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SUPERCUSPIDAL REPRESENTATIONS OF GL,,(F)
DISTINGUISHED BY A UNITARY INVOLUTION

BY JIANDI ZOU

ABSTRACT. — Let F/Fy be a quadratic extension of non-Archimedean locally com-
pact fields of residue characteristic p # 2. Let R be an algebraically closed field of
characteristic different from p. For m a supercuspidal representation of G = GLy (F)
over R and G7 a unitary subgroup of G with respect to F'/Fy, we prove that 7 is
distinguished by G7, if and only if 7 is Galois invariant. When R = C and F is a
p-adic field, this result was first a conjecture proposed by Jacquet and was proved in
the 2010s by Feigon-Lapid—Offen by using global methods. Our proof is local and
works for both complex representations and l-modular representations with [ # p. We
further study the dimension of Homgr (7, 1) and show that it is at most 1.

RESUME (Représentations supercuspidales de GLy, (F) distinguées par une involution
unitaire). — Soit F/Fyp une extension quadratique de corps localement compacts
non archimédiens de caractéristique résiduelle p # 2. Soit R un corps algébriquement
clos de caractéristique différente de p. Pour m une représentation supercuspidale de
G = GLy(F) sur R et G™ un sous-groupe unitaire de G par rapport & F/Fp, on
montre que 7 est distinguée par G7 si et seulement si 7 est invariante galoisienne.
Lorsque R = C et F' est un corps p-adique, ce résultat d’abord sous la forme d’une
conjecture proposée par Jacquet a été prouvé dans les années 2010 par Feigon-Lapid-
Offen en utilisant des méthodes globales. Notre preuve est locale et fonctionne a la
fois pour les représentations complexes et les représentations I-modulaires avec [ # p.
Nous étudions plus en détail la dimension de Homgr (7, 1) et montrons qu’elle est au
plus un.
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394 J. ZOU

1. Introduction

Let F/Fy be a quadratic extension of p-adic fields of residue characteristic
p and let o denote its non-trivial automorphism. For G = GL,(F), let € be
a hermitian matriz in G, that is, o('e) = ¢ with ! denoting the transpose of
matrices. We define

Te(2) = co(‘z™)e T,

for any = € G, called a unitary involution on G. We fix 7 = 7. and we denote by
G7 the subgroup of G consisting of the elements fixed by 7, called the unitary
subgroup of G with respect to 7. For 7 an irreducible smooth representation
of G over C, Jacquet proposed to study the space of G"-invariant linear forms
on 7, that is, the space

Homg- (7, 1).

When the space is non-zero, he called 7 distinguished by G. For n = 3
and 7 supercuspidal, he proved in [26] by using global argument that 7 is
distinguished by G7, if and only if 7 is o-invariant, that is, 77 = 7, where
7w := m o o. Moreover, he showed that this space is of dimension 1 as a
complex vector space when the condition above is satisfied. Moreover, in ¢bid.,
he also sketched a similar proof when n = 2 and 7 is supercuspidal to give
the same criterion of being distinguished and the same dimension 1 theorem.
Based on these results, he conjectured that, in general, 7 is distinguished by
G, if and only if 7 is o-invariant. Moreover, it is also interesting to determine
the dimension of the space of G"-invariant linear forms that is not necessarily
1 in general. Under the assumption that 7 is o-invariant and supercuspidal,
Jacquet further conjectured that the dimension is 1.

In addition, an irreducible representation 7w of G is contained in the image
of quadratic base change with respect to F/Fy, if and only if it is o-invariant
([3]). Thus, for irreducible representations, the conjecture of Jacquet gives a
connection between quadratic base change and G"-distinction.

Besides the special case mentioned above, the following two evidences also
support the conjecture. First, we consider the analogue of the conjecture in the
finite field case. For p an irreducible complex representation of GL,, (Fg2), Gow
[16] proved that p is distinguished by the unitary subgroup U, (F,), if and only if
p is isomorphic to its twist under the non-trivial element of Gal(F,2 /F,). Under
this condition, he also showed that the space of U, (F,)-invariant linear forms
is of dimension 1 as a complex vector space. In addition, Shintani [41] showed
that there is a one-to-one correspondence between the set of irreducible repre-
sentations of GL, (F,) and that of Galois-invariant irreducible representations
of GL,, (F,2), where the correspondence, called the base change map, is charac-
terized by a trace identity. Thus, these two results relate the U, (F,)-distinction
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to the base change map. Finally, when p is generic and Galois-invariant, Anan-
davardhanan and Matringe [2] recently showed that the U, (F,)-average of the
Bessel function of p on the Whittaker model as a U, (Fq)-invariant linear form
is non-zero. Since the space of U, (F,)-invariant linear forms is of dimension 1,
their result gives us a concrete characterization of the space.

The other evidence for the Jacquet conjecture is its global analogue. We
assume /Ky to be a quadratic extension of number fields and we denote by
o its non-trivial automorphism. We choose 7 to be a unitary involution on
GL, (K), which also gives us an involution on GL,(Ax), still denoted by 7 by
abuse of notation, where Ax denotes the ring of adeles of . We denote by
GL,(K)™ (or GL,,(Ax)™) the unitary subgroup of GL,,(K) (or GL, (Ax)) with
respect to 7. For ¢ a cusp form of GL,,(Ax), we define

Pr(9) = o(h)dh

LLn (’C)T \GLn (AIC)T

to be the unitary period integral of ¢ with respect to 7. We say that a cuspidal
automorphic representation II of GL,,(Ax) is GL, (Ax)"-distinguished if there
exists a cusp form in the space of II such that P, (¢) # 0. In the 1990s, Jacquet
and Ye began to study the relation between GL,, (Ax)"-distinction and global
base change (see, for example, [28] when n = 3). For general n, Jacquet [27]
showed that II is contained in the image of the quadratic base change map (or
equivalently II is o-invariant [3]) with respect to K/Ko, if and only if there
exists a unitary involution 7 such that II is G7-distinguished. This result may
be viewed as the global version of the Jacquet conjecture for supercuspidal
representations.

In fact, for the special case of the Jacquet conjecture in [26], Jacquet used
the global analogue of the same conjecture and the relative trace formula to
finish the proof. To say it simply, he first proved the global analogue of the
conjecture. Then he used the relative trace formula to write a non-zero unitary
period integral as the product of its local components at each place of K, where
each local component characterizes the distinction of the local component of IT
with respect to the corresponding unitary group over local fields. When 7 is o-
invariant, he chose II to be a g-invariant cuspidal automorphic representation
of GL,,(Ax) and vy to be a non-Archimedean place of Ky, such that (G7,7) =
(GL,,(KCyy )7, Iy, ). Then the product decomposition leads to the proof of the
“if“ part of the conjecture. The “only if*“ part of the conjecture, which will be
discussed in Section 4, requires the application of a globalization theorem. His
method was generalized by Feigon—Lapid—Offen in [14] to general n and more
general families of representations. They showed that the Jacquet conjecture
works for generic representations of G. Moreover, they were able to give a lower
bound for the dimension of Homg- (7, 1) and they further conjectured that the
inequality they gave is actually an equality. Finally, Beuzart-Plessis recently
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verified the equality conjectured above [5]. Thus, for generic representations
of G, the Jacquet conjecture was settled.

Instead of using global methods, there are other methods to study this con-
jecture, which are local and algebraic. Hakim—Mao [19] verified the conjecture
when p # 2 and 7 is supercuspidal of level zero, that is, 7 is supercuspidal
such that 71 t#rMn(er) £ (0 where 0 denotes the ring of integers of F' and pp
denotes its maximal ideal. When 7 is supercuspidal and F/Fy is unramified,
Prasad [34] proved the conjecture by applying the simple type theory developed
by Bushnell-Kutzko in [9]. When p # 2 and 7 is tame supercuspidal, that is,
7 is a supercuspidal representation arising from the construction of Howe [24],
Hakim-Murnaghan [21] verified the conjecture.

The discussion above leaves us an open question: Is there any local and al-
gebraic method that leads to a proof of the Jacquet conjecture that works for all
supercuspidal representations of G¥¢ First, this will lead to a new proof of the
results of Hakim—Mao, Prasad and Hakim—Murnaghan, which we mentioned
in the last paragraph. Secondly, instead of considering complex representa-
tions, we are also willing to study [-modular representations with [ # p. One
hopes to prove an analogue of the Jacquet conjecture for [-modular supercusp-
idal representations, which will generalize the result of Feigon—Lapid—Offen for
supercuspidal representations. Noting that they use global methods in their
proof, which strongly relies on the assumption that all the representations are
complex. Thus, their method does no longer works for [-modular representa-
tions. Finally, we are willing to consider F'/Fy to be a quadratic extension
of non-Archimedean locally compact fields instead of p-adic fields. Since the
result of Feigon—-Lapid—Offen heavily relies on the fact that the characteristic
of F' equals 0, their method fails when considering non-Archimedean locally
compact fields of positive characteristic. The aim of this paper is to answer
this question.

We will say a bit more about l-modular representations. The study of smooth
lI-modular representations of G = GL,,(F') was initiated by Vignéras [43], [44]
to extend the local Langlands program to l[-modular representations. In this
spirit, many classical results related to smooth complex representations of p-
adic groups have been generalized to [-modular representations. For example,
the local Jacquet-Langlands correspondence related to l-modular representa-
tions has been studied in detail in [11], [33] and [37]. Thus, it is also natural
to consider the [-modular version of the Jacquet conjecture, which hopes to
build up the relation between distinction and an expected [-modular version of
quadratic base change. This paper is the starting point of the whole project.

To begin with, from now on we assume F'/Fy to be a quadratic extension of
non-Archimedean locally compact fields of residue characteristic p # 2 instead
of p-adic fields. We fix R an algebraically closed field of characteristic [ # p,
allowing that I = 0. When [ > 0, we say that we are in the [-modular case (or
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modular case for short). Later on, we always consider smooth representations
over R and we assume 7 to be a supercuspidal representation of G over R. Be
aware that when [ # 0, a supercuspidal representation is not the same as a
cuspidal representation of G, although they are the same when [ = 0 (see, for
example, Vignéras [43], chapitre II, section 2). Now we state our first main
theorem:

THEOREM 1.1. — For  a supercuspidal representation of G = GL,(F) and T
a unitary involution, 7 is distinguished by G if and only if 7% = .

Moreover, we may also calculate the dimension of the space of G"-invariant
linear forms:

THEOREM 1.2. — For w a o-invariant supercuspidal representation of G, we
have

dimgHome- (7,1) = 1.

One important corollary of Theorem 1.1 relates to the Q;-lift of a o-invariant
supercuspidal representation of G' over F; when [ > 0, where we denote by Q;,
Z; and F; the algebraic closure of an l-adic field, its ring of integers and the
algebraic closure of the finite field of ! elements, respectively. For (7,V) a
smooth irreducible representation of G over Q;, we call it integral if it admits
an integral structure, that is, a Z;|G]-submodule Ly of V generated by a Q-
basis of V. For such a representation, the semi-simplification of Ly ®ZE does
not depend on the choice of Ly, which we denote by 7;(7) as a representation
of G over Fy, called the reduction modulo | of 7 (see [43] for more details). The
following theorem, which will be proved at the end of Section 8, says that it
is always possible to find a o-invariant Q-lift for a o-invariant supercuspidal
representation of G over F;.

THEOREM 1.3. — For m a o-invariant supercuspidal representation of G
over IFy, there exists an integral o-invariant supercuspidal representation @ of
G over Qy, such that r(7) = .

Let us outline the contents of this paper by introducing the strategy of our
proof for Theorem 1.1 and Theorem 1.2. In Section 2, we introduce our set-
tings and basic knowledge about hermitian matrices and unitary subgroups.
Our main tool to prove the theorems will be the simple type theory devel-
oped by Bushnell-Kutzko in [9] and further generalized by Vignéras [43] and
Minguez-Sécherre [32] to the I-modular case. In Section 3, we will give a de-
tailed introduction to this theory, but here we also recall a little bit for conve-
nience. The idea of simple type theory is to realize any cuspidal representation
7 of G as the compact induction of a finite dimensional representation A of J,
which is an open subgroup of G compact modulo its centre. Such a pair (J, A),
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constructed as in [9], is called an extended mazimal simple type, which we will
abbreviate to simple type for simplicity. We also mention the following main
properties of (J,A):

(1) The group J contains a unique maximal open compact subgroup J,
which contains a unique maximal normal pro-p-subgroup J';

(2) We have J/J! = GL,,(l), where E/F is a certain field extension of
degree d with I denoting the residue field of £ and n = md;

(3) We may write A = kK ® p, where k and p are irreducible representations
of J, such that the restriction k|1 = 7 is an irreducible representation
of J', called a Heisenberg representation, and p|; is the inflation of a
cuspidal representation of GL,, (1) = J/J!.

For a given supercuspidal representation m of GG, our starting point is to prove
the “only if* part of Theorem 1.1. When R = C and char(F) = 0, it is a
standard result by using global argument, especially the globalization theorem
([20], Theorem 1). When char(F) = p > 0, we may keep the original proof
except that we need a characteristic p version of the globalization theorem.
Fortunately, we can use a more general result due to Gan—Lomeli [15] to get
the result we need. Since any supercuspidal representation of G over a charac-
teristic 0 algebraically closed field can be realized as a representation over Q up
to twisting by an unramified character, we finish the proof when char(R) = 0.
When R = F;, we consider the projective envelope Py, of A]; and we use the
results in [43] to study its irreducible components and the irreducible compo-
nents of its Q;-lift. Finally, we will show that there exists a Q;-lift of 7, which is
supercuspidal and G7-distinguished. Thus, by using the characteristic 0 case,
we finish the proof for the “only if* part, for any R under our settings. The
details will be presented in Section 4.

In Section 5, we prove the 7-self-dual type theorem, which says that for a
unitary involution 7 and a o-invariant cuspidal representation 7w of G with a
technical condition, we may find a simple type (J, A) contained in 7, such that
7(J)=J and A™ =2 AV, where ¥ denotes the smooth contragradient. In other
words, we find a “symmetric* simple type contained in 7 with respect to 7.
Our strategy follows from [1], section 4. First, we consider the case where E/F
is totally wildly ramified and n = d. Then for E/F in general with n = d, we
make use of the techniques about endo-class and tame lifting developed in [6]
to prove the theorem by reducing it to the former case. Finally, by using the
n = d case, we prove the general theorem.

In Section 6, for 7, m as in Section 5 satisfying the technical condition,
we first choose a 7-self-dual simple type (J,A) contained in 7. The main
result of Section 6, which we call the distinguished type theorem, says that = is
distinguished by G7 if and only if there exists a 7-self-dual and distinguished
simple type of w. More specifically, by Frobenius reciprocity and the Mackey
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formula, we have

Homg-(m,1) =  [[  Homgsng-(A%,1).
geJ\G/G™

We concentrate on those g in the double coset such that Hom yong- (A9, 1) # 0.
The proof of the distinguished type theorem also shows that there are at most
two such double cosets, which can be written down explicitly. Moreover, for
those g, we have

Hom jongr (A%, 1) & Hom jong- (K9, X ') @ g Homgona-(p?, X),

where & is well chosen, such that k™ = kY, and Y is a quadratic character of
J9 N G™, which is trivial on J'9 N G™. In the tensor product, the first term
Hom jongr (K9, x 1) is of dimension 1 as an R-vector space. So essentially we
only need to study the second term. If we denote by p9 the cuspidal representa-
tion of GL,, (1) =& J9/J19, whose inflation equals p?|7s and by X the character
of H := J9NG"/J¥Y NG, whose inflation equals x|jsngr, then we further
have

Hom jong- (pg7 X) = HOHlH(pig7 Y)

Here, H could be a unitary subgroup, an orthogonal subgroup or a symplectic
subgroup of GL,,(l). When = is supercuspidal, the technical condition in the
T-self-dual type theorem is always satisfied, and we reduce our problem to
studying the H-distinction of a supercuspidal representation of GL,,(I).

Moreover, at the beginning of Section 6, we use the result in Section 5
to extend o to a non-trivial involution on E. We write Fy = E° and we
deduce that E/Ej is a quadratic extension. When E/E; is unramified, H
is a unitary subgroup. We first use the result of Gow [16] to deal with the
characteristic 0 case. For char(R) > 0, we consider the projective envelope as
in Section 4. When E/Ej is ramified, H is either an orthogonal subgroup or
a symplectic subgroup. When H is orthogonal, we use Deligne-Lusztig theory
[12], precisely a formula given by Hakim-Lansky [18] to calculate the dimension
of Hompg (p9,%), when char(R) = 0. For char(R) > 0, we again use the same
method as in Section 4 to finish the proof. When H is symplectic, by [31],
the space is always {0}. These two cases will be studied in Section 7 and
Section 8 separately. Finally, in Section 9, we give a purely local proof of the
main theorem of Section 4.

It is worth mentioning that in [35], Sécherre studied the o-self-dual supercus-
pidal representations of G over R, with the same notation unchanged as before.
He proved the following Dichotomy Theorem and Disjunction Theorem: For m
a supercuspidal representation of G, it is o-self-dual (that is, 7% = V), if and
only if it is either distinguished by GL, (Fpy) or w-distinguished, where w de-
notes the unique non-trivial character of Fjj* trivial on N/ g, (F*). The method
that we use in this paper is the same as that developed in ibid. For example,
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our Section 5 corresponds to section 4 of [1], and our Section 6 corresponds to
section 6 of [35], etc.

We point out the main differences in our case to end this Introduction. First,
in Section 5, we will find that in a certain case, it is even impossible to find
a hereditary order a, such that 7(a) = a, which is not a problem in section 4
of [1]. That is why we need to add a technical condition in the main theorem
of Section 5 and finally verify it for supercuspidal representations. Precisely,
for a o-invariant supercuspidal representation, we first consider the unitary
involution 7 = 71 corresponding to the identity hermitian matrix I,,. In this
case, we may use our discussion in Section 5 to find a 7-self-dual type contained
in m and we may further use our discussion in Section 6 and Section 7 to show
that m is odd when E/Ej is unramified. This exactly affirms the condition we
need, and we may repeat the procedure of Section 5 and Section 6 for general
unitary involutions. This detouring argument also indicates that a o-invariant
cuspidal not supercuspidal representation does not always contain a 7-self-
dual simple type, which justifies that our supercuspidal (instead of cuspidal)
assumption is somehow important.

Furthermore, in Section 8, it is unclear whether or not the character y men-
tioned above can be realized as a character of J and thus cannot be assumed to
be trivial a priori as in [35]. This means that we need to consider a supercusp-
idal representation of the general linear group over a finite field distinguished
by a non-trivial character of an orthogonal subgroup instead of the trivial one.
This is why the result of Hakim-Lansky ([18] Theorem 3.11) shows up.

Last but not least, in Section 6, a large part of our results is stated and
proved for a general involution instead of a unitary one. This provides the
possibility of using the same method to study the distinction of supercuspidal
representations of G by other involutions. For instance, a similar problem for
orthogonal subgroups was also considered by the author [45].

2. Notation and basic definitions

2.1. Notation. — Let F/Fj be a quadratic extension of non-Archimedean lo-
cally compact fields with residue characteristic p # 2 and let o be the unique
non-trivial involution in the Galois group. Write op (or op,) for the ring of
integers of F' (or Fp) and k (or ko) for the residue field of F' (or Fp). The invo-
lution o induces a kg-automorphism of k generating Gal(k/ko), still denoted
by o.

Let R be an algebraically closed field of characteristic > 0 different from p.
If [ > 0, then we are in the “modular case*.

We fix a character

1/)02F0—>RX

trivial on the maximal ideal of 0, but not on or,, and we define ) = Ygotrg,/p, .
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Let G be the locally profinite group GL,(F) with n > 1, equipped with
the involution o acting componentwise. Let € be a hermitian matriz in G,
which means that ¢* = . Here, 2* := o('z), for any z € M, (F), with *
denoting the transpose operator. Sometimes, we write o;(x) := x*, for any
x € M, (F), to emphasize that oy is an anti-involution on M, (F) extending o.
For ¢ hermitian and g € G, we define 7.(g) = eo(tg~1)e™!, called the unitary
involution corresponding to €. For 7 = 7. a fixed unitary involution, we denote
by G7 the corresponding unitary subgroup, which consists of the elements of G
fixed by 7.

By representations of a locally profinite group, we always mean smooth
representations on an R-module. Given a representation 7 of a closed subgroup
H of G, we write 7" for the smooth contragradient of w. We write 7° and 77
for the representations 7 o o and 7 o 7 of groups o(H) and 7(H), respectively.
We say that 7 is 7-self,dual if H is 7-stable, and 77 is isomorphic to V. We say
that 7 is o-invariant, if H is o-stable, and 7 is isomorphic to 7. For g € G, we
write H9 = {g~thg|h € H} a closed subgroup and we write 79 : x + 7(grg—1)
a representation of HY.

For a an o p-subalgebra of M,,(F') and 7 = 7. a unitary involution, we denote
by

7(a) :=o0.(a) = {o:(x)|z € a}

an o p-subalgebra of M, (F), where o (z) := eo(z)e~! is an anti-involution for

any x € M,,(F). We say that a is 7-stable if 7(a) = a. Moreover, for g € G, we
obtain

1

m(a)? =g oc(a)g = O'E(Us(g)aas(gil)) = UE(T(g)ilaT(g)) = T(a"'(g)),

In other words, the notation 7(a) is compatible with G-conjugacy.

For 7 a unitary involution and 7 a representation of H as above, we say that
7 is H N G7-distinguished, or just distinguished, if the space Hompgng-(m, 1) is
non-zero.

An irreducible representation of G is called cuspidal (or supercuspidal) if
it does not occur as a sub-representation (or subquotient) of a parabolically
induced representation with respect to a proper parabolic subgroup of G.

2.2. Hermitian matrices and unitary groups. — We make use of this subsection
to introduce basic knowledge of hermitian matrices and unitary groups. The
references will be [19] and [25].

Let E/Ey be a quadratic extension of non-Archimedean locally compact
fields, which are algebraic extensions of F' and Fy, respectively. Write og for
the ring of integers of F and og, for that of Ey. Let o/ € Gal(E/Ep) be the
unique non-trivial involution in the Galois group. For ¢’ € GL,,(FE), just as in
the last subsection, we say that ¢’ is a hermitian matriz if (¢')* = &/, where we
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consider (-)* as before with n, | Fy, o replaced by m, E, Ey, o', respectively.
Write wg for a uniformizer of E such that

—wpg if E/Ey is ramified.

Let X denote the set of all the hermitian matrices in GL,,(E) for E/Ey. The
group GL,,(FE) acts on X by g-x = gzg*.

, wg  if E/Ey is unramified,
o' (wp) =

PROPOSITION 2.1 ([25], Theorem 3.1). — There are exactly two GL,,(FE)-
orbits of X with respect to the action given above. Furthermore, the elements
in each orbit are exactly determined by the classes of their determinants in

Eg /Ng,/g,(EX).

We also consider the GL,,(0g)-orbits of X. We consider sequences o =

(a1,...,a,) of certain triples o; = (a;,my,d;), such that a; > ... > a, is a
decreasing sequence of integers, and my + ...+ m, = m is a partition of m by
positive integers, and 4y, ..., d, are elements of E, such that:

(1) If E/Ey is unramified, then d; = 1.
(2) If E/Ey is ramified and a; is odd, then é; = 1 and m; is even.
(3) If E/Ey is ramified and a; is even, then J; is either 1 or ¢, with € €
OEU —Ng/g, (05;) fixed.
For each o = (a1,..., ;) as above, we introduce a hermitian matrix w® =
wy ... wy, where wy' € GL,y,, (E) is a hermitian matrix, such that:
(i) In the case (1), wy = @y Im,-
(ii) In the case (2), @y = @y Jm, /2, Where J,, /0 = <—IS¢7¢/2 Imo"/Q);
(iii) Inthe case (3), wy = wydiag(l,...,1,d;), where diag(x, ..., *) denotes
the diagonal matrix with corresponding diagonal elements.
We state the following proposition, which classifies all the GL,, (0 g)-orbits of X’.

PROPOSITION 2.2 ([25], Theorem 7.1, Theorem 8.2). — Fach class of the
GLy,(0g)-orbits of X contains a unique representative of the form w$ for a
certain a as above.

Now we study unitary groups. For ¢’ € X', we denote by U,,(¢’) the unitary
group consisting of those g € GL,,(FE) such that ge'g* = &. We say that
two unitary groups are equivalent, if and only if they are conjugate by some
g € GL,,(E). Since it is easy to check that gU,,(¢')g~! = U,,(ge’g*), by
Proposition 2.1, there are at most two equivalence classes of unitary groups,
which are represented by U,,(E/Ey) := U (I,) and U, (E/Ey) := Uy, (e) for
e =diag(l,...,1,¢), where € € Ef —Ng, g, (E*) is fixed.

REMARK 2.3. — While we will not use it, we list the following result for com-
pleteness: U,,(E/Ep) is equivalent to Ul (E/Ep) if and only if m is odd.
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REMARK 2.4. — In the future, we only consider the following two cases. First,
we consider £ = F, Eg = Fy, m = n and ¢/ = 0. For any two unitary
involutions with the corresponding hermitian matrices in the same GL, (F)-
orbit, we have already shown that the corresponding two unitary groups are
equivalent. Since distinction is a property invariant up to equivalence of unitary
groups, we may choose a hermitian matrix in its GL, (F)-orbit such that the
corresponding unitary involution 7 is simple enough to simplify the problem.
Secondly, we consider FE as a finite field extension of F' determined by a cuspidal
representation 7 such that n = m[E : F|. We will find out that if 77 = m,
then we may find an involution o’ on E such that Ey = E° and o'|p = o.
So we may make use of the propositions in this subsection to study hermitian
matrices and unitary groups of GL,,(E).

3. Preliminaries on simple types

In this section, we recall the main results that we will need on simple strata,
characters and types [6], [8], [9], [32], [43]. We mainly follow the structure of
[1] and [35].

3.1. Simple strata and characters. — Let [a, 3] be a simple stratum in M, (F')
for a certain n > 1. Recall that a is a hereditary order in M, (F'), and § is in
G = GL,,(F), such that:

(1) the F-algebra E = F[f] is a field with degree d over F;

(2) E* normalizes a*.
The centralizer of F in M,,(F'), denoted by B, is an E-algebra isomorphic to
M,,,(E) with n = md. The intersection b := a N B is a hereditary order in B.

We denote by p, the Jacobson radical of a, and U'(a) the compact open
pro-p-subgroup 1+ p, of G. Similarly, we denote by p, the Jacobson radical of
b and U'(b) the compact open pro-p-subgroup 1+ pp of BX. For any x € BX,
we have ([9], Theorem 1.6.1)
(1) U'(a)zU'(a) N B* = U'(b)zU" (b).

Associated with [a, 5], there are open compact subgroups

H'(a,8) c J'(a,8) C J(a,f)

of a* and a finite set C(a, 3) of simple characters of H'(a, 3) depending on the
choice of 1. We denote by J(a, ) the subgroup of G generated by J(a, ) and
the normalizer of b* in B*.

PROPOSITION 3.1 ([9], section 3). — We have the following properties:

(1) The group J(a, ) is the unique mazimal compact subgroup of J(a, ).
(2) The group J'(a,B) is the unique mazimal normal pro-p-subgroup of

J(a, B).
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3) The group J(a,f3) is generated by J'(a,3) and b*, and we have
9 g
(2) J(a,8) 0 BX = b%,J'(a, ) N BX = U'(b).

(4) The normalizer of any simple character € C(a,) in G is equal to
J(a,B).

(5) The intertwining set of any 6 € C(a, B) in G, which we denote by I (0),
is equal to J*(a, 3)B*J(a,8) = J(a, B)B*J(a, ).

REMARK 3.2. — For short, we write J, J*, H! for J(a, 3), J'(a, 3), H'(a, 3),
respectively, if a and § are clear to us.

When b is a maximal order in B, we call the simple stratum [a, 5] and the
simple characters in C(a, 8) mazimal. In this case, we may find an isomorphism
of E-algebras B = M,,(FE), which identifies b with the standard maximal order,
and, moreover, we have group isomorphisms

(3) J(a,8)/J"(a,8) = 6% /U"(b) = GLy, (1),
where I denotes the residue field of E.

3.2. Simple types and cuspidal representations. — A pair (J, A), called an ex-
tended mazimal simple type in G (we always write simple type for short) and
constructed in [9] in the characteristic 0 case and in [43], [32] in the modular
case, is made of a subgroup J of G, which is open and compact modulo its
centre, and an irreducible representation A of J.

Given a simple type (J,A) in G, there are a maximal simple stratum [a, 5]
in M,,(F) and a maximal simple character § € C(a, 8), such that J(a,5) = J,
and 6 is contained in the restriction of A to H'(a,3). Such a character 6 is
said to be attached to A. By [9], Proposition 5.1.1 (or [32], Proposition 2.1
in the modular case), the group J'(a,3) has, up to isomorphism, a unique
irreducible representation 1 whose restriction to H!(a, 3) contains §. Such a
representation 7, called the Heisenberg representation associated to 6, has the
following properties:

(1) The restriction of n to H'(a, ) is made of (J'(a, 3) : H'(a, 3))'/? copies

of 0. Here, (J'(a,) : H'(a,3))'/? is a power of p.
(2) The direct sum of (J'(a,8) : H'(a, 3))'/? copies of 1, which we denote
by n(Jl(“»B):Hl(aﬁ))l/Q, is isomorphic to Ind'{;l 0.

(3) The representation 7 extends to J.

(4) The intertwining set of 7, which we denote by I (n), equals I (6).

(5) For h € Ig(n), we have dimg(Hom jin 10 (0", 1)) = 1.

For any representation x of J extending 7, there exists a unique irreducible
representation p of J trivial on J'(a, 3), such that A & k ® p. Through (3),
the restriction of p to J = J(a, 8) is identified with the inflation of a cuspidal
representation of GL,, (1).
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REMARK 3.3. — Recall that in [9], Bushnell and Kutzko also assume x" =
K|j(a,8) to be a so-called beta-extension, which means that:

(1) k% is an extension of n;
(2) if we denote by I (k) the intertwining set of k%, then I (k") = Ig(n) =
15(0).
However, in our case, since GL,, (1) is not isomorphic to GLa2(F2) (p # 2), any
character of GL,, (1) factors through the determinant. It follows that any rep-
resentation of J extending 7 is a beta-extension. So, finally, our consideration
of k¥ coincides with the original assumption of Bushnell and Kutzko.

We now give the classification of irreducible cuspidal representations of G
in terms of simple types (see [9], §6.2, §8.4 and [32], section 3 in the modular
case).

PROPOSITION 3.4 ([9],[32]). — Let 7 be a cuspidal representation of G.

(1) There is a simple type (J,A) such that A is a sub-representation of the
restriction of m to J. It is unique up to G-conjugacy.

(2) Compact induction c-Ind§ gives a bijection between the G-conjugacy
classes of simple types and the isomorphism classes of cuspidal repre-
sentations of G.

3.3. Endo-classes, tame parameter fields and tame lifting. — In this subsec-
tion, we introduce the concepts of endo-classes, tame parameter fields and
tame lifting. The main references will be [9], [6] and [8].

For [a, 8], a simple stratum in M,,(F') and [a, 5'] a simple stratum in M, (F)
with n,n’ > 1, if we have an isomorphism of F-algebras ¢ : F[3] — F[f'], such
that ¢(8) = ', then there exists a canonical bijection

tow :C(a,8) > C(a, ),

a,a’
called the transfer map (see [9], Theorem 3.6.14).

Now let [a1,51] and [ag, B2] be simple strata in M, (F)) and M,, (F), re-
spectively, with nq,ne > 1. We call two simple characters 8, € C(ay, 51) and
02 € C(ag, B2) endo-equivalent, if there are simple strata [a’, 51] and [a’, 85] in
M,/ (F), for some n’ > 1 such that 6; and 65 transfer to two simple charac-
ters 91 € C(d, 1) and 0, € C(d’, B5), respectively, which intertwine (or by [9],
Theorem 3.5.11, which are GL,(F)-conjugate). This defines an equivalence
relation on

U ¢(a,8),
[a,8]

where the union runs over all simple strata of M, (F'), for all n > 1 (see [6],
section 8). An equivalence class for this equivalence relation is called an endo-
class.
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For 7 a cuspidal representation of G = GL,,(F'), there exist a simple stratum
[a, 5] and a simple character § € C(a, ) contained in m. The set of simple
characters 6 contained in 7 constitutes a G-conjugacy class, thus those simple
characters are endo-equivalent. So we may denote by O, the endo-class of m,
which is the endo-class determined by any € contained in 7.

Given 0 € C(a, ), the degree of E/F, its ramification index and its residue
degree depend only on the endo-class of #. They are called the degree, ramifi-
cation index and residue degree of this endo-class. Although the field extension
E/F is not uniquely determined, its maximal tamely ramified sub-extension is
uniquely determined by the endo-class of 6 up to F-isomorphism. This field is
called a tame parameter field of the endo-class (see [8], §2.2, §2.4).

We denote by £(F) the set of endo-classes of simple characters over F'. Given
a finite tamely ramified extension T" of F', we have a surjection

E(T) — E(F)

with finite fibers, which is called a restriction map (see [8], §2.3). Given © €
E(F), the endo-classes ¥ € E(T) restricting to © are called the T/ F-lifts of ©.
If © has a tame parameter field T', then Autp(T") acts faithfully and transitively
on the set of T'/F-lifts of © (see [8], §2.3, §2.4).

Let [a, 8] be a simple stratum and let § € C(a, 8) be a simple character, let
T be the maximal tamely ramified extension of F' in F, and let © be the endo-
class of 6, then T is a tame parameter field for ©. Let C' = M,, ;(T") denote
the centralizer of T' in M,,(F), where ¢ = [T : F]. The intersection ¢ = anC
is an order in C, which gives rise to a simple stratum [¢, §]. The restriction of
6 to H'(c,[3), denoted by fr, is a simple character associated to this simple
stratum, called the interior T/F-lift of 6. Its endo-class, denoted by ¥, is a
T/F-lift of ©. For the origin and details of the construction of ¥, see [6].

For T C M, (F) a tamely ramified sub-extension over F, the map

a—ancC

is injective from the set of hereditary orders of M, (F') normalized by T* to
the set of hereditary orders of C' (see [6], Section 2), where we still denote by
C' the centralizer of T in M,,(F'). For [a, 1], [az,602] two simple strata, and
01 € C(a, B1), 62 € C(a, B2) two simple characters, such that §; and 65 have the
same tame parameter field T, if

C(c,p1) =C(c, B2) and (01)r = (02)7,
then (see [BH96], Theorem 7.10, Theorem 7.15)
C(Cl7 ﬂl) = C(a, 52) and 01 = 92.

In particular, when 81 = 82 = 3, the interior T/ F-lift is injective from C(a, )
to C(c, ).
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3.4. Supercuspidal representations. — Let 7w be a cuspidal representation of
G. By Proposition 3.4, it contains a simple type (J, A). Fix a maximal simple
stratum [a, 8], such that J = J(a, 3), and write A = Kk ® p as in §3.2. Let p be
the cuspidal representation of J/J' = GL,,(I) whose inflation equals p|;. We
have the following proposition:

PROPOSITION 3.5 ([43], Chapitre III, 5.14). — The representation w is super-
cuspidal if and only if p is supercuspidal.

4. Distinction implies Galois invariance for a supercuspidal representation

Let G = GL,,(F) and let G be the unitary group corresponding to a unitary
involution 7. We state the following theorem, which is well-known when R = C
and char(F) = 0 (see, for example, [20], section 4, corollary or the earlier paper
[23] which illustrates the idea).

THEOREM 4.1. — Let 7 be a supercuspidal representation of G. If w is distin-
guished by G, then w is o-invariant.

Before proving Theorem 4.1, we state a useful lemma, which will be used
not only in the proof of the theorem but also in the latter sections.

LEMMA 4.2. — For § a unitary involution on G and for (J,A) a simple type
in G, we have JNG? = JNG°.

Proof. — For x € J N G°, we have §(r) = =, which implies that
o(det(z))det(z) = 1, where we denote by det(:) the determinant function de-
fined on G. Thus, det(z) € of. Since J = EXJ, we get z € 05J NG° =
JNG°. O

Moreover, we need the following lemma, which says that the properties of
distinction and o-invariance are maintained up to change of base fields.

LEMMA 4.3. — Let Ry < Ry be a fized embedding of two algebraically closed
fields of characteristic I > 0. Let my be a supercuspidal representation of G
over Ry. Let m = my @R, Ra be the corresponding representation of G over Rs.
Then:

(1) mg is distinguished by G™ if and only if w is distinguished by GT.

(2) 7§ = mo if and only if 77 = 7.

Proof. — For (1), let (J, Ag) be a simple type of mg. Then (J,A) := (J,A¢®r,
R5) is a simple type of m, and thus 7 is also supercuspidal. Using Frobenius
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reciprocity and the Mackey formula®,

Homp, g=1(70, 1) # 0 <= There exists g € G such that
HOIan[ngGT](Ag, 1)#£0
and

Hompg,(gr)(m, 1) # 0 <= There exists g € G such that
Hompg,[jsnagr) (A9, 1) # 0.

By Lemma 4.2, JING™ = JINGT is a compact group, and AJ is a representation
of finite dimension. Thus,

Homp, (jong-)(AJ, 1) ®r, R2 = Hompg,[jongr(AY, 1),

which finishes the proof of (1). For (2), from [43], Chapitre I, 6.13, we know
that 7 is isomorphic to 7§ if and only if their trace characters are equal up to
a scalar in R{, which works similarly for 7 and 77. Since the trace characters
of my and 7 are equal up to the change of scalars, which works similarly for 7§
and 77, we finish the proof of (2). 2 O

Proof of Theorem 4.1. — First we consider R = C. If char(F) = 0, it is a
standard result proved by using a global method ([20], section 4, corollary).
Especially, their result is based on the globalization theorem, saying a distin-
guished 7 under our settings can be realized as a local component of a cuspidal
automorphic representation IT of GL,, (Ax), which is distinguished by a uni-
tary subgroup of GL, (Ax) with respect to a quadratic extension of number
fields K/Ko (see ibid., Theorem 1). If char(F) > 0, in order to use the proof
of Hakim—Murnaghan, we only need a variant of globalization theorem for the
characteristic positive case. Fortunately, Gan—Lomeli already built up the glob-
alization theorem for general reductive groups over function fields and locally
compact fields of positive characteristic (see [15], Theorem 1.3). Following their
notations, we choose the reductive group H to be Rk, (GL,(K)), where /Ko
is a quadratic extension of function fields, and Ry x, is the Weil restriction.
We choose V' to be M,,(K) as a Ky-vector space and ¢ : H — GL(V) to be a
representation over Ky defined by

t(h)x = hzo('h), z €V, heH,

where o denotes the non-trivial involution in Gal(K/Ky). If we choose zg € V
to be a hermitian matrix in M, (K) and H® to be the stabilizer of z¢, then
H?"° becomes a unitary subgroup of H, which satisfies the condition of loc.
cit. In order to use their result, we only need to verify the conditions (a) and
(b) in their theorem. For condition (a), ¢ is semi-simple since it is the direct

1. This argument will occur several times in this section, so for more details we refer the
reader to the proof of Theorem 4.1.

2. Note that if the trace characters of m§ and 7o are equal up to a scalar in R, then that
scalar is in Rf since the trace of mg and 7§ take values in R;.
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sum of two irreducible sub-representations, composed of hermitian matrices
and anti-hermitian matrices, respectively ®. For condition (b), since we only
care about the case where y = 1, it is automatically satisfied. Thus, if we use
[15], Theorem 1.3 to replace [20], Theorem 1 and follow the proof in [20], then
we finish the proof when R = C, and F/F; is a quadratic extension of locally
compact fields of characteristic p.

For char(R) = 0 in general, a supercuspidal representation of G can be
realized as a representation over Q up to twisting by an unramified character,
where Q is the algebraic closure of Q. More precisely, there exists a character x :
F* — R* such that X|0; = 1 and 7-xodet can be realized as a representation
over Q. Since det(GT) C o} and y o det|g- is trivial, 7 is G"-distinguished if
and only if 7- xy odet is, as a representation over R, and also as a representation
over Q or C by Lemma 4.3.(1). Using the complex case, 7 - x odet is o-invariant
as a representation over C, and also as a representation over Q or R by Lemma
4.3.(2). By definition, x is o-invariant, and thus = is also o-invariant.

For R = T}, we write 7 = c-Ind§A for a simple type (J,A). Using the
Mackey formula and Frobenius reciprocity, we have

0 # Homg- (m,1) = H Hom jong- (A9, 1).
geJ\G/G™
Thus, 7 is distinguished if and only if there exists ¢ € G such that
Hom jongr(A9,1) # 0. Let v = 7(g9)g~! and let §(x) = y~1r(z)y for z € G,
which is also a unitary involution; then we have
0 # Hom jangr (A9, 1) = Hom yrqs (A, 1) = Hom s (A%, 1)
=~ Hom 7 (A%, Ind’ s ),

where A? = A|;, and we use the fact that J N G° = J N G° by Lemma 4.2.

We consider Pyo to be the projective envelope of A° as a Z,;[J]-module, where
we denote by Z; the ring of integers of Q;; then we have ([43], Chapitre III,
4.28 and [39], Proposition 42 for finite group case. Since A° is a smooth repre-

sentation of the compact group J of finite dimension, it can be regarded as a
representation of a finite group.):
(1) Ppo ®Z]F7 is the projective envelope of A? as a F;[J]-module, which is
indecomposable of finite length, with each irreducible component iso-
morphic to A°. Thus, Homg 1 (Pro @7, Fr, Ind? s F;) # 0.

(2) For f—’:o = Ppo ®Z—l@ the Q;-lift of Pyo, we have 13;\/0 x @]\VO, where

A0 in the direct sum are Q;-lifts of AY of multiplicity 1 (the multiplicity
1 statement is derived from counting the length of Pjo ®7z IF; and the

number of different A® in FA_;, and then showing that they are equal.

3. Here we need the assumption p # 2.
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The argument is indicated in the proof of [43], Chapitre III, 4.28, or
more precisely, ibid., Chapitre III, Théoréme 2.2 and Théoréme 2.9).

(3) In (2), each (J,?\vo) can be extended to a simple type (J,K) of G as a
Qi-lift of (J,A) ([43], Chapitre I11, 4.29).
Using (1), HomF—lm (Ppo ®7z F;, Ind:;nGs]FT) # 0. Since Ppo is a projective

Z41]J]-module, it is a free Z;-module. Since Indj;mGaZ is a free Z;-module,
Homg 1 (Pro, Ind s Z1)
is a free Z;-module. As a result,
Homg, ;(Pro ®7; Fr, Ind s F7) = Homg 1 (Pao, Ind ;g Z1) @ Fr # 0
if and only if
Homg ;\(Ppo, Ind? s 7)) #0
if and only if
Homg ;1 (Pao, Ind s Qi) = Homg ; (Pro, Ind s Z1) @7 Qi # 0.

So there exists A0 as in condition (2), such that Homg (;\\6, Ind? s Q1) # 0.

Using (3) we may choose (J,K) as an extension of (J,A%). We write 7 = ¢
Imd?A7 which is a supercuspidal representation of G over Q;. By using

HOHngmGT (ng 1) = I—IornJﬁG‘S (Ka 1) = HomJﬁG5 (Kav 1)
= HomJ(E, Ind?} s Q;) #0

and by the Mackey formula and Frobenius reciprocity as before, 7 is G"-
distinguished. Using the result of the characteristic 0 case, we have 77 = T.
By (3), A is a Q;-lift of A. So 7 is a Q-lift of 7, and we have 77 = 7.

For char(R) =1 > 0 in general, as in the characteristic zero case, there exists

a character x : F* — R* such that x| x = 1 and 7-xodet can be realized as a
F

representation over F;. Similarly, we deduce that 7 is G™-distinguished if and
only if 7w - x o det is, as a representation over R, and also as a representation
over IF; by Lemma 4.3.(1). Using the case above, 7 - x o det is o-invariant, as a
representation over F;, and also as a representation over R by Lemma 4.3.(2).
By definition, x is o-invariant, and thus 7 is also o-invariant. O

REMARK 4.4. — Tt is also possible to give a purely local proof (without using
the result of the complex supercuspidal case) for this theorem, which also works
for cuspidal representations. Since our proof relies on the refinement of the
results and the arguments in Section 5 to Section 8, we leave it to the last
section to avoid breaking up the structure of the paper.
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5. The T-self-dual type theorem

Let G = GL,(F) and let 7 be the unitary involution of G corresponding
to a hermitian matrix €. Let m be a cuspidal representation of G. We choose
a maximal simple stratum [a, 5] and a simple character § € C(a, ) contained
in .

LEMMA 5.1. — If w is o-invariant, then we may choose the simple stratum
above such that o('B8) = B. As a result, o, (see Section 2) is an involution
defined on E whose restriction to F is o.

Let Ey = E°t, where E = F[f] and § is chosen as in Lemma 5.1.

THEOREM 5.2. — Let w be a o-invariant cuspidal representation of G and let
T be a unitary involution. We also assume the following additional condition:

If the hermitian matrix corresponding to 7 is not in the same G-class as I,
in X and if there exists a maximal simple stratum [a, 5] as in Lemma 5.1 with
a 0 € C(a,B) contained in 7, such that the corresponding F/Fj is unramified,
then m is odd.

Then there ezist a mazimal simple stratum [a,8'] and a simple character
0" € C(a', ") contained in 7, such that:

(1) 7(8)=p""

(2) 7(a’) = and* T(HY («',3")) = H (o', ).

(3) 0 or=0""1.

As a corollary of Theorem 5.2, we state the main theorem of this section:

THEOREM 5.3 (The 7-self-dual type theorem). — Under the same conditions
as Theorem 5.2, there exists a simple type (J,A) contained in 7 such that

7(J)=J and AT = AV.
In the following subsections, we will focus on the proof of the results stated.

5.1. Endo-class version of main results. — To prove Theorem 5.2 and Theorem
5.3, we consider their corresponding analogues for the endo-class. Let © be an
endo-class over F'. As mentioned in Section 3, we write d = deg(©). Moreover,
its tame parameter field T' as a tamely ramified extension over F' is unique up
to F-isomorphism.

From the definition of the endo-class, we may choose a maximal simple
stratum [a, 8] and a simple character § € C(a, 3) such that § € ©. We denote
by ©7 the endo-class of 67, which does not depend on the choice of . We
denote by n the size of a, that is, a < M,,(F') as a hereditary order. We write
n = md with m a positive integer. First of all, we have the following lemma as
an endo-class version of Lemma 5.1, which will be proved in §5.4.

4. For the definition of 7(a’), see §2.1. We will use the same notation for Theorem 5.5
and further proofs.
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LEMMA 5.4. — If©7 = O, then we may choose the simple stratum above such
that (1) = 8. As a result, o, is an involution defined on E whose restriction
to F iso.

Let Ey = E°t, where E = F[f] and 8 is chosen as in Lemma 5.4. The
following theorem as an endo-class version of Theorem 5.2 says that we may
adjust our choice of the simple stratum and simple character such that they
are 7-self-dual with respect to a unitary involution 7:

THEOREM 5.5. — Let © € E(F) be an endo-class over F' such that ©7 = O.
Let T be a unitary involution of G. We also assume the following additional
condition:

If the hermitian matrix corresponding to 7 is not in the same G-class as I,
in X, and if there exists a maximal simple stratum [a, 5] as in Lemma 5.4 with
a 0 € C(a, 8) contained in ©, such that the corresponding E/Ey is unramified,
then m = n/d is odd.

Then there exist a mazimal simple stratum [, 5] in M, (F) and a simple
character 8" € C(a’, B) such that:

(1) 7(8)=p""

(2) 7(a’) =d and T(H*(«/, B")) = H' («', B).

(3) 0 €© and @ o =071,

Later we will focus on the proof of Lemma 5.4 and Theorem 5.5. So before we
begin our proof, we illustrate how this theorem implies Lemma 5.1, Theorem
5.2 and Theorem 5.3. First, we have the following important result due to
Gelfand and Kazhdan (see [4], Theorem 7.3 for the complex case and [38],
Proposition 8.4 for the [-modular case):

PROPOSITION 5.6. — For 7 an irreducible representation of GL,(F), the rep-
resentation defined by g — w(tg™1) is isomorphic to 7.

For 7 given as in Lemma 5.1, if we denote by ©, the endo-class of 7, then we
get ©F = ©,. So we may use Lemma 5.4 to get Lemma 5.1 and use Theorem
5.5 to get Theorem 5.2.

Now we show that Theorem 5.2 implies Theorem 5.3. Using Proposition 5.6,
we have 77V = 17 = . Let (J,A) be a simple type of 7 containing 6’, where
¢’ is obtained from Theorem 5.2 such that 6’ o 7 = ’~1. Thus 7(J) = J since
they are the G-normalizers of 6’ o 7 and 6'~!, respectively. Since 77 =2 r, it
contains both (J,A) and (J,A™). By Proposition 3.4, there exists g € G such
that (J,A™) = (J9,A9). Since AV = A9 contains both (6’ o 7)~! = ¢’ and
0’9 as simple characters, the restriction of A9 to the intersection

(4) H'(a',p) 0 H (o, 5)7,
which is a direct sum of copies of 69 restricting to (4), contains the restriction
of 6 to (4). It follows that g intertwines 6. By Proposition 3.1.(5), g €
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J(a', 8B J(d, 5") with B’ the centralizer of E' in M,,(F). Thus we may
assume g € B’*. From the uniqueness of the maximal compact subgroup in
J, we deduce that JY = J implies J(a’,5")9 = J(o, 5'). Intersecting it with
B’* implies that b9 = b’*. Since b’* is a maximal compact subgroup of
B’ =2 GL,,(E') and g € B’*, we deduce that g € E'*6’* C J(d,5’). Thus,
(J9,A9) = (J,A), which finishes the proof of Theorem 5.3.

Finally, we state the following two lemmas, which will be useful in our further
proof:

LEMMA 5.7. — Let [a, 8] be a mazimal simple stratum in M, (F) and let ©
be a o-invariant endo-class over F, such that there exists 0 € C(a, 8) a simple
character in ©. Then fo1 and 6~ are in the same endo-class. In particular, if
the hereditary order a is T-invariant, then Qo1 conjugates to 0% by an element

in U(a).

Proof. — We choose 7 a cuspidal representation of G containing 6. Thus by
definition, we have ©, = ©. Using Proposition 5.6, we have 7™ = 77V, So
foT € Orr = Orov = O7, and 0~1 € ©,v. Since O = O, we have 07, = Ov,
which means that 6 o 7 and §~! are in the same endo-class. If 7(a) = a, then
by definition of the endo-equivalence ([6], Theorem 8.7), 6 o T intertwines with
6=, By [9], Theorem 3.5.11, fo7 conjugates to ! by an element in U(a). O

The following lemma will be used to change the choice of a unitary involution
up to G-action on its corresponding hermitian matrix.

LEMMA 5.8. — Let 7 = 7. be the unitary involution on G corresponding to a
hermitian matriz €, and let [a, 8] be a mazximal simple stratum in M, (F) and
let 0 € C(a,B) be a simple character, such that

(@) =a, Oor=0""1 (and7(B)=p"1).

Then for v/ = 7. the unitary involution corresponding to a hermitian matriz
e’ =g teo(tgt), we have

(@) =a, 0907 =(09)"" (and 7'(B7) = (B7)7H).
Proof. — The proof is just a simple calculation. We have
T'(a%) = 7' (g7 )T ()7 (9) = (97 )e'e T T(a) (e ) T (g) = g~ ' (a)g,
where in the last step we use
(e (g) =eo('g™ e = .

Since 7(a) = a, we get 7/(a9) = a9. The other two equations can be proved in
a similar way. O
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5.2. The maximal and totally wildly ramified case. — Now we focus on the
proof of Theorem 5.5. We imitate the strategy in [1], section 4, which first
considered a special case, and the used tame lifting developed by Bushnell and
Henniart [6] and other tools developed by Bushnell and Kutzko [9] to generalize
their result. In this subsection, we prove the following proposition as a special
case of (2) and (3) of Theorem 5.5:

PROPOSITION 5.9. — Let [a,0] be a simple stratum in M, (F) and let 6 €
C(a, B) such that 6 € © with © a o-invariant endo-class. Let E/F be totally
wildly ramified of degree n. Let 7 = 11 with 71(z) := o(tx™1) for any x € G.
Then there exist a simple stratum [0, "] and a simple character 8" € C(a”, 5")
such that (a”,0") is G-conjugate to (a,0) with the property (a") = a” and
0" o1 = 9//—1'

REMARK 5.10. — In Proposition 5.9 we have [E : F] = d = n, which is a
power of p as an odd number.

Up to G-conjugacy, we may and will assume a to be standard (that is, a
is made of matrices with upper triangular elements in or and other elements

in PF)

LEMMA 5.11. — There ezist g1 € G and a1, ...,a, € 05, such that
0 0 ... 0 aq
0 - a0
(oo =4 =
0 an_1 .0
a, 0 ... 0 0

Moreover, if we define o := a9', then we have 7(a') = o’.

Proof. — First we claim that we may choose a; € 0 such that A is a hermitian
matrix and det(A) € Np,p, (F*). To do this, noting that A* = A if and
only if a; = o(any1-4) for ¢ = 1,2,...,n, we choose a; = o(ap4+1—;) for i =
1,2,...,(n—1)/2 randomly but only to make sure that they are in o and we
choose a(n41y/2 € 0f, to make sure that det(A) € Np g, (FX).

Since A is a hermitian matrix that is in the same G-orbit as I,, by considering
the determinant, using Proposition 2.1, there exists an element ¢g; € G such
that (g;')*g; ' = A, which means that 7(g1)g; " = A. By definition 7(a’) = o’

if and only if 7(g;")7(a)7(g1) = g7 'agi. Since a* = ‘'a, we deduce that
7(a’) = a’ if and only if A= tad = (7(g1)g; ") ' tar(g1)g; ' = a. From our
choice of A and the definition of a, this can be verified directly. ]
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Now fix g1 as in Lemma 5.11. We write / = 69 and 8’ = (9. Since
a’ = a%, we also have:

(1) U :=U'(a ) Ut(a)9', where Ui(a) := 1 + p? for i > 1.

(2) J = J(d,p )=J( gy

© 11 = 1w ) = Jit g,

(4) J' = J(a, ) = I(a, 5}

(5) H' = H\(a, ) = H' (3, ).

(6) M' := M9, where M = o} X ... X 0y is the subgroup of diagonal

matrices contained in a.

Since o’ is 7-stable and ©7 = ©, using Lemma 5.7, there exists v’ € U(a’) such
that 0/ o7 = (0'~1)*". Since ' =0’ or o7 = (0/~1)* o7 = 0"*'7(*) we deduce
that u'7(u') normalizes 6’, which means that v'7(u') € J'NU(a’) = J' by using
Proposition 3.1.(4). To prove Proposition 5.9, we only need to find 2’ € G such
that a” := ' and " := 0"*' have the desired property. By direct calculation,
this means that 7(z’)2’~! normalizes a’ and u'7(2")2’~! normalizes @', so using
Proposition 3.1.(4) and the fact that u/~'J’ is contained in the normalizer of
@, it suffices to choose 2’ such that v'r(2')z'~1 € J'.

LEMMA 5.12. — There existsy' € M’ such that u't(y")y'~! € J(a/, B U () =
o U (a').

Proof. — First we write v’/ = g; 'ug; for a certain v € U(a). Then u'r(u') €
J(a’, ") implies that uA= (u=1)*A4 € J(a,3) C 0;U(a) by direct calculation,
where A is defined as in Lemma 5.11.

We choose y' = g; 'yg1 with y = diag(y1,...,yn) € M =05 x...x 05 to be
determined. By direct calculation, u/7(y")y’ =t € J(a/, 3/ )U(a’) if and only if
uA(y=H* Ay~ € J(a,B)U(a) = 0 ;U (a). We use %, @, 3; and b to denote
the image of w;, a, y;, b in kp = op/pF, respectively, where u;,a,b € op will
be defined in the following two paragraphs.

0 0 ...0 a1 UL *op oo -o. FKop
0 a2 0 *pp U2 .o
We write A = o et and uw = TR
0 ap—1 - - 0 e T Up—q *op
a, 0 ... 00 Kpp cee oo *pp Unp

where *,, and *,,. represent elements in or and pr, respectively. By direct
calculation, we have

wo(uyt) ke, . *op
wpp U20(Uy) : :
ud™H (uT) A= : : coXU(a),
. . . . unilo_(uzfl) *oF_l
*p g *p g Uno(uy )
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which means that there exists a € 0 such that

(5) uro(uy V) ugo(ut ), uno(uyt) € a(l 4 pr).
Also by direct calculation, we have

uAfl(yfl)*Ayfl

ulyl_lg(yﬁl) *op *op
fpe Uy 0(ypty)
= . . 7
un—lygilg(ygl) *op .

which means that the lemma is true if and only if there exists b € o5 such that

(6)  wyy oy uays oy ) s unyy oy ) € b(1 4 pr)-
If we consider modulo pg, then the condition (5) becomes

(7) o (T Y) =Tgo(ty 1 V) =... = Tpo(ur ') =a.

Moreover, if we consider modulo U'(a), then uA~!(y=1)*Ay~! € o U (a) if
and only if there exist y; € oy such that there exists b € o} in the condition
(6) such that

®)  wmyr oW ) =Wl oG )= =Tyn () =0

We choose b = u(,y1)/2, and then 50(571) = a. Furthermore, we choose
y; = b tu; wheni=1,2,...,(n—1)/2 and y; = 1 when i = (n+1)/2,...,n.
Combining this with the equation (7), the equation (8) is satisfied. O

Let us write 2'u/'7(y")y’~ € U for some y' € M’ and 2’ € o} given by
Lemma 5.12. By replacing the simple stratum [/, 8'] with [a’¥’, %], the simple
character @ with 0" and o’ with 3/~ 'z"w/7(y'), which does not affect the fact
that the order is T-stable, we can and will assume that v/ € U’t. We write
J'" = J' NU" for i > 1. We state the following two lemmas, which correspond
to Lemma 4.16 and Lemma 4.17 in [1]. Actually, the same proofs work when
one replaces the Galois involution ¢ in the original lemmas with any involution
7 on G.

LEMMA 5.13. — Let v' € U for some i > 1 and assume that v'r(v') € J".
Then there exist 5 € J'* and 2’ € U'* such that j'v't(z')2'~1 € U+,

TOME 150 — 2022 — N© 2



U,,-DISTINGUISHED SUPERCUSPIDAL REPRESENTATIONS OF GL, 417

Using Lemma 5.13 to replace Lemma 4.16 in [1], we may prove the following
lemma:

LEMMA 5.14. — There exists a sequence of (x, ji,v}) € Ut x J'* x U'** for
1 > 0, satisfying the following conditions:
(1) (20,40, v0) = (1,1,2).
(2) For alli >0, if we set y. = xyz}...x, € UL, then the simple character
’ i . —1\v!
0; = 0" € C(a/, Y1) satisfies 0, o = (0, ")i.
(3) For alli>1, we have yiv, = jlyl_jvi_i7(z}).

Let 2’ € U’ be the limit of y, = z{x}...7, and let A’ € J'! be that of
Ji...j1 90 when i tends to infinity. By Lemma 5.14.(3), we have
Y (i) = G viaT(Yo)) = o = g
Passing to the limit, we get 2'7(2')~! = h’w’, which implies that u/7(z")2’'~! =
W=t e J'. Let (a”,0") = («/*,0’*"), which finishes the proof of Proposition
5.9.

5.3. The maximal case. — In this subsection, we generalize Proposition 5.9 to
the following situation:

PROPOSITION 5.15. — Let [a, 3] be a simple stratum in M, (F) such that [E :
F]=n, let 6 € C(a, ) such that 0 € © with © a o-invariant endo-class and let
T be a given unitary involution. Then there exist a simple stratum [a”, "] and
a simple character 0" € C(a”,B") such that (a”,0") is G-conjugate to (a,8)
with the property T(a") = a” and 6" o7 = 6"~

To prove the proposition, we first study an endo-class © over F' being o-
invariant, that is, ©7 = ©. Let T be a tame parameter field of ©.

LEMMA 5.16. — Let © be a o-invariant endo-class and let T/F be its tame
parameter field. Then given a T/F-lift U of ©, there is a unique involution «
of T extending o such that ¥* = .

Proof. — The proof of Lemma 4.8 in [1] can be used almost unchanged for our
lemma. We only need to consider © instead of ©Y and ¥ instead of ¥V. O

Let « be the involution of T" given by Lemma 5.16 and let Tj be the sub-field
of T fixed by . Then To N F = Fy. We write t = [T : F| = [Ty : Fo]. We need
the following proposition due to Hakim and Murnaghan:

PROPOSITION 5.17 ([21], Proposition 2.1). — There exists an embedding v :
T — M(F) of F-algebras such that, for x € T, we have t(a(z)) = v(z)* =
o("u(x))-
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Proof of Proposition 5.15. — Let E = F[f] and let T be the maximal tamely
ramified extension of F'in E. It is a tame parameter field of the endo-class O.
The simple character 6 gives ¥, the endo-class of the interior T/ F-lift of ©, as
we introduced in §3.3. Let o be defined as in Lemma 5.16 and let ¢ be defined
as in Proposition 5.17. By abuse of notation, we define

L Mn/t(T) — Mn/t(Mt(F)) = M, (F)

with each block defined by the original ¢. First we consider 7(z) = eo(tx=1)e™1,
for any © € G with ¢ = I,, or diag(c(e),...,c(e),c(€)), where e € T, —
N7/7,(T*). The determinant of the latter matrix is N,/ (€)™/t. Since

NTO/FO : 710>< — FOX

is a homomorphism that maps N,z (T) to Np/ g, (F*), it leads to a group
homomorphism

N1y py 2 15 /Ny, (T7) = Fg /Npyp, (F7)
between two groups of order 2. We state and prove the following lemma in

general:

LEMMA 5.18. — Let F, Fy be defined as before. Let Lo/ Fy be a finite extension
such that L = LoF is a field with [L : Lg] = 2 and Fy = Lo N F. Then the
group homomorphism

NLO/FO : L(>)< — FOX

induces an isomorphism

NLO/FO : L(;(/NL/LO(LX) — FOX/NF/FO(FX)
of groups of order 2.
Proof. — We first consider the case where Lo/ Fy is abelian. If, on the con-
trary, the induced homomorphism is not an isomorphism, then N,z (Lg) C
Npg/ g, (F*), which means that F' is contained in Lo by the local class field
theory ([40], Chapter 14, Theorem 1), which is absurd.

‘When Lo/ Fy is Galois, we may write Fy = Lg C ... C Ly = Ly, such that
LTt /Ly is abelian for 4 = 0,...,r — 1 ([40], Chapter 4, Proposition 7). We
write L‘ = L{F. Thus it is easy to show that L?/L{ is quadratic, L = LT NL?
and LBHU =Lt fori=0,...,r — 1. Using the abelian case,

Nyt LEPY N v (L) = LG /Npiypi (L)
is an isomorphism for i = 0,1,...,7 — 1. Composing them together, we finish
the proof.
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When Lo/Fp is separable, we write L{ as the normal closure of Ly over
Fy. Thus, Lj contains Lo, and L{/F, is a finite Galois extension. We write
L' = L{F. Using the Galois case,

NL(/)/FO : LSX/NL//LG(L/X) — FOX/NF/FO(FX)
is an isomorphism. Since N/ /g, (L) € Npy/m (L),

NLO/FD :Lg/NL/Lo(LX) - FOX/NF/FO(FX)

is also an isomorphism.
In the characteristic p case in general, we write L;” the maximal separa-

ble sub-extension of F, contained in Lo, and thus Lo/Li? is purely insep-
[Lg:LE°P
D 0

arable. Thus Ny pser(z) = ], for any x € L{. Since p # 2 and

L /Ny, (LX) is of order 2,
NLO/LSGP . L(>)< /NL/LD (LX) — LSGPX/NLSep/LSEP (LSEPX)

is an isomorphism, where L*? := LL{*”. So we come back to the separable
case, which finishes the proof. O

Using Lemma 5.18, for Ly = Tp, the homomorphism above is actually an
isomorphism. Since n/t is odd, and e € T;* — Npr, (), we have det(e) =
Nty /7, ()™t € Fy —Np/p,(F*). So, indeed, these two involutions represent
both of the G-classes of hermitian matrices. Thus, using Lemma 5.8, we may
from now on assume 7 to be the two unitary involutions we mentioned above.
Furthermore, ¢(T)* is normalized by 7 from the exact construction of 7 and
Proposition 5.17, where we regard T" as an F-subalgebra of M,, /(") given by
the diagonal embedding.

Since T and «(T) are isomorphic as F-subalgebras contained in M,,(F), by
the Skolem-Noether theorem, there exists g € G such that «(T') = T9. Thus,
if we write [o/, 8] = [a9,89], 8’ = 69 and E' = F[f’], then 6’ € © such that
its tame parameter field equals ¢(7T"). Since 7 normalizes ¢(T)*, we deduce
that 0’ o 7 and ¢~ have the same parameter field (7). If we write ¥’ the
endo-class of the interior ¢(7T)/F-lift corresponding to €', and if we choose
o =tlroao L|L_(%,1), then we have ¥’ = 0’

Let C" = M, ¢(¢«(T)) denote the centralizer of +(T) in M, (F). For c €
M,, /+(T), we have

7((c)) = eo("u(e) et = (e u(afe) e
=e(a/(""u(e) e =7 (u(c)),

where we denote by tcs the transpose on C' = M, /;(¢«(T)) and 7'(c') =
e(a/(terd!=1))e~t, for any ¢ € C’* . Thus, 7/, the restriction of 7 to C',
is the unitary involution 7, on C"* = GL,, (+(T")) with respect to the Galois
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involution o/ € Gal(+(T)/F). The intersection ¢ = a’ N C’ gives rise to a sim-
ple stratum [¢/, 3']. The restriction of ¢’ to H'(¢/, ), denoted by 91/,(T)7 is a
simple character associated to this simple stratum with endo-class ¥’. Since
E'/u(T) is totally wildly ramified, using Proposition 5.9 with G, 6, ©, ¢ and 7
replaced by C'*, QZ(T), ¥’ o and 7/, respectively, there exists ¢’ € C’*, such
that 7/(¢¢") = ¢¢ and GZE/T) ot = (92%;1))_1.

By the injectivity of a — a N C’ between sets of hereditary orders as men-
tioned in §3.3, a” := ' is T-stable. Moreover, if we write 6/ = 6, then from
our construction of 7 and the definition of +(T')/F-lift, the simple characters

(9” e} T)L(T) = 9” e} T|H1(T(c’),‘r(ﬁ’)) = 9// ¢} 7-/|H1(T(c’),-r(ﬁ’)) = GZI(T) e} T/
and

—1 —1
(0" Dury = Oy

are equal. By the last paragraph of §3.3, the simple character 6" satisfies the
property 6" o1 = 9""1. O

5.4. The general case. — In this subsection, we finish the proof of Lemma 5.4
and Theorem 5.5. First of all, we recall the following result of Stevens:

PROPOSITION 5.19 ([42], Theorem 6.3). — Let [a, 3] be a simple stratum in
M, (F) with o+(a) = a. Suppose that there exists a simple character 6 € C(a, 8),
such that H'(a, B) is 0;-stable and §oo, = 0. Then there exists a simple stratum
[a,7], such that 8 € C(a,7) and o(y) = 7.

Proof. — The original proof of [42], Theorem 6.3 can be modified as follows.
For any « € M,,(F'), we use —o¢(x) to replace T; we use oy to replace o; for [a, ]
a simple stratum, we say that it is o;-invariant if o¢(a) = a, and o,(8) = 8, and
we use this concept to replace the concept skew simple stratum in the original
proof. With these replacements, the original proof can be used in our case
without difficulty (see also the last paragraph of ibid.). O

We choose [ag, fp] to be a maximal simple stratum in Mgy(F) and 6y €
C(ag, Bo) such that 6y € ©. By Proposition 5.15, there are a maximal sim-
ple stratum [ap, 8)] and a simple character 6, € C(ay, 8;), which is GLg4(F)-
conjugate to 6y, such that:

(1) The order aj, is T -stable.

(2) The group H'(a), 3}) is mi-stable, and 6 o 7 = 6"

Furthermore, using Proposition 5.19 we may assume that:

(3) ae(Bo) = Bo-
We embed My (F) diagonally into the F-algebra M, (F). This gives an F-
algebra homomorphism ¢’ : F[B)] < M, (F). Write 8’ =/ (8)) = B, ® ... ® B}
and E' = F[#’]. The centralizer B’ of E' in M,,(F) is naturally identified
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with M,,,(E’). We regard o; as an involution on E’ extending o, and we write
E[ = E’°t. Let b’ be a maximal standard hereditary order in B’, which may be
identified with M,, (0g), and let a’ = M,,(aj) be the unique hereditary order
in M,,(F) normalized by E’*, such that a’ N B’ = b’. Then the simple stratum
[a/, '] satisfies the requirement of Lemma 5.4, finishing its proof.

Now we focus on the proof of Theorem 5.5. By Lemma 5.8, we may change 7
up to G-action on its corresponding hermitian matrix, which does not change
the content of the theorem. So if € is in the same G-class as I, we may
simply choose 7 = 71, where 71(z) = o(tz~!), for any z € G. If not, we fix
an € € Ef* — Np/ /g (E'). Regarding € as an element in My(F), we have
det(e) = Ng; /p, (€). Since

NES/FO : Eéx — FOX

is a homomorphism that maps Ng: g/ (E") to Np/p,(F), by Lemma 5.18
with Lo = EJ, it leads to an isomorphism

Ngi/py 0 By /Ngyg (B™) = Fy /Npyg, (F*)

of the two groups of order 2. Thus, Ng; /5, (€) € Fy' — Npp, (F). If E'/Ej}
is unramified, we write e = diag(e, ..., ¢). Then det(e) = Ny, ()™ € F' —
Np) g, (F), since Fy /Ng/r, (F*) is a group of order 2, and m is odd from the
condition of the theorem. If E'/E] is ramified, we may assume further that
€ € UE()’ We write ¢ = diag(4, ..., la,€) and we have det(e) = Ng; /r,(€) €
FJ—Np /7, (F'*). For both cases, 7. is a unitary involution whose corresponding
hermitian matrix is not in the same G-class as I,,. So from now on, we only
consider the three unitary involutions above. From our assumption of 7, the
restriction of 7 to GL,,(E’) is also a unitary involution 7 = 71 or 7. with
e =diag(1l,...,1,¢). In particular, since € is an element in E’, we know that ¢
commutes with elements in E’ and we have 7(3') = 8/~ 1.

Since ay, is T-stable and b’ is 7/-stable, from our assumption of 7 we deduce
that a’ is 7-stable, or by definition o (a’)e~! = a’. Since o4(3’) = ', by direct
calculation we have

T(Hl(al> B/)) = EHl(Ut(a/)’ Jt(B/))_lg_l
= H'(o,(a))* ", 35 ) = HY ., 3 ) = HY(d, B).
Let M be the standard Levi subgroup of G isomorphic to GL4(F) x ... X
GL4(F), let P be the standard parabolic subgroup of G generated by M and

upper triangular matrices, and let N be its unipotent radical. Let N~ be the
unipotent radical of the parabolic subgroup opposite to P with respect to M.
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By [36], Théoréme 2.17, we have
9)  HY(«,B) = H(«,f)NNT) - (H' (¢, 8) M) - (H' (¢, 5) N N),
(10)  HYd, YN M = H'(afy, B) x ... x H (af, B).

Let ¢’ € C(d’, 8') be the transfer of 8),. By loc. cit., the character ¢’ is trivial on
HY(d/, )N N~ and H'(a’, /)N N, and the restriction of ' to H'(a’, 3') N M
equals 0 ® ... ® 6). We have

0o T|H1(a’,6')mN— =00 T|H1(a/,ﬁ’)ﬂN
=0 pyon- =07 v = 1
and
0 o T|gi(a pynm = 0poTi ®...@60507
=05 ' ®@... @0 =0 g (wpnm
for 7 = 11 or 7. with ¢ = diag(e,...,¢€) or diag(1,...,1,¢), since e € F[5]]*

normalizes 6),. Thus by equation (9), we have ¢’ o7 = '~

REMARK 5.20. — From the proof of Theorem 5.5, we observe that if 7 is chosen
as one of the three unitary involutions mentioned in the proof, then we may
choose the same simple stratum and simple character satisfying the conclusion
of the theorem.

REMARK 5.21. — We give a counter-example to show that the condition in
Theorem 5.5 is necessary. Let n = 2, let F//Fy be unramified, let © be trivial
and let ¢ = diag(l,wp,). Then d =1, m =n =2, E = F and Ey = Fy. If
the theorem is true, then a = Ma(0p)9 for some g € GLo(F) and 7(a) = a.
By direct calculation o(*g~!)e~tg~! normalizes Ma(0r), which means that
o(tg e tg™t € F*GLay(op). It is impossible since det(o(tg~t)e tg™!) €
7ﬂ}7‘01\IF/FD(F’X)7 while det(FXGLQ(UF)) C NF/FO(FX).

6. The distinguished type theorem

Let m be a cuspidal representation of G such that 77 & w. From the state-
ments and proofs of Theorem 5.2, 5.3 and 5.5, we may assume the following
conditions:

REMARK 6.1. — (1) For 7 = 7, there exist a simple stratum [a, 5] and
a simple character § € C(a,) contained in 7, such that 7(a) = a,
7(HY(a,B)) = HY(a,B), o1 = 0~ and 7(B) = B!, where 71(z) :=
o(tz™1) for any x € G.

(2) For 7 = 7y, there exists a simple type (J, A) containing 6 and contained
in 7, such that 7(J) = J and AT = AV.
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(3) oy is an involution on E = F[], whose restriction to F' equals 0. So by
abuse of notation, we identify ¢ with g;. Let Ey = E°. We assume
further in this section that if E/E( is unramified, then m is

odd®.
(4) Write 7(x) = eo(tx=1)e™! for any x € G such that: when E/Ej is un-
ramified, we assume € = I, or diag(wg, ..., wg) € GL,,(E) < G; when

E/Ey is ramified, we assume ¢ = I, or diag(1,...,1,¢) € GL,,(E) — G
with € € 0, —Ng/p, (o). By Remark 5.20, we assume further that for
these three unitary involutions, conditions (1) and (2) are also satisfied.
From now on until the end of this section, we assume ¢ to be
one of these three hermitian matrices and 7 to be one of these
three corresponding involutions.

(5) the element § has the block diagonal form:

B = diag(Bo, - -, P0) € My (Mg (F)) = M, (F),

for some By € My(F), where d is the degree of 8 over F and n = md.
The centralizer B of E in M,,(F) is identified with M, (E). If we regard
7 as the restriction of the original involution to B*, then it is a unitary
involution with respect to B* = GL,,(E), E/E and o € Gal(E/Ey).

(6) The order b = an B is the standard maximal order M,,(og) of M, (E).
Thus, if we write ag as the hereditary order of My(F) normalized by E,
then a is identified with M, (ag).

(7) wg is a uniformizer of F such that:

(wp) wE if F is unramified over Ey;
o(wg) =
L —wg if F is ramified over Ej.

Now we state the main theorem of this section:

THEOREM 6.2 (distinguished type theorem). — For m a o-invariant cuspidal
representation, it is G” -distinguished if and only if it contains a T-self-dual
simple type (J, ), such that Homjng- (A, 1) # 0.

REMARK 6.3. — Since every hermitian matrix is equivalent to one of the her-
mitian matrices mentioned in Remark 6.1.(4) up to G-action, and the property
of distinction is invariant up to equivalence of unitary group, the theorem works
for every unitary involution, although we only consider those occurring in loc.
cit.

5. Although this condition seems a little bit annoying, finally in Section 7, we find out
that this condition is automatically satisfied for 7 a o-invariant supercuspidal representation.
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Choose (J,A) as in Remark 6.1, using the Mackey formula and Frobenius
reciprocity, we have

Homgr (m, 1) & H Hom jsngr (A7, 1),
g
where g ranges over a set of representatives of (J, G")-double cosets in G. So 7
is GT-distinguished if and only if there exists g as a representative of a (J,G7)-
double coset, such that Hom jsngr (A9,1) # 0. We will study such ¢g and will
show that (J9, A9) is actually 7-self-dual. So (J9, A9) is a distinguished and 7-
self-dual simple type that we are looking for, finishing the proof of the theorem.

6.1. Double cosets contributing to the distinction of 6. —

PROPOSITION 6.4. — For g € G, the character 69 is trivial on H¥YNG™ if and
only if T(g)g~t € JB*J.

Proof. — We only need to use the same proof of [35], Proposition 6.6, with o
replaced by . O

As a result, since Hom yongr (A9, 1) # 0 implies that Homgisng-(09,1) # 0,
using Proposition 6.4 we have v := 7(g)g~* € JB*J.

6.2. The double coset lemma. — The next step is to prove the following double
coset lemma:

LEMMA 6.5. — Let g € G. Then v = 7(g9)g~' € JB*J if and only if g €
JB*G".

Proof. — If g € JB*G", one verifies immediately that v € JB*J. Conversely,
supposing that v € JB*J, first we need the following lemma:

LEMMA 6.6. — There exists an element b € B* such that v € JbJ and
br(b) = 1.

Proof. — Since B*NJ = b* is a maximal compact subgroup of B*, using the
Cartan decomposition over B* = GL,,(E), we write v = zcy with z,y € J
and ¢ = diag(@wy In,,...,wy In,), where a1 > ... > a, are integers, and
mi1+...+m, =m.

If E/FEy is unramified, then by definition ¢* = ¢. So if we choose b = ce™
then be(b*)~te™! = ¢(c*) ™! = 1, that is, br(b) = 1.

If E/Ey is ramified, since 7(y)y = 1, we know that zcy = ey*c*z*c ™!, which
is equivalent to (y*)~le lxc = c*ax*e "ty Let z = 2"y~ ! € J; then we
have z*¢ = ¢*2. We regard z and ¢ as matrices in M,,(My(F)). Denote by
zU) € M,,,, (Mg(F)) the block matrix in z, which is in the same place as @ I,

in ¢. Since z*c = ¢*z, by direct calculation

(11) ()'wy = (-1)%wy 0 forj=1,...,r

1

)
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By considering the following embedding
My, (Ma(F)) < My (Mq(F)
h +— diag(0pm, d, - - - s Oy 1 ds h, Omjads - - - s Omd)s
we regard M,, q4(F') as a subalgebra of M,,q(F) denoted by AW where Om;d
represents the zero matrix of size m;d x m;d. We write a¥) = an AU, By

abuse of notation, we identify the element 5y ® ... ® By, which consists of m;
copies of By and is contained in M,,, . (M4(F')), with 8. By [36], Théoréme 2.17,

j
since z € J(a, ), we get 29 € J(aW), B) for j = 1,...,r. By loc. cit., if we
denote by

M = GLmld(F) X ... X GLde(F)

the Levi subgroup of G corresponding to the partition n = mid + ... + m,d,
and then

MnJ=JaW 8)x...x Ja",g)
and
MnJ = Jl(a(l),ﬁ) X ... X Jl(a(r),ﬁ).
Thus we get diag(z(",...,2(") € M N J. Furthermore, we have
MnJ/MnJ = J@®,8)/J @D, 8) x ... x J(a™,8)/J (a™), B)
> GLp, () x ... x GLyy,.(1).
Since (+)* fixes M NJ and M N J1, it induces a map
MNJ/MAJ" 2 GLy,, (1) X ... x GLyy,, (1)
— GLp, (1) X ... x GLy, (1) 2= M N J/MNJ,
(0, .., 20) s (D), ... (z(0)),

where [ is the residue field of E and Ey, and 20) € J(a),g)/J (aW), p) =
GLyy, (1) is the image of 2(9).

We show that for any 4 such that 2 1 a;, we have 2 | m;. Considering j = ¢
in equation (11), we get (2())* = —w% (W *. Since J/J' = U(b)/U'(b) on

which E* acts trivially by conjugation, we get () = w@ z(Dw* = —(2())* =

—t2(). Since there does not exist any anti-symmetric invertible matrix of odd
dimension, we must have 2|m;. Now for a; = (a;, m;), define

o @ I, if 2|a;;
@y =9 4, .
W Jm; 2 if 21 aj,
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and ¢ = diag(wy',..., @y ), where J,, 5 = ( IO Imd'/z) . We have
“tmj/2

¢ = c* and ¢ is in the same J-J double coset as c. Letting b = e, we get
br(b) = 1. O

1

Now we write v = 2’bx with z,2” € J and b € B> as in Lemma 6.6.
Replacing g by 7(2')~tg does not change the double coset JgG™ but changes
~ into bz7(z"). So from now on, we assume that

(12)
vy=bx, br(b)=1, v €J, bisofthe form in the proof of Lemma 6.6.

Write K for the group J Nb~1Jb. Since 7(b) = b1, and J is T-stable, we
have z € K. The following corollary of Lemma 6.6 is obvious.

COROLLARY 6.7. — The map 0y : k — b~ 17(k)b is an involution on K.

Now for a; > ... > a, as in the proof of Lemma 6.6, and M = GL,,,4(F) X

. X GLy,,.a(F) € G, we write P for the standard parabolic subgroup of G
generated by M and upper triangular matrices, IV for the unipotent radical of
P and N~ for the opposite of N as a unipotent sub-group. By definition, b
normalizes M, and we have

K=(KnNnN7)-(KNnM)-(KNN).
For V=KNB* =UNb 'Ub a subgroup of B*, similarly we have
V={WVnN)-(VnM) - (VNN),

where U = U(b) and U! = J' N B* = Ul(b). By definition, V is also fixed
by (51,.

LEMMA 6.8. — The subset
K'=(KNN7)-(J'nM)-(KNN)
is a 6y-stable normal pro-p-subgroup of K, and we have K = VK.
Proof. — The proof is the same as that in [35], Lemma 6.10. |

LEMMA 6.9. — Letting x € K such that x8y(x) = 1, then there are k € K and
v €V such that:

(1) The element v is in GLy, (0g) X ... X GLy, (0g) € B* such that
vip(v) = 1.
(2) One has dp(k)xk~t € vK*!.

Proof. — Let V! =V N K. We have
Vi=(WVnN")-(U'nM)-(VAN).
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Thus we have canonical §-equivariant group isomorphisms
(13) K/K'=Vv/vi=(UnM)/(U"nM).

Since B*NM = GL,, (E) X ... x GL,,,, (E), the right-hand side of (13) is iden-
tified with M = GLy,, (1) X ... X GLy,, (1), where I denotes the residue field of
E. As in the proof of Lemma 6.6, we may write e~ 'b = diag(w c1, ..., wH ¢,)
with ¢; € GLy,; (0g). Moreover, the involution d;, acts on M by

(915 90) = (@ tollgr Ve, .o to(tg Ner),

where we denote by ¢; the image of ¢; in GLy,;(I). We denote by (g1,...,9r)
the image of  in M = GL,,,, (I) x ... x GLy,,.(1).

When E/Ey is unramified, we denote by lg the residue field of Ey. Sol/lg is
quadratic, and the restriction of o to [ is the non-trivial involution in Gal(l/lo).
Since (b7 le)* = e(b*)"te7le = 7(b)e = b le, we get &F = . If zdp(x) = 1,
and then (¢jg;)" = g;¢j = €59

LEMMA 6.10 ([30], Proposition 2.3.1). — For T = T* in GL,(l), there exists
A € GLs(I) such that ATA* = I,.

Using Lemma 6.10, we may choose k; € GLy, (0x) such that its image k;

J

in GL, (1) satisfies (1477-*)’1cfjgj/?j71 = I,;. Choosing k = diag(ki,..., k)
and v = diag(v,...,v,) = diag(c;t, ..., b)), we get 0p(k)zk™' € vV and
Sp(v)v = diag(cy 'cierert, .. e tete e t) = 1.

When E/Ej is ramified, the restriction of o to [ is trivial. Since (b~'e)* =
b~le, we get ¢ = (—1)%¢; and 'gj = (—1)%g;.

LEMMA 6.11 ([30], Proposition 2.5.4). — For T = 'T in GLg(l), there exists
A € GLs(1) such that AT'A is either Iy or g5 = diag(1,...,1,€), where € €
1 — 1% with 1*? denoting the group of square elements of 1*.

LEMMA 6.12 ([30], Proposition 2.4.1). — For T = —'T in GLs(l) and 2 | s,
there exists A € GL4(l) such that AT'A = J, 5.

When a; is even, using Lemma 6.11 we may choose k; € GL,,,(0og) such
that its image k; in GL,y, (I) satisfies that (tl<:7-)*lc*jgjk771 equals either I, or
Em,, where we choose ¢,,; = diag(1,...,1,¢) € GL,,, (o) such that its image
Em, in GL,y,, (I) is diag(1,...,1,€) as in Lemma 6.11. Let v; be cjfl or c}lsmj
in the two cases, respectively.

When a; is odd we deduce that m; is even from the proof of Lemma 6.6.

Using Lemma 6.12, we may choose k; € GL,,(0g) such that its image kj in
GLy,, (1) satisfies (tl?j)*lcfjgjkijil = Jm,,,- We choose v; = C;lij/g.
Choosing k = diag(k, ..., k) and v = diag(vy,...,v,), we know that

Sp(k)xk™! € vV?
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and

Sp(v)v = diag(cy  (v]) tervr, .. e () Tlew,) = 1

T T

by direct calculation in the two cases, respectively. So no matter whether or
not E/Ey is ramified, we finish the proof. O

Now we finish the proof of Lemma 6.5. Using Lemma 6.9, we choose k € K
and v € V such that bur(bv) = 1 and §y(k)zk~ € vK!'. Thus we have
7(k)yk~! € buK!. Therefore, replacing g by kg and b by bv, we may assume

(14)
y=bx, br(b)=1, ze€K' bewHGLy, (0p)X...x @Y GLy, (0p).

Furthermore, we have d,(z)z = 1.

Since K! is a dj-stable pro-p-group, and p is odd, the first cohomology set
of 0, on K1 is trivial. Thus, 2 = d&(y)y~! for some y € K!, and hence
v = 7(y)by~!. Considering the determinant of this equation, we have det(b) €
Np, g, (F*). If we denote by detp the determinant function defined on B* =
GL,,(E), then det(b) = Ng,p(detp(b)). Using Lemma 5.18 for L = E, we get
detp(b) € Ng/g,(E*) and detg(e~'b) € detp(e ')Ng g, (E*). Since 7(b)b =
1, we have (¢7'b)* = e~'b. Using Proposition 2.1, there exists h € B>, such
that e71b = (h*)~'e=*h7l. So we have b = 7(h)h~!. Thus, g € yhG™ C
JB*GT, which finishes the proof of Lemma 6.5. O

6.3. Distinction of the Heisenberg representation. — Now let 1 be the Heisen-
berg representation of J! associated to #. We have the following result similar
to [35], Proposition 6.12, by replacing o with 7:

PROPOSITION 6.13. — Given g € G, we have:

1 ifge JBXGT,

dimgHom jigng-(n7,1) = {O otherwise

Proof. — Tt is useful to recall some details of the proof of this proposition,
which will be used in the next subsection. We write 6(z) := v~ 17(z)y for any
x € G, which is an involution on G. And for any subgroup H C G, we have
HING™ = (HNGY)9.

When g ¢ JBXG™, restricting n9 to H'9 and using Proposition 6.4 and
Lemma 6.5, the dimension equals 0. When g € JB*G™, we need to prove that
Hom jigng-(n?,1) = Hom jiqgs (1, 1) is of dimension 1. We state the following

general proposition, which works for a general involution on G:

PROPOSITION 6.14. — Let § be an involution on G such that §(H') = H
and 0 0§ = 0~ where v € BX such that §(7)y = 1. Then we have

dimgHom j1~gs(n, 1) = 1.
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Since Proposition 6.14 in our special case implies Proposition 6.13, we only
need to focus on the proof of this proposition. We only need to prove that the
space

HOHIJ1ﬂc;5 (’I’](Jl:Hl)l/z7 1) = HomJlmGa (IndI]{ll (9), 1)
is of dimension (J': H')/2,

LEMMA 6.15. — For H a subgroup of G such that 6(H) = H" with § and vy as
in Proposition 6.14, we have

HNG=H'NnG=HNH'NG’.

Proof. — We have HN G? = §(HN G?) = 6(H) N 6(G?) = HY N G?, which
proves the lemma. O

LEMMA 6.16. — Let § and ~ be as in Proposition 6.14; then we have the
following isomorphisms of finite dimensional representations:

J! Jingty
(1) IndHle‘JlmJl'y = @Hl\Jl/JlﬁJl'Y IndHlﬂJl'ye-
g Jtngty
(2) Indg 0] 1m0 = @H“\J”/Jlmﬂv Ind1 71407
(3) Ind? 0] ~ @ D nd? %00
HYWYIInG® = WO H\Jt/jingty DHINTW\JINIY /JINGS HnGs Y-
4)

(

Proof. — We only prove (1) and (3), since the proofs of (2) and (4) are similar
to the proofs of (1) and (3), respectively.
For (1), using the Mackey formula, we have

J JnG?
IndHlvmblme‘ = @le\le/Jlmle GBJImHlv\Jlmle/JlmGS Indjiyngs 0.

Jt Jingt
IIldH1 0|J1ﬂJ1'y = @ Indeﬁ(Janm)ez
z€eHW\J'/JtnJY
1 1~
>~ P mdidne.
HW\JY/JtnJlY

The last step is because 2 € J' normalizes H' and 6.
For (3), using the Mackey formula again, we have

1 1 1~y
Ind}10| j1nas = B dil 0 nes
HW\JY/JinJty
~ Jing? y
= @D S% Ind{piqyun(rines)?

Hl\Jl/JlﬁJl'y yEHlﬂJl"/\JlﬂJl"’/JlﬂG‘s
~ JnG?
~ P D Ind?1%.,0.
HW\JY/J'NnJY HINJW\JINJY /JING?

The last step is because y € J* N J'Y normalizes H' N J'Y and 0, and H' N
JYNJ'NG? = H' N G° by Lemma 6.15.(2) for H = J'. So we finish the
proof. ]
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LEMMA 6.17. — Let 0 and v be as in Proposition 6.14; then we have:
1) [H'\JYJ ' nJY ] H 0 JY\J N JY /I NG = (J: HY)Y2,
2) [HY\ JY/ TP AJY || Jn Y\ JP N JY /I NG| = (JY - HY)Y2,
(3) (J:HYY2 =Y HMY2 = (J'nG°: H' N GY).

Proof. — For (3), we refer to [35] §6.3 for a proof, by noting that all the results
and proofs from Lemma 6.14 to the end of §6.3 in bid. can be generalized to
a general involution § on G, with 7 in loc. cit. replaced by § in our settings.
For (1), since J! normalizes H', and J! N J'7 normalizes H' N J7, we have

left hand side of (1) = (J' : HY(J*nJY) - (J' nJY - (H' n ™) (J' N GY))
= HY - (JPnJY cH N gy
(PN JYH NI (NG H N T NGO
=(J'HY - (JPNGSH NGY)!
_ (Jl . H1)1/2,

where we use Lemma 6.15 for H = J and (3) in the last two equations. So
we finish the proof of (1), and the proof of (2) is similar. O

Combining Lemma 6.16.(3) with Lemma 6.17.(1),(3), we have
dimgHom j1gs (Indgl 0,1)

= dlmR @ @ HOIHJ1ﬂGa (Indélfpw%sé (9, 1)
HW\J/J'0JY HI AT\ JI AT/ JINGS
= (J': HY)Y2dimgHom g1 ~qs (8] ings, 1)
= (J': HY2,
For the last step, since « intertwines #~! and # o § = 617, we know that @ is
trivial on

{yd(y)ly € H' N H"}.

This set equals H' N G? since the first cohomology group of §~'-action on
H' N HYY is trivial. Thus, 0] g1~gs is the trivial character. O

6.4. Distinction of extensions of the Heisenberg representation. — Let x be an
irreducible representation of J extending 7. There is a unique irreducible rep-
resentation p of J, which is trivial on J! satisfying A = k ® p.

LEMMA 6.18. — Let g € JBXG".
(1) There is a unique character x of J9NG™ trivial on J'9 N G™, such that

Hom jigsng-(n?,1) = Homjong- (K9, xil).
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(2) The canonical linear map
Hom jigngr (n?,1) ® Hom ysng-(p?, x) — Hom jongr (A9, 1)

s an isomorphism.
Proof. — The proof is the same as that in [35], Lemma 6.20. O

For g € JB*G", we have 7(g) € 7(JB*G") = JB*GT, which means that
we may consider a similar thing for 7(g) to that for g in Lemma 6.18. Thus,
there exists a unique character x’ of J™9 NG trivial on J7(9) NGT, such that

Hom j1+(o) (nT(g), 1) = Hom j-() (nT(g), X' Y.

Moreover, 7(J) = J, 7(J) = J, 7(J') = J!, and 7(H') = H!, thus using
Lemma 4.2 and Lemma 6.15 we have JING™ = J*9 NnG™ = J9NG™ =
JONGT, JYNGT =J" 9O NG and HYNG™ = H79 NGT. As a result,
y and Y’ are characters defined on the same group JNG™ = J™ 9 NG, A
natural idea is to compare them. For the rest of this subsection, we focus on
the proof of the following proposition:

PROPOSITION 6.19. — For x and X' defined above as characters of JPNG™ =
J™9 N GT, we have x = X'.

We write §(z) = y~17(x)y for any = € G with v = 7(g9)g~!. From §3.1, we
have v € Ig(n) = Ig(k°), where k° = k| ;. Moreover, we have

dimR(Homva(nO'y, mo)) = dimg(Hom jiq 514 (07, 7)) = 1.

Using Lemma 6.15, we have J' N G? = J"' N G? as a subgroup of J' N JW
and H'NG? = HY' NG°. We claim the following proposition, which works for
general v and §:

PROPOSITION 6.20. — Let § and 7y be as in Proposition 6.14, then for a non-
zero homomorphism ¢ € Hom jin 1+ (n7,n) = Hom jr v (97, k%), it naturally
induces an R-vector space isomorphism:

fo: Hom jings (1, 1) — Hom jisnas (77, 1),
A = Ao

First, we show that how Proposition 6.20 implies Proposition 6.19. Using
Proposition 6.13 for g and 7(g), respectively, we have dimgHom jigng-(n9,1) =
dimgHom j1-() g (179, 1) = 1. By Proposition 6.20,

fo : Hom jisngr(n?,1) — Hom ji-(o)qr (nT(g)a 1),
A = Jop
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is bijective. If we choose
0 # X € Homjigsng-(n?,1) and
0# N = fo(A) = Ao € Hom jirong- (179, 1),

then for any v in the representation space of n and any = € JING™ = J79NGT,
we have

(15) X'(2) 7"V (v) = N (k779 (2)0)
= Ak (2)v))
A(K% (z)(v))
= x(2) " A(p(v))
= x(2) 7N (v)

Since v and € J9 NG = J™9 N GT are arbitrary, we have x| jrngr =
X|79nG~, which is Proposition 6.19.
So we only need to focus on the proof of Proposition 6.20.

by Lemma 6.18.(1))
by definition of \")

by Lemma 6.18.(1))

(
(
(since ¢ € Hom joj7(a) (KOT(Q), Hog))
(
(by definition of \').

LEMMA 6.21. — Let § and v be as in Proposition 6.14; then there exist an
R[J' 0 JY]-module homomorphism

J

1, 1 1/2 ~
@ HHEDT G 2 Ind YL 07| i

(Jl:Hl)l/Z
‘Jlnjlv

— Ind? 0] i 20
and a linear form Lg € Hom jings (77(J1'H )" 1), such that
0+# Loo® € Hom j1ngs (nW(JIW:HM)l/z, 1).

Proof. — We prove this lemma by giving a direct construction of @ and E).

First, we choose our Lo We choose \y € Hom jigs (IndHlnGJ ,1) =2 R with
the isomorphism given by Frobenius reciprocity, such that its corresponding

image in R equals 1. Then we choose Ly = (Ag, ..., Ag) as an element in
@ @ Hom j1ngs (Indi;lr;%i 1,1)

HWJ1/JINJY HInJ\JINJ 1Y /JINGS

= Hom jirgs (n' "7, 1),

where the isomorphism is determined by Lemma 6.16.(3), and by Lemma 6.17
the number of copies equals (J' : H)'/2.
Now we focus on the construction of ®. We define
(16) f ( ) L e’y(gl)e(gQ) if g=9g192 € (‘]1 N Hl’y)(Hl N Jl’y)
0 itgeJinJY — (J 0 HY)(HY N JY)
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as a continuous function defined on J! N JY with values in R. Since (J! N
HN(H'NJY)=H'NHY and 7 = 0 on H' N HYY, we know that f is
well defined.

We want to verify that fy € Indl‘]{llmm‘{,lfwﬁ and fy € Indﬁﬂ}];:w 07. Since
J! normalizes H', and J'7 normalizes H'7, by direct calculation J' N J
normalizes J!' N HYY and H! N JY. In particular, we have (J! N HY)(H' N
JY) = (H* N JY)(Jt N HY). Moreover, since J' and J'7 normalize 6 and
07, respectively, (J1 N HY)(H! N JY) = (H' N JY)(J! N HY) normalizes 0
and 67.

For ¢} € J'NHY, gb € H'NJY and g € J'NJV,if g ¢ (JINHY)(H' M),
then glg, 959 ¢ (JL N HY)(H* N J7), and thus

folgig) = folgzg) = 0;
if g=g192 € (J* N HY)(H! N JY), then

fo(gig) = 07(g1)07(91)0(g2) = 07 (g1) fo(9)
and
fol929) = fo(g29195 " 9292)
= 07(g29195 1)0(95)0(g2) = 0(92)8" (91)0(92) = 6(93) fo(9)-
Considering these facts, we have f; € Indgl%‘{]l:ﬂ and fy € Indﬁgg{l; 07.
We consider J' N J-action on fy given by the right translation and we let
1 1 1 1
(fo) be the R[JLNJY]-subspace of both Ind%: 271,67 and Ind 7,1, 6 generated
by fo. We choose Vfo to be an R[J' N J17]-invariant subspace of IndJlmHu 07,

such that Indiﬂ{{; = (fo) ® Vy,.
We define the R[J! N J']-module homomorphism

@y Inda 04007 — df 0010,
such that ®1(fo) = fo and @1|va0 = 0. Moreover, we define
D @ Indﬁggf7 07 — @ Ind{jﬂ{?ﬂ&
HWJv/JinJy H\JY/JinJt
given by
o AT gy Jngt
¢ = dlag(‘I)l, 0, .. 0) € 1\/[1\/'1 (HomR[Jmle](IndJlmHMH IndHlmJln, ))

where the coordinates are indexed by Ny := |H'7 \ J7/Jt N J7| = |H!\
JY/JtNJY|. In particular, we let the first coordinate correspond to the trivial
double cosets H(J' N JY) and H(J* N JYY), respectively. As a result, ®
gives an R[J! N JY]-module homomorphism. By Lemma 6.16 we have

(17) p Y =m0 e @D IdfL0
HW\J!/J1AJ1Y
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and

(18) n,y(Jl:H1)1/2

1~ 1 1~
=~ Indfn 0] i & P Ind 17507
H\JY /JinJy
With these two isomorphisms, we may regard ® as a homomorphism from

1, 1 1/2 1, 1 1/2
T e to DT

Finally, we study ZB o ®. First, we calculate
(I>1 : Indﬁgﬁgﬁ |J10G5 — IndHlmJl'yHL]lmG&
We have the following isomorphism
(19) IndH1mJ1~,9|J1ch$ & @ IHdéS—WGG“;é
HiNnJ\JINJY /JiNG?
By definition of ®; and (16),(19), ®1(fo|j1ngs) = fol nngs equals
5
(20)  (Lpipgss-. s 1gings,0,...,0) € P Ind} 051,
HINnJW\JINJY™ /JING?

where the coordinates are indexed by the double coset HINJ\ JtNJ7/JtN
G?, and those coordinates that equal the characteristic function 114gs are
exactly indexed by the subset H' N J™Y \ (J* N HY)(J' N HY)/J' N GO.

We define vg = (folj1ncs,0,...,0) as an element in both
1 1
@ Ind§1g[{(1’207|110(;5
HI\JL/J'nT W
and

@ IndHlmJl—yo‘JlnG'é
HW\JY/JtnJy

where the first coordinate corresponds to the trivial double cosets H!(J1NJY)
and HY (J1 N JY7), respectively, as in our definition of ®. Thus, we have

(Lo 0 ®)(v0) = Lo((®1(fol j1nes): 0, ---,0)) = Lo((fol sings 0, .., 0))
= |H'nJY\ (H' NnINYI*NnHY)/J NG| - A(Lgings) # 0,

where we use the definition of Ly and (20) for the last equation. Thus, we get
Ly o ® # 0, which finishes the proof. O

LEMMA 6.22. — We keep the same notations as in Proposition 6.20 and we fix
0# N\, € Homjings(n,1) and 0# Ay € Hom jings (n7,1).
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Then:
(1) For any L € HomJlmGs(n(‘]lﬁHl)l/Q,l), there exists an R[J' N J'7]-
homomorphism

1.771\1/2
Pront ) e = s
such that L = N, o Pr;

(2) For any L € Hom jings (nV(leHl)l/z, 1), there exists an R[J' N J17]-

homomorphism
1. 77141/2
s:n'paan — 777(‘] H) |y

such that N = Lo s.
Proof. — The proof is just a simple application of linear algebra. We write
N = (J': HY)/2. For (1), we define pr, : ¢/ “H)"?| ;i1 510 = ] j1n 51+ as the
projection with respect to the i-th coordinate. Since Aj o pry,...,\) o pry are

1 1\1/2

linearly independent, and dimgzHom jings (nt/ ) / ,1) = N by Proposition
6.13, Ajopry,...,Ajopry generate Hom j1qgs (n(Jl’Hl)l/Q, 1). So we may choose

Pr to be a linear combination of pr;, which proves (1). The proof of (2) is
similar. ]

Now we finish the proof of Proposition 6.20. Using Lemma 6.22.(1) we choose
Pr such that ITO = )| o Pr, where EZ) is defined as in the statement of Lemma
6.21. Using Lemma 6.21, there exists ® such that Ea o ® # 0. Using Lemma
6.22.(2) we choose s such that Ly o ® o s = Ay # 0. We define ¢’ =Prodos
and we have the following commutative diagram

777<J1:H1)1/2 (.11:H1)1/2

o
|Janlv —1 |Jlmle

77FY|J10J17 4>77|J10J17

By definition we have Aj o ¢’ = AjoPro®os = Aj # 0, which means that
¢ # 0. Since Hom jiq 14 (n7,n) is of dimension 1, we deduce that ¢ equals
¢’ multiplying with a non-zero scalar, which means that Aj o ¢ # 0. Since
Hom jings(n,1) and Hom jings (17, 1) are of dimension 1, we know that f, is
an R-vector space isomorphism, which proves Proposition 6.20.

6.5. Existence of a T-self-dual extension of 77. — Now our aim is to choose a
simple k as an extension of 7. Specifically, under the condition of Remark 6.1,
we show that we may assume k to be 7-self-dual, which means that k™ = V.
First of all, we have the following lemma, whose proof is the same as that in

[35], Lemma 5.21:
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LEMMA 6.23. — There exists a unique character y of J trivial on J' such that

TV ~

K™Y 2 gu. It satisfies the identity o1 = p.

PROPOSITION 6.24. — When char(R) = 0, there exists a character ¢ of J
trivial on J' such that i = ¢(¢ o 7). Moreover, for any R, we may choose K

TV ~v

to be an extension of n such that K™% = K.

Proof. — First, we consider the case where char(R) = 0. We need the following
elementary lemma:

LEMMA 6.25. — Assume char(R) = 0. For N odd and A € GLy(R) such that
A% =cIy for s € N and ¢ € R*, we have Tr(A) # 0.

Proof. — Because s = 0 is trivial, from now on we assume s > 1. Let (3= be
a primitive 2°-th root of 1 in R and let ¢!/?" be a 25-th root of ¢ in R; then
we get Tr(A4) = /% vazl 54 with n; € {0,1,2,...,2° —1}. We know that
P(z) = 22" + 1 is the minimal polynomial of (+ in Q[z]. If Tr(A) = 0, then
for Q(z) = Ef\;l a™, we have Q((2s) = 0. As a result, P(x)|Q(x) in Q[z] and,
thus, in Z[z] by the Gauss lemma. However, the sum of all the coefficients of

P(x) is even, and the sum of all the coefficients of Q(x) equals N, which is
odd. We get a contradiction. So Tr(A) # 0. O

Let us come back to our proof. We choose k to be an extension of #; thus as
in Lemma 6.23, there exists a character pu of J such that k™ = ku. If E/FEy
is unramified, we let

7i:GL,, ()= J/J' - R*

be the character whose inflation is p|;. There exists a character ¢ : I — RX
such that @ = p odet. Since o7 =@, we get (p o o)p = 1, or equivalently
g@\lgx =1, where lj is the residue field of Ey, and o acts on I as the Frobenius
map corresponding to ly. Let @ be the cardinality of lp; then the cardinality
of I is Q2. If we fix (; a generator of I, then CIQH is a generator of Ij. So we
have (¢;)¥*! = 1. Choose a : I — R* a character such that

Oé(Clm)Q*1 =p(G) ™ for m € Z.
Since
() = (@) =1,

we know that « is well defined as a character of 1. Moreover, we get ¢ = a(ao
o)7L Choosing ¢° : J — R* as the inflation of acodet, we get pu|; = ¢°(¢%07).

Since wg and J generate J, to choose ¢ as a character of J extending ¢°,
it suffices to show that p(wwg) = 1. Since pu = po T, we get

p(wp) = w(r(wg)) = plwe) ™", thus p(wg) € {1,-1}.
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Let e be the ramification index of E/F, and let @w$ = apwyp for a certain
ap € 0. We have

wzﬁ(@*l) = aOQ_le_l with a(?_l €1l+pp C H'Y(a,p).
We write e(Q — 1) = 2°u for 24w and s € N. For A = k(w},), we have
A% = w(af " wE ) = 0(afwn(=E I,

where we use the fact that the restriction of k to H'(a, 3) equals N-copies of 0
with N = (J' : H')"/2 and w, is the central character of k. Using Lemma 6.25
with A and ¢ = H(aoQ_l)w,i(wg_l), we get Tr(k(wl)) # 0. Since K™ = Ky,
considering the trace of both sides at w},, we get

Tr(k(wp)) = Tr(k(wp)) (@),

thus p(wl%) = 1. Since w is odd, and p(wg) equals either 1 or —1, we get
w(wg) = 1, which finishes the proof of this case.

If E/FEy is ramified, first we show that p|;x = 1, where we consider the
embedding 1 < E*. Let @ be the cardinality of I = Iy and let (; be a
generator of I”; then we want to show that u(¢;) = 1. Writing Q—1 = 2%u with
2 { v and using Lemma 6.25 with A = x({}*) and ¢ = 1, we get Tr(k(¢}*)) # 0.

Since KV = ku, we get

Tr(k (")) = Tr(k(G))m(G)
after considering the trace. Thus, p(¢}*) = 1. Since p((;) equals either 1 or —1,

which can be proved as the former case, and u is odd, we get ©(() = 1. Thus,

ply=1.
To finish the definition of ¢ : J — R* such that p = ¢(¢ o 7), we only need
to verify the equation

w(we) = ¢(wp)d(r(wE)) = ¢(wp)dp(—we) ™" = ¢(—1)"".

Since we have already showed that pu(—1) = 1, using the relation p = po 7,
we get u(w?) = u(—w%) = p(wr)u(r(we)) ! =1, so we deduce that u(wg)
equals either 1 or —1. Choose ¢(—1) = p(wg), which is well defined, we finish
the definition of ¢ such that = ¢(¢d o 7). Let k' = K¢, then Kk’ is 7-self-dual.

Now we suppose R = ;. Let 0 be the lift of 0 to Q; given by the canonical
embedding EX — @X7 then 0 is a simple character, and for = 0~L. Thereisa
7-self-dual representation K of J extending the Heisenberg representation 7 of
J! corresponding to 0. Moreover, we can further choose K such that the central
character of K is integral. To  do this, first we choose k0 to be a representation
of J extending . We extend 9 to a representation of F*J. This requires us to
choose a quasi-character w : F'* — @X extending w o We choose w such that
it is integral. If we further extend this representation to K as a representation
of J = E*J, then K is also integral. From the proof of the characteristic 0 case,
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we may further assume &”” 2 K without losing the property that K is integral.

By [32], §2.11, the reduction of K to R, denoted by k, is thus a 7-self-dual
representation of J extending 7.

For char(R) = [ > 0 in general, we fix ¢ : F; < R an embedding. For ¢ a
simple character over R as before, which is of finite image, there exists a simple
character 6y over F; corresponding to the same simple stratum [a, 3], such that
0 =100pand Ohpot =0, L Let 1o be the Heisenberg representation of 6
and choose kg to be a 7-self-dual extension of 1y by the former case. Then

K = Ko ®F R is what we want. O
6.6. Proof of Theorem 6.2. — Using Proposition 6.24, we may assume that x
is 7-self-dual, which means that k™ = k. From its proof, when R = IF;, we

assume further that x is the reduction of a 7-self-dual representation K of J
over Q, and when char(R) = [ > 0 in general, we assume & to be realized as
a IFj-representation via a certain field embedding F; < R.

PROPOSITION 6.26. — The character x defined by Lemma 6.18.(1) is quadratic
over J9NG™, that is, X?|jongr = 1.

Proof. — First, we assume that char(R) = 0. We have the following isomor-
phisms

(21) Hom ji-(ng- (WT(g)7 1)

= Hom jisng- (17, 1)

=~ Hom jongr (kY )

=~ Hom jongr (X, ngv) (by the duality of contragradient)
= Hom jongr (K9, X) (since char(R) = 0)

=~ Homjong- (k9Y o T, x oT)

= Homyung- (k7)™ x 0 7)

= Hom - (5 (K79, x 0 7) (since k is T-self-dual).

Using Proposition 6.19 and the uniqueness of x’ in the loc. cit., we have yor =
x L. Since x is defined on JY N G7, which is 7-invariant, we have y o 7 = ¥.
Thus, x? =x(xor)=1

If R = F;, we denote by & a 7-self-dual Q;-lift of x and we denote by Y
the character defined by Lemma 6.18.(1) with respect to k and 77, where 77 is a
JINGT- dlstlngulshed Q;-lift of 5. Using this proposition for Q;-representations,
we get X2 = 1. From the uniqueness of y, we know that ¥ is a Q;-lift of x. As
a result, we get x? = 1.

If char(R) =1 > 0 in general, from the assumption of x mentioned at the
beginning of this subsection, via a field embedding F; < R we may realize all
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the representations mentioned in this proposition as representations over F;, so
we finish the proof by using the former case. O

As in the proof of Lemma 6.5, we assume g € B* and
(22)

y=bx, br(b)=1, z€K' bewyGLy, (0p)X...x wyGLy, (0p).
There exists a unique standard hereditary order b,, C b such that

Ul(b,,) = (UNSUYU' = UnUMU?,

where we define 6(y) = v~ !7(y)y, for any y € G as an involution on G. We

have the following lemma whose proof is the same as that in [35], Lemma 6.22,
inspired by [22], Proposition 5.20:

LEMMA 6.27. — We have U'(b,,) = (U (b,,) N GO)U*.

THEOREM 6.28. — Let g € G and suppose Hom yong- (A9, 1) is non-zero. Then
T(9)g t e J.

Proof. — Tt is enough to show that » = 1 in (22). If not, b,, by definition is
a proper suborder of b. Furthermore, UL(b,,) := U'(b,,)/U" is a non-trivial
unipotent subgroup of U/U! = GL,,(l). Using Lemma 6.18.(2), we have
—1
Hom jngs(p,x? ) = Homysng-(p?, x) # 0.
Restricting ourselves to U (b,,) N G?, we have
(23) Homy (p,,)nas (P, x7 ) # 0.
Using Lemma 6.27, we have the isomorphism
(U (b)) NGOU' /U = U (by,) /U
We denote by p the cuspidal representation of U° /Ut = GL,, (1) whose inflation

is p|yo, and by x9~' the character of U!(b,,) whose inflation is Y9 . Soif we
consider the equation (23) modulo U?, then we get

Hompr—(p,x7 ") #0.

Since X9_1|Jmca is quadratic, and Ul(b,,) is a p-group with p # 2, we get
X9~ ' =1, and thus

HomUl(b,m)(p7 1) # O?
which contradicts to the fact that p is cuspidal. g

Proof of Theorem 6.2. — If there exists a 7-self-dual simple type (J,A) in 7
such that Hom jng- (A, 1) is non-zero, then 7 is GT-distinguished. Conversely,
there exists ¢ € G such that Hom jong-(A9,1) is non-zero. Using Theorem
6.28 we conclude that (J7, A9) is a 7-self-dual simple type. O
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Finally, we state the following corollary of Theorem 6.28 as the end of this
section:

COROLLARY 6.29. — Under the assumption of Theorem 6.28, we have g € JG™

or g € Jg1G™, where the latter case exists only if m is even, and g € B> is
fized such that

()9t = wgln if E/Ey is unramified.
wpJmy2 if E/Ey is ramified.

As a result,

Homg- (7,1) 2 Hom jngr (A, 1) @ Hom joi ngr (A9, 1).

Proof. — Recall that we have already assumed that g € B*. Since 7(g)g~! €
JNB* = E*b*, changing g up to multiplying by an element in E* | which does
not change the double coset it represents, we may assume (g*) e 1g=! € b*
or wpb*, where ¢ equals I, for E/E; unramified® and e equals I,, or
diag(1,...,1,¢) with € € o5, — Ng/g,(0f) for E/Ey ramified. Using Propo-
sition 2.2, we may change g~ up to multiplying by an element in b* on the
right, and thus we may write (¢*) ' 1g™! = @%, where @ is defined as in
§2.2. Thus, we get detp(w®)/detp(e ) € Ng, g, (E™).

If (g*)"te g™l € b, from the definition and the uniqueness of w% in
Proposition 2.2, we get w% = . We may further change g~! up to multiplying

by an element in b* on the right, such that (¢*)~te=tg~! = e~!. Thus, we get

7(9) = e(g*)~te™! = g, which means that g € GT.

If (9*)"telg~! € wgrb*. Considering the determinant we deduce that
detp((g*)~te~tg~!) € E* is of even order with respect to the discrete valuation
of E. Since the determinant of elements in wgb™ is of order m, we know that
m is even. Thus, from the definition and the uniqueness of w§ in Proposition
2.2, we get wh = wpe when E/Ey is unramified and @w® = wgJ,,/2 when
E/Ey is ramified. For the former case, we have € = I,,,. Using Proposition 2.1,
we may choose g; € B* such that (¢7)"'g;' = wgl, = (¢*)"'¢~"'. Thus,
g € g1G". For the latter case, considering the determinant we must have
detp(e) € Np/g,(E*), thus € = I,,,. Using Proposition 2.1, we may choose

g1 € B* such that (g7)~'g; ' = @WEJme = (9%) "'y, thus g € $1G™. O

7. The supercuspidal unramified case

In this section, we study the distinction of o-invariant supercuspidal repre-
sentations of G in the case where E/Ey is unramified.

6. It is also possible in the unramified case that e = diag(wg, ..., wg). However, in this
case, € € EX, which commutes with B*, thus this case can be combined into the case where
e=1Im.
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7.1. The finite field case. — In this subsection, we assume 1/l to be a qua-
dratic extension of finite fields with characteristic p # 2. Let |lg] = Q; then
|I| = Q2. Let o be the non-trivial involution in Gal(l/l).

Let m be a positive integer and let ¢ be an extension of degree m over . We
identify ¢* with a maximal torus of GL,,(l). We call a character £ : t* — R*
l-regular (or regular for short) if for any i = 1,...,m —1, we have ¢H' #£ ¢. By
Green [17] when char(R) = 0 and James [29] when char(R) = [ > 0 prime to
p, there is a surjective map

§— pe

between l-regular characters of t* and isomorphism classes of supercuspidal
representations of GLy, (I), whose fibers are Gal(t/l)-orbits.

LEMMA 7.1. — (1) If there exists a o-invariant supercuspidal representa-
tion of GL,, (1), then m is odd.
(2) When char(R) = 0, the converse of (1) is true.

Proof. — We may follow the same proof of [35], Lemma 2.3, with the concept
o-self-dual in loc. cit. replaced by o-invariant and the corresponding contra-
gradient (or inverse) replaced by the identity. (]

Let H = Uy, (l/ly) := U, (I,) be the unitary subgroup of GL,,(l) corre-
sponding to the hermitian matrix I,,, with respect to l/lp. Note that there is
only one conjugacy class of unitary subgroup of G, which is isomorphic to H.

LEMMA 7.2. — Suppose m to be odd and let p be a supercuspidal representation
of GL,,(1). The following assertions are equivalent:

(1) The representation p is o-invariant.
(2) The representation p is H-distinguished.
(3) The R-vector space Homp (p, 1) has dimension 1.

Proof. — When R has characteristic 0, this is [16], Theorem 2.1 and Theo-
rem 2.4. Suppose now that R = F;. First we prove that (1) is equivalent
to (2).

For p a supercuspidal representation of GL,(l), we denote by P the pro-
jective envelope of p as a Z;[GLy, (1)]-module, where Z; is the ring of integers of

Q;. Using [43], Chapitre III, Théoréme 2.9 and [39], Proposition 42, we have:

(1) P;®z T, is the projective envelope of p as a F[GLy, (I)]-module, which
is indecomposable of finite length with each irreducible component iso-
morphic to p. .

(2) For P;= P;@Z@, we havi P; = @p, where p in the direct sum ranges
over all the supercuspidal Q;-lifts of p and appears with multiplicity 1.
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We have

Homz (7, 1) # 0

= Homg gy, 1 (7 FIlH \ Ly (1)) # 0

(P
< Homg o1, ) (Pp ®7z F;,F;[H \ GL,,,(1)]) # 0
<= Homgy o (55 JZ[H \ GL,,,(D)]) # 0

= Homg o, oy ( p7Ql[H\GL @) #0

<= There exists p as above such that
Homg o,y (P, Qu[H \ GLin (1)]) # 0

<= There exists ,0 as above such that 50 =p
<~ p’ =p.

The former five equivalences are direct, by noting that a projective
Zi[GL,,(1)]-module is a free Z;-module. For the second last equivalence,
we use the result for the characteristic 0 case. For the last equivalence
from the construction of supercuspidal representation given by Green
and James, since it is always possible to lift a o-invariant regular char-
acter over F; to a o-invariant regular character over Qy, it is always
possible to find a o-invariant Q;-lift 5 for a o-invariant supercuspidal
representation p.

Since (3) implies (2) by definition, we only need to prove that (2) implies (3).
We sum up the proof occurring in [35], Lemma 2.19. We have the following
F;[GL,,(1)]-module decomposition

F[H\ GLn ()] = V& V',

where V5 is composed of irreducible components isomorphic to p, and V” has no
1rreduc1ble component isomorphic to p. First, we verify that Endg- F[GLon ()] (V) is

commutative. By [16], Theorem 2.1, the convolution algebra Z;[H \ GL,,(1)/ H]
is commutative. Modulo ! we deduce that
B[\ GLon(1)/H] = Bndg gy gy (FIH \ GLon (1)
= Endgia,, @) (V) @ Brdiar, ay (V)

is commutative, thus Endg ¢y, (L)](Vﬁ) is commutative.

By [43], Chapitre III, Théoreme 2.9, P = P; ®ZE is indecomposable
with each irreducible subquotient isomorphic to p. By [10], Proposition B.1.2,
there exists a nilpotent endomorphism N € EndE[GL ) [P] such that
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Endg qr, o) [P] = F;[N], and there exist » > 1 and ny,...,n, positive in-
tegers such that

V= EB P/N™P.
i=1

Since Endgqp, )
Thus,

Hompy (p, 1) = Homgy,, ) (9, V5) = Homgr,, q)(p, P/N" P) = ;.

(V) is commutative, we have r = 1 and V; = P/N™P.

For char(R) = | > 0 in general, we fix an embedding F; — R and write
P = Po O, R, where 7, is a supercuspidal representation of GL,, () over F;.
By considering the Brauer characters, we have

p? =p ifand only if pf = 5.
Moreover,
Hom gx(p, R) = Homg, ;) (Po, F1) @, R.
Thus, we come back to the former case. O
REMARK 7.3. — We give an example of a c-invariant cuspidal non-super-

cuspidal representation of GL,,(I) over F;, which is not distinguished by H.

Assume m = 2 and [ # 2 such that [|Q? + 1. Let B be the subgroup of GLa(l)

consisting of upper triangular matrices. For IndgLQ(”E, it is a representation

of length 3 with irreducible components of dimension 1,Q? — 1,1 respectively.
Denote by p the irreducible subquotient of IndgL"’(l)I[Tl of dimension Q% — 1 .
It is thus cuspidal (not supercuspidal) and o-invariant. Let 7 be a Q;-lift of 7,
which is an irreducible cuspidal representation. We write 5|H =Vid...aV,
its decomposition of irreducible components. Since |H| = Q(Q + 1)(Q? — 1) is
prime to [, reduction modulo ! preserves irreducibility. So 5|y decomposes as
W1 @ ...® W,, where the irreducible representation W; is the reduction of V;
modulo [ for each i = 1,...,7. Suppose that p is distinguished. Then W; = F;
for some 4. Thus, Vj; is a character that must be trivial, which implies that 5 is
distinguished. This is impossible by Lemma 7.1 and Lemma 7.2, since m = 2
is even. See [35], Remark 2.8. for the Galois self-dual case.

Finally, we need the following finite group version of Proposition 5.6, which
is well known:

PROPOSITION 7.4. — For p an irreducible representation of GL,, (1), we have

pY =p(t71), where p(t-71) = p(taxt), for any v € GL,,, ().

Proof. — By definition, the Brauer characters of p* and p(-~!) are the same.
O
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7.2. Distinction criterion in the unramified case. — Let 7 be a o-invariant su-
percuspidal representation of G. In this subsection, we prove Theorem 1.1 and
Theorem 1.2 in the case where E/Ej is unramified. To prove Theorem 1.1,
it remains to show that = is distinguished by any unitary subgroup G with
the aid of Theorem 4.1. Since changing 7 up to a G-action does not change
the content of the theorem, we only need to consider the two special unitary
involutions mentioned in Remark 6.1.(4). To justify the assumption in Remark
6.1.(3), first we prove the following lemma:

LEMMA 7.5. — For any o-invariant supercuspidal representation © with E/Ej
unramified, m is odd.

Proof. — We consider 7 = 71, where 71(z) = o(‘z7!), for any x € G. We
follow the settings of Remark 6.1. For (J,A) a simple type as in Remark
6.1.(2), we may write A 2 k ® p as before. Using Proposition 6.24, we may
further assume k™ = k. Since A and k are 7-self-dual, p is T-self-dual. Let p
be the supercuspidal representation of GL,, (1) = J/J! whose inflation equals
pls, then p™ = 5 when regarding 7 as a unitary involution on GL,,(l). Using
Proposition 7.4, we have po o = p. Using Lemma 7.1, we conclude that m is

odd. O

With the aid of Lemma 7.5, we may assume as in Remark 6.1.(4) that
7(z) = eo(tr=1)e™! for any € G with € equal to I,, or diag(wg,...,ws),
representing the two classes of unitary involutions. For (J,A), a simple type
as in Remark 6.1.(2), we may write A &£ k ® p as before. Using Proposition
6.24, we may further assume k™ = k. Using Lemma 6.18 with g = 1, there

exists a quadratic character x : J NG — R* such that
dimgHom yng- (K, x ) = 1
and
Hom jneg- (A, 1) = Homgno- (k, x 1) @z Hom g (p, X).

We want to show that y = 1. First, we need the following lemma:
LEMMA 7.6. — The character x can be extended to a character X' of J.

Proof. — Using Lemma 4.2, we have JNG™ = JNG"™. Write X the character of
U, (1/1y) = JNG™ /J*NGT, whose inflation equals x. Since it is well known that
the derived subgroup of U,,(1/ly) is SU,,(L/lp) := {g € U, (l/ly)|det(g) = 1}
(see [13], II. §5), there exists ¢ as a quadratic character of det(U,,(l/ly)) =
{z € I"|zo(z) = 297! = 1}, such that ¥ = ¢ o det|y,, 1/1,). We extend ¢ to
a character of I and we write ¥’ = ¢ o det, which is a character of GL,,(l)
extending . Write ' the inflation of ¥’ with respect to the isomorphism
GL,,(1) = J/J'. Finally, we choose x’ to be a character of J extending x’° by
choosing x/(wg) # 0 randomly. By construction, x'|jngr = X- O
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PROPOSITION 7.7. — (1) When char(R) =0, for any X' extending x to J,
we have X' (X' oT) = 1.
(2) Furthermore, for any R, we have y = 1.

Proof. — First, we consider char(R) = 0. Since m is odd, Lemma 7.1 implies
that GL,,(l) possesses a o-invariant supercuspidal representation p’. Using
Proposition 7.4 we get ?Tv = p/. We denote by p’ a representation of J trivial
on J!, such that its restriction to J is the inflation of p’. Since o(wg) = @,
we have p/(7(wg)) = p'(wg) ! which means that p’ is 7-self-dual. By Lemma
7.2 it is also distinguished.

Let A’ denote the T-self-dual simple type k ® p’. The natural isomorphism

Hom jner (A, x ™) = Homyng- (K, X~ *) ®r Hom e (p', 1)

shows that A’ is xy~'-distinguished.

By Lemma 7.6, there exists a character x’ extending y. The represen-
tation A” = A’X’ is thus a distinguished simple type. Let 7" be the su-
percuspidal representation of G compactly induced by (J,A”). It is distin-
guished, thus 7-self-dual by Theorem 4.1 and Proposition 5.6. Since A” and
ATV =2 N'Y'~1(x'~1 o 7) are both contained in 7, it follows that x'(x’ o 7) is
trivial.

We write ¥ = ¢ o det as in the proof of Lemma 7.6. Since x'(x’ o 7) = 1,
we get ¢p(poo)! = 51762 = 1. Choose (; to be a primitive root of I*; then
(27" generates the group det(U,,(1/ly)) = {z € I*|zo(x) = 291 = 1}. Since
@( ll_Q) = 1, we deduce that $\det(Um(1/lo)) is trivial, which means that ¥ is
trivial. Thus, x as the inflation of X is also trivial.

Now we consider R = F;. As already mentioned in the proof of Proposition
6.26, if we denote by & the Q;-lift of k and if we denote by X the character
defined by Lemma 6.18.(1) with respect to & and 7, then Y is a Q;-lift of .
Using the characteristic 0 case that we already proved, we get ¥ = 1, which
implies that x = 1.

When R =1 > 0 in general, we follow the same logic as in the proof of
Proposition 6.26. |

REMARK 7.8. — In fact, in Proposition 7.7, we proved that when m is odd,
and E/FEy is unramified, any 7-self-dual x constructed in Proposition 6.24 as
an extension of a J! N G7-distinguished Heisenberg representation 7 is J N G-
distinguished.

Now we come back to the proof of our main theorem. We have
Homjngr (A, 1) = Homng- (k, 1) ®g Homyng(p, 1),

where Hom jng- (k, 1) is of dimension 1, and Hom yng- (p, 1) = Homy,, (1/1,) (P, 1)
is also of dimension 1 by Lemma 4.2, Lemma 7.2 and Proposition 7.4. So,
Hom jngr (A, 1) is of dimension 1, which implies that 7 is G7-distinguished.
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Thus, we finish the proof of Theorem 1.1 when E/Ej is unramified. Using
Corollary 6.29 and the fact that m is odd we deduce that Homg- (m, 1) is of
dimension 1, which finishes the proof of Theorem 1.2 when E/Ej is unramified.

8. The supercuspidal ramified case

In this section, we study the distinction of o-invariant supercuspidal repre-
sentations of G in the case where E/Ey is ramified. This finishes the proof of
our main theorem.

8.1. The finite field case. — Let I be a finite field of characteristic p # 2 and
let |I| = Q. For m a positive integer, we denote by G the reductive group GL,,
over I. Thus, by definition, G(I) = GL,,(l). For € a matrix in G(I) such that
z = 7, the automorphism defined by 7(z) = gfz~'z71, for any € GL,,(1),
gives an involution on GL,, (1), which induces an involution on G. Thus, G”
is the orthogonal group corresponding to 7, which is a reductive group over I,
and G7 (1) = GL,,(I)7, which is a subgroup of GL,,(l). In this subsection, for
p a supercuspidal representation of GL,,(l) and X a character of GL,,(1)", we
state the result mentioned in [18], which gives a criterion for 5 distinguished
by X.

First of all, we assume R = Q;. We recall a little bit of Deligne Lusztig the-
ory (see [12]). Let T be an elliptic maximal I-torus in G, where ellipticity means
that T(I) = t* and ¢/l is the field extension of degree m. Let £ be a regular
character of T(l), where regularity means the same as in the construction of
Green and James in §7.1. Using [12], Theorem 8.3, there is a virtual character
R ¢ as the character of a cuspidal representation of GL,,(l). Moreover, if we
fix T, we know that £ — Rt ¢ gives a bijection from the set of Galois orbits of
regular characters of T to the set of cuspidal representations of GL,,(l). So we
may choose § such that Trace(p) = Rt ¢. Moreover, using [12], Theorem 4.2,
we get R ¢(—1) = dim(p)¢(—1) with dim(p) = (Q —1)(Q* —1)...(Q™ 1 —1).
So if we denote by w5 the central character of p, we get w5(—1) = £(—1).

PROPOSITION 8.1 ([18], Proposition 6.7). — For 7, p, T and & above, we have:

L ifwp(=1) = &(=1) = X(=1),

dimp(Home- ) (p, X)) = {0 otherwise

Now we consider the I-modular case and assume char(R) =1 > 0.

PROPOSITION 8.2. — ForT above andp a supercuspidal representation of GL,, (1)
over R, the space Homgy,,, 1y (9, X) # 0 if and only ifw;(—1) = X(—1). Moreover,
if the condition is satisfied, then we have dimg(Homgr, , 1)~ (P, X)) = 1.
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Proof. — First, we assume R = I[Tl.NWe use a similar proof to that in Lemma
7.2. Let H :ELm(i)T. We choose X to be a character of H lifting , which is
defined over Z; or (Q; by abuse of notation. For S = Z;, Q;, we define

S[H\ GLn(0)]z = {f[f: GLn(l) = 5,
f(hg) =X(h)f(g) for any h € H,g € GLy,(1)}.
Especially,

QIH\ GLn ) = Indii V%

as a representation of GL,, (1) over Q;, and Z; [H\GLm(l)]:i is a free Z;-module.
If we further define

Fi[H \ GLn (D = Tndyy "V,
then we have
Tl H \ GLo, (D) ©7; Fr = FilH \ GL, (D]
and
TlH \ GLo (D @ Q1 = GilH \ GLn (0.
We deduce that

Homy (5,X) # 0
<= There exists 5 Efﬁjg p such that
Homgop, 0y (P Qi[H \ GLin (D)) # 0
<= There exists p lifting p such that w;(—l) =x(-1)
= wp(—1) =X(-1).

The first equivalence is of the same reason as in the proof of Lemma 7.2, and
we use Proposition 8.1 for the second equivalence. For the last equivalence, the
“=* direction is trivial. For the other direction, when ! # 2, we choose 5 to
be any supercuspidal Q;-lift of 5. Thus, we have wﬁv(—l) =wy(—1) =x(-1) =

X(—1). When | = 2, using the construction of Green and James, for { a regular
character over F; corresponding to p, we may always find a Q-lift § that is
regular and satisfies ¢ ( 1) = X(—1). Thus, the supercuspidal representation
7 corresponding to & as a lift of p satisfies wpv(—l) = X(=1). So we finish the

proof of the first part.
To calculate the dimension, as in the proof of Lemma 7.2 if we write

Fi[H\ GLn(D]g =V V',

where V5 is composed of irreducible components isomorphic to p, and V'
has no irreducible component isomorphic to p, then we only need to show
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that Endg gy, (l)](Vf) is commutative. We consider the following Z;[GL,, (1)]-
module decompos1t10n

Zi[H\ GLu())z = V0 V7,

where "Z ®Z@ = @% with the direct sum ranges over all the irreducible
representations p over Q; occurring in P Countlng the multiplicity, and v’
denotes a Z;[GL,,(1)]- complement of Vp, such that V' Q7 Q; contains no irre-
ducible component of p p. Using Proposition 8.1, Vp Oz Q; is multiplicity free,
which means that Endg g, ) (V5 ®7;Qu) is commutative. The canonical em-

bedding from Z;[H \ GL,, (1 )] to Q[H \ GL,, (1 )] induces the following ring
monomorphism

EndZ[GLm(z)] (Z[H \ GL,, (1 )] ) — End Q[CLm (V)] (@[H \ GLm(l)]Y)
given by tensoring Q;, which leads to the ring monomorphism

EndZT[GLm(l)] (Vﬁ) — End@[GLm )] (Vﬁ ®Z @) .

Thus Endz; (GLon ()] (/\Z) is also commutative.
The modulo [ map from Z;[H \ GLm(l)]i to Fi[H \ GL,,(1)]5 induces the
following ring epimorphism

EndZ[GLWI(l)](Zl[H \ GLm( )]3) - End 1 [GL, ()] (E[H \ GLm(l)]Y)v
which leads to the ring epimorphism

Endzqr,, 0 (Va) = Endgqr, 0 (Va)-

Since Endz- [GLm(l)]( %) is commutative, Endg F(GLon (l)](V ) is also commutative.
Thus, we may use the same proof as in Lemma 7.2 to show that

dimﬁ(HOmGLm(l)T(ﬁv y)) =1L

Finally, for char(R) =1 > 0 in general, we follow the corresponding proof in
Lemma 7.2. ]

REMARK 8.3. — For G7(I) an orthogonal group with m > 2, it is well known
that its derived group is always a subgroup of G™(I) of index 2 (see [13], IL.
§8), which means that there exists a character of G™(l) that is not trivial on
G70(1). This means that we cannot expect X to be trivial on G™°(I) in general.
However, for those X occurring in the next subsection, it is highly possible that
X is trivial on G™°(1). For example, [18], Proposition 6.4 gives evidence for this
in the case where 7 is tame supercuspidal. However, the author does not know
how to prove it.
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Now we assume that m is even. We write J,,,/2 = ( 0 Im/Q) and we
—Ipp2 O
denote by

Sp,,(1) = {x € GL,,,(1)| tme/Qx = Jms2}
the symplectic subgroup of GL,,(1).

PROPOSITION 8.4. — For p, a cuspidal representation of GLy, (1), we have
HomSpm(l)(pa 1) =0.

Proof. — Using [31], Corollary 1.4., whose proof also works for the I-modular
case, we know that an irreducible generic representation cannot be distin-
guished by a symplectic subgroup. Since a cuspidal representation is generic,
we finish the proof. O

8.2. Distinction criterion in the ramified case. — Still let 7 be a o-invariant
supercuspidal representation of G. In this subsection, we prove Theorem 1.1
and Theorem 1.2 in the case where E/Fjy is ramified. Using Theorem 4.1, we
only need to show that 7 is distinguished by any unitary subgroup G” to finish
the proof of Theorem 1.1. We may change 7 up to a G-action, which does
not change the property of being distinguished. Thus, using Remark 6.1.(4),
we may assume 7(z) = eo(fz71)e™!, for any x € G, where ¢ equals I,, or
diag(Ig,...,14,¢€) with € € 020 — Ng/g,(0}), representing the two classes of
unitary involutions. We denote by € the image of € in GL,,(1).

For (J,A) a simple type in Remark 6.1.(2), we write A = k ® p. Using
Proposition 6.24, we may further assume k™ = k. Using Lemma 6.18 with
g = 1, there exists a quadratic character x : J NG™ — R* such that

(24) dimgpHom sng (K, x 1) =1
and
(25) Hom jngr (A, 1) = Homjngr (K‘,, Xﬁl) ®pr Hom jngr (p, X).

If we denote by w, the central character of k defined on F'*, using (24), we get
we = x~ ! as characters of F* N (J NG™). In particular, we(—1) = x~1(-1).

Since k™ & Kk, we get w, o T = wy 1. In particular, we have

WH(WF)71 = wx(T(wr)) = WR(WF)71WN(*1)71’

where we use the fact that o(wp) = —wp. Thus, we get we(—1) = x(-1) = 1.
Since A and k are 7-self-dual, p is 7-self-dual. Using the same proof as

that for k, we get wy(—1) = 1. Let p be the supercuspidal representation of

GLy(1) = J/J! whose inflation equals p|; and let ¥ be the character of

G ()=ZJNG")J'NG™
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whose inflation equals y, where 7 naturally induces an orthogonal involution on
G with respect to a symmetric matrix € € GL,,(l). By definition and Lemma
4.2 we get

Hom jng(p, x) = Homg- 1) (P, X)-
Since w;(—1) = X(—1) = 1, using Proposition 8.1 and Proposition 8.2 the space
above is non-zero. Thus, by (25) we have

HOmJQGT (A7 1) # 0,

which means that 7 is distinguished by G7, finishing the proof of Theorem 1.1.
Moreover, using Proposition 8.1, Proposition 8.2, (24) and (25), we get

dimgHom jna- (A, 1) = 1.
Now, if m is even, and ¢ = I, we also need to study the space
Hom yo1 g+ (A9, 1), where g; is defined in Corollary 6.29, such that T(gl)gfl =

wgJms2 € B*. Using Lemma 6.18, there exists a quadratic character x; :
J*NG™ — R* such that

(26) dim gHom yor ner (K9, x7 ') = 1
and

(27) Homjsing- (A9, 1) =2 Hom joingr (l<a917xfl) ®pr Hom jo1 ng- (P71, x1)-

-1

So we only need to study the space Hom jo1ng- (p9", x1) = Hom ;. s, (P, X7,
where

09, (2) = (T(g1)g1 )~ 7 (@)(T(91)g1 ") = (@ETmyj2) T T(2)@E T2,

for any € G as an involution on G.
Let p be the supercuspidal representation of GLy, (1) = J/J! whose inflation

—1
equals p|; and let Xfl be the character of

Sp,, (1) = J NG ) J NGO
-1
whose inflation equals Xglll ; then we get

. —
Hom ; s, (P Xit ) = Homg;, (P, Xit )= Homg, 1)(p,1),

where the last equation is because of the well-known fact that Sp,, (1) equals
—1

its derived group ([13], I1. §8), thus x7* sp, 1) is trivial. Using Proposition
8.4, we get Homgy, (1)(p, 1) = 0. Thus, Hom o ng- (A9, 1) = 0.
Using Corollary 6.29, we get

dimgHomg- (7, 1) = dimgHom yng- (A, 1) + dimgHom jo1 ng- (A9, 1) = 1,

which finishes the proof of Theorem 1.2 when E/FEj is ramified.
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8.3. Proof of Theorem 1.3. — We finish the proof of Theorem 1.3. Let m be a o-
invariant supercuspidal representation of G’ over F;. For 7 a unitary involution,
by Theorem 1.1, 7 is distinguished by G”. From the proof of Theorem 4.1, there
exists a distinguished integral o-invariant supercuspidal representation 7 of G
over Q;, which lifts 7.

9. A purely local proof of Theorem 4.1

In this section, we generalize Theorem 4.1 to irreducible cuspidal represen-
tations, meanwhile also giving another proof of the original theorem, which is
purely local. Precisely, we prove the following theorem:

THEOREM 9.1. — Let w be an irreducible cuspidal representation of G over R.
If w is distinguished by G™, then 7 is o-invariant.

9.1. The finite analogue. —

PROPOSITION 9.2. — Let l/ly be a quadratic extension of finite fields of char-
acteristic p and let p be an irreducible generic representation of GLy, (1) over
R. If p is distinguished by the unitary subgroup H of GL,,(l) with respect to
l/lo, then it is o-invariant.

Proof. — When char(R) = 0, the proposition was proved by Gow [16] for any
irreducible representations. So we only consider the [-modular case and without
loss of generality we assume R = F;. We write P for the projective envelope of
p as a Z;[GL,(I)]-module. Thus, P ®ZIFT is a projective F;[GL,, (1)]-module,
and moreover,

Homg ;) (»,F) gHomFﬁ[GLm(l)](ﬁ’ F)[H\ GL,,(1)]) #0
implies that
Hom]ﬁ[GLma)] (P5 Q7 Fy, Fi[H \ GL,,(1)]) # 0.
Using the same argument as that in Lemma 7.2, we have

Homgrqyp, 0y (P @7 @, Qu[H \ GL, (1)) # 0,

and, thus, there exists an irreducible constituent p of P ®Z@ such that

Hom@[GLm(l)] (P, Qu[H \ GL,(1)]) # 0.
By [39], §14.5, §15.4, 7 is a constituent of r;(p). Since p is H-distinguished, it
is o-invariant and so is r; (ﬁ) For ¢ =1,...,k, we choose ﬁ» to be a cuspidal
representation of GL,,,(I) over Q;, such that 5 is a sub-representation of the
parabolic induction p; X . . . xﬁk,, where mq+...+my = m. For each i, we write
7, = 11(p;), which is a cuspidal representation of GL,,, (I) over F;, and then all

the irreducible constituents of r; (5) are subquotients of p; X ... x p;, and in
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particular so is p. Since p is generic (or non-degenerate), by [43], Chapitre III,
1.10, it is the unique non-degenerate subquotient contained in p; x...xp;, thus,

it is the unique non-degenerate constituent in r;(p). Thus, it is o-invariant. O

9.2. The cuspidal case. — In this subsection, we prove Theorem 9.1. We
choose (J,A) to be a simple type of m, and then by Frobenius reciprocity
and the Mackey formula, there exists g € G such that

(28) HOmngGT (Ag, 1) 7é 0.

Let H' be the corresponding subgroup of J, let 6 be the simple character of
H*' contained in A and let i be the Heisenberg representation of 6. Restricting
(28) to HY N G™ we get 09| 1sng- = 1. Following the proof of [35], Lemma
6.5, we have

(29) (9 o T)T(g)|.,-(H1g)mng = 95] o T|7-(ng)mng == (99)_1‘7(}[19)0}[19,

or in other words, 6 o 7 intertwines with §~!. Using the intertwining theorem
(cf. [7]), 6ot and 0~ are endo-equivalent, which, from the argument of Lemma
5.7, is equivalent to ©7 = O, where © denotes the endo-class of 6.

We let 71 be the unitary involution corresponding to I,,, which in particular
satisfies the condition of Theorem 5.5. Since ©7 = O, by loc. cit., we may
choose a simple stratum [a, 5] and 6’ € C(a, 8) with 8’ € ©, such that

n(B) =" m(a)=a and 0 or =61
Up to G-conjugacy, we may and will assume that J = J(a,3) and 6/ = 6. We
write E = F[8] and B = M,,(E) for the centralizer of E in M, (F). Using
Proposition 6.24, we write A = kK ® p with K an extension of the Heisenberg
representation n such that k™ = kY. Let € be a hermitian matrix such that
r(z) = eo(tz Vel = 1y(2)°  for any z € G. For a fixed g € G, we define

v=¢e"17(9)g7! = 11(9)e 19! and by direct calculation we have 7 () = 7.

PROPOSITION 9.3. — Let g € G such that Hom ysngr (A9,1) # 0.

(1) Changing g by another representative in the same J-G™ double coset,
we may assume y € B*.

(2) The dimension dimgHom jigngr(n9,1) = 1;

(3) There is a unique quadratic character x of JY NG™ trivial on JY9 NGT,
such that

Hom j1snc (77, 1) = Hom gang- (K9, x ') = R.
Moreover,
Hom jonar (A, 1) = Homgongr (£9, x 1) @ Hom gangr (9, X).
(4) The element v € J, thus under the assumption of (1), v € B* NJ =
E*Xp*.
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Proof. — We sketch the proof that follows from that of Theorem 6.2 (actually,
we have the same theorem if 7 = 71). Using (29) and the fact that 7(HY) =
I (HYE @) = H1¥7'79) and (o 7)"@ = (Gor)E 7O = (§71)F 7@ we
have
0T N prmreonge = 00
=090 T‘T(Hly)ﬂng = (eg)_1|H15_17’(9)ﬂH197

which means that 7 intertwines 6, or in other words, v € JB*J. The following
lemma follows from the same proof of Lemma 6.5, once we replace  there with
our - here and 7 there with 7.

LEMMA 9.4. — There existy € J = J(a, ) and b € B*, such thaty = 11 (y)by.

Thus, we change g by ¥y~ 'g and then the corresponding v = b € B, which
proves (1). For (2), we write

5(z) == (t(g9)g ) r(2)1(9)g™ =y tri(z)y for any z € G
an involution on G, and then by definition we have
Hom ji9ng-(n?,1) = Hom jings (1, 1),

and

() =y )y =1
Moreover, by direct calculation we have

S(H") = (r(9)g™") ' H' Tr(g)g Tt = H' and
hos= (071 "9 = (p1).

So using Proposition 6.14, we finish the proof of (2).
Using (2) and the same argument of Proposition 6.18 we get the statement
(3), except the part x being quadratic. To finish that part, since

m(ri(g)e e r(g)e ") = gemi(g) ' = (n(g)e g7 ) =y € B,

we may replace g with e~'7(g) = 71(g)e~! in the statement (3) to get a unique

character x’ of J TG trivial on J T TO NG Moreover, using the facts
—1 — - _

rJ)=J° ,r(J)=J° ,7(JY) =J¥ " and r(H') = H** ' and Lemma 4.2

it is easy to show that

(30) JING =J° TONG =906 =J T NG

As a result, ¥ and x' are characters defined on the same group J? N G =
-1
JS "9 N GT. We have the following lemma similar to Proposition 6.19:

LEMMA 9.5. — We have x = x’.
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Proof. — We write ¢ for the involution defined as above. By §3.2, we have
v € Ig(n) = Ig(xk°) and
dimp(Hom jr 7+ (k°7, k%)) = dimg(Hom jiq 51+ (17, 7)) = 1,

where k° = k|;. By direct calculation, we have J' N G? = J'' N G? as a

subgroup of J' N J' and H' NG® = H'Y N G°. Using statement (2) for g and

e~ 17(g), respectively, we get

dimgpHom j1sng- (19, 1) = dimgHom ;1. -1.(5) - (nEilT(g), 1)=1.
By Proposition 6.20, for
0 # ¢ € Hom iy (07, 7) = Hom 1, a1, (0 7,579,

the map

o Hom jiange (19, 1) = Hom 1o 1.0y e (15 79, 1),

A = dogp

is bijective”. If we choose

0# X € Hom jigsng-(n?,1) and

0% X = fo(A) = Ao @ € Hom 11,0 e (1° 79, 1),

then for any v in the representation space of n and any x € JING™ = Je TN
G7, using a similar argument to (15) we have

X (@) 7N (v) = x(2) 7N (v).

Since v and z € JING™ = J¢ 79 NG are arbitrary, we have X' | je-1r@ynar
X|79nG+. Combining this with (30) we finish the proof of the lemma.

To prove that x is quadratic, we first assume that char(R) = 0. Using a
similar argument to (21) we have the following isomorphism

et ~ et
Hom j1.-1.()nr (n T(g), 1) = HOsz—lr(g)mGT (k T(g), XOT).

Using the above lemma and the uniqueness of x’, we have y o7 = x~!. Since
x is defined on JY N G™ = J9 N G7, which is 7-invariant, we have y o 7 = ¥,
and thus x? = x(x o7) = 1. When char(R) = [ > 0, the same argument in
Proposition 6.26 can be used directly.

Finally, using (3) and the distinction of the simple type, we have

Hom jsng-(p?, x) # 0.

7. Noting that J19 NGT = (J1 N G%)9 and JiET 9 G = (J™' N G%)9, thus
Hom jigngr (n?,1) = Hom j1~46(n,1)  and

Hom 571T(9),1) = Hom j1,1gs(n7,1).

Jle_lr(g)mcr (’I’]
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Then the proof of (4) is the same as that in §6.6, once we replace v there with
our 7 here. g

COROLLARY 9.6. — For g € G such that Homjong-(A9,1) # 0, we may
change g by another representative in the same J-G7 double coset, such that

| Iy or wply, if E/Ey is unramified;
7= L, or diag(l,...,1,€) or wgJy, 2 if E/Ey is ramified,

as an element in GL,,(E) & B* — G, where € € 020 —Ng/g,(05)

Proof. — We have proved that v = 7(g)e " '¢g~! € BXNJ = EXb*. Changing
g up to multiplying by an element in £, which does not change the double
coset it represents, we may assume vy € b* or wrb*. Using Proposition 2.2 and
changing g up to multiplying by an element in 6* on the left, we may assume
that v = @, and from the uniqueness we must have @@, = I,,, or wgl,;,, when
E/Ey is unramified, and w§ = I, or diag(1,...,1,¢€) or wgJy, 2 when E/Ej
is totally ramified. O

Thus, for g € G as above, we get

—1 -1
Hom jngs (pl7, x? ) = Homyngs (p,x? ) = Homgong-(p?, x) # 0.

Ww write H = J N G°/J' NG for the subgroup of GL,, (1) & J/J', which,
from the expression of v in Corollary 9.6, is either a unitary subgroup, or an
orthogonal subgroup, or a symplectic subgroup of GL,,(l). Moreover, we have

Hompy (p, X') # 0,

where p is a cuspidal representation of GL,, (1) whose inflation is p|; and X’ is
a quadratic character of H whose inflation is x9 | 7nGs -

When H is unitary, which also means that E/E; is unramified, by Lemma
7.6 (or more precisely its argument) x’ can be extended to a quadratic character
of GL,,(1). Thus, ﬁ?_l as a cuspidal representation of GL,, (1) is distinguished
by H, and thus it is o-invariant by Proposition 9.2. The quadratic character x’
must be o-invariant, thus 7 is also o-invariant, or by Proposition 7.4, p™ & 5".
Thus ,both k and p are 11-self-dual, which means that A and 7 are 1;-self-dual.
By Proposition 5.6, 7 is o-invariant.

When H is orthogonal, which also means that F / Ey is totally ramified,
comparing the central character as in §8.2 we have p(—1,,,) = id. Thus, p™|; =
p(t~H]; = p|; by Proposition 7.4, and p(11 (wg)) = p(—wE) = p(wg), which
means that p is 7i-self-dual, finishing the proof as above.

Finally, by Proposition 8.4 and the fact that Sp,,(l) equals its derived sub-
group, the case where H is symplectic never occurs, which ends the proof of
Theorem 9.1.
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REMARK 9.7. — Combining Theorem 9.1 with the argument in [14], section 6,
we may further prove that an irreducible generic representation m of G distin-
guished by a unitary subgroup G7 is o-invariant.
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