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COMPLETE ASYMPTOTICS FOR CORRELATIONS
OF LAPLACE INTEGRALS
IN THE SEMI-CLASSICAL LIMIT

Johannes Sjostrand

Abstract. — We study the exponential decay asymptotics of correlations at large
distance, associated to a measure of Laplace type, in the semi-classical limit. The
new feature compared to earlier works by V. Bach, T. Jecko and the author, is that
we get full asymptotics of the decay rate and the prefactor, instead of just the leading
terms, and that we treat the thermodynamical limit. As before, we study the Witten
Laplacian via a Grushin (Feshbach) problem, but we now have to use higher order
problems, involving multiparticle states.

Résumé (Asymptotique complete des corrélations d’intégrales de Laplace a la limite
semi-classique)

Nous étudions ’asymptotique au sens semi-classique de la décroissance exponen-
tielle des corrélations & grande distance, pour une mesure du type de Laplace. Dans
des travaux antérieurs de V. Bach, T. Jecko et de lauteur, nous avions obtenu les
contributions principales au taux de décroissance et au préfacteur. Dans le présent
travail, nous obtenons des développements asymptotiques complets et nous traitons la
limite thermodynamique. La méthode consiste toujours & étudier le laplacien de Wit-
ten via une réduction de Grushin (Feshbach) mais nous devons maintenant examiner
des problémes d’ordre supérieur comportant des états & plusieurs particules.
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CHAPTER 0

INTRODUCTION

In recent years there has been an attempt by B. Helffer, the author and others
(|BJS|, [H1-4], [HS], [J], [S1-6], [SW], [W]) to apply direct methods to the study
of integrals and operators in high dimension, of the type that may appear naturally
in statistical mechanics and Euclidean field theory. In the first works, we applied
asymptotic methods and noticed already that there is a very strong interplay be-
tween asymptotic expansions for integrals obtained by some variant of the stationary
phase method and asymptotic solutions of certain Schrodinger type operators ob-
tained by the WKB method ([S3-5]). In later works ([S6], [HS], [S4]) we noticed
that a suitable version of the maximum principle could be used in the proof of cer-
tain asymptotic expansions and to obtain exponential decay of correlations. (In the
work [SW] this was even applied to integrals in the complex domain, and was ap-
plied to show exponential decay of the expectation of the Green function for discrete
Schrodinger operators with random potentials.)

In the present work we are interested in correlations for Laplace integrals at large
distance. In physics language we are interested in the correlations at large distance
for continuous spin systems. Under assumptions that imply the exponential decay
of these correlations, we want to know the precise rate of exponential decay and to
determine the possible polynomial prefactor. The original inspiration came from a
talk given by R. Minlos in St Petersburg in 1993 and a corresponding joint paper by
him and E. Zhizhina [MZ], about the asymptotics of correlations for discrete spin
models at high temperature. Even though we never quite understood the methods
used in [MZ], it prompted us to further develop our own methods in the continuous

spin case and in [S1] we were able to get the leading exponential decay asymptotics
) ] e~ 9@ /hgr

for correlations associated to measures of the type —————+—

[ e=¢@)/hdz,

the semi-classical limit (h — 0). Here ¢ € C°(R™;R), and A is a finite subset of Z%

or a discrete torus of dimension d, and we study the limit when A is large. Recall that

the correlation of two functions u, v which do not grow too fast at infinity is given by

, at large distance, in

(0.1) Cor(u,v) = ((u — (u))(v — (v))),
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where
(u) = Ju(z)e=¢@)/hdy
YT T e d@/hdy

denotes the expectation. We also observed that certain associated Schrédinger op-
erators, already found with B. Helffer in [HS|, are Witten Laplacians in degree 0
or 1. We also managed to replace the use of the maximum principle at many places
by L? methods and consequently we got rid of a certain rigidity in the conditions.
The elimination of the maximum principle was not complete however, and the results
were flawed by a certain number of unnatural assumptions, in particular that of global
uniform strict convexity of the function ¢. Another short-coming of [S1] was that
we only determined the decay rate and the prefactor up to a factor (1 + O(h'/?)).
Moreover, we did not work out the thermodynamical limit (A — Z?) so oscillations
within a factor 14+ O(h!/2) could not be excluded, when A varies.

With V. Bach and T. Jecko [BJS] we eliminated completely the use of the maxi-
mum principle and were able to give simpler and more natural conditions. In partic-
ular we could allow the exponent ¢ to be strictly convex only near the point where
¢ is minimal. The new assumptions still imply that there is only one critical point
however. Again we obtained the decay rate and the prefactor only up to a factor
(1+ O(h'/?)), and we did not treat the thermodynamical limit.

The aim of the present paper is to get full asymptotic expansions in powers of h
of the decay rate and in powers of the inverse distance and in h of the prefactor,
and we shall also treat the thermodynamical limit. To get such more precise results,
one has to get higher in the spectrum of the associated Witten Laplacians (or rather
something close to that), and we do so by using higher order Grushin problems that
we explain more in detail later in this introduction. The main idea of this strategy was
rather clear in the author’s mind since the writing of [S1], and has become practically
realizable with the improvements of [BJS]. W.M. Wang [W] has recently used similar
ideas in order to study the rate of exponential decay of correlations when h =1 and
¢ is a small perturbation of a non-degenerate quadratic form. For the decay rate,
she got several terms in an expansion in powers of the perturbation parameter. In
principle the method should give full asymptotic expansions and also the prefactor in
that case too. [W] also has an interesting application to the exponential decay rate
of the Green function for discrete random Schrédinger operators.

We now start to formulate the main result of this paper for a class of ¢, of the type
that appear in continuous spin lattice models. Let K be a finite subset of Z%, and
let

(0.2) F € C*(R¥*;R)
satisfy
(0.3) 107 F(z)| < Ca, |a| =22, VF(0) =0,
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CHAPTER 0. INTRODUCTION 3

where we use standard multiindex notation:
aeNf, o2 = T 02, lal=lalo =" o
JjE€EKo
We will identify F with a function on RZ”, by writing
(0.4) F(z) ~ F(rg,z),

where rg, : R — RX0 is the restriction operator.
Let A be a discrete torus of the form

(0.5) A= (Z/LZ)%,

with L > 2 large enough so that K, can also be viewed as a subset of A via the
natural projection 7 : Z% — A. F(z) can also be viewed as a function on R in the
natural way, as in (0.4). If z € C?, j € A, we define the translation TjT € CA by

(0.6) (r;2)(k) = 2(k — j), k € A.

(The same definition applies when A is replaced by Z¢.) Viewing F' as an element of
C>(RM), we put

(0.7) oa(z) = Z F(r_,z), z € RM
veA

The following special case corresponds to continuous spins with nearest neighbor
interactions: Let f € C®°(R;R), w € C>°(R?;R) have only bounded derivatives of
order > 2 and with Vf(0) = 0, Vw(0,0) = 0. Also assume that

(0.8) w(z,y) = w(y,z)

and put

(0.9) oa(z) = fle@)+ Y. w(z(i),z(k),
JEA 3.k; d(G,k)=1

where d is the distance on A induced by the ¢! norm on Z¢. This is of the form (0.7)
with
(0.10) F(z) = f@0)+ Y w(@(0),(k))-

k; |kl =1

Since Oy k) (F(7j2)) = (Op(k+j)F)(jz) and similarly for higher order derivatives,
we get

(0.11) (F(r—x))" = 7, F"(T—p2)T—p, (F(T-02))} = F"(T-0®)j v kv,

when the Hessian F"' is viewed as a linear map C* — C?. Applying this to (0.7), we
get

(0.12) $R(0) =D T F"(0)7—s,  $K(0)jk =D F"(0)j4u ks

vEA VEA

SOCIETE MATHEMATIQUE DE FRANCE 2000



4 CHAPTER 0. INTRODUCTION

which obviously commutes with translations on C* and is therefore a convolution.
The corresponding convolution kernel is

(0.13) AO)(E0) (@) = Y F"(0)4v, = ada() — a(4),
veEA
where dy(j) = do,; is the convolution kernel of the identity operator,
(0.14) a=3 F"(0)y, ~T0(j) = (1=80,5) Y F"(0)j4un-
veA v
Assume that we have a ferromagnetic situation:
(0.15) F"(0),, <0, v#p,
so that vo(j) > 0. We also make the positivity assumption [Up|,2 < a or more
explicitly,
(0.16) S F0)kl < Y F(0);.
J.keA; j#k JEA
(Notice that this condition is independent of A and that we could replace A by Z.
We also point out that this condition will follow from the assumptions (0.20), (0.21)
below.)
In the special case of (0.10), the last two assumptions become
(0.17) 9:0,w(0,0) < 0, f"(0) + 4dd%w(0,0) > 4d |0,0,w(0,0)] .
We also need an assumption expressing that the interaction between different spins
is non-degenerate. Assume that there exists a finite set K C Z¢, such that
(0.18) (j) >0, j € K, Gr(K) = Z%,

where Gr(K) denotes the smallest subgroup of Z¢ which contains K. In the case of
(0.10) this assumption means that 0,0,w(0,0) < 0.
Finally we need a convexity assumption in the averaged sense. Let

1
(0.19) G"(z) = / F"(tx)dt.
0
Assume that there exist 0 < 6 < 1, ¢ > 0 such that for all z € R%’, j € Z¢:
(0.20) > G (1) gm0 > €
(0.21) Z ’ Z G"(102) jpvk4v| < (1 —6) Z G" (1) j v jtv-

kezZd~{j} Vv
Notice that it suffices to check these assumptions for one j say j = 0 and that they
imply the earlier assumption (0.16). Also notice that if we have (0.20), (0.21) for F"
instead of G”, then we get them for G”. We prefer the weaker averaged formulation
above, since it allows for points away from 0 where ¢ (and ¢y below) is (are) non
convex.

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 5

When F' is given by (0.10), a straight forward computation shows that (0.20),
(0.21) become

(0.20) (@) + D 207w ((0), (k) = c,

|kl1=1

(0:21) 2 Y |(3z0,w)((0), z(k))|

[kli=1

< (1= 0) (") (@(0) +2 Y (B7w)(x(0), z(k))),

[kl1=1

where we put

() = /O Fz)dt, (W)@, y) = /0 W (tz, ty)dt.

(These two estimates for ¢ > 0,0 <6 < 1 imply the second estimate in (0.17).)

The conditions (0.20), (0.21) imply that fo A (tx)dt is uniformly strictly positive
and that the correlations and expectations in (0.1) are well defined if u, v are functions
of polynomial growth.

We next consider the case of finite subsets of Z? rather than torii. Recall (0.2)
where Ky C Z% is finite. If U C Z¢ is finite and z € RY, we let 7 € RZ" be the zero
extension of z, so that Z(j) = z(j) for j € U and #(j) = 0 otherwise. Let U C Z¢ be
finite with

(0.22) U-KyCU,

and put

(0.23) ¢u(z) = F(r_,7), € RY.
1/617

Notice that ¢y only changes by a constant if we replace U by some other set which
also satisfies (0.22), consequently the correlations do not depend on the choice of U.

Let U; € Z? j =1,2,... be an increasing sequence of finite sets containing 0 and
converging to Z?%. Let 2 < L; / oo be a sequence of integers with

(0.24) Uj C [=Lj/4, L;/4]%,

and let A = Aj = (Z/L;Z)? be a corresponding sequence of discrete tori, so that we
can view U; as a subset of A; in the natural way.

The following is the main result of our work and we refer to Theorem 1.1 for a
slightly more general version:

THEOREM 0.1. — Let U;, A, be as above, and put r; = dist(0,Z¢ \ Uj), so that
rj /" 400 when j — oco. Then there exist Co > 1, jo € N, 0 > 0, ho > 0, such that

SOCIETE MATHEMATIQUE DE FRANCE 2000



6 CHAPTER 0. INTRODUCTION

for 7 > jo, 0 < h < hg, we have:
(0.25)  Corg, (v, ), Corg, (v, x,)
= O(h)e™ /% 4 he PTR=Mg®(y — s h),  for |v|,|u| < 2—1
0
Here, for the statement about Cory, , we view U; as a subset of A; in the natural way.

Py, € C° (R? \ {0}) is positively homogenous of degree 1 and has the h asymptotic
expansion

(0.26) P () ~ Y Pkt h— 0,
=0

in the space of such functions. Here pS%, is a norm, strictly convexr transversally to
the radial direction. Further,

(0.27) g (v;h) = [p| =@ D2e=sT WM -y e 24 || > Co,
where
0
(0.28) s> (vsh) ~ Zs?f(v; h), lv| — oo,
— 00

uniformly with respect to h, and s°(-;h) € C®°(R® \ {0}) is positively homogeneous
of degree a. Here

(0.29) s (vih) ~ Y sXpw)h?, h— 0,
0

in the space of smooth functions on R? \ {0}, positively homogeneous of degree c.
0 (v), 550 (v) were computed in [S1]. They appear in the asymptotics of (®(0)™1),,,
when v — p — 0o, where ®(z) is defined by (1.3) below.

In the case of nearest neighbor interactions, we get

COROLLARY 0.2. — Let f(z) € C®(R;R), w(z,y) € C°(R?%*R) have all their
derivatives of order > 2 bounded. Assume thatV f(0) = 0, Vw(0,0) = 0, 9,0,w(0,0) <
0. Also assume (0.8) and (0.20°), (0.21°) for some ¢ >0, 0 < 6 < 1. When A is a
discrete torus, we define ¢p as in (0.9) and when U C Z? is finite, we put

du(@) = fx()) + > w(@(5),Z(k)), z € RY,
JjEU jkezd
|i—kl1=1,jorkinU

where T € RZ" denotes the 0 extension of r € RY. Then the conclusion of Theorem
0.1 is valid.

It should be remarked that our result only covers one of many possible situations,
and new difficulties appear when f in (0.10) has more than one critical point. In
that case phase transitions may appear and the correlations do not necessarily decay

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 7

exponentially. Hopefully our methods can be useful in that case also if suitably
combined with others. See [DZ], [S4], [Z1, Z2].

The proof follows the general strategy of [S1], [BJS] with the additional idea of
looking at higher order Grushin problems, which in some sense amounts to analyzing
a larger part of the bottom of the spectrum of the Witten Laplacian in degree 1. Let
¢ = ¢p, with A equal to Aj or U; as in the theorem, and assume after adding an
(h, j)-dependent constant, that

(0.30) / e~ ?/Mdr = 1.

Then the correlation Cor(u,v) = Cory(u,v), of two functions w and v is given by
(0.31)  Cor(u,v) = ((u~ (u)) (v~ (v))) = ((u — (u))e~***|(v ~ (v))e#/*") 2,

where

(0.32) (u) = /u(m)e'¢/hdx
denotes the expectation value. Introduce the annihilation and creation operators
(0.33) Z, = h'%0, +hV2%0, ¢/2, Z* = —h'?8,, + h~1/%8,,¢/2,

for v € A. The Witten exterior differentiation ([Wi]) is obtained as a conjugate of
the de Rham exterior differentiation d together with a normalizing factor:

(0.34) dyu = h/?e=%/2" o 4 o e?/?h,

It takes differential £ forms into (¢+1) forms. In the scalar case (¢ = 0) we have dgu =
> Z,(u)dz,. The corresponding Hodge Laplacian is called the Witten Laplacian:

(0.35) A¢, = d;d¢ + d¢d:;

It conserves the degree of differential forms, and we let Ag) denote the restriction to
¢ forms. So far, it seems that only

(0-36) AD =377z and AY =10 A +¢(2)

have been really useful in the the study of high-dimensional integrals. (In the last
expression in (0.36) we identify the space of differential 1 forms with L? coefficients
with the space £2(A)® L?(R?).) Philosophically speaking, this may be due to the fact
that differential forms carry an antisymmetric structure (corresponding to fermions),
while the method of higher order Grushin problems developed in the present paper
(and in [W]) leads to some kind of bosonic quasi-particles.

In our case, Ag)), Af;) are self-adjoint non-negative operators with discrete spec-
trum, and even though we eventually avoid spectral theory and work in a pair of dual
spaces, it may illustrate some ideas to speak about spectra. The lowest eigenvalue
of A((ﬁo) is 0, the corresponding eigenspace is of dimension 1 and is generated by the

SOCIETE MATHEMATIQUE DE FRANCE 2000



8 CHAPTER 0. INTRODUCTION

normalized vector e~#/2*. The second eigenvalue j; of A((po) is positive and using the
intertwining relation

(0.37) AP dy = dsAY),

it can be shown that p; is among the eigenvalues of Af;). On the other hand, the
assumptions above will imply that Af;) > const. > 0 uniformly in j. If we had
assumed (as in [S1]) that ¢’ (z) > const. > 0 uniformly in z, j, that would have been
immediate from (0.36). As in [BJS] we only assume this at z = 0 however, and the
idea (exploited in [BJS]) is then to make a limited Taylor expansion,

¢"(x) = ¢"(0)+ > _ A ()¢}, (2),

to write ¢, (z) as h'/%(Z, + Z};), and to use a priori estimates that give control over
1Z,ull.

In [HS]|, we established a general formula for the correlations and in [S1] we ob-
served that it is related to Witten Laplacians. In this formalism and under the
normalization condition (0.30) it reads:

039) Cor(u,v) = (AD ™ dy(e=#/2u)|dy(e=¢/2v)

= h(AD T (e=9/2h qu) | (e~ 2 dv)).

In [HS], we used such a formula to establish the exponential decay of the correlations
Cor(z,,z,) when dist(v, i) is large. This is based on the simple idea that since we
have a uniform bound on the norm of (Af;))_l, then we should also have such a bound
after a conjugation of this operator by an exponential weight p(v) = e"™), v € A,
provided that r does not vary too fast.

In [S1] we obtained the leading behaviour of Cor(z,,z,) for large dist(v,u) by
using a Feshbach (or Grushin) approach to A((;) which in many ways amounts to
study the bottom of the spectrum of this operator. We introduced the auxiliary
operator Ry = Ri_’o : L2(RA) — £2(A) by

(0.39) (RY%u)(5) = (ule™?/?"dx;) = (ujle?/?"), j € A,

where u = Y ujdz; ~ (u;)jen, so in each component, we project onto the kernel of
AD. Let R = (R}")* be the adjoint.
Let
Hy = {ue L*RM); Z,u e L? Vv € A}

with the corresponding norm
leliFe, = llull® + 3 1 2o,

where || - || denotes the L? norm. Let H_; = H} denote the dual space. Then as we
shall prove below (and as was essentially proved in [S1] and in greater generality in

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 9

[BJS]), the operator

AY —z R¥

(0.40) PO(z) = ( RO.1 0 ) (M) @ Hy) x (FP(A)® C) —
+
(2(A) @ H_1) x (F*(A) ® C)

is bijective with a uniformly bounded inverse

1 (B2 EQY2)
(0.41) E9(z) = (EO_,I(Z) E;ilr(z))
for
(0.42) 0 <2 < Dhin(d(0)) - 5,

when h is small enough depending on C, and C > 1 may be arbitrary. Here and
in the following we follow the convention that all estimates and assumptions will be
uniform w.r.t. A, if nothing else is specified. By Amin(¢”(0)), we denote the lowest
eigenvalue of ¢”’(0). (As a matter of fact, we will need the invertibility only for z = 0
but keeping track of the spectral parameter will help the understanding. In the end
classes of exponential weights will be the more appropriate objects.)

Further, as we shall see (and as was established in [S1], [BJS]), we have

(0.43) EQ' = R¥'+0(h/?), E®' = RY'+0(h'?), E%} = 2-¢"(0)+0O(h/?),

in the respective spaces of bounded operators. Notice that Eg’i(z) is invertible for

—C <z < Amin(¢”(0)) — 1/C, i.e. in a smaller domain than (0.42). Actually, instead

of varying the spectral parameter, we shall take z = 0 and conjugate P%1(0) by an

P&l ), with p =€" : A — ]0,00[. We shall then see that
0 pR1

the conjugated operator P%! is uniformly invertible for p in a large class of weights.

Notice that the inverse is simply

p@1L 0\ g1 (Pt®L 0
Y :
( 0 p®l) 0) 0 pl®l

Moreover we shall see that (0.43) remains valid for the conjugated operators. (EOQ}L)_1
will cope with conjugation only with weights in a smaller class, and starting with the
case when A is a discrete torus (implying that Egi is a convolution), we shall be able
to analyze quite precisely the rate of decay of this inverse, and see that it corresponds
to weights in the larger class of weights with which £'° accommodates conjugation.
Since

exponential weight(

(Ag)™ = E%}(0) - B} (0)(B-4(0)) T E21(0),

SOCIETE MATHEMATIQUE DE FRANCE 2000



10 CHAPTER 0. INTRODUCTION

we can apply (0.38) and get

(0.44) Cor(zy,z,) = R(E*(0)(e=*/?"dz,)|(e~*/*"dz,,))
— h((B—+(0)) "' E21(0)(e~*/*"dx, ) |[E2" (0) (e~ #/*"dz ).

Because £%! can cope with conjugation with stronger exponential weights than
(Eg’i)_l, we see that the first term of the RHS in (0.44) has faster decay than the
second, when dist(v, 1) — oo and the more precise information evocated about the
inverse of E_ leads to a result of the type (0.27), where a priori the p; j, and g will
depend also on A through factors 14+O(h'/2). So far the ideas were already developed
in [S1] and [BJS], and as there we take advantage of the convolution structure to
use Fourier analysis. The exponential decay estimates then allow us to make analytic
extension on the Fourier transform side, which is essential for deriving exponential
asymptotics.

In order to get complete expansions as stated in the theorem, we will introduce
higher order Grushin problems. Let N? be the set of multiindices @ : A — N of
length j: |a| = |a|; = j. If J is a finite subset of N, we put N; = Ujc /N2, Since the
Z; form a commutative family, the operator (Z )@ is well-defined. For u € L?(R"),
put -

1, . _
(RY*u)(@) = (ul(Z)*(e*™), |o| < N,
so that RY* : L2(RA) — C2(Nfj ) (We will see in chapter 5 that this operator is
uniformly bounded.) Notice that 2 (Z*)*(e~%/2") are Hermite functions when ¢ is
a quadratic form. When u € £2(A) ® L*(R%), we put (RY'u)(j, @) = (R} "u;)(a),

(J,a) € A x N[o n)- Let RVF — (Rf’k)*, k =0,1, and introduce the auxiliary
(Grushin) operators for k = 0, 1:

A(k) RN
(0.45) PNVH(z) = (RN )
Hi x (N ) = Hor x B(NG ), k=0,

(M) @ H) x (E2(A) @ C(NB, 1)) — (B(A) @ H_y) x (2(A) ® (N y)),
k=1.

We will see in chapter 6 that PV:%(z) is uniformly invertible for

0 <2< (N4 DAuin(#'(0) ~ 5
and that the same is true for P">!(z) in the range
—C < 2 < (N 4 2)Amin(¢”(0)) — %

MEMOIRES DE LA SMF 83



CHAPTER 0. INTRODUCTION 11

This will be proved following the inductive scheme
(N,1) - (N +1,0) - (N +1,1),

starting with the case (—1,1), where by definition P~11(2) = Af;) - 2.
If

ki - [V BV
W“"(E_N”“(z) BN

denotes the inverse of PV-*(z) and El_vf;,,, ,.(2) denotes the operator matrix element of
EN?? corresponding to the decomposition éz(N[/(‘)y N) = ®N_?(NA), we will further

see that

(0.46)  BYY, ,(2) = A3V HBY, (2;h) + O(rEINHI=VIHINHI=RD ) iy £(42,02),

where B,J,\,' . has a complete asymptotic expansion in powers ht, ¢ € N. Essentially the

same result holds for EI_V+1 and similar results hold for Ef’k, E™*. The idea behind

this result is to consider the matrix of Afbo) (and similarly for A;l)) with respect to
the decomposition

LPRY =L@ &Ly &L n),
where £; = RY%(¢2(N2)) and L5y, is the orthogonal of Lo & -+ @ Ly = Ljg j, for

which the corresponding matrix elements of (Afbo)),w should behave as in (0.44).

Notice that (0.46) gives increasing precision in the asymptotics for a fixed (u,v),
when N increases. It is possible to describe £M* in terms of EV:F, for M < N, and
using this with M = 0 and N — oo, we arrive at a complete asymptotic expansion of
Eg’i(z; h) and at similar almost complete descriptions of Ei’l(z; h). In other words,
by using higher order Grushin problems it is possible to improve (0.43) and to get
full asymptotics. This improvement also survives the conjugation by exponential
weights in a sufficiently large class, and leads to a complete asymptotic description of
(Efi (2))7%, including the decay rate at large distances. Finally we use this improved
information in (0.44) to get complete asymptotics of the correlations. The handling of
the thermodynamical limit requires some additional arguments that we do not discuss
here.

A major motivation for this paper was the hope (yet to be fulfilled) that the
use of higher order Grushin problems may be useful in the study of correlations in
cases when ¢ is only weakly convex at its critical point. In such cases we do not
always expect the correlations to decay exponentially any more and one may expect
phenomena like phonons in crystals. Though we are still far from such a result, we
may point out that the parameter N can be interpreted as a maximum number of
particles under consideration, and that the k particle space £2(N%) can be identified
with the k fold symmetric tensor product of £2(A) with itself. In other words, our
particles are bosons.
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We have already mentioned the inspiration that we got from the paper [MZ], which
treats discrete spin models at high temperature. Earlier results in the same direction
were obtained for the Ising model by R.S. Schor [Sc] and P.J. Paes-Leme [P]. Related
results for self-avoiding walks have been obtained by J.T. Chayes and L. Chayes [CC].
See also chapter 5 of the book [Si] by B. Simon. Another related work is the one by
H. Koch [K], dealing with weakly coupled quantum field theories and is closer to the
continuous spin models that we study in the present paper, though in a perturbative
setting (as in [W]) and not in a semiclassical one.

Though the methods in the just quoted works are quite different from ours, some
basic features are the same. The Fourier transform of the correlation function (in
the infinite volume limit with one site fixed) extends holomorphically to a tubular
neighborhood of the real domain and meromorphically to an even wider tube. (In
our paper however, this is established not for the thermodynamical limit but at an
earlier stage.) The maximal width of the tube of holomorphy of the Fourier transform
gives the exponential decay rate, and the behaviour of the singularities of the Fourier
transform gives more detailed asymptotic expansions of the correlations. The expo-
nential decay rate is called the mass, and after specifying a direction or making some
other simplification, it becomes a number. In our work, the mass would rather be
the (convex) profile of the maximal tube of holomorphy, or the corresponding norm
which describes the correlation decay (in all directions) and there is no obvious way of
interpreting it as a number or even as a tensor. The upper gap measures the difference
of the tubes of meromorphy and of holomorphy respectively. It sometimes appears as
the improvement of the decay rate in the remainder of the asymptotics of correlation
quantities (see [CC]), and can be related to a spectral gap. In our paper it is related
to the first spectral gap of the Witten Laplacian for 0 forms or equivalently with the
first eigenvalue of the one for 1 forms. There is also the notion of self-energy which is
related to the possibility of approximating the Hessian ¢” with its expectation (¢"}.

The following conjecture is perhaps within the reach of the methods of this paper,
but its complete proof would require to consider thermodynamical limits already at
the level of the Grushin problems and might lengthen the text: Let ®(z) be defined
by (1.3) below (as the infinite volume limit of the Hessian of ¢y, (z)), and notice
that ®(0) is a convolution operator of the form al — v+ on ¢?(Z%), where v > 0 is
an even function on Z¢ vanishing at 0 and near infinity, and 0 < > v(j) < a. The
corresponding Fourier transform 5(¢) = Fv(¢) = >_v(j)e¥*¢ is then holomorphic on
(R/27Z)% + iR?, and we notice that [0(¢)| < v(in), ¢ = £ + in. We also know (|S1])
that v(in) is strictly convex, even, and tends to +oo when 77 — oo. For € > 0 small and
fixed, let Q. be the convex tube {¢ € (R/27Z)? 4+ iR%; (a — 0(in)) + (a — v(0)) > ¢}.
Then we can state the

CONJECTURE. — For h > 0 small enough depending on ¢, there is a holomorphic
function ®(¢;h) on Q. with an asymptotic expansion in the space of such functions,
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</I;(C;h) ~>3F i)j(g)hj, h — 0, where @0(0 = a —9(¢), such that (cf. Theorem 0.1)

047) @ Eih)e Y = (FEN) = g [ e
(R/27Z)4

(2m)4 ®(&; h)

The asymptotic behaviour of the integral in (0.47) can be obtained by contour de-
formation and stationary phase (see chapter 10 below and [S1]) and p; », becomes the
support function of the strictly convex profile of the largest tube around (R/27Z)?,
where ®((;h) # 0. This tube is within O(h) from the one given by a — v(in) > 0,
(=&+1n.

Here is the plan of our paper: In chapter 1 we give a slight generalization of
Theorem 0.1 closer in spirit to the methods developed in the following chapters. In
chapters 2-10, we do all the essential work, adding successively the assumptions that
we need. At the end of chapter 10, we arrive at the main result. In chapter 11, we
consider a slightly less general framework and extract a main result which is more
easily formulated.

In chapter 2 we review some standard facts about Witten Laplacians.
In chapter 3 we introduce some special Sobolev spaces, which are the natural ones for
our variational point of view.

In chapter 4 we discuss how to reshuffle creation and annihilation operators. The
reason for doing so will appear very naturally, and we are aware of the fact that such
reorderings also appear in quantum field theory.

In chapter 5 we apply the result of the preceding chapter to study certain scalar
products.

Chapter 6 is devoted to the well-posedness of higher order Grushin problems.

In chapter 7 we get asymptotics for the solutions of these problems and in chapter 8,
we show that these asymptotics for P! remain after introducing certain exponential
weights on the ¢2(A) component of PV:1.

In chapter 9, we study the effect of parameter dependence in order to treat the
thermodynamical limit.

In chapter 10 we arrive at the main result on the asymptotics of the correlations also
in the thermodynamical limit.

In chapter 11 we extract the main result as it is formulated in Theorem 0.1 above.
The two appendices can be read when referred to in the main text.

Acknowledgements. — This work was supported by the TMR-network FMRX-CT
96-0001 “PDE and QM”. We have benefitted from interesting discussions with W.M.
Wang. We are grateful to the referee for useful comments about the global perspective
(stimulating also for possible future work) and for indicating some useful references.
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CHAPTER 1

SLIGHT GENERALIZATION OF THE MAIN RESULT

We say that a function f on RZ" is smooth if it is continuous for the £ topology,
differentiable in each of the variables with continuous derivatives (for the £°° topology)
and the derivatives enjoy the same properties etc. Let ®;(z), j,k € Z% be smooth
and real on RZ" and satisfy

(A1) Dk (2) = Py,j(),
(A.2) Oz, ®jk = Or; P i,
(A.3) ® = (P, ) is 2 standard,
(A.4) ®(0) > Const. > 0.

Here we use the terminology of [S2] concerning k standard tensors. Let a = (aa;x()),
z € RA, j,k € A be a family of matrices (i.e. 2 tensors) depending on some family of
finite sets A. We say that a = ap is 2 standard if we have uniformly in z € RA, A,
the estimates

(1.1) (VFa(z),t1 ® -+ @ tiepa) = Ok ()[t1lp, -+ [tklpisas

for all t; € C* and p; € [1,+00] with 1 = 51T+"'+

pk1+ —. Here |- |, denotes the
standard £7 norm on C*. When z varies in RZ" and j, k € Z%, we require the aj k()
to be smooth in the sense mentioned earlier and say that a is 2-standard if (1.1) holds
with A = Z¢ and t; € C*, with ¢;(A\) — 0, A > A — oco. Notice that a 2-standard
matrix is O(1) : 7 — ¢P, for 1 < p < oco.

Let F be as in (0.2), (0.3), (0.4). In general, the formal expression (cf. (0.7))

(1.2) $ga(z) = Y F(r,z), z € R%

vezd
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does not converge, but the (formal) Hessian is well defined by the following sum with
only finitely many non-vanishing terms,
(1.3) $pa(@)ik = > F'(12)jiuprs = @ (2).

veZd
It is easy to see that ®;;(x) satisfies (A.1-3). (For verifying (A.3), we notice that
(V’WI)),,IW,,,,C,F2 is bounded, and vanishes except when v; — v, = O(1), 1 < £,m <
k+2.) (A.4) will follow from (A.mp) below, which in turn will be a consequence of
(0.20), (0.21).

If Z% is replaced by a finite set A, then (A.1,2) becomes a necessary and sufficient
condition for the existence of a real valued function ¢ € C°(R") with ¢/, = ®; 4. In
the Z? case we shall now see how to produce two different finite dimensional versions
of such a function.

Let U C Z% be finite. If € RY, let 7 € R2" be the zero extension of z, so that
z(j) = z(j) for j € U, 2(j) = 0, for j € Z¢ <\ U. Then

Pujk(T) = @ k(2), k€U

is a smooth tensor on RV which satisfies (A.1,2) with j, k,£ € U. Hence there exists
a function ¢y (x) € C°(RY;R) with

(1.4) U@ = Puk(@), z€RY, jkeU.

We make ¢y unique up to a constant, by requiring that

(15) ¢1,(0) = 0.

It is easy to check that ¢f; is 2-standard. (In the case of (1.3), we get ¢y as in (0.23).)
We next do the same with U replaced by a discrete torus A = (Z/LZ)?. We will
assume translation invariance for ®:

(A?) (I)j+)\,k+)\(7')\l‘) = <I>j,k(x), j,k, AE Zd.

(In chapter 11 we discuss a larger set of conditions and reproduce here only the most
important ones with the same numbering as in chapter 11.) Notice that if ®;; were
the Hessian of a smooth function ¢ € C”(de) (and the discussion remains valid if
we replace Z? by a discrete torus A) then (A.7) would be a consequence of the simpler
translation invariance property:

(1.6) d(maz) = P(z).

Ifz c RM let & = zomy € RZ be the corresponding LZ? periodic lift, where
mp @ Z% — A is the natural projection. Replacing z by Z in (A.7), we get

(17) ‘I)j—/\,kf/\<5) = fbj’k(i), A E LZd
If we view ® as a matrix, this is equivalent to

(1.8) 720 ®(Z) = ®(Z) o7y, X € LZY,
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so ®(%) maps LZ¢ periodic vectors into the same kind of vectors. Hence there is a
naturally defined A x A matrix ®(x), defined by

—_—~—

(1.9) op(2)t = D(T)E,

where again the tilde indicates that we take the periodic lift. On the matrix level, we
get

(1.10) Qpjn@) = Y. B33,
keny (k)
for any j € 751 (j). Alternatively, we have
(1.11) Opgi(z) = Y. @53, kemy'(k),
jeny ()
and ®y;; x is symmetric (cf. (A.1)).

In chapter 11, we shall verify that ®, satisfies (A.1-4), so there exists ¢, €
C*(R";R), unique up to a constant, such that

(1.12) Ppjk(z) = Oz ; 0z, dA (), ¢ (0) =0.

(In the case of (1.3) we get ¢ as in (0.7).)
We assume that ®(0) is ferromagnetic in the sense that

(A.9) ®;k(0) <0, j#k.
(In the case of (1.3), this follows from (0.15).) We have
(1.13) ®(0) = 1 — To*,

where 0 < ¥y € £}(Z%) is even with 7(0) = 0 and the star indicates that vy acts as a

convolution. Actually, the constant 1 should be replaced by a more general constant

a > 0, but we may always reduce ourselves to the case a = 1, by a dilation in h.
Assume that there exists a finite set K C Z? such that

(A.10) () >0, j € K, Gr(K) = 2%,

where Gr(K) denotes the smallest subgroup of Z¢ which contains K. We also make
the following finite range assumption:

(A.fr) 3Cy, such that ®; x(x) = 0 for [j — k| > Cp.
We introduce the 2 standard matrix
1
(1.14) Alz) = / ®(tz)dt,
0

The following assumption is a weakened convexity assumption and will be used
in chapter 11 together with a maximum principle (from [S4]) to obtain other more

SOCIETE MATHEMATIQUE DE FRANCE 2000



18 CHAPTER 1. SLIGHT GENERALIZATION OF THE MAIN RESULT

explicit conditions.

Jeg > 0 such that for every z € RZ”, A(x) satisfies (mpeog):
(A.mp) If t € £1(Z%4R), s € £°(Z4R), and (t,5) = [t]1]5|co,
then (A(x)t, s) > eolt|1]8]oo-
Notice that this assumption is fulfilled if A(z) = 1 + B(x) with || B(z)]| £(gee o) <
1 — g9. Also notice that (A.4) is a consequence of (A.mp). (In the case of (1.3) we
get (A.mp) from (0.20), (0.21). It should also be noticed that in the general situation
above we have (1.2) with F(z) = Y, Yo r(z)z(0)z(k), ¥(z) = fol(l — t)P(tx)dt.
However the more general conditions do not seem to transform easily into simple
conditions for this function F'. Also, the definition of F' depends on the condition
(A.fr) which could certainly be weakened.)
The following is the main result of our work:

THEOREM 1.1. — Let ®;x(x) € COO(RZd) satisfy (A.1-3, 7, 9, 10, fr, mp) and
define ¢y (z) € C¥(RY;R), pp € C®(RA;R) as above, when U C Z¢ is finite and
A = (Z/LZ)? is a discrete torus. Then we have the conclusion of Theorem 0.1.
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CHAPTER 2

ASSUMPTIONS ON ¢

Let ¢ € C®°(RA;R), where A is a finite set. We shall let A and consequently ¢
vary with some parameter, but all assumptions are uniform w.r.t. A, if nothing else
is specified. Our first assumption is

(H1) ¢ = ¢" is 2 standard in the sense that for every k > 2, we have uniformly
in Aandin z € R* : (0¥ (2),t1 ® --- @ tg) = OVt lp, - - - [tklpy, t; € CA,

1 1
whenever 1 <p; < o0, and 1= — +--- 4+ —.
4! Pk
Here ¢*) = V¥¢ is the symmetric tensor of kth order derivatives. See [S2] for
definitions and basic properties concerning standard tensors. Recall that by complex
interpolation it suffices to have the estimate in (H1) in the extreme cases

)L v=y
P oo v 5,
for j =1,...,k. Notice that (H1) implies that ¢”(z) : ¢/ — ¢P is uniformly bounded
forze R, 1< p< 0.

The next three assumptions imply that x = 0 is a non-degenerate critical point of
¢ and the only critical point:

(H2) ¢'(0) =0,
(H3) ¢"(0) > const. > 0,
(H4) ¢'(xz) = A(z)x where A(z) is 2 standard and has an

inverse B(z) which is O(1) : ¢ — ¢P, 1 < p < 0.
We observe that B will also be 2 standard. Also notice that (H1), (H2) imply that
(2.1) |4/ (2)lp < O()]zlp, 1< p < o0,
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while (H4) implies the reverse estimate
(2.2) |zl < O(1)|¢' (z)]p, 1 < p < o0.

It would be of interest to know if conversely (2.2) and (H1-3) imply (H4). Also notice
that (H4) (or (2.2)) implies that ¢ (0)~! exists and is O(1) : ¢ — ¢P. When checking
(H4), a natural candidate for A(z) is fol ¢ (tx)dt, which is 2 standard by (H1).

We end this chapter by introducing Witten Laplacians and related objects (cf.
[S1]). For that purpose we shall work on R*, where A is some finite set. Let d =
Y tca dr) ®0,, denote the De Rham exterior differentiation which takes differential k
forms on R to differential k+ 1 forms. Here dz denotes the operator of left exterior
multiplication by dz, and we let dmf{ denote the adjoint operator of contraction, which
is well defined if we view R* as a Riemannian manifold with the standard metric.
Recall that d is a complex in the sense that dod = 0. Using the standard scalar product
on the space of smooth k forms, we can define the adjoint d* =), x da} © (~8y,),
taking k+1 forms into k£ forms. The corresponding Hodge Laplacian is then d*d+dd*.
It conserves k forms and commutes with d and d*.

The Witten exterior differentiation is obtained from d by conjugation by e?/?* and
multiplication by a cosmetic factor:

(2.3) dy = hY2e=/?h o d o e?/?h = Z dz} ® Zy,
LeA
where
(2.4) Zy = e /o h1/29,, 0 e/ = h1/29,, + h1/%9,,0/2.

We view Z; as annihilation operators. The corresponding creation operators are
(2.5) Zy = —h'20,, + h=1%0,,¢/2.
We have the commutation relations:
(2.6) (2, Zx] = 0, (25, Z] = 6k (2), j;k € A.

dy is a complex and the corresponding Hodge Laplacian is called the Witten Lapla-
cian and is given by:
(2.7) A¢ = d;d(p + d¢d:;.
It conserves the degree of forms and we denote by Af:) the restriction to k forms.
Only the cases k = 0,1 will be of importance to us and maybe the explanation of
this fact is that by working with differential forms, we impose a fermionic structure,
while the problems in this paper have a bosonic structure with the degree k viewed

as the number of particles. It would be interesting to know if there are some other
operators better adapted to the bosonic structure. A general formula for Ay is

(2.8) Dy =T®AG+ > ¢ (x)dz) day,
I3,k
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where we from now adopt the convention of letting the form component be the first
factors and the function components to be the last factors when we represent dif-
ferential forms and corresponding operators as tensor products. A;O) acts on scalar
functions and is given by:

0) _ *
(2.9) Ay = Z Z: Z;.
J

When k = 1, the formula (2.8) simplifies to
(2.10) AY =10 AP +¢"(2),
provided that we view 1 forms as functions with values in C*. Again d, and dy
commute with Ay and in particular,
0) _ A(D) x A1) _ A (0) g«
(2.11) deDy” = Ay'dg, dyAy’ = Ay7dg.

Under the assumptions (H1-4) we know (see for instance [BJS] or [J]) that Afpk)
can be realized as a selfadjoint operator by means of the Friedrichs extension. We
will use the same symbol to denote this selfadjoint operator. Moreover, the spectrum
is discrete and contained in [0, +0o[. When k = 0 the lowest eigenvalue is simple and
equal to 0. The corresponding eigenspace is spanned by e~?/?". When k = 1, the
lowest eigenvalue is > 0 (see for instance [S1]).
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CHAPTER 3

THE SPACES H.,

There will be two versions of these spaces, one for scalar (C valued) functions and
one for functions with values in C*. We start with the scalar case. We assume (H1-4)
throughout this chapter.

If u € C°(RM), we put

(3.1) lull3, = lullf = llul® + Y 1 Zeul?,
LeA

and let H; be the closure of Cg° for this norm. H; is the form domain of A;O), and
by a standard regularization argument we know that

(3.2) Hy = {u e L2(R™); Zyu € L?, V2 € A}.

Let H_; be the dual space. Using the standard L? inner product, we view H_; as a
space of temperate distributions and have the natural inclusions:

(3.3) SR cHy C Ho € H_1 € S'(RM).

Here the two inclusions in the middle correspond to inclusion operators of norm < 1
and Hy denotes LQ(RA). ‘H; is a Hilbert space with scalar product

(3.4) [ulo]: = (ulv) + Y (Zeu| Zew) = (1 + A Yul),
LeA

where (-|-) is the usual inner product in L2. From this it follows that 1 + Afbo) is
unitary from H; to H_;. We also remark that H_; is the space of all

(3.5) u=u’+ Z Zjug,
with u% u, € L2. Moreover ||u||?; is the infimum of [|u®||2 + 3~ |ju¢||? over all decom-
positions as in (3.5).

We now pass to spaces of 1 forms, whenever there is a possibility of confusion we
indicate the degree of the forms by a superscript (k), so that the spaces just defined
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are Hi’}. Put
(3.6) HY = 2(A) @ HY)
The corresponding scalar product of two 1 forms u = Z ujdr;, v ="y v;dz; is then

B7) [uloh = [uslv;l =Y (ujlvg) + Y (Zjurl Zjve) = (o) + > (Zjux| Zjox).

J Jk 3k
It can also be written ((1+1® Ag)))u|v). Again H(_lf is the dual space of ’Hgl), and
(3.8) 1+1® Ag))) : Hgl) — H(_lf is unitary.

Later we will need to approximate ¢”(z) by ¢”(0) in these spaces, and for that we
shall use the following lemma.

LEMMA 3.1. — The operator u(x) — (¢"(z) — ¢"(0))u(z) is bounded Hgl) — H(_ll)
and of norm O(h'/?).

Proof. — Using Proposition A.1, we see that
(3:9) ¢x(@) = ¢]1(0) = he{) () hl/?Zze 0 @3 o(@) + 2" 61 (@) 0 Z4,
¢

where ¢(*) are standard tensors. Let u,v € C°(R?) and use (3.9) to get

(3.10) ((¢"(z) — ¢"(0))ulv)
= hl/? Z(¢>(O) cuk|Zev;) + B2 Z(¢(°) ¢ Zruklvg) + hZW( i k]vs)-

7,k,2 7,k,€ 7,k

Since ¢() is 2 standard, the last sum is O(h)||u||[|v||. For the two other sums, we use
Lemma B.2 and get for the first sum: '

611 |3 6% uZim| < o) (X hw@R) (2 1Zews )"

£,5,k 7
This implies that the first sum in (3.10) is O(1)||u||||v||1. Similarly the second sum is
OM)|lull1||v]l. We then get

(3.12) ((¢" (z) = ¢"(0))ulv) = OR)||ulllll,

which implies the lemma. O
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CHAPTER 4

RESHUFFLING OF Z AND Z*

Let J={1,...,N}, K={1,...,M}, f € C°(RM). Then for j € A’, k € A¥, we
want to rewrite

(4.1) (H Zj(u)) ofe ( II ZZ<M)>
veldJ peK

as a sum of similar terms with the Z* to the left and the Z to the right. We first move
each factor Z;(,y as far as possible to the right, taking into account the appearance
of commutator terms, due to the relations

(4.2) (25, /1 = h'120,, f(2) = [f, Z}), (23, Zk] = 6w (@)

After that, we move the surviving factors Z; as a far as possible to the left, generating
new commutator terms. The expression (4.1) becomes

(4.3) Z % Z ( H Z’:(H)) Oh%(#JP+1+#KP+1)X

P>0 J=JoU---UJp41 pneKo
K=KoU---UKp41
partitions with
Jp#DB#K,, for 1<p<P

(( H Bxk(u,axj(u))f> ﬁ (h_1+%(#.zp+#xp)( H (axk(mazj(u)))gb) H Zj()-

pEKpya, p=1 pneEK, veJo
veEJpy1 veJy,

Here and in the following we use the term partition for a union of pairwise disjoint

sets. The factor 1/P! can be eliminated if we let the second summation be over all

simultaneous partitions of J and K which are non-ordered in the indices 1 < p < P.
Define a map m : AN — N, by

(4.4) m(j)(A) = #{k; j(k) = A}, A€ A.
If a € N*, we put o = |afi = Y cp @(A). Then [m(j)| = N. We write
(45) N} = {o € N Ja| = N},
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and more generally

(4.6) N4 = {a e N»; |o| € A},
if ACN.
If j € A7, k € AK as above, then
(4.7) I Zio) = 2=, [ 2 = (2",
velJ neEK

where o = m(j), 8 = m(k), and where we use standard multiindex notation, Z* =
[Thea Z;’()‘). Conversely for a given a € N4, the number of j € A’ with m(j) = a is
equal to N!/a! = |a|!/a!. For a typical term in (4.3), write

(4.8) IT ooy = 02, T1 0y, = 027,

wEKp veJdp

and similarly with 9, replaced by Z or Z*. Then

(49) a=ao+ - +apsy, B=Po+ -+ Bp41,
with a, #0 # B, when 1 <p < P.

Conversely, for such a decomposition of @ = m(j), we consider the decomposition
a!
ap!--apii!
corresponding partitions of J into JyU---U Jp41. The equality of the expressions in

(4.1) and in (4.3) becomes

a(A) = ap(A) + -+ apy1()) for every A € A, and see that there are

ze (2
(4.10) ol ofo B -
1 (z+)2 gpretive y
Z _' Z h%(|ap+1|+|ﬂl’+1|)x—-—
1
2 P oo s, ap! api1!Bpyt!

B=PBo++Bp+1,
a;j,B;7#0 for 1<j<P.

P ap+0,
» H(h—1+%<|ap|+|ﬂp|>w 2%
i B! By

We shall transform our expression further by using non-commutative expansions of
the tensors appearing in (4.3), (4.10). For this, it seems easier to work with (4.3), and
we assume that f is 0 standard, or possibly M standard, depending on M additional
indices. For simplicity, we write

H Zkw) = Zkiko> ( H Oz H 8£j(u>)¢:¢lep,le;v'

neKop neKy, veJy
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Now apply Proposition A.1 to one of the tensors:

* 0
Pl Ky 10y () = Brikc, 510, (0) + B2 Z; °¢§c|}<,,,,|.; (@)
e

Y2 Bl it () © e+ B, 1, (@):
LeA

When substituting this into (4.3), the effect of the first term of the RHS will be to
freeze the corresponding factor to = 0. For the contributions of the second term of
the RHS of (4.11) in (4.3), we move the Z; to the left, until either it joins the factors
ZI:IKo or until it forms a commutator with a ¢k, jjs, or with fikp,, jjJp,,, that
we denote by ¢k, j|J,.¢ (also for ¢ = P+ 1). In the second case the £ summation
amounts to the contraction of two standard tensors, which produces a standard tensor
and an additional power of h. For the contribution of the last sum in (4.11), we move
the factors Z, as far as possible to the right and repeat the same discussion. The
contribution from the last term in (4.11) in (4.3) is simply to introduce an extra
power of h. The procedure can be iterated a finite number of times, and we see that
the general term in (4.3) becomes a finite sum of terms of the type

(4.11)

X r7x * (1)
(4.12) > W 251 ko Zi 100Ul g 41 © Phiky 1o oLy Ry (B)
PeAL1Y VLG4
reAF19 YR+ (Q+1)
KK 1ilJasnlLa s riRass (&) © ZildoZriRiU-URg-

Here K = Ko U---UKgy1, J = JoU---UJgy1 are partitions and Ky # @ # J, for
1<¢<@Q. @ are standard, Lg, R, are finite disjoint sets, possibly empty, and

1 1
X:5#(L1u--~uLQ)+5#(R1u~-uRQ)+N

Q
+Z( (#Kg+#Jg) —1) + 5 (#KQ+1 +#Jo+1),
1

where N € N, and we have arranged that ®(@+1 is the factor which contains the
contribution from f under the contraction procedure.

The point with the further Taylor expansions of some of the terms in (4.3) is to
arrive at terms with constant factors ®*). More precisely, we can introduce a stopping
rule, so that we only get terms of the form (4.12) with

(4.13) #(HKoUL1U---ULqgt1) < A,
(4.14) #(JoUR U---URgy) < B,
(4.15) N < Ny,

where A, B, Ny are given integers > 0 with A > #K, B > #J, and so that the
factors ®*) are constant for all terms for which we have strict inequality in all the
three relations (4.13-15).
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We will also need a slight variation of the arguments above. Assume for simplicity
that f = 1. Then from (4.3), we see that (4.1) takes the the form

P
1 . 4l
(4'16) Z ﬁ Z Zk|K0 H(h 1+2(#Jp+#Kp)aIk|K,,axj|Jp ¢(x))Zj|Jo'
p=1

P>0 : J=JoU---UJp
K=KoU---UKp
partitions with

Jp#D#K, for 1I<p<P

We now want the coefficients to the left, so we move all the factors 0;,, 0s,, ()

to the left, taking into account the commutator terms. Then the expression (4.1)

becomes:
P
Joy.ond —141 *
(417) > S cperte T[(h 43 # #5590, 0, 6(2)) Zik Zite-
P>0 J=JoU---UJp p=1
K=KoU---UKp

partitions with
Jp#D#Kp for 1<p<P

Here the combinatorial coefficients C'. are independent of A.
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CHAPTER 5

STUDY OF (é(z*)a(e—wh)|Bl—,(Z*)B(e'¢/”))

After adding a h-dependent constant to ¢, we assume that
(5.1) /e—¢(x)/hdx =1.

We want to study the matrix formed by the scalar products in the title of this chapter,
for |al, |8] < Ny, for some Ny € N. Equivalently, we want to study,

(5.2) (Z;”((e—¢/2h)lz;u(e—¢/2h))7

for J={1,...,N}, K={1,...,M},0 < N,M < Ny, k € AX  j € A’. Here we use
the notation of chapter 4. We write this as

(5.3) (ZleZ;|K(e_¢/2h)'e‘¢/2h)a

and apply (4.12), with f = 1, in which case the factor ®@+1) drops out. Since
Z(e~?/?h) = 0, we can further restrict our attention to the terms with Ko, Lg, Jo, R,
all empty, and it follows that (5.2) is a finite sum of terms of the type

X a1 (Q) —¢/2h| _—¢/2h
(5.4) WX (@5t Prikaulie® T e,

Here K = K1 U---UKgq, J = Ji U---U Jg are partitions with K, # & # J, for all
q. Further,

Q
1
(5.5) X=N+Z(§(#Kq+#Jq)—1), N e [0,M]NN,
1
where N; is any fixed sufficiently large integer > 0, and as we saw in chapter 4, we
may arrange that ®*) are constant for the terms with N < N;. Because of the
Hilbert-Schmidt property of standard tensors (Lemma B.2), we see that the term

(5.4) defines a matrix which is O(hX) : (2(AK) — ¢2(A7), and when N < Nj it is

(1) Q)

also equal to hX times the (constant) matrix <I>k|K1 IR q)leQ.leQ'
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(a2 4

Rewrite (5.5) as

1
(5.6) X=N+§(#K+#J)—Q,
and notice that 1 < @ < min(#K,#J). Then we can write
1 S
(5.7) X = 3|#K —#J|+ N, NeN.
We have proved most of the following result:
PROPOSITION 5.1. — The matriz (5.2) has an asymptotic expansion
(5.8) ~ Y RERER Y, (1 KIK),
v=0
where the matriz m,, jk is O(1) : £2(AK) — £2(A7). Moreover,
(5.9) mossGILED = > T ¢ ke (0

w€Perm (J) p€J

where Perm (J) is the group of permutations of J.

It only remains to verify (5.9). It suffices to review the computations which lead
to (5.4), (5.5) with a minimal X, i.e. with N =0, @ = N, and we omit the details.
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CHAPTER 6

HIGHER ORDER GRUSHIN PROBLEMS

In this chapter we introduce a sequence of auxiliary, so-called Grushin problems
for A((bo) -2, A;l) — z and show their well-posedness.
For o € NA, put

(6.1) ea = —7=(27)"(e ),

-

Then e, € L?(R"). For N € N, define

(6.2) Rf’ou(a) = (uleq), u € LQ(RA), |a] < N,
(6.3) RNO — (RNOy*,
so that

RYY: LARY) — £A(Nf v,
RY: LARY) — £(Nf v,

where 62(Nf}) N]) is equipped with the standard scalar product.
These operators can also be described in an equivalent and sometimes more con-
venient way. Put

(6.4) €0 = €g, €j = Zroan (e, j e AM,

I .
=iy
(6.5) RYPu(j) = (ule;), 1€ AUAU---UAN.

Here we put A° = {0} by definition. Then v, := Ef’ou is an element of the space
2(A°UAYU---UAYN), which is invariant under the permutations: v (j) = v4(jom),
j € AM 7 € Perm ({1,...,M}). We say that v, belongs to the bosonic space
(A°UAT U -~ UAYN) of ¢2 functions that are invariant under the permutations
above. The latter space can also be viewed as a direct (orthogonal) sum of symmetric
tensor products; ©_,(©}¢2(A)). The identification of RY u and R u is given by

Val

RY%u(a), if m(j) = a, |a| =
lof!

(6.6) R Cu(y) =
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This identification also respects the ¢2 structures:

67 RYuE= Y IRV = Y |!JR u@P Y1

JEAOU--UAN |al<N jeEM~ ()
= > [RY%u(a)? = [RY%ul3.
la|<N
Put
(6.8) Ry =1@RY: 2(A) ® LHRY) — (2(A) @ (Nfy v)),
(6.9) RY' =1@RM: 2(A) @ L*(R™) — 2(A) ® (N y)).

We consider the following Grushin problems for v = 0, 1:

{(A((;) —2)u+ RN u_ = v,

Gr(N,v
(G (N, )) PO

where v € H") L, u€ H(")
2(N —
uﬂue{f(wm) v=0
CA) ® (N {ON]) v=1,

and z belongs to a suitable bounded interval, that will be specified. In the problem
above, v and vy are the given quantities and u, u_ are the unknown. The main goal
of this chapter is to prove

PROPOSITION 6.1. — For every N € N, C' > 1, there is a constant C > 0 such that
the following holds for h > 0 small enough:

(A) If =C < z < (N 4 1) Anin(¢”(0)) — 1/C, then (Gr(N,0)) has a unique solution
(u,u_) € Hy x €2 for every (v,vy) € H_1 x £, and

(6.10) lullre, + lu—l2 < C(llollr_, + lotl2).

(B) If —C < z < (N + 2)Amin(¢"(0)) — 1/C, then (Gr(N,1)) has a unique solution
(u,u_) € Hy x €2 for every (v,vy) € H_1 X £? and (6.10) holds.

Here Amin(¢ "(O)) > 0 denotes the smallest eigenvalue ofd) (0) and Hyy = 'Hil in
case v, €2 = (>(N 0, N]) in the case v =0, £2 = (?(A) ® 2(N) 0,n)): when v =1.

We shall prove the proposition following the inductive scheme
Gr(k,1) — Gr(k+1,0) — Gr(k + 1,1),
where we start by considering Gr(—1, 1), which by definition is the problem

(6.11) (Afbl) —2)u=v, u€ Hy,veH_.
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LEMMA 6.2. — For all C > 1, —C < z < Anin(¢”(0)) — 1/C, and h sufficiently

small, depending on C, the problem (6.11) has a unique solution u € Hi, for every
v € H_1. Moreover,

(6.12) lullse, < Cllvlla,,
where C > 0 depends on C but not on z,h, A.

Proof. — Recall that Afﬁl) = 1®A§)0) +¢"(z) and consider first the simplified problem,
(6.13) 1A +¢"(0) — 2Ju=v, ueHi,veH_1
If u solves (6.13), take the scalar product of this equation with u and get
ollze_ulle, > (lu) = (1@ AY + ¢"(0) — 2)ulu)
> (1@ A + Dufu) + ((¢"(0) - 2 — e)ulw) = ellull3,,
for € > 0 small enough, so
(6.14) lull#, < Cllolln_,-

This gives injectivity and the analogue of (6.12) for the problem (6.13). Since
(1 ®Ag,0) +¢"(0)—2) is a bounded selfadjoint operator H; — H_1, it is also surjective,
so (6.13) is uniquely solvable and satisfies (6.14). To get the lemma it suffices to use
that ¢"(z) — ¢"(0) = O(h'Y/?) : Hy — H_1. O

The preceding lemma gives well-posedness for Gr(—1,1) in the appropriate range.
Let us now perform the step Gr(—1,1) — Gr(0,0), so consider

(Ag)) —2)u+R*%u_ =v
(6.15) 00

R+ U = Vq,
with v € H_1, u € H1, u_,vy € C, Ry u = (u|e=?/?"). We let 2 be in the range of
the lemma above, and we first prove uniqueness in (6.15). Let v = 0, v = 0in (6.15).
Since dyR"" = 0, d¢A((po) = A((;)dqg, we get by applying dy to the first equation in
(6.15):
(6.16) (AL — 2)dgu = 0.

Here we only know a priori that dyu € L?, so we cannot apply Lemma 6.2 directly.
However, it is easy and standard to show that every L? solution w of (A((;) —z)w =0,
has to belong to S and in particular to H;. Consequently, we can apply Lemma
6.2 and conclude that dyu = 0. Since d; = h'/2e=%/?" o d 0 e%/2"_ it follows that
u = Xe~?/?" for some constant A\ € R. Using also that vy = 0 in (6.15), we see that

A =0,s0 u =0 and then u_ = 0, and we have proved uniqueness for solutions of
(6.15). Define zg € [0, 0o[ by
6.17 zo = inf Ay lw).
(6.17) 0 uenln@—w%)l( s ulu)
[lull=1
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Since the inclusion map H; — L? is compact, there exists ug € H; N (e~%/2")L with
lluo|| = 1, such that

20 = (A;O)u0|u0), ie. ((Ag)o) — zp)uplug) = 0,
while ((AS — zo)ulu) > 0 for general u € Hy N (e=%/2")L. It follows that (Ag)) -
20)ug = pe~?/?" for some u € R and since uy L e %/2" and e=%/?" ¢ KerAg)),

we see that 4 = 0. Hence (Ag)) — zo)up = 0, s0 u = ug, u— = 0 is a solution of
(6.15) with v = 0, vy = 0 and z = 2. Since we know that (6.15) is injective for
0 <z < Amin(¢”(0)) — 1/2C, for h small enough depending on C, we conclude that

(6.18) 20> Amin (6" (0)) — %

Let us now restrict the attention to —C' < z < Apin(¢”(0)) — 1/C and derive an a
priori estimate for solutions to (6.15). Let first vy = 0 in (6.15), and take the scalar
product of the first equation there with u, and use that (R*%u_|u) = (u_ |Ri’0u) =0.
We get
(6.19) (A — 2)ulu) = (v]u).

With § > 0 small enough, write
0 z
AL — 2 =6AD + (1 -8)(AY — 20) + (1= 8)(20 - =),
and get
z
(A" = 2)ulu) 2 6(A ulu) + (1= 8) (20 — =) l1ull* > dllull3,.

Hence from (6.19), we get

lullfe, < Cllvllwe, lulls,

(6.20) lullse, < Cllolls_,,

for solutions of (6.15) with v = 0.
Now take the scalar product of the first equation in (6.15) with R*’u_ and get

—2(u|R%%u_) + Ju_|> = T_(v]e"%/").
With (6.20), this gives |u_[2 < C||v||»_, |u_| and hence
(6.21) lu—| < Cllvliw_.,

where we let C' denote a new constant in every new formula.
If vy # 0, consider U := u — v, e~%/?" which solves

(Ag)) —2)u+ R%%u_ = v+ zv e 9/2h
R}%u = 0.

Applying (6.20), (6.21) to this system, we get

e, + o] < Olllellre, + os]),

(6.22)
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leading to
(6.23) lullre, + lu-| < C(llollr_, + [o+]),

for solutions of (6.15). Since this problem is selfadjoint, we also have existence and
we have proved the proposition for (Gr(0, 0)).

Les us now prove that if for some N € N the proposition is valid for (Gr(NV,0))
then it is valid for (Gr(NV,1)). So we assume for a fixed N that (A) holds for all C
with A > 0 small enough depending on C, and we want to prove (B) with the same
N. Using again that ¢”(z) — ¢"(0) = O(h/?) : H; — H_,, we see that it suffices to
treat the simplified problem

6.24 1A +¢"(0) - 2)u+ RV u_ =
( : ) RN11 _
+ U = Vq.

Since we have (A), for the chosen value of N, we know from the preceding discussion
that

(6.25) (AP wlw) > (N + 1) Amin(9”(0)) — 5

inf ,
weM, |lw||=1 2C

R_I:’O’w=0

for h > 0 small enough depending on C. Consider (6.24) in the case v+ = 0. Then
Rf’ouj = 0 for each component u; of u and consequently

(1@ AD)ulu) > (N + 1)Amin — %) [l

Since (¢'(0)ulu) > Amin|lul|?, we get

(0) 1 2
(6.26) (T®A," +¢"(0) = 2)ulu) = F5[lull®)
for z in the range of values of (B). As before, this leads to
(6.:27) (1® AL +¢"(0) - 2)ulu) > dllully,,

for some & > 0. Take the scalar product of the first equation in (6.24) with u, and
use that (RN u_|u) = (u_|Rf’1u) = 0. Then

Sllullfy, < Nvllrey llulln,
which gives,

(6.28) lullr, < Cllvlln,

for solutions of (6.24) with v4 = 0, when z is in the range of (B).
We next want to take the scalar product with RI_V’lu_, and as a preparation we
need to establish two results about R4.
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Lemma 6.3. — RYRNC 45 0(1) - EQ(Nf(‘) n) — (N y)) and has a uniformly
bounded inverse. Moreover, if rp : £2(N 0, N]) — (2(NB) is the natural restriction
operator, then for 0 < P,Q) < N.

(e}
(6.29) rpRYORN Oy ~ N prtElP=Qing, b,
v=0

in L(6*(NQ), £2(N)) uniformly with respect to A. Here
(6.30) M{Pp=0"0)0-©¢"(0).

Proof. — For simplicity, we work with the equivalent operators ﬁg 0 between L*(RM)
and £2(A°UA'U---UAY), where the subscript b indicates that we take the “Bosonic”
subspace of permutation invariant elements of #2. Then the matrix of T'pRN ORN0y O
is given by

1

Nl

with P = {1,...,P}, @ = {1,...,Q}, p € A2, p € A¥. The uniform asymptotic
expansion (6.29) then follows from Proposition 5.1. Moreover, the matrix Méf\Q p

(6.31) MM Zgole M),

(corresponding to Mé p) has the elements

1
(6.32) 5 2 1 Berawen©:

" mePerm (K) vEP

which has the same action on ¢2(A”) as the matrix

(6.33) IT %5000 (©)
veP
which is simply the matrix ¢”(0) ® - - - ® ¢"(0). O

By tensoring all the spaces with £2(A), we get the obvious analogue of Lemma 6.3
for RY"'R™!. 1t also follows from Lemma 6.3, that R""* is uniformly O(1) : £ — L2
Consequently Rf = 0(1) : L? — ¢2, and we have the corresponding facts for R}'.
This can be strengthened:

LEMMA 6.4. — RYO s unzformly bounded: 62(N[0 N]) — Hi. Consequently Rf’o is
uniformly bounded H_, — ¢*>(N 0, N])

Proof. — Again we think it is more convenient to work with the equivalent operator
RN? Let 1 <M < N, u € £2(AM) and consider

(6.34) Z;RN "y = Z3 3 pa(€ P yu(m),

X, 7

meAM
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where M = {1,..., M}. We apply the expression (4.17) to obtain
(6.35)

Zjéfyou = Z Z CMo,M1 h_%+%#Mlal‘j81m|1\/]1 ¢($)Z1*n|MO (e—‘b/?h)u(m),

meAM M=MoUM,;
partition with
M, #2

where Chy, p, is independent of A, and equal to 1/vM! when #M; = 1. For u €
CZ(AM), v e £2(AP), 1 < P,M < N, we get

(6.36) > (2;RYOu|Z; RN Ov) = (BPMulv),
J
where BPM is given by a matrix BJ’M, p € A”, m € AM, which is a finite linear
combination of terms
_14l 1 N _ _
(6.37) K HAFM P (7, 5 57 (Dry 1, 02, 8) D Doy ) Fiagy ()| #/2),
where M = My U My, P = Py U P, are partitions with M; # @ # P;. Here

@yl Py m| My = Z(axplpl 03,;9)(0u; 8xmlM1 o)

J
is a standard tensor, being the contraction of two standard tensors of size 1 + #P;
and 1 4 #M;, with at least one of the sizes > 2 (cf. Lemma 9.2).

As in chapters 4,5, in particular the discussion leading to (4.12-15), we see that
(6.37) is a finite sum of terms

X (1) @ o= ¢/2h|,—¢/2h
(6.38) h (Qplﬁ,mlﬁl (I)plPmelMQe le ),

where P = ﬁl U---u ﬁQ, M = ]\71 u---u MQ are partitions with ﬁq,Mq #* &,
P, D Py, My D M;. ®@ are standard tensors and

Q
X =N+ 3 G#M, +4B) -1), N e 0, M]nN.
1

Here we can fix any N; € N, and the ®(@ are independent of z, when N < N;.
As in chapter 4, we conclude that B¥"M has an asymptotic expansion

o0
(6.39) BPM N prasIPmMIBEM iy £(62(AM), 62(AT)),
0

uniformly w.r.t. A. From this and (6.36) it follows that
(6.40) > N2 RN u)? < 0 [uf, we GA°UA U---UAN),

J
where |u| = |u|s denotes the ¢2 norm of u. Hence
(6.41) IRY Cullf, = IR “ull” + > 112;RY %ul* < O(1)ul,
J
and the lemma follows. O
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We can now return to the simplified problem (6.24) with z in the range of (B) in
Proposition 6.1. As in (6.28), we assume that v, = 0 and take the scalar product of
the first equation with RY"*u_. Lemma 6.4 shows that

(1@ AL +¢"(0) ~ 2JulRYMu_) = O(1) ullre Ju- 2
(@R us) = O()[[vlle_, |u—la,
while Lemma 6.3 implies that
IR u_|? ~ Ju_3.
Using also (6.28), we get
u-l2 < Cllolln_s,
so with (6.28), we get
(6.42) (lullre, + u-l2) < Clloll2_, -
Now let vy # 0 in (6.24). Then

i=u—RYYRYTRY )y

satisfies
(1® A(O) +¢"(0) - 2)a+ RN u_ =%
(6.43) g
LU=
where

T-v=-18AY +¢"(0) - 2) RN (BRY'RY) 1oy = O(1)[uy fo,
in H_1, by Lemmas 6.3, 6.4. We can apply (6.42) to (6.43) and get
(6.44) (@l + lu—l2) < Cllvllre_, + [vs]2)-
Since ||ul|#, < [|ull#, + O(1)|v4 |2, by Lemmas 6.3, 6.4, we get
(6.45) (lellze, + lu-l2) < C(lvlly + o4 l2),

for solutions of (6.24) with u € H;. Since (6.24) is a selfadjoint problem, we also get
existence of solutions for all v € H_1, v; € ¢2. Using finally that ¢”(z) — ¢”(0) =
O(h'/?) : H; — H_1, we get (B) of the proposition for the given value of N.

As a preparation for the step Gr(N, 1) — Gr(N+1,0), we have to study dq;RN+1 0
for u_ € Z(A°UA*U---UANH). Let uM be the component of u_ in £Z(AM), so
that

RPN = o 37 i) (), M= {1, M},
meA-M
The jth component of dyRY t1%u™ is then
ijzf“"’u’f Z Z; 2% (e M (m).
Mm! meAM
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If M =0, weget 0. If M > 1, we are in the situation of the proof of Lemma 6.4,
which shows that

(6.46)
LM
SN+1,0. M * - M,N
ZiR-T S = o Do D Zippaniy (€ )] iy (00wl (m) + RPN,
T p=1meAM
M,N

2oITNE < o).

JEA
Since v is invariant under permutations of M, the first term of the RHS in the first

equation of (6.46) can be written

NG Z Z;';L(e_qs/Qh)Z¢;’Yn(0)uy((n,m))

C meAM—1 neA
= M'2RY°((¢"(0) @ 1® - ® DuM)(j, )
= M2RNY(¢"(0) @ 1@ @ Dul),

where in the last equation, we consider that (¢”(0)®1®---®@1)uM € £2(A)@£Z(AM1).
Summing up, we have

(6.48) dp RN 10 _ = RNV (®u_) + b/ ?Tu_,

where U = O(1) = 2(A°U--- U AN+1) - £2(A) ® L*(RA), Yu_ and u_ vanish
when u_ € £2(A%), and for general u_, ®u_ has the ¢*(A) ® ¢Z(AM~!) component
equal to MY2(¢"(0)®1®---® 1)uM, for 1 < M < N + 1. Notice that

N
(6.49) u_f5~ Y WM,
M=1

so that even though ® kills the M = 0 component of u_, it acts injectively on the
remaining part of u_. Clearly we have an analogue of (6.48), (6.49) without the tildes.
Now fix some N € N and assume that Proposition 6.1(B) holds for this value of
N (and for all C'). We shall prove that (A) holds with N replaced by N + 1. Let 2
vary in the range for Gr(N + 1,0) which is the same as for Gr(N,1):
1

(6.50) —C < 2 < (N 4+ 2)Amin(¢”(0)) — Yok

Let us first show injectivity in Gr(N + 1,0), so consider the homogeneous system

(6.51) (AY = 2)u+ RN*LOy_ =0
| R0, g
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By standard arguments, we see that u € S(R*). Here we apply dg everywhere and
use (6.48,49) to get

(6.52) (AY — 2)dgu+ RN @u_ = —h1/2Wu_
| R dyu = 0.

Here ||[Pu_|| < O(1)|®u_|2 so by part (B) of the proposition, we get
ldgullz, + [Pu_]2 < O(1)hY2|Bu_|s3.

It follows that dyu = 0, ®u_ = 0, when h is small enough. Consequently, u = \e~%/2"
for some A € C, and using that Rf“‘ou = 0, we get v = 0. Then (6.51) and
the injectivity of RN+1LO imply that u_ = 0, and we have proved injectivity for
Gr(N + 1,0) when z varies in the range (6.50) (with C > 0 as large as we like).

As before we conclude that

1
inf A(O) N 2 /\min ! 0) - —
uerlllun=1( ulu) = (N +2)Amin(¢7(0)) = 57,
RN+1,ou:0

+

for every C > 0 when h > 0 is small enough depending on C. By repeating earlier
arguments, we obtain the a priori estimate (6.10) for solutions to Gr(N + 1,0), as
well as existence of such solutions for arbitrary v € H_; and vy € £2. In other words,
we get part (A) of the proposition with N replaced by N + 1 and this completes the
inductive proof of Proposition 6.1.

REMARK 6.5. — Let us compute (A;O)ET’OUIIA%I_V’OU) to leading order for u,v €
(A° U --- U AN), ie. modulo O(1)h'/?|ulsv|s. The proof of Lemma 6.4 shows
that the searched expression involves a block diagonal matrix, so we may assume that
u,v € L2(AP), P ={1,...,P}, for 1 < P < N. (The case P =0 will give 0.) Then if
= indicates equality modulo O(1)h!/?|ulz|v]s, we get

(A(O)RNOUIRNO ) Z(ZRNOUIZRNO )E
JEA

-
%ZZ Y @005 O Zp iy (€M) Zap (€™ ulp)o(q).-

JEADP,G=1p,q€AP
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Using that u,v € £2, we can reduce the sum to the case p = ¢ = 1, and get

Z Z D1, (08 1y (0 (Z3p 1y (67 2h)|Z;|1>\{1}(e‘w%))u(l))@

JGAp,quP
pP? 1770\ 2 * —¢/2h\| 7% —¢/2h YRy
= P Z (¢"(0) )q(l),p(l)(zplp\{l}(e )Iqu’P\{l}(e ))u(p)v(q)
p,qEAP
— p? (02 o " —_
=5 2 @Omen D (TT e ©)u@@
P,qEAP n€Perm({2,...,P}) v=2
P
=P > (¢ 000 [ @) .a) O)ulp)o(a)
P,qEAP v=2

= (P¢"(0)*® ¢"(0) @ -~ ® ¢" (0)ulv) 2

= (P@"0)@1®-- @ 1)(¢"(0)/2 @@ ¢"(0)/*)ul(¢"(0)/? & @ ¢"(0)/*)v),
where we again used that u,v € ¢7. Using this property once more, we can replace
P(¢"(0)®1®---® 1) by the more suggestive expression

(6.53) Pp:=¢"(0)R1® - ®14+10¢"0)@1--- @1+ +1®@---®1®¢"(0).

If Ai,..., Az denote the eigenvalues of ¢”(0), then the eigenvalues of (6.53) are of
the form

P
(6.54) D> Apwy PELL . #AY

Summing up the discussion, for u € (2(A”), v € £2(A9), P = {1,...,P}, Q =
{1,...,Q}, we have

(6.55) (Afbo)ﬁ]_\”oulﬁf’ov) = O(h'/?)ul2|v]

N 0, if P#Q
(@p(¢"(0)'/2®--- ®¢"(0)/?)ul(¢"(0)'/? ®--- ® ¢"(0)/*)v), P=Q.
This should be compared with the following consequence of chapter 5:

6.56) (RYulRY %) = Oh'?)|ulz|vl,

0,if P#Q
(¢"(0)2 @ - @ ¢"(0)/)ul(¢"(0)/? @ --- ® ¢"(0)/*)), P=Q.
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CHAPTER 7

ASYMPTOTICS OF THE SOLUTIONS
OF THE GRUSHIN PROBLEMS

We first work with the scalar case and denote by £; the span of all LZ%(e“” 2k
|a| = j. Equivalently, £; is equal to RNO(¢2 (N;\)), if < N. If A is a finite subset of
N, we write £4 = @®jeaL; C L. Notice that the orthogonal projection onto Lo nj
is given by
(7.1) RNO(RNORNO)-1 R0,

By chapter 5 we know that
(7.2) IR vy || ~ [vy], u € (NG v)-

We can identify £; with ¢2(N) by means of r; R}’ where r; : C(Nf ny) — C(IND)
is the natural restriction map, and again by chapter 5 we know that

(7.3) |RY Puly ~ [|ull, u € Lo n-
We have the decomposition
(7.4) LPRYN =Lo® - ®Ln®Lijg ), wu=to+ - +uy +unpr € L,
and correspondingly
N+1
(7.5) lull® ~ > gl
0

For j < N, the projection onto £; is given by

1, = RN Orry (RVORN) TRV,
Lemma 6.4 and (7.2) imply that
(7.6) lullz, < OW)llull, u € Lo,ny,
and the same lemma with (7.3) implies that

(7.7) [ull < O@W)lullr_,, v e LN
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In other words, the norms of H;, H_; and L? are (uniformly) equivalent on Lio,N)»
and we also know that the projections (7.1) and II; are bounded in these spaces.
We are interested in the block matrix of A((f), viewed as an operator

(7.8) AD :Lo@Li® @ Ly ® (HiN L y) —

£069ﬁ169--~69£1v€9(7'(—1ﬁﬁ[ﬁN])-
(4.12) shows that for j € A, M ={1,...,M},0< M < N, m € AM:

(7.9) ZjZ,*MM(e_"S/Qh) = a finite sum of terms of the type
> W2 e Zin © Rgenmian (2) (€M), #Mo+ #L < N,
el

where M = My U M, is a partition with M; # &, L is finite, and ® is standard.
Moreover,

1 ~ 1 ~
(710) X=§#L+N+§(#M1—1), 0<N<N;eN.

Here N; is any sufficiently large integer and ®; 4|1 (as, is independent of x, when
#Mo++#L < N and N < Nj. Using the representation Ag)) = ZjeA Z:Zj, it follows
that with standard tensors ®:

(7.11) A;O)(Z;LIMe‘WZh) = a finite sum of terms of the type

S WY 2o Zin 0 Beipminn (@)(€ ), #Mo+ #L <N + 1,
LEAL

where M = My U M is a partition with My # @, @ # L C N is finite. Moreover,
1 1 ~ ~
(7.12) Y:§(#L—1)+§(#M1—l)+N,OSNSNleN,

and @y, is independent of x, when N < Ny, #Mo+#L < N + 1.
If we put P = #My+#L in (7.11), then since #Mo+#M; = M, we get P— M =
(#L — 1) — (#M; — 1) and it follows that

(7.13) Y=%|P~M|+]V,N§ﬁeN.

We conclude as in chapters 4, 6, that for every Ny € N, we have for u € ¢Z(AM):
N+1

(7.14) AP RNy = 37 p3P=MIDp w4 b Ry,
P=0

withfor 0 < P <N

(7.15) Dpar=0O(1): 02 = Lp,
o0

(7.16) Dp ~ > hER), in L(,Lp),
v=0
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where the sum is finite and we identify £p and £2(N%) by means of RY°. Moreover
|Rul| < O(1)||u|| and Ru is of the form (7.17) below, with My, My, L as in (7.11).
Further, Dy apu is a finite sum of terms

(7.17) Z W2 Z3 s Ziyr, © Pojminn, (@) (602 yu(m),
LeEAL, meAM

with My, My, L as in (7.11) and with #My+ #L =N+ 1, Z € N, and

(7.18) Dnyiv =0(1): 02 — L2

We shall next decompose Dy y1,mu into Ly nj @ E[%, N and consider first the terms
rpéf’ODNH,Mu, for0< P<N,uc fg(AM). The matrix element ofrpﬁf’ODNH,M
at p,m, with p € AP, me AM, P =1{1,...,P}, M ={1,..., M}, is a finite sum of
terms of the type
(7.19) W (Zoip Ziynio Ziy L@ ey L, ()€ /2 |72/,

LEAL
with M = My U M, being a partition with M7 # &, L C N finite with #My + #L =
N + 1, v € N. As before, we get an asymptotic expansion in L£(£7, £3):

(7.20) Tpéi”ODNH,M ~ Z h%(IN+l*P|)+UF1(°I,jJ)VI;N+l‘

v=0

From this and Proposition 5.1 it follows that

o0
(7.21)  rp(RY°RYO)TIRY Dy ~ Y hENFIZPRvGE) L in £(62,67),
v=0

and the promised decomposition of Dn41 apu is given by

N+1
(7.22) Dyyimu= Z Dp a;Ny1u,
P=0
with
(7.23) Dp pNyi1u = ET’OTP(Ef’OﬁT’O)_lﬁf’ODN_H,M’U, € Lp,

for 0 < P < N, and with Dy41,m:nv+1u being the remainder. Notice that we have
DNi1,m;N+1u € E[f)’N] and that

(7.24) IDparnsrul] < O)RIINFI=Pllyl, 0 < P< N +1.

Since we can use Rﬁ*" to parametrize the spaces £;, 0 < j < P, we obtain the
following result.

PROPOSITION 7.1. — Fiz N € N and let Al(g), 0 <i,7 <N +1, be the block matriz

decomposition of Afbo) corresponding to (7.8). Then

(7.25) 1A |2 (22,020 = OWREII (i,5) € {0,1,..., N+ 1}> ~ {(N + 1, N + 1)}
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Moreover, for 0 <1i,7 < N, we have

(7.26) AL ~ ST R A i (L5, £4),

v=0
where, in the RHS, we identify Ly, with ¢2(N2) by means of RN"°.

Here we have already verified (7.25) for j < N, and the cases with j = N +1 follow
if we write with Ry = Ri{’o

N
Ainsr =TLAY A -z, ) = Y Roriri(RyRO) " rprpRe AL (1 - Tz, ),
P=0

and observe that rpR+A(0 (1 — Iz ) is the adjoint of an operator with L? — 12

norm O(h2P=(N+DI). Notice also that AN+1 Ni1=O(1): Hy — H_y.
Let do,...,dn+1 > 0 be constants with dyy; = 1, such that

(7.27) djr1/dj € (W2 h71%), 0 < j <N,
or satisfying the sharper assumption
(7.28) djy1/d; €[6,1/6], 0< j <N,

for some h1/2 < § < 1. Let d : £2(NA )= 22(NA 0,v]) be given by the block diagonal
matrix diag(d;)o<j<n, with respect to the orthogonal decomposition ¢2(N o0, N])
®N,02(NY). Put

Ky=(RyR_)"'?R,, K_=R_(RyR_)"'/?
so that

Ki=K_, K;K_=1, K_K, =TI =Tl v;.
Put d = K_ dK+ + (1 — II), where we notice that the first term commutes with II;
IIK_ dK+ =K_ dK+H K_ dK+ We observe that d and d are selfadjoint and that
d=1 corresponds to d~': d~! = K_d~ 'K, + (1 —1II).

Consider d"'R,d = d~'(R4R_)"/2d(Ry R_)"'/2R,.. Here we know from Proposi-
tion 5.1 that the block matrix elements ((R+R_)'/2); s are O(hV~k/2) and it follows
that

d"Y(RyR_)?d=0(1): 1 — ¢2
under the assumption (7.27) and that

~ - 1/2
d"Y(RyR_)Y?d — (R R_)'/? = 0(1)%— 02— 2

under the assumption (7.28). We conclude that under the latter assumption

~ hl/2
(7.29) d'Ryd— Ry = (1)— H_y — 2

-1 ey hl/2 2
d7'R-d—R.=0(1)——: £ — M.
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Here the second relatiori follows ~from the first by duality and in both relations, we
are allowed to replace (d,d) by (d=!,d1).
Now recall that the 4, norms and the L? norm are all equivalent on Lio,n), and
consider
d AP d - AP = K (&Y (RyR_)"V2R AP R_(RLR_)V2d
—(RyR)TV2RADR_(RyRO) V)KL
+ K_(d7' — 1)(RyR-) V2R AP (1 - 0)
+ (1 -MAYR_(RyR_)™V2(d - 1)K,

Here the block matrix element of (R+R_)‘1/2R+A;0)R_(R+R_)‘1/2 at (j,k) is
O(hzli=k), 50

d Y (RyR_)"V2R AP R (RyR)™V2d — (RyR_) TRy AY R (R R_) ™1/

1/2
= O(l)hT . 62 e 82.

Similarly

- h1/2
(@' = 1)(RyR-) V2R AP (1 - 1) = O(1) =5 :  —
_ 1/2
(1— H)A;‘))R_(R+R_)‘1/2(d -1)= O(l)hT 02— L2

)

and we conclude that

(7.30) d AP d - AY = 0(1)@;—/2 tHy — Ho1.
Define
(7.31) D= (‘; %) = Har x C(Nf n)) — Har x C(NG n))-
If
AY _, RNO
(7.32) PO = < }gﬁp 0 ) ,
then under the assumption (7.27)
(7.33) D7IPNOD = O(1) : Hy x €2 — H_y x £2,
and if (7.28) holds, then
(7.34) D7IpNOD — pNO — O()RY? /5 Hy x 12 — H_y x 02

Under the assumptions of Proposition 6.1(A), we introduce

(7.35) ENO = (PNOY=L o H ) x 02— Hy x £2
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Under the assumption (7.27), we have
(7.36) D7IENOD = O(1) : H_y x 12 — Hy x 2,

(noticing that we have (7.28) with § = Ch!/2? and C large enough) and if we assume
(7.30), then

(7.37) D7IENOD — gN0 = O(1)h1/2/s.
Write
EN’O E.N,O
(7.38) ENO = "o Nol-
ENY NS

We shall derive approximations of Fi, E_, where we sometimes drop the superscript
N, 0 and for that we look for an approximate solution of the system

(7.39) (Afbo) —2z)u+R_u_=0
R+u = V4.

Try

(7.40) ug = R_(RyR_)"tvy =: EQ vy,

so that Ryug = v,. We will choose u_ = u® in order to satisfy the Lo, n] component

of the first equation of (7.39). Since the orthogonal projection onto that component
is given by R_(Ry R_)"'R,, this means that we look for u° € ¢2, such that

Ry (A} — 2)ug + RyR_u® =0,

i.e. we take

(7.41) u® = (RyR-)"'Ry(2 = AY)R_(RyR_) 'vy = E° vy
If vy € £2(N%,), 0 < M < N, then

(7.42)

(Ag)) —2)EQvy + R_E® [vy

h%|N+1—M|D

= _ ~1
o ZOSMSN N+1,A7;N+1T7\77"M(R+R—) Uy

R+E3_U+ = V4,
where Dp pr; v+ is defined as in (7.22), with RN:O replaced by the equivalent operator

RN Then (dropping the superscripts in (7.38)) we get
(7.43) -

{E = Blor = Tociren MW HMED i (Re R T o

E_yvy = B2 vy = Yochicn h%INH—MlE*DN+1,1\71';N+1ri}\ZTJTI(R+R~)—IU+~

Recall that 1I;, j = 0,..., N + 1 are the projections associated to the decomposition
(7.4) and that II; = R_rjrj(RyR_)"'Ry, 0 < j < N, Ilyyy = 1 — I n). Let
A:H_1 — H;y. We claim that the following two statements are equivalent:
(a) d™1Ad = O(1) : H_1 — H; for all (d;) satisfying (7.27).
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(b) IL; AIl, = (’)(hz J= ’“i) H_1 — H; forall j,ke{0,...,N+1}.
To see that, we introduce the orthogonal projections ﬁj, 0 <j < N+1, with
Iy =0for j #k, 1 =Tlg+ -+ 41, by
I = R (RyR_) ™27 (RLR_)™V2Ry for 0 < j < N, g1 = My
Then d = 320" d,T1; and
N+1
d~'Ad = —E 11, ATl
(%) Z d;
7,k=0
We also notice that ﬁj = O(1) = Hy1 — Hi1. We shall show that (a) and (b) are
both equivalent to the statement
(c) II; Ally = O(hzli=H) . H_; — Hy, for all 0 < j,k < N + 1.

That (c) implies (a) is obvious if we use (x), and to get from (a) to (c), it suffices
to write

O(l) = ﬁjd_lAdﬁk = %ﬁjAﬁk,
J

and choose d,, satisfying (7.27) such that dy/d; = h™z1i=*],
The equivalence between (b) and (c¢) is an easy consequence of the following esti-
mates

0, TG00, = O(h==H) - Hay — Ha,
that we shall verify:
When j =k = N + 1, we have HN+1ﬁN+1 HN+1HN+1 Oy = ﬁN+1.
When j # k and N + 1 € {j,k}, thenH I, =11, I = 0.
For 0 < j,k < N, we get

I = R_r}rj(Ry R-) ™/ rire(Ry R-)"Y? Ry
and the block matrix element r; (R, R_ )12t is O(hzli=kl) . 2 — ¢2. Consequently
LT, = O(R2V=F) : H_; — H;. Similarly,
I10, = R_(RyR_)™/r5r;(Ry R_)rire(Ry R_) T Ry
= O(h2KYy . H_ | — Hy.
Combining (7.24), (7.36) and (7.43), we get:

PROPOSITION 7.2. — With ES, E° | given by (7.40), (7.41) and under the assump-
tions of Proposition 6.1(A), we have

HP(EN’O EY)ry O(1)h3(IN+1=QI+IN+1=P|) . p2 __, 3,
(7.44) ro(EN? — E° )Hp (1)ha<lN+1—QI+IN+1—PI> PH_y — £
g,(EI_VJrO _ E9+) Z) _ O(l)h%(|N+1—Q|+IN+1—IS|) 02— g2,

for0< P<N+1,0<P,Q<N, where E° := (E9)*.
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Here the second equation in (7.44) is obtained by duality, using that ITy,; is the
orthogonal projection (7.1) and that IIp is given after (7.5).
Now let M > N and let us compare

’PN’O,PM’U

and their inverses for z in the domain of wellposedness of the “smaller” problem PV:0.
Let 7 = {9, n] denote the natural restriction operator: EQ(Nf}]’ ap) = C(NG yp), and
notice that

(7.45) Rf’o = T[o,N]Rf’O, RNO = RJY@TEE),N]?

where rE*O N]
write P = PN:0, P = PMO and similarly for the associated quantities. In order to

solve Gr(N, 0):

is the adjoint: KQ(Nf})’N]) — 82(N$7N]). To shorten the notations, we

0) B
(7.46) {(A¢ —2u+R_u_=v

Riu =y,

we consider the bigger problem Gr(M,0)

(0) P —

(7.47) (~A¢ —f)u +R_u_=v
R+u = U,

and write the solution as

= Ev+ E,7¥
(7.48) {“ Ut By

i_=FE_v+E_,7,.

We want (7.46) to be fulfilled, so we get the condition

(7.49) R_u_=R_u_.

The necessary and sufficient condition on %_ for (7.49) to have a solution u_ is
(7.50) rivg1ni- =0,

where 7(ny1,0m - EQ(Nf})’M]) — fz(Nf}vH,M]) is the restriction operator, and the
corresponding u_ is then

(7.51) U = T[O,N]a~'
We then get a solution of (7.46) iff

(7.52) rivaanE-v+ Ty B4y =0,

(753) T[O,N]5+ = V4.
(7.52) is equivalent to

(7.54) E_ o, + Tlo,N| W= = —FE_v, for some w_ € 62(NfB’N]).
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(7.54), (7.53) lead to a new Grushin problem, namely to invert the matrix
~ E_ *
(7.55) E =7 Tom),
oy 0

which is wellposed in the range of wellposedness of P given in Proposition 6.1(A).
This follows from Remark 6.5 and the fact that

E_y =(RyR)™'Ri(z - AY)R_(RyR) ™' + O(h'/?),
by Proposition 7.2. Modulo O(h!/?) we obtain a block diagonal matrix and the
diagonal block at (j,5) with 0 < j < M is given by
(@"0) @ ©¢"(0)*)(: - ("0 @1& @1+ +18- ®1©¢"(0)))
X (¢II(O)—1/2 ® . ® ¢//(0)—1/2)‘

Here the tensor products are of length j and for 7 = 0 the expression above should
be replaced by z.
Let

(7.56) < If_ If: ++)

be the inverse of (7.55), so that

(7.57) (Z)t) = (i Fl‘i) ( i‘v> :
ie.
(7.58) vy =—-FE v+ Fvy, w.=-F E v+F_jv,.
The solution of (7.46) is then given from (7.48), (7.51), (7.58):
uw=FEv+ Ey(—FE_v+ Fyvy)
U_ = r[O,N](ENLv +E_((-FE_v+ Fvy)),

ie.
(7.59) {” = (B~ ExFE_)v+ B Fyv, _

u_ =1 nN(E- — E_yFE_)v+rpnE_1Fivg.
This can be further simplified, if we use the identity E_+F +r*F_ =1, withr =g n)
for short. Then

(E.—E_,FE_)=(