

Proposition 1.3. — Assume (1.1) and (1.8). Then for any U € ¥x and any ezact
sequence in R-Cons¢(X)

0--G—>F—->Cy—0,

the sequence 0 — ¥(G) — ¥(F) — ¥(Cy) — 0 is ezact.

Proof. We shall prove this in two steps.
(Step 1) Assume that F = @;Zl(CUj for connected subsets U; in Fx.

We shall prove the proposition by induction on 7. We may assume that Cy;, — Cy
is given by 1. For r = 2, this is nothing but (1.8). Set U’ = |Jj_, U;. Then we have
a commutative diagram with exact rows and columns

0 0

—
—

G
|

0—— G — F — Cy —— 0
|

!I

0 — Cyryy; — CydCyy, —— Cy —— 0
0

We can see easily that v is an isomorphism. By applying the right exact functor ¥

0
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we obtain a diagram

0 0
I
¥(G) —— ¥(Gy)
|
0— ¥G — Y (F) — ¥(Cy) —— O
I N

0 —— \IJ(CU’OUl) —_— ‘I/((CUI)GB‘I’(CUl) —_— ‘I’(CU) — 0

! !

0 0

In this diagram, the bottom row is exact by (1.8) and the columns are exact by the
induction hypothesis. Hence the middle row is exact.

(Step 2) In the general case, we can find an epimorphism F' — F, where
F' = @Cy,. Then we have a diagram

0 0
ek
0 s G s F' y Cy > 0
|
0 > G >y F Cy 0
0 0
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MODERATE AND FORMAL COHOMOLOGY... 9

By applying ¥, we obtain
0 0

! |

¥(K) —— ¥(K)

! |

0 — ¥(G) —— Y(F') —— ¥(Cy) —— 0

! ! H

0 — ¥(G) —— Y(F) —— ¥(Cy) —— 0

! !

0 0

Since the columns are exact as well as the middle row by (Step 1), the bottom row
is also exact. ]

Proposition 1.4. — (i) Assume (1.1) and (1.8). Then the functor ¥
R-Cons.(X) — A, which is right exact, is left derivable. Let LY denote the left de-
rived functor and set L;¥ = H=7 o LY. Then L;¥ =0 for j > 1 and L1¥(Cy) =0
for any U € Fx.

(ii) Under the locality condition as in Theorem 1.1 (d), ¥, as a functor on
R-Cons(X) is left derivable.

Proof. Let us denote by P the subcategory of R-Cons.(X) consisting of objects
P such that for any exact sequence 0 -+ G — F — P — 0 in R-Cons.(X), the
sequence 0 — ¥(G) — ¥(F) — ¥(P) — 0 remains exact. One checks easily that if
0— P — P— P" — 0is exact and if P’ and P” belong to P, then so does P.
Now, let K be a subobject of ®7_;Cy,. Arguing by induction on r, one gets that
K € %. Then the proof follows. a

Proposition 1.5. — Let ¥; and ¥4 be two functors of triangulated categories from
D5 _.(Cx) to a triangulated category, and let © : W1 — WUy be a morphism of
functors of triangulated categories. We assume the following conditions:

(i) for any F € D}__(Cx), O(F) is an isomorphism if ©(Fz) is an isomorphism
for any compact subanalytic subset Z of X,

(i) for any closed (resp. open) subanalytic subset Z (resp. U) of X, ©(Cgz) (resp.
©(Cy)) is an isomorphism.

Then © is an isomorphism.

SOCIETE MATHEMATIQUE DE FRANCE



10 MAsAKI KASHIWARA AND PIERRE SCHAPIRA

Proof. 1t is enough to show that O(F) is an isomorphism for any F € R-Cons(X)
with compact support. For such an F, there exists a finite filtration X = Xy D
X1 D - Xn = 0 such that lej\xj“ is a constant sheaf. Since there exist exact
sequences 0 — Fx \x,,, = Fx, = Fx,,, — 0, it is enough to show that ©(Cz) is
an isomorphism for any locally closed subanalytic subset Z of X. Since Z may be
written as the difference of two closed (resp. open) subanalytic subsets, the assertion
follows. O
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2. The Functors - 6% and Thom(- , Dbx)

In this section and the two subsequent ones, X denotes a real analytic manifold.
We denote by dx,6%, Dbx,Bx the sheaves on X of complex-valued real analytic
functions, C'*°-functions, Schwartz’s distributions and Sato’s hyperfunctions. We
denote by orx the orientation sheaf on X, by Qx the sheaf of real analytic differential
forms of maximal degree and we define the sheaf of real analytic densities:

AY =Qx Qorx.
If ¥ is an A x-module, we set
FV = &4}/( Qs x F.

We denote by D x the sheaf of rings on X of finite-order differential operators with
coefficients in s x. Recall that Mod(@x) (resp. Mod(@%*)) denotes the category
of left (resp. right) @ x-modules, and D?(@x) (resp. D*(@FP)) its derived category
with bounded cohomologies.

We denote by wx(~ orx[dimX]) the topological dualizing complex on X, and
for F € D*(Cx), we set:

D% (F) =R Hom(F,Cx),
Dx(F) =R Hom(F,wx) .

Let U be an open subanalytic subset of X and Z = X \ U. We shall denote by
% 7z the subsheaf of €5 consisting of functions which vanish on Z up to infinite
order. We set:

(2.1) Cu® €X = 9%z
and we define Thom(Cy,Dbx) by the exact sequence:
(2.2) 0—)FZrDbX —)(Dbx —)Tﬂom((CU,bex) —0.

Let us recall the following result, due to Lojaciewicz (see [Lo], [Ma]), which will be
a basic tool for all our constructions.

SOCIETE MATHEMATIQUE DE FRANCE



12 MAsAkT KASHIWARA AND PIERRE SCHAPIRA

Theorem 2.1. (Lojaciewicz) — Let Uy and Us be two subanalytic open subsets of
X. Then the two sequences below are ezxact:

0 = Coy0,® 6% = (Cu, ® 63) @ (Cu, ® 6) = Cuur,® 6 — 0,
0— (Tﬁﬂm((CUluUz,rDbx) — r‘IJHOTH((CUI,'D[)X) @ Thom(Cy,, Dbx)
— ‘Tﬁom((CUmUz,(Dbx) — 0.

By this result, the condition (1.2) is satisfied and (1.1) is obvious as well as (1.3).
Applying Theorem 1.1, we obtain two exact local functors :

(2.3) . ® € : R-Cons(X) — Mod(@x),
(2.4) Thom(- ,Dbx) : (R-Cons(X))°PP — Mod(Dx).

We call the first functor the Whitney functor and the second one the Schwartz

functor. Of course this last functor is nothing but the functor THx (- ) of [Kag].

Notice that for F' € R-Cons(X), the sheaves F® ¥ and Thom(F,Dbx) are
%-modules, hence are soft sheaves.

If & be a locally free s{ x-module of finite rank, we set:

F® (€3 ®uy L) = (FO €%) ®uy £,
Thom(F, Dbx @y L) = Thom(F,Dbx) @, £.

For the notions on topological vector spaces that we shall use now, we refer to
Grothendieck [Gr;]. In particular we say that a vector space is of type F'N (resp.
DFN) if it is Fréchet nuclear (resp. the dual of a Fréchet nuclear space).

Proposition 2.2. — Let F' € R-Cons(X). There exist natural topologies of type FN
on T'(X; F® €) and of type DFN on T'.(X; Thom(F,DbY)) and they are dual to
each other.

Proof. (a) We first prove the result when F' = Cy,U an open subanalytic subset of
X. Set Z = X\ U and consider the two sequences:

(2.5) 0 — D(X;Cy® €%) — [(X;6F) — I(X;Cz® 6) — 0,

(2.6) 0« T'o(X;Thom(Cy, Db%)) + Le(X;DbY) « Te(X; Thom(Cz, Db )) + 0.
These two sequences are exact since they are obtained by applying thewfunctors
['(X;-) or ['.(X;-) to exact sequences of soft sheaves. Moreover I'(X; Cy® 6€%) =

I'(X;9% ) is a closed subspace of the FN-space I'(X;€%), hence inherits
a structure of an FN-space as well as the third term of (2.5). The space
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MODERATE AND FORMAL COHOMOLOGY. .. 13

I'.(X;Db¥) is the topological dual space of I'(X;6$). Hence in order to see that
['o(X;Thom(Cy,DbY)) is the dual space of I'(X; Cy® €S), it is enough to show
that

I.(X;Tz(DbY)) = {f € I‘C(X;‘Dl&);/uf =0 for any u € F(X;(Cué ‘63?)} .
This is easily obtained by the following result.

Lemma 2.3. — For any open subanalytic subset U of X, T'c(U;€%) is dense in
I'(X;Cy® 6).

The proof is given in Chapter I, Lemma 4.3 of [Ma].
(b) We shall say that two complexes V*® and W* of topological vector spaces of type
FN and DF N respectively are dual to each other if:
(2.7) Ve oo s Vi VI
v‘L
(2.8) We: o s W s Wt
W~ is the topological dual of V* and w® is the transpose of v*.

(¢) Let us prove the proposition when F € R-Cons.(X). In such a case F is
quasi-isomorphic to a bounded complex:

F*:...5 F 15 F°>0

where FO is in degree 0 and each F7 is a finite direct sum of sheaves of type Cy, U
being open relatively compact and subanalytic (see [K-S, Chap.VIII]). Applying the
functors I'(X; - ® ©%) and I'o(X;Thom(- ,Db%)), we obtain two complexes V'* and
W* of type FN and DFN, dual to each other. Moreover V* = 0 for i > 0, W¢ =0
for i < 0 and these complexes are exact except in degree 0. Hence all w® have closed
range and consequently their adjoints v* have also closed range. Therefore, H°(V'*)
and H°(W*®) are of type FN and DFN respectively, and dual to each other. It
follows from the closed graph theorem that the topologies we have defined by this
procedure do not depend on the choice of the resolution of F'.

(d) Finally consider the general case where F' € R-Cons(X). Let us take an
increasing sequence {Z,}, of compact subanalytic subsets such that X is the union
of the interiors of Z,,. Then I'(X; F® ©®%) is the projective limit of I'(X; an(vé ‘%)
with surjective projections and I'.(X;Thom(F,DbY)) is the inductive limit of
T.(X;Thom(Fz,,Db%)). Then the result follows from (c). O

Corollary 24. — Let u : F — G be a morphism in R-Cons(X). Then the as-
sociated morphisms I'(X; F® €¥) — I'(X;G® €%¥) and I'(X; Thom(G, Db¥)) —
L.(X;Thom(F,DbY%)) have closed ranges.
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From now on, we shall work in D®(R-Cons(X)), the derived category of
R-Cons(X). Recall that D®(R-Cons(X)) is equivalent to the full triangulated
subcategory D __(Cx) of D?(Cx) consisting of objects whose cohomology groups
belong to R-Cons(X) (see [Kag]). The functors - ® €®% and Thom(- ,Dbx) being
exact, they extend to functors from D%VC(CX) to D®(@x). We keep the same
notations for these functors on the derived categories.

Proposition 2.5. — Let F and G be in D%__(Cx). There are natural morphisms
in D*(Dx), functorial with respect to F and G:

(2.9) FR6L - F® 6%,
w L w w
(2.10) (F® 6%) ®u, (G €F) — (FG)® 6%,
(211)  (F% €Y) ®u, Thom(G,Dbx) — Thom(R Hom(F,G), Dbx).

Proof.

(i) First let us construct (2.9). Applying Theorem 1.1, we may assume F' = Cy,
for an open subanalytic subset U of X. In this case, the construction is clear.
(ii) Let us construct (2.10). For F, G in R-Cons(X), the morphism:

(F® €2)® (G® 63) - (F® G)® €2,

is easily constructed, by using Theorem 1.1, and reducing to the case where F' = Cy
and G = Cy, for U and V two open subanalytic subsets of X. Since this morphism
is o x-bilinear, it defines a morphism of % x-modules:

(F& €2) @, (G® €3) = (F ® G)® 6.

L

Using the natural morphism IM® ®gq, N* — M* 4, N* for complexes of
9 x-modules 9M*, N°, we obtain the desired morphism.

(ii) In order to construct (2.11), we need several lemmas.

Lemma 2.6. — Let U be an open subanalytic subset of X. Then the composition
of morphisms:

((CUé (6?) X F(X\U)rDbX — (63(0 ®Dbx — Dbx
1S zero.
This follows immediately from Lemma 2.3.

Lemma 2.7. — Let G € R-Cons(X) and let U be an open subanalytic subset of X.
There exists a natural morphism:

(Cu® €%) ® Thom(Gy, Dbx) — Thom(G, Dbx).
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Proof. Using Theorem 1.1, we may reduce the proof to the case where G = Cy
for a subanalytic open subset V' of X. Consider the diagram in which we set

S=X\(UNV):
(Cu® CF) ® TsDbx — (Cu® CF) ® Dbx — (Cu® CF) ® Thom(Cyry, Dbx) — 0

0 —— I'x\v)yDbx Dbx Thom(Cy, Dbx) ——— 0.

Herewa is given by the multiplication. Then it is enough to check that « sends
(Cu® 6%) ® T'sDbx to I'(x\v)Dbx. This follows from Lemma 2.6. |
End of the proof of Proposition 2.5. Let j : U — X denote the embedding. In

Lemma 2.7, we replace G by j.j G and use the isomorphism (j.j 'G)y ~ Gy.
Applying the morphism Gy — G, we get:

(Cu® €)@ Thom(G, Dbx) — (Cy® €52)@Thom(Gyr, Dbx ) — Thom(juj -G, Dbx).

We can write j.j 'G as Hom(Cy,G). Then, applying Theorem 1.1, we have
constructed a morphism, for F' and G in R-Cons(X):

(F® 63) ® Thom(G, Dbx ) — Thom(Hom(F, G), Dbx).

(Notice that both terms are right exact in F.) This morphism being o x-bilinear,
it defines:

(F® 63) ®y, Thom(G, Dbx) — Thom(Hom(F,G), Dbx).

This construction extends naturally to a morphism in K®@x) for F,G €
K*(R-Cons(X)).

For F and G given in R-Cons(X), there exists a simplicial set & and a
homeomorphism ¢ : & — X, such that F' and G are the images of simplicial
sheaves (see [Kag] or [K-S]). On the category R-Cons(S), the functor Hom(F,G)
admits a right derived functor with respect to F', and it coincides with the usual
R Hom(F,G). Now recall that Q denotes the functor from K® to D® and that “li_rr;”
and “1<iLn” denote ind-objects and pro-objects (see [K-S] Chapter 1, §11). Then we
obtain “li_m;’ Q(Hom(F',G)) ~ R Hom(F,G). where F' — F ranges over the family

F'—»F
of quasi-isomorphisms in K®(R-Cons(X)). Thus we obtain
Q(F% €%) é)sgx Q(Thom(G, Dbx)) — “l(iLn” Q ((F'% BX) sy Thom(G,Dbx))
F'—F
- “l{iLn” Q(Thom(Hom(F', G), Dbx))
F'—F

~ Thom(R Hom(F,G), Dbx) .
This completes the proof of Proposition 2.5. O
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16 MAsAKI KASHIWARA AND PIERRE SCHAPIRA

Proposition 2.8. — Let F and G be in D%__(Cx). There are natural morphisms
in D®(@x), functorial with respect to F and G:

(2.12) " F @ 6% — Dy F® 6% — Thom(F, Dbx) — R Hom(F, Dbx),
(2.13) G® (F® 6%) - (G® F)® 6%,

(2.14) Thom(G ® F,Dbx) — R Hom (G, Thom(F,Dbx)),

(2.15) Dy (F ® G)® €% — R Hom(G, D'y F& €%),

(2.16) D'y G @ Thom(F, Dbx) — Thom(G ® F, Dbx).

Proof. The first morphism in (2.12) is (2.9). The second one is obtained by choosing
G = Cx in (2.11). The third morphism is equivalent to F ® Thom(F, Dbx) — Dbx.
This last morphism is obtained by:

(F& €%) . Thom(F, Dbx) — Thom(R Hom(F, F), Dbx) .

The morphism (2.13) follows from (2.9) and (2.10). The morphism (2.14) follows
from (2.9), (2.11) and F — R Hom(G,G ® F'). The morphism (2.15) follows from
(2.13) and G ® D% (F ® G) — D'y F. Finally, the morphism (2.16) follows from
(2.14) and DXxG® (G F) — F. O

Remark 2.9. Let F € D4__(Cx). Then there is a commutative diagram in D®(@x):

(2.17) D% (F)® dAx R Hom(F, dx)

D (F) ® 6% —> D'y (F) ® 6% —> R Hom(F, %)

l

D’x (F) @ Dbx — Thom(F, Dbx) — R Hom(F, Dbx)

Dy (F) ® Bx R Hom(F,Bx).
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3. Operations on - %)(63(0

We follow the notations of [K-S]. In particular we denote by i_l, fiof,, & the
operations of inverse image, proper direct image, direct image and external product
in 9-modules theory. Let f: Y — X be a morphism of real analytic manifolds.
We denote by Ory;x the relative orientation sheaf ory ® f~lorx. Let Dy_, x and
Dx vy be the “transfer bimodules”. Recall that they are defined by

Dyx = Ay ®p-14, f'Dx,
Dxey =AY Osty Dy x ®p-14, (Froly)®Y

and they are a (Dy, f 1D x)-bimodule and an (f D x, Dy )-bimodule, respectively.
For a left @ x-module 9 (or more generally, an object of D?(@x)), we define

-1 L —1
_f_ M =Dy_x ®f‘1@xf m
and for a left @y-module 9 (or more generally, an object of D?(@y)), we define

L

N =RH(Dxey @2y N),
L

fN=RHDxey gz, N).

We can define the same functors for right @-modules. For example for 0t € D?(23FP)

L
fM=RfHN®z, Dy-x),
L
i*m = Rf*(m ®QDY gzjY—)X) .
Proposition 3.1. — Let X and Y be two real analytic manifolds. Then there exists
a natural morphism in D*(Dxxy), functorial with respect to F € D}__(Cx) and

Ge D%_C(Cy).'

(3.1) (F® CX)R(G® 6F) - (FRG) ® 6L, y.
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18 MAsAKI KASHIWARA AND PIERRE SCHAPIRA

Proof. First assume G = Cy for an open subanalytic subset V of Y. Denote by v,
and 12 the two functors on ¥x defined by:

$1(U) = (Cu ® %) B (Cy ® €5),
Y2(U) = Cuxy ® €Fyy-

There is a natural morphism %; — 2. Applying Theorem 1.1, we get the result
in case G = Cy. Now let F' € R-Cons(X). We apply the same argument to the
functors:

Yi(V) = (F® €3) B (Cy ® 63)
Pa(V) = (FRCy) ® €%,y

and the result follows. O

Remark that morphism (3.1) is not an isomorphism in general. To have an
isomorphism, one has to consider the topological tensor product - X - of [Gr].

Proposition 3.2. — Let F € R-Cons(X) and G € R-Cons(Y). Then:

(3.2) I(XxY; (FEG)® €L.y) ~I(X;F® €Q)RI(Y;G® €F).

Proof. The functor - X - being exact on the category of vector spaces of type F'IN,
one may reduce the proof (using Theorem 1.1) to the case FF = Cgz,, G = Cg,,
where Z; and Zs are closed subanalytic subsets of X and Y respectively. Then it is
enough to prove:

(X x Y§9§<°xy,zlng) =~ F(thbg(o,zl) & F(Y§9§f?zz)-
It is well-known that
D(X x Y;6%,y) ~ T(X;6%) BT (Y;63).

For z € X (resp. y € Y) let us denote by E, (resp. Fy) the set of C*°-functions on
X (resp. Y) that vanish at x (resp. y) to infinite order. Then we can see easily that
E, ® F, is the set of C°-functions on X x Y that vanish at (z,y) to infinite order.
Now we remark that for an F'N-space E and a complete space F' and a family of
closed subspaces F}; of F', we have

NESF)=E ([\|F)),
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since E ® F coincides with the space of continuous maps from E* to F. Applying
this remark, we obtain

(X x Y;‘q)?xY,leZz) = ﬂ E, ® Fy=( ﬂ Ey) ® ( ﬂ Fy)
r€Z1 T€Z1 YyEZ2
yEZs

=T(X;9%2,) WT(Y; 9% 7,)-

Now, let f: Y — X be a morphism of real analytic manifolds.
Theorem 3.3. — Let F € D}__(Cx).
(i) There ezists a natural morphism in D®(Dy ), functorial in F:
(3.3) FHF® €)= fIF® 6.
(ii) This morphism is equivalent to the morphism in D*(f '@ x) :
(3.4) FUF ® €%) — R Homg, Dy x, fF & €F).
(iii) If f is a closed embedding, (3.3) is an isomorphism.

(iv) If f is smooth, (3.4) is an isomorphism.

Proof. (i) For U € ¥x, set:

$1(U) = Dyx @p-1ay £ (Cu ® %),
QZJQ(U) = (Cf—l(U) ® c@??

These two functors satisfy conditions (1.1) and (1.2). Let Z = X \ U. The natural
morphism
Ay ®-rax [TIR2 = I¥s-12)

defines the morphism:
O(U): Y1 (U) — 2(U).

Theorem 1.1 gives a morphism
w w
Dy sx Q13 [THEF Q@ €F) = (f71F) ® 65
Then to obtain (i), it remains to use

FHE® 6%) = Dy ox @y fHF & 6F).
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(ii) follows from the adjunction formula:
L
Home(gy)(@y_,X Qf-1gx m, ‘ﬂ) ~ Home(f—lng)(m, R J(omgby (@y_)x,‘ﬁ))
applied with 9 = f~1(F ® 6%) and N= f1F @ €.
(iii) We may assume that Y is a closed submanifold of X. Arguing by induction on
codim Y, we may assume that Y is a hypersurface defined by the equation g = 0,
with dg # 0. Using Proposition 1.3, we may also assume F = Cy for an open

subanalytic subset U of X. Let Z = X \ U. We have to show that the natural
morphism:

6: 93?,2/993(0,2 - g’fffsz
is an isomorphism.

Since $% ; N g€% = 99X z, 0 is injective. On the other hand, any h € 95,y
I~na,y~be ezctended to h e ﬁzzm,. By Theorem 2.1, we may decompose h as
h = hy + ho, with h; € .¢§(°,Z, hy € 933,,. Hence 6 sends h; to h.

(iv) We may argue locally on Y and make an induction on dimY — dim X.
Hence we may assume that Y = X x R and f is the projection. Moreover, by
Proposition 1.3, we may assume F' = Cy for an open subanalytic subset U of X.
Let Z = X \ U. Denoting by t the coordinate of R, it is enough to show that

o/0
0= f19% = 9% -1(2) L2 910z = O

is exact. This is an easy exercise. a
Remark 8.4. If f is smooth, the isomorphism (3.4) defines a morphism:
(3.5) LU PR epY) 5 Fo6g.
In fact we may write (3.4) as
Dxey Ba, (f1F S €F @ ory)[—d] = f~(F & €2 ® orx),
where d = dimY — dim X, or equivalently:
(f7IF & €5") Bay Dyox = F(F  €2Y).

Then (3.5) follows by adjunction.

The morphism (3.5) is also constructed as in Proposition 4.3 below by using the
integration along the fiber fi(63°Y) — 6.

Theorem 3.5. — Let G € D%__(Cy) and assume that f is proper on supp(G).
Then there is a natural isomorphism in D®(Dx), functorial with respect to G :

(3.6) RAG® €X =5 R fi(R Homg, Dy x,G® €)).
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Proof.
(i) Using morphism (3.4) with F' = Rf\G, we get the morphism:

RAG® 6 — Rf.R Homa, Dy x, f 'RFHG® €F).

By composing with f~!R f.G — G, we get morphism (3.6). Let us prove that this
is an isomorphism. By decomposing f as a product of a smooth map and a closed
embedding, we may argue separately in these cases.

(ii) First assume that f is smooth. We may suppose supp(G) is contained in
an arbitrarily small open subset of Y (if Z = supp(G) and Z = Z; U Z5, use the
distinguished triangle G — Gz, & Gz, = Gz,nz, ii)) Hence we may assume
that Y = X x R? and f is the projection. Arguing by induction, we may assume

p = 1. Moreover, by Proposition 1.3, we may assume G = Cz, where Z is a closed
subanalytic subset of Y.

Lemma 3.6. — There ezists a disjoint locally finite family {Z;} of locally closed
subanalytic subsets of Y satisfying the following properties:

(i) Z= Llij,
(i) f(Z;) is locally closed and Z; is closed in f~'f(Z;) for any j,
(iii) for any j and x € f(Z;), f~(z) N Z; is connected,

(iv) for any j, Z;\ Z; is a union of Zy’s.

Proof. Since f«(Cz) is a constructible sheaf, there exists a subanalytic stratification
X = UaX, such that fu(Cz)| x, i locally constant of rank N,. Then for any
z € Xo, f71(x)( Z has exactly N, connected components, say {Z;(z)}j=1,.. ,Na-
We order them so that if we take z; € Z;(x) then z; < zy for j < j'. Set
Zaj = Ugzex, Zi(x). Hence Z is a disjoint union of Z, ;.

Let us show that Z, ; is closed in Z( f~!(Xa). Take zo € X,. There exists
a disjoint family {U;};=1,... N, of open subsets of Y such that Z;(zo) C U;. Then
there exists a neighborhood W of z¢ such that Z(f~}(W) C U;U;. Since
f+(Cz) =~ @, f«(Cznv,;) on W, f*((cznuj)!wﬁ x, 15 a locally constant sheaf of
rank 1, by taking W such that W N X, is connected. Then the fiber of Z(U; — X
is connected over W () X, and hence Z, ; (\f~'W = ZNU; N f~H(XaW). This
shows that Z, ; is closed in Z () f~!(Xa). Therefore Z, ; is subanalytic. The family
{Za,;}a,; satisfies the desired property. O
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By this lemma, we may assume G = Cz where Z is a locally closed subanalytic
subset of Y satisfying the following properties:

T = f(Z) is a locally closed subanalytic subset of X,
for any z € T, Z() f~!(z) is connected,

Z is closed in f~1(T),

Z — X is proper.

(3.7)

Moreover we may assume that Z is contained in X x {t € R;—1 < t < 1}. Set
S=(T\T)x {teR;—1<t<1}. Then Z; = S|JZ is a closed analytic subset
with connected fibers over X. Then it is enough to prove the theorem for G = Cg
and G = Cz,. Hence we reduced the theorem to the case G = Cz where Z is a
closed subanalytic subset satisfying the following two properties:

for any z € f(Z), Z(\ f~!(z) is connected,
ZCcXx{teR0<t<1}.

Let pr : Y x R>g — Y be the map ((z,t),s) — (z,t £s). Set Zp =
p+(Z x R>0)( X x [0,1]. Then Z is a closed subanalytic set and Z = Z, (" Z_
and T x [0,1] = Z; |J Z_. Therefore we have an exact sequence

0 — Crxoa) = Cz, ®Cz_ - Cz — 0.

Hence it is enough to check the theorem for G = Cz,, Cryx[o,1)-

Thus we have finally reduced the theorem to the case G = Cz, Z being a closed
subanalytic subset of Y satisfying:

(3.9) Z is proper over X,
. for any = € f(Z), Z() f~!(=) is a closed interval containing 0.
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Set T'= f(Z). Then R f,(G) = Cr. We have a commutative diagram with exact
columns:

0 0 0
IeS) 0o /ot oo
0 —— I%r —— f*(yy,z) [ ($%7) —— 0
o 00 a/0t oo
0 —— € ——  [fi(6Y) f«(€F) —— 0
0 — Cr® 6F —— fu(Cz® 6) 225 £.(Co® €P) ——
0 0 0

Since /0t has a right inverse given by u(z,t) — fot u(z, t) dt, the top and the middle
rows are exact and hence the bottom row is exact.

(iii) Finally assume that f is a closed embedding. Arguing by induction, we may
assume Y = {z, = 0}, where (z1,...,2,) is a local coordinate system. Moreover,
by Proposition 1.3, we may assume G = Cz, Z being a closed subanalytic subset of
Y. Then we have Dy _x =~ @, Dy (8/0z,)* /k!. Hence for a Dy-module N, we
have the isomorphism -

Homgy, (Dy - x, M) ~ m[[mn]] = H N® (C:Dﬁ
k=0
given by

Homgyy, Dy x, M) > f > ix’; £ ((8/0z,)*/kY) .
k=0

Hence taking Cz ® ¥y as N, (3.6) reduces to the bijectivity of:
(3.10) Cz ® 6% — (Cz ® 6¥)[[n]
Let us consider the commutative diagram:

0 —— IR, — B —— C06% ——0

| IE |G

0 —— 9%, llon]] —— €Pllwnl] —— (C28 €P)[za)) — 0
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Then Kera ~ Kerf ~ $%y and a and f§ are surjective. Hence (3.10) is an

isomorphism. O
w

Remark 3.7 Note that Theorem 3.5 does not remain true if we replace ® with ®.
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4. Operations on Thom(-, Dbx)

The results of this section already appeared in [Kag|, but our construction of the
direct image morphism is slightly different.

Proposition4.1. — Let X and Y be two real analytic manifolds. Then there exists a
natural morphism in D®*(Dx xy), functorial in F € D}__,(Cx) and G € D}_(Cy):

(4.1) Thom(F, Dbx) ® Thom(G, Dby ) — Thom(F R G, Dby ).

The proof is similar to the one of Proposition 3.1 and we do not repeat it.

Remark that the morphism (4.1) is not an isomorphism in general. Similarly to
Proposition 3.2, we have:

Proposition 4.2. — For F € R-Cons(X) and G € R-Cons(Y'), we have
(4.2)
L. (X X Y;Thom(F ® G, Dbx xy)) =~ e (X; Thom(F, Dbx)) ® T (Y; Thom(G, Dby)) .

Proof. This follows by duality (Proposition 2.2) from Proposition 3.2. a

Now let f: Y — X be a morphism of real analytic manifolds.

Proposition 4.3. — There is a natural morphism in D*(DFP), functorial in F €
D]II)Q—C(CX) :
(4.3) L"Tﬁom(f_lF,‘Db¥) — Thom(F, DbY%) .

Proof. Let Z be a closed subanalytic subset of X. For a @y-module 901, we have the
Spencer sequence Spe (M) and a quasi-isomorphism Spe (M) — M. Denoting by Oy
the sheaf of real analytic vector fields on Y, we have Spi(IM) = Dy @, /\k Oy @y,
M. Then Spe.(Dy_x) gives a resolution of Dy_,x as a (Dy,f 'Dx)-bimodule
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locally free over @y . Hence I'y-1(z) Dby é%gby Dy, x is represented by the complex
He = Pf~1(Z)(Db¥'®@)Y Spe(Dy s x). We have Ky, = Fffl(z)(DbS//@&gY /\k 6Y®f’1&ﬁx
f7'%x. Hence we have fi(¥o) = Tzfi(DhY) ®uyx Dx. The integration of
distributions gives a morphism [ PR (Dby,) — DbY. Since DbY is a right
% x-module, we obtain the morphism w : fi(¥o) — 'z Db%. We shall show that the
composition

AL 25 £i(Ho) 5 TDbY
vanishes. The homomorphism
dy: ¥, = Ff—-l(Z)(Db¥'®,9QY Oy ®f-14, f—lng —Ho = Ff—l(Z)(Dblv/@)f—lggX f_lng

is given explicitly as follows. For ¢ € Dby, v € Oy and P € Dx, writing the image
of v by the morphism Oy — Ay ®;-14, f1Ox as > a;Qw; (a; € Ay, w; € Ox),
we have
di(p®v® P) =<pv®P—Zgoaj Qw;P.
J

Let s be a section of fi(¥1). We may assume s = ¢ ® v ® P, where the support
of ¢ is small enough. In order to see that ud;(s) = 0, it is enough to show that
(J;v)P —32;(J; paj)w; P = 0. For any C*-function g on X we have

LS (o)

J

= wv) (Pg) — / (/ soa)w'Pg
J )i, (fpew)
= /Yw(vf*(Pg) - Zajf*(ijg)) =0.
J
Hence we obtain ud; = 0. Thus we have constructed a morphism of complexes

fi (T-12(Dby) ®ay Spe(Dy -x)) = Tz(DbY).

Since F — fi (Thom(f~'F,Dby) Qa,, Spe(Dyx)) is an exact functor from
R-Cons(X) to the category of complexes of D x-modules, we may apply Theorem
1.1 and define a natural morphism:

fi (Thom(f~2F,DbY) ®ay Spe(Dy x)) — Thom(F, DbY)

for F € R-Cons(X) and hence for F € K*(R-Cons(X)). Thus we get (4.3) since
D} __(Cx) is the derived category of R-Cons(X). O
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Theoremd.d. — Let G € D4__(Cy) and assume that f is proper on supp G. Then
there is a natural isomorphism in D®(Dx), functorial with respect to G:

(4.4) f, Thom(G, Dby) S Thom(R .G, Dbx).

Proof. The morphism is constructed by applying Proposition 4.3 with F' = R f.G,
and then using f 'R f.G — G. By using the graph embedding, it is enough to prove
the theorem in the case of a closed embedding and the case of a smooth morphism.

When f is a closed embedding, applying Proposition 1.3, we can reduce to the
case G = Cyz for a closed subanalytic subset of Y, and then one easily sees that (4.4)
is an isomorphism, using the local structure theorem of distributions supported by
a submanifold:

I'y(Dbx) ~ Dxy ®a, Dby .

If f is smooth, the proof that (4.4) is an isomorphism goes as in Theorem 3.5, and
one can reduce the theorem to the case where Y = X x R and f the projection
to X, G = Cz where Z satisfies the condition (3.9). Thus we have to check the
exactitude of

0 — filzDby ﬁ) filzDby M—) Ff(Z)q)bX — 0.

This is an easy verification (cf. [Kas, Lemma 4.5]). d

For F € D}__.(Cx), the morphism (4.3) defines the morphisms

(4.5) Dx ey By, Thom(f~LF, Dby) = f' Thom(F, Dbx)
(4.6) Thom(f ' F, Dby) — R Homs-1q, (Dxcy, f Thom(F,Dbx)).

Theorem 4.5. — Let F € D}_ (Cx).
(i) Assume that f is smooth. Then (4.5) defines the isomorphism:
(4.7 R Homg, Dy _x, Thom(f 1 F,Dby)) =5 f~* Thom(F, Dbx) .
(i) Assume that f is a closed embedding. Then (4.6) defines the isomorphism:

(4.8) ‘Tﬁam(f_lF, "Dby) 5R J[om@x (@)Q_y, ‘Tﬁom(F, q)bx))

Proof. (i) Set d = dimY — dim X. Since f is smooth, f'S ~ f~19 ® ory,x[d] for
any sheaf S on X, and Dx vy Qa, N ~ R Homg, (Dy_x,MN) ® ory,x[d] for any
9Dy-module N. This defines the morphism (4.7). To prove that it is an isomorphism,
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we may reduce the proof to the case Y = X x R, f is the projection and F = Cyg,
Z being a closed subanalytic subset of X. Then one checks that the sequence:

0— f_IFZ(DbX — Ff~1(Z)(Dby ﬂ) Ff—l(z)@by —0

is exact. Here t denotes the coordinate of R.
(ii) Let us prove first

(4.9) R Homg , (Dx v, Thom(Fx\y,Dbx)) = 0.

The question being local, we can write Y = {z = (z1,... ,&n);21 = - =2, =
0}. Set Y; = {z;z; = 0}. Then we have an exact sequence

0« Fx\y < @iFx\y, + @iz Fx\(viuy;) < -+ -

Hence by replacing F' with Fix\y,, Fix\(v,uy;), etc., we may assume that Fx\y =
Fx\y, for some i. Since we have

R J{Dmgbx (@Xey,qJﬁDm(Fx\y,q)bx))
L
~ R Homg , (QD)Q_YZ. gy, @n&y,THUm(FX\Y,‘DbX))

~ R }[omgbyi <9Dyi(_y, R Homg (QDX(_YI,,Tﬁom(FX\y,ﬂ)bX)) >

we can reduce to the case when Y is a hypersurface defined by the equation {g = 0}
with dg # 0. We may also assume F' = Cy, U being an open subanalytic subset
of X. The multiplication by g on Thom(Cy\y,Dbx) is surjective (resp. injective)
since it is a quotient of Dbx (resp. a subsheaf of j.Dby\y where j: U\Y — X is
the open embedding). This shows (4.9).

Using (4.9) and the distinguished triangle Fx\y — F — Fy*5 | it remains to
prove (4.8) when F = f.G with G € D%__(Cy). Then by Theorem 4.4,

L
R Homg ,, (@X(_Y,(Tﬁom(F, (Dbx)) ~ R Homg (@X(_Y, Dx ey Qay ‘Tﬁom(G, "Dby))
L
~ R Homg (@)ﬁ_y,gb)g—y) Quy ‘Tﬁom(f_lF, (Dby)

and the result follows from

R Homg, Dxcy,Dxey) ~ Dy .
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5. The functors - ® Oy and Thom(- ,0x)

From now on, all manifolds and morphisms of manifolds will be complex analytic.
If X is a complex manifold, one denotes by Ox its structural sheaf and by @gf) the
sheaf of holomorphic p-forms. One denotes by dx the complex dimension of X, and
we also write Qx instead of @()?X ). We denote by Xr the underlying real analytic
manifold of X and by X the complex conjugate of X, i.e. the complex manifold with
real underlying manifold Xg and structural sheaf O, the sheaf of anti-holomorphic
functions on X. Then, X x X is a complexification of Xg by the diagonal embedding
Xg = X xX. If f: Y — X is a morphism of complex manifolds, we denote by
fr the real analytic underlying morphism. However, if there is no risk of confusion,
we often write X or f instead of Xg or fr. For example, we shall always write €5
instead of €%, or D} _ (Cx) instead of D_.(Cx,). We denote by Dx the sheaf
of rings of finite order holomorphic differential operators on X, and by f -1 £ £,
X the operations on holomorphic @-modules. We denote by 9y _,x and Dxey
the “transfer bimodules”. Notice that @x and P~ are two subrings of D x, and if
PePx, Q € Dx, then [P,Q] = 0.

Definition 5.1 — Let F € D}__(Cx). We set:
F® Ox = R Homg_ (0%, F ® €%),
Thom(F,0x ) = R Homg__ (O, Thom(F, Dbx)) .

We call - ® O x and Thom(- ‘,N@ x) the functors of formal and moderate cohomology,
respectively. The objects F ® Ox and Thom(F,0x) belong to D*(@x). If G is a
locally free O x-module of finite rank, we set:

F® %= (F® 0x)®cyx S,
Thom(F,4) = Thom(F,0x) Q¢ 4.

Notice that: w L
F® 0x ~Qx ®g, (F® 6%)[—dx]
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and similarly for Thom(F,0x).
Let F € D}__(Cx). Applying Proposition 2.8, we get a sequence of morphisms:

“F®0x - Dy F® Ox — Thom(F,0x) — R Hom(F,0x).
Moreover, if G € D%__(Cx), there are natural morphisms:

GR(F® Ox)— (G®F)® Ox,
Thom(G ® F,0x) — R Hom (G, Thom(F,0x)) .

We shall have to work in the derived categories of FN or DF N-spaces. Let
us recall their constructions. Denote by C®(FN) the additive category of bounded
complexes of topological vector spaces of type F'N and linear continuous morphisms
and by Kb(FN) the category obtained by identifying to 0 a morphism homotopic
to zero. Then D®(FN) is the localization of K®(FN) by the complexes which are
algebraically exact. The construction of D®(DF N) is similar. The duality functors
between FFN and DF N spaces being exact, they extend to duality functors between
the derived categories.

The bifunctor - K - on the category of F'N-spaces (resp. DF N-spaces) being
exact, it extends to the derived category:

X: D*(FN) x D*(FN) - DY(FN),
X: D*(DFN) x D*(DFN) — D*(DFN).
Proposition 5.2. — Let F € D%__(Cx). Then we can define
RT(X;F ® Ox) and RT.(X; Thom(F, Qx)|dx])

as objects of D*(FN) and D*(DFN) respectively, and they are dual to each other.

This proposition will be generalized to the case of solutions of @-modules in § 6.
Proof. First assume F € R-Cons(X). Set:

Vi=T(X;F® ¢3X0))
Wi = To(X; Thom(F, Db 4x 9y,
By Proposition 2.2, the space V* (resp. W™?) is naturally endowed with a topology of

type FN (vgesp. DFN) and these two spaces are dual to each other. The complexes
RT(X;F ® Ox) and RT.(X;Thom(F,Qx[dx])) are represented by the complexes:

00—V oV — ... Vi 50
]

0— W 5wt ... W 0,
3
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respectively. Now let F € D%__(Cx). By [Kas, Theorem 2.8], F' is represented by
a bounded complex of R-constructible sheaves, and the proof is similar. d

We shall now study the functorial operations on the functors of formal and
moderate cohomology.

Proposition 5.3. — Let X and Y be two compler manifolds. Let F € D} (Cx),
G € D__(Cy). Then there exist natural morphisms in D*(Dx xy), functorial with
respect to F' and G:

(F® 0x)R(G® Oy) — (FRG) ® Oxxy,
(5.2) Thom(F, 0 x)X Thom(G, Oy ) — Thom(F K G,Ox xy).

Proof. Apply R Homg. _(O%,v,- ) to the morphisms (3.1) and (4.1). a

Proposition5.4. — Let F € D}_(Cx) and G € D4 __(Cy). Then there are natural
isomorphisms:
(5.3)
RI(X xY;(FRG)® Oxxy) ~ RT(X;F® Ox) R RT(Y;G ® Oy),
(5.4)
RT (X x Y;Thom(F K G,0xxy)) ~ RT(X;Thom(F,0x)) K RT:(Y;Thom(G, Oy)).

Proof. The results follow from the corresponding ones with O replaced by €°° or
‘Db in Propositions 3.2 and 4.2. O

Now let f: Y — X be a morphism of complex manifolds. We shall often make
use of the following morphisms.

Lemma 5.5. —

(i) For M € D*(Dy, ), we have the canonical isomorphisms:

R Homsrg_ ( F7'0%, R Homa, (Dyyos xe» m))

(5.5)

~ R Homg, (Qby_,x, R J[amgv(@?, ‘ﬁ)) ,
(5.6) _f_*R }[ﬂmgv(@y, ‘II) [dy] ~R J[OMQDY(@Y, f_R* ‘It) [dx] ,
(5.7) £, R Homg(Oy, M)[dy] = R Homa (0%, fr, MN)[dx].

(ii) For MM € D*(Dx,), we have a canonical morphism:

(5.8) 'R Homg_ (O, M) = R Homg_ (Op, fr~"MN).
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Proof. Let us prove first (5.6). For a @y;,-module 9, we have
L L L
D Xp Ve Oy, N~ V%, v Qoy (Dx ey @zy N).
Hence we have
L
Ox Qa¢ @* N
4 L L L
~ R f. (f QY Qp-195 ng(—? Bz (Dxey Bay m))
L L L
~ R fu (Dxey Qay (7' Q% @105 Dxy ®ap N)).
L
Hence (5.6) follows from f~'Qx ®-19 D% _y =~ Oy
The proof of (5.5) is similar. We have
R J“{amf—lgbY (f_l@y, R J{om@ym (@Y]R*)X]R,m))
~ R Homg, (QDY_»(, R Homy-1g_ (f'ox, R Homg_ (Dy_,%,N)) )
L
~ R Homg,, (Qby.,x, R Homg o (Dy_, 5 ®f-19+ f‘l@y, ‘ﬂ)) .
L
Then (5.5) follows from By _,x @519 [~ 0x =~ Op.
The isomorphism (5.7) is obtained by the same method as for (5.6).
Let us prove (5.8). There is a morphism
L L
fﬁlR }(Dm@Y(©Y, M) ->R j‘[omgbv(gbyﬂy Qf-194 f_l@y, Dy_x Q104 fﬁlm)
L
~R }[Dm@?(@?, Dy % Qf-194 f_lf)ﬁ) .

L

Applying the functor Dy _,x ®¢-19, -, we obtain the desired morphism. a
Theorem 5.6. — Functorially in F € D}__(Cx), there are a natural morphism in
Db(gby).‘

(5.9) FUF & 0x) — f'F® Oy,

and a natural morphism in D®(Dx):
(5.10) 1 Thom(f~1F,Oy[dy]) — Thom(F,Ox[dx]).
Proof. In order to get (5.9), we apply (5.8) with 9t = F&® €<% and apply Theorem

3.3. In order to get (5.10), we apply (5.7) with M = Thom(f~'F,Dbx) and use
Proposition 4.3. O

Theorem 5.7. — Let G € D%__(Cy) and assume that f is proper on supp G. Then
there are natural isomorphisms in D*(Dx ), functorial with respect to G:

(5.11) R f.R Homg, (Dy_x,G® Oy) <~ RfiG® Ox,
(5.12) £, Thom(G, Oy [dy]) — Thom(R fiG,0x[dx]) .
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Proof. In order to get (5.11), apply (5.5) with 91 = Gév) €$° and use the isomorphism
(3.6). Similarly, to obtain (5.12), apply (5.7) with M = Thom(G, Dby ) and use the
isomorphism (4.4). O

Theorem 5.8. —
(i) If f is smooth, there are natural isomorphisms in D(f 1% x):

(5.13) FUF ® Ox)"5R Homa, Dy _x, fF® Oy),
(5.14) R Homg,, (Dy s x, Thom(f~F,0y)) "= f ! Thom(F,0x) .

(i) If f is a closed embedding, there are natural isomorphisms in D®(@y):

(5.15) FUF® 0x) 5 1F® Oy,

(5.16) Thom(f~'F,0y ) f~! Thom(F,Ox).

Proof. (i) Assume tha&f is smooth. To obtain the isomorphism (5.13), we apply
(5.5) with M = f~!F® 65 and then Theorem 3.3 (iv). Similarly to obtain the
isomorphism (5.14), we apply (5.5) with 91 = Thom(f~F, Dby) and then Theorem
4.5 (i).

(ii) Assume that f is a closed embedding. First, let us prove

L w

(5.17) Dy x Qg « (FX\y® €x) =0,

L
(5.18) Dy s x Qg Thom(Fx\y,Dbx) =0.
As in the proof of Theorem 4.5, we can reduce to the case where Y is a hypersurface
defined by a holomorphic equation {g = 0} with dg # 0. Using Proposition 1.3, we
may assume that F' = Cy, U being open subanalytic in X. Let Z = X \ U. Then
we have to check that g acting on $§ 5y as well as g acting on Thom(Cyn\y, Dbx )
are isomorphisms, which is clear. Applying R Homg (O%,- ) to (5.17) and (5.18),
we get

fH(Fxyy ® Ox) =0,
i_l ‘Tﬁum(Fx\y, @X) =0.
Using the distinguished triangle Fx\y — F — Fy —t1—>, we may assume F = f,G
for some G € D% __(Cy). ThenLthe isomorphisms (5.15) and (5.16) follow from
Theorem 5.7 by applying 9y, x®g , - to (5.11) and (5.12), noticing that:
L
Dy »x Qax Dxy = Dy[dx — dy],

L ~
Dy 5 x g, R Homgy, (Dy - x,9N) ~N.
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Proposition 5.9. — Functorially in F € D4__(Cx), there are a natural morphism
m Db(gbx).‘
(5.19) [,(fIF ® Oy[dy]) » F @ Ox[dx]

and a natural morphism in D®(Dy):

(5.20) £~ Thom(F,0x) — Thom(f~1F,Oy).

Proof. By decomposing f as the product of the graph embedding Y — X x Y and
the projection X x Y — X, it is enough to define those morphisms for a closed
embedding and a smooth morphism.

(i) Closed embedding case. We have by (5.5)

£,(F7F ® Oyldy]) < (/71 (F & Ox)ldy))
~Dxey Qay (Dyx é@x (F® Ox)dy))
~Dxy Qg R Homg, Dxcy,(F® Ox)[dx])
— (F® Ox)ldx]-
We get (5.19). The morphism (5.20) is nothing but (5.16).
(ii) Smooth case. We have by (5.14)

i_l Thom(F,0x) = Dy, x Qf-1gy f_1 Thom(F,0x)
Vil Dy 5x Qf-19x R }[Dmgby (@Y_)X,(Tﬁom(f_lF, @y))
s Thom(f~F, Oy ).
Similarly by (5.13)

£(FIF S Oyldy]) = Rfy @xcy Bay (fF & Oyldy])
~ R fiR Homa, @y x, f 'F & Oyldy))|dy — dx]
S RAFYF® Ox)[2dy — dx]
~RAf(F® Ox)[dx]
—F® Oxldx].

O
As a consequence of the stability by external product (Proposition 5.3) and by
inverse image (Theorem 5.8), we get natural morphisms for F and G in D} _,(Cx)
w L w w
(5.21) (F® 0x) Qe (G® 0x) > (F®G)® Ok,
L
(5.22) Thom(F,0x) Qg Thom(G,0x) — Thom(F @ G,0x).
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Let us give a few applications of the preceding results.

Let M be a real analytic manifold, X a complexification of M, ¢ : M — X the
embedding.

Theorem 5.10. — Let F € D%__(Cys). Then we have

(5.23) i F & Ox ~ i (F & €2),
(5.24) Thom (i, F, Qx [dx]) = i« Thom(F, DbY,) .

In particular:
Cu ® Ox ~ 632,

(Tﬁom(D'X(CM, @X) ~ rDbM

Notice that (5.24) is a result of Andronikof [An|, and the last formula is due to
Martineau [Mr].

Proof. Let us identify X and Xg for simplicity. Then
i.F ® Ox = R Homg_(Ox,i. F @ €3)
by the definition, and
i F & 6% ~ R Homa (Dy_, 5,52 F ® €53)
by Theorem 3.5. Hence we have

i.F ® Ox ~ R Homg_(Ox, R Homa (D y_, x5, F © 633))
L w
~ R Homg (D x_, x x5 ®a5 Ox, F ® 637)
~ R Homg, (Dx,F & 633)
~ i (F & 63).
The proof of (5.24) is similar, using Theorem 4.4. O

Next, we consider a closed complex analytic subset Z of X. Let $z denote the
defining ideal of Z in X. Recall (|Grz]) that one sets for an Ox-module &F:

T2(%F) = lim Homo, (0/ 9%, F).
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One denotes by RI'[z)(- ) the derived functor of I'iz)(- ). One calls @TZ the formal

completion of F along Z, and RI'(z(%) the algebraic cohomology of % supported
by Z.

It is a well-known fact that @XTZ is a flat O x-module and %TZ ~ F Qoy (@XTZ)
for a coherent Ox-module %.

Lemma 5.11. — For a closed submanifold Z of X, we have the isomorphism

(525) @XTZL)LHOm@Z(@Z*)X’GZ) .

Proof. We have the homomorphism Dz, x ®g (@XTZ) ~ 0z ®g, ((@XTZ) — 03.
Since it is D z-linear, we obtain the & x-linear homomorphism

(5.26) @XTZ %ﬂomgz(@Z_,x,@Z).

We shall show that it is an isomorphism. The question being local, we may assume
X ={(z,y);z € C",y € C™} and Z is given by z = 0. For a = (au, - , an) € ZY,,
let us denote by D¢ the differential operator (8/8x1)** ---(9/0x,)*. Then we
have

Dzox ~®oDzDY.

This implies
Homg, (D7 x,07) ~ [[ 07 ® (CD*)*,

and the homomorphism (5.26) is given by @XTZ S u— (Dgu!z)a € [[,0z®

(CD%)*. Tt is obvious that this is an isomorphism. O
Theorem 5.12. — Let Z be a closed complex analytic subset of X. There are natural
isomorphisms:

(5.27) Cz ® Ox ~ @XTZ,

(528) ‘Tﬁom(CZ,@X) ~ RF[Z] (@X) .

In particular, Cz % Ox is concentrated in degree 0.

w
Notice that Dufresnoy [Du| already proved that Cz® Ox is concentrated in degree
Z€ro.

Proof. (i) Let us prove (5.27). The morphism Ox ~ Cx ® Ox — Cz ® O induces
a morphism

(5.29) Ox — H(Cz ® Ox).
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Set ¥ = H(Cz ® Ox). Then applying the functor 'TZ to (5.29), we obtain

A

(5.30) Oxlz = F|z.

Hence in order to see O XTZ ~ & it is enough to show that this morphism and the
morphism

~

(5.31) F>F|z

are isomorphisms.

Now the question being local, we can find a closed embedding f : X — X’ from
X into a smooth manifold X’ and a closed smooth submanifold Z’ of X’ such that
Z = f~1(Z'). Theorem 5.7 and Lemma 5.11 imply

-~ w
©X' IZ’ ’:(CZ/ ® ©X’ .

Theorem 5.8 implies w
CZ@@X_:}_C (CZI®@XI).
L

On the other hand, i”l(@X/TZ/) Ox ®o,, (Ox: IZ') @XTZ. Hence we have
@XTZ >~ (CZ 6‘% @X .

Then to see that (5.30) and (5.31) are isomorphisms, it is enough to remark that

(ii) Let us prove (5.28). It is enough to show a similar result with Ox replaced by
Dbx. Since the germ of Dby is injective over the germ of Ox [Ma, Chapter VII,
Theorem 2.4], RI'(z(Dbx) ~ I'iz(Dbx). Hence it is enough to prove

‘Tﬁom((Cz,‘Dbx) ~ F[Z](‘/Dbx) ,

that is,
Fz(@bx) o~ F[Z]((DbX) .

This is equivalent to saying that a distribution with support in Z is locally
annihilated by $% for k& > 0. We can reduce this to the case where Z is a
hypersurface and it is well-known in this case. O
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6. Duality Theorem

Let X be a complex manifold of complex dimension dx. As usual, one denotes
by Dz_coh(gbx) (resp. D2, (@x)) the full triangulated subcategory of D®(@x)
consisting of objects having quasi-coherent (resp. coherent) cohomologies.

The following theorem generalizes Proposition 5.2.

Theorem 6.1. — Let M € D7, (Dx) and let F,G € Dy_ (Cx). Then we can de-
fine RT (X; R Homg, (M G, F® Ox)) and RT. (X; Thom(F,Qx)[dx] Qz, (M ® G))
as objects of D*(FN) and DY*(DFN), functorially with respect to M, F and G.

Moreover, these two objects are dual to each other.

Proof. We shall use the results of the appendix. Following the notations there,
D_ ,(P(@x)) is equivalent to D_,(@x). Here we take as ¥ in A.2 the set of
relatively compact open subsets. Also D™ (P(X)) is equivalent to Dg_.(Cx). Here
we take as ¥ in A.3 the set of relatively compact open subanalytic subsets. As in
the appendix, for a locally finite family U = {U;};er of relatively compact open
subsets, set Lp(M) = @;e1(Dx)v,. For a locally finite family U = {V;};cs of
relatively compact open subanalytic subsets, set Lo(U) = @®;jesCy,. Then for
F € R-Cons(X), we have

r (i oms (Lot @ Lo(m), F & €2) ) = [T (10 Vi & )

i3

and

6.1) T, (X;Tﬁom(F, DbExIx R @0 (Lp(Hh) ® Lo(D)) )

~ @Pr. (Ui N Vj; Thom(F, (Dbﬁ?"’d"““)) .

(2]

They are an F'N-space and a. DF N-space respectively and are dual to each other.
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For a complex {* € C~(P(@x)), a complex L* € C~(P(X)) and a bounded
complex F'* of R-constructible sheaves,

A(L[‘,‘U',FO) = F(X, ﬂomgx (LD(LL.) ® LC(Q].)’ e % (6()2’)> )
and
B(ﬂ',m',F’) — FC<X; q—'ﬁom(Fo,(Dbgt{ix,dx+4)) R (LD(L[.) ® Lo(%')))

are a complex of F N-spaces and a complex of DF N-spaces respectively, and they
are dual to each other. Hence they give an object of DT (FN) and an object of
D~ (DFN) dual to each other. Forgetting the topology, they become

RI‘(X; R Homa,, (Lp(U*) ® Lo(T*), F* & @X))
and

RFC(X;THnm(F°,Qx)[dx] @L?be (Lp(U*) ® Lc(‘l]'))) .

Hence the functors A and B send quasi-isomorphisms to quasi-isomorphisms, and
they induce the functors

D_,,.(P(Dx))°PP x D~ (P(X))°P? x D’(R-Cons(X)) — D*(FN)
and
D_,(P(@x)) x D™ (P(X)) x D’ (R-Cons(X))°PP — D~ (DFN).
To obtain the theorem, it is enough to recall that
D_,,(P(2x)) ~ D,,,(9x) and D™ (P(X)) ~ Dg_.(Cx). a
Let us derive an easy corollary. Let 9t be a regular holonomic @ x-module, and
let F be an object of D%__(Cx). It is proved in [Kag] that the natural morphism:
(6.1) Thom(F, Qx) Qlé@xﬁﬁ—)R]{om(F,Qx) Q%gbxﬁﬁ
is an isomorphism.

Corollary 6.2. — Let I be a regular holonomic D x -module, and let F' be an object
of D} _.(Cx). Then, the natural morphism:

(6.2) R Homg,, (M, F ® Ox) — R Homg, (M, F & Ox)

s an isomorphism.
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Proof. We shall deduce (6.2) from (6.1) by duality. Let U be an open relatively
compact subanalytic subset of X. Set

Ay = RT(U; R Homg ., (M, F ® Ox))

Ay = RT (U; R Homg (M, F ® Ox))

B, = RT, (U; Thom(F, Qx[dx]) B M)
By = RT. (U; R Hom(F, Qx |dx]) ®a, M)

Then we have morphisms A; — Az and By — Bj in D?(Vect). By (6.1), B, — By is
an isomorphism. In order to prove the assertion, it is enough to show that A; — A,
is an isomorphism. There are pairings A; ® By — C and A2 ® B, — C, which are
compatible, namely, the following diagram commutes:

A1 ® By, —— A2 ® By

! !

Ai®B; —— C.

By [Kai], the cohomology groups of A; and B; are finite-dimensional and they are
dual to each other in D?(Vect). Since By — By is an isomorphism in D?(Vect), the
cohomology groups of B are finite-dimensional. By Theorem 6.1, As is the dual
of By in D*(FN) and hence the cohomology groups of Az are finite-dimensional
and A, is isomorphic to the dual of B; in D?(Vect). Therefore A; — Az is an
isomorphism. a
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7. Adjunction Formulas

The purpose of this section is to give adjunction formulas for the functors - ® 0 X
and Thom(-,0x), using ¥-modules theory. Some of the proofs will be given in §9.
We say that a quasi-coherent @ x-modules 90 is good (resp. quasi-good) if, on
every relatively compact open subset of X, it admits a filtration {91} by coherent
P x-submodules such that each quotient 9 /M_1 admits a good filtration and
My, = 0 for |[k| > 0 (resp. k < 0). One defines the full triangulated subcategory
good(ébx) (resp. Dq good(Px)) of D% @x) consisting of objects with good
(resp. quasi-good) cohomologies. One defines similarly D3 , (9%F), D (DEP),
D},q(DXF) and Db __ 4 (DFF) for right B-modules.
Let 90 be an object of D?_, (@ x). We define its dual by the formula:

q coh

(7.1) D9 = R Homg , (MM, Dx[dx)).

This is an object of D%, (DEP).
Let f:Y — X be a morphism of complex manifolds. We set:

dy/X = dy - dX =dimY — dim X.
Let us recall the following well-known results.
Theorem 7.1. —

(i) Let M € D*(Dx) and N € D*(DFP). Then there is a natural isomorphism in
Db((CX).'

(7.2) Rf,(m@@,y ~lon) ~ f‘ﬁ@gx

(ii) Assume 9 € DLy, (Dx) (resp. DYyoq(Dx)) and f is non characteristic for M.
(a) We have f~'90 € Db, (Dy) (resp. D! ,a(Dv)) and

FIDxM ~ Dy fIM.
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(b) Moreover, for £ € D*(Dx), we have the isomorphism:

R fiR Homg, (f 7'M, £ [dy,x]) ~ R Homg . (M, f,£

~

(iii) Let 91 € Dgood(gby) and assume that f is proper of supp(N). Then f N €
D} .q(Px) and:
f DyN=Dyf N.

(iv) For M e Dg_good(@y) and £ € D*(@y), there is a natural isomorphism.:

R f.R Homg, (N, ' £[dy,x]) >R Homg, (f N, L).

Proof. (i) is obvious, (ii.a) is proved in [S-K-K] and (ii.b) follows immediately, (iii) is

proved in [Kag], [Sc] (see also [S-Sc]). The morphism Li_l@x [dy,x] — Ox defines

the morphism Li_lf,[dy/x] — £ which defines the morphism in (iv). To prove

that it is an isofnorphism, we first reduce this to the case where 91 is quasi-good,

then to the case where it is good. Then it remains to apply (iii). a
We can now state our adjunction formulas.

Theorem 7.2. — Let M € D*(Dx) and let G € D4__(Cy). Assume that f is
proper on supp(G). Then there are natural isomorphisms:

(7.3) R fiR Homa, (f 0, G ® Oy) <= R Homg, (M, R iG ® Ox),
X

(74) R (Thom(G, Qy[dy]) ®ay f2900) = Thom(R £iG, Qx[dx]) Sy M.

Notice that if M € Db, (@ x) and f is non characteristic for 9, (7.4) is equivalent
to the isomorphism:

(7.5)
R fiR JHomg,, (f~*0, Thom(G,Oy)) [2dy,x] = R Homg, (M, Thom(R G, 0x)) .

Proof. By Theorem 5.7, we have the isomorphism:
R Homa, (M, R fiG® Ox) > R Homa, (M, R foR Homa, (Dy—x,G ® Oy)).

Then (7.3) follows by adjunction.
The isomorphism (7.4) follows from Theorem 5.7 and the formula (7.2). d

Theorem 7.3. — Let 9t € Db (Dy) and assume that f is proper on supp(MN).

q—good
Let F € D} (Cx). Then there are natural isomorphisms:

(7.6)  Rf.R Homg, (N, f'F & Oy)[dy] < R Homa, (f M, F ® Ox) [dx],
(7.7) R fy (Thom(f = F, Qy) @ay, M) = Thom(F, ) G ;M.

The proof will be given in chapter 9.
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8. Ox-Modules of Type F'N or DFN

We shall recall here some constructions and results of Ramis-Ruget [R-R] and Houzel
[Ho].

A sheaf & on a real manifold X is said of type FN (resp. DFN) if for each open
(resp. compact) subset U (resp. K) of X, the space I'(U; %) (resp. I'(K;%)) is
endowed with a topology of type FN (resp. DFN), and the restriction mappings
are continuous. For example, if X is real analytic and F' € R-Cons(X), then F® R
is a sheaf of type FN. However, one shall take care that Thom(F,Dbx) is not of
type DF N in general.

Let X be a complex manifold. Following [Ho|, we consider Ox as a sheaf of
complete bornological algebras and deal with Born(Ox), the category of complete
bornological Ox-modules. Houzel (loc. cit.) has defined a tensor product bifunctor
- ® g, - on this category. This category contains the category of Ox-modules of type
FN and that of type DF N as its full subcategories.

On the other-hand, [R-R] defined the notion of an FN-free (resp. DF N-free)
Ox-module as an Ox-module of type FN (resp. DFN) isomorphic to EQOx for
some F'N (resp. DFN) vector space E. This is an object of Born(Ox).

Let E ® Ox be an FN-free (resp. DF N-free) Ox-module and let 9 be an
Ox-module of type F'N (resp. DFN). Then one has the isomorphism:

(8.1) (E®0x) Ro, 4~ E ® 4.

Notice that E ® %, as defined by [Ho| is the same as that defined by [R-R]. For
example, in the FN-case, E ® 9§ is the sheaf U — E ® I'(U;%9).

In particular, for a continuous O x-linear homomorphism E; ® Ox — FE> @ Ox
of FN-free (resp. DF N-free) Ox-modules and an Ox-module 4 of type F'N (resp.
DFN), we can define a continuous Ox-linear homomorphism E; RG> E G

Let € = EQOx be an FN-free or DF N-free Ox-module, and let % be a coherent
Ox-module. Then we have the natural isomorphism: € ®¢, % ~ E®%. This implies
that the functor € ®g, - is exact on the category of coherent 0 x-modules. Hence €
is Ox-flat. In other words, FFN-free and DF N-free Ox-modules are flat over Ox.
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Let U (resp. K) be an open (resp. compact) subset of X, and let E®Ox be an
FN-free (resp. a DF N-free) Ox-module. Then RI'(U; E®Ox) ~ EQRI(U;0x)
(resp. RT'(K; EQOx) ~ EQRI(K;0x)).

Examples of F'N or DF N-free Ox-modules may be obtained as follows. Let Z
be a Stein complex manifold, K a Stein compact subset of Z, fz (resp. fx) the
projection Z x X — X (resp. K x X — X). Then Rfz.(0zxx) ~T(Z;07)®0x is
F N-free, and RfK*(@ZXX‘KxX) ~T(K;0z)®0x is DF N-free.

The following theorem is an essential tool in the proof of Theorem 7.3. Although
it has already been used in [S-Sc], its proof, due to J-P. Schneiders, was not written
down in this paper and for the reader convenience we include it here. This proof is
an adaption of the techniques developed by Ramis-Ruget [R-R].

Theorem 8.1. — Let R* be a complex of FN-free (resp. DFN-free) Ox-modules
and let G be an Ox-module of type FN (resp. DFN ). Assume that R® has bounded
O x -coherent cohomology groups. Then the natural homomorphism

R Ry G — R® Roy 9

s a quasi-isomorphism.

We shall only treat the case of sheaves of type F'N, the other case being similar.
Let & be an Ox-module of type F'N. Define the Ox-module:

Sn(F) =0x ® 0x(X) ® --- ® Ox(X) ® F(X)

where F(X) = I'(X; %), Ox(X) = I'(X;0x) and Ox(X) appears n-times. The
Ox-module structure of S,,(%) is defined by the first factor. Define for n > 1:

0 : Su(F) = Sp_1(F)

by:
f08 @ fat1 = D (1) fo® - ® fifit1® - ® faia
j=0
and define:
£ So(@) - %
by:

h® f— hf.

One checks that d,,—1 0§, = 0. Hence we get a complex So(%F) € C~(0x).
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Lemma 8.2. — Assume & is FN-free. Then € induces an isomorphism:

€:Se(F) = F in K~ (0x).

Proof. First assume & = Ox. We construct the homotopy operators:

Byt Sn(0x) — Spt1(0x)

by:
fo® @ fari ()" fo® @ fap ®1
and
n:0x — So(Ox)
by:

f=f®l
One checks that:
(i) form >0, dpy10hpy + hp10d, =id,
(ii) forn=0,d10ho+noe=id,

(iii) eon=id.

47

This proves the lemma in case & = Ox. The case ¥ = E ® Ox follows by applying

the exact functor E® - to the preceding complexes.

O

Lemma 8.3. — Let ¥* be a complex of FN-free Ox-modules, and let § be an

Ox-module of type FN. Assume F°is exact. Then F° @@X 4 is exact.

Proof. Since the problem is local, we may assume X is Stein. For a double complex
H**, we denote by s(H**) the associated simple complex : s(H*®*)" = @p=ptqHP%.

Remark the following well-known property:

(8.2) if HP* is exact for every p, then s(H*®®) is exact.
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By Lemma 8.2 we have S¢(%*) ~ %* in K(Ox) for any k. Hence tensoring by %,
we have So(FF) ® oy G~ F* ®¢, G in K(Ox). Hence, by applying (8.2) to the
double complex Se(F*) R0, 4 — F* Doy 4,

(8.3) 5(Se(F*) ® oy 9) — F* Do, Y is a quasi-isomorphism.

We set F*(X) = ['(X;%*). Since the %’’s are FN-free and X is Stein, one has
HF(X;%7) = 0 for k # 0. This shows that RT'(X;%F*) ~ F*(X), that is, F*(X) is
exact. This implies:

~

Ox Royx Ox(X) ® -+ ® Ox(X) ® F*(X) Roy G is exact.

Hence by applying again (8.2)

~

(8.4) s(S(F*) ®ox 9) is exact.
Then the lemma follows from (8.3) and (8.4). O
Lemma 84. — Let v : ¥} — F3 be a morphism of complezes of FN-free

O x -modules, and assume that u is a quasi-isomorphism. Let G be an Ox-module of
type FN. Thenu ® 4:F} o, 4 — FS Qoy 9 is a quasi-isomorphism.

Proof. Let M(u) denote the mapping cone of u. This is a bounded from above
complex of FN-free Ox-modules quasi-isomorphic to 0. Then M(u) ® 4 is
quasi-isomorphic to 0 by Lemma 8.3, and it remains to notice that M(u) ® ¢, 9 is
the mapping cone of u ® 4. a
Proof of Theorem 8.1. Since R® has bounded and coherent cohomology, locally
on X, there exist a bounded complex £* of free Ox-modules of finite type and a
quasi-isomorphism

u: L~ R

qis

Since any F'N-free Ox-module is flat, we have:

L* R0y ‘Qﬁs%’ ®ox 9
On the other hand we have by Lemma 8.4:

P Doy G= QR Doy .

Since £°* Q¢ G~ L° ® 6, 9, the proof is complete. O
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9. Proof of Theorem 7.3

We begin by the proof of (7.6) and we shall deduce later (7.7) by duality. Notice
that since Thom(F,Dbx) is not a sheaf of type DF N in general, it would not have
been possible to copy the argument of the proof of (7.6) (in particular, when using
Theorem 8.1 as we shall do), to obtain (7.7).

In view of Theorem 7.1 (iv), we have to prove that the morphism defined by (5.9)
(9.1) R fiR Homg, (N, f~H(F ® Ox)) — R fiR Homg, (N, f~'F & Oy)

is an isomorphism. By Theorem 5.8, this morphism is an isomorphism if f is a
closed embedding. Hence, using the graph decomposition of f, we may assume from
the beginning that Y = Z x X and f is the second projection. Moreover we may
assume F € R-Cons(X) and 9N admits a good filtration. Then we can reduce to the
case where M = Dy g, F for a coherent Oy-module & with proper support over
X. Now the left hand side of (9.1) is isomorphic to

RfiR Home, (F,0y & 10, [ (F & Ox)) ~ R fiR Homg, (F,0y) G0, (FS Ox).
Hence it is enough to show that
9.2)  RfiR Home, (F,0y) G0, (F & Ox) = RfiR Homo, (F, fF & Oy)
is an isomorphism. Let us introduce the sheaf:
fTIF® 065 x = R Homg, (07, f'F ® €5).
Instead of proving (9.2), it is enough to prove that
(93) R f.R Homo, (F,0y) Gox (FS €) — R f.R JHomoy (F, [T'F & 065 )

is an isomorphism. The morphism (9.2) is obtained by applying R Homg ,(Ox,-)
to (9.3).

For zo € X, we shall prove that (9.3) is an isomorphism on a neighborhood of xg.
Let us take an open neighborhood W of 2y and a subanalytic Stein compact subset K
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such that W C K. Let p: Zx K — Z be the projection. Then sd = p.(Oy|, ,)isa
coherent ring on Z. The category of coherent ©y| 75 c-modules is equivalent to the

category of coherent s{-modules by the functor ¢ — p.(%9). Hence ¥ p*(dfl ZxK)
is a coherent #-module. Now let us apply the results in §A.2 in the appendix. Let
us take as & in §A.2 the set of relatively compact Stein open subsets in Z. Then
& satisfies the conditions (A.7) and (A.8). Hence there exists U* € C~(P(«A))
and a quasi-isomorphism Ly (4*) — %. Writing Y% = {Uk,i}icr(k), we set
Ik = {Uk,i x W}icr(k)- Then there is a quasi-isomorphism

Loy (Q.HZXW - GJ'ZxW :

For any relatively compact Stein open subset V' of Z we have
(9.4) Rf*R ]’[Om@Y ((@y)\/xx,@y) ~ F(V; @Z) @ @X
and

(9-5)
R f.R .}[Omoy((@y)Vxx,f F® O(GY/X) (V @Z) ® (F® (600)

~ (T(V;0z) & Ox) Boy (F® 63).

We set R* = f, Home, (Lo, (U°),0y)|,,- By (9.4), each R* is an FN-free
Ow-module. In the derived category, R°® is isomorphic to R f« R Homg,, (F, @y)|W.
Hence R* has bounded coherent cohomology groups. The object

L w
R f«R Homg, (F,0y) ®cx (F @ €%)
is represented by R*® ®¢, (Fé 96%), and by (9.5),
R f.R Homoy (%, 7'F & 063 x )

is represented by R* g, (Fé €®%¥) on W. Hence to prove that (9.3) is an
isomorphism, it is sufficient to apply Theorem 8.1.

Finally, let us prove (7.7). Set:
H, = Rf*Rﬂom@y(m,f_ng@ Oy)[dy]
Hy = Rﬂom@x(i*m,F‘%’ Ox)[dx]

¥y = Rf; (Thom(f~F,2y) Sa, 7).
3{2 = {THDTTI(F, QX) é@x i|m

MEMOIRE 64



MODERATE AND FORMAL COHOMOLOGY... 51

The morphism
(9.6) Hi — Ao
is equivalent to the morphism:

R fiR Homg, (Dy‘ﬁ s Tﬁom(f_lF, Qy [dy]))
— R Homg, ( 7Dy, Thom(F, Qx [dX])) ,

which follows from Proposition 5.6. Hence, to prove that (9.6) is an isomorphism,
it is enough to prove that for each open subset U of X, the morphism:

9.7 RT:(U;%1) = RL(U;3H2)
is an isomorphism. Consider the morphism deduced from (7.6):

(9.8) RT(U;%,) — RT(U;%,).

By its construction, this last morphism is well-defined in the category D(FN), and
is dual to (9.7) by Theorem 6.1. By (7.6) and the closed graph theorem, (9.8) is an
isomorphism in D®(FN). Hence (9.7) is an isomorphism and the proof is complete.
O
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10. Integral Transformations

10.1 Tempered C* Functions

In this section, in order to study a multiplicative structure of - %) Ox and
Thom(-,0x), we shall construct an auxiliary functor Thom(F,€¥). It is not exact
in F but left exact. We show that, for a complex manifold X, Thom(F,0x) can be
also calculated by the Dolbeault complex of Thom(F,6%).

Let X be a real analytic manifold. Let U be an open subanalytic set. A
function f € 6°°(U) is called with polynomial growth at p € X if it satisfies the
following condition. For a local coordinate system (zi,...,z,) around p, there
exist a sufficiently small compact neighborhood K of p and a positive integer N
such that
(10.1) sup (dist(z, K \ U))" |f(z)] < o0.

zeKNU
Here, dist(z, K \ U) is the distance from x to K \ U. It is obvious that f has
polynomial growth at any point of U. We say that f is tempered at p if all its
derivatives are with polynomial growth at p. We say that f is tempered on an open
set € if it is tempered at any point of .
Remark that in this case f can be extended to a distribution defined on 2.

Proposition 10.1. — Let X = R™ and A = ., 8%/0z?. Let u be a distribution
on X. Assume that Au is C® on an open subanalytic subset U and that Au|y is
tempered at p € X. Then u|y is also tempered at p.

Proof. By the ellipticity of A, u is C* on U. Let us take a distribution K(z) and
a C* function R(z) such that

d(z) = AK(z) + R(z)

and the support of K(z) and the support of R(z) are contained in {z € X;|z| < 1}.
Then K (z) is integrable. For ¢ > 0, set

K.(z) = > "K(c'z) and R.(z) = ¢ "R(c"'z).
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Then we have again
0(z) = AK.(z) + R.(z) .
Hence we have
u(e) = [ Kelo - )@@y + [ Rele —pul)dy.
Now we take z € U and set ¢ = dist(z, X \ U)/2. Then we have
' [ Eeta- y)(Au)(y)dy\ < (, sup. |(Au><y)|) [ 1Kt = ldy < const. e
z—y|<c

for some N;. On the other hand, we have

/Rc(:v - y)u(y)dy} < const. Z sup | Dy R.(z — y)| < const. N
la] <N ¥EX

for some N. Thus u|y has polynomial growth at p.
Since AD2u(z) = D*Au(z), any derivative of u|y has polynomial growth at p
and hence u|y is tempered at p. O

10.2 The Functor Thom(-, €%)

Let X be a real analytic manifold. For a subanalytic open subset U, we
shall define the @ x-module Thom(Cy,6%) as follows. For an open subset €2,
['(Q; Thom(Cy, €%)) is the set of C* functions on Q@ N U which are tempered on
Q. Then U — Thom(Cy,6%) is a contravariant functor from ¥x to the category of
9 x-modules.

Proposition 10.2. — For any subanalytic open subsets U and V,
0 — Thom(Cyuy, 6%) — Thom(Cy,€%) & Thom(Cy,€%) — Thom(Cynv,€%) — 0

18 exact.

Proof. It is enough to show the exactness of the following sequence, assuming that
X =R" and that U and V are relatively compact:

0 — ' (X; Thom(Cyyuv,€%)) — T (X; Thom(Cy,€%)) @ T (X; Thom(Cy,€%))
2 T (X; Thom(Cyny,€%)) — 0.

The property Ker(a) = I' (X; Thom(Cyyuy, €5%)) easily follows from the existence of
a positive integer N and C > 0 such that

dist (z, X \ (UU V)Y < C(dist(z, X \ U) + dist(z, X \ V)) for any z € UU V.
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Let us prove the surjectivity of . Set Fy = {z € U;dist(z, X \ V) < dist(z, X \
U)/2} cU\V and Fy = {z € V;dist(z,X \ U) < dist(z,X \ V)/2} Cc V\U.
Then UNV C X\(FoﬂFl)

Now recall the following lemma on cut-off functions.

Lemma 10.3. — ([Ho, Cor. 1.4.11]) Let Fy and Fy be closed subanalytic subsets.
Then there exists 1 € €°° (X \ (Fo ) F1)) such that

(10.2) 9 =0 on a neighborhood of Fy \ Fy;
(10.3) ¢ =1 on a neighborhood of Fy \ Fy;
(10.4) v is tempered at any points of X \ (Fo ) F1).

Take ¢ € I'(X; Thom(Cx\(p,nFy), 65)) as in the lemma above.
For f € T (X; Thom(Cynv,€%)), define fo € €>°(U) by

@) @) ifzeUNnV,
fO(w)_{O ifxeU\V.

For z e UNV Nsupp(y) C (UNV)\ Fo, we have
dist(z, X \ U) < 2min (dist(z, X \ U),dist(z, X \ V)) < dist (z, X \ (UNV)).

Therefore fo belongs to I' (X; Thom(Cy, €%)). Similarly define fi € €°(V) by

_ A =9(@)f(z), ifzeUnV,
he= {0’ if eV\U.

Then f; belongs to I' (X;Thom(Cy,6%)) and f = o(fo @ f1). O

By the proposition above and Proposition 1.4, we can extend the functor
Thom(Cy,6%) to

(10.5) Thom(-,6%) : D%_.(Cx) ~ D*(R-Cons(X)) — D@ x).

Namely, the functor ¥(U) = Thom(Cy,€%) can be extended to a contravariant
functor ¥: R-Cons(X) — Mod(@x) and Thom(-,€%) is its right derived functor.
By Proposition 1.4, we have:

(10.6) HI(Thom(F,6%)) = 0 for any F € R-Cons(X) and j # 0,1,
(10.7) HI(Thom(Cy,62)) = 0 for any open subanalytic set U and j # 0.

We can see easily that there is a sequence of morphisms

Cp® 63 — Thom(Cy, €%) — Thom(Cy, Dbx).
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This induces functorial morphisms in D*(@x)

(10.8) Dy (F)® 652 — Thom(F,€%) — Thom(F, Dbx).

Proposition 10.4. — We have a functorial morphism in F,G € D%__(Cx)
L w w

(10.9) Thom(F, 6%) @s1x (F ® G)® €F) — G €.

Proof. We can easily reduce the proof to the case where F = Cy and G = Cy for
open subanalytic subsets U and V. Then we have

(10.10)  Thom(F, €)@, (F ® G)® €L) = Thom(Cy, 6Y) ®sty. (Cuny® €)
= Thom(Cyny, €Z) @y, (Cony® €F).

For f € Thom(Cyny,€%) and g € (CUQV(‘E”@ Y%, the product fg belongs to
Cunv® €S. Hence it defines

(10.11)
Tﬁom(CUnV,cﬁ?) R x ((CUOV@ (63(0) = Cynv® €5 - Cy® €% = GRQ 6%

Composing (10.10), (10.11) and
L w w
Thom(F, %) ®uy (FQ® G)® %) — Thom(F,6%) ®q4, (FQG)® €%),

we obtain the desired morphism. O

10.3 Complex Case

Now we assume that X is a complex manifold.
Theorem 10.5. — For any F € D%__(Cx), the morphism
R Homg , (0%, Thom(F,€%)) = R Homg , (0%, Thom(F, Dbx))

is an isomorphism in D*(Dx).

Proof. The morphism is constructed in (10.8). As the question is then local, we
may assume that X = C™ and F = Cy for a subanalytic open subset U. Let
A be the differential operator Y., 82/8z;0%;. There exists an exact sequence of
D x,-modules:

04— Dx, Qo Og ¢— (Dxz/Dxp D) — (D /D A)ON — -
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This sequence is constructed from a free resolution of
Cldy,...,0n,01,...,0,]/(01,...,0,) asamodule over C[dy, ... ,8y,81,... ,8,]/(A).
Hence it is enough to show that the vertical arrows in the following diagram give a
quasi-isomorphism from the complex of the top row to the one of the bottom row.

0 —— Thom(Cy,6F) —2— Thom(Cy,6F) — 0

! l l l

0 — Thom(Cy, Dbx) —=>— Thom(Cy, Dbx) — 0.

It is well-known that Thom(Cy,Dbx) A, Thom(Cy,Dbx) is an epimorphism.
Let us prove the surjectivity of A : Thom(Cy,€%) — Thom(Cy,€%). For
g € Thom(Cy,€%) let us take f € Dbx such that g = Af. Then by Proposition
10.1, f belongs to Thom(Cy,6€%).

Hence it is enough to show that if f € Thom(Cy, Dbx) satisfies Af = 0 then f
belongs to Thom(Cy,€5). This also follows from the same proposition. O

This proposition says that to define Thom(F,0x), we can use the Dolbeault
complex of Thom(F,€%) instead of Thom(F, Dbx).

Proposition 10.6. — There exist functorial morphisms in F,G € D}__(Cx):

L w w
Thom(F,0x) ®0, (F® G)® €L) — G® 6%,

L w w
Thom(F,0x) Qex (FR®G)® O0x) > G® Ox.

Proof. It is enough to apply the functor R Homg,(Ox, - ) to the morphism in
Proposition 10.4. d

In the following theorem, (10.14) and (10.15) are due to J. E. Bjork [Bj, Th.
7.9.11. We denote by D% (@x) the full subcategory of D®(@x) consisting of
objects with regular holonomic % x-modules as cohomologies. We set Sol(9t) =
R Homg, (9,0 ). Then Sol is a contravariant functor from D% (@ x) to D&__(Cx).

Theorem 10.7. — Let M € D’ (Px) and F € D4_.(Cx). We have canonical
isomorphisms in D*(D x)

(10.12) R Homo,, (M, F& €) ~ (Sol(MM) ® F) ® 6,
(10.13) R Home,, (M, F ® Ox) =~ (Sol(M) ® F) ® Ox,
and

(10.14) M Go, Thom(F, Dbyx) = Thom(Sol(9) ® F, Dbyx),
(10.15) M Bo,, Thom(F,Ox) ~ Thom(Sol(9M) ® F, O) .
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Proof. The isomorphisms (10.14) and (10.15) are proved in [Bj]. Let us prove
the others by duality. Set G = Sol(9M). Tlien M = Thom(G,0x) by [Kag]. By
Proposition 10.6, there exists a morphism M®¢, (G ® F)Q €¥) — F® 65. This
gives

(10.16) (G® F)® 6 — R Homg, (M, FS €.

Let us prove that this is an isomorphism.

For any open subset U, RT'(U; (G ® F)é’) €%) is the dual of RT(U;Thom(G ®
F,DbY)). If U is sufficiently small, there exists a bounded exact complex of
Ox-modules on U

0 +— M +— 0% +— 0% «— ...

where Iy, I1,... are countable sets. Hence RI'(U; R Homg, (M, F® €%)) is the
dual of RT.(U; M ®¢, Thom(F, DbY)). Since (10.14) implies that

L
RT (U;Thom(G ® F,DbY)) + RT.(U; M R¢,, Thom(F, Db ))
is an isomorphism, we conclude by duality that
RI(U; (G ® F)® €) — RT (U; R Home, (M, F® €3))

is an isomorphism. This shows that (10.16) is an isomorphism. Thus we obtained
(10.12). To obtain (10.13), it is enough to apply the functor R Homg (0%, ) to
(10.12). O

10.4 Integral Transformations

Let us consider the following situation. Let X, Y and S be complex manifolds,
and let dx, dy and dg be their dimension. Let us consider a diagram of morphisms

of complex manifolds.
S
N
X Y.

Let M € Dg_good(‘.ﬂ)x), G € D;_.(Cy) and £ € D% (9s). Set L = Sol(£). We
assume that

(10.17) f~1supp(M) Nsupp(£) is proper over Y,
' g~ ! supp(G) Nsupp(£) is proper over X.
We define
L
(10.18) MoL =g, (f'M&os £)
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and
(10.19) LoG=R fi(L®g'G).
Theorem 10.8. — We have isomorphisms:
(10.18) RF(X;R Homgy,, M, (L o G) & @x))[dg]
~ RT(Y; R Homa, (Mo £,G & O) ) dy],
(10.19) RT. (X;frﬁom (LoG,0x) B, im) [dx]

~ RT.(Y; Thom(G, Q) B, (Mo £))lds].

and there are similar formulas by exchanging I' and T'..

Proof. Theorem 7.3 implies
RI‘(Y; R Homgy,, (g! (f 7'M @0, £),G ® @Y) )[dy]
~ RI‘(S; R Homg,, (_f__lf)n ®os £,97 G ® Os) )[ds] .
We have
R Homg y (' MB0, £,g~ G Os) ~ R Homg, (£, R Home, (£,97'G & 0g)) .
Theorem 10.7 implies
R Homey(L,97'G ® 0s) ~ (L®g'G) ® Os.
Hence we obtain
RT(Y; R Homg, (Mo £,G® Oy) )ldy]
~ Rr(s; R Homgs (f7'9M,(L® g7 G) & Os) ) [ds].
We have by Theorem 7.2
RT(S; R Homa, (7'M, (L g7'C) & Os) )
~ RF(X; R Homg, (M, Rf(L®g'G)® Ox) ) .

Thus we obtain (10.18). The other isomorphism is similarly proved. O
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Remark 10.9. By replacing - ® Ox and Thom(-,0x) with - ®0x and R Hom(-,0x),
the similar formulas to those in Theorem 10.8 hold under conditions different from
(10.17). Instead of (10.17), assume that 90t € D? _,(@x) and

good

£~ supp(9M) N supp(L) is proper over Y,
(10.20) M is non characteristic with respect to f,
Char(f~'90) N Char(&) C TZS.

Then we have
(10.21) RT, (X;R Homg,, (M, (LoG)®0x) ) [ds]

~ RI‘C(Y;R Homg,, (Mo L, G®@y)>[dy] :
(10.22) RT(X:R Hom (Lo G, 0x) Bax M) [dx]

~ RT(Y; R #om(G, ) Bay (Mo 2))[ds].

In the case where £ = Og (10.21-22) was obtained in [D’A-S;]. Such formulas
have nice applications (see e.g. [D’A-S;], [D’A-Sz]).
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A. Almost Free Resolutions

A.1 General Theory

In this appendix, we shall show that a complex with coherent cohomology groups
has a resolution by “almost free” modules. In order to see this, we first discuss the
problem in a general setting.

Let us denote by Ab the category of abelian groups. Let P be an additive
category and A an abelian category. We are given an additive functor L : P — A,
an additive bifunctor H : P°PP x A — Ab, and a morphism of bifunctors
axm: H(X,M) - Homa (L(X),M)in X € P and M € A.

For X € P and M € A, we call an element ¢ € H(X, M) a morphism from X
to M and write 1 : X — M. Then we can consider the composition po f : Y — M
for a morphism f : ¥ — X in P and the composition uo? : X — N for a
morphism v : M — N. In fact o f = H(L(f), M)(¥) and uo ¢ = H(X,u)(¥).
We have (uo)o f =uo (¢po f). In another word, P LI A is a category. We have
a(uo) = uoa() and a(y o f) = a(y) o L(f).

For morphisms f : X > Y andg:Y — Z in P, we say that X Ly 47 is exact
if gof =0 and L(X) L) L(Y) L), L(Z) is exact. Similarly for a morphism
f:X——)YinPand<p:Y——>MwithMEA,wesaythatXLY&Misexactif
po f=0and L(X) LD, L(Y) 2®) 1 is exact. For a morphism f: X — Y in P,
we say that X is a cover of Y if L(X) RaCIN L(Y) is an epimorphism. Similarly for

XEP,MeAandcp:X%M,wesaythatXisacoverofMifL(X)MMis
an epimorphism.

We assume that these data satisfy the following four axioms.

(A.1) For any X € P, the functor H(X, M) is left exact in M € A.

(A.2) For any morphism g:Y — Z in P, there exists a morphism f: X - Y in P
such that X %5 Y % Z is exact.
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(A.3) For any epimorphism u: M — N in A, Y € P and ¢ € H(Y, N), there exist
acoverg: X -Y of Y and ¢ € H(X, M) such that pog=wuo¢.

(A.4) For any X,Y € P and ¢ € H(X, L(Y)) there exist a cover f: X’ — X of X
and a morphism g : X’ — Y such that L(g) = a(¢o f) in Homa (L(X"), L(Y)).

We say that an object M of A is P-coherent if M satisfies the following two
conditions.

(A.5) There exists a cover f: X — M of M.

(A.6) For any Y — M in H(Y, M), there exists a morphism X — Y in P such that
X =Y — M is exact.

We shall denote by € the full subcategory of A consisting of P-coherent objects.

Proposition A.1. — €6 is stable by kernels, cokernels and extensions.

Proof. Let 0 - K % M % N be an exact sequence in A and assume that M
and N are P-coherent. Let us show that K is P-coherent. Let us take a cover
¥ : X — M of M. Then there exists Y € P and an exact sequence Y % X — N.
By (A.1) there exists ¢ : Y — K such that uop = ¥ og. It is easy to see that
a(p) : L(Y) — K is an epimorphism. Therefore K satisfies (A.5).

Now X € P and ¢ : X — K are given. Then there exists f : Y — X such that
Y - X — M is exact. Then by (A.1), oo f =0 and L(Y) — L(X) — K is exact.
Hence K is in €.

To see that € is stable by taking the cokernel, it is enough to show that for an
exact sequence 0 - K — M 5 N — 0, if K and M are P-coherent, then N is
P-coherent. It is obvious that N satisfies the condition (A.5).

To see (A.6), let X € P and ¢ : X — N. Then by (A.3), there exists a cover
f:Y—>Xof X and ¢:Y — M such that Yo f =voyp. Let ustake{: Z2 - K
such that L(Z) — K is an epimorphism. Let us consider Z &Y — M given by &
and ¢. Then there exists h : W — Z @Y such that W - Z Y — M is exact.
Then W — X — N is exact. Hence N is P-coherent.

Finally let us show that 6 is stable by extensions. Let 0 - K 5 M % N — 0
be an exact sequence and assume that K and N are P-coherent. Let us show that
M satisfies (A.5). There exists a cover X — N of N. By (A.3), replacing X with
its cover, we may assume that X — N decomposes into X — M — N. Let us take
a cover Z — K of K. Then L(Z @& X) — M is an epimorphism. Hence M satisfies
(A.5).
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In order to see that M satisfies (A.6), let ¢ : X — M be an element of H(X, M).
Let us take Y — X such that Y — X 2% N is exact. Then by (A.1), Y — M

decomposes into Y — K — M. Let us take an exact sequence Z —+ Y — K. Then
Z = X — M is exact. O

The functor L : P — A induces a functor K~ (P) — K~ (A). Let us denote by
N(P) the full subcategory of K~ (P) consisting of complexes X such that L(X) is
exact. Then we can easily see that N(P) is a null system (see [K-S, Def. 1.6.6]). We
define D~ (P) the quotient of K~ (P) by N(P). The category D~ (P) is described
as follows. We say that a morphism f : X — Y in K~ (P) is a quasi-isomorphism
if H*(L(X)) — H™(L(Y)) is an isomorphism for every n. The set of objects of
D~ (P) is the same as the one of K~ (P) and

HomD—(p)(X, Y) = 1_1}}1> HOHIK-—(p)(XI,Y)
X=X
= l_lg HomK-(p) (XI,YI)
X'5X,Y Y’
= 11_11; HomK—(p>(X, Y’) .
YooY
Here X’ — X and Y — Y’ range over the sets of quasi-isomorphisms. Then L
induces a functor
L:D(P) - D (A).
Let us denote by D__, (A) the full subcategory of D~ (A) consisting of the objects
whose cohomology groups are P-coherent. By the preceding proposition, D__, (A)
is a triangulated category. Similarly, let us denote by D__, (P) the full subcategory
of D~ (P) consisting of objects X such that H™(L(X)) is P-coherent for every n.
Then it is also a triangulated category and we have a functor

L: Dc‘oh(P) - Dc_oh(A) .

We shall show that it is an equivalence of categories. The following proposition says
that it is essentially surjective.

Proposition A.2. — Let M*® be a complez in A. Assume that H™(M?*) is P-coherent
for every n and H*(M?®) = 0 for n > 0. Then there exists X* € C~(P) and
P X® — M® such that a() : L(X®) = M* is a quasi-isomorphism.

Proof. Let us denote by Z™ the kernel of dj} : M™ — M™*! and by B™ the image
of dj; '+ M™! — M™. Assume that we have constructed a commutative diagram

xXn —  y xntl o xnt2 ...

! ! !

RN Mn—l M™ Mn+1 N Mn+2 —_— s ..
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such that H*(X*) — H*(M®) is an isomorphism for £ > n and an epimorphism for
k = n. Let us take an exact sequence W — X™ — X"*!. Then W — X" — M™
decomposes into W — Z"™ — M™. By the assumption W — Z"™ — H"(X*)
is an epimorphism. Since H™(M?®) is P-coherent, there is an exact sequence
Y - W —» H*(M*). Then Y - W — Z™ decomposes into Y — B™ — Z".
By (A.3), replacing Y with its cover, we may assume that Y — B™ factors through
Y - M"~1 - B

Take a cover U — H"~1(M*®) of H"~}(M?*). By (A.3), replacing U with its cover,
we may assume that U — H" !(M*) decomposes into U — Z"~! — H"~1(M*).
Weset X"~ ! = U@Y. Wedefinedy ! : X"~! — X" by the zero morphism U — X"
and Y - W — X" on Y. Define y"~!: X" ! - M1 byU — Z" ! - M!
and Y — M™~ 1. Then ¢"ody ! = d}; ' o9y 1. Furthermore, H*(X*®) — H*(M*)
is an isomorphism for ¥ = n and an epimorphism for K = n — 1. Thus the induction
proceeds and we can construct a desired complex X*® and X®* — M*°. O

Proposition A.3. — Let Y*,Z* € C~(P). Let u: L(Y*) — L(Z°®) be a morphism
in C(A). Assume that the cohomology groups of L(Y*) are P-coherent. Then
there are X* € C~(P) and a quasi-isomorphism f : X* - Y*® and g : X* — Z*
such that L(g) = uwo L(f) € Homa (L(X*), L(Z*)).

Proposition Ad. — Let g : Y* — Z° be a morphism in C~(P). Assume that the
cohomology groups of L(Y*) are P-coherent. If L(g) : L(Y*) — L(Z*) is homotopic
to 0, then there exists a quasi-isomorphism f: X® — Y*® such that go f : X* — Z°
is homotopic to 0.

We shall give the proofs of these two propositions in §A.4.

Now we are ready to prove the following main result in this subsection.

Theorem A.5. — D_,(P) — D,

—on(A) is an equivalence of triangulated categories.

Proof. We saw already that this functor is essentially surjective. Hence it is enough
to show that for any X°*,Y* € C~(P),

HomD;Oh(P)(X', Y*) — Homp,- (4) (L(X*),L(Y*))
is bijective.
Injectivity. Let f : X°* — Y*® be a morphism in C~(P) such that L(f) vanishes as
an element of Homp, - () (L(X*®),L(Y*)). Then there exists a quasi-isomorphism

u: M* — L(X*) in C~(A) such that the composition M* % L(X*) L, L(Y*)
is homotopic to 0. By Proposition A.2, we may assume that M*® = L(Z*) for some
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Z* € C~(P). By Proposition A.3, there exist a quasi-isomorphism g : W* — Z°*
and a morphism h: W* — X* such that

L(h) =uoL(g): L(W*) — L(X®*).

Then L(f oh) = L(f)ouo L(g) is homotopic to 0. Hence by Proposition A.4, there
exists a quasi-isomorphism U® — W* such that U®* — W* — Y* is homotopic to 0.
Since the composition U®* — W* — Y®isequaltoU®* - W*®* - X®* - Y®and U®* —
W* — X* is a quasi-isomorphism, f is 0 as an element of Hoch_oh ®) (X*,Y*).

Surjectivity. Let us consider a morphism L(X*®) — L(Y*) in D_; (A). Then there
is a quasi-isomorphism u : M*®* — L(X*) and a morphism v : M* — L(Y*) in C~(A)
such that v ou™! is the given morphism L(X*) — L(Y*®) in D_, (A). There exist
Z* € C~(P) and a quasi-isomorphism w : L(Z®*) — M*®. Then by using Proposition
A .3, there is a quasi-isomorphism f : W*® — Z* together with morphisms g : W* —
X*® and h : W* — Y* such that L(g) = wowo L(f) : L(W*) — L(X*®) and
L(h) =vowo L(f) : L(W*) — L(X*). Then g is a quasi-isomorphism and the
morphism hog™': X* - Y* in D_, (P) is sent to vou™" in D_, (A). a

coh

A.2 Almost Free Resolutions of Coherent Modules

Let us apply the theory above to the situation of coherent modules. Let X be a
paracompact and locally compact space and o a sheaf of rings on X (with 1 but not
necessarily commutative) which is coherent as a left sd-module. Let us take a set ¥
of relatively compact open subsets of X. We assume the following two conditions

on &.
(A.7) For any z € X, {U € &,z € U} is a neighborhood system of x.
(A.8) For U,V € ¥, UNV is a finite union of open subsets belonging to .

Let us take Mod(s4) as A in the situation of the last subsection. We define P(A)
as follows. The set of objects of P(sd) is the set of locally finite families of open
subsets in . For two objects U = {U;}icr and B = {V;}cs of P(A), we define

Homp( (4.9) = [T (@, TTiet))

ser \UiCVi
= {(ai;)ier,jes; ai; € T(Ui; o) and a;; = 0 unless U; C V;} .

Note that for any ¢ € I, {j € J;U; C V;} is a finite set. For 20 = {Wi}rek, we
define the composition ¢ = (¢;x) € Homp(y)(U, W) of a = (a;,;) € Homp (L, V)
and b= (bj’k) € Homp(ﬁ)(‘ll, QH) by

Cik = Za,—,j(bj,kh) S F(U—i; &Q) .

J
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The sum ranges over the j € J with U; C V; C Wy. It is easy to see that P(s) is
an additive category.

We define the functor Ly : P() - Mod(«) by
Lm(ﬂ) = & &QUi
i€l
for 4 = {U;}icr. We can easily see that it is well defined.
We define the bifunctor H : P(#4)°PP x Mod(#4) — Ab by

H, M) =TT M).
el
We can easily see that it is a well-defined functor. We define
oy M - H(ﬂ, M) — HOm&q(Lsg(u), M)
by the restriction map ];[II‘(E, M) — E]—[IF(U,-;M) =~ Homgy (Lg (), M).

Proposition A.6. — The azioms (A.1)-(A.4) hold.

Proof. The axiom (A.1) is obvious.
In order to prove the other axioms, we shall prepare the following lemma.

Lemma A.7. — Let K be a compact subset of X and W a neighborhood of K. Then
for any U € &, there exists a finite family {V;} of open subsets belonging to ¥ such
that

UNnKcu;V;ciunw.

Proof. By (A.7) , there exists a finite family {V;} of open sets in & such that
KcyV,cw.

Since U NV; is a union of finite subsets belonging to ¥ by (A.8), we obtain the
desired result. a
Proof of (A.2). Let us take 4 = {U;}ier and ¥ = {V;};e; and a morphism
f = (ai;): 4 = V. Forany z € X, set I(z) = {i € I;z € U;}. Then there
exists a neighborhood W (z) of z such that W(z) NTU; =0 for any i € I \ I(z). By
shrinking W (z), we may assume that a; ; extends to @;; € I'(U; UW(z); #). Then
for any subset G of I(z), a;; defines a morphism .94®G|W(m) — &Q@JIW(E). Since o
is coherent, its kernel is finitely generated on a neighborhood of z. Hence shrinking
W (z) if necessary, we may assume that there are a finite index set N(G, ) and an
exact sequence

ASNEA o =% A%y = A ey
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There exists a locally finite covering {Wy }rex of X such that Wy € & and there
exists z with Wi, C W(z). Write Wi ((N;eq Us) = Unecw,c) W(k,G,m) for a
finite index set C(k,G) and W(k,G,m) € ¥. We set

K' ={(k,G,m,n);k € K,G C I(zx), m € C(G,k), n € N(G,zx)}

and W(k,G,m,n) = W(k,G,m). Then W = {W(k,G,m,n)}k G mn)ck’ is an
object of P(s). The morphism

. ®d{n ®N(G,z &G (23
hg.&d{}|w(zk)—>sd ( ’“)|W(zk>—>&“ {ka)—mﬂ{

i}|
( W (zk)
gives c(x,g,n),i € T(W(k,G,m,n); ). This defines a morphism from 20 — 4. By
the construction, it satisfies the desired conditions: 20 — 4 — U vanishes and
Ly (W) — Ly(U) — Ly(V) is exact.
Proof of (A3). Let u : M — N be an epimorphism in Mod(«4), U = {U;}ier
an object of P(d) and ¢ : 4 — N an element of H(U,N). Set ¢ = (8i)ier
with s; € T'(U;; N). For any z, we define I(z) C I as above and take an open
neighborhood W (z) of z such that W(z) N U; = 0 for i ¢ I(x). Shrinking W (x)
again, there exists t(; ;) € I'(W(x); M) such that u(t(i)x))lW(z)ﬂm = Si’W(m)ﬂm'
Then take a locally finite covering {Wg }rex of X such that Wi C W (z) for some
i and Wi, € L. Write W NU; = UnGC(k,i) W (k,i,n) with a finite index set C(k, 1)
and W(k,i,n) € ¥. Then set K' = {(k,i,n);k € K, i € I(zx), n € C(k,i)}
and 0 = {W(k,i,n)}(k,in)ek’- Then %(; ) gives a morphism 20 — M and
A(k,in),e = i € [(W(k,i,n); ) defines a morphism 20 — . We can easily
see that

W — U

Lo

M —— N

is commutative and Ly (20) — Ly () is an epimorphism.

Proof of (A.4). Let us take objects Y = {U;}icr and B = {V;}jes of P(«) and
@ : 4 — Ly (V). We have H(Y, Ly (D)) = [, T([T;; @;4v;) ~ IL L'(U;; sv,). Let
ai,j € I'(U;; dv;) be the element corresponding to ¢. Then supp(a; ;) is a compact
subset of V;. Hence by Lemma A.7, there exists a finite family {W; j n}nek,j) such
that Wi,j,n € & and

U; ﬂ supp(ai,j) C U Wi,jﬂl cU; ﬂ V] .
neK(3,5)
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By the same lemma, there is also a finite covering {W};
Wi, €Y and

2,7,

m ymek’(i,j) such that

U; \ U Wi,j,n C U I/Vil,jym cU; \ supp(ai,j) .

n€K (i,j) meK' (i,j)

Set K = {(4,7,n);U; N V; # 0, n € K(i,5)} and K' = {(3,5,m); U; N V; #0, m €
K'(i,7)}. Set W = {Wi jn}ijnek and W' = {W/, 1} jmyex’- They are objects
of P(«). Define 20 — U by b jnye = 6w € D(Wijn; ) and 20 — U by

c(i,j,n),j’ = (Sjjrai’j € F("Vi,j,n;ﬂ). Define 20" — U by b,(i,j,n),i’ = 5w S F(Wil,j,n;&q)
and 20" — U by 0. Then W W — U and WD W' — U satisfy the desired
conditions. O

Proposition A.8. — An sA-module M is coherent if and only if M is P(HA)-coherent.

Proof. First let us show that a coherent s{-module M is P(#)-coherent. The
property (A.5) for coherent sheaves is obvious. Let us show (A.6). The proof
is similar to the proof of (A.2). Let U = {U,};csr be an object of P(sd) and let
¢ : 4 — M be given by s; € I'(U;; M). For z € X, let us define I(z) as in the proof
of (A.2) and a neighborhood W(z) of  such that W(z) NU; = 0 for ¢ & I(z). We
may assume that s; is extended to W(z) UU;. For G C I(z), let us take an exact
sequence, by shrinking W (z) if necessary, &QN(G*””)iW@) - &chw(z) - M|W(z). As
the rest of the arguments is similar to the proof of (A.2), we shall omit it.

Let us show that a P(s{)-coherent {-module M is coherent. Let us take
U = (U;)icr and a cover ¢ = (s;)ier : 4 — M. For any = in X, s; € ['(U;; M)
extends to a neighborhood W of z. Then L¢(5J)|W — MIW decomposes as
L¢(Ll)|w — .%@N|W — M[W for some integer N. Hence M is locally finitely
generated. We may assume further that W is in &. Set 20 = {W}. Then we have
209N — M, which is surjective on W. There is an exact sequence U — 209N — M.
By a similar argument as above, the kernel of Ly (20°Y) — M is finitely generated
on a neighborhood of z. Hence M is coherent. (]

Let us denote by D_, (s4) the full subcategory of D™ (s4) consisting of objects
with coherent cohomology groups. Similarly, we denote by D_ , (P(«)) the full

subcategory of D™ (P(s4)) consisting of objects Y such that Ly(Y) has coherent
cohomology groups. Then Theorem A.5 implies the following theorem.

Theorem A9. — D_ ,(P(d)) — D_,(4) is an equivalence of triangulated
categories.
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Let us define the additive category P(sf) by Ob(P(s4)) =Ob(P(s{)) and
Homgp ) (44, %0) = Homy (L(U), L(D)).

Then P(sd) is a full subcategory of Mod(s4). We can define similarly D, (P(sf)).
The following theorem is also easy to prove.

Theorem A.10. — D_,(P(s)) — D_,(sd) is an equivalence of triangulated
categories.

We call a complex M*® of #f-modules almost free if each component M™ is
isomorphic to ®;Ay, for a locally finite family {U;} of relatively compact open
subsets of X in ¥. Then the above theorem says that any complex of s{-modules
with coherent cohomology groups is quasi-isomorphic to an almost free complex.

A.3 R-Constructible Case

Let X be a real analytic manifold of dimension dx. Let &¥ be a set of open
subanalytic subsets of X. We assume that any relatively compact open subanalytic
subset is a finite union of open subsets in &¥. For example we can take as & the set of
open subanalytic subsets U of X such that (U, dU) is homeomorphic to (B?x, §9x)
(by the subanalytic triangulation theorem). Here B9X is the dx-dimensional ball
and S9% is its boundary. Let us take R-Cons(X) as A. We define the category
P(X) as follows. The set of objects of P(X) is the set of locally finite families of
open subsets belonging to &. For 4l = {U, }ier € P(X), we set

Lc(Y) = @ic1Cy;,
and set
Homp (x)(4, ) = Hom (L(U), L(V))
and
H(4, F) = Hom(L(41), F)

for U, € P(X) and F € R-Cons(X). Hence P(X) is a full subcategory of
R-Cons(X). Remark that any F' € R-Cons(X) has an epimorphism Lo (4) — F for
some Y € P(X). By this, we can easily check that (A.1)-(A.4) are satisfied. We see
also that any R-constructible sheaf is P(X)-coherent. Thus we obtain the following
proposition.

Theorem A.11. — D~ (P(X)) — D~ (R-Cons(X)) — D}_.(Cx) are equivalences
of categories.
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Remark that we have
Dx (L(W)) = ®icrCy;

for U = {U,;}icr € P(X) such that every (U;, 8U;) is homeomorphic to (B?x, §9x).

A.4 Proofs of Propositions A.3 and A.4

We shall remark first the following lemma.

Lemma A.12. — Let f,g: X — Y be morphisms in P. If L(f) = L(g), there exists
a cover h: X' — X such that foh=go f.

Proof. By (A.2), there exists an exact sequence
x' xSy,

Then L(h) : L(X') — L(X) is an epimorphism and foh =goh. O
Proof of Proposition A.3. We shall construct X®* € C~(P), a quasi-isomorphism
f:X*>Y* ¢:X*—> L(Y*) and g: X* — Z* such that

(A.9) L(g) =uo L(f) : L(X®) — L(Z*)
and
(A.10) L(f) = a(p) : L(X®*) — L(Y®).

Assume that we are given

Xr —— X0l

L

- — Yn_l YY" — Yn+1 —_—) e
Xn Xn+1 _— 5 ..

Jv(pn prn-f—l

— LYYy —— LY") —— L(y™tl) —— ...
and

X" — X

b e

— v s 7 szt
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such that they satisfy (A.9) and (A.10). We assume further that H*(L(X*)) —
H*(L(Y*)) is an isomorphism for ¥ > n and an epimorphism for ¥k = n
Let us take an exact sequence U — X" — Xn"tl Set Z"(L(Y*))
Ker (d;gy.) CL(Y™) — L(Y"+1)) and

I

BML(Y*)) = Im (dz(—;.) LY™ ) L(Y")). Then U — X" 25 L(Y™)
decomposes into U — Z™(L(Y*)) — L(Y™). By the assumption, the composition
U — Z™(L(Y*)) - H"(L(Y*)) is an epimorphism. Since H™(L(Y*)) is P-coherent,
there is an exact sequence V. — U — H"(L(Y*)). Then V — U — Z™(L(Y*))
decomposes into V. — B™"(L(Y*)) — Z™(L(Y*)). Hence by replacing V with its
cover, we may assume that V' — B™(L(Y*)) decomposes into V 5 Ly 1) —
B"(L(Y*)). By (A.4), by replacing V with its cover, we may assume that there
exists h : V — Y"1 such that L(h) = a(¢). We have L(dy ' oh) = L(V - U —
X™ —- Y™) € Homa(L(V),L(Y™)). Hence by Lemma A.12, replacing V with its

cover, we may assume that
Vv — X"

[ [
Yn~1 Y"»
commutes. By the similar arguments, by replacing V with its cover, we may assume
that there exists b : V — Z"~1 such that L(b) = u" ' o L(h) : L(V) — L(Z™ 1)

and
Vv — X"

L+ o

Zn—l NAL
commutes.

Since H™ '(L(Y*)) is P-coherent, there is a cover G — H" }(L(Y*)). By
replacing G with its cover we may assume that G — H" }(L(Y*)) decomposes
into G 5 Z"Y(L(Y*)) = H" (L(Y*)). Then by the similar arguments as above
we may assume that, after replacing G with its cover, there exists G Iy yn=1 guch
that the composition G — Y"~! — Y™ vanishes and L(G) 2@, gn-1 L(y™1)
coincides with L(g). Replacing again G with its cover we may assume that there
exists ¢ : G@ — Z" ! such that G % Z"~! — Z™ vanishes and L(c) = u" ! o L(u) :
L(G) — L(Z™™1Y).

We set X" ! = G® V. Define f»~1: X»1 5 YY" lbyg:G— Y ! and
h:V — Y™ 1 Define p"~! : X1 - L(Y" 1) by £ : V — L(Y"!) and
G 2 Y L(Y*)) = L(Y™ 1). We define "1 : X" 1 - Zn 1 byb:V — Zn!
and ¢ : G — Z" 1. Then H"(L(X®)) — H"(L(Y*)) is an isomorphism and
H"1(L(X*)) - H"}(L(Y*)) is an epimorphism. Thus the induction proceeds.
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Proof of Proposition A.4. The proof is similar to the above proof. Let s™ : L(Y™) —
L(Z™ ') be a homotopy. We shall construct X € C~(P) and a quasi-isomorphism
f:X* =Y ¢: X*—> L(Y®) and t" : X™ — Z"! such that

(A.11) giofr=dy ot +t" M ody,
(A.12) L(f) = o) : L(X®) — L(Y*),
and

(A.13) L(t") = s™ o L(f™).

Assume that we are given
X" —— Xt .

lfn J(fn-m ,

s Y’n.~1 Y" Yn+1 -y ...
Xr o — Xl

J/(pn J/Wn+1

o — L(Y"Y) —— L(Y") —— L(Y" ) ———— ...

and t* : X¥ — Zk-1(k > n) satisfying the conditions (A.11)-(A.13). We assume
further that H*(L(X*®)) — HF(L(Y*)) is an isomorphism for k¥ > n and an
epimorphism for ¥ = n. By the similar arguments with the above proof, we
can construct @ : V. — X", h : V — Y"1 £V — L(Y™!) such that
L(h) = a(§) : L(V) — L(Y™1), the composition V — X™ — X™*! vanishes,

Vv —%, Xn

bl
yr—t — 5 y»

commutes and the cohomology of L(V) — L(X™) — L(X"™ 1) is isomorphic to
H™(L(Y*)). By replacing V with its cover, we may assume that there exists
t':V — Z" 2 such that L(t') = s" 'oL(h). We have L(g" *oh—d}y ?ot'—t"oa) =
L(g" " oh) — L(d2) 05" Lo L(h) — s"o L(f™) o L(a) = L(g"*) o L(h) - L(d} )
s" 1o L(h) — s" o L(dy ') o L(h) = 0. Hence by Lemma A.12, by replacing V with
its cover, we may assume that g""1oh — d’ZL*2 ot/ —t"oa=0.

As in the above proof, we can construct g: G — Y" tand n: G — Z" " 1(L(Y*))
such that the composition G & Z" Y (L(Y*)) — H" Y(L(Y*)) is a cover of

HY(L(Y*)) and L(G) =% L(Y™1) coincides with L(G) <% Zn-1(L(Y*)) —
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L(Y™1). By replacing G with its cover, we may assume that thereist” : G — Z"2
such that L(t") : L(G) — L(Z"2) coincides with L(G) =% Ly»-1) <5
L(Z"?). Set X" ' =V & G. Define dy:' : X» ! - X" bya:V — X" and
zero on G. Define f*~!: X! Y lbyh:V YY" landg: G - Y"1
Define "1 : Xn1 5 Zn 2 byt : V = Z" 2 and t" : G — Z" 2. Then,
H™(L(X*)) = H"(L(Y*)) is an isomorphism and H" }(L(X*)) — H" }(L(Y*))
is an epimorphism. We have also g" ! o f*! = d3 2o t" ! + " o dy !,
L(f" 1) = a(p™ ) and L(t"1) = s"~1 o L(f*!). Hence the induction proceeds.
This completes the proof of Proposition A.4.
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