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INFINITESIMAL ISOSPECTRAL DEFORMATIONS OF
THE GRASSMANNIAN OF 3-PLANES IN RS

Jacques Gasqui, Hubert Goldschmidt

Abstract. — We study the real Grassmannian G, of n-planes in R*", with n > 3,
R

n.n» Which
,

and its reduced space. The latter is the irreducible symmetric space G
is the quotient of the space Gﬂﬁyn under the action of its isometry which sends a
n-plane into its orthogonal complement. One of the main results of this monograph
asserts that the irreducible symmetric space G§3 possesses non-trivial infinitesimal
isospectral deformations; it provides us with the first example of an irreducible reduced
symmetric space which admits such deformations. We also give a criterion for the

exactness of a form of degree one on G% . in terms of a Radon transform.

Résumé (Déformations infinitésimales isospectrales de la grassmannienne des 3-plans
dans R%)

Ce mémoire a pour cadre la grassmannienne GSH des n-plans de R?", avec n > 3,
et son espace réduit G’Hs)n, qui est 'espace symétrique irréductible, quotient de GE.n
par P'involution envoyant un n-plan sur son orthogonal. Un de nos principaux résul-
tats est la construction de déformations infinitésimales isospectrales non triviales sur
653, obtenant ainsi le premier exemple d’espace symétrique irréductible réduit et
non infinitésimalement rigide. Nous donnons aussi un critére d’exactitude pour les
formes différentielles de degré 1 sur G, mettant en jeu la nullité d’'une transformée
de Radon.
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Introduction

We pursue our study of the infinitesimal isospectral deformations of Riemannian
symmetric spaces of compact type undertaken in [5] and [6]. Let (X, g) be a Rieman-
nian symmetric space of compact type. Let {g;} be family of Riemannian metrics
on X, with go = g. In [14], Guillemin proved that, if the family {g;} is an isospectral
deformation of g (i.e., if the spectrum of the Laplacian of the metric g; is independent
of t), then the corresponding infinitesimal deformation h = (_lt.(lt\tzo of the metric g
belongs to the kernel N5 of a certain Radon transform defined on the space of sym-
metric 2-forms on X in terms of integration over the maximal flat totally geodesic
tori of X. The infinitesimal deformation h of ¢ is trivial if it can be written in
the form %992‘ 910> Where {¢+} is one-parameter family of diffeomorphisms of X, or
equivalently if it is a Lie derivative of the metric g; such Lie derivatives always belong
to the kernel NV5. Consequently, we define the space of infinitesimal isospectral defor-
mations I(X) of X to be the orthogonal complement of the space of Lie derivatives
of the metric g in Ny. If the space I(X) vanishes, we say that the space (X,g) is
infinitesimally rigid in the sense of Guillemin; under this assumption, an isospectral
deformation of the metric g is trivial to first-order and the space X is infinitesimally
spectrally rigid (i.e., spectrally rigid to first-order).

The question of Guillemin rigidity for the spaces of rank one first arose in conjunc-
tion with the Blaschke problem. The Guillemin rigidity of these spaces which are not
spheres was proved by Michel [19] for the real projective spaces and by Michel [19]
and Tsukamoto [22] for the other projective spaces (see [6]).

The reduced space of X (called the adjoint space in [6]), which is constructed
in [16, Chapter VII], plays a crucial role here; this symmetric space is covered by X
and, when X is irreducible, it is not the cover of another symmetric space. We say
that X is reduced if it is equal to its reduced space.

We showed that a product of irreducible symmetric spaces is not rigid in the sense
of Guillemin (see Theorem 10.5 of [6]). Here we prove that an irreducible space which
is infinitesimally rigid in the sense of Guillemin must necessarily be reduced (Theo-
rem 1.4). In fact, if X is an irreducible space which is not reduced, then X always
possesses an isometry which give rise to symmetric 2-forms which lie in the kernel
N5 of our Radon transform and which are not Lie derivatives of the metric. Thus
the relevant problem concerning infinitesimal isospectral deformations for our class of
symmetric spaces may be formulated as follows: determine the space of infinitesimal
isospectral deformations of an irreducible reduced space.

In [5] and [6], we began to address this problem for spaces of arbitrary rank and
proved that an irreducible symmetric space, which is equal to a Grassmannian, is rigid
in the sense of Guillemin if and only if it is reduced. In fact, the Grassmannians Gﬂ(}b,n
of m-planes in K™*" where K is a division algebra over R, with m # n and m,n > 1,
are rigid. This generalizes the rigidity results for the projective spaces.
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2 J. GASQUI & H. GOLDSCHMIDT

We say that a symmetric p-form uw on X satisfies the Guillemin condition if, for
every maximal flat totally geodesic torus Z contained in X and for all parallel vector
fields ¢ on Z, the integral

/u(c,c,...,odz
Z

vanishes, where dZ is the Riemannian measure of Z. The kernel A, of the Radon
transform for p-forms consists precisely of those forms satisfying the Guillemin con-
dition. Thus the space X is rigid in the sense of Guillemin if and only if the only
symmetric 2-forms on X satisfying the Guillemin condition are the Lie derivatives of
the metric g. In [14], Guillemin proved that a symmetric 2-form, which is equal to the
infinitesimal deformation of an isospectral deformation of g, satisfies the Guillemin
condition. In [12] and [13], Grinberg studied the maximal flat Radon transform
for functions on an irreducible space. This transform is known to be injective (i.e.,
the kernel Ny vanishes) whenever X is one of the irreducible reduced spaces studied
in [6]. Here we prove the converse of this result for an arbitrary irreducible space:
the injectivity of this transform can only occur on a reduced space (Theorem 1.4).
In this monograph, we study the real Grassmannian Gﬂsyn of n-planes in R?", with
AR

n,n’
which is the quotient of the space Gﬂs,n under the action of its isometry which sends
a plane into its orthogonal complement. The first main result of this monograph

n > 3, and its reduced space. The latter is the irreducible symmetric space G

asserts that the irreducible symmetric space G§ 3 possesses non-trivial infinitesimal
isospectral deformations (Theorem 6.2); it provides us with the first example of an
irreducible reduced symmetric space which admits such deformations. In fact, we
consider an explicit subspace F of the space of real-valued functions on G% 5 of finite
codimension, which is orthogonal to the space of constant functions, and construct
an injective mapping

F— I(G§,)

which we now describe.

The real Grassmannian GE ,, of oriented n-planes in R2", which is the universal
R

n,n’
group of isometries and which is therefore parallel; in fact, the form o arises from the
volume forms of the two canonical bundles of rank n on éﬂ,fn This form ¢ induces
a symmetric n-form on @Ds’n and an injective mapping * from the space of 1-forms
on G‘Em to the space of symmetric (n—1)-forms on Gﬂfi’n. We then show that a 1-form

0 on G satisfies the Guillemin condition if and only if the symmetric (n — 1)-form

n,n

covering manifold of G carries a symmetric n-form ¢ which is invariant under its

x0 satisfies the Guillemin condition. When n = 3, the mapping * sends the space of
1-forms on G§,3 into the space of symmetric 2-forms on @&; If f is a real-valued
function on 6’153, the symmetric 2-form *df satisfies the Guillemin condition; if f is
a non-zero element of F, we prove that the 2-form *df is not a Lie derivative of the
metric of G§3 and thus gives rise to a non-zero element of I (@53). This construction

MEMOIRES DE LA SMF 108



INTRODUCTION 3

of infinitesimal deformations is quite specific to this space. The rigidity problem for
the other spaces G’Dﬁ’m with n > 4, remains open.

The other principal result of this monograph (Theorem 9.1) states that a 1-form
on the irreducible symmetric space G¥ , satisfying the Guillemin condition is exact.
Here we prove it when n = 3; then the induction argument given in §2, Chapter VII
of [6] provides us with the result for the other spaces Gy, (see Proposition 7.21
of [6]). For all the spaces which we had studied previously, the behavior of 1-forms
and 2-forms with respect to the injectivity of the corresponding Radon transform is
always the same. It is interesting to note that G’D;;; is the first example of a symmetric
space for which we have injectivity of our Radon transform for functions and 1-forms
and non-injectivity for 2-forms.

The harmonic analysis on the homogeneous space CN%SS of the group SO(6) plays
an important role in the proofs of our two main results. We require an explicit
description of the highest weight vectors of the isotypic components of the space of
complex forms degree one on égfg In §86 and 7, we express these vectors in terms
of certain functions and 1-forms on this space, which are introduced in §5 by means
of the corresponding Stiefel manifold. Here we also need to know the multiplicities of
these isotypic components; they are computed by means of branching laws which are
to be found in §10. Our description allows us to tell which of these highest weight
vectors arise from objects defined on the quotient spaces G§3 and G’ﬂ§y3 of CNJ§3.

In order to demonstrate Theorem 6.2, we must determine when the symmetric
2-form *df, where f is a non-constant function on G%,, is a Lie derivative of the
metric; for this result, we need only to consider the isotypic components corresponding
to the irreducible representations of SO(6) which appear in the decomposition of the
space of functions on G5 5.

Sections 7, 8 and 9 are devoted to the proof of our criterion for the exactness of
forms of degree one on the space G§3 (Theorem 9.1). In particular, in §7 we complete
our description of the isotypic components of the space of 1-forms on 553. For the
proof of this criterion, we are obliged to show that certain linear combinations of the
highest weight vectors of these isotypic components satisfying the Guillemin condition
are either exact or vanish. These verifications, which we carry out in §9, depend in
a crucial way on results concerning polynomials in one variable which arise from the
integration of the highest weight vectors over suitably chosen maximal flat tori of
the space ég%. The properties of these polynomials are presented separately in §8, a
section which can be read independently of the rest of this paper. In fact, we obtain
a whole class of combinatorial identities; one of these is proved by means of the WZ
theory described in [20].

The symmetrized covariant derivative of a symmetric (p — 1)-form on a symmetric
space X of compact type is a symmetric p-form satisfying the Guillemin condition.
Verifying that the only symmetric p-forms which satisfy the Guillemin condition are

SOCIETE MATHEMATIQUE DE FRANCE 2007



4 J. GASQUI & H. GOLDSCHMIDT

precisely the symmetrized covariant derivatives of symmetric (p — 1)-forms is an in-
jectivity question for Radon transforms which unifies the problems considered above,
namely, the injectivity question for the maximal flat Radon transform for functions
on X, the problem concerning the exactness of 1-forms and the Guillemin rigidity
problem for X. For the real projective spaces, this verification was carried out in all
degrees (see §3, Chapter III of [6]). This monograph provides a further geometric mo-
tivation for this question when p > 3. In fact, if f is a non-constant function on G]S’n,
when n > 4 it would be interesting to know whether the symmetric (n — 1)-form *df,
which satisfies the Guillemin condition, is a symmetrized covariant derivative of a
symmetric (n — 2)-form. Here we show that this does not hold when n = 3.

As we saw above, the existence of the non-trivial invariant symmetric 3-form
on C~;’D§,3 is a fundamental element in the construction of our space of non-zero infinites-
imal deformations of G§3. This leads us to determine in §2 which simply-connected
irreducible symmetric spaces admit invariant symmetric 3-forms and construct these
forms for three classes of spaces. The symmetric 3-form o on 6’%@73 can be viewed
as arising from a symmetric form on one of these classes of symmetric spaces, the
special Lagrangian Grassmannians SU(n)/SO(n), with n > 3. Such a space admits
a non-trivial 3-form o3 invariant under its group of isometries and this form is unique
up to a constant. In fact, in §11 we show that the Grassmannian ég% is isometric to
the special Lagrangian Grassmannian SU(4)/SO(4) and that the symmetric 3-form
o on 61(53 can be viewed as a constant multiple of the form o3 on SU(4)/SO(4). Fur-
thermore, we describe in §3 all the invariant symmetric forms on the space é%n In
view of this isometry, we investigate in [7] the infinitesimal spectral deformations of
the reduced space of the special Lagrangian Grassmannian SU(n)/SO(n), with n > 3,
and prove the analogue of Theorem 6.2 for this space.

We have preferred to present the branching laws, needed to compute the multi-
plicities of the SO(6)-modules appearing in §6, in a separate section (§10) in a way
that is essentially independent of the rest of this monograph. This is done for the
convenience of the reader and to allow us to refer to them readily in our study of the
Lagrangian Grassmannians.

Finally, in §12 we give an explicit construction due to Bryant of a certain space of
symmetric 2-forms on the Grassmannian @53. This space was originally introduced
in [5] and does not appear elsewhere in this monograph. Various properties of forms
belonging to this space, which are given in [5], are derived here directly from their
definition. Also we may view §1 as a complement to §4, Chapter II of [6].

We would like to express our deep gratitude to H. Wilf for his verification of the
identity of Lemma 8.1 and to M. Brion for providing us with proofs of Proposition 6.3
and the propositions presented in §10. We also wish to thank S. Helgason and M. Rais
for providing us with the requisite references for the results concerning invariant poly-
nomials which can be found in §§2 and 3.
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1. SYMMETRIC SPACES OF COMPACT TYPE 5

1. Symmetric spaces of compact type and the Guillemin condition

Let X be a differentiable manifold, whose tangent and cotangent bundles we denote
by T = Tx and T* = T%, respectively. Let C*°(X) (resp. CR°(X)) be the space of
complex-valued (resp. real-valued) functions on X. Let R(X) denote the subspace
of CR°(X) consisting of the constant functions on X. Let E be a vector bundle
over X; we denote by Eg its complexification, by £ the sheaf of sections of E over X
and by C*®(E) = C*(X, E) the space of global sections of E over X. By Q"E,
S'E, /\]VE7 we shall mean the k-th tensor product, the [-th symmetric product and
the j-th exterior product of the vector bundle E, respectively. We shall identify
SFT* and /\kT* with sub-bundles of ®kT* as in §1, Chapter I of [6]. In particular,
if o, B € T*, the symmetric product « - is identified with the element a ® S+ [ ® «
of @>T*. 1If u is a section of SPT* over X, we consider the morphism of vector
bundles

W T — SPIT™,
defined by
@E (s omp—1) = u(€ s ),
for &y, ... mp1 €T

Let g be a Riemannian metric on X. We denote by g# : T* — T the inverse of the

isomorphism ¢” : T'— T*. For p > 2, we consider the trace mapping
Tr : SPT* — SP727%,
its kernel ST consists of all traceless symmetric p-forms. If u is a section of SPT™*
over X, we consider the morphism of vector bundles
a=u’ gt T — SP7IT*

We also consider the scalar products on the spaces C°°(X), C®(T) and C*(S%T*),
defined in terms of the Riemannian measure of X and the scalar products on the
vector bundles T and S?T* induced by the metric g. We denote by Cg%(X) the
orthogonal complement of the subspace R(X) of CR°(X). ’

Let V be the Levi-Civita connection of (X, g); if f is a real-valued function on X,
we denote by Hess f = Vdf the Hessian of f. The Killing operator

Dy: T — S*T*
of (X, g), which sends a vector field ¢ into the Lie derivative L¢g of g along ¢ of g
along ¢, and the symmetrized covariant derivative
D' T — §%T*,
defined by
(D'0)(&.m) = L(VO)(En) + (VO)(1.)),
for € T+, £,m € T, are related by the formula

(1.1) $Do& = D'g"(¢),

SOCIETE MATHEMATIQUE DE FRANCE 2007



6 J. GASQUI & H. GOLDSCHMIDT

for £ € T. We easily see that
(1.2) DY(fidfs) = 3df1 - dfs + f1Hess fa,
for all f1, fo € C°°(X). We also consider the divergence operator
div: $?7* — T+,
which is defined in §1, Chapter I of [6]; we recall that the formal adjoint of Dy is

equal to 2¢f - div : S?7* — 7. When X is compact, since the operator Dy is elliptic,
we therefore have the orthogonal decomposition
(1.3) C>®(S%T*) = DeC>®(T) @ { h € C>=(S*T*) | divh =0}
given by the relation (1.11) of [6]; we denote by
P:C>®(S*T*) — {h € C>(S*T*) | divh =0}
the projection determined by the decomposition (1.3).

We now suppose that X is a symmetric space of compact type. As SOTE is the
trivial complex line bundle, we may identify C*(X) with C*°(S°T¢). We consider
the subspace N, of C*(SPT*) consisting of all symmetric p-forms satisfying the
Guillemin condition; the complexification N, ¢ of N, shall be viewed as the subspace
of C=(SPT¢) consisting of all complex symmetric p-forms satisfying the Guillemin
condition. The space N, is the kernel of the maximal flat Radon transform for sym-
metric p-forms on X defined in Chapter II of [6]. Below we shall be concerned with
the injectivity of this Radon transform for functions on X.

We recall that DoC®(T)) is a subspace of N> (see Lemma 2.10 of [6]). We define
the space of infinitesimal isospectral deformations of g by

I(X)={heNz|divh=0}.
From the decomposition (1.3), we obtain the orthogonal decomposition
(1.4) No = DoC=(T) @ I(X);

moreover, the orthogonal projection of Ay onto I(X) is equal to the restriction of
the projection P to N2. Thus the vanishing of the space I(X) is equivalent to the
fact that the space X is rigid in the sense of Guillemin. Moreover if there exists a
symmetric 2-form on X belonging to s which is not equal to a Lie derivative of the
metric g, the space I(X) does not vanish.

We know that there is a Riemannian symmetric pair (G, K) of compact type, where
G is a compact, semi-simple Lie group and K is a closed subgroup of G, such that
the space X is isometric to the homogeneous space G/K endowed with a G-invariant
metric. We shall identify X with G/K. We shall denote by g the Lie algebra of G
and by B its Killing form. The pair (G, K) is associated to an orthogonal symmetric
Lie algebra (go, #) of compact type, where 6 is an involutive automorphism of go. The
space C°(T') and the spaces C>°(SPT*) and C*°(SPT{) of symmetric p-forms on X
inherit structures of G-modules from the action of G on X.

MEMOIRES DE LA SMF 108



1. SYMMETRIC SPACES OF COMPACT TYPE 7

Since the connection V is independent of the choice of the G-invariant metric g
(see Corollary 4.3, Chapter IV of [16], by formula (1.1) we see that the spaces N, and
DoC*>(T) depend only on the symmetric space X and not on the choice of metric
g of X. Hence the vanishing of A or the Guillemin rigidity of X are properties of
the symmetric space X which are independent of the choice of the G-invariant metric
of X.

If X is irreducible, then the metric g is proportional to the G-invariant Riemannian
metric on G/K induced by —B. Hence in this case, the space I(X) does not depend
on the choice of the G-invariant metric on X.

Let ¥ be a finite group of isometries of X of order m; suppose that the ele-
ments of ¥ commute with the action of G on X. If ¥ is a subgroup of ¥, then
the space C®(SPTE)™ consisting of all X-invariant sections of C%°(SPTE) is a
G-submodule of C™(SPT3); we denote by C™(SPT3)®L the orthogonal com-
plement of COO(SPT(E)E, in C*(SPTE). If 7 is an element of ¥ and A € C, we
denote by C>(SPTg)™ the G-submodule of C°(SPT) consisting of all elements u
of C=(SPT{) satisfying

T'u = Au.

We suppose that the group ¥ acts freely on X; then the quotient Y = X/¥ is a
manifold and the natural projection w : X — Y is an m-fold covering. Thus the
metric g induces a Riemannian metric gy on Y such that w*gy = g. Clearly the
space Y is locally symmetric and is a homogeneous space of G.

Let (G, K') be another Riemannian symmetric pair associated with the orthogonal
symmetric Lie algebra (go,6). Assume that K is a subgroup of K’ and that there
exists a G-equivariant diffeomorphism ¢ : Y — G/K’ which has the following prop-
erty: when we identify X with G/K, the projection ¢ o @ is equal to the natural
projection G/K — G/K’. Under these conditions, the space (Y, gy) is isometric to
the symmetric space G/K’ of compact type endowed with a G-invariant metric.

Let Z be a maximal flat totally geodesic torus of X. Then w(Z) is a flat torus
of Y. On the other hand, if Z’ is a maximal flat totally geodesic torus of Y, then
w~1(Z') is a totally geodesic flat torus of X. From these observations, it follows that
Z = w 1(Z"), where Z' = w(Z); we also see that the rank of Y is equal to the rank
of X and that the induced mapping @ : Z — Z’ is a m-fold covering. Moreover, the
torus Z is invariant under the group . A parallel vector field £ on Z is w-projectable,
i.e., there exists a parallel vector field £ on Z’ = w(Z) such that @.£(z) = £(w(x)),
for all z € Z. Conversely, any parallel vector field on Z’ is of the form w.£, for some
parallel vector field £ on Z. It follows that a parallel vector field on Z is invariant
under all the elements of X.

We denote by {7x}1<k<m the m distinct elements of ¥. Then we see that there
exists an open subset Zy of Z such that the sets 7;(Zy) and 73(Zp) are disjoint for
all 1 < j,k < m, with j # k, and such that the complement of the union U}, 7%(Zy)

SOCIETE MATHEMATIQUE DE FRANCE 2007



8 J. GASQUI & H. GOLDSCHMIDT

in Z has measure zero. Therefore if f is a function on Z, we see that

/Zde:g‘/ZnT,jde.

If w is a symmetric p-form on X and € is a parallel vector field on Z, from the previous
relation we obtain the equality

(1.5) /Zu(g,g,...,g)dzzz i (TFu) (€€, ... ,€) dZ.
k=140

If u is invariant under ¥ and 4 is the symmetric p-form on Y such that v = w*a, and
if £ be the parallel vector field on Z’ such that w.§ = &, then we have

u(§7£7 et 76) = w*ﬂ(£7§7 et 76):
from (1.5), we now obtain the equality
[ue . az=m[ ié... oaz.
z 7
Let p be a given integer > 3 and let o be a non-zero symmetric p-form on X which
is invariant under the group ¥. Then the symmetric form ¢ induces a symmetric
p-form oy on Y such that
oc=w'oy.
‘We consider the morphism of vector bundles
Gy : Ty — SPTITY
induced by the symmetric p-form oy ; if ¢ is a 1-form on Y, we have
(1.6) w* oy (@) = o(w*p).
The following lemma is a direct consequence of Lemma 2.17 of [6] or the previous

discussion.

LEMMA 1.1. — Suppose that the quotient Y = X/¥ is isometric to the symmetric
space G/K'. Letp > 3 be a given integer and let o be a symmetric p-form on X which
is invariant under the group . Suppose that the following condition holds: a 1-form
» on X satisfies the Guillemin condition if and only if the symmetric (p — 1)-form
a(p) on X satisfies the Guillemin condition. Then a 1-form ¥ on Y satisfies the
Guillemin condition if and only if the symmetric (p — 1)-form &y (¢) on'Y satisfies
the Guillemin condition.

Suppose that p = 3 and that the mapping
&:T* — S°T*
is a monomorphism; then the mapping

oy : Ty — S*Ty

MEMOIRES DE LA SMF 108



1. SYMMETRIC SPACES OF COMPACT TYPE 9

is also a monomorphism. Assume that the following is true: if ¢ is a 1-form on X satis-
fying the Guillemin condition, the symmetric 2-form & () also satisfies the Guillemin
condition. Then if f is an element of Cg°(X), the symmetric 2-form &(df) satisfies
the Guillemin condition. Thus if P is the orthogonal projection corresponding to the
decomposition (1.3) on the space X, the mapping

P, : Péd: CR°(X) — I(X)

is well-defined. Clearly, if f is an element of Cg°(X), then &df is a Lie derivative of
the metric if and only if P, f = 0. A subspace A of Cg%(X) satisfies the relation

(1.7) DyC®(T) N 6dCE(X) = 5dA

if and only if the kernel of the mapping P, is equal to the subspace R(X)® A
of CR°(X).

PROPOSITION 1.2. Suppose that the quotient Y = X /¥ is isometric to the sym-
metric space G/K'. Let o be a symmetric 3-form on X which is invariant under the
group ¥; suppose that & : T* — S?T* is a monomorphism of vector bundles. Suppose
that the following condition holds: a 1-form ¢ on X satisfies the Guillemin condition
if and only if the symmetric 2-form &(p) on X satisfies the Guillemin condition. Let
Ay be a finite-dimensional subspace of Cﬁf’o(Y) and let Fy be the orthogonal comple-
ment of Fy, = R(Y) @ Ay in Cg°(Y). If the subspace A = w* Ay of Cg%(X) satisfies
the relation (1.7), then the following assertions hold:

(i) The symmetric space Y is not rigid in the sense of Guillemin

(ii) If f is a non-zero element of Fy, then the symmetric 2-form &y (df) on Y
satisfies the Guillemin condition and is not a Lie derivative of the metric.

(iii) The relation

DoC>®(Ty) NeydCR°(Y) = 6ydAy
holds and the kernel of the mapping
(1.8) P,, = Poyd:Cg(Y) — I(Y)
is the finite-dimensional space Fy,.

Proof. — According to Lemma 1.1, the mapping (1.8) is well-defined. If f is an
element of C2°(Y'), by (1.6) we have the equality w*5y (df) = &(dw* f); according
to (1.7), we easily see that the following assertions are equivalent:

(&) Poy f=0;

(b) the symmetric 2-form 6y (df) is a Lie derivative of the metric gy;

(c) the symmetric 2-form &(dw™ f) is a Lie derivative of the metric g;

(d) P,w*f=0;

(e) the function w* f belongs to the subspace R(X) & A of CR°(X);

(f) the function f belongs to F,.
The proposition is an immediate consequence of this observation. O
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In fact, the orthogonal complement Fy of Fj, which appears in the preceding
proposition consists of all functions f of Cg°(Y) satisfying

/deyzo, /wadY:o,

for all ¢ € Ay, and we have the orthogonal decomposition
CRRY)=FyeFy =RY) D Ay & Fy.

We now consider an element 7 of ¥ of order ¢ > 2; let A be a primitive ¢-th root
of unity. For 0 < k < g — 1, we consider the endomorphism py, of the G-module
C>°(SPTE) defined by 1
) = L3Nk g,

q r=1
for all u € SPT¢, and we easily verify that
(1.9) 7 e (u) = N (),

for all u € SPT{, and hence that j, is a projection onto the subspace COO(S”TC*)T”\k.
Since we know that

(1.10) LHAF 4 A% o e DR =
for 1 <k <q—1, we have

(111) 3 pelu) =
k=0

for all u € SPT{. Since 7 has no fixed points, by (1.9) and (1.11) we know that the
subspaces C*°(SPT¢ )T’)‘k are non-zero and we obtain the direct sum decomposition

g—1 .
C=(S'TE) = @ C=(sPTe)™
k=0

of C*°(SPT¢) into G-submodules. Hence if ¥’ is equal to the cyclic group of or-
der g generated by 7, we have the equality COO(S”T(E)XI = C*°(SPT¢)™! and the
decomposition

(1.12) O (P T = @ 0 (ST
k=1

PROPOSITION 1.3. — Suppose that the quotient Y = X /3 is isometric to the sym-
metric space G/K'. Suppose that ¥ is a product ¥’ x X" of two subgroups, where ¥’
is a cyclic group of order ¢ > 2 generated by an isometry 7. Let \ be a primitive q-th
root of unity. Then the following assertions hold:

(i) A complex symmetric p-form u on X which satisfies the relation 7™ u = \u
also satisfies the Guillemin condition, and we have the inclusion

C®(SPTE)™+ C N, .

(ii) The mazimal flat Radon transform for functions on X is not injective.
(i) The space X is not rigid in the sense of Guillemin.
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Proof. — Suppose that the subgroup X" of ¥ is of order r and let {r1,..., 7.} be the
r distinct elements of X”. Let Z be a maximal flat totally geodesic torus of X and
let Zy be an open subset of Z possessing the properties described above with respect
to integration over Z. Let u be a symmetric p-form on X and & be a parallel vector
field on Z. According to equality (1.5), we have

/u({,...,f)dZ:Z/ T;‘(u+7*u+7’2*u+---+Tq’1*u)(§,.‘.,§)dZ‘
z N

Hence if u is a complex symmetric p-form on X satisfying 7*u = Mfu, with
1 <k <g-1, from the equality (1.10) we infer that

/Zu(g,...,g)dzzo.

Therefore an arbitrary element of C(SPT%)* L satisfies the Guillemin condition.
Assertion (ii) is an immediate consequence of (i), with p = 0. We now construct an
element of C'*° (SZT(E)Z'L which is not a Lie derivative of the metric. Let B be the sub-
bundle of /\2T* ® /\ZT* consisting of all tensors satisfying the Bianchi identity. The
differential operator Dy of order 2 on X defined in Chapter I of [6] acts on C°°(S2T*)
and takes its values in the space of sections of a quotient bundle of B; we recall that,
if the restriction of an element h of C°°(S*T*) to an open subset V of X is a Lie
derivative of the metric, then Dih vanishes on V. Now let x be a point of X and
U be a open neighborhood of x for which U N 7%(U) = @, for all 1 < k < ¢ — 1.
According to the argument given in the course of the proof of Proposition 2.22 of [6],
we may choose an element h of C°°(S2T*) whose support is contained in U and which
satisfies (D1h)(z) # 0; thus h is not a Lie derivative of the metric on any neighborhood
of x. The symmetric 2-form 1
= Z NIk ke
k=0

on X satisfies 7*h' = AR’ and its restriction to U is equal to h. By (1.12), the
symmetric 2-form A’ belongs to C*°(S ZTC*)E,l, and therefore satisfies the Guillemin
condition. Clearly, the element of C°°(S?T*) equal to the real part of h’ also has
these properties and its restriction to U is equal to h; thus the space X is not rigid
in the sense of Guillemin. 0

We now define the reduced space of the symmetric space X; this will provide us with
examples of symmetric spaces X and Y satisfying the conditions considered above. In
the following discussion based on §9, Chapter VII of [16], if (G’, K') is a Riemannian
symmetric pair associated with the orthogonal symmetric Lie algebra (go, #), we shall
always endow the symmetric space G’ /K’ with the unique G’-invariant metric induced
by —B. We may suppose that G is the identity component of the group of isometries
of X, that K is the isotropy group of G at some point of X and that the metric g
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of X is induced by —B. The fixed point set of the involutive automorphism 6 of go
contains no non-trivial ideal of go. Let G be the simply-connected Lie group with Lie
algebra go and let 0 be the automorphism of G determined by 6. If K is the subgroup
of G equal to the set of fixed points of é, then (é, f() is a Riemannian symmetric pair
associated with (go, ) and G / K is the simply-connected symmetric space of compact
type, which is the universal covering space of X.

If Z denotes the center of G and S is a subgroup of Z, we consider the subgroup

Ks={aeG|a'0(a)es}

of G. Let ¢ : G — G is the natural projection and K* be the subgroup e HK) of G.
Then there exists a -invariant subgroup S of the center Z of G such that G = G/S.
It is easily seen that K* is f-invariant and that

K=K"/S, KScK*C Kg,
and so (G, K*) is a Riemannian symmetric pair associated with (go, #) and we have
X =G/K*.

Also (G,K ) is a Riemannian symmetric pair and G /K is a symmetric space as-
sociated to the orthogonal symmetric pair (go,#); moreover, X is a covering space
of the symmetric space G’/KZ via the natural projection G/K* — G/KZ obtained
from the inclusion K* C K. The symmetric space G/K 5 is called the reduced (or
adjoint) space of X or of the simply-connected space G / K. If the symmetric space X
is isometric to its reduced space, we say that X is reduced. In fact, any symmetric
space X’ associated to the orthogonal symmetric Lie algebra (go, 6) covers the reduced
space G/ K 5 and is covered by G/ K (see Theorem 9.1 and Corollary 9.3, Chapter VII
of [16]). In §9, Chapter VII of [16], the symmetric space G/K 5 is called the adjoint
space of orthogonal symmetric Lie algebra (go, 6).

According to the classification of the irreducible symmetric spaces of compact type
(see §6 and Exercises C, Chapter X of [16]), if X is irreducible, the group of cover-
ing transformations of the covering mapping X — G /K is an abelian group X of
isometries of X commuting with the action of G and is equal either to a cyclic group
or to a product of two cyclic groups of order 2. In fact, the group ¥ is a product of
two cyclic groups of order 2 only when X is the real Grassmannian 65" of §3 or the
group Spin(2n), where in both cases n is an even integer >4 .

The n-sphere S™, with n > 2, is an irreducible symmetric space of rank one,
which is not reduced; its reduced space is the real projective space RP". According to
Proposition 1.3, the maximal flat Radon transform for functions on S™ is not injective
and the sphere S™ is not rigid in the sense of Guillemin (see also Proposition 2.22
of [6]). Proposition 2.16 of [6] now gives us the first assertion of the next theorem.
According to the observations made in the preceding paragraph and Proposition 1.3,
if X is an irreducible symmetric space and if either the maximal flat Radon transform
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for functions on X is injective or X is rigid in the sense of Guillemin, then X must
be reduced. Thus we have proved the following result:

THEOREM 1.4. — Let X be an irreducible symmetric space of compact type.

(i) If X is rigid in the sense of Guillemin, the mazimal flat Radon transform for
functions on X is injective.

(i) If the mazimal flat Radon transform for functions on X is injective, then X is
reduced.

In [13], Grinberg conjectures that the converse of assertion (ii) of the preceding
theorem holds and proposes an outline for a possible proof. In fact, this converse is
known to hold for all the Grassmannians which are reduced; it also is true for the
reduced space of a Grassmannian which is not reduced (see [6]).

If the space X is a product of irreducible symmetric spaces X, ..., X, its reduced
space is equal to the product of the reduced spaces of the X; from the observations
made above, we infer that the group of covering transformations of the covering map-
ping X — é/KZ is an abelian group ¥ of isometries of X commuting with the
action of G and is a product of cyclic subgroups. In fact, if X is simply-connected,
by Proposition 5.5, Chapter VIII of [16], it may always be written as such a prod-
uct. Then according to Proposition 1.3, we obtain the following generalization of
Theorem 1.4,(ii):

THEOREM 1.5. — Let X be a symmetric space of compact type which is equal to a
product of irreducible spaces. If the mazimal flat Radon transform for functions on X
is injective, then X is reduced.

If X is a product X x X2 X+ --x X, of m irreducible symmetric spaces, with m > 2,
and if the factors X; and X of this product are not equal to simple Lie groups, by
Proposition 10.1 and Theorem 10.5 of [6], we know that the space X is not rigid in
the sense of Guillemin.

2. Invariant symmetric forms on symmetric spaces

If V is a real vector space, we denote by P(V') the algebra of real-valued polyno-
mials on V and by S(V) = @, S¥V the symmetric algebra over V, where S*V is
the k-th symmetric product of V. We shall identify the algebras P(V) and S(V*)
via the isomorphism of algebras P(V) — S(V*), which associates to a homogeneous
polynomial g € P(V) of degree p the unique element ¢ of SPV* determined by

Qv v) = q(v),
for all v € V. If H is a group which acts on V', we consider the subalgebra

ST = @ s

k>0
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14 J. GASQUI & H. GOLDSCHMIDT

of S(V) consisting of all its H-invariant elements; in this equality, the component
(S*V)H is the subspace of S*V consisting of all H-invariant elements of S¥V. In
fact, the space S(V*) is identified with the algebra of all H-invariant polynomials
on V.

Let X be a symmetric space of compact type. As in §1, we consider the Rieman-
nian symmetric pair (G, K) of compact type, where G is a compact, semi-simple Lie
group and K is a closed subgroup of G, such that the space X is isometric to the
homogeneous space G/K endowed with a G-invariant metric; we shall identify X
with G/K. We denote by go and ¢ the Lie algebras of G and K. The pair (G, K) is
associated to an orthogonal symmetric Lie algebra (go, ) of compact type, where 6
is an involutive automorphism of gg. We consider the Cartan decomposition

(2.1) go =t ® po

of go, where pg is the K-submodule of gy equal to the eigenspace of 6 corresponding
to the eigenvalue —1. We identify po with the tangent space of X at the coset xg
of the identity element of G. If p > 2 is a given integer, an element g of (SPps)%
gives rise to a unique G-invariant symmetric p-form o(g) on X whose restriction to
the tangent space of X at z( is equal to ¢, and every G-invariant symmetric p-form
arises in this way. The restriction By of the Killing form B of g¢ to its subspace pg
is non-degenerate and is an element of (S%p3)%. The symmetric 2-form —o(By) is
a G-invariant Riemannian metric on X; if X is irreducible, it is equal to the metric
of X induced by —B considered in §1.

Let o be a non-zero G-invariant symmetric p-form on X, with p > 2; clearly, o is
parallel, i.e., we have Vo = 0. The morphisms

o' T — SPIT*, 5T — SPTITT
induced by o are G-equivariant; if X is an irreducible symmetric space and o is non-

zero, they are monomorphisms of vector bundles. If p = 3, we easily see that the form
o is traceless, i.e., Tro = 0; it follows directly that

Tro’(§) =0,
for all £ € T, and so in this case we have G-equivariant morphisms
o’ T — S3T*, 5T — ST

Throughout the remainder of this section, we suppose that X is an irreducible
simply-connected symmetric space. By the Chevalley restriction theorem (see, for ex-
ample, Theorem 3.1.2 of [24]) and the classification of the invariants for finite reflec-
tion groups, if  is the rank of X, there exist [ homogeneous algebraically independent
generators {py,...,p;} of the algebra S(pg)¥ of positive degree such that S(pg)¥ is
isomorphic to R[p1,...,p]. The degrees {di,...,d;} of the polynomials {p1,...,pi}

are independent of the choice of the algebraically independent generators; without
any loss of generality, we shall suppose that d; < d;41, for 1 < j <1 —1. Moreover,
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we have d; = 2 and d; > 2, for 2 < j < [; thus the space (S%p§)¥ is one-dimensional
and the element p; of S%p§ is equal to a multiple of By. Furthermore, there exists a
non-zero element of (S3pg)X if and only if I > 2 and ds = 3.

We now determine the space S(pj)X for three classes of irreducible simply-
connected symmetric spaces. Let n be a given integer > 3. For p > 2, we consider the
SU (n)-invariant homogeneous polynomial @, of degree p on the Lie algebra su(n)
defined by

Qp(A) = (—i)P Tr AP,

for A € su(n); we easily verify that Q) is real-valued. The Killing form of su(n) is
equal to —2n@;. It is well-known that the algebra of all SU (n)-invariant polynomials
on su(n) is generated by the polynomials @Qp, with 2 < p < n, and that these polynomi-
als are algebraically independent. The polynomial @, induces a non-zero bi-invariant
p-form O’;) on the group SU(n). The 2-form o} is a bi-invariant Riemannian metric
on SU(n) and, endowed with this metric, the simple group SU(n) may be viewed as
an irreducible symmetric space of compact type. If G = SU(n) x SU(n) and K is the
subgroup { (z,z) | x € SU(n)} of G, then (G, K) is a Riemannian symmetric pair
and the homogeneous space G/K is diffeomorphic to SU(n); moreover, the metric o5
on SU(n) determines a G-invariant metric on G/K (see §6, Chapter IV of [16]). In
this case, we have €& = po = su(n), the polynomial Q, belongs to (SPpg)X and the
polynomials Qs, . .., Q, are algebraically independent generators of the space S(pg)* .
Also the form oy, on SU(n) is equal to o(Qp), for p > 2.

Now let G be the group SU(n) and let K be the subgroup SO(n), which is equal
to the set of fixed points of the involution s of G sending a matrix into its complex
conjugate. Then (G, K) is a Riemannian symmetric pair. In the Cartan decomposi-
tion (2.1) of the Lie algebra gy of G corresponding to this involution, the K-submodule
po is the space of all symmetric purely imaginary n X n matrices of trace zero. En-
dowed with the G-invariant Riemannian metric go = —o(Bjp), the homogeneous space
X = G/K is an irreducible symmetric space of type AI called the special Lagrangian
Grassmannian.

The restriction g, of the G-invariant polynomial @, on go = su(n) to po is K-
invariant. It is well-known that the polynomials ¢s, ..., g, are algebraically indepen-
dent generators of the algebra S(pj)* (see, for example, [10, p. 560]. For p > 2, we
consider the G-invariant p-form o, = o(gp) on X. It is easily verified that

03(¢1, 92, ¢3) = i Tr (o1 - 2 - B3),

for all ¢1, ¢2, 3 € po; the product on the right-hand side of this equality is the product
of the elements of py viewed as matrices. The metric go is equal to the symmetric
2-form 2n - o9.
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Next, we consider the 2n x 2n matrix

0 I,
J’IL - <—In O) bl

where I,, is the unit matrix of order n. Let G be the group SU(2n) and let K be the
subgroup Sp(n) of G, which is equal to the set of fixed points of the involution s of G
sending an element A € G into J,AJ,;!. Then (G, K) is a Riemannian symmetric
pair. In the Cartan decomposition (2.1) of the Lie algebra gy of G corresponding to
this involution, the K-submodule pg is the space of all 2n x 2n matrices given by

_ (4 % /
Po = { <Zz —Z1> ‘21 € su(n), Z, € so(n,C) }

Endowed with the G-invariant Riemannian metric go = —o(By), the homogeneous
space X = G/K is an irreducible symmetric space of type AII (see §2, Chapter X
of [16]).

The restriction g, of the G-invariant polynomial @, on gy = su(n) to po is K-
invariant. It is well-known that the polynomials ¢s, ..., ¢, are algebraically indepen-
dent generators of the algebra S(p§)X (see, for example, [10, p. 560]). For p > 2,
we consider the G-invariant p-form 6, = 0(g,) on X. The metric go is equal to the
symmetric 2-form 4n - &5.

For the three irreducible symmetric spaces

SU(n), SU(n)/SO(n), SU(2n)/Sp(n),

with n > 3, the degrees of the n — 1 algebraically independent generators of the
algebra S(pg)X are given by di = j+1, for 1 < j < n—1. Therefore for any
one of these symmetric spaces, the space (S%pg)X is one-dimensional. Hence each
of these spaces admits an SU (n)-invariant symmetric 3-form, which is unique up to
a constant; in fact, for the space SU(n) (resp. SU(n)/SO(n), SU(2n)/Sp(n)), the
symmetric 3-form 0% (resp. o3, 63) is a generator of (Spg)%.

We now return to the study of our irreducible symmetric space X and the algebra
S(pg)¥ associated to X.

If X is a simple Lie group, then we have py = ¥y and, according to the tables
of [2], there exists a non-zero element of (S%p$)¥ if and only if X is equal to SU(n),
with n > 3.

Now suppose that X is not a simple Lie group; then the Lie algebra g, is simple.
By restricting a polynomial on the Lie algebra gy to its subspace pg, we obtain a
restriction mapping

(2.2) S(g) — Spp) .

According to Proposition 7.4 and Theorem 7.5 of [15] and Theorem 3.4 of [17] (see
also Propositions 2.1 and 3.1 of [17] and Theorem 10.3 of [18]), the mapping (2.2) is
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surjective if (go, po) is not one of the pairs
(23) (e6,50(10) + R), (e6, f4)s (e7,e6 + R), (es, e7 + su(2)).

According to the tables of [2], we know that S3(g§)¢ is non-zero if and only if the
complexification of gg is equal to a,, with n > 2. Next, suppose that our space X
is not one of the spaces (2.3) and possesses a non-zero element of (S3pg)*. Then
the rank [ of the space X is > 2 and the group G is equal to SU(n), with n > 3.
According to the classification of the irreducible symmetric spaces of compact type (see
Chapter X of [16]), we know that X must be equal to one of the spaces SU(n)/SO(n),
SU(2n)/Sp(n), with n > 3, or to one of the complex Grassmannians

(2.4) SU(m +n)/S(U(m) x U(n)),

with m,n > 2. If X is equal to the Grassmannian (2.4), for k¥ > 2, we consider
the restriction pg of the polynomial @ of degree k on the Lie algebra su(m + n)
considered above to its subspace po. Then py vanishes when k is an odd integer, and,
if s = min (m, n), the homogeneous polynomials {p2,p4, ..., p2s} are an algebraically
independent set of generators of the algebra S(pg)¥ (see also [10, p. 561]). Thus in
this case the space S°(pj)X vanishes.

Finally, suppose that (go,po) is equal to one of the pairs (2.3). According to the
table on pp. 796797 of [17] (see also [1, p. 33]) and the Chevalley restriction theorem,
there exists a homogeneous generator of S(p§)¥ of degree 3 if and only if X is the
space Eg/Fy of type EIV. The rank of the space Eg/Fy is equal to 2 and in this case
we have dy = 3.

Thus we have completed the proof of the following result:

PROPOSITION 2.1. — Let X be an irreducible simply-connected symmetric space of
compact type. The space (S3p(’§)K vanishes unless X is equal to one of the following
spaces:

(i) SU(n), withn > 3;

(it) SU(n)/SO(n), with n > 3;

(i) SU(2n)/Sp(n), where n > 3;

(IV) Ec,/F4‘
If X is equal to one of the spaces (i)—(iv), then the space (S®pE)X is one-dimensional.

3. The real Grassmannians

Let m,n > 1 be given integers, with m +n > 3. We now suppose that X is
the real Grassmannian éﬁm of all oriented m-planes in F = R™*". Let V be the
canonical vector bundle (of rank m) over X whose fiber at z € X is the subspace of F
determined by the oriented m-plane x. We denote by W the vector bundle of rank n

over X whose fiber at € X is the orthogonal complement W, of V, in F'. Then we
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have a natural isomorphism of vector bundles
(3.1) VW —T

over X. We may view X as a submanifold of A™F. In fact, the point z € X
corresponds to the vector v1 A -+ A vy, of A™F, where {v1,...,v,,} is a positively
oriented orthonormal basis of the oriented m-plane z. The isomorphism (3.1) sends
an element 0 € (V* @ W), into the tangent vector dz;/dt|;—o to X at z, where x; is
the point of X corresponding to the vector

(v1 +t0(v1)) A=+ A (U +0(v1))

of N"'F, for t € R.

Since the vector bundles V' and W are sub-bundles of the trivial vector bundle
over X whose fiber is F, the standard Euclidean scalar product on F' induces by
restriction positive definite scalar products g; and g2 on the vector bundles V and W,
respectively. If we identify the vector bundle V* with V' by means of the scalar
product g;, the isomorphism (3.1) gives rise to a natural isomorphism

(3.2) VoW —T

of vector bundles over X, which allows us to identify these two vector bundles and
the vector bundle @”7T* with @’V* @ @"W*, for p > 1. In fact, if ; € Q’V*,
0> € @ W*, we identify the element 6; ® 0 of @"V* @ @”W* with the element u
of @PT* determined by

u(v1 @ wi,v2 @ Wa, ..., vp @ wp) = 01(vi,v2,...,0p) - O2(wi,wo,...,wp),
for vi,ve,...,vp € V and wy,wy, ..., w, € W. Then we have the inclusions
SPV* @ SPW™ C SPT™, AV @ NPW* C SPT*,
(3:3) SPV* @ NPW* c NPT, N'V* @ SPW* C A\PT™.

The scalar product g on T induced by the scalar product g; ® g2 on the vector bundle
V ® W is a Riemannian metric on X. If x is a point of X and v € V, and w € W, are
given vectors, we shall sometimes denote the vector v ® w of T, by (z,v ® w). The
sub-bundle S2T* of ®2T* admits the orthogonal decomposition

(3.4) 82T = (S2V* @ SPW*) @ (N*V* @ A2W™).

Moreover, we know the metric g is a section of the bundle S?V* @ S?WW* and that an

element h of S2T* belongs to the sub-bundle A2V* @ A?W* if and only if
h(v®@w,v @ w) =0,

forallv eV and w e W.

We consider the standard basis {e1, ..., €m4n} of R™*". The action of the group
G = SO(m + n) on R™*" extends to an action on C™*™. The group G sends every
oriented m-plane of R™*" into another oriented m-plane. This gives rise to a transitive
action of the group G on the Riemannian manifold (X, g) by isometries. The isotropy
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subgroup of the point zo of X corresponding to the vector e; A --- A ey, of A™F
is equal to K = SO(m) x SO(n). We identify X with the Riemannian symmetric
space G/K.

The involution 7 of X, corresponding to the change of orientation of an m-plane
of F, is an isometry of X which commutes with the action of G on X. For z € X,
the tangent space T () is equal to (V ® W), and it is easily verified that the map-
ping 7. : Ty — Tr(y) is equal to the identity mapping of (V ® W),. The group ¥’ of
isometries of X generated by 7, which is of order 2, acts freely on X. The quotient
Riemannian manifold Y’ = X/%’ endowed with the Riemannian metric induced by g
admits X as a two-fold Riemannian covering and we identify it with the real Grass-
mannian G]f;hn of all m-planes in F = R™*"; we denote by @’ : X — Y the natural
projection. The action of the group G passes to the quotient G&,n and the group G

R

acts transitively on this space. We identify G with the symmetric space G/K’,

m,n

where K’ is the isotropy group of the image of z¢ in G%n.
The oriented m-plane x € X gives us an orientation of V,, which in turn induces

an orientation of Wy: if {v1,..., v} is a positively oriented orthonormal basis of Vj,
then the orientation of W, is determined by an orthonormal basis {w1, ..., w,} of W,
satisfying

VA ANy Awr AN~ Nwp =e1 N+ Nemign.
Then there is a natural diffeomorphism

v.GR L GR

m,n n,m»

sending = € @f;m into the n-plane W, endowed with the orientation described above.

For z € X, we have Vj, @) = W, and W&/(w) = V,. It is easily verified that the induced
mapping ¥, : (V@ W), — (V' © W)y, sends v ® w into —w ® v, where v € V,,
and w € Wy; therefore U is an isometry.

If F be a sub-bundle of SPT™ or of its complexification SPT{% which is invari-
ant under the group G and the involution 7, we consider the G-submodules C*°(E)
of C°(SPT¢) and

Co(E)*={0ecC™E)|m0=cb}
of C%°(E), where ¢ = +1; in fact, the module C*°(E)™*! is equal to the G-submodule
C*(E)* of C*°(E) consisting of all ¥'-invariant sections of E.

In this section, we henceforth suppose that m = n, with n > 2. The isometry ¥
always satisfies ¥4 = id and commutes with the involution 7; it is an involution only
when 7 is even, and satisfies U2 = 7 when n is odd. In fact, if  is a point of X

and {v1,...,v,} and {w1,...,w,} are positively oriented bases of V, and W, respec-
tively, then {w1,...,w,} is a positively oriented basis of Vi (y); moreover, when 7 is
even (resp. odd) integer, then {v1,va, ..., v, } (resp. {ve,v1,vs,...,v,}) is a positively

R
n,n

oriented basis of the space Wiy (,). Thus the group ¥ of isometries of G}, ,, generated
by ¥ and 7 is of order 4. Let 3; and ¥4 be the cyclic subgroups of 3 generated by ¥
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and 7, respectively. When n is odd, ¥ is equal to the cyclic group 3; of order 4; on the
other hand, when n is even, X is the product of the two cyclic subgroups ¥; and X
of order 2. Moreover, these isometries ¥ and 7 commute with action of G = SO(2n)
on éﬂsn In §1, Chapter IV of [6], we considered the quotient Y = G%  of G%
by the group of isometries of order 2 generated by this isometry ¥ of G%n endowed
with the metric gy induced by the metric of Glﬁyn; we saw that Y is a symmetric
space of compact type of rank n and a homogeneous space of G. When n > 3, it is
irreducible and equal to the adjoint space of X. In fact, the group ¥ acts freely on X
and the Riemannian manifold (Y, gy) is equal to the quotient X /¥ endowed with the
metric induced by the metric g of X. Moreover, the natural projection w : X — Y
is a four-fold covering and the action of the group G on X passes to the quotient Y.
When n > 4 is an even integer, we may also consider the symmetric space which is
the quotient of é%n by the group ¥; of order 2.

Since the isometries 7 and ¥ commute with the action of G on X, a Killing vector
field £ on X satisfies the relations

(3.5) nE=¢ VL= ¢

and is w-projectable.
Let E be a vector bundle equal either to SPT™* or its complexification SPT¢; we
consider the G-submodules

C®(E) ={0cCE)"T U 6=0)},
Coo(E)odd — {9 c Coo(E)T,+1 | T+ = *9}
of C®°(E)™* L. Then we see that C*(E)®" is equal to the G-submodule C>(E)*

of C*(E) consisting of all Y-invariant sections of E. Since the action of ¥
on C°°(E)™*+! is an involution, we have the decomposition

COO(E)T,+1 — Coo(E)cv @ COO(E)Odd‘
A symmetric p-form € on X is invariant under the group ¥ (resp. ¥’) if and only

if there is a symmetric p-form 6 on Y (resp. on Y’) such that § = w*f. Thus the
projections @ and @’ induce isomorphisms of G-modules

w*  C®(Y, SPTy o) — C*°(SPTE)™,
@ C(Y!, SPTy o) — C%(SPTE)™ .

If E is the trivial complex line bundle over X, as we identify C*°(X) with C*(E),
we may consider the corresponding G-submodules

CE(X)™E =C=(B)™,
Coo(X)ev — Ooo(E)ev7 Coo(X)odd — Coo(E)odd
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of C*°(X) and the isomorphism
(3.6) @ CP(Y) — C®(X)S

of G-modules.

We identify the vector bundles V* @ W and Hom(V,W). If x is a point of X
and A is an element of (V* ® W),, we consider the matrix A of A with respect
to positively oriented orthonormal bases {v1,...,v,} of V; and {w1,...,w,} of Wy;
then the determinant ¢’(A) = det A of A and, for 1 < k < n, the coefficient g;(A)
of the term of degree n — k of the characteristic polynomial of the matrix tAA are
independent of the choice of such bases. In fact, we have ¢, = (—1)"¢’?. The func-
tions q1,...,qn—1,¢ on (V* ® W),, are K-invariant homogeneous polynomials, with
degq’ =n and deg g = 2k. If we identify the tangent bundle T with V* @ W via the
isomorphism (3.1), the functions ¢’ and g on V* @ W determine a symmetric form
o’ of degree n and a symmetric form oy, of degree 2k on X by

0/(67"'75):(]/(5)7 Uk(&v?é):qk(f)/

for all £ € T; clearly, these symmetric forms are G-invariant.

We consider the Cartan decomposition (2.1) corresponding to the Riemannian sym-
metric pair (G, K) and identify the K-modules po and T,,. Then o’ and oy, are the
G-invariant symmetric forms on X corresponding to the polynomials ¢’ and g on po,
respectively. A suitable adaptation of the proof of Lemma 4.1 of [9] due to Rais shows
that {qi1,...,qn-1,¢} are algebraically independent generators of the algebra S(ps)%
(see also [10, pp. 562-563]).

The orientations of the spaces V. and W,, with € X, considered above, together
with the scalar products g; on V and g, on W, determine sections wy of /\"V*
and wy of A\"W*. In fact, if {a1,...,a,} and {B1,..., 3.} are positively oriented
orthonormal bases of V) and W, respectively, then

wy = a1 N Ny, ww =LA A L.

Via the second inclusion of (3.3), with p = n, we view the section wy ® ww
of AN"V* @ N"W* as a section o of S"T* over X. Clearly, the symmetric n-form o
is a G-invariant section of S§7™*. Then we easily verify that

(3.7) oc=nlo.

For x € X, we have

wy (7(2)) = —wy (2), ww (7(2)) = —ww (z),
wy (¥(2)) = ww(z), ww (¥(z)) = (=1)"wy (z).
It follows that
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Thus the form o is ¥-invariant and so induces a G-invariant symmetric traceless
n-form oy on Y such that
oc=woy.

Then the mappings

o T — §™ T, J{, Ty — S"_lT;?
induced by ¢ and oy are G-equivariant monomorphisms.

We consider the Hodge operators

x: V— /\nflV"7 x W — /\T"le*,
corresponding to the orientations of the spaces V, and W,, with x € X, and to the
scalar products g1 and go; then the relations

aAxa = |afwy, B A8 = |8 Pww

hold for all @ € V* and € W*. These Hodge operators determine a G-equivariant
isomorphism of vector bundles

=k @K v* ® W* — /\nflv* ®/\n71W*,
which, via the isomorphism (3.2) and the second inclusion of (3.3), with p =n — 1,
may be viewed as a monomorphism of vector bundles
(3.8) x=6:T" — S"7IT*.
We also consider the G-equivariant monomorphism of vector bundles
(3.9) * =Gy : Ty — STTITY,
then if « is a section of T3 over Y, by (1.6) we see that
(3.10) w xa = xwa.

The Grassmannian 6’]52 is isometric to the product of 2-spheres S2 x S? endowed

with the product metric g; + g2, where g; is the Riemannian metric of constant

curvature 1 on the j-th factor of S? x S2. In this case, it is easily seen that o
corresponds to a constant multiple of the symmetric 2-form g; — gs.

4. The Stiefel manifolds and the real Grassmannians

We view R™T" as a subspace of the complex vector space U = C™*"; then
{€e1,...,emtn} is a basis of U. The action of the group G on R™*" extends to U. The
k-th symmetric product S¥U* of U* and the k-th exterior product /\kU* of U* are
G-submodules of the G-module ®kU*, which is the k-th tensor product of U*. We
view S2U* as the space all complex quadratic forms on C™*". The subspace SgU *
of S2U*, consisting of all elements of S2U* which are traceless with respect to the
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standard quadratic form on C™*™, is an irreducible G-submodule of S2U*. In fact,
an element 6 of S2U* belongs to S2U* if and only if

m+4n

> blejie;) =0.
j=1

Let Sy be the space of all real (m + n) X m matrices A satisfying ‘AA = I,,,. We
view Sy, as the Stiefel manifold of all orthonormal m-frames in R™*"; the matrix
A of Sy, n determines the m-frame consisting of the m column vectors of A.

We consider S, as a submanifold of the space of all real (m 4 n) x m matri-
ces My . For 1 <j<m+nand1l<k<m,let XJ’-C be the function on M,, , which
sends a matrix of M,, , into its (7, k)-th entry; we also consider the R”-valued func-
tion X (resp. the R™"-valued function X k ) on M, », which sends a matrix of M, ,,
into its j-th row (resp. its k-th column). Then we have X; = (X}, ..., XJ") and the
functions {Xjk} form a coordinate system for M, ,. If u is an element of My, ,,, we
shall often write u? = X]’."(u,).

The orthogonal group SO(m) acts on Sy, , by right multiplication and we consider
the quotient space Sy, ,,/SO(m). The mapping

p:Smm — G=

m,ns

sending the element A of Sy, ,, into the point of é]fjm

X1(A) A+ A X™(A), induces by passage to the quotient a diffeomorphism
5 Smn/SO(m) — G®

m,n°

corresponding to the vector

The group G = SO(m + n) acts on Sy, ,, by left multiplication; clearly, the mappings
p and p are G-equivariant. A function f on S, , which is invariant under the right
action of SO(m) determines a function f on G¥, , satisfying p*f = f.

For 1 < j,1 < m + n, the real-valued function
m
fu= (X, X)) = > XFXf
k=1

on Sy, is invariant under the right action of SO(m); we have f; = fi;. The action
of G on S, », induces a structure of G-module on C*°(S,, ). It is then easily verified
that the mapping

By : SU* — C®(Smyn)s
which sends an element ¢ of SZU* into the function

m—+n

> alej.en) fin

Ji:k=1
on Sy, , which is invariant under the right action of SO(m), is a morphism of
G-modules. Hence the image H of ®; is a G-submodule of C*°(S,, ). Since the
function fi2 belonging to H is non-zero and since S2U* is an irreducible G-module,
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it follows that the mapping ®; is injective and that H is an irreducible G-module.
Thus the G-submodule

H={feC®X)|p feH}

of C*°(X) is isomorphic to H and therefore also to S2U*.
For 1 < j,1 < m + n, it is easily verified that the vector field

o 19} 1%}
Xk —_ X"—)
;( ToxF  Tloxk
on My, is tangent to the submanifold S, ,; we may therefore consider the vec-
tor field §;; on Sy, which it determines. We consider the Lie algebra go of G.
For 1 < j,1 <m+n, we denote by Ej; the element of gl(m + n,R) whose (j,1)-th
entry is equal to 1 and all of whose other entries are equal to 0; then the matrix
Aji = Ejj — Ej; belongs to the subalgebra gg of gl(m + n,R). The action of the group
G on Sy, ,, induces a morphism of Lie algebras from gg to the Lie algebra of all vector
fields on S, . It is easily verified that this morphism sends the element Aj; of g into
the vector field &;;, for 1 < j,I < m + n. Since the actions of G and SO(m) on Sy,
commute, it follows that the vector field &;; on Sy, is p-projectable; we denote by
fjl the vector field on X induced by gjl. Then the subspace of C*°(T') generated by
the vector fields {éjl} is equal to the G-module K of all Killing vector fields of X.

Let Z be a point of S, , corresponding to the orthonormal m-frame {v1, ..., v}
in R™*™". If x is the point p(Z) of X, then {vi,...,v,} is a positively oriented
orthonormal basis of V.. Let w be a given unit vector of W, and 1 < k < m be a given
integer. Let 7y : [0,27] — Sy, be the closed path defined as follows: for 0 < ¢ < 2,
let v(t) be the matrix of S, , corresponding to the orthonormal m-frame

{v1,...,vk—1,c08t - Vg +SINt - W, Vy1,...,Vm}-

We have 7(0) = (27) = &. The path po~ : [0,27] — GE

m,n

is a closed geodesic of

the Grassmannian GE

m.n» and it is easily seen that the equality
d
at”

holds among vectors of T;.. If f a function on S, , which is invariant under the right

action of the group SO(m), we have

(dF o © w) = T TG0,

(Y(t))jt=0 = v @ w

(1.1) .

= d
(Hess ) ok @ 0,08, © w) = 3 F(2(6) =0
We consider the standard scalar product on the space My, ,, given by
o= ¥ b
1<k<m
1<j<m+n

MEMOIRES DE LA SMF 108



4. THE STIEFEL MANIFOLDS AND THE REAL GRASSMANNIANS 25

for u,v € My, n, and the Riemannian metric § on the submanifold Sy, , of My,
induced by this scalar product. Clearly, the metric ¢ is invariant under the right
action of SO(m) and under the left action of G. Therefore the metric § induces a
Riemannian metric g’ on é%n which is G-invariant.

For u € Sy, 1, we identify the tangent space Ty, (Sm,n) t0 Spm . at the point u with
the subspace

m4+n
{v € My Z (ufvé + uév;“) =0, foralll <k, < m}
j=1

of My, . The subspace V,,(Sm,n) of Ty(Sm,n) consisting of those vectors which are
tangent to the fibers of p is then identified with the subspace

{veMpyn|v=u-v, withv' €so(m)}

of My, n. We shall also consider the orthogonal complement H,(Sm,n) of Vi(Sm.n)
in T, (Sm,n)-

Let M;, ,, be the subspace of M, ,, consisting of those elements u satisfying uf =0,
foral m+1<j<m+nand 1l <k < m. We consider the point Zy of Sy, r
corresponding to the m-frame {ei,...,en} of R™*"; then we have zg = p(Zp). An

element v of My, , belongs to Ty,(Sm,») if and only if
v;“ + vi, =0,

for all 1 < j,k < m. Then we verify that

Vo (Smn) = {v €M,

m,n

vf%—vizo, for all 1 Sj,kgm},

Hi (Sm,n) = {/U € Mm,n j

vF =0, foralll < J k< m}7

and that the restriction

Pt Hi’o(sm,n) — Ty,
of the mapping p. to the subspace Hz,(Sm,») is an isometry. Indeed, let w be a unit
vector of W, and 1 < k < m be a given integer; we consider the closed path « in Sy, ,,
associated with the point Z, the vector w and the integer k, which we defined above.
Then the tangent vector 4(0) is the matrix belonging to Hz,(Sm,») whose I-th column
is 0w, for 1 <1 < m, and we know that

p*'.Y(O) =ep Qw.

Since the metrics ¢’ and g on X are G-invariant, it follows that they are equal.

Let ¢ be an element of SO(m) and Ry be the diffeomorphism of S, ,, induced by
the right action of ¢ on Sy, »; we have Ry(u) = u¢, for all u € Sy, . Then we see
that

(4.2) p-Ry=p,

SOCIETE MATHEMATIQUE DE FRANCE 2007



26 J. GASQUI & H. GOLDSCHMIDT

and hence that

R¢*Vu(smmr) = Vuaﬁ(Smm%
for w € Sy,n. Since the metric ¢ is invariant under the right action of the
group SO(m), from the previous equality we deduce that

(43) R¢*Hu(sm7n) = Huq[)(Sm,n)7

for u € Sy .

Let « be 1-form on S,,, which is invariant under the right action of the
group SO(m). We now show that « induces a 1-form & on X. Indeed, let & be
elements of T, with z € X. Choose a point & of S, , satisfying p(Z) = x, and
let £ be the unique vector of H;(Sm,n) satisfying p:& = & then according to the
relations (4.2) and (4.3), the 1-form & on X determined by

(€ a) = a)
is well-defined. If f is a function on S, , which is invariant under the right action
of SO(m), then 8 = fa is a 1-form on S,, ,, which is invariant under the right action
of the group SO(m), and we see that
B = fa.
If f=(f1,...,f™)is a C™-valued function and a = (al,...,a™) is a C™-valued
1-form on Sy, n, where f¥ is an element of C*®(Sp,,n) and aF is a complex 1-form

on Sy, 5, we define a complex 1-form f-a on Sy, , by

fra= Z frak.
k=1
For 1 <j,k <m+mn, we view X; and X} as R™-valued functions on Sy, . Then the
1-form
X - dXy,
on Sy, , is invariant under the right action of the group SO(m). Clearly we have
dfjr. = Xj - d Xy + Xy - dX.
We consider the 1-form
Qj = X]‘ ka - Xk dX]
on Sy, n, which is invariant under the right action of the group SO(m), and the 1-form
&;jr on X induced by «ji. We denote by T” the cotangent bundle of Sy, ,,; the action
of G on Sy, induces a structure of G-module on C*°(Sy, ,,, T{:). We easily verify
that the mapping
Do N'U* — C®(Spn, TL),
which sends an element w of /\2 U* into the 1-form
m+n

Z w(ej, ek)()t]'k

j,k=1
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on S, which is invariant under the right action of SO(m), is a morphism of
G-modules. Hence its image A is a G-submodule of C*°(Sy, »,T{:). The form @i
on X is non-zero, and so the mapping ®, is non-zero. Since the G-module /\ZU*
is irreducible, we know that A is an irreducible G-module and that the space A of
1-forms on X induced by the forms of A is an irreducible G-submodule of C*°(T¢).
Both of these G-modules are isomorphic to /\2U *; moreover, the G-submodule Ao
of A generated over R by the forms &y, is isomorphic to /\Q]R"””. Clearly, we have

7 (&) = k.

for 1 < j,k < m + n. From this equality and the definition of &;i, we obtain the
relation

(4.4) 9 (En) = ajn,
for 1 < j,k < m + n; therefore we have the equality
(4.5) 9’ (K) = Ao.
We henceforth suppose that m < n. For 1 < k < m and 0 € R, we consider the
vectors
vg(0) = cos O - ea—1 +sind - egy, wg(0) = —sing - eag—1 + cos b - eg,

of R™*". Then for § = (01,...,0,) € R™, the vectors
{1}1(91), LR vm(em)’wl(al)a e 7wm(9m)}

form an orthonormal system of vectors of R™*". We consider the mapping
t:R™ — S,

which sends 6 = (61,...,6,) € R™ into the point ¢(6) of S, , corresponding to the

orthonormal m-frame {v1(61),...,0m(0m)} in R™T™. If {ef, ... e}, } is the standard
basis of R™ and A is the lattice generated by the basis {2me], ..., 2mel,} of R™, the
mapping ¢ induces by passage to the quotient a mapping
LR /A — Sy
The image of the mappings ¢ is a flat torus Z of Syn. The lattice A’ of R™ generated
by the basis
{me}, + mejyq, el + (—1)"irel, ), with 1 <k <m—1,
of R™ contains the lattice A. Then it is easily seen that there is an injective mapping
JIRMN G

such that the diagram
Rm/A ;’ Sm,n

! L

R™/N v, CNJE‘;”L
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is commutative. We also denote by ¢ the mapping po ¢ : R™ — é]&n The image
R

Z of the mappings ¢/ is a maximal flat totally geodesic torus of ém’n, which is equal

to p(Z). If f is a function on X, then we have the equalities

[raz=[ / ( / %f(z/(e))dem) a6, ...db
= /me/ow (/O% f(/(e))dé)l) s ... do,,.

For 1 < j,k < m, we consider the vector field 0/00y, on R™ and the vector fields
1k and (i on Z defined by
1k (1(0)) = cos 05 - (9/0X3;_1) («(9)) + sin; - (9/0X5;) (u(6)),
G (1(6)) = cos b - (0/0X3;,) (1(60)) — sin by, - (9/0X5,_1) (1(6)),
for 6 € R™. We now fix a point 6 = (01,...,0,,) of R™. We easily verify that the
tangent vectors
{ ik = mr; ) ((6)) 1<i<hsm
form a basis for the space V,()(Sm,n); it follows that C(¢(0)) belongs to H,(6)(Sm,n)-
Then we see that
(4.7) 1:(0/001)(0) = G ((9)),
for # € R™; moreover, the vector fields {(1,...,Cn} form an orthonormal basis for
the space of parallel vector fields on Z. For 1 < k < m and ¢t € R, let 74(¢) be the
point of S, ,, corresponding to the orthonormal m-frame
{v1,...,0p=1,c08t - v +8int - Wk, Vgt1,---,Um},
where vj; = v;(0;) and w; = w;(0;), for 1 < j < m. Then we have 7;(0) = ¢(f) and
the relation J
= eje=0 = G (1(6))
holds. We know that {v1(01),...,vm(0m)} is an orthonormal basis for V,,(4) and that

{w1(61),. .., wm(0m)} is an orthonormal system of vectors of W,,(g). As we have seen
above, according to these observations the equality

PG (1(0)) = (/(0), v (k) © wi.(0x))
holds among vectors of T,/(g). It follows that the vector field fk on Z is p-projectable
and determines a parallel vector field (; on Z which satisfies

(4.8) Ce(¢(0)) = (4/(0), vk (6k) ® wi(61)),

for all § € R™; according to (4.7), we see that

(4.9) 1.(0/00k)(0) = Gk (¢'(9)),

for @ € R™. In fact, {(1,...,(n} is an orthonormal basis for the space of parallel

vector fields on Z.
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If f is a function on S, , which is invariant under the right action of SO(m), we
have

cf=
and, hence by (4.7), we see that

(1.10) (G ) ) = G aryoio) = 22 Do),

for ¢ € R™. If o is a 1-form on Sy, , which is invariant under the right action
of SO(m), by (4.7) and (4.9) we easily see that the relation

(4.11) Fa=1"q

holds among 1-forms on R™. If ¢ is a 1-form on X and 1 < j,k < m, since the
mapping ¢ is totally geodesic, by (4.9) and the definition of the operator D! we have
the equality

1% 0 1% 0 1%
(4.12) 2 (Dlsa)(CJVCk):a—ej@/%w W>+8_0k<6/69jvb )

of functions on R™.

We now suppose that m = n, with n > 2. Let § = (61, ...,60,,) be a given element
of R™ and consider the point x = /() of Z. According to (4.8), the tangent vectors
Ck(z) belonging to T, = (V ® W), are of rank one, for 1 < k < n. Therefore if u is
an element of SPT, with p > 2, which belongs to the subspace (APV* @ APW*),,
we have

(413) u(<j7<j7<jw"'vcjp—2) :07

for all 1 < j,71,...,Jp—2 < n. Now suppose that n > 3 and let ¢ be an element
of T. Then ¢ belongs to (A"~ 'V* ® A" 'W*),; hence the relation (4.13) holds for
u=*p and p =n — 1. According to (4.8), we easily see that

(414) @(CJ) = (*90)(43'17"'7(]}171)7
whenever the integers {7j,j1,...,Jn—1} are a permutation of {1,2,...,n}. Since
{¢1,...,¢u} is an orthonormal basis for the space of parallel vector fields on the

maximal flat totally geodesic torus Z, and since all maximal flat totally geodesic tori
of X are conjugate under the action of G = SO(2n) on X, from the relations (4.13)
and (4.14) we deduce the following result:

LEMMA 4.1. — Let X be the Grassmannian 65”, with n > 3. An element ¢ of
C>®(T*) satisfies the Guillemin condition if and only if the symmetric (n — 1)-form

xp on X satisfies the Guillemin condition.

According to Lemmas 1.1 and 4.1, we know that a 1-form ¢ on Y satisfies the
Guillemin condition if and only if the symmetric (n — 1)-form *¢ on Y satisfies the
Guillemin condition.
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Let u be the point of S, , corresponding to an orthonormal n-frame {vq,...,v,}
of R?™ and let {w1,...,w,} be an orthonormal n-frame which spans the orthogonal
complement of the space generated by the vectors {v1,...,v,} satisfying

VIN - ANvp ANwL A~ ANwyp =€ N+ N\ eop.

If «’ is the point of Sy, , which corresponds to the orthonormal n-frame {w1, ..., w,},
then we have ¥(p(u)) = p(u’) and we easily see that
(4.15) (X5 (w), Xi(u) + (X;(u), Xy (u')) = d5,

for 1 < j,1 < 2n.

5. Functions and forms of degree one on the real Grassmannians

We now describe explicit functions and 1-forms on the real Grassmannian X = éEn
and the symmetric space Y = C?Sn, with n > 3. We consider the complexification g

of the Lie algebra go of the group G = SO(2n). For u € C, we set

(3 %)

For pq, pa, ..., pn € C, we consider the 2n x 2n matrix
L) 0 .. 0
0 L(Mz) e 0
L) =| .
0 0 s L(Nn)
The subalgebra ty of g consisting of all 2n X 2n matrices L(u1,...,u,), where
U1, by € C are purely imaginary, is the Lie algebra of a maximal torus of G.
The complexification t of ty, which consists of all 2n x 2n matrices L(u1, ..., fin),

with pq,...,un € C, is a Cartan subalgebra of the semi-simple Lie algebra g.
For 1 < j < n, the linear form A; on t, which sends the element L(uq, ..., () of t,

with py,...,u, € C, into p; is purely imaginary on t5. We set a; = A\j — Aj41,
for 1 < j<n-1,and o, = A\p—1 + A\p. We choose the Weyl chamber of (g, t)
for which the system of simple roots of g is equal to {ay, g, ..., a,}. If AT is the

corresponding system of positive roots of g with respect to t, the unique element wq
of the Weyl group of g satisfying

wo(A1) = —AT
is the automorphism —id when n is even, and is the automorphism determined by
wo(ay) = —aj,  wolan-1) = —an,  wolan) = —an_1,

for 1 < j <n— 2, when n is odd.
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The highest weight of an irreducible G-module is a linear form
C1A1 + Codo + -+ ECr A
on t, where e = £1 and ¢, ¢a, ..., ¢, are integers satisfying
c1>cp > >cy > 0.
The equivalence class of such an G-module is determined by this weight. We identify

the dual I' of G with the set of all such linear forms on t. If v is an element of T',
there exist integers r1,rs, ..., rn—1 > 0 and s € Z such that

Y= Yriyrarn1,s = CIAL + C2Aa + -+ Cp Ay,

where
n—1

¢ =|s|+ Zrk,
P

for 1 < j<n-—1,and ¢, = s. The unique element 7 of I" determined by
wo(7) = —7
is given by

Y= . )
Vr1,raeT—1,—$ if n is odd.

~ {7 = Vri,royrno1,s AL M 1S even,

If v is an element of I', we denote by C5°(X), C3°(SPT¢) and C3°(Y) the isotypic
components of the G-modules C*°(X), C*(SPT{) and C*°(Y), respectively, corre-
sponding to 7. For v € I', we denote by W, the weight subspace of the G-module
cx (T¢) corresponding to its highest weight y; we recall that the multiplicity of the
G-module C°(T¢) is equal to the dimension of the space W, (see §2, Chapter 11
of [6]). We write

O (X)™ = C%(X)™ NC(X),  C(X)PM = 0 (X)) 1 C(SPT3),
O (SPTE) = C3°(SPTE)™ = C™(SPTR)® N O (SPTR),
Cﬁo(ST’Té)Odd = C>®(SPTE)°M N C(SPTE).

The mapping (3.6) induces an isomorphism of G-modules

@ OF(Y) — CF(X)™.
A linear form A on t is a weight of the G-module C°(SPT¢) if and only if —\ is
a weight of the complex conjugate C°(SPT{) of the space C°(SPT¢); therefore we
have the equality

(5.1) C3°(SPT7) = O3 (57 Tg)

of G-modules. In particular, when n is even, or when n is odd and 7 is equal to
Vri,ra,orn_1,0, Where 1,7, ..., 71 > 0 are integers, the G-module C;o(SpTé) is
invariant under complex conjugation.
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If k,l > 1 are integers, let M(k,l) be the space of all complex k x [ matrices.
For 1 < j < n, we consider the C"-valued function

Zj = Xojo1 +iXsj

on Spn. For 1 <k <n,let Ay be the M(k,n)-valued function on S, , whose j-th
row is equal to Z;, for 1 < j < k. We also consider the M(n,n)-valued function A7,
on S, , whose j-th row is equal to Z;, for 1 < j < n — 1, and whose n-th row is equal
to Zn.

For 1 < k < n, we consider the M (k, k)-valued function

By, = Ak-tAk

on S,n,. We extend the scalar product of R™ to a bilinear form on C"; then
for 1 < j,1 <k, it is easily seen that the (j,1)-th entry of the matrix-valued function
By, is equal to (Z;,Z;). For 1 < k < n — 1, the complex-valued function f; on Sy ,,
defined by

(5.2) fre = det By = det((Z}, Zi)1<ju<k)-

is clearly invariant under the right action of SO(n). In particular, we have
(5.3) f1={(Z1,Z1) = (X1, X1) — (X2, Xo) + 2i(X1, X2),

(5.4) fo = (21, 21)(Z>, Zo) — (21, Za)*.

For 1 < j,k < n, the functions (Z;, Zy) and <Zj,Zk) on Sy, belong to the irre-
ducible G-module H; in particular, we know that the function f; belongs to H. We
write f{ = (Z1,Z2). The complex-valued functions f, = det A, and f] = det A},
on Sy, are also invariant under the right action of SO(n). Clearly, we have the
equality

(5.5) 2 — det B,, = det (A, - 'A,,).

From the second formula of (4.1) and the definitions of the functions f, and f,, if
x is an arbitrary point of X, we verify directly that the equalities

(5.6)  (Hess f,)(v @ w,v @ w) = —fn(x), (Hess f1)(v @ w,v @ w) = — fi(x)

hold for all unit vectors v € V, and w € W,.
Ifri,...,7n—1 > 0 and s are given integers, the complex-valued function fr, . ., s
on Sy, defined by

15| n—1 pry

n e i ifs <0,

f {fsﬂﬁ‘f.;?’ ifs >0,

T1yeeTn—1,8 —

is invariant under the right action of SO(n). According to Strichartz [21] and Grin-
berg [11], if y is the element

1 .
’yrl,...,rn,l,s = Y2r1,...,.2rn—1,8
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of ', the function lewuy”“n—lyS on X induced by fr, .. . ;s is a highest weight vector
of the irreducible G-module C$°(X). We also know that C$°(X) = 0 whenever v € T’
is not of the form v}, . with r1,...,7,_1 > 0 and s € Z. Since f1 belongs to
the irreducible G-module H, it follows that

Cr(X)=H
when v =~{ o =72,0,..0; in fact, the G-module H is isomorphic to the irreducible
G-module SgU*, with U = C*. If ri,...,rn_1,5 € Z, when one of the integers
T1y...,Tn—1 18 < 0 we set frl,mmn-l,s =0.
From the definitions of the functions fj; and fi, we infer that

(5~7) T*fjl = fﬂ? T*fk = fk’ T*fn = *fm T* ~I/L = 7.]?72’
for 1 <j,0<2nand 1 <k <n—1. From the definitions of the functions f;; and f
and according to the relations (4.15) and (5.5), we obtain

U fir = —fa, U fii+ fi =1,
U i = (=) i, U= (-0)" 7
for 1 <j,l<2nand 1<k <n-—1,with j #1[. Since the isometry ¥ commutes with
the action of G on GE,n and since the functions f, and f, are highest weight vectors

of irreducible G-modules, we know that U* f,L =c, fn and ¥* ﬂ, =d, ﬂ, where ¢,
and ¢, are complex numbers.

(5.8)

Since the functions fn and f,’L are highest weight vectors of irreducible G-modules
of weight Ay + -+ + A1 + A\p and Ay + -+ + A\y—1 — A, respectively, the functions
fn—1 and f,, - f, are highest weight vectors of the irreducible G-module B = oy (X)),
complex number. According to (5.1), we see that the G-module B is invariant under
conjugation and is therefore equal to the complexification of the subspace

Be={feB|f=[}
of CR°(X).

If r1,...,7p—1 > 0 and s are given integers and -y is the element '7;1,. of T,
since the function fTthkl,S on X is a highest weight vector of the irreducible
G-module C$°(X), according to the relations (5.7) we have the inclusion

“Tn—1,8

(5.9) Cr(X) cC=(X)™s,
where € = (—1)*. From (5.7) and (5.8), we obtain the equality
(5.10) C(X)eM =,

with ¥ =i, 0.
We now suppose that n is odd and consider the element y =5 ¢ of T'; by (5.7)
and (5.8), we see that

(5.11) O (X)™ = B.
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Therefore By = C7°(Y) is an irreducible G-module isomorphic to B and invariant
under conjugation; thus By is equal to the complexification of the subspace

BY,RZ{fEBY\fIJF}

of C2°(Y') and the mapping w induces an isomorphism @* : By, — Br. The dimen-
sion of B or By is equal to

n(n+1)(2n +1)(2n — 3)/3.
We no longer suppose that n is odd. We consider the mapping
T:R" — Sy 0,

which sends 6 = (61, ...,0,) € R™ into the point v = i(§) of S, ,, determined by

Xk(v) = —sinfy - egp—1 + cos by, - eap,

X"(v) = (1) (= sin b, - ean_1 + cosby - €2,),
for 1 <k <n—1. For all § € R"™, we verify that

XY u) A AX" ) AX ) A AX(v) =er A+ A ean,
where u = ¢(0) and v = i(0); hence we obtain the relation
(p(e(0)) = p(i(9))-

Let (€1,...,€,) be the standard basis of C". For = (64,...,6,), we easily verify
that

2,u(0)) = €&, = ~i2,(i(0)),

Zn(UB)) = ey = (~)AiZ, (1(8)),
for 1 < j < n. According to these relations, we see that

Fe(u(8)) = i),
Falu(®)) = O o(9)) = 00,
for 1 < k < n, and that
Jal#(8)) = (~1)n/3 g Ok,

o S0 = () O

From the equalities (5.12) and (5.13) and observations made above concerning the
functions f, and f], we infer that

U f = () W =~

(5.14) _ _
fn © 7/L = (_1)n+1fn71'
Ifl<k<nandl <i < .-+ < i, < n are given integers, we consider the
M (k, k)-valued function Ay(i1,i2,...,45) on Sy, whose [-th column is equal to the
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i;-th column of the M (k, n)-valued function Ag, for 1 <[ < k, and the complex-valued
function

D(iy, iz, ..., i) = det Ay (i1, 2, ..., ix)

on Sy p.
According to Strichartz [21], we have the equality
(5.15) fe=" Y Dliyin,...,in)?,

1<iy < <ip<n

for 1 < k < n. Indeed, Strichartz shows that the function fk on Sy, which is equal
to the right hand side of the equality (5.15) is invariant under the right action of
the group SO(n) and the function on X induced by fk is a highest weight vector
of the irreducible G-module C$°(X), with v = 2(A; + - + Ag). Since the function
fr possesses the same properties, the functions fi and fk differ by a constant. If
0 = (b1,...,0,) € R™, according to the description of the matrix A, (¢(f)) given
above, we see that D(i1,12,...,1;)(¢(0)) vanishes if one of the indices ¢; is > k and
that
D(1,2,...,k)(«(9)) = 6i(61+w+6k);
from these observations and the first relation of (5.12), we infer that the equality (5.15)
is true on the torus Z , and hence on all of Sy, .
The 1-forms

Ojp = Zj-dZy = Z - dZj, Oy = Z;dZx — Zi - dZ;,
V5 =2j dZy, — Zy - dZ;
on Sy, with 1 < j, k < n, belong to the G-module A and generate it over C. We shall
consider the 1-forms ¥, 93 and 9,5 on X induced by 9, 9 and 9,5, respectively.
We again consider the vector space U = C?". Let {a,...,az,} be the basis of U*
dual to the basis {e1,...,ean} of U. Then the vectors
Bj = agj1 +icg;, 5= g1 — iy
of U*, with 1 < j < n, are vectors of the G-module U* of weight A\; and —\;,
respectively. It is easily seen that
Q1B P) = (Zj Zr), ®1(By- Br) = (25, Z),
D1(8; - Br) = (Z, Zi),
Do (65 A Pr) = Vg, Q2(85 A B) = V37,
O2(85 A Br) = Dy,
for 1 < j,k < n. Since 31 A B2 and [ - B are highest weight vectors of the irreducible

G-modules /\2U * and SZU*, respectively, we see that 912 is a highest weight vector
of the irreducible G-module A and, once again, that f; = (Z1, Z1) is a highest weight

(5.16)
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vector of the irreducible G-module H. Therefore 7,5 is a highest weight vector of the
irreducible G-module A. By (4.4), it is easily seen that the vector field

§o = &13 — 24 + (14 + Eo3)
on X satisfies the relation
gb(fo) =1a.
If K¢ denotes the complexification of K, by (4.5) it follows that & is a highest weight
vector of the irreducible G-module K¢. By (3.5), we also know that the equalities

O (Te) = Ke,

(5.17) C(TE) = O (T8 = g*(Ke) = A.

G-modules are irreducible and isomorphic to g. Since the element
A1z — Aog + (A1 + Azs)

of g is a highest weight vector of the irreducible G-module g, we once more see that
the vector field & is a highest weight vector of the G-module Kc.

According to the description of the weight vectors of U*, we easily see that the
highest weight of the G-module A*(S2U*) is 3\, + Ay and that its highest weight
vectors are the non-zero multiples of (31 - 81) A (1 - B2). Thus (81 - 1) A (b1 - B2)
is a highest weight vector of an irreducible G-submodule of /\Z(SSU *). Therefore by
the first relation of (5.16), we know that (Z1, Z1) A(Z1, Z2) is a highest weight vector
of an irreducible G-submodule of /\27-[, whose highest weight is 3A\; + A2. According
to (5.10), the image of the morphism of G-modules

X1 N*H — C=(T2),
defined by
xi(fAf) = faf — fldf,
for f, f' € H, is a G-submodule of C*°(T{)*".
The G-modules A®H and A®H®H are isomorphic to the modules A*U* ® S3U*
and A*U* ® S2U* ® S2U*, respectively; the mappings
X2t A®@H — C¥(I¢), x3: AHH — C=(T7),
defined by
xela® f)=fa, @efef)=[fa
where a € A and f, f' € H, are morphisms of G-modules. According to (5.10)
and (5.17), their images are G-modules satisfying
2(ARH) C CP(TE)°Y, xz(A®HRH) C CP(TE)*.
We consider the G-modules

My =AU @U*, My=A\U"2\NU oU".
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According to the description of the highest weight vectors of U*, the elements
v =BiABeABs@ B, vf =PiABA B3 @

of A*°U* @ U* generate (over C) the weight spaces of the G-module M; of weights
wfr =2M + A2 + A3 and w; = 21 + A2 — A3, respectively. Moreover, the elements

vy =B1AB2ABsRB1A B2 AR, vy =L AB2ABsRPLAB @B

of /\3U* ® /\QU* ® U* generate (over C) the weight spaces of the G-module My of
weights w; = 3A1+2 2+ A3 and wy = 3A1+2X2— A3, respectively. Hence for j = 1,2,
the element v;.r of M; is a highest weight vector of an irreducible O(2n)-submodule
E; of Mj. When n > 3, we know that E; is an irreducible G-module. When n = 3,
the G-module E; decomposes into the direct sum of two irreducible G-modules E;
and E;, whose highest weights are w;-r and w; , respectively; therefore, ’U;r and v;
are highest weight vectors of the G-modules Ef and E;, respectively.
For j > 1, the mapping

1y : /\j+1U* QU — /\7U* ® SZU*
defined by

(/‘Ljv)(§1w~-v£j»7717772) = (—1)j(v(§17~~~,§j»771,772) +U(£17~~~7£.777727771))7

for v € /\jHU* ®U* and &,...,&,m,n2 € U, is a morphism of G-modules. Then
we easily verify that

j+1
i@ A A @9) = > (DM A A DR A A @ Dk -,
k=1
for ¥1,...,9;41,9 € U*. We consider the morphism of G-modules

v NUF @ NPU* @ U — NU* ® S2U* @ S2U*
equal to the composition of the morphisms
id®p : NU* @ NU* o U — NU* @ U* @ S2U*
and
e ®@id : A*U* @ U* @ S2U* — N*U* @ S2U* @ S2U™.
The elements po(vi) and pa(vy) of A2U* @ S2U* are given by

po(vf) =BaABs®@PBrL-BL—BLABsR B B+ PiAPe® By B,
po(vy) =B AB3®@P1-B1—PLAB3RF1-Pa+ i AB® P Fs
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We easily verify that the vectors v(vy) and v(v; ) of A2U* ® S2U* @ S2U* are given
by
v(v) =wi @B B —ws @B P, v(vy ) =wy @B f1—wy @B P,

where

Wi =B NB®@Ba B3+ B2 AB3RP1 - fa2—B1ABs® Pa P,

wi =1 AP2@P1-Bs+PaAB3@ b1+ Po— P AB3@ PP,

wy =B1AB2®P2- B3+ B2ANB5® P12 — B APz ® P2 Pa,

wy =01 AB@Pr- B3+ B2AB5® 01 P2 — B APz ® P Pa.
From these formulas, we infer that the us(vi”) and ua(v;) are non-zero vectors of
the G-submodule A\*U* ® S2U*, while vectors piz(vi) and pa(vy ) are non-zero vec-
tors of the G-submodule A*U* ® S2U* ® S2U*. When n = 3, it follows that the
G-submodules g (Ef) and pa(Ey) are irreducible G-submodules of A°U* ® S2U*
and that the vectors ua(vy") and pa(vy ) are highest weight vectors of the G-modules
ua(Ey) and ps(Ey), respectively; moreover, the G-submodules v(Ey) and v(E; )
are irreducible G-submodules of A\’U* ® S2U* ® S2U* and that the vectors v(v)
and v(vy ) are highest weight vectors of the G-modules v(EJ ) and v(E; ), respectively.

We now suppose that n = 3 and we consider the vectors
wf = (2@ P1)ua(vy),  wy = (P2 ® Pr)pz(vy)

of A® H and the vectors

wy = (P2@ 01 @ r(vf),  wp = (P2® P ® Py)r(vy)

of A® H ® H. Then we see that wi and wj are highest weight vectors of the
irreducible G-submodules

Mt = (2@ P1)p2(EY), M~ = (2@ P1)p2(Ey)

of A® H, whose highest weights are @i and wj , respectively, and that wj and w3
are highest weight vectors of the irreducible G-submodules

NT = (D308, @ ®)v(EY), N~ = (0%, @ ®;)v(Ey)

of A® H ® H, whose highest weights are w, and w, , respectively. According to the
relations (5.16) and the expressions for p2(v;") and pa(vy) given above, the elements

vt =), YT =xe(wr)
of C°°(T)°4? are equal to the 1-forms on X induced by the SO(n)-invariant 1-forms

<Zl7 Z1>1923 - <217 Z2)1913 + (Zh Z3>19127
(Z1, Z1)095 — (Z1, ZaYhs + (Z1, Zs)ha
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on Sy,n, respectively. If the forms ¢ and 1)~ are non-zero, they are highest weight
vectors of irreducible G-submodules x2(M*) and x2(M ™) of C=(T¢)°4d whose high-

est weights are @] and @] , respectively. From the relations (5.16) and the expressions

for v(v]) and v(v; ) given above we infer that the elements

et =xs(wf), @7 =xs(wy)
of C>=(T¢)®Y are equal to the 1-forms on X induced by the SO(n)-invariant 1-forms
({21, Z1)(Z2, Z3) — (Zn, Z2)(Z1, Z3)) 012 — f2V13,
(Z1, Z1)(Za, Zis) — (Zv, Z2)(Z1, Zs))ha — fadi3

on Sy, respectively. If the forms ¢* and ¢~ are non-zero, they are highest weight
vectors of irreducible G-submodules x3(N 1) and x3(N ™) of C°°(T)® whose highest
weights are w; and w, , respectively.

6. Isospectral deformations of the real Grassmannian of 3-planes in R®

We now consider the real Grassmannian X = égB, the symmetric space Y = C_¥§ 3
and the group G = SO(6) and its dual I'.  We also consider the monomorphisms
oc:T — S2T* and oy : Ty — SZT{} induced by the symmetric 3-forms o and oy;
they determine the monomorphisms

*: T — S2T%, x: Ty — STy

given by (3.8) and (3.9), with n = 3. In this case, by (5.8) and (5.14) we have
(6.1) U fy = —fu, U fy = fa, U fy = ifs, ‘I’*fé = —iféa
(6.2) fo=fs-f5.

Most of this section is devoted to the proof of the following proposition:
PROPOSITION 6.1. — We have

DoC>(T) N *dCr°(X) = *dBrg.

If P denotes the orthogonal projection corresponding to the decomposition (1.3)
on the space Y, according to Lemmas 4.1 and 1.1 the mapping
(6.3) Pxd:C°(Y) — I(Y)

is well-defined. We denote by Fy the orthogonal complement of the finite-dimensional
space Fy, = R(Y) @ By in CR°(Y). From Propositions 1.2 and 6.1, we obtain:

THEOREM 6.2. — The symmetric space Y = G§3 is not rigid in the sense of Guil-
lemin. If f is a non-zero element of Fy, then the symmetric 2-form xdf on'Y satisfies
the Guillemin condition and is not a Lie derivative of the metric. Moreover, the kernel
of the mapping (6.3) is the finite-dimensional space Fy, = R(Y) @ By g.
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According to remarks made in §5, we know that the dimension of the space Fy is
equal to 85.

The remainder of this section is devoted to various results which are needed for the
proof of Proposition 6.1.

If 1,79 > 0 and s are integers, we consider the elements

Vi ms = (271 + 2r + [s[)A1 + (2r2 + [s]) A2 + s)s,

V2 rms = (271 + 2r + [s| + 1)1 + (2r2 + |s| + 1) Az + s)s,
V2 s = 201+ 2r2 + 8| + 2)A1 + (2r2 + 8] + 1) A2 + s)s,
'Y;mes = (2r1 +2r2 + || + 1)A1 4+ (2r2 + [s]) A2 + sAs

(6.4)

of I'. We note that, if v is an arbitrary element of I', there exist integers 1 < j < 4,
and r1,72 > 0 and s such that v = 'yﬂmw.

The following proposition is a direct consequence of the results of §10 and Propo-
sition 10.4.

PROPOSITION 6.3. — Let X be the Grassmannian CNr']}fg The non-zero multiplicities
of the SO(6)-modules CS°(T¢), with v € T, are given by the following table, where
ri,m2 > 0 and s are integers and 7y is an element of I':

¥ Multiplicity

'lel,m,s 3 ifry,re>1
2 ifrp=0andre >1
2 ifrg=0andr,|s|>1
1 ifry=ry=0and|s|>1
1 ifro=s=0andr >1

Vs 2 ifr>1
1 ifry=0

3

Yrrras | 2

Vs 2 ifro>1
1 ifro=0and |s|>1

Let 71,72 > 0 and s be given integers. We consider the sections
Y1 = ,frlfl,rz,sd,fly P2 = ,frl,rg—l,sd.f27
@3 = frimms-1dfs, @4 = frimmst1dfs,
05 = frima—t1,s11df34
of T¢, and the subspace V;, ,, s of C°°(T¢) which is generated (over C) by the
1-forms ¢1, @2, 3 whenever s > 1, by the 1-forms @1, 2, ps whenever s < —1,

and by the 1-forms ¢1, @2, 95 whenever s = 0. Clearly, we have V;, , s = {0} when
ro=r9=s5=0.
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By (6.2), we may consider the 1-form
8= fydfs — fsdfs = dfs — 2f3df3,
and we have the relations
(6.5) fadfz — fodfs = f3dfs, Fadfs — fodfy = fdfs.
Thus when r; = 0 and ry = s = 1, we have the equality
Y5 = P2 — P3.
LEMMA 6.4. — Let r1,72 > 0 and s be given integers, and suppose that
r1 4712+ |s| > 0.

(i) The non-zero generators of the vector space Vi, r, s form a basis of Vi, ry s.
More precisely, the dimension and a basis of Vy, r, s are given by the following table:

Conditions on r1, ro and s dim V;., rp s Basis of V., 1,6
ri,T2,8 2> 1 3 ©1, 92,93
r1 =0, ro,s>1 2 V2,3
ro =0, ri,8>1 2 ®1,$3
rr=ryo=0,s>1 1 03
s=0, ri,m2 > 1 3 1,02, 95
ri=s=0,1r>1 2 P2, 5
ro=s5=0,1r >1 1 ©1
r,r2 > 1, s < -1 3 ©1, P2, P4
r1=0,r>1 s<-1 2 P2, P4
ro=0,1r>1 s<-1 2 ©1, P4
r=ry=0, s<-1 1 ©4

(i) When s # 0, or when ro = s =0, an element ¢ of Vy, r, s satisfying
(DY) (G, ¢) =0,
for 3 =1,2,3, vanishes identically.

Proof. — Let r1,72 > 0 and s be given integers, and let a1, as,as be given complex
numbers. We assume that a; = 0 whenever r; = 0, and that as = 0 whenever 1o = 0.
We consider the function ¢ on R3 defined by

»(0) = iexpi((2r1 + 2r2 + |s])01 + (272 + |s])02 + s03),
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for € R3, and the parallel 1-forms
0= (2(11 + 20,2 -+ a3)d91 + (2(12 -+ CL3)d92 + a3d93,
@’ = (20,1 + 20,2 + a3)d€1 + (2(12 -+ ag)d92 - a3d6’3

on R3. We remark that the function 9v/d6; is everywhere non-vanishing on R3;
moreover when s # 0, the functions 9¢/902 and 91/ 905 are everywhere non-vanishing
on R3. We first suppose that s > 1 and we consider the 1-form

Y= alfrlfl,rg,sdfl + a2f'r1,'r271,sdf2 + a3f~m,rz,sfldf~3

belonging to V., ,, s. If ¢ : R? — S5 3 is the mapping defined in §4, by the formulas
(4.9) and (5.12) we obtain the relation

o =90
among 1-forms on R®. According to formula (4.12), the relations
(DY) (G, ¢) =0,

with 7 = 1,2,3, imply that © = 0, and we infer that the coefficients a1, az, a3 all
vanish. Next, we suppose that s < —1 and we consider the 1-form

O = a1 fry 1.5 dft + Q2 fry ro 1,602 + Q3 fry ry.sp1d 4
belonging to V;, ,, s. By formulas (4.9) and (5.12), we have the relation
VTl =40
among 1-forms on R3. According to formula (4.12), the relations
(D'")(G,¢) =0,
with j = 1,2,3, imply that © = 0, and we infer that the coefficients a1, ao, a3 all

vanish. Finally, we suppose that s = 0, that r; + ro > 0 and we also assume that
a3 = 0 whenever 7y = 0. We consider the 1-form

¢ = a1fr,—1.rs00f1 + a2fry ra-10df2 + a3 fr, ry-1.1d 5
on X. By the formulas (4.9) and (5.12), we obtain the relation
(6.6) LI*CPN — w@/

among 1-forms on R3. Thus if the 1-form ¢ vanishes, we infer that the coefficients a1,
az, a3 all vanish. Since the function 9v/90; is everywhere non-vanishing, according
to formulas (4.12) and (6.6) the relation

(D'")(G1,G) =0

implies that 2a; + 2as + ag = 0. Thus if 7 = 0, we see that the coefficient a;
vanishes. The two assertions of the lemma are now direct consequences of the above
argument. O
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When 75 > 1, the function 91/90s is everywhere non-vanishing on R3, and so the
relations
(DISON)(CﬁCj) =0,
with j = 1,2, imply that a; = 0 and 2as + a3 = 0; then we see that ©' = 2a2df3.
Moreover, by (4.12) we have

8—w = Qiag(Tl + 1”2)’[!},

(DY) (G, G3) = az 26,

VH(D") (G, C3) = = Ziagrat).

az 8_02
Now using the formulas (4.9) and (5.12), we verify that

L,*dfn,m,o = 21!)((7‘1 + 1"2)d91 + Tzdez).

If D'¢" = cx df;l,wyo, with ¢ € C, then by formulas (4.9) and (4.14) we obtain the
relations
(DY) (G, Ga) = (000, 1" dfry s 0) = 20720,
(DY) (Ges G3) = (D/001, 0 d vy s 0) = 2(ry + 72).
From the preceding the equalities, we deduce that
. 2 1+ T2
iag = c——— = c——=.
rL+ 72 )

Hence when 7 > 0, we infer that ¢ = 0 and as = 0, and so we see that ¢”” = 0. On
the other hand, when r = 0, by (6.2) we know that

¢ =axf3'B, c=ias.

Thus we proved the following result:

LEMMA 6.5. — Let r1 > 0 and ro > 1 be given integers. Let ¢ be an element
of Vi re,0 satisfying
Dl@ =C* dfn,n,()»
with ¢ € C. Then:
(i) If r1 > 1, the element @ vanishes identically.
(ii) If r1 =0, there is an element a € C such that

©=afr7'p, Do =iaxdfs?.
We consider the matrix
0 0 -1
Ao=1(1 0 O
01 0
of O(3); we then consider the element ¢o = (Ao, Ao) of the subgroup S(O(3) x O(3))

of G = SO(6).
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The functions f]- = * @5 f;, with j = 1,2,3, and fl= o f1 on R? are given by
f1(8) = cos? 6y — cos? 6y, f1(8) = icosby - sin by,
©.7) fg(@) = cosz 0 - (511212 0, — s;n2 03) -.&-;:052 0, sin? 03 ;
= cos” 01 - sin“ O - sin” O3 + sin“ #; - cos” Oy - cos” O3,
fs(ﬁ) = cos By - sinfy - sinf3 — isinfy - cos by - cos b3,
for § € R3, and the function f; = 1*¢?% f} on R? satisfies

(6.8) fo=1fs

LEMMA 6.6. — Let r > 1 be a given integer. Then the element ¢ = f‘gﬁ of Vor41,0
satisfies
(D'9)(¢oxCs, PosC3) # 0.

Proof. — Using the formulas (6.7) and (6.8), we easily see that the equalities

% = 2sinf3 - cosfs - (cos2 01 — cos® 02),

005

(0/003,* ¢53) = 2isinby - cos Oy - sin s - cos Oy

hold on R3. According to formula (4.12), we have

7] . OFf
(D' d5) (G5 Ca) = 8_93@/863",*‘1)3@) = ;fla_gz

If = (6,69, 03) is a point of R? satisfying
cosf; # 0, sinf; # 0, | cos | # | cosbs],

(0/003,* ¢53).

for j = 1,2,3, from the above relations and (6.7) we infer that the expression
(D¢sp)(C3,¢3) does not vanish at the point +/(8) of X, and so we obtain the de-
sired result. O

LEMMA 6.7. — Let 1,72, s be integers satisfying
(6.9) r1,7m2 >0, r1 4712+ |s| >0, (r1,m2,8) # (0,1,0).
Let ¢ be an element of V., r, s satisfying
Dly =cx df,«l,,nz‘,s,

with ¢ € C. Then we have ¢ = 0.
Proof. — According to our hypotheses, by (4.13) we know that

(D )(6:Gs, 6:5) = O,
for all € G and j = 1,2,3. When s # 0, or when ro = s = 0, from Lemma 6.4,(ii)

we infer that ¢ vanishes. Next, when r1,72 > 1 and s = 0, Lemma 6.5,(i) tells us that
¢ vanishes. Finally, when 1 = s = 0 and r2 > 2, according to Lemma 6.5,(ii) we
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see that ¢ is a multiple of the 1-form f; 2~1 3. Lemma 6.6 then gives us the vanishing

of . O

Let 71,72 > 0 and s be given integers and consider the element v = %11“,3 of I'.
Let 7/ be an arbitrary element of T', and let u be a highest weight vector of the
isotypic component C57(SPT¢). Since u is a real-analytic section of SPT¢ (see §7,
Chapter II of [6]), the section fy, ., su of SPTF is non-zero. Since the function f,, ., s
is a highest weight vector of the irreducible G-module C3°(X), it follows that the
section fr, <t is a highest weight vector of the isotypic component O (SPTE),
where 7/ ="+ 7}, ., o

According to the preceding observation, we see that all the non-zero vectors of the
space Vi, r,, s are highest weight vectors of the G-module C3°(7¢). From Lemma 6.4
and Proposition 6.3, we deduce the following result:

LEMMA 6.8. — Letry,r2 > 0 and s be given integers and let v be the element %11@,5
of T'. Then the weight subspace Wy, of C°(T¢) is equal to Vi, r, 5.

By (4.9), (4.14) and (5.12), we see that the relations
' (Hess f3)(Gr, Go) = o (Hess f3)(Gr, G2) = —1,
(6.10) Sk f3)(Cry G) = 1 (Cs, dfs) = (0/003, 4 d fs) =i,
(5 f3)(C1y G2) = 1 (G3, dfs) = (9/063, " df3) = —i.
hold at the point 0 of R?. We consider the sections
hy = Hess fd + fgg, ho = Hess fg/, + fég

of T¢ and the elements y1 = 1, and 72 = 7§ _; of I'. By (6.10), we know that
the relations

R (G Go) = U (+id f3) (G, o) = 1,

P ha(Gr,G) =~ (id f3) (1. ) = 1,

hold at 0 € R3. In §5, we saw that the functions fg and f§ are highest weight vectors
of the irreducible G-modules C2°(X) and C59(X), respectively. Therefore, since the

differential operator Hess is homogeneous, the sections h; and hy are highest weight
vectors of the G-modules CS? (S2T¢) and CS2(S?Ty), respectively.

(6.11)

LEMMA 6.9. — (i) We have the relations
(6.12) Hess fy = —f3 + *idfs,  Hess fy = — f} — %idf},
(6.13) D' = xidfs.

(i) Fory =~ 1,0, we have the inclusion

(6.14) *dC°(X) € D'C™(T¢).
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Proof. — According to (5.6), we see that
hi(v®@w,v ®w) = ha(v@w,v@w) =0,

for all v € V and w € W. From the decomposition (3.4), we infer that h; and
hy are sections of the sub-bundle (A*V* @ A*W*)¢ of S2T¢. Since the mapping
x0T — /\QV* ® /\QW* is an isomorphism, there exist unique sections o and as
of T¢ such that
h1 = *aq, ho = xau;

it follows that a; and ag are highest weight vectors of the G-modules C;’f(TE)
and Csj(TE), respectively. By Lemma 6.8, there are constants a,b € C such that
o1 = adfs and ay = bdf}. Then according to (6.11), we see that a = 4 and b = —i,
and so we obtain the equalities (6.12). By (1.2), we have

D'3 = fiHess f3 — f3Hess f};
the relation (6.13) is now a direct consequence of (6.12) and (6.2). As f is a highest

weight vector of the irreducible G-module C$° (X ), with v = 73 1 ¢, the inclusion (6.14)
is a direct consequence of the identity (6.13). O

In order to prove Proposition 6.1, by formula (1.1) it suffices to show that
DI'C>®(Tg) N xdC™>(X) = xdB.

Since the differential operators D' and *d are homogeneous, according to Proposi-
tion 2.1 of [6] and Lemma 6.9,(ii) the preceding equality holds if and only if

(6.15) D'CR(Tg) N*dCF(X) = {0},

for all v € I', with v # 76,170. We now proceed to verify that (6.15) holds and, in the
process, complete the proof of Proposition 6.1.

If v € I is not of the form %11,1-2,57 where 71,79, s are integers satisfying 1,72 > 0
and 71 + 72 + [s| > 0, we know that dCS°(X) = {0}, and so the equality (6.15)
holds. Now let 71,72, s be given integers satisfying (6.9). We consider the element
vy = 7,1,1,,,2.5 of I'; and suppose that the G-module M equal to the right-hand side of
the equality (6.15) is non-zero. Then by Lemma 6.8, a highest weight vector h of M
belongs to D'V, ., ;. On the other hand, since the function f,., .ra,s 15 @ highest weight
vector of the irreducible G-module C3°(X), the symmetric 2-form h is a constant
multiple of the highest weight vector *dfrl,w,s of the irreducible G-module *dC5°(X).
Lemma 6.7 tells us that h vanishes, which leads us to a contradiction; therefore the
equality (6.15) holds, and so we have proved Proposition 6.1.

7. Forms of degree one

We pursue our study of the real Grassmannian X = 5’{53 and consider the objects
which we associated with X and the group G = SO(6) in §6. Here we present results
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on forms of degree one on X which are needed for the proof of our criterion for
exactness of 1-forms on Y given by Theorem 9.1.

Let p, g be given integers; we remark that ¢ is even and p + ¢/2 is even (resp. is
odd) if and only if 2p + ¢ = 0 mod 4 (resp. 2p + ¢ = 2 mod 4), and we also note
that ¢ is odd and p + (¢ + 1)/2 is even (resp. is odd) if and only if 2p + ¢ = 3 mod 4
(resp. 2p+ ¢ = 1 mod 4).

Let 1,72 > 0 and s be given integers. We now consider the element v = ’y}”w
of I'. We know that the inclusion (5.1), holds, with ¢ = (—1)*. Since the function
f}mz?s is a highest weight vector of the irreducible G-module C$°(X), according
to (6.1) we have the equalities

o0 ev 2 j—
(71) C2o(x) = {CZO(X)U(M ?f 2ri+s i 0 mod 4,
Cr(X) if 2r1 + s =2 mod 4.

According to (5.7), we see that a non-zero 1-form on X equal to one of the
forms ¢;, which we associated in §6 with the integers rq, 7, s, belongs to C*°(T{)™,
where e = (—1)*; according to (6.1), such a 1-form on X belongs to C*™ (Té)E (resp. to
C*(Tg)°4d) if and only if 2r1 + 3s = 0 mod 4 (resp. 2r1 + 35 = 2 mod 4). Thus we
have the inclusion

V7‘1,T2,S - CDO(T(C*)TJv
where € = (—1)*. If r; + 72 + |s| > 0, we know that the inclusion

‘/;‘1,7“2,8 - COO(T(E)Z

holds whenever 2r; 4+ 3s = 0 mod 4, and that the inclusion

thlﬂ“z,S - Cm(Té)Odd
holds whenever 2r; + 3s = 2 mod 4. Proposition 6.3 tells us that

O (1) = {0}

when v = 0. According to Lemma 6.9, we have the inclusion
(7.2) O (T3) € C=(T2)™,
with e = (=1)°. If r; + 72 + |s| > 0, we know that

C (T if 2r; +3s=0mod 4,
(73) o = CTUE

C(TE) if 27y + 3s = 2 mod 4.
We consider the element ¢¢ of G defined in §6 and verify that
o2, Z3) = 5 (Zy, Z3) = cos By - sin O,
o(Za, Z3) = —*p5(Za, Z3) = cos B - sin 03,
otz = idoy, Vi3 = iz = dba,

L*(z)éﬂzg = 71/*(]56’[923 = d€3

(7.4)

SOCIETE MATHEMATIQUE DE FRANCE 2007



48 J. GASQUI & H. GOLDSCHMIDT

Since the 1-form ¢*(&) is equal to J15, according to (4.11) we see that
(7.5) g (&) = idfy.

We consider the 1-forms ¢+, =, ¢+ and ¥~ on X which are defined in §5. We
shall also consider the 1-form w = fidf] — fidf1, which is the image of f1 A f] under
the mapping x1 : A*H — C(T%)".

LEMMA 7.1. — The sections w, ©*, ¢, ¥t and ¢~ of T¢: are non-zero.
Proof. — Thus, by (4.11), (6.7) and (7.4) we see that the equalities
(/001 * piw) = i(2 cos? 6 - cos? Oy — cos® 0 — cos? 6)
= 2i(cos® 6, - sin? 0y + sin? 0; - cos> 02),
(0/005," $5p™) = (0/005,0" $5p7) = — o,
(0/003, 650 *) = —(0/003, 954 7) = f

hold on R?; since the functions fl and fg are given by (6.7), we see that the lemma

(7.6)

is an immediate consequence of the preceding formulas. O

From Lemma 7.1 and comments made in §5, it follows that w is a highest weight
vector of the G-module C’%}D O(T(é‘ )V, Now let r1,72 > 0 and s be given integers and

consider the element v =~2 ., . of I'. We consider the sections

96 = friras9"(€0), 07 = fri-1,m,sW
of T¢. According to the remark preceding Lemma 6.9, when r; > 0 (resp. when r; > 1)
we know that ¢g (resp. ¢7) is a highest weight vector of the G-module C$°(T¢). Since
¢°(&) and w are elements of C(T¢)®, if ¢ is a section of T¢t equal to @g or 7,
according to (5.7) we see that
(7.7) e =(-1)¢;

moreover, by (6.1) we also have the relations

o — (=1)™i%pg when s > 0,

- s (—1)retlslilslpg when s < 0,
7.8

I (_1)7-1711'6'4;9 when s > 0,

o (—=1)71Hlsl=14lslpg  when s < 0.

If 11 > 1, from these relations we deduce the linear independence of the 1-forms
s and @g.
LEMMA 7.2. — Letri,r9 > 0 and s be given integers and let v be the element %21,1-2,5
of T.
() If 11 = 0, the section fo.r, s9°(€0) is a highest weight vector of the irreducible
G-module C°(T¢).
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(ii) If 11 > 1, the section fhym,sgb(fo) and fn,ln?sw form a basis of the
space W,.

(iii) We have inclusion

Cr(Te) C C=(Te)™,
with e = (—1)°.

(iv) Suppose that r1 = 0 and that s is even. Then the relation (7.3) holds, with
Y= ’Yg,m?s'

(v) Suppose that r1 > 1 and that s is even. Then the G-modules C5°(T¢)® and
C°(Tg)° are irreducible.  When 2r1 4+ s = Omod 4 (resp. 2r1 + s = 2mod 4),
the section fr, ry.s9°(€0) (1€8p. fri—1.r5.5w) is a highest weight vector of the G-module
O (TE)™.

Proof. — From the observations preceding the lemma and from Proposition 6.3, we
deduce assertions (i) and (ii). Assertion (iii) is a direct consequence of (i) and (ii) and
the relation (7.7). Assertions (iv)—(v) follow directly from the preceding assertions
and the relations (7.8). O

According to Lemma 7.1 and the discussion which appears at the end of §5,
we see that ¢t and ¢~ are highest weight vectors of the G-modules C%]?O 1(Té)ev
and ng (T¢)e, respectively. For p > 0, we consider the space U, = V\AY where

0,0,—1
v = 78’7]))0; by Proposition 6.3, we know that this space is two-dimensional. By the
remark preceding Lemma 6.9, the sections u; = féap* and ug = f3<p’ of T¢ are
elements of ¢;. From (5.7) and (6.1), we obtain the relations
(7.9) MU = —uj, UHuy = —iug, Ut us = jug,
for j = 1,2; therefore the sections u; and ug are linearly independent and so form a
basis of the space U;. The endomorphism of C*°(T¢), which sends v into fau, induces
an isomorphism Uy — U;. By (5.7) and (6.1), the latter mapping commutes with
the automorphisms 7% and ¥* of the spaces U, with p = 0,1, induced by 7 and W¥.
By (7.9), we see that 7*u = —u, for all u € Uy, and so the automorphism ¥U* of Uy
satisfies U*2 = —id. Hence by (7.9) we may choose non-zero elements ) and ¢j of Uy
satisfying U*p)p = —ig) and $*¢f = ipj. Therefore there exist non-zero constants
¢, " € C such that foplh = c'uy and fop] = c’uy. Then the sections pf = (1/¢') - ¢
and ¢y = (1/") - ¢y of T¢ form a basis of Uy and satisfy the relations given by the
following lemmas:

LEMMA 7.3. — There ezist sections ¢f and ¢y of T¢: such that
ot=fel, e =faeg
Clearly, by (6.1) and (7.9) the vectors g and ¢y of C'(;((B):,o,n (T¢) belong to the space
C>(T¢)™~1 and satisfy the relations
(7.10) Vol =—igg, Uy =i
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By (7.6) and (6.2), we have

(7.11) (0/002, " d5005) = —F3, (0/002,4"$505) = —Fs.
LEMMA 7.4. — Letry,r2 > 0 and s be given integers and let v be the elementv3 .,
of T.

(i) The section fh,w,sgog and fh,m,s@g form a basis of the vector space W, .
(ii) We have inclusion
C(TE) € ORI,
with e = (—1)5+1.
(iif) Suppose that s is odd. The G-modules C3°(T¢)*" and C’;O(TC*)OCld are irre-
ducible.~ When 2r1 + s = 1 mod 4 (resp. 2r1 + s = 3mod 4), the section f,,vl.,.z,s<p0+
(resp. fri,r,s0 ) is a highest weight vector of the G-module CS°(T¢)Y.

Proof. — From the observations preceding the lemma and from Proposition 6.3, we
deduce assertion (i). Assertion (ii) is a direct consequence of (i) and the relations (5.7).
Assertion (iii) follows directly from the preceding assertions and the relations (6.1)
and (7.10). O

According to Lemma 7.1 and the discussion which appears at the end of §5,
we see that x2(M™) and x2(M ™) are irreducible G-submodules of (Gt (Tg)odd
0,0,1
and C’f;f{ (TC*)Odd, respectively, and that 1" and ¢~ are highest weight vectors of
0,0,—1
these modules. According to Proposition 6.3, the G-module C's‘j (T¢) is irreducible,
0,0

,s

for s € Z, with |s| > 1. Therefore, we have the equalities
€35, (T0) = 3, (T = a0,

51 i1

O3, (I =C5 (1) = xao(M7).

-1

Let 71,72 > 0 and s be given integers. We now consider the sections

©8 = frimst™, ©9 = fri s

of T, According to the remark preceding Lemma 6.9, we see that ¢g is a high-
est weight vector of the G-module C7% (T%), where 7 is the element of I' equal
t0 Y7,y s11 When s >0, and to 47, ., 1 .41 When s < —1; on the other hand, g is a
highest weight vector of the G-module C2° (T¢), where v~ is the element of T' equal
to 'Y;Ll,rzﬂ,s—l when s > 1, and to 'y;‘hrz’s,l when s < 0. Since ¥ and ¢~ are
elements of C*°(T%)°d4, if ¢ is a section of T equal to s or to ¢y, according to (5.7)
we see that

(7.12) e = (-1)¢;

moreover, by (6.1) we also have the relation

(7.13) grp= | Ve when s >0,
(—1)ritlsl+ilsly  when s < 0.
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If p,q > 0 are given integers, we easily deduce from (7.13) that the 1-forms fh)p,s,ler
and fr, 4.s+1¢ 7 are linearly independent.

LEMMA 7.5. — Let 11,72 > 0 and s be given integers and let v be the element 'yfl,ms
of .
(i) A basis of the space Wy is given by the following table:
Conditions on 7o and s Basis of W,
re>1, s>1 Frimos—10T, frira—t,s010”
rg>1, =0 Frimo1 10T, frymo1007
rg>1, s < —1 frl,rzfl,sflw+7 frl,r2.,s+1’l/f
rg=0,s>1 fri0,s-10"
rg =0, s <—1 fr1,015+1w7

(if) We have inclusion
CP(TE) € C=(Tg)™,
with e = (—1)5+1,
(iii) Suppose that ro =0 and s # 0. Then the G-module C°(T¢) is irreducible. If
s is odd and equal to 21+ 1, with | € Z, the equality
Cr(Te) = O (1)
holds when s > 1 and r1 + 1 is odd, or when s < —1 and r1 + 1 is even.
(iv) Suppose that ro > 1 and that s is odd. Then the G-modules C°(T¢)®Y and
C2(Tg)° are irreducible.
v) Suppose that s is odd. Then if the G-module C°(TE)®Y is non-zero, a highest
PP oo (T g
weight vector of this G-module is given by the following table:

Conditions on 7, 79 and s Highest weight vector
s>1and 2r +s=3mod4 ,fpirlﬁys,l'tlﬁ
rg>1, s>1and 2r; +s=1mod 4 'fT177<27115+1'¢}7
ro > 1,8 < —1and 2r; + s =3 mod 4 ,fr17r2—1,571w+
s< —1land 2r; +s=1mod4 'fr1>T275+]'(/1_
Proof. — From the observations preceding the lemma and from Proposition 6.3, we
deduce assertion (i). Assertion (ii) is a direct consequence of (i) and the relation (7.12).
Assertions (iii)—(iv) follow directly from (i), (ii) and the relations (7.13). O
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8. A family of polynomials

In this section, we introduce a family of polynomials arising from trigonometric
integrals. These integrals appear in the next section when we integrate various ob-
jects over maximal flat tori of é%?d The principal result of this section is a new
combinatorial identity, formula (8.4), which is proved by means of the WZ algorithm
(see (8]).

If a € Q and r > 0 is an integer, we consider the rising factorial (a),, which is the
element of Q defined inductively by (a)o = 1, (a); = a, and (a)r41 = (a +7) - (a),
for r > 1. If m,r are integers, we define the binomial coefficient (T) to be equal to
zero whenever r > m, or whenever one of the integers m, r is negative.

Let m,q > 0 be given integers. We consider the polynomials Py, 4, 4 and qu
of degree ¢ belonging to Q[y| determined by

q q q
Pm,q(y) = ZaryTa Rm,q(y) = ZbryTv Rm,q(y) = qu—r?f’
r=0 r=0 r=0
where ag = bp = 1 and

_(q H 2m+2j—1 b _ 2m42¢—2r+1
=\ Homs2g—2j+71 T T dmt 241

for 1 < r < ¢. In fact, we have
o efd) _(m+3),
ar = (—1) I ,

for 0 < r < q. We easily verify that

(8.1) 2Rq(Y) = Pmg+1(y) — (¥ — 1) Pt 1,4(y)-
Also we see that
(82) Rm?q(t) = thm.q(l/t)v

for all t € R, with ¢t # 0. For 0 < r < ¢, we consider the polynomial p, € Z[y] of
degree 2¢ defined by

pr(y) = (i) (y+1)% - (y —1)2@")

and the polynomial @y, q € Z[y] of degree 2¢ defined by

Qm.q(y) = Xq: <27Tjrq>pr(y)-

r=0
Clearly, we have pg = 1 and p,-(t) > 0 for all ¢ € R; it follows that
(8.3) Qmq(t) >0,

MEMOIRES DE LA SMF 108



8. A FAMILY OF POLYNOMIALS 53

for all ¢ € R. The following lemma tells us that all the coefficients of the polynomial
Qm,q are positive, and hence also gives us the preceding inequality; its proof is due
to H. Wilf (see [8]).

LEMMA 8.1. — Let m,q > 0 be given integers. Then we have the equality
2m + 2q
(5. Q) = (21020 P4

among elements of Z[y].

Proof. We denote by N the set of natural integers. We consider the indeterminate
x = y — 1 and consider both sides of the equality (8.4) as polynomials in z. Upon
computing the coefficients of ™ of these two polynomials, we see that it suffices to
show that the identity

o0 S () ) (O
2 () )

holds for all n € N. Then standard techniques of WZ theory and the Zeilberger
algorithm, as described in the book [20] and implemented by the EKHAD package
for Maple, can be used to show that the identity (8.5) is indeed true. In fact, the
functions f; : N — Q and f> : N — Q, whose values at n € N are equal to the
left-hand and right-hand sides of (8.5), respectively, both satisfy the same recurrence
of order 2; namely, if we set

ap(n) = (n—2¢)(n+2m + 1), az(n) =2(n+2)(n+ 2m + 2),
a1(n) =302 + T+ 4(m(n+ 1) — g(m +n) + 1) — 6¢,
for n € N, we find that
ao(n) fr(n) + a1 (n) fu(n + 1) + as(n) fr(n +2) = 0,

for all n € N and k = 1,2. To complete the proof, we must show that the equality
fi(n) = f2(n) holds when n = 0 and n = 1. If each of these two cases, there is only
one non-zero summand in the sum on the right-hand side of (8.5), namely the one
corresponding to the summation index r = ¢, and so we see that

RO = (50, (09,

m m

The identity fi1(n) = f2(n), with n = 0 or n = 1, is now obtained by applying WZ
theory to the sum on the left-hand side of (8.5); in fact, in both cases Zeilberger’s
algorithm returns a recurrence of order 1 in the index m. O
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We continue to fix integers m,q > 0. From Lemma 8.1 and the identity (8.1), we
deduce that

86)  Quari) — (77— DQusray) = 2(2m 242

Rono(42).
m+q+1 ) )

For s > 0, the polynomial
2s
H,(y) =2 k
=25 (75 )
k>0

of Z[y] has degree s — 1 and satisfies the relation

(y+1)% = (y—1)* = yH(y),

belongs to Z[y]; clearly, Hy is equal to the zero polynomial. For 0 < r < ¢, we consider
the integer

o (2 gL (2maq ) _ (2mtq 1) (2mtq+]

T \m+r+1 m+r T \m4q-r m+r )
We verify that the integer ¢, is positive when 2r < ¢, and that ¢, = 0 when 2r = q.
We set ¢’ = [q/2]; we easily see that the elements K, 4 and L, q of Z[y], given by

q q
q
Kmqg=Y_ &pr.  Lmgw)=> (y—1"c (7.>Hq—2r(3/)7
r=0

r=0
are related by
(8.7) Kimq(y) = _yLm,q(yQ)-

We notice that Ky, 0 = Ly,0 = 0. Since the coefficients of the polynomials H, and
the coeflicients ¢, are positive, the polynomial L,, , is of degree ¢ — 1; moreover,
when ¢ > 1, it satisfies the inequality

(8.8) Limqg(t) >0,

for all t € R.
We now consider the complex-valued functions u and v on R? defined by

u(z,t) = tsinz — icosz, v(z,t) =tcosz +isinz,

with z,t € R; the functions v and v are related by

v(z,t) = %(w,t) =u(z +7/2,t),

for z,t € R; also the formula

v(x,t) = itu(z,1/t)
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holds for z,t € R, with ¢t # 0. Let r > 0 be a given integer; we consider the functions
FJ, on R, with 0 < j <5, defined by

1 2
rlq(t) =5 / (ut*"u?)(x,t) sin x dz,
: T Jo
1 21
qu(t) = 2—/ (ut*" ) (x,t) cos x de,
: T Jo
(8.9) L e
qu(t) =5 / (utt"a4) (2, t) sin 2 - cos x d,
s 7 Jo

for t € R. Clearly, these functions F,Z . are polynomials. We easily see that the
functions F(i o, and E‘.fo vanish identically. We shall require the following identities

(8.10) Fly () =tF} (t) —iF?2, (1),
(811) F79,q+1(t) = tF7‘1+1,q(t) +iFrQ+1,q(t)7
which hold for all ¢ € R; it follows that

(8.12) QiFf-%—l,q = F7?q+1 - FB—%—Q,q'

By making the change of variables x — z + 7/2 in the integral defining the func-

tion F,iq, we see that

1 27

Frl,q(x7t) (v?*759)(z,t) cos z dx

2 Jo

1 27
= —i"t2q+7'/ (uttTa) (2, 1/t) cos x dr,
2m 0

for t € R, with ¢ # 0. Therefore we have the equality
(8.13) E} (z,t) =" F? (x,1/1),

for t € R, with ¢t # 0. By an integration by parts, we obtain

1 27 QurtL
4 - —\a+1
27TFT,q+1(t) r+1 /(] ((UU) o ) (I, t) dx

qg+1
r+1

=2

27
(t? 1) / (w1t a%)(z, t) sinx - cos x dx
0
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for all t € R; therefore we have
qg+1
(8-14) Fr4,q+1(t) = _Qm(tz - 1)F3+1,q(t)v

for all ¢ € R. The equalities

2T
/ (L gat o) (x, t) da
0

W((uﬁ)q ™ () (x, t) da

Il
S—

27
/0 ((u@)? - u™ - v)(x,t)((t* — 1) sinz - cosx + it) dz

=27 ((* = D)y o +itFL ),

with ¢ € R, follow directly from the definitions of the functions which appear there.
By an integration by parts, we obtain

1 2L O(um)rt!
27‘(‘(2‘/2 — 1)F§+11q(t) = m/o <U +11)T> (’E,t) dx

™
= 7F7?+2«,/I+1 (f)

qg+1
r+1 /27r g+r+1 | g+l 2
- U ~alTh v (x,t) do
ZrE 0
for all t € R. From the preceding relations, we immediately deduce that
(8.15) (2q +7+3)(1? = 1) F2 (1) = Flyo g (1) = i(r + DEFL (8),
for all t € R.

In the next section, we shall need the following results in order to prove the posi-
tivity of certain integrals.

PROPOSITION 8.2. — Let m,q > 0 be given integers. Then there exist polynomials
{Q{;Lq}ogg of degree 2q and a polynomial in of degree 2q + 2 belonging to Z[y]
satisfying the following properties:

(i) for 0 < j <5, we have
(8.16) 7 () >0,

forallt € R;
(i) the equalities

1

(817) FZO"L,q(t) = 4’"—+q(t2 - 1)771 : (7)n,q(t)v
1
(8.18) Foni1,4(t) = Wt(tQ D)™ Qh, (1),
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i

(8.19) Fiq(t) = *W(tz -1 Q2 (1),
(8.20) Fvaglt) = ~ st~ D™ Q. (0)
(8:21) Fhingns () = ozt = D™ Q4 (0),
(32 Fhparalt) = s (= 1™ Qg0

hold for all t € R.

4
m,q’

Proof. — The polynomial ng ¢ = Qm,q and the polynomial @ determined by

;lmq (y) = L’m,q+1 (y2)7

both belong to Z[y] and are of degree 2¢. If p, is the polynomial defined above,
with 0 < r < ¢, we define elements Q2, _, and Q?mq of Z[y] by

m,q’

@t = Xo{ (1 e - (1 -0

q
2m+q+1 5 2m+q+1 9
— -1 1)% .
Sorw{ (2 Y-t (2w
If r > 0 is a given integer, we view the integrands of the right-hand sides of the equal-
ities (8.9) as polynomials in e and e~%; for ¢ € R, the value of the integral FJ (t)
is equal to the constant term of the polynomial obtained from the corresponding in-

tegrand. In fact, we easily see that the equalities (8.17), (8.19) and (8.22) hold, that
there exist a polynomial Q3, = € Z[y] such that (8.20) holds, and that the equality

m,q
1: 7
F;m-%—l.q(t) = 7W(t2 - 1) L Km,q(t),
holds for ¢ € R. From the preceding equality and (8.7), we obtain the relation (8.21).

The relation
m+1

3 _ 4
(823) meq - q+1 Qm,(p

is an immediate consequence of (8.21) and (8.14). If we set Q3 _; = 0, the rela-
tion (8.15), together with the equalities (8.17), (8.21) and (8.22), implies that

(8.24) (2m+2¢+3)Q0, 4 (¥) = Quyrg1 () +42m + 1)y2Q;, 41 (v).

According to the relations (8.12), (8.17) and (8.19), we see that

2Q7%, (1) = Q% 41 (y) — (W = 1)QY, 41 (1)

SOCIETE MATHEMATIQUE DE FRANCE 2007



58 J. GASQUI & H. GOLDSCHMIDT

Hence by (8.6), the polynomial Q7 , of Z[y] satisfies

2m +2q+2
8.25 2 = R q(y?
(5.29) 2= (2

and has degree 2¢g. The polynomial Q}n,q of degree 2¢ determined by

2m + 2q + 2\
Q) = (T2 2 Rt

belongs to Z[y] and, according to (8.2), satisfies the relation

mag(t) = £29Q7, ,(1/1),
for all ¢ € R, with ¢ # 0; from the equalities (8.19) and (8.13), we now obtain the
relation (8.18). According to (8.3), (8.8) and (8.23), we see that the inequality (8.16)
holds for j = 0, 3,4; the relation (8.24) now implies that (8.16) also holds for j = 5.
By (8.25) and the definition of the polynomials R, , and Ry, ., we know that all
the coefficients of the polynomials Q1 ~and Q2 _ are positive, and thus the inequal-

m,q myq

ity (8.16) is true for j = 1,2. O

9. Exactness of the forms of degree one
This section is devoted to the proof of the following theorem:

THEOREM 9.1. — A 1-form on the symmetric space Y = G§J satisfies the Guillemin
condition if and only if it is exact.

From Theorem 9.1 and the remark following Lemma 4.1, we infer that a 1-form
0 on the symmetric space Y = G‘zﬁg is exact if and only if the symmetric 2-form x6
on Y satisfies the Guillemin condition. According to Proposition 7.21 of [6], from
Theorem 9.1 we immediately deduce the following generalization:

THEOREM 9.2. — A 1-form on the symmetric space G%m with n > 3, satisfies the
Guillemin condition if and only if it is exact.

We again consider the Grassmannian X = 5“3% and the objects associated above
with this space. Lemmas 6.4,(i), 6.9, 7.2, 7.4 and 7.5, and the relations (7.2) and (7.3)
give us a complete description of the highest weight vectors of the non-zero isotypic
components C3° (T¢)®Y, with v € I'. To prove Theorem 9.2, we need to verify that
the equality

(9.1) NicNCP(TE)® = dCP(X)*
holds for all v € T'. If v is an element of I', according to (5.1) we note that the
equality (9.1) is true if and only if it holds with ~ replaced by 7; we therefore need only

consider the equalities (9.1), with v = ~,, », s and 71,72, s > 0. From Proposition 2.33
of [6], we then deduce the following result:
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PROPOSITION 9.3. — The assertion of Theorem 9.1 is equivalent to the fact that the
following seven assertions all hold on the Grassmannian X = 6’]1;3, with n > 3, for
all integers r1,r9 > 0 and s:

(i) Suppose that s > 2 and that 2r1 + s = 0 mod 4. Let a1, az,as be elements
of C; if the 1-form

alfﬁ —1,'r'2¢sd.f1 + a?f’m ,T‘2—1,sdf2 + a3f7'1 ,r‘g,s—ldffi

satisfies the Guillemin condition, then it is exact.
(ii) Suppose that the integer r1 is even and that ro > 1. Let ay,az, as be elements
of C; if the 1-form

alf1‘1—1,7‘2,0df1 + (12f7'1,7‘2—170df2 + a3f7'1,1'2—1,1dfé

satisfies the Guillemin condition, then it is exact.

(i) Suppose that 2r1 + s = 0mod 4. Then the 1-form fy, r..g"(€0) does not
satisfy the Guillemin condition.

(iv) Suppose that 2ry + s = 0 mod 4. Then the 1-form fy, 1, sw does not satisfy
the Guillemin condition.

(v) Suppose that 2r1 + s =1 mod 4. Then the 1-form frl,r2,5990+ does not satisfy
the Guillemin condition.

(vi) Suppose that 2r; + s = 3 mod 4. Then the 1-form frmwgpg does not satisfy
the Guillemin condition.

(vii) Suppose that 2r1 + s = 2 mod 4. Then the 1-forms fr, a5 and frm-g,sT/J_
do not satisfy the Guillemin condition.

We consider the maximal flat totally geodesic torus Z of X = @Ifg and the parallel
vector fields (i, (2, and (3 on Z defined in §4. Let r1,72 > 0 and s be given integers.
We consider the function

Friras = 00 fri s = L/*¢8fr1,r2>s

on R3; we have frl,'r'z«,s = A’lr1 : AZTQ f’.;? for s > 0, and f1‘1«,1‘2«,s = A{ll ) A2T2 ) (f?/))s for s < 0.
We also define a function ®,, ,, s on R? by

27

1 ~
Q'rl,r275(91792) = % f7‘1,7*2,s(91>92793) d()'g,
0

for 61,02 € R; by (4.6), we may consider the integral

Irirays = / ¢Sfm,r2,s dz = 271'/ / Dy ry,s(01,602) by dOs.
z 0 Jo
By (6.7) and (6.8), we see that

(9:2) Pryras = Prora,—s, Irirays = Jrira,—s-
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According to (7.5), (7.6), (7.11) and (6.2), we have the equalities

() = { Ty vhen s 2,
(9 3) R ¢E‘)f'r1,'r2,sfl When S S 07
. . B ¢3f;1 ro,s+1 when s > 0,
—(C2, B (fri,ms0 ) = P
0 0 O frirat1,5+1  when s <0,
and
(9.4) <<1’¢6(fh,rz,sgb(§0))> = i¢6fhmz,87

(G35 D5 (Frara,s®™)) = =G 05 (Friras®7)) = B3 Frit1mans
on Z; moreover, the relation
(95)  (Cty 05 (Fraurasw)) (£ (8)) = 2i(cos® By - sin®  + sin? Oy - cos® 03) fr, r,5(6)
holds for all § € R3.
We consider the real-valued functions A and B on R? defined by
A(01,602) = cos by - sin by, B(61,02) = sinb, - cosbs,
for 61,02 € R. Let m,q > 0 be given integegs; if P is a polynomial of R[y| of degree g,
there exists a unique real-valued function P on R? which is given by the expression
P =B (Po(A/B))
at all points 0 of R? for which B(6) is non-zero. We now consider the polynomials

{Qﬁnﬁq}osjggj given by Proposition 8.2. Since the polynomial Q7 _ is of degree 2q,

m.q

for 0 < j < 4, and the polynomial Q°, _ is of degree 2q + 2, the real-valued functions

myq
{Q7, ;Yo<j<s on R? satisfy the relations

Ag =B (@ g0 (4/B)), Dong = B2 - (@040 (A/B))
at all points 6 of R? for which B(f) is non-zero, with 0 < j < 4. According to
Proposition 8.2, these functions are non-zero and satisfy the inequalities
(9:6) Vg >0,
for 0 < j < 5.
By (6.7), we may write

J1(8) = 1(61,05) = B*(61,62) — A2 (61, 62),

f2(0) = A%(01,02) - sin® 03 + B*(61,02) - cos® 03,

f3(8) = A(64,0,) - sin s — iB(6y,0,) - cos s,
for 6 = (61,09,03) € R3. If ¢,r > 0 are given integers, at a point 6 of R2, for which
B(6) is non-zero, we verify that

Do.q.r(0) = B (0) - F, (1),
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where t = A(0)/B(0). Let p,q,m > 0 be given integers; then by Proposition 8.2, we
obtain the relation
(=r

Bpgom = W(AQ — Byt an,q-

Thus the function @, 4 2m is non-zero and real-valued; moreover if the integer m + p
is even, by (9.6) this function satisfies the inequality
(97) (71)17(1)[)74,27” > 0.

From these remarks and the relations (9.2), we obtain the following:

LEMMA 9.4. — Ifp,q > 0 and m are given integers, the function @, 4 2m s non-zero
and real-valued; moreover, if m + p is an even integer, the inequality (9.7) holds.

If ® is a non-zero real-analytic real-valued function on R? satisfying ® > 0, from
Lemma 9.4 we infer that

T pm 2T
(*1)1’/0/0/0 D(61,602) fp,g,2m (01,02, 03) dfs dby dbz > 0,

for all integers p,q > 0 and m such that m + p is even. In particular, we obtain the

following;:

LEMMA 9.5. — For all integers p,q > 0 and m such that m + p is even, we have
(—=1)PJp.q.2m > 0.

If r1,79 > 0 and s are given integers, Lemma 9.5 implies that the function frl,rg,s
on X does not satisfy the Guillemin condition whenever 2ry + s = 0 mod 4. Since
Jrira.s 18 & non-zero element of C2°(X), where 7 is the element 7}1”?5 of I, from
the relations (5.9) and (7.1) and the preceding observation we obtain the injectivity
of the maximal flat Radon transform for functions on X, which is also given by
Proposition 7.17 of [6].

LEMMA 9.6. — Let r1,72 > 0 and s be given integers. Assertions (iil)—(vii) of Propo-
sition 9.3 hold.
Proof. — From the relations (9.3) and (9.4) and Lemma 9.5, we deduce that the as-
sertions (iii), (v), (vi) and (vii) of Proposition 9.3 hold. On the other hand, according
to the remark following Lemma 9.4, with

D(01,02) = cos? 0; - sin? 0 + sin? 0, - cos? Oy,

from relation (9.5) we obtain assertion (iv) of Proposition 9.3. O

We consider the functions vy, ve, v3 on R3 defined by
v1 = cos® 6 - sin? 0y - cos® O3 + sin? By - cos® 05 - sin? O3,
V9 = —2sinf; - cos by - sin by - cos by,

v3 = cosfy - sinfy - cosf3 + isin by - cos by - sin O3,
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for 0 = (61, 02,03) € R?; we write wy = fz and w3 = —’LAfA3‘ We then define functions
on ko and k3 on R* by

]Cg =1 (9)A2 + UZ(Q)A + wg(B), kg = ’U3(9))\ + ’UJ3(€),

for # € R® and X € R. If ¢,7 > 0 are given integers, we consider the function

0k
+1 3
Urq = k3 kéaf%
on R*; then the function

Oy

1 _ 9V¥rg
Vra = oA Ix=o

on R? is given by

8103 1 0

Vg =g+ 1)’02’w3’w§6—93 +uwg’ 8—93(’U3w§)~

We then see that function ¥, , on R? defined by

27
2(¢+1) Jo

for (01,02) € R?, satisfies the relation

Wy q(01,02) = Vr.q(01,02,03) dbs,

12 ow ow
U, g = 5/(; wiwh (UZ(‘)TS — v307i> dfs.

At a point 0 of R2, for which B() is non-zero, by means of the preceding formula we
easily verify that
1 ) 2 .
(98) 5= Wrg(0) = (=) BXH O { f1(0) - F7y(t) + i(AB)(0) - Fry(t)}
27 ’ ’
where t = A(6)/B(9).
Let m,q > 0 be given integers; we write an,_l = 0. By Proposition 8.2 and (9.6),
the real-valued function
, 27 ( =

_ 5 2 p2 A
maq T Amtqt2 +4A%- B )

m,q m,q—1

on R? is non-zero and satisfies ¥,

equality (9.8) we obtain the relation

> 0. According to Proposition 8.2, from the
Uomit,q = —i(B* =A%)

Thus the function iWgy,41,, is non-zero and real-valued; moreover, if p > 0 is an
integer such that m + p is odd, we see that

(9-9) i]?fq’2m+1,q = (32 - Az)m+p+l ' \Din,q > 0.
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For a € R, we consider the element

0 0 1
-1 0 0
0 cosa O
¢l,o¢ - 0 0 0
0 sina 0
0 0 0

o = O o O

0

_ O O o O O

—sina

cos o
0

of G = SO(6) and the automorphism 71 of R3 defined by
T2(01,02,03) = (01,02,05 +7/2),

for (61, 02,03) € R3. Then it is easily verified that
Coafi=hi

on R? and that

(" @7 o f5)(110) = k;(0, cos @),
for j = 2,3 and all # € R®. By (4.10) and the preceding equalities, if p, g,7 > 0 are

given integers, we have

(G, 97 .adf1)('(9)) = 0,
(s 07 (TS F1df2))( (110)) = FL(0) - v, (6, cos @),
for # € R? and « € R. From the second equality of (9.10), we obtain

) -
5 GG I ) (Wm0,

(9.10)

= 7(.)‘:{) : w:“,q

for § € R3. If m > 0 is a given integer, by (4.6) it follows that

9 o _
oo | GubiaBFT B a ) az,

:—2((1+1)// f{)(€1702)\1j2m+1,q(91792)d91d92~
0 Jo

63

Hence according to (9.9), if m, p, ¢ > 0 are given integers such that m+p is odd, there

exists a1 € R such that

/Z (Cor 6 o (FEFEF 210 )) dZ £ 0,

From the first equality of (9.10) and the preceding inequality, by (4.6) we deduce the

following result:

LEMMA 9.7. — Let 1y > 0, ro > 1 and s > 2 be given integers; assume that

2ry + s =0mod 4. Let ay,a3 € C. If the 1-form

ay fm 71.r2,sdf1 + anrl ,7'2,5—1df3

on X satisfies the Guillemin condition, then we have az = 0.
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We consider the function h; on R* defined by
R1(0, )) = (cos® O3 — sin? 62) A% — f1(6),

for 0 = (01,62,05) € R? and \ € R, and the functions h, kY, hs and hy on R? defined
by

h4(0) = sin Oy - cos By - sin B3 - cos O3,
hY(0) = sinf; - cos 6 - sin O - cos O,
hs(0) = i(cosb - cos B3 + sin b - sin 93)6_192,
ha(0) = sinfy - sin by - sin O3 + i cos Oy - cos O - cos b,
for § = (61, 02,03) € R?; we write hy = —2i(h} + hY). We verify that the relations
df: of: ) .
(9.11) hg = a—gz + ha, 8—52(9) = —2sinfs - cos O3 - f1(0)
hold for @ = (61,62,03) € R3. For a € R, we consider the element
0 0 0 0 1 0
0 cosa —sina 0 0 0
b |10 0 0 0 0
>~ 1o 0 0 sina 0 cosa
0 0 0 cosa 0 —sina
0 sina cosa 0 0 0

of G = SO(6) and the involution 75 of R? defined by
7a2(61,62,03) = (63,62, 01),
for (61, 02,03) € R3. Then it is easily verified that
(9.12) (t"953,0.f1)(120) = h1(0, cos a),
for all € R3, and that
UG s fo=—fs TG sf3 = fa

(9.13) 5
5 1 i)

a=1 = —hj

on R3, for j = 2,3.
Let p,q,r > 0 be given integers. If f is a complex-valued function on X, by (4.10)
and (9.12) we have the equality

(9.14) 560,630 (AP (RO,

= (CP2singy sty F{0) - 365,50 (),
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for all @ = (61,05, 03) € R3; below we shall use this formula with f = fZfr. According
to (9.13), we see that

915) - (63U ), = ()7 (hsfaf5 ™ — ahafd ™ F5)0),

for all § € R®. Hence if h is the function on R? defined by
h(0) = 2sin6; - cos by - fF(0) - (rhsfifs' —qhafi™" f5)(0),
for all § = (61, 02,05) € R3, according to (9.14), (9.15) and (4.6) we have
9 * £D £q frogf
(9~16) a9 <C3,¢21a(f1f2f3df1)>dZ
da Jz ‘0‘
T T 2T
:(fl)erq/ // h(01,02,03) dds db, dbs.
o Jo Jo
We consider the functions Ji, Ji, J7, J5 and JY on R? defined by
2 A
Tor,6) = v [ (haf3d5)(6) doa
0
2m o
J{(91,92):r/ (hafgf571)(8) dbs,
0
2m . R
TV (61, 09) :q/ sinfs - cos O - (f1fd " f3)(6) dbs,
Jo
2m o1 A
Tyor,0) =a [ (6557 55)(6) dba
0
2 o1 A
J3(01,02) ZQ/ (hsf3~" f3)(0) dbs,
0

for (01,62) € R?, where 6 = (61, 62,63). From the relations (9.11), we easily deduce
that

(9.17) Jy=J, +2J).
Clearly, we have
2m .
(918) / h(gl, 92,93) d493 = 2sin 91 - COS 91 . (f:lu . (Jl + 2Z(J2, + Jé,)))(gl, 92),
0

for all (6y,06;) € R2.
If 0" = (01,0,) is a point of R? for which B(#') is non-zero, we easily verify that

cos by - ha(0) = cosfy - {sin® 6, - (tsinhs — i cosbs) + icosfs},
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where 0 = (01,02,03) and t = A(¢')/B(0"). Thus at this point ¢’ of R?, by (8.9) we
obtain the relations

1.
5 sin 01+ cosfy - J1(0")
(9.19) =rBXHT(¢') - (sin® 0y - FL(8) +iF2, ,(t)),
= rB2T(0') - (sin® 0y - tF) y (t) +icos® 01 - F7 (1)),
where t = A(0')/B(0'). At this point 0’ of R?, we also see that
1
(9.20) o sinfy - cosfy - JH(0') = q(A- B> () - F3, (1),
T

where t = A(0")/B(¢').
If k,m > 0 are given integers, we easily verify that

T 27
(9.21) / / cos® 0 - sin 0 - cos O3 - (f3f2™)(0) dbs db> = 0,
0 Jo

T 27
(9:22) / / sin @y - cos® 1 gy - (fg 3’")(«9) dfs dhy =0,

where 0 = (61, 02,03). The equality (9.21) implies that

(9.23) //%smeg cos Oz - (fPf22)(8) dbs dby = 0,

where 6§ = (91, 92,93).
We now suppose that » = 2m, where m is an integer > 1. According to (9.22) and
(9.23), we have

/w(ff - J7)(01,02) dby = /W(ff - Jy )(01,02) dOy = 0,
0 0

for 6, € R. Therefore from the formulas (9.16)—(9.18), we deduce that
0 * /D Fq f2m g f

(9-24) a9 <<37¢2,a(f1f2f3 df1)>dZ _x
da z ‘O‘* 2

_1)p+q/ / 2811191 - COS 01 . (flp . (J{ + 2%]5))(61, 92) d01 d@z
0 Jo

By Proposition 8.2 and (9.6), we know that the real-valued function x; on R2
defined by

Xl(el) = Sll’l 01 (A Qm 1 q) (6 ) + cos 91 (B2 m 1 q) (9/)7

for @ = (61,62) € R2, is non-zero and everywhere > 0. We consider the real-valued
function x2 on R? which is defined by

Xe=A*B*- Qb .
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when ¢ > 1 and which vanishes identically when ¢ = 0; when ¢ > 1, we know that
the function x2 is non-zero and everywhere > 0. From the relations (9.19) and (9.20)
and Proposition 8.2, we deduce that the equalities

: mm _
sin®; - cosfy - J; = W(Az B2y,
. 2iqm _

sinfy - cos b - Jé = 74’rnfi~q (A2 _ BZ)m 1, Yo

hold at the point §’ = (6, 602) € R2. Hence the equality

siny - cosfy - fI- (J] +2iJ5) = (71)pW(A2 — B (myxy + gxe)

holds at the point 6 = (6y,62) of R2. Thus whenever the integer m + p is odd, the
left-hand side of (9.24) does not vanish and so there exists as € R such that the
integral

/Z (Ga: 850, (T T3 F3d 1)) dZ
is non-zero. We have therefore proved the following result:

LEMMA 9.8. — Let p,q > 0 and m > 0 be given integers. If the integer m + p is odd,
the 1-form

fp;q@mdfl
on X does not satisfy the Guillemin condition.

Let r1,72 > 0 and s > 2 be given integers, and let a;,a2,a3 € C. Suppose that
2r1 + s = 0 mod 4, and consider the 1-form

Y= alfhfl,rz,sd.fl + anrl,'rgfLsd]% + a3f‘r1,r2,sfldf3

on X. If ro > 1, we have the relation
~ ~ ~ ~ as |~
9= a’lf’r'l—l,'r'%sdfl + agf'r'lﬂ'g,s—ldfii + Edf'rl,r?.sy

where
’ 1 ’ S
ay =a; — —az, a3 = az — —Aaz.
T2 T2
If the 1-form ¥ satisfies the Guillemin condition, from Lemma 9.8 we obtain the
vanishing of the coefficient a}; then Lemma 9.8 tells us that aj = 0. On the other
hand, when ro = 0 and r; > 1, we have

. . as  +
9= alllfnfl,O,sdfl + ?df7‘1,0«,87

where
" 1
ay =ay — ?(13§
if ¢ satisfies the Guillemin condition, Lemma 9.8 gives us the vanishing of the coeffi-
cient af. When r; = ro = 0, the form ¢ is obviously exact. Therefore in all cases, if
the 1-form ¥ satisfies the Guillemin condition, it is exact, and so we have shown that

assertion (i) of Proposition 9.3 holds.
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We consider the identity element I3 and the matrix

00 -1
Az3=(0 1 O
10 0

of SO(3); we then consider the element ¢3 = (A3, I3) of the subgroup
K =50(3) x SO(3)
of G = SO(6). The functions f; = (*¢3f; and f5 = t*¢5f} on R?® are given by
f1(8) = cos? 6y — sin 0y, f3(8) = cos(8y + 62)ei
f2(8) = cos?(61 + 62), F4(8) = cos(0y + 05)e ™%,

for 0 = (61,02,03) € R, By (4.10) and the preceding equalities, if p,q > 0 are given
integers, we have

(G, 83df1) (¢ (0)) = (G, B3 f2) (' (0)) = O,
(Gs &3 (F F3 fd ) ((8)) = —i(f7 f3)(6) - cos? (61 + 6a),

for & = (61, 62,03) € R3. Since the function fy is non-negative on R3, if p,q > 0 are
given integers, by (4.6) it follows that

[ (it iaionaz = [ .o(ittaf)az =o,
Z Z

2 [ s i faf)az > o.

L JZ

The following lemma is an immediate consequence of the previous relations.

LEMMA 9.9. — Let r1 > 0 and ro > 1 be given integers; assume that the integer rq
is even. Let ay,az,a3 € C. If the 1-form

alfT'l—l,T'Q,Odfl + (L2f7'1,7'2—1«,0df2 + a3f7'1 ,7'2—1,1dfé

on X satisfies the Guillemin condition, then we have as = 0.

For a € R, we consider the element

1 0 0 0 0 0
0 0 0 cosa 0 —sina
10 0 1 0 0 0
P10 = 0 0 0 sina O cos «
010 0 0 0
000 0 -1 0
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of G = SO(6). We consider the functions f; . = TPk o f; on R?, with j = 1,2, and
the functions h; and ks on R® defined by

h1(0) = sin 205 - (cos 20; + cos 203),
() = cos 205 - (cos 201 — cos 20) + 1 — cos 20 - cos 205,
for € R?; we may also write
f1(0) = 3(cos 205 — cos26y),
for # € R3. Then it is easily verified that

sin® o
4

fia = —sin?a- fi + fio, foa=— 'h2+§SIHOt'h1+f2,o

as functions on R?, for o € R.
Let p, ¢ > 0 be given integers. According to (4.10), we have

8.f1,a
06y’

(9.25) UGy S (T F3 T A1) = FLGFEL

for a € R. Therefore there exists a function

N
= Z O'k(e)tN_k
k=0

on R* with ¢t € R and 6 € R?, which is a polynomial of degree N = 2(p + ¢ + 2) in
the variable ¢, such that

Fatl 7 (-t .
(C2s 01 (I3 d0) ((m0) = S5iperila + D P(sina, 0)

for # € R® and o € R. By (4.6), for 0 < k < N, we see that

1 9k

(926) 11 5aF

[ tadia it af iz,

(_1 11+1 2m
22q+p+1 Q+1 / / / ON— k d@] d02d637

where 0 = (01, 02,03) € R3. According to (9.25), the coefficient o of the polynomial
P is given by

01(6) = sin? 205 - (cos 20, — cos 264)P - (cos 20, + cos 2603) - hi(6),

for 0 = (01,02,03) € R3.
We consider the functions y; and y2 on R? defined by

X1(x1,22) = coszy — cosxa, x2(z1,22) =1 — cosxy - cosza,
for (z1,29) € R?, and the mapping x : R? — R? given by

X(21,22) = (x1(21,22), X2(21, T2)),
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for (z1,22) € R% Let k,m > 0 be given integers. We consider the function
(bk,m = X%k : Xgl

on R? and the function ¢y, on R? defined by

P (21, 72) = coszy - (7" - x5 (21, 22),

for (z1,72) € R2. Then by the binomial theorem, there exist polynomials P,j m Dhoms

Q;’m and @, ,, belonging to Z[yi,y»] all of whose coefficients are non-negative such
that the decompositions

¢k’,'m. = (b]:—,,n - ¢];,m7 zbk.m. = w]-:m - ¢k_,m

hold, where the functions qﬁk""m, Phom> wzm and 4, on R? are given by

¢2—,m(‘tl7 Z9) = ,j'm(cosz 21, cos? Z2),
B (@1, 22) = . (cos® z1, cos? ) - cosay - cos w2,
d),:m(mhxg) sz(cos x1,co8? x9),
Yo (T1,22) = Qkym(cos x1,c08% L) - COS T - COS T,

for (21, z2) € R2. In fact, the coefficient of y¥ in Pk*'m is equal to 1, while the coefficient
of y1y% in sz is equal to 2k + 1. Thus the functions qﬁ,:rm and w,:rm are non-zero
and satisfy the inequalities

Do 20, U, 20

on R?; moreover, since the integral over the interval [0, 27] of an odd power of cosx
vanishes, we have the relations
27T 27
¢k7m(l‘1,l‘2) d331 = ¢zm(x1,x2)dx1,
(9.27) 70 0

2m 2m

im (21, T2) dry = 1/’;771(9517962)613017
0 0

for all z5 € R.

We again consider the integers p, ¢ > 0; we write ¢’ = [¢/2] and let J; be the set all
integers 7 satisfying 0 < 2r + 1 < ¢. For A, u € R, we consider the functions ®,(\, 1),
Ty(X ), ®F (A, p) and UF(X, 1) on R defined by

D, (N, p)(z) = (Acosz + p)d, VoA, p)(z) =cosz - (Acosz + p)d,

)\27‘ q— 2TCOS2 T,
2r

))\27'+1uq—2r—1 cos2r+2 T

ha ()7 (A )(2) = Y (]
wion@ =Y (5"

q
0
1
r€Jg +
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for € R. Since the integral over the interval [0, 27| of an odd power of cos z vanishes,
by the binomial theorem we easily verify that

27 27
| @i = [ arou@
(9.28) o o
| @ = [ wroued
for all A, u € R.
We define functions o and o+ on R? by
o(z) = (cosz1 — cosza)P - coszy - Py(x(x1, x2))(23)
+ (coszy — cosxa)P - Wy(x(z1,22))(23),
ot (x) = (cosxy — cos )P - cosxy - OF (x(x1,22))(x3)
+ (cos a1 — cosza)? - UF(x(x1,32))(x3),

for z = (21,22, 73) € R3; then by (9.28), we obtain the equality

27 27
(9.29) / o(xy,za,x3) deg = / ot (x1, 29, x3) das,
0 0

for all (z1,x2) € R?. Moreover, we have
(9.30) o1(8) = sin® 20 - 0(26),

for 6 = (01,02,03) c R3.
We henceforth suppose that p is an odd integer which is equal to 2[4+ 1, with { > 0.
We verify that

7
q
coszy - X (z1,22) - @;(X(Il,Ig))(Ig) = Z (27“) VYigrg—2r (71, 72) cos™ z3,
r=0
X (1, w2) - o (x (w1, 22)) (23) = Z ( ‘q )¢l+r+1,q—2771(x17m2) -cos? 2 g,

r€Jy

for z1, 29,23 € R. We introduce the function © on R3 defined by

q

r€Jg

p
q + .
" ; (2r> Yl goop (21, 22) cOS™ T3,

for x = (71,72, 73) € R3. In fact, according to the properties of the polynomials P,:rm
and sz, there exists a non-zero polynomial P’ € Z[y1, y2, y3] all of whose coefficients
are non-negative such that

O(x1,x2,13) = P'(cos? 1, cos? 9, cos? x3),
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for = (x1,72,23) € R?; moreover, the coefficient of y;74 in P’ is equal to 21 + 1.
Thus the function © is non-zero and satisfies

0 >0.

According to (9.27) and the preceding relations, we have
2m

2m
/ 0'+(I1,JL‘2,I3) dxl = @(Il,l'z,.’lf?,) dIl,
0 0

for (x2,23) € R% By (9.29), we infer that

27 p27 27 p27
/ / o(x1, T2, x3) dzy dog = / O(z1,x2,x3) dry drs > 0,
o Jo o Jo

for x5 € R; hence, since © is non-zero, we obtain the inequality

2 p2m 2w
/ / / sin® z - o(x1, 2, x3) dry dee drg > 0.
o Jo Jo

Therefore by (9.30), we have the relations

2m o pm 2w p2m P27
1
/ / / 0'1(9) d91 d92 d93 = —/ / / SiIl2 ) -0’($1,I2,123) d:El dCEQ d:l?g > 0.
0 0 Jo 4 0 0 0

By the equality (9.26), with & = N — 1, the non-vanishing of the above integrals
implies the existence of ay € R such that

[ (oG FFE R a2 0.
Thus we have proved the following:
LEMMA 9.10. — Let p,q > 1 be given integers. If the integer p is odd, the 1-form
Fo.q0dfy
on X does not satisfy the Guillemin condition.

Let 4 > 0 and ro > 1 be given integers; suppose that 7y is even. Let ay,a9,a3 € C
and consider the 1-form

Y= alfn—l,m,odfl + aZﬁ‘l,rg—l,Ode + asfmm—l,ldﬁ

on X. If 9 satisfies the Guillemin condition, from Lemma 9.9 we obtain the vanishing
of the coefficient agz; then we have the relation

~ ~ as .~
9= a’lf7'1*1~,7'2,0df1 + ,_dfh ,72,05
2

where
’ 71
a; = a1 — —az.
T2
If vy = 0, the form ¥ is obviously exact. On the other hand, when 7y > 2, Lemma 9.10
tells us that aj = 0. Therefore in all cases, if the 1-form 9 satisfies the Guillemin

condition, it is exact, and so we have proved assertion (iii) of Proposition 9.3.
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We have therefore shown that all the eight assertions of Proposition 9.3 hold, and
so, according to Proposition 9.3, we have completed the proof of Theorem 9.1.

10. Branching laws

In this section, we present the branching laws and the results which give us the
multiplicities of the SO(6)-modules announced in Proposition 6.3.

Let n > 3 be a given integer and consider the complex vector space C" endowed
with the symmetric bilinear form B defined by

n
Blz,y) = >z,
=1

where z = (z1,...,2z,) and y = (y1,...,yn) are vectors of C". We consider the
group G = SL(n,C); its subgroup K’ = SO(n,C), which consists of all elements
of G’ preserving B, is the set of fixed points of the automorphism of SL(n,C) send-
ing the matrix A into the inverse of its transpose ‘A. The k-th symmetric power
S*¥C™ of C™ and the I-th exterior power /\I(C"' of C™ are irreducible G’-modules;
the space S{{(C", which consists of all elements of S¥C™ which lie in the kernel of the
mapping S*C" — S*~2C" determined by B, is an irreducible K’-submodule of S*C”.

If F is an G’-module, we denote by EX’ the subspace of E consisting of all the
K’-invariant elements of E. Then the multiplicity of an irreducible K’-module F in the
decomposition of E viewed as an K’-module is equal to dim Homg (F, E). Moreover,
if Fis a G’-module viewed as a K’-module, the K’-module F' is isomorphic to its
contragredient module and so we have the equality

(10.1) dim Homg (F, E) = dim (E ® F)¥'.

We consider the Lie algebra g’ = sl(n, C) of the group G’ and its Cartan subalge-
bra t', which consists of all diagonal matrices of g’. Let A} be the linear form on t'
which sends the diagonal matrix of ', with ay,...,a, € C as its diagonal entries,
into a;. We write o, = \; =\, |, for 1 < j <n—1. Then {aj,...,a,,_} is a system
of simple roots of g’ and the corresponding fundamental weights are

wi =N+ N
with 1 < j < n —1; we remark that w; is the highest weight of the irreducible
G'-module \?C™.
The highest weight of an irreducible G’-module is a linear form

11+ Ap—1Wp—1

on t', where ay,...,a,_1 > 0 are integers. The equivalence class of such an G’-module
is determined by this weight. We identify the dual IV of G’ with the set of all such
linear forms on t'.
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A partition 7 = (71,...,m—1) is an (n — 1)-tuple of integers satisfying
T > Mg > > o1 > 0.

We denote by P the set of all such partitions 7 = (q, ..., m,—1) for which 7 +---+
Tn—1 1s even. We say that a partition # = (m1,...,7m,—1) is even if all the integers
m,...,Th—1 are even, and we denote by Py the subset of P consisting of all even
partitions. For 1 < j <n — 1, we consider the subset

Pj={mn=(m,...,mp—1) € P|mjis even and mis odd, for all k#j}
of P. When n = 4, we note that P is the disjoint union of the sets P;, with 0 < j < 3.

We associate with an element @w = ajw; + -+ + ap_1w@,_1 of IV the partition
7(w) = (m1,...,Tn—1), where

T =a1+ -+ an—j,
for 1 < j < mn—1; in fact, this partition uniquely determines the element w of I'V. We
consider an irreducible G’-module F(w) corresponding to w € I'; we shall also write
E(n(w)) = E(w).

Let No(w) be the integer which is equal to 1 if the partition m(w) is even and 0
otherwise; according to a result due to Cartan (see also [10, p. 550] and Theorem 3
of [23]), we know that

(10.2) dim E(=)X" = Ny(w).

Let @w = a1y + -+ + an_1w@n—1 be an element of IV and consider the partition
7(w) = (m1,...,m™—1) associated with . Let k > 1 be a given integer; then Pieri’s
formula (see Proposition 15.25,(i) and formula (A.7) of [3]) tells us that the G’-module
E(w) ® S*C" admits a decomposition
(10.3) E@osC' = @ En)

nex(w,k)
into irreducible G’-submodules, where X(w,k) is the set of all partitions n =
(M5 ..., mn—1) defined as follows: a partition = (11, ...,n,—1) belongs to X(w, k) if
and only if there exist integers 14, ..., v, > 0 satisfying the relations
N =Vj — VUn, Vj 2 Tj 2 Vjtl,
Vit d vy =Tt 4 Tk,

for 1 < j < n—1. Each factor E(n) appears in the sum on the right-hand side
of (10.3) with multiplicity 1. We denote by Ng(w) the cardinality of the set
¥ (w, k) = X(w, k) N Py consisting of all even partitions of ¥(zw, k).

From the relations (10.1) and (10.2) and the decomposition (10.3), for k > 0, we

infer that the integer

dim Hom g (S*C", B(w)) = dim (E(w) ® S*C™)X’
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is equal to Ni(w). Therefore, for k > 2, the multiplicity My (w) of the irreducible
K’-module S¥C™ in the decomposition of E(w) viewed as a K’-module is equal to

(10.4) dim Hom ¢/ (S¥C™, E(w)) = Ni(w) — Ni_a(w).
We write X(w) = X(w,2) and ¥ (w) = ¥/(w,2) and M (w) = Ma(w); thus we have

No(w) —1  if the partition m(w) is even,
M(=) = .
Ny (w) otherwise.

For 1 < j <n—1, we consider the sequences

&=,

where {i =7y, for k # j and fj = m; + 2; we also consider the sequence
fn = (71'1 72,...,77'77,_1 72)

Then &' always belongs to Y (ww); moreover, for 2 < j < n — 1, the sequence &/ is an
element of ¥(w) if and only if mj_; > m; + 2. On the other hand, the sequence £"
belongs to X(w) if and only if 7,_1 > 2.

If all the integers a1, ...,a,—1 are even, then X(w) is precisely the set of all par-
titions contained in {&1,...,£"}; from the previous observations, for 2 < j < n, we
infer that &/ belongs to ¥(w) if and only if a; > 2. Therefore in this case, the integer
M (w) is equal to the number of non-zero coefficients a;.

We have just proved the second assertion of the following proposition; on the other
hand, its first assertion is a direct consequence of the equalities (10.1) and (10.2).

ProposiTiON 10.1. Let G' be the group SL(n,C) and K’ be the group SO(n,C),
with m > 3. Let w = aywy + -+ + an_1@n_1 be an element of I'. The multiplicity
of the trivial K'-module in the decomposition of the G'-module E(w), viewed as a
K'-module, is equal to 1 if all the coefficients a; are even and to 0 otherwise. If
all the coefficients a; are even, the multiplicity M (w) of the K'-module S3C™ in the
decomposition of the G'-module E(w), viewed as a K'-module, is equal to the number
of non-zero coefficients a;.

We now assume that the integer n is equal to 4. Let @ be an element of I
and consider the partition 7(w) = (1,72, 73) associated with w. We consider the
sequences

= (m + 2,72, 73), ’r/ = (m1, w2 + 2,73),
= (m,me, T3 + 2), = (m — 2,7 — 2,73 — 2),
=(m + 1,7+ 1,73), = (m,me + 1,m3 + 1),

0" = (7 +1,m,m3 + 1), 7] =(m — 1,73 — 1,73),

n® = (m,m — 1, w3 — 1), =(m — 1,7, 73— 1)
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associated with the partition m(zw). Then X(w) is a subset of the set of all partitions
contained in {n',...,n'°}. In fact, n' always belongs to ¥(w); on the other hand
7° belongs to ¥(w) if and only if m; > 72, while 7% belongs to ¥(w) if and only
if m; > m > m3. Moreover, ® is an element of X(w) if and only if my > 73 > 1.
Finally, any of the other sequences 7/ = (7]{ ,77%,17?,;) belongs to X(w) if and only
if ] > 13 >} > 0.

We shall now assume that 7(cw) belongs to P; this assumption is equivalent to the
fact that a1 + as is even. First, suppose that (@) is even, i.e., 7(w) belongs to Po;
then from the description of X(w) given above, we infer that ¥'(ww) is a subset of
{n*,n%, n% n*} and that the sequence ' always belongs to ¥’ (). On the other hand,
the sequence n? belongs to ¥'(w) if and only if m; > 75 + 2, the sequence 7% belongs
to ¥'(w) if and only if ma > 73 + 2, and the sequence n* belongs to ¥'(w) if and only
if w3 > 2. In this case, we have 0 < M(w) < 3.

Next, we suppose that 7 is even and that o, w3 are odd, i.e., m(w) belongs to Pi;
then from the description of ¥(w) given above, we infer that ¥'(w) is a subset of
{n%,n°}. The sequence n° belongs to ¥'(w) if and only if 7 > w3, and the sequence
n° always belongs to X'(ww). In this case, we have 1 < M (w) < 2.

We now suppose that 7 is even and that 7y, w3 are odd, i.e., 7(w) belongs to Ps;
then from the description of ¥(w) given above, we infer that ¥’ () is equal to {n”, n'°}
and that M (w) = 2.

Finally, we suppose that 75 is even and that 1,72 are odd, i.e., m(w) belongs
to P3; then from the description of ¥(w) given above we infer that ¥'(w) is a subset
of {n°>,n®}. The sequence n° belongs to ¥’ (w) if and only if 7; > 72, and the sequence
7n® belongs to X' (w) if and only if w3 > 1. In this case, we have 1 < M(w) < 2.

From the preceding discussion, we obtain the following result:

PROPOSITION 10.2. — Let G’ be the group SL(4,C) and K’ be the group SO(4,C).
Let @ = aywy + asws + azws be an element of I; suppose that ay + asz is even.
Then the partition m = w(w) belongs to P. The multiplicity M (w) of the K'-module
S2C* in the decomposition of the G'-module E(w), viewed as a K'-module, satisfies
the relations

0< M(w) <3 ifn(w) € P,
M(w) =2 ifn(w)€ P,
1< M(w)<2 ifn(w)e PUPs.
If V is a real finite-dimensional vector space and ¢ is a non-degenerate quadratic
form on V' with values in a one-dimensional vector space, we denote by SL(V) the
group of automorphisms of V' whose determinants are equal to 1 and we consider the

subgroup SO(V,q) of SL(V) consisting of those elements of SL(V) which preserve
the form q.
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We once again suppose that the integer n is > 3 and we now consider the real
vector space U of dimension n which consists of the real vectors of C". We shall
identify the space R™ with U and view C™ as the complexification U¢ of U; we denote
by J the complex structure of Uc.

The standard basis {e1,...,e,} of C" is also a basis of U. The restriction of the
symmetric bilinear form B to U is a the standard Euclidean scalar product g on U.
We view the group SL(U) = SL(n,R) as the subgroup of G’ consisting of those
matrices of G’ with real entries; then the orthogonal group

SO(U) = SO(U, g) = SO(4)

is identified with the subgroup SO(n) = SL(U)N K’ of K'.

By means of the scalar product g, we shall identify the SO(U)-module U* with U.
The k-th tensor product ®kU* of U* is an SO(U)-module, and the k-th symmetric
product S¥U* of U* and the k-th exterior product /\kU *of U* are SO(U)-submodules
of @ U*. If M is an SO(U)-submodule of ®"U*, we identify the p-th symmetric
power SP M* of the coadjoint module M* = Homgoy (M, R) with the SO(U)-module
of all symmetric p-forms on M.

We view g as an element of S2U*. The subspace SgU* of S2U*, consisting of
all elements of S2U* which are orthogonal to g, is an irreducible SO(U)-submodule
of S2U*. We identify Hom(U, U) with U* ® U* wia the scalar product g and consider
the trace mapping

Hom(U,U) — R,
which sends an endomorphism of U into its trace. Thus we obtain a monomorphism
A: S2U* — Hom(U,U)

of SO(U)-modules, whose image consists of all self-adjoint endomorphisms of U; the
image under A of the submodule S3U* of S2U* is consists of all self-adjoint endomor-
phisms of U with trace zero.

‘We now suppose that the integer n is equal to 4. We endow U with the orientation
corresponding to the volume element 2 = e; A es Aeg A eyq of /\4U. We identify
the space A*Uc = A?C* with the complexification of AU and denote by J the
complex structure of A2Uc. We define a bilinear form Q on A\*Uc with values in the
one-dimensional vector space /\4U(c by

Q(61,&) =& N,

for &,& € /\ZUC. We note that the restriction of @ to /\2U takes its values in the
space /\4U and is a non-degenerate quadratic form on /\2U . The Hodge * operator,
corresponding to the given orientation of U and this quadratic form, is an involution
of the vector space A*U. The action of SO(U) on A?U preserves the eigenspace
/\iU and /\(iU of the Hodge * operator corresponding to the eigenvalues +1 and —1,
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respectively, which are both three-dimensional. Then we have the decomposition
2 2 2
NU=N U ANU

of AU into irreducible SO(U)-modules.
The vectors

1 1
W1:E(61A62+63/\64), w4zﬁ(el/\62763/\64),
1 1
WQ:E(62A63+61/\€4), W5:ﬁ(62/\63_61/\64)7
wfl(e/\e e Ney) wfl(e/\e-i-e/\e)
3 \/i 1 3 2 4)5 6 \/é 1 -3 2 4

of /\ZU form an orthonormal basis for /\2U , which diagonalizes the bilinear form Q;
in fact, if we set €; = +1, for j =1,2,3, and ¢; = —1, for j =4,5,6, we have

Qlwj,wr) = €05,
for 1 < j,k < 6. Moreover, the vectors {w1,ws,ws} form a basis of /\iU, while the
vectors {wy,ws,ws} form a basis of A2U. We note that a change in the orientation
of U simply permutes the factors /\iU and /\iU

The SO(U)-module

5 2 2

U=AN, U JA_U)
is a real subspace of /\QU(C which generates /\2U¢; over C. The scalar product g induces
a scalar product on U via the natural isomorphism of SO(U)-modules AU — U. We
consider the elements w/ of A?Uc defined by

o . ! gy
wj = wj» Wj+s = W43,

for j = 1,2,3. Then the vectors {w],...,w;} form a basis of /\2U(c and also for its
real subspace U; this basis diagonalizes the bilinear form @ and we have

Q(UJ;-, wi) = 0k 2,

for 1 < j k < 6. Thus if we view the restriction Q of the bilinear form @ to the
subspace U as an ordinary quadratic form by means of the volume element €, this
quadratic form Q is positive definite; in fact, it is equal to the restriction of the scalar
product on U induced by g.

The space Homc(A"Uc, APUc) carries a natural structure of SO(U)-module and
we denote by J its complex structure. We view the SO(U)-module Hom(A”U, AU)
as a real subspace of Home(A"Uc, A’Uc) and the SO(U)-module Hom(U,T) as a
real subspace of Homg ( /\2 Uc, /\2 Uc). An endomorphism ¢ of Ug (over C) extends to
a derivation (;3 of the exterior algebra of Uc. The mapping

¥ : Home (Ue, Ue) — H01r1[1(c(/\2U¢7 /\ZUq;)7
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which sends an element ¢ of Homc(Uc, Uc) into the restriction of the mapping é
to /\2 Ug, is a morphism of SO(U)-modules. The mappings

W : S2U* — Home (A*Ue, A’Ue), ¥ : S3U* — Hom(AU, A°U),

which send h € S3U* into W(JA(h)) and WA(h), respectively, are also morphisms of
SO(U)-modules. Now let h be an arbitrary element of SZU*. Clearly, we have

(10.5) U(h) = JV'(h).

Because the trace of the endomorphism A(h) of U vanishes, we easily see that the
relation

(10.6) Q(Y(h)u,v) + Q(u, ¥ (h)v) =0

holds for all u,v € /\ZUC. If {a1,a2,a3,04} is the basis of U* dual to the basis
{e1,e2,e3,e4} of U and hy is the element a; ® a1 — a3 ® a3 of SEU*, we easily see
that

\I/'(hl)(wl) = Wy, \If,(hl)((UQ) = —Ws, \I//(hl)(u)g) = 0,
V' (h1)(wa) = w1, V' (h)(ws) = —w, W' (h1)(we) = 0.
Since the module S2U* is irreducible, from these formulas we obtain the inclusions
V((ALU) € AU W ()(ATD) © AU
according to these inclusions and the relation (10.5), we see that
(10.7) V(R)(ATU) C J(AZU),  T()(I(AZU)) C ALY,

and so W(h) belongs to the submodule Hom(U, U7) of Home(A2Uc, A2Uc). Thus ¥
may be viewed as a morphism

W : S2U* — Hom(U,U)
of SO(U)-modules satisfying (10.7). We consider the elements
he = a1 ® as + a2 ® ay, h3=a1®a; —az®@az

of S2U*; then we easily verify that
(10.8) U(he) = we ®@ wg + ws @ wh, U(h3) = w1 @w) — ws ®wE.

Since the spaces SZU* and Hom(/\iU7 J(A2U)) have the same dimension, the
mapping

S3U* — Hom(ALU, J(N*U)),

which sends h € SZU* into the restriction of ¥(h) to /\iU , is an isomorphism
of SO(U)-modules. We write V = A>U and W = J(A\’U) and we identify the
SO(U)-modules Hom(/\iU, J(/\EU)) and

VeW=A\UcJ\U)
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via the scalar product on /\_2'_U induced by g; from the above isomorphism, we there-
fore obtain an isomorphism of SO(U)-modules
(10.9) U:S2U — VoW

We consider the bases {61, 02,05} of V* and {04,05,0s} of W* dual to the bases
{wi,wa,w3} of V and {w},wl,wi} of W, respectively. The symmetric 2-form ¢’ and
the symmetric 3-form ¢’ on the SO(U)-module V @ W, which are determined by

g (v @ wi,v2 @wz) = Q(vr,v2) - Q(wr, wa),

(7'/(1}1 ® w1, V2 @ wa, V3 @ 11)3) = (91 A By N\ 93)(1}1, U2,1}3) . (94 ABs A\ 96)(11)1,11)2, ’1113),
for all v1,v2,v3 € V and wy,wa, w3 € W, are clearly SO(U)-invariant. Thus the
symmetric 2-form ¥*g’ and the symmetric 3-form ¥*¢’ on S2U* are SO(U)-invariant.
According to (10.8), we see that
(10.10) g (U (ha), ¥(ha)) = 2, o' (U(h2), ¥(he), ¥(h3)) = —2.

An element ¢ of G’ induces an automorphism ¢’ of /\ZUC which preserves the
bilinear form Q. In fact, if G” denotes the group of automorphisms of /\QUC (over C)
of determinant one which preserve the bilinear form Q, the correspondence ¢ — ¢’,
where ¢ is an element of G’, then gives rise to epimorphism

.G — G
If ¢ is an element of the subgroup SL(U), then the automorphism ¢’ of A?Uc pre-
serves the subspace /\2U . If ¢ is an element of the subgroup SU(4) of G’, then the
automorphism ¢’ of /\ZUC preserves both the bilinear form () and the Hermitian
scalar product on /\ZUC, induced by the Hermitian scalar product on Uc = C%; it
follows that ¢ also preserves the real subspace U of /\QUC. Thus if we write
K" = SO(N,U,Q) x SO(J(N’U),Q),
the mapping @’ induces by restriction epimorphisms
d': SU(4) — SO(U,Q), @ :S0(4) — K".

We note that the kernels of these two mappings are equal to {£1}, where I, denotes
the identity matrix belonging to SL(4,R).
Let {e},...,e}} denote the standard basis of C5. The isomorphism

L: /\2<C4 —CS
which sends w; into e;, for 1 < j < 6, induces by restriction an isomorphism
v : U — RS,

We consider the decomposition R® = F| @ F; of R®, where F} and F, are subspaces
of RS defined by

Fy = { (b1,2,03,0,0,0) | by, b2, b3 € R},
F ={(0,0,0,by4,bs5,b6) | by, bs,bg € R}.
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The image of /\iU under the isomorphism ¢ is equal to Fj, while the image

of J(A2U)) under the isomorphism ¢ is equal to Fy. Clearly, when U is endowed

with the scalar product induced by g, the isomorphism ¢ : U — R® is an isometry.
The mapping ¢ induces an isomorphism

L:G" — S0(6,0),
which in turn induces by restriction isomorphisms
1:SO(U,Q) — SO(6),  1: K" — SO(3) x SO(3).
Thus the epimorphism
® =109 :SL(4,C) — SO(6,C)
give us by restrictions epimorphisms
®: SUM4) — SO(6), D : SO(4) — SO(3) x SO(3).
We note that the kernels of these three epimorphisms are equal to {+14}. Therefore
the epimorphism ® induces an epimorphism
®:50(4,C) — SO(3,C) x SO(3,C)
and gives rise to a commutative diagram
SL(4,C){+ L} —— S0(6,C)

I I

S0(4,C)/{x 14} —— SO(3,C) x SO(3,C)
whose horizontal arrows are isomorphisms induced by the morphisms ® and whose
vertical ones are inclusions.
We henceforth write

G =150(6,C), K=250(3,C)xS0(3,0C).

We consider the Lie algebra g of G, the Cartan subalgebra t of g and the linear forms
A1, A2, A3 on t introduced in §5. Then {ai, a2, as} is a system of simple roots of g,
where

a1 = A\ — Ag, ag = Ao — A3, ag = Ao + A3.

The corresponding fundamental weights are
1 1
M1 = A1, M2:§(/\1+)\2—/\3)7 N3:5()\1+/\2+)\3)§

we note that A; is the highest weight of the irreducible G-module C*.
The highest weight of an irreducible G-module is a linear form
C1A1 + coAg + ec3 3
on t, where € = £1 and ¢y, co, c3 > 0 are integers satisfying

c1>ce>c3 > 0.
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The equivalence class of such an G-module is determined by this weight. We identify
the dual T of G with the set of all such linear forms on t.

We also consider an irreducible G-module (resp. K-module) E as an irreducible G'-
module (resp. K’-module) ®* E via the epimorphism ® : G/ — G (resp. @ : K/ — K).
Now let E be an irreducible G-module and F be an irreducible K-module; then
the multiplicity of the irreducible module F' in the decomposition of E viewed as
a K-module is equal to the multiplicity of the irreducible K’-module ®*F in the
decomposition of the K’-module ®*E, and therefore also the dimension of the space
Hompg/ (®*F, ®*E).

If v is an element of I', we consider an irreducible G-module V/, corresponding to v,
and we shall denote by ®(7) the highest weight of the irreducible G’-module ®*V/,.
Then we have ®(\;) = w2 and, replacing the mapping ® by the epimorphism ® o &
if necessary, we may also suppose that

P(p2) = w1,  P(us) = ws.
If
v =c1A1 + e +ec33
is an element of f, with ¢ > ¢o > ¢3 > 0, then it follows that the element ®(vy) of I
is given by
D(y) = (c2 — ec3)wr + (c1 — c2)wa + (c2 + ec3)ws.

Therefore the partition p(y) = m(®(7)) associated with the G’-module E(w), where
w = P(y), is equal to

p(7) = (p1(7), p2(7), p3(7)) = (c1 + €2, €1 + €€, 2 + £c3).
Clearly, the partition p(y) belongs to P and the mapping

p: r—pP

is injective. Let m = (71, 72, m3) be an arbitrary element of P. If we set

1 1 €
b1:§(71'1+71'2—ﬂ'3), b2:§(7r1—72+7r3), 173:5(7’1’2-"7’1’3—7’!’1)7

where € = 41 is chosen so that b3 > 0, we see that v/ = biA; + ba)g + b3A3 is the
unique element of I' satisfying p(7') = m. Thus the mapping p is bijective.
We consider the subsets

= {1 M1 + c2do +ec3)s € r | ¢1 — a2, co —c3 are even}
2= {c1A1 + cada +ecshs € r |1 —co is even, ca —cgis odd}
= {c1A1 + cada +ecshs € r |1 —co is odd, ca —c3is odd}
= {c1A1 + c2da +ec3)s € r |1 —co is odd, cog —c3 is even}
of T'; then T' is the disjoint union of these subsets. We easily verify that
p(l7*) C Py,
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for j = 0,1,2,3. Since the subsets I'* of T and the subsets Pj of P are disjoint, the
induced mapping
p: DI — Py

is bijective, for 7 =0,1,2,3.

If v € T, the subspace of V,, consisting of all the K-invariant elements of V, is
isomorphic to E(w)®’, where w = ®(v). Hence by (10.2), we obtain the following
result:

PROPOSITION 10.3. — Let v be an element of the dual T of the group G =50(6,C)
and let V., be an irreducible G-module corresponding to . If K is the subgroup
SO(3,C) x SO(3,C) of G, the dimension of the space of all the K -invariant elements
of Vs is equal to 1 if v belongs to fl, and to 0 otherwise.

If F is the irreducible K-module equal to the complexification of F} ® Fy, then, by
means of the isomorphism (10.9) of SO(4)-modules, we see that ®*F is equal to the
K’-module equal to the complexification of S3U*. Therefore the multiplicity of F in
the decomposition of V,,, with vy € f‘, viewed as a K-module is equal to the multiplicity
of S2C* in the decomposition of E(w) viewed as a K’-module, where @ = ®(v), and
hence to the dimension of the space Homg (S2C*4, E(w)).

Now let 1 < j <4, and 1,72 > 0 and s be given integers, and consider the element
Y =, s OF ¥ given by (6.4). We consider the element @ = ®(7) of I, the partition
p(7) = m(w) associated with the element w, which belongs to P;_1, and the subset
(@) of P which we associated above with ©. We also consider the sequences n*,
with 1 < k < 10, associated with the partition 7 = p(7) in the discussion preceding
Proposition 10.2. From the proof of this proposition and this discussion, we deduce
the following:

First, assume that j = 1. The sequence n' always belongs to ¥'(w), and the
sequence 1° belongs to ¥'(w) if and only if 71 > 1. Moreover, if 72 > 1, then 52, n*
belong to ¥/ (w); when ro = 0, the sequence 7% (resp. 7*) belongs to X' () if and only
if s < —1 (resp. s > 1). Next, suppose that j = 2. The sequence 1% belongs to X' ()
if and only if 1 > 1, and the sequence 7° always belongs to X/ (w).

If j = 3, the set ¥'(w) is equal to {n7,7'°}. Finally, suppose that j = 4. The
sequence 7% belongs to ¥/ (w) if either 75 > 1 or s > 1, while the sequence 1° belongs
to X' (w) if either ro > 1 or s < —1.

The following result is a consequence of these observations and Proposition 10.2:

PROPOSITION 10.4. — Let vy be an element of the dual r of the group G= S0(6,C)
and let V., be an irreducible G-module corresponding to . If K is the subgroup
SO(3,C) x SO(3,C) of G, the non-zero multiplicities of the K-module (Fy ® Fa)c

in the decomposition of the G-module V,, viewed as a K -module, are given by the
table of Proposition 6.3, where r1,7o > 0 and s are integers and v is an element of I.
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The vector spaces F; and Fy are equal to the fibers of the vector bundles V' and
W over X = éﬂ§,3 at the point xy considered in §3, respectively; the tangent space
T, of X at the point zg is a SO(3) x SO(3)-module isomorphic to V,, ® Wy, . Since
the group G = SO(6) is a real form of the group G = SO(6,C) and the subgroup
SO(3) x SO(3) of G is equal to GN K, from Proposition 10.4 we deduce the results of
Proposition 6.3. The multiplicities of the G-modules C$°(X), which are given in §5,
can also be obtained from Proposition 10.3.

11. The special Lagrangian Grassmannian SU(4)/SO(4)

Let G be the group SU(4) and let K be the subgroup SO(4), which is equal to
the set of fixed points of the involution s; of G sending a matrix into its complex
conjugate. We consider the Riemannian symmetric pair (G1, K1) and the irreducible
symmetric space X1 = G1/K1, which is one of the special Lagrangian Grassmannians
introduced in §2. In the Cartan decomposition

g1 =t &P
of the Lie algebra g; of G corresponding to the involution s, we know that ¢; is the
Lie algebra of K; and that the K;-submodule p; is the space of all symmetric purely
imaginary 4 x 4 matrices of trace zero. As in §2, we identify the Kj-module p; with
the tangent space of X at the coset of the identity element x1 of Gy.

We consider the space U = R%, with its standard Euclidean scalar product, the
complexification Uc of U, with its standard basis; we also consider the complex struc-
ture J of Ug and the objects associated with U and Ug in §10, notably, the Ki-module
S2U* and the basis {a1, a9, a3,a4} of U*. For 1 < j,k < 4, let Ejr = (i) be the
4 x 4 matrix determined by c¢; = 1 and ¢, = 0 whenever (I,7) # (j, k). The mapping

we SAU — py,

which sends the element Zj.k:l ajra; @ ap of SZU*, with ajr = ap; € R, into

the 4 x 4 matrix 4
7 Z ajkEjk,
G k=1

is an isomorphism of Ki-modules. We also consider the isomorphism
V. SUr — VoW
of Ki-modules given by (10.9) and the isomorphism
x=Toplip — VW

For p > 2, we consider the symmetric p-form o, on X defined in §2; the symmetric
2-form o9 is a Gh-invariant metric on X;. We also consider the symmetric 2-form ¢’
and the symmetric 3-form ¢’ on V ® W defined in §10, which are both K;-invariant;
the isomorphism y therefore induces K;-invariant symmetric forms y*¢’ and x*o’
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on p1. In §2, we saw that the spaces (S2p$)X1 and (S3p3)%1 are one-dimensional and
are generated by oo and o3, respectively. Therefore x*¢’ (resp. x*o’) is a multiple
of o9 (resp. of 03). If he and hj are the elements of SgU* defined in §10, the elements
&5 and &3 of py defined by

& = i(E12 + Ea1), & =i(En — E33)
satisfy
So=ypha), &= p(hs).
By (10.10) and the definition of the forms o,, we have
(1L.1) (X9 (€2, 62) = 2 = 02(&2, &2),
(11.2) (X"0")(€2, €2, €3) = =2 = 203(&2, &2, &s)-
From these equalities, we now deduce that
(11.3) X*g = o9, X o' = 203.
We also consider the Grassmannian
X = G54 =50(6)/S0(3) x SO(3)
endowed with its metric g. If I3 denotes the unit matrix of order 3, the element
(0 1)
of O(6) determines an involution s of the group SO(6) which sends the matrix A

of SO(6) into SAS; then the subgroup SO(3) x SO(3) is equal to the identity com-
ponent of the set of fixed points of s. We consider the Cartan decomposition

go =t D po

of the Lie algebra go of SO(6) corresponding to this involution; in fact, & is the Lie
algebra of SO(3) x SO(3) and py is a subspace of Hom(R® R®). In §1, Chapter IV
of [6], an explicit isomorphism (V ® W)z, — po is defined, where z is the point of X
considered in §3.

The epimorphism

®: SU4) — SO(6)
defined in §10 induces an isomorphism
D91 — o

and a diffeomorphism
d:S5UM4)/S0(4) — X.
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It is easily verified that the diagram

SU4) —2— S0(6)
is commutative, and so the isomorphism @, induces an isomorphism
D, : 1 — Yo.

We know that ®(x;) is equal to the point zg; thus the diffeomorphism ® induces an
isomorphism ®, : p; — T,,; we continue to identify Ty, with (V ® W),, via the
isomorphism (3.2).

We consider the K;-submodule U of U and the morphism

W : S2U* — Hom(U, 1)

of Kj-modules defined in §10; as we saw above, we may identify the image of this
morphism with /\iU ® J(/\Q_U) We also recall that the isomorphism ¢ : U — RS
induces isomorphisms

L:/\iU—?V,,;O., 0 JN2U) — Wy

Then we see that the diagram

SzU+ L P1

o Js.
Hom(U,U) —— Hom(RS,R®)

commutes, where the horizontal arrow ¢ is the mapping induced by the isomorphism

t: U — RS of §10. From the commutativity of the preceding diagram and the
relation (10.6), we infer that the diagram
sgu* —+- P1
o Js.
L@
NUINU) 2% (VoW),,

commutes. Hence if o is the symmetric 3-form on the Grassmannian X defined in §2,
from the relations (11.3) we deduce that the equalities

(11.4) D g = 09, D o = 203

hold on the symmetric space X; = SU(4)/SO(4). Thus the diffeomorphism ® is an
isometry.
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12. The complex quadric of dimension three

We return to the study of the Grassmannian X = é%,n: with m,n > 1
and m +n > 3, which is a homogeneous space of the group G = SO(m + n). If

{v1,...,Um4n} are elements of R™*7 there exists a unique real number
c=det (v1,...,Vmin)
such that
VI A NUpgn =C-€1 NN €Cmgn.
Let p > 1 be a given integer; suppose that m = p and n = p+ 1. Let v be a vector
of R?P*1; we consider the section 8, of @PT* over X determined by

Oy (1 @ Wi, ..., v0p ® wp) = det (v, v1, w1, ...,V wp),

for v1,...,v, € V and wy,...,w, € W. It is easily verified that 6, is in fact a
symmetric p-form on X, and that the mapping
R, Coo(SPT™),
which sends v € R?**! into 6, is non-zero and G-equivariant; in fact, we have
d)*gv = 9()&*1 vy

for all v € R?’*! and ¢ € G. Therefore the image of this mapping is a G-submodule
of C*°(SPT*) which is isomorphic to R?P*1, If 7 is the involution of X, corresponding
to the change of orientation of a p-plane of RPT!, clearly we have 70, = 0,.

We henceforth suppose that p = 2. As in Chapter V of [6], we identify the Grass-
mannian X = G]§;3 with the complex quadric Q3 of dimension 3 and view it as a
Hermitian symmetric space and as a homogeneous space of the group G = SO(5).

If E is a sub-bundle of SPT™ or of SPT{: which is invariant under the group G' and
the involution 7, we write

Coo(E)ev — Coo(E)ﬂ'Hrl7 Coo(E)odd — COO(E)T,*l.

We remark that this notation coincides with the one used in [5] or [6]. For this
Grassmannian, we have an injective morphism of G-modules
(12.1) RS — C>®(S2T™),
which sends v € R® into the symmetric 2-form h, = 6, on X; we also consider its
complexification

C5 — C>(S°Ty),
which sends v + iw into hypiw = hy + ihy, for all v,w € R3. The existence of these
two mappings is given by Proposition 9.1 of [5] or Proposition 6.25 of [6], while the
explicit construction of the mapping (12.1) is due to Bryant.

Let v be a vector of R®. From the definition of the symmetric 2-form h,, we infer
directly that

hy(v; ® wy,v; ® we) =0, hy(v1 @ wy,v2 @ wa) = —hy(v1 ® wa, v2 @ wr),
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for all vi,v2 € V, wi,we € W and j = 1,2. According to §5, Chapter V of [6],
it follows that the symmetric 2-form h, is Hermitian and a section of the sub-
bundle (S?T*)*~ of $2T* introduced in [4] and in Chapter V of [6]. The sub-
bundle (S27*)*~ is invariant under the group G and the involution 7; as we have
seen above, h, is an element of C°°(S2T*)¢¥. Thus we know that h, is an element
of C°((S2T*)+~)ev.
We now consider the mapping
JR?— X

defined in §4, whose image Z which is a maximal flat totally geodesic torus of X, and
the vector fields ¢; and (2 on Z. According to (4.8), we see that

o (G, ) (' (0)) = det (v, v;(05),w;(05), vi (Ok), wi (Bk)),
for all = (01,02) € R? and j, k = 1,2; in particular, we have

(122) h1)(<17<2) = ('U,C5>7

where (, ) is the standard Euclidean scalar product on R5. Let ¢ be the element of G
determined by

B(es) = eu, d(es) = es, Bes) = e3, dlej) = ey,
for j = 1,2. When we identify X with the complex quadric @3, we see that the
maximal flat totally geodesic torus ¢(Z) of X is equal to the torus Zj of Q3 considered
in [5] and in §2, Chapter VI of [6]; in fact, the point ¢(61,02) of Zy defined there is
equal to ¢¢/ (61,02 + 7/2), for 61,02 € R; moreover, according to the relation (4.9) the
vector fields & and ng on Zy considered in [5] and [6] are given by

(123) 50 = ¢*<17 o = ¢*<2
Then by (12.2) and (12.3), we have
(12.4) ho(€0,10) = hg-10(C1, G2) = (@7 1w, €5) = (v, e3).

Let 1 be the element of G determined by
P(es) = es, P(es) = ea, ¥(ej) = e,
for j =1,4,5. From the formula (12.4), we infer that
(12.5) (%" he) (&0, M0) = hy-1(€0,M0) = (¥ v, e3) = (v, €2).

We consider the complex-valued function fOJ on X, defined in [4, §2] or §7, Chap-
ter V of [6], and the complex symmetric 2-form k£, defined in [4, §2] or §3, Chapter VI
of [6], which is a section of (S2T*)*~ over X. We also consider certain objects intro-
duced in [4, §9] and use results and notation found there (see also §7, Chapter V and
§7, Chapter VI of [6]). We recall that vy = e; — iea is a highest weight vector of the
G-module C?; it follows that h,, is a highest weight of the G-module c (S2T)E).
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According to Proposition 9.1 of [5] or Proposition 6.25 of [6], we know that the latter
G-module is irreducible and so we have the equality

(05 ((SQT*)E ) (05 ((SQT*)E_)SV;

76,0 70,0

another proof of this equality is given by Lemma 9.5 of [5] or Lemma 6.31 of [6].
According to [4, §9], we know that the G-module oy ((SQT*) ~)°dd s irreducible
and that the symmetric 2-form £~ is a highest weight vector of this module. Since fo 1
is a highest weight vector of the G-module C5 (X )°dd the symmetric 2-form fO,lhvo
is also a highest weight vector of the G-module C’ vd ((S 27*)¢7 )04, Therefore the two
symmetric forms fo 1hy, and k~ differ by a non- zero constant. According to (12.5),
we see that

(1/’*]1171))(507770) =
on the other hand, the relations (4.2) of [5] say that

(" k™)(&o0,m0) = *%Z/J*fo,l-
Thus from the preceding formulas, we see that the forms k£~ and h,,, are related by
(12.6) k™ = %fo,l Py
thus the element ho of C7 D((SZT*)g ~) given by Lemma 9.4 of [5] or Lemma 6.30
of [6] is equal to Shy,.
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