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C 0 STABILITY OF BOUNDARY ACTIONS
AND INEQUIVALENT ANOSOV FLOWS

by Jonathan BOWDEN and Kathryn MANN

Abstract. – We give a topological stability result for the action of the fundamental group of a
compact manifold of negative curvature on its boundary at infinity: any nearby action of this group
by homeomorphisms of the sphere is semi-conjugate to the standard boundary action. Using similar
techniques we prove a global rigidity result for the “slithering actions” of 3-manifold groups that come
from skew-Anosov flows. As applications, we construct hyperbolic 3-manifolds that admit arbitrarily
many topologically inequivalent Anosov flows, answering a question from Kirby’s problem list, and
also give a more conceptual proof of a theorem of the second author on globalC 0-rigidity of geometric
surface group actions on the circle.

Résumé. – Le groupe fondamental d’une variété compacte agit sur le bord à l’infini de son revê-
tement universel. Nous démontrons un théorème de rigidité topologique pour cette famille d’actions:
toute action suffisament proche de cette action standard est semi-conjuguée à celle-ci. Avec la même
stratégie de preuve, nous démontrons un théorème de rigidité global pour les actions sur le cercle d’une
variété de dimension 3 avec un « slithering » de Thurston. Comme applications, nous construisons pour
toutN strictement positif une variété hyperbolique de dimension 3 qui admet au moinsN flots d’Ano-
sov topologiquement inéquivalents. Cette construction donne une réponse positive à une question de
Christy de la liste de Kirby. Nous donnons aussi une preuve plus conceptuelle d’un théorème de la
deuxième auteure sur la rigidité globale des actions géométriques d’un groupe de surface sur le cercle.

1. Introduction

This paper proves two related rigidity results for group actions on manifolds, with applica-
tions to skew-Anosov flows. The first is a general local rigidity result for the boundary action
of the fundamental group of a closed negatively curved manifold.
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1004 J. BOWDEN AND K. MANN

1. Local rigidity of boundary actions. – A major historical motivation for the study of
rigidity of group actions comes from the classical (Selberg-Calabi-Weil) rigidity of lattices
in Lie groups. Perhaps the best known example is Calabi’s original theorem that, for n � 3,
the fundamental group of a compact, hyperbolic n-manifold is locally rigid as a lattice
in SO.n; 1/, later extended to a global rigidity result by Mostow. From a geometric-
topological viewpoint, it is natural to consider the action of SO.n; 1/ on the boundary
sphere of the compactification of hyperbolic n-space (the universal cover of the manifold
in question) and several modern proofs of Mostow rigidity pass through the study of this
boundary action. See [18] for a broad introduction to the subject.

More generally, if M is a closed n-dimensional manifold of (variable) negative curvature,
its universal cover fM still admits a natural compactification by a visual boundary sphere,
denoted @1fM and the action of �1M on fM by deck transformations extends to an action
by homeomorphisms on @1fM , which we call the boundary action. However, even if M is
smooth, @1fM typically has no more than a Hölder C 0 structure. This presents a new
challenge for dynamicists, as many tools in rigidity theory originate either from hyperbolic
smooth dynamics or the homogeneous (Lie group) setting, where differentiability plays an
essential role.

As we will later show, in theC 0 context the best rigidity result one can hope for is topolog-
ical stability. An action �0 W � ! Homeo.X/ of a group� on a spaceX is said to be a topolog-
ical factor of an action � W � ! Homeo.Y / if there is a surjective, continuous map h W X ! Y

(called a semiconjguacy) such that hı�0 D �ıh. A group action � W � ! Homeo.X/ is topo-
logically stable if any action which is close to � in Hom.�;Homeo.Y // is a factor of �. (1) Here
and in what follows, Hom.�;Homeo.Y // is always equipped with the standard compact-
open topology. Our first result is the following.

Theorem 1.1 (Topological stability). – Let M be a compact, orientable n-manifold with
negative curvature, and �0 W �1M ! Homeo.Sn�1/ the natural boundary action on @1fM .
There exists a neighborhood of �0 in Hom.�1M;Homeo.Sn�1// consisting of representations
which are topological factors of �0.

Moreover, this topological stability is strong in the following sense: for any neighborhood U
of the identity in the space of continuous self-maps of Sn�1, there exists a neighborhood V of �0
in Hom.�1M;Homeo.Sn�1// so that every element of V is semi-conjugate to �0 by some map
in U .

The statement of Theorem 1.1 is similar in spirit to the extensions of the classical
C 1-structural stability for Anosov (or more generally, Axiom A) systems to topological
stability proved by Walters [47] and Nitecki [42] in the 1970s. However, we are working in
the context of group actions rather than individual diffeomorphisms, and further, we do not
assume any regularity of the original boundary action that is to be perturbed. Thus, our
tools are by necessity fundamentally different.

(1) Elsewhere in the literature this is also referred to as semi-stability or (topological) structural stability, see [42] for
some discussion of terminology.
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C0 STABILITY OF BOUNDARY ACTIONS 1005

In the context of stability properties of group actions Sullivan [44] characterized which
subgroups of PSL.2;C/ exhibit C 1-stability (2) and also remarked that stability holds more
generally within the class of actions on metric spaces that are expansive-hyperbolic, a class of
actions that includes boundary actions of fundamental groups of closed negatively curved
manifolds. This program was worked out in detail only quite recently by Kapovich-Kim-
Lee [36], who show that what they call S-hyperbolic actions (a weakening of Sullivan’s
expansivity-hyperbolicity condition) are stable under perturbation with respect to a Lips-
chitz topology. While S -hyperbolic actions represent a broader class than those studied
here, in the specific case of boundary actions of fundamental groups of negatively curved
manifolds our result is stronger and quite different in spirit. We do not aim to preserve
“hyperbolic”-like behavior, and consider perturbations in the C 0-topology, which can be
much more violent and introduce wandering domains. Thus, one can view Theorem 1.1 as
a strict strengthening of Kapovich-Kim-Lee’s topological stability for the restricted case of
boundary actions.

Sharpness. – As hinted above, one cannot replace “factor of” with “conjugate to” in
Theorem 1.1. In Section 4, we show that nearby, non-conjugate topological factors do
occur for boundary actions of closed negatively curved manifolds. We give two sample
constructions. One comes from Cannon-Thurston maps, special to the case where M is a
hyperbolic 3-manifold, and the other is a general “blow-up” type construction, applicable
to C 1 examples in all dimensions.

2. Global rigidity of slithering actions. – In the case where dim.M/ D 2, and hence
@1.fM/ D S1, a stronger global rigidity result for boundary actions of surface groups was
proved by the second author in [38] (see also [8], [40]). Using the techniques of Theorem 1.1
we can recover this, and in fact generalize it to the broader context of group actions on S1

arising from slitherings associated to skew-Anosov flows on 3-manifolds, in the sense of
Thurston [46]. As we discuss in the next paragraph, these flows are basic examples in
hyperbolic dynamics. Our rigidity result is the following.

Theorem 1.2 (Global rigidity of skew-Anosov slithering actions).
Let F s be the weak stable foliation of a skew-Anosov flow on a closed 3-manifold M , and

�s W �1M ! HomeoC.S1/ the associated slithering action. Then the connected component
of �s in Hom.�1M;HomeoC.S1// consists of representations “semi-conjugate” to �s in the
sense of Ghys [26].

Definitions and properties of skew-Anosov flows and slitherings are recalled in Section 5.
Note that the notion of semi-conjugacy of circle maps in the statement above is not the same
as in the definition of topological factor; unfortunately the terminology “semi-conjugacy” in
this sense has also become somewhat standard. To avoid confusion, we will follow [48] and
use the term weak conjugacy for this property of actions on the circle. It has also been referred
to as “monotone equivalence” by Calegari.

A consequence of the above theorem is a new, independent proof of the main result of [38]
on global C 0 rigidity of geometric surface group actions on S1. See Corollary 5.12 below.

(2) Sullivan’s main result is in the opposite direction to ours: he shows that, among subgroups of PSL.2;C/,
C1-stability implies convex-cocompactness.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1006 J. BOWDEN AND K. MANN

3. Inequivalent flows on a common manifold. – Anosov (or uniformly hyperbolic) flows are
important examples of dynamical systems, due to their stability: as originally shown by
Anosov, C 1-small perturbations of these flows give topologically conjugate systems. Clas-
sical examples in dimension 3 include suspension flows of hyperbolic automorphisms of
tori, and geodesic flows on the unit tangent bundles of hyperbolic surfaces. The general
problem of which manifolds admit Anosov flows, and the classification of such flows, is a
fundamental problem in both topology and dynamics.

The first exotic examples of Anosov flows were given by Franks and Williams [23]. They
produced non-transitive examples of flows that have separating transverse tori. Handel and
Thurston [29] then gave new transitive examples, and their work planted the seeds for the
definition of a general procedure (namely, the Fried-Goodman Dehn surgery) to produce
new flows from old ones, later used to give the first examples of Anosov flows on hyperbolic
3-manifolds.

After existence, the next natural question regarding Anosov flows on a given manifold
is that of abundance: how many Anosov flows, up to topological equivalence, does a given
manifold support? Results of Ghys [25] and recently announced work of Barbot-Fenley
[4] imply that circle bundles over surfaces admit at most two distinct Anosov flows up to
equivalence, (cf. Remark 6.1 below). However, the case of graph manifolds, or more generally
manifolds with non-trivial JSJ-decompositions, is less rigid and there are indeed examples
that exhibit abundance. The first example of a closed 3-manifold admitting at least two
distinct Anosov flows was given by Barbot [3], and Beguin-Bonnati-Yu [7] found examples
of manifolds admitting N distinct Anosov flows for arbitrarily large N . All these examples
occur on manifolds with non-trivial JSJ-decompositions and have many (incompressible)
transverse tori. This leaves open the question of the abundance for hyperbolic manifolds,
which appears as Problem 3.53 (C), attributed to Christy, in Kirby’s problem list [37].

Using techniques developed for the proof of Theorem 1.2, we prove the following existence
result for flows, thus resolving this problem.

Theorem 1.3 (Christy’s problem). – For any N 2 N, there exist closed, hyperbolic
3-manifolds that support N Anosov flows that are distinct up to topological equivalence.

The hyperbolic manifolds in Theorem 1.3 and the flows are described explicitly, using Dehn
filling constructions. In addition to residing on hyperbolic manifolds, our examples contrast
with those of Beguin-Bonnati-Yu in that they are skew. They also have the further property
of being contact Anosov, meaning that they are Reeb Flows for certain contact structures on
these manifolds and are in particular volume preserving. (See [20] for a general contstruction
of contact Anosov flows by Dehn surgery.)

4. Topological stability of geodesic flows. – A major tool in the proof of Theorem 1.1 is a
“straightening” result for quasi-geodesic flows. This technique can also be used to recover
the topological stability result for Anosov flows of Kato-Morimoto [34, Theorem A] in the
special case of the geodesic flow on a compact manifold of negative curvature.

Theorem 1.4 (Alternative proof of [34], special case). – LetM be a manifold of negative
curvature and ˆt the geodesic flow on UTM . There exist �; R > 0 such that, if ‰t is a flow
such that each flowline of ‰t .x/ remains �-close to the flowline ˆt .x/ for t 2 Œ0; R�, then there
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C0 STABILITY OF BOUNDARY ACTIONS 1007

is a continuous function p.x; t/ on UTM � R and surjective map h W UTM ! UTM such
that h ı‰t .x/ D p̂.x;t/ ı h.x/.

We note also that a related, and more direct, notion of quasi-geodesic straightening
appears also in Ghys’ work [25] on Anosov geodesic flows. However, despite this parallel the
proofs are essentially different.

Outline

— Section 2 covers general background on foliations, suspensions, and large-scale geometry
in negative curvature.

— Section 3 is devoted to the proof of Theorem 1.1, followed by Theorem 1.4.

— In Section 4 we construct examples of non-conjugate actions that are C 0-close to the
boundary actions, illustrating some of the pathological behavior that can occur despite
topological stability.

— In Section 5 we recall the necessary background on skew-Anosov flows and slitherings,
prove Theorem 1.2 and derive global rigidity for lifts under finite covers of the boundary
action of a surface group.

— Section 6 constructs 3-manifolds with inequivalent skew-Anosov flows, proving
Theorem 1.3.
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communicating their recent work as well as the anonymous referee whose detailed comments
greatly improved the exposition.

2. Preliminaries

This section contains some general background material on the setting of our work, the
results and framework summarized here will be used throughout.

2.1. Suspension foliations, flat bundles and holonomy

For an oriented manifold N , we let HomeoC.N / denote the group of orientation-
preserving homeomorphisms of N . For a group �, the representation space
Hom.�;HomeoC.N // is the space of homomorphisms � ! HomeoC.N / equipped with
the compact-open topology. The case of particular interest to us, from a foliations perspec-
tive, is when � D �1.B/ is the fundamental group of a closed manifold B. In this case one
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1008 J. BOWDEN AND K. MANN

may form the suspension of a representation � 2 Hom.�;HomeoC.N //. The suspension is
a foliated N -bundle over B with total space given by the quotient

E� WD .eB �N/=�1.B/;
where�1.B/ acts diagonally by � onN and by deck transformations on the universal cover eB
ofB. Horizontal leaves are subsets of the form eB�fpg � N � eB. The diagonal �1.B/-action
maps horizontal leaves to horizontal leaves, so the foliation of eB�N by horizontals descends
to a foliation on E� transverse to the fibers of the bundle E� ! B. In our intended
applications, foliations are always co-oriented and representations have image in the group
of orientation-preserving homeomorphisms of N . Though this is not strictly necessary for
much of the background discussed here, we will take it as a standing assumption from
here on.

We will typically use the notation E� to denote this foliated suspension space, and use
other notation (e.g., simply M ) when we wish to forget the transverse foliation on it.

2.2. Manifolds of negative curvature and boundaries at infinity

We briefly summarize standard results on manifolds of negative curvature that will be used
in the sequel. Further background can be found in standard references such as [1, 10].

Let M be a closed Riemannian manifold of negative curvature. Then its universal
cover fM is a Hadamard manifold of pinched negative curvature. In particular, fM is uniquely
geodesic and is a ı-hyperbolic space for some ı. Any ı-hyperbolic space has a compactifica-
tion by a “boundary at infinity”. In the case of interest to us, this boundary is topologically a
sphere of dimension dim.M/� 1. Points on the boundary correspond to equivalence classes
of geodesic rays, where two unit speed geodesics c1 and c2 W Œ0;1/ ! fM are equivalent
if the distance d.c1.t/; c2.t// is uniformly bounded. See [10, III.H.3] for a general intro-
duction in the ı-hyperbolic setting, or [1] for the Hadamard manifold setting. One way to
specify the topology on @1fM is as follows: fixing x 2 fM and a geodesic ray ˛ from x to a
point � 2 @1fM , define neighborhoods Ur;d .˛/ of ˛ to be the set of (the equivalence classes
of) geodesic rays based at x that stay distance at most d from ˛ on a ball of radius r about x.
Such sets form a basis for the topology. Equivalently, one may take an exhaustion of fM by
compact sets Ki , fix any d > 0, and define neighborhoods Ui .˛/ of a geodesic ˛ to be the
sets of geodesic rays that stay within distance d of ˛ on Ki . These also form a basis for the
topology. Deck transformations of fM act by isometries, sending geodesics to geodesics, and
this extends to an action by homeomorphisms on the boundary.

Given a unit-speed geodesic ray ˛ W Œ0;1/! fM , the Busemann function B˛ W fM ! R is
defined by

B˛.x/ D lim
t!1

.d.˛.t/; x/ � t / :

Level sets of B˛ are called horospheres. Busemann functions on smooth Hadamard mani-
folds are always C 2 (as was proved in [31]) and the horospheres B˛ are perpendicular to
geodesics. In our setting of pinched negative curvature and bounded geometry—this comes
from the fact that the metric on fM is lifted from the compact manifold M—one can show
the Busemann functions B˛ are in fact smooth, although we will not need to use this higher
regularity.
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C0 STABILITY OF BOUNDARY ACTIONS 1009

In the case where M is a surface, the boundary at infinity can be used to give a conve-
nient description of the unit tangent bundle of fM . To any distinct triple of points .�; �; �/
in .@1fM/3, one can associate the tangent vector to the (directed) geodesic from � to � at
the unique point p such that the geodesic from p to � is orthogonal to the geodesic with
endpoints � and �. This assignment defines a homeomorphism between the space of distinct
triples in @1fM and UTfM . In general, even for higher dimensional compact manifolds of
negative curvature, the action of �1M on the space of distinct triples of @1fM is properly
discontinuous and cocompact. The reader may consult [9, Prop 1.13] for a proof phrased
there in terms of the action on the Gromov boundary of a hyperbolic group. More generally,
a group acting on a space such that the induced action on the space of distinct triples is prop-
erly discontinuous and cocompact is said to be a uniform convergence group. The following
well-known property applies to any uniform convergence group action, but we state it in the
form which will be useful to us later on.

Proposition 2.1 ([9] Prop 3.3). – For each x 2 @1fM , there exists distinct p; q 2 @1fM
and a sequence of elements 
n 2 �1M such that 
n.x/! p and 
n.y/! q for all y ¤ x.

Points x 2 @1fM with the property above are called conical limit points of the action. A
proof and further discussion can be found in [9, §3].

2.3. Geodesic flow

Associated to the geodesic flow on the unit tangent bundle UTfM on the universal
cover of a manifold of negative curvature are two transverse foliations, each of codi-
mension dim.M/ � 1. The leaf space of each can be identified with @1fM . The weak stable
foliation, denotedF s , has leavesLs.�/, for � 2 @1fM , consisting of the union of all geodesics
with common forward endpoint �. The weak unstable foliation Fu consists of leaves Lu.�/
formed by geodesics with common negative endpoint �. Both descend to foliations on UTM .

“Stable” and “unstable” here have a precise dynamical meaning—the geodesic flow in
negative curvature is Anosov, and the weak stable (resp. weak unstable) leaves consist of
geodesics that converge (resp. diverge) exponentially (see the proof of Lemma 2.5 below), but
we do not need any further dynamical framework at the moment, and defer a more detailed
discussion to Section 5. What we will use is that F s and Fu are transverse, and also that
these foliations can be described naturally in terms of the suspension of the boundary action
of �1M , as we explain now.

The tangent bundle UTfM may also be canonically identified with fM �@1fM D fM �Sn�1
via the positive endpoint map which assigns to each unit tangent vector v the forward endpoint
of the oriented geodesic tangent to v. Under this identification the horizontal sets fM � fpg
are the leaves of F s and the natural projection fM � @1fM ! UTM is the quotient via the
diagonal action of �1M by deck transformations on fM and the boundary action on Sn�1.
Thus, the suspension foliation of the boundary action gives the weak stable foliation of the
geodesic flow, or equivalently the holonomy of F s is the boundary action. If instead one uses
the negative endpoint of oriented geodesics to identify UTfM with fM �@1fM , the suspension
of the boundary action is the weak unstable foliation.
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1010 J. BOWDEN AND K. MANN

2.4. Quasi-geodesics.

Let c � 0; k � 1. A curve ˛ in a metric space X is a (c,k) quasi-geodesic if

1
k
d.˛.x/; ˛.y// � c � jx � yj � k d.˛.x/; ˛.y//C c

holds for all x; y in the domain of ˛. Often we will work with unparametrized rectifiable
curves in X . Such a curve is quasi-geodesic if its arc length parametrization is. We recall two
well-known and useful properties of quasi-geodesics.

Lemma 2.2 (Local-to-global principle, see [15] Theorem 1.4). – Let X be a ı-hyperbolic
metric space. For any c � 0; k � 1, there exists L > 0 and c0; k0 such that every curve which is
a .c; k/ quasi-geodesic on each subsegment of length L is globally a .c0; k0/ quasi-geodesic.

Lemma 2.3 (Quasi-geodesics are close to geodesics, see [10] III.H.1.7).

LetX be a ı-hyperbolic space. There exists a constantR D R.ı; c; k/ such that if ˛ is a .c; k/
quasi-geodesic segment in X , then the image of ˛ lies in the R-neighborhood of the geodesic
segment joining its endpoints.

It follows from this latter point that, provided a metric space X is ı-hyperbolic, each
(oriented) bi-infinite quasi-geodesic ˛ in X has a unique bi-infinite geodesic at bounded
distance. The positive and negative endpoints of ˛ are defined to be the positive and negative
endpoints of this geodesic, denoted eC.˛/ and e�.˛/, respectively. Since quasi-isometries
send quasi-geodesics to quasi-geodesics, this means that continuous quasi-isometries of X
extend to continuous maps on @1X . In particular, when X D fM , not only deck transfor-
mations, but all lifts of homeomorphisms of M to fM induce homeomorphisms of @1fM .

A (unparametrized) quasi-geodesic flow of a metric space X is a 1-dimensional foliation
whose leaves are quasi-geodesics. The flow is uniform if there exist k � 1; c � 0 such
that each leaf is a .c; k/ quasi-geodesic. If � is a group that acts properly discontinuously
and cocompactly on a space X and FQG is a quasi-geodesic foliation such that the action
of � sends leaves to leaves, then local-to-global principle implies that FQG is automatically
uniform.

Using Lemma 2.3, and the definition of the topology on @1X described above, one easily
attains the following.

Lemma 2.4. – Let X be ı-hyperbolic and let ˛ be a .k; c/ quasi-geodesic ray based at x0.
Given a neighborhood U of eC.˛/ 2 @1X , and constant d > 0, there exists a compact set K
such that, if ˇ is any .k; c/ quasi-geodesic ray that is distance at most d from ˛ on K, then
eC.ˇ/ 2 U .

The same evidently holds for e�. From this, one may derive the fact that endpoint maps are
continuous on the space of .k; c/ quasi-geodesics equipped with the compact-open topology,
and hence descend to continuous maps on the leaf space of a uniform quasi-geodesic folia-
tion. The following alternative proof of this fact appears essentially in [11]; we include it as
it gives another helpful illustration of the behavior of uniform quasi-geodesics in negative
curvature.
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C0 STABILITY OF BOUNDARY ACTIONS 1011

Lemma 2.5. – LetF be an oriented, uniform quasi-geodesic foliation of the universal cover
of a compact manifold of negative curvature. Then the endpoint maps, considered as functions
on the leaf space of F , are continuous.

Proof. – Suppose that `n is a sequence of leaves ofF that converge uniformly on compact
sets to a leaf `1. Following the discussion after Lemma 2.3, there exists D > 0 (depending
on the curvature of M and the quasi-geodesic constants of leaves) such that each `n lies in
the D-neighborhood of a unique geodesic 
n. It follows that the 
n coarsely converge on
compact sets: after passing to a subsequence, we may assume that there is a length n segment
of 
n which lies in the 3D-neighborhood of 
1. Since geodesics in negative curvature have
exponential divergence (3) this implies that 
n lies in a 3De��n neighborhood of 
1 on a
segment of length n=2, for some � > 0. Thus, the 
n converge and so eC.�n/ D eC.
n/

converges to eC.
1/.

This concludes the preliminary material required for the proof of Theorem 1.1. Further
material on Anosov flows and an introduction to “slitherings” will be given in Section 5
where it is needed.

3. Proof of Theorem 1.1

3.1. Construction of a well-behaved leafwise immersion

The first step in the proof of Theorem 1.1 is to construct a well-behaved map from the
suspension bundleE� (see Section 2.1) of a perturbation � of the boundary action, to the unit
tangent bundle of M . This map will send fibers to fibers, and send leaves of the horizontal
foliation on the suspensionE� toC 1 submanifolds such that the tangent distribution of each
leaf is C 0 close to the distribution given by the weak-stable distribution of the geodesic flow
on M .

Lemma 3.1. – LetM be a compact negatively curved manifold, and let �0 be the boundary
action. There exists a neighborhood U of �0 in Hom.�1M;HomeoC.Sn�1// and a continuous
assignment � 7! f� from U to the space of continuous maps fM � Sn�1 ! UTfM with the
following properties:

1. f�0 is the canonical homeomorphism between fM�Sn�1 and UTfM defined in Section 2.3,

2. for all � 2 U , the map f� covers the identity fM ! fM mapping fibers to fibers (although
it is not required to be injective on any fiber),

3. the image of each horizontal leaf fM � fpg under f� is a C 1 submanifold of UTfM ,

4. the map f� is �1M -equivariant, so descends to a map E� ! UTM , and

(3) Recall that a divergence function for a metric space X is a function � W N ! R such that, for any geodesics
c1; c2 W Œ0; t� ! X with c1.0/ D c2.0/, and any r;R 2 N; if R C r � t and dX .c1.R/; c2.R// > e.0/

then any path from c1.R C r/ to c2.R C r/ outside the ball B.c1.0/;R C r/ must have length at least �.r/.
Any ı-hyperbolic space has an exponential divergence function. (See [10, III.H.1.25] for a proof).
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5. given � > 0, and R > 0, by choosing U sufficiently small we can ensure that the image
of any leaf fM � fpg under f� has tangent distribution �-close (in the C 0-sense, from
the metric lifted fromM) to the weak-stable distribution over any ball of radius R in fM .
Equivalently, by choosingU sufficiently small, we can ensure for eachp that the restriction
off� toB�fpg, whereB is anyR-ball in fM , is �-close in theC 1-topology to a weak-stable
leaf in UTfM .

Finally, in the case where M is a surface and @1fM D S1, we may additionally take f� to be a
homeomorphism for all � 2 U .

Remark 3.2. – The construction in the proof generalizes to other foliated bundles
than UT.M/. What we use in the construction is the compactness ofM , the linear structure
of the tangent bundle, the C 1;0C regularity of the weak-stable foliation on UT.M/, and the
fact that � is a C 0-small perturbation of the holonomy of this bundle.

Proof of Lemma 3.1. – Let � be a smooth triangulation of M , and let e� denote its lift
to fM . For the proof, we define f� first on the spheres over the vertices of � , then extend using
a partition of unity to “interpolate” between vertices.

Set-up. – LetOv denote the open star of a vertex v 2 � . The setO WD fOv j v vertex of �g is
an open cover ofM whose nerve agrees with � . Let eO be the lift ofO to fM . Take a partition of
unity f�v W v vertex of �g subordinate toO and pull this back to a �1M -equivariant partition
of unity fe�v W v vertex ofe�g on fM subordinate to eO.

Step 1: Define f over vertices ofe� . – We recall first the structure available to us. UTfM is a
sphere bundle over fM with a natural action of�1M by diffeomorphisms, and inherits a linear
(vector bundle) structure from its inclusion in TfM . The lift of the weak-stable foliation eF s is
transverse to the Sn�1 fibers of UTfM and invariant under �1M , so gives UTM the structure
of a foliated bundle, and the holonomy of this foliation is the boundary action �0.

Let D � fM be a connected fundamental domain for the �1M -action. Fix a basepoint
x 2 D that is a vertex in e� and let Sx denote the fiber over x in UTfM . For a perturba-
tion � of �0, we may build a foliated bundle E� with holonomy � by taking the quotient offM � Sx Š fM � Sn�1 by the diagonal action of �1M by deck transformations of fM and the
action � on Sx Š Sn�1. Define f� on fxg � Sx to agree with the identity map Sx ! Sx .

Now we define f� over other vertices. For a vertex v ofe� , and Sv the fiber over v in UTfM ,
let �v W Sv ! Sx denote the homeomorphism obtained by sending a point y 2 Sv to the
unique point of Sx lying in the same leaf of eF s as y. Now for each vertex v ofe� inD, define
f� on fvg�Sn�1 by f�.v; p/ D ��1v f�.x; p/. In other words, we define f� on the fibers over
vertices inD so that it takes points on the same leaf of the horizontal foliation on fM �Sn�1
to points on the same leaf of eF s .

There is a unique �1M -equivariant extension of this map to one defined on the union of
fibers over all vertices ofe� . Concretely this is given as follows: for a vertex v 2 D, an element
g 2 �1M , and a point .gv; p/ in fgvg � Sn�1, define

f�.gv; p/ D
�
gv; ��1gv �0.g/�.g/

�1.p/
�
;

i.e., it is the unique point on the fiber Sgv contained in the same leaf of eF s as the
point �0.g/�.g/�1.p/ 2 Sx .
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Remark. – Note that, given any finite set of elements of g, and any � > 0, we can choose
a neighborhood U of �0 sufficiently small so that �0.g/�.g/�1.p/ lies within distance � of p.

Step 2: Extend over fM � Sn�1. – For a vertex v ofe� , let Ov denote its open star, and let
Fv W Ov � S

n�1 ! UTfM be the map that covers the identity on Ov � fM , agrees with f�
on fvg � Sn�1, and sends horizontal leaves Ov � fpg to leaves of F s .

Using the linear structure on the tangent bundle TfM we now extend f� to be defined
everywhere by using the partition of unity to interpolate between the maps Fv. In detail, on
a horizontal leaf fM � fpg � fM � Sn�1 define for each point .z; p/ a (not necessarily unit)
tangent vector to fM at z by

V.z; p/ WD
X

v vertex ofe�e�v.z/Fv.z; p/:
Note that this is a finite sum involving only vertices of � whose star contains z. The remark
above together with the fact thatFv is�1M -equivariant ensures that if � is chosen sufficiently
close to �0, then Fv.z; p/ is never zero. Thus, we may define

f�.z; p/ WD
V.z; p/

jjV.z; p/jj
2 UTfM:

Sincee� is smooth and F s is a C 1;0C foliation, for fixed p the maps V.z; p/, and hence also
the maps f�.z; p/ are of class C 1. Moreover, these maps vary continuously in z in the C 1

topology and as all functions in the definition are �1M -equivariant, so is f�.

Continuity in � also follows readily from the definition. In fact, this map is continuous at
the point �0 with respect to leafwise uniform convergence in the C 1 topology on compact
sets of uniform size. For if �n ! �0, then the fact that eF s is of class C 1;0C implies that all
the summands in the definition of V.z; p/ will C 1-converge uniformly on any fixed compact
set. By �1M -equivariance we then get uniform converge on balls of a fixed radius about any
point.

Finally, in the case where dim.M/ D 2, and � is an action on the circle, one can avoid the
normalization of V.z; p/ in the definition of f� and make a separate argument to produce a
map which descends to a homeomorphism E� ! UTM , as follows. Consider the universal

cover ŨTM , which is an R-bundle over fM and a fiberwise cover of UTfM . A perturbation �
of �0 gives rise to a unique perturbation of the holonomy of ŨTM in the group HomeoZ.R/
of homeomorphisms of the fiber R that commute with the covering map R ! S1 Š

R=Z. Repeating the same construction as above to define Fv using the lifted actions, we
can then average the maps Fv using the partition of unity e�v and the natural Lie group
structure on the fiber R lifted from S1. The resulting map fM �R! ŨTM will additionally
commute with the fiberwise covering map, and descend to a map f� W fM � S1 ! UTfM
with the required properties (1)-(5). The fact that points on R are totally ordered, and that
orientation-preserving homeomorphisms and our averaging trick are all order-preserving
means that, with this construction, f� will be bijective. It is easy to verify that its inverse is
also continuous, hence f� is a �1M -equivariant homeomorphism.
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Sn�1

L
`

fM
f�
�!

f�.L/

UTfM

Lu.�/

Figure 1. The map f� and a leaf ` of FQG�

3.2. Quasi-geodesics and endpoint maps

Keeping the notation from Section 3.1,M denotes a compact, negatively curved Rieman-
nian n-manifold, UTfM the unit tangent bundle of fM , and �0 denotes the standard boundary
action of �1M on Sn�1.

Let f� W fM � Sn�1 ! UTfM denote the �1M -equivariant map obtained by applying
Lemma 3.1 to a representation � close to �0 in Hom.�1M;HomeoC.Sn�1//. Our next goal
is to use this data to produce a quasi-geodesic foliation on fM � Sn�1 that is �-equivariant,
so descends to a foliation on the suspension E�. When speaking of endpoints of geodesics,
we use the fact that the canonical projection � W UTfM ! fM is a quasi-isometry, giving
us an identification of the Gromov boundary of UTfM with @1fM . We use the notation from
Section 2.3, for exampleLu.�/ denotes the unstable leaf consisting of geodesics with negative
endpoint �.

Lemma 3.3. – If � is sufficiently close to �0, then for any horizontal leaf L D fM � fpg
of fM � Sn�1, and any unstable leaf Lu.�/ in UTfM , the intersection f�.L/ \ Lu.�/ is either
empty or a connected, quasi-geodesically embedded bi-infinite line in UTfM with one endpoint
equal to �.

Note that the intersection may indeed be empty, for instance, when � D �0, the leafLu.�/
has empty intersection with the stable leaf Ls.�/ comprised of geodesics with forward
endpoint �.

Proof of Lemma 3.3. – Let U be a small neighborhood of �0. Consider the horosphere
foliationB of UTfM whose leaves are level sets of the Busemann function b of a geodesic with
forward endpoint � (see Section 2.2). For any leafLs.�/ of the stable foliation of the geodesic
flow on UTfM intersecting Lu.�/, the geodesic leaf ` D Lu.�/ \ Ls.�/ is perpendicular to
leaves of B. Since, for any leaf L D fM � fpg, the tangent distribution of f�.L/ is uniformly
C 0 close to the stable distribution (Property (5) in Lemma 3.1), it follows thatLu.�/\f�.L/
meets leaves of B at angle uniformly close to �=2. Thus, the length of the segment of a leaf
of Lu.�/ \ f�.L/ between b�1.t/ and b�1.s/ is at most C jt � sj for some constant C > 1,
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which we may take to be uniform over all leaves, and this constant will only be decreased
by further shrinking the neighborhood U of �0. This shows that connected components of
leaves ` are uniform quasi-geodesics.

To show the sets L� \ f�.L/ are either empty or a single quasi-geodesic line, we use the
fact that �1M acts cocompactly on the space of distinct triples of @1fM . As in the previous
section, let x be a basepoint in fM . Using cocompactness, and the fact that quasi-geodesics
fellow-travel geodesics in fM , we may chooseR large enough so that, for any distinct triple of
boundary points .�1; �2; �3/, there exists g 2 �1M so that any quasi-geodesic in UTfM with
constant C (as above) between any pair g.�i / and g.�j / has projection to fM which passes
through the ball BR.x/ of radius R about x.

Our construction of f� means that, provided that � is close enough to �0, the image of
any leaf fM � fpg under f will be uniformly C 1 close to the stable leaf through p over
the ball B2R.x/. Thus if U is chosen sufficiently small, then for any leaf L the projection
of L \ Lu.�/ intersected with BR.x/ will either be empty or a single, connected quasi-
geodesic segment. Suppose now for contradiction that there exist leaves L and L� such that
Lu.�/ \ f�.L/ is nonempty and not connected. Let ˛ ¤ � and ˇ ¤ � be endpoints of two
distinct (quasi-geodesic) connected components of Lu.�/ \ f�.L/. Using our choice of R,
find g so that the quasi-geodesic components of g.Lu.�/ \ f�.L// with pairs of endpoints
(g˛, g�) and .gˇ; g�/, respectively, satisfy the property that their projections to fM pass
through BR.x/. (We allow the possibility that ˛ D ˇ.) But then Lu.g�/ \ f�.gL/ intersects
BR.x/ along two distinct quasi-geodesic segments, giving the desired contradiction.

Thus, after endowing f�.L/ with either its induced metric or the one pulled back from
the projection � W UTfM ! fM , the sets Lu.�/\f�.L/ (fixing L and varying �) give a quasi-
geodesic foliation of f�.L/. We make the following orientation convention; when � D �0,
this exactly recovers the oriented geodesics from UTfM .

Convention 3.4 (Orientation on leaves). – We orient the lines of the form f�.L/\L
u.�/

so that their negative endpoint is �.

Since f� covers the identity on M and is C 1 on leaves, its restriction to each leaf L is
a quasi-isometry. Thus, we may pull back the oriented quasi-geodesic foliation on each
leaf f�.L/ via the restriction of f� toL, and obtain an oriented quasi-geodesic foliation onL.
Doing this on all leaves gives an oriented, quasi-geodesic foliation on fM � Sn�1, which we
denote by FQG� . Again, �1M -equivariance means that the quasi-geodesic constants may be
taken to be uniform. See Figure 1 for an illustration.

Properties of FQG�
The fact that f� is �1M -equivariant and that Fu is a �1M -invariant foliation on UTfM

means that the diagonal action of �1M on fM � Sn�1 via deck transformations on the first
factor and � on the second permutes the leaves ofFQG� . Furthermore,FQG� has the property
that each quasi-geodesic line ` in the foliation is contained in a horizontal leaf of fM � fpg
of fM � Sn�1. Thus, such a line ` has a positive and negative endpoint on the boundary
sphere @1fM D Sn�1, giving positive and negative endpoint maps

eC� ; e
�
� W

fM � Sn�1 ! @1fM D Sn�1
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which assign to a point x in a leaf ` the positive and negative endpoints eC� .x/ and e�� .x/ of `,
respectively. Note that, since f� covers the identity map on fM , one may equally well look
at the sets f�.L/ \ Lu.�/ or their pullbacks under f� to determine their endpoints. When
� D �0, the foliation FQG� is the geodesic foliation of UTfM , and eC�0 and e��0 are the usual
positive and negative endpoint maps.

Let e˙� denote the product map .eC; e�/ to Sn�1�Sn�1. The image of this map avoids the

diagonal�. By definition, this map factors through the projection to the leaf space L.FQG� /

of FQG� as summarized in the diagram below.

fM � Sn�1 .Sn�1 � Sn�1/ ��

L.FQG� /:

e˙�

e�

Additionally, since f� is �1M -equivariant, a straightforward verification from the definition
shows that the same is true of e˙� , namely

(1) e˙� .
 � x; �.
/.y// D 
 � e
˙
� .x; y/

holds for all .x; y/ 2 fM � Sn�1 and 
 2 �1M , where the action on the right hand side of
the equation is by the standard action of �1M on unparametrized geodesics in UTfM , i.e.,
the diagonal action of �0 on boundary points.

We now prove various continuity properties.

Lemma 3.5. – The endpoint maps e˙� and e� are continuous.

Proof. – Lemma 2.5 implies that the restriction of e� to each leafL is continuous. We will
use a similar argument to show global continuity. It suffices to show continuity of e˙� , since
e� is the induced map on a quotient space.

Suppose that xn ! x1 is a convergent sequence in fM � Sn�1. Let Ln be the horizontal
leaf containing xn, andL1 the leaf containing x1. Let fn denote the restriction of f� toLn,
considered as a topological embedding fM ,! UTfM . The definition of f� implies that the
maps fn converge uniformly on compact sets of uniform diameter, i.e., for any r > 0; � > 0,
there exists N such that for all n > N , the restriction of fn to the r-ball Br .xn/ in Ln is
�-close in the C 1-topology to the restriction of f1 to Br .x1/. It follows that, for any fixed
leafLu ofFu, the quasi-geodesic segmentLu\fn.Br .xn// lies in someC.r/� neighborhood
of Lu \ f1.Br .x1//, where C W Œ0;1/ ! Œ0;1/ is a continuous, increasing function
(depending only on the geometry of Fu), with C.0/ D 0.

Let Lun be the leaf of Fu through fn.xn/ D f�.xn/. Since f�.xn/ ! f�.x1/ these
leaves converge on compact sets to the leaf Lu1 through f�.x1/. Combined with the above,
we deduce that, for n sufficiently large, Lun \ f�.Br .xn// lies in the 2C.r/� neighborhood
of Lu \ f�.Br .x1//. Since these are uniform quasi-geodesics, Lemma 2.4 now gives the
desired continuity.

Lemma 3.6. – The map � 7! e˙� , defined on a neighborhood of �0 in
Hom.�1M;HomeoC.Sn�1// and with image in the space of continuous mapsfM � Sn�1 ! .Sn�1 � Sn�1/ ��, is continuous with respect to the compact-open topology.
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Proof. – This follows from continuity of � 7! f� and the definition of the topology on the
end space. In detail, let �0 be some fixed representation close to �0, close enough so that f�0
and the endpoint maps are defined.

The space of continuous maps fM � Sn�1 ! .Sn�1 � Sn�1/ �� has the standard
compact-open topology, so fix K compact in fM � Sn�1 and an open set O in .Sn�1 � Sn�1/ ��
containing the image ofK. Continuity of � 7! f� means that, for any �; R > 0 if � is chosen
close enough to �0 then quasi-geodesics through points of K pulled back via f� will remain
�-close to quasi-geodesics pulled back via f�0 on segments of length R. Lemma 2.4 now
guarantees that for R large enough, the endpoints of geodesics through points of K will
remain in O.

Lemma 3.7 (e�� gives local parametrization of leaves). – Any local transversal for the

geodesic flow FQG�0 will be a local transversal for any sufficiently close representation �, in
particular, the leaf space L.FQG� / is locally homeomorphic to Rn�1 � Rn�1. Associating a
leaf ` to the pair .e�� .`/; p/, where p 2 Sn�1 is the point such that ` lies in the horizontal

leaf fM � fpg, gives a local chart for L.FQG� /.

Proof. – Continuity of � 7! f� and the fact that FQG� is the pullback of the intersection
of (smooth) leaves f�.L/\Lu implies that a compact local transversal for FQG�0 will remain
transverse to FQG� when � is sufficiently close to �0. By Lemma 3.3, each leaf Lu.�/ of Fu
intersects a leaf f�.L/ in a (possibly empty) quasi-geodesic with negative endpoint �. Thus,
the negative endpoint map locally gives a parametrization of the leaves of FQG which sit
inside a fixed horizontal leaf L. Continuity of f� and the negative endpoint map means that
these parametrizations vary continuously with the leaf L, giving the desired local chart.

Lemma 3.8. – If � is sufficiently close to �0, then e� is surjective.

Proof. – Take a .2n � 2/-dimensional disk D in fM � Sn�1 that is a local transversal
for the geodesic foliation FQG�0 , chosen large enough so that the interior of the image
Ne�0.D/ � .S

n�1 � Sn�1/ �� contains a compact fundamental domain K for the action
of �1M on the space .Sn�1 � Sn�1/ �� of unparametrised geodesics in fM .

By Lemma 3.7, if � is sufficiently close to �0, then D will also be a local transversal
forFQG� , and, by continuity of the endpoint map, Ne�.D/will beC 0 close to Ne�0.D/ and hence
also contain K. Since e˙� is �1M -equivariant, it follows that the image of e� is a set that is
invariant under the action of �1M on .Sn�1�Sn�1/��. We have just shown that it contains
a fundamental domain, so the image must be everything.

The following observation will allow us to conclude the proof by arguing that eC� defines
a semi-conjugacy.

Proposition 3.9. – Under the hypotheses of Lemma 3.8, the restriction of eC� to any
horizontal leaf L of fM � Sn�1 is constant.

The broad idea of the proof is to use �1M -equivariance and the uniform convergence
group property of the boundary action to promote a (hypothetical) leaf where eC� is non-
constant to one where e�� is not locally injective, which would contradict the local structure
given by Lemma 3.7.
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Proof of Proposition 3.9. – Suppose for contradiction that eC� is nonconstant on some
leaf L, and let I � L be a segment such that eC� .I / is a nonconstant path with distinct

endpoints in Sn�1. We may even take I to be transverse to FQG� , if desired, and the reader
may find this helpful in visualizing the proof. Let x and y denote the endpoints of eC� .I /.
Since the image of .eC� ; e

�
� / avoids the diagonal, by shrinking I if needed we may further

assume that eC� .I / is disjoint from e�� .I /, in particular x … e�� .I /.
By the uniform convergence group property of the action of�1M on its boundary (Propo-

sition 2.1), there exist distinct p; q 2 Sn�1 and a sequence 
n 2 �1M such that 
n.x/ ! p

and 
n.z/ ! q for all z ¤ x. Thus, the image 
neC� .I / D eC� �.
n/.I / will contain an arc
between some points pn and qn, with pn ! p and qn ! q; while 
ne�� .I / D e�� �.
n/.I /

pointwise converges to fqg.
Consider the sequence of leaves �.
n/.L/. Since the leaf space of the horizontal foliation

(on fM � Sn�1) is compact, after passing to a subsequence these converge to some leaf L1.
It will be convenient for us to remain in a compact set of .Sn�1 � Sn�1/ ��, so fix a small
open neighborhood N of �, and let Jn denote the closure of the connected component
of 
neC� .I / � N containing pn; this is some subinterval of 
neC� .I /. Let D be a compact,

local transversal forFQG� , defined in a neighborhood of some quasi-geodesic leaf lying inL1
so that for all n sufficiently large, the projection of the segments Jn � �.
n/.L/ to the leaf
space are contained in the image ofD. LetAn denote the projection of Jn toD. After passing
to a subsequence, the arcs An converge, in the Hausdorff topology, to some nondegenerate
set A � D that lies in the leaf L1. By continuity of the endpoint map, the image of e� on A
contains a connected set of the form fqg � J , where J is a nondegenerate segment.

However, as in Lemma 3.7, we may choose the transversalD so that the restriction of this
transversal to each horizontal leaf L0 is the parametrization given by the negative endpoint
map e�� . This contradicts the fact that we have a nondegenerate subset of L1 inD mapping
to fqg � J , with negative endpoint constant.

Conclusion of proof of Theorem 1.1. – We have just shown that, for representations � in some
neighborhood of �0, the endpoint map eC� is constant on each set fM � fpg � fM � Sn�1, so
descends to a continuous map Sn�1 ! Sn�1. Lemma 3.8 implies that this map is surjective,
and by construction, we have

eC� �.
/.x/ D �0.
/e
C
� .x/

as in Equation (1), so eC� is the desired semi-conjugacy between � and the standard boundary
action of �1M . Strong topological stability (the claimed control on the semi-conjugacy)
follows from continuity of � 7! e˙� proved in Lemma 3.6.

3.3. Topological stability of geodesic flows

We conclude this section with a short sketch of how our proof above gives a “soft”
geometric proof of topological stability of the geodesic flow in negative curvature, as claimed
in Theorem 1.4.

Proof of Theorem 1.4. – Let M be a closed manifold of negative curvature and ˆt the
geodesic flow on UTM . Suppose that ‰t is a flow such that the flowlines of the lift e‰t
to UTfM each � fellow-travel flowlines of êt on segments of length R, as in the statement
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of Theorem 1.4. The local-to-global principle (Lemma 2.2) implies that there exists N and
c such that, if R � N and � � c, then flowlines of e‰t project to quasi-geodesics in fM ,
and so each flowline of e‰t stays within a bounded distance of a unique flowline of êt ,
and so has well defined endpoints. Lemma 2.4 implies that if � is sufficiently small, as
R!1 these endpoint maps e˙ W fM ! @1fM � @1fM , sending a point x to the positive
and negative endpoints of the flowline e‰t .x/ converge uniformly on compact sets to the
endpoint map for the geodesic flow. By construction e˙ are �1.M/-equivariant, so by the
same argument as in Lemma 3.8, we may conclude that e˙ is surjective onto the complement
of the diagonal in @1fM � @1fM , which is naturally identified with the flow space of e‰t . This
gives a �1M -equivariant, continuous, surjective map from fM to the flow space of e‰t , which
descends to a map defined on the flowspace of êt .

To improve this map on the level of orbit spaces to a topological equivalence of the
flows, one may now use the averaging trick in Barbot [2, Theorem 3.4] following Ghys [25,
Lemmas 4.3, 4.4]. Specifically, define first a map h0, associating to each point x 2 fM the
closest point to x on the geodesic between eC.x/ and e�.x/. This maps flowlines to flowlines,
but may not send a flowline injectively onto its image. Rather, there is simply a continuous
function a W R � fM satisfying h0.êt .x// D e‰a.t;x/.h0.x//. To remedy this, fix T large, and
define A.t/ D 1

T

R T
0
a.s; x/ds. One checks that, if T was chosen sufficiently large, the map

h.x/ WD ê
A.t/.h0.x//

sends each flowline of e‰t continuously and injectively onto a flowline of êt , and descends
to a continuous map M !M giving a topological equivalence of the flows.

4. Examples

In this section we illustrate some of the phenomena that can appear in Theorem 1.1. We
give two families of examples of actions that are semi-conjugate, but not conjugate, to the
action of the fundamental group of a closed negatively curved manifold on its boundary. The
first uses the work of Cannon and Thurston, and is specific to Kleinian groups. The second
extends the classical Denjoy blow-up and applies to any action of regularity C 1.

Cannon-Thurston Maps

We briefly summarize the construction of the Cannon-Thurston map (in a special case),
following [14]. Let S be a closed, hyperbolic surface, � a pseudo-Anosov diffeomorphism,
and M a hyperbolic 3-manifold given by the suspension of �, equipped with the suspension
flow 't of the pseudo-Anosov map �. Lifting flowlines to the universal cover fM D H3 gives
a flowe't whose flow space is a topological diskD, which may be identified with the universal
cover eS � fM of any fiber S ofM . It is easily verified that flow lines ofe't are quasi-geodesics
in H3, so we have continuous endpoint maps e˙ W D ! @1H3.

Identifying D with eS , we have the standard boundary compactification bD D eS [ @1eS .
Cannon and Thurston [14] showed the action of �1M extends to the closed disk bD in a way
that is compatible with the positive and negative endpoint maps. This gives maps

Oe˙ W bD �! @1H3:
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These extensions coincide on the boundary @1eS and are �1M -equivariant. Gluing these
together along the boundary, we obtain a �1M -equivariant map

hCT D Oe� [ OeC W S
2
D .bD� [S1 bDC/ �! @1H3:

This gives an induced action �CT of �1M on S2. By equivariance of the construction and by
minimality of the action of �1M on @1H3, we conclude that hCT is surjective. Additionally,
it follows directly from the construction that preimages of points under hCT are either points,
closures of complementary regions of the stable or unstable geodesic lamination of ', or
closures of geodesics in bD. In particular hCT has contractible point-preimages and hence,
by Moore [41], it can be approximated by homeomorphisms. Let hn 2 HomeoC.S2/ be a
sequence of homeomorphisms such that hn �! hCT in the compact open topology in the
space of continuous maps S2 ! S2. Then the conjugate actions hn ı �CT ı h�1n converge in
the weak sense (element-wise) to the boundary action.

In other words, in any neighborhood of the boundary action, there are conjugates of �CT .
Note that none of these are themselves conjugate to the boundary action, as �CT is not
minimal—it has an invariant circle. We note also that �CT itself (and hence any conjugate
of it) is rather flexible: the Alexander trick allows one to produce a continuous deformation
from �CT to an action of �1M on S2 with a global fixed point by continuously shrinking
one hemisphere while enlarging the other.

While we have described this construction for fibered hyperbolic 3-manifolds, it applies
more broadly: work of Frankel [22] shows that the Cannon-Thurston construction can be
modified to give an analogous map on any closed hyperbolic manifold admitting a quasi-
geodesic flow.

A “blow-up” example

We describe how to equivariantly blow up an orbit � � z of a C 1 action of a countable
group on an n-sphere to produce an action by homeomorphisms that is semi-conjugate to
the original. The semi-conjugacy map hwill be injective off of the preimage of this orbit, and
have the additional property that preimages of points in � � z are homeomorphic to closed
disks. In particular, h may be approximated by homeomorphisms.

While our intended application is boundary actions of manifolds admitting negatively
curved metrics, the construction applies quite generally to any C 1 action of a countable
group on Sn so we work in this broader context. For actions on S1 a similar construc-
tion works even for actions by homeomorphisms, and can, at least for abelian groups, be
smoothed to a C 1 action; this is the classical Denjoy blow-up. The construction below could
conceivably be generalized to group actions on any manifold—however, ensuring that the
space obtained by “blowing up” an orbit is again a manifold requires some care. Here we
are able to quote Cannon’s description of Sierpiński spaces.

Proposition 4.1. – Let � be a countable group and � W � ! Diff1C.S
n/ an action

with dense orbit Z. Then there exists �0 W � ! HomeoC.Sn/ and a surjective, continuous
map h W Sn ! Sn, such that the pre-image of each point in Z is a closed disk, that is injective
on the complement of h�1.Z/, and such that h ı � D �0 ı h.
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While blowing up a finite orbit under a group action is a standard construction, we know
of no reference in the literature (beyond that for actions on S1) for this result, so we give a
proof.

Proof. – Our strategy is to use an inverse limit construction. For simplicity, we assume
that Z is the orbit of a point z with trivial stabilizer, however the construction works more
generally using the fact the point stabilizers act naturally on the tangent space at any fixed
point. Enumerate � D f
1; 
2; : : :g, and let zn D 
n.z/. Let X0 denote the unit sphere Sn

with the standard round metric. Fix some small �1 > 0, let D01 denote the �1-ball about z1,
andD1 � D01 the 1

2
�1 ball about z1. LetX1 D X0�D1 and define f1 W X1 ! X0 to be a C1

map that is the identity onX1�D01 and is a radial collapse along geodesics through z1 on the
annulus .D01�D1/ � X1 that sends @D1 to the point z1 and is injective otherwise. In this way
f �11 gives an identification of @D1 with the positive projectivized tangent space of oriented
lines at z1, so that the action of any C 1 diffeomorphism g of Sn fixing z1 naturally extends
to a homeomorphism Og ofX1 such that f1ı Og D gıf1. Additionally, we can ensure this map
has the Lipshitz property that d.f1.x/; f1.y// < 3d.x; y/ for all x; y 2 X1, or equivalently,
d.f �11 .x/; f �11 .y// > 1

3
d.x; y/.

Now inductively, suppose that for all m � k we have defined Xm � Sn (topologically,
a sphere with m holes) and a C1 surjective map fm W Xm ! Xm�1. Let Fm W Xm ! X0
denote the composition fmfm�1 : : : f1. Choose some �kC1 � �k=2 that is additionally less
than half the distance from F �1

k
.zk/ to the nearest boundary component of Xk . Choose

rkC1 � 1, and defineXkC1 to beXk with an open rkC1�kC1-ball aboutF �1
kC1

.zkC1/ removed,
and fkC1 W XkC1 ! Xk a map that collapses the boundary of the removed disk to the
pointF �1

kC1
.zkC1/, with support on a �kC1-ball, defined using the same procedure as above. If

rkC1 is chosen sufficiently small, then we can ensure that this map has the Lipschitz property

d.f �1kC1.x/; f
�1
kC1.y// > �kC1d.x; y/

for all x and y (and all choices of points in the preimages in the degenerate case where
x D y D zkC1), moreover �kC1 < 1 can be taken as close to 1 as we like, by choosing
rkC1 close to 0. Make such a choice, inductively, so that the product �1�2�3 : : : converges to
some ı > 0.

As before, the induced identification of the projectivized tangent space at zkC1 with
the boundary of the disk DkC1 means that any diffeomorphism of Xk fixing zk defines a
diffeomorphism of XkC1. More generally, if g is a diffeomorphism of Sn that preserves the
set fz1; : : : zkC1g, it also defines a diffeomorphism of XkC1 (via conjugation by FkC1 on the
invariant set Sn � fz1; : : : zkC1g on which F �1

kC1
is a diffeomorphism, and on the inserted

boundary disks by the identification of them with the tangent spaces to the points zi ).
To summarize, these spaces and maps have the following properties:

(i) The sets Xk � Xk�1 � Sn form a monotone decreasing family;

(ii) Under the map fk W Xk ! Xk�1, each point has a unique preimage, except for the
point z0

k
D F �1

k�1
.zk/ whose preimage is the boundary of the rk�k-ball Dk about z0

k
.

(iii) For each fk we have sup
x2Xk

d.fk.x/; x/ � �k �
�1

2k�1
<

1

2k�1
.

(iv) For any x; y 2 X0 we have d.F �1
k
.x/; F �1

k
.y// > ıd.x; y/ for all k 2 N.
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Let X D lim
 �

Xk be the inverse limit of the system of maps Xk
fk
! Xk�1, i.e.,

X WD f.: : : ; p2; p1; p0/ j pi 2 Xi and pk�1 D fk.pk/g:

Since each map fk is continuous, X is a closed subset of the product
Q1
kD0Xk , hence

is also compact. Property (iii) above means that for each element .: : : ; p2; p1; p0/ 2 X ,
the points p0; p1; : : : form a Cauchy sequence in Sn so limk!1 pk is well defined; since
pk 2 Xk � Xk�1 the limit lies in the intersection

T
k Xk . Define � W X !

T
k Xk � S

n by
setting �.: : : ; p2; p1; p0/ D limk!1 pk . Property (iv) above ensures that � maps sequences
associated to distinct points to distinct limits, so � is injective. Since X is compact and
Sn is Hausdorff, � is therefore a homeomorphism onto its image. Note that the image
of � contains the union of all boundaries of removed disks Dk , since for any pk 2 @Dk ,
the sequence .: : : ; pk ; pk ; pk ; fk.pk/; fk�1fk.pk/; : : : ; Fk.pk// is an element of X , with
Fk.pk/ 2 Z.

We will now make use of the following result of Cannon.

Theorem 4.2 (Cannon [13]). – Let S � Sn be a closed subset, and let Ui denote the
connected components of Sn � S . Then S is homeomorphic to the (unique up to homeomor-
phism) n � 1 dimensional Sierpiński space if and only if the following hold

1. For each i , Sn � Ui is an n-cell

2. The closures of the Ui are pairwise disjoint

3.
S
i Ui is dense in Sn, and

4. U1; U2; : : : is a null sequence, meaning that diam.Un/! 0.

Cannon’s result is stated for n ¤ 4, but applies in all dimensions given Quinn’s proof of the
Annulus theorem in dimension 4. Apply this to the set S D

T
nXn. The complementary

regions are the disksDi . By construction, they have pairwise disjoint closures, Sn�Di is an
n-cell, and the sets form a null sequence. To see that

S
i Di is dense, suppose for contradiction

that some open ball B of radius � > 2�k was in the complement of the closure of
S
i Di .

Consider the sequence of maps fkCm ı � � � ı fkC2 ı fkC1 defined on
T
nXn, for k fixed, as

m!1. By property (iii) above, these pointwise converge to a map
T
nXn ! Xk which

moves all points distance at most 2�k�1. Thus, the image of B under the limit contains an
open set in Xk . However, such a set must intersect the dense set F �1

k
.Z/, contradicting the

fact that B does not intersect the closure of the union of the disksDi . We conclude that S is
a Sierpiński space.

Since � is a homeomorphism from the compact space X whose image contains a (closed)
dense subset of the Sierpiński space

T
nXn, we conclude that �.X/ D

T
nXn. We claim

now that the projection F W X ! X0 D Sn; .: : : ; p2; p1; p0/ 7! p0 gives a homeomor-
phism between the set X � F �1.Z/ and Sn � Z and that there is an action of � on X by
homeomorphisms such that the restriction to X � F �1.Z/ agrees (under this homeomor-
phic identification) with the original action of �. Given this, collapsing each boundary of a
connected component of the compliment of X Š �.X/ to a single point gives a sphere X ,
and F induces a continuous, surjective map X ! Sn that intertwines the two actions, as
desired. As we have already observed the restriction of F to X � F �1.Z/ is injective, which
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implies that F W X � F �1.Z/! Sn �Z is a homeomorphism, since it is a continuous bijec-
tion induced from the map F , and F is a continuous map between compact metric spaces,
hence closed.

The action of � on X comes from our description of the Xi as a blow-up of the tangent
space to a point. For each i , the set F �1.zi / is a circle, identified with the projectivized
tangent space (the space of oriented lines in Tzi .S

n/), via projection to Xi and the identi-
fication there. This gives an action of � by bijections of X ; it remains to show that it is in
fact an action by homeomorphisms. For this it suffices to check continuity of the action
of each 
 2 �. Let xn ! x1 be a sequence of points in X . If x1 … F �1.Z/, that 
.xn/
converges to 
.x1/ follows directly from our construction and the definition of the inverse
limit. If x1 2 F �1.zj / for some zj , then it suffices to project to Xj and work there. That xn
converges to x1 in Xj , where x1 is a boundary point means precisely that, as n ! 1,

the points Fj .xn/ converge to zj and Fj .xn/�zj
jjFj .xn/�zj jj

converges to the tangent direction v

represented by z1. Continuous differentiability of 
 at zj is all that is required to have

.xk/! 
.x1/, this is why we assumed our original action was of class C 1.

5. Global rigidity of slitherings from skew-Anosov foliations

In this section we specialize to actions of fundamental groups of certain 3-manifolds
on S1. In this case, Lemma 3.1 gives a homeomorphism rather than a continuous map, and
we will exploit this property to prove a global rather than local rigidity result for (lifts of)
boundary actions and the more general case of actions induced by “slitherings” from skew-
Anosov flows. We begin by summarizing some standard results and the framework needed
for the proof.

5.1. Anosov Flows

A flowˆt generated by a vector field Y on a closed 3-manifoldM is Anosov if the tangent
bundle splits as a sum of (continuous) line bundles that are invariant under the flow

TM D Ess ˚ hY i ˚Euu

with the property that for some choice of metric on M , there are constants C; � > 0 such
that

jj.�t /�.v
s/jj � Ce��t jjvsjj and jj.�t /�.vu/jj � C�1e�t jjvujj

holds for all t � 0 and all vu 2 Euu; vs 2 Ess . By averaging the metric over long time
intervals and decreasing �, one can assume that C D 1. Such a metric is called adapted.

The line fields Euu; Ess are called the strong unstable and strong stable directions of the
flow. It is a classical fact that these distributions are uniquely integrable. The foliations to
which they are tangent are characterized by the dynamical property that their leaves consist
of sets of points that are asymptotic under the flow in forward, respectively backward, time.
One also obtains foliations F s and Fu tangent to the integrable plane fields

Es D Ess ˚ hY i ; Eu D Euu ˚ hY i
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respectively; these are called the weak stable and unstable foliations of the flow. In the exam-
ples of interest to us the line fields Ess and Euu will always be orientable, i.e., trivial as line
bundles, so from now on we take orientability to be a standing assumption.

The following proposition collects some well-known properties of the weak foliations
of an Anosov flow that we will need going forward. The additional C 1 structure given by
point (1) below will be important in the proof of Theorem 1.2.

Proposition 5.1. – Let ˆt be an Anosov flow on a closed 3-manifold M . Then the
following hold

(i) (Hirsch-Pugh [32]) The weak stable and unstable foliations F s and Fu are of class C 1.

(ii) M admits a metric such that the induced metric on weak stable and unstable leaves in fM is
uniformly bi-Lipschitz equivalent to a metric of constant curvature�1. In this metric, the
flowlines on each leaf are quasi-geodesics; on a leaf ofF s , flowlines share a unique common
forward endpoint, and on Fu a common negative endpoint.

For completeness, we give an outline of the proof. The reader may consult [17, Section 5]
for more details and general background.

Proof. – Item (1) follows from the proof of the Smoothness Theorem part (i) in [32].
Specifically, one applies the graph transform argument there to the quotient bundle TM=hY i
upon which the flow acts. This action has two invariant sub-bundles E

s
; E

u
given by the

images of the weak stable and unstable subbundles. Since these are uniformly contracted and
expanded, respectively, by Dˆt , the C 1-Section Theorem [33] then implies that E

s
and E

u

are C 1. Pulling back to TM , one deduces that the subbundlesEs; Eu are of class C 1 as well.
Since they are invariant under the flow, it follows that they are tangent to C 1-foliations.

To show item (2), take a C 0-metric onM so that the strong stable/unstable directions and
the flow direction are all orthogonal, and the generating vector field has unit length. Without
loss of generality we assume that this metric is adapted to the Anosov flow. In general, this
metric may only be continuous, but we do not need any higher regularity for the argument.
Let L be a leaf of the weak unstable foliation, and `s a strong-stable leaf through some
point p 2 L. Then `s is a section for the restriction of ˆt to L. Parametrize `s by arc length
and call this coordinate x. The lift ès gives a section for the induced flow on the universal
cover eL and hence a global coordinate system .x; t/ on eL so that the pulled-back metric is of
the form  

f 2.x; t/ 0

0 1

!
:

In particular, the flow lines are geodesics with respect to this metric. By construction
f .x; 0/ D 1 and the Anosov condition gives the bounds

"e��t � f .x; t/ � e��t :

This implies that the metric on eL is uniformly bi-Lipshitz equivalent to the pull-back of the
flat metric on R2 by .x; t/ 7! e��t , i.e., a constant negative curvature hyperbolic metric on
the upper half plane, hence bi-Lipshitz equivalent to standard hyperbolic metric of constant
curvature �1. In the hyperbolic metric, vertical lines are geodesics with the same forward
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ou

ol

Figure 2. The flow space O of a skew-Anosov flow. The two black points are
related by the natural map � on O

endpoint, and these correspond to flowlines under our bi-Lipshitz identification. The case
of the unstable foliation follows mutatis mutandis.

5.2. Slitherings and skew-Anosov flows

We first recall the notion of a slithering, as introduced by Thurston in [46].

Definition 5.2 (Slithering). – Let M be a closed 3-manifold. A slithering of M
over S1 is a fibration s W fM ! S1 with 2-dimensional fibers such that deck transformations
are bundle automorphisms for s, taking fibers to fibers. This means that the foliation of fM
given by the fibers of s descends to a foliation on M .

Since deck transformations take fibers to fibers, a slithering s W fM ! S1 also induces
a natural slithering action �s W �1M ! HomeoC.S1/ on the circle. Following our earlier
convention, we continue to assume that all foliations are oriented, so this slithering action
is by orientation preserving homeomorphisms. Slitherings generalize both the notion of
a fibering over S1 (where s is simply the lift of the bundle projection to fM ), and the
notion of a foliated S1-bundle, where s is the projection to the fiber on the induced foliated
bundle over fM . Skew-Anosov flows (a generalization of geodesic flows on negatively curved
surfaces) provide another important source of examples.

Example 5.3 (Skew-Anosov flows). – Let ˆt be an Anosov flow on a closed 3-
manifold M , whose stable foliation is oriented and R-covered, meaning that the leaf space
on the universal cover is Hausdorff (or equivalently, is homeomorphic to R). Results of
Fenley [17] and Barbot [2] show that a flow with this property is either the suspension of an
Anosov diffeomorphism of T 2 or is skew, meaning that the orbit space of the lift of the flow
to fM is homeomorphic to the infinite diagonal strip

O D f.x; y/ 2 R2 j jx � yj < 1g;

in such a way that the preimages of horizontal (respectively, vertical) intervals are the stable
(resp. unstable) leaves of the flow, as illustrated in Figure 2.

In this model, each point o 2 O can be assigned a point ou on the upper boundary by
following the unstable leaf through o, and a point ol on the lower boundary by following
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the unstable leaf. Taking the intersection of the stable leaf through ou and unstable through
ol defines a continuous, fixed point free map � W O ! O. This map sends stable leaves to
unstable leaves and vice versa, so � D �2 descends to a map on the leaf spaceƒs of the weak
stable foliation. This map is strictly monotone, and the quotient map.fM ! ƒs ! ƒs=�

defines a slithering of M . By construction, the foliation associated to this slithering is the
weak stable foliation of ˆt .

The map � has many remarkable properties. A concise summary is given in [5, §4]; we will
simply state those which are of use to us. First, � is a �1M -equivariant homeomorphism and
can be induced from a continuous self-map �M of the underlying manifoldM [2, 17]. Barbot
[2, Theorem 3.4] showed, using an averaging argument, that this map �M can actually be
taken to be a homeomorphism of M . An alternative description of �M is given in [46, Prop
7.4 ii)]. Futhermore, if some element of the fundamental group fixes a point o of the leaf
space, then it also fixes �k.o/ for all k, and the corresponding periodic orbits of the flow are
freely homotopic. It is not hard to see that the converse is also true: any two periodic orbits
of a skew-Anosov flow that are freely homotopic are related by some power of the map � on
the flow space. We note this fact for later use.

Proposition 5.4 (see [2, 17]). – Let˛; ˇ be freely homotopic orbits of a skew-Anosov flow
with orientable splitting on a closed manifold M . Then ˇ D �kM .˛/ for some integer k, where
�M is a homeomorphism of M that induces the map � on the flow space.

We will also need to use the following result of Barbot on minimality of the slithering
action associated to a skew-Anosov flow.

Proposition 5.5 ([2] Theorem 2.5). – Any skew-Anosov flow is transitive and its associ-
ated slithering action �s W �1M ! HomeoC.S1/ is minimal.

Universal circles

Let Fu and F s denote the lifts to fM of the unstable and stable foliations of an Anosov
flow. Following Proposition 5.1 ii), the leaves of these foliations have a natural large-scale
hyperbolic structure, hence can be compactified by a boundary at infinity. In the case of a
skew-Anosov flow, Thurston [46] observed that these foliations are uniform, meaning that any
pair of leaves lie a bounded distance apart from each other, and hence the leafwise boundaries
can be canonically identified:

Lemma 5.6 (Lemma 4.1 and Corollary 4.2 of [46]). – For each pair of leaves L and L0

of Fu, and every infinite geodesic g on L, there is a unique geodesic g0 on L0 at a bounded
distance from g. This produces a canonical identification of the circles at infinity for all the
leaves of Fu. We call the result the universal circle at infinity. The same holds with F s in the
place of Fu.
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An alternative way to describe Thurston’s universal circle is by considering the intersec-
tion of Fu and F s . For a fixed leaf L of Fu, the leaves of F s intersect L as quasi-geodesics
with a common forward (using an induced orientation) endpoint, with respect to the large-
scale hyperbolic structure. Thus, the boundary of L, minus one point, can be identified with
a subset of the leaf space of F s , and there is a natural map defined on subsets of boundaries
of any two nearby leaves L and L0 of Fu via leaves of F s . This gives the following.

Proposition 5.7 (Prop 7.1 of [46]). – Let S1u denote the universal circle obtained from
Lemma 5.6. There is an identification of S1u with ƒs=� , under which the action of �1M on S1u
(i.e., as obtained from the action on the leaf space) agrees up to conjugacy with the slithering
action of the foliation.

In other words, S1u can be thought of as the space of vertical lines (mod � ) of the orbit
space O depicted in Figure 2.

5.3. Proof of Theorem 1.2

In this section we use the following notion of semi-conjugacy for circle maps, as defined
by Ghys in [26]. Though the terminology “semi-conjugacy” is now widespread, this is not
the same as the standard dynamical notion of semi-conjugacy defined in Section 2. To avoid
confusion, we will follow [48] and use the term weak conjugacy for Ghys’ definition.

Definition 5.8. – Let �1 and �2 W � ! HomeoC.S1/ be two actions of a group� on the
circle S1 D R=Z. These actions are weakly conjugate if there is a monotone map h W R! R
commuting with x 7! x C 1, and lifts of each element �i .
/ to HomeoC.R/ satisfying
h ı �̃1.
/ D �̃2.
/ ı h.

The map h in the definition above is not required to be continuous or surjective. However,
if �2 is minimal, any weak conjugacy h between �2 and any other representation �1 is
necessarily continuous and surjective. Note that, since h commutes with integer translations,
it descends to a map of S1. A map of S1 so induced is called a degree one monotone map.
It is easy to verify that the surjective, degree one monotone maps of S1 are precisely the
orientation-preserving maps of S1 which are approximable by homeomorphisms.

We divide the proof of Theorem 1.2 into two propositions, covering first the local then the
global result.

Proposition 5.9 (Local Rigidity). – LetF s be the weak stable foliation of a skew-Anosov
flowˆt onM 3 with associated slithering action �s W �1M ! HomeoC.S1/. Then there exists
a neighborhood U of �s in Hom.�1M;HomeoC.S1// consisting of representations weakly
conjugate to �s .

Proposition 5.10 (Global Rigidity). – Under the hypotheses above, one can in fact take
U to be the connected component of �s in Hom.�1M;HomeoC.S1//.
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The proof of the local version follows roughly the same strategy as that of Theorem 1.1
in Section 3. However, here the suspension of the action is one dimension larger than the
one considered there, forcing us to make use of a natural section in order to cut down a
dimension. The proof of the global result is then a quick consequence of approximability
of weak conjugacy maps by homeomorphisms.

Proof of Proposition 5.9. – Let F s be the weak stable foliation of a skew-Anosov
flow ˆt on a closed 3-manifold M , let s W fM ! S1 be the associated slithering, and
let �s W �1M ! HomeoC.S1/ be the slithering action. For clarity, we divide the proof into
steps, as indicated by the paragraph headings.

Setup: a canonical section. – Consider the lift of F s to fM . As in Section 3, we abuse
notation slightly and let F s also denote the lifted foliation to fM , with leaf space ƒs Š R.
By Proposition 5.1, F s is of class C 1, giving a C 1 identification fM Š R2 � ƒs , and an
action of �1M on ƒs by C 1 diffeomorphisms. As explained in our discussion earlier (see
Example 5.3), this action commutes with the map � W ƒs ! ƒs used in defining the
slithering, and �s is simply the induced action of �1M on the (topological) circleƒs=� . Note,
however, that the map � is in general only a homeomorphism and so �s need not be an action
byC 1 diffeomorphisms. It is for this reason that we work with the lifts toƒs . Let O� denote the
action of �1M on the leaf spaceƒs . This is a lift of �s and the holonomy of the foliation F s
on fM .

LetE D .fM�ƒs/=�1M be the suspension of O�. Fixing notation, forp 2 fM , let `.p/ 2 ƒs

denote the leaf containing p. Define a sectione� W fM ! fM � ƒs by p 7! .p; `.p//. This
satisfies the O�.�1M/-equivariance


 � p 7! .
 � p; O�.
/.`.p///

so induces to a section � W M ! E. Since O� is a C 1 action, the section e� (and hence
also � ) are C 1 embeddings. Also, e� is transverse to the leaves fM � flg of the horizontal
foliation on fM � ƒs since the composition of e� with the projection to ƒs is precisely the
quotient map to the leaf spaceƒs , which is a non-singular C 1 map. By definition, the leaves
of e�.F s/ are simply the intersection of e�.M/ with the leaves of the horizontal foliation of
the suspension E. This means that the C 1 foliatione�.F s/ is transverse toe�.Fu/ ine�.fM/.

Nearby actions give nearby foliations. – Let �0 be a small perturbation of �s , and let O�0 denote
the lift of �0 to Hom.�1M;HomeoZ.R// that is a small perturbation of O�. Since E O� is a
foliated R-bundle overM with C 1 foliation, and O�0 is a small perturbation of the holonomy,
following the proof of Lemma 3.1 verbatim produces a homeomorphism f�0 W E O�0 ! E O�
taking leaves of the suspension foliation on E O�0 to a foliation with tangent distribution
uniformly close to the horizontal distribution on E O�. “Close” can be made as small as we
like by choosing �0 sufficiently close to �s . Since O�0 and O� are both representations into
HomeoZ.R/, as in the last step of the proof of Lemma 3.1 the resulting homeomorphism
will descend to a map E�s ! E�0 of the respective fiberwise quotients.

Let eF 0 denote the image of the horizontal foliation under f�0 . Since eF 0 has tangent distri-
bution close to that of the horizontal distribution onE O�, its restriction to the sectione�.M/ is
transverse to is transverse to e�.Fu/. Abusing notation slightly, we now let eF 0 denote the
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ƒs

H2

Figure 3. A picture ofe�.fM/ in the familiar caseM D UT† as in [46]. The infinite
cylinder ise�.fM/ Š fM D H2 � ƒs i.e., the height of a point in the stack of copies
of H2 corresponds to the positive endpoint of a unit tangent vector based at that
point. Horizontal planes are leaves of Fs , one is shown in blue. A leaf ofe�.Fu/ is
shown in red, the hyperbolic metric on the leaf is the one lifted from the projective
model of H2 shown below. In this model, one endpoint at infinity of the unstable
leaf is blown up to an interval.

restriction of this foliation to e�.M/. We will study the foliations e�.F s/ and fF 0 on e�.fM/,
and the induced foliations �.F s/ and F 0 on the quotient �.M/.

Leafwise quasi-geodesic foliations and the endpoint map. – We adapt the line of argument
carried out in Section 3.2, using “endpoint maps” to define a weak conjugacy between �s
and �0. By Proposition 5.1 (ii), we may fix a metric on M so that leaves of F s are uniformly
bi-Lipschitz equivalent to H2 and the foliation Fu \ F s is uniformly quasi-geodesic.

Since the tangent distribution of eF 0 is C 0 close to the horizontal in fM � ƒs , for any
fixed leaf L of e�.Fu/, the intersection of eF 0 with L will give a foliation of L with tangent
distribution close to that of the flowlinesFu\F s . Thus, under our bi-Lipschitz identification
ofLwithH2, the foliation eF 0 is quasi-geodesic onL. Recall also from Proposition 5.1 (ii) that
flowlines ofˆt on L share a common negative endpoint, say � 2 @H2. Since the bi-Lipschitz
equivalence L Š H2 maps strong unstable leaves to horocycles and flowlines to geodesics,
the leaves of eF 0 \ L will be nearly orthogonal to horocycles based at �. The argument from
Lemma 3.3 (repeated essentially verbatim) shows that eF 0 \ L is uniformly quasi-geodesic.
The fact that the action of �1.M/ on triples of ordered distinct points in S1u is cocompact
(cf. [46, Proposition 7.4]), together with the argument from Lemma 3.3 also shows that the
intersection of any leaf L of Fu with F 0 is connected. Thus, varying L we obtain a uniform
quasi-geodesic foliation of fM . Denote this foliation by FQG . Furthermore, for each leaf L
of Fu, we have endpoint maps eCL and e�L taking leaves of FQG in L to their positive and
negative endpoints on the ideal boundary of L.
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By Lemma 5.6, the boundaries of leaves of Fu may be identified to give a universal
circle S1u , allowing us to piece together the maps eCL and e�L to obtain globally defined
maps eC and e� from the leaf space of FQG to S1u . The proof of Lemma 3.5 shows that, for
each leafL ofFu, the map eCL is continuous. SinceFu is a uniform foliation [46], the inclusion
of any leaf into a neighborhood N".L/ is a uniform quasi-isometry and L0 � N".L/ for any
sufficiently close leaf L0. Now nearby leaves of FQG lying in L;L0 respectively remain close
on long segments, hence their endpoints are close in the ideal boundary @1N".L/ which is
then canonically identified with @1L; @1L0 via the inclusion. We can now argue exactly as in
Lemma 3.5, to show that the globally defined maps eC and e� are continuous on the whole
manifold as well.

Straightening quasi-geodesics to produce the semi-conjugacy. – To conclude the proof, we
follow a modified version of the argument from 3.9. Since leaves of FQG are transverse to
the image of the strong unstable foliatione�.Fuu/, they can be continuously homotoped via
a �1M -equivariant homotopy eht along the one-dimensional leaves of the strong unstable
foliation in such a way that the image of each leaf of FQG under eh1 is the flow line of ˆt
with the same ideal endpoints in the given leaf.

Figure 4. Quasi-geodesics in a leaf of Fu and their images under eh1; leaves with
common endpoints are identified. The red circle is a leaf of Fuu

The time-one mapeh1 of the homotopy descends to a map h1 from the leaf space ofFQG to
the orbit space of the flow (which we denote byO), making the following diagram commute.

e�.fM/ fM
e�.fM/=FQG O:

eh1

h1

We claim that for each leaf L0 of eF 0, its image h1.L0/ agrees with the image in O of some
leaf of F s . Equivalently, we need to show that the positive endpoint map is constant on
each leaf L0 of eF 0. To show this, we will use the picture given by Thurston’s universal
circle perspective, as stated in Proposition 5.7. Following this, the negative and positive
endpoint maps give local (first and second) coordinates on O. Fix any leaf L0 of eF 0. Note
first that e�.h1.L0// is nonconstant, i.e., its image in O does not correspond to a vertical
segment inO. This is simply because L0 intersects at least two distinct leaves of Fu. We wish
now to show that h1.L0/ is horizontal.
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Suppose for contradiction that this is not the case. By Proposition 5.5, the skew-Anosov
flow ˆt is transitive, and so its periodic points are dense. It follows that the image of L0

intersects both the unstable leaf and the stable leaf of some periodic orbit. Let 
 2 �1M be
the element represented by this periodic orbit, thought of as a closed curve in M .

Figure 5. The image of a leaf in the flow spaceOwhich is non-horizontal is shown
in light green. The black point is a periodic orbit corresponding to 
 2 �1M and
the lines in darker shades of green show the first few iterates under the action of 
 .

Sinceeh1.FQG/ is a�1M -equivariant foliation, 
neh1.L0/ are also leaves in the image ofeh1.
See Figure 5 for a schematic picture. Since we are assuming thateh1.L0/ is not horizontal, then
the sequence of leaves 
neh1.L0/ approaches (uniformly on compact sets) a vertical segment.
The fact that the foliation eF 0 is lifted from a flat S1-bundle structure gives us compactness
of the leaf space mod � , so after passing to a subsequence, in the quotient by � the leaves

neh1.L0/ converge to some limit leaf L1. By continuity of the mapeh1, the image of this leaf
is vertical, contradicting our earlier observation.

We conclude that leaves of eF 0 map to (subsets of) leaves of F s . We now argue that leaves
are sent onto leaves; in other words, the straightening map h1 defines a map from the leaf
space of eF 0 to that ofF s on fM . To see this, consider first a leafL0 ofF 0 whose image contains
a periodic orbit representing some ˛ 2 �1M . The �1M -equivariance of our construction
means thatL0 is also invariant under the action of ˛, and its image under h1 is an ˛-invariant
subset of a stable leaf. We additionally know that, under the negative endpoint map, this
subset contains an interval. Thus, it must necessarily be the full leaf. The general case (for
leaves not necessarily containing a periodic orbit) now follows from the density of periodic
orbits of the flow and continuity.

In summary, we have the following induced �1M -equivariant maps, where the vertical
maps denote the maps to the respective leaf spaces:

e�.fM/ fM
e�.fM/=eF 0 fM=F s D ƒs :

eh1

h1

Note that the map h1 preserves the (weak) order of leaves in the leaf space, so it is monotone,
and it is surjective and equivariant with respect to the action of � . Thus, after quotienting out
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by the action of � on fM and R respectively, we obtain a surjective monotone map h on the
circle S1 D R=� that provides the desired weak conjugacy.

Proof of Proposition 5.10. – Let � be a representation as in the statement of Proposi-
tion 5.9. We show that the property of being weakly conjugate to � is both an open and
closed condition in Hom.�1M;HomeoC.S1//.

Closedness. – It follows from work of Ghys [26] and Matsumoto [39] that, for any discrete
group �, the closure of a conjugacy class in Hom.�;HomeoC.S1// is a weak conjugacy
class (called semi-conjugacy rather than weak conjugacy by these authors). This is because
weak conjugacy classes can essentially be specified by rotation numbers of elements, rotation
number being a continuous function on HomeoC.S1//, or by the integer bounded Euler
class. A detailed exposition is given in [48, §2].

Openness. – This follows from Proposition 5.9 and approximability of weak conjugacies
on S1 by homeomorphisms. (See the remark after Definition 5.8.) Let U be the neighbor-
hood given by Proposition 5.9. Let �0 be weakly conjugate to � via a degree one monotone
map h W S1 ! S1 satisfying h ı �0 D � ıh; since � is minimal by Proposition 5.5, h is contin-
uous. If h0 2 HomeoC.S1/ is a sufficiently close C 0 approximation to h, then h0�0h�10 2 U
so admits a neighborhood V consisting of weakly conjugate representations; and h�10 V h0 is
the desired neighborhood of �0.

5.4. Application: global rigidity of geometric representations

As a first application of Theorem 1.2, we give a new proof of the main result of [38].
A second application is discussed in the next section. Both use the following standard
construction; further discussion of which can be found in [38].

5.5. Fiberwise covers of the geodesic flow

Let † be a closed hyperbolic surface. Then † D H2=�0.�1†/ where �0 is an embedding
as a cocompact Fuchsian subgroup of PSL2.R/. The action of �0.�1†/ � PSL2.R/ on
@1H2 D S1 by Möbius transformations gives a realization of the boundary action of �1†.
As in Example 5.3, the corresponding suspension foliation of this representation can be
naturally identified with the weak stable foliation of the geodesic flow.

Lifts of �0 to the extension Z=kZ! PSL.k/2 .R/! PSL2.R/ are precisely the holonomy
representations of the weak stable foliations of the possible lifts of the geodesic flow to a
k-fold fiberwise cover ofM ! UT†. Such lifts exist if and only if k divides the Euler charac-
teristic �.†/; in which case for a genus g surface there are k2g D jHom.�1†;Z=kZ/j distinct
lifts. These lifts can also be distinguished dynamically: thinking of PSL.k/2 .R/ � HomeoC.S1/,
via the natural identification of lifts of Möbius transformations to the k-fold cover of S1,
one can classify distinct lifts by the rotation numbers of a standard generating set. The
images of a standard generator under different lifts differ by rigid rotations through angles
that are multiples of 2�=k.
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Remark 5.11. – Topologically speaking, the effect of modifying the action of a gener-
ator ˛ by a rotation is to modify the closed orbits of the lifted flow that project to ˛ under
the map �1.M/ ! �1.†/. In detail, that some standard generator 
 for �1† has image
O�.
/ 2 HomeoC.S1/ with rotation number 2�n=k, means precisely that in the suspension
of O�, the projection to the S1 fiber of the horizontal lift of 
n to a closed orbit, considered as
a map S1 ! S1, has degree k. We will use this perspective again in the proof of Theorem 1.3.

The following is the main result of [38] (reproved using a different argument by Matsumoto
in [40]). By quoting Theorem 1.2, we may give another, shorter independent proof.

Theorem 5.12 (Mann [38]). – Let † be a surface of genus g � 2, and

� W �1†! PSL2.R/ � Hom.�1†;HomeoC.S1//

an embedding as a cocompact Fuchsian group. Consider any lift O� of this action to the k-fold

cover of S1
zk

�! S1:

Homeo.k/C .S1/

�1† HomeoC.S1/:

zk
O�

�

Then the connected component of O� in Hom.�1†;HomeoC.S1// is a single weak conjugacy
class.

Proof. – Equip † with a hyperbolic metric and let UT† be its unit tangent bundle. The
geodesic flow on UT† is skew-Anosov, so determines a slithering action

�s W �1.UT†/! HomeoC.S1/:

We consider lifts O� of � D �s as per our discussion above. Each lift O� is the holonomy of the
lift of the weak stable foliation of the geodesic flow to a k-fold fiberwise cover of UT†. Let
M be such a k-fold cover, so �1M sits in a central extension

1 �! Z D hzi �! �1M �! �1† �! 1:

The lift of the geodesic flow to M is also skew-Anosov, so has a slithering

�sk W �1M ! HomeoC.S1/:

It is easily verified from the definitions that these representations satisfy �sk .z/ D id, so
descend to representations �1† ! HomeoC.S1/, which are precisely those appearing
in the statement of Theorem 5.12. Theorem 1.2 states that the representation �sk is glob-
ally rigid in Hom.�1M;HomeoC.S1//. This now implies rigidity of the surface group
action obtained by restricting �sk to �1.†/, since any element of its connected component
in Hom.�1†;HomeoC.S1// can be extended to a representation of �1.M/ by declaring the
central Z subgroup to act trivially.

A further consequence of Theorem 1.2 is the following.

Corollary 5.13. – LetM be a closed 3-manifold admitting a skew-Anosov flow. Then the
component of the space Hom.�1M;HomeoC.S1// with trivial Euler class is not connected.
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Proof. – The slithering action �s corresponds to Thurston’s universal circle action given
by compactifying leaves of F s in the universal cover, as described above. The Euler class
of this action agrees with the Euler class of F s , which is trivial since the tangent bundle
to F s admits a nowhere vanishing section determined by the flow. But �s is not in the same
component as the trivial representation by Proposition 5.10, although they have the same
Euler class.

6. Topologically inequivalent Anosov flows on hyperbolic manifolds

In this section we prove Theorem 1.3 using ideas developed above. Recall that two non-
singular flows on a manifold are topologically equivalent if the one-dimensional foliations
given by their flow lines are conjugate as foliations. We will consider examples of skew-
Anosov flows obtained by lifting geodesic flows to a k-fold fiberwise cover of the unit
tangent bundle of a hyperbolic surface (for large k), then performing integral Dehn surgery
along a closed orbit. (We assume that the reader has some familiarity with hyperbolic Dehn
surgery e.g., as described in [45]. A brief description of surgery for flows is given below in
Paragraph 6.1.)

Remark 6.1 (Lifts to a fiberwise covers up to topological equivalence, [4]).
Recall from Section 5.5 that the different lifts of geodesic flow on UT† to the k-fold

fiberwise cover of UT† are determined by cohomology classes in H 1.UT†;Zk/ that pair
with the generator to give 1. It is straightforward to check that the group of fiberwise
rotations (i.e., smooth gauge transformations of the cover), which can be identified with
the group of smooth maps † ! U.1/ D S1, acts transitively on this affine subspace
of cohomology. Note that these equivalences change the isotopy class of the flow as the
homotopy classes of periodic orbits will change. However, the mapping class group of UT†
also contains the mapping class group of the base. By carefully considering the action on
both the flow and the covering, Barbot and Fenley [4] show there are two distinct Anosov
flows, up to equivalence in the case that k is even, and only one in the case that k is odd.
Moreover, in this case, all equivalences can be realized by diffeomorphisms of the ambient
manifold.

Barbot and Fenley’s result as described above implies that some extra ingredient is
required to produce many inequivalent flows. This is where Dehn surgery comes into the
picture.

Asymmetric Knots

The first ingredient is the following construction of highly asymmetric filling geodesics on
surfaces. We will later lift these to a fiberwise cover of the unit tangent bundle and perform
Dehn surgery along the resulting curve.

Notation 6.2. – Let T be a one-holed torus, and a; b simple, oriented curves repre-
senting standard generators of �1.T /. Let cm;n denote a properly embedded arc with
endpoints on @T , constructed by first following a simple subarc that wraps n times in the
a direction, and then a simple arc wrappingm times in the b direction, as shown in Figure 6.
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b

a

Figure 6. The curve c3;5 on T

Figure 7. Part of the curve c from Lemma 6.3

The complementary regions to cm;n are quadrilaterals, with the exception of one 5-gon, and
one 7-gon containing an arc of @T .

The next lemma says that arcs of the form cm;n on disjoint one-holed tori can be pieced
together to give a curve on a higher genus surface that has the same self-intersection pattern
as its geodesic representative in any hyperbolic metric. For the set up, fix g > 2 and fix
a decomposition of †g into g punctured tori T1; T2; : : : ; Tg and one g-holed sphere S .
Let m1; n1 D 3; 5, and for i D 2; 3; : : : ; g, choose mi > ni C 1 and ni > mi�1 C 1. Let
c be a closed curve on †g whose restriction to Ti is the arc cmi ;ni , and such that c has no
points of self-intersection in S .

Lemma 6.3. – For any curve c as above, the following hold:

1. For any hyperbolic metric on †g , the geodesic representative of c has the same self-
intersection pattern as c.

2. If f is a finite order homeomorphism of †g such that f .c/ is ambiently isotopic to c,
then f is the identity. The same statement holds when c is replaced with its geodesic
representative in any hyperbolic metric.
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Proof. – First, note that by construction no complementary region of c is a monogon,
bigon, or triangle. Fix any hyperbolic metric on †g , and consider the geodesic represen-
tative cgeo of c in this metric. We claim that it has the same combinatorics as the curve c
depicted in the figure. To see this, we use the disk flow of Hass and Scott defined in [30].
Starting with a curve in general position, this flow may change the combinatorics of a
curve via a/ eliminating a monogon or bigon bounding a disk (thus decreasing the self-
intersection number of the curve) or b/ moving one edge of a triangle across the opposite
vertex, preserving the self-intersection number. Hass and Scott show [30, Thm 2.1, 2.2] that
any curve is homotopic to a representative with minimal self-intersection number through
this process, and that any two distinct representatives of a curve, each having minimal self-
intersection number, are homotopic to each other through moves of type b/ and ambient
isotopy of the surface. Since no complementary regions of c are monogons or bigons, moves
of type a/ are not possible. Thus, c has minimal self-intersection number. Since no regions
are triangles, Hass and Scott’s theorem implies that cgeo (which is a geodesic, hence also has
minimal self-intersection number) must be attainable from c by ambient isotopy of†g . This
proves (1).

For the second assertion, suppose that f is a finite order homeomorphism of †g , and h
a homeomorphism isotopic to identity such that hf .c/ D c, setwise. Then hf induces an
automorphism of the graph on †g formed by the image of c. We claim that this graph has
no nontrivial automorphisms. To see this, note that (with appropriate choice of orientations
on the tori Ti ), the two complementary regions to c that intersect S are a p-gon and q-gon
for p ¤ q > 5, so much each be preserved. The choice of ni > mi�1 C 1 and mi > ni C 1,
ensures that the “grids” of quadrilaterals which distinguish the torus subsurfaces have no
nontrivial symmetries and cannot be permuted, from which one deduces inductively that
each complementary region is fixed. We leave the details as an elementary exercise. Thus, hf
induces a trivial graph automorphism. Since hf is isotopic to the finite order homeomor-
phism f and preserves each complementary region of the filling curve c, it must be isotopic
to the identity, as follows from the standard Alexander trick argument, hence f is the iden-
tity. This argument only relied on the combinatorics of c and its complementary region, so
by the first assertion it also holds when c is replaced by a geodesic representative.

The next step is to show that removing the geodesic representative of such a curve c from
the 3-manifold UT†, or removing a lift of it to a fiberwise cover of UT†, gives a 3-manifold
which admits a complete hyperbolic structure. This comes from the following folkloric result.

Lemma 6.4 (Calegari/Folklore). – Let c � † be a closed, filling geodesic in a hyperbolic
surface. Then the complement of its image in UT† is irreducible and atoroidal. More generally,
ifM ! UT† is a k-fold fiberwise cover, andK a connected component the preimage of c inM ,
then M �K is irreducible and atoroidal.

This is stated and proved in detail for the case whereM D UT† in [20, Appendix B], where
Foulon and Hasselblatt use it to construct examples of contact Anosov flows on hyperbolic
manifolds. However, the proof carries over verbatim when the bundle UT†! † is replaced
by any finite fiberwise cover. See also [12] for an alternative exposition.
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For the next two lemmas we will use the following set-up. Let M ! UT† be a k-fold
fiberwise cover of UT† where † is a hyperbolic surface of genus g � 3. As in Lemma 6.4
above, let K � M be a connected component of the preimage of a geodesic c in †, where
c is chosen as in Lemma 6.3.

Lemma 6.5. – If h 2 Homeo.M/ is homotopic to a finite order homeomorphism ofM , and
h.K/ is isotopic to K, then h is homotopic to the identity.

Note that h need not be equal to the identity, for instance it may rotate the fibers of the
fibration M ! †.

Proof of Lemma 6.5. – Consider the action of h on�1M . This action preserves the center
of �1M , which is the fundamental group of the fiber, so descends to an action h on �1†
modulo inner automorphisms, i.e., a map h 2 Out.�1†/. Since h is finite order, Nielsen
realization implies that h can be realized as an isometry for some hyperbolic structure on†.
Since h preservesK up to isotopy, the isometry realizing h preserves c up to free homotopy, so
preserves the geodesic representative of c in this metric. Since c was chosen as in Lemma 6.3,
this isometry is in fact trivial, so h is a trivial outer automorphism of �1†.

Now M is a K.�; 1/ space, so homotopy classes of maps M ! M are determined by
the action on the fundamental group, and so homotopy classes of maps that induce the
trivial outer automorphism of �1† can be identified with elements of Hom.�1†;Z/, which
is torsion free. Since h was assumed finite order, it must therefore be homotopic to the
identity.

The following is the main technical result of this section.

Lemma 6.6. – LetMp denote the integral Dehn filling onM�K of slopep. After excluding
finitely many slopes, the following hold.

1. The manifold Mp is hyperbolic and each homeomorphism of Mp preserves the homotopy
class of the core curve of the filling torus.

2. Each homeomorphism � 2 HomeoC.Mp/ that preserves the core of the filling torus
determines a homeomorphism �M ofM that preserves the isotopy class ofK, agrees with
� away from a tubular neighborhood ofK, and is homotopic to the identity. This tubular
neighborhood of K may be chosen arbitrarily small.

Remark 6.7. – The first point is true (after excluding finitely many slopes) whenever
K is obtained by lifting a filling geodesic on the surface. The fact that �M in point (2) is
homotopic to the identity comes from our choice of c from Lemma 6.3.

Proof of Lemma 6.6. – By Lemma 6.4 the complement M � K is atoroidal and irre-
ducible, and thus admits a complete hyperbolic metric by geometrisation. Fix this hyperbolic
metric, and consider the action of the isometry group Isom.M � K/ on the fundamental
group of the cusp, which we identify with Z�Z using generators coming from the meridian
and longitude of a tubular neighborhood of K. Recall that, by Mostow-Prasad rigidity,
Isom.M �K/ is finite. For each of the isometries whose action on Z�Z is not by˙I , record
any eigenspace of eigenvalue˙1. This gives us a collection of finitely many slopes, which we
exclude from the possible slopes of Dehn filling.
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Since M � K is hyperbolic, Thurston’s hyperbolisation theorem [45] states that, with
finitely many exceptions, the result of Dehn fillingM �K is a hyperbolic manifold, in which
the core of the filling torus is a closed geodesic of shortest length for this hyperbolic structure.
Excluding these finitely many exceptional slopes as well, we claim that Mp will have all the
desired properties.

First, suppose that � is a homeomorphism of Mp. By Mostow rigidity, it is homotopic
to an isometry; denote this isometry by  . Since the core of the filling torus is a geodesic of
shortest length, it is preserved by  , so � preserves this curve up to homotopy, finishing the
proof of item (1).

For the second item, observe that  induces a homeomorphism of the cusped mani-
fold M � K preserving the (unoriented) isotopy class of a longitude given by the Dehn
Surgery slope, which we identify with K. Again, by Mostow Rigidity, this homeomorphism
is homotopic to an isometry, and by our restriction on the choices of slope p, we conclude
that the action on the fundamental group of the cusp is by ˙I . This means also that  
can be extended to a homeomorphism, say  M , of M by coning off over meridian disks.
Furthermore, since an isometry of a complete hyperbolic manifold has finite order, we take
an extension that also has finite order, since the extension over meridian disks preserves this
property.

Suppose now that � itself has the additional property that it preserves the core of the Dehn
filling torus. By the same argument as above, � then induces a homeomorphism of M �K
preserving the isotopy class of the longitude K and inducing˙I on the fundamental group
of the cusp and so we can extend the action of � over meridian disks to give a homeomor-
phism �M of M preserving the isotopy class of K.

Since M is a K.�; 1/ space, the extension of any map over a tubular neighborhood N
of K is well-defined up to homotopy. Moreover, any homotopy of maps on M �N extends
to M . In particular, if  is the isometry homotopic to �, using the notation as above, then
�M is homotopic to  M , which is finite order. By Lemma 6.5, we conclude that �M is
homotopic to the identity. Finally, since � preserves K, this homeomorphism �M can be
obtained from � by undoing the original Dehn surgery in an arbitrarily small neighborhood
of K.

6.1. Dehn Surgery and Anosov flows

Given any Anosov flow and a periodic orbit 
 Goodman [28] and Fried [24] have described
how to perform integral Dehn surgery on 
 in a manner compatible with the flow, giving the
following.

Proposition 6.8 (Dehn surgery on Anosov flows [24, 28]). – Let ˆt be an Anosov flow
on a manifold M and let 
 be a periodic orbit. Then the manifold Mp.
/ obtained by integral
surgery of slope p admits an Anosov flow that is conjugate to the original flow away from the
core of the filling torus.

Goodman’s original construction in [28] produces a smooth Anosov flow. Fried [24] gives
an alternative construction which has, a priori, less regularity, but has the property that
the dynamics of the flow after surgery are identical to those of the original flow in the
complement of the periodic orbit given by the core of the Dehn filling torus. In outline,
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one simply blows up M along the normal bundle of the periodic orbit to obtain a manifold
homeomorphic to the complement of a small open neighborhood of 
 in M , with a torus
boundary to which the flow extends in a natural way, having four periodic orbits on the
boundary. Choosing a foliation of the torus boundary by circles transverse to the flow, such
that each circle leaf intersects each of the periodic orbits in a single point and identifying each
circle to a point, one obtains a flow on an integral Dehn-filling of M � 
 so that the core of
the filling torus (the points obtained by collapsing circles) is a periodic orbit.

While the dynamics under Goodman’s construction are somewhat mysterious, in Fried’s
version as described above it is obvious that any Dehn surgery can be undone, on the level of
Anosov flows, by an inverse surgery. The drawback of Fried’s construction is that the flows
he constructs are not obviously genuinely Anosov, they are only topologically Anosov. It
has been largely assumed in the literature that both these surgeries produce topologically
equivalent flows, so that in both cases one obtains flows that are Anosov in the usual sense.
This has only recently been settled by Mario Shannon [43] for transitive flows, which includes
as a special case surgery of skew-Anosov flows (the case of interest to us). This will be crucial
in our construction.

The surgery construction as well as some of its properties have been analyzed by Fenley
[17]. He shows in particular that surgery on certain Anosov flows produces skew-Anosov
examples. We note this for future use.

Proposition 6.9 (Dehn surgery on skew-Anosov flows [17]). – If the original flow is a
cover of the geodesic flow on UT†, then for p > 0 the flow on M�p.
/ given by Dehn surgery
of slope �p is skew-Anosov.

Constructing inequivalent Anosov flows

Using the tools above, we now produce examples of hyperbolic 3-manifolds supportingN
topologically inequivalent Anosov flows, proving Theorem 1.3. Recall that this will be done
by performing Dehn surgery on fiberwise covers of the unit tangent bundle of a hyperbolic
surface.

Proof of Theorem 1.3. – Let† be a hyperbolic surface, with hyperbolic structure defined
by a representation � W �1† ! PSL2.R/. Fix some k 2 N dividing the Euler characteristic
of †, for concreteness one may take k D g � 1, where g is the genus of †. We will give a
construction that produces a number of inequivalent skew-Anosov flows via surgery on the
k-fold cover of UT†, where that number grows linearly in k (and hence can be taken as large
as desired by taking g large).

Recall from Section 5.5 that for fixed k, the lifts of � to the k-fold central extension
of PSL2.R/ are in bijective correspondence with Hom.�1†;Z=kZ/, parametrized by the
rotation numbers of a standard set of generators of �1†. As discussed in Remark 5.11,
these lifts can also be distinguished by understanding the degree of projection to the fiber
of horizontal lifts of closed curves from† to the suspensionE O�. Each lift defines an Anosov
flow on the k-fold fiberwise cover of UT†, (whose weak stable foliation is the suspensionE O�
of the lift O� of �) but, as noted in Remark 6.1, these are all topologically equivalent flows. To
produce inequivalent flows, we will use Dehn surgery along the natural lifts of a fixed filling
geodesic as constructed in Lemma 6.3.
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Set-up and standing assumptions

Let T1 � † be a one-holed torus and c a geodesic on † as in Lemma 6.3, with ˛1; ˇ1 the
standard generators of �1.T /. Complete this to a standard generating set ˛2; ˇ2; : : : ; ˛g ; ˇg
for �1†. We will consider lifts of � that differ only on ˛1 and ˇ1, agreeing on all other
generators.

Identify the curve c with an element of �1† and fix a lift O� of � to PSL.k/2 .R/ such
that O�.c/ has rotation number 0. Topologically, having rotation number zero corresponds to
the fact that the “horizontal lift”of c, meaning the pre-image of the geodesic c under the
covering mapE O� ! UT†, has k connected components, each one a periodic orbit of the lift
of the geodesic flow toE O�. The following argument shows that there are at least bk=3c choices
for such lifts O�; all of which agree on ˛i ; ˇi for i � 2: Recall that c, as an element of �1† has
the formw˛31ˇ

5
1 wherew is a word in ˛2; ˇ2; : : : ; ˛g ; ˇg . Varying the lifts of �.˛1/ and �.ˇ1/,

while preserving the chosen lifts of the other generators amounts to replacing O�.˛1/ with its
composition with a rotation by 2�r1

k
, and O�.ˇ1/with its composition by some rotation of the

form 2�r2
k

. This changes the rotation number of O�.c/ by 3r1 C 5r2 mod k. For any choice
of r1 Š 5x mod k, we may choose r2 Š �3x mod k so that the rotation number does not
change.

We will further restrict our choice of lifts of � so that the horizontal lifts of c are all isotopic
curves in the k-fold cover of UT†. Following the discussion above, when k is large, we may
choose r1 and r2 to vary by only a small family of rotations, so that the holonomies of the
lifted representations, which differ by rigid rotation of 2�ri

k
, remain C1 close to each other

in Hom.�1†;Diff.S1//. This will give us some numberC.k/ of lifts of c which are sufficiently
close to each other to be isotopic, where C.k/ grows linearly in k. While the genus of†must
increase as k increases (since k needs to divide �.†/ for a lift to exist), this does not pose any
problem as we are performing these modifications only over the fixed torus subsurface T1.
Restricting to such lifts of �, fix p D p.k/ 2 N large enough so that Proposition 6.9 ensures
that Dehn surgery of slope�p on any connected component of any horizontal lift of c for any
one of this restricted class of lifts gives a skew-Anosov flow. Further restricting p if needed,
we may also ensure that all homeomorphisms of the Dehn-surgered manifold preserve the
free homotopy class of the core curve by Lemma 6.6.

The restriction we imposed on our lifts of � ensuring that connected components of
lifts of c are always isotopic means that performing a slope �p Dehn surgery on any hori-
zontal lift of c to any of the covers will produce diffeomorphic hyperbolic manifolds. Thus,
the remainder of the proof is devoted to showing that the flows produced in this way are
inequivalent whenever the lifts of � differ among our C.k/ choices. This means that the
Dehn-surgered manifold described above admits C.k/ inequivalent skew-Anosov flows. For
this, we need to describe the construction a bit more carefully, setting some more precise
notation along the way.

Proof of inequivalence of flows

Fixing notation, let M denote the k-fold fiberwise cover of UT† and let O� and O�0 be
two lifts of � chosen so as to satisfy the restrictions imposed above. The manifold M is,
topologically, both the suspension E O� of O�, and the suspension of O�0. Since O�0 is close to O�
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(because of our restrictions), we may realize O�0 as the holonomy of a foliation on M that
is C 1 (and in this case actually C1) close to the horizontal foliation defined by E O�. Going
forward, we let E O�0 denote M equipped with this nearby foliation.

Fix a connected component K of the horizontal lift of c to E O�, and a connected compo-
nent K 0 of the horizontal lift of c to E O�0 , isotopic to K in M . It will be convenient to fix an
identification ofK andK 0, so let g WM !M be an isotopically trivial homeomorphism such
that g.K/ D K 0. Then gˆ0tg

�1 andˆt each haveK as a periodic orbit. Now perform integral
Dehn-Fried-Goodman surgery of slope �p on the knot K to modify the flow ˆt to a new
skew-Anosov flow ‰t on the Dehn-surgered manifold M�p, and separately perform inte-
gral Dehn-Fried-Goodman surgery of slope �p onK to modify gˆ0g�1 to obtain a flow‰0t
on M�p. Note that the latter construction is simply the result of performing surgery on the
knot K 0 in M , under our identification of K and K 0 via g.

What we wish to show is that ‰t and ‰0t are inequivalent. Suppose for contradiction that
this is not the case, so there is some homeomorphism f WM�p !M�p taking flowlines of‰t
to flowlines of ‰0t . Let 
 denote the core of the filling torus on M�p. By Lemma 6.6, f .
/
and 
 lie in the same free homotopy class, so by Proposition 5.4, there is a homeomorphism h

ofM�p, inducing some power of � on the flow space of‰0t , such that hf .
/ D 
 . So we now
may as well consider hf as the homeomorphism conjugating the foliations defined by the
two flows.

Restricting hf to M�p � 
 defines a homeomorphism � of M � K. As in Lemma 6.6,
this determines a homeomorphism �M of M agreeing with � on the complement of a
neighborhood of the end, a neighborhood which can be chosen as small as we wish. Choose
such a neighborhood small enough so as not to contain any horizontal lift of any power of
the curves ˛1 or ˇ1 to either E O� or to (the conjugate by g of) E O�0 . By Lemma 6.6 (2), the
map �M is homotopic to the identity, and, by construction, outside of a small neighborhood
ofK, �M maps flowlines ofˆt to those of gˆ0tg

�1. This is where we will derive a contradic-
tion. The curves ˛1 and ˇ1 each have a power, say n andm which admit a horizontal lift to a
closed orbit of the flowˆt . Let Ǫ1 and Ǒ1 denote these closed orbits. Since �M is homotopic
to the identity, it maps these to closed orbits of gˆ0tg

�1 that are freely homotopic to the
orbits Ǫ1 and Ǒ1, respectively. In particular, the projections of �M . Ǫ1/ and �M . Ǒ1/ to curves
on† are freely homotopic to ˛n1 and ˇm1 . Thus, �M . Ǫ1/ and �M . Ǒ1/ are also the (conjugates
under g of) horizontal lifts of ˛n1 and ˇm1 to closed orbits of ˆ0t . By design, we chose O�0 to
give these curves different rotation numbers than their rotation numbers under O�. By the
discussion in Remark 5.11, this means that their horizontal lifts are not freely homotopic,
since they wind a different number of times around the fibers over the representative curves
on †. This gives the desired contradiction.

7. Further questions

We conclude by suggesting a few directions for further study.
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7.1. On boundary actions and rigidity

Problem 7.1. – Suppose that � is a hyperbolic group with Gromov boundary a topological
sphere. Is the action of � on its boundary topologically stable?

As a starting point to this problem, one could look for a new proof, or a direct modi-
fication of our proof, of Theorem 1.1 that leans more heavily on coarse geometry (quasi-
geoesdics) and less heavily on the Riemannian structure of M (stable foliations for geodesic
flow). While Problem 7.1 is intended to be strictly more general, the issue of which hyperbolic
groups with sphere boundary are not already covered by Theorem 1.1 is actually somewhat
subtle. Bartels-Lück-Weinberger [6] proved that a torsion-free hyperbolic group with sphere
boundary is the fundamental group of a closed, aspherical manifold, provided that the
boundary has dimension at least 5. However, whether this manifold can be taken to have
a Riemannian metric of negative (or even nonpositive) curvature is a separate question.
One could also consider the case where the metric is not assumed Riemannian, but only
locally CAT(-1), which is again potentially a separate case; in fact Davis-Januszkiewicz-
Lafont [16] ask whether there is any example of a smooth, locally CAT(-1) manifoldM such
that @1fM Š Sn�1 but does not support any Riemannian metric of nonpositive sectional
curvature. To our knowledge this question has not yet been answered. Given the subtleties
of such metric issues, the spirit of Problem 7.1 is really to ask for a coarse geometric proof
of Theorem 1.1, to the extent that this is possible.

There are two other natural directions in which one could attempt to generalize topolog-
ical stability, the first being a version for closed manifolds with boundary.

Problem 7.2. – Formulate a relative version of Theorem 1.1 for compact negatively curved
manifolds with geodesic boundary, or for finite-volume manifolds of strict negative curvature.

Much more ambitiously, one could attempt a rephrasing of Problem 7.1 for appro-
priate classes of relatively hyperbolic groups. The basic motivating example for the problem
is Thurston’s result that the deformation space of hyperbolic structures on a hyperbolic
3-manifold with torus boundary (equivalently, the space of representations of its funda-
mental group into PSL2.C/ � Homeo.S2/, up to PSL2.C/-conjugacy) has complex dimen-
sion equal to the number of boundary components; fixing the structure on the boundary
fixes the conjugacy class of the representation. Problem 7.2 asks for a C 0 analog of this in a
more general setting.

Finally, it is natural to ask whether any existing techniques can be used to improve the
regularity of the (semi)-conjugacy between representations, given higher regularity of the
representations. If, in the context of Theorem 1.1, one knows that both � and a C 0-close
representation �0 are of classC k , for some k > 0, does it follow that they are in fact conjugate,
and if so, conjugate by a C k diffeomorphism? Many existing local rigidity results for group
actions use the presence of hyperbolic elements to improve the regularity of a conjugacy (see
for instance the foundational work of Katok and Lewis [35], as well as Fisher and Margulis
[19], and Ghys’ differentiable rigidity for surface group actions on the circle [27]). It is quite
possible that some such strategy would directly apply to our case, but we have not pursued
this issue.
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7.2. On skew-Anosov flows and slitherings

Perhaps the most obvious question arising from this work is the following (folkloric)
variant of Christy’s question.

Question 7.3. – Does there exist a closed hyperbolic 3-manifold that supports infinitely
many inequivalent (skew) Anosov flows?

It is our impression that the answer is generally believed to be negative. The question
remains open, and we do not consider our construction of inequivalent flows via surgery to
provide any evidence in either direction.

Following the work of Foulon and Hasselblatt [20], the flows that we construct in the proof
of Theorem 1.3 are contact Anosov, meaning that Euu ˚ Ess defines a contact structure
with this flow the associated Reeb flow. Contact Anosov flows obtained by integral Dehn
surgery are studied further in recent work of Foulon, Hasselblatt, and Vaugon, where they
ask specifically whether this construction can lead to different contact structures on the same
manifold. (See discussion and remarks in [21], Section 2.2.) In this context one can ask the
following.

Question 7.4. – Does there exist a hyperbolic 3-manifold carrying N distinct contact
structures whose Reeb flows are Anosov?

The examples we produce seem to be natural candidates for this, and hence also for an answer
to Foulon-Hasselblatt-Vaugon.
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