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CHARACTERIZATION OF THE TWO-DIMENSIONAL FIVEFOLD
TRANSLATIVE TILES

by Qi Yang & Chuanming Zong

Abstract. — In 1885, Fedorov discovered that a convex domain can form a lattice
tiling of the Euclidean plane, if and only if it is a parallelogram or a centrally symmetric
hexagon. This paper proves the following results. Besides parallelograms and centrally
symmetric hexagons, there is no other convex domain that can form any two, three or
fourfold translative tiling in the Euclidean plane. In particular, it characterizes all two-
dimensional fivefold translative tiles, which are parallelograms, centrally symmetric
hexagons, two classes of octagons and one class of decagons.

Résumé (Caractérisation des pavages translatifs quintuples à deux dimensions). —
En 1885, Fedorov découvrait qu’un domaine convexe peut former un réseau-pavage
de la plane euclidienne si et seulement s’il est un parallélogramme ou un hexagone
symmétrique centralement. Cet article démontre les résultats suivants: outre les paral-
lélogrammes et les hexagones symmétriques centralement, il n’y aucun autre domaine
convexe qui peut former dans la plane eucldienne un pavage translatif double ou triple
ou quadruple. En particulier, il caractérise tous les pavages translatifs quintuples en
deux dimensions, qui sont parallélogrammes, hexagones symmétriques centralement,
deux classes d’octogones, et une classe de décagons.
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120 QI YANG & CHUANMING ZONG

1. Introduction

In 1885, Fedorov [6] proved that a convex domain can form a lattice tiling in
the plane if and only if it is a parallelogram or a centrally symmetric hexagon; a
convex body can form a lattice tiling in the space if and only if it is a parallelo-
tope, a hexagonal prism, a rhombic dodecahedron, an elongated dodecahedron,
or a truncated octahedron. As a generalized inverse problem of Fedorov’s dis-
covery, in 1900 Hilbert [13] listed the following question in the second part of his
18th problem: Whether polyhedra also exist which do not appear as fundamen-
tal regions of groups of motions, by means of which nevertheless by a suitable
juxtaposition of congruent copies a complete filling up of all space is possible.
To verify Hilbert’s problem in the plane, in 1917 Bieberbach suggested to Rein-
hardt (see [19]) to determine all the two-dimensional convex tiles. However, to
complete the list turns out to be challenging and dramatic. Over the years,
the list has been successively extended by Reinhardt, Kershner, James, Rice,
Stein, Mann, McLoud-Mann and Von Derau (see [15, 27]); its completeness has
been mistakenly announced several times! In 2017, M. Rao [18] announced a
completeness proof based on computer checks.

Let K be a convex body with (relative) interior int(K) and (relative) bound-
ary ∂(K), and let X be a discrete set, both in En. We call K+X a translative
tiling of En and call K a translative tile, if K + X = En and the translates
int(K)+xi are pairwise disjoint. In other words, if K+X is both a packing and
a covering in En. In particular, we call K+Λ a lattice tiling of En and call K a
lattice tile, if Λ is an n-dimensional lattice. It is apparent that a translative tile
must be a convex polytope. Usually, a lattice tile is called a parallelohedron.

As one can predict, to determine the parallelohedra in higher dimensions is
complicated. According to Fedorov [6], there are exact five types of parallelo-
hedra in E3. Through the works of Delone [3], Štogrin [23] and Engel [5], we
know that there are exact 52 combinatorially different types of parallelohedra
in E4. A computer classification for the five-dimensional parallelohedra was
announced by Dutour Sikirić, Garber, Schürmann and Waldmann [4] only in
2015.

Let Λ be an n-dimensional lattice. The Dirichlet–Voronoi cell of Λ is defined
by

C = {x : x ∈ En, |x,o| ≤ |x,Λ|} ,

where |X,Y | denotes the Euclidean distance between X and Y . Clearly, C+ Λ
is a lattice tiling, and the Dirichlet–Voronoi cell C is a parallelohedron. In
1908, Voronoi [22] made a conjecture that every parallelohedron is a linear
transformation image of the Dirichlet–Voronoi cell of a suitable lattice. In E2,
E3 and E4, this conjecture was confirmed by Delone [3] in 1929. In higher
dimensions, it is still open.

tome 149 – 2021 – no 1



TWO-DIMENSIONAL FIVEFOLD TRANSLATIVE TILES 121

To characterize the translative tiles is another fascinating problem. At the
first glance, translative tilings should be more complicated than lattice tilings.
However, the dramatic story had a happy ending! It was shown by Minkowski
[17] in 1897 that every translative tile must be centrally symmetric. In 1954,
Venkov [21] proved that every translative tile must be a lattice tile (parallelohe-
dron) (see [1] for generalizations). Later, a new proof for this beautiful result
was independently discovered by McMullen [16].

Let X be a discrete multiset in En and let k be a positive integer. We call
K +X a k-fold translative tiling of En and call K a translative k-tile, if every
point x ∈ En belongs to at least k translates of K in K +X, and every point
x ∈ En belongs to at most k translates of int(K) in int(K) + X. In other
words, K+X is both a k-fold packing and a k-fold covering in En (see [7, 27]).
In particular, we call K + Λ a k-fold lattice tiling of En and call K a lattice
k-tile, if Λ is an n-dimensional lattice. Apparently, a translative k-tile must be
a convex polytope. In fact, similarly to Minkowski’s characterization, it was
shown by Gravin, Robins and Shiryaev [10] that a translative k-tile must be a
centrally symmetric polytope with centrally symmetric facets.

Multiple tilings were first investigated by Furtwängler [8] in 1936 as a gen-
eralization of Minkowski’s conjecture on cube tilings. Let C denote the n-
dimensional unit cube. Furtwängler made a conjecture that every k-fold lattice
tiling C + Λ has twin cubes. In other words, every multiple lattice tiling C + Λ
has two cubes sharing a whole facet. In the same paper, he proved the two and
three-dimensional cases. Unfortunately, when n ≥ 4, this beautiful conjecture
was disproved by Hajós [12] in 1941. In 1979, Robinson [20] determined all
the integer pairs {n, k} for which Furtwängler’s conjecture is false. We refer
to Zong [25, 26] for detailed accounts on this fascinating problem and to pages
82–84 of Gruber and Lekkerkerker [11] for some generalizations.

Let P denote an n-dimensional centrally symmetric convex polytope, let
τ(P ) be the smallest integer k, such that P can form a k-fold translative tiling
in En, and let τ∗(P ) be the smallest integer k, such that P can form a k-fold
lattice tiling in En. For convenience, we define τ(P ) = ∞, if P cannot form
translative tiling of any multiplicity. Clearly, for every centrally symmetric
convex polytope, we have

τ(P ) ≤ τ∗(P ).

In 1994, Bolle [2] proved that every centrally symmetric lattice polygon is
a lattice multiple tile. However, little is known about the multiplicity. Let
Λ denote the two-dimensional integer lattice and let P8 denote the octagon
with vertices ( 1

2 ,
3
2 ), ( 3

2 ,
1
2 ), ( 3

2 ,−
1
2 ), ( 1

2 ,−
3
2 ), (− 1

2 ,−
3
2 ), (− 3

2 ,−
1
2 ), (− 3

2 ,
1
2 ) and

(− 1
2 ,

3
2 ), as shown in Figure 1. As a particular example of Bolle’s theorem, it

was discovered by Gravin, Robins and Shiryaev [10] that P8 + Λ is a sevenfold
lattice tiling of E2.
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122 QI YANG & CHUANMING ZONG
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Figure 1

In 2000, Kolountzakis [14] proved that, if D is a two-dimensional convex
domain, which is not a parallelogram, and D + X is a multiple tiling in E2,
then X must be a finite union of translated two-dimensional lattices. In 2013,
a similar result in E3 was discovered by Gravin, Kolountzakis, Robins and
Shiryaev [9].

In 2017, Yang and Zong [24] studied multiple lattice tilings by proving the
following results. Besides parallelograms and centrally symmetric hexagons,
there is no other convex domain that can form any two, three or fourfold lat-
tice tiling in the Euclidean plane. However, there are particular octagons and
decagons that can form fivefold lattice tilings. Afterwards, Zong [29] character-
ized all the two-dimensional fivefold lattice tiles. A convex domain can form a
fivefold lattice tiling of the Euclidean plane, if and only if it is a parallelogram,
a centrally symmetric hexagon, under a suitable affine linear transformation,
a centrally symmetric octagon with vertices v1 = (−α,− 3

2 ), v2 = (1− α,− 3
2 ),

v3 = (1 + α,− 1
2 ), v4 = (1 − α, 1

2 ), v5 = −v1, v6 = −v2, v7 = −v3 and
v8 = −v4, where 0 < α < 1

4 , or with vertices v1 = (β,−2), v2 = (1 + β,−2),
v3 = (1−β, 0), v4 = (β, 1), v5 = −v1, v6 = −v2, v7 = −v3, v8 = −v4, where
1
4 < β < 1

3 , or a centrally symmetric decagon with u1 = (0, 1), u2 = (1, 1),
u3 = ( 3

2 ,
1
2 ), u4 = ( 3

2 , 0), u5 = (1,− 1
2 ), u6 = −u1, u7 = −u2, u8 = −u3,

u9 = −u4 and u10 = −u5 as the middle points of its edges.
This paper proves the following theorems.

Theorem 1.1. — Besides parallelograms and centrally symmetric convex hexa-
gons, there is no other convex domain that can form a two, three, or fourfold
translative tiling of the Euclidean plane.
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TWO-DIMENSIONAL FIVEFOLD TRANSLATIVE TILES 123

Theorem 1.2. — A convex domain can form a fivefold translative tiling of
the Euclidean plane, if and only if it is a parallelogram, a centrally symmet-
ric hexagon, under a suitable affine linear transformation, a centrally sym-
metric octagon with vertices v1 =

( 3
2 −

5α
4 ,−2

)
, v2 =

(
− 1

2 −
5α
4 ,−2

)
, v3 =(

α
4 −

3
2 , 0
)
, v4 =

(
α
4 −

3
2 , 1
)
, v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4,

where 0 < α < 2
3 , or with vertices v1 = (2 − β,−3), v2 = (−β,−3), v3 =

(−2,−1), v4 = (−2, 1), v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4, where
0 < β ≤ 1, or a centrally symmetric decagon with u1 = (0, 1), u2 = (1, 1),
u3 = ( 3

2 ,
1
2 ), u4 = ( 3

2 , 0), u5 = (1,− 1
2 ), u6 = −u1, u7 = −u2, u8 = −u3,

u9 = −u4 and u10 = −u5 as the middle points of its edges.

Remark 1.3. — Comparing this with Zong’s work [29], it is easy to show that
all fivefold translative tiles are fivefold lattice tiles.

2. Basic preparation

Let P2m denote a centrally symmetric convex 2m-gon centered at the origin,
let v1, v2, . . ., v2m be the 2m vertices of P2m enumerated clock-wise, and let
G1, G2, . . ., G2m be the 2m edges, where Gi is ended by vi and vi+1. For
convenience, we write

V = {v1,v2, . . . ,v2m}

and

Γ = {G1, G2, . . . , G2m}.

Assume that P2m + X is a τ(P2m)-fold translative tiling in E2, where X =
{x1,x2,x3, . . .} is a discrete multiset with x1 = o. Now, let us observe the
local structures of P2m +X at the vertices v ∈ V +X.

Let Xv denote the subset of X consisting of all points xi, such that

v ∈ ∂(P2m) + xi.
Since P2m + X is a multiple tiling, the set Xv can be divided into disjoint
subsets Xv

1 , Xv
2 , . . ., Xv

t , such that the translates in P2m + Xv
j can be re-

enumerated as P2m + xj1, P2m + xj2, . . ., P2m + xjsj
satisfying the following

conditions (as shown by Figure 2 in two cases):
1. v ∈ ∂(P2m) + xji holds for all i = 1, 2, . . . , sj.
2. Let ∠ji denote the inner angle of P2m + xji at v with two half-line edges
Lji,1 and Lji,2, where L

j
i,1, xji − v and Lji,2 are in clock order. Then, the

inner angles join properly as

Lji,2 = Lji+1,1

holds for all i = 1, 2, . . ., sj, where Ljsj+1,1 = Lj1,1.
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v

Figure 2
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For convenience, we call such a sequence P2m + xj1, P2m + xj2, . . ., P2m + xjsj

an adjacent wheel at v. In other words, if v belongs to the boundary of a tile,
then we follow this tile around, moving from tile to tile, until it closes up again.
It is easy to see that

sj∑
i=1
∠ji = 2wj · π

hold for positive integers wj . Then we define

$(v) =
t∑

j=1
wj = 1

2π

t∑
j=1

sj∑
i=1
∠ji

and

ϕ(v) = ] {xi : xi ∈ X, v ∈ int(P2m) + xi} .

In other words, $(v) is the tiling multiplicity produced by the boundary, and
ϕ(v) is the tiling multiplicity produced by the interior.

Clearly, if P2m +X is a τ(P2m)-fold translative tiling of E2, then

τ(P2m) = ϕ(v) +$(v)(1)

holds for all v ∈ V +X.
Now we introduce some basic results which will be useful in this paper.

Lemma 2.1. — Assume that P2m is a centrally symmetric convex 2m-gon cen-
tered at the origin and P2m+X is a τ(P2m)-fold translative tiling of the plane,
where m ≥ 4. If v ∈ V +X is a vertex and G ∈ Γ+X is an edge with v as one
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TWO-DIMENSIONAL FIVEFOLD TRANSLATIVE TILES 125

of its two ends, then there are at least d(m−3)/2e different translates P2m+xi
satisfying both

v ∈ ∂(P2m) + xi

and

G \ {v} ⊂ int(P2m) + xi.

Proof. — Since adjacent wheels are circular, without loss of generality, let
P2m+x1, P2m+x2, . . ., P2m+xs be an adjacent wheel at v, such that G is the
first edge appearing in the wheel and let ∠i denote the inner angle of P2m + xi
at the vertex v.

Let n denote the smallest index, such that
n∑
i=1
∠i = ω · π(2)

holds with some positive integer ω. Then the angle sequence ∠1, ∠2, . . ., ∠n
has no pair ∠i and ∠j satisfying ∠i = ∠j . Otherwise, one can make the index
n smaller. If ∠j and ∠j+k are two opposite angles of P2m appearing in the
angle sequence with 1 ≤ j < j + k ≤ n, it is easy to see that

k−1∑
i=0
∠j+i = ω′ · π

holds with a positive integer ω′ and ω ≥ ω′. Therefore, to estimate ω we may
assume that the angle sequence ∠1, ∠2, . . ., ∠n has no opposite angle pair
of P2m.

Clearly, ∠i = π, if and only if v is a relative interior point of an edge of
P2m + xi (such as ∠5 in Figure 3) and, therefore,

n∑
i=1
∠i < n · π.(3)

On the other hand, if ` of the n angles are π and n − ` < m, then m − n + `
pairs of the opposite angles of P2m do not appear in the angle sequence. Thus,
we have

n∑
i=1
∠i > ` · π + (m− 1) · π − (m− n+ `) · π = (n− 1) · π,(4)

which together with (3) contradicts (2). Therefore, to avoid the contradiction,
we must have

n− ` = m,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



126 QI YANG & CHUANMING ZONG

P8 + x1

P8 + x2

P8 + x3

P8 + x4

P8 + x5

v

G

Figure 3

and each pair of the opposite angles of P2m has a representative in the sequence
∠1, ∠2, . . ., ∠n. Consequently, we have

n∑
i=1
∠i ≥

(2m− 2) · π
2 = (m− 1) · π.(5)

If v ∈ ∂(P2m) + xi, G ⊂ P2m + xi, and G is not an edge of P2m + xi, then
by the convexity and symmetry of P2m it follows that G \ {v} ⊂ int(P2m) + xi.
Therefore, it follows by (5) that G \ {v} is covered by at least⌈

m− 1
2

⌉
− 1 =

⌈
m− 3

2

⌉
of the s translates int(P2m) + xi. Lemma 2.1 is proved. �

Lemma 2.2. — Assume that P2m is a centrally symmetric convex 2m-gon cen-
tered at the origin, P2m + X is a translative multiple tiling of the plane, and
v ∈ V +X. Then we have

$(v) = κ · m− 1
2 + ` · 1

2 ,

where κ is a positive integer, and ` is the number of the edges in Γ +X, which
take v as an interior point.

Proof. — Assume that P2m + x1, P2m + x2, . . ., P2m + xs is an adjacent wheel
at v and let ∠i denote the inner angle of P2m + xi at v. Of course, we have
∠i = π, if v is not a vertex of P2m + xi.
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TWO-DIMENSIONAL FIVEFOLD TRANSLATIVE TILES 127

Assume that ∠1 < π and let n to be the smallest index, such that
n∑
i=1
∠i = ωπ(6)

holds with a positive integer ω. We proceed to show that each pair of the
opposite angles of P2m has one and only one representative in ∠1, ∠2, . . ., ∠n.

If, on the contrary, ∠j and ∠j+k are two of these n angles, ∠j < π, which
are either identical or opposite. Then, it is easy to see that

k−1∑
i=0
∠j+i = ω′π(7)

holds with a positive integer ω′. For convenience, we assume that ∠j , ∠j+1, . . .,
∠j+k−1 have neither a identical nor an opposite pair. Then, by repeating the
argument between (2) and (5) in the proof of Lemma 2.1, one can deduce that
each pair of the opposite angles of P2m has one and only one representative in
∠j , ∠j+1, . . ., ∠j+k−1. Consequently, one of these k angles is either identical
or opposite to ∠1, which contradicts the minimum assumption on n and ω.

Then, applying the argument between (2) and (5) to ∠1, ∠2, . . ., ∠n, it can
be deduced that

n∑
i=1
∠i = (m− 1)π + `1π,(8)

where `1 is the number of the π angles in ∠1, ∠2, . . ., ∠n. In fact, it is n−m.
By repeating this process to ∠n+1, ∠n+2, . . ., ∠s if necessary, it follows that

s∑
i=1
∠i = κ′(m− 1)π + `′π,(9)

and, therefore,

$(v) = 1
2π
∑ s∑

i=1
∠i = κ · m− 1

2 + ` · 1
2 ,(10)

where the first sum is over all adjacent wheels at v, κ′ and κ are suitable
positive integers, and `′ and ` are suitable nonnegative integers. In fact, ` is
the number of the edges that take v as an interior point.

Lemma 2.2 is proved. �

Lemma 2.3. — If m is an odd positive integer, P2m is a centrally symmetric
convex 2m-gon centered at the origin o, and u1, u2, . . ., u2m are the middle
points of its edges enumerated clockwise, then we have

m∑
i=1

(−1)iui = o.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



128 QI YANG & CHUANMING ZONG

Proof. — Since ui is the middle point of Gi, we have
v2 = 2u1 − v1,

v3 = 2u2 − v2,

. . .

vm+1 = 2um − vm,
which implies

−v1 = vm+1 = −v1 − 2
m∑
i=1

(−1)iui(11)

and, therefore,
m∑
i=1

(−1)iui = o.

The lemma is proved. �

The following lemma will be useful in the proofs of Lemma 3.5 and
Lemma 3.8.

Lemma 2.4 (Bolle [2]). — A convex polygon is a k-fold lattice tile for a lattice Λ
and some positive integer k, if and only if the following conditions are satisfied:

1. It is centrally symmetric.
2. When it is centred at the origin, in the relative interior of each edge G

there is a point of 1
2 Λ.

3. If the midpoint of G is not in 1
2 Λ, then G is a lattice vector of Λ.

3. Proofs of the theorems

Lemma 3.1. — Let P2m be a centrally symmetric convex 2m-gon, then

τ(P2m) ≥
{
m− 1, if m is even,
m− 2, if m is odd.

Proof. — Assume that P2m + X is a τ(P2m)-fold translative tiling in the Eu-
clidean plane and assume that v ∈ V + X. Then it follows by Lemma 2.1
that

ϕ(v) ≥
⌈
m− 3

2

⌉
.(12)

Let P2m + x1, P2m + x2, . . ., P2m + xs be an adjacent wheel at v and let ∠1,
∠2, . . ., ∠s be the corresponding angle sequence. By (5) we have

$(v) ≥ 1
2π

s∑
i=1
∠i ≥

⌈
m− 1

2

⌉
.(13)
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Then, it follows by (1), (12) and (13) that

τ(P2m) ≥
⌈
m− 3

2

⌉
+
⌈
m− 1

2

⌉
=
{
m− 1, if m is even,
m− 2, if m is odd.

Lemma 3.1 is proved. �

Lemma 3.2. — Let P14 be a centrally symmetric convex tetradecagon, then

τ(P14) ≥ 6.

Proof. — Assume that P14 + X is a τ(P14)-fold translative tiling in E2 and
v ∈ V +X. By Lemma 2.1 and Lemma 2.2, we have

ϕ(v) ≥
⌈

7− 3
2

⌉
= 2(14)

and

$(v) = κ · 3 + ` · 1
2 ≥ 3,(15)

where κ is a positive integer and ` is a nonnegative integer.
Now, to show the lemma it is sufficient to deal with the following two cases.

Case 1. — $(v) ≥ 4 holds for a vertex v ∈ V +X. Then, by (1) and (14) we
get

τ(P14) = ϕ(v) +$(v) ≥ 6.(16)

Case 2. — $(v) = 3 holds for every vertex v ∈ V +X. First, let us observe
a simple fact. If $(v) = 3 holds at v ∈ V + X and P14 + x1, P14 + x2, . . .,
P14 + xs is an adjacent wheel at v, then it follows from (15) that s must be
seven and v is a common vertex of all these translates, as shown by Figure
4. Then, by Lemma 2.1, every vertex v∗i connecting with v by an edge is an
interior point of two of the seven translates in the wheel.

Then, we have

$(v∗1) = $(v∗2) = $(v∗3) = $(v∗4) = $(v∗5) = $(v∗6) = $(v∗7) = 3.(17)

Therefore, for each vertex v∗i , there are two different points yi,1, yi,2 ∈ X, such
that

v∗i ∈ ∂(P14) + yi,j , j = 1, 2

and

v ∈ int(P14) + yi,j , j = 1, 2.

If yi,j /∈ {y1,1,y1,2} holds for one of these points, and then we have

ϕ(v) ≥ 3
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and, therefore,

τ(P14) ≥ ϕ(v) +$(v) ≥ 6.(18)

If yi,j ∈ {y1,1,y1,2} holds for all of these points, then we must have

{v∗1,v∗2,v∗3,v∗4,v∗5,v∗6,v∗7} ⊂ ∂(P14) + y1,1.

It is known that (D + x) ∩ (D + y) is centrally symmetric for all x and y
whenever D is centrally symmetric. Then, by Figure 4 it is easy to see that
(P14 + y1,1) ∩ (P14 + x1) is a parallelogram with vertices v∗1, v, v∗4 and v∗1 +
(v∗4 − v), and (P14 + y1,1) ∩ (P14 + x7) is a parallelogram with vertices v∗1,
v, v∗5 and v∗1 + (v∗5 − v). Consequently, by symmetry one can deduce that
P14 + y1,1 is an hexagon with vertices v∗1, v∗1 + (v∗4 − v), v∗4, v + (v− v∗1), v∗5
and v∗1 +(v∗5−v), which contradicts the assumption that P14 is a tetradecagon.

As a conclusion, for every centrally symmetric convex tetradecagon, we have

τ(P14) ≥ 6.(19)

The lemma is proved. �

Lemma 3.3. — Let P12 be a centrally symmetric convex dodecagon, then we
have

τ(P12) ≥ 6.
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Proof. — First of all, it follows by Lemma 2.1 that

ϕ(v) ≥
⌈

6− 3
2

⌉
= 2(20)

holds for all v ∈ V +X. On the other hand, by Lemma 2.2 we have

$(v) = κ · 6− 1
2 + ` · 1

2 ≥ 3.(21)

Thus, to show the lemma it is sufficient to deal with the following two cases.
Case 1. — $(v) ≥ 4 holds for a vertex v ∈ V + X. Then it follows by (1)
and (20) that

τ(P12) = ϕ(v) +$(v) ≥ 6.(22)

Case 2. — $(v) = 3 holds for a vertex v ∈ V + X. Assume that P12 + x1,
P12 + x2, . . ., P12 + xs is an adjacent wheel at v. By (21) it can be deduced
that there is a G ∈ Γ +X, such that

v ∈ int(G).
Let v′ and v∗ denote the two ends of G. By Lemma 2.1 and the convexity of
P12 it follows that X has four different points y′1, y′2, y∗1 and y∗2 satisfying

v′ ∈ ∂(P12) + y′i, i = 1, 2,
v∗ ∈ ∂(P12) + y∗i , i = 1, 2,
v ∈ int(P12) + y′i, i = 1, 2, and
v ∈ int(P12) + y∗i , i = 1, 2.

Consequently, we have
ϕ(v) ≥ 4,

and, therefore,
τ(P12) = ϕ(v) +$(v) ≥ 7.(23)

The conclusion of these two cases that
τ(P12) ≥ 6(24)

holds for every centrally symmetric dodecagon. Lemma 3.3 is proved. �

Lemma 3.4 (Yang and Zong [24]). — Let P10 be a centrally symmetric decagon
centred at the origin, then we have

τ∗(P10) ≥ 5.

Lemma 3.5. — Let P10 be a centrally symmetric decagon centred at the origin,
then we have

τ(P10) ≥ 5,
where the equality holds, if and only if P10 is a fivefold lattice tile.
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Proof. — Let v1, v2, . . ., v10 denote the ten vertices of P10 enumerated clock-
wise, let Gi denote the edge with ends vi and vi+1 and let ui denote the middle
point of Gi. Suppose that X is a discrete subset of E2, and P10 +X is a τ(P10)-
fold translative tiling of the plane. First of all, it follows from Lemma 2.1 that

ϕ(v) ≥
⌈

5− 3
2

⌉
= 1(25)

holds for every v ∈ V +X. On the other hand, by Lemma 2.2 we have

$(v) = κ · 2 + ` · 1
2 ,(26)

where κ is a positive integer, and ` is the number of the edges that contain v
as a relative interior point.

Now we prove the lemma by dealing with two cases.
Case 1. — ` 6= 0 holds at a vertex v ∈ V + X. In other words, there is an
edge G ∈ Γ +X, such that v ∈ int(G). Clearly, by (26) we have $(v) ≥ 3.

Suppose that v∗1 and v∗2 are the two ends of G. By Lemma 2.1, there are
two different points y1 ∈ Xv∗1 and y2 ∈ Xv∗2 , such that

v ∈ (int(P10) + y1) ∩ (int(P10) + y2) .

Then we have ϕ(v) ≥ 2. If $(v) ≥ 4, one can deduce that

τ(P10) = ϕ(v) +$(v) ≥ 6.(27)

If $(v) = 3, by (26) one can deduce that P10 +Xv consists of seven translates
P10 + x1, P10 + x2, . . ., P10 + x7, and there is another G′ ∈ Γ + X, which
contains v as an interior point. Suppose that G is an edge of P10 + x6, and G′
has two ends v∗5 and v∗6. We deal with three subcases.
Subcase 1.1. — G′||G and G′ 6= G. Without loss of generality, we assume
that v∗5 is between v∗1 and v∗2. Then, by Lemma 2.1 we have yi ∈ Xv∗i , such
that

v ∈ int(P10) + yi, i = 1, 2, 5.

It is obvious that y1, y2 and y5 are pairwise distinct. Thus, we have ϕ(v) ≥ 3
and, therefore,

τ(P10) = ϕ(v) +$(v) ≥ 6.(28)

Subcase 1.2. — G′ = G. Then P10 + Xv can be divided into two adjacent
wheels, as shown by Figure 5.

Let P10 +x6 and P10 +x7 be the two translates that contain G as a common
edge. Without loss of generality, suppose that G = G6 + x7 and v = v7 + x1,
as shown in Figure 5. Let L be the straight line determined by v∗1 and v∗2, let
G∗1 be the edge of P10 + x1 lying on L with ends v and v∗3 and let G∗2 be the
edge of P10 + x1 with ends v and v∗4.
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It is easy to see that $(v∗1) ≥ 3 and ϕ(v∗1) ≥ 2, since v∗1 is an interior point
of G∗1. If $(v∗1) ≥ 4, then we have τ(P10) ≥ 6. If $(v∗1) = 3, the adjacent
wheel at v∗1 can be divided into two adjacent wheels. Since v∗1 = v6 + x7,
by Lemma 2.1 and the structure of the adjacent wheel that consists of five
translates, we have three points y1, y2, y3 ∈ Xv∗1 , such that

v∗1 = v8 + y1, v∗3 ∈ int(P10) + y1,(29)
v∗1 = v10 + y2, v∗3 ∈ int(P10) + y2,(30)

and

v∗1 = v4 + y3, v ∈ int(P10) + y3.(31)

Clearly, we also have v∗3 ∈ int(P10) + x4. Since v∗1 ∈ int(P10) + x4, we thus
have x4 /∈ {y1,y2}, ϕ(v∗3) ≥ 3 and

τ(P10) = ϕ(v∗3) +$(v∗3) ≥ 5,(32)

where the equality may hold only if $(v∗3) = 2. When $(v∗3) = 2, by
Lemma 2.1 and the structure of the adjacent wheel with five translates, there
is a point y4 ∈ Xv∗3 , such that

v∗3 = v4 + y4, v ∈ int(P10) + y4.(33)

Furthermore, by Lemma 2.1 we have a point y5 ∈ Xv∗4 , such that v ∈ int(P10)+
y5. By (31), (33) and convexity we have

v∗4 ∈ (int(P10) + y3) ∩ (int(P10) + y4) ,

y5 /∈ {y3,y4}, ϕ(v) ≥ 3 and, thus,

τ(P10) = ϕ(v) +$(v) ≥ 6.(34)
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Subcase 1.3. — G′ ∦ G. Suppose that G is an edge of P10 + x6 with ends v∗1
and v∗2, which contains v as an interior point. Since G′ ∦ G, there is a translate
P10 + x′ in Xv that meets P10 + x6 at a non-singleton part of G. Let L be the
line determined by v∗1 and v∗2. Let G∗1 be the edge of P10 + x′ lying on L with
ends v∗3 and v, where v∗1 ∈ int(G∗1).

First, since ` 6= 0 at v∗1, by (26) we have

$(v∗1) ≥ 3.(35)

On the other hand, since G′ ∦ G, the local arrangement P10 + Xv cannot be
divided into smaller adjacent wheels. Then, two of the seven translates in P10 +
Xv contain both v∗3 and v∗1 as interior points. Furthermore, by Lemma 2.1,
there is a translate P10 + y in P10 +Xv∗3 that contains v∗1 as an interior point
and, therefore, ϕ(v∗1) ≥ 3. Then, by (35) we get

τ(P10) = ϕ(v∗1) +$(v∗1) ≥ 6.(36)

Case 2. — ` = 0 holds for all vertices v ∈ V +X. Then by (26) it is sufficient
to assume that $(v) can take only two values, 2 or 4.
Subcase 2.1. — $(v) = 4 holds at a vertex v ∈ V + X. Then the local
arrangements P10+Xv can be divided into two adjacent wheels, each containing
five translates. Suppose that P10 +x1, P10 +x2, . . ., P10 +x5 is such a wheel at
v and v = vk + x1. Then, as shown in Figure 6, the wheel can be determined
by P10 + x1 explicitly as follows:

v = vk+4 + x2, Gk+4 + x2 = Gk−1 + x1,

v = vk+8 + x3, Gk+8 + x3 = Gk+3 + x2,

v = vk+2 + x4, Gk+2 + x4 = Gk+7 + x3,

v = vk+6 + x5, Gk+6 + x5 = Gk+1 + x4,

where v10+i = vi and G10+i = Gi.

v∗
2

v∗
1

P10 + x1
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P10 + x3

P10 + x4

P10 + x5

v1

v2

v3

v4v6
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v10

P10

v5

v

P10 + y1

Figure 6
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Without loss of generality, as shown by Figure 6, we take v = v1 + x1,
v∗1 = v2 + x1 and v∗2 = v10 + x1. By Lemma 2.1, for each v∗i , there is a point
yi ∈ Xv∗i , such that

v ∈ int(P10) + yi.

In fact, by the previous analysis, we have y1 = v∗1−v4. Therefore, by convexity
and symmetry,

v∗2 ∈ int(P10) + y1.

Thus, the two points y1 and y2 are different. Then we have

ϕ(v) ≥ 2,

and

τ(P10) = ϕ(v) +$(v) ≥ 6.(37)

Subcase 2.2. — $(v) = 2 hold for all vertices v ∈ V + X. Let P10 be a
centrally symmetric convex decagon centred at the origin with vertices v1, v2,
. . ., v10 enumerated in anti-clock order. Let Gi denote the edge with ends vi
and vi+1 and let ui denote the middle point of Gi. Then, we define

a1 = u1 − u6,

a2 = u2 − u7,

a3 = u3 − u8,

a4 = u4 − u9,

a5 = u5 − u10.

By Lemma 2.3 we have

a1 − a2 + a3 − a4 + a5 = o.(38)

Assume that x1 = o ∈ X. Since $(v) = 2 holds for every vertex v ∈ V + X,
by studying the structure of the adjacent wheel at v we have∑

ziai ∈ X, zi ∈ Z.

For convenience, we define

Λ =
{∑

ziai : zi ∈ Z
}
.(39)

Suppose that the adjacent wheel at v1 is P10 + xi, i = 1, 2, . . ., 5. Let v∗i
be the common vertex of P10 + xi and P10 + xi+1 other than v1, as shown in
Figure 7, where x6 = x1 and x1 = o. By Lemma 2.1, we have yi ∈ Xv∗i , such
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that v1 ∈ int(P10) + yi. In fact, it can be explicitly deduced by the adjacent
wheels at v1, v∗1, v∗2, v∗3, v∗4 and v∗5 that

y1 = v∗1 − v4 = a2 − a3,

y2 = v∗2 − v10 = a1 − a3 + a4,

y3 = v∗3 − v6 = a1 − a2 + a4 − a5,

y4 = v∗4 − v2 = −a5 + a3 − a2,

y5 = v∗5 − v8 = −a5 − a1 + a2.

(40)

For example, if P10 + y2 satisfying v10 + y2 = v∗2, one can obtain P10 + y2 by
moving P10 successively to P10+a1, P10+a1−a3, and then to P10+a1−a3+a4.

By (40) and symmetry it can be shown that yi 6= yi+1, where y6 = y1. For
example, if y1 = y2 (as shown in Figure 7), then by symmetry we will get that
(P10+x2)∩(P10+y1) is a parallelogram and y1 = v∗1−v3, which contradicts the
first equation of (40). Thus, any triple of {y1,y2, . . . ,y5} cannot be identical
and, therefore, ϕ(v) ≥ 3. Consequently, we get

τ(P10) = ϕ(v) +$(v) ≥ 5,(41)

where the equality may hold only if ϕ(v) = 3.
When ϕ(v) = 3, the five points y1, y2, . . ., y5 have to satisfy one of the

following five groups of conditions:
(i) y1 = y3 and y2 = y4;
(ii) y1 = y3 and y2 = y5;
(iii) y1 = y4 and y2 = y5;
(iv) y1 = y4 and y3 = y5 and
(v) y2 = y4 and y3 = y5.
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Case (i). — y1 = y3 and y2 = y4. Then, by (40) and (38) we get
a2 − a3 = a1 − a2 + a4 − a5,

a1 − a3 + a4 = −a2 + a3 − a5,

a1 − a2 + a3 − a4 + a5 = o,
2a2 − 2a4 + a5 = a1 + (a3 − a4),
a4 − 2a5 = 2a1 − (a3 − a4),
a2 − a5 = a1 + (a3 − a4)

and, therefore, 

a1 = a1,

a2 = −2a1 + 4(a3 − a4),
a3 = −4a1 + 6(a3 − a4),
a4 = −4a1 + 5(a3 − a4),
a5 = −3a1 + 3(a3 − a4),

which means that Λ is a lattice with a basis {a1, a3− a4}. Furthermore, since
ui = 1

2 ai ∈ 1
2 Λ, it follows by Lemma 2.4 that P10 + Λ is, indeed, a multiple

lattice tiling. Thus, for this particular P10 by (39) and Lemma 3.4 we have

τ(P10) ≥ τ∗(P10) ≥ 5,(42)

where the equalities hold only if P10 +X is a fivefold lattice tiling.
Case (ii). — y1 = y3 and y2 = y5. Then, by (40) and (38) we have

a2 − a3 = a1 − a2 + a4 − a5,

a1 − a3 + a4 = −a1 + a2 − a5,

a1 − a2 + a3 − a4 + a5 = o,
a1 + a4 + a5 = −a3 + 2(a2 + a5),
3a1 + 4a5 = 2(a2 + a5),
a1 − a4 + 2a5 = −a3 + (a2 + a5)

and, therefore, 

a1 = 8a3 − 6(a2 + a5),
a2 = 6a3 − 4(a2 + a5),
a3 = a3,

a4 = −3a3 + 3(a2 + a5),
a5 = −6a3 + 5(a2 + a5),

which means that Λ is a lattice with a basis {a3, a2 + a5}. Furthermore, since
ui = 1

2 ai ∈ 1
2 Λ, it follows by Lemma 2.4 that P10 + Λ is, indeed, a multiple
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lattice tiling. Thus, for this particular P10 by (39) and Lemma 3.4 we have

τ(P10) ≥ τ∗(P10) ≥ 5,(43)

where the equalities hold only if P10 +X is a fivefold lattice tiling.
Case (iii). — y1 = y4 and y2 = y5. Then, by (40) and (38) we get

a2 − a3 = −a2 + a3 − a5,

a1 − a3 + a4 = −a1 + a2 − a5,

a1 − a2 + a3 − a4 + a5 = o,
2a2 − a3 + 2a5 = −(a1 − a2) + a4,

a2 + 2a5 = −3(a1 − a2),
a3 + a5 = −(a1 − a2) + a4

and, therefore, 

a1 = 4a4 + 6(a1 − a2),
a2 = 4a4 + 5(a1 − a2),
a3 = 3a4 + 3(a1 − a2),
a4 = a4,

a5 = −2a4 − 4(a1 − a2),

which means that Λ is a lattice with a basis {a4, a1− a2}. Furthermore, since
ui = 1

2 ai ∈ 1
2 Λ, it follows by Lemma 2.4 that P10 + Λ is, indeed, a multiple

lattice tiling. Thus, for this particular P10 by (39) and Lemma 3.4 we have

τ(P10) ≥ τ∗(P10) ≥ 5,(44)

where the equalities hold only if P10 +X is a fivefold lattice tiling.
Case (iv). — y1 = y4 and y3 = y5. Then, by (40) and (38) we have

a2 − a3 = −a2 + a3 − a5,

a1 − a2 + a4 − a5 = −a1 + a2 − a5,

a1 − a2 + a3 − a4 + a5 = o,
a2 − a4 + a5 = a3 − (a1 + a5),
3a2 + 2a5 = a3 + 3(a1 + a5),
a2 + a4 = a3 + (a1 + a5)
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and therefore 

a1 = 4a3 − 5(a1 + a5),
a2 = 3a3 − 3(a1 + a5),
a3 = a3,

a4 = −2a3 + 4(a1 + a5),
a5 = −4a3 + 6(a1 + a5),

which means that Λ is a lattice with a basis {a3, a1 + a5}. Furthermore, since
ui = 1

2 ai ∈ 1
2 Λ, it follows by Lemma 2.4 that P10 + Λ is indeed a multiple

lattice tiling. Thus, for this particular P10 by (39) and Lemma 3.4 we have
τ(P10) ≥ τ∗(P10) ≥ 5,(45)

where the equalities hold only if P10 +X is a fivefold lattice tiling.
Case (v). — y2 = y4 and y3 = y5. Then, by (40) and (38) we have

a1 − a3 + a4 = −a2 + a3 − a5,

a1 − a2 + a4 − a5 = −a1 + a2 − a5,

a1 − a2 + a3 − a4 + a5 = o,
2a1 − a3 = −2a5,

3a1 + a3 − 3a4 = 3(a2 − a4)− a5,

a1 + a3 − 2a4 = (a2 − a4)− a5

and, therefore, 

a1 = 3a5 + 3(a2 − a4),
a2 = 6a5 + 5(a2 − a4),
a3 = 8a5 + 6(a2 − a4),
a4 = 6a5 + 4(a2 − a4),
a5 = a5,

which means that Λ is a lattice with a basis {a5, a2− a4}. Furthermore, since
ui = 1

2 ai ∈ 1
2 Λ, it follows by Lemma 2.4 that P10 + Λ is indeed a multiple

lattice tiling. Thus, for this particular P10 by (39) and Lemma 3.4, we have
τ(P10) ≥ τ∗(P10) ≥ 5,(46)

where the equalities hold only if P10 +X is a fivefold lattice tiling.
As a conclusion of these cases, Lemma 3.5 is proved. �

Lemma 3.6 (Zong [28, 29]). — A centrally symmetric convex decagon can form
a fivefold lattice tiling in E2, if and only if, under a suitable affine linear
transformation, it takes u1 = (0, 1), u2 = (1, 1), u3 = ( 3

2 ,
1
2 ), u4 = ( 3

2 , 0),
u5 = (1,− 1

2 ), u6 = −u1, u7 = −u2, u8 = −u3, u9 = −u4 and u10 = −u5 as
the middle points of its edges.
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Remark 3.7 (Zong [28, 29]). — Let W denote the quadrilateral with vertices
w1 = (− 1

2 , 1), w2 = (− 1
2 ,

3
4 ), w3 = (− 2

3 ,
2
3 ) and w4 = (− 3

4 ,
3
4 ). A centrally

symmetric convex decagon can take u1 = (0, 1), u2 = (1, 1), u3 = ( 3
2 ,

1
2 ),

u4 = ( 3
2 , 0), u5 = (1,− 1

2 ), u6 = −u1, u7 = −u2, u8 = −u3, u9 = −u4 and
u10 = −u5 as the middle points of its edges, if and only if one of its vertices is
an interior point of W .

Lemma 3.8. — For every centrally symmetric convex octagon P8 we have

τ(P8) ≥ 5,

where the equality holds, if and only if, under a suitable affine linear trans-
formation, it is one with vertices v1 =

( 3
2 −

5α
4 ,−2

)
, v2 =

(
− 1

2 −
5α
4 ,−2

)
,

v3 =
(
α
4 −

3
2 , 0
)
, v4 =

(
α
4 −

3
2 , 1
)
, v5 = −v1, v6 = −v2, v7 = −v3 and

v8 = −v4, where 0 < α < 2
3 , or with vertices v1 = (2− β,−3), v2 = (−β,−3),

v3 = (−2,−1), v4 = (−2, 1), v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4,
where 0 < β ≤ 1.

Proof. — Suppose that X is a discrete subset of E2, and P8 +X is a τ(P8)-fold
translative tiling of the plane. First of all, it follows from Lemma 2.1 that

ϕ(v) ≥
⌈

4− 3
2

⌉
= 1(47)

holds for all v ∈ V +X. On the other hand, by Lemma 2.2 we have

$(v) = κ · 3
2 + ` · 1

2 ,(48)

where κ is a positive integer and ` is a nonnegative integer. In fact, ` is the
number of the edges that take v as an interior point. Thus, to prove the lemma,
it is sufficient to deal with the following four cases:
Case 1. — $(v) ≥ 5 holds for a vertex v ∈ V +X. It follows by (1) and (47)
that

τ(P8) = ϕ(v) +$(v) ≥ 6.(49)

Case 2. — $(v) = 4 holds for a vertex v ∈ V + X. It follows by (48) that
` 6= 0 and therefore v ∈ int(G) holds for some G ∈ Γ + X. Assume that v∗1
and v∗2 are the two ends of G. Applying Lemma 2.1 to {v∗1, G} and {v∗2, G},
respectively, one can deduce that

ϕ(v) ≥ 2

and, therefore,

τ(P8) = ϕ(v) +$(v) ≥ 6.(50)

Case 3. — $(v) = 3 holds for a vertex v ∈ V + X. Then (48) has and only
has two groups of solutions {κ, `} = {1, 3} or {2, 0}.
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Subcase 3.1. — {κ, `} = {1, 3}. Then, there are three edges G′1, G′2 and G′3
in Γ +X satisfying

v ∈ int(G′i), i = 1, 2, 3.

Next, we study the multiplicity by considering the relative positions of these
edges.
Subcase 3.1.1. — G′1 = G′2 = G′3. Assume that v∗1 and v∗2 are the two ends
of G′1. Then Xv∗1 has two identical points. By computing the angle sum of all
the adjacent wheels at v∗1 it can be deduced that

$(v∗1) ≥ 4.

Then, by Case 1 and Case 2 we get

τ(P8) = $(v∗1) + ϕ(v∗1) ≥ 6.(51)

Subcase 3.1.2. — G′2 = G′3 and G′1 ∦ G′2. Then there are two adjacent wheels
at v, one has five translates P8 + x1, P8 + x2, . . ., P8 + x5, and the other has
two translates P8 + x′1 and P8 + x′2, as shown by Figure 8.

By re-enumeration we may assume that ∠1, ∠2, ∠3 and ∠4 are inner angles
of P8 and ∠5 = π, as shown by Figure 8. Guaranteed by linear transformation,
we assume that the two edges G1 and G3 of P8 are horizontal and vertical,
respectively. Suppose that G′1 = G1 + x5. Let v∗1 and v∗2 be the two ends of
G′1, let L denote the straight line determined by v∗1 and v∗2, let G∗3 denote the
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edge of P8 + x4 lying on L with two ends v and v∗3, and let G∗4 denote the edge
of P8 + x1 lying on L with two ends v and v∗4.

By Lemma 2.1, there is a point y1 ∈ Xv∗1 , such that v∗3 ∈ int(P8) + y1.
Clearly, by the convexity of P8, both v∗3 and v∗1 belong to int(P8) + x′1. Thus,
we have y1 6= x′1. Meanwhile, since both v∗3 and v∗1 belong to int(P8) + x2, we
have x2 6= y1 and, therefore,

ϕ(v∗3) ≥ 3.

Similarly, we have ϕ(v∗1) ≥ 3, ϕ(v∗2) ≥ 3 and ϕ(v∗4) ≥ 3. Then, by (48) we get

τ(P8) = ϕ(v∗i ) +$(v∗i ) ≥ 5,(52)

where the equality may hold only if

$(v∗1) = $(v∗2) = $(v∗3) = $(v∗4) = 2.(53)

By (48) it is easy to see that the local configuration of P8 +Xv is essentially
unique when $(v) = 2. In other words, it is determined by the one that v
is not its vertex. Consequently, the set X has four points y1, y2, y3 and y4
satisfying

v∗1 = v4 + y1,v ∈ int(P8) + y1,(54)
v∗2 = v7 + y2,v ∈ int(P8) + y2,(55)
v∗3 = v3 + y3,v ∈ int(P8) + y3, and(56)
v∗4 = v8 + y4,v ∈ int(P8) + y4.(57)

Clearly, by the convexity of P8 we have y1 6= y2, y1 6= y3 and y2 6= y4. For
convenience, we write vi = (xi, yi). If y2 = y3, then by (55) and (56) we have

y3 = y7.(58)

If y1 = y4, then by (54) and (57) we get

y4 = y8.(59)

However, it is obvious that (58) and (59) cannot hold simultaneously. There-
fore, we still get

ϕ(v) ≥ 3

and, therefore,

τ(P8) = ϕ(v) +$(v) ≥ 6.(60)
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Subcase 3.1.3. — G′1 6= G′2 and G′1 ‖ G′2. Let v∗1 and v∗2 be the two ends of
G′1, and let v∗3 and v∗4 be the two ends of G′2. Without loss of generality, we
suppose that v∗3 is between v∗1 and v∗2, as shown by Figure 9. By Lemma 2.1,
X has three points y1, y2 and y3 satisfying both

v∗i ∈ ∂(P8) + yi, i = 1, 2, 3
and

v ∈ int(P8) + yi, i = 1, 2, 3.
By the convexity of P8 it is easy to see that these three points are pairwise
distinct. Then, we get

ϕ(v) ≥ 3
and, therefore,

τ(P8) = $(v) + ϕ(v) ≥ 6.(61)

Subcase 3.1.4. — G′1 ∦ G′2, G′1 ∦ G′3 and G′2 ∦ G′3. By studying the angle sum
at v it can be deduced that P8 +Xv is an adjacent wheel of seven translates.
Suppose that x2 ∈ Xv and G′1 is an edge of P8 + x2. Since G′1, G′2 and G′3 are
mutually non-collinear, Xv has two points x1 and x3, such that v is a common
vertex of both P8 +x1 and P8 +x3, and P8 +x2 joins both P8 +x1 and P8 +x3
at non-singleton parts of G′1, respectively. Let v∗1 and v∗2 be the two ends of
G′1, let L denote the straight line determined by v∗1 and v∗2, let G∗1 denote the
edge of P8 + x1 lying on L with ends v and v∗3, and let G∗2 denote the edge of
P8 + x3 lying on L with ends v and v∗4, as shown in Figure 10.

By studying the corresponding angles of the adjacent wheel at v, it is easy
to see that P8 +Xv has exact two translates which contain both v∗1 and v∗3 as
interior points. On the other hand, by Lemma 2.1, P8 +Xv∗3 has at least one
more translate that contains v∗1 as an interior point. Thus, we have

ϕ(v∗1) ≥ 3.
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Similarly, we have ϕ(v∗2) ≥ 3, ϕ(v∗3) ≥ 3 and ϕ(v∗4) ≥ 3. Then, by (48) we get

τ(P8) = ϕ(v∗i ) +$(v∗i ) ≥ 5,(62)

where the equality may hold only if

$(v∗1) = $(v∗2) = $(v∗3) = $(v∗4) = 2.(63)

By repeating the argument between (53) and (60), it can be deduced that

τ(P8) = ϕ(v) +$(v) ≥ 6.(64)

Subcase 3.2. — {κ, `} = {2, 0} holds at every vertex v ∈ V +X. Then P8+Xv

is an adjacent wheel of eight translates P8 + x1, P8 + x2, . . ., P8 + x8, as shown
in Figure 11. Let v∗i be the second vertex of P8 + xi connecting to v by an
edge. Since $(v) = 3, every v∗i is an interior point of exactly two of these
eight translates. Consequently, for every v∗i , there are two different translates
P8 + yi and P8 + y′i in P8 +Xv∗i that both contain v as an interior point.

On the other hand, it can be easily deduced that there is only one point
x ∈ X, such that both v∗1 and v∗2 belong to ∂(P8) + x and v ∈ int(P8) + x. It
is v∗2 − v + x1. Therefore, at least one of the two points y2 and y′2 is different
from both y1 and y′1. Then, we get

ϕ(v) ≥ 3

and

τ(P8) = ϕ(v) +$(v) ≥ 6.(65)
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Case 4. — $(v) = 2 holds for a vertex v ∈ V + X. It follows by (48) that
$(v) = 2 holds, if and only if κ = 1 and ` = 1. In other words, P8 + Xv is
an adjacent wheel of five translates. By re-enumeration we may assume that
∠1, ∠2, ∠3 and ∠4 are inner angles of P8 and ∠5 = π, as shown by Figure 12.
Guaranteed by linear transformation, we assume that the edges G1 and G3 of
P8 are horizontal and vertical, respectively.

Let G∗1 denote the edge of P8 + x5, such that v ∈ int(G∗1) with two ends v∗1
and v∗2, let L denote the straight line determined by v∗1 and v∗2, let G∗3 denote
the edge of P8 + x4 lying on L with ends v and v∗3, and let G∗4 denote the edge
of P8 + x1 lying on L with ends v and v∗4. If $(v∗1) ≥ 3 or $(v∗2) ≥ 3, by
Case 1, Case 2 and Subcase 3.1 we have τ(P8) ≥ 6. Therefore, by considering
the adjacent wheels at v∗1, v∗2, v∗3 and v∗4 successively, τ(P8) ≤ 5 may happen
only if

$(v∗1) = $(v∗2) = $(v∗3) = $(v∗4) = 2.(66)

Since the configuration of P8 + Xv is essentially unique if $(v) = 2, by
considering the wheel structures at v, v∗1, v∗2, v∗3 and v∗4, there are four points
y1, y2, y3 and y4 in X satisfying

v∗1 = v4 + y1,v ∈ int(P8) + y1,(67)
v∗2 = v7 + y2,v ∈ int(P8) + y2,(68)
v∗3 = v3 + y3,v ∈ int(P8) + y3, and(69)
v∗4 = v8 + y4,v ∈ int(P8) + y4.(70)
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By the convexity of P8 it follows that y1 6= y2, y1 6= y3 and y2 6= y4. For
convenience, we write vi = (xi, yi). If y1 = y4, and then by (67) and (70) we
have

y4 = y8.(71)

If y2 = y3, then by (68) and (69) we have

y3 = y7.(72)

It is obvious that (71) and (72) cannot hold simultaneously. Therefore, we have
either y1 6= y4 or y2 6= y3.

On the other hand, since $(v) = 2, the three inequalities y3 6= y4, y2 6= y3
and y1 6= y4 cannot hold simultaneously. Otherwise, it can be deduced that

ϕ(v) ≥ 4

and, therefore,

τ(P8) = ϕ(v) +$(v) ≥ 6.(73)

Since y1 = y4 and y2 = y3 are symmetric, with respect to v in Figure 12, it is
sufficient to deal with two subcases.
Subcase 4.1. — y2 = y3. Let v′1 and v′2 be the two vertices of P8 + x2 that
are adjacent to v, as shown in Figure 13. First, we have v′1 ∈ int(P8) + x5.
Second, by convexity it is easy to see that v′1 ∈ int(P8) + y4. Since y2 = y3,
we have y3 = y7. Then v′1 is an interior point of P8 + y2 as well. Thus we get
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ϕ(v′1) ≥ 3 and

τ(P8) = $(v′1) + ϕ(v′1) ≥ 5,(74)

where the equality may hold only if

$(v′1) = 2.(75)

By Lemma 2.1, there is a point y5 ∈ Xv′1 , such that v ∈ int(P8) + y5.
Subcase 4.1.1. — v′1 is a vertex of P8 + y5. If v′1 is a vertex of P8 + y1, as
shown by Figure 13, then by symmetry one can deduce that v′2 is a vertex of
P8 +y1. Similarly, it follows by (70) that v′2 is a vertex of P8 +y4 as well. Then
some points near to v′2 belong to all int(P8)+y1, int(P8)+y4 and int(P8)+x1.
Thus, we have

$(v′2) ≥ 3.(76)

Let v′3 denote the vertex v2 + y1 of P8 + y1, as shown in Figure 13. By
Lemma 2.1, there is a point z ∈ Xv′3 , such that v′2 ∈ int(P8) + z. Then it can
be deduced that v′3 ∈ int(P8) + x4 and, thus, z 6= x4. Since y3 = y7, it can be
shown that v′3 /∈ P8 + y2 and, therefore, z 6= y2. In addition, we have

v′2 ∈ (int(P8) + x4) ∩ (int(P8) + y2) .

Thus, we have

ϕ(v′2) ≥ 3

and, consequently,

τ(P8) = ϕ(v′2) +$(v′2) ≥ 6.(77)

If v′1 is not a vertex of P8 + y1, remembering the subcase assumption, then we
have y1 6= y5. In fact, in this case all y1, y3, y4 and y5 are pairwise distinct.
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Thus, we have

ϕ(v) ≥ 4

and

τ(P8) = ϕ(v) +$(v) ≥ 6.(78)

Subcase 4.1.2. — v′1 is an interior point of an edge of P8 +y5. It follows from
the convexity of P8 that v′1 is an interior point of both P8 + y4 and P8 + y3.
Therefore, we have y5 /∈ {y3,y4}. If y5 6= y1, then all y1, y3, y4 and y5 are
pairwise distinct. Thus, we have

ϕ(v) ≥ 4

and

τ(P8) = ϕ(v) +$(v) ≥ 6.(79)

If y5 = y1, then all y1, y3 and y4 are pairwise distinct and, therefore,

τ(P8) = ϕ(v) +$(v) ≥ 5.(80)

Now, we try to figure out the equality cases in (80).
Notice that v′1 is an interior point of P8 + x5, and P8 + y1 has only two

edges G4 + y1 and G5 + y1, which contain interior points of P8 + x5. Since
$(v′1) = 2 (see (75)), by studying the structure of the adjacent wheel at v′1,
one can deduce that v′1 must be an interior point of G5 + y1. Then we have

y5 − y4 = y4 − y3(81)

and

y3 − y2 = 2(y4 − y3).(82)

Let v∗5 and v∗6 be the two ends of G5 + y1. Suppose that v∗5 is on the left-
hand side of v′1. By Lemma 2.1, there is a point y6 ∈ Xv∗5 , such that v′1 ∈
int(P8) + y6.

It is obvious that v∗5 is an interior point of both P8 + x5 and P8 + y2. Thus,
we have y6 /∈ {y2,x5}. If v∗5 is not lying on the boundary of P8 + y4, then we
have y4 6= y6. Consequently, all y2, y4, y6 and x5 are pairwise distinct. Then
we have

ϕ(v′1) ≥ 4

and

τ(P8) = ϕ(v′1) +$(v′1) ≥ 6.(83)

Thus, to save τ(P8) = 5, the point v∗5 must belong to the boundary of P8 + y4.
Furthermore, since the y-coordinate of v∗5 is equal to the y-coordinates of both
v′1 and v3 + y4, the point v∗5 must be the vertex v3 + y4 of P8 + y4.
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Let v denote the x-coordinate of v and let w1, w2 and w3 denote the x-
coordinates of v3 + y4, v∗1 and v∗5, respectively. First, by computing the x-
coordinate of v∗4 in two ways we get

w1 + (x7 − x6) + (x6 − x5) + (x5 − x4) = v + (x6 − x5)

and, thus,

w1 = v − (x7 − x6)− (x5 − x4).(84)

On the other hand, since y2 = y3, by computing the distance between v∗3 and
v∗4 in two ways we get

(x7 − x6) + (x6 − x5) + (x5 − x4) + v − w2 = 2(x6 − x5)

and, thus,

w2 = v + (x7 − x6)− (x6 − x5) + (x5 − x4).

Since v∗5 is the left vertex of G5 + y1, we get

w3 = w2 + (x5 − x4) = v + (x7 − x6)− (x6 − x5) + 2(x5 − x4).(85)

Then, v∗5 = v3 + y4 implies w1 = w3 and

2(x7 − x6) + 3(x5 − x4) = x6 − x5.(86)

In conclusion, recalling (81) and (82), a centrally symmetric octagon P8 with
G1 horizontal, G3 vertical and y2 = y3 is a fivefold translative tile only if

y5 − y4 = y4 − y3,

y3 − y2 = 2(y4 − y3),
x6 − x5 = 2(x7 − x6) + 3(x5 − x4).

(87)

Guaranteed by linear transformations, by choosing y4 − y3 = 1, x6 − x5 = 2
and x5 − x4 = α and keeping the symmetry in mind, one can deduce that
the candidates are the octagons D8(α) with vertices v1 =

( 3
2 −

5α
4 ,−2

)
, v2 =(

− 1
2 −

5α
4 ,−2

)
, v3 =

(
α
4 −

3
2 , 0
)
, v4 =

(
α
4 −

3
2 , 1
)
, v5 = −v1, v6 = −v2,

v7 = −v3 and v8 = −v4, where 0 < α < 2
3 .

Let Λ(α) denote the lattice generated by u1 = (2, 0) and u2 = (1 + α
2 , 1).

By Lemma 2.4 it can be shown that D8(α) + Λ(α) is, indeed, a fivefold tiling
of E2.
Subcase 4.2. — y3 = y4. First of all, we have ϕ(v) ≥ 3 and, therefore,

τ(P8) = ϕ(v) +$(v) ≥ 5.(88)

Next, we try to figure out the equality cases in (88).
As shown by Figure 14, by (69) and (70) we get

y3 = y8(89)
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and

x8 − x3 = 2(x1 − x2).(90)

By Lemma 2.1, there is y5 ∈ Xv′1 , such that v ∈ int(P8) + y5. Since y3 = y8,
by convexity we have v′1 ∈ int(P8) + y3, and then y5 6= y3. If both y5 6= y1
and y5 6= y2 hold simultaneously, then we have

ϕ(v) ≥ 4,

and, therefore,

τ(P8) = ϕ(v) +$(v) ≥ 6.(91)

Thus, the equality in (88) holds only if y5 = y1 or y5 = y2.
Suppose that y5 = y1. If v′1 is a vertex of P8 + y1, then we have

y5 − y4 = y4 − y3.(92)

If v′1 is an interior point of an edge of P8 + y1, eliminated by Case 1, Case 2
and Subcase 3.1 at v′1, it may be assumed that $(v′1) = 2. Then, by studying
the structure of the adjacent wheel at v′1, one can deduce that v′1 must be an
interior point of G5 + y1. Since G5 + y1 is horizontal, we also obtain (92).
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In conclusion, recalling (89) and (90), a centrally symmetric octagon P8 with
G1 horizontal, G3 vertical and y3 = y4 is a fivefold translative tile only if

y3 = y8,

y5 − y4 = y4 − y3,

x8 − x3 = 2(x1 − x2).
(93)

Guaranteed by linear transformation, by choosing y4− y3 = 2, x1−x2 = 2 and
x6 = β and keeping symmetry in mind, one can deduce that the candidates
are the octagons D8(β) with vertices v1 = (2 − β,−3), v2 = (−β,−3), v3 =
(−2,−1), v4 = (−2, 1), v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4, where
0 < β ≤ 1.

Let Λ(β) denote the lattice generated by u1 = (2, 0) and u2 = (1 + β
2 , 2).

By Lemma 2.4, it can be proved that D8(β) + Λ(β) is, indeed, a fivefold tiling
of E2.

Lemma 3.8 is proved. �

Proof of Theorem 1.1. — It has been shown by Gravin, Robins and Shiryaev
[10] that a convex body can form a multiple translative tiling in En only if
it is a centrally symmetric polytope with centrally symmetric facets. Then,
Theorem 1.1 follows from Lemma 3.1, Lemma 3.5 and Lemma 3.8. �

Proof of Theorem 1.2. — Assume that P2m is a centrally symmetric 2m-gon
satisfying τ(P2m) = 5. First, by Fedorov’s theorem and Lemma 3.1 we have
4 ≤ m ≤ 7. Second, by Lemma 3.3 and Lemma 3.2 we get m 6= 6 and 7,
respectively. When m = 5, the theorem follows by Lemma 3.5 and Lemma 3.6.
Finally, when m = 4, the theorem follows from Lemma 3.8. �
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