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QUANTITATIVE ANALYSIS OF METASTABILITY IN
REVERSIBLE DIFFUSION PROCESSES VIA A WITTEN
COMPLEX APPROACH: THE CASE WITH BOUNDARY

Bernard Helffer, Francis Nier

Abstract. — This article is a continuation of previous works by Bovier-Eckhoff-
Gayrard-Klein, Bovier-Gayrard-Klein and Helffer-Klein-Nier. The main object is the
analysis of the small eigenvalues (as h — 0) of the Laplacian attached to the quadratic
form

CSO(Q) SV h2 / |V’U(l‘)|2 e—2f(x)/h, dl‘,
Q

where (2 is a bounded connected open set with C°*°-boundary and f is a Morse function
on M = Q. The previous works were devoted to the case of a manifold M which is
compact but without boundary or R™. Our aim is here to analyze the case with
boundary. After the introduction of a Witten cohomology complex adapted to the
case with boundary, we give a very accurate asymptotics for the exponentially small
eigenvalues. In particular, we analyze the effect of the boundary in the asymptotics.

Résumé (Etude quantitative de la métastabilité des processus réversibles au moyen du
complexe de Witten : le cas a bord.)

Cet article prolonge des travaux antérieurs de Bovier-Eckhoff-Gayrard-Klein,
Bovier-Gayrard-Klein et Helffer-Klein-Nier. L’objet principal en est I’analyse des
petites valeurs propres du Laplacien associé a la forme quadratique

CSO(Q) SV h2 / |V’U(l‘)|2 e—2f(x)/h, dl‘,
Q

ol © est un domaine borné régulier et f est une fonction de Morse sur M = .
Les travaux précédents traitaient le cas d’une variété compacte M sans bord ou le cas
M = R"™. Ici nous analysons le cas d’une variété compacte a bord. Apreés I'introduction
d’un complexe de cohomologie de Witten adapté au cas & bord, nous donnons une
description trés précise des valeurs propres exponentiellement petites. En particulier,
nous traitons 'effet du bord sur les développements asymptotiques.

(© Mémoires de la Société Mathématique de France 105, SMF 2006






CONTENTS

CIntroduction ... 1

. An appropriate self-adjoint realization of Witten Laplacians with

boundary . ...... .o 7
2.1, Introduction . ... ...t e 7
2.2. Distorted differentials and associated Witten Laplacians ................ 7
2.3. Stokes formulas ........ ... . 8
2.4. Tangential Dirichlet realization .......... ... ... i, 12
2.5. Boundary reduced Witten complex ............c.ooiiiiiiiiiiiiiiiii. 17

. First localization of the spectrum ........................... ... ... 19
3.1 Introduction . ... 19
3.2. Morse-Witten theory for boundary value problems ...................... 19
3.3. A model half-space problem ........... ... ... ..., 20
3.4. Reduction to the local half-space problem ............................... 33

. Accurate WKB analysis near the boundary for Ag}% ................. 37
4.1. Preliminary diSCUSSION ..........oiuiuiiniit it 37
4.2. Local WKB construction ............c.uiuiriioiieaiieiieanneannnn.. 38
4.3. Another local Dirichlet realization of A%})L ............................... 39
4.4. Exponential decay of eigenvectors of Aﬁ’hDT’(l) .......................... 42
4.5. Small eigenvalues are exponentially small ............... ... .. .. .. .. 46
4.6. Accurate comparison with the WKB solution ........................... 48

. Saddle sets and main assumptions ........... .. .. .o 55
5.1, Preliminaries .........ooi i 55
5.2, 8addle SEts ... 55
5.3. Main assumption, notations and first consequences ...................... 59

cQuasimodes ... 63



vi CONTENTS

7. Result and final proof ....... .. .. . 73
7. Main result . ... 73
7. Finite dimensional reduction ........ ... .. . i i 74
7. Singular values and induction ......... ... .. . i 75
A. An example in dimension 1 ...... ... ... ... 81
Bibliography . ... ... 87

MEMOIRES DE LA SMF 105



CHAPTER 1

INTRODUCTION

We are interested in the exponentially small eigenvalues of the Dirichlet realization
of the semiclassical Witten Laplacian on 0-forms

AD) = —h*A+ |Vf(2)]* — hAf(x) .

Our aim is to extend to the case of a regular bounded open set 2 C R™, or more gen-
erally a compact Riemannian manifold with boundary, results which were previously
obtained in the case when Q is a compact Riemannian manifold or in the case of R".
We shall analyze the Dirichlet realization of this operator.

The function f is assumed to be a Morse function on Q (with no critical points at
the boundary). It is known (see [32], [33], [7], [21] and more recently [6]) that,
like in the case without boundary, there are exactly mg eigenvalues in some interval
[0, C’hg] for h > 0 small enough, where mg is the number of local minima in Q. This
is strongly due to the fact that the Dirichlet case is concerned. These eigenvalues are
actually exponentially small as h — 0.

Moreover this can be extended (see [6]) to Laplacians on p-forms, p > 1. But this
time in addition to the interior critical points with index p, some critical points of
the restriction of the Morse function to the boundary (which will be assumed to be a
Morse function) will play a role.

Our purpose is to derive with the same accuracy as in [18] asymptotic formulas for

). A similar problem was

the myg first eigenvalues of the Dirichlet realization of A(
considered by many authors via a probabilistic approach i 1n [10] [23], [28], [25]. More
recently, in the case of R™, A. Bovier, M. Eckhoff, V. Gayrard and M. Klein obtained
in [3] and [4], accurate asymptotic forms of the exponentially small eigenvalues. These
results were improved and extended to the case of a compact manifold in [18].

The Witten Laplacian is associated to the Dirichlet form

C’g"(Q)auH/ﬂKhV—i—Vf)u(m)F da .
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Note that the probabilists look equivalently at:
C(Q) 3 v h? / IVu(z)]? e 2@/ gy

Bovier, Eckhoff, Gayrard and Klein considered this problem via a probabilistic ap-
proach. They obtained, in the case of R™ and under additional conditions on f
and Vf at oo, the following asymptotic behavior for the first eigenvalues Ax(h),
k€ {2,...,mo}, with Ay (h) =0, of AY):

‘det Hessf(U( ))‘

‘det (Hess f(U (k)))‘

xexp— (FUS) ~ FUL)) x (1+ O(h* 1og hl)

(1) M = 2R )

where the U}go) denote the local minima of f ordered in some specific way, the U ((1 13)

are “saddle points” attached in a specific way to the U(O) (which appear to be critical
points of index 1) and /\1( (;)) is the negative eigenvalue of Hess f(U((,i))

Their article belongs to a family of works done by probabilists starting at least from
Freidlin and Wentzel (See [10] for a presentation and additional references). The first
articles were only giving the asymptotic behavior of the logarithm of the eigenvalues.
The main contribution of [4] and [3] was to determine the main term in the prefactor.
The later [18] gave a complete asymptotics in (1.1) and extended the results to more
general geometries, including cases when A (h) # 0.

In the case with boundary, we observe that the function exp —% does not satisfy
the Dirichlet condition, so the smallest eigenvalue can not be 0. For this case, we can
mention as starting reference Theorem 7.4 in [10], which says (in particular) that, if
f has no critical points except a non-degenerate local minimum ,,;,, then the lowest
eigenvalue A;(h) of the Dirichlet realization AE‘% in ) satisfies:

(1.2) lim —h log A1 () = 2 inf (£(2) = f(zmin)) -

Other results are given in the case of many local minima but they are limited to the
determination of logarithmic equivalents (see Theorems 7.3 and 7.4 in [10]).

The approach given in [18] intensively uses, together with the techniques of [21],
the two facts that the Witten Laplacian is associated to a cohomology complex and
that the function x — exp —M is a distributional solution in the kernel of the Witten
Laplacian on 0—forms permlttmg to construct very efficiently quasimodes. We recall
that the Witten Laplacian is defined as

(1.3) Af’h = df,hd?’h —+ d}’hdf,h s
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CHAPTER 1. INTRODUCTION 3

where dy 3, is the distorted exterior differential
(14) df,h = eif(x)/h (hdm)ef(m)/h ,
and where d% , is its adjoint for the L2-scalar product canonically associated to the
Riemannian structure. The restriction of dsj to p-forms is denoted by d;p % With
these notations, the Witten Laplacian on functions is
(0) _ 4(0)* ;(0)
(1.5) Apn=dpy dpp -
In the Witten-complex spirit and due to the relation

0 0 0
(1.6) d%A% — A(ﬁld% :

it is more convenient to consider the singular values of the restricted differential
dgf?;l - FO) — P The space F® is the my-dimensional spectral subspace of A%;L,
¢ e{0,1},
[

(1.7) FU = Ran 174, (A}))
with I(k) = [0,Ch3] and the property™®)

1)y (0 0 0
(1.8) Ly (AS )Y, = dP) 10 (A1) .
The restriction df7h| po Will be more shortly denoted by ﬁ%%

(1.9) ﬁ%% = (d%%)/p(z) .

We will mainly concentrate on the case £ = 0.

In order to exploit all the information which can be extracted from well chosen quasi-
modes, working with singular values of BJ(I?,)L happens to be more efficient than consid-
ering their squares, the eigenvalues of ASS;L. Those quantities agree better with the
underlying Witten complex structure.

The main result. — Let us describe the result. We shall show that under a suitable
generic assumption (see Assumption 5.3.1), one can label the mg local minima and
introduce an injective map j from the set of the local minima into the set of the mq
generalized critical points with index 1 of the Morse function on €. At a generalized
critical point U with index 1, we can introduce the Hessians Hess f(U), if U € Q, or
(Hessf|89)(U), if U € 09. When U € Q, A;(U) denotes the negative eigenvalue of
Hess f(U).

THEOREM 1. — Under Assumption (5.3.1), there exists hy such that, for h € (0, hol,
the spectrum in [0, h%) of the Dirichlet realization of A;(_);L in Q, consists of mg eigen-
values A\1(h) < -+ < Apg(h) of multiplicity 1, which are exponentially small and

(D The right end a(h) = ChS of the interval I(h) = [0,a(h)] is suitable for technical reasons. What
is important is that a(h) = o(h). The value of C > 0 does not play any role.
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4 CHAPTER 1. INTRODUCTION

admit the following asymptotic expansions:

(0)
B~ det(Hess f(U, "))
Ae(h) = ;|)\1(U(1) ‘ ‘

ik) }det(HeSS f(U;(lzz)))}

2 .
xexp—3 (FUSQ) = FUL)) L iU €9,

and

2h1/2|Vf(U;(112>>| ‘det(HeSS f(UIEO)))‘
k p—
172 ‘det(HeSS f}aQ(U]((llz)))‘

(1+ heg(h)) x

2 .
X exp - (f(U]?(l,i)) - f(U,g0>>) iUl €09,

where c}.(h) admits a complete expansion: c}.(h) ~ Y oo K™k,

This theorem extends to the case with boundary the previous result of [4] and its
improvement in [18] (see also non-rigorous formal computations of [26], who look
also at cases with symmetry and the books [10] and [25] and references therein).

About the proof. — As in [21] and [18], the proof will be deeply connected with the
analysis of the small eigenvalues of a suitable realization (which is not the Dirichlet
realization) of the Witten Laplacian on the 1-forms. In order to follow the same
strategy as in the boundaryless case, three main points have to be explained.

The first point was to find the right substitute for the Witten complex. Our starting
problem being the analysis of the Dirichlet realization of the Witten Laplacian, we
were led to find the right realization of the Witten Laplacian on 1-forms in the case
with boundary in order to keep the commutation relation (1.6). A part of the answer
already existed in the literature ([29], [14] and [6]) in connection with the analysis of
the relative cohomology.

The second point was to get the “rough” localization of the spectrum of this Laplacian
on 1-forms. The analysis was performed in [6], in the spirit of Witten’s idea, extending
the so called harmonic approximation. But these authors, interested in the Morse
theory, simplified the problem in the sense that they use the possibility (inherent to
Morse theory) to choose a well-chosen metric and a right Morse function in order to
simplify the analysis at the boundary. We emphasize that we treat the general case
here.

The third point is the construction of WKB solutions for the critical points of the
restriction of the Morse function to the boundary. For simplicity, we restrict our
attention to the case of 1-forms which is the only one needed for our problem.
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CHAPTER 1. INTRODUCTION 5

Structure of the memoir. — The memoir is organized as follows. In the second
chapter, we analyze in detail the boundary complex adapted to our analysis. The third
chapter is devoted to the proof of rough estimates replacing the harmonic oscillator
approximation in the case without boundary (leading in particular to the proof of
the weak Morse inequalities). In the fourth chapter, we give the WKB construction
for an eigenform of the Witten Laplacian on 1-forms localized at a critical point of
the boundary. The fifth chapter is devoted to the Morse theory together with the
right definition of saddle sets in the present case with boundary. This permits us
in particular to explain our main assumptions. The sixth chapter is devoted to the
construction of quasimodes and the proof of the main theorem is given in the seventh
chapter. Finally, in the appendix we have given a partially independent treatment of
the one-dimensional case, which can be seen as a warm-up.
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CHAPTER 2

AN APPROPRIATE SELF-ADJOINT REALIZATION OF
WITTEN LAPLACIANS WITH BOUNDARY

2.1. Introduction

We work here on a C*> connected compact oriented Riemannian n-dimensional
manifold Q with boundary 99 and Q will denote its interior. After fixing basic
notations we specify the self-adjoint realization of the Witten Laplacian on which we
will focus and we assume in the whole memoir that the function f is a C* real valued
function on Q.

2.2. Distorted differentials and associated Witten Laplacians

The cotangent (resp. tangent) bundle on €2 is denoted by T*Q (resp. T2) and the
exterior fiber bundle by AT*Q = @©)_(APT*Q (resp. ATQ = ©)_oAPT2). The fiber
bundles ATOQ = &p—; APTOQ and AT*0Q = &j—; APT*0Q are defined similarly. The
space of C*, CS°, L?, H® ...sections in any of these fiber bundles, E, on O = ) or
O = 99, will be denoted respectively by C*(0; E), C5°(O; E), L*(O; E), H*(O; E). . ..
When no confusion is possible we will simply use the short notations APC>, APCS®,
APL? and APH? for E = APT*Q or E = APT*0). Note that the L? spaces are those
associated with the unit volume form for the Riemannian structure on 2 or 9Q (2
and 9 are oriented). The notation C>(€2; E) is used for the set of C* sections up to
the boundary. Finally since 99 is C*°, C*°(Q; E) is dense in H*(Q; E) for s > 0 and
the trace operator w — w‘aﬂ extends to a surjective operator from H*(€; E) onto
H*"/2(9Q; E) as soon as s > 1/2.

The differential on C§°(€Q2; AT*Q2) will be denoted by d and more precisely

d®)  Ce° (0 APT*Q) — C3°(Q; APHIT*Q).

Its formal adjoint with respect to the L2-scalar product inherited from the Riemannian
structure is denoted by d* with

dP)* 1 C(Q APTITQ) — C3° (4 APTQ).
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Those differential d and codifferential d* are both well defined on C*°(Q; AT*Q)) and
satisfy dd = d*d* = 0.
For a function f € C°*°(€;R) and h > 0, we set

dip = e~ /@7 (hd) e @71 and dj), = ef @/ (pg*ye=f@1/h,
The Witten Laplacian is the differential operator defined on C>(2; AT*(2)
Apn=djpdpn+dpndsy, = (dpn +dj )%
which means, by restriction to the p-forms in C>(2; APT*Q),
A= )l

Note that dynpdsn = 0, and dj,d}, = 0 respectively, imply that, for all u in
C%(Q; APT*Q),

(2.1) AP IR = dP) APy
and
(2.2) AP DGRy = g APy

Here are other relations with exterior and interior products, gradients (denoted by V)
and Lie derivatives which will be useful:

(2.3) dyp =hd+dfA;

(2.4) d},h = hd* + ivf ;

(2.5) doix +ixd=Lx;

(2.6) App =02 d+d ) + VP +h(Lyy + L5))

2.3. Stokes formulas

Before writing the distorted Stokes formula, we recall some notations which are
convenient for boundary problems even with the Euclidean metric on 2 C R™. We
refer the reader to [29] for details.

For any w € C*(Q; APT*Q), the form tw is the element of C>°(9Q; APT*(2) defined
by

(tw)o (X1,..., Xp) =wo (X7 ..., X)), Vo €09,
with the decomposition into the tangential and normal components to 9 at o:
X, = XTI @ zin,.
If n} denotes the 1-form which is dual to the outgoing normal n, at o for the
Riemannian scalar product, we have

(tw)o = in, (N5 ANwy) .

MEMOIRES DE LA SMF 105



2.3. STOKES FORMULAS 9

Note that tw can be identified with j*w € C*(9Q; APT*9)) where j : 92 — Q is the
canonical injection.
The non-tangential part of w on 052 is defined by

w=w| = tw € CP(00; APT*Q).
If necessary tw and nw can be considered as elements of C>(Q; APT*Q) as follows.
A variant of the Collar Theorem which provides a diffeomorphism between a neigh-
borhood of 92 and 9 x [0, [, § > 0 small enough, can be written by taking for the
normal coordinate the geodesic distance to 99, x,, = do(x,0) € [0,0[. Any form
n € C=(09Q; AT*Q) is then extended to 9 x [0, [ by using the equation 9,,n = 0.
After multiplication by a cut-off function, this gives a form on Q, which does not
depend on z,, in a neighborhood of 9f2.
The Hodge operator * is locally defined in a local orthonormal frame (F, ..., E,) by

(*wm)(Ea(pH), e 7Ea(n)) = 6(0’) wx(Ea(l), e ,Eg(p)) s

for w, € APTQ and with any permutation ¢ € X(n) of {1,...,n} preserving
{1,...,p} (e(0) denotes the signature of o).
We recall the formulas

(2.7) *(xwy) = (~1)PMPlu, | Vw, € APTIQ

(2.8) (Wi |wa)arre = fQ w1 A3, Vwi,ws € APL?

and

(2.9) xd* P~ = (—1)Pd(P)x | *d®) — (_1)p+1d*,(n—p—1)* ,
(2.10) *n=tx, *t=mnx,

(2.11) td=dt, nd*=d" n.

These formulas, combined with the Stokes formula,

Yw € C®(Q; APT*Q), /dwz/ j*w:/ tw,
Q 90 oQ

lead to the Green formula.

LEMMA 2.3.1. — For allw € APH? and n € APH*, we have

(2.12)  (dfpw [ dppn)ar+rre + <d;,hw | d;,hn>AP—1L2

= (Appw | MparL2 + h/89(tﬁ) A (*ndf pw) — h/(m(td}’hw) A (*xn7) .

Proof. — Since C*(Q; AT*Q) is dense in AH*®, while both terms of the identity are
bilinearly continuous on AP H? x APH', the forms w and 7 can be assumed to be C*>
up to the boundary.

SOCIETE MATHEMATIQUE DE FRANCE 2006



10 CHAPTER 2. SELF-ADJOINT REALIZATION OF WITTEN LAPLACIANS

We write
(dynw|dpnm + {dypw|dfpn) = (hdw | hdn) + (hd*w | hd™n)
+ {df ANw|hdn) + (hdw |df An) + {df Aw]|df An)
+ (vyw | hd™n) + (hd*w |ivsm) + (ivsw]ivm) -
Let us first compute
{df Nwldf Am) + (vyw |ivpn) = (v (df Aw) +df A (ivsw) [n)
= {(ivydf)w |n) = (VS w|n) .
according to the identity
ix(aAp)=(ixa) A+ (=1)¥%% A (ix) .
The Stokes formula, combined with

(01 d*02)pdy A -+~ Aday, = 01 Axd™ Oy = 01 A (—1)98%2d(xB5)

and
(02 A*B2) = (db1) A (x02) + (—1)2°8%10, A d(x0) |
where (dz1,...,dx,) is orthonormal with a positive orientation, yields for degf; =
deg 0> F 1:

/ t [91 A (*@)} = (db1]02) — (61| d*62)
o0
and
/ t [9_2/\ (*91)} = <91 |d02> - <d*91 |92> .
a0
From the first identity we deduce:
(hd*w | hd™n) + (ivyw | hd™n) = (h2dd*w | n) + (hdiy fw|n)

—h/ t [(hd*w +ivyw) A 7]
[5}9]

= (h*dd*w|n) + (hdiysw|n) — h/ (td} pw) A (xn7) .
o0
From the second one we get:
(hdw | hdn) + (df A w|hdn) = (h*d*dw |n) + (hd* (df Aw)|n)

+h | tAx(hdw+ df Aw))
[5}9]

= (h*d*dw | n) + (hd*(df Aw)|n) +h | (&7) A (ndspw) .
o0

MEMOIRES DE LA SMF 105



2.3. STOKES FORMULAS 11

Finally the relations (cf. (2.3), (2.4))
ivfod + doivy=Lyy and d" o (dfA) + (dfA)od" = Ly

lead to

(d.nw | dspm)ar+ir2 + <d},hw | d},hn>AP*1L2
= (W3 (d+d")? + VI +h (Lo + L) wn)aere

+h (t7) A (xndj pw) — h/ (td’Jz’hw) A (*n7) |
o0 o0

where the differential operator h2(d + d*)? + |[Vf]* + h (Loy+ E*vf) is nothing
but Aﬁh. O

Note that the formulation of Lemma 2.3.1 does not depend on the choice of an
orientation. If p and paq denote the volume form in 2 and 02 and if the normal
vector n, is chosen according to (puaq)e(X1,..., Xn-1) = to (e, X1,..., Xn-1), a
simple computation in normal frames leads to
(2.13) twy Aniy = (w1 | in,wa)arrr dpo
for wy € C®(Q; APT*Q) and wy € C(Q; APTIT*Q).

After choosing for n, the outgoing normal vector, (2.12) is equivalent to

(2.14) <Af7hw, Marr2 = (df,hw | df7h77>Ap+1L2 + <d?hw | d;‘t‘7h77>Ap71L2
b [ g (o) duon + [ (o A 1) arrzn(o) duos
o0 o0

which was used in [21] (see Lemma 1.1, p. 255, with the inward normal vector).
As a consequence of (2.13) we get the following useful decomposition formula.

LEMMA 2.3.2. — If n, denotes the exterior normal vector at o € O, and
(0f/On) (o) =n, - Vf(o) is the normal derivative of f at o, then the identity

2 * 2
(2-15) de7hw||/\p+1L2 + ‘ f,hw||AP—1L2 =

2 2 2
W2 ||dwl[jpsr 2 + B2 |d*wlljpr 2 + [V f | @lko 2

¥ 0
+h{((Lyy + LGp)w [ w)arrz — h (wlw)arT:a (8_f) (o) dupoa
o0 n
holds for any w € APH' such that tw = 0.
Proof. — Again both sides of the identity are continuous on APH' and we can

assume w € C°(Q; APT*Q).

SOCIETE MATHEMATIQUE DE FRANCE 2006



12 CHAPTER 2. SELF-ADJOINT REALIZATION OF WITTEN LAPLACIANS

We use the relation (2.12) with f replaced by 0, do,, = hd and dj ;,, = hd*. We obtain
2 * 2 *
ldgnwlliioipe + [|d5nwl ooz = P2ldwlRoripe — B2 AW R0-1 12

= ((Apn — Ao p)w | wW)prr2 + h/{m(tw) A*n(df Aw) — h/(m(tivfw) A (*nw)

= ((Apn — Dop)w|w)arrz — h/ (ivjw|in,w)ar=a dusa -
o0
The first term of the right-hand side equals
(App = Don)w|w)arre = [IVFlwliere +h{(Lvs + LY p)w|w)arrs -

For the integral term, we write

. of , .. .
ivjw = %(U) in,w+ivesw,
where Vp f denotes the tangential part of the gradient. The equality
tiv, jw =iy, stw =10
implies
(ivpsw|in,w)arsa =0.
The condition tw = 0 also gives
(in,w|ip,w) = (w|w) ,
which yields the result. O

REMARK 2.3.3. — If instead of the condition, tw = 0, we assume nw = 0, then the
integral term on 99 in formula (2.15) appears with a -+-sign.

2.4. Tangential Dirichlet realization

In this section, we specify the self-adjoint realization of A;?;l in which we are in-
terested. When f = 0, it is known as the relative problem (see [14] and references
therein). The good property of this self-adjoint realization, denoted by Af%, is that
it coincides with the Dirichlet realization on 0-forms and preserves the complex struc-
ture:

(1+ A?Z,(erl))—ld(p)

DT,(p)\—
fh = d;’fi(l + Ay (p)) !

and
(1 +A257(P—1))71d§é’?;1)7* _ d;;l,?;l)#(l +A?;7(10))71 7
on the form domain of A?f’(p).

The simplest self-adjoint realization is the Friedrichs extension Aﬁ h» starting from
Ce° (€ AT*QY), which leads, when Q is regular, with the elliptic regularity property,
to the domain D(AJQh) = H}(Q;AT*Q) N H?2(Q; AT*Q2). The problem is that dyp
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2.4. TANGENTIAL DIRICHLET REALIZATION 13

does not preserve this domain. We will see that it is more natural for our prob-
lem to impose Dirichlet boundary conditions only on the tangential components,
while completing these conditions with conditions on the codifferential. Other clas-
sical self-adjoint extensions which correspond to different choices of boundary condi-
tions are possible. Some of them permit the commutation of the resolvents with the
differential dy,,. We refer the reader to [29] and [6] for details.

We introduce the space

(2.16) APH) = Hj 0 (APT*Q) = {w € H' (G APT*Q); tw =0} .

In the case p = 0, it coincides with the standard space HE(Q), while for p > 1 the
condition says only that the form vanishes on Q2 when applied to tangential p-vectors.
Since the boundary 0f2 is assumed to be regular the space

APCEy = C3op (U APT*Q) = {w € € (Q,APT*Q) ; tw =0}

is dense in APH&T. The next construction is a variant of known results in the case
f =0 (see [29]). We will use the notations

Dyn(w,n) = {dppw [ dppnaveirz + (dppw | dfpm)ar—1r2

and
2 « 2
Din(w) = Dyn(w,w) = [ldsawlligpsipe + |5 p@| o1 pa -
PROPOSITION 2.4.1. — The non negative quadratic form w — Dy p(w) is closed on
A”H&T. The associated (self-adjoint) Friedrichs extension is denoted by Aﬁ:’(p). Its
domain is
D(A?;’(p)) ={u€eAH? tw=0and td; ,w =0},
and we have
Yw € D(A?Z’(p)), A?;’(p)w = Agf,’%w .

Proof. — First we observe that the space APH&T is isomorphic to the direct sum

APHY @ nAPHY2(0Q; APT*Q)
with continuous embedding. Since 0f) is regular, one can indeed construct a right
inverse R to the trace operator vo : APH' — APH'Y/2(9Q; APT*Q), so that any u €
APH! can be written as the sum

u = (u — Ryou) + Ryou ,

with (u — Ryou) € APH}. Once the operator R is chosen, the previous de-
composition gives an isomorphism u — (u — Ryou,~ou) from APH{ , to APHg @
nAPHY2(9Q; APT*Q)).  Hence its dual is the direct sum of APH~' and
nAP H=1/2(0Q; APT*Q):

(APHG ) = APH™ @ nAPHY/2(90; APT*Q) .
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14 CHAPTER 2. SELF-ADJOINT REALIZATION OF WITTEN LAPLACIANS

We have to check that w — D;{)})L (w)+C Hw||ipL2 is equivalent to the square of the
APH' norm on APH§ 1. By (2.3)-(2.6) this is equivalent to the same result for f =0
and h = 1. This last case is known as Gaffney’s inequality which is a consequence of
the Weitzenbock formula (see [29], Corollary 2.1.6). Hence the identity

W¥n € APHY 7, DY) (n,w) = (n, APw)
defines an isomorphism A®) A”H&’T — (A”H&T)'. The self-adjoint Friedrichs

extension A?f’(p ) is then defined as the operator

D(Angm) ={we APH} ;, APw e APL?}, A?Z’(p)w _ADy

s

It remains to identify this domain and the explicit action of A®). If n belongs to
D(A?z’(p)), we use first the Green formula (2.12) in order to get

Vw e APC, (APw|n) = D;Z,);)L(Waﬁ) — <A5fz,);)ﬂ ).
The inequality
DA< CNellyorm Inllnorer -

together with the density of APCS® in APH} implies that A;{’,)Ln e D'(Q;APT*Q) is
indeed the APH~' component of APy,
Assume that w belongs to A?Hj N AP H?; then the Green formula (2.12) gives

h| (td?, V" w) Asng = DY)

. @) () — (AP wlmhanre , Vi€ APH 1 .

By density, one can define, for any w in APH{ » such that A;{’,)Lw € APL?, a trace of
td7 ,w by the previous identity, observing that the right-hand side defines an antilinear

continuous form with respect to . With this generalized definition of tdgcp ;Lw we obtain

D(A®) = {w € APH, 7, AP)

Fw € APL? and tdgfj;l)’*w = 0} .

The last point consists in observing that the boundary value problem
(2.17) AVu=g, tu=g, tdf V" u=gs

satisfies the Lopatinski-Shapiro conditions. At the principal symbol level (b > 0
fixed), these conditions are indeed the same as for

(dd* + d*d)(p)u =g, tu=g1, tdPDryu=g,.

This is checked in [29]. Hence any solution to (2.17) with g € APL? g1 = g2 = 0
belongs to APH?. O
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PROPOSITION 2.4.2. — For any p € {0,...,n}, the self-adjoint unbounded operator
of domain D(A?f’(p)) = {w € AH? tw=0, tdgfj;l)’*w = O} and defined by

A?;’(p)w = Agf,’%w , Yw € D(A?;’(p)) ,

has a compact resolvent.
Moreover, if z € C\ Ry, the commutation relations

DT, (p+1)\— DT, (p)\—
(2 = AP e = df e = AL e,
and
DT, (p—1)y—1 ;(p—1),% —1),x DT,(p)y—
(Z_Af,h (p )) 1d5},}h ) V= dgf,)h ) (Z_Af,h (p)) 11},
hold for any v € APH&,T,
Proof. — The domain of the operator is contained in APH?, which is compactly
embedded in APL2. This yields the first statement.

Since APC3% is dense in APH 1, it is sufficient to consider the case when v € APCF%..
For such a v and for z € C\ Ry, we set

u=(z— A?’Z’(p))*lv.
Due to the ellipticity of the associated boundary problem (the Lopatinski-Shapiro

conditions are verified) u belongs to C°°(Q; APT*Q). The commutation relations (2.1)
and (2.2) can be applied since here f € C*(Q;R):

1
(2.18) (= = AYNYdP = dP) (2 — AP yu = dP)v
and
— —1),% —1),* —1),*
(2.19) (z = AP NP = a8 (2 - AP yu = P

Since u € D(A?z’(p)), we have tu = 0 and td} ,u = 0. Since t commutes with the
differential, we get
t dypu = hd tu+ (tdf) A (tu) = 0.
For the tangential trace of the codifferential, we write
td} , (dpnu) = 2tu —tv — tdp pd} u = 2tu — tv — dy ptd} u=0.
Hence d;’jzlu belongs to D(A?f’(pﬂ)) and the identity (2.18) yields

4P (z — A?Z’(p))_l’l} =dspu=(z— A?z»(pﬂ))—ldf,hv )

fih
which proves the first announced commutation relation.
For the second one, the verification that d;’j{l)’*u belongs to D(A?f’(p_l)) is even

simpler. First the property, td;pgl)’*u = 0, is given by u € D(A?z’(p)); then
td} ,,(d} u) = t0 = 0. We obtain

d;’j;l)’*(z . A?Z7(p))—1v _ d;;t,);l),*u _ (z . A?z’(p_l))_ld%{l)’*v O

)
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16 CHAPTER 2. SELF-ADJOINT REALIZATION OF WITTEN LAPLACIANS

REMARK 2.4.3. — Note that the above commutation relations cannot be extended
to v € APH'. Assume for example that v is C* up to the boundary. Starting from
the identity

v=(z— A?Z»(?))(z _ A?Z,(P))—lv :

we can write

v o= Z(Z — A?zv(p))*lv — d;szlv*d;szl(z _ A?z&(p))flv

—1 —1),% DT, _
(2.20) _d;i’,’h )d%’,}h )s (Z _ Af,h (10)) 1,
= zuy — d;’j;b’*ug - d;’,’;l)w, ,

with the relations u; € D(A?Z’(p)), Uy = dgff})l(z— A?Z’(p))_lv, and uz = dgfj,:l)’*(z—
DT,(p)y—
Af,h (p)) 1,
Now the commutation relations would imply us € D(A?f’(pﬂ)) and uz €
DT,(p—1
D(Af,h (p ))

The form v should then satisfy on the boundary

tv = ZtU,l — tdi}j%’*’u,g - d.(f{j}jl)tug =0.
From Proposition 2.4.2 and Stone’s Formula we deduce the

COROLLARY 2.4.4. — For any Borel subset E C R, the identities

] Ejv p+1 p ] E,lv
E (Af,h ( ))d(f{?)’ v = d‘(f,zl E (A f‘ﬂ (p))v
and

DT,(p—1 —1),% —1),% DT,
1AL D) dP D"y = df D 1 (A7 P

hold for all v € APH{ .

In particular, if v is an eigenvector of A?;’(p) corresponding to the eigenvalue X,
then dgf,’zlv (resp. d;{’;l)’*v) belongs to the spectral subspace Ran 1{>\}(A£Z’(p+1))

(resp. Ran 1{,\}(AJJ£D’Z’(’J71))).

Proposition 2.4.2 and Corollary 2.4.4 were stated for p-forms v € A”H&’T(Q), be-

longing to the form domain of Aﬁ:’(p ). Tt is convenient to work in this framework

because the multiplication by any cut-off function preserves AH&T(Q):
(weAHyr(Q), x€C¥(Q)) = (xw € AHy (),

while this property is no more true for D(A?}{). In this spirit, we will often refer to
the next easy consequence of the Spectral Theorem.
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LEMMA 2.4.5. — Let A be a nonnegative self-adjoint operator on a Hilbert space H
with associated quadratic form ga(x) = (x| Az) and with form domain Q(A). Then
for any a,b € (0,+00), the implication

(a4(w) < @) = (|[1p o0 (Aul|” < )
holds for any u € Q(A).

2.5. Boundary reduced Witten complex

We end this chapter with the introduction of the reduced complex which is stan-
dard in the boundaryless case since Witten (see [33], [32], [7], [21] and the book
[34]). This will motivate the prehmmary analysis given in the next chapter.

,(;D))

Let us assume that the dimension mp of F(P) = Ran 1[07h3/2)(A is indepen-

dent of h € (0,hgy) for hy > 0 small enough. The previous prop051t10n says that

55}’% = d(ph | iy and ﬂ(p) * dgcpgl)’* (p=0,...,n) define two complexes of finite
dimensional spaces:
(0) [3(1) 5(n 1)
0— F(O) Q) "L Lh pn)
(2'21) (o) * (1) * 5(71 1),%
O<—F(O) F(l) '~ FM 0.

If bg, p € {0,...,n}, denote the Betti numbers of the ﬂj(cp% complex, then the polyno-
mials,

M(X)zzn:mg)(p and B(X z": ? ,
p=0 p=0
satisfy
(2.22) M(X) = BX) = (1+ X)Q(X) |

where the polynomial Q(X) has non negative coefficients.

In the boundaryless case, the numbers m,, are exactly the number of critical points
with index p and this is the core of Witten’s approach to Morse inequalities. In the
boundary case, it is no more true. The next chapter explains the role of the boundary
conditions on the spaces F(®).

SOCIETE MATHEMATIQUE DE FRANCE 2006






CHAPTER 3

FIRST LOCALIZATION OF THE SPECTRUM

3.1. Introduction

p)

In this chapter, we check that the number of eigenvalues of A?z’( smaller than

h3/2 equals a Morse index m? which involves in its definition the boundary condition.
For this we need a first localization of the eigenvectors. Although the results presented
here are closely related to those of [6], we need additional information and technical
analysis for the following reason:

If one is interested only in the Morse theory the metric plays no relevant role and it is
possible, without loss of generality, to assume that it has a simple form at the critical
points. This simplification, which leads to a much easier analysis, was used by many
authors [7], [6], [1], [5], and [15]. Since we are interested in quantitative results with
a prescribed metric from the beginning, the dependence with respect to the metric
has to be analyzed carefully. One difficulty comes from the fact that the boundary
condition and therefore the domain of Agfj zl depends on the metric g.

3.2. Morse-Witten theory for boundary value problems

In order to make the connection between the tangential Dirichlet realization of the
Witten Laplacian AJQ I"and the Morse theory, we assume additional properties for the
function f up to the boundary 9f2.

ASSUMPTION 3.2.1. — The real-valued function f € C>®(Q) is a Morse function on

Q with no critical points in 0. In addition its restriction f‘aQ is a Morse function
on 092.

With this assumption, the function f has a finite number mg of critical points
with index p in €. Those numbers have to be modified for the boundary problem
according to [6] in order to take into account eigenvectors which possibly concentrate
(as h — 0) on 09. Note first that the assumption that there is no critical point on 92
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implies that the outgoing normal derivative 9, f(U) is not 0, if U is a critical point
of f ‘BQ'

DEFINITION 3.2.2. — For £ € {0,...,n — 1}, the integer m?f}r is the number of criti-
cal points U of f| 5 With index £ such that 0, f(U) > 0 (with the additional convention
m%} +=0).

For p € {0,...,n}, the integer m is defined as

Q [2}9]
f

m —m +my, 4

We will prove the

THEOREM 3.2.3. — Under Assumption 3.2.1, there exists hg > 0, such that the tan-
gential Dirichlet realization of the Witten Laplacian AD 'h introduced in Section 2./
has, for h € (0, ho|, the following property:

T.v )) has rank:

For any p € {0,...,n}, the spectral subspace FP) = Ranly, hs/z)(A
dim F(?) = m?

Moreover the Betti numbers b? are homotopy invariants and satisfy the homological
relations (2.22).

REMARK 3.2.4

a) The role of the condition 9, f(U) > 0 can be easily understood by considering
the one-dimensional problem with f(z) = x on the interval [0, 1]. On 0-forms, ADT (0)
corresponds to a Dirichlet realization, while A?z’(l) corresponds to a reahzatlon with
an h-dependent Robin boundary condition [hO,u — (0yf) u]|x=071 = 0, where the
function u(z) has to be identified with the 1-form w(z) dx.

b) With the normal boundary conditions nw = 0 and nd¢pw = 0, the number
mp 1,+ has to be replaced by m 1 _, which corresponds to the condition 9, f(U) < 0

(see [6]).

We shall use a similar technique to the one presented in [32], [7] and [6] by mak-
ing rather rough estimates in terms of quadratic forms. We first consider a model
half-space problem which permits, after a careful treatment of the metric, to sepa-
rate tangential and normal coordinates. The localization process and the proof of
Theorem 3.2.3 will be achieved in Section 3.4.

3.3. A model half-space problem

We consider in this section a half—space model problem which will be used in the
localization of the eigenvectors of AP h on Q and will provide quasimodes.
We start first with some results on R*, which will be applied later with & = n — 1.
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3.3.1. Witten Laplacian on R* with one low-lying eigenvalue. — The met-
ric g on R¥ is a C> metric which equals the Euclidean metric outside a compact set K.

ASSUMPTION 3.3.1. — The function f is a Morse C* real-valued function and there
exist Cy > 0 and a compact K such that:
(3.1) Ve e RF\ K, |Vf(z)>Cr' and |Hess f(z)] < Cy|Vf(z)] .

Note that the above assumption ensures that f has a finite number of critical points
and m,, will denote the number of critical points with index p.

PROPOSITION 3.3.2. — Under Assumption 3.3.1, there exist hg > 0, ¢ > 0 and
c1 > 0 such that the following properties are satisfied for any h € (0, hol:

i) The Witten Laplacian Ay, as an unbounded operator on L*(R*; AT*R¥) is essen-
tially self-adjoint on C3°(RF; AT*RF).

i) For any Borel subset E in R, the identities,

Lp(AYy)dfu = df1e(AY)u,
(3.2) and

—1 —1),% —1),*
1E(A§fl,)h ))dy,)h " :dgfl,)h ) 1E(A§fl,);)ua

hold, for any u belonging to the form domain of Agf_’zl.
In particular, if v is an eigenvector of A;{’,)L associated with the eigenvalue X\, then

d;’;l)’*v) belongs to the spectral subspace Ran 1{>\}(Agfj,f1)) (resp.

dgff})lv (resp.
Ran 13y (A%,

an 1oy (Ap, )
11) The essential spectrum aess(Agszl) is contained in [c1,+00).

iv) The range of the spectral projection 1[0,60h)(A5},)i)L) has dimension m,, for all
h e (0, ho]

Proof. — We give the proof for the sake of completeness (see also [24]).
i) The operator

Aﬁh = —h2A + \I’(J?) = df,hd},h + d?hdf,h
is non-negative on C$°(R¥; AT*R¥) and the matrix-valued function ¥(z) is C*°. By
Simader’s result (see [30], [17]), Ay.p is essentially self-adjoint on C§°(R"~1; AT*RF).
i) The proof is the same as in Proposition 2.4.2 and Corollary 2.4.4 with APCS?T(Q)
replaced by APCS(RF). By i), APCS°(R¥) is dense in D(A;’%) and therefore in the
form domain of AE}?;L.

iii) The localization of the essential spectrum is a consequence of our assumptions
which imply the existence of C' > 0 such that, for all u € APC°(CK),

1
(u| Afpu) > (u | AT u) + 5 llull® ~ Chijul*.
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When h < hg, with hg = ﬁ, we get

(| Ahu) > llull?, Vo€ ACR(EK) |
and iii) by using Persson’s Lemma.

iv) The previous inequality combined with a simple partition of unity argument shows
that any normalized eigenvector 1)y, associated with an eigenvalue Ay, in [0, coh) of Agfj })1
is localized in a neighborhood of K. Take indeed y; € C®(R¥), i = 1,2, such that
x1 € C°(R¥), x1 = 1 in a neighborhood of K, x? + x3 = 1, and write:

Anllonl[? = Ocaten | AP xavn) + (catn | AP xatn) — 02 3 IV xavnll?.
i=1,2

This leads, for A small enough, to

2 2 2
[x2vn||” < 20N, 4 2C (Z max |V ()] ) h? < 4Ccoh |

i=1,2
L= [gn|l < (1+C"B)lxavnll

and
Ot | AP xawn) < C"h2 + coh < 2c0h |[yn]|* < C"coh|lxatnl® .

Hence the problem is reduced to the case of a boundaryless compact manifold pre-
sented in [7] and [21]. With ¢y > 0 small enough, their related results, which rely
here on harmonic approximations around the critical points of f, and the two previ-
ous estimates imply that ¢, has to lie within a distance less than 1/2 from a finite
dimensional space with dimension m,,. This yields

(3.3) dim Ran 1[0160h)(A§f,’2) =mp. O

We will need the following version of those results in the specific case when f admits
a unique critical point with index pg.

ProroSITION 3.3.3. — If the Morse function f satisfies Assumption 3.3.1 and
admits a unique critical point at x = 0 with index py, so my = Op ., then there exist
ho >0 and ¢y > 0, such that the following properties hold for h € (0, hy):
i) For p # po, Agfj})l > cohld.
i) If 1/1;}0 18 a normalized eigenvector of the one dimensional spectral subspace
Ran 1[0,c0h)(A§r{JZ)); it satisfies

dpptl =0, dPe Vgl =0 and AYRYR =0,

so that Ran 1[0,Coh)(A§f”2)) = Ker Agfjg). Moreover

(ALY \ {0} < [eoh, 00) -
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i11) If x € C5°(R¥) satisfies x = 1 in a neighborhood of 0, then there exists Cy, > 1,
such that, for all h € (0,ho/C,), the inequality,

1—0AR -0 = -
holds in the sense of quadratic form on AP H'(RF).

Proof. — One uses first for i) the property that: dim Ran 1[0700h)(A§fj;L) = m,. Let

Po)

us now show ii). Assume that wgo is an eigenvector of A;’h with eigenvalue A\, €

[0, coh). If dgcp 2)1/)50 was not 0, it would be an eigenvector of A;p ZH) with eigenvalue

An € [0, ¢coh) . Hence df,hl/q}fo = 0 and similarly d;’jg_l)’* go = (. This implies A, = 0.
For iii), we note that
AY) = V@) (1 -cn),
with |V f(z)]* > ¢y > 0 for o ¢ supp x.
This implies
(1= X)AP1 = X) > ex (1= Ch) [1 = x]* .
for h € (0, ho) and the result holds for C > 0 large enough and hg small enough. O

3.3.2. Small eigenvalues of the half space problems. — We work here on
R" = R"! x (—00,0). We assume that there are coordinates x = (2, x,) such that
the metric g = EZ]‘:I gij(z)dz;dzx; satisfies
(3.4) gin =0gn:; =0 fori<mn
and
(35) Vo € @\ Ki, 89597;]'(33) =0,
for some compact set K; C R™. In this subsection, the coordinates (2, z,,) are fixed
while different metrics on R™ are considered. The notation G(-) will be used for the
matrix valued map z — G(z) = 'G(z) = (gij(2))i,; € GL™(R), which is assumed to
be a C* function. According to the standard notation, the coefficients of G(x)~! are
written g% (x).
We also consider a function f which has a specific form in the same coordinates
(@', zp).
ASSUMPTION 3.3.4. — The function f € C>(R™) satisfies:
i) The estimates |V f(z)| > C~' and [09f(z)| < Cs hold, for all v € R™ and
all o e N, a #0.
ii) The function f is the sum f(2',2,) = —% f4(z) + 3 f—(2'), where there exists
C1 > 0 such that:
Cr' < 0, f(wn) < Cr
and where f_ is a Morse function on R"~!, which satisfies Assumption 3.3.1 for
the metric Z?;zll gij(2’,0)dx;dz; and admits a unique critical point at ' =0
with index pg.
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The boundedness of |02 f], 1 < |a| < 2, avoids any subtle questions about the
domains.

PROPOSITION 3.3.5. — Under Assumption 3.5.4-1), the unbounded operator AJ’?E on
L2(R™; AT*R™), with domain

D(A?]) ={w e AH*R"), tw=0, tdj,w=0},

1s self-adjoint.
If E is any Borel subset of R, the relations

1E(A?};7(p+1)) dgfj})lu — P 1E(ADT’(p))u,
(3.6) and
DT, (p—1 —1),x —1),x DT,
1p(A7 Py dP Y = dP ) (AT P,

hold for any u € APHj p(R™).

Proof. — The uniform estimate on V f permits the same proof as for Proposition 2.4.2
and Corollary 2.4.4 (Here Cgor denotes the space of C>° compactly supported functions
in R™ with a vanishing tangential component on {x,, = 0}). O

We are looking for a result similar to Proposition 3.3.3 for the boundaryless case.
One difficulty here comes from the metric which, although diagonal in the coordinates
(2',x,), is not constant. The general case can be reduced to a simpler situation where
gij(x) = gij(x") with g,, = 1 after several steps.

We need some notations.

DEFINITION 3.3.6. — For a metric g which satisfies (3.5), the corresponding H*-
norm on APH*(R™) is denoted by || || xp s , and the notation || [|5, . is kept for the
Euclidean metric g = > .-, da?

i=1 i

Similarly, the quadratic form associated with A?f’(p ) is written

Dy jn(w) = |

2 2
d}:inApflL27g + de,thAP+1L27g , Vwe APH&,T(Rﬁ) )

where the codifferential d’}j 7, also depends on g.
A K-set is a set of metrics g which satisfy the conditions (3.5) and which is compact
for the C*°(K1)-topology.

A K-set is a set of metrics g which satisfy the conditions (3.5) and so that G(z) and
G(z)~! are bounded in the C>°(K;)-topology. Note that, when the metric g lies in a
fixed KC-set (h = 1), the H*-norms are uniformly equivalent to the norm associated
with the Euclidean metric g.. The required accuracy while comparing the quadratic
forms Dy s n needs some care.

The first result provides a reduction to the case d,, G = 0.
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LEMMA 3.3.7. — Let g1 and g2 be two metrics which satisfy (3.5) and coincide on
{z, =0}. Let f be a function satisfying Assumption 3.3.4. There exist constants
Ci2 > 1 and hg > 0 such that the inequality,

(3.7) Dyo,gn(w) = (1= Crah®®) Dy, (W) = Crh™® ||| 2

g1 )
holds for w € APH&T(RE), with p € {0,...,n} and h € (0, ho), as soon as suppw C
{z, > —Coh2/5}.

Proof. — The matrices G1(x) and G2 (z) associated with g; and g2 in the coordinates
(2', x,) satisfy the estimates

|G1(z) "' Ga(z) — Idzn | < CRY/®

for all z € {—C’th/ S<g, < O}. Hence, for any differential form 1 € AL? supported
in {—Coh2/5 <z, < 0}, the two L2-norms differ by

2 2 . 2 .
|||77||AL2,g1 - HUHALQ,gQ‘ < Ch2/5 mln{”n”AL?’gi y 1= 172} .

The relative error term has the right order, so that any of the two L?-norm can be
used. Except for the conclusion, any of the two L?-norm is simply denoted by || ||.
The comparison of Dy, rp(w) and Dy, fr(w) amounts to finding a good estimate for
| (d77 —dyy?)wl. Let w = 3~ wrdz" be a p—form supported in {z, > —Coh?/5}.
The first point is to observe the inequality

(3.8) || (dy5 —dyp)wl?<C <h2(z 10, (@nwn)|?) + lzalV flw] + h2||w|2> :
01

The second point is to use the Dirichlet realization of Agfj ZL, corresponding to Dirichlet

boundary conditions on all components. The Weitzenbock formula (actually we only
need the structure of the Laplacian and not the detailed intrinsic expression) gives:

(3.9) AP =~V g9 (@)Y, + h2Reay + [V ()] + b (Lvg + L5))
]

The first term is h? times the Bochner Laplacian, while the Ricci curvature term Ry
and the term (Lvy + L) are tensors with bounded coefficients. We remind that the
covariant derivative V, on forms is expressed in terms of the partial derivative 0,
the Christoffel symbols I‘z , and of the gradients Vz,, of the coordinate functions ,:

(3.10) Viw = 0w — > T gimday A (iva,,w) .

Jm,t

By writing the two sides of (3.9) as quadratic forms on APHJ(R™), we get, for any
p-form & such that &|{x oy = 0, the estimate

(3.11) (hQ(ZI@(@I)IQH IIVf|UJ|2> < C (ldp.a@l* + d35 @1 + hll@]?) -
£,1
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We apply this inequality with @ = x,w, which satisfies the full Dirichlet condition.
With (3.8), this leads to the inequality:

(3.12) || (dpi —dpi2) wl® < C (lldppenw]|? + |d35 wnw]? + hllanw||* + 22[|w]®) -

It remains to commute x,, and dyj or d?i‘ and we get, using also our assumption

that |z,| < Ch? in suppw,

*,91 *, 2 2| 7509 2
(3.13) I (d3 - dve)wl> < C (ho gl + hE 59 ]2 + h3 ||w||2) .
We conclude with

(1= CR?/*) 1Dy, g () = (1 - O/ |

El 2 2
a2l + el o g,

> |

diol o, + 1wl e,
> (58l e, = I3 = 5800l ) Mgl
> (1= WDy ) + (0= ) (@5 = a5l
and estimate (3.13). O
The second result permits to consider again a simpler metric with g, = 1.

LEMMA 3.3.8. — Let g1 and g2 be two conformal metrics which satisfy (3.5) and:
g2 =e?Wgy .

Let f be a function satisfying Assumption 3.3.4. Then there exist constants C1o > 1
and hg > 0, such that the inequality,

(3.14)  Vw € APHG p(R?), Dy, pn(w) = Cpp' Dy, pn(w) = Croh® [wll3o 2y, -

holds, for all p € {0,...,n} and all h € (0, hg) .

Proof. — For a given metric g = ;' j=1 9ijdxidz;, which satisfies property (3.5) and
G = (9ij)1<i,j<n, the normalized volume form equals

V,(dz) = (det G(x))"*day A -+ A day, |
the pointwise scalar product of two p-forms equals

(wlng(x) = > wr(Tp(G™HM)1(2) |
Ic{1,...,n}
#I=p

with I',(A) = A® --- ® A, and the Hodge operator is given by

WA (kg M(x) = (W |m)g(2) Vy(d) .
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The term which requires some care in the conformal change of metric in
*, 2 2
Dy, n(w) = ||df,inAp_1L27g + ||df,hw||Ap+1L2,g
is the first one, because d;"g depends on g. We have indeed
dijw= e M(1)P sy dwge I Mw, Ywe APH .
Let g1 and g5 be as above. Our assumptions imply the uniform estimate

p= sup |p(z)| < oo
r€eR™

The previous identities give, for two p-forms w and 7, the pointwise relations:

(w0)ga(2) = e PN w | m)g, () |

and

WA (kgm) = (w|7)g,Vy,(dr)
ne(x)

e PP (w|Mge 2 Vg, (da) = e A (xg,)

which yields
gl = e(=Pt5)e(z) g1 1] -
Let us compute first with f = 0 and A = 1, the pointwise scalar product
(@920 d"92),, (2) = e~ =@ g 020 d9) , (2)

=WV (i d kg, | xgy d gy Mg, ()

— o~ (P=Dep(x) <*g2 d *g1 (6(7p+n/2)<p(x)w) | *ga d*gl (6(7p+n/2)<p(x)n)>91 ({E)

= ¢ (DR 2120 (g (PR ) | g (P AR@ ) ().

Hence we get

(d5P2w ] d™9%2n) g, (2)Vy, (dx)

= e(P=De@) (g5 (e(—p+n/2)<ﬁ(x)w) | d*91 (e(—p+n/2)<ﬁ(%)n)>g1 (2)V,, (dz).

and

2
||d*,g2w||iL2’g2 > e~ (P=Dr ‘ d*,gle(—p+n/2)<ﬁwHAL2 o

With f and h € (0, hg), this gives the existence of C' > 0 such that:

||ef/hhd*’92 (e—f/h e~ (P—Dp Hef/hhd*agl (e—f/h+(—p+n/2)<ﬁw

2
w)||AL2,g2 =
a_;ILl 2

v

e~ (Bp=1+n)p ||(d;

2
AL2,g1

v

Cc

, 2
d},?f‘”” —-Ch? ||W||AL2,g1 .

2
)HALz,gl

+ hiV(*P+n/2)‘P)wHAL2,gl

27
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PROPOSITION 3.3.9. — Assume that the metric g satisfies (3.4) and (3.5) and let
f be a Morse function satisfying Assumption 3.3.4 for some po € {0,...,n}. Then
there exist constants hg > 0, ¢g > 0 and c¢1 > 0, such that the self-adjoint operator
A?f satisfies the following properties for h € (0, hol:

»(p)) is contained in [c1,+00).

i) The essential spectrum Oess (A?Z
i) For p € {0,...,n}, the range of the spectral projection 1[0700h)(A?z’(p)) has di-

mension

5;07;Do+1 Zf aznf(o) = _%aﬂb’anr(O) >0,
0 Zf aznf(o) = _%axn.ﬂr(o) <0.
ii1) In the case when O, f(0) = —30,, f+(0) > 0, the spectral subspace associated

with the small eigenvalues of A?f’(mﬂ) equals:

Ran 1jg.con) (A7) V) = Ker A7 = ¢t

where

" =ty A (e day ) || gp 2 = O(R10)

and 1/1;}0 belongs to the kernel of an (n — 1)-dimensional Witten Laplacian Ang} Jon
in a metric g', which is conformal to ¢’ = Z:’;:ll gij (@', 0)dz;dz; on R"1.

iv) For any x € C°(R™) such that x = 1 in a neighborhood of 0, there exists Cy, > 0
such that the lower bounds

(1-x)APEP -y > -1, 0<p<n,

hold, for any h € (0,ho/Cy), in the sense of quadratic forms on APH&T(IR’j).

Proof. — The clue of this result is an accurate lower bound for the quadratic form
Dy.¢,n(n), when evaluated for n such that suppn C {xn > —C0h2/5}. By Lem-
mas 3.3.7 and 3.3.8, one can find a metric g, which satisfies (3.4) and (3.5), with
G(z) = G(2') independent of the z,-coordinate, g, = 1 and a constant C' > 1 such
that

(3.15) Dy (1) = C~' Dy, () = CA/ [nll3 12 5 -

Take two cut-off functions y; € C*°(R), such that x; € C°(R), x1 = 1 in a neighbor-
hood of 0 such that Y2+ x3 = 1. This partition of unity gives, for any w € AH&T(R'j),

Dy, 5.n(@) 2 Dy, pn (X2 (h > wn)w) + Dy, (Ra(h ™ P2n)w) — CB® w3 e, -

Since |V f(z)]> > C~! on R”, the second term is bounded from below by a constant

72/533”))‘””/2\L2,g' Hence we get

times ||)22(h
o o 2
Dy, r.h(w) > Dy .0 (X1 (h P2, )w) — CRY/® || 31 (R 2/5$n)w||ALz7g

c-t._ 2
+T ||X2(h 2/5mn)wHAL2’g .
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Finally after changing the constant C' > 1, the inequality (3.15) yields

(3.16) Dy pn(w) > C "Dy a1 (h~ 2 ,)w) — ChE5 |31 (W2, )|
+ O |Ra ()]

where the L?-norms in the right hand side can be computed with the metric g or §
while possibly adapting the constant C'. Here and in the sequel, we omit the subscript
(AL?, g) for L?>-norms.

Now the problem is reduced to the analysis of Dy ¢, with the metric g. The product
structure of the metric § allows an explicit analysis of the spectrum.

(a) The case n = 1. — We have z =z, € R_, f(z) = —1 f1(2,). Here the metric
is g = dz2. We keep the reference to the index n for the later application.
The space A°H ;(R_) is simply Hj(R_), while

M HY = {alz,) don , o€ H'(R)} .

The identity (2.15) reads:

V8 € HYR.), Do s, jon() = W 100, 61 + 1 100, £+ B + 5002, Fo )| B)
for the O-forms; and for the 1-forms:
Vo HYRD), Dy_g. jonle den) = 0 o0l + 00, fral
B2 T | @) + 50k, 11 (0)[a(0)
On 0-forms, we get
VB e AHY g, Dy g, 20(8) = (C72 = hC) 8] .

and deduce that there exist ¢; > 0 and hg > 0 such that, for all h € (0, ho],

DT,(0)

g~ fe/2n 2 Cld-

On 1-forms, there are two subcases:

(al) Subcase O, f1+(0) > 0. — The inequality,
Vo€ Hy 7, Dj g, jonla de,) > (C72 = h0) a)? ,
implies the existence of hg > 0 such that

APTO) > eld, Yh € (0,ho]
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(a2) Subcase O, f+(0) < 0. — If A?Jﬂ% pladry) = ANyao dxy,, with Ay < ¢q, Propo-
sition 3.3.5 implies

d*—f+/2,h(a dxn) =0 )
which means
O[(J,‘n) = Ceff+(xn)/2h .
The 1-form e~ 7+@n)/20 qg. belongs to Ker (ADT’(I) ).

—f+/2:h
b) The case n > 1. — First note that any w € APH} .(R™) is a sum
0,7
w= Z Oq(:c)dx'I Adzy, + Z ﬂJ(x)dx’J = aANdz, + 0,

#I=p—1 #J=p

with ar,8; € HYR"), f;(a',0) = 0, while da'’ = daj A -+ A daf,,,
I={iy<---<igryCc{l,...,n—1}.

If in addition w € AP H2(R"™), the condition td*w = 0 reads 9., a(z’,0) = 0 (for the
metric g).

Secondly, we remind the reader that with the product metric § the Riemannian
connection, the Ricci curvature tensor and therefore the Hodge Laplacian, owing to
the Weitzenbock formula, split like direct sums:

VxY = Vi Y.+ VY,
Ric(m’y’z’t) = Ricn(xnaynvzn;tn) + RiCl(xlaylazl;t/) )
Ry = Z Ricijri(dxiN) o ive, o (degA) 0ive, = R&) + R24) 7
ijkl
(d + d*)2 — (dzn + d;”)Q + (dm/ + d;/)Q .

We refer the reader to [11] (p. 110 and p. 70) for details and more general statements.
Thirdly, the decomposition f(z) = —1 fy(zn) + 3f-(2’) with the product metric g
gives

Vi = Vo f* +[Var fI?
) 1 . 1 *
Lof+ Ly = 3 (ﬁVf+ +£vf+)+§(£vf_+£vf_) .
Forw=aAdz,+ € D(A?g) (with the product metric §), we have
Dy sn(w) = (W] Afpw) = <w | Ar—lf+/2,hw> + <w | A/f_/Q,hw> .

Since the two operators A™ ; , (acting only in the variable z,,) and A'ﬁ J2n (acting
only in the variable z’) preserve the partial degree in dx,,, we get

(3.17) Dgpn(w) = (aAdwn |A" o (e Adan)) + (BIA%, 5 48)
+ <a A dzy, | A’f_/Q,h(a A dxn)> + <5 | A}_/Q,hm
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Hence the variables (2, z,) can be separated and Dy f ,(w) equals

/R,L,l[ Z Dy ponlar(@s.) dan) + Z D™, on(Ba(a',.)| dA(@')

#I=p—1 5
0
+/_OO T jan(@( ) + D)y, (B mn)) day

where we used the notations D}_ /2.h for the quadratic form of the Witten Laplacian on
R™ ! and D" Fo/2h for the quadratic form of the 1-dimensional Witten Laplacian on

R_ with boundary conditions. The measure dA(z') simply equals (det G(z'))*/? da’.
The absence of o — 3 cross product term is due to (3.17).
Again there are two subcases.

(b1) Subcase Oy, f+(0) > 0. — The analysis of the one dimensional problem implies
2
D2y, janlar (@) dan) = erflas(a, )|

and
n 2

Dy on(Bal@, ) 2 e [|Bs(@, )"

Hence we get
Vw € APHjr, Dy pnw) > e ||w]?

and there exists ¢; > 0 such that

A?;’(p) >cld, Vpe{0,...,n} .
(b2) Subcase O, f+(0) < 0. — Then there exists ¢; > 0 such that
B18) Doga)> [ ¥ D7 plarla’.) deg) dAE)

n— I#I—p 1

0
+/ b pan(@lsza)) dan + e |11

— 00

If w is a p-form with p # py + 1, the lower bound
- 2
D} jpp(@) = Cr hall
which was given in Proposition 3.3.3, yields:
_ 2
Dy, gn(w) 2 C™ hlw]|

while the equality Dj ¢ n(w) = 0 implies that p = pg + 1 and that w = cwz}}o A
(e~ f+@n)/20 qg. ) where 1, belongs to the kernel of the (n — 1)-dimensional Witten
Laplacian associated with the metric

i Gij («',0)dz;dz; .
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We have now all the ingredients to check every statement for a general metric g.
We focus on the subcase 05, f4+(0) < 0, which covers all possibilities.

Statements i) and iv). — Statement i) is a consequence of iv) together with
Persson’s Lemma. It is sufficient to check that, for all R > 0, there exists cg > 0,
such that, for all w € AP Hj ,-(R™~) supported in {min(|2’|, |z,|) > R}, one has
2

Dy, (W) Z crlw]” -
The inequalities (3.16) and (3.18), together with the estimate
2
I

Dy janlalan)) = cgllal,zn) if suppw C {|2'| > R},

provided by Proposition 3.3.3-iii), yield the result.

Statements ii) and iii). — If p # pg + 1 the inequalities (3.16), (3.18) and the
inequality,
_ 2
b en(aloan)) = C hlal,zn)|”
imply
Dy, sn(w) = coh w]*
and
APTW > eoh1d .
By Proposition 3.3.5, the only possibility, for A, € [0,coh), to be an eigenvalue of
Aﬁf’(mﬂ) is A, = 0. When g = ¢ the corresponding spectral subspace is one
dimensional and equals (ngo A(e=f +(zn)/2h dz,,). For a general metric g, the equation
Ai?’émﬂ)w = 0, |lw|]| = 1, which implies Dy yp(w) = 0, and the inequality (3.16)
leads to

C2h85 |31 (W )w||” > Dy (%1 (5 mn)w) + || K2 (b2 wn)w||
Without the last term, Lemma 2.4.5 implies
dist 2 (X1 (h ™2 Pay)w, Ch A (e T+ /20 qg )y < CRMI0
The upper bound of the last term,
||>~<2(h72/5xn)&)”2 < Ch6/5 ’
implies
dist z2(w, Cyh A (e~ /20 g )y = O(RM10)

It remains to check that Ker A?Z’(WH) is not reduced to {0}. The statements of

Lemma 3.3.7 and Lemma 3.3.8 are symmetric with respect to the choice of the metric.
Hence the reverse inequality of (3.16) (with exchange of g and §),

(319) Dy pn(w) > C Dy s n (%1 (h Y z,)w) — CH5 |31 (b2, ||
+ O R (b2 )|
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also holds for any w € AH&T(RE). We apply it with w = ¢! A (e f+@n)/2h g, )
and this leads to

Dy g (01 (™)) < CHO® [[5a (b2,

The Min-Max Principle then says that A?f’(p o1 admits an eigenvalue smaller than

ChS/5. Tt has to be 0 due to the previous supersymmetric argument. O

3.4. Reduction to the local half-space problem

We end here the proof of Theorem 3.2.3 by introducing, after a partition of unity,
the right coordinates which permit the comparison with the model half-space problem.

Proof of Theorem 3.2.3. — Let {Ug, 1 < k < K} denote the union of the critical
points of f and f|Q Consider a partition of unity Zlkvzl X3 = 1 such that the C§°(Q)
function xj identically equals 1 in a neighborhood of Uy when 1 < k < K. The
refinement of this partition of unity will be specified later by the local construction
of adapted coordinates.

We recall that the operator Aﬁf is the Friedrichs extension associated with the

quadratic form:
2 *, 2
Dy, s.n(w) = ldpnwlly 12, + [|d7 50|

AL2,g "’
on AHg (). The standard IMS localization formula ([7]) gives
N
2
Dy (@) =D Dy pnlxaw) = h* [IVxk| w2 g
k=1

for any w € D(AP]) and by density for any w € AH 7.
If supp xi does not meet the boundary, the term Dy ¢ (xrw) behaves like in the
boundaryless case:

— If £ > K, then we have

Dy, rn(xaw) = C" a2y -

- IfrE<K we APH&T and Uy is a critical point of f with index py # p, then

Dy, p.n(xw) = O~ h xaeolly o
- IfEk<K we APH&T and Uy is a critical point of f with index pr = p, then

there exists a fixed 1-dimensional space F,Ep ) determined by Hess f(Ux) such

that,

Dy, n(xkw) < C7RY° [xawli 2y
implies
dist (xsew, ") < OhM wllpo o g -

Again like in the proof of Proposition 3.3.9-iii), this last statement refers to
Lemma 2.4.5 at the level of quadratic forms.
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Consider now the case when supp xr N 02 # &, with the support of xi centered
around a point Uy € 0. There are two subcases:

1) (5D)(Wo) < [V £(Uo)l-
Then the cut-off xj is chosen so that, in a neighborhood V of supp xx,

Yz €V No, (%)(x) <(1=0)|Vf(2) ,

with § > 0. Locally it is possible to construct a function f such that 0, f = ‘V f ‘ in

YNo and ‘Vf‘ = |V f|in V. By setting @ = xxw, the Green formula (2.15) and the
inequality D ¢ (@) > 0 imply

of

h] @@ <%) (0) do (1= | (3]D)wm;a (%{i) (0) do

<12 2 -2 "
< (1= 0) [1® |d@l[3ps1p2 + B2 | d* Dl gp-1p2 + V&l 3w 2 + Crh 0] 30 2] -
With (2.15), we obtain

~ -2 - 2
Dy.n(xk @) = Dy, p.n(@) = 5 IIVF|@l0z2 = C5F Ixanwllzore -

2) Onf(Uo) = [V [(Uo)|.

Then Uy € 0N is a critical point of f|89 with 0, f > 0. Around Uy, we now intro-
duce adapted local coordinates. Due to the condition 9, f(Uy) # 0, there exist an
neighborhood Vg of Uy in Q such that the eikonal equation:

(3.20) 0,02 + |[V70|* = |VO|* = V[,

N

with the boundary condition
(3:21) ‘I’|amvo - f|amvo ’
admits a second local solution which satisfies

(3.22)

Like in [21], we set

a"q)‘amvo = _a"f‘amvo'

fr=2—f and f-=2+f.

‘We have the relations

1 1 1 1
(3.23) f=—gfetgf. ®=cfi+f
(3.24) Vi Vi =0,
(3.25) f+|amvo =0, _a"f+|amvo = 2a"f‘amvo 70,
(3.26) and f—‘amvo = Zf‘amvo ’ 8"f—|amvo =0.

Let (z1,...,2z,—1) = @’ denote a set of coordinates on 92 in a neighborhood of Uy
(contained than Vy) and such that z;(Uy) = 0. We extend them in a neighborhood
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of Uy in Q as constant along the integral curve of the vector field V£, . Then we take

zn, = —3f4+(z) for the last coordinate. In these coordinates the function f and the

metric g have the form

n—1
(3.27) f(z) =an + %f, (z/) and g = gnn(x) da? + Z gij(z) deidx; .

i,j=1
The boundary 92 is locally defined by {z, =0} and Q corresponds to {z, < 0}.
In order to apply Proposition 3.3.9, it remains to check that the function f can be
extended to R™, so that it satisfies Assumption 3.3.4 when Uj is a critical point f}aQ'
Indeed the additional assumption does not depend on the metric g and we can assume
that the g;; are constant in the coordinates (z’,z,). It suffices to choose, in a small
enough neighborhood of Uy = (0, ...,0), Morse coordinates (z1,...,z,) for f_ in the
metric }_, ., gijdzidzr;:

n—1
flx) =z, + Z)\jx? .
j=1

Then this function is extended to R™ by:
B 1_ X(xl n—1
flx) =2n + {x(a?’) + T)] [Z Xag | s
j=1

for some cut-off function y supported in a neighborhood of z’ = 0.
With this choice of coordinates, the quantity Dy 7 5(xrw) attains the form discussed
in Proposition 3.3.9.

We can now discuss the lower bound of D, ¢ 1 (xxw), depending on the localization
by the cut-off xx, such that supp xx NN # @.

— If k > K, we are in case 1) and

Dy rn(xkw) 2 C7" xawllnpe , -

— If k < K, the origin of the coordinate system is Uy = Uy. If w € APHJ ,» and
Uy, is not a critical point of f‘aﬂ with index pr, = p — 1 and 9, f(Uy) > 0, then
Dg’f’h(ka) > C1h.

- Ifk<K we APH&T and Uy is a critical point of f|(,m with index pr =p—1
and 0, f(Ug) > 0, then according to Proposition 3.3.9-iii) there exists a fixed
1-dimensional space F, ,Ep ) such that the inequality,

Dy, (xaw) < CTRY Il 3o ey

implies:
. 1/10
dist (xrw, F”) < C R lw]l pppe , -
The partition of unity is chosen so that the previous choice of coordinates is possible in
a neighborhood of any xj and the set of metrics g = gnn(z)dz,? + 3, j<n Gijdzida;
in the local coordinate systems form a K-set according to Definition 3.3.6. Hence,
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the constant C' can be chosen uniformly. We now introduce the set A, of indices k,
1 <k < K, such that

— either Uy, is a critical point of f with index p,
— or Uy is a critical point of f‘aﬂ with index p — 1 such that 9, f(Uy) > 0.

For w € APH{ () with |wllapp2,y =1, we get

(Dyg.p.n(w) <C7'AP) = (dist w, S FP)< Chl/m) .

kEA,
Hence the dimension of the spectral subspace,

F(p) = Ran1[07h3/2)(A?Z’(p)) C Ranl[o,cha/s)(A?Z’(p)) 5
Q
P -
We next verify that dim F® > #A, = mg. According to the Min-Max Principle, it
suffices to find an orthonormal set of p-forms w} € APH&T(Q), k € Ap, such that

Dg7f,h(wl}cl) = 0(h3/2) .

Indeed it is enough to take a truncated element of the kernel of the local model for
A?;’(p) around Uy, k € A,. We give the details for the case U;, € 0. By taking the
same cut-off x1 x, X2,k X1 .4 + X34 = 1, and the same coordinate system as above, we

is at most #A4, =m

write on R™

_ 2 2
Dyp fun(@) = Dgy pn(x15w) + C7 [ xapwll” = Ch2 D~ IVl wll?
i=1,2

where g and fj are defined on R” according to the previous construction and coincide
with g and f in a neighborhood of supp xx. According to Proposition 3.3.9, there
exists n € A”H&’T(R’j) in the domain of the associated Witten Laplacian, such that
Dy,.fon(nft) = 0. By taking wl' = ||x1,x nguflxlyk nl, we obtain the existence of
ho > 0, C' and C"” such that:

st < 0'n* mk]]”

and

o ]J”
Dy pn(wh) <o'n? KL < 0"p? |

— 2 —
eyl
for h € (0, ho]. O
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CHAPTER 4

ACCURATE WKB ANALYSIS NEAR THE BOUNDARY
FOR AY)

4.1. Preliminary discussion

We work here under Assumption 3.2.1 while Assumption 3.3.4 will be satisfied for
the local half-space model.

We have seen in the previous chapter that, for p > 1, some quasimodes of A?Z’(p )

being near the spectral subspace in 1[0 ni] (A?.;,(p)) are localized near the boundary

09 and more precisely near critical points of f | 5o With index p — 1 such that 0, f >
0. In the boundaryless case, the WKB-analysis done in [21] says that the small
eigenvalues are of order O(e~¢/") and provides an accurate approximate basis of
Ranl[()’hs/z)(Ag{);L).

In order to get a similar result, we need an accurate WKB analysis at the boundary
in the spirit of the Helffer-Sjostrand treatment of the tunneling effect in [19] and [16].
Here again the boundary condition and the fact that we are working with systems
for p > 0 adds some technical difficulties. In an analytic framework, this could
be attacked by studying the propagation of analytic regularity for microhyperbolic
boundary value problems. At the boundary one has to consider first the tangential
propagation of regularity and then the propagation into the interior. Having in mind
our initial motivation of analyzing the Witten Laplacian on O-forms, we shall study
this problem with arguments as simple as possible and restrict our attention to the
case p = 1. Nevertheless, this “simple” presentation agrees with the general principle.
For an accurate comparison between eigenvectors and WKB quasimodes near a local
minimum Uy of f | o0 With Op f (Up) > 0, we introduce another self-adjoint realization

of A;lzl in a neighborhood 2, , with mixed boundary conditions: tangential Dirichlet
boundary conditions on 0€y,,, N 9 and full Dirichlet boundary on 0Qy, , \ 0S2.
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4.2. Local WKB construction

The next construction is done locally around a local minimum Uy of f ‘ 5o With
Onf(Uo) > 0. The function ® is a local solution of the eikonal equation |V®|* = |V f|*,
which satisfies (3.21) and (3.22). Local coordinates (2, x,) are introduced like in
section 3.4 after the identities (3.23)-(3.26) and lead to

f@ zn) = 2p + %f,(x') and ®(z',1,) = -, + %f,(x') ,
with
T, <0inQ and =z, =0o0n 0,
and we normalize f so that f(Up) = f(0) = f_(0) = 0.

We first consider a local solution u&*® near the point x = 0 of
(4.1) et AD ut = O(h*) |

with u%** in the form

(4.2) ul* = a(z, h)e_% ,

(4.3) a(x,h) ~ Zaj (z)h? |

and the condition at the boundary

(4.4) a(z, h)e_% =t onoQ ,
which leads to the condition
(4.5) a(x,h)Lm =1.

This construction of a, as a solution of (4.1) in €2, (which can be first done as a
formal power series and then realized by using a Borel summation) is standard (see
for example Chapter 2 (p. 11-12) in Dimassi-Sjostrand [9]).

wkb
1

In order to verify locally the boundary condition for our future u{’*°, we substract

e~# and still obtain

(4.6) e® AP (ugh — e %) = O(h) .
We now define the WKB solution u%’*® by considering:

(4.7) uP = dp g™ = dp g (g - e F)

According to (4.4) and (4.7), the 1-form u?** = dj ,u@*® satisfies locally the tan-
gential condition tu = 0 on the boundary.

The local L? norm of u¥’*? is of effective order h2t*5 | if one has in mind the relation
ehdpp, [a(a:, h)e—%} = a(df — d®) + hda

= 2ag(z) dz, + hb'(x,h) ,
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where b'(-, h) is a one-form admitting the expansion:
+o0o
b (x,h) ~ > hFbi(z)
k=0

and ag satisfies:
ap(0)=1.

On the other hand we have

AN = AD) dppui®® = dpp AP) u™ = O(h*) e F |
in a neighborhood of 0.
Moreover, u*? satisfies up, to O(h>) e~ , the second boundary condition td}’hu =0.
The relation

d’},hu}”kb = Agf?;lug’kb = (’)(h‘x’)e*%

gives indeed

* w f
(4.8) f,hU1

kb|89 _ O(hoo)67K ’

in the neighborhood of 0 in the boundary.

4.3. Another local Dirichlet realization of A(l,)L

)

f
Let Uy be a local minimum of f‘aﬂ with 9, f(Up) > 0, let = (2/, x,,) be the local
coordinate system defined above, and let  — |z| be the Euclidean norm in these
coordinates.
For p > 0, we consider the domain

Qo ={lz— O, <p*+1, 2, <0},

which has the shape of a thin lens stuck on 9§ with radius p and thickness O(p?).
Its boundary splits into

Tp =00, Q2= {lz—(0,1))=p*+1,2, <0},
and

Trp = 0Qu,, NN = {|z'| < p,z, =0} .

On this domain, we introduce the functional space
AlH(%;O,T(QUO,p) = {’U, S AlHl(QUO,p); tU‘FTD = O7 U‘FD = 0} .
The Friedrichs extension associated with the quadratic form:
2 * 2
AlH&;O,T(QUO,P) Swi Dgf,h(w) = |ldsnwl” + de,hWH )

is denoted by AP-PTM The domain of A?”hDT’(l) is contained in A*H?(Qy,, p') for

fh
any 0 < p/ < p. An element w € D(A?;LDT’(D) satisfies indeed:

D,DT, " «
Vi€ N Hgor, (A7 | n) = (dpaw | dpan) + (df w0 | &) =2 DY g p(w,m) -
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By testing with n € C§°(Quy,.p), this gives Afpw € A'L?(Qy, ,) and therefore w
admits a second trace on I'rp. By testing with any n € C8f07T(QUO,p), we get

td;vhw}r‘j‘p == O .

Along T'rp, w solves an elliptic boundary value problem A;liw € AL?, tw = 0,
td?’ nw = 0, which provides the H 2 regularity outside the edges.

REMARK 4.3.1. — It is actually possible to characterize the domain, for p > 0 small
enough, by:

D,DT, .
D(AG, Ty = fu e A'HX(Qu,, p) tul, =0, tdjul, =0,
and u|FD =0 }

For this regularity result it suffices to consider the case f = 0 and h = 1. The
boundary conditions are written for u = uy dv1 + - - - + u, dx, in the form

=0, fori=1,...,n—1,

Un}FD =0, O, =0,

un|FTD
while the principal part of Ag% is a scalar Laplace operator, as can be seen from the
Weitzenbock formula. Hence componentwise and at the principal symbol level, the
most difficult case is a Dirichlet-Neumann problem for the operator E;LZI 02,9" Os,
according to (3.9) and (3.10). The theory of boundary value problems on domains
with conical singularities ([27]) and edges ([13], [8]) provides the H?-regularity when
P < Plim, where py,, can be computed explicitly (prim = 7/2 for this mixed Dirichlet-
Neumann problem). Notice that we do not need this result and that the H2-regularity
away from the edge is sufficient for our analysis.

We now prove the

PROPOSITION 4.3.2. — For p > 0 small enough, there exist h, > 0 and C, > 0, such
that the self-adjoint operator AJ?}IDT’(I) satisfies the following properties:

a) For h € (0,h,)], the spectral projection 1[07h3/2)(A?}LDT’(1)) has rank 1.

b) Any family of L?-normalized eigenvectors (uh)he(oﬁp] of A?;LDT’(D such that the
corresponding eigenvalue E(h) is O(h), satisfies

Vp' < p, Yoo e N", 3N, € N, 3C, » > 0 such that, Yz € Qu, |

(49) |02uh(z)| < Coprh N exp (— q’gf)) .
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c) There exists €, > 0 such that the first eigenvalue E1(h) of A?;LDT’(D satisfies

Ei(h) = O(e==e/My

d) If ul' denotes the eigenvector of AJ?}IDT’(I) associated to eigenvalue Eq(h) and

normalized by the condition ip, u(0) =1is, ui’*(0), then

Vp' < p, Yo e N", VN € N, 3CnN,a,p0 > 0 such that, Yz € Qu,

(4.10) |a(x)¢(u}17, o u}“kb)(x)} < CN,a,p/hN exp (_%) .

Once this is proved, one easily gets rough exponentially small upper bounds for
the m$! first eigenvalues of A?f’(@ (¢ € {0,1}) on Q, by constructing quasimodes
suitably localized near each of the critical points.

Our final analysis provides the exact exponential scale with a complete expansion of

the prefactor, and we do not develop this point here.

The next sections are devoted to the proof of Proposition 4.3.2. We now introduce
some specific notations and preliminary results. Again with the coordinate system
(2, x,) with 2’ (Up) = 0, 2, (Up) = 0, and the normalization f(0) = 0, the function
f Qg o is extended to R™ according to Lemma 3.3.7, so that Assumption 3.3.1
is satisfied with only one tangential critical point at '’ = 0. The corresponding

tangential Dirichlet realization A?:’(l) on A'L2(R") has a 1-dimensional kernel and

its second eigenvalue is larger than C'~1h6/5,
An ingredient for the proof is a variant of the integration by parts formula of
Lemma 2.3.2.

LEMMA 4.3.3. — Let p > 0 and let ¢ be a real-valued Lipschitz function on Qy, .
The relation

(411) Re Dy (w,e*Fw) = 2 [deFool[ys s + A2 d"eF ] oy

+{(IVfI? = Vo> + hlos + hLy e w|eFw)pre
o) (0
- h/r (wlw)arrza e? (8—:;) (0) do

holds for any w € AlHé;O’T(QUO,p), Moreover, when w € D(A?;LDT’(D), the left-hand

side equals Re (e*% A%;Lw | w).
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Proof. — For w € A'H} 1(Qu, ), we have e*fw € AV HY 1(Qu,,,). We compute

+(dn(ehw) [ do A (efw)) — (dp A (ehw) | dp A (efw))
+{djn(ehw) [ djp(ehw)) + (ivg(ehw) | dfplehw)
— (d}p(eFw) |ivp(efw)) — (ivp(efw) [ivg(ehw)) .
We set @ = efw € A1H6;07T(QUOH,)). The operator dpA is the adjoint of iy, and the
tensor relation
iv,(dp A1) = (ivede) An — do A (iven) = [Vl n = dp A (iv,n)
leads to
DYy n(w, e*fw) = DL (@,0) — (Vo & | )
—(dp A& | dpp@) + (dppw | dp A @)
+ iy | ) — (d50 | ivgd) .
After taking the real part, we obtain
Re DYy (w, e*hw) = Doy (0,0) = (Ve @ | &) -
We conclude by applying Lemma 2.3.2. O

4.4. Exponential decay of eigenvectors of A?’hDT’(l)

The pointwise estimate, d%u”(z) = O(h’Naefy), which is stated in Propo-
sition 4.3.2-b), will be proved in several steps. We will first consider H'-estimates
and deduce afterwards higher order estimates from elliptic regularity. Even for H'-
estimates we need two steps:

1) We prove the exponential decay along the boundary I'rp by applying Lemma 4.3.3
with a function ¢ similar to % f-

2) The exponential decay in the interior of {1y, , is then obtained with ¢ similar to
® once the boundary term is well controlled.

Proof of a) and b) in Proposition 4.3.2

Statement a). — Actually it is a simple comparison with the full half-space prob-
lem via Min-Max Principle as we did for Theorem 3.2.3. Any w € AIH&;O’T(QUD,p)
can indeed be viewed as an element of AIH&T(RE) by setting w =0 on R” \ Qg ,
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Statement b). — Let u" € D(A?;LDT’(D) satisfy
1
AN ul = E(hya" | B(h) = O(h), |ju"|| =1.

We will use the notation )
- [kl
" =eTul.

The integration by parts formula (4.11) will be applied with ¢ = ", where with ¢"
similar to %f_ or ¢" similar to ®. We recall

1 1
PG ) = n + 5 and B(aa) = o+ 55 (@)
where 2/ = 0 is a local minimum for f_ with f_(0) = 0. Moreover we have
Vz, - Vfi_(z') =0, so that:
1
VI = 1Vl + 7 IVL-I

The proof which follows is somewhat reminiscent of [22], which was dealing with
Schrodinger operators with miniwells. We will first show the decay along the boundary
before we propagate the decay in the normal direction inside €.

Step 1: Decay along T'rp. — We take

o) = 3ot @)

with )
b ) = { f-(a') = Chlog =20 | if f_(a') > Ch.,
- f_(&') = Chlog C if f_(«/) < Ch,
where the constant C' > 1 will be fixed later. We associate the sets
Q" ={z = (2,2,) € Qp,; f-(2') < Ch}
and
O ={z=(2",2,) € Q,p; f-(z') > Ch} .
The condition E(h) = O(h), formula (4.11), and the equality |[Vo"| = 2|V f_| in Q"
imply the existence of C; > 0 such that:

Chh i > B[ o + | B |50 2 + ([ Fn 20" | @)1 2

Chi~ Oxy,
[ @ itn (52) o) do

T'rp

h 2
Fas z2on

1 -
+ (VP = [Vl P = 4Cih)1gy ()i [a") |

with C; determined by f and the upper bound of E(h).
For z € Q" , one immediately gets from the definitions that

}ﬂh(x)| < exp% lu(z)| a.e. .

SOCIETE MATHEMATIQUE DE FRANCE 2006



44 CHAPTER 4. ACCURATE WKB ANALYSIS NEAR THE BOUNDARY FOR A(flgl

We obtain, for a constant Co(C') which may depend on the choice of C,

Co(Oh = [[hda [ o + 1" 3|,
+(92aPa [Maize = h [ (@ rn (G2 ) @) do

T'rp

1
+ Z<(|Vf’|2 — [Vt [ = 4C1h)1gn ()i [@") + Crh(lgn (z)a" | @") .

For z € Q" | we write
+

Ve @) = V1) (1- 70 )

f-(@)

and

Lo o IV (2Ch C?h Vs

- — = - > .
Since there exists Cy > 0, which is determined by f_, such that

IVI~@? 4
> >
“ETre 29

we get

Vo € Q" i(|Vf,(x)|2 Vel (2)2) = i > <C£ - cl) h

4
We obtain for any C' > max(1, 2C;Cy), the existence of §(C) > 0 and C5(C) > 0 such
that:
_hi2 12
C3(C)h = ||hdi" ||, o + [|Rd* " o,

+(1+ 20(CYR){|Van [P | @) pr g2

[ e (G2 ) @) do
with lime 400 6(C) = +00.

We now can use (4.11), with ¢ =0, f =z, h =

ne AlH&;O,T(Qv UO,P) ’

%7 in order to get, for all

(1+0h) ! ||hdn||Rare + (1 + 6h) " |[hd yll30 -

+ (14 R (Va2 | 7) —h/

I'rp

Oxy, N
(lizn (G2 ) (@) do = ~hC i

with § = §(C) and C independent of C.
This leads, by choosing C' large enough and then hg > 0 small enough, to the existence
of a constant C5 > 0 such that, for all h € (0, ho],

1 _h1l2
Csh > @h3 ||uh||A1H1 :
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Since " > %f, + Cghlog h, we have proved the existence of Ny > 0 such that:

f—
ezhy

(4.12) \

"

S C7h7NO ’
ATH?

where 2/ = 0 is a local minimum for f_, with f_(0) = 0. Note that, since f‘FTD =
% f—, this implies also, using the Trace Theorem,

F —N
n 0
eny |FTD‘ <Csh .

(4.13) ‘ <
A1H1/2(I“TD)

Step 2: Normal decay inside Q). — We follow a similar approach by working with the
normal coordinate z,,. We take

() = 5Pk (ea) + 30,

with
b (2n) = 2|xn|—Chlog@, if 2|xy,| > Ch,
Pidn) = 2|z, — ChlogC, if 2|xy,| < Ch,

where the constant C' > 1 will be fixed later. We associate the sets
Q" ={x = (2, 2,) € Uy 2|zn| < Ch}
and
Qi ={z = (2',2,) € Qu,.,p ; 2|zpn| > Ch} .

h
The formula (4.11) is used like in Step 1, with @* = ¢ u” and E(h) = O(h). The
difference comes from the fact that the boundary term is already estimated with
(4.13).

h
We have indeed, on the boundary z,, = 0, the inequality: e " < ek
From (4.11), (4.12), (4.13), and the inequality
F_ (@)
|u"(z)| < eC e jul(x)], a.e. in Q"
we get the existence of C1 > 0, and for any C > 1 of C(C), s.t. the estimate

2

Co(CPPR2 = Cuh [[][}, oy + 1|

£
Qh thH
— Hl/z(FTD§A1T*QUO,p)

> |[hda® |}, o+ A" o+ (VI = [V = Cih)lgr ()a @)

is satisfied.
For x € Q}}r we have

h
Ve = 29z - )
and
2 _ h 2 > 2 _ l h 2 > Ch
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We can assume |z, | < 1 in Qp, , and we take C' > 8CC3. The conclusion is simpler
than in Step 1. By adding the estimated term C1h(a"1qgn () |a"), we get

Cyh™2No > ||hdﬂh||12\2L2 + th*ath\om + Cih HahHAlL2 ’

which gives the existence of C5 and N; such that:

< O N

(4.14) He%uh‘
AH(Q04.0)

Step 3: Elliptic regqularity. — We now set " = erul. For p < p, we take a cut-off
x € C*(Qy,,p) with compact support in Q, , U rp and such that x = 1 on a
neighborhood of Q, ,». The form v = y@" satisfies the boundary value problem

ot — Aot =l in R” |
tv" = 0 and td*v" = on{z, =0} ,

with ||T6L||A1L2(]R'1) =O(h™") and ||T{LHA0H1/2(]R"*1) =0(h™"™).
This implies the existence of N; > 0 such that:

thHAlH? =O0(h™).

We conclude by induction for any finite decreasing sequence (py)o<k<x and associated
cut-offs xy, with x, = 1 in a neighborhood of Qy, ,, and supp xx C {xx—1 =1}. O

4.5. Small eigenvalues are exponentially small

We now check that the eigenvalue E(h) of Aﬁ’hDT’(l) lying in [0, h3/?) is actually
of order O(e~%»/"), for some €, > 0. We prove this by comparing with the half-space
problem, for which we know that the first eigenvalue is 0. The Min-Max Principle
or Lemma 2.4.5 are not sufficient here and we need the full accuracy of the Spectral
Theorem.

Proof of Proposition 4.3.2-c). — We assume that p > 0 is small enough, so that f

admits an extension f = z, + %f_ (') on R™, which satisfies Assumption 3.3.4. So

T,(1)
h ~

than Ch%/5. With this function f, we associate the second solution of the eikonal

equation |V‘i>|2 = |Vf|27 which has the expression:

the Laplacian A? has a one dimension kernel and its second eigenvalue is larger

(x) = —an + % P

Let u" be a normalized eigenvector of A?;LDT’(I) associated with the first eigenvalue

E; (h), which belongs to the interval (0, h3/2]. Let x € C*(Q,,,) be a cut-off function
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with compact support in Qp, , UI'rp and such that x = 1 in a neighborhood of 0.
The form v" = yu" belongs to A'H?(R™) and satisfies

(A;}L — Ey(h))v" = —h2[A, xJu", inR"
tvh =0, td}’hvh =igyu”, on {z, =0} .
The functions r§f = —h2[A, x]Ju" and 7} = ig,u" vanish in a neighborhood V; of

x = 0. Due to the exponential decay of u”" stated in Proposition 4.3.2-b), there exist
C and Ny, such that they also satisfy

d(x)

P (z)| < Oh~Noe=n
(@)

Due to the Trace Theorem, it is possible to find 8" € A'H2(R™), such that
t6" =0 and td*g" =’ ivxuh ,

with, using the property <i>|{%:0} = f‘|{x":0},

16" |1 e = C BT
Moreover by possibly taking a smaller neighborhood V;, the form 6" can be chosen

so that supp NV = o.
For any given neighborhood of 0, Vo C V; there exist ¢, c2 > 0 such that

Ve e R\ Vs, (Jzn| <) = (f(x) > o) .
With a cut-off x1 € C§°(] — 1,1[), xa = 1 in a neighborhood of 0, the 1-form oh =
X1 (’Z—r) e~ T2 G satisfies

€3

(4.15) 0" =0, td}, 0" =iviu" =1, |||\, = O )

and suppd" NV, =@ .

DT,(1

Hence the form w" = v — " belongs to the domain of Af ) and solves

(AZPO — By(hyut =1

with HwhHAlL2 =1+ 0(e=/") and ||r?|| 12 = O(e~/"). The Spectral Theorem

then implies that there exists an eigenvalue A\(h) of A?:’(l) such that

|E1(h) = A(R)| = O(e™/") .

The inclusion, U(A?:’(l)) \ {0} C [Ch%/5,4o0), combined with the estimate
E1(h) = O(h%?), implies A(h) = 0. 0
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4.6. Accurate comparison with the WKB solution

We now compare the eigenvector associated with an exponentially small eigenvalue
with its WKB approximation. We adapt the method presented in [16, 20] by following
the same strategy as in Section 4.4. The H!'-estimates are done in two steps with ("
similar to % f— and then with ©" similar to ®. Finally the elliptic regularity is used
for the C*°-estimates.

Proof of Proposition 4.3.2-d). — Letu? € D(A?}LDT’(D) be an eigenvector associated
with the first eigenvalue F;(h) of Ajf?}LDT,(l):

AJ?;LDT’(”U}{ = Ei(h)ul, ||u}fH =1.
According to Proposition 4.3.2-c), we know that Ey(h) = O(e’af_f), with €, > 0, while
the second eigenvalue of D?ADT’(D is larger than h3/2.

By taking p > 0 small enough, the WKB approximation u¥’** presented in Section 4.2

satisfies
A%})Lu?’kb = O(h™) e~ in Qug.p
tup|, =0,
b} uf®| = O(h®)e T

and there exists a ¢ > 0, such that for any p’ > 0, we have

kb ntl

[[u’ HA1L2(QUO,I)/) ~ch™i

The cut-off function x € C*(Qy,,,) is supported in Quy,p/2 Ul'rp and satisfies x =1
on Qu, ., with 0 < p’ < p/2. Later, we will take p’ > 0 small enough, so that x can

be taken in the form

X(xlv Ty) = Xl(x,)Xn(xn) '
By Lemma 2.4.5, the real constant factor ¢(h) in the truncated WKB approximation
VPR = ¢(h)xut*® can be chosen so that

[0 = ]| 1 = O(R)
and, due to the exponential decay of u? and u{’*?,
[x(ut = e(h)ui™)| 1 g = O(%) .

We set

w" = x(uf — c(h)uy™) .

The 1-form w" satisfies in Qg ,

(4.16) AW Ak — c(h)uy*)
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where 7 and 72 satisfy, according to Proposition 4.3.2-b),

i =0O(h*>), supprh CsuppVy and 75 =0 No)e” e

The last estimate can be done for any C*0-norm, with ko € N.
On the boundary 0Qy,,, = I'rp UT'p, we have similarly

twh|FTD =0, wh‘FD =0,

f(z)

and td’},hwh}FTD =il(a) e 4ol

with
. (@)
i =0(h>), suppr? CsuppVxNITzrp and = O No)e 7w |
With the different choices for " given below, we will use the notation
h

~ $_
wh:ehwh.

The 1-forms w and w belong to A*H?(Qy, ,) and their supports do not meet I'p.
Hence the integration by parts formula (2.12) can be used in addition to (4.11).

Step 1: Comparison along T'rp. — Like in the proof of Proposition 4.3.2-b) presented
in Section 4.4, we introduce the sets

Q}i = {x = (x,axn) € QUo,p ; f*(x,) < Ch} s
and O ={z=(2"2,) € Wyp; f-(a')>Ch}.
For any N € N, we take

1
oy = 5eh (7)),
with o _(2') =min {¢" (2') + Nhlogh™" ,¢(z)} ,
) :{ f-(z') — Chlog =) | if f_(a') > Ch,
- f_(z') = Chlog C if f_(«/) < Ch,

and  (a’) =min {" (') + (1 —¢)|f- (") = f-(¥/)], ¥ € supp VX1 } .
We recall that the cut-off x writes x (2, z,,) = x1(2')xn(zy). The constant C' > 1 will

be fixed at the end like in the proof of Proposition 4.3.2-b). The constants p’ € (0, p/2)
and e > 0 are chosen so that, for h € (0,hn ),

@%7_(m') = " (2') + Nhlogh™ in Que.pr -
Note the inequalities
1
o (z) < if, (z) 4+ Nhlogh™' in Quy,p

1

oy (@) < Sf-(@) < @(x), if 2’ €supp Vi,

1
and o (x) < if,(x) + Nhlogh™ < ®(x), if x, €suppx), .
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In particular, we have for h € (0, hn, )
¢ (z) < ®(x) , for z € supp Vi
which implies

h
ek g,
e hry +

AlL2

= On(h~No) |

PN
eh rf

AOL2(Trp)

We apply the integration by parts formula (4.11), where the left-hand side is computed
h

. . . N
with (2.12), and we obtain for the form @w" = e w":
h h
_ e (@) ~ _ e (@) ~
e Rl wh + || e Rt [|l" ||
0 0 ALL2 1 1 A'L2(Trp)
AlL? AOL2(Trp)

> [ + ([ o

Oxyn
(Vi 25" | 0" pr 2 — h/ (" [ @) prrq <a_f1) (0) do

I'rp

1 -
+ (VI = VR _[* = 4Ci) gy ()" [0")

where the constant C; > 0 is determined by f and 7 = O(h™) for £ =1, 2.

@l (

)
In Q" the weight e % is bounded by Cy(C)h~N and this provides

| @ ) < Co(Oh N [Jw ) < C3(C N,

hHAlL?(Q’i hHAle(Q’;
hHAlHl = O(h™).

Hence we can add to both sides of the previous inequality the term Cyh ||1D

due to Hw

h 2
[arz2an s
which is controlled in the left-hand side by a (C, N)-dependent constant. We obtain

Cs(CNYRN0 ([t o + 1) > [[hdd® ||, + | B,

B h oz,
+{(|Va, |2@" | @™ g1 2 — b (" |wh>AlT;Q (8—> (o) do
I'rp n

1
(VI = [V _[* = 4Cih)1gy ()" [0") + Crh(lgn ()" |@") .

In Q}}r, the point x fulfills almost surely one of the two possibilities:
— Fither Vga}]i,ﬁ = V), and we get

2e —
4

where the last lower bound is due to the fact that ¢y _(z) = ¢ (z) cannot occur
in a neighborhood of ' = 0 for € > 0 small enough and h € (0, hn, )

62 N2
V(@) =26, >0,

1
S(VEP = |Vl [ >

MEMOIRES DE LA SMF 105



4.6. ACCURATE COMPARISON WITH THE WKB SOLUTION 51

— or Vgafﬁ_ =Vfi(1- %), and we get like in the proof of Proposition 4.3.2-b)

1 2 h 2 C
— _|" = > —h.
T(VEF = [Veh [ = & h

Taking C' > max(1,2C,Cy) and h € (0, hy,p ], with hy e > 0 small enough, leads
to

C3(Ca N)(hiNO HwhHAlHl + 1) 2
|hdii” || %s s + || o + (V2T [T 1
oxy,

—h (@" | @") pi7s <3—> (0) do+25(C)h ||7DhHilL2 :
I'rp n

After treating the right-hand side like in the proof of Proposition 4.3.2-b)-Step 1, we
obtain, for a possibly larger N,

HwhHAlHl(QUW) < Cyh™No .

Our choice of (e, p) imply

C
Vz € Quyp, @ > f(z) + Nhlogh™' — Clog 75 :

We have proved the existence of Ny and pj, such that, for any N € N and p’ € (0, p(],
there exists hy ,» > 0 and Cn,,» > 0, such that

f_
|7 (ul = e(ryuy™)

é CN,/J/ hN7N1
AlHl(QUO,p/)

holds for any h € (0, hy,,). This last estimate and (I>|FTD = f‘FTD = %f_ ‘FTD imply

Step 2: Comparison in the normal direction. — After replacing p’ by p, Step 1

= O(h™) .

AlHl/Q(QonplﬂFTD)

e (ul = c(hyuy™)|

provides the estimate

= O(h*) .

AYH!

(4.17) } e

(ul = e(h)uy™)

We work in Qg , with the above estimate and p’ € (0, p/2) will be taken again small
enough.

In order to get the interior estimate with the weight e%, we modify the previous
analysis like in the proof of Proposition 4.3.2-b). The sets Q% are now given by

o = {z = (l‘,,l‘n) € Quyp ; 2|zn| < Ch} |
and QY ={z=(2",2,) € Quy,p; 2|7n| > Ch} .
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The function %, N € N, is given by

P (x )—mln{so +Nh10gh L)},
1
_ 2lznl
sﬁi(ﬂ?n) _ 2|z, | — Chlog =5 | ?f 2|zy| > Ch,
2|zy| — ChlogC', if 2|xy,| < Ch,
and () = min {¢"(y) + (1 — &)day(2,y), y € supp Vx} .

We recall that the Agmon distance dagq(x,y) is the distance between z and y for the
metric |V f|* dz? and ®(x) = da,(z, Up)).

Again, the constant C' > 1 will be fixed in the end like in the proof of Proposition 4.3.2-
b), while the constants p’ € (0, p/2) and € > 0 are chosen so that

o (x) = ""(x) + Nhlogh™" in Qu, ., -

Now we have the inequalities

e (x) < ®(x) + Nhlogh™ in Qp,,
and ol (z) < ®(x) in  supp V.
Hence the estimate,
o YR
el + |le ot =O(h=)
AL L2 AOL2(T'rp)

is still valid.
Inequality (4.17) implies that the L?-norm of the trace of @w" on T'rp is O(h°°) and

provides
i
e wh ‘

With these estimates, the integration by parts formula (4.11) and (2.12) lead to

<Lleseny.

[z ALLZ(QM) T 2

< Co(C)h™

"l zagon

Co(CN) (RN [ | 12+ 1) 2 ||hd“~’h||i21:2 + [|nd*@"|[ o 2
+ (V12 = IV [? = Crm) gy (2)8" | &) + Con |63 2o -

Finally, for almost all x € Qy, , we have:

either: Vol (x) = Vip(x)
and

VP = [Vek|* = @22 =) V@) 2 6, > 0
or: Vol (z) = Voh(z)
and we get like in the proof of Proposition 4.3.2-b)

‘2 Ch

2 1
|Vf|2_‘v‘?h| Zl_z‘v‘?i(%) 2 m
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h
By assuming |z, | <1 and by taking C' > max(8C1, 1), we get that, e wh| = O(h=No),
for some Ny > 0.
Like in Step 1, this leads to
L h wkb _ oo
|e® wh = e(ryuy™)| sy, =00
for p' € (0, p/2) small enough.
Step 8. — The estimates in higher order Sobolev spaces are done like in the proof of

Proposition 4.3.2-b) by a bootstrap argument after writing a boundary value problem
for x(uf — c(h)uP*®) in R™. O
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CHAPTER 5

SADDLE SETS AND MAIN ASSUMPTIONS

5.1. Preliminaries

Here we adapt to the case with boundary the method of selecting the proper critical
points with index 1 that we used in [18]. Some definitions and intermediate quantities
have to be modified in order to take into account the effect of the boundary. We recall
that the intuition for getting the good labelling of local minima, which is useful even
to state properly the assumptions and results, comes from the probabilistic approach.
The local minima have to be labelled according to the decreasing order of exit times.
We refer to [4], [3] and [10] for details.

The existence of such a labelling is an assumption which is generically satisfied.
After this, it is possible to construct accurately quasimodes leading, with the help
of the Witten complex structure, to accurate asymptotic expansions of the low lying
eigenvalues.

5.2. Saddle sets

We recall that we work here on a compact connected oriented Riemannian mani-
fold Q = QU 9Q with boundary and that the function f satisfies Assumption 3.2.1.
According to our preliminary results on the Witten Laplacian AJ? I"in Theorem 3.2.3,
we introduce the following definition of generalized critical points with index 1.

DEFINITION 5.2.1. — A point U € Q will be called a generalized critical point of f
with index 1 if:

— either U € Q and U is a critical point of f with index 1,
—or U € 9 and U is a local minimum of f‘aQ’ such that 9, f(U) > 0 (n being
the outgoing normal vector).
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The set of generalized critical points with index 1 is denoted by U()). Meanwhile
U denotes the set of local minima of f|Q From now on we will use the notation

(5.1) mp:#u@), forp=20,1,

instead of mg.
Finally it is convenient to call ¢ the union of all critical points of f and f | 00"

The saddle set (or set of saddle points) will be defined in the same spirit as in [18]
and chosen in ). We need some notations.

DEFINITION 5.2.2. — a) For any E C Q, the set of connected components!) of E is
denoted by Conn(E).

b) For any A, B C Q, H(A, B) denotes the quantity

H(A,B) =inf{c€ (—o00,+0), 3C € Conn (f~*((—o0,c])),

(5.2) CNA#@and CNB# o} .

REMARK 5.2.3. — When A (resp. B) is reduced to a single point, A = {zo}, (resp.
B = {yo}) we simply write H(zg, B) (resp. H(A4,yo)) .

This quantity H(A, B) is the least height to be reached to go from A to B. A
simple result which was checked in [18] in a slightly more general framework is the

PROPOSITION 5.2.4. — When A and B are closed nonempty subsets of Q, H(A, B)
18 @ minimum:
3C € Comn (f~'((—00,H(A,B)])) , CNA# @ and CNB # @ .
We are now able to introduce the right notion of saddle set.

DEFINITION 5.2.5. — Under Assumption 3.2.1, let A and B be two closed subsets of
Q. We say that Z C Q is a saddle set for (A, B), if it is not empty and satisfies the
following conditions:

(sp1) ZcuWnfH({H(A B)Y),

(sp2) {C € Conn(f~((—oo, H(A,B))\Z), CNA#2,CNB#2}=0.

If we compare this definition to the definition of “strict” saddle set in [18], we note
that we have dropped the conditions

ZNA=@ and ZNB=g.

We will effectively use the notion with 02 C B and so the saddle set can meet B.
In order to check that this definition is coherent, it is useful to recall a few remarks
coming from the local analysis of a Morse function which satisfies Assumption 3.2.1.

(1)We remind that the connected components are non-empty closed subsets relatively to the induced
topology on E and therefore,  being assumed compact, they are compact if E is a closed subset
of Q.
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Local structure of the level sets of a Morse function. — In order to analyze the local
situation near a point zq of 2, let us introduce:

A?(ﬂco) ={ze€Q; f(z) < f(z0)} N By, ,
where B,, is a ball centered at xg. Similarly, we can introduce
A7 (z0) == {2 € Q; f(x) < f(x0)} N By, -

Interior points:
First we observe that, near a non critical point ¢ € Q of f, one can find B,, and a
set of local coordinates such that

A? (xO) = {yl < 0} N Ba:o .

Secondly, if xo is a critical point of index p, then there exists a ball B, around xg
and a set of local coordinates centered at xy such that

and

‘We now observe that

1. When p = 0 (local minimum), A7 (xo) is empty and A? (z0) is reduced to {zo}.
2. When p = 1, AJf (x0) has two connected components and xy belongs to the
closure of each of the two components. This property is crucial in the discussion
of (sp2).
3. When p > 2, A? (x0) is (arcwise) connected.
Points on the boundary:
If g belongs to 0N, Assumption 3.2.1 leads to two cases:
First case.
If z¢ is not a critical point of f|8§2’ then the hypersurfaces {z | f(z) = f(zo)} and 00
intersect transversally in a neighborhood of zy. Hence there is a ball B, around zg
and a set of local coordinates such that

A% (20) = {11 < 0,y <0} By

and

AF (w0) = {11 < 0,5, <0} N By,

with QN By, = {yn < 0} N By,.
Second case.
If 2 is a critical point of f‘aQ with index p — 1 and with 0, f(x¢) > 0, there are
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local coordinates (y1,...,Yn—1,Yn), constructed from the relations (3.23)—(3.26), such

that (y1,...,yn—1) are Morse coordinates for f‘aﬂ and such that
p—1 n—1
A?(ffo) = {iyn_zy?"_zyz‘z <0, yn <0} N By, ,
i=1 i=p
and

p—1 n—1
AF (z0) = {iyn—Zy?Jrny <0, yn <0}ﬁBz0 :

i=1 i=p
These local models permit to see that

1. If 2 is a local minimum of f‘aﬂ such that 0y, f(zo) < 0, then A? (x0) = @ and
AF (z0) = {zo}.

2. If ¢ is a local minimum of f|89 such that 9y, f(x0) > 0, then A? (xg) NN =0
and A?(xo) N o = {xo}.

3. In all other cases, A? (x0) admits one or two connected components with a non-
empty intersection with 9 (two components if p = 2 and 9,, f(z¢) < 0 and one
in all other cases).

PROPOSITION 5.2.6. — If A and By are disjoint non-empty subsets of the set of the
local minima of f in Q, then the pair (A, B), with B = B; U0, admits a saddle set.

Proof. — We have to prove that a set C, belonging to Conn ( f~!((—oc, H(A, B)]))
and satisfying C N A # @, C N B # @ contains an element z € YV such that
f(2) = H(A, B). Then it suffices to take Z = UM N f~1((—o0, H(A, B))).
Let C be a compact connected component of f~*((—oo, H(A, B)]) in Q. Since f is a
Morse function, there are two possibilities, resulting from the previous local analysis
of f and of the connectedness of C"

— Either it is reduced to one point which is a local minimum of f in 2,

— or it is the closure of a finite union of bounded connected components €2; of

f~1((—o0, H(A, B))). Note that the (2; are open subsets of ).

The first case cannot occur. Indeed C N A # @ and C'N B # & would imply that the
point z¢ (such that C' = {x¢}) is a local minimum (z¢ € A C Q) and belongs to 09
(xc € B\ By C 09).
Hence, we are in the second case and we have

C=ul,Q,

where 1, ...,Qx are bounded connected components of f~! ((—oo, H(A, B))).
Every x € ANC (resp. x € BN C) belongs to some ;. The Q; are labelled such
that, for alli € {1,..., M}, ANQ; # @,and forallie {M +1,... ., N}, ANQ; = 2.
We have

M N
ANCc U Q; and BiNnCc U Q.
=1 =M1
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There are several cases:

If C c UM, Q;, then CNB; = @ and CNB # @ imply that there exist i € {1,..., M}
and zo € Q such that xo € Q; N 9. This implies first f(zg) = H(A, B) and the local
description ofAJf (zo) implies g € UVNOQ. If C ¢ UM, O, then CNUY 1 Qi # 2.
Since C' is connected, we have

S

on(

IcC

N
| Ql) N (j:J\L/}+1 Q]) + 0.
Therefore, there exist i+ < M and j > M + 1 such that C' N Q. N Q_j # . Assume

zo € CNQ;NQ; and note that i # j implies f(zo) = H(A, B). The local description
of A? (o) says that zp € 9Q is possible only if it is a critical point of f|aQ with

(2

index 1. But again this cannot occur because €2; N Ajf (o) would contain a point
x1 € 9. Hence xg € Q2. The local description of AJf (x0) shows that z has to belong
to UL, O

On the uniqueness of the saddle set. — Like in the boundaryless case studied in
[18], it is not possible to give a satisfactory definition of a unique saddle set and we
introduce a new definition which explicitly specifies this case.

DEFINITION 5.2.7. — Let A, B be closed nonempty disjoint subsets of Q. The point
z € UW is said to be a unique (one point)-saddle set(?) for the pair (A, B) if
n_O)nuUYnfHADB)) =
(ol gy © N 0 FH (A, B))] = (33
where C(A, B) denotes the set of closed connected sets C C f~!((—o0, H(A, B)]),
such that CNA # @ and CNB # @.

5.3. Main assumption, notations and first consequences

We now give the main assumption like in [18] and inspired by [3], which ensures

(0)
f

that each exponentially small eigenvalue of A b s simple, with a different asymptotic

behavior.
We set here
Co =090 .
ASSUMPTION 5.3.1. — Under Assumption 3.2.1, there exists a labelling of the set of

the local minima of f U = {Ul(o), N Ur(,?g} such that, by setting

o ={uf,...v{"} v,

@ or more shortly, a unique saddle point,
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we have:

i) Forallk € {1,...,mo}, U,io) is the unique minimizer of
HU,C\{U}) = f(U), U€eC,\Co.

i) For all k € {1,...,mqo}, the pair ({U,go)},Ck_1> admits a unique (one point)-
saddle set {z}}.

REMARK 5.3.2. — Like in [18], it is possible to check that this hypothesis is generi-
cally satisfied. More precisely, it is satisfied if all the critical values of f are distinct
and all the quantities f(U™M)— f(U©®), with UM € YD) and U € Y are distinct.
We refer the reader to [18].

By its definition, the point z; is a generalized critical point with index 1, 2} € U,

DEFINITION 5.3.3 (The map j). — If the generalized critical points of index 1 are
numbered U;l), j=1,...,mq, we define the application k — j(k) on {1,...,mg} by:

1 *
(5.3) =2

DEFINITION 5.3.4. — Under Assumption 5.3.1 and for k € {1,...,mp}, we denote
by Ej the connected component of U ]io) in

F7H (=00, FUSMN U} -

PROPOSITION 5.3.5. — Under Assumption 5.3.1, the following properties are satis-
fied:

a) The sequence (f(U]((llz)) - f(UIEO) is strictly decreasing.

)>k6{1,...,m0}
b) The set Ejy is a relatively compact subset of ffl((—oo,f(U;(llz))]) and

B = B u{Uf) } white Brnoa c {u) .

c) For any (k,j) € {1,...,mo} x {1,...,m1}, the relation U;l) € Ey, implies
either (j = j(k') for some K >k) or j&j({1,...,mo}).
d) For any k £k € {1,...,mg}, the relation U,S)) € Ey implies
(k-’>k and  f(U) > f(U,S”)) .

e) The application j : {1,...,mo} — {1,...,m1} is injective.
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Proof
a) The condition i) of Assumption 5.3.1 gives

) =10 = HUD .U - FU)
< H(Ué%ck O - 1 @2)
< HUDLGa \UDY) - 1)
= FU_) = FUD) .
b) It suffices to consider the local description of A?(U]((llg)) and A<(U((,3)) in the two
cases U;(llz) € Q and U;(llz) € 0. The last statement comes from Cy = 92 and the

assumed uniqueness of a saddle point between U}go) and Cg—1 D Cp.

c) Assume U((sz) € E.

Since U & E), one has k # k’. Moreover the 1nequahty f( ](k,)) < f(U]((llz))

implies that the connected component of f~1((—o0 f( (k, ))]); which contains U;(llz,)

is contained in Ej. Hence Ej contains U}go) and U,g,).

a closed connected set Ej, lying in ffl((—oo,f(U;(llz))]) \ {U((llz)

Finally E} is modified into
} in the following

way. Take the coordinates (x1,...,x,) around U ((1 13) which are Morse coordinates if
U;(lli) € Q and such that f(z) — f(Uj((lgz)) =2xn + Z; 1 x], if Uj((llz) € 909. Consider,

for p > 0 small enough, Ej , := E, N {|z| < p} and its radial projection on E”ed :

B, N {|z| = p}. Then Ej, p = (Ex\ Exp) U E”ed is closed and can be conSldered as
the image of Fj by a continuous application. Hence it is connected. We have found

a closed connected set Ej, » € Qlying in E, C f~1((—o0, f( j(k))]), which contains
U, ©) and U,g, for k' # k, and does not contain U((;) Therefore one cannot have
k' < k, because this would contradict the assumption that U ((k) is the unique saddle

point between U,i ) and Cy_4 (Assumption 5.3.1-ii) and Definition 5.2.7). Indeed the
existence of another saddle pomt is obtained by using Proposition 5.2.6 by slightly
increasing the value of f(U (k)) Hence, the only possibility is k' > k.

d) Assume U ¢ B, with & # k'. By the same argument as for c), one then takes a
closed connected set Cy i C Ej, C f~((—o0, f( ](k))]) such that U,go), U,g?) € Crp

and Uj(k) ¢ Cy . This implies &' > k.

Assume now by contradiction that
{k’ >k U € B, and f(UY) < f(U,§°>)} 4o,

and let kg be its smallest element.
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We deduce from the existence of Cir, as a closed connected subset of
Er C f~ (=00, f( ](k))]) containing U}go) and U,g(o)), the inequality

FWULE) = HUL Cryr) < FULY) -

Since the connected component C of U]((,i ) in 1 ((—o0, f(UJ((,i ))]) contains U,g(o))
and a point in Cg,_1, it is contained in Ej, and Ej contains a point of Cy,_1. As a
consequence of b), this point cannot belong to Cp.
Hence there exists k1 < kg such that U ,5?) € C C Ei. Finally, the condition i) of
Assumption 5.3.1 for kg gives
FUGL) = TR = HUY ,Cryr) = FUR))
<HU,Ce, \{U}) = F(U))
< 1wif) - sy,

For the last inequality we used the existence of a connected set C' containing U ,i?) and
the point U,gg) € Cry \ {U,g?)} such that f(C) € (—oo, f(U((llz))], with the definition of
H(UL,C, \{UL))-
Hence we obtain
FO) < 10 < FU)
with k1 < kg and U,g?) € FEj, in contradiction with the definition of kg. Hence we have
proved
W >k, (U € Bx) = (f0) > 10”))
e) Assume j(k) = j(k'). The point U((llz) = Uj((llz,
for (U,go) , Ck—1) and for (U,g, , Crr—1).
Then we have
either Ey =Ey ,
or <k, U eE, and 3k <k U €Ep .

) € UM is the unique saddle point

According to d), the first case implies
k<K and kK <k,
while the second case gives
k<ki <k and kK <ks<k.
Hence only the first case is possible with k' = k. O
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QUASIMODES

Like in the boundaryless case, we associate with every U,EO) (ke {l,....mp}) a
quasimode for Aﬁz’(o) which is approximately supported in Ej, while the quasimodes
for A?z’(l) will be supported in the balls B(U;l),Qal), je{l,...,mi}. A bal
B(U,p), with U € Q and p > 0, is a geodesic ball and the geodesic distance is
denoted by dg. The parameter €1 > 0 is fixed so that:

—doU,U)>10e, for U, U €U, U £U".

— ForallU €Y and all k € {1,...,mo}, U & E), implies

dQ(U7 Ek) >10¢e; .

— The construction of the WKB-approximation of Section 4.6 is possible in the
ball B(U;l), 2e1). If U;l) is a boundary point, this means the introduction of
the coordinates (2', x,,) and the existence of ®.

The parameter e > 0 will be kept fixed, while we need another parameter € € (0, gg),
which has to be modified at each step of the final induction.

According to Proposition 5.3.5-b), Assumption 5.3.1 implies that Ej intersects 0
at most at one point:

EL,NnoQ C {U]((l,z)} .

The construction presented in [18] has to be adapted when this intersection is not
empty and we focus on these changes.

For every k € {1,...,mo}, we introduce the open set

Qk:fskU( U B(U7351)> )

1)
UeUNdEBx, UAUS),

which satisfies
O = By U{U) U ( U B(U,351)> .

1)
UeUNdEBx, UAUSL)
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For ¢ > 0, this set € is modified as
(e, 8) = {x €0, do (m 2\ BUY), )) < 5} BU).e)

with ¢ € (0,e.), dc > 0 small enough.
The cut-off function xx.. € C§°(€2), 0 < xk. < 1 is chosen so that

Supp Xk,e C Q(e,6.) and Xkoe |~

Q.6 /O\BU) )

Around U;(IIZ), the cut-off function xj . is chosen (more accurately below) so that

U;(llz) & supp Xx,e and

1 ]
(6.1) vreBU) ., (Xk,g(x) £0,and f(z) < f(U;(,g))) = (z€ By C ).
Like in [18] we deduce from Proposition 5.3.5 the following properties for .

PROPOSITION 6.1. — By taking 6 = 0. with € € (0,£0], 0 < g9 < &1 small enough,
the cut-off functions xr.e (k € {1,...,mo}) satisfy the following properties:

a) If x belongs to supp xx,.. and f(z) < f(U;(llz)), then x € Eok,
b) There exist C > 0 and, for any ¢ € (0,e0], a constant C. > 0, such that, for
T € supp Ve,

either  x & B(U]((,z),c’) and f(U]((llz)) + O < flr) < f(Uj((llz)) +Ce,

or mEB(U((g),) and |f(x)— f(U((k)) < Ce.

c) For any U € U, U # Uj(llz , the distance do(U,supp Vxi,e) is bounded from
below by 3e1 > 0. If in addition U € SUpP Xk,e, then U € .
d) If, for some k' € {1,...,mo}, U belongs to supp Xk,e, then k' >k and

FU) > fU), f(U“,z, )< I (U) s kAR
e) Foranyj € {l,...,m1}, such that U]( ) e SUPD Xk e

either J€i{L,...,mo}) ,
or  j=jk ) for some K >k and U € supp .- -

The cut-off function xj . is used in the construction of quasi-modes for A T (0,

( )

Like in the boundaryless case, the construction of quasi-modes for A w111 rely

on the approximation by the Dirichlet problem in small nelghborhoods of U( )

] €
{1,...,m1}. For interior points U( ) € Q, this neighborhood is (U( ) 251). For
points U; M) in the boundary 952, this Dirichlet realization is AD DT(l)
studied in Section 4.6 and associated with the neighborhood 2

enough. Once p > 0 is fixed uniformly for all U;l)

, which was

U(l) with p > 0 small

€ 01, the parameter ¢; > 0 is
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reduced so that B(U;l),%l) C Qu,,p for all U;l) € 0. Forall j € {1,...,m1},
u; denotes a normalized eigenvector associated with the first (exponentially small)
eigenvalue of this Dirichlet realization. The cut-off function §; € C(‘)’O(B(U;l), 2e1)) is
taken such that 6; =1 on B(U;l),sl).

Note that the function xx.. depends on € € (0,¢¢], while 6; is kept fixed like 1 > 0.

DEFINITION 6.2. — For any k € {1,...,mq}, the (¢, h)-dependent function 1/),20) is
defined by

©)(4) = HX’“ E(x)e*(f(x)ff(U,EO)))/hH_l e ()@= /A

For any j € {1,...,m}, the h-dependent 1-form w§1) is defined by

e (@) = (105,17") 0 (@)u; (@) -

For any k € {1,...,mo}, we set
2
app 1 0) ,(0
NP (e h) = ‘<¢§.(}€) | d(ﬁ}) w,(c )>}

REMARK 6.3
a) For the sake of conciseness, we omit the (g, h)- and h- dependence in the notations
1/1(0) and 1/)(1)

k j o
b) Note that, for boundary points U ;1) € 09, the quasimode 1/)](-1) only belongs to the
form domain A'Hg (§2) of A?Z’(l). This brings no additional difficulty to what was
done in [18] for the boundaryless case, because the preliminary approximation of the
spectral subspace with quasimodes only requires the Min-Max Principle or Lemma
2.4.5.

We end this chapter by reviewing the quasimodal estimates which are derived from

Propositions 5.3.5 and 6.1. We refer the reader to [18] for the details. The asymptotic
expansion of <wj(b)c) | d;?,)L ,(CO)> has also be done in [18] when U;(llz) € ) is an interior
point. We will simply complete this analysis by establishing the asymptotic expansion

1) 0y, (0) 1)
of (i) 1 dfut”), when UL, € 00
We remind the reader that the parameter €1 > 0 is fixed, while ¢ and € € (0, &¢]
will be adapted in the different steps of the proof. We shall denote by a a generic

positive constant which is independent of € € (0, eq].

From Proposition 5.3.5-d) and the good localization of Vi ., we deduce the fol-

lowing estimates for w}(ﬂo).
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PROPOSITION 6.4. — The system of (&, h)-dependent functions (w,io))ke{17...,mo} of
Definition 6.2 is almost orthogonal with
(0) (0) = TIdem o) —a/h
(7 1), ey = Temo +0c(em/M),

and there ezists o > 0 and, for any € € (0,e0], C(e) and ho(e) such that, for any
h € (0, ho(e)],

(A0 |4) = Q00| < Oe)e Wit —1 U -e)m

COROLLARY 6.5. — There exists g > 0 and a > 0 such that, for any choice of € in
(0,e0] and for all k € {1,...,mqo}, the (g, h)-dependent quasimodes 1/),20) satisfy the
esttmate
0) , (0 0 _
(AP [ 4”) < Cee™

The exponential decay of the first eigenvector u;, associated with an exponentially

)

small eigenvalue, of the Dirichlet realization of AE},)L around U ](1 , provides the next

estimates for w§1). We refer the reader to [18] or [21] for U;l) € Q and to Section 4.6
for UV € 99.

PROPOSITION 6.6. — The system of h-dependent 1-forms, (w§1)> . , given in
Je{l,....mq
Definition 6.2 is orthonormal and there exists o > 0 independent of € such that

Dpn@") = O(e=/m)

forall j€{1,...,m1}.

Before we state the next result, let us specify the choice of x; . in B(U;(llz),e) in
(1,2) € 0Q. We assume ¢ € (0,¢¢), with 0 < g9 < T5. We use again

the coordinate system (2’,x,) introduced in Chapter 3 and Section 4.6 such that:

PYUG) =0, 2u(UR) =0, 92nBU\),2:) C {z, =0}

the case when U;

and
1 .
f@ x,) = f(Uj((llz)) +xn + Ef_(x'), Tn, <0in QN B(U;(llz),Zal) :

The function ®(x) which equals the Agmon distance dag4(z, Uj((llz)) is given by

O(2', xn) = —xp + %f_(x') .

The construction of the coordinate system (z’, z,,) which block diagonalizes the metric
everywhere (see (3.27)) permits(’), when n > 1, to choose the boundary coordinates

(DThe case n = 1 is easier (no Laplace method has to be used) and we refer the reader to the
appendix.
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' = (z1,...,Tn—1) such that dzy Adxs- - Adx,_1 Adx, is the Riemannian volume
form in B(U]((llz), 2¢1). This means

(6.2)  *(dzy A Adrp_1) =dr,, *dr, = (=1)""‘dzi A---Ad, .

The cut-off function xy . fulfills the following conditions which are illustrated in Fig-
ure 1:

i) The support of x,. does not meet 9N (already stated).
ii) In a neighborhood

(6.3) V= {x e BUY.0), o] < VE}

of the curve {#' = 0,z,, < 0}, the function xx. only depends on z,: x(x) =
Xk.e(Tn), for x € V.

0Q = {x, =0}

FiGUure 1. Case U]((llz) € 00. The support of Vxi,e is localized between the

dashed curve. The function f is constant along 0SYy,.

In Section 4.6, we found the WKB approximation u!’*® of an eigenvector u?, such
that
e u* = —2aq(x) dz, + hb'(z,h) ,
ap(0) =1, bl(xa h) ~ Zhébé(x) )
¢
and

P (x)
¥z € BU\)),2e1), e |02(ul(z) — uf™(@))| < Conh™ .
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The normalized eigenvector that we take here is
—1 n—1

lu? ]

uj(k) = ’U,;L .
Let us first compute accurately
[t || = 1050t || + OB=) = [[0;0ur™|| + O(R) .

We have, denoting by dx the Riemannian volume measure,

_2%(x)
(6.4) 1850 * = J 46,0 (2)*(ds | drn)ao ()%

on I
=4 [0;u (2)2ag(z)2e e~ 7 day A+ Aday,

where the integral is over z,, < 0. The Laplace method, applied with the function
f_:2f|8Q 2f( ](k)),gives

(wh)“ =

(5f a0 (U ((113))> 1/2

16,00 ui™||* = 2h (1+O(h))

with
1
dr.00 = ‘det <§(ajkf)j,k1,.“,n1> ‘ .

Note that the Laplace method gives actually a full asymptotic expansion.

After the normalization we get, for all x € B(U;(llz)),

((5f (U ;(112)))1/4

(wh)"

(bok(x) dx, + hb,lc(x, h)) e_(p(;) 7

(6.5) i (@) = (-1)"V2r

with bg (0) = 1 and b} (z, h) ~ 3155 Wb}, (2).
For the quasimode w,io), a direct Laplace method provides (see [18])

1/4

0
6 req © det Hess f(U,g )) . - f(w>—f<U£0)>
( . ) T e ,ll) ( ) (Tfh)n/4 a’k( )X’%E(q’.)e ' )
with ag(h) ~ > 72 hfake and ago = 1.
PROPOSITION 6.7. — There exist eg and sequences (Ckm)men+, such that the (¢, h)-

dependent and h-dependent quasimodes 1/),20) and w§1) ( (k,j) € {1,...,mp} x
{1,...,m1} and € € (0,&¢]) satisfy:

WM 1 d0 ) =0 if j# (k)
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det(Hess f(U(O))) e

det(Hess f(U (k)))
x eXp—% (FW ) — 1)) x [+ heh()]
if j = j(k) andU( ))69

ht/
Wit Lol = (=1

1
1/2|A UM

where Xl(UJ((lg)) is the negative eigenvalue of Hess f(U((]z)) and

det(Hess f(U(O))) e

Sp.00(UL)
xexp—y (FUS) — 7O x 1+ hek(0)] |
if j = (k) and U}, € 09,

\/_h1/4
(¥ (k)|dfhk>:( Dl rl/4

with ci(h) ~ Y 0°_ ck.mh™ in both cases.

REMARK 6.8. — We recall that we were computing above in coordinates such that
the Riemannian volume form is daxq A -+ A dxp_1 A df(U((llz)) The prefactor in the
last formula of Proposition 6.7 can be expressed more intrinsically by observing that:

1 1 -2 1
‘@,aﬂw;(,g))‘ - ‘Vf(U;(,g))‘ X ‘det(Hessf|8Q(U;(,2)))‘ .

Proof of Proposition 6.7. — The first statement for j # j(k) is a consequence
of our choice of &1 > 0 and xj. which gives according to Proposition 6.1-c)
supp w](»l) N supp Vxg,e = &. We conclude with d;?,)L ](co) =Con (d(O)Xk,e) e—f/h,

The second case was completely treated in [18] for the boundaryless problem.

The last one, j = j(k) with U;(llz) € 01, is adapted from the second one by using the
specific approximations (6.6) and (6.5). With

A (nee™ ) = e FdO .

we obtain the existence, for any € > 0, of o. > 0 such that

‘det Hess f(U( )‘
K (

an/4

< (8@ |d<0> <0>> W-%a

e _ U@y
. BUY {Wjia) [ dxre) (2)e " dz

i€
f(UJ((l))) f(U( ))toe
+ O ,
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The two additional conditions i) and ii) given above for the cut-off function xy .
permit to reduce the integration domain to the neighborhood V, introduced in (6.3):

‘1/4

0 ‘det Hess f(U(O))
< E |d( > h'= % ag(h
J( ) 7-‘-n/4

U@y
[ W o) T

f(U(1>)) f(U( )toe
+ O, ,

for some o, > 0.
Finally (6.5) and (6.2) lead to

< J(k) |d(0 >

1 1/4
V2 ‘det Hess f(U,gO))‘ <5f,89(U]((11z)))

n/2+1/4

n 1

— plE1

(o)1)= f(U“”)
X (—1)"/ e (X'e(@n) + Oc(h)) day Adao A -+ Ady,
v
and, with f +® = f_ + f(U}))), to

(Ui 1 e

Ve |aet Hess FU)| " (7000 18)) "

_ ;3/4-2
=h an/2+1/4

rwi -

x (=1)"e~ 2 [/ e*f*(””)/h(xlkye(xn) + O:(h))dry ANdxg A--- A dxn} .
1%

The Laplace method, applied with f_ = 2f|(,m — 2f(U]((1,2)), gives

1/2 dez

/ e I=@/Mgri A Ndppy_q ~ (
|z’ |<v (§f aQ(U (k)))

with do =1.
We conclude for the main term by using

/Xﬁw(xn) de, =-1. O
R
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Finally we can also establish:

PROPOSITION 6.9. — Let w}(go) and w](»l) denote the (g, h)-dependent and h-dependent
quasimodes of Definition 6.2. Assume that the 1-forms (wj(-l))je{l’wml} satisfy

o 19 - 0o,

for some a > 0 independent of € € (0,e9]. Then there exist ey, > 0 and &/ > 0 such
that, for all € € (0,¢e(], the estimates

(6.7) <w§1) |d§coi ](€0>>‘ éCeef[f(U;(llz))*f(U,EO))+a']/h7 if i+ (k)
and

1 0 0 0 0 —a’
68 il 1) = 0 1) (1 0.

hold for all (k,j) € {1,...,mo} x {1,...,m1}.
The proof is a straightforward consequence of Propositions 6.4 and 6.7 which give:

a0 | < Ce@sib=s=are)in,
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CHAPTER 7

RESULT AND FINAL PROOF

7. Main result

Let us first recall some notations. The local minima U}go) (k € {1,...,mo}) are
labelled according to Assumption 5.3.1, the generalized critical points with index 1,
U (( ,i) are those introduced in Definition 5.3.3 and the quantity A\;"” (e, h) is associated

with the quasimodes 1/)(0) wj(%)) in Definition 6.2:

)\ZPP(E,h) — ‘< ](2]1) | d(o) (0)>‘
At a generalized critical point U with index 1, the Hessians Hess f(U) or Hess f | o are
computed in normal coordinates for the metric g, while considering only the tangential
coordinates ¢’ = (x1,...,2,-1) for the second case. We refer to Remark 6.8 for
the right normalization when U € 0. When U € Q, :\\1(U ) denotes the negative
eigenvalue of Hess f(U).

THEOREM 7.1. — Under Assumptions 3.2.1 and 5.5.1, the mg first eigenvalues
A(R), .oy Amg (R) fADT ©) qdmit the following asymptotic expansion. There exist
go >0 and a >0, such that, for any € € (0,e0],

Vke{l,...,mo}, Mp(h)= /\(]zpp(57h) (1 + (’)E(e—@/h)) ]

Moreover there exist sequences (Cim)men+ such that, for any e € (0,¢e¢],

‘det(Hess f(U,EO)))‘

o h
Xi(eh) = — A (Uf))

- (1 + he (h))
‘det(Hess f(Uj((;)))‘ *

2
xexp—3 (FUSL) = FUL)) L iU, €9,
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and
2h1/2|Vf(U;(113))| ‘det Hess f(U(O)))‘ .
NP (e, h) = —7 ey (14 heg(h))
‘det Hessf|£m j(k)))‘

2 1 0 )
xexp—7 (FUS) = FUL)) L iU, €09,

with cj.(h) ~ > oo _o B™Ch .

This theorem implies the theorem announced in the first chapter. The core of
the proof is essentially the same as in the case without boundary treated in [18].
We give it for the sake of completeness. The main idea is that the eigenvalues of

A?;’(O)|F(O) 6(0)*6(0) are the squares of the singular values of [3(0) The Fan

Inequality for smgular values permits to control the relative error for all singular
values, when the matrix of ﬁj(c?zl is expressed in different bases. The proof will be done
in two steps.

7. Finite dimensional reduction

Theorem 3.2.3 and the results of Chapter 5 lead to the

PROPOSITION 7.1. — There exist a,&’ > 0 such that:
DT, (¢ DT, (¢
1[0,h3/2)(Af,h/( )) = 1[0767(1/;L)(Af,h ( )) ) f0T£ =0,1.
Moreover if one sets

(71) Vi € {1, . ,mg} s (E) [0 hs/z)( )w(g)

where the wy) are the (e,h)- and h- dependent quasimodes introduced in Defini-
tion 6.2, the system (v“))A o , is a basis of F©) such that:
1€

7

1) Yie{l,...,md), H H— (e~

9) V.= (< ® |v“>>) = Idgme + O(e™' /) .

i €{1,...,me}

REMARK 7.2. — Note that here again we omit the (e,h)-dependence (resp. h-

(0) (1))

dependence) of the functions v, ’ (resp. 1-forms v;) in the notation.

Proof. — Let ¢ € {0,1} and i € {1,...,mg}. According to Lemma 2.4.5, Corol-
DT( ¢
Lipsr2 ooy (A @)y

O(e*a// h). The second estimate then comes from the almost orthonormality of

lary 6.5 and Proposition 6.6, is estimated from above by
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(¢®> . . Since we know by Proposition 3.3.2-iii) that F(*) has dimension
i€{l,...,my

(2

my, the system (vy))ie{17___7me} is a basis of F(). We conclude with

(Apn ol 1ol < (AT |9 < O

DEFINITION 7.3. — The basis (ey))ie{17___7me} of F® is the orthonormal basis de-
rived from (vy))ie{17___7me} by the Gram-Schmidt orthonormalization procedure

SIED M (UREY

i

The mi X mgy matrix M is the matrix of(!) BJ(I?,)L in the bases (e,(co))ke{l’wmo} and

(eg»l))je{lw,ml}. Its square M* M is called the interaction matrix.

According to (2. 21) the mg eigenvalues of the restricted Witten Laplacian
DT © | PO = B (0 B are the eigenvalues of the interaction matrix M* M. Hence

1t is theoretlcally pos&ble to determine the low lying eigenvalues of ADT © by

analyzing the matrix M. The problem is that the coefficients of the matmx M are
not known at this level accurately enough in order to split the different exponentially
small scales. Like in [18], we will work with the matrix

(7.2) T — (< (1) |ﬂ(o> <o>>)

(7,k)e{1,....m1}x{1,...,mo}

of the map 6f h» Written in the bases (v,go))ke{l____ me} N F© and <v§1)’*) . ,
e je{1,....m1

dual to (vj( ))je{17___7m1} in F. This permits to use directly all the accurate in-

formation that we have on the quasimodes wl@. The fact that these bases are not
orthonormal does not make any problem as we shall see below.

7. Singular values and induction

The first eigenvalues Ai(h), 1 < k < myg, of A?f’(o) are the squares of the singular
values® fim,11-x(M) of M. In other words,

2
0
A (h) = {Mmoﬂ—k (5;;1)} :
We will use the simple consequence of the Fan Inequalities (see [31], [12]):

PROPOSITION 7.1. — For any matrices A and B such that,

max {||B|,[[B7|} <1+p,

()'We recall from (1.9) that ﬁ(o) is defined from F(® into F(1) by the restriction of d( ) to F(0),

(2)The singular values py,(A) are numbered here as usual in the decreasing order with ,ul( ) = ||A]l.
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the singular values of A and AB satisfy

(‘jf*p)) < ik(AB) < (1+ p)ui(A)

and the same holds with AB replaced by BA.

Hence a small change of bases induces a small relative variation of the singular
values and it is not necessary to work with orthonormal bases in order to estimate
the singular values.

For example, we have, for any k € {1,...,mop},
1 (B5) = we(M) = p(Z) (1+ O(e=*/™))

where 7 is the matrix of the map ﬁ;?})l introduced in (7.2).

We will construct by reverse 1nduct10n on K, from my down to K = 0, two bases
(”xi?}()ke{l mo} Of F©) and of F(V ( )36{1 .,m.} so that the following properties
hold for € € (0,¢0] and some o > 0 1ndependent of e.

1) The systems (véO}()K<k<mO and (v (,1) 1)K <k<m, are orthonormal.
We then set

FI(?) :Span{v,(;’)}(,K <k< mo} and F —Span{ ]((,)C)K,K< k<m0} .

i
2) For 1 <k <K, v,(ﬂ( belongs to (FI((O)) and for j & {j(k), K <k <my}, ”(1)(

belongs to (F(l)

3) The estimates,

Vié{l,...,mz},

’L K~ )

£ L —a
ol —0l%)| = 0l

hold for ¢ =0, 1.
4) For K < k < my, the equalities

(0),,(0) (1) DT +(0),,(0) 2,,(0)
BinVkk = ViVjy i and Ay kK*Vk kK

hold with
0) _
v = (50 [ Ay (1+ 0c(e7/M))
They imply, observing also that vy # 0,
APPORD cFY refo,1} .

5) For all j & {j(k),K <k <mg} and all k € {1,..., K}, we have

k1 820%0 = ok %00

We recall that the wy) and the v§ ) depend on h € (0, ho] and € € (0, ¢, while o > 0

enters in the exponential estimates. The parameters ¢g > 0 and o > 0 belong to
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intervals which have to be reduced each time that one refers to Proposition 6.9. This
is done a finite number of times at each step of the induction.

Initialization: the case K = mg. — We take v(o) = v,(co) and v, T)no = v§1) accord-

ing to the definition of the previous chapter. Condltlons 1), 2) and 4) are empty.
Condition 3) is given in Proposition 7.1. For Condition 5), we write

1 0 0 DT, (1 1 0 DT, (0 0
WM B D) = (g sy (AR | d0) 110 a2y (AT O)p?)
DT,(1 1 0 0 1 0 0
= (g oy (AT R D)l [ dP ) = @iV [ dP) ) .

Recursion: from K to K — 1. — Assume that the result is true for K > 0. Condi-
tions 1) and 4) say that the quantities lvi|, K < k < mg are singular values of BJ(CO})L

2 T,(0)
(vf is an eigenvalue of AP b | () Moreover the estimate,

(7.3) v, = (! ](k) |d O (14 0. (e=/M)
and Proposition 6.7 imply

1/2,~(F(U (e yn))—FUL ) /R (FUSGey) = FU)=2a1) /1
(7.4) lvg| > C.h/7e >C.e” ,

with oy independent of € > 0.
Let us consider the dual basis (v§11)<*) in FM. For j = j(k), K < k < mo, vj(ll)(*

equals v( ) and consequently

o5 = v = 0c (e
The matrix of BJ(‘?i)L : (FI(?))l - (Fz(g))l in the bases (’Ul(c(,)}()lﬁkSK and
(v (1)’ & )ig{ik),K<k<mo} €dquals
(75) (< |5f0i)L I(cOK
Conditions 3) and 5) and Proposition 6.9 lead to
= O.(e —(FU ) F U - an)/hy

>)j€{j(k),K<k§mo},lgkgK '

|74l s
Hence the quantities |vi|, K < k < myg are the first largest singular values of ﬁ;?})l,

Ve {K+1,...omo}b,  [Vkl = ptmos1-5(BY)) = VAelh) |

and we have
(76) \/ = Umo+1-K ﬁ = Hﬁ |(F(O))L

Let us now consider more carefully ﬂf h‘( FO)L and its matrix (7.5) in the bases
’ K

(v,(;)}()lngK, (U](»’l[)(’*)jg{j(k),K<k§mo}. With the same arguments as above relying on
Proposition 6.9 and Conditions 3) and 5), its coefficients have the form

(7.7) W ey AU (35005 O+ Ocle™2/M))
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Since the two bases are O, ( —a/ h)—close to orthonormal bases, we obtain

V) = (WG | 4| (4 0u(em")
We set
(1) (0) (0)
d;
(7.8) Vi = id <K> | > Ak (h) -
We have
(7.9) 6}0}11}&?)[( Z/KU(%}%) K+ O (vice=3/M),

We next define the new bases (1),(€ }< 1) and (vj(ll)(_l)

Of course we keep v,ioz( 1= v,ioz( and v](%,)c) Kol = vﬁ])c) i for K < k < myg.

We then take

-1
0 DT,(0 DT,(0
ik = Hl{/\K}(Af,h ( ))UK,KH Loy (A7 ok ke
and
e 5(0) (0)
Vi), k-1 = R UK K1 -
ForlSk;SK—landj%{j(), — 1<k <mg}, we take

0 0 0
“1&%{ 1—Ul(u)r< <UkK|UKK 1>U1(K)K 1

and

(1) (0) (1) (1) (1)
V1 =V i — (v |UJ(K)K 1>”(K)K 1

By construction, conditions 1), 2) and 4 ) are satlsﬁed by these new bases. Condition 3)

will be satisfied as well if "UK 5 vK (o 1H = e~2/") holds. The identity (7.6)
gives

0 DT,(0)y (0
(7.10) Vhe (L., K}, ok = lopa (A7)l .

Moreover Proposition 6.9 yields
VeEe{l,...,K—1},Vje{l,...,m}, ‘< W1 8000 ‘ — O.(\/ae2o/h) |
Like in the proof of Proposition 7.1, we obtain, for some a7 > 0,
(7.11) 1A AFR") = Tgaearm (A7) -
We now write, by spectral decomposition and using (7.11) and (7.10),

(7.12) )\KHl{)\K} ADT () UKKH +O.(Age o7/ HlOAK) DT (0)y UKKH
<A?T Do i)

and observe that by (7.9)

(113) (AT o) = |8 = e (1 + O
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Hence we obtain
DT, —a
Hl{AK}(Af,h © UK KH =14 0(e /"),

We conclude with

DT © 0 DT 0
[tor GZEOW" = o] 1o A7T UKKH
_ 6(6 2a/h + 0. ( 72ag/h
We have proved
HUKK _“KK 1” Oc(e=/M)
This implies
0)_(0)
HﬁthKK_VKUJ(K)K 1H = Hﬁfi)L §<K fh KK 1H
DT, (0 0 0
= Hﬁf,hl[o,AK](Af,h ( ))(UEK)K UEK,)K—l)H
= OE(\/ )\Keiaf’/h) ,
while we have
2~ ] e

The almost orthonormality of (v, ) )ge{l .,mo} inherited from Condition 3) and the

almost orthogonality of (w(- ){1,...,m1} imply

H 1)7 H —oz/2h)
(), K T Vi) K || T :
This yields
1 1 _
o5t 11 = 25tae 1| = Ol

Let us verify Condition 5) for the new bases. — For k € {1,..., K — 1}, the
construction of the new bases and the induction gives
(0) (0) —{ (0) (0) ) (0)

Uk k-1~ Yk K ”kK|UKK /UK K—1
0 0
= v,i,ﬁno - ) U%?,Kf_l
K<K'<mg
0 0
= vl(c ) Z K UEK/),KA )
K<K'<mg
with tk» K = <Uk K’ | UK/ K — 1>
Hence we get, with vk = 1po,ns/2) (A% b (0)) ](€0)7
(0) (0) _ (0) (0) (0),,(0)
ﬂfh EEK—1 — 5 - Z K 6f,th/,K71
K<K'<mq
DT,(1)y 4(0) ,(0 1
= 1[o,h3/2)(A = ) d( hwl(c ) - Z kK VK ’U]('(;('/),K—l :
K<K'<mg
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Meanwhile, for j & {j(k), K —1 <k <myg}, the vectors v(ll)( 1 were constructed
such that

1
1 1 1 1
J(I)( 1€ (Flr(<11)L = (Span{”j(-(;(),Kfp e ,’Uj(-(zno),Kﬂ}) :

We obtain, for all k € {1,..., K — 1} and alljg{j(k;),K—1<k<m0}

(0), (0) DT,(1
<3K 1|Bf})Ll(cK 1> = <1[0h3/2)(Af,h()> Vi K— 1|d >
= < ] K 1 | d > '
Conclusion for K = 0. — When K = 0, we obtain an orthonormal basis

(v,(c?()))0<k§m0 of FO(O) = F( and an orthonormal basis (Ug(%l)c))kkﬁmo of Fo(l) c Fr®
such that for € € (0,€p) and o > 0 independent of e,

Vke{l,...,mp}, ﬁfO;)LU;ioo Vkvg(zz)c),o )

Vil = o1k (857) -
v = (1) | d0) (1 + Ou(e=/M)) |

The last equation obtained in the conclusion of the recursion permits to achieve
the proof of Theorem 7.1. O
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APPENDIX A

AN EXAMPLE IN DIMENSION 1

We present more directly the 1-dimensional case. We describe techniques which
were first developed for Neumann in [2], adapting to a one dimensional problem the
techniques developed in [19]. We just take the simple example of an interval (a,b)
with @ < 0 < b and the Dirichlet realization of the semi-classical Witten Laplacian

2

0) ._ 2 d 1002 "
associated to a function f on C*°([a,b]) admitting a unique minimum at 0
(A2) F(0) = 1'(0) =0,
and no local maxima:
(A.3) f'(z) #0 on [a,b]\ {0} .
In particular we get:
(A4) f(a) <0, f(b)>0.
The function (a,b) 3 © — up := exp —% satisfies

x

(A.5) A;?;L exp ——fgz ) =0,

but does not satisfy the Dirichlet condition at a and b. Of course, one can take a

cut-off function x with compact support in (a, b) and equal to one on [a+¢€,b—€) but
considering u, = xup, we get

0 min(f(a), f(b 0(e

AP () = Ofesep - O s 10

h h P

with 6(e) — 0 as e — 0.
The best which can be obtained with this construction is the following estimate for
the ground state energy:

(A.6) 0<M(h) < Cn(exp—Qmin(f;a)7 f(b)))exp% , VY >0.
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By taking an n-dependent cut-off function (n = Chlogh ), one can arrive at

_2min(f(a). /),
h )

(A7) M (h) = h N O(exp

for some N > 0.
This does not give a lower bound. We also observe that this quasimode works also
for the Neumann problem.

In order to have a better result, one can simply proceed in the following way. Let
us assume for simplification that

(A.8) fla) < f(b).

Then the main effect is in a and we can continue to use a simple cut-off near b. In
order to satisfy the Dirichlet condition at a, we have to add a correction. For this we
need another “formal” solution, which is given by the

LEMMA A.1. — For any formal series ) _; ajhi, there exists on [a,a+n9) (o > 0)
a formal WKB solution
(A.9) u®* = c(z, h) exp % ,
in the kernel of Agf?;l, such that
(A.10) c(z,h) ~ Y cj(z)hd

j>0
and
(A.11) cla,h) ~ > ajhi .

J

Proof. — We expand the relation:
(A.12) exp —%Ag}?g(c(m, h) exp %) ~0,
in powers of h.
This leads explicitely to the following equation:
(A.13) 2f"c4+2f'c 4+ he’ ~0,
or
(A.14) [2¢f + hd) ~ 0.

We first observe that the coefficient of h® vanishes (this corresponds to the fact that
—f is a solution of the eikonal equation). Looking now at the coefficient of h, we
obtain:

(A.15) —2f(x)ch(x) — 2f"(x)co(x) =0, cola) = ap -
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Observing that f/(z) # 0 near a, there is no problem for solving the equation, in the
neighborhood of a, which can be more simply written as

(A.16) (cof) =0, co(a) = .

At the step j + 1, we will find:

(A17) —2f (@) (@) — 2f"(2)es(x) = 1 (x) , e;(a) = ay .

or

(A.18) 2¢,(@) ' () + &)y (&) = 20;f'(a) + ¢}y (a) - O
The good quasimode. — We define:

(A.19) u = yup — exp —%@){uqf% ,

where

— x satisfies x = 1 on [a, b — €) and vanishes near b;

— uﬂﬁkb is associated to ap = 1, a; = 0 for j > 0;

— X satisfies Y =1 on [a, a + €) and vanishes outside [a, a + 2¢p).
Here € and €p can be chosen arbirarily small (one condition is 2eq < 1779) but will be
then fixed independently of h.

We fix some summation (by the Borel procedure) for ¢(x, h) with the property that
c(a,h) = 1. So the corresponding function u**® (we use the same notation) satisfies
the Dirichlet condition at a and b. Let us compute:

APk = (AP} Xun

(A.20) —exp— 2f(a)[A§C0;L,
2f(a) AO) wkb
R fRU="" -

~] wkb
—exp—
There are three terms on the right hand side that we write r; 4+ ro + r3 and that we
analyze separately.
— 71 is supported near b and its size is (with our assumption in mind that f(a) <
f(b)) of order O(exp —@) exp %. We can choose € > 0 such that:
a
(A.21) [Im1]] 2 = (’)(exp—%)exp—n—h1 , supprm C (b—e€,b),
for some 77 > 0.
— 1o is supported in (a + €, a + 2¢¢) and its size is exp — f(a) exp (a+60) . If we
observe that f(a+ €) < f(a), we get

a
(A.22) [Ir2|lLz = (Q(exp—%)exp—n—h2 , supp 12 C (a+ €9, a+ 2¢€) ,
for some 72 > 0.
— r3 is supported in [a,a + 2¢) and its size is O(h®) exp — Qf(a) exp f(x) In
particular, we get:

(A.23) [Irs]|r2 = O(R™) exp—@ , supp 13 C [a, a + 2¢) .
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So it is r3 which is the dominant term for the computation of the L? norm of the
error and we have finally obtained

(A21) AL = 0(h) exp 1Y

in L2((a,b)), for a suitable choice of € and eo.
It is easy, to get a lower bound for ||u**?|| assuming for example

(A.25) f(0)>0.
In this case, we immediately get from this first computation, that there is a unique
eigenvalue of A;?;;D" in the interval [0, k2] which is actually exponentially small

and that there exists p(h) ~ hx po with pg # 0 such that the normalized positive
eigenvector vy (z, h) satisfies:

(A.26) vi(z, h) — p(h)u"* = O(h™>) exp—@ .

We note also that h7 p(h) has a complete expansion in powers of h, depending only
on the Taylor expansion of f at the origin. We have indeed:

1
p(h)?
In this situation, elementary Hilbertian computations (see [19]) give that:

(A(O) uwkb | uwkb> . 2f(a
(A.28) A(h) = f’}|L|u“’kb||2 + O(h™) exp—ﬁ .

(A.27) ~ |[uR?) 2

h

For a more precise estimate of the right hand side, we have consequently to come back
to a more careful estimation of the terms (r; | u**) modulo O(h>) exp —%(a). Let
us determine the significant terms.

— We can clearly forget (ry | u**) which satisfies, for ; > 0,
(A.29) exp 2f]5a) (ry | k) = eXp—% .
— For ro, we get:
(A.30) exp Zf}ga) (ro | u®*) = exp %(a)(rg | up) + O(h™) .
— For rs, we get:
(A.31) exp %(a)wg | k) = O(h>) .
From this analysis, we get:
(A.32) M (h) = % +O(h) exp—22 fE“) ,
with 7o defined after (A.20). So
(A.33) exp 2f }Ea) Ai(h) = <[A§?,1,H>3: ﬁ; ikl + O(h>)
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The computation is now elementary (and rather standard).

(AL [wn) = ~h [ B e, h) + 20¢) + 2 cla, h) f (2)da
=—h ff X'[2¢f’ + c|dx
~ —2hf'(a) — h%c(a) .
In the last line, we have used the eikonal equation (modulo O(h*°)) and an integration

by parts. We are happy to recover as expected that the result is independent of the
choice of ¥, with the above properties. We finally get:

2f(a) d(h)

(A.34) exp A1(h) = 5+ O(h*>),
h [un||

with

(A.35) d(h) = =2hf'(a)(1 + O(h)) .

So we have proved:

PROPOSITION A.2. — Under assumptions (A.2), (A.3), (A.4), (A.8) and (A.25), the
lowest eigenvalue of Aﬁg} has the following expansion:

(A.36) exp %@ A (h) = —2(m)"2 h2 f'(a)f"(0)2 (1 + O(h)) .

Note that there is in principle no problem for computing explicitly a complete ex-
pansion of the right hand side in (A.36). Note also that we have proceeded differently
in the general case but that we of course recover (A.36) as a subcase of Theorem 1.

REMARK A.3. — The treatment in our main text is a little different but we recall
that by applying dy ; to the localized quasimode constructed for A;(?;L near @ or near
b, we get two orthogonal quasimodes showing the existence of a spectral subspace of
dimension > 2 corresponding to exponentially small eigenvalues.
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