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QUASI-ABELIAN CATEGORIES AND SHEAVES

Jean-Pierre Schneiders

Abstract. — This memoir is divided in three parts. In the first one, we introduce the
notion of quasi-abelian category and link the homological algebra of these categories
to that of their abelian envelopes. Note that quasi-abelian categories form a special
class of non-abelian additive categories which contains in particular the category of
locally convex topological vector spaces and the category of filtered abelian groups. In
the second part, we define what we mean by an elementary quasi-abelian category and
show that sheaves with values in such a category can be manipulated almost as easily
as sheaves of abelian groups. In particular, we establish that the Poincaré-Verdier
duality and the projection formula hold in this context. The third part is devoted to
an application of the results obtained to the cases of filtered and topological sheaves.

Résumé (Catégories et faisceaux quasi-abéliens). — Ce mémoire est divisé en trois
parties. Dans la premiére, nous introduisons la notion de catégorie quasi-abélienne et
relions I’algébre homologique de ces catégories & celle de leurs enveloppes abéliennes.
Notons que les catégories quasi-abéliennes forment une classe spéciale de catégories
additives non-abéliennes qui contient en particulier la catégorie des espaces vectoriels
topologiques localement convexes et la catégorie des groupes abéliens filtrés. Dans la
seconde partie, nous définissons ce que nous entendons par catégorie quasi-abélienne
élémentaire et montrons que les faisceaux & valeurs dans une telle catégorie sont
presque aussi aisés & manipuler que les faisceaux de groupes abéliens. En particulier,
nous établissons que la dualité de Poincaré-Verdier et la formule de projection sont
valides dans ce contexte. La troisiéme partie est consacrée & une application des
résultats obtenus aux cas des faisceaux filtrés et topologiques.
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INTRODUCTION

To solve various problems of algebraic analysis, it would be very useful to have at
hand a good cohomological theory of sheaves with values in categories like that of
filtered modules or that of locally convex topological vector spaces. The problem to
establish such a theory is twofold. A first difficulty comes form the fact that, since
these categories are not abelian, the standard methods of homological algebra cannot
be applied in the usual way. A second complication comes from the fact that we need
to find conditions under which the corresponding cohomological theories of sheaves
are well-behaved. This memoir grew out of the efforts of the author to understand
how to modify the classical results in order to be able to treat such situations. The
first two chapters deal separately with the two parts of the problem and the last one
shows how to apply the theory developed to treat the cases of filtered and topological
sheaves.

When we want to develop homological algebra for non abelian additive categories, a
first approach is to show that the categories at hand may be endowed with structures
of exact categories in the sense of D. Quillen [14]. Then, using Paragraph 1.3.22 of [2],
it is possible to construct the corresponding derived category and to define what is
right or left derived functor.

This approach was followed by G. Laumon in [10] to obtain interesting results for
filtered D-modules. We checked that it would also be possible to treat similarly the
case of locally convex topological vector spaces. However, when one works out the
details, it appears that a large part of the results does not come from the particular
properties of filtered modules or locally convex topological vector spaces but instead
come from the fact that the categories considered are exact categories of a very special
kind. In fact, they are first examples of what we call quasi-abelian categories.

To provide a firm ground for applications to other situations, we have found it
useful to devote Chapter 1 to a detailed study of the properties of these very special
exact categories.



2 INTRODUCTION

In Section 1.1, after a brief clarification of the notions of images, coimages and
strict morphisms in additive categories, we give the axioms that such a category has
to satisfy to be quasi-abelian. Next we show that a quasi-abelian category has a
canonical exact structure. We conclude by giving precise definitions of the various
exactness classes of additive functors between quasi-abelian categories. This is nec-
essary since various exactness properties which are equivalent for abelian categories
become distinct in the quasi-abelian case.

Section 1.2 is devoted to the construction of the derived category D(€) of a quasi-
abelian category £ and its two canonical t-structures. We introduce the two corre-
sponding hearts LH(E) and RH(E) and we make a detailed study of the canonical
embedding of £ in LH(E). In particular, we show that the exact structure of &
is induced by that of the abelian category LH(£) and that the derived category of
LH(E) endowed with its canonical t-structure is equivalent to D(€) endowed with its
left t-structure. Since the two canonical t-structures are exchanged by duality, it is
not necessary to state explicitly the corresponding results for RH(E). Note that the
canonical t-structures of D(€) and the abelian categories LH(E) and RH(E) cannot
be defined for an arbitrary exact category and give first examples of the specifics of
quasi-abelian categories. We end this section with a study of functors from a quasi-
abelian category £ to an abelian category A and show that £LH(€) and RH(E) may
in some sense be considered as abelian envelopes of £.

In Section 1.3, we study how to derive an additive functor

F:&E—F

of quasi-abelian categories. After adapting the notions of F-projective and F-injective
subcategories to our setting, we generalize the usual criterion for F' to be left or right
derivable. Next, we study various exactness properties of RF' and relate them with the
appropriate exactness properties of F. After having clarified how much of a functor
is determined by its left or right derived functor and defined the relations of left and
right equivalence for quasi-abelian functors, we show that, under mild assumptions,
we can associate to F' a functor

G:LH(E) — LH(F)

which has essentially the same left or right derived functor. Loosely speaking, the
combination of this result and those of Section 1.2 shows that from the point of view
of homological algebra we do not loose any information by replacing the quasi-abelian
category & by the abelian category LH(E). We conclude this section by generalizing
to quasi-abelian categories, the classical results on projective and injective objects.
This leads us to make a careful distinction between projective (resp. injective) and
strongly projective (resp. injective) objects of £ and study how they are related with
projective and injective objects of LH(E) or RH(E).

MEMOIRES DE LA SMF 76
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In Section 1.4, we deal with problems related to projective and inductive limits in
quasi-abelian categories. First, we treat the case of products and show mainly that
a quasi-abelian category £ has exact (resp. strongly exact) products if and only if
LH(E) (resp. RH(E)) has exact products and the canonical functor

E— LH(E) (resp. £ — RH(E))

is product preserving. The case of coproducts is obtained by duality. After a detailed
discussion of the properties of categories of projective or inductive systems of £, we
give conditions for projective or inductive limits to be computable in £ as in LH(E).
In this part, we have inspired ourselves from some methods of [4, 9]. We conclude by
considering the special case corresponding to exact filtering inductive limits.

The last section of Chapter 1 is devoted to the special case of closed quasi-abelian
categories (i.e. quasi-abelian categories with an internal tensor product, an internal
homomorphism functor and a unit object satisfying appropriate axioms). We show
mainly that in such a situation the category of modules over an internal ring is still
quasi-abelian. Examples of such categories are numerous (e.g. filtered modules over
a filtered ring, normed representations of a normed algebra) but the results obtained
will also be useful to treat module over internal rings in a more abstract category like
the category W defined in Chapter 3. We conclude by showing how a closed structure
on £ may induce, under suitable conditions, a closed structure on LH(E).

In Chapter 2 we study conditions on a quasi-abelian category £ insuring that the
category of sheaves with values in £ is almost as easily to manipulate as the category
of abelian sheaves.

In Section 2.1, we introduce the notions of quasi-elementary and elementary quasi-
abelian categories and show that such categories are very easy to manipulate. First,
we study the various natural notions of smallness in quasi-abelian categories. We also
discuss strict generating sets which play for quasi-abelian categories the role played
usually by the generating sets for abelian categories. This allows us to introduce the
definitions of quasi-elementary and elementary categories and to show that if £ is
quasi-elementary then LH(E) is a category of functors with values in the category of
abelian groups (this an analog of Freyd’s result). We also show that the category of
ind-objects of a small quasi-abelian category with enough projective objects is a basic
example of an elementary quasi-abelian category. We conclude the section with a few
results on closed elementary categories.

In Section 2.2, we show that that the category Shv(X;&) of sheaves on X with
values in an elementary quasi-abelian category £ is well-behaved. It is even endowed
with internal operations if the category £ is itself closed. Moreover, we show that

LH(Sho(X;E)) ~ Sho(X; LH(E))

and thanks to the results in the preceding sections, we are reduced to work with
sheaves in an elementary abelian category. Such sheaves where already studied in [15]
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4 INTRODUCTION

where it is shown that they have most of the usual properties of abelian sheaves. In
Section 2.3, we give further examples of how to extend to these sheaves results which
are well known for abelian ones. In particular, we prove Poincaré-Verdier duality in
this framework. We also prove that if £ is closed and satisfies some mild assumptions
then we can establish an internal projection formula and an internal Poincaré-Verdier
duality formula by working almost as in the classical case.

Chapter 3 is devoted to applications to filtered and topological sheaves.

In Section 3.1, we study the category of filtered abelian groups and show that this is
a closed elementary quasi-abelian with enough projective and injective objects. Its left
abelian envelope R is identified with the category of graded modules over the graded
ring Z[T] following an idea due to Rees. We also show that the category of separated
filtered abelian sheaves is a quasi-elementary quasi-abelian category having R as its
left abelian envelope. Since R is an elementary abelian category, the cohomological
theory of sheaves developed in Chapter 2 may be applied to this category and gives a
satisfying theory of filtered sheaves. Since most of the results in this section are easy
consequences of the general theory, they are often given without proof.

Note that some of the results in this section where already obtained directly in spe-
cific situations by various authors (e.g. Illusie, Laumon, Rees, Saito, etc.). However,
to our knowledge, the fact that all the classical cohomological formulas for abelian
sheaves extend to filtered abelian sheaves was not yet fully established.

It might be a good idea to read this section in parallel with Chapter 1 as it provides
a simple motivating example for the abstract theory developed there.

In Section 3.2, we show first that the category of semi-normed spaces in a closed
quasi-abelian category with enough projective and injective objects which has the
same left abelian envelope as the category of normed-spaces. Applying the results
obtained before, we show that the category of ind-semi-normed spaces is a closed
elementary quasi-abelian category and that its left abelian envelope W is a closed ele-
mentary abelian category. We also show that the category of locally convex topological
vector spaces may be viewed as a (non full) subcategory of YW and that through this
identification, the categories of FN (resp. DFN) spaces appear as full subcategories
of W. Since the theory developed in Chapter 2 applies to W, we feel that W-sheaves
provides a convenient notion of topological sheaves which is suitable for applications
in algebraic analysis. Such applications are in preparation and will appear elsewhere.

Note that, in a private discussion some time ago, C. Houzel, conjectured that a
category defined through the formula in Corollary 3.2.22 should be a good candidate
to replace the category of locally convex topological vector spaces in problems dealing
with sheaves and cohomology. He also suggested the name W since he expected this
category to be related to the category of quotient bornological spaces introduced by
Waelbroeck. We hope that the material in this paper will have convinced the reader
that his insight was well-founded.
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Before concluding this introduction, let us point out that discussions we had with
M. Kashiwara on a first sketch of this paper lead him to a direct construction of the
derived category of the category of FN (resp. DFN) spaces. These categories were
used among other tools in [8] to prove very interesting formulas for quasi-equivariant
D-modules.

Note also that a study of the category of locally convex topological vector spaces
along the lines presented here is being finalized by F. Prosmans. However, in this case
the category is not elementary and one cannot treat sheaves with values in it along
the lines of Chapter 2.

Throughout the paper, we assume the reader has a good knowledge of the theory of
categories and of the homological algebra of abelian categories as exposed in standard
reference works (e.g. [11, 12, 16] and [3, 5, 7, 17]). If someone would like an
autonomous presentation of the basic facts concerning homological algebra of quasi-
abelian categories, he may refer to [13] which was based on a preliminary version of
Chapter 1.
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CHAPTER 1

QUASI-ABELIAN CATEGORIES

1.1. Quasi-abelian categories and functors

Let £ be an additive category with kernels and cokernels.

1.1.1. Images, coimages and strict morphisms

DEFINITION 1.1.1. — Let f : E — F be a morphism of £.
Following [5, 16], we define the image of f to be the kernel of the canonical map
F — Coker f. Dually, we define the coimage of f to be the cokernel of the canonical
map Ker f — E.
Obviously, f induces a canonical map
Coim f — Im f.

In general, this map is neither a monomorphism nor an epimorphism. When it is an

isomorphism, we say that f is strict.
f
The following remark may help clarify the notion of strict morphism.

REMARK 1.1.2
(a) For any morphism f : E — F of £, the canonical morphism
Kerf - E (resp. F' — Coker f)

is a strict monomorphism (resp. epimorphism).
(b) Let f: E — F be a strict monomorphism (resp. epimorphism) of £. Then f is
a kernel (resp. cokernel) of

F — Coker f (resp. Ker f — E).
(c) A morphism f of £ is strict if and only if
f=moe

where m is a strict monomorphism and e is a strict epimorphism.
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1.1.2. Definition of quasi-abelian categories

DEFINITION 1.1.3. — The category £ is quasi-abelian if it satisfies the following dual
axioms:

(QA) In a cartesian square

f

E——F

[

E ——F'

fl

where f is a strict epimorphism, f' is also a strict epimorphism.
(QA*) In a cocartesian square

fl

E ——F'

|

E——F
f
where f is a strict monomorphism, f' is also a strict monomorphism.

Until the end of this section, £ will be assumed to be quasi-abelian.

PROPOSITION 1.1.4. — Let f : E — F be a morphism of £. Then, in the canonical
decomposition

Coim f
PP
E f > F

of f, j is a strict epimorphism and k is a monomorphism. Moreover, for any decom-

position
E ——f———+ F
N
I*

of f where m is a monomorphism, there is a unique morphism

k' : Coim f — I*

MEMOIRES DE LA SMF 76



1.1. QUASI-ABELIAN CATEGORIES AND FUNCTORS 9

making the diagram

Coim f
/ X
E h' F

commautative.
Dually, in the canonical decomposition

E f > |
74

Im f

of f, k* is an epimorphism and j* is a strict monomorphism. Moreover, for any

decomposition
I
SN
i h

E————F

of f where e is an epimorphism, there is a unique morphism

B :I—1Imf
making the diagram
I
/ C
E 14 F
NP
Im f
commautative.
Proof. — Let
i:Kerf - FE

denote the canonical morphism. Since j is the cokernel of 4, it is a strict epimorphism.
Let us show that k is a monomorphism. Let x : X — Coim f be a morphism such

SOCIETE MATHEMATIQUE DE FRANCE 1999



10 CHAPTER 1. QUASI-ABELIAN CATEGORIES

that ko2 = 0. Form the cartesian square

E—25 Coim f

v E

X' ——— X
J

It follows from the fact that £ is quasi-abelian that j' is a strict epimorphism. Since,
fox' =kojoz' =kozoj =0,
there is a unique morphism z"” : X’ — Ker f such that ¢ o z"” = 2’. From the relation
zoj' =joa' =joioz" =0,

it follows that = 0.
To prove the second part of the statement, note that, m being a monomorphism,
it follows from the relation

mohoi=foi=0,
that hoi = 0. Since j is the cokernel of ¢, there is a unique morphism
k' : Coim f — I*

such that

h oj=h.
From the equality

koj=moh=moh'oj,

it follows that

k=mokh

COROLLARY 1.1.5. — The canonical morphism
Coim f — Im f

associated to a morphism f : E — F of £ is a bimorphism (i.e. it is both a monomor-
phism and an epimorphism).

REMARK 1.1.6. — The preceding proposition shows in particular that the decompo-
sition of f through Coim f (resp. Im f) is in some sense the smallest (resp. greatest)
decomposition of f as an epimorphism followed by a monomorphism. Hence, what we
call Im f (resp. Coim f) would be called Coim f (resp. Im f) in [12]. Despite the good
reasons for adopting Mitchell’s point of view, we have chosen to stick to Grothendieck’s
definition which is more usual in the framework of additive categories.

MEMOIRES DE LA SMF 76



1.1. QUASI-ABELIAN CATEGORIES AND FUNCTORS 11

1.1.3. Strict morphisms in quasi-abelian categories

PROPOSITION 1.1.7. — The class of strict epimorphisms (resp. monomorphisms) of
& 1is stable by composition.

Proof. — Letu: E — Fandv: F — G be two strict epimorphisms and set w = vou.
We denote by i, : Keru — E the canonical morphism and use similar notations for
v and w. We get the commutative diagram:

Kerw ——k—> Kerv

A1

Keru W >y B m > F
\ful

w
G

One checks easily that the upper right square is cartesian. Since u is a strict epimor-
phism, it follows from the axioms that k is also a strict epimorphism. To conclude,
it is sufficient to prove that w is a cokernel of i,,. Assume f: E — X is a morphism
such that f o, = 0. Since u is the cokernel of i,, and f o, = 0, there is a unique
morphism f’: F — X such that f' ou = f. Since k is an epimorphism, the equality

floiyok=/foi,=0

shows that f’ oi, = 0. Using the fact that v is the cokernel of i,, we get a unique
morphism f” : G — X such that f” ov = f'. For this morphism, we get f”" ow = f
as requested. Moreover, w being an epimorphism, f” is the only morphism satisfying
this relation. O

PROPOSITION 1.1.8. — Let

be a commutative diagram in £. Assume w is a strict epimorphism. Then, v is a
strict epimorphism.
Dually, assume w is a strict monomorphism. Then, u is a strict monomorphism.

Proof. — We will use the same commutative diagram as in the proof of the preceding
proposition.

SOCIETE MATHEMATIQUE DE FRANCE 1999



12 CHAPTER 1. QUASI-ABELIAN CATEGORIES

First, note that the square

E ® Kerv (“—”2 F
ol
E—7\m—G
is cartesian. As a matter of fact, if the morphisms
xX&5E x4LF
are such that
woe=vwo f,
then
vo(f—uoe)=0
and there is h : X — Kerv such that
ipoh=f—uoe.
It follows that for the morphism
(£): X > Ed Kerv
we have
(1o)(R)=e, (uwin)(3)=f

and this is clearly the only morphism satisfying these conditions. It follows from the
axioms and the fact that w is a strict epimorphism that

(viv): E® Kerv = F

is a strict epimorphism.
Next, let z : FF — X be such that z o7, = 0. It follows that

LOoUOTl, =x0i,0k=0
and there is ' : G — X such that
zou=z ow=2z ovou.
Hence,
(-1 ov)ou=0
and since
(x—2'ov)oi, =0

we deduce from what precedes that z = 2z’ o v. Since v is clearly an epimorphism,
such an z' is unique. So, v is a cokernel of 7, and the conclusion follows. O
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1.1. QUASI-ABELIAN CATEGORIES AND FUNCTORS 13

1.1.4. Strictly exact and coexact sequences
DEFINITION 1.1.9. — A null sequence
E S ES E
of & is strictly exact (resp. coexact) if €' (resp. €") is strict and if the canonical
morphism
Ime' — Kere”

is an isomorphism. More generally, a sequence
81 e'n.-1

E,—---—E, (n>3)
is strictly exact (resp. coexact) if each of the subsequences

i i4+1

Ei 5 Eijyn = Eiyy (1<i<n-2)

is strictly exact (resp. coexact).
REMARK 1.1.10. — It follows from the preceding definition that strict exactness and
strict coexactness are dual notions which are in general not equivalent. However, a

short sequence
0ESF3HG—0
is strictly exact if and only if u is a kernel of v and v is a cokernel of u. Hence, such

a sequence is strictly exact if and only if it is strictly coexact.

REMARK 1.1.11. — Thanks to the results in the preceding subsections, it is easily
seen that the category £ endowed with the class of short strictly exact sequences
forms an exact category in the sense of [14].

1.1.5. Exactness classes of quasi-abelian functors. — Since there are two
kinds of exact sequences in a quasi-abelian category, there are more exactness classes
of functors than in the abelian case. All these various classes are needed in the rest
of the paper. Hence, we will define them carefully in this section.

Let us first consider left exactness.

DEFINITION 1.1.12. — Let
F:&—>F

be an additive functor.
We say that F' is left exact if it transforms any strictly exact sequence

0—-E —-E—E'—>0
of £ into the strictly exact sequence
0— F(E') > F(E) —» F(E")

of F. Equivalently, F is left exact if it preserves kernels of strict morphisms.
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14 CHAPTER 1. QUASI-ABELIAN CATEGORIES

We say that F is strongly left exact if it transforms any strictly exact sequence
0—+E —-E—E"
of £ into the strictly exact sequence
0— F(E') = F(E) —» F(E")

of F. Equivalently, F' is strongly left exact if it preserves kernels of arbitrary mor-
phisms.

Finally, we say that F' is regular if it transforms a strict morphism into a strict
morphism and regularizing if it transforms an arbitrary morphism into a strict mor-
phism.

REMARK 1.1.13. — Some authors have defined a left exact functor between arbitrary
finitely complete categories to be a functor which preserves all finite projective limits.
This definition coincides obviously with our notion of strongly left exact functor.

Other definitions of left exactness can also be introduced. They are clarified in
Proposition 1.1.15 the proof of which is left to the reader.

DEFINITION 1.1.14. — Let
F.: &€= F

be an additive functor. Let S denote a null sequence of the form
0—>E —E—E"
and let F'(S) denote the null sequence
0— F(E') - F(E) — F(E").
We shall distinguish four notions of left exactness for the functor F'. They are defined
in the following table by the exactness property of F'(S) which follows from a given
exactness property of S.
F S F(S)
LL left exact | strictly exact strictly exact
LR left exact | strictly exact | strictly coexact

RL left exact | strictly coexact | strictly exact
RR left exact | strictly coexact | strictly coexact

PROPOSITION 1.1.15. — Let
F:&—F
be an additive functor between quasi-abelian categories.
(LL) The functor F is LL left exact if and only if it is strongly left exact.
(LR) The functor F is LR left exact if and only if it is strongly left exact and regu-
larizing.
(RL) The functor F is RL left exact if and only if it is left exact.
(RR) The functor F is RR left exact if and only if it is left exact and regular.
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1.1. QUASI-ABELIAN CATEGORIES AND FUNCTORS 15

REMARK 1.1.16. — Note also that with the notation of the preceding proposition,
F is LL left exact if and only if it is RL left exact and transforms a monomorphism
into a monomorphism. Similarly, F' is LR left exact if and only if it is RR left exact
and transforms a monomorphism into a strict monomorphism.

Having clarified the various notions of left exactness, we can treat right exactness
by duality.

DEFINITION 1.1.17. — Let
- F:&E—F

be an additive functor.
We say that F is right exact if it transforms any strictly (co)exact sequence

0—-E -E—E'"—>0
of £ into the strictly coexact sequence
F(E') - F(E) = F(E") =0

of F. Equivalently, F' is right exact if it preserves cokernels of strict morphisms.
We say that F' is strongly right exact if it transforms any strictly coexact sequence

EE—-E—E'—=0
of £ into the strictly coexact sequence
F(E'Y - F(E) - F(E") =0
of F. Equivalently, F' is strongly right exact if it preserves cokernels of arbitrary
morphisms.
Finally let us introduce the various classes of exact functors.
DEFINITION 1.1.18. — Let
F:&E—>F

be an additive functor.
The functor F' is exact if it transforms any strictly (co)exact sequence

0—-FE —-E—-E"—>0
of £ into the strictly (co)exact sequence
0— F(E') - F(E)— FE")—0

of F. Equivalently, F is exact if it is both left exact and right exact.
The functor F is strictly exact (resp. strictly coezact) if it transforms any strictly
exact (resp. coexact) sequence
E'-E—E"

of £ into a strictly exact (resp. coexact) sequence

F(E') —» F(E) — F(E")
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16 CHAPTER 1. QUASI-ABELIAN CATEGORIES

of F.

Finally, the functor F' is strongly ezact if it is both strictly exact and strictly
coexact. Equivalently, F' is strongly exact if it is both strongly left exact and strongly
right exact.

1.2. Derivation of quasi-abelian categories

1.2.1. The category K(£) and its canonical t-structures. — In this subsection,
we assume that £ is an additive category with kernels and cokernels. Since £ is
additive, it is well-known that the associated category K(£) of complexes modulo
homotopy is a triangulated category. Here we will show that it is also canonically
endowed with two t-structures which are exchanged by duality.

DEFINITION 1.2.1. — A null sequence
E'-FE— E"
of £ is split if, for any object X of £, the associated sequence
Hom (X, E') — Hom (X, E) — Hom (X, E")

is an exact sequence of abelian groups. Dually, it is cosplit if, for any object X of £,
the associated sequence

Hom(E",X) — Hom(E, X) — Hom(E', X)

is an exact sequence of abelian groups.
A complex E of & is split (resp. cosplit) in degree n if the sequence

En—l dm! E™ _ﬂ) En+1
is split (resp. cosplit).
A complex is split (resp. cosplit) if it is split (resp. cosplit) in each degree.
REMARK 1.2.2
(a) A null sequence
B4 e B
of £ is split if and only if the associated short sequence

0 = Kere' - E = Kere" —0

splits. In particular, a sequence may be split without being cosplit.
(b) A complex E of £ is split if and only if it is homotopically equivalent to 0.
Hence, FE is split if and only if it is cosplit.
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1.2. DERIVATION OF QUASI-ABELIAN CATEGORIES 17

LEMMA 1.2.3. — Any object E of K(£) may be embedded in a distinguished triangle
ES* s E- B>,
of K(€) where E<° is the complex
~E? 5 E™' 5 Kerdy, -0
(with Ker d%, in degree 0) and E>° is the complex
0 — Kerd% — E° —» E'--.
(with E° in degree 0).

Proof. — Denote by i the canonical morphism from Ker d% to E° and let u : ES® —
E be the morphism defined by

1 for n<0,
u =< i for n=0,
0 for n>0.

By definition, the mapping cone M of u is the complex:
(%) (id) d
- El'eE? 2% Kerdy o BT LS5 EY S B

(with E° in degree 0). Let o : E>° — M and 3 : M — E>° be the morphisms
defined respectively by:

0 for n<-1, 0 for n< -1,
a®=¢ (§) for n=-1, and B"=< (14) for n=-1,
1 for n>-1, 1 for n>—-1.

One checks easily that
Boa=idg>e and aof —idy =dpyoh+hody

where h is the homotopy defined by:

Therefore, E>° is homotopically equivalent to M and the conclusion follows. O

PROPOSITION 1.2.4. — Let KS°(€) (resp. K2°(E)) denote the full subcategory of
K(E) formed by the complexes which are split in each strictly positive (resp. strictly
negative) degree. Then, the pair

(K=°(&),£>°(£))
defines a t-structure on k().
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18 CHAPTER 1. QUASI-ABELIAN CATEGORIES

Proof. — Thanks to the preceding lemma, we need only to prove that
Hom ,C(g)(E,F) =0

for E € KSO(€) and F € K>%(&). Using the preceding lemma, we get the two
distinguished triangles

1
ESX 5 E pP0 2ty psO gy pro t

Thanks to Remark 1.2.2, our assumptions show that E>° ~ 0 and that F<° ~ 0 in
K(€) and the preceding distinguished triangles allow us to conclude that ES® ~ E
and F ~ F>9, Since one checks easily that

Hom ,. 0 (E=°, F°) =0,
the proof is complete. O

DEFINITION 1.2.5. — We call the canonical t-structure studied in the preceding
proposition the left t-structure of K(£). We denote by LA () its heart and by LK™
the corresponding cohomology functors.

PROPOSITION 1.2.6. — The truncation functors <", 72" for the left t-structure of
K(E) associate respectively to a complex E the complex

L E"2 5 BVl S Kerd — 0
(with Ker d% in degree n) and the complex
0 — Kerdy ! - E"! - E"...
(with E™ in degree n). Hence, LK™(E) is the complex
0 — Kerdy ™' — E™ ! — Kerd}, — 0
where Ker d, is in degree 0.

COROLLARY 1.2.7. — The category LK(E) is equivalent to the full subcategory of
K (&) consisting of complexes of the form

0—>Kerf—>Ei>F—>0
(F in degree 0).
DEFINITION 1.2.8. — An object A of LK(E) is represented by the morphism
f:E—F
if it is isomorphic to the complex

O—)Kerf—>Ei>F—>O

where F' is in degree 0.
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1.2. DERIVATION OF QUASI-ABELIAN CATEGORIES 19

REMARK 1.2.9. — Through the canonical equivalence
K(€)*P ~ K(E°P),

the left t-structure of xC(E°P) gives a second t-structure on K(£). We call it the right
t-structure of K(E). We denote by RK(E) its heart and by RK™ the corresponding
cohomology functors. The reader will easily dualize the preceding discussion and
make the link between the right t-structure of (£) and cosplit sequences of €.

1.2.2. The category D(€) and its canonical t-structures. — In this subsection,
we assume that the category £ is quasi-abelian.

DEFINITION 1.2.10. — A complex E of £ is strictly exact (resp. coexact) in degree n
if the sequence

En—l a? E™ fi) En+1
is strictly exact (resp. coexact).

A complex of € is strictly exact (resp. coexact) if it is strictly exact (resp. coexact)
in each degree.

REMARK 1.2.11. — A complex of £ is strictly exact if and only it is strictly coexact.

LEMMA 1.2.12. — Two isomorphic objects of K () are simultaneously strictly exact
in degree n.

Proof. — Let E, F be two isomorphic objects of (£) and assume F is strictly exact
in degree n. Applying LK™, we see that the complexes

n—1 n—1
'E

s
0 — Kerdy ' £— E" ' 2 Kerdp, — 0

and

n— n—

1 F} 1
0— Kerdp ™' £ F* 12X Kerdp — 0
are homotopically equivalent. Let

a:LK™(E) = LK™(F) and B:LK"™(F) — LK™(E)

be two morphisms of complexes such that
idpgn(py —a@o B =hodrgn(r) +drgn(r)oh

where h is a homotopy. We know that LK™ (E) is strictly exact and we have to show
that so is LK™ (F). To this end, it is sufficient to show that 67~ is a cokernel of i *.

It is clear that 6% ' is an epimorphism. As a matter of fact, if g : Kerdp — X
satisfies g o 52_1 = 0, it follows from the relation

idKerd} —a%o 50 = 5?._1 o h?
that g = g o a® 0 8°. Since

goaooég_lzgoég_loa_lzo
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20 CHAPTER 1. QUASI-ABELIAN CATEGORIES

and 6%‘1 is an epimorphism, g o o® = 0 and the conclusion follows.

Assume now f : F"! — A is a morphism such that f o i’}_l = 0. From this
equality, we deduce that foa™!o i’];fl = 0. Since 6,’5‘1 is a cokernel of i'lf;_l, we get
a unique morphism f' : Kerd} — X such that f'o 6%_1 = f oa~!. Therefore,

floﬂoo(sg—l :floé%—loﬂ—l :fooz_l 0,6_1.
Since
idpn-1—a o Bt =Rl 0 g + i o T
we get
f_floﬂoo(sg—l :f0h005?‘_1+f07:7;1_10h_1.
Since f o i%’l = 0, we finally get
f=(fop 4+ foh®)osnt
and this concludes the proof. O
REMARK 1.2.13. — As suggested by the referee, we could also prove the preceding
lemma as follows. First, we note that since a split exact sequence is clearly strictly
exact, a complex which is isomorphic to zero in () is strictly exact. Now, let E and
F be two complexes which are isomorphic in x(£). By a well-known result of homo-

logical algebra, we know that there are complexes E’ and F’ which are isomorphic to
zero in K(€) and such that

E®E ~FagF'

in C(£). Using the fact that a direct sum of two complexes is strictly exact if and
only if each summand is strictly exact, the conclusion follows easily.

PROPOSITION 1.2.14. — Let
ELF35GS EN)

be a distinguished triangle of K(E). Assume E and G are strictly exact in degree n.
Then F is also strictly exact in the same degree.

Proof. — Thanks to the preceding lemma, we may assume F' is the mapping cone of
—w[-1]: G[-1] = E.
Hence, F* = E*¥ ¢ G* and
= (%% ).
Denote by 4 : Kerd% & G"~! — Ker d% the morphism induced by
(1 ‘“’""1) E"e GV 5 Eh e G"

-1
0 dn
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One checks easily that the square

n—1

Gr ! —% 5 Kerd?,

qgn- 1[ TQGH

Kerd} ® G™* —5—) Ker dj

is cartesian. Hence, it follows from our assumptions that § is a strict epimorphism.
Since

dyt: Evl — Kerdp
is a strict epimorphism, so is

dpt @idgn-1: E" ' @ G™! = Kerdp & G

By composing with d, we see, by Lemma 1.1.7, that

dg ™t F™! — Kerdp
is a strict epimorphism and the proof is complete. O

COROLLARY 1.2.15. — Strictly exact complezes form a saturated null system in IC(£).

Proof. — The axioms for a null system are easily checked thanks to the preceding
proposition. Since it is clear that a direct sum of two complexes is strictly exact if
and only if each summand is itself strictly exact, the saturation is also clear. O

DEFINITION 1.2.16. — We denote by A/(€) the full subcategory of f(€) formed by
the complexes which are strictly exact. Since A/(€) is a null system, we may define
the derived category of £ by the formula:

D(E) = K(E)/ N(£).

A morphism of [(€) which has a strictly exact mapping cone is called a strict quasi-
isomorphism.

LEMMA 1.2.17. — Let T be a triangulated category endowed with a t-structure
(T<°,729).
Assume N is a saturated null system of T. Denote by
Q:T—=TIN

the canonical functor and by (T /N)<C (resp. (T /N)Z°) the essential image of Q)7<o
(resp. Qr=0). Then,

(T/M)=2,(T/N)>°)
is a t-structure on T /N if and only if for any distinguished triangle

X, = Xo » N4
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22 CHAPTER 1. QUASI-ABELIAN CATEGORIES

where X1 € T2, Xo € T<% and N € N, we have X;, Xo € N.

Proof. — Let us proof that the condition is necessary. Consider a triangle
X1 = Xo - N5
of T where X; € T2, Xo € T<? and N € N. It gives rise to the triangle
Q(X1) = Q(Xo) = Q(V)

of T/N. Since Q(N) ~ 0,

Q(X1) — Q(Xo)
is an isomorphism in 7 /A . Its inverse belongs to

Hom 1, (Q(Xo0), Q(X1))

and our assumption shows that it is the zero morphism. Therefore, both Q(Xo) and
Q(X) are isomorphic to 0 in 7 /AN and the conclusion follows from the fact that A/
is a saturated null system.

To prove that the condition is sufficient, we have only to show that

Hom 7, (Q(Xo),Q(X1)) =0

for Xo € 7<% X; € TZ!. A morphism from Q(X,) to Q(X;) is represented by a

diagram
Y
/ X
X 0 X 1

where s, a are morphisms in 7, s being an A -quasi-isomorphism. Thus, in 7, we
have a distinguished triangle

Y 5 Xy - N 2L

where N € N. By the properties of t-structures, we also have in 7 a distinguished
triangle

Yo bY oy 5

where Yy € 7<% and ¥; € T2!. Let us embed s ot in a distinguished triangle
Yo =5 Xo — No 5.
Applying the axiom of the octahedron, we get a distinguished triangle

Y; — Ny — N X4 .
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By our assumptions, both Y7 and Ny are objects of N. Therefore, ¢ is an A -quasi-
isomorphism. Hence, we get the commutative diagram:

where the map from Yy to X; is 0 since
HOI’I]T(Y(),Xl) =0.
The conclusion follows easily. O

DEFINITION 1.2.18. — Thanks to Proposition 1.2.14, the preceding lemma shows
that the left t-structure on K(€) induces a canonical t-structure on D(E), we call it
the left t-structure of D(E). We denote LH(E) its heart and

LH" :D(&) — LH(E)
the corresponding cohomology functors.

PROPOSITION 1.2.19. — The truncation functors <", 72" associated to the left t-
structure of D(E) send a complex E respectively to

o= E"? 5 Bl s Kerd} — 0
(Ker d% in degree n) and to

0 — Coimdy ' — E™ — E"t1 ...
(E™ in degree n). Hence, LH™(E) is the complex

0 — Coimdy ™' — Kerdp — 0

(Ker d% in degree 0).
Proof. — From the definition of the left t-structure on D(£) and Proposition 1.2.6,
it is clear that 7<"(E), 72"(E) are respectively canonically isomorphic to

o E"? 5 B 5 Kerdl — 0
(Kerd% in degree n) and to

0— Kerdy ! - E"! - E" — ...

(E™ in degree n). Hence, it is sufficient to prove that this last complex is isomorphic
in D(E) to the complex:

0 — Coimdy™! — E™ — E™! — ...
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24 CHAPTER 1. QUASI-ABELIAN CATEGORIES

(E™ in degree n) through the morphism u induced by the canonical morphism
jg_l : E"! — Coim d%“l.

Since 72"t (u) is clearly an isomorphism in D(&), it is sufficient to show that so is
75"(u)[n]. This morphism is represented by the diagram:
i%_l g‘——l
0 — Kerdp ' —— E" ! ——— Kerdp —— 0

lo Jj}}_l Jl
5'11—1

0 + 0 s Coim d% ™! —2— Kerd, —— 0

and its mapping cone is the complex

-1
_5';: )
—qnt ig

§’n—l
0 — Kerdp ! —2— E"! —2 %3 Kerd @ Coimdp " ﬁ——%

Kerdg — 0
(Kerd% in degree 0). This complex is clearly strictly exact in degree —3, —2 and 0.
To show that it is strictly exact in degree —1, it is sufficient to note that

. —ont . _
Coun( j,,’il ) ~ Coim dF, 1

E

and that

(™)
1

Coimdp ' ———% Kerd}, @ Coimdpy !

is a kernel of

(1og7")

Kerd% @ Coimd} ! Ker dp.

COROLLARY 1.2.20. — Let E be a complex of £. Then,

(a) The cohomology object LH™(E) vanish if and only if the complex E is strictly
ezact in degree n.

(b) The complex E is an object of the category D=C(E) (resp. DZ°(E)) associated
to the left t-structure of D(E) if and only if E is strictly exact in each strictly
positive (resp. negative) degree.

COROLLARY 1.2.21. — The left heart of £ is equivalent to the localization of the full
subcategory of KC(€) consisting of complezes E of the form

0= E *5 B, 50
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(Ey in degree 0, 6 monomorphism) by the multiplicative system formed by morphisms
u: E — F such that the square

oF
F, — Fy

u1]\ TUO

E, — Ey
0E

is both cartesian and cocartesian.

DEFINITION 1.2.22. — An object A of LH(E) is represented by the monomorphism
f: E — F if it is isomorphic to the complex

0—>E—f—>F—>O

where F' is in degree 0.

REMARK 1.2.23. — Through the canonical equivalence
D(E) = D(E),

the left t-structure of D(E°P) gives a second t-structure on D(E). We call it the right
t-structure of D(E). We denote by RH(E) its heart and by RH™ the corresponding
cohomology functors. The reader will easily dualize the preceding discussion and
make the link between the right t-structure of D(€) and strictly coexact sequences of

£.

1.2.3. The canonical embedding of £ in LH(£). — In this subsection, we study
the canonical embedding

E — LH(E)
and we show that it induces an equivalence at the level of derived categories.
DEFINITION 1.2.24. — We denote
I:&— LH(E)
the canonical functor which sends an object E of £ to the complex
0—+E—=0
(E in degree 0) viewed as an object of LH(E).
LEMMA 1.2.25. — Assume the square

OF
F, — Fy

UIT Tuo

E, — Ey
OF
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1s cocartesian. Then Cokerdg ~ Cokerdf.

Proof. — Denote by
er : Fy — Cokerér

the canonical epimorphism. It is sufficient to show that
er oug : Fyg — Cokerdp

is a cokernel of 6. Assume z : Ey — X is such that x o g = 0. It follows from our
assumptions that there is z' : Fp — X such that ' o p = 0 and ' o ug = f. Since
er is a cokernel of §p, there is z” : Coker 6 — X such that 2" o ep = z'. Therefore
x" o (ep oug) = x and z" is clearly the only morphism satisfying this equality. |

DEFINITION 1.2.26. — Thanks to Corollary 1.2.21, the preceding lemma allows us
to define a functor
C:LH(E)—=E
by sending an object A represented by the monomorphism
E 25 E,
to Coker 6. For any object A of LH(E), we call C(A) the classical part of A.
PROPOSITION 1.2.27. — We have a canonical isomorphism
i:Col =idg
and a canonical epimorphism
e:idgy@ey = IoC.
Together, they induce the adjunction isomorphism
Hom 3, (A, I(E)) = Hom ;(C(A), E).
In particular, £ is a reflective subcategory of LH(E).
Proof. — Let E be an object of £. Since the cokernel of
0=+ FE
is clearly isomorphic to E, we get a canonical isomorphism
i(E):CoI(E) — E.
Let A be an object of LH(E) represented by the monomorphism
B 25 E,.

The canonical morphism
Eq — Cokerdg

induces a morphism
e(A): A— ToC(A).
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Since the square
0 — Cokerdg
[, ]
El _— EO

is cocartesian, e(A) is an epimorphism in LH(E).
From the general results on adjunction formulas, we know that it is sufficient to
show that both the composition of

e(I(E)): I(E) > IoColI(E)
and

I(i(E)) : IoCoI(E) — I(E)
and the composition of

C(e(A)) : C(A) — C oI oC(A)

and

i(C(A)): CoIoC(A) — C(A)
give identity morphisms. This follows obviously from the definition of e and . O
COROLLARY 1.2.28. — The canonical functor

I:&— LH(E)
18 fully faithful. Moreover, a sequence

E' - E — E"
is strictly exact in & if and only if the sequence

I(E"Y - I(E) — I(E")
is exact in LH(E).
Proof. — From the preceding proposition, it follows that
Hom cH(g)(I(E),I(F)) =Hom (CoI(E),F).

Since C o I ~ idg, we see that [ is fully faithful.

Assume the sequence
0o E S ESE 50
is strictly exact. By a well known property of the heart of a t-structure, the cokernel
of I(e') : I(E") — I(E") is obtained by applying the functor LH® to the complex

’
€

0—-E =—SE-—>0
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(E in degree 0). Since €’ is a monomorphism, Coker I(e’) is represented by this same

complex. The map

el

0 » E' > B >0

JVO lell
0 >0 > E" >0
being clearly a strict quasi-isomorphism, it follows that CokerI(e’') ~ I(E"). From

the adjunction formula of Proposition 1.2.27, we know that I is kernel preserving.
Hence, the sequence

1(e")

0 I1(E") X 1(E) I(E") =0

is exact.
Assume now that the sequence

!

B4 eSS E
is strictly exact. Applying the preceding result to the sequence
0 — Kere' =+ E — Kere” =0
and using the fact that I is kernel preserving we see easily that the sequence
I(E") - I(E) — I(E")

is exact.
Finally, assume the sequence

1B 29, 1y X9, 1)
is exact. From what precedes, it follows that
I(Coime') = Coim I(€'),
I(Kere") = Ker I(e").

Since Coim I(e') ~ Ker I(e"), the result follows from the fact that I is fully faithful.
O

ProPoOSITION 1.2.29
(a) An object A of LH(E) represented by the monomorphism
E; 25 E,

is in the essential image of I if and only if 0p is strict.
(b) Assume
A— B

is a monomorphism in LH(E) and B is in the essential image of I. Then A is
also in the essential image of I.
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(c) Assume
045425 4" 50
is a short exact sequence in LH(E) where both A’ and A" are in the essential
image of I. Then A is also in the essential image of I.
Proof. — (a) & (b) If g is strict, then the sequence

0— E; E)Eo — Cokerdg — 0

is strictly exact and by applying the functor I, we see that A ~ I(Cokerdg).
Assume now that there is an object F' of £ and a monomorphism

A — I(F).
By Proposition 1.2.27, we know that this monomorphism is induced by a morphism
C(A) — F.
Hence, the canonical morphism
A — I(C(A))

is also a monomorphism. This means, by definition, that the complex

0— E, 25 Ey — Cokerdg — 0

is strictly exact at Ey. Therefore dg is strict and the conclusion follows.
(c) Assume A is represented by the monomorphism

E 25 R,

and A" is isomorphic to I(E") where E" is an object of £. Since the morphism
a": A — A" comes from a morphism C(A) — E", it is represented by a morphism
of complexes

0F
E, — Ey

0 —_ EII
Since the mapping cone of this morphism is the complex

0= E 25 Ey % E" -0,
the kernel of a” is represented by the monomorphism
E; £) Ker a.

associated to dg. By assumption, this kernel is in the essential image of I. By (a), it
follows that (3 is a strict monomorphism. Since the canonical monomorphism

Kera — Ey
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is also strict, Proposition 1.1.7 shows that dg itself is a strict monomorphism and (a)
allows us to conclude. O

DEFINITION 1.2.30. — For any object A of LH(E), we define the vanishing part of
A to be the kernel V(A) of the canonical epimorphism

e(A): A— IoC(A).

REMARK 1.2.31. — For any object A of LH(E), V(A) is represented by a bimor-
phism. Moreover, V(A) ~ 0 if and only if A is in the essential image of I.

PROPOSITION 1.2.32. — The canonical embedding
I:&— LH(E)
induces an equivalence of categories
D(I) : D(E) — D(LH(E)).
which exchanges the left t-structure of D(E) with the usual t-structure of D(LH(E)).
Proof. — By Corollary 1.2.28, we know that I transforms a strictly exact complex of

€ in an exact complex of LH(E). Therefore, there is a unique functor D(I) making
the diagram

e—L L rue

le lQLuw>
D(I)
D(€) —— D(LH(E))

commutative.
Since any object A of LH(£) may be represented by a monomorphism

E; 25 E,.
of £, it has a resolution of the form
0— I(E,) = I(Ey) > A—0.

Hence, using Proposition 1.2.29, we may apply the dual of [6, Lemma 4.6] to the
essential image of I considered as a subset of Ob LH(£). This shows that for any
complex A of LH(E) there is a complex E of £ and a quasi-isomorphism

I(E) — A.

Thanks to a well-known result on derived categories, the conclusion follows from
the fact that a complex E of £ is strictly exact in a specific degree if and only if
D(I)(E) is exact in the same degree. O
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1.2.4. The category LH(E) as an abelian envelope of £. — In this subsection,
we show that LH() is in some sense an abelian envelope of £. Although we have not
stated explicitly the dual results for RH(E), we will use them freely.

DEFINITION 1.2.33. — Let 4 an abelian category. We denote by Rez (£, .A) (resp.
Lex(E, A)) the category of right (resp. left) exact functors from £ to A.

PROPOSITION 1.2.34. —  For any abelian category A, the inclusion functor
I:&— LH(E)
is strictly exact and induces an equivalence of categories
I' : Rex(LH(E), A) — Rex(£, A).
By this equivalence, exact functors correspond to strictly exact functors.

Proof. — Tt follows from Corollary 1.2.28 that I is strictly exact. Hence I’ is a well
defined functor. Let us prove that it is essentially surjective. Let

F:£E— A

be a right exact functor.
The functor
HPoC(F)or=0:K(£) = A
transforms a quasi-isomorphism of £ (£) into an isomorphism of A. As a matter of
fact, let
u: X =Y

be such a quasi-isomorphism. Since Q(u) is an isomorphism in D(), so is 7<0Q(u) ~
Q(7=%). Denote by Z the mapping cone of

70 750X — 750V,
By construction, Z¥ = 0 for & > 0. Since Z is strictly exact, the sequence

Z?rP57z2'52°>0
is strictly exact. Applying F, we get the exact sequence

F(Z7?) - F(Z7Y) - F(Z°% = 0.
Hence H*(KC(F)(Z)) = 0 for k > —1. Since the triangle
K(F)(r<"X) = K(F)(r<"Y) = K(F)(2) =
is distinguished in f(A), the long exact sequence of cohomology shows that
HC o C(F) o 7=%(u)

is an isomorphism in A.
It follows from the preceding discussion that there is a functor

G:DE) = A
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such that G o Q = H% o C(F) o 7<0. Let
F' i LHE) — A

be the restriction of G to LH(E). Since F' o I ~ F, it remains to show that F" is
right exact. Assume

04 SHA 4" 50
is an exact sequence in LH(E). Since we may replace A’ and A by isomorphic objects,
we may assume that A’ k = A% = 0 for k > 0 and that o’ is induced by a morphism
of K(€) that we still denote a’. Let Z be the mapping cone of a’. By construction,
Z € K<°(€) and we have a distinguished triangle

!

AL Az
in K(£). Hence, A” ~ Z in D(£) and
F'(A") ~ HY(K(F)(2)).
Applying H° to the distinguished triangle
K(F)(A) = K(F)(4) = K(F)(2)
of K(A), we get the exact sequence
F'(A") = F'(A) — F'(A") — 0.

Note that when F is strictly exact, KC(F')(Z) is strictly exact in any degree’k # 0 and
we get the short exact sequence

0— F'(A") - F'(A) —» F'(A") — 0.

To see that I’ is fully faithful, it is sufficient to recall that any object A of LH(E)
may be embedded in an exact sequence

I(E)) = I(Ey) > A— 0.
O
LEMMA 1.2.35. — Let & be a full subcategory of the abelian category A. Assume &

18 essentially stable by subobjects (i.e. for any monomorphism
A—E
of A with E in £ there is E' in £ and an isomorphism A ~ E'). Then,
(a) Any morphism of € has a kernel and a coimage and they are computable in A.
(b) A sequence
ESFSG
of € is exact in A if and only if

Coimu ~ Kerv

mé.
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E—2 5 F

[

EI I%FI
u

is a cartesian square in £ and u is a strict epimorphism then so is u'.

Proof. — To avoid confusions, we will make use of the canonical inclusion functor
J: &€= A
(a) Let
u:E—F

be a morphism of £. Since
Ker J(u) — J(E)
is a monomorphism, there is an object K of £ and an isomorphism
Ker J(u) ~ J(K).
This gives us a morphism
J(K) — J(E)
which is a kernel of J(u). Since £ is a full subcategory of A, this morphism is of the

form J(k) where
k:K—>FE

is a morphism in £. One checks easily that k is a kernel of w in £. Hence,
J(Keru) ~ Ker J(u).
Since the canonical morphism
Coim J(u) — J(F)
is a monomorphism, there is an object C' of £ and an isomorphism
Coim J(u) ~ J(C).
Proceeding as above, we get a morphism
c:E—C

such that
J(c): J(E) = J(C)
is a cokernel of
J(k) : J(Keru) — J(E).
Therefore,
c:E—C

is a cokernel of k£ : Keru — E and C is a coimage of u. Hence,

J(Coimu) ~ Coim J(u).
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Parts (b) and (c) follow directly from (a). d

PROPOSITION 1.2.36. — Let £ be a quasi-abelian category and let A be an abelian
category. Assume that the functor

J:&E— A
is fully faithful and that
(a) for any monomorphism
A— J(E)
of A there is an object E' of £ and an isomorphism
A~ J(E",

(b) for any object A of A, there is an epimorphism
J(E) = A
where E is an object of £.
Then, J extends to an equivalence of categories
LH(E) ~ A.
Proof. — It follows from (b) that for any complex A € D~ (A) there is a complex E
of D~ (€) and a quasi-isomorphism
J(E) — A.
Moreover, thanks to the preceding lemma, a complex E € D~ (£) is strictly exact in

degree k if and only if J(E) is exact in degree k. It follows from these facts that J
induces an equivalence

D () = D (A
which exchanges the left t-structure of D~ (€) with the canonical t-structure of D~ (A).
In particular,

LH(E) ~ A.

1.3. Derivation of quasi-abelian functors

In this section, we assume that £ and F are quasi-abelian categories and we will
give conditions for an additive functor

F:&E—>F

to be left or right derivable (Although we do note state explicitly the corresponding
results for multivariate functors, the reader will figure them out easily). We will also
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investigate to what extend F' is determined by its left and right derived functors.
Finally, we will explain how to replace F' with a functor

G : LH(E) — LH(E)

with the same left or right derived functor.

1.3.1. Derivable and explicitly derivable quasi-abelian functors. — As in
the abelian case, we introduce the following definition.

DEFINITION 1.3.1. — Let
F: &€= F

be an additive functor and denote as usual
Qe : K(€) = D), Qr:K(F)— D)
the canonical functors.
Assume we are given a triangulated functor
G: DY) — DH(F)
and a morphism
9:QroKT(F) = GoQe.

Then, (G, g) is a right derived functor of F' if for any other such pair (G', ¢'), there
is a unique morphism

h:G— G
making the diagram

GoQ¢
/

QroK*Y(F) hoQ:s

o
G' o Qs
commutative. The functor F is right derivable if it has a right derived functor. In this
case, since two right derived functors of F' are canonically isomorphic, we may select
a specific one. We denote such a functor RF' and call it the right derived functor of
F.
Dually, assume we are given a triangulated functor
G:D (&) =>D (F)
and a morphism
g:GoQe = Qr oK (F).
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Then, (G, g) is a left derived functor of F if, for any other such pair (G', g'), there
is a unique morphism

h:G —G
making the diagram
G' o Qe

hoQ¢ Qr oK™ (F)

GoQ¢

commutative. The functor F' is left derivable if it has a left derived functor. In this
case, since two left derived functors of F' are canonically isomorphic, we may select a
specific one. We denote such a functor LF' and call it the left derived functor of F.

In order to give a criterion for derivability, we will adapt the usual results for
abelian functors.

DEFINITION 1.3.2. — Let
F:£&—>F

be an additive functor.
A full additive subcategory P of £ is F'-projective if

(a) for any object E of £ there is an object P of P and a strict epimorphism
P— E.
(b) in any strictly exact sequence
0—-E —-E—E"—>0

of £ where E and E" are object of P, E' is also in P.
(c) for any strictly exact sequence

0—-E -—E—E">0
where E’, E and E" are objects of P, the sequence
0— F(E')— F(E) > F(E")—>0
is strictly exact in F.

Dually, a full additive subcategory Z of £ is F-injective if

(a) for any object E of £ there is an object I of Z and a strict monomorphism

E — 1.
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(b) in any strictly exact sequence
0—>E —-E—E"—>0

of £ where E' and E are object of Z, E" is also in 7.
(c) for any strictly exact sequence

0—-E -E—E'—0
where E’, E and E" are objects of Z, the sequence
0— F(E'") > F(E) > F(E") >0
is strictly exact in F.

LEMMA 1.3.3. — Let P be a subset of Ob(E). Assume that, for any object E of £,
there is a strict epimorphism

P—FE
with P in P. Then, for any object E of C~ () there is a quasi-isomorphism

u:P—>FE
with P in C~(P) and such that each
u* : P¥ — E*
is a strict epimorphism.

Proof — We may restrict ourselves to the case where E¥ = 0 for & > 0. To simplify
the notations, we set as usual E; = E~*. We will proceed by induction. Assume we
have already Py, u, df such that

dE
0 —— B —2 Ejp_q e Ey——0
UkT Uk—l/[ UOT
di
0—— Py —— Pp—q e Ph—0

is a k-quasi-isomorphism (i.e. the mapping cone is strictly exact in degree greater or
equal to k). Let us form the cartesian square

diyy
Ery1 — Kerd?

’UIT Uk]
Eiq — s Kerdf

Let
w Pk+1 — E,IC_H
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be a strict epimorphism with Pyy; in P and set

dbyy =vow Ugr1 =V ow.
Let us show that
dE
k+1
0——>Ek+1—)Ek """"""" EO—_>0
Uk+1 Uk Ug
T dr,, T T
0—— Ppyg —— Pp e Py,——0

is a (k + 1)-quasi-isomorphism. It follows from the definition of the mapping cone
and from the induction hypothesis that the only thing to prove is that the sequence

Uk 41 df,H Uk
(_df+1 ) 0 _dkP
Pey1 ———— B 1 ® Py ————— Ex & Pry

is strictly exact. By construction,

(%)

Eiy1 — Ej11 ® Py

df+1 Uk
0 —df

Exp1 @ Py —————= E, ® Py

is a kernel of

Since w is a strict epimorphism, the conclusion follows easily.
To conclude, let us show that ugy; is a strict epimorphism. By applying LHy, it
follows from the induction hypothesis that

uy : Kerd? — Kerd?
is a strict epimorphism. Therefore, v’ is also a strict epimorphism and by composition,

SO iS Ug1. O

PROPOSITION 1.3.4. — Let P be an F-projective subcategory of £. Then, the full
subcategory N~ (P) of K~ (P) formed by strictly exact complezes is a null system and
the canonical functor

K= (P)/N~(P) = D" (£)
is an equivalence of categories. Dually, let T be an F-injective subcategory of £.

Then, the full subcategory NV (Z) of KT (Z) formed by strictly exact complezes is a
null system and the canonical functor

K*(@D)/N*(Z) - D*(€)

is an equivalence of categories.

Proof. — Thanks to Lemma 1.3.3, the proof goes as in the abelian case. O
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PROPOSITION 1.3.5. — Let £, F be quasi-abelian categories and let
F:&E—>F
be an additive functor.
(a) Assume & has an F-injective subcategory. Then, F has a right derived functor
RF : DY (&) — DY (F).

(b) Dually, assume £ has an F-projective subcategory. Then, F has a left derived
functor

LF:D () » D (F).

Proof. — Thanks to Lemma 1.3.3 and Proposition 1.3.4, the proof goes as in the
abelian case. O

The preceding proposition is the main tool to show that a functor is derivable.
However, it does not give a necessary and sufficient condition for derivability. This is
the reason of the following definition.

DEFINITION 1.3.6. — An additive functor
F: &€= F

is explicitly right (resp. left) derivable if £ has an F-injective (resp. F-projective)
subcategory.

REMARK 1.3.7. — Let
F: &> F

be a right derivable left exact functor. Call F-acyclic an object I of £ for which the
canonical morphism
F(I) —» RF(I)
is an isomorphism and assume that for any object E of £ there is an F-acyclic object
I and a monomorphism
E— 1

Then, F-acyclic objects of £ form an F-injective subcategory and F is explicitly right
derivable.
1.3.2. Exactness properties of derived functors

PROPOSITION 1.3.8. — Let
F: &€= F

be an additive functor of quasi-abelian categories and let 7 be an F-injective subcate-
gory of £. Consider the right derived functor

RF : DY (&) — DY (F).
Then

SOCIETE MATHEMATIQUE DE FRANCE 1999



40 CHAPTER 1. QUASI-ABELIAN CATEGORIES

(LL) The functor RF is left exact for the left t-structures of DT (E) and DY (F) if
and only if the image by F of any monomorphism

Il —)IO

of & where Iy, I are objects of Z is a monomorphism of F.
(LR) The functor RF is left exact for the left t-structure of DV(E) and the right
t-structure of DT (F) if and only if the image by F of any monomorphism

L = I

of & where Iy, I are objects of Z is a strict monomorphism of F.

(RL) The functor RF is left exact for the right t-structure of DY (E) and the left
t-structure D1 (F).

(RR) The functor RF is left exact for the right t-structure of DV(£) and the right
t-structure DT (F).

Proof
(LL) The condition is necessary. Let A be an object of LH(E) represented by a
monomorphism

J AN A

where Iy, I; are objects of Z. It follows that RF'(A) is isomorphic to the complex
0= F(I) 29 P(1y) — 0

(F(Ip) in degree 0). Our assumption implies that this complex is strictly exact in
degree —1. Therefore, F'(9) is a monomorphism in F.
The condition is also sufficient. Let E be an object of DZ°(€). Since

E~72E,

we may assume that E*¥ = 0 for £ < —1. Replacing E by an isomorphic complex if
necessary, we may even assume that E* is an object of Z for any k € Z. Since E is
an object of D2°(&),
E' -5 E°
is a monomorphism of £. Hence,
F(E™') - F(E®)

is a monomorphism of F and
RF(E) ~ F(E)
is an object of DZO(F).
(LR) Let us show that the condition is necessary. Let A be an object of LH(E)

represented by a monomorphism

L3,
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where Iy, I; are objects of Z. It follows that RF'(A) is isomorphic to the complex

0— F(h) 29 F(ly) = 0

(F(Ip) in degree 0). Our assumption implies that this complex is strictly coexact in
degree —1. Therefore, F'(§) is a strict monomorphism in F.

The condition is also sufficient. Let E be an object of DV (&) which is strictly exact
in each strictly negative degree. Replacing E by an isomorphic complex if necessary,
we may assume that E* = 0 for k < —1 and that E* is an object of Z for any k > —1.
Since E is strictly exact in degree —1, the differential

E7' - E°
is a monomorphism. Therefore, our hypothesis shows that
F(E™') - F(E®)
is a strict monomorphism in F and the complex
RF(E) ~ F(E)

is strictly coexact in each strictly negative degree.

(RL) & (RR) Let E be an object of Dt (&) which is strictly coexact in each strictly
negative degree. Replacing E by an isomorphic complex if necessary, we may assume
that E¥ = 0 for k¥ < 0 and that E* is an object of Z for any k¥ > 0. Therefore, the
complex

RF(E) ~ F(E)

is strictly coexact in each strictly negative degree. O
REMARK 1.3.9. — One checks easily that the condition in part (LL) of the preceding
proposition is equivalent to the fact that

LH ' oRF(A)~0
for any object A of LH(E). Similarly the condition in part (LR) of the preceding
proposition is equivalent to the fact that

RH™ ' oRF(A)~0
for any object A of LH(E).
PROPOSITION 1.3.10. — Let

F:&E—>F

be an explicitly right derivable functor of quasi-abelian categories and consider its right
derived functor

RF : DY (&) = DT (F).
Then the canonical morphism

IoF - LH°oRF ol (resp. [0 F — RH°o RF o)
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is an isomorphism if and only if F is RL (resp. RR) left exact.

Proof. — We consider only the RL case, since the RR case may be treated similarly.
Assume that

ToF~LHoRFol.
Let
0—-E -E—E'—0

be a strict exact sequence of £ and consider the induced distinguished triangle
I(E'") = I(E) — I(E") X%
of D1 (E). Applying RF and passing to cohomology, we get the exact sequence
0— LH°oRFoI(E') = LH° o RFoI(E) — LH® o RF o I(E")
of LH(F). Using our assumption, we see that the sequence
0> IoF(E')—IoF(E)— IoF(E")
is exact in LH(F). Therefore the sequence,
0— F(E') = F(E) = F(E")

is strictly exact in F and F'is RL left exact.
Conversely, assume F' is RL left exact. Let Z be an F-injective subcategory of £
and let I be a resolution of an object E of £ by objects of Z. The sequence

0—-E—I°=1
being strictly coexact in &, our assumption shows that the sequence
0 — F(E) — F(I°) — F(I")
is strictly exact in F. Therefore,
IoF(E)~LH®oF(I) ~LH® o RF o I(E)
as requested. O

PROPOSITION 1.3.11. — Let
F: &€= F

be an explicitly right derivable functor of quasi-abelian categories and consider its right
derived functor

RF : DY (&) —» DM (F).
Then
(LL) The functor RF is left exact for the left t-structures of DT (E) and DY (F) and

LH°oRFolI~IoF
if and only if F' is LL left exact.
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(LR) The functor RF is left exact for the left t-structure of D (E) and the right
t-structure of DY (F) and
RH°oRFoI~]IoF

if and only if F' is LR left exact.
(RL) The functor RF is left exact for the right t-structure of DT (E) and the left
t-structure DY (F) and

LH°oRFoI~[oF

if and only if F is RL left exact.
(RR) The functor RF is left exact for the right t-structure of DY (E) and the right
t-structure DV (F) and

RH°oRFoI~]IoF
if and only if F' is RR left exact.
Proof. — (LL) This follows from the preceding proposition and Proposition 1.3.8.
(LR) From the preceding proposition and Proposition 1.1.15, the condition is clearly
sufficient. Let us show that it is also necessary. By Proposition 1.3.10, we already
know that F' is RR left exact. Since F' transforms any strict morphism into a strict
morphism, to conclude, it is sufficient to show that F transforms any monomor-

phism into a strict monomorphism. Let A be the object of LH(E) represented by a
monomorphism

E, 5 R,
of £. Consider the associated distinguished triangle
E,—-Ey— A LN
of D*(£). Applying the functor RF and taking cohomology, we get the exact sequence
0 — RH° o RFoI(E;) = RH® o RF o I(Ey) — RH® o RF(A)
of RH(F). Hence the sequence

0= F(E) 282 pEy)

is strictly coexact in F and F'(dg) is a strict monomorphism in F.
(RL) & (RR) This follows directly from Proposition 1.3.10. O

1.3.3. Abelian substitutes of quasi-abelian functors. — In this subsection,
our aim is to show that, under suitable conditions, a functor F': £ — F gives rise to
a functor G : LH(E) — LH(F) which has the same left or right derived functor.

DEFINITION 1.3.12. — Two explicitly right (resp. left) derivable quasi-abelian func-
tors are right (resp. left) equivalent if their right (resp. left) derived functors are
isomorphic.
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PrOPOSITION 1.3.13. — Let
F:&—F
be an additive functor.

Assume F is explicitly right derivable. Then F' is right equivalent to an explicitly
right derivable left exact functor

FO. e F
which is unique up to isomorphism.

Dually, assume F is explicitly left derivable. Then F is left equivalent to an ex-
plicitly left derivable right exact functor

o E—-F
which is unique up to isomorphism.

Proof. — Let Z be an F-injective subcategory of £. Let E be an object of £ and let
I be a right resolution of E by objects of Z. Since

RF(E) ~ F(I),
it is clear that

LH® o RF(E)
is in the essential image of

I:&— LH(E).
Set

FO=CoLH 0].
By construction, the functor F© is left exact and is isomorphic with F on Z. Therefore,
T forms an FC-injective subcategory of £ and we get
RF° ~ RF.
Hence FO is right equivalent to F.
Assume now that G : £ — F is an explicitly right derivable left exact functor
which is right equivalent to F'. Since we have
LH® 0o RG(E) ~ I oG(E)
and RF ~ RG, we see that
G(E)~CoLH’o RG(E) ~ F°

and the conclusion follows. O
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PROPOSITION 1.3.14. — Let
F: &€= F

be an additive functor between quasi-abelian categories. Assume F' is explicitly right
derivable. Denote T an F-injective subcategory of € and consider the right derived
functor
RF : DY (&) — DT (F).
In order that there exists an explicitly right derivable functor
G:LH(E) — LH(F)
and an isomorphism
RF = RGoD(I),

it is necessary and sufficient that one of the following equivalent conditions is satisfied:

(a) The functor RF is left exact with respect to the left t-structures of D (€) and

DH(F).

(b) The functor F° is strongly left exact.

In such a case, G is right equivalent to the explicitly right derivable left exact functor

LH® o RF : LH(E) — LH(F).

Moreover, the restriction of this functor to £ is isomorphic to F if and only if F' is
strongly left exact.

Proof. — First, let us show that conditions (a) and (b) are equivalent.
(a) = (b). Let
0—>A"5A—-4">0
be a short exact sequence of LH(€). From the associated distinguished triangle
RF(A') — RF(A) — RF(A")
and the fact that LH=* o RF(A"”) ~ 0, we deduce that the sequence
0 — LH° o RF(A') — LH® o RF(A) — LH® o RF(A")
is exact in LH(F). Hence,
LH® o RF : LH(E) — LH(F)
is a left exact functor. Consider now a morphism
e :E'—F
in £. Since the sequence
0 — Kere' - E' - FE

is strictly exact in £, it gives rise to an exact sequence in LH(E). Applying LH?o RF,
we get the exact sequence

0— LH°o RFoI(Kere') = LH° o RF o I(E') — LH® o RF o I(E)
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of LH(F). Therefore, the sequence
0 — F°(Kere') — F°(E') — F°(E)
is strictly exact in F and F° is a strongly left exact functor.
(b) = (a). Let
I — I
be a monomorphism of £ with both I; and Iy in Z. Since F° is strongly left exact,
FO(I) — F°(Iy)

is a monomorphism of F. The conclusion follows from the fact that F° and F coincide
onZ.
Now, let us come back to the main proof.

Necessity. Since RG is left exact with respect to the left t-structures of D*(£) and
DY (F), sois RF and condition (a) is satisfied.

Sufficiency. Denote G the functor
LH® o RF : LH(E) — LH(F)

and let J denote the full additive subcategory of LH(E) formed by the objects A
such that

LH* o RF(A) ~0
for any &k # 0. It follows from condition (a) and from the long exact sequence of
cohomology associated to F' that G is a left exact functor and that for any short
exact sequence
0—-A —>5A—-A4">0

where A’ and A are objects of 7, A” is also an object of J and the sequence
0—-GA") - GA) - GA") =0

is exact in LH(F). Let A be an object of LH(E). As an object of D(E), A is
isomorphic to a complex

-1 0
0Tt 4,4,
of objects of Z. It follows that A is represented by the monomorphism
I7! — Kerd°.

Since the square
71—

I

I™' —— Kerd®
is cartesian, it represents a monomorphism

A—J
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where J is the object of LH(E) represented by the monomorphism
It =1
Since the sequence
0= II™YHY=II%—=J—=0
is exact in LH(E) and I(I71), I(I%) are objects of 7, we see that J is also an object
of J. Together with what precedes, this shows that J is G-injective. Now, let E be

an object of PT(£) and let
E—J

be an isomorphism where J is a complex of Z. We have
RGoD(I)(E) =GolI(J)~ F(J)~ RF(E)
as requested.
Assume now that
G : LH(E) = LH(F)
is an explicitly right derivable functor such that
RF ~ RG' o D(I).

It follows from this formula that

RG o D(I) ~ RG' o D(I).
Since D(I) is an equivalence of categories, we see that

RG ~ RG'".

Therefore G' is right equivalent to G.
The conclusion then follows from the definition of F©. O

PropoOsITION 1.3.15. — Let
F:£E—=F

be an additive functor of quasi-abelian categories. Assume F is explicitly left derivable
and consider its left derived functor

LF:D (&) = D (F).
Then, there exists an explicitly left derivable functor
G: LH(E) = LH(F)

such that
LF = LG oD(I)

and any such functor is left equivalent to the explicitly left derivable right exact functor
LH®o LF : LH(E) — LH(F).

Moreover, the restriction of this functor to £ is isomorphic to F if and only if F is
regular and right ezact.
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Proof. — Let P be a F-projective subcategory of £. It follows from the construction
of LF that it is right exact with respect to the left t-structures of D~ (£) and D~ (F).
Therefore,

LH o LF : LH(E) — LH(F)

is a right exact functor. Denote it by G and denote Q the essential image of I|p.
Consider a short exact sequence of LH(E)

04 —>A-5A4">0

where A and A" are objects of Q. Since I is a fully faithful strictly exact functor,
this sequence is isomorphic to the image by I of a strict exact sequence

0—-E -E—E"—0

of £ where E and E" are objects of P. It follows that E’ is an object of P and
consequently that A’ is an object of Q. Moreover, since the sequence

0— F(E') > FE)—FE")—0
is strictly exact in F, the sequence
0> GA") = GA) - GA")—0

is exact in LH(F). In order to show that Q is G-projective, it is thus sufficient to
note that since any object A of LH(E) is a quotient of an object of the form I(E)
where F is an object of £, it follows from the fact that P is F-projective that A is
also a quotient of an object of @. The preceding discussion shows that G is explicitly
left derivable. Consider the functor

LF :D (&) —» D (F).
Since G o I(P) ~ F(P) for any object P of P, we get the requested isomorphism
LG oD(I)~ LF.
Assume now that
G : LH(E) — LH(F)
is an explicitly left derivable functor such that
LF ~ LG' o D(I).
It follows from this formula that
LG o D(I) =~ LG' o D(I).
Since D(I) is an equivalence of categories, we see that
LG ~ LG'.

Therefore G' is left equivalent to G.
The last part of the result follows from Subsection 1.3.2 O
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PROPOSITION 1.3.16. — Let £ and F be quasi-abelian categories and let
F:&—F (resp. E: F =€)
be an explicitly left (resp. right) derivable functor. Assume that
Hom ,(F(X),Y) ~ Hom (X, E(Y))
functorially in X € £, Y € F (i.e. F is a left adjoint of E). Then,
Hom p £\ (LF(X),Y) ~ Hom p ¢ (X, RE(Y))
functorially in X € D~ (£), Y € DY (F).

Proof. — Let P be an F-projective subcategory of £ and let Z be an E-injective
subcategory of F. Using the canonical morphisms

idD(}-) N (neZ)

and the properties of E-injective and F-projective subcategories, one checks easily
that any morphism

uw:LF(X) > Y

of D(F) may be embedded in a commutative diagram of the form

LF(X) 5y

|k

F(P)——1
u

where

(a) P (resp. I) comes from an object of K~ (P) (resp. K*(Z)),
(b) the morphisms u' : F(P) — I, a:Y — I come from morphisms of K (F),
(c) the isomorphism F(P) = LF(X) comes from a quasi-isomorphism

B:P—X
of K=(£).

To such a diagram, we associate the unique morphism v : X — RE(Y') making the
diagram

X 5 RE(Y)

(.

commutative. Note that in this diagram v' : P — E(I) is obtained from u’ by
adjunction and that RE(Y) — E(I) is induced by a. We leave it to the reader to
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check that v depends only on w and that the process of passing from u to v defines a
functorial morphism

Hom p, £/ (LF(X),Y) — Hom p, ) (X, RE(Y)).
Proceeding dually, we get a functorial morphism
HomD(g)(X, RE(Y)) — HomD(f)(LF(X), Y)
and it is easy to check that this defines an inverse of the preceding one. The conclusion
follows. O
COROLLARY 1.3.17. — In the situation of the preceding proposition,
LH® o LF : LH(E) — LH(F)
is a left adjoint of
LH® o RE : LH(F) — LH(E).
Proof. — Since F is a right adjoint of F', E is strongly left exact. In particular,
RE(LH(F)) c DZ°(€)
for the left t-structure. The conclusion follows from the isomorphisms
Hom 445 (LH® 0 LF(X),Y) Hom 507 (77° 0 LF(X),Y)
~ HomD(}-)(LF(X), Y)
and
Hom LH(S)(X, LH° o RE(Y)) ~ HomDSo(g)(X,TSO o RE(Y))
=~ Hom p, (X, RE(Y))
holding for any X € LH(E), Y € LH(F). O

1.3.4. Categories with enough projective or injective objects
DEFINITION 1.3.18. — An object I of £ is injective (resp. strongly injective) if the
functor
Hom (-, I): &P — Ab
is exact (resp. strongly exact). Equivalently, I is injective (resp. strongly injective) if
for any strict (resp. arbitrary) monomorphism
u:E—F
the associated map
Hom (F,I) — Hom (E, I)
is surjective.
Dually, an object P of £ is projective (resp. strongly projective) if the functor

Hom(P,-) : £ — Ab
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is exact (resp. strongly exact). Equivalently, P is projective (resp. strongly projective)
if for any strict (resp. arbitrary) epimorphism

u:FE —F

the associated map
Hom (P, E) — Hom (P, F)

is surjective.

REMARK 1.3.19. — What we call a strongly projective object was simply called a
projective object by some authors. We have chosen to stick to our definition for
coherence with our notions of exact and strongly exact functor and also because
projective objects are more frequent and more useful than strongly projective ones.

DEFINITION 1.3.20. — A quasi-abelian category £ has enough projective objects if
for any object E of £ there is a strict epimorphism

P—FE

where P is a projective object of £.
Dually, a quasi-abelian category £ has enough injective objects if for any object E
of £ there is a strict monomorphism

E—1T

where I is an injective object of £.

REMARK 1.3.21. — Let
F. &€= F

be an additive functor.

Assume £ has enough injective objects. Then, the full subcategory Z of £ formed
by injective objects is an F-injective subcategory. In particular, F' is explicitly right
derivable.

Dually, assume £ has enough projective objects. Then, the full subcategory P of
& formed by projective objects is an F-projective subcategory. In particular, F' is
explicitly left derivable.

PROPOSITION 1.3.22. — Let P (resp. Z) be a full additive subcategory of £. Assume
that:

a) The objects of P (resp. T) are projective (resp. injective) in E.
b) For any object E of £, there is an object P of P (resp. I of ) and a strict
epimorphism (resp. monomorphism)

P—E (resp. E—1I).
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Then the canonical functor
K=(P) = D7 (£) (resp. K*(I) = D" ()
s an equivalence of categories.

Proof. — We treat only the part corresponding to P. The statement for Z will follow
by duality.

Thanks to Lemma 1.3.3 the proof may proceed as in the abelian case and it is
sufficient to show that strictly exact objects of kL~ (P) are isomorphic to 0. Let P be
an object of £~ (P). Assume P is strictly exact. By definition, this means that the
sequences

0 — Kerd? — P, — Kerdf | — 0
are strictly exact for any k € Z. If Kerd? | is projective in £, the sequence splits and
Ker dkP is also projective. Therefore, a decreasing induction shows that the complex
P is split and the conclusion follows by Remark 1.2.2. O

PROPOSITION 1.3.23. — Using the same assumptions and notations as in the pre-
ceding proposition, a sequence

B % E B
is strictly ezact (resp. coexact) in £ if and only if the sequence of abelian groups
Hom (P, E') — Hom (P, E) — Hom (P, E")
(resp. Hom (E",I) — Hom (E,I) — Hom (E',I) )
is exact for any P € P (resp. I € 7).
Proof. — We consider only the case of P, the other one is obtained by duality. The

condition is clearly necessary, let us prove that it is also sufficient.
We will first show that a sequence

'

0 E S E B

is strictly exact if the sequence
0 — Hom (P, E') — Hom (P, E) — Hom (P, E")

is exact for any P € P. Let z : X — E be a morphism of £ such that " oz = 0.
It follows from the preceding proposition that we may find a strict exact sequence of
the form

Pp5PS5X 50
where P; and Py are in P. It follows from our hypothesis that the sequence

0 — Hom (P, E') — Hom (P, E) — Hom (P, E")
is exact for £ € {0,1}. Therefore, there is a morphism z' : Ly — E’ such that
e oz’ =z oe. Since
eozr'od=20€05=0,

MEMOIRES DE LA SMF 76



1.3. DERIVATION OF QUASI-ABELIAN FUNCTORS 53

it follows that ' o § = 0. Hence, there is a morphism z” : X — E' such that
z" oe = z'. Clearly,

eozg'oe=¢ox' =x0¢
and we see that e’ o '/ = z. Since z'" is clearly the only morphism satisfying this
property, it follows that e’ is a kernel of e¢” and the sequence

’

0—-E S ESE"
is strictly exact.
To conclude, it is sufficient to show that a morphism

f:E—F
of £ is a strict epimorphism if the associated morphism
Hom (P, E) — Hom (P, F)
is surjective for any P € P. But this is obvious since a relation of the form
e=foe
where € : P — F'is a strict epimorphism implies that f is itself a strict epimorphism.
O
PRroPOSITION 1.3.24
(a) An object P of £ is projective if and only if I(P) is projective in LH(E).
(b) The category £ has enough projective objects if and only LH(E) has enough

projective objects. Moreover, in such a case, any projective object of LH(E) is
isomorphic to an object of the form I(P) where P is projective in &.

Proof. — (a) Assume P is a projective in £. Consider an epimorphism u : A — B in
LH(E) and a morphism f : I(P) — B. We have to show that f factors through wu.
Since we may replace A, B by isomorphic objects, we may assume that A and B are
respectively represented by the monomorphisms F; LLN Ey and Fy LN Fy and that
u comes from the morphism of complexes

)

ulT UO/[
0p
E,—— E,
We may also assume that f is represented by the morphism of complexes

OF
Fi—F,

[

0——P
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Since u is an epimorphism,

By Fy 12%0), Fo
is a strict epimorphism. It follows from the fact that P is projective in £ that there
are two morphisms ¢’ : P — Eg, ¢" : P — Fj such that ¢ = ug o ¢’ + dp o ¢".
Therefore the morphism of complexes

)
E, —25 B,

Ll

induces a morphism f’: I(P) — A such that uo f' = f.
Since [ is an exact functor, it follows from the adjunction formula

Hom ;4,¢(C(A), E) ~ Hom (A, I(E))
that C transforms a projective object of LH(E) into a projective object of £. Therefore
an object P of £ such that I(P) is projective in LH(E) is projective in .

(b) Assume & has enough projective objects and let A be an object of LH(E). We
know that there is an epimorphism

I(E) » A
where E is an object of £. Choose a strict epimorphism in &
P—E
where P is projective. We know that,
I(P) — I(E)
is an epimorphism in LH(£) and that I(P) is projective. Therefore, LH(E) has
enough projective objects.
Assume now that £LH(€) has enough projective objects and let E be an object of
&. There is an epimorphism
P — I(E)
in LH(E) where P is a projective object in LH(E). Since C has a right adjoint, it is
cokernel preserving and transforms epimorphisms in LH(£) into strict epimorphisms
in £. Therefore,
C(P)—> E
is a strict epimorphism. Since we have already remarked that C(P) is a projective
object of &, it is clear that £ has enough projective objects.
Since any projective object @ of LH () is a quotient of an object of the form I(P)
where P is a projective object of £, it is a direct summand of such and object. It

follows from Proposition 1.2.29 and part (a) that it is itself isomorphic to the image
by I of a projective object of £. O

MEMOIRES DE LA SMF 76



1.3. DERIVATION OF QUASI-ABELIAN FUNCTORS 55

REMARK 1.3.25. — Assume £ has enough projective objects. For any object E of £
and any injective object I of £, we have

Hom ,(E,I) ~ RHom(E,I) ~ RHom eI (E), I(I)).

J
Therefore, Ext CHE)
injective in LH(E).

(I(E),I(I)) vanish for j > 0. Nevertheless, I(I) is not in general

PROPOSITION 1.3.26
(a) An object J of & is strongly injective if and only if I(J) is injective in LH(E).
(b) Assume that for any object E of £ there is a strict monomorphism

E—J
where J is a strongly injective object of £. Then, £ is abelian.
Proof. — (a) Let J be an object of £ and assume I(J) is injective in LH(E). Let
E—=F
be a monomorphism in £. We know that
I(E) — I(F)
is a monomorphism in LH(E). Therefore,
Hom (4,(¢y(I(F), I(J)) — Hom (4, (I(E), I(J))
is surjective. Since the functor
I:&— LH(E)
is fully faithful, it follows that
Hom (F,J) — Hom(E, J)

is surjective. This shows that J is strongly injective in £.
Assume now that J is a strongly injective object of £. Up to isomorphism, a
monomorphism u of LH(E) is represented by a cartesian square

Ug
EO —_— FO
54 54
Ui
E1 —_— F1
whose associated sequence
)2
0= B ———>(“‘) Eod Fy =%, gy

is thus strictly exact. Denote a and  the second and third morphism of the preceding
sequence and denote v the canonical morphism

Ey® F; — Coim 3.
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In LH(E), a morphism f from

E 25 B,
to I(J) is given by a morphism
f() By — J

such that fo o dg = 0. Denote g the morphism

Eoo B 2% g
Since g o & = 0, there is a morphism ¢’ : Coim 8 — J such that
g=4gon.
Since the canonical morphism
Coim 8 — Fy

is a monomorphism in £ and J is strongly injective in £, we can extend ¢’ into a
morphism ¢" : Fy — J. Clearly, this morphism induces a morphism h from

25 R

to I(J) in LH(E) such that f = h ou. Hence I(J) is injective in LH(E).
(b) We know that for any complex E of £ there is a complex J of £ and a quasi-
isomorphism

u:E—J
such that, for any k € Z, J* is a strong injective object of £ and
uk : BF — gk
is a strict monomorphism. Let
E 5 E

be a bimorphism of £ and denote by E the associated object of LH(E). From what
precedes, we may find a complex J and a quasi-isomorphism

u:BE—J
such that
u1:E1—>J1, UoiEo—)Jo
are strict monomorphisms and J* are strong injective objects of £. Hence, the complex
J 5 KerdS,

is isomorphic to F and ¢’ is a bimorphism. Since J; is a strong injective object, &'
has an inverse in £. It follows that E is quasi-isomorphic to 0. Therefore ¢ is an
isomorphism of £. The conclusion follows easily. O
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1.4. Limits in quasi-abelian categories

1.4.1. Product and direct sums. — In this subsection, we study products in
quasi-abelian categories. Our results show mainly that a quasi-abelian category &
has exact (resp. strongly exact) products if and only if LH(E) (resp. RH(E)) has
exact products and the canonical functor

E— LH(E) (resp. £ — RH(E))
is product preserving. We also give criteria for these conditions to be satisfied. We

leave it to the reader to state the dual results for direct sums.

LEMMA 1.4.1. — Let A be an additive category and let I be a small set. Then, A’
is an additive category and the canonical functor

KA = k(A)!
is an equivalence of triangulated categories.

Proof. — For any C € C(A") and any i € I, denote C; the complex of A defined by
setting

Cir=(C")
& = (dé)i-
This gives us a canonical functor
ol = c(A)!
Cr (Ci)ier
which is trivially an isomorphism of categories. Since two morphisms
f:¢C—->D, g:C—D
are homotopic in C(A?) if and only if
fi:Ci—=D;, g¢i:C;i— D,

are homotopic in C(.A) for every ¢ € I, it is clear that we have a canonical isomorphism
of categories

K(AD) S5 k(A).
In A!, we have
(A®@ B);=A; ® B;.
Hence, the preceding functor exchanges the distinguished triangles of X (A!) with the
distinguished triangles of x(A)?. O

LEMMA 1.4.2. — Let A be an additive category with products. Then, both C(A) and
K(A) have products.
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Proof. — The functor
[I: 4" -4
icl
being additive gives rise to a functor
c(ID :eah) = e
iel
and to a functor
k(D : k(A" = k(A).
il
By composition with the canonical equivalences
c(A" = c(A)
and
KA = K(AT),
this gives us functors

II:c' —cw

i€l
H KA = K(A)
i€l
which are easily checked to be product functors for the corresponding categories. [

PROPOSITION 1.4.3. — Let £ be a quasi-abelian category and let I be a small set.
Then, T is quasi-abelian and the canonical functor

DEN — D(E)!

s an equivalence of triangulated categories which is compatible with the left and right
t-structures. In particular, we have canonical equivalences

LHED ~ LHE), RH(ED) ~ RH(E).
Proof. — For any morphism f : E — F of £T, we have
(Ker f); =Ker f; and (Coker f); = Coker f;.

Therefore, an object E of [C(ET) is strictly exact in degree n if and only if the complex
C; is strictly exact in degree n for any ¢ € I. The conclusion follows easily from this
fact. O

DEFINITION 1.4.4. — A quasi-abelian category £ has ezact (resp. strongly ezact)
products if it is complete and if the functor

H:Sl-—)g

i€l

is exact (resp. strongly exact) for any small set I.
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PROPOSITION 1.4.5. — Let £ be a complete quasi-abelian category. Assume £ has
enough projective objects. Then, £ has exact products.

Proof. — Let
be a small family of strict epimorphisms of £. We have to prove that
IR
i€l i€l
is a strict epimorphism. Let
v:P =[] F
il
be a strict epimorphism where P is a projective object of £. For any i € I, it follows
from our assumptions that there is w; : P — E; such that
Pi 0V = U; o w;.
Let w: P — [];c; Ei be the unique morphism such that

biow = w;.

Clearly,
(H ui> ow=v
i€l
and the conclusion follows from the fact that v is a strict epimorphism. O
PROPOSITION 1.4.6. — Assume £ is a quasi-abelian category with exact products.

Then, the category D(E) has products. Moreover, for any small set I,

II:p@©)" = D)

iel
is a triangulated functor which is exact for the left t-structures. It is exact for the
right t-structures, if and only if products are strongly exact in £.

H:EI—HE'

i€l

Proof. — Since the functor

is exact, it gives rise to a functor

p([]) : pE) = DE).

i€l
By composition with the canonical equivalence
D) ~ D(EY)
this gives us a functor
Pier : D(E)" = D(&).

We will show that this is a product functor for D(£).
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Let E be an object of D(£) and let F' be an object of D(£)!. We have to prove
that the canonical morphism

(*) Hom 5, ¢ (E, Pie1 Fi) — [ [ Hom ¢ (E, Fy)
i€l
is bijective.
Let
EL R

be a family of morphisms of D(£). We may assume that there is a strict quasi-
isomorphism

s:F—G
of K(£7) and a family of morphisms
gi: E— G (tel)

of IC(€) such that the morphism f; is represented by the diagram

G.
9i ' r Si

for each 7 € I. Denote

g: E — H G,
il
the morphism of (£) associated to the family (g;)ics. Since Pier is a functor, [];c; si
is a strict quasi-isomorphism of f(£). Hence, we may define

[+ E — P F;

as the morphism of D(€) represented by the diagram

e

V i€l %@'EI Si
E IIE
iel
Since the diagram
[Tics si
E g H Gi i€l H F,

i€l i€l
lpz' lpi
84

gi
G —F;
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commutes in [C(£), we see that the diagram

PR s (753
el
fi lpi
F;

is commutative in D(E). This shows that (*) is surjective.
To show that (*) is injective, we have to prove that if

frE=]]F
i€l

is a morphism of D(€) such that the diagram

i€l
0 lpi
F;

commutes in D(E) for every ¢ € I, then f = 0. Let

be a diagram of i (€) representing f.
Recall that a diagram

Z
z s
X SN Y
of K(€) where s is a strict quasi-isomorphism, represents the morphism
x5y
of D(€) if and only if there is a commutative diagram of x(€) of the form

7N

X Y

Nl

ZI

where t is a strict quasi-isomorphism.
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For any i € I, we have p; o f = 0. Therefore, there is in () a commutative
diagram of the form

E-Ysa IR

iel
2
0 ' lpi
t;

Zi+——F,
where t; is a strict quasi-isomorphism. Denoting
z:G— H Z;
il
the morphism of (€) associated to (z;)icr, we get, in (), the commutative diagram
FE g > G 4 5 H F;
iel
0 : k
[Tier ti
[[z+T[F

iel iel

Since Pjey is a functor, [[;c; i is a strict quasi-isomorphism. Therefore, f = 0 in
D).
Since product functors are always strongly left exact, the last part of the proposition

is clear. O
COROLLARY 1.4.7. — Assume & is a quasi-abelian category with exact products.
Then,

(a) The abelian category LH(E) (resp. RH(E)) is complete and the canonical functor
E— LH(E) (resp. £ — RH(E))

is product preserving.
(b) Products are exact in LH(E).
(¢) Products are exact in RH(E) if and only if they are strongly exact in £.

Proof. — Let (A;);er be a family of objects of LH(E). We know that A; may be
represented by a monomorphism
E, = F
of £. Hence, it is clear that the object
[14
i€l
of D(£) is isomorphic to the complex

[HE -]

el icl
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Products being strongly left exact functors, this complex is in LH(E). Since LH(E) is
a full subcategory of D(£), it follows that [[;.; A; is the product of the family (4;);er
in LH(E). Using the fact that

II: 2@ — )
i€l
is triangulated, we check easily that products are exact in LH(&). This proves (b).

Let (A;);er be a family of objects of RH(E). We know that A; may be represented
by an epimorphism

of £. Hence, it is clear that the object [],.; A; of D(E) is isomorphic to the complex
i€l iel

This complex has components in degree 0 and 1. Hence, it is in DZ°(€) for the right

t-structure of D(£). It follows that

[T Hom gyye) (X, Ai) ~ Hom 1,4y (X, [ [ As) = Hom gy (X, RH(] ] 44))-

iel il i€l
Hence,
RH(]] 4)
iel

is a product of the family (A;);cr in RH(E). If products are strongly exact in &,
RE(J] 4 ~ [] 4
iel il
and the exactness of products in RH(E) follows as in the case of LH(E). Conversely,

if products are exact in RH(E), a family of morphisms (u;);cr of £ gives rise to the
exact sequences

I(E;) EICIN I(F;) — I(Cokeru;) — 0
in RH(E) and since
HI(Ez‘) — HI(Fi) — HI(Cokerui) -0
i€l i€l il
is exact in RH(E), one sees that products are strongly exact in £.

To conclude, it remains to note that thanks to the preceding constructions of
products in LH(E) and RH(E), the last part of (a) is obvious. O

PROPOSITION 1.4.8. — Let £ be a quasi-abelian category and assume that LH(E)
(resp. RH(E)) is complete. Then, £ is complete.
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Proof. — Let us prove that £ has products if so has LH(E). Let (E;)jes be a small
family of objects of £. Let

pi+ [T 1(E)) = I(E;)
jed

denote the canonical projections of the product to its factors. Let

g : C(I] 1(E;)) — E;

JjEJ
denote the morphism obtained by composing C(p;) with the canonical isomorphism
C o I(E]) -:J—) Ej.
We will prove that
c(I] 1E))
jeJ
together with the projections g; form a product of the family (Ej;);ecJ.
First, let

zj: X = E; (jed)
be a family of morphisms of £. Denote

o I(X) = [ 1(E;)

=2
the unique morphism of LH(£) such that
pjoa = I(x;).

Let

z: X = ([ 1(E)))

jedJ

be the morphism obtained by composing C(z') with the canonical isomorphism

X 5 CoI(X).
Clearly,
gjoxT=1;
for j € J.
Next, let

z: X = O([[ 1(Ey))
jeJ
be a morphism such that

giox=0 (jeJ).

MEMOIRES DE LA SMF 76



1.4. LIMITS IN QUASI-ABELIAN CATEGORIES 65

In LH(E), let us form the cartesian square

[]1E) L= 10 (] 1(E)
jed JjeJ
uT Tl(w)
Y ———— I(X)
where the first horizontal arrow is the canonical epimorphism. Since
I(gj) oy = pj
it is clear that
pjou=1I(gj)oyou=1I(gjox)ov=0
and we deduce that u = 0. Therefore,
I(z)ov=you=0.

Since y is an epimorphism, so is v and we get I(z) = 0. Hence, z = 0.

To conclude, let us prove that £ has products if so has RH(E). By duality it is
equivalent to show that £ has direct sums when L#(€) has direct sums. From the
adjunction formula

Hom (C(A), E) ~ Hom 4,4 (4,I(E))
it follows that, for any small family (E;);c; and any object X of £, we have
Hom ; (C(EP I(E:)), X) ~ Hom 14, (€D I(E:), (X))

i€l i€l
~ [[ Hom 14y (I(E:), I(X))
i€l
~ H Hom (E;, X).
i€l
Hence,
c@P1(E)
i€l
is a direct sum of the family (E;);cs in . O
1.4.2. Projective and inductive systems. — In this subsection, we study cate-

gories of projective systems of a quasi-abelian category. We leave it to the reader to
state the dual results for inductive systems.

Let £ be a quasi-abelian category and let Z be a small category. Recall that the
category of projective systems of £ indexed by Z is the category

err

of contravariant functors from 7 to €.
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PROPOSITION 1.4.9. — Let £ be a quasi-abelian category and let T be a small cate-
gory. Then, the category of projective systems of £ indexed by T is quasi-abelian.

Proof. — Since for any morphism
u:E—F
of ET°° | we have
(Keru)(7) ~ Keru(z),
(Coker u) (i) ~ Coker u(i).

the conclusion follows easily. a

DEFINITION 1.4.10. — Let F' be an object of £ and let ¢ be an object of Z.
Assuming £ is complete, we denote F? the object of £I7° defined by setting
RS s | B 2
a€Hom _(i,i")
A projective system isomorphic to a system of the form F* will be said to be of
elementary type.

Similarly, assuming £ is cocomplete, we denote F; the object of £Z°° defined by
setting
F@i) = F(HomI(i’,i)) _ @ F
aEHomI(i’,i)
A projective system isomorphic to a system of the form F; will be said to be of
coelementary type.

REMARK 1.4.11. — With the notation of the preceding proposition, F* is exchanged
with F; if one exchanges £ with £°P and 7 with Z°P.

PROPOSITION 1.4.12. — If £ is complete, then
Hom ;o0 (E, F*) ~ Hom (E(3), F)
and there is a strict monomorphism
E - [[EG)
€T
for any object E of ET7".
Similarly, if £ is cocomplete, then
Hom ;7o (F;, E) ~ Hom . (F, E(i))
and there is a strict epimorphism
PE(): ~ E
v
for any object E of ET.
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Proof. — Thanks to the preceding remark, it is sufficient to prove the first statement.
For any i’ € Z, we have

Hom (E(i"), F'(i')) ~ Hom g ,(Hom (i,i'), Hom (E(i'), F)).
These isomorphisms give us the isomorphism
Hom ;o0 (E, FY) ~ Hom g,z (hi, hf o E)
where h; and hf denotes respectively the functors
Hom (¢,-) and Hom (-, F).
Using standard results on representable functors, we get
Hom gzo0 (E, F*) ~ h¥ o E(i) ~ Hom (E(i), F).
Now let us prove the second part of the result. For any i € I, the identity morphism
E(i) — E(i)
induces, by an isomorphism of the preceding kind, a morphism
E — E(i).
Together, these morphisms give us a canonical morphism
u:E — H E(i)*.
i€l
Choose i’ € I. To conclude, we have to prove that u(i') is a strict monomorphism.

Note that . ‘
(JIeeH@) =[G =] T  EG-

i€l i€l i€l aEHomI(i,i’)
Composing u(z') with this isomorphism, we get a morphism
(@) E@) =] I EG)
€T aGHomI(i,i’)
such that
Pa © pi 0 (i) = E()
for any a : ¢ — i’ in Z. For a = id; this shows that v(i’) is a strict monomorphism

and the conclusion follows. |
REMARK 1.4.13. — Taking F to be a constant functor in the preceding proposition
shows that

lim Fi(i') ~ F

i'eT

if £ is complete.
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COROLLARY 1.4.14. — Let £ be a complete (resp. cocomplete) quasi-abelian cate-
gory.
(a) Assume F is an injective (resp. a projective) object of £. Then, for any i € Z,
Fi (resp. F;) is injective (resp. projective) in ET™°.
(b) Assume & has enough injective (resp. projective) objects. Then EL™ has enough
injective (resp. projective) objects

PROPOSITION 1.4.15. — Let £ be a quasi-abelian category with exact direct sums
and let T be a small category. Then, there is a canonical equivalence
LHET™) m LHE)TT.
Proof. — The canonical inclusion functor
I:&— LH(E)
gives rise to a fully faithful functor
I:EF7 o LH(ET.
Let E be an object of £T°° and let
A— I(E)
be a monomorphism of LH(E)T"". Since
A(r) — I(E(@))
is a monomorphism of LH(E) for any i € Z, we can find for any ¢ € Z an object E'(3)
of £ and an isomorphism
I(E'(i)) ~ A(®3).
Using these isomorphisms, we may turn E' into an object of £Z” such that
I(E") ~ A.
Therefore, I(£T°) is a full subcategory of LH(£)T™ which is essentially stable by
subobjects. Let A be an object of LH(E)T”™. We know that there is a canonical

epimorphism
P AG); — A.
iel
Since, for any i € Z, there is an epimorphism
I(E(i)) — A(3)
with E(i) in £, we get an epimorphism
P 1(E()): — A
i€l
By definition,

EP1EG))O =P P 1EGG ~IEP P EG)

i€l 1€l o' —>i 1€l ! —>i
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Therefore,
P 1(EG):
il
is an object of I(£2°"). Applying Proposition 1.2.36, we get the conclusion. O

1.4.3. Projective and inductive limits

PROPOSITION 1.4.16. — Let £ be a quasi-abelian category and let T be a small cat-
egory. Assume & has exact products. Then,

I(lim B()) = lim I(B(i))
i€z i€T
in LH(E). Moreover, a similar formula holds in RH(E) if and only if the functor
](jLn T ¢
i€
is reqular.

Proof. — The first part follows directly from the fact that I has a left adjoint. Let
us now consider the second part.

The condition is sufficient. Denote J the full sdbcategory of £ formed by the
functors E for which the canonical morphism

I(im E(i)) — lim I(E(7))
€T €T
is an isomorphism in RH(E). Thanks to Corollary 1.4.7
I:& > RH(E)
preserves products. Hence, for any object F of £ and any i’ € Z, we have
I(F (i) = I(F)" (i)

for any ¢ € Z and it follows from Remark 1.4.13 that F' " is an object of J. Since
one checks also easily that a product of objects of 7 is in 7, it follows from Propo-
sition 1.4.12 that any objet E of £7 may be embedded in a strictly coexact sequence
of the form

0E—=J=J!

where J® and J! are in J. For such a sequence, the sequence
0—>I0oE—ToJ'—ToJ!
is exact in RH(E)%. Projective limit functors being strongly left exact, the sequence
0 — lim I(E(i)) — Lm I(J°(i)) — Lim I(J'(3))
ieT i€l i€l
is exact in RH(E) and the sequence

0 — lim E(i) — lim J°(3) — lim J* (i)

i€l i€l i€l
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is strictly exact in £&. Thanks to our assumption, the last morphism in this second
sequence is strict. Hence the sequence

0 — I(lim E(i)) — I(lim J°(5)) — I(lim J' (i)
€T iez i€l
is exact in RH(E). The conclusion follows easily.
The condition is necessary. Let

f:E—F

be a strict morphism of £Z. Since the sequence
0—>Kerf I—> E—>F
is strictly coexact in £Z, the sequence
0—>IToKerf—+IoFE —IoF

is exact in RH(€)%. Hence, the sequence
0 — lim I(Ker f(i)) — Jim I(E(z)) — lim I(F (7))
€T i€ i€t
is exact in RH(E). Thanks to our assumption, it follows that the sequence
0 — I(lim Ker £(i)) — I(im E(i)) — I(lim F(i))
€T €T ieT
is also exact in RH(E). Hence, the sequence
0 — limKer f(i) — lim E(:) — lim F (i)
€T i€ €T

is strictly coexact in £ and the morphism

lim E(5) — im F(i)
i€l €T
is strict. O
PROPOSITION 1.4.17. — Let & be a cocomplete quasi-abelian category. Then filtering
inductive limits are exact in LH(E) and commutes with
I:&— LH(E)

if and only if filtering inductive limits are strongly exact in £.

Proof. — The condition is easily seen to be necessary, let us prove that it is also suf-
ficient. A strongly exact functor being regular, the dual of the preceding proposition
shows already that filtering inductive limits commute with I. To prove that filtering
inductive limits are exact in LH(£), note that the functor

lig: €% — €

i€l
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being strongly exact, it is strictly exact. Hence, by Proposition 1.2.34, it gives rise to
an exact functor

L:LH(ET) = LH(E)

and a canonical isomorphism
Lo IgI >~ Ig o hﬂ .
€T

Composing L with the canonical equivalence
(*) LHE) ~ LH(ET)
we get an exact functor

L' : LH(E)E = LHE).
Let A be an object of LH(£)%. Equivalence (*) shows that, in LH(£)%, we have an
exact sequence of the form

0o IeoB ~ I 0By — A0
where
6: E1 — EO
is a monomorphism of £Z. It follows that the sequence
0—Lo IgI(El) — Lo IgI(E()) — LI(A) —0
is exact in LH(E). Therefore, the sequence
0 — lim I¢ (B (i) — lim Ig (Eo(3)) — L'(4) — 0

€T €T

is exact in LH(E). It follows that
L'(A) ~ lim A7)
ieT

and one checks easily that this isomorphism is both canonical and functorial. The
conclusion follows directly. O

1.5. Closed quasi-abelian categories

1.5.1. Closed structures, rings and modules. — Recall (see e.g. [11]) that a
closed additive category is an additive category £ endowed with an internal tensor
product

T:ExE—E,

a unit object
U € Ob(&),

an internal homomorphism functor

H:EPxEE
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and functorial isomorphisms
T(E,F)~T(F,E)
T(U,E)~FE
Hom ((T(E, F),G) ~ Hom  (E, H(F,G));
these data being subject to a few natural coherence axioms.
Let £ be a closed additive category. By a ring in £, we mean an unital monoid of
£. It corresponds to the data of an object R of £, a multiplication morphism
m:T(R,R) — R
and a unit morphism
u:U — R.
These data being assumed to give rise to the usual commutative diagrams expressing
that m is associative and that w is a unit for m.
Let R be aring in £. By an R-module, we mean an object E of £ endowed with a
(left) action of R. This action is a morphism
a:T(RLM)— M

which gives rise to the usual commutative diagrams expressing its compatibility with
the multiplication m and the unit u of R.
A morphism of an R-module E to an R-module F is defined as a morphism
f:E—F

of £ which is compatible with the actions of E and F. One checks easily that, with
this definition of morphisms, R-modules form an additive category which we denote
by Mod(R).

We leave it to the reader to check the following result.

PROPOSITION 1.5.1. — Let £ be a closed additive category and let R be a ring of
E. Assume & is quasi-abelian (resp. abelian). Then, Mod(R) is quasi-abelian (resp.
abelian). Moreover, the forgetful functor

Mod(R) — &

preserves limits and colimits. In particular, a morphism of Mod(R) is strict if and
only if it is strict as a morphism of £.

PROPOSITION 1.5.2. — For any object E of £, the multiplication m of R induces
an action of R on
T(R,E).
For any R-module F, we have
Hom 4,4 (T (R, E), F') ~ Hom ;(E, F).
In particular, T(R, E) is projective in Mod(R) if E is projective in &.
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Proof. — The fact that T'(R, E) is an R-module is obvious. Let us prove the isomor-
phism. Define
¢ : Hom p,q(p) (T(R, E), F) — Hom ¢ (E, F)
by setting
¢(h) =hoa
where a : E — T(R, E) is the composition

E ~T(U,E) 2“4, 7(R, E)
and
¢ : Hom (E,F) — HomMod(R)(T(R, E),F)
by setting
Y(h) = ap o T(idg, h)
where ar is the action of R on F. A simple computation shows that v is an inverse
of ¢ and the conclusion follows. |

1.5.2. Induced closed structure on LH(E)

PROPOSITION 1.5.3. — Let £ be a closed quasi-abelian category with enough projec-
tive objects. Denote
T:ExESE

the internal tensor product, U the unit object and
H:EPxE—E

the internal homomorphism functor. Assume that for any projective object P the
functor T(P,-) is exact and that T (P, P') is projective if P' is projective. Then,

(a) H(P,-) is exact if P is projective,

(b) H(:,I) is ezxact if I is injective,

(c) H(P,I) is injective if P is projective and I is injective.
Moreover, T is explicitly left derivable, H is explicitly right derivable and we have the
canonical functorial isomorphisms

(d) LT(X,Y) ~ LT(Y, X),

(e) LT(X,U)~X ~ LT (U, X),

(f) RHom (LT(X,Y), Z) ~ RHom (X, RH(Y, Z)),

(g) RH(U,Z)~ Z.
where X, Y € D~(£), Z € DY (E).
Proof. — Thanks to our assumptions, (a), (b) and (c) follow directly from the ad-
junction formula

Hom (T(X,Y),Z) = Hom (X, H(Y, Z)).

Let P denote the full subcategory of £ formed by projective objects. It follows from
the hypothesis that (P, ) is T-projective and that (P°P, ) is H-injective. Therefore,
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T is explicitly left derivable and H is explicitly right derivable. To prove (d), (e)
and (f), we may reduce to the case where X, Y are objects of .~ (P). In this case,
LT(X,Y)~T(X,Y)and RH(Y,Z) = H(Y, Z). Since T'(X,Y) is an object of X~ (P),
everything follows from the fact that £ is a closed quasi-abelian category. To prove
(g), we use (f) with Y = U. This gives us the isomorphism

RHom (X, Z) ~ RHom (X, RH(U, Z))

where X € D(£), Z € DT(£). Fix Z € D(£) and denote C the cone of the
canonical morphism

Z —-HU,Z)— RH(U,2Z).
It follows from what precedes that
RHom (X,C) ~0
for any X € D~ (£). Hence, the complex
Hom (X, C)
is exact for any X € P and C itself is strictly exact (see Proposition 1.3.23). Therefore,
C ~ 0 and
Z ~RH(U,Z).

O

COROLLARY 1.5.4. — In the situation of the preceding proposition, LH(E) is canon-
ically a closed abelian category. Its internal tensor product is given by

T=LHo LT : LH(E) x LH(E) — LH(E),
its unit object by U = I(U) and its internal homomorphism functor by
H=LH®o RH : LMH(E)® x LH(E) — LH(E).

The functor T (resp. H) is explicitly left (resp. right) derivable and we have the
canonical isomorphisms

LT(I(X),I(Y)) ~LT(X,Y)
and

RH(I(Y),I(Z)) ~ RH(Y, Z)
for any X, Y € D~(£) and any Z € DT (E).

Assume moreover that the functor
T(P,):£E—¢&
is strongly exact for any projective object P of £. Then, for any projective object Q
of LH(E) the functor
T(Q,-) : LH(E) — LH(E)

is ezact and T(Q, Q") is projective if Q' is projective in LH(E).
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Proof. — Tt follows from parts (d) and (e) of the preceding proposition that 7" is
symmetric and that I(U) is a unit. The coherence axioms are also easily checked.

Let Y, Z € LH(E). We know that Y is isomorphic to a complex P of £~ (P).
Therefore,

RH(Y,Z)~ H(P,2).
The first non-zero component of H(P, Z) is of degree —1 and is isomorphic to
H(P° Zz71,
the second non-zero component is of degree 0 and isomorphic to
Hom (P°, Z°) @ Hom (P~*,Z71)

the differential being

Hom (P°,d ;')
Hom (dg',Z27Y) )"

Since Z € LH(E), d' is a monomorphism. So, the differential of degree —1 of
H(P,Z) is also a monomorphism and RH(Y, Z) € DZ°(&) for the left t-structure.
Moreover, we have also LT(X,Y) € D=%(&) for any X, Y € LH(E). Therefore, using
part (e) of the preceding proposition, we get successively

Hom ;4 ¢)(T(X,Y), Z) ~ Hom 150 (77° 0 LT(X,Y), Z)
~ Hom ¢ (LT(X,Y), 2)
~ Hom 5,z (X, RH(Y, 7))
~ Hom 14y (X, H(Y, Z))

for X,Y, Z € LH(E).
Since LH(E) has enough projective objects, T' is clearly left derivable.
Consider P € P and an exact sequence

0—+A 5A4A—-4" >0
of LH(E). This sequence corresponds to a distinguished triangle
A Ao AT

of D*(£). Hence,

RH(P,A") — RH(P,A) — RH(P,A") X%
is a distinguished triangle of D1 (&). Since H(P,) is strongly left exact,

RH(P,Y) ~ H(P,Y)
isin LH(E) when Y is replaced by A', A or A"”. Therefore, the sequence
0 — H(I(P),A") — H(I(P),A) — H(I(P),A") =0
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is exact in LH(E). Tt follows that (I(P), LH(E)) is H-injective and that H is explicitly
right derivable.
To conclude, it is sufficient to recall that any object X of D~ (€) is isomorphic to
the image of an object of X~ (P) and to note that if X, Y € P and Z € £, we have
LTI(X),1(Y)) = T(I(X),1(Y))
~ LH°o LT(X,Y)
~T(X,Y)

and

RH(I(Y),1(2)) ~ H(I(Y),1(2))
~ LH o RH(Y, Z)
~ H(Y,Z).

Let us now treat the last part of the statement. Thanks to Proposition 1.3.24,
we may assume that @ = I(P) and that @' = I(P') where P and P’ are projective
objects of £. Let

0—-A'-5A—-54">0

be an exact sequence of LH(E). This corresponds to a distinguished triangle
Al A AT,
of D7 (£). Applying LT (I(P),-), we get the distinguished triangle
LT(I(P),A") — LT(I(P), A) — LT(I(P), A") &%
We know that
LT(I(P),X)~T(P,X)

for any object X of D~ (£). Therefore, the long exact sequence of cohomology shows
that T'(I(P),.) is exact on LH(E) if

LHYT(P,A")) ~0
for any object A" of LH(E). This will clearly be the case if
TP,):E—E

preserves monomorphisms. Keeping in mind the fact that T'(P, -) is exact and strongly
right exact, this last condition is equivalent to the one in our statement. To conclude
we only have to note that

T(I(P),1(P")) = I(T (P, P"))
and use Proposition 1.3.24. O
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CHAPTER 2

SHEAVES WITH VALUES IN
QUASI-ABELIAN CATEGORIES

2.1. Elementary quasi-abelian categories

2.1.1. Small and tiny objects. — In this subsection, we study various notions of
smallness for an object of a quasi-abelian category. We leave it to the reader to state
the corresponding results for the dual notions.

DEFINITION 2.1.1. — An object E of a cocomplete additive category & is
(a) small if
Hom (E, @ F;) ~ @ Hom (E, F;),
el i€l
for any small family (F;);cs of €.
(b) tiny if
lim Hom (E, F(i)) ~ Hom (E, lim F(2))
ieT i€t
for any filtering inductive system
E:T—¢€.

REMARK 2.1.2. — Here, we have followed Grothendieck’s definition of a small ob-
ject. We don’t know if the notion of a tiny object was already defined before. Of
course, every tiny object is small. It is also easy to see that in a abelian category,
every small projective object is tiny but this is not necessarily the case in a quasi-
abelian one. There is also a possible stronger condition of smallness. This condition
is clarified in the following proposition.

PROPOSITION 2.1.3. — Let £ be a cocomplete quasi-abelian category. An object E of
& is such that
Hom (E, lim F(j7)) ~ lim Hom (E, F(5))
JjE€ET JET
for any inductive system
F:7=¢&
if and only if E is a small strongly projective object of £.
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Proof. — Taking for Z a discrete category or a category of the form
oL 3D
Hom (E, .)

preserves direct sums and cokernels. Hence, F is a small strongly projective object of

£.

one sees that

Conversely, if E is a small strongly projective object, Hom (E,.) is both cokernel

and direct sum preserving. Viewing

lim F(5)

JET
as the cokernel of the canonical morphism

P FG) - PFG)
aj—rj' jeJ

allows us to conclude. a

PROPOSITION 2.1.4. — Let £ be a cocomplete quasi-abelian category. Assume fil-
tering inductive limits are exact in €. Then, a small projective object of £ is tiny.

Proof. — Let Z be a small filtering category and let P be a small projective object
of £. Denote Q the full subcategory of £ formed by the functors E for which the
canonical morphism

li_rn’ Hom (P, E(i)) — Hom (P, lim E(i))

i€l i€l
is an isomorphism. Since P is small, it is clear that Q is stable by direct sums.
Moreover, for any E in £ and any i € Z, we have

Hom (P, E;(i')) ~ Hom (P, @) E)~ @ Hom(P,E) ~ Hom (P, E);(i’)
a:i—>i! a:i—ri’
and it follows from the dual of Remark 1.4.13 that the functor E; belongs to Q.

Therefore, using Proposition 1.4.12, we see that any object E of £7 may be embedded
in a strictly exact sequence of the form

Q1—>Q0—>E—>0

where @1 and @y belong to Q. Since filtering inductive limits are exact in £, the
sequence

lim Q1 (2) — li Qo (¢) — lim E(i) — 0
ieT i€T i€T
is strictly exact in £. Since P is projective in £, we see that the sequences
Hom (P, Q1 (2)) — Hom (P, Qo(i)) — Hom (P, E(i)) — 0 (i el)

Hom (P, lim @1 (4)) — Hom (P, ling Qo(i)) — Hom (P, lim E(§)) — 0
€T i€l €T
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are exact. Inductive limits being exact in the category of abelian groups, it follows
that
lim Hom (P, E(t)) ~ Hom (P, lim E(7)).
ieT i€l
O

2.1.2. Generating and strictly generating sets. — Although, in this subsec-
tion, we consider only generating and strictly generating sets, the reader will easily
obtain by duality similar considerations for cogenerating and strictly cogenerating
sets.

Let us recall (see e.g. [11]) that a subset G of Ob(£) is a generating set of £ if for
any pair

f
—
E ; F
of distinct parallel morphisms of £, there is a morphism
GSE
with G € G, such that
foe# foe.

It is clearly equivalent to ask that for any strict monomorphism s : S — E which is
not an isomorphism, there is a morphism

G —FE

with G € G which does not factor through s. Moreover, if £ is cocomplete and G is
small, it is also equivalent to ask that for any object E of £ there is an epimorphism

of the form
@ G j = E
jeJ
where (Gj);es is a small family of elements of G
The preceding notion is suitable for the study of abelian categories where any
monomorphism is strict. For quasi-abelian ones, the following definition is more
useful.

DEFINITION 2.1.5. — A strictly generating set of £ is a subset G of Ob(£) such that
for any monomorphism

m:S—FE

of £ which is not an isomorphism, there is a morphism
G—FE
with G € G which does not factor through m.
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LEMMA 2.1.6. — Letu: E — F be a morphism of £. Then, the following conditions
are equivalent:
(a) u is a strict epimorphism,
(b) u does not factor through a monomorphism s : S — E which is not an isomor-
phism.

Proof. —
(a) = (b). Let s : S — E be a monomorphism. Assume u' : S — E is such that
u=sou'
Since u is a strict epimorphism, so is s. Hence, s is an isomorphism and the conclusion
follows.
(b) = (a). Since u factors through the monomorphism Coimu — E,
Coimu ~ FE

and wu is a strict epimorphism.
O

PROPOSITION 2.1.7. — Let £ be a cocomplete quasi-abelian category. A small subset
G of Ob(E) is a strictly generating set of £ if and only if for any object E of £, there
is a strict epimorphism of the form

@ Gj — F

j€d
where (G;)jer s a small family of elements of G.

Proof. — Assume @ is a strictly generating set of £. Consider the canonical morphism

P GSE.
Geg,heHom (G,E)
Using the preceding lemma, let us prove by contradiction that e is a strict epimor-
phism. Let
m:S —FE
be a monomorphism which is not an isomorphism and assume e = m o f for some
f:X — S. For any G € G and any h € Hom (G, E), we get

h=mo foignm-
in contradiction with Definition 2.1.5.
Conversely, assume we have a strict epimorphism
be HE
jedJ
and let m : S — E be a monomorphism which is not an isomorphism. Assume that
for any j € J
hos;j:G; =+ E
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factors through m. This gives us a family of morphisms
h; : Gj — S (7eJ)
such that
hos;=mohj.

Consider the morphism

W Pa;— S

jeJ

associated to the family (h});es. Clearly,
moh' =h.
This contradicts the fact that h is a strict epimorphism. Therefore, one of the
hos;

does not factor through m and G is a strict generating set of £. O
PROPOSITION 2.1.8. — Let G be a small strictly generating set of the cocomplete

quasi-abelian category £. Then, a sequence

’

0B S ES B
is strictly exact in £ if and only if the sequence of abelian groups
0 — Hom (G, E') — Hom (G, E) — Hom (G, E")

is exact for any G € G.
Assume moreover that the elements of G are projective objects of £. Then, a
sequence

E %S ES E
is strictly exact in £ if and only if the sequence of abelian groups
Hom (G, E') — Hom (G, E) — Hom (G, E")
1s exact for any G € G.
Proof. — Proceed as in the proof of Proposition 1.3.23. O

PROPOSITION 2.1.9. — Let £ be a cocomplete quasi-abelian category. Assume £ has
a small strictly generating set G of small (resp. tiny) objects. Then, direct sums (resp.
filtering inductive limits) are strongly exact in £.

Proof. — Let
0—-E —-E—E"

be a strict exact sequence of £Z, where Z is a small discrete (resp. filtering) category.
For any ¢ € Z, the sequence

0 — E'(i) > E(@{) = E"(i)
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is strictly exact in £. Hence, for any G € G, we get the exact sequence
0 — Hom (G, E'(1)) — Hom (G, E(i)) — Hom (G, E" (7))

By taking the inductive limit and using the fact that G is small (resp. tiny), we get
the exact sequence '

0 — Hom (G, lim E'(i)) — Hom (G, lim E(i)) — Hom (G,ligE"(i))
i€l i€l i€
The conclusion follows easily from Proposition 2.1.8. |

2.1.3. Quasi-elementary and elementary categories

DEFINITION 2.1.10. — A quasi-abelian category is quasi-elementary (resp. elemen-
tary) if it is cocomplete and has a small strictly generating set of small (resp. tiny)
projective objects.

REMARK 2.1.11. — One checks easily that an abelian category is elementary if and
only if it is quasi-elementary. So, the preceding definition is compatible with the
definition of elementary abelian categories in [15].

PROPOSITION 2.1.12. — A quasi-abelian category £ is quasi-elementary if and only
if LH(E) is elementary.

Proof. — Let us prove that the condition is necessary. Thanks to the dual of Proposi-
tion 2.1.9, direct sums are strongly exact in £. Therefore, the dual of Proposition 1.4.7
shows that LH(E) is cocomplete and that

I:&— LH(E)

preserves direct sums. Let P be a strictly generating small set of small projective
objects of £. Clearly, I(P) is a generating small set of LH(E) and Proposition 1.3.24
shows that the objects of I(P) are projective in LH(E). To check that I(P) is small
for any object P of P, we may proceed as follows. Let (A4;);cr be a family of LH(E).
We get a family of short exact sequences of LH(E)

0— I(F;) = I(E;)) - A; = 0.
Therefore, the sequence
@I(Fi) — @I(E,-) — @Ai —0
iel iel iel
is exact in LH(E) and the sequence

Hom (I(P), @D I(Fi)) — Hom (I(P), @) I(E;)) — Hom (I(P), P Ai) — 0
el el el

P1E)=1(PE)

i€l i€l

is exact in Ab. Since
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and P is small, we get the exact sequence

P Hom (P, F;) — @ Hom (P, E;) — Hom (I(P), ) 4:) — 0

i€l iel iel

It follows that
@ Hom (I(P), A;) ~ Hom (I @ A;)
i€l el

and we see that I(P) is small in LH(E).

The condition is also sufficient. Since LH(E) is cocomplete, it follows from the
dual of Proposition 1.4.8 that £ is cocomplete. Let P be a generating small set of
small projective objects of LH(E). It follows that C(P) is a generating small set of
projective objects of £. To check that C(P) is small for any object P of P, we can
proceed as follows. Since the canonical morphism

B rE) - 1 E)
iel el
is epimorphic, we get an epimorphism
Hom (P, I(E;)) — Hom (P, I(EP Ey)).
i€l i€l
Since P is small, we see that the canonical morphism
P Hom (P, I(E;)) — Hom (P, I(EP E))
i€l i€l
is surjective. By adjunction, it follows that the canonical morphism
&P Hom (C(P), E;) — Hom (C(P), P Ei)
i€l el

is surjective. Since it is also clearly injective, C(P) is small. O

REMARK 2.1.13. — Let A be a cocomplete abelian category and let P be a full
additive subcategory of 4. Assume that the objects of P form a strictly generating
small set of small projective objects of A. Then, thanks to a result of Freyd (see
e.g. [12, Theorem 5.3]) the functor

h: A — Add(P°P, Ab)
A — Hom 4(., A)

induces an equivalence of categories. Hence, we could view the following proposition
as a corollary of the preceding one. However, for the reader’s convenience, we prefer
to give a direct proof.

PROPOSITION 2.1.14. — Let £ be a cocomplete quasi-abelian category and let P be a
full additive subcategory of £. Assume that the objects of P form a strictly generating
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small set of small projective objects of £. Then, the functor
h:& — Add(P°P, Ab)

E +— Hom,(.,E)

18 strictly exact and induces an equivalence of categories
LH(E) ~ Add(P°P, Ab).

Proof. — For any strictly exact sequence

ELESE
of £ and any object P of P, the sequence

Hom (P, E') — Hom (P, E) — Hom (P, E")

is exact since P is projective. Hence, the functor h is strictly exact and induces a
functor

h:D7(£) —» D™ (Add(P°P, Ab)).
Consider the category £ whose objects are defined by
Ob(L) = {(Ps)iers : I small set, P; € Ob(P)}
and whose morphisms are defined by
Hom ;((P:)ier, (P))jes) = [ €D Hom ¢ (Pi, P)).
i€l jeJ

So, a morphism f of

Hom ((P;)ier, (Pj)jer)
may be considered as an infinite matrix (f;;) with

fi:Pi— Pl Viel, Vjeld

the set
{3 : f5 # 0}
being finite for any i € 1.
Now, let us define the functor
S:LoE&

by setting

S((P)ier) = P P
il
for any object (P;);cy of £. For any morphism

f(Pier = (Pj)jes

S(f):-Epr—Ppr.

iel jEJ

we define
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by setting
S(f)osi=S o fi
JjeJ
where
si:P,-—>@P,-, s}-:P}—)@P}
iel jeJ

are the canonical morphisms.
Since P; is small for any ¢ € I, the functor S is fully faithful. As a matter of fact,
for any objects (P;)ier and (P))jes of L, we have successively

Hom ¢ (S((P)ier), S((P))jes)) ~ Hom (P P, D P;)
i€l Jj€J
~ H EBHomg(Pi,Pj)
icl jeJ

~ Hom ,((P;)ier, (P})jer)-
Hence, £ is equivalent to a full subcategory S(L) of £. Since the direct sum of a
family of projective objects is a projective object, the objects of S(L) are projective.
Moreover, by hypothesis, for any object E of £, there is a strict epimorphism

S((Pi)iel) - F

where (P;)ier is an object of L. Therefore, by Proposition 1.3.22 we have an equiva-
lence of categories

K= (S(L)) =D (£).
and the functor S induces an equivalence of categories
K (L) =D (£).
Let P be an object of P. Recall that the functor
hP PP — Ab
is a small projective object of Add(P°P, Ab). As a matter of fact, for any object F
of Add(P°P, Ab), we have
Hom (kP , F) ~ F(P).
Hence, for any family (F);cr of Add(P°P, Ab) we get
Hom (h*, P F,) ~ (P Fi)(P)
il i€l
~ P Fi(P)
i€l
~ (P Hom (rF, ),
iel
and AP is small. Moreover, if

0—-F -F—>F'—0
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is an exact sequence of Add(P°P, Ab) then the sequence
0— F'(P) > F(P)—> F"(P) >0
is exact. Therefore, the sequence
0 — Hom (h”, F') — Hom (| F) — Hom (k" F") =0

is also exact and k¥ is projective.
For any object F of Add(P°P, Ab), we define the morphism

v: ., W — F
{(P,f):P€P, feF(P)}
by setting
vospps) =Yp(f)
where
¥p(f) :h" = F
is defined by
¥p(f)(P')(g) = F(9)(f)

for any object P’ of P and any morphism g of Hom (P, P). Let us show that v is
an epimorphism. It is sufficient to show that for any object P' of P the morphism

v(P") : & rP(P") — F(P")
{(P,f):P€P, feF(P)}
is surjective. Consider f' € F(P'). Since idp: € hP' (P') = Hom ,(P', P"), we have
v(s(pr, g (P)(idpr)) = ¢p (f)(P)(idp)

= F(idp)(f")
= f'

and the conclusion follows.

Let

S L — Add(P°P, Ab)
be the functor defined by setting
S'((P)ier) = P K.
i€l
Thanks to the preceding discussion, we may apply to S’ the same kind of arguments
we applied to S and conclude that S’ induces an equivalence of categories

S': K7 (L) = D™ (Add(P°P, Ab)).
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Moreover, since in the diagram

D (&) h s D~ (Add(P°, Ab))
X %
K= (L)

we have clearly ho S = ', it follows that
h:D™(£) = D™ (Add(P°P, Ab))
is also an equivalence of categories.
Using the fact that h is strictly exact, we see that it exchanges the hearts of D~ (&)

and D~ (Add(P°P, Ab)) corresponding left t-structures. So, h induces an equivalence
of categories

h: LH(E) — LH(AdA(P°P, Ab)).
Since the category Add(P°P, Ab) is abelian,

LH(Add(P°P, Ab)) ~ Add(P°P, Ab)
and the proof is complete. a

PROPOSITION 2.1.15. — Let £ be a quasi-abelian category. Assume & is quasi-
elementary. Then,

(a) Both the categories £ and LH(E) are complete with exact products. Moreover,
I:&— LH(E)

preserves projective limits.
(b) Both the categories £ and LH(E) are cocomplete with strongly exact direct sums.
Moreover,
I:&— LH(E)
preserves direct sums.
(c) Both the categories £ and LH(E) have enough projective objects. Moreover,
LH(E) has enough injective objects.

Proof

(a) Tt follows from the preceding proposition that LH(£) is complete. Hence, Propo-
sition 1.4.8 shows that £ is complete. Thanks to Proposition 1.4.5, £ has exact
products. Hence, the conclusion follows from Corollary 1.4.7.

(b) This follows from Proposition 2.1.12.

(c) Obvious. O

PROPOSITION 2.1.16. — Let £ be a quasi-abelian category. Assume & is quasi-

elementary. Then, £ is elementary if and only if one of the following equivalent
conditions is satisfied
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(a) The functor
I:&— LH(E)
preserves filtering inductive limits.

(b) Filtering inductive limits are exact in .
(c) Filtering inductive limits are strongly exact in £.

Proof. — This is a direct consequence of Proposition 2.1.4, Proposition 2.1.9 and
Proposition 1.4.17. g
PROPOSITION 2.1.17. — Let £ be a small quasi-abelian category with enough pro-

jective objects. Then,
Ind(£)
is an elementary quasi-abelian category and there is a canonical equivalence of cate-
gories
LH(Ind(E)) ~ Ind(LH(E)).

Proof. — Proceeding as in the abelian case (see [15]) and using well-known results
on ind-objects (see e.g. [1]), one can check that the category Znd(£) is an elemen-
tary quasi-abelian category. Denote P the full additive subcategory of £ formed by
projective objects. It follows from Proposition 2.1.14 that

LH(TInd(€)) ~ Add(P°P, Ab)

Since any object of LH(E) is a quotient of an object of I(P) and since any such object
is projective, Znd(LH(£)) is an elementary abelian category and

Tnd(LH(E)) ~ Add(P°P, Ab).

The conclusion follows easily. O

2.1.4. Closed elementary categories

PROPOSITION 2.1.18. — Let £ be a closed quasi-abelian category with T as internal
tensor product and let R be a unital ring in .

(a) Assume P is a small (resp. tiny) object of £. Then, T(R, P) is a small (resp.
tiny) object of Mod(R).

(b) Assume G is a strictly generating set of £. Then,

{T(R,G): G € G}

is a strictly generating set of Mod(R).
(c) Assume & is quasi-elementary (resp. elementary). Then Mod(R) is quasi-
elementary (resp. elementary).

MEMOIRES DE LA SMF 76



2.1. ELEMENTARY QUASI-ABELIAN CATEGORIES 89

Proof. — Part (a) follows directly from Proposition 1.5.2.

To prove (b), let E be an R-module and let s : S — E be a monomorphism
of Mod(R) which is not an isomorphism. Since G is a strictly generating set of &,
Definition 2.1.5 shows that there is G — E in £ which cannot be factorized through
sin £. It follows that the associated morphism T'(R,G) — E of Mod(R) cannot be
factorized through s in Mod(R) and we get the conclusion.

Part (c) is a direct consequence of (a) and (b). O

PROPOSITION 2.1.19. — Let £ be a small quasi-abelian category with enough pro-
jective objects. Assume & is endowed with a closed structure with T as internal tensor
product, H as internal homomorphism functor and U as unit object. Then, there is a
closed structure on Ind(E) which extends that of £ and any two such extensions are
canonically isomorphic. Assume moreover that for any projective object P of £ the
functor
TP,):E—=E

is exact (resp. strongly exact) and that T(P, P') is projective for any projective object
P’ of £. Then, similar properties hold for projective objects of Ind(E).

Proof. — Assume Znd(£) is endowed with a closed structure extending that of .
Denote T" its internal tensor product, H' its internal homomorphism functor and U’
its unit object. Using the canonical fully faithful functor

“r L€ 5 Tnd(€)

we may express the fact that the closed structure of Znd(€) extends that of £ by the
formulas

UI ~ u[]n7 TI(“E”,“F”) ~ “T(E, F)”, HI(“E”,“F”) ~ “H(E, F)”.

let E:7T =&, F:J — & and G: K — £ be three filtering inductive systems of £.
It follows from the adjunction formula between 7' and H' that
T'(lig“E(3)", ling “F (j)") = ling limg “T(E(), F(j))"
i€T JjeJ €T jeJ
and that
H'(lim “F(j)", lim “G(k)") = lim lim “H(F(j), G(k))".
ieT kek JET kek
These formulas show directly that 7" and H' are unique up to canonical isomorphism.
We may also use them to construct a closed structure on Znd(£) extending that of £
(details are left to the reader).
Since any projective object of Znd(€) is a direct factor of a projective object of the

form
@ “_I)i”
icl
with P; projective in £, the last part of the statement is clear. O
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2.2. Sheaves with values in an elementary quasi-abelian category

In this section, we will fix a small topological space X and an elementary quasi-
abelian category £ and we will show that the category of sheaves with values in £ can
be manipulated almost as easily as the category of abelian sheaves.

2.2.1. Presheaves, sheaves and the associated sheaf functor
DEFINITION 2.2.1. — A presheaf on X with values in & (or -presheaf) is a functor
F:0p(X)® =€
where Op(X) denotes the category of open subsets of X with the inclusion maps as
morphisms. If V' C U are two open subsets of X, we denote
rvy F(U)— F(V)
the associated restriction morphism. We define the category of presheaves on X with
values in £ by setting '
Psh(X;E) = £9PX)™
Let F be an object of Psh(X;E). We define the fiber F, of F' at © € X by setting
Vevsr
where V, denotes the set of open neighborhoods of x ordered by inclusion.
For any U € V,, we denote

the canonical morphism.

For any open subset U of X and any £-presheaf F', we denote Fjy; the £-presheaf
obtained by restricting the functor F' to Op(U)°P.

An object F of Psh(X;&) is a mono-presheaf if for any open subset U of X and
any covering V of U, the morphism

r:FU) = [[ F(V)
Vey

defined by setting py or = rf,',U is monomorphic. Equivalently, F' is a mono-presheaf
if and only if hg o F' is an abelian mono-presheaf for any object E of £.

An object F of Psh(X;E) is a sheaf (or E-sheaf) if for any open subset U of X
and any covering V of U we get the strict exact sequence

0FU) S [[Fv) > [ Fwnw')
vey W,W'ey
where r is defined as above and
bw,w' © r' = T!}/?Vmw',w °opw — TS/OW',W’ °pw'.

Equivalently, F' is a sheaf if and only if hg o F' is an abelian for any object E of £.
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We denote by Shu(X;&) the full subcategory of Psh(X; E) formed by sheaves.

PROPOSITION 2.2.2. — The category Psh(X;E) is a quasi-abelian category and
LH(Psh(X;E)) ~ Psh(X; LH(E)).

Moreover, if P is a strictly generating full additive subcategory of small projective
objects of £. Then, the canonical functor

h:Psh(X;E) — Add(P,Psh(X; Ab))
which associates to an &-presheaf F' the functor
P hpoF
factors through an equivalence of categories
LH(Psh(X;E)) = Add(P; Psh(X; Ab)).
In particular, h is a fully faithful strictly exact functor.

Proof. — The first part of the result follows from Proposition 1.4.9. Since £ has exact
direct sums, it follows from Proposition 1.4.15 that

LH(Psh(X;E)) ~ Psh(X; LH(E)).
Since Proposition 2.1.14 shows that
LH(E) ~ Add(P; Ab),
the conclusion follows easily. O

DEFINITION 2.2.3. — Let V be a covering of X. We define L(V; F) to be the kernel
of the morphism

[TFn S I Fvnw.

vey wW,W' ey
We set also

LX;F)= lim LWV F)
VeCu(X)op
where Cv(X) denotes the set of open coverings of X ordered by setting V < V' if for
any V € V there is V' € V' such that V C V'.
Finally, we define the £-presheaf L(F) by setting

L(F)(U) = L(U; Fy)-
We have a canonical morphism

F — L(F).

PROPOSITION 2.2.4

(a) For any E-presheaf F, L(F) is an £-mono-presheaf.
(b) For any &-mono-presheaf F, L(F) is an £-sheaf.
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Proof. — L(F') is an £-mono-presheaf (resp. an £-sheaf) if and only if hp o L(F) is
an abelian mono-presheaf (resp. an abelian sheaf) for any tiny projective object P of
£. Since it is clear that

hpoL(F)= L(hpoF)
we are reduced to the case where & = 4b which is well-known. O
DEFINITION 2.2.5. — We define the associated sheaf functor
A :Psh(X;E) = Shv(X;E)
by setting A = L o L. We have a canonical morphism
a(F): F — A(F).

PROPOSITION 2.2.6. — For any morphism
u:F—G
from the presheaf F to the sheaf G there is a unique morphism
v:AF) =G
making the diagram '
a(F)
F—— A(F)
U
v
G

commutative. Therefore, F ~ A(F) if and only if F 1is a sheaf, and we have the
adjunction isomorphism

Hom Shu(X;€) (A(F)a G) ~ Hom Psh(X;E) (F, G)

which shows that Shv(X;E) is a reflective subcategory of Psh(X;E).
Moreover, for any x € X, we have a canonical isomorphism

A(F), ~ F,.
Proof. — We have
h[A(F)][P] = A[h(F)[P]].
Hence, there is a unique morphism
v'[P] : A[R(F)[P]] = h(G)[P]
such that
v'[P] o a(h(F)[P]) = h(u)[P].
Since h is full there is a morphism
v:AF) > G
such that
h(v) ="
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For such a v, we get
h(v 0 a(F))[P] = ' o a(h(F)[P]) = h(uw)[P]

and since h is faithful, we have

voa(F)=u
Moreover, any morphism

w:AF) -G
such that

woa(F)=u
satisfies the equality

h(w) =o'
and h being faithful, we get
w=v
Since
h[A(F)][P] = A(h(F)[P]),

we get

hp(A(F)z) = RA(F)][Plz ~ h(F)[Pl: = hp(F})

and the last part of the result follows easily.

2.2.2. The category of sheaves
PROPOSITION 2.2.7. — The category

Shv(X;E)
s quasi-abelian. Moreover, a sequence
E—-F—=G
is strictly exzact (resp. coexact) in Shv(X;E) if and only if the sequence
E, - F, — G,
is strictly exact (resp. coezact) in £ for any x € X. In particular, a morphism
u:E—F
of Shv(X;€) is strict if and only if
Ug : By — Fy

is strict for any x € X.

93
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Proof. — Let
u:E—F

be a morphism in Shv(X;&). Define the object K of Psh(X ;&) by setting
K(U) =Keru(U)
for any open subset U of X. Since
h(K) = Ker h(u),
it is clear that K is an £-sheaf. By construction, K is a kernel of u in Shv(X;&).
Define the object C of Psh(X;E) by setting
C(U) = Cokeru(U).

Since C is a cokernel of u in Psh(X; E), the adjunction formula for A shows that A(C)
is a cokernel of u in Shv(X;¢E).
It follows from what precedes that any morphism

u:E—=F
of Shv(X; £) has a kernel, a cokernel, an image and a coimage and that
(Keru), ~ Ker(ug), (Imu); ~Im(u,),

(Coker u), ~ Coker(uz), (Coimu), ~ Coim(u,).
Therefore, to conclude, it is sufficient to prove that w is an isomorphism if u, is an
isomorphism for every z € X. Since
R@[Pls = hp(u)

this is a direct consequence of the corresponding result for abelian sheaves. O

PROPOSITION 2.2.8. — The category Shv(X;E) is complete and cocomplete. More-
over, direct sums and filtering inductive limits are strongly exact.

Proof. — Let
F:J — Shv(X;€)
be a functor and let L be the projective limit of F' in Psh(X;E&). Since
hx o L = lim hx o F(j)
JjE€ET
for any object X of £, L is an £-sheaf. Hence, L is a projective limit of F' in Shv(X; ).
Let R be the inductive limit of F' in Psh(X; ). It follows from the adjunction formula

for A that A(R) is an inductive limit of F' in Shv(X;E). The last part follows from
the fact that in Shv(X; &) we have

(ling F(7))z = lig F(j)..

JjE€ET JjeT
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DEFINITION 2.2.9. — Let E be an object of £ and let U be an open subset of X.
Consider the £-presheaf F' defined by setting

E if V
F(V) = i cU
0 if VgU
the restriction map
rSy t F(V) = F(W)
being idg if W C V and 0 if W ¢ V. By construction, for any £-presheaf G, we have
Hom p,;, x,e)(F, G) ~ Hom (E, G(U)).
We set
Ey = A(F).
Clearly,
Hom g, x.¢)(Eu, G) ~ Hom(E,G(U)).
PROPOSITION 2.2.10. — For any open subset U of X, the functor
(v : € = Sh(X;€E)
1s strictly exact and preserves inductive limits. Moreover
E if z€eU
(EU)z = .
0 if z¢U

PROPOSITION 2.2.11. — Let G be a strictly generating small set of objects of £.
Then,
{Gu : G €G, U open subset of X}

is a strictly generating small set of objects of Shv(X;E).

Proof. — Consider the canonical morphism
u: QB F{U)y = F
UeOp(X)
corresponding to the morphism
FUy —» F
deduced from the identity morphism
F{U) — FU).

For any = € X, we have

( @ FUW).~PFWO).

UeOp(X) zeU
The morphism
P F) - F,
Usx
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induced by u, corresponds to the restriction morphisms
rey : F(U) = F,.

Hence, u, is a strict epimorphism for any # € X. This shows that u is a strict
epimorphism. Since G is a small strictly generating set of £, for any U € Op(X),
there is a small family (Gu;)ier, of G and a strict epimorphism of £

P Gu.i — FU).
i€ly
Since (-)uy preserves inductive limits,
@D (Gui)v = FU)y
icly
is a strict epimorphism in Shv(X;E). Hence, we get a strict epimorphism
D PGuw-—F
UeOp(X)icely

The conclusion follows easily. O
PRrROPOSITION 2.2.12. — The canonical inclusion
I:&— LH(E)
gives a canonical functor
Shv(X;E) — Shu(X; LH(E)).

This functor induces an equivalence of categories

LH(Shv(X;E)) ~ Shv(X; LH(E)).
Proof. — Since [ is continuous, I o F'is an LH(E)-sheaf for any E-sheaf F'. This gives
us a canonical functor

J : Sho(X;E) — Shu(X; LH(E)).

Ones checks easily that J is fully faithful and that its essential image is stable by
subobjects. Moreover,

J(F)e = I(Fy).
Let G be a strictly generating small set of objects of £&. We know that I(G) is a
generating small set of LH(£). Hence, for any object F' of Shv(X; LH(E)), there is a
small family (U, Gy)ier, of Op(X) x G and a strict epimorphism

BPu@Gn, - F.

leL
Moreover, since I commutes with filtering inductive limits, one checks easily that

L(G))v, = J(G))v,)
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and that
P 7(G)w) =~ TE(G)w)-

leL leL
Hence, we have an epimorphism

JE@PG)v,) = F.
leL
The conclusion follows from Proposition 1.2.36. O
2.2.3. Internal operations on sheaves. — Let £ be a closed elementary quasi-

abelian category and let T (resp. H, U) be its internal tensor product (resp. its
internal homomorphism functor, its unit object).

DEFINITION 2.2.13. — Let F' and G be two objects of Psh(X;E). We denote by
H(F,QG) the kernel of the morphism

he I HEO).GO) - [ HEW).GV))

UeOp(X) UVeOp(X)
vcuU
of £ defined by setting
puv o h = H(idrw), $y) opuv — H(r{y,ide)) o pv
for any V C U in Op(X). Clearly,
U H(FanGIU)
is a presheaf. We denote it by H(F,G).

PROPOSITION 2.2.14. — Assume F, G are two objects of Shv(X;E). Then, H(F,G)
is an object of Shv(X;E).

Proof. — Let V C U be open subsets of X and let W be a covering of X. Since G is
a sheaf, we have the strictly exact sequence

0GV)= [ cvnw)y— J[ Gvnwnaw).
wew W,W'ew

From the adjunction formula linking 7" and H, it follows that H(F(U),-) is a contin-
uous functor. Therefore, we get the strictly exact sequence

0= HFU),GV) — [] HFW),Gvnw))— [[ HEW),GVnWnWw)).
Wew W,W'ew
Using a tedious but easy computation, we deduce from this fact that the sequence
0 HFEG)X) = [ HEOW) - [ HEGW W)
Wew W,W'ew

is strictly exact in £. And the conclusion follows. O
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DEFINITION 2.2.15. — Let E, F be two objects of Shv(X;E). We denote T(E, F)
the £-sheaf associated to the £-presheaf

U= T(EQ),F)).
PROPOSITION 2.2.16. — We have the canonical functorial isomorphism
Hom g, x.6)(T(E, F),G) ~ Hom gy, x.¢)(E, H(F,G))
for E, F, G in Shv(X;E).

Proof. — Let h € Hom g, x.¢)(T(E, F),G) and let U D V be open subsets of X.
By composition with the canonical morphism

T(EU),F(V)) = T(EV),F(V)) = T(E,F)(V),

the morphism

h(V):T(E,F)(V) - G(V)
induces a morphism

vv 1 T(EU),F(V)) = G(V).
By adjunction, this gives us a morphism

vv : EU) = H(F(V),G(V))
for any V C U in Op(X). Hence, we get a morphism

Wy EU) = [ HE®WV),G(V)

vcUu
V open

and one checks easily that hy; factors through
Wy B(U) — H(Flu, Glu).
Moreover, the family (h{f)vcop(x) defines a morphism
o(h) : E = H(F,Q)
in Shv(X;E).

Now, let h € Hom g, (x.¢)(E, H(F,G)) and let U be an open subset of X. The
morphism

h(U) : EU) = H(F|vu,Glv)
gives rise to a morphism
K(U):EU) — H(FU),G)).
By adjunction, we get a morphism
K'(U) : T(EU), F(U)) — G(U)
which is easily checked to be a morphism of presheaves. We denote

Y(h): T(E,F) =G

MEMOIRES DE LA SMF 76



2.3. SHEAVES WITH VALUES IN AN ELEMENTARY ABELIAN CATEGORY 29

the associated morphism of Shv(X;£). An easy computation shows that 9 is an
inverse of ¢ and that ¢ and ¢ are functorial in E, F and G. O

COROLLARY 2.2.17. — The category Shv(X; &) endowed with T as internal tensor
product, Ux as unit and H as internal homomorphism functor is a closed quasi-abelian
category.

2.3. Sheaves with values in an elementary abelian category

2.3.1. Poincaré-Verdier duality. — Let f : X — Y be a continuous map of
locally compact topological spaces and let A4 be an elementary abelian category. Recall
that

Shv(X; A)  (resp. Shu(Y;A))
denotes the category of sheaves on X (resp. Y') with values in A. For short, we set
D*(X, A) = D*(Shv(X, A)) (x=+,-,9)

and use similar conventions for .
As usual, for any -closed subspace @ of X and any A-sheaf F' on X, I'g(X; F)
denotes the kernel of the restriction morphism

F(X)— F(X\Q).

DEFINITION 2.3.1. — For any sheaf F' € Shv(X;.A), we define the sheaf
fi(F) € Shu(Y; A)

by the formula

L(U; fi(F)) = ling Lo(f~H(U); F)
QCf~1(U),Q f-proper
We call f-soft a sheaf F' such that Fy is fi-acyclic for any U € Op(X).
Of course, fi is left exact and gives rise to a derived functor
Rf, : DY (X;A) = DT (Y; A).
Hereafter, we will show that under the assumption that fi has finite cohomological

dimension, Rf, has a right adjoint functor. To get this result, we will adapt the
reasoning of [7] to our more general situation.

DEFINITION 2.3.2. — Let K(F) denote a bounded functorial f-soft resolution of
F € Shv(X; A) (e.g. a truncated Godement resolution). For any G € Shv(Y; A), we
define the presheaf

fi(G) € Psh(X; A)
through Proposition 2.2.2 by asking that

Hom (P, I(U; fi (G))) = Hom (fi(K (Px)u),G)
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for any P in a generating small set of small projective objects of A.

PROPOSITION 2.3.3. — For any G € Shw(Y; A), fi(G) € Shv(X; A). Moreover, if
G is injective, fr (G) is flabby.

Proof. — Let (U;);cr be a covering of an open subset U of X. We know that, for any
k € Z, the complex

= @ Kk(PX)U,ﬂU,- — @Kk(Px)U‘ — Kk(Px)U —0
i,j€l icl
is exact. Since K*(Px)y is fi-acyclic for any open subset V of X and f; has finite
cohomological dimension, the complex

= P HEF(Px)vinu;) = P A (Px)u,) = AE*(Px)u) =0
B,j€l iel
is also exact. It follows that the sequence

0 — Hom (fi(K(Px)v),G) — [] Hom (fi(K(Px)u;),G) — [] Hom (fi(K(Px)u;nv;),G)
i€l ©,J€I1

is exact. Hence, we see that the sequence

0 — Hom (P, T(U; fi(G))) — Hom (P, [ T(Us, fi (G))) — Hom (P, [] T(U; N Uj; fi(G)))
i€l i,jel
is exact for any P in a small generating family of small projective objects. It follows
that the sequence

0= I(U; £ (@) = [[TWs fic (@) = ] TWinU;; £ic(@))

iel i,jel
is exact and that f (G) is a sheaf. Let us assume now that G is injective. Let V be
an open subset of U. We have the monomorphism

K(Px)y = K(Px)u-
Hence, we get the epimorphism
Hom (fi(K(Px)v),G) — Hom (fi(K(Px)v),G).
As above, we deduce that
L(U; fk(G)) = T(V; fi(G))
is an epimorphism. a

DEFINITION 2.3.4. — Let Z* (Y, A) denote the full subcategory of ¥ (Y, .A) formed
by complexes of injective sheaves. We denote by

fDH(Y;A) = DH(X;A)
the functor induced by

fic :THY3 A) = KH(X; A)
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through the equivalence of categories
IH(Y;A) = DH(Y; A).
PROPOSITION 2.3.5. — There is a canonical morphism of functors
Rf\f'(G) = G.

Proof. — Let G be an injective object of Shv(Y';.A). Since fi (G) is flabby, it is also
f-soft and

Rf f1(G) = fifk(G).
By definition,

L(U; fifk (@) = lim Lo(fH(U); fx(Q)).
QCf~1(U),Q f-proper

From the exact sequence
0= Lo(f7(U); fx(G)) = L(f 1 (U); fi(G)) = T(f 1 (U) \ @; [k (G))
we deduce that Hom (P, To(f~*(U); fx(G))) is a kernel of
Hom (fi(K (Px)f-1(v)), G) — Hom (fi(K (Px)s-1w)ne), G)

Since the sequence

0 — K(Px)f-wng — K(Px)s-1w) = K(Px)q — 0
is exact, it follows that

Hom (P,Tq(f~!(U); fi(G))) = Hom (fi(K (Px)q), G)-
Since @ is f-proper, we have an obvious map

Py — fi(Pq) = filK(Px)q)-
Hence, there is a canonical morphism
Hom (P, To(f ' (U); fx(G))) — Hom (P,I(U;G))
which gives rise to a canonical morphism
L(U; fifx(G)) = T(U;G)
as requested. O
THEOREM 2.3.6. — The canonical morphism
RHom (F, f'(G)) — RHom (Rf,(F),G)

induced by the morphism
Rf (@) =G

is an isomorphism.
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Proof. — We know that any sheaf F' € Shv(X;.A) has a resolution by sheaves of the

type
P

where V is an open subset of X and P a member of a generating small set of small
projective objects of A. Since f has finite cohomological dimension, we may reduce
ourselves to the case where F' = Py and G is injective. In such a case, since f}(G) is
flabby, we have

RHom (Py, f'(G)) ~ Hom (P,T'(U, fi(G)))
~ Hom (fi(K(P)v), Q)
~ RHom (Rf,(Py),G)

and the conclusion follows. O

2.3.2. Internal projection formula. — In this section, A4 denotes a closed ele-
mentary abelian category with 7" as internal tensor product, U as unit object and
H as internal homomorphism functor. We assume moreover that for any projective
object P of A, T(P,-) and H(P,-) are exact functors. It follows from the results in
the previous section that Shv(X;.A) endowed with 7 as internal tensor product, H as
internal homomorphism functor and Ux as unit object is a closed abelian category.

DEFINITION 2.3.7. — We say that an object P of Shv(X;.A) has projective fibers if
P, is a projective object of A for any xz € X.

LEMMA 2.3.8. — (a) Assume P is an A-sheaf with projective fibers. Then,
T(P,-) : Shu(X; A) — Shv(X; A)

is exact. Moreover, if P' is another A-sheaf with projective fibers, then T (P, P') has
projective fibers.
(b) Assume I is an injective A-sheaf. Then,

H(-, I) : Sho(X; A)°P — Shv(X; A)
is exact. Moreover, if P is an A-sheaf with projective fibers, then H(P,I) is an
injective A-sheaf.
Proof. — Part (a) follows directly from the fact that
T(E,F)e =T(Eqy, Fy).
To prove the first part of (b), let
0-E —-E—E"—>0

be an exact sequence of Shv(X;.A). Let P be a projective object of A and let U be
an open subset of X. Since the A-sheaf Py has projective fibers, it follows that the
sequence

0—- T(Py,E'")— T(Py,E) = T(Py,E") =0
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is exact. Using the fact that I is injective, we get the exact sequence
0 — Hom (7 (Py, E"),I) - Hom (T (Py, E),I) — Hom (T (Py,E'),I) — 0.
The adjunction formula between 7 and # then gives the exact sequence
0 — Hom (Py, H(E",I)) — Hom (Py,H(E,I)) — Hom (Py,H(E',I)) — 0.
Since for any A-sheaf F', Hom (Py, F') ~ Hom (P, F(U)), we see that the sequence
0— H(E,I)U) = H(E,IU) - HE",T)U) =0
is exact for any open subset U of X and the conclusion follows.

The last part of (b) is obtained by similar methods. O

REMARK 2.3.9. — One can also prove that if I is an injective A-sheaf, then H(E, I)
is flabby for any A-sheaf E.

ProprosITION 2.3.10. — The functor
T : Shv(X; A) x Sho(X; A) = Shv(X; A)
is explicitly left derivable and the functor
H : Sho(X; A)°P x Shv(X; A) — Sho(X; A)
is explicitly right derivable. Moreover, we have the canonical functorial isomorphisms :
(a) LT(E,F) ~LT(F,E),
(b) LT (Ux,E) ~ E,
(¢) RHom (LT (E, F),G) ~ RHom (E,RH(F,G)),
(d) RH(Ux,E) ~ E.

Proof. — Let P denote the full subcategory of Shv(X;.A) formed by .A-sheaves with
projective fibers. By Proposition 2.2.11, any .A-sheaf F' is a quotient of an object of

the form
@(Pi)w
iel
where P; is a projective object of A and U; is an open subset of X. Since

<@(Pi)U,-> = @ P;,
i€l T i€l,U;dx

it is clear that €D, ;(P;)u; belongs to P. Hence, any .A-sheaf is a quotient of an object
of P. By the preceding lemma, it follows that (Shv(X; A), P) is T-projective. Hence,
T is explicitly left derivable.

Denote Z the full subcategory of Shv(X;.A) formed by injective A-sheaves. We
know already that any object of Shu(X,.A) is a subobject of an object of Z. By the
preceding lemma, (Shv(X; A),Z) is H-injective. Hence, H is explicitly right derivable.
The last part of the proposition follows directly by replacing the various objects by
suitable resolutions. O
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LEMMA 2.3.11. — Let X be a locally compact topological space. Let P be a projective

object of A and let E be an A-sheaf on X. Then, the canonical morphism
TT.(X;E),P) = T.(X;T(E,Px))

is an isomorphism. In particular, T (E, Px) is c-soft if E is c-soft.

Proof. — We will work as in [7, Lemma 2.5.12].

Without losing any generality, we may assume X is compact. Let (K;);er be a
finite covering of X by compact subsets. Since E is an .A-sheaf, we have an exact
sequence of the form

0 — I'(X;E) » @TI(Ki; E) » P T(Kin K;; E).
i€l i,j€l
The object P being projective in A, the functor 7T'(-, P) is exact and we get the
morphism of exact sequences

0 —— T(T(X; B), P) —>— @ T(T(K:; E), P) —— @) T(T(K: N K;; E), P)
i€l i,J€I

“ I k
0 —— I(X; T(E, Px)) - EPr(Ki; T(E,Px)) —— € I(Ki N K;; T(E, Px))
i€l B ijer

Let us show that « is a monomorphism. It is sufficient to show that for any small
projective object @ of A and any
h:Q —-TIT(X;E),P)

such that o o h = 0 we have h = 0. Since

(*) lim T(D(U;E),P) = T(E,,P)~ liy I(U;T(E,Px))
Usz Usz
U open U open

and @ is tiny (see Remark 2.1.2), we can find a finite compact covering of X such
that
Aoh=0.
Since A is monomorphic, the conclusion follows.
To show that « is epimorphic, it is sufficient to show that for any small projective
object Q of A and any
h:Q —T'(X;T(E,Px))
there is
h:Q —T({(X;E),P)
such that « o b’ = h. Using once more (*) and the fact that @ is tiny, we can find a
finite compact covering of X such that

/\IOh: Oh,”
5
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for some

W' Q — PT((Ki;E), P).

el

It follows from the first part of the proof that 8 and v are monomorphic. Since

O=p'oNoh=p' oBoh”" =youoh”
we see that po h” = 0. Hence,

B'=Xoh
for some
h':Q — T(I'(X;E),P).

For such an h', we have

Noaoh'=B0oloh'=poh" =XNoh.

Hence, oo h' = h and the proof is complete. |

LEMMA 2.3.12. — Let f : X — Y be a morphism of locally compact topological
spaces. Let P be an A-sheaf on Y with projective fibers and let E be an A-sheaf on
X. Then, the canonical morphism

T(fiE,P) = fT(E,f~'P)
is an isomorphism. Moreover, T(E, f~\P) is f-soft if E is f-soft.
Proof. — Since
T(fiE,P)y = T((fE)y, Py) = T(Te(f ™ (v); E), Py)
and

F(T(E, F7'P)y =Te(f 7 ®); T(Elp-1¢y), (Py)lg-1()))

for any y € Y, we are reduced to the preceding lemma. O

PROPOSITION 2.3.13. — Let f : X — Y be a morphism of locally compact topological
spaces. Assume fi has finite cohomological dimension. Then,

LT(Rf\E,F) ~ Rf LT(E,f'F)
for any E in D~ (Shv(X; A)) and any F in D~ (Shv(Y; A)).

Proof. — This follows directly from the preceding lemma if we replace F by a soft
resolution and F' by a resolution by .A-sheaves with projective fibers. O
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2.3.3. Internal Poincaré-Verdier duality

PROPOSITION 2.3.14. — Let f : X — Y be a morphism of locally compact topological
spaces. Assume fy has finite cohomological dimension. Then, the canonical morphism

induced by
Rf\f'F > F
is an isomorphism in DT (Shv(Y; A)) for any E in D~ (Shv(X;A)) and any F in
DT (Shv(Y; A)).
Proof. — 1t is sufficient to prove that
RL(f(V);RH(E, f'F)) — R[(V;RH(Rf E, F))

is an isomorphism for any open subset V of Y. We may even restrict ourselves to the
case V =Y and prove only that

RHom (P,RI(Y;RH(E, f'F))) = RHom (P,RI'(X;RH(Rf,E, F)))
for any projective object P of A. This follows from the chain of isomorphism below:
RHom (P,R[(Y;RH(E, f'F))) ~ RHom (Py,RH(E, f'F))
~ RHom (L7 (E, Py), f'F)
~ RHom (Rf,LT(E, f~'Px), F)
~ RHom (LT (Rf,E, Px), F)
~ RHom (Px,RH(Rf,E, F))
~ RHom (P,RI['(X;RH(Rf,E, F))).
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APPLICATIONS

3.1. Filtered Sheaves

3.1.1. The category of filtered abelian groups. — To fix the notations, let us
recall the following definitions.

DEFINITION 3.1.1. — A filtration on an abelian group M is the data of an increasing
sequence (Fy)rez of abelian subgroups of M such that

U Fe =M.
keZ

A filtered abelian group M is an abelian group My endowed with a filtration

(My)kez-

We call M, the underlying abelian group of M.
A morphism of filtered abelian groups u : M — N is the data of a morphism

Uoo : Moo = Noo
of the underlying abelian groups such that
Uoo (M) C Ni
for any k € Z. The set of morphisms from M to N is denoted
Hom (M, N).

It is clearly endowed with a canonical structure of abelian groups. With this notion of
morphisms, one checks easily that filtered abelian groups form an additive category.
We will denote it by FAb.

The following two obvious propositions will clarify the structure of limits in FEAb.

PROPOSITION 3.1.2. — The category FAb has kernels and cokernels. More precisely,
let uw: M — N be a morphism of filtered abelian groups. Then,
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(a) Keru is the abelian group uZ!(0) endowed with the filtration
(uge (0) N My )kez,
(b) Cokeru is the abelian group Neo /Uoo(Mo) endowed with the filtration
(N + too (Moo) /tioo (Moo) ) kez-

As a consequence, we see that
(c¢) Imwu is the abelian group ue(Mso) endowed with the filtration

(Uoo (Moo) N Ni)kez,
(d) Coimu is the abelian group Mo, /uzl(0) endowed with the filtration
(M, + ugg (0)/ug (0))kez-
It may equivalently be described as the group us(Mo) endowed with the filtration
(oo (M) ez
In particular, the morphism u is strict if and only if
Uoo(Mk) = Uoo(Moo) N N
for every k € Z.
PROPOSITION 3.1.3. — The category FAb has direct sums and products. More pre-

cisely, let (M;)icr be a small family of filtered abelian groups. Then,
(a) @;c; M is the abelian group @,;c;(Mi)oo endowed with the filtration

) (@(Mi)k) :
iel kezZ

(b) T1;c; M is the abelian subgroup

U I

keZ il
of [T;c1(Mi)oo endowed with the filtration

(H(M,-)k> .
i€l kEZ

REMARK 3.1.4. — It follows from the last point of Proposition 3.1.2 that %A4b is not
abelian. Moreover, Proposition 3.1.3 shows that if I is infinite, ([];c; Mi)co may differ

from HieI(Mi)OO’

PROPOSITION 3.1.5. — The category FAb is a complete and cocomplete quasi-abelian
category in which direct sums and filtering inductive limits (resp. products) are strongly
exact (resp. exact).

Proof. — It is direct consequence of the two preceding propositions. O
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DEFINITION 3.1.6. — Let M be a filtered abelian group and let I € Z. We denote
by M (1) the filtered abelian group obtained by endowing M, with the filtration

(Mitk)kez.
Clearly,
M- M)
is a functor of FAb into itself. We call it the filtration shifting functor. Let M, N be

two filtered abelian groups.
The sequence

(Hom (M, N (k)))kez
of subgroups of
Hom (M, N)
is increasing and gives a filtration of
| Hom (M, N (k).
keZ

We denote FHom (M, N) the corresponding filtered abelian group.
Denote (M ® N);, the image of the canonical morphism

@Ml QNp_j = My @ N
leZ

induced by the canonical inclusions
Ml — Moo, Nk—l — Noo

Clearly, (M ® N)i)kez forms a filtration of My, ® Now. We denote by M ® N the
corresponding filtered abelian group.

Finally, we denote by FZ the filtered abelian group obtained by endowing Z with
the filtration defined by setting

Z ifk>0,
FZ; =
0 otherwise.

PROPOSITION 3.1.7. — The category FAb endowed with - @- as internal tensor prod-
uct, FHom (-,-) as internal Hom -functor and FZ as internal unit forms a closed
additive category. In particular, we have

(a) Hom (M ® N, P) ~ Hom (M, FHom (N, P)),

(b)) MON~NQM,

(c) MRFZ~ M,
for any objects M, N, P of FAb.
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PropoOsSITION 3.1.8
(a) For any |l € Z, we have
FHom (FZ(~1), M) ~ M,

for any object M of FAb. In particular, FZ(-1) is a tiny projective object of FAb.
(b) For any object M of FAb, the canonical morphism

P P rr(-1)y—m

IEZ heM;
induced by the preceding isomorphism is a strict epimorphism. In particular,

(FZ(=1))ez
forms a strictly generating family of objects of FAb.

COROLLARY 3.1.9. — The category FAb is an elementary closed quasi-abelian cate-
gory. In particular, FAb has enough projective objects. Moreover, for any projective

object P of FAb, the functor
P®-: FAb — FAb

is strongly exact and P ® P' is projective if P' is projective.

To show that FA4b has enough injective objects, we need first a few auxiliary results.

DEFINITION 3.1.10. — For any filtered abelian group M, we denote by M (oco) tlie

filtered abelian group obtained by endowing M., with the constant filtration.

PROPOSITION 3.1.11. — Assume R is a cogenerator of Ab. Let F R denote the object
of FAb obtained by endowing the abelian group R with the filtration defined by setting

] >
FRe - {R if k>0,

0 otherwise.
Then,
II Frk
k€eZU{oco}
is a strict cogenerator of FAb.

Proof. — Let M be an arbitrary filtered abelian group. We have to show that the

canonical morphism

it M — II ( II Frw&)
heHom _ (M,[Txezu ooy FR(K)) h€ZU{co}
is a strict monomorphism. First, note that
Hom gy, (M, [[ FR(k)= [] Homz,(M,FR(k))
kEZU{oo} k€ZU{oo}
and that
Hom ,,, (M, FR(k))
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is the subset of Hom (M, R) formed by morphisms h : M — R such that
hx(M_x—1) =0,
where we set M_,, = 0 by convention. Therefore, to give
h € Hom 5, (M, [[ FR(k))
keZ
is to give a family
(hk : ]\40O — R)keZ
of morphisms of abelian groups such that hy(M_,—1) = 0. Moreover, for any m € M,
we have

[{(m)n]k = hi(m)
for any h € Hom .4, (M, ],z FR(k)) and any k € Z.
Let us show that ¢ is a monomorphism. Assume m € My, \ {0}. Since R is a
cogenerator of Ab, we can find a morphism

hoo : Moo — R
such that heo(m) # 0. Setting hy = 0 for any k € Z, we get a morphism
h € Hom g4, (M, [[ FR(k))
keZ
such that
[i(m)h]eo # 0.
Hence, i(m) # 0 and the conclusion follows.

Let us now prove that i is strict. Assume m € M, is such that i(m) has degree
less than . This means that

[i(m)n]k € FRet
for any h € []Hom £, (M, [[1ez0 00y F'R(K)) and any k € Z. Therefore,

hk(m) =0

for any k < —I. Assume m ¢ M;. Denote p : My, — Mo /M, the canonical
projection. Since
p(m) # 0,
we can find a morphism A' : Mo /M; — R such that h'(m) # 0. Consider the
morphism
h € Hom g, (M, ][ FR(k))

k€eZU{oo}
defined by setting
hWop ifk=-1-1
hi =
0 otherwise.
We get a contradiction since
h_i—1(m) #0
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and —! — 1 < —[. Therefore, m € M; and the proof is complete. O
PROPOSITION 3.1.12. — Assume I is an injective object of Ab. Then,
FI(k)

is an injective object of FAb for any k € Z U {o0}.
Proof. — Let M be an object of EAb. For k = oo, we have
Hom g4, (M, F1(00)) = Hom 4, (Moo, I)
and the result is obvious. Let us assume k # oo. In this case, we have
Hom x4, (M, FI(k)) = Hom 4, (Moo /M __1,1).

Let
0O-M -sM->M'—>0

be a strictly exact sequence in FA4b. We get a commutative diagram of Ab

where all the columns and the first two lines are exact. Therefore, the last line is also
exact. Since I is injective in A4b, the sequence

0 + Hom (M /M’ ,_;,I) + Hom (My/M_g_1,I) + Hom (M /M",_,,I) < 0
is exact. This shows that FI(k) is injective in FAb. O
COROLLARY 3.1.13. — The category FAb has enough injective objects.

Proof. — Apply the preceding propositions to an injective cogenerator of Ab (e.g.

Q/Z). O
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3.1.2. Separated filtered abelian groups. — Let us recall that any filtered
abelian group M may be turned canonically into a topological abelian group by taking
{My, : k € Z} as a fundamental system of neighborhoods of 0 in M. In the sequel,
when we apply topological vocabulary to a filtered abelian group, we always have this
particular topological structure in mind. In particular, a filtered abelian group M is
separated if and only if (), My = 0.

DEFINITION 3.1.14. — We denote .%.Ab the full subcategory of FAb formed by sepa-
rated filtered abelian groups.

PROPOSITION 3.1.15. — Let (M;);er be a family of separated filtered abelian groups.
Then, the filtered abelian groups

Pm  and  J[M

iel i€l
are separated. In particular, they form the direct sum and direct product of the family
(Mi)iel in FAb.

PROPOSITION 3.1.16. — The category ?Ab has kernels and cokernels. More pre-
cisely, let u: M — N be a morphism of FAb. Then,
(a) Keru is the subgroup uz}(0) endowed with the filtration

(uze (0) N Mp)rez,

(b) Cokeru is the group Noo/uco(M) endowed with the filtration

(N + Uoo (M) /thoo (M) kez.-

Hence,
(c) Imu is the group ueo(M) endowed with the filtration

(oo (M) N Ni)kez,
(d) Coimu is the group My /ul(0) endowed with the filtration
(Mi + ug (0)/uz (0))kez-
It is isomorphic to the group uc(Ms) endowed with the filtration

(oo (M) kez-

In particular, u is strict in .%Ab if and only if it is strict in FAb and has a closed
range.

PROPOSITION 3.1.17. — The category FAb is quasi-abelian.
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Proof. — We know that FAb is quasi-abelian. By the characterization of the strict
epimorphisms in FAb and the structure of kernels in EAb, the axiom (QA) is auto-
matically satisfied. Let us deal with the axiom (QA*). Consider the co-cartesian
square

M’ L’) N’
o
M——N
of ]A-'.Ab. Assume u is a strict monomorphism of .%Ab. This means that u is a strict
monomorphism of F4b and that its range is closed. We know that
w:M—-NoM
m — (u(m),v(m))
is a strict monomorphism of FAb. Let (myg)ren be a sequence of M such that
w(ng) = (n,m')
in N @ M', it follows that
u(mg) = n
in N. Since u is a strict monomorphism with closed range, there is m € M such that
mE —m
in M and u(m) = n. Therefore,
v(mi) — v(m)
and since M’ is separated, we get
v(im) =m'.
Hence,
w(m) = (n,m’)
and we see that the range of w is closed. Therefore, the sequence
0>M—->NeM —-N =0
is strictly exact in EAb. It follows that «' is a strict monomorphism of £4b and that
Cokeru ~ Cokeru'.

Since Cokeru is separated, Cokeru' is also separated and «' has a closed range. O
PROPOSITION 3.1.18. — In J’AL'Ab,
(FZ({1))iez

forms a small strictly generating family of small projective objects. In particular, .%Ab
is a quasi-elementary quasi-abelian category.
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Proof. — This follows directly from Proposition 3.1.15 and Proposition 3.1.16 since
FZ is clearly separated. O

REMARK 3.1.19. — The object FZ is not tiny since there are filtering inductive
system of ZAb with a non zero inductive limit in %Ab but a zero inductive limit in
JFAb. As an example, consider an object M of FAb and the system

(M(D))iez.-
In FAb, we see easily that
lim M (1)

lez

is the group Mo, with the constant filtration. Hence, in FAb,

limg M (1) = 0.
lez

DEFINITION 3.1.20. — We denote by

T: FAb — FAb
the canonical inclusion functor. We denote by

L: FAb — FAb
the functor defined by

L(M) = M/ Niez My
PROPOSITION 3.1.21. — There is a canonical adjunction isomorphism
Hom 5, (M, T(N)) =~ Hom ,,(L(M), N).

In particular, the functor I is compatible with projective limits and the functor L is
compatible with inductive limits.

PROPOSITION 3.1.22. — The functor
T: FAb — FAb
1s strictly exact and induces an equivalence of categories
T : D(FAb) — D(FAb).
Its quasi-inverse is given by
LL : D(FAb) — D(FAb).

Through this equivalence, the left t-structure of D(}Ab) s exchanged with the left
t-structure of D(FAb). In particular,

T : LH(FAb) ~ LH(FAD).
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Proof. — Since any projective object of FAb is a direct factor of a filtered abelian
group of the form
PFz)
iel
which is separated, it is also separated. Let M  be an object of D(.%Ab) and let
PS5 TM)
be a projective resolution of }(M "). Since the components of P are separated,
L(P)~P ~M

in D (.%Ab). Hence,

Let
P ~M

be a projective resolution of M* € D(FAb). Since the components of P are separated,
we have

L(P)~ P
in D(.%Ab) and
ToL(P)~M
in D(FAb). Hence,
ToLL~id.
To conclude, it is sufficient to remark that a sequence

M - M- M

of FAb is strictly exact in ZAb if and only if it is strictly exact in FAb. O

REMARK 3.1.23. — The functor
T : D(FAb) — D(FAD)

does not preserve the right t-structures. As a matter of fact, if u : M — N is a strict
monomorphism of Z4b with a non closed range, the complex

0->M3B5N—=0

with M in degree 0 has null cohomology in that degree in RH(FAb) but not in
RH(FAD).
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3.1.3. The category R and filtered sheaves. — Hereafter, we will have to deal
with graded rings. Our point of view is that these are rings in the closed abelian
category of graded abelian groups and graded additive maps. We denote the internal
tensor product of this category by ® and its internal Hom functor by GHom. Con-
sequently, by a module over a graded ring we always mean a graded module and by
a morphism between such modules will always mean a graded morphism.

DEFINITION 3.1.24. — Let RZ denote the graded ring Z[T.
To any filtered abelian group M, we associate the graded RZ-module

R(M) = P My,

keZ
the multiplication
T My — Mi+a
being the canonical inclusion. This gives us an additive functor

R : FAb — Mod(RZ)

where Mod(RZ) denotes the category of RZ-modules.
Let N be an RZ-module. Denote

N1,k - N — Ny
the action of T' and consider the inductive system

(Nk, Nkt1,k) ez

Set
(L(N))eo = limg Ny
k€Z
and let (L(N))x be the canonical image of Ni in (L(N))e. Clearly,
(L(N)k)kez

forms a filtration of the abelian group (L(N))so.- We denote L(N) the corresponding
filtered abelian group. This gives us an additive functor

L : Mod(RZ) — FAb.

PROPOSITION 3.1.25. — We have the canonical functorial isomorphisms
Hom 44, (L(N), M) ~ HomMod(RZ)(N, R(M))

and
LoR(M)~ M.

In particular, R is a fully faithful continuous functor and L is a cocontinuous functor.
Moreover, R is strictly exact and is compatible with direct sums.
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PROPOSITION 3.1.26. — The essential image of

R : FAb — Mod(RZ)
is formed by RZ-modules M such that

T-:M—>M

1$ injective.
PROPOSITION 3.1.27. — The essential image of R forms a L-projective subcategory
of Mod(RZ). In particular,

L : Mod(RZ) — FAb

is an explicitly left derivable right exact functor which has finite homological dimen-
ston.

Proof. — Let us denote P the essential image of R.
(a) Any object of Mod(RZ) is a quotient of an object of P. As a matter of fact,

the canonical morphism
P P rz(-k) - M
kEZ he My,
is an epimorphism for any RZ-module M and it follows from the preceding proposi-

tions that
P P Rz(-k)~REP P Fz(-k)).

kEZ he My, kEZ heMy,
(b) In an exact sequence

0—-M —M-—M'—0
of Mod(RZ) where M, M" belong to P, M belongs to P. This follows directly from

the preceding proposition since a subobject of an object of P is clearly an object of
P.
(c) If
0O—->M —>M-—->M"-0

is an exact sequence of Mod(RZ) with M', M, M" in P, the sequence

0— L(M')— L(M) — L(M") =0
is strictly exact in FAb. As a matter of fact, we may assume

M'~R(N'), M ~R(N), M"~R(N").

Hence, using the fact that R is fully faithful, we see that the given exact sequence
may be obtained by applying R to a strictly exact sequence of the form

0N -N->N'"=0
of FAb. The conclusion follows from the fact that L o R ~ id. O
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ProOPOSITION 3.1.28. — The functor
RR : D(FAb) — D(Mod(RZ))

is an equivalence of categories which exchanges the left t-structure of D(FAb) with the
canonical t-structure of D(Mod(RZ)). A quasi-inverse of RR is given by

LL : D(Mod(RZ)) — D(FAD).
In particular, R induces an equivalence of categories
LH(FAD) = Mod(RZ).
Proof. — This follows directly from the preceding propositions. O
COROLLARY 3.1.29. — The functor
FAb — Ab*
which associates to any filtered abelian group M the inductive system
k— My,
the transitions of which are given by the inclusions
My — My (k <K',
induces an equivalence of categories
LH(FAb) ~ Ab%.
Proof. — This follows from the preceding proposition if one notes that the functor
Mod(RZ) — Ab”
which sends an RZ-module M to the inductive system
(Mg, T+ : My = My )rez
is clearly an equivalence of categories. O

PROPOSITION 3.1.30. — The structure of closed category of FAb induces a structure
of closed category on LH(FAb) which is compatible with the usual structure of closed
category of Mod(RZ) through the equivalence of the preceding proposition.

Proof. — Note that there are obvious canonical functorial morphisms
R(M)®R(N) — R(M ® N)
R(FHom (M, N)) — GHom (R(M), R(N))

for M, N in FAb. Although they are not bijective in general, one can check easily
that they become isomorphisms if M ~ FZ(l) for some [ € Z. Therefore, we see that

RR(M) ®* RR(N) ~ RR(M ®F N)
RR(RFHom (M, N)) ~ RGHom(RR(M), RR(N))
and the conclusion follows. O
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REMARK 3.1.31. — The category R = LH(FAb) is a closed elementary abelian cat-
egory for which we may apply all the results obtained in the preceding chapter. In
particular, the cohomological properties of filtered sheaves on a topological space X
are best understood by working in D(X,R).

3.2. Topological Sheaves

3.2.1. The category of semi-normed spaces. — In this section all vector spaces
are C-vector spaces. Recall that a semi-norm on a vector space E is a positive function
p on E such that
pler +e2) <ple1) +plez) forany ej,e2 € E
p(ce) =lc|p(e) forany ce Ce€ E
Let E be a vector subspace of F' and let p be a semi-norm on F. Recall that p

induces a semi-norm p’ on E and a semi-norm p” on F/E. These semi-norms are
defined respectively by

p'(e) =ple) and p"([flr) = inf p(f +e).

DEFINITION 3.2.1. — A semi-normed space, is a vector space endowed with a semi-
norm pg. A morphism of semi-normed spaces is a morphism f : E — F of the
underlying vector spaces such that

lpr o f| < Cpe

for some C' > 0. With this notion of morphisms, semi-normed spaces form a category
which we denote by Sns.

Let E be a semi-normed space. As is well-known, the semi-norm pg gives rise
to a canonical locally convex topology on E. Hereafter, we will always have this
particular topology in mind when we use topological vocabulary in relation with
semi-normed spaces. Using this convention, a morphism of semi-normed spaces is
simply a continuous linear map.

LEMMA 3.2.2. — The category Sns is additive. More precisely:

(a) The C-vector space 0 endowed with the 0 semi-norm is a null object of Sns.
(b) For any E,F in Sns, the C-vector space E ® F endowed with the semi-norm p
defined by

p(e, f) = pe(e) + pr(f)
s a biproduct of E and F in Sns.

LEMMA 3.2.3. — Let f: E — F be a morphism of Sns. Then,

(a) Ker f is the vector space f~1(0) endowed with the semi-norm induced by pg;
(b) Coker f is the vector space F/f(E) endowed with semi-norm induced by pr.
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Therefore,

(c) Im f is the vector space f(E) endowed with the semi-norm induced by pr;

(d) Coim f is the vector space E/f~1(0) endowed with the semi-norm induced by
pe. Equivalently, Coim f may be described as the vector space f(E) endowed
with the semi-norm p defined by

z) = inf
p(z) ye}r_ll(z)pE(y)

for any x € f(E).
In particular,

(e) f is strict if and only if

it | pe(@+y) < Opr(f(2))

for some C > 0. In other words, f is strict if and only if it is relatively open.
PROPOSITION 3.2.4. — The category Sns is quasi-abelian.

Proof. — We know that Sns is additive and that any morphism of Sns has a kernel
and a cokernel.
Consider the cartesian square

f

E—F
v g9

where f is a strict epimorphism and let us show that w is a strict epimorphism. We "
may assume that T is the kernel of

EeG Y
Hence,
T=A{(z,y) eE®G: f(z) =9y}
Denoting
i:Ker(f —g) —-EodG
the canonical injection and 7g and g the canonical projections, we have
v=7got and u=mgoi.
Since f is surjective, for any y € G there is x € E such that

f(@) =g(y).
In such a case, (z,y) € T and

u(z,y) =y.
This shows that the application u is surjective.
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Recall that

peoc((z,y)) =pe(z) +pcly) V(z,y) € E®G.
Clearly,
Keru = {(e,0) € E® G : f(e) =0}.
Therefore, for any (z,y) € T, we have

inf , ) = inf .
(e,eggKerup((fv y)+(ee) = inf po(@+e)+paly)

Since f is a strict epimorphism, there is C > 0 such that

eei}r(lgrpr(x +e) < Cpr(f(x))

for any z € E. From the continuity of g, we get C' > 0 such that

pr(f(z)) = pr(9(y)) < C'pa(y).
for any (z,y) € T. Hence, there is C"" > 0 such that

inf  p((z,y) + (e,€¢')) < C"pc(y)
(e,e’)EKeru

for any (z,y) € T and u is a strict epimorphism.
Consider the cocartesian square

G457

T

E——F

f

where f is a strict monomorphism and let us show that w is a strict monomorphism.
Denote o the morphism
We may assume that

T = Cokera = (G & F)/a(E).
Denoting

g:GoF — (Go F)/a(E)

the canonical morphism and or and og the canonical embeddings, we have

u=¢qgoog and v=gqooF.

Consider y € G such that u(y) = goog(y) = 0. It follows that
(y,0) € a(E)

and there is ¢ € E such that

Since f is injective, z = 0 and we get y = g(z) = 0. Hence u is injective.
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Since g is continuous and f is strict, we can find positive constants C', C' and C"
such that
pa(y + 9(x)) + palg(z))
pa(y +9(x)) + Cpp(x)
pa(y +g9(x)) + C'pr(f(2))
C"peer((y +9(2), - f(2)))
for all y € G and all x € E. Therefore, for any y € G, we have

paly) < " inf p((y + g(z), —f(2)))

<C" inf +y, 2
< (y,’z,)ea(E)p((y y'.2')

< C"p(q((y,0)))
< C"p(u(y)),

where p denotes the semi-norm of (G & F)/a(E) induced by p. It follows that u is a
strict monomorphism. O

pc(y)

<
<
<
<

DEFINITION 3.2.5. — Let E and F' be semi-normed spaces.
We denote by E® F the semi-normed space obtained by endowing the vector space
E @¢ F with the semi-norm p defined by

p(z) = _ inf  pp(zr)pr(ys).
2=) 0= Tk QUk

We denote by L (E, F') the vector spaée Hom (E, F') endowed with the semi-norm
q defined by

q(h) = sup pr(h(z)).
pe(z)<1

We denote by C the semi-normed space obtained by endowing C with the semi-
norm | - |.

PROPOSITION 3.2.6. — The category Sns endowed with ® as internal tensor product,
L as internal homomorphisms functor and C as unit object form a closed category.

DEFINITION 3.2.7. — Let (E;);cs be a family of semi-normed spaces. We denote by

@ E; the vector space @, ; E; endowed with the semi-norm p defined by
i€l

p((e)ier) = Y piles).

el

We denote by [] E; the subvector space of Hie ; E; formed by the families (e;)ier
i€l
such that

p(e) = supp;(e;) < +o00
il
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endowed with the semi-norm p.

PROPOSITION 3.2.8. — (a) Let (u; : E; — F);er be a bounded family of morphisms
of semi-normed spaces. Then, there is a unique morphism
iel

such that wo s; = u; (here s;: E; — @ E; denotes the canonical monomorphism).
icl
(b) Let (v; : F — E;)icr be a bounded family of morphisms of semi-normed spaces.
Then, there is a unique morphism

v:F = ]]E
il
such that p; ov = v; (here p; : [[ — E; denotes the canonical epimorphism,).
iel
(c) Let (u; : E; — F})icr be a bounded family of morphisms of semi-normed spaces.
Then, the kernel and the cokernel of

D - DF

i€l iel

are respectively isomorphic to @ Keru; and @ Cokeru;. Similarly, the kernel of

iel iel
- [T
iel iel

is isomorphic to [] Keru;. Moreover, if each u; is strict, then the cokernel of
il

ICEN G
i€l i€l
is isomorphic to [] Cokeru;.

iel

REMARK 3.2.9. — We could also introduce the subcategory Sns of Sns whose mor-
phisms are the linear maps f : E — F such that

lpr o f| < pE.
Then,

~ ~

GB and H

i€l iel
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appear as the true direct sum and direct product of objects of Sns. Note however that

Sns is not additive and so does not enter into the general framework of quasi-abelian
categories.

COROLLARY 3.2.10. — For any set I

@C (resp. H(C )

iel i€l
is projective (resp. injective) in Sns.
Proof. — The first part follows directly from the preceding proposition thanks to

the characterization of strict epimorphisms contained in Lemma 3.2.3. As for the
second part, the characterization of strict monomorphisms (loc. cit.) reduces it to the

well-known Hahn-Banach theorem. O
PROPOSITION 3.2.11. — The category Sns has enough projective and injective ob-
jects.
Proof. — (a) For any object E of Sns, the canonical morphism

PcHE

bEBE
defined by

u((cp)oebs) = Z cpb

beBg
is a strict epimorphism. As a matter of fact, any b’ € Bg may be written as

u((0b'5)beB5)
and

p & C((Sb'b)beBE =1
beBg

Thanks to the preceding corollary, it follows that Sns has enough projective object.

(b) Let E be an object of Sns and let us show that there is a strict monomorphism

from E to an injective object of Sns. Denote N the subspace p~'(0) of E endowed

with the null semi-norm. Since any linear map h : X — N is continuous, it is clear

that N is injective in Sns. Therefore, the sequence
0—->N—>E—E/N—-0

splits in Sns and F is isomorphic to N @ E/N. Hence, we may assume N =0 (i.e. E
is separated). In this case, denote by By the unit semi-ball of L (E,C) and consider
the morphism

v:E— H C

@€EBY,
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defined by
v(e)y = 9(e).

Thanks to the theorem of bipolars, this is clearly a strict monomorphism and the
conclusion follows from the preceding corollary. |
PROPOSITION 3.2.12. — Let (E;)icr be a family of semi-normed spaces. Then, for
any semi-normed space F' we have the following canonical isomorphisms

DEeF) > (DE)oF

il i€l

L@ E:,F) = [[L(E,F)

il
L(F[[E) = [[L(FE)
i€l

Proof. — This follows directly from the adjunction formula
H0m§ (E®F,G) ~ HomrS (E,L(F,Q)).
ns

ns

PROPOSITION 3.2.13. — For any projective object P of Sns the functor
P®-:S8ns — Sns

is strongly exact. Moreover for any projective object P' of Sns, the object P ® P' is
also projective.

Proof. — Let P be a projective object of Sns. Since the result will be true for a direct

factor of P if it is true for P, we may assume that P is of the form € C. Thanks to
i€l

Propositions 3.2.12 and 3.2.8 we may even reduce ourselves to the case P = C. But
C is the unit object of the closed category Sns, so we get the conclusion. O
COROLLARY 3.2.14. — The abelian category LH(Sns) has a canonical structure of
closed category.

Proof. — This follows from Corollary 1.5.4. O

3.2.2. The category of normed spaces

DEFINITION 3.2.15. — We denote by ANvs the full subcategory of Sns formed by
normed vector spaces.

PROPOSITION 3.2.16. — Letu : E — F be a morphism of Nvs. Then

(a) Keru is the subspace u=1(0) endowed with the norm induced by that of E,
(b) Cokerwu is the quotient space F/u(E) endowed with the norm induced by that of
F,
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(c) Imwu is the subspace u(E) endowed with the norm induced by that of F,

(d) Coimu is the quotient space E/u='(0) endowed with the norm induced by that
of E,

(e) u is strict if and only if u is relatively open with closed range.

Proof. — Direct. O
PROPOSITION 3.2.17. — The category Nvs is quasi-abelian.
Proof. — Since Nws is clearly additive with kernels and cokernels, we only need to

prove that axiom QA is satisfied. Let

Uo
Ey— Fy

[ ]

E; —UT_>F1

be a cartesian square with w a strict epimorphism. It follows from the preceding
proposition that wug is a strict epimorphism of Sns and that the square is cartesian in
Sns. Therefore, u; is a strict epimorphism in Sns and thus in MNvs. Now, let

Uy
E,— F

| ]

Ey WFO

be a cocartesian square in AN'vs where ug is a strict monomorphism of Nvs. It follows
that ug is a strict monomorphism of Sns with closed range. By definition the sequence

—e
(p:
(u0> v=(ur_f)
Ey———5E®oF —5F -0 (%)
is strictly coexact in MNvs. We know ¢ is a strict monomorphism of Sns. Let us prove
that its range is closed. Assume x,, is a sequence of Ey such that

(—e(l‘m)’ ’Ll,o(.’L‘m)) — (y, Z)

in E; ® Fy. Then, ug(z,,) — 2z in Fy and since ug has closed range, there is 2 in Ey
such that ug(zm) — uo(z). Since ug is relatively open, z, — z in Ey. Therefore
(—e(zm),uo(Tm)) — (—e(z),up(z)) and since E; & Fy is separated, we see that
(y,2) = (—e(z),uo(x)). Hence ¢ is a strict monomorphism of Mvs and the sequence
(*) is strictly coexact in Sns. It follows that u; is a strict monomorphism of Sns an
it remains to show that it has a closed range. Let z,, be a sequence of E; such that
uy(Zm) — y in Fy. Set y = ¢(z,t). This means that
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in Fj. Since the sequence (*) is strictly exact, there is a sequence s,, of Ey such that
(Zm — 2+ €e(8m), =t —uo(sm)) = 0

in Ey @ Fy. It follows that uo(sm) — —t in Fy. Hence s, — s in Fp and ug(s)

—t. Moreover, z,, = ¢ = z —e(s) in E;. Clearly, ui(z) = ¥(z,0) = ¥((2,t) +
(—e(s),uo(s))) = y and the conclusion follows. O
PROPOSITION 3.2.18. — The canonical inclusion

I:Nvs— Sns

has a right adjoint

Sep : Sns — Nws.
Moreover, Sep o I = idrys.
Proof. — We define Sep by setting

Sep(E) = E/N
where N = {z € E : pg(z) = 0}. One checks easily that
Homg, (E,I(F)) = Hom ., (E/N,F)

and the conclusion follows. O
PROPOSITION 3.2.19. — The functor

Sep : Sns — Nvs
is strongly right exact and has a left derived functor

LSep : D*(Sns) — D*(Nwvs) x € {@,+,—,b).

The functor
I:Nvs— Sns

is strictly exact and gives rise to a functor
I:D*(Sns) — D*(Nvs) x € {@,+,—,b}.
Moreover, I and LSep define quasi-inverse equivalences of categories. In particular,
I: LH(Nvs) — LH(Sns)

is an equivalence of categories. (Note that the same result does not hold for RH (N vs)
and RH(Sns).)

Proof. — Since any object of Sns is a quotient of an object of the form

bc

i€l
and since objects of this form are clearly separated, one sees easily that Nvs forms a
Sep-projective subcategory of Sns. The conclusion follows. O
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COROLLARY 3.2.20. — The functor
Sep : Sns — Sns
is left derivable and
LSep : D*(Sns) — D*(Sns) *x € {@,+,—,b}
1s isomorphic to the identity.

3.2.3. The category )V and topological sheaves. — In this section, we fix two
universes U and V such that U € V.

PROPOSITION 3.2.21. — The category
W = ZIndy Snsy

is an elementary quasi-abelian category. It has a canonical closed structure extending
that of Snsy. For any projective object P of Indy Snsy, the functor

P®-:Indy(Snsy) — Indy(Snsy)

is strongly exact and transforms a projective object into a projective object. In partic-
ular,
LH(Indy (Snsy)) =~ Indy (LH(Snsy))

is canonically a closed abelian category, the projective objects of which have similar
properties.

Proof. — This is a direct consequence of Proposition 2.1.17, Proposition 2.1.19 and
Proposition 1.5.4. O

COROLLARY 3.2.22. — Let P denote the full additive subcategory of Snsy formed
by semi-normed spaces of the form

bc
i€l
for some U-set I. Then, we have the canonical equivalence of categories
W Add(P, Aby).
Proof. — This follows from Proposition 2.1.14. O

DEFINITION 3.2.23. — We denote T ¢ the category formed by locally convex topolog-
ical vector spaces and continuous linear maps. For any object E of T¢, we denote by
BEg the ordered set formed by absolutely convex bounded subsets. For any B € Bg,
we denote Ep the vector subspace of E generated by B endowed with the gauge
semi-norm associated to B.
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PROPOSITION 3.2.24. — The functor
W:Tey - W

defined by setting

W(E)= hg (:EBH
BeBg

is faithful. Moreover, Hom,(W (E), W (F)) is formed by linear maps from E to F
which transform bounded subsets of E into bounded subsets of F'. In particular,

Hom ,,(W(E), W (F)) = Hom ,.(E, F)
if E is bornological.
Proof. — This follows directly from the formula

Hom,y,( lim “Ep”, lim “Fp”)~ lim lim Homg, (Ep,Fp).
BeBg B'eB'fp BeBg B'eB'p

O

REMARK 3.2.25. — Let E be an object of Tcy. Through the equivalence of Corol-
lary 3.2.22, W(E) corresponds to the functor

P+ Hom (P, E)

from P to Aby. Note also that

HornTc(@ C FE) ~lxo(I; E)
i€l

where £ (I; E) denotes the space of bounded families of E which are indexed by I.
PROPOSITION 3.2.26. — The functor
W .:Tey - W
preserves projective limits. Moreover, an algebraically exact sequence
0—>E —-E—E'"—>0
of FN (resp. DFN) spaces gives rise to the exact sequence
0—>W(E')—>W(E)—>W(E")—-0

of W.
Proof. — This follows directly from the preceding remark combined with well-known
results of functional analysis. O
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REMARK 3.2.27. — The preceding result show that a sheaf with values in T ey give
rise to a sheaf with values in W. Note also that the categories of FN and DFN
spaces appear as full subcategories of W. Since we may apply to the category W
all the results of the preceding chapter, the cohomological theory of W-sheaves is
well-behaved. Putting all these fact together make us feel that WW-sheaves form a
convenient class of topological sheaves for applications to algebraic analysis.
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