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QUANTITATIVE ANALYSIS OF METASTABILITY IN
REVERSIBLE DIFFUSION PROCESSES VIA A WITTEN
COMPLEX APPROACH: THE CASE WITH BOUNDARY

Bernard Helffer, Francis Nier

Abstract. — This article is a continuation of previous works by Bovier-Eckhoff-
Gayrard-Klein, Bovier-Gayrard-Klein and Helffer-Klein-Nier. The main object is the
analysis of the small eigenvalues (as h → 0) of the Laplacian attached to the quadratic
form

C∞
0 (Ω) " v #→ h2

∫

Ω
|∇v(x)|2 e−2f(x)/h dx ,

where Ω is a bounded connected open set with C∞-boundary and f is a Morse function
on M = Ω. The previous works were devoted to the case of a manifold M which is
compact but without boundary or Rn. Our aim is here to analyze the case with
boundary. After the introduction of a Witten cohomology complex adapted to the
case with boundary, we give a very accurate asymptotics for the exponentially small
eigenvalues. In particular, we analyze the effect of the boundary in the asymptotics.

Résumé (Étude quantitative de la métastabilité des processus réversibles au moyen du
complexe de Witten : le cas à bord.)

Cet article prolonge des travaux antérieurs de Bovier-Eckhoff-Gayrard-Klein,
Bovier-Gayrard-Klein et Helffer-Klein-Nier. L’objet principal en est l’analyse des
petites valeurs propres du Laplacien associé à la forme quadratique

C∞
0 (Ω) " v #→ h2

∫

Ω
|∇v(x)|2 e−2f(x)/h dx ,

où Ω est un domaine borné régulier et f est une fonction de Morse sur M = Ω.
Les travaux précédents traitaient le cas d’une variété compacte M sans bord ou le cas
M = Rn. Ici nous analysons le cas d’une variété compacte à bord. Après l’introduction
d’un complexe de cohomologie de Witten adapté au cas à bord, nous donnons une
description très précise des valeurs propres exponentiellement petites. En particulier,
nous traitons l’effet du bord sur les développements asymptotiques.
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MÉMOIRES DE LA SMF 105



CHAPTER 1

INTRODUCTION

We are interested in the exponentially small eigenvalues of the Dirichlet realization
of the semiclassical Witten Laplacian on 0-forms

∆(0)
f,h = −h2∆ + |∇f(x)|2 − h∆f(x) .

Our aim is to extend to the case of a regular bounded open set Ω ⊂ Rn, or more gen-
erally a compact Riemannian manifold with boundary, results which were previously
obtained in the case when Ω is a compact Riemannian manifold or in the case of Rn.
We shall analyze the Dirichlet realization of this operator.
The function f is assumed to be a Morse function on Ω (with no critical points at
the boundary). It is known (see [32], [33], [7], [21] and more recently [6]) that,
like in the case without boundary, there are exactly m0 eigenvalues in some interval
[0, Ch

6
5 ] for h > 0 small enough, where m0 is the number of local minima in Ω. This

is strongly due to the fact that the Dirichlet case is concerned. These eigenvalues are
actually exponentially small as h → 0.
Moreover this can be extended (see [6]) to Laplacians on p-forms, p ≥ 1. But this
time in addition to the interior critical points with index p, some critical points of
the restriction of the Morse function to the boundary (which will be assumed to be a
Morse function) will play a role.

Our purpose is to derive with the same accuracy as in [18] asymptotic formulas for
the m0 first eigenvalues of the Dirichlet realization of ∆(0)

f,h. A similar problem was
considered by many authors via a probabilistic approach in [10], [23], [28], [25]. More
recently, in the case of Rn, A. Bovier, M. Eckhoff, V. Gayrard and M. Klein obtained
in [3] and [4], accurate asymptotic forms of the exponentially small eigenvalues. These
results were improved and extended to the case of a compact manifold in [18].
The Witten Laplacian is associated to the Dirichlet form

C∞
0 (Ω) " u #→

∫

Ω
|(h∇ + ∇f)u(x)|2 dx .
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Note that the probabilists look equivalently at:

C∞
0 (Ω) " v #→ h2

∫

Ω
|∇v(x)|2 e−2f(x)/h dx .

Bovier, Eckhoff, Gayrard and Klein considered this problem via a probabilistic ap-
proach. They obtained, in the case of Rn and under additional conditions on f
and ∇f at ∞, the following asymptotic behavior for the first eigenvalues λk(h),
k ∈ {2, . . . , m0}, with λ1(h) = 0, of ∆(0)

f,h:

(1.1) λk(h) =
h

π
|λ̂1(U

(1)
j(k))|

√√√√√

∣∣∣det(Hess f(U (0)
k ))
∣∣∣

∣∣∣det(Hess f(U (1)
j(k)))
∣∣∣

× exp− 2
h

(
f(U (1)

j(k)) − f(U (0)
k )
)
× (1 + O(h

1
2 | log h|)) ,

where the U (0)
k denote the local minima of f ordered in some specific way, the U (1)

j(k)

are “saddle points” attached in a specific way to the U (0)
k (which appear to be critical

points of index 1) and λ̂1(U
(1)
j(k)) is the negative eigenvalue of Hess f(U (1)

j(k)).

Their article belongs to a family of works done by probabilists starting at least from
Freidlin and Wentzel (See [10] for a presentation and additional references). The first
articles were only giving the asymptotic behavior of the logarithm of the eigenvalues.
The main contribution of [4] and [3] was to determine the main term in the prefactor.
The later [18] gave a complete asymptotics in (1.1) and extended the results to more
general geometries, including cases when λ1(h) += 0.

In the case with boundary, we observe that the function exp− f
h does not satisfy

the Dirichlet condition, so the smallest eigenvalue can not be 0. For this case, we can
mention as starting reference Theorem 7.4 in [10], which says (in particular) that, if
f has no critical points except a non-degenerate local minimum xmin, then the lowest
eigenvalue λ1(h) of the Dirichlet realization ∆(0)

f,h in Ω satisfies:

(1.2) lim
h→0

−h log λ1(h) = 2 inf
x∈∂Ω

(f(x) − f(xmin)) .

Other results are given in the case of many local minima but they are limited to the
determination of logarithmic equivalents (see Theorems 7.3 and 7.4 in [10]).

The approach given in [18] intensively uses, together with the techniques of [21],
the two facts that the Witten Laplacian is associated to a cohomology complex and
that the function x #→ exp− f(x)

h is a distributional solution in the kernel of the Witten
Laplacian on 0−forms permitting to construct very efficiently quasimodes. We recall
that the Witten Laplacian is defined as

(1.3) ∆f,h = df,hd∗f,h + d∗f,hdf,h ,

MÉMOIRES DE LA SMF 105



CHAPTER 1. INTRODUCTION 3

where df,h is the distorted exterior differential

(1.4) df,h := e−f(x)/h (hdx) ef(x)/h ,

and where d∗f,h is its adjoint for the L2-scalar product canonically associated to the
Riemannian structure. The restriction of df,h to p-forms is denoted by d(p)

f,h. With
these notations, the Witten Laplacian on functions is

(1.5) ∆(0)
f,h = d(0)∗

f,h d(0)
f,h .

In the Witten-complex spirit and due to the relation

(1.6) d(0)
f,h∆(0)

f,h = ∆(1)
f,hd(0)

f,h ,

it is more convenient to consider the singular values of the restricted differential
d(0)

f,h : F (0) → F (1). The space F (") is the m"-dimensional spectral subspace of ∆(")
f,h,

# ∈ {0, 1},

(1.7) F (") = Ran 1I(h)(∆
(")
f,h) ,

with I(h) = [0, Ch
6
5 ] and the property(1)

(1.8) 1I(h)(∆
(1)
f,h)d(0)

f,h = d(0)
f,h1I(h)(∆

(0)
f,h) .

The restriction df,h

∣∣
F (!) will be more shortly denoted by β(")

f,h

(1.9) β(")
f,h := (d(")

f,h)/F (!) .

We will mainly concentrate on the case # = 0.
In order to exploit all the information which can be extracted from well chosen quasi-
modes, working with singular values of β(0)

f,h happens to be more efficient than consid-
ering their squares, the eigenvalues of ∆(0)

f,h. Those quantities agree better with the
underlying Witten complex structure.

The main result. — Let us describe the result. We shall show that under a suitable
generic assumption (see Assumption 5.3.1), one can label the m0 local minima and
introduce an injective map j from the set of the local minima into the set of the m1

generalized critical points with index 1 of the Morse function on Ω. At a generalized
critical point U with index 1, we can introduce the Hessians Hess f(U), if U ∈ Ω, or
(Hess f

∣∣
∂Ω

)(U), if U ∈ ∂Ω. When U ∈ Ω, λ̂1(U) denotes the negative eigenvalue of
Hess f(U).

Theorem 1. — Under Assumption (5.3.1), there exists h0 such that, for h ∈ (0, h0],
the spectrum in [0, h

3
2 ) of the Dirichlet realization of ∆(0)

f,h in Ω, consists of m0 eigen-
values λ1(h) < · · · < λm0(h) of multiplicity 1, which are exponentially small and

(1)The right end a(h) = Ch
6
5 of the interval I(h) = [0, a(h)] is suitable for technical reasons. What

is important is that a(h) = o(h). The value of C > 0 does not play any role.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



4 CHAPTER 1. INTRODUCTION

admit the following asymptotic expansions:

λk(h) =
h

π
|λ̂1(U

(1)
j(k))|

√√√√√

∣∣∣det(Hess f(U (0)
k ))
∣∣∣

∣∣∣det(Hess f(U (1)
j(k)))
∣∣∣

(
1 + hc1

k(h)
)
×

× exp− 2
h

(
f(U (1)

j(k)) − f(U (0)
k )
)

, if U (1)
j(k) ∈ Ω ,

and

λk(h) =
2h1/2|∇f(U (1)

j(k))|
π1/2

√√√√√

∣∣∣det(Hess f(U (0)
k ))
∣∣∣

∣∣∣det(Hess f
∣∣
∂Ω

(U (1)
j(k)))
∣∣∣

(
1 + hc1

k(h)
)
×

× exp− 2
h

(
f(U (1)

j(k)) − f(U (0)
k )
)

, if U (1)
j(k) ∈ ∂Ω ,

where c1
k(h) admits a complete expansion: c1

k(h) ∼
∑∞

m=0 hmck,m .

This theorem extends to the case with boundary the previous result of [4] and its
improvement in [18] (see also non-rigorous formal computations of [26], who look
also at cases with symmetry and the books [10] and [25] and references therein).

About the proof. — As in [21] and [18], the proof will be deeply connected with the
analysis of the small eigenvalues of a suitable realization (which is not the Dirichlet
realization) of the Witten Laplacian on the 1-forms. In order to follow the same
strategy as in the boundaryless case, three main points have to be explained.
The first point was to find the right substitute for the Witten complex. Our starting
problem being the analysis of the Dirichlet realization of the Witten Laplacian, we
were led to find the right realization of the Witten Laplacian on 1-forms in the case
with boundary in order to keep the commutation relation (1.6). A part of the answer
already existed in the literature ([29], [14] and [6]) in connection with the analysis of
the relative cohomology.
The second point was to get the “rough” localization of the spectrum of this Laplacian
on 1-forms. The analysis was performed in [6], in the spirit of Witten’s idea, extending
the so called harmonic approximation. But these authors, interested in the Morse
theory, simplified the problem in the sense that they use the possibility (inherent to
Morse theory) to choose a well-chosen metric and a right Morse function in order to
simplify the analysis at the boundary. We emphasize that we treat the general case
here.
The third point is the construction of WKB solutions for the critical points of the
restriction of the Morse function to the boundary. For simplicity, we restrict our
attention to the case of 1-forms which is the only one needed for our problem.

MÉMOIRES DE LA SMF 105
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Structure of the memoir. — The memoir is organized as follows. In the second
chapter, we analyze in detail the boundary complex adapted to our analysis. The third
chapter is devoted to the proof of rough estimates replacing the harmonic oscillator
approximation in the case without boundary (leading in particular to the proof of
the weak Morse inequalities). In the fourth chapter, we give the WKB construction
for an eigenform of the Witten Laplacian on 1-forms localized at a critical point of
the boundary. The fifth chapter is devoted to the Morse theory together with the
right definition of saddle sets in the present case with boundary. This permits us
in particular to explain our main assumptions. The sixth chapter is devoted to the
construction of quasimodes and the proof of the main theorem is given in the seventh
chapter. Finally, in the appendix we have given a partially independent treatment of
the one-dimensional case, which can be seen as a warm-up.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006





CHAPTER 2

AN APPROPRIATE SELF-ADJOINT REALIZATION OF
WITTEN LAPLACIANS WITH BOUNDARY

2.1. Introduction

We work here on a C∞ connected compact oriented Riemannian n-dimensional
manifold Ω with boundary ∂Ω and Ω will denote its interior. After fixing basic
notations we specify the self-adjoint realization of the Witten Laplacian on which we
will focus and we assume in the whole memoir that the function f is a C∞ real valued
function on Ω.

2.2. Distorted differentials and associated Witten Laplacians

The cotangent (resp. tangent) bundle on Ω is denoted by T ∗Ω (resp. TΩ) and the
exterior fiber bundle by ΛT ∗Ω = ⊕n

p=0ΛpT ∗Ω (resp. ΛTΩ = ⊕n
p=0ΛpTΩ). The fiber

bundles ΛT∂Ω = ⊕n−1
p=0ΛpT∂Ω and ΛT ∗∂Ω = ⊕n−1

p=0ΛpT ∗∂Ω are defined similarly. The
space of C∞, C∞

0 , L2, Hs . . . sections in any of these fiber bundles, E, on O = Ω or
O = ∂Ω, will be denoted respectively by C∞(O; E), C∞

0 (O; E), L2(O; E), Hs(O; E). . . .
When no confusion is possible we will simply use the short notations ΛpC∞, ΛpC∞

0 ,
ΛpL2 and ΛpHs for E = ΛpT ∗Ω or E = ΛpT ∗∂Ω. Note that the L2 spaces are those
associated with the unit volume form for the Riemannian structure on Ω or ∂Ω (Ω
and ∂Ω are oriented). The notation C∞(Ω; E) is used for the set of C∞ sections up to
the boundary. Finally since ∂Ω is C∞, C∞(Ω; E) is dense in Hs(Ω; E) for s ≥ 0 and
the trace operator ω → ω

∣∣
∂Ω

extends to a surjective operator from Hs(Ω; E) onto
Hs−1/2(∂Ω; E) as soon as s > 1/2.
The differential on C∞

0 (Ω; ΛT ∗Ω) will be denoted by d and more precisely

d(p) : C∞
0 (Ω; ΛpT ∗Ω) → C∞

0 (Ω; Λp+1T ∗Ω).

Its formal adjoint with respect to the L2-scalar product inherited from the Riemannian
structure is denoted by d∗ with

d(p),∗ : C∞
0 (Ω; Λp+1T ∗Ω) → C∞

0 (Ω; ΛpT ∗Ω).
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Those differential d and codifferential d∗ are both well defined on C∞(Ω; ΛT ∗Ω) and
satisfy dd = d∗d∗ = 0.
For a function f ∈ C∞(Ω; R) and h > 0, we set

df,h = e−f(x)/h (hd) ef(x)/h and d∗f,h = ef(x)/h (hd∗) e−f(x)/h.

The Witten Laplacian is the differential operator defined on C∞(Ω; ΛT ∗Ω)

∆f,h = d∗f,hdf,h + df,hd∗f,h = (df,h + d∗f,h)2,

which means, by restriction to the p-forms in C∞(Ω; ΛpT ∗Ω),

∆(p)
f,h = d(p),∗

f,h d(p)
f,h + d(p−1)

f,h d(p−1),∗
f,h .

Note that df,hdf,h = 0, and d∗f,hd∗f,h = 0 respectively, imply that, for all u in
C∞(Ω; ΛpT ∗Ω),

∆(p+1)
f,h d(p)

f,hu = d(p)
f,h∆(p)

f,hu(2.1)

and

∆(p−1)
f,h d(p−1),∗

f,h u = d(p−1),∗
f,h ∆(p)

f,hu .(2.2)

Here are other relations with exterior and interior products, gradients (denoted by ∇)
and Lie derivatives which will be useful:

(2.3) df,h = hd + df∧ ;

(2.4) d∗f,h = hd∗ + i∇f ;

(2.5) d ◦ iX + iXd = LX ;

(2.6) ∆f,h = h2(d + d∗)2 + |∇f |2 + h
(
L∇f + L∗

∇f

)
.

2.3. Stokes formulas

Before writing the distorted Stokes formula, we recall some notations which are
convenient for boundary problems even with the Euclidean metric on Ω ⊂ Rn. We
refer the reader to [29] for details.

For any ω ∈ C∞(Ω; ΛpT ∗Ω), the form tω is the element of C∞(∂Ω; ΛpT ∗Ω) defined
by

(tω)σ(X1, . . . , Xp) = ωσ(XT
1 , . . . , XT

p ) , ∀σ ∈ ∂Ω ,

with the decomposition into the tangential and normal components to ∂Ω at σ:
Xi = XT

i ⊕ x⊥
i nσ.

If n∗
σ denotes the 1-form which is dual to the outgoing normal nσ at σ for the

Riemannian scalar product, we have

(tω)σ = inσ(n∗
σ ∧ ωσ) .

MÉMOIRES DE LA SMF 105
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Note that tω can be identified with j∗ω ∈ C∞(∂Ω; ΛpT ∗∂Ω) where j : ∂Ω → Ω is the
canonical injection.
The non-tangential part of ω on ∂Ω is defined by

nω = ω
∣∣∣
∂Ω

− tω ∈ C∞(∂Ω; ΛpT ∗Ω).

If necessary tω and nω can be considered as elements of C∞(Ω; ΛpT ∗Ω) as follows.
A variant of the Collar Theorem which provides a diffeomorphism between a neigh-
borhood of ∂Ω and ∂Ω × [0, δ[, δ > 0 small enough, can be written by taking for the
normal coordinate the geodesic distance to ∂Ω, xn = dΩ(x, ∂Ω) ∈ [0, δ[. Any form
η ∈ C∞(∂Ω; ΛT ∗Ω) is then extended to ∂Ω × [0, δ[ by using the equation ∂xnη = 0.
After multiplication by a cut-off function, this gives a form on Ω, which does not
depend on xn in a neighborhood of ∂Ω.
The Hodge operator * is locally defined in a local orthonormal frame (E1, . . . , En) by

(*ωx)(Eσ(p+1), . . . , Eσ(n)) = ε(σ) ωx(Eσ(1), . . . , Eσ(p)) ,

for ωx ∈ ΛpT ∗
xΩ and with any permutation σ ∈ Σ(n) of {1, . . . , n} preserving

{1, . . . , p} (ε(σ) denotes the signature of σ).
We recall the formulas

*(*ωx) = (−1)p(n−p)ωx , ∀ωx ∈ ΛpT ∗
xΩ ,(2.7)

〈ω1 |ω2〉ΛpL2 =
∫
Ω ω1 ∧ *ω2 , ∀ω1, ω2 ∈ ΛpL2 ,(2.8)

and

*d∗,(p−1) = (−1)pd(n−p)* , *d(p) = (−1)p+1d∗,(n−p−1)* ,(2.9)

* n = t * , * t = n * ,(2.10)

t d = d t , n d∗ = d∗ n .(2.11)

These formulas, combined with the Stokes formula,

∀ω ∈ C∞(Ω; ΛpT ∗Ω),
∫

Ω
dω =
∫

∂Ω
j∗ω =

∫

∂Ω
tω ,

lead to the Green formula.

Lemma 2.3.1. — For all ω ∈ ΛpH2 and η ∈ ΛpH1, we have

(2.12) 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

= 〈∆f,hω | η〉ΛpL2 + h

∫

∂Ω
(tη) ∧ (*ndf,hω) − h

∫

∂Ω
(td∗f,hω) ∧ (*nη) .

Proof. — Since C∞(Ω; ΛT ∗Ω) is dense in ΛHs, while both terms of the identity are
bilinearly continuous on ΛpH2 × ΛpH1, the forms ω and η can be assumed to be C∞

up to the boundary.
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We write

〈df,hω | df,hη〉 + 〈d∗f,hω | d∗f,hη〉 = 〈hdω |hdη〉 + 〈hd∗ω |hd∗η〉
+ 〈df ∧ ω |hdη〉 + 〈hdω | df ∧ η〉 + 〈df ∧ ω | df ∧ η〉

+ 〈i∇fω |hd∗η〉 + 〈hd∗ω | i∇fη〉 + 〈i∇fω | i∇fη〉 .

Let us first compute

〈df ∧ ω | df ∧ η〉 + 〈i∇fω | i∇fη〉 = 〈i∇f (df ∧ ω) + df ∧ (i∇fω) | η〉

= 〈(i∇fdf)ω | η〉 = 〈|∇f |2 ω | η〉 ,

according to the identity

iX(α ∧ β) = (iXα) ∧ β + (−1)deg αα ∧ (iXβ) .

The Stokes formula, combined with

〈θ1 | d∗θ2〉xdx1 ∧ · · · ∧ dxn = θ1 ∧ *d∗θ2 = θ1 ∧ (−1)deg θ2d(*θ2)

and

d(θ2 ∧ *θ2) = (dθ1) ∧ (*θ2) + (−1)deg θ1θ1 ∧ d(*θ2) ,

where (dx1, . . . , dxn) is orthonormal with a positive orientation, yields for deg θ1 =
deg θ2 ∓ 1:

∫

∂Ω
t
[
θ1 ∧ (*θ2)

]
= 〈dθ1 | θ2〉 − 〈θ1 | d∗θ2〉

and ∫

∂Ω
t
[
θ2 ∧ (*θ1)

]
= 〈θ1 | dθ2〉 − 〈d∗θ1 | θ2〉 .

From the first identity we deduce:

〈hd∗ω |hd∗η〉 + 〈i∇fω |hd∗η〉 = 〈h2dd∗ω | η〉 + 〈hdi∇fω | η〉

− h

∫

∂Ω
t [(hd∗ω + i∇fω) ∧ *η]

= 〈h2dd∗ω | η〉 + 〈hdi∇fω | η〉 − h

∫

∂Ω
(td∗f,hω) ∧ (*nη) .

From the second one we get:

〈hdω |hdη〉 + 〈df ∧ ω |hdη〉 = 〈h2d∗dω | η〉 + 〈hd∗(df ∧ ω) | η〉

+ h

∫

∂Ω
t [η ∧ *(hdω + df ∧ ω)]

= 〈h2d∗dω | η〉 + 〈hd∗(df ∧ ω) | η〉 + h

∫

∂Ω
(tη) ∧ (*ndf,hω) .
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Finally the relations (cf. (2.3), (2.4))

i∇f ◦ d + d ◦ i∇f = L∇f and d∗ ◦ (df∧) + (df∧) ◦ d∗ = L∗
∇f

lead to

〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

= 〈h2(d + d∗)2 + |∇f |2 + h
(
L∇f + L∗

∇f

)
ω | η〉ΛpL2

+ h

∫

∂Ω
(tη) ∧ (*ndf,hω) − h

∫

∂Ω
(td∗f,hω) ∧ (*nη) ,

where the differential operator h2(d + d∗)2 + |∇f |2 + h
(
L∇f + L∗

∇f

)
is nothing

but ∆f,h.

Note that the formulation of Lemma 2.3.1 does not depend on the choice of an
orientation. If µ and µ∂Ω denote the volume form in Ω and ∂Ω and if the normal
vector nσ is chosen according to (µ∂Ω)σ(X1, . . . , Xn−1) = µσ(nσ, X1, . . . , Xn−1), a
simple computation in normal frames leads to

(2.13) tω1 ∧ *nω2 = 〈ω1 | inσω2〉ΛpT∗
σ Ω dµ∂Ω ,

for ω1 ∈ C∞(Ω; ΛpT ∗Ω) and ω2 ∈ C∞(Ω; Λp+1T ∗Ω).
After choosing for nσ the outgoing normal vector, (2.12) is equivalent to

(2.14) 〈∆f,hω, η〉ΛpL2 = 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

− h

∫

∂Ω
〈inσdf,hω | η〉ΛpT∗

σ Ω(σ) dµ∂Ω + h

∫

∂Ω
〈n∗

σ ∧ d∗f,hω | η〉ΛpT∗
σ Ω(σ) dµ∂Ω ,

which was used in [21] (see Lemma 1.1, p. 255, with the inward normal vector).
As a consequence of (2.13) we get the following useful decomposition formula.

Lemma 2.3.2. — If nσ denotes the exterior normal vector at σ ∈ ∂Ω, and
(∂f/∂n)(σ) = nσ · ∇f(σ) is the normal derivative of f at σ, then the identity

(2.15) ‖df,hω‖2
Λp+1L2 +

∥∥d∗f,hω
∥∥2

Λp−1L2 =

h2 ‖dω‖2
Λp+1L2 + h2 ‖d∗ω‖2

Λp−1L2 + ‖ |∇f |ω‖2
ΛpL2

+ h〈(L∇f + L∗
∇f )ω |ω〉ΛpL2 − h

∫

∂Ω
〈ω |ω〉ΛpT∗

σ Ω

(
∂f

∂n

)
(σ) dµ∂Ω

holds for any ω ∈ ΛpH1 such that tω = 0.

Proof. — Again both sides of the identity are continuous on ΛpH1 and we can
assume ω ∈ C∞(Ω; ΛpT ∗Ω).
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We use the relation (2.12) with f replaced by 0, d0,h = hd and d∗0,h = hd∗. We obtain

‖df,hω‖2
Λp+1L2 +

∥∥d∗f,hω
∥∥2

Λp−1L2 − h2‖dω‖2
Λp+1L2 − h2‖d∗ω‖2

Λp−1L2

= 〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 + h

∫

∂Ω
(tω) ∧ *n(df ∧ ω) − h

∫

∂Ω
(ti∇fω) ∧ (*nω)

= 〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 − h

∫

∂Ω
〈i∇fω | inσω〉ΛT∗

σ Ω dµ∂Ω .

The first term of the right-hand side equals

〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 = ‖|∇f |ω‖2
ΛpL2 + h〈(L∇f + L∗

∇f )ω |ω〉ΛpL2 .

For the integral term, we write

i∇fω =
∂f

∂n
(σ) inσω + i∇T fω ,

where ∇T f denotes the tangential part of the gradient. The equality

ti∇T fω = i∇T ftω = 0

implies
〈i∇T fω | inσω〉ΛT∗

σ Ω = 0 .

The condition tω = 0 also gives

〈inσω | inσω〉 = 〈ω |ω〉 ,

which yields the result.

Remark 2.3.3. — If instead of the condition, tω = 0, we assume nω = 0, then the
integral term on ∂Ω in formula (2.15) appears with a +-sign.

2.4. Tangential Dirichlet realization

In this section, we specify the self-adjoint realization of ∆(0)
f,h in which we are in-

terested. When f = 0, it is known as the relative problem (see [14] and references
therein). The good property of this self-adjoint realization, denoted by ∆DT

f,h , is that
it coincides with the Dirichlet realization on 0-forms and preserves the complex struc-
ture:

(1 + ∆DT,(p+1)
f,h )−1d(p)

f,h = d(p)
f,h(1 + ∆DT,(p)

f,h )−1

and

(1 + ∆DT,(p−1)
f,h )−1d(p−1),∗

f,h = d(p−1),∗
f,h (1 + ∆DT,(p)

f,h )−1 ,

on the form domain of ∆DT,(p)
f,h .

The simplest self-adjoint realization is the Friedrichs extension ∆D
f,h, starting from

C∞
0 (Ω; ΛT ∗Ω), which leads, when Ω is regular, with the elliptic regularity property,

to the domain D(∆D
f,h) = H1

0 (Ω; ΛT ∗Ω) ∩ H2(Ω; ΛT ∗Ω). The problem is that df,h
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does not preserve this domain. We will see that it is more natural for our prob-
lem to impose Dirichlet boundary conditions only on the tangential components,
while completing these conditions with conditions on the codifferential. Other clas-
sical self-adjoint extensions which correspond to different choices of boundary condi-
tions are possible. Some of them permit the commutation of the resolvents with the
differential df,h. We refer the reader to [29] and [6] for details.
We introduce the space

(2.16) ΛpH1
0,T = H1

0,T (Ω; ΛpT ∗Ω) =
{
ω ∈ H1 (Ω; ΛpT ∗Ω) ; tω = 0

}
.

In the case p = 0, it coincides with the standard space H1
0 (Ω), while for p ≥ 1 the

condition says only that the form vanishes on ∂Ω when applied to tangential p-vectors.
Since the boundary ∂Ω is assumed to be regular the space

ΛpC∞
0,T = C∞

0,T (Ω; ΛpT ∗Ω) =
{
ω ∈ C∞ (Ω, ΛpT ∗Ω

)
; tω = 0

}

is dense in ΛpH1
0,T . The next construction is a variant of known results in the case

f = 0 (see [29]). We will use the notations

Df,h(ω, η) = 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

and

Df,h(ω) = Df,h(ω, ω) = ‖df,hω‖2
Λp+1L2 +

∥∥d∗f,hω
∥∥2

Λp−1L2 .

Proposition 2.4.1. — The non negative quadratic form ω → Df,h(ω) is closed on
ΛpH1

0,T . The associated (self-adjoint) Friedrichs extension is denoted by ∆DT,(p)
f,h . Its

domain is
D(∆DT,(p)

f,h ) =
{
u ∈ ΛpH2; tω = 0 and td∗f,hω = 0

}
,

and we have
∀ω ∈ D(∆DT,(p)

f,h ), ∆DT,(p)
f,h ω = ∆(p)

f,hω .

Proof. — First we observe that the space ΛpH1
0,T is isomorphic to the direct sum

ΛpH1
0 ⊕ nΛpH1/2(∂Ω; ΛpT ∗Ω) ,

with continuous embedding. Since ∂Ω is regular, one can indeed construct a right
inverse R to the trace operator γ0 : ΛpH1 → ΛpH1/2(∂Ω; ΛpT ∗Ω), so that any u ∈
ΛpH1 can be written as the sum

u = (u − Rγ0u) + Rγ0u ,

with (u − Rγ0u) ∈ ΛpH1
0 . Once the operator R is chosen, the previous de-

composition gives an isomorphism u → (u − Rγ0u, γ0u) from ΛpH1
0,T to ΛpH1

0 ⊕
nΛpH1/2(∂Ω; ΛpT ∗Ω). Hence its dual is the direct sum of ΛpH−1 and
nΛpH−1/2(∂Ω; ΛpT ∗Ω):

(
ΛpH1

0,T

)′ = ΛpH−1 ⊕ nΛpH−1/2(∂Ω; ΛpT ∗Ω) .
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We have to check that ω #→ D(p)
f,h(ω) + C ‖ω‖2

ΛpL2 is equivalent to the square of the
ΛpH1 norm on ΛpH1

0,T . By (2.3)-(2.6) this is equivalent to the same result for f = 0
and h = 1. This last case is known as Gaffney’s inequality which is a consequence of
the Weitzenböck formula (see [29], Corollary 2.1.6). Hence the identity

∀η ∈ ΛpH1
0,T , D(p)

f,h(η, ω) = 〈η, A(p)ω〉

defines an isomorphism A(p) : ΛpH1
0,T → (ΛpH1

0,T )′. The self-adjoint Friedrichs
extension ∆DT,(p)

f,h is then defined as the operator

D(∆DT,(p)
f,h ) =

{
ω ∈ ΛpH1

0,T , A(p)ω ∈ ΛpL2
}

, ∆DT,(p)
f,h ω = A(p)ω .

It remains to identify this domain and the explicit action of A(p). If η belongs to
D(∆DT,(p)

f,h ), we use first the Green formula (2.12) in order to get

∀ω ∈ ΛpC∞
0 , 〈A(p)ω | η〉 = D(p)

f,h(ω, η) = 〈∆(p)
f,hω | η〉 .

The inequality

|D(p)
f,h(ω, η)| ≤ C ‖ω‖ΛpH1 ‖η‖ΛpH1 ,

together with the density of ΛpC∞
0 in ΛpH1

0 implies that ∆(p)
f,hη ∈ D′(Ω; ΛpT ∗Ω) is

indeed the ΛpH−1 component of A(p)η.
Assume that ω belongs to ΛpH1

0,T ∩ ΛpH2; then the Green formula (2.12) gives

h

∫

∂Ω
(td(p−1),∗

f,h ω) ∧ *nη = D(p)
f,h(ω, η) − 〈∆(p)

f,hω | η〉ΛpL2 , ∀η ∈ ΛpH1
0,T .

By density, one can define, for any ω in ΛpH1
0,T such that ∆(p)

f,hω ∈ ΛpL2, a trace of
td∗f,hω by the previous identity, observing that the right-hand side defines an antilinear
continuous form with respect to η. With this generalized definition of td(p)

f,hω we obtain

D(A(p)) =
{

ω ∈ ΛpH1
0,T , ∆(p)

f,hω ∈ ΛpL2 and td(p−1),∗
f,h ω = 0

}
.

The last point consists in observing that the boundary value problem

(2.17) ∆(p)
f,hu = g, tu = g1, td(p−1),∗

f,h u = g2

satisfies the Lopatinski-Shapiro conditions. At the principal symbol level (h > 0
fixed), these conditions are indeed the same as for

(dd∗ + d∗d)(p)u = g, tu = g1, td(p−1),∗u = g2.

This is checked in [29]. Hence any solution to (2.17) with g ∈ ΛpL2, g1 = g2 = 0
belongs to ΛpH2.
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Proposition 2.4.2. — For any p ∈ {0, . . . , n}, the self-adjoint unbounded operator
of domain D(∆DT,(p)

f,h ) =
{

ω ∈ ΛH2, tω = 0, td(p−1),∗
f,h ω = 0

}
and defined by

∆DT,(p)
f,h ω = ∆(p)

f,hω , ∀ω ∈ D(∆DT,(p)
f,h ) ,

has a compact resolvent.
Moreover, if z ∈ C \ R+, the commutation relations

(z − ∆DT,(p+1)
f,h )−1d(p)

f,hv = d(p)
f,h(z − ∆DT,(p)

f,h )−1v ,

and

(z − ∆DT,(p−1)
f,h )−1d(p−1),∗

f,h v = d(p−1),∗
f,h (z − ∆DT,(p)

f,h )−1v ,

hold for any v ∈ ΛpH1
0,T .

Proof. — The domain of the operator is contained in ΛpH2, which is compactly
embedded in ΛpL2. This yields the first statement.
Since ΛpC∞

0,T is dense in ΛpH1
0,T , it is sufficient to consider the case when v ∈ ΛpC∞

0,T .
For such a v and for z ∈ C \ R+, we set

u = (z − ∆DT,(p)
f,h )−1v.

Due to the ellipticity of the associated boundary problem (the Lopatinski-Shapiro
conditions are verified) u belongs to C∞(Ω; ΛpT ∗Ω). The commutation relations (2.1)
and (2.2) can be applied since here f ∈ C∞(Ω; R):

(z − ∆(p+1)
f,h )d(p)

f,hu = d(p)
f,h(z − ∆(p)

f,h)u = d(p)
f,hv(2.18)

and

(z − ∆(p−1)
f,h )d(p−1),∗

f,h u = d(p−1),∗
f,h (z − ∆(p)

f,h)u = d(p−1),∗
f,h v .(2.19)

Since u ∈ D(∆DT,(p)
f,h ), we have tu = 0 and td∗f,hu = 0. Since t commutes with the

differential, we get
t df,hu = hd tu + (t df) ∧ (tu) = 0.

For the tangential trace of the codifferential, we write

td∗f,h(df,hu) = ztu − tv − tdf,hd∗f,hu = ztu − tv − df,htd∗f,hu = 0 .

Hence d(p)
f,hu belongs to D(∆DT,(p+1)

f,h ) and the identity (2.18) yields

d(p)
f,h(z − ∆DT,(p)

f,h )−1v = df,hu = (z − ∆DT,(p+1)
f,h )−1df,hv ,

which proves the first announced commutation relation.
For the second one, the verification that d(p−1),∗

f,h u belongs to D(∆DT,(p−1)
f,h ) is even

simpler. First the property, td(p−1),∗
f,h u = 0, is given by u ∈ D(∆DT,(p)

f,h ); then
td∗f,h(d∗f,hu) = t0 = 0. We obtain

d(p−1),∗
f,h (z − ∆DT,(p)

f,h )−1v = d(p−1),∗
f,h u = (z − ∆DT,(p−1)

f,h )−1d(p−1),∗
f,h v .
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Remark 2.4.3. — Note that the above commutation relations cannot be extended
to v ∈ ΛpH1. Assume for example that v is C∞ up to the boundary. Starting from
the identity

v = (z − ∆DT,(p)
f,h )(z − ∆DT,(p)

f,h )−1v ,

we can write

(2.20)

v = z(z − ∆DT,(p)
f,h )−1v − d(p),∗

f,h d(p)
f,h(z − ∆DT,(p)

f,h )−1v

−d(p−1)
f,h d(p−1),∗

f,h (z − ∆DT,(p)
f,h )−1v

= zu1 − d(p),∗
f,h u2 − d(p−1)

f,h u3 ,

with the relations u1 ∈ D(∆DT,(p)
f,h ), u2 = d(p)

f,h(z−∆DT,(p)
f,h )−1v, and u3 = d(p−1),∗

f,h (z−
∆DT,(p)

f,h )−1v.
Now the commutation relations would imply u2 ∈ D(∆DT,(p+1)

f,h ) and u3 ∈
D(∆DT,(p−1)

f,h ).
The form v should then satisfy on the boundary

tv = ztu1 − td(p),∗
f,h u2 − d(p−1)

f,h tu3 = 0 .

From Proposition 2.4.2 and Stone’s Formula we deduce the

Corollary 2.4.4. — For any Borel subset E ⊂ R, the identities

1E(∆DT,(p+1)
f,h )d(p)

f,hv = d(p)
f,h1E(∆DT,(p)

f,h )v

and

1E(∆DT,(p−1)
f,h )d(p−1),∗

f,h v = d(p−1),∗
f,h 1E(∆DT,(p)

f,h )v

hold for all v ∈ ΛpH1
0,T .

In particular, if v is an eigenvector of ∆DT,(p)
f,h corresponding to the eigenvalue λ,

then d(p)
f,hv (resp. d(p−1),∗

f,h v) belongs to the spectral subspace Ran 1{λ}(∆
DT,(p+1)
f,h )

(resp. Ran 1{λ}(∆
DT,(p−1)
f,h )).

Proposition 2.4.2 and Corollary 2.4.4 were stated for p-forms v ∈ ΛpH1
0,T (Ω), be-

longing to the form domain of ∆DT,(p)
f,h . It is convenient to work in this framework

because the multiplication by any cut-off function preserves ΛH1
0,T (Ω):

(
ω ∈ ΛH1

0,T (Ω), χ ∈ C∞(Ω)
)
⇒ (χω ∈ ΛH1

0,T (Ω)) ,

while this property is no more true for D(∆DT
f,h ). In this spirit, we will often refer to

the next easy consequence of the Spectral Theorem.
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Lemma 2.4.5. — Let A be a nonnegative self-adjoint operator on a Hilbert space H
with associated quadratic form qA(x) = (x |Ax) and with form domain Q(A). Then
for any a, b ∈ (0, +∞), the implication

(qA(u) ≤ a) ⇒
(∥∥1[b,+∞)(A)u

∥∥2 ≤ a

b

)

holds for any u ∈ Q(A).

2.5. Boundary reduced Witten complex

We end this chapter with the introduction of the reduced complex which is stan-
dard in the boundaryless case since Witten (see [33], [32], [7], [21] and the book
[34]). This will motivate the preliminary analysis given in the next chapter.
Let us assume that the dimension mΩ

p of F (p) = Ran 1[0,h3/2)(∆
DT,(p)
f,h ) is indepen-

dent of h ∈ (0, h0) for h0 > 0 small enough. The previous proposition says that
β(p)

f,h = d(p)
f,h

∣∣
F (p) and β(p),∗

f,h = d(p−1),∗
f,h

∣∣
F (p) (p = 0, . . . , n) define two complexes of finite

dimensional spaces:

(2.21) 0 → F (0)
β

(0)
f,h→ F (1)

β
(1)
f,h→ . . .

β
(n−1)
f,h→ F (n) → 0

0 ← F (0)
β(0),∗

f,h← F (1)
β(1),∗

f,h← . . .
β(n−1),∗

f,h← F (n) ← 0 .

If bΩ
p , p ∈ {0, . . . , n}, denote the Betti numbers of the β(p)

f,h complex, then the polyno-
mials,

M(X) =
n∑

p=0

mΩ
p Xp and B(X) =

n∑

p=0

bΩ
p Xp ,

satisfy

(2.22) M(X) − B(X) = (1 + X)Q(X) ,

where the polynomial Q(X) has non negative coefficients.
In the boundaryless case, the numbers mp are exactly the number of critical points
with index p and this is the core of Witten’s approach to Morse inequalities. In the
boundary case, it is no more true. The next chapter explains the role of the boundary
conditions on the spaces F (p).
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CHAPTER 3

FIRST LOCALIZATION OF THE SPECTRUM

3.1. Introduction

In this chapter, we check that the number of eigenvalues of ∆DT,(p)
f,h smaller than

h3/2 equals a Morse index mΩ
p which involves in its definition the boundary condition.

For this we need a first localization of the eigenvectors. Although the results presented
here are closely related to those of [6], we need additional information and technical
analysis for the following reason:
If one is interested only in the Morse theory the metric plays no relevant role and it is
possible, without loss of generality, to assume that it has a simple form at the critical
points. This simplification, which leads to a much easier analysis, was used by many
authors [7], [6], [1], [5], and [15]. Since we are interested in quantitative results with
a prescribed metric from the beginning, the dependence with respect to the metric
has to be analyzed carefully. One difficulty comes from the fact that the boundary
condition and therefore the domain of ∆(p)

f,h depends on the metric g.

3.2. Morse-Witten theory for boundary value problems

In order to make the connection between the tangential Dirichlet realization of the
Witten Laplacian ∆DT

f,h and the Morse theory, we assume additional properties for the
function f up to the boundary ∂Ω.

Assumption 3.2.1. — The real-valued function f ∈ C∞(Ω) is a Morse function on
Ω with no critical points in ∂Ω. In addition its restriction f

∣∣
∂Ω

is a Morse function
on ∂Ω.

With this assumption, the function f has a finite number mΩ
p of critical points

with index p in Ω. Those numbers have to be modified for the boundary problem
according to [6] in order to take into account eigenvectors which possibly concentrate
(as h → 0) on ∂Ω. Note first that the assumption that there is no critical point on ∂Ω
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implies that the outgoing normal derivative ∂nf(U) is not 0, if U is a critical point
of f
∣∣
∂Ω

.

Definition 3.2.2. — For # ∈ {0, . . . , n − 1}, the integer m∂Ω
",+ is the number of criti-

cal points U of f
∣∣
∂Ω

with index # such that ∂nf(U) > 0 (with the additional convention
m∂Ω

−1,+ = 0).
For p ∈ {0, . . . , n}, the integer mΩ

p is defined as

mΩ
p = mΩ

p + m∂Ω
p−1,+ .

We will prove the

Theorem 3.2.3. — Under Assumption 3.2.1, there exists h0 > 0, such that the tan-
gential Dirichlet realization of the Witten Laplacian ∆DT

f,h introduced in Section 2.4
has, for h ∈ (0, h0] , the following property:
For any p ∈ {0, . . . , n}, the spectral subspace F (p) = Ran1[0,h3/2)(∆

DT,(p)
f,h ) has rank:

dim F (p) = mΩ
p .

Moreover the Betti numbers bΩ
p are homotopy invariants and satisfy the homological

relations (2.22).

Remark 3.2.4
a) The role of the condition ∂nf(U) > 0 can be easily understood by considering

the one-dimensional problem with f(x) = x on the interval [0, 1]. On 0-forms, ∆DT,(0)
f,h

corresponds to a Dirichlet realization, while ∆DT,(1)
f,h corresponds to a realization with

an h-dependent Robin boundary condition [h∂xu − (∂xf)u]
∣∣
x=0, 1

= 0, where the
function u(x) has to be identified with the 1-form u(x) dx.

b) With the normal boundary conditions nω = 0 and ndf,hω = 0, the number
m∂Ω

p−1,+ has to be replaced by m∂Ω
p−1,−, which corresponds to the condition ∂nf(U) < 0

(see [6]).

We shall use a similar technique to the one presented in [32], [7] and [6] by mak-
ing rather rough estimates in terms of quadratic forms. We first consider a model
half-space problem which permits, after a careful treatment of the metric, to sepa-
rate tangential and normal coordinates. The localization process and the proof of
Theorem 3.2.3 will be achieved in Section 3.4.

3.3. A model half-space problem

We consider in this section a half-space model problem which will be used in the
localization of the eigenvectors of ∆DT

f,h on Ω and will provide quasimodes.
We start first with some results on Rk, which will be applied later with k = n− 1.
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3.3.1. Witten Laplacian on Rk with one low-lying eigenvalue. — The met-
ric g on Rk is a C∞ metric which equals the Euclidean metric outside a compact set K.

Assumption 3.3.1. — The function f is a Morse C∞ real-valued function and there
exist C1 > 0 and a compact K such that:

(3.1) ∀x ∈ Rk \ K, |∇f(x)| ≥ C−1
1 and |Hess f(x)| ≤ C1 |∇f(x)|2 .

Note that the above assumption ensures that f has a finite number of critical points
and mp will denote the number of critical points with index p.

Proposition 3.3.2. — Under Assumption 3.3.1, there exist h0 > 0, c0 > 0 and
c1 > 0 such that the following properties are satisfied for any h ∈ (0, h0]:
i) The Witten Laplacian ∆f,h as an unbounded operator on L2(Rk; ΛT ∗Rk) is essen-
tially self-adjoint on C∞

0 (Rk; ΛT ∗Rk).
ii) For any Borel subset E in R, the identities,

(3.2)
1E(∆(p+1)

f,h )d(p)
f,hu = d(p)

f,h1E(∆(p)
f,h)u ,

and
1E(∆(p−1)

f,h )d(p−1),∗
f,h u = d(p−1),∗

f,h 1E(∆(p)
f,h)u ,

hold, for any u belonging to the form domain of ∆(p)
f,h.

In particular, if v is an eigenvector of ∆(p)
f,h associated with the eigenvalue λ, then

d(p)
f,hv (resp. d(p−1),∗

f,h v) belongs to the spectral subspace Ran 1{λ}(∆
(p+1)
f,h ) (resp.

Ran 1{λ}(∆
(p−1)
f,h )).

iii) The essential spectrum σess(∆
(p)
f,h) is contained in [c1, +∞).

iv) The range of the spectral projection 1[0,c0h)(∆
(p)
f,h) has dimension mp, for all

h ∈ (0, h0].

Proof. — We give the proof for the sake of completeness (see also [24]).
i) The operator

∆f,h = −h2∆ + Ψ(x) = df,hd∗f,h + d∗f,hdf,h

is non-negative on C∞
0 (Rk; ΛT ∗Rk) and the matrix-valued function Ψ(x) is C∞. By

Simader’s result (see [30], [17]), ∆f,h is essentially self-adjoint on C∞
0 (Rn−1; ΛT ∗Rk).

ii) The proof is the same as in Proposition 2.4.2 and Corollary 2.4.4 with ΛpC∞
0,T (Ω)

replaced by ΛpC∞
0 (Rk). By i), ΛpC∞

0 (Rk) is dense in D(∆(p)
f,h) and therefore in the

form domain of ∆(p)
f,h.

iii) The localization of the essential spectrum is a consequence of our assumptions
which imply the existence of C > 0 such that, for all u ∈ ΛpC∞

0 (!K),

〈u | ∆(p)
f,hu〉 ≥ 〈u | ∆(p)

0,hu〉 +
1
C
||u||2 − Ch||u||2 .
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When h < h0, with h0 = 1
2C2 , we get

〈u | ∆(p)
f,hu〉 ≥ 1

2C
||u||2 , ∀u ∈ ΛpC∞

0 (!K) ,

and iii) by using Persson’s Lemma.
iv) The previous inequality combined with a simple partition of unity argument shows
that any normalized eigenvector ψh associated with an eigenvalue λh in [0, c0h) of ∆(p)

f,h

is localized in a neighborhood of K. Take indeed χi ∈ C∞(Rk), i = 1, 2, such that
χ1 ∈ C∞

0 (Rk), χ1 = 1 in a neighborhood of K, χ2
1 + χ2

2 = 1, and write:

λh||ψh||2 = 〈χ1ψh |∆(p)
f,hχ1ψh〉 + 〈χ2ψh |∆(p)

f,hχ2ψh〉 − h2
∑

i=1,2

‖∇χiψh‖2 .

This leads, for h small enough, to

‖χ2ψh‖2 ≤ 2Cλh + 2C

(
∑

i=1,2

max
x∈K

|∇χi(x)|2
)

h2 ≤ 4Cc0h ,

1 = ||ψh|| ≤ (1 + C′h)||χ1ψh|| ,

and

〈χ1ψh |∆(p)
f,hχ1ψh〉 ≤ C′′h2 + c0h ≤ 2c0h ‖ψh‖2 ≤ C′′′c0h ‖χ1ψh‖2 .

Hence the problem is reduced to the case of a boundaryless compact manifold pre-
sented in [7] and [21]. With c0 > 0 small enough, their related results, which rely
here on harmonic approximations around the critical points of f , and the two previ-
ous estimates imply that ψh has to lie within a distance less than 1/2 from a finite
dimensional space with dimension mp. This yields

(3.3) dim Ran 1[0,c0h)(∆
(p)
f,h) = mp .

We will need the following version of those results in the specific case when f admits
a unique critical point with index p0.

Proposition 3.3.3. — If the Morse function f satisfies Assumption 3.3.1 and
admits a unique critical point at x = 0 with index p0, so mp = δp,p0 , then there exist
h0 > 0 and c0 > 0, such that the following properties hold for h ∈ (0, h0]:
i) For p += p0, ∆(p)

f,h ≥ c0hId.
ii) If ψh

p0
is a normalized eigenvector of the one dimensional spectral subspace

Ran 1[0,c0h)(∆
(p0)
f,h ), it satisfies

df,hψh
p0

= 0 , d(p0−1),∗
f,h ψh

p0
= 0 and ∆(p0)

f,h ψh
p0

= 0 ,

so that Ran 1[0,c0h)(∆
(p0)
f,h ) = Ker ∆(p0)

f,h . Moreover

σ(∆(p0)
f,h ) \ {0} ⊂ [c0h,∞) .
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iii) If χ ∈ C∞
0 (Rk) satisfies χ = 1 in a neighborhood of 0, then there exists Cχ ≥ 1,

such that, for all h ∈ (0, h0/Cχ), the inequality,

(1 − χ)∆(p)
f,h(1 − χ) ≥ C−1

χ [1 − χ]2 ,

holds in the sense of quadratic form on ΛpH1(Rk).

Proof. — One uses first for i) the property that: dim Ran 1[0,c0h)(∆
(p)
f,h) = mp. Let

us now show ii). Assume that ψh
p0

is an eigenvector of ∆(p0)
f,h with eigenvalue λh ∈

[0, c0h). If d(p0)
f,h ψh

p0
was not 0, it would be an eigenvector of ∆(p0+1)

f,h with eigenvalue
λh ∈ [0, c0h) . Hence df,hψh

p0
= 0 and similarly d(p0−1),∗

f,h ψh
p0

= 0. This implies λh = 0.
For iii), we note that

∆(p)
f,h ≥ |∇f(x)|2 (1 − Ch) ,

with |∇f(x)|2 ≥ cχ > 0 for x +∈ supp χ.
This implies

(1 − χ)∆(p)
f,h(1 − χ) ≥ cχ(1 − Ch)+ [1 − χ]2 ,

for h ∈ (0, h0) and the result holds for Cχ > 0 large enough and h0 small enough.

3.3.2. Small eigenvalues of the half space problems. — We work here on
Rn

− = Rn−1 × (−∞, 0). We assume that there are coordinates x = (x′, xn) such that
the metric g =

∑n
i,j=1 gij(x)dxidxj satisfies

gi,n = gn,i = 0 for i < n(3.4)

and

∀x ∈ Rn
− \ K1, ∂xgij(x) = 0 ,(3.5)

for some compact set K1 ⊂ Rn
−. In this subsection, the coordinates (x′, xn) are fixed

while different metrics on Rn
− are considered. The notation G(·) will be used for the

matrix valued map x #→ G(x) = tG(x) = (gij(x))i,j ∈ GLn(R), which is assumed to
be a C∞ function. According to the standard notation, the coefficients of G(x)−1 are
written gij(x).

We also consider a function f which has a specific form in the same coordinates
(x′, xn).

Assumption 3.3.4. — The function f ∈ C∞(Rn
−) satisfies:

i) The estimates |∇f(x)| ≥ C−1 and |∂α
x f(x)| ≤ Cα hold, for all x ∈ Rn

− and
all α ∈ Nn, α += 0.

ii) The function f is the sum f(x′, xn) = − 1
2f+(xn) + 1

2f−(x′), where there exists
C1 > 0 such that:

C−1
1 ≤ |∂xnf+(xn)| ≤ C1 ,

and where f− is a Morse function on Rn−1, which satisfies Assumption 3.3.1 for
the metric

∑n−1
i,j=1 gij(x′, 0)dxidxj and admits a unique critical point at x′ = 0

with index p0.
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The boundedness of |∂α
x f |, 1 ≤ |α| ≤ 2, avoids any subtle questions about the

domains.

Proposition 3.3.5. — Under Assumption 3.3.4-i), the unbounded operator ∆DT
f,h on

L2(Rn
−; ΛT ∗Rn

−), with domain

D(∆DT
f,h ) =

{
ω ∈ ΛH2(Rn

−) , tω = 0 , td∗f,hω = 0
}

,

is self-adjoint.
If E is any Borel subset of R, the relations

(3.6)
1E(∆DT,(p+1)

f,h ) d(p)
f,hu = d(p)

f,h 1E(∆DT,(p)
f,h )u ,

and
1E(∆DT,(p−1)

f,h ) d(p−1),∗
f,h u = d(p−1),∗

f,h 1E(∆DT,(p)
f,h )u ,

hold for any u ∈ ΛpH1
0,T (Rn

−).

Proof. — The uniform estimate on ∇f permits the same proof as for Proposition 2.4.2
and Corollary 2.4.4 (Here C∞

0,T denotes the space of C∞ compactly supported functions
in Rn

− with a vanishing tangential component on {xn = 0}).

We are looking for a result similar to Proposition 3.3.3 for the boundaryless case.
One difficulty here comes from the metric which, although diagonal in the coordinates
(x′, xn), is not constant. The general case can be reduced to a simpler situation where
gij(x) = gij(x′) with gnn = 1 after several steps.
We need some notations.

Definition 3.3.6. — For a metric g which satisfies (3.5), the corresponding Hs-
norm on ΛpHs(Rn

−) is denoted by ‖ ‖ΛpHs,g and the notation ‖ ‖ΛpHs is kept for the
Euclidean metric ge =

∑n
i=1 dx2

i .
Similarly, the quadratic form associated with ∆DT,(p)

f,h is written

Dg,f,h(ω) =
∥∥d∗,g

f,hω
∥∥2

Λp−1L2,g
+ ‖df,hω‖2

Λp+1L2,g , ∀ω ∈ ΛpH1
0,T (Rn

−) ,

where the codifferential d∗,g
f,h also depends on g .

A K-set is a set of metrics g which satisfy the conditions (3.5) and which is compact
for the C∞(K1)-topology.

A K-set is a set of metrics g which satisfy the conditions (3.5) and so that G(x) and
G(x)−1 are bounded in the C∞(K1)-topology. Note that, when the metric g lies in a
fixed K-set (h = 1), the Hs-norms are uniformly equivalent to the norm associated
with the Euclidean metric ge. The required accuracy while comparing the quadratic
forms Dg,f,h needs some care.
The first result provides a reduction to the case ∂xnG = 0.
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Lemma 3.3.7. — Let g1 and g2 be two metrics which satisfy (3.5) and coincide on
{xn = 0}. Let f be a function satisfying Assumption 3.3.4. There exist constants
C12 ≥ 1 and h0 > 0 such that the inequality,

(3.7) Dg2,f,h(ω) ≥ (1 − C12h
2/5)Dg1,f,h(ω) − C12h

7/5 ‖ω‖2
ΛpL2,g1

,

holds for ω ∈ ΛpH1
0,T (Rn

−), with p ∈ {0, . . . , n} and h ∈ (0, h0), as soon as supp ω ⊂{
xn ≥ −C0h2/5

}
.

Proof. — The matrices G1(x) and G2(x) associated with g1 and g2 in the coordinates
(x′, xn) satisfy the estimates

∣∣G1(x)−1G2(x) − IdRn

∣∣ ≤ Ch2/5 ,

for all x ∈
{
−C0h2/5 ≤ xn ≤ 0

}
. Hence, for any differential form η ∈ ΛL2 supported

in
{
−C0h2/5 ≤ xn ≤ 0

}
, the two L2-norms differ by

∣∣‖η‖2
ΛL2,g1

− ‖η‖2
ΛL2,g2

∣∣ ≤ Ch2/5 min
{
‖η‖2

ΛL2,gi
, i = 1, 2

}
.

The relative error term has the right order, so that any of the two L2-norm can be
used. Except for the conclusion, any of the two L2-norm is simply denoted by ‖ ‖.
The comparison of Dg1,f,h(ω) and Dg2,f,h(ω) amounts to finding a good estimate for
‖
(
d∗,g1

f,h − d∗,g2
f,h

)
ω‖. Let ω =

∑
I ωIdxI be a p−form supported in

{
xn ≥ −C0h2/5

}
.

The first point is to observe the inequality

(3.8) ||
(
d∗,g1

f,h − d∗,g2
f,h

)
ω||2 ≤ C

(
h2(
∑

",I

‖∂x!(xnωI)‖2) + ‖xn|∇f |ω‖2 + h2‖ω‖2

)
.

The second point is to use the Dirichlet realization of ∆(p)
f,h, corresponding to Dirichlet

boundary conditions on all components. The Weitzenböck formula (actually we only
need the structure of the Laplacian and not the detailed intrinsic expression) gives:

(3.9) ∆(p)
f,h = −h2

∑

i,j

∇i gij(x)∇j + h2R(4) + |∇f(x)|2 + h
(
L∇f + L∗

∇f

)
.

The first term is h2 times the Bochner Laplacian, while the Ricci curvature term R(4)

and the term (L∇f +L∗
∇f ) are tensors with bounded coefficients. We remind that the

covariant derivative ∇i on forms is expressed in terms of the partial derivative ∂xi ,
the Christoffel symbols Γj

i," and of the gradients ∇xm of the coordinate functions xm:

(3.10) ∇iω = ∂xiω −
∑

j,m,"

Γj
i,"gjmdx" ∧ (i∇xmω) .

By writing the two sides of (3.9) as quadratic forms on ΛpH1
0 (Rn

−), we get, for any
p-form ω̃ such that ω̃

∣∣
{xn=0} = 0, the estimate

(3.11)

(
h2(
∑

",I

‖∂"(ω̃I)‖2) + ‖|∇f |ω̃‖2

)
≤ C
(
‖df,hω̃‖2 + ‖d∗,g·

f,h ω̃‖2 + h‖ω̃‖2
)

.
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We apply this inequality with ω̃ = xnω, which satisfies the full Dirichlet condition.
With (3.8), this leads to the inequality:

(3.12) ‖
(
d∗,g1

f,h − d∗,g2
f,h

)
ω‖2 ≤ C

(
‖df,hxnω‖2 + ‖d∗,g·

f,h xnω‖2 + h‖xnω‖2 + h2‖ω‖2
)

.

It remains to commute xn and df,h or d∗,g·
f,h and we get, using also our assumption

that |xn| ≤ Ch
2
5 in supp ω,

(3.13) ‖
(
d∗,g1

f,h − d∗,g2
f,h

)
ω‖2 ≤ C

(
h

4
5 ‖df,hω‖2 + h

4
5 ‖d∗,g·

f,h ω‖2 + h
9
5 ‖ω‖2
)

.

We conclude with

(1 − Ch2/5)−1Dg2,f,h(ω) = (1 − Ch2/5)−1
[∥∥d∗,g2

f,h ω
∥∥2

ΛL2,g2
+ ‖df,hω‖2

ΛL2,g2

]

≥
∥∥d∗,g2

f,h ω
∥∥2

ΛL2,g1
+ ‖df,hω‖2

ΛL2,g1

≥
(∥∥d∗,g1

f,h ω
∥∥

ΛL2,g1
−
∥∥(d∗,g2

f,h − d∗,g1
f,h )ω
∥∥

ΛL2,g1

)2
+ ‖df,hω‖2

ΛL2,g1

≥ (1 − h2/5)Dg1,f,h(ω) + (1 − 1
h2/5

)
∥∥(d∗,g2

f,h − d∗,g1
f,h )ω
∥∥2

ΛL2,g1
,

and estimate (3.13).

The second result permits to consider again a simpler metric with gnn = 1.

Lemma 3.3.8. — Let g1 and g2 be two conformal metrics which satisfy (3.5) and:

g2 = eϕ(x)g1 .

Let f be a function satisfying Assumption 3.3.4. Then there exist constants C12 ≥ 1
and h0 > 0, such that the inequality,

(3.14) ∀ω ∈ ΛpH1
0,T (Rn

−), Dg2,f,h(ω) ≥ C−1
12 Dg1,f,h(ω) − C12h

2 ‖ω‖2
ΛpL2,g1

,

holds, for all p ∈ {0, . . . , n} and all h ∈ (0, h0) .

Proof. — For a given metric g =
∑n

i,j=1 gijdxidxj , which satisfies property (3.5) and
G = (gij)1≤i,j≤n, the normalized volume form equals

Vg(dx) = (detG(x))1/2 dx1 ∧ · · · ∧ dxn ,

the pointwise scalar product of two p-forms equals

〈ω | η〉g(x) =
∑

I ⊂ {1, . . . , n}
#I = p

ωI(Γp(G−1)η)I(x) ,

with Γp(A) = A ⊗ · · ·⊗ A, and the Hodge operator is given by

ω ∧ (*g η)(x) = 〈ω | η〉g(x) Vg(dx) .
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The term which requires some care in the conformal change of metric in

Dg,f,h(ω) =
∥∥d∗,g

f,hω
∥∥2

Λp−1L2,g
+ ‖df,hω‖2

Λp+1L2,g

is the first one, because d∗,g
f,h depends on g. We have indeed

d∗,g
f,hω = ef/h(−1)p *g d *g e−f/hω, ∀ω ∈ ΛpH1 .

Let g1 and g2 be as above. Our assumptions imply the uniform estimate

µ := sup
x∈Rn

−

|ϕ(x)| < +∞ .

The previous identities give, for two p-forms ω and η, the pointwise relations:

〈ω | η〉g2 (x) = e−pϕ(x)〈ω | η〉g1 (x) ,

and

ω ∧ (*g2η) = 〈ω | η〉g2Vg2(dx)

= e−pϕ(x)〈ω | η〉g1e
nϕ(x)

2 Vg1 (dx) = e(−p+n
2 )ϕ(x)ω ∧ (*g1η) ,

which yields
*g2η = e(−p+ n

2 )ϕ(x) *g1 η .

Let us compute first with f = 0 and h = 1, the pointwise scalar product

〈d∗,g2ω | d∗,g2η〉g2 (x) = e−(p−1)ϕ(x)〈d∗,g2ω | d∗,g2η〉g1(x)

= e−(p−1)ϕ(x)〈*g2 d *g2 ω | *g2 d *g2 η〉g1(x)

= e−(p−1)ϕ(x)〈*g2 d *g1

(
e(−p+n/2)ϕ(x)ω

)
| *g2 d *g1

(
e(−p+n/2)ϕ(x)η

)
〉g1 (x)

= e−(p−1)ϕ(x)e2(p−1−n/2)ϕ(x)〈d∗,g1
(
e(−p+n/2)ϕ(x)ω

)
| d∗,g1
(
e(−p+n/2)ϕ(x)η

)
〉g1 (x).

Hence we get

〈d∗,g2ω | d∗,g2η〉g2 (x)Vg2 (dx)

= e(p−1)ϕ(x)〈d∗,g1
(
e(−p+n/2)ϕ(x)ω

)
| d∗,g1
(
e(−p+n/2)ϕ(x)η

)
〉g1(x)Vg1 (dx).

and
‖d∗,g2ω‖2

ΛL2,g2
≥ e−(p−1)µ

∥∥d∗,g1e(−p+n/2)ϕω
∥∥2

ΛL2,g1
.

With f and h ∈ (0, h0), this gives the existence of C > 0 such that:
∥∥ef/hhd∗,g2(e−f/hω)

∥∥2
ΛL2,g2

≥ e−(p−1)µ
∥∥ef/hhd∗,g1(e−f/h+(−p+n/2)ϕω)

∥∥2
ΛL2,g1

≥ e−(3p−1+n)µ
∥∥(d∗,g1

f,h + hi∇(−p+n/2)ϕ)ω
∥∥2

ΛL2,g1

≥ C−1
∥∥d∗,g1

f,h ω
∥∥2

ΛL2,g1
− Ch2 ‖ω‖2

ΛL2,g1
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



28 CHAPTER 3. FIRST LOCALIZATION OF THE SPECTRUM

Proposition 3.3.9. — Assume that the metric g satisfies (3.4) and (3.5) and let
f be a Morse function satisfying Assumption 3.3.4 for some p0 ∈ {0, . . . , n}. Then
there exist constants h0 > 0, c0 > 0 and c1 > 0, such that the self-adjoint operator
∆DT

f,h satisfies the following properties for h ∈ (0, h0]:
i) The essential spectrum σess(∆

DT,(p)
f,h ) is contained in [c1, +∞).

ii) For p ∈ {0, . . . , n}, the range of the spectral projection 1[0,c0h)(∆
DT,(p)
f,h ) has di-

mension {
δp,p0+1 if ∂xnf(0) = − 1

2∂xnf+(0) > 0 ,
0 if ∂xnf(0) = − 1

2∂xnf+(0) < 0 .

iii) In the case when ∂xnf(0) = − 1
2∂xnf+(0) > 0, the spectral subspace associated

with the small eigenvalues of ∆DT,(p0+1)
f,h equals:

Ran 1[0,c0h)(∆
DT,(p0+1)
f,h ) = Ker ∆DT,(p0+1)

f,h = Cϕh ,

where
‖ϕh − ψh

p0
∧
(
e−f+(xn)/2h dxn

)
‖ΛpL2 = O(h1/10) ,

and ψh
p0

belongs to the kernel of an (n − 1)-dimensional Witten Laplacian ∆(p0)

g̃′,f−/2,h

in a metric g̃′, which is conformal to g′ =
∑n−1

i,j=1 gij(x′, 0)dxidxj on Rn−1.
iv) For any χ ∈ C∞

0 (Rn
−) such that χ = 1 in a neighborhood of 0, there exists Cχ > 0

such that the lower bounds

(1 − χ)∆DT,(p)
f,h (1 − χ) ≥ C−1

χ [1 − χ]2 , 0 ≤ p ≤ n ,

hold, for any h ∈ (0, h0/Cχ), in the sense of quadratic forms on ΛpH1
0,T (Rn

−).

Proof. — The clue of this result is an accurate lower bound for the quadratic form
Dg,f,h(η), when evaluated for η such that supp η ⊂

{
xn ≥ −C0h2/5

}
. By Lem-

mas 3.3.7 and 3.3.8, one can find a metric g̃, which satisfies (3.4) and (3.5), with
G̃(x) = G̃(x′) independent of the xn-coordinate, g̃nn = 1 and a constant C > 1 such
that

(3.15) Dg,f,h(η) ≥ C−1Dg̃,f,h(η) − Ch7/5 ‖η‖2
ΛL2,g̃ .

Take two cut-off functions χ̃i ∈ C∞(R), such that χ̃1 ∈ C∞
0 (R), χ̃1 = 1 in a neighbor-

hood of 0 such that χ̃2
1+χ̃2

2 = 1. This partition of unity gives, for any ω ∈ ΛH1
0,T (Rn

−),

Dg,f,h(ω) ≥ Dg,f,h(χ̃1(h−2/5xn)ω) + Dg,f,h(χ̃2(h−2/5xn)ω) − Ch6/5 ‖ω‖2
ΛL2,g .

Since |∇f(x)|2 ≥ C−1 on Rn
−, the second term is bounded from below by a constant

times
∥∥χ̃2(h−2/5xn))ω

∥∥2
ΛL2,g

. Hence we get

Dg,f,h(ω) ≥ Dg,f,h(χ̃1(h−2/5xn)ω) − Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2
ΛL2,g

+
C−1

2
∥∥χ̃2(h−2/5xn)ω

∥∥2
ΛL2,g

.
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Finally after changing the constant C ≥ 1, the inequality (3.15) yields

(3.16) Dg,f,h(ω) ≥ C−1Dg̃,f,h(χ̃1(h−2/5xn)ω) − Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2

+ C−1
∥∥χ̃2(h−2/5xn)ω

∥∥2 ,

where the L2-norms in the right hand side can be computed with the metric g or g̃
while possibly adapting the constant C. Here and in the sequel, we omit the subscript
(ΛL2, g) for L2-norms.
Now the problem is reduced to the analysis of Dg̃,f,h with the metric g̃. The product
structure of the metric g̃ allows an explicit analysis of the spectrum.

(a) The case n = 1. — We have x = xn ∈ R−, f(x) = − 1
2f+(xn). Here the metric

is g̃ = dx2
n. We keep the reference to the index n for the later application.

The space Λ0H1
0,T (R−) is simply H1

0 (R−), while

Λ1H1
0,T =
{
α(xn) dxn , α ∈ H1(R−)

}
.

The identity (2.15) reads:

∀β ∈ H1
0 (R−), Dg̃,−f+/2,h(β) = h2 ‖∂xnβ‖2 +

1
4
‖∂xnf+ β‖2 +

h

2
〈∂2

xn
f+(xn)β | β〉 ,

for the 0-forms; and for the 1-forms:

∀α ∈ H1(R−), Dg̃,−f+/2,h(α dxn) = h2 ‖∂xnα‖2 +
1
4
‖∂xnf+α‖2

− h

2
〈∂2

xn
f+(xn)α | α〉 +

h

2
∂xnf+(0) |α(0)|2 .

On 0-forms, we get

∀β ∈ Λ0H1
0,T , Dg̃,−f+/2,h(β) ≥ (C−2 − hC) ‖β‖2 ,

and deduce that there exist c1 > 0 and h0 > 0 such that, for all h ∈ (0, h0],

∆DT,(0)
g̃,−f+/2,h ≥ c1Id .

On 1-forms, there are two subcases:

(a1) Subcase ∂xnf+(0) > 0. — The inequality,

∀α ∈ H1
0,T , Dg̃,−f+/2,h(α dxn) ≥ (C−2 − hC) ‖α‖2 ,

implies the existence of h0 > 0 such that

∆DT,(1)
−f+/2,h ≥ c1Id , ∀h ∈ (0, h0] .
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(a2) Subcase ∂xnf+(0) < 0. — If ∆DT,(1)
−f+/2,h(α dxn) = λhα dxn, with λh < c1, Propo-

sition 3.3.5 implies
d∗−f+/2,h(α dxn) = 0 ,

which means
α(xn) = C e−f+(xn)/2h .

The 1-form e−f+(xn)/2h dxn belongs to Ker (∆DT,(1)
−f+/2,h).

(b) The case n > 1. — First note that any ω ∈ ΛpH1
0,T (Rn

−) is a sum

ω =
∑

#I=p−1

αI(x)dx′I ∧ dxn +
∑

#J=p

βJ(x)dx′J =: α ∧ dxn + β ,

with αI , βJ ∈ H1(Rn
−), βJ (x′, 0) = 0, while dx′I = dx′

i1 ∧ · · · ∧ dx′
i#I

,
I = {i1 < · · · < i#I} ⊂ {1, . . . , n − 1}.
If in addition ω ∈ ΛpH2(Rn

−), the condition td∗ω = 0 reads ∂xnα(x′, 0) = 0 (for the
metric g̃).
Secondly, we remind the reader that with the product metric g̃ the Riemannian
connection, the Ricci curvature tensor and therefore the Hodge Laplacian, owing to
the Weitzenböck formula, split like direct sums:

∇XY = ∇n
Xn

Yn + ∇′
X′Y ′ ,

Ric(x, y, z, t) = Ricn(xn, yn, zn, tn) + Ric′(x′, y′, z′, t′) ,

R(4) =
∑

ijkl

Ricijkl(dxi∧) ◦ i∇xj ◦ (dxk∧) ◦ i∇x! = Rn
(4) + R′

(4) ,

(d + d∗)2 = (dxn + d∗xn
)2 + (dx′ + d∗x′)2 .

We refer the reader to [11] (p. 110 and p. 70) for details and more general statements.
Thirdly, the decomposition f(x) = − 1

2f+(xn) + 1
2f−(x′) with the product metric g̃

gives

|∇f |2 = |∇xnf |2 + |∇x′f |2

L∇f + L∗
∇f = −1

2
(
L∇f+ + L∗

∇f+

)
+

1
2
(
L∇f− + L∗

∇f−

)
.

For ω = α ∧ dxn + β ∈ D(∆DT
f,h ) (with the product metric g̃), we have

Dg̃,f,h(ω) = 〈ω |∆f,hω〉 =
〈
ω |∆n

−f+/2,hω
〉

+
〈
ω |∆′

f−/2,hω
〉

.

Since the two operators ∆n
−f+/2,h (acting only in the variable xn) and ∆′

f−/2,h (acting
only in the variable x′) preserve the partial degree in dxn, we get

(3.17) Dg̃,f,h(ω) =
〈
α ∧ dxn |∆n

−f+/2,h(α ∧ dxn)
〉

+
〈
β |∆n

−f+/2,hβ
〉

+
〈
α ∧ dxn |∆′

f−/2,h(α ∧ dxn)
〉

+
〈
β |∆′

f−/2,hβ
〉
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Hence the variables (x′, xn) can be separated and Dg̃,f,h(ω) equals
∫

Rn−1

[ ∑

#I=p−1

Dn
−f+/2,h(αI(x′, .) dxn) +

∑

#J=p

Dn
−f+/2,h(βJ (x′, .))

]
dλ(x′)

+
∫ 0

−∞
D′

f−/2,h(α(., xn)) + D′
f−/2,h(β(., xn)) dxn ,

where we used the notations D′
f−/2,h for the quadratic form of the Witten Laplacian on

Rn−1 and Dn
−f+/2,h for the quadratic form of the 1-dimensional Witten Laplacian on

R− with boundary conditions. The measure dλ(x′) simply equals (det G̃(x′))1/2 dx′.
The absence of α − β cross product term is due to (3.17).
Again there are two subcases.

(b1) Subcase ∂xnf+(0) > 0. — The analysis of the one dimensional problem implies

Dn
−f+/2,h(αI(x′, .) dxn) ≥ c1 ‖αI(x′, .)‖2

and

Dn
−f+/2,h(βJ (x′, .)) ≥ c1 ‖βJ(x′, .)‖2

.

Hence we get
∀ω ∈ ΛpH1

0,T , Dg̃,f,h(ω) ≥ c1 ‖ω‖2

and there exists c1 > 0 such that

∆DT,(p)
f,h ≥ c1Id , ∀p ∈ {0, . . . , n} .

(b2) Subcase ∂xnf+(0) < 0. — Then there exists c1 > 0 such that

(3.18) Dg̃,f,h(ω) ≥
∫

Rn−1

∑

#I=p−1

Dn
−f+/2,h(αI(x′, .) dxn) dλ(x′)

+
∫ 0

−∞
D′

f−/2,h(α(., xn)) dxn + c1 ‖β‖2 .

If ω is a p-form with p += p0 + 1, the lower bound

D′
f−/2,h(α) ≥ C−1

1 h ‖α‖2 ,

which was given in Proposition 3.3.3, yields:

Dg̃,f,h(ω) ≥ C−1h ‖ω‖2 ,

while the equality Dg̃,f,h(ω) = 0 implies that p = p0 + 1 and that ω = c ψh
p0

∧
(e−f+(xn)/2h dxn), where ψp0 belongs to the kernel of the (n− 1)-dimensional Witten
Laplacian associated with the metric

g̃′ =
n−1∑

i,j=1

g̃i,j(x′, 0)dxidxi .
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We have now all the ingredients to check every statement for a general metric g.
We focus on the subcase ∂xnf+(0) < 0, which covers all possibilities.

Statements i) and iv). — Statement i) is a consequence of iv) together with
Persson’s Lemma. It is sufficient to check that, for all R > 0, there exists cR > 0,
such that, for all ω ∈ ΛpH1

0,T (Rn−) supported in {min(|x′|, |xn|) > R}, one has

Dg,f,h(ω) ≥ cR ‖ω‖2 .

The inequalities (3.16) and (3.18), together with the estimate

D′
f−/2,h(α(·, xn)) ≥ c′R ‖α(·, xn)‖2 if supp ω ⊂ {|x′| > R} ,

provided by Proposition 3.3.3-iii), yield the result.

Statements ii) and iii). — If p += p0 + 1 the inequalities (3.16), (3.18) and the
inequality,

D′
f−/2,h(α(., xn)) ≥ C−1h ‖α(., xn)‖2 ,

imply
Dg,f,h(ω) ≥ c0h ‖ω‖2 ,

and
∆DT,(p)

f,h ≥ c0h Id .

By Proposition 3.3.5, the only possibility, for λh ∈ [0, c0h), to be an eigenvalue of
∆DT,(p0+1)

f,h is λh = 0. When g = g̃ the corresponding spectral subspace is one
dimensional and equals Cψh

p0
∧(e−f+(xn)/2h dxn). For a general metric g, the equation

∆DT,(p0+1)
g,f,h ω = 0, ‖ω‖ = 1, which implies Dg,f,h(ω) = 0, and the inequality (3.16)

leads to

C2h6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2 ≥ Dg̃,f,h(χ̃1(h−2/5xn)ω) +
∥∥χ̃2(h−2/5xn)ω

∥∥2 .

Without the last term, Lemma 2.4.5 implies

dist L2(χ̃1(h−2/5xn)ω, Cψh
p0

∧ (e−f+(xn)/2h dxn)) ≤ Ch1/10 .

The upper bound of the last term,
∥∥χ̃2(h−2/5xn)ω

∥∥2 ≤ Ch6/5 ,

implies
dist L2(ω, Cψh

p0
∧ (e−f+(xn)/2h dxn)) = O(h1/10) .

It remains to check that Ker ∆DT,(p0+1)
f,h is not reduced to {0}. The statements of

Lemma 3.3.7 and Lemma 3.3.8 are symmetric with respect to the choice of the metric.
Hence the reverse inequality of (3.16) (with exchange of g and g̃),

(3.19) Dg̃,f,h(ω) ≥ C−1Dg,f,h(χ̃1(h−2/5xn)ω) − Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2

+ C−1
∥∥χ̃2(h−2/5xn)ω

∥∥2 ,
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also holds for any ω ∈ ΛH1
0,T (Rn

−). We apply it with ω = ψh
p0

∧ (e−f+(xn)/2h dxn))
and this leads to

Dg,f,h(χ̃1(h−2/5xn)ωh) ≤ Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2 .

The Min-Max Principle then says that ∆DT,(p0+1)
f,h admits an eigenvalue smaller than

Ch6/5. It has to be 0 due to the previous supersymmetric argument.

3.4. Reduction to the local half-space problem

We end here the proof of Theorem 3.2.3 by introducing, after a partition of unity,
the right coordinates which permit the comparison with the model half-space problem.

Proof of Theorem 3.2.3. — Let {Uk, 1 ≤ k ≤ K} denote the union of the critical
points of f and f

∣∣
Ω
. Consider a partition of unity

∑N
k=1 χ2

k = 1 such that the C∞
0 (Ω)

function χk identically equals 1 in a neighborhood of Uk when 1 ≤ k ≤ K. The
refinement of this partition of unity will be specified later by the local construction
of adapted coordinates.
We recall that the operator ∆DT

f,h is the Friedrichs extension associated with the
quadratic form:

Dg,f,h(ω) = ‖df,hω‖2
ΛL2,g +

∥∥d∗,g
f,hω
∥∥2

ΛL2,g
,

on ΛH1
0,T (Ω). The standard IMS localization formula ([7]) gives

Dg,f,h(ω) =
N∑

k=1

Dg,f,h(χkω) − h2 ‖|∇χk|ω‖2
ΛL2,g ,

for any ω ∈ D(∆DT
f,h ) and by density for any ω ∈ ΛH1

0,T .
If supp χk does not meet the boundary, the term Dg,f,h(χkω) behaves like in the
boundaryless case:

– If k > K, then we have

Dg,f,h(χkω) ≥ C−1 ‖χkω‖2
ΛL2,g .

– If k ≤ K, ω ∈ ΛpH1
0,T and Uk is a critical point of f with index pk += p, then

Dg,f,h(χkω) ≥ C−1h ‖χkω‖2
ΛL2,g .

– If k ≤ K, ω ∈ ΛpH1
0,T and Uk is a critical point of f with index pk = p, then

there exists a fixed 1-dimensional space F (p)
k determined by Hess f(Uk) such

that,
Dg,f,h(χkω) ≤ C−1h6/5 ‖χkω‖2

ΛpL2,g ,

implies
dist (χkω, F (p)

k ) ≤ Ch1/10 ‖ω‖ΛpL2,g .

Again like in the proof of Proposition 3.3.9-iii), this last statement refers to
Lemma 2.4.5 at the level of quadratic forms.
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Consider now the case when suppχk ∩ ∂Ω += ∅, with the support of χk centered
around a point U0 ∈ ∂Ω. There are two subcases:

1) ( ∂f
∂n )(U0) < |∇f(U0)|.

Then the cut-off χk is chosen so that, in a neighborhood V of suppχk,

∀x ∈ V ∩ ∂Ω, (
∂f

∂n
)(x) < (1 − δ) |∇f(x)| ,

with δ > 0. Locally it is possible to construct a function f̂ such that ∂nf̂ =
∣∣∣∇f̂
∣∣∣ in

V ∩∂Ω and
∣∣∣∇f̂
∣∣∣ = |∇f | in V . By setting ω̃ = χkω, the Green formula (2.15) and the

inequality Dg,f̂ ,h(ω̃) ≥ 0 imply

h

∫

∂Ω
〈ω̃ | ω̃〉ΛpT∗

σ Ω

(
∂f

∂n

)
(σ) dσ ≤ (1 − δ)h

∫

∂Ω
〈ω̃ | ω̃〉ΛpT∗

σ Ω

(
∂f̂

∂n

)
(σ) dσ

≤ (1 − δ)
[
h2 ‖dω̃‖2

Λp+1L2 + h2 ‖d∗ω̃‖2
Λp−1L2 + ‖|∇f | ω̃‖2

ΛpL2 + C1h ‖ω̃‖2
ΛpL2

]
.

With (2.15), we obtain

Dg,f,h(χk ω) = Dg,f,h(ω̃) ≥ δ

2
‖|∇f | ω̃‖2

ΛpL2 ≥ C−1
V ‖χkω‖2

ΛpL2 .

2) ∂nf(U0) = |∇f(U0)|.
Then U0 ∈ ∂Ω is a critical point of f

∣∣
∂Ω

with ∂nf > 0. Around U0, we now intro-
duce adapted local coordinates. Due to the condition ∂nf(U0) += 0, there exist an
neighborhood V0 of U0 in Ω such that the eikonal equation:

(3.20) |∂nΦ|2 + |∇T Φ|2 = |∇Φ|2 = |∇f |2 ,

with the boundary condition

(3.21) Φ
∣∣
∂Ω∩V0

= f
∣∣
∂Ω∩V0

,

admits a second local solution which satisfies

(3.22) ∂nΦ
∣∣
∂Ω∩V0

= −∂nf
∣∣
∂Ω∩V0

.

Like in [21], we set
f+ = Φ − f and f− = Φ + f .

We have the relations

f = −1
2
f+ +

1
2
f− , Φ =

1
2
f+ +

1
2
f− ,(3.23)

∇f+ ·∇f− = 0 ,(3.24)

f+

∣∣
∂Ω∩V0

= 0 , −∂nf+

∣∣
∂Ω∩V0

= 2∂nf
∣∣
∂Ω∩V0

+= 0 ,(3.25)

and f−
∣∣
∂Ω∩V0

= 2f
∣∣
∂Ω∩V0

, ∂nf−
∣∣
∂Ω∩V0

= 0 .(3.26)

Let (x1, . . . , xn−1) = x′ denote a set of coordinates on ∂Ω in a neighborhood of U0

(contained than V0) and such that xj(U0) = 0. We extend them in a neighborhood
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of U0 in Ω as constant along the integral curve of the vector field ∇f+. Then we take
xn = − 1

2f+(x) for the last coordinate. In these coordinates the function f and the
metric g have the form

(3.27) f(x) = xn +
1
2
f−(x′) and g = gnn(x) dx2

n +
n−1∑

i,j=1

gij(x) dxidxj .

The boundary ∂Ω is locally defined by {xn = 0} and Ω corresponds to {xn < 0}.
In order to apply Proposition 3.3.9, it remains to check that the function f can be
extended to Rn

−, so that it satisfies Assumption 3.3.4 when U0 is a critical point f
∣∣
∂Ω

.
Indeed the additional assumption does not depend on the metric g and we can assume
that the gij are constant in the coordinates (x′, xn). It suffices to choose, in a small
enough neighborhood of U0 = (0, . . . , 0), Morse coordinates (x1, . . . , xn) for f− in the
metric

∑
i,j<n gijdxidxj :

f(x) = xn +
n−1∑

j=1

λjx
2
j .

Then this function is extended to Rn
− by:

f̃(x) = xn +
[
χ(x′) +

1 − χ(x′)
|x′|

][n−1∑

j=1

λjx
2
j

]
,

for some cut-off function χ supported in a neighborhood of x′ = 0.
With this choice of coordinates, the quantity Dg,f,h(χkω) attains the form discussed
in Proposition 3.3.9.

We can now discuss the lower bound of Dg,f,h(χkω), depending on the localization
by the cut-off χk, such that supp χk ∩ ∂Ω += ∅.

– If k > K, we are in case 1) and

Dg,f,h(χkω) ≥ C−1 ‖χkω‖2
ΛL2,g .

– If k ≤ K, the origin of the coordinate system is U0 = Uk. If ω ∈ ΛpH1
0,T and

Uk is not a critical point of f
∣∣
∂Ω

with index pk = p − 1 and ∂nf(Uk) > 0, then
Dg,f,h(χkω) ≥ C−1h.

– If k ≤ K, ω ∈ ΛpH1
0,T and Uk is a critical point of f

∣∣
∂Ω

with index pk = p − 1
and ∂nf(Uk) > 0, then according to Proposition 3.3.9-iii) there exists a fixed
1-dimensional space F (p)

k such that the inequality,

Dg,f,h(χkω) ≤ C−1h6/5 ‖χkω‖2
ΛpL2,g ,

implies:
dist (χkω, F (p)

k ) ≤ C h1/10 ‖ω‖ΛpL2,g .

The partition of unity is chosen so that the previous choice of coordinates is possible in
a neighborhood of any χk and the set of metrics g = gnn(x)dxn

2 +
∑

i,j<n gijdxidxj

in the local coordinate systems form a K-set according to Definition 3.3.6. Hence,
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36 CHAPTER 3. FIRST LOCALIZATION OF THE SPECTRUM

the constant C can be chosen uniformly. We now introduce the set Ap of indices k,
1 ≤ k ≤ K, such that

– either Uk is a critical point of f with index p,
– or Uk is a critical point of f

∣∣
∂Ω

with index p − 1 such that ∂nf(Uk) > 0.
For ω ∈ ΛpH1

0,T (Ω) with ‖ω‖ΛpL2,g = 1, we get

(
Dg,f,h(ω) ≤ C−1h6/5

)
⇒
(

dist (ω,
∑

k∈Ap

F (p)
k ) ≤ Ch1/10

)
.

Hence the dimension of the spectral subspace,

F (p) = Ran1[0,h3/2)(∆
DT,(p)
f,h ) ⊂ Ran1[0,ch6/5)(∆

DT,(p)
f,h ) ,

is at most #Ap = mΩ
p .

We next verify that dim F (p) ≥ #Ap = mΩ
p . According to the Min-Max Principle, it

suffices to find an orthonormal set of p-forms ωh
k ∈ ΛpH1

0,T (Ω), k ∈ Ap, such that

Dg,f,h(ωh
k ) = o(h3/2) .

Indeed it is enough to take a truncated element of the kernel of the local model for
∆DT,(p)

f,h around Uk, k ∈ Ap. We give the details for the case Uk ∈ ∂Ω. By taking the
same cut-off χ1,k, χ2,k, χ2

1,k +χ2
2,k = 1, and the same coordinate system as above, we

write on Rn
−

Dgk,fk,h(ω) ≥ Dgk,fk,h(χ1,kω) + C−1 ‖χ2,kω‖2 − Ch2
∑

i=1,2

‖|∇χi,k|ω‖2 ,

where gk and fk are defined on Rn
− according to the previous construction and coincide

with g and f in a neighborhood of suppχk. According to Proposition 3.3.9, there
exists ηh

k ∈ ΛpH1
0,T (Rn

−) in the domain of the associated Witten Laplacian, such that
Dgk,fk,h(ηh

k ) = 0. By taking ωh
k =
∥∥χ1,k ηh

k

∥∥−1
χ1,k ηh

k , we obtain the existence of
h0 > 0, C′ and C′′ such that:

∥∥χ2,k ηh
k

∥∥2 ≤ C′h2
∥∥ηh

k

∥∥2 ,

and

Dg,f,h(ωh
k ) ≤ C′h2

∥∥ηh
k

∥∥2

‖χ1,k ηh
k‖

2 ≤ C′′h2 ,

for h ∈ (0, h0].
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CHAPTER 4

ACCURATE WKB ANALYSIS NEAR THE BOUNDARY
FOR ∆(1)

f,h

4.1. Preliminary discussion

We work here under Assumption 3.2.1 while Assumption 3.3.4 will be satisfied for
the local half-space model.
We have seen in the previous chapter that, for p ≥ 1, some quasimodes of ∆DT,(p)

f,h

being near the spectral subspace in 1
[0 , h

3
2 ]

(∆DT,(p)
f,h ) are localized near the boundary

∂Ω and more precisely near critical points of f
∣∣
∂Ω

with index p − 1 such that ∂nf >
0. In the boundaryless case, the WKB-analysis done in [21] says that the small
eigenvalues are of order O(e−C/h) and provides an accurate approximate basis of
Ran1[0,h3/2)(∆

(p)
f,h).

In order to get a similar result, we need an accurate WKB analysis at the boundary
in the spirit of the Helffer-Sjöstrand treatment of the tunneling effect in [19] and [16].
Here again the boundary condition and the fact that we are working with systems
for p > 0 adds some technical difficulties. In an analytic framework, this could
be attacked by studying the propagation of analytic regularity for microhyperbolic
boundary value problems. At the boundary one has to consider first the tangential
propagation of regularity and then the propagation into the interior. Having in mind
our initial motivation of analyzing the Witten Laplacian on 0-forms, we shall study
this problem with arguments as simple as possible and restrict our attention to the
case p = 1. Nevertheless, this “simple” presentation agrees with the general principle.
For an accurate comparison between eigenvectors and WKB quasimodes near a local
minimum U0 of f

∣∣
∂Ω

with ∂nf(U0) > 0, we introduce another self-adjoint realization
of ∆(1)

f,h in a neighborhood ΩU0,ρ with mixed boundary conditions: tangential Dirichlet
boundary conditions on ∂ΩU0,ρ ∩ ∂Ω and full Dirichlet boundary on ∂ΩU0,ρ \ ∂Ω.
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4.2. Local WKB construction

The next construction is done locally around a local minimum U0 of f
∣∣
∂Ω

with
∂nf(U0) > 0. The function Φ is a local solution of the eikonal equation |∇Φ|2 = |∇f |2 ,
which satisfies (3.21) and (3.22). Local coordinates (x′, xn) are introduced like in
section 3.4 after the identities (3.23)-(3.26) and lead to

f(x′, xn) = xn +
1
2
f−(x′) and Φ(x′, xn) = −xn +

1
2
f−(x′) ,

with

xn < 0 in Ω and xn = 0 on ∂Ω ,

and we normalize f so that f(U0) = f(0) = f−(0) = 0.
We first consider a local solution uwkb

0 near the point x = 0 of

(4.1) e
Φ
h ∆(0)

f,huwkb
0 = O(h∞) ,

with uwkb
0 in the form

(4.2) uwkb
0 = a(x, h)e−

Φ
h ,

(4.3) a(x, h) ∼
∑

j

aj(x)hj ,

and the condition at the boundary

(4.4) a(x, h)e−
Φ
h = e−

f
h on ∂Ω ,

which leads to the condition

(4.5) a(x, h)
∣∣
∂Ω

= 1 .

This construction of a, as a solution of (4.1) in Ω, (which can be first done as a
formal power series and then realized by using a Borel summation) is standard (see
for example Chapter 2 (p. 11-12) in Dimassi-Sjöstrand [9]).

In order to verify locally the boundary condition for our future uwkb
1 , we substract

e−
f
h and still obtain

(4.6) e
Φ
h ∆(0)

f,h(uwkb
0 − e−

f
h ) = O(h∞) .

We now define the WKB solution uwkb
1 by considering:

(4.7) uwkb
1 := df,huwkb

0 = df,h(uwkb
0 − e−

f
h ) .

According to (4.4) and (4.7), the 1-form uwkb
1 = df,huwkb

0 satisfies locally the tan-
gential condition tu = 0 on the boundary.
The local L2 norm of uwkb

1 is of effective order h
1
2+ n−1

4 , if one has in mind the relation

e
Φ
h df,h

[
a(x, h)e−

Φ
h

]
= a(df − dΦ) + hda

= 2a0(x) dxn + hb1(x, h) ,
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where b1(·, h) is a one-form admitting the expansion:

b1(x, h) ∼
+∞∑

k=0

hkbk(x) ,

and a0 satisfies:
a0(0) = 1 .

On the other hand we have

∆(1)
f,huwkb

1 = ∆(1)
f,hdf,huwkb

0 = df,h∆(0)
f,huwkb

0 = O(h∞) e−
Φ
h ,

in a neighborhood of 0.
Moreover, uwkb

1 satisfies up, to O(h∞) e−
f
h , the second boundary condition td∗f,hu = 0.

The relation
d∗f,huwkb

1 = ∆(0)
f,huwkb

0 = O(h∞)e−
Φ
h

gives indeed

(4.8) d∗f,huwkb
1

∣∣
∂Ω

= O(h∞) e−
f
h ,

in the neighborhood of 0 in the boundary.

4.3. Another local Dirichlet realization of ∆(1)
f,h

Let U0 be a local minimum of f
∣∣
∂Ω

with ∂nf(U0) > 0, let x = (x′, xn) be the local
coordinate system defined above, and let x #→ |x| be the Euclidean norm in these
coordinates.
For ρ > 0, we consider the domain

ΩU0,ρ =
{
|x − (0, 1)|2 < ρ2 + 1 , xn < 0

}
,

which has the shape of a thin lens stuck on ∂Ω with radius ρ and thickness O(ρ2).
Its boundary splits into

ΓD := ∂ΩU0,ρ ∩ Ω =
{
|x − (0, 1)|2 = ρ2 + 1, xn ≤ 0

}
,

and

ΓTD := ∂ΩU0,ρ ∩ ∂Ω = {|x′| < ρ, xn = 0} .

On this domain, we introduce the functional space

Λ1H1
0;0,T (ΩU0,ρ) =

{
u ∈ Λ1H1(ΩU0,ρ); tu

∣∣
ΓT D

= 0, u
∣∣
ΓD

= 0
}

.

The Friedrichs extension associated with the quadratic form:

Λ1H1
0;0,T (ΩU0,ρ) " ω #→ DD

g,f,h(ω) = ‖df,hω‖2 +
∥∥d∗f,hω

∥∥2 ,

is denoted by ∆D,DT,(1)
f,h . The domain of ∆D,DT,(1)

f,h is contained in Λ1H2(ΩU0 , ρ
′) for

any 0 < ρ′ < ρ. An element ω ∈ D(∆D,DT,(1)
f,h ) satisfies indeed:

∀η ∈ Λ1H1
0;0,T , 〈∆D,DT,(1)

f,h ω | η〉 = 〈df,hω | df,hη〉 + 〈d∗f,hω | d∗f,hη〉 =: DD
g,f,h(ω, η) .
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By testing with η ∈ C∞
0 (ΩU0,ρ), this gives ∆f,hω ∈ Λ1L2(ΩU0,ρ) and therefore ω

admits a second trace on ΓTD. By testing with any η ∈ C∞
0;0,T (ΩU0,ρ ), we get

td∗f,hω
∣∣
ΓT D

= 0 .

Along ΓTD, ω solves an elliptic boundary value problem ∆(1)
f,hω ∈ Λ1L2, tω = 0,

td∗f,hω = 0, which provides the H2 regularity outside the edges.

Remark 4.3.1. — It is actually possible to characterize the domain, for ρ > 0 small
enough, by:

D(∆D,DT,(1)
f,h ) =

{
u ∈ Λ1H2(ΩU0 , ρ) , tu

∣∣
ΓT D

= 0 , td∗f,hu
∣∣
ΓT D

= 0 ,

and u
∣∣
ΓD

= 0 .
}

For this regularity result it suffices to consider the case f = 0 and h = 1. The
boundary conditions are written for u = u1 dx1 + · · · + un dxn in the form

ui

∣∣
∂ΩU0,ρ

= 0 , for i = 1, . . . , n − 1 ,

un

∣∣
ΓD

= 0 , ∂xnun

∣∣
ΓT D

= 0 ,

while the principal part of ∆(1)
0,h is a scalar Laplace operator, as can be seen from the

Weitzenböck formula. Hence componentwise and at the principal symbol level, the
most difficult case is a Dirichlet-Neumann problem for the operator

∑n
j=1 ∂xig

ij∂xj

according to (3.9) and (3.10). The theory of boundary value problems on domains
with conical singularities ([27]) and edges ([13], [8]) provides the H2-regularity when
ρ < ρlim, where ρlim can be computed explicitly (ρlim = π/2 for this mixed Dirichlet-
Neumann problem). Notice that we do not need this result and that the H2-regularity
away from the edge is sufficient for our analysis.

We now prove the

Proposition 4.3.2. — For ρ > 0 small enough, there exist hρ > 0 and Cρ > 0, such
that the self-adjoint operator ∆D,DT,(1)

f,h satisfies the following properties:
a) For h ∈ (0, hρ], the spectral projection 1[0,h3/2)(∆

D,DT,(1)
f,h ) has rank 1.

b) Any family of L2-normalized eigenvectors (uh)h∈(0,hρ] of ∆D,DT,(1)
f,h such that the

corresponding eigenvalue E(h) is O(h), satisfies

(4.9)
∀ρ′ < ρ, ∀α ∈ Nn, ∃Nα ∈ N, ∃Cα,ρ′ > 0 such that, ∀x ∈ ΩU0,ρ′ ,
∣∣∂α

x uh(x)
∣∣ ≤ Cα,ρ′h−Nα exp

(
−Φ(x)

h

)
.
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c) There exists ερ > 0 such that the first eigenvalue E1(h) of ∆D,DT,(1)
f,h satisfies

E1(h) = O(e−ερ/h) .

d) If uh
1 denotes the eigenvector of ∆D,DT,(1)

f,h associated to eigenvalue E1(h) and
normalized by the condition i∂xn

uh
1(0) = i∂xn

uwkb
1 (0), then

(4.10)
∀ρ′ < ρ, ∀α ∈ Nn, ∀N ∈ N, ∃CN,α,ρ′ > 0 such that, ∀x ∈ ΩU0,ρ′ ,
∣∣∂α

x (uh
1 − uwkb

1 )(x)
∣∣ ≤ CN,α,ρ′hN exp

(
−Φ(x)

h

)
.

Once this is proved, one easily gets rough exponentially small upper bounds for
the mΩ

" first eigenvalues of ∆DT,(")
f,h (# ∈ {0, 1}) on Ω, by constructing quasimodes

suitably localized near each of the critical points.
Our final analysis provides the exact exponential scale with a complete expansion of
the prefactor, and we do not develop this point here.

The next sections are devoted to the proof of Proposition 4.3.2. We now introduce
some specific notations and preliminary results. Again with the coordinate system
(x′, xn) with x′(U0) = 0, xn(U0) = 0, and the normalization f(0) = 0, the function
f
∣∣
ΩU0,ρ0

is extended to Rn
− according to Lemma 3.3.7, so that Assumption 3.3.1

is satisfied with only one tangential critical point at x′ = 0. The corresponding
tangential Dirichlet realization ∆DT,(1)

f̃ ,h
on Λ1L2(Rn

−) has a 1-dimensional kernel and
its second eigenvalue is larger than C−1h6/5.
An ingredient for the proof is a variant of the integration by parts formula of
Lemma 2.3.2.

Lemma 4.3.3. — Let ρ > 0 and let ϕ be a real-valued Lipschitz function on ΩU0,ρ.
The relation

(4.11) Re DD
g,f,h(ω, e2 ϕ

h ω) = h2
∥∥de

ϕ
h ω
∥∥2

Λ2L2 + h2
∥∥d∗e

ϕ
h ω
∥∥2

Λ0L2

+ 〈(|∇f |2 − |∇ϕ|2 + hL∇f + hL∗
∇f )e

ϕ
h ω | e

ϕ
h ω〉Λ1L2

− h

∫

ΓT D

〈ω |ω〉Λ1T∗
σ Ω e2 ϕ(σ)

h

(
∂f

∂n

)
(σ) dσ

holds for any ω ∈ Λ1H1
0;0,T (ΩU0,ρ). Moreover, when ω ∈ D(∆D,DT,(1)

f,h ), the left-hand
side equals Re 〈e2 ϕ

h ∆(1)
f,hω | ω〉.
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Proof. — For ω ∈ Λ1H1
0;0,T (ΩU0,ρ), we have e2ϕ

h ω ∈ Λ1H1
0;0,T (ΩU0,ρ). We compute

DD
g,f,h(ω, e2 ϕ

h ω) = 〈df,hω | df,h(e2 ϕ
h ω)〉 + 〈d∗f,hω | d∗f,h(e2 ϕ

h ω)〉

= 〈df,hω | e
ϕ
h df,h(e

ϕ
h ω)〉 + 〈e

ϕ
h df,hω | dϕ ∧ (e

ϕ
h ω)〉

+ 〈d∗f,hω | e
ϕ
h d∗f,h(e

ϕ
h ω)〉 − 〈e

ϕ
h d∗f,hω | i∇ϕ(e

ϕ
h ω)〉

= 〈df,h(e
ϕ
h ω) | df,h(e

ϕ
h ω)〉 − 〈dϕ ∧ (e

ϕ
h ω) | df,h(e

ϕ
h ω)〉

+ 〈df,h(e
ϕ
h ω) | dϕ ∧ (e

ϕ
h ω)〉 − 〈dϕ ∧ (e

ϕ
h ω) | dϕ ∧ (e

ϕ
h ω)〉

+ 〈d∗f,h(e
ϕ
h ω) | d∗f,h(e

ϕ
h ω)〉 + 〈i∇ϕ(e

ϕ
h ω) | d∗f,h(e

ϕ
h ω)〉

− 〈d∗f,h(e
ϕ
h ω) | i∇ϕ(e

ϕ
h ω)〉 − 〈i∇ϕ(e

ϕ
h ω) | i∇ϕ(e

ϕ
h ω)〉 .

We set ω̃ = e
ϕ
h ω ∈ Λ1H1

0;0,T (ΩU0,ρ). The operator dϕ∧ is the adjoint of i∇ϕ and the
tensor relation

i∇ϕ(dϕ ∧ η) = (i∇ϕdϕ) ∧ η − dϕ ∧ (i∇ϕη) = |∇ϕ|2 η − dϕ ∧ (i∇ϕη)

leads to

DD
g,f,h(ω, e2 ϕ

h ω) = DD
g,f,h(ω̃, ω̃) − 〈|∇ϕ|2 ω̃ | ω̃〉
− 〈dϕ ∧ ω̃ | df,hω̃〉 + 〈df,hω̃ | dϕ ∧ ω̃〉

+ 〈i∇ϕω̃ | d∗f,hω̃〉 − 〈d∗f,hω̃ | i∇ϕω̃〉 .

After taking the real part, we obtain

Re DD
g,f,h(ω, e2 ϕ

h ω) = DD
g,f,h(ω̃, ω̃) − 〈|∇ϕ|2 ω̃ | ω̃〉 .

We conclude by applying Lemma 2.3.2 .

4.4. Exponential decay of eigenvectors of ∆D,DT,(1)
f,h

The pointwise estimate, ∂α
x uh(x) = O(h−Nαe−

Φ(x)
h ) , which is stated in Propo-

sition 4.3.2-b), will be proved in several steps. We will first consider H1-estimates
and deduce afterwards higher order estimates from elliptic regularity. Even for H1-
estimates we need two steps:
1) We prove the exponential decay along the boundary ΓTD by applying Lemma 4.3.3
with a function ϕ similar to 1

2f−.
2) The exponential decay in the interior of ΩU0,ρ is then obtained with ϕ similar to
Φ once the boundary term is well controlled.

Proof of a) and b) in Proposition 4.3.2

Statement a). — Actually it is a simple comparison with the full half-space prob-
lem via Min-Max Principle as we did for Theorem 3.2.3. Any ω ∈ Λ1H1

0;0,T (ΩU0,ρ)
can indeed be viewed as an element of Λ1H1

0,T (Rn
−) by setting ω = 0 on Rn

− \ ΩU0,ρ .
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Statement b). — Let uh ∈ D(∆D,DT,(1)
f,h ) satisfy

∆(1)
f,huh = E(h)uh , E(h) = O(h) ,

∥∥uh
∥∥ = 1 .

We will use the notation
ũh = e

ϕh

h uh .

The integration by parts formula (4.11) will be applied with ϕ = ϕh, where with ϕh

similar to 1
2f− or ϕh similar to Φ. We recall

f(x′, xn) = xn +
1
2
f−(x′) and Φ(x′, xn) = −xn +

1
2
f−(x′) ,

where x′ = 0 is a local minimum for f− with f−(0) = 0. Moreover we have
∇xn ·∇f−(x′) = 0, so that:

|∇f |2 = |∇xn|2 +
1
4
|∇f−|2 .

The proof which follows is somewhat reminiscent of [22], which was dealing with
Schrödinger operators with miniwells. We will first show the decay along the boundary
before we propagate the decay in the normal direction inside Ω.

Step 1: Decay along ΓTD. — We take

ϕh(x) =
1
2
ϕh
−(x′) ,

with

ϕh
−(x′) =

{
f−(x′) − Ch log f−(x′)

h , if f−(x′) > Ch ,
f−(x′) − Ch log C , if f−(x′) ≤ Ch ,

where the constant C > 1 will be fixed later. We associate the sets

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) < Ch} ,

and

Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) > Ch} .

The condition E(h) = O(h), formula (4.11), and the equality |∇ϕh| = 1
2 |∇f−| in Ωh

−
imply the existence of C1 > 0 such that:

C1h
∥∥ũh
∥∥2

Λ1L2(Ωh
−)

≥
∥∥hdũh
∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2
Λ0L2 + 〈|∇xn|2ũh | ũh〉Λ1L2

− h

∫

ΓTD

〈ũh | ũh〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+
1
4
〈(|∇f−|2 − |∇ϕh

−|2 − 4C1h)1Ωh
+
(x)ũh | ũh〉 ,

with C1 determined by f and the upper bound of E(h).
For x ∈ Ωh

−, one immediately gets from the definitions that
∣∣ũh(x)
∣∣ ≤ exp

C

2
|uh(x)| a.e. .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



44 CHAPTER 4. ACCURATE WKB ANALYSIS NEAR THE BOUNDARY FOR ∆
(1)
f,h

We obtain, for a constant C2(C) which may depend on the choice of C,

C2(C)h ≥
∥∥hdũh
∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2
Λ0L2

+ 〈|∇xn|2ũh | ũh〉Λ1L2 − h

∫

ΓT D

〈ũh | ũh〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+
1
4
〈(|∇f−|2 − |∇ϕh

−|2 − 4C1h)1Ωh
+
(x)ũh | ũh〉 + C1h〈1Ωh

−
(x)ũh | ũh〉 .

For x ∈ Ωh
+, we write

∇ϕh
−(x′) = ∇f−(x′)

(
1 − Ch

f−(x′)

)
,

and
1
4
(|∇f−|2 − |∇ϕh

−|2) =
|∇f−|2

4

(
2Ch

f−
− C2h2

f2
−

)
≥ Ch

|∇f−|2

4f−
.

Since there exists C4 > 0, which is determined by f−, such that

C4 ≥ |∇f−(x′)|2

4f−(x′)
≥ C−1

4 ,

we get

∀x ∈ Ωh
+,

1
4
(|∇f−(x)|2 − |∇ϕh

−(x)|2) − C1h ≥
(

C

C4
− C1

)
h .

We obtain for any C ≥ max(1, 2C1C4), the existence of δ(C) > 0 and C3(C) > 0 such
that:

C3(C)h ≥
∥∥hdũh
∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2
Λ0L2

+(1 + 2δ(C)h)〈|∇xn|2ũh | ũh〉Λ1L2

−h

∫

ΓT D

〈ũh | ũh〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ ,

with limC→+∞ δ(C) = +∞.
We now can use (4.11), with ϕ = 0, f = xn, ĥ = h

1+δ(C)h , in order to get, for all
η ∈ Λ1H1

0;0,T (Ω, U0,ρ) ,

(1 + δh)−1 ‖hdη‖2
Λ2L2 + (1 + δh)−1 ‖hd∗η‖2

Λ0L2

+ (1 + δh)〈|∇xn|2 η | η〉 − h

∫

ΓT D

〈η | η〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ ≥ −hĈ ||η||2Λ1L2 ,

with δ = δ(C) and Ĉ independent of C.
This leads, by choosing C large enough and then h0 > 0 small enough, to the existence
of a constant C5 > 0 such that, for all h ∈ (0, h0],

C5h ≥ 1
C5

h3
∥∥ũh
∥∥2

Λ1H1 .
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Since ϕh ≥ 1
2f− + C6h log h, we have proved the existence of N0 > 0 such that:

(4.12)
∥∥∥e

f−
2h uh
∥∥∥

Λ1H1
≤ C7h

−N0 ,

where x′ = 0 is a local minimum for f−, with f−(0) = 0. Note that, since f
∣∣
ΓT D

=
1
2f−, this implies also, using the Trace Theorem,

(4.13)
∥∥∥e

f
h uh
∣∣
ΓT D

∥∥∥
Λ1H1/2(ΓT D)

≤ C8 h−N0 .

Step 2: Normal decay inside Ω. — We follow a similar approach by working with the
normal coordinate xn. We take

ϕh(x) =
1
2
ϕh

+(xn) +
1
2
f−(x′) ,

with

ϕh
+(xn) =

{
2|xn|− Ch log 2|xn|

h , if 2|xn| > Ch ,
2|xn|− Ch log C , if 2|xn| ≤ Ch ,

where the constant C ≥ 1 will be fixed later. We associate the sets

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| < Ch}

and

Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| > Ch} .

The formula (4.11) is used like in Step 1, with ũh = e
ϕh

h uh and E(h) = O(h). The
difference comes from the fact that the boundary term is already estimated with
(4.13).
We have indeed, on the boundary xn = 0, the inequality: e

ϕh

h ≤ e
f
h .

From (4.11), (4.12), (4.13), and the inequality

|ũh(x)| ≤ eC e
f−(x)

2h |uh(x)| , a.e. in Ωh
− ,

we get the existence of C1 > 0, and for any C ≥ 1 of C2(C), s.t. the estimate

C2(C)2h−2N0 ≥ C1h
∥∥ũh
∥∥2

Λ1L2(Ωh
−)

+ C1h
∥∥∥e

f
h u
∥∥∥

2

H1/2(ΓT D ;Λ1T∗ΩU0,ρ)

≥
∥∥hdũh
∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2
Λ0L2 + 〈(|∇f |2 − |∇ϕh|2 − C1h)1Ωh

+
(x)ũh | ũh〉 ,

is satisfied.
For x ∈ Ωh

+ we have

∇ϕh
+ = −2(∇xn)(1 − Ch

|xn|
) ,

and

|∇f |2 −
∣∣∇ϕh
∣∣2 ≥ |∇xn|2 −

1
4
∣∣∇ϕh

+

∣∣2 ≥ Ch

4C3|xn|
.
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We can assume |xn| ≤ 1 in ΩU0,ρ and we take C ≥ 8C1C3. The conclusion is simpler
than in Step 1. By adding the estimated term C1h〈ũh1Ωh

−
(x) |ũh〉, we get

C4h
−2N0 ≥

∥∥hdũh
∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2
Λ0L2 + C1h

∥∥ũh
∥∥

Λ1L2 ,

which gives the existence of C5 and N1 such that:

(4.14)
∥∥∥e

Φ
h uh
∥∥∥

Λ1H1(ΩU0 ,ρ)
≤ C5 h−N1 .

Step 3: Elliptic regularity. — We now set ũh = e
Φ
h uh. For ρ′ < ρ, we take a cut-off

χ ∈ C∞(ΩU0,ρ) with compact support in ΩU0,ρ ∪ ΓTD and such that χ = 1 on a
neighborhood of ΩU0,ρ′ . The form vh = χũh satisfies the boundary value problem

{
vh − ∆vh = rh

0 in Rn
− ,

tvh = 0 and td∗vh = rh
1 on {xn = 0} ,

with
∥∥rh

0

∥∥
Λ1L2(Rn

−)
= O(h−N1) and

∥∥rh
1

∥∥
Λ0H1/2(Rn−1)

= O(h−N1) .

This implies the existence of N1 > 0 such that:
∥∥vh
∥∥

Λ1H2 = O(h−N1) .

We conclude by induction for any finite decreasing sequence (ρk)0≤k≤K and associated
cut-offs χk, with χk = 1 in a neighborhood of ΩU0,ρk and suppχk ⊂ {χk−1 = 1}.

4.5. Small eigenvalues are exponentially small

We now check that the eigenvalue E1(h) of ∆D,DT,(1)
f,h lying in [0, h3/2) is actually

of order O(e−ερ/h), for some ερ > 0. We prove this by comparing with the half-space
problem, for which we know that the first eigenvalue is 0. The Min-Max Principle
or Lemma 2.4.5 are not sufficient here and we need the full accuracy of the Spectral
Theorem.

Proof of Proposition 4.3.2-c). — We assume that ρ > 0 is small enough, so that f
admits an extension f̃ = xn + 1

2 f̃−(x′) on Rn
−, which satisfies Assumption 3.3.4. So

the Laplacian ∆DT,(1)

f̃ ,h
has a one dimension kernel and its second eigenvalue is larger

than Ch6/5. With this function f̃ , we associate the second solution of the eikonal
equation

∣∣∇Φ̃
∣∣2 =
∣∣∇f̃
∣∣2, which has the expression:

Φ̃(x) = −xn +
1
2
f̃−(x′) .

Let uh be a normalized eigenvector of ∆D,DT,(1)
f,h associated with the first eigenvalue

E1(h), which belongs to the interval (0, h3/2]. Let χ ∈ C∞(ΩU0,ρ) be a cut-off function
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with compact support in ΩU0,ρ ∪ ΓTD and such that χ = 1 in a neighborhood of 0.
The form vh = χuh belongs to Λ1H2(Rn

−) and satisfies
{

(∆(1)

f̃ ,h
− E1(h))vh = −h2[∆, χ]uh , in Rn

− ,

tvh = 0 , td∗
f̃ ,h

vh = i∇χuh , on {xn = 0} .

The functions rh
0 = −h2[∆, χ]uh and rh

1 = i∇χuh vanish in a neighborhood V1 of
x = 0. Due to the exponential decay of uh stated in Proposition 4.3.2-b), there exist
C and N0, such that they also satisfy

∣∣rh
j (x)
∣∣ ≤ Ch−N0e−

Φ̃(x)
h .

Due to the Trace Theorem, it is possible to find θ̃h ∈ Λ1H2(Rn
−), such that

tθ̃h = 0 and td∗θ̃h = e
f̃(x)

h i∇χuh ,

with, using the property Φ̃
∣∣
{xn=0} = f̃

∣∣
{xn=0},

∥∥θ̃h
∥∥

Λ1H2 ≤ C h−N0 .

Moreover by possibly taking a smaller neighborhood V1, the form θ̃h can be chosen
so that supp θ̃h ∩ V1 = ∅.
For any given neighborhood of 0, V2 ⊂ V1 there exist c1, c2 > 0 such that

∀x ∈ Rn
− \ V2, (|xn| ≤ c1) ⇒

(
f̃(x) ≥ c2

)
.

With a cut-off χ1 ∈ C∞
0 (] − 1, 1[), χ1 = 1 in a neighborhood of 0, the 1-form θh =

χ1

(
xn
c1

)
e−

f̃(x)
h θ̃h satisfies

tθh = 0 , td∗
f̃ ,h

θh = i∇χuh = rh
1 ,
∥∥θh
∥∥

Λ1H2 = O(e−
c3
h )(4.15)

and supp θh ∩ V1 = ∅ .

Hence the form wh = vh − θh belongs to the domain of ∆DT,(1)

f̃
and solves

(∆DT,(1)

f̃ ,h
− E1(h))wh = rh

2 ,

with
∥∥wh
∥∥

Λ1L2 = 1 + O(e−c3/h) and ‖r2‖Λ1L2 = O(e−c3/h). The Spectral Theorem
then implies that there exists an eigenvalue λ(h) of ∆DT,(1)

f̃ ,h
such that

|E1(h) − λ(h)| = O(e−c3/h) .

The inclusion, σ(∆DT,(1)

f̃ ,h
) \ {0} ⊂ [Ch6/5, +∞), combined with the estimate

E1(h) = O(h3/2), implies λ(h) = 0.
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4.6. Accurate comparison with the WKB solution

We now compare the eigenvector associated with an exponentially small eigenvalue
with its WKB approximation. We adapt the method presented in [16, 20] by following
the same strategy as in Section 4.4. The H1-estimates are done in two steps with ϕh

similar to 1
2f− and then with ϕh similar to Φ. Finally the elliptic regularity is used

for the C∞-estimates.

Proof of Proposition 4.3.2-d). — Let uh
1 ∈ D(∆D,DT,(1)

f,h ) be an eigenvector associated
with the first eigenvalue E1(h) of ∆D,DT,(1)

f,h :

∆D,DT,(1)
f,h uh

1 = E1(h)uh
1 ,
∥∥uh

1

∥∥ = 1 .

According to Proposition 4.3.2-c), we know that E1(h) = O(e−
ερ
h ), with ερ > 0, while

the second eigenvalue of DD,DT,(1)
f,h is larger than h3/2.

By taking ρ > 0 small enough, the WKB approximation uwkb
1 presented in Section 4.2

satisfies 




∆(1)
f,huwkb

1 = O(h∞) e−
Φ(x)

h in ΩU0,ρ ,

tuwkb
1

∣∣
ΓT D

= 0 ,

td∗f,huwkb
1

∣∣
ΓT D

= O(h∞) e−
Φ(x)

h ,

and there exists a c > 0, such that for any ρ′ > 0, we have
∥∥uwkb

1

∥∥
Λ1L2(ΩU0,ρ′ )

∼ ch
n+1
4 .

The cut-off function χ ∈ C∞(ΩU0,ρ) is supported in ΩU0,ρ/2 ∪ΓTD and satisfies χ = 1
on ΩU0,ρ′ , with 0 < ρ′ < ρ/2. Later, we will take ρ′ > 0 small enough, so that χ can
be taken in the form

χ(x′, xn) = χ1(x′)χn(xn) .

By Lemma 2.4.5, the real constant factor c(h) in the truncated WKB approximation
vwkb
1 = c(h)χuwkb

1 can be chosen so that
∥∥vwkb

1 − uh
1

∥∥
Λ1H1 = O(h∞)

and, due to the exponential decay of uh
1 and uwkb

1 ,
∥∥χ(uh

1 − c(h)uwkb
1 )
∥∥

Λ1H1 = O(h∞) .

We set
wh = χ(uh

1 − c(h)uwkb
1 ) .

The 1-form wh satisfies in ΩU0,ρ

(4.16)
(∆(1)

f,h − E1(h))wh = χ(x)(∆(1)
f,h − E1(h))(uh

1 − c(h)uwkb
1 )

+[∆(1)
f,h, χ](uh

1 − c(h)uwkb
1 )

= r̃h
0 e−

Φ(x)
h + rh

0 ,
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where r̃h
0 and rh

0 satisfy, according to Proposition 4.3.2-b),

r̃h
0 = O(h∞) , supp rh

0 ⊂ supp∇χ and rh
0 = O(h−N0)e−

Φ(x)
h .

The last estimate can be done for any Ck0 -norm, with k0 ∈ N.
On the boundary ∂ΩU0,ρ = ΓTD ∪ ΓD, we have similarly

twh
∣∣
ΓTD

= 0, wh
∣∣
ΓD

= 0 ,

and td∗f,hwh
∣∣
ΓT D

= r̃h
1 (x′) e−

f(x)
h + rh

1 ,

with

r̃h
1 = O(h∞) , supp rh

1 ⊂ supp∇χ ∩ ΓTD and rh
1 = O(h−N0)e−

f(x)
h .

With the different choices for ϕh given below, we will use the notation

w̃h = e
ϕh

h wh .

The 1-forms w and w̃ belong to Λ1H2(ΩU0,ρ) and their supports do not meet ΓD.
Hence the integration by parts formula (2.12) can be used in addition to (4.11).

Step 1: Comparison along ΓTD. — Like in the proof of Proposition 4.3.2-b) presented
in Section 4.4, we introduce the sets

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) < Ch} ,

and Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) > Ch} .

For any N ∈ N, we take

ϕh
N =

1
2
ϕh

N,−(x′) ,

with ϕh
N,−(x′) = min

{
ϕh
−(x′) + Nh log h−1 , ψ(x)

}
,

ϕh
−(x′) =

{
f−(x′) − Ch log f−(x′)

h , if f−(x′) > Ch ,
f−(x′) − Ch log C , if f−(x′) ≤ Ch ,

and ψ(x′) = min
{
ϕh
−(y′) + (1 − ε)|f−(x′) − f−(y′)| , y′ ∈ supp∇χ1

}
.

We recall that the cut-off χ writes χ(x′, xn) = χ1(x′)χn(xn). The constant C ≥ 1 will
be fixed at the end like in the proof of Proposition 4.3.2-b). The constants ρ′ ∈ (0, ρ/2)
and ε > 0 are chosen so that, for h ∈ (0, hN,ρ′,ε),

ϕh
N,−(x′) = ϕh

−(x′) + Nh logh−1 in ΩU0,ρ′ .

Note the inequalities

ϕh
N (x) ≤ 1

2
f−(x) + Nh log h−1 in ΩU0,ρ

ϕh
N (x) ≤ 1

2
f−(x) ≤ Φ(x) , if x′ ∈ supp∇χ1 ,

and ϕh
N (x) ≤ 1

2
f−(x) + Nh log h−1 ≤ Φ(x) , if xn ∈ supp χ′

n .
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In particular, we have for h ∈ (0, hN,ρ′,ε)

ϕh
N (x) ≤ Φ(x) , for x ∈ supp∇χ ,

which implies
∥∥∥∥e

ϕh
N
h rh

0

∥∥∥∥
Λ1L2

+
∥∥∥∥e

ϕh
N
h rh

1

∥∥∥∥
Λ0L2(ΓT D)

= ON (h−N0) .

We apply the integration by parts formula (4.11), where the left-hand side is computed

with (2.12), and we obtain for the form w̃h = e
ϕh

N
h wh:

∥∥∥∥r̃
h
0 + e

ϕh
N (x)

h rh
0

∥∥∥∥
Λ1L2

∥∥∥w̃h
∥∥∥

Λ1L2
+
∥∥∥∥r̃

h
1 + e

ϕh
N (x)

h rh
1

∥∥∥∥
Λ0L2(ΓT D)

∥∥w̃h
∥∥

Λ1L2(ΓT D)

≥
∥∥hdw̃h

∥∥2
Λ2L2 +

∥∥hd∗w̃h
∥∥2

Λ0L2

+〈|∇xn|2w̃h | w̃h〉Λ1L2 − h

∫

ΓT D

〈w̃h | w̃h〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+
1
4
〈(|∇f−|2 − |∇ϕh

N,−|2 − 4C1h)1Ωh
+
(x)w̃h | w̃h〉 ,

where the constant C1 > 0 is determined by f and r̃h
" = O(h∞) for # = 1, 2.

In Ωh
− the weight e

ϕh
N (x)

h is bounded by C2(C)h−N and this provides
∥∥w̃h
∥∥

Λ1L2(Ωh
−)

≤ C2(C)h−N
∥∥wh
∥∥

Λ1L2(Ωh
−)

≤ C3(C, N) ,

due to
∥∥wh
∥∥

Λ1H1 = O(h∞).
Hence we can add to both sides of the previous inequality the term C1h

∥∥w̃h
∥∥2

Λ1L2(Ωh
−)

,
which is controlled in the left-hand side by a (C, N)-dependent constant. We obtain

C3(C, N)(h−N0
∥∥w̃h
∥∥

Λ1H1 + 1) ≥
∥∥hdw̃h

∥∥2
Λ2L2 +

∥∥hd∗w̃h
∥∥2

Λ0L2

+〈|∇xn|2w̃h | w̃h〉Λ1L2 − h

∫

ΓT D

〈w̃h | w̃h〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+
1
4
〈(|∇f−|2 − |∇ϕh

N,−|2 − 4C1h)1Ωh
+
(x)w̃h | w̃h〉 + C1h〈1Ωh

−
(x)w̃h | w̃h〉 .

In Ωh
+, the point x fulfills almost surely one of the two possibilities:

– Either ∇ϕh
N,− = ∇ψ, and we get

1
4
(|∇f−|2 −

∣∣∇ϕh
N,−
∣∣2) ≥ 2ε − ε2

4
|∇f−(x′)|2 ≥ δρ,ε > 0 ,

where the last lower bound is due to the fact that ϕN,−(x) = ψ(x) cannot occur
in a neighborhood of x′ = 0 for ε > 0 small enough and h ∈ (0, hN,ρ′,ε);
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– or ∇ϕh
N,− = ∇f−(1− Ch

f−(x′) ), and we get like in the proof of Proposition 4.3.2-b)

1
4
(|∇f−|2 −

∣∣∇ϕh
N,−
∣∣2) ≥ C

C4
h .

Taking C ≥ max(1, 2C1C4) and h ∈ (0, hN,ρ′,ε], with hN,ρ′,ε > 0 small enough, leads
to

C3(C, N)(h−N0
∥∥w̃h
∥∥

Λ1H1 + 1) ≥
∥∥hdw̃h

∥∥2
Λ2L2 +

∥∥hd∗w̃h
∥∥2

Λ0L2 + 〈|∇xn|2w̃h | w̃h〉Λ1L2

− h

∫

ΓTD

〈w̃h | w̃h〉Λ1T∗
σ Ω

(
∂xn

∂n

)
(σ) dσ + 2δ(C)h

∥∥w̃h
∥∥2

Λ1L2 .

After treating the right-hand side like in the proof of Proposition 4.3.2-b)-Step 1, we
obtain, for a possibly larger N0,

∥∥w̃h
∥∥

Λ1H1(ΩU0,ρ)
≤ C4 h−N0 .

Our choice of (ε, ρ′) imply

∀x ∈ ΩU0,ρ′ , ϕh
N ≥ f(x) + Nh logh−1 − C log

C5

h
.

We have proved the existence of N1 and ρ′0, such that, for any N ∈ N and ρ′ ∈ (0, ρ′0],
there exists hN,ρ′ > 0 and CN,ρ′ > 0, such that

∥∥∥e
f−
2h (uh

1 − c(h)uwkb
1 )
∥∥∥

Λ1H1(ΩU0,ρ′ )
≤ CN,ρ′ hN−N1

holds for any h ∈ (0, hN,ρ′). This last estimate and Φ
∣∣
ΓT D

= f
∣∣
ΓT D

= 1
2f−
∣∣
ΓTD

imply
∥∥∥e

Φ
h (uh

1 − c(h)uwkb
1 )
∥∥∥

Λ1H1/2(ΩU0,ρ′∩ΓT D)
= O(h∞) .

Step 2: Comparison in the normal direction. — After replacing ρ′ by ρ, Step 1
provides the estimate

(4.17)
∥∥∥e

f
h (uh

1 − c(h)uwkb
1 )
∥∥∥

Λ1H1
= O(h∞) .

We work in ΩU0,ρ with the above estimate and ρ′ ∈ (0, ρ/2) will be taken again small
enough.
In order to get the interior estimate with the weight e

Φ
h , we modify the previous

analysis like in the proof of Proposition 4.3.2-b). The sets Ωh
± are now given by

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| < Ch} ,

and Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| > Ch} .
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(1)
f,h

The function ϕh
N , N ∈ N, is given by

ϕh
N (x) = min

{
ϕh(x) + Nh log h−1, ψ(x)

}
,

with ϕh(x) =
1
2
ϕh

+(xn) +
1
2
f−(x′) ,

ϕh
+(xn) =

{
2|xn|− Ch log 2|xn|

h , if 2|xn| > Ch ,
2|xn|− Ch log C , if 2|xn| ≤ Ch ,

and ψ(x) = min
{
ϕh(y) + (1 − ε)dAg(x, y), y ∈ supp∇χ

}
.

We recall that the Agmon distance dAg(x, y) is the distance between x and y for the
metric |∇f |2 dx2 and Φ(x) = dAg(x, U0)).
Again, the constant C ≥ 1 will be fixed in the end like in the proof of Proposition 4.3.2-
b), while the constants ρ′ ∈ (0, ρ/2) and ε > 0 are chosen so that

ϕh
N (x) = ϕh(x) + Nh logh−1 in ΩU0,ρ′ .

Now we have the inequalities

ϕh
N (x) ≤ Φ(x) + Nh logh−1 in ΩU0,ρ

and ϕh
N (x) ≤ Φ(x) in supp∇χ .

Hence the estimate,
∥∥∥∥e

ϕh
N
h rh

0

∥∥∥∥
Λ1L2

+
∥∥∥∥e

ϕh
N
h rh

1

∥∥∥∥
Λ0L2(ΓTD)

= O(h−N0) ,

is still valid.
Inequality (4.17) implies that the L2-norm of the trace of w̃h on ΓTD is O(h∞) and
provides

∥∥w̃h
∥∥

Λ1L2(Ωh
−)

≤ C2(C)h−N
∥∥∥e

f−
2h wh
∥∥∥

Λ1L2(Ωh
−)

≤ 1
2
C3(C, N) .

With these estimates, the integration by parts formula (4.11) and (2.12) lead to

C3(C, N)(h−N0
∥∥w̃h
∥∥

Λ1L2 + 1) ≥
∥∥hdw̃h

∥∥2
Λ2L2 +

∥∥hd∗w̃h
∥∥2

Λ0L2

+ 〈(|∇f |2 − |∇ϕh
N |2 − C1h)1Ωh

+
(x)w̃h | w̃h〉 + C1h

∥∥w̃h
∥∥2

Λ1L2(Ωh
−)

.

Finally, for almost all x ∈ ΩU0,ρ we have:
either: ∇ϕh

N (x) = ∇ψ(x)
and

|∇f |2 −
∣∣∇ϕh

N

∣∣2 = (2ε − ε2) |∇f(x)|2 ≥ δρ,ε > 0 ;

or: ∇ϕh
N (x) = ∇ϕh(x)

and we get like in the proof of Proposition 4.3.2-b)

|∇f |2 −
∣∣∇ϕh
∣∣2 ≥ 1 − 1

4
∣∣∇ϕh

+(xn)
∣∣2 ≥ Ch

4|xn|
.
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By assuming |xn|≤1 and by taking C≥max(8C1, 1), we get that,
∥∥∥∥e

ϕh
N
h wh

∥∥∥∥=O(h−N0),

for some N0 > 0.
Like in Step 1, this leads to

∥∥∥e
Φ
h (uh

1 − c(h)uwkb
1 )
∥∥∥

Λ1H1(ΩU0,ρ′ )
= O(h∞) ,

for ρ′ ∈ (0, ρ/2) small enough.

Step 3. — The estimates in higher order Sobolev spaces are done like in the proof of
Proposition 4.3.2-b) by a bootstrap argument after writing a boundary value problem
for χ(uh

1 − c(h)uwkb
1 ) in Rn

−.
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CHAPTER 5

SADDLE SETS AND MAIN ASSUMPTIONS

5.1. Preliminaries

Here we adapt to the case with boundary the method of selecting the proper critical
points with index 1 that we used in [18]. Some definitions and intermediate quantities
have to be modified in order to take into account the effect of the boundary. We recall
that the intuition for getting the good labelling of local minima, which is useful even
to state properly the assumptions and results, comes from the probabilistic approach.
The local minima have to be labelled according to the decreasing order of exit times.
We refer to [4], [3] and [10] for details.

The existence of such a labelling is an assumption which is generically satisfied.
After this, it is possible to construct accurately quasimodes leading, with the help
of the Witten complex structure, to accurate asymptotic expansions of the low lying
eigenvalues.

5.2. Saddle sets

We recall that we work here on a compact connected oriented Riemannian mani-
fold Ω = Ω ∪ ∂Ω with boundary and that the function f satisfies Assumption 3.2.1.
According to our preliminary results on the Witten Laplacian ∆DT

f,h in Theorem 3.2.3,
we introduce the following definition of generalized critical points with index 1.

Definition 5.2.1. — A point U ∈ Ω will be called a generalized critical point of f
with index 1 if:

– either U ∈ Ω and U is a critical point of f with index 1,
– or U ∈ ∂Ω and U is a local minimum of f

∣∣
∂Ω

, such that ∂nf(U) > 0 (n being
the outgoing normal vector).
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The set of generalized critical points with index 1 is denoted by U (1). Meanwhile
U (0) denotes the set of local minima of f

∣∣
Ω
. From now on we will use the notation

(5.1) mp = #U (p) , for p = 0, 1 ,

instead of mΩ
p .

Finally it is convenient to call U the union of all critical points of f and f
∣∣
∂Ω

.
The saddle set (or set of saddle points) will be defined in the same spirit as in [18]

and chosen in U (1). We need some notations.

Definition 5.2.2. — a) For any E ⊂ Ω, the set of connected components(1) of E is
denoted by Conn(E).
b) For any A, B ⊂ Ω, H(A, B) denotes the quantity

(5.2)
H(A, B) = inf {c ∈ (−∞, +∞), ∃C ∈ Conn (f−1((−∞, c])) ,

C ∩ A += ∅ and C ∩ B += ∅} .

Remark 5.2.3. — When A (resp. B) is reduced to a single point, A = {x0}, (resp.
B = {y0}) we simply write H(x0, B) (resp. H(A, y0)) .

This quantity H(A, B) is the least height to be reached to go from A to B. A
simple result which was checked in [18] in a slightly more general framework is the

Proposition 5.2.4. — When A and B are closed nonempty subsets of Ω, H(A, B)
is a minimum:

∃C ∈ Conn
(
f−1((−∞, H(A, B)])

)
, C ∩ A += ∅ and C ∩ B += ∅ .

We are now able to introduce the right notion of saddle set.

Definition 5.2.5. — Under Assumption 3.2.1, let A and B be two closed subsets of
Ω. We say that Z ⊂ Ω is a saddle set for (A, B), if it is not empty and satisfies the
following conditions:

(sp1) Z ⊂ U (1) ∩ f−1({H(A, B)}) ,

(sp2) {C ∈ Conn (f−1((−∞, H(A, B)]) \ Z) , C ∩ A += ∅, C ∩ B += ∅} = ∅ .

If we compare this definition to the definition of “strict” saddle set in [18], we note
that we have dropped the conditions

Z ∩ A = ∅ and Z ∩ B = ∅ .

We will effectively use the notion with ∂Ω ⊂ B and so the saddle set can meet B.
In order to check that this definition is coherent, it is useful to recall a few remarks

coming from the local analysis of a Morse function which satisfies Assumption 3.2.1.

(1)We remind that the connected components are non-empty closed subsets relatively to the induced

topology on E and therefore, Ω being assumed compact, they are compact if E is a closed subset

of Ω.
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Local structure of the level sets of a Morse function. — In order to analyze the local
situation near a point x0 of Ω, let us introduce:

A<
f (x0) :=

{
x ∈ Ω ; f(x) < f(x0)

}
∩ Bx0 ,

where Bx0 is a ball centered at x0. Similarly, we can introduce

A≤
f (x0) :=

{
x ∈ Ω ; f(x) ≤ f(x0)

}
∩ Bx0 .

Interior points:
First we observe that, near a non critical point x0 ∈ Ω of f , one can find Bx0 and a
set of local coordinates such that

A<
f (x0) = {y1 < 0} ∩ Bx0 .

Secondly, if x0 is a critical point of index p, then there exists a ball Bx0 around x0

and a set of local coordinates centered at x0 such that

A<
f (x0) =

{
−

p∑

"=1

y2
" +

n∑

"=p+1

y2
" < 0

}
∩ Bx0 ,

and

A≤
f (x0) =

{
−

p∑

"=1

y2
" +

n∑

"=p+1

y2
" ≤ 0

}
∩ Bx0 .

We now observe that

1. When p = 0 (local minimum), A<
f (x0) is empty and A≤

f (x0) is reduced to {x0}.
2. When p = 1, A<

f (x0) has two connected components and x0 belongs to the
closure of each of the two components. This property is crucial in the discussion
of (sp2).

3. When p ≥ 2, A<
f (x0) is (arcwise) connected.

Points on the boundary:
If x0 belongs to ∂Ω, Assumption 3.2.1 leads to two cases:
First case.
If x0 is not a critical point of f

∣∣
∂Ω

, then the hypersurfaces {x | f(x) = f(x0)} and ∂Ω
intersect transversally in a neighborhood of x0. Hence there is a ball Bx0 around x0

and a set of local coordinates such that

A<
f (x0) = {y1 < 0, yn ≤ 0} ∩ Bx0 ,

and
A≤

f (x0) = {y1 ≤ 0, yn ≤ 0} ∩ Bx0 ,

with Ω ∩ Bx0 = {yn < 0} ∩ Bx0 .
Second case.
If x0 is a critical point of f

∣∣
∂Ω

with index p − 1 and with ±∂nf(x0) > 0, there are
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local coordinates (y1, . . . , yn−1, yn), constructed from the relations (3.23)–(3.26), such
that (y1, . . . , yn−1) are Morse coordinates for f

∣∣
∂Ω

and such that

A<
f (x0) =

{
±yn −

p−1∑

i=1

y2
i +

n−1∑

i=p

y2
i < 0 , yn ≤ 0

}
∩ Bx0 ,

and

A≤
f (x0) =

{
±yn −

p−1∑

i=1

y2
i +

n−1∑

i=p

y2
i ≤ 0 , yn ≤ 0

}
∩ Bx0 .

These local models permit to see that
1. If x0 is a local minimum of f

∣∣
∂Ω

such that ∂nf(x0) < 0, then A<
f (x0) = ∅ and

A≤
f (x0) = {x0}.

2. If x0 is a local minimum of f
∣∣
∂Ω

such that ∂nf(x0) > 0, then A<
f (x0)∩ ∂Ω = ∅

and A≤
f (x0) ∩ ∂Ω = {x0}.

3. In all other cases, A<
f (x0) admits one or two connected components with a non-

empty intersection with ∂Ω (two components if p = 2 and ∂nf(x0) < 0 and one
in all other cases).

Proposition 5.2.6. — If A and B1 are disjoint non-empty subsets of the set of the
local minima of f in Ω, then the pair (A, B), with B = B1 ∪ ∂Ω, admits a saddle set.

Proof. — We have to prove that a set C, belonging to Conn ( f−1( (−∞, H(A, B)] ) )
and satisfying C ∩ A += ∅, C ∩ B += ∅ contains an element z ∈ U (1) such that
f(z) = H(A, B). Then it suffices to take Z = U (1) ∩ f−1((−∞, H(A, B)]).
Let C be a compact connected component of f−1((−∞, H(A, B)]) in Ω. Since f is a
Morse function, there are two possibilities, resulting from the previous local analysis
of f and of the connectedness of C:

– Either it is reduced to one point which is a local minimum of f in Ω,
– or it is the closure of a finite union of bounded connected components Ωi of

f−1 ((−∞, H(A, B))). Note that the Ωi are open subsets of Ω.
The first case cannot occur. Indeed C ∩A += ∅ and C ∩B += ∅ would imply that the
point xC (such that C = {xC}) is a local minimum (xC ∈ A ⊂ Ω) and belongs to ∂Ω
(xC ∈ B \ B1 ⊂ ∂Ω).
Hence, we are in the second case and we have

C = ∪N
i=1Ωi ,

where Ω1, . . . , ΩN are bounded connected components of f−1 ( (−∞, H(A, B)) ).
Every x ∈ A ∩ C (resp. x ∈ B ∩ C) belongs to some Ωi. The Ωi are labelled such
that, for all i ∈ {1, . . . , M}, A∩Ωi += ∅, and for all i ∈ {M + 1, . . . , N}, A∩Ωi = ∅.
We have

A ∩ C ⊂
M
∪

i=1
Ωi and B1 ∩ C ⊂

N
∪

i=M+1
Ωi .
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There are several cases:
If C ⊂ ∪M

i=1 Ωi, then C∩B1 = ∅ and C∩B += ∅ imply that there exist i ∈ {1, . . . , M}
and x0 ∈ Ω such that x0 ∈ Ωi ∩ ∂Ω. This implies first f(x0) = H(A, B) and the local
description of A<

f (x0) implies x0 ∈ U (1)∩∂Ω. If C +⊂ ∪M
i=1 Ωi, then C∩∪N

i=M+1 Ωi += ∅.
Since C is connected, we have

C ∩ (
M
∪

i=1
Ωi) ∩
(

N
∪

j=M+1
Ωj

)
+= ∅ .

Therefore, there exist i ≤ M and j ≥ M + 1 such that C ∩ Ωi ∩ Ωj += ∅. Assume
x0 ∈ C ∩Ωi ∩Ωj and note that i += j implies f(x0) = H(A, B). The local description
of A≤

f (x0) says that x0 ∈ ∂Ω is possible only if it is a critical point of f
∣∣
∂Ω

with
index 1. But again this cannot occur because Ωi ∩ A<

f (x0) would contain a point
x1 ∈ ∂Ω. Hence x0 ∈ Ω. The local description of A<

f (x0) shows that x0 has to belong
to U (1).

On the uniqueness of the saddle set. — Like in the boundaryless case studied in
[18], it is not possible to give a satisfactory definition of a unique saddle set and we
introduce a new definition which explicitly specifies this case.

Definition 5.2.7. — Let A, B be closed nonempty disjoint subsets of Ω. The point
z ∈ U (1) is said to be a unique (one point)-saddle set(2) for the pair (A, B) if

( ∩
C∈C(A,B)

C) ∩
[
U (1) ∩ f−1(H(A, B))

]
= {z} ,

where C(A, B) denotes the set of closed connected sets C ⊂ f−1((−∞, H(A, B)]),
such that C ∩ A += ∅ and C ∩ B += ∅.

5.3. Main assumption, notations and first consequences

We now give the main assumption like in [18] and inspired by [3], which ensures
that each exponentially small eigenvalue of ∆(0)

f,h is simple, with a different asymptotic
behavior.
We set here

C0 = ∂Ω .

Assumption 5.3.1. — Under Assumption 3.2.1, there exists a labelling of the set of
the local minima of f U (0) =

{
U (0)

1 , . . . , U (0)
m0

}
such that, by setting

Ck =
{
U (0)

k , . . . , U (0)
1

}
∪ C0 ,

(2)or more shortly, a unique saddle point,
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we have:

i) For all k ∈ {1, . . . , m0}, U (0)
k is the unique minimizer of

H(U, Ck \ {U}) − f(U), U ∈ Ck \ C0 .

ii) For all k ∈ {1, . . . , m0}, the pair
(
{U (0)

k }, Ck−1

)
admits a unique (one point)-

saddle set {z∗k}.

Remark 5.3.2. — Like in [18], it is possible to check that this hypothesis is generi-
cally satisfied. More precisely, it is satisfied if all the critical values of f are distinct
and all the quantities f(U (1))−f(U (0)), with U (1) ∈ U (1) and U (0) ∈ U (0) are distinct.
We refer the reader to [18].

By its definition, the point z∗k is a generalized critical point with index 1, z∗k ∈ U (1).

Definition 5.3.3 (The map j). — If the generalized critical points of index 1 are
numbered U (1)

j , j = 1, . . . , m1, we define the application k → j(k) on {1, . . . , m0} by:

(5.3) U (1)
j(k) = z∗k .

Definition 5.3.4. — Under Assumption 5.3.1 and for k ∈ {1, . . . , m0}, we denote
by Ek the connected component of U (0)

k in

f−1((−∞, f(U (1)
j(k))]) \ {U

(1)
j(k)} .

Proposition 5.3.5. — Under Assumption 5.3.1, the following properties are satis-
fied:
a) The sequence

(
f(U (1)

j(k)) − f(U (0)
k )
)

k∈{1,...,m0}
is strictly decreasing.

b) The set Ek is a relatively compact subset of f−1((−∞, f(U (1)
j(k))]) and

Ek = Ek ∪
{
U (1)

j(k)

}
while Ek ∩ ∂Ω ⊂

{
U (1)

j(k)

}
.

c) For any (k, j) ∈ {1, . . . , m0}× {1, . . . , m1}, the relation U (1)
j ∈ Ek implies

either (j = j(k′) for some k′ > k) or j +∈ j({1, . . . , m0}) .

d) For any k += k′ ∈ {1, . . . , m0}, the relation U (0)
k′ ∈ Ek implies

(
k′ > k and f(U (0)

k′ ) > f(U (0)
k )
)

.

e) The application j : {1, . . . , m0} → {1, . . . , m1} is injective.
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Proof
a) The condition i) of Assumption 5.3.1 gives

f(U (1)
j(k)) − f(U (0)

k ) = H(U (0)
k , Ck \ {U (0)

k }) − f(U (0)
k )

< H(U (0)
k−1, Ck \ {U (0)

k−1}) − f(U (0)
k−1)

≤ H(U (0)
k−1, Ck−1 \ {U (0)

k−1}) − f(U (0)
k−1)

= f(U (1)
j(k−1)) − f(U (0)

k−1) .

b) It suffices to consider the local description of A≤
f (U (1)

j(k)) and A<
f (U (1)

j(k)) in the two

cases U (1)
j(k) ∈ Ω and U (1)

j(k) ∈ ∂Ω. The last statement comes from C0 = ∂Ω and the

assumed uniqueness of a saddle point between U (0)
k and Ck−1 ⊃ C0.

c) Assume U (1)
j(k′) ∈ Ek.

Since U (1)
j(k) +∈ Ek, one has k += k′. Moreover the inequality f(U (1)

j(k′)) ≤ f(U (1)
j(k))

implies that the connected component of f−1((−∞, f(U (1)
j(k′))]), which contains U (1)

j(k′)

is contained in Ek. Hence Ek contains U (0)
k and U (0)

k′ . Finally Ek is modified into
a closed connected set Êk lying in f−1((−∞, f(U (1)

j(k))]) \
{

U (1)
j(k)

}
in the following

way. Take the coordinates (x1, . . . , xn) around U (1)
j(k) which are Morse coordinates if

U (1)
j(k) ∈ Ω and such that f(x) − f(U (1)

j(k)) = xn +
∑n−1

j=1 x2
j , if U (1)

j(k) ∈ ∂Ω. Consider,
for ρ > 0 small enough, Ek,ρ := Ek ∩ {|x| ≤ ρ} and its radial projection on Ered

k,ρ :=
Ek ∩ {|x| = ρ}. Then Êk,ρ := (Ek \ Ek,ρ) ∪ Ered

k,ρ is closed and can be considered as
the image of Ek by a continuous application. Hence it is connected. We have found
a closed connected set Êk,ρ ∈ Ω lying in Ek ⊂ f−1((−∞, f(U (1)

j(k))]), which contains

U (0)
k and U (0)

k′ , for k′ += k, and does not contain U (1)
j(k). Therefore one cannot have

k′ ≤ k, because this would contradict the assumption that U (1)
j(k) is the unique saddle

point between U (0)
k and Ck−1 (Assumption 5.3.1-ii) and Definition 5.2.7). Indeed the

existence of another saddle point is obtained by using Proposition 5.2.6 by slightly
increasing the value of f(U (1)

j(k)). Hence, the only possibility is k′ > k.

d) Assume U (0)
k′ ∈ Ek with k += k′. By the same argument as for c), one then takes a

closed connected set Ck,k′ ⊂ Ek ⊂ f−1((−∞, f(U (1)
j(k))]) such that U (0)

k , U (0)
k′ ∈ Ck,k′

and U (1)
j(k) +∈ Ck,k′ . This implies k′ > k.

Assume now by contradiction that

{
k′ > k, U (0)

k′ ∈ Ek and f(U (0)
k′ ) ≤ f(U (0)

k )
}
+= ∅ ,

and let k0 be its smallest element.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



62 CHAPTER 5. SADDLE SETS AND MAIN ASSUMPTIONS

We deduce from the existence of Ck,k0 as a closed connected subset of
Ek ⊂ f−1((−∞, f(U (1)

j(k))]) containing U (0)
k and U (0)

k0
, the inequality

f(U (1)
j(k0)) = H(U (0)

k0
, Ck0−1) ≤ f(U (1)

j(k)) .

Since the connected component C of U (1)
j(k0) in f−1((−∞, f(U (1)

j(k0))]) contains U (0)
k0

and a point in Ck0−1, it is contained in Ek and Ek contains a point of Ck0−1. As a
consequence of b), this point cannot belong to C0.
Hence there exists k1 < k0 such that U (0)

k1
∈ C ⊂ Ek. Finally, the condition i) of

Assumption 5.3.1 for k0 gives

f(U (1)
j(k0)) − f(U (0)

k0
) = H(U (0)

k0
, Ck0−1) − f(U (0)

k0
)

< H(U (0)
k1

, Ck0 \ {U
(0)
k1

}) − f(U (0)
k1

)
≤ f(U (1)

j(k0)) − f(U (0)
k1

) .

For the last inequality we used the existence of a connected set C containing U (0)
k1

and
the point U (0)

k0
∈ Ck0 \ {U

(0)
k1

} such that f(C) ∈ (−∞, f(U (1)
j(k))], with the definition of

H(U (0)
k1

, Ck0 \ {U
(0)
k1

}).
Hence we obtain

f(U (0)
k1

) < f(U (0)
k0

) ≤ f(U (0)
k ) ,

with k1 < k0 and U (0)
k1

∈ Ek in contradiction with the definition of k0. Hence we have
proved

∀k′ > k, (U (0)
k′ ∈ Ek) ⇒

(
f(U (0)

k′ ) > f(U (0)
k )
)

.

e) Assume j(k) = j(k′). The point U (1)
j(k) = U (1)

j(k′) ∈ U (1) is the unique saddle point

for (U (0)
k , Ck−1) and for (U (0)

k′ , Ck′−1).
Then we have

either Ek = Ek′ ,

or ∃k1 < k′, U (0)
k1

∈ Ek and ∃k2 < k, U (0)
k2

∈ Ek′ .

According to d), the first case implies

k ≤ k′ and k′ ≤ k ,

while the second case gives

k ≤ k1 < k′ and k′ ≤ k2 < k .

Hence only the first case is possible with k′ = k.
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Like in the boundaryless case, we associate with every U (0)
k (k ∈ {1, . . . , m0}) a

quasimode for ∆DT,(0)
f,h which is approximately supported in Ek, while the quasimodes

for ∆DT,(1)
f,h will be supported in the balls B(U (1)

j , 2 ε1), j ∈ {1, . . . , m1}. A ball
B(U, ρ) , with U ∈ Ω and ρ > 0, is a geodesic ball and the geodesic distance is
denoted by dΩ. The parameter ε1 > 0 is fixed so that:

– dΩ(U, U ′) ≥ 10 ε1 for U , U ′ ∈ U , U += U ′ .
– For all U ∈ U and all k ∈ {1, . . . , m0}, U +∈ Ek implies

dΩ(U, Ek) ≥ 10 ε1 .

– The construction of the WKB-approximation of Section 4.6 is possible in the
ball B(U (1)

j , 2 ε1). If U (1)
j is a boundary point, this means the introduction of

the coordinates (x′, xn) and the existence of Φ.
The parameter ε1 > 0 will be kept fixed, while we need another parameter ε ∈ (0, ε0),
which has to be modified at each step of the final induction.

According to Proposition 5.3.5-b), Assumption 5.3.1 implies that Ek intersects ∂Ω
at most at one point:

Ek ∩ ∂Ω ⊂
{
U (1)

j(k)

}
.

The construction presented in [18] has to be adapted when this intersection is not
empty and we focus on these changes.

For every k ∈ {1, . . . , m0}, we introduce the open set

Ωk =
◦

Ek ∪
(

∪
U∈U∩∂Ek, U -=U(1)

j(k)

B(U, 3 ε1)

)
,

which satisfies

Ωk = Ek ∪ {U (1)
j(k)} ∪

(
∪

U∈U∩∂Ek, U -=U(1)
j(k)

B(U, 3 ε1)

)
.
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For ε > 0, this set Ωk is modified as

Ω̃k(ε, δ) =
{
x ∈ Ω, dΩ

(
x, Ωk \ B(U (1)

j(k), ε)
)

< δ
}
∪ B(U (1)

j(k), ε) ,

with δ ∈ (0, εε), δε > 0 small enough.
The cut-off function χk,ε ∈ C∞

0 (Ω), 0 ≤ χk,ε ≤ 1 is chosen so that

supp χk,ε ⊂ Ω̃k(ε, δε) and χk,ε

∣∣∣
eΩk(ε,δε/2)\B(U(1)

j(k),ε)
= 1 .

Around U (1)
j(k), the cut-off function χk,ε is chosen (more accurately below) so that

U (1)
j(k) +∈ supp χk,ε and

(6.1) ∀x ∈ B(U (1)
j(k), ε) ,

(
χk,ε(x) += 0 , and f(x) < f(U (1)

j(k))
)
⇒ (x ∈

◦
Ek ⊂ Ωk) .

Like in [18] we deduce from Proposition 5.3.5 the following properties for χk,ε.

Proposition 6.1. — By taking δ = δε with ε ∈ (0, ε0], 0 < ε0 ≤ ε1 small enough,
the cut-off functions χk,ε (k ∈ {1, . . . , m0}) satisfy the following properties:

a) If x belongs to supp χk,ε and f(x) < f(U (1)
j(k)), then x ∈

◦
Ek.

b) There exist C > 0 and, for any ε ∈ (0, ε0], a constant Cε > 0, such that, for
x ∈ supp∇χk,ε,

either x +∈ B(U (1)
j(k), ε) and f(U (1)

j(k)) + C−1
ε ≤ f(x) ≤ f(U (1)

j(k)) + Cε ,

or x ∈ B(U (1)
j(k), ε) and

∣∣∣f(x) − f(U (1)
j(k))
∣∣∣ ≤ Cε .

c) For any U ∈ U , U += U (1)
j(k), the distance dΩ(U, supp∇χk,ε) is bounded from

below by 3ε1 > 0. If in addition U ∈ supp χk,ε, then U ∈ Ek.
d) If, for some k′ ∈ {1, . . . , m0}, U (0)

k′ belongs to supp χk,ε, then k′ ≥ k and

f(U (0)
k′ ) > f(U (0)

k ), f(U (1)
j(k′)) ≤ f(U1

j(k)) , if k += k′ .

e) For any j ∈ {1, . . . , m1}, such that U (1)
j ∈ supp χk,ε,

either j +∈ j ({1, . . . , m0}) ,

or j = j(k′) , for some k′ ≥ k and U (0)
k′ ∈ supp χk,ε .

The cut-off function χk,ε is used in the construction of quasi-modes for ∆DT,(0)
f,h .

Like in the boundaryless case, the construction of quasi-modes for ∆DT,(1)
f,h will rely

on the approximation by the Dirichlet problem in small neighborhoods of U (1)
j , j ∈

{1, . . . , m1}. For interior points U (1)
j ∈ Ω, this neighborhood is B(U (1)

j , 2ε1). For
points U (1)

j in the boundary ∂Ω, this Dirichlet realization is ∆D,DT,(1)
f,h , which was

studied in Section 4.6 and associated with the neighborhood Ω
U

(1)
j ,ρ

with ρ > 0 small

enough. Once ρ > 0 is fixed uniformly for all U (1)
j ∈ ∂Ω, the parameter ε1 > 0 is
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reduced so that B(U (1)
j , 2ε1) ⊂ ΩU0,ρ for all U (1)

j ∈ ∂Ω. For all j ∈ {1, . . . , m1},
uj denotes a normalized eigenvector associated with the first (exponentially small)
eigenvalue of this Dirichlet realization. The cut-off function θj ∈ C∞

0 (B(U (1)
j , 2ε1)) is

taken such that θj = 1 on B(U (1)
j , ε1).

Note that the function χk,ε depends on ε ∈ (0, ε0], while θj is kept fixed like ε1 > 0.

Definition 6.2. — For any k ∈ {1, . . . , m0}, the (ε, h)-dependent function ψ(0)
k is

defined by

ψ(0)
k (x) =

∥∥∥χk,ε(x)e−(f(x)−f(U
(0)
k ))/h
∥∥∥
−1

χk,ε(x)e−(f(x)−f(U
(0)
k ))/h .

For any j ∈ {1, . . . , m1}, the h-dependent 1-form ψ(1)
j is defined by

ψ(1)
j (x) =

(
‖θjuj‖−1) θj(x)uj(x) .

For any k ∈ {1, . . . , m0}, we set

λapp
k (ε, h) =

∣∣∣
〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉∣∣∣
2

.

Remark 6.3
a) For the sake of conciseness, we omit the (ε, h)- and h- dependence in the notations
ψ(0)

k and ψ(1)
j .

b) Note that, for boundary points U (1)
j ∈ ∂Ω, the quasimode ψ(1)

j only belongs to the
form domain Λ1H1

0,T (Ω) of ∆DT,(1)
f,h . This brings no additional difficulty to what was

done in [18] for the boundaryless case, because the preliminary approximation of the
spectral subspace with quasimodes only requires the Min-Max Principle or Lemma
2.4.5.

We end this chapter by reviewing the quasimodal estimates which are derived from
Propositions 5.3.5 and 6.1. We refer the reader to [18] for the details. The asymptotic
expansion of

〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉
has also be done in [18] when U (1)

j(k) ∈ Ω is an interior
point. We will simply complete this analysis by establishing the asymptotic expansion
of
〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉
, when U (1)

j(k) ∈ ∂Ω.

We remind the reader that the parameter ε1 > 0 is fixed, while ε0 and ε ∈ (0, ε0]
will be adapted in the different steps of the proof. We shall denote by α a generic
positive constant which is independent of ε ∈ (0, ε0].

From Proposition 5.3.5-d) and the good localization of ∇χk,ε, we deduce the fol-
lowing estimates for ψ(0)

k .
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Proposition 6.4. — The system of (ε, h)-dependent functions (ψ(0)
k )k∈{1,...,m0} of

Definition 6.2 is almost orthogonal with
(
〈ψ(0)

k | ψ(0)
k′ 〉
)

k,k′∈{1,...,m0}
= IdCm0 + Oε(e−α/h) ,

and there exists α > 0 and, for any ε ∈ (0, ε0], C(ε) and h0(ε) such that, for any
h ∈ (0, h0(ε)],

〈∆(0)
f,hψ(0)

k | ψ(0)
k 〉 =
∥∥∥d(0)

f,hψ(0)
k

∥∥∥
2
≤ C(ε)e−2(f(U(1)

j(k))−f(U(0)
k )−αε)/h .

Corollary 6.5. — There exists ε0 > 0 and α > 0 such that, for any choice of ε in
(0, ε0] and for all k ∈ {1, . . . , m0}, the (ε, h)-dependent quasimodes ψ(0)

k satisfy the
estimate

〈∆(0)
f,hψ(0)

k | ψ(0)
k 〉 ≤ Cεe

−α/h .

The exponential decay of the first eigenvector uj , associated with an exponentially
small eigenvalue, of the Dirichlet realization of ∆(1)

f,h around U (1)
j , provides the next

estimates for ψ(1)
j . We refer the reader to [18] or [21] for U (1)

j ∈ Ω and to Section 4.6
for U (1)

j ∈ ∂Ω.

Proposition 6.6. — The system of h-dependent 1-forms,
(
ψ(1)

j

)

j∈{1,...,m1}
given in

Definition 6.2 is orthonormal and there exists α > 0 independent of ε such that

Df,h(ψ(1)
j ) = O(e−α/h) ,

for all j ∈ {1, . . . , m1}.

Before we state the next result, let us specify the choice of χk,ε in B(U (1)
j(k), ε) in

the case when U (1)
j(k) ∈ ∂Ω. We assume ε ∈ (0, ε0), with 0 < ε0 < ε1

10 . We use again
the coordinate system (x′, xn) introduced in Chapter 3 and Section 4.6 such that:

x′(U (1)
j(k)) = 0 , xn(U (1)

j(k)) = 0 , ∂Ω ∩ B(U (1)
j(k), 2ε1) ⊂ {xn = 0}

and

f(x′, xn) = f(U (1)
j(k)) + xn +

1
2
f−(x′), xn < 0 in Ω ∩ B(U (1)

j(k), 2ε1) .

The function Φ(x) which equals the Agmon distance dAg(x, U (1)
j(k)) is given by

Φ(x′, xn) = −xn +
1
2
f−(x′) .

The construction of the coordinate system (x′, xn) which block diagonalizes the metric
everywhere (see (3.27)) permits(1), when n > 1, to choose the boundary coordinates

(1)The case n = 1 is easier (no Laplace method has to be used) and we refer the reader to the

appendix.
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x′ = (x1, . . . , xn−1) such that dx1 ∧ dx2 · · · ∧ dxn−1 ∧ dxn is the Riemannian volume
form in B(U (1)

j(k), 2ε1). This means

(6.2) *(dx1 ∧ · · · ∧ dxn−1) = dxn, *dxn = (−1)n−1dx1 ∧ · · · ∧ dxn−1 .

The cut-off function χk,ε fulfills the following conditions which are illustrated in Fig-
ure 1:

i) The support of χk,ε does not meet ∂Ω (already stated).
ii) In a neighborhood

(6.3) V =
{
x ∈ B(U (1)

j(k), ε), |x′| < νε

}

of the curve {x′ = 0, xn < 0}, the function χk,ε only depends on xn: χk,ε(x) =
χk,ε(xn), for x ∈ V .

U 1
j k

k

k

xn 0

x 0
k 1 k 0

Figure 1. Case U (1)
j(k) ∈ ∂Ω. The support of ∇χk,ε is localized between the

dashed curve. The function f is constant along ∂Ωk.

In Section 4.6, we found the WKB approximation uwkb
1 of an eigenvector uh

1 , such
that

e
Φ(x)

h uwkb
1 = −2a0(x) dxn + hb1(x, h) ,

a0(0) = 1 , b1(x, h) ∼
∑

"

h"b"(x) ,

and
∀x ∈ B(U (1)

j(k), 2ε1), e
Φ(x)

h

∣∣∂α
x (uh

1 (x) − uwkb
1 (x))

∣∣ ≤ Cα,NhN .
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The normalized eigenvector that we take here is

uj(k) =
(−1)n−1

‖uh
1‖

uh
1 .

Let us first compute accurately
∥∥uh

1

∥∥ =
∥∥θj(k)u

h
1

∥∥+ O(h∞) =
∥∥θj(k)u

wkb
1

∥∥+ O(h∞) .

We have, denoting by dx the Riemannian volume measure,

(6.4)

∥∥θj(k)u
wkb
1

∥∥2 =
∫

4θj(k)(x)2〈dxn | dxn〉a0(x)2e−
2Φ(x)

h dx

= 4
∫

θj(k)(x)2a0(x)2e
2xn

h e−
f−(x′)

h dx1 ∧ · · · ∧ dxn ,

where the integral is over xn < 0. The Laplace method, applied with the function
f− = 2f

∣∣
∂Ω

− 2f(U (1)
j(k)) , gives

∥∥θj(k)u
wkb
1

∥∥2 = 2h
(πh)

n−1
2

(
δf,∂Ω(U (1)

j(k))
)1/2

(1 + O(h))

with

δf,∂Ω =
∣∣ det
(

1
2
(∂jkf−)j,k=1,...,n−1

) ∣∣ .

Note that the Laplace method gives actually a full asymptotic expansion.
After the normalization we get, for all x ∈ B(U (1)

j(k)),

(6.5) ψ(1)
j(k)(x) = (−1)n

√
2π

(
δf,∂Ω(U (1)

j(k))
)1/4

(πh)
n+1

4

(
b0k(x) dxn + hb1

k(x, h)
)
e−

Φ(x)
h ,

with b0,k(0) = 1 and b1
k(x, h) ∼

∑+∞
"=0 h"b1

k"(x).
For the quasimode ψ(0)

k , a direct Laplace method provides (see [18])

(6.6) ∀x ∈ Ω, ψ(0)
k (x) =

∣∣∣detHess f(U (0)
k )
∣∣∣
1/4

(πh)n/4
ak(h)χk,ε(x)e−

f(x)−f(U(0)
k )

h ,

with ak(h) ∼
∑∞

"=0 h"ak," and ak,0 = 1.

Proposition 6.7. — There exist ε0 and sequences (ck,m)m∈N∗ , such that the (ε, h)-
dependent and h-dependent quasimodes ψ(0)

k and ψ(1)
j ( (k, j) ∈ {1, . . . , m0} ×

{1, . . . , m1} and ε ∈ (0, ε0]) satisfy:

〈ψ(1)
j | d(0)

f,hψ(0)
k 〉 = 0 if j += j(k) ,
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〈ψ(1)
j(k) | d(0)

f,hψ(0)
k 〉 = (−1)n−1 h1/2

π1/2
|λ̂1(U

(1)
j(k))|

1/2

∣∣∣∣∣
det(Hess f(U (0)

k ))

det(Hess f(U (1)
j(k)))

∣∣∣∣∣

1/4

× exp− 1
h

(
f(U (1)

j(k)) − f(U (0)
k )
)
×
[
1 + hc1

k(h)
]

,

if j = j(k) and U (1)
j(k) ∈ Ω ,

where λ̂1(U
(1)
j(k)) is the negative eigenvalue of Hess f(U (1)

j(k)); and

〈ψ(1)
j(k) | d(0)

f,hψ(0)
k 〉 = (−1)n−1

√
2h1/4

π1/4

∣∣∣∣∣
det(Hess f(U (0)

k ))

δf,∂Ω(U (1)
j(k)))

∣∣∣∣∣

1/4

× exp− 1
h

(
f(U (1)

j(k)) − f(U (0)
k )
)
×
[
1 + hc1

k(h)
]

,

if j = j(k) and U (1)
j(k) ∈ ∂Ω ,

with c1
k(h) ∼

∑∞
m=0 ck,mhm in both cases.

Remark 6.8. — We recall that we were computing above in coordinates such that
the Riemannian volume form is dx1 ∧ · · · ∧ dxn−1 ∧ df(U (1)

j(k)). The prefactor in the
last formula of Proposition 6.7 can be expressed more intrinsically by observing that:

∣∣∣δf,∂Ω(U (1)
j(k))
∣∣∣ =
∣∣∣∇f(U (1)

j(k))
∣∣∣
−2

×
∣∣∣det(Hess f

∣∣
∂Ω

(U (1)
j(k)))
∣∣∣ .

Proof of Proposition 6.7. — The first statement for j += j(k) is a consequence
of our choice of ε1 > 0 and χk,ε which gives according to Proposition 6.1-c)
supp ψ(1)

j ∩ supp∇χk,ε = ∅. We conclude with d(0)
f,hψ(0)

k = Cε,h

(
d(0)χk,ε

)
e−f/h.

The second case was completely treated in [18] for the boundaryless problem.
The last one, j = j(k) with U (1)

j(k) ∈ ∂Ω, is adapted from the second one by using the
specific approximations (6.6) and (6.5). With

d(0)
f,h

(
χk,εe

− f(x)
h

)
= e−

f(x)
h hd(0)χk,ε ,

we obtain the existence, for any ε > 0, of σε > 0 such that

〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉
= h1−n

4 ak(h)

∣∣∣detHess f(U (0)
k )
∣∣∣
1/4

πn/4

×
∫

B(U
(1)
j(k),ε)

〈ψ(1)
j(k) | dχk,ε〉(x)e−

(f(x)−f(U(0)
k

))
h dx

+ Oε

(
e−

f(U(1)
j(k))−f(U(0)

k )+σε

h

)
,

with ak(h) ∼ 1 +
∑∞

"=1 h"ak,".
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The two additional conditions i) and ii) given above for the cut-off function χk,ε

permit to reduce the integration domain to the neighborhood V , introduced in (6.3):

〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉
= h1−n

4 ak(h)

∣∣∣detHess f(U (0)
k )
∣∣∣
1/4

πn/4

×
∫

V
〈ψ(1)

j(k) |χ
′
k,ε dxn〉(x)e−

(f(x)−f(U(0)
k

))
h dx

+ Oε

(
e−

f(U(1)
j(k))−f(U(0)

k )+σε

h

)
,

for some σε > 0.
Finally (6.5) and (6.2) lead to
〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉

= h1−n
2 − 1

4

√
2π
∣∣∣detHess f(U (0)

k )
∣∣∣
1
4
(
δf,∂Ω(U (1)

j(k))
)1/4

πn/2+1/4

× (−1)n

∫

V
e−

Φ(x)+f(x)−f(U(0)
k )

h
(
χ′

k,ε(xn) + Oε(h)
)
dx1 ∧ dx2 ∧ · · · ∧ dxn ,

and, with f + Φ = f− + f(U (1)
j(k)), to

〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉

= h3/4−n
2

√
2π
∣∣∣detHess f(U (0)

k )
∣∣∣
1/4 (

δf,∂Ω(U (1)
j(k))
)1/4

πn/2+1/4

× (−1)ne−
f(U(1)

j(k))−f(U(0)
k

)

h

[∫

V
e−f−(x)/h(χ′

k,ε(xn) + Oε(h))dx1 ∧ dx2 ∧ · · · ∧ dxn

]
.

The Laplace method, applied with f− = 2f
∣∣
∂Ω

− 2f(U (1)
j(k)), gives

∫

|x′|≤ν
e−f−(x)/hdx1 ∧ · · · ∧ dxn−1 ∼ (πh)

n−1
2

(
δf,∂Ω(U (1)

j(k))
)1/2

∞∑

"=0

d"h
" ,

with d0 = 1.
We conclude for the main term by using

∫

R
χ′

k,ε(xn) dxn = −1 .
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Finally we can also establish:

Proposition 6.9. — Let ψ(0)
k and ψ(1)

j denote the (ε, h)-dependent and h-dependent
quasimodes of Definition 6.2. Assume that the 1-forms (w(1)

j )j∈{1,...,m1} satisfy
∥∥∥w(1)

j − ψ(1)
j

∥∥∥ = O(e−α/h) ,

for some α > 0 independent of ε ∈ (0, ε0]. Then there exist ε′0 > 0 and α′ > 0 such
that, for all ε ∈ (0, ε′0], the estimates

(6.7)
∣∣∣〈w(1)

j | d(0)
f,hψ(0)

k 〉
∣∣∣ ≤ Cεe

−[f(U(1)
j(k))−f(U(0)

k )+α′]/h , if j += j(k) ,

and

(6.8) 〈w(1)
j(k) | d(0)

f,hψ(0)
k 〉 = 〈ψ(1)

j(k) | d(0)
f,hψ(0)

k 〉
(
1 + Oε(e−α′/h)

)
,

hold for all (k, j) ∈ {1, . . . , m0}× {1, . . . , m1}.

The proof is a straightforward consequence of Propositions 6.4 and 6.7 which give:
∥∥∥d(0)

f,hψ(0)
k

∥∥∥ ≤ Cεe
−(f(U(1)

j(k))−f(U(0)
k )−α′′ε)/h .
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CHAPTER 7

RESULT AND FINAL PROOF

7. Main result

Let us first recall some notations. The local minima U (0)
k (k ∈ {1, . . . , m0}) are

labelled according to Assumption 5.3.1, the generalized critical points with index 1,
U (1)

j(k) are those introduced in Definition 5.3.3 and the quantity λapp
k (ε, h) is associated

with the quasimodes ψ(0)
k , ψ(1)

j(k), in Definition 6.2:

λapp
k (ε, h) =

∣∣∣
〈
ψ(1)

j(k) | d(0)
f,hψ(0)

k

〉∣∣∣
2

.

At a generalized critical point U with index 1, the Hessians Hess f(U) or Hess f
∣∣
∂Ω

are
computed in normal coordinates for the metric g, while considering only the tangential
coordinates x′ = (x1, . . . , xn−1) for the second case. We refer to Remark 6.8 for
the right normalization when U ∈ ∂Ω. When U ∈ Ω, λ̂1(U) denotes the negative
eigenvalue of Hess f(U).

Theorem 7.1. — Under Assumptions 3.2.1 and 5.3.1, the m0 first eigenvalues
λ1(h), . . . , λm0(h) of ∆DT,(0)

f,h admit the following asymptotic expansion. There exist
ε0 > 0 and α > 0, such that, for any ε ∈ (0, ε0],

∀k ∈ {1, . . . , m0} , λk(h) = λapp
k (ε, h)

(
1 + Oε(e−α/h)

)
.

Moreover there exist sequences (ck,m)m∈N∗ such that, for any ε ∈ (0, ε0],

λapp
k (ε, h) =

h

π
|λ̂1(U

(1)
j(k))|

√√√√√

∣∣∣det(Hess f(U (0)
k ))
∣∣∣

∣∣∣det(Hess f(U (1)
j(k)))
∣∣∣

(
1 + hc1

k(h)
)

× exp− 2
h

(
f(U (1)

j(k)) − f(U (0)
k )
)

, if U (1)
j(k) ∈ Ω ,
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and

λapp
k (ε, h) =

2h1/2|∇f(U (1)
j(k))|

π1/2

√√√√√

∣∣∣det(Hess f(U (0)
k ))
∣∣∣

∣∣∣det(Hess f
∣∣
∂Ω

(U (1)
j(k)))
∣∣∣

(
1 + hc1

k(h)
)

× exp− 2
h

(
f(U (1)

j(k)) − f(U (0)
k )
)

, if U (1)
j(k) ∈ ∂Ω ,

with c1
k(h) ∼

∑∞
m=0 hmck,m.

This theorem implies the theorem announced in the first chapter. The core of
the proof is essentially the same as in the case without boundary treated in [18].
We give it for the sake of completeness. The main idea is that the eigenvalues of
∆DT,(0)

f,h

∣∣
F (0) = β(0)∗

f,h β(0)
f,h are the squares of the singular values of β(0)

f,h. The Fan
Inequality for singular values permits to control the relative error for all singular
values, when the matrix of β(0)

f,h is expressed in different bases. The proof will be done
in two steps.

7. Finite dimensional reduction

Theorem 3.2.3 and the results of Chapter 5 lead to the

Proposition 7.1. — There exist α, α′ > 0 such that:

1[0,h3/2)(∆
DT,(")
f,h ) = 1[0,e−α/h)(∆

DT,(")
f,h ) , for # = 0, 1 .

Moreover if one sets

(7.1) ∀i ∈ {1, . . . , m"} , v(")
i = 1[0,h3/2)(∆

DT,(")
f,h )ψ(")

i ,

where the ψ(")
i are the (ε, h)- and h- dependent quasimodes introduced in Defini-

tion 6.2, the system
(
v(")

i

)

i∈{1,...,m!}
is a basis of F (") such that:

1) ∀i ∈ {1, . . . , m"} ,
∥∥∥v(")

i − ψ(")
i

∥∥∥ = O(e−α′/h) ;

2) V (") :=
(
〈v(")

i |v(")
i′ 〉
)

i,i′∈{1,...,m!}
= IdCm! + O(e−α′/h) .

Remark 7.2. — Note that here again we omit the (ε, h)-dependence (resp. h-
dependence) of the functions v(0)

k (resp. 1-forms v(1)
j ) in the notation.

Proof. — Let # ∈ {0, 1} and i ∈ {1, . . . , m"}. According to Lemma 2.4.5, Corol-
lary 6.5 and Proposition 6.6,

∥∥∥1[h3/2,+∞)(∆
DT,(")
f,h )ψ(")

i

∥∥∥ is estimated from above by

O(e−α′/h). The second estimate then comes from the almost orthonormality of
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(
ψ(")

i

)

i∈{1,...,m!}
. Since we know by Proposition 3.3.2-iii) that F (") has dimension

m", the system (v(")
i )i∈{1,...,m!} is a basis of F ("). We conclude with

〈∆DT,(")
f,h v(")

i | v(")
i 〉 ≤ 〈∆DT,(")

f,h ψ(")
i | ψ(")

i 〉 ≤ e−2α/h .

Definition 7.3. — The basis (e(")
i )i∈{1,...,m!} of F (") is the orthonormal basis de-

rived from (v(")
i )i∈{1,...,m!} by the Gram-Schmidt orthonormalization procedure

e(")
i =
∑

i′

[
(V ("))−1/2

]
ii′

v(")
i′ .

The m1 × m0 matrix M is the matrix of(1) β(0)
f,h in the bases (e(0)

k )k∈{1,...,m0} and
(e(1)

j )j∈{1,...,m1}. Its square M∗M is called the interaction matrix.

According to (2.21), the m0 eigenvalues of the restricted Witten Laplacian
∆DT,(0)

f,h

∣∣
F (0) = β(0)∗

f,h β(0)
f,h are the eigenvalues of the interaction matrix M∗M. Hence

it is theoretically possible to determine the low lying eigenvalues of ∆DT,(0)
f,h by

analyzing the matrix M. The problem is that the coefficients of the matrix M are
not known at this level accurately enough in order to split the different exponentially
small scales. Like in [18], we will work with the matrix

(7.2) I =
(
〈v(1)

j | β(0)
f,hv(0)

k 〉
)

(j,k)∈{1,...,m1}×{1,...,m0}

of the map β(0)
f,h, written in the bases (v(0)

k )k∈{1,...,m0} in F (0) and
(
v(1),∗

j

)

j∈{1,...,m1}

dual to (v(1)
j )j∈{1,...,m1} in F (1). This permits to use directly all the accurate in-

formation that we have on the quasimodes ψ(")
i . The fact that these bases are not

orthonormal does not make any problem as we shall see below.

7. Singular values and induction

The first eigenvalues λk(h), 1 ≤ k ≤ m0, of ∆DT,(0)
f,h are the squares of the singular

values(2) µm0+1−k(M) of M. In other words,

λk(h) =
[
µm0+1−k

(
β(0)

f,h

)]2
.

We will use the simple consequence of the Fan Inequalities (see [31], [12]):

Proposition 7.1. — For any matrices A and B such that,

max
{
‖B‖ ,
∥∥B−1
∥∥} ≤ 1 + ρ ,

(1)We recall from (1.9) that β
(0)
f,h is defined from F (0) into F (1) by the restriction of d

(0)
f,h to F (0).

(2)The singular values µk(A) are numbered here as usual in the decreasing order with µ1(A) = ‖A‖.
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the singular values of A and AB satisfy
µk(A)
(1 + ρ)

≤ µk(AB) ≤ (1 + ρ)µk(A)

and the same holds with AB replaced by BA.

Hence a small change of bases induces a small relative variation of the singular
values and it is not necessary to work with orthonormal bases in order to estimate
the singular values.

For example, we have, for any k ∈ {1, . . . , m0},

µk(β(0)
f,h) = µk(M) = µk(I)

(
1 + O(e−α/h)

)
,

where I is the matrix of the map β(0)
f,h introduced in (7.2).

We will construct by reverse induction on K, from m0 down to K = 0, two bases
(v(0)

k,K)k∈{1,...,m0} of F (0) and of F (1) (v(1)
j,K)j∈{1,...,m1} so that the following properties

hold for ε ∈ (0, ε0] and some α > 0 independent of ε.
1) The systems (v(0)

k,K)K<k≤m0 and (v(1)
j(k),K)K<k≤m0 are orthonormal.

We then set

F (0)
K = Span

{
v(0)

k,K , K < k ≤ m0

}
and F (1)

K = Span
{

v(1)
j(k),K , K < k ≤ m0

}
.

2) For 1 ≤ k ≤ K, v(0)
k,K belongs to

(
F (0)

K

)⊥
and for j +∈ {j(k), K < k ≤ m0}, v(1)

j,K

belongs to
(
F (1)

K

)⊥
.

3) The estimates,

∀i ∈ {1, . . . , m"} ,
∥∥∥v(")

i,K − ψ(")
i

∥∥∥ = Oε(e−α/h) ,

hold for # = 0, 1.
4) For K < k ≤ m0, the equalities

β(0)
f,hv(0)

k,K = νkv(1)
j(k),K and ∆DT,(0)

f,h v(0)
k,K = ν2

kv(0)
k,K

hold with
νk = 〈ψ(1)

j(k) | d(0)
f,hψ(0)

k 〉
(
1 + Oε(e−α/h)

)
.

They imply, observing also that νk += 0,

∆DT,(")
f,h F (")

K ⊂ F (")
K , # ∈ {0, 1} .

5) For all j +∈ {j(k), K < k ≤ m0} and all k ∈ {1, . . . , K}, we have

〈v(1)
j,K | β(0)

f,hv(0)
k,K〉 = 〈v(1)

j,K | d(0)
f,hψ(0)

k 〉 .

We recall that the ψ(")
i and the v(")

i depend on h ∈ (0, h0] and ε ∈ (0, ε0], while α > 0

enters in the exponential estimates. The parameters ε0 > 0 and α > 0 belong to
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intervals which have to be reduced each time that one refers to Proposition 6.9. This
is done a finite number of times at each step of the induction.

Initialization: the case K = m0. — We take v(0)
k,m0

= v(0)
k and v(1)

j,m0
= v(1)

j accord-
ing to the definition of the previous chapter. Conditions 1), 2) and 4) are empty.
Condition 3) is given in Proposition 7.1. For Condition 5), we write

〈v(1)
j | β(0)

f,hv(0)
k 〉 = 〈1[0,h3/2)(∆

DT,(1)
f,h )v(1)

j | d(0)
f,h1[0,h3/2)(∆

DT,(0)
f,h )ψ(0)

k 〉

= 〈1[0,h3/2)(∆
DT,(1)
f,h )v(1)

j | d(0)
f,hψ(0)

k 〉 = 〈v(1)
j | d(0)

f,hψ(0)
k 〉 .

Recursion: from K to K − 1. — Assume that the result is true for K > 0. Condi-
tions 1) and 4) say that the quantities |νk|, K < k ≤ m0 are singular values of β(0)

f,h

(ν2
k is an eigenvalue of ∆DT,(0)

f,h

∣∣
F (0)). Moreover the estimate,

(7.3) νk = 〈ψ(1)
j(k) | d(0)

f,hψ(0)
k 〉
(
1 + Oε(e−α/h)

)
,

and Proposition 6.7 imply

(7.4) |νk| ≥ Cεh
1/2e−(f(U

(1)
j(K+1))−f(U

(0)
K+1))/h ≥ Cεe

−(f(U
(1)
j(K))−f(U

(0)
K )−2α1)/h ,

with α1 independent of ε > 0.
Let us consider the dual basis (v(1),∗

j,K ) in F (1). For j = j(k), K < k ≤ m0, v(1),∗
j,K

equals v(1)
j,K and consequently

∥∥∥v(1),∗
j,K − ψ(1)

j

∥∥∥ = Oε

(
e−α/h
)

.

The matrix of β(0)
f,h : (F (0)

K )⊥ → (F (1)
K )⊥ in the bases (v(0)

k,K)1≤k≤K and
(v(1),∗

j,K )j -∈{j(k),K<k≤m0} equals

(7.5)
(
〈v(1)

j,K | β(0)
f,hv(0)

k,K〉
)

j -∈{j(k),K<k≤m0},1≤k≤K
.

Conditions 3) and 5) and Proposition 6.9 lead to
∥∥∥βf,h

∣∣
(F (0)

K )⊥

∥∥∥ = Oε(e
−(f(U(1)

j(K))−f(U(0)
K )−α1)/h) .

Hence the quantities |νk|, K < k ≤ m0 are the first largest singular values of β(0)
f,h,

∀k ∈ {K + 1, . . . , m0} , |νk| = µm0+1−k(β(0)
f,h) =

√
λk(h) ,

and we have

(7.6)
√

λK(h) = µm0+1−K(β(0)
f,h) =

∥∥∥β(0)
f,h

∣∣
(F

(0)
K )⊥

∥∥∥ .

Let us now consider more carefully β(0)
f,h

∣∣
(F (0)

K )⊥
and its matrix (7.5) in the bases

(v(0)
k,K)1≤k≤K , (v(1),∗

j,K )j -∈{j(k),K<k≤m0}. With the same arguments as above relying on
Proposition 6.9 and Conditions 3) and 5), its coefficients have the form

(7.7) 〈ψ(1)
j(K) | d(0)

f,hψ(0)
K 〉
(
δj(K),j δK,k + Oε(e−α2/h)

)
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



78 CHAPTER 7. RESULT AND FINAL PROOF

Since the two bases are Oε(e−α/h)-close to orthonormal bases, we obtain
√

λK(h) =
∣∣∣〈ψ(1)

j(K) | d(0)
f,hψ(0)

K 〉
∣∣∣ (1 + Oε(e−α3/h)) .

We set

(7.8) νK =
〈ψ(1)

j(K) | d(0)
f,hψ(0)

K 〉
∣∣∣〈ψ(1)

j(K) | d(0)
f,hψ(0)

K 〉
∣∣∣

√
λK(h) .

We have

(7.9) β(0)
f,hv(0)

K,K = νKv(1),∗
j(K),K + Oε(νKe−α4/h).

We next define the new bases (v(0)
k,K−1) and (v(1)

j,K−1).
Of course we keep v(0)

k,K−1 = v(0)
k,K and v(1)

j(k),K−1 = v(1)
j(k),K for K < k ≤ m0.

We then take

v(0)
K,K−1 =

∥∥∥1{λK}(∆
DT,(0)
f,h )vK,K

∥∥∥
−1

1{λK}(∆
DT,(0)
f,h )vK,K ,

and

v(1)
j(K),K−1 =

1
νK

β(0)
f,hv(0)

K,K−1 .

For 1 ≤ k ≤ K − 1 and j +∈ {j(k), K − 1 < k ≤ m0}, we take

v(0)
k,K−1 = v(0)

k,K − 〈v(0)
k,K | v(0)

K,K−1〉v
(0)
K,K−1 ,

and

v(1)
j,K−1 = v(0)

j,K − 〈v(1)
j,K | v(1)

j(K),K−1〉v
(1)
j(K),K−1 .

By construction, conditions 1), 2) and 4) are satisfied by these new bases. Condition 3)
will be satisfied as well if

∥∥∥v(0)
K,K − v(0)

K,K−1

∥∥∥ = Oε(e−α5/h) holds. The identity (7.6)
gives

(7.10) ∀k ∈ {1, . . . , K} , v(0)
k,K = 1[0,λK ](∆

DT,(0)
f,h )v(0)

k,K .

Moreover Proposition 6.9 yields

∀k ∈ {1, . . . , K − 1} , ∀j ∈ {1, . . . , m1} ,
∣∣∣〈v(1)

j,K | β(0)
f,hv(0)

k,K〉
∣∣∣ = Oε(

√
λKe−α6/h) .

Like in the proof of Proposition 7.1, we obtain, for some α7 > 0,

(7.11) 1[0,λK)(∆
DT,(0)
f,h ) = 1[0,λKe−α7/h)(∆

DT,(0)
f,h ) .

We now write, by spectral decomposition and using (7.11) and (7.10),

(7.12) λK

∥∥∥1{λK}(∆
DT,(0)
f,h )v(0)

K,K

∥∥∥
2

+ Oε(λKe−α7/h)
∥∥∥1[0,λK)(∆

DT,(0)
f,h )v(0)

K,K

∥∥∥
2

= 〈∆DT,(0)
f,h v(0)

K,K | v(0)
K,K〉 ,

and observe that by (7.9)

(7.13) 〈∆DT,(0)
f,h v(0)

K,K | v(0)
K,K〉 =

∥∥∥β(0)
f,hv(0)

K,K

∥∥∥
2

= λK

(
1 + Oε(e−α4/2h)

)
.
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Hence we obtain ∥∥∥1{λK}(∆
DT,(0)
f,h )v(0)

K,K

∥∥∥ = 1 + Oε(e−α8/h) .

We conclude with
∥∥∥1[0,λK)(∆

DT,(0)
f,h )v(0)

K,K

∥∥∥
2

=
∥∥∥v(0)

K,K

∥∥∥
2
−
∥∥∥1{λK}(∆

DT,(0)
f,h )v(0)

K,K

∥∥∥
2

= Oε(e−2α/h) + Oε(e−2α8/h) .

We have proved ∥∥∥v(0)
K,K − v(0)

K,K−1

∥∥∥ = Oε(e−α5/h) .

This implies
∥∥∥β(0)

f,hv(0)
K,K − νKv(1)

j(K),K−1

∥∥∥ =
∥∥∥β(0)

f,hv(0)
K,K − β(0)

f,hv(0)
K,K−1

∥∥∥

=
∥∥∥β(0)

f,h1[0,λK ](∆
DT,(0)
f,h )(v(0)

K,K − v(0)
K,K−1)

∥∥∥

= Oε(
√

λKe−α5/h) ,

while we have ∥∥∥β(0)
f,hv(0)

K,K − νKv(1),∗
j(K),K

∥∥∥ = Oε(νKe−α4/h) .

The almost orthonormality of (v(1)
j,K)j∈{1,...,m0} inherited from Condition 3) and the

almost orthogonality of (ψ(1)
j ){1,...,m1} imply
∥∥∥v(1)

j(K),K − v(1),∗
j(K),K

∥∥∥ = Oε(e−α/2h) .

This yields ∥∥∥v(1)
j(K),K−1 − v(1)

j(K),K

∥∥∥ = Oε(e−α9/h) .

Let us verify Condition 5) for the new bases. — For k ∈ {1, . . . , K − 1}, the
construction of the new bases and the induction gives

v(0)
k,K−1 = v(0)

k,K − 〈v(0)
k,K | v(0)

K,K−1〉v
(0)
K,K−1

= v(0)
k,m0

−
∑

K≤K′≤m0

tk,K′ v(0)
K′,K′−1

= v(0)
k −

∑

K≤K′≤m0

tk,K′ v(0)
K′,K−1 ,

with tk,K′ := 〈v(0)
k,K′ | v(0)

K′,K′−1〉.
Hence we get, with v(0)

k = 1[0,h3/2)(∆
DT,(0)
f,h )ψ(0)

k ,

β(0)
f,h v(0)

k,K−1 = β(0)
f,h v(0)

k −
∑

K≤K′≤m0

tk,K′ β(0)
f,hv(0)

K′,K−1

= 1[0,h3/2)(∆
DT,(1)
f,h ) d(0)

f,hψ(0)
k −

∑

K≤K′≤m0

tk,K′ νK′ v(1)
j(K′),K−1 .
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Meanwhile, for j +∈ {j(k) , K − 1 < k ≤ m0}, the vectors v(1)
j,K−1 were constructed

such that

v(1)
j,K−1 ∈ (F (1)

K−1)
⊥ =
(
Span{v(1)

j(K),K−1, . . . , v
(1)
j(m0) ,K−1}

)⊥
.

We obtain, for all k ∈ {1, . . . , K − 1} and all j +∈ {j(k), K − 1 < k ≤ m0},

〈v(1)
j,K−1 | β(0)

f,hv(0)
k,K−1〉 = 〈1[0,h3/2)

(
∆DT,(1)

f,h

)
v(1)

j,K−1 | d(0)
f,hψ(0)

k 〉

= 〈v(1)
j,K−1 | d(0)

f,hψ(0)
k 〉 .

Conclusion for K = 0. — When K = 0, we obtain an orthonormal basis
(v(0)

k,0)0<k≤m0 of F (0)
0 = F (0) and an orthonormal basis (v(1)

j(k))0<k≤m0 of F (1)
0 ⊂ F (1)

such that for ε ∈ (0, ε0) and α > 0 independent of ε,

∀k ∈ {1, . . . , m0} , β(0)
f,hv(0)

k,0 = νkv(1)
j(k),0 ,

|νk| = µm0+1−k(β(0)
f,h) .

νk = 〈ψ(1)
j(k) | d(0)

f,hψ(0)
k 〉(1 + Oε(e−α/h)) .

The last equation obtained in the conclusion of the recursion permits to achieve
the proof of Theorem 7.1.
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APPENDIX A

AN EXAMPLE IN DIMENSION 1

We present more directly the 1-dimensional case. We describe techniques which
were first developed for Neumann in [2], adapting to a one dimensional problem the
techniques developed in [19]. We just take the simple example of an interval (a, b)
with a < 0 < b and the Dirichlet realization of the semi-classical Witten Laplacian

(A.1) ∆(0)
f,h := −h2 d2

dx2
+ f ′(x)2 − hf ′′(x) ,

associated to a function f on C∞([a, b]) admitting a unique minimum at 0

(A.2) f(0) = f ′(0) = 0 ,

and no local maxima:

(A.3) f ′(x) += 0 on [a, b] \ {0} .

In particular we get:

(A.4) f ′(a) < 0 , f ′(b) > 0 .

The function (a, b) " x #→ uh := exp− f(x)
h satisfies

(A.5) ∆(0)
f,h exp−f(x)

h
= 0 ,

but does not satisfy the Dirichlet condition at a and b. Of course, one can take a
cut-off function χ with compact support in (a, b) and equal to one on [a+ ε, b− ε) but
considering uχ = χuh, we get

∆(0)
f,h(χuh) = O(exp−min(f(a), f(b))

h
) exp

θ(ε)
h

,

with θ(ε) → 0 as ε → 0.
The best which can be obtained with this construction is the following estimate for

the ground state energy:

(A.6) 0 ≤ λ1(h) ≤ Cη(exp−2 min(f(a), f(b))
h

) exp
η

h
, ∀η > 0 .
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By taking an η-dependent cut-off function (η = Ch log h ), one can arrive at

(A.7) λ1(h) = h−NO(exp−2 min(f(a), f(b))
h

) ,

for some N > 0.
This does not give a lower bound. We also observe that this quasimode works also
for the Neumann problem.

In order to have a better result, one can simply proceed in the following way. Let
us assume for simplification that

(A.8) f(a) < f(b) .

Then the main effect is in a and we can continue to use a simple cut-off near b. In
order to satisfy the Dirichlet condition at a, we have to add a correction. For this we
need another “formal” solution, which is given by the

Lemma A.1. — For any formal series
∑

j αjhj, there exists on [a, a + η0) (η0 > 0)
a formal WKB solution

(A.9) uwkb
− := c(x, h) exp

f(x)
h

,

in the kernel of ∆(0)
f,h, such that

(A.10) c(x, h) ∼
∑

j≥0

cj(x)hj ,

and

(A.11) c(a, h) ∼
∑

j

αjh
j .

Proof. — We expand the relation:

(A.12) exp−f(x)
h

∆(0)
f,h(c(x, h) exp

f(x)
h

) ∼ 0 ,

in powers of h.
This leads explicitely to the following equation:

(A.13) 2f ′′c + 2f ′c′ + hc′′ ∼ 0 ,

or

(A.14) [2cf ′ + hc′]′ ∼ 0 .

We first observe that the coefficient of h0 vanishes (this corresponds to the fact that
−f is a solution of the eikonal equation). Looking now at the coefficient of h, we
obtain:

(A.15) −2f ′(x)c′0(x) − 2f ′′(x)c0(x) = 0 , c0(a) = α0 .
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Observing that f ′(x) += 0 near a, there is no problem for solving the equation, in the
neighborhood of a, which can be more simply written as

(A.16) (c0f
′)′ = 0 , c0(a) = α0 .

At the step j + 1, we will find:

(A.17) −2f ′(x)c′j(x) − 2f ′′(x)cj(x) = c′′j−1(x) , cj(a) = αj ,

or

(A.18) 2cj(x)f ′(x) + c′j−1(x) = 2αjf
′(a) + c′j−1(a) .

The good quasimode. — We define:

(A.19) uwkb = χuh − exp−2f(a)
h

χ̃uwkb
− ,

where
– χ satisfies χ = 1 on [a , b − ε) and vanishes near b;
– uwkb

+ is associated to α0 = 1, αj = 0 for j > 0;
– χ̃ satisfies χ̃ = 1 on [a , a + ε0) and vanishes outside [a , a + 2ε0).

Here ε and ε0 can be chosen arbirarily small (one condition is 2ε0 < η0) but will be
then fixed independently of h.

We fix some summation (by the Borel procedure) for c(x, h) with the property that
c(a, h) = 1. So the corresponding function uwkb (we use the same notation) satisfies
the Dirichlet condition at a and b. Let us compute:

(A.20)
∆(0)

f,huwkb = [∆(0)
f,h, χ]uh

− exp− 2f(a)
h [∆(0)

f,h, χ̃]uwkb
−

− exp− 2f(a)
h χ̃∆(0)

f,huwkb
− .

There are three terms on the right hand side that we write r1 + r2 + r3 and that we
analyze separately.

– r1 is supported near b and its size is (with our assumption in mind that f(a) <

f(b)) of order O(exp− f(b)
h ) exp θ(ε)

h . We can choose ε > 0 such that:

(A.21) ||r1||L2 = O(exp−f(a)
h

) exp−η1

h
, supp r1 ⊂ (b − ε , b) ,

for some η1 > 0.
– r2 is supported in (a + ε0 , a + 2ε0) and its size is exp− 2f(a)

h exp f(a+ε0)
h . If we

observe that f(a + ε0) < f(a), we get

(A.22) ||r2||L2 = O(exp−f(a)
h

) exp−η2

h
, supp r2 ⊂ (a + ε0 , a + 2ε0) ,

for some η2 > 0.
– r3 is supported in [a, a + 2ε0) and its size is O(h∞) exp− 2f(a)

h exp f(x)
h . In

particular, we get:

(A.23) ||r3||L2 = O(h∞) exp−f(a)
h

, supp r3 ⊂ [a , a + 2ε0) .
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So it is r3 which is the dominant term for the computation of the L2 norm of the
error and we have finally obtained

(A.24) ∆(0)
f,huwkb = O(h∞) exp−f(a)

h
,

in L2((a, b)), for a suitable choice of ε and ε0.
It is easy, to get a lower bound for ||uwkb|| assuming for example

(A.25) f ′′(0) > 0 .

In this case, we immediately get from this first computation, that there is a unique
eigenvalue of ∆(0),Dir

f,h in the interval [0 , h
3
2 ] which is actually exponentially small

and that there exists ρ(h) ∼ h− 1
4 ρ0 with ρ0 += 0 such that the normalized positive

eigenvector v1(x, h) satisfies:

(A.26) v1(x, h) − ρ(h)uwkb = O(h∞) exp−f(a)
h

.

We note also that h
1
4 ρ(h) has a complete expansion in powers of h, depending only

on the Taylor expansion of f at the origin. We have indeed:

(A.27)
1

ρ(h)2
∼ ||uwkb||2 .

In this situation, elementary Hilbertian computations (see [19]) give that:

(A.28) λ1(h) =
〈∆(0)

f,huwkb | uwkb〉
||uwkb||2 + O(h∞) exp−2f(a)

h
.

For a more precise estimate of the right hand side, we have consequently to come back
to a more careful estimation of the terms 〈rj | uwkb〉 modulo O(h∞) exp− 2f(a)

h . Let
us determine the significant terms.

– We can clearly forget 〈r1 | uwkb〉 which satisfies, for η1 > 0,

(A.29) exp
2f(a)

h
〈r1 | uwkb〉 = exp−η1

h
.

– For r2, we get:

(A.30) exp
2f(a)

h
〈r2 | uwkb〉 = exp

2f(a)
h

〈r2 | uh〉 + O(h∞) .

– For r3, we get:

(A.31) exp
2f(a)

h
〈r3 | uwkb〉 = O(h∞) .

From this analysis, we get:

(A.32) λ1(h) =
〈r2 | uh〉
||uh||2

+ O(h∞) exp−2f(a)
h

,

with r2 defined after (A.20). So

(A.33) exp
2f(a)

h
λ1(h) =

〈[∆(0)
f,h, χ̃]uwkb

− | uh〉
||uh||2

+ O(h∞) .
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The computation is now elementary (and rather standard).

〈[∆(0)
f,h, χ̃]uwkb

− | uh〉 = −h
∫ b

a h(χ̃′′c(x, h) + 2χ̃′c′) + 2χ̃′c(x, h)f ′(x)dx

= −h
∫ b

a χ̃′[2cf ′ + c′]dx
∼ −2hf ′(a) − h2c′(a) .

In the last line, we have used the eikonal equation (modulo O(h∞)) and an integration
by parts. We are happy to recover as expected that the result is independent of the
choice of χ̃, with the above properties. We finally get:

(A.34) exp
2f(a)

h
λ1(h) =

d(h)
||uh||2

+ O(h∞) ,

with

(A.35) d(h) = −2hf ′(a)(1 + O(h)) .

So we have proved:

Proposition A.2. — Under assumptions (A.2), (A.3), (A.4), (A.8) and (A.25), the
lowest eigenvalue of ∆(0)

h,f has the following expansion:

(A.36) exp
2f(a)

h
λ1(h) = −2(π)−

1
2 h

1
2 f ′(a)f ′′(0)

1
2 (1 + O(h)) .

Note that there is in principle no problem for computing explicitly a complete ex-
pansion of the right hand side in (A.36). Note also that we have proceeded differently
in the general case but that we of course recover (A.36) as a subcase of Theorem 1 .

Remark A.3. — The treatment in our main text is a little different but we recall
that by applying df,h to the localized quasimode constructed for ∆(0)

f,h near a or near
b, we get two orthogonal quasimodes showing the existence of a spectral subspace of
dimension ≥ 2 corresponding to exponentially small eigenvalues.
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