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THE CONVEX AND CONCAVE DECOMPOSITION OF
MANIFOLDS WITH REAL PROJECTIVE STRUCTURES

Suhyoung Choi

Abstract. — We try to understand the geometric properties of n-manifolds (n ^ 2)
with geometric structures modeled on (IiPn,PGL(n + 1,R)), i.e., yi-manifolds with
projectively flat torsion free affine connections. We define the notion of i-convexity of
such manifolds due to Carriere for integers z, 1 < z ^ n — 1, which are generalization
of convexity. Given a real projective n-manifold M, we show that the failure of an
(n - l)-convexity of M implies an existence of a certain geometric object, n-crescent,
in the completion M of the universal cover M of M. We show that this further
implies the existence of a particular type of affine submanifold in M and give a
natural decomposition of M into simpler real projective manifolds, some of which are
(n - l)-convex and others are affine, more specifically concave affine. We feel that
it is useful to have such decomposition particularly in dimension three. Our result
will later aid us to study the geometric and topological properties of radiant affine
3-manifolds leading to their classification. We get a consequence for affine Lie groups.

Resume (Decomposition convexe et concave des varietes projectives reelles)
Notre but est de decrire les proprietes projectives reelles geometriques des va-

rietes munies de (RP", PGL(n + 1, Restructures, ou n >_ 2, c'est-a-dire des varietes
equipees de connexions affines projectivement plates et sans torsion. Nous intro-
duisons la definition de la z-convexite, 1 < i < n - 1, due a Carriere et generalisant la
convexite usuelle. Nous montrons que, si une variete n'est pas (n — l)-convexe, alors
un certain objetj^eometrique, appele z-croissant, existe dans Ie complete M du revete-
ment universel M de M. De plus, cette derniere propriete enframe Pexistence d'une
sous-variete affine d'un certain type dans M et d'une decomposition de M en var-
ietes projectives plus simples, dont certaines sont (n - l)-convexes et d'autres affines,
plus precisement concaves affines. Une telle decomposition devrait s'averer utile tout
particulierement en dimension 3. En particulier, nous Putiliserons pour classifier les
varietes affines radiales de dimension 3. Ici nous en deduisons enfin une consequence
pour les groupes de Lie affines.
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PREFACE

The purpose of this monograph is to give a self-contained exposition on recent
results in flat real projective structures on manifolds. The main result is that mani-
folds with such structures have canonical geometric decomposition to manifolds with
more structures, i.e., ones with better convexity properties and ones which have affine
structures of special types.

We hope that this book exposes some of the newly found materials in real projective
structures so that more people might become interested in this topic. For that pur-
pose, we include many details missing from previous papers and try to show that the
techniques of this paper are at an elementary level requiring only some visualization
in spherical and real projective geometry.

Presently, the global study of real projective structures on manifolds is a field
which needs to mature with various relevant tools to be discovered. The fact that
such geometric structures do not have metrics and such manifolds are often incomplete
creates much confusion. Also, as these structures are often assembled in extremely
complicated manner as can be seen from their complicated global charts, or developing
maps, the manifolds with such structures cannot be seen as having covers in subsets of
model geometric spaces. This means that the arguments must be somewhat delicate.

Let us state some reasons why we are interested in real projective structures:
Firstly, our decomposition will be helpful for the study of 3-manifolds with flat real
projective structures. Already, the theory helps us in classification of radiant afnne
3-manifolds (see [14]).

All eight of homogeneous 3-dimensional Riemannian geometries can be seen as
manifestations of projective geometries, as observed by Thurston. More precisely,
Euclidean, spherical, and hyperbolic geometries have projective models. The same
can be said of Sol-, Nil-, and SL(2, R)-geometries. H2 x R1- and S2 x R1-geometries
are modeled on RP2 x RP1. Hence, every 3-manifold with homogeneous Riemannian
structure has a natural real projective structure or a product real projective structure.
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One could conjecture that many 3-manifolds admit real projective structures although
we do not even have a clue how to go about studying such a question.

Classical affine and projective geometries have plethora of beautiful results giving
much insight into Euclidean, spherical, and hyperbolic geometries. We expect that
such classical theorems will have important roles to play in the global study of pro-
jective structures on manifolds although in the present paper only very small portion
of classical geometry is ever used.

As we collect more results on various geometric structures on manifolds, we may
gain more perspectives on topology of manifolds which are not available from study-
ing relatively better understood Riemannian homogenous geometric structures. By
examining more flexible geometric structures such as foliation, symplectic, contact,
conformal, affine, or real projective structures, we may gain more informations about
the nature of geometric structures and manifolds in general. (We note here that the
comparative study of the geometric structures still have not been delved into much.)

The author thanks Bill Thurston who initiated him into this subject which has
much beauty, Bill Goldman who had pioneered some early successful results in this
field, Yves Carriere who posed many interesting questions with respect to affine
structures, and Hyuk Kim for many sharp observations which helped him to think
more clearly. The author benefited greatly from conversations with Thierry Bar-
bot, who suggested the words "convex and concave decomposition", Yves Benoist,
Richard Bishop, Craig Hodgson, Michael Kapovich, Steven Kerckhoff, Sadayshi Ko-
jima, Frangois Labourie, Kyung Bai Lee, John Millson, and Frank Raymond. The
author thanks the Global Analysis Research Center for generous support and allowing
him to enjoy doing mathematics at his slow and inefficient pace.

The author thanks the referee for suggesting a number of improvements on his
writing and is grateful to Mrs. Kyeung-Hee Jo and the editors for translating the
abstract in French.

Suhyoung Choi
December 1998
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CHAPTER 1

INTRODUCTION

From Ehresmann's definition of geometric structures on manifolds, a real projective
structure on a manifold is given by a maximal atlas of charts to RP" with transi-
tion functions extending to projective transformations. (For convenience, we will
assume that the dimension n of manifolds is greater that or equal to 2 throughout
this paper unless stated otherwise.) This device lifts the real projective geometry
locally and consistently on a manifold. In differential geometry, a real projective
structure is defined as a projectively flat torsion-free connection. Another equivalent
way to^define a real projective structure on a manifold M is to give an immersion
dev : M -> RP72, a so-called a developing map, equivariant with respect to a so-
called holonomy homomorphism h : 7Ti(M) -)- PGL(n + 1,R) where 7Ti(M) is the
group of deck transformations of the universal cover M of M and PGL(n + 1,R) is
the group of projective transformations of RP71. (The pair (dev, h) is said to be the
development pair.) Each of these descriptions of a real projective structure gives rise
to a description of the other two kinds unique up to some natural equivalences.

The global geometric and topological properties of real projective manifolds are
completely unknown, and are thought to be very complicated. The study of real
projective structure is a fairly obscure area with only handful of global results, as
it is a very young field with many open questions, however seemingly unsolvable by
traditional methods. The complication comes from the fact that many compact real
projective manifolds are not geodesically complete, and often the holonomy groups
are far from being discrete lattices and thought to be far from being small such as
solvable. There are some early indication that this field however offers many challenges
for applying linear representations of discrete groups (which are not lattices), group
cohomology, classical convex and projective geometry, affine and projective differential
geometry, real algebraic geometry, and analysis. (Since we cannot hope to mention
them here appropriately, we offer as a reference the Proceedings of Geometry and
Topology Conference at Seoul National University in 1997 [18].) This area is also
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an area closely related to the study of affine structures, which are more extensively
studied with regard to affine Lie groups.

Every Riemannian hyperbolic manifold admits a canonical real projective struc-
ture, via the Klein model of hyperbolic geometry with the hyperbolic space embedded
as the interior of a standard ball in RP71 and the isometry group PSO(1, n) as a sub-
group of the group PGL(n + 1, R) of projective automorphisms of RP71 (see [22] and
[10]).

They belong to the class of particularly understandable real projective manifolds
which are convex ones. A typical convex real projective manifold is often a quotient
of a convex domain in an affine patch of RP71, i.e., the complement of a codimension
one subspace with the natural affine structure of a complete affine space R", by a
properly discontinuous and free action of a group of real projective transformations
(see Theorem 4.5). It admits a Finsler metric, called Hilbert metric, which has many
nice geometric properties of a negatively curved Riemannian manifold though the
curvature may not be bounded in the sense of Alexandrov (see [24]).

An affine structure on a manifold is given by a maximal atlas of charts to an affine
space with transition functions affine transformations. Affine manifolds naturally ad-
mit a canonical real projective structure since an affine space is canonically identified
with the complement of codimension one subspace in the real projective space RP71

and affine automorphisms are projective. In particular, Euclidean manifolds are pro-
jective. Of course there are many affine manifolds which do not come from Euclidean
manifolds and most affine structures on manifolds are expected to be not convex (see
the classification of affine structures on tori by Nagano-Yagi [27]).

Not all real projective manifolds are convex (see [31] and [22]). However, in di-
mension two, we showed that closed real projective manifolds are built from convex
surfaces. That is, a compact real projective surface of negative Euler characteristic
with geodesic boundary or empty boundary decomposes along simple closed geodesies
into convex surfaces (see [10], [II], and [13]). With Goldman's classification of con-
vex real projective structures on surfaces [22], we obtain a classification of all real
projective structures on surfaces [17].

Also, recently, Benoist [5] classified all real projective structures, left-invariant or
not, on nilmanifolds some of which are not convex. Again, the decomposition into
parts admitting homogeneous structures was the central results. His student Dupont
[19] classifies real projective structures on 3-manifolds equal to Sol/F for where Sol
is a 3-dimensional solvable Lie group and F is a cocompact discrete subgroup.

The real projective structures on 3-manifolds are unexplored area, which may give
us some insights into the topology of 3-manifolds along with hyperbolic and contact
structures on 3-manifolds.

MEMOIRES DE LA SMF 78



CHAPTER 1. INTRODUCTION 7

Three-dimensional manifolds with one of eight Riemannian homogeneous geometric
structures admit canonical real projective structures or product real projective struc-
tures, as observed by Thurston: Manifolds with hyperbolic, spherical, or Euclidean
structures admit canonical real projective structures since hyperbolic, spherical, and
Euclidean geometries can be realized as pairs of open subspaces of the real projec-
tive space and subgroups of projective automorphisms of the respective subspaces.
Similarly, manifolds with Sol-, Nil-, and SL(2, Restructures admit real projective
structures, manifolds with H2 x R- and S2 x R-structures have product real projec-
tive structures modeled on RP2 x RP1. (See Theorem A.I using results of Molnar
[26].)

Also, given a hyperbolic Dehn surgery space of a hyperbolic knot complement in the
3-sphere, the boundary point is often realized by manifolds with degenerate geometric
structures. An interesting question by Hodgson is how to understand the degeneration
process by real projective structures perhaps by renormalizing the degeneration by
projective maps (see the thesis by Suarez [30]).

We might ask whether (i) real projective 3-manifolds decompose into pieces which
admit one of the above geometries or (ii) conversely pieces with such geometric struc-
tures can be glued into real projective 3-manifolds by perturbations. (These are
questions by Thurston raised around 1982.)

Goldman (see [1, p. 336]) asked which irreducible (Haken) 3-manifolds admit real
projective structure? A very exciting development will come from discovering ways
to put real projective structures on 3-manifolds other than from homogeneous Rie-
mannian structures perhaps starting from triangulations of 3-manifolds.

A related question asked by John Nash after his showing that all smooth manifolds
admit real algebraic structure is when does a manifold admit a rational structure, i.e.,
an atlas of charts with transition functions which are real rational functions. Real
projective manifolds are rational manifolds with more conditions on the transition
functions.

These questions are at the moment very mysterious and there is no evidence that
they can be answered at all. This paper initiates some methods to study the question
(i). We will decompose real projective n-manifolds into concave affine real projective
77-manifolds and (n — l)-convex real projective n-manifolds.

In three-dimensional case, our resulting decomposition into 2-convex 3-manifolds
and concave affine 3-manifolds often seem to be along totally geodesic surfaces, which
hopefully will be essential in 3-manifold topology terminology. Thus, our remaining
task is to see if 2-convex real projective 3-manifolds admit nice decomposition or at
least nice descriptions.

Our result will be used in the decomposition of radiant affine 3-manifolds, which
are 3-manifolds with flat affine structure whose affine holonomy groups fix common
points of the affine space (see [14]). This is the decomposition in Thurston's sense as

SOCIETE MATHEMATIQUE DE FRANCE 1999



8 CHAPTER 1. INTRODUCTION

these manifolds are shown to be Seifert spaces with Euler number zero. In particular,
we will be proving there the Carriere conjecture (see [9]) that every radiant affine
3-manifold admits a total section to its radial flow, with the help from Barbot^s work
[3], [4] (also see his survey article [2]). This will result in the classification of radiant
affine 3-manifolds.

Let us state our theorems more precisely. Let T be an (z + l)-simplex in an affine
space R71, i + 1 < n, with sides -Fi, F ^ ^ . . . , i^+2. A real projective manifold is said to
be i-convex if every real projective immersion

T° U F2 U • • • U F,+2 -^ M

extends to one from T itself.

THEOREM 1.1 (Main). — Suppose that M is a compact real projective n-manifold
with empty or totally geodesic boundary. If M is not (n— 1)-convex, then M includes
a compact concave affine n-submanifold N of type I or II or M° includes the canonical
two-faced (n — l)-submanifold of type I or II.

We will define the term "two-faced {n — l)-submanifolds of type I and II" in Defini-
tions 6.5 and 7.7 which arise in separate constructions. But they are totally geodesic
and are quotients of open domains in the affine space by groups of projective trans-
formations and are canonically defined. A two-dimensional example with a nontrivial
splitting is given in Example 7.9. We define the term concave affine n-submanifold
in Definition 9.1: A concave affine n-manifold M is a real projective manifold with
concave boundary such that its cover is a union of overlapping n-crescents. The
manifold-interior M° of a concave affine manifold admits a projectively equivalent
affine structure of very special nature. We expect them to be very limited. A so-called
n-crescent is a convex n-ball whose bounding sides except one is in the "infinity" of the
completion of the universal or holonomy cover (see Definition 3.6). Their interiors
are projectively diffeomorphic to either a half-space or an open hemisphere. They are
really generalization of affine half-spaces as one of the side is at "infinity" or "missing".

Let A be a properly imbedded (n — l)-manifold in M°, which may or may not be
two-sided and not necessarily connected or totally geodesic. The so-called splitting S
of M along A is obtained by completing M — N by adding boundary which consists
of either the union of two disjoint copies of components of A or double covers of
components of A (see the beginning of Chapter 10).

A manifold N decomposes into manifolds A^i .A^a , . . . if there exists a properly
imbedded (n — l)-submanifold S so that A^ are components of the manifold obtained
from splitting M along S; N - \ _ ^ N ^ ^ . . . are said to be the resulting manifolds of the
decomposition.

COROLLARY 1.2. — Let M be a compact real projective n-manifold with empty or
totally geodesic boundary. Suppose that M is not (n — 1)-convex. Then

MEMOIRES DE LA SMF 78



CHAPTER 1. INTRODUCTION 9

(1) after splitting M along the two-faced (n — 1) -manifold Ai arising from hemi-
spheric n-crescents^ the resulting manifold M3 decomposes into compact con-
cave affine manifolds of type I and real projective n-manifolds with totally
geodesic boundary which does not include any compact concave affine mani-
folds of type I.

(2) We let N be the disjoint union of the resulting manifolds of the above decom-
position other than concave affine ones. After cutting N along the two-faced
(n — 1)-manifold A^ arising from bihedral n-crescents^ the resulting manifold
N3 decomposes into maximal compact concave affine manifolds of type II and
real projective n-manifolds with convex boundary which is (n — 1)-convex and
includes no compact concave affine manifold of type II.

Furthermore, Ai and A^ are canonically defined and the decomposition is also canon-
ical in the following sense: If M3 equals N U K for K the union of compact concave
affine manifolds of type I in M3 and N the closure of the complement of K includes
no compact concave affine manifolds of type I, then the above decomposition agree
with the decomposition into components of submanifolds in (1). If N3 equals S U T
for T the finite disjoint union of maximal compact concave affine manifolds of type II
in N8 and S the closure of the complement of T that is (n — 1)-convex and includes
no compact concave affine manifold of type II, then the decomposition agrees with the
decomposition into components of submanifolds in (2).

By a maximal compact concave affine manifold of type II, we mean one which is
not a proper subset of another compact concave affine manifold of type II. If Ai = 0,
then we define M3 = M and if A^ = 0, then define N3 = N.

We note that M, M5, TV, and N3 have totally geodesic or empty boundary, as we
will see in the proof. The final decomposed pieces of N8 are not so. Concave affine
manifolds of type II have in general boundary concave seen from their inside and the
(n — l)-convex real projective manifolds have convex boundary seen from inside (see
Chapter 3).

Compare this corollary with what we have proved in [10] and [11] in the language
of this paper, as the term "decomposition" is used somewhat differently there by not
allowing one-sided closed geodesies to be used for decomposition.

THEOREM 1.3. — Let S be a compact real projective surface with totally geodesic or
empty boundary. Suppose ^(S) < 0. Then S decomposes along the union of disjoint
simple closed curves into convex real projective surfaces.

Our Corollary 1.2 is strong enough to imply Theorem 1.3, but we need to work out
the classification of concave affine 2-manifolds to do so.

This monograph will be written as self-contained as possible on projective geometry
and will use no highly developed machinery but will use perhaps many aspects of
discrete group actions and geometric convergence in the Hausdorff sense joined in a

SOCIETE MATHEMATIQUE DE FRANCE 1999



10 CHAPTER 1. INTRODUCTION

rather complicated manner. Objects in this papers are all very concrete ones. To grasp
these ideas, one only needs to have some graduate student in geometry understanding
and visualization of higher-dimensional projective and spherical geometry. The main
methods are extended from those already used in dimension two.

We work on n > 2 case although n = 2 case was more completely answered in
the earlier papers [10] and [11] (see Theorem 1.3). The point where this monograph
improves the papers [10] and [11] even in n = 2 case is that we will be introducing the
notion of two-faced submanifolds which makes decomposition easier to understand.

A holonomy cover of M is given as the cover of M corresponding to the kernel of
the holonomy homomorphism. We often need not look at the universal cover but the
holonomy cover as it carries all information and we can define the developing map
and holonomy homomorphism from it. The so-called Kuiper completion or projec-
tive completion of the universal or holonomy cover is the completion with respect
to a metric pulled from S71 by a developing map, as was introduced by Kuiper for
conformally flat manifolds (see Kuiper [25]).

In Part I, we give an introduction to projective geometry on spheres and the Kuiper
completions of real projective manifolds. In Chapter 2, we will give preliminary defi-
nitions and define and classify convex sets in S^. We also discuss the geometric limit
of a sequence of convex balls. In Chapter 3, we discuss the Kuiper or projective
completions M or M^ of the universal cover M or the holonomy cover M^ respec-
tively and convex subsets of them, and discuss how two convex subsets may intersect,
showing that in the generic case they can be read from their images in S71. We also
introduce "dipping intersection". This is when we can realize the intersection of two
convex balls as the closure of a component of a ball removed with a side of the other
ball. We finally discuss the convergence of sequences of convex balls in the Kuiper
completions.

In Part II, we will prove main results of this paper. The main focus in this paper
is to get good geometric objects in the universal cover of M. Loosely speaking, we
illustrate our plan as follows:

(i) For a compact manifold M which is not (n — l)-convex, obtain an n-crescent
in Mh.

(ii) Divide into two cases where M^ includes hemispheric n-crescents and where
n-crescents are always bihedral.

(iii) We derive a certain equivariance properties of hemispheric n-crescents or the
unions of a collection of bihedral ^-crescents equivalent to each other under
the equivalence relation generated by the overlapping relation. That is, we
show that any two of such sets either agree, are disjoint, or meet only in the
boundary.

(iv) We show that the boundary where the two collections meet covers a closed
codimension-one submanifold called the two-faced submanifolds. If we split M

MEMOIRES DE LA SMF 78



CHAPTER 1. INTRODUCTION H

along these, then the collection is now truly equivariant. From the equivariance,
we obtain submanifolds covered by them called the concave affine manifolds!
This completes the proof of the Main Theorem.

(v) Apply the Main Theorem in sequence to prove Corollary 1.2; that is, we split
along the two-faced manifolds and obtain concave affine manifolds for hemi-
spheric n-crescent case and then bihedral n-crescent case.

In Chapter 4, we prove a central theorem that given a real projective manifold
which is not (n - l)-convex, we can find an n-crescent in the projective completion.
The argument is the blowing up or pulling back argument as we saw in [10].

In Chapter 5, we generalize the transversal intersection of crescents to that of n-
crescents (see [10]). This shows that they intersect in a manageable manner so that
their sides in the ideal set extend each other and the remaining sides intersecting
transversally.

In Chapter 6, when M/, includes a hemispheric n-crescent, we show how to obtain a
two-faced (n - l)-submanifold. This is accomplished by the fact that two hemispheric
crescents are either disjoint, equal, or meet only at the boundary, i.e., at a totally
geodesic (n - l)-manifold which covers a closed totally geodesic (n - l)-submanifold
in M, a so-called two-faced submanifold. In Chapter 7, we assume that M/, includes
no hemispheric n-crescent but includes bihedral n-crescents. We define equivalence
classes of bihedral n-crescents. Two bihedral n-crescents are equivalent if there exists a
chain of bihedral ^-crescents overlapping with the next ones in the chain. This enables
us to define A(R) the union of n-crescents equivalent to a given n-crescent R. Given
A(R) and A(5) for two ^-crescents R and 5, they are either disjoint, equal, or meet
at a totally geodesic {n - 1)-submanifold. We obtain a two-faced (n - 1)-submanifold
from the totally geodesic (n — l)-submanifolds.

In Chapter 8, we show what happens to n-crescents if we take submanifolds or
splits manifolds in the corresponding completions of the holonomy cover. They are
all preserved.

In Chapter 9, we prove the Main Theorem: If there is no two-faced submanifold
of type I, then two hemispheric n-crescents are either disjoint or equal. The union
of all hemispheric n-crescents left-invariant by deck transformations and hence covers
a submanifold in M, a finite disjoint union of compact concave affine manifolds of
type I. If there is no two-faced submanifold of type II, then A(R) and A(S') for two
^-crescents R and S are either disjoint or equal. Again since the deck transformation
group acts on the union of A(R) for all n-crescents R, the union covers a manifold in
M, a finite disjoint union of compact concave affine manifolds of type II.

In Chapter 10, we prove Corollary 1.2; we decompose real projective manifolds.
We show that when we have a two-faced submanifold, we can cut M along these.
The result does not have a two-faced submanifold and hence can be decomposed into
(n - l)-convex ones and properly concave affine manifolds as in Chapter 9.

SOCIETE MATHEMATIQUE DE FRANCE 1999



12 CHAPTER 1. INTRODUCTION

In Chapter 11, we will show some consequence or modification of our result for Lie
groups with left-invariant real projective or affine structures.

A real projective structure on a Lie group is left-invariant if left-multiplications
preserve the real projective structure. The methods of the following theorem is also
applicable to real projective structures on homogeneous manifolds invariant with re-
spect to proper group actions (see Theorem 11.3).

THEOREM 1.4. — Let G be a Lie group with left-invariant real projective structure.
Then either G is (n — 1) -convex or its universal cover G is projectively diffeomorphic
to the universal cover of the complement of a closed convex set in R/1 with induced
real projective structure.

The (n — l)-convexity of affine structures are defined similarly, and this theorem
easily translates to one on affine Lie groups:

COROLLARY 1.5. — Suppose that G has a left-invariant affine structure. Then ei-
ther G is (n — 1)-convex or G is affinely diffeomorphic to the universal cover of the
complement of a closed convex set in R/1 with induced affine structure.

Part III consists of two appendices: In Appendix A, we show that 3-manifolds
with homogeneous Riemannian geometric structures admit canonical real projective
structures or product real projective structures using results of Molnar [26]. We show
that a real projective manifold is convex if and only if it is a quotient of a convex
domain in S71. In Appendix B, we study some questions on shrinking sequences of
convex balls in S"^ that are needed in Chapter 4.
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CHAPTER 2

CONVEX SUBSETS OF
THE REAL PROJECTIVE SPHERE

In this chapter, we will discuss somewhat slowly the real projective geometry of
RP71 and the sphere S71, and discuss convex subsets of S71. We will give classification
of convex subsets and give topological properties of them. We end with the geometric
convergence of convex subsets. (We assume that the reader is familiar with convex
sets in affine spaces, which are explained in Berger [7] and Eggleston [20] in detailed
and complete manner.)

The real projective space RP72 is the quotient space of R/^1 — {0} by the equiv-
alence relation ~ given by x ~ y iff x = sy for two nonzero vectors x and y and
a nonzero real number s. The group GL(n + 1,R) acts on RT^ — {0} linearly
and hence on RP71, but not effectively. However, the group PGL(n + 1,R) acts on
TtPn effectively. The action is analytic, and hence any element acting trivially in
an open set has to be the identity transformation. (We will assume that n > 2 for
convenience.)

Real projective geometry is a study of the invariant properties of the real projective
space RP71 under the action of PGL(n + 1, R). Given an element of PGL(n + 1, R)
we identify it with the corresponding projective automorphism of RP71.

By a real projective manifold, we mean an n-manifold with a maximal atlas of
charts to RP71 where the transition functions are projective. This lifts all local
properties of real projective geometry to the manifold. A real projective map is an
immersion from a real projective n-manifold to another one which is projective under
local charts. More precisely, a function / : M —^ N for two real projective n-manifolds
M and N is real projective if it is continuous and for each pair of charts <f): U —> RP^
for M and ^ : V —^ RP71 for N such that U and f~l(V) overlap, the function

^ o / o 0-1: (f)(u n f~\v)) -> ^(f(U) n V)
is a restriction of an element of PGL(n + 1, R) (see Ratcliff [28]).

It will be very convenient to work on the simply connected sphere S^ the double
cover ofRP^ as S71 is orientable and it is easier to study convex sets. We may identify
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the standard unit sphere S" in R7^1 with the quotient space of R7^1 - {0} by the
equivalence relation ~ given by x ~ y if x == sy for nonzero vectors x and y and s > 0.

As above GL(n + 1,R) acts on S". The subgroup SL±(n + 1,R) of linear maps
of determinant ±1 acts on S" effectively. We see easily that SL±(n + 1,R) is a
double cover of PGL(n + 1,R). We denote by Au^S") the isomorphic group of
automorphisms of S71 induced by elements of SL±(n + 1, R).

Since RP71 has an obvious chart to itself, namely the identity map, it has a maximal
atlas containing this chart. Hence, RP71 has a real projective structure. Since S71 is a
double cover of RP71, and the covering map p is a local diffeomorphism, it follows that
S71 has a real projective structure. S71 with this canonical real projective structure is
said to be a real projective sphere. We see easily that each element of Au^S^
are real projective maps. Conversely, each real projective automorphism of S71 is
an element of Aut(S77') as the actions are locally identical with those of elements of
Aut(S71). There is a following convenient commutative diagram:

§n JH §n

(2.1) ^P ^ p

RP71 -̂  RPn

where given a real projective automorphism g , a real projective map g ' always exists
and given g ' , we may obtain g unique up to the antipodal map AS" which sends x to
its antipodal point x~ for each unit vector x in S71.

The standard sphere has a standard Riemannian metric [i of curvature 1. We
denote by d the path-metric on S71 induced from ^. The geodesies of this metric are
paths on a great circles parameterized by d-length. This metric is projectively flat,
and hence geodesies of the metric agree with projective geodesies up to choices of
parameterization.

A convex line is an embedded geodesic in S71 of d-length less than or equal to TT.
A convex subset of S^ is a subset such that any two points of A are connected by a
convex segment in A. A simply convex subset of S71 is a convex subset such that every
pair of points are connected by a convex segment of d-length < TT — e for a positive
number e. (Note that all these are projectively invariant properties.) A singleton,
i.e., the set consisting of a point, is convex and simply convex.

A great 0-dimensional sphere is the set of points antipodal to each other. This is
not convex. A great i-dimensional sphere in S71 for i > 1 is convex but not simply
convex. An i-dimensional hemisphere^ i ^ 1, is the closure of a component of a great
z-sphere S' removed with a great (i - l)-sphere S'"1 in S'. It is a convex but not
simply convex. A 0-dimensional hemisphere is simply a singleton.

Given a codimension one subspace RP71"1 of RP71, the complement of RP71 can be
identified with an affine space R71 so that geodesic structures agree, i.e., the projective
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geodesies are affine ones and vice versa up to parameterization. Given an affine
space R77', we can compactify it to a real projective space RP"^ by adding points
(see Berger [7]). Hence the complement HP71 — RP^1"1 is called an affine patch. An
open n-hemisphere in S^1 maps homeomorphic onto RP71 — RP^1 for a subspace
p^pn-i Hence, the open n-hemisphere has a natural affine structure of R^ whose
geodesic structure is same as that of the projective structure. An open n-hemisphere
is sometimes called an affine patch.

A subset of R71 convex in the affine sense is convex in S71 by our definition when
R72 is identified with the open n-hemisphere in this manner.

We give a definition given in [28]: A pair of points x and y is proper if they are
not antipodal. A minor geodesic connecting a proper pair x and y is the shorter path
in the great circle passing through x and y with boundary x and y .

The following proposition shows the equivalence of our definition to one given in
[28] except for pairs of antipodal points.

PROPOSITION 2.1. — A set A is a convex set or a pair of antipodal points if and
only if for each proper pair of points x, y in A, A includes a minor geodesic ~xy in A
connecting x and y .

Proof. — If A is convex, then given two proper pair of points the convex segment
in A connecting them is clearly a minor geodesic. A pair of antipodal points has no
proper pair.

Conversely, let x and y be two points of A. If a* and y are proper then since a
minor geodesic is convex, we are done. If x and y are antipodal, and A equals {.r,^/},
then we are done. If x and y are antipodal, and there exists a point z in A distinct
from x and y , then A includes the minor segment ~xz and y^ and hence ~xz U ifz is a
convex segment connecting x and y\ A is convex. D

By the above proposition, we see that our convex sets satisfy the properties in
Section 6.2 of [28]. Let A be a nonempty convex subset of Sn. The dimension of A
is defined to be the least integer m such that A is included in a great m-sphere in
S71. If dim(A) = m, then A is included in a unique great m-sphere which we denote
by (A). The interior of A, denoted by A°, is the topological interior of A in (A), and
the boundary of A, denoted by 9A, is the topological boundary of A in (A). The
closure of A is denoted by C1(A) and is a subset of (A). C1(A) is convex and so is A°.
Moreover, the intersection of two convex sets is either convex or is a pair of antipodal
points by the above proposition. Hence, the intersection of two convex sets is convex
if it contains at least three points, it contains a pair of nonantipodal points, or one of
the sets contains no pair of antipodal points.

A convex hull of a set A is the minimal convex set including A. A side of a convex
set A is a maximal convex subset of OA. A polyhedron is a convex set with finitely
many sides.
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LEMMA 2.2. — Let A be a convex set. A° is not empty unless A is empty.

Proof. — Let (A) have dimension k. Then A has to have at least k + 1 points
pi , . . . ,pfe+i in general position as unit vectors in H^1 since otherwise every {k + 1)-
tuple of vectors are dependent and A is a subset of a great sphere of lower dimension.
The convex hull of the points pi , . . . ,pjfe+i is easily shown to be a spherical simplex
with vertices pi , . . . ,PA;+I. The simplex is obviously a subset of A, and the interior of
the simplex is included in A°. D

We give the classification of convex sets in the following two propositions.

PROPOSITION 2.3. — Let A be a convex subset ofS". Then A is one of the following
sets:

(1) a great sphere S^ 1 <, m <, n,
(2) an m-dimensional hemisphere H171, 0 ̂  m <^ n,
(3) a proper convex subset of an i-hemisphere H171.

Proof. — We will prove by induction on dimension m of (A). The theorem is obvious
for m = 0,1. Suppose that the theorem holds f o r m = A ' - l , A - > 2 . Suppose now that
the dimension of A equals m for m = k. Let us choose a hypersphere S77'"1 in (A)
intersecting with A°. Then Ai = A H S771-1 is as one of the above (1), (2), (3). The
dimension of Ai is at least one, i.e., m - 1 > 1. Suppose Ai = S771"1. As A° has two
points x,y respectively in components of (A) - S771"1, taking the union of segments
from x to points of S'71"1, and segments from y to points of S171-1, we obtain that
A = ( A ) .

If Ai is as in (2) or (3), then choose an (m - ̂ -hemisphere H including Ai with
boundary a great (m - 2)-sphere 9H. Consider the collection P of all (m - 1)-
hemispheres including OH. Then P has a natural real projective structure of a great
circle, and let A' be the set of the (m - ^-hemispheres in P whose interior meets
A. Then since a convex segment in (A) — OH projects to a convex segment in the
circle P, it follows that A' has the property that any proper pair of points of A1 is
connected by a minor geodesic, and by Proposition 2.1 A' is either a pair of antipodal
points or a convex subset.

Let H~ denote the closure of the complement of (Ai) — H. Then the interior of
H~ do not meet A as it does not meet Ai. Hence A' is a subset of P — {H~}.

If A' is a pair of antipodal points, then A' must be { H , H ~ } , and this is a con-
tradiction. Since A7 is a proper convex subset of P, A' must be a convex subset of a
1-hemisphere I in P. This means that only the interior of (m - ̂ -hemispheres in I
meets A, and there exists an m-hemisphere in (A) including A. Thus A either equals
this m-hemisphere or a proper convex subset of it. D

We say that a subset of a real projective manifold satisfies the Kobayashi's criterion
if there is no non-constant projective map from the real line R to it. (A convex

MEMOIRES DE LA SMF 78



CHAPTER 2. CONVEX SUBSETS OF THE REAL PROJECTIVE SPHERE 17

open domain in Sn satisfying KobayashFs criterion has a complete Hilbert metric by
Proposition 3.20 [24].)

Given a convex compact subset A of S72' the following statements are equivalent:
— A satisfies KobayashFs criterion.
— A does not include a line whose d-length equals TT.
— A does not include a pair of points antipodal to each other.

Let A be a convex subset of an z-hemisphere JP for z ^ 1. Assume that A does
not satisfy KobayashFs criterion. Then there are great spheres of dimension > 0 in
C1(A). Since great spheres in H^ are subsets of 9H\ they are included in 9A D 9H\

Given two great spheres 33 and S^ in A for 0 < j, k < i — 1, the geometry of JP and
the convexity of A easily imply that there exists a great sphere S^ with j, k < I <^ i — 1
including the both spheres. (Note that if k = i — 1, then A equals H\)

PROPOSITION 2.4. — Let A be a convex subset of an i-dimensional hemisphere H1

for i>_l. Then exactly one of the following holds:

— 9 A includes a unique maximal great j-sphere S3 for some 0 ̂  j <^ i — 1, which
must be in 9H^ and the closure of A is the union of (j + ̂ -hemispheres with
common boundary S-^ or

— A is a simply convex subset of H1, in which case A can be realized as a bounded
convex subset of perhaps another open i-hemisphere K1 identified with an affine
space R\

Proof. — We assume without loss of generality that A is closed by taking the closure
of A if necessary. The first item is proved in the above paragraph since the second
statement of the first item simply follows from convexity of A.

If A includes no pair of antipodal points, then let m be the dimension of (A) and
we do the induction over m. If m = 0,1, then the second item is obvious. Suppose
we have the second item holding for m = k — 1, where k ^ 2. Now let m = k, and
choose a great sphere S771"1 meeting A°, and let Ai = A D S777'""1. Since Ai is another
simply convex set, Ai is a bounded convex subset of an open (m — ^-hemisphere K
identified as an affine space R/71"1. Hence Ai does not meet 9K. As in the proof of
Proposition 2.3, we let P be the set of all (m — ^-hemispheres with boundary in 9K,
which has a natural real projective structure of a great circle. As in the proof, we see
that the subset A' of P consisting of hemispheres whose interior meets A is a convex
subset of a 1-hemisphere in P. The boundary of A1 consists of two hemispheres H^
and H'2. Since A' is connected, H^ and H^ bound a convex subset L in (A), and H\
and H^ meet in a /wangle less than or equal to TT.

If the angle between H^ and H-z equals TT, then H^ U H'z is a great (m — l)-sphere,
and H^ and H^ contains two points p, q of A respectively which are not antipodal.
Since A is convex, pq is a subset of A; since p and q is not antipodal, pq meets 9K
by geometry, a contradiction.
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Since the angle between ffi and H^ is less then TT, it is now obvious that there
exists an m-hemisphere H including A and meeting L only at OK, Hence A is a
convex subset of H°. Since A is compact, A is a bounded convex subset of H°. D

An m-bihedron in S" is the closure of a component of a great sphere S771 removed
with two great spheres of dimension m - 1 in S"" (m > 1). A 1-bihedron is a simply
convex segment.

LEMMA 2.5. — A compact convex subset K of ̂  including an (n — ^-hemisphere
is either the sphere S", a great (n - 1)-sphere, an n-hemisphere, an n-bihedron, or
the (n — ^-hemisphere itself.

Proof. — Let H be the (n - ̂ -hemisphere in K and s the great circle perpendicular
to H at the center of H. Then since K is convex, s H K is a convex subset of s or a
pair of antipodal point as in the proof of Proposition 2.3. If s H K = s, then every
segment from a point of s to a point of H belongs to K by convexity. Thus, K =Sn.
Depending on whether s H K is a point, a pair of antipodal points, a 1-hemisphere
or a simply convex segment, K is H , a great (n - l)-sphere, an n-hemisphere or an
n-bihedron. Q

PROPOSITION 2.6. — Let A be a convex m-dimensional subset of S71 other than a
great sphere. Then A° is homeomorphic to an open m-ball, C1(A) the compact m-ball,
and 9 A to the sphere of dimension m — 1.

Proof. — We can generalize Section 11.3.1 of Berger [7] to prove this proposition. D

Let A be an arbitrary subset of S71 and x a point of the topological boundary bd A
of A. A supporting hypersphere L for A is a great (n - l)-sphere containing a- in A
such that the two closed hemispheres determined by L includes A and x respectively.
We say that L is the supporting hypersphere for A a,t x.

PROPOSITION 2.7. — Let A be a convex subset of S71, other than S71 itself. Then
for each point x of 9 A, there exists a supporting hypersphere for A at x.

Proof. — If the dimension i of A is 0, this is trivial. Assume i > 1. If A is a great
z-sphere or an z-hemisphere i ^ 1, it is obvious. If not, then A is included an i-
hemisphere, say H. Then A° is a convex subset of the affine space H°. If x G H°,
there exists a supporting hyperplane K for A° at x by Proposition 11.5.2 of [7]. The
hyperplane K equals LnH° for a great (i - l)-sphere L in (A). Thus any great (n -1)
sphere P meeting (A) at L is the supporting hypersphere for A at x. If x G 9H, then
the conclusion is obvious. Q
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We define the Hausdorff distance d11 between all compact subsets of S71: We say
that two compact subsets X, Y have distance d11 less than 5, if X is in an e-d-
neighborhood of Y and Y is in one of X. This defines a metric on the space of all
compact subsets of S71.

Suppose that a sequence of compact sets Ki converges to Koo' Then it is well-
known that x belongs to Koo if and only if x is a limit of a sequence {a^}, Xi G Ki:
If x G Koo, then by definition for any positive number e, there exists an N so that
for i > TV, Ki contains a point Xi so that d(x^Xi) < e. Also, given a point x of S72,
if a sequence Xz G Ki converges to x, then x lies in Koo' If otherwise, x is at least 8
away from J^oo for 8 > 0, and so the 5/2-d-neighborhood of Koo is disjoint from an
open neighborhood J of x. But since Xi G J for z sufficiently large, this contradicts
^ —> -^CO-

PROPOSITION 2.8. — Given a sequence of compact convex subsets Ki o/S^ we can
always choose a subsequence converging to a subset Koo - Koo is compact and convex.
Also the following hold:

- If Ki are great i-spheres, then Koo is a great i-sphere.
— If Ki are i-hemispheres y that Koo is an i-hemisphere.
- If Ki are i-bihedrons, then Koo is either an i-hemisphere, an i-bihedron, or an

(% — 1)-hemisphere.
— If Ki are i-balls, then Koo is a convex ball of dimension less than or equal to

i.

Proof. — The first statement follows from the well-known compactness of the spaces
of compact subsets of compact metric spaces under Hausdorff metrics.

For each point x of Koo-, there exists a sequence Xi G Ki converging to x. Choose
arbitrary two distinct points x and y of Koo-, and sequences Xi € Ki and yi e Ki
converging to x and y respectively. Then there exists a segment ~x^yz of d-length
< TT in Ki connecting Xi and yi. Since the sequence of 'x^ is a sequence of compact
subsets of S71, we may assume that a subsequence converges to a compact subset L
of S71. By the above paragraph L C Koo' Since I-bihedrons and 1-hemispheres are
nothing but convex segments, the second and third items imply that L is a convex
segment. Thus Koo is convex.

(1) A great ^-sphere is defined by n — i number of dual d-orthonormal vectors of
R/\ Let {s{,..., s^_^} for i = 1,2,.. . to be the set of dual vectors for a great sphere
Ki. Then a point x belongs to Koo if and only if it is a limit of a sequence of points
Xi G Ki. Hence, x belongs to Koo if and only if x is zero under the set of limit dual
vectors. Hence, Koo is precisely defined by a set of (n — ^-equations and is a great
^-sphere.

(2) This follows as in (1) using d-orthonormal dual vectors defining an ^-hemisphere.
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(3) An z-bihedron is defined by n — i d-orthonormal vectors defining the great i-
sphere including it and two d-unit vectors which are normal to the n — i vectors but
may have an angle with respect to each other.

(4) If Ki are z-balls, then K{ C Hi for ^-hemispheres Hi. We choose a subsequence
ij of i so that Hiy converges to an z-hemisphere H. It follows that K^o is a subset of
H by the paragraph above our proposition since Ki. converges to Koo. Thus, Koo is
a compact convex subset of jEf, which shows that Koo is a convex ball of dimension
< i by Proposition 2.6. D

REMARK 2.9. — Contrary to above a sequence of simply convex z-balls can converge
to an z-hemisphere or nonsimply convex z-balls. Given a sequence of z-balls Ki^ if
Li is the sequence of maximal great spheres in Ki of dimension ji, then the limit
Poo includes the limits of subsequences of Li and the maximal great sphere for Koo
has dimension greater than or equal to the limit supremum of the sequence of the
dimensions of Li.

PROPOSITION 2.10. — Let Ki be a sequence of convex n-balls. IfdimKoo = n, then
we have IĴ i K°, D K°,. In this case 9K, -. 9K,.

The proof follows as in Section 2 of Appendix of [10]. The dimension does not
play a role. We will give a shortened proof here for reader's convenience.

Given a great sphere S71"1 in S71 and a point x belonging to S72 — Sn~l, if a geodesic
from x to Sn~l is perpendicular to S"'"1, and its d-length < Tr/2, then its d-length
equals d^.S71"1).

Suppose that x C B for a convex z-ball B. Then we have d(a;, 9B) < Tr/2. We
have d{x, 9B) = Tr/2 if and only if B is an z-hemisphere of which x is the center.

LEMMA 2.11. — Let A and B be two convex n-balls in S71. Suppose that A° — B°
contains a point x such that d(x, 9A) > 2e for a positive constant e. Then dH(A, B) >
e.

Proof. — Since x ^ B°, an n-hemisphere H contains x and satisfies B D H° = 0
by Proposition 2.7. The proof reduces to the claim that A D H contains a point y
such that d(y, S" — H°) > e. Let a be the diameter of H passing through x. Let
f3 == a n A. The subset f3 is a connected segment in the convex n-ball A D H whose
endpoints are contained in 9(Ar\H). Since f3 3 x and at least one of the endpoints of
f3 belongs to 9A, it follows that d-length (f3) > 2e. Since we have f3 C a and 2e < TT,
the segment f3 contains a point y such that

e < d(y,9a) <, Tr/2.

As a is perpendicular to 9H, we obtain

d(y^n-HO)>e.

D
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Proof of Proposition 2.10. — Let x 6 K°. Then d(;r,cW) > 2e for a positive con-
stant Ie. Let IV be a positive integer such that ^(K^Ki) < e whenever i > N. By
Lemma 2.11, x e K^ whenever i > N. Thus we obtain |ĵ  K^ D K°.

Given two convex n-balls A and J3, if d^(A,£?) < e for a positive real number e,
then d^((9A,(9.B) ^ 2e: Suppose that ^{QA.QB) > 2e. Then either 9 A contains a
point x such that d(x^ 9B) > 2e or 9B contains a point y such that d(<9A, y ) > 2e. It
is sufficient to consider the first case: If x ^ B^ then we have d(a*, B) > 2e and, hence,
d^A.B) > 2^. If x e B, then we have x e B° and, by Lemma 2.11, d^A.B) > 6.
Both are contradictions. D
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CHAPTER 3

CONVEX SUBSETS IN THE KUIPER COMPLETIONS

In this second chapter, we begin by lifting the development pair to the real projec-
tive sphere S71. Then we define the holonomy cover M^ of a real projective manifold
using the lifts. To make our discussion more familiar, we will define a completion,
called a Kuiper completion or projective completion, by inducing the Riemannian
metric of the sphere to the universal cover M or the holonomy cover M/, and then
completing them in the^Cauchy sense. Then we define the ideal set to be the com-
pletion removed with M or M/,, i.e., points infinitely far away from points of M or
A4.

We will define convex sets in these completions, which are always "isomorphic"
to ones in S". Then we will introduce n-crescents, which are convex n-balls in the
completions where a side or an (n- ̂ -hemisphere in the boundary lies in the ideal sets.
We show how two convex subsets of the completion may intersect; their intersection
properties are described by their images in S71 under the developing map. Finally,
we describe the dipping intersection, the type of intersection which will be useful in
this paper, and on which our theory of n-crescents depends heavily as we shall see in
Chapter 5.

Finally, we discuss when a sequence of convex n-balls in the Kuiper complement
may share a common open ball in them, the phenomenon which naturally occurs in
this paper because of dipping intersection properties. When there exists a common
open ball for a sequence of convex n-balls, we can find its geometric "limit" and the
geometric "limits" of the sequences of their subsets in many cases. (This part is
rewritten from the appendix of [10] but for general dimension n which creates no
differences.)

Let M be a real projective n-manifold. Then M has a development pair (dev, h)
of an immersion dev : M -^ RP-, called a developing map, and a holonomy ho-
momorphism h : 71-1 (M) -^ PGL(n + 1,R) satisfying dev o 7 = h(^) o dev for every
7 C TTi (M). Such a pair is determined up to an action of an element 'ff ofPGL(n+l, R)
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as follows:

(3.1) (dev, /i(.)) ̂  ̂  o dev, ̂  o h(') o i?-1).

Developing maps are obtained by analytically extending coordinate charts in the atlas.
The holonomy homomorphism is determined from the chosen developing map. (See
Ratcliff [28] for more details.) The development pair characterizes the real projective
structure, and hence another way to give a real projective structure to a manifold is to
find a pair (/, k) where / is an immersion M —^ RP71 which is equivariant with respect
to the homomorphism k from the group of deck transformations to PGL(n + 1, R).

We assume that the manifold-boundary 8M of a real projective manifold M is
totally geodesic unless stated otherwise. (Surely, M may have empty boundary) This
means that for each point of 8M, there exist an open neighborhood U and a lift
(f): U -> S71 of a chart U -^ RP" so that (f)(U) is a nonempty intersection of a closed
n-hemisphere with a simply convex open set. (By an n-hemisphere, we mean a closed
hemisphere unless we mention otherwise.) SM is said to be convex if there exists an
open neighborhood U and a chart (f) for each point of 8M so that (f)(U) is a convex
domain in S71. 8M is said to be concave if there exists a chart (U, (/)) for each point of
8M so that (f)(U) is the complement of a convex open set in an open simply convex
subset of S71.

We remark that if M has totally geodesic boundary, then so do all of its covers.
The same facts are true for convexity and concavity of boundary. Also, we will need to
allow our manifold M to be a topological manifold with boundary being not smooth,
especially when 8M is convex or concave. This does not cause any complications as
transition functions are smooth, and such manifolds can be considered as topologically
imbedded submanifolds of smooth manifolds.

LEMMA 3 .1. — Let M have totally geodesic boundary. Suppose that a connected
totally geodesic (n - l)-submanifold S of M of codimension > 1 intersects 8M in its
interior point. Then S C 8M.

Proof. — The intersection point must be a tangential intersection point. Since 8M
is a closed subset of M, the set of intersection of S and 8M is an open and closed
subset of S. Hence it must be S. D

REMARK 3.2. — If 8M is assumed to be convex, the conclusion holds also. This was
done in [10] in dimension 2. The proof for the convex boundary case is the same as
the dimension 2.

REMARK 3.3. — Given any two real projective immersions /i,/2 '' N —^ RP71 on a
real projective manifold N , they differ by an element of PGL(n+1, R), i.e., /2 = C°/i
for a projective automorphism C as they are charts restricted to an open set, and they
must satisfy the equation there, and by analyticity everywhere. Let p : S71 —^ HP71

denote the covering map. Given two real projective immersions /i,/2 '' N —^ S^, we

MEMOIRES DE LA SMF 78
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have that p o /i = C ° P ° /2 for C in PGL(n + 1,R). By equation 2.1, there exists
an element C7 of Au^S^ so that p o ( f = ^ o p where C' and As" o (f are the only
automorphisms satisfying the equation. This means that pofi = p o ( ' 0/2, and hence
it follows easily that /i = C7 ° /2 or /i = Asn o C' ° /2 by analyticity of developing
maps. Hence, any two real projective maps f l , f 2 ' ' N — ^ S n differ by an element of
Au^).

We agree to lift our developing map dev to the standard sphere S71, the double
cover of RP^ where we denote the lift by dev7. Then for any deck transformation
i? of M, we have dev7 o ̂  = h'^) o dev7 by the above remark. Hence i9 \-> h'{'ff) is a
homomorphism, and we see easily that h' is a lift of h for the covering homomorphism
Au^S") -.PGL(n+l,R).

The pair (dev7,/^) will from now on be denoted by (dev,fa), and they satisfy
dev 0 7 = /i(7) o dev for every 7 G 7Ti(M), and moreover, given a real projective
structure, (dev, h) is determined up to an action of 'ff of Au^S^ as in equation 3.1
by the above remark.

The sphere S71 has the standard metric /j, so that its projective structure is pro-
jectively equivalent to it; i.e., the geodesies agree. We denoted by d the path-metric
induced from /^. From the immersion dev, we induce a Riemannian metric fi of M,
and let d denote the induced path-metric on M. The Cauchy completion of (M, d)
is denoted by (M,d), which we say is the Kuiper completion or projective completion
of M. We define the ideal set Moo = M — M.

These sets are topologically independent of the choice of dev since the metrics
pulled from developing maps are always quasi-isometric to one another, i.e., they
differ by an element of Aut(S77') a quasi-isometry of S71 with metric d.

Naturally, dev extends to a distance-decreasing map, which we denote by dev
again. Since for each i9 G Au^S^, i9 is quasi-isometric with respect to d, and
each deck transformations (p of M locally mirror the metrical property of h((p), it
follows that the deck transformations are quasi-isometric (see [10]). Thus, each deck
transformation of M extends to a self-homeomorphism of M. The extended map will
be still called a deck transformation and will be denoted by the same symbol (p if so was
the original deck transformation denoted. Finally, the equation dev o '0 = h(i}) o dev
still holds for each deck transformation i?.

The kernel K of h: 7Ti(M) —^ Au^S^ is well-defined since h is well-defined up to
conjugation. Since dev o -̂  = dev for 'S C K^ we see that dev induces a well-defined
immersion dev7 : M/K —^ S71. We say that M/K the holonomy cover of M, and
denote it by M^. We identify K with TTI (M/^). Since any real projective map / : M^ —f
S71 equals '6 o dev7 for i? in Au^S^) by Remark 3.3, it follows that dev o (p equals
h'{^) o dev for each deck transformation ^p G 7ri(M)/7i-i(M^) and h'((p) G Au^S"^.
Thus, (p \-> h'(^p) is a homomorphism h1 : 7Ti(M)/7ri(M/J —^ Au^S^), which is easily
seen to equal h' = holl for the quotient homomorphism H : 71-1 (M) —^ 7ri(M)/7Ti(M^).
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Moreover, by Remark 3.3, (dev', h ' ) is determined up to an action of-^in Au^S")
as in equation 3.1. Conversely, such a pair (/,&) where / : M^ —^ S^ equivariant
with respect to the homomorphism k : 7Ti(M)/7ri(M/J -^ Au^S") determines a real
projective structure on M. From now on, we will denote (dev'./i') by (dev,/i), and
call the pair a development pair.

Given dev, we may pull-back fi, and complete the path-metric d to obtain M/^,
the completion of M/^, which is again called a Kuiper or projective completion. We
define the ideal set Mh,oo to be Mh - Mh. As before the developing map dev extends
to a distance-decreasing map, again denoted by dev, and each deck transformation
extends to a self-homeomorphism Mh —^ Mh, which we call a deck transformation still.
Finally, the equation dev o i9 = /i(i?) o dev still holds for each deck transformation 'ff.

FIGURE 3.1. A figure of Mh. The thick dark lines indicate 6Mh and
the dotted lines the ideal boundary M/i,oo, and 2-crescents in them in the
right. They can have as many "pods" and what looks like "overlaps". Such
pictures happen if we graft annuli into convex surfaces (see Goldman
[21]).

As an aside, we have the following proposition. A cover M' ofM is called developing
cover if it admits a real projective immersion to S71. We may define the Kuiper
completion M' and ideal set M^ using the metric pulled back from d on S71 using
the immersion. These sets are canonically defined regardless of the choice of the
immersion.
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PROPOSITION 3.4. — Let M' be a cover of M. Then M' is developing if and only
if there is a covering map g : M' -> M/,. In this case, each real projective immersion
f : M' —f S71 equals dev o g for a developing map dev of M^,.

Proof. — The converse is clear. Let / : M' -^ S71 be a real projective immersion.
Then for any loop in M' maps to a loop in M of trivial holonomy since we may break
up / to use it as charts on M' and M. Since 71-1 (M') thus injects into the kernel of
the holonomy homomorphism 71-1 (M) —> Aut(S71), M' covers M^ by a covering map
g . dev o g is also a projective immersion and must agree with k o f for k G Au^S^
by Remark 3.3. As k~1 o dev : M/i -^ S71 is a developing map, this completes the
proof. Q

A subset A of M is a convex segment if dev|A is an imbedding onto a convex
segment in S71. M is convex if given two points of the universal cover M, there exists
a convex segment in M connecting these two points (see Theorem 4.5). A subset A of
M is convex if given points x and y of A, A includes a convex segment containing x and
y . We say that A is a tame subset if it is a convex subset of M or a convex subset of a
compact convex subset of M. If A is tame, then dev|A is an imbedding onto dev(A)
and dev| C1(A) for the closure C1(A) of A onto a compact convex set Cl(dev(A)).
The interior A° of A is defined to be the set corresponding to Cl(dev(A))° and the
boundary 9A the subset of C1(A) corresponding to <9Cl(dev(A)). Note that QA may
not equal the manifold boundary 6A if A has a (topological) manifold structure. But
if A is a compact convex set, then dev(A) is a manifold by Proposition 2.6, i.e., a
sphere or a ball, and 9A has to equal 6A. In this case, we shall use SA over 9A. A side
of a compact convex subset A of M is a maximal convex subset of 6 A. A polyhedron
is a compact convex subset A of M with finitely many sides.

DEFINITION 3.5. — An i-ball A in M is a compact subset of M such that dev|A
is a homeomorphism to an z-ball (not necessarily convex) in a great z-sphere and its
manifold interior A° is a subset of M. A convex i-ball is an %-ball that is convex.

A tame set in M which is homeomorphic to an %-ball is not necessarily an z-ball
in this sense; that is, its interior may not be a subset of M. We will say it is a tame
topological i-ball but not z-ball or convex z-ball.

We define the terms convex segments, convex subset, tame subset, %-ball and convex
z-ball in Mh in the same manner as for M and the Kuiper completions of developing
covers.

We will from now on be working on M^, only, however, all of the materials in this
chapter will work for M and the Kuiper completions of developing covers as well, and
much of the materials in the remaining chapters will work also', however, we will not
say explicitly as the readers can easily figure out these details.

An n-bihedron is bounded by two (n— 1) -dimensional hemispheres; the correspond-
ing subsets of A are the sides of A (see [12]).
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DEFINITION 3.6. — An n-ball A of M^ is said to be an n-bihedron if dev|A is a
homeomorphism onto an n-bihedron. An n-ball A of Mh is said to be an n-hemisphere
if dev|A is a homeomorphism onto an n-hemisphere in S77'.

A bihedron is said to be an n-crescent if one of its side is a subset of M/^oo and
the other side is not. An n-hemisphere is said to be an n-crescent if a subset in the
boundary corresponding to an (n — ^-hemisphere under dev is a subset of M/^oo and
the boundary itself is not a subset of M/^oo*

Note that an n-crescent in M (or the Kuiper completions of developing covers) is
denned in the same obvious manner.

To distinguish, a bihedral n-crescent is an n-crescent that is a bihedron, and a
hemispheric n-crescent is an n-crescent that is otherwise.

In contrast to Definition 3.6, we define an m-bihedron for 1 ̂  m <, n — 1, to be
only a tame topological m-ball whose image under dev is an m-bihedron in a great
m-sphere in S71, and an m-hemisphere, O ^ m ^ n — l . t o b e one whose image under
dev is an m-hemisphere. So, we do not necessarily have A° C M^ when A is one of
these.

EXAMPLE 3.7. — Let us give two trivial examples of real projective n-manifolds to
demonstrate n-crescents (see [10] for more 2-dimensional examples).

Let R72 be an affine patch of Sn with standard affine coordinates a-i, x ^ , . . . ,Xn and
0 the origin. Consider TU1 - {0} quotient out by the group {g} where g : x -> 2x
for x G R/1 — {0}. Then the quotient is a real projective manifold diffeomorphic
to S71"1 x S1. Denote the manifold by N , and we see that N^, can be identified
with R/1 - {0}. Thus, Nh equals the closure of TU1 in S^ that is, A^ equals an
n-hemisphere H, and TV/^oo is the union of {0} and the boundary great sphere S72"1

of H. Moreover, the closure of the set R given by x\ + .2*2 + • • • + Xn > 0 in H is an
n-bihedron and one of its side is included in S71"1. Hence, R is an n-crescent.

Let -Hi be the open half-space given by x\ > 0, and / the line a* 2 = ' ' • =
x^ = 0 (provided n > 3). Let g\ be the real projective transformation given by
(xi, X2 , . . . , Xn) ̂  (2a-i, a -2 , . . . ,Xn) and ^2 that given by

(x^,X^^^,Xn) ̂  (Xi,2x^^.^2Xn)'

Then the quotient manifold L of H^ -1 by the commutative group generated by g\
and p2 is diffeomorphic to S^"2 x S1 x S1, and we may identify its holonomy cover
LH with Hi - I and LH with the closure Cl(^i) of Jfi in S". Clearly, Cl(^i) is an
n-bihedron bounded by an (n — 1 ̂ hemisphere that is the closure of the hyperplane
given by a-i = 0 and an (n — ^-hemisphere in the boundary of the affine patch R71.
Therefore, L^.oo is the union of H\ H / and two (n — ^-hemispheres that form the
boundary of Cl(.Hi). Cl(^i) is not an n-crescent since C\(H^°nLh,oo D I H H ^ / 0.
In fact, Cl(j?:fi) includes no n-crescents.
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Let R be an n-crescent. If R is an n-bihedron, then we define OR to be the interior
of the side of R in M/^oo and VR the other side. If R is an n-hemisphere, then we
define OR to be the union of the interiors of all (n - 1)-hemispheres in SRnM^oo and
define VR the complement of OR in 6R. Clearly, up is a tame topological (n - l)-ball.

REMARK 3.8. — There is another definition of n-crescents due to the referee is as
follows. An n-crescent set in M^ is a closed subset R of M^ such that

- dev restricted to R is injective,
- dev(intJ?) for the topological interior intjR of R is an open n-hemisphere or

an open n-bihedron,
- bd R n Mh is not empty,
- dev(bdJ?U Mh) is included in an (n - ^-hemisphere (equivalently, Jdev(7?)

includes an open (n - ^-hemisphere /3p disjoint from dev(J?)).

It is elementary to show the following: If R is an n-crescent, then R n M^ is an
n-crescent set. Conversely, the closure of an n-crescent set in M^ is obviously an
n-crescent. Hence, there exists a canonical correspondence between n-crescent sets
and n-crescents.

Finally, this definition shows some relationship between crescents and poche and
coque defined by Benzecri [6].

Let us now discuss about how two convex sets may meet. Let Fi and F^ be two
convex z-, j -balls in M/, respectively. We say that Fi and F^ overlap if Ff H F? ̂  0.
This is equivalent to Fi n F^ ^- 0 or Ff D Ff -^- 0 when Fi and F^ are n-balls.

PROPOSITION 3.9. — J/FI and F^ overlap, then dev|Fi U F^ is an imbedding onto
dev(Fi) U dev(F2) and dev|Fi D F^ onto dev(Fi) D dev(F2). Moreover, if Fi and
F2 are n-balls, then Fi U F2 is an n-ball, and Fi H F2 is a convex n-ball.

Proof. — The proof is a direct generalization of that of Theorem 1.7 of [10]. We see
that it follows from Proposition 3.10 since Fi and F^ satisfy the premise as dev(Fi)
and dev(F2) are convex. D

PROPOSITION 3.10. — Let A be a k-ball in M^ and B an l-ball. Suppose that
A° n B° 7^ 0, dev (A) D dev (B) is a compact manifold in S" with interior equal to
dev(A°) n dev(5°) and dev(A°) n de-v(B°) is pathwise-connected. Then dev|A U B
is a homeomorphism onto dev(A) U dev(5).

Proof. — This follows as in its affine version Lemma 6 in [16] but is rather elementary.
First, we prove injectivity: Let x C A, y G B, and z G A°nB° with dev(x) = dev(^).
There is a path 7 in dev(A) Ddev(.0) from dev(^) to dev(a1) such that 7|[0,1) maps
into dev(A)°ndev(B)°. Since dev|A is an imbedding onto dev(A), there is a lift 7A
of 7 into A° from z to x. Similarly, there is a lift 75 of 7 into B° from z to y . Note
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that 7A|[0,1) agrees with 7a|[0,1) by the uniqueness of lifts of paths for immersions.
Thus, x = y since M is a complete metric space.

By the injectivity, there is a well-defined inverse function / to dev|A U B. f
restricted to dev(A) equals the inverse map of dev|A, and / restricted to dev(B)
the inverse map of dev|-B. Since both inverse maps are continuous, and dev(A) and
dev(B) are closed, / is continuous. (See also [8].) D

In the following, we describe a useful geometric situation modeled on "dipping a
bread into a bowl of milk". Let D be a convex n-ball in M^ such that 8D includes
a tame subset a homeomorphic to an (n — l)-ball. We say that a convex n-ball F is
dipped into (D,a) if the following statements hold:

- D and F overlap.
- F n a is a convex (n - l)-ball /? with 8(3 C 6F and /3° C F°.
- F — f3 has two convex components 0\ and 0^ such that Cl(Oi) = 0\ U /? =

F - 02 and 01(02) = 02 U /3 - F - Oi.
- F n D is equal to Cl(Oi) or 01(02).

(The second item sometimes is crucial in this paper.) We say that F is dipped into
(D, a) nicely if the following statements hold:

- F is dipped into (D,a).
- F n D° is identical with Oi and 02.
- 6(F n D) = f3 U ^ for a topological (n — l)-ball ^, not necessarily convex or

tame, in the topological boundary bd F of F in M^ where (3 D ^ = 6(3.
As a consequence, we have S/3 C bdF. (As above this is a crucial point.) (The nice
dipping occurs when the bread does not touch the bowl.)

FIGURE 3.2. Various examples of dipping intersections. Loosely speaking
a plays the role of the milk surface, -F, -F', and F " the breads, and D° the
milk. The left one indicates nice dippings, and the right one not a nice
one.

The direct generalization of Corollary 1.9 of [10] gives us:
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COROLLARY 3.11. — Suppose that F and D overlap, and F° H {SD - a°) = 0.
Assume the following two equivalent conditions:

• F°na^0 , • F ( ^ D .

Then F is dipped into (D,a). If F D {8D — a°) = 0 furthermore^ then F is dipped
into {D^a) nicely. D

EXAMPLE 3.12. — In Example 3.7, choose a compact convex ball B in R71 - {0} =
Nh intersecting R in its interior but not included in R. Then B dips into (J?, P) nicely
where P is the closure of the plane given by x\ + • • > + Xn = 0. Also let S be the
closure of the half plane given by x\ > 0. Then S dips into (Ji, P) but not nicely.

Consider the closure of the set in N^ given by 0 < x\ < 1 and that of the set
0 < 3:2 < 1- Then these two sets do not dip into each other for any choice of {n — 1)-
balls in their respective boundaries to play the role of a.

Since dev restricted to small open sets are charts, and the boundary of M^ is
convex, each point x of M^ has a compact ball-neighborhood B(x) so that dev\B(x)
is an imbedding onto a compact convex ball in S71 (see Section 1.11 of [10]). dev(B(x))
can be assumed to be a d-ball with center dev (a*) and radius e > 0 intersected with
an n-hemisphere H so that 8Mh D B(x) corresponds to 6H H dev(B(x)). Of course,
8Mh H B(x) or 6H D dev(jE?(.r)) may be empty. We say that such B(x) is an e-tiny
ball of x and e the d-radius of B(x).

Note that for an e-imy ball B(x), SM^ H B(x) is a compact convex (n — l)-ball
or empty, and the topological boundary bdB{x) equals the closure of 6B(x) removed
with this set.

LEMMA 3.13. — If B{x) and an n-crescent R overlap, then either B(x) is a subset
of R or B(x) is dipped into (R^p) nicely.

Proof. — Since Cl(a^) C M/^oo and B(x) C M/i, Corollary 3.11 implies the conclu-
sion. D

As promised, we will reproduce two propositions on the sequences of convex n-balls
that "converge" to a convex ball in the Kuiper completions from the Appendix of [10].

Recall that p, denote the Riemannian metric on M^ induced from that of S71 by
dev.

PROPOSITION 3.14. — Let {Di} be a sequence of convex n-balls in M^. Letx € M^,
and B(x) a tiny ball of x. Suppose that the following properties hold:

(1) SDi includes an (n — l)-ball vi.
(2) B{x) overlaps with Di and does not meet SDi — Cl(^).
(3) A sequence {xi} converges to x where Xi E V{ for each i.
(4) The sequence {n^} converges where n^ is the outer-normal d-unit vector to vi

at Xi with respect to j i for each i.
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Then there exist a positive integer N and a convex open disk V in B(x) such that

P C Di whenever i > N.

Proof. — The appendix of [10] has the proof in dimension 2, which easily generalizes
to the dimension n: We follow this proof. Let c be a positive real number so that
d(x,bdB(x)) > c. Let Si be the inward maximal segment in Dz D B(x) with an
endpoint Xi in ^. Choosing TVi so that for i > TVi, d(xi^x) < c/2. Then the d-length
of Si is greater than c/2 for i > TVi. Choose a point yi on Si of distance c/4 from xi.
Then we have d(yi^bdB(x)) > c/4.

For each z, it is easy to see that Di D B(x) includes the ball Bc/^(yi) of d-radius
c/2 with center yi. As n^ converges to a d-unit vector at x^ the sequence of points
Vi converges to a point y of B(x). Choosing N , N > TVi, to be so that for i > N
d(yi,y) < c/8, we obtain that Bc/^Vi) 3 Bc/s(y) for i > N. Letting P equal Bc/s(y}°
completes the proof. D

We say that a compact subset -Doo of S71 is the resulting set of a sequence {Di}
of compact subsets of Mh if {dev(P^)} converges to Doo' Let {Di} and {Bi} be
sequences of convex n-balls with resulting sets Doo and Boo respectively; let {Ki}
be a sequence of compact subsets with the resulting set Koo' We say that {Di}
subjugates {Ki} if Di D Ki for each i and that {Bi} dominates {Di} if Bi and Di
overlap for each i and if Boo includes Doo' Moreover, we say that {Ki} is ideal if
there is a positive integer TV for every compact subset F of M^ such that F D Ki = 0
whenever i > N. In particular, if Ki is a subset of M/^oo for each z, then {^Q} is an
ideal subjugated sequence.

PROPOSITION 3.15. — Suppose that {Di} is a sequence of n-balls including a com-
mon open ball P, {Bi} is another sequence of n-balls, and {Ki} a sequence of subsets
of Mh' Assume that {Di} subjugates {Ki} and that {Bi} dominates {Di}. Then M^
includes two convex n-halls Du and Bu and a compact subset Ku with the following
properties:

(1) Du D P, and dev(^) = P^.
(2) Bu D Du, and dev(B^) = Boo.
(3) Du D ̂  and dev(J^) = J^oo.
(4) If{Ki} is ideal, then ̂  C M^oo.

Proof. — The proof is identical with that of Theorem 4 in the Appendix of [10]:
(1) Since dev(P^) includes dev(P) for each z, we have Doo D dev^P); hence, Doo

is a convex n-ball. Since Proposition 2.10 implies
00

IJdev(^)°D^,
i=l
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by Proposition 3.10 dev| |j^i D°, is an imbedding onto |j^i dev(^,)°. Thus, (J^i ^?
includes a convex disk Dsp such that dev\Dsp is an imbedding onto D°^. If we let
Du = C\(D^p), then (1) follows.

(2) Let V be a compact convex n-ball in P0; let V" be its interior {P')°. Noting
that Boo D dev(P), a point a; of de^(P") satisfies d(x, 8B^) > e for a small positive
constant e. Lemma 2.11 easily shows that there is a positive integer N such that

dev(Bi) D dev(P") whenever i > N.

Since dev|B, U Di is an imbedding onto dev(^) U dev(£),) by Proposition 3.9 and
Di D V, it follows that 5, D ^// whenever z > N . (2) follows from (1).

(3) Since Ki C Di for each z, we have K^ C D^. Let ^n = (dev]^")-^^^).
(3) follows.

(4) We show that ̂  C M^oo. To the contrary, suppose that ̂  U M/, contains
a point a*. Suppose further that x G M^; thus, there is a tiny ball B(x) satisfying
x G B{x)° and such that dev(B(.r))° H D°^ is star-shaped from a point y of dev(P).
(A star-shaped subset of S71 from a point is a subset such that each of its elements
can be connected by a simply convex segment in it from the point.) We obtain by
Proposition 3.10 that

de^\DiUB(x)UDU

is an imbedding onto

dev(D,) U dev(B(a1)) U D^
for each i.

Since {dev(^)} converges to K^ and dev(B(x))° is an open neighborhood of
dev(.z*), there is a positive integer N such that

dev(^) H dev(B(x))° ^ 0 whenever i > N.

Let i be an integer greater than N . The open disk B(x)° includes a non-empty subset
8i defined by

8i = (devlBQ^-^dev^) H dev(^))0).

By the conclusion of the second paragraph above, 8i is a subset of Ki. Since we
have 8i C B(x) whenever i > N , this contradicts the premise on {Ki}.

Finally, suppose that x C 8Mh. Let us extend M/, by attaching a small open n-ball
in S72 around a* by a projective map. The resulting projective surface still has convex
boundary. Now the previous argument applies and yields a contradiction again. D

As an immediate application, we have

COROLLARY 3.16. — Suppose that M is not projectively diffeomorphic to an open
n-bihedron or n-hemisphere. Let Ri be a sequence of n-crescents such that a sequence
of points Xi C VR, converges to a point x of MH. Then M^ includes a crescent R
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containing x so that dev(-R^.) converges to dev(Jt) for a subsequence Jt̂ . of Ri and
R and Riy include a common open ball V for j sufficiently large. Finally if Ri are
n-hemispheres, then so is R. If Ri are n-bihedrons, then R is either an n-hemisphere
or an n-bihedron.

Proof. — Assume without loss of generality that Xi G B(x) and that the sequence of
d-unit outer normal vectors n^ at xi converges to one at x. Then by Proposition 3.14,
there exists a common ball V in Ri D B(x) for i sufficiently large.

Note that Cl(o^) C Ri. By choosing a subsequence, we may assume that dev(Cl(o^))
converges to a compact set a so that Cl(o^) forms a subjugated sequence of Ri. More-
over Cl(o^) forms an ideal one since Cl(o^) never meets any compact subset of M^.

By Proposition 3.15, there exists a convex n-ball R in Mh so that a subsequence
of dev(It^) converges to dev(R). Since each Cl(o^) includes an (n — ^-hemisphere,
so does a by Proposition 2.8. Hence, dev(R) is an n-hemisphere or an n-bihedron
by Lemma 2.5. Furthermore, a subset a" of R which maps to a includes an (n — 1)-
hemisphere. ItSR is a subset ofM/^oo? then M/i is diffeomorphic to an open n-bihedron
or n-hemisphere by the following lemma 3.17. Thus, R is an n-crescent as a^ is a
subset of M/^oo by Proposition 3.15.

Since R includes P, -R overlaps B(x). Hence, dev|-R U B(x) is a homeomorphism
onto de-v(R) U dev(JE?(;r)). Since dev(J?) contains dev(a;), we have that x G R.

The two last statements follow from Proposition 2.8. D

LEMMA 3.17. — Suppose that M^ includes an n-ball B with 6B C M/^oo- Then M^
equals B°.

REMARK 3.18. — We can relax the condition Xi G I^R, to Xi C Ri in Corollary 3.16.
The proof requires us to choose a smaller crescent Si in Ri so that Xi G vsz ^d
o^Si C a^. The rest of the straightforward proof is left to the reader.
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CHAPTER 4

(n - 1)-CONVEXITY AND n-CRESCENTS

In this chapter, we introduce m-convexity. Then we state Theorem 4.6 central
to this chapter, which relates the failure of (n - l)-convexity with an existence of
n-crescents, or half-spaces. The proof of theorem is similar to what is in Section 5 in
[10]. Let M be a real projective n-manifold with empty or totally geodesic boundary;
let Mh, be the holonomy cover and M^ the Kuiper completion of M^. An m- simplex
T in Mh is a tame subset of Mh such that dev|T is an imbedding onto an affine m-
simplex in an affine patch in S^. If M is compact but not (n - l)-convex, then we can
show that there exists an n-simplex T in M/, with sides Fi , . . . , Fn-^-i so that THM/^oo
is a nonempty subset of the interior of Fi. We first choose a sequence of points qi of F^
converging to a point x in Fi n M/^oo. Then we pull back q^ to points pi in the closure
of a fundamental domain by a deck transformation ̂ -1. Then analogously to [10], we
show that Ti = ̂ (T) "converges to" a nondegenerate convex n-ball. Showing that
dev(r^) converges to an n-bihedron or an n-hemisphere is more complicated than in
[10]. The idea of the proof is to show that the sequence of the images under t^ of the
e-{n - l)-d-balls in ^"^(Fi) with center pi often have to degenerate to a point when
x is chosen specially. So when pulled back by ^-1, the balls become standard ones
again, and Fi must blow up to be an {n - ̂ -hemisphere under ^-1.

DEFINITION 4.1. — We say that M is m-convex, 0 < m < n, if the following holds. If
T C Mh is an (m+l)-simplex with sides Fi, F ^ , . . . , F^+2 such that T°UF^U' • •UFyn+2
does not meet M/^oo, then T is a subset of M/^.

PROPOSITION 4.2. — Let T be an affine (m + l)-simplex in an affine space with
sides Fi, FS , • < . , -^m+2 • The following are equivalent:

(a) M is m-convex.
(b) Any real projective immersion f from T° U F^ U • • • U Fm+2 to M extends to

one from T.
(c) Every cover of M is m-convex.
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Proof. — The proof of the equivalence of (a) and (b) is the same as the affine version
Lemma 1 in [16]: Suppose that M is not m-convex, and let p : M —^ M denote the
universal covering map. Then there exists a d-simplex T in M such that T D Moo ==
Ff H Moo 7^ 0 for a side Fi of T. Since T is a d-simplex. dev|r is an imbedding onto
dev(r), and dev(r) is a d-simplex in an affine patch of RP71. Let / be the map
(dev|dev(r))~1 restricted to dev(^o)Udev(F2)U< • •Udev(F^+2). / is a projective
immersion to M. It is easy to see that / does not extend to all of dev(T). Hence,
p o / is an affine immersion which does not extend to dev(T).

Suppose that M is m-convex. Let dev : M —> RP71 be the developing map. Let
/ : T° U F^ U • • • U -Fm+2 be a projective immersion into M, and let / be the lift of /
to M. Then dev o / is also a real projective immersion from T° U F^ U • • • U Fm-\-2 into
RP"^. Since the rank of the map dev o / is maximal, the map extends to a global
real projective transformation (f) on RP^, and hence dev o / is an imbedding. Since
dev|7(r°) is an imbedding onto an open m-simplex dev o f(T°) in RP71, and f(T°)
is a convex subset of M, it follows that the closure T ' of f(T°) is a tame subset of M
so that devIT' is an imbedding onto C1(7(T°)).

Since T ' is an (m + l)-simplex with sides f (F^) , . . . , f{F^^), and a remaining side
F[. Since T° and f(F^),... f(Fm+2} are subsets of M, and M is m-convex, we have
T ' C M. Therefore the affine embedding // : T -^ T ' given as (devir')"1 o (j> extends
/ and p o f extends /.

The equivalence of (b) and (c) follows from the fact that a real projective map to
M always lifts to its cover. D

PROPOSITION 4.3. — M is not m-convex if and only if there exists an (m + 1)-
simplex with a side F^ such that T D M/^oo = Ff D M/^oo 7^ 0-

Proof. — This elementary proof is same as Lemma 3 in [16]. Suppose that every
(m+ l)-simplex T has the property that T do not meet M/^oo or THM^oo is a subset
of the union of two or more sides but not less than two sides or if TnMoo is a subset of
a side F, then FF\ Moo is not a subset of F°. Then one sees easily that the definition
for m-convexity is satisfied by M.

Conversely, if M is m-convex, and T is an (m + l)-simplex with sides Fi..... Fm-\-2
such that T° U F^ U • • - U Fm+2 C M/^. then T C M. Consequently, there is no
(m + l)-simplex T with T D M^oo = Ff H M^oc ^ 0. 0

REMARK 4.4. — It is easy to see that z-convexity implies ^'-convexity whenever
i <_j <n. (See Remark 2 in [16]. The proof is the same.)

THEOREM 4.5. — The following are equivalent: M is 1-convex; M is convex'^ M is
real projectively isomorphic to a quotient of a convex domain in S71.
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FIGURE 4.1. The tetrahedron in the left fails to detect non-2-convexity
but the right one is detecting non-2-convexity.

The proof is similar to Lemma 8 in [16]. Since there are minor differences between
affine and real projective manifolds, we will prove this theorem in Appendix A.

Let us give examples of real projective n-manifolds one of which is not {n - 1)-
convex and the other (n — l)-convex.

As in Figure 4.1, R3 removed with a complete affine line or a closed wedge, i.e. a
set defined by the intersection of two half-spaces with non-parallel boundary planes
is obviously 2-convex. But R3 removed with a discrete set of points or a convex
cone defined as the intersection of three half-spaces with boundary planes in general
position is not 2-convex.

We recall Example 3.7. Let R71 be an affine patch of S71 with standard affine
coordinates x\, 3-2 ^ • • • ̂ n and 0 the origin. Consider R71 — {0} quotient out by the
group {g} where g : x -^ 2x for x C R71 - {0}. Then the quotient is a real projective
manifold diffeomorphic to S71"1 x S1. We denoted the manifold by N , and we see that
Nh can be identified with R71 - {0}. Thus, Nf, equals the closure of R71 in S71; that is,
Nh equals an n-hemisphere H, and N^,,00 is the union of {0} and the boundary great
sphere S71"1 of H. Consider an n-simplex T in R71 given by Xi < 1 for every i and
all+.r2+• • '+Xn > 0. Then the side of T corresponding to x^+x^' • '+Xn = 0 contains
the ideal point 0 in its interior. Therefore, N is not (n - l)-convex. Moreover, the
closure of the set given by a-i + x^ + • « • + Xn > 0 in Mh = H is an n-bihedron and one
of its side is included in S71"1. Hence, it is an n-crescent. (It will aid understanding
to apply each course of the proof of Theorem 4.6 to this example.)

Let H^ be the open half-space given by x\ > 0, and I the line x^ = • • « = Xn = 0. Let
g\ be the real projective transformation given by (a-i, x^ , . . . , Xn) ̂  (2a*i, x ^ , . . . , Xn)
and ^2 that given by (a-i, x^ , . . . . x^) '-> (a-i, 2^2 , . . . , 2a^). Then the quotient mani-
fold L of H\ — I by the commutative group generated by g^ and g^ is diffeomorphic to
§n-2 x S1 x S1, and we may identify L^ with H^ -1 and L^ with the closure Cl(I:fi)
of H^ in S71. Clearly, Cl^i) is an n-bihedron bounded by an (n - ^-hemisphere
that is the closure of the hyperplane given by x-t = 0 and an (n - ̂ -hemisphere in
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40 CHAPTER 4. (n - 1)-CONVEXITY AND n-CRESCENTS

the boundary of the affine patch R/\ Therefore, L^ is the union of ffi H / and
two (n - ^-hemispheres that form the boundary of Cl(^i). The intersection of an
n-simplex T in S" with the boundary (n - ^-hemispheres or I is not a subset of the
interior of a side of T. It follows from this that L is (n - l)-convex.

The main purpose of this chapter is to prove the following principal theorem:

THEOREM 4.6. — Suppose that a compact real projective manifold M with empty
or totally geodesic boundary is not (n - 1) -convex. Then the completion M^ of the
holonomy cover M^ includes an n-crescent.

We may actually replace the word "totally geodesic boundary" with "convex bound-
ary" and the proof is same step by step. However, we need this result at only one
point of the paper so we do not state it.

We can also show that the completion M of the universal cover M also includes
an n-crescent. The proof is identical with M replacing M/,. Another way to do this
is of course as follows: once we obtain an n-crescent in M/, we may lift it to one in
M (see Proposition 8.13).

REMARK 4.7. — As M is not {n - l)-convex, we may assume that M or M^ is
not projectively diffeomorphic to an open n-bihedron or an open n-hemisphere: If
otherwise, M is convex and hence (n - l)-convex. We will need this weaker but
important hypothesis later.

A point a: of a convex subset A of S'1 is said to be exposed if there exists a supporting
great (n - l)-sphere H at x such that H H A = {x} (see Chapter 2 and Berger [7, p.
361]).

To prove Theorem 4.6, we follow Section 5 of [10]: Since M is not (n - l)-convex,
Mh includes an n-simplex T with a side Fi such that T H M^oo = Ff H Mk,oo / 0
by Proposition 4.3, where dev|T : T -^ dev(T) is an imbedding onto the n-simplex
dev(T). Let K be the convex hull of dev(Fi n M/^oo) in dev(Fi)0, which is simply
convex as dev(Fi) is simply convex.

As K is simply convex, we see that K can be considered as a bounded convex
subset of an affine patch, i.e., an open n-hemisphere. We see easily that K has an
exposed point in the affine sense in the open hemisphere, which is easily seen to be
an exposed point in our sense as a hyperplane in the affine patch is the intersection
of a hypersphere with the affine patch.

Let x ' be an exposed point of K. Then x ' G dev(Fi D M/^oo), and there exists a
line s ' in the complement of K in dev(Fi)0 ending at x ' . Let x and s be the inverse
images of x ' and s ' in Ff respectively.

Let Fi for i = 2 , . . . , n + 1 denote the sides of T other than Fi. Let Vi for each z,
i = 1,... ,n + 1, denote the vertex of T opposite to Fz. Let us choose a monotone
sequence of points ^ on s converging to x with respect to d.
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CHAPTER 4. (n - 1)-CONVEXITY AND n-CRESCENTS 41

Choose a fundamental domain F in M^ such that for every point t of F, there
exists a 2^-tiny ball of t in M^ for a positive constant e independent of t. We assume
e < 7 T / 8 for convenience. Let us denote by F^ the closure of the 2£-d-neighborhood of
F, and Fe that of the ^-d-neighborhood of F so that Fe and F^e are compact subsets
ofM/,.

For each natural number z, we choose a deck transformation ^ and a point pi of
F so that ^(pt) = g^. We let v^, Fj^, and 7^, z = 1,2, . . . , j = 1,. . . , n + 1, denote
the images under i9^1 of Vj.Fj, and T respectively. Let ni denote the outer-normal
vector to F\^ at pi with respect to the spherical Riemannian metric fi of M^.

We choose subsequences so that each sequence consisting of

dev(^), dev(F^), dev(T,), m, and pi

converge geometrically with respect to d for each j, j = 1,... ,n + 1 respectively.
Since pi belongs to the fundamental domain F for each z, the limit p of the sequence
of pi belongs to Cl(-F). We choose an ^-tiny ball B(p) of p. We may assume without
loss of generality that pi belongs to the interior int£?(p) of B(p). Since the action of
the deck transformation group is properly discontinuous on M^ and Fj^ = ̂ ^(Fj)
for a compact subset Fj of M/^ there exists a natural number N such that

(4.1) F^e n F^i = 0 for each j , i, j > 1 , i > TV;

so B{p) n Fj^ == 0 for '̂ > 1. (This corresponds to Lemma 5.4 in [10].) Hence,
B{p) C Ti or B(p) dips into (r,,Fi,,) for each i, i > N , by Corollary 3.11.

FIGURE 4.2. The pull-back process
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42 CHAPTER 4. (n - 1)-CONVEXITY AND n-CRESCENTS

By Proposition 3.14, there exists an integer TVi, N-^ > JV, such that Ti includes a
common open ball for i > N^. Let Too be the limit ofdev(Ti). Since dev(Ti) includes
a common ball for i > N1, Proposition 2.8 shows that Too is a closed convex n-ball in
S^

Let Fj^oo denote the limit of dev(F^). Then U î1 ^j,oo is the boundary 6Too by
Proposition 2.10.

Proposition 3.15 implies that M^ includes a convex n-ball Tu and convex sets F^
such that dev restricted to them are imbeddings onto Too and Fj^oo respectively. We
have F^ C M/^oo for .7 > 2 from the same proposition since Fj^ is ideal.

As we shall prove below that -Fi,oo is an (n — 1 ̂ hemisphere, Too is a compact
convex n-ball in S71 including the {n — ^-hemisphere J^oo m its boundary JToo. By
Lemma 2.5, Too is an 72-bihedron or an n-hemisphere. As Uj>2 ^T ls a subset of M/^oo,
if F^ C M/,,oo, then MH = T" and Mh equals the interior ofT" by Lemma 3.17. M/,
is not projectively diffeomorphic to an open n-bihedron or an open n-hemisphere (see
Remark 4.7); F^ is not a subset of M/^oo« Since T^ is bounded by F^ and

^"U.-UF^+i CM^,oo,

it follows that T is an n-crescent. This completes the proof of Theorem 4.6. D

We will now show that F^ is an (n— 1)-dimensional hemisphere. This corresponds
to Lemma 5.5 of [10] showing that one of the sides is a segment of d-length TT. (The
following process may require us to choose further subsequences of Ti. However, since
dev(jFi^) is assumed to converge to -Fi,oo? we see that we need to only show that a
subsequence of dev(Fi^) converges to an (n — 1)-hemisphere.)

The sequence dev(g^) = A(^)dev(p^) converges to x ' . Since pi belongs to F, M^
includes an ^-tiny ball B{pi) and a 2^-tiny ball B ' ( p i ) of pi. Let W(pi) = Fi^ nB(pi)
and W{pi) = F-i^ D B ' ( p i ) . We assume that i > N]_ from now on.

We now show that W(pi) and W(p\) are "whole" (n — l)-balls of d-radius e and
2^, i.e., they map to such balls in S71 under dev respectively, or they are not "cut off'
by the boundary 6F^^:

If pi E SMh, then the component L of Fi^ FlM/^ containing pi is a subset of 6Mh by
Lemma 3.1. This component is a submanifold of8Mh with boundary SF-^^. Since SF-i^
is a subset of |j -^ Fj^, and B(pi) is disjoint from it by equation 4.1, SM^ nB(pi) is a
subset of L°. Thus, W(pi) equals the convex (n - l)-ball 6Mh r\B{pi) with boundary
in hdB(pi) and is a d-ball in F^ of dimension (n — 1) of d-radius e and center pi,
and certainly maps to an (n — l)-ball of d-radius e with center dev(p^).

If pi € M^, then since F]_^ passes through p^, and Fj^ D B{pi) = 0 for j ;> 2,
it follows that B(pi) dips into (T^.Fi^) nicely by Corollary 3.11. Thus W(pi) is an
(n — l)-ball with boundary in bdi?(p^), and an 6-d-ball in F^ of dimension (n — 1)
with center pi.
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Similar reasoning shows that W ' ( p i ) is a 2^-d-ball in F^ of dimension (n -1) with
center p^ for each %.

Since i)i(W(pi}) C Fi, and dev(Fi) is a compact set, we may assume without
loss of generality by choosing subsequences of i?^ that the sequence of the subsets
dev('ffi(W(pi))) of dev(Fi), equal to /i(^)(dev(W(j),))), converges to a set Woo
containing x ' in dev(Fi). Since deviT^ is an imbedding onto Too, there exists a
compact tame subset Wu in Fi such that dev restricted to Wu is an imbedding onto
Woo' ^i(W(pz)) is a subjugated sequence of the sequence of convex n-balls that equal
T always. Since W(pi) is a subset of a compact set Fe, it follows that ^i(W(pi)) is
ideal, and Wu C M^oo by Proposition 3.15. We obtain Wu C FI D M/^oo.

FIGURE 4.3. The pull-back process with W(pi).

For the proof of the next proposition, the fact that x ' is exposed will play a role:

PROPOSITION 4.8. — Woo consists of the single point x ' .

Suppose not. Then as dev(^(W(p^)) does not converge to a point, there has
to be a sequence {dev(^(^))}, Z{ C W(pi)^ converging to a point z ' distinct from
the limit x ' of {dev(^)}. Since we have dev(g^) = dev('^(p^)), we choose Si to be
the d-diameter of W(pi) containing Zi and pz, as a center. We obtained a sequence
of segments Sz G W(pi) passing through pi of d-length 2e so that the sequence of
segments dev(^(^)) in dev(Fi) converges to a nontrivial segment s containing x ' \
and z ' ' , satisfying s C Woo C dev(M/^oo H Fi).
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44 CHAPTER 4. (n - 1)-CONVEXITY AND n-CRESCENTS

Since s is a nontrivial segment, the d-length of /i(^)(dev(^)) is bounded below
by a positive constant 8 independent of i. Since /i(^)(dev(5,)) is a subset of the
(n — l)-simplex dev(Fi), which is a simply convex compact set, the d-length of
h(i9i)(dev(si)) is bounded above by TT - 81 for some small positive constant 5'. Let s\
be the maximal segment in W ' ( p i ) including 5,. Then the d-length of /i(^)(dev(^))
also belongs to the interval [J, TT — 8'}.

LEMMA 4.9. — Let S1 be a great circle and o,s,p^q distinct points on a segment
I in S1 of d-length < TT with endpoints 0,5 and p between o and q. Let fi be a
sequence of projective maps I -^ S71 so that d(/,(o), fi(s)) and d(/,(p),/,(^)) lie in
the interval [ r j , TT — r]} for some positive constant T] independent ofi. Then all of the d-
distances between fi{6), fz{s), fi{p), and fi(q) are bounded below by a positive constant
independent ofi.

Proof, — Recall the well-known formula for cross-ratios (see [7]):

\f-(o} f - ( ^ ' f - ( n } f fnM- sin(dCA(Q)Jz(g))) sin (d(/,(^),/,(?)))
[Jz\°)i JiW? J z { Q ) ^ Ji\P)\ — . ( _ t ( f ( \ £ ( \\\ ' . / _ i / . c / x—,. / ^ 'sm(d(fi(s), fi(q))) sm(d(/,(o), /,(?)))

Suppose that d(/^(o),/^(p)) -)- 0. Then since

d(/.(o), fi{q)) = d(/,(o), /,(?)) + d(/,(p), f,(q)) > ̂
d(/z(o)J.(g)) ^ d(/,(o)J,(5))^7T-77,

it follows that sin(d(/^(o), fi(q))) is bounded below and above by sin(77) and 1 respec-
tively. Similarly, so is sin(d(/,(5), fi{p))). Therefore, the right side of the equation
goes to +00, while the left side remains constant since fi is projective. This is a
contradiction, and d(/^(o),/^(p)) is bounded below by a positive constant.

Similarly, we can show that d(/^), fi(q)) is bounded below by a positive constant.
The conclusion follows from these two statements. D

Let S1 be the unit circle in the plane R2. Let (9, -Tr/2 < 0 < 7T/2, denote the
point of S1 corresponding to the unit vector having an oriented angle of 0 with (1,0)
in R2. Since Si and s\ are the diameters of balls of d-radius e and 2e with center pi
respectively, for the segment [—2e, 2e] consisting of points 0 satisfying —2e<0<^2£
in S1, we parameterize s[ by a projective map /, : [-2e,2e] -^ s'^ isometric with
respect to d, so that the endpoints of s\ correspond to —2e and 26, the endpoints of
Si to —e and 6, and pi to 0.

Lemma 4.9 applied to ki = h(i9i) o dev o fi shows that

d(ki(2£)^ki(e)) and d(^(-2^), ki(-e))

are bounded below by a positive constant since d(ki(e), ki(-e)) and d(ki(2e), ki(-2e))
are bounded below by a positive number 8 and above by TT — 8 ' . Since ki(2e) and
ki(-2e) are endpoints of/i(^)(dev(^)) and ki(e) and ^(-e) those of/i(^)(dev(5,)),
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a subsequence of /i(^)(dev(^)) converges to a segment s ' in dev(Fi) including s in
its interior. Hence, s ' contains x ' in its interior.

Since s\ is a subset of F^e i a compact subset of M^, it follows that the corresponding
subsequence of ^(^) is ideal in Fi. Hence s ' C dev(Fi D M/^oo) C K by Proposi-
tion 3.15. Since x ' is not an endpoint of s ' but an interior point, this contradicts our
earlier choice of x ' as an exposed point of K. D

Since Woo consists of a point, it follows that the sequence of the d-diameter of
h(i9i){dev(W(pi))) converges to zero, and the sequence converges to the singleton
{x ' } .

Let us introduce a d-isometry g^ which is a real projective automorphism of S",
for each i so that each gi(dev(W{pi})) is a subset of the great sphere S71"1 includ-
ing dev(Fi), and hence h(i9i) o g^~1 acts on S""1. We may assume without loss of
generality that the the sequence of d-isometries gi converges to an isometry g of S".
Thus, h{^i) o ̂ (^(devfW^)))) converges to x ' , and ^ o /^(^)"-l(dev(Fl)) con-
verges to g(F-t^oo) by what we required in the beginning of the pull-back process. By
Proposition B.I, we see that ^(^1,00) is an (n — 1)-hemisphere, and we are done.
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CHAPTER 5

THE TRANSVERSAL INTERSECTION OF
n-CRESCENTS

From now on, we will assume that M is compact and with totally geodesic or
empty boundary. We will discuss about the transversal intersection of Ti-crescents,
generalizing that of crescents in two-dimensions [10].

First, we will show that if two hemispheric n-crescents overlap, then they are equal.
For transversal intersection of two bihedral n-crescents, we will follow Section 2.6 of
[10].

Our principal assumption is that M^ is not projectively diffeomorphic to an open
yi-hemisphere or n-bihedron, which will be sufficient for the results of this section to
hold (see Remark 4.7). This is equivalent to requiring that M is not projectively
diffeomorphic to these. This will be our assumption in Chapters 5 to 8. In applying
the results of these Chapters in Chapters 9 and 10 we need this assumption also.

For the following theorem, we may even relax this condition even further:

THEOREM 5.1. — Suppose that M^ is not projectively diffeomorphic to an open
hemisphere. Suppose that R\ and R^ are two overlapping n-crescents that are hemi-
spheres. Then R\ = R^^ and hence VR^ == VR^ and OR^ = ap^.

Proof. — We use Lemma 5.2 as in [10]: By Proposition 3.9, dev|J?i U % is an
imbedding onto the union of two n-hemispheres dev(J?i) and dev(R^) in S77'. If R^
is not equal to R^, then dev(J?i) differs from de-v(R^), dev(I?i) and dev(%) meet
each other in a convex n-bihedron, dev(J?i) Udev(R'z) is homeomorphic to an n-ball,
and the boundary ^(dev(J^i) U dev{R^)) is the union of two (n — ^-hemispheres
meeting each other in a great (n — 2)-sphere S"^2.

Since ap^ and ap^ are disjoint from any of R^ and R^ respectively, the images of
ap^ and 0^2 do not intersect any of dev(^) and dev(^) respectively by Proposi-
tion 3.9. Therefore, dev(aj^) and dev(aj^) are subsets of J(dev(J?i) U dev(J?2))-
Since they are open (n — ^-hemispheres, the complement of dev(a^) U dev(a^) in
J(dev(J?i)Udev(J?2)) equals S71"2, and dev(a^)Udev(a^2) is dense in J(dev(J?i)U
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dev(J?2)). Since dev|I?i U R^ is an imbedding, it follows that J?i U R^ is an n-ball,
and the closure of ap^ U a^ equals 8(R^ U R^). Hence, 8(R^ U R^) C M^oo. By
Lemma 3.17 it follows that M/, = R^ U J^, and A4 is boundaryless. By Lemma 5.2,
this is a contradiction. Hence, Ri = R^. Q

LEMMA 5.2. — Let N be a closed real projective n-manifold. Suppose that dev :
Nh —^ Sn is an imbedding onto the union of n-hemispheres H^ and H^ meeting each
other in an n-bihedron or an n-hemisphere. Then H^ = H'z, and N^ is projectively
diffeomorphic to an open n-hemisphere.

Proof. — Let (dev, h) denote the development pair of N , and F the deck transfor-
mation group. As dev|7V/, is a diffeomorphism onto H ^ U H ^ , a simply connected set,
we have N^, = N .

Suppose that H^ ^ H^. Then H^ U H^ is bounded by two (n - ̂ -hemispheres Di
and D^ meeting each other on a great sphere S^2, their common boundary. Since
the interior angle of intersection of jDi and D^ is greater than TT, SHi - Di is an open
hemisphere included in dev(TV) for i = 1,2. Denning 0, = SHz - Di for i = 1,2,
we see that Oi U 0^ is h(T) -invariant since S(H^ U H^) is /i(r)-invariant. This means
that the inverse image dev'^Oi U 0'z) is r-invariant.

Let 0\ = dev'^O,). Then elements of F either act on each of 0[ and 0^ or
interchange them. Thus, T includes a subgroup T ' of index one or two acting on each
of 0[ and O^. Since N^ is a simply connected open ball, and so is 0[, it follows
that the Tz-mamfold N / F ' and an (n - l)-manifold 0 [ / r ' are homotopy equivalent.
Since N / F 1 is a finite cover of a closed manifold N , N / F ' is a closed manifold. Since
the dimensions of N / F ' and 0[/F are not the same, this is shown to be absurd by
computing Z2-homologies. Hence we obtain that H^ = H^, and since dev(TV) equals
the interior of -Hi, N is diffeomorphic to an open n-hemisphere. D

Suppose that J?i is an n-crescent that is an n-bihedron. Let R^ be another bihedral
n-crescents with sets aj^ and VR^ . We say that R^ and R^ intersect transversally if
R^ and R^ overlap and the following conditions hold (i = Ij = 2; or i = 2J = I):

(1) v^ D VR^ is an (n — 2)-dimensional hemisphere.
(2) For the intersection z/^ H VR^ denoted by H, H is an (n - 2)-hemisphere, H° is

a subset of the interior ̂ , and dev(^.) and dev(^.) intersect transversally
at dev(^).

(3) VR, n Rj is a tame (n — l)-bihedron with boundary the union of H and an
(n — 2)-hemisphere H ' in the closure of a^ with its interior H ' ° in ap..

(4) VR^ D Rj is the closure of a component of v^ — H in M^.
(5) Ri n Rj is the closure of a component of Rj — v^.
(6) Both OLR^ D ORy and a^ U ap^ are homeomorphic to open (n — 1)-dimensional

balls, which are locally totally geodesic under dev.
Note that since a^ is tame, a^ n ap^ is tame. (See Figures 5.1 and 5.2.)
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FIGURE 5.1. Transversal intersections in dimension two.

By Corollary 5.8, the above condition mirrors the property of intersection of
dev(fii) and dev(R^) where dev(a^) and dev(a^) are included in a common
great sphere S71-1 of dimension (n- 1), dev(J?i) and dev(^) included in a common
n-hemisphere bounded by S7'"1 and dev(^J° and dev(^)° meet transversally (see
Proposition 3.9). Conversely, if the images ofJ^i and R^ satisfy these conditions, and
R\ and R^ overlap, then J?i and R^ intersect transversally.

EXAMPLE 5.3. — In the example 3.12, R is an n-crescent with the closure of the
plane P given by the equation a-i + • • • + Xn = 0 equal to VR. OR equals the interior of
the intersection of R with 8H. vs is the closure of the plane given by a-i = 0 and as
the interior of the intersection of S with S H . Clearly, R and S intersect transversally.

Using the reasoning similar to Section 2.6. of [10], we obtain:

THEOREM 5.4. — Suppose that R^ and R^ are overlapping. Then either R^ and R^
intersect transversally or J?i C R^ or R^ C R\.

REMARK 5.5. — In case J?i is a proper subset of R^, we see easily that a^ = a^
since the sides of J?i in Mh,oo must be in one of R^. Hence, we also see that ̂  C R^
as the topological boundary of R^ in R^ must lie in v^.

The proof is entirely similar to that in [10]. A heuristic reason that the theorem
holds is as follows (due to the referee): We show that dev|J?i UR^ is an imbedding onto
dev(^i)Udev(J?2) as fii and R^ overlap. As ap^ and a^ are subsets ofM/^oo, their
images dev(o;j?J and dev(a^) are disjoint from dev(J?i)° and de-v(R^)0. Among
all combinatorial types of configurations of bihedrons dev(J?i) and dev^) in S71,

SOCIETE MATHEMATIQUE DE FRANCE 1999



50 CHAPTER 5. THE TRANSVERSAL INTERSECTION OF n-CRESCENTS

a. ^i Pi
^

^jljl^^

R2 a^
FIGURE 5.2. A three-dimensional transversal intersection seen in two
view points

the configuration satisfying this condition should be the one described above. For
reasons of rigor, we present the following somewhat nonintuitive arguments; however,
a parallel argument purely based on the images of R^ and R^ in S71 is also possible.

Assume that we have i = 1 and j = 2 or have i = 2 and j = 1, and J?i (Z; R^ and
R^ f- RI. Since Cl(a^) C M/^oo, Corollary 3.11 and Proposition 3.9 imply that Rj
dips into (^,^J, a point of mew we shall hold for a while. Hence, the following
statements hold:

- I^R, H Rj is a convex (n — l)-ball o^ such that

(5.1) 6a, c6Rj,a°i cR°j.

- Ri n Rj is the convex n-ball that is the closure of a component of Rj - a^
Since o^ is disjoint from v^, o^ is a subset of a component C of VR, -VR..

LEMMA 5.6. — If^R, andi/Ry meet, then they do so transver'sally', i.e, their images
under dev meet transversally. If VR, and ap^ meet, then they do so transver sally.

Proof. — Suppose that VR^ and VR^ meet and they are tangential. Then dev(^J
and dev(^.) both lie on a common great (n - l)-sphere in S71. Since dev(J^) lies
in an n-hemisphere bounded by this sphere, VR, D VR^ = y^ H Rj by Proposition 3.9.
Since i/p, D Rj includes an open (n - l)-ball a°^ this contradicts a^ C R°.

Suppose that VR, and apy meet and they are tangential. Then VR, H Cl(a^.) =
^Ri ri Rj as before, which leads to contradiction similarly. D

We now determine a preliminary property of o^. Since o^ is a convex (n - l)-ball
in v^ with topological boundary in SRi U SRj, we obtain

Sai C o^R,U(6Rjn^)

c SVR, u (̂ . n ̂ ) u (a^, n ̂ ).
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Hence, we have

8ai = (Sai n S^R,) u (Sai n VR, n v°^) u (Sai n a^ n ̂ ).

If a^. meets z/j^, then since ap^ is transversal to v°^ by Lemma 5.6, apy must
intersect Ji^ by Proposition 3.9. Since ap^ C M/^oo, this is a contradiction. Thus,
aRy D ̂  = 0. We conclude

(5.2) Ja, = (Sai H (^) U (6ai H ̂ . H ̂ ).

Before continuing the proof, let us state a few easy spherical geometry facts: Given
an z-hemisphere J in S72, if K is a great sphere in J, then K is included in 8J". Thus
if K is a compact convex set containing a point of J°, then K must be an j-ball for
some j^ 0 < j < %, by Proposition 2.6.

An (% — ^-hemisphere K, i > 1, in J has its boundary in 8 J . If JC contains a
point of J°, then K equals J D L for a great (z — l)-sphere L, and J° — K has exactly
two components which are convex. Since the closures of the components includes K^
Lemma 2.5 shows that the closures of two components are z-bihedrons.

Suppose that K is a convex (i — l)-ball in J meeting J°. Then K must be a convex
subset of J n L for a great (z — l)-sphere L. If SK meets J°, then J D L is an (i — 1)-
hemisphere which includes K as a proper convex subset. Thus J° — K can have only
one component. Hence, if K meets J°, and J° — K has at least two components, then
K must be an (i — 1 ̂ hemisphere. In this case, it is obvious that K° C J°.

Let us denote by H the set VR, H vpy. Consider for the moment the case where
^Rj n V(R. 7^ 0. Since dev(H) is a compact convex set and is included in an (n — 1)-
hemisphere dev(^R^), Lemma 5.6 and above paragraphs show that dev(H) is a com-
pact convex (n—2)-ball. Thus, H is a tame topological (n—2)-ball by Proposition 3.9.

If H has boundary points, i.e. points of 8H^ in ^., then i^. — H would have only
one component. Since the boundary of Oz in ^. is included in H by equation 5.2,
Q^ is dense in VR^ implying ai = VR^ Since a^ is a subset of J?j by equation 5.1,
z^. is a subset of R^ which contradicts our momentary assumption. It follows that
H is an (n — 2)-hemisphere with boundary in Ji^ and the interior H° in v°^, and
H separates VR, into two convex components, and the closures of each of them are
(n — l)-bihedrons. Obviously, o^ is the closure of one of the components.

We need to consider only the following two cases by interchanging i and j if nec-
essary:

0) ^.n^0.
(ii) VR^ n ̂ . = 0 or VR, n i/̂ . = 0.

(i) Since ai is the closure of a component of VR^ — H^ 0,1 is an (n — l)-bihedron
bounded by an (n — 2)-hemisphere H and another (n — 2)-hemisphere H ' in 61^^.
Since H ' is a subset of the closure of OR, , H ' is a subset of M/^oo and hence disjoint
from R^ while ̂  C M/,.
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Since H ' is a subset of Rj, we have H ' C SRj. Since ̂  is transversal to v^,
^/ is not a subset of VR^\ thus, H10 is a subset of a^., and JT that of Cl(a^.) by
Proposition 3.9. This completes the proof of the transversality properties (1)-(4) in
case (i).

(5) By dipping intersection properties, Ri D Rj is the closure of a component of
Rj — Oi and hence that of Rj — VR^ .

(6) Since H10 is a subset of ap^;, OR^ — H1 has two components /?i and /?2, home-
omorphic to open (n — l)-balls. By (5), we may assume without loss of generality
that /?i is a subset of R^ and /3^ is disjoint from Ri. Since /?i C M/^oo? we have
/3i C 5-%. As /?i is a component of apy removed with H1', we see that /3i is an open
(n — l)-bihedron bounded by H ' in 6vR^ and an (n — 2)-hemisphere H " in 6i/Ry (see
Figure 5.3).

FIGURE 5.3. A figure to explain (i)(6).

Since (i) holds for i and j exchanged, we obtain, by a paragraph above the condition
(i), H° belongs to ̂  D ̂ ..

Since the closure of /?i belongs to Ri, we obtain that H " C Ri and H " is a subset
of Oj, where aj = vpy r\ Ri. As H " is a subset of SI^R^ and Oj is the closure of a
component of VR^ removed with H, we obtain H " C Saj.

By (1)-(4) with values of i and j exchanged, aj is an (n — l)-bihedron bounded
by H and an (n — 2)-hemisphere H ' " with interior in a^ and is the closure of a
component of v^ — H. Since H " is an (n — 2)-hemisphere in Saj, and so is H1"\ it
follows that H " = H " ' .

Since /?i has the boundary the union of H ' in Si/p^ and H " ^ H11 = H " 1 , with
interior in ap^, and /?i is a convex subset of -%, looking at the bihedron dev(J^) and
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the geometry of S71 show that /?i c o^,. Thus, we obtain /3i c OR, H OR.. We see
that dev(aj^) and dev(a^.) are subsets of a common great (n - l)-sphere; it follows
easily by Proposition 3.9 that /?i = OR, H a^. Hence, OR, H a^. and OR, U a^. are
homeomorphic to open (n - l)-balls, and under dev they map to totally geodesic
(n - l)-balls in S71.

(ii) Assume v°^ H VR, = 0 without loss of generality. Then H is a subset of 8v^.
Since Ri dips into (J^-,^.), we have that aj ^ 0. Since the boundary of c^- in z/^.
is included in H (see equation 5.2), we have aj = VR^ and VR^ C Ri. Since VR. is
an (n - ^-hemisphere, and Ri is an n-bihedron, the uniqueness of (n - 2)-spheres
in an n-bihedron (Proposition 2.4) shows that J^ = Si^p^ Thus, the closures of
components of Ri - v^ are n-bihedrons with respective boundaries OR, U VR . and
^Ri U VR^ By Corollary 3.11, Ri n Rj is the closure of either the first component or
the second one.

In the first case, R^ D Rj is an open subset of Rj since R°^ is open in M^. The
closure of R°, in M^ equals J?,° U (^ H M^) = 7?, H M/,. Since ̂ , which includes
z/^ HM^, does not meet Rj in the first case being in the other component of Ri - i /p . ,
we see that the intersection of the closure of R^ in M/, with R° is same as R^ n R°.
Thus, ^° n Rj is open and closed subset of J?J. Hence Rj C R°, and J?, C Rj. This
contradicts our hypothesis.

In the second case, dev|J?, U Rj is a homeomorphism to dev(J?,) U dev(J^). As
OR, and a^. are subsets of M/^oo, their images under dev may not meet that of
R°, U^. Hence, dev(7?,) Udev(^) is an n-ball bounded by two (n - ̂ -hemispheres
dev(Cl(a^)) and dev(Cl(a^.)). We obtain that Ri U Rj is the n-ball bounded by
two (n - l)-dimensional hemispheres Cl(a^) and Cl(a^.).

Since Cl(aj?,) and Cl(a^.) are subsets of M^oo, Lemma 3.17 shows that M/, =
Ri U Rj and M/, = J^0 U J?J; thus, Mh = M and M is a closed manifold. The image
dev(J?i) U dev(J?2) is bounded by two (n - 1 ̂ hemispheres meeting each other on a
great sphere S^"2, their common boundary. Since M^ is not projectively diffeomor-
phic to an open n-hemisphere or an open n-bihedron, the interior angle of intersection
of the two boundary (n-1 ̂ hemisphere should be greater than TT. However, Lemma 5.2
contradicts this. Q

REMARK 5.7. — Using the same proof as above, we may drop the condition on the
Euler characteristic from Theorem 2.6 of [10] if we assume that M is not projectively
diffeomorphic to an open 2-hemisphere or an open lune. This is weaker than requiring
that the Euler characteristic of M is less than zero. So, our theorem is an improved
version of Theorem 2.6 of [10].

COROLLARY 5.8. — Let J?i and R^ be bihedral n-crescents and they overlap. Then
the following statements hold:

- dev(a^) and dev(a^) are included in a common great (n - 1) -sphere S71"1,

SOClfiTE MATHEMATIQUE DE FRANCE 1999



54 CHAPTER 5. THE TRANSVERSAL INTERSECTION OF n-CRESCENTS

— dev(^j^) and dev(^^) meet in an (n — ^-hemisphere transversally,
— dev(J?i) and dev(R^) are subsets of a common great n-hemisphere bounded

byS^.
— dev(Ri — Cl(aj^)) is a subset of the interior of this n-hemisphere for i =

1,2. D
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CHAPTER 6

HEMISPHERIC n-CRESCENTS AND
TWO-FACED SUBMANIFOLDS

In this chapter, we introduce the two-faced submanifolds arising from hemispheric
n-crescents. We showed above that if two hemispheric n-crescents overlap, then they
are equal. We show that if two hemispheric n-crescents meet but do not overlap,
then they meet at the union of common components of their ^-boundaries, which
we call copied components. The union of all copied components becomes a properly
imbedded submanifold in M^ and covers a closed submanifold in M, which is said to
be the two-faced submanifold.

LEMMA 6.1. — Let R be an n-crescent. A component ofSMh is either disjoint from
R or is a component of VR D M^- Moreover, a tiny hall B{x) of a point x of SM^ is
a subset of R ifx belongs to VR H M/^, and, consequently, x belongs to the topological
interior int R.

Proof. — If a* € SMfi, then a component F of the open (n — l)-manifold VR Ft Mh
intersects 8Mb tangentially, and by Lemma 3.1, it follows that F is a subset of SM^'
Since -F is a closed subset of VR H M/i, F is a closed subset of 8Mb' Since F is an
open manifold, F is open in SM^. Thus, F is a component of SM^.

Since x G mtB(x), B(x) and R overlap. As Cl(a^) is a subset of M/^oo, we
have bdRn B{x) C VR and VR H B(x) = F D B(x) for a component F of VR H Mh
containing x. Since F is a component of 5M^, we obtain F D B(x) C 6B(x)', since we
have bd R D B(x) C 8B(x), it follows that B(x) is a subset of R. D

Suppose that Mfi includes an n-crescent R that is an n-hemisphere. Then Mh Fl R
is a submanifold of M^ with boundary 8R D M/i. Since R is an n-crescent, 8R D M^
equals YR D M/i. Let BR denote VR n M/^.

Let S be another hemispheric n-crescent, and Bs the set ^DM/i. By Theorem 5.1,
we see that either S D R° = 0 or S = -R. Suppose that S D R ̂  0 and S does not
equal R. Then Bs H BR / 0. Let x be a point of Bs Fl BR and B {x) the tiny ball of
x. Since mtB(x) D R ̂  0, it follows that B(x) dips into (R.i/n) or 5(.r) is a subset
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of R by Lemma 3.13. Similarly, B(x) dips into (S^s) or B(x) is a subset of S. If
B(x) is a subset of R, then S intersects the interior of R. Theorem 5.1 shows S = R,
a contradiction. Therefore, B{x) dips into (R,VR) and similarly into (5',^). If VR
and vs intersect transversally, then R and S overlap, implying a contradiction S = R.
Therefore, Bs and Bp intersect tangentially at x.

If x G (^M/,, Lemma 6.1 shows that B(x) is a subset of R. This contradicts a result
of the above paragraph. Thus, x G M^. Hence, we conclude that Bp H Bs C M^.

Since B^ and Bs are closed subsets of Mh, and £?^ and Bs are totally geodesic
and intersect tangentially at x, it follows that Bp D B^ is an open and closed subset
of Bp and Bs respectively. Thus, for components A of Bp and B of Bs, either we
have A = B or A and 5 are disjoint. Therefore, we have proved:

PROPOSITION 6.2. — Given two hemispheric n-crescents R and S, we have either
R and S disjoint, or R equals S, or R D S equals the union of common components
of ̂ R H Mh and vs H Mh in Mf^.

Readers may easily find examples where VR H Mh and vs H Mh are not equal in the
above situations.

DEFINITION 6.3. — Given a hemispheric n-crescent T, we say that a component of
VT H Mh is copied if it equals a component of vu H Mh for some hemispheric n-crescent
U not equal to T.

Let CR be the union of all copied components of fp^Mh for a hemispheric n-crescent
R. Let A denote [Jp^cp where T-L is the set of all hemispheric n-crescents in M/i.
A is said to be the pre-two-faced submanifold arising from hemispheric n-crescents.

PROPOSITION 6.4. — Suppose that A is not empty. Then A is a properly imbedded
totally geodesic (n — 1)-submanifold of M^ and p\A is a covering map onto a closed
totally geodesic imbedded (n — 1)-manifold in M°.

First, given two n-crescents R and 5, CR and cs meet either in the union of common
components or in an empty set: Let a and b be respective components of CR and cs
meeting each other. Then a is a component of vp D Mh and b that of vs H M/^. Since
R n S / 0, either R and S overlap or a = b by the above argument. If R and S
overlap, R = S and hence a and b must be the identical component of VR D M^ and
hence a = b. Therefore, A is a union of mutually disjoint closed path-components
that are components of CR for some n-crescent R.

Second, given a tiny ball B(x) of a point x of Mh, we claim that no more than one
path-component of A may intersect int B(x): Let a be a component of CR intersecting
mtB(x). Since copied components are subsets of M^, a intersects B(x)° and hence
B(x) is not a subset of R. By Lemma 3.13, VR r\B(x) is a compact convex (n - l)-ball
with boundary in bdB{x). Since it is connected, ar}B(x) = vp^B^x), and B(x) C}R
is the closure of a component Ci of B (x) - (a H B{x)) by Corollary 3.11. Since a is
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copied, a is a component of vs H ̂ h for an yi-crescent S not equal to R, and B(x) H S
is the closure of a component 62 of B(x) — (a D B(x)). Since 7? and 6' do not overlap,
it follows that C\ and 62 are the two disjoint components of B(x) — (a D B{x)).

Suppose that b is a component of CT for an n-crescent T and b intersects mtB{x)
also. If the (n-l)-ball br\B(x) intersects C\ or C^, then T overlaps R or S respectively
and hence T == R or T = S respectively by Theorem 5.1; therefore, we have a = b.
This is absurd. Hence b D B(x) C a n B(x) and T overlaps with either R or S.
Since these are hemispheric crescents, we have either T = R or T = S respectively;
therefore, a = b. We conclude that if int B(x) H A is not empty, then B{x) D A equals
a compact (n — l)-ball with boundary in bdB(x).

Since each path-component of A is an open subset of A, the above shows that A is
a totally geodesic (n — l)-submanifold of M^, closed and properly imbedded in M^.

Let p : M/i —)• M be the covering map. Since A is the deck transformation group
invariant, we have A = ^^(^(A)) and p|A covers p(A). The above results show that
p(A) is a closed totally geodesic manifold in M°.

DEFINITION 6.5. — The image p(A) for the union A of all copied components of
hemispheric n-crescents in M^ is said to be the two-faced (n — 1)-manifold of M
arising from hemispheric n-crescents (or type I ) .

Each component ofp(A) is covered by a component of A, i.e., a copied component
of VR D Mh, for some crescent R. Since OR is the union of the open (n — 1)-hemispheres
in SR^ up n Mh lies in an open (n — 1)-hemisphere, i.e., an affine patch in the great
(n — l)-sphere 6R. Hence, each component ofp(A) is covered by an open domain in
R/1, as we mentioned in the introduction.

We end with the following observation:

PROPOSITION 6.6. — Suppose that A = [j^^cp. Then A is disjoint from S° for
each hemispheric n-crescent S in M^.

Proof. — If not, then a point x of CR meets 5° for some hemispheric yz-crescent 5.
But if so, then R and S overlap, and R = 5, a contradiction. D
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CHAPTER 7

BIHEDRAL n-CRESCENTS AND
TWO-FACED SUBMANIFOLDS

In this chapter, we will define an equivariant set A(R) for a bihedral n-crescent
R, which will play the role of hemispheric n-crescents in the previous chapter. We
discuss its properties which are exactly same as those of its two-dimensional version
in [10]. Then we discuss the two-faced submanifold that arises from A(J?)'s: We show
that A(J?) and A (5) for two n-crescents are either equal or disjoint or meet at their
common boundary components in M/^. The union of all such boundary components
for A(J^) for every bihedral n-crescent R is shown to be a totally geodesic properly
imbedded submanifold in M^ and cover a closed totally geodesic submanifold of M.

We will suppose in this chapter that M^ includes no hemispheric crescent; i.e., we
assume that all n-crescents in M^ are bihedrons. Two bihedral n-crescents in M^ are
equivalent if they overlap. This generates an equivalence relation on the collection of
all bihedral n-crescents in M^\ that is, R ~ S if and only if there exists a sequence of
bihedral n-crescents Ri^ i = 1, . . . , n, such that R^ == R, Rn = S and Rz-\ D R^ / 0
for i = 2 , . . . , n.

We define

A(R) := \J 5, 6^A(R) := [j as^ Ai(a) := \J (S - vp).
S^R S^R S^R

EXAMPLE 7.1. — Consider the universal cover L of H° - {0} where H is a 2-
hemisphere in S2. Then it has an induced real projective structure with developing
map equal to the covering map c. There is a nice parameterization (r, 0) of L where
r denotes the d-distance of c{x) from 0 and 0(x) the oriented total angle from the
lift of the positive re-axis for x G L, i.e., one obtained by integrating the 1-form lifted
from the standard angular form dO on the afBne space H°. Here r belongs to (0, Tr/2)
and 0 to (—00, oo). L is hence a holonomy cover of itself as it is simply connected.
L may be identified with the universal cover of H — {0} with a point 0' added to
make it a complete space where 0' maps to 0 under the extended developing map c.
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(We use the universal covering space since the holonomy cover gives us uninteresting
examples.)

We can determine that Loo equals the union of [0'} and a d-infinite geodesic
given by equation d(0',x) = Tr/2, i.e., the inverse image of 6H. A crescent in L is
the closure of a lift of an affine half space in H° — {0}. A special type of a crescent
is the closure of the set given by OQ <, 0 <^ OQ + TT. Given a crescent R in L, we see
that A(J?) equals £.

We may also define another real projective manifold N by an equation f(0) < r <
7T/2 for a function / with values in (0,7r/2). Then N equals the closure of N in L.
Given a crescent R in N , we see that A(J?) may not equal to N especially in case /
is not a convex function (as seen in polar coordinates). (See Figure 7.1.)

For a higher dimensional example, let I? be a 3-hemisphere in S3, and I a segment
of d-length TT passing through the origin. Let L be the universal cover of H° — I .
Then L becomes a real projective manifold with developing map the covering map
c : L —^ H° — I , The holonomy cover of L is L itself. The completion L of L equals
the completion of the universal cover of H — I with I attached to make it a complete
space. A 3-crescent is the closure of a lift of an open half space in H — I . Given a
3-crescent J?, A(.R) equals L.

We introduce coordinates on H° so that 1° is now the ^-axis. Note that L is
parameterized by (r, 9, (f>) where r(x) equals the d-distance from 0 to c(x), (f) the angle
that Oc(x) makes with the positive ^-axis, and 0{x) again the integral of the obvious
1-form lilted from the standard angular form d0 in R3. We may also define other real
projective manifolds by equation /(0, (f)) < r < Tr/2 for / : R x (0,7r) —^ (0, Tr/2). The
readers may work out how the completions might look and what A(J?) be when R is
a 3-crescent. We remark that for certain / which converges to 7T/2 as (f) —> 0 or TT, we
may have no 3-crescents in the completion of the real projective manifold given by /.

Even higher-dimensional examples are given in a similar spirit by removing sets
from such covers. After reading this section, the reader can easily see that these are
really typical examples of A(J?).

Let us state the properties that hold for these sets: The proofs are straightforward
and exactly as in [10].

int A(J?) D Mh = mt(A(R) H Mh)
bd A(^) U Mh = bd(A(J?) H Mh) U Mh

(see Lemma 6.4 [10]). For a deck transformation ^?, from definitions we easily obtain

WR)) = WR))
^A(R)) = 6^A(W)
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FIGURE 7.1. Figures of A(R).

(7.1) ^(Ai(^))
int^(A(I?))nM^

bd^(A(fi))HM/,

Ai(W)

^(int A(J?)) H M^ = ̂ (int A(R) H M )̂

^(bd A(J?)) U Mh = t?(bd A(^) H M/,).

The sets A(J?) and Ai(J?) are path-connected. JooA(-R) is an open (n— 1) -manifold.
Since Theorem 5.4 shows that for two overlapping yz-crescents R\ and -Ra? 0^1 and
0^2 extend each other into a larger (77, — l)-manifold, there exists a unique great
sphere S"'"1 including dev(JooA(-R)) and by Corollary 5.8, a unique component An
of S71 - S71-1 such that dev(A(J?)) C Cl(A^) and dev(A(J?) - Cl(rfooA(^))) C Ap.
For a deck transformation 'ff acting on A(-R), An is /i(i?) -invariant. Ai(J?) admits a
real projective structure as a manifold with totally geodesic boundary JooA(-R).

PROPOSITION 7.2. — A(J?) n Mh is a closed subset of M^.

Proof. — Lemma 9.2 implies this proposition. D

LEMMA 7.3. — bdA(-R)nM^ is a properly imbedded topological submanifold of Mf^,
andA(R)r\Mh is a real projective submanifold of M^ with concave boundary bdA(J?)D
Mh.

Proof. — Let r be a point of bdA(7?) D M/^. Since A(J?) is closed, r is a point of
a crescent R' equivalent to R. If r is a point of SM^^ then Lemma 6.1 implies that
r e int^R7 and r G intA(J?), a contradiction. Thus, bdA(^) n M^. C M^.

Let B(r) be an open tiny ball of r. Since by Lemma 6.1, bd A(J?) D M^ is a subset
of M^, B(r)° is an open neighborhood of r. Since B(r)° D A(Ji) is a closed subset of
5(r)°, 0 = B(r)° - A{R) is an open subset.

We claim that 0 is a convex subset of B{r)°. Let x,y e 0. Then let 5 be the
segment in B(r) of d-length < TT connecting x and ^/. If s° D A(J?) 7^ 0, then a point
/Z of s° belongs to an n-crescent 5, S ~ jR. If z belongs to 5°, since 5 must leave 5,
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s meets ̂  and is transversal to vs at the intersection point. Since a maximal line
in the bihedron S transversal to vs have an endpoint in as, at least one endpoint
of s belongs to S°, which is a contradiction. If z belongs to vs and s is transversal
to vs at z, the same argument gives us a contradiction. If z belongs to vs and s is
tangential to vs at z, then s is included in the component of vs D M/, containing z
since 5 C Mf, is connected. Since a* and y belong to 0, this is a contradiction. Hence
s C 0, and 0 is convex.

Since 0 is convex and open, bdO in M/, is homeomorphic to an (n - l)-sphere
by Proposition 2.6. As the boundary bda^o 0 of 0 relative to B(r)° equals bdO D
B(r)°, bdB(^)o 0 is an imbedded open (n - l)-submanifold of B(r)°. While we have
bd A{R) n B(r)° = bd^o 0, bd A(J?) n M/, is an imbedded (n - l)-submanifold. D

FIGURE 7.2. A pre-two-faced submanifold.

Using the same argument as in Section 6.2 of [10] (see Lemma 6.4 of [10]), we
obtain the following lemma:

LEMMA 7.4. — If intA(J?) n MH n A(5) / 0 for an n-crescent S, then we have
A{R) = A(5). Moreover, if for a crescent S, A(R) n M^ and A(S) U M^ meet and
they are distinct, then A(J?)nA(5)nM/, is a subset ofbdA(R)HMh andbdA(S)nMh.
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Proof. — If int(A(fi) H M/J H A(5) 7^ 0 for an n-crescent 5, then an n-crescent T,
T ~ 5, intersects mtB(x) for B(.r) C intA(J?) H M^ where B(x) is a tiny ball of a
point x of int A(.R) D M/^.

If B(x) is not a subset of T, then a component of B(x) - a for an (n - l)-ball a,
a = i/rUB^), with bda C bdB(x) is a subset ofT° by Lemma 3.13. Thus, whether
B(x) is a subset of T or not, a point y of intJ3(^) lies in T°'. Since ^/ belongs to
T' for some T' ~ R, it follows that T ' and T overlap and hence R ~ 5; therefore,
A(J?)=A(5).

The second part follows easily from the first part. D

Assume now that A(R) and A(5) are distinct but meet each other; R and S are not
equivalent. Let x be a common point of bdA(J?) and bdA(5), and B(x) a tiny-ball
neighborhood of x. By Lemma 7.3, x C M^ and so x C B(x)°. Let T be a crescent
equivalent to R containing x, and T ' that equivalent to S containing x. Then TnB(x)
is the closure of a component A of B(x) - P for a totally geodesic (n - l)-ball P in
B(p) with boundary in bdB(x) by Lemma 3.13. Moreover, VT D £?(;z*) == P and
r° n JE?(.z1) = A, and A is a subset of intA(Ji). Let B denote B(x) removed with
A and P. Similarly, T ' D B(.z') is the closure of a component A' of B(x) - P ' for a
totally geodesic (n - l)-ball P7, P' = ̂ / H P(.r) with boundary in bdB(x), and A'
is a subset of T10 in intA(5). Since we have

T° Cmt\{H),T' C\{S),

the sets T ' H B(x) and T0 H P(a') are disjoint. Since P and P ' contains x, it follows
that P = P' and B = A7; that is, P and P' are tangential. (We have that P = P ' =
^nP(a') = z/5/ nB(.z'). )

Since P is a subset of intA(5'), B contains no point of A(J?) by Lemma 7.4, and
similarly A contains no point of A(5). Thus, A(R) H B(a1) is a subset of the closure
of A, and A(5) H B(.z*) is that of B. Since A C intA(P) and P C intA(S'), it follows
that

A = int A(fi) n B(x), B = int A(5) H B(a1),

(7.2) P U A = A(P) n B(x), PUB= A(5) H B(x),

P=bdA(R)nB{x) = bdA{S)HB(x).

Hence, we have P = bd A(R) H bd A(5) H B(x) and P is a totally geodesic (n - l)-ball
with boundary in bdB(x) and our point x belongs to P°, to begin with. Since this
holds for an arbitrary choice of a common point x of bd A(J?) and bd A(5), a tiny ball
B(a-) of a-, it follows that bdA(P)nbdA(6')nM^ is an imbedded totally geodesic open
(n - l)-submanifold in M^. It is properly imbedded since B{x) D bdA(P) D bdA(5)
is compact for every choice of B(x).

The above paragraph also shows that bd A(jR) Dbd A(5) HM^ is an open and closed
subset of bdA(P) n M/,. Therefore, for components B of bdA(P) H M^ and B' of
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bdA(5) H Mh where R ^ 5, either we have B = B' or B and B ' are disjoint. If
B = B' ^ the above paragraph shows that B is a properly imbedded totally geodesic
(n — l)-submanifold of M^'

We say that a component of bdA(J?) D M^ is copied if it equals a component of
bdA(5) D Mh for some n-crescent S not equivalent to R. Let cj? be the union of all
copied components of bdA(J?) D M^.

LEMMA 7.5. — £'ac/^ component of CR is a properly imbedded totally geodesic (n—1)-
manifold, and equals a component ofi^rUM^ for fixed T,T ^ R and that of VT' FlM/̂
for fixed T', T' ~ S, where S is not equivalent to R.

Proof. — From above arguments, we see that given x in a component C of CR, and a
tiny ball B(x) of a*. there exists a totally geodesic (n — l)-ball P with SP C bdB(x)
so that a component of B {x) — P is included in T, T ~ R and the other component
in T ' for T ' equivalent to S but not equivalent to R.

Since P is connected, P C C. Let ?/ be another point of C connected to x by a
path 7 in (7, a subset of M/^. Then we can cover 7 by a finitely many tiny balls. By
induction on the number of tiny balls, we see that y belongs to VT H M^ and VT' H M^
for fixed T and T ' . D

Let A denote IJ^e^ CJ? where B denotes the set of representatives of the equivalence
classes of bihedral n-crescents in M^. A is said to be the pro-two-faced submanifold
arising from bihedral n-crescents. A is a union of path-components that are totally
geodesic (n — l)-manifolds closed in M^.

PROPOSITION 7.6. — Suppose that A is not empty. Then A is a properly imbedded
submanifold of M^ and p\A is a covering map onto a closed totally geodesic imbedded
(n — 1)-dimensional submanifold in M°.

Proof. — We follow the argument in Chapter 6 somewhat repetitively. Every pair
of two components a of CR and b of cs for n-crescents R and S where R, S G B, are
either disjoint or identical. Hence, A is a union of disjoint closed path-components
that are some components of CR for R G B. This is proved exactly as in Chapter 6.

Second, given a tiny ball B(x) of a point x of Mh, no more than one path-component
of A may intersect mtB{x). Let a be a component of CR intersecting mtB(x). By
Lemma 7.5, a is a component of vs H ^h for S ~ R and that of VT n -^h for T
not equivalent to S. Furthermore, vs H B{x) is a compact convex (n — l)-ball with
boundary in bdB(x). Since it is connected, a D B(x) = vs 1̂ 1 B(x)^ and B(x) D S is
the closure of a component C\ of B(x) — (a D B(x)). Similarly, a D B(x) = VT H B(x),
and B{x) n T is the closure of the other component 62 of B {x) — (a D B(x)) for an
n-crescent T not equivalent to R. Since S and T do not overlap, it follows that C\
and (°2 are the two disjoint components of B(x) — (a Fl B {x)).
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Suppose that & is a component of cu for U C B intersecting miB{x) also. By
Lemma 7.5, b is a component of VT' H M/, for T ' ~ [/. If the (n - l)-ball & H B{x)
intersects Ci or 62, then U ~ 5 or U ~ T and A([7) = A{R) or A(?7) = A(T) by
Lemma 7.4, implying that a = &. If we have & H B(a1) c a H B(;z-), then T ' overlaps
with at least one of S or T, and a = b as above.

Since given a tiny ball B(x) no more than one distinct path-component of A may
intersect mtB(x), A is a properly imbedded closed submanifold of M^. The rest of
the proof of proposition is the same as that of Proposition 6.4. D

DEFINITION 7.7. — p(A) for the union A of all copied components of A(R) for
bihedral n-crescents R in M^ is said to be the two-faced submanifold of M arising
from bihedral n-crescents (or type I I ) .

Each component of p(A) is covered by a component of A, i.e., a component of
VR n Mh for some bihedral n-crescent R. Hence, each component of p(A) is covered
by open domains in R71 as in Chapter 6 and as we said in the introduction.

We end with the following observation:

PROPOSITION 7.8. — Suppose Mh includes no hemispheric n-crescents and A =
^ReB c^' Then A is disjoint from R° for each n-crescent R.

Proof. — The proof is same as that of Proposition 6.6. D

EXAMPLE 7.9. — Finally, we give an example in dimension 2. Let ^ be the projective
automorphism of S2 induced by the diagonal matrix with entries 2, 1, and 1/2. Then
^ has fixed points [±1,0,0], [0,±1,0], and [0,0, ±1] corresponding to eigenvalues
2,1,1/2. Given three points x, y , z of S2, we let 'xyz denote the segment with endpoints
x and z passing through y if there exists such a segment. If x and y are not antipodal,
then let xy denote the unique minor segment with endpoints x and y . We look at the
closed lune B^ bounded by [0,0,1][1,0,0][0,0,-1] and [0,0,1][0,1,0][0,0,-I], which
are to be denoted by ^ and l^ respectively, and the closed lune B^ bounded by
[1,0,0][0,-1,0][-1,0,0] and [1,0,0][0,0,1][-1,0,0], which are denoted by ^ and h
respectively.

We consider the domain U given by U = B? U B^ U ^ U ^ - {[1,0,0], [0,0,1]}.
Since there exists a compact fundamental domain of the action of (i)), U/('ff) is a
compact annulus A with totally geodesic boundary. U is the holonomy cover of A.
The Kuiper completion of U can be identified with Bi U B^. It is easy to see that B^
is a 2-crescent with a^ = ^ and VB^ = li and B^ one with 0^2 = ^ and ̂  = l^.
Also, any other crescent is a subset of £?i or B^. Hence A(£?i) = B^ and A(B^) = B^
and the pre-two-faced submanifold L equals [1, 0, 0][0, 0,1]°. L covers a simple closed
curve in A given by [1,0, 0][0, 0,1]°/W.
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CHAPTER 8

THE PRESERVATION OF CRESCENTS AFTER
DECOMPOSING AND SPLITTING

In this chapter, we consider somewhat technical questions: What become of the
n-crescents in the completions of the holonomy cover of a submanifold in those of
the holonomy cover of an ambient manifold? What happen to n-crescents in the
completion of a manifold when we split the manifold along the two-faced manifolds.
The answer will be that they are preserved in the best possible sense: Propositions 8.3,
8.7, and 8.10. In the process, we will define splitting manifolds precisely and show
how to construct holonomy covers of split manifolds.

Also, from this chapter, covering spaces need not be connected, which only compli-
cates the matter of identifying the fundamental groups with the deck transformation
groups. Even for disconnected spaces we can define projective completions as long as
immersions to S71, i.e., developing maps, are defined since we can always pull-back
the metrics in that case.

For an alternative and more intuitive approach due to the referee to proving the
materials here, see Remarks 8.4 and 8.12.

Let M be a real projective manifold with empty or totally geodesic boundary; let
Mh be the holonomy cover of M with development pair (dev, h) and the group of deck
transformations GM\ let p : M^ —^ M denote the covering map. Let N be a connected
submanifold of M of codimension 0 with an induced real projective structure. Then
p~l(N) is a codimension 0 submanifold of M/^. Choose a component A of p'^TV).
Then A is a submanifold in Mh and p\A covers N with the deck transformation group
GA equal to the group of deck transformations of M^ preserving A.

We claim that A is a holonomy cover of N with development pair (dev|A, h1) where
h1 is a composition of the inclusion homomorphism and h : GM —^ Au^S^. First,
for each closed path in N which lifts to one in A obviously has a trivial holonomy
(see Section 8.4 in [28]). Given a closed path in N with a trivial holonomy, it lifts to
a closed path in M^ with a base point in A. Since A is a component of p~l(N), it
follows that the closed path is in A. Therefore, A is the holonomy cover of N .
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LEMMA 8.1. — Let A be a component of p~l(N) in M^ of a submanifold N of M.
Then A is a holonomy cover of N with developing map dev|A. D

Let us discuss about the Kuiper completion of A. The path-metric on A is induced
from the Riemannian metric on A induced from S71 by dev|A. The completion of A
with respect to the metric is denoted by A and the set of ideal points Aoo; that is,
-/i-oo — -'i -'!«

Note that A may not necessarily equal the closure of A in M^. A good example is
the complement of the closure of the positive axis in R2 as A and R2 as M/^.

Let i : A —^ Mh be an inclusion map. Then i extends to a distance-decreasing map
z : A ̂  C1(A) C Mh.

LEMMA 8.2
(i) ^~l(Mh,oo) is a subset of Aco.
(ii) // A is closed as a subset of M ,̂ then z(Aoo) C M/^oo- Thus, in this case,

^(M^oc) =Aoo.

(iii) Let P be a submanifold in A with convex interior P°. Then the closure P' of
P in A maps isometric to the closure P" of P in M^ under i. Here P' and
P" are tame.

(iv) z maps P' D Aoo homeomorphic onto P" D M^oo-

Proof
(i) If x is a point of ^^(M/^oo), then x does not belong to A since otherwise

l{x) = i(x) G M/,.
(ii) Suppose not. Then there exists a point x in M^ such that x = z{y) for y 6 Aoo.

There exists a sequence of points yi C A with unique limit point y with respect to the
path-metric (IA on A induced by p,, and hence, yi —> y with respect to d also. The
sequence of points i(yz) = yi G A converges x since i is distance-decreasing. Therefore
we obtain y == x and y G A, a contradiction.

(iii) Since i\P° is an isometry with respect to dA and d on M/^, the third part
follows.

(iv) By (i), the inverse image of P" H M/^oo under z\P' is a subset of Aoo. By (ii),
we see z(P' H Aoo) C P" H M^. D

Suppose that A is a closed subset of M/^. Let R be an n-crescent in M/^ and
consider a submanifold R' = RF\ Mh with convex interior R°. If R' is a subset of a
submanifold A of M^, then the above lemma shows that the closure R" of R' in A is
isometric to R under L By the above lemma, we obtain that R" is also a crescent with
aRii = ̂ ^(aj?), and vpn = z"1^^). Moreover, if R is bihedral (resp. hemispheric),
then R" is bihedral (resp. hemispheric).

Conversely, let R be an n-crescent in A. By Lemma 8.2, z\R : R —^ z(R) is
an imbedding, and the closure of i(R H A) equals z(R) and is a convex n-ball. By
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Lemma 8.2, z(R) is an n-crescent, which is bihedral (resp. hemispheric) if R is bihedral
(resp. hemispheric) since a,^ = z(a^) and ̂ ) = z^p) hold.

Thus, we have proved:

PROPOSITION 8.3. — Let Abe a submanifold of MH closed as a subset of M^. There
exists a one to one correspondence of all bihedral n-crescents in A and those in C1(A)
in Mh given by R ̂  K for a bihedral n-crescent R in A and R' one in C1(A) if and
only if R° = R10. The same statement holds for hemispherical n-crescents.

REMARK 8.4. — An alternative proof suggested by the referee is as follows: If R
is a n-crescent in A, then R n M/, is an n-crescent set. By Remark 3.8, the closure
of R in Mh, is a crescent. Conversely, given a crescent R in C1(A), as R n M^ is an
n-crescent set in Mh, R H M^ is an n-crescent set in A. Thus the closure of R D M^
is an n-crescent in A.

We give a precise definition of splitting. Let N be a real projective n-manifold
with a properly imbedded (n — l)-submanifold A. We take an open regular neigh-
borhood N of A, which is an J-bundle over A. Let us enumerate components of A
by A i , . . . , A y i , . . . and corresponding components of N by T V i , . . . , Nn,... which are
regular neighborhoods of A i , . . . , An,... respectively. (We do not require the number
of components to be finite.)

For an z, Ni is an J-bundle over Ai. By parameterizing each fiber by a real line,
Ni becomes a vector bundle over A with a flat linear connection. We see that there
is a subgroup G{ of index at most two in 71-1 (A^) with trivial holonomy. The single or
double cover Ni of Ni corresponding to G{ is a product J-bundle over Ai the cover of
Ai corresponding to G^, considered as a submanifold of N1.

Since Ni is a product or twisted J-bundle over A^, Ni — Ai has one or two com-
ponents. If Ni — Ai has two components, then we take the closure of each com-
ponents in Ni and take their disjoint union Ni which has a natural inclusion map
l i : Ni — Ai —^ Ni. If Ni — Ai has one component, then take the double cover N1 of N1
so that Ni is now a product J-bundle over Ai. Then Ni — Ai lifts and imbeds onto a
component of Ni - Ai. We denote by Ni the closure of this component in Ni. There
is a natural lift ^ : Ni - Ai —^ Ni, which is an imbedding. After we do this for each
z, i = 1 , . . . , n , . . . , we identify N - A and the disjoint union ]_]^ N1 of all Ni by
the maps li. When A is not empty, the resulting manifold M is said to be the split
manifold obtained from N along A (this is just for terminological convenience).

We see that for each component of A, we get either two copies or a double cover of
the component of A in the boundary of the split manifold M which are newly created
by splitting. There is a natural quotient map q : M —^ N by identifying these new
faces to A, i.e., q\q~l(A) : q~l(A) -> A is a two-to-one covering map. Therefore, it is
easy to see that M is compact if N is compact and M has totally geodesic boundary
if A is totally geodesic.
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Let Nh be a holonomy cover of N with a development pair (dev, h). We let GN be
the group of deck transformations of the covering map p : N^ —^ N . If one splits N^
along the properly imbedded submanifold p'^A), then it is easy to see that the split
manifold M' covers the manifold M of N split along A with covering map p ' obtained
from extending p. However, M' may not be connected; for each component M{ of M,
we choose a component M[ of M' covering that component. Mi includes exactly one
component Pi of N — A, and M[ includes exactly one component P[ of N^, —p'^A)
as a dense open subset. Thus, ]_J^i P[ covers IJ^i Pi and ]_J^i MJ covers M.

REMARK 8.5. — The submanifold p~1 (A) is orientable since great (n — l)-spheres in
S71 are orientable and dev maps each components ofp~l(A) into great (n— l)-spheres
as immersions. Thus, there are no twisted J-bundle neighborhoods of components of
^"^(A) as Nh is orientable also.

Let Gi be the subgroup of deck transformations of N^, acting on P[, which is the
group of deck transformations of the covering map p\P[ : P[ —> Pr For each z, we
define the homomorphism hi : Gi —> Au^S") by h o li where li : Gi —^ GN is the
homomorphism induced from the inclusion map. Since P[ covers a component Pi of
N — A, Lemma 8.1 shows that P[ is a holonomy cover of that component with the
development pair (dev^P^,/^).

The developing map dev|P^ uniquely extends to a map from M[ as an immersion
for each z; we denote by dev7 : ]_J^i M[ —r S72 the map obtained this way. It is
easy to see that the action of Gi naturally extends to one on M[ and becomes the
group of deck transformations of the covering map p\M[ : M[ —^ Mi, Since M[ is
obtained from P[ by attaching boundary, it follows that M[ is the holonomy cover of
Mi with development pair (dev'IM^,/^). We say that the disjoint union ]J^ M[ is
a holonomy cover of M = ]J^i Mi.

Suppose that there exists a nonempty pre-two-faced submanifold A of N^ arising
from hemispheric n-crescents. Then we can split N by p(A) to obtain M and N^,
by A to obtain M', and M' covers M under the extension p ' of the covering map
P : NH -^ N.

We claim that the collection of hemispheric n-crescents in Nh and the completion
M' of M' are in one to one correspondence. Let q : M' —^ N^ denote the natural
quotient map identifying the newly created boundary components which restricts to
the inclusion map N^ — A —^ A^. We denote by A' the set q~l(A), which are newly
created boundary components of M ' ' . Let M' denote the projective completion of M'
with the metric d extended from N^ — A. Then as q is distance-decreasing, q extends
to a map q : M' —^ Nh, which is one-to-one and onto on M' — A' —^ Nh — A.

LEMMA 8.6. — q maps A' to A, M' to N^, and M'^ to A^oo- ( Which implies that
q-\A) = A', rW) = M^ and q-\N^) = M^ .)
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Proof. — The result of this lemma is essentially a consequence of the properness of
the map q. We obviously have q(A') = q{A) = A and q{M') = q(M') = N^.

If a point x of M' is mapped to that of A, then let 7 be a path in N^ - A
ending at q(x) in A. Then we may lift 7 to a path 7' in M' - A ' . q{x) has a small
compact neighborhood B in N^ where 7 eventually lies in, and as the closure B' of
a component of B — A is compact, there exists a compact neighborhood B" in M'
mapping homeomorphic to B' under q and 7' eventually lies in B " . This means that
x lies in B" and hence in M'. As ^(A) = A ' , x lies in A7. Thus, ^(A) = A7 and
points of M^ cannot map to a point of A.

Using a path-lifting argument, we may show that q(M^) is a subset of A U A^,oo
as q\M' - A' —^ N^ - A is a homeomorphism and a d-isometry. Hence, this and the
above paragraph show that q(M^) C N^,00. D

First, consider the case when N^ includes a hemispheric n-crescent R. Since by
Proposition 6.6, R° is a subset of Nh - A, R° is a subset of M ' . The closure R' of
R° in M' is naturally an n-hemisphere as dev|J?° is an imbedding onto an open n-
hemisphere in S71. As q is a d-isometry restricted to R°, it follows that q\R' : R' —^ R
is an imbedding.

Lemma 8.6 shows that (^IjR^'^a^) is a subset of M'^. Thus, R' includes an open
{n — ^-hemisphere in 8R' D M^, which shows that R1 is a hemispheric n-crescent.
(SR' cannot belong to M^ by Lemma 3.17.)

Now if an n-crescent R is given in M', then we have R° C M' - A ' , and q(R)
is obviously an n-hemisphere as the closure R' of R° in N^ is an n-hemisphere and
equals q(R). Since q(ap) is a subset of A^,oo by Lemma 8.6, q(R) is a hemispheric
n-crescent.

PROPOSITION 8.7. — There exists a one-to-one correspondence between all hemi-
spheric n-crescents in N^, and those of M' by the correspondence R ̂  R' if and only
if we have R° = R10.

COROLLARY 8.8. — If Nh includes a hemispheric n-crescent, then the Kuiper com-
pletion of the holonomy cover of at least one component of the split manifold M along
the two-faced submanifold, also includes a hemispheric n-crescent.

Proof. — Let Mi be the components of M and M[ their holonomy cover as obtained
earlier in this chapter; let Pi be the component of N — p(A) in Mi and P[ that
of Nh — A in M[ so that P[ covers Pi. We regard two components of N^ — A to be
equivalent if there exists a deck transformation of Nfi mapping one to the other. Then
Pi is a representative of an equivalence class Az. As the deck transformation group
is transitive in an equivalence class Ai, we see that given two elements P^ and P^ in
Ai, the components M^ and M\ of M' including them respectively are projectively
isomorphic as the deck transformation sending P^ to P^ extends to a projective map

SOCIETE MATHEMATIQUE DE FRANCE 1999
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M^ —^ M\, and hence to a quasi-isometry M^ —^ M^. Since real projective maps
extending to quasi-isometries send hemispheric n-crescents to hemispheric n-crescents,
if no M[ includes a hemispheric n-crescent, then it follows that M' do not also. This
contradicts Proposition 8.7. D

PROPOSITION 8.9. — If the Kuiper completions of holonomy cover of a submanifold
of N or a split manifold of N by a properly-imbedded totally-geodesic closed subman-
ifold in N includes hemispheric n-crescents, then so does N^'

Proof. — The first part follows from Proposition 8.3 and the second part follows from
Lemma 8.6 as in the last part of the argument to prove Proposition 8.7. D

Now, we suppose that N^, includes no hemispheric n-crescents R but includes some
bihedral n-crescents. Let A be the pre-two-faced submanifold of N^, arising from
bihedral n-crescents. We split N by p(A) to obtain M and N^ by A to obtain M',
and M' covers M under the extension p ' of the covering map p : Nh — A —^ N —p(A).

By same reasonings as above, we obtain

PROPOSITION 8.10. — There exists a one-to-one correspondence between all bihedral
n-crescents in N^ and those of M' by the correspondence R ^ R' if and only if
R° = R10.

COROLLARY 8.11. — If' Nh includes a bihedral n-crescent, then the projective com-
pletion of the holonomy cover of at least one component of the split manifold M along
the two-faced submanifold^ also includes a bihedral n-crescent.

REMARK 8.12. — An alternative proof of Propositions 8.7 and 8.10, we use the
crescent sets (see Remark 3.8). As the interior of n-crescent sets are disjoint from pre-
two-faced submanifolds, if we split along the submanifolds, we see that the boundary
parts of n-crescents "double" along the pre-two-faced submanifolds, and hence, the
crescent sets are preserved. This intuitive argument can be made into a proof quite
easily.

Lastly, we will note the relationship between covering spaces and crescents with a
proof sketched. This result will not be used but for the completeness sake we include
it here.

PROPOSITION 8.13. — Let M1 and M2 be connected developing covers of M and
M1 covers M2 by g. Then hemispheric (resp. bihedral) n-crescents in the Kuiper
completion M1 of M1 correspond to hemispheric {resp. bihedral) n-crescents in the
Kuiper completion M2 of M2 by the number of sheets [71-1 (M1) : 7Ti(M2)] to one.

To begin a proof, we can choose developing maps dev1 and dev2 for M1 and M2

so that dev2 = dev1 o g as in Proposition 3.4. Then we pull-back the metric d to d1
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and d2 on M1 and M2 respectively, and obtain completed spaces M1 and M2. The
covering map g extends to a distance-decreasing map g ' : M1 -^ M2.

We need to first show:

LEMMA 8.14_— g'jnaps the ideal set M^ of M1 into the ideal set M^ of M2 ;
hence, g'-^M^) = M^.

Proof. — The proof again uses a path-lifting argument and the properness of g . D

The next step is to show that given an n-crescent R in M1, the image g ' ( R ) is an
n-crescent in M2. This follows by the fact that g1 restricted to R is an imbedding and
the above lemma 8.14. Given an n-crescent S in M2, as S H M2 is simply connected,
there exists a set 5" in M1 mapping homeomorphic to S D M2 by g . We can show
easily that the closure of 5" is an n-crescent. D
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CHAPTER 9

THE CONSTRUCTION OF
CONCAVE AFFINE MANIFOLDS

In this chapter we prove Theorem 1.1 using the previous three-sections, in a more
or less straightforward manner. We will start with hemispheric crescent case and then
the bihedral case. The proof of the bihedral case is entirely similar but will be spelled
out

DEFINITION 9.1. — A concave affine manifold N of type I is a real projective man-
ifold such that its holonomy cover N^, is a subset of a hemispheric n-crescent in 7V/^.
A concave affine manifold N of type II is a real projective manifold with concave or
totally geodesic boundary so that N^ is a subset of A(R) for a bihedral n-crescent R
in Nh and N^ includes no hemispheric n-crescents. We allow N to have nonsmooth
boundary that is concave.

It is easy to see that N is a concave affine manifold of type I if and only if N^
equals a hemispheric n-crescent.

Given a real projective manifold N with a developing map dev : N^ —^ S" and the
holonomy homomorphism h : TT^(N) —^ Au^S^, suppose that dev(A^) is a subset
of an open n-hemisphere, i.e., an affine patch, and /i(7Ti(7V)) acts on this hemisphere.
Then obviously /i(7Ti(7V)) restricts to affine transformations of the affine patch, and
(dev, h) can be considered a development pair of an affine structure. Hence, N admits
a natural affine structure.

If M is a concave affine manifold of type I, from the properties proved in the above
Chapter 8, dev(M/J equals an n-hemisphere H. Since the holonomy group acts on
H , the interior M° has a compatible affine structure. If M is one of the second
type, then for each bihedral n-crescent -R, dev maps R D M^ into the interior of
an n-hemisphere H (see Chapter 7). Hence, it follows that dev maps M^ into H°.
Since given a deck transformation t?, we have ^(A(J?)) = A(^(J?)) D M/^, we obtain
intA(^(a)) n intA(A) n Mh / 0 and R ~ ^(R) by Lemma 7.4. This shows that
A(R) = WR)) = WR)) and S^A(R) = J^A^CR)) = ̂ (8^A(R)) for each deck
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transformation ^ by equation 7.1. Since dev(^ooA(J?)) is a subset of a unique great
sphere S""1, it follows that h(i9) acts on S72"1 and since dev(M^) lies in H°, the
holonomy group acts on H°. Therefore, M has a compatible affine structure.

If M is a concave affine manifold of type I, then 6M is totally geodesic since
Mh = R H Mh for an hemispheric n-crescent R and SM^ = VR D M/^. If M is one of
type II, then 6M is concave, as we said in the definition above.

Let M be a compact real projective manifold with empty or totally geodesic bound-
ary, and p : Mh —>• M the holonomy covering map with development pair (dev,/i).
For the purpose of the following lemma, we say that two n-crescents S and T, hemi-
spheric or bihedral, to be equivalent if there exists a chain of n-crescents Ti, T^ , . . . , Tn
so that S = Ti and T = Ti and T, and T^+i overlap for each i = 1, . . . , n - 1. We will
use this definition in this chapter only.

LEMMA 9.2. — Let Xi be a sequence of points of M^ converging to a point x of
M/^, and xi G Rz for n-crescents Ri for each i. Then for any choice of an integer
N, we have Ri ^ Rj for infinitely many i ^ j ^ N. Furthermore^ if each Ri is an
n-hemisphere^ then Ri = Rj for infinitely many i ^ j > N. Finally x belongs to an
n-crescent R for R ~ Ri for infinitely many z.

Proof. — Let B(x) be a tiny ball of x. Assume Xi G mtB{x) for each z. We can
choose a smaller n-crescent Si in Ri so that xi now belongs to vsz with as, included
in aRi as Ri are geometrically "simple", i.e., a convex n-bihedron or an n-hemisphere.

Since B (x) cannot be a subset of Si, Si D B (x) is the closure of a component of
B(x) — di for di = vsi r\B(x) an (n — l)-ball with boundary in bdB(x). Let Vi be the
outer-normal vector at Xi to vsi fo1' each i. Choose a subsequence Zj, with zi =N^ofi
so that the sequence z .̂ converges to a vector v at x. Corollary 3.16 shows that there
exists an n-crescent R so that dev(J?) is a limit of dev(5^.), R contains x, and R and
Siy include a fixed common n-ball P for j sufficiently large. Hence, 6^ is equivalent
to 5^ for j, k sufficiently large. Since we have Riy ~ 5 .̂ as S .̂ is a subset of -R^., we
obtain Riy ~ R^ for j, k sufficiently large.

If Ri are n-hemispheres, then Theorem 5.1 shows that J? .̂ = R^ for j, k sufficiently
large. D

We begin the proof of the Main Theorem 1.1. Actually, what we will be proving is
the following theorem, which together with Theorem 4.6 implies Theorem 1.1.

THEOREM 9.3. — Suppose that M is a compact real projective n-manifold with to-
tally geodesic or empty boundary, and that M^ is not real projectively diffeomorphic
to an open n-hemisphere or n-bihedron. Then the following statements hold:

— If Mh includes a hemispheric n-crescent, then M includes a compact con-
cave affine n-submanifold N of type I or M° includes the two-faced (n — 1)-
submanifold arising from hemispheric n-crescent.

MEMOIRES DE LA SMF 78



CHAPTER 9. THE CONSTRUCTION OF CONCAVE AFFINE MANIFOLDS 77

- If Mh includes a bihedral n-crescent, then M includes a compact concave affine
n-submanifold N of type II or M° includes the two-faced (n - l)-submanifold
arising from bihedral n-crescent.

Converse statements also hold.

First, we consider the case when M/, includes an n-crescent R that is an n-
hemisphere. Suppose that there is no copied component of VT H Mh for every hemi-
spheric n-crescent T. Recall from Chapter 6 that either R = S or R and S are disjoint
for every pair of hemispheric n-crescents R and S.

Let x € Mh and B(x) the tiny ball of x. Then only finitely many distinct hemi-
spheric n-crescents intersect a compact neighborhood of x in mtB{x). Otherwise,
there exists a sequence of points x^ converging to a point y of mtB{x)^ where
Xi € miB(x) and xi € Rz for mutually distinct hemispheric ^-crescents Ri, but
Lemma 9.2 contradicts this.

Consider RC\M^ for a hemispheric n-crescent R. Since R is a closed subset of Mh,
Rn Mh is a closed subset of M/,. Let A be the set \Jn^ -RH M/i. Then A is a closed
subset of Mh by above. Since R 0 Mh is a submanifold for each n-crescent R, A is
a submanifold of Mh, a closed subset. Since the union of all hemispheric n-crescents
A is deck transformation group invariant, we have ^(^(A)) = A. Thus, p\A is a
covering map onto a compact submanifold N in M, and p\R n Mh is a covering map
onto a component of N for each hemispheric n-crescent R.

Since the components of A are locally finite in Mh, it follows that N has only
finitely many components. Let K be a component of N . By Lemma 8.1, Rr\ Mh is a
holonomy cover of K. Let K be the projective completion of R n M/^. The closure of
JPn Mh in I? is a hemispheric n-crescent identical with K by Proposition 8.3. Hence,
K is a concave affine manifold of type I.

If there is a copied component of VT n Mh for some hemispheric n-crescent T,
Proposition 6.4 implies the Main theorem.

Now, we assume that Mh includes only n-crescents that are n-bihedrons. Suppose
that there is no copied component of bdA(T) H Mh for every bihedral n-crescents T,
T e B. Then either A(R) = A(5) or A(fi) and A(5) are disjoint for n-crescents R
and 5, R, S e fi, by the results of Chapter 7.

Using this fact and Lemma 9.2, we can show similarly to the proof for the hemi-
spheric n-crescent case that A = Uj^ ̂ ^ n M^ is closed: A(R) n Mh is a closed
subset of Mh by Proposition 7.2. For each point x of Mh and a tiny ball B(x)
of a-, there are only finitely many mutually distinct A(-R^) intersecting a compact
neighborhood of x in mtB(x) for n-crescents Ri: Otherwise, we get a sequence Xi,
Xi € mtB(x), converging to y , y € mtB(x), so that a-, e A(7?,) for n-crescents 7?,
with mutually distinct A(^), i.e., R^ is not equivalent to Rj whenever i ̂  j. Then
Xi C 5^ for an n-crescent Si equivalent to Ri. Lemma 9.2 implies Si ~ Sj for infinitely

SOClfiTfi MATHfiMATIQUE DE FRANCE 1999



78 CHAPTER 9. THE CONSTRUCTION OF CONCAVE AFFINE MANIFOLDS

many i^j ^ N . Since Si is equivalent to Rz, this contradicts the fact that A(7?^) are
mutually distinct.

The subset A is a submanifold since each A{R) D M^ is one for each R, R G B.
Similarly to the hemisphere case, since p~l(p(A)) = A, we obtain that p\A is a
covering map onto a compact submanifold N in M, and p|A(J?) D M/^ J? € B, is a
covering map onto a component of N. N has finitely many components since the
components of A are locally finite in Mh, by the above paragraph.

Let K be the component of N that is the image of A(jR) D Mh for R, R e B.
By Lemma 8.1, A(J?) D M/^ is a holonomy cover of K. Let Kh denote the projective
completion of A(J?) D Mh. For each crescent 5, S ~ -R, the closure 5" of 5 D M/^ in
7^ is an n-crescent by Proposition 8.3. It follows that each point x of A(-R) D M^ is
a point of a crescent S ' in K equivalent to the crescent R, the closure of R D M^ in
K. Therefore, by Lemma 7.3, N is a finite disjoint union of compact concave affine
manifolds of type II.

When there are copied components of bdA(J?) D M^ for some R e 6, then Propo-
sition 7.6 completes the proof of the Main theorem.

The converse part of the Main theorem follows by Proposition 8.3 since the Kuiper
completions of concave submanifolds includes an n-crescents clearly. D
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CHAPTER 10

SPLITTING AND DECOMPOSING MANIFOLDS

In this chapter, we will prove Corollary 1.2. The basic tools are already covered in
previous three chapters. As before, we study hemispheric case first.

Let M be a compact real projective n-manifold with empty or totally geodesic
boundary. We will assume that M is not {n— 1) -convex, and so M^ is not projectively
diffeomorphic to an open n-bihedron or an open n-hemisphere, so that we can apply
various results in Chapters 5 to 8, such as the intersection properties of hemispheric
and bihedral n-crescents. We will carry out various decomposition of M in this
chapter. Since in each of the following steps, the results are real projective manifolds
with nonempty boundary if nontrivial decomposition had occurred, it follows that
their holonomy covers are not projectively diffeomorphic to open n-bihedrons and
open n-hemispheres. So our theory in Chapters 5 to 9 continues to be applicable.

We show a diagram of manifolds that we will be obtaining in the construction. The
ladder in the first row is continued to the next one. Consider them as one continuous
ladder.

M =^) M5 =^ NV[K ^^
Pt t t

MH ^A, Mf, =^ M.UU^^0^} ^A.

N^K =^ SY[TY[K
(10.1) f f

^mu^^^} =^ ^mu^M^n^^mUp^-R^^}
where the notation =^A means to split along a submanifold A if A is compact and
means to split and take appropriate components to obtain a holonomy cover if A is
noncompact, =^ means to decompose and to take appropriate components, ]J means
a disjoint union and other symbols will be explained as we go along. When any of
AI , K^ Aa, T is empty, then the operation of splitting or decomposition does not take
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place and the next manifolds are identical with the previous ones. For convenience,
we will assume that all of them are not empty in the proof.

To begin, suppose that M is not (n — l)-convex, and we will now be decomposing
M into various canonical pieces. Let p : M^ —> M denote the holonomy covering
map with development pair (dev,/i). (Note that the covering maps in the spaces
constructed below will be all denoted by p. Since the domains of definition are different
this causes no confusion.)

Since M is not (n — l)-convex, M^ includes an n-crescent (see Theorem 4.6). By
Theorem 9.3, M has a two-faced (n — 1)-manifold 5, or M includes a concave affine
manifold.

Suppose that M^ has a hemispheric n-crescent, and that Ai is a pre-two-faced
submanifold arising from hemispheric n-crescents. (As before A\ is two-sided.) Let
M3 denote the result of the splitting of M along p(Ai), and M' that of M^ along
Ai, and A[ the boundary of M' corresponding to Ai, "newly created from splitting."
We know from Chapter 7 that there exists a holonomy cover M^ of M3 that is a
disjoint union of suitable components of M'. This completes the construction of the
first column of arrows in equation 10.1.

We now show that Ms now has no two-faced submanifold of type I. Let M' denote
the projective completion of M'. Suppose that two hemispheric n-crescents R and S
in M' meet at a common component C of VR D M' and vs n M' ^d that R and S
are not equivalent. Proposition 6.4 applied to M' shows that C C M10', in particular,
C is disjoint from A[.

Recall the map q : M' —^ M^ extending the quotient map q : M' —^ M^ identifying
newly created split faces in M ' . There exist hemispheric n-crescents q(R) and q(S)
in Mh with same interior as R° and S° included in M^ — Ai by Proposition 8.7.

Since VR D vs H M' belongs to M' — A[ = M^ — Ai, it follows that q(^p) and
q(vs) meet in Mjz — Ai. Since obviously q(i^R) C q(R) and q(vs) C q(S), we have
that q{R) and q(S) meet in M^ — Ai. However, since q(R) and q(S) are hemispheric
n-crescents in M/^, q(C) is a subset of the pre-two-faced submanifold Ai, which is a
contradiction. Therefore, we have either R = S o r R F \ S = 0 for n-crescents R and
S in M'. Finally, since the completion M^ of the holonomy cover M^ is a subset of
M', we also have R = S or R D S = 0 for n-crescents R and S in M^.

The above shows that A^ has no two-faced submanifold arising from hemispheric n-
crescents. Let 1-t denote the set of all hemispheric n-crescents in Mj|. As in Chapter 9,
p\ Uj?e'% ̂  n ̂  ls a ̂ ^ri^ "^P to tne fimte disjoint union K of compact concave
affine manifolds of type I. Since any two hemispheric n-crescents are equal or disjoint,
it is easy to see that p"1^0) = UAG^ ^0- Then N , N = M^-K0, is a real projective
n-manifold with totally geodesic boundary; in fact, M3 decomposes into N and K
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along totally geodesic {n - 1)-dimensional submanifold

P(\J ^HM5).
Ron

We see that p~l(N) equals Mf, -p-1^0), and so M^ -p^^K0) covers N . As
we saw in Chapter 8, we may choose a component L\ of M^ - p^^K0) for each
component Li of N covering Li as a holonomy cover with the developing map dev|L^
and a holonomy homomorphism as described there; [J^ L\ becomes a holonomy
cover Nh of N by Lemma 8.1.

We will show that N^ includes no hemispheric n-crescent, which implies that N
includes no concave affine manifold of type I by the converse portion of Theorem 9.3.
This completes the construction of the second column of arrows of equation 10.1.

The Kuiper completion of L\ is denoted by L\. The Kuiper completion N^, of N^,
equals the disjoint union of L[. Since the inclusion map i : L\ —r M^ is distance-
decreasing, it extends to z : 7V^ —> M^. If N^ includes any hemispheric n-crescent R,
then z(R) is a hemispheric n-crescent by Proposition 8.3. Since z(R)r\Mh is a subset of
p^W by the construction of K, and R° C z(R) H M^, it follows that R° C p^W.
On the other hand, since A^np"1^) equals p'^bdJC), it follows that A^np"1^)
includes no open subset of M^. Since R° C A^, this is a contradiction, Therefore, N^
includes no hemispheric 77-crescent.

We see after this stage that the completions of the covers of the subsequently
constructed manifolds include no hemispheric n-crescents as the splitting and taking
submanifolds do not affect this fact by Proposition 8.9.

Now we go to the second stage of the construction. Suppose that N^ includes
bihedral n-crescents and A^ is the two-faced (n— 1)-submanifold arising from bihedral
n-crescents. Then we obtain the splitting N3 of N along p(A^).

We split Nh along A^ to obtain N31'. Then the holonomy cover N^ of N3 is a
disjoint union of components of N31 chosen for each component of TV5. Let N^ denote
the completion.

The reasoning using Proposition 8.10 as in the eighth paragraph above shows that
A(J?) = A(5) or A(J?) H A(5) = 0 for every pair of bihedral n-crescents R and S in
7Vjl. Theorem 9.3 shows that N3 includes the finite disjoint union T of concave affine
manifolds of type II with the covering map

p\ \J A(J?)n^: UA(fi)nA^r
ROB REB

where B denotes the set of representatives of the equivalence classes of bihedral n-
crescents in N^. And we see that N3 — T° is a real projective manifold with convex
boundary while T has concave boundary. By letting S = N^— T°, we see that N3

decomposes into S and T.
Each component J of T is a maximal compact concave affine manifold of type II.

If not, then J is a proper submanifold of a compact concave affine manifold J ' of type

SOClfiTfi MATHEMATIQUE DE FRANCE 1999



82 CHAPTER 10. SPLITTING AND DECOMPOSING MANIFOLDS

II in N3. A component ofp"1^) is a proper subset of a component oip"1^'). By
Proposition 8.3, p'^J7) is a subset of Uj?e0 ^-(^) n ̂ - ^ls ls Bbsurd.

For each component Sz of 5, we choose a component 5^ ofA^—p"1^0). Then ]J S[
is a holonomy cover Sh of 5. The projective completion Sh equals the disjoint union
]_I<S^. As in the sixth paragraph above, we can show that Sh includes no bihedral
n-crescent using Proposition 8.3. By the converse part of Theorem 9.3, we see that
Sh includes no compact concave affine manifold.

If 5 is not (n — l)-convex, then Sh includes an 77-crescent since the proof of Theo-
rem 4.6 easily generalizes to the case when the real projective manifold M has convex
boundary instead of totally geodesic one or empty one. Since Sh does not include a
hemispheric or bihedral 77-crescent, it follows that S is (n — l)-convex.

Now, we will show that the decomposition of Corollary 1.2 is canonical. First, the
two-faced submanifolds Ai and A^ are canonically denned. Now let M = M3 and
TV == N3 for convenience. First, suppose that M decomposes into N ' and K ' where
K ' is a submanifold whose components are compact concave affine manifolds of type
I and N ' is the closure of M — K ' and N ' includes no compact concave affine manifold
of type I. We will show that N ' = N and K ' = K.

Let K^ i = I , . . . , T T , , be the components of K1', K[^ their respective holonomy
cover, and K[ ^ the projective completions, which equals a hemispheric 77-crescent Ri.
We claim that p^^K') equals IJ^e^ ̂  n ̂ h wl:lere ̂  ls tne set °^ a^ ^-crescents in
M^

Each component K{ oi p^^K'^) is a holonomy cover of K[ (see Chapter 8). Let
l\ denote the lift of the covering map K[ ^ —^ K[ to K\ which is a homeomorphism.
dev o ̂  is a developing map for K[ ^ as it is a real projective map (see Ratcliff [28]).
We may put a metric d on K\ ̂  induced from d on S71, a quasi-isometric to any such
choice of metric, using developing maps. Thus, we may identify K[ with K[ ̂  and
their completions respectively for a moment.

From the definition of concave affine manifolds of type I, the completion of K[ ^
equals a hemispheric n-crescent R^ and K[ ^ = Ri C\K[ ^. Proposition 8.3 shows that
there exists a hemispheric 77-crescent R\ in Mh with identical interior as that of Ri,
and clearly R[ includes K} in Mh so that K\ = R[ D M/i. Since this is true for any
component K^ we have that p"^^) is a disjoint union of hemispheric n-crescents
intersected with Mh and a subset of U^e^ ̂  ̂  ̂ h'

Suppose that there exists a hemispheric 77-crescent R in Mh so that Rr\Mh is not a
subset ofp~1 {K'). Suppose R meets p~1 { K ' ) . Then R meets a hemispheric 77-crescent
S where S D Mh C p"1^'). If R and S overlap, then R = 5, which is absurd. Thus,
R D Mh and S D Mh may meet only at VR D Mh and YS Fl Mh. Hence, R ft Mh is a
subset ofp'^M — K10). Since each component ofp'^M — K10) is a holonomy cover
of a component of M — K10^ it follows that the completion of a holonomy cover of a
component of M — K'° includes a hemispheric 77-crescent by Proposition 8.3.
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The part N ' has no two-faced submanifold of type I since otherwise we easily see
that such a submanifold becomes a two-faced submanifold of type I for M itself by
Proposition 8.9. Since N ' includes no compact concave affine manifold of type I, the
converse part of Theorem 9.3 shows that N^ includes no hemispheric n-crescent where
A^ is the completion of the holonomy cover N^ of N ' , As this is a contradiction, we
have that p ^ ^ K ' ) equals Uj?e^ R n M^ Therefore, we obtain N ' = N and K ' = K.

Second, if N decomposes into 5" and T ' where T ' is the finite union of a maximal
compact concave affine manifold of type II, and S ' includes no compact concave affine
manifold of type II, then we claim that 5" = S and T ' = T. As above, we show that
p'^T') is a disjoint union of sets of form A(R) D N^ for a bihedral crescent R in
Nh, using maximality. As above, the converse part of Theorem 9.3 shows that the
completion of the holonomy cover of each component of 5" does not include a set of
from A(J?) n Nh for a bihedral n-crescent R. The rest of proof is the same as in the
hemispheric case. D

SOCIETE MATHEMATIQUE DE FRANCE 1999



s



CHAPTER 11

LEFT-INVARIANT REAL PROJECTIVE STRUCTURES
ON LIE GROUPS

Finally, we end with an application to affine Lie groups. Let G be a Lie group with
a left-invariant real projective structure, which means that G has a real projective
structure and the group of left-translations are projective automorphisms.

As G is a manifold with real projective structure, there is an associated developing
map G —^ S71 and a holonomy homomorphism 71-1(0?) —^ Au^S^. Let Gh be the
holonomy cover with induced development pair (dev, h). Then Gh is also a Lie group
with the induced real projective structure, which is clearly left-invariant. Moreover,
given an element g ofG^, as devoLp is another developing map for the left-translation
Lg by g , dev o Lg = h'{g) o dev for an element h\g) of Au^S^. We see easily
that h' : Gh —^ Aut(S71) is a homomorphism, which is still said to be a holonomy
homomorphism.

As before if G is not (n — l)-convex, then Gh is not projectively diffeomorphic to
an open n-bihedron or an open n-hemisphere.

THEOREM 11 .1 . — IfG is not (n—l)-convex as a real projective manifold, then the
projective completion Gh of Gh includes an n-crescent B.

Proof. — This is proved similarly to Theorem 4.6 by a pull-back argument. The
reason is that the left-action of Gh on Gh is proper and hence given two compact sets
K and K ' of Gh, the set {g G Gh\g{K) D K ' / 0} is a compact subset of Gh' That
is, all arguments of Chapter 4 go through by choosing an appropriate sequence {^}
of elements of Gh instead of deck transformations.

Obviously, if Gh includes a cocompact discrete subgroup, then this is a corollary
of Theorem 4.6. But if not, this parallel argument is needed. D

Suppose that from now on Gh includes an n-crescent B. Since the action of Gh on
Gh is transitive, Gh equals the union of g(B) for g C Gh' We claim that g{B) ~ g ' ( B )
for every pair of g and g1 in Gh'- That is, there exists a chain of n-crescents Bi,
i = 1, . . . , fc, of same type as B so that £?i = g(B), Bi overlaps with 2^+i for each
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i = 1,. . . , k — 1, and Bje = g'(B)\ Let a- be a point of B° and B(x) a tiny ball of x
in J3°. We can choose a sequence g o , . . . ,gn with go = g and gn = g ' where g^gi(x)
belongs to B(x)°. In other words, we require g^gi to be sufficiently close to the
identity element. Then gi(B°) n^+i(B°) ^ 0 for each i. Hence g(B) ~ g ' ( B ) for
any pair g , g ' e G/,.

If 5 is an n-hemisphere, then we claim that g(B) = B for all g and G/^ = 5 D G^.
The proof of this fact is identical to that of Theorem 5.1 but we have to use the
following lemma instead of Lemma 5.2.

LEMMA 11.2. — Suppose that dev : Gh -^ S71 is an imbedding onto the union of two
n-hemispheres H^ and H^ meeting each other on an n-bihedron or an n-hemisphere.
Then H\ = H^, and Gh is projectively diffeomorphic to an open n-hemisphere.

Proof, — If H^ and H^ are different, as in the proof of Lemma 5.2 we obtain two
(n — 1)-dimensional hemispheres 0\ and 0^ in Gh where a subgroup of index one or
two in Gh, acts on. Since the action of Gh is transitive, this is clearly absurd. D

So if B is an ^-hemisphere, then we obtain Gh = B D Gh' Since Gh is boundary-
less, SB must consist of ideal points, which contradicts the definition of n-crescents.
Therefore, every n-crescent in Gh is a bihedral n-crescent.

The above shows that Gh C A(B) for a bihedral n-crescent B, Gh is a concave
affine manifold of type II and hence so is G': To prove this, we need to show that two
overlapping n-crescents intersect transversally as the proof for the Lie group case is
slightly different. The transversality is proved entirely as in the proof of Theorem 5.4
using Lemma 11.2 instead of Lemma 5.2.

Let H be a Lie group acting transitively on a space X. It is well-known that for a
Lie group L with left-invariant (IT, X)-structure, the developing map is a covering map
onto its image, an open subset (see Proposition 2.2 in Kim [23]). Thus dev : Gh —^ S71

is a covering map onto its image.
Recall that dev maps A(-B)° into an open subset of an open hemisphere H^ and

JooA(B) is mapped into the boundary S^"1 of H. Each point of Gh belongs to 6'°
for an n-crescent S equivalent to R since the action of Gh on Gh is transitive (see
above). Since each point of dev(G?/J belongs to the interior of an n-bihedron S with
a side in S71"1, the complement of dev((?/J is a closed convex subset of H. Thus,
dev|G^ is a covering map onto the complement of a convex closed subset of R^ As
G covers Gh', we see that this completes the proof of Theorem 1.4.

An affine m-convexity for 1 <^ m < n is defined as follows: Let M be an affine
n-manifold, and T an affine (m + l)-simplex in R/1 with sides -Fi, F ^ ^ . . . , -Fm+2- Then
M is affine m-convex if every nondegenerate affine map / : T° U F^ U < • • U -Fm+2 —^ M
extends to one T —> M (see [16] for more details).
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If G has a left-invariant affine structure, then G has a compatible left-invariant
real projective structure. It is easy to see that the (n — l)-convexity of G in the real
projective sense is equivalent to the affine (n — l)-convexity of G.

By Theorem 1.4, G is either (n — l)-convex or Gh is a concave affine manifold of
type II. As before, if Gh is a concave affine manifold of type II, the argument above
shows that Gh is mapped by dev to the complement of a closed convex set in R/\
This completes the proof of Corollary 1.5.

Finally, we easily see that the following theorem holds with the same proof as the
Lie group case:

THEOREM 11.3. — Let M be a homogenous space on which a Lie group G acts
transitively and properly. Suppose M has a G-invariant real projective structure.
Then M is either (n — 1)-convex, or M is concave affine of type II. Also, M is
affine (n — 1)-convex or M is concave affine of type II if M has a G-invariant affine
structure.

SOCIETE MATHEMATIQUE DE FRANCE 19



s



PART III

APPENDICES



s



APPENDIX A

TWO MISCELLANEOUS THEOREMS

We prove in this section the fact that 3-manifolds with homogeneous Riemannian
geometric structures admit real projective structures, and Theorem 4.5 on the equiv-
alent definitions of convex real projective manifolds. The proofs are a little sketchy
here; however, they are elementary.

Recall that given a pair of a space X and a Lie group G acting on X , Klein
defined (X, G)-geometry as the G-invariant properties on X. An (X, G^-structure on
a manifold is given by a maximal atlas of charts to X with transition functions lying
mG.

Given the product space RP2 x RP1, the group PGL(3, R) x PGL(2, R) acts on the
space in the standard manner; i.e., (g,h){x,y) = (g(x),h(y)) for x C RP2, y C RP1,
g G PGL(3,R), and h € PGL(2,R). The geometry modeled on the pair is said to
be the product real protective geometry and the geometric structure modeled on the
geometry is said to be the product real projective structure.

The following theorem is proved essentially using Molnar's work [26]. (See also
Thiel [32].)

THEOREM A.I. — Let M be a 3-manifold with Riemannian homogeneous structure.
Then M admits a real projective structure or a product real projective structure.

Proof. — The Euclidean, spherical, and hyperbolic geometries correspond to the pairs
(R^C^n.R) • R71), (S^.O^ + 1,R)), and (Jr\PSO(l,n)). Here, 0(n,R) denotes
the group of orthogonal transformations of R71, and 0(n,R) • R71 the orthogonal
group extended by translations, i.e., the group of rigid motions of R71. H71 denotes
the positive part of the conic in R^i given by a-2 - x\ - ' • • - x^ = 1, and PSO(1, n)
the group of linear transformations acting on JT\

As we said above, R71 is an affine patch and the group of rigid motions are affine,
and hence projective. H71 can be identified with an open ball in RP", with PSO(1, n)
identified with an obvious copy in PGL(n + 1,R). Hence, these geometries can be
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considered as a pair of open subsets in RP71 or Sn and subgroups of projective au-
tomorphisms of the open subsets respectively. Hence, an (X, C?)-atlas for each of
these geometries (X, G) is a real projective atlas, and so the three-manifold with an
(X, G')-structure admits real projective structures.

Using the notation in Scott's paper [29], the geometries Sol, Nil, and SL(2,R)
can be realized as pairs of open subsets of real projective space RP3 or real projective
spheres S3 and subgroups of projective automorphism groups. This can be seen in
Molnar [26] as he gives explicit domains and the group of projective automorphisms
corresponding to the isometry group. Hence, 3-manifolds admitting these structures
also admit real projective structures.

For H2 x R1, and S2 x R1 geometries, as two-dimensional hyperbolic and spherical
geometries are realized by projective models, we see easily that they have models
subsets of RP2 x RP1 with the automorphism groups subgroups of PGL(3,R) x
PGL(2,R). D

THEOREM A.2. — Let M be a real projective n-manifold. The following are equiva-
lent:

(1) M is 1- convex.
(2) M is convex.
(3) M is real protectively isomorphic to a quotient of a convex domain in S^.

Furthermore, Mh can be identified with M if any of the above items is true.

Proof. — (1)-^(2): Since M is 1-convex, M is 1-convex. Any two points x and y in M
are connected by a chain of segments 5^, i = 1, . . . , n, of d-length < TT with endpoints
pi and j^+i so that Si D ^+1 = {pi+i} exactly. This follows since any path may be
covered by tiny balls which are convex. We will show that x and y are connected by
a segment of d-length ^ TT.

Assume that x and y are connected by such a chain with n being a minimum. We
can assume further that Si are in a general position, i.e., Si and 5^+1 do not extend
each other as an imbedded geodesic for each z = 1, . . . , n — 1, which may be achieved
by perturbing the points p ^ , . . . ,pn, unless n = 2 and ^i U ^2 form a segment of d-
length TT; in which case, we are done since ^i Us^ is the segment we need. To show we
can achieve this, we take a maximal sequence of segments which extend each other
as geodesies. Suppose that Si, 5^+1, . . . , sj form such a sequence for j > i. Then the
total length of the segment will be less than 7r\j — i\. We divide the sequence into
new segments of equal d-length (< TI-) s ' ^s ' ^ , . . . ,^. where s'^ has new endpoints
P'k^P'k+i ^or /l < ^ <^ J where p\ = pi and p'^^ = pj+i. Then we may change p'^
for k = i + 1,.. . ,j toward one-side of the segments by a small amount generically.
Since p^, k = i -I- 1,... ,j, are in an open hemisphere (an affine patch) determined
by the original geodesic Si U • • • U sj, we see that new segments s'^ s^,..., s'^ are in
general position together with Si-\ and 5j+i. This would work unless j — i = 2 and
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the total d-length equals TT since in this case changing p^ still preserves s'^ U s'^ ^ to
be a segment of d-length TT. However, since n > 3, we may move p\ or p7.^ in some
direction to put the segments into a general position.

Let us choose a chain S z , i = 1, . . . ,n, of segments with minimal number of seg-
ments, in general position. We assume that we are not in case when n = 2 and 5i Us^
forming a segment of d-length TT,

We show that the number of the segments equals one, which shows that M is
convex. If the number of the segments is not one, then we take ^i and s^ and
parameterize each of them by projective maps fi : [0,1] -^ ^, i = 1,2, so that
fiW = P2. Then since a tiny ball B (^2) can be identified with a convex ball in an
affine patch, it follows that for t sufficiently small there exists a nondegenerate real
projective map ft : A^ -)- B(p^) where A^ is a triangle in R2 with vertices (0,0), (t, 0),
and (0,^) and ^(0,0) = p^, ft(s,0) = f^(s) and ^(0,5) = f^s) for 0 < s ^ t.

We consider the subset A of (0,1] so that ft : A^ —^ M is defined. For t C A,
ft : A^ —^ M is always an imbedding since dev o ft is a nondegenerate projective map
A^ C S71 —^ S71. Thus A is open in (0,1] since as /(A^) is compact, there exists a
convex neighborhood of it in M where dev restricts to an imbedding.

We claim that A is closed by 1-convexity: we consider the union K = U^(=A ft(.^t)'
Then the closure of K in M is a compact triangle in M with two sides in 5i and 52.
Since two sides of K and K° are in M, K itself is in M by 1-convexity. Hence A must
equal (0,1] and there exists a segment s[ of d-length < TT, namely /i((l,0)(0,1)),
connecting pi and pg. This contradicts the minimality, and x and y are connected by
a segment of d-length ^ TT.

(2)—)-(3) As M is convex, the closure of M in M is tame as we explained in Chap-
ter 3. Thus M is a tame set, dev : M —^ S71 is an imbedding onto a convex subset
of S71, and dev|M is an imbedding onto a convex subset of S^. Since the equation
dev o ̂  = fa(^) o dev holds for each deck transformation 1) of M, it follows that dev
induces a real projective diffeomorphism M/7Ti(M) —^ dev(M)//i(7i-i(M)).

(3)—)-(1) Since M can be identified with a convex domain in S71, M is 1-convex
from the definition of 1-convexity. D
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APPENDIX B

SHRINKING AND EXPANDING n-BALLS BY
PROJECTIVE MAPS

PROPOSITION B.I. — Suppose we have a sequence ofe-d-balls Bi in a real pro jective
sphere S71 for some n > 1 and a fixed positive number e and a sequence of projective
maps (pi. Assume the following:

— The sequence of d- diameters of (pi{Bi) goes to zero.
— (pi(Bi) converges to a point, say p, in the Haus dor ff sense.
— For a compact n-ball neighborhood L of p, ^^(L) converges to a compact set

L^.
Then Loo is an n-hemisphere.

Recall that R^"^1 has a standard Euclidean metric and d on S71 is obtained from
it by considering S72 as the standard unit sphere in R71"^1.

The Cartan decomposition of Lie groups states that a real reductive Lie group G
can be written as KTK where K is a compact Lie group and T is a maximal real tori.
Since Aut(S71) is isomorphic to SL±(n +1, R), we see that Au^S^ can be written as
0{n + l)D{n + l)0(n +1) where 0(n +1) is the orthogonal group acting on S71 as the
group of isometries and D(n+1) is the group of determinant 1 diagonal matrices with
positive entries listed in decreasing order where D{n + 1) acts in S71 as a subgroup
of GL(n + 1,R) acting in the standard manner on S71. In other words, each element
g of Au^S^) can be written as i(g)d(g)i1(g) where i{g) and i ' ^ g ) are isometries and
d(g) € D(n + 1) (see Carriere [8] and Choi [16], and also [15]).

We may write ̂  as K^^ oDz oK^^ where K^^ and K^^ are d-isometries of S71 and
Di is a projective map in Au^S^) represented by a diagonal matrix of determinant
1 with positive entries. More precisely, Di has 2n + 2 fixed points [=beo] , . . . . [±e^],
the equivalence classes of standard basis vectors = b e o , . . . , =ben of P"^, and Di has a
matrix diagonal with respect to this basis; the diagonal entries A^, i = 0 ,1, . . . , n, are
positive and in decreasing order. Let 0[eo] denote the open n-hemisphere containing
[eo] whose boundary is the great sphere S'1"1 containing [±Cj] for all j, j ^ 1, and
0[_ep] that containing [—eo] with the same boundary set.
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Since (pi(Bi) converges to p, and K^^ is an isometry, the sequence of the d-diameter
of Di o K^^(Bi) goes to zero as i -^ oo. We may assume without loss of generality
that Di(K^^(Bi)) converges to a set consisting of a point by choosing a subsequence if
necessary. By the following lemma B.2, A(^(B,)) converges to one of the attractors
[eo] and [-eo]. We may assume without loss of generality that Di{K^^(Bi)) converges
to [eo].

Since L is an n-dimensional ball neighborhood ofp, L includes a d-ball Bs(p) in
S" with center p with radius 8 for some positive constant 5. There exists a positive
integer N so that for i > N , we have

^i(Pi) CBg^(p)

for the d-ball ̂ (p) of radius 8 / 2 in S71. Letting q, = ̂ (p,) for the d-center p, of
the ball Bi, we see that B§/^(qi) is a subset of L for i > N .

Since K^(q,) = DioK^^p,), the sequence K^(q,) converges to [eo] by the second
paragraph above. There exists an integer A^i, N^_ > N , such that K^(qi) is of d-
distance less than 8 / 4 : from [eo] for i > TVi. Since K^ is a d-isometry, K^}(Bs/^{qi})
includes the ball Bg/^eo]) for i > TVi. Hence K^(L) includes ^/4([eo])'for i > TVi.

Since [eo] is an attractor under the action of the sequence {Di} by Lemma B.2, the
images of B g / ^ ([eo]) under D^~1 eventually include any compact subset of0[^]. Thus,
^^(^^([eo])) converges to Cl(Oi) in the Hausdorff metric, and up to a choice of a
subsequence K^ o ̂ ^(^^([eo])) converges to an n-hemisphere. The equation

^(L) = K^oD^oK^W

(Btl) ^ ^^^"'(^([eo])).
shows that ^^(L) converges to an n-hemisphere. Q

The straightforward proof of the following lemma is left to the reader.

LEMMA B.2. — Let Ki be a sequence of e-d-balls in S" and di a sequence of au-
tomorphisms of S71 that are represented by diagonal matrices of determinant 1 with
positive entries for the standard basis with the first entry A, the maximum. Suppose
di(Ki) converges to the set consisting of a point y . Then there exists an integer N so
that for i > N , the following statements hold:

(1) [eo] and [—eo] are attracting fixed points of di.
(2) y equals [eo] or [-eo].
(3) The eigenvalue \ of di corresponding to eo and -eo is strictly larger than the

eigenvalues corresponding to ±ej, j = 1 , . . . , n.
(4) \il\'i —^ +00 for the maximum eigenvalue \\ of di corresponding to ±e.,j =

l,...,n.
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FREQUENTLY USED SYMBOLS

A°: the topological interior of a convex set A in (A).
(A): the unique minimal great sphere including a convex subset A of S71.
OR: the union of all open (n — ^-hemispheres in the intersection of 8R with the

ideal set if R is a hemispheric n-crescent, or the interior of a side of R in the
ideal set if R is a bihedral n-crescent.

bdA: the topological boundary of the set A with respect to the obvious largest am-
bient space.

C1(A): the topological closure of A in the obvious largest ambient space.
int A: the topological interior of A in the obvious largest ambient space.

CR: the union of copied components of a hemispheric n-crescent R.
SA: the manifold boundary of a manifold A.

JooA(jR): the union of as for all bihedral n-crescents S equivalent to an n-crescent R.
A(R): the union of all bihedral n-crescents equivalent to an n-crescent R.

M°: the manifold interior of a manifold M.
M: the Kuiper completion of the universal cover of M.
M: the universal cover of a manifold M.

M/i: the holonomy cover of a real projective manifold M.
M^\ the Kuiper completion of a holonomy cover M^.

Mh.oo'- the set of ideal points of the Kuiper completion of a holonomy cover M^.
Moo: the set of ideal points of the Kuiper completion of a universal cover M.

VR : the complement of OR in 8R if R is a hemispheric n-crescent or the side of R
not in the ideal set if R is a bihedral n-crescent.

9 A: the topological boundary of a convex subset A in (A) if A is a subset of S71,
or the subset of C1(A) corresponding to 9B for the image B of A under the
developing map if A is a tame subset of a Kuiper completion.

7!-i(M): the fundamental group of a manifold M or the deck transformation group.
R: the real number field.

RP72: the n-dimensional real projective space.
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1-convex, 38, 92
2-convex, 7, 39
affine manifold, 6
affine patch, 6, 15
affine structure, see structure, affine
Au^S^, 14
bihedron, 18, 28
boundary

concave, 24
convex, 24
totally geodesic, 24

Cartan decomposition, 95
convex

real projective manifold, see real projective,
manifold, convex

segment, 14, 27
set, 13, 14, 27

classification, 16-18
sequence of, 19-21, 32-34

simply, 14
copied component, 56, 64
crescent, see n-crescent
deck transformation, 25, 26
dev, 5
developing cover, 26
developing map, 5, 25-27
development pair, 5, 25-27

of split manifold, 70
of submanifold, 67

dimension, 15
dipping intersection, 30-31

nice, 30, 31
dominating sequence, 32
equivalent, 59, 76
Hausdorff convergence, 19
Hausdorff distance, 19

hemisphere, 14, 28
0-dimensional, 14
z-dimensional, 14

holonomy cover, 10, 25-26
of split manifold, 70
of submanifold, 68

holonomy homomorphism, 5, 25-27
z-ball, 18

convex, 27
i- convex, 8, 37-40

affinely, 86
ideal sequence, 32
ideal set, 25

of holonomy cover, 26
of split manifold, 70
of submanifold, 68

Kobayashi's criterion, 16
Kuiper completion, 10, 25-26, 65

of splitting manifold, 70
of submanifold, 68

A(R), 59
properties, 60-63

(n - l)-convex, 8, 12, 39, 85
n-crescent, 40

n-bihedron, see bihedron
n-crescent, 8, 28, 31, 40, 69, 71, 72

bihedral, 28
intersection of, 48

hemispheric, 28
intersection of, 47

sequence of, 33, 34
n-crescent set, 29, 72
overlap, 29-30
PGL(n+l ,R), 5, 13
pre-two-faced submanifold, 56, 64, 65
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projective completion, see Kuiper completion
proper pair, 15
real projective

manifold, 13
convex, 6

map, 13
space, 13

real projective sphere, see sphere, real projec-
tive

real projective structure, see structure, real
projective

resulting set, 32
sequence of convex sets, see convex, set, se-

quence of
S\ 14
simplex, 8, 37
SL±(n+l ,R) , 14
S71, 14
sphere

great, 14
0-dimensional, 14

z-dimensional, 14
maximal, 17

real projective, 14
structure

affine, 6
Euclidean, 1, 91
H2 x R1, 1, 92
hyperbolic, 1, 91
Nil, 1, 92
real projective, 1, 5, 13
S^xR 1 , I, 92
SL(2,R), 1, 92
Sol, 1, 92
spherical, 1, 91

subjugated sequence, 32
supporting hypersphere, 18
tame subset, 27
tame topological z-ball, 27
tiny ball, 31
transversal intersection, 48-49, 53, 86
two-faced submanifold, 8, 56, 57, 65
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