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MÉMOIRES DE LA SMF 108

INFINITESIMAL ISOSPECTRAL
DEFORMATIONS OF THE

GRASSMANNIAN OF 3-PLANES IN R6

Jacques Gasqui

Hubert Goldschmidt
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INFINITESIMAL ISOSPECTRAL DEFORMATIONS OF
THE GRASSMANNIAN OF 3-PLANES IN R6

Jacques Gasqui, Hubert Goldschmidt

Abstract. — We study the real Grassmannian GR
n,n of n-planes in R2n, with n ≥ 3,

and its reduced space. The latter is the irreducible symmetric space ḠR
n,n, which

is the quotient of the space GR
n,n under the action of its isometry which sends a

n-plane into its orthogonal complement. One of the main results of this monograph
asserts that the irreducible symmetric space ḠR

3,3 possesses non-trivial infinitesimal
isospectral deformations; it provides us with the first example of an irreducible reduced
symmetric space which admits such deformations. We also give a criterion for the
exactness of a form of degree one on ḠR

n,n in terms of a Radon transform.

Résumé (Déformations infinitésimales isospectrales de la grassmannienne des 3-plans
dans R6)

Ce mémoire a pour cadre la grassmannienne GR
n,n des n-plans de R2n, avec n ≥ 3,

et son espace réduit ḠR
n,n, qui est l’espace symétrique irréductible, quotient de GR

n,n

par l’involution envoyant un n-plan sur son orthogonal. Un de nos principaux résul-
tats est la construction de déformations infinitésimales isospectrales non triviales sur
ḠR

3,3, obtenant ainsi le premier exemple d’espace symétrique irréductible réduit et
non infinitésimalement rigide. Nous donnons aussi un critère d’exactitude pour les
formes différentielles de degré 1 sur ḠR

n,n, mettant en jeu la nullité d’une transformée
de Radon.

c© Mémoires de la Société Mathématique de France 108, SMF 2007
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Introduction

We pursue our study of the infinitesimal isospectral deformations of Riemannian
symmetric spaces of compact type undertaken in [5] and [6]. Let (X, g) be a Rieman-
nian symmetric space of compact type. Let {gt} be family of Riemannian metrics
on X , with g0 = g. In [14], Guillemin proved that, if the family {gt} is an isospectral
deformation of g (i.e., if the spectrum of the Laplacian of the metric gt is independent
of t), then the corresponding infinitesimal deformation h = d

dtgt|t=0 of the metric g
belongs to the kernel N2 of a certain Radon transform defined on the space of sym-
metric 2-forms on X in terms of integration over the maximal flat totally geodesic
tori of X . The infinitesimal deformation h of g is trivial if it can be written in
the form d

dtϕ
∗
t g|t=0, where {ϕt} is one-parameter family of diffeomorphisms of X , or

equivalently if it is a Lie derivative of the metric g; such Lie derivatives always belong
to the kernel N2. Consequently, we define the space of infinitesimal isospectral defor-
mations I(X) of X to be the orthogonal complement of the space of Lie derivatives
of the metric g in N2. If the space I(X) vanishes, we say that the space (X, g) is
infinitesimally rigid in the sense of Guillemin; under this assumption, an isospectral
deformation of the metric g is trivial to first-order and the space X is infinitesimally
spectrally rigid (i.e., spectrally rigid to first-order).

The question of Guillemin rigidity for the spaces of rank one first arose in conjunc-
tion with the Blaschke problem. The Guillemin rigidity of these spaces which are not
spheres was proved by Michel [19] for the real projective spaces and by Michel [19]
and Tsukamoto [22] for the other projective spaces (see [6]).

The reduced space of X (called the adjoint space in [6]), which is constructed
in [16, Chapter VII], plays a crucial role here; this symmetric space is covered by X
and, when X is irreducible, it is not the cover of another symmetric space. We say
that X is reduced if it is equal to its reduced space.

We showed that a product of irreducible symmetric spaces is not rigid in the sense
of Guillemin (see Theorem 10.5 of [6]). Here we prove that an irreducible space which
is infinitesimally rigid in the sense of Guillemin must necessarily be reduced (Theo-
rem 1.4). In fact, if X is an irreducible space which is not reduced, then X always
possesses an isometry which give rise to symmetric 2-forms which lie in the kernel
N2 of our Radon transform and which are not Lie derivatives of the metric. Thus
the relevant problem concerning infinitesimal isospectral deformations for our class of
symmetric spaces may be formulated as follows: determine the space of infinitesimal
isospectral deformations of an irreducible reduced space.

In [5] and [6], we began to address this problem for spaces of arbitrary rank and
proved that an irreducible symmetric space, which is equal to a Grassmannian, is rigid
in the sense of Guillemin if and only if it is reduced. In fact, the Grassmannians GK

m,n

of m-planes in Km+n, where K is a division algebra over R, with m "= n and m, n ≥ 1,
are rigid. This generalizes the rigidity results for the projective spaces.
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2 J. GASQUI & H. GOLDSCHMIDT

We say that a symmetric p-form u on X satisfies the Guillemin condition if, for
every maximal flat totally geodesic torus Z contained in X and for all parallel vector
fields ζ on Z, the integral ∫

Z
u(ζ, ζ, . . . , ζ) dZ

vanishes, where dZ is the Riemannian measure of Z. The kernel Np of the Radon
transform for p-forms consists precisely of those forms satisfying the Guillemin con-
dition. Thus the space X is rigid in the sense of Guillemin if and only if the only
symmetric 2-forms on X satisfying the Guillemin condition are the Lie derivatives of
the metric g. In [14], Guillemin proved that a symmetric 2-form, which is equal to the
infinitesimal deformation of an isospectral deformation of g, satisfies the Guillemin
condition. In [12] and [13], Grinberg studied the maximal flat Radon transform
for functions on an irreducible space. This transform is known to be injective (i.e.,
the kernel N0 vanishes) whenever X is one of the irreducible reduced spaces studied
in [6]. Here we prove the converse of this result for an arbitrary irreducible space:
the injectivity of this transform can only occur on a reduced space (Theorem 1.4).

In this monograph, we study the real Grassmannian GR
n,n of n-planes in R2n, with

n ≥ 3, and its reduced space. The latter is the irreducible symmetric space ḠR
n,n,

which is the quotient of the space GR
n,n under the action of its isometry which sends

a plane into its orthogonal complement. The first main result of this monograph
asserts that the irreducible symmetric space ḠR

3,3 possesses non-trivial infinitesimal
isospectral deformations (Theorem 6.2); it provides us with the first example of an
irreducible reduced symmetric space which admits such deformations. In fact, we
consider an explicit subspace F of the space of real-valued functions on ḠR

3,3 of finite
codimension, which is orthogonal to the space of constant functions, and construct
an injective mapping

F −→ I
(
ḠR

3,3

)

which we now describe.
The real Grassmannian G̃R

n,n of oriented n-planes in R2n, which is the universal
covering manifold of GR

n,n, carries a symmetric n-form σ which is invariant under its
group of isometries and which is therefore parallel; in fact, the form σ arises from the
volume forms of the two canonical bundles of rank n on G̃R

n,n. This form σ induces
a symmetric n-form on ḠR

n,n and an injective mapping ∗ from the space of 1-forms
on ḠR

n,n to the space of symmetric (n−1)-forms on ḠR
n,n. We then show that a 1-form

θ on ḠR
n,n satisfies the Guillemin condition if and only if the symmetric (n − 1)-form

∗θ satisfies the Guillemin condition. When n = 3, the mapping ∗ sends the space of
1-forms on ḠR

3,3 into the space of symmetric 2-forms on ḠR
3,3. If f is a real-valued

function on ḠR
3,3, the symmetric 2-form ∗df satisfies the Guillemin condition; if f is

a non-zero element of F , we prove that the 2-form ∗df is not a Lie derivative of the
metric of ḠR

3,3 and thus gives rise to a non-zero element of I
(
ḠR

3,3

)
. This construction

MÉMOIRES DE LA SMF 108



INTRODUCTION 3

of infinitesimal deformations is quite specific to this space. The rigidity problem for
the other spaces ḠR

n,n, with n ≥ 4, remains open.
The other principal result of this monograph (Theorem 9.1) states that a 1-form

on the irreducible symmetric space ḠR
n,n satisfying the Guillemin condition is exact.

Here we prove it when n = 3; then the induction argument given in §2, Chapter VII
of [6] provides us with the result for the other spaces ḠR

n,n (see Proposition 7.21
of [6]). For all the spaces which we had studied previously, the behavior of 1-forms
and 2-forms with respect to the injectivity of the corresponding Radon transform is
always the same. It is interesting to note that ḠR

3,3 is the first example of a symmetric
space for which we have injectivity of our Radon transform for functions and 1-forms
and non-injectivity for 2-forms.

The harmonic analysis on the homogeneous space G̃R
3,3 of the group SO(6) plays

an important role in the proofs of our two main results. We require an explicit
description of the highest weight vectors of the isotypic components of the space of
complex forms degree one on G̃R

3,3. In §§6 and 7, we express these vectors in terms
of certain functions and 1-forms on this space, which are introduced in §5 by means
of the corresponding Stiefel manifold. Here we also need to know the multiplicities of
these isotypic components; they are computed by means of branching laws which are
to be found in §10. Our description allows us to tell which of these highest weight
vectors arise from objects defined on the quotient spaces GR

3,3 and ḠR
3,3 of G̃R

3,3.
In order to demonstrate Theorem 6.2, we must determine when the symmetric

2-form ∗df , where f is a non-constant function on ḠR
3,3, is a Lie derivative of the

metric; for this result, we need only to consider the isotypic components corresponding
to the irreducible representations of SO(6) which appear in the decomposition of the
space of functions on G̃R

3,3.
Sections 7, 8 and 9 are devoted to the proof of our criterion for the exactness of

forms of degree one on the space ḠR
3,3 (Theorem 9.1). In particular, in §7 we complete

our description of the isotypic components of the space of 1-forms on G̃R
3,3. For the

proof of this criterion, we are obliged to show that certain linear combinations of the
highest weight vectors of these isotypic components satisfying the Guillemin condition
are either exact or vanish. These verifications, which we carry out in §9, depend in
a crucial way on results concerning polynomials in one variable which arise from the
integration of the highest weight vectors over suitably chosen maximal flat tori of
the space G̃R

3,3. The properties of these polynomials are presented separately in §8, a
section which can be read independently of the rest of this paper. In fact, we obtain
a whole class of combinatorial identities; one of these is proved by means of the WZ
theory described in [20].

The symmetrized covariant derivative of a symmetric (p− 1)-form on a symmetric
space X of compact type is a symmetric p-form satisfying the Guillemin condition.
Verifying that the only symmetric p-forms which satisfy the Guillemin condition are

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



4 J. GASQUI & H. GOLDSCHMIDT

precisely the symmetrized covariant derivatives of symmetric (p − 1)-forms is an in-
jectivity question for Radon transforms which unifies the problems considered above,
namely, the injectivity question for the maximal flat Radon transform for functions
on X , the problem concerning the exactness of 1-forms and the Guillemin rigidity
problem for X . For the real projective spaces, this verification was carried out in all
degrees (see §3, Chapter III of [6]). This monograph provides a further geometric mo-
tivation for this question when p ≥ 3. In fact, if f is a non-constant function on ḠR

n,n,
when n ≥ 4 it would be interesting to know whether the symmetric (n − 1)-form ∗df ,
which satisfies the Guillemin condition, is a symmetrized covariant derivative of a
symmetric (n − 2)-form. Here we show that this does not hold when n = 3.

As we saw above, the existence of the non-trivial invariant symmetric 3-form
on G̃R

3,3 is a fundamental element in the construction of our space of non-zero infinites-
imal deformations of ḠR

3,3. This leads us to determine in §2 which simply-connected
irreducible symmetric spaces admit invariant symmetric 3-forms and construct these
forms for three classes of spaces. The symmetric 3-form σ on G̃R

3,3 can be viewed
as arising from a symmetric form on one of these classes of symmetric spaces, the
special Lagrangian Grassmannians SU(n)/SO(n), with n ≥ 3. Such a space admits
a non-trivial 3-form σ3 invariant under its group of isometries and this form is unique
up to a constant. In fact, in §11 we show that the Grassmannian G̃R

3,3 is isometric to
the special Lagrangian Grassmannian SU(4)/SO(4) and that the symmetric 3-form
σ on G̃R

3,3 can be viewed as a constant multiple of the form σ3 on SU(4)/SO(4). Fur-
thermore, we describe in §3 all the invariant symmetric forms on the space G̃R

n,n. In
view of this isometry, we investigate in [7] the infinitesimal spectral deformations of
the reduced space of the special Lagrangian Grassmannian SU(n)/SO(n), with n ≥ 3,
and prove the analogue of Theorem 6.2 for this space.

We have preferred to present the branching laws, needed to compute the multi-
plicities of the SO(6)-modules appearing in §6, in a separate section (§10) in a way
that is essentially independent of the rest of this monograph. This is done for the
convenience of the reader and to allow us to refer to them readily in our study of the
Lagrangian Grassmannians.

Finally, in §12 we give an explicit construction due to Bryant of a certain space of
symmetric 2-forms on the Grassmannian G̃R

3,3. This space was originally introduced
in [5] and does not appear elsewhere in this monograph. Various properties of forms
belonging to this space, which are given in [5], are derived here directly from their
definition. Also we may view §1 as a complement to §4, Chapter II of [6].

We would like to express our deep gratitude to H. Wilf for his verification of the
identity of Lemma 8.1 and to M. Brion for providing us with proofs of Proposition 6.3
and the propositions presented in §10. We also wish to thank S. Helgason and M. Räıs
for providing us with the requisite references for the results concerning invariant poly-
nomials which can be found in §§2 and 3.
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1. SYMMETRIC SPACES OF COMPACT TYPE 5

1. Symmetric spaces of compact type and the Guillemin condition

Let X be a differentiable manifold, whose tangent and cotangent bundles we denote
by T = TX and T ∗ = T ∗

X , respectively. Let C∞(X) (resp. C∞
R (X)) be the space of

complex-valued (resp. real-valued) functions on X . Let R(X) denote the subspace
of C∞

R (X) consisting of the constant functions on X . Let E be a vector bundle
over X ; we denote by EC its complexification, by E the sheaf of sections of E over X
and by C∞(E) = C∞(X, E) the space of global sections of E over X . By

⊗kE,
SlE,

∧jE, we shall mean the k-th tensor product, the l-th symmetric product and
the j-th exterior product of the vector bundle E, respectively. We shall identify
SkT ∗ and

∧kT ∗ with sub-bundles of
⊗kT ∗ as in §1, Chapter I of [6]. In particular,

if α, β ∈ T ∗, the symmetric product α · β is identified with the element α⊗ β + β ⊗α
of

⊗2T ∗. If u is a section of SpT ∗ over X , we consider the morphism of vector
bundles

u! : T −→ Sp−1T ∗,

defined by
(u!ξ)(η1, . . . , ηp−1) = u(ξ, η1, . . . , ηp−1),

for ξ, η1, . . . , ηp−1 ∈ T .
Let g be a Riemannian metric on X . We denote by g" : T ∗ → T the inverse of the

isomorphism g! : T → T ∗. For p ≥ 2, we consider the trace mapping

Tr : SpT ∗ −→ Sp−2T ∗;

its kernel Sp
0T ∗ consists of all traceless symmetric p-forms. If u is a section of SpT ∗

over X , we consider the morphism of vector bundles

ũ = u! · g" : T ∗ −→ Sp−1T ∗.

We also consider the scalar products on the spaces C∞(X), C∞(T ) and C∞(S2T ∗),
defined in terms of the Riemannian measure of X and the scalar products on the
vector bundles T and S2T ∗ induced by the metric g. We denote by C∞

R,0(X) the
orthogonal complement of the subspace R(X) of C∞

R (X).
Let ∇ be the Levi-Civita connection of (X, g); if f is a real-valued function on X ,

we denote by Hess f = ∇df the Hessian of f . The Killing operator

D0 : T −→ S2T ∗

of (X, g), which sends a vector field ξ into the Lie derivative Lξg of g along ξ of g
along ξ, and the symmetrized covariant derivative

D1 : T ∗ −→ S2T ∗,

defined by
(D1θ)(ξ, η) = 1

2 ((∇θ)(ξ, η) + (∇θ)(η, ξ)),
for θ ∈ T ∗, ξ, η ∈ T , are related by the formula

(1.1) 1
2D0ξ = D1g!(ξ),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



6 J. GASQUI & H. GOLDSCHMIDT

for ξ ∈ T . We easily see that

(1.2) D1(f1df2) = 1
2df1 · df2 + f1 Hess f2,

for all f1, f2 ∈ C∞(X). We also consider the divergence operator

div : S2T ∗ −→ T ∗,

which is defined in §1, Chapter I of [6]; we recall that the formal adjoint of D0 is
equal to 2g" · div : S2T ∗ → T . When X is compact, since the operator D0 is elliptic,
we therefore have the orthogonal decomposition

(1.3) C∞(S2T ∗) = D0C
∞(T ) ⊕ { h ∈ C∞(S2T ∗) | divh = 0 }

given by the relation (1.11) of [6]; we denote by

P : C∞(S2T ∗) −→ { h ∈ C∞(S2T ∗) | div h = 0 }

the projection determined by the decomposition (1.3).
We now suppose that X is a symmetric space of compact type. As S0T ∗

C is the
trivial complex line bundle, we may identify C∞(X) with C∞(S0T ∗

C). We consider
the subspace Np of C∞(SpT ∗) consisting of all symmetric p-forms satisfying the
Guillemin condition; the complexification Np,C of Np shall be viewed as the subspace
of C∞(SpT ∗

C) consisting of all complex symmetric p-forms satisfying the Guillemin
condition. The space Np is the kernel of the maximal flat Radon transform for sym-
metric p-forms on X defined in Chapter II of [6]. Below we shall be concerned with
the injectivity of this Radon transform for functions on X .

We recall that D0C∞(T ) is a subspace of N2 (see Lemma 2.10 of [6]). We define
the space of infinitesimal isospectral deformations of g by

I(X) = { h ∈ N2 | div h = 0 }.

From the decomposition (1.3), we obtain the orthogonal decomposition

(1.4) N2 = D0C
∞(T ) ⊕ I(X);

moreover, the orthogonal projection of N2 onto I(X) is equal to the restriction of
the projection P to N2. Thus the vanishing of the space I(X) is equivalent to the
fact that the space X is rigid in the sense of Guillemin. Moreover if there exists a
symmetric 2-form on X belonging to N2 which is not equal to a Lie derivative of the
metric g, the space I(X) does not vanish.

We know that there is a Riemannian symmetric pair (G, K) of compact type, where
G is a compact, semi-simple Lie group and K is a closed subgroup of G, such that
the space X is isometric to the homogeneous space G/K endowed with a G-invariant
metric. We shall identify X with G/K. We shall denote by g0 the Lie algebra of G
and by B its Killing form. The pair (G, K) is associated to an orthogonal symmetric
Lie algebra (g0, θ) of compact type, where θ is an involutive automorphism of g0. The
space C∞(T ) and the spaces C∞(SpT ∗) and C∞(SpT ∗

C) of symmetric p-forms on X
inherit structures of G-modules from the action of G on X .

MÉMOIRES DE LA SMF 108



1. SYMMETRIC SPACES OF COMPACT TYPE 7

Since the connection ∇ is independent of the choice of the G-invariant metric g
(see Corollary 4.3, Chapter IV of [16], by formula (1.1) we see that the spaces Np and
D0C∞(T ) depend only on the symmetric space X and not on the choice of metric
g of X . Hence the vanishing of N0 or the Guillemin rigidity of X are properties of
the symmetric space X which are independent of the choice of the G-invariant metric
of X .

If X is irreducible, then the metric g is proportional to the G-invariant Riemannian
metric on G/K induced by −B. Hence in this case, the space I(X) does not depend
on the choice of the G-invariant metric on X .

Let Σ be a finite group of isometries of X of order m; suppose that the ele-
ments of Σ commute with the action of G on X . If Σ′ is a subgroup of Σ, then
the space C∞(SpT ∗

C)Σ
′

consisting of all Σ′-invariant sections of C∞(SpT ∗
C) is a

G-submodule of C∞(SpT ∗
C); we denote by C∞(SpT ∗

C)Σ
′⊥ the orthogonal com-

plement of C∞(SpT ∗
C)Σ

′
in C∞(SpT ∗

C). If τ is an element of Σ and λ ∈ C, we
denote by C∞(SpT ∗

C)τ,λ the G-submodule of C∞(SpT ∗
C) consisting of all elements u

of C∞(SpT ∗
C) satisfying

τ∗u = λu.

We suppose that the group Σ acts freely on X ; then the quotient Y = X/Σ is a
manifold and the natural projection + : X → Y is an m-fold covering. Thus the
metric g induces a Riemannian metric gY on Y such that +∗gY = g. Clearly the
space Y is locally symmetric and is a homogeneous space of G.

Let (G, K ′) be another Riemannian symmetric pair associated with the orthogonal
symmetric Lie algebra (g0, θ). Assume that K is a subgroup of K ′ and that there
exists a G-equivariant diffeomorphism ϕ : Y → G/K ′ which has the following prop-
erty: when we identify X with G/K, the projection ϕ ◦ + is equal to the natural
projection G/K → G/K ′. Under these conditions, the space (Y, gY ) is isometric to
the symmetric space G/K ′ of compact type endowed with a G-invariant metric.

Let Z be a maximal flat totally geodesic torus of X . Then +(Z) is a flat torus
of Y . On the other hand, if Z ′ is a maximal flat totally geodesic torus of Y , then
+−1(Z ′) is a totally geodesic flat torus of X . From these observations, it follows that
Z = +−1(Z ′), where Z ′ = +(Z); we also see that the rank of Y is equal to the rank
of X and that the induced mapping + : Z → Z ′ is a m-fold covering. Moreover, the
torus Z is invariant under the group Σ. A parallel vector field ξ on Z is +-projectable,
i.e., there exists a parallel vector field ξ̂ on Z ′ = +(Z) such that +∗ξ(x) = ξ̂(+(x)),
for all x ∈ Z. Conversely, any parallel vector field on Z ′ is of the form +∗ξ, for some
parallel vector field ξ on Z. It follows that a parallel vector field on Z is invariant
under all the elements of Σ.

We denote by {τk}1≤k≤m the m distinct elements of Σ. Then we see that there
exists an open subset Z0 of Z such that the sets τj(Z0) and τk(Z0) are disjoint for
all 1 ≤ j, k ≤ m, with j "= k, and such that the complement of the union ∪m

k=1τk(Z0)
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in Z has measure zero. Therefore if f is a function on Z, we see that
∫

Z
f dZ =

m∑

k=1

∫

Z0

τ∗
k f dZ.

If u is a symmetric p-form on X and ξ is a parallel vector field on Z, from the previous
relation we obtain the equality

(1.5)
∫

Z
u(ξ, ξ, . . . , ξ) dZ =

m∑

k=1

∫

Z0

(τ∗
k u)(ξ, ξ, . . . , ξ) dZ.

If u is invariant under Σ and û is the symmetric p-form on Y such that u = +∗û, and
if ξ̂ be the parallel vector field on Z ′ such that +∗ξ = ξ̂, then we have

u(ξ, ξ, . . . , ξ) = +∗û(ξ̂, ξ̂, . . . , ξ̂);

from (1.5), we now obtain the equality
∫

Z
u(ξ, ξ, . . . , ξ) dZ = m

∫

Z′
û(ξ̂, ξ̂, . . . , ξ̂) dZ ′.

Let p be a given integer ≥ 3 and let σ be a non-zero symmetric p-form on X which
is invariant under the group Σ. Then the symmetric form σ induces a symmetric
p-form σY on Y such that

σ = +∗σY .

We consider the morphism of vector bundles

σ̃Y : T ∗
Y −→ Sp−1T ∗

Y

induced by the symmetric p-form σY ; if ϕ is a 1-form on Y , we have

(1.6) +∗σ̃Y (ϕ) = σ̃(+∗ϕ).

The following lemma is a direct consequence of Lemma 2.17 of [6] or the previous
discussion.

Lemma 1.1. — Suppose that the quotient Y = X/Σ is isometric to the symmetric
space G/K ′. Let p ≥ 3 be a given integer and let σ be a symmetric p-form on X which
is invariant under the group Σ. Suppose that the following condition holds: a 1-form
ϕ on X satisfies the Guillemin condition if and only if the symmetric (p − 1)-form
σ̃(ϕ) on X satisfies the Guillemin condition. Then a 1-form ψ on Y satisfies the
Guillemin condition if and only if the symmetric (p − 1)-form σ̃Y (ψ) on Y satisfies
the Guillemin condition.

Suppose that p = 3 and that the mapping

σ̃ : T ∗ −→ S2T ∗

is a monomorphism; then the mapping

σ̃Y : T ∗
Y −→ S2T ∗

Y
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is also a monomorphism. Assume that the following is true: if ϕ is a 1-form on X satis-
fying the Guillemin condition, the symmetric 2-form σ̃(ϕ) also satisfies the Guillemin
condition. Then if f is an element of C∞

R (X), the symmetric 2-form σ̃(df) satisfies
the Guillemin condition. Thus if P is the orthogonal projection corresponding to the
decomposition (1.3) on the space X , the mapping

Pσ : P σ̃d : C∞
R (X) −→ I(X)

is well-defined. Clearly, if f is an element of C∞
R (X), then σ̃df is a Lie derivative of

the metric if and only if Pσf = 0. A subspace A of C∞
R,0(X) satisfies the relation

(1.7) D0C
∞(T ) ∩ σ̃dC∞

R (X) = σ̃dA

if and only if the kernel of the mapping Pσ is equal to the subspace R(X) ⊕A
of C∞

R (X).

Proposition 1.2. — Suppose that the quotient Y = X/Σ is isometric to the sym-
metric space G/K ′. Let σ be a symmetric 3-form on X which is invariant under the
group Σ; suppose that σ̃ : T ∗ → S2T ∗ is a monomorphism of vector bundles. Suppose
that the following condition holds: a 1-form ϕ on X satisfies the Guillemin condition
if and only if the symmetric 2-form σ̃(ϕ) on X satisfies the Guillemin condition. Let
AY be a finite-dimensional subspace of C∞

R,0(Y ) and let FY be the orthogonal comple-
ment of F ′

Y = R(Y )⊕AY in C∞
R (Y ). If the subspace A = +∗AY of C∞

R,0(X) satisfies
the relation (1.7), then the following assertions hold:

(i) The symmetric space Y is not rigid in the sense of Guillemin
(ii) If f is a non-zero element of FY , then the symmetric 2-form σ̃Y (df) on Y

satisfies the Guillemin condition and is not a Lie derivative of the metric.
(iii) The relation

D0C
∞(TY ) ∩ σ̃Y dC∞

R (Y ) = σ̃Y dAY

holds and the kernel of the mapping

(1.8) PσY = P σ̃Y d : C∞
R (Y ) −→ I(Y )

is the finite-dimensional space F ′
Y .

Proof. — According to Lemma 1.1, the mapping (1.8) is well-defined. If f is an
element of C∞

R (Y ), by (1.6) we have the equality +∗σ̃Y (df) = σ̃(d+∗f); according
to (1.7), we easily see that the following assertions are equivalent:

(a) PσY f = 0;
(b) the symmetric 2-form σ̃Y (df) is a Lie derivative of the metric gY ;
(c) the symmetric 2-form σ̃(d+∗f) is a Lie derivative of the metric g;
(d) Pσ+∗f = 0;
(e) the function +∗f belongs to the subspace R(X) ⊕A of C∞

R (X);
(f) the function f belongs to F ′

Y .
The proposition is an immediate consequence of this observation.
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In fact, the orthogonal complement FY of F ′
Y which appears in the preceding

proposition consists of all functions f of C∞
R (Y ) satisfying

∫

Y
f dY = 0,

∫

Y
fϕ dY = 0,

for all ϕ ∈ AY , and we have the orthogonal decomposition

C∞
R (Y ) = F ′

Y ⊕ FY = R(Y ) ⊕AY ⊕ FY .

We now consider an element τ of Σ of order q ≥ 2; let λ be a primitive q-th root
of unity. For 0 ≤ k ≤ q − 1, we consider the endomorphism µk of the G-module
C∞(SpT ∗

C) defined by
µk(u) =

1
q

q∑

r=1

λrk · τq−r∗u,

for all u ∈ SpT ∗
C , and we easily verify that

(1.9) τ∗µk(u) = λkµk(u),

for all u ∈ SpT ∗
C , and hence that µk is a projection onto the subspace C∞(SpT ∗

C)τ,λk

.
Since we know that

(1.10) 1 + λk + λ2k + · · · + λ(q−1)k = 0,

for 1 ≤ k ≤ q − 1, we have

(1.11)
q−1∑

k=0

µk(u) = u,

for all u ∈ SpT ∗
C . Since τ has no fixed points, by (1.9) and (1.11) we know that the

subspaces C∞(SpT ∗
C)τ,λk

are non-zero and we obtain the direct sum decomposition

C∞(SpT ∗
C) =

q−1⊕
k=0

C∞(SpT ∗
C)τ,λk

of C∞(SpT ∗
C) into G-submodules. Hence if Σ′ is equal to the cyclic group of or-

der q generated by τ , we have the equality C∞(SpT ∗
C)Σ

′
= C∞(SpT ∗

C)τ,1 and the
decomposition

(1.12) C∞(SpT ∗
C)Σ

′⊥ =
q−1⊕
k=1

C∞(SpT ∗
C)τ,λk

.

Proposition 1.3. — Suppose that the quotient Y = X/Σ is isometric to the sym-
metric space G/K ′. Suppose that Σ is a product Σ′ × Σ′′ of two subgroups, where Σ′

is a cyclic group of order q ≥ 2 generated by an isometry τ . Let λ be a primitive q-th
root of unity. Then the following assertions hold:

(i) A complex symmetric p-form u on X which satisfies the relation τ∗u = λu
also satisfies the Guillemin condition, and we have the inclusion

C∞(SpT ∗
C)Σ

′⊥ ⊂ Np,C.

(ii) The maximal flat Radon transform for functions on X is not injective.
(iii) The space X is not rigid in the sense of Guillemin.
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Proof. — Suppose that the subgroup Σ′′ of Σ is of order r and let {τ1, . . . , τr} be the
r distinct elements of Σ′′. Let Z be a maximal flat totally geodesic torus of X and
let Z0 be an open subset of Z possessing the properties described above with respect
to integration over Z. Let u be a symmetric p-form on X and ξ be a parallel vector
field on Z. According to equality (1.5), we have

∫

Z
u(ξ, . . . , ξ) dZ =

r∑

j=1

∫

Z0

τ∗
j (u + τ∗u + τ2∗u + · · · + τq−1∗u)(ξ, . . . , ξ) dZ.

Hence if u is a complex symmetric p-form on X satisfying τ∗u = λku, with
1 ≤ k ≤ q − 1, from the equality (1.10) we infer that

∫

Z
u(ξ, . . . , ξ) dZ = 0.

Therefore an arbitrary element of C∞(SpT ∗
C)Σ

′⊥ satisfies the Guillemin condition.
Assertion (ii) is an immediate consequence of (i), with p = 0. We now construct an
element of C∞(S2T ∗

C)Σ
′⊥ which is not a Lie derivative of the metric. Let B be the sub-

bundle of
∧2T ∗ ⊗

∧2T ∗ consisting of all tensors satisfying the Bianchi identity. The
differential operator D1 of order 2 on X defined in Chapter I of [6] acts on C∞(S2T ∗)
and takes its values in the space of sections of a quotient bundle of B; we recall that,
if the restriction of an element h of C∞(S2T ∗) to an open subset V of X is a Lie
derivative of the metric, then D1h vanishes on V . Now let x be a point of X and
U be a open neighborhood of x for which U ∩ τk(U) = ∅, for all 1 ≤ k ≤ q − 1.
According to the argument given in the course of the proof of Proposition 2.22 of [6],
we may choose an element h of C∞(S2T ∗) whose support is contained in U and which
satisfies (D1h)(x) "= 0; thus h is not a Lie derivative of the metric on any neighborhood
of x. The symmetric 2-form

h′ =
q−1∑

k=0

λq−k · τk∗h

on X satisfies τ∗h′ = λh′ and its restriction to U is equal to h. By (1.12), the
symmetric 2-form h′ belongs to C∞(S2T ∗

C)Σ
′⊥, and therefore satisfies the Guillemin

condition. Clearly, the element of C∞(S2T ∗) equal to the real part of h′ also has
these properties and its restriction to U is equal to h; thus the space X is not rigid
in the sense of Guillemin.

We now define the reduced space of the symmetric space X ; this will provide us with
examples of symmetric spaces X and Y satisfying the conditions considered above. In
the following discussion based on §9, Chapter VII of [16], if (G′, K ′) is a Riemannian
symmetric pair associated with the orthogonal symmetric Lie algebra (g0, θ), we shall
always endow the symmetric space G′/K ′ with the unique G′-invariant metric induced
by −B. We may suppose that G is the identity component of the group of isometries
of X , that K is the isotropy group of G at some point of X and that the metric g
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of X is induced by −B. The fixed point set of the involutive automorphism θ of g0

contains no non-trivial ideal of g0. Let G̃ be the simply-connected Lie group with Lie
algebra g0 and let θ̃ be the automorphism of G̃ determined by θ. If K̃ is the subgroup
of G̃ equal to the set of fixed points of θ̃, then (G̃, K̃) is a Riemannian symmetric pair
associated with (g0, θ) and G̃/K̃ is the simply-connected symmetric space of compact
type, which is the universal covering space of X .

If Z̃ denotes the center of G̃ and S is a subgroup of Z̃, we consider the subgroup

KS = { a ∈ G̃ | a−1θ̃(a) ∈ S }

of G̃. Let ϕ : G̃ → G is the natural projection and K∗ be the subgroup ϕ−1(K) of G.
Then there exists a θ̃-invariant subgroup S of the center Z̃ of G̃ such that G = G̃/S.
It is easily seen that K∗ is θ̃-invariant and that

K = K∗/S, K̃S ⊂ K∗ ⊂ KS ,

and so (G̃, K∗) is a Riemannian symmetric pair associated with (g0, θ) and we have

X = G̃/K∗.

Also (G̃, KZ̃) is a Riemannian symmetric pair and G̃/KZ̃ is a symmetric space as-
sociated to the orthogonal symmetric pair (g0, θ); moreover, X is a covering space
of the symmetric space G̃/KZ̃ via the natural projection G̃/K∗ → G̃/KZ̃ obtained
from the inclusion K∗ ⊂ KZ̃ . The symmetric space G̃/KZ̃ is called the reduced (or
adjoint) space of X or of the simply-connected space G̃/K̃. If the symmetric space X
is isometric to its reduced space, we say that X is reduced. In fact, any symmetric
space X ′ associated to the orthogonal symmetric Lie algebra (g0, θ) covers the reduced
space G̃/KZ̃ and is covered by G̃/K̃ (see Theorem 9.1 and Corollary 9.3, Chapter VII
of [16]). In §9, Chapter VII of [16], the symmetric space G̃/KZ̃ is called the adjoint
space of orthogonal symmetric Lie algebra (g0, θ).

According to the classification of the irreducible symmetric spaces of compact type
(see §6 and Exercises C, Chapter X of [16]), if X is irreducible, the group of cover-
ing transformations of the covering mapping X → G̃/KZ̃ is an abelian group Σ of
isometries of X commuting with the action of G and is equal either to a cyclic group
or to a product of two cyclic groups of order 2. In fact, the group Σ is a product of
two cyclic groups of order 2 only when X is the real Grassmannian G̃R

n,n of §3 or the
group Spin(2n), where in both cases n is an even integer ≥ 4 .

The n-sphere Sn, with n ≥ 2, is an irreducible symmetric space of rank one,
which is not reduced; its reduced space is the real projective space RPn. According to
Proposition 1.3, the maximal flat Radon transform for functions on Sn is not injective
and the sphere Sn is not rigid in the sense of Guillemin (see also Proposition 2.22
of [6]). Proposition 2.16 of [6] now gives us the first assertion of the next theorem.
According to the observations made in the preceding paragraph and Proposition 1.3,
if X is an irreducible symmetric space and if either the maximal flat Radon transform
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for functions on X is injective or X is rigid in the sense of Guillemin, then X must
be reduced. Thus we have proved the following result:

Theorem 1.4. — Let X be an irreducible symmetric space of compact type.
(i) If X is rigid in the sense of Guillemin, the maximal flat Radon transform for

functions on X is injective.
(ii) If the maximal flat Radon transform for functions on X is injective, then X is

reduced.

In [13], Grinberg conjectures that the converse of assertion (ii) of the preceding
theorem holds and proposes an outline for a possible proof. In fact, this converse is
known to hold for all the Grassmannians which are reduced; it also is true for the
reduced space of a Grassmannian which is not reduced (see [6]).

If the space X is a product of irreducible symmetric spaces X1, . . . , Xm, its reduced
space is equal to the product of the reduced spaces of the Xj ; from the observations
made above, we infer that the group of covering transformations of the covering map-
ping X → G̃/KZ̃ is an abelian group Σ of isometries of X commuting with the
action of G and is a product of cyclic subgroups. In fact, if X is simply-connected,
by Proposition 5.5, Chapter VIII of [16], it may always be written as such a prod-
uct. Then according to Proposition 1.3, we obtain the following generalization of
Theorem 1.4,(ii):

Theorem 1.5. — Let X be a symmetric space of compact type which is equal to a
product of irreducible spaces. If the maximal flat Radon transform for functions on X
is injective, then X is reduced.

If X is a product X1×X2×· · ·×Xm of m irreducible symmetric spaces, with m ≥ 2,
and if the factors X1 and X2 of this product are not equal to simple Lie groups, by
Proposition 10.1 and Theorem 10.5 of [6], we know that the space X is not rigid in
the sense of Guillemin.

2. Invariant symmetric forms on symmetric spaces

If V is a real vector space, we denote by P (V ) the algebra of real-valued polyno-
mials on V and by S(V ) =

⊕
k≥0 SkV the symmetric algebra over V , where SkV is

the k-th symmetric product of V . We shall identify the algebras P (V ) and S(V ∗)
via the isomorphism of algebras P (V ) → S(V ∗), which associates to a homogeneous
polynomial q ∈ P (V ) of degree p the unique element q̂ of SpV ∗ determined by

q̂(v, . . . , v) = q(v),

for all v ∈ V . If H is a group which acts on V , we consider the subalgebra

S(V )H =
⊕
k≥0

(SkV )H
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of S(V ) consisting of all its H-invariant elements; in this equality, the component
(SkV )H is the subspace of SkV consisting of all H-invariant elements of SkV . In
fact, the space S(V ∗)H is identified with the algebra of all H-invariant polynomials
on V .

Let X be a symmetric space of compact type. As in §1, we consider the Rieman-
nian symmetric pair (G, K) of compact type, where G is a compact, semi-simple Lie
group and K is a closed subgroup of G, such that the space X is isometric to the
homogeneous space G/K endowed with a G-invariant metric; we shall identify X
with G/K. We denote by g0 and k0 the Lie algebras of G and K. The pair (G, K) is
associated to an orthogonal symmetric Lie algebra (g0, θ) of compact type, where θ
is an involutive automorphism of g0. We consider the Cartan decomposition

(2.1) g0 = k0 ⊕ p0

of g0, where p0 is the K-submodule of g0 equal to the eigenspace of θ corresponding
to the eigenvalue −1. We identify p0 with the tangent space of X at the coset x0

of the identity element of G. If p ≥ 2 is a given integer, an element q of (Spp∗0)K

gives rise to a unique G-invariant symmetric p-form σ(q) on X whose restriction to
the tangent space of X at x0 is equal to q, and every G-invariant symmetric p-form
arises in this way. The restriction B0 of the Killing form B of g0 to its subspace p0

is non-degenerate and is an element of (S2p∗0)K . The symmetric 2-form −σ(B0) is
a G-invariant Riemannian metric on X ; if X is irreducible, it is equal to the metric
of X induced by −B considered in §1.

Let σ be a non-zero G-invariant symmetric p-form on X , with p ≥ 2; clearly, σ is
parallel, i.e., we have ∇σ = 0. The morphisms

σ! : T −→ Sp−1T ∗, σ̃ : T ∗ −→ Sp−1T ∗

induced by σ are G-equivariant; if X is an irreducible symmetric space and σ is non-
zero, they are monomorphisms of vector bundles. If p = 3, we easily see that the form
σ is traceless, i.e., Trσ = 0; it follows directly that

Trσ!(ξ) = 0,

for all ξ ∈ T , and so in this case we have G-equivariant morphisms

σ! : T −→ S2
0T ∗, σ̃ : T ∗ −→ S2

0T ∗.

Throughout the remainder of this section, we suppose that X is an irreducible
simply-connected symmetric space. By the Chevalley restriction theorem (see, for ex-
ample, Theorem 3.1.2 of [24]) and the classification of the invariants for finite reflec-
tion groups, if l is the rank of X , there exist l homogeneous algebraically independent
generators {p1, . . . , pl} of the algebra S(p∗0)K of positive degree such that S(p∗0)K is
isomorphic to R[p1, . . . , pl]. The degrees {d1, . . . , dl} of the polynomials {p1, . . . , pl}
are independent of the choice of the algebraically independent generators; without
any loss of generality, we shall suppose that dj ≤ dj+1, for 1 ≤ j ≤ l − 1. Moreover,
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we have d1 = 2 and dj > 2, for 2 ≤ j ≤ l; thus the space (S2p∗0)K is one-dimensional
and the element p1 of S2p∗0 is equal to a multiple of B0. Furthermore, there exists a
non-zero element of (S3p∗0)K if and only if l ≥ 2 and d2 = 3.

We now determine the space S(p∗0)K for three classes of irreducible simply-
connected symmetric spaces. Let n be a given integer ≥ 3. For p ≥ 2, we consider the
SU(n)-invariant homogeneous polynomial Qp of degree p on the Lie algebra su(n)
defined by

Qp(A) = (−i)p TrAp,

for A ∈ su(n); we easily verify that Qp is real-valued. The Killing form of su(n) is
equal to −2nQ1. It is well-known that the algebra of all SU(n)-invariant polynomials
on su(n) is generated by the polynomials Qp, with 2 ≤ p ≤ n, and that these polynomi-
als are algebraically independent. The polynomial Qp induces a non-zero bi-invariant
p-form σ′

p on the group SU(n). The 2-form σ′
2 is a bi-invariant Riemannian metric

on SU(n) and, endowed with this metric, the simple group SU(n) may be viewed as
an irreducible symmetric space of compact type. If G = SU(n)×SU(n) and K is the
subgroup { (x, x) | x ∈ SU(n) } of G, then (G, K) is a Riemannian symmetric pair
and the homogeneous space G/K is diffeomorphic to SU(n); moreover, the metric σ′

2

on SU(n) determines a G-invariant metric on G/K (see §6, Chapter IV of [16]). In
this case, we have k0 = p0 = su(n), the polynomial Qp belongs to (Spp∗0)K and the
polynomials Q2, . . . , Qn are algebraically independent generators of the space S(p∗0)K .
Also the form σ′

p on SU(n) is equal to σ(Qp), for p ≥ 2.
Now let G be the group SU(n) and let K be the subgroup SO(n), which is equal

to the set of fixed points of the involution s of G sending a matrix into its complex
conjugate. Then (G, K) is a Riemannian symmetric pair. In the Cartan decomposi-
tion (2.1) of the Lie algebra g0 of G corresponding to this involution, the K-submodule
p0 is the space of all symmetric purely imaginary n × n matrices of trace zero. En-
dowed with the G-invariant Riemannian metric g0 = −σ(B0), the homogeneous space
X = G/K is an irreducible symmetric space of type AI called the special Lagrangian
Grassmannian.

The restriction qp of the G-invariant polynomial Qp on g0 = su(n) to p0 is K-
invariant. It is well-known that the polynomials q2, . . . , qn are algebraically indepen-
dent generators of the algebra S(p∗0)K (see, for example, [10, p. 560]. For p ≥ 2, we
consider the G-invariant p-form σp = σ(qp) on X . It is easily verified that

σ3(φ1, φ2, φ3) = i Tr (φ1 · φ2 · φ3),

for all φ1, φ2, φ3 ∈ p0; the product on the right-hand side of this equality is the product
of the elements of p0 viewed as matrices. The metric g0 is equal to the symmetric
2-form 2n · σ2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



16 J. GASQUI & H. GOLDSCHMIDT

Next, we consider the 2n × 2n matrix

Jn =
(

0 In

−In 0

)
,

where In is the unit matrix of order n. Let G be the group SU(2n) and let K be the
subgroup Sp(n) of G, which is equal to the set of fixed points of the involution s of G
sending an element A ∈ G into JnĀJ−1

n . Then (G, K) is a Riemannian symmetric
pair. In the Cartan decomposition (2.1) of the Lie algebra g0 of G corresponding to
this involution, the K-submodule p0 is the space of all 2n × 2n matrices given by

p0 =
{(

Z1 Z2

Z̄2 −Z̄1

) ∣∣∣∣ Z1 ∈ su(n), Z2 ∈ so(n, C)
}

.

Endowed with the G-invariant Riemannian metric g0 = −σ(B0), the homogeneous
space X = G/K is an irreducible symmetric space of type AII (see §2, Chapter X
of [16]).

The restriction q̂p of the G-invariant polynomial Qp on g0 = su(n) to p0 is K-
invariant. It is well-known that the polynomials q̂2, . . . , q̂n are algebraically indepen-
dent generators of the algebra S(p∗0)K (see, for example, [10, p. 560]). For p ≥ 2,
we consider the G-invariant p-form σ̂p = σ(q̂p) on X . The metric g0 is equal to the
symmetric 2-form 4n · σ̂2.

For the three irreducible symmetric spaces

SU(n), SU(n)/SO(n), SU(2n)/Sp(n),

with n ≥ 3, the degrees of the n − 1 algebraically independent generators of the
algebra S(p∗0)K are given by dj = j + 1, for 1 ≤ j ≤ n − 1. Therefore for any
one of these symmetric spaces, the space (S3p∗0)K is one-dimensional. Hence each
of these spaces admits an SU(n)-invariant symmetric 3-form, which is unique up to
a constant; in fact, for the space SU(n) (resp. SU(n)/SO(n), SU(2n)/Sp(n)), the
symmetric 3-form σ′

3 (resp. σ3, σ̂3) is a generator of (S3p∗0)K .
We now return to the study of our irreducible symmetric space X and the algebra

S(p∗0)K associated to X .
If X is a simple Lie group, then we have p0 = k0 and, according to the tables

of [2], there exists a non-zero element of (S3p∗0)K if and only if X is equal to SU(n),
with n ≥ 3.

Now suppose that X is not a simple Lie group; then the Lie algebra g0 is simple.
By restricting a polynomial on the Lie algebra g0 to its subspace p0, we obtain a
restriction mapping

(2.2) S(g∗0)
G −→ S(p∗0)

K .

According to Proposition 7.4 and Theorem 7.5 of [15] and Theorem 3.4 of [17] (see
also Propositions 2.1 and 3.1 of [17] and Theorem 10.3 of [18]), the mapping (2.2) is
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surjective if (g0, p0) is not one of the pairs

(2.3) (e6, so(10) + R), (e6, f4), (e7, e6 + R), (e8, e7 + su(2)).

According to the tables of [2], we know that S3(g∗0)G is non-zero if and only if the
complexification of g0 is equal to an, with n ≥ 2. Next, suppose that our space X
is not one of the spaces (2.3) and possesses a non-zero element of (S3p∗0)K . Then
the rank l of the space X is ≥ 2 and the group G is equal to SU(n), with n ≥ 3.
According to the classification of the irreducible symmetric spaces of compact type (see
Chapter X of [16]), we know that X must be equal to one of the spaces SU(n)/SO(n),
SU(2n)/Sp(n), with n ≥ 3, or to one of the complex Grassmannians

(2.4) SU(m + n)/S(U(m) × U(n)),

with m, n ≥ 2. If X is equal to the Grassmannian (2.4), for k ≥ 2, we consider
the restriction pk of the polynomial Qk of degree k on the Lie algebra su(m + n)
considered above to its subspace p0. Then pk vanishes when k is an odd integer, and,
if s = min (m, n), the homogeneous polynomials {p2, p4, . . . , p2s} are an algebraically
independent set of generators of the algebra S(p∗0)K (see also [10, p. 561]). Thus in
this case the space S3(p∗0)K vanishes.

Finally, suppose that (g0, p0) is equal to one of the pairs (2.3). According to the
table on pp. 796–797 of [17] (see also [1, p. 33]) and the Chevalley restriction theorem,
there exists a homogeneous generator of S(p∗0)K of degree 3 if and only if X is the
space E6/F4 of type EIV . The rank of the space E6/F4 is equal to 2 and in this case
we have d2 = 3.

Thus we have completed the proof of the following result:

Proposition 2.1. — Let X be an irreducible simply-connected symmetric space of
compact type. The space (S3p∗0)K vanishes unless X is equal to one of the following
spaces:

(i) SU(n), with n ≥ 3;
(ii) SU(n)/SO(n), with n ≥ 3;
(iii) SU(2n)/Sp(n), where n ≥ 3;
(iv) E6/F4.

If X is equal to one of the spaces (i)–(iv), then the space (S3p∗0)K is one-dimensional.

3. The real Grassmannians

Let m, n ≥ 1 be given integers, with m + n ≥ 3. We now suppose that X is
the real Grassmannian G̃R

m,n of all oriented m-planes in F = Rm+n. Let V be the
canonical vector bundle (of rank m) over X whose fiber at x ∈ X is the subspace of F
determined by the oriented m-plane x. We denote by W the vector bundle of rank n
over X whose fiber at x ∈ X is the orthogonal complement Wx of Vx in F . Then we

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



18 J. GASQUI & H. GOLDSCHMIDT

have a natural isomorphism of vector bundles

(3.1) V ∗ ⊗ W −→ T

over X . We may view X as a submanifold of
∧mF . In fact, the point x ∈ X

corresponds to the vector v1 ∧ · · · ∧ vm of
∧mF , where {v1, . . . , vm} is a positively

oriented orthonormal basis of the oriented m-plane x. The isomorphism (3.1) sends
an element θ ∈ (V ∗ ⊗ W )x into the tangent vector dxt/dt|t=0 to X at x, where xt is
the point of X corresponding to the vector

(v1 + tθ(v1)) ∧ · · · ∧ (vm + tθ(vm))

of
∧mF , for t ∈ R.
Since the vector bundles V and W are sub-bundles of the trivial vector bundle

over X whose fiber is F , the standard Euclidean scalar product on F induces by
restriction positive definite scalar products g1 and g2 on the vector bundles V and W ,
respectively. If we identify the vector bundle V ∗ with V by means of the scalar
product g1, the isomorphism (3.1) gives rise to a natural isomorphism

(3.2) V ⊗ W −→ T

of vector bundles over X , which allows us to identify these two vector bundles and
the vector bundle

⊗pT ∗ with
⊗pV ∗ ⊗

⊗pW ∗, for p ≥ 1. In fact, if θ1 ∈
⊗pV ∗,

θ2 ∈
⊗pW ∗, we identify the element θ1 ⊗ θ2 of

⊗pV ∗ ⊗
⊗pW ∗ with the element u

of
⊗pT ∗ determined by

u(v1 ⊗ w1, v2 ⊗ w2, . . . , vp ⊗ wp) = θ1(v1, v2, . . . , vp) · θ2(w1, w2, . . . , wp),

for v1, v2, . . . , vp ∈ V and w1, w2, . . . , wp ∈ W . Then we have the inclusions

(3.3)
SpV ∗ ⊗ SpW ∗ ⊂ SpT ∗,

SpV ∗ ⊗
∧pW ∗ ⊂

∧pT ∗,

∧pV ∗ ⊗
∧pW ∗ ⊂ SpT ∗,

∧pV ∗ ⊗ SpW ∗ ⊂
∧pT ∗.

The scalar product g on T induced by the scalar product g1⊗g2 on the vector bundle
V ⊗W is a Riemannian metric on X . If x is a point of X and v ∈ Vx and w ∈ Wx are
given vectors, we shall sometimes denote the vector v ⊗ w of Tx by (x, v ⊗ w). The
sub-bundle S2T ∗ of

⊗2T ∗ admits the orthogonal decomposition

(3.4) S2T ∗ = (S2V ∗ ⊗ S2W ∗) ⊕ (
∧2V ∗ ⊗

∧2W ∗).

Moreover, we know the metric g is a section of the bundle S2V ∗ ⊗S2W ∗ and that an
element h of S2T ∗ belongs to the sub-bundle

∧2V ∗ ⊗
∧2W ∗ if and only if

h(v ⊗ w, v ⊗ w) = 0,

for all v ∈ V and w ∈ W .
We consider the standard basis {e1, . . . , em+n} of Rm+n. The action of the group

G = SO(m + n) on Rm+n extends to an action on Cm+n. The group G sends every
oriented m-plane of Rm+n into another oriented m-plane. This gives rise to a transitive
action of the group G on the Riemannian manifold (X, g) by isometries. The isotropy
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subgroup of the point x0 of X corresponding to the vector e1 ∧ · · · ∧ em of
∧mF

is equal to K = SO(m) × SO(n). We identify X with the Riemannian symmetric
space G/K.

The involution τ of X , corresponding to the change of orientation of an m-plane
of F , is an isometry of X which commutes with the action of G on X . For x ∈ X ,
the tangent space Tτ(x) is equal to (V ⊗ W )x, and it is easily verified that the map-
ping τ∗ : Tx → Tτ(x) is equal to the identity mapping of (V ⊗ W )x. The group Σ′ of
isometries of X generated by τ , which is of order 2, acts freely on X . The quotient
Riemannian manifold Y ′ = X/Σ′ endowed with the Riemannian metric induced by g
admits X as a two-fold Riemannian covering and we identify it with the real Grass-
mannian GR

m,n of all m-planes in F = Rm+n; we denote by +′ : X → Y ′ the natural
projection. The action of the group G passes to the quotient GR

m,n and the group G

acts transitively on this space. We identify GR
m,n with the symmetric space G/K ′,

where K ′ is the isotropy group of the image of x0 in GR
m,n.

The oriented m-plane x ∈ X gives us an orientation of Vx, which in turn induces
an orientation of Wx: if {v1, . . . , vm} is a positively oriented orthonormal basis of Vx,
then the orientation of Wx is determined by an orthonormal basis {w1, . . . , wn} of Wx

satisfying
v1 ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ wn = e1 ∧ · · · ∧ em+n.

Then there is a natural diffeomorphism

Ψ : G̃R
m,n −→ G̃R

n,m,

sending x ∈ G̃R
m,n into the n-plane Wx endowed with the orientation described above.

For x ∈ X , we have V ′
Ψ(x) = Wx and W ′

Ψ(x) = Vx. It is easily verified that the induced
mapping Ψ∗ : (V ⊗ W )x → (V ′ ⊗ W ′)Ψ(x) sends v ⊗ w into −w ⊗ v, where v ∈ Vx

and w ∈ Wx; therefore Ψ is an isometry.
If E be a sub-bundle of SpT ∗ or of its complexification SpT ∗

C which is invari-
ant under the group G and the involution τ , we consider the G-submodules C∞(E)
of C∞(SpT ∗

C) and
C∞(E)τ,ε = { θ ∈ C∞(E) | τ∗θ = εθ }

of C∞(E), where ε = ±1; in fact, the module C∞(E)τ,+1 is equal to the G-submodule
C∞(E)Σ

′
of C∞(E) consisting of all Σ′-invariant sections of E.

In this section, we henceforth suppose that m = n, with n ≥ 2. The isometry Ψ
always satisfies Ψ4 = id and commutes with the involution τ ; it is an involution only
when n is even, and satisfies Ψ2 = τ when n is odd. In fact, if x is a point of X
and {v1, . . . , vn} and {w1, . . . , wn} are positively oriented bases of Vx and Wx, respec-
tively, then {w1, . . . , wn} is a positively oriented basis of VΨ(x); moreover, when n is
even (resp. odd) integer, then {v1, v2, . . . , vn} (resp. {v2, v1, v3, . . . , vn}) is a positively
oriented basis of the space WΨ(x). Thus the group Σ of isometries of G̃R

n,n generated
by Ψ and τ is of order 4. Let Σ1 and Σ2 be the cyclic subgroups of Σ generated by Ψ
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and τ , respectively. When n is odd, Σ is equal to the cyclic group Σ1 of order 4; on the
other hand, when n is even, Σ is the product of the two cyclic subgroups Σ1 and Σ2

of order 2. Moreover, these isometries Ψ and τ commute with action of G = SO(2n)
on G̃R

n,n. In §1, Chapter IV of [6], we considered the quotient Y = ḠR
n,n of GR

n,n

by the group of isometries of order 2 generated by this isometry Ψ of GR
n,n endowed

with the metric gY induced by the metric of GR
n,n; we saw that Y is a symmetric

space of compact type of rank n and a homogeneous space of G. When n ≥ 3, it is
irreducible and equal to the adjoint space of X . In fact, the group Σ acts freely on X
and the Riemannian manifold (Y, gY ) is equal to the quotient X/Σ endowed with the
metric induced by the metric g of X . Moreover, the natural projection + : X → Y
is a four-fold covering and the action of the group G on X passes to the quotient Y .
When n ≥ 4 is an even integer, we may also consider the symmetric space which is
the quotient of G̃R

n,n by the group Σ1 of order 2.
Since the isometries τ and Ψ commute with the action of G on X , a Killing vector

field ξ on X satisfies the relations

(3.5) τ∗ξ = ξ, Ψ∗ξ = ξ

and is +-projectable.
Let E be a vector bundle equal either to SpT ∗ or its complexification SpT ∗

C ; we
consider the G-submodules

C∞(E)ev = { θ ∈ C∞(E)τ,+1 | Ψ∗θ = θ },

C∞(E)odd = { θ ∈ C∞(E)τ,+1 | Ψ∗θ = −θ }

of C∞(E)τ,+1. Then we see that C∞(E)ev is equal to the G-submodule C∞(E)Σ

of C∞(E) consisting of all Σ-invariant sections of E. Since the action of Ψ
on C∞(E)τ,+1 is an involution, we have the decomposition

C∞(E)τ,+1 = C∞(E)ev ⊕ C∞(E)odd.

A symmetric p-form θ on X is invariant under the group Σ (resp. Σ′) if and only
if there is a symmetric p-form θ̂ on Y (resp. on Y ′) such that θ = +∗θ̂. Thus the
projections + and +′ induce isomorphisms of G-modules

+∗ : C∞(Y, SpT ∗
Y,C) −→ C∞(SpT ∗

C)Σ,

+′∗ : C∞(Y ′, SpT ∗
Y ′,C) −→ C∞(SpT ∗

C)Σ
′
.

If E is the trivial complex line bundle over X , as we identify C∞(X) with C∞(E),
we may consider the corresponding G-submodules

C∞(X)τ,ε = C∞(E)τ,ε,

C∞(X)ev = C∞(E)ev, C∞(X)odd = C∞(E)odd
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of C∞(X) and the isomorphism

(3.6) +∗ : C∞(Y ) −→ C∞(X)ev

of G-modules.
We identify the vector bundles V ∗ ⊗ W and Hom(V, W ). If x is a point of X

and A is an element of (V ∗ ⊗ W )x, we consider the matrix Ã of A with respect
to positively oriented orthonormal bases {v1, . . . , vn} of Vx and {w1, . . . , wn} of Wx;
then the determinant q′(A) = detA of Ã and, for 1 ≤ k ≤ n, the coefficient qk(A)
of the term of degree n − k of the characteristic polynomial of the matrix tÃÃ are
independent of the choice of such bases. In fact, we have qn = (−1)nq′2. The func-
tions q1, . . . , qn−1, q′ on (V ∗ ⊗W )x0 are K-invariant homogeneous polynomials, with
deg q′ = n and deg qk = 2k. If we identify the tangent bundle T with V ∗ ⊗W via the
isomorphism (3.1), the functions q′ and qk on V ∗ ⊗ W determine a symmetric form
σ′ of degree n and a symmetric form σk of degree 2k on X by

σ′(ξ, . . . , ξ) = q′(ξ), σk(ξ, . . . , ξ) = qk(ξ),

for all ξ ∈ T ; clearly, these symmetric forms are G-invariant.
We consider the Cartan decomposition (2.1) corresponding to the Riemannian sym-

metric pair (G, K) and identify the K-modules p0 and Tx0 . Then σ′ and σk are the
G-invariant symmetric forms on X corresponding to the polynomials q′ and qk on p0,
respectively. A suitable adaptation of the proof of Lemma 4.1 of [9] due to Räıs shows
that {q1, . . . , qn−1, q′} are algebraically independent generators of the algebra S(p∗0)K

(see also [10, pp. 562–563]).
The orientations of the spaces Vx and Wx, with x ∈ X , considered above, together

with the scalar products g1 on V and g2 on W , determine sections ωV of
∧nV ∗

and ωW of
∧nW ∗. In fact, if {α1, . . . , αn} and {β1, . . . , βn} are positively oriented

orthonormal bases of V ∗
x and W ∗

x , respectively, then

ωV = α1 ∧ · · · ∧ αn, ωW = β1 ∧ · · · ∧ βn.

Via the second inclusion of (3.3), with p = n, we view the section ωV ⊗ ωW

of
∧nV ∗ ⊗

∧nW ∗ as a section σ of SnT ∗ over X . Clearly, the symmetric n-form σ
is a G-invariant section of Sn

0 T ∗. Then we easily verify that

(3.7) σ = n! σ′.

For x ∈ X , we have

ωV (τ(x)) = −ωV (x), ωW (τ(x)) = −ωW (x),

ωV (Ψ(x)) = ωW (x), ωW (Ψ(x)) = (−1)nωV (x).

It follows that

τ∗σ = σ, Ψ∗σ = σ.
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Thus the form σ is Σ-invariant and so induces a G-invariant symmetric traceless
n-form σY on Y such that

σ = +∗σY .

Then the mappings

σ! : T −→ Sn−1T ∗, σ!
Y : TY −→ Sn−1T ∗

Y

induced by σ and σY are G-equivariant monomorphisms.
We consider the Hodge operators

∗ : V ∗ −→
∧n−1V ∗, ∗ : W ∗ −→

∧n−1W ∗,

corresponding to the orientations of the spaces Vx and Wx, with x ∈ X , and to the
scalar products g1 and g2; then the relations

α ∧ ∗α = |α|2ωV , β ∧ ∗β = |β|2ωW

hold for all α ∈ V ∗ and β ∈ W ∗. These Hodge operators determine a G-equivariant
isomorphism of vector bundles

∗ = ∗ ⊗ ∗ : V ∗ ⊗ W ∗ −→
∧n−1V ∗ ⊗

∧n−1W ∗,

which, via the isomorphism (3.2) and the second inclusion of (3.3), with p = n − 1,
may be viewed as a monomorphism of vector bundles

(3.8) ∗ = σ̃ : T ∗ −→ Sn−1T ∗.

We also consider the G-equivariant monomorphism of vector bundles

(3.9) ∗ = σ̃Y : T ∗
Y −→ Sn−1T ∗

Y ;

then if α is a section of T ∗
Y over Y , by (1.6) we see that

(3.10) +∗∗α = ∗+∗α.

The Grassmannian G̃R
2,2 is isometric to the product of 2-spheres S2 × S2 endowed

with the product metric g1 + g2, where gj is the Riemannian metric of constant
curvature 1 on the j-th factor of S2 × S2. In this case, it is easily seen that σ
corresponds to a constant multiple of the symmetric 2-form g1 − g2.

4. The Stiefel manifolds and the real Grassmannians

We view Rm+n as a subspace of the complex vector space U = Cm+n; then
{e1, . . . , em+n} is a basis of U . The action of the group G on Rm+n extends to U . The
k-th symmetric product SkU∗ of U∗ and the k-th exterior product

∧kU∗ of U∗ are
G-submodules of the G-module

⊗kU∗, which is the k-th tensor product of U∗. We
view S2U∗ as the space all complex quadratic forms on Cm+n. The subspace S2

0U∗

of S2U∗, consisting of all elements of S2U∗ which are traceless with respect to the
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standard quadratic form on Cm+n, is an irreducible G-submodule of S2U∗. In fact,
an element θ of S2U∗ belongs to S2

0U∗ if and only if
m+n∑

j=1

θ(ej , ej) = 0.

Let Sm,n be the space of all real (m + n)×m matrices A satisfying tAA = Im. We
view Sm,n as the Stiefel manifold of all orthonormal m-frames in Rm+n; the matrix
A of Sm,n determines the m-frame consisting of the m column vectors of A.

We consider Sm,n as a submanifold of the space of all real (m + n) × m matri-
ces Mm,n. For 1 ≤ j ≤ m + n and 1 ≤ k ≤ m, let Xk

j be the function on Mm,n which
sends a matrix of Mm,n into its (j, k)-th entry; we also consider the Rm-valued func-
tion Xj (resp. the Rm+n-valued function Xk) on Mm,n, which sends a matrix of Mm,n

into its j-th row (resp. its k-th column). Then we have Xj = (X1
j , . . . , Xm

j ) and the
functions {Xk

j } form a coordinate system for Mm,n. If u is an element of Mm,n, we
shall often write uk

j = Xk
j (u).

The orthogonal group SO(m) acts on Sm,n by right multiplication and we consider
the quotient space Sm,n/SO(m). The mapping

ρ : Sm,n −→ G̃R
m,n,

sending the element A of Sm,n into the point of G̃R
m,n corresponding to the vector

X1(A) ∧ · · · ∧ Xm(A), induces by passage to the quotient a diffeomorphism

ρ̄ : Sm,n/SO(m) −→ G̃R
m,n.

The group G = SO(m + n) acts on Sm,n by left multiplication; clearly, the mappings
ρ and ρ̄ are G-equivariant. A function f on Sm,n which is invariant under the right
action of SO(m) determines a function f̃ on G̃R

m,n satisfying ρ∗f̃ = f .
For 1 ≤ j, l ≤ m + n, the real-valued function

fjl = 〈Xj , Xl〉 =
m∑

k=1

Xk
j Xk

l

on Sm,n is invariant under the right action of SO(m); we have fjl = flj . The action
of G on Sm,n induces a structure of G-module on C∞(Sm,n). It is then easily verified
that the mapping

Φ1 : S2
0U∗ −→ C∞(Sm,n),

which sends an element q of S2
0U∗ into the function

m+n∑

j,k=1

q(ej , ek)fjk

on Sm,n which is invariant under the right action of SO(m), is a morphism of
G-modules. Hence the image H of Φ1 is a G-submodule of C∞(Sm,n). Since the
function f12 belonging to H is non-zero and since S2

0U∗ is an irreducible G-module,
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it follows that the mapping Φ1 is injective and that H is an irreducible G-module.
Thus the G-submodule

H̃ = { f ∈ C∞(X) | ρ∗f ∈ H}

of C∞(X) is isomorphic to H and therefore also to S2
0U∗.

For 1 ≤ j, l ≤ m + n, it is easily verified that the vector field
m∑

k=1

(
Xk

j
∂

∂Xk
l

− Xk
l

∂

∂Xk
j

)
,

on Mm,n is tangent to the submanifold Sm,n; we may therefore consider the vec-
tor field ξjl on Sm,n which it determines. We consider the Lie algebra g0 of G.
For 1 ≤ j, l ≤ m + n, we denote by Ejl the element of gl(m + n, R) whose (j, l)-th
entry is equal to 1 and all of whose other entries are equal to 0; then the matrix
Ajl = Elj −Ejl belongs to the subalgebra g0 of gl(m + n, R). The action of the group
G on Sm,n induces a morphism of Lie algebras from g0 to the Lie algebra of all vector
fields on Sm,n. It is easily verified that this morphism sends the element Ajl of g0 into
the vector field ξjl, for 1 ≤ j, l ≤ m + n. Since the actions of G and SO(m) on Sm,n

commute, it follows that the vector field ξjl on Sm,n is ρ-projectable; we denote by
ξ̃jl the vector field on X induced by ξ̃jl. Then the subspace of C∞(T ) generated by
the vector fields {ξ̃jl} is equal to the G-module K of all Killing vector fields of X .

Let x̃ be a point of Sm,n corresponding to the orthonormal m-frame {v1, . . . , vm}
in Rm+n. If x is the point ρ(x̃) of X , then {v1, . . . , vm} is a positively oriented
orthonormal basis of Vx. Let w be a given unit vector of Wx and 1 ≤ k ≤ m be a given
integer. Let γ : [0, 2π] → Sm,n be the closed path defined as follows: for 0 ≤ t ≤ 2π,
let γ(t) be the matrix of Sm,n corresponding to the orthonormal m-frame

{v1, . . . , vk−1, cos t · vk + sin t · w, vk+1, . . . , vm}.

We have γ(0) = γ(2π) = x̃. The path ρ ◦ γ : [0, 2π] → G̃R
m,n is a closed geodesic of

the Grassmannian G̃R
m,n, and it is easily seen that the equality

d

dt
ρ(γ(t))|t=0 = vk ⊗ w

holds among vectors of Tx. If f a function on Sm,n which is invariant under the right
action of the group SO(m), we have

(4.1)
〈df̃ , vk ⊗ w〉 =

d

dt
f(γ(t))|t=0,

(Hess f̃)(vk ⊗ w, vk ⊗ w) =
d2

dt2
f(γ(t))|t=0.

We consider the standard scalar product on the space Mm,n, given by

〈u, v〉 =
∑

1≤k≤m
1≤j≤m+n

uk
j vk

j ,
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for u, v ∈ Mm,n, and the Riemannian metric g̃ on the submanifold Sm,n of Mm,n

induced by this scalar product. Clearly, the metric g̃ is invariant under the right
action of SO(m) and under the left action of G. Therefore the metric g̃ induces a
Riemannian metric g′ on G̃R

m,n which is G-invariant.
For u ∈ Sm,n, we identify the tangent space Tu(Sm,n) to Sm,n at the point u with

the subspace
{

v ∈ Mm,n

∣∣∣∣
m+n∑

j=1

(uk
j vl

j + ul
jv

k
j ) = 0, for all 1 ≤ k, l ≤ m

}

of Mm,n. The subspace Vu(Sm,n) of Tu(Sm,n) consisting of those vectors which are
tangent to the fibers of ρ is then identified with the subspace

{ v ∈ Mm,n | v = u · v′, with v′ ∈ so(m) }

of Mm,n. We shall also consider the orthogonal complement Hu(Sm,n) of Vu(Sm,n)
in Tu(Sm,n).

Let M ′
m,n be the subspace of Mm,n consisting of those elements u satisfying uk

j = 0,
for all m + 1 ≤ j ≤ m + n and 1 ≤ k ≤ m. We consider the point x̃0 of Sm,n

corresponding to the m-frame {e1, . . . , em} of Rm+n; then we have x0 = ρ(x̃0). An
element v of Mm,n belongs to Tx̃0(Sm,n) if and only if

vk
j + vj

k = 0,

for all 1 ≤ j, k ≤ m. Then we verify that

Vx̃0(Sm,n) =
{

v ∈ M ′
m,n

∣∣∣∣ vk
j + vj

k = 0, for all 1 ≤ j, k ≤ m

}
,

Hx̃0(Sm,n) =
{

v ∈ Mm,n

∣∣∣∣ vk
j = 0, for all 1 ≤ j, k ≤ m

}
,

and that the restriction
ρ∗ : Hx̃0(Sm,n) −→ Tx0

of the mapping ρ∗ to the subspace Hx̃0(Sm,n) is an isometry. Indeed, let w be a unit
vector of Wx0 and 1 ≤ k ≤ m be a given integer; we consider the closed path γ in Sm,n

associated with the point x̃0, the vector w and the integer k, which we defined above.
Then the tangent vector γ̇(0) is the matrix belonging to Hx̃0(Sm,n) whose l-th column
is δklw, for 1 ≤ l ≤ m, and we know that

ρ∗γ̇(0) = ek ⊗ w.

Since the metrics g′ and g on X are G-invariant, it follows that they are equal.
Let φ be an element of SO(m) and Rφ be the diffeomorphism of Sm,n induced by

the right action of φ on Sm,n; we have Rφ(u) = uφ, for all u ∈ Sm,n. Then we see
that

(4.2) ρ · Rφ = ρ,
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and hence that
Rφ∗Vu(Sm,n) = Vuφ(Sm,n),

for u ∈ Sm,n. Since the metric g̃ is invariant under the right action of the
group SO(m), from the previous equality we deduce that

(4.3) Rφ∗Hu(Sm,n) = Huφ(Sm,n),

for u ∈ Sm,n.
Let α be 1-form on Sm,n which is invariant under the right action of the

group SO(m). We now show that α induces a 1-form α̃ on X . Indeed, let ξ be
elements of Tx, with x ∈ X . Choose a point x̂ of Sm,n satisfying ρ(x̂) = x, and
let ξ̂ be the unique vector of Hx̂(Sm,n) satisfying ρ∗ξ̂ = ξ; then according to the
relations (4.2) and (4.3), the 1-form α̃ on X determined by

〈ξ, α̃〉 = 〈ξ̂, α〉

is well-defined. If f is a function on Sm,n which is invariant under the right action
of SO(m), then β = fα is a 1-form on Sm,n which is invariant under the right action
of the group SO(m), and we see that

β̃ = f̃ α̃.

If f = (f1, . . . , fm) is a Cm-valued function and α = (α1, . . . , αm) is a Cm-valued
1-form on Sm,n, where fk is an element of C∞(Sm,n) and αk is a complex 1-form
on Sm,n, we define a complex 1-form f · α on Sm,n by

f · α =
m∑

k=1

fkαk.

For 1 ≤ j, k ≤ m + n, we view Xj and Xk as Rm-valued functions on Sm,n. Then the
1-form

Xj · dXk

on Sm,n is invariant under the right action of the group SO(m). Clearly we have

dfjk = Xj · dXk + Xk · dXj .

We consider the 1-form
αjk = Xj · dXk − Xk · dXj

on Sm,n, which is invariant under the right action of the group SO(m), and the 1-form
α̃jk on X induced by αjk. We denote by T ′ the cotangent bundle of Sm,n; the action
of G on Sm,n induces a structure of G-module on C∞(Sm,n, T ′

C). We easily verify
that the mapping

Φ2 :
∧2U∗ −→ C∞(Sm,n, T ′

C),
which sends an element ω of

∧2U∗ into the 1-form
m+n∑

j,k=1

ω(ej , ek)αjk
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on Sm,n which is invariant under the right action of SO(m), is a morphism of
G-modules. Hence its image A is a G-submodule of C∞(Sm,n, T ′

C). The form α̃12

on X is non-zero, and so the mapping Φ2 is non-zero. Since the G-module
∧2U∗

is irreducible, we know that A is an irreducible G-module and that the space Ã of
1-forms on X induced by the forms of A is an irreducible G-submodule of C∞(T ∗

C).
Both of these G-modules are isomorphic to

∧2U∗; moreover, the G-submodule Ã0

of Ã generated over R by the forms α̃jk is isomorphic to
∧2Rm+n. Clearly, we have

g̃!(ξjk) = αjk,

for 1 ≤ j, k ≤ m + n. From this equality and the definition of α̃jk, we obtain the
relation

(4.4) g!(ξ̃jk) = α̃jk,

for 1 ≤ j, k ≤ m + n; therefore we have the equality

(4.5) g!(K) = Ã0.

We henceforth suppose that m ≤ n. For 1 ≤ k ≤ m and θ ∈ R, we consider the
vectors

vk(θ) = cos θ · e2k−1 + sin θ · e2k, wk(θ) = − sin θ · e2k−1 + cos θ · e2k

of Rm+n. Then for θ = (θ1, . . . , θm) ∈ Rm, the vectors

{v1(θ1), . . . , vm(θm), w1(θ1), . . . , wm(θm)}

form an orthonormal system of vectors of Rm+n. We consider the mapping

ι : Rm −→ Sm,n,

which sends θ = (θ1, . . . , θm) ∈ Rm into the point ι(θ) of Sm,n corresponding to the
orthonormal m-frame {v1(θ1), . . . , vm(θm)} in Rm+n. If {e′1, . . . , e′m} is the standard
basis of Rm and Λ is the lattice generated by the basis {2πe′1, . . . , 2πe′m} of Rm, the
mapping ι induces by passage to the quotient a mapping

ι : Rm/Λ −→ Sm,n.

The image of the mappings ι is a flat torus Z̃ of Sm,n. The lattice Λ′ of Rm generated
by the basis

{πe′k + πe′k+1, πe′1 + (−1)m+1πe′m}, with 1 ≤ k ≤ m − 1,

of Rm contains the lattice Λ. Then it is easily seen that there is an injective mapping

ι′ : Rm/Λ′ −→ G̃R
m,n

such that the diagram
Rm/Λ ι−−−→ Sm,n

/
/ρ

Rm/Λ′ ι′−−−→ G̃R
m,n
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is commutative. We also denote by ι′ the mapping ρ ◦ ι : Rm → G̃R
m,n. The image

Z of the mappings ι′ is a maximal flat totally geodesic torus of G̃R
m,n, which is equal

to ρ(Z̃). If f is a function on X , then we have the equalities
∫

Z
f dZ =

∫ π

0
· · ·

∫ π

0

(∫ 2π

0
f(ι′(θ)) dθm

)
dθ1 . . . dθm−1

=
∫ π

0
· · ·

∫ π

0

(∫ 2π

0
f(ι′(θ)) dθ1

)
dθ2 . . . dθm.

(4.6)

For 1 ≤ j, k ≤ m, we consider the vector field ∂/∂θk on Rm and the vector fields
ηjk and ζ̃k on Z̃ defined by

ηjk(ι(θ)) = cos θj ·
(
∂/∂Xk

2j−1

)
(ι(θ)) + sin θj ·

(
∂/∂Xk

2j

)
(ι(θ)),

ζ̃k(ι(θ)) = cos θk ·
(
∂/∂Xk

2k

)
(ι(θ)) − sin θk ·

(
∂/∂Xk

2k−1

)
(ι(θ)),

for θ ∈ Rm. We now fix a point θ = (θ1, . . . , θm) of Rm. We easily verify that the
tangent vectors

{(ηjk − ηkj)(ι(θ))}1≤j<k≤m

form a basis for the space Vι(θ)(Sm,n); it follows that ζ̃k(ι(θ)) belongs to Hι(θ)(Sm,n).
Then we see that

(4.7) ι∗(∂/∂θk)(θ) = ζ̃k(ι(θ)),

for θ ∈ Rm; moreover, the vector fields {ζ̃1, . . . , ζ̃m} form an orthonormal basis for
the space of parallel vector fields on Z̃. For 1 ≤ k ≤ m and t ∈ R, let γk(t) be the
point of Sm,n corresponding to the orthonormal m-frame

{v1, . . . , vk−1, cos t · vk + sin t · wk, vk+1, . . . , vm},

where vj = vj(θj) and wj = wj(θj), for 1 ≤ j ≤ m. Then we have γk(0) = ι(θ) and
the relation

d

dt
γk(t)|t=0 = ζ̃k(ι(θ))

holds. We know that {v1(θ1), . . . , vm(θm)} is an orthonormal basis for Vι′(θ) and that
{w1(θ1), . . . , wm(θm)} is an orthonormal system of vectors of Wι′(θ). As we have seen
above, according to these observations the equality

ρ∗ζ̃k(ι(θ)) = (ι′(θ), vk(θk) ⊗ wk(θk))

holds among vectors of Tι′(θ). It follows that the vector field ζ̃k on Z̃ is ρ-projectable
and determines a parallel vector field ζk on Z which satisfies

(4.8) ζk(ι′(θ)) = (ι′(θ), vk(θk) ⊗ wk(θk)),

for all θ ∈ Rm; according to (4.7), we see that

(4.9) ι′∗(∂/∂θk)(θ) = ζk(ι′(θ)),

for θ ∈ Rm. In fact, {ζ1, . . . , ζm} is an orthonormal basis for the space of parallel
vector fields on Z.
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If f is a function on Sm,n which is invariant under the right action of SO(m), we
have

ι∗f = ι′∗f̃ ,

and, hence by (4.7), we see that

(4.10) 〈ζk, df̃〉(ι′(θ)) = 〈ζ̃k, df〉(ι(θ)) =
∂(ι∗f)
∂θk

(θ),

for θ ∈ Rm. If α is a 1-form on Sm,n which is invariant under the right action
of SO(m), by (4.7) and (4.9) we easily see that the relation

(4.11) ι∗α = ι′∗α̃

holds among 1-forms on Rm. If ϕ is a 1-form on X and 1 ≤ j, k ≤ m, since the
mapping ι′ is totally geodesic, by (4.9) and the definition of the operator D1 we have
the equality

(4.12) 2ι′∗(D1ϕ)(ζj , ζk) =
∂

∂θj
〈∂/∂θk, ι′∗ϕ〉 +

∂

∂θk
〈∂/∂θj , ι

′∗ϕ〉

of functions on Rm.
We now suppose that m = n, with n ≥ 2. Let θ = (θ1, . . . , θn) be a given element

of Rn and consider the point x = ι′(θ) of Z. According to (4.8), the tangent vectors
ζk(x) belonging to Tx = (V ⊗ W )x are of rank one, for 1 ≤ k ≤ n. Therefore if u is
an element of SpT ∗

x , with p ≥ 2, which belongs to the subspace (
∧pV ∗ ⊗

∧pW ∗)x,
we have

(4.13) u(ζj , ζj , ζj1 , . . . , ζjp−2) = 0,

for all 1 ≤ j, j1, . . . , jp−2 ≤ n. Now suppose that n ≥ 3 and let ϕ be an element
of T ∗

x . Then ∗ϕ belongs to (
∧n−1V ∗ ⊗

∧n−1W ∗)x; hence the relation (4.13) holds for
u = ∗ϕ and p = n − 1. According to (4.8), we easily see that

(4.14) ϕ(ζj) = (∗ϕ)(ζj1 , . . . , ζjn−1),

whenever the integers {j, j1, . . . , jn−1} are a permutation of {1, 2, . . . , n}. Since
{ζ1, . . . , ζn} is an orthonormal basis for the space of parallel vector fields on the
maximal flat totally geodesic torus Z, and since all maximal flat totally geodesic tori
of X are conjugate under the action of G = SO(2n) on X , from the relations (4.13)
and (4.14) we deduce the following result:

Lemma 4.1. — Let X be the Grassmannian G̃R
n,n, with n ≥ 3. An element ϕ of

C∞(T ∗) satisfies the Guillemin condition if and only if the symmetric (n − 1)-form
∗ϕ on X satisfies the Guillemin condition.

According to Lemmas 1.1 and 4.1, we know that a 1-form ϕ on Y satisfies the
Guillemin condition if and only if the symmetric (n − 1)-form ∗ϕ on Y satisfies the
Guillemin condition.
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Let u be the point of Sn,n corresponding to an orthonormal n-frame {v1, . . . , vn}
of R2n and let {w1, . . . , wn} be an orthonormal n-frame which spans the orthogonal
complement of the space generated by the vectors {v1, . . . , vn} satisfying

v1 ∧ · · · ∧ vn ∧ w1 ∧ · · · ∧ wn = e1 ∧ · · · ∧ e2n.

If u′ is the point of Sn,n which corresponds to the orthonormal n-frame {w1, . . . , wn},
then we have Ψ(ρ(u)) = ρ(u′) and we easily see that

(4.15) 〈Xj(u), Xl(u)〉 + 〈Xj(u′), Xl(u′)〉 = δjl,

for 1 ≤ j, l ≤ 2n.

5. Functions and forms of degree one on the real Grassmannians

We now describe explicit functions and 1-forms on the real Grassmannian X = G̃R
n,n

and the symmetric space Y = ḠR
n,n, with n ≥ 3. We consider the complexification g

of the Lie algebra g0 of the group G = SO(2n). For µ ∈ C, we set

L(µ) =
(

0 −iµ
iµ 0

)
.

For µ1, µ2, . . . , µn ∈ C, we consider the 2n × 2n matrix

L(µ1, . . . , µn) =





L(µ1) 0 . . . 0
0 L(µ2) . . . 0
...

...
. . .

...
0 0 . . . L(µn)





The subalgebra t0 of g consisting of all 2n × 2n matrices L(µ1, . . . , µn), where
µ1, . . . , µn ∈ C are purely imaginary, is the Lie algebra of a maximal torus of G.
The complexification t of t0, which consists of all 2n × 2n matrices L(µ1, . . . , µn),
with µ1, . . . , µn ∈ C, is a Cartan subalgebra of the semi-simple Lie algebra g.
For 1 ≤ j ≤ n, the linear form λj on t, which sends the element L(µ1, . . . , µn) of t,
with µ1, . . . , µn ∈ C, into µj is purely imaginary on t0. We set αj = λj − λj+1,
for 1 ≤ j ≤ n − 1, and αn = λn−1 + λn. We choose the Weyl chamber of (g, t)
for which the system of simple roots of g is equal to {α1, α2, . . . , αn}. If ∆+ is the
corresponding system of positive roots of g with respect to t, the unique element w0

of the Weyl group of g satisfying

w0(∆+) = −∆+

is the automorphism −id when n is even, and is the automorphism determined by

w0(αj) = −αj , w0(αn−1) = −αn, w0(αn) = −αn−1,

for 1 ≤ j ≤ n − 2, when n is odd.
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The highest weight of an irreducible G-module is a linear form

c1λ1 + c2λ2 + · · · + εcnλn

on t, where ε = ±1 and c1, c2, . . . , cn are integers satisfying

c1 ≥ c2 ≥ · · · ≥ cn ≥ 0.

The equivalence class of such an G-module is determined by this weight. We identify
the dual Γ of G with the set of all such linear forms on t. If γ is an element of Γ,
there exist integers r1, r2, . . . , rn−1 ≥ 0 and s ∈ Z such that

γ = γr1,r2,...,rn−1,s = c1λ1 + c2λ2 + · · · + cnλn,

where

cj = |s| +
n−1∑

k=j

rk,

for 1 ≤ j ≤ n − 1, and cn = s. The unique element γ̄ of Γ determined by

w0(γ) = −γ̄

is given by

γ̄ =

{
γ = γr1,r2,...,rn−1,s if n is even,

γr1,r2,...,rn−1,−s if n is odd.

If γ is an element of Γ, we denote by C∞
γ (X), C∞

γ (SpT ∗
C) and C∞

γ (Y ) the isotypic
components of the G-modules C∞(X), C∞(SpT ∗

C) and C∞(Y ), respectively, corre-
sponding to γ. For γ ∈ Γ, we denote by Wγ the weight subspace of the G-module
C∞

γ (T ∗
C) corresponding to its highest weight γ; we recall that the multiplicity of the

G-module C∞
γ (T ∗

C) is equal to the dimension of the space Wγ (see §2, Chapter II
of [6]). We write

C∞
γ (X)ev = C∞(X)ev ∩ C∞

γ (X), C∞
γ (X)odd = C∞(X)odd ∩ C∞

γ (SpT ∗
C),

C∞
γ (SpT ∗

C)Σ = C∞
γ (SpT ∗

C)ev = C∞(SpT ∗
C)Σ ∩ C∞

γ (SpT ∗
C),

C∞
γ (SpT ∗

C)odd = C∞(SpT ∗
C)odd ∩ C∞

γ (SpT ∗
C).

The mapping (3.6) induces an isomorphism of G-modules

+∗ : C∞
γ (Y ) → C∞

γ (X)ev.

A linear form λ on t is a weight of the G-module C∞
γ (SpT ∗

C) if and only if −λ is
a weight of the complex conjugate C∞

γ (SpT ∗
C) of the space C∞

γ (SpT ∗
C); therefore we

have the equality

(5.1) C∞
γ̄ (SpT ∗

C) = C∞
γ (SpT ∗

C)

of G-modules. In particular, when n is even, or when n is odd and γ is equal to
γr1,r2,...,rn−1,0, where r1, r2, . . . , rn−1 ≥ 0 are integers, the G-module C∞

γ (SpT ∗
C) is

invariant under complex conjugation.
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If k, l ≥ 1 are integers, let M(k, l) be the space of all complex k × l matrices.
For 1 ≤ j ≤ n, we consider the Cn-valued function

Zj = X2j−1 + iX2j

on Sn,n. For 1 ≤ k ≤ n, let Ak be the M(k, n)-valued function on Sn,n whose j-th
row is equal to Zj , for 1 ≤ j ≤ k. We also consider the M(n, n)-valued function A′

n

on Sn,n whose j-th row is equal to Zj, for 1 ≤ j ≤ n− 1, and whose n-th row is equal
to Z̄n.

For 1 ≤ k ≤ n, we consider the M(k, k)-valued function

Bk = Ak · tAk

on Sn,n. We extend the scalar product of Rn to a bilinear form on Cn; then
for 1 ≤ j, l ≤ k, it is easily seen that the (j, l)-th entry of the matrix-valued function
Bk is equal to 〈Zj , Zl〉. For 1 ≤ k ≤ n − 1, the complex-valued function fk on Sn,n,
defined by

(5.2) fk = detBk = det
(
〈Zj , Zl〉1≤j,l≤k

)
,

is clearly invariant under the right action of SO(n). In particular, we have

f1 = 〈Z1, Z1〉 = 〈X1, X1〉 − 〈X2, X2〉 + 2i〈X1, X2〉,(5.3)

f2 = 〈Z1, Z1〉〈Z2, Z2〉 − 〈Z1, Z2〉2.(5.4)

For 1 ≤ j, k ≤ n, the functions 〈Zj , Zk〉 and 〈Zj, Z̄k〉 on Sn,n belong to the irre-
ducible G-module H; in particular, we know that the function f1 belongs to H. We
write f ′

1 = 〈Z1, Z2〉. The complex-valued functions fn = detAn and f ′
n = detA′

n

on Sn,n are also invariant under the right action of SO(n). Clearly, we have the
equality

(5.5) f2
n = detBn = det (An · tAn).

From the second formula of (4.1) and the definitions of the functions fn and f ′
n, if

x is an arbitrary point of X , we verify directly that the equalities

(5.6) (Hess f̃n)(v ⊗ w, v ⊗ w) = −f̃n(x), (Hess f̃ ′
n)(v ⊗ w, v ⊗ w) = −f̃ ′

n(x)

hold for all unit vectors v ∈ Vx and w ∈ Wx.
If r1, . . . , rn−1 ≥ 0 and s are given integers, the complex-valued function fr1,...,rn−1,s

on Sn,n, defined by

fr1,...,rn−1,s =

{
fs

n ·
∏n−1

k=1 f rk
k if s ≥ 0,

f ′|s|
n ·

∏n−1
k=1f rk

k if s < 0,

is invariant under the right action of SO(n). According to Strichartz [21] and Grin-
berg [11], if γ is the element

γ1
r1,...,rn−1,s = γ2r1,...,2rn−1,s
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of Γ, the function f̃r1,...,rn−1,s on X induced by fr1,...,rn−1,s is a highest weight vector
of the irreducible G-module C∞

γ (X). We also know that C∞
γ (X) = 0 whenever γ ∈ Γ

is not of the form γ1
r1,...,rn−1,s, with r1, . . . , rn−1 ≥ 0 and s ∈ Z. Since f1 belongs to

the irreducible G-module H, it follows that

C∞
γ (X) = H̃

when γ = γ1
1,0,...,0 = γ2,0,...,0; in fact, the G-module H̃ is isomorphic to the irreducible

G-module S2
0U∗, with U = C2n. If r1, . . . , rn−1, s ∈ Z, when one of the integers

r1, . . . , rn−1 is < 0 we set f̃r1,...,rn−1,s = 0.
From the definitions of the functions fjl and fk, we infer that

(5.7) τ∗f̃jl = f̃jl, τ∗f̃k = f̃k, τ∗f̃n = −f̃n, τ∗f̃ ′
n = −f̃ ′

n,

for 1 ≤ j, l ≤ 2n and 1 ≤ k ≤ n − 1. From the definitions of the functions fjl and fk

and according to the relations (4.15) and (5.5), we obtain

Ψ∗f̃jl = −f̃jl, Ψ∗f̃jj + f̃jj = 1,

Ψ∗f̃k = (−1)kf̃k, Ψ∗f̃2
n = (−1)nf̃2

n,
(5.8)

for 1 ≤ j, l ≤ 2n and 1 ≤ k ≤ n− 1, with j "= l. Since the isometry Ψ commutes with
the action of G on G̃R

n,n and since the functions f̃n and f̃ ′
n are highest weight vectors

of irreducible G-modules, we know that Ψ∗f̃n = cnf̃n and Ψ∗f̃ ′
n = c′nf̃ ′

n, where cn

and c′n are complex numbers.
Since the functions f̃n and f̃ ′

n are highest weight vectors of irreducible G-modules
of weight λ1 + · · · + λn−1 + λn and λ1 + · · · + λn−1 − λn, respectively, the functions
f̃n−1 and f̃n · f̃ ′

n are highest weight vectors of the irreducible G-module B = C∞
γ (X),

where γ = γ1
0,...,0,1,0; therefore we know that f̃n · f̃ ′

n = c′′nf̃n−1, where c′′n is a non-zero
complex number. According to (5.1), we see that the G-module B is invariant under
conjugation and is therefore equal to the complexification of the subspace

BR = { f ∈ B | f = f̄ }

of C∞
R (X).

If r1, . . . , rn−1 ≥ 0 and s are given integers and γ is the element γ1
r1,...,rn−1,s of Γ,

since the function f̃r1,...,rn−1,s on X is a highest weight vector of the irreducible
G-module C∞

γ (X), according to the relations (5.7) we have the inclusion

(5.9) C∞
γ (X) ⊂ C∞(X)τ,ε,

where ε = (−1)s. From (5.7) and (5.8), we obtain the equality

(5.10) C∞
γ (X)odd = H̃,

with γ = γ1
1,0,...,0.

We now suppose that n is odd and consider the element γ = γ1
0,...,0,1,0 of Γ; by (5.7)

and (5.8), we see that

(5.11) C∞
γ (X)ev = B.
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Therefore BY = C∞
γ (Y ) is an irreducible G-module isomorphic to B and invariant

under conjugation; thus BY is equal to the complexification of the subspace

BY,R = { f ∈ BY | f = f̄ }

of C∞
R (Y ) and the mapping + induces an isomorphism +∗ : BY,R → BR. The dimen-

sion of B or BY,R is equal to

n(n + 1)(2n + 1)(2n − 3)/3.

We no longer suppose that n is odd. We consider the mapping

ι̃ : Rn −→ Sn,n,

which sends θ = (θ1, . . . , θn) ∈ Rn into the point v = ι̃(θ) of Sn,n determined by

Xk(v) = − sin θk · e2k−1 + cos θk · e2k,

Xn(v) = (−1)[n/2](− sin θn · e2n−1 + cos θn · e2n),

for 1 ≤ k ≤ n − 1. For all θ ∈ Rn, we verify that

X1(u) ∧ · · · ∧ Xn(u) ∧ X1(v) ∧ · · · ∧ Xn(v) = e1 ∧ · · · ∧ e2n,

where u = ι(θ) and v = ι̃(θ); hence we obtain the relation

Ψ(ρ(ι(θ)) = ρ(ι̃(θ)).

Let (ẽ1, . . . , ẽn) be the standard basis of Cn. For θ = (θ1, . . . , θn), we easily verify
that

Zj(ι(θ)) = eiθj ẽj = −iZj(ι̃(θ)),

Zn(ι(θ)) = eiθn ẽn = (−1)[n/2]+1iZn(ι̃(θ)),

for 1 ≤ j < n. According to these relations, we see that

(5.12)
fk(ι(θ)) = e2i(θ1+···+θk),

fn(ι(θ)) = ei(θ1+···+θn), f ′
n(ι(θ)) = ei(θ1+···+θn−1−θn),

for 1 ≤ k < n, and that

fn(ι̃(θ)) = (−1)[n/2] · in · ei(θ1+···+θn),

f ′
n(ι̃(θ)) = (−1)[n/2]+1 · in · ei(θ1+···+θn−1−θn).

(5.13)

From the equalities (5.12) and (5.13) and observations made above concerning the
functions f̃n and f̃ ′

n, we infer that

(5.14)
Ψ∗f̃n = (−1)[n/2] · inf̃n, Ψ∗f̃ ′

n = (−1)[n/2]+1 · inf̃ ′
n,

f̃n · f̃ ′
n = (−1)n+1f̃n−1.

If 1 ≤ k ≤ n and 1 ≤ i1 < · · · < ik ≤ n are given integers, we consider the
M(k, k)-valued function Ak(i1, i2, . . . , ik) on Sn,n whose l-th column is equal to the
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il-th column of the M(k, n)-valued function Ak, for 1 ≤ l ≤ k, and the complex-valued
function

D(i1, i2, . . . , ik) = detAk(i1, i2, . . . , ik)

on Sn,n.
According to Strichartz [21], we have the equality

(5.15) fk =
∑

1≤i1<···<ik≤n

D(i1, i2, . . . , ik)2,

for 1 ≤ k < n. Indeed, Strichartz shows that the function f̂k on Sn,n which is equal
to the right hand side of the equality (5.15) is invariant under the right action of
the group SO(n) and the function on X induced by f̂k is a highest weight vector
of the irreducible G-module C∞

γ (X), with γ = 2(λ1 + · · · + λk). Since the function
fk possesses the same properties, the functions fk and f̂k differ by a constant. If
θ = (θ1, . . . , θn) ∈ Rn, according to the description of the matrix An(ι(θ)) given
above, we see that D(i1, i2, . . . , ik)(ι(θ)) vanishes if one of the indices il is > k and
that

D(1, 2, . . . , k)(ι(θ)) = ei(θ1+···+θk);

from these observations and the first relation of (5.12), we infer that the equality (5.15)
is true on the torus Z̃, and hence on all of Sn,n.

The 1-forms

ϑjk = Zj · dZk − Zk · dZj , ϑ̄k̄ = Z̄j · dZ̄k − Z̄k · dZ̄j ,

ϑjk̄ = Zj · dZ̄k − Z̄k · dZj

on Sn,n, with 1 ≤ j, k ≤ n, belong to the G-module A and generate it over C. We shall
consider the 1-forms ϑ̃jk, ϑ̃̄k̄ and ϑ̃jk̄ on X induced by ϑ̃jk, ϑ̃̄k̄ and ϑ̃jk̄, respectively.

We again consider the vector space U = C2n. Let {α1, . . . , α2n} be the basis of U∗

dual to the basis {e1, . . . , e2n} of U . Then the vectors

βj = α2j−1 + iα2j, β̄ = α2j−1 − iα2j

of U∗, with 1 ≤ j ≤ n, are vectors of the G-module U∗ of weight λj and −λj ,
respectively. It is easily seen that

Φ1(βj · βk) = 〈Zj , Zk〉, Φ1(β̄ · βk̄) = 〈Z̄j , Z̄k〉,
Φ1(βj · βk̄) = 〈Zj , Z̄k〉,

Φ2(βj ∧ βk) = ϑjk, Φ2(β̄ ∧ βk̄) = ϑ̄k̄,

Φ2(βj ∧ βk̄) = ϑjk̄,

(5.16)

for 1 ≤ j, k ≤ n. Since β1 ∧β2 and β1 ·β1 are highest weight vectors of the irreducible
G-modules

∧2U∗ and S2
0U∗, respectively, we see that ϑ12 is a highest weight vector

of the irreducible G-module A and, once again, that f1 = 〈Z1, Z1〉 is a highest weight
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vector of the irreducible G-module H. Therefore ϑ̃12 is a highest weight vector of the
irreducible G-module Ã. By (4.4), it is easily seen that the vector field

ξ0 = ξ13 − ξ24 + i(ξ14 + ξ23)

on X satisfies the relation
g!(ξ0) = ϑ̃12.

If KC denotes the complexification of K, by (4.5) it follows that ξ0 is a highest weight
vector of the irreducible G-module KC. By (3.5), we also know that the equalities

(5.17)
C∞

γ (TC) = KC,

C∞
γ (T ∗

C) = C∞
γ (T ∗

C)Σ = g!(KC) = Ã.

of G-modules hold, where γ is the element γ0,1,0,...,0 = λ1 +λ2 of Γ, and that all these
G-modules are irreducible and isomorphic to g. Since the element

A13 − A24 + i(A14 + A23)

of g is a highest weight vector of the irreducible G-module g, we once more see that
the vector field ξ0 is a highest weight vector of the G-module KC.

According to the description of the weight vectors of U∗, we easily see that the
highest weight of the G-module

∧2(S2
0U∗) is 3λ1 + λ2 and that its highest weight

vectors are the non-zero multiples of (β1 · β1) ∧ (β1 · β2). Thus (β1 · β1) ∧ (β1 · β2)
is a highest weight vector of an irreducible G-submodule of

∧2(S2
0U∗). Therefore by

the first relation of (5.16), we know that 〈Z1, Z1〉∧ 〈Z1, Z2〉 is a highest weight vector
of an irreducible G-submodule of

∧2H, whose highest weight is 3λ1 + λ2. According
to (5.10), the image of the morphism of G-modules

χ1 :
∧2H −→ C∞(T ∗

C),

defined by
χ1(f ∧ f ′) = f̃df̃ ′ − f̃ ′df̃ ,

for f, f ′ ∈ H, is a G-submodule of C∞(T ∗
C)ev.

The G-modules A⊗H and A⊗H⊗H are isomorphic to the modules
∧2U∗⊗S2

0U∗

and
∧2U∗ ⊗ S2

0U∗ ⊗ S2
0U∗, respectively; the mappings

χ2 : A⊗H −→ C∞(T ∗
C), χ3 : A⊗H ⊗H −→ C∞(T ∗

C),

defined by
χ2(α ⊗ f) = f̃ α̃, χ3(α ⊗ f ⊗ f ′) = f̃ f̃ ′α̃,

where α ∈ A and f, f ′ ∈ H, are morphisms of G-modules. According to (5.10)
and (5.17), their images are G-modules satisfying

χ2(A⊗H) ⊂ C∞(T ∗
C)odd, χ3(A⊗H⊗H) ⊂ C∞(T ∗

C)ev.

We consider the G-modules

M1 =
∧3U∗ ⊗ U∗, M2 =

∧3U∗ ⊗
∧2U∗ ⊗ U∗.
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According to the description of the highest weight vectors of U∗, the elements

v+
1 = β1 ∧ β2 ∧ β3 ⊗ β1, v−1 = β1 ∧ β2 ∧ β3̄ ⊗ β1

of
∧3U∗ ⊗ U∗ generate (over C) the weight spaces of the G-module M1 of weights

++
1 = 2λ1 + λ2 + λ3 and +−

1 = 2λ1 + λ2 − λ3, respectively. Moreover, the elements

v+
2 = β1 ∧ β2 ∧ β3 ⊗ β1 ∧ β2 ∧ ⊗β1, v−2 = β1 ∧ β2 ∧ β3̄ ⊗ β1 ∧ β2 ⊗ β1

of
∧3U∗ ⊗

∧2U∗ ⊗ U∗ generate (over C) the weight spaces of the G-module M2 of
weights ++

2 = 3λ1+2λ2+λ3 and +−
2 = 3λ1+2λ2−λ3, respectively. Hence for j = 1, 2,

the element v+
j of Mj is a highest weight vector of an irreducible O(2n)-submodule

Ej of Mj . When n > 3, we know that Ej is an irreducible G-module. When n = 3,
the G-module Ej decomposes into the direct sum of two irreducible G-modules E+

j

and E−
j , whose highest weights are ++

j and +−
j , respectively; therefore, v+

j and v−j
are highest weight vectors of the G-modules E+

j and E−
j , respectively.

For j ≥ 1, the mapping

µj :
∧j+1U∗ ⊗ U∗ −→

∧jU∗ ⊗ S2U∗

defined by

(µjv)(ξ1, . . . , ξj , η1, η2) = (−1)j(v(ξ1, . . . , ξj , η1, η2) + v(ξ1, . . . , ξj , η2, η1)),

for v ∈
∧j+1U∗ ⊗ U∗ and ξ1, . . . , ξj , η1, η2 ∈ U , is a morphism of G-modules. Then

we easily verify that

µj(ϑ1 ∧ · · · ∧ ϑj+1 ⊗ ϑ) =
j+1∑

k=1

(−1)k+1ϑ1 ∧ · · · ∧ ϑ̂k ∧ · · · ∧ ϑj+1 ⊗ ϑk · ϑ,

for ϑ1, . . . , ϑj+1, ϑ ∈ U∗. We consider the morphism of G-modules

ν :
∧3U∗ ⊗

∧2U∗ ⊗ U∗ −→
∧2U∗ ⊗ S2U∗ ⊗ S2U∗

equal to the composition of the morphisms

id ⊗ µ1 :
∧3U∗ ⊗

∧2U∗ ⊗ U∗ −→
∧3U∗ ⊗ U∗ ⊗ S2U∗

and

µ2 ⊗ id :
∧3U∗ ⊗ U∗ ⊗ S2U∗ −→

∧2U∗ ⊗ S2U∗ ⊗ S2U∗.

The elements µ2(v+
1 ) and µ2(v−1 ) of

∧2U∗ ⊗ S2U∗ are given by

µ2(v+
1 ) = β2 ∧ β3 ⊗ β1 · β1 − β1 ∧ β3 ⊗ β1 · β2 + β1 ∧ β2 ⊗ β1 · β3,

µ2(v−1 ) = β2 ∧ β3̄ ⊗ β1 · β1 − β1 ∧ β3̄ ⊗ β1 · β2 + β1 ∧ β2 ⊗ β1 · β3̄.
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We easily verify that the vectors ν(v+
2 ) and ν(v−2 ) of

∧2U∗ ⊗ S2U∗ ⊗ S2U∗ are given
by

ν(v+
2 ) = ω+

1 ⊗ β1 · β1 − ω+
2 ⊗ β1 · β2, ν(v−2 ) = ω−

1 ⊗ β1 · β1 − ω−
2 ⊗ β1 · β2,

where

ω+
1 = β1 ∧ β2 ⊗ β2 · β3 + β2 ∧ β3 ⊗ β1 · β2 − β1 ∧ β3 ⊗ β2 · β2,

ω+
2 = β1 ∧ β2 ⊗ β1 · β3 + β2 ∧ β3 ⊗ β1 · β2 − β1 ∧ β3 ⊗ β1 · β2,

ω−
1 = β1 ∧ β2 ⊗ β2 · β3 + β2 ∧ β3̄ ⊗ β1 · β2 − β1 ∧ β3̄ ⊗ β2 · β2,

ω−
2 = β1 ∧ β2 ⊗ β1 · β3̄ + β2 ∧ β3̄ ⊗ β1 · β2 − β1 ∧ β3̄ ⊗ β1 · β2.

From these formulas, we infer that the µ2(v+
1 ) and µ2(v−1 ) are non-zero vectors of

the G-submodule
∧2U∗ ⊗ S2

0U∗, while vectors µ2(v+
2 ) and µ2(v−2 ) are non-zero vec-

tors of the G-submodule
∧2U∗ ⊗ S2

0U∗ ⊗ S2
0U∗. When n = 3, it follows that the

G-submodules µ2(E+
1 ) and µ2(E−

1 ) are irreducible G-submodules of
∧2U∗ ⊗ S2

0U∗

and that the vectors µ2(v+
1 ) and µ2(v−1 ) are highest weight vectors of the G-modules

µ2(E+
1 ) and µ2(E−

1 ), respectively; moreover, the G-submodules ν(E+
2 ) and ν(E−

2 )
are irreducible G-submodules of

∧2U∗ ⊗ S2
0U∗ ⊗ S2

0U∗ and that the vectors ν(v+
2 )

and ν(v−2 ) are highest weight vectors of the G-modules ν(E+
2 ) and ν(E−

2 ), respectively.
We now suppose that n = 3 and we consider the vectors

w+
1 = (Φ2 ⊗ Φ1)µ2(v+

1 ), w−
1 = (Φ2 ⊗ Φ1)µ2(v−1 )

of A⊗H and the vectors

w+
2 = (Φ2 ⊗ Φ1 ⊗ Φ1)ν(v+

1 ), w−
1 = (Φ2 ⊗ Φ1 ⊗ Φ1)ν(v−1 )

of A ⊗ H ⊗ H. Then we see that w+
1 and w−

1 are highest weight vectors of the
irreducible G-submodules

M+ = (Φ2 ⊗ Φ1)µ2(E+
1 ), M− = (Φ2 ⊗ Φ1)µ2(E−

1 )

of A⊗H, whose highest weights are ++
1 and +−

1 , respectively, and that w+
2 and w−

2

are highest weight vectors of the irreducible G-submodules

N+ = (Φ2 ⊗ Φ1 ⊗ Φ1)ν(E+
2 ), N− = (Φ2 ⊗ Φ1 ⊗ Φ1)ν(E−

2 )

of A⊗H⊗H, whose highest weights are ++
2 and +−

2 , respectively. According to the
relations (5.16) and the expressions for µ2(v+

1 ) and µ2(v−1 ) given above, the elements

ψ+ = χ2(w+
1 ), ψ− = χ2(w−

1 )

of C∞(T ∗
C)odd are equal to the 1-forms on X induced by the SO(n)-invariant 1-forms

〈Z1, Z1〉ϑ23 − 〈Z1, Z2〉ϑ13 + 〈Z1, Z3〉ϑ12,

〈Z1, Z1〉ϑ23̄ − 〈Z1, Z2〉ϑ13̄ + 〈Z1, Z̄3〉ϑ12
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on Sn,n, respectively. If the forms ψ+ and ψ− are non-zero, they are highest weight
vectors of irreducible G-submodules χ2(M+) and χ2(M−) of C∞(T ∗

C)odd whose high-
est weights are ++

1 and +−
1 , respectively. From the relations (5.16) and the expressions

for ν(v+
2 ) and ν(v−2 ) given above we infer that the elements

ϕ+ = χ3(w+
1 ), ϕ− = χ3(w−

1 )

of C∞(T ∗
C)ev are equal to the 1-forms on X induced by the SO(n)-invariant 1-forms

(〈Z1, Z1〉〈Z2, Z3〉 − 〈Z1, Z2〉〈Z1, Z3〉)ϑ12 − f2ϑ13,

(〈Z1, Z1〉〈Z2, Z̄3〉 − 〈Z1, Z2〉〈Z1, Z̄3〉)ϑ12 − f2ϑ13̄

on Sn,n, respectively. If the forms ϕ+ and ϕ− are non-zero, they are highest weight
vectors of irreducible G-submodules χ3(N+) and χ3(N−) of C∞(T ∗

C)ev whose highest
weights are ++

2 and +−
2 , respectively.

6. Isospectral deformations of the real Grassmannian of 3-planes in R6

We now consider the real Grassmannian X = G̃R
3,3, the symmetric space Y = ḠR

3,3,
and the group G = SO(6) and its dual Γ. We also consider the monomorphisms
σ : T → S2T ∗ and σY : TY → S2T ∗

Y induced by the symmetric 3-forms σ and σY ;
they determine the monomorphisms

∗ : T ∗ −→ S2T ∗, ∗ : T ∗
Y −→ S2T ∗

Y

given by (3.8) and (3.9), with n = 3. In this case, by (5.8) and (5.14) we have

Ψ∗f̃1 = −f̃1, Ψ∗f̃2 = f̃2, Ψ∗f̃3 = if̃3, Ψ∗f̃ ′
3 = −if̃ ′

3,(6.1)

f̃2 = f̃3 · f̃ ′
3.(6.2)

Most of this section is devoted to the proof of the following proposition:

Proposition 6.1. — We have

D0C
∞(T ) ∩ ∗dC∞

R (X) = ∗dBR.

If P denotes the orthogonal projection corresponding to the decomposition (1.3)
on the space Y , according to Lemmas 4.1 and 1.1 the mapping

(6.3) P ∗ d : C∞
R (Y ) −→ I(Y )

is well-defined. We denote by FY the orthogonal complement of the finite-dimensional
space F ′

Y = R(Y ) ⊕ BY in C∞
R (Y ). From Propositions 1.2 and 6.1, we obtain:

Theorem 6.2. — The symmetric space Y = ḠR
3,3 is not rigid in the sense of Guil-

lemin. If f is a non-zero element of FY , then the symmetric 2-form ∗df on Y satisfies
the Guillemin condition and is not a Lie derivative of the metric. Moreover, the kernel
of the mapping (6.3) is the finite-dimensional space F ′

Y = R(Y ) ⊕ BY,R.
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According to remarks made in §5, we know that the dimension of the space F ′
Y is

equal to 85.
The remainder of this section is devoted to various results which are needed for the

proof of Proposition 6.1.
If r1, r2 ≥ 0 and s are integers, we consider the elements

γ1
r1,r2,s = (2r1 + 2r2 + |s|)λ1 + (2r2 + |s|)λ2 + sλ3,

γ2
r1,r2,s = (2r1 + 2r2 + |s| + 1)λ1 + (2r2 + |s| + 1)λ2 + sλ3,

γ3
r1,r2,s = (2r1 + 2r2 + |s| + 2)λ1 + (2r2 + |s| + 1)λ2 + sλ3,

γ4
r1,r2,s = (2r1 + 2r2 + |s| + 1)λ1 + (2r2 + |s|)λ2 + sλ3

(6.4)

of Γ. We note that, if γ is an arbitrary element of Γ, there exist integers 1 ≤ j ≤ 4,
and r1, r2 ≥ 0 and s such that γ = γj

r1,r2,s.
The following proposition is a direct consequence of the results of §10 and Propo-

sition 10.4.

Proposition 6.3. — Let X be the Grassmannian G̃R
3,3. The non-zero multiplicities

of the SO(6)-modules C∞
γ (T ∗

C), with γ ∈ Γ, are given by the following table, where
r1, r2 ≥ 0 and s are integers and γ is an element of Γ:

γ Multiplicity

γ1
r1,r2,s 3 if r1, r2 ≥ 1

2 if r1 = 0 and r2 ≥ 1
2 if r2 = 0 and r1, |s| ≥ 1
1 if r1 = r2 = 0 and |s| ≥ 1
1 if r2 = s = 0 and r1 ≥ 1

γ2
r1,r2,s 2 if r1 ≥ 1

1 if r1 = 0

γ3
r1,r2,s 2

γ4
r1,r2,s 2 if r2 ≥ 1

1 if r2 = 0 and |s| ≥ 1

Let r1, r2 ≥ 0 and s be given integers. We consider the sections

ϕ1 = f̃r1−1,r2,sdf̃1, ϕ2 = f̃r1,r2−1,sdf̃2,

ϕ3 = f̃r1,r2,s−1df̃3, ϕ4 = f̃r1,r2,s+1df̃ ′
3,

ϕ5 = f̃r1,r2−1,s+1df̃ ′
3

of T ∗
C , and the subspace Vr1,r2,s of C∞(T ∗

C) which is generated (over C) by the
1-forms ϕ1, ϕ2, ϕ3 whenever s ≥ 1, by the 1-forms ϕ1, ϕ2, ϕ4 whenever s ≤ −1,
and by the 1-forms ϕ1, ϕ2, ϕ5 whenever s = 0. Clearly, we have Vr1,r2,s = {0} when
r1 = r2 = s = 0.
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By (6.2), we may consider the 1-form

β = f̃ ′
3df̃3 − f̃3df̃ ′

3 = df̃2 − 2f̃3df̃ ′
3,

and we have the relations

(6.5) f̃3df̃2 − f̃2df̃3 = f̃2
3 df̃ ′

3, f̃ ′
3df̃2 − f̃2df̃ ′

3 = f̃ ′2
3 df̃3.

Thus when r1 = 0 and r2 = s = 1, we have the equality

ϕ5 = ϕ2 − ϕ3.

Lemma 6.4. — Let r1, r2 ≥ 0 and s be given integers, and suppose that

r1 + r2 + |s| > 0.

(i) The non-zero generators of the vector space Vr1,r2,s form a basis of Vr1,r2,s.
More precisely, the dimension and a basis of Vr1,r2,s are given by the following table:

Conditions on r1, r2 and s dim Vr1,r2,s Basis of Vr1,r2,s

r1, r2, s ≥ 1 3 ϕ1, ϕ2, ϕ3

r1 = 0, r2, s ≥ 1 2 ϕ2, ϕ3

r2 = 0, r1, s ≥ 1 2 ϕ1, ϕ3

r1 = r2 = 0, s ≥ 1 1 ϕ3

s = 0, r1, r2 ≥ 1 3 ϕ1, ϕ2, ϕ5

r1 = s = 0, r2 ≥ 1 2 ϕ2, ϕ5

r2 = s = 0, r1 ≥ 1 1 ϕ1

r1, r2 ≥ 1, s ≤ −1 3 ϕ1, ϕ2, ϕ4

r1 = 0, r2 ≥ 1, s ≤ −1 2 ϕ2, ϕ4

r2 = 0, r1 ≥ 1, s ≤ −1 2 ϕ1, ϕ4

r1 = r2 = 0, s ≤ −1 1 ϕ4

(ii) When s "= 0, or when r2 = s = 0, an element ϕ of Vr1,r2,s satisfying

(D1ϕ)(ζj , ζj) = 0,

for j = 1, 2, 3, vanishes identically.

Proof. — Let r1, r2 ≥ 0 and s be given integers, and let a1, a2, a3 be given complex
numbers. We assume that a1 = 0 whenever r1 = 0, and that a2 = 0 whenever r2 = 0.
We consider the function ψ on R3 defined by

ψ(θ) = i exp i((2r1 + 2r2 + |s|)θ1 + (2r2 + |s|)θ2 + sθ3),
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for θ ∈ R3, and the parallel 1-forms

Θ = (2a1 + 2a2 + a3)dθ1 + (2a2 + a3)dθ2 + a3dθ3,

Θ′ = (2a1 + 2a2 + a3)dθ1 + (2a2 + a3)dθ2 − a3dθ3

on R3. We remark that the function ∂ψ/∂θ1 is everywhere non-vanishing on R3;
moreover when s "= 0, the functions ∂ψ/∂θ2 and ∂ψ/∂θ3 are everywhere non-vanishing
on R3. We first suppose that s ≥ 1 and we consider the 1-form

ϕ = a1f̃r1−1,r2,sdf̃1 + a2f̃r1,r2−1,sdf̃2 + a3f̃r1,r2,s−1df̃3

belonging to Vr1,r2,s. If ι : R3 → S3,3 is the mapping defined in §4, by the formulas
(4.9) and (5.12) we obtain the relation

ι′∗ϕ = ψΘ

among 1-forms on R3. According to formula (4.12), the relations

(D1ϕ)(ζj , ζj) = 0,

with j = 1, 2, 3, imply that Θ = 0, and we infer that the coefficients a1, a2, a3 all
vanish. Next, we suppose that s ≤ −1 and we consider the 1-form

ϕ′ = a1f̃r1−1,r2,sdf̃1 + a2f̃r1,r2−1,sdf̃2 + a3f̃r1,r2,s+1df̃ ′
3

belonging to Vr1,r2,s. By formulas (4.9) and (5.12), we have the relation

ι′∗ϕ′ = ψΘ′

among 1-forms on R3. According to formula (4.12), the relations

(D1ϕ′)(ζj , ζj) = 0,

with j = 1, 2, 3, imply that Θ′ = 0, and we infer that the coefficients a1, a2, a3 all
vanish. Finally, we suppose that s = 0, that r1 + r2 > 0 and we also assume that
a3 = 0 whenever r2 = 0. We consider the 1-form

ϕ′′ = a1f̃r1−1,r2,0df̃1 + a2f̃r1,r2−1,0df̃2 + a3f̃r1,r2−1,1df̃ ′
3

on X . By the formulas (4.9) and (5.12), we obtain the relation

(6.6) ι′∗ϕ′′ = ψΘ′

among 1-forms on R3. Thus if the 1-form ϕ′′ vanishes, we infer that the coefficients a1,
a2, a3 all vanish. Since the function ∂ψ/∂θ1 is everywhere non-vanishing, according
to formulas (4.12) and (6.6) the relation

(D1ϕ′′)(ζ1, ζ1) = 0

implies that 2a1 + 2a2 + a3 = 0. Thus if r2 = 0, we see that the coefficient a1

vanishes. The two assertions of the lemma are now direct consequences of the above
argument.
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When r2 ≥ 1, the function ∂ψ/∂θ2 is everywhere non-vanishing on R3, and so the
relations

(D1ϕ′′)(ζj , ζj) = 0,

with j = 1, 2, imply that a1 = 0 and 2a2 + a3 = 0; then we see that Θ′ = 2a2dθ3.
Moreover, by (4.12) we have

ι′∗(D1ϕ′′)(ζ1, ζ3) = a2
∂ψ

∂θ1
= 2ia2(r1 + r2)ψ,

ι′∗(D1ϕ′′)(ζ2, ζ3) = a2
∂ψ

∂θ2
= 2ia2r2ψ.

Now using the formulas (4.9) and (5.12), we verify that

ι′∗df̃r1,r2,0 = 2ψ((r1 + r2)dθ1 + r2dθ2).

If D1ϕ′′ = c ∗ df̃r1,r2,0, with c ∈ C, then by formulas (4.9) and (4.14) we obtain the
relations

ι′∗(D1ϕ′′)(ζ1, ζ3) = c〈∂/∂θ2, ι
′∗df̃r1,r2,0〉 = 2cr2ψ,

ι′∗(D1ϕ′′)(ζ2, ζ3) = c〈∂/∂θ1, ι
′∗df̃r1,r2,0〉 = 2c(r1 + r2)ψ.

From the preceding the equalities, we deduce that

ia2 = c
r2

r1 + r2
= c

r1 + r2

r2
.

Hence when r1 > 0, we infer that c = 0 and a2 = 0, and so we see that ϕ′′ = 0. On
the other hand, when r1 = 0, by (6.2) we know that

ϕ′′ = a2f̃
r2−1
2 β, c = ia2.

Thus we proved the following result:

Lemma 6.5. — Let r1 ≥ 0 and r2 ≥ 1 be given integers. Let ϕ be an element
of Vr1,r2,0 satisfying

D1ϕ = c∗ df̃r1,r2,0,

with c ∈ C. Then:
(i) If r1 ≥ 1, the element ϕ vanishes identically.
(ii) If r1 = 0, there is an element a ∈ C such that

ϕ = af̃ r2−1
2 β, D1ϕ = ia∗ df̃ r2

2 .

We consider the matrix

A0 =




0 0 −1
1 0 0
0 1 0





of O(3); we then consider the element φ0 = (A0, A0) of the subgroup S(O(3)×O(3))
of G = SO(6).
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The functions f̂j = ι∗φ∗
0fj , with j = 1, 2, 3, and f̂ ′

1 = ι∗φ∗
0f

′
1 on R3 are given by

f̂1(θ) = cos2 θ2 − cos2 θ1, f̂ ′
1(θ) = i cos θ1 · sin θ1,

f̂2(θ) = cos2 θ2 · (sin2 θ1 − sin2 θ3) + cos2 θ1 · sin2 θ3

= cos2 θ1 · sin2 θ2 · sin2 θ3 + sin2 θ1 · cos2 θ2 · cos2 θ3,

f̂3(θ) = cos θ1 · sin θ2 · sin θ3 − i sin θ1 · cos θ2 · cos θ3,

(6.7)

for θ ∈ R3, and the function f̂ ′
3 = ι∗φ∗

0f
′
3 on R3 satisfies

(6.8) f̂ ′
3 = ¯̂f3.

Lemma 6.6. — Let r ≥ 1 be a given integer. Then the element ϕ = f̃ r
2β of V0,r+1,0

satisfies
(D1ϕ)(φ0∗ζ3, φ0∗ζ3) "= 0.

Proof. — Using the formulas (6.7) and (6.8), we easily see that the equalities

∂f̂2

∂θ3
= 2 sin θ3 · cos θ3 · (cos2 θ1 − cos2 θ2),

〈∂/∂θ3, ι
′∗φ∗

0β〉 = 2i sin θ1 · cos θ1 · sin θ2 · cos θ2

hold on R3. According to formula (4.12), we have

ι′∗(D1φ∗
0ϕ)(ζ3, ζ3) =

∂

∂θ3
〈∂/∂θ3, ι

′∗φ∗
0ϕ〉 = rf̂ r−1

2

∂f̂2

∂θ3
〈∂/∂θ3, ι

′∗φ∗
0β〉.

If θ = (θ1, θ2, θ3) is a point of R3 satisfying

cos θj "= 0, sin θj "= 0, | cos θ1| "= | cos θ2|,

for j = 1, 2, 3, from the above relations and (6.7) we infer that the expression
(D1φ∗

0ϕ)(ζ3, ζ3) does not vanish at the point ι′(θ) of X , and so we obtain the de-
sired result.

Lemma 6.7. — Let r1, r2, s be integers satisfying

(6.9) r1, r2 ≥ 0, r1 + r2 + |s| > 0, (r1, r2, s) "= (0, 1, 0).

Let ϕ be an element of Vr1,r2,s satisfying

D1ϕ = c∗ df̃r1,r2,s,

with c ∈ C. Then we have ϕ = 0.

Proof. — According to our hypotheses, by (4.13) we know that

(D1ϕ)(φ∗ζj , φ∗ζj) = 0,

for all φ ∈ G and j = 1, 2, 3. When s "= 0, or when r2 = s = 0, from Lemma 6.4,(ii)
we infer that ϕ vanishes. Next, when r1, r2 ≥ 1 and s = 0, Lemma 6.5,(i) tells us that
ϕ vanishes. Finally, when r1 = s = 0 and r2 ≥ 2, according to Lemma 6.5,(ii) we
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see that ϕ is a multiple of the 1-form f̃ r2−1
2 β; Lemma 6.6 then gives us the vanishing

of ϕ.

Let r1, r2 ≥ 0 and s be given integers and consider the element γ = γ1
r1,r2,s of Γ.

Let γ′ be an arbitrary element of Γ, and let u be a highest weight vector of the
isotypic component C∞

γ′ (SpT ∗
C). Since u is a real-analytic section of SpT ∗

C (see §7,
Chapter II of [6]), the section f̃r1,r2,su of SpT ∗

C is non-zero. Since the function f̃r1,r2,s

is a highest weight vector of the irreducible G-module C∞
γ (X), it follows that the

section f̃r1,r2,su is a highest weight vector of the isotypic component C∞
γ′′(SpT ∗

C),
where γ′′ = γ′ + γ1

r1,r2,s.
According to the preceding observation, we see that all the non-zero vectors of the

space Vr1,r2,s are highest weight vectors of the G-module C∞
γ (T ∗

C). From Lemma 6.4
and Proposition 6.3, we deduce the following result:

Lemma 6.8. — Let r1, r2 ≥ 0 and s be given integers and let γ be the element γ1
r1,r2,s

of Γ. Then the weight subspace Wγ of C∞
γ (T ∗

C) is equal to Vr1,r2,s.

By (4.9), (4.14) and (5.12), we see that the relations

ι′∗(Hess f̃3)(ζ1, ζ2) = ι′∗(Hess f̃ ′
3)(ζ1, ζ2) = −1,

ι′∗(∗df̃3)(ζ1, ζ2) = ι′∗〈ζ3, df̃3〉 = 〈∂/∂θ3, ι
′∗df̃3〉 = i,

ι′∗(∗df̃ ′
3)(ζ1, ζ2) = ι′∗〈ζ3, df̃ ′

3〉 = 〈∂/∂θ3, ι
′∗df̃ ′

3〉 = −i.

(6.10)

hold at the point 0 of R3. We consider the sections

h1 = Hess f̃3 + f̃3g, h2 = Hess f̃ ′
3 + f̃ ′

3g

of T ∗
C and the elements γ1 = γ1

0,0,1 and γ2 = γ1
0,0,−1 of Γ. By (6.10), we know that

the relations
ι′∗h1(ζ1, ζ2) = ι′∗(∗idf̃3)(ζ1, ζ2) = −1,

ι′∗h2(ζ1, ζ2) = −ι′∗(∗idf̃ ′
3)(ζ1, ζ2) = −1,

(6.11)

hold at 0 ∈ R3. In §5, we saw that the functions f̃3 and f̃ ′
3 are highest weight vectors

of the irreducible G-modules C∞
γ1

(X) and C∞
γ2

(X), respectively. Therefore, since the
differential operator Hess is homogeneous, the sections h1 and h2 are highest weight
vectors of the G-modules C∞

γ1
(S2T ∗

C) and C∞
γ2

(S2T ∗
C), respectively.

Lemma 6.9. — (i) We have the relations

Hess f̃3 = −f̃3 + ∗idf̃3, Hess f̃ ′
3 = −f̃ ′

3 − ∗idf̃ ′
3,(6.12)

D1β = ∗idf̃2.(6.13)

(ii) For γ = γ1
0,1,0, we have the inclusion

(6.14) ∗dC∞
γ (X) ⊂ D1C∞(T ∗

C).
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Proof. — According to (5.6), we see that

h1(v ⊗ w, v ⊗ w) = h2(v ⊗ w, v ⊗ w) = 0,

for all v ∈ V and w ∈ W . From the decomposition (3.4), we infer that h1 and
h2 are sections of the sub-bundle (

∧2V ∗ ⊗
∧2W ∗)C of S2T ∗

C . Since the mapping
∗ : T ∗ →

∧2V ∗ ⊗
∧2W ∗ is an isomorphism, there exist unique sections α1 and α2

of T ∗
C such that

h1 = ∗α1, h2 = ∗α2;
it follows that α1 and α2 are highest weight vectors of the G-modules C∞

γ1
(T ∗

C)
and C∞

γ2
(T ∗

C), respectively. By Lemma 6.8, there are constants a, b ∈ C such that
α1 = adf̃3 and α1 = bdf̃ ′

3. Then according to (6.11), we see that a = i and b = −i,
and so we obtain the equalities (6.12). By (1.2), we have

D1β = f̃ ′
3 Hess f̃3 − f̃3 Hess f̃ ′

3;

the relation (6.13) is now a direct consequence of (6.12) and (6.2). As f̃2 is a highest
weight vector of the irreducible G-module C∞

γ (X), with γ = γ1
0,1,0, the inclusion (6.14)

is a direct consequence of the identity (6.13).

In order to prove Proposition 6.1, by formula (1.1) it suffices to show that

D1C∞(T ∗
C) ∩ ∗dC∞(X) = ∗dB.

Since the differential operators D1 and ∗d are homogeneous, according to Proposi-
tion 2.1 of [6] and Lemma 6.9,(ii) the preceding equality holds if and only if

(6.15) D1C∞
γ (T ∗

C) ∩ ∗dC∞
γ (X) = {0},

for all γ ∈ Γ, with γ "= γ1
0,1,0. We now proceed to verify that (6.15) holds and, in the

process, complete the proof of Proposition 6.1.
If γ ∈ Γ is not of the form γ1

r1,r2,s, where r1, r2, s are integers satisfying r1, r2 ≥ 0
and r1 + r2 + |s| > 0, we know that dC∞

γ (X) = {0}, and so the equality (6.15)
holds. Now let r1, r2, s be given integers satisfying (6.9). We consider the element
γ = γ1

r1,r2,s of Γ, and suppose that the G-module M equal to the right-hand side of
the equality (6.15) is non-zero. Then by Lemma 6.8, a highest weight vector h of M
belongs to D1Vr1,r2,s. On the other hand, since the function f̃r1,r2,s is a highest weight
vector of the irreducible G-module C∞

γ (X), the symmetric 2-form h is a constant
multiple of the highest weight vector ∗df̃r1,r2,s of the irreducible G-module ∗dC∞

γ (X).
Lemma 6.7 tells us that h vanishes, which leads us to a contradiction; therefore the
equality (6.15) holds, and so we have proved Proposition 6.1.

7. Forms of degree one

We pursue our study of the real Grassmannian X = G̃R
3,3 and consider the objects

which we associated with X and the group G = SO(6) in §6. Here we present results
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on forms of degree one on X which are needed for the proof of our criterion for
exactness of 1-forms on Y given by Theorem 9.1.

Let p, q be given integers; we remark that q is even and p + q/2 is even (resp. is
odd) if and only if 2p + q ≡ 0 mod 4 (resp. 2p + q ≡ 2 mod 4), and we also note
that q is odd and p + (q + 1)/2 is even (resp. is odd) if and only if 2p + q ≡ 3 mod 4
(resp. 2p + q ≡ 1 mod 4).

Let r1, r2 ≥ 0 and s be given integers. We now consider the element γ = γ1
r1,r2,s

of Γ. We know that the inclusion (5.1), holds, with ε = (−1)s. Since the function
f̃r1,r2,s is a highest weight vector of the irreducible G-module C∞

γ (X), according
to (6.1) we have the equalities

(7.1) C∞
γ (X) =

{
C∞

γ (X)ev if 2r1 + s ≡ 0 mod 4,

C∞
γ (X)odd if 2r1 + s ≡ 2 mod 4.

According to (5.7), we see that a non-zero 1-form on X equal to one of the
forms ϕj , which we associated in §6 with the integers r1, r2, s, belongs to C∞(T ∗

C)τ,ε,
where ε = (−1)s; according to (6.1), such a 1-form on X belongs to C∞(T ∗

C)Σ (resp. to
C∞(T ∗

C)odd) if and only if 2r1 + 3s ≡ 0 mod 4 (resp. 2r1 + 3s ≡ 2 mod 4). Thus we
have the inclusion

Vr1,r2,s ⊂ C∞(T ∗
C)τ,ε,

where ε = (−1)s. If r1 + r2 + |s| > 0, we know that the inclusion

Vr1,r2,s ⊂ C∞(T ∗
C)Σ

holds whenever 2r1 + 3s ≡ 0 mod 4, and that the inclusion

Vr1,r2,s ⊂ C∞(T ∗
C)odd

holds whenever 2r1 + 3s ≡ 2 mod 4. Proposition 6.3 tells us that

C∞
γ (T ∗

C) = {0}

when γ = 0. According to Lemma 6.9, we have the inclusion

(7.2) C∞
γ (T ∗

C) ⊂ C∞(T ∗
C)τ,ε,

with ε = (−1)s. If r1 + r2 + |s| > 0, we know that

(7.3) C∞
γ (T ∗

C) =

{
C∞

γ (T ∗
C)ev if 2r1 + 3s ≡ 0 mod 4,

C∞
γ (T ∗

C)odd if 2r1 + 3s ≡ 2 mod 4.

We consider the element φ0 of G defined in §6 and verify that

ι∗φ∗
0〈Z1, Z3〉 = ι∗φ∗

0〈Z1, Z̄3〉 = cos θ2 · sin θ2,

ι∗φ∗
0〈Z2, Z̄3〉 = −ι∗φ∗

0〈Z2, Z̄3〉 = cos θ3 · sin θ3,

ι∗φ∗
0ϑ12 = idθ1, ι∗φ∗

0ϑ13 = ι∗φ∗
0ϑ13̄ = dθ2,

ι∗φ∗
0ϑ23 = −ι∗φ∗

0ϑ23̄ = dθ3.

(7.4)
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Since the 1-form g!(ξ0) is equal to ϑ̃12, according to (4.11) we see that

(7.5) ι′∗φ∗
0g

!(ξ0) = idθ1.

We consider the 1-forms ϕ+, ϕ−, ψ+ and ψ− on X which are defined in §5. We
shall also consider the 1-form ω = f̃1df̃ ′

1 − f̃ ′
1df̃1, which is the image of f1 ∧ f ′

1 under
the mapping χ1 :

∧2H → C∞(T ∗
C)ev.

Lemma 7.1. — The sections ω, ϕ+, ϕ−, ψ+ and ψ− of T ∗
C are non-zero.

Proof. — Thus, by (4.11), (6.7) and (7.4) we see that the equalities

〈∂/∂θ1, ι
′∗φ∗

0ω〉 = i(2 cos2 θ1 · cos2 θ2 − cos2 θ1 − cos2 θ2)
= 2i(cos2 θ1 · sin2 θ2 + sin2 θ1 · cos2 θ2),

〈∂/∂θ2, ι
′∗φ∗

0ϕ
+〉 = 〈∂/∂θ2, ι

′∗φ∗
0ϕ

−〉 = −f̂2,

〈∂/∂θ3, ι
′∗φ∗

0ψ
+〉 = −〈∂/∂θ3, ι

′∗φ∗
0ψ

−〉 = f̂1

(7.6)

hold on R3; since the functions f̂1 and f̂2 are given by (6.7), we see that the lemma
is an immediate consequence of the preceding formulas.

From Lemma 7.1 and comments made in §5, it follows that ω is a highest weight
vector of the G-module C∞

γ2
1,0,0

(T ∗
C)ev. Now let r1, r2 ≥ 0 and s be given integers and

consider the element γ = γ2
r1,r2,s of Γ. We consider the sections

ϕ6 = f̃r1,r2,sg
!(ξ0), ϕ7 = f̃r1−1,r2,sω

of T ∗
C . According to the remark preceding Lemma 6.9, when r1 ≥ 0 (resp. when r1 ≥ 1)

we know that ϕ6 (resp. ϕ7) is a highest weight vector of the G-module C∞
γ (T ∗

C). Since
g!(ξ0) and ω are elements of C∞(T ∗

C)ev, if ϕ is a section of T ∗
C equal to ϕ6 or ϕ7,

according to (5.7) we see that

(7.7) τ∗ϕ = (−1)sϕ;

moreover, by (6.1) we also have the relations

Ψ∗ϕ8 =

{
(−1)r1isϕ8 when s ≥ 0,

(−1)r1+|s|i|s|ϕ8 when s < 0,

Ψ∗ϕ9 =

{
(−1)r1−1isϕ9 when s ≥ 0,

(−1)r1+|s|−1i|s|ϕ9 when s < 0.

(7.8)

If r1 ≥ 1, from these relations we deduce the linear independence of the 1-forms
ϕ8 and ϕ9.

Lemma 7.2. — Let r1, r2 ≥ 0 and s be given integers and let γ be the element γ2
r1,r2,s

of Γ.
(i) If r1 = 0, the section f̃0,r2,sg!(ξ0) is a highest weight vector of the irreducible

G-module C∞
γ (T ∗

C).
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(ii) If r1 ≥ 1, the section f̃r1,r2,sg!(ξ0) and f̃r1−1,r2,sω form a basis of the
space Wγ .

(iii) We have inclusion
C∞

γ (T ∗
C) ⊂ C∞(T ∗

C)τ,ε,

with ε = (−1)s.
(iv) Suppose that r1 = 0 and that s is even. Then the relation (7.3) holds, with

γ = γ2
0,r2,s.

(v) Suppose that r1 ≥ 1 and that s is even. Then the G-modules C∞
γ (T ∗

C)ev and
C∞

γ (T ∗
C)odd are irreducible. When 2r1 + s ≡ 0 mod 4 (resp. 2r1 + s ≡ 2 mod 4),

the section f̃r1,r2,sg!(ξ0) (resp. f̃r1−1,r2,sω) is a highest weight vector of the G-module
C∞

γ (T ∗
C)ev.

Proof. — From the observations preceding the lemma and from Proposition 6.3, we
deduce assertions (i) and (ii). Assertion (iii) is a direct consequence of (i) and (ii) and
the relation (7.7). Assertions (iv)–(v) follow directly from the preceding assertions
and the relations (7.8).

According to Lemma 7.1 and the discussion which appears at the end of §5,
we see that ϕ+ and ϕ− are highest weight vectors of the G-modules C∞

γ3
0,0,1

(T ∗
C)ev

and C∞
γ3
0,0,−1

(T ∗
C)ev, respectively. For p ≥ 0, we consider the space Up = Wγ , where

γ = γ3
0,p,0; by Proposition 6.3, we know that this space is two-dimensional. By the

remark preceding Lemma 6.9, the sections u1 = f̃ ′
3ϕ

+ and u2 = f̃3ϕ− of T ∗
C are

elements of U1. From (5.7) and (6.1), we obtain the relations

(7.9) τ∗uj = −uj, Ψ∗u1 = −iu1, Ψ∗u2 = iu2,

for j = 1, 2; therefore the sections u1 and u2 are linearly independent and so form a
basis of the space U1. The endomorphism of C∞(T ∗

C), which sends u into f̃2u, induces
an isomorphism U0 → U1. By (5.7) and (6.1), the latter mapping commutes with
the automorphisms τ∗ and Ψ∗ of the spaces Up, with p = 0, 1, induced by τ and Ψ.
By (7.9), we see that τ∗u = −u, for all u ∈ U0, and so the automorphism Ψ∗ of U0

satisfies Ψ∗2 = −id. Hence by (7.9) we may choose non-zero elements ϕ′
0 and ϕ′′

0 of U0

satisfying Ψ∗ϕ′
0 = −iϕ′

0 and Ψ∗ϕ′′
0 = iϕ′′

0 . Therefore there exist non-zero constants
c′, c′′ ∈ C such that f̃2ϕ′

0 = c′u1 and f̃2ϕ′′
0 = c′′u2. Then the sections ϕ+

0 = (1/c′) ·ϕ′
0

and ϕ−
0 = (1/c′′) · ϕ′′

0 of T ∗
C form a basis of U0 and satisfy the relations given by the

following lemma:

Lemma 7.3. — There exist sections ϕ+
0 and ϕ−

0 of T ∗
C such that

ϕ+ = f̃3ϕ
+
0 , ϕ− = f̃ ′

3ϕ
−
0 .

Clearly, by (6.1) and (7.9) the vectors ϕ+
0 and ϕ−

0 of C∞
γ3
0,0,0

(T ∗
C) belong to the space

C∞(T ∗
C)τ,−1 and satisfy the relations

(7.10) Ψ∗ϕ+
0 = −iϕ+

0 , Ψ∗ϕ−
0 = iϕ−

0 .
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By (7.6) and (6.2), we have

(7.11) 〈∂/∂θ2, ι
′∗φ∗

0ϕ
+
0 〉 = −f̂ ′

3, 〈∂/∂θ2, ι
′∗φ∗

0ϕ
−
0 〉 = −f̂3.

Lemma 7.4. — Let r1, r2 ≥ 0 and s be given integers and let γ be the element γ3
r1,r2,s

of Γ.
(i) The section f̃r1,r2,sϕ

+
0 and f̃r1,r2,sϕ

−
0 form a basis of the vector space Wγ .

(ii) We have inclusion
C∞

γ (T ∗
C) ⊂ C∞(T ∗

C)τ,ε,

with ε = (−1)s+1.
(iii) Suppose that s is odd. The G-modules C∞

γ (T ∗
C)ev and C∞

γ (T ∗
C)odd are irre-

ducible. When 2r1 + s ≡ 1 mod 4 (resp. 2r1 + s ≡ 3 mod 4), the section f̃r1,r2,sϕ
+
0

(resp. f̃r1,r2,sϕ
−
0 ) is a highest weight vector of the G-module C∞

γ (T ∗
C)ev.

Proof. — From the observations preceding the lemma and from Proposition 6.3, we
deduce assertion (i). Assertion (ii) is a direct consequence of (i) and the relations (5.7).
Assertion (iii) follows directly from the preceding assertions and the relations (6.1)
and (7.10).

According to Lemma 7.1 and the discussion which appears at the end of §5,
we see that χ2(M+) and χ2(M−) are irreducible G-submodules of C∞

γ4
0,0,1

(T ∗
C)odd

and C∞
γ4
0,0,−1

(T ∗
C)odd, respectively, and that ψ+ and ψ− are highest weight vectors of

these modules. According to Proposition 6.3, the G-module C∞
γ4
0,0,s

(T ∗
C) is irreducible,

for s ∈ Z, with |s| ≥ 1. Therefore, we have the equalities

C∞
γ4
0,0,1

(T ∗
C) = C∞

γ4
0,0,1

(T ∗
C)odd = χ2(M+),

C∞
γ4
0,0,−1

(T ∗
C) = C∞

γ4
0,0,−1

(T ∗
C)odd = χ2(M−).

Let r1, r2 ≥ 0 and s be given integers. We now consider the sections

ϕ8 = f̃r1,r2,sψ
+, ϕ9 = f̃r1,r2,sψ

−

of T ∗
C . According to the remark preceding Lemma 6.9, we see that ϕ8 is a high-

est weight vector of the G-module C∞
γ+(T ∗

C), where γ+ is the element of Γ equal
to γ4

r1,r2,s+1 when s ≥ 0, and to γ4
r1,r2+1,s+1 when s ≤ −1; on the other hand, ϕ9 is a

highest weight vector of the G-module C∞
γ−(T ∗

C), where γ− is the element of Γ equal
to γ4

r1,r2+1,s−1 when s ≥ 1, and to γ4
r1,r2,s−1 when s ≤ 0. Since ψ+ and ψ− are

elements of C∞(T ∗
C)odd, if ϕ is a section of T ∗

C equal to ϕ8 or to ϕ9, according to (5.7)
we see that

(7.12) τ∗ϕ = (−1)sϕ;

moreover, by (6.1) we also have the relation

(7.13) Ψ∗ϕ =

{
(−1)r1+1isϕ when s ≥ 0,
(−1)r1+|s|+1i|s|ϕ when s < 0.
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If p, q ≥ 0 are given integers, we easily deduce from (7.13) that the 1-forms f̃r1,p,s−1ψ+

and f̃r1,q,s+1ψ− are linearly independent.

Lemma 7.5. — Let r1, r2 ≥ 0 and s be given integers and let γ be the element γ4
r1,r2,s

of Γ.
(i) A basis of the space Wγ is given by the following table:

Conditions on r2 and s Basis of Wγ

r2 ≥ 1, s ≥ 1 f̃r1,r2,s−1ψ+, f̃r1,r2−1,s+1ψ−

r2 ≥ 1, s = 0 f̃r1,r2−1,−1ψ+, f̃r1,r2−1,1ψ−

r2 ≥ 1, s ≤ −1 f̃r1,r2−1,s−1ψ+, f̃r1,r2,s+1ψ−

r2 = 0, s ≥ 1 f̃r1,0,s−1ψ+

r2 = 0, s ≤ −1 f̃r1,0,s+1ψ−

(ii) We have inclusion

C∞
γ (T ∗

C) ⊂ C∞(T ∗
C)τ,ε,

with ε = (−1)s+1.
(iii) Suppose that r2 = 0 and s "= 0. Then the G-module C∞

γ (T ∗
C) is irreducible. If

s is odd and equal to 2l + 1, with l ∈ Z, the equality

C∞
γ (T ∗

C) = C∞
γ (T ∗

C)ev

holds when s ≥ 1 and r1 + l is odd, or when s ≤ −1 and r1 + l is even.
(iv) Suppose that r2 ≥ 1 and that s is odd. Then the G-modules C∞

γ (T ∗
C)ev and

C∞
γ (T ∗

C)odd are irreducible.
(v) Suppose that s is odd. Then if the G-module C∞

γ (T ∗
C)ev is non-zero, a highest

weight vector of this G-module is given by the following table:

Conditions on r1, r2 and s Highest weight vector

s ≥ 1 and 2r1 + s ≡ 3 mod 4 f̃r1,r2,s−1ψ+

r2 ≥ 1, s ≥ 1 and 2r1 + s ≡ 1 mod 4 f̃r1,r2−1,s+1ψ−

r2 ≥ 1, s ≤ −1 and 2r1 + s ≡ 3 mod 4 f̃r1,r2−1,s−1ψ+

s ≤ −1 and 2r1 + s ≡ 1 mod 4 f̃r1,r2,s+1ψ−

Proof. — From the observations preceding the lemma and from Proposition 6.3, we
deduce assertion (i). Assertion (ii) is a direct consequence of (i) and the relation (7.12).
Assertions (iii)–(iv) follow directly from (i), (ii) and the relations (7.13).
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8. A family of polynomials

In this section, we introduce a family of polynomials arising from trigonometric
integrals. These integrals appear in the next section when we integrate various ob-
jects over maximal flat tori of G̃R

3,3. The principal result of this section is a new
combinatorial identity, formula (8.4), which is proved by means of the WZ algorithm
(see [8]).

If a ∈ Q and r ≥ 0 is an integer, we consider the rising factorial (a)r, which is the
element of Q defined inductively by (a)0 = 1, (a)1 = a, and (a)r+1 = (a + r) · (a)r

for r ≥ 1. If m, r are integers, we define the binomial coefficient
(m

r

)
to be equal to

zero whenever r > m, or whenever one of the integers m, r is negative.
Let m, q ≥ 0 be given integers. We consider the polynomials Pm,q, Rm,q and R̂m,q

of degree q belonging to Q[y] determined by

Pm,q(y) =
q∑

r=0

ary
r, Rm,q(y) =

q∑

r=0

bry
r, R̂m,q(y) =

q∑

r=0

bq−ry
r,

where a0 = b0 = 1 and

ar =
(

q

r

) r∏

j=1

2m + 2j − 1
2m + 2q − 2j + 1

, br =
2m + 2q − 2r + 1

2m + 2q + 1
ar,

for 1 ≤ r ≤ q. In fact, we have

ar = (−1)r

(
q

r

) (
m + 1

2

)
r(

1
2 − m − q

)
r

,

for 0 ≤ r ≤ q. We easily verify that

(8.1) 2Rm,q(y) = Pm,q+1(y) − (y − 1)Pm+1,q(y).

Also we see that

(8.2) R̂m,q(t) = tqRm,q(1/t),

for all t ∈ R, with t "= 0. For 0 ≤ r ≤ q, we consider the polynomial pr ∈ Z[y] of
degree 2q defined by

pr(y) =
(

q

r

)
(y + 1)2r · (y − 1)2(q−r)

and the polynomial Qm,q ∈ Z[y] of degree 2q defined by

Qm,q(y) =
q∑

r=0

(
2m + q

m + r

)
pr(y).

Clearly, we have p0 = 1 and pr(t) ≥ 0 for all t ∈ R; it follows that

(8.3) Qm,q(t) > 0,
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for all t ∈ R. The following lemma tells us that all the coefficients of the polynomial
Qm,q are positive, and hence also gives us the preceding inequality; its proof is due
to H. Wilf (see [8]).

Lemma 8.1. — Let m, q ≥ 0 be given integers. Then we have the equality

(8.4) Qm,q(y) =
(

2m + 2q

m + q

)
Pm,q(y2)

among elements of Z[y].

Proof. — We denote by N the set of natural integers. We consider the indeterminate
x = y − 1 and consider both sides of the equality (8.4) as polynomials in x. Upon
computing the coefficients of xn of these two polynomials, we see that it suffices to
show that the identity

(8.5)
∑

r≥0

(−1)r

(
2m + 2q

m + q

)(
2r

n

)(
q

r

) (
m + 1

2

)
r(

1
2 − m − q

)
r

=
∑

r≥0

22q−n

(
2m + q

m + r

)(
q

r

)(
2r

n + 2r − 2q

)

holds for all n ∈ N. Then standard techniques of WZ theory and the Zeilberger
algorithm, as described in the book [20] and implemented by the EKHAD package
for Maple, can be used to show that the identity (8.5) is indeed true. In fact, the
functions f1 : N → Q and f2 : N → Q, whose values at n ∈ N are equal to the
left-hand and right-hand sides of (8.5), respectively, both satisfy the same recurrence
of order 2; namely, if we set

α0(n) = (n − 2q)(n + 2m + 1), α2(n) = 2(n + 2)(n + 2m + 2),

α1(n) = 3n2 + 7n + 4(m(n + 1) − q(m + n) + 1) − 6q,

for n ∈ N, we find that

α0(n)fk(n) + α1(n)fk(n + 1) + α2(n)fk(n + 2) = 0,

for all n ∈ N and k = 1, 2. To complete the proof, we must show that the equality
f1(n) = f2(n) holds when n = 0 and n = 1. If each of these two cases, there is only
one non-zero summand in the sum on the right-hand side of (8.5), namely the one
corresponding to the summation index r = q, and so we see that

f2(0) = 4q

(
2m + q

m

)
, f2(1) = q4q

(
2m + q

m

)
.

The identity f1(n) = f2(n), with n = 0 or n = 1, is now obtained by applying WZ
theory to the sum on the left-hand side of (8.5); in fact, in both cases Zeilberger’s
algorithm returns a recurrence of order 1 in the index m.
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We continue to fix integers m, q ≥ 0. From Lemma 8.1 and the identity (8.1), we
deduce that

(8.6) Qm,q+1(y) − (y2 − 1)Qm+1,q(y) = 2
(

2m + 2q + 2
m + q + 1

)
Rm,q(y2).

For s ≥ 0, the polynomial

Hs(y) = 2
∑

k≥0

(
2s

2k + 1

)
yk

of Z[y] has degree s − 1 and satisfies the relation

(y + 1)2s − (y − 1)2s = yHs(y2),

belongs to Z[y]; clearly, H0 is equal to the zero polynomial. For 0 ≤ r ≤ q, we consider
the integer

cr =
(

2m + q + 1
m + r + 1

)
−

(
2m + q + 1

m + r

)
=

(
2m + q + 1
m + q − r

)
−

(
2m + q + 1

m + r

)
.

We verify that the integer cr is positive when 2r < q, and that cr = 0 when 2r = q.
We set q′ = [q/2]; we easily see that the elements Km,q and Lm,q of Z[y], given by

Km,q =
q∑

r=0

crpr, Lm,q(y) =
q′∑

r=0

(y − 1)2rcr

(
q

r

)
Hq−2r(y),

are related by

(8.7) Km,q(y) = −yLm,q(y2).

We notice that Km,0 = Lm,0 = 0. Since the coefficients of the polynomials Hs and
the coefficients cr are positive, the polynomial Lm,q is of degree q − 1; moreover,
when q ≥ 1, it satisfies the inequality

(8.8) Lm,q(t) > 0,

for all t ∈ R.
We now consider the complex-valued functions u and v on R2 defined by

u(x, t) = t sin x − i cosx, v(x, t) = t cosx + i sinx,

with x, t ∈ R; the functions u and v are related by

v(x, t) =
∂u

∂x
(x, t) = u(x + π/2, t),

for x, t ∈ R; also the formula

v(x, t) = itu(x, 1/t)
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holds for x, t ∈ R, with t "= 0. Let r ≥ 0 be a given integer; we consider the functions
F j

r,q on R, with 0 ≤ j ≤ 5, defined by

F 0
r,q(t) =

1
2π

∫ 2π

0
(uq+rūq)(x, t) dx,

F 1
r,q(t) =

1
2π

∫ 2π

0
(uq+rūq)(x, t) sin xdx,

F 2
r,q(t) =

1
2π

∫ 2π

0
(uq+rūq)(x, t) cos xdx,

F 3
r,q(t) =

1
2π

∫ 2π

0
(uq+rūq)(x, t) sin x · cosxdx,

F 4
r,q(t) =

1
2π

∫ 2π

0
(uq+rūqv)(x, t) dx,

F 5
r,q(t) =

1
2π

∫ 2π

0
(uq+rūqv)(x, t) sin x · cosxdx,

(8.9)

for t ∈ R. Clearly, these functions F j
r,q are polynomials. We easily see that the

functions F 3
0,q and F 4

r,0 vanish identically. We shall require the following identities

F 0
r+1,q(t) = tF 1

r,q(t) − iF 2
r,q(t),(8.10)

F 0
r,q+1(t) = tF 1

r+1,q(t) + iF 2
r+1,q(t),(8.11)

which hold for all t ∈ R; it follows that

(8.12) 2iF 2
r+1,q = F 0

r,q+1 − F 0
r+2,q.

By making the change of variables x 4→ x + π/2 in the integral defining the func-
tion F 1

r,q, we see that

F 1
r,q(x, t) =

1
2π

∫ 2π

0
(vq+r v̄q)(x, t) cos xdx

=
1
2π

irt2q+r

∫ 2π

0
(uq+rūq)(x, 1/t) cosxdx,

for t ∈ R, with t "= 0. Therefore we have the equality

(8.13) F 1
r,q(x, t) = irt2q+rF 2

r,q(x, 1/t),

for t ∈ R, with t "= 0. By an integration by parts, we obtain

2πF 4
r,q+1(t) =

1
r + 1

∫ 2π

0

(
(uū)q+1 ∂ur+1

∂x

)
(x, t) dx

= −2
q + 1
r + 1

(t2 − 1)
∫ 2π

0
(uq+r+1 · ūq)(x, t) sin x · cosxdx
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for all t ∈ R; therefore we have

(8.14) F 4
r,q+1(t) = −2

q + 1
r + 1

(t2 − 1)F 3
r+1,q(t),

for all t ∈ R. The equalities
∫ 2π

0
(uq+r+1 · ūq+1 · v2)(x, t) dx

=
∫ 2π

0
((uū)q · ur+1 · v · (ūv))(x, t) dx

=
∫ 2π

0
((uū)q · ur+1 · v)(x, t)((t2 − 1) sinx · cosx + it) dx

= 2π((t2 − 1)F 5
r+1,q + itF 4

r+1,q),

with t ∈ R, follow directly from the definitions of the functions which appear there.
By an integration by parts, we obtain

2π(t2 − 1)F 5
r+1,q(t) =

1
2(q + 1)

∫ 2π

0

(
ur+1v

∂(uū)q+1

∂x

)
(x, t) dx

=
π

q + 1
F 0

r+2,q+1(t)

− r + 1
2(q + 1)

∫ 2π

0
(uq+r+1 · ūq+1 · v2)(x, t) dx

for all t ∈ R. From the preceding relations, we immediately deduce that

(8.15) (2q + r + 3)(t2 − 1)F 5
r+1,q(t) = F 0

r+2,q+1(t) − i(r + 1)tF 4
r+1,q(t),

for all t ∈ R.
In the next section, we shall need the following results in order to prove the posi-

tivity of certain integrals.

Proposition 8.2. — Let m, q ≥ 0 be given integers. Then there exist polynomials
{Qj

m,q}0≤j≤4 of degree 2q and a polynomial Q5
m,q of degree 2q + 2 belonging to Z[y]

satisfying the following properties:
(i) for 0 ≤ j ≤ 5, we have

(8.16) Qj
m,q(t) > 0,

for all t ∈ R;
(ii) the equalities

F 0
2m,q(t) =

1
4m+q

(t2 − 1)m · Q0
m,q(t),(8.17)

F 1
2m+1,q(t) =

1
4m+q+1

t(t2 − 1)m · Q1
m,q(t),(8.18)
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F 2
2m+1,q(t) = − i

4m+q+1
(t2 − 1)m · Q2

m,q(t),(8.19)

F 3
2m+2,q(t) = − i

4m+q+2
t(t2 − 1)m · Q3

m,q(t),(8.20)

F 4
2m+1,q+1(t) =

i

4m+q+2
t(t2 − 1)m+1 · Q4

m,q(t),(8.21)

F 5
2m+1,q(t) =

1
4m+q+2

(t2 − 1)m · Q5
m,q(t),(8.22)

hold for all t ∈ R.

Proof. — The polynomial Q0
m,q = Qm,q and the polynomial Q4

m,q, determined by

Q4
m,q(y) = Lm,q+1(y2),

both belong to Z[y] and are of degree 2q. If pr is the polynomial defined above,
with 0 ≤ r ≤ q, we define elements Q2

m,q, and Q5
m,q of Z[y] by

Q2
m,q(y) =

q∑

r=0

pr(y)
{(

2m + q + 1
m + r + 1

)
(y + 1) −

(
2m + q + 1

m + r

)
(y − 1)

}
,

Q5
m,q(y) = Qm,q+1(y)

−
q∑

r=0

pr(y)
{(

2m + q + 1
m + r − 1

)
(y − 1)2 +

(
2m + q + 1
m + r + 2

)
(y + 1)2

}
.

If r ≥ 0 is a given integer, we view the integrands of the right-hand sides of the equal-
ities (8.9) as polynomials in eix and e−ix; for t ∈ R, the value of the integral F j

r,q(t)
is equal to the constant term of the polynomial obtained from the corresponding in-
tegrand. In fact, we easily see that the equalities (8.17), (8.19) and (8.22) hold, that
there exist a polynomial Q3

m,q ∈ Z[y] such that (8.20) holds, and that the equality

F 4
2m+1,q(t) = − i

4m+q+1
(t2 − 1)m+1 · Km,q(t),

holds for t ∈ R. From the preceding equality and (8.7), we obtain the relation (8.21).
The relation

(8.23) Q3
m,q =

m + 1
q + 1

Q4
m,q,

is an immediate consequence of (8.21) and (8.14). If we set Q4
m,−1 = 0, the rela-

tion (8.15), together with the equalities (8.17), (8.21) and (8.22), implies that

(8.24) (2m + 2q + 3)Q5
m,q(y) = Q0

m+1,q+1(y) + 4(2m + 1)y2Q4
m,q−1(y).

According to the relations (8.12), (8.17) and (8.19), we see that

2Q2
m,q(y) = Q0

m,q+1(y) − (y2 − 1)Q0
m+1,q(y).
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Hence by (8.6), the polynomial Q2
m,q of Z[y] satisfies

(8.25) Q2
m,q(y) =

(
2m + 2q + 2
m + q + 1

)
Rm,q(y2)

and has degree 2q. The polynomial Q1
m,q of degree 2q determined by

Q1
m,q(y) =

(
2m + 2q + 2
m + q + 1

)
R̂m,q(y2)

belongs to Z[y] and, according to (8.2), satisfies the relation

Q1
m,q(t) = t2qQ2

m,q(1/t),

for all t ∈ R, with t "= 0; from the equalities (8.19) and (8.13), we now obtain the
relation (8.18). According to (8.3), (8.8) and (8.23), we see that the inequality (8.16)
holds for j = 0, 3, 4; the relation (8.24) now implies that (8.16) also holds for j = 5.
By (8.25) and the definition of the polynomials Rm,q and R̂m,q, we know that all
the coefficients of the polynomials Q1

m,q and Q2
m,q are positive, and thus the inequal-

ity (8.16) is true for j = 1, 2.

9. Exactness of the forms of degree one

This section is devoted to the proof of the following theorem:

Theorem 9.1. — A 1-form on the symmetric space Y = ḠR
3,3 satisfies the Guillemin

condition if and only if it is exact.

From Theorem 9.1 and the remark following Lemma 4.1, we infer that a 1-form
θ on the symmetric space Y = ḠR

3,3 is exact if and only if the symmetric 2-form ∗θ
on Y satisfies the Guillemin condition. According to Proposition 7.21 of [6], from
Theorem 9.1 we immediately deduce the following generalization:

Theorem 9.2. — A 1-form on the symmetric space ḠR
n,n, with n ≥ 3, satisfies the

Guillemin condition if and only if it is exact.

We again consider the Grassmannian X = G̃R
3,3 and the objects associated above

with this space. Lemmas 6.4,(i), 6.9, 7.2, 7.4 and 7.5, and the relations (7.2) and (7.3)
give us a complete description of the highest weight vectors of the non-zero isotypic
components C∞

γ (T ∗
C)ev, with γ ∈ Γ. To prove Theorem 9.2, we need to verify that

the equality

(9.1) N1,C ∩ C∞
γ (T ∗

C)ev = dC∞
γ (X)ev

holds for all γ ∈ Γ. If γ is an element of Γ, according to (5.1) we note that the
equality (9.1) is true if and only if it holds with γ replaced by γ̄; we therefore need only
consider the equalities (9.1), with γ = γr1,r2,s and r1, r2, s ≥ 0. From Proposition 2.33
of [6], we then deduce the following result:
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Proposition 9.3. — The assertion of Theorem 9.1 is equivalent to the fact that the
following seven assertions all hold on the Grassmannian X = G̃R

3,3, with n ≥ 3, for
all integers r1, r2 ≥ 0 and s:

(i) Suppose that s ≥ 2 and that 2r1 + s ≡ 0 mod 4. Let a1, a2, a3 be elements
of C; if the 1-form

a1f̃r1−1,r2,sdf̃1 + a2f̃r1,r2−1,sdf̃2 + a3f̃r1,r2,s−1df̃3

satisfies the Guillemin condition, then it is exact.
(ii) Suppose that the integer r1 is even and that r2 ≥ 1. Let a1, a2, a3 be elements

of C; if the 1-form

a1f̃r1−1,r2,0df̃1 + a2f̃r1,r2−1,0df̃2 + a3f̃r1,r2−1,1df̃ ′
3

satisfies the Guillemin condition, then it is exact.
(iii) Suppose that 2r1 + s ≡ 0 mod 4. Then the 1-form f̃r1,r2,sg!(ξ0) does not

satisfy the Guillemin condition.
(iv) Suppose that 2r1 + s ≡ 0 mod 4. Then the 1-form f̃r1,r2,sω does not satisfy

the Guillemin condition.
(v) Suppose that 2r1 + s ≡ 1 mod 4. Then the 1-form f̃r1,r2,sϕ

+
0 does not satisfy

the Guillemin condition.
(vi) Suppose that 2r1 + s ≡ 3 mod 4. Then the 1-form f̃r1,r2,sϕ

−
0 does not satisfy

the Guillemin condition.
(vii) Suppose that 2r1 + s ≡ 2 mod 4. Then the 1-forms f̃r1,r2,sψ+ and f̃r1,r2,sψ−

do not satisfy the Guillemin condition.

We consider the maximal flat totally geodesic torus Z of X = G̃R
3,3 and the parallel

vector fields ζ1, ζ2, and ζ3 on Z defined in §4. Let r1, r2 ≥ 0 and s be given integers.
We consider the function

f̂r1,r2,s = ι∗φ∗
0fr1,r2,s = ι′∗φ∗

0f̃r1,r2,s

on R3; we have f̂r1,r2,s = f̂ r1
1 · f̂ r2

2 · f̂s
3 for s ≥ 0, and f̂r1,r2,s = f̂ r1

1 · f̂ r2
2 · (f̂ ′

3)s for s < 0.
We also define a function Φr1,r2,s on R2 by

Φr1,r2,s(θ1, θ2) =
1
2π

∫ 2π

0
f̂r1,r2,s(θ1, θ2, θ3) dθ3,

for θ1, θ2 ∈ R; by (4.6), we may consider the integral

Jr1,r2,s =
∫

Z
φ∗

0f̃r1,r2,s dZ = 2π

∫ π

0

∫ π

0
Φr1,r2,s(θ1, θ2) dθ1 dθ2.

By (6.7) and (6.8), we see that

(9.2) Φr1,r2,s = Φ̄r1,r2,−s, Jr1,r2,s = J̄r1,r2,−s.
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According to (7.5), (7.6), (7.11) and (6.2), we have the equalities

−〈ζ2, φ
∗
0(f̃r1,r2,sϕ

+
0 )〉 =

{
φ∗

0f̃r1,r2+1,s−1 when s ≥ 1,
φ∗

0f̃r1,r2,s−1 when s ≤ 0,

−〈ζ2, φ
∗
0(f̃r1,r2,sϕ

−
0 )〉 =

{
φ∗

0f̃r1,r2,s+1 when s ≥ 0,
φ∗

0f̃r1,r2+1,s+1 when s < 0,

(9.3)

and

(9.4)
〈ζ1, φ

∗
0(f̃r1,r2,sg

!(ξ0))〉 = iφ∗
0f̃r1,r2,s,

〈ζ3, φ
∗
0(f̃r1,r2,sψ

+)〉 = −〈ζ3, φ
∗
0(f̃r1,r2,sψ

−)〉 = φ∗
0f̃r1+1,r2,s

on Z; moreover, the relation

(9.5) 〈ζ1, φ
∗
0(f̃r1,r2,sω)〉(ι′(θ)) = 2i(cos2 θ1 · sin2 θ2 + sin2 θ1 · cos2 θ2)f̂r1,r2,s(θ)

holds for all θ ∈ R3.
We consider the real-valued functions A and B on R2 defined by

A(θ1, θ2) = cos θ1 · sin θ2, B(θ1, θ2) = sin θ1 · cos θ2,

for θ1, θ2 ∈ R. Let m, q ≥ 0 be given integers; if P is a polynomial of R[y] of degree q,
there exists a unique real-valued function P̃ on R2 which is given by the expression

P̃ = Bq ·
(
P ◦ (A/B)

)

at all points θ of R2 for which B(θ) is non-zero. We now consider the polynomials
{Qj

m,q}0≤j≤5 given by Proposition 8.2. Since the polynomial Qj
m,q is of degree 2q,

for 0 ≤ j ≤ 4, and the polynomial Q5
m,q is of degree 2q + 2, the real-valued functions

{Q̃j
m,q}0≤j≤5 on R2 satisfy the relations

Q̃j
m,q = B2q ·

(
Qj

m,q ◦ (A/B)
)
, Q̃5

m,q = B2q+2 ·
(
Q5

m,q ◦ (A/B)
)

at all points θ of R2 for which B(θ) is non-zero, with 0 ≤ j ≤ 4. According to
Proposition 8.2, these functions are non-zero and satisfy the inequalities

(9.6) Q̃j
m,q ≥ 0,

for 0 ≤ j ≤ 5.
By (6.7), we may write

f̂1(θ) = f̂1(θ1, θ2) = B2(θ1, θ2) − A2(θ1, θ2),

f̂2(θ) = A2(θ1, θ2) · sin2 θ3 + B2(θ1, θ2) · cos2 θ3,

f̂3(θ) = A(θ1, θ2) · sin θ3 − iB(θ1, θ2) · cos θ3,

for θ = (θ1, θ2, θ3) ∈ R3. If q, r ≥ 0 are given integers, at a point θ of R2, for which
B(θ) is non-zero, we verify that

Φ0,q,r(θ) = B2q+r(θ) · F 0
r,q(t),
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where t = A(θ)/B(θ). Let p, q, m ≥ 0 be given integers; then by Proposition 8.2, we
obtain the relation

Φp,q,2m =
(−1)p

4m+q
(A2 − B2)m+p · Q̃0

m,q.

Thus the function Φp,q,2m is non-zero and real-valued; moreover if the integer m + p
is even, by (9.6) this function satisfies the inequality

(9.7) (−1)pΦp,q,2m ≥ 0.

From these remarks and the relations (9.2), we obtain the following:

Lemma 9.4. — If p, q ≥ 0 and m are given integers, the function Φp,q,2m is non-zero
and real-valued; moreover, if m + p is an even integer, the inequality (9.7) holds.

If Φ is a non-zero real-analytic real-valued function on R2 satisfying Φ ≥ 0, from
Lemma 9.4 we infer that

(−1)p

∫ π

0

∫ π

0

∫ 2π

0
Φ(θ1, θ2)f̂p,q,2m(θ1, θ2, θ3) dθ3 dθ1 dθ2 > 0,

for all integers p, q ≥ 0 and m such that m + p is even. In particular, we obtain the
following:

Lemma 9.5. — For all integers p, q ≥ 0 and m such that m + p is even, we have

(−1)pJp,q,2m > 0.

If r1, r2 ≥ 0 and s are given integers, Lemma 9.5 implies that the function f̃r1,r2,s

on X does not satisfy the Guillemin condition whenever 2r1 + s ≡ 0 mod 4. Since
f̃r1,r2,s is a non-zero element of C∞

γ (X), where γ is the element γ1
r1,r2,s of Γ, from

the relations (5.9) and (7.1) and the preceding observation we obtain the injectivity
of the maximal flat Radon transform for functions on X , which is also given by
Proposition 7.17 of [6].

Lemma 9.6. — Let r1, r2 ≥ 0 and s be given integers. Assertions (iii)–(vii) of Propo-
sition 9.3 hold.

Proof. — From the relations (9.3) and (9.4) and Lemma 9.5, we deduce that the as-
sertions (iii), (v), (vi) and (vii) of Proposition 9.3 hold. On the other hand, according
to the remark following Lemma 9.4, with

Φ(θ1, θ2) = cos2 θ1 · sin2 θ2 + sin2 θ1 · cos2 θ2,

from relation (9.5) we obtain assertion (iv) of Proposition 9.3.

We consider the functions v1, v2, v3 on R3 defined by

v1 = cos2 θ1 · sin2 θ2 · cos2 θ3 + sin2 θ1 · cos2 θ2 · sin2 θ3,

v2 = −2 sin θ1 · cos θ1 · sin θ2 · cos θ2,

v3 = cos θ1 · sin θ2 · cos θ3 + i sin θ1 · cos θ2 · sin θ3,
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for θ = (θ1, θ2, θ3) ∈ R3; we write w2 = f̂2 and w3 = −if̂3. We then define functions
on k2 and k3 on R4 by

k2 = v1(θ)λ2 + v2(θ)λ + w2(θ), k3 = v3(θ)λ + w3(θ),

for θ ∈ R3 and λ ∈ R. If q, r ≥ 0 are given integers, we consider the function

ψr,q = kq+1
2 kr

3
∂k3

∂θ3

on R4; then the function

ψ′
r,q =

∂ψr,q

∂λ

∣∣∣
λ=0

on R3 is given by

ψ′
r,q = (q + 1)v2w

q
2w

r
3
∂w3

∂θ3
+ wq+1

2

∂

∂θ3
(v3w

r
3).

We then see that function Ψr,q on R2 defined by

Ψr,q(θ1, θ2) =
1

2(q + 1)

∫ 2π

0
ψ′

r,q(θ1, θ2, θ3) dθ3,

for (θ1, θ2) ∈ R2, satisfies the relation

Ψr,q =
1
2

∫ 2π

0
wq

2w
r
3

(
v2

∂w3

∂θ3
− v3

∂w2

∂θ3

)
dθ3.

At a point θ of R2, for which B(θ) is non-zero, by means of the preceding formula we
easily verify that

(9.8)
1
2π

Ψr,q(θ) = (−i)rB2q+r+1(θ)
{
f̂1(θ) · F 5

r,q(t) + i(AB)(θ) · F 4
r,q(t)

}

where t = A(θ)/B(θ).
Let m, q ≥ 0 be given integers; we write Q4

m,−1 = 0. By Proposition 8.2 and (9.6),
the real-valued function

Ψ′
m,q =

2π

4m+q+2

(
Q̃5

m,q + 4A2 · B2 · Q̃4
m,q−1

)

on R2 is non-zero and satisfies Ψ′
m,q ≥ 0. According to Proposition 8.2, from the

equality (9.8) we obtain the relation

Ψ2m+1,q = −i(B2 − A2)m+1 · Ψ′
m,q.

Thus the function iΨ2m+1,q is non-zero and real-valued; moreover, if p ≥ 0 is an
integer such that m + p is odd, we see that

(9.9) if̂p
1 Ψ2m+1,q = (B2 − A2)m+p+1 · Ψ′

m,q ≥ 0.
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For α ∈ R, we consider the element

φ1,α =





0 0 1 0 0 0
−1 0 0 0 0 0
0 cosα 0 0 0 − sinα
0 0 0 1 0 0
0 sin α 0 0 0 cosα
0 0 0 0 1 0





of G = SO(6) and the automorphism τ1 of R3 defined by

τ2(θ1, θ2, θ3) = (θ1, θ2, θ3 + π/2),

for (θ1, θ2, θ3) ∈ R3. Then it is easily verified that

ι∗φ∗
1,αf1 = f̂1

on R3 and that
(ι∗φ∗

1,αfj)(τ1θ) = kj(θ, cosα),
for j = 2, 3 and all θ ∈ R3. By (4.10) and the preceding equalities, if p, q, r ≥ 0 are
given integers, we have

(9.10)
〈ζ3, φ

∗
1,αdf̃1〉(ι′(θ)) = 0,

〈ζ3, φ
∗
1,α(f̃p

1 f̃ q+1
2 f̃ r

3 df̃3)〉(ι′(τ1θ)) = f̂p
1 (θ) · ψr,q(θ, cosα),

for θ ∈ R3 and α ∈ R. From the second equality of (9.10), we obtain
∂

∂α
〈ζ3, φ

∗
1,α(f̃p

1 f̃ q+1
2 f̃ r

3 df̃3)〉(ι′(τ1θ))∣∣α= π
2

= −(f̂p
1 · ψ′

r,q)(θ),

for θ ∈ R3. If m ≥ 0 is a given integer, by (4.6) it follows that

∂

∂α

∫

Z
〈ζ3, φ

∗
1,α(f̃p

1 f̃ q+1
2 f̃2m+1

3 df̃3)〉 dZ∣∣α= π
2

= −2(q + 1)
∫ π

0

∫ π

0
f̂p
1 (θ1, θ2)Ψ2m+1,q(θ1, θ2) dθ1 dθ2.

Hence according to (9.9), if m, p, q ≥ 0 are given integers such that m+p is odd, there
exists α1 ∈ R such that

∫

Z
〈ζ3, φ

∗
1,α1

(f̃p
1 f̃ q+1

2 f̃2m+1
3 df̃3)〉 dZ "= 0.

From the first equality of (9.10) and the preceding inequality, by (4.6) we deduce the
following result:

Lemma 9.7. — Let r1 ≥ 0, r2 ≥ 1 and s ≥ 2 be given integers; assume that
2r1 + s ≡ 0 mod 4. Let a1, a3 ∈ C. If the 1-form

a1f̃r1−1,r2,sdf̃1 + a3f̃r1,r2,s−1df̃3

on X satisfies the Guillemin condition, then we have a3 = 0.
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We consider the function h1 on R4 defined by

h1(θ, λ) = (cos2 θ3 − sin2 θ2)λ2 − f̂1(θ),

for θ = (θ1, θ2, θ3) ∈ R3 and λ ∈ R, and the functions h′
2, h′′

2 , h3 and h4 on R3 defined
by

h′
2(θ) = sin θ2 · cos θ2 · sin θ3 · cos θ3,

h′′
2(θ) = sin θ1 · cos θ1 · sin θ2 · cos θ2,

h3(θ) = i(cos θ1 · cos θ3 + sin θ1 · sin θ3)e−iθ2 ,

h4(θ) = sin θ1 · sin θ2 · sin θ3 + i cos θ1 · cos θ2 · cos θ3,

for θ = (θ1, θ2, θ3) ∈ R3; we write h2 = −2i(h′
2 + h′′

2). We verify that the relations

(9.11) h3 =
∂f̂3

∂θ3
+ h4,

∂f̂2

∂θ3
(θ) = −2 sin θ3 · cos θ3 · f̂1(θ)

hold for θ = (θ1, θ2, θ3) ∈ R3. For α ∈ R, we consider the element

φ2,α =





0 0 0 0 1 0
0 cosα − sin α 0 0 0
1 0 0 0 0 0
0 0 0 sinα 0 cosα
0 0 0 cosα 0 − sinα
0 sinα cosα 0 0 0





of G = SO(6) and the involution τ2 of R3 defined by

τ2(θ1, θ2, θ3) = (θ3, θ2, θ1),

for (θ1, θ2, θ3) ∈ R3. Then it is easily verified that

(9.12) (ι∗φ∗
2,αf1)(τ2θ) = h1(θ, cosα),

for all θ ∈ R3, and that

(9.13)
τ∗
2 ι∗φ∗

2, π
2
f2 = −f̂2, τ∗

2 ι∗φ∗
2, π

2
f3 = f̂3,

∂

∂α
(τ∗

2 ι∗φ∗
2,αfj)∣∣α= π

2
= −hj

on R3, for j = 2, 3.
Let p, q, r ≥ 0 be given integers. If f is a complex-valued function on X , by (4.10)

and (9.12) we have the equality

(9.14)
∂

∂α
〈ζ3, φ

∗
2,α(f f̃p

1 df̃1)〉(ι′(τ2θ))∣∣α= π
2

= (−1)p+12 sin θ1 · cos θ1 · f̂p
1 (θ) · ∂

∂α

(
(φ∗

2,αf)(ι′(τ2θ))
)∣∣α= π

2
,
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for all θ = (θ1, θ2, θ3) ∈ R3; below we shall use this formula with f = f̃ q
2 f̃ r

3 . According
to (9.13), we see that

(9.15)
∂

∂α

(
φ∗

2,α(f̃ q
2 f̃ r

3 )(ι′(τ2θ))
)∣∣α= π

2
= (−1)q+1

(
rh3f̂

q
2 f̂ r−1

3 − qh2f̂
q−1
2 f̂ r

3

)
(θ),

for all θ ∈ R3. Hence if h is the function on R3 defined by

h(θ) = 2 sin θ1 · cos θ1 · f̂p
1 (θ) ·

(
rh3f̂

q
2 f̂ r−1

3 − qh2f̂
q−1
2 f̂ r

3

)
(θ),

for all θ = (θ1, θ2, θ3) ∈ R3, according to (9.14), (9.15) and (4.6) we have

(9.16)
∂

∂α

∫

Z
〈ζ3, φ

∗
2,α(f̃p

1 f̃ q
2 f̃ r

3df̃1)〉 dZ∣∣α

= (−1)p+q

∫ π

0

∫ π

0

∫ 2π

0
h(θ1, θ2, θ3) dθ3 dθ1 dθ2.

We consider the functions J1, J ′
1, J ′′

1 , J ′
2 and J ′′

2 on R2 defined by

J1(θ1, θ2) = r

∫ 2π

0

(
h3f̂

q
2 f̂ r−1

3

)
(θ) dθ3,

J ′
1(θ1, θ2) = r

∫ 2π

0

(
h4f̂

q
2 f̂ r−1

3

)
(θ) dθ3,

J ′′
1 (θ1, θ2) = q

∫ 2π

0
sin θ3 · cos θ3 ·

(
f̂1f̂

q−1
2 f̂ r

3

)
(θ) dθ3,

J ′
2(θ1, θ2) = q

∫ 2π

0

(
h′

2f̂
q−1
2 f̂ r

3

)
(θ) dθ3,

J ′′
2 (θ1, θ2) = q

∫ 2π

0

(
h′′

2 f̂ q−1
2 f̂ r

3

)
(θ) dθ3,

for (θ1, θ2) ∈ R2, where θ = (θ1, θ2, θ3). From the relations (9.11), we easily deduce
that

(9.17) J1 = J ′
1 + 2J ′′

1 .

Clearly, we have

(9.18)
∫ 2π

0
h(θ1, θ2, θ3) dθ3 = 2 sin θ1 · cos θ1 ·

(
f̂p
1 · (J1 + 2i(J ′

2 + J ′′
2 ))

)
(θ1, θ2),

for all (θ1, θ2) ∈ R2.
If θ′ = (θ1, θ2) is a point of R2 for which B(θ′) is non-zero, we easily verify that

cos θ1 · h4(θ) = cos θ2 · {sin2 θ1 · (t sin θ3 − i cos θ3) + i cos θ3},
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where θ = (θ1, θ2, θ3) and t = A(θ′)/B(θ′). Thus at this point θ′ of R2, by (8.9) we
obtain the relations

1
2π

sin θ1 · cos θ1 · J ′
1(θ

′)

= rB2q+r(θ′) · (sin2 θ1 · F 0
r,q(t) + iF 2

r−1,q(t)),

= rB2q+r(θ′) · (sin2 θ1 · tF 1
r−1,q(t) + i cos2 θ1 · F 2

r−1,q(t)),

(9.19)

where t = A(θ′)/B(θ′). At this point θ′ of R2, we also see that

(9.20)
1
2π

sin θ1 · cos θ1 · J ′
2(θ

′) = q(A · B2q+r−1)(θ′) · F 3
r,q−1(t),

where t = A(θ′)/B(θ′).
If k, m ≥ 0 are given integers, we easily verify that

∫ π

0

∫ 2π

0
cos2k θ2 · sin θ3 · cos θ3 ·

(
f̂ q
2 f̂2m

3

)
(θ) dθ3 dθ2 = 0,(9.21)

∫ π

0

∫ 2π

0
sin θ2 · cos2k+1 θ2 ·

(
f̂ q
2 f̂2m

3

)
(θ) dθ3 dθ2 = 0,(9.22)

where θ = (θ1, θ2, θ3). The equality (9.21) implies that

(9.23)
∫ π

0

∫ 2π

0
sin θ3 · cos θ3 · (f̂p

1 f̂ q
2 f̂2m

3 )(θ) dθ3 dθ2 = 0,

where θ = (θ1, θ2, θ3).
We now suppose that r = 2m, where m is an integer ≥ 1. According to (9.22) and

(9.23), we have
∫ π

0
(f̂p

1 · J ′′
1 )(θ1, θ2) dθ2 =

∫ π

0
(f̂p

1 · J ′′
2 )(θ1, θ2) dθ2 = 0,

for θ1 ∈ R. Therefore from the formulas (9.16)–(9.18), we deduce that

(9.24)
∂

∂α

∫

Z
〈ζ3, φ

∗
2,α(f̃p

1 f̃ q
2 f̃2m

3 df̃1)〉 dZ∣∣α= π
2

= (−1)p+q

∫ π

0

∫ π

0
2 sin θ1 · cos θ1 ·

(
f̂p
1 · (J ′

1 + 2iJ ′
2)

)
(θ1, θ2) dθ1 dθ2.

By Proposition 8.2 and (9.6), we know that the real-valued function χ1 on R2

defined by

χ1(θ′) = sin2 θ1

(
A2 · Q̃1

m−1,q

)
(θ′) + cos2 θ1

(
B2 · Q̃2

m−1,q

)
(θ′),

for θ′ = (θ1, θ2) ∈ R2, is non-zero and everywhere ≥ 0. We consider the real-valued
function χ2 on R2 which is defined by

χ2 = A2 · B2 · Q̃3
m−1,q−1
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when q ≥ 1 and which vanishes identically when q = 0; when q ≥ 1, we know that
the function χ2 is non-zero and everywhere ≥ 0. From the relations (9.19) and (9.20)
and Proposition 8.2, we deduce that the equalities

sin θ1 · cos θ1 · J ′
1 =

mπ

4m+q−1
(A2 − B2)m−1 · χ1,

sin θ1 · cos θ1 · J ′
2 = − 2iqπ

4m+q
(A2 − B2)m−1 · χ2

hold at the point θ′ = (θ1, θ2) ∈ R2. Hence the equality

sin θ1 · cos θ1 · f̂p
1 · (J ′

1 + 2iJ ′
2) = (−1)p π

4m+q−1
(A2 − B2)m+p−1 · (mχ1 + qχ2)

holds at the point θ′ = (θ1, θ2) of R2. Thus whenever the integer m + p is odd, the
left-hand side of (9.24) does not vanish and so there exists α2 ∈ R such that the
integral ∫

Z
〈ζ3, φ

∗
2,α2

(f̃p
1 f̃ q

2 f̃2m
3 df̃1)〉 dZ

is non-zero. We have therefore proved the following result:

Lemma 9.8. — Let p, q ≥ 0 and m > 0 be given integers. If the integer m+ p is odd,
the 1-form

f̃p,q,2mdf̃1

on X does not satisfy the Guillemin condition.

Let r1, r2 ≥ 0 and s ≥ 2 be given integers, and let a1, a2, a3 ∈ C. Suppose that
2r1 + s ≡ 0 mod 4, and consider the 1-form

ϑ = a1f̃r1−1,r2,sdf̃1 + a2f̃r1,r2−1,sdf̃2 + a3f̃r1,r2,s−1df̃3

on X . If r2 ≥ 1, we have the relation

ϑ = a′
1f̃r1−1,r2,sdf̃1 + a′

3f̃r1,r2,s−1df̃3 +
a2

r2
df̃r1,r2,s,

where
a′
1 = a1 −

r1

r2
a2, a′

3 = a3 −
s

r2
a2.

If the 1-form ϑ satisfies the Guillemin condition, from Lemma 9.8 we obtain the
vanishing of the coefficient a′

3; then Lemma 9.8 tells us that a′
1 = 0. On the other

hand, when r2 = 0 and r1 ≥ 1, we have

ϑ = a′′
1 f̃r1−1,0,sdf̃1 +

a3

s
df̃r1,0,s,

where
a′′
1 = a1 −

r1

s
a3;

if ϑ satisfies the Guillemin condition, Lemma 9.8 gives us the vanishing of the coeffi-
cient a′′

1 . When r1 = r2 = 0, the form ϑ is obviously exact. Therefore in all cases, if
the 1-form ϑ satisfies the Guillemin condition, it is exact, and so we have shown that
assertion (i) of Proposition 9.3 holds.
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We consider the identity element I3 and the matrix

A3 =




0 0 −1
0 1 0
1 0 0





of SO(3); we then consider the element φ3 = (A3, I3) of the subgroup

K = SO(3) × SO(3)

of G = SO(6). The functions f̌j = ι∗φ∗
3fj and f̌ ′

3 = ι∗φ∗
3f

′
3 on R3 are given by

f̌1(θ) = cos2 θ2 − sin2 θ1, f̌3(θ) = cos(θ1 + θ2)eiθ3

f̌2(θ) = cos2(θ1 + θ2), f̌ ′
3(θ) = cos(θ1 + θ2)e−iθ3 ,

for θ = (θ1, θ2, θ3) ∈ R3. By (4.10) and the preceding equalities, if p, q ≥ 0 are given
integers, we have

〈ζ3, φ
∗
3df̃1〉(ι′(θ)) = 〈ζ3, φ

∗
3df̃2〉(ι′(θ)) = 0,

〈ζ3, φ
∗
3(f̃

p
1 f̃ q

2 f̃3df̃ ′
3)〉(ι′(θ)) = −i(f̌p

1 f̌ q
2 )(θ) · cos2(θ1 + θ2),

for θ = (θ1, θ2, θ3) ∈ R3. Since the function f̌2 is non-negative on R3, if p, q ≥ 0 are
given integers, by (4.6) it follows that

∫

Z
〈ζ3, φ

∗
3(f̃

p
1 f̃ q

2 df̃1)〉 dZ =
∫

Z
〈ζ3, φ

∗
3(f̃

p
1 f̃ q

2df̃2)〉 dZ = 0,

1
i

∫

Z
〈ζ3, φ

∗
3(f̃

2p
1 f̃ q

2 f̃3df̃ ′
3)〉 dZ > 0.

The following lemma is an immediate consequence of the previous relations.

Lemma 9.9. — Let r1 ≥ 0 and r2 ≥ 1 be given integers; assume that the integer r1

is even. Let a1, a2, a3 ∈ C. If the 1-form

a1f̃r1−1,r2,0df̃1 + a2f̃r1,r2−1,0df̃2 + a3f̃r1,r2−1,1df̃ ′
3

on X satisfies the Guillemin condition, then we have a3 = 0.

For α ∈ R, we consider the element

φ4,α =





1 0 0 0 0 0
0 0 0 cosα 0 − sinα
0 0 1 0 0 0
0 0 0 sin α 0 cosα
0 1 0 0 0 0
0 0 0 0 −1 0




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of G = SO(6). We consider the functions f̌j,α = τ∗
2 ι∗φ∗

4,αfj on R3, with j = 1, 2, and
the functions ȟ1 and ȟ2 on R3 defined by

ȟ1(θ) = sin 2θ2 · (cos 2θ1 + cos 2θ3),

ȟ2(θ) = cos 2θ3 · (cos 2θ1 − cos 2θ2) + 1 − cos 2θ1 · cos 2θ2,

for θ ∈ R3; we may also write

f̂1(θ) = 1
2 (cos 2θ2 − cos 2θ1),

for θ ∈ R3. Then it is easily verified that

f̌1,α = − sin2 α · f̂1 + f̌1,0, f̌2,α = − sin2 α

4
· ȟ2 +

i

2
sin α · ȟ1 + f̌2,0

as functions on R3, for α ∈ R.
Let p, q ≥ 0 be given integers. According to (4.10), we have

(9.25) τ∗
2 ι′∗〈ζ2, φ

∗
4,α(f̃p

1 f̃ q+1
2 df̃1)〉 = f̌p

1,αf̌ q+1
2,α · ∂f̌1,α

∂θ2
,

for α ∈ R. Therefore there exists a function

P (t, θ) =
N∑

k=0

σk(θ)tN−k

on R4, with t ∈ R and θ ∈ R3, which is a polynomial of degree N = 2(p + q + 2) in
the variable t, such that

〈ζ2, φ
∗
4,α(f̃p

1 f̃ q+1
2 df̃1)〉(ι(τ2θ)) =

(−1)q+1

22q+p+1
i(q + 1)P (sin α, θ)

for θ ∈ R3 and α ∈ R. By (4.6), for 0 ≤ k ≤ N , we see that

(9.26)
1
k!

∂k

∂αk

∫

Z
〈ζ2, φ

∗
4,α(f̃p

1 f̃ q+1
2 df̃1)〉 dZ∣∣α=0

=
(−1)q+1

22q+p+1
i(q + 1)

∫ 2π

0

∫ π

0

∫ π

0
σN−k(θ) dθ1 dθ2 dθ3,

where θ = (θ1, θ2, θ3) ∈ R3. According to (9.25), the coefficient σ1 of the polynomial
P is given by

σ1(θ) = sin2 2θ2 · (cos 2θ1 − cos 2θ2)p · (cos 2θ1 + cos 2θ3) · ȟq
2(θ),

for θ = (θ1, θ2, θ3) ∈ R3.
We consider the functions χ1 and χ2 on R2 defined by

χ1(x1, x2) = cosx1 − cosx2, χ2(x1, x2) = 1 − cosx1 · cosx2,

for (x1, x2) ∈ R2, and the mapping χ : R2 → R2 given by

χ(x1, x2) = (χ1(x1, x2), χ2(x1, x2)),
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for (x1, x2) ∈ R2. Let k, m ≥ 0 be given integers. We consider the function

φk,m = χ2k
1 · χm

2

on R2 and the function ψk,m on R2 defined by

ψk,m(x1, x2) = cosx1 · (χ2k+1
1 · χm

2 )(x1, x2),

for (x1, x2) ∈ R2. Then by the binomial theorem, there exist polynomials P+
k,m, P−

k,m,
Q+

k,m and Q−
k,m belonging to Z[y1, y2] all of whose coefficients are non-negative such

that the decompositions

φk,m = φ+
k,m − φ−

k,m, ψk,m = ψ+
k,m − ψ−

k,m

hold, where the functions φ+
k,m, φ−

k,m, ψ+
k,m and ψ−

k,m on R2 are given by

φ+
k,m(x1, x2) = P+

k,m(cos2 x1, cos2 x2),

φ−
k,m(x1, x2) = P−

k,m(cos2 x1, cos2 x2) · cosx1 · cosx2,

ψ+
k,m(x1, x2) = Q+

k,m(cos2 x1, cos2 x2),

ψ−
k,m(x1, x2) = Q−

k,m(cos2 x1, cos2 x2) · cosx1 · cosx2,

for (x1, x2) ∈ R2. In fact, the coefficient of yk
1 in P+

k,m is equal to 1, while the coefficient
of y1yk

2 in Q+
k,m is equal to 2k + 1. Thus the functions φ+

k,m and ψ+
k,m are non-zero

and satisfy the inequalities

φ+
k,m ≥ 0, ψ+

k,m ≥ 0

on R2; moreover, since the integral over the interval [0, 2π] of an odd power of cosx
vanishes, we have the relations

∫ 2π

0
φk,m(x1, x2) dx1 =

∫ 2π

0
φ+

k,m(x1, x2) dx1,

∫ 2π

0
ψk,m(x1, x2) dx1 =

∫ 2π

0
ψ+

k,m(x1, x2) dx1,

(9.27)

for all x2 ∈ R.
We again consider the integers p, q ≥ 0; we write q′ = [q/2] and let Jq be the set all

integers r satisfying 0 ≤ 2r + 1 ≤ q. For λ, µ ∈ R, we consider the functions Φq(λ, µ),
Ψq(λ, µ), Φ+

q (λ, µ) and Ψ+
q (λ, µ) on R defined by

Φq(λ, µ)(x) = (λ cos x + µ)q, Ψq(λ, µ)(x) = cosx · (λ cos x + µ)q,

ȟ2(θ)Φ+
q (λ, µ)(x) =

q′∑

r=0

(
q

2r

)
λ2rµq−2r cos2r x,

Ψ+
q (λ, µ)(x) =

∑

r∈Jq

(
q

2r + 1

)
λ2r+1µq−2r−1 cos2r+2 x,
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for x ∈ R. Since the integral over the interval [0, 2π] of an odd power of cosx vanishes,
by the binomial theorem we easily verify that

∫ 2π

0
Φq(λ, µ)(x) dx =

∫ 2π

0
Φ+

q (λ, µ)(x) dx,

∫ 2π

0
Ψq(λ, µ)(x) dx =

∫ 2π

0
Ψ+

q (λ, µ)(x) dx,

(9.28)

for all λ, µ ∈ R.
We define functions σ and σ+ on R3 by

σ(x) = (cosx1 − cosx2)p · cosx1 · Φq(χ(x1, x2))(x3)

+ (cosx1 − cosx2)p · Ψq(χ(x1, x2))(x3),

σ+(x) = (cosx1 − cosx2)p · cosx1 · Φ+
q (χ(x1, x2))(x3)

+ (cosx1 − cosx2)p · Ψ+
q (χ(x1, x2))(x3),

for x = (x1, x2, x3) ∈ R3; then by (9.28), we obtain the equality

(9.29)
∫ 2π

0
σ(x1, x2, x3) dx3 =

∫ 2π

0
σ+(x1, x2, x3) dx3,

for all (x1, x2) ∈ R2. Moreover, we have

(9.30) σ1(θ) = sin2 2θ2 · σ(2θ),

for θ = (θ1, θ2, θ3) ∈ R3.
We henceforth suppose that p is an odd integer which is equal to 2l+1, with l ≥ 0.

We verify that

cosx1 · χp
1(x1, x2) · Φ+

q (χ(x1, x2))(x3) =
q′∑

r=0

(
q

2r

)
ψl+r,q−2r(x1, x2) cos2r x3,

χp
1(x1, x2) · Ψ+

q (χ(x1, x2))(x3) =
∑

r∈Jq

(
q

2r + 1

)
φl+r+1,q−2r−1(x1, x2) · cos2r+2 x3,

for x1, x2, x3 ∈ R. We introduce the function Θ on R3 defined by

Θ(x) =
∑

r∈Jq

(
q

2r + 1

)
φ+

l+r+1,q−2r−1(x1, x2) · cos2r+2 x3

+
q′∑

r=0

(
q

2r

)
ψ+

l+r,q−2r(x1, x2) cos2r x3,

for x = (x1, x2, x3) ∈ R3. In fact, according to the properties of the polynomials P+
k,m

and Q+
k,m, there exists a non-zero polynomial P ′ ∈ Z[y1, y2, y3] all of whose coefficients

are non-negative such that

Θ(x1, x2, x3) = P ′(cos2 x1, cos2 x2, cos2 x3),
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for x = (x1, x2, x3) ∈ R3; moreover, the coefficient of y1yl
2 in P ′ is equal to 2l + 1.

Thus the function Θ is non-zero and satisfies

Θ ≥ 0.

According to (9.27) and the preceding relations, we have
∫ 2π

0
σ+(x1, x2, x3) dx1 =

∫ 2π

0
Θ(x1, x2, x3) dx1,

for (x2, x3) ∈ R2. By (9.29), we infer that
∫ 2π

0

∫ 2π

0
σ(x1, x2, x3) dx1 dx3 =

∫ 2π

0

∫ 2π

0
Θ(x1, x2, x3) dx1 dx3 ≥ 0,

for x2 ∈ R; hence, since Θ is non-zero, we obtain the inequality
∫ 2π

0

∫ 2π

0

∫ 2π

0
sin2 x2 · σ(x1, x2, x3) dx1 dx2 dx3 > 0.

Therefore by (9.30), we have the relations
∫ 2π

0

∫ π

0

∫ π

0
σ1(θ) dθ1 dθ2 dθ3 =

1
4

∫ 2π

0

∫ 2π

0

∫ 2π

0
sin2 x2 · σ(x1, x2, x3) dx1 dx2 dx3 > 0.

By the equality (9.26), with k = N − 1, the non-vanishing of the above integrals
implies the existence of α4 ∈ R such that

∫

Z
〈ζ2, φ

∗
4,α4

(f̃p
1 f̃ q+1

2 df̃1)〉 dZ "= 0.

Thus we have proved the following:

Lemma 9.10. — Let p, q ≥ 1 be given integers. If the integer p is odd, the 1-form

f̃p,q,0df̃1

on X does not satisfy the Guillemin condition.

Let r1 ≥ 0 and r2 ≥ 1 be given integers; suppose that r1 is even. Let a1, a2, a3 ∈ C
and consider the 1-form

ϑ = a1f̃r1−1,r2,0df̃1 + a2f̃r1,r2−1,0df̃2 + a3f̃r1,r2−1,1df̃ ′
3

on X . If ϑ satisfies the Guillemin condition, from Lemma 9.9 we obtain the vanishing
of the coefficient a3; then we have the relation

ϑ = a′
1f̃r1−1,r2,0df̃1 +

a2

r2
df̃r1,r2,0,

where
a′
1 = a1 −

r1

r2
a2.

If r1 = 0, the form ϑ is obviously exact. On the other hand, when r1 ≥ 2, Lemma 9.10
tells us that a′

1 = 0. Therefore in all cases, if the 1-form ϑ satisfies the Guillemin
condition, it is exact, and so we have proved assertion (iii) of Proposition 9.3.
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We have therefore shown that all the eight assertions of Proposition 9.3 hold, and
so, according to Proposition 9.3, we have completed the proof of Theorem 9.1.

10. Branching laws

In this section, we present the branching laws and the results which give us the
multiplicities of the SO(6)-modules announced in Proposition 6.3.

Let n ≥ 3 be a given integer and consider the complex vector space Cn endowed
with the symmetric bilinear form B defined by

B(x, y) =
n∑

j=1

xjyj ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors of Cn. We consider the
group G′ = SL(n, C); its subgroup K ′ = SO(n, C), which consists of all elements
of G′ preserving B, is the set of fixed points of the automorphism of SL(n, C) send-
ing the matrix A into the inverse of its transpose tA. The k-th symmetric power
SkCn of Cn and the l-th exterior power

∧lCn of Cn are irreducible G′-modules;
the space Sk

0 Cn, which consists of all elements of SkCn which lie in the kernel of the
mapping SkCn → Sk−2Cn determined by B, is an irreducible K ′-submodule of SkCn.

If E is an G′-module, we denote by EK′
the subspace of E consisting of all the

K ′-invariant elements of E. Then the multiplicity of an irreducible K ′-module F in the
decomposition of E viewed as an K ′-module is equal to dimHomK′(F, E). Moreover,
if F is a G′-module viewed as a K ′-module, the K ′-module F is isomorphic to its
contragredient module and so we have the equality

(10.1) dim HomK′(F, E) = dim (E ⊗ F )K′
.

We consider the Lie algebra g′ = sl(n, C) of the group G′ and its Cartan subalge-
bra t′, which consists of all diagonal matrices of g′. Let λ′

j be the linear form on t′

which sends the diagonal matrix of t′, with a1, . . . , an ∈ C as its diagonal entries,
into aj . We write α′

j = λ′
j −λ′

j+1, for 1 ≤ j ≤ n−1. Then {α′
1, . . . , α

′
n−1} is a system

of simple roots of g′ and the corresponding fundamental weights are

+j = λ′
1 + · · · + λ′

j ,

with 1 ≤ j ≤ n − 1; we remark that +j is the highest weight of the irreducible
G′-module

∧jCn.
The highest weight of an irreducible G′-module is a linear form

a1+1 + · · · + an−1+n−1

on t′, where a1, . . . , an−1 ≥ 0 are integers. The equivalence class of such an G′-module
is determined by this weight. We identify the dual Γ′ of G′ with the set of all such
linear forms on t′.
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A partition π = (π1, . . . , πn−1) is an (n − 1)-tuple of integers satisfying

π1 ≥ π2 ≥ · · · ≥ πn−1 ≥ 0.

We denote by P the set of all such partitions π = (π1, . . . , πn−1) for which π1 + · · ·+
πn−1 is even. We say that a partition π = (π1, . . . , πn−1) is even if all the integers
π1, . . . , πn−1 are even, and we denote by P0 the subset of P consisting of all even
partitions. For 1 ≤ j ≤ n − 1, we consider the subset

Pj = { π = (π1, . . . , πn−1) ∈ P | πj is even and πk is odd, for all k "= j }

of P . When n = 4, we note that P is the disjoint union of the sets Pj , with 0 ≤ j ≤ 3.
We associate with an element + = a1+1 + · · · + an−1+n−1 of Γ′ the partition

π(+) = (π1, . . . , πn−1), where

πj = a1 + · · · + an−j ,

for 1 ≤ j ≤ n− 1; in fact, this partition uniquely determines the element + of Γ′. We
consider an irreducible G′-module E(+) corresponding to + ∈ Γ′; we shall also write

E(π(+)) = E(+).

Let N0(+) be the integer which is equal to 1 if the partition π(+) is even and 0
otherwise; according to a result due to Cartan (see also [10, p. 550] and Theorem 3
of [23]), we know that

(10.2) dim E(+)K′
= N0(+).

Let + = a1+1 + · · · + an−1+n−1 be an element of Γ′ and consider the partition
π(+) = (π1, . . . , πn−1) associated with +. Let k ≥ 1 be a given integer; then Pieri’s
formula (see Proposition 15.25,(i) and formula (A.7) of [3]) tells us that the G′-module
E(+) ⊗ SkCn admits a decomposition

(10.3) E(+) ⊗ SkCn =
⊕

η∈Σ(1,k)

E(η)

into irreducible G′-submodules, where Σ(+, k) is the set of all partitions η =
(η1, . . . , ηn−1) defined as follows: a partition η = (η1, . . . , ηn−1) belongs to Σ(+, k) if
and only if there exist integers ν1, . . . , νn ≥ 0 satisfying the relations

ηj = νj − νn, νj ≥ πj ≥ νj+1,

ν1 + · · · + νn = π1 + · · · + πn−1 + k,

for 1 ≤ j ≤ n − 1. Each factor E(η) appears in the sum on the right-hand side
of (10.3) with multiplicity 1. We denote by Nk(+) the cardinality of the set
Σ′(+, k) = Σ(+, k) ∩ P0 consisting of all even partitions of Σ(+, k).

From the relations (10.1) and (10.2) and the decomposition (10.3), for k ≥ 0, we
infer that the integer

dimHomK′(SkCn, E(+)) = dim (E(+) ⊗ SkCn)K′
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is equal to Nk(+). Therefore, for k ≥ 2, the multiplicity Mk(+) of the irreducible
K ′-module Sk

0 Cn in the decomposition of E(+) viewed as a K ′-module is equal to

(10.4) dim HomK′(Sk
0 Cn, E(+)) = Nk(+) − Nk−2(+).

We write Σ(+) = Σ(+, 2) and Σ′(+) = Σ′(+, 2) and M(+) = M2(+); thus we have

M(+) =

{
N2(+) − 1 if the partition π(+) is even,

N2(+) otherwise.

For 1 ≤ j ≤ n − 1, we consider the sequences

ξj = (ξj
1 , . . . , ξ

j
n−1),

where ξj
k = πk for k "= j and ξj

j = πj + 2; we also consider the sequence

ξn = (π1 − 2, . . . , πn−1 − 2).

Then ξ1 always belongs to Σ(+); moreover, for 2 ≤ j ≤ n − 1, the sequence ξj is an
element of Σ(+) if and only if πj−1 ≥ πj + 2. On the other hand, the sequence ξn

belongs to Σ(+) if and only if πn−1 ≥ 2.
If all the integers a1, . . . , an−1 are even, then Σ(+) is precisely the set of all par-

titions contained in {ξ1, . . . , ξn}; from the previous observations, for 2 ≤ j ≤ n, we
infer that ξj belongs to Σ(+) if and only if aj ≥ 2. Therefore in this case, the integer
M(+) is equal to the number of non-zero coefficients aj .

We have just proved the second assertion of the following proposition; on the other
hand, its first assertion is a direct consequence of the equalities (10.1) and (10.2).

Proposition 10.1. — Let G′ be the group SL(n, C) and K ′ be the group SO(n, C),
with n ≥ 3. Let + = a1+1 + · · · + an−1+n−1 be an element of Γ′. The multiplicity
of the trivial K ′-module in the decomposition of the G′-module E(+), viewed as a
K ′-module, is equal to 1 if all the coefficients aj are even and to 0 otherwise. If
all the coefficients aj are even, the multiplicity M(+) of the K ′-module S2

0Cn in the
decomposition of the G′-module E(+), viewed as a K ′-module, is equal to the number
of non-zero coefficients aj.

We now assume that the integer n is equal to 4. Let + be an element of Γ′

and consider the partition π(+) = (π1, π2, π3) associated with +. We consider the
sequences

η1 = (π1 + 2, π2, π3), η2 = (π1, π2 + 2, π3),

η3 = (π1, π2, π3 + 2), η4 = (π1 − 2, π2 − 2, π3 − 2),

η5 = (π1 + 1, π2 + 1, π3), η6 = (π1, π2 + 1, π3 + 1),

η7 = (π1 + 1, π2, π3 + 1), η8 = (π1 − 1, π2 − 1, π3),

η9 = (π1, π2 − 1, π3 − 1), η10 = (π1 − 1, π2, π3 − 1)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



76 J. GASQUI & H. GOLDSCHMIDT

associated with the partition π(+). Then Σ(+) is a subset of the set of all partitions
contained in {η1, . . . , η10}. In fact, η1 always belongs to Σ(+); on the other hand
η5 belongs to Σ(+) if and only if π1 > π2, while η6 belongs to Σ(+) if and only
if π1 > π2 > π3. Moreover, η8 is an element of Σ(+) if and only if π2 > π3 ≥ 1.
Finally, any of the other sequences ηj = (ηj

1, η
j
2, η

j
3) belongs to Σ(+) if and only

if ηj
1 ≥ ηj

2 ≥ ηj
3 ≥ 0.

We shall now assume that π(+) belongs to P ; this assumption is equivalent to the
fact that a1 + a3 is even. First, suppose that π(+) is even, i.e., π(+) belongs to P0;
then from the description of Σ(+) given above, we infer that Σ′(+) is a subset of
{η1, η2, η3, η4} and that the sequence η1 always belongs to Σ′(+). On the other hand,
the sequence η2 belongs to Σ′(+) if and only if π1 ≥ π2 + 2, the sequence η3 belongs
to Σ′(+) if and only if π2 ≥ π3 + 2, and the sequence η4 belongs to Σ′(+) if and only
if π3 ≥ 2. In this case, we have 0 ≤ M(+) ≤ 3.

Next, we suppose that π1 is even and that π2, π3 are odd, i.e., π(+) belongs to P1;
then from the description of Σ(+) given above, we infer that Σ′(+) is a subset of
{η6, η9}. The sequence η6 belongs to Σ′(+) if and only if π2 > π3, and the sequence
η9 always belongs to Σ′(+). In this case, we have 1 ≤ M(+) ≤ 2.

We now suppose that π2 is even and that π1, π3 are odd, i.e., π(+) belongs to P2;
then from the description of Σ(+) given above, we infer that Σ′(+) is equal to {η7, η10}
and that M(+) = 2.

Finally, we suppose that π3 is even and that π1, π2 are odd, i.e., π(+) belongs
to P3; then from the description of Σ(+) given above we infer that Σ′(+) is a subset
of {η5, η8}. The sequence η5 belongs to Σ′(+) if and only if π1 > π2, and the sequence
η8 belongs to Σ′(+) if and only if π3 ≥ 1. In this case, we have 1 ≤ M(+) ≤ 2.

From the preceding discussion, we obtain the following result:

Proposition 10.2. — Let G′ be the group SL(4, C) and K ′ be the group SO(4, C).
Let + = a1+1 + a2+2 + a3+3 be an element of Γ′; suppose that a1 + a3 is even.
Then the partition π = π(+) belongs to P . The multiplicity M(+) of the K ′-module
S2

0C4 in the decomposition of the G′-module E(+), viewed as a K ′-module, satisfies
the relations

0 ≤ M(+) ≤ 3 if π(+) ∈ P0,

M(+) = 2 if π(+) ∈ P2,

1 ≤ M(+) ≤ 2 if π(+) ∈ P1 ∪ P3.

If V is a real finite-dimensional vector space and q is a non-degenerate quadratic
form on V with values in a one-dimensional vector space, we denote by SL(V ) the
group of automorphisms of V whose determinants are equal to 1 and we consider the
subgroup SO(V, q) of SL(V ) consisting of those elements of SL(V ) which preserve
the form q.
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We once again suppose that the integer n is ≥ 3 and we now consider the real
vector space U of dimension n which consists of the real vectors of Cn. We shall
identify the space Rn with U and view Cn as the complexification UC of U ; we denote
by J the complex structure of UC.

The standard basis {e1, . . . , en} of Cn is also a basis of U . The restriction of the
symmetric bilinear form B to U is a the standard Euclidean scalar product g on U .
We view the group SL(U) = SL(n, R) as the subgroup of G′ consisting of those
matrices of G′ with real entries; then the orthogonal group

SO(U) = SO(U, g) = SO(4)

is identified with the subgroup SO(n) = SL(U) ∩ K ′ of K ′.
By means of the scalar product g, we shall identify the SO(U)-module U∗ with U .

The k-th tensor product
⊗kU∗ of U∗ is an SO(U)-module, and the k-th symmetric

product SkU∗ of U∗ and the k-th exterior product
∧kU∗ of U∗ are SO(U)-submodules

of
⊗kU∗. If M is an SO(U)-submodule of

⊗kU∗, we identify the p-th symmetric
power SpM∗ of the coadjoint module M∗ = HomSO(U)(M, R) with the SO(U)-module
of all symmetric p-forms on M .

We view g as an element of S2U∗. The subspace S2
0U∗ of S2U∗, consisting of

all elements of S2U∗ which are orthogonal to g, is an irreducible SO(U)-submodule
of S2U∗. We identify Hom(U, U) with U∗ ⊗U∗ via the scalar product g and consider
the trace mapping

Hom(U, U) −→ R,

which sends an endomorphism of U into its trace. Thus we obtain a monomorphism

λ : S2U∗ −→ Hom(U, U)

of SO(U)-modules, whose image consists of all self-adjoint endomorphisms of U ; the
image under λ of the submodule S2

0U∗ of S2U∗ is consists of all self-adjoint endomor-
phisms of U with trace zero.

We now suppose that the integer n is equal to 4. We endow U with the orientation
corresponding to the volume element Ω = e1 ∧ e2 ∧ e3 ∧ e4 of

∧4U . We identify
the space

∧2UC =
∧2C4 with the complexification of

∧2U and denote by J the
complex structure of

∧2UC. We define a bilinear form Q on
∧2UC with values in the

one-dimensional vector space
∧4UC by

Q(ξ1, ξ2) = ξ1 ∧ ξ2,

for ξ1, ξ2 ∈
∧2UC. We note that the restriction of Q to

∧2U takes its values in the
space

∧4U and is a non-degenerate quadratic form on
∧2U . The Hodge ∗ operator,

corresponding to the given orientation of U and this quadratic form, is an involution
of the vector space

∧2U . The action of SO(U) on
∧2U preserves the eigenspace∧2

+U and
∧2

−U of the Hodge ∗ operator corresponding to the eigenvalues +1 and −1,
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respectively, which are both three-dimensional. Then we have the decomposition
∧2U =

∧2
+U ⊕

∧2
−U

of
∧2U into irreducible SO(U)-modules.
The vectors

ω1 =
1√
2
(e1 ∧ e2 + e3 ∧ e4), ω4 =

1√
2
(e1 ∧ e2 − e3 ∧ e4),

ω2 =
1√
2
(e2 ∧ e3 + e1 ∧ e4), ω5 =

1√
2
(e2 ∧ e3 − e1 ∧ e4),

ω3 =
1√
2
(e1 ∧ e3 − e2 ∧ e4), ω6 =

1√
2
(e1 ∧ e3 + e2 ∧ e4)

of
∧2U form an orthonormal basis for

∧2U , which diagonalizes the bilinear form Q;
in fact, if we set εj = +1, for j = 1, 2, 3, and εj = −1, for j = 4, 5, 6, we have

Q(ωj , ωk) = εjδjkΩ,

for 1 ≤ j, k ≤ 6. Moreover, the vectors {ω1, ω2, ω3} form a basis of
∧2

+U , while the
vectors {ω4, ω5, ω6} form a basis of

∧2
−U . We note that a change in the orientation

of U simply permutes the factors
∧2

+U and
∧2

−U .
The SO(U)-module

Ũ =
∧2

+U ⊕ J(
∧2

−U)

is a real subspace of
∧2UC which generates

∧2UC over C. The scalar product g induces
a scalar product on Ũ via the natural isomorphism of SO(U)-modules

∧2U → Ũ . We
consider the elements ω′

j of
∧2UC defined by

ω′
j = ωj , ω′

j+3 = iωj+3,

for j = 1, 2, 3. Then the vectors {ω′
1, . . . , ω

′
6} form a basis of

∧2UC and also for its
real subspace Ũ ; this basis diagonalizes the bilinear form Q and we have

Q(ω′
j , ω

′
k) = δjkΩ,

for 1 ≤ j, k ≤ 6. Thus if we view the restriction Q̃ of the bilinear form Q to the
subspace Ũ as an ordinary quadratic form by means of the volume element Ω, this
quadratic form Q̃ is positive definite; in fact, it is equal to the restriction of the scalar
product on Ũ induced by g.

The space HomC(
∧pUC,

∧pUC) carries a natural structure of SO(U)-module and
we denote by J its complex structure. We view the SO(U)-module Hom(

∧pU,
∧pU)

as a real subspace of HomC(
∧pUC,

∧pUC) and the SO(U)-module Hom(Ũ , Ũ) as a
real subspace of HomC(

∧2UC,
∧2UC). An endomorphism φ of UC (over C) extends to

a derivation φ̂ of the exterior algebra of UC. The mapping

Ψ̃ : HomC(UC, UC) −→ HomC(
∧2UC,

∧2UC),
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which sends an element φ of HomC(UC, UC) into the restriction of the mapping φ̂
to

∧2UC, is a morphism of SO(U)-modules. The mappings

Ψ : S2
0U∗ −→ HomC(

∧2UC,
∧2UC), Ψ′ : S2

0U∗ −→ Hom(
∧2U,

∧2U),

which send h ∈ S2
0U∗ into Ψ̃(Jλ(h)) and Ψ̃λ(h), respectively, are also morphisms of

SO(U)-modules. Now let h be an arbitrary element of S2
0U∗. Clearly, we have

(10.5) Ψ(h) = JΨ′(h).

Because the trace of the endomorphism λ(h) of U vanishes, we easily see that the
relation

(10.6) Q(Ψ(h)u, v) + Q(u, Ψ(h)v) = 0

holds for all u, v ∈
∧2UC. If {α1, α2, α3, α4} is the basis of U∗ dual to the basis

{e1, e2, e3, e4} of U and h1 is the element α1 ⊗ α1 − α3 ⊗ α3 of S2
0U∗, we easily see

that

Ψ′(h1)(ω1) = ω4, Ψ′(h1)(ω2) = −ω5, Ψ′(h1)(ω3) = 0,

Ψ′(h1)(ω4) = ω1, Ψ′(h1)(ω5) = −ω2, Ψ′(h1)(ω6) = 0.

Since the module S2
0U∗ is irreducible, from these formulas we obtain the inclusions

Ψ′(h)(
∧2

+U) ⊂
∧2

−U, Ψ′(h)(
∧2

−U) ⊂
∧2

+U ;

according to these inclusions and the relation (10.5), we see that

(10.7) Ψ(h)(
∧2

+U) ⊂ J(
∧2

−U), Ψ(h)(J(
∧2

−U)) ⊂
∧2

+U,

and so Ψ(h) belongs to the submodule Hom(Ũ , Ũ) of HomC(
∧2UC,

∧2UC). Thus Ψ
may be viewed as a morphism

Ψ : S2
0U∗ −→ Hom(Ũ , Ũ)

of SO(U)-modules satisfying (10.7). We consider the elements

h2 = α1 ⊗ α2 + α2 ⊗ α1, h3 = α1 ⊗ α1 − α3 ⊗ α3

of S2
0U∗; then we easily verify that

(10.8) Ψ(h2) = ω2 ⊗ ω′
6 + ω3 ⊗ ω′

5, Ψ(h3) = ω1 ⊗ ω′
4 − ω2 ⊗ ω′

5.

Since the spaces S2
0U∗ and Hom(

∧2
+U, J(

∧2
−U)) have the same dimension, the

mapping
S2

0U∗ −→ Hom(
∧2

+U, J(
∧2

−U)),

which sends h ∈ S2
0U∗ into the restriction of Ψ(h) to

∧2
+U , is an isomorphism

of SO(U)-modules. We write V =
∧2

+U and W = J(
∧2

−U) and we identify the
SO(U)-modules Hom(

∧2
+U, J(

∧2
−U)) and

V ⊗ W =
∧2

+U ⊗ J(
∧2

−U)
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via the scalar product on
∧2

+U induced by g; from the above isomorphism, we there-
fore obtain an isomorphism of SO(U)-modules

(10.9) Ψ : S2
0U∗ −→ V ⊗ W.

We consider the bases {θ1, θ2, θ3} of V ∗ and {θ4, θ5, θ6} of W ∗ dual to the bases
{ω1, ω2, ω3} of V and {ω′

4, ω
′
5, ω

′
6} of W , respectively. The symmetric 2-form g′ and

the symmetric 3-form σ′ on the SO(U)-module V ⊗ W , which are determined by

g′(v1 ⊗ w1, v2 ⊗ w2) = Q(v1, v2) · Q(w1, w2〉,
σ′(v1 ⊗ w1, v2 ⊗ w2, v3 ⊗ w3) = (θ1 ∧ θ2 ∧ θ3)(v1, v2, v3) · (θ4 ∧ θ5 ∧ θ6)(w1, w2, w3),

for all v1, v2, v3 ∈ V and w1, w2, w3 ∈ W , are clearly SO(U)-invariant. Thus the
symmetric 2-form Ψ∗g′ and the symmetric 3-form Ψ∗σ′ on S2

0U∗ are SO(U)-invariant.
According to (10.8), we see that

(10.10) g′(Ψ(h2), Ψ(h2)) = 2, σ′(Ψ(h2), Ψ(h2), Ψ(h3)) = −2.

An element φ of G′ induces an automorphism φ′ of
∧2UC which preserves the

bilinear form Q. In fact, if G′′ denotes the group of automorphisms of
∧2UC (over C)

of determinant one which preserve the bilinear form Q, the correspondence φ 4→ φ′,
where φ is an element of G′, then gives rise to epimorphism

Φ′ : G′ −→ G′′.

If φ is an element of the subgroup SL(U), then the automorphism φ′ of
∧2UC pre-

serves the subspace
∧2U . If φ is an element of the subgroup SU(4) of G′, then the

automorphism φ′ of
∧2UC preserves both the bilinear form Q and the Hermitian

scalar product on
∧2UC, induced by the Hermitian scalar product on UC = C4; it

follows that φ′ also preserves the real subspace Ũ of
∧2UC. Thus if we write

K ′′ = SO(
∧2

+U, Q̃) × SO(J(
∧2

−U), Q̃),

the mapping Φ′ induces by restriction epimorphisms

Φ′ : SU(4) −→ SO(Ũ , Q̃), Φ′ : SO(4) −→ K ′′.

We note that the kernels of these two mappings are equal to {±I4}, where I4 denotes
the identity matrix belonging to SL(4, R).

Let {e′1, . . . , e′6} denote the standard basis of C6. The isomorphism

ι :
∧2C4 −→ C6

which sends ω′
j into e′j, for 1 ≤ j ≤ 6, induces by restriction an isomorphism

ι : Ũ −→ R6.

We consider the decomposition R6 = F1 ⊕ F2 of R6, where F1 and F2 are subspaces
of R6 defined by

F1 = { (b1, b2, b3, 0, 0, 0) | b1, b2, b3 ∈ R },
F2 = { (0, 0, 0, b4, b5, b6) | b4, b5, b6 ∈ R }.
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The image of
∧2

+U under the isomorphism ι is equal to F1, while the image
of J(

∧2
−U)) under the isomorphism ι is equal to F2. Clearly, when Ũ is endowed

with the scalar product induced by g, the isomorphism ι : Ũ → R6 is an isometry.
The mapping ι induces an isomorphism

ι : G′′ −→ SO(6, C),

which in turn induces by restriction isomorphisms

ι : SO(Ũ , Q̃) −→ SO(6), ι : K ′′ −→ SO(3) × SO(3).

Thus the epimorphism

Φ = ι ◦ Φ′ : SL(4, C) −→ SO(6, C)

give us by restrictions epimorphisms

Φ : SU(4) −→ SO(6), Φ : SO(4) −→ SO(3) × SO(3).

We note that the kernels of these three epimorphisms are equal to {±I4}. Therefore
the epimorphism Φ induces an epimorphism

Φ : SO(4, C) −→ SO(3, C) × SO(3, C)

and gives rise to a commutative diagram
SL(4, C)/{± I4} −−−→ SO(6, C)

<
<

SO(4, C)/{± I4} −−−→ SO(3, C) × SO(3, C)
whose horizontal arrows are isomorphisms induced by the morphisms Φ and whose
vertical ones are inclusions.

We henceforth write

G̃ = SO(6, C), K̃ = SO(3, C) × SO(3, C).

We consider the Lie algebra g of G̃, the Cartan subalgebra t of g and the linear forms
λ1, λ2, λ3 on t introduced in §5. Then {α1, α2, α3} is a system of simple roots of g,
where

α1 = λ1 − λ2, α2 = λ2 − λ3, α3 = λ2 + λ3.

The corresponding fundamental weights are

µ1 = λ1, µ2 =
1
2
(λ1 + λ2 − λ3), µ3 =

1
2
(λ1 + λ2 + λ3);

we note that λ1 is the highest weight of the irreducible G̃-module C4.
The highest weight of an irreducible G̃-module is a linear form

c1λ1 + c2λ2 + εc3λ3

on t, where ε = ±1 and c1, c2, c3 ≥ 0 are integers satisfying

c1 ≥ c2 ≥ c3 ≥ 0.
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The equivalence class of such an G̃-module is determined by this weight. We identify
the dual Γ̃ of G̃ with the set of all such linear forms on t.

We also consider an irreducible G̃-module (resp. K̃-module) E as an irreducible G′-
module (resp. K ′-module) Φ∗E via the epimorphism Φ : G′ → G̃ (resp. Φ : K ′ → K̃).
Now let E be an irreducible G̃-module and F be an irreducible K̃-module; then
the multiplicity of the irreducible module F in the decomposition of E viewed as
a K̃-module is equal to the multiplicity of the irreducible K ′-module Φ∗F in the
decomposition of the K ′-module Φ∗E, and therefore also the dimension of the space
HomK′(Φ∗F, Φ∗E).

If γ is an element of Γ̃, we consider an irreducible G̃-module Vγ corresponding to γ,
and we shall denote by Φ(γ) the highest weight of the irreducible G′-module Φ∗Vγ .
Then we have Φ(λ1) = +2 and, replacing the mapping Φ by the epimorphism Φ ◦ σ
if necessary, we may also suppose that

Φ(µ2) = +1, Φ(µ3) = +3.

If
γ = c1λ1 + c2λ2 + εc3λ3

is an element of Γ̃, with c1 ≥ c2 ≥ c3 ≥ 0, then it follows that the element Φ(γ) of Γ′

is given by
Φ(γ) = (c2 − εc3)+1 + (c1 − c2)+2 + (c2 + εc3)+3.

Therefore the partition ρ(γ) = π(Φ(γ)) associated with the G′-module E(+), where
+ = Φ(γ), is equal to

ρ(γ) = (ρ1(γ), ρ2(γ), ρ3(γ)) = (c1 + c2, c1 + εc3, c2 + εc3).

Clearly, the partition ρ(γ) belongs to P and the mapping

ρ : Γ̃ −→ P

is injective. Let π = (π1, π2, π3) be an arbitrary element of P . If we set

b1 =
1
2
(π1 + π2 − π3), b2 =

1
2
(π1 − π2 + π3), b3 =

ε

2
(π2 + π3 − π1),

where ε = ±1 is chosen so that b3 ≥ 0, we see that γ′ = b1λ1 + b2λ2 + b3λ3 is the
unique element of Γ̃ satisfying ρ(γ′) = π. Thus the mapping ρ is bijective.

We consider the subsets

Γ̃1 = { c1λ1 + c2λ2 + εc3λ3 ∈ Γ̃ | c1 − c2, c2 − c3 are even }

Γ̃2 = { c1λ1 + c2λ2 + εc3λ3 ∈ Γ̃ | c1 − c2 is even, c2 − c3 is odd }

Γ̃3 = { c1λ1 + c2λ2 + εc3λ3 ∈ Γ̃ | c1 − c2 is odd, c2 − c3 is odd }

Γ̃4 = { c1λ1 + c2λ2 + εc3λ3 ∈ Γ̃ | c1 − c2 is odd, c2 − c3 is even }

of Γ̃; then Γ̃ is the disjoint union of these subsets. We easily verify that

ρ(Γ̃j+1) ⊂ Pj ,
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for j = 0, 1, 2, 3. Since the subsets Γ̃k of Γ̃ and the subsets Pj of P are disjoint, the
induced mapping

ρ : Γ̃j+1 −→ Pj

is bijective, for j = 0, 1, 2, 3.
If γ ∈ Γ̃, the subspace of Vγ consisting of all the K̃-invariant elements of Vγ is

isomorphic to E(+)K′
, where + = Φ(γ). Hence by (10.2), we obtain the following

result:

Proposition 10.3. — Let γ be an element of the dual Γ̃ of the group G̃ = SO(6, C)
and let Vγ be an irreducible G̃-module corresponding to γ. If K̃ is the subgroup
SO(3, C)×SO(3, C) of G̃, the dimension of the space of all the K̃-invariant elements
of Vγ is equal to 1 if γ belongs to Γ̃1, and to 0 otherwise.

If F is the irreducible K̃-module equal to the complexification of F1 ⊗ F2, then, by
means of the isomorphism (10.9) of SO(4)-modules, we see that Φ∗F is equal to the
K ′-module equal to the complexification of S2

0U∗. Therefore the multiplicity of F in
the decomposition of Vγ , with γ ∈ Γ̃, viewed as a K̃-module is equal to the multiplicity
of S2

0C4 in the decomposition of E(+) viewed as a K ′-module, where + = Φ(γ), and
hence to the dimension of the space HomK′(S2

0C4, E(+)).
Now let 1 ≤ j ≤ 4, and r1, r2 ≥ 0 and s be given integers, and consider the element

γ = γj
r1,r2,s of Γ̃j given by (6.4). We consider the element + = Φ(γ) of Γ′, the partition

ρ(γ) = π(+) associated with the element +, which belongs to Pj−1, and the subset
Σ′(+) of P which we associated above with +. We also consider the sequences ηk,
with 1 ≤ k ≤ 10, associated with the partition π = ρ(γ) in the discussion preceding
Proposition 10.2. From the proof of this proposition and this discussion, we deduce
the following:

First, assume that j = 1. The sequence η1 always belongs to Σ′(+), and the
sequence η3 belongs to Σ′(+) if and only if r1 ≥ 1. Moreover, if r2 ≥ 1, then η2, η4

belong to Σ′(+); when r2 = 0, the sequence η2 (resp. η4) belongs to Σ′(+) if and only
if s ≤ −1 (resp. s ≥ 1). Next, suppose that j = 2. The sequence η6 belongs to Σ′(+)
if and only if r1 ≥ 1, and the sequence η9 always belongs to Σ′(+).

If j = 3, the set Σ′(+) is equal to {η7, η10}. Finally, suppose that j = 4. The
sequence η8 belongs to Σ′(+) if either r2 ≥ 1 or s ≥ 1, while the sequence η5 belongs
to Σ′(+) if either r2 ≥ 1 or s ≤ −1.

The following result is a consequence of these observations and Proposition 10.2:

Proposition 10.4. — Let γ be an element of the dual Γ̃ of the group G̃ = SO(6, C)
and let Vγ be an irreducible G̃-module corresponding to γ. If K̃ is the subgroup
SO(3, C) × SO(3, C) of G̃, the non-zero multiplicities of the K̃-module (F1 ⊗ F2)C
in the decomposition of the G̃-module Vγ , viewed as a K̃-module, are given by the
table of Proposition 6.3, where r1, r2 ≥ 0 and s are integers and γ is an element of Γ̃.
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The vector spaces F1 and F2 are equal to the fibers of the vector bundles V and
W over X = G̃R

3,3 at the point x0 considered in §3, respectively; the tangent space
Tx0 of X at the point x0 is a SO(3)× SO(3)-module isomorphic to Vx0 ⊗Wx0 . Since
the group G = SO(6) is a real form of the group G̃ = SO(6, C) and the subgroup
SO(3)×SO(3) of G is equal to G∩ K̃, from Proposition 10.4 we deduce the results of
Proposition 6.3. The multiplicities of the G-modules C∞

γ (X), which are given in §5,
can also be obtained from Proposition 10.3.

11. The special Lagrangian Grassmannian SU(4)/SO(4)

Let G1 be the group SU(4) and let K1 be the subgroup SO(4), which is equal to
the set of fixed points of the involution s1 of G1 sending a matrix into its complex
conjugate. We consider the Riemannian symmetric pair (G1, K1) and the irreducible
symmetric space X1 = G1/K1, which is one of the special Lagrangian Grassmannians
introduced in §2. In the Cartan decomposition

g1 = k1 ⊕ p1

of the Lie algebra g1 of G1 corresponding to the involution s1, we know that k1 is the
Lie algebra of K1 and that the K1-submodule p1 is the space of all symmetric purely
imaginary 4 × 4 matrices of trace zero. As in §2, we identify the K1-module p1 with
the tangent space of X1 at the coset of the identity element x1 of G1.

We consider the space U = R4, with its standard Euclidean scalar product, the
complexification UC of U , with its standard basis; we also consider the complex struc-
ture J of UC and the objects associated with U and UC in §10, notably, the K1-module
S2

0U∗ and the basis {α1, α2, α3, α4} of U∗. For 1 ≤ j, k ≤ 4, let Ejk = (clr) be the
4×4 matrix determined by cjk = 1 and clr = 0 whenever (l, r) "= (j, k). The mapping

µ : S2
0U∗ −→ p1,

which sends the element
∑4

j,k=1 ajkαj ⊗ αk of S2
0U∗, with ajk = akj ∈ R, into

the 4 × 4 matrix
i

4∑

j,k=1

ajkEjk,

is an isomorphism of K1-modules. We also consider the isomorphism

Ψ : S2
0U∗ −→ V ⊗ W

of K1-modules given by (10.9) and the isomorphism

χ = Ψ ◦ µ−1 : p1 −→ V ⊗ W.

For p ≥ 2, we consider the symmetric p-form σp on X1 defined in §2; the symmetric
2-form σ2 is a G1-invariant metric on X1. We also consider the symmetric 2-form g′

and the symmetric 3-form σ′ on V ⊗ W defined in §10, which are both K1-invariant;
the isomorphism χ therefore induces K1-invariant symmetric forms χ∗g′ and χ∗σ′
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on p1. In §2, we saw that the spaces (S2p∗1)K1 and (S3p∗1)K1 are one-dimensional and
are generated by σ2 and σ3, respectively. Therefore χ∗g′ (resp. χ∗σ′) is a multiple
of σ2 (resp. of σ3). If h2 and h3 are the elements of S2

0U∗ defined in §10, the elements
ξ2 and ξ3 of p1 defined by

ξ2 = i(E12 + E21), ξ3 = i(E11 − E33)

satisfy

ξ2 = µ(h2), ξ3 = µ(h3).

By (10.10) and the definition of the forms σp, we have

(χ∗g′)(ξ2, ξ2) = 2 = σ2(ξ2, ξ2),(11.1)

(χ∗σ′)(ξ2, ξ2, ξ3) = −2 = 2σ3(ξ2, ξ2, ξ3).(11.2)

From these equalities, we now deduce that

(11.3) χ∗g′ = σ2, χ∗σ′ = 2σ3.

We also consider the Grassmannian

X = G̃R
3,3 = SO(6)/SO(3) × SO(3)

endowed with its metric g. If I3 denotes the unit matrix of order 3, the element

S =
(
−I3 0
0 I3

)

of O(6) determines an involution s of the group SO(6) which sends the matrix A
of SO(6) into SAS; then the subgroup SO(3) × SO(3) is equal to the identity com-
ponent of the set of fixed points of s. We consider the Cartan decomposition

g0 = k0 ⊕ p0

of the Lie algebra g0 of SO(6) corresponding to this involution; in fact, k0 is the Lie
algebra of SO(3) × SO(3) and p0 is a subspace of Hom(R6, R6). In §1, Chapter IV
of [6], an explicit isomorphism (V ⊗W )x0 → p0 is defined, where x0 is the point of X
considered in §3.

The epimorphism

Φ : SU(4) −→ SO(6)

defined in §10 induces an isomorphism

Φ∗ : g1 −→ g0

and a diffeomorphism

Φ : SU(4)/SO(4) −→ X.
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It is easily verified that the diagram

SU(4) Φ−−−→ SO(6)
/s1

/s

SU(4) Φ−−−→ SO(6)

is commutative, and so the isomorphism Φ∗ induces an isomorphism

Φ∗ : p1 −→ p0.

We know that Φ(x1) is equal to the point x0; thus the diffeomorphism Φ induces an
isomorphism Φ∗ : p1 → Tx0 ; we continue to identify Tx0 with (V ⊗ W )x0 via the
isomorphism (3.2).

We consider the K1-submodule Ũ of UC and the morphism

Ψ : S2
0U∗ −→ Hom(Ũ , Ũ)

of K1-modules defined in §10; as we saw above, we may identify the image of this
morphism with

∧2
+U ⊗ J(

∧2
−U). We also recall that the isomorphism ι : Ũ → R6

induces isomorphisms

ι :
∧2

+U −→ Vx0 , ι : J(
∧2

−U) −→ Wx0 .

Then we see that the diagram

S2
0U∗ µ−−−→ p1
/Ψ

/Φ∗

Hom(Ũ , Ũ) ι−−−→ Hom(R6, R6)

commutes, where the horizontal arrow ι is the mapping induced by the isomorphism
ι : Ũ → R6 of §10. From the commutativity of the preceding diagram and the
relation (10.6), we infer that the diagram

S2
0U∗ µ−−−→ p1
/Ψ

/Φ∗

∧2
+U ⊗ J(

∧2
−U) ι⊗ι−−−→ (V ⊗ W )x0

commutes. Hence if σ is the symmetric 3-form on the Grassmannian X defined in §2,
from the relations (11.3) we deduce that the equalities

(11.4) Φ∗g = σ2, Φ∗σ = 2σ3

hold on the symmetric space X1 = SU(4)/SO(4). Thus the diffeomorphism Φ is an
isometry.
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12. The complex quadric of dimension three

We return to the study of the Grassmannian X = G̃R
m,n, with m, n ≥ 1

and m + n ≥ 3, which is a homogeneous space of the group G = SO(m + n). If
{v1, . . . , vm+n} are elements of Rm+n, there exists a unique real number

c = det (v1, . . . , vm+n)

such that
v1 ∧ · · · ∧ vm+n = c · e1 ∧ · · · ∧ em+n.

Let p ≥ 1 be a given integer; suppose that m = p and n = p + 1. Let v be a vector
of R2p+1; we consider the section θv of

⊗pT ∗ over X determined by

θv(v1 ⊗ w1, . . . , vp ⊗ wp) = det (v, v1, w1, . . . , vp, wp),

for v1, . . . , vp ∈ V and w1, . . . , wp ∈ W . It is easily verified that θv is in fact a
symmetric p-form on X , and that the mapping

R2p+1 −→ C∞(SpT ∗),

which sends v ∈ R2p+1 into θv, is non-zero and G-equivariant; in fact, we have

φ∗θv = θφ−1v,

for all v ∈ R2p+1 and φ ∈ G. Therefore the image of this mapping is a G-submodule
of C∞(SpT ∗) which is isomorphic to R2p+1. If τ is the involution of X , corresponding
to the change of orientation of a p-plane of Rp+1, clearly we have τ∗θv = θv.

We henceforth suppose that p = 2. As in Chapter V of [6], we identify the Grass-
mannian X = G̃R

2,3 with the complex quadric Q3 of dimension 3 and view it as a
Hermitian symmetric space and as a homogeneous space of the group G = SO(5).
If E is a sub-bundle of SpT ∗ or of SpT ∗

C which is invariant under the group G and
the involution τ , we write

C∞(E)ev = C∞(E)τ,+1, C∞(E)odd = C∞(E)τ,−1.

We remark that this notation coincides with the one used in [5] or [6]. For this
Grassmannian, we have an injective morphism of G-modules

(12.1) R5 −→ C∞(S2T ∗),

which sends v ∈ R5 into the symmetric 2-form hv = θv on X ; we also consider its
complexification

C5 −→ C∞(S2T ∗
C),

which sends v + iw into hv+iw = hv + ihw, for all v, w ∈ R5. The existence of these
two mappings is given by Proposition 9.1 of [5] or Proposition 6.25 of [6], while the
explicit construction of the mapping (12.1) is due to Bryant.

Let v be a vector of R5. From the definition of the symmetric 2-form hv, we infer
directly that

hv(vj ⊗ w1, vj ⊗ w2) = 0, hv(v1 ⊗ w1, v2 ⊗ w2) = −hv(v1 ⊗ w2, v2 ⊗ w1),
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for all v1, v2 ∈ V , w1, w2 ∈ W and j = 1, 2. According to §5, Chapter V of [6],
it follows that the symmetric 2-form hv is Hermitian and a section of the sub-
bundle (S2T ∗)+− of S2T ∗ introduced in [4] and in Chapter V of [6]. The sub-
bundle (S2T ∗)+− is invariant under the group G and the involution τ ; as we have
seen above, hv is an element of C∞(S2T ∗)ev. Thus we know that hv is an element
of C∞((S2T ∗)+−)ev.

We now consider the mapping

ι′ : R2 −→ X

defined in §4, whose image Z which is a maximal flat totally geodesic torus of X , and
the vector fields ζ1 and ζ2 on Z. According to (4.8), we see that

hv(ζj , ζk)(ι′(θ)) = det (v, vj(θj), wj(θj), vk(θk), wk(θk)),

for all θ = (θ1, θ2) ∈ R2 and j, k = 1, 2; in particular, we have

(12.2) hv(ζ1, ζ2) = 〈v, e5〉,

where 〈 , 〉 is the standard Euclidean scalar product on R5. Let φ be the element of G
determined by

φ(e3) = e4, φ(e4) = e5, φ(e5) = e3, φ(ej) = ej ,

for j = 1, 2. When we identify X with the complex quadric Q3, we see that the
maximal flat totally geodesic torus ψ(Z) of X is equal to the torus Z0 of Q3 considered
in [5] and in §2, Chapter VI of [6]; in fact, the point σ̃(θ1, θ2) of Z0 defined there is
equal to φι′(θ1, θ2 + π/2), for θ1, θ2 ∈ R; moreover, according to the relation (4.9) the
vector fields ξ0 and η0 on Z0 considered in [5] and [6] are given by

(12.3) ξ0 = φ∗ζ1, η0 = φ∗ζ2.

Then by (12.2) and (12.3), we have

(12.4) hv(ξ0, η0) = hφ−1v(ζ1, ζ2) = 〈φ−1v, e5〉 = 〈v, e3〉.

Let ψ be the element of G determined by

ψ(e2) = e3, ψ(e3) = e2, ψ(ej) = ej ,

for j = 1, 4, 5. From the formula (12.4), we infer that

(12.5) (ψ∗hv)(ξ0, η0) = hψ−1v(ξ0, η0) = 〈ψ−1v, e3〉 = 〈v, e2〉.

We consider the complex-valued function f̃0,1 on X , defined in [4, §2] or §7, Chap-
ter V of [6], and the complex symmetric 2-form k−, defined in [4, §2] or §3, Chapter VI
of [6], which is a section of (S2T ∗)+− over X . We also consider certain objects intro-
duced in [4, §9] and use results and notation found there (see also §7, Chapter V and
§7, Chapter VI of [6]). We recall that v0 = e1 − ie2 is a highest weight vector of the
G-module C5; it follows that hv0 is a highest weight of the G-module C∞

γ′
0,0

((S2T ∗)+−
C ).
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According to Proposition 9.1 of [5] or Proposition 6.25 of [6], we know that the latter
G-module is irreducible and so we have the equality

C∞
γ′
0,0

((S2T ∗)+−
C ) = C∞

γ′
0,0

((S2T ∗)+−
C )ev;

another proof of this equality is given by Lemma 9.5 of [5] or Lemma 6.31 of [6].
According to [4, §9], we know that the G-module C∞

γ′
0,1

((S2T ∗)+−
C )odd is irreducible

and that the symmetric 2-form k− is a highest weight vector of this module. Since f̃0,1

is a highest weight vector of the G-module C∞
γ0,1

(X)odd, the symmetric 2-form f̃0,1hv0

is also a highest weight vector of the G-module C∞
γ′
0,1

((S2T ∗)+−
C )odd. Therefore the two

symmetric forms f̃0,1hv0 and k− differ by a non-zero constant. According to (12.5),
we see that

(ψ∗hv0)(ξ0, η0) = −i;
on the other hand, the relations (4.2) of [5] say that

(ψ∗k−)(ξ0, η0) = − i

2
ψ∗f̃0,1.

Thus from the preceding formulas, we see that the forms k− and hv0 are related by

(12.6) k− = 1
2 f̃0,1 · hv0 ;

thus the element h0 of C∞
γ′
0,0

((S2T ∗)+−
C ) given by Lemma 9.4 of [5] or Lemma 6.30

of [6] is equal to 1
2hv0 .
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