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COMPLETE ASYMPTOTICS FOR CORRELATIONS
OF LAPLACE INTEGRALS

IN THE SEMI-CLASSICAL LIMIT

Johannes Sjostrand

Abstract. — We study the exponential decay asymptotics of correlations at large
distance, associated to a measure of Laplace type, in the semi-classical limit. The
new feature compared to earlier works by V. Bach, T. Jecko and the author, is that
we get full asymptotics of the decay rate and the prefactor, instead of just the leading
terms, and that we treat the thermodynamical limit. As before, we study the Witten
Laplacian via a Grushin (Feshbach) problem, but we now have to use higher order
problems, involving multiparticle states.

Resume (Asymptotique complete des correlations (Tintegrales de Laplace a la limite
semi-classique)

Nous etudions Pasymptotique au sens semi-classique de la decroissance exponen-
tielle des correlations a grande distance, pour une mesure du type de Laplace. Dans
des travaux anterieurs de V. Bach, T. Jecko et de Pauteur, nous avions obtenu les
contributions principales au faux de decroissance et au prefacteur. Dans Ie present
travail, nous obtenons des developpements asymptotiques complets et nous traitons la
limite thermodynamique. La methode consiste toujours a etudier Ie laplacien de Wit-
ten via une reduction de Grushin (Feshbach) mats nous devons maintenant examiner
des problemes d^ordre superieur comportant des etats a plusieurs particules.
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CHAPTER 0

INTRODUCTION

In recent years there has been an attempt by B. Helffer, the author and others
([BJS], [Hl-4], [HS], [J], [Sl-6], [SW], [W]) to apply direct methods to the study
of integrals and operators in high dimension, of the type that may appear naturally
in statistical mechanics and Euclidean field theory. In the first works, we applied
asymptotic methods and noticed already that there is a very strong interplay be-
tween asymptotic expansions for integrals obtained by some variant of the stationary
phase method and asymptotic solutions of certain Schrodinger type operators ob-
tained by the WKB method ([S3-5]). In later works ([S6], [HS], [84]) we noticed
that a suitable version of the maximum principle could be used in the proof of cer-
tain asymptotic expansions and to obtain exponential decay of correlations. (In the
work [SW] this was even applied to integrals in the complex domain, and was ap-
plied to show exponential decay of the expectation of the Green function for discrete
Schrodinger operators with random potentials.)

In the present work we are interested in correlations for Laplace integrals at large
distance. In physics language we are interested in the correlations at large distance
for continuous spin systems. Under assumptions that imply the exponential decay
of these correlations, we want to know the precise rate of exponential decay and to
determine the possible polynomial prefactor. The original inspiration came from a
talk given by R. Minlos in St Petersburg in 1993 and a corresponding joint paper by
him and E. Zhizhina [MZ], about the asymptotics of correlations for discrete spin
models at high temperature. Even though we never quite understood the methods
used in [MZ], it prompted us to further develop our own methods in the continuous
spin case and in [Sl] we were able to get the leading exponential decay asymptotics

^-^{x}/hd^
for correlations associated to measures of the type -j—_ , ..,—, at large distance, in

the semi-classical limit (h —^ 0). Here ( / ) e COO('RA•, R), and A is a finite subset of Zd

or a discrete torus of dimension d, and we study the limit when A is large. Recall that
the correlation of two functions u, v which do not grow too fast at infinity is given by

(0.1) Cor(n, v) == ({u - {u))(v - (v))),
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where
Jn(^)e^^^

W - "y^^T^^

denotes the expectation. We also observed that certain associated Schrodinger op-
erators, already found with B. Helffer in [HS], are Witten Laplacians in degree 0
or 1. We also managed to replace the use of the maximum principle at many places
by L2 methods and consequently we got rid of a certain rigidity in the conditions.
The elimination of the maximum principle was not complete however, and the results
were flawed by a certain number of unnatural assumptions, in particular that of global
uniform strict convexity of the function <^. Another short-coming of [81] was that
we only determined the decay rate and the prefactor up to a factor (1 + (9(/z1/2)).
Moreover, we did not work out the thermodynamical limit (A -^ Z^) so oscillations
within a factor 1 + 0(h1/2) could not be excluded, when A varies.

With V. Bach and T. Jecko [BJS] we eliminated completely the use of the maxi-
mum principle and were able to give simpler and more natural conditions. In partic-
ular we could allow the exponent <j) to be strictly convex only near the point where
0 is minimal. The new assumptions still imply that there is only one critical point
however. Again we obtained the decay rate and the prefactor only up to a factor
(1 + 0(h1/2)), and we did not treat the thermodynamical limit.

The aim of the present paper is to get full asymptotic expansions in powers of h
of the decay rate and in powers of the inverse distance and in h of the prefactor,
and we shall also treat the thermodynamical limit. To get such more precise results,
one has to get higher in the spectrum of the associated Witten Laplacians (or rather
something close to that), and we do so by using higher order Grushin problems that
we explain more in detail later in this introduction. The main idea of this strategy was
rather clear in the author's mind since the writing of [Sl], and has become practically
realizable with the improvements of [BJS]. W.M. Wang [W] has recently used similar
ideas in order to study the rate of exponential decay of correlations when h = 1 and
(j) is a small perturbation of a non-degenerate quadratic form. For the decay rate,
she got several terms in an expansion in powers of the perturbation parameter. In
principle the method should give full asymptotic expansions and also the prefactor in
that case too. [W] also has an interesting application to the exponential decay rate
of the Green function for discrete random Schrodinger operators.

We now start to formulate the main result of this paper for a class of <^, of the type
that appear in continuous spin lattice models. Let KQ be a finite subset of Z^, and
let

(0.2) F eC^R^R)

satisfy

(0.3) \9^F(x)\ < C^ H > 2, VF(0) = 0,

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 3

where we use standard multiindex notation:

aeN^ 0 , ^ = n 9 ^ \a\=\a\,.=^a,.
jeKo

We will identify F with a function on R21 , by writing

(0.4) F(x)^F(rK,x\

where rj<y : Rz —> R^0 is the restriction operator.
Let A be a discrete torus of the form

(0.5) A = (Z/LZ)^

with L >_ 2 large enough so that KQ can also be viewed as a subset of A via the
natural projection TTA : Z^ —>• A. F(;r) can also be viewed as a function on RA in the
natural way, as in (0.4). If x € C^ j € A, we define the translation rjx G CA by

(0.6) (rjx)(k) = x(k - j), A; € A.

(The same definition applies when A is replaced by Z^.) Viewing F as an element of
C^CR^, we put

(0.7) ^A(x) = ̂  F(r-^), x C RA.
i^eA

The following special case corresponds to continuous spins with nearest neighbor
interactions: Let / € C7°°(R;R), w e (^(R^R) have only bounded derivatives of
order ;> 2 and with V/(0) = 0, Vw(0,0) = 0. Also assume that

(0.8) w(x,y) = w(y,x)

and put

(0.9) ^A(^) - ̂ JW)) + ^ w{x{j\x{k)\
j'GA j,k;d(j,k)=l

where d is the distance on A induced by the i1 norm on Z^. This is of the form (0.7)
with

(0.10) F(x) = f(x(0)) + ^ w(x(0),x(k)).
A;; | fc | i=l

Since 9^^(F(rjx)) = (9^^-{-j)F)(rjx) and similarly for higher order derivatives,
we get

(0.11) {F{r^x))" = r^F"(r^x)r-^ (F(r^x))^ = F^r^x)^^-^

when the Hessian F" is viewed as a linear map C^ —>• C^ Applying this to (0.7), we
get

(0.12) ^(0) = ̂  T^WT,^ ^(0),,, = ̂  ̂ (O)^,,^.
i/eA ^eA

SOCIETE MATHEMATIQUE DE FRANCE 2000



4 CHAPTER 0. INTRODUCTION

which obviously commutes with translations on CA and is therefore a convolution.
The corresponding convolution kernel is

(0.13) W)WU) = E F11^^ = ̂ o(j) - ̂ oO),
^GA

where 6o(j) = 60 j is the convolution kernel of the identity operator,

(0.14) a =^Ff/{0)^ -vo(j) = (1 - 6o^FffW^.
i^GA v

Assume that we have a ferromagnetic situation:

(0.15) F"^ < ̂ v + ̂
so that vo{j) ^ 0. We also make the positivity assumption \vo\£1 < a or more
explicitly,

(°-16) E i^fc <EF//(0)^
j,A;GA;j^fc jeA

(Notice that this condition is independent of A and that we could replace A by Z^.
We also point out that this condition will follow from the assumptions (0.20), (0.21)
below.)

In the special case of (0.10), the last two assumptions become

(0.17) 9^8yw(0,0) ^ 0, /"(O) + 4^w(0,0) > 4d |<9^w(0,0)|.

We also need an assumption expressing that the interaction between different spins
is non-degenerate. Assume that there exists a finite set K C Zd, such that

(0.18) ? o a ) > 0 , j e ^ , Gr^^Z^,

where Gr(K) denotes the smallest subgroup of Zd which contains K. In the case of
(0.10) this assumption means that 9x9yw{0,0) < 0.

Finally we need a convexity assumption in the averaged sense. Let

(0.19) G'\x) = I F^tx)^.
Jo

i
' " f^\ I T^ff(

Assume that there exist 0 < 6 > < l , c > 0 such that for all x € Rzd, j € Z^:

(0.20) Y^G'\^x)^^>^
u

(0.21) ^ ^G/'(T,a•),+,,fc+, <(l-6)^G"(T,x),+^.
k^Zd\{j} ^ v

Notice that it suffices to check these assumptions for one j say j = 0 and that they
imply the earlier assumption (0.16). Also notice that if we have (0.20), (0.21) for F "
instead of G", then we get them for G". We prefer the weaker averaged formulation
above, since it allows for points away from 0 where (j)\ (and (j)u below) is (are) non
convex.

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 5

When F is given by (0.10), a straight forward computation shows that (0.20),
(0.21) become

(0.20') (nW) + ̂  2(^w)(rc(0),^)) ^ c,
|A;|i=l

(0.2F) 2 ^ \(9.9yw)(x(0)^x(k))\
\k\i=i

^( l -^)( (n(^(0))+2 ^ (^w)(^(0)^(A;))),
|A:|i=l

where we put

(nW= [ f"(tx)dt, (wff)(x^)= ( 1 w"(tx,ty}dt.
J o Jo

(These two estimates for c > 0, 0 < 0 < 1 imply the second estimate in (0.17).)
The conditions (0.20), (0.21) imply that f^ ^{tx^dt is uniformly strictly positive

and that the correlations and expectations in (0.1) are well defined if u, v are functions
of polynomial growth.

We next consider the case of finite subsets of Z^ rather than torii. Recall (0.2)
where KQ c Z^ is finite. If U C 7^ is finite and x e R^, we let x e R^ be the zero
extension of x, so that x(j) = x{j) for j e U and x(j) = 0 otherwise. Let U C Z^ be
finite with

(0.22) U - Ko C [/,

and put

(0.23) ^u(x) = Y^ F(r^x), x e R^.
i^eu

Notice that (j)jj only changes by a constant if we replace U by some other set which
also satisfies (0.22), consequently the correlations do not depend on the choice of U.

Let Uj; G Z^, j = 1, 2 , . . . be an increasing sequence of finite sets containing 0 and
converging to Z^. Let 2 < Lj: / oo be a sequence of integers with

(0.24) ^Ct-L^.L,/^,

and let A = Aj = (Z/L^Z)^ be a corresponding sequence of discrete tori, so that we
can view Uj as a subset of Aj in the natural way.

The following is the main result of our work and we refer to Theorem 1.1 for a
slightly more general version:

THEOREM 0.1. — Let Uj, Aj be as above, and put r^ := dis^O.Z^ \ Uj\ so that
rj / +00 when j -^ oo. Then there exist Co ^ 1, jo e N, 0 > 0, ho > 0, such that

SOCIETE MATHEMATIQUE DE FRANCE 2000



6 CHAPTER 0. INTRODUCTION

for j> jo , 0 < h < ho, we have:

(0.25) Cor^ (x^, a^), COT^ (a^, x^)

= (9(/i)e-^/4 + he-^^-^q00^ - ̂  h), for H, \^\ <, r^.
Co

Here, for the statement about Cor^ , we view Uj as a subset of Aj in the natural way.

P^°h e ^^(R^ ^ {0}) is positively homogenous of degree 1 and has the h asymptotic
expansion

00

(0.26) PW-^PWh^ /^O,
e=o

in the space of such functions. Here p°°o is a norm, strictly convex transversally to
the radial direction. Further,

(0.27) q°°(^ h) = \^-{d-i)/2^-s°°^h^ ^ ^ ̂  ̂  ̂  ̂

where
o

(0.28) ^(^^-^^(^^J^ -.00,
—00

uniformly with respect to h, and 5^(-;/i) e COO('Rd \ {0}) is positively homogeneous
of degree a. Here

00

(0.29) C(^; ̂ ) ~ E ̂ W^ h - ̂
o

in the space of smooth functions on R^ \ {0}, positively homogeneous of degree a.
P^oW, ^oW ^re computed in [Sl]. They appear in the asymptotics of (<I>(0)~1)^,
when v — ^ —> oo, where ^(x) is defined by (1.3) below.

In the case of nearest neighbor interactions, we get

COROLLARY 0.2. — Let f(x) C C^R;!̂  w(x,y) e (^(R^R) have all their
derivatives of order > 2 bounded. Assume that\/f(0) = 0, Vw(0,0) = 0, 9x9yw{0,0) <
0. Also assume (0.8) and (0.20'), (0.2V) for some c > 0, 0 < 0 < 1. When A is a
discrete torus, we define (/)A as in (0.9) and when U C Zd is finite, we put

<M )̂ - E ̂ W))+ E w(x(j)^x(k))^ x e R^,
3^U j^^

\j-k\i=lJorkinU

where x G Rz denotes the 0 extension of x € R^. Then the conclusion of Theorem
0.1 is valid.

It should be remarked that our result only covers one of many possible situations,
and new difficulties appear when / in (0.10) has more than one critical point. In
that case phase transitions may appear and the correlations do not necessarily decay

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 7

exponentially. Hopefully our methods can be useful in that case also if suitably
combined with others. See [DZ], [S4], [Zl, Z2].

The proof follows the general strategy of [Sl], [BJS] with the additional idea of
looking at higher order Grushin problems, which in some sense amounts to analyzing
a larger part of the bottom of the spectrum of the Witten Laplacian in degree 1. Let
0 = 0^ with A equal to Aj or Uj as in the theorem, and assume after adding an
(/i,j')-dependent constant, that

(0.30) [ e ~ ( f > / h d x = l .

Then the correlation Cor(u, v) = Cor^(u, v), of two functions u and v is given by

(0.31) Cor(n^) == {(u - (u))(v - (v))) = ((u - (u^e-^^v - (^e-0/2^,

where

(0.32) (u) = f u^e-^^dx

denotes the expectation value. Introduce the annihilation and creation operators

(0.33) Z, = /i1/2^ + /i-1/2^^, Z: = -h^9^ + h-^Q^I^

for y C A. The Witten exterior differentiation ([Wi]) is obtained as a conjugate of
the de Rham exterior differentiation d together with a normalizing factor:

(0.34) d^u = h^e-^ o d o e^.

It takes differential i forms into (^+1) forms. In the scalar case (£ = 0) we have d^u =
^ Z^{u)dXv. The corresponding Hodge Laplacian is called the Witten Laplacian:

(0.35) ^=d^+d^.
/ n\

It conserves the degree of differential forms, and we let A" denote the restriction to
£ forms. So far, it seems that only

(0.36) A^ = ̂  Z;Z, and A^ - 1 0 A^ + ̂ (x)

have been really useful in the the study of high-dimensional integrals. (In the last
expression in (0.36) we identify the space of differential 1 forms with L2 coefficients
with the space ̂ (A^L^R^.) Philosophically speaking, this may be due to the fact
that differential forms carry an antisymmetric structure (corresponding to fermions),
while the method of higher order Grushin problems developed in the present paper
(and in [W]) leads to some kind of bosonic quasi-particles.

In our case, A1 , A1 are self-adjoint non-negative operators with discrete spec-
trum, and even though we eventually avoid spectral theory and work in a pair of dual
spaces, it may illustrate some ideas to speak about spectra. The lowest eigenvalue
of A" is 0, the corresponding eigenspace is of dimension 1 and is generated by the

SOCIETE MATHEMATIQUE DE FRANCE 2000



8 CHAPTER 0. INTRODUCTION

normalized vector e~(f>/'2h. The second eigenvalue /^i of A^ is positive and using the
intertwining relation

(0.37) ^d^=d^\

it can be shown that ^i is among the eigenvalues of A^. On the other hand, the
assumptions above will imply that A^ > const. > 0 uniformly in j. If we had
assumed (as in [Sl]) that ^(x) > const. > 0 uniformly in xj, that would have been
immediate from (0.36). As in [BJS] we only assume this at x = 0 however, and the
idea (exploited in [BJS]) is then to make a limited Taylor expansion,

^{x)=^W+^A^x)^(x)^
v

to write (f>^(x) as h112^^ + Z^), and to use a priori estimates that give control over
\\Z^u\\.

In [HS], we established a general formula for the correlations and in [Sl] we ob-
served that it is related to Witten Laplacians. In this formalism and under the
normalization condition (0.30) it reads:

Cor(^) = (A^)-l^(e-^2/^n)|^(e-0/2S))
(0.38)

=h(^~\e-^2hdu)\(e-^2hdv)).

In [HS], we used such a formula to establish the exponential decay of the correlations
Cor(x^,x^) when dist(^,/^) is large. This is based on the simple idea that since we
have a uniform bound on the norm of (A^)"1, then we should also have such a bound
after a conjugation of this operator by an exponential weight p(y) = er^, v € A,
provided that r does not vary too fast.

In [Sl] we obtained the leading behaviour of Cor(x^,x^) for large dist(^,/2) by
using a Feshbach (or Grushin) approach to A" which in many ways amounts to
study the bottom of the spectrum of this operator. We introduced the auxiliary
operator R^ = R^° : L2^) -^ ^(A) by

(0.39) (^)O') = We-^dx,) = (u, e-^), j G A,

where u = ̂ ujdxj ^ (uj)j^\, so in each component, we project onto the kernel of
A^. Let R^ = (R^Y be the adjoint.

Let
U^ = {u e L^R^; Z^u e L^Vz/ C A}

with the corresponding norm

IHI^-IHP+Ell^ll2-
v

where || • || denotes the L2 norm. Let 7^_i = 7-̂  denote the dual space. Then as we
shall prove below (and as was essentially proved in [Sl] and in greater generality in

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 9

[BJS]), the operator

/A^ - v n°^\
(0.40) P°-\z) = ^ ^- : (^(A) 0 H,) x (^(A) 0 C)

V ^+ ° /
(^ (A)0^_i )x(^(A)^C)

is bijective with a uniformly bounded inverse

(Z7'0,l/y\ 77A1/^\ \f04n ^^(7\- [ ) + [ z ) \
v /

 { )
 ~ ^°'

1

^ ^°'1 ( ^ IE_ (z) h_^z)J

for

(0-42) -C < z < 2A^(0"(0)) - 1

0

when h is small enough depending on C, and C > 1 may be arbitrary. Here and
in the following we follow the convention that all estimates and assumptions will be
uniform w.r.t. A, if nothing else is specified. By Amin^'^O)), we denote the lowest
eigenvalue of ^"(O). (As a matter of fact, we will need the invertibility only for z = 0
but keeping track of the spectral parameter will help the understanding. In the end
classes of exponential weights will be the more appropriate objects.)

Further, as we shall see (and as was established in [Sl], [BJS]), we have

(0.43) E^ = J^+O^172), E°_1 = Ry+Q(h1/2)^ E^ = ̂ -^(0)+^(/z1/2),

in the respective spaces of bounded operators. Notice that E^(z) is invertible for
-C < z ^ Amin^^O)) - 1/C, i.e. in a smaller domain than (0.42). Actually, instead
of varying the spectral parameter, we shall take z = 0 and conjugate P°^(0) by an

exponential weight F ), with p = ̂  : A -^ ]0, oo[. We shall then see that

the conjugated operator P°'1 is uniformly invertible for p in a large class of weights.
Notice that the inverse is simply

( P ^ l 0 \^i^ fp-1^! 0 \
V 0 p0l;' w^ 0 p-^l)'

Moreover we shall see that (0.43) remains valid for the conjugated operators, (i^0'^)"1

will cope with conjugation only with weights in a smaller class, and starting with the
case when A is a discrete torus (implying that E^ is a convolution), we shall be able
to analyze quite precisely the rate of decay of this inverse, and see that it corresponds
to weights in the larger class of weights with which E1^ accommodates conjugation.
Since

(A^)-1 = ̂ (O) - ̂ (OH^-^O))-1^0-1^),

SOCIETE MATHEMATIQUE DE FRANCE 2000



10 CHAPTER 0. INTRODUCTION

we can apply (0.38) and get

(0.44) Cor(^,^) = /l(^o'l(0)(e-^2/^^)|(e-^2/^d^))

-/^((^-+(0))-1^1(0)(6-^2/^^)|£;0'1(0)(6-^2/^^)).

Because <f°'1 can cope with conjugation with stronger exponential weights than^0,^-1^ ̂  ̂  ̂ ^ ̂  ̂  ̂ ^ ̂  ̂  ̂ g ^ ^ ̂  ̂  ̂ ^ ̂ ^ ̂ ^ ̂

second, when dist(^/2) -^ oo and the more precise information evocated about the
inverse of £;_+ leads to a result of the type (0.27), where a priori the pi,/, and q will
depend also on A through factors l+(9(/i1/2). So far the ideas were already developed
m [Sl] and [BJS], and as there we take advantage of the convolution structure to
use Fourier analysis. The exponential decay estimates then allow us to make analytic
extension on the Fourier transform side, which is essential for deriving exponential
asymptotics.

In order to get complete expansions as stated in the theorem, we will introduce
higher order Grushin problems. Let N^ be the set of multiindices a : A -^ N of
length j: \a\ = a|i = j. If J is a finite subset of N, we put Nj = U^jN^ Since the
Z^ form a commutative family, the operator ̂ {Z^ is well-defined. For u € ^(R^,
put

(<'%)(a) = (u ^(Z*)-(e-^)), |a| ^ TV,

so that R^° : L^R^ -^ ^(N^ ̂ ). (We will see in chapter 5 that this operator is
uniformly bounded.) Notice that ^(^T^"072^) are Hermite functions when (j) is
a quadratic form. When u G ^(A) 0 ̂ (R^, we put {R^u^j.a) = (R^°u^(a),
(j,a) C A x N^. Let R^ = (^/c)*, k = 0,1, and introduce the auxiliary
(Grushin) operators for k = 0,1:

( A ( f c ) r>N,k\
(0.45) P (̂.) = ̂  ^ \ :

'^i x ^(N^)) ̂  H_, x ^(N^]), k = 0,

< (^(A) ® -H,) x (^(A) ® ̂ (Nfo^,)) ̂  (^(A) ® ̂ _i) x (^(A) ® ̂ (N^^))),
A;= 1.

We will see in chapter 6 that ^^'"(z) is uniformly invertible for

-C ^ z <, (TV + l)A,nin(<^(0)) - ̂
0

and that the same is true for P^51^) in the range

-C^z<(TV+2)A^n(^(0))-1

0
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This will be proved following the inductive scheme

(TV, 1)^ (TV+1,0)-^ (TV+1,1),

starting with the case (—1,1), where by definition 'P"1'1^) = A^ — z.
If

( -pN,k(^\ z^^y-A
C A ^ / ^ _ E ' ( z ) ^4- (z) \
u \z) - r^ , fc /x ^N,fc/ ^ j^- (^} ^_^ (^)y

denotes the inverse ofT^'^) and E^^^^z) denotes the operator matrix element of
E^ corresponding to the decomposition ^(N^ ^) = (B^o-^N^), we will further
see that

(0.46) ^^(^)=/l^"-^IB^(^;/l)+0(/l^^+ l-"l+'N+ l-^))in^^

where B^ has a complete asymptotic expansion in powers /^, £ G N. Essentially the
same result holds for E'̂ 1 and similar results hold for E^:, E^^. The idea behind
this result is to consider the matrix of A^ (and similarly for A1 ) with respect to
the decomposition

L2^) = Co e • • • e CN e /^p
where Cj = ̂ '"(^(N^)) and C^ ̂  is the orthogonal of Co C • • • C CN = ^[O,TV]. for
which the corresponding matrix elements of (A1 )v^ should behave as in (0.44).

Notice that (0.46) gives increasing precision in the asymptotics for a fixed (/-A,^),
when N increases. It is possible to describe ̂ ^ in terms of ^^\ for M < TV, and
using this with M = 0 and N —> oo, we arrive at a complete asymptotic expansion of
Ej_^_ (z ' , h) and at similar almost complete descriptions of Ej^{z'^ h). In other words,
by using higher order Grushin problems it is possible to improve (0.43) and to get
full asymptotics. This improvement also survives the conjugation by exponential
weights in a sufficiently large class, and leads to a complete asymptotic description of
(E_^_(z))~1^ including the decay rate at large distances. Finally we use this improved
information in (0.44) to get complete asymptotics of the correlations. The handling of
the thermodynamical limit requires some additional arguments that we do not discuss
here.

A major motivation for this paper was the hope (yet to be fulfilled) that the
use of higher order Grushin problems may be useful in the study of correlations in
cases when (p is only weakly convex at its critical point. In such cases we do not
always expect the correlations to decay exponentially any more and one may expect
phenomena like phonons in crystals. Though we are still far from such a result, we
may point out that the parameter N can be interpreted as a maximum number of
particles under consideration, and that the k particle space ^(N^) can be identified
with the k fold symmetric tensor product of ^(A) with itself. In other words, our
particles are bosons.
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We have already mentioned the inspiration that we got from the paper [MZ], which
treats discrete spin models at high temperature. Earlier results in the same direction
were obtained for the Ising model by R.S. Schor [Sc] and P.J. Paes-Leme [P]. Related
results for self-avoiding walks have been obtained by J.T. Chayes and L. Chayes [CC].
See also chapter 5 of the book [Si] by B. Simon. Another related work is the one by
H. Koch [K], dealing with weakly coupled quantum field theories and is closer to the
continuous spin models that we study in the present paper, though in a perturbative
setting (as in [W]) and not in a semiclassical one.

Though the methods in the just quoted works are quite different from ours, some
basic features are the same. The Fourier transform of the correlation function (in
the infinite volume limit with one site fixed) extends holomorphically to a tubular
neighborhood of the real domain and meromorphically to an even wider tube. (In
our paper however, this is established not for the thermodynamical limit but at an
earlier stage.) The maximal width of the tube of holomorphy of the Fourier transform
gives the exponential decay rate, and the behaviour of the singularities of the Fourier
transform gives more detailed asymptotic expansions of the correlations. The expo-
nential decay rate is called the mass, and after specifying a direction or making some
other simplification, it becomes a number. In our work, the mass would rather be
the (convex) profile of the maximal tube of holomorphy, or the corresponding norm
which describes the correlation decay (in all directions) and there is no obvious way of
interpreting it as a number or even as a tensor. The upper gap measures the difference
of the tubes of meromorphy and of holomorphy respectively. It sometimes appears as
the improvement of the decay rate in the remainder of the asymptotics of correlation
quantities (see [CC]), and can be related to a spectral gap. In our paper it is related
to the first spectral gap of the Witten Laplacian for 0 forms or equivalently with the
first eigenvalue of the one for 1 forms. There is also the notion of self-energy which is
related to the possibility of approximating the Hessian <j)11 with its expectation ((^//).

The following conjecture is perhaps within the reach of the methods of this paper,
but its complete proof would require to consider thermodynamical limits already at
the level of the Grushin problems and might lengthen the text: Let <I>(rr) be defined
by (1.3) below (as the infinite volume limit of the Hessian of (^(rc)), and notice
that ^(0) is a convolution operator of the form al — v^ on ^(Z^), where v ^> 0 is
an even function on Zd vanishing at 0 and near infinity, and 0 < ^v(j) < a. The
corresponding Fourier transform v((,) = ̂ ^(C) = J^VU)e^3< ls ^en holomorphic on
(R/27^Z)d + zR^, and we notice that \v(()\ < v(irj), < = $ + ir]. We also know ([Sl])
that v(irj) is strictly convex, even, and tends to +00 when T] —^ oo. For e > 0 small and
fixed, let ̂  be the convex tube {C C (R/27^Z)d + zR^; (a - v(ir])) + (a - ̂ (0)) > e}.
Then we can state the

CONJECTURE. — For h > 0 small enough depending on e, there is a holomorphic
function ^(^; h) on f^ with an asymptotic expansion in the space of such functions,
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^(C; h) - ̂ ^ ^(C)^\ ^ -> 0, where $o(C) = a - ̂ (C), ^c/i that (cf. Theorem 0.1)

(0.47) qoo(^ h)e-^^ = ̂ -\W)(v) = ——— ( e^—^—d^
(27V) ^(R/27rZ)^ ^($; h)

The asymptotic behaviour of the integral in (0.47) can be obtained by contour de-
formation and stationary phase (see chapter 10 below and [Sl]) and pi^ becomes the
support function of the strictly convex profile of the largest tube around ('R,/27^Z)d,
where <I>(C; h) ^ 0. This tube is within 0(h) from the one given by a - v(irj) > 0,
c = ̂  + ̂ .

Here is the plan of our paper: In chapter 1 we give a slight generalization of
Theorem 0.1 closer in spirit to the methods developed in the following chapters. In
chapters 2-10, we do all the essential work, adding successively the assumptions that
we need. At the end of chapter 10, we arrive at the main result. In chapter 11, we
consider a slightly less general framework and extract a main result which is more
easily formulated.
In chapter 2 we review some standard facts about Witten Laplacians.
In chapter 3 we introduce some special Sobolev spaces, which are the natural ones for
our variational point of view.
In chapter 4 we discuss how to reshuffle creation and annihilation operators. The
reason for doing so will appear very naturally, and we are aware of the fact that such
reorderings also appear in quantum field theory.
In chapter 5 we apply the result of the preceding chapter to study certain scalar
products.
Chapter 6 is devoted to the well-posedness of higher order Grushin problems.
In chapter 7 we get asymptotics for the solutions of these problems and in chapter 8,
we show that these asymptotics for P^'1 remain after introducing certain exponential
weights on the ^(A) component of P^51.
In chapter 9, we study the effect of parameter dependence in order to treat the
thermodynamical limit.
In chapter 10 we arrive at the main result on the asymptotics of the correlations also
in the thermodynamical limit.
In chapter 11 we extract the main result as it is formulated in Theorem 0.1 above.
The two appendices can be read when referred to in the main text.

Acknowledgements. — This work was supported by the TMR-network FMRX-CT
96-0001 "PDE and QM". We have benefitted from interesting discussions with W.M.
Wang. We are grateful to the referee for useful comments about the global perspective
(stimulating also for possible future work) and for indicating some useful references.

SOCIETE MATHEMATIQUE DE FRANCE 2000



s



CHAPTER 1

SLIGHT GENERALIZATION OF THE MAIN RESULT

We say that a function / on R^ is smooth if it is continuous for the £°° topology,
differentiable in each of the variables with continuous derivatives (for the £°° topology)
and the derivatives enjoy the same properties etc. Let <l>^(a;), j, k e Z^ be smooth
and real on H71 and satisfy

(A-1) ^k(x)=<S>kj(x)^

(A.2) 0^k=9^^

(A.3) $ = ($^) is 2 standard,

(A.4) ^>(0) > Const. > 0.

Here we use the terminology of [S2] concerning k standard tensors. Let a == (a^.j^(x)),
x G R^ j, k e A be a family of matrices (i.e. 2 tensors) depending on some family of
finite sets A. We say that a = OA is 2 standard if we have uniformly in x e R"\ A,
the estimates

(1-1) (V^aOc), ^i 0 • • . (g) 4+2) = W)\ti\p, ' ' • \tk\p^,

for all tj e CA and pj e [1, +00] with 1 = ^- + . . . + ̂ . Here | • \p denotes the
standard ^p norm on CA. When x varies in R12 and j, k e Zd, we require the o^(a-)
to be smooth in the sense mentioned earlier and say that a is 2-standard if (1.1) holds
with K=Zd and tj <E CA, with ^(A) -^ 0, A 3 A ^ GX). Notice that a 2-standard
matrix is 0(1) : ̂  -^ £P, for 1 < p < oo.

Let F be as in (0.2), (0.3), (0.4). In general, the formal expression (cf. (0.7))

(1-2) Mx)= ^F(r^), xeR^
^(EZd
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does not converge, but the (formal) Hessian is well defined by the following sum with
only finitely many non-vanishing terms,

(1-3) 4>z.(x)^ = ̂  F^r^x)^^ =: ̂ k(x).
v^

It is easy to see that ^>j^(x) satisfies (A. 1-3). (For verifying (A.3), we notice that
(^7k^)^,...^+2 ls bounded, and vanishes except when v^ — Vrn = ^(1)? 1 < ̂ m <
k + 2.) (A.4) will follow from (A.mp) below, which in turn will be a consequence of
(0.20), (0.21).

If Z^ is replaced by a finite set A, then (A. 1,2) becomes a necessary and sufficient
condition for the existence of a real valued function (/) € C^R^ with (f)" ^ = ^j\fc. In
the Z^ case we shall now see how to produce two different finite dimensional versions
of such a function.

Let U C Zd be finite. If x C R^, let x G H71 be the zero extension of x, so that
x(j) = x(j) for j e U, x(j) = 0, for j C Z^ \ £7. Then

^u-j,k(x) := ^j,k(x), j,k 6 U

is a smooth tensor on R^ which satisfies (A.1,2) with j, k ^ £ e U. Hence there exists
a function (f)u{x) e (^(R^R) with

(1.4) ^kW = ̂ u^k{x), x e R^, j, k e U.
We make (/)u unique up to a constant, by requiring that

(1.5) ^(0)=0.

It is easy to check that (f)'{j is 2-standard. (In the case of (1.3), we get (f)u as in (0.23).)
We next do the same with U replaced by a discrete torus A = (Z/LZ)^ We will

assume translation invariance for <I>:

(A.7) ^^k^x(rxx) = ̂ (.r), j, k,Xe Z<

(In chapter 11 we discuss a larger set of conditions and reproduce here only the most
important ones with the same numbering as in chapter 11.) Notice that if ^^ were
the Hessian of a smooth function 0 G C°° (R21 ) (and the discussion remains valid if
we replace Zd by a discrete torus A) then (A.7) would be a consequence of the simpler
translation invariance property:

(1.6) ^rxx}=^x).

If x € R^ let x = x o TTA € R2' be the corresponding LZ^ periodic lift, where
TTA : Z^ ̂  A is the natural projection. Replacing x by x in (A.7), we get

(1.7) ^^k-x(x) = ̂ k(x)^ X C LZ<

If we view <I> as a matrix, this is equivalent to

(1.8) TA o <S>(x) = <S>(x) o n, A € LZ^
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so <S>(x) maps LT^ periodic vectors into the same kind of vectors. Hence there is a
naturally defined A x A matrix ^(.r), defined by

(1.9) (^A(x)t = ̂ (x)t,

where again the tilde indicates that we take the periodic lift. On the matrix level, we
get

(1-10) ^kW = E ^J^
k^^k)

for any j C ^ ' ^ ( j ) ' Alternatively, we have

(I'll) ^k{x)= E ^(^^e^1^),
JeTT^O-)

and ^A;j,/c is symmetric (cf. (A.I)).
In chapter 11, we shall verify that <I>A satisfies (A. 1-4), so there exists <^A ^

(^(R^R), unique up to a constant, such that

(1-12) ^A^k{x) = 9^9^{x), ^(0) = 0.

(In the case of (1.3) we get (f)\ as in (0.7).)
We assume that <I>(0) is ferromagnetic in the sense that

(A.9) ^(0) ^ 0, j + k.

(In the case of (1.3), this follows from (0.15).) We have

(1.13) ^(0)=l-?o*,

where 0 < VQ € ^(Z^) is even with ^o(O) = 0 and the star indicates that VQ acts as a
convolution. Actually, the constant 1 should be replaced by a more general constant
a > 0, but we may always reduce ourselves to the case a = 1, by a dilation in h.

Assume that there exists a finite set K C Zd such that

(A.10) %(j) > 0, j e K, Gr(K) = Z^

where Gr(K) denotes the smallest subgroup of Z^ which contains K. We also make
the following finite range assumption:

(A.fr) 3 Co, such that ^>j,k(x) = 0 for \j - k\ > Co.

We introduce the 2 standard matrix

(1.14) A(x) = ( <S>(tx)dt,
Jo

The following assumption is a weakened convexity assumption and will be used
in chapter 11 together with a maximum principle (from [S4]) to obtain other more
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explicit conditions.

3^o > 0 such that for every x € R7 , A(x) satisfies (mp^o^
(A.mp) lfte£l(Zd•,R),se£oo(Zd•,R)^nd (t, s) = |^|i|s|oo,

then {A(x)t,s) >. £o\t\-^\s\oo.

Notice that this assumption is fulfilled if A(x) = 1 + B(x) with ||-B(a')||/:(^00,^00) <

1—eo. Also notice that (A.4) is a consequence of (A.mp). (In the case of (1.3) we
get (A.mp) from (0.20), (0.21). It should also be noticed that in the general situation
above we have (1.2) with F(x) = ̂  ̂ /o^(x)x(0)x(k), ^(x) = f^(l - t)^(tx)dt.
However the more general conditions do not seem to transform easily into simple
conditions for this function F. Also, the definition of F depends on the condition
(A.fr) which could certainly be weakened.)

The following is the main result of our work:

THEOREM 1.1. — Let ^^k{x) G (^(R^) satisfy (A.1-3, 7, 9, 10, fr, mp) and
define (j)u(x) € (^(R^R), <^A e (^(R^R) as above, when U C Z^ is finite and
A = (Z/LZ)d is a discrete torus. Then we have the conclusion of Theorem 0.1.
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CHAPTER 2

ASSUMPTIONS ON

Let <j) € C^R^R), where A is a finite set. We shall let A and consequently (j)
vary with some parameter, but all assumptions are uniform w.r.t. A, if nothing else
is specified. Our first assumption is

(HI) <j)^ = (^// is 2 standard in the sense that for every k > 2, we have uniformly
in A and in a; eR^ (^(^^i 0 . • • 0 tk) = 0(l)Mpi • . • \tk\p^ t, C CA,

whenever 1 ̂  pj < oo, and 1 == — -I- • • • + —.
Pi Pk

Here (j)^ == V^0 is the symmetric tensor of kth order derivatives. See [S2] for
definitions and basic properties concerning standard tensors. Recall that by complex
interpolation it suffices to have the estimate in (HI) in the extreme cases

P^
1 1 ,^ =3,
,oo, v ̂  j ,

for j = 1, . . . , k. Notice that (HI) implies that ^"(x) : ̂  -^ ^ is uniformly bounded
for x e R^ 1 ̂  p ^ oo.

The next three assumptions imply that x = 0 is a non-degenerate critical point of
(j) and the only critical point:

(H2) <^(0) = 0,

(H3) (^'(O) > const. > 0,

(H4) ^(^O = A(x)x where A{x) is 2 standard and has an
inverse B(x) which is 0(1) : P -^ I P , 1 < p < oo.

We observe that B will also be 2 standard. Also notice that (HI), (H2) imply that

(2.1) \(f)\x)\p<0(l)\x\^ K^<oo,
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while (H4) implies the reverse estimate

(2-2) \x\p^OW(x)\^ l ^ p ^ o o .

It would be of interest to know if conversely (2.2) and (Hl-3) imply (H4). Also notice
that (H4) (or (2.2)) implies that ^'(O)-1 exists and is 0(1) : £P -> £P. When checking
(H4), a natural candidate for A(x) is ^ ^(tx}^, which is 2 standard by (HI).

We end this chapter by introducing Witten Laplacians and related objects (cf.
[Sl]). For that purpose we shall work on R^ where A is some finite set. Let d =
I^eA dx! ^°xe denote the De Rham exterior differentiation which takes differential k
forms on RA to differential k-\-1 forms. Here dx^ denotes the operator of left exterior
multiplication by dx^ and we let dx{ denote the adjoint operator of contraction, which
is well defined if we view RA as a Riemannian manifold with the standard metric.
Recall that d is a complex in the sense that dod = 0. Using the standard scalar product
on the space of smooth k forms, we can define the adjoint d* = ̂ ^ ̂ (g) (-a^
taking k+1 forms into k forms. The corresponding Hodge Laplacian is then d*d+dd*.
It conserves k forms and commutes with d and d*.

The Witten exterior differentiation is obtained from d by conjugation by e<p/2h and
multiplication by a cosmetic factor:

(2.3) ^ := h^e-^ o d o e^ = ̂  dx^ ^ Z^
£(EA

where

(2.4) Zt = e-^ o fa1/2^ o e^ = h^9^ + h-^^Q^/l.

We view Ze as annihilation operators. The corresponding creation operators are

(2.5) Z; = -/i1/2^ + h-^9^/2.

We have the commutation relations:

(2-6) [^^] = 0, [Z^Zt] = (^OT), j ^ k G A.

d^ is a complex and the corresponding Hodge Laplacian is called the Witten Lapla-
cian and is given by:

(2^) A^=^4+d<^.

It conserves the degree of forms and we denote by A^ the restriction to k forms.
Only the cases k = 0,1 will be of importance to us and maybe the explanation of
this fact is that by working with differential forms, we impose a fermionic structure,
while the problems in this paper have a bosonic structure with the degree k viewed
as the number of particles. It would be interesting to know if there are some other
operators better adapted to the bosonic structure. A general formula for A<y> is

(2-8) A^ = I 0 A^ + ̂  ̂ ,(x)dx^ dxi
3,k
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where we from now adopt the convention of letting the form component be the first
factors and the function components to be the last factors when we represent dif-
ferential forms and corresponding operators as tensor products. A" acts on scalar
functions and is given by:

(2.9) A^ =][>?,.
3

When k = 1, the formula (2.8) simplifies to

(2.10) A^J^A^+^Qr),

provided that we view 1 forms as functions with values in CA. Again d^ and d^
commute with A(^> and in particular,

^9 m ^ A^ - A^^ ^A^ - A^*(2.11) ^^ — A^ d^ ̂ ^ — ̂  d^-

Under the assumptions (Hl-4) we know (see for instance [BJS] or [J]) that A^
can be realized as a selfadjoint operator by means of the Friedrichs extension. We
will use the same symbol to denote this selfadjoint operator. Moreover, the spectrum
is discrete and contained in [0, +oo[. When k = 0 the lowest eigenvalue is simple and
equal to 0. The corresponding eigenspace is spanned by e"^/2^. When k = 1, the
lowest eigenvalue is > 0 (see for instance [Sl]).
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CHAPTER 3

THE SPACES T î

There will be two versions of these spaces, one for scalar (C valued) functions and
one for functions with values in C^. We start with the scalar case. We assume (Hl-4)
throughout this chapter.

IfneC^R^, we put

(3-i) M^-lK-hl'+Ell^ll2-
eeA

and let TYi be the closure of C§° for this norm. U^ is the form domain of A^, and
by a standard regularization argument we know that

(3.2) ^i = {u C ̂ (R^; Zm € L2, W e A}.

Let 7^_i be the dual space. Using the standard L2 inner product, we view Ji-\ as a
space of temperate distributions and have the natural inclusions:

(3.3) ^(R^ c 7^i C Ho C 7^-i C ̂ (R^.

Here the two inclusions in the middle correspond to inclusion operators of norm < 1
and Ho denotes L^R^. T^i is a Hilbert space with scalar product

(3.4) [u\v], = (u\v) + ̂ (Zeu\Zev) = ((1 + A^)^),
^<EA

where (• •) is the usual inner product in L2. From this it follows that 1 + A^ is
unitary from T^i to 7^_i. We also remark that 7^_i is the space of all

(3.5) u=u°+J^Z^u^

with u°,u^ G L2. Moreover IMI2.! is the infimum of \\u°\\2 + ̂  ||̂ ||2 over all decom-
positions as in (3.5).

We now pass to spaces of 1 forms, whenever there is a possibility of confusion we
indicate the degree of the forms by a superscript (^), so that the spaces just defined
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areT^T ^t

(3.6) 7^=^(A)0^.

The corresponding scalar product of two 1 forms u == Y^Ujdxj, v = Y^Vjdxj is then

(3.7) [^Hi = Y^[u, ̂ ]i == E(̂ ) + ̂ (Z^|Z^) = (u\v) + ̂ (Z,^]Z^).
J 3,k j,k

It can also be written ((1+10 ̂ )u\v). Again H^ is the dual space of H^\ and

(3.8) (1+10 A^) : ̂ ^) ̂  7^^ is unitary.

Later we will need to approximate (j)"(x) by ^"(O) in these spaces, and for that we
shall use the following lemma.

LEMMA 3.1. — The operator u(x) ̂  (^(x) - ̂  (0))u(x) is bounded H^ -^ H^
and of norm (9(/i1/2).

Proof. — Using Proposition A.I, we see that

(3.9) ^,(x) - 0^(0) = h^(x) + ̂ /2 ̂  Z; o < )̂ + k1/2 ̂  ̂ {x) o Z^
c a

where ̂  are standard tensors. Let u,v € C^CR^ and use (3.9) to get

(3.10) W{x) - ^(Q))u\v)

=hl/2 E^^^i^-) +hl/2 E( l̂̂ î̂ ) + ̂ E(^^I^)-
^'^^ J,M j,A;

Since (^(1) is 2 standard, the last sum is (9(/i)||zA||||^||. For the two other sums, we use
Lemma B.2 and get for the first sum:

(3.ii) E<&^^ ^^(^(EK^^^fEi^-i2)172'
^3,k k 3^

This implies that the first sum in (3.10) is (9(l)||n||||^||i. Similarly the second sum is
^(l)IMIilHI. We then get

(3.12) W\x) - ̂ (0))u\v) = ̂ (^IHIilHli,
which implies the lemma. Q
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CHAPTER 4

RESHUFFLING OF Z AND Z*

Let J = { 1 , . . . , N}, K = { 1 , . . . , M}, f e (^(R^. Then for j e A-U e A^, we
want to rewrite

(4-1) (n^o^^n^.))
^e^ ^e^

as a sum of similar terms with the Z* to the left and the Z to the right. We first move
each factor Z^ as far as possible to the right, taking into account the appearance
of commutator terms, due to the relations

(4.2) [Z^f] = h^9^f{x) = [/,Z;], [Z^Zt\ = ̂ Cr).

After that, we move the surviving factors Z^ as a far as possible to the left, generating
new commutator terms. The expression (4.1) becomes

(4-3) E^ E (n z^oh^^^x
P>0 J=JoU-..UJp+i ^KQ

K=KoU---UKp+-L
partitions with

Jp/0/jCp, for Kp<P

(( n ^A.))/) n ̂ -l+^+^)( n (^.)^<j)^ n ̂
v ^^+1- / P=I \ ^eKp ) ^Jo

^^JP+I v^Jy

Here and in the following we use the term partition for a union of pairwise disjoint
sets. The factor 1/P! can be eliminated if we let the second summation be over all
simultaneous partitions of J and K which are non-ordered in the indices 1 < p ^ P.

Define a map m : AN -^ N^ by

(4-4) rn(j)(X) = #{A;; j (k ) = A}, A e A.

If a e N^ we put a = |a|i = EACA^)- Then I^O')! = N . We write

(4-5) N^ = {a e NA; a = N},
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and more generally

(4.6) N^ = {a e N^ |a| C A},

if A c N.
If j € A17, /c € A^ as above, then

(4.7) n ̂  = z^ n z^ = (z*y3,
^eJ /^<EX

where a = m(j), /3 = m(k}^ and where we use standard multiindex notation, Z^ =
FLeA Z\ ' Conversely for a given a e N^, the number o f j C A17 with m(j) = a is
equal to N\/a\ = \a\\/a\. For a typical term in (4.3), write

f4 8) Y\ 9 — 9^ Y\ 9 — 9^\^'0} 11 °.rfc(^) — ^X -> 11 UX3^) ~ ^X •>

^CKp v ^ J p

and similarly with 9x replaced by Z or Z * . Then

(4.9) a = ao + • • • + ap+i, /3 == f3o + • • • + /3p+i,
with a? 7^ 0 ̂  f3p when 1 < p < P.

Conversely, for such a decomposition of a = m(j'), we consider the decomposition
a\

a(A) = ao(A) + • • • + ap+i(A) for every A C A, and see that there are —,—————,ao\- • -ap+i!
corresponding partitions of J into Jo U • • • U Jp+i. The equality of the expressions in
(4.1) and in (4.3) becomes

(«»' 50/0(^°
___ -1 ___ /'T'^Q'O QO'P+l+AP+l £v^-i- y [ ) ^^i^p^ii+i^p^ii)^___^x
-0^ ^o2^^. ao! ^l^P+1'

/3=/3o+---+/3p+i,
aj,f3j^Oforl<j<P.

X TTf/l"14'^0^1'^1^0 ̂ p p0) z(30

ll1 ^ ^ t ; ^n' 'p^i ^p'Pp' Po'

We shall transform our expression further by using non-commutative expansions of
the tensors appearing in (4.3), (4.10). For this, it seems easier to work with (4.3), and
we assume that / is 0 standard, or possibly M standard, depending on M additional
indices. For simplicity, we write

n ^w^iKo. ( n QX^) n ^^^)(/)=(^)k\KpJ\J^
p,^Ko ^Kp i^^Jp

MEMOIRES DE LA SMF 83



CHAPTER 4. RESHUFFLING OF Z AND Z* 27

Now apply Proposition A.I to one of the tensors:

^\K^(X) = 0^,^(0) +/^1/2^Z; O^^^X)

(4.11) ^A

+ /ll/2 E < |̂̂ ) o ̂  + < ,̂̂ )-
^EA

When substituting this into (4.3), the effect of the first term of the RHS will be to
freeze the corresponding factor to x = 0. For the contributions of the second term of
the RHS of (4.11) in (4.3), we move the Z; to the left, until either it joins the factors
^{KO or until it form^ a commutator with a (f>k\K,j\j, or with fk\Kp+,j\jp^, that
we denote by ^|^,j|jg/ (also for q = P + 1). In the second case the i summation
amounts to the contraction of two standard tensors, which produces a standard tensor
and an additional power of h. For the contribution of the last sum in (4.11), we move
the factors Z^ as far as possible to the right and repeat the same discussion. The
contribution from the last term in (4.11) in (4.3) is simply to introduce an extra
power of h. The procedure can be iterated a finite number of times, and we see that
the general term in (4.3) becomes a finite sum of terms of the type

(4.12) ^ ^*ixo^u...u^ o <;L.Î |̂ |̂ ) • • •
^^LiU.-.ULQ+i
^^IU-.-URQ^ ^^

^^IKQ+IJIJQ+I^IZ/Q+I^I^Q+I^) ° zj\Jozr\RlU•••URQ'

Here K = Ko U • • • U ^Q+I, J = Jo U • • • U JQ+I are partitions and Kq ^ 0 ̂  Jq for
1 < q < Q' ^{q) are standard, Lq, Rq are finite disjoint sets, possibly empty, and

x = ^#(^1 U • • • U LQ) + J#(^i U . . . U RQ) + N

Q ^ .
+ "E^w + w -1) + 2 (#^o+i + #^+i),

where N e N, and we have arranged that $(^+1) is the factor which contains the
contribution from / under the contraction procedure.

The point with the further Taylor expansions of some of the terms in (4.3) is to
arrive at terms with constant factors ̂ ^). More precisely, we can introduce a stopping
rule, so that we only get terms of the form (4.12) with

(4.13) # ( ^ o U L i U . . . U L Q + i ) < A ,
(^l^) #(Jo U J?i U • • • U RQ^) < B,
(4.15) N < No,

where A, B, No are given integers > 0 with A > #K, B >_ #J, and so that the
factors <I>^ are constant for all terms for which we have strict inequality in all the
three relations (4.13-15).
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We will also need a slight variation of the arguments above. Assume for simplicity
that / == 1. Then from (4.3), we see that (4.1) takes the the form

(4-16) E^ E ^i^n^-^^^^^^^i^^i..^))^!^.
P>0 ' J=JoU---UJp p=l

K=KoU---UKp
partitions with

Jp^0/Xpforl<p^P

We now want the coefficients to the left, so we move all the factors Qy,,^ 0^ i r <^)
'^K\l\.p ~3\Jp ' \ /

to the left, taking into account the commutator terms. Then the expression (4.1)
becomes:

(4-17) E E ^.'^n^^^^^^^^i^^i^^))^!^^!^.
P^O J=JoU---UJp p=l

K=KoU---UKp
partitions with

Jp^0^Kpforl^p<P

Here the combinatorial coefficients C'.'.'. are independent of A.
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CHAPTER 5

STUDY OF f^.(^*)a(e-^ /^)| l(Z*)^(e-^))
\a\ p\ /

After adding a /^-dependent constant to (f), we assume that

(5.1) fe~4){x)/hdx=l.

We want to study the matrix formed by the scalar products in the title of this chapter,
for \a\, \{3\ <^ NQ, for some No € N. Equivalently, we want to study,

(5.2) (We-^Z^e-^))^

for J = { 1 , . . . , N}, K = { 1 , . . . , M}, 0 < N, M < No, k e A^, j e A17. Here we use
the notation of chapter 4. We write this as

(5.3) (Z^Z^e-^e-^

and apply (4.12), with / = 1, in which case the factor ^QJr1^ drops out. Since
Z(e~^/2h) = 0, we can further restrict our attention to the terms with KQ, Lg, Jo 7 Rq
all empty, and it follows that (5.2) is a finite sum of terms of the type

(^A\ h x (^ { l ) ...^ (Q) p-^/2^-^/2^
^ ) ^/e|Xij|Ji ^-k\KQJ\JQe I6 ) '

Here K = K^ U • • • U KQ, J = Ji U • • • U JQ are partitions with Kq ^ 0 ̂  Jq for all
q. Further,

Q -.
(5.5) X = N + ̂  (^(#Kq + #J,) - 1), TV C [0, M] U N,

where TVi is any fixed sufficiently large integer > 0, and as we saw in chapter 4, we
may arrange that ^^ are constant for the terms with N < TVi. Because of the
Hilbert-Schmidt property of standard tensors (Lemma B.2), we see that the term
(5.4) defines a matrix which is O^) : ^(A^) -^ ^(A7), and when N < TVi it is
also equal to hx times the (constant) matrix (^^^ -\j • • • ̂ ^^ -\j •
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a! f3\

Rewrite (5.5) as

(5.6) x=7V+|(#^+#J)-Q,

and notice that 1 <: Q ^ mm^K, #^). Then we can write

(5.7) X=J I#^ -#J |+7V, T V e N .

We have proved most of the following result:

PROPOSITION 5.1. — The matrix (5.2) has an asymptotic expansion

(5.8) - f^h^-^^m^KU^W^
v=o

where the matrix m^j^ is 0(1) : ̂ (A^) —^ -^(A17). Moreover,

(5.9) mo^jU\J.k\J) - E I I ̂ (P),^(P))(°)-
TrePerm(J) pEJ

where Perm(J) is the group of permutations of J.

It only remains to verify (5.9). It suffices to review the computations which lead
to (5.4), (5.5) with a minimal X, i.e. with N = 0, Q = TV, and we omit the details.
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CHAPTER 6

HIGHER ORDER GRUSHIN PROBLEMS

In this chapter we introduce a sequence of auxiliary, so-called Grushin problems
for A^ ) — z, ̂ ) — z and show their well-posedness.

For a G N^ put

(6.1) e, = __(Z*)^-^).
Va\

Then e^ e L2(RA). For N e N, define

(6.2) <'°n(a) = (n|e,), n e ̂ (R^, [a| ^ TV,

(6.3) R^0 = (R^°)\

so that
^•° : LW-^(N^]),

^•^^(R^^^^N^i),

where ^(Nr^ ^i) is equipped with the standard scalar product.
These operators can also be described in an equivalent and sometimes more con-

venient way. Put

(6.4) eo =eo, e,=^Z;^...Z;^(6-^), j e A^

(6.5) R^°uU) = (u\e,), j e A° U A1 U • • • U A^.

Here we put A° = {0} by definition. Then ?+ :== R^°u is an element of the space
^(A^A1 U • • • UA^), which is invariant under the permutations: v^{j) =v^(jo7r),
j G ^M, TT G Perm ({ ! , . . . , M}). We say that ?7+ belongs to the bosonic space
^(A° U A1 U • • • U A^) of £2 functions that are invariant under the permutations
above. The latter space can also be viewed as a direct (orthogonal) sum of symmetric
tensor products; ei^o^^^))' The identification of R^u and R^°u is given by

(6.6) R^°uU) = ^<'%(a), if mU) = a, |a| = M.
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This identification also respects the £2 structures:

(6.7) î .°.ii= ^ i^%o-)i2- E ilK'° )̂i2 E i^o-)!2^ E |IK'̂ W
jeA^.-.UA^ H<7V 1 ' jGm-i(a)

= ̂  |<-%(a)|2 = |<-° .̂
\a\^N

Put

(6.8) <'1 = 1 ® ̂ '° : ̂ (A) ® ̂ (RA) ̂  ^(A) ® ̂ (Nf^))N\)i

(6.9) fi^1 = 1 ® ̂ •0 : ̂ (A) ® ̂ (RA) ̂  ^(A) 0 ̂ (Nfo,jvj)

We consider the following Grushin problems for v = 0,1:

(A(l/)-^+7?N•^_=^;,
(Gr(7V^)) ^

oN,^Jn^_ u = v^.,

where v € T^, u G T^,

/72/T^rA \ 7 7 — 0€ Vl>lf0 W ^ — U'[O,^]^u-,u+ e
[^(^^^(N^0^=1,^ ^^ ^^ ^"[o^]^

and 2; belongs to a suitable bounded interval, that will be specified. In the problem
above, v and z;+ are the given quantities and u, u- are the unknown. The main goal
of this chapter is to prove

PROPOSITION 6.1. — For every N € N, C ^ 1, there is a constant C > 0 such that
the following holds for h > 0 small enough:

(A) If -C ^ z ^ (N + ̂ AminO^O)) - 1/C, then (Gr(7V,0)) /m5 a unique solution
(u,u-} G TYi x £2 for every {v,v-^-) e H-i x £2, and

(6.10) \\u\\n, + |n_|2 < C(\\v\\u_, + |^|2).

^ J/ -C ^ z < (N + 2)Amin(0 / /(0)) - 1/C7, ^en (Gi(N, 1)) ^5 a nrn^e solution
(u,u-) € 7^1 x £2 for every (v,v+) C H-i x (2 and (6.10) holds.

Here Aniin^^O)) > 0 denotes the smallest eigenvalue o/^"(0) and 7^±i = H^ in
case y , £2 = ̂ (N^^) in the case v = Q, ^ = ̂ (A) 0 ̂ (N^^), when v = 1.

We shall prove the proposition following the inductive scheme

Gr(A;, 1) -^ Gi(k +1,0)-^ Gr(A; + 1,1),

where we start by considering Gr(—l, 1), which by definition is the problem

(6.11) (A^ - z)u = v, u G U^ v G 7^-i.
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LEMMA 6.2. — For all C > 1, -C ^ z < Amin^X0)) - l/^ and h sufficiently
small, depending on C, the problem ( 6 . 1 1 ) has a unique solution u 6 1~i\, for every
v G 7^_i. Moreover,

(6.12) \\u\\n^C\\v\\n_^

where C > 0 depends on C but not on z, h, A.

Proof. — Recall that A^ = l^A^+c^ (x) and consider first the simplified problem,

(6.13) (1 0 A^ -h ^(O) - ̂ )n = v, u e T^i, v € T^-i.

If ^ solves (6.13), take the scalar product of this equation with u and get

IMI^-, \\u\\n, > (v\u) = ((1 (^ A^ + ̂ (0) - ̂ |n)

^ ^((1 0 A^ + \)u\u) + ((^(0) - z - ̂ |n) > e\\u\\^

for 5 > 0 small enough, so

(6.14) \\u\\n^C\\v\\H_^

This gives injectivity and the analogue of (6.12) for the problem (6.13). Since
(l^A^+^^O)—^) is a bounded selfadjoint operator TYi -^ 7Y-i, it is also surjective,
so (6.13) is uniquely solvable and satisfies (6.14). To get the lemma it suffices to use
that ^(x) - ̂ (O) = 0{h1/2) : 7^i -^ H-i. D

The preceding lemma gives well-posedness for Gr(—l, 1) in the appropriate range.
Let us now perform the step Gr(—l, 1) -^ Gr(0,0), so consider

(6.15) M°>-,)..rf̂
[<'%=z;+,

with v € H-i, u C Hi, n-^+ e C, R^°u = (u^/2^. We let z be in the range of
the lemma above, and we first prove uniqueness in (6.15). Let v = 0, v+ = 0 in (6.15).
Since d^R0^0 = 0, c^A^ = A^d^, we get by applying d^ to the first equation in
(6.15):

(6.16) (A^ - ̂ n = 0.

Here we only know a priori that d^u G L2, so we cannot apply Lemma 6.2 directly.
However, it is easy and standard to show that every L2 solution w of (A^ — z)w = 0,
has to belong to S and in particular to TYi. Consequently, we can apply Lemma
6.2 and conclude that d^u = 0. Since d^ = ^l/2e-<^2/^ o d o e^l^, it follows that
u = Ae"^/2^ for some constant A 6 R. Using also that v+ = 0 in (6.15), we see that
A = 0, so u = 0 and then u- = 0, and we have proved uniqueness for solutions of
(6.15). Define ZQ C [0,oo[ by

(6.17) zo = inf (^u\u).
ne^inCe-0/2^ '

||n||=l
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Since the inclusion map TYi -> I 2 is compact, there exists no ^ ^i H (e-^/2^)^ with
\\UQ\\ = 1, such that

zo = (A^noM, i.e. ((A^ - zo)^oM = 0,

while ((A^. - ^o)^|^) ^ 0 for general u G Hi H (e-^/2^. It follows that (A^ -
^0)^0 = ^e"0/271 for some /^ e R and since no -L e-^l^ and e-^/271 G KerA^,
we see that ^ = 0. Hence (A^ — 2;o)no = 0, so u = UQ, u- = 0 is a solution of
(6.15) with v = 0, v-^- = 0 and z = ZQ. Since we know that (6.15) is injective for
0 ^ z < Amin(0"(0)) - 1/2(7, for /i small enough depending on C, we conclude that

(6.18) ^>A^(^(O))-^.

Let us now restrict the attention to —C < z ^ Amm^'^O)) — 1/C7 and derive an a
priori estimate for solutions to (6.15). Let first ^+ = 0 in (6.15), and take the scalar
product of the first equation there with n, and use that (R^°u-\u) = (n_|J?^;°n) = 0.
We get

(6.19) ((A^ - ̂ |u) = W.

With J > 0 small enough, write

A^ - ̂  = S^ + (1 - ̂ (A^ - zo) + (1 - 5)(zo - ^—j),

and get

((A^ - ̂ )u u) > S^^u) + (1 - J)(^o - ̂ ) ||u||2 > 6\\u\\2^.

Hence from (6.19), we get

\\U\\^<C\\V\\H_,\\U\\^

(6.20) \\u\\n, <C\\V\\H_,,
for solutions of (6.15) with v+ = 0.

Now take the scalar product of the first equation in (6.15) with -fi10'0^ and get

-z(u\R°_°u-) + |u_|2 = u_(v|e-0/'1).

With (6.20), this gives u_|2 <, C'||u||-^_Ju_| and hence

(6.21) \U-\^C\\V\\H_,,

where we let C denote a new constant in every new formula.
If 14- ^ 0, consider u := u — v+e~'^^2h, which solves

^A^ - z)u+ R°_°u_ =v+ zv+e-^
[R°+°u=0.

Applying (6.20), (6.21) to this system, we get

(6.22)

\\u\\n,+\u.\<C(\\v\\^+\v+\),
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leading to

(6.23) |H|^+|n-|<C(|H|^+K|),

for solutions of (6.15). Since this problem is selfadjoint, we also have existence and
we have proved the proposition for (Gr(0,0)).

Les us now prove that if for some TV 6 N the proposition is valid for (Gr(7V,0))
then it is valid for (Gr(7V, 1)). So we assume for a fixed N that (A) holds for all C
with h > 0 small enough depending on (7, and we want to prove (B) with the same
N. Using again that ^(x) - <^(0) = 0(/i1/2) : U^ -^ T-^-i, we see that it suffices to
treat the simplified problem

(6.24)
'(1 ® A^ + <f>"(0) - z)u + R^u- = v

^R^u = v+.

Since we have (A), for the chosen value of N , we know from the preceding discussion
that

(6.25) inf (A^w|w) ^ (N + l)An,in(^(0)) - —
w€7^i, ||w||=i ' z0

R^°w=0

for h > 0 small enough depending on C. Consider (6.24) in the case v-^- = 0. Then
R^' Uj = 0 for each component uj of u and consequently

((1 0 ̂ )u\u) > ((N + l)A^n - ̂ )IN12.

Since (<//(0)'u|n) > AminlMI2? we get

(6.26) ((1 ® A^ + <T(0) - z)u\u) > -^ ||u||2,

for z in the range of values of (B). As before, this leads to

(6.27) ((1 ® A^ + ^"(0) - z}u\u) > 5\\u\\^,

for some 6 > 0. Take the scalar product of the first equation in (6.24) with u^ and
use that (R^u^u) = (u^R^u) = 0. Then

^IHI î ^ IMÎ -ilHÎ
which gives,

(6-28) II^H^, < C\\v\\n_,

for solutions of (6.24) with v+ = 0, when z is in the range of (B)
We next want to take the scalar product with R^u-, and .

need to establish two results about R^.
We next want to take the scalar product with R_' n_, and as a preparation we
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LEMMA 6.3. - R^R^0 zs 0(1) : ^(Nf^) -. ^(N^) and has a umformly
bounded inverse. Moreover, if rp : ̂ (N^) -> ^(N^)\5 the natural restriction
operator, then for 0 <: P, Q <, N .

00

(6.29) rpR^R^rQ ^ ̂  h^^M^^
1^=0

in ^(^(N^^N^)) uniformly with respect to A. Here

(6.30) Mgp^^O)®...®^^

Prw/. — For simplicity, we work with the equivalent operators R^'0 between L^R^
and ^(A0 U A1 U • • • U AN), where the subscript b indicates that we take the "Bosonic"
subspace of permutation invariant elements of £2. Then the matrix of rpR^R^rQ
is given by

(6t31) T^f^^^)!^^^^)).
with P = { 1 , . . . , P}, Q = { 1 , . . . , Q}, p e A3, p e A^. The uniform asymptotic
expansion (6.29) then follows from Proposition 5.1. Moreover, the matrix M^p p
(corresponding to M^pp) has the elements

(6-32) ^ E rKU )̂)(°)'
7rCPerm(J<) v^.V

which has the same action on ^(A^ as the matrix

(6-33) n<(.w.)(o)'
v(=.V

which is simply the matrix ^(O) 0 • • • 0 ̂ "(O). D

By tensoring all the spaces with ^(A), we get the obvious analogue of Lemma 6.3
for R^R^. It also follows from Lemma 6.3, that R^'0 is uniformly 0(1) : £2 -^ L2.
Consequently R^'0 = 0(1) : L2 -> £2, and we have the corresponding facts for R^'1.
This can be strengthened:

LEMMA 6.4. — R^0 is uniformly bounded: ^(N^ ̂ ) -^ U^. Consequently R^0 is
uniformly bounded T-^-i —> ^(N^ ^).

Proof. — Again we think it is more convenient to work with the equivalent operator
R^0. Let 1 < M < N , u G ̂ (A^ and consider

(6.34) Z,RN-ou= ^ ^z.Z^e-^u^
mCA^i VM'
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where M = { 1 , . . . , M}. We apply the expression (4.17) to obtain
(6.35)
Z,^%= ^ ^ ^o^^-^^^^^.^^Z^^Je-^)^^),

mGA^ .M=MoUMi
partition with

Mi ̂ 0

where CM^M^ is independent of A, and equal to 1/^/Ml when #Mi = 1 For u <E
^(A^, ^ C ^(A^, 1 ̂  P, M < TV, we get

(6.36) ^(Z.R^u^R^y) = (B^u^),
3

where B^ is given by a matrix B^, p C A^ m e A^ which is a finite linear
combination of terms

(G^/.-^^^^^^^^.^^^^.^^a.^^^Z^^Je^^^^^

where M = MQ U Mi, P = PQ u Pi are partitions with Mi ^ 0 7^ Pi. Here

^p|Pi,m|Mi ''= ̂ {9x^p,9^(/))(9^^9^^(f))

j

is a standard tensor, being the contraction of two standard tensors of size 1 + ^Pi
and 1 + #Mi, with at least one of the sizes ^ 2 (cf. Lemma 9.2).

As in chapters 4,5, in particular the discussion leading to (4.12-15), we see that
(6.37) is a finite sum of terms

(6.38) hx(^lL ^ ...^(Q) _ ^-<f>/^t -<f>/2h\
v p|Pi,m|Mi p\PQ,m\MQ I ^

where T ^ Pi U • • • U PQ, M = Mi U • • • U MQ are partitions with Pq, Mq ^ 0,
PI D Pi, Mi D Mi. ^>^) are standard tensors and

~ Q 1 ~
X = TV + ̂  (#M, + #P,) - 1), N e [0, TVi] n N.

Here we can fix any TVi e N, and the ̂  are independent of x, when N < N^.
As in chapter 4, we conclude that B^ has an asymptotic expansion

00

(6.39) B^ ~ ̂ ^+h\P-M\B^M ^ ̂ (A^,^)),
0

uniformly w.r.t. A. From this and (6.36) it follows that

(6.40) ^ ll̂ î ll2 < 0(l)\u I, u e ̂ (A° U A1 U ... U A^),
j

where |n = |^|2 denotes the £2 norm of u. Hence

(6.41) ||̂ %||̂  = II^^H2 + ̂  ||̂ ^%||2 < 0(l)Hj,
j

and the lemma follows, n
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We can now return to the simplified problem (6.24) with z in the range of (B) in
Proposition 6.1. As in (6.28), we assume that v+ = 0 and take the scalar product of
the first equation with R^u-. Lemma 6.4 shows that

((1 0 A^ + ̂ (0) - zW^u.) = (9(1)|H|^_|2

MJ^_) = 0(1)|M|^ u.\^
while Lemma 6.3 implies that

ll̂ 1^!!2 .̂!!.
Using also (6.28), we get

\u-\^<C\\v\\n_^

so with (6.28), we get

(6<42) (IHk,+M2)<c|H|^.
Now let -y+ -^ 0 in (6.24). Then

u^u-R^^R^1)-^

satisfies

' (1 <g> A^ + ̂ "(0) - z)u + R^u, = v
(6.43)

^lu=0,

where

v - v= -(1 0 A^ + ̂ (0) - z)^1^1 '̂1)-1^ = 0(1)|^|2,

in U-\, by Lemmas 6.3, 6.4. We can apply (6.42) to (6.43) and get

(6.44) (||S||̂  + |n_|2) <, C(\\v\\n_, + \v^).

Since ||H||^i < ||n||^i + 0(Y)\v^ by Lemmas 6.3, 6.4, we get

(6.45) (|H|^ + |n_|2) < C{\\v\\n_, + Kb),

for solutions of (6.24) with u e T^i. Since (6.24) is a selfadjoint problem, we also get
existence of solutions for all v € H-i, v+ C ^2. Using finally that ^(x) - (j)"(ff) =
0{h1/2) : T^i —> 7^-i, we get (B) of the proposition for the given value of N.

As a preparation for the step Gr(7V, 1) —^ Gr(7V4-l, 0), we have to study d^R^^u-
for u- € ^(A° U A1 U • • • U A^+1). Let u^ be the component of n- in ^(AM), so
that

^V^-—— ^ ^^(.-^^(m), ̂  ={!,..., M}.
V M ' mGA-^

The jth component of d^R^^u^ is then
1

^i_ o_ - -^_ ^ z^.
• meA^

Z,^^-0^ = 7- E ̂ ^-^^(m).
V ^'/' • ___ - A \A
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If M = 0, we get 0. If M > 1, we are in the situation of the proof of Lemma 6.4,
which shows that

(6.46)
1 M

Z^N^OUM=-^I. E %^Mp}(e-^)^(.)(o)^(-)+^/2^7v,
v l v l ' p=l m^A^

Ell^ll2^^)!^!!-
j-CA

Since u^ is invariant under permutations of M, the first term of the RHS in the first
equation of (6.46) can be written

(6.47)

M
E %(^0/2')E€n(O^M((^m))p /_^ -m\- ) / ^ ^7,nV

meA-^-1 nGA

= M1/2!^'0^^) ® 1 ® • • • ® 1)^)0, •))

= M1/2^-^^"^) ® 1 ® • . • ® 1)^),

where in the last equation, we consider that (^"(O)®!®- ••01)^ e ^2(A)®^2(AM-1).
Summing up, we have

(6.48) ^i?^1'0^ = R^^u,) + h^u,,

where $ = 0(1) = ^(A° U • • • U AN+1) ^ ^(A) ® L2(RA), $u_ and ^u_ vanish
when u_ e ^J(A°), and for general u_, $u_ has the ^(A) ^^(A^^-1) component
equal to M^^o) 0 1 ig i . . . 0 l)^^, for 1 ̂  M ^ AT + 1. Notice that

(6.49) |^_ ^ ~ f; |̂ |J,
M=l

so that even though ^ kills the M = 0 component of n_, it acts injectively on the
remaining part of u-. Clearly we have an analogue of (6.48), (6.49) without the tildes.

Now fix some N c N and assume that Proposition 6.1(B) holds for this value of
N (and for all C). We shall prove that (A) holds with N replaced by N + 1. Let z
vary in the range for Gr(N + 1,0) which is the same as for Gr(7V, I):

(6.50) -C ^ z^ (N + 2)A^n(^(0)) - 1

c

Let us first show injectivity in Gr(N + 1,0), so consider the homogeneous system

(6.51) t(^-z)u+RN+l'ou.=0
[R^u^O.
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By standard arguments, we see that u € ^(R^. Here we apply d^ everywhere and
use (6.48,49) to get

^ ̂  f (A^ - z)d^u + R^^u. = -h^u,

' ) \R^ld^=Q.

Here ||^n-|| < 0(\}\^u- 2 so by part (B) of the proposition, we get

\\d^u\\n, + |^_|2 ^ (^(l)/ll/2|^-|2.

It follows that d^u = 0, ^u- == 0, when h is small enough. Consequently, u == Ae"0/271

for some A 6 C, and using that R^^^u = 0, we get u = 0. Then (6.51) and
the injectivity of R^1'0 imply that n- = 0, and we have proved injectivity for
Gr(7V +1,0) when z varies in the range (6.50) (with C > 0 as large as we like).

As before we conclude that

^^wu}u) ̂ (N + ̂ -^W) - 2^'
? ^ + 1 , 0 . ^

for every C > 0 when h > 0 is small enough depending on (7. By repeating earlier
arguments, we obtain the a priori estimate (6.10) for solutions to Gr(7V + 1,0), as
well as existence of such solutions for arbitrary v G T^-i and z;+ € £2. In other words,
we get part (A) of the proposition with N replaced by TV + 1 and this completes the
inductive proof of Proposition 6.1.

REMARK 6.5. — Let us compute (A^R^^^R^^v) to leading order for u,v <E
^(A° U • • • U A^), i.e. modulo (9(l)/i1/2^ 2 ^2. The proof of Lemma 6.4 shows
that the searched expression involves a block diagonal matrix, so we may assume that
n, v C ^(A^), P = { 1 , . . . , P}, for 1 < P <, N. (The case P = 0 will give 0.) Then if
= indicates equality modulo (^(l)^1/2!^!^^ we get

(A^R^R^v} = ̂ (Z^u^R^v) =
j-eA

^,E E E <(?),,(())€p(?)(o)(z;|p^?}(e-'/2/l)l^|p.{?}(e-'/2/l))"(p)^)•
j'CA p',g=l p^GA^
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Using that u, v e ̂  we can reduce the sum to the case p= q= 1, and get

^ E E <(l)^o)^(l)(o)(z;lP.{l}(^^)l^tp^l}(e-^))^p)^
.7'eAp,gcA77

=^, E (^W2^!)^!)^^!}^^72')!^?^!}^-^))^^)^
p,9GA^

p2 P^pr E (^(o)2)^)^!) ^ (n^^w.))^))^^)^
P^A73 7rePerm({2,...,?}) ^=2

P=p E (^(o)2).(l),p(l)^(^,.(.)(o))n(^^)
p^eA77 i/=2

= (P^(o)2 0 ̂ (o) 0.. . 0 ̂ (o)^!^^
= (P(^'(O) ̂  10 • • • 0 i)(^(o)1/2 0.. . ̂  ̂ (o)1^)^]^^)!^ ^. . . ̂  ̂  (o)1/2)^),

where we again used that u,v e ^2. Using this property once more, we can replace
P^'^O) (g) 1 0 • • . 0 1) by the more suggestive expression

(6.53) ^p := ^(O) 0 1 0 • • • 0 1 + 1 0 ̂ (0) 0 1 - - . 0 1 + - - - + 1 0 . . . 0 1 0 (^(O).

If A i , . . . , A^A denote the eigenvalues of ^(O), then the eigenvalues of (6.53) are of
the form

(6-54) f^A,(,),p e { ! , . . . , #AF.
^=1

Summing up the discussion, for u G ^(A^), v e ^(A3), P = { 1 , . . . , P}^ Q =
{! , . . . , Q}^ we have

(6.55) (^R^R^v) = 0(h^)\u\^

^ C o , i f P ^ Q

\(^p^"(oy/2 (8 • • • ® ̂ (o)1/2)^^)1/2 ®. • . ® ̂ "(o)1/2)^), p = o.
This should be compared with the following consequence of chapter 5:

(6.56) (R^u^v) = O^2)^^

^ to, if P ^ Q

[((<^(0)1/2 0 • • . 0 (//'(O)1/2)^"^)1/2 0 ... ® ^"(O)1/2)?;), P = Q.
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CHAPTER 7

ASYMPTOTICS OF THE SOLUTIONS
OF THE GRUSHIN PROBLEMS

We first work with the scalar case and denote by Cj the span of all ^z ̂  (e~^/2^),
|a| = j. Equivalently, Cj is equal to ^'"(^(N^)), if j ̂  N. If A is a finite subset of
N, we write CA = (BjeA^-j C L2. Notice that the orthogonal projection onto £[O,N]
is given by

(7.1) ^0(<'0^0)-1<'0.

By chapter 5 we know that

(7.2) ||̂ V|M .̂|, ne^(Nfo^).

We can identify Cj with ^(N^) by means of r '̂°, where ̂  : ̂ (N^ ̂ ) -^ ^2(N^)
is the natural restriction map, and again by chapter 5 we know that
/f-7 r»\ | J~)N,0 | I I I I /— /^(7.3) |̂ ' n|2 ~ IHI, n € ^[O,N].

We have the decomposition

(7.4) I/^R^ = Co e • • • e CN e ̂ ,N]^ n = ^o + • • • + UN + UN+I e L2,
and correspondingly

7V+1

(7.5) ||^||2 ~ ̂^n2- y" hjii2-
For j < N , the projection onto Cj is given by

n^^^r,^0^0)"1^0.
Lemma 6.4 and (7.2) imply that

(7.6) \\u\\n, < 0(l)||u||, ue£[o,AT],

and the same lemma with (7.3) implies that

(7.7) M < 0(l)\\u\\n_,, u€C^.
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In other words, the norms of H^ U-^ and L2 are (uniformly) equivalent on fL^^\,
and we also know that the projections (7.1) and Hj are bounded in these spaces.

We are interested in the block matrix of A^, viewed as an operator

(7.8) A^ : Co e ri e • • • e CN e (Hi n r^) —
CQ © ri e • • • e /:TV e (T^-i n r^).

(4.12) shows that for j e A, M = {1, . . . ,M}, 0 ̂  M ̂  TV, m G A-^:

(7.9) ZjZ^^e-^^) = a finite sum of terms of the type

"E ^miMo^L ° ̂ IL^IM^XC-^), #MQ + #L < TV,
^(EA^

where M = MQ U Mi is a partition with Mi 7^ 0, L is finite, and ^ is standard.
Moreover,

(7.10) X = \#L + N + ̂ Mi - 1), 0 ^ TV < TVi e N..z z
Here TVi is any sufficiently large integer and ^|L,m|Mi is independent of x, when
#Mo+#L < TV and TV < TVi. Using the representation A^ = ^.^^ ZJZ^ it follows
that with standard tensors <I>:

(7.11) A^Z^e-^) = a finite sum of terms of the type

^ ^mjMo^L ° ̂ |L,m|M, (^)(e-^^), #MO + #L ^ ̂  + 1,
^eA1'

where A^ = Mo U Mi is a partition with Mi 7^ 0, 0 7^ L C N is finite. Moreover,

(7.12) Y = ̂ (#L - 1) + J(#Mi - 1) + TV, 0 < N ^ TV-i c N,

and ^|L,m|Mi is independent of x, when N < N^, #MQ + #L < N + 1.
If we put P == #Mo + #L in (7.11), then since #Mo + #Mi = M, we get P - M =

(#L - 1) - (#Mi - 1) and it follows that

(7.13) V = ̂ P - M\ + TV, TV < TV e N.
^

We conclude as in chapters 4, 6, that for every TVi e N, we have for u e ̂ (A^:
_ 7V+1

(7.14) A^% = ̂  /.^ '̂̂ I^M^ + h^Ru^
P=O

with for 0 < P ̂  A^

(7.15) Dp^M = 0(1) : 0 -> r?,

00

(7-16) Dp^ -Y^h^E^ in /:(^,/:p),
^=o
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where the sum is finite and we identify Cp and ^(N^) by means of R^0. Moreover
\\Ru\\ < 0(l)\\u\\ and Ru is of the form (7.17) below, with Mo, Mi, L as in (7.11).
Further, D^v+i,M^ is a finite sum of terms

(7-17) E ^miMo l̂L ° ̂ l^lM^Xe-^/^Hm),
^eAL,meAM

with Mo, Mi, L as in (7.11) and with #Mo 4- #L = N + 1, Z e N, and

(7.18) ^7V+1,M = 0(1) : ^2 -^ L2.

Wej>hall next decompose DN^I^MU into /:[O,TV] © ̂ [^p and consider first the terms
TPR^DN^MU, forO^P<,N,ue ^(A^^). The matrix element ofrpR^°DN^M
atp,m, w i t h p c A ^ , m^AM, P = {1,...,?}, M = { l , . . . , M } , i s a f i n i t e s u m o f
terms of the type

(7.19) ^ ̂  {Z^Z^Z^^^e-^e-^
ceA1-

with M = MQ U Mi being a partition with Mi 7^ 0, L C N finite with #Mo + #L =
TV + 1, ;/ e N. As before, we get an asymptotic expansion in ^(^,^2):

(7.20) rpR^D^M - E^^ '̂̂ ^M^r
1^=0

From this and Proposition 5.1 it follows that
00

(7.21) r^R^Rl^R^D^M ~ E '̂̂ '̂ '̂ M^+I in £(^2^2),
^=0

and the promised decomposition of DN-^-I,MU is given by
7V+1

(7-22) DN^I.MU -==- ̂  Dp^M;N-{-iu,
P=O

with

(7.23) ^p,M;7V+m = ̂ ^p^0^0)-1^0^^!^^ e /:?,

for 0 ^ P ^ A^, and with DN^I.M-.N+IU being the remainder. Notice that we have
^7V+i,M;7V+i^ ^ ^[^ Tvi and that

(7.24) \\Dp^N+iu\\ < 0(l)/l^7v+l-pl|^|2, 0 ^ P < TV + 1.

Since we can use R^'0 to parametrize the spaces Cj, 0 < j ^ P, we obtain the
following result.

PROPOSITION 7.1. — Fix N e N and let A^, 0 < ij < N + 1, be the block matrix
decomposition of A^ corresponding to (7.8). Then

(7.25) IIAgll^^^^^l)^^^!, ( ^ j ) e { 0 , l , . . . , 7 v + l } 2 ^ { ( 7 v + l , 7 v + l ) } .
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Moreover, for 0 < i , j :< N, we have

(7.26) A^ ~ f> l̂+ ,̂ m £(£„/:,),
^==0

w^ere, m ̂ e RHS, we identify Ck with ̂ (N^) by means of R^.

Here we have already verified (7.25) for j < N , and the cases with j = 7V+1 follow
if we write with R± = R^'0

N
A^+i = H^\l - 11̂ ) = ̂  R-r^R^R.r'rprpR^d - 11̂ ),

P=O

and observe that rpR^^\\ - HC^N}) is the adjoint of an operator with L2 -^ I?
norm 0(/^^P-(N+1)1). Notice also that A^ ̂ ^ = 0(1) : U^ -^ 7^_i.

Let 6 ^ 0 , . . . , ^TV+I > 0 be constants with ^4-1 = 1, such that

(7.27) d^/d, € [/z1/2, h-1/2^ 0 ^ j < ̂
or satisfying the sharper assumption

(7.28) d,+i/^e[J,l/J], 0 < j < N ^

for some /i1^ < j < l. Let d : ̂ (N^ ̂ ) -. ̂ (N^ ̂ ) be given by the block diagonal
matrix diag(d^)o^j<N, with respect to the orthogonal decomposition ^(N^^.) =
e^i^(N^). Put

K^ = (.R+.R-)-1/2^ K, = R.(R+R_)-1/2

so that
K\ = K,, K+K, = 1, K,K^ =H= n[o,N].

Put dj= K-dK^. 4- (1 — 11), where we notice that the first term commutes with II;
IlK-dK^. = K-dK^Il = K-dKj^. We observe that d and d are selfadjoint and that
cT"1 corresponds to d~1: d~1 = K-d^K^ + (1 - II).

Consider d^R^d = d-l(J?+J?_)l/2J(^^_)-l/2^ ^re we know from Proposi-
tion 5.1 that the block matrix elements ((J?+J?_)1/2)^^ are (^(/^-^l/2) and it follows
that

d-\R^R,)l/2d= (9(1) : € —— €
under the assumption (7.27) and that

d-^R^R^d- (^+J?_)1/2 = 0(1)^ : € —— 06
under the assumption (7.28). We conclude that under the latter assumption

~ h1/2
(7.29) d^R+d -R^= 0(1)-— : H^ — C6

- h1/2

d^R-d -R.= 0(1)—— : 0 —— ^i.o
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Here the second relation follows from the first by duality and in both relations, we
are allowed to replace (d,d) by (d"1,^"1).

Now recall that the 7^±i norms and the L2 norm are all equivalent on C[Q^^ and
consider

d-^^d - A^ = K^d-^R+R^-^R^R^R+R,)-1^

- (R+R,)-l/2R^WR_(R+R_)-l/2)K+

+ K.(3-1 - l)(R+R.rl/2R+^w^ - n)

+ (1 - Tl^R^R+R.r^id- l)K+.

Here the block matrix element of (R+R-)~1/2R+^WR_(R+R_)-1/2 at (j,k) is
0(/^^-'••1), so

d-l(R+R.)-l/2R+^WR_(R+R_')-l/2d-(R+R,)-^2R+^WR_(R+R_)-l/2

h1/2=o(i)— -.e—e2
0

Similarly

(d-1 - l^+^r^+A^l - II) = ̂ (l)^ : L2 —— €
' o

(1 - Il^R^R^R.)-1/2^- 1) = 0(1)^ : C -^ L\

and we conclude that

(7.30) d-^^d - A^ = 0{1) h^ : H, -^ H.,.^ ^ ^ - ̂ ^^ j

Define

(7.31) D = (d 0) = U^ x ^(Nf^) -^ H^ x ^(Nfo ̂ ).
V' a/

If
/ A ( 0 ) , ffN^^

f7 09^ -p^o _ ( ̂  - z H_ \
(7.32) [ <'° 0 ) '

then under the assumption (7.27)

(7.33) D-^^D = 0(1) : H ^ x £ 2 —> U_^ x £2,

and if (7.28) holds, then

(7.34) D-^^D - PN-0 = 0(1)^^/6 : T^i x C —— 7^_i x C.

Under the assumptions of Proposition 6.1 (A), we introduce

(7.35) EN-0 = (PN-0)-1 : U_^ x C —— H ^ x C.
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Under the assumption (7.27), we have

(7.36) D-leN-OD = 0(1) : -H_, x 0 -^ ̂  x f2,

(noticing that we have (7.28) with 6 = Ch1/2 and C large enough) and if we assume
(7.30), then

(7.37) D-1£N'OD - f^.0 = 0(l)hl/2/6.

Write
/pTV.O pN,0\

(7.38) f^o - f " - " + 1v / ' -[E^0 E ^ ) -

We shall derive approximations of E±, £L+, where we sometimes drop the superscript
N, 0 and for that we look for an approximate solution of the system

(7.39) U^ - z)u + R_u, = 0
\R+u = v+.

Try

(7-40) uo = A-(J?+A_)-1^ =: E^_v+,

so that R+uo = v+. We will choose u_ = u°_ in order to satisfy the £[o^] component
of the first equation of (7.39). Since the orthogonal projection onto that component
is given by R-^R+R^^R^, this means that we look for u°_ e £2, such that

R+(^w - z)uo + R+R_u°_ = 0,

i.e. we take

(7.41) u°_ = (R+R^R^z - ̂ R^R+R,)-^ =.. E°_^.

If v+ e ̂ (N^), 0 ^ M < N , then
(7.42)

^Am-z)E^+R_EO.^

= Eo^M^/V ̂ lw+l~MI^+l,M;^lr^M(^-)-l^

^R+E^v+=v+,

where PP,M;W+I is denned as in (7.22), with R^0 replaced by the equivalent operator
R1".'0. Then (dropping the superscripts in (7.38)) we get
(7.43)

{E^ = E^ - Eo<M<^ '̂w+l-MI^^,M.^l^M(^-)-l^

\E.^ = E^ - Eo^^l^-^-^M^l^M^-)-1^.

Recall that IIj, j = 0 , . . . , N + 1 are the projections associated to the decomposition
(7.4) and that II, = R^r,(R+R_)-^R^ 0 ^ j < N , Il^+i = 1 - II^. Let
A: T-i-i -^H-i. We claim that the following two statements are equivalent:
(a) d^Ad = 0(1) : 7^_i ^ 7^1 for all (dj) satisfying (7.27).
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(b) n,An^ = 0(^1^1) : U_^ -^ U^ for all j,k € { 0 , . . . , N + 1}.

To see that, we introduce the orthogonal projections fl^ 0 < j < N -\- 1, with
fijflk = 0 for j ̂  k, 1 = Ho + • • • + n^v+i, by

fi, = ̂ -(I?+J?_)-l/2rJr,(7?+^_)-l/2J?+ for 0 < j < TV, fi^i = ILv+i.

Then d = ̂ +1 ̂ f^ and

7V+1

(*) d^Ad= ̂  ^n,An,.
^=o a7

We also notice that Hj = 0(1) = U^ -^ 7^±i. We shall show that (a) and (b) are
both equivalent to the statement
(c) II^Alifc =0(h^-^) :^_i - > ^ i , f o r a l l O < j ^ ^ A 7 - + l .

That (c) implies (a) is obvious if we use (*), and to get from (a) to (c), it suffices
to write

0(1) = n.d^Adfik = ̂ n,An^dj
and choose d^ satisfying (7.27) such that d k / d j = /i"^"^.

The equivalence between (b) and (c) is an easy consequence of the following esti-
mates

n.iifc, n,n^ = o(h^-^): u^ — ^±1,
that we shall verify:

When j = k = N -h 1, we have n^+ifl^+i = n^+ili7v+i = n^+i = n^+i.
When j ̂  k and N + 1 C {j, k}, then n^IIfc = n^H^ = 0.
For 0 < j, k < N , we get

Hjfik = R-^r^R+R^^r^rkiR+R-)-1^^

and the block matrix element ^(7?+J?_)-1/2^ is O^3-^} : £2 -^ £2. Consequently
n^fl/c = O^h^-^} : U-^ -^ H^ Similarly,

n,II, = R-^R-r^r^R^r^R^R-r'R^
=0^\3-k\^ .^ __,^

Combining (7.24), (7.36) and (7.43), we get:

PROPOSITION 7.2. — With E^, E0,^ given by (7.40), (7.41) and under the assump-
tions of Proposition 6.1 (A), we have

{ np(^° - E^TQ = ^(i^d^+^i+^+i-pi): p _ 7^
(7.44) rQ^E^ - E^p = (9(l)/l^lN+l-^l+17v+l-pl) : U_^ -^ 0

r^E^ - E°_^rQ = ̂ (l^d^-QI+l^+i-PI) : ̂  __ ^^

f o r O < P < N + l , O ^ P , Q ^ N , where E°_ := (^)*.
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Here the second equation in (7.44) is obtained by duality, using that HN-^-I is the
orthogonal projection (7.1) and that lip is given after (7.5).

Now let M > N and let us compare
-pN,0 -pM,0

and their inverses for z in the domain of wellposedness of the "smaller" problem T^'0.
Let r = T[O,TV] denote the natural restriction operator: ^(N^ ^-i) -^ ^(N^ ^), and
notice that
/ ^ / . r \ D^O D^O t?-^0 D^O *(7.45) R^ =qo,N]^+ ^ ^- = ̂ - ^o,^

where r^ ^ is the adjoint: ^(N^^) -^ ^(N^^i). To shorten the notations, we
write V = P^'0, P = P71^'0, and similarly for the associated quantities. In order to
solve Gr(7V,0):

(A^-^+^-n- =v^
Rj^u = v-^-

(7.46)

we consider the bigger problem Gr(M, 0)

(7.47)

and write the solution as

(7.48)

[(A^ -z)u+R,u-=v

[R^u =v+,

J u == Ev + ̂ +?+

[S_ = E-'y + J^_4.S'+.

We want (7.46) to be fulfilled, so we get the condition

(7.49) R-u-=R-u-.

The necessary and sufficient condition on u- for (7.49) to have a solution u- is

(7.50) ^TV+I,M]^- =0.

where r^-\-i,M] '• ^(N^^i) —^ ^(^r^v+i M]) ls ̂  ^striction operator, and the
corresponding u- is then

(7.51) u- = qo,N]^--

We then get a solution of (7.46) iff

(7.52) r^+i,M}E-v + r^+i^]^-+^+ = 0,

(7.53) ^O,TV]?+ =^+-

(7.52) is equivalent to

(7.54) ^-+S+ + ̂ TV]^- = -^-'y. for some w- G ^(N^^).
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(7.54), (7.53) lead to a new Grushin problem, namely to invert the matrix

(7.55) ^-f^ r^),
V^N] 0 )

which is wellposed in the range of wellposedness of P given in Proposition 6.1 (A).
This follows from Remark 6.5 and the fact that

^_+ = (J^iL)-1^ - A^iL^+iL)-1 + 0(/i1/2),

by Proposition 7.2. Modulo 0(/i1/2) we obtain a block diagonal matrix and the
diagonal block at (j,j) with 0 < j < M is given by

(^'(O)-172 0 • • • 0 ̂ (O)"172) (z - (^'(O) ( g ) l ( g ) — ( g ) l + — + l ( g ) — ( g ) l 0 (^'(O)))

x ((^(O)-1/2^...^'^)-1/2).

Here the tensor products are of length j and for j = 0 the expression above should
be replaced by z.

Let
( F F^

(7.56)
\F- F-+)

be the inverse of (7.55), so that

(7.57)
^+\ ^ / F F^\ -E,v\
,wJ \F. F.^J [ v^ r

i.e.

(7.58) ?+ = -FE-v + F+v+, w- = -F_E-v -4- ^-+^+.

The solution of (7.46) is then given from (7.48), (7.51), (7.58):

u = Ev + E^{-FE-v + F+^+)

u- = r[o,7V](^-^ + ̂ -+(-F^-2; + ̂ +)),

i.e.

f^=(^- E+FE,)v + ̂ +F+^+
(( .oy j ^ /^ ^^ ^— -^

[n_ = r[o,7v](£'- - E-^FE-)v + r[o,7V]£l-+F+v+.

This can be further simplified, if we use the identity E_+F+r*F- = 1, with r = ̂ TV]
for short. Then

(E_ - iL+riL) = (i - iL+F)iL = r*F-^_,
and since rr* = 1, we get

fn = (^ -E^FE.)v +^+F+^+

[^- = F-E-v + r[o,A^]^-+^+^+-
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We next use the relation ^-+F+ + r*^_+ = 0, to rewrite the last equation as

u- = F^E.v - rr*F_+^

and using again that rr* = 1, we get the solution of the small problem P = P^'0 as

(7.61) [u = Ev + ̂ + ^th [ E = E - ̂ FE-. ̂  = E^
[n- = E,v + ̂ -+^+ [^_ = F-£;_, £;_+ = -F__^

The next goal is to get asymptotics for F_+, F_ similar to (7.44) with N replaced
by M. Define E^_ and £;0^. as in (7.40) (7.41):

\E^=R-(R^R.)-^(7.62)
[E^ = {R^R.)-^R^ - ̂ )R,(R^R,)-\

so that analogously to (7.44)

fnp(i4 - E^TQ = e>(i)/z^(i^+i-Qi+i^+i-p|) , ( 2 __, ̂
(7.63) ^ rQ(^_ - ̂ ^p = O(I)/^(I^+I-QI+|M+I-P|) ; ^_^ _^ ^

[rp(E^ - E°.^)rQ = 0(l)/^OM+l-QH^+l-Pl) ; ^2 _, ̂

for 0 ^ P < M + 1, 0 < Q, P < M, where E°_ is defined to be the adjoint of ̂ .
Let

fF° F° \ ( F° r* \ -1(7•64) (̂ ' ^)=fc, y1) -(?0.'-
Let A, > 0, 0 < j < M + 1 and let A[Q,M] = diag (A,)o<,<M, A[O,TV] = diag (A,)o^<N.
Let

(7.65) A = AO,M] 0 \ ^
\ ° A[o,^]y'

viewed as an operator on

(^(N^x^^N^).

As before we define the action of A on Kfci and on ^(R^. We also need a second

system of weights ̂  and define ̂ N] , ^[O,M] and A^ = f^0.^ ° ) analogously.
\ u ^[0,Ar]7

(7.63) can be reformulated as

i\(E+ -^)^olM] = 0(1) : ̂ 2 —— ^i,
(7-66) S ^[O,M](£'- - ̂ °)A-1 = 0(1) : 7<_i —> ^2^

[A[o,Ml(^-+ - ̂ o+)^[olM] = 0(1) : C -^ ̂

for all A, fj, as above with

(7-67) ^, ̂  € [fa1^, ̂ -1/2^ o ^ j < M,
Aj fij
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(7.68) XM+I = I^-M+I-

It follows from (7.66) that

(7.69) A(f-+ - £°_^M-1 = 0(1),

for all p,, X which satisfy (7.67,68). We also have

(7.70) Af_+A-1 = 0(1)

and similarly with A replaced by one of A~1, M^ and/or £-+ replaced by (f0)'111,
(£-+)~1. Then
(7.71)
A(f4 - (f°+)-1)^-1 = A^A^A^ - ̂ .M-1.^0^)-1.^-1 = 0(1),

for all ^, A satisfying (7.67), (7.68). Equivalently, if we introduce the block matrix
notation Aj^ = i"jAr^, then

(F - F°)j,fc = o(/^(IM+i-j|+|M+i-fc|)^ o < j, fe < M,

(F+ - ̂ ),,A == o(hl^M+l-^M+l-^), 0 < j ^ M, 0 <, k ̂  N,
\ * ' ^ —)

(F- - F°)^ = 0(/^IM+1-^+IM+1-<CI)), 0 < j ^ N, 0 < k ̂  M,

(F_+ - F°^h = O^d^1-^!^1-^), 0 < j , k ^ N .

For £'°_)_ we have a complete asymptotic expansion
00

(7.73) E°_^ ~ h^-^^A^ in /;(^2),
^=0

and it follows that the inverse (cf. (7.64)) of the corresponding Grushin problem 8°_^_
has the same structure.

00

F^ - h^-^ ̂  h-B^, 0 ̂  j, k < M,
y=0

^;,,fe ~ h^-^ f^ h-B0^ „ 0 < j < _ M, 0 < k ^ TV,

(7.74) -;°

F°_^ ~ ^21J-fcl ^^-B0';1;.^, 0 < j < N, 0 < k < M,
v=0
00

F°_^ ~ h^-^ E^50'^' 0 ̂  J,fc < ̂ .
^=0

Combining this with (7.72) and letting M -^ oo we obtain a complete asymptotic
expansion for -F-+ = —E^^:

00

(7.75) -̂ -+;,̂  - ̂ jlj-" S>^+;̂  0 < j,A: < N.
1^=0
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For F± we only have a partial asymptotics with the limitations of (7.72) but again it
will be advantageous to let M —> oo.

We now look at £'+. The first equation in (7.63) tells us that

(^+ - E^)rQ = O^h^^-^ : 0 —— T^i.
Write

E^ = E^ = (E^ - ̂ )F+ + ̂ (F+ - F^) + E^.
Here

(^+ - ̂ )F+ = 0(1) ̂  /^(|M+1-Q|+(Q-AO,.) . ̂  _^ ̂

Q=0

so that (^+ - ̂ )F+ = (9(l)/^l^+i-^l : ^2 —— ^^ ̂  ̂ ^ ̂ ^
_ M
£^(F+ - ̂ ) = (9(1) ̂  /,i(|M+l-Q|+|M+l-N|) ^ (9(1)/^^|M+1-N| ; ^2 __^ ^^

Q=0

Consequently,
E^0 = E0^ + ̂ (i)^^^1-^: e _ ^i.

Here F^. has a complete asymptotic expansion given by (7.74) and E°_ is given by
(7.62):

E^° = ̂ M'0(J?M'OJ?M)0)-1^ + O^h^^-^ : 0 __ U^

where (R^' J?_ ' )-l has a complete asymptotic expansion of the same type as
-R+' R_ '° (c.f. (6.29)), so we conclude that for every M > N:

(7.76) E^° = RM-OCM + O^h^^-^ : £2 __ U^
where

00

(7.77) C^ ̂ ^h^-^D^, m ̂  ̂ \
^=0

for 0 ^ j < M, 0 < k ^ A^. Summing up, we have

PROPOSITION 7.3. — E^^ has a complete asymptotic expansion in C{^^2), that
can be written at the level of block matrix elements:

00

(7.78) E^, ~ h^-^ ̂  /W+;,,fe, 0 ^ j, k^ N.
1^=0

For every M > N , we have (7.76,77) for E^°.

Using Proposition 7.2, (7.40), (7.41), we also get the leading terms in the asymp-
totic expansions (7.78), (7.77):

(7.79) B°_^ = (^(0) 0 .. . 0 ̂ (O))-172

x (z - ((^(O) ( g ) l ( g ) . . . ( g ) l + . . . + l 0 . . . ( g ) l ( g ) (^(O))) (^'(O) 0 • • • (g) ^'(O))"172,
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(7.80) D^f = ((^(0) 0 • • • 0 <^(0))-1, 0 ̂ j < M.

We now want to do the same job with Gr(TV, 1) as we did with Gr(7V, 0), and the
only slightly new thing is to analyze the block matrix of (j)"(x\ viewed as an operator

(7.8i) ^(A) 0 (Co © • • • e CN © (Hi n r^^)) —.
^(A) 0 (/:o e • • • e CN e (^-i n /:^)).

According to (4.12) (or by reviewing more directly the arguments leading to that
result), if M = { 1 , . . . ,M}, for 1 ̂  M ^ N , or M = 0, then for ̂  e A, m e A-^,
(^^(^Z^i^e"^/2^) is a finite sum of terms of the type

(7.82) ^ ^%|Mo^*|L(^^,m|M.^|L(^e-(A/2^),

^EA1'

where M. = MQ U Mi is a partition and L is a finite set, possibly with M\ or L empty.
<E> is a standard tensor and

(7.83) X = ̂ (^Mi + #L) + N , N 3 TV < A^-i e N,
Zi

where TVi € N is any fixed number. Moreover <I> is independent of x^ when

f ^ M o + # L < 7 V + l
^A^TYi.

We conclude as before, that for every A^i C N we have for all u C ^(A) 0 ̂ (A^:
7V+1

(7.84) ^WR^U = ̂  /z^^-^^lDp^^ + h^Ru,
P=O

where

^ ̂  f-Dp,M = ^(1) : ̂ ^l —— ^2 ^)/:p, for 0 ^ P ̂  TV,

Î P,M - E^=o ̂ 4'L. in ̂ 2 ̂  e^2 ̂  ̂ P).

where we identify Cp with ^j by means of R_' , and where the sum in (7.85) is finite.
Further DN-{-I,M is a finite sum of terms

(7.86) ^ ^Z^i^Z^^^^i^^iM.^e-^^)^^^),
t^^

mCA^
/-tGA

with Mo, Mi, L as in (7.82) and with #Mo + # L = A ^ + l , Z e N , and

(7.87) DN^M = 0(1) : C 0 £2, —— ̂ 0 L2.

Finally J?n is a finite sum of terms of the type (7.86) and we have \\Ru\\ < 0(l)||n||.
We shall next decompose DTV+I,M^ into (^^^[o,^])®^2^^^ ^i) ^d we consider

first (1 0 rp^^DA^M^ for 0 < P < A^, ZA e ^(A) 0 ̂ (A^. The matrix
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element of (1 0 TP^R^DN^M at (^,p), (/^m), with v^ e A, p e A^ m e A^,
P = { 1 , . . . , P} (= 0 for P = 0), is a finite sum of terms of the type

(7.88) h^ ̂  (^iP^iMo^lL^^^^lM.^e-^/^le-^2^),
^eA1-

with M = MQ U Mi being a partition, L a finite set, #Mo + #L = TV + l , z7 G N. As
before, we get an asymptotic expansion in £(£2 0 ̂ 2 0 ̂ j):

00?Jy'l£»^^^M ~ x^i^+i-pi+^p)(7.89) (l^rp)^1^^ ~ E^5'̂ 1"''1^!^;^!.
^=0

From this and Proposition 5.1 it follows that
_ _ _ 7V+1

(^r^R^R^R^D^ ~ ̂  ̂ ^^-^Gp'M;^!, in A^J,^2),
^=0

and the desired decomposition of I^v+i ,M^ is given by
7V+1

(7-90) ^7V+l,Mn = ̂  ̂ P,M;7V+in,

P=0

with

(7.90) Dp^N^u = ̂ (l ^ ̂ rp^R^R^R^D^^u e ̂  0 /:?,

for 0 < P < N , and with ^TV+I,M;TV+I being the remainder. We notice that
^V+I,M;TV+I^ belongs to £2 0 C^ ^, and that

(7.92) Pp,M;7V+l^|| < ^(l)^^^1-^!^ 2, 0 < P ^ ̂  + 1.

Since we can use R^ to parametrize the spaces ^(A) 0 Cj, 0 ^ j < P, we obtain
the following analogue of Proposition 7.1:

PROPOSITION 7.4. - Fz^ TV € N and let ̂ ^ 0 ^ z^ < TV + 1 be the block matrzx
elements of (j)"{x} corresponding to (7.81). Then

(7-93) ll^jllr(^^2^2) = ^(l)^^2-^,

(^ j) C {0,1, . . . , TV + I}2 ^ {(TV + 1, TV + 1)}.

Moreover, for 0 < i j < N, we have
00

(7-94) ^3-Y,^1-^^^ mr^r^2^),
^=0

where in the RHS we identify Cy and ^(N^) by means of R^0.

Since A^ =10 A^ + ̂ "(x\ we can combine Propositions 7.1, 7.4 to arrive at a
complete analogue of Proposition 7.1 for A^: Let A^, 0 < ij < N+ 1 be the block
matrix decomposition of A^ corresponding to (7.81). Then (7.93,94) remain valid
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with ^ij replaced by A^ and with ^^ replaced by some new matrices independent
of h. We can repeat the discussion following Proposition 7.1. The only change is to
replace all spaces by their tensor products with -^(A), we now write

/^AM z^v,i\
(7 Q^ ^N'1 - I + 1[ t • y ^ ) b — T-.N,! T-.N,! -i\E_ E _ ^ )

and we look for approximations of E_^_' , ^-+ ? by trying to find approximate solutions
of (7.39), now with R^ = R^ and with A^ replaced by A00. With these changes
we still try u = UQ = E^_v^- as in (7.40), now with (7?± = R^' ) and with u- =
u°_ = E°__^v^ as in (7.41). We then arrive at the obvious analogue of Proposition
7.2. (Replace Up, rg, r^, by 1 (g) Up, 1 0 rq, 1 0 r^ and U^ by £2 0 ̂ ±1.) The
discussion after Proposition 7.2 also goes through with the obvious changes. For the
invertibility of the new matrix in (7.55), we need the analogue of Remark 6.5 for Ay .
Instead of (6.55) we now have for u G £2 0 ̂ (A^, v G ^ 0 ̂ (A^):

(7.97) (^R^^R^v) = ̂ 1/2)H2H2+

^0, i f P ^ Q ,
((^(O) ( g ) l ( g ) - - ' ( g ) l + - - + l ( g ) - - - ( g ) l ( g ) ^'(O))

I x(l 0 ̂ (O) 0 • • • 0 ̂ (O))1/2^ |(1 (g) ^(O) 0 • • • 0 ̂ (O))1/2^),

[ if P = Q.
with P + 1 factors in the tensor products, and instead of (6.56):

(7.98) (R^u R^v) = 0(/^1/2)H2H2+

fo, i f P ^ Q
[ ((1 0 ̂ (O) 0 • • • 0 (^(O))1/2^! 0 ̂ (O) (g) • • . 0 ̂ '(O))1/2^), if P = Q.

We arrive at the following analogue of Proposition 7.3.

PROPOSITION 7.5. — E^ has a complete asymptotic expansion in C(£'2 ̂  £2, £2 ̂  £2)
that can be written for the block matrix elements:

00

^1 /.. h^-^\^^n^(7.99) E^.^ - h^-^ ̂  h^B^.^ 0 < j, k < N.
^=o

For every M > N, we have

(7.100) E^ = RM-1CM + ̂ (l)/^^1-^ : ̂ 2 0 ̂ 2 —— ^2 0 ̂ i,

where C1^ has a complete asymptotic expansion, which we can write in block matrix
form:

00

^-E^'^'^T
v=0

(7.101) C^ ~ ̂  /i^^-'-'I^D^'1', 0 ^ j < M, 0 ^ k < . N .
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As for Gr(7V,0), we also have the leading terms in (7.99), (7.101):

(7.102) £?°+^ = (1 0 ̂ (O) 0 . . . 0 ̂ '(O))"172

x {z - ((^(O) ( g ) l 0 - - - 0 l + — + l 0 — 0 l ( g ) ̂ (0))) (1 (g) ̂ '(O) (g) • • • 0 ̂ '(O))-1/2,

(7.103) D .̂'0 =(10 ̂ (0) 0 • • . 0 ̂ '(O))-1, 0 < ̂  N.
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EXPONENTIAL WEIGHTS

Let W = W\ be a set of positive weight functions p : A -^ ]0, oo[, with 1 e W and
such that p G W => 1/p € IV. We sharpen the assumption (HI) to

(HI) p~l(f)'\x)p is 2 standard, uniformly w.r.t. p € W.

Lemma 3.1 extends and becomes:
(8.1)

p-1^"^) - 0"(0))p is of norm C^172) : H^ -> H^, uniformly w.r.t. p e W.

In fact, the tensors ^^{x) and 0^ ^ in the non-commutative Taylor expansion (3.9)
have the property that p^j)^1^ ^p(k)^ p(j)~l(f) ^p(k) are standard, uniformly for
p G W. We can then conjugate all the tensors in (3.10) by p and the remainder of
the proof of the lemma leads to (8.1).

Let a G ] - oo, Amm^'^O))] and let Wa C W contain 1, satisfy p € Wa =^ 1/p € Wa
as well as:

(8.2) {p-l(j)"(Q)pt\t} > a\t\i W G R^ p C Wa.

Let

RP=(P^1 ^ i) : (^(A) ̂  ̂ ±1) x (^(A) ̂  ^(Nfo,^]))

-^ (^(A) 0^±i) x (^(A) 0^(N^)).

We have the following extension of Proposition 6.1.

PROPOSITION 8.1. — For every C > 1 and N € N^ the weighted Grushin operator

(8.3) R-^^Rp : {£2 0 T^i) x (^2 0 ̂ 2) —— (^2 0 ̂ -i) x {£2 0 ̂ 2)

z'5 bijective with a uniformly bounded inverse R.ylEN'lRp, when p 6 Wa and

(8.4) -C < z ^ (N + l)A^n(^(0)) + a - ̂ .
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Proof. — Since the range (8.4) is contained in the range of wellposedness of P^51

in Proposition 6.1, we already know that that the operator (8.3) is bijective and
consequently, we only need to establish the a priori estimate

(8^) • hill + |n - |2^C( |H |_ i+ |^|2),
for solutions u C £2 0 U\, u- e £2 (g) £2 of

(8.6) R^P^R, ( u } = ( v }.
\u-} \v+j

In view of (8.1), it suffices to establish (8.5) for solutions of the simplified problem

(. 7) (l(S^W+p-^"(0)p-z R^ ( u \ fv\
^ [ <'1 0 ) U = U •

In the case N = —1 (which could be included in the statement of the proposition),
(8.7) reduces to

(8.8) (l0^w^p-l^(0)p-z)u=v^

and we obtain the analogue of (8.5)

(8.9) ||n||i^ C|M|_i,

by taking the scalar product with u and repeating some of the estimates of the proof
of Proposition 6.1. To obtain (8.5) from (8.7) is a straight forward adaptation of the
arguments of the step Gr(7V,0) -^ Gr(7V, 1) in the proof of Proposition 6.1, and we
do not repeat the details. D

The next goal is to show that the asymptotic expansions in Proposition 7.5 are
compatible with exponential weights. For a given N e N and C ^ 1, we continue to
let z vary in the interval (8.4). Let (dj) satisfy (7.27). Define D by (7.31), so that
analogously to (7.36), we have

(8.10) (1 (g) D-1)^'1^ 0 D) = 0(1) : 0 0 (7^_i x £2) -^ C 0 (^i x £2).

Recall that the argument leading to (8.10) is based on the fact that

(1 0 d-1)^ (1 0 d) - A^ : £1 0 H, —— ̂ 0 H_,

is of arbitrarily small norm if dj^/dj G [CTz172, C'"1^"172], with C > 1 sufficiently
large. It is then clear that we can can combine the weight d with a weight p e Wa
and conclude that if

^m R ( p ^ d ° ^(0 ) ^P^ = n o. J 5\ 0 p ^ ) d j

then

(8.12) R-y^R^ = 0(1) : C 0 (T^-i x £2) —— C 0 (H, x C\

for p C Wa, dj satisfying (7.28), and z in the range (8.4).
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Using the assumption (HI) again, we see that the arguments for the analogue of
Proposition 7.1 give

PROPOSITION 8.2. — Let A^, 0 ^ ij ^ N + 1 be the block matrix decomposition
corresponding to (7.81). Then uniformly w.r.t. p € W, we have

(8.13) IK^l)-^^ l)||r(^L^2^2) =0(1)^1^1,

{ij) C { 0 , 1 , . . . , N + I}2 ^ {(TV + 1, TV + 1)}.

Moreover, for 0 ^ i,j <^ N , we have uniformly w.r.t. p € Wa:

(8.14) (p-^^AgO^l)^j
00

^^/^r-^(p0i)-^7(p0l), in
1^=0

^j<-i
Y^h^-^(p® l)- .̂̂  1), m /:(^2 0/:^2 0/:,),
^=o

w%^ A^j independent of p . Here we identify Ci with £2 by means of R^'0.

As before, we define E^, E°_^ by (7.40,41), now with J?± = J?^'1, and analogously
to (7.42), we have

i(^)-z)E^v++R_EO_^ _

(8-15) - Eo^M^ h^-^D^^^r^R.)-^
[R+E^v+ = v+ € ^(N^), O^M ̂ N ,

where ̂ i^N+i" e ̂  ̂  ^^N]' and

i(p®l)-lD^^^(p®l)=o(l)•.e2(se2^e2^L2,
(8.16) ^ (p®d)- l ^(^®d)=C' ( l ) :^®^ 2 -»^ 2 (2)7<l ,

[ (p 0 rf)-1^0^^ ® J) = 0(1): e ® e -. e 0 e2,
for p e W and dj satisfying (7.27).

Using ^Ar'1, we can correct for the non-vanishing RHS in (8.15) and the correction
can be estimated thanks to (8.10). We get the following analogue of Proposition 7.2
for z as in (8.4):

PROPOSITION 8.3. — We have

'09- lcx)^p)(<' l-^)090rQ)
= c>(l)/^(l^+ l-Ql+lw+ l-pl): e ® e _ e ® H,

/g ̂  , (P~1 ® rQ^E^ - E°_){p ® lip)
• ^ 0(l)h^N+l-QWN+l-p\) :^0^_i^^0^2 ,

(p-^r^^^-^^)^®^)

= c)(l)/l^|JV+l-Ql+|^+l-pl): ^2 0 e -^ e ® e,
for p € Wa, 0 < P < N + 1, 0 ̂  P, Q ^ N , where E°_ = (£^)*.
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We can continue to follow the discussion after Proposition 7.2, that we have already
adapted to P^51 after Proposition 7.4. Only the inversion of

(8.18) 8 ^ : = ( EM^ 10r^}
V ̂  r^] 0 )

for M ^ N , now with exponential weights, requires some special attention. We
already know that if do , . . . ,^M satisfy (7.27) for 0 < j < M - 1 and if p G Wa, then

(8.19) (p-l^(^-le^))^-+(p0(dOd[o,N]))=^(l),

and we need the same estimate for 8Z^. Here d and d[o,7v] denote the natural block
diagonal matrices. In addition to (8.19), we know that the description of the leading
part of E^ survives the addition of exponential weights:

(8.20) (p-1 0 1)(̂ 1 - diag (B°+^))(p 0 1) = 0(h1/2) : 0 —— ^2,

where ^°+jj is given by (7.102). For j > N + 1, we see that

(8.21) (p-1 0 l)(B°_^)-\p 01)= (9(1),

for p e Wa and z in the interval (8.4), and it follows that

(8.22) (p-1 0 (d-1 C d^))^)-1^ 0 (d © d[o,N])) = ^(1),

for the same p and 2^.
It is now straight forward to repeat the arguments leading to Proposition 7.5, now

with additional exponential weights, and we get

PROPOSITION 8.4. — We fix N e N, C ^ 1, a G R and let z vary in the interval
(8.4)' Then for h > 0 sufficiently small and uniformly for all p C Wa, we have the
asymptotic expansion in C(£2 (g)^2,^2 (g)^2), that can be written for the block diagonal
elements:

00

(8.23) (p 0 l)-1^1,^? 0 1) - h^-^ ̂  ̂ (p 0 l)-1^^ 0 1),
^=o

0 ^ j, k < N.
Here B^^.^^ are the same as in (7.99). For M > N, we have:

(8.24) (p^l)-1^1^!)

= R^\p 0 l)-lcM(p 01) + ̂ (i)/^^1-^ :e^e — ^ 0 ̂ i.
Here CM is the same as in Proposition 7.5, and we have the asymptotic expansion
for the block matrix elements, valid uniformly with respect to p G Wa:

00

(8.25) (p 0 l)-1^? 01)-^ /^-^(p 0 l)-1!̂ ? 0 1),/ . v^-L; ^/,
^=0

/or 0 < j < M, 0 ̂  A; < TV.
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CHAPTER 9

PARAMETER DEPENDENT EXPONENTS

In this chapter we carry out an essential preparation for controlling the thermody-
namical limit of the correlations. For that, we need to estimate the variation of the
correlations, when the exponent (f) = (f)t(x) depends on a parameter t e [0,1]:

(9.1H) ^(^)=^o(^)+C7(t ; /z) ,

with C(t; h) independent of x and with <^o independent of h. We assume that <^(rr)
is of class C1 in t and smooth in re € R^ Further assumptions will be given later on.
We assume that C(t\ h) is chosen so that

(9.2H) Ie-^x}lhdx^\.

We start the chapter by making some formal computations. After that we will in-
troduce some precise assumptions on (^ that justify the formal computations. Finally
we will estimate the various terms that we get. The estimates will be summed up in
Proposition 9.4.

We are interested in

(9.3) Covt(u,v) = [ e-^^^u- {u}t)(v - {v}t}dx,

where (u}t denotes the expectation of u with respect to e'^^dx, and where u and v
are supposed to be independent of t. Since u — (u)t and v — (vt) have expectation 0,
we get

(9.4) -OtCoTt^v) = L-^A9^)^. {u)t)(v- {v)t)dx.

Assume that

(9.5H) Ot^oW = 0, cW,,o(0) = 0.
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Then

(9-6) 9t^o(x) =^^>^k{x)x,Xk = (Wx^x)^
3^

with ^ = ^>t given by

/11

(9-7) ^Or) = / (1 - 5)9Ac^o(^)^.
JO

Now assume that

(9.8H) ^(^-A^)^

where the matrix Af(x) is C1 in t, (7°° in x and invertible. Combining this with (9.6),
we get

(9.9) c^o(^) = ̂ ^(^.(^0 = ̂ (^^0(^),^^)),
j^

with

(9.10) ^(a;) = ̂ (^-^(^A^)-1.

Here and in the following, we often drop the subscript t. Later on it will be useful to
keep in mind that ^j^(x} is symmetric.

With ( / ) = (j)t, we define Zj,Z^ as in chapter 2. A straight forward computation
shows that
(9.11)

e-^2^ = ̂  Z;Z,*(6-^2^) + /.V2 ̂  Z;(6-^2^) + 2 ;̂ ̂ e-^
3^ j

where

(9-12) ^-=2^^^,
k

(9.13) £) - ̂ (^,9,^)$,,fe + h^9^^ + 9tcw.
3,k j , k n

Using this in (9.4), we get

(9.14) -9tCor((u, t ; )=I+II+m,

where

fl = /E,,fc ̂ ^(e-^^.^e-^^u - {u))(v - {v))dx,
(9.15) <j II = J /i1/2 Ej ̂ (e-^^^e-^^u - (u))(v - {v))dx,

111 = Je-^De-'̂ tt - (u))(v - (v))da;.
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Since Zy o e-^/271 = e-^/2^1/2^., we get after an integration by parts,

I = f^e-^^Z.Z^e-^^u - (u})(v - (v)))dx
J.k

(9-16) = h l^e-^^e-^Q^^u - (u))(v - (v)))dx
J i.k3^

= I l + l 2 + l 3 ,

where

(9.17) Ii = 2h l^^e-^Q^e-^Q^dx,
u ^ ^J.k

and

f1 2 = hlY,e^/2h^^^u)e-^2\v-{v})dx^
I 3.k

Is = h f^e-^^Q^Q^e-^^u - (u))dx.^ ^ 1 ^^k\0x^v)e ^'-{u-W
3^

u i.k

Here we used the symmetry of (^,/c) to get Ii. We need to transform \^ Is further.
Later in this chapter we shall solve

[e-^^u - (u)) = ̂  Zt(u^ (= ̂ (E^^.)),
^•18) ^-^2/ l^-(^)=^^^ ^y^v ^

[e-^2hD=^Z^D,).

As for the last equation, we see formally that

(9.19) (D)=0.

This follows from (9.11), since

{01f}=-^t/e~'t/hdx=-9t(l)=0,

and

fe-^Z^wdx = ( Z^e-^wdx = 0,

under suitable assumptions on w which will be verified.
Substitution of the second equation of (9.18) into the expression for Is and inte-

gration by parts gives

(9.20) ^ = h3/2 f ̂  e-^O^^O^u^dx = 1^+1^i2=/z" ' - / ^e
j,k,L'-i.k u
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where

(9.21)
ki = ̂ /E ̂ ^^^km^^v^
I 3ik,L>

l2,2 = h3/2 ( ̂  e-^2^,^^,^.^^)^^.
3.k,y

Since Is is obtained from la by exchanging n and v, we get Is = ̂ i +L^, with Is i,
13,2 as in (9.21), with u replaced by v and v^ by n^.

After an integration by parts and application of (9.18), we get

(9-22) II = Hi + Il2,

(9.23)

fill = h {^.(e-^O^Z^dx,
I ' 3^

Il2 = h [^^.(e-^Q^Z^dx.
J 3^

We observe that Hi and IIa differ only by a permutation of u and v and their related
quantities. By integration by parts, we get

(9-24) I I i = I L i + I I i 2 ,

(9.25)
111.1 = h3/2 I^Q^^e-^Q^u^dx

J j>
111.2 = h3/2 f^^^e-^Q^u^dx.

J j>
Similarly, we have Il2 = Il2,i +Il2,2, where Il2,, is obtained from IIi^, by replacing u
by v and Vy by u^.

Next consider III in (9.15). Using (9.18) and an integration by parts, we get

(9.26) I I I=III i+II l2,

(9.27)
IHi = h1/2 [^D^Q^e-^^v - (v))dx^

J y

hl/2 lY,D^v)e-^\u- {u))dx.III2 =

Again the two terms are analogous. Applying (9.18) and integrating by parts, we get

(9.28) III i=IIIi , i+IIIi ,2,

(9.29)

fllli.i = h1/2 f^v^ZM(0^u)dx^
I J i^^

/£J ^^
v^D^(9^ 9x,u)dx.nii 2 = h
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Clearly Ilia = Hl2,i + Hl2,2, where II^ is obtained from IIIi^ by replacing u by v
and 5^ by S^. This completes our formal calculations:

(9.30) -9t Corfu, v) = Ii + l2,i + 12,2 + Is.i + 13,2

+ I I l , l 4 - I I l , 2 + I l 2 , l + I l 2 , 2

+ IIIi,i + HIi,2 + Hl2,l + IIl2,2.

Let W = WA be a set of positive weight functions p : A -^ ]0,oo[, with 1 (E W
and such that p e TV =^ 1/p e W. First of all we assume that 0 = 0i satisfies
the assumptions of the earlier chapters uniformly w.r.t. t. (Actually in the next
chapters we shall see that the sets of weights we use in this chapter are smaller than
the corresponding sets of weights in chapter 8.) More precisely we assume that (HI)
(chapter 8) holds uniformly in t. We assume (H2) and we assume that (H3) holds
uniformly in t. We strengthen (H4) to:

(H4) (f)[{x) = At(x)x, where p^A^x)? is 2 standard and p(f)((9^A^) o p-1,

p~1 o p(£)9x^At are 3 standard uniformly for p C W, t e [0,1].

Moreover, Af(x) has an inverse Bt(x) such that p^B^x)? = 0(1) : P —. P',
1 ̂  p <^ oo, uniformly for 0 ^ t <, 1, p € W.

It follows that p^A^r1^)? is 2 standard and that p^a^A^op-1, p~lop(£)9^,A^l

are 3 standard, uniformly for 0 < t <^ 1, p e W. The most natural choice of At seems
to be At = JQ (/)ft/(sx)ds. With that choice we only have to check the statement about
the inverse of A^, since the other properties follow from the previous assumptions on
0. Let Wa C W be a set of weights with p e Wa =^ 1 / p € Wa such that (8.2) holds,
with (f) = (f)t. We let a be fixed with

(9-32) 0 < a < A^(^(0)).

Let 1 < pQ = po,A ^ Wa be a weight and assume

(H5) A)0')po(AO(<9^)^ is 2 standard,

uniformly in t.

LEMMA 9.1. — po(j)^j and po(£)9^,D are 1 standard.

Proof. — Recall that <1>(^ is given by (9.10), with ^ given by (9.7). It is clear
from (H5) that poU)PoW^j,k(x) is 2 standard, and from (H4) that p~lA(x)p and
its inverse are 2 standard for every p C W. Consequently, po(j)po(k)^^k(x) is 2
standard, and it follows that poO)^,/.;^) is 2 standard.

We conclude that po(j)9x^^k(x) is 3 standard, and using the trace lemma, we see
that po0')^j = Y,kPoU)9xk^j,k(x) is 1 standard.
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Next consider D, given by (9.13). Let D^\ D^ be the first and the second terms
of the RHS of (9.13), so that

9^D = 9^D^ + 9^\

For D^\ we use that po(£)0x^j^k is 3 standard, so that po{£)9^^^9^^^(x) is
5 standard. Using the trace lemma twice, we conclude that h~1 po(£)9x^D^ is 1
standard, uniformly in h.

Next look at

(9.33) p^wa^D^ = ̂ (poW^.A^)^ + E(aA^)(poW^A^)-
^k J,k

The first term to the right can be written

(9-34) E^oW^^^'^^^.^^O)^^)-
3.k

Here poWpo(j)~19x,9x,9x^ is 3 standard by (HI) since po G W, and po(j)^j^ is 2
standard. Now we need

LEMMA 9.2. — Let G^i,...,jp be p standard and let bk^,...,kq be q standard, where p^q ^>
1. Let 1 < r <, mm(p,q), r < max(p,^). Then

cjr-+l,•••jp,kr+l,...,kq ''= ^ ^ Q'Jl,...,JpOji,...,^,fe^+i,...,fcgl , - - - , J p ^ r + l T - - ^ q

Jl,...,Jr

is {p — r) + (q — r) standard.

Proof. — Let us first consider the case r = 1. Then we have a contraction via one
summation index and

(9.35) (C, t-2 0 • • • 0 tp 0 S-2 0 • • • 0 Sq) = «a, ̂  ̂  • • • 0 ^p), (^ 52 0 • • • 0 Sg)}.

Here
| (a ,^0-- '0^) |p=^( l ) |^ |^-" |^k ,

if
1 - -L -1-
P P2 P p '

I f p = l the right hand side of the last equation is 0 by definition and p = oo. Similarly

\(b, S2 0 • • • 0 Sq)\q = 0(l)\S^ • • • |^|^,

if
1 - L J_
q <22 qq

and we conclude that the expression (9.35) is 0(l)\t^\p^ " • tpp\\S2 q ^ " • \Sq\q , if
1 1 1 1

1 = — + • • • + — + — + • • • + — .
P2 Pp q2 qq

The gradients are treated the same way and we have verified the lemma in the case
when r = 1. Notice that the argument breaks down when p = q = 1.
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If r > 2, we first sum in ji = k^ as above and treat the remaining summations
with the trace lemma. Again the argument breaks down in the last step, when
r = p = q . Q

Applying Lemma 9.2, we see that (9.34) is 1 standard. The 1 standardness of the
second term to the right in (9.33) follows more directly from Lemma 9.2 and the fact
that (^ and po(t)0x^j,k are 2 and 3 standard respectively. This completes the proof
of Lemma 9.1. D

We next consider the equations (9.18). The assumptions on u, v will require a
generalization of the notion of standardness.

DEFINITION 9.3. — Let k G N, 1 < p < +00. A k tensor a(x) == o^,.,^) is said
to be (k,p) standard if

(9.36) (Va^i 0 • • . 0 tk^m) = OW\ti\p, • • • |^+mL+^ uniformly

for 1 < pj ^ oo, 1 = - + — + . . . + ———, f • e ̂  .
P Pi Pfc+m

We observe that "k standard" and " ( k , oo) standard" are the same thing.
We assume for some 1 < pu.pv e Wa'.

(H6) pu(£)9x^u, pv(£)9x^v are (1,2) standard.

This implies that

(9-37) y^e-^Q^w = OW.

and similarly for v. We now solve the first equation in (9.18) for u = ̂ u^dxy in the
spirit of [HS], [Sl]. The wellposedness of Gr(0, 0) for z = 0 means that we can solve

^o)^-,/^_^

with / C U\ unique up to a multiple of e~^ / ' 2 h . Since the RHS is in S, we have / C 5.
Since A^ = dy^, it suffices to take u = d^f. Using that ^A^ = A^d^ we get

(9.38) d^e-^u) = A^n,

and since pu G Wa, we know from the proof of Proposition 8.1 (valid also in the case
N = —1) that the solution u satisfies

(9.39) ^ \\Pn(^u^ + ̂  ̂  \\p^)Z^\\i.
V V fJL

< 0(1)||(^ ® l)^(e-^2/lu)||j^^ < 0(l)h,

where we used (9.37) in the last estimate.
Similarly, with v = Y^v^dXi, = A^ d^e'^/^v), we have

(9.40) Y,\\P^)v^+Y^Y^\\p,{v)Z^\\^ ^ 0(l)h.
V V fl
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As for the last equation in (9.18), we recall that po(f)9x^D is (l,oo) standard and
we have to accept some loss since we need an £2 estimate. We choose to take the
loss in the exponential weight. Let po > p\ e Wa and assume that p-i(£)9x^D is (1,2)
standard, or the weaker assumption

(H7) sup\p,W8^D(x^=0(l).
x

In the application later on this will be achieved by taking p\(v) = ̂ oM^"^18^0'^
for some e > 0. Then for the solution in £2 0 Ji\ of the last equation in (9.18), we
have

(9.41) ^ IhiM ÎI2 + EE IhiM-Wll2 ^ Wh.
v v ^

The justification of our derivation of (9.30) is now immediate, and next we shall
estimate the various terms that appear in that equation.

Estimate of 1\ (see (9.17)). — We rewrite the integrand in (9.17) as

(9.42) .-^E^O-)Po(fe)^.(.))^^(^0-)^H)^
3^

In the proof of Lemma 9.1 we have seen that po(j)po(k)^>j^(x) is 2 standard, so the
double sum in (9.42) is

0(1). 1 . 1 \PnU)9^u\Mk)a^.mipupomfpvpo

Combining this with (9.37) and the analogous estimate for ^, we get

(9.43) Ii = 0(l)h————————.
mipnpomipvpo

Estimate ofI^.i (see (9.21)). — We write the integrand in (9.21) as
(9.44)

E^O')Po(-)^^,.)^^(e-^^0-)^^H)^^

Here we observe that po(j)po(^)9x^^j,k is (3,oo) standard. If a is (2,2) standard, then
\a\^ = 0(1) by Lemma B.I. By Lemma B.2, we know that if b is (3,oo) standard, a
a 2-tensor and c a 1 tensor, then

( b , a ( S ) c ) = 0(l)\a\'2\c\2.

Hence the expression (9.44) is

(9.45) 0(1). 1 .e-^0(l). ^ \p^)^(x)^.
mf(pnpo) mf(pvpo)

We use this and (9.40) in (9.21), and get

(9.46) 12,1 = 0^————h————-.
mf(pupo) mf(pvpo)
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Estimate of ^2,2 (^ee (9.21)). — Rewrite the integrand in (9.21) as
(9.47)

E P^U^ke-^ 1 ^(pnU)9^9^u)^ = e-^^p^^B^
3.k^ POU)PuU) ^

with

(9.48) B^ = ̂ ^ ̂ (pnU)9^9^u)^.

Here we recall that pu{j)9x^9xjQxk^ is (3,2) standard, so if we view B = (Bj^) as a
matrix,

(9.49) ll^^-^n^^2-

On the other hand po(j)^j,fc 1s 2 standard and hence 0{1) : £1 -^ £1. If we view the
last sum in (9.47) as tr ((po(j)^j,A;) ° tB\ we conclude by the trace lemma that it is

0(1)—-,———r[^ 2. Using this in (9.47) and then in (9.21), we get
"mi(pQpny

(9.50) l2,2 = 0(h3/2). . ^\Vw = ̂ 2)..1, vmt(popu) mt(popu)

Here we used (9.40) in the last step, with py replaced by 1. By playing with py also
we could reach the estimate

l2,2 = 0(h2)———————————————r,m^popn) mt{popv)

provided that we add to (H6), the assumption that

Py(k)

^ PnW-^^^A^^ = 0(l)\tUs oo|r|2.

3^ pvyv)

Estimate of Ih^ (see (9.25)). — Write the integrand in (9.25) as

E ^ ..(Poa)^^)^72^^)^^)^ = . 0(1) ,e-^|^|2.z^ PoU)puU) mi(popn)

Here we used that po(j)9x^j is 2 standard by Lemma 9.1, and that pu{j)QxjU is
(1,2) standard by (H6). Inserting this into (9.25) and using (9.40) with pv replaced
by 1, we get

(9.51) Hi,i=0(l)——^——..mf(popu)
Estimate of II\^ (see ( 9 . 2 5 ) ) . — Write the integrand in (9.25) as
(9.52)

.-̂ p.ow);,̂ )̂̂ ,.* = ̂ --w^^.
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where we used Lemma 9.1 and (H6). Using this with (9.40) in (9.25), we get

(9-53) ii (9(1)——l——
'm^popn)

Estimate of IIh^ (see (9.29)). — We write the integrand in (9.29) as

(9.54) ^(pi(^A^ , . . (pn^)O^u) = ———— ?|2|piM^|w,

where we used (H6). Using this in the expression for IIIi^i together with (9.40),
(9.41), we get

^3/2

(9.55) IIIi , i=(9(l)—————-.
mf(pi^)

Estimate of I I I i ^ (see (9.29)). — Write the integrand as

(9.56) ^^(pi(^A.) ^ (p^)O^u) = 0(l)————Mp^)D^ 2,•ob^ z^/APiW / / \ / \ \ru V" / ^ X i t , ̂ x^, uu) V / • r/ \\PiMpn(^) mf(pi^)^
since \pu{y)9x^9x^\i2^(,'2 = ̂ (1) by (H6) and Lemma B.I. Using this in (9.29) with
(9.40), (9.41), we get

(9.57) IIIi ,2=<^(l)——^——^.mf(pip^)
Recall that for X = I, II, III and i = 1, 2, we get X^^ from X\^ by exchanging u

and v as well as their associated quantities. This means that we get the estimates for
X^^ from those for Xi^, by exchanging u and v to the right, and we therefore obtain
estimates for all terms in (9.30). Summing up, we have

PROPOSITION 9.4. — Let (j)t{x) = (j)t{x\ h), 0 ̂  t < 1, x G RA be C1 in t and smooth
in x, of the form (9.1H), satisfying (9.2H). Let W be a set of weights p : A —> ]0, oo[,
with p G W =^ I/ p C W, 1 G W. Assume that (j) = ̂  satisfies (HI) (chapter 8),
(H2), (H3) (chapter 2), (H4.) and (H5) of this chapter uniformly with respect to
t € [0,1]. Here Wa is defined prior to (H5) with some fixed a as in (9.32). Let
u^v € C^^R^R) be independent oft and satisfy (H6). Finally choose po ^ pi G Wa
such that (H7) holds. (Cf. Lemma 9.1.) Then

^ ^3/2 ^3/2

(9.58) 9t Cor^(n, v) = 0(1)(—————————- + —————- + —.——-).
mf(^po) mf(p^o) mf(pipj mf(pi^)

The estimate (9.58) could certainly be improved to the price of some further as-
sumptions. Also notice that the assumptions of standardness could be weakened,
since we only use derivatives up to some fixed finite order.
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CHAPTER 10

ASYMPTOTICS OF THE CORRELATIONS

This chapter is divided into three parts. In part A we make only the assumptions of
chapter 2 and consider the correlation of two functions with (l,2)-standard gradients,
which are independent of h. We show that it has an asymptotic expansion in powers
of /z, and that this expansion is valid uniformly with respect to A. In part B we
let A = (Z/LZ)d with L G {2 ,3 , . . .} . Adding assumptions on (^(O); an assumption
of translation invariance, as well as the assumption (HI) of chapter 8 for a suitable
family of weights, we study the asymptotics of Cor(a^,^) for v^ G A, when 1 <^
dist(z/, p.) <^ L and obtain the product of an exponentially decaying factor and a factor
with power behaviour, in the limit v—[t—> oo. The exponent in the exponential factor
is positively homogeneous of degree 1 in v — ^ and we show that it has an asymptotic
expansion in powers of h. We obtain a similar result for the power factor. In this
result all terms in the asymptotic expansions, may depend on A but they remain
bounded and the asymptotic expansions are valid uniformly in A. In part C we make
some additional assumptions that allow us to pass to the thermodynamical limit. This
part contains the final result of the paper, and the results here remain valid also with
A equal to a finite subset of Zd which contains a large ball centered at 0. (In chapter
11 we derive simplified sets of assumptions in order to reach the formulation of the
main result, Theorem 1.1.) Throughout the whole chapter we make the assumptions
(Hl-4) of chapter 2 and let the functions (f) be normalized as in (9.2H).

A. In this part we only assume that n, v are functions on RA independent of h, such
that V'u, V'y are (1,2) standard (as defined in chapter 9). We are interested in the
asymptotics of
(10.1)

Cor(z^) = (e-^^u - (n))|e-^2^ - (v))) = h{^~'' e-^du^-^dv),

as h —^ 0. The second equality was established in this explicit form in [Sl], but already
effectively used in earlier work by Helffer and the author [HS]. Under the present
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assumptions the derivation is very simple: Let / <£ S solve A^/ = e-^l^^u - (u)),
so that u = d^f solves (9.18). After an integration by parts, we get Cor(i^) =
(^/|(4(e-^2^)). In view of (9.38), we have d^f = (A^)-^, which gives the
last expression in (10.1).

We apply Proposition A.I, which extends to (P,2) standard tensors, and write

N+l M

(10.2) due-^ = ̂  ̂  ̂  /^^ZJ^e-^),
n=0 z^Oj'cA71

where u^ is (1 + j,2) standard, and for v < M, n ^ N it is independent of x.
Applying the procedure of chapter 5 and Lemma B.I, we see that the £2 0 L2 norm
of Sj-cA- Z^u^^e-^1211} is 0(1), and consequently we have for M large enough

(10.3) due-^2h=Y^ E E ̂ ^+^;(^^-^2/^)+0(/^A^l)in^0L2,
n=0 î =0 j'eA"^

where now u^ are constant. We have of course the analogous expression for dv e~(f)/'2h

and we let v^ be the corresponding coefficients.
Next we shall apply Proposition 7.5 together with the formula

(10.4) A^"' = EN^ - ̂ V'1(£1N41)-1^V'1.

Since the terms in the sum in (10.3) belong to the range of R^1 and ^N'1.RN'1 = 0,
<'W1 = 0, E^R^ = 1, R^E^ = 1, we obtain from (10.1), (10.3), (10.4):

(10.5) Cor(n, v) = (9(/^^L3)+
N M-l

h ̂  ^ ^(n+m)+.+, ̂  ((^^-^^^^(e-^^I^Z^e-^))^.^,,
'n,m=0 v,fi=0 ?GA^

fceA77'
N M-l

=0(/^)+^ ̂  ^ ^^n+m^+^^nImI((^7v41)-l^^ ̂ ).
n,rn=0 ^,^.=0

From Proposition 7.5 we know that I^1 as well as its inverse have asymptotic ex-
pansions of the type (7.99). We obtain

PROPOSITION 10.1. — Assume that (f) satisfies the assumptions of chapter 2 and let
u,v be independent of h and have ( 1 , 2 ) standard differentials. Then uniformly in A,
we have

00

(10.6) Cor(^) - h^h^Ck^v).
fc=o
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Here Ck(u,v) can be expressed in terms of derivatives up to finite order of u,v at 0,
and

(10-7) Co(u,v) = ((^(O)-1^)!^))^.

B. In this part we assume that

(10.8) A=(Z/LZ)^ L e { 2 , 3 , . . . } .

We assume that ( / ) is translation invariant,

(H8) (t>{nx) = (/)(x), W G A, x e R^

where (r^)O') = a;(j - £). It follows (as in [Sl], see also [BJS]) that ^'(0) is a
convolution on £2(A) and after a dilation in h, we may assume that

(10.9) ^(0) = I - z;o*,

where VQ is a real valued even function on A with vo(0) = 0.
We shall assume that (^(O) is of ferromagnetic type:

(H9) ^(0) <0 , when j ̂  k.

In other words, we assume that VQ ^ 0. Using Fourier expansions, we see that the
lowest eigenvalue of (^'(O) is

(10.10) A^(^(0)) = 1 - ][>o0) ^ 1/0(1),

where the lower bound follows from (H3). Similarly (HI) implies that

(lo.ii) ^>oa)=o(i).
Let TTA : Z^ —> A be the natural projection and let VQ : 7^ —> [0, oo[ be a function

such that

(10.12) vo(\)= ^ ?o(^
^A'W

such that

(10.13) VQ is even.

From now we assume that L > LQ is sufficiently large and assume that there exists
a finite set K C Z^ independent of A such that

(H10) vo(j) > const. > 0 for j G K, and Gr(K) = Z^

where Gr{K) denotes the smallest subgroup of Z^ which contains K. Put

(10.14) F^(rj) = ̂  e^-^oW, 77 C R^
fccz^

where we know ([Sl]) that

(10.15) {77eR d ;F„ ( r7 )<cx)}
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is convex and that F^ is a convex function, which is smooth on the interior of the set
(10.15). Assume

(Hll) there exists an open convex even set f^ C R^, independent of A, such that
F^Q^rj) is uniformly bounded on every compact subset of f^.

Here we define even sets to be the ones which are symmetric around 0. Then from
[Sl] (based on the fact that K is contained in no hyperplane of R^) we know that
FVQ is strictly convex:

(10.16) ^F^M>—— rie^.

(We even have that logFy^ is strictly convex.)
Let f^ (£ f^ be an open even convex set, which is independent of A and assume that

(10.17H) liminf F^{r]} > 1 + 3£-o,
^i3ri—^9fl,

where EQ > 0 is independent of A. F^(r]) is then uniformly bounded in ^ and its
derivatives are uniformly bounded on every fixed relatively compact subset of f^.
Using also (10.16), it is clear that the sets

(10.18) ^ := {rj G ^; F^ < b}, 1 < b ̂  1 + 2^

are relatively compact in ^ and uniformly strictly convex with (uniformly) smooth
boundary. Moreover they are even.

Let

(10.19) pb(x) = sup x • rj, x C R^,
riWb

be the corresponding support function. Then pb are norms on R^, in the class
(^oo(j^d \ {0}), strictly convex transversally to the radial direction. Since

PWeo/2(x) ^ SUp X - T ] j ,
l<:j<N

with r]j € ^2i-i-2£o and N uniformly bounded, we see that

(10.20) ^ e^+^o/^)^) = 0(1).
a-ez^

Let r G C^^R^R) with F(0) = 0, Vr(rr) € ^1+^/2. \^r{x)\ < e^ V x € R<
Then r(x) is arbitrarily well approximated in L°° by Vr(0) • x for x\ <^ R with R > 0
arbitrarily large, provided that we choose e\ small enough. Combining this with
(10.20), we see as in [BJS] (and [Sl], [SW])

(10.21) ^ e^^x) ^ l + ^ o .
x^
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Let r e ^((R/LZ)^) be real and assume that \/r(x) C ^1+^/2, IV^ < e^
everywhere, where £1 is small enough. Then

(10.22) ^ e^v^x) = ̂  e—A^)^) ^ 1 + ̂
a;eA rcCZ'^

since r := r o TTA satisfies the earlier assumptions.
Ifr'(^) is merely Lipschitz on (R/LZ)^ with r'(0) = 0, and Vr'^) e ^1+^/2 a.e.,

then by regularization, we can find r with the above properties such that r - r ' =
^o^(l).

Let a = -CQ, and let W = Wa consist of all weights p{x) = e^), x e (R/LZ)^
for which Vr e ^1+^/2. and [V^l < e^ with £1 > 0 sufficiently small. Using Shur's
lemma and (10.22) (with r there replaced by r(x) - r(0)) we see that for all p e W:

(10.23) llp^o*)?"1!!/:^^), Hp"1^*)?!!/:^^) < i + ^ o ,
so that

(10.24) {p-l^\{})pu\u) > -EQ\u\2, u e ̂ (A).

We fix £o with

OO-^) 0 < ^ < l - | ^ o | i - ^ — ,

so that

(10.26) -.o > -A^n^O)) + ̂  = -1 + |^o|i + ——y.

As for the higher derivates of 0, we will assume (HI) (chapter 8), with W equal to
the set of weights defined above.

We apply Proposition 8.1 with N = 0, z = 0, and we shall drop the superscript
(0,1) for simplicity. We recall the formula

(10-27) A^"' =E- E^EZ^E.^

that we shall use in (10.1), with u = x^, v = Xy, ft, v e A.
Let us first consider the contribution from E. According to Proposition 8.1, we

know that (p-1 0 l)E(p 0 1) = 0(1) : £2 0 L2 -^ C ® L2, for all p € W, and in
view of the observation after (10.22), we know that this remains true for p = er', with
r G Lip^R/LZ)^), Vr G ^i+eo/2 a.e. Now recall that we have introduced the norm
pb on R^ in (10.19). Let db = d^ be the corresponding distance on A, given by

d^(y, p) = ̂  inf p^u - /I).
"^"A \^)
/^ET^1^)

Then

(^ 0 l)e-^2^ = 0(1) in C 0 L2

SOCIETE MATHEMATIQUE DE FRANCE 2000
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with p^ = e^+^y2^-). By the weighted boundedness result for E, that we have
established above, we have

(^ 0 l)^(e-0/2^) = 0(1) in C 0 L2.

It follows that (cf. (10.1))

(10.28) h^Ee-^l^dx^e-^l^dx^ == O^he-^o/2^.

As a matter of fact, since e'^l^dx^, e'^^^dxy belong to the image of R- and
ER- = 0, the expression (10.28) vanishes, However the weaker formulation in (10.28)
may be of interest for more general correlations. The main contribution to (10.1) will
come from the second term in (10.27) and is equal to

(10.29) -h^E^e-^dx^E^e-^dx^} = -h(E^6^6^^

since e'^l^dx^ = R-6^ and E-R- == 1. Here we are in the presence of convolution
matrices. Indeed, from (H8) we deduce (cf. [Sl]) a certain translation invariance for
'P0'1 and its inverse, which implies that £"-+ and its inverse are convolutions and

(10.30) E^e-^l^dx^} = ̂ -(e-^dxo).

Proposition 8.4 can be applied together with the remark after (10.22) to show that
00

(10.31) E_^=-(l-m\ 'y-^^^inr^2,?^),
1^=0

uniformly when p = er ^ with r Lipschitz, such that Vr e ^i+eo/2 a.e., with VQ as
before. Here we equip p£2 with the natural norm ||pn||^2 = \\u\\^. This implies that

(10.32) \v(£)\ < ̂ (^e-^o/^), ^)| ̂  O^e-^o/2^, £ e A.

We have already assumed that VQ has a lift VQ to Z^ with certain properties in-
cluding (10.13) and we know that vo(£) = O^e-^^o/2^. For ^, v ^ 1 and v - VQ
we use the following lift: If £ e A, let A{£) c 7^ be the set of 1 in Tr^^) for which
Pi+£o/2W 1s minimal (= ^1+^/2(0,^)). Let A be the union of all such A(£), and define
Vj^(£) to be the unique function on Z^ with support in A, such that

(10.33) v^£)= ^ ^(?),
e^\£)

and such that v^ is constant on each A(^). Define v — VQ (where VQ is already known)
by the same construction. This means that we have defined v. Then

(10.34) vW= ^ v(£),

(10.35) v ~ ^ A
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in £°° and even in e'^^o/2^00. Let

(10.36) ^(0 = ̂  z^)e-^, ^ G (R/^TTZ^ =: T^
^ezd

denote the Fourier transform of v. From the above asymptotic expansions, it follows
that v extends to a holomorphic function in Td+ ̂ i+eo/2 which is uniformly bounded
and has a uniform asymptotic expansion

00

(10.37) ^(C)~^/^(C),
^=0

in T^ + i^b, for every fixed b < 1 + ^o/2.
As in [Sl], we can study the asymptotic behaviour of (1 — ?*)~1 by means of

Fourier inversion. In that paper (as well as in [BJS]) we only knew that v(C,) =
^o(C)+^)(^ l / /2) m T^+^b, while we now have the full asymptotic expansion (10.37),
but the discussion in the above mentioned papers goes through without any essential
changes and will give the full h asymptotics. We only recall some steps. If

(10.38) F*= (l-^*)-1,

then

(10.39) F(k)=——— f —————d!,.
[Z7T) Jr^d 1 — y^)

In section 4 of [Sl], we discussed the corresponding inverse Fo* of (1 — So*),

f10-40' ^'pW^S^'
denoted by E(k) there. We observed that 1 — ?o(C) 7^ 0 ^or C = $ + ̂  wltn 7? e ^i?
and that 1 — ?o(C) vanishes for 77 e 9^i precisely for $ = 0. (Here is where the full
power of (H10) is used.) We do not repeat the proof here, but simply recall that
^o(^) = F^(r]}. For k € R^ \ {0}, let 770 W = r]o(k/\k\) € <9Qi be the unique point
where the exterior normal of f^i is equal to a positive multiple of k. We can write

(10.41) rjo{k) == r/oW + p,(k/\k\)k/\k\^ rf^k) € (k)1-

and because of the strict convexity, we can represent the boundary of Q^l\ in a neigh-
borhood of 770 (k) as

(10.42) c^i = {r/oW + rf + (j)i^/|A:|) - ̂ /|,|,o(^))^|; rf e (Al)± H neigh (0)},

where g is a real and analytic function vanishing to second order at 0 and with

(10.43) <^|,o(0) > 0-
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Near ir]{k\ we can view the complex hypersurface 1 = 5o(C) as the complexification
of the real-analytic hypersurface Z(9f^i, so we get

(10.43) (l-^o)-1^)

= Mk) + C' + z(pi(k/\k\) - gk/\k\^/i}}k/\k\; ^ e neigh (0), k • C' = 0}.

By contour deformation and residues, we got in [Sl]:

(10.44) Fo(k)=
^g-pi(^) r gl^l9fc/|fc|,o(-^ /)
______ y _______________________________________ 1 ^ 1
(27r)d-l h'W^ -(^ • 9)W^ + W) + z(pi(^) - ̂ o(f))^)

+ onv^1^^"^0^!
where y is a small real neighborhood of 0 in R^ and 60 > 0 some fixed constant.

When passing from ?o to v very little changes. Let ^i(^) be the set of rj € ^i+eo/2
such that -^7(77) < 1. This set is very close to f^i, and is strictly convex. Again, we
have v(irj) = F^rj). For k G R^ \ {0}, let r](k) - ̂ ^(^/l^l)^ be ^e unique point
in ^f^i(/i), where the exterior unit normal of f^i(/i) is equal to a positive multiple of
k. Write

(10.45) rj{k) = r]\k)+p^(k/\k\)k/\k\^ rj\k) G (A;)^

where pi^(A-) = sup^^^^^^ k ' T] is the support function of f^i(^). Then
00

(10.46) Pi^-Pi+^P^W,
^=1

with p^ positively homogeneous of degree 1. In a neighborhood of r]{k), we can
represent 9f^i(/i) as
(10.47)

9^(h) = {rf(k) ̂ r]' + (pi,h(k/\k\)-gk/\k\(rf))k/\k\^ r/ e (^^ H neigh (0)},

where g is real and analytic and has the uniform asymptotic expansion
00

(10.48) ^/|,|(^-^^/|^(r/)/^
^=o

for r]1 e (k)1' n V, where V is a fixed complex neighborhood of 0.
Again, as in [Sl], we get

(10.49) F(k) =

^-Pi,hW r ^k\gk/\k\{^-'^)

(27^-1 j^^y^ -(^•^)(?)(^+^/(A;)+z(p^(^)-^(^))^)^

+ 0(Y)e~pl-h^~80^
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with V and Jo as in (10.44). gk/\k\{^'^} vanishes to second order at £ , ' = 0 and
ReHess^/|^|(0; h) <; —Const. < 0. The method stationary phase gives the large k
asymptotics of F(k) uniformly in A and in h (for h ̂  ho > 0 sufficiently small), where
all the involved functions have uniform asymptotic expansions in powers of h:

(10.50) F(k) = O^e-^-^+^l^ + e-^^q^k', h),

o
(10.51) q(k;h) - ̂ q_a^_^k;h), k -^ oo,

—00

where qj(k'^h) is smooth and positively homogeneous of degree j in k and has an
asymptotic expansion,

00

(10.52) ^-(/c;/i)-^/^,(A;), h-^0,
1^=0

where q^y is also positively homogeneous of degree j. In [Sl], the leading term was
computed:

nn.^ m l ((^-^^oWfc)))^(10.53) q_a^_ y(k) = - — ,
(2^1)^ ^/det(9^F^)W)

where T ] ' indicates some orthonormal coordinates in (k)±.
The convolution operator 1 — v^ on A has the inverse .F*, where

(10.54) F{k)= ^ F(k).
k^\k)

For 6 > 0, let A^, be the set of A: € A, such that

1° there is a unique k(k) G Tr^'1^), such that c?i(A',0) =pi(/c(A;)),

2° piW ^ (1 + J)^i(A-.O), whenever k(k) ̂  £ G TT^^A:).
Fix j > 0. Then from (10.50), (10.54) we get the uniform asymptotics for k e A§:

(10.55) F(k) = ̂ (^e-^1'^0'^01^0 + e-^^^q^k)', h),

where d\^h is the distance on A, induced by p\^ and 60 > 0 a constant. We also have
the bound

(10.56) F(k) = O^k^^e-^^, k e A.

Since EZ\ = —F^, (10.55), (10.56) give us an asymptotic expansion for 2^_(/^z/)
for (i — v e A§ and a precise upper bound for all ^, v G A.

Before using this, it may be instructive to study (cf. (10.30))

(10.57) ^-(e-^&o),
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having in mind also more general correlations. Since E- = £^, we can apply Propo-
sition 8.4 and conclude that

E^e-^^dxo} = (CM)*J?M'l(e-0/2^o) = (C^)*^)

(10.58) M
= ̂  ̂ <6^o 0 eo) + (9(1)/^/2,

^==0

modulo O^/2) in e-^o/^ where eo € ^(A° U A1 U • • • U AN) is the element
given by 1 € C ^ ^(A0). Here M can be chosen arbitrarily large, so we get a full
asymptotic expansion

00

(10.59) E, (e-^/^dxo) - ̂  h"f^ in 6-^0/2^
^=o

where we also know that fo = OQ.
Now we combine this with (10.31), (10.27), (10.28), (10.29), (10.55), (10.56) and

get

PROPOSITION 10.2. — Assume (Hl-4) of chapter 2, (H8-11) of this chapter,
(10.17H), and (Rl) of chapter 8 for the set of weights p = e^^ with \/r(x) C ^i+eo/2
a.e. (discussed after (10.22)). Then

(10.60) Cor(^,^) = (^dis^^)-^^1'^^, v^ C A,

(10.61)
Cor(^,^) = (9(/l)e-(dl^(^)+50dist^^) +/le-dl'h^^g(^-^);/^), ̂  C A^,

w/^ere 9, k, dî  /^ave 6een defined above (cf. (10.50), (10.55)).

C. Let [/j, Vj be increasing sequences of bounded subsets of Z^ with Uj C Vj,
Uj / Z^, j -^ oo. Let po = poj : 7^ -^ ]0, oo[ be the weight

(10.62) Po,j(^) = exp((9 dist(^, Z^ \ ^)),

for some fixed (possibly small) 0 > 0, and where dist denotes the standard Euclidean
distance on Z^. Let 0 = ̂  G (^(R^; R) satisfy the assumptions of chapter 2 (with
Vj = A) and assume

(H12) If k > j, then (po ̂  Po)(^j 0 '0/cj - ̂ fc)'7 is 2 standard,
if ̂ j is defined on R^^^ with ̂  2 standard.

Notice that this condition is independent of the choice ^k,ji and we could for instance
just take zero.

We also assume that (f) = (j)j satisfies (HI) (chapter 8), (H4) (chapter 9) with

(10.63) W = {p = e^ \r{y) - r^)\ ^ Q\v - /.|}, | • | = | • [,2,

so that po e W. Let

(10.64) p^)=p^)e-°^\
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(10.65) S = S^ = {v e U^ \y\ < dist(^, Z^ \ ^-)}, r, = dist(0, Z^ \ ^-),

so that

(10.66) PiM^e^7 4 , ^^-.

Put

( ,̂M = t^ + (i - ̂ )(^ e V^j), o ̂  < i,
with ^kj(x) = ^eVfc^Vj ̂  where we drop the normalization constant (cf. (9.1H))
for simplicity. Assume that 0^^ satisfies (H4) with W given in (10.63). Then we
can apply Proposition 9.4 and obtain for y.jji G Sj:

(10.67) Cor^(^^) - Cor^,,^) = 0(1)/^-6^/4.

Here we also used that

Cor^.(^,^) = Cor^.e^,,(^,^).

Let A= Aj = (Z/LyZ)^ be a sequence of discrete tori with Lj / oo large enough
so that there exists a natural embedding

(10.68) V, c A,.

We can view po = pQj as a function on A^, with po = 1 outside Vj. Assume that
(f)j G C^CR^-.Tt) is a family which satisfies the assumptions of subsection B with a
new set of weights W that contains po, such that

(10.69) (po 0 po)(<^- C ̂  - (^y is 2 standard, if
^ G C^R^^R) and ̂  is 2 standard.

Here po is defined as in (10.62) with Zd replaced by Aj. We also assume that t(j)j +
(1 - f}((f)j © ̂ -), 0 < t < 1, satisfies (H4) of chapter 9. Similarly to (10.67), we get

(10.70) Coi^(x^x^ - Cor^.Cr,^) = O^he-^/^ v^ e S,.

On the other hand we can apply Proposition 10.2 to Cor,(a^^) and get

(10.71) CoT^(x^x^=0(h)e-er^4+he-p^-^^^-^h^ v^^S^

with p\ ̂  QJ as in subsection B.
(10.67) gives a thermodynamical limit of the correlations, while (10.71) describes

their asymptotic behaviour. We now combine the two results, in order to show that
Pi,h has a limit when j -^ oo and that the same thing holds for the terms in the large
v asymptotic expansion of q3, as well as for the terms in the h asymptotic expansions
of these quantities. Let k ^ j > 1 and take p = 0. For every sufficiently large Co ^ 1,
there is a C\ > 0, such that

{e-P^^q^^h) -e-<^^(^)[ ^ ^(l)e-^U^)+r.•/cl\
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for rj/C^ < \v < T J / C Q . This implies that with a new constant C\ > 0

(10.72) |1 -e^)-^)^^ < 0(l)e-^, ̂  < \v\ <, 1(10.72) |1 -e^)-^)9-^ < 0(l)e-^, r— < \v\ <_ ^-.

Here it will be convenient to write

(10.73) q^v; h) = li/l-^e-^'^, \v\ > Co,

where

(10.74) s^;/i)~^s^;h), M-^oo,
—00

uniformly with respect to h,j, with s3^ positively homogeneous of degree —a in v, and
00

(10.75) <-E</3(^ ^-"°'
/3=0

with s^ ^ also positively homogeneous of degree —a in v. All these functions are
smooth and uniformly bounded in the appropriate spaces when j varies. From (10.72),
we deduce that

PihW -PlhW +^'M - ̂ (^h) = 0(1)6-^ — ^ M ^ ^ .
^o ^o

Using (10.74), we get

(10.76) ̂ » - p^M + ̂ >^; /i) - ̂ (^; h)) = O^^Y — ^ M ^ ^ ,
_7V ^0 ^O

where we recall that Co can be chosen arbitrarily large. For m € R, a : Z^ \ {0} —^ R,
put

(10.77) (Ana)M = a(^) - 2-^0(2^).

If a is the restriction of a function on R^ \ {0} which is positively homogeneous of
degree n <E R, then D^a = (1 - 27^-m)a, and we observe that the prefactor 1 - 2r^-m

vanishes precisely for n = m. If —N <^ n < 1, we apply

n ^
m<E{-A/',...,l}\{n}

to (10.76) and conclude that

(10.78) PW-PlkW = ̂ -(7V+1)) (n = 1)

(10.79) ^(^^)-^(^^=^7 (7V+1)), (n=a)

for -A^ < a < 0, ^/2C7^v ^ \v < T ^ / C N , N G Z^ for some CTV € [Co, C^/2].
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LEMMA 10.3. — LetQ, <s ^ c R^ be open, No e {1,2, . . .} , £ c ]0,1], 0 e £. Let
u = Ue(x) e C°°(n), e e £, and assume that

(10.80) \9Mx)\ < C», x e ̂ e 6 £,

(10.81) |M,(.r)| < e^, a - e e Z ^ n Q ,

wftere Co <s independent of e. Then,

(10.82) |^(;r)| < ^£A^O-1"1, a; e ̂  |a ^ ^0.

Proo/. — For 1 <: j < d, let e, be the jth unit vector in R^ and put

Z?,,̂ (.) = ̂ +£e^-^) = [\^n)(.+tee,)dt.
e Jo

Then

^n^''^^^)

(10.83) = / • • • / (9x^'"9^ u)(x+£t^+'-'+£tke^)dtz--'dtkJQ Jo
= Qx^ ' • • Qx^u{x) 4- Ok{e) sup max |^^(2/)|.

|?/-.r|oo<^lal=A;+l

Let f2 ==: ^TVQ ^ ^N0-1 (c • • • (£ ^1 (£ ^ and choose ^ > 0 small enough. We first see
that

(10.84) D,^ . • . D^u(x) = 0^°-^, x C ^i H ̂ d, A; < TVo - 1,

then using also (10.83), that Q^u = 0{e), a < No - 1. Using (10.83) again, we see
that

Q^u = 0(e2), \a\ ̂  No - 2, x e ^2.
Iterating this argument, we get (10.82). D

We apply the lemma to (10.78), (10.79) with e = 1/r^, after the change of variables
v = TjfJi. Using also the homogeneity, and that N can be chosen arbitrarily large, we
conclude that

(10.85) 9V^ -p^) = (^(r^)|^1-^, v e R^ {0},

(10.86) ^(^ - ̂ ) = ON^r^)^-^^ v e R^ ^ {0},

for all multiindices /?, when k ^ 1.
From (10.85) we conclude that there exists p^(y) <E ^^(R^ \ {0}) positively

homogeneous of degree 1 in v, and uniformly bounded in C7°°, when h varies, such
that

(10.87) 9^p^ -p^) = (9^(^)1^ ^l^l, ^ G R^,

for every multiindex /3.
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Consider the truncated asymptotic expansion of p3 r :
M-l

(10-88) pW = ̂  pi^ + R^ /z),
£=0

with

(10.89) 9ftRi,=OMAhM)^\l~^

uniformly in j. Since all functions will be homogeneous for a while, we restrict the
attention to a spherical shell in v, and drop the obvious powers of v . Using (10.85),
we see that

<o-J<o=<^v+^
for all TV, implying

(10.90) Pio-Pfo-^^)-
Now we can use (10.85,88) once more, to see that

y,-2N

(10.91) p^-p^=Q(^+h)^

for every N . Choose h = ̂ • 7 V , to get

(10.92) p^-p^^Q^).

Continuing this way, we get

(10.93) P^-P^^O^Y

for every N , and the same estimates hold for ^(j^ ^ - j?^). Using this and (10.85)
in (10.89), we get

(10.94) RM-^M-O^)^ V7V.

On the other hand, R3^ - R^ = O^), by (10.89), so interpolation with (10.94)
gives R^-R^ = O^^r^) for every N ^ 0. Use this estimate with M replaced
by M + 1, as well as (10.93) in the identity

(10.95) R3^ -R^= (p^ - p^^ + (R^ - R^,).

We get

(10.96) R3^ -RfM= 0(^-^)1^, v G R^ ^ {0},

and the analogous estimate holds for the /3th derivative, with \v replaced by l^l1"!^.
From (10.93), we get the existence of p^ e (^(R^ ^ {0}), such that

(10-97) \P^-P^\=O^N^N)\^

and similarly for the derivatives. Similarly

(10.98) \R^ - R^\ = OM^T^}^.
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We conclude that

(10.99) PW-f^PW^.
£=0

The same arguments apply to
00

(10.100) ^-E</3W-
0=0

and we get

(10.101) s{-s^=0^(^N)\v\-a,

(10-102) </3 - ̂  = (^/Ur^M-",

(10.103) ^°~f>^W3.
0=0

We combine (10.67), (10.71) to get for j ̂  k:

(10.104) le-^^'V^; fa) - e-^^^i/; fa)| < O^e-^74, ^| < ^-.
Co

We know that P^^v) is uniformly of the order of \v , so after multiplying with e^.^,
we get (possibly with a new Co)'.

(10.105) W^h) - ̂ (i/i/i) + (1 - e^.'^-^.''^)^;^)! ̂  (r»(l)e-^/co,

1.1 <. ̂
^0^u

Here qk == 0((|^| + 1)"^) uniformly with respect to k and we have (10.85), so

(1-0^-^^=0^)^ ^|<^-.(l-e^-^q^O^^ v\<r-.
^o

Using this in (10.105), we get

(10.106) |^(^)-^(^)| <0(l)r7^ H < ^ ,J ^o
for every N. We conclude (cf. (10.87)) that there exists a function g°°(^; h), v e Z^,
0 < h < ho, such that

(10.107) |̂ ; /z) - g°°(z.; /z)| < O^r^^ \v\ < r—.J Co
Using this and (10.87), we see that

e-<^V(z.;/i) - e-^^q^^h) = 0^(1^.^, \y\ ̂  r-,
^0

and if we compare this with (10.104), we get the sharper estimate

(10.108) le-^^V^) - e-<^(f°(^)| < 0(l)e-^74, \v\ < r3-.
Co
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Now (10.71) gives
(10.109)

Cor^,,^) =0(h)e-er^4+he-p^-^qoo^-^h), for \v\^\ ̂  r^.
Co

Here we recall the h asymptotic expansion (10.99), where p^ e (^(R^ \ {0}) are
positively homogeneous of degree 1 (as p^). If we combine (10.73), (10.106), we see
that

(10.110) q°°^h) = M-^e-500^ v G Z^ x 5(0, Co),

(10.111) \s\v; H) - s00^ h)\ < 0(1)^, Co < v\ ̂  7-.
Co

Now use (10.74) which is uniform in j, and (10.101), to get for Co ^ \v\ < r ^ / C o and
for every N e N, uniformly in j:

s°°^ h) = 0^) + ̂ (^; h) = 0^) + ̂  ̂ ; /z) + 0(1^1-^)
I-N

o

=E^O(^)+<wv).
l-A^

Hence
o

(10.112) ^(^ ^) - E C^; ̂ ). M ̂  oo.

The main result of our paper is the asymptotics (10.109) together with (10.99),
(10.110), (10.112) and the fact that s^{^h) € C^R^ \ {0}) is homogeneous of
degree a and has the h asymptotic expansion (10.103) in the space of smooth func-
tions on R^ \ {0}, homogeneous of degree a.
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CHAPTER 11

EXTRACTION OF A MAIN RESULT

We say that a function / on R21 is smooth if it is continuous for the £°° topology,
differentiable in each of the variables with continuous derivatives and the derivatives
enjoy the same properties et c. Let ^j^(x), j, k e Zd be smooth and real on R^ and
satisfy

(A-1) ^(^)=^(^).

(A.2) 9^k=9^^

(A.3) ^ = (^) is 2 standard,

(A.4) <^(0) ^ Const. > 0.

If we had been working on a finite dimensional space, then (A. 1,2) would have been a
necessary and sufficient condition for the existence of a smooth real valued function (f)
with <^ = <E>^. Such a function does not in general exist in the infinite dimensional
case, but we shall now see how to produce two different finite dimensional versions of
such a function.

Let U C Z^ be finite. If a* C R^, let x C R2' be the zero extension of x, so that
x(j) = ̂ U) ^T 3 ^ U, x{j) = 0, for j G Z^ \ U. Then

^u-j,k(x) := ^j,k(x}, j,k e U

is a smooth tensor on R^ which satisfies (A.1,2) with j, k ^ £ e U. Hence there exists
a function c/)u(x) G (^(R^R) with

(11.1) ^kW = ̂ u^k(x\ x e R^, j, k e U.
We make (f)u unique up to a constant, by requiring that

(11.2) <^(0)=0.
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It is obvious that <^ is 2-standard, so we have (HI) (chapter 2) with A replaced by
U, and (H2,3) hold. In order to have (H4) of chapter 2, we introduce the 2 standard
matrix

(11.3) A(x) = I ^(tx)dt^
Jo

and assume

(A.5) A(x) : P -^ P has an inverse B(x) : IP -> P',

which is uniformly bounded for x e R^, 1 < p < oo.
Since A is 2 standard, we see that B(x) is 2 standard.

With U as above, we take x e R^ and let as before x denote the 0 extension of x
to R2^ . Then we can introduce the 2 standard matrix

(11-4) Au(x) = [ ^{tx)dt = ruA(x)^,
Jo

where rjj : R^2 -^ R^ is the restriction map. We assume in addition to (A.5), that

(A.6) Au(x) has an inverse Bjj(x) which
is uniformly bounded for x € R17, 1 <, p <^ oo,

uniformly for all U in some class of finite U under consideration. With these assump-
tions we have obtained smooth functions (j)jj € (^(R^) which satisfy (H.l-4) for U
in some class of finite subsets of Zd.

We next do the same with U replaced by a discrete torus A = (Z/LZ)< If A e Z^,
we define r\x € R21 , by {r\x}{y) = x(y - A). Eventually, we will assume complete
translation invariance for <I>:

(A.7) ^^^x(rxx) = ̂ (^), .7, A;, A e Z<

Notice that if ^^ were the Hessian of a smooth function on (j) e (^(R^) (and the
discussion remains valid if we replace Z^ by a discrete torus A) then (A. 7) would be
a consequence of the simpler translation invariance property:

(11.4) ^x) = 0(rr).

However, to begin with, we only assume the weaker assumption

(A.7)z. ^+A,fc+A(TA.r) = <^0r), j,k e Z^, A e LZ^
for some given L C {1, 2,...}.

If x € R^ let £ C R2' be the corresponding LZ^ periodic lift. Replacing a; by x
in (A.7)i,, we get

(11-5) ^_^-A(50 = ^,fc(^), A e LZ<
If we view <S> as a matrix, this is equivalent to

(11.6) TA o <S>(x) = <S>(x) o TA, A e LZ^
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so ^(x) maps LZ^ periodic vectors into the same kind of vectors. Hence there is a
A x A matrix ^A(x), denned by

(11.7) €^(x)t = ̂ (£)F,

where again the tilde indicates that we take the periodic lift. On the matrix level, we
get

(1L8) ^k(x)= ^ ^,(£),
k^\k)

for any j C Tr^1^'), where TTA : Z^ -^ A is the natural projection. Alternatively, we
have

(1L9) ^A^k(x)= ^ ^(^e^),

JeTT^O-)

and ^A-j,k is symmetric (cf. (A.I)).
Let us verify the analogue of (A.2). For j, k,£ e A we have

(11.10) 9^A^k(x)=a^ ^ ^(50 = E E 9^^'
k^^k) kO^^k) ̂ 7r^1^)

From (A.1,2) we know that 9^j^(x) = O^^^x), so the last expression in (11.10)
is symmetric in ^, k and we get

(11-11) c^A;,^) = a^A-jA^)-
Using also the symmetry of ^>A;j,k, we get the analogue of (A.2). It is now clear that
there exists (J)A ^ C^R^ R), unique up to a constant, such that

(11.12) ^k(x) = 0^9^A(x)^ ^(0) = 0.

Let us verify that 0^ is 2 standard. If k ^ 2, ^ i , . . . . 4 e CA, x G R^ we have

<V^A(a;), ̂ i (S) • • ' 0 tk) = (V^-^A, ̂ ^ • • • 0 4 }
iJL-L.-Lo^ ^ _ /̂ ,

=(V f c 2 ^(^ ) , l ^ l0^0• • •04 ) ,
if E C 7^ is a fundamental domain for L7^ and x, tj denote the periodic lifts. Using
that <3> is 2 standard, we deduce that

(11.14) (V^A(^1 ^ • • ' ( S ) t k ) = Ok(l)\t^ oo . . . |4|oo.

Here the index 1, can be replaced by any other index in { 1 , . . . , k}, and the RHS in
(11.14) can therefore be replaced by

(11-15) ^(i)i^-ii n 1^1-
1^</C,

^3

By complex interpolation, we get the desired relation

(11.16) (V^A(^), h ̂  ' • • 0 tk) = ^(l)|^ik • • • \tk p^
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uniformly in x, tj and p j , when 1 < p y ^ oo, 1 = -1- + • • • + ^-.
We next check that 0A satisfies (H.3) (chapter 2), so we put^ a; = 0, £ = 0 and omit

these quantities in the formulas. Choose a fundamental domain E and let (^ • ^) be
the block matrix of <1> with respect to the decomposition

W^e,^2^
where Ek '= kL-^E. Then ̂  = ^_^ by slight abuse of notation. Since ^ = 0(1) :
^ -^ £P, 1 ̂  p ^ oo, we know that <^ satisfies the (equivalent) Shur condition

sup^|^|,supy[^| <oo,
3 k k j

and this implies that ̂  ||̂ || < oo, where |[ • |[ denotes the norm in C(£2 {E), £2 (E)).
Now we can write

(1L17) (^AU)=^^W),
k

identifying t ̂  l^F. We compare this with
(11.18)

JB^R} E ^-fcM)
v / b-l,l^|<^

= #B(0^ W^n' - *B^ ,1 ;̂. • + ̂ (b) ,_ ,̂;, •
fcez11 |fc|>fl |fc|^fi

= I + II + III,

where B(0, R) := [j e Z'1; \j\ < R}. Here

(1119) j_#g(0 , ( l -£) f l )v^ #B(0,(l-e)R)
( ) WO,R) ^-^= ^(0,R) ^At^7

(11-20) |II|^ ^ II^III^I^Oe^l), A-OO,
\t\>eR

('••") imi < #(B(o•fl^ffi(l-g)fi)) E ll^lll.l2» »,(i), . - o.
k

It follows that

(11.22) ^t,t) = ̂  ̂ ^ ̂ J"3-^ ' ̂ tR^

where

""^Oy,^1^
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The sum is orthogonal in -^2, so

(11.23) M2 = M2 = \t\\

On the other hand, by (A.4) we have (^tR^p) > ^U^l2^ so from this and (11-23,22)
we get (H.3) for <I>A with the same constant as in (A.4).

Next we verify (H.4) for (^A- For that we notice that we can define a gradient (j)'{x)
at x G R2^ if x\oo < oo, by

(11.24) (j)\x) = / <^(tx)xdt = A(x)x,
Jo

or more explicitly by

/'1
(11.25) ^{x) = ̂  / ^^k(tx)xkdt,

k J o

and we verify that
9^(x)=^(x) (=a^(;r))

by a straight forward computation:
/.i /.i

<9^(;r)=y / (9^^k}(tx)tXkdt^r / ^>j^tx)dt
k 0 0

= / Y^(Q^3^(tx)tXkdt^- f <S>,^(tx)dt
170 k J

= { (t9t+l)(<S>^(tx))dt=^^{x).
Jo

Put AA(^) = Jo ^K(tx)dt so that

(11.26) ^(^)=AA(^.

The relation between A^(x) and A(x) is the same as between ^A and ^:

(11.27) A^(x)t = A(x)T.

Since A(^) is uniformly invertible in ^(Z^) it has the same property on the invariant
subspace of L7^ periodic vectors. This means that A\{x) : £°°(A) -^ £°°(A) has a
uniformly bounded inverse. Since AA is symmetric, we have the same property on
-^(A) and by interpolation on ^(A).

Assume that for every Co > 0

(A.8) p~l^(x)p is 2 standard, uniformly for every p : Z^ —^ ]0, oo[ of the
form p(j) = e"^ with r : R^ -^ R of Lipschitz class with |Vr| ^ Co a.e.

Let us then verify (H.I) (chapter 8) for (j)jj and <^A with a suitable class of weights
W. In the first case we let W = Wjj be the set of weights of the form p\ with p as in
(A.8) for an arbitrary but fixed Co > 0. Then (H.I) holds for <^. In the second case,
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we let WA be the set of p(j) = e^ with r : (R/LZ)^ -^ R of Lipschitz class with
|Vr| ^ Co a.e., and again Co > 0 is arbitrary but fixed. Let p= e7 =7^d -^ ]0, oo[ be
the corresponding periodic lift. Then we have the analogue of (11.13):
(11.28)

(V^-^ACr)^ ^i 0 . • • 0 4} = (^k~2p~l<S>(x)p, l^i 0 ̂  0 • • • 0 4), k ̂  2,

where again the index 1 can be replaced by any other index in { 1 , . . . , k}. As before,
we see that p~^^>^{x)p is 2 standard uniformly for p e WA, so (/)A satisfies (H.I) with
WA as above, for every fixed Co > 0.

We want to apply the discussion of chapter 10, and we assume (A.1-8) from now
on. Since we now have adopted (A.7), completely, we see that (^A(O) is a convolution
matrix. We assume that ^(0) is ferromagnetic in the sense that

(A.9) ^(0) < 0, j^ k.

Then (H.9) holds for (f)\ and we have

(11.29) ^(0) = I - vo^ W) = (1 + O(I))IA - vo^ L^oo

and VQ and VQ are related by (10.12) and vo(^) is even ^ 0 and vanishes for v = 0.
Again we chose the constant 1 for simplicity, by a dilation in h we can always reduce
ourselves to that case.

Assume that there exists a finite set K C Z^ such that

(A.10) vo(j) > 0, j G K, Gr(K) = Z^,

where Gr(K) denotes the smallest subgroup of Z^ which contains K. This is precisely
the assumption (H.10) for the functions (^A- Since vo(k) = Oco^e"60^ for every
Co > 0, the function F^(r]) in (10.14) is well defined on R^ and from (A.10) and
the fact that VQ > 0, we see that lim|^oo F^(r]} = +00. We then have(H.ll) and
(10.17H) for suitable sets f^, ^. Then the whole discussion of part B of chapter 10
applies and we have Proposition 10.2 for 0A (when L is large enough).

We next look at part C of chapter 10, where we shall take Vj = Uj / Zd, j -^ oo
with Uj bounded. For U C 7^ finite, define po = po,u '' Z^ -^ ]0, oo[ as in (10.62):

(11.30) poM = exp^dist^.Z^ \ [/),

for some fixed 0 > 0. In order to have (H12) (which implies (H5) in the discussion in
chapter 10) we need an assumption:

(A.ll) (po,uU)po,uW(^j^ux) - ̂ ,A^)))^^ is 2 standard.

Here \u is the characteristic function of U, so (lux)(j) is equal to x(j) when j G U
and equal to 0 when j e Z^ Y U. We observe that (A.ll) and (A.8) follow from
(A. 1-3) and the following finite range condition:

(A.fr) 3 Co, such that ^j,k(x) = 0 for \j - k\ > Co.
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In fact, if (A.fr) holds, then ^ji,j2,...,jm := ^3 ' • ' ̂ jm^ vanishes if \jy — j^\ > Co
for some z^/^, and (A.3) is equivalent to the statement that ^i,...,^^) = ̂ 771(1) for
m = 2 ,3 , . . . . Similarly (A.8) is equivalent to

^2)<T>. {r\-0 ( i }~~^~\^3l.•••.3m\x) ~ ̂ mU),

for p as in (A.8). Since

(PU2)/P(J1))^^=0(1)^__^^

we see that (A.8) follows from (A.3) and (A.fr). Moreover, 9x^j,k = 9x^e.,k = • "
vanishes if \j — £\ or \k — C\ is > Co and consequently the expression (A. 11) vanishes
as soon as dist(^", Z^ \ U) or dist(A;, Z^ \ U) is larger than Co. This means that we
can replace po^u by some uniformly bounded functions J)Q,U without changing the
expression in (A.11), and (A.11) then follows from the 2 standardness of ^>j^(^ux)
and of ^j^{x). More generally (A. 11) holds if we assume that there is a Co > 0 such
that ^j^(x) = <t>^/c(0) whenever | j—A;| > Co. Indeed, we again obtain that Q^j^k = 0
if\k-£\ >Coor\j-£\ > Co.

We add (A. 11) to our assumptions from now on, and verify (H.12). lfUcUcZd

are finite, then {po,u ^ Po,u){^u © 0 — ̂ y is equal to the tensor

(11.31) po(j)poW{<S>^{lux)(luj){W - ̂ (1^)), J, k € ^,

and we split this tensor into four, according to the cases j € U or not, k G U or not.
In the three cases where at least one of j, k is in U \ U ^ we know from (A.8) that both
Po(j)po{k)^j^k(^-ux) and po{j)po{k)^j^k(^-nx) are 2 standard, and in the remaining
case when both j and k belong to U, the tensor (11.31) is 2 standard by (A.11). This
means that we have verified (H.12) for (j)j = (f)Uj-

We have already checked (H.I) (chapter 8) with the set of weights W above and
we next look at (H.4) (chapter 9), that we need to check for the new and smaller
set of weights in (10.63), of the form p = er ^ |Vr| < 26 a.e. Using the observation
after the statement of (H.4), we only need to check that the inverse Bu(x) of Ajj{x)
(which exists and is uniformly bounded by (A. 6)) remains uniformly bounded after
conjugation with a weight p as in (10.63), if 0 > 0 is sufficiently small. However, using
the Shur class remark, we see that \\p~lAup — AU\\C(£P,£P)^ 1 < p < oo is as small as
we like if 0 is small enough (but independent of [/), and consequently {p~lAup]~l is
uniformly bounded, so we have checked (H.4) for (f)u-

We also need (H.4) for (/)j,k,t given after (10.66), so that

(11.32) (<^^0r))^
= t^(lu,x) + (1 - t)(lu,(^u,W^u,x) + l^t/,^)^),

i^./x e Uk, x CR^.
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The corresponding matrix A becomes

Aj^tW = ̂ u,(x) + (1 - t)(lu,Au,{x)\u, + l^c/,),
and we assume in analogy with (A.6) that

(A.12) A^k,t(x) has an inverse B^k^x) : £P -^ £P, which
is uniformly bounded for x € R^, 1 <p <_ oo.

Using the Shur class point of view, we see as before that (H4) is fulfilled with W as
in (10.63).

REMARK 11.1. — Using the maximum principle of [S4] we can get a simple condition
which implies (A.5), (A.6), (A.12) and the similar condition (A.13) below. Assume
for A(x) = JQ ^(sx)ds:

(A.mp) Eko > 0 such that for every x € R^, A(x) satisfies (mp^o)^

I f te^Z^R) , ^^(Z^R^and (t,s) = \t\^s\^, then {A(x)t, s) ̂  £o\t\^\s\^.

It is easy to check (first for p = 1, oo and then by interpolation for intermediate values
ofp) that A(x) : £P -^ £p has a uniformly bounded inverse B(x), so (A.mp) implies
(A.5). Moreover, if A(x) satisfies (mp^o), so does IjjA^x)!^ (as a U x U matrix), so
we get (A.6). Finally, the set of matrices which satisfy (mp^o) is convex, so Aj^,t(x)
will also satisfy (mp^o) ^d consequently we will have (A.12).

So if we add the assumption (A.12), or replace (A.5,6) by (A.mp), then (H4) holds
for 0j,A;^, and we get (10.67).

Now let A = Aj = (Z/LjZ)d be a sequence of discrete tori with

(11.33) ^C[-L,/4,L,/<,

so that we can view Uj as a subset of Aj in the natural way. Let (f)j = (^ • We need
to check (10.69) with po(v) = poj(^) = exp^dist(;/,A^- \ Uj), v e Aj. As before, we
see that it suffices to check the 2 standardness of

l;11^) po(^)po(^)(^^(l[/^) - ̂ A,^(x)), V,[i € Uj.

Recall that Uj is viewed as a subset of Aj and let x denote the LjT^ periodic lift of
x. Write (11.34) as the difference of the following two expressions:

(11-35) poMpo(AO(^(l£/,50 - ̂ (£)),
and

(11-36) PoMpo(^) ^ ^+L,a(50.
o^aez6^

Thanks to (A.8), the last expression is 2 standard if we replace x by a general x e R^.
The same holds for (11.35) by (A.11). As with ^>A, we then see that (11.35), (11.36)
are 2 standard, and that completes the verification of (10.69).
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We finally need to check that t(p^ + (1 — t)((/)Uj ^ ^j) satisfies (H.4) of chapter
9, with i^j(x) = S^A ^t/ 1>^ an^ as before, we see that we only need the uniform
invertibility in C^^P) of

(11.37) A^ = tA^(x) + (1 - t)(lu,Au,(lu,x)lu, + IA,.^,), x e R^.

Assume

(A. 13) A^t(x) : ̂  —>y is uniformly invertible as in (A. 12).

Fortunately (A.13) is also a consequence of (A.mp). To see that, it suffices to verify
that with A = Aj, A\(x) has the property (mp^o) as we shall now do: Let t G -^(A),
s G £°°(A) satisfy (t,s) == |^|i[5|oo- We have the obvious analogue of (11.22):

(11.38) (AA^)= lim (AtR.sp},
R—>oo

with tp, T^R defined as after (11.22). Here (tR^p)^^) = (^)^(A), while

\tR\l\^R oo = |^|l|5|oo = (t,s) = (tR^p),

so (A.mp) implies that (AtR^p} ^ ^ol^lil^loo = ^o|^ | i |«Soo- Hence by (11.38),
(A^t^s) ^ ^oMiHoo, and we have checked that AA satisfies (mp^o) and hence that
we have (A. 13) when (A.mp) holds.

Summing up, we have verified that the assumptions (A. 1-13) imply the results of
part C in chapter 10, as will be restated in the main theorem below. We have also seen
that the more explicit conditions (A.fr) and (A.mp) permit to reduce the number of
conditions and to simplify them in the sense that they only concern <I>^/c and not the
particular choice of sequences Uj and Aj. Indeed we have verified the implications:

(A.l-3), (A.fr) =^ (A.8), (A.ll),
(A.l-3), (A.mp) ==> (A.5,6,12),

(A.l-3), (A.7), (A.mp) ==> (A.13).

Also notice that (A.4) follows from (A.mp). Especially (A.l-3,7,9,10,fr,mp) imply
(A.l-13).

THEOREM 11 .2 . — Let ^j,k(x) C (^(R^) satisfy (A. 1-5,7-10) and define
(f)u e (^(R^R), (I)A ^ (^(R^R) as above, when U C 7^ is finite and A =
(7l/L7^)d is a discrete torus. Let Uj C Z^, j = 1 ,2 , . . . be an increasing sequence of
finite subsets with 0 G U\, and assume that r j := dist(0, Z^ \ Uj) —^ oo, j — oo.
Choose Aj = (7.1 L^Y with Uj = [-7^/4,^/4]. Assume also that (A.6, 1 1 - 1 3 ) hold
and recall that the assumptions (A. 1-3,7,9,10), (A.fr), (A.mp) imply (A.l-13).
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Then there exist Co > 1, jo e N, 0 > 0, ho > 0, such that for j ^ jo, 0 < h < ho,
we have:

(11.39) Cor^.(^,^), Cor^.(^,^)

= 0(/i)e-^/4 + /le-^^-^g00^ - /,; K), for H, \^\ ̂  r3-.
Co

Here, for the statement about Cor^., we view Uj as a subset of Aj in the natural way.

P^h e ̂ (R^ \ {0}) is positively homogenous of degree 1 and has the h asymptotic
expansion

(11.40) ^» ~ f^p^h^ h -. 0,
^=o

in the space of such functions, p-^^o is a norm, strictly convex transversally to the
radial direction. Further,

(11.41) q°°(^ h) = H-^e-500^ v e Z^ \v > C^
where

o
(11.42) s^^h) ~ ̂ s^(^h)^ |^| ̂  oc,

—00

uniformly with respect to h, and s^(-; h) C C00^^ \ {0}) is positively homogeneous
of degree a. Here

00

(11.43) ^; h) - ̂  s^)h^ h -. 0,
o

m ^e space of smooth functions on R^ \ {0}, positively homogeneous of degree a.
Finally p^Q^), s§°o(^) were determined in [Sl]. They appear in the asymptotics

of (^(O)"1)^, v - ̂  —. oo.
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APPENDIX A

NON-COMMUTATIVE TAYLOR EXPANSIONS

Assume that that 0 G C^CR^ satisfies the assumptions (Hl-4) (chapter 2). Let
/ = fj(x), j = ( j i , . . . J p ) , x € RA be a P standard. We recall (cf. [S2]) that this
means that for every k € N:

(A.I) (V /7(.)(:r)^l0...^p+fc}

= ̂ (^P+l,^) • • • (tp+k,9x)fj(x)t^j, • "tp^p = OkW\tl p, • • ' \tp^k\pp+^

for all t^ , . . . ,tp^k ^ CA, pj C [l,oo], 1 = ^- + • • • + ^-^, where the estimate is
uniform in pj (as well as in tj and A).

In the main text we shall use iteratively the following result with N = 1. For the
sake of generality we state it also for larger N .

PROPOSITION A.I. — For every N G N, there exists M(N) G N such that for
M(N) < M G N

(A.2) f,(x)= ^ h^^^Z^offf^oZ^
L,R>0 ^GA^

L+R<N ^^R
Q<v<M ——

in the sense of differential operators, where Zr = nfLi ^r^, Z^ = n^=i ^1 • Here

fj^rW is P -\- L + R standard, and when v < M and L + R < N it is independent
of x.

Proof. — It will be convenient to use multiindex notation, with multiindices a G NA

of length 1, i.e. with |a| = |a[i = 1. In other terms (cf. chapter 4), we let a e N^ ^ A.
Then a given P standard tensor can be written as fa(x), with a G (N^)^

We start by writing

UX)=UQ)+ ̂ g^W
H-i
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by means of Taylor's formula, where g^{x) is P + 1 standard. Using (H4) and the
fact that the composition of a standard tensor in one of the indices with a 2 standard
matrix gives a new standard tensor of the same size ([S2]), we get

UX)=UQ)+ ̂  k^W(x)\
H=i

where ka^(x) is P + 1-standard. This can be rewritten as

Ux) = UQ) + ̂  h^k^x^r + ^7)
H=i

=UO)^h ̂  9^(x)+ ̂  h^^fok^^ ^ h^k^{x)Z\
l7|=l |/3|=1 171-1

Here /^1) := Y,\^=^ 9^ka^(x) is P standard by the trace lemma (cf. [S3, S2]), which
says that |trA| ^ ||A||^^oo^i) for every finite square matrix A.

We can repeat the procedure with the ka,/3 and ka^ in the last two sums, and
eventually we reach:
(A.3)
Ux)= ^ H.W^ ^ ^*)/?1+•••+/3L^A,...A^,...^^)^1+•••+7^

L+R^N |/3i|,.,|/3z.|=l
0^<M |7i|,.,|7fi|=l

where /Q'^I,...,^^!,...^^^) is p + L + R standard. This is equivalent to (A.2) . D
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APPENDIX B

HILBERT-SCHMIDT PROPERTY OF TENSORS

LEMMA B.I. — Let a = (2ji,...j^, 1 ^ j k < ^k? ^k < +00, be an N tensor and
assume that

(B.I) | (a^ i0-- -0^} | ^ l ^ i l p i • • • | ^ v p ^

whenever tj € C^, 1 ̂  j^ < oo, ^- + • • • + ̂  = j. T/^en

(B.2) |a|2 < 1.

Proof. — This is obvious for TV = 1. Let N > 2 and assume that we have already
proved the lemma with N replaced by N — 1. Put At^ = {a^t^), where the bracket
indicates contraction in the last variable. We may view A as a linear map from CrnN

into the N — 1 tensors, with matrix a j ' - j ^ ^ j ' = ( j i , . . . ,j'^v_i). We have

\{AtN,h ̂ ' • • ^ t N - i } \ = |<a^i (g)—0^v}| < |^i[pi . . . |^v-i[p,v_iMoo,

if -̂ - + • • • 4- —3— = |>. By the induction hypothesis, we get

\AtN\2 < Moo,

SO

||A||/:(^o^2) < 1.

Hence by duality, ||A*||^2 ̂  <^ 1, and we conclude that

(B.3) ||A*A||^^I) ^ 1.

By the trace lemma (stating that for a square matrix the modulus of the trace is
bounded by the C^00^1) norm, cf. [S3, Lemma 1.2]), we conclude that

(B.4) 1 ̂  trA*A = H A I I ^ s = E l^l2 = a!^
3 ' J N

and we get the lemma for N . D

The following result is an easy consequence of the preceding lemma.
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LEMMA B.2. — Let a be an N tensor of the same form as above and assume that

(B.5) |(a^i 0 - - - ( g ) t 7 v ) | ^ \ti\p, - " \ t N \ p N .

when tj C C^, 1 ^ p y < oo, ^- + • • • + ̂  = 1 (rather than \). Then if we
decompose the indices: j = (j'' .f'\j'"), j / •==- O'i, • • • Jk), J " = Ofc+i,- • • jk+e), 3 1 " =
(j/e+^+i,... ,JN\ with k,£ ^ 1, we have

N

(B.6) \{a,b' 0 b ' 1 (S) 4+^+i ^ • • • ^ ̂ )1 ^ I^M^b n l^-loo,
/c+^+i

/or a^ ̂  e C7^-7, /c tensors bf and £ tensors b " .
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