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CLASSIFICATION OF THOMPSON RELATED GROUPS ARISING
FROM JONES’ TECHNOLOGY II

by Arnaud Brothier

Abstract. — In this second article, we continue to study classes of groups constructed
from a functorial method due to Vaughan Jones. A key observation of the author shows
that these groups admit remarkable diagrammatic descriptions that can be used to
deduce their properties. Given any group and two of its endomorphisms, we construct
a semi-direct product. In our first article dedicated to this construction, we classify
up to isomorphism all these semi-direct products when one of the endomorphisms is
trivial and describe their automorphism group.

In this article, we focus on the case where both endomorphisms are automorphisms.
The situation is rather different, and we obtain semi-direct products where the largest
Richard Thompson’s group V is acting on some discrete analogues of loop groups. Note
that these semi-direct products appear naturally in recent constructions of quantum
field theories. Moreover, they were previously studied by Tanushevski and can be
constructed via the framework of cloning systems of Witzel–Zaremsky. In particular,
they provide examples of groups with various finiteness properties and possible counter-
examples of a conjecture of Lehnert on co-context-free groups.

We provide a partial classification of these semi-direct products and describe their
automorphism group explicitly. Moreover, we prove that groups studied in the first and
second articles are never isomorphic to each other nor do they admit nice embeddings
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664 A. BROTHIER

between them. We end the article with an appendix comparing Jones’ technology with
Witzel–Zaremsky’s cloning systems and with Tanushevski’s construction. As in the
first article, it was possible to achieve all the results presented via a surprising rigidity
phenomenon on isomorphisms between these groups.

Résumé (Classification de groupes reliés à celui de Thompson et construits à l’aide
d’une technologie de Jones II ). — Dans ce second article nous continuons d’étu-
dier des classes de groupes construites à l’aide d’une méthode fonctorielle de Vaughan
Jones. Une observation clef de l’auteur montre que ces groupes admettent des descrip-
tions diagrammatiques remarquables qui peuvent être utilisées pour en déduire leurs
propriétés. Étant donné un groupe quelconque et deux de ses endomorphismes nous
construisons un produit semi-direct. Dans notre premier article dédié à cette construc-
tion nous avons classifié à isomorphisme près tous ces produits semi-directs lorsque
l’un des endomorphismes est trivial et avons décrit leur groupe d’automorphisme.

Dans cet article, nous nous concentrons sur le cas où les deux endomorphismes
sont des automorphismes. Cette situation est très différente et l’on obtient des produits
semi-directs où le plus grand groupe de Richard Thompson agit sur un analogue discret
d’un groupe de lacets. Notons que ces produits semi-directs apparaissent naturellement
dans de récentes constructions de théories quantiques des champs. De plus, ils ont
été précédemment étudiés par Tanushevski et peuvent être construits à l’aide des
systèmes de clonage de Witzel-Zaremsky. En particulier, ils donnent des exemples de
groupes satisfaisant différentes propriétés de finitude et une classe de contre-exemples
potentiels à une conjecture de Lehnert portant sur les groupes ayant un co-langage
non-contextuel.

Nous donnons une classification partielle de ces produits semi-directs et décrivons
explicitement leur groupe d’automorphisme. De plus, nous montrons qu’il n’y a pas
d’isomorphismes ou même de bonnes injections entre un groupe étudié dans le premier
article et un groupe étudié dans le deuxième. Nous terminons par un appendice qui
compare la technologie de Jones avec les systèmes de clonage de Witzel-Zaremsky
et la construction de Tanushevski. Comme dans le premier article, tous les résultats
présenté ont été obtenu grâce à un phénomène de rigidité surprenant portant sur les
isomorphismes entre ces groupes.

Introduction

Jones’ technology. — Jones’ subfactor theory has been intimately linked with
chiral conformal field theory (in short CFT) for more than two decades. Longo
and Rehren proved that any CFT produces a subfactor [37]. Conversely, certain
subfactors produce CFT, but there is no general construction [4]. This led
Vaughan Jones to ask the fundamental question: “Does every subfactor have
something to do with a conformal field theory?” Over several decades, Jones
tried to answer this question by looking for a general construction that would
associate a CFT to any subfactor. In his last attempt, Jones constructed a
discretisation of a CFT from a subfactor, where Thompson group T replaced
the usual conformal group invariance [31]. The idea was to take a limit and
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CLASSIFICATION OF FRACTION GROUPS II 665

obtain an honest classical CFT. However, discontinuity issues appeared, and
the CFT goal stayed out of touch [32].

Jones realised that the technology he developed to construct a discrete CFT
was very useful and practical for constructing group actions [12]. Given a nice
category C (a category with a left or right calculus of fractions, e.g. a com-
mutative cancellative monoid), there is a well-known process for constructing
a so-called fraction group GC (in fact, a fraction groupoid) from this category
[26, Section 1]. Jones discovered that given any functor Φ : C → D ending
in any category D, one can construct very explicitly an action (called a Jones
action) πΦ : GC y KΦ of the fraction group GC of the source category C on
a set KΦ (sometimes KΦ will rather be an object in a category) constructed
from the functor Φ. Moreover, properties of the target category D are reflected
in the properties of the Jones action πΦ. For instance, a functor Φ : C → Hilb
ending in the category of Hilbert spaces with isometries for morphisms pro-
vides a unitary representation πΦ of the fraction group GC . We say that πΦ is
a Jones representation. A functor Φ : C → Gr ending in the category of groups
provides an action by group automorphisms πΦ : GC y KΦ on a group KΦ.

A key example that we will be considering in this article is given by the
category C = F of (rooted, finite, ordered, binary) forests whose fraction group
is Richard Thompson’s group F ; the group of piecewise linear homeomorphisms
of the unit interval having finitely many breakpoints at dyadic rationals and
slopes of the power of 2 [18]. Moreover, considering larger categories of forests
equipped with permutations of their leaves, one can build the larger Thompson
groups T and V as fraction groups that are the analogues of F but acting
by homeomorphisms on the unit torus and on the Cantor space, respectively.
Recall that we have the chain of inclusions F ⊂ T ⊂ V .

Applications of Jones’ technology. — Jones’ technology for producing
group actions is recent (less than 10 year’s old) but has already provided a
number of interesting applications and new connections between fields of math-
ematics. Functors Φ : F → D from the category of forests going to a Jones
planar algebra D produce discrete CFT [31, 32]. These are physical field the-
ories that are sometimes called Thompson field theory and are now studied
in their own right [33, 40, 44]. This led to fruitful developments in operator
algebraic quantum field theory [17, 16]. Those functors produce, among oth-
ers, new and interesting unitary representations of the Thompson groups using
the inner product structure given by the quantum trace [34, 2]. For instance,
Jones provided a one-parameter family of irreducible unitary representations
of F that are pairwise non-isomorphic and where the parameter of the family
is the celebrated index set of subfactors {4 cos(π/n) : n ≥ 3} ∪ [4,∞) [34].

Functors Φ : F → D ending in the category of Conway tangles provide a
way to construct knots and links from Thompson group elements [31]. This is a
fascinating and deep connection between Thompson group F , knot theory and
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666 A. BROTHIER

quantum algebras, producing invariants among other new knots [35, 41, 1]. This
connection led to the discovery of the Jones subgroup ~F ⊂ F , which is defined
using orientation of knots and satisfies a number of remarkable properties [28,
29].

Functors Φ : F → Hilb produce unitary representations of Thompson group
F . In particular, equipping Hilb with the direct sum for monoidal structure
and considering monoidal functors Jones and the author obtained various con-
tinuous paths of unitary representations thus giving deformations [15]. These
functors provided connections between the Thompson group and the Cuntz
algebra, continuing previous works of Nekrashevych, but also connections be-
tween the Thompson group and Connes non-commutative tori and, more gener-
ally, Connes–Landi spheres [23, 39, 19]. Using monoidal functors Φ : F → Hilb,
where Hilb is now equipped with its classical monoidal structure, Jones and
the author obtained matrix coefficients vanishing at infinity for Thompson
groups F, T, V and reproved some results on their analytical properties, such
as the absence of the Kazhdan property (T) and the Haagerup property, giving
new proofs of theorems due to Reznikoff, Ghys-Sergiescu, Navas and Farley
[42, 27, 38, 25, 14].

Constructing fraction groups. — Consider now a functor Φ : F → Gr from
the category of forests to the category of groups. The Jones action is then an
action by group automorphism of Thompson group F on a group KΦ. Consider
the semi-direct product KΦ o F , which is a group. The author made the key
observation that KΦ o F is, in fact, the fraction group of a certain category
CΦ [11]. Morphisms of CΦ can be diagrammatically described as forests whose
leaves are labelled by elements of a group. In particular, one can reapply
Jones’ technology to the category CΦ and construct unitary representations of
the group KΦoF . This method was successfully applied to obtain new families
of permutational (i.e. non-standard) wreath products KΦ o V (note that the
larger Thompson group V is acting) having the Haagerup property [11]. These
examples are the first of their kind, providing new light on the comprehension of
non-standard wreath products and complementing previous deep and beautiful
general studies on wreath products and their analytical properties [20, 22, 21].

Motivation. — This leads to the main motivation of this present article: con-
structing and describing classes of groups to which Jones’ technology can be
applied. Hence, we want to find groups G equal to fraction groups GC of cat-
egories C. Moreover, we want to have a category C with a simple structure in
order to apply Jones’ technology efficiently. From the key observation made
above, natural candidates of fraction groups are given by semi-direct prod-
ucts G = KΦ o F constructed from a functor Φ : F → Gr . A first place to
start is to consider the simplest possible functors: monoidal covariant functors
Φ : F → Gr (where the monoidal structure of Gr is given by direct sums).
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CLASSIFICATION OF FRACTION GROUPS II 667

These functors are in one-to-one correspondence with triples (Γ, α0, α1), where
Γ is a group, and α0, α1 ∈ End(Γ) are endomorphisms. Moreover, using the
fact that Φ is monoidal, we can extend the Jones action πΦ : F y KΦ into an
action πΦ : V y KΦ of the larger Thompson group V . Hence, we obtain a semi-
direct product KΦ o V . This larger semi-direct product is again the fraction
group of a category CΦ of a labelled forest. The category CΦ has a very simple
structure because Φ is monoidal. It is then rather easy to construct functors
Ψ : CΦ → Hilb and thus, using Jones’ technology, unitary representations of
the fraction group KΦ o V . Such functors Ψ are in one-to-one correspondence
with a class of triples (R,H, σ) where H is a Hilbert space, R : H → H ⊗H
is an isometry, and σ : Γ → U(H) is a unitary representation so that (R, σ)
satisfies a compatibility condition, see [11, Proposition 4.1]. This article studies
the class of groups obtained from triples (Γ, α0, α1), where Γ is a group, and
α0, α1 are automorphisms of Γ. We will see that the fraction group obtained
is isomorphic to a semi-direct product LΓ o V . The group LΓ is equal to the
group of continuous maps from the Cantor space to Γ (where Γ is equipped
with the discrete topology). The action V y LΓ is the one obtained from the
classical action of V on the Cantor space and with a twist depending on α0
and α1.

The second motivation of this work comes from quantum field theory. As we
have explained briefly, Jones’ technology appeared from the desire to construct
CFT. It provides a different field theory with Thompson group T replacing the
spatial diffeomorphism group, which can be studied in its own right: Thompson
field theory. It resembles CFT but in a discrete way where the space time,
equal to a circle in CFT, is better described in this case by the Cantor space.
Stottmeister and the author have built field theories using Jones’ technology
and ideas from loop quantum gravity [17, 16]. We found that the global group
of symmetries together with the gauge group generate exactly fraction groups
associated to triples (Γ, idΓ, idΓ). This motivates a better understanding of
those groups, as they will help understanding the physical model coming from
a field theory.

The third motivation is to produce Thompson-like groups satisfying remark-
able properties and connecting this approach with pre-existing works. The
three Thompson groups F, T, V satisfy very unusual behaviours. There exists
a number of families of groups, such as ours, that resemble the Thompson
groups and follow some of their remarkable properties. The class of groups
considered in this article has appeared previously in other studies. They were
described and constructed in a different manner and used to answer other ques-
tions and problems than ours. This is a great motivation for our work since
it directly applies to those additional frameworks and creates potential future
interplays between these different point of views. Here is a brief presentation
of those studies. The interested reader can read the Appendix of this article
where we analyse and compare them more deeply.
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Tanushevski considered certain categories C of labelled forests and some
associated semi-direct products that are fraction groups: K o F,K o T and
K o V [45, 46]. He focused its study on K o F and proved remarkable and
beautiful results. For instance, he constructed groups with certain finiteness
properties, exhibited concrete finite presentations and described explicitly the
lattice of normal subgroups of K o F. The class of categories C considered
by Tanushevski is exactly the class of categories CΦ obtained from monoidal
covariant functors Φ : F → Gr that we are studying here. Hence, the fraction
group KoF of Tanushevski is the same semi-direct product KΦoF associated
to our functor Φ. Tanushevski’s and our results are interestingly disjoint and
use different techniques. However, they both rely on very similar formalisms.

Using Zappa–Szep products (i.e. bi-crossed products) Brin constructed a
braided version BV of the Thompson group [10, 9]. Note that Dehornoy
constructed the same group and other related groups using another approach
[24] independently. The construction of Brin consists in producing a monoid
of “braided forests” equal to a Zappa–Szep product between the monoid of
finitely supported forests and the group B∞ of finitary braids over countably
many strands. By abstracting this process, Witzel and Zaremsky defined a gen-
eral theory of cloning systems for constructing groups that are Thompson-like
groups, and where B∞ is now replaced by a direct limit of groups [48, 49]. They
were particularly motivated in studying finiteness properties of groups, and in
this were very successful. We will see in the Appendix that their construction
of groups and the one presented in this article are, in essence, different but
share certain similarities. In particular, the two classes of groups constructed
using one or the other methods share a large common subclass. The two meth-
ods have their own advantages/disadvantages and naturally complement each
other. One can reinterpret results obtained using a cloning system in the frame-
work of this article and vice versa. For example, Witzel and Zaremsky proved
that a number of fraction groups obtained from functors Φ : F → Gr are of
type Fn, for some n ≥ 1. From the functorial perspective developed in the
formalism of Jones there are additional candidates for being of type Fn that
have perhaps appeared less natural to look at from the cloning system perspec-
tive. Cloning systems have been used to answer other questions not just those
involving finiteness properties. For instance, using cloning systems Ishida con-
structed new families of groups that are (left- or bi-) orderable [30]. Note that
his results can easily be reinterpreted in our framework, and, again, natural
candidates of orderable groups can be given using Jones machinery. Another
exciting study concerns co-context-free groups (in short coCF groups). A con-
jecture of Lehnert modified using a theorem of Bleak, Matucci and Neunhöffer
states that any coCF group is finitely generated and embeds in Thompson
group V [36, 7]. A class of possible counter-examples to this conjecture was
recently constructed using cloning systems in [3]. Those authors exactly corre-
spond to groups obtained from triples (Γ, idΓ, α1) in our framework, where Γ
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is finite, idΓ is the identity automorphism of Γ, and α1 is any automorphism of
Γ. We provide a separate study of this class in Section 2.4. We hope that the
constructions and techniques presented in this article will provide a useful point
of view for experts in cloning systems and will lead to future fruitful develop-
ments; for example, future studies regarding the following questions that have
already been addressed: classifications, computations of automorphism groups,
descriptions of normal subgroups, analytical properties, constructions of defor-
mations, connections with operator algebras, finiteness properties, orderability
and co-word problem.

Details and main results. — We now enter into the details of this article and
compare our present analysis with our previous one [13]. Consider the category
of forests F whose fraction group is Thompson group F . We consider covariant
monoidal functors Φ : F → Gr that are in one-to-one correspondence with
triples (Γ, α0, α1), where Γ is a group, and α0, α1 ∈ End(Γ). Such a functor
produces a Jones action F y K on a group K, which extends to an action
V y K. We consider the semi-direct product obtained as K o V . Our goal is
to provide a clear description of K o V , decide how much K o V depends on
the triple (Γ, α0, α1) and describe the automorphism group of K o V .

In the first article, we studied semi-direct productsKoV arising from triples
(Γ, α0, α1), where one of the endomorphisms is trivial [13]. We proved that one
could always assume that the non-trivial endomorphism was an automorphism
and showed that K o V was isomorphic to a restricted twisted permutational
wreath product ⊕Q2Γ o V , where Q2 was the set of dyadic rationals in [0, 1)
and V y Q2 was the restriction of the classical action of V on the unit interval.
The twist is induced by the automorphism, say α0, with the formula:

v · a(vx) = α
log2(v′(x))
0 (a(x)), v ∈ V, a ∈ ⊕Q2Γ, x ∈ Q2.

In particular, if α0 = idΓ, then the wreath product is untwisted, and in that
case, we say that the fraction group K o V is untwisted. We recover the class
of groups previously considered by the author, which were mentioned earlier,
for which we proved that they have the Haagerup property when Γ has it (as
a discrete group). We provided a complete classification of these groups up to
isomorphism and described their automorphism group in the untwisted case
[13]. Note that it was possible to achieve all these analyses because there are
very few isomorphisms between groups in this class. Indeed, an isomorphism
θ : ⊕Q2Γ o V → ⊕Q2 Γ̃ o V will always decompose as follows:

θ(av) = κ(a) · cv · (ϕvϕ−1), a ∈ ⊕Q2Γ, v ∈ V,

where κ : ⊕Q2Γ → ⊕Q2 Γ̃ is an isomorphism, c : V → ⊕Q2 Γ̃ is a co-cycle and
ϕ : Q2 → Q2 is a map that extends to a homeomorphism of the Cantor space
C = {0, 1}N, where Q2 corresponds to finitely supported sequences inside C.
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670 A. BROTHIER

But more importantly,

supp(κ(a)) = ϕ(supp(κ(a))) for a ∈ ⊕Q2Γ,

where supp denotes the support. We say that the morphism is spatial. The
proof regarding spatiality was rather easy in the first article, and the main dif-
ficulty resided in describing all automorphisms of an untwisted fraction group.

In this present article, we consider semi-direct products K o V built from
triples (Γ, α0, α1), where both of the endomorphisms are non-trivial. The situ-
ation is much more complex and cannot be reduced to automorphisms as in the
previous article. Although, using a trick due to Tanushevski one can always
reduce to the case where g 7→ (α0(g), α1(g)) is injective, see Proposition 1.4.
We quickly specialise to α0, α1 being automorphisms. We prove that K o V is
then isomorphic to LΓ o V , where LΓ is the group of maps a : Q2 → Γ that
are locally constant in the sense that there exists a standard dyadic partition
(I1, · · · , In) of Q2, such that a is constant on each interval Ik, 1 ≤ k ≤ n.
For technical reasons, it is convenient to embed Q2 inside the Cantor space
C := {0, 1}N and extend elements of LΓ into functions from C to Γ. Note that
LΓ understood as a subgroup of the product

∏
C Γ is equal to the group of

all continuous functions from C to Γ where Γ is equipped with the discrete
topology. We call LΓ the discrete loop group of Γ by analogy of loop groups
in the Lie group context: the loop group of a Lie group G is the group of all
smooth maps from the circle to G equipped with pointwise multiplication. The
Jones action V y LΓ is spatial and twisted by the automorphisms α0, α1. The
formula is

(v · a)(vx) := τv,x(a(x)), v ∈ V, a ∈ LΓ, x ∈ Q2,

where (v, x) 7→ τv,x is a map valued in the subgroup of Aut(Γ) generated by
α0, α1, see Section (1.2). Note that this action extends to the full product∏

Q2
Γ, and thus the group K o V is isomorphic to a certain subgroup of the

unrestricted twisted permutational wreath product
∏

Q2
Γ o V .

An important particular case is given by triples (Γ, idΓ, idΓ) producing LΓo
V , where the Jones action V y LΓ is untwisted: (v · a)(vx) = a(x), v ∈
V, a ∈ LΓ, x ∈ Q2. We say that the fraction group or the semi-direct product
LΓ o V is untwisted. Elements of LΓ can be seen as a colouring of finitely
many regions of the circle that are moved around by V . As was mentioned
earlier, these groups appeared previously in physical models of Stottmeister,
and the author was inspired by the work of Jones in field theory and by loop
quantum gravity. [17, 16]. The physical space is the circle approximated by
dyadic rationals. The gauge group is nothing other than the discrete loop group
LΓ, and the spatial group is Thompson group T (the one in between F and V )
acting geometrically by rotations and local scale transformations. The spatial
symmetry group normalises LΓ, and together they generate LΓ o T .
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Similarly to the previous article, we find the surprising fact that isomor-
phisms between two semi-direct products θ : LΓ o V → LΓ̃ o V are (up to
multiplying by a centrally valued morphism) spatial in a similar sense to what
was previously described:

θ(av) = κ(a) · cv · (ϕvϕ−1) and supp(θ(a)) = ϕ(supp(a)), a ∈ LΓ, v ∈ V,

but with the important difference that ϕ ∈ Homeo(C) no longer stabilises Q2
in general; see Theorem 2.8 and Remark 2.9 for more precise statements. This
makes the analysis much harder, especially in the twisted case. The proof of
this rigidity phenomenon on isomorphism is more difficult than in the single
non-trivial endomorphism case of the previous article. It is the most technical
proof of the present article.

Using the structure of isomorphisms we establish a partial classification of
the class of groups considered.

Theorem A (Corollary 2.11). — Consider two groups Γ, Γ̃ and two pairs of
automorphisms α0, α1 ∈ Aut(Γ), α̃0, α̃1 ∈ Aut(Γ̃). Denote by G = LΓ o V and
G̃ = LΓ̃ o V the associated twisted fraction groups. The following assertions
are true:

1. If G ' G̃, then Γ ' Γ̃.
2. Assume that α̃0, α̃1 are inner automorphisms. We have that G ' G̃, if

and only if Γ ' Γ̃, and α0, α1 are inner automorphisms.

Note that we obtain a complete classification of the subclass of fraction
groups generated by triples (Γ, α0, α1), where the automorphisms are inner.
In particular, two triples (Γ, idΓ, idΓ) and (Γ̃, idΓ̃, idΓ̃) have their associated
fraction groups isomorphic, if and only if Γ ' Γ̃. We could not provide a
thinner classification of the general case because of the existence of exotic
homeomorphisms of the Cantor space normalising V that are not stabilising
Q2 or sending it to the other copy of dyadic rationals inside the Cantor space;
see Remark 2.5.

Given a triple (Γ, α0, α1) we write G(Γ, α0, α1) for the group previously
denoted by K o V . We have been able to conduct deep analysis on the class
of groups G(Γ, α0, εΓ) studied in the first article, which are built from triples
(Γ, α0, εΓ), where εΓ : g ∈ Γ 7→ eΓ is the trivial endomorphism. As was
mentioned earlier, we proved that, if Γ has the Haagerup property and α0 is
injective, then G(Γ, α0, εΓ) has the Haagerup property [11]. We have been
trying to prove a similar theorem for the class of groups G(Γ, idΓ, idΓ) or, more
generally, G(Γ, α0, α1) for α0, α1 ∈ Aut(Γ), but so far have been unable to do so.
After various failed attempts we started wondering that if given G(Γ, idΓ, idΓ)
one can find another group Γ̃ and an automorphism α̃0 ∈ Aut(Γ̃) satisfying
G(Γ, idΓ, idΓ) ' G(Γ̃, α̃0, εΓ̃) or satisfying that G(Γ, idΓ, idΓ) embeds inside
G(Γ̃, α̃0, εΓ̃) in a nice way. This would have permitted us to deduce properties
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of G(Γ, idΓ, idΓ) from the study of G(Γ̃, α̃0, εΓ̃). The following theorem proves
that these hypothetical isomorphisms and nice embeddings never exist except
for in trivial situations.

Theorem B (Theorem 2.13). — Consider two groups Γ, Γ̃, an endomorphism
α ∈ End(Γ) and two injective endomorphisms α̃0, α̃1 ∈ End(Γ̃). Consider the
fraction groups G = K o V and G̃ = K̃ o V built via the triples (Γ, α, εΓ) and
(Γ̃, α̃0, α̃1), respectively.

1. If K or K̃ is non-trivial, then there are no isomorphisms between KoV
and K̃ o V .

2. If K̃ is non-trivial, then there are no injective V -equivariant morphisms
from K̃ to K.

3. If K is non-trivial, then there are no V -equivariant morphisms from K
to K̃.

The proof of this theorem is not difficult. It relies on the fact that isomor-
phisms between fraction groups θ : K o V → K̃ o V send K onto K̃ and then
compare relative commutants {v ∈ V : va = va}, for some fixed a in K and
in K̃. Unfortunately, this theorem does not decide whether or not the class of
coCF groups constructed in [3] can be embedded in V , since we are considering
isomorphism or V -equivariant morphisms. However, our general analysis pro-
vides a new description of these groups, which we give in detail in Section 2.4.
Moreover, using Theorem A, in Corollary 2.12 we provide a rather complete
classification up to isomorphism of this class of coCF groups.

The last section of the article is devoted to describing the automorphism
group of G = G(Γ, idΓ, idΓ) ' LΓ o V as the group induced by a group Γ
and the identity automorphism. We limited our analysis to this specific case.
Treating the general case with α0, α1 being any automorphisms is not only
more technical but will require us to better understand homeomorphisms of
the Cantor space C; in particular, the homeomorphisms normalising V but
mixing the classes of C/V in a non-trivial way. We leave this for future study.
Note that since α0 = α1 = idΓ we have that the semi-direct product LΓo V is
untwisted, and thus the Jones action V y LΓ is purely spatial:

(v · a)(vx) = a(x), v ∈ V, a ∈ LΓ, x ∈ Q2.

We start by exhibiting four different kinds of automorphisms, which we call
elementary. They are the following: The group NH(C)(V ) = {ϕ ∈ Homeo(C) :
ϕV ϕ−1} acts spatially on G:

ϕ · (av) := (a ◦ ϕ−1) · (ϕvϕ−1), ϕ ∈ NH(C)(V ), a ∈ LΓ, v ∈ V.

The group Aut(Γ) acts diagonally on G:

β(av) = β(a)v, β(a)(x) := β(a(x)), β ∈ Aut(Γ), a ∈ LΓ, v ∈ V, x ∈ Q2.
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This provides an action
A : NH(C)(V )×Aut(Γ)→ Aut(G), (ϕ, β) 7→ Aϕ,β .

The normaliser subgroup N(G) := {f ∈
∏

Q2
Γ : fGf−1 = G} acts by adjoint

action: ad : N(G) y G. The formula giving the last class of elementary
automorphisms is less obvious than the three previous ones. Using slopes, for
any central element ζ ∈ Z(Γ), we construct a co-cycle

v ∈ V 7→ s(ζ)v where s(ζ)v(x) := ζ log2(v′(v−1x), x ∈ Q2.

This induces an action of Z(Γ) on G :
Fζ(av) := a · s(ζ)v · v, ζ ∈ Z(Γ), a ∈ LΓ, v ∈ V.

We prove that any automorphism of G is a product of these four elementary
ones. Moreover, we provide an explicit description of Aut(G) as a quotient of
a semi-direct product.

Theorem C (Theorem 3.5). — Let Γ be a group and G := LΓ o V the asso-
ciated untwisted fraction group. The formula

(ϕ, β) · (ζ, f) := (β(ζ)kϕ , β(f)ϕ · ζγϕ)

defines an action by automorphisms ofNH(C)(V )×Aut(Γ) onZ(Γ)×N(G)/Z(Γ),
where kϕ is a constant, and γϕ : Q2 → Z is a map (see Section (3.2)) for all

ϕ ∈ NH(C)(V ), β ∈ Aut(Γ), ζ ∈ Z(Γ), f ∈ N(G)/Z(Γ).
The following map

Ξ :(Z(Γ)×N(G)/Z(Γ)) o (NH(C)(V )×Aut(Γ))→ Aut(G)
(ζ, f, ϕ, β) 7→ Fζ ◦ ad(f) ◦Aϕ,β

is a surjective group morphism with kernel
ker(Ξ) = {(eZ(Γ), g, idV , ad(g−1)) : g ∈ Γ},

where g ∈ N(G)/Z(Γ) is the class of the constant map equal to g everywhere,
and ad(g−1) : h 7→ g−1hg is the inner automorphism of Γ associated to g ∈ Γ.

Sketch of the proof of the main technical result. — We end this introduction by
giving a sketch of the proof of Theorem 2.8. This theorem implies Theorems
A and B and is a key result for proving Theorem C. Consider two triples
(Γ, α0, α1), (Γ̃, α̃0, α̃1) with associated groups G = LΓ o V and G̃ = LΓ̃ o V .
Assume there exists an isomorphism θ : G → G̃. Using a result from the
first article we know that θ(LΓ) = LΓ̃. Moreover, using the fact that any
automorphism of V is induced by conjugation by a homeomorphism of the
Cantor space C we deduce that θ can be decomposed as follows:

θ(av) = κ(a) · cv · adϕ(v), a ∈ LΓ, v ∈ V,
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where κ : LΓ → LΓ̃ is an isomorphism, V 3 v 7→ cv ∈ LΓ̃ is a co-cycle
and adϕ(v) := ϕvϕ−1, v ∈ V where ϕ is a homeomorphism of C normalizing
the Thompson group V . From this, we want to show that up to multiplying
θ by a morphism ζ : G → Z(G̃) from G to the center Z(G̃) we have that
supp(κ(a)) = ϕ(supp(a)) for all a ∈ LΓ. We prove that if a ∈ LΓ, and x
is not in the support of a, then κ(a)(ϕ(x)) must belong to the center of Γ̃.
By describing certain centraliser subgroups we deduce that κ(a) is constant
outside of ϕ(supp(a)), taking a value that is not only central but also invariant
under the automorphisms α̃0 and α̃1. Now, constant maps valued in the center
of Γ̃ and invariant under α̃0, α̃1 are elements of Z(G̃). Hence, we find that if
a ∈ LΓ, then κ(a) = κ0(a) · ζ(a), where κ0(a) is supported in ϕ(supp(a)) and
ζ(a) ∈ Z(G̃). It is then easy to conclude that κ0 : LΓ→ LΓ̃ is an isomorphism
satisfying supp(κ0(a)) = ϕ(supp(a)), for all a ∈ LΓ.

1. Preliminaries

We will follow the notation of the previous article [13], which we refer to for
more details, along with [11].

1.1. Rational points and slopes. — We write C = {0, 1}N for the Cantor space
equal to all infinite sequences in 0, 1 equipped with the usual product topology.
We write {0, 1}(N) ⊂ C for the subset of finitely supported sequences, which
we may identify with finite words in 0, 1. Recall that

S : x = (xn)n∈N 7→
∑
n∈N

xn
2n

defines a surjection from C onto [0, 1], where each dyadic rational of (0, 1) has
exactly two pre-images, and all the other points have only one pre-image. By
Q2 we write the dyadic rationals of [0, 1) that we identify with the finitely
supported sequences of C, and, hence, Q2 ⊂ C corresponds to the inclusion
{0, 1}(N) ⊂ {0, 1}N. Note that C contains a copy of the dyadic rationals of
(0, 1]: the set of all sequences having finitely many 0. A standard dyadic
interval (in short sdi) is a subset of C of the form

I = {mI · y : y ∈ {0, 1}N},
where mI is a finite word: I is the set of all the sequences with the prefix mI .
We will often refer tomI as the word associated to I. Note that I is an open and
closed subset of C. It is mapped by S to an interval of the form S(I) = [ a2b ,

a+1
2b ],

with a, b natural numbers justifying the terminology. For technical reasons, we
will often identify I with the half-open interval Ṡ(I) := [ a2b ,

a+1
2b ) and also with

Ṡ(I) ∩Q2. A standard dyadic partition (in short sdp) is a finite partition of C
made of sdi. Similarly, we identify an sdp with the corresponding partitions of
[0, 1) and [0, 1) ∩Q2.
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Consider two sdp (Ik : 1 ≤ k ≤ n) and (Jk : 1 ≤ k ≤ n) having the same
number of sdi n ≥ 1. Consider the map v : C→ C defined as

v(mIk · x) = mJk · x, 1 ≤ k ≤ n, x ∈ {0, 1}N.

This a homeomorphism of C, and the set of all such v (for all choices of two
sdp with the same number of sdi) forms a group for the composition called
Thompson group V . Note that if we restrict ourselves to ordered sdp, meaning
that sup(Ik) = inf(Ik+1) for all 1 ≤ k ≤ n−1, then the set of all maps as above
between two ordered sdp with the same number of sdi is a group isomorphic to
Thompson group F . Fix v ∈ V . We say that an sdp (Ik : 1 ≤ k ≤ n) (and an
sdi I) is adapted to v if there exists a family of finite words (mk : 1 ≤ k ≤ n),
such that v(mIk · x) = mk · x, for all 1 ≤ k ≤ n and x ∈ {0, 1}N (and a finite
word m such that v(mI · x) = m · x for all x ∈ {0, 1}N).

The group V stabilises the subset Q2 ⊂ C. Consider the complement inside
C of all sequences having finitely many 0’s. This set is in bijection with [0, 1)
via the map S above. We have that this subset is stabilised by the action V .
This provides a piecewise linear action of V on [0, 1). Each element v ∈ V
has finitely many discontinuous points when acting on [0, 1), all appearing at
dyadic rationals. This is the classical Thompson group action of V on the unit
interval [0, 1).

If v ∈ V and x ∈ C, then there exists some finite words m,w and an infinite
sequence y satisfying that x = m · y and that v(m · z) = w · z, for all infinite
sequences z. We say that the slope or the derivation of v at x ∈ C, S(x) 6= 1,
denoted v′(x), is the ratio 2|m|

2|w| , where |m| is the number of letters in the
word m. Note that this corresponds to the usual (right-)slope of the map
v : [0, 1)→ [0, 1) at the point S(x). We extend the definition of v′(x) at x = 1
by defining v′(1) := limx→1 v

′(x).
We consider the V -orbits of V y C. Given any non-empty finite word

c ∈ {0, 1}(N) we consider the set of all x ∈ C satisfying that x is eventually
periodic of period c:

x = y · c · c · · · = y · c∞,

for some y ∈ {0, 1}(N). We call this set the tail equivalence class of c and note
that this is a V -orbit. The subset Q2 ⊂ C is the tail equivalence class of the
word c = 0 of length one. A point x ∈ C is called rational if it belongs to
one tail equivalence class, i.e. it is eventually periodic. Observe that x ∈ C is
rational if and only if its projection in [0, 1] by S is rational in the usual sense.
We denote the set of rational points of C by R.

A theorem of Rubin implies the following proposition on the automorphism
group of V [43]; see [5, Section 3] for details.
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Proposition 1.1. — Consider V as a subgroup of Homeo(C), the group of
homeomorphisms of the Cantor space C. Let NH(C)(V ) be the normaliser sub-
group of V inside Homeo(C). We have that

NH(C)(V )→ Aut(V ), ϕ 7→ adϕ : v 7→ ϕvϕ−1

is an isomorphism.

We will freely identify Aut(V ) withNH(C)(V ).Note that the groupNH(C)(V )
maps V -orbits to V -orbits (for the action V y C) and, in particular, maps Q2
onto a V -orbit. However, the image of Q2 may be different from Q2, which
will make our study more technical. We will constantly use the following fact
(which is easy to prove).

If ϕ ∈ NH(C)(V ) and I is an sdi, then ϕ(I) is a finite union of sdi. See [13,
Lemma 1.3] for a proof. We end this section by a proposition on slopes, which
we prove using fixed points.

Proposition 1.2. — Let R ⊂ C be the subset of rational points. The following
assertions are true:

1. A point x ∈ C is in R if and only if there exists v ∈ V satisfying v(x) = x
and v′(x) 6= 1.

2. If ϕ ∈ NH(C)(V ), then ϕ(R) = R.
3. For any x ∈ R and ϕ ∈ NH(C)(V ), there exists some prime words
mx,mϕ(x) satisfying that x and ϕ(x) are in the tail equivalence class
of mx and mϕ(x), respectively. Moreover, if v ∈ V satisfies v(x) =
x, v′(x) 6= 1, then

log2((ϕvϕ−1)′(ϕ(x)))
|mϕ(x)|

= log2(v′(x))
|mx|

,

and log2(v′(x)) is a multiple of |mx|.

Proof. — Proof of (1).
Denote by S the set of x ∈ C for which there exists v ∈ V satisfying v(x) = x

and v′(x) 6= 1. Consider x ∈ R. There exists a non-empty word c ∈ {0, 1}(N)

and a finite word y, such that x = y · c∞, where c∞ denotes the infinite
concatenation of c with itself: c∞ = c · c · c · · · . Consider I := {y · z : z ∈
{0, 1}N}, which is an sdi and consider the sub-interval J := {y · c · z : z ∈
{0, 1}N}. Up to replacing y by y · c we can always assume that I is a proper
subset of C. Complete I into an sdp AI and J into an sdp AJ . Up to modifying
them we can assume that AI and AJ have the same number of sdi. Let v ∈ V
such that v is adapted to AI sending an sdi of AI onto an sdi of AJ and such
that v(I) = J. We necessarily have that v(y · z) = y · c · z, for all z ∈ {0, 1}N,
and, in particular, v(y · c∞) = y · c∞, that is, v(x) = x. Moreover, v has slope
2−n at x, where n is the number of letters in c. This proves that R is contained
in S.
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Conversely, consider x ∈ S and chose v ∈ V satisfying v(x) = x, v′(x) 6= 1.
Up to considering v−1 rather than v we can assume that v′(x) < 1. This implies
that there exists an sdi I containing x that is adapted to x and satisfying that
v(I) ⊂ I. If mI is the word associated to I, then we have that mI is a proper
prefix of mv(I), that is, mv(I) = mI · c for a certain non-trivial word c. Since
x ∈ I there exists z ∈ {0, 1}N satisfying x = mI · z and by definition of the
action of v on I, we have that

mI · z = v(mI · z) = mv(I) · z = mI · c · z.

This implies that x = mI · c∞ and, thus, x ∈ R.
Proof of (2).
Consider ϕ ∈ NH(C)(V ) and x ∈ R. There exists v ∈ V satisfying v(x) = x

and v′(x) 6= 1. Note that w := ϕvϕ−1 is in V by definition and that w(ϕ(x)) =
ϕ(x). If w′(ϕ(x)) = 1, then there exists an sdi J containing ϕ(x) on which w
acts like the identity. This would imply that v fixes points arbitrarily closed to
x but different from x, implying that v acts like the identity on a neighbourhood
of x and, thus, on an sdi contradicting that v′(x) 6= 1. Therefore, w′(ϕ(x)) 6= 1
and, thus, ϕ(x) ∈ R. We have proved that ϕ(R) ⊂ R, and considering ϕ−1, we
deduce that ϕ(R) = R.

Proof of (3).
Consider ϕ ∈ NH(C)(V ), x ∈ C and v ∈ V satisfying v(x) = x. We follow a

similar proof to the one given in [13, Proposition 1.5] and obtain that

w 7→ log2(w′(x))

provides an injective group morphism from Vx/V
′
x to Z, where Vx = {w ∈

V : w(x) = x}, and V ′x is its derived group. Therefore, there exists a unique
natural number kx (possibly equal to zero) satisfying that w 7→ log2(w′(x))
is an isomorphism `x from Vx/V

′
x onto kxZ. Note that by the proof of above

kx = 0, if and only if x is not a rational point, i.e. x /∈ R. Similarly, we have an
isomorphism `ϕ(x) from Vϕ(x)/V

′
ϕ(x) onto kϕ(x)Z. Note that adϕ : V → V, v 7→

ϕvϕ−1 sends Vx onto Vϕ(x) and V ′x onto V ′ϕ(x), and, thus, factorises into an
isomorphism adϕ : Vx/V ′x → Vϕ(x)/V

′
ϕ(x). We obtain that

f := `ϕ(x) · adϕ · `−1
x : kxZ→ kϕ(x)Z

is a group isomorphism. Note that if v(x) = x, then v′(x) < 1, if and only
if there exists an sdi I containing x satisfying that limn→∞ vn(y) = x, for
all y ∈ I. This characterisation shows that if v(x) = x and v′(x) < 1, then
adϕ(v)′(ϕ(x)) < 1. This implies that f(kxn) = kϕ(x)n, for all n ∈ Z. Therefore,
if v ∈ Vx and v̄ ∈ Vx/V ′x is its class, then

f ◦ `x(v̄) = f(log2(v′(x))) =
kϕ(x)

kx
· log2(v′(x)).
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Since

f ◦ `x(v̄) = `ϕ(x)( ¯adϕ(v)) = log2(adϕ(v)′(ϕ(x)))

we deduce that

kϕ(x) · log2(v′(x)) = kx · log2(adϕ(v)′(ϕ(x)), ∀v ∈ Vx, x ∈ C.

We conclude the proof by computing kx and kϕ(x) in terms of certain prime
words mx and mϕ(x) depending on x and ϕ(x). Assume that v ∈ V satisfies
vx = x and v′(x) < 1. There exists an sdi I containing x for which v is adapted,
that is, v(mI · z) = mv(I) · z, for all z ∈ {0, 1}N. Moreover, since v′(x) < 1 we
have that mv(I) = mI · a for a non-trivial word a. Since x ∈ R there exists a
prime word mx, such that x is in the tail equivalence class of mx. Therefore,
there exists z ∈ {0, 1}(N) satisfying x = mI · z ·m∞x since x ∈ I. We obtain
that

v(x) = mI · a · z ·m∞x = x = mI · z ·m∞x .

Hence, a · z ·m∞x = z ·m∞x . We deduce that a · z = z ·mp
x for a certain natural

number p ≥ 1. This implies that a = cp where c is a cyclic permutation of
the prime word mx. In particular, |a| = p · |mx|, where |a| is the number of
letters of the word a. This implies that log2(v′(x)) = |a| = p · |mx| ∈ |mx|Z.
Conversely, consider the sdi

J = {y ·mx · u : u ∈ {0, 1}N}

containing x = y ·m∞x . Note that y ·mx is non-trivial since mx is non-trivial,
and, thus, J is a proper subset of the Cantor space. Therefore, we can construct
w ∈ V satisfying that w(y ·mx ·u) = y ·mx ·mx ·u, for all u ∈ {0, 1}N. Note that
w(x) = x and log2(w′(x)) = |mx|. We obtain that the range of the morphism
w ∈ Vx → log2(w′(x)) ∈ Z is equal to |mx|Z. Therefore, kx = |mx|. Similarly,
since ϕ(R) = R we have that ϕ(x) ∈ R, and, thus, there exists a prime word
mϕ(x) satisfying that ϕ(x) belongs to the tail equivalence class of mϕ(x) and
that the constant kϕ(x) is equal to |mϕ(x)|. We obtain that

|mϕ(x)| · log2(v′(x)) = |mx| · log2(adϕ(v)′(ϕ(x))), ∀v ∈ Vx, x ∈ R.

This finishes the proof of the proposition. �

Remark 1.3. — Note that two prime words may define the same tail equiv-
alence class, e.g. 01 and 10. In fact, two prime words c, d define the same tail
equivalence class, if and only if d is a cyclic permutation of c, i.e. if d = d1 · · · dn
with di ∈ {0, 1}, 1 ≤ i ≤ n, then there exists 0 ≤ k ≤ n − 1, such that
c = dk+1 · · · dn · d1 · · · dk.

From the proof of the previous proposition, it is easy to deduce a more precise
characterisation of pairs (v, x) ∈ V × C satisfying v(x) = x and v′(x) 6= 1.
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Assume v ∈ V and x ∈ C, such that v(x) = x and v′(x) < 1. Then, there exists
a prime word c, a word a and a natural number n ≥ 1 satisfying:
• x = a · c∞;
• if Ia is the sdi {a · z : z ∈ {0, 1}N}, then Ia is adapted to x and
v(a · z) = a · cn · z for all z ∈ {0, 1}N.

Note that c corresponds to a cyclic permutation of the word mx of the propo-
sition.

Instead of considering derivations one can work with germs of functions,
which is an approach adopted by Brin [8, Section 3]; see also [6]. We can recover
some of the proof of the last proposition from this analysis by considering the
groupoid of germs G(V ) of V . For objects C and morphisms from x to y, the
groupoid G(V ) has the equivalence classes of pairs (U, f), where U ⊂ C is a
neighbourhood of x, and f : U → C is the restriction of an element of V sending
x to y under the equivalence relation ∼ defined as (U, f) ∼ (U ′, f ′), if U,U ′
are neighbourhoods of x, and f, f ′ are both restricted to the same function on
U ∩U ′. The automorphism group of the object x ∈ C inside the groupoid G(V )
is morally the quotient group Vx/V ′x.

1.2. Discrete loop groups and the description of fraction groups. — Let F be
the category of binary forests with the set of trees T. Write I for the trivial tree
and Y for the tree with two leaves. Let Gr be the monoidal category of groups
with monoidal structure given by direct sums. A functor Φ : F → Gr provides
a limit group K, a Jones action V y K and, thus, a semi-direct product KoV .
We are interested in classifying the class of such semi-direct products K o V .
Recall that K o V admits a nice description as a fraction group, and, thus,
we may refer to K o V as a fraction group. We limit our study to covariant
monoidal functors Φ : F → Gr that are in one-to-one correspondence with
triples (Γ, α0, α1), where Γ is a group, and αi : Γ→ Γ, i = 0, 1 endomorphisms.
The correspondence is given by Φ 7→ (Φ(1),Φ(Y )), where 1 is the object 1 of
F and Y the tree with two leaves. In a previous article, we studied the class
of fraction groups arising from triples (Γ, α0, α1), where α1 = εΓ is the trivial
endomorphism, i.e. α1(g) = eΓ for all g ∈ Γ, where eΓ is the neutral element of
Γ. In this article, we are interested in the case where both α0, α1 are non-trivial
and we will restrict ourselves to the case where α0, α1 are automorphisms.
1.2.1. General description of the limit group. — Fix a triple (Γ, α0, α1) with
Γ a group and α0, α1 some endomorphisms of Γ. Let Φ : F → Gr be the asso-
ciated monoidal covariant functor satisfying Φ(1) = Γ and Φ(Y ) = (α0, α1) ∈
Hom(Γ,Γ⊕ Γ). From this data, we construct the directed system of groups

(Γt, ιs,t : s, t ∈ T, s ≥ t)
defined as follows. We define

Γt = {(g, t) : g = (g`)`∈Leaf(t) ∈ ΓLeaf(t)}
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a copy of the group of maps from the leaves Leaf(t) of the tree t to the group
Γ for t ∈ T. We may drop the t and write g, gt or (g`)`∈Leaf(t) for (g, t) if the
context is clear. We define the maps such as:
ιft,t : Γt → Γft, (g, t) 7→ (Φ(f)(g), f ◦ t), t ∈ T, f ∈ Hom(F), g ∈ ΓLeaf(t),

where f is a forest composable with t, i.e. the number of roots of f is equal to
the number of leaves of t. We obtain a limit group K := lim−→t∈T Γt and a Jones
action π : V y K.

We now describe the elements ofK using equivalence classes of functions. To
do that it is convenient to define αm for a finite wordm = m1 · · ·mk ∈ {0, 1}(N),
which is

αm := αmk ◦ · · ·αm1 .

Note the inversion of order between the letters of the word m and the order of
composition of the endomorphisms. Elements of Γt for t ∈ T can be identified
with certain maps from C to Γ. Indeed, consider a tree t ∈ T with associated
sdp (I`t : ` ∈ Leaf(t)). Define

κt : Γt → {C→ Γ}, κt(g)(x) = g` if x ∈ I`t .
Observe that κt is a group isomorphism form Γt onto the maps f : C → Γ
that are constant on each I`t , ` ∈ Leaf(t). Consider another tree s larger than t.
There exists a forest f satisfying s = f ◦t. In the composition f ◦t, we attach to
each leaf ` of t a tree f` so that f = (f`)`∈Leaf(t) is the horizontal concatenation
of the trees f`, ` ∈ Leaf(t). Given ` ∈ Leaf(t) and p, a leaf of the tree f`, we
write mp = e1 · · · ek, the finite sequence of 0, 1 (possibly empty) corresponding
to the (geodesic) path from the root of f` to the leaf p and where ei is 0 (or
1), if the ith edge starting from the root is a left edge (or a right edge). If Ip
is the sdi corresponding to the leaf p ∈ Leaf(f`), then observe that
κf◦t(Φ(f)(gt))(x) = αmp(g`)

= αek ◦ · · · ◦ αe1(g`), ∀x ∈ Ip, gt = (g`)`∈Leaf(t) ∈ Γt.
Hence, if g = gt ∈ Γt, then κf◦t(Φ(f)(gt)) has its support contained in the
support of κt(gt) and takes values of the form αm(g`) with ` ∈ Leaf(t) and
m some finite words in 0, 1. Given g ∈ K we can find a large enough tree t
such that g is the equivalence class of some (gt, t) ∈ Γt. If (gf◦t, f ◦ t) ∈ Γf◦t is
another representative of the class of g, then by definition of the direct system
we have Φ(f)(gt) = gf◦t. The element g is then described by a family of
continuous maps (κs(gs), s ≥ t) from C to Γ all taking finitely many values.
1.2.2. Support. — The description of elements of K as equivalence classes of
maps suggest a notion of support. Consider g ∈ K. Choose a tree t large enough
such that g admits a representative (gt, t) ∈ Γt. Denote by supp(κt(gt)) the
support of the map κt(gt) : C→ Γ. Choose a tree s such that s ≥ t. There exists
a forest f composable with t, such that s = f ◦ t and (gs, s) := (Φ(f)(gt), f ◦ t)
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is another representative of g. By definition of Φ(f) and the maps κt, κs we
obtain that supp(κt(gt)) ⊃ supp(κs(gs)). We define the support of g as the
intersection:

supp(g) :=
⋂

s∈T: s≥t
supp(κs(gs)).

Note that this intersection does not depend on the choice of the representative
(gt, t) of g. In particular, if α0, α1 are injective (this is the main case of our
study), then supp(g) = supp(κt(gt)) for any choice of representative (gt, t) of
g.
1.2.3. General description of the Jones action. — We now briefly describe the
Jones action

π : V → Aut(K), v 7→ πv.

We will later provide a more practical description of this action in the case
where both α0 and α1 are automorphisms. However, it is useful to present the
general case since we will be using it in the proof of the next proposition and
in Section 2.5. Consider g ∈ K and v ∈ V . By definition of the group V there
exists two ordered sdp I := (Ik : 1 ≤ k ≤ n), J := (Jk : 1 ≤ k ≤ n) and a
permutation σ satisfying that:

v(mIk · x) = mJσ(k) · x

for all 1 ≤ k ≤ n and x ∈ {0, 1}N. Hence, v sends the kth sdi of I to the
σ(k)th sdi of J , for all 1 ≤ k ≤ n. Let t, s be the trees associated to the
sdp I, J , respectively. Since K is the direct limit of the directed system of
groups (Γr, r ∈ T) one can find a tree r and a representative (gr, r) ∈ Γr of g.
Here, gr : Leaf(r) → Γ is a map from the set of leaves of r to the group Γ. If
r 6= t, then we can always find some forests p, q satisfying pt = qr. We have
that (Φ(q)(gr), qr) is a representative of g, and v is described by the pair of
trees (pt, ps). Therefore, we can always assume that r = t up to choosing large
enough trees. The element v sends an sdi of I to an sdi of J , which defines a
bijection b : Leaf(t)→ Leaf(s). Consider the map gr ◦b−1 : Leaf(s)→ Γ, which
is an element of Γs. The Jones action is described by the following formula:

πv(g) := [(gr ◦ b−1, s)],

where [(gr ◦ b−1, s)] is the class of (gr ◦ b−1, s) inside the directed limit group
K. The Jones action is somehow induced by the spatial action V y C. Note
that the pair of endomorphisms (α0, α1) only appeared when we considered the
representative (Φ(q)(gr), qr) of g. They will become more apparent when we
describe the Jones action in the special case where α0, α1 are automorphisms.

We now describe a key class of examples of Jones action and fraction groups.
Consider a group Γ and the pair of morphisms (α0, α1) = (idΓ, idΓ). This
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defines a covariant monoidal functor Φ : F → Gr satisfying that
Φ(1) = Γ and Φ(Y ) : Γ→ Γ⊕ Γ, g 7→ (g, g).

Let KoV be the associated fraction group. If g ∈ K, then there exists a large
enough tree t ∈ T and an element gt = (g`)`∈Leaf(t) in Γt that is a representative
of g. The tree t provides an sdp (I`t : ` ∈ Leaf(t)) of C. We associate to gt the
map

κt(gt) : C→ Γ, x 7→ g` if x ∈ I`t .

Observe that κt(gt) does not depend on the choice of t since α0 = α1 = idΓ,
i.e. if gs ∈ Γs with s ∈ T is another representative of g, then κs(gs) = κt(gt).
We find that K is isomorphic to the group of all maps f : C→ Γ satisfying that
there exists an sdp (I1, · · · , In), so that f is constant on each Ik, 1 ≤ k ≤ n.
Under this identification, the Jones action π : V y K is then the classical
spatial action induced by V y C:

πv(f)(x) := f(v−1x), v ∈ V, f ∈ K,x ∈ C.

We will qualify these Jones actions and fractions groups as untwisted.
Note that if we were working in the case of the previous article [13]: that is Γ

is a group, α0 is any endomorphism and α1 = εΓ is trivial, then by refining the
tree t into f ◦ t we obtain that the support of af◦t is getting smaller, obtaining
at the limit a discrete support contained in {r`t : ` ∈ Leaf(t)}, where r`t is the
first point of the sdi I`t , ` ∈ Leaf(t). The case α0 = α1 = idΓ provides that K
corresponds to continuous functions with a finite range supported on regions
(clopen) rather than on a finite union of points of the space C. It is better
adapted to build field theories. Moreover, the group K is reminiscent of the
loop group of a Lie group (the group of smooth maps from the circle to a fixed
Lie group). Recall that loop groups were used to construct conformal field
theories by Wassermann [47].

Before ending this general presentation we explain why we can always restrict
our analysis to triples (Γ, α0, α1) satisfying that g 7→ (α0(g), α1(g)) is injective.
The argument is due to Tanushevski [45, Corollary 3.11]. We provide a short
proof for the convenience of the reader.

Proposition 1.4. — Consider a triple (Γ, α0, α1) with Γ a group and α0, α1 ∈
End(Γ). There exists another triple (Γ, α0, α1) such that Γ is a group, α0, α1 ∈
End(Γ), the morphism g ∈ Γ 7→ (α0(g), α1(g)) is injective and satisfying that
the fraction groups associated to (Γ, α0, α1) and (Γ, α0, α1) are isomorphic.

Proof. — Fix (Γ, α0, α1) as above and consider its associated monoidal functor
Φ : F → Gr and Jones action π : V y K. For any tree t ∈ T consider the
kernel of Φ(t), which is a normal subgroup of Γ. Let N be the union of the
kernels: N := ∪t∈T ker(Φ(t)). Note that if t ≤ s, then ker(Φ(t)) ⊂ ker(Φ(s)),
for t, s ∈ T. This easily implies that N is a normal subgroup of Γ and is,
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moreover, closed under taking α0 and α1. This implies that α0, α1 factorise
into endomorphisms α0, α1 of Γ := Γ/N . Let π : V y K be the Jones action
associated to the triple (Γ, α0, α1), where K is the direct limit of the directed
system of groups (Γt := (Γ/N)t : t ∈ T). The quotient map q : Γ→ Γ induces
a family of quotient maps Γt → Γt providing a group morphism K → K. It is
not hard to prove that this later morphism is a V -equivariant isomorphism for
the two Jones actions. �

Remark 1.5. — This last proposition tells us that, if we consider fraction
groups obtained from monoidal functors Φ : F → Gr, then we can always
consider that Φ(Y ) : Γ → Γ ⊕ Γ is injective (which is equivalent to saying in
the monoidal context that Φ(f) is injective for all forests f). Here, the fact
that Φ is monoidal is crucial. It is not excluded that interesting examples
of fraction groups will only appear from non-monoidal functors Φ : F → Gr
satisfying that Φ(f) is non-injective for certain forests f .

1.2.4. Restriction to pairs of automorphisms. — In order to obtain an easy
description of the fraction group K o V in terms of maps and spatial action of
V , we restrict the choice of triples (Γ, α0, α1) to the one where both α0 and α1
are automorphisms. Hence, from now on, α0, α1 are automorphisms. We
are going to describe G in a similar way as done above as a certain subgroup of
a twisted unrestricted permutational wreath product. We start by introducing
some terminology and notations:

Definition 1.6 (Discrete loop group). — Consider a group Γ and a map f :
C → Γ. We say that f is locally constant if there exists an sdp (I1, · · · , In) of
C, such that f restricted to Ij is constant for any 1 ≤ j ≤ n. The collection
of all locally constant maps from C to Γ forms a group LΓ with pointwise
multiplication, which we call the discrete loop group of Γ.

Remark 1.7. — Consider a group Γ equipped with the discrete topology.
We have that the discrete loop group of Γ is equal to the group C(C,Γ) of
continuous functions from C to Γ.

Proof. — Indeed, consider a ∈ LΓ. If g ∈ Γ, then its inverse image by a is either
empty or equal to a finite union of sdi, which is open. Therefore, a : C → Γ
is continuous implying that LΓ ⊂ C(C,Γ). Conversely, consider f ∈ C(C,Γ).
Let x ∈ C and g := f(x). Since f is continuous, we have that Ux := f−1({g})
is an open neighbourhood of x and, thus, contains an sdi Ix so that x ∈ Ix.
We obtain an open covering (Ix : x ∈ C), and by compactness there exists a
finite subcovering (Ix : x ∈ X), where X ⊂ C is finite. For each x ∈ X define
Jx := Ix \ (∪y∈X,y 6=xIy) and note that (Jx : x ∈ X) is an sdp of C satisfying
that f is constant on each Jx, x ∈ X. Therefore, f ∈ LΓ, and C(C,Γ) ⊂ LΓ. �
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By definition LΓ is a subgroup of the product
∏

C Γ. Since Q2 ⊂ C is a dense
subset we have that all sdi have a non-trivial intersection with Q2. This implies
that the restriction map r :

∏
C Γ→

∏
Q2

Γ is injective when restricted to LΓ.
It will be sometimes more convenient to consider r(LΓ) ⊂

∏
Q2

Γ rather than
LΓ ⊂

∏
C Γ. We will often identify LΓ with r(LΓ).

Notation 1.8. — Recall that if m = l1 · · · ln ∈ {0, 1}(N) is a finite word in
0, 1 of length n, then we write αm := αln ◦ · · · ◦ αl1 (note the inversion of the
order) as the composed automorphism.

Consider an sdi I and its associated word mI , i.e. I = {mI · z : z ∈
{0, 1}N}. We write αI := αmI . For example, if I corresponds to [0, 1/2) and
J = [1/4, 1/2), then αI = α0 and αJ = α1 ◦ α0.

If t is a tree, then any of its leaves ` defines an sdi I`t . We write α` for the
automorphism αI`t , if the context is clear.

Consider now v ∈ V . There exists two (not necessarily ordered) sdp (Ik :
1 ≤ k ≤ n) and (Jk : 1 ≤ k ≤ n), such that v is adapted to the first satisfying
v(Ik) = Jk, for all 1 ≤ k ≤ n. If x ∈ Ik for some 1 ≤ k ≤ n, we write

τv,x := α−1
v(Ik)αIk = α−1

Jk
αIk .

Observe that the definition of τv,x does not depend on the choice of the sdp
and defines a map

τv,· : C→ Aut(Γ), x 7→ τv,x

that is locally constant.

We are now ready to provide an explicit description of the Jones action.

Proposition 1.9. — Let (Γ, α0, α1) be a triple such that Γ is a group and
α0, α1 ∈ Aut(Γ). Consider the associated directed system of groups (Γt : t ∈ T),
Jones action V y K and fraction group K o V . For any tree t ∈ T, we have
a morphism of groups

κt : Γt → LΓ, g = (g`)`∈Leaf(t) 7→ κt(g) : x ∈ C 7→ α−1
` (g`) if x ∈ I`t .

This defines a directed system of morphisms whose limit κ : K → LΓ is an
isomorphism.

The Jones action V y K is conjugated by κ to the following action on LΓ:
π : V → Aut(LΓ), πv(a)(vx) = τv,x(a(x)), v ∈ V, a ∈ LΓ, x ∈ C.

We identify the Jones action V y K with π : V y LΓ and fraction group
K o V with the semi-direct product LΓ o V obtained from π.

Proof. — Consider (Γ, α0, α1) as in the proposition. It is clear that the formula
κt for t ∈ T defines a group morphism from Γt to

∏
C Γ. If g ∈ Γt, then κt(g)

is constant on each sdi appearing in the sdp associated to t. Therefore, κt(g)
is locally constant and, thus, belongs to LΓ. If κt(g) = eLΓ (where eLΓ is the
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neutral element of LΓ), then α−1
` (g`) = eΓ, for all ` ∈ Leaf(t), implying that

g` = eΓ for all leaves ` ∈ Leaf(t), and, thus, g = eΓt . Hence, (κt : t ∈ T) is a
family of injective group morphisms valued in LΓ.

We now show that the family (κt : t ∈ T) defines a morphism from K :=
lim−→t∈T Γt to LΓ. By definition of the directed system of the groups Γt, t ∈ T

it is sufficient to check that for all t ∈ T, all forests f ∈ Hom(F) composable
with t and all g = (g`)`∈Leaf(t) ∈ Γt, we have that

κt(g) = κf◦t(Φ(f)(g)),

where Φ : F → Gr is the functor induced by the triple (Γ, α0, α1). If t has n
leaves, then the forest f has n roots and is, thus, the horizontal concatenation of
n trees. Denote these trees by f1, · · · , fn when ordered from left to right. If ` is
the kth leaf of t, then it is lined up with fk in the composition f ◦t. In that case,
write f` := fk, so that f` is attached to the leaf ` of t inside the composition
f ◦ t. Choose one leaf u of the tree f` and write pu = b1 · · · bk ∈ {0, 1}(N),
the path from the root of f` to the leaf u. Observe that Φ(f)(g) = h with
h : Leaf(f) → Γ satisfying that hu = αbk ◦ · · · ◦ αb1(g`). If Iuf◦t is the sdi
corresponding the leaf u of f ◦ t, then we obtain that

κf◦t(Φ(f)(g))(x) = α−1
u (hu) = α−1

u (αbk ◦ · · · ◦ αb1(g`)), ∀x ∈ Iuf◦t.

By definition, αu = αbk ◦· · ·◦αb1◦α` implying that κf◦t(Φ(f)(g))(x) = α−1
` (g`),

for all x ∈ Iuf◦t. Note that Iuf◦t is a sub-interval of I`t implying that κt(g) and
κf◦t(Φ(f)(g)) coincide on Iuf◦t. We have proved that

κf◦t ◦ Φ(f) = κt for all t ∈ T, f ∈ Hom(F).

Therefore, we can define the direct limit of the family of morphism (κt : t ∈ T),
giving a group morphism

κ : K → LΓ.

Moreover, κ is injective since each of κt, t ∈ T, and Φ(f), f ∈ Hom(F) are.
Consider a ∈ LΓ. There exits an sdp (I1, · · · , In), such that a is constant

on each Ik, 1 ≤ k ≤ n. Let t be the tree associated to this sdp. Note that the
range of κt is equal to all b ∈ LΓ that are constant on each Ik, 1 ≤ k ≤ n.
In particular, we obtain that a belongs to the range of κt, and, thus, κ is
surjective. We have proved that κ is an isomorphism from K to LΓ.

Consider the Jones action π : V y K and g ∈ K, v ∈ V . There exists two
sdp (I1, · · · , In) and (J1, · · · , Jn), such that v is adapted to the first and sends
Ik onto Jk, for all 1 ≤ k ≤ n. There exists a tree t ∈ T, such that g is the
equivalence class of an element of Γt. Up to refining t and the sdp of above
we can assume that the sdp of t is equal to (I1, · · · , In). Write `k as the leaf
of t associated to the sdi Ik, for 1 ≤ k ≤ n. Similarly, consider the tree s ∈ T
associated to the sdp (J1, · · · , Jn) and denote by rk the leaf of s associated
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to Jk, for 1 ≤ k ≤ n. Observe that

κ(g)(x) = α−1
Ik

(g`k), ∀x ∈ Ik, 1 ≤ k ≤ n,

where (g`k : 1 ≤ k ≤ n) is the representative of g in Γt. By definition of the
Jones action we have that the automorphism πv(g) has for a representative
h = (hrk : 1 ≤ k ≤ n) ∈ Γs, where hrk = g`k , for all 1 ≤ k ≤ n. Therefore,

κ[πv(g)](y) = α−1
Jk

(hrk) = α−1
Jk

(g`k), ∀y ∈ Jk, 1 ≤ k ≤ n.

In particular, if we fix 1 ≤ k ≤ n and x ∈ Ik, we have that vx ∈ Jk = v(Ik)
and, thus:

κ[πv(g)](vx) = α−1
Jk

(g`k) = α−1
Jk
◦ αIk(κ(g)(x)) = α−1

v(Ik) ◦ αIk(κ(g)(x)).

This implies that κ[πv(g)](vx) = τv,x(κ(g)(x)), for all g ∈ K, v ∈ V, x ∈ C. This
finishes the proof of the proposition. �

Note that the Jones action π : V y LΓ extends in the obvious way into an
action on

∏
C Γ giving a twisted permutational wreath product

∏
C Γ o V .

Remark 1.10. — Consider a non-trivial group Γ and the map

h : ⊕Q2Γ→
∏
Q2

Γ, h(a)(x) =
∏
y≤x

a(y),

where
∏
y≤x a(y) := a(x1) · · · a(xn) when 0 ≤ x1 < · · · < xn ≤ x and

supp(a)∩[0, y] ⊂ {x1, · · · , xn}. This is a well-defined map since all the products
considered are finite. Moreover, one can show that h is a group isomorphism
from ⊕Q2Γ onto LΓ. However, this morphism is not compatible with the ac-
tion V y Q2. We will see in Section 2.5 that ⊕Q2Γo V and LΓo V are never
isomorphic, so the latter isomorphism is not V -equivariant whatever the Jones’
actions are.

1.3. Previous results on fraction groups. — We will refer to and use the fol-
lowing results proved in [13].

Proposition 1.11 ([13, Proposition 2.4]). — Let Φ : F → Gr be a covariant
monoidal functor with the associated Jones action V y K and semi-direct
product G := K o V .

The subgroup K is the unique maximal normal subgroup satisfying the fol-
lowing decomposability property:
• K can be decomposed as a direct sum of two groups K = A⊕B.
• K = NG(A) = NG(B), where NG(A) := {g ∈ G : gAg−1 = A}.

In particular, if G := K o V and G̃ := K̃ o V are two fraction groups con-
structed from covariant monoidal functors from F to Gr, then any isomorphism
θ : G→ G̃ satisfies θ(K) = K̃.
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The following result is a direct consequence of Propositions 3.3 and 3.5 of
the article [13]. The proposition cited first shows that we can always assume
that α is an automorphism. The second one gives the explicit wreath product
description of the fraction group.

Proposition 1.12. — Consider a group Γ and an endomorphism α ∈ End(Γ).
Let G = K o V be the fraction group associated to the triple (Γ, α, εΓ), where
εΓ : g ∈ Γ 7→ eΓ denotes the trivial endomorphism.

There exists a group Γ̃ and an automorphism α̃ ∈ Aut(Γ̃) satisfying that
G is isomorphic via a V -equivariant map to the fraction group G̃ = K̃ o V
associated to the triple (Γ̃, α̃, εΓ̃). Moreover, Γ̃ is isomorphic to the restricted
twisted permutational wreath product ⊕Q2 Γ̃ o V , where the action V y ⊕Q2 Γ̃
is the following:

(v · a)(vx) := α̃log2(v′(x))(v(x)), v ∈ V, a ∈ ⊕Q2 Γ̃, x ∈ Q2.

Proposition 1.13 ([13, Proposition 4.7]). — Let Λ be an abelian group and
consider the set of co-cycles:

Coc = Coc(V y
∏
Q2

Λ) := {c : V →
∏
Q2

Λ : cvw = cv · cvw, ∀v, w ∈ V }.

This set is an abelian group under the pointwise product

(c · d)v(x) := cv(x) · dv(x), c, d ∈ Coc, v ∈ V, x ∈ Q2.

For any ζ ∈ Λ, define

s(ζ)v(x) := ζ log2(v′(v−1x)), v ∈ V, x ∈ Q2,

which is a co-cycle. For any c ∈ Coc, there exists a pair (ζ, f) ∈ Λ ×
∏

Q2
Λ

satisfying that cv = s(ζv) · f(fv)−1, v ∈ V . Moreover, the pair (ζ, f) is unique
up to multiplying f by a constant map.

2. Isomorphic fraction groups

The aim of this section is to provide a partial classification of the class of frac-
tion groups/semi-direct products LΓ o V constructed from triples (Γ, α0, α1),
where Γ is any group, and α0, α1 are automorphisms of Γ.

2.1. Obvious isomorphisms between fraction groups. — We start by construct-
ing obvious isomorphisms between fraction groups.

Lemma 2.1. — Consider two groups Γ, Γ̃, an isomorphism β ∈ Isom(Γ, Γ̃) and
two automorphisms α0, α1 ∈ Aut(Γ). Define the automorphisms α̃i := βαiβ

−1

for i = 0, 1 of the group Γ̃. We consider the two fraction groups LΓ o V and
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LΓ̃ o V associated to the triples (Γ, α0, α1) and (Γ̃, α̃0, α̃1), respectively. The
following formula defines an isomorphism of groups:

θ : LΓ o V → LΓ̃ o V, θ(av) = κ(a)v, a ∈ LΓ, v ∈ V,

where κ ∈ Isom(LΓ, LΓ̃) is defined as

κ(a)(x) := β(a(x)), a ∈ LΓ, x ∈ C.

Proof. — Consider β ∈ Isom(Γ, Γ̃) and define the product of isomorphisms

κ :=
∏
C

β :
∏
C

Γ→
∏
C

Γ̃, κ(a)(x) := β(a(x)), a ∈
∏
C

Γ, x ∈ C.

This is an isomorphism that maps LΓ onto LΓ̃ and, thus, restricted to an
isomorphism κ ∈ Isom(LΓ, LΓ̃). Let us check that κ is V -equivariant for the
Jones actions π : V y LΓ and π̃ : V y LΓ̃. For any v ∈ V , we consider
the locally constant maps τv,· : C → Aut(Γ) and τ̃v,· : C → Aut(Γ̃) defined in
Notation 1.8 that are associated to (α0, α1) and (α̃0, α̃1), respectively. Observe
that if p = p1 · · · pn is a finite word, and αp := αpn ◦ · · · ◦ αp1 is the associated
automorphism, then β ◦ αp = α̃p ◦ β. In particular, β ◦ τv,x = τ̃v,x ◦ β for all
v ∈ V, x ∈ C. Observe that

κ(πv(a))(vx) = β(πv(a)(vx)) = β(τv,x(a(x))) = τ̃v,x(β(a(x))) = π̃v(κ(a))(x),

for all v ∈ V, x ∈ C, a ∈ LΓ. Since κ is V -equivariant it extends into an
isomorphism from LΓ o V onto LΓ̃ o V via the formula av 7→ κ(a)v for a ∈
LΓ, v ∈ V . �

Lemma 2.2. — Consider a group Γ, some elements hi ∈ Γ and automorphisms
αi ∈ Aut(Γ) for i = 0, 1. Put α̃i := ad(hi) ◦ αi, i = 0, 1 and consider the
two fraction groups G and G̃ with associated Jones actions π : V y LΓ and
π̃ : V y LΓ that are constructed from the triples (Γ, α0, α1) and (Γ, α̃0, α̃1),
respectively. These two fraction groups are isomorphic.

Proof. — For any n ≥ 1 and any finite sequence q = q1 · · · qn ∈ {0, 1}n, we
define

hαq := hqn · αqn(hqn−1) · αqn−1qn(hqn−2) · · ·αq2···qn(hq1).

Recall that we adopted the convention:

αp1···pk = αpk ◦ · · · ◦ αp1 for k ≥ 1, p1, · · · , pk ∈ {0, 1}.

Observe that

α̃q = ad(hαq ) ◦ αq.

Moreover, if q,m are finite words, then

hαq·m = hαm · αm(hαq ).
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For any v ∈ V and x ∈ C, consider an sdi I containing x and adapted to v.
Put

cv(vx) := α−1
v(I)((h

α
mv(I)

)−1hαmI ),

wheremI ∈ {0, 1}(N) is the word associated to I. This formula does not depend
on the choice of I, and, thus, cv is a well-defined map from C to Γ. Note that if
an sdi I is adapted to v, then the map x 7→ cv(vx) is constant on I. Therefore,
cv is in LΓ. Moreover, the map c : V → LΓ, v 7→ cv satisfies the co-cycle
identity:

cvc
v
w = cvw for all v, w ∈ V,

where cvw(x) := cw(v−1x), x ∈ C. A direct computation shows that the map

θ : G̃→ G, θ(av) = a · cv · v, a ∈ LΓ, v ∈ V
defines a group isomorphism with inverse

bw 7→ b · c−1
w · w, b ∈ LΓ, w ∈ V.

�

Lemma 2.3. — Consider a group Γ and a pair of automorphisms (α0, α1)
of Γ. Let G, G̃ be the fraction groups associated to the triples (Γ, α0, α1) and
(Γ, α1, α0), respectively. These two fraction groups are isomorphic.

Proof. — Consider the permutation σ of {0, 1} of order 2 and define the map
ϕ : C → C, such that ϕ(x)(i) = σ(x(i)), for x ∈ {0, 1}N and i ∈ N. This is a
homeomorphism of C that normalises V inside Homeo(C). Define the map

θ : G→ G̃, θ(av) := (a ◦ ϕ−1) · adϕ(v), a ∈ LΓ, v ∈ V,

where adϕ(v) := ϕvϕ−1. One can check that θ is an isomorphism of groups. �

From these obvious isomorphisms, we obtain the following results:

Proposition 2.4. — Consider two groups Γ, Γ̃ together with two pairs of auto-
morphisms (α0, α1) ∈ Aut(Γ)2, (α̃0, α̃1) ∈ Aut(Γ̃)2 and consider the associated
fraction groups G := LΓ o V, G̃ := LΓ̃ o V , respectively.

If there exists an isomorphism β ∈ Isom(Γ, Γ̃), a permutation σ of {0, 1}
and two elements hi ∈ Γ̃, i = 0, 1 satisfying

α̃σ(i) = ad(hi) ◦ βαiβ−1 for i = 0, 1,

then G is isomorphic to G̃.

Remark 2.5. — It is tempting to believe that Proposition 2.4 provides a nec-
essary condition for having two fraction groups isomorphic. So far, we have
been unable to prove whether or not this is the case. The existence of exotic
ϕ ∈ NH(C)(V ) not sending Q2 onto itself or onto the other copy of the dyadic
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rationals inside C may imply that there exists some exotic isomorphisms be-
tween fraction groups not fulfilling the sufficient condition of the proposition.
For instance, consider a group Γ, a pair of its automorphisms (α0, α1) and
a certain exotic homeomorphism ϕ ∈ NH(C)(V ). Consider some finite words
p, q ∈ {0, 1}(N) with associated automorphisms (αp, αq). Let G, G̃ be the frac-
tion groups associated to (Γ, α0, α1) and (Γ, αp, αq), respectively. Could we
have that the formula

av 7→ aϕ. adϕ(v), a ∈ LΓ, v ∈ V

defines an isomorphism between G and G̃ even though we are not fulfilling the
assumption of the last proposition?

2.2. Morphisms into centers. — In this section, we consider morphisms from
a fraction group to the center of another fraction group. We show that we
can multiply such a morphism together with an isomorphism and obtain a
new isomorphism. We will use this fact in the next section to decompose
isomorphisms between fraction groups.

Throughout this section, we consider two groups Γ, Γ̃, two pairs of automor-
phisms (α0, α1) ∈ Aut(Γ)2, (α̃0, α̃1) ∈ Aut(Γ̃)2, the associated Jones actions
π : V y LΓ, π̃ : V y LΓ̃ and the associated fraction groups G := LΓoV, G̃ :=
LΓ̃ o V . As before, we write τ : V × C → Aut(Γ), (v, x) 7→ τv,x for the map
satisfying

πv(a(vx)) = τv,x(a(x)), v ∈ V, x ∈ C, a ∈ LΓ

of Proposition 1.9 and similarly we use the symbol τ̃ for describing π̃. We
introduce some notations and terminologies that will be used in this section
and in the proof of Theorem 2.8.

Let I be the set of all finite unions of sdi. If I ∈ I, then we write Ic := C \ I
for the complement of I inside C. Recall that if ϕ ∈ NH(C)(V ) and I ∈ I, then
ϕ(I) ∈ I. If I ∈ I and g ∈ Γ, then we write gI for the function supported in
I that is constant in I equal to g. If I ∈ I and H ⊂ Γ is a subgroup, then we
consider the subgroups of LΓ:

LIH = LI(H) := {a ∈ LH : supp(a) ⊂ I} and
DIH = DI(H) := {gI : g ∈ H}

and the subgroup of Γ:

Hα := {g ∈ H : g = α0(g) = α1(g)}.

We say that an element of Γα is α-invariant. If Λ is a group, then we write
eΛ for its neutral element. We write Z(Γ) for the center of Γ and say that
an element of Z(Γ) is central. We use similar notations and terminologies for
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subgroups of Γ̃ and LΓ̃. If I ∈ I, we write

StabV (I) := {v ∈ V : v(I) = I}

for the stabiliser subgroup of I inside V and

FixV (I) := {v ∈ V : v(x) = x, ∀x ∈ I}.

Observe that StabV (I) = StabV (Ic) and StabV (I) is the subgroup of V gen-
erated by FixV (I) and FixV (Ic). The next lemma describes certain centraliser
subgroups.

Lemma 2.6. — For all I ∈ I, we have:

{a ∈ LΓ : av = va, ∀v ∈ StabV (I)} = DI(Γα) ·DIc(Γα) and
{a ∈ LΓ : av = va,∀v ∈ FixV (I)} = LIΓ ·DIc(Γα).

Moreover, the center Z(G) of G is equal to DC(Z(Γ)α): the subgroup of constant
maps a : C→ Z(Γ)α.

Proof. — Fix I ∈ I. Note that if the second equality is true for I and Ic, then

{a ∈ LΓ : av = va,∀v ∈ FixV (I) ∪ FixV (Ic)} = DI(Γα) ·DIc(Γα).

Since StabV (I) is generated by FixV (I) and FixV (Ic) we then obtain the first
equality. It is, thus, sufficient to prove the second equality.

Consider a ∈ LIΓ ·DIc(Γα) and v ∈ FixV (I). There exists b ∈ LIΓ, g ∈ Γα,
such that a = b·gIc . Observe that πv(gIc)(vx) = τv,x(gIc(x)) for x ∈ C. If x ∈ I,
then πv(gIc)(vx) = τv,x(eΓ) = eΓ. If x ∈ Ic, then πv(gIc)(vx) = τv,x(g) = g
since τv,x is in the group generated by α0, α1 and g is α-invariant. We deduce
that gIc commutes with v. Now, since v ∈ FixV (I) it acts like the identity on
the open set I, implying that τv,x = idΓ, for all x ∈ I. Therefore, if x ∈ I,
then πv(b)(x) = πv(b)(vx) = τv,x(b(x)) = b(x). If x /∈ I, then πv(b)(vx) =
τv,x(eΓ) = eΓ since b is supported in I. We deduce that b commutes with v
and, thus,

{a ∈ LΓ : av = va,∀v ∈ FixV (I)} ⊃ LIΓ ·DIc(Γα).

Conversely, consider a, which commutes with all v ∈ FixV (I). If I = C, then
a trivially belongs to LCΓ = LΓ, and we are done. Hence, assume that I is
strictly contained inside C. Consider a finite word p in 0, 1 and the periodic
sequence xp := p∞ ∈ C. We can find a p, such that xp is in Ic. Indeed, the
set of all xp for p any finite word is dense in the Cantor space C, and Ic is a
non-trivial open subset of C. For d ≥ 1 large enough, we have that a is constant
on the sdi J defined such that mJ = pd; see Notation 1.8. Note that xp ∈ J.
Choose v ∈ V such that v ∈ FixV (I), v is adapted to J and mv(J) = pd+1.
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In particular, v(xp) = xp and v(J) ⊂ J. Moreover, α−1
v(J)αJ = α−1

p . We obtain
that

(vav−1)(vxp) = πv(a)(vxp) = τv,xp(a(xp)) = α−1
v(J)αJ(a(xp)) = α−1

p (a(xp)).

Since a commutes with v and vxp = xp we obtain that a(xp) = αp(a(xp)).
Consider now another w ∈ FixV (I) that is adapted to J and satisfies that
mw(J) = pd · 1 · pd. Note that w(J) ⊂ J since mJ is a prefix of mw(J). Observe
that α−1

w(J)αJ = α−dp α−1
1 . We obtain that

(waw−1)(wxp) = πw(a)(wxp) = τw,xp(a(xp)) = α−dp α−1
1 (a(xp)).

Since a commutes with w, and a is constant on J , we obtain that
(waw−1)(wxp) = a(xp) and, thus, αdp(a(xp)) = α−1

1 (a(xp)). Since a(xp) is
αp-invariant we obtain that α1(a(xp)) = a(xp). A similar argument provides
that α0(a(xp)) = a(xp). We have proved that a(xp) ∈ Γα. Since the set of
{xq : q a finite word } is dense in Ic and a is locally constant we obtain that
a(x) ∈ Γα, for all x ∈ Ic. Let us show that a is constant on Ic. Consider
x, y ∈ Ic ∩Q2. There exists v ∈ FixV (I) satisfying vx = y. Hence,

a(y) = a(vx) = (vav−1)(vx) = πv(a)(vx) = τv,x(a(x)) = a(x)

since a(x) ∈ Γα. Therefore, a is constant on Ic ∩Q2 and, thus, constant on Ic
since a is locally constant and since Ic ∩Q2 ⊂ Ic is a dense subset. Hence, the
restriction of a to Ic belongs to DIc(Γα). This implies that a ∈ LIΓ ·DIc(Γα).
This proves the second equality of the lemma and, as was explained earlier,
this implies the first equality of the lemma.

Take I = C and observe that StabV (C) = V. The first equality of the lemma
implies that the commutant of V inside G is equal to DC(Γα). We deduce that

Z(G) = DC(Γα) ∩ Z(LΓ) = DC(Γα) ∩ LZ(Γ) = DC(Z(Γ)α). �

We now prove a proposition regarding multiplications of isomorphisms and
morphisms valued in centers.

Proposition 2.7. — If β : G → G̃ is an isomorphism, and γ : G → Z(G̃) is
a morphism, then βγ : G→ G̃, g 7→ β(g) · γ(g) is an isomorphism. Moreover,

Z(G) ⊂ L(Γα) o V ⊂ G′ ⊂ ker(γ),

where G′ = [G,G] is the derived subgroup of G and ker(γ) the kernel of γ.

Proof. — Consider β, γ as above.
We start by proving that L(Γα) o V ⊂ G′. Note that V is simple and non-

abelian implying that V = V ′ and, thus, V ⊂ G′ [18, Theorem 6.9]. Consider
g ∈ Γα and I a proper sdi of C. Choose v ∈ V, J ∈ I satisfying that v(J) = I∪J
and I ∩ J = ∅. Observe that

[v, gJ ] = vgJv
−1g−1

J = gI∪Jg
−1
J = gI
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implying that gI ∈ G′. We deduce that L(Γα) ⊂ G′ since L(Γα) is generated
by the subset {gI : I sdi , g ∈ Γα}. Therefore, L(Γα)oV ⊂ G′ since this group
is generated by L(Γα) and V .

By Lemma 2.6, we have that Z(G) = DC(Z(Γ)α) and, thus, Z(G) ⊂ L(Γα).
Since Z(G̃) is abelian we have that G′ ⊂ ker(γ), implying that

Z(G) ⊂ L(Γα) o V ⊂ G′ ⊂ ker(γ).

Let us show that βγ is an isomorphism. Since γ is valued in Z(G̃) it is
obvious that βγ is multiplicative and, thus, a group morphism. Let us prove
that βγ is injective. Consider g ∈ G so that βγ(g) = eG̃, that is, β(g) = γ(g)−1.

We deduce that β(g) ∈ Z(G̃) and, thus, g ∈ Z(G) since β restricts to an
isomorphism from Z(G) onto Z(G̃). We have proven that Z(G) ⊂ ker(γ).
Therefore, γ(g) = eG̃ and, thus, β(g) = γ(g)−1 = eG̃. This implies that g = eG
since β is injective. This proves that βγ is injective.

Fix g̃ ∈ G̃ and consider g := β−1(g̃ · γ(β−1(g̃−1))) ∈ G. Observe that

βγ(g) = β(g) · γ(g)
= g̃ · γ(β−1(g̃−1)) · γ(β−1(g̃ · γ(β−1(g̃−1))))
= g̃ · γ(β−1(g̃−1)) · γ(β−1(g̃)) · γ(β−1(γ(β−1(g̃−1))))
= g̃ · γ(β−1(γ(β−1(g̃−1)))).

Now, γ(β−1(g̃−1)) ∈ Z(G̃), implying that β−1(γ(β−1(g̃−1))) ∈ Z(G). We
have proven that Z(G) ⊂ ker(γ) and, thus, γ(β−1(γ(β−1(g̃−1)))) = eG̃. We
deduce that βγ(g) = g̃. Hence, βγ is surjective. We have proven that βγ is an
isomorphism. �

2.3. Classification of fraction groups. — We now prove the main theorem of
this section. It is the most technical result of the paper and directly leads to
a partial classification of the fraction groups considered and is a key result for
describing all automorphisms of untwisted fraction groups. We keep the same
notations introduced in Section 2.2. The difficulty resides in proving that there
exists a decomposition such as the one given in formula 1 satisfying (1). This
will be done via a series of claims. If we do not require (1), then this formula
is a direct consequence of the fact that θ(LΓ) = LΓ̃ (see Proposition 1.11).
Moreover, note that (2) and (3) are easy consequence of (1).

Theorem 2.8. — Consider two groups with a pair of automorphisms (Γ, α0, α1)
and (Γ̃, α̃0, α̃1) with associated fraction groups G = LΓ o V and G̃ = LΓ̃ o V ,
respectively. Assume we have an isomorphism θ : G→ G̃.

There exists a morphism ζ : G → Z(G̃), a homeomorphism ϕ ∈ NH(C)(V ),
an isomorphism κ0 : LΓ→ LΓ̃ and a co-cycle c : V → LΓ̃, such that

(1) θ(av) = ζ(a) · κ0(a) · cv · adϕ(v) for all a ∈ LΓ, v ∈ V.
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Moreover, we have the following properties:
1. The isomorphism κ0 is spatial in the following sense:

supp(κ0(a)) = ϕ(supp(a)) for all a ∈ LΓ.

2. There exists a family of isomorphisms (κ0
x : x ∈ C) from Γ to Γ̃ satis-

fying that

κ0(a)(ϕ(x)) = κ0
x(a(x)) for all a ∈ LΓ, x ∈ C.

3. For any x ∈ C and v ∈ V , we have the following equality:

κ0
vx ◦ τv,x = ad(cv(ϕ(vx))) ◦ τ̃adϕ(v),ϕ(x) ◦ κ0

x.

Proof. — Consider G,Γ, α0, α1, G̃, Γ̃, α̃0, α̃1, θ as above and the notations in-
troduced in Section 2.2. Recall that by definition an sdi is always non-empty.
For convenience, we will further assume in this proof that an sdi is always
different to C, and any element of I is different from C and ∅.

Proof of the decomposition (1) satisfying Property (1):
Proposition 1.11 implies that θ(LΓ) = LΓ̃, and, thus, there exists an iso-

morphism κ ∈ Isom(LΓ, LΓ̃), φ = adϕ ∈ Aut(V ) (by Proposition 1.1) and
c : V → LΓ̃, such that

θ(av) = κ(a) · cv · φv for all a ∈ LΓ, v ∈ V.

The notation φ = adϕ means that ϕ ∈ NH(C)(V ) is the unique homeomorphism
of the Cantor space C satisfying that φv = ϕvϕ−1, for all v ∈ V . We want
to show that if a ∈ LΓ, then there exists b ∈ LΓ̃ and h ∈ Z(Γ̃)α̃, such that
κ(a) = b · hC, where supp(b) = ϕ(supp(a)), and hC is the constant function
equal to h everywhere. From this, we will be able to further decompose θ by
writing κ as κ0ζ for suitable κ0 and ζ.

We now consider a certain subgroup of Γ̃ that measures the default of θ to
be spatial. Define

MI,x := {κ(a)(ϕ(x)) : a ∈ LIΓ} for I ∈ I, x ∈ Ic.

Our aim is to show that MI,x ⊂ Z(Γ̃)α̃, for all choices of I ∈ I, x ∈ Ic. We
start with an easy fact.
Claim 1. — For all I ∈ I, x ∈ Ic, the subset MI,x ⊂ Γ̃ is a normal subgroup.

Fix I ∈ I and x ∈ Ic. Consider the map κx : LΓ→ Γ̃, a 7→ κ(a)(ϕ(x)). It is
a group morphism and κx(LIΓ) = MI,x, implying that MI,x is a subgroup of
Γ̃. If h ∈ Γ̃, then there exists a ∈ LΓ so that κ(a) = hC. In particular,

hMI,xh
−1 = κx(aLIΓa−1) = κx(LIΓ) = MI,x

since LIΓ ⊂ LΓ is a normal subgroup. This proves the claim.
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Claim 2. — For all I, J ∈ I and x /∈ I ∪ J , we have MI,x = MJ,x.
Consider that I, J ∈ I and x ∈ C, so that x /∈ I ∪ J . There exists v ∈ V ,

so that v is adapted to I, v(I) = J and v(x) = x, v′(x) = 1. This implies that
φv(ϕ(x)) = ϕ(x), φ′v(ϕ(x)) = 1 and, thus, τ̃φv,ϕ(x) = idΓ̃ . Now observe that

MJ,x = κx(LJΓ) = κx(vLIΓv−1).

If a ∈ LIΓ, then

κx(vav−1) = κ(vav−1)(ϕ(x)) = κ(vav−1)(ϕ(vx))
= [θ(v)κ(a)θ(v)−1](ϕ(vx)) = [cvφvκ(a)φ−1

v c−1
v ](ϕ(vx))

= ad(cv(ϕ(vx))) ◦ τ̃φv,ϕ(x)(κ(a)(ϕ(x)))
= ad(cv(ϕ(vx)))(κ(a)(ϕ(x))) ∈ ad(cv(ϕ(vx)))(MI,x) = MI,x

since MI,x ⊂ Γ̃ is a normal subgroup. We deduce that MJ,x ⊂ MI,x and
by reversing the roles of I and J we deduce that MJ,x ⊃ MI,x, implying the
equality MJ,x = MI,x.

Claim 3. — We have that MI,x is a subgroup of Z(Γ̃) for all I ∈ I, x ∈ Ic.
Fix I ∈ I and x /∈ I. We start by proving that MI,x is an abelian group.

Consider g, h ∈ MI,x and two disjoint sdi I0, I1 that are contained in I. In
particular, x /∈ I0 and x /∈ I1. Claim 2 implies that there exists a ∈ LI0Γ, b ∈
LI1Γ, so that g = κ(a)(ϕ(x)), h = κ(b)(ϕ(x)). Since a and b have disjoint
support they mutually commute and, thus, so do g and h. We have proven
that MI,x is abelian.

Consider g ∈ MI,x and h ∈ Γ̃. There exists a ∈ LIΓ and b ∈ LΓ, so
that g = κ(a)(ϕ(x)), h = κ(b)(ϕ(x)). Decompose b as b = bI · bIc , where
bI ∈ LIΓ, bIc ∈ LIcΓ. We have seen that κ(a)(ϕ(x)) and κ(bI)(ϕ(x)) mutually
commute. Now, abI commutes with bIc since they have disjoint support and,
thus, so do κ(abI)(ϕ(x)) and κ(bIc)(ϕ(x)). We deduce that κ(a)(ϕ(x)) and
κ(b)(ϕ(x)) mutually commute, and, thus, gh = hg. This proves the claim.
Claim 4. — We have that κ(LIΓ) ⊂ Lϕ(I)Γ̃ · DC(Z(Γ̃)α̃) for all I ∈ I. In
particular, MI,x is a subgroup of Z(Γ̃)α̃, for all I ∈ I, x /∈ I.

Fix I ∈ I, a ∈ LIΓ and v ∈ FixV (I). Note that a commutes with v by
Lemma 2.6. Let us show that κ(a) commutes with FixV (ϕ(I)). Consider x ∈ C.
We have that:

κ(a)(ϕ(vx)) = κ(πv(a))(ϕ(vx))
= [θ(v)κ(a)θ(v)−1](ϕ(vx))
= ad(cv(ϕ(vx))) ◦ τ̃φv,ϕ(x)(κ(a)(ϕ(x))).

Now, if x ∈ I, then τ̃φv,ϕ(x) = idΓ̃ since φv acts like the identity on a neigh-
bourhood of ϕ(x). Hence, κ(a)(ϕ(vx)) = ad(cv(ϕ(vx)))(κ(a)(ϕ(x))), and since
vx = x we deduce that κ(a)(ϕ(vx)) commutes with cv(ϕ(vx)), for all x ∈ I. If
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x /∈ I, then κ(a)(ϕ(vx)) is central by Claim 3, implying that cv(ϕ(vx)) com-
mutes with it. This proves that cv and κ(a) commute. Since av = va we have
that θ(av) = θ(va) and, thus, κ(a) and θ(v) commute. Now, θ(v) = cv ·φv and
κ(a) commute with both θ(v) and cv. Therefore, κ(a) commutes with φv. We
have proven that κ(a) commutes with φ(FixV (I)), implying that it commutes
with FixV (ϕ(I)) since FixV (ϕ(I)) = φ(FixV (I)).

By applying Lemma 2.6 to FixV (ϕ(I)) we deduce that κ(a) ∈ Lϕ(I)Γ̃ ·
Dϕ(I)c Γ̃α̃ that is κ is constant on the complement of ϕ(I) and takes a value
in Γ̃α̃. By Claim 3 we know that κ(a)(ϕ(x)) is in the center of Γ̃ if x /∈ I.
We deduce that κ(a) ∈ Lϕ(I)Γ̃ · Dϕ(I)cZ(Γ̃)α̃. Since Lϕ(I)Γ̃ · Dϕ(I)cZ(Γ̃)α̃ =
Lϕ(I)Γ̃ ·DCZ(Γ̃)α̃ the claim is proven.

By Lemma 2.6 we have Z(G̃) = DCZ(Γ̃)α̃ and, thus, we have proven:
κ(LIΓ)) ⊂ Lϕ(I)Γ̃ · Z(G̃) for all I ∈ I.

We will now define the desirable morphism ζ : G→ Z(G̃).
Claim 5. — There exists a unique group morphism

ζ : G→ Z(G̃)
satisfying that for all a ∈ LΓ we have a decomposition κ(a) = b · ζ(a) where
b ∈ LΓ̃, supp(b) ⊂ ϕ(supp(a)).

Fix I ∈ I. Claim 4 proved that κ(LIΓ) ⊂ Lϕ(I)Γ̃·Z(G̃). By convention I 6= C

implying that Lϕ(I)Γ̃ ∩ Z(G̃) = {eG̃} since all elements of Z(G̃) = DCZ(Γ̃)α̃
have either full or trivial support, and no elements of Lϕ(I)Γ̃ have full support.
Moreover, these two subgroups mutually commute, and, thus, Lϕ(I)Γ̃ · Z(G̃)
is isomorphic to the direct product of groups Lϕ(I)Γ̃⊕ Z(G̃). Therefore, there
exists unique morphisms κI : LIΓ→ Lϕ(I)Γ̃, ζI : LIΓ→ Z(G̃) satisfying that

κ(a) = κI(a) · ζI(a) for all a ∈ LIΓ.
Consider another J ∈ I and assume that I ∩ J 6= ∅. If a ∈ LI∩JΓ, then

κ(a) = κI(a) · ζI(a) = κJ(a) · ζJ(a).

Evaluating this equality at ϕ(x) with x /∈ I ∩ J we deduce that ζI(a)(ϕ(x)) =
ζJ(a)(ϕ(x)). Since ζI(a) and ζJ(a) are constant functions we deduce that
ζI(a) = ζJ(a).

We now define ζC. Let I0, I1 be the first and second of halves of C, respec-
tively. For all a ∈ LΓ, we can decompose this uniquely a as a = a0 · a1, where
ak ∈ LIkΓ for k = 0, 1. We put:

ζC(a) := ζI0(a0) · ζI1(a1) for all a ∈ LΓ.
By following a similar argument to that above and considering I ∩I0 and I ∩I1
we deduce that ζC(a) = ζI(a), for all I ∈ I and a ∈ LIΓ. Since each ζI , I ∈ I
are morphisms valued in an abelian group we deduce that ζC is a morphism.
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Consider v ∈ V adapted to I, so that v(I) = K for a certain K ∈ I. If
a ∈ LIΓ, then vav−1 ∈ LKΓ and, thus:

κ(vav−1) = cvφvκ(a)φ−1
v c−1

v = cvφvκ
I(a) · ζI(a)φ−1

v c−1
v

= cvφvκ
I(a)φ−1

v c−1
v · ζI(a).

Since cvφvκI(a)φ−1
v c−1

v is supported inϕ(K)we deduce that ζI(a) = ζK(vav−1).
We obtain that ζC(a) = ζC(vav−1). This allows us to extend the morphism

ζC : LΓ→ Z(G̃) into a morphism:

ζ : G→ Z(G̃),

so that ζ(v) = eG̃, for all v ∈ V , and ζ(a) = ζC(a), for all a ∈ LΓ.
By construction the morphism ζ satisfies the properties of the claim.

End of the proof of formula (1) satisfying Property (1). — Define ζ† to be the
morphism:

ζ† : G→ Z(G̃), g 7→ ζ(g)−1.

This is indeed a morphism since Z(G̃) is abelian, and ζ is a morphism. Consider
θ0 := θζ†, which is an isomorphism by Proposition 2.7. Note that θ = θ0ζ and
θ0(av) = κ0(a) · cv · φv, for all a ∈ LΓ, v ∈ V , where κ0 is of the form:

κ0 : LΓ→ LΓ̃, a 7→ κ(a) · ζ(a)−1.

We have that κ0 is an isomorphism since θ0 is, and, moreover, supp(κ0(a)) ⊂
ϕ(supp(a)), for all a ∈ LΓ by construction of ζ.

Let us show that supp(κ0(a)) = ϕ(supp(a)) for all a ∈ LΓ. Assume that
this is not the case. There exists a non-empty finite union of sdi I (possibly
equal to C) and a ∈ LΓ with support I, so that supp(κ0(a)) = ϕ(J), where
J ⊂ I is strictly contained inside I. Consider now the inverse (θ0)−1 of θ0 and
a = (θ0)−1(κ0(a)). Applying the same reasoning that we used for θ to (θ0)−1

we obtain that
a = (θ0)−1(κ0(a)) = b · hC,

where b is supported in J and h ∈ Z(Γ)α. Since J is a proper subset of I and
a has support I we must have h 6= eΓ. We now reapply κ0 and obtain:

κ0(a) = κ0(b) · κ0(hC).

Since b is supported in J we have that supp(κ0(b)) ⊂ ϕ(J). Now, hC ∈ Z(G).
Since θ0 is an isomorphism it maps Z(G) onto Z(G̃). Moreover, Z(G̃) =
DC(Z(Γ̃)α̃). Therefore, θ0(hC) = κ0(hC) = kC for a certain k ∈ Z(Γ̃)α̃. Since h
is non-trivial so is k, implying that ϕ(J)c is contained in the support of κ0(a).
This contradicts the assumption supp(κ0(a)) = ϕ(J). We have proven that
supp(κ0(a)) = ϕ(supp(a)), for all a ∈ LΓ. This concludes the proof of the first
part of the theorem.
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By θ0 rather than θ we now assume that ζ is trivial, and, thus, κ0 = κ. This
will make our notations slightly lighter.

Proof of (2):
Let us prove that κ can be decomposed as a product of isomorphisms∏
x∈C κx. Define the map

κx,I : Γ→ Γ̃, g 7→ κ(gI)(ϕ(x)) where x ∈ C, I ∈ I.

By the first part of the proof we know that, if x /∈ I, then κx,I(g) = eΓ̃, for all
g ∈ Γ, since supp(κ(gI)) ⊂ ϕ(I). This implies that if x ∈ I, then
κx,C(g) = κ(gC)(ϕ(x)) = κ(gI · gC\I)(ϕ(x)) = κx,I(g) · κx,C\I(g) = κx,I(g),

for all g ∈ Γ. We deduce that κx,C = κx,I , for all x ∈ C and I ∈ I satisfying
x ∈ I. We now write κx := κx,C for x ∈ C, which is a group morphism since κ
is. Consider a ∈ LΓ and note that since a is locally constant we can find an sdp
(I1, · · · , In) and some elements g1, · · · , gn ∈ Γ satisfying that a = g1

I1
· · · gnIn .

Given x ∈ C, there exists a unique 1 ≤ j ≤ n such that x ∈ Ij and thus:

κ(a)(ϕ(x)) = κx(g1) · · ·κx(gn) = κx(gj) = κx(a).

Consider x ∈ C and let us show that κx is an isomorphism from Γ to Γ̃. If
g̃ ∈ Γ̃, then since κ is surjective there exists a ∈ LΓ, such that κ(a) = g̃C and,
in particular, κ(a)(ϕ(x)) = κx(a(x)) = g̃, implying that κx is surjective. If κx
is not injective, then there exists g ∈ Γ, g 6= eΓ, such that κx(g) = eΓ̃. Since
κ(gC) is locally constant we can find an sdi I such that κy(g) = eΓ̃, for all
y ∈ I, implying that κ(gI) = eLΓ̃, which is a contradiction since κ is injective.

Proof of (3):
Consider x ∈ C, v ∈ V, g ∈ Γ and an sdi I containing x, so that v is adapted

to I. Recall that vgIv−1 = πv(gI) = [α−1
v(I)αI(g)]v(I) is the function supported

in v(I) and is equal to α−1
v(I)αI(g) on v(I). Observe that

κ([α−1
v(I)αI(g)]v(I)) = θ(vgIv−1) = θ(v)θ(gI)θ(v)−1 = cv · φv · κ(gI) · φ−1

v · c−1
v .

Evaluated at ϕ(vx) we obtain that

κ([α−1
v(I)αI(g)]v(I))(ϕ(vx)) = ad(cv(ϕ(vx)))[τ̃φv,ϕ(x)(κ(gI)(ϕ(x)))].

Using that α−1
v(I)αI = τv,x and the decomposition

∏
y∈C κy of κ we obtain the

equality:
κvx ◦ τv,x = ad(cv(ϕ(vx))) ◦ τ̃φv,ϕ(x) ◦ κx. �

Remark 2.9. — Consider an isomorphism θ : G → G̃. We have proven in
Proposition 2.7 that L(Γα) o V ⊂ G′ and, thus, belongs to the kernel of the
map ζ : G → Z(G̃) of the theorem. In particular, in the untwisted case, we
have by definition that α0 = α1 = idΓ, implying that Γ = Γα, and, thus,
ζ is trivial. Hence, we automatically have that supp(θ(a)) = ϕ(supp(a)), for
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all a ∈ LΓ, when G is an untwisted fraction group. This will be particularly
relevant in the last section of this article, where we will be considering Aut(G)
for G an untwisted fraction group.

Interestingly, we have the same result in the opposite case: when there are
few α-invariant elements. Indeed, assume that Z(Γ)α is trivial. Since this is
isomorphic to Z(G) by Lemma 2.6 we deduce that Z(G) is trivial, and, thus,
so is Z(G̃) since G is isomorphic to G̃. Therefore, any morphism ζ : G→ Z(G̃)
is trivial when there are no central α-invariant elements of Γ. Hence, Theorem
2.8 implies that all isomorphisms from G to G̃ are spatial.

Example 2.10. — Here is an example of a triple (Γ, α0, α1) with associated
fraction group G := LΓ o V and a non-trivial morphism ζ : G→ Z(G). Using
ζ we will then construct a non-trivial non-spatial automorphism of G.

Consider the additive group Γ := Z[1/2] × Z[1/2], the automorphisms α =
α0 = α1, so that

α(t, r) := (t, r2), t, r ∈ Z[1/2].

If I is an sdi, then we write mI for its associated finite word, |mI | for the
number of letters in this word and Leb(I) for the Lebesgue measure of I.
Note that Leb(I) = 2−|mI | for all sdi I. Given t, r ∈ Z[1/2] and an sdi I
consider(t, r)I ∈ LΓ the element supported in I taking the value (t, r) in I and
define

ζ((t, r)I) := Leb(I) · r.
This extends uniquely into a group morphism from LΓ to Z[1/2]. The

formula is the following: consider a ∈ LΓ so that a = (t1, r1)I1 · · · (tn, rn)In for
an sdp (I1, · · · , In) and some tj , rj ∈ Z[1/2], 1 ≤ j ≤ n. We have

ζ(a) =
n∑
k=1

Leb(Ik) · rk.

Observe that ζ is V -invariant. Indeed, consider a ∈ LΓ and v ∈ V . Up
to decomposing a over a partition adapted to v and a we can assume that
a = (t, r)I where t, r ∈ Z[1/2] and I is an sdi adapted to v. We have that

v(t, r)Iv−1 = [α−1
v(I)αI(t, r)]v(I) = [α|mI |−|mv(I)|(t, r)]v(I)

= [2|mv(I)|−|mI | · (t, r)]v(I).

We deduce the following:
ζ(v(t, r)Iv−1) = ζ([2|mv(I)|−|mI | · (t, r)]v(I)) = Leb(v(I)) · 2|mv(I)|−|mI | · r

= Leb(I) · r = ζ((t, r)I),
proving that ζ is V -invariant. Therefore, ζ extends into a group morphism

ζ : G→ Z[1/2], av 7→ ζ(a).
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By identifying Z[1/2] with Z(G) we obtain a non-trivial morphism

ζ : G→ Z(G).

Therefore, G admits automorphisms that are not spatial, such as the following:

G 3 g 7→ g · ζ(g) ∈ G.

Corollary 2.11. — Consider two groups Γ, Γ̃ and two pairs of automor-
phisms α0, α1 ∈ Aut(Γ), α̃0, α̃1 ∈ Aut(Γ̃). Denote by G = LΓ o V and G̃ =
LΓ̃ o V the fraction groups associated to (Γ, α0, α1) and (Γ̃, α̃0, α̃1), respec-
tively. The following assertions are true:

1. If G ' G̃, then Γ ' Γ̃.
2. Assume that α̃0, α̃1 are inner automorphisms. We have that G ' G̃ if

and only if Γ ' Γ̃, and α0, α1 are inner automorphisms.

Proof. — Proof of (1). This is a direct consequence of Theorem 2.8.2.
Proof of (2). Assume that α̃0 and α̃1 are inner automorphisms and suppose

that there exists an isomorphism θ : G → G̃. Up to multiplying θ by the
morphism ζ† of Theorem 2.8 we may assume that

θ(av) = κ(a) · cv · adϕ(v), a ∈ LΓ, v ∈ V,

so that supp(κ(a)) = ϕ(supp(a)), for all a ∈ LΓ. Hence, κ decomposes as in
the second and third items of that theorem. Therefore,

κvx ◦ τv,x = ad(cv(ϕ(vx))) ◦ τ̃adϕ(v),ϕ(x) ◦ κx,

for all v ∈ V, x ∈ C. In particular, Γ and Γ̃ are isomorphic since κx ∈ Isom(Γ, Γ̃)
for all x ∈ C. Since α̃0, α̃1 are inner automorphisms so is τ̃adϕ(v),ϕ(x). Therefore,
given any v ∈ V, x ∈ C there exists hv,x ∈ Γ̃, so that

κvx ◦ τv,x = ad(hv,x) ◦ κx.

In particular, consider x0 = 0∞ ∈ C the infinite sequence of 0, I the first fourth
of C and v ∈ V adapted to I, such that v(I) is the first half of C. We have
that mI = 00,mv(I) = 0, and, thus, α−1

v(I)αI = α0. Moreover, vx0 = x0. The
equation of the above gives:

κx0 ◦ α0 = ad(hv,x0) ◦ κx0 .

Therefore, α0 is an inner automorphism. A similar argument applied to the
infinite sequence of 1 provides that α1 is an inner automorphism. Conversely,
assume that Γ ' Γ̃, and all the automorphisms α0, α1, α̃0, α̃1 are inner. Lemma
2.2 implies that G is isomorphic to G(Γ, idΓ, idΓ), the group associated to
(Γ, idΓ, idΓ). The same lemma applied to (Γ̃, α̃0, α̃1) implies that G̃ is isomor-
phic to G(Γ̃, idΓ̃, idΓ̃). Since Γ ' Γ̃ we have that G(Γ, idΓ, idΓ) ' G(Γ̃, idΓ̃, idΓ̃)
that is G ' G̃. �
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2.4. Classification of a class of co-context-free groups. — Recall that a group is
co-word-free (in short coCF) or is a co-context-free group if its co-word prob-
lem with respect to a finite generating subset is a context-free language. A
conjecture of Lehnert, combined with a theorem of Bleak, Matucci and Neun-
höffer, states that a group is coCF , if and only if it is finitely generated and
embeds inside Thompson group V [36, 7]. Candidates for counter-examples
of this conjecture have been proposed in [3]. They were initially constructed
using cloning systems of Witzel and Zaremsky [48, 49].

Here is a description of this class of groups using our framework. Consider
a finite group Γ and an automorphism α1 ∈ Aut(Γ). Let G := GΓ,α1 = LΓoV
be the fraction group associated to the triple (Γ, idΓ, α1). The class of groups
GΓ,α1 above is exactly the class considered in [3]. It has been proved that they
are all coCF groups and conjectured that some of them do not embed inside V
(which would disprove the conjecture of Lehnert).

We start by giving a concrete and practical description of these groups. Fix
a finite group Γ and one of its automorphism α1. To follow the previous no-
tation write α0 for the identity automorphism idΓ . Consider the Jones action
π : V y LΓ associated to the triple (Γ, α0, α1) = (Γ, idΓ, α1). As was al-
ready mentioned the group G = GΓ,α1 is isomorphic to the semi-direct product
LΓ o V constructed from the Jones action π. Recall that LΓ is the group of
continuous functions from the Cantor space C = {0, 1}N to the group Γ when
Γ is equipped with a discrete topology. The description of the Jones action
given in Proposition 1.9 gives that

πv(a)(vx) = τv,x(a(x)) = α
Nv,x
1 (a(x)), x ∈ C, v ∈ V, a ∈ LΓ,

where Nv,x ∈ Z is an integer depending on v and x. Define

f : {0, 1}(N) → Z, (xi)i≥1 7→
∑
i≥1

xi

and observe that if I is an sdi with associated word mI (i.e. I is the set of
words with prefix mI), then αI = α

f(mI)
1 . Therefore, if x ∈ C, v ∈ V and I is

an sdi adapted to v and containing x, we have that

τv,x = α−1
v(I)αI = α

−f(mv(I))
1 α

f(mI)
1 = α

f(mI)−f(mv(I))
1 .

Hence, τv,x = α
Nv,x
1 , where Nv,x = f(mI)− f(mv(I)) and x, v, I are as above.

We present a partial classification of the class of these groups. This is de-
duced from Theorem 2.8.

Corollary 2.12. — Consider some finite groups Γ, Γ̃, some automorphisms
α1 ∈ Aut(Γ), α̃1 ∈ Aut(Γ̃) and the groups G, G̃ associated to the triples
(Γ, idΓ, α1), (Γ̃, idΓ̃, α̃1), respectively. If G is isomorphic to G̃, then there exists
an isomorphism β : Γ → Γ̃. Moreover, there exists h ∈ Γ, h̃ ∈ Γ̃ and n, ñ ∈ Z,
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such that

α1 = ad(h) ◦ β−1α̃ñ1β and α̃1 = ad(h̃) ◦ βαn1β−1.

In other words, the map

γ ∈ Aut(Γ) 7→ βγβ−1 ∈ Aut(Γ̃)

realises an isomorphism from the subgroup generated by α1 in Out(Γ) :=
Aut(Γ)/ Inn(Γ) onto the subgroup generated by α̃1 inside Out(Γ̃).

Note that we do not know whether we can assume that n = ñ = 1 in the
conclusion of the corollary.

Proof. — Consider Γ, Γ̃, α1, α̃1, G, G̃ as above and assume that θ : G→ G̃ is an
isomorphism. Choose this isomorphism in such a way that the ζ of Theorem 2.8
is trivial. (Take for, instance, θζ† rather than θ.) By Theorem 2.8 there exists
a family of isomorphisms (κx, x ∈ C) from Γ to Γ̃, a co-cycle c : V → LΓ̃ and a
homeomorphism ϕ ∈ NH(C)(V ) satisfying that

θ(av) = κ(a) · cv · φv, for all a ∈ LΓ, v ∈ V,

where κ =
∏
x∈C κx and φv := adϕ(v). Moreover, we have the equality:

κvx ◦ τv,x = ad(cv(ϕ(vx))) ◦ τ̃φv,ϕ(x) ◦ κx for all v ∈ V, x ∈ C.

Observe that since Γ is finite we have that x 7→ κx is locally constant. Indeed,
for any g ∈ Γ, x ∈ C, we have that κ(gC)(ϕ(x)) = κx(g). Since κ(gC) is locally
constant so is x 7→ κx(g). Hence, for any g ∈ Γ, there exists an sdp Pg adapted
to κ(gC), i.e. κ(gC) is constant on each sdi of the sdp Pg. Since Γ is finite we
can find an sdp P that is thinner than all Pg, g ∈ Γ. We deduce that x 7→ κx is
constant on each sdi of P . Consider any sdi I in the sdp P and write β for the
isomorphism κx, where x ∈ I. Consider the sdi J satisfying that mJ := mI ·11.
There exists v ∈ V , which is adapted to J and satisfies that mv(J) = mI · 1.
Note that J, v(J) ⊂ I and α−1

v(J)αJ = α1. This implies the equality:

β ◦ α1 = ad(cv(ϕ(vx))) ◦ τ̃φv,ϕ(x) ◦ β for all x ∈ J.

By definition of τ̃ we have that τ̃φv,ϕ(x) is a power of α̃1. We deduce that

α1 = ad(h) ◦ β−1α̃ñ1β

for h := β−1(cv(ϕ(vx))) ∈ Γ and a certain ñ ∈ Z. A similar construction to
that above proves that there exists y ∈ I and v ∈ V , such that v(y) ∈ I and
τ̃φv,ϕ(y) = α̃1 giving us the second equality of the corollary. �
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2.5. Two disjoint classes of groups. — In this section, we compare the class
of groups studied in this article and in the previous one [13]. Groups of the
previous article were constructed from triples (Γ, α, εΓ), where α ∈ End(Γ),
and where εΓ : g ∈ Γ 7→ eΓ is the endomorphism mapping all elements to the
neutral element of Γ. They are all isomorphic to some twisted permutational
restricted wreath products ⊕Q2Γ o V . The comparison is motivated by the
question of whether or not certain fraction groups of this present article have
the Haagerup property. Indeed, we previously proved that if α is injective, and
Γ has the Haagerup property (as a discrete group), then so does ⊕Q2Γ o V
[11]. However, if Λ is a group with the Haagerup property, then we do not
know if LΛ o V has the Haagerup property, not even in the untwisted case.
We wonder if one could embed LΛ o V into ⊕Q2Γ o V in a reasonable way
and for a suitable Γ. This would allow us to deduce analytical properties of
LΛoV by studying ⊕Q2ΓoV . The next theorem shows that there are no nice
embeddings or isomorphisms between the two classes.

Theorem 2.13. — Consider two groups Γ,Λ, an endomorphism α ∈ End(Γ)
and two injective endomorphisms β0, β1 ∈ End(Λ). Consider the fraction
groups K o V and L o V built via the triples (Γ, α, εΓ) and (Λ, β0, β1), re-
spectively.

1. If K or L is non-trivial, then there are no isomorphisms between KoV
and Lo V .

2. If L is non-trivial, then there are no injective V -equivariant morphisms
from L to K.

3. If K is non-trivial, then there are no V -equivariant morphisms from K
to L.

Proof. — Consider Γ,Λ, α, β0, β1,KoV,LoV satisfying the hypothesis of the
theorem. By Proposition 1.12 we can assume that α is an automorphism and
that KoV is isomorphic to a twisted permutational restricted wreath product
⊕Q2Γ o V .

Denote by σ : V → Aut(K), v 7→ σv and π : V → Aut(L), v 7→ πv the two
Jones actions.

Consider a ∈ K and let CV (a) be the subgroup of v ∈ V commuting with a
inside K o V . Note that

CV (a) = {v ∈ V : σv(a) = a}, a ∈ K.

By definition of the Jones action we have that if v ∈ V satisfies v(x) = x, v′(x) =
1, for all x ∈ supp(a), then v commutes with a. We obtain that CV (a) contains
the subgroup

Wsupp(a) := {v ∈ V : v(x) = x, v′(x) = 1, ∀x ∈ supp(a)}.
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Consider now b ∈ L and similarly define its relative commutant

CV (b) := {v ∈ V : vb = bv} = {v ∈ V : πv(b) = b}.

If v ∈ CV (b), then by definition of the Jones action we have that v stabilises
the support of b, and, thus,

CV (b) ⊂ StabV (supp(b)).

We will show that CV (a) is much larger than CV (b) in general when a ∈
K, b ∈ L implies that there are few morphisms between K o V and Lo V .
Claim. — If F ⊂ Q2 is a finite subset, I ⊂ C is a non-empty finite union of
sdi and WF ⊂ StabV (I), then I = C.

Proof of the claim: Consider a finite subset F ⊂ Q2 and I ⊂ C a non-empty
finite union of sdi and assume that I 6= C and WF ⊂ StabV (I). Since F is
finite and I,C \ I are both non-empty we can find two sdi A,B satisfying that
A ∩ F = B ∩ F = ∅ and A ⊂ I,B ⊂ C \ I. There exists v ∈ V satisfying
v(A) = B, v(B) = A, and v acts as the identity on C \ (A ∪ B). Observe that
v ∈WF but v /∈ StabV (I), a contradiction.

Proof of (1).
Assume that K or L is non-trivial and that there exists an isomorphism

θ : K o V → L o V. By Proposition 1.11, we have that θ(K) = L. Therefore,
both K and L are non-trivial. Fix a ∈ K that is non-trivial. We obtain that
CV (a) is isomorphic to CV (θ(a)). Note that CV (a) contains Wsupp(a), where
supp(a) is finite and that CV (θ(a)) is contained in the stabiliser subgroup of
supp(θ(a)), which is a finite union of sdi. Since a 6= eK and θ is injective we
have that θ(a) 6= eL, and, thus, its support is non-empty. The claim implies
that supp(θ(a)) = C and, thus, for all a 6= eK . This contradicts the fact that θ
is surjective.

Proof of (2).
Assume there exists an injective morphism θ : L→ K that is V -equivariant

and that L is non-trivial. There exists b ∈ L supported on a (non-empty) sdi
I different from C since L is non-trivial. Note that

(2) CV (θ(b)) = {v ∈ V : σv(θ(b)) = θ(b)} = {v ∈ V : θ(πv(b)) = θ(b)}.

Therefore, CV (θ(b)) = CV (b) by injectivity of θ. The argument above implies
that Wsupp(θ(b)) ⊂ StabV (I), which contradicts the claim since ∅ 6= I 6= C.

Proof of (3).
Assume that there exists a V -equivariant morphism θ : K → L and further

assume that K is non-trivial. Fix a ∈ K, a 6= eK . By Equation (2) we have
that CV (a) ⊂ CV (θ(a)). Therefore,

(3) Wsupp(a) ⊂ CV (θ(a)).
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Since θ(a) ∈ L and L is the direct limit of the Λt, t ∈ T there exists a large
enough tree t0, such that θ(a) is the equivalence class of a certain (ht0 , t0) ∈ Λt0
with coordinates (h`)`∈Leaf(t0).

We will show that h` = β0(h`) = β1(h`), for all ` ∈ Leaf(t0).Write I` the sdi
associated to a leaf ` ∈ Leaf(t0). Following the notation of Section 1.2 consider
the locally constant map

κt0(ht0) : C→ Λ, x` ∈ I` 7→ h`, ` ∈ Leaf(t0).

Consider a thinner tree t ≥ t0 whose associated sdp is obtained by subdivid-
ing each I`, ` ∈ Leaf(t0) into 2n sub-intervals, all of equal lengths, for a fixed
n ≥ 1. In terms of trees, we have that t = f ◦ t0, where f is the forest and
each of its tree has 2n leaves, all at distance n from the root. We choose n ≥ 1
large enough so that for each ` ∈ Leaf(t0), there exists a sub-interval J` ⊂ I` in
the sdp of t satisfying J` ∩ supp(a) = ∅. This is possible since supp(a) is finite.
Note that if x` ∈ J`, ` ∈ Leaf(t0), then

κt(ht)(x`) = βm`(κt0(ht0)(x`)) = βm`(h`),

for a certain finite word m` of length n.
Fix ` ∈ Leaf(t0). We start by proving that βm`(h`) = h`. Note that by

definition we have mJ` = mI` ·m`, where mJ` is the finite word associated to
the sdi J`. Since J` ∩ supp(a) = ∅ we can find v ∈ V adapted to J`, such that
v(J`) is the sdi satisfying mv(J`) = mJ` ·m`, that is:

mv(J`) = mI` ·m` ·m`.

Moreover, v can be chosen inside Wsupp(a). Indeed, it is sufficient to consider a
v whose restriction to any sdi of t intersecting supp(a) is the identity, defining
v on J` as explained above and then choosing any appropriate piecewise linear
map on the remaining pieces of C. Note that Equation (3) implies that v
commutes with θ(a). Given any x` ∈ v(J`), we have that κt0(ht0)(x`) = h` and
κt(ht)(x`) = βm`(h`). By definition of the directed system of groups (Λs, s ∈ T)
we have that if we evaluate a representative of θ(a) at the point x`, for any tree
having the sdi v(J`) in its associated sdp, we obtain βm` ◦βm`(h`). Now, by the
definition of the Jones action, if we evaluate the representative of πv(θ(a)) at
the point x`, for any tree having the sdi v(J`) in its associated sdp, we obtain
βm`(h`). Since v commutes with θ(a) we obtain the equality:

βm`(h`) = βm` ◦ βm`(h`).

Since β0 and β1 are injective, so is βm` , and, thus, h` = βm`(h`).
We now prove that β0(h`) = β1(h`) = h`. Consider now v ∈ Wsupp(a)

adapted to J`, such that v(J`) is the first half of J`. Fix x` ∈ v(J`). The same
evaluation process of representatives of θ(a) and πv(θ(a)) at x` provides that
β0 ◦ βm`(h`) = βm`(h`). Since βm`(h`) = h` we obtain that β0(h`) = h`. A
similar proof provides that β1(h`) = h`.
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Denote by H : C → Λ the map equal to κt0(ht0). We have proved that
β0(H(x)) = β1(H(x)) = H(x), for all x ∈ C. This implies that H = κs(hs), for
all s ≥ t0, where (hs, s) is the representative of θ(a) in Λs. It is easy to deduce
that πv(H)(x) = H(v−1x), for all v ∈ V and x ∈ C. If {A1, · · · , An} is the
partition of C for which θ(a) is constant on each Ai and takes different values
in Ai and Aj if i 6= j, then

CV (θ(a)) = {v ∈ V : v(Ai) = Ai, ∀1 ≤ i ≤ n}.

A similar argument used in the claim shows that CV (θ(a)) never contains
Wsupp(a) unless n = 1. This implies that θ(a) commutes with the whole group
V , and so does a. Since V acts transitively on Q2 this implies that a is sup-
ported on Q2 or nowhere, which is a contradiction since a 6= eK and a is finitely
supported. �

Remark 2.14. — Given a triple (Γ, α0, α1) with α0, α1 any endomorphisms it
could happen that the associated direct limit group K := lim−→t∈T Γt is trivial
even if Γ is not. Take, for instance, any group Γ and α0 = α1 = εΓ the trivial
endomorphism. In fact, K is trivial if and only if there exists n ≥ 1, such that
αw = εΓ, for all finite words w ∈ {0, 1}(N), with more than n letters.

Consider now the notations and assumptions of the last theorem. We obtain
that K is trivial if and only if αn0 = εΓ for n ≥ 1 large enough. Since β0 and
β1 are injective so is βw, for all word w. Therefore, L is trivial if and only if Λ
is trivial.

3. Automorphism groups of untwisted fraction groups

For the whole section, we fix a group Γ and consider its discrete loop group
LΓ of locally constant maps and the semi-direct product G = LΓoV obtained
from the untwisted Jones action:

π : V → Aut(LΓ), πv(a)(x) := a(v−1x), v ∈ V, a ∈ LΓ, v ∈ V.

Note that G is the fraction group obtained from the monoidal functor:

Φ : F → Gr, Φ(1) = Γ, Φ(Y )(g) = (g, g), g ∈ Γ,

as explained in Section 1.2.
The aim of this section is to provide a clear description of the automorphism

group Aut(G) of G. We consider four kinds of automorphisms, which we call
elementary. We will later show that they generate Aut(G). Moreover, we will
explain how these elementary automorphisms interact with each other, giving
a semi-direct product structure (up to a small quotient) of Aut(G).

3.1. Elementary automorphisms. — We now separately define four kinds of
elementary automorphisms of our fraction group G.
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3.1.1. Action of the normaliser of V inside the homeomorphism group of the
Cantor space.Consider the group of homeomorphisms of the Cantor space C
that normalise V :

NH(C)(V ) = {ϕ ∈ Homeo(C) : ϕV ϕ−1 = V }.

Recall from Section 1.1 that if I is an sdi and ϕ ∈ NH(C)(V ), then ϕ(I) is a
finite union of sdi. This implies that if a ∈ LΓ, then aϕ := a ◦ ϕ−1 is in LΓ
defining an action of NH(C)(V ) on LΓ. This action extends to the semi-direct
product LΓ o V as follows:

ϕ · av := aϕ · adϕ(v) = aϕ · ϕvϕ−1, ϕ ∈ NH(C)(V ), a ∈ LΓ, v ∈ V.

Since the action NH(C)(V ) y V is faithful (this is a well-known fact; see, for
instance, [5]) so is the action NH(C)(V ) y LΓ o V.

Remark 3.1. — Note that we will sometimes work with Q2 rather than C in
this section. We will then often use the identifications of LΓ as a subgroup of∏

Q2
Γ and as a subgroup of

∏
C Γ. For instance, if a ∈ LΓ, ϕ ∈ NH(C)(V ), and

one wants to consider only maps in
∏

Q2
Γ, then the element aϕ is understood

as the restriction to Q2 of the map x ∈ C 7→ ã(ϕ−1(x)), where ã : C→ Γ is the
unique extension of a into a locally constant map on C. More generally, we will
identify a locally constant map defined on Q2 with its unique extension into a
locally constant map defined on C.

3.1.2. Action of the automorphism group of Γ. — Given β ∈ Aut(Γ) we con-
sider the diagonal automorphism

β :
∏
Q2

Γ→
∏
Q2

Γ, β(a)(x) = β(a(x)), a ∈
∏
Q2

Γ, x ∈ Q2.

It is easy to see that β(LΓ) = LΓ, and, moreover, this automorphism is V -
equivariant, inducing an automorphism of LΓ o V . This defines an action by
automorphisms Aut(Γ) y LΓ o V , which is clearly faithful.

As was mentioned earlier, we will identify β with the locally constant map:
x ∈ C 7→ β ∈ Aut(Γ).
3.1.3. Action of the normaliser of G inside the group of all maps. — Write
K :=

∏
Q2

Γ and the (full or unrestricted) wreath product K oV . Identify LΓ
as a subgroup of K and G as a subgroup of K o V. We write

NK(G) = {f ∈ K : fGf−1 = G},

the group of maps f : Q2 → Γ that normalise G inside K o V. This clearly
defines an action written ad of NK(G) on G.

Note that ker(ad) is the set of constant maps valued in the center Z(Γ). We
write Z(Γ) for ker(ad), unless the context is not clear. Indeed, if f ∈ Z(Γ),
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then
ad(f)(av) = favf−1 = fa(fv)−1v = faf−1v = ff−1av = av,

for all a ∈ LΓ, v ∈ V. Conversely, let f ∈ NK(G) satisfying ad(f) = idG, where
idG is the identity of G. Consider g ∈ Γ and g the constant map equal to g
everywhere. We have that g = ad(f)(g) = fgf−1, implying that f is valued
in Z(Γ). Moreover, v = ad(f)(v) = f(fv)−1v, and, thus, f = fv, for all v ∈ V
implying that f is constant since V y Q2 is transitive. We continue to write
ad as the factorised action:

ad : NK(G)/Z(Γ) y G.

Note thatNK(G) is, in general, strictly larger than LΓ and can contain elements
taking infinitely many values, as illustrated by the following example.

Example 3.2. — Consider Γ = Z and define f : Q2 → Z, (xn)n 7→
∑
n xn

using the classical identification Q2 ⊂ {0, 1}N, and where Q2 is identified with
the set of finitely supported sequences. Consider v ∈ V and an adapted sdp
(Ik, 1 ≤ k ≤ n). By definition of V y C we have that v(mIk · y) = mv(Ik) · y
for all 1 ≤ k ≤ n and y ∈ C.

Observe that if x = mIk · y is in Ik for 1 ≤ k ≤ n, then
f(vx)f(x)−1 = f(mv(Ik) · y)f(mIk · y)−1 = f(mv(Ik))− f(mIk).

This implies that f(fv)−1 is locally constant, for all v ∈ V . Since Z is abelian
we deduce that f ∈ NK(G). This provides an example of an element f ∈
NK(G), which takes infinitely many values.

3.1.4. Action of the center of Γ. — The action of the center is rather less
obvious than the three other actions defined above. Consider the map

V ×Q2 → Z, (v, x) 7→ `v(x) := log2(v′(v−1x)).
Since elements of V satisfy the product rule for derivation we obtain that v 7→ `v
satisfies the co-cycle property:

`vw = `v + `vw, v, w ∈ V.
This implies that the formula

ζ · (av) := ζ`vav, ζ ∈ Z(Γ), a ∈ LΓ, v ∈ V
defines an action

F : Z(Γ)→ Aut(G), ζ 7→ Fζ : av 7→ ζ`vav, a ∈ LΓ, v ∈ V.
This action is faithful. Indeed, consider v ∈ V and x ∈ Q2, such that vx = x
and v′(x) = 2. Take, for instance, one of the classical generators of F and
x = 0 (x is the infinite sequence of 0 in the Cantor space C, which corresponds
to the usual zero of the real numbers). We obtain that Fζ(v) = ζ`vv ∈ LΓ and
ζ`v (x) := ζ`v(x) = ζ for all ζ ∈ Z(Γ). Therefore, the action is faithful.
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We summarise our study in the proposition below.

Proposition 3.3. — The following formulas define faithful actions by auto-
morphisms on G:

A : NH(C)(V )×Aut(Γ)→ Aut(G), Aϕ,β(av) := β(a)ϕ · adϕ(v);
ad : NK(G)/Z(Γ)→ Aut(G), ad(f)(av) = favf−1 = fa(fv)−1 · v;
F : Z(Γ)→ Aut(G), Fζ(av) := ζ`v · a · v,

where
β(a)(x) := β(a(x)), aϕ(x) := a(ϕ−1x), adϕ(v) := ϕvϕ−1,

`v(x) := log2(v′(v−1x)) and ζ`v : Q2 → Z(Γ), x 7→ ζ`v(x)

for
a ∈ LΓ, v ∈ V, x ∈ Q2, β ∈ Aut(Γ), ϕ ∈ NH(C)(V ), f ∈ NK(G)/Z(Γ), ζ ∈ Z(Γ).

Moreover, the actions ad and F mutually commute.

Proof. — There is nothing to prove except that the actions of NH(C)(V ) and
Aut(Γ) (orNK(G)/Z(Γ) and Z(Γ)) mutually commute, which is rather obvious.

�

3.2. Decomposition of the automorphism group. — Before proving the main
theorem we define a useful function. Consider ϕ ∈ NH(C)(V ) and the inverse
image ϕ−1(Q2). Note that Q2 is by definition the set of all sequences of C that
are eventually equal to 0. It is an orbit under the action of V , and by Rubin
theorem we have that ϕ−1(Q2) is also such an orbit. There exists a prime word
c in 0, 1 satisfying that x ∈ ϕ−1(Q2), if and only if x = y · c∞, for a certain
word y. With kϕ := |c| we write the number of letters in the word c.

Lemma 3.4. — Consider ϕ ∈ NH(C)(V ). There exists a unique map
γϕ : Q2 → Z, x 7→ γϕ(x)

satisfying that if v ∈ V , then
γϕ(v0) = log2((ϕ−1vϕ)′(ϕ−10))− kϕ · log2(v′(0)).

In particular, if v, w ∈ V and v0 = w0, then
log2((ϕ−1vϕ)′(ϕ−10))− kϕ · log2(v′(0))

= log2((ϕ−1wϕ)′(ϕ−10))− kϕ · log2(w′(0)).
Moreover, we have the equality:

γϕ(vx)− γϕ(x) = log2((ϕ−1vϕ)′(ϕ−1x))− kϕ · log2(v′(x))

for all ϕ ∈ NH(C)(V ), v ∈ V, x ∈ Q2.
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Note that here we use the symbol 0 to denote two different objects. We
use it as a letter when we write elements of C as infinite sequences of 0 and 1.
Moreover, we use this symbol to denote the usual zero of the real numbers
corresponding to the infinite sequence of 0 in C.

Proof. — Consider ϕ ∈ NH(C)(V ), v, w ∈ V and x ∈ Q2 satisfying that vx =
wx. Let c be a prime word in 0, 1 satisfying that ϕ−1(Q2) is the class of C/V
containing c∞ and write kϕ = |c|. Put u := w−1v and observe that ux = x. By
Proposition 1.2 we have that

log2[(ϕ−1uϕ)′(ϕ−1x)] = kϕ · log2(u′(x)).
Recall that the chain rule applies to elements of V . Therefore,

v′(x) = (wu)′(x) = w′(ux) · u′(x) = w′(x) · u′(x).
This implies that

log2(v′(x))− log2(w′(x)) = log2(u′(x)).
We deduce the following:
log2[(ϕ−1vϕ)′(ϕ−1x)] = log2[(ϕ−1wuϕ)′(ϕ−1x)]

= log2[(ϕ−1wϕ)′(ϕ−1x)] + log2[(ϕ−1uϕ)′(ϕ−1x)]
= log2[(ϕ−1wϕ)′(ϕ−1x)] + kϕ · log2(u′(x))
= log2[(ϕ−1wϕ)′(ϕ−1x)] + kϕ(log2(v′(x))− log2(w′(x))).

We obtain the equality:
log2((ϕ−1vϕ)′(ϕ−1x))− kϕ · log2(v′(x))

= log2((ϕ−1wϕ)′(ϕ−1x))− kϕ · log2(w′(x)).
This proves the first statement when applied to x = 0.

Consider now the map ϕ ∈ NH(C)(V ), v ∈ V and x ∈ Q2. There exists
w ∈ V satisfying w0 = x since V y Q2 is transitive. We have that

γϕ(vx) = log2((ϕ−1vwϕ)′(ϕ−10))− kϕ · log2((vw)′(0))
= log2((ϕ−1vϕ)′(ϕ−1x)) + log2((ϕ−1wϕ)′(ϕ−10))
− kϕ · log2(v′(x))− kϕ · log2(w′(0))

= γϕ(x) + log2((ϕ−1vϕ)′(ϕ−1x))− kϕ · log2(v′(x)),
proving the second statement. �

We are now ready to prove the main theorem of this section.

Theorem 3.5. — Let Γ be a group and G := LΓo V the associated untwisted
fraction group. The formula

(ϕ, β) · (ζ, f) := (β(ζ)kϕ , β(f)ϕ · ζγϕ)
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defines an action by automorphisms of NH(C)(V ) × Aut(Γ) on Z(Γ) ×
NK(G)/Z(Γ), where

ϕ ∈ NH(C)(V ), β ∈ Aut(Γ), ζ ∈ Z(Γ), f ∈ NK(G)/Z(Γ).

Write (Z(Γ)×NK(G)/Z(Γ))o(NH(C)(V )×Aut(Γ)) for the semi-direct product
constructed from the action of above.

The following map
Ξ : (Z(Γ)×NK(G)/Z(Γ)) o (NH(C)(V )×Aut(Γ))→ Aut(G)

(ζ, f, ϕ, β) 7→ Fζ ◦ ad(f) ◦Aϕ,β
is a surjective group morphism with kernel

ker(Ξ) = {(eZ(Γ), g, idV , ad(g−1)) : g ∈ Γ},
where g : Q2 → Γ is the constant map equal to g everywhere identified with an
element of NK(G)/Z(Γ) and where ad(g−1) stands for the inner automorphism
h 7→ g−1hg belonging to Aut(Γ).

Proof. — Let Γ be a group and let G := LΓ o V be the (untwisted) fraction
group associated to it. We start by proving that every automorphism of G is
the composition of some elementary ones as defined in Section 3.1.

Fix θ ∈ Aut(G). Proposition 1.11 implies that θ(LΓ) = LΓ. Therefore,
there exists κ ∈ Aut(LΓ), ϕ ∈ NH(C)(V ) and a co-cycle c : V → LΓ satisfying:

θ(av) = κ(a) · cv · adϕ(v) for all a ∈ LΓ, v ∈ V.

Since av 7→ aϕ·adϕ(v) is an elementary automorphism, up to composing with it,
we can assume that ϕ(x) = x, for all x ∈ C. We obtain that θ(av) = κ(a) · cv ·v
for all a ∈ LΓ, v ∈ V.

Note that θ is a spatial automorphism since Γ = Γα by Remark 2.9. There-
fore, the map ζ : G→ Z(G) of Theorem 2.8 is necessarily trivial. Theorem 2.8
implies that κ splits as a product of automorphisms

∏
x∈C κx, such that

κ(a)(x) = κx(a(x)) for all a ∈ LΓ, x ∈ C,

and where κx ∈ Aut(Γ) for all x ∈ C. Moreover, we have the following useful
equation:
(4) κvx = ad(cv(vx)) ◦ κx for all v ∈ V, x ∈ C.

Claim. — The map x ∈ C 7→ κx ∈ Aut(Γ) is locally constant, i.e. this map
belongs to LAut(Γ).

We will prove the claim using a compactness argument. We start by observ-
ing that cv(x) ∈ Z(Γ) if x ∈ C, v ∈ V and vx = x. Indeed, Equation 4 implies
that κx = ad(cv(x))◦κx, giving that ad(cv(x)) = idΓ. Therefore, cv(x) ∈ Z(Γ).
Consider now x ∈ Q2, v ∈ V and I an sdi starting at x that is adapted to v
such that v(I) is the first half of I. Such a triple exists since x ∈ Q2. Note that
if J ⊂ I is an sdi starting at x, then we have that v is adapted to J , and v(J)
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is the first half of J . Since cv is locally constant, up to reducing I to a smaller
sdi starting at x, we can assume that cv is constant on I. Since vx = x we have
that cv(x) ∈ Z(Γ), and, thus, cv(y) = cv(x) ∈ Z(Γ) for all y ∈ I. Equation 4
implies that

(5) κvy = κy for all y ∈ I.

Consider now a fixed g ∈ Γ and a fixed y ∈ I. The function κ(g) is locally
constant, and, thus, there exists an sdi Ig ⊂ I starting at x on which κ(g)
is constant. Note that since y ∈ I we have that the sequence (vn(y))n≥1 is
contained in I and is converging to x. Hence, for n large enough, we have
that vn(y) ∈ Ig, implying that κx(g) = κvn(y)(g). Equation (5) implies that
κvn(y)(g) = κy(g). We deduce that κx(g) = κy(g). Since this is true for any
g ∈ Γ and y ∈ I we obtain that y 7→ κy is constant on I. We have proved
that, for any x ∈ Q2, there exists an sdi Ix starting at x on which y 7→ κy is
constant.

Consider now the set X ⊂ C of all x ∈ C satisfying that there exists an
open set Ox containing x such that κx = κy, for all y ∈ Ox. We will show that
X = C. Note that by definition X is open. We have proved that Q2 ⊂ X,
implying that X is non-empty. Let us show that X is V -invariant. Consider
x ∈ X and v ∈ V . By definition of X there exists an open set Ox containing
x such that κy = κx, for all y ∈ Ox. The function cv(v·) is locally constant,
implying that there exists an sdi Jx containing x such that cv(vy) = cv(vx),
for all y ∈ Jx. The intersection O := Ox∩Jx is open and contains x. Moreover,
if y ∈ O, by Equation 4 we have the following:

κvy = ad(cv(vy)) ◦ κy = ad(cv(vx)) ◦ κy = ad(cv(vx)) ◦ κx = κvx.

Therefore, z 7→ κz is constant on v(O), which is open and contains vx. We
have proved that vx ∈ X, and, thus, that X is V -invariant. Any V -orbit is
dense in C and, thus, intersects the non-empty open set X. This proves that
X contains all the V -orbits, and, thus, X = C. Given x ∈ C we write Ix an sdi
containing x on which z 7→ κz is constant. We have that (Ix : x ∈ C) is an
open covering of C, and by compactness there exists a finite subcovering. This
implies that y 7→ κy is locally constant and proves the claim.

Via the claim we are now able to remove κ. Equation 4 implies that κx = κy
mod Inn(Γ), if V x = V y and x, y ∈ C. Since x 7→ κx is locally constant, and
any orbit of V is dense in C we deduce that κx = κy mod Inn(Γ), for all
x, y ∈ C. Recall that given any β ∈ Aut(Γ) we can produce an elementary
automorphism of G via the formula

av 7→ β(a)v, where β(a)(x) := β(a(x)), a ∈ LΓ, v ∈ V, x ∈ C.

So up to composing with such an automorphism we can now assume that κx ∈
Inn(Γ), for all x ∈ C. We obtain that κ = ad(f) for a certain map f : C → Γ.
Moreover, x ∈ C 7→ ad(f(x)) ∈ Inn(Γ) is locally constant. Therefore, f = f0·f1,
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where f0 ∈ LΓ and f1 ∈
∏

C Z(Γ). We have that κ = ad(f0 · f1) = ad(f0) with
f0 ∈ LΓ ⊂ NK(G). Up to composing with the elementary automorphism
ad(f0), we can now assume that κ = idLΓ, and, thus,

θ(av) = a · cv · v for all a ∈ LΓ, v ∈ V.

It remains to remove the co-cycle part of the automorphism. We start by
observing that cv(x) is in the center of Γ for all v ∈ V, x ∈ C. Indeed, given
a ∈ LΓ, v ∈ V we have

av = κ(av) = θ(vav−1) = θ(v)κ(a)θ(v)−1 = cv · v · a · v−1 · c−1
v = cv · av · c−1

v .

Therefore, cv commutes with any av for a ∈ LΓ, that is, cv is in the center
of LΓ, for all v ∈ V . Hence, cv(x) ∈ Z(Γ), for all x ∈ C, v ∈ V. We apply
Proposition 1.13 on co-cycles valued in an abelian group: there exists ζ ∈ Z(Γ)
and f : Q2 → Z(Γ) satisfying

cv(x) = ζ log2(v′(v−1x)) · f(x)f(v−1x)−1, v ∈ V, x ∈ Q2.

We recognise that θ = Fζ ◦ad(f) with f necessarily in NK(G).We have proved
that Aut(G) is generated by the four kinds of automorphisms presented in
Section 3.1.

We now prove that the formula given in the theorem defines an action and,
thus, a semi-direct product. In order to manipulate lighter notations we write
Aϕ for Aϕ,idΓ and Aβ , for AidV ,β , where ϕ ∈ NH(C)(V ) and β ∈ Aut(Γ). It is
rather easy to see that the actions of NH(C)(V ) and Aut(Γ) mutually commute
and so do the actions of Z(Γ) and NK(G). A routine computation shows that

Aϕ,β ad(f)A−1
ϕ,β = ad(β(f)ϕ), ϕ ∈ NH(C)(V ), β ∈ Aut(Γ), f ∈ NK(G)

and that

AβFζA
−1
β = Fβ(ζ), ζ ∈ Z(Γ).

The delicate point of the formula is the computation of AϕFζA−1
ϕ . Fix ϕ ∈

NH(C)(V ), ζ ∈ Z(Γ), a ∈ LΓ, v ∈ V and observe that

(AϕFζA−1
ϕ )(av) = (AϕFζ)(a ◦ ϕ · ϕ−1vϕ)

= Aϕ(ζ`ϕ−1vϕ · a ◦ ϕ · ϕ−1vϕ) = ζ
`ϕ
ϕ−1vϕ · av.

Note that v ∈ V 7→ ζ
`ϕ
ϕ−1vϕ is necessarily a co-cycle since AϕFζA−1

ϕ is mul-
tiplicative. Moreover, it is valued in the abelian group 〈ζ〉 generated by ζ
inside Γ. Proposition 1.13 implies that there exists a pair (ξ, h) ∈ 〈ζ〉×

∏
Q2
〈ζ〉

satisfying that AϕFζA−1
ϕ = Fξ ◦ad(h), and, moreover, this pair is unique up to

multiplying h by a centrally valued constant map. Note that since AϕFζA−1
ϕ

and Fξ are automorphisms of G we necessarily have that h normalises G. Al-
together we obtain that NH(C)(V ) × Aut(Γ) normalises Z(Γ) × NK(G)/Z(Γ).
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Consider the map γϕ defined in Lemma 3.4 and recall that
γϕ(vx)− γϕ(x) = log2((ϕ−1vϕ)′(ϕ−1x)− kϕ · log2(v′(x)), v ∈ V, x ∈ Q2.

Therefore, `ϕϕ−1vϕ − kϕ · `v = γϕ − γvϕ, and, thus,

AϕFζA
−1
ϕ = Fζkϕ ◦ ad(ζγϕ).

This proves that the formula
(ϕ, β) · (ζ, f) := (β(ζ)kϕ , β(f)ϕ · ζγϕ)

defines an action.
We have proved that Ξ is a well-defined surjective group morphism. To

conclude it remains to check that ker(Ξ) is equal to
M := {(eZ(Γ), g, idV , ad(g−1)) : g ∈ Γ}.

It is clear that M is a subgroup of ker(Ξ). Consider θ = (ζ, f, ϕ, β) ∈ ker(Ξ).
Observe that for all v ∈ V we have:

v = Ξ(θ)(v) = h · ϕvϕ−1,

for a certain h ∈ LΓ. This implies that adϕ(v) = v, and, thus, ϕ is trivial since
NH(C)(V ) y V is faithful. Now, eG = Ξ(θ)(v)v−1 = ζ`vf(fv)−1, v ∈ V and
evaluating this function at x ∈ Q2 for a fixed v ∈ V satisfying vx = x and
v′(x) = 2 we obtain that ζ = eZ(Γ). Consider k ∈ Γ, we have k = Ξ(θ)(k) =
fβ(k)f−1. Therefore, β = ad(f(x)−1), for any choice of x ∈ Q2, implying that
the map x ∈ Q2 7→ ad(f(x))−1 ∈ Inn(Γ) is constant, equal to ad(g−1) for a
certain g ∈ Γ. We obtain that θ = (eZ(Γ), g, idV , ad(g−1)) ∈ M , and, thus,
ker(Ξ) = M. �

Appendix A. Comparison of Jones’ technology with cloning systems
of Witzel–Zaremsky and with Tanushevski’s construction

A.1. Cloning systems of Witzel–Zaremsky. —

Zappa–Szep products and cloning systems. — Here, we present a different
method for producing Thompson-like groups. This method is based on Zappa–
Szep products (or bi-crossed products) of monoids. Brin constructed a braided
version of the Thompson group that is known today as the braided Thompson
group BV (constructed independently by Dehornoy [24]) using a bi-crossed
product of the monoid of forests and the infinite strand braid groups [10, 9].
Witzel and Zaremsky provided an abstract reformulation of this construction.
They obtained a very convenient formalism for constructing new groups hav-
ing similar properties to Thompson groups [48, 49]. This technology is very
well adapted to study finiteness properties and, indeed, they constructed new
interesting families of groups of type Fn (i.e. groups for which there exists a
classifying space with finite n-squeleton) for n ≥ 1. This is truly remarkable as
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it is a very difficult question to decide whether a group satisfies any finiteness
properties. Most of the usual operations on groups destroys finiteness proper-
ties. However, they discover that their machinery in many cases preserves such
properties.
A.1.1. Zappa–Szep products of a forest with a group.Consider F∞ the set of all
forests having infinitely many roots and leaves indexed by a natural number,
such that all but finitely many of the trees are non-trivial. We equip this set
with the operation of vertical concatenation making it a monoid. Consider
now a group Γ∞ and a Zappa–Szep product or bi-crossed product F∞ ./ Γ∞
between these two monoids. This is a generalisation of the semi-direct product
where F∞ and Γ∞ simultaneously act on each other. Under mild conditions,
this monoid admits a calculus of fractions (it satisfies the Ore property and
is cancellative) and, thus, provides a fraction group Frac(F∞ ./ Γ∞). In that
case, we say that the bi-crossed product F∞ ./ Γ∞ is a Brin–Zappa–Szep
product. Elements of Frac(F∞ ./ Γ∞) are (equivalence classes) of pairs of
forests decorated by elements of Γ∞. Consider the subgroup G(F∞ ./ Γ∞)
made of pairs of trees rather than pairs of forests. This is the construction
of Brin for obtaining the braided Thompson group BV . In this example, the
group Γ∞ is the group B∞ of finitely supported braids (elements are braids
with infinitely many strands indexed by a natural number and with only finitely
many crossings). The Zappa–Szep product F∞ ./ B∞ consists in “braiding the
forests”; we obtain a monoid where an element of it consists of a forest with
on top of it a braid. The Zappa–Szep product explains how to compose these
“braided forests."
Witzel–Zaremsky’s cloning systems.Witzel and Zaremsky defined a general
theory for producing and studying the class of groups G(F∞ ./ Γ∞) above
[48, 49] Their theory can be interpreted as a general axiomatisation of Brin–
Zappa–Szep products of F∞ with a group Γ∞. To do this they define a
so-called cloning system on a family of groups, which we now present. De-
note by S = (Sn, jm,n : Sn → Sm : 1 ≤ m ≤ n) the directed system of
symmetric groups Sn of {1, · · · , n}, where jm,n is induced by the inclusions
{1, · · · ,m} ⊂ {1, · · · , n} for 1 ≤ m ≤ n. A cloning system is the following set
of data:

1. A directed system of groups
G := (Γn, ιm,n : Γm → Γn : 1 ≤ m ≤ n)

where the morphisms ιm,n, 1 ≤ m ≤ n are all injective.
2. A sequence of group morphisms R = (ρn : Γn → Sn, n ≥ 1) compatible

with the directed systems G and S.
3. A collection of so-called cloning maps K = (κnk : Γn → Γn+1, 1 ≤ k ≤ n)

that are injective maps (not necessarily group morphisms) compatible
with the directed system G.
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4. Three conditions
(a) C1 (cloning a product) about cloning maps applied to a product of

elements;
(b) C2 (product of clonings) about compositions of cloning maps;
(c) C3 (compatibility) about compatibilities between the maps of R

and the cloning maps.
Given such a cloning system one can form a Brin–Zappa–Szep product F∞ ./
Γ∞, where Γ∞ is the direct limit group of the system G, that is, Γ∞ = lim−→n

Γn.
Now we consider the fraction group Frac(F∞ ./ Γ∞) of the monoid F∞ ./ Γ∞,
which consists of pairs of labelled forests. Finally, we consider G(G,R,K) the
subgroup of Frac(F∞ ./ Γ∞), which consists of pairs of labelled trees. This is
the group considered by Witzel and Zaremsky.

Comparison between cloning systems and Jones’ technology. — We will now
compare the two constructions of groups: cloning systems and Jones’ tech-
nology. Recall that the initial motivations to create each framework are very
different. Cloning systems were introduced to build groups that resemble the
Thompson group and better understand the behaviour of properties of groups,
such as finiteness properties. Jones’ technology was introduced to build confor-
mal field theories from subfactors. Jones’ technology is a machine for produc-
ing actions of groups (in fact, actions of groupoids). The author uses Jones’
technology for producing groups that have remarkable descriptions as fraction
groups.

Consider the category of forests F and a functor Φ : F → D, where D is a
category. The category F admits a calculus of fractions and, thus, a fraction
groupoid GF , which consists of equivalence classes of pairs of forests (f, g), so
that f and g have the same number of leaves. Note that if we only consider
pairs of trees with the same number of leaves, we obtain Thompson group F .
More generally, if we consider pairs of forests with a fixed number of roots r and
the same number of leaves, we obtain the Brown–Higmann–Thompson group
F2,r (where 2 refers to binary). Let us call GF the Thompson groupoid. Jones’
technology constructs an action of the Thompson groupoid from any functor
Φ : F → D. By considering the restriction of this action to Thompson group
F we obtain what we have called a Jones action in this article.
First comparison: group actions and bi-crossed products. — We can already
see two major differences between the two technologies. On one side we con-
struct a bi-crossed product between the monoid of forests F∞ and a group
Γ∞. On the other side, we construct an action of the Thompson groupoid GF .
First, we have mutual actions of F∞ and Γ∞ on each other rather than one
groupoid acting on an object. This is well illustrated by Brin’s construction
of the braided Thompson group BV , where braids and forests mutually act
on each other. Second, there are two limit processes in the Witzel–Zaremsky
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framework: a direct limit of groups Γ∞ = lim−→Γn and a monoid F∞, which
can be interpreted as a limit of the morphism spaces of the category of forests:
F∞ = lim−→F(n,m). In Jones’ framework, there is one limit process for con-
structing an action of Thompson group F that is different from the one of
above: a direct limit of a family of objects indexed by trees (or indexed by
forests for an action of the Thompson groupoid). We will delve into this later
more deeply.

We now specialise to functors Φ : F → Gr going to the category of groups.
Jones’ technology provides an action of the Thompson groupoid. The restric-
tion of this action to the Thompson group is an action F y K, where K is
a group obtained by taking a limit of groups over the set of trees. Moreover,
F acts by group automorphisms, and, thus, we can consider the semi-direct
product K o F . Consider now a group G = G(G,R,K) constructed from a
cloning system (G,R,K). We want to compare the groups K o F and
G(G,R,K) and how they have been built.
Second comparison: direct/inverse limit, semi-direct product structure. — Note
that here, if the functor Φ : F → Gr is covariant, then K is a direct limit, while
when the functor is contravariant, then we have that K is an inverse limit. We
will see that the construction using a cloning system shares some similarities
with the construction ofKoF when the functor Φ : F → Gr is covariant. How-
ever, we do not see any resemblance between the construction of a group using
a cloning system and that using a contravariant functor. Jones’ technology
provides a semi-direct product K o F via the Jones action F y K. However,
the group G(G,R,K) obtained from a cloning system does not decompose into
such a semi-direct product in general, e.g. the braided Thompson group BV .

Covariant functors and pure cloning systems. —
Certain covariant functors provide pure cloning systems. — Consider now a
covariant functor Φ : F → Gr. Let us describe the amount of information that
such a functor encodes. We will then relate this information with a cloning
system. For each n ≥ 1, we have a group Φ(n). For each forest f ∈ F(n,m), 1 ≤
n ≤ m, we have a group morphism Φ(f) : Φ(n) → Φ(m), so that Φ(f ◦ g) =
Φ(f) ◦ Φ(g) if g ∈ F(k, n), 1 ≤ k ≤ n. We will now use the universal property
of the category of forests for considering generators of the forests rather than
all forests. The forests are generated by the elementary ones: fk,n, 1 ≤ k ≤ n
the forests with n roots, n+ 1 leaves with all its tree trivial except the kth one
that has two leaves. These elementary forests satisfy the following relations:

fk,n+1 ◦ fj,n = fj+1,n+1 ◦ fk,n, 1 ≤ k < j ≤ n.

The category F is the universal category presented by these generators and
relations. Therefore, defining a covariant functor Φ : F → Gr is equivalent
to defining a family of groups (Φ(n), n ≥ 1) and a family of group morphism
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(Φ(fk,n), 1 ≤ k ≤ n) satisfying the relations

(6) Φ(fk,n+1) ◦ Φ(fj,n) = Φ(fj+1,n+1) ◦ Φ(fk,n), 1 ≤ k < j ≤ n.

This is very reminiscent of a cloning system if we write Γn := Φ(n) and κnk :=
Φ(fk,n) for 1 ≤ k ≤ n. A main difference being that in Jones’ framework,
all the maps Φ(fk,n), 1 ≤ k ≤ n must be group morphisms (not necessarily
injective) while they are any injective maps for cloning systems. Assume that
Φ(fk,n) is injective, for all 1 ≤ k ≤ n, which is equivalent to saying that
Φ(f) is injective for all forests f . In the cloning system framework, there is a
directed system G associated to the groups Φ(n), n ≥ 1. In Jones’ framework,
there is no such thing in general. Define ρn : Γn → Sn to be the trivial map
for all n ≥ 1. One can check that (Φ(n), n ≥ 1) together with a directed
structure, K := (Φ(fk,n), 1 ≤ k ≤ n) and (ρn, n ≥ 1) defines a cloning system.
This cloning system is called pure because the maps ρn, n ≥ 1 are all trivial.
Moreover, the group G associated to this cloning system is isomorphic to the
fraction group K o F obtained from the functor Φ.
Pure cloning systems provide covariant functors and more. — Conversely, con-
sider a pure cloning system (G,R,K). Let us construct a (covariant) functor
Φ : F → Gr . Condition C1 (see the axioms of a cloning system written above)
is equivalent to having that K is a collection of group morphisms. Condition C2
is equivalent to Equation 6. Therefore, the universality property of F implies
that there exists a unique covariant functor Φ : F → Gr satisfying

Φ(n) = Γn,Φ(fk,n) = κnk for all 1 ≤ k ≤ n.

Note that since the cloning maps are injective by assumption so are the mor-
phisms Φ(fk,n), for all 1 ≤ k ≤ n, implying that Φ(f) is injective for all forest
f . Condition 3 is empty in this situation. Consider now the Jones action
π : F y K associated to the functor Φ. Note that since the functor is not nec-
essarily monoidal, in general, we cannot extend the Jones action to an action
of V . We obtain a semi-direct product K o F . One can show that K o F is
isomorphic to the group G(G,R,K) obtained from the cloning system (G,R,K).

In fact, we can do more. Note that the directed system G produces a limit
group Γ∞ := lim−→n

Γn and write ιn : Γn → Γ∞, n ≥ 1 for the inclusion maps.
Consider the monoid of forests F∞ and write fk ∈ F∞ for the elementary
forest having all its tree trivial except the kth one that has two leaves k ≥ 1.
There is an obvious functor j : F → F∞, which we now define. The functor
j sends all objects n ≥ 1 of F to the unique object of F∞, which we denote
by ∞. The functor j sends all finite forests f of F to the finitely supported
forest j(f) consisting of f followed to its right by infinitely many trivial trees,
i.e. j(f) = f ⊗ I⊗∞. Alternatively, using generators we can define j : F → F∞
as the unique functor satisfying j(n) =∞ and j(fk,n) = fk, for all 1 ≤ k ≤ n.
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We now define a functor Φ : F∞ → Gr satisfying Φ(∞) = Γ∞ and

Φ(fk)(ιn(g)) := ιn+1(Φ(fk,n)(g)), 1 ≤ k ≤ n, g ∈ Γn.

The functor Φ is in some sense obtained by looking at the functor Φ at infinity.
We say that Φ is a lift of the functor Φ. Without talking about functors and
categories we have defined an action by group automorphisms of the monoid
F∞ on the group Γ∞.We realise that the bi-crossed product F∞ ./ Γ∞ induced
by the cloning system is, in fact, a usual semi-direct product F∞ n Γ∞. The
action F∞ y Γ∞ used to construct the semi-direct product is precisely the one
given by the functor Φ.

In conclusion, a pure cloning system gives an action F∞ y Γ∞ and provides
a group G. Moreover, the pure cloning system defines a covariant functor Φ :
F → Gr whose associated fraction group KoF is isomorphic to G. Conversely,
a covariant functor Φ : F → Gr admitting a lift Φ : F → Gr, so that Φ(f)
is injective for all forests, provides a pure cloning system. Hence, morally
covariant functors Φ : F → Gr and pure cloning systems are very similar.
They both produce a class of groups, and these two classes contain a large
common subclass. Note that all these groups are built from F rather than other
Thompson groups since we did not incorporate any permutations or braids into
the forests.

Incorporating permutations and braids. — One of the main differences be-
tween the two technologies resides in incorporating permutations or braids in
the picture. This means that the group constructed will look like more of an
extension of F, T, V . In general, the technology of cloning systems seems bet-
ter adapted to this purpose than Jones’ actions and able to produce interesting
groups containing F, T, V , far from being semi-direct products like in the Jones
construction.

If G is a group produced via a cloning system, then the properties of the
cloning maps will decide if G is closer to Thompson group F, T, V or something
in between (e.g. V mock built via mock permutations) or beyond (e.g. BV ). If
the cloning maps are not group morphisms, then necessarily the maps ρn :
Γn → Sn, n ≥ 1 are non-trivial. The data of the cloning systems is then more
complex and produce groups closer to the larger Thompson groups T, V,BV ,
etc. This is a key feature of this formalism, which works very differently with
respect to that of Jones.

In Jones’ formalism, there are two ways to obtain actions of larger groups
than F . First, if one has a monoidal functor Φ : F → Gr, then the Jones action
F y K can be extended to V y K via permuting tensors. Second, in the non-
monoidal context, we enlarge the initial category F . This means that instead
of considering the category of forests F , we will consider a larger category:
for instance the category of affine forests AF , which corresponds to forests
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together with cyclic permutations of their leaves. Formally, the morphism
spaces AF(n,m) are in bijection with F(n,m)×Z/mZ for 1 ≤ n ≤ m. To apply
Jones’ technology we consider functors Φ : AF → Gr starting from AF . Such
a functor provides a semi-direct products KoT . Now, replacing Z/mZ,m ≥ 1
by the group of all permutations Sm, mock permutations Smockm , braid groups
withm strands Bm, etc., we obtain larger categories VF ,Fmock,BV. A functor
from one of these categories AF ,VF ,Fmock,BV to the category of groups
produces a semi-direct product K oH, where H is equal to T, V, V mock, BV ,
respectively. Some cloning systems where the cloning maps are not group
morphisms will sometimes correspond to a functor Φ : C → Gr, where C is
one of these larger categories of forests. However, there is no longer a clear
correspondence between the two frameworks. The defect of the cloning maps of
not being group morphisms is, in the Jones framework, hidden in the categorical
structure of C; structure which is more complex than the categorical structure
of F . Of course, the more C is complex (in terms of its presentation), the more
difficult it is to construct functors Φ : C → Gr.

Transposing this functorial approach in cloning systems would correspond
to replacing the monoid of forests F∞ by a larger monoid such as VF∞ in-
corporating finitely supported permutations. We would then obtain a V -like
group via the construction of a Brin–Zappa–Szep product VF∞ ./ Γ∞. The
construction of Witzel and Zaremsky does not follow this scheme but rather
makes the group Γ∞ and the cloning maps more complex but always keeps the
same monoid of forests F∞.

Constructing the groups considered in this article with cloning systems. — We
end the Appendix by explaining how the groups K o V considered in this
article can be constructed using cloning systems. It is interesting to compare
the constructions ofKoF andKoV using cloning systems, which we will do at
the end of this analysis. Consider a covariant monoidal functor Φ : F → Gr as
done in this present article. This functor is completely described by the triple
(Γ, α0, α1), where Γ := Φ(1) is a group, and (α0, α1) := Φ(Y ) ∈ Hom(Γ,Γ⊕Γ)
is a group morphism. This produces a Jones action F y K that extends to an
action V y K using the monoidality of Φ. Since Φ is monoidal we can assume,
using an argument due to Tanushevski, that g 7→ (α0(g), α1(g)) is injective;
see Proposition 1.4. Define Γn := Γn o Sn, where Sn y Γn acts by permuting
indices n ≥ 1. There is an obvious directed system structure on (Γn, n ≥ 1)
given by the inclusions {1, · · · ,m} ⊂ {1, · · · , n} for 1 ≤ m ≤ n. One can
see that the direct limit of this system is the restricted permutational wreath
product Γ∞ := ⊕n∈NΓ o SN, where SN is the group of finitely supported
permutations on the set of non-zero natural numbers N acting by shifting
indices. Define ρn : Γn → Sn to be the quotient maps for n ≥ 1. Now, for
1 ≤ k ≤ n and g ∈ Γn, we define κnk (g) := Φ(fk,n)(g) ∈ Γn+1, and, thus, its
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jth entry 1 ≤ j ≤ n+ 1 is

κnk (g)j =


gj if 1 ≤ j < k

α0(gj) if j = k

α1(gj) if j = k + 1
gj−1 if k + 2 ≤ j ≤ n+ 1

.

In particular, the restrictions of the cloning maps to direct sums of Γ are
group morphisms. However, they are not when applied to permutations. Given
σ ∈ Sn one can define κnk (σ) ∈ Sn+1 in a diagrammatic way by 2-cabling the
kth strand of σ; see [49, Example 2.2] or [11, Section 2] for details. Finally,
define κnk (gσ) := κnk (g)κnk (σ), for 1 ≤ k ≤ n, g ∈ Γn, σ ∈ Sn. We have defined
a cloning system, and one can check that the associated group G is isomorphic
to K o V .

Using cloning systems, the construction of K o F is much easier than the
one of K o V . To obtain K o F we would consider the group Γn := Γn rather
than Γn o Sn, trivial maps ρn : Γn → Sn, and consider the restriction of the
above cloning maps to Γn for n ≥ 1. In particular, this cloning systems is pure,
as was previously observed.

A.2. Tanushevski’s construction. — Tanushevski independently developed a
framework for constructing a large class of groups [45, 46]. In a very concerete
way, he constructed a large family of groups for which he successfully studied,
among others, questions regarding the lattice of normal subgroups, generators,
presentations and finiteness properties. We will see that his construction can
be completely reinterpreted using Jones’ technology.
The Construction of Tanushevski. — Consider any group Γ and any group
morphism α : Γ → Γ ⊕ Γ, g 7→ (α0(g), α1(g)). Using (Γ, α), Tanushevski con-
structs a limit group uα(Γ) and an action F y uα(Γ). Moreover, he notes that
this action can be extended into V y uα(Γ). He then considers the following
three semi-direct products:

Fα(Γ) := uα(Γ) o F, Tα(Γ) := uα(Γ) o T and Vα(Γ) := uα(Γ) o V.

He provides descriptions of elements of Fα(Γ) := uα(Γ)oF using pairs of trees
whose leaves are labelled by elements of Γ.
Comparison of the two constructions. — We now compare this construction
and description using the technology of Jones. Having a group Γ and a mor-
phism α : Γ → Γ ⊕ Γ is equivalent to having a covariant monoidal functor
Φ : F → Gr from the category of forests to the category of groups equipped
with direct sums for its monoidal structure. The group uα(Γ) and the ac-
tion F y uα(Γ) are the direct limit group of Jones and the Jones’ action,
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respectively, that we have denoted in this article by K and π : F y K, re-
spectively. The extension of the action F y uα(Γ) to an action V y uα(Γ)
of the Thompson group V is the exact same extension that we have been us-
ing in this article. The semi-direct products Fα(Γ) and the description of the
elements as labelled pairs of trees is exactly the same as the one we gave in
[11]. It is remarkable to find the same construction of fraction groups in the
work of Tanushevski. Hence, the construction and diagrammatic description
of a group of Tanushevski is equivalent to considering a Jones action and the
diagrammatic description of the author applied to a covariant monoidal func-
tor Φ : F → Gr . As observed in the previous section, this is equivalent to
considering pure cloning systems but requiring an additional property on the
cloning that translates the monoidality of the functor Φ.
Comparison of questions studied. — The construction of Tanushevski and the
construction of groups presented in this article are rather identical and do not
need any further comparison. We then present how different the questions
studied by Tanushevski and the author are. The two studies are luckily and
interestingly almost completely disjoint and are, thus, complementary. The
author has been considering analytical properties (such as the Haagerup prop-
erty), classifications up to isomorphisms and the description of automorphism
groups for the groups K o V . Tanushevski studied rather exclusively the class
of groups tα(Γ)oF (written KoF in our article) studying questions regarding
finiteness properties and regarding the lattice of normal subgroups of tα(Γ)oF ,
for instance. Some of his work can easily be adapted to our larger group KoV ,
and, for instance, we used it to obtain Proposition 1.4. He provides explicit
presentations of KoF that can then be completed into presentations of KoT
and K o V . For example, given a finite presentation of a group Γ and an in-
jective group morphism α = (α0, α1), thanks to Tanushevski, one can write an
explicit finite presentation to K o F and to K o T and K o V .

Tanushevski provides very strong results on finiteness properties. Fix a
natural number n and a group Γ. He proved that the fraction group K o F
associated to (Γ, idΓ, idΓ) (in our language) is of type Fn, if and only if Γ is
of type Fn. We do not know if this result extends to the larger semi-direct
products K o V , or if this extends to twisted fraction groups, i.e. to fractions
constructed from triples (Γ, α0, α1), where (α0, α1) 6= (idΓ, idΓ). Moreover, it
would be interesting to know whether some of the theorems we proved regarding
classification of the groups K o V and the description of their automorphism
groups could be adapted toKoF (or other semi-direct products likeKoT,Ko
V mock, etc.). However, it is not that clear that there is a rigidity phenomenon
regarding isomorphisms when we consider the semi-direct products K o F .
Indeed, we are using in our proofs that the action V y Q2 is transitive in a very
strong sense. However, the action F y Q2 is not even transitive. Moreover,
the difference in complexity between the automorphism groups Aut(F ) and
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Aut(V ) suggests that the automorphism group of K o F may differ greatly
from the automorphism group of K o V [8, 5]. This makes these questions
even more interesting and intriguing.
Acknowledgement. — We thank the anonymous referee for helping us improve
the quality of this article.
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