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SUPERCUSPIDAL REPRESENTATIONS OF GLn(F )
DISTINGUISHED BY A UNITARY INVOLUTION

by Jiandi Zou

Abstract. — Let F/F0 be a quadratic extension of non-Archimedean locally com-
pact fields of residue characteristic p 6= 2. Let R be an algebraically closed field of
characteristic different from p. For π a supercuspidal representation of G = GLn(F )
over R and Gτ a unitary subgroup of G with respect to F/F0, we prove that π is
distinguished by Gτ , if and only if π is Galois invariant. When R = C and F is a
p-adic field, this result was first a conjecture proposed by Jacquet and was proved in
the 2010s by Feigon–Lapid–Offen by using global methods. Our proof is local and
works for both complex representations and l-modular representations with l 6= p. We
further study the dimension of HomGτ (π, 1) and show that it is at most 1.

Résumé (Représentations supercuspidales de GLn(F ) distinguées par une involution
unitaire). — Soit F/F0 une extension quadratique de corps localement compacts
non archimédiens de caractéristique résiduelle p 6= 2. Soit R un corps algébriquement
clos de caractéristique différente de p. Pour π une représentation supercuspidale de
G = GLn(F ) sur R et Gτ un sous-groupe unitaire de G par rapport à F/F0, on
montre que π est distinguée par Gτ si et seulement si π est invariante galoisienne.
Lorsque R = C et F est un corps p-adique, ce résultat d’abord sous la forme d’une
conjecture proposée par Jacquet a été prouvé dans les années 2010 par Feigon-Lapid-
Offen en utilisant des méthodes globales. Notre preuve est locale et fonctionne à la
fois pour les représentations complexes et les représentations l-modulaires avec l 6= p.
Nous étudions plus en détail la dimension de HomGτ (π, 1) et montrons qu’elle est au
plus un.
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394 J. ZOU

1. Introduction

Let F/F0 be a quadratic extension of p-adic fields of residue characteristic
p and let σ denote its non-trivial automorphism. For G = GLn(F ), let ε be
a hermitian matrix in G, that is, σ( tε) = ε with t denoting the transpose of
matrices. We define

τε(x) = εσ( tx−1)ε−1,

for any x ∈ G, called a unitary involution on G. We fix τ = τε and we denote by
Gτ the subgroup of G consisting of the elements fixed by τ , called the unitary
subgroup of G with respect to τ . For π an irreducible smooth representation
of G over C, Jacquet proposed to study the space of Gτ -invariant linear forms
on π, that is, the space

HomGτ (π, 1).

When the space is non-zero, he called π distinguished by Gτ . For n = 3
and π supercuspidal, he proved in [26] by using global argument that π is
distinguished by Gτ , if and only if π is σ-invariant, that is, πσ ∼= π, where
πσ := π ◦ σ. Moreover, he showed that this space is of dimension 1 as a
complex vector space when the condition above is satisfied. Moreover, in ibid.,
he also sketched a similar proof when n = 2 and π is supercuspidal to give
the same criterion of being distinguished and the same dimension 1 theorem.
Based on these results, he conjectured that, in general, π is distinguished by
Gτ , if and only if π is σ-invariant. Moreover, it is also interesting to determine
the dimension of the space of Gτ -invariant linear forms that is not necessarily
1 in general. Under the assumption that π is σ-invariant and supercuspidal,
Jacquet further conjectured that the dimension is 1.

In addition, an irreducible representation π of G is contained in the image
of quadratic base change with respect to F/F0, if and only if it is σ-invariant
([3]). Thus, for irreducible representations, the conjecture of Jacquet gives a
connection between quadratic base change and Gτ -distinction.

Besides the special case mentioned above, the following two evidences also
support the conjecture. First, we consider the analogue of the conjecture in the
finite field case. For ρ an irreducible complex representation of GLn(Fq2), Gow
[16] proved that ρ is distinguished by the unitary subgroup Un(Fq), if and only if
ρ is isomorphic to its twist under the non-trivial element of Gal(Fq2/Fq). Under
this condition, he also showed that the space of Un(Fq)-invariant linear forms
is of dimension 1 as a complex vector space. In addition, Shintani [41] showed
that there is a one-to-one correspondence between the set of irreducible repre-
sentations of GLn(Fq) and that of Galois-invariant irreducible representations
of GLn(Fq2), where the correspondence, called the base change map, is charac-
terized by a trace identity. Thus, these two results relate the Un(Fq)-distinction
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to the base change map. Finally, when ρ is generic and Galois-invariant, Anan-
davardhanan and Matringe [2] recently showed that the Un(Fq)-average of the
Bessel function of ρ on the Whittaker model as a Un(Fq)-invariant linear form
is non-zero. Since the space of Un(Fq)-invariant linear forms is of dimension 1,
their result gives us a concrete characterization of the space.

The other evidence for the Jacquet conjecture is its global analogue. We
assume K/K0 to be a quadratic extension of number fields and we denote by
σ its non-trivial automorphism. We choose τ to be a unitary involution on
GLn(K), which also gives us an involution on GLn(AK), still denoted by τ by
abuse of notation, where AK denotes the ring of adèles of K. We denote by
GLn(K)τ (or GLn(AK)τ ) the unitary subgroup of GLn(K) (or GLn(AK)) with
respect to τ . For φ a cusp form of GLn(AK), we define

Pτ (φ) =
∫

GLn(K)τ\GLn(AK)τ
φ(h)dh

to be the unitary period integral of φ with respect to τ . We say that a cuspidal
automorphic representation Π of GLn(AK) is GLn(AK)τ -distinguished if there
exists a cusp form in the space of Π such that Pτ (φ) 6= 0. In the 1990s, Jacquet
and Ye began to study the relation between GLn(AK)τ -distinction and global
base change (see, for example, [28] when n = 3). For general n, Jacquet [27]
showed that Π is contained in the image of the quadratic base change map (or
equivalently Π is σ-invariant [3]) with respect to K/K0, if and only if there
exists a unitary involution τ such that Π is Gτ -distinguished. This result may
be viewed as the global version of the Jacquet conjecture for supercuspidal
representations.

In fact, for the special case of the Jacquet conjecture in [26], Jacquet used
the global analogue of the same conjecture and the relative trace formula to
finish the proof. To say it simply, he first proved the global analogue of the
conjecture. Then he used the relative trace formula to write a non-zero unitary
period integral as the product of its local components at each place of K0, where
each local component characterizes the distinction of the local component of Π
with respect to the corresponding unitary group over local fields. When π is σ-
invariant, he chose Π to be a σ-invariant cuspidal automorphic representation
of GLn(AK) and v0 to be a non-Archimedean place of K0, such that (Gτ , π) =
(GLn(Kv0)τ ,Πv0). Then the product decomposition leads to the proof of the
“if“ part of the conjecture. The “only if“ part of the conjecture, which will be
discussed in Section 4, requires the application of a globalization theorem. His
method was generalized by Feigon–Lapid–Offen in [14] to general n and more
general families of representations. They showed that the Jacquet conjecture
works for generic representations of G. Moreover, they were able to give a lower
bound for the dimension of HomGτ (π, 1) and they further conjectured that the
inequality they gave is actually an equality. Finally, Beuzart-Plessis recently
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verified the equality conjectured above [5]. Thus, for generic representations
of G, the Jacquet conjecture was settled.

Instead of using global methods, there are other methods to study this con-
jecture, which are local and algebraic. Hakim–Mao [19] verified the conjecture
when p 6= 2 and π is supercuspidal of level zero, that is, π is supercuspidal
such that π1+pFMn(oF ) 6= 0, where oF denotes the ring of integers of F and pF
denotes its maximal ideal. When π is supercuspidal and F/F0 is unramified,
Prasad [34] proved the conjecture by applying the simple type theory developed
by Bushnell-Kutzko in [9]. When p 6= 2 and π is tame supercuspidal, that is,
π is a supercuspidal representation arising from the construction of Howe [24],
Hakim-Murnaghan [21] verified the conjecture.

The discussion above leaves us an open question: Is there any local and al-
gebraic method that leads to a proof of the Jacquet conjecture that works for all
supercuspidal representations of G? First, this will lead to a new proof of the
results of Hakim–Mao, Prasad and Hakim–Murnaghan, which we mentioned
in the last paragraph. Secondly, instead of considering complex representa-
tions, we are also willing to study l-modular representations with l 6= p. One
hopes to prove an analogue of the Jacquet conjecture for l-modular supercusp-
idal representations, which will generalize the result of Feigon–Lapid–Offen for
supercuspidal representations. Noting that they use global methods in their
proof, which strongly relies on the assumption that all the representations are
complex. Thus, their method does no longer works for l-modular representa-
tions. Finally, we are willing to consider F/F0 to be a quadratic extension
of non-Archimedean locally compact fields instead of p-adic fields. Since the
result of Feigon–Lapid–Offen heavily relies on the fact that the characteristic
of F equals 0, their method fails when considering non-Archimedean locally
compact fields of positive characteristic. The aim of this paper is to answer
this question.

We will say a bit more about l-modular representations. The study of smooth
l-modular representations of G = GLn(F ) was initiated by Vignéras [43], [44]
to extend the local Langlands program to l-modular representations. In this
spirit, many classical results related to smooth complex representations of p-
adic groups have been generalized to l-modular representations. For example,
the local Jacquet–Langlands correspondence related to l-modular representa-
tions has been studied in detail in [11], [33] and [37]. Thus, it is also natural
to consider the l-modular version of the Jacquet conjecture, which hopes to
build up the relation between distinction and an expected l-modular version of
quadratic base change. This paper is the starting point of the whole project.

To begin with, from now on we assume F/F0 to be a quadratic extension of
non-Archimedean locally compact fields of residue characteristic p 6= 2 instead
of p-adic fields. We fix R an algebraically closed field of characteristic l 6= p,
allowing that l = 0. When l > 0, we say that we are in the l-modular case (or
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modular case for short). Later on, we always consider smooth representations
over R and we assume π to be a supercuspidal representation of G over R. Be
aware that when l 6= 0, a supercuspidal representation is not the same as a
cuspidal representation of G, although they are the same when l = 0 (see, for
example, Vignéras [43], chapitre II, section 2). Now we state our first main
theorem:

Theorem 1.1. — For π a supercuspidal representation of G = GLn(F ) and τ
a unitary involution, π is distinguished by Gτ if and only if πσ ∼= π.

Moreover, we may also calculate the dimension of the space of Gτ -invariant
linear forms:

Theorem 1.2. — For π a σ-invariant supercuspidal representation of G, we
have

dimRHomGτ (π, 1) = 1.

One important corollary of Theorem 1.1 relates to the Ql-lift of a σ-invariant
supercuspidal representation of G over Fl when l > 0, where we denote by Ql,
Zl and Fl the algebraic closure of an l-adic field, its ring of integers and the
algebraic closure of the finite field of l elements, respectively. For (π̃, V ) a
smooth irreducible representation of G over Ql, we call it integral if it admits
an integral structure, that is, a Zl[G]-submodule LV of V generated by a Ql-
basis of V . For such a representation, the semi-simplification of LV ⊗Zl Fl does
not depend on the choice of LV , which we denote by rl(π̃) as a representation
of G over Fl, called the reduction modulo l of π (see [43] for more details). The
following theorem, which will be proved at the end of Section 8, says that it
is always possible to find a σ-invariant Ql-lift for a σ-invariant supercuspidal
representation of G over Fl.

Theorem 1.3. — For π a σ-invariant supercuspidal representation of G
over Fl, there exists an integral σ-invariant supercuspidal representation π̃ of
G over Ql, such that rl(π̃) = π.

Let us outline the contents of this paper by introducing the strategy of our
proof for Theorem 1.1 and Theorem 1.2. In Section 2, we introduce our set-
tings and basic knowledge about hermitian matrices and unitary subgroups.
Our main tool to prove the theorems will be the simple type theory devel-
oped by Bushnell–Kutzko in [9] and further generalized by Vignéras [43] and
Mínguez-Sécherre [32] to the l-modular case. In Section 3, we will give a de-
tailed introduction to this theory, but here we also recall a little bit for conve-
nience. The idea of simple type theory is to realize any cuspidal representation
π of G as the compact induction of a finite dimensional representation Λ of J ,
which is an open subgroup of G compact modulo its centre. Such a pair (J ,Λ),
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constructed as in [9], is called an extended maximal simple type, which we will
abbreviate to simple type for simplicity. We also mention the following main
properties of (J ,Λ):

(1) The group J contains a unique maximal open compact subgroup J ,
which contains a unique maximal normal pro-p-subgroup J1;

(2) We have J/J1 ∼= GLm(l), where E/F is a certain field extension of
degree d with l denoting the residue field of E and n = md;

(3) We may write Λ = κ⊗ρ, where κ and ρ are irreducible representations
of J , such that the restriction κ|J1 = η is an irreducible representation
of J1, called a Heisenberg representation, and ρ|J is the inflation of a
cuspidal representation of GLm(l) ∼= J/J1.

For a given supercuspidal representation π of G, our starting point is to prove
the “only if“ part of Theorem 1.1. When R = C and char(F ) = 0, it is a
standard result by using global argument, especially the globalization theorem
([20], Theorem 1). When char(F ) = p > 0, we may keep the original proof
except that we need a characteristic p version of the globalization theorem.
Fortunately, we can use a more general result due to Gan–Lomelí [15] to get
the result we need. Since any supercuspidal representation of G over a charac-
teristic 0 algebraically closed field can be realized as a representation over Q up
to twisting by an unramified character, we finish the proof when char(R) = 0.
When R = Fl, we consider the projective envelope PΛ|J of Λ|J and we use the
results in [43] to study its irreducible components and the irreducible compo-
nents of its Ql-lift. Finally, we will show that there exists a Ql-lift of π, which is
supercuspidal and Gτ -distinguished. Thus, by using the characteristic 0 case,
we finish the proof for the “only if“ part, for any R under our settings. The
details will be presented in Section 4.

In Section 5, we prove the τ -self-dual type theorem, which says that for a
unitary involution τ and a σ-invariant cuspidal representation π of G with a
technical condition, we may find a simple type (J ,Λ) contained in π, such that
τ(J) = J and Λτ ∼= Λ∨, where ∨ denotes the smooth contragradient. In other
words, we find a “symmetric“ simple type contained in π with respect to τ .
Our strategy follows from [1], section 4. First, we consider the case where E/F
is totally wildly ramified and n = d. Then for E/F in general with n = d, we
make use of the techniques about endo-class and tame lifting developed in [6]
to prove the theorem by reducing it to the former case. Finally, by using the
n = d case, we prove the general theorem.

In Section 6, for τ , π as in Section 5 satisfying the technical condition,
we first choose a τ -self-dual simple type (J ,Λ) contained in π. The main
result of Section 6, which we call the distinguished type theorem, says that π is
distinguished by Gτ if and only if there exists a τ -self-dual and distinguished
simple type of π. More specifically, by Frobenius reciprocity and the Mackey
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formula, we have

HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

We concentrate on those g in the double coset such that HomJg∩Gτ (Λg, 1) 6= 0.
The proof of the distinguished type theorem also shows that there are at most
two such double cosets, which can be written down explicitly. Moreover, for
those g, we have

HomJg∩Gτ (Λg, 1) ∼= HomJg∩Gτ (κg, χ−1)⊗R HomJg∩Gτ (ρg, χ),

where κ is well chosen, such that κτ ∼= κ∨, and χ is a quadratic character of
Jg ∩ Gτ , which is trivial on J1g ∩ Gτ . In the tensor product, the first term
HomJg∩Gτ (κg, χ−1) is of dimension 1 as an R-vector space. So essentially we
only need to study the second term. If we denote by ρg the cuspidal representa-
tion of GLm(l) ∼= Jg/J1g, whose inflation equals ρg|Jg and by χ the character
of H := Jg ∩ Gτ/J1g ∩ Gτ , whose inflation equals χ|Jg∩Gτ , then we further
have

HomJg∩Gτ (ρg, χ) ∼= HomH(ρg, χ).

Here, H could be a unitary subgroup, an orthogonal subgroup or a symplectic
subgroup of GLm(l). When π is supercuspidal, the technical condition in the
τ -self-dual type theorem is always satisfied, and we reduce our problem to
studying the H-distinction of a supercuspidal representation of GLm(l).

Moreover, at the beginning of Section 6, we use the result in Section 5
to extend σ to a non-trivial involution on E. We write E0 = Eσ and we
deduce that E/E0 is a quadratic extension. When E/E0 is unramified, H
is a unitary subgroup. We first use the result of Gow [16] to deal with the
characteristic 0 case. For char(R) > 0, we consider the projective envelope as
in Section 4. When E/E0 is ramified, H is either an orthogonal subgroup or
a symplectic subgroup. When H is orthogonal, we use Deligne–Lusztig theory
[12], precisely a formula given by Hakim–Lansky [18] to calculate the dimension
of HomH(ρg, χ), when char(R) = 0. For char(R) > 0, we again use the same
method as in Section 4 to finish the proof. When H is symplectic, by [31],
the space is always {0}. These two cases will be studied in Section 7 and
Section 8 separately. Finally, in Section 9, we give a purely local proof of the
main theorem of Section 4.

It is worth mentioning that in [35], Sécherre studied the σ-self-dual supercus-
pidal representations of G over R, with the same notation unchanged as before.
He proved the following Dichotomy Theorem and Disjunction Theorem: For π
a supercuspidal representation of G, it is σ-self-dual (that is, πσ ∼= π∨), if and
only if it is either distinguished by GLn(F0) or ω-distinguished, where ω de-
notes the unique non-trivial character of F×0 trivial on NF/F0(F×). The method
that we use in this paper is the same as that developed in ibid. For example,
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our Section 5 corresponds to section 4 of [1], and our Section 6 corresponds to
section 6 of [35], etc.

We point out the main differences in our case to end this Introduction. First,
in Section 5, we will find that in a certain case, it is even impossible to find
a hereditary order a, such that τ(a) = a, which is not a problem in section 4
of [1]. That is why we need to add a technical condition in the main theorem
of Section 5 and finally verify it for supercuspidal representations. Precisely,
for a σ-invariant supercuspidal representation, we first consider the unitary
involution τ = τ1 corresponding to the identity hermitian matrix In. In this
case, we may use our discussion in Section 5 to find a τ -self-dual type contained
in π and we may further use our discussion in Section 6 and Section 7 to show
that m is odd when E/E0 is unramified. This exactly affirms the condition we
need, and we may repeat the procedure of Section 5 and Section 6 for general
unitary involutions. This detouring argument also indicates that a σ-invariant
cuspidal not supercuspidal representation does not always contain a τ -self-
dual simple type, which justifies that our supercuspidal (instead of cuspidal)
assumption is somehow important.

Furthermore, in Section 8, it is unclear whether or not the character χ men-
tioned above can be realized as a character of J and thus cannot be assumed to
be trivial a priori as in [35]. This means that we need to consider a supercusp-
idal representation of the general linear group over a finite field distinguished
by a non-trivial character of an orthogonal subgroup instead of the trivial one.
This is why the result of Hakim–Lansky ([18] Theorem 3.11) shows up.

Last but not least, in Section 6, a large part of our results is stated and
proved for a general involution instead of a unitary one. This provides the
possibility of using the same method to study the distinction of supercuspidal
representations of G by other involutions. For instance, a similar problem for
orthogonal subgroups was also considered by the author [45].

2. Notation and basic definitions

2.1. Notation. — Let F/F0 be a quadratic extension of non-Archimedean lo-
cally compact fields with residue characteristic p 6= 2 and let σ be the unique
non-trivial involution in the Galois group. Write oF (or oF0) for the ring of
integers of F (or F0) and k (or k0) for the residue field of F (or F0). The invo-
lution σ induces a k0-automorphism of k generating Gal(k/k0), still denoted
by σ.

Let R be an algebraically closed field of characteristic l ≥ 0 different from p.
If l > 0, then we are in the “modular case“.

We fix a character
ψ0 : F0 → R×

trivial on the maximal ideal of oF0 but not on oF0 , and we define ψ = ψ0◦trF/F0 .
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Let G be the locally profinite group GLn(F ) with n ≥ 1, equipped with
the involution σ acting componentwise. Let ε be a hermitian matrix in G,
which means that ε∗ = ε. Here, x∗ := σ( tx), for any x ∈ Mn(F ), with t

denoting the transpose operator. Sometimes, we write σt(x) := x∗, for any
x ∈ Mn(F ), to emphasize that σt is an anti-involution on Mn(F ) extending σ.
For ε hermitian and g ∈ G, we define τε(g) = εσ( tg−1)ε−1, called the unitary
involution corresponding to ε. For τ = τε a fixed unitary involution, we denote
by Gτ the corresponding unitary subgroup, which consists of the elements of G
fixed by τ .

By representations of a locally profinite group, we always mean smooth
representations on an R-module. Given a representation π of a closed subgroup
H of G, we write π∨ for the smooth contragradient of π. We write πσ and πτ
for the representations π ◦ σ and π ◦ τ of groups σ(H) and τ(H), respectively.
We say that π is τ -self,dual if H is τ -stable, and πτ is isomorphic to π∨. We say
that π is σ-invariant, if H is σ-stable, and πσ is isomorphic to π. For g ∈ G, we
write Hg = {g−1hg|h ∈ H} a closed subgroup and we write πg : x 7→ π(gxg−1)
a representation of Hg.

For a an oF -subalgebra of Mn(F ) and τ = τε a unitary involution, we denote
by

τ(a) := σε(a) = {σε(x)|x ∈ a}

an oF -subalgebra of Mn(F ), where σε(x) := εσ( tx)ε−1 is an anti-involution for
any x ∈ Mn(F ). We say that a is τ -stable if τ(a) = a. Moreover, for g ∈ G, we
obtain

τ(a)g = g−1σε(a)g = σε(σε(g)aσε(g−1)) = σε(τ(g)−1aτ(g)) = τ(aτ(g)).

In other words, the notation τ(a) is compatible with G-conjugacy.
For τ a unitary involution and π a representation of H as above, we say that

π is H ∩Gτ -distinguished, or just distinguished, if the space HomH∩Gτ (π, 1) is
non-zero.

An irreducible representation of G is called cuspidal (or supercuspidal) if
it does not occur as a sub-representation (or subquotient) of a parabolically
induced representation with respect to a proper parabolic subgroup of G.

2.2. Hermitian matrices and unitary groups. — We make use of this subsection
to introduce basic knowledge of hermitian matrices and unitary groups. The
references will be [19] and [25].

Let E/E0 be a quadratic extension of non-Archimedean locally compact
fields, which are algebraic extensions of F and F0, respectively. Write oE for
the ring of integers of E and oE0 for that of E0. Let σ′ ∈ Gal(E/E0) be the
unique non-trivial involution in the Galois group. For ε′ ∈ GLm(E), just as in
the last subsection, we say that ε′ is a hermitian matrix if (ε′)∗ = ε′, where we
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consider (·)∗ as before with n, F , F0, σ replaced by m, E, E0, σ′, respectively.
Write $E for a uniformizer of E such that

σ′($E) =
{
$E if E/E0 is unramified,
−$E if E/E0 is ramified.

Let X denote the set of all the hermitian matrices in GLm(E) for E/E0. The
group GLm(E) acts on X by g · x = gxg∗.

Proposition 2.1 ([25], Theorem 3.1). — There are exactly two GLm(E)-
orbits of X with respect to the action given above. Furthermore, the elements
in each orbit are exactly determined by the classes of their determinants in
E×0 /NE/E0(E×).

We also consider the GLm(oE)-orbits of X . We consider sequences α =
(α1, . . . , αr) of certain triples αi = (ai,mi, δi), such that a1 > . . . > ar is a
decreasing sequence of integers, and m1 + . . .+mr = m is a partition of m by
positive integers, and δ1, . . . , δr are elements of E, such that:

(1) If E/E0 is unramified, then δi = 1.
(2) If E/E0 is ramified and ai is odd, then δi = 1 and mi is even.
(3) If E/E0 is ramified and ai is even, then δi is either 1 or ε, with ε ∈

o×E0
−NE/E0(o×E) fixed.

For each α = (α1, . . . , αr) as above, we introduce a hermitian matrix $α
E =

$α1
E ⊕ . . .⊕$

αr
E , where $αi

E ∈ GLmi(E) is a hermitian matrix, such that:
(i) In the case (1), $αi

E = $ai
E Imi .

(ii) In the case (2), $αi
E = $ai

E Jmi/2, where Jmi/2 =
(

0 Imi/2
−Imi/2 0

)
;

(iii) In the case (3), $αi
E = $ai

E diag(1, . . . , 1, δi), where diag(∗, . . . , ∗) denotes
the diagonal matrix with corresponding diagonal elements.

We state the following proposition, which classifies all the GLm(oE)-orbits of X .

Proposition 2.2 ([25], Theorem 7.1, Theorem 8.2). — Each class of the
GLm(oE)-orbits of X contains a unique representative of the form $α

E for a
certain α as above.

Now we study unitary groups. For ε′ ∈ X , we denote by Um(ε′) the unitary
group consisting of those g ∈ GLm(E) such that gε′g∗ = ε′. We say that
two unitary groups are equivalent, if and only if they are conjugate by some
g ∈ GLm(E). Since it is easy to check that gUm(ε′)g−1 = Um(gε′g∗), by
Proposition 2.1, there are at most two equivalence classes of unitary groups,
which are represented by Um(E/E0) := Um(Im) and U′m(E/E0) := Um(ε) for
ε = diag(1, . . . , 1, ε), where ε ∈ E×0 −NE/E0(E×) is fixed.

Remark 2.3. — While we will not use it, we list the following result for com-
pleteness: Um(E/E0) is equivalent to U′m(E/E0) if and only if m is odd.

tome 150 – 2022 – no 2



Un-DISTINGUISHED SUPERCUSPIDAL REPRESENTATIONS OF GLn 403

Remark 2.4. — In the future, we only consider the following two cases. First,
we consider E = F , E0 = F0, m = n and σ′ = σ. For any two unitary
involutions with the corresponding hermitian matrices in the same GLn(F )-
orbit, we have already shown that the corresponding two unitary groups are
equivalent. Since distinction is a property invariant up to equivalence of unitary
groups, we may choose a hermitian matrix in its GLn(F )-orbit such that the
corresponding unitary involution τ is simple enough to simplify the problem.
Secondly, we consider E as a finite field extension of F determined by a cuspidal
representation π such that n = m[E : F ]. We will find out that if πσ ∼= π,
then we may find an involution σ′ on E such that E0 = Eσ

′ and σ′|F = σ.
So we may make use of the propositions in this subsection to study hermitian
matrices and unitary groups of GLm(E).

3. Preliminaries on simple types

In this section, we recall the main results that we will need on simple strata,
characters and types [6], [8], [9], [32], [43]. We mainly follow the structure of
[1] and [35].

3.1. Simple strata and characters. — Let [a, β] be a simple stratum in Mn(F )
for a certain n ≥ 1. Recall that a is a hereditary order in Mn(F ), and β is in
G = GLn(F ), such that:

(1) the F -algebra E = F [β] is a field with degree d over F ;
(2) E× normalizes a×.

The centralizer of E in Mn(F ), denoted by B, is an E-algebra isomorphic to
Mm(E) with n = md. The intersection b := a ∩B is a hereditary order in B.

We denote by pa the Jacobson radical of a, and U1(a) the compact open
pro-p-subgroup 1 + pa of G. Similarly, we denote by pb the Jacobson radical of
b and U1(b) the compact open pro-p-subgroup 1 + pb of B×. For any x ∈ B×,
we have ([9], Theorem 1.6.1)

U1(a)xU1(a) ∩B× = U1(b)xU1(b).(1)

Associated with [a, β], there are open compact subgroups
H1(a, β) ⊂ J1(a, β) ⊂ J(a, β)

of a× and a finite set C(a, β) of simple characters of H1(a, β) depending on the
choice of ψ. We denote by J(a, β) the subgroup of G generated by J(a, β) and
the normalizer of b× in B×.

Proposition 3.1 ([9], section 3). — We have the following properties:
(1) The group J(a, β) is the unique maximal compact subgroup of J(a, β).
(2) The group J1(a, β) is the unique maximal normal pro-p-subgroup of

J(a, β).
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(3) The group J(a, β) is generated by J1(a, β) and b×, and we have

J(a, β) ∩B× = b×, J1(a, β) ∩B× = U1(b).(2)

(4) The normalizer of any simple character θ ∈ C(a, β) in G is equal to
J(a, β).

(5) The intertwining set of any θ ∈ C(a, β) in G, which we denote by IG(θ),
is equal to J1(a, β)B×J1(a, β) = J(a, β)B×J(a, β).

Remark 3.2. — For short, we write J , J1, H1 for J(a, β), J1(a, β), H1(a, β),
respectively, if a and β are clear to us.

When b is a maximal order in B, we call the simple stratum [a, β] and the
simple characters in C(a, β) maximal. In this case, we may find an isomorphism
of E-algebras B ∼= Mm(E), which identifies b with the standard maximal order,
and, moreover, we have group isomorphisms

J(a, β)/J1(a, β) ∼= b×/U1(b) ∼= GLm(l),(3)

where l denotes the residue field of E.

3.2. Simple types and cuspidal representations. — A pair (J ,Λ), called an ex-
tended maximal simple type in G (we always write simple type for short) and
constructed in [9] in the characteristic 0 case and in [43], [32] in the modular
case, is made of a subgroup J of G, which is open and compact modulo its
centre, and an irreducible representation Λ of J .

Given a simple type (J ,Λ) in G, there are a maximal simple stratum [a, β]
in Mn(F ) and a maximal simple character θ ∈ C(a, β), such that J(a, β) = J ,
and θ is contained in the restriction of Λ to H1(a, β). Such a character θ is
said to be attached to Λ. By [9], Proposition 5.1.1 (or [32], Proposition 2.1
in the modular case), the group J1(a, β) has, up to isomorphism, a unique
irreducible representation η whose restriction to H1(a, β) contains θ. Such a
representation η, called the Heisenberg representation associated to θ, has the
following properties:

(1) The restriction of η to H1(a, β) is made of (J1(a, β) : H1(a, β))1/2 copies
of θ. Here, (J1(a, β) : H1(a, β))1/2 is a power of p.

(2) The direct sum of (J1(a, β) : H1(a, β))1/2 copies of η, which we denote
by η(J1(a,β):H1(a,β))1/2 , is isomorphic to IndJ

1

H1θ.
(3) The representation η extends to J .
(4) The intertwining set of η, which we denote by IG(η), equals IG(θ).
(5) For h ∈ IG(η), we have dimR(HomJ1∩J1h(ηh, η)) = 1.

For any representation κ of J extending η, there exists a unique irreducible
representation ρ of J trivial on J1(a, β), such that Λ ∼= κ ⊗ ρ. Through (3),
the restriction of ρ to J = J(a, β) is identified with the inflation of a cuspidal
representation of GLm(l).
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Remark 3.3. — Recall that in [9], Bushnell and Kutzko also assume κ0 =
κ|J(a,β) to be a so-called beta-extension, which means that:

(1) κ0 is an extension of η;
(2) if we denote by IG(κ0) the intertwining set of κ0, then IG(κ0) = IG(η) =

IG(θ).
However, in our case, since GLm(l) is not isomorphic to GL2(F2) (p 6= 2), any
character of GLm(l) factors through the determinant. It follows that any rep-
resentation of J extending η is a beta-extension. So, finally, our consideration
of κ0 coincides with the original assumption of Bushnell and Kutzko.

We now give the classification of irreducible cuspidal representations of G
in terms of simple types (see [9], §6.2, §8.4 and [32], section 3 in the modular
case).

Proposition 3.4 ([9],[32]). — Let π be a cuspidal representation of G.
(1) There is a simple type (J ,Λ) such that Λ is a sub-representation of the

restriction of π to J . It is unique up to G-conjugacy.
(2) Compact induction c-IndGJ gives a bijection between the G-conjugacy

classes of simple types and the isomorphism classes of cuspidal repre-
sentations of G.

3.3. Endo-classes, tame parameter fields and tame lifting. — In this subsec-
tion, we introduce the concepts of endo-classes, tame parameter fields and
tame lifting. The main references will be [9], [6] and [8].

For [a, β], a simple stratum in Mn(F ) and [a′, β′] a simple stratum in Mn′(F )
with n, n′ ≥ 1, if we have an isomorphism of F -algebras φ : F [β]→ F [β′], such
that φ(β) = β′, then there exists a canonical bijection

tβ,β
′

a,a′ : C(a, β)→ C(a′, β′),

called the transfer map (see [9], Theorem 3.6.14).
Now let [a1, β1] and [a2, β2] be simple strata in Mn1(F ) and Mn2(F ), re-

spectively, with n1, n2 ≥ 1. We call two simple characters θ1 ∈ C(a1, β1) and
θ2 ∈ C(a2, β2) endo-equivalent, if there are simple strata [a′, β′1] and [a′, β′2] in
Mn′(F ), for some n′ ≥ 1 such that θ1 and θ2 transfer to two simple charac-
ters θ′1 ∈ C(a′, β′1) and θ′2 ∈ C(a′, β′2), respectively, which intertwine (or by [9],
Theorem 3.5.11, which are GLn′(F )-conjugate). This defines an equivalence
relation on ⋃

[a,β]

C(a, β),

where the union runs over all simple strata of Mn(F ), for all n ≥ 1 (see [6],
section 8). An equivalence class for this equivalence relation is called an endo-
class.
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For π a cuspidal representation of G = GLn(F ), there exist a simple stratum
[a, β] and a simple character θ ∈ C(a, β) contained in π. The set of simple
characters θ contained in π constitutes a G-conjugacy class, thus those simple
characters are endo-equivalent. So we may denote by Θπ the endo-class of π,
which is the endo-class determined by any θ contained in π.

Given θ ∈ C(a, β), the degree of E/F , its ramification index and its residue
degree depend only on the endo-class of θ. They are called the degree, ramifi-
cation index and residue degree of this endo-class. Although the field extension
E/F is not uniquely determined, its maximal tamely ramified sub-extension is
uniquely determined by the endo-class of θ up to F -isomorphism. This field is
called a tame parameter field of the endo-class (see [8], §2.2, §2.4).

We denote by E(F ) the set of endo-classes of simple characters over F . Given
a finite tamely ramified extension T of F , we have a surjection

E(T )→ E(F )

with finite fibers, which is called a restriction map (see [8], §2.3). Given Θ ∈
E(F ), the endo-classes Ψ ∈ E(T ) restricting to Θ are called the T/F -lifts of Θ.
If Θ has a tame parameter field T , then AutF (T ) acts faithfully and transitively
on the set of T/F -lifts of Θ (see [8], §2.3, §2.4).

Let [a, β] be a simple stratum and let θ ∈ C(a, β) be a simple character, let
T be the maximal tamely ramified extension of F in E, and let Θ be the endo-
class of θ, then T is a tame parameter field for Θ. Let C ∼= Mn/t(T ) denote
the centralizer of T in Mn(F ), where t = [T : F ]. The intersection c = a ∩ C
is an order in C, which gives rise to a simple stratum [c, β]. The restriction of
θ to H1(c, β), denoted by θT , is a simple character associated to this simple
stratum, called the interior T/F -lift of θ. Its endo-class, denoted by Ψ, is a
T/F -lift of Θ. For the origin and details of the construction of Ψ, see [6].

For T ⊂ Mn(F ) a tamely ramified sub-extension over F , the map

a 7→ a ∩ C

is injective from the set of hereditary orders of Mn(F ) normalized by T× to
the set of hereditary orders of C (see [6], Section 2), where we still denote by
C the centralizer of T in Mn(F ). For [a, β1], [a2, θ2] two simple strata, and
θ1 ∈ C(a, β1), θ2 ∈ C(a, β2) two simple characters, such that θ1 and θ2 have the
same tame parameter field T , if

C(c, β1) = C(c, β2) and (θ1)T = (θ2)T ,

then (see [BH96], Theorem 7.10, Theorem 7.15)

C(a, β1) = C(a, β2) and θ1 = θ2.

In particular, when β1 = β2 = β, the interior T/F -lift is injective from C(a, β)
to C(c, β).
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3.4. Supercuspidal representations. — Let π be a cuspidal representation of
G. By Proposition 3.4, it contains a simple type (J ,Λ). Fix a maximal simple
stratum [a, β], such that J = J(a, β), and write Λ = κ⊗ρ as in §3.2. Let ρ be
the cuspidal representation of J/J1 ∼= GLm(l) whose inflation equals ρ|J . We
have the following proposition:

Proposition 3.5 ([43], Chapitre III, 5.14). — The representation π is super-
cuspidal if and only if ρ is supercuspidal.

4. Distinction implies Galois invariance for a supercuspidal representation

Let G = GLn(F ) and let Gτ be the unitary group corresponding to a unitary
involution τ . We state the following theorem, which is well-known when R = C
and char(F ) = 0 (see, for example, [20], section 4, corollary or the earlier paper
[23] which illustrates the idea).

Theorem 4.1. — Let π be a supercuspidal representation of G. If π is distin-
guished by Gτ , then π is σ-invariant.

Before proving Theorem 4.1, we state a useful lemma, which will be used
not only in the proof of the theorem but also in the latter sections.

Lemma 4.2. — For δ a unitary involution on G and for (J ,Λ) a simple type
in G, we have J ∩Gδ = J ∩Gδ.

Proof. — For x ∈ J ∩ Gδ, we have δ(x) = x, which implies that
σ(det(x))det(x) = 1, where we denote by det(·) the determinant function de-
fined on G. Thus, det(x) ∈ o×F . Since J = E×J , we get x ∈ o×EJ ∩ Gδ =
J ∩Gδ. �

Moreover, we need the following lemma, which says that the properties of
distinction and σ-invariance are maintained up to change of base fields.

Lemma 4.3. — Let R1 ↪→ R2 be a fixed embedding of two algebraically closed
fields of characteristic l ≥ 0. Let π0 be a supercuspidal representation of G
over R1. Let π = π0⊗R1 R2 be the corresponding representation of G over R2.
Then:

(1) π0 is distinguished by Gτ if and only if π is distinguished by Gτ .
(2) πσ0 ∼= π0 if and only if πσ ∼= π.

Proof. — For (1), let (J ,Λ0) be a simple type of π0. Then (J ,Λ) := (J ,Λ0⊗R1

R2) is a simple type of π, and thus π is also supercuspidal. Using Frobenius
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reciprocity and the Mackey formula1,
HomR1[Gτ ](π0, 1) 6= 0⇐⇒ There exists g ∈ G such that

HomR1[Jg∩Gτ ](Λg0, 1) 6= 0
and

HomR2[Gτ ](π, 1) 6= 0⇐⇒ There exists g ∈ G such that
HomR2[Jg∩Gτ ](Λg, 1) 6= 0.

By Lemma 4.2, Jg∩Gτ = Jg∩Gτ is a compact group, and Λg0 is a representation
of finite dimension. Thus,

HomR1[Jg∩Gτ ](Λg0, 1)⊗R1 R2 ∼= HomR2[Jg∩Gτ ](Λg, 1),
which finishes the proof of (1). For (2), from [43], Chapitre I, 6.13, we know
that π0 is isomorphic to πσ0 if and only if their trace characters are equal up to
a scalar in R×1 , which works similarly for π and πσ. Since the trace characters
of π0 and π are equal up to the change of scalars, which works similarly for πσ0
and πσ, we finish the proof of (2). 2 �

Proof of Theorem 4.1. — First we consider R = C. If char(F ) = 0, it is a
standard result proved by using a global method ([20], section 4, corollary).
Especially, their result is based on the globalization theorem, saying a distin-
guished π under our settings can be realized as a local component of a cuspidal
automorphic representation Π of GLn(AK), which is distinguished by a uni-
tary subgroup of GLn(AK) with respect to a quadratic extension of number
fields K/K0 (see ibid., Theorem 1). If char(F ) > 0, in order to use the proof
of Hakim–Murnaghan, we only need a variant of globalization theorem for the
characteristic positive case. Fortunately, Gan–Lomelí already built up the glob-
alization theorem for general reductive groups over function fields and locally
compact fields of positive characteristic (see [15], Theorem 1.3). Following their
notations, we choose the reductive groupH to be RK/K0(GLn(K)), where K/K0
is a quadratic extension of function fields, and RK/K0 is the Weil restriction.
We choose V to be Mn(K) as a K0-vector space and ι : H → GL(V ) to be a
representation over K0 defined by

ι(h)x = hxσ( th), x ∈ V, h ∈ H,
where σ denotes the non-trivial involution in Gal(K/K0). If we choose x0 ∈ V
to be a hermitian matrix in Mn(K) and Hx0 to be the stabilizer of x0, then
Hx0 becomes a unitary subgroup of H, which satisfies the condition of loc.
cit. In order to use their result, we only need to verify the conditions (a) and
(b) in their theorem. For condition (a), ι is semi-simple since it is the direct

1. This argument will occur several times in this section, so for more details we refer the
reader to the proof of Theorem 4.1.

2. Note that if the trace characters of πσ0 and π0 are equal up to a scalar in R×2 , then that
scalar is in R×1 since the trace of π0 and πσ0 take values in R1.
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sum of two irreducible sub-representations, composed of hermitian matrices
and anti-hermitian matrices, respectively 3. For condition (b), since we only
care about the case where χ = 1, it is automatically satisfied. Thus, if we use
[15], Theorem 1.3 to replace [20], Theorem 1 and follow the proof in [20], then
we finish the proof when R = C, and F/F0 is a quadratic extension of locally
compact fields of characteristic p.

For char(R) = 0 in general, a supercuspidal representation of G can be
realized as a representation over Q up to twisting by an unramified character,
whereQ is the algebraic closure ofQ. More precisely, there exists a character χ :
F× → R× such that χ|o×

F
= 1 and π ·χ◦det can be realized as a representation

over Q. Since det(Gτ ) ⊂ o×F and χ ◦ det|Gτ is trivial, π is Gτ -distinguished if
and only if π ·χ◦det is, as a representation over R, and also as a representation
over Q or C by Lemma 4.3.(1). Using the complex case, π ·χ◦det is σ-invariant
as a representation over C, and also as a representation over Q or R by Lemma
4.3.(2). By definition, χ is σ-invariant, and thus π is also σ-invariant.

For R = Fl, we write π ∼= c-IndGJΛ for a simple type (J ,Λ). Using the
Mackey formula and Frobenius reciprocity, we have

0 6= HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

Thus, π is distinguished if and only if there exists g ∈ G such that
HomJg∩Gτ (Λg, 1) 6= 0. Let γ = τ(g)g−1 and let δ(x) = γ−1τ(x)γ for x ∈ G,
which is also a unitary involution; then we have

0 6= HomJg∩Gτ (Λg, 1) ∼= HomJ∩Gδ(Λ, 1) = HomJ∩Gδ(Λ0, 1)
∼= HomJ(Λ0, IndJJ∩GδFl),

where Λ0 = Λ|J , and we use the fact that J ∩Gδ = J ∩Gδ by Lemma 4.2.
We consider PΛ0 to be the projective envelope of Λ0 as a Zl[J ]-module, where

we denote by Zl the ring of integers of Ql; then we have ([43], Chapitre III,
4.28 and [39], Proposition 42 for finite group case. Since Λ0 is a smooth repre-
sentation of the compact group J of finite dimension, it can be regarded as a
representation of a finite group.):

(1) PΛ0 ⊗Zl Fl is the projective envelope of Λ0 as a Fl[J ]-module, which is
indecomposable of finite length, with each irreducible component iso-
morphic to Λ0. Thus, HomFl[J](PΛ0 ⊗Zl Fl, IndJJ∩GδFl) 6= 0.

(2) For P̃Λ0 = PΛ0 ⊗Zl Ql the Ql-lift of PΛ0 , we have P̃Λ0 ∼=
⊕

Λ̃0, where
Λ̃0 in the direct sum are Ql-lifts of Λ0 of multiplicity 1 (the multiplicity
1 statement is derived from counting the length of PΛ0 ⊗Zl Fl and the
number of different Λ̃0 in P̃Λ0 , and then showing that they are equal.

3. Here we need the assumption p 6= 2.
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The argument is indicated in the proof of [43], Chapitre III, 4.28, or
more precisely, ibid., Chapitre III, Théorème 2.2 and Théorème 2.9).

(3) In (2), each (J, Λ̃0) can be extended to a simple type (J , Λ̃) of G as a
Ql-lift of (J ,Λ) ([43], Chapitre III, 4.29).

Using (1), HomFl[J](PΛ0 ⊗Zl Fl, IndJJ∩GδFl) 6= 0. Since PΛ0 is a projective
Zl[J ]-module, it is a free Zl-module. Since IndJJ∩GδZl is a free Zl-module,

HomZl[J](PΛ0 , IndJJ∩GδZl)

is a free Zl-module. As a result,

HomFl[J](PΛ0 ⊗Zl Fl, IndJJ∩GδFl) ∼= HomZl[J](PΛ0 , IndJJ∩GδZl)⊗Zl Fl 6= 0

if and only if

HomZl[J](PΛ0 , IndJJ∩GδZl) 6= 0

if and only if

HomQl[J](P̃Λ0 , IndJJ∩GδQl) ∼= HomZl[J](PΛ0 , IndJJ∩GδZl)⊗Zl Ql 6= 0.

So there exists Λ̃0 as in condition (2), such that HomQl[J](Λ̃0, IndJJ∩GδQl) 6= 0.
Using (3) we may choose (J , Λ̃) as an extension of (J, Λ̃0). We write π̃ = c-
IndGJ Λ̃, which is a supercuspidal representation of G over Ql. By using

HomJg∩Gτ (Λ̃g, 1) ∼= HomJ∩Gδ(Λ̃, 1) = HomJ∩Gδ(Λ̃0, 1)
∼= HomJ(Λ̃0, IndJJ∩GδQl) 6= 0

and by the Mackey formula and Frobenius reciprocity as before, π̃ is Gτ -
distinguished. Using the result of the characteristic 0 case, we have π̃σ ∼= π̃.
By (3), Λ̃ is a Ql-lift of Λ. So π̃ is a Ql-lift of π, and we have πσ ∼= π.

For char(R) = l > 0 in general, as in the characteristic zero case, there exists
a character χ : F× → R× such that χ|o×

F
= 1 and π ·χ◦det can be realized as a

representation over Fl. Similarly, we deduce that π is Gτ -distinguished if and
only if π · χ ◦ det is, as a representation over R, and also as a representation
over Fl by Lemma 4.3.(1). Using the case above, π · χ ◦ det is σ-invariant, as a
representation over Fl, and also as a representation over R by Lemma 4.3.(2).
By definition, χ is σ-invariant, and thus π is also σ-invariant. �

Remark 4.4. — It is also possible to give a purely local proof (without using
the result of the complex supercuspidal case) for this theorem, which also works
for cuspidal representations. Since our proof relies on the refinement of the
results and the arguments in Section 5 to Section 8, we leave it to the last
section to avoid breaking up the structure of the paper.
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5. The τ -self-dual type theorem

Let G = GLn(F ) and let τ be the unitary involution of G corresponding
to a hermitian matrix ε. Let π be a cuspidal representation of G. We choose
a maximal simple stratum [a, β] and a simple character θ ∈ C(a, β) contained
in π.

Lemma 5.1. — If π is σ-invariant, then we may choose the simple stratum
above such that σ( tβ) = β. As a result, σt (see Section 2) is an involution
defined on E whose restriction to F is σ.

Let E0 = Eσt , where E = F [β] and β is chosen as in Lemma 5.1.

Theorem 5.2. — Let π be a σ-invariant cuspidal representation of G and let
τ be a unitary involution. We also assume the following additional condition:

If the hermitian matrix corresponding to τ is not in the same G-class as In
in X and if there exists a maximal simple stratum [a, β] as in Lemma 5.1 with
a θ ∈ C(a, β) contained in π, such that the corresponding E/E0 is unramified,
then m is odd.

Then there exist a maximal simple stratum [a′, β′] and a simple character
θ′ ∈ C(a′, β′) contained in π, such that:

(1) τ(β′) = β′−1.
(2) τ(a′) = a′ and4 τ(H1(a′, β′)) = H1(a′, β′).
(3) θ′ ◦ τ = θ′−1.

As a corollary of Theorem 5.2, we state the main theorem of this section:

Theorem 5.3 (The τ -self-dual type theorem). — Under the same conditions
as Theorem 5.2, there exists a simple type (J ,Λ) contained in π such that
τ(J) = J and Λτ ∼= Λ∨.

In the following subsections, we will focus on the proof of the results stated.

5.1. Endo-class version of main results. — To prove Theorem 5.2 and Theorem
5.3, we consider their corresponding analogues for the endo-class. Let Θ be an
endo-class over F . As mentioned in Section 3, we write d = deg(Θ). Moreover,
its tame parameter field T as a tamely ramified extension over F is unique up
to F -isomorphism.

From the definition of the endo-class, we may choose a maximal simple
stratum [a, β] and a simple character θ ∈ C(a, β) such that θ ∈ Θ. We denote
by Θσ the endo-class of θσ, which does not depend on the choice of θ. We
denote by n the size of a, that is, a ↪→ Mn(F ) as a hereditary order. We write
n = md with m a positive integer. First of all, we have the following lemma as
an endo-class version of Lemma 5.1, which will be proved in §5.4.

4. For the definition of τ(a′), see §2.1. We will use the same notation for Theorem 5.5
and further proofs.
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Lemma 5.4. — If Θσ = Θ, then we may choose the simple stratum above such
that σ( tβ) = β. As a result, σt is an involution defined on E whose restriction
to F is σ.

Let E0 = Eσt , where E = F [β] and β is chosen as in Lemma 5.4. The
following theorem as an endo-class version of Theorem 5.2 says that we may
adjust our choice of the simple stratum and simple character such that they
are τ -self-dual with respect to a unitary involution τ :

Theorem 5.5. — Let Θ ∈ E(F ) be an endo-class over F such that Θσ = Θ.
Let τ be a unitary involution of G. We also assume the following additional
condition:

If the hermitian matrix corresponding to τ is not in the same G-class as In
in X , and if there exists a maximal simple stratum [a, β] as in Lemma 5.4 with
a θ ∈ C(a, β) contained in Θ, such that the corresponding E/E0 is unramified,
then m = n/d is odd.

Then there exist a maximal simple stratum [a′, β′] in Mn(F ) and a simple
character θ′ ∈ C(a′, β′) such that:

(1) τ(β′) = β′−1.
(2) τ(a′) = a′ and τ(H1(a′, β′)) = H1(a′, β′).
(3) θ′ ∈ Θ and θ′ ◦ τ = θ′−1.

Later we will focus on the proof of Lemma 5.4 and Theorem 5.5. So before we
begin our proof, we illustrate how this theorem implies Lemma 5.1, Theorem
5.2 and Theorem 5.3. First, we have the following important result due to
Gelfand and Kazhdan (see [4], Theorem 7.3 for the complex case and [38],
Proposition 8.4 for the l-modular case):

Proposition 5.6. — For π an irreducible representation of GLn(F ), the rep-
resentation defined by g 7→ π( tg−1) is isomorphic to π∨.

For π given as in Lemma 5.1, if we denote by Θπ the endo-class of π, then we
get Θσ

π = Θπ. So we may use Lemma 5.4 to get Lemma 5.1 and use Theorem
5.5 to get Theorem 5.2.

Now we show that Theorem 5.2 implies Theorem 5.3. Using Proposition 5.6,
we have πτ∨ ∼= πσ ∼= π. Let (J ,Λ) be a simple type of π containing θ′, where
θ′ is obtained from Theorem 5.2 such that θ′ ◦ τ = θ′−1. Thus τ(J) = J since
they are the G-normalizers of θ′ ◦ τ and θ′−1, respectively. Since πτ∨ ∼= π, it
contains both (J ,Λ) and (J ,Λτ∨). By Proposition 3.4, there exists g ∈ G such
that (J ,Λτ∨) = (Jg,Λg). Since Λτ∨ ∼= Λg contains both (θ′ ◦ τ)−1 = θ′ and
θ′g as simple characters, the restriction of Λg to the intersection

H1(a′, β′) ∩H1(a′, β′)g,(4)

which is a direct sum of copies of θ′g restricting to (4), contains the restriction
of θ′ to (4). It follows that g intertwines θ′. By Proposition 3.1.(5), g ∈
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J(a′, β′)B′×J(a′, β′) with B′ the centralizer of E′ in Mn(F ). Thus we may
assume g ∈ B′×. From the uniqueness of the maximal compact subgroup in
J , we deduce that Jg = J implies J(a′, β′)g = J(a′, β′). Intersecting it with
B′× implies that b′×g = b′×. Since b′× is a maximal compact subgroup of
B′× ∼= GLm(E′) and g ∈ B′×, we deduce that g ∈ E′×b′× ⊂ J(a′, β′). Thus,
(Jg,Λg) = (J ,Λ), which finishes the proof of Theorem 5.3.

Finally, we state the following two lemmas, which will be useful in our further
proof:

Lemma 5.7. — Let [a, β] be a maximal simple stratum in Mn(F ) and let Θ
be a σ-invariant endo-class over F , such that there exists θ ∈ C(a, β) a simple
character in Θ. Then θ◦τ and θ−1 are in the same endo-class. In particular, if
the hereditary order a is τ -invariant, then θ◦τ conjugates to θ−1 by an element
in U(a).

Proof. — We choose π a cuspidal representation of G containing θ. Thus by
definition, we have Θπ = Θ. Using Proposition 5.6, we have πτ ∼= πσ∨. So
θ◦τ ∈ Θπτ = Θπσ∨ = Θσ

π∨ and θ−1 ∈ Θπ∨ . Since Θσ = Θ, we have Θσ
π∨ = Θπ∨ ,

which means that θ ◦ τ and θ−1 are in the same endo-class. If τ(a) = a, then
by definition of the endo-equivalence ([6], Theorem 8.7), θ ◦ τ intertwines with
θ−1. By [9], Theorem 3.5.11, θ◦τ conjugates to θ−1 by an element in U(a). �

The following lemma will be used to change the choice of a unitary involution
up to G-action on its corresponding hermitian matrix.

Lemma 5.8. — Let τ = τε be the unitary involution on G corresponding to a
hermitian matrix ε, and let [a, β] be a maximal simple stratum in Mn(F ) and
let θ ∈ C(a, β) be a simple character, such that

τ(a) = a, θ ◦ τ = θ−1 (and τ(β) = β−1).

Then for τ ′ = τε′ the unitary involution corresponding to a hermitian matrix
ε′ = g−1εσ( tg−1), we have

τ ′(ag) = ag, θg ◦ τ ′ = (θg)−1 (and τ ′(βg) = (βg)−1).

Proof. — The proof is just a simple calculation. We have

τ ′(ag) = τ ′(g−1)τ ′(a)τ ′(g) = τ ′(g−1)ε′ε−1τ(a)(ε′ε−1)−1τ ′(g) = g−1τ(a)g,

where in the last step we use

(ε′ε−1)−1τ ′(g) = εσ( tg−1)ε′−1 = g.

Since τ(a) = a, we get τ ′(ag) = ag. The other two equations can be proved in
a similar way. �
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5.2. The maximal and totally wildly ramified case. — Now we focus on the
proof of Theorem 5.5. We imitate the strategy in [1], section 4, which first
considered a special case, and the used tame lifting developed by Bushnell and
Henniart [6] and other tools developed by Bushnell and Kutzko [9] to generalize
their result. In this subsection, we prove the following proposition as a special
case of (2) and (3) of Theorem 5.5:

Proposition 5.9. — Let [a, β] be a simple stratum in Mn(F ) and let θ ∈
C(a, β) such that θ ∈ Θ with Θ a σ-invariant endo-class. Let E/F be totally
wildly ramified of degree n. Let τ = τ1 with τ1(x) := σ( tx−1) for any x ∈ G.
Then there exist a simple stratum [a′′, β′′] and a simple character θ′′ ∈ C(a′′, β′′)
such that (a′′, θ′′) is G-conjugate to (a, θ) with the property τ(a′′) = a′′ and
θ′′ ◦ τ = θ′′−1.

Remark 5.10. — In Proposition 5.9 we have [E : F ] = d = n, which is a
power of p as an odd number.

Up to G-conjugacy, we may and will assume a to be standard (that is, a
is made of matrices with upper triangular elements in oF and other elements
in pF .).

Lemma 5.11. — There exist g1 ∈ G and a1, . . . , an ∈ o×F , such that

τ(g1)g−1
1 = A :=



0 0 . . . 0 a1

0
. . . . . . a2 0

...
. . . . . . . . .

...

0 an−1
. . . . . . 0

an 0 . . . 0 0


.

Moreover, if we define a′ := ag1 , then we have τ(a′) = a′.

Proof. — First we claim that we may choose ai ∈ o×F such that A is a hermitian
matrix and det(A) ∈ NF/F0(F×). To do this, noting that A∗ = A if and
only if ai = σ(an+1−i) for i = 1, 2, . . . , n, we choose ai = σ(an+1−i) for i =
1, 2, . . . , (n− 1)/2 randomly but only to make sure that they are in o×F and we
choose a(n+1)/2 ∈ o×F0

to make sure that det(A) ∈ NF/F0(F×).
Since A is a hermitian matrix that is in the same G-orbit as In by considering

the determinant, using Proposition 2.1, there exists an element g1 ∈ G such
that (g−1

1 )∗g−1
1 = A, which means that τ(g1)g−1

1 = A. By definition τ(a′) = a′

if and only if τ(g−1
1 )τ(a)τ(g1) = g−1

1 ag1. Since a∗ = ta, we deduce that
τ(a′) = a′ if and only if A−1 taA = (τ(g1)g−1

1 )−1 taτ(g1)g−1
1 = a. From our

choice of A and the definition of a, this can be verified directly. �
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Now fix g1 as in Lemma 5.11. We write θ′ = θg1 and β′ = βg1 . Since
a′ = ag1 , we also have:

(1) U ′i := U i(a′) = U i(a)g1 , where U i(a) := 1 + pia for i ≥ 1.
(2) J ′ := J(a′, β′) = J(a, β)g1 .
(3) J ′1 := J1(a′, β′) = J1(a, β)g1 .
(4) J ′ := J(a′, β′) = J(a, β)g1 .
(5) H ′1 := H1(a′, β′) = H1(a, β)g1 .
(6) M ′ := Mg1 , where M = o×F × . . . × o×F is the subgroup of diagonal

matrices contained in a.
Since a′ is τ -stable and Θσ = Θ, using Lemma 5.7, there exists u′ ∈ U(a′) such
that θ′ ◦ τ = (θ′−1)u′ . Since θ′ = θ′ ◦ τ ◦ τ = (θ′−1)u′ ◦ τ = θ′u

′τ(u′), we deduce
that u′τ(u′) normalizes θ′, which means that u′τ(u′) ∈ J ′∩U(a′) = J ′ by using
Proposition 3.1.(4). To prove Proposition 5.9, we only need to find x′ ∈ G such
that a′′ := a′

x′ and θ′′ := θ′x
′ have the desired property. By direct calculation,

this means that τ(x′)x′−1 normalizes a′ and u′τ(x′)x′−1 normalizes θ′, so using
Proposition 3.1.(4) and the fact that u′−1J ′ is contained in the normalizer of
a′, it suffices to choose x′ such that u′τ(x′)x′−1 ∈ J ′.

Lemma 5.12. — There exists y′ ∈M ′ such that u′τ(y′)y′−1 ∈ J(a′, β′)U1(a′) =
o×FU

1(a′).

Proof. — First we write u′ = g−1
1 ug1 for a certain u ∈ U(a). Then u′τ(u′) ∈

J(a′, β′) implies that uA−1(u−1)∗A ∈ J(a, β) ⊂ o×FU
1(a) by direct calculation,

where A is defined as in Lemma 5.11.
We choose y′ = g−1

1 yg1 with y = diag(y1, . . . , yn) ∈M = o×F × . . .×o×F to be
determined. By direct calculation, u′τ(y′)y′−1 ∈ J(a′, β′)U1(a′) if and only if
uA−1(y−1)∗Ay−1 ∈ J(a, β)U1(a) = o×FU

1(a). We use ui, a, yi and b to denote
the image of ui, a, yi, b in kF ∼= oF /pF , respectively, where ui, a, b ∈ oF will
be defined in the following two paragraphs.

We write A =


0 0 . . . 0 a1

0
. . . . . . a2 0

...
. . . . . . . . .

...
0 an−1

. . . . . . 0
an 0 . . . 0 0

 and u =


u1 ∗oF . . . . . . ∗oF
∗pF u2

. . . . . .
...

...
. . . . . . . . .

......
. . . . . . un−1 ∗oF

∗pF . . . . . . ∗pF un

,

where ∗oF and ∗pF represent elements in oF and pF , respectively. By direct
calculation, we have

uA−1(u−1)∗A=


u1σ(u−1

n ) ∗oF . . . . . . ∗oF
∗pF u2σ(u−1

n−1)
. . . . . .

...
...

. . . . . . . . .
......

. . . . . . un−1σ(u−1
2 ) ∗oF

∗pF . . . . . . ∗pF unσ(u−1
1 )

∈ o×FU1(a),
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which means that there exists a ∈ o×F such that

u1σ(u−1
n ), u2σ(u−1

n−1), . . . , unσ(u−1
1 ) ∈ a(1 + pF ).(5)

Also by direct calculation, we have

uA−1(y−1)∗Ay−1

=



u1y
−1
1 σ(y−1

n ) ∗oF . . . . . . ∗oF
∗pF u2y

−1
2 σ(y−1

n−1)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . un−1y

−1
n−1σ(y−1

2 ) ∗oF
∗pF . . . . . . ∗pF uny

−1
n σ(y−1

1 )


,

which means that the lemma is true if and only if there exists b ∈ o×F such that

u1y
−1
1 σ(y−1

n ), u2y
−1
2 σ(y−1

n−1), . . . , uny−1
n σ(y−1

1 ) ∈ b(1 + pF ).(6)

If we consider modulo pF , then the condition (5) becomes

u1σ(un−1) = u2σ(un−1
−1) = . . . = unσ(u1

−1) = a.(7)

Moreover, if we consider modulo U1(a), then uA−1(y−1)∗Ay−1 ∈ o×FU
1(a) if

and only if there exist yi ∈ o×F such that there exists b ∈ o×F in the condition
(6) such that

u1y1
−1σ(yn−1) = u2y2

−1σ(yn−1
−1) = . . . = unyn

−1σ(y1
−1) = b.(8)

We choose b = u(n+1)/2, and then bσ(b−1) = a. Furthermore, we choose
yi = b−1ui when i = 1, 2, . . . , (n − 1)/2 and yi = 1 when i = (n + 1)/2, . . . , n.
Combining this with the equation (7), the equation (8) is satisfied. �

Let us write z′u′τ(y′)y′−1 ∈ U ′1 for some y′ ∈ M ′ and z′ ∈ o×F given by
Lemma 5.12. By replacing the simple stratum [a′, β′] with [a′y′ , β′y′ ], the simple
character θ′ with θ′y′ and u′ with y′−1z′u′τ(y′), which does not affect the fact
that the order is τ -stable, we can and will assume that u′ ∈ U ′1. We write
J ′i = J ′ ∩ U ′i for i ≥ 1. We state the following two lemmas, which correspond
to Lemma 4.16 and Lemma 4.17 in [1]. Actually, the same proofs work when
one replaces the Galois involution σ in the original lemmas with any involution
τ on G.

Lemma 5.13. — Let v′ ∈ U ′i for some i ≥ 1 and assume that v′τ(v′) ∈ J ′i.
Then there exist j′ ∈ J ′i and x′ ∈ U ′i such that j′v′τ(x′)x′−1 ∈ U ′i+1.
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Using Lemma 5.13 to replace Lemma 4.16 in [1], we may prove the following
lemma:

Lemma 5.14. — There exists a sequence of (x′i, j′i, v′i) ∈ U ′i × J ′i × U ′i+1 for
i ≥ 0, satisfying the following conditions:

(1) (x′0, j′0, v′0) = (1, 1, u′).
(2) For all i ≥ 0, if we set y′i = x′0x

′
1. . .x

′
i ∈ U ′1, then the simple character

θ′i = θ′y
′
i ∈ C(a′, β′y′i) satisfies θ′i ◦ τ = (θ′−1

i )v′i .
(3) For all i ≥ 1, we have y′iv′i = j′iy

′
i−1v

′
i−1τ(x′i).

Let x′ ∈ U ′1 be the limit of y′i = x′0x
′
1. . .x

′
i and let h′ ∈ J ′1 be that of

j′i. . .j
′
1j
′
0 when i tends to infinity. By Lemma 5.14.(3), we have

y′iv
′
iτ(y′−1

i ) = j′iy
′
i−1v

′
i−1τ(y′−1

i−1) = . . . = j′i. . .j
′
1j
′
0u
′.

Passing to the limit, we get x′τ(x′)−1 = h′u′, which implies that u′τ(x′)x′−1 =
h′−1 ∈ J ′. Let (a′′, θ′′) = (a′x′ , θ′x′), which finishes the proof of Proposition
5.9.

5.3. The maximal case. — In this subsection, we generalize Proposition 5.9 to
the following situation:

Proposition 5.15. — Let [a, β] be a simple stratum in Mn(F ) such that [E :
F ] = n, let θ ∈ C(a, β) such that θ ∈ Θ with Θ a σ-invariant endo-class and let
τ be a given unitary involution. Then there exist a simple stratum [a′′, β′′] and
a simple character θ′′ ∈ C(a′′, β′′) such that (a′′, θ′′) is G-conjugate to (a, θ)
with the property τ(a′′) = a′′ and θ′′ ◦ τ = θ′′−1.

To prove the proposition, we first study an endo-class Θ over F being σ-
invariant, that is, Θσ = Θ. Let T be a tame parameter field of Θ.

Lemma 5.16. — Let Θ be a σ-invariant endo-class and let T/F be its tame
parameter field. Then given a T/F -lift Ψ of Θ, there is a unique involution α
of T extending σ such that Ψα = Ψ.

Proof. — The proof of Lemma 4.8 in [1] can be used almost unchanged for our
lemma. We only need to consider Θ instead of Θ∨ and Ψ instead of Ψ∨. �

Let α be the involution of T given by Lemma 5.16 and let T0 be the sub-field
of T fixed by α. Then T0 ∩ F = F0. We write t = [T : F ] = [T0 : F0]. We need
the following proposition due to Hakim and Murnaghan:

Proposition 5.17 ([21], Proposition 2.1). — There exists an embedding ι :
T ↪→ Mt(F ) of F -algebras such that, for x ∈ T , we have ι(α(x)) = ι(x)∗ :=
σ( tι(x)).
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Proof of Proposition 5.15. — Let E = F [β] and let T be the maximal tamely
ramified extension of F in E. It is a tame parameter field of the endo-class Θ.
The simple character θ gives Ψ, the endo-class of the interior T/F -lift of Θ, as
we introduced in §3.3. Let α be defined as in Lemma 5.16 and let ι be defined
as in Proposition 5.17. By abuse of notation, we define

ι : Mn/t(T ) ↪→ Mn/t(Mt(F )) = Mn(F )

with each block defined by the original ι. First we consider τ(x) = εσ( tx−1)ε−1,
for any x ∈ G with ε = In or diag(ι(ε), . . . , ι(ε), ι(ε)), where ε ∈ T×0 −
NT/T0(T×). The determinant of the latter matrix is NT0/F0(ε)n/t. Since

NT0/F0 : T×0 → F×0

is a homomorphism that maps NT/T0(T×) to NF/F0(F×), it leads to a group
homomorphism

NT0/F0 : T×0 /NT/T0(T×)→ F×0 /NF/F0(F×)

between two groups of order 2. We state and prove the following lemma in
general:

Lemma 5.18. — Let F, F0 be defined as before. Let L0/F0 be a finite extension
such that L = L0F is a field with [L : L0] = 2 and F0 = L0 ∩ F . Then the
group homomorphism

NL0/F0 : L×0 → F×0

induces an isomorphism

NL0/F0 : L×0 /NL/L0(L×)→ F×0 /NF/F0(F×)

of groups of order 2.

Proof. — We first consider the case where L0/F0 is abelian. If, on the con-
trary, the induced homomorphism is not an isomorphism, then NL0/F0(L×0 ) ⊂
NF/F0(F×), which means that F is contained in L0 by the local class field
theory ([40], Chapter 14, Theorem 1), which is absurd.

When L0/F0 is Galois, we may write F0 = L0
0 ( . . . ( Lr0 = L0, such that

Li+1
0 /Li0 is abelian for i = 0, . . . , r − 1 ([40], Chapter 4, Proposition 7). We

write Li = Li0F . Thus it is easy to show that Li/Li0 is quadratic, Li0 = Li+1
0 ∩Li

and Li+1
0 Li = Li+1 for i = 0, . . . , r − 1. Using the abelian case,

NLi+1
0 /Li0

: Li+1×
0 /NLi+1/Li+1

0
(Li+1×)→ Li×0 /NLi/Li0

(Li×)

is an isomorphism for i = 0, 1, . . . , r − 1. Composing them together, we finish
the proof.

tome 150 – 2022 – no 2



Un-DISTINGUISHED SUPERCUSPIDAL REPRESENTATIONS OF GLn 419

When L0/F0 is separable, we write L′0 as the normal closure of L0 over
F0. Thus, L′0 contains L0, and L′0/F0 is a finite Galois extension. We write
L′ = L′0F . Using the Galois case,

NL′0/F0 : L′×0 /NL′/L′0
(L′×)→ F×0 /NF/F0(F×)

is an isomorphism. Since NL′0/F0(L′×0 ) ⊂ NL0/F0(L×0 ),

NL0/F0 : L×0 /NL/L0(L×)→ F×0 /NF/F0(F×)

is also an isomorphism.
In the characteristic p case in general, we write Lsep0 the maximal separa-

ble sub-extension of F0 contained in L0, and thus L0/L
sep
0 is purely insep-

arable. Thus NL0/L
sep
0

(x) = xp
[L0:Lsep0 ]

, for any x ∈ L×0 . Since p 6= 2 and
L×0 /NL/L0(L×) is of order 2,

NL0/L
sep
0

: L×0 /NL/L0(L×)→ Lsep×0 /NLsep/Lsep0
(Lsep×)

is an isomorphism, where Lsep := LLsep0 . So we come back to the separable
case, which finishes the proof. �

Using Lemma 5.18, for L0 = T0, the homomorphism above is actually an
isomorphism. Since n/t is odd, and ε ∈ T×0 − NT/T0(T×), we have det(ε) =
NT0/F0(ε)n/t ∈ F×0 − NF/F0(F×). So, indeed, these two involutions represent
both of the G-classes of hermitian matrices. Thus, using Lemma 5.8, we may
from now on assume τ to be the two unitary involutions we mentioned above.
Furthermore, ι(T )× is normalized by τ from the exact construction of τ and
Proposition 5.17, where we regard T as an F -subalgebra of Mn/t(T ) given by
the diagonal embedding.

Since T and ι(T ) are isomorphic as F -subalgebras contained in Mn(F ), by
the Skolem–Noether theorem, there exists g ∈ G such that ι(T ) = T g. Thus,
if we write [a′, β′] = [ag, βg], θ′ = θg and E′ = F [β′], then θ′ ∈ Θ such that
its tame parameter field equals ι(T ). Since τ normalizes ι(T )×, we deduce
that θ′ ◦ τ and θ′−1 have the same parameter field ι(T ). If we write Ψ′ the
endo-class of the interior ι(T )/F -lift corresponding to θ′, and if we choose
α′ = ι|T ◦ α ◦ ι|−1

ι(T ), then we have Ψ′α′ = Ψ′.
Let C ′ = Mn/t(ι(T )) denote the centralizer of ι(T ) in Mn(F ). For c ∈

Mn/t(T ), we have

τ(ι(c)) = εσ( tι(c)−1)ε−1 = ε( tC′ ι(α(c))−1)ε−1

= ε(α′( tC′ ι(c))−1)ε−1 = τ ′(ι(c)),

where we denote by tC′ the transpose on C ′ = Mn/t(ι(T )) and τ ′(c′) =
ε(α′( tC′ c′−1))ε−1, for any c′ ∈ C ′× . Thus, τ ′, the restriction of τ to C ′×,
is the unitary involution τ1 on C ′× = GLn/t(ι(T )) with respect to the Galois
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involution α′ ∈ Gal(ι(T )/F ). The intersection c′ = a′ ∩ C ′ gives rise to a sim-
ple stratum [c′, β′]. The restriction of θ′ to H1(c′, β′), denoted by θ′ι(T ), is a
simple character associated to this simple stratum with endo-class Ψ′. Since
E′/ι(T ) is totally wildly ramified, using Proposition 5.9 with G, θ, Θ, σ and τ
replaced by C ′×, θ′ι(T ), Ψ′, α′ and τ ′, respectively, there exists c′ ∈ C ′×, such
that τ ′(c′c′) = c′c

′ and θ′c′ι(T ) ◦ τ
′ = (θ′c′ι(T ))−1.

By the injectivity of a 7→ a ∩ C ′ between sets of hereditary orders as men-
tioned in §3.3, a′′ := a′

c′ is τ -stable. Moreover, if we write θ′′ = θ′c
′ , then from

our construction of τ and the definition of ι(T )/F -lift, the simple characters
(θ′′ ◦ τ)ι(T ) = θ′′ ◦ τ |H1(τ(c′),τ(β′)) = θ′′ ◦ τ ′|H1(τ(c′),τ(β′)) = θ′′ι(T ) ◦ τ

′

and
(θ′′−1)ι(T ) = θ′′−1

ι(T )

are equal. By the last paragraph of §3.3, the simple character θ′′ satisfies the
property θ′′ ◦ τ = θ′′−1. �

5.4. The general case. — In this subsection, we finish the proof of Lemma 5.4
and Theorem 5.5. First of all, we recall the following result of Stevens:

Proposition 5.19 ([42], Theorem 6.3). — Let [a, β] be a simple stratum in
Mn(F ) with σt(a) = a. Suppose that there exists a simple character θ ∈ C(a, β),
such that H1(a, β) is σt-stable and θ◦σt = θ. Then there exists a simple stratum
[a, γ], such that θ ∈ C(a, γ) and σt(γ) = γ.

Proof. — The original proof of [42], Theorem 6.3 can be modified as follows.
For any x ∈ Mn(F ), we use −σt(x) to replace x; we use σt to replace σ; for [a, β]
a simple stratum, we say that it is σt-invariant if σt(a) = a, and σt(β) = β, and
we use this concept to replace the concept skew simple stratum in the original
proof. With these replacements, the original proof can be used in our case
without difficulty (see also the last paragraph of ibid.). �

We choose [a0, β0] to be a maximal simple stratum in Md(F ) and θ0 ∈
C(a0, β0) such that θ0 ∈ Θ. By Proposition 5.15, there are a maximal sim-
ple stratum [a′0, β′0] and a simple character θ′0 ∈ C(a′0, β′0), which is GLd(F )-
conjugate to θ0, such that:

(1) The order a′0 is τ1-stable.
(2) The group H1(a′0, β′0) is τ1-stable, and θ′0 ◦ τ1 = θ′−1

0 .
Furthermore, using Proposition 5.19 we may assume that:

(3) σt(β′0) = β′0.
We embed Md(F ) diagonally into the F -algebra Mn(F ). This gives an F -
algebra homomorphism ι′ : F [β′0] ↪→ Mn(F ). Write β′ = ι′(β′0) = β′0 ⊗ . . .⊗ β′0
and E′ = F [β′]. The centralizer B′ of E′ in Mn(F ) is naturally identified

tome 150 – 2022 – no 2



Un-DISTINGUISHED SUPERCUSPIDAL REPRESENTATIONS OF GLn 421

with Mm(E′). We regard σt as an involution on E′ extending σ, and we write
E′0 = E′σt . Let b′ be a maximal standard hereditary order in B′, which may be
identified with Mm(oE′), and let a′ = Mm(a′0) be the unique hereditary order
in Mn(F ) normalized by E′×, such that a′ ∩B′ = b′. Then the simple stratum
[a′, β′] satisfies the requirement of Lemma 5.4, finishing its proof.

Now we focus on the proof of Theorem 5.5. By Lemma 5.8, we may change τ
up to G-action on its corresponding hermitian matrix, which does not change
the content of the theorem. So if ε is in the same G-class as In, we may
simply choose τ = τ1, where τ1(x) = σ( tx−1), for any x ∈ G. If not, we fix
an ε ∈ E′×0 − NE′/E′0

(E′×). Regarding ε as an element in Md(F ), we have
det(ε) = NE′0/F0(ε). Since

NE′0/F0 : E′×0 → F×0

is a homomorphism that maps NE′/E′0
(E′×) to NF/F0(F×), by Lemma 5.18

with L0 = E′0, it leads to an isomorphism

NE′0/F0 : E′×0 /NE′/E′0
(E′×)→ F×0 /NF/F0(F×)

of the two groups of order 2. Thus, NE′0/F0(ε) ∈ F×0 − NF/F0(F×). If E′/E′0
is unramified, we write ε = diag(ε, . . . , ε). Then det(ε) = NE′0/F0(ε)m ∈ F×0 −
NF/F0(F×), since F×0 /NF/F0(F×) is a group of order 2, and m is odd from the
condition of the theorem. If E′/E′0 is ramified, we may assume further that
ε ∈ o×E′0

. We write ε = diag(Id, . . . , Id, ε) and we have det(ε) = NE′0/F0(ε) ∈
F×0 −NF/F0(F×). For both cases, τε is a unitary involution whose corresponding
hermitian matrix is not in the same G-class as In. So from now on, we only
consider the three unitary involutions above. From our assumption of τ , the
restriction of τ to GLm(E′) is also a unitary involution τ ′ = τ1 or τε with
ε = diag(1, . . . , 1, ε). In particular, since ε is an element in E′, we know that ε
commutes with elements in E′ and we have τ(β′) = β′−1.

Since a′0 is τ1-stable and b′ is τ ′-stable, from our assumption of τ we deduce
that a′ is τ -stable, or by definition εσt(a′)ε−1 = a′. Since σt(β′) = β′, by direct
calculation we have

τ(H1(a′, β′)) = εH1(σt(a′), σt(β′))−1ε−1

= H1(σt(a′)ε
−1
, β′ε

−1
) = H1(a′, β′ε

−1
) = H1(a′, β′).

Let M be the standard Levi subgroup of G isomorphic to GLd(F ) × . . . ×
GLd(F ), let P be the standard parabolic subgroup of G generated by M and
upper triangular matrices, and let N be its unipotent radical. Let N− be the
unipotent radical of the parabolic subgroup opposite to P with respect to M .
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By [36], Théorème 2.17, we have

H1(a′, β′) = (H1(a′, β′) ∩N−) · (H1(a′, β′) ∩M) · (H1(a′, β′) ∩N),(9)
H1(a′, β′) ∩M = H1(a′0, β′0)× . . .×H1(a′0, β′0).(10)

Let θ′ ∈ C(a′, β′) be the transfer of θ′0. By loc. cit., the character θ′ is trivial on
H1(a′, β′)∩N− and H1(a′, β′)∩N , and the restriction of θ′ to H1(a′, β′)∩M
equals θ′0 ⊗ . . .⊗ θ′0. We have

θ′ ◦ τ |H1(a′,β′)∩N− = θ′ ◦ τ |H1(a′,β′)∩N

= θ′−1|H1(a′,β′)∩N− = θ′−1|H1(a′,β′)∩N = 1

and

θ′ ◦ τ |H1(a′,β′)∩M = θ′0 ◦ τ1 ⊗ . . .⊗ θ′0 ◦ τ1
= θ′−1

0 ⊗ . . .⊗ θ′−1
0 = θ′−1|H1(a′,β′)∩M

for τ = τ1 or τε with ε = diag(ε, . . . , ε) or diag(1, . . . , 1, ε), since ε ∈ F [β′0]×
normalizes θ′0. Thus by equation (9), we have θ′ ◦ τ = θ′−1.

Remark 5.20. — From the proof of Theorem 5.5, we observe that if τ is chosen
as one of the three unitary involutions mentioned in the proof, then we may
choose the same simple stratum and simple character satisfying the conclusion
of the theorem.

Remark 5.21. — We give a counter-example to show that the condition in
Theorem 5.5 is necessary. Let n = 2, let F/F0 be unramified, let Θ be trivial
and let ε = diag(1, $F0). Then d = 1, m = n = 2, E = F and E0 = F0. If
the theorem is true, then a = M2(oF )g for some g ∈ GL2(F ) and τ(a) = a.
By direct calculation σ( tg−1)ε−1g−1 normalizes M2(oF ), which means that
σ( tg−1)ε−1g−1 ∈ F×GL2(oF ). It is impossible since det(σ( tg−1)ε−1g−1) ∈
$F0NF/F0(F×), while det(F×GL2(oF )) ⊂ NF/F0(F×).

6. The distinguished type theorem

Let π be a cuspidal representation of G such that πσ ∼= π. From the state-
ments and proofs of Theorem 5.2, 5.3 and 5.5, we may assume the following
conditions:

Remark 6.1. — (1) For τ = τ1, there exist a simple stratum [a, β] and
a simple character θ ∈ C(a, β) contained in π, such that τ(a) = a,
τ(H1(a, β)) = H1(a, β), θ ◦ τ = θ−1 and τ(β) = β−1, where τ1(x) :=
σ( tx−1) for any x ∈ G.

(2) For τ = τ1, there exists a simple type (J ,Λ) containing θ and contained
in π, such that τ(J) = J and Λτ ∼= Λ∨.
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(3) σt is an involution on E = F [β], whose restriction to F equals σ. So by
abuse of notation, we identify σ with σt. Let E0 = Eσ. We assume
further in this section that if E/E0 is unramified, then m is
odd5.

(4) Write τ(x) = εσ( tx−1)ε−1 for any x ∈ G such that: when E/E0 is un-
ramified, we assume ε = In or diag($E , . . . , $E) ∈ GLm(E) ↪→ G; when
E/E0 is ramified, we assume ε = In or diag(1, . . . , 1, ε) ∈ GLm(E) ↪→ G
with ε ∈ o×E0

−NE/E0(o×E). By Remark 5.20, we assume further that for
these three unitary involutions, conditions (1) and (2) are also satisfied.
From now on until the end of this section, we assume ε to be
one of these three hermitian matrices and τ to be one of these
three corresponding involutions.

(5) the element β has the block diagonal form:

β = diag(β0, . . . , β0) ∈ Mm(Md(F )) = Mn(F ),

for some β0 ∈ Md(F ), where d is the degree of β over F and n = md.
The centralizer B of E in Mn(F ) is identified with Mm(E). If we regard
τ as the restriction of the original involution to B×, then it is a unitary
involution with respect to B× = GLm(E), E/E0 and σ ∈ Gal(E/E0).

(6) The order b = a∩B is the standard maximal order Mm(oE) of Mm(E).
Thus, if we write a0 as the hereditary order of Md(F ) normalized by E,
then a is identified with Mm(a0).

(7) $E is a uniformizer of E such that:

σ($E) =
{
$E if E is unramified over E0;
−$E if E is ramified over E0.

Now we state the main theorem of this section:

Theorem 6.2 (distinguished type theorem). — For π a σ-invariant cuspidal
representation, it is Gτ -distinguished if and only if it contains a τ -self-dual
simple type (J ,Λ), such that HomJ∩Gτ (Λ, 1) 6= 0.

Remark 6.3. — Since every hermitian matrix is equivalent to one of the her-
mitian matrices mentioned in Remark 6.1.(4) up to G-action, and the property
of distinction is invariant up to equivalence of unitary group, the theorem works
for every unitary involution, although we only consider those occurring in loc.
cit.

5. Although this condition seems a little bit annoying, finally in Section 7, we find out
that this condition is automatically satisfied for π a σ-invariant supercuspidal representation.
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Choose (J ,Λ) as in Remark 6.1, using the Mackey formula and Frobenius
reciprocity, we have

HomGτ (π, 1) ∼=
∏
g

HomJg∩Gτ (Λg, 1),

where g ranges over a set of representatives of (J , Gτ )-double cosets in G. So π
is Gτ -distinguished if and only if there exists g as a representative of a (J , Gτ )-
double coset, such that HomJg∩Gτ (Λg, 1) 6= 0. We will study such g and will
show that (Jg,Λg) is actually τ -self-dual. So (Jg,Λg) is a distinguished and τ -
self-dual simple type that we are looking for, finishing the proof of the theorem.

6.1. Double cosets contributing to the distinction of θ. —

Proposition 6.4. — For g ∈ G, the character θg is trivial on H1g∩Gτ if and
only if τ(g)g−1 ∈ JB×J .

Proof. — We only need to use the same proof of [35], Proposition 6.6, with σ
replaced by τ . �

As a result, since HomJg∩Gτ (Λg, 1) 6= 0 implies that HomH1g∩Gτ (θg, 1) 6= 0,
using Proposition 6.4 we have γ := τ(g)g−1 ∈ JB×J .

6.2. The double coset lemma. — The next step is to prove the following double
coset lemma:

Lemma 6.5. — Let g ∈ G. Then γ = τ(g)g−1 ∈ JB×J if and only if g ∈
JB×Gτ .

Proof. — If g ∈ JB×Gτ , one verifies immediately that γ ∈ JB×J . Conversely,
supposing that γ ∈ JB×J , first we need the following lemma:

Lemma 6.6. — There exists an element b ∈ B× such that γ ∈ JbJ and
bτ(b) = 1.

Proof. — Since B×∩J = b× is a maximal compact subgroup of B×, using the
Cartan decomposition over B× ∼= GLm(E), we write γ = xcy with x, y ∈ J
and c = diag($a1

E Im1 , . . . , $
ar
E Imr ), where a1 > . . . > ar are integers, and

m1 + . . .+mr = m.
If E/E0 is unramified, then by definition c∗ = c. So if we choose b = cε−1,

then bε(b∗)−1ε−1 = c(c∗)−1 = 1, that is, bτ(b) = 1.
If E/E0 is ramified, since τ(γ)γ = 1, we know that xcy = εy∗c∗x∗ε−1, which

is equivalent to (y∗)−1ε−1xc = c∗x∗ε−1y−1. Let z = x∗ε−1y−1 ∈ J ; then we
have z∗c = c∗z. We regard z and c as matrices in Mm(Md(F )). Denote by
z(j) ∈ Mmj (Md(F )) the block matrix in z, which is in the same place as $aj

E Imj
in c. Since z∗c = c∗z, by direct calculation

(z(j))∗$aj
E = (−1)aj$aj

E z
(j) for j = 1, . . . , r.(11)
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By considering the following embedding

Mmj (Md(F )) ↪→ Mm(Md(F ))
h 7→ diag(0m1d, . . . , 0mj−1d, h, 0mj+1d, . . . , 0mrd),

we regard Mmjd(F ) as a subalgebra of Mmd(F ) denoted by A(j), where 0mjd
represents the zero matrix of size mjd ×mjd. We write a(j) = a ∩ A(j). By
abuse of notation, we identify the element β0 ⊗ . . .⊗ β0, which consists of mj

copies of β0 and is contained in Mmj (Md(F )), with β. By [36], Théorème 2.17,
since z ∈ J(a, β), we get z(j) ∈ J(a(j), β) for j = 1, . . . , r. By loc. cit., if we
denote by

M = GLm1d(F )× . . .×GLmrd(F )

the Levi subgroup of G corresponding to the partition n = m1d + . . . + mrd,
and then

M ∩ J = J(a(1), β)× . . .× J(a(r), β)

and

M ∩ J1 = J1(a(1), β)× . . .× J1(a(r), β).

Thus we get diag(z(1), . . . , z(r)) ∈M ∩ J . Furthermore, we have

M ∩ J/M ∩ J1 ∼= J(a(1), β)/J1(a(1), β)× . . .× J(a(r), β)/J1(a(r), β)
∼= GLm1(l)× . . .×GLmr (l).

Since (·)∗ fixes M ∩ J and M ∩ J1, it induces a map

M ∩ J/M ∩ J1 ∼= GLm1(l)× . . .×GLmr (l)
→ GLm1(l)× . . .×GLmr (l) ∼= M ∩ J/M ∩ J1,

(z(1), . . . , z(r)) 7→ ((z(1))∗, . . . , (z(r))∗),

where l is the residue field of E and E0, and z(j) ∈ J(a(j), β)/J1(a(j), β) ∼=
GLmj (l) is the image of z(j).

We show that for any i such that 2 - ai, we have 2 | mi. Considering j = i
in equation (11), we get (z(i))∗ = −$ai

E z
(i)$−aiE . Since J/J1 ∼= U(b)/U1(b) on

which E× acts trivially by conjugation, we get z(i) = $ai
E z

(i)$−aiE = −(z(i))∗ =
− tz(i). Since there does not exist any anti-symmetric invertible matrix of odd
dimension, we must have 2|mi. Now for αj = (aj ,mj), define

$
αj
E =

{
$
aj
E Imj if 2|aj ;

$
aj
E Jmj/2 if 2 - aj ,
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and c′ = diag($α1
E , . . . , $αr

E ), where Jmj/2 :=
(

0 Imj/2
−Imj/2 0

)
. We have

c′ = c′∗ and c′ is in the same J-J double coset as c. Letting b = c′ε−1, we get
bτ(b) = 1. �

Now we write γ = x′bx with x, x′ ∈ J and b ∈ B× as in Lemma 6.6.
Replacing g by τ(x′)−1g does not change the double coset JgGτ but changes
γ into bxτ(x′). So from now on, we assume that

γ = bx, bτ(b) = 1, x ∈ J, b is of the form in the proof of Lemma 6.6.
(12)

Write K for the group J ∩ b−1Jb. Since τ(b) = b−1, and J is τ -stable, we
have x ∈ K. The following corollary of Lemma 6.6 is obvious.

Corollary 6.7. — The map δb : k 7→ b−1τ(k)b is an involution on K.

Now for a1 > . . . > ar as in the proof of Lemma 6.6, and M = GLm1d(F )×
. . . × GLmrd(F ) ⊆ G, we write P for the standard parabolic subgroup of G
generated by M and upper triangular matrices, N for the unipotent radical of
P and N− for the opposite of N as a unipotent sub-group. By definition, b
normalizes M , and we have

K = (K ∩N−) · (K ∩M) · (K ∩N).

For V = K ∩B× = U ∩ b−1Ub a subgroup of B×, similarly we have

V = (V ∩N−) · (V ∩M) · (V ∩N),

where U = U(b) and U1 = J1 ∩ B× = U1(b). By definition, V is also fixed
by δb.

Lemma 6.8. — The subset

K1 = (K ∩N−) · (J1 ∩M) · (K ∩N)

is a δb-stable normal pro-p-subgroup of K, and we have K = V K1.

Proof. — The proof is the same as that in [35], Lemma 6.10. �

Lemma 6.9. — Letting x ∈ K such that xδb(x) = 1, then there are k ∈ K and
v ∈ V such that:

(1) The element v is in GLm1(oE) × . . . × GLmr (oE) ⊆ B× such that
vδb(v) = 1.

(2) One has δb(k)xk−1 ∈ vK1.

Proof. — Let V 1 = V ∩K1. We have

V 1 = (V ∩N−) · (U1 ∩M) · (V ∩N).
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Thus we have canonical δb-equivariant group isomorphisms
K/K1 ∼= V/V 1 ∼= (U ∩M)/(U1 ∩M).(13)

Since B×∩M = GLm1(E)× . . .×GLmr (E), the right-hand side of (13) is iden-
tified withM = GLm1(l)× . . .×GLmr (l), where l denotes the residue field of
E. As in the proof of Lemma 6.6, we may write ε−1b = diag($a1

E c1, . . . , $
ar
E cr)

with cj ∈ GLmj (oE). Moreover, the involution δb acts onM by

(g1, . . . , gr) 7→ (c1−1σ(tg−1
1 )c1, . . . , cr−1σ(tg−1

r )cr),

where we denote by cj the image of cj in GLmj (l). We denote by (g1, . . . , gr)
the image of x inM = GLm1(l)× . . .×GLmr (l).

When E/E0 is unramified, we denote by l0 the residue field of E0. So l/l0 is
quadratic, and the restriction of σ to l is the non-trivial involution in Gal(l/l0).
Since (b−1ε)∗ = ε(b∗)−1ε−1ε = τ(b)ε = b−1ε, we get cj∗ = cj . If xδb(x) = 1,
and then (cjgj)∗ = g∗j cj = cjgj .

Lemma 6.10 ([30], Proposition 2.3.1). — For x = x∗ in GLs(l), there exists
A ∈ GLs(l) such that AxA∗ = Is.

Using Lemma 6.10, we may choose kj ∈ GLmj (oE) such that its image kj
in GLmj (l) satisfies (kj

∗)−1cjgjkj
−1 = Imj . Choosing k = diag(k1, . . . , kr)

and v = diag(v1, . . . , vr) = diag(c−1
1 , . . . , c−1

r ), we get δb(k)xk−1 ∈ vV 1 and
δb(v)v = diag(c−1

1 c∗1c1c
−1
1 , . . . , c−1

r c∗rcrc
−1
r ) = 1.

When E/E0 is ramified, the restriction of σ to l is trivial. Since (b−1ε)∗ =
b−1ε, we get c∗j = (−1)ajcj and tcj = (−1)ajcj .

Lemma 6.11 ([30], Proposition 2.5.4). — For x = tx in GLs(l), there exists
A ∈ GLs(l) such that Ax tA is either Is or εs = diag(1, . . . , 1, ε), where ε ∈
l× − l×2 with l×2 denoting the group of square elements of l×.

Lemma 6.12 ([30], Proposition 2.4.1). — For x = − tx in GLs(l) and 2 | s,
there exists A ∈ GLs(l) such that Ax tA = Js/2.

When aj is even, using Lemma 6.11 we may choose kj ∈ GLmj (oE) such
that its image kj in GLmj (l) satisfies that ( tkj)−1cjgjkj

−1 equals either Imj or
εmj , where we choose εmj = diag(1, . . . , 1, ε) ∈ GLmj (oE) such that its image
εmj in GLmj (l) is diag(1, . . . , 1, ε) as in Lemma 6.11. Let vj be c−1

j or c−1
j εmj

in the two cases, respectively.
When aj is odd we deduce that mj is even from the proof of Lemma 6.6.

Using Lemma 6.12, we may choose kj ∈ GLmj (oE) such that its image kj in
GLmj (l) satisfies ( tkj)−1cjgjkj

−1 = Jmj/2 . We choose vj = c−1
j Jmj/2.

Choosing k = diag(k1, . . . , kr) and v = diag(v1, . . . , vr), we know that
δb(k)xk−1 ∈ vV 1
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and

δb(v)v = diag(c−1
1 (v∗1)−1c1v1, . . . , c

−1
r (v∗r )−1crvr) = 1

by direct calculation in the two cases, respectively. So no matter whether or
not E/E0 is ramified, we finish the proof. �

Now we finish the proof of Lemma 6.5. Using Lemma 6.9, we choose k ∈ K
and v ∈ V such that bvτ(bv) = 1 and δb(k)xk−1 ∈ vK1. Thus we have
τ(k)γk−1 ∈ bvK1. Therefore, replacing g by kg and b by bv, we may assume

γ = bx, bτ(b) = 1, x ∈ K1, b ∈ $a1
E GLm1(oE)× . . .×$ar

E GLmr (oE).
(14)

Furthermore, we have δb(x)x = 1.
Since K1 is a δb-stable pro-p-group, and p is odd, the first cohomology set

of δb on K1 is trivial. Thus, x = δb(y)y−1 for some y ∈ K1, and hence
γ = τ(y)by−1. Considering the determinant of this equation, we have det(b) ∈
NF/F0(F×). If we denote by detB the determinant function defined on B× =
GLm(E), then det(b) = NE/F (detB(b)). Using Lemma 5.18 for L = E, we get
detB(b) ∈ NE/E0(E×) and detB(ε−1b) ∈ detB(ε−1)NE/E0(E×). Since τ(b)b =
1, we have (ε−1b)∗ = ε−1b. Using Proposition 2.1, there exists h ∈ B×, such
that ε−1b = (h∗)−1ε−1h−1. So we have b = τ(h)h−1. Thus, g ∈ yhGτ ⊆
JB×Gτ , which finishes the proof of Lemma 6.5. �

6.3. Distinction of the Heisenberg representation. — Now let η be the Heisen-
berg representation of J1 associated to θ. We have the following result similar
to [35], Proposition 6.12, by replacing σ with τ :

Proposition 6.13. — Given g ∈ G, we have:

dimRHomJ1g∩Gτ (ηg, 1) =
{

1 if g ∈ JB×Gτ ,
0 otherwise.

Proof. — It is useful to recall some details of the proof of this proposition,
which will be used in the next subsection. We write δ(x) := γ−1τ(x)γ for any
x ∈ G, which is an involution on G. And for any subgroup H ⊂ G, we have
Hg ∩Gτ = (H ∩Gδ)g.

When g /∈ JB×Gτ , restricting ηg to H1g and using Proposition 6.4 and
Lemma 6.5, the dimension equals 0. When g ∈ JB×Gτ , we need to prove that
HomJ1g∩Gτ (ηg, 1) = HomJ1∩Gδ(η, 1) is of dimension 1. We state the following
general proposition, which works for a general involution on G:

Proposition 6.14. — Let δ be an involution on G such that δ(H1) = H1γ

and θ ◦ δ = θ−1γ , where γ ∈ B× such that δ(γ)γ = 1. Then we have

dimRHomJ1∩Gδ(η, 1) = 1.
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Since Proposition 6.14 in our special case implies Proposition 6.13, we only
need to focus on the proof of this proposition. We only need to prove that the
space

HomJ1∩Gδ(η(J1:H1)1/2
, 1) ∼= HomJ1∩Gδ(IndJ

1

H1(θ), 1)

is of dimension (J1 : H1)1/2.

Lemma 6.15. — For H a subgroup of G such that δ(H) = Hγ with δ and γ as
in Proposition 6.14, we have

H ∩Gδ = Hγ ∩Gδ = H ∩Hγ ∩Gδ.

Proof. — We have H ∩ Gδ = δ(H ∩ Gδ) = δ(H) ∩ δ(Gδ) = Hγ ∩ Gδ, which
proves the lemma. �

Lemma 6.16. — Let δ and γ be as in Proposition 6.14; then we have the
following isomorphisms of finite dimensional representations:
(1) IndJ

1

H1θ|J1∩J1γ ∼=
⊕

H1\J1/J1∩J1γ IndJ
1∩J1γ

H1∩J1γθ.
(2) IndJ

1γ

H1γθγ |J1∩J1γ ∼=
⊕

H1γ\J1γ/J1∩J1γ IndJ
1∩J1γ

J1∩H1γθγ .
(3) IndJ

1

H1θ|J1∩Gδ
∼=
⊕

H1\J1/J1∩J1γ
⊕

H1∩J1γ\J1∩J1γ/J1∩Gδ IndJ
1∩Gδ
H1∩Gδθ.

(4) IndJ
1γ

H1γθγ |J1γ∩Gδ
∼=
⊕

H1γ\J1γ/J1∩J1γ
⊕

J1∩H1γ\J1∩J1γ/J1γ∩Gδ IndJ
1γ∩Gδ
H1γ∩Gδθ.

Proof. — We only prove (1) and (3), since the proofs of (2) and (4) are similar
to the proofs of (1) and (3), respectively.

For (1), using the Mackey formula, we have

IndJ
1

H1θ|J1∩J1γ ∼=
⊕

x∈H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1x∩(J1∩J1γ)θ
x

∼=
⊕

H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ.

The last step is because x ∈ J1 normalizes H1 and θ.
For (3), using the Mackey formula again, we have

IndJ
1

H1θ|J1∩Gδ
∼=

⊕
H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ

∼=
⊕

H1\J1/J1∩J1γ

⊕
y∈H1∩J1γ\J1∩J1γ/J1∩Gδ

IndJ
1∩Gδ

(H1∩J1γ)y∩(J1∩Gδ)θ
y

∼=
⊕

H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

IndJ
1∩Gδ
H1∩Gδθ.

The last step is because y ∈ J1 ∩ J1γ normalizes H1 ∩ J1γ and θ, and H1 ∩
J1γ ∩ J1 ∩ Gδ = H1 ∩ Gδ by Lemma 6.15.(2) for H = J1. So we finish the
proof. �
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Lemma 6.17. — Let δ and γ be as in Proposition 6.14; then we have:
(1) |H1 \ J1/J1 ∩ J1γ | · |H1 ∩ J1γ \ J1 ∩ J1γ/J1 ∩Gδ| = (J1 : H1)1/2.
(2) |H1γ \ J1γ/J1 ∩ J1γ | · |J1 ∩H1γ \ J1 ∩ J1γ/J1γ ∩Gδ| = (J1γ : H1γ)1/2.
(3) (J1 : H1)1/2 = (J1γ : H1γ)1/2 = (J1 ∩Gδ : H1 ∩Gδ).

Proof. — For (3), we refer to [35] §6.3 for a proof, by noting that all the results
and proofs from Lemma 6.14 to the end of §6.3 in ibid. can be generalized to
a general involution δ on G, with τ in loc. cit. replaced by δ in our settings.
For (1), since J1 normalizes H1, and J1 ∩ J1γ normalizes H1 ∩ J1γ , we have

left hand side of (1) = (J1 : H1(J1 ∩ J1γ)) · (J1 ∩ J1γ : (H1 ∩ J1γ)(J1 ∩Gδ))
= (J1 : H1) · (J1 ∩ J1γ : H1 ∩ J1γ)−1

· (J1 ∩ J1γ : H1 ∩ J1γ) · (J1 ∩Gδ : H1 ∩ J1γ ∩Gδ)−1

= (J1 : H1) · (J1 ∩Gδ : H1 ∩Gδ)−1

= (J1 : H1)1/2,

where we use Lemma 6.15 for H = J1γ and (3) in the last two equations. So
we finish the proof of (1), and the proof of (2) is similar. �

Combining Lemma 6.16.(3) with Lemma 6.17.(1),(3), we have

dimRHomJ1∩Gδ(IndJ
1

H1θ, 1)

= dimR

⊕
H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

HomJ1∩Gδ(IndJ
1∩Gδ
H1∩Gδθ, 1)

= (J1 : H1)1/2dimRHomH1∩Gδ(θ|H1∩Gδ , 1)

= (J1 : H1)1/2.

For the last step, since γ intertwines θ−1 and θ ◦ δ = θ−1γ , we know that θ is
trivial on

{yδ(y)|y ∈ H1 ∩H1γ}.

This set equals H1 ∩ Gδ since the first cohomology group of δ−1-action on
H1 ∩H1γ is trivial. Thus, θ|H1∩Gδ is the trivial character. �

6.4. Distinction of extensions of the Heisenberg representation. — Let κ be an
irreducible representation of J extending η. There is a unique irreducible rep-
resentation ρ of J , which is trivial on J1 satisfying Λ ∼= κ⊗ ρ.

Lemma 6.18. — Let g ∈ JB×Gτ .
(1) There is a unique character χ of Jg ∩Gτ trivial on J1g ∩Gτ , such that

HomJ1g∩Gτ (ηg, 1) = HomJg∩Gτ (κg, χ−1).
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(2) The canonical linear map

HomJ1g∩Gτ (ηg, 1)⊗HomJg∩Gτ (ρg, χ)→ HomJg∩Gτ (Λg, 1)

is an isomorphism.

Proof. — The proof is the same as that in [35], Lemma 6.20. �

For g ∈ JB×Gτ , we have τ(g) ∈ τ(JB×Gτ ) = JB×Gτ , which means that
we may consider a similar thing for τ(g) to that for g in Lemma 6.18. Thus,
there exists a unique character χ′ of Jτ(g)∩Gτ trivial on J1τ(g)∩Gτ , such that

HomJ1τ(g)∩Gτ (ητ(g), 1) ∼= HomJτ(g)∩Gτ (κτ(g), χ′−1).

Moreover, τ(J) = J , τ(J) = J , τ(J1) = J1, and τ(H1) = H1, thus using
Lemma 4.2 and Lemma 6.15 we have Jg ∩ Gτ = Jτ(g) ∩ Gτ = Jg ∩ Gτ =
Jτ(g) ∩Gτ , J1g ∩Gτ = J1τ(g) ∩Gτ and H1g ∩Gτ = H1τ(g) ∩Gτ . As a result,
χ and χ′ are characters defined on the same group Jg ∩ Gτ = Jτ(g) ∩ Gτ . A
natural idea is to compare them. For the rest of this subsection, we focus on
the proof of the following proposition:

Proposition 6.19. — For χ and χ′ defined above as characters of Jg ∩Gτ =
Jτ(g) ∩Gτ , we have χ = χ′.

We write δ(x) = γ−1τ(x)γ for any x ∈ G with γ = τ(g)g−1. From §3.1, we
have γ ∈ IG(η) = IG(κ0), where κ0 = κ|J . Moreover, we have

dimR(HomJ∩Jγ (κ0γ , κ0)) = dimR(HomJ1∩J1γ (ηγ , η)) = 1.

Using Lemma 6.15, we have J1 ∩ Gδ = J1γ ∩ Gδ as a subgroup of J1 ∩ J1γ

and H1 ∩Gδ = H1γ ∩Gδ. We claim the following proposition, which works for
general γ and δ:

Proposition 6.20. — Let δ and γ be as in Proposition 6.14, then for a non-
zero homomorphism ϕ ∈ HomJ1∩J1γ (ηγ , η) = HomJ∩Jγ (κ0γ , κ0), it naturally
induces an R-vector space isomorphism:

fϕ : HomJ1∩Gδ(η, 1)→ HomJ1γ∩Gδ(ηγ , 1),
λ 7→ λ ◦ ϕ.

First, we show that how Proposition 6.20 implies Proposition 6.19. Using
Proposition 6.13 for g and τ(g), respectively, we have dimRHomJ1g∩Gτ (ηg, 1) =
dimRHomJ1τ(g)∩Gτ (ητ(g), 1) = 1. By Proposition 6.20,

fϕ : HomJ1g∩Gτ (ηg, 1)→ HomJ1τ(g)∩Gτ (ητ(g), 1),
λ 7→ λ ◦ ϕ
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is bijective. If we choose

0 6= λ ∈ HomJ1g∩Gτ (ηg, 1) and

0 6= λ′ := fϕ(λ) = λ ◦ ϕ ∈ HomJ1τ(g)∩Gτ (ητ(g), 1),

then for any v in the representation space of η and any x ∈ Jg∩Gτ = Jτ(g)∩Gτ ,
we have

χ′(x)−1λ′(v) = λ′(κ0τ(g)(x)v) (by Lemma 6.18.(1))(15)

= λ(ϕ(κ0τ(g)(x)v)) (by definition of λ′)

= λ(κ0g(x)ϕ(v)) (since ϕ ∈ HomJg∩Jτ(g)(κ0τ(g), κ0g))
= χ(x)−1λ(ϕ(v)) (by Lemma 6.18.(1))
= χ(x)−1λ′(v) (by definition of λ′).

Since v and x ∈ Jg ∩ Gτ = Jτ(g) ∩ Gτ are arbitrary, we have χ′|Jτ(g)∩Gτ =
χ|Jg∩Gτ , which is Proposition 6.19.

So we only need to focus on the proof of Proposition 6.20.

Lemma 6.21. — Let δ and γ be as in Proposition 6.14; then there exist an
R[J1 ∩ J1γ ]-module homomorphism

Φ : ηγ(J1:H1)1/2
|J1∩J1γ ∼= IndJ

1γ

H1γθγ |J1∩J1γ

→ IndJ
1

H1θ|J1∩J1γ ∼= η(J1:H1)1/2
|J1∩J1γ

and a linear form L̃0 ∈ HomJ1∩Gδ(η(J1:H1)1/2
, 1), such that

0 6= L̃0 ◦ Φ ∈ HomJ1∩Gδ(ηγ(J1γ :H1γ)1/2
, 1).

Proof. — We prove this lemma by giving a direct construction of Φ and L̃0.
First, we choose our L̃0. We choose λ0 ∈ HomJ1∩Gδ(IndJ

1∩Gδ
H1∩Gδ1, 1) ∼= R with

the isomorphism given by Frobenius reciprocity, such that its corresponding
image in R equals 1. Then we choose L̃0 = (λ0, . . . , λ0) as an element in⊕

H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

HomJ1∩Gδ(IndJ
1∩Gδ
H1∩Gδ1, 1)

∼= HomJ1∩Gδ(η(J1:H1)1/2
, 1),

where the isomorphism is determined by Lemma 6.16.(3), and by Lemma 6.17
the number of copies equals (J1 : H1)1/2.

Now we focus on the construction of Φ. We define

f0(g) :=
{
θγ(g1)θ(g2) if g = g1g2 ∈ (J1 ∩H1γ)(H1 ∩ J1γ)
0 if g ∈ J1 ∩ J1γ − (J1 ∩H1γ)(H1 ∩ J1γ)

(16)
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as a continuous function defined on J1 ∩ J1γ with values in R. Since (J1 ∩
H1γ) ∩ (H1 ∩ J1γ) = H1 ∩H1γ and θγ = θ on H1 ∩H1γ , we know that f0 is
well defined.

We want to verify that f0 ∈ IndJ
1∩J1γ

H1∩J1γθ and f0 ∈ IndJ
1∩J1γ

J1∩H1γθγ . Since
J1 normalizes H1, and J1γ normalizes H1γ , by direct calculation J1 ∩ J1γ

normalizes J1 ∩ H1γ and H1 ∩ J1γ . In particular, we have (J1 ∩ H1γ)(H1 ∩
J1γ) = (H1 ∩ J1γ)(J1 ∩ H1γ). Moreover, since J1 and J1γ normalize θ and
θγ , respectively, (J1 ∩H1γ)(H1 ∩ J1γ) = (H1 ∩ J1γ)(J1 ∩H1γ) normalizes θ
and θγ .

For g′1 ∈ J1∩H1γ , g′2 ∈ H1∩J1γ and g ∈ J1∩J1γ , if g /∈ (J1∩H1γ)(H1∩J1γ),
then g′1g, g′2g /∈ (J1 ∩H1γ)(H1 ∩ J1γ), and thus

f0(g′1g) = f0(g′2g) = 0;

if g = g1g2 ∈ (J1 ∩H1γ)(H1 ∩ J1γ), then
f0(g′1g) = θγ(g′1)θγ(g1)θ(g2) = θγ(g′1)f0(g)

and
f0(g′2g) = f0(g′2g1g

′−1
2 g′2g2)

= θγ(g′2g1g
′−1
2 )θ(g′2)θ(g2) = θ(g′2)θγ(g1)θ(g2) = θ(g′2)f0(g).

Considering these facts, we have f0 ∈ IndJ
1∩J1γ

H1∩J1γθ and f0 ∈ IndJ
1∩J1γ

J1∩H1γθγ .
We consider J1 ∩ J1γ-action on f0 given by the right translation and we let

〈f0〉 be theR[J1∩J1γ ]-subspace of both IndJ
1∩J1γ

J1∩H1γθγ and IndJ
1∩J1γ

H1∩J1γθ generated
by f0. We choose Vf0 to be an R[J1 ∩ J1γ ]-invariant subspace of IndJ

1∩J1γ

J1∩H1γθγ ,
such that IndJ

1∩J1γ

J1∩H1γθγ = 〈f0〉 ⊕ Vf0 .
We define the R[J1 ∩ J1γ ]-module homomorphism

Φ1 : IndJ
1∩J1γ

J1∩H1γθγ → IndJ
1∩J1γ

H1∩J1γθ,

such that Φ1(f0) = f0 and Φ1|Vf0
= 0. Moreover, we define

Φ :
⊕

H1γ\J1γ/J1∩J1γ

IndJ
1∩J1γ

J1∩H1γθγ →
⊕

H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ

given by

Φ = diag(Φ1, 0, . . . , 0) ∈ MN1(HomR[J1∩J1γ ](IndJ
1∩J1γ

J1∩H1γθγ , IndJ
1∩J1γ

H1∩J1γθ)),

where the coordinates are indexed by N1 := |H1γ \ J1γ/J1 ∩ J1γ | = |H1 \
J1/J1∩J1γ |. In particular, we let the first coordinate correspond to the trivial
double cosets H1γ(J1 ∩ J1γ) and H1(J1 ∩ J1γ), respectively. As a result, Φ
gives an R[J1 ∩ J1γ ]-module homomorphism. By Lemma 6.16 we have

η(J1:H1)1/2 ∼= IndJ
1

H1θ|J1∩J1γ ∼=
⊕

H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ(17)
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and

ηγ(J1:H1)1/2 ∼= IndJ
1γ

H1γθγ |J1∩J1γ ∼=
⊕

H1γ\J1γ/J1∩J1γ

IndJ
1∩J1γ

J1∩H1γθγ .(18)

With these two isomorphisms, we may regard Φ as a homomorphism from
ηγ(J1:H1)1/2 |J1∩J1γ to η(J1:H1)1/2 |J1∩J1γ .

Finally, we study L̃0 ◦ Φ. First, we calculate

Φ1 : IndJ
1∩J1γ

J1∩H1γθγ |J1∩Gδ → IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ .

We have the following isomorphism

IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ
∼=

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

IndJ
1∩Gδ
H1∩Gδ1.(19)

By definition of Φ1 and (16),(19), Φ1(f0|J1∩Gδ) = f0|J1∩Gδ equals

(1H1∩Gδ , . . . ,1H1∩Gδ , 0, . . . , 0) ∈
⊕

H1∩J1γ\J1∩J1γ/J1∩Gδ
IndJ

1∩Gδ
H1∩Gδ1,(20)

where the coordinates are indexed by the double coset H1∩J1γ \J1∩J1γ/J1∩
Gδ, and those coordinates that equal the characteristic function 1H1∩Gδ are
exactly indexed by the subset H1 ∩ J1γ \ (J1 ∩H1γ)(J1 ∩H1γ)/J1 ∩Gδ.

We define v0 = (f0|J1∩Gδ , 0, . . . , 0) as an element in both⊕
H1\J1/J1∩J1γ

IndJ
1∩J1γ

J1∩H1γθγ |J1∩Gδ

and ⊕
H1γ\J1γ/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ ,

where the first coordinate corresponds to the trivial double cosets H1(J1∩J1γ)
and H1γ(J1 ∩ J1γ), respectively, as in our definition of Φ. Thus, we have

(L̃0 ◦ Φ)(v0) = L̃0((Φ1(f0|J1∩Gδ), 0, . . . , 0)) = L̃0((f0|J1∩Gδ , 0, . . . , 0))
= |H1 ∩ J1γ \ (H1 ∩ J1γ)(J1 ∩H1γ)/J1 ∩Gδ| · λ0(1H1∩Gδ) 6= 0,

where we use the definition of L̃0 and (20) for the last equation. Thus, we get
L̃0 ◦ Φ 6= 0, which finishes the proof. �

Lemma 6.22. — We keep the same notations as in Proposition 6.20 and we fix

0 6= λ′0 ∈ HomJ1∩Gδ(η, 1) and 0 6= λ′′0 ∈ HomJ1∩Gδ(ηγ , 1).
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Then:
(1) For any L̃ ∈ HomJ1∩Gδ(η(J1:H1)1/2

, 1), there exists an R[J1 ∩ J1γ ]-
homomorphism

Pr : η(J1:H1)1/2
|J1∩J1γ → η|J1∩J1γ

such that L̃ = λ′0 ◦ Pr;
(2) For any L̃ ∈ HomJ1∩Gδ(ηγ(J1:H1)1/2

, 1), there exists an R[J1 ∩ J1γ ]-
homomorphism

s : ηγ |J1∩J1γ → ηγ(J1:H1)1/2
|J1∩J1γ

such that λ′′0 = L̃ ◦ s.

Proof. — The proof is just a simple application of linear algebra. We write
N = (J1 : H1)1/2. For (1), we define pri : η(J1:H1)1/2 |J1∩J1γ → η|J1∩J1γ as the
projection with respect to the i-th coordinate. Since λ′0 ◦ pr1,. . . ,λ′0 ◦ prN are
linearly independent, and dimRHomJ1∩Gδ(η(J1:H1)1/2

, 1) = N by Proposition
6.13, λ′0◦pr1,. . . ,λ′0◦prN generate HomJ1∩Gδ(η(J1:H1)1/2

, 1). So we may choose
Pr to be a linear combination of prj , which proves (1). The proof of (2) is
similar. �

Now we finish the proof of Proposition 6.20. Using Lemma 6.22.(1) we choose
Pr such that L̃0 = λ′0 ◦ Pr, where L̃0 is defined as in the statement of Lemma
6.21. Using Lemma 6.21, there exists Φ such that L̃0 ◦ Φ 6= 0. Using Lemma
6.22.(2) we choose s such that L̃0 ◦ Φ ◦ s = λ′′0 6= 0. We define ϕ′ = Pr ◦ Φ ◦ s
and we have the following commutative diagram

ηγ(J1:H1)1/2 |J1∩J1γ
Φ // η(J1:H1)1/2 |J1∩J1γ

Pr
��

ηγ |J1∩J1γ

s

OO

ϕ′ // η|J1∩J1γ

By definition we have λ′0 ◦ ϕ′ = λ′0 ◦ Pr ◦ Φ ◦ s = λ′′0 6= 0, which means that
ϕ′ 6= 0. Since HomJ1∩J1γ (ηγ , η) is of dimension 1, we deduce that ϕ equals
ϕ′ multiplying with a non-zero scalar, which means that λ′0 ◦ ϕ 6= 0. Since
HomJ1∩Gδ(η, 1) and HomJ1∩Gδ(ηγ , 1) are of dimension 1, we know that fϕ is
an R-vector space isomorphism, which proves Proposition 6.20.

6.5. Existence of a τ -self-dual extension of η. — Now our aim is to choose a
simple κ as an extension of η. Specifically, under the condition of Remark 6.1,
we show that we may assume κ to be τ -self-dual, which means that κτ ∼= κ∨.
First of all, we have the following lemma, whose proof is the same as that in
[35], Lemma 5.21:
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Lemma 6.23. — There exists a unique character µ of J trivial on J1 such that
κτ∨ ∼= κµ. It satisfies the identity µ ◦ τ = µ.

Proposition 6.24. — When char(R) = 0, there exists a character φ of J
trivial on J1 such that µ = φ(φ ◦ τ). Moreover, for any R, we may choose κ
to be an extension of η such that κτ∨ ∼= κ.

Proof. — First, we consider the case where char(R) = 0. We need the following
elementary lemma:

Lemma 6.25. — Assume char(R) = 0. For N odd and A ∈ GLN (R) such that
A2s = cIN for s ∈ N and c ∈ R×, we have Tr(A) 6= 0.

Proof. — Because s = 0 is trivial, from now on we assume s ≥ 1. Let ζ2s be
a primitive 2s-th root of 1 in R and let c1/2s be a 2s-th root of c in R; then
we get Tr(A) = c1/2

s∑N
i=1 ζ

ni
2s with ni ∈ {0, 1, 2, . . . , 2s − 1}. We know that

P (x) = x2s−1 + 1 is the minimal polynomial of ζ2s in Q[x]. If Tr(A) = 0, then
for Q(x) =

∑N
i=1 x

ni , we have Q(ζ2s) = 0. As a result, P (x)|Q(x) in Q[x] and,
thus, in Z[x] by the Gauss lemma. However, the sum of all the coefficients of
P (x) is even, and the sum of all the coefficients of Q(x) equals N , which is
odd. We get a contradiction. So Tr(A) 6= 0. �

Let us come back to our proof. We choose κ to be an extension of η; thus as
in Lemma 6.23, there exists a character µ of J such that κτ∨ ∼= κµ. If E/E0
is unramified, we let

µ : GLm(l) ∼= J/J1 → R×

be the character whose inflation is µ|J . There exists a character ϕ : l× → R×

such that µ = ϕ ◦ det. Since µ ◦ τ = µ, we get (ϕ ◦ σ)ϕ = 1, or equivalently
ϕ|l×0 = 1, where l0 is the residue field of E0, and σ acts on l as the Frobenius
map corresponding to l0. Let Q be the cardinality of l0; then the cardinality
of l is Q2. If we fix ζl a generator of l×, then ζQ+1

l is a generator of l×0 . So we
have ϕ(ζl)Q+1 = 1. Choose α : l× → R× a character such that

α(ζml )Q−1 = ϕ(ζl)−m for m ∈ Z.

Since

α(ζl)Q
2−1 = ϕ(ζl)−Q−1 = 1,

we know that α is well defined as a character of l×. Moreover, we get ϕ = α(α◦
σ)−1. Choosing φ0 : J → R× as the inflation of α◦det, we get µ|J = φ0(φ0 ◦τ).

Since $E and J generate J , to choose φ as a character of J extending φ0,
it suffices to show that µ($E) = 1. Since µ = µ ◦ τ , we get

µ($E) = µ(τ($E)) = µ($E)−1, thus µ($E) ∈ {1,−1}.
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Let e be the ramification index of E/F , and let $e
E = a0$F for a certain

a0 ∈ o×E . We have

$
e(Q−1)
E = aQ−1

0 $Q−1
F with aQ−1

0 ∈ 1 + pE ⊂ H1(a, β).

We write e(Q− 1) = 2su for 2 - u and s ∈ N. For A = κ($u
E), we have

A2s = κ(aQ−1
0 $Q−1

F ) = θ(aQ−1
0 )ωκ($Q−1

F )IN ,

where we use the fact that the restriction of κ to H1(a, β) equals N -copies of θ
with N = (J1 : H1)1/2, and ωκ is the central character of κ. Using Lemma 6.25
with A and c = θ(aQ−1

0 )ωκ($Q−1
F ), we get Tr(κ($u

E)) 6= 0. Since κτ∨ ∼= κµ,
considering the trace of both sides at $u

E , we get
Tr(κ($u

E)) = Tr(κ($u
E))µ($u

E),

thus µ($u
E) = 1. Since u is odd, and µ($E) equals either 1 or −1, we get

µ($E) = 1, which finishes the proof of this case.
If E/E0 is ramified, first we show that µ|l× = 1, where we consider the

embedding l× ↪→ E×. Let Q be the cardinality of l = l0 and let ζl be a
generator of l×; then we want to show that µ(ζl) = 1. Writing Q−1 = 2su with
2 - u and using Lemma 6.25 with A = κ(ζul ) and c = 1, we get Tr(κ(ζul )) 6= 0.
Since κτ∨ ∼= κµ, we get

Tr(κ(ζul )) = Tr(κ(ζul ))µ(ζul )

after considering the trace. Thus, µ(ζul ) = 1. Since µ(ζl) equals either 1 or −1,
which can be proved as the former case, and u is odd, we get µ(ζl) = 1. Thus,
µ|J = 1.

To finish the definition of φ : J → R× such that µ = φ(φ ◦ τ), we only need
to verify the equation

µ($E) = φ($E)φ(τ($E)) = φ($E)φ(−$E)−1 = φ(−1)−1.

Since we have already showed that µ(−1) = 1, using the relation µ = µ ◦ τ ,
we get µ($2

E) = µ(−$2
E) = µ($E)µ(τ($E))−1 = 1, so we deduce that µ($E)

equals either 1 or −1. Choose φ(−1) = µ($E), which is well defined, we finish
the definition of φ such that µ = φ(φ ◦ τ). Let κ′ = κφ, then κ′ is τ -self-dual.

Now we suppose R = Fl. Let θ̃ be the lift of θ to Ql given by the canonical
embedding Fl

×
↪→ Ql

×, then θ̃ is a simple character, and θ̃◦τ = θ̃−1. There is a
τ -self-dual representation κ̃ of J extending the Heisenberg representation η̃ of
J1 corresponding to θ̃. Moreover, we can further choose κ̃ such that the central
character of κ̃ is integral. To do this, first we choose κ̃0 to be a representation
of J extending η. We extend κ̃0 to a representation of F×J . This requires us to
choose a quasi-character ω̃ : F× → Ql

× extending ω
κ̃0 . We choose ω̃ such that

it is integral. If we further extend this representation to κ̃ as a representation
of J = E×J , then κ̃ is also integral. From the proof of the characteristic 0 case,
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we may further assume κ̃τ∨ ∼= κ̃ without losing the property that κ̃ is integral.
By [32], §2.11, the reduction of κ̃ to R, denoted by κ, is thus a τ -self-dual
representation of J extending η.

For char(R) = l > 0 in general, we fix ι : Fl ↪→ R an embedding. For θ a
simple character over R as before, which is of finite image, there exists a simple
character θ0 over Fl corresponding to the same simple stratum [a, β], such that
θ = ι ◦ θ0 and θ0 ◦ τ = θ−1

0 . Let η0 be the Heisenberg representation of θ0
and choose κ0 to be a τ -self-dual extension of η0 by the former case. Then
κ = κ0 ⊗Fl R is what we want. �

6.6. Proof of Theorem 6.2. — Using Proposition 6.24, we may assume that κ
is τ -self-dual, which means that κτ∨ ∼= κ. From its proof, when R = Fl, we
assume further that κ is the reduction of a τ -self-dual representation κ̃ of J
over Ql, and when char(R) = l > 0 in general, we assume κ to be realized as
a Fl-representation via a certain field embedding Fl ↪→ R.

Proposition 6.26. — The character χ defined by Lemma 6.18.(1) is quadratic
over Jg ∩Gτ , that is, χ2|Jg∩Gτ = 1.

Proof. — First, we assume that char(R) = 0. We have the following isomor-
phisms

HomJ1τ(g)∩Gτ (ητ(g), 1)(21)
∼= HomJ1g∩Gτ (ηg, 1)
∼= HomJg∩Gτ (κg, χ−1)
∼= HomJg∩Gτ (χ,κg∨) (by the duality of contragradient)
∼= HomJg∩Gτ (κg∨, χ) (since char(R) = 0)
∼= HomJg∩Gτ (κg∨ ◦ τ, χ ◦ τ)
∼= HomJg∩Gτ ((κτ∨)τ(g), χ ◦ τ)
∼= HomJτ(g)∩Gτ (κτ(g), χ ◦ τ) (since κ is τ -self-dual).

Using Proposition 6.19 and the uniqueness of χ′ in the loc. cit., we have χ◦τ =
χ−1. Since χ is defined on Jg ∩ Gτ , which is τ -invariant, we have χ ◦ τ = χ.
Thus, χ2 = χ(χ ◦ τ) = 1.

If R = Fl, we denote by κ̃ a τ -self-dual Ql-lift of κ and we denote by χ̃
the character defined by Lemma 6.18.(1) with respect to κ̃ and η̃, where η̃ is a
J1∩Gτ -distinguished Ql-lift of η. Using this proposition for Ql-representations,
we get χ̃2 = 1. From the uniqueness of χ, we know that χ̃ is a Ql-lift of χ. As
a result, we get χ2 = 1.

If char(R) = l > 0 in general, from the assumption of κ mentioned at the
beginning of this subsection, via a field embedding Fl ↪→ R we may realize all
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the representations mentioned in this proposition as representations over Fl, so
we finish the proof by using the former case. �

As in the proof of Lemma 6.5, we assume g ∈ B× and

γ = bx, bτ(b) = 1, x ∈ K1, b ∈ $a1
E GLm1(oE)× . . .×$ar

E GLmr (oE).
(22)

There exists a unique standard hereditary order bm ⊆ b such that
U1(bm) = (U ∩ δ(U1))U1 = (U ∩ U1γ)U1,

where we define δ(y) = γ−1τ(y)γ, for any y ∈ G as an involution on G. We
have the following lemma whose proof is the same as that in [35], Lemma 6.22,
inspired by [22], Proposition 5.20:

Lemma 6.27. — We have U1(bm) = (U1(bm) ∩Gδ)U1.

Theorem 6.28. — Let g ∈ G and suppose HomJg∩Gτ (Λg, 1) is non-zero. Then
τ(g)g−1 ∈ J .

Proof. — It is enough to show that r = 1 in (22). If not, bm by definition is
a proper suborder of b. Furthermore, U1(bm) := U1(bm)/U1 is a non-trivial
unipotent subgroup of U/U1 ∼= GLm(l). Using Lemma 6.18.(2), we have

HomJ∩Gδ(ρ, χg
−1

) ∼= HomJg∩Gτ (ρg, χ) 6= 0.

Restricting ourselves to U1(bm) ∩Gδ, we have

HomU1(bm)∩Gδ(ρ, χg
−1

) 6= 0.(23)
Using Lemma 6.27, we have the isomorphism

(U1(bm) ∩Gδ)U1/U1 ∼= U1(bm)/U1.

We denote by ρ the cuspidal representation of U0/U1 ∼= GLm(l) whose inflation
is ρ|U0 , and by χg−1 the character of U1(bm) whose inflation is χg−1 . So if we
consider the equation (23) modulo U1, then we get

Hom
U1(bm)(ρ, χg

−1) 6= 0.

Since χg−1 |J∩Gδ is quadratic, and U1(bm) is a p-group with p 6= 2, we get
χg−1 = 1, and thus

Hom
U1(bm)(ρ, 1) 6= 0,

which contradicts to the fact that ρ is cuspidal. �

Proof of Theorem 6.2. — If there exists a τ -self-dual simple type (J ,Λ) in π
such that HomJ∩Gτ (Λ, 1) is non-zero, then π is Gτ -distinguished. Conversely,
there exists g ∈ G such that HomJg∩Gτ (Λg, 1) is non-zero. Using Theorem
6.28 we conclude that (Jg,Λg) is a τ -self-dual simple type. �
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Finally, we state the following corollary of Theorem 6.28 as the end of this
section:

Corollary 6.29. — Under the assumption of Theorem 6.28, we have g ∈ JGτ
or g ∈ Jg1G

τ , where the latter case exists only if m is even, and g1 ∈ B× is
fixed such that

τ(g1)g−1
1 =

{
$EIm if E/E0 is unramified.
$EJm/2 if E/E0 is ramified.

As a result,
HomGτ (π, 1) ∼= HomJ∩Gτ (Λ, 1)⊕HomJg1∩Gτ (Λg1 , 1).

Proof. — Recall that we have already assumed that g ∈ B×. Since τ(g)g−1 ∈
J∩B× = E×b×, changing g up to multiplying by an element in E×, which does
not change the double coset it represents, we may assume (g∗)−1ε−1g−1 ∈ b×

or $Eb
×, where ε equals Im for E/E0 unramified6 and ε equals Im or

diag(1, . . . , 1, ε) with ε ∈ o×E0
− NE/E0(o×E) for E/E0 ramified. Using Propo-

sition 2.2, we may change g−1 up to multiplying by an element in b× on the
right, and thus we may write (g∗)−1ε−1g−1 = $α

E , where $α
E is defined as in

§2.2. Thus, we get detB($α
E)/detB(ε−1) ∈ NE/E0(E×).

If (g∗)−1ε−1g−1 ∈ b×, from the definition and the uniqueness of $α
E in

Proposition 2.2, we get $α
E = ε. We may further change g−1 up to multiplying

by an element in b× on the right, such that (g∗)−1ε−1g−1 = ε−1. Thus, we get
τ(g) = ε(g∗)−1ε−1 = g, which means that g ∈ Gτ .

If (g∗)−1ε−1g−1 ∈ $Eb
×. Considering the determinant we deduce that

detB((g∗)−1ε−1g−1) ∈ E× is of even order with respect to the discrete valuation
of E. Since the determinant of elements in $Eb

× is of order m, we know that
m is even. Thus, from the definition and the uniqueness of $α

E in Proposition
2.2, we get $α

E = $Eε when E/E0 is unramified and $α
E = $EJm/2 when

E/E0 is ramified. For the former case, we have ε = Im. Using Proposition 2.1,
we may choose g1 ∈ B× such that (g∗1)−1g−1

1 = $EIm = (g∗)−1g−1. Thus,
g ∈ g1G

τ . For the latter case, considering the determinant we must have
detB(ε) ∈ NE/E0(E×), thus ε = Im. Using Proposition 2.1, we may choose
g1 ∈ B× such that (g∗1)−1g−1

1 = $EJm/2 = (g∗)−1g−1, thus g ∈ g1G
τ . �

7. The supercuspidal unramified case

In this section, we study the distinction of σ-invariant supercuspidal repre-
sentations of G in the case where E/E0 is unramified.

6. It is also possible in the unramified case that ε = diag($E , . . . , $E). However, in this
case, ε ∈ E×, which commutes with B×, thus this case can be combined into the case where
ε = Im.
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7.1. The finite field case. — In this subsection, we assume l/l0 to be a qua-
dratic extension of finite fields with characteristic p 6= 2. Let |l0| = Q; then
|l| = Q2. Let σ be the non-trivial involution in Gal(l/l0).

Let m be a positive integer and let t be an extension of degree m over l. We
identify t× with a maximal torus of GLm(l). We call a character ξ : t× → R×

l-regular (or regular for short) if for any i = 1, . . . ,m− 1, we have ξ|l|i 6= ξ. By
Green [17] when char(R) = 0 and James [29] when char(R) = l > 0 prime to
p, there is a surjective map

ξ 7→ ρξ

between l-regular characters of t× and isomorphism classes of supercuspidal
representations of GLm(l), whose fibers are Gal(t/l)-orbits.

Lemma 7.1. — (1) If there exists a σ-invariant supercuspidal representa-
tion of GLm(l), then m is odd.

(2) When char(R) = 0, the converse of (1) is true.

Proof. — We may follow the same proof of [35], Lemma 2.3, with the concept
σ-self-dual in loc. cit. replaced by σ-invariant and the corresponding contra-
gradient (or inverse) replaced by the identity. �

Let H = Um(l/l0) := Um(Im) be the unitary subgroup of GLm(l) corre-
sponding to the hermitian matrix Im with respect to l/l0. Note that there is
only one conjugacy class of unitary subgroup of G, which is isomorphic to H.

Lemma 7.2. — Suppose m to be odd and let ρ be a supercuspidal representation
of GLm(l). The following assertions are equivalent:

(1) The representation ρ is σ-invariant.
(2) The representation ρ is H-distinguished.
(3) The R-vector space HomH(ρ, 1) has dimension 1.

Proof. — When R has characteristic 0, this is [16], Theorem 2.1 and Theo-
rem 2.4. Suppose now that R = Fl. First we prove that (1) is equivalent
to (2).

For ρ a supercuspidal representation of GLm(l), we denote by Pρ the pro-
jective envelope of ρ as a Zl[GLm(l)]-module, where Zl is the ring of integers of
Ql. Using [43], Chapitre III, Théorème 2.9 and [39], Proposition 42, we have:

(1) Pρ ⊗Zl Fl is the projective envelope of ρ as a Fl[GLm(l)]-module, which
is indecomposable of finite length with each irreducible component iso-
morphic to ρ.

(2) For P̃ρ = Pρ⊗ZlQl, we have P̃ρ
∼=
⊕
ρ̃, where ρ̃ in the direct sum ranges

over all the supercuspidal Ql-lifts of ρ and appears with multiplicity 1.
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We have

HomH(ρ, 1) 6= 0
⇐⇒ HomFl[GLm(l)](ρ,Fl[H \GLm(l)]) 6= 0

⇐⇒ HomFl[GLm(l)](Pρ ⊗Zl Fl,Fl[H \GLm(l)]) 6= 0

⇐⇒ HomZl[GLm(l)](Pρ,Zl[H \GLm(l)]) 6= 0

⇐⇒ HomQl[GLm(l)](P̃ρ,Ql[H \GLm(l)]) 6= 0

⇐⇒ There exists ρ̃ as above such that
HomQl[GLm(l)](ρ̃,Ql[H \GLm(l)]) 6= 0

⇐⇒ There exists ρ̃ as above such that ρ̃σ = ρ̃

⇐⇒ ρσ = ρ.

The former five equivalences are direct, by noting that a projective
Zl[GLm(l)]-module is a free Zl-module. For the second last equivalence,
we use the result for the characteristic 0 case. For the last equivalence
from the construction of supercuspidal representation given by Green
and James, since it is always possible to lift a σ-invariant regular char-
acter over Fl to a σ-invariant regular character over Ql, it is always
possible to find a σ-invariant Ql-lift ρ̃ for a σ-invariant supercuspidal
representation ρ.

Since (3) implies (2) by definition, we only need to prove that (2) implies (3).
We sum up the proof occurring in [35], Lemma 2.19. We have the following
Fl[GLm(l)]-module decomposition

Fl[H \GLm(l)] = Vρ ⊕ V ′,

where Vρ is composed of irreducible components isomorphic to ρ, and V ′ has no
irreducible component isomorphic to ρ. First, we verify that EndFl[GLm(l)](Vρ) is
commutative. By [16], Theorem 2.1, the convolution algebra Zl[H \GLm(l)/H]
is commutative. Modulo l we deduce that

Fl[H \GLm(l)/H] ∼= EndFl[GLm(l)](Fl[H \GLm(l)])
∼= EndFl[GLm(l)](Vρ)⊕ EndFl[GLm(l)](V

′)

is commutative, thus EndFl[GLm(l)](Vρ) is commutative.
By [43], Chapitre III, Théorème 2.9, P = Pρ ⊗Zl Fl is indecomposable

with each irreducible subquotient isomorphic to ρ. By [10], Proposition B.1.2,
there exists a nilpotent endomorphism N ∈ EndFl[GLm(l)][P ] such that
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EndFl[GLm(l)][P ] = Fl[N ], and there exist r ≥ 1 and n1, . . . , nr positive in-
tegers such that

Vρ ∼=
r⊕
i=1

P/NniP.

Since EndFl[GLm(l)](Vρ) is commutative, we have r = 1 and Vρ = P/Nn1P .
Thus,

HomH(ρ, 1) ∼= HomGLm(l)(ρ, Vρ) = HomGLm(l)(ρ, P/Nn1P ) ∼= Fl.

For char(R) = l > 0 in general, we fix an embedding Fl ↪→ R and write
ρ = ρ0 ⊗Fl R, where ρ0 is a supercuspidal representation of GLm(l) over Fl.
By considering the Brauer characters, we have

ρσ ∼= ρ if and only if ρσ0
∼= ρ0.

Moreover,

HomR[H](ρ,R) ∼= HomFl[H](ρ0,Fl)⊗Fl R.

Thus, we come back to the former case. �

Remark 7.3. — We give an example of a σ-invariant cuspidal non-super-
cuspidal representation of GLm(l) over Fl, which is not distinguished by H.
Assume m = 2 and l 6= 2 such that l|Q2 + 1. Let B be the subgroup of GL2(l)
consisting of upper triangular matrices. For IndGL2(l)

B Fl, it is a representation
of length 3 with irreducible components of dimension 1, Q2 − 1, 1 respectively.
Denote by ρ the irreducible subquotient of IndGL2(l)

B Fl of dimension Q2 − 1 .
It is thus cuspidal (not supercuspidal) and σ-invariant. Let ρ̃ be a Ql-lift of ρ,
which is an irreducible cuspidal representation. We write ρ̃|H = V1 ⊕ . . . ⊕ Vr
its decomposition of irreducible components. Since |H| = Q(Q+ 1)(Q2 − 1) is
prime to l, reduction modulo l preserves irreducibility. So ρ|H decomposes as
W1 ⊕ . . .⊕Wr, where the irreducible representation Wi is the reduction of Vi
modulo l for each i = 1, . . . , r. Suppose that ρ is distinguished. Then Wi = Fl
for some i. Thus, Vi is a character that must be trivial, which implies that ρ̃ is
distinguished. This is impossible by Lemma 7.1 and Lemma 7.2, since m = 2
is even. See [35], Remark 2.8. for the Galois self-dual case.

Finally, we need the following finite group version of Proposition 5.6, which
is well known:

Proposition 7.4. — For ρ an irreducible representation of GLm(l), we have
ρ∨ ∼= ρ( t·−1), where ρ( t·−1) : x 7→ ρ( tx−1), for any x ∈ GLm(l).

Proof. — By definition, the Brauer characters of ρ∨ and ρ( t·−1) are the same.
�
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7.2. Distinction criterion in the unramified case. — Let π be a σ-invariant su-
percuspidal representation of G. In this subsection, we prove Theorem 1.1 and
Theorem 1.2 in the case where E/E0 is unramified. To prove Theorem 1.1,
it remains to show that π is distinguished by any unitary subgroup Gτ with
the aid of Theorem 4.1. Since changing τ up to a G-action does not change
the content of the theorem, we only need to consider the two special unitary
involutions mentioned in Remark 6.1.(4). To justify the assumption in Remark
6.1.(3), first we prove the following lemma:

Lemma 7.5. — For any σ-invariant supercuspidal representation π with E/E0
unramified, m is odd.

Proof. — We consider τ = τ1, where τ1(x) = σ( tx−1), for any x ∈ G. We
follow the settings of Remark 6.1. For (J ,Λ) a simple type as in Remark
6.1.(2), we may write Λ ∼= κ ⊗ ρ as before. Using Proposition 6.24, we may
further assume κτ∨ ∼= κ. Since Λ and κ are τ -self-dual, ρ is τ -self-dual. Let ρ
be the supercuspidal representation of GLm(l) ∼= J/J1 whose inflation equals
ρ|J , then ρτ∨ ∼= ρ when regarding τ as a unitary involution on GLm(l). Using
Proposition 7.4, we have ρ ◦ σ ∼= ρ. Using Lemma 7.1, we conclude that m is
odd. �

With the aid of Lemma 7.5, we may assume as in Remark 6.1.(4) that
τ(x) = εσ( tx−1)ε−1 for any x ∈ G with ε equal to In or diag($E , . . . , $E),
representing the two classes of unitary involutions. For (J ,Λ), a simple type
as in Remark 6.1.(2), we may write Λ ∼= κ ⊗ ρ as before. Using Proposition
6.24, we may further assume κτ∨ ∼= κ. Using Lemma 6.18 with g = 1, there
exists a quadratic character χ : J ∩Gτ → R× such that

dimRHomJ∩Gτ (κ, χ−1) = 1
and

HomJ∩Gτ (Λ, 1) ∼= HomJ∩Gτ (κ, χ−1)⊗R HomJ∩Gτ (ρ, χ).
We want to show that χ = 1. First, we need the following lemma:

Lemma 7.6. — The character χ can be extended to a character χ′ of J .

Proof. — Using Lemma 4.2, we have J∩Gτ = J∩Gτ . Write χ the character of
Um(l/l0) ∼= J∩Gτ/J1∩Gτ , whose inflation equals χ. Since it is well known that
the derived subgroup of Um(l/l0) is SUm(l/l0) := {g ∈ Um(l/l0)|det(g) = 1}
(see [13], II. §5), there exists φ as a quadratic character of det(Um(l/l0)) =
{x ∈ l×|xσ(x) = xQ+1 = 1}, such that χ = φ ◦ det|Um(l/l0). We extend φ to
a character of l× and we write χ′ = φ ◦ det, which is a character of GLm(l)
extending χ. Write χ′0 the inflation of χ′ with respect to the isomorphism
GLm(l) ∼= J/J1. Finally, we choose χ′ to be a character of J extending χ′0 by
choosing χ′($E) 6= 0 randomly. By construction, χ′|J∩Gτ = χ. �
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Proposition 7.7. — (1) When char(R) = 0, for any χ′ extending χ to J ,
we have χ′(χ′ ◦ τ) = 1.

(2) Furthermore, for any R, we have χ = 1.

Proof. — First, we consider char(R) = 0. Since m is odd, Lemma 7.1 implies
that GLm(l) possesses a σ-invariant supercuspidal representation ρ′. Using
Proposition 7.4 we get ρ′τ∨ ∼= ρ′. We denote by ρ′ a representation of J trivial
on J1, such that its restriction to J is the inflation of ρ′. Since σ($E) = $E ,
we have ρ′(τ($E)) = ρ′($E)−1 which means that ρ′ is τ -self-dual. By Lemma
7.2 it is also distinguished.

Let Λ′ denote the τ -self-dual simple type κ⊗ ρ′. The natural isomorphism
HomJ∩Gτ (Λ′, χ−1) ∼= HomJ∩Gτ (κ, χ−1)⊗R HomJ∩Gτ (ρ′, 1)

shows that Λ′ is χ−1-distinguished.
By Lemma 7.6, there exists a character χ′ extending χ. The represen-

tation Λ′′ = Λ′χ′ is thus a distinguished simple type. Let π′′ be the su-
percuspidal representation of G compactly induced by (J ,Λ′′). It is distin-
guished, thus τ -self-dual by Theorem 4.1 and Proposition 5.6. Since Λ′′ and
Λ′′τ∨ ∼= Λ′′χ′−1(χ′−1 ◦ τ) are both contained in π′′, it follows that χ′(χ′ ◦ τ) is
trivial.

We write χ = φ ◦ det as in the proof of Lemma 7.6. Since χ′(χ′ ◦ τ) = 1,
we get φ(φ ◦ σ)−1 = φ

1−Q = 1. Choose ζl to be a primitive root of l×; then
ζQ−1
l generates the group det(Um(l/l0)) = {x ∈ l×|xσ(x) = xQ+1 = 1}. Since
φ(ζ1−Q

l ) = 1, we deduce that φ|det(Um(l/l0)) is trivial, which means that χ is
trivial. Thus, χ as the inflation of χ is also trivial.

Now we consider R = Fl. As already mentioned in the proof of Proposition
6.26, if we denote by κ̃ the Ql-lift of κ and if we denote by χ̃ the character
defined by Lemma 6.18.(1) with respect to κ̃ and η̃, then χ̃ is a Ql-lift of χ.
Using the characteristic 0 case that we already proved, we get χ̃ = 1, which
implies that χ = 1.

When R = l > 0 in general, we follow the same logic as in the proof of
Proposition 6.26. �

Remark 7.8. — In fact, in Proposition 7.7, we proved that when m is odd,
and E/E0 is unramified, any τ -self-dual κ constructed in Proposition 6.24 as
an extension of a J1 ∩Gτ -distinguished Heisenberg representation η is J ∩Gτ -
distinguished.

Now we come back to the proof of our main theorem. We have
HomJ∩Gτ (Λ, 1) ∼= HomJ∩Gτ (κ, 1)⊗R HomJ∩Gτ (ρ, 1),

whereHomJ∩Gτ (κ, 1) is of dimension1, andHomJ∩Gτ (ρ, 1) ∼= HomUm(l/l0)(ρ, 1)
is also of dimension 1 by Lemma 4.2, Lemma 7.2 and Proposition 7.4. So,
HomJ∩Gτ (Λ, 1) is of dimension 1, which implies that π is Gτ -distinguished.
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Thus, we finish the proof of Theorem 1.1 when E/E0 is unramified. Using
Corollary 6.29 and the fact that m is odd we deduce that HomGτ (π, 1) is of
dimension 1, which finishes the proof of Theorem 1.2 when E/E0 is unramified.

8. The supercuspidal ramified case

In this section, we study the distinction of σ-invariant supercuspidal repre-
sentations of G in the case where E/E0 is ramified. This finishes the proof of
our main theorem.

8.1. The finite field case. — Let l be a finite field of characteristic p 6= 2 and
let |l| = Q. For m a positive integer, we denote by G the reductive group GLm
over l. Thus, by definition, G(l) = GLm(l). For ε a matrix in G(l) such that
tε = ε, the automorphism defined by τ(x) = ε tx−1ε−1, for any x ∈ GLm(l),
gives an involution on GLm(l), which induces an involution on G. Thus, Gτ

is the orthogonal group corresponding to τ , which is a reductive group over l,
and Gτ (l) = GLm(l)τ , which is a subgroup of GLm(l). In this subsection, for
ρ a supercuspidal representation of GLm(l) and χ a character of GLm(l)τ , we
state the result mentioned in [18], which gives a criterion for ρ distinguished
by χ.

First of all, we assume R = Ql. We recall a little bit of Deligne–Lusztig the-
ory (see [12]). Let T be an elliptic maximal l-torus in G, where ellipticity means
that T(l) = t× and t/l is the field extension of degree m. Let ξ be a regular
character of T(l), where regularity means the same as in the construction of
Green and James in §7.1. Using [12], Theorem 8.3, there is a virtual character
RT,ξ as the character of a cuspidal representation of GLm(l). Moreover, if we
fix T, we know that ξ 7→ RT,ξ gives a bijection from the set of Galois orbits of
regular characters of T to the set of cuspidal representations of GLm(l). So we
may choose ξ such that Trace(ρ) = RT,ξ. Moreover, using [12], Theorem 4.2,
we get RT,ξ(−1) = dim(ρ)ξ(−1) with dim(ρ) = (Q− 1)(Q2− 1). . .(Qm−1− 1).
So if we denote by ωρ the central character of ρ, we get ωρ(−1) = ξ(−1).

Proposition 8.1 ([18], Proposition 6.7). — For τ , ρ, T and ξ above, we have:

dimR(HomGτ (l)(ρ, χ)) =
{

1 if ωρ(−1) = ξ(−1) = χ(−1),
0 otherwise.

Now we consider the l-modular case and assume char(R) = l > 0.

Proposition 8.2. — For τ above andρ a supercuspidal representation of GLm(l)
overR, the spaceHomGLm(l)τ (ρ, χ) 6= 0 if and only ifωρ(−1) = χ(−1). Moreover,
if the condition is satisfied, then we have dimR(HomGLm(l)τ (ρ, χ)) = 1.
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Proof. — First, we assume R = Fl. We use a similar proof to that in Lemma
7.2. Let H = GLm(l)τ . We choose χ̃ to be a character of H lifting χ, which is
defined over Zl or Ql by abuse of notation. For S = Zl,Ql, we define

S[H \GLm(l)]
χ̃

:=
{
f | f : GLm(l)→ S,

f(hg) = χ̃(h)f(g) for any h ∈ H, g ∈ GLm(l)
}
.

Especially,

Ql[H \GLm(l)]
χ̃

= IndGLm(l)
H χ̃

as a representation of GLm(l) over Ql, and Zl[H \GLm(l)]
χ̃
is a free Zl-module.

If we further define

Fl[H \GLm(l)]χ = IndGLm(l)
H χ,

then we have

Zl[H \GLm(l)]
χ̃
⊗Zl Fl = Fl[H \GLm(l)]χ

and

Zl[H \GLm(l)]
χ̃
⊗Zl Ql = Ql[H \GLm(l)]

χ̃
.

We deduce that

HomH(ρ, χ) 6= 0

⇐⇒ There exists ρ̃ lifting ρ such that
HomQl[GLm(l)](ρ̃,Ql[H \GLm(l)]

χ̃
) 6= 0

⇐⇒ There exists ρ̃ lifting ρ such that ω
ρ̃
(−1) = χ̃(−1)

⇐⇒ ωρ(−1) = χ(−1).

The first equivalence is of the same reason as in the proof of Lemma 7.2, and
we use Proposition 8.1 for the second equivalence. For the last equivalence, the
“⇒“ direction is trivial. For the other direction, when l 6= 2, we choose ρ̃ to
be any supercuspidal Ql-lift of ρ. Thus, we have ω

ρ̃
(−1) = ωρ(−1) = χ(−1) =

χ̃(−1). When l = 2, using the construction of Green and James, for ξ a regular
character over Fl corresponding to ρ, we may always find a Ql-lift ξ̃ that is
regular and satisfies ξ̃(−1) = χ̃(−1). Thus, the supercuspidal representation
ρ̃ corresponding to ξ̃ as a lift of ρ satisfies ω

ρ̃
(−1) = χ̃(−1). So we finish the

proof of the first part.
To calculate the dimension, as in the proof of Lemma 7.2 if we write

Fl[H \GLm(l)]χ = Vρ ⊕ V ′,

where Vρ is composed of irreducible components isomorphic to ρ, and V ′

has no irreducible component isomorphic to ρ, then we only need to show
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that EndFl[GLm(l)](Vρ) is commutative. We consider the following Zl[GLm(l)]-
module decomposition

Zl[H \GLm(l)]
χ̃

= Ṽρ ⊕ Ṽ ′,

where Ṽρ ⊗Zl Ql =
⊕

ρ̃
ρ̃ with the direct sum ranges over all the irreducible

representations ρ̃ over Ql occurring in P̃ρ counting the multiplicity, and Ṽ ′

denotes a Zl[GLm(l)]-complement of Ṽρ, such that Ṽ ′ ⊗Zl Ql contains no irre-
ducible component of ρ̃. Using Proposition 8.1, Ṽρ ⊗Zl Ql is multiplicity free,
which means that EndQl[GLm(l)](Ṽρ⊗Zl Ql) is commutative. The canonical em-
bedding from Zl[H \ GLm(l)]

χ̃
to Ql[H \ GLm(l)]

χ̃
induces the following ring

monomorphism

EndZl[GLm(l)](Zl[H \GLm(l)]
χ̃
) ↪→ EndQl[GLm(l)](Ql[H \GLm(l)]χ)

given by tensoring Ql, which leads to the ring monomorphism

EndZl[GLm(l)](Ṽρ) ↪→ EndQl[GLm(l)](Ṽρ ⊗Zl Ql).

Thus EndZl[GLm(l)](Ṽρ) is also commutative.
The modulo l map from Zl[H \ GLm(l)]

χ̃
to Fl[H \ GLm(l)]χ induces the

following ring epimorphism

EndZl[GLm(l)](Zl[H \GLm(l)]
χ̃
) � EndFl[GLm(l)](Fl[H \GLm(l)]χ),

which leads to the ring epimorphism

EndZl[GLm(l)](Ṽρ) � EndFl[GLm(l)](Vρ).

Since EndZl[GLm(l)](Ṽρ) is commutative, EndFl[GLm(l)](Vρ) is also commutative.
Thus, we may use the same proof as in Lemma 7.2 to show that

dimFl(HomGLm(l)τ (ρ, χ)) = 1.

Finally, for char(R) = l > 0 in general, we follow the corresponding proof in
Lemma 7.2. �

Remark 8.3. — For Gτ (l) an orthogonal group with m ≥ 2, it is well known
that its derived group is always a subgroup of Gτ0(l) of index 2 (see [13], II.
§8), which means that there exists a character of Gτ (l) that is not trivial on
Gτ0(l). This means that we cannot expect χ to be trivial on Gτ0(l) in general.
However, for those χ occurring in the next subsection, it is highly possible that
χ is trivial on Gτ0(l). For example, [18], Proposition 6.4 gives evidence for this
in the case where π is tame supercuspidal. However, the author does not know
how to prove it.
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Now we assume that m is even. We write Jm/2 =
(

0 Im/2
−Im/2 0

)
and we

denote by

Spm(l) = {x ∈ GLm(l)| txJm/2x = Jm/2}

the symplectic subgroup of GLm(l).

Proposition 8.4. — For ρ, a cuspidal representation of GLm(l), we have
HomSpm(l)(ρ, 1) = 0.

Proof. — Using [31], Corollary 1.4., whose proof also works for the l-modular
case, we know that an irreducible generic representation cannot be distin-
guished by a symplectic subgroup. Since a cuspidal representation is generic,
we finish the proof. �

8.2. Distinction criterion in the ramified case. — Still let π be a σ-invariant
supercuspidal representation of G. In this subsection, we prove Theorem 1.1
and Theorem 1.2 in the case where E/E0 is ramified. Using Theorem 4.1, we
only need to show that π is distinguished by any unitary subgroup Gτ to finish
the proof of Theorem 1.1. We may change τ up to a G-action, which does
not change the property of being distinguished. Thus, using Remark 6.1.(4),
we may assume τ(x) = εσ( tx−1)ε−1, for any x ∈ G, where ε equals In or
diag(Id, . . . , Id, ε) with ε ∈ o×E0

− NE/E0(o×E), representing the two classes of
unitary involutions. We denote by ε the image of ε in GLm(l).

For (J ,Λ) a simple type in Remark 6.1.(2), we write Λ ∼= κ ⊗ ρ. Using
Proposition 6.24, we may further assume κτ∨ ∼= κ. Using Lemma 6.18 with
g = 1, there exists a quadratic character χ : J ∩Gτ → R× such that

dimRHomJ∩Gτ (κ, χ−1) = 1(24)

and

HomJ∩Gτ (Λ, 1) ∼= HomJ∩Gτ (κ, χ−1)⊗R HomJ∩Gτ (ρ, χ).(25)

If we denote by ωκ the central character of κ defined on F×, using (24), we get
ωκ = χ−1 as characters of F× ∩ (J ∩ Gτ ). In particular, ωκ(−1) = χ−1(−1).
Since κτ∨ ∼= κ, we get ωκ ◦ τ = ω−1

κ . In particular, we have

ωκ($F )−1 = ωκ(τ($F )) = ωκ($F )−1ωκ(−1)−1,

where we use the fact that σ($F ) = −$F . Thus, we get ωκ(−1) = χ(−1) = 1.
Since Λ and κ are τ -self-dual, ρ is τ -self-dual. Using the same proof as

that for κ, we get ωρ(−1) = 1. Let ρ be the supercuspidal representation of
GLm(l) ∼= J/J1 whose inflation equals ρ|J and let χ be the character of

Gτ (l) ∼= J ∩Gτ/J1 ∩Gτ
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whose inflation equals χ, where τ naturally induces an orthogonal involution on
G with respect to a symmetric matrix ε ∈ GLm(l). By definition and Lemma
4.2 we get

HomJ∩Gτ (ρ, χ) ∼= HomGτ (l)(ρ, χ).

Since ωρ(−1) = χ(−1) = 1, using Proposition 8.1 and Proposition 8.2 the space
above is non-zero. Thus, by (25) we have

HomJ∩Gτ (Λ, 1) 6= 0,

which means that π is distinguished by Gτ , finishing the proof of Theorem 1.1.
Moreover, using Proposition 8.1, Proposition 8.2, (24) and (25), we get

dimRHomJ∩Gτ (Λ, 1) = 1.

Now, if m is even, and ε = Im, we also need to study the space
HomJg1∩Gτ (Λg1 , 1), where g1 is defined in Corollary 6.29, such that τ(g1)g−1

1 =
$EJm/2 ∈ B×. Using Lemma 6.18, there exists a quadratic character χ1 :
Jg1 ∩Gτ → R× such that

dimRHomJg1∩Gτ (κg1 , χ−1
1 ) = 1(26)

and

HomJg1∩Gτ (Λg1 , 1) ∼= HomJg1∩Gτ (κg1 , χ−1
1 )⊗R HomJg1∩Gτ (ρg1 , χ1).(27)

So we only need to study the space HomJg1∩Gτ (ρg1 , χ1) ∼= HomJ∩Gδg1 (ρ, χg
−1
1

1 ),
where

δg1(x) := (τ(g1)g−1
1 )−1τ(x)(τ(g1)g−1

1 ) = ($EJm/2)−1τ(x)$EJm/2,

for any x ∈ G as an involution on G.
Let ρ be the supercuspidal representation of GLm(l) ∼= J/J1 whose inflation

equals ρ|J and let χg
−1
1

1 be the character of

Spm(l) ∼= J ∩Gδg1 /J1 ∩Gδg1

whose inflation equals χg
−1
1

1 ; then we get

HomJ∩Gδg1 (ρ, χg
−1
1

1 ) ∼= HomSpm(l)(ρ, χ
g−1

1
1 ) = HomSpm(l)(ρ, 1),

where the last equation is because of the well-known fact that Spm(l) equals

its derived group ([13], II. §8), thus χg
−1
1

1 |Spm(l) is trivial. Using Proposition
8.4, we get HomSpm(l)(ρ, 1) = 0. Thus, HomJg1∩Gτ (Λg1 , 1) = 0.

Using Corollary 6.29, we get

dimRHomGτ (π, 1) = dimRHomJ∩Gτ (Λ, 1) + dimRHomJg1∩Gτ (Λg1 , 1) = 1,

which finishes the proof of Theorem 1.2 when E/E0 is ramified.
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8.3. Proof of Theorem 1.3. — We finish the proof of Theorem 1.3. Let π be a σ-
invariant supercuspidal representation of G over Fl. For τ a unitary involution,
by Theorem 1.1, π is distinguished by Gτ . From the proof of Theorem 4.1, there
exists a distinguished integral σ-invariant supercuspidal representation π̃ of G
over Ql, which lifts π.

9. A purely local proof of Theorem 4.1

In this section, we generalize Theorem 4.1 to irreducible cuspidal represen-
tations, meanwhile also giving another proof of the original theorem, which is
purely local. Precisely, we prove the following theorem:

Theorem 9.1. — Let π be an irreducible cuspidal representation of G over R.
If π is distinguished by Gτ , then π is σ-invariant.

9.1. The finite analogue. —

Proposition 9.2. — Let l/l0 be a quadratic extension of finite fields of char-
acteristic p and let ρ be an irreducible generic representation of GLm(l) over
R. If ρ is distinguished by the unitary subgroup H of GLm(l) with respect to
l/l0, then it is σ-invariant.

Proof. — When char(R) = 0, the proposition was proved by Gow [16] for any
irreducible representations. So we only consider the l-modular case and without
loss of generality we assume R = Fl. We write Pρ for the projective envelope of
ρ as a Zl[GLm(l)]-module. Thus, Pρ ⊗Zl Fl is a projective Fl[GLm(l)]-module,
and moreover,

HomFl[H](ρ,Fl) ∼=HomFl[GLm(l)](ρ,Fl[H \GLm(l)]) 6= 0

implies that
HomFl[GLm(l)](Pρ ⊗Zl Fl,Fl[H \GLm(l)]) 6= 0.

Using the same argument as that in Lemma 7.2, we have
HomQl[GLm(l)](Pρ ⊗Zl Ql,Ql[H \GLm(l)]) 6= 0,

and, thus, there exists an irreducible constituent ρ̃ of Pρ ⊗Zl Ql such that

HomQl[GLm(l)](ρ̃,Ql[H \GLm(l)]) 6= 0.

By [39], §14.5, §15.4, ρ is a constituent of rl(ρ̃). Since ρ̃ is H-distinguished, it
is σ-invariant and so is rl(ρ̃). For i = 1, . . . , k, we choose ρ̃i to be a cuspidal
representation of GLmi(l) over Ql, such that ρ̃ is a sub-representation of the
parabolic induction ρ̃1×. . .× ρ̃k, wherem1 +. . .+mk = m. For each i, we write
ρi = rl(ρ̃i), which is a cuspidal representation of GLmi(l) over Fl, and then all
the irreducible constituents of rl(ρ̃) are subquotients of ρ1 × . . . × ρk, and in
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particular so is ρ. Since ρ is generic (or non-degenerate), by [43], Chapitre III,
1.10, it is the unique non-degenerate subquotient contained in ρ1×. . .×ρk, thus,
it is the unique non-degenerate constituent in rl(ρ̃). Thus, it is σ-invariant. �

9.2. The cuspidal case. — In this subsection, we prove Theorem 9.1. We
choose (J ,Λ) to be a simple type of π, and then by Frobenius reciprocity
and the Mackey formula, there exists g ∈ G such that

HomJg∩Gτ (Λg, 1) 6= 0.(28)

Let H1 be the corresponding subgroup of J , let θ be the simple character of
H1 contained in Λ and let η be the Heisenberg representation of θ. Restricting
(28) to H1g ∩ Gτ we get θg|H1g∩Gτ = 1. Following the proof of [35], Lemma
6.5, we have

(θ ◦ τ)τ(g)|τ(H1g)∩H1g = θg ◦ τ |τ(H1g)∩H1g = (θg)−1|τ(H1g)∩H1g ,(29)

or in other words, θ ◦ τ intertwines with θ−1. Using the intertwining theorem
(cf. [7]), θ◦τ and θ−1 are endo-equivalent, which, from the argument of Lemma
5.7, is equivalent to Θσ = Θ, where Θ denotes the endo-class of θ.

We let τ1 be the unitary involution corresponding to In, which in particular
satisfies the condition of Theorem 5.5. Since Θσ = Θ, by loc. cit., we may
choose a simple stratum [a, β] and θ′ ∈ C(a, β) with θ′ ∈ Θ, such that

τ1(β) = β−1, τ1(a) = a and θ′ ◦ τ1 = θ′−1.

Up to G-conjugacy, we may and will assume that J = J(a, β) and θ′ = θ. We
write E = F [β] and B ∼= Mm(E) for the centralizer of E in Mn(F ). Using
Proposition 6.24, we write Λ = κ ⊗ ρ with κ an extension of the Heisenberg
representation η such that κτ1 ∼= κ∨. Let ε be a hermitian matrix such that
τ(x) = εσ( tx−1)ε−1 = τ1(x)ε−1 for any x ∈ G. For a fixed g ∈ G, we define
γ = ε−1τ(g)g−1 = τ1(g)ε−1g−1 and by direct calculation we have τ1(γ) = γ.

Proposition 9.3. — Let g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0.
(1) Changing g by another representative in the same J-Gτ double coset,

we may assume γ ∈ B×.
(2) The dimension dimRHomJ1g∩Gτ (ηg, 1) = 1;
(3) There is a unique quadratic character χ of Jg ∩Gτ trivial on J1g ∩Gτ ,

such that

HomJ1g∩Gτ (ηg, 1) ∼= HomJg∩Gτ (κg, χ−1) ∼= R.

Moreover,

HomJg∩Gτ (Λg, 1) ∼= HomJg∩Gτ (κg, χ−1)⊗HomJg∩Gτ (ρg, χ).

(4) The element γ ∈ J , thus under the assumption of (1), γ ∈ B× ∩ J =
E×b×.
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Proof. — We sketch the proof that follows from that of Theorem 6.2 (actually,
we have the same theorem if τ = τ1). Using (29) and the fact that τ(H1g) =
τ1(H1)ε−1τ(g) = H1ε−1τ(g) and (θ ◦ τ)τ(g) = (θ ◦ τ1)ε−1τ(g) = (θ−1)ε−1τ(g) we
have

(θε
−1τ(g))−1|H1ε−1τ(g)∩H1g = (θ ◦ τ)τ(g)|τ(H1g)∩H1g

= θg ◦ τ |τ(H1g)∩H1g = (θg)−1|H1ε−1τ(g)∩H1g ,

which means that γ intertwines θ, or in other words, γ ∈ JB×J . The following
lemma follows from the same proof of Lemma 6.5, once we replace γ there with
our γ here and τ there with τ1.

Lemma 9.4. — There exist y ∈ J = J(a, β) and b ∈ B×, such that γ = τ1(y)by.

Thus, we change g by y−1g and then the corresponding γ = b ∈ B×, which
proves (1). For (2), we write

δ(x) := (τ(g)g−1)−1τ(x)τ(g)g−1 = γ−1τ1(x)γ for any x ∈ G

an involution on G, and then by definition we have

HomJ1g∩Gτ (ηg, 1) ∼= HomJ1∩Gδ(η, 1),

and

γδ(γ) = γγ−1τ1(γ)γ = 1.

Moreover, by direct calculation we have

δ(H1) = (τ(g)g−1)−1H1ε−1
τ(g)g−1 = H1γ and

θ ◦ δ = (θ−1)ε
−1τ(g)g−1

= (θ−1)γ .

So using Proposition 6.14, we finish the proof of (2).
Using (2) and the same argument of Proposition 6.18 we get the statement

(3), except the part χ being quadratic. To finish that part, since

τ1(τ1(g)ε−1)ε−1(τ1(g)ε−1)−1 = gετ1(g)−1 = (τ1(g)ε−1g−1)−1 = γ−1 ∈ B×,

we may replace g with ε−1τ(g) = τ1(g)ε−1 in the statement (3) to get a unique
character χ′ of Jε

−1τ(g)∩Gτ trivial on J1ε−1τ(g)∩Gτ . Moreover, using the facts
τ(J) = Jε

−1
, τ(J) = Jε

−1 , τ(J1) = J1ε−1 and τ(H1) = H1ε−1 and Lemma 4.2
it is easy to show that

Jg ∩Gτ = Jε
−1τ(g) ∩Gτ = Jg ∩Gτ = Jε

−1τ(g) ∩Gτ .(30)

As a result, χ and χ′ are characters defined on the same group Jg ∩ Gτ =
Jε
−1τ(g) ∩Gτ . We have the following lemma similar to Proposition 6.19:

Lemma 9.5. — We have χ = χ′.
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Proof. — We write δ for the involution defined as above. By §3.2, we have
γ ∈ IG(η) = IG(κ0) and

dimR(HomJ∩Jγ (κ0γ , κ0)) = dimR(HomJ1∩J1γ (ηγ , η)) = 1,

where κ0 = κ|J . By direct calculation, we have J1 ∩ Gδ = J1γ ∩ Gδ as a
subgroup of J1 ∩ J1γ and H1 ∩Gδ = H1γ ∩Gδ. Using statement (2) for g and
ε−1τ(g), respectively, we get

dimRHomJ1g∩Gτ (ηg, 1) = dimRHomJ1ε−1τ(g)∩Gτ (ηε
−1τ(g), 1) = 1.

By Proposition 6.20, for

0 6= ϕ ∈ HomJ1∩J1γ (ηγ , η) = HomJ1g∩J1ε−1τ(g)(ηε
−1τ(g), ηg),

the map

fϕ : HomJ1g∩Gτ (ηg, 1)→ HomJ1ε−1τ(g)∩Gτ (ηε
−1τ(g), 1),

λ 7→ λ ◦ ϕ

is bijective7. If we choose
0 6= λ ∈ HomJ1g∩Gτ (ηg, 1) and

0 6= λ′ := fϕ(λ) = λ ◦ ϕ ∈ HomJ1ε−1τ(g)∩Gτ (ηε
−1τ(g), 1),

then for any v in the representation space of η and any x ∈ Jg∩Gτ = Jε
−1τ(g)∩

Gτ , using a similar argument to (15) we have
χ′(x)−1λ′(v) = χ(x)−1λ′(v).

Since v and x ∈ Jg∩Gτ = Jε
−1τ(g)∩Gτ are arbitrary, we have χ′|Jε−1τ(g)∩Gτ =

χ|Jg∩Gτ . Combining this with (30) we finish the proof of the lemma. �

To prove that χ is quadratic, we first assume that char(R) = 0. Using a
similar argument to (21) we have the following isomorphism

HomJ1ε−1τ(g)∩Gτ (ηε
−1τ(g), 1) ∼= Hom

Jε
−1τ(g)∩Gτ (κε

−1τ(g), χ ◦ τ).

Using the above lemma and the uniqueness of χ′, we have χ ◦ τ = χ−1. Since
χ is defined on Jg ∩ Gτ = Jg ∩ Gτ , which is τ -invariant, we have χ ◦ τ = χ,
and thus χ2 = χ(χ ◦ τ) = 1. When char(R) = l > 0, the same argument in
Proposition 6.26 can be used directly.

Finally, using (3) and the distinction of the simple type, we have
HomJg∩Gτ (ρg, χ) 6= 0.

7. Noting that J1g ∩Gτ = (J1 ∩Gδ)g and J1ε−1τ(g) ∩Gτ = (J1γ ∩Gδ)g , thus
HomJ1g∩Gτ (ηg , 1) = HomJ1∩Gδ (η, 1) and

Hom
J1ε−1τ(g)∩Gτ (ηε

−1τ(g), 1) = HomJ1γ∩Gδ (ηγ , 1).
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Then the proof of (4) is the same as that in §6.6, once we replace γ there with
our γ here. �

Corollary 9.6. — For g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0, we may
change g by another representative in the same J-Gτ double coset, such that

γ =
{
Im or $EIm if E/E0 is unramified;
Im or diag(1, . . . , 1, ε) or $EJm/2 if E/E0 is ramified,

as an element in GLm(E) ∼= B× ↪→ G, where ε ∈ o×E0
−NE/E0(o×E)

Proof. — We have proved that γ = τ1(g)ε−1g−1 ∈ B×∩J = E×b×. Changing
g up to multiplying by an element in E×, which does not change the double
coset it represents, we may assume γ ∈ b× or $Eb

×. Using Proposition 2.2 and
changing g up to multiplying by an element in b× on the left, we may assume
that γ = $α

E , and from the uniqueness we must have $α
E = Im or $EIm when

E/E0 is unramified, and $α
E = Im, or diag(1, . . . , 1, ε) or $EJm/2 when E/E0

is totally ramified. �

Thus, for g ∈ G as above, we get

HomJ∩Gδ(ρ|J , χg
−1

) ∼= HomJ∩Gδ(ρ, χg
−1

) ∼= HomJg∩Gτ (ρg, χ) 6= 0.

Ww write H = J ∩ Gδ/J1 ∩ Gδ for the subgroup of GLm(l) ∼= J/J1, which,
from the expression of γ in Corollary 9.6, is either a unitary subgroup, or an
orthogonal subgroup, or a symplectic subgroup of GLm(l). Moreover, we have

HomH(ρ, χ′) 6= 0,

where ρ is a cuspidal representation of GLm(l) whose inflation is ρ|J and χ′ is
a quadratic character of H whose inflation is χg−1 |J∩Gδ .

When H is unitary, which also means that E/E0 is unramified, by Lemma
7.6 (or more precisely its argument) χ′ can be extended to a quadratic character
of GLm(l). Thus, ρχ′−1 as a cuspidal representation of GLm(l) is distinguished
by H, and thus it is σ-invariant by Proposition 9.2. The quadratic character χ′
must be σ-invariant, thus ρ is also σ-invariant, or by Proposition 7.4, ρτ1 ∼= ρ∨.
Thus ,both κ and ρ are τ1-self-dual, which means that Λ and π are τ1-self-dual.
By Proposition 5.6, π is σ-invariant.

When H is orthogonal, which also means that E/E0 is totally ramified,
comparing the central character as in §8.2 we have ρ(−Im) = id. Thus, ρτ1 |J =
ρ( t·−1)|J ∼= ρ|J by Proposition 7.4, and ρ(τ1($E)) = ρ(−$E) = ρ($E), which
means that ρ is τ1-self-dual, finishing the proof as above.

Finally, by Proposition 8.4 and the fact that Spm(l) equals its derived sub-
group, the case where H is symplectic never occurs, which ends the proof of
Theorem 9.1.
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Remark 9.7. — Combining Theorem 9.1 with the argument in [14], section 6,
we may further prove that an irreducible generic representation π of G distin-
guished by a unitary subgroup Gτ is σ-invariant.
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