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WEAKLY RESONANT TUNNELING INTERACTIONS
FOR ADIABATIC QUASI-PERIODIC SCHRODINGER
OPERATORS

Alexander Fedotov, Frédéric Klopp

Abstract. — In this paper, we study spectral properties of the one dimensional periodic
Schrodinger operator with an adiabatic quasi-periodic perturbation. We show that
in certain energy regions the perturbation leads to resonance effects related to the
ones observed in the problem of two resonating quantum wells. These effects affect
both the geometry and the nature of the spectrum. In particular, they can lead to
the intertwining of sequences of intervals containing absolutely continuous spectrum
and intervals containing singular spectrum. Moreover, in regions where all of the
spectrum is expected to be singular, these effects typically give rise to exponentially
small “islands” of absolutely continuous spectrum.

Résumé (EVet tunnel faiblement résonant pour des opérateurs de Schrodinger quasi-
périodiques adiabatiques)

Cet article est consacré a ’étude du spectre d’une famille d’opérateurs quasi-
périodiques obtenus comme perturbations adiabatiques d’un opérateur périodique
fixé. Nous montrons que, dans certaines régions d’énergies, la perturbation entraine
des phénomeénes de résonance similaires & ceux observés dans le cas de deux puits. Ces
effets s’observent autant sur la géométrie du spectre que sur sa nature. En particulier,
on peut observer un entrelacement de types spectraux i.e. une alternance entre du
spectre singulier et du spectre absolument continu. Un autre phénoméne observé est
I’apparition d’ilots de spectre absolument continu dans du spectre singulier dus aux
résonances.
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CHAPTER 1

INTRODUCTION

The present paper is devoted to the analysis of the family of one-dimensional quasi-
periodic Schrédinger operators acting on L?(R) defined by
2

1.1 H,.— -2
(1.1) ’ dx?

+v(z — 2) + acos(ex).
We assume that

(H1) v: R — R is a non constant, locally square integrable, 1-periodic function;

(H2) ¢ is a small positive number chosen such that 27 /e be irrational;

(H3) z is a real parameter;

(H4) « is a strictly positive parameter that we will keep fixed in most of the paper.
As ¢ is small, the operator (1.1) is a slow perturbation of the periodic Schrédinger
operator

d2
dx?

acting on L2(R). To study (1.1), we use the asymptotic method for slow perturbations

(1.2) Hy = + ()

of one-dimensional periodic equations developed in [10] and [12].

The results of the present paper are follow-ups on those obtained in [11, 14, 13]
for the family (1.1). In these papers, we have seen that the spectral properties of
H, . at energy E depend crucially on the position of the spectral window ¥ (E) :=
[E — a, F + o] with respect to the spectrum of the unperturbed operator Hy. Note
that the size of the window is equal to the amplitude of the adiabatic perturbation. In
the present paper, the relative position is described in figure 1.1 i.e., we assume that
there exists J, an interval of energies, such that, for all £ € J, the spectral window
F(E) covers the edges of two neighboring spectral bands of Hy (see assumption (G)).
In this case, one can say that the spectrum in J is determined by the interaction of
the neighboring spectral bands induced by the adiabatic perturbation.

The central object of our study is the monodromy equation, a finite difference
equation determined by the monodromy matrix for the family (1.1) of almost periodic
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2 CHAPTER 1. INTRODUCTION
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FIGUrE 1.1. “Interacting” bands

operators. The monodromy matrix for almost periodic equations with two frequencies
was introduced in [11]. The passage from (1.1) to the monodromy equation is a
non trivial generalization of the monodromization idea from the study of difference
equations with periodic coefficients on the real line, see [6].

Let us now briefly describe our results and the heuristics underlying them. Let
E(x) be the dispersion relation associated to Hy (see section 2.1.2); consider the real
and complex iso-energy curves, respectively I'z and T, defined by

(1.3) T'r = {(¢,k) € R E(x) +a-cos(¢) = E},
(1.4) I':={((,k) € C* E(k) + a-cos(¢) = E}.

The dispersion relation k — E(x) being multi-valued, in (1.4), we ask that the equa-
tion be satisfied at least for one of the possible values of E(k).

The curves I' and 'y are both 2m-periodic in the k- and (-directions; they are
described in details in section 11.6. The connected components of I'r are called real
branches of T.

Consider an interval J such that, for E € J, the assumption on the relative position
of the spectral window and the spectrum of H, described above is satisfied (see
figure 1.1). Then, the curve I'g consists of an infinite union of connected components,
each of which is homeomorphic to a torus; there are exactly two such components in
each periodicity cell, see figure 1.2. In this figure, each square represents a periodicity
cell. The connected components of I'g are represented by full lines; we denote two of
them by o and 7.

The dashed lines represent loops on I' that connect certain connected components
of I'g; one can distinguish between the “horizontal” loops and the “vertical” loops.
There are two special horizontal loops denoted by vp,0 and v, ; the loop y4,0 (resp.
Yh,x) connects Yo to vx — (2m,0) (resp. 7o to 7). In the same way, there are two
special vertical loops denoted by v, o and 7, »; the loop 7, 0 (resp. vy,») connects 7o
to vo + (0,27) (resp. v« to v + (0, 27)).

The standard semi-classical heuristics suggests the following spectral behavior.
To each of the loops 7y and ~,, one associates a phase obtained by integrating the
fundamental 1-form on I" along the given loop; let &g = ®o(E) (resp. @, = ,(E)) be
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CHAPTER 1. INTRODUCTION 3
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F1Gure 1.2. The adiabatic phase space

one half of the phase corresponding to 7y (resp. . ). These phases define the quanti-
zation conditions:

1 1
(1.5) SOg(E) =~ +nr and  ~®.(E)=— +nmr, neN

€ 2 € 2
Each of these conditions defines a sequence of energies in J, say (Eél))l and (Eﬁ'))l,.
For € sufficiently small, the spectrum of H, . in J should then be located in a neigh-
borhood of these energies.

Moreover, to each of the complex loops ¥4.0, Vh,x, Vv,0 and 7Yy, one naturally
associates an action obtained by integrating the fundamental 1-form on I' along the
loop. For v € {0,7} and a € {v, h}, we denote by S, , the action associated to g,
multiplied by /2. For E' € R, all these actions are real. One orients the loops so that
they all be positive. Finally, we define tunneling coefficients as

ta,u = 6_Sa’u/67 Ve {0777}7 a € {U7h}.

When the real iso-energy curve consists in a single torus per periodicity cell (in this
case, the energy window overlaps a single edge of a spectral band of Hy instead of
two as in Figure 1.1), the spectrum of H, . is contained in a sequence of intervals
described as follows (see [11]):

— each interval is neighboring a solution of one of the quantization condition;

— the length of the interval is of the order of the largest tunneling coefficient asso-
ciated to the loop;

— roughly, the nature of the spectrum is determined by the ratio of the vertical
tunneling coefficient to the horizontal one:

— if this ratio is large, the spectrum is singular;
— if the ratio is small, the spectrum is absolutely continuous.

SOCIETE MATHEMATIQUE DE FRANCE 2006



4 CHAPTER 1. INTRODUCTION

In the present case, one must moreover take into account the possible interactions
between the tori living in the same periodicity cell. Similarly to what happens in the
standard “double well” case (see [16, 26, 17]), this effect only plays an important role
when the two energies, generated each by one of the tori, are sufficiently close to each
other. In this paper, we do not consider the case when these energies are “resonant”,
i.e. coincide or are “too close” to one another, but we nevertheless “go” up to the case
of exponentially close energies.

Let Ey be an energy satisfying the quantization condition (1.5) defined by ®g;
let 6 be the distance from FEj to the sequence of energies satisfying the quantization
condition (1.5) defined by ®,. We now discuss the possible cases depending on this
distance. Let us just add that, as the sequences of energies satisfying the quantization
equation given by ®¢ or ®, play symmetric roles, in this discussion, the indexes 0
and 7 can be interchanged freely.

First, we assume that, for some fixed n > 1, this distance is of order at least ™. In
this case, near Fy, the states of the system don’t “see” the other lattice of tori, those
obtained by translation of the torus ~,; nor do they “feel” the associated tunneling
coefficient ¢, . Near Ey, everything is as if there was a single torus, namely a translate
of v, per periodicity cell. Near Ejy, the spectrum of H, . is located in a interval of
length of order of the largest of the tunneling coefficients ¢, o and t;, = tp, otn,~ (see
section 2.3.3). And, the nature of the spectrum is determined by quotient ¢, o/t

So, in the energy region not too close to solutions to both quantization conditions
in (1.5), we see that the spectrum is contained in two sequences of exponentially
small intervals. For each sequence, the nature of the spectrum is obtained from com-
paring the vertical to the horizontal tunneling coefficient for the torus generating the
sequence. As the tunneling coefficients for both tori are roughly “independent” (see
section 2.7.5), it may happen that the spectrum for one of the interval sequences is
singular while it is absolutely continuous for the other sequence. If this is the case,
one obtains numerous Anderson transitions i.e., thresholds separating a.c. spectrum
from singular spectrum (see figure 2.3(b)).

Let us now assume that J is exponentially small, i.e. of order e~/ for some fixed
positive 1 (not too large, see section 2.6). This means that we approach the case of
resonant energies. Note that, this implies that there is exactly one energy F. satis-
fying (1.5) for @, that is exponentially close to FEy; all other energies satisfying (1.5)
for @, are at least at a distance of order ¢ away from Ej.

Then, one can observe two new phenomena. First, there is a repulsion of Iy and
I, the intervals corresponding to Ey and E, respectively and containing spectrum.
This phenomenon is similar to the splitting phenomenon observed in the double well
problem (see [16, 26, 17]). Second, the interaction can change the nature of the
spectrum: the spectrum that would be singular for intervals sufficiently distant from
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CHAPTER 1. INTRODUCTION 5

each other can become absolutely continuous when they are close to each other, see
Fig. 2.3(a). To explain this phenomenon, for simplicity, assume that ¢, o and ¢, ,, the
“vertical” tunneling coeflicients associated to the tori v¢ and ,, are of the same order
(ine), ie., tyo ~ ty x ~ t,. Then, if |[Ey— E;| ~ €™, on each of the intervals Iy and I,
the nature of the spectrum is determined by the same ratio t,, /ty,. If |[Eg— Ey| ~ e~"/¢,
the two arrays of tori begin to “feel” one another: they form an array for which the tori
from both arrays play equivalent roles. In result, the “horizontal” tunneling becomes
stronger: it appears that t; has to be replaced by the effective “horizontal” tunneling
coefficient ty, o = t5,/dist(Eo, Er), and the ratio t,/t;, has to be replaced by t,/tp efr-
So, the singular spectrum on the intervals Iy and I, “tends to turn” into absolutely
continuous one.

There is one more case that will not be discussed in the present paper: it is the
case when ¢§ is not only exponentially small, but even can vanish. This is the case
of strong resonances; it reveals interesting new spectral phenomena and is studied in
detail in [9].

SOCIETE MATHEMATIQUE DE FRANCE 2006






CHAPTER 2

THE RESULTS

We now state our assumptions and results in a precise way.

2.1. The periodic operator

This section is devoted to the description of the elements of the spectral theory of
the one-dimensional periodic Schrédinger operator Hy that we need to present our
results. For more details and proofs we refer to section 7 and to [8, 15].

2.1.1. The spectrum of Hy. — The spectrum of the operator Hy defined in (1.2)
is the union of countably many intervals of the real axis, say [Fan+1, Fanto] for n € N
such that

Fi < Ey<E3< FEy...Es, SEQnJ,_l <E2n+2 <...,
E, = +00, n— +oo.
This spectrum is purely absolutely continuous. The points (E;);jen are the eigen-
values of the self-adjoint operator obtained by considering the differential polyno-
mial (1.2) acting in L?([0,2]) with periodic boundary conditions (see [8]). The inter-
vals [Eon41, Eonta], n € N, are the spectral bands, and the intervals (Fa,, Eont1),
n € N*| the spectral gaps. When FEs,, < Fs,.1, one says that the n-th gap is open;

when [Fs,_1, Fa,] is separated from the rest of the spectrum by open gaps, the n-th
band is said to be isolated.

From now on, to simplify the exposition, we suppose that

(O) all the gaps in the spectrum of Hj are open.

SOCIETE MATHEMATIQUE DE FRANCE 2006



8 CHAPTER 2. THE RESULTS

2.1.2. The Bloch quasi-momentum. — Let x — 9 (z, E) be a non trivial solution
to the periodic Schrédinger equation Hgy = E1) such that, for some p € C, ¢(z +
1,E) = p(x, E), Vz € R. This solution is called a Bloch solution to the equation,
and p is the Floguet multiplier associated to 1. One may write u = exp(ik); then, k
is the Bloch quasi-momentum of the Bloch solution .

It appears that the mapping E — k(FE) is an analytic multi-valued function; its
branch points are the points Ey, Ey, E3, ..., E,, .... They are all of “square root”

type.

The dispersion relation k — E(k) is the inverse of the Bloch quasi-momentum. We
refer to section 7.1.2 for more details on &.

2.2. A “geometric” assumption on the energy region under study

Let us now describe the energy region where our study will be valid.

The spectral window centered at F, ¥ (E), is the range of the mapping ¢ € R —
E — acos(().

In the sequel, J always denotes a compact interval such that, for some n € N* and
for all £ € J, one has

(G) [Ean, Eania] € S(E) and F(E) C|Ean—1, Eanal.

where 7 (E) is the interior of 7 (E) (see figure 1.1).

Actually, in the analysis, one has to distinguish between the cases n odd and n
even. From now on, we assume that, in the assumption (G), n is even. The case n
odd is dealt with in the same way. The spectral results are independent of whether n
is even or odd.

REMARK 2.1. — As all the spectral gaps of Hy are assumed to be open, as their
length tends to 0 at infinity, and, as the length of the spectral bands goes to infinity
at infinity, it is clear that, for any non vanishing ¢, assumption (QG) is satisfied in any
gap at a sufficiently high energy; it suffices that this gap be of length smaller than 2a.

2.3. The definitions of the phase integrals and the tunneling coefficients

We now give the precise definitions of the phase integrals and the tunneling coef-
ficients appearing in the introduction.

MEMOIRES DE LA SMF 104



2.3. DEFINITIONS OF THE PHASE INTEGRALS AND THE TUNNELING COEFFICIENTS 9

2.3.1. The complex momentum and its branch points. — The phase inte-
grals and the tunneling coefficients are expressed in terms of integrals of the complex
momentum. Fix E in J. The complex momentum ¢ — () is defined by

(2.1) k() = k(E — accos(()).

As k, k is analytic and multi-valued. The set I" defined in (1.4) is the graph of the
function x. As the branch points of k are the points (E;);ecn, the branch points of x
satisfy

(2.2) E —acos(() =E;, j € N
[) 9 Cont2
9Con—1
L Cont1 Y
- 0 Gan B
)
) )

FiGure 2.1. The branch points

As F is real, the set of these points is symmetric with respect to the real axis and
to the imaginary axis; it is 2m-periodic in ¢. All the branch points of « lie in the set
arccos(R) which consists of the real axis and all the translates of the imaginary axis
by a multiple of 7.

As the branch points of the Bloch quasi-momentum, the branch points of k are of
“square root” type.

Due to the symmetries, it suffices to describe the branch points in the half-strip
{¢; Im¢ > 0, 0 < Re¢ < 7}. These branch points are described in detail in sec-
tion 8.1.1. In figure 2.1, we show some of them. The points ({;); satisfy (2.2); one
has

0<Con <Cnt1<m, 0<ImCpi2 <ImConiz<---, 0<Im(yp1 <--- <Im(.

2.3.2. The contours. — To define the phases and the tunneling coefficients, we
introduce some integration contours in the complex (-plane.

These loops are shown in figure 2.1 and 2.2. The loops o, ¥x, Yh.05 Vh,x> Vo,0
and 9, . are simple loops going once around respectively the intervals [—(an, (on],

[Cant1,27 — Cant1ls [=Can+1, —Canl, [C2n, Cant1], [Con—1,Can—1] and [Cont2, Con+2]-
In section 11.1, we show that, on each of the above loops, one can fix a continuous

branch of the complex momentum.

SOCIETE MATHEMATIQUE DE FRANCE 2006



10 CHAPTER 2. THE RESULTS

Consider T', the complex iso-energy curve defined by (1.4). Define the projection
IT: (¢(,k) € I' = ¢ € C. The fact that, on each of the loops o, Fx, Yh,0, Yh,xs
Yv,0 and 7, r, one can fix a continuous branch of the complex momentum implies
that each of these loops is the projection on the complex plane of some loop in I'
ie., for ¥ € {50, Ya, 0,0s Yh,m> V0,05 Yo,z }» there exists v C I such that 4 = II(7y). In
sections 11.6.1 and 11.6.2, we give the precise definitions of the curves o, vx, V1,0,
Yh,xs Yv,0 and ¥, . represented in figures 2.1 and 1.2 and show that they project onto
the curves 4o, Yx, Yh,0, Vh,x> Yv,0 a0d 7y » respectively.

2.3.3. The phase integrals, the action integrals and the tunneling coeffi-
cients. — The results described below are proved in section 11.

Let v € {0,7}. To the loop 7,, we associate the phase integral @, defined as

(2.3) B, (E) = % f wdC,

where k is a branch of the complex momentum that is continuous on 4,. The function
E — ®,(F) is real analytic and does not vanish on J. The loop 4, is oriented so that
®,(E) be positive. One shows that, for all E € J,

(2.4) ) (E)<0 and &, (E)>0.

To the loop 7,,.,, we associate the vertical action integral S, , defined as

(2.5) SilB) =5 § i,

where & is a branch of the complex momentum that is continuous on ¥,,,,. The vertical
tunneling coefficient is defined to be

1
(2.6) o (B) = exp (== S, (E))
9
1 <2n+2
CZn—l ~
R/LL‘O _ ':/u,o i/h’I Yo, ~

0 CQTL CZ‘IL+ 1 m

Figure 2.2. The loops for the phases

The function E — S, ,(E) is real analytic and does not vanish on J. The loop ¥, .,
is oriented so that S, ,(E) be positive.
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2.4. ERGODIC FAMILY 11

The index v being chosen as above, we define horizontal action integral Sy, by

(2.1 SB) = =5 § KO

where £ is a branch of the complex momentum that is continuous on 7y, ,,. The function
E +— 8}, (E) is real analytic and does not vanish on J. The loop 4y, is oriented so
that Sp, ., (E) be positive. The horizontal tunneling coefficient is defined as

(2.8) th,y(E) = exp (*ésh,u(E)) :

In section 11.4, we check that

(2.9) Sho(E) = Spr(E) and  tpo(E) = th - (E).

One defines

(2.10) Sh(E) = Spo(E) + Shx(E)  and  th(E) = tho(E) - thr(E).

In (2.3), (2.5), and (2.7), only the sign of the integral depends on the choice of the
branch of x; once the sign of the actions is fixed, their definitions are independent of
the choice of the branch of «; for more details, see sections 11.1 and 11.2.

2.4. Ergodic family

Before discussing the spectral properties of H ., we recall some general well known
results from the spectral theory of ergodic operators.

As 2 /e is supposed to be irrational, the function x — v(x —z) +« cos(ex) is quasi-
periodic in x, and the operators defined by (1.1) form an ergodic family (see [24]).

The ergodicity implies the following consequences:

(1) the spectrum of H, . is almost surely independent of z ([1, 25]);

(2) the absolutely continuous spectrum and the singular spectrum are almost surely
independent of z ([25, 20]);

(3) the discrete spectrum is empty ([25]);

(4) the Lyapunov exponent exists for almost all z and is independent of z ([25]); it
is defined in the following way: let z — ¥ (x) be the solution to the Cauchy problem

Hz,ew = E’L/)7 ?ab\r:O = 07 w‘/g;:() = 17
the following limit (when it exists) defines the Lyapunov exponent:

O(E) = O(E,e) := lim log (V/[¢(w, B, 2)? + [¥/(x, E, 2)*)

z—+00 ||

(5) the absolutely continuous spectrum is the essential closure of the set of E where
O(F) = 0 (the Ishii-Pastur-Kotani Theorem, see [25]);
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12 CHAPTER 2. THE RESULTS

(6) the density of states exists for almost all z and is independent of z ([25]); it is
defined in the following way: for L > 0, let H, .1, be the operator H . restricted to
the interval [—L, L] with the Dirichlet boundary conditions; for E € R; the following
limit (when it exists) defines the density of states:

N(E) = N(B,¢) = lim #{ eigenvalues of H, ..rless then or equal toE};
L—+o00 2L

(7) the density of states is non decreasing; the spectrum of H, . is the set of points
of increase of the density of states.

2.5. A coarse description of the location of the spectrum in J

Henceforth, we assume that the assumptions (H1) — (H4) and (O) are satisfied and
that J is a compact interval satisfying (G). Moreover, we suppose that

(T) 27 - rbpelr} min(Im (ap—2(F), Im (ony3(E)) > max max(Sy(E), Sp,0(E), Sp.x(E)).

Note that (T) is verified if the spectrum of Hy has two successive bands that are
sufficiently close to each other and sufficiently far away from the remainder of the
spectrum (this can be checked numerically on simple examples, see section 2.8). In
section 2.9, we will discuss this assumption further.

Define

1. .
(2.11) Jp == 3 éIémem(Sh(E),Su,o(E), Sy x(E)) > 0.

In section 4.2, we prove

THEOREM 2.1. — Fiz E, € J. For € sufficiently small, there exists V, C C, a neigh-
borhood of E,, and two real analytic functions E — ®o(E,¢) and E — &,.(E,¢),
defined on V, and having the uniform asymptotics

(2.12) Oy(E,e) = Oo(E) + o(e), @r(E,e) = O, (F)+ o(e)
where sup gey. [~ o(e)| =200, such that, if one defines two finite sequences of points
in JNV,, say (E(()l))l = (E(()l)(s))l and (Eﬁ'))l, = (Egrll)(s))l/, by

™

1 > 1 ~ !’
(2.13) gq»O(Eg”,g) =5 +ml and g<1>7,(E<l> &)= 4xl', (I,I)eN?

T I’ 2
then, for all z, the spectrum of H, . in JNV, is contained in the union of the intervals
Iél) = E(()l) + [—e%/% e%/]  and Ifrl,) = Efrl/) + [—e7%/5 em%0/¢]

that is

o(H..)NnJNV, C (U 13”) U (U 15,”) .
l p
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2.6. A PRECISE DESCRIPTION OF THE LOCATION OF THE SPECTRUM IN J 13

In the sequel, to alleviate the notations, we omit the reference to € in the functions
&, and D,,.

By (2.4) and (2.12), there exists C' > 0 such that, for ¢ sufficiently small, the points
defined in (2.13) satisfy

1 _
(2.14) 5¢ < EY — EITY < ce,

1
(2.15) Ge< BV -E") <Ce

Moreover, for v € {0,7}, in the interval J N V., the number of points El(,l) is of
order 1/e.
O]

In the sequel, we refer to the points E(()l) (resp. Ex’), and, by extension, to the
intervals I(()l) (resp. L(rl)) attached to them, as of type 0 (resp. type ).

By (2.14) and (2.15), the intervals of type 0 (resp. ) are two by two disjoints; any
interval of type 0 (resp. ) intersects at most a single interval of type 7 (resp. 0).

2.6. A precise description of the location of the spectrum in J

We now describe the spectrum of H. . in the intervals defined in Theorem 2.1. Let
us assume that the interval under consideration is of type 7. One needs to distinguish
two cases whether this interval intersects or not an interval of type 0. The intervals
of one of the families that do not intersect any interval of the other family are called

non-resonant, the others being the resonant intervals.

In the present paper, we only study the non-resonant intervals; the resonant one
are studied in [9]. The non-resonant is the simplest of the two cases; nevertheless, one
already sees that new spectral phenomena occur.

REMARK 2.2. — One may wonder whether the resonances occur. They do occur. Re-
call that the derivatives of ®, and ® are of opposite signs on J, see (2.4). Hence, as
e decreases, on J, the points of type 0 and 7 move toward each other (at least, in the
leading order in €). The motion being continuous, they meet.

Nevertheless, for a generic v, there are only a few resonant intervals in J. On
the other hand, for symmetric v, there may be numerous resonant energies; e.g., if
v is even, then the sequences (E(gl))l and (ET(rl,))l/ coincide and all the intervals are
resonant! This is due to the fact that the cosine is even; it is not true if acos(-) is
replaced by a generic potential.

We will describe our results for the intervals of type 7; mutatis mutandis, the results
for the intervals of type 0 are the same. One has
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14 CHAPTER 2. THE RESULTS

THEOREM 2.2. — For e sufficiently small, let (I(()l/))l/ and (L(Tl))l be the finite sequences
of intervals defined in Theorem 2.1. Consider | such that, for anyl’, L(Tl) N I(gl ) — .

)

Then, the spectrum of H, . in L(rl s contained I;(rl), the interval centered at the point

; A oo (EY
(2.16) Ef(rl) = ET(rl) + E#th(ﬂg)) tan (0()> ’
287 (EM) €
and of length
1) 2 tn(E)

(2.17) 1] = < —0
‘I);(E;rl)) 2‘005 (%E’g)))‘

+tv,7r(E7(1—l)) (1 +0(1)) .

The factor A, (v) is positive, and depends only on v and on n (see section 7.2.1).

In (2.17), o(1) tends to O when e tends to 0, uniformly in E € I and 1 such that,
for any U, 9N I(gl ) = 2.

This theorem is proved in section 5.2.

The fact that each of the intervals L(rl) does contain some spectrum follows from

THEOREM 2.3. — Let dN.(E) denote the density of states measure of H, .. In the

case of Theorem 2.2, one has

AN.(E) = —.

i 2m

This theorem is proved in section 5.3.

“Level repulsion”. — Let Ey be the point in the sequence (Eéll))l/ closest to F; := Ef,l).
Analyzing formulae (2.16) and (2.17), one notices a repulsion between the intervals
Iy and I,.

Indeed, consider the second term in the right hand side of (2.16). As o' (E) >0,
this term has the same sign as tan (%) Assume that Ey and E, are sufficiently

1. .
close to each other. As, by definition, —®y(Ey) = g mod 7 and as ®((E) < 0, the
€
second term in the right hand side of (2.16) is negative (resp. positive) if E is to the
left (resp. right) of Ey. So, there is a repulsion between Iy and I. As the distance

 (2)

the smaller this distance, the larger the repulsion.

from E, to Ey controls the factor
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2.7. The Lyapunov exponent and the nature of the spectrum in J

Here, we discuss the nature of the spectrum in the interval L(Tl). Therefore, we define

_ toa(B) 4 )
(2.18) A (E) = 00 (E) d t(ELVJ{Eo }),

where, for a set A, dist(F, A) denotes the Euclidean distance from E to A.

2.7.1. The Lyapunov exponent. — In section 5.4, we prove

THEOREM 2.4. — On the interval ffrl), the Lyapunov exponent has the following

asymptotic

(2.19) O(E,¢) = % log™ A (ED) + o(1),

where o(1) tends to 0 when € tends to 0, uniformly in E € L(rl) and l such that, for
any U, Y Iél ) = o Here, logt = max(0, log).

2.7.2. Sharp drops of the Lyapunov exponent due to the resonance inter-
action. — Formula (2.19) shows that the Lyapunov exponent becomes “abnormally
small” on the interval I{” when it becomes close to one of the points {Eél/)}. Let us
discuss this in more details.

Assume that (Sp — Sv,ﬁ)(ET(rl)) > 0. If dist (E,(rl),Ul{Eél/)}) > eV (where N is a
fixed positive integer) then, Theorem 2.4 and formula (2.18) imply that

1
O(B,¢) = 5—(Sh - Sy )(EW) +0(1) when e — 0.

On the other hand, when E,(Tl) is only at a distance of size e =%/ (for 0 < § < S}, —Syr)
from the set of energies {Eél )}, on L(rl), one has
1
O(E,¢) = o~ [(Sn - Sy ) (EWY) = 6] + 0(1) when & — 0.
T

)

Hence, the value of © on Iv7(rl) drops sharply when ET(rl approaches the sequence

l/
(B8 ).

2.7.3. Singular spectrum. — As a natural consequence of Theorem 2.4 and the
Ishii-Pastur-Kotani Theorem [25], we obtain the

COROLLARY 2.1. — Fiz ¢ > 0. For ¢ sufficiently small, if I,(rl) is non-resonant and
if €log /\W(ESJ)) > ¢, then, the interval IV7(TZ) defined in Theorem 2.2 only contains

singular spectrum.
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16 CHAPTER 2. THE RESULTS

2.7.4. Absolutely continuous spectrum. — If )\, is small on the interval 1:7(71)’

most of this interval is made of absolutely continuous spectrum; in section 5.5, one
shows

THEOREM 2.5. — For ¢ > 0, there exists n, a positive constant, and a set D C (0,1)
such that

— asymptotically, D has total measure i.e.

mes(D N (0,¢))

=1+e"%0(1).
5 +e o(1)

(2.20)
— for e € D sufficiently small, if fT(rl) is non-resonant and if €log )\,T(E7(rl)) < —c,
then, one has

mes(IT(rl) NXac)

(2.21) mes(00)

— 1+ o(1),
and X, denotes the absolutely continuous spectrum of H, ..

In (2.20) and (2.21), o(1) tends to 0 when € tends to 0, uniformly in E € I and
[ such that, for anyl, 9N I(()l ) = .

The set D consists of Diophantine numbers; its definition is given in the end of sec-
tion 5.5.3.

2.7.5. A remark. — The nature of the spectrum depends on the interplay between
the values of the actions Sy, S;,0, Sy,». S0, when analyzing our results, it is helpful
to keep in mind the following observation. As underlined at the end of section 2.5,
choosing ¢ carefully, one can arrange that the distance between the sequences of
energies of type 0 and 7 be arbitrarily small; moreover, this can be done in any
compact subinterval of J of length at least Ce (if C is chosen sufficiently large). On
such an interval, the actions E — Sy(E), E — S, o(E) and E — S, -(E) vary at
most of C’e. Hence, at the expense of choosing ¢ sufficiently small in the right way, we
may essentially suppose that there exists an energy of type 0 and one of type 7 at an
arbitrarily small distance from each other such that, on an e-neighborhood of these
points, the triple E — (S, (E), Sv,0(E), Sy,=(E)) takes any of its possible values on J.
This means that one can pick the values of B~ Eél) and (Sp(E), Sv,0(E), Sy (E))
essentially independently of each other.

Now, let us discuss two new spectral phenomena that can occur under the hypo-
thesis (G).
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2.7.6. Transitions due to the proximity to a resonance. — The nature of the
spectrum on the intervals defined in Theorem 2.2 depends on their distance to the
intervals of the other family. The interaction can be strong enough to actually change
the nature of the spectrum. Let us consider a simple example. Assume that the interval

J satisfies:

(2.22) min Sy (F) > max maxS, ,(E),
EeJ ve{0,n} BEeJ

and
3 . .

(2.23) 3 Ven{lg;} min Sy (E) > max Sh(E).

1

Condition (2.22) guarantees that 6o = - min min S, , (F). Hence, there exists ¢ > 0
2 ve{o,xr} E€J

such that, for £ € J and v € {0, 7},

(2.24) Sh(E) — Spu(E) —dp < —c < 0.
Consider now Iél,) and L(Tl) both non resonant located in J N V,. Then,

— if the two intervals are distant of at least ¢V (where N is a fixed integer) from each
other, condition (2.22) guarantees that, on these intervals, the spectrum is controlled
by Corollary 2.1 and its analogue for the intervals of type 0.

— if the two intervals are distant of Cexp (—dp/e) from each other, then condi-
tion (2.24) guarantees that, on these intervals, the spectrum is controlled by Theo-
rem 2.5 and its analogue for the intervals of type 0.

That intervals J where both (2.22) and (2.23) hold exist can be checked numerically,
see section 2.8. Thus, not only does the location of the spectrum depend on the
distance separating intervals of type 0 for neighboring intervals of type m, but so
does also the nature of the spectrum. Transition can occur due to this interaction
phenomenon: spectrum that would be singular were the intervals sufficiently distant
from each other can become absolutely continuous when they are close to each other
(see Fig. 2.3(a)).

2.7.7. Alternating spectra. — To describe this phenomenon, to keep things simple,
assume that, in V, N J, the distance between the points {E(()l)} and the points {Eﬁ')}
is larger than eV (for some fixed N); hence, all energies are non-resonant in V, N J.
Taking Theorem 2.5 and Corollary 2.1 into account, we see that, on fél) (resp. iﬁ')),
the nature of the spectrum is determined by the size of the ratio tvyo(E(gl))/th(E[()l))

(resp. tv)ﬂ(ET(rl/))/th(Eﬁl,))). So, if for some § > 0, one has

(225)  VE€JNVi, Son(E)—Sn(E)>35 and Suo(E)— Su(E) < -4,
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18 CHAPTER 2. THE RESULTS

then, in V, N J, the sequences of type 0 and 7 contain spectra of “opposite” nature:
the spectrum in the intervals of type 0 is singular, and that in the intervals of type
7 is, mostly, absolutely continuous. This holds under the Diophantine condition on &
spelled out in Theorem 2.5. Hence, one obtains an interlacing of intervals containing
spectra of “opposite” types, see Fig. 2.3(b). In this case, the number of Anderson
transitions in Vi, N J is of order 1/e.

Omne can check numerically that the condition (2.25) is fulfilled for some energy
region V. and some values of « (see section 2.8).

—CJe —C/e
~ C(C; ~ € / ~ € / ~ CE
A 4 J L
. L
sing a.c. a.C. sing a.c.  sing  a.c.  sing
(a) Almost resonant transitions (b) Alternating spectra

F1Gure 2.3. Two new spectral phenomena

2.8. Numerical computations

We now turn to numerical results showing that the multiple phenomena described
in sections 2.7.6 and 2.7.7 do occur.

E=E4—Oz

Bl s 50 < s
- Sy < Sp < Sur
|:| Sor < Sp < Suo
- Sy < min(Sy z, Sv)

EFE=F+a«a
Ficure 2.4. Comparing the actions

All these phenomena only depend on the values of the actions Sp,, Sy0, Sy,». We
pick v to be a two-gap potential. For these potentials, the Bloch quasi-momentum k
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(see section 2.1.2) is explicitly given by a hyper-elliptic integral ([19, 23]), and the
actions become easily computable. As the spectrum of Hy = ff—; + v only has two
gaps, we write o(Hy) = [E1, F2] U [Es, E4] U [E5, +00. In the computations, we have

E; =0, By =3.8571, E3 =6.8571, E4 =12.1004, and E5 = 100.7092.

On the figure 2.4, we represented the part of the («, E)-plane where the condition
(G) is satisfied for n = 1. Its boundary consists of the straight lines F = Fj + a,
E=Fy;+a, E=FE3;—«aand E = E; — a. Denote it by A.

The computations show that (T) is satisfied in the whole of A. As n =1, one has
Es,—9 = —o0. So, it suffices to check (T) for (2,43 = (5. (T) can then be understood
as a consequence of the fact that F5 — E, is large.

On the figure 2.4, one sees that, for non-resonant intervals,

— the zones where one has alternating spectral types (see section 2.7.7) are those
where either S, o < Sy < Sy, x or Sy < Sp < Sy,0

— the transitions due to the proximity of the resonant situation (see section 2.7.6)
take place in the part of region {S;, > max(Sy r,Sy,0)} sufficiently close to {5}, <
min(Sy x, Sv,0)}-

2.9. Comments, generalizations and remarks

As was seen, the spectral behavior of H, . in the interval J is determined by
exponentially small tunneling effects. To avoid considering many different asymptotic
regimes, we have to make an assumption which determines the tunneling coefficients
that play the main role. The assumption (T) guarantees that these are the tunneling
coeflicients associated to the loops defined in section 2.3.2.

In the present paper, we restricted ourselves to perturbations of Hy of the form
acos. As will be seen from the proofs, this is not necessary. The essential special
feature of the cosine that was used is the fact that the topology of the set arccos(R),
i.e., the preimage of R is very simple. More precisely, the assumption that is really
needed is that, for the perturbation under consideration, in a certain neighborhood
of R, the topology of such a preimage remains the same as that for the cosine.

The methods developed in [10, 11, 14, 12, 13] are quite general; using them,
one can certainly analyze more complicated situations i.e., more general adiabatic
perturbations of Hy. Nevertheless, the computations become more complicated than
those found in the present paper.
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2.10. Notations

We now define some notations that will be used throughout the paper. The letter
“V” is used to denote open subsets of the complex plane of energies. The letter C' is
used to denote positive constants independent of €, E and E.

The term “asymptotic” refers to the limit ¢ — 0F.

When writing f = O(g), we mean that there exits C' > 0 such that |f| < C|g| for
all e, z, E in consideration.

When writing f = o(g), we mean that there exists ¢ — ¢(¢), a function such that

— f] < c(e)|g| for all €, z, E in consideration;
— ¢(e) = 0 when € — 0.

When writing f < g, we mean that there exists C' > 1 such that C~1|g| < |f| < C|g|
for all €, z, F in consideration.

When writing error estimates, the symbol O(f1, fa, ... fn) denotes functions satis-
fying the estimate

(2.26) O(f1; far - )l S CUALH Lol + - fal)s

with a positive constant C' independent of z, F and € under consideration.

2.11. A reading guide to the paper

Finally to complete the presentation of the results, we provide a reading guide to
the paper. The next section, section 3, is devoted to the monodromy matrix; we first
recall its definition and its main properties; then, we describe the asymptotics of the
monodromy matrices used to obtain the results presented in section 2. The derivation
of these asymptotics is done in sections 6-13.

Before that, in sections 4 and 5, we use the information on the monodromy matrices
to derive the results of section 2. This is done in two steps: first, in section 4, we give
a rough characterization of the location of the spectrum; then, for energies satisfying
this characterization, we exhibit a monodromy matrix that is better suited to extract
spectral information for the operator (1.1). In section 5, we use this monodromy
matrix to derive the results presented in section 2.

In section 6, we turn to the computation of the monodromy matrix. In the present
case, to estimate the subtle effects of level repulsion, the accuracy of the asymptotics
of the monodromy matrix has to be much higher than what was needed in [11].
Actually, we have to represent the coefficients of the monodromy matrix as sums
of exponentially small terms having different orders of exponential smallness in 1/e.
Therefore, in section 6 we use a natural factorization of the monodromy matrix into
a product of transition matrices. The asymptotics of these matrices are obtained in
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sections 8, 9 and 10, and, in section 6, we only describe and use these asymptotics.
They appear to be not precise enough for our aims, but, using additional general
analytic properties of the transition matrices, we achieve the needed accuracy.

In sections 8, 9 and 10, to get the asymptotics of the transition matrices, we use the
adiabatic complex WKB method; this new method was developed to study adiabatic
perturbations of a periodic Schrédinger operator in [10, 12]. Applying the adiabatic
complex WKB method to compute the monodromy matrix directly would not yield
sufficiently good asymptotics.

In section 7, we recall well known facts on the spectral theory of periodic
Schrédinger equations on the real line. They are used freely in the next sections.

In sections 8-9, we start the calculations of the transition matrices with the con-
struction of consistent bases of solutions to (3.1). In section 8, after a short recollection
of the basics of the method, for the specific case we study, we describe the main prop-
erties of all the geometric objects of the WKB method. Section 10 is devoted to the
computation of the transition matrices between the bases constructed previously. We
first give general asymptotic formulas for such matrices and, then, specify them to the
case dealt with in the present paper. These formulas describe the coefficients of the
transition matrices in terms of certain contour integrals. The purpose of sections 11, 12
and 13 is to rewrite all these objects in terms of the phases and tunneling coefficients
introduced in section 2. We also use these sections to prove the results on the phases
and tunneling coefficients announced in section 2.3.3.
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CHAPTER 3

THE MONODROMY MATRIX

In this section, we consider the quasi-periodic differential equation

(3.1 - %w(x) + (v(z — 2) + acos(ex))(z) = EY(z), z€R,

and recall the definition of the monodromy matrix and of the monodromy equation
for (3.1). We also recall how these objects are related to the spectral theory of the
operator H, . defined in (1.1). Finally, we describe two monodromy matrices for (3.1).

3.1. The monodromy matrices and the monodromy equation

We now follow [10, 11|, where the reader can find more details, results and their
proofs.

3.1.1. The definition of the monodromy matrix. — For any z fixed, let
(¥j(x,2))jeq1,2y be two linearly independent solutions of equation (3.1). We say
that they form a consistent basis if their Wronskian is independent of z, and, if, for
Jj €{1,2} and all z and z,

As (1;(x,2))jeq1,2) are solutions to equation (3.1), so are the functions ((x,z) —
Yj(x +2m/e, 2+ 2m/€)) jeq1,2y- Therefore, one can write

(33) U@+ 2m/e,z42m/e) = M(z, E)¥(w, 2), wx):(%;)

where M (z, E) is a 2x 2 matrix with coefficients independent of . The matrix M (z, E)
is called the monodromy matriz corresponding to the basis (¢;);e(1,2). To simplify
the notations, we often write M (z) instead of M(z, E).

For any consistent basis, the monodromy matrix satisfies

(3.4) det M(z) =1, M(z+1)=M(z), Vz.
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3.1.2. The monodromy equation and the link with the spectral theory
of H,.. — Set

2
(3.5) h = “Lmodl.

€
Let M be the monodromy matrix corresponding to the consistent basis (1;);j=1,2-
Consider the monodromy equation

(3.6) F(n+1) = M(z +nh)F(n), where F(n)€ C? VnecZ.

The spectral properties of H, . defined in (1.1) are tightly related to the behavior
of solutions of (3.6). For now, we will give a simple example of this relation; more
examples will be given in the course of the paper.

Recall the definition of the Lyapunov exponent for a matrix cocycle. Let z — M (z)
be an SL(C,2)-valued 1-periodic function of the real variable z. Let h be a positive
irrational number. The Lyapunov exponent for the matriz cocycle (M, h) is the the
limit (when it exists)

(87) 6(M.h) = lim_ % log ||M (2 + Lh) - M(z + (L — 1)h) -+ M(z + h) - M(2)].

Actually, if M is sufficiently regular in z (say, if it belongs to L), then, for almost
every z, the limit (M, h) exists and does not depend on z, see e.g. [25].

One has

THEOREM 3.1 ([10]). — Let h be defined by (3.5). Let z — M (z, E) be a monodromy
matriz for equation (3.1) corresponding to basis solutions that are locally bounded in
(z,2z) together with their derivatives in x.

The Lyapunov exponents O(E,e) and (M (-, E), h) satisfy the relation

(3.8) O(E, h) = %9(M(~,E), h).

3.2. Asymptotics of two monodromy matrices

Recall that, in the interval J, the spectrum of H, . is contained in two sequences
of subtotals of J, see Theorem 2.1. So, we consider two monodromy matrices, one
for each sequence; for v € {0, 7}, the monodromy matrix M, is used to study the
spectrum located near the points (Ey))l. We first describe the monodromy matrix
M in detail. Then, we briefly discuss the monodromy matrix Mj.

Fix v € {0,7}. The monodromy matrix M, is analytic in z and E and has the
following structure:

A, B,
(3.9) M, = .
B A

v v
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where, for (z1,---,2n) — g(21, -, zn), an analytic function, we have defined

When describing the asymptotics of the monodromy matrices, we use the following
notations:

— for Y > 0, we let

(3.11) Ty = e 2mY/e,
— we put

(3.12) p(z) = e2Mm=l,

One has

THEOREM 3.2. — There exists Vi, a complex neighborhood of E., such that, for suf-
ficiently small e, the following holds. Let

1. .
Yo = o Eel?rf“/* mln(Sv,O(E)v SUJT(E»ﬂ
(3.13) 1
Yy =— sup max(S,0(E),Syr(E),Sh(E)).
27 pesnv.

There exists Y > Ypr and a consistent basis of solutions of (3.1) for which the mon-
odromy matriz (z, E) = Mx(z, E) is analytic in the domain {z € C : Im 2| < L} xV,
and has the form (3.9).

Fix0<y<Yn. Lt VE={E €V, :|ImE| < e}. In the domain
(3.14) {z eC:|lmz| < g} x V¢,

for e small, the coefficients of M, admit the asymptotic representations:

idn
(3.15) A, = 2%?00 + %ew (% + 0) +0 (Th, TYTL]"L(Z),TU,op(Z),Tv,Wp(Z))
and
(3.16) N
B, = 2%700 + %eii” (%e% + 96_@) +0 (Th, TY;;(Z)7Tu,0p(z)vTvmp(z))
with
(3.17) Co = % (aoe@ + aSeJi%) )

In these formulae, for v € {0,7}, (2, FE) — «,(z, E) is an analytic function and is
1-periodic in z; it admits the asymptotics

(3.18) , =14T,,e>CE=2(E) L O (Typ(z)).
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The quantities E +— ®,(E), E + T, ,(E), E + Ty(E), E — 0(E) and E ~ 2,(E)
are real analytic functions; they are independent of z; for E € VE, they admit the

asymptotics:
(319) (i)u(E) = q)V(E) + 0(5)a
(3.20) Th(E) = th(E)(1+0(1)), Tou(E)=tyu(E)(1+o0(1)),

where ®,, and ty,, t,, are the phase integrals and the tunneling coefficients defined in
section 2.3;

(3.21) 6(E) = 6,(v)(1+ o(1)),
where 0, (v) is the constant defined in section 7.2; it is positive and depends only on
n and v;
(i)Tr(E) B (i)O(E) m
22 (F)—2(F)= ——— — — 1).
(3.22) zn(E) — 20(E) 5rs - +o(1)
(3.23) 20 (E) = O(1).

Note that the terms containing 6 in the asymptotics (3.15) and (3.16) are bounded
independently of €. So, with exponentially high accuracy, the coefficients A, and B,
are proportional.

REMARK 3.1. — The description of the monodromy matrix M is similar to that of
M: in Theorem 3.2, one has to change

(1) the indexes 0 and 7 by respectively 7 and 0;

(2) the quantity 6 by 1/6;

(3) z0(F) by z0(E) + h in formulae (3.18).
Most of the analysis used to construct M is the same as that for M. The differences
are described in section 6.

Theorem 3.2 is the central technical result of the paper. In the sections 4 and 5,
we use Theorem 3.2 to study the spectrum of H, ., and the remainder of the paper
is devoted to its proof.

3.2.1. Useful observations. — We now turn to a collection of estimates used when
deriving the results of sections 2.5, 2.6 and 2.7 from Theorem 3.2. We begin with

LEMMA 3.1. — Let J. C R be a compact interval inside V.. (defined in Theorem 3.2).
There exists a neighborhood of J., say Vi, and C > 0 such that, for sufficiently small
e, forE€V, andv € {0, 7}, one has

(3.24) |9, (B)| +|25(B)| < C,
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and

(3.25) 1

%/
o < 2 (B)l-
Proof. — Recall that the phase integrals ®,, are independent of ¢, analytic in a neigh-
borhood of J, and, on J, the derivatives ®/,(F) are bounded away from zero, see (2.4).
Therefore, the statements of Lemma 3.1 follow from (3.19) and the Cauchy estimates
for the derivatives of analytic functions (o(g) in (3.19) is analytic in the domain Vi,
and, therefore, on any its fixed compact, one has the uniform estimates: %0(5) = o(¢)

and %0(6) = 0(¢)). This completes the proof of Lemma 3.1. O
We also prove

LEMMA 3.2. — For sufficiently small €, for v € {0,n}, in the domain (3.14), one has

(3.26) a, =14 0(Ty,p(2)) =14 0(1),

(3.27) p(2)[To (E)| = o(1),

(3.28) |ei® (B)/e| < 1,

(3.29) Tw(E)| + | T (B)| + Ty < Ce™ /7,

(3.30) Ty = o(Th(E)) and Ty = o(T, . (F)),

(3.31) Ce >™M/s <|T},(E)| and %6’2”””6 < Ty (E)| < Cem?™m/e,
(3.32) 10(E)| < 1,

(3.33) |e?miz (B)] < 1,

All the above estimates are uniform.

Proof. — As z, is real analytic, estimate (3.33) follows from (3.23) and the definition
of V£. Estimate (3.32) follows from (3.21) as 6, (v) is a positive constant depending
only on n and v. The estimates (3.31) follow from (3.20) and the definitions of the
tunneling coefficients, of the domain V¢ and the numbers Y;,, and Y. Estimates (3.30)
follow from (3.31) as Y > Y. Estimates (3.29) follow from (3.30), (3.20) and the
definition of . Estimate (3.27) follows from (3.31) as in the domain (3.14), one
has [Imz| < y/e, and y < Y,,. Estimate (3.28) follows from (3.24), the definition of
the domain V¢ and from the real analyticity of the phase integrals. The inequalities
in (3.26) follow from (3.30) and (3.27). This completes the proof of Lemma 3.2. O
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CHAPTER 4

ROUGH CHARACTERIZATION OF THE SPECTRUM
AND A NEW MONODROMY MATRIX

In this section, we first obtain a rough description of the location of the spectrum
of H, . i.e.,, we prove Theorem 2.1. Then, we change the consistent basis so that,
in a neighborhood of the spectrum, the new monodromy matrix have a form more
convenient for the spectral study.

4.1. The scalar equation

Our analysis of the spectrum is based on the analysis of solutions of the mon-
odromy equation with the monodromy matrices described in the previous section. A
monodromy equation is a first order finite difference 2-dimensional system of equa-
tions, see (3.3). Instead, of working with this system, we study an equivalent scalar
second order finite difference equation. To derive this equation, we use the following
elementary observation

LEMMA 4.1. — Let M : z — M(z) be a SL(2,C)-valued matriz function of the real
variable z, and let h be a real number. Assume that Mi2(z) # 0 for all z. Define
(41)  pu(2) = Mia(2)/Mi2(z = ), om(z) = Mia(2) + par(2) Maz(2).

A function ¥, : Z — C is the first component of a vector function ¥ : Z — C2
satisfying the equation

U(k+1)=Mhk+2)¥(k), VkelZ,
if and only if it satisfies the equation

(4.2) Uy (k+1) 4 par(hk + 2)U1 (k — 1) = var(hk + 2)U (k), Yk € Z.
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The reduction from the monodromy equation to the scalar equations (4.2) has already
been used in [5] and [11]. Recall that, for ¢ a non vanishing continuous periodic
function, the index of g, denoted by ind g, is equal to 1/27 times the increment of the
argument of g over a period.

To characterize the location of the spectrum of (1.1), we use

PROPOSITION 4.1. — Fiz E in equation (3.1). Let f and g form a consistent basis in
the space of solutions of (3.1), and let M be the corresponding monodromy matriz.

Assume that the functions (x,z) — f(x,2), (z,2) — g(x,2), (x,2) = O.f(z,z)
and (x,z) w 0yg(x, ) are continuous on RZ.
Suppose that mi£|M12(z)| > 0. In terms of M, define the functions pyr and vy
zE

by (4.1) and define h by (3.5). Let

1. 2 .
(4.3) max |oar ()] < (G minforr(2)]) . ind pas = ind vy = 0.

Then, E is in the resolvent set of (1.1).

The proof of this proposition immediately follows from Proposition 4.1 and Lemma 4.1
in [11] based on the analysis in [5].

REMARK 4.1. — This proposition is very effective if the coefficient Mis of the mon-
odromy matrix is close to a constant. Then, it roughly says that the spectrum is
located in the intervals where the absolute value of the trace of the monodromy ma-
trix is larger than 2. This is the condition one meets in the classical theory of the
periodic Schrodinger operator ([8]).

4.2. Rough characterization of the location of the spectrum

We now prove Theorem 2.1.

Pick E, € J. Let V, be as in Theorem 3.2. Consider the sequences (Eﬁl))l and
(E(gl ))l, defined by the quantization conditions (2.13).

Introduce &g by (2.11). Let J. be a compact subinterval of J N V. One has
LEMMA 4.2. — Pick 0 < a < 1. For ¢ sufficiently small, in J,, the spectrum of H, .
is contained in the e*e~%/¢_peighborhood of the points (E,(Tl))l and (E(gm))m defined
by the quantization conditions (2.13).

Lemma 4.2 implies Theorem 2.1 at the possible expense of reducing V, somewhat.
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Proof. — Define

(4.4) Viewsh = {E € J, : |E — E{™| > e% %/, ym}.

We shall prove that, for € small enough, the spectrum of H . in Viougn is contained
in the e®e~%/¢-neighborhood of the points (E,(Tl))l.

In the remainder of this proof, we assume that ¢ is sufficiently small for the state-
ments of Theorem 3.2 and Lemma 3.1 to hold.

The proof consists of the following steps.

1. We prove that, for e sufficiently small,

cos (q)O(E))‘ > ¢—00/e.

c =

inf
Ee ‘/rough

This follows from (4.4), from the definition of the set {E(()l)}, and from (3.25).
2. We check that, for E € J,, and for z € R, each of the functions A, and B, has

the form

Ti [ei‘i)”/e cos(®g/e) + 0(6_260/8)] .
h

Indeed, by the first inequality from (3.26), for v € {0,7}, z € R and E € J,, one has
a, =14+ 0(T, ).
By means of this estimate and of (3.28) and (3.32), we transform the right hand sides
both in (3.15) and (3.16) to the form
9 .
A (e"I’”/E cos(®o/e) + O(Ty .0, Lo rs Th,Ty)) .
h

This and (3.29) imply that A, and B, have the requested form.

3. Let (2, E) — pun(z, E) be the function defined by (4.1) for M = M, (z, E). The
previous two steps imply that there exists C' > 0 such that, for € sufficiently small,
one has

sup sup |pa(z, E) — 1| < Ce %/,
zER E€Viough

4. Let (2, E) — vp(z, E) be the function defined by (4.1) for M = M, (z, E). The
previous three steps imply that, for ( € R and E € V;ugn, one has

”M(zv E) = A + A; + (pM(Zv E) - 1)A:r
= Ti ([2 cos(P /) cos(Pg/e) + O(e™2%0/%))]
h
+ [(7%7/% cos(®o /<) + O(e™2%/%)) O(e™%/%)))

— Ti cos(i)o/s) (cos(éﬁ/g) + 0(6—50/6>) _
h
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5. There exists C' > 0 such that, for ¢ sufficiently small, if E € o(H. ) N Viough;

then
D,
cos (E) ‘ <C (6_50/5 + Th) .
€ {cos $o(E) |

(4.5)

€

Indeed, by steps 1 and 2, for sufficiently small ¢, for E € Vough, one has
miﬂlg |Br(z,E)| >0, indB,(-,E)=0.
S

Moreover, by steps 3 and 4, there exists C' > 0 such that, for ¢ sufficiently small, for

E € Viough, if
o, (E T)
cos ( )’ >C<65°/E+&f15>’
: cos 22051

then, one has

. 2 3 —
min [oar (2, B)[" > dmax|py(z, B)|,  indvn (-, E) =0.

These two observations and Proposition 4.1 complete the proof of (4.5).

6. In view of (3.29) and of the first step, inequality (4.5) implies that, for E € o(H, )N
Viough, one has

| cos(B(E)/e)| < Ce /e,

By the definition of (E,(rl))l and Lemma 3.1, this implies that there exists [ such that
|E — E7(rl)| < Cee~%/¢, This completes the proof of Lemma 4.2. O

4.3. A new monodromy matrix

As said, to study the spectrum, instead of working with the monodromy equation
itself, it is more convenient to work with the equivalent scalar equation (4.2). The use
of this equation is very effective when M5, the element of the monodromy matrix,
is close to a constant, and Mj; (or/and its derivative in F) is much larger than
Mos. To satisfy these requirements for E near the points (E,(rl))l, we introduce a new
monodromy matrix. Therefore, we make the following simple observation:

LEMMA 4.3. — Recall that h is defined by (3.5). Let M be a monodromy matriz for
equation (3.1), and let U : z — U(z) € SL(2,C) be a l-periodic matriz function.
Then,

(4.6) MY(2) = U(z + h)M(2)U(2) "

is also a monodromy matriz for equation (3.1).
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Proof. — Let f; and f2 be the solutions of (3.1) that form a consistent basis for which
M is the monodromy matrix. The components of the vector

)

are also solutions of (3.1); they form a consistent basis, and MY is the corresponding

(4.7) F(@,2) = U(z)F(x,2), Flz,z)= (

monodromy matrix. O

For (z, E) in the domain (3.14), we define the new monodromy matrix MY choosing
z

M = M, (z, E), the matrix described in Theorem 3.2, and
11 0 ; -
(48) U(z) = : < ) (7('2) ) , where ~v(z+h)= 0a(2) e~ in/e,
2\—i i/ \ 0 (2 ar(z)

Recall that, for (z, E') being in the domain (3.14), by Lemma 3.2, one has o = 1+40(1)
when ¢ tends to 0. So, we define a branch of v analytic in this domain by the condition

Gl = 14 0(1).

Then, one proves

THEOREM 4.1. — In the case of Theorem 3.2, in the domain (3.14), the monodromy
matriz (z, E) — MY (2, E) is real analytic and admits the representation.:

(19)  MU(:B) = P2, B) + Q. B) + O (T, plz) 2 p(2)To, D) T )

T, P
where
(4.10) P(z,E) = 4 (C'w(z,E)Co(z,E) _S‘n'(Z,E)CO(Z,E)>
. ) Th 0 0 ,
(4.11)
Q(z,E) (écosq’“;%_y_gcos?cos? —ésin@—@sin?cos?)
2z, E) = . ) :
—fsin 2 Cr(z, E) 0'sin 2= gin Lo
In these formulae
= 1 3§ & 1 - s
(412) Cr = 5 [dﬂ_eﬂbﬂ/s + &;67143'”/6} ’ S, = 27 [&ﬂ-eﬂpw/e B d:eilq}ﬂ/s] 7
i

and (z, E) — a(z, E) is an analytic function that admits the asymptotics:
(4.13) dr = 14T, « [cos(2m(z — 24)) + isin(27(z — h — 22))|[+O(P*(2) T 5. p(2) Ty ).

All the above estimates are uniform in the domain (3.14).
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Proof. — The monodromy matrix MY is analytic in the domain (3.14) as M, and U
are. As the consistent basis in Theorem 3.2 consists of a pair of solutions of the form
f1 = fand fo = f*, for U given by (4.8), formula (4.7) defines two consistent solutions
of (3.1), say fY and fY, such that, for z fixed, (z,E) = fV(z,2,E) and (2, E) —
fY(x, 2, E) are real analytic. So, the new monodromy matrix (z, E) — MY (z, E) is
also real analytic.

Compute MY . By (4.8) and (4.6),

S+ 5
@14) MY =2F7 here S =" (2) [y(z + h)An(2) + 7" (2 + W) B (2)].
The definition of ~ yields
v(z +h) 2id, Or(2) o
S =LA (2) + " B (2)] -
T A B )

Substituting the asymptotic representations (3.15) and (3.16) into this expression,
and using the real analyticity of T},, ®¢, @, 8 and Cy, we get

— i" i‘i)ﬂ’/e —
(4.15) S= Thoc,r(z)e Co(z) + ) 5 0+ 7

an(2) (2 + h) e®/ 1 idy)e ido /e
ax(z) ~(z) 2 (96 e )

v(z + h) ei(®x—%0)/e ( 1)

_|_

LACER) e 3G ) el

7(2) (z)  an(z)
where a,(z) = %aﬂ(z), and @ denotes O(1y,, Ty p(2)/Th, Ty op(2), Ty =p(2)). By
the estimates of Lemma 3.2, from (4.15), one obtains

0,

4 ¥ ¥ 1 .5 .
S = —an(2)e/5Cy(2) + /¢ (*671@0/5 + Gcos(@o/s)) + 0.
Ty, 6

Substituting this result into (4.14), we get the formula announced for MY} in Theo-
rem 4.1.

The other coefficients of the matrix MY are computed analogously; so, we omit
the details.

To complete the proof of Theorem 4.1, it remains only to check (4.13). Put a, 1 =
ar — 1. By Lemma 3.2, one has a1 = O(pTy,~). Therefore,

1
- Y(z+h) az(2)ax(z)ax(z — h)\*
416) an(z) = 220 (2) =
(416) & (2) ~v(2) an(2) ( at(z—h) )
1
= 145 (07.1(2) + ar1(2) + ana(z = h) — af 1 (z = W) FOP* (2)T5 -
In view of (3.18), one has a1 = T, e?™ (>~ (E)) 4+ O (Typ(2)). Substituting this
in (4.16) yields (4.13). This completes the proof of Theorem 4.1. O
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Finally, we note that, similarly to (3.26), one proves that

LEMMA 4.4. — Uniformly in (z, E) in the domain (3.14), one has
dr =14 O(Tyzp(2)) =1+ O(e™ 7 Ym=v)/e) = 1 4 o(1).
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CHAPTER 5

THE SPECTRUM IN THE “NON-RESONANT” CASE

We now prove the results on the spectrum of H,. formulated in Theo-
rems 2.2, 2.3, 2.4, Corollary 2.1 and Theorem 2.5.

Pick F, € J. Let V, be as in Theorem 3.2. Let J, C V., NR be a compact interval
centered at F,.

We always assume that ¢ is so small that the statements of Theorem 4.1 and
Lemma 3.1 hold.

Let E; be one of the points of (E;rl))l in J,. We assume that F, satisfy the non
resonant condition

(5.1) inf |ES™ — Ep| > 2%/
In this section, we fix « satisfying
0<a<l

and study the spectrum in the e*e~%/¢_neighborhood of F.

Our main tool will be the scalar equation (4.2); recall that we consider the one
associated to the monodromy matrix MY described in Theorem 4.1.

In the sequel, we use the notations defined in section 2.10. Now, all the symbols
are uniform in F.

5.1. Coefficients of the scalar equation

Here, we analyze the coefficients of the scalar equation for energies E satisfying

(5.2) |E — E,| < %%/,

SOCIETE MATHEMATIQUE DE FRANCE 2006



38 CHAPTER 5. THE SPECTRUM IN THE “NON-RESONANT” CASE

5.1.1. The results. — We now define a few objects that we shall use throughout
the analysis. Let

(5.3) or = —sin <(i)ﬂ(€Eﬂ)> )
As E, € {Efrl)}, one has either o, = +1 or o, = —1.
Let
(54) Fr(E)=o0x {Th(ZLEw) cos(éo(gEW)) é;(gEﬂ) (E—E;)—2A,(v) sin(é()(jm)} .

The factor A, (v) is defined in (7.3). The coefficient F,(E) will play the role of an
“effective spectral parameter”.
Also, we define the factor

Tv 7T(E7T) éO(EW)
5.5 Ar = 4o — .
(5.5) o T (E.) cos( 5
This factor will play the role of an “effective coupling constant”. Finally, we let
(5.6) 01 = min {50, (271'Y — hax Sh(E)) }
where g is defined by (2.11) and Y is the constant from Theorem 3.2. We note that
01 Yn
0<—< —.
< 2r — 2

These inequalities follow from the inequalities Y > Y3, and §y < nY,, in which Yy,
and Y;, are the numbers defined by (3.13).
We prove

PROPOSITION 5.1. — Let pU and vV be the the coefficients pyr and var of the scalar
equation (4.2) corresponding to the monodromy matriz MY .

Assume that the condition (5.1) is satisfied.

Fiz 0 < y < 61/(2m). Then, the strip {|Imz| < y/e}, for E satisfying (5.2),
one has My # 0, and the coefficients pU and vV admit the following asymptotic
representations

(5.7) P (2 B) =140 (p(2)ee™™/),
(2, E) = {F(E) + Apsin(27(z — h — 2 (Er)))
(5.8) +o(p(2)A=(E)) + O (p(2)e=""/%)}

(14 0O (p(z)ee™%/9)).

Here, the function E — F(E) is independent of z; F(E) and F'(E) admit the asymp-
totic representations:

(5.9) F(E) = Fr(E)(1+o0(1)) +0(1), and F'(E)=F.(E)(1+o(1)).
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We prove Proposition 5.1 in section 5.1.2.

We often shall use simplified versions of (5.7) and (5.8), namely

COROLLARY 5.1. — In the case of Proposition (5.1), one has

(5.10) o (2, B) =1+ o(1),

(5.11) vY(z, E)={Fr(E)+X; cos(2m(z—h—2:(E,))) + o(Axp(2))+o(1)} (1 4 o(1)).
Proof. — For 0 < y < §1/(27) and |[Im z| < y/e, one has

(512) p(z)e*‘SO/E +p(z)€*51/€ < e~ (01—2my) /e

Representation (5.10) is obtained from (5.7) by means of (5.12). Representation (5.11)
is obtained from (5.8) by means of (5.12) and (5.9). O

5.1.2. Proof of Proposition 5.1. — Let us begin with three lemmas. First, we
collect simple observations following from Taylor’s formula. One has

LEMMA 5.1. — For e sufficiently small, for all E satisfying (5.2), for v € {0,7}, one
has

(5.13) |cos (B (E)/e)| < Cevted0/e,

(5.14) cos (Br(E)/e) = one @1 (Ex)(E — Ex)[1+ O(" e /%)),

(5.15) sin (&, (E) /) = sin (9, (E,)/e) + O(e*Le%/),

(5.16) |cos (Do (E) /)| > Cele /¢

(5.17) cos(Pg(E)/e) = cos(Po(Ex)/e) (14 O(e%)),

(5.18)  Th(E)=Tu(Ex)(14+0(" e /%)), T, ,(E) =T, (Ex)(1+0(* e~ %/)).

Proof. — These results follow from the Taylor formula. When proving the first five
results, one uses (3.24) and (3.25) and has to keep in mind the definitions of Fy and
FE:. We omit the elementary details.

The two estimates (5.18) are proved in one and the same way. We prove only
the first one. Therefore, one uses the Taylor formula for log 7}, (F) in the neighbor-
hood (5.2) of Er. By (3.20) and the definition of ¢, one has log T, (E) = — 5= Sy (E) +
g(E), where g(E) = o(1) uniformly in V. The estimates |S},(E)| < C and j% =o(1)
hold uniformly on any fixed compact of V, (the last estimate follows from the Cauchy
estimates). This implies that, for E in a fixed compact of Vj,

(5.19) |T7,(B)| < Ce™HTu(E)),

and this estimate implies the estimate for T}, from (5.18). This completes the proof
of Lemma 5.1. O
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We also prepare simplified representations for factors Cy, S, and C, defined
n (3.17) and (4.12). We prove

LEMMA 5.2. — Fiz y as in Proposition 5.1. Under condition (5.1), for Imz| < y/e
and E satisfying (5.2), one has

(5.20) Cy = cos (@O(E)/s) (1+0 (p(z)geféo/E)),
(5.21)  Cr = cos (O (E)/€) + 0xTyo n(Er)sin(2m(z — h — 2:(Ey)) + 0o(pToy .~ (Ex)),
(5.22) Sy =sin (®,(E)/e) (1 + O(pe™ 250/5))

Proof. — The definitions of Cy and Sy, (3.17) and (4.12), and (3.28), (3.26) imply that
(5.23)  Co = cos(Po(E)/e) + O(pTy) and Sy =sin(d,(E)/e) + O(pTy.r).

Representation (5.20) follows from (5.23), from estimate (5.16) and from (3.29). Sim-
ilarly, (5.22) follows from (5.23), (5.13) and (3.29).
Prove (5.21). The definition of Cy, (4.12), and representation (4.13) imply that

Cr = cos (q’“iE)) + Ty x(E) [cos (‘I)’T{EE)) ¢(z) — sin (‘bﬂiE)> s(z)}

+ O(pzj_g,wﬂpTy)
where s(z) = sin(2m(z — h — z:(F)) and ¢(z) = cos(2n(z — z(E)). Now, representa-
tion (5.21) follows from (5.13), from (5.18) and from estimates (3.30) and (3.27). O
Turn to the proof of Proposition 5.1. — Compute pU. By (4.9), we have

T
(5.24) M{, = Py + Q2+ Riz, Ri2=0 (Tmp(z)%,P(Z)Tv,o7P(Z)Tv,w) :
Show that, for F satisfying (5.2) and |Im z| < y/e, one has
(5.25)
4 . s/

Prp = 7 sin(@r (B) /€] cos(Po(E) /e) (1 + O(p(2)ee 29)), Qua| + [Ria| < C.
The estimate for P follows from Lemma 5.2. The estimate for Q)12 follows from (3.32)
and (3.28). Check the estimate for Ri3. By (3.29) and the definition of d;, one has
|R12| < Cp(z)e=%/2. Recall that p = e2™I"™ 2l As y < §;/(27), for [Im z| < y/e we get
(5.26) p(z)e 0/ < em(r2m)/e <

This implies the announced estimate for Rq5 and completes the proof of (5.25).

For E satisfying (5.2), as E, satisfies (2.13), for ¢ sufficiently small, one has
|sin(®,(E)/e)| > 1/2; taking (3.29) and (5.16) into account, we get

4 sin(®,(E)/¢) cos(®o(E)/e) ) § Cee™%/¢,
Th
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From this, (5.24) and (5.25), one deduces
21 MY = Tihsin(fi)ﬂ(E)/a) cos(Bo(E)/e) (1 + O(p(z)ce%/7)).

In view of (5.26), there exists €9 > 0 such that, for 0 < € < eq, the error term in (5.27)
be smaller than 1/2. From now on, we assume that 0 < ¢ < ¢. Then, we get M # 0,
and, as pY(z) = MY (2)/M(z — h), the representation (5.27) implies (5.7).

Now, let us compute vY. Note that vY(z, E) = MY(z, E) + MY%(z — h, E) +
(pY(z,E) — 1)ME(2 — h, E). Using the representations (4.9), (4.10) and (4.11), we
transform this expression to

(5.28) vY(z,E) = Pu(z, E) + (Qu(E) + Q22(E)) + R(z, E),
(5'29) R = (pU(Zv E) - 1)(Q22(E) + Tl(z7 E)) + T2(27 E)7
(5.30) ri(z,E) = O (Th,p(z)?—y,p(z)Two,p(z)Tvm) for j € {1,2}.
h
We now show that
(5.31) Pi1(z,E) = (F(E) 4 Ars(2) + 0o(pAr)) (1 + g(z, E)),
where
- 4 cos o (E) cos 22(E) .
32 B =gy s(2) =sin@n(z b~ zx(En))),
l9(z. )| < Cp(z)ee/%,

and that
(533) QuE) +1Q2(B) <C,  |R(z E)| < Cp(z)e™/,
(5.34) lg(z, E)| < Ce, |R(z,E)| <C.
Lemma 5.2 implies that

_ 4Co(z, E)Cr(z,E)
(535) Pll(Z, E) = Th(E)V

.G%@ﬁm+au@4w+dmanﬂ>

= (F(B) + A(E)s(2) + o(p()A(E))) (1 4+ O (p(2)ee%/9))

where 5
Y 4Uwﬂ; ™ (I)O(E)
Tyr =Ty n(Er), AE)= i
v, v, ( ) A( ) Th(E) cos <
In view of (5.17) and (5.18), we have A(E) = Ar(140(1)). This and (5.35) imply (5.31)

and (5.32).
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The first estimate in (5.33) is proved in the same way as the second estimate
in (5.25).

Prove the second estimate in (5.33). As when proving the third estimate in (5.25),
one checks that, for j € {1,2}, |r;| < Cpe=1/¢ and |rj] < C. Recall that |Qq2| < C.
These observations and (5.7) imply that |R| < C|pY (2, E) — 1| + |ra| < Cpe=01/¢.

The “rough” estimates (5.34) follow from the already obtained and (5.26). This
completes the proof of (5.31) — (5.34).

Now, assume that ¢ is so small that |g(z, E)| < 1/2 for all z and F in the case
of Proposition 5.1. This is possible in view of (5.34). Then, substituting representa-
tion (5.31) into (5.28), and taking into account (5.33), we get

WU = [F(E) FAns(2) + o(prs) + S0E) +1$2;((ZEE R(z,E)

= [F(E) + Azs(2) + o(pAr) + O(R(z,E)) + O(g(z, E))] (1 + g(z, E))

(1+9(z E))

with
F(E) = F(E) + (Qu(E) + Qx2(E)).
In view of (5.32) and (5.33), this implies (5.8).

Now, we only have to check (5.9) to complete the proof of Proposition 5.1. For
sufficiently small ¢, the representation for F' in (5.9) follows from

(i)O(Eﬂ')> (I);T(Eﬂ)
€ e

(5.36)  F(E) = 4o, (Th(E,)) " cos ( (E — Ex)(1+o0(1)),

3

(537) Qll(E) + QQQ(E) = 720'71-An(’0) sin (W) =+ 0(1)

The formula (5.36) follows from (5.17), (5.14) and (5.18). To prove (5.37), we note
that, by (4.11),

Qu1(E) + Q22(E) = (0 +1/0) cos (2 — Po)/¢) .
This in conjunction with (5.15), (5.13), (3.21), (7.3) and (5.3) yields (5.37).
Finally, the asymptotics for F’ in (5.9) follows from

(5.38) F'(E)=Fp(l+o(1)), [F|=Ce %™/ |Qy(E)+|Qy(E)| < Ce.

Prove the first of these estimates. It follows from Lemma 3.1 and estimates (5.19), (5.13)
and (5.16) that

F/(E) _ 74COS % sin @ @;(E)
Th(E) 9

(1+ o(g9)).
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Now, using (5.17), (5.15) for v = m, (5.18) and the estimate &’ (F) = &/ (E,)(1+o(1))
(following from Lemma 3.1), we get

() - 40, cos % ' (E,)
Th(Eﬂ) e
This and the definition of F}; imply the representation for F’ in (5.38). The estimate
for |F/| follows from the definition of F; and the estimates (5.16), (3.29) and (3.25).
The last estimate in (5.38) follows from (3.24), (3.32) and the Cauchy estimates
for E — 6(E).
This completes the proof of Proposition 5.1. O

(14 0(1)).

5.2. The location of the spectrum

We now prove Theorem 2.2. Therefore, we apply Proposition 4.1 to the scalar
equation with the coefficients pU and vY computed in section 5.1.
Let J¢ the subinterval of J described by (5.2). One has

LEMMA 5.3. — The spectrum of H, . in J; is contained in the interval described by
(5.39) [Fr(E)| < (24 [Ar]) (1 4 0(1)),
where o(1) is independent of E and E, (satisfying (5.1)).

Proof. — First, we find r, a subset of .JS, where MY, vV and pY satisfy the assumptions
of Proposition 4.1. Hence, r is in the resolvent set of (1.1).

Recall that (2,E) — pY(z,E) and (2, E) — vY(2,E) are real analytic as
the matrix (z,E) — MUY (2, E) is. Therefore, the equalities ind pV(-, E) = 0 and
indvY (-, E) = 0 automatically follow from the inequalities miﬂg|pU(z,E)| > 0 and
max ¥ (2, B)| < (1/4)(min ¥ (=, B)|)” -

Furthermore, by (5.10), the first of these inequalities is satisfied for all E €
JZ. So, in JZ, the assumptions of Proposition 4.1 are satisfied if and only if
max|p” (z, B)'? < (1/2) min ¥ (=, B)|.
zE ze

Corollary 5.1 yields

(5.40) max [p” (2)['/* < 1+ o(1),
(5.41) §g§|vlf<z>| > ”T“) (min [ (E) + Ar sin(a)| + o(1)(1 + [Ae)))

where o(1) is independent of E and E,. So, v¥ and pV satisfy the assumptions of
Proposition 4.1 if F satisfies the inequality of the form |F,(E)| > (2 + [A:]) (1+0(1)),
where o(1) is independent of E and E.. Now, Proposition 4.1 implies the statement
of Lemma 5.3. U
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Lemma 5.3 and the definitions of A; and F, namely (5.4) and (5.5), imply that,
in J;, the spectrum of H, . is contained in I, the interval described by
2. do(Ex
& (Bx)(E = Ex) = A (v)Ti(Ex) tan <0(€)> ‘
9 ( Th(Eﬂ')
 \2]eos (T

where o(1) depends only on e. The interval I is centered at the point

o M (WTW(Er)  ( Po(Ex)
(5.42) Er = Ex + 2@;(Ew) tan < € ) '

+Tv,ﬂ<Eﬂ>) (1 +o(1)),

and it has the length

I <2\co?<%)| FTn(E2) ) (14 o(0).
g
This completes the proof of Theorem 2.2. O
Note that
(5.44) |Ex — Ex| 4 || < Cee™%/c.

These estimates follow from (5.42), (5.43) and estimates (3.25), (3.29) and (5.16).

Finally, we note that, using (5.42), one can rewrite (5.4) as

(5.45) Fr(E) = Tj(UE’;) cos (q)‘)(f”)) (I);f(gE”) (E — E).

5.3. Computation of the integrated density of states

We now compute the increment of the integrated density of states on the inter-
vals described in Theorem 2.2 and, thus, prove Theorem 2.3. We use the approach
developed in [11]. We begin with

5.3.1. A general result. — One has

PROPOSITION 5.2. — Pick two points a < b of the real axis. Let v be a continuous
curve in C4 connecting a and b.

Assume that, for oll E € 7, one can construct a consistent basis such that the
corresponding monodromy matriz is continuous in (z, E) € R X v and satisfies the

conditions

1 2
4 ' (f ' )
(5.46) min [Miz] >0, max|py(2)] < (5 minjun(2)])
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where ppr and vyr are defined by (4.1) with h from (3.5). Assume in addition that the

coefficients of M are real for real E and z. Then, one has
1

(5.47) N(b) — N(a) = argvp(z, E)dz

9

~

=i
where f|, denotes the increment of f when going from a to b along .

Proof. — In [11], we proved a more general result; we assumed that, for all (z, E) €
R X 7, the monodromy matrix satisfies the conditions of Lemma 4.1 and got the

formula,
1
€
(5.48) N(b) — N(a) =— 27 |, argG(z, E)dz| ,
.
where G is the continued fraction
B pum(2)
(549) G(Z) = UM(Z) - UM(Z . h) - pu(z—h)

v (z—2h)— LML
Such continued fractions were studied in [5]. It was proved that, if the functions

z — pu(z) and z — wvp(z) are continuous and 1-periodic and if they satisfy the
conditions (4.3), then

— the continued fraction z — G(z) converges to a continuous 1-periodic function
uniformly in R;

— if ppsr and vys depend on a parameter F| if they are continuous in (z, F) in some
domain D, and if, for all (z,E) € D, they satisfy conditions (4.3), then (z,E) —
G(z, E) is also continuous in D.

— for z € R, one has

(550 1G() ~var()] < g min fone(2)] - \/ (3 min oar()]) = malpae (2

Now, turn to the proof of (5.47). As, in our case, vas(z, F) and pps(z, E) are real for
real z and E, we conclude that (1) ind vpy = ind pps = 0 (which follows from (5.46));
(2) the right hand sides in both (5.47) and (5.48) belong to €/27Z. The first obser-
vation and (5.46) imply that, for all (z, E) € R X +, the monodromy matrix satisfies
the conditions of Lemma 4.1. In view of the second observation, formula (5.47) fol-
lows from (5.48), the continuity of (2, E) — G(z,E)/vY(z, E) and the inequality
SUp, cr %ﬁ;g"w)l < 1 valid for all E € 7. And, the last one follows from (5.50)
and the second condition from (5.46):

|G(z, E) — oY (z, B)| <9 max,cg [pY (2, E)|

sup - < 1.
z€R, Eey |UU(27E)| mlnz€R|UU(sz)|2
This completes the proof of Proposition 5.2. O
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5.3.2. The computation. — Let F, be as in the beginning of section 5 and, in
particular, be such that (5.1) is satisfied. As above, let J¢, be the subinterval of J
described by (5.2).

As seen in the previous section, in J, the spectrum of H, . is contained in I, the
interval centered at E, (see (5.42)) of length || (see (5.43)).

To compute the increment of the integrated density of states on I, we use Propo-

sition 5.2 and choose:

- 1
v = {E €Ci: |[E—Eq| = 55“6_5"/5}.

Let a < b be the ends of 4. Then, by (5.44), one has I, C (a,b). We prove

LEMMA 5.4. — On vy, the monodromy matrizc MY and the functions p¥ and vV satisfy
the conditions (5.46).

This lemma is proved in the end of section 5.3.2.

Recall that the integrated density of states of H . is constant outside the spectrum
of H, .. So, its increment on I is equal to its increment between the ends of the semi-
circle v. And, in view of Lemma 5.4, the latter is given by the formula (5.47). In view of
this formula, to prove Theorem 2.3, it suffices to check that fol argv¥ (z, E) dz|7 = —T.
This follows from

LEMMA 5.5. — For (z,E) € R x v, one has

(5.51) vY(2,E) = Fr(E)(1+0(1)).

This lemma is also proved in the end of section 5.3.2.

Indeed, note that for = € R and E € R, the functions F, and vV take real
values. Therefore, the estimate of Lemma 5.5 implies that fol argv¥ (z, E) dz]7 =
arg Frr(E)|,. In view of (5.45), the last quantity is equal to (£ — EW)|7 = —7. So, to
complete the proof of Theorem 2.3, we have only to check Lemmas 5.4 and 5.5. They
will follow from

LEMMA 5.6. — For (z,E) € R x 7, one has

(5.52) |Fr(B)| > Ce*2

Proof. — The lower bound for |F(E)| follows from (5.45), the definition of v and the
estimates (3.29), (5.16) and (3.25). O
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Proof of Lemmas 5.5. — Prove the asymptotic representation for vY. Therefore, we
first derive an upper bound for the ratio A\;/Fr(E). By (5.5) and (5.45), we get
[Ar/Fr(E)| = #&h Now, the definition of 7 and the estimates (3.29)
and (3.25) imply that

(5.53) Ae/Fr(E)| < Cel~%e%/¢,
So, the ratio is small when ¢ tends to 0. The representation (5.51) follows
from (5.11), (5.53) and (5.52). This completes the proof of Lemma 5.6. O
Proof of Lemmas 5.4. — By Proposition 5.1, for sufficiently small ¢, for £ € ~ and
z € R, one has MY (z, E) # 0. Finally, for sufficiently small ¢, for all E € +, from (5.52)
1
and (5.7), it follows that mg§<|pM(z,E)| < Zmei]g\vM(z,E)F. This completes the
z z
proof of Lemma 5.4. O

5.4. Computation of the Lyapunov exponent

We now derive the asymptotics of the Lyapunov on the interval I, i.e., prove
formula (2.19), and, thus, prove Theorem 2.4.

5.4.1. Preliminaries. — To compute ©(F, ¢), we use Theorem 3.1 and compute the
Lyapunov exponent of the matrix cocycle defined by the monodromy matrix MY (-, E).
It appears to be difficult to compute directly §(MY (-, E), h): one can obtain only
rough results. However, using the scalar equation with the coefficients v¥ and pY,
one can construct another matrix cocycle that has the same Lyapunov exponent as
(MY (-, E),h) and for which the computations become much simpler.

5.4.2. The Lyapunov exponent and the scalar equation. — In this section,
we only assume that z — M(z) is a 1-periodic, SL(2,R)-valued, bounded measurable
function of the real variable z. Let h is a positive irrational number. We check the
following simple

LEMMA 5.7. — Assume that there exists A > 1 such that

(5.54) VzeR, A< Mp(z) <A

In terms of M and h, construct vy; and pyr by formulae (4.1). Set

~ (vm(2)/Vom(z) —/pu(2)
(5.55) M@_(1/pm@ . ).

Then, the Lyapunov exponents for the matriz cocycles (M, h) and (N, h) are related

by the formula
(5.56) O(M,h) =0(N,h).

SOCIETE MATHEMATIQUE DE FRANCE 2006



48 CHAPTER 5. THE SPECTRUM IN THE “NON-RESONANT” CASE

Proof. — Let
B ]_ M12(Z> O
H(Z) B Ml?(z) (MQQ(Z) —1)
One has
(5.57) M(z) =P H()N()H (2 —h), I(z)= %log o (2).

Note that, under the condition (5.54),
I(z)] <log A < 00, Vz€eR,

and that {(z) is 1-periodic. As h is irrational, by Birkhoff’s Ergodic Theorem (|25]),
one has

L 1
o1 ‘
(5.58) Jim ;z(z +jh) = /0 () d=
for almost all z € R. As 2I(z) = log par(z) = log M12(z) —log Mi2(z — h), the integral
in (5.58) vanishes. This, the definition of the Lyapunov exponent (3.7), relation (5.57)
imply relation (5.56). This completes the proof of Lemma 5.7. O

Now, for pps = pY and vy = oY, we construct NV by formula (5.55). Rela-
tions (3.8) and (5.56) imply that the Lyapunov exponent for the operator H, . is
given by the formula
5
21

In the next two subsections, we prove a lower and an upper bound for §(NY (-, E), h).

(5.59) O(E,e) = —O(NY(-,E),h).

They will coincide up to error terms, and, thus, yield the asymptotic formula
for O(F,¢).

5.4.3. The lower bound for the Lyapunov exponent. — Here, we prove that,
in the case of Theorem 2.2, for E € I, the Lyapunov exponent admits the lower
bound:

(5.60) O(NY (-, E), h) >log" |\ + o(1).

Therefore, we use the following construction.

Assume that a matrix function M : C — SL(2,C) is 1-periodic in z and depends
on a parameter € > 0. One has

PROPOSITION 5.3. — Let g9 > 0. Assume that there exist yo and yy satisfying the
inequalities 0 < yo < y1 < 0o and such that, for any € € (0,eq) one has

— the function z — M(z,¢€) is analytic in the strip {z € C; 0 <Imz <y /e};
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—in the strip {z € C; yo/e <Imz < yi/e}, M(z,¢) admits the following uniform

i z representation

(5.61) M(z,e) = A(e)e?™m= . <((1) 3) + 0(1)) , =0,

where A(€) and m are constant; m is integer (independent of ).
Then, there exit a €1 > 0 such that, if 0 < € < &1, one has
(5.62) O(M,h) > log|A(e)| + o(1);

the number €1 and the error estimate in (5.62) depend only on €o, yo, y1 and the
norm of the term o(1) in (5.61).

This proposition immediately follows from Proposition 10.1 from [11]. Note that
the proof of the latter is based on the ideas of [27] generalizing Herman’s argu-
ment [18].

We apply Proposition 5.3 to the matrix NY(z, E). Therefore, we fix y» and y; so
that 0 < yo < y1 <y < 01/(27), where d; is the constant from the Proposition 5.1.
Then, the estimate (5.60) follows from Proposition 5.3 and

LEMMA 5.8. — Assume that Ax > 1. In the strip yo < Imz < y,, for E € I, the
functions pY satisfies (5.10) and vV admit the asymptotics:

(5.63) WY (z, E) = A\pe 2™ =2 (Ex)) (1 4 o(1)).

These asymptotics are uniform in E. (satisfying (5.1)), E and z.

We postpone the proof of this lemma until the end of section 5.4.3 and complete
the proof of the estimate (5.60). If |\;| < 1, the estimate (5.60) gives a trivial lower
bound as the Lyapunov exponent is always non-negative. So, it suffices to prove (5.60)

in the case |\;| > 1. Substituting (5.10) and (5.63) into (5.55), for E € I, and
ya/e < Imz < y; /e, one obtains

) 1 0
NU(Z) _ )\ﬂ'ef%rz(zfzﬂ(E,r)) |:<0 0> +0(1):|

as z, is real and |e?™%| > ¢?™¥1/¢ > 1. Proposition 5.3 then implies (5.60). O

Proof of Lemma 5.8. — The first statement is taken from Corollary 5.1. Let us
prove (5.63). First, we recall that, as E € I, one has (5.39). On the other hand, for
Imz > y3/e > 0, one has

(5.64) Arsin(2m(z — h — 2, (Ey))) = %e‘zm(z_h_z”)(l + o(1)).
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Note that, as [A\;] > 1 and z; € R, the right hand side is exponentially large as
£ — 0. Then, in the strip yo/c < Imz < y; /e, for E € I, (5.11), (5.39) and (5.64)
imply (5.63). This completes the proof of Lemma 5.8. O

5.4.4. The upper bound for the Lyapunov exponent. — We now prove that,
in the case of Theorem 2.2, the Lyapunov exponent admits the upper bound

(5.65) O(NY (-, E),h) <log" |\:| + C.
This upper bound follows from the definition of Lyapunov exponent for matrix cocy-

cles (3.7) and the estimate

sup sup [NV (z, B)|| < C(|Ax| +1),
ZE]REefTr

which follows from (5.55), (5.10) and the estimate

sup sup |vU(z,E)| < C(Az]+ 1),
2€R Eel,

which follows from (5.11) and (5.39). This completes the proof of (5.65). O

5.4.5. Completing the proof of Theorem 2.4. — Estimates (5.60) and (5.65)
together with the representation (5.59) imply the uniform representation

VEel, ©O(Ee) = % log™ [Ar ()| + O(e).
In view of (5.5), to complete the proof of Theorem 2.4, it suffices to check that

Oo(Er) C .

cos ()‘ = —inf|E,; — E(()l)\,
€ g 1

which follows from the definition of the points (Eél))l and from (3.24) and (3.25). O

5.5. Absolutely continuous spectrum

We now turn to the proof of Theorem 2.5. The idea is to find a subset of I, where
E — ©(FE,¢) vanishes. Then, by the Ishii-Pastur-Kotani Theorem (|25]), this subset
is contained in the absolutely continuous spectrum of the ergodic family (1.1).

As before, we assume that h is defined by (3.5), and that the functions p¥ and vY
are the coefficients of the scalar equation equivalent to the monodromy equation with
the matrix MY.

As in the previous subsection, to analyze O(F,¢), we use the matrix cocycle
(NY(-,E),h), the matrix NU being defined by (5.55) for M = MUY. Recall that
O(E,¢) is related to O(NY(-, E), h), the Lyapunov exponent of this cocycle, by the
formula (5.59).
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First, under the conditions of Theorem 2.5, we check that, up to error terms, NV is
independent of z. This allows then to characterize the subset of I, where (NY h) =0
by means of a standard KAM construction found in [11].

5.5.1. The asymptotic behavior of the matrix NV. — We need to control the
behavior of the matrix NV for bounded |Im z| and E near the interval I;. One has

LEMMA 5.9. — Fix ¢ > 0, ¢ > 0 and r > 0. For ¢ sufficiently small, if E, satis-
fies (5.1), and if elog A\ (E) < —c, then

NY(z,E) = No(E) + Ny(z,E),

F(E) -1
(5.66) NO(E):( (E) ) sup ||V, B)|| < Ce e,
1 0 |E—Er | <se|I|
[Im z|<r

where the constant 1) is defined by n = min{c, §1}, and F is the function from (5.8).

Proof. — Tt suffices to prove, that under the conditions of the lemma, there exists
C > 0 such that, for € sufficiently small, one has

(5.67) sup  |pY(z, E)—1| < Ce™ /¢, sup  |[0Y(z, E)—F(E)| < Ce "¢,

| B— B | <s¢| I | | E— Er| <s¢| I
[Im z|<r |Im z|<r
(5.68) sup |F(E)| <C.
|E_E7‘§%|iﬂ‘

Begin with the proof of (5.68). Recall that, for E in the e*e~%/%-neighborhood of
E,, one has (5.9). On the other hand, the interval I is located in the (Cee™%/¢)-
neighborhood of E, see (5.44). So, it suffices to prove (5.68) with F' replaced by Fi.
Recall that I is centered at E,, see (5.42), and that, by (5.45), one has F,(E,) = 0.
The estimate (5.39) is an estimate for F;(FE) on the interval I,. As F + F.(E) is
affine, it implies that

sup [Fr(B) < {1+ ) (14 0(1)).
|E— B | <3| Ix|

As |Az| < 1, this implies (5.68).
Let us prove (5.67). The representation (5.8) and estimate (5.68) imply that, for
some C' > 0,

sup WY (2, E) — F(E)| < Cee™%/¢ sup |F(E)| + CAy + Ce %1/
|E_E7l'|§%|iﬂ" ‘E_Eﬂ'lg”f‘jﬂ'l
|Im z|<r

< C'(&?(f‘s“/E +e /e 4+ 6761/6).
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In view of (5.6) and the definition of 7, this expression is bounded by Ce~"/¢. This
proves the second estimate from (5.67). The first one follows from (5.7), (5.6) and the
definition of 1. Lemma 5.9 is proved. 0

5.5.2. The KAM theory construction. — Here, we formulate a corollary from
the construction developed in section 11 of [11] that is based on standard ideas of
KAM theory (see |7, 2]).

Let I C R be a bounded interval. Fix r > 0. Let S, be the strip {z € C; |Im z| < r}.
We consider @, the set of 2 X 2-matrix valued functions (z,¢) € S, X I — M(z,p)
that are

(1) analytic and 1-periodic in z € S,;
(2) analytic in ¢ in V(I), a complex neighborhood of I;

b
(3) of the form (:* )

*

a
. el 0 .
Let Diag = ), and let A € @ satisfy A(4) = sup  ||A(z, )] < 0.
0 e peV(I),z€S,

Fix 0 < h < 1. For z € R 9(z) € C?, a vector function, consider the equation
(5.69) P(z + h) = (Diag + A)(2)y(z2).
Define

H(p):={h € (0,1); 1rlni1§1|h —1/k| > p/k> for k =1,2,3...}.
€

One has

PROPOSITION 5.4. — Fiz o € (0,1). There exists A\o(r,0,I) > 0 such that, for any A,
Diag and h chosen as above and satisfying the conditions

(1) det(Diag+ A) =1,

(2) A= /\(A) < /\O(Ta g, I)z

(3) he H(\?)
there exists oo C I, a Borel set of Lebesque measure smaller than \°/? and such that,
for all ¢ € I'\ D, equation (5.69) has two linearly independent bounded solutions.

This proposition immediately follows from Proposition 11.1 of [11]. The constant
Ao(r, 0, 1) depends only on the length of I, but not of its position.

Proposition 5.4 implies

COROLLARY 5.2. — In the case of Proposition 5.4, for all ¢ € I\ @, the Lyapunov
exponent of the cocycle (Diag + A, h) is zero.
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Proof. — Let ¥(z) be the matrix the columns of which are the vector solutions defined
in Proposition 5.4. Then, ¥(z) is a matrix solution of (5.69). As the vector solutions
are linearly independent, det ¥(z) # 0 for all z € R. For [ € Z, put x(I) = ¥(z + lh).
Then, x(1+1) = (Diag + A)(hl + 2)x(1), and, as ¥(z) is bounded, for L > 1, we have

| (Diag + A)(Lh + =) - - (Diag + A)(h + 2)(Diag + A)(2)|| = (L + Dy (O)] < C.

Now, the statement of the corollary follows from (3.7), the definition of the Lyapunov
exponent. O

5.5.3. The proof of Theorem 2.5. — The idea is the following. Let S be a constant
matrix such that det S # 0. Clearly,

(5.70) O(NY,h) = 0(STINVS, h).

Recall that NU admits the representation (5.66). We shall choose S so that the
matrices

(5.71) Diag = S™'NyS and A=S"'N,S

satisfy the assumptions Proposition 5.4. Then, we apply Corollary 5.2 to the so con-
structed matrix Diag + A. We divide the analysis into “elementary” steps.

Diagonalization. — Let E° be a point of I such that
-1< F(E)<1.

Then, in V°, a neighborhood of E°, one can define an analytic branch of the function
E — ¢(F) solution to

(5.72) cos p(F) = F(E).

In VO, the exponentials e**#(¥) are the eigenvalues of the matrix No(E) (see (5.66));

the columns of the matrix
eitp(E) e_iW(E)
S(E) = ( )
1 1

are its eigenvectors. Define Diag and A by (5.71). Clearly,

(5.73) Diag(E) = <e:; e—Ow> .

As E — Ny (FE) is real analytic, A(z, F) has the form
(G o)
A= .
b* a*
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For some C' > 0, one has

e2/Im o (E)| N 5
nggﬂ 1(z, B

A change of variables: E — ¢. — Now, we change the variable E to ¢, and check that,

(5.74) VE eV supllA(z,E)| <C
z€R

as a function of p, A satisfies the conditions of Proposition 5.4 and Corollary 5.2. We
use

LEMMA 5.10. — Fiz 3c < 1. There exists g > 0 such that, for 0 < € < g¢ the following
holds. Let E, satisfy (5.1). Let I C R be the interval centered at E, and of length
»|I;|. Then,

—in a neighborhood of I, there exists a real analytic branch of p(E); it is
monotonous on I;

— there exists a positive A = A(») such that o(I) C (A, 7 — A);

— @ — E(p), the function inverse to E — @(E) is analytic in V(I), the A/2-
neighborhood of the interval o(I), and maps V (I) into the (C|I;|)-neighborhood of I.

As F(E) is real analytic, Lemma 5.10 immediately follows from (5.72) and

LEMMA 5.11. — Fiz 5 € (0,1). For € sufficiently small, the following holds. Let E,
satisfy (5.1) and define B ={E € C; |E — E| < 3sq|L|}.

Then, F bijectively maps B onto F(B), and one has
(5.75)

sup [F(E)| < 0 +o(1),  and, for B~ E.| = %\I}I, |F(E)| = s + o(1).

€

Proof. — Fix 0 < o < 1. By (5.44), B is contained in the e*e~%/*-neighborhood of E,.
Therefore, F'(F) admits the representation (5.9). This implies that F is a bijection
of B onto F(B). Indeed, assume that, in B there exist Fy and Es such that Fy # Es
and F(E,) = F(E>). Then, one has

E2 E2

F(B) dE:F,;/ (14+0(1))dE=F"(Es — By)(1-+0(1)) £0.
E;

OZF(Ez)*F(El):/

Eq
So, we get a contradiction, and F' is a bijection.

Estimates (5.75) follow from the following facts:

(1) the representation for F' from (5.9) holds on B (as B is contained in the
£%e~%/¢_neighborhood of E);

(2) E +— F,(E) is affine, and vanishes at E,, the center of I;

(3) at the ends of I, one has |F(E)| = 1+o0(1) (by (5.39), which is the definition
of I, and as A, = O(e™"/%)).

This completes the proof of Lemma 5.11. O
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Now, turn to the matrices Diag and A defined by (5.71). Make the change of
variables E — ¢ so that E = FE(y). Consider these matrices as functions of ¢ in
V(I). Then, for € sufficiently small, they satisfy the conditions of section 5.5.2:

— 2+ A(z, p) is analytic and 1-periodic in S, (as z — NY(z, E) is analytic in the
strip {|Im 2| < y});

— o A(z, ) is analytic in V/(I) (as ¢ — E(p) is analytic in V(I), o(V(I)) is in
the (C|I,|)-neighborhood of E,, and as E — NY(z, E) is analytic in this neighbor-
hood);

b
— A has the form (Z ) (as ¢ — E(¢p) is real analytic, and as E — A(z, E)
* a*

already had this form);
— Diag is given by (5.73);
~ AM4) < £e™/= (by (5.66), (5.74) and Lemma 5.10);
— det(Diag + A) = 1 as Diag + A = S~'NY S and det NV = 1 by (5.55).

The Diophantine condition on . — To apply Corollary 5.2, we have to impose a Dio-
phantine condition on the number 27/¢. Fix two positive numbers a and b. Consider
the set
27 a
D(a,b) := {6 €(0,1): Il%{]l‘? fl/k’ > ﬁefb/e, k= 1,2,3...}.
It can be easily checked
mes(D(a,b) N (0,¢))
€
The derivation of (5.76) is similar to the estimates in section 4.4.6 of [11].
Fix 0 <o < 1. Set D = D((C/A)?,0n). For € € D, the number h defined by (3.5)
belongs to the class H(u) with u = (C/Ae™/¢)7.

(5.76)

=1+ o0(e7%%) when e — 0.

Completing the proof of Theorem 2.5. — Let A and Diag be as constructed above and
¢ € D. Then, for the matrix cocycle (Diag + A, h), the conditions of Corollary 5.9
are satisfied provided ¢ is sufficiently small. So, for e sufficiently small, there exists
D, a subset of I of measure uniformly small with A(A) < %e_”/ €, such that, for all
p € I\ &, the Lyapunov exponent §(Diag + A, h) is zero.

By (5.70) and (5.59), this implies that O(F), the Lyapunov exponent for the
family of equations (3.1), is zero on (I) C I, outside a set of Lebesgue measure

m::/ @d .
@ood@

The Cauchy estimates and Lemma 5.10 imply that ‘%(gp)’ < C|I| for ¢ € p(I).
So, m = o(|I|) where |I| denotes the length of I.

As m is small with respect to |I| and as s in the definition of I can be chosen
arbitrarily close to 1, we conclude that ©(E, ) is zero on I, outside a set the measure
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of which becomes small with respect to |I| as ¢ tends to zero in D. This completes
the proof of Theorem 2.5. O
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CHAPTER 6

COMPUTING THE MONODROMY MATRICES

In this section, we turn to the proof of Theorem 3.2. As we have seen, to study the
spectrum of (1.1), one has to compute the coefficients of the monodromy matrix up to
terms that are exponentially small (in €) whereas these coefficients are exponentially
large outside small “resonant” neighborhoods (where the points { E (1)}, are exponen-
tially close to {Ey(l')}1/). To achieve such an accuracy, we use a natural factorization
of the monodromy matrix into the product of two simple “transition” matrices and
carry out a rather delicate analysis of the properties of their coefficients.

Actually, in the present section, we only formulate a result on the asymptotics of
the transition matrices and deduce Theorem 3.2 from this result. Sections 8-13.2 are
devoted to the proof of the asymptotics of the transition matrices.

Below, we always work in terms of the variables

(6.1) r:=x—2z2 and (=c¢z.
In these variables, equation (3.1) takes the form
d2
62 @) + (o) +acos(er + O)le) = Bu(e), weR

The advantage of the new variables is that now we can study solutions of (6.2) analytic
in (.
In terms of variables (6.1), the consistency condition (3.2) takes the form

(63) ¢J(m+1a4) :¢J(xac+5)

The definition of the monodromy matrix, (3.3), turns into

1#1(%())7

(6.4) V(@ ¢+ 2m) = MG B)¥(,0), V(0 = (¢ (%)
2(Z,

and, now, the monodromy matrix is e-periodic:

M(¢+e, E) = M(C,E), VC.
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6.1. Transition matrices

Here, we describe the factorization and the asymptotics of the transition matrices.

6.1.1. Factorization. — Here, we describe a natural factorization of the monodromy
matrix under the assumption (G).

Two consistent bases. — In section 8, we pick a point E, in J and show the existence
of V,, a neighborhood of F,, such that, for E € V,, there exists two consistent bases
which will be indexed by v in {0,7}. Let us describe some properties of these bases;
they will be central objects in this section.

Fix v € {0,7}. The corresponding basis consists of two consistent solutions to (6.2),
say (¢,(, E) — fu(z,¢(, F) and (x,(, E) — fi(x,(, E); the second solution is related
to the first one by the transformation (3.10). For any x € R, the function (¢, E) —
fu(z,¢, E) is analytic in the domain

(6.5) {CeC:|Im(| <Y} xV,,
where Y satisfies the inequality Y > Yj, (recall that Yy, is defined in (3.13)).

Definitions of the transition matrices. — As both pairs ({f,, f})ve{o,x} are bases of
the space of solutions of (6.2), one can write

(66) Fﬂ($7<+2ﬂ—7E>:TW(C7E)FO(377<7E)7 FO(LU,C,E):TO(C,E)Fﬂ(.T,<,E)

where F), = (j:y> For v € {0, 7}, the 2 x 2-matrix valued function (¢, E) — T, (¢, F)
is independent of x. We call it a transition matriz.

Discuss the basic properties of a transition matrix. As the basis {f,, f} is consis-
tent, for all £, { — T,(¢, E) is e-periodic. It is analytic in the domain (6.5). Finally,
as the consistent solutions f, and f; are related by the transformation (3.10), T},
enjoys the same symmetry property as the monodromy matrix (see (3.9)); we write

(s o)
T, = .
b, aj

Factorization of the monodromy matrices. — For v € {0,7}, we denote by M, the
monodromy matrix corresponding to the base {f,, f;}. The definitions (6.4) and (6.6)
imply that

(6.7) Mz(¢) = Tx(Q)To(C),  Mo(¢) = To(¢ + 2m) T (C).

Clearly, the monodromy matrices share the basic properties of the transition matrices:
they are e-periodic in ¢, analytic in the domain (6.5) and have the form (3.9).

Note that, once transformed back to the z-variable, the monodromy matrices are
analytic in the domain {¢ € C; |Im(| < Y/e} x V..
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Finally, by (3.4) and (6.7), one has
(6.8) det Ty det T, = 1.

The motivation for considering the factorizations is the following. The solutions fj
and f, are constructed so that fy has a simple asymptotic behavior in the strip {—7 <
Re( < 7}, and f; has a simple asymptotic behavior in the strip {0 < Re( < 27}.
In result, formulae (6.7) give factorizations of the monodromy matrices in terms of
factors with simple asymptotic behavior.

6.1.2. Asymptotics of the transition matrices. — We now describe the asymp-
totics of the transition matrices (7),),e0,x}- Therefore, we shall use the conventions
introduced in (3.11), (3.12) and (3.13) in section 3.2. We need a few more notations.

1. Asymptotic notations. — We shall use all the notations introduced in section 2.10.

2. “Analytic” notations. — Pick zp € R and let V be a complex neighborhood of z.
Let z — a(z) be an analytic function defined and non vanishing in V4. In V;), we define
two real analytic functions z — lal (z) and z — ¢(a)(z) by
a(z) = a1 (2)exp(ip(a)(z))
such that 1al (2) =la(z)|, and p(a)(z) = arga(z) when z € Vo NR.
3. “Fourier expansion” notations. — The transition matrices being e-periodic, we rep-
resent their Fourier expansion in the form

ay (C) = au,—l(o +avo+ au,lezﬂC/s + au,Q(C)a
by (€) = by —1(C) + buo + by 1€¥™/ +b,2(C),

where we single out the sum of Fourier terms with negative index, the zeroth and the

(6.9)

first Fourier terms and the sums of Fourier series terms with index greater than 1.
One has

THEOREM 6.1. — Pick E, € J. There exists V., a complex neighborhood of E., and
Y > Y such that, for sufficiently small € and v € {0,7}, there exists {f,, fi}, a
consistent basis of solutions to (6.2), having the following properties:

— the basis {f,, fi} and the transition matrices T,, are defined and analytic in the
domain (6.5);

— the determinant of T, is independent of ¢ and €; it is a non-vanishing analytic
function of E € V;

— one has

1 1

lavo |l =exp (ZSnu+0(),  Tayi | =exp (=(Shu = Suw) +0(1)
(6.10) i 15
b0 | =exp (28 +0()) . 1bua | =exp (Z(Shy = Suu) +0(D))
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and
1
p(aoo) = 5 (Pr + Po) + O(1),  p(axo) = ( ®o) + O(1),
(6.11) 215 1
¢(bo,o) = %(—‘I’n + o) +0(1), @(bro) = 2*(‘1% Po) +O(1),
1 1
plao) = —o-(Po = ®x) + O(1),  @(an1) = — o= (P — By — 47°) + O(1),
(6.12) % 21
plbo1) = —5 (R0 + Px) + O(1),  @(br1) = —5-(Pr + R0 — 4n*) + 0(1),
where O(1) denotes functions real on V., NR and analytic in E € V,;
— moreover,
ay,—1(C) = 0(ay,0), by,—1(C) = o(by,
(6.13) 1 (av0 1(€) = o(bu,0),

av2(¢) = o(p(¢/e)av1), bu2(¢) =o(p(¢/e)bu1).

All the above estimates are uniform in E and ¢ in the domain (6.5).

Theorem 6.1 is proved in sections 8-12.

When studying the spectral properties of (1.1), we always assume that E satisfies
(6.14) EeVi=V.n{ImE| <e}.

One proves

COROLLARY 6.1. — Pick v € {0,n}. For sufficiently small ¢, in the case of Theo-
rem 6.1, for E € VE, one has
1 1 _ |tv)l,|

| V,0|x| |ay,1| <

th,u|7 ' |th,u

_ Jtos]

‘th,V|.

)

(615)  lavol =

[th,u|

where all the tunneling coefficients are computed at the point Re E instead of F.

Proof. — The functions E — S}, o(E), E +— Sy (E), E — ®(E) and E — ®,(E) are
independent of £ and analytic in a neighborhood of J. So, for sufficiently small ¢, for
E € V£, one has

lta (E) < |ta,(Re B)|, || = |eitvRe Bz,

for v € {0,7} and for d € {h,v}. As the phase integrals are real analytic, one
has |e’®»(F)/¢| < 1. Estimates (6.15) follow from these observations and represen-
tations (6.10)—(6.12). This completes the proof of Corollary 6.1. O

MEMOIRES DE LA SMF 104



6.2. RELATIONS BETWEEN THE COEFFICIENTS a, AND b, OF THE MATRIX T, 61

6.2. Relations between the coefficients a, and b, of the matrix 7T,

It appears that, with a great accuracy, the coefficients a, and b, are proportional.
This makes the factorizations (6.7) extremely effective. Recall that Y, is defined
in (3.13). Define

bl’ (C, E)
6.16 R,((,F) = ——=
(616) CEB) = E)
One has

PROPOSITION 6.1. — Pick v € {0,7}. Fiz 0 < y < Y,,,. For e sufficiently small, in
the case of Theorem 6.1, for Im(| <y and E € VF one has

(617) RV(CyE) _ ei(@(by,o)_W(ay,O)) (1 _ % + OV> ,
2al,_,0al,’0

where

(6.18) Oy = O(th,,,, Typ(C/2), 1 L towp(C/2))-

Proof. — In this proof, we assume that F € V5. We set

1
Y, ,(E) = —Suu(Re E),

27
and note that
(6.19) O<y<Y, <Y,,(F) <Yy <Y,
and
(6.20) |ty (E)| < e 2 Yor(B)/e,

The plan of the proof is the following. We first prove that, for [Im | <y,
(621) RV =Ty [1 + O (672”(Y7‘Im<‘)/5, ezﬂ—llmq/etv,ut%,v)] ’

where r, is independent of ( and r, =< 1. Then, we compute 7, with high enough
accuracy: we prove that
detT,

6.22 — eileluor—elano) [ _detTy
(6.22) r,=e ST

+O(th e 2 )

Representations (6.21) and (6.22) imply Proposition 6.1. Indeed, to get (6.17), one
has to substitute (6.22) into (6.21) and to take into account that, in (6.22), the second
and the third terms in the square brackets are bounded by a constant independent
of E, ( and e. Note that, from the second point of Theorem 6.1 and estimates from
Corollary 6.1, it follows that

det T,

*
QAv,0ay, o

(6.23) < Ctj, ,(ReE).

To prove (6.21), we use the following observation.
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LEMMA 6.1. — Pick v € {0,7}. For sufficiently small €, in the case of Theorem 6.1,
one has

— in the strip [Im (| <Y, each of the functions ( — a, (¢, E) and { — b,(¢, E) has
one zero per period;

— the imaginary part of the zeros have the asymptotics =Y, ,(E) + O(¢e);

— for any zero of a,, there exists a unique zero of b, such that the distance between
them is bounded by C’ati’u(Re E).

We prove this lemma in the end of section 6.2. In view of the first point of Lemma 6.1,
we can represent R, in the form

Q2mi(C—Co) /e _ 1
(6.24) Ry (¢) =1L,(¢)pu(¢) where IIL,(¢) = o Y
where ¢, (resp. (p) is one of the zeros of a (resp. b) in the strip {|Im¢| <Y}, and p,
is a e-periodic function analytic in this strip. The representation (6.21) then follows
from the representations:

(6.25) IL,(() =1+ 0 (e 2™™m¢/5t, 47 ) for [Im(| <y,
(6.26) pu(CQ) = puo + O(e 2"V =ImeD/ey for |Im¢| <Y and p,0 =<1,

where p, o is the 0-th Fourier coefficient of p. Indeed, to get (6.21), one has just to
substitute (6.25) and (6.26) into (6.24) and to take into account the fact that the error
term in (6.26) is uniformly small when |Im ¢| < y. And the latter follows from (6.19).
Check (6.25). In view of the second and the third points of Lemma 6.1, and (6.19),
for sufficiently small ¢ and [Im (| < y, we get
2mi(Cp—Ca)/€
I, —1= 627”'(<—Cb)/5162;;<_4% =0 (e—%(lm <+Yv,u)/sti7y)

=0 (et 5 ,)
where, at the last step, we have used (6.20). This proves (6.25).
Recall that p, o be the zeroth Fourier coefficient of p. To prove (6.26), it suffices to

check that,
(6.27) 1p(C) = puo| < Ce™2Y/ee2mImel/e for Im¢| <Y and p,o = 1.

Both these estimates follow from the representations

(6.28) p(¢) = by—’l(l +0(1)) for Im¢ = -Y, p(¢) = 20 (14 0(1)) for Im¢ =Y.

Ay,1 Qay,0
bu1

S

bu,o
ay,0 Ay, 1

representations (6.28) implies that p, o =< 1; (6.28) also implies that, for Im(| =Y,

Indeed, in view of Corollary 6.1, one has ’ = 1. Therefore, any of the

)

we have |p(¢)| < C. This bound and general properties of periodic analytic functions
imply (6.27). So, to complete the proof of (6.26), we need only to check (6.28).
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We check only the first of the representations (6.28); the other one is proved simi-
larly. First, we note that, for sufficiently small € and Im{ = -Y,
e2mi(C=C)/e _q
I, (¢) = e 1= 1+ 0(1).
Indeed, this follows from the last two points of Lemma 6.1 and (6.19). Now, in view
of (6.24), it suffices to check that, for In{ = —Y
RuQ) = 2L (1 4+ o(1),

ap,1

)

which follows from
av(C) = au,legmc(l + 0(1)) and bu(C) = bu,leQﬂ—iC(l + 0(1))

We prove only the first one; the second is proved similarly. By Theorem 6.1, Corol-
lary 6.1 and (6.20), for In{ = —Y and FE € V¢, we have

aV(O = au,1€2mC (1 + 0(1) + O (ay’o e_2ﬂy/€)>

Ay 1
= ay1€*™ (14 0(1) + O ((to,) "t >7%))
= ay1€*™ (L4 0(1) + O (77 1)/%)) = 4, 1 €27 (1 + 0(1))
where we have used (6.19). This completes the proof of (6.26) and, thus the proof

of (6.21).
Now, we compute the constant r, from (6.21). First, we prove that

detT,
(6.29) ot =1 — L Oy, e 27V,
Ay,0ay o
This relation follows from the relations
detT,
(6.30) RR,=1- """,
a,al,

and from the fact that, for { € R,
(6.31) ay(€) = av,o(1 + O(tu)).

Indeed, recall that all the functions we work with are e-periodic; substituting (6.21)
and (6.31) into (6.30) and integrating along R over a period, we get

det T,
y,00,,0
In view of (6.23), this immediately implies (6.29). So, to complete the proof of (6.29),
we have only to prove the relations (6.30) and (6.31). The relation (6.30) follows
from the equalities det T, = a,a) — b,b} and (6.16). To prove the relation (6.31), we
rewrite (6.9) in the form

(6.32) 1y = ayo [14 Bemtl8) | anicye (1 b w2l©) )} .
’ a0 a0 ay,€2mic/e

L+ 0™ e ty ,th ) =1 -

(1+O(tow))-
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av2(¢)
By (6.13), sup |—2\%) _
y ( ) ?2% (11,11627”4/5

Therefore, to prove (6.31), it suffices to check that, for ( € R
ay,~1(¢)

ay,0

= o(1), and, by Corollary 6.1, one has Z:—; = O(ty).

s

(6.33) 9(¢) ==

Let us check this. We know that

= 0(tyu)-

(1) g is analytic in the half plane {Im¢ < Y} and tends to zero as In{ — —oo
(as it is the sum of the Fourier series terms with the negative indexes of a function
analytic in the strip {{Im (| <Y} );

(2) for Im¢ =Y, one has |g| < C (by (6.13)).

This implies that |g| < Ce™27(Y=Im¢)/ ip the half plane {Im ¢ < Y'}. In view of (6.20)
and (6.19), this implies (6.33), hence, (6.29).
Finally, we check that

(6.34) @(ry) = ¢(buo) — plavo) + O(t%ﬂ/tv,w e_%y/a)-

Therefore, for ¢ € R, we substitute the representations (6.21) and (6.31) in the relation
b, = R,a,, and integrate the result over the period. As a, ¢ is the zeroth Fourier
coefficient of a,, the mean value of the error term in (6.31) is zero. Hence, b, =
ryay,0(1+ O(t} ., e~ 2™/9)) which implies (6.34).

Representations (6.29), (6.34) and estimate (6.23) imply (6.22). The proof of Propo-
sition 6.1 is complete. O

Proof of Lemma 6.1. — We check the first and the second point for a,; for b,, the proof
is similar. Theorem 6.1 implies that, for [Im¢| <Y, a, admits the representation

(6.35) a,(¢) = apo(l+ go) + al,71627”{/5(1 +g¢g1) where |go| + |g1] = o(1).

Therefore, the possible zeros of a, in the strip {{Im¢| < Y} are located in o(e)-
neighborhoods of the points

(6.36) % In(—ayo/avy)+le, 1€Z.

This, Corollary 6.1 and the first point in Lemma 6.1 imply the second point of
Lemma 6.1.

To prove the first point of Lemma 6.1, we apply Rouché’s Theorem to the functions
f=av0+ a,,)leZ’”'C/5 and 0f = ay 090 + al,,leQ”iC/Egl. Clearly, all the zeros of f are
simple and they are all listed in (6.36). Let ¢, be one of them. One compares f and
df on the circle centered at ¢, of radius ce (where ¢ is a fixed positive sufficiently
small constant independent of ). As

6f (<) 90 g1 o — 2mi(C—Ca) /e

Ji@) 1—u+1—1/u’ ’
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then, on such a circle, one has f/f = o(1). This and Rouché’s Theorem imply that
a, has a unique simple zero in ce-neighborhood of (,. This implies the first two points
of Lemma 6.1 for a,.

To prove the last point of Lemma 6.1, we compare the zeros of the functions b, b}
and a,a}, inside the strip {—Y < Im ¢ < 0}. We use the following observations:

— by the first two points of Lemma 6.1, in the strip {—Y < Im ¢ < 0}, all the zeros
b, b} are zeros of b,, and all the zeros a,a], are zeros of a,;

— we know aya’ — b,b5 = detT, and that T, = O(1) (see the second point of
Theorem 6.1).

So, the zeros of a,a}, have to be exponentially close to those of a,a} — detT,, i.e.
to the zeros of b,b},. To study the distance between the zeros of a,a; and those of
aya), — detT,, we again use Rouché’s Theorem. Therefore, we pick (,, a zero of a,
and compare the functions f = a,a}, and 6 f = det T, on C,, the circle centered at (,

of radius
ro€

T = P
Ay,0ay o

where 7 is a fixed positive constant, sufficiently large but independent of . Note
that, by Corollary 6.1, one has

(6.37) Ir| < rocty ,(Re E).
When applying Rouché’s theorem, we have to control f on C,. Therefore, we use the
relation
, 2m 2
(6.38) Q) = *7%,0%,0(1 +o(1)) for |¢—(uf <€

We prove (6.38) later, and, now, we use it to complete the proof of Lemma 6.1. By
means of (6.38) and (6.37), for | — (.| =7, we get

FQ) = 2 a5 gavor(1+0(1)) = 2mro(1 + o(1).

As 6f = detT, = O(1), this implies that

max
[¢—=Cal=r

So, if rg is fixed sufficiently large, then, for sufficiently small ¢, f — §f has one

6f(¢)
m‘ S C/’I”().

simple zero inside the circle |¢ — (| = r. As this is a zero of b,, and as r admits the
estimate (6.37), this implies the third point of Lemma 6.1.
To complete the proof of this lemma, we only have to check (6.38). Therefore, first,
we note that, by (6.35), for =Y <Im (¢ < 0, one has
) ar
a;, = ajo(1+0(1))+a; e >/ (140(1)) = ajg (1+0(1>+0<Z’1

au,O

) =aoti+otw),
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*
v,1

where we have used Corollary 6.1 to estimate Z . The result of this computation

and (6.35) imply that, for —Y <Im (¢ <0,
(6.39) f(Q) = ajpav0(1+0(1)) + a;7OaV7162“iC/E(1 +0(1)).
The Cauchy estimates applied to o(1), the functions from (6.39) give %0(1) = o(1)

in any fixed compact of the strip {—Y < Im ¢ < 0}. Therefore, for | — (4|
get

*
v,0

g2, we

21 . )
Q) = ?a;oau,le%'ca/s(l +0o(1)) + o(a}, gav,0) + o(aﬁ’oa,,,lezmcfl/s).
As a,,’le%i@/f = —a,, this implies (6.38). This completes the proof of Lemma 6.1.
O

6.3. Asymptotics of the coefficients of the monodromy matrix

Here, using Theorem 6.1 and Proposition 6.1, we prove Theorem 3.2. Actually,
we compute only the matrix M, corresponding to the consistent basis {fr, fx}. The
asymptotic representations for the coefficients of the matrix My are obtained similarly.
The proof consists of two steps.

6.3.1. Combinations of Fourier coefficients. — First, we give the precise (not
“asymptotic™) definitions of the functions a,, and the quantities o, T v, I, 0 and
2z, introduced in (3.15)—(3.18) in terms of the Fourier coefficients of the transition
matrices. In section 13, using these definitions, we obtain the asymptotics of these
quantities in terms of the iso-energy curve I'.

1. The phases. — The phases ®, are defined by the formulae

by = g (¢lar,0) + ¢(ao,0) — ¢(br,0) + ¢(bo,0))

B = 5 (Plaro) + Plano) + (br0) — @(bo0))

In section 13.2, we check that these phases admit the representations (3.19). They

(6.40)

imply in particular (3.28).
2. The constant 6. — Let

(6.41) g—— | 200 | det T
Az .0
Note that, in view of (6.8), one has
- 1
H | det TO = ——.
0,0 0

In section 13.1, we prove that 6 admits the representations (3.21) which, in particular
imply (3.32).
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3. The coefficients Ty, and T, ,. — Let

(6.42) Ty = | axoa00| " and T,, =

ay,1 |
ayo |

Using computations analogous to those done in section 13.1, one proves representa-
tions (3.20). These show that, for E € V£,

(643) ‘Thl = |th| = ‘th’oth’ﬂ—l and |Tv’y| = |tv,u|~
4. The constant z,. — Let
1 Ay 1
6.44 = —— ( : )
(6.44) z 277 e

Using computations analogous to those performed in section 13.2, one proves (3.22).
Estimate (3.23) is proved in the section 12.3. It implies (3.33).

5. The functions ay,. — Define ay, = a,/a, 0. One has

LEMMA 6.2. — Fiz 0 < y < Y,,. For sufficiently small €, in the case of Theorem 6.1,
for Im(¢| <y and E € V,, one has (3.18).

Proof. — Start with (6.32) or, equivalently, with
Q= 1+g(Q) + Toue® %) (14 §(0)),

(645) g(C) _ a’ll,—].(() (C) _ aV,Q(C)
avo aye2miC/e
When proving (6.33), we have seen that |g| < Ce 27(Y=Im0/e in the half plane

{Im ¢ < Y}. Similarly, one proves that |§| < Ce=27(Y+Im 0/ in the half plane {Im ¢ >
—~Y}. In view of (6.20) and (6.19), in the strip [Im (| < y, one has [T, ,e2"%¢¢| < C.
These three estimates imply (3.18). O

Note that (3.18) can be simplified into (3.26).

6. Real analyticity. — Note that ®,, Ty,v, Th, 0 and z,, regarded as functions of E,
are real analytic in V¢ (this follows from the definitions of 1 -1 and ¢(-)). Therefore,
each of them is invariant with respect to the operation x (see (3.10)).

6.3.2. Computing the matrix M,;. — The representation (6.7) and the relation
b, = Rya, imply that

(6.46) Ar =azag+ RyRjara and B, = Rparag+ Rrazaj.
Now, for v € {0, 7},
— in (6.46), we substitute the representation a, = | a, | ete(avo) gy, :

— in (6.46), we replace the functions R, by their representations (6.17);
— we express the Fourier coefficient combinations we meet in terms of ®,,, T, vrs Lhy
0 and z,;
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— we use detTyT, = 1.
— we use the invariance of <i>y, Tyv, Th, 0 and z, with respect to the transforma-
tion .

This leads to the formulae

.
aze'= Cy
6.47) A, =2—"——"
(6.47) T
w dnt0 (0+1/0 Ty  Or+O5  Or/0+ 050 OWO’OK}
ol {2 A R A
and
. P
. - 1%0
(6.48) Be A —%mf © 0
Ty
e [0 /01 030 a0t 0y ¢ age 20,
+ are = + .
2 T,

where A = ¢(bg,0) —¢(ap,0). Furthermore, one checks that, for [Im¢| < y and E € V¢,
one has

R 1 ,8x-3g 1
(6.49)  arape T o} = 2T (04 5) + O (0T, pTom, Thy Ty /Th)

and

(6.50) aﬂei%{ e } = %eﬁ% (%e@fo + 96_1%) + O (pTy,0, 0Ty, 7 T, pTy /Th) .
In (6.49) and (6.50), the terms with the curly brackets are the ones from (6.47)
and (6.48) respectively, and p = p(¢/e). These two representations follow from esti-
mates (3.26), (3.27), (3.28), (3.32), (6.18) and (6.43). We omit the elementary details.
Finally, we “kill” the constant factor e~*» in (6.48) by replacing the consistent
basis {fr, f*} with the consistent base {g,¢*} where g = e~ **/2f.: for the mon-
odromy matrix corresponding to {g, g*}, the coefficient with index 11 is equal to A,
and the coefficient with index 12 is equal to B,e ™. For the coefficients M;; and
Mo of this new monodromy matrix, we keep the old notations A, and B,. With
this “correction”; the asymptotic representation (3.15) follows from the representa-
tions (6.47) and (6.49), and the asymptotic representation (3.16) follows from the
representations (6.48) and (6.50) This completes the proof of Theorem 3.2. O
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CHAPTER 7

PERIODIC SCHRODINGER OPERATORS

In this section, we discuss the periodic Schrodinger operator (1.2) where v is a
1-periodic, real valued, Lfoc—function. First, we collect well known results needed in
the present paper (see [15, 8, 21, 22, 28]). In the second part of the section, we
introduce a meromorphic differential defined on the Riemann surface associated to the
periodic operator. This object plays an important role for the adiabatic constructions
(see [12]).

7.1. Analytic theory of Bloch solutions

7.1.1. Bloch solutions. — Let ¢ be a nontrivial solution of the equation

— L@ V@) = (), TER,

satisfying the relation ¥ (z + 1) = M)(x) for all z € R with A € C independent of
z. Such a solution is called a Bloch solution, and the number A is called the Floguet

(7.1)

multiplier. Let us discuss properties of Bloch solutions (see [15]).

As in section 2.1, we denote the spectral bands of the periodic Schrédinger equation
by [E1, Esl, [Es, E4), ..., [Eont1, Eonyal, . ... Consider J ., two copies of the complex
plane & € C cut along the spectral bands. Paste them together to get a Riemann
surface with square root branch points. We denote this Riemann surface by . In the
sequel, m. : J — C is the canonical projection.

One can construct a Bloch solution ¢ (z, &) of equation (7.1) meromorphic on . For
any &, we normalize it by the condition (1, &) = 1. Then, the poles of & — ¥(z, &)
are projected by m. either in the open spectral gaps or at their ends. More precisely,
there is exactly one simple pole per open gap. The position of the pole is independent
of = (see [15]).
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Let *: J — J be the canonical transposition mapping: for any point & € J, the
point & is the unique solution to the equation 7.(&5) = E different from & outside the
branch points.

The function z — ¥(x, é) is one more Bloch solution of (7.1). Except at the
edges of the spectrum (i.e. the branch points of ), the functions (-, &) and ¥(, 23')
are linearly independent solutions of (7.1). In the spectral gaps, they are real valued
functions of x, and, on the spectral bands, they differ only by the complex conjugation
(see [15]).

7.1.2. The Bloch quasi-momentum. — Consider the Bloch solution ¢ (z, &). The
corresponding Floquet multiplier A(&) is analytic on . Represent it in the form
A &) = exp(ik(&)). The function k(&) is the Bloch quasi-momentum.

The Bloch quasi-momentum is an analytic multi-valued function of &. It has the
same branch points as ¢(z, &) (see [15]).

Let D € C be a simply connected domain containing no branch point of the Bloch
quasi-momentum k. On D, fix kg, a continuous (hence, analytic) branch of k. All
other branches of k that are continuous on D are then given by the formula

ki (6) = £ko(8) + 21, 1€

All the branch points of the Bloch quasi-momentum are of square root type: let E; be
a branch point, then, in a sufficiently small neighborhood of Ej, the quasi-momentum
is analytic as a function of the variable /& — Ej; for any analytic branch of k, one
has

k‘(é) =k +cvé—E; + 0(6 — El), c #0,
with constants k; and ¢; depending on the branch.

Let C, be the upper complex half-plane. There exists k,, an analytic branch of
k that conformally maps C; onto the quadrant {k € C; Imk > 0,Rek > 0} cut
along compact vertical intervals, say 7l +iI; where [ € N* and I; C R, (see [15]). The
branch k), is continuous up to the real line. It is real and increasing along the spectrum
of Hy; it maps the spectral band [Ea,—1, Fa,] on the interval [r(n — 1), 7n]. On the
open gaps, Rek, is constant, and Im £, is positive and has exactly one maximum;

this maximum is non degenerate.
We call k, the main branch of the Bloch quasi-momentum.

Finally, we note that the main branch can be analytically continued on the complex
plane cut only along the spectral gaps of the periodic operator.
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7.2. Meromorphic differential ()

7.2.1. The definition and analytic properties. — On the Riemann surface (|
consider the function

o %@ 8) (. &) — k(&) 6) du
(e, E)v(x, &) da

where k is the Bloch quasi-momentum of ¢, and the dot denotes the partial deriva-

(7.2) w(éb) =

tive with respect to &. This function was introduced in [13] (the definition given in
that paper is equivalent to (7.2)). In [13], we have proved that w has the following
properties:

(1) the differential Q = wdé is meromorphic on f; its poles are the points of PUQ,
where P is the set of poles of ¥(z, &), and @ is the set of points where k'(&) = 0;

(2) all the poles of Q are simple;

B) Vpe P\Q,res,Q=1;Vg € Q\ P, res N = —1/2; Vr € PNQ, res, N =1/2.

(4) if 7.(&) belongs to a gap, then w(&) € R;

(5) if m.(&) belongs to a band, then w(&) = w(é).

The following quantities appeared in the description of the spectrum of H, . (see
section 2.6)

(7.3) An(v) =

where

(7.4) 00 (0) = exp(in(v)),  In(v) = / Q&)

n

and g, is a simple closed curve on ¢f such that

— gn, is located on C\ o(Hy), the sheet of the Riemann surface f where the Bloch
quasi-momentum of ¢ (z, &) is equal to k,(m.(&)) for Im 7 (&) > 0;

— 7e(gn) is a positively oriented loop going once around the n-th spectral gap of
the periodic operator Hy.

We prove
LEMMA 7.1. — The integral l,, is real valued.

Proof. — Let &g be a point that projects onto an internal point of a spectral band.
Let U be a neighborhood of &y where 7! is analytic. Let here & = 7. (w.(&)). By
the fifth property of w, for & € U, one has w(g) = m Consider g,,, the integration
contour for I,. We can and do assume that 7.(g,) (as a set, but not as an oriented
curve) is symmetric with respect to the real line. As m.(g,) intersects the real line

at internal points of spectral bands, starting from one of these intersections, one can
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continue & — & to g, as a continuous function; then, one has w(é) = w(&"). Note
that g% = —g,,. One has

- [ oo [ wera= [ s@ias= [ wbe

/gnw(fs)d&/g w(é’)dé’/g Q(é).

n n

On |, there are exactly two points, say ¢ and ¢, in @ that project inside the n-th
spectral gap of Hy. Furthermore, on J, there is exactly one point, say p, in P that
projects inside the n-th spectral gap or at one of its edges. On ( \ {q, ¢,p}, up to
homotopy, one has
gn = —Ggn + Z c(8),
&€{a,q,p}

where C(&) is a infinitesimally small, positively oriented circle centered at &. This
and the description of the poles of 2 imply that

(7.6) /gQ(é’):—/ Q) +omi Y reSgQ(é)z—/ Q(&).

" é€{a,4,p} "

Relations (7.5) and (7.6) imply that I,, = l,,. This completes the proof of Lemma 7.1.
O

Lemma 7.1 imply

COROLLARY 7.1. — One has 0,,(v) > 0 and A, (v) > 1.
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CHAPTER 8

THE CONSISTENT SOLUTIONS

In this section, we describe the consistent solutions (f,),ec{0,~} used in section 6.1.
Many of the results presented here are taken from [12].

In [10] and [12], we have developed a new asymptotic method to study solutions
to an adiabatically perturbed periodic Schrédinger equation i.e., to study solutions of

the equation
2

— g2 (@ 0 + (v(@) + W(ez + ()i (z, () = Ev(z,()

in the limit ¢ — 0. The function ¢ — W(({) is an analytic function that is not neces-

(8.1)

sarily periodic. This method is radically different from that developed earlier in [3, 4].
The main idea is to get the information on the behavior of the solutions in x from the
study of their behavior on the complex plane of (. The natural condition allowing to
relate the behavior in ¢ to the behavior in « is the consistency condition (6.3): one
can construct solutions to (8.1) satisfying this condition and having simple standard
asymptotic behavior on certain domains of the complex plane of (.

We first describe the standard asymptotic behavior of the solutions studied in the
framework of the complex WKB method. The domains where these solutions have
the standard behavior are described in terms of Stokes lines. So, next, we describe
the Stokes lines for v, W and E considered in this paper. Finally, we describe f; and
fr, the solutions used to construct the consistent bases and transitions matrices of
Theorem 6.1.

8.1. Standard behavior of consistent solutions

We now discuss two analytic objects central to the complex WKB method, the
complex momentum defined in (2.1) and the canonical Bloch solutions defined below.
For ¢ € D(W), the domain of analyticity of the function W, we define

(8.2) 6(Q) = E—-W(()
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The complex momentum and the canonical Bloch solutions are the Bloch quasi-
momentum and particular Bloch solutions of the equation

d2
(8.3) — v =6

considered as functions of (.

8.1.1. The complex momentum. — For ( € D(W), the domain of analyticity
of the function W, the complex momentum is given by the formula x(¢) = k(&(C))
where k is the Bloch quasi-momentum of (1.2). Clearly, x is a multi-valued analytic
function; a point ¢ such that W’({) # 0 is a branch point of & if and only if

(8.4) E;+W()=FE forsome je&N*.

All the branch points of the complex momentum are of square root type.

A simply connected set D C D(W) containing no branch points of  is called
reqular. Let x, be a branch of the complex momentum analytic in a regular domain
D. All the other branches analytic in D are described by

(8.5) KE =4k, +2mm where m € Z.

8.1.2. Canonical Bloch solutions. — To describe the asymptotic formulae of the
complex WKB method, one needs Bloch solutions of equation (8.3) analytic in ¢ on
a given regular domain. We build them using the 1-form Q = wd& introduced in
section 7.2.

Pick (o, a regular point. Let &y = &(p). Assume that & ¢ P U Q (the sets P
and @ are defined in section 7.2). In Uy, a sufficiently small neighborhood of &g, we
fix k, a branch of the Bloch quasi-momentum, and ¢4 (z, &), two branches of the
Bloch solution ¥(x, &) such that k is the Bloch quasi-momentum of 4. Also, in Uy,
consider 24, the two corresponding branches of €2, and fix a branch of the function
&= q(6) = VE'(&). Assume that V; is a neighborhood of ¢y such that &(Vo) C U.
For ¢ € Wy, we let

(8.6) Wi (z,C) = q(E)elio M pu(z, 8), where &= E(C).

The functions W are the canonical Bloch solutions normalized at the point (y. Its
quasi-momentum is (¢) = k(E — W(()).

The properties of the differential €2 imply that the solutions W can be analytically
continued from V{ to any regular domain D containing Vj.

One has (see [10])

(8.7) w(¥i(-¢), ¥-(-¢) =w(Tys(C0), ¥-(-,C0)) = k' (Eo)w(¥ (- Eo), v (-, o))
As 6o & QU (Ui>1{E;}), the Wronskian w(U4(-,¢), T_(-,¢)) does not vanish.
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8.1.3. Solutions having standard asymptotic behavior. — Fix F = Fy. Let D
be a regular domain. Fix (o € D so that &({p) € P U Q. Let k be a branch of the
complex momentum continuous in D, and let ¥ be the canonical Bloch solutions
defined on D, normalized at {y and indexed so that x be the quasi-momentum for ¥ .

We recall the following basic definition from [12]

DEFINITION 8.1. — Fix s € {4, —}. We say that f, a solution of (8.1), has standard
behavior (or standard asymptotics) f ~ exp(s< fc kdC)- U, in D if

— there exists Vjy, a complex neighborhood of Ey, and X > 0 such that f is defined
and satisfies (8.1) and (6.3) for any (z,(, F) € [-X, X]| x D x V;

— fis analytic in ( € D and in E € Vj;

— for any K, a compact subset of D, there exists V' C Vj, a complex neighborhood
of Ey, such that, for (z,(,E) € [-X, X] x K x V, f has the uniform asymptotic

f=et Je KA, +0(1)), as e—0,

— this asymptotic can be differentiated once in x without loosing its uniformity
properties.

Let (f4+, f-) be two solutions of (8.1) having standard behavior fi ~ et /e RdCy
in D. One computes

w(fer J-) = (W, U_) +o(1).

By (8.7), for ¢ in any fixed compact subset of D and ¢ sufficiently small, the solutions
(f+, f-) are linearly independent.

8.2. Complex momentum and Stokes lines for W (¢) = acos(

Now, following [12], we discuss the complex momentum and describe the Stokes
lines for v, W and FE considered in this paper. In particular, from now on, we assume
that

(8.8) W(¢) = acos(¢) hence, &(¢)=FE — acos((),

that E belongs to J, a compact interval satisfying the condition (G) from section 2.2,
and that all the gaps of the periodic operator Hy are open.
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FIGURE 8.1. (z); and (q1);

8.2.1. Complex momentum

1. The branch points of the complex momentum are located on the lines of the set
arccos(R) which consists of the real line and the lines {Re( = 7l} for I € Z. The set
of branch points of k is 2w-periodic and symmetric with respect both to the real line
and to the imaginary axis.

Define the half-strip II = {¢ € C; 0 < Re( < m, Im{ > 0}. It is a regular domain.
Consider the branch points located on JII, the boundary of II. & bijectively maps
OII onto the real line. So, for any j € N, there is exactly one branch point solution
to (8.4); we denote it by ¢;. Under condition (G), the branch points (2, and (241
are located on the interval (0,7), i.e. 0 < (25, < Cant+1 < 7. The branch points (3,
(2, ... Con—1 are located on the imaginary axis and satisfy 0 < Im (o, < -+ <
Im ¢y < Im ;. The other branch points are located on the line {Re{ = 7}, and one
has 0 < Im (o142 < Im (o453 < .... In Fig. 8.1, we show some of these branch points.

2. & conformally maps the half-strip II onto the upper half of the complex plane.
So, on II, we can define a branch of the complex momentum by the formula

(8.9) kp(p) = kp(E — accos ),

kp being the main branch of the Bloch quasi-momentum for the periodic opera-
tor (1.2). We call k,, the main branch of the complex momentum.

The discussion in section 7.1.2 implies the following. First, &, conformally maps
IT into the first quadrant of the complex plane. Fix [, a positive integer. The closed
segment z; := [Ca1—1,Cx] C OII is bijectively mapped on the interval [n(l — 1), xl];
on the open segment g; := (a1, Ca1+1) C 911, the real part of k equals to «l, and its
imaginary part is positive. Two of the intervals (z;); and (g¢;); are shown in Fig. 8.1.

8.2.2. Stokes lines. — Let (y be a branch point of the complex momentum.
A Stokes line beginning at (g is a curve 7 defined by the equation Im fé} (k(&) —
k(o)) d€ = 0 (where k is a branch of the complex momentum continuous on 7). There
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are three Stokes lines beginning at each branch point of the complex momentum. The
angles between them at the branch point are all equal to 27/3.
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FIGURE 8.2. The Stokes lines

Let us discuss the set of Stokes lines for W({) = acos(. Due to the symmetry
properties of &, the set of the Stokes lines is 27-periodic and symmetric with respect
to both the real and the imaginary axes. So, it suffices to describe the Stokes lines in
I1. Here, we follow [12].

In Fig. 8.2, we have represented Stokes lines in IT by dashed lines.

Elementary properties of Stokes lines. — Recall that the ends of the intervals (g;); are
branch points and, reciprocally, any branch point located on OII is an end of one of
the g;’s.

Consider the Stokes lines beginning at the ends of g,,. The right end of g, is (25 41-
One of the Stokes lines beginning at this point goes to the right of (5,,+1 along R; the
two other Stokes lines beginning at (2,41 are symmetric with respect to the real line.
Similarly, one of the Stokes lines beginning at (s, the left end of g,,, goes to the left
of (5, along R, and the two other Stokes lines beginning at (3, are symmetric with
respect to the real line.

Consider the Stokes lines beginning at the ends of g; for either I > n+1orl < n-—1.
One of these Stokes lines coincides with g;. Let (y be one of the ends of g;. The two
Stokes lines beginning at {y and different from g¢; are symmetric with respect to the
line {Re{ = Re(p}, see Fig. 8.2.

Global properties of the Stokes lines in I1. — First, we discuss the Stokes lines starting

at Can+1,--, C2nt4 and (oy, denoted respectively by “a”,..., “d” and “e”. They are shown
in Fig. 8.2 and described by

LEMMA 8.1 ([12]). — The Stokes lines “a”,..., “d” and “e” have the following proper-
ties:

— the Stokes lines “a” and “e” stay inside 11, are vertical and disjoint;
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— the Stokes line “c” stays between “a” and the line {Re ( = 7} (without intersecting
them) and is vertical;

— before leaving 11, the Stokes lines “b” stays vertical and intersects “a” at a point
with positive imaginary part;

— before leaving 11, the Stokes lines “d” stays vertical and intersects “c” above (ap+3,
the beginning of “c”.
The term “vertical line” used in this lemma means a smooth curve intersecting the
lines {Im ¢ = C'} transversally. The proof of Lemma 8.1 can be found in [12].

Now, consider the Stokes lines located in II and starting at (2,1, (2rn—2 and (o, _3.
We respectively denote them by “f”, “g” and “h”, see Fig. 8.2. One proves

LEMMA 8.2. — The Stokes lines “f”, “g” and “h” have the following properties:

— the Stokes line “g” is vertical and stays between “e” and the line {Re( = 0}
without intersecting them;

— before leaving 11, the Stokes lines “f” stays vertical and intersects “e” at a point
with positive imaginary part;

— before leaving 1, the Stokes lines “h” stays vertical and intersects “g” above (a2,
the beginning of “g”.

We omit the proof of this lemma as it is similar to the proof of Lemma 8.1.

8.3. Two consistent solutions

We now introduce two solutions of (6.2) satisfying (6.3). For y > 0, we define
Sy = {[Im¢]| <y}
Fix Y > Im Can+4. The solutions we describe are analytic in the strip Sy

We first describe the branch of the complex momentum used to write the asymp-
totics of these solutions. Define the strip

SP={(eC;0<Im¢ < min(Im (oy,—1,Im (o, 42)}.

It is regular. Analytically continue k, to this strip. Recall that the integer n in the
condition (G) is even. Let

(8.10) K(C) = Rp(¢) — .

As n is even, the discussion in the section 8.1.1 shows that « is a branch of the complex
momentum. It is continuous up to the boundary of the strip S?; one has

#(Can) = K(Cant1) = 0.

MEMOIRES DE LA SMF 104



8.3. TWO CONSISTENT SOLUTIONS 79

\Y\§

2 E
0 /%/4 27 - 01 / T
Yor 1Y,
/ I 7 ’
/ Yx Yo
92 ,
7z AT 7z L
(a) The domain D (b) The domain Dg

Ficure 8.3. The continuation diagrams

8.3.1. The solution f,. — Consider 9,, the subdomain of the domain D, =
{IIm¢| <Y, 0 < Re( < 27} shown in Fig. 8.3(a).

Its boundary consists of the lines bounding D, and of the segments of Stokes lines
and lines {Re ( = C'} beginning at the intersection points of Stokes lines. The domain
D, is simply connected.

Let k, be the analytic continuations of x from S? to 9., i.e., for ( € D, N SP

(8.11) K (C) = K(C)-

Let \I/E:) be the canonical Bloch solution analytic 9, , normalized at = and such that
K is its Bloch quasi-momentum. In [12], we have proved

PROPOSITION 8.1 ([12]). — Fiz E = E, € J. For sufficiently small €, there exists fr,
a solution to (6.2), satisfying (6.3) and analytic in the strip Sy that, on Dy, has the
standard behavior

S
(8.12) fr ~exp (2/7r K d() \I/S:r).

8.3.2. The solution fy. — Consider 9y, the subdomain of the domain Dy =
{IIm¢| <Y, —7 < Re¢ < 7} shown in Fig. 8.3(b).

Its boundary consists of the lines bounding Dy and of the segments of Stokes lines
and lines {Re ¢ = C'} beginning at the intersection points of Stokes lines. The domain
9Dy is simply connected.

Let ko be the analytic continuation of —x from S? to 9y i.e., for { € Dy N SP,

(8.13) ro(C) = —K(C).

Let \I'S?) be the canonical Bloch solution analytic 9y, normalized at 0 and such that
Ko is its Bloch quasi-momentum. One has
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PROPOSITION 8.2. — Fiz F = FE, € J. For sufficiently small ¢, there exists fqy, a
solution to (6.2), satisfying (6.3) and analytic in the strip Sy that, on Dy, has the
standard behavior

e
(8.14) fo ~ exp (Z/ Ko dC) \I!S?).
0

The proof of Proposition 8.2 is similar to that of Proposition 8.1; we omit it.
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TWO CONSISTENT BASES

In this section, we construct the consistent bases used in the section 6.1.

Fix v € {0,7}. The solution f; is related to f, by the transformation (3.10).
First, we compute the asymptotics of f;. Then, we compute the asymptotics of the
Wronskian w(f,, f;). This Wronskian is constant up to a factor of the form (1+o0(1)).
Finally, we correct f so that

(1) the Wronskian w(f,, f;) be constant (and, thus, f, and f; form a consistent
basis),

(2) the “new” solutions f, and f;; have the “old” behavior in the strip Sy .
The constructions described here are standard for the adiabatic complex WKB
method. The proofs of Lemmas 9.1 and 9.2, and of Theorem 9.1 below essentially
repeat the proofs of the analogous statements found in [13] and are therefore omitted.

9.1. Asymptotics of f}

To discuss the asymptotic behavior of f;, we need some additional material.

9.1.1. Preparation. — Define 30 = (—(on,Con) C R and 3. = (Cont1, 27 — Cont1) C
R. Note that & maps 3¢ into the n-th spectral band, and 3, into the (n+1)-st spectral
band.

Recall that the leading terms of the asymptotics of the solutions having standard
asymptotic behavior are fixed up to the choice of ¢, the branch of \/k’(&(¢)) from the
definition of the canonical Bloch solution, see (8.6). Let ¢, be the branch of ¢ from
the definition of \Ilgf/). Fix it so that

() >0 for (E€3j,.

This choice is possible as, inside any spectral band of the periodic operator, k; > 0.
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9.1.2. The asymptotics. — Let 9, be the domain symmetric to 9, with respect
to the real line. Note that 3, C 9, N 9. One has

LEMMA 9.1. — In D, the solution f} has the standard behavior
(9.1) fi e B e 0 (g ).

Here, K, . is the branch of the complex momentum analytic in 9D, that coincides
with K, on 3,; the function \Il(f)’* is the canonical Bloch solution analytic in D, that

coincides with \I/(_V) (complementary to \Ifgf) from the asymptotics of f,) on 3,.

The proof of Lemma 9.1 mimics that of Lemma 6.1 in [13].
Note that #,,. = #7, and that ¥*)* = (¥1))*.

9.2. The Wronskian of f, and f}

The solution f, and f; are analytic in the strip Sy; so does their Wronskian. As
both f, and f} satisfy condition (6.3), it is e-periodic in ¢. One has

LEMMA 9.2. — The Wronskian of f, and f,; admits the asymptotic representation:
(9.2) wifo £3) = w(@ )y + 90, (S5

Here, g, is a function analytic in Sy such that, for real ¢ and E, Re g, = 0. Moreover,
g = 0o(1) locally uniformly in any compact of S¢ provided that E is in a sufficiently
small complex neighborhood of Ey.

The proof of Lemma 9.2 mimics that of Lemma 6.2 in [13].
REMARK 9.1. — Note that w(¥}, ¥™))|._, # 0 as §(v) ¢ PUQ.
As g,, the error term in (9.2), may depend on (, we redefine the solution f, setting

foi=f,/Q where Q= \/1 +g/w(‘1’$)7\11(_”))k:'/'

In terms of this new solution f,, we define the new f;. The solutions (f,, f;}) form

the basis the monodromy matrix of which we study. For these “new” f, and f,, we
have

THEOREM 9.1. — The solutions f, and f; are analytic in Sy, satisfy the condi-
tion (6.3), and

(9.3) w(fy, f3) = w(@y), v,

Moreover, f, has the standard behavior, (8.14) or (8.12), in D,, and f} has the
standard behavior (9.1) in D,,.

The proof of Theorem 9.1 mimics that of Theorem 6.1 from [13].

MEMOIRES DE LA SMF 104



9.2. THE WRONSKIAN OF f, AND f 83

Let ¢ — ¢4 (x, 5(¢)) be the two branches of the Bloch solution ¢ — v (z, £(¢)) that
are analytic in ¢ € SP and such that x, the branch of the complex momentum defined
in the beginning of the section 8.3, is the Bloch quasi-momentum for .. By (8.7)
and the definitions of the canonical Bloch solutions ¥, one has
(9.4)

v) (v) ’ lifv= ,
W ) ey = SO0 0 where s0)={

—1lifv=0.
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CHAPTER 10

TRANSITION MATRICES

In this section, we compute the asymptotics of the transition matrices T, defined
by (6.6) for the bases (f,, f) for v € {0,7}.

10.1. Elementary properties of the transition matrices

One can easily express the coefficients of the transition matrices, see (6.6), via the
Wronskians of the basis solutions; formulas (6.6) immediately imply

LEMMA 10.1. — One has

ey = Wl (¢t 2m), £5(50)
WD el = = RGO 0)

and
(10.2) ao(C) = w(fo(-, ), f7(+6)) —w(fx(+0), fol-,0))

B w(f‘/r(7<)’f7r*(’C))7 B w(fﬂ(v()).ﬂ?()())

For v € {0, 7}, by the definition of the standard behavior, the basis { f,, f;} is defined
and analytic for (¢, E) € Sy x V(Y) where V(Y) is a neighborhood of E, € .J; this
neighborhood is independent of €. One has

bo(¢)

LEMMA 10.2. — Pick v € {0,7}. The matriz T, is analytic and e-periodic in ¢ € Sy
and analytic in E € V(ff) Moreover, detT,, is independent of ¢ and does not vanish.

Proof. — As the solutions f,, and f} are analytic functions of the variables ¢ and F, so
are the Wronskians in formulae (10.1) and (10.2). Moreover, by (9.3), the Wronskians
in the denominators of (10.1) and (10.2) do not vanish. This implies the analyticity
of the coefficients of the transition matrices. The periodicity in ¢ follows from the fact
that all the solutions satisfy (6.3). Finally, relations (6.6) imply that

(10.3) w(fx(x, ¢+ 2m), fr (2, +2m)) = det Trw(fo(, (), f5 (z, ()
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Now, (9.3) imply that det T} is independent of ¢. Similarly one checks that det Tp is
independent of ¢. This completes the proof of Lemma 10.2. O

10.2. The asymptotics of the transition matrices

We first introduce some notations:

(1) For the Fourier coeflicients of a,, and b, we use the notations introduced in (6.9),
and recall that p(z) = 7™ =,

(2) Let Yz, Y, » and Yo, Y, o be the distances marked in Fig. 8.3(a) and Fig. 8.3(b)
respectively. E.g., Yy is the imaginary part of the point of intersection of the Stokes
lines “g”” and “h” (see Lemma 8.2). Note that, for any v € {0, 7}, one has

(10.4) 0<Y,, <Y, <Y.

(3) We use the branch « introduced in the beginning of the section 8.3; ¢4 (resp.
Q4 ) are the branches of ¢ (z, &(+)) (resp. 2) such that & is the Bloch quasi-momentum
of ;. When integrating « (resp. integrating 2 or continuing analytically ) along a
curve, we choose a branch of x (resp. €, ¥) near the starting point of the curve and
then continue it along the curve.

(4) Let v be a curve and g be a function continuous on . We denote by A arg gl
the increment of the argument ¢({) along the curve ~.

The asymptotics of the transition matrices coefficients are described by
PROPOSITION 10.1. — Pick v € {0,7}. Fiz Y so that Y, , <Y <Y,. There exists

V,(Y), a complex neighborhood of E, independent of e, such that, for ¢ sufficiently
small, j € {0,1} and E € V,(Y), one has the uniform asymptotics

(10.5)
i 27 (7w —v)i )
a, j = exp (55 nd(—]er QS+ZAargq|a+o(1)) , a=yj,
(10.6)
i 2n(m —v)i _
byj=exp|s— | kd{—j———+ [ Qs +iAargqlg+o0(1) ], B=70;,
€Jp < B
where s=+11if v=m, ands=—-14if v=0.

In (10.5) and (10.6), one integrates along the curves shown in Fig. 10.1 chosen such
that £(¢) € (PUQ) along them; for each of the integration curves, q denotes a branch

of ¢ = /K'(&(Q)) continuous on this curve.
For (¢, E) € S(Y) x V,(Y), one has the uniform estimates

ay,1(¢) = o(av), a2(¢) = o(p(¢/e)a.1),

(10.7) bo—1(C) = 0lbuo).  bu2(C) = o(p(C/e)buy).
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FiGURE 10.1. The integrations paths for Theorem 6.1

In the remaining part of the present section, we first explain how Theorem 6.1
is deduced from Proposition 10.1. Then, we turn to the proof of Proposition 10.1.
We begin with describing general asymptotic formulae for the Wronskians of two
solutions having standard behavior; this material mostly stems from [13]. Then, using
these formulae, we compute the Wronskians in the formulae for the transition matrix
coefficients (see Lemma 10.1) and, thus, complete the proof of Proposition 10.1. Note
that we carry out the analysis only for the asymptotics and the estimates for ag and
bg. The coefficients a, and b, are analyzed in a similar way.

10.3. The proof of Theorem 6.1
In section 11, we study the actions (S, . ),ef0,-} and prove
LEMMA 10.3. — Pick E, € J. For each v € {0, 7}, one has Sy, (Ey) = 27nY, ,(E,).

Lemma 10.3 and the condition (T), see section 2.5, imply that, in Proposition 10.1, we
can choose Y so that (1) 27Y > maxpgey Sp(E) and (2) Y, , <Y <Y, simultaneously
for v = 0 and v = 7. We then define V,, = VyNV,.. With this, each of the basis solutions
fo, f§, fr and fZ is defined and analytic in the domain (6.5). This and Lemma 10.2
imply the first and the second point of Theorem 6.1.

In section 12, we derive the estimates of the third point of Theorem 6.1 from the
asymptotics (10.5) and (10.6).

Finally, the last point of Theorem 6.1 is an immediate consequence of the esti-
mates (10.7). So, Theorem 6.1 is proved.
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10.4. General asymptotic formulae

We recall results from section 8 of [13]. Consider equation (8.1) assuming only that
W is analytic and that F is fixed, say £ = Ey. Let h and g be two solutions of (8.1)
having the standard asymptotic behavior in regular domains D}, and D,:

ir¢ o, i<
(10.8) B et I g 2, 0), g~ et T T (2, 0).

Here, kj, (resp. rg) is a branch of the complex momentum analytic in Dy, (resp. Dy),
Uj, (resp. ¥,) is the canonical Bloch solution defined on Dy, (resp. Dy) and having
the quasi-momentum kj, (resp. kg), and ¢ (resp. {4) is the normalization point for h

(resp. g).

As the solutions h and g satisfy the consistency condition, their Wronskian is e-
periodic in (. First, following [13], we describe the asymptotics of this Wronskian and
of its Fourier coefficients. Then, we develop simple tools to compute some constants
coming up in these formulae.

10.4.1. Asymptotics of the Wronskian. — Let d be a simply connected domain
such that d C D N Dy,.

Arcs. — Let v be a curve connecting (, to ¢, going first from (, to some point in d
while in D, and, then, from this point to ¢, while in D). We call v an arc associated
to the triple (g, h,d) and denote it by (g, h, d).

Two arcs associated to one and the same triple are called equivalent.

Continue x;, and k4 analytically along ~(g,h,d). Then, there exists m € Z and
o € {—1,+41} such that for ¢ close to v, one has

(10.9) kg(¢) = orn(¢) + 2mm.

We call o = o(g, h,d) the signature of v, and m = m(g, h,d) the index of . These
two integers do not change when we replace the arc 4 by an equivalent one.

Meeting domains. — A domain d is called a meeting domain if the functions Im kp
and Im k, do not vanish and are of opposite sign in d. One has

LEMMA 10.4 ([13]). — Suppose the functions Im kj, and Im kg do not vanish in d.
Then, d is a meeting domain if and only if o(g,h,d) = —1.
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Fourier coefficients. — Let S(d) be the smallest strip of the form {C; < Im( < Cy}
containing the domain d. One has

PROPOSITION 10.2 ([13]). — Fiz Ey. Let d = d(h, g) be a meeting domain for h and
g, and m = m(g, h,d) be the corresponding index (at energy Eo). Then, there exists
Vo, a complex neighborhood of Ey, such that for e sufficiently small, for E € Vy and
¢ € S(d), the Wronskian of h and g is given by the formulae

(10.10) w(h,g) = Wme" =M (1 4 0(1)),
where
_ i Ch
0.11) = o/l e ([ mpdct [T 0, )u(r v,
€ "/(g,h,d) g

In these formulae:

— Wy, is independent of (;

— we choose the arc v(g, h,d) so that, along it, £(¢) € PUQ;

— (= qe(Q) = VEI(E(Q)) and ¢ — Q4(C) = Q4(E(C)) are the analytic continua-
tions of the function and the 1-form from the definition of ¥y along y(g,h,d).

— U, =Wy, and Y_ is the canonical Bloch solution “complementary” to W .

Fiz K, a compact subset of S(d). Then, there exists Vi a neighborhood of Eq in Vj
such that the asymptotics (10.10) is uniform in K x V{<.

The factor w,, is the leading term of the asymptotics of the m-th Fourier coefficient
of w(h, g).

10.4.2. Closed curves and the index m. — In practice, it is not too difficult to
compute the index m. However, as one needs to control several Fourier coefficients of
each Wronskian, the computations become lengthy. Fortunately, there is an effective
way to compare the indexes of two (non-equivalent) arcs. To this end, we define the
index of a closed curve.

Closed curves. — Let ¢ be an oriented closed curve containing no branch points of
the complex momentum. Pick {y € c. In Vj, a regular neighborhood of {y, fix x, an
analytic branch of the complex momentum. We call the triple (¢, (o, <) a loop.

We shall consider ¢ as disjoint at {p and speak about its beginning and its end.
Continue x analytically along c. This yields a new branch of the complex momentum
in V. Denote it by &|.. Hence, there exists o € {—1,+1} and m € Z such that, for
CeVo

(10.12) kle(C) = ok(C) + 2mm.

The numbers o = o(c¢, (g, k) and m = m(c, (o, k) are called the signature and the
index of the loop (¢, (o, k).
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Consider two loops (¢1, (1, k1) and (ca, (2, k2). Assume that one can continuously
deform ¢y into ¢ without intersecting any branching point. Assume moreover that, in
result of the same deformation, (; becomes (5. This deformation defines an analytic
continuation of k1 to a neighborhood of (,. If this analytic continuation coincides
with ko, we say that the loops are equivalent. The indexes m and o calculated for
equivalent loops coincide.

Let us explain how to compute the indexes m and o. Let G be the preimage with
respect to & of the set of the spectral gaps of the periodic operator (1.2). Note that

— on any connected component of G, the value of the real part of the complex
momentum is constant and belongs to {wl; I € Z};

— locally, outside {¢; W’(¢) = 0}, all the connected components of G are analytic
curves.

Now, we can formulate

LEMMA 10.5. — Assume that ¢ does not start at a point of G. Assume moreover that
¢ intersects G exactly N times (N < oo) and that, at the intersection points, W' # 0.
Let r1, ra, ..., rn be the values that Re k takes consecutively at these intersection
points as ¢ moves along ¢ (from the beginning to the end). Then,

J(Ca CO? H) = (71)N,
(10.13) 1

m(cv CO,H) = ; (TN —TrN_1+TN_g— -+ (fl)Nfl

Tl).

The proof of Lemma 10.5 mimics the proof of Lemma 8.2 in [13] which describes the

index of a 2w-periodic curve.

Comparing the indezes of arcs. — Let d and d be two (distinct) meeting domains for
the solutions h and g, and let v and 4 be the corresponding arcs. One can write

(10.14) ¥ =c+7,

where c is a closed regular curve; its orientation is induced by those of v and 7.

As 0(g,h,d) = o(g,h,d) = —1, one has o(c, (4, kg) = 1. As an immediate conse-
quence of the definitions, we also get

(10.15) m(g, h, d) =m(c, (g, kg) +m(g, h,d).

This formula and Lemma 10.5 give an effective way to compute the indexes of arcs.
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10.5. The asymptotics of the coefficient b,

The coefficient by of the matrix Tp is given in (10.2). As w(fr, f) is given by for-

mula (9.3), we have only to compute w(f-(+, (), fo(:,¢)). One applies the constructions
of section 10.4 with

h(a:,{) = fﬂ'(x7<)7 g(xvc) = fO(z7<)7 Dy, = @71'7 Dg = @0;
(10.16) CGh=m, (g=0;
(10.17) k() =k(() for ( ~m, and k4(¢) = —k(C) for ¢ ~ 0.

In (10.17), & is the branch of the complex momentum defined in (8.10).

Let Yj and Y,, o be the distances marked in Fig. 8.3(b). They satisfy (10.4).

10.5.1. The asymptotics in the strip {-Y, o < Im( < Yp}. — Let us describe
dp, the meeting domain, and ~(fo, fx, do), the arc used to compute w(fr, fo) in the
strip

So={CeC; —Y,p<Im( <Yy}

The meeting domain dy. — It is the subdomain of the strip Sy between the lines v,
and -5 defined by

[APN2)

— the line 7; consists of the following lines: the Stokes line “e” symmetric to the
Stokes line “e” with respect to the real line, the segment [0, {2,,] of the real line, the

segment [0, (2,—2] of the imaginary axis and the Stokes line “g” (see Fig. 8.2);

— the line 72 consists of the following lines: the Stokes line “a” symmetric to the
Stokes line “a” with respect to the real line, the segment [(25,41, 7] of the real line, the
segment [, (an43) of the line Re{ = 7 and the Stokes line “c” (see Fig. 8.2).

The Stokes lines mentioned here are described by Lemmas 8.1 and 8.2. In particular,
these lemmas imply that v; Ny, = @.

Note that dy does not intersect Z, the preimage of the set of the bands of the
periodic operator (1.2) with respect to the mapping &. So, in dy, one has Im k # 0.

The arcy(g, h,dp). — It is the curve §y ¢ shown in Fig. 10.1; it stays in dy and connects
(g =0to () =m.

Index m. — In view of (10.17), in dy, one has kK, = —k4. This implies that
m(ga h7d0) =0.
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The result. — Proposition 10.2, formulae (10.2) and (9.3) imply that, for ¢ € Sp,
(10.18) bo = bo(1+ 0(1)), by = exp <2_ / KkdC + / Q_ +iA argqg)
B B

where 3 = [0, and, as ¢, one can take any branch of the function ¢ — /k’(£(())

continuous on f.

When deriving the formula for bo, we have used the facts that

— ), is the branch of Q_ corresponding to the branch x chosen above;

— (49/qn)(Cn) = 289515 as, at ¢, gy is real and |gg/qn| = 1;

— the quantity Aarggy|g does not depend on the branch of g, as long as it is
continuous on f.

10.5.2. The asymptotics in the strip {-Y; <Im{ < =Y, 0}. — Let us describe
d1, the meeting domain, and ~(fr, fo,d1), the arc used to compute w(fr, fo) in this
strip

S1={CeC; =Yy <Im( < Y, 0}

The meeting domain di. — Let d; be the subdomain of the strip S; located between

1Pl

the Stokes line “a” (symmetric to “a” with respect to the real line) and ~s, the curve
which consists of the following lines:

— the Stokes line “f” symmetric to the Stokes line “f” with respect to the real line,

(APl

the segment [C2p—1,Can—2] of the imaginary axis, and the Stokes line “g” symmetric
to the Stokes line “g” with respect to the real line.

The domain d; is a meeting domain in view of
LEMMA 10.6. — In dy, one has Imk, = —Im kg > 0.

Proof. — The sign of Im x remains the same in any regular domain D such that DN
Z = . Moreover, the sign of Im« flips as ¢ intersects (transversally) a connected
component of Z at a point where W’ does not vanish.

Con—1 Boo
<271+2

0 Co m

Gon Co Cont1
«70,1

F1GurE 10.2. The curve c¢o
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By (8.10) and (8.11), one has Imk, = Imx = Imk, > 0 in D, NII. As one goes
from II to d; in 9D, without intersecting Z, we get Im k. (¢) > 0 for ¢ € dy. Similarly,
by (8.10) and (8.13), one has Imky = —Imk, < 0 in Py N II. Furthermore, to go
from II to d; staying in 9y, one has to intersect two connected components of Z,
namely, the segment [—(ap, (2] of the real line and the segment [—(2,—1,(2n—1] of
the imaginary axis. Hence, Imko({) < 0 for ¢ € d;. This completes the proof of
Lemma 10.6. O

The arc v(g,h,d1). — It is the curve By shown in Fig. 10.1; it connects {; = 0
to (p = .

Index m. — One has
V9, h, dr) = co + (g, h, do),
where ¢g is the closed curve shown in Fig. 10.2. By (10.15), we get

m(ga h7 dl) = m(COa Oa Hg) + m(g7 ha dO) = m(COa 07 Kg)'

So, the index m(g, h,d1) is equal to the index of the loop (co,0, ky). Recall that the
indexes of equivalent loops coincide. To compute the index, we pick a point {y € ¢g as
shown in Fig. 10.2 and we replace the loop (co, 0, xg) by the equivalent loop defined
by the same curve ¢y and the point (5. The branch of the complex momentum fixed
for this new loop is the analytic continuation of the old branch along cq from 0 to (y
in the clockwise direction. For this new branch, we keep the old notation .

In view of Lemma 10.5, it is sufficient to compute x4 at the intersections of ¢y and
G. The set G is 2m-periodic and symmetric with respect to the real line and to the
imaginary axis. The connected components of G located in the {0 <Im{, 0 < Re( <
7} are described in section 8.2.1, part 2.

In Fig. 10.2, the curve ¢y intersects two connected components of G, the segment
[Con—1,Can_2] of the imaginary axis and the segment [(2,,,C2n+1] of the real line. So,
Lemma 10.5 implies that

(10.19) m(co, 0, rg) = m(cos Co, Fig) = % (Re kg (Gon1) — Re iy (Can)

as Rekx stays constant on any connected component of G. As x4 is defined by the
formulae (10.17) and (8.10), one has

(10.20) Kg(Can) = —K(Con) = —(kp(Cen) — 7n) = —(7n — 7N) = 0.
Along the interval [—(ap, (2n], one has k4(¢) = —k(() € R; hence,

Kg(Con—1) = —kK(Can-1) = —(kp(Con—1) — ) = —(7(n — 1) —7n) = .
Substituting this and (10.20) into (10.19), we finally get

m(gahadl) = m(covoﬂ%g) =1
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The result. — Proposition 10.2, formulae (10.2) and (9.3) imply that, for ¢ € Sy,
(10.21)

~ omi ~ . 2 2.
by = bre €<(1+0(1))> by = exp <—i/l{d§_ ZZ+/Q_+iAargq5)
B B

where 5= (1.

Completing the analysis. — The coefficient by being e-periodic, we write its Fourier

series

o] 1 f+27r
(10.22) bo(¢) = > boue™/c where by, = - / bo(¢)e2m/2 d¢ for | € 7Z,
l=—00 ¢

As by is analytic in the strip {{Im¢| < Yy}, ¢ can be taken arbitrarily in the strip
{|IIm¢| < Yu}. The asymptotics and the estimates for by in Proposition 10.1 are
obtained by analyzing its Fourier coefficients. To estimate the Fourier coefficients
with non-positive index, one uses (10.18) and (10.22) with { € Sy. To study the
Fourier coefficients with positive index, one uses (10.21) and (10.22) with ¢ € S;. We
omit the elementary details and note only that bo in (10.18) is the leading term of
the asymptotics of bg o, and that by in (10.21) is the leading term for b 1.

10.6. The asymptotics of the coefficient a,

By (10.2), it suffices to compute the Wronskian w(fo(+,¢), f2(+,¢)). The computa-

T
tions of the coefficient aq follow the same scheme as the ones of by. So, we only outline

them. Now,

(10.23) h=fr, g9=fo Dy =Dy, Dy = D;

(10.24) Ch=m, (=0

(10.25) kn(¢) = —R(C) for ( ~m, and ky(¢) = —k(C) for ¢ ~ 0.

Recall that the complex momentum is real on [(2,11, 27 — (ap+1]. This imply that
(10.26) kn(¢) = —k(Q) for ¢ ~ .

10.6.1. The asymptotics in the strip Sy. — In this case, the meeting domain
do is the subdomain of the strip Sp located between the lines the lines v; and 73
symmetric to v, with respect to the real line (see section 10.5.1). These two lines do
not intersect.
The arc ¥(g, h, do) is the curve ag o shown in Fig. 10.1. One has m(g, h, dy) = 0.
The asymptotics of ag for ¢ € Sy is described by

(10.27) a0 = do(1 +o(1)), do = exp (—g//ﬂdé—i-/Q_—FiAarquX)

where a = ag .
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10.6.2. The asymptotics in the strip S;. — Now, the meeting domain dy is the
subdomain of the strip S located between the line 73 (see section 10.5.2) and the line

2.
! The arc (g, h,d;) is the curve ap,1 shown in Fig. 10.1. One has
(g, hydr) = co + (g, h, do),
where cq is the closed curve shown in Fig. 10.2. The computation done for by in Sy
yields
m(g, h,dy) = m(co, 0, kg) = 1.
In result, for ¢ € S7, we get the asymptotic formula
(10.28)

i ) 272
aozdlezec(l—i-o(l)); a1 = exp (—é/md(j— ZZ+/Q_+iAargq|a)

where @ = ap,1. The asymptotics (10.27) and (10.28) imply the formulae and the

estimates for a¢ in Proposition 10.1.
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CHAPTER 11

PHASE INTEGRALS, TUNNELING COEFFICIENTS
AND THE ISO-ENERGY SURFACE

In this section, we first check the statements found in section 2.3.3. We also prove
Lemma 10.3 giving a geometric interpretation of the vertical tunneling coeflicients.

Then, we analyze the geometry of the iso-energy curves I' and I'g (see (1.4)
and (1.3)) and justify the interpretation of the phase integrals and tunneling coef-
ficients in terms of these curves.

11.1. The complex momentum on the integration contours

The phase integrals and the tunneling coefficients were defined as contour integrals
of the complex momentum along the curves shown in Fig. 2.1 and 2.2. We have
claimed that, on each of these curves, one can fix a continuous branch of the complex

momentum, which we justify in

LEMMA 11.1. — Let v be one of the curves Yo, Yx, Vh,0s Yhrs Vo0 And Yy . Any
branch of the complex momentum, analytic in a neighborhood of a point of v, can be

analytically continued to a single valued function on .

Proof. — The curve 7 goes exactly around two branch points of the complex momen-
tum. They are of square root type (see section 8.1.1). So, it suffices to check that,
at the branch points, the values of the complex momentum coincide. For the curve
Ah.x, this follows from the facts that & (defined in (8.8)) bijectively maps the in-
terval [Con, Cant1] onto the n-th spectral gap of the periodic operator, and that the
values of a branch of the Bloch quasi-momentum coincide at the ends of a gap. For
Ax, this holds as & maps the interval (on41,27 — (opt1) into the n-th spectral band
so that both ends are mapped on Es,11. For 4, -, it holds as & maps the segment
(Cant2, 2T — Cont2) into the (n+ 1)-st spectral band so that both its ends are mapped
on Ey,49. The analysis of the other curves is done in the same way. O
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11.2. Independence of the tunneling coefficients and phase integrals on the
branch of the complex momentum in their definitions

The independence follows from the observations:

— only the signs of the integrals defining the phase integrals and the tunneling
coefficients depend on the choice of the branches of the complex momentum being
integrated;

— the branches of the complex momentum being chosen, each of the phase integrals
and each of the tunneling action is real and non-zero.

Let us check the first observation. Let v be one of the curves Yo, ¥, V1,0, Yh,xs Yv,0 a0d
Av,x- Let Kk be a branch of the complex momentum continuous on . The formula (8.5)
describes all the other branches continuous on . As + is closed, this shows that only
the sign of the integral fv kd(¢ depends on the choice of the branch k.

Recall that x, is analytic in the strip SP (see section 8.3). To prove the second
observation, we fix a branch of the complex momentum on each of the integration
contours. For v, and +;,,, we fix this branch so that x = k, — mn on the parts of
the contours in C; for v, ,, we choose kK = Kk, — mn on the parts of the contours in
CiNn{v < Re(}. We orient the contours 3, 4p,» and 4, » clockwise, and we orient the
contours 7y, Yn,0 and 7, ¢ anticlockwise. Then, the second observation follows from

LEMMA 11.2. — For E € J, for the above definitions of the integration contours and
of the branches of the complex momentum defined on them, each of the functions ®,,,
Sh and S, is positive.

Proof. — Begin with ®,. As (2,41 is a square root branch point of x, and, as
n(<2n+l) = Oa we get

27 —Can+1
P, (E) = / K(C 4 i0) dC,

Can+1
where one integrates along R. As &({) is even, one proves that
(11.1) o, (F) = 2/ k(¢ +140)d¢ = 2/ (kp(¢) —mn) dC.
Cant1 Coant1

Inside the integration interval, one has Imx, = 0, and mn < Rek, < m(n + 1). This
implies the positivity of ®,.

Arguing as above, for S, ., we get

Cont1
(11.2) Spn(E) = —i / (p(C) — 7n) dC,

where one integrates along R. Inside the integration interval, one has Re x, = mn and
Im &k, > 0 so that Sp, > 0.
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For S, », one obtains

(11.3) Sur(B) = =20 [ ()~ mla+ 1)) dc

Cont2
where one integrates along m 4 ¢R. Inside the integration interval, mn < Rek, <
m(n+ 1) and Im k, = 0 which implies S, » > 0.
Arguing similarly, one proves the positivity of ®¢, S, 0 and Sho. We omit further
details. 0

11.3. Proof of the inequalities (2.4)

One has

7T Can
o, (F) = 2/ (kp(Q) —mn)d¢ and P¢(E) = —2/0 (kp(€) —mn) d¢.

Con+1
The first equality was established when proving Lemma 11.2. The second is proved
similarly. In view of (8.9), we get

™ Can
@;(E):Z/ k,(E —acos()d¢ and <I)6(E):72/ k,(E — acos () dg,
0

Cant1
where k,, is the main branch of the Bloch quasi-momentum described in section 7.1.2.
As, inside any spectral band of the periodic operator Hy, the derivative k; is positive,
this proves (2.4).

11.4. Proof of (2.9)

We can choose the oriented contours 70 and 7., so that one be the symmetric
of the other with respect to the origin. As &(() is even, for ¢ € 7j, », one has k(—() =
k(¢). These two remarks imply relations (2.9).

11.5. Proof of Lemma 10.3

We shall prove the statement of Lemma 10.3 for v = 7. For v = 0 the argument is
similar. As S, »(E,) € R, (11.3) implies that
(11.4) Sy x(Ey) =Re Sy (Ey) =2Im (kp(Q) —m(n+1))dc.

Cont2
Let us deform the integration contour in the right hand side so that it go successively

— from (2,42 along the Stokes line “b” to (34, the point of intersection of the Stokes
lines “b” and “a” (see Fig. 8.2),

— from (3, along the Stokes line “a” to (241,

— from (o1 to 7 along the interval [(2,+1, 7] which also is a Stokes line.

SOCIETE MATHEMATIQUE DE FRANCE 2006



100 CHAPTER 11. PHASE INTEGRALS

As kp(Cant1) = mn and Kp(Cant2) = m(n + 1), the definitions of the Stokes lines then
imply that

Cba
Sv,ﬂ'(E*) = 2Im (HP(C) - W(n + 1)) g
C2n+2, along “b’’
Cont1
+ 2Im (kp(¢) —m(n+1))d¢
Cba, along “a’”

™

+ 2Im (kp(€) —m(n+1))d¢

C2n+1, along R
=0+ 27Im (pq + 0 = 27Im (pq.-

As the set of the Stokes lines is symmetric with respect to both the real line and the
line 7 + iR, the definition of Y, » implies that Im (3, = Y., »(Es). This and the result
of the last computation imply that S, »(E,) = 27Y, (E.). The proof of Lemma 10.3
is complete.

11.6. The iso-energy curve

The iso-energy curve I is defined by (1.4). A point (¢, ) € C? belongs to I if and
only if k is one of the values of the complex momentum at the point (.

We now discuss the iso-energy curve under the assumptions (H), (O) and (G).

11.6.1. The real branches. — Consider the real iso-energy curve I'g defined
by (1.3). Its connected components are the real branches of the iso-energy curve. One
has

LEMMA 11.3. — The real iso-energy curve is 2mw-periodic in both the k- and (-
directions; it is symmelric with respect to each of the lines {x = mn} and {( = mm}
form,n € Z.

Any periodicity cell contains exactly two real branches of I'. Each of them is home-
omorphic to a circle.

There exists ~vg and ., two disjoint connected components of I'r such that the
convex hull of vy contains the point (0,7n), and the convex hull of v, contains the
point (7, mn).

The curves vy and v are disjoint and are inside the strip {r(n—1) < K < w(n+1)}.

Any other real branch of T' can be obtained either from o or v, by 2mw-translations
in k- or/and in (-directions.
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Proof. — The analysis of I'g is quite standard. A detailed example can be found in [13].
So, we only outline the proof of Lemma 11.3. The periodicity and the symmetries of I'g
in ¢ follows from the symmetry and periodicity of the cosine and from formula (8.5).

Describe two real branches of T'. Recall that one has x,([(2n+1,7]) C [7n, m(n+1)],
kp([0, C2n]) Clm(n—1),7n] and £, ([C2n; C2n+1]) C T +iR4. On the first two intervals,
kp is monotonously increasing; on the last interval, the imaginary part of x, has only
one maximum; this maximum is non degenerate. The graphs of «, on each of the
intervals [0, {a,] and [C2n41, 7] belong to I'g. The real branch +q is obtained from the
graph on [0, (2,] by the reflections with respect to the lines {x = 7n} and {¢{ = 0}.
The real branch ~, is obtained from the graph on [(2,,41, 7] by the reflections with
respect to the lines {x = mn} and {{ = 7}.

We omit further elementary details of the proof. O

11.6.2. Complex loops. — We prove

LEMMA 11.4. — The closed curve 3o (Tesp. Ax, Ah,0, Vhxs Vo0 0nd Fp ) (se€ fig-
ures 2.1 and 2.2) is the projection on the (-plane of a loop Yo (resp. Yr, Vh.0s Vhym
YVo,0 and Yy ) that is located on T'. These loops satisfy:

— the loop 7y, . connects the real branches v, and 7o,
— the loop yn0 connects the real branches vy and v, — (2m,0);

the loop vy~ connects the real branches v and v + (0,27);

the loop 7,0 connects the real branches vy and vy + (0,27).

In Fig. 1.2, we sketched the loops described in Lemma 11.4.

Proof of Lemma 11.4. — By Lemma, 11.1, the complex momentum can be analytically
continued along each of the above closed curves on C. This implies that each of them
is the projection to C of a loop on I'. Fix v € {0, 7}. For d € {h,v}, the loops discussed
in the lemma satisfy:

(11'5) T = {(Cv’%p(C))v C S '3/1/}7 and Yd,v = {(Ca "%p(g))7 C € 'S’d,u}-

Here, for v, ., £, denotes the branch of the complex momentum that coincides with
kp on the parts of the contours in C; N {v < Re(}; for v, and 43, it is the branch
that coincides with s, on the parts of the contours in C. Therefore, we note that
the curve 4y, . intersects 4o and 4,. At the intersection point of 4 . and 7, (resp.
7o), the branches of %, fixed on these curves coincide. This implies that 7 » connects
the real branches v, and 7.

The analysis of the other loops is done in the same way; we omit further details. [
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11.6.3. Interpretation of the phase integrals and the tunneling coefficients
in terms of the iso-energy curve. — Let E be real. Pick v € {0,7} and d € {v, h}.
Formula (11.5) shows that, up to the sign, ®, and Sq,(E) coincide with %j;% e
and —% i kd(. So, choosing the orientations of vy, and 74, in a suitable way, we

get @, = %ﬁ/y kd¢ and Sq . (E) = kdC.

_i
2 Jvd,u
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PROPERTIES OF THE FOURIER COEFFICIENTS

We now prove the estimates and the asymptotics of the Fourier coefficients found
in Theorem 6.1 which will complete the proof of this result.

12.1. Computing the semi-classical factors

Proposition 10.1 shows that the leading terms of the first Fourier coefficients of a,
and b, contain factors of the form e® [y e, They are computed in

LEMMA 12.1. — For E € J, one has

7 Do+ Do 1 T
(12.1) exp (—/ ndC) = ¢l tﬁ%ﬂ exp (—/ ndg‘) == t;;,
€ Jao,o ' € JBoo '
7 g — Py —dm?
exp (— / mdc) = T ot
«@Q,1 '
1 Do+ D —4n?
exp (— / nd@) IR
€ JBon ’
B+ )
/ KldC) — ¢ 0 t;%)’ exp (/ IidC) — efg(é()*‘bw)t;t’
Q.0 ’ € JBro ’
7 B —Dg—4n?
exp (/ Hd() =e " 2 tvmt,;})7
€ Qo1 ’

1 PPy —an?
exp (/ /id() =e ' 2t tvﬂrt,ﬁ).
€ JBrn ’

Here, the integration contours are the curves shown in Fig. 10.1; in each of the inte-

(12.2)

@

(12.3) exp (

(12.4)

grals, k is the branch of the complex momentum obtained from the one introduced in
the beginning of the section 8.3 by analytic continuation along the integration contour
from its beginning to its end.
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Proof. — All the formulae (12.1)—(12.4) are proved similarly. Check the first formula
in (12.1). Therefore, we deform the curve g so that it go along the real line going
around the branch points (s, and (3,41 along infinitesimally small circles. We get

—/ lidC211+Ig+13
@0,0

where

Cant1

Con T

(125) I = — / K(CHO) dC, T = — / (CH0) dC and Ty — — / H(C—i0) dC.
0 2n Can+1

Here, in I; and I, we integrate the branch of the complex momentum « introduced

in the beginning of the section 8.3, and, in I3, 5 is the branch obtained from x by

analytic continuation from the interval ((ap41,7) + 90 to the interval ((an41,7) — i0

around the branch point (2,41 in the anti-clockwise direction.

Consider I3. As (2,41 is a square root branch point of x and as k({2,,4+1) = 0, we
have /(¢ — i0) = —k(¢ +140) for ¢ € (Cany1,7) C R. So, I3 = fg;nﬂ k(¢ 4 10)d¢ =
fénﬂ(/ﬁp(o — 7n)d¢. Comparing this with the right hand side of (11.1), we get
Is = %@W. Similarly, one proves that I, = %@0. In view of (11.2), one has Iy = —iS), .
Combining the obtained expressions for I7, I and I3, we get

. . . 1
exp (—2/ /-id() = exp (é(h + I + Ig)) = exp (é(@o + o)+ ES;M) .
@0,0

This and the definition of ¢},  implies the first formula from (12.1). The second formula
is proved similarly.

Describe the computation of the integrals in (12.2). Let f7 kd(¢ be one of them.
First, using a symmetry argument, we rewrite the integral in terms of the branch .
As k is real analytic in a neighborhood of 0, one notes that fy kd( = j%lﬂl d(, where ¥
is the oriented contour symmetric to v with respect to the real line. One expresses the
integral j%/i d¢ in terms of the tunneling actions and phase integrals using arguments
similar the ones presented above, and, then one computes fv k dC using the fact that
the phase integrals and the actions are real for real E. We omit further details.

Describe the computation of the integrals in (12.3) and (12.4). Let fv K d( be one
of them. Again, using a symmetry argument, we rewrite the integral in terms of the
branch k,. As the function ( — x(i¢) is real analytic in a neighborhood of 0, one
notes that f7 kd( = — f,gf‘?d(a where —7 is the oriented contour symmetric to ~
with respect to the imaginary axis. Then, one computes the integral j;W Kk d( as the
integrals in (12.1) and (12.2). We omit further details. This completes the proof of
Lemma 12.1. U
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12.2. Proof of (6.10)—(6.12)

Being valid for E € J, formulae (12.1)—(12.4) remain valid in some neighborhood
of J independent of € (as equalities between analytic functions). The formulae (6.10)
and (6.12) follow from the asymptotics (10.5) and (10.6), and from formulae (12.1)—
(12.4). To illustrate this, let us prove the formulae for ag o. Let Vj be the neighborhood
of E, from Proposition 10.1. Using (10.5) and (12.1), for E € V;, we get
ago = t;; exp <Z(<I>,r + @) + / Q. +iAArgga,, + 0(1)>

@0,0

(12.6) 2

= tihexp (5= (@ + ®0) +0(1)).

where we have used (2.10) and the fact that Q_ and ¢ are independent of €. As
E — th.(E), E — ®¢(F) and E — ®,(E) are real analytic, (12.6) implies the
representations concerning agg from (6.10) and (6.11).

12.3. Proof of (3.23)

Pick v € {0,7}. Let Vi be the neighborhood of E, from Theorem 6.1. By means
of (6.44) (6.11) and (6.12), for E € Vi, we get z, = O(1/¢). The Cauchy estimates
then imply that 2/, = O(1/¢) in any fixed compact of V.. So, at expense of reducing
somewhat Vi, we have proved (3.23).
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CHAPTER 13

COMBINATIONS OF FOURIER COEFFICIENTS

Here, we study the asymptotics of the quantities 0, T},, Ty 0, Ty dg, ® and 2o, zr.
We always use the branches x, 11+ and Q4 described in the beginning of section 10.2.
Also, we systematically use the notations and constructions from section 7.

Let &p be a point in J. Assume that it is not a branch point, and that 7(&g) € R.
Consider U, a neighborhood of &y where 7! is analytic. On U, we define the mapping
¥ : & 7 Y(m(&)). For 7, an oriented curve in ¢ containing no branch points and
beginning at &g, we continue the map * along v and, thus, define the oriented curve v*.

13.1. The constant 6 and the coefficients T}, T, 0, Ty

They are defined in (6.41) and (6.42). The asymptotics (3.21) and (3.20) are ob-
tained in the same way; so, we justify only the asymptotics for 6.

The proof that, for sufficiently small €, in the case of Theorem 3.2, one has (3.21)
with the constant 6,, defined in (7.4), consists of three steps.

13.1.1. Asymptotics of | Z‘)—z | . — Let g be a curve on  that goes around the
branch points as shown in Fig. 13.1, part a, and that, for 7(&) > 0, is on the sheet of
o where ky(7(&)) is the Bloch quasi-momentum of ¥ (x, &). We check that

*

Eymy1t E+a ﬂ
E-aX Ao JE+a

(b)

Ficure 13.1. The curves g and g»
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(13.1) doo

~exp </g (&) + /g 0(6) + 0(1)) .

The representations (10.5) and the first formulae from (12.1) and (12.3) imply that

0 exp ( / 00 [ 20 +o<1>) |
exp (/ 0 >—/m 0.0+ o(1) ) |

Recall that the curves (au,0)ye{0,x} are shown in Fig. 10.1. We can and do assume

ar.0

ao,o |
Q7.0

(13.2)

as tp,x = tn,0, see (2.9).

that —or o is the symmetric to ag ¢ with respect to the origin.

As there are only two different branches of ¢ — Q((), and as the branch points of
Q coincide with those of &, the analytic continuation of ), along o o, near 0, the
end of a, o, coincides with 2_. Therefore, (13.2) can be rewritten in the form

oo [ as [ o vom)]

Now, we make the change of variables ¢ — &(¢). It maps each of the curves ag o and

ap,o

(13.3)

(7]

—ag,0 on g, and we get

exp(aOOQ(C)—i-/_%OQ( )—exp( /Q )

where we have used that, for ¢ near 0, the branches ¢ — €4 (¢) correspond to the Bloch
solutions ¢ — ¥4 (z, &(¢)) with the quasi-momenta ¢ — £k, (&(¢)). In section 7.2, we
have formulated general properties of €. The fifth property implies that

(15.4) [o@=[ @
So,
exp <LO,OQ_(<)+/a,,OQ_( >| ~ exp (/gn / 5)).

This and (13.3) imply (13.1).

13.1.2. Computation of detT,,. — Here, we prove that
(13.5) det T, = —exp (—/Q(é) + Q((E)) )
g

Relations (10.3), (9.3), and (9.4) imply that
W( frrs f;rk)|§+27r _ k‘;(E + a)w(w+(-, E + a)’ 1p7(.7 E+ a))

(13.6)  detTr = wfo. [l K(E—aw(E-a),¢_(,E-a)
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Furthermore, it follows directly from the definition of © that (&) + Q(&) =
—dlog fol o(z, E)(z, 8) dr. Note that ¢(z, &) (z, E) remains the same when we
interchange & and &. Therefore, it depends only on E = 7(&) and is single valued on
the complex plane. So, we get

_ Jovs@ey-@ ) dal,_p_,
fOl ’(/)'5' (l‘, e)w_ (l‘, e)dx‘e:E+a '

On any simply connected domain of C containing no branch points of v, one has (see,

(13.7) exp ( / 0(6) + Q(&’))

g

for example, [10])

/O b (5, EYo_ (2, B) dx = —ik! (EYw(bs (-, E), (-, E)),

where ¢4 are two different branches of ¢ and k is the Bloch quasi-momentum of .
This formula, (13.7) and (13.6) imply (13.5).

13.1.3. Completing the proof of (3.21). — Let g, C J be the curve shown in
Fig. 13.1, part b; its part marked by “x” is its leftmost part in the upper half-plane.
This part is on the part of  where k,(7(&)) is the Bloch quasi-momentum of ¢ (x, &).
Relations (13.1), (13.5) and (6.41) imply that 6 = exp (§, Q(&) + o(1)).

Now, let us compare §; Q(&) with §, (&) where g, is the curve in (7.4). Note
that, on J, modulo contractible curves, one has g, = §,. When deforming on
the curve g, to g,, one may intersect poles of ). The poles and the residues of
Q are described in section 7.2. This description implies that the above two integrals
coincide modulo 27i. So, we have 6 = exp ( fgn Q(&) + o(1)). This completes the proof
of (3.21).

13.2. The phases {®,},—0 . and {z,},—0.r

These are defined in (6.40) and (6.44). The asymptotics of all the phases (see (3.19)
and (3.22)) are obtained in the same way; we justify only the asymptotics for .

So, we prove here that, for sufficiently small ¢, in the case of Theorem 3.2, ®,
admits the asymptotics (3.19).

The asymptotics (10.5) and (10.6) and formulae (12.1) and (12.3) imply that

1. 1 1 — 1
13. Sh = h 4+ (S—5) 4+ =s+o(1),
(13.8) g E +4Z(S S)+25+o()
where
(13.9) S = Qp + Q_ + Q- Q_,
Qr,0 @0,0 Br,0 Bo,o
(13.10) s= Aarg q|%’0 + Aargq\aoyo + Aarg q|ﬁm — Aarg q|§0’O ,
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where (w0, 81,0)c€0,x} are sketched in Fig. 10.1. We can and, below, we assume that,
as the oriented curve oo (resp. Bo,0) is symmetric to the oriented curve —a, o (resp.
—Br0) With respect to zero.

First, show that S — S = 0. Arguing as when deducing (13.3) from (13.2), we get

S:—/ Q_+/ Q_—/ Q+—/ 0.
—Qnr,0 @0,0 —Br.,0 Bo.o

Now, we make the change of variables ( — &((). As &(aoo) = &(—arp), and
&(—Br0) = E(Bo,o), we get

(13.11) S:—/ Q(8) — Q(8).
(6(Bo,0))* &(Bo,0)

As when proving (13.4), we see that the terms in (13.11) differ only by complex
conjugation. So, S is real and S — S = 0.

Finally, we show that that s = 0. This will complete the proof of the asymptotics
of &.

When computing the increments of the argument of ¢(¢) = \/k’( £(¢), we choose
the (continuous) branch of this function which is positive on the interval (—(ap, (on).
Then, in a neighborhood of zero, ¢*(¢) = ¢(¢) and ¢(—¢) = ¢(¢). Therefore, and due
to our “symmetric” choice of the curves (au’o)ye{oﬂ} and (BV,O)VG{O,ﬂ}a we get

A arg q|%yO =— Aargq\aoyo and Aarg q|5n—,0 =— Aargq\m = Aarg q|ﬁo,o .
This and the definition of s implies that s = 0. O
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