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ON FACTORIZATION AND VECTOR BUNDLES
OF CONFORMAL BLOCKS
FROM VERTEX ALGEBRAS

BY CHiaArRA DAMIOLINI, ANGELA GIBNEY
AND Nicora TARASCA

ABSTRACT. — Representations of vertex operator algebras define sheaves of coinvariants and
conformal blocks on moduli of stable pointed curves. Assuming certain finiteness and semisimplicity
conditions, we prove that such sheaves satisfy the factorization conjecture and consequently are vector
bundles. Factorization is essential to a recursive formulation of invariants, like ranks and Chern classes,
and to produce new constructions of rational conformal field theories and cohomological field theories.

RESUME. — Les représentations des algebres d’opérateurs vertex définissent des faisceaux de coin-
variants et de blocs conformes sur des modules de courbes pointées stables. En supposant certaines
conditions de finitude et de semi-simplicité, nous prouvons que de tels faisceaux satisfont la conjec-
ture de factorisation et sont par conséquent des fibrés vectoriels. La factorisation est essentielle a une
formulation récursive des invariants, comme les rangs et les classes de Chern, et a produire de nou-
velles constructions de théories conformes rationnelles des champs et de théories cohomologiques des
champs.

By assigning a module over a vertex operator algebra to each marked point on a stable
pointed curve, one can construct dual vector spaces of coinvariants and conformal blocks,
giving rise to sheaves on moduli spaces of stable pointed curves. The main result of this paper
is that these sheaves satisfy the factorization property (Theorem 7.0.1), as conjectured in
[76, 38]. Namely, if certain finiteness and semisimplicity conditions hold, vector spaces of
coinvariants and conformal blocks at a nodal curve decompose as products of analogous
spaces at each component of its normalization.

We also show that sheaves of coinvariants satisfy the sewing property (Theorem 8.5.1), a
refined version of factorization at infinitesimal smoothings of nodal curves. From this and
their projectively flat connection on families of smooth curves [21], we deduce they are vector
bundles (VB corollary).

Our findings generalize a number of results known in special cases and for low genus.
A historical account with references is given in §§0.2 and 0.3.

Factorization leads to recursive formulas for ranks and is used to show that the Chern
characters define semisimple cohomological field theories, hence the Chern classes lie in the
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242 C. DAMIOLINI, A. GIBNEY AND N. TARASCA

tautological ring ([22], building on results for affine Lie algebras from [62, 63]). A study of
these tautological classes may lead to progress on open questions: As proposed by Pandhari-
pande [69], a computation of such Chern classes independently of the projective flatness of
the connection [21] would yield relations in the tautological ring, and could be used to test
Pixton’s conjecture [70, 52].

For sheaves defined by integrable modules over affine Lie algebras, vector spaces of
conformal blocks are canonically isomorphic to generalized theta functions (see [55] and
references therein). When in addition the genus is zero, vector bundles of such coinvariants
are globally generated [36], hence their Chern classes have positivity properties. For instance,
first Chern classes are base-point-free and thus give rise to morphisms, some with images
having modular interpretations [45, 46]. It is natural to expect that the more general vector
bundles of coinvariants and conformal blocks studied here can be shown to have analo-
gous properties under appropriate assumptions. This has been supported by a preliminary
investigation [20].

To outline our results, we set some notation. We refer to a stable pointed coordinatized
curve as a triple (C, P., ts) where (C, P,) is a stable n-pointed curve, P = (P, ..., P,), and
te = (t1,...,1,) with t; a formal coordinate at the point P;. Let M®* = (M!,..., M") be an
n-tuple of finitely generated admissible modules over a vertex operator algebra V (see §§1.1-
1.2). When C \ P, is affine, the vector space of coinvariants V(V'; M *)(c, p, 1) is defined as the
largest quotient of the tensor product Q;_; M ! by the action of a Lie algebra determined
by V and (C, P.,t.), see §4.2. In general, by adding more marked points, one can reduce to
the case when C \ P, is affine, see (30). Before now, two Lie algebras have been used to define
coinvariants: Zhu’s Lie algebra gc\p, (V) and the (former) chiral Lie algebra Zc\p, (V).
Here, we introduce a new chiral Lie algebra Lc\p, (V).

Zhu’s Lie algebra (§A.1) is defined when the vertex algebra V is quasi-primary generated
and Zso-graded with lowest degree space of dimension one, for either fixed smooth curves
[76, 3], or for rational stable pointed curves with coordinates [67]. To show that gc\p, (V) is
a Lie algebra, Zhu uses that any fixed smooth algebraic curve admits an atlas such that
all transition functions are Mobius transformations. Transition functions between charts
on families of curves of arbitrary genus are more complicated, and for an arbitrary vertex
operator algebra, g c\ p, (V) is not well-defined.

The chiral Lie algebra .Z¢\ p, (V) is available for curves of arbitrary genus and for more
general vertex operator algebras V', not necessarily quasi-primary generated. Defined for
smooth pointed curves by Frenkel and Ben-Zvi [38, §19.4.14] and shown in [38] to coincide
with that studied by Beilinson and Drinfeld [14], the chiral Lie algebra was extended to nodal
curves in [21], enabling the construction of coinvariants on such curves.

In §3, we introduce and study a new chiral Lie algebra L\ p, (V), whose coinvariants
are projectively flat over Mg ,, and additionally satisfy factorization under some natural
hypotheses. See §3.3 for a description of L¢\ p, (V) on nodal curves.

In [67], Nagatomo and Tsuchiya remark that the coinvariants on rational curves with
coordinates using Zhu’s Lie algebra are equivalent to those considered by Beilinson and
Drinfeld. In Proposition A.2.1, we verify their genus zero statement, and further show that
coinvariants from the chiral Lie algebra are isomorphic to those given by g ¢\ p, (V') whenever
Zhu’s Lie algebra is defined. For instance, when V is quasi-primary generated and one
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ON FACTORIZATION OF CONFORMAL BLOCKS FROM VERTEX ALGEBRAS 243

works over a family of curves admitting an atlas where all transition functions are Mobius
transformations, both perspectives are equivalent.

To state our main result, let (C, P., ) be a stable pointed coordinatized curve, as above,
with one node Q. Let C — C be the normalization, Qe := (Q4+, Q) the pair of preimages
of Q in C, and s, := (s4+,5—) with s1 a formal coordinate at Q1. Let # be a set of
representatives of isomorphism classes of simple V-modules, and for W € #/, let W’ be its
contragredient module (§1.8).

FAcTORIZATION THEOREM (Theorem 7.0.1). — Let V be a rational, Cy-cofinite vertex
operator algebra with one-dimensional weight zero space, and let M * be an n-tuple of finitely-
generated admissible V -modules. One has:

1) VM) o= @ VIVM W SW) & poioiniss)
wew

IfC = C4 U C_ is disconnected, with Q1 € C4, then (1) is isomorphic to
D VV:Miew), eV(ViMIeW), .
wew
where X1 := (Cy, P.|CjE UQ4,te
arein C4.

| . Us+),and M? are the modules at those points P, that

The isomorphism giving the factorization theorem is constructed in §7.

Propositions 3.3.1, 5.1.1, and 6.2.1 are at the heart of this work, and arise from the
construction in §2 of the sheaf V¢ globalizing a vertex algebra V' over a nodal curve C,
integral to the definition of the chiral Lie algebra. The sheaf V¢ is a slight variant on the
sheaf 7¢ that we defined in [21]. The two sheaves coincide for smooth curves, and as we
explain here, we recover the results of [21] using V¢ in place of #¢. So while the projectively
flat connection can be obtained in both constructions (see Proposition 2.7.3 for V¢), to have
factorization, we have used V¢ (see §2.5, and §2.6). In Proposition 3.3.1, we explicitly describe
the chiral Lie algebra on a nodal curve in terms of elements of the chiral Lie algebra on its
normalization. This involves stable k-differentials that satisfy an infinite number of identities.

In Proposition 5.1.1, we show that vector spaces of coinvariants defined from the chiral
Lie algebra and smooth curves of arbitrary genus are finite-dimensional. Known to be true
in special cases, this result is a natural generalization of work of Abe and Nagatomo [3] for
coinvariants defined from Zhu’s Lie algebra and smooth curves with formal coordinates (see
§0.3 for the history of the problem). As in [3], we assume here that V is C,-cofinite, which
implies Ci-cofiniteness for k£ > 1[17, 54].

Proposition 6.2.1 reinterprets coinvariants at a nodal curve as coinvariants on the normal-
ization by the action of a Lie subalgebra of the chiral Lie algebra. The proof of this result, for
which we assume V' is C;-cofinite, uses that lowest weight V' -modules admit spanning sets of
PBW-type, following [54, Cor. 3.12].

In §8.7, following Tsuchimoto [72] in the case of simple affine vertex algebras, we show the
sheaf of coinvariants V (V'; M ®) is coordinate-free and descends to the moduli space ﬂg,n of
stable n-pointed curves of genus g. As an application of the factorization theorem, we show:
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244 C. DAMIOLINI, A. GIBNEY AND N. TARASCA

VB COROLLARY. — Let V be a rational, Cy-cofinite vertex operator algebra with one-
dimensional weight zero space, and M*® be an n-tuple of finitely-generated admissible
V-modules. ThenV (V; M ®) is a vector bundle of finite rank on ﬂg,n.

The proof of the VB corollary is presented in §8.8. The result on the interior of Hg,n,
the moduli space M, , of smooth pointed curves, follows from finite-dimensionality of
coinvariants (Proposition 5.1.1) and the existence of a projectively flat connection [21].
Two ingredients are needed to give VB corollary on the whole space ﬂg,n: Theorem 8.4.2,
a more general result on finite-dimensionality of coinvariants, and the sewing property
(Theorem 8.5.1). Each of these involve evaluation of the sheaf of coinvariants on a family
formed by infinitesimally smoothing a nodal curve (§8.1). The proof of the sewing theorem
(§8) relies on the factorization theorem and a sewing procedure originally found in [74, §6.2].

0.1. Results on sheaves of coinvariants from [21]

As stated, the vertex algebra sheaf V¢ defined in §2 is a slight variant on the sheaf #¢
defined in [21]. These give rise to sheaves of chiral Lie algebras Lc\p, (V) and Zc\p, (V),
respectively, which in turn define two sheaves of coinvariants on the moduli space of curves,
potentially different on the boundary. As these sheaves agree on the interior Mg ,, i.e., the
moduli space of smooth pointed curves, the results of [21] on M, , hold for the sheaves
of coinvariants defined here. In particular, the identification of the Atiyah algebra acting
on sheaves of coinvariants on Mg , [21, Theorem], and consequently, the computation of
their Chern character on My , [21, Corollary] hold here. Combining these results with the
factorization theorem, we show in [22] that the sheaves of coinvariants defined here in the
case of self-contragredient simple vertex algebras give rise to semisimple cohomological field
theories, thus allowing one to determine their Chern character on ﬂg,n in terms of the fusion
rules.

A natural question is whether the two sheaves of coinvariants coincide on the whole
of Mg . In particular, it is natural to ask whether sheaves of coinvariants defined by Zc\p, (V)
satisfy factorization.

0.2. History of factorization and sewing

Tsuchiya and Kanie used integrable modules at a fixed level over affine Lie algebras to
form spaces of coinvariants on smooth pointed rational curves with coordinates [73]. Gener-
alized by Tsuchiya, Ueno, and Yamada to moduli of stable pointed coordinatized curves of
arbitrary genus, these sheaves were shown to satisfy a number of good properties including
factorization and sewing [74]. Tsuchimoto [72] proved the bundles are independent of coor-
dinates and descend to ﬂg,n. Beilinson, Feigin, and Mazur [15] showed that factorization
holds for coinvariants defined by modules over Virasoro algebras. Our arguments follow [67]
in the genus zero case after our study of the chiral Lie algebra allows one to replace Zhu’s Lie
algebra in the general case.

Sewing was proved for g € {0, 1} by Huang [47, 48, 50, 51]. His approach was to prove
the operator product expansion and the modular invariance of intertwining operators, both
conjectured by Moore and Seiberg [66]. Huang assumes that (i) V = ;. V; with V = C;
(i1)) Every N-gradable weak V-module is completely reducible; and (iii) V is C-cofinite.
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ON FACTORIZATION OF CONFORMAL BLOCKS FROM VERTEX ALGEBRAS 245

Our assumptions are (i); (ii’) V is rational; and (iii). Conditions (ii) and (iii) of Huang are
equivalent to our conditions (ii’) and (iii) (see §1.7 for more details). Huang shows that if
one assumes in addition (iv) ¥V =~ V’, then the modular tensor categories he constructs
for g € {0, 1} are rigid and nondegenerate. In case (i)-(iv) hold, V' is sometimes called strongly
rational.

Codogni in [19] proves factorization in case our hypotheses hold, with the additional
assumptions (iv') V' =~ V' and (v) V has no nontrivial modules. Like Nagatomo and
Tsuchiya, Codogni works with coinvariants defined on the moduli space of curves with
formal coordinates. We note that the additional assumption (iv’) gives that V' is quasi-
primary generated and in particular, coinvariants defined from Zhu’s Lie algebra and the
chiral Lie algebra are both well-defined and agree (see §).

Here we do not assume condition (iv) nor condition (v). There are examples satis-
fying (1-3) but not (v), see §9. Furthermore, through private communications with Sven
Moller, we have learned the existence of a vertex operator algebra that satisfies our condi-
tions (1-3) but not condition (iv). Therefore, while establishing factorization for all g > 0,
our work also covers new examples of factorization for g € {0, 1}.

0.3. History of coherence

In [38, page 3 and §5.5.4] the authors single out rational vertex algebras as good candi-
dates for defining finite-dimensional coinvariants (and hence leading to finite-rank vector
bundles). At that time, rationality and C,-cofiniteness were conjectured to be equivalent
conditions [27, 2]. This has been disproved, as Abe has given a C,-cofinite, non-rational
vertex operator algebra [1].

Coherence of sheaves of coinvariants was shown previously in special cases: for (1)
integrable modules at positive integral levels over affine Lie algebras [74]; (2) modules
over C,-cofinite Virasoro vertex algebras [15]; (3) curves of genus zero and modules
over C,-cofinite vertex operator algebras V. = @D,y Vi such that 1y = C [67]; (4) fixed
smooth curves of positive genus and modules over a quasi-primary generated, C,-cofinite
vertex operator algebras V. = @D,y Vi such that V = C [3]. After the first draft of this
paper, [35] showed finite-dimensionality of spaces of coinvariants associated with trivial
modules over elliptic curves under a weaker assumption than C,-cofiniteness. In [20] it is
shown that if V' is generated in degree 1 and g = 0, then coinvariants are finite-dimensional.

1. Background

1.1. Vertex operator algebras

We work with a non-negatively graded vertex operator algebra, that is, a 4-tuple
(V.1",w,Y(, z)), throughout simply denoted V for short, such that:

L.V =;ez_, Vi is a vector space over C with dim V; < oo;
2. 1V €V, (the vacuum vector), and w € V5 (the conformal vector);

3. Y(-,z):V — End(V)[z,z '] is a linear function assigning to every element A € V the
vertex operator Y(A,z) := Y, Aiyz L.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



246 C. DAMIOLINI, A. GIBNEY AND N. TARASCA

The datum (V, 1V, w, Y(-, z)) must satisfy the following axioms:
1. (vertex operators are fields) for all A, B € V, A;)B = 0, for i > 0;
2. (vertex operators of the vacuum) Y(1V, z) = idy:
1y =idy  and 1, =0, fori#—I,
andforall A eV, Y(A,2)1V € A+ zV[z]:

Apl” =4 and Al =0, fori > 0;

3. (weak commutativity) for all A, B € V, there exists an N € Zx¢ such that
(z—w)N[Y(4,2),Y(B,w)] =0 in End(V)[zE!, w!];

4. (conformal structure) for Y(w,z) = Y ;cp 0@z 71,

¢ .
[0(p+1). 0@+1)] = (P — @) O(p+q+1) + T 8p+q,0 (P> — p)idy.

Here ¢ € C is the central charge of V. Moreover:
o, =i-idy, foralli, and Y (w@)4.2) = 3:Y(A,2).

1.1.1. Action of Virasoro. — As we next explain, the conformal structure encodes an action
of the Virasoro (Lie) algebra Vir on V. The Witt ( Lie) algebra Der K represents the functor
assigning to a C-algebra R the Lie algebra Der (R) := R((z))d, generated over R by the
derivations L, := —z?*19,, for p € Z, with relations [L,, L,] = (p —q)Lp+4- The Virasoro
(Lie) algebra Vir represents the functor assigning to R the Lie algebra generated over R by
a formal vector K and the elements L, for p € Z, with Lie bracket given by

K
(K, Lp] =0, [Lzh Lq] =P —q@) Lptqg + E(P3 - P)5p+q,0-

Setting L, = w(p+1) € End(V), Axiom (4) gives an action of Vir on V with central charge
¢ € C, thatis, K € Vir actsas ¢ -idy.

1.1.2. Degree of A). — As a consequence of the axioms, one has Ay)Vy € Viyg—i— for
homogeneous A € V; (see e.g., [77]). Thus, we have

2) deg A;) :=deg(4) —i — 1, for homogeneous 4 in V.

Axiom (4) implies that Lo acts as a degree operator on V, and L_;, called the translation
operator, is determined by L_14 = A1V, forA e V.

1.2. Modules of vertex operator algebras

Let (V,1V,w,Y(-,z)) be a vertex operator algebra. A weak V-module is a pair (M, YM (., z)),
where:
1. M is a vector space over C;
2. YM(..z):V — End(M)[z,z7'] is a linear function that assigns to A € V an
End(M)-valued vertex operator YM (A, z) 1= dien Aé‘i”)z_i_l.
The pair (M, Y™ (-, z)) must satisfy the following axioms:
1. forall A € V and v € M, one has Af‘l.”)v =0, fori > 0;
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ON FACTORIZATION OF CONFORMAL BLOCKS FROM VERTEX ALGEBRAS 247

2. YM (1Y, z) = idu;
3. forall A, B € V, there exists N € Zx¢ such that for all v € M one has
(z — w)N [YM(A, z), YM(B, w)] v=0;
4. forall A € V and v € M, there exists N € Zs¢, such that for all B € VV one has
w+2)N YM¥ (A, w)B,2) - YM (A, w+2)YM(B,z)) v =0;

5. forYM(w,2) =Y, 0Mz7i71

Z , one has

M M M ¢ 3 :
[“)(p+1)""(q+1)] =P =D OGpgiy T B 8p+q.0 (p” — p)idmy,
where ¢ € C is the central charge of V. We identify w(,+1) € End(M) with an action
of L, € Vir on M. Moreover YM(L_1A,z) =0, YM(a,z).

In the literature, axiom (3) is referred to as weak commutativity, and axiom (4) as weak
associativity. Weak associativity and weak commutativity are known to be equivalent to
the Jacobi identity (see e.g., [25, 41, 56, 57]). Moreover, by [27, Lemma 2.2], axiom (5) is
redundant.

Throughout, by V-modules we mean admissible V' -modules. These are weak V'-modules
such that

1. M = @,y M, is N-graded and A%Mk C Mp4deg(a)—i—1 for every homogeneous
AeV.

Note that V' is a module over itself (see [56, Thm 3.5.4] or [38, §3.2.1]). We give a description
of V-modules in §1.5.

1.3. The Lie algebra ancillary to V'
Given a formal variable ¢, we call
£:(V):=(V®C(r)/Imd
the Lie algebra £(V) = £,(V) ancillary to V. Here
3) 0:=L_; ®idgy + idy ® 0;.

The space £(V) is spanned by series of type Zizio ci Ay, forA e V,¢; € C,and iy € Z,
where A[;; denotes the projection in £(V) of A® t' € V ® C((t)). The Lie bracket of £(V) is
induced by

4) [Ai. Bial = (,lc) (A0 By ji

k>0

The axiom on the vacuum vector 1V implies that IE/_ 1 is central. The Lie algebra £(V) is
isomorphic to the current Lie algebra in [67]. For ¢ we will use a formal coordinate at a
point P on a curve, and we will denote £p(V) = £,(V). A coordinate-free description
of £,(V) is discussed in §2.8.
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248 C. DAMIOLINI, A. GIBNEY AND N. TARASCA

1.4. The universal enveloping algebra

For a vertex algebra V, there is a complete topological associative algebra Z(V), defined
originally by Frenkel and Zhu [43]. We review it here following the presentation in [38].
Consider the universal enveloping algebra U(L£(V)) of £(V), and its completion

UEWw)) = hTm UEW)/1In.
where I is the left ideal generated by Af;}, for homogeneous A € V andi > N + deg(4).
The universal enveloping algebra % (V') of V is defined as the quotient of U (£(1)) by the two-
sided ideal generated by the Fourier coefficients of the series

Y [A(_l)B,z] — :Y[A,z] Y[B,z]:, forall A, BeV,

where Y[A,z] = Y ";c; Az~ 7! and “: :” is the normal ordering (see [40]).

For an affine vertex algebra V = V;(g), one has Z/(V) is isomorphic to a completion Uy @
of Uy (@), for all £ € C. Here, U,(g) is the quotient of U(g) by the two-sided ideal generated
by K — £, where K € g/g ® C(¢)), and

U@ :=lim Uy @)/ U (@) - g ® 1" C[r].
N
For more detail and other examples see [38, §4.3.2, §5.1.8].

1.5. Action on V-modules

Both £(V) and (V) act on any V-module M via the Lie algebra homomorphism
£(V) — End(M) obtained by mapping A[;] to the Fourier coefficient A(;y of the vertex
operator YM(A,z) = Y, Agyz~'~!. Thus, the series Y _;.; ¢; A acts on a V-module M
via

i>ig

Res,—¢ YM(A, z) Z ciztdz.
i>ig
An £(V)-module need not be a V-module. On the other hand, there is an equivalence
between the categories of weak V-modules and smooth %/(V)-modules (see [38, §5.1.6]).
A %(V)-module M is smooth if for any w € M and A € V', one has Aj;jw = 0 fori > 0.
A V-module s finitely generated if it is finitely generated as a % (V')-module. The modules
in [67] are also finitely generated and admissible.

1.6. Correspondence between V' -modules and A(V')-modules

A V-module W is irreducible, or simple, if it is non zero and it has no sub-representation
other than the trivial representation 0 and W itself. We review here Zhu’s associative
algebra A(V'), and the one-to-one correspondence between isomorphism classes of finite-
dimensional simple A(V')-modules and isomorphism classes of simple V' -modules [77].

Zhu’s algebra is the quotient A(V) := V/O(V'), where O(V) is the subspace of V' linearly
spanned by elements of the form

1+ deg A
Res;—o %Y(A, 2)B,
Z
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ON FACTORIZATION OF CONFORMAL BLOCKS FROM VERTEX ALGEBRAS 249

where A is homogeneous in V. The image of an element A € V in A(V) is denoted by 0(A).
The product in A(V) is defined by

deg A
0(A) *0(B) = Res;—g %Y(A,Z)B,
for homogeneous A in V. Nagatomo and Tsuchiya [67] consider an isomorphic copy of A(V'),
which they refer to as the zero-mode algebra.

Given a V-module W = p,., Wi, one has that Wy is an A(V)-module [77, Thm 2.2.2].
The action of A(V) on W is defined as follows: an element 0(A) € A(V), image of a
homogeneous element A € V, acts on Wy as the endomorphism Ageg 4 —1), a Fourier
coefficient of YW (4, z).

For the other direction, recall the triangular decomposition:

) EV)=L(V)<0 ® £(V)o ® L£(V)>o0,

determined by the degree deg(A[;)) := deg(A4) —i — 1, for homogeneous A € V. From the
Lie bracket (4) of £(V'), one checks that each summand above is a Lie subalgebra of £(1).
This induces a subalgebra %(V) <o of Z(V).

Given a finite-dimensional A(V)-module E, the generalized Verma (V' )-module is

M(E) :=%(V) Quw)-, E-

To make E into an (V') <o-module, one lets £(V) <o act trivially on E, and £(V)¢ act by the
homomorphism of Lie algebras £(V)o — A(V)Lie induced by the identity endomorphism
of V' [58, Lemma 3.2.1]. For homogeneous A € Vj, the image of the element Ajz—1; € £(V)o
in A(V) is 0(A). By construction, M(E) is automatically a V-module.

Given an irreducible V-module W = ,., W;, the space W is a finite-dimensional
irreducible A(V')-module; conversely, given a finite-dimensional irreducible A(V)-module
E, there is a unique maximal proper V-submodule N(E) of the V-module M(E) with
N(E)N E = 0such that L(E) = M(E)/N(E) is an irreducible V-module [77].

1.7. Rational vertex algebras

A vertex algebra V is rational if every finitely generated V-module is a direct sum of
irreducible V-modules. A rational vertex algebra has only finitely many isomorphism classes
of irreducible modules, and an irreducible module M = €p,., M; over a rational vertex
algebra satisfies dim M; < oo [28]. -

An ordinary V-module is a weak V-module which carries a C-grading M = @, . M,
such that: L0|MA = Aidy,; dim M, < oo; and for fixed A, one has M, = 0, for inte-
gersn < 0. Ordinary V-modules are admissible, and when V' is rational, every simple admis-
sible V-module is ordinary [28], [27, Rmk 2.4]. It follows that for rational V, finitely gener-
ated V-modules are direct sums of simple ordinary V' -modules. In particular, a finitely gener-
ated admissible module M = €P,., M; over a rational vertex algebra satisfies dim M; < oo,
forall i, and L¢ acts semisimply on such M.

When V is rational, the associative algebra A(V) is semisimple [77]. For a rational vertex
algebra V, given a simple module E over Zhu’s algebra A(V), the Verma module M(E)
remains simple. In general, Verma modules are not necessarily simple, but they are inde-
composable. Hence complete reducibility implies that simple and indecomposable coincide.
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1.8. Dual modules

Isomorphism classes of simple V-modules and simple A(V)-modules are in correspon-
dence (§1.5). Here we describe the V-module (and corresponding A(V)-module) structures
on their duals.

1.8.1. Duality for V-modules. — Let V be a vertex algebra. Following [41, §5.2], given a

V-module (M = @;., M. Y™ (—.z)), its contragredient module is (M’, yM (-, z)), where

M’ is the graded dual of M, thatis, M’ := P, M, with Miv := Hom¢(M;, C), and
Y™ (=, z):V > End (M) [z.z7"]

is the unique linear map determined by

(6) <YM’(A, z)l//,m> = (Y. Y M (L1 (—z72)L0 4, 27 m)

forA e V,y € M',and m € M. Here and throughout, (-, ) is the natural pairing between

a vector space and its graded dual.

1.8.2. Duality for A(V')-modules. — For a V-module M, the A(V')-module structure on M(}/
requires the involution #: £(V)/ — £(V)/ induced from

_ 1,
(7 s (A[j]) = (=t Z 1l (LIA)[Za—j—i—Z]

i>0

for a homogeneous element A € V of degree a. Here £(V)/ C £(V) denotes the quotient
of V ®c C[t,t~!] by Im 3. Observe that since the operator L; has negative degree, the above
sum is finite, and that ¢ is a Lie algebra homomorphism [67, Prop 4.1.1] (note the sign
difference between ¢+ used here and the one in [67]). This involution appeared in [16], and
it naturally arises from the action of the vertex operators on the contragredient module V.
Since ¥ restricts to an involution of £(1)¢ leaving O(}') invariant, it induces an involution
on Zhu’s algebra A(V). The following statement is a direct consequence of the definition of
contragredient modules.

LemMmaA 1.8.3. — (i) The image of ¥ € My under the action of o € £(V ) is the linear
functional

oy =—y od(0).
(i) The image of y € My under the action of 0(A) € A(V) is
0(A) -y = =y oD (0(A)).
For homogeneous A € V of degree a and for m € My, this is
1.
(o(4) - ) = (1) <w» L) iy m>
i>0
See [38, §10.4.8] for a geometric realization of the involution #. In §3, we use ¢ to describe

chiral Lie algebras on nodal curves.
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1.9. Stable k-differentials

Let (C, P,) be a stable n-pointed curve with at least one node, and let w¢ be the dualizing
sheaf on C. We review here (stable) k-differentials on C, that is, sections of w?k, for an
integer k. When k > 1, by a)g_k we mean (a)é)@k.

Let C — C be the partial normalization of C at a node O, let O, Q_ € C be the two
preimages of Q, and set Qo = (Q4+, O_). Note that the curve Cc may not be connected.
Let 54+ and s_ be formal coordinates at the points Q4 and Q_, respectively. We write Q 4 to
denote either point, and similarly use s+ to denote either formal coordinate. For a section

w e H° <5\ P, U Q.,a)?k) =T,

let ug, € C((s+)) (ds+)* be the Laurent series expansion of y at Q.+, that is, the image of
under the restriction morphism

HO (6\ Po U Q.,a)?k) - H° (Dai,wgk) ~, Cse)(dss)F.
Here Dy is the punctured formal disk about Qw, that is, the spectrum of the field of
fractions of the completed local ring ﬁQ 4»and ~;_denotes the isomorphism given by fixing
the formal coordinate s4 at Q4.

For a k-differential p, define the order ordg (n) of p at the point Q4 as the highest
integer m such that ug, € si(C[[si]](dsi)k. For a k-differential u withordg () > —k, the
k-residue Rest N (u) of p at the point Q1 is defined as the coefficient of s;k (ds+)¥ in Moy

The order and the k-residue at Q4 are independent of the formal coordinate s+ at Q.

Here we only require the case ordg_ (1) > —k. For the definition of the k-residue without
the assumption ordg, () > —k, seee.g., [12].

LEMMA 1.9.1. — Assume that C \ P, is affine. For all integers k, one has
ordg, (1) > —k,
Resg, (1) = (=) Res_ (1)

Proof. — 1t is enough to prove the statement for & € {—1,0, 1}: indeed, for negative
integers k, sections of a)g’k on the affine C \ P, are tensor products of sections of a)El, and

n* H° (C\P.,a)?k) =<quel

the Laurent series expansions of sections of w?k at 04 and Q_ are obtained as tensors of
the Laurent series expansions of sections of a)gl at 04+ and Q_, respectively. An analogous
argument may be made in case k is a positive integer.

When k = 1, the statement is about sections of w¢, and by definition sections of w¢ are
sections of wg with at most simple poles at 0 and Q — such that Resg_ (u)+Resg_ (1) = 0.
When k = 0, the statement is about sections of &¢, and indeed a regular function on C is a
regular function p on C such that w(Q4) = n(Q-). When k = —1, by definition we have
oy L Home,. (wc, Oc), and the statement follows from a direct computation using the
cases k € {0, 1}. O

We have used the notation 7* to denote that the identification of elements of H*(C \ P, a)?k )
with elements of I' is naturally induced by the map n. We will use the same notation in the
statement of Proposition 3.3.1.
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1.10. A consequence of Riemann-Roch

We will frequently use the following corollary of the Riemann-Roch theorem. Let
C be a smooth curve, possibly disconnected, with two non-empty sets of distinct marked
points P = (Py,..., Py) and Qe = (Q1y,..., Om). Assume that each irreducible compo-
nent of C contains at least one of the marked points P,, so that C \ P, is affine. Let s; be
a formal coordinate at the point Q;, for each i. Fix an integer k. For all integers d and

N, there exists u € H° (C \ P U Q., a)?k ) such that its Laurent series expansions at the
points Q, satisfy:

o, = sé(dsi)* e Csi)(dsi)* /sN Clsi](dsi)F, for a fixed i,
po; =0 € C(s;)(ds)* /s Clsil(ds), for all j # .

This statement has appeared for instance in [76].

2. Sheaves of vertex algebras on curves

We describe the sheaf of vertex algebras V¢ on a curve C with (at worst) simple nodal
singularities in §2.5, and its flat connection in §2.7. This yields a coordinate-free description
of the Lie algebra ancillary to V' in §2.8.

2.1. The group scheme Aut O
Consider the functor which assigns to a C-algebra R the group:
AutO(R) = {z — p(z) = a1z + az> + -+ |a; € R, a; a unit}

of continuous automorphisms of the algebra R[z] preserving the ideal zR[z]. The group law
is given by composition of series: p; - p» := p2 o py. This functor is represented by a group
scheme, denoted Aut O.

To construct the sheaf of vertex algebras V¢ on a stable curve C, we describe below the
principal (Aut O)-bundle cZutc — C, and actions of Aut O on the vertex operator algebra V'
and on ¢Hutc X V.

2.2. Coordinatized curves

Given a flat family C — S of stable curves of genus g, we construct an (Aut O)-torsor
Autc;s — C/S in §2.2.2. This torsor is pulled back from a universal (Aut O)-torsor
Mg.1 — Mg 1. To define these objects, we begin in §2.2.1 with S = Spec(C).
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2.2.1. The principal (Aut O)-bundle Autc at a fixed curve C. — Assume first that C is a
smooth curve. Let cAutc be the infinite-dimensional smooth variety whose points consist of
pairs (P, ), where P is a point in C, and ¢ is a formal coordinate at P (see [11]). A formal
coordinate ¢ at P is an element of the completed local ring @\p such thatr € mp \m%,, where
mp is the maximal ideal of &p. There is a natural forgetful map ¢Auc — C, with fiber at a
point P € C equal to the set of formal coordinates at P:

Tutp ={teﬁp |temp\mfp}.
The group scheme Aut O acts on fibers of ¢Zutc — C by change of coordinates:

HAutc X Aut O — Autc, ((P,1),p) = (P, t-p:=p(t)).

This action is simply transitive, thus ¢Zu/c is a principal (Aut @)-bundle on C. The choice of
a formal coordinate ¢ at P gives rise to the trivialization

AutO =5 Gutp,  pr> pt).

For a nodal curve C, let C — C denote the normalization of C. Assume for simplicity
that C has only one node Q, and let Q4 and Q_ be the two preimages in C of Q. A choice
of formal coordinates s4 and s— at Q4+ and Q_, respectively, determines a smoothing of
the nodal curve C over Spec(C[g]) such that, locally around the point Q in C, the family is
defined by 55— = ¢ (see §8.1 for more details). A principal (Aut O)-bundle on a nodal curve
is equivalent to the datum of a principal (Aut O)-bundle on its normalization together with
a gluing isomorphism between the fibers over the two preimages of each node. In particular,
one constructs the principal (Aut O)-bundle ¢#Zu/c on C from the principal (Aut O)-bundle
Autg on C by identifying the fibers at the two preimages Q1 and Q_ of the node Q in C by
the following gluing isomorphism:

®) Sutg, ~5, AUO = AWO ~, tg ,  plsi) = poy(s-),

where y € Aut O is defined as

1
) y(z)::m—lz—z—i—zz—f—}—---.
Note that (y oy)(z) = z, hence (8) determines an involution of Aut ©. The isomorphism (8)
is induced from the identification sy = y(s_).

2.2.2. Hlutcs on a family C — S and the moduli space Mg 1. — The above construction
of cAutc can be carried out in families, and for a flat family C — S of stable curves,
one thus obtains a principal (Aut O)-bundle ¢#utc,;s — C/S. This determines a principal
(Aut O)-bundle C; — Cg, where C; — M is the universal curve over the moduli space of
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stable curves of genus g. One has the following diagram made of fiber product squares:

o%uéc/s —_— Cg

| Jawo

c— ¢,

| |

S s M,

It can be convenient to identify the universal curve (_?g with the moduli space of stable
pointed curves M, ;. This leads us to consider a principal (Aut ©)-bundle Mg ; — M,
identified with Cg — C,. Namely:

DEFINITION 2.2.3. — Let M, ; be the moduli space of coordinatized stable pointed curves.
An object over a scheme S consists of a semistable curve C — S with a section P: S — C
mapping to the smooth locus of C, together with a formally unramified thickening
S x Spf(C[t]) — C of the section P, such that every genus one component has at least
one special point and every rational component has at least three special points.

Here a special point is either a marked point or a node, counted with multiplicity. More-
over, Spf(C[¢]) is the formal spectrum of the complete topological ring C[¢] [38, §A.1.1].

The action of AutO via change of coordinates identifies Mg ; as a principal
(Aut O)-bundle over ﬂg,l. One has the diagram of Cartesian squares:

Hutp)s — Sutcs — Mg

ol

S P, c > Mg

| |

S — WM,

In particular, for a flat family C — S of stable curves of genus g, the space ¢/ s is the
pull-back of M, ; via the moduli map S — M.

For anodal curve C, the fiber of ¢/t over a node can be described as follows. Assume for
simplicity that C has only one node Q. Over the singular point Q € C, the fiber ¢ty can be
identified with the space of formal coordinates at the point @’ in C’, where (C’, Q') is formed
by stabilization of the unstable pointed curve (C, Q). Stabilization is carried out by blowing-
up. As a result, C’ consists of the partial normalization C of C at Q together with a rational
exceptional component meeting c transversally at the two preimages Q4+ and Q_ € c
of the node Q. Such a rational component contains three special points: the two attaching
points and a point labeled Q’. Up to isomorphism, one can identify this rational component
with P!, with the points attached to Q4 and Q_ identified with 0 and co € P!, respectively,
and the point Q’ identified with 1 € P'. The fiber ¢#utp of cJutc over the node Q in C is
identified with the space of formal coordinates at the point 1 in P! C C’.
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Here are more details: Choose formal coordinates s and s_ at Q4 and Q_, respectively.
As mentioned in the previous section, a choice of such coordinates determines a smoothing
of C over Spec(C[g]) such that, locally around the point Q in C, the family is defined
by s4+s— = ¢. After blowing-up such a family at the point Q, locally around the two resulting
nodes incident to the exceptional component P!, the curve C’ at ¢ = 0 is given by equations
5150 = 0and seo5_ = 0, where s¢, 5o are formal coordinates at 0, oo € P!, respectively. The
formal coordinates 5o and s, satisfy sos0c = 1. A pair of such coordinates s¢, 5o induce
formal coordinates 5o — 1 and s, — 1 at 1 € P!, with change of coordinates given precisely
by so — 1 = p(s00 — 1), where y is as in (9). It follows that for the nodal curve C’, one has
the identifications s+ = y(s¢), 5S— = Y(Sc0), and so — 1 = y(se0 — 1). These identifications
determine the identification of the space ¢#uzc with the fiber of the projection M, 1 — M,
over the moduli point [C] € M,.

More generally, one defines Mg ,, as the moduli space of objects of type (C, P., te), Where
(C,Py = (P1,...,P,)) is a stable n-pointed genus g curve, and te = (f1,...,2,) With ¢
a formal coordinate at P;, for each i. The action of (Aut ©)®" by change of coordinates
endows M, , with the structure of an (Aut ©)®"-torsor over M, ,,. For further information
about M, , over the locus of smooth curves, see [11] and [38, §6.5]; over stable curves with
singularities, see [21, §3.2].

2.3. Action of Aut© on V

Let Derg O be the Lie algebra functor attached to the group functor Aut O in the sense of

[23, Exp. 11 §3,4]. This is
Derg O(R) = R[z]z0;.

The Lie algebra Dery O(R) is generated over R by the Virasoro elements L,, for p > 0,
hence Derg O is a Lie subalgebra of the Virasoro Lie algebra. The action of the Virasoro
Lie algebra on a vertex operator algebra V restricts to an action of Derg on V. One can
integrate this to obtain a left action of Aut O on V defined as the inductive limit of the finite-
dimensional submodules Vi := P, Vi. This follows from the fact that Lo acts semi-
simply with integral eigenvalues, and L, acts locally nilpotently for p > 0 [38, §6.3].

Explicitly, to compute the action on V of an element p € Aut O, one proceeds as follows.
The element p(z) can be expressed as

p(z) = exp Zaizi+laz (z)

i>0

for some a; € C (see e.g., [38, §6.3.1]). Assuming 0 < Im(ag) < 2x, the coefficients a; are
uniquely determined. Hence, p acts on V as exp ()", —ai Li).

As an example and for later use, the element y € Aut O from (9) can be expressed as

(10) y(z) = e 7% (1) (2).

Thus, y acts on V as el1(—1)Lo. This is a special case of the computation in [38, (10.4.3)]
and is essential to the gluing isomorphism for V¢ below.
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2.4. Action of Aut O on cAutc x V
The group Aut O has a right equivariant action on the trivial bundle cAutc x V — cAutc
defined by
(P.t.A)-p=(P.p@t).p" - A),
for p € Aut O and (P,t, A) € Hutc X V.

2.5. The sheaf of vertex algebras

As we next describe, the sheaf V¢ of vertex algebras on a smooth curve C is constructed
by faithfully flat descent of an (Aut O)-equivariant sheaf along an (Aut O)-torsor, in order to
remove coordinate dependence. The description of the sheaf V¢ over a nodal curve is more
complex. See §8.7 for the extension to families of stable curves.

Assume first that the curve C is smooth. The quotient of o#uzc x V by the action of Aut O
descends along the map 7: Autc — C to the vertex algebra bundle V¢ on C:

(%Léc XV — o%téc Xauto V =: Ve

| l

AutO
HAutc = > C.

In V¢, one has identities

(11) (P’th):(Pvp(l)’p_l'A)’
for p € Aut O and (P, t, A) € cAutc X V.

The sheaf of sections of V¢ is the sheaf of vertex algebras:

Ve = (V Q Tk ﬁW)AutO .
This is a locally-free sheaf of &¢-modules on C. The fiber of V¢ at a point P € C is
isomorphic to ¢Zutp Xauto V. Given a formal coordinate ¢ at P, one has the trivialization

Hutp Xpauio V x4 V.

For a nodal curve C, the description of V¢ is more involved. Assume for simplicity
that C has only one node Q. Let 7: C — C be the normalization of C, and let Q4 and
O_in C be the two preimages of Q. Choose formal coordinates s+ and s_ at Q4 and
0_, respectively. Denote by 7: cAutg — C the natural projection. The action of AutO
on V ® Ty O g restricts to an action of Aut O on

P Vi ® Oz (—kQ+ —kQ-) ® Fu O

k>0
Consider the sheaf
Aut O
(12) Vi= P Vi ® Oz (k04 —k0) & Fu O
k>0
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The sheaf V¢ is realized as a subsheaf of 7 (Tj) which coincides with n*(v) on C \ Q.
To describe its fiber over Q, we use the involution y € Aut O from (9) and (10), hence for
homogeneous A € V of degree a, one has

1 .
y(d) =M1 (=DhA = (=) Y S Li(A).
i>0

The fiber of V¢ over Q is obtained by identifying the fibers of VY at Q4 and Q_ via the gluing
isomorphism induced by y as in the diagram below:

1% 4 sV
@D Vi ®c sk D Vi Q¢ sk
k>0 k>0

] .

Sty Xauo V --=-3 Sutg_ Xauwo V.

Equivalently, after trivializing with respect to s4, the gluing isomorphism is
1 . .
DV ®csh > Prieecst.  Agest o DY SLi(A) @csET
k>0 k>0 i>0
We next describe spaces of sections of V¢ for the nodal curve C. Over an openset U C C
with O ¢ U, one has V|, := s (V& | =1 wy)- Since 7 is an isomorphism away from Q,
sections of V¢ over U are defined as in the case of smooth curves. To define spaces of sections
of V¢ over an open set containing Q, it is sufficient to do so on the formal neighborhood
(13) Do = Spec 5Q = Spec(C[[s+, s—]/(s+5-)).
The space of sections V¢ (D) is defined as the subspace of
1:V(Dg) = P W ® (s’j_(Cﬂs+]] ® sf@[[s_]])
k>0
consisting of elements in the kernel of the map
@ Vi ® (s’j_(Cﬂs+]] &) sf(Cﬂs_]]) —V
k>0
induced by
(452 fs1). Bosbgs2)) = FO) y(A) —5(0) B
for homogeneous A, B € V with deg(4) = a and deg(B) = b, and for all f(s4) € C[s+]
and g(s—) € C[s-]. Hence, V¢ (D) is spanned by elements

(A ®sh, (=1)? Z %L’l (A ® sf_i) and (B ® slj_+1f(s+), D® sf“g(s_))

i>0
for homogeneous A € V,, B € V,and D € Vg, with f(s4) € C[s+] and g(s—) € C[s_].
The sheaf Ve | Po is naturally an €g-module.
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To summarize, the sheaf V¢ on the nodal curve C can be described as follows. Consider
the exact sequence of 0F-modules

0 — Oz(—04+-0)8YV —V —— Vo, ®Vo. —— 0,

where Vg is the skyscraper sheaf supported at Q1 with space of sections isomorphic to V'
via the choice of the coordinate s4. Pushing forward this sequence along 1, we obtain an
exact sequence which fits in the diagram

0 —— 7 (Oz(-=04 — 0-) @) > NV > V2 )
(14) lyom_nz

Here, 7;: V5% — Vg is the natural projection, for i = 1,2. The sheaf Vc is then defined
asker ((y oy — m2) 0 q).

2.6. The structure of the sheaf V¢

We describe here some properties of Vc. For a smooth curve C, the sheaf V¢ is
filtered by the sheaves V< defined as the sheaves of sections of the vector bundles of
finite rank c#c Xauto V<k. While the action of AutO on Vi is well-defined, the action
of Aut O on Vj is so only modulo V<i_1, for each k. In particular, V< is well-defined, but
Autc X auto Vi only makes sense as a quotient of c/utc X aut 0 V<k modulo cfutc Xauto Vak—1-

Assuming for simplicity that the curve C has only one node Q, the sheaves
k Aut O
(EB Vi ® 05 (i 0+ —i 0-) ® T ﬁmﬁ)
i=0
provide an increasing filtration of the sheaf V on the normalization C from (12). The restric-
tion of the gluing isomorphism in §2.5 gives a gluing isomorphism between the fibers of such
sheaves at the two preimages Q + and Q_ of the node Q, and hence induces an increasing
filtration of V¢ . We denote the subsheaves of such a filtration as V<, as in the smooth case.

Consider the associated graded sheaf

gr, Ve = @ gr Ve, where g Ve = V< /V<k—1-
k>0

LeEmMMA 2.6.1. — One has
) @ dim Vj

gr,Vc = @ (wg_k

k>0

This was proved in [38, §6.5.9] for smooth curves. The argument made there extends to
stable curves if one replaces the sheaf of differentials 1C with the dualizing sheaf wc. We
sketch the proof for the reader’s convenience.

4¢ SERIE - TOME 57 — 2024 — N° 1



ON FACTORIZATION OF CONFORMAL BLOCKS FROM VERTEX ALGEBRAS 259

Proof. — Consider Vj as the quotient (Aut O)-representation Vi /V<x_1,and let A € Vi
be nonzero. One has Lo A = kAand L, - A = 0in V} = Vi /V<k—; for p > 0. Assume
first that C is smooth. Then it follows that

o = (CAQ® m« ﬁe,%,c)Auto

is a line sub-bundle of gr; V¢ . From [38, §6.5.9], the transition functions of ./ and w?_k

®—k

match, hence one concludes that &/ = w; ™", and this implies the statement.

Next, we consider the case when C is nodal. Assume for simplicity that C has only one
node Q. Consider the line bundle .« constructed from the line bundle

® O(—kQ+ —kQ-)

on the normalization C of C by identifying the fibers at the preimages Q+ and Q_ of the
node. From the discussion of the smooth case, one has

d/ = (CA ® ?{* ﬁﬂul/é)AUto

o = 0EF(—kQ1 —kQ-).

It remains to determine the isomorphisms used to identify the fibers at Q4 and Q_. The
gluing isomorphism A + el1(=1)L04 of Vo from §2.5 induces the gluing A +— (—1)f04
of gri. Ve . In particular, this is the gluing isomorphism of 7, which coincides with the gluing
of sections for w?ik given by the condition on the residues in Lemma 1.9.1. Hence one has
o = w?‘k in this case as well. The assertion therefore follows. O

REMARK 2.6.2. — The reader will notice how both sheaves (a)?_k)GB dim Ve and Vg / Vi1
are defined using diagrams similar to the one in (14). From this point of view, the above proof
can be seen as comparing the gluing data encoded by the vertical maps in the corresponding
diagrams.

As a consequence of [38, §6.5.9], which is Lemma 2.6.1 for smooth curves, one has the
following statement, which will be used throughout.

LEMMA 2.6.3. — Let (C, P.) be a smooth n-pointed curve. One has:

H(C \ P..Vc) = H°(C \ P..gr,Vc).

Proof. — We claim that on the affine open set C \ P,, one has
(15) Ve = P Vai/ Vi = grg Ve
i<k

Assuming (15), then one has, for every k € Zxg, an injection
dk:gr<x Ve — Ve,

altogether defining a map ¢: gr,Vc —> Vc¢. The map ¢ gives the isomorphism we seek. To
see that ¢ is injective, note that any element x in gr,Vc is in fact a finite sum, and hence
x is in gr_; V for some k. So if x is mapped to zero by ¢, then x is mapped to zero by ¢
for some k. Since all maps ¢y, are injective, x is zero. Surjectivity of ¢ follows from the fact
that V¢ is filtered by the V.
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We prove (15) by induction on k with base case & = 0. Lemma 2.6.1 implies that gr; V¢ is
locally free. On affines, locally free sheaves are projective, and hence on the affine open
set C \ P., the following sequence splits:

0= V-1 > V< — g1 Ve — 0.
In particular, on C \ P,
Vap = Vg1 @ grVe = grep1 Ve @ gri Ve,
and (15) holds. O

2.7. The logarithmic connection

In this section, we describe the logarithmic connection on V¢ . For smooth curves, this
was defined in [38, §6]. The adjective logarithmic is used here to emphasize that we work with
possibly nodal curves. For this purpose, we replace the sheaf QL. used in [38, §6], with the
dualizing sheaf w¢c which arises from logarithmic differentials on the normalization of C.
Hence a logarithmic connection on V¢ is a C-linear map V: V¢ — V¢ ® wc satisfying
V(fs) = s ®df + fV(s) for all local sections f of ¢ and s of V. We will use that on
open sets U C C where wc is trivial, one can describe a connection as an endomorphism
of Vc |U .

2.7.1. The connection on smooth curves. — Let C be a smooth curve. On an open subset U
of C admitting a global coordinate ¢ (for instance, on an open U admitting an étale map
U — Al), one has a trivialization V¢ ly =t V ® Oy.On V¢ Iy the connection V is given
by the endomorphism L_; ® idy + idy ® d; (compare with (3)). This canonically defines a
connection V: V¢ — Ve ® wc independent of the choice of the coordinate ¢ (as in [38, Thm
6.6.3]).

2.7.2. The connection on nodal curves. — Let C be a nodal curve, and let #: C — C beits
normalization.

PROPOSITION 2.7.3. — The connection on Vg described in §2.71.1 naturally induces a loga-
rithmic connection V: Ve — Ve Q wc.

Proof. — For simplicity, we assume that C has only one node Q. Recall that the
sheaf V¢ is defined as a subsheaf of 7.(V), where V is the sheaf in (12), and similarly,
wc is a subsheaf of nx wz(Q 4+ + 0-). Since C is a smooth curve, restricting the prescription
given in §2.7.1to V C Vg defines

VYV —V®0:(04 + 0 ) ®uwg.
Pushing forward to C along 5 and restricting to V¢ C r)*(i)/), we obtain
(16) ViVe — e (V@ 0p(04 + 0)) .

We claim that this factors through V¢ ® wc, defining in this way the desired logarithmic
connection. That this holds away from Q is clear. Therefore, it remains to check the assertion
over the formal neighborhood D¢ from (13).
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The sheaf wc is locally free over C, and by an argument analogous to the proof of
Lemma 1.9.1, we obtain an explicit trivialization over D¢ as

Cls.5-1 (dﬁ, —di) c I 18t @ s 1 %=
(s45-) S+ S—

wc(Dg) =
¢ ( Q) S+ S
Using this, the restriction of (16) to Do can be explicitly written as

17) V:Ve(Dg) — @i ® (s’:IC[[s+]] ds; @ s*1C[s_] ds_) .
k>0

To conclude, we show that this factors through Ve (Do) ® (ds+ , ds—) By definition, the
image via V of an element (4 ® f(s4+), B ® g(s-)) € Vc(Dg), with A, B € V', is

(L_1(A) ® f(sp)dsy + A ® f/(s4)ds+, L_1(B) ® g(s_)ds— + B ® g’'(s_)ds_).

The coefficient of (ds+ [ ) is

S

(18)  (L-1(A) ® 54 f(s4) + A® 54 f'(s4). —L-1(B) ® s-g(s-) — B ® 5-g'(s-)).

We are then left to check that if (4 ® f(s+),B ® g(s-)) € Vc(Dg), then (18) is also an
element of V¢ (D). To do so, it is enough to check that this is true for the elements of type

(A ®s%. (-1)* ) %LQ(A) ® si") € Vc(Dg)

i>0
for homogeneous A € V of degree a. Checking this amounts to showing that

a+1 a
1 . 1 . .
(—1)"“2 FL{(L—l(A))(@si“"+a(—1)“E l.—,L’l(A)®si_‘
j=0"’" i=0

is equal to
a
1
(_1)a+lz - I(Ll (A))@Sa l+1+( 1)a+lz Ll (A)®Sa l
1! !
i=0

Here the sums are truncated, since the terms with larger values of i and j vanish for degree

reasons. Comparing powers of s_, we need to verify for every k € {0, ..., a} that
D a(=D)* 4
19 L —1(4 L5 (A
(19) G A )+ S L)
is equal to
(_1)a+1 (a _ k)(—l)a+1

k+1
el @ il

in V. Repeatedly applying the commutator [L;, L_1] = 2L, one has

(20) Li(4)
LKL (A) = Lo L¥YN(A) 4+ 2a — k) (k + 1) LF(4),

which indeed implies that (19) and (20) are equal in V. It follows that (17) factors through
Ve(Dg) ® (ds+ . ‘”f), hence the statement. O

S
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2.7.4. The connection: summary. — In conclusion, the connection is given by:

DEerINITION 2.7.5. — Let C be a curve which has at worst simple nodal singularities. We
define the logarithmic connection V: V¢ — V¢ ® wc as the map induced by the following
endomorphisms on formal neighborhoods of points of C: for a smooth point P € C with
formal coordinate 7 at P, the endomorphism of V¢ (Dp) given by L_; ® id¢p +idy ® 0;,
and for a node Q € C locally given by sis_ = 0, the endomorphism of V¢ (Do) given by

(21) (L_l ® S+id<C|[s+]] +idy ® S+3S+, L1 ® S_idcﬂsi]] —idy ® S_as_) .

2.8. The coordinate-free Lie algebra ancillary to V/

As a first application, one obtains a coordinate-free version of the Lie algebra ancillary
to V. For a punctured disk Dy about a smooth point P on C and a formal coordinate ¢
at P, one has

22) H (D}, Ve ® wc/ImV) =5 £.(V).
A section of V¢ ® wc on Dy with respect to the ¢-trivialization

B® Y ait'dt € V&cC() ®cqy Cl1)dt ~; H'(D}. Ve ® wc)

i>ig
maps to
Res;—o Y[B.1] Y ait'dt € £,(V).
i>ig
where Y[B,1] := Y ;¢ Bujt~' . Sections in InV C V¢ ® wc map to zero, and this

defines a linear map from sections of V¢ ® wc/ImV on Dy to £,(V). The vector
space H° (DIX,,VC ® wc /ImV) has the structure of a Lie algebra such that (22) is an
isomorphism of Lie algebras [38, §§19.4.14, 6.6.9].

3. The new chiral Lie algebra Lc\p, (V)

3.1. Definition of the chiral Lie algebra

For (C, P,) a stable n-pointed curve and V a vertex operator algebra, set

Ve ®wc)

V)y:=H’(C\ P.,
Lcvp, (V) ( \ v

Here V¢ and its logarithmic connection V are as in §2.
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3.2. The chiral Lie algebra maps to the Lie algebra ancillary to 1/

For each i, let #; be a formal coordinate at P;, let DX be the punctured formal disk
about P; on C, and £, (V) be the Lie algebra ancillary to 1% (§1.3). Consider the linear map
obtained as the composition

(23) Levn (V) = H° (Df, Ve @ oc/ImV) = £, (V).

The first map is canonical and obtained by restricting sections. The second map is the
isomorphism of Lie algebras (22) and depends on the formal coordinates ¢;. From (23), we
construct the linear map

n n

(24) c:Love, (V) — EDH (D,X)i,vc ® we /Imv) =P,
i=1 i=1

After [38, §19.4.14], when C is smooth, the first map of (23) is a homomorphism of Lie alge-

bras, hence so is ¢, next denoted simply ¢. The map ¢ thus induces an action of Lc\p, (V)

on £(V)®"-modules. This will be used in §4. In Proposition 3.3.2 we show an analogous result

for nodal curves.

3.3. A close look at the chiral Lie algebra for nodal curves

Let (C, P.) be a stable n-pointed curve such that C \ P, is affine. Assume for simplicity
that C has exactly one simple node, which we denote by Q. Let n: C — C be the normal-
ization of C, let Q4 and Q_ be the two preimages of Q, and set Qo = (Q+, Q_). Let s
and s_ be formal coordinates at Q1 and Q_, respectively, such that locally around Q, the
curve C is given by the equation s s_ = 0. The chiral Lie algebra for (5 ,PaU Q) is

L&\ poug.(V) =H’ (C\ PoU Q0. Ve ® 0 /Im V),
and consider the linear map given by restriction:
x 54
(25) Levpuwo.(V) ~> H® (D5, Ve ® 0g/ImV) —5 Lo, (V).
Recall the triangular decomposition of £¢_ (V) from (5):
’gQi(V) = ’gQi(V)<0 @ EQi (Vo & SQi(V)>O-

Letog, € £9, (V) be theimage of 0 € L&\ p, 10, (V). and let [og, |, be the image of o,
under the projection £o (V) — Lo, (V)o.

Recall the involution ¢ of £(V)/ in (7). This restricts to an involution on £(V), given for
homogeneous A € V of degree a by

_ |
9 (A1) = =D)*' ) 5 (L) iy

i>0

ProrosiTiON 3.3.1. — For C \ P, affine, one has

. (i) 0g,.00_ € £(V)<0
n"Lcevp,(V) =10 € L& pug. (V)
(i) [UQf]o =17 ([OQ+]O)
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Proof. — Since C \ P, is affine, one has
Levp, (V) =H’(C\ Po. Ve ® wc) /VH® (C\ Po. V)
and similarly, since C \ Ps U Q. is also affine, one has
L&\ pao.(V) =H(C\ PeU Qo Vg @ wg) /VH® (C\ P U Q0. V).

To characterize elements in Lc\p,(V), we can first describe their lifts in the vector
space H® (C \ P.,Vc ® wc), and then show that the description descends to the quotient
by the image of V.

By definition of V¢ over nodal curves via the sheaf Vin (12) and by Lemma 1.9.1, we have
the inclusion

(26) 7*H®(C \ Po,Vc @ wc) CH® (C\ P,V ® 0g(04 + 0-)).

To see that (26) implies (i), consider the composition of linear maps

H (C\ P V@ wa(Q4 + Q1)) -+ @ Vi ®c sk~ Clsc]ds

k>0
27) l /iv

H® (Do, . V®wa(0+ + 0-)).

where the left vertical map is the restriction, followed by the s -trivialization. By §2.8, the
projection V ® C((s+))ds+ — Lo (V) is given by

B®urRess, =Y [B,sc]u € Lo, (V).
It follows that the image of
(28) PV ®c sk Cls<ldss — Lo, (V)
k>0
lies in £9_ (V)<o. Composing (27) with (28), we deduce that for o in (26), its image og_
in Lo, (V) liesin Lo, (V)<o = £(V)<o, hence (i).

The assertion (ii) follows from the gluing isomorphisms that define V¢ and wc as
subsheaves of 1.V and n. wz(Q+ + 0-), respectively, using diagrams as in (14). Given o
in (26), denote by [O’Q i] o its image via the composition of (27) with the projection

@ Vi ®c Sft_l(C[Si]]dsi —» @ Vi ®c s]fldsi.
k>0 k>0

In view of a diagram as in (14), [o¢_ ], is the restriction of ¢ at the fibers at Q+. For o
to correspond to a section of 7* H*(C \ P..Vc ® wc), the elements [og, |, and [og_],
need to satisfy an identity coming from the gluing isomorphism between the fibers of
V® wg(0Q4+ + 0-) at Q. For homogeneous A € V of degree a, the gluing isomorphism
on fibers of n*ff at Q4 defining V¢ is given by

1 . »
A®sL > (—1)“ZEL’1(A) ® 547,

i>0
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The gluing on fibers of 7. wg (Q 4+ O—) at Q4+ defining wc is given by s7 ' ds; > —s”'ds.
Combining the two, the induced gluing on fibers of V @ wz (04 + Q—) at Q4 is given by

1 . .
(29) A@ s dsy > ()Y L) ® s ds
=
After mapping to £9_ (V') via the restriction of (28), the gluing (29) implies that the images
of the elements [og, |, in £g,, (V)o, still denoted [0, |,. satisfy (ii) by definition of 9.

To show that the conditions are V-equivariant, it is enough to check on a neighborhood
of Q. Since V on V¢ is constructed from V on Vg, one verifies that

n*VVe(Dg) C VV@(D6+ U Dé_),

hence the statement. O
We combine §3.2 with Proposition 3.3.1 to show the following:

PROPOSITION 3.3.2. — The normalization map n: C >C identifies Lc\p, (V') with a Lie
subalgebraof L&\ p, 1,0, (V). Moreover, this induces an action of L\ p, (V') on L) ®" -modules.

Proof. — For simplicity, we may assume that C has a single node Q. By Proposition 3.3.1,
n*Lc\p. (V) can be identified with the subspace of sections in L&\ poug, (V) whose restric-
tion to Q.+ is given by the subspace of £9 (V)@ Lo_ (V) =, £(V)®? generated by £(V)%;
and the elements of type (A[g—1], ¥ (A[a—1])) € S(V)g” for homogeneous A € V of degree a.

Since £(V) <o and £(V)g are Lie subalgebras of £(V) and ¢ is a Lie algebra morphism,
it follows that n*Lc\p, (V) is a Lie subalgebra of L&\ p, 10, (V).

To conclude, the analogue of the morphism (24) for the nodal C \ P, is the composition
of the Lie algebra morphisms:

L& pouo. (V)
. ]
7 T \
Levp (V) -5 @i L4,(V),

where n* is described in Proposition 3.3.1 and ¢ is as in (24). O

3.4. A consequence of Riemann-Roch for chiral Lie algebras

We give here a statement parallel to §1.10 for chiral Lie algebras. Let C be a smooth curve,
possibly disconnected, with two non-empty sets of distinct marked points Pe = (Py,..., Py)
and Qe = (Q1,...,0m). Fori € {1,...,m}, let s; be a formal coordinate at Q;. For
0 € Lovpoug. (V), let og, be the image of o under the map given by restriction

Levpuoa(V) > H (D3, Ve ® oc /Im V) —> 20, (V).
For an integer N, consider
£0,(V,NQ;) =V & sV C[s;]/Im d.
This is a Lie subalgebra of £¢. (V).
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PROPOSITION 3.4.1. — Assume C \ P, is affine, fix E € V homogeneous, and integers d
and N . There exists 0 € Lc\p,uge (V) such that:

09, = Ejgq1€ £9,(V)/L0,(V,NQ;), for afixedi,

o9, =0€ L9, (V)/Lg,(V.NQ)), forall j #1i.
Proof. — Since C \ P, is affine, so is C \ Pe L Q.. As in Proof of Proposition 3.3.1,
elements of L\ p,ug. (V) can be lifted to sections of Ve ® wc on C \ P LI Q,, and thus, via
Lemma 2.6.3, described as sections of @y, (@& *)®9m Vi on C \ P, U Q.. The statement

thus follows from the analogous property of sections of tensor products of w¢, discussed
in §1.10. O

4. Spaces of coinvariants

Given a stable pointed curve (C, P,) and a vertex operator algebra V', we define spaces of
coinvariants using representations of the chiral Lie algebra.

4.1. Representations of the chiral Lie algebra

The chiral Lie algebra L¢\ p, (V) acts on the tensor product M* = M!' ® --- @ M"
of V-modules M!,..., M". Foreachi,lett be aformal coordinate at P;, and L4 (V) be the
Lie algebra ancillary to V' (§1.3). Each £, (V) acts on the V-module M’ as in §1.3, and the
sum P;_, £, (V) acts diagonally on M*. The map (24) thus induces an action of Lc\ p, (V)
on M* as follows: for o € L\ p, (V) and A* € M, one has

c(A'®--®A4") =" A'® - ®op, (4) @& A",

where op; is the restriction of the section o to the punctured formal disk D}‘,i about P; on C.

4.2. Coinvariants
When C \ P, is affine, the space of coinvariants at (C, P, ts) is
V(ViM®*) e posy =Ml ooy =M*[Lovp, (V) - M*.

This is the largest quotient of M ® on which L¢\ p, (V) acts trivially. In general, when C \ P, is
not necessarily affine, the space of coinvariants at (C, P., te) is defined as the direct limit

(30) V(V:M®) lim V(V:M*U(V.....V))

(C,P.,t.) = (C,P.UQ.J.US.) ’
(Qu,So)
where Q¢ = (Q1,..., Qm) ranges over the set of smooth points of C such that Pe N Qe = 0
and C \ P. U Q, is affine, and se = (51, ..., Sm), with s; a formal coordinate at Q;, for eachi.

As in the case of affine Lie algebras [36, 61], the above direct limit is well defined thanks to
the propagation of vacua theorem, which is discussed in §4.3.

The construction of the chiral Lie algebra in §3 extends to families of smooth pointed
curves over an arbitrary smooth base, and one obtains sheaves of coinvariants as follows.
Let (C — S, P,) be a family of smooth n-pointed curves. In this case, C \ P.(S) is affine
over S. Let #; be formal coordinates at P;(S), fori = 1,...,n. Equivalently, fix a formally
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unramified thickening S x Spf(C[#;]) — C of the section P;, for each i. One then obtains
sheaves of Lie algebras L¢\ p, (V) and of coinvariants

V(ViM®)(c/s.pote) = (M*®Os), ., v

over S, for given V-modules M!,..., M".

We will extend sheaves of coinvariants over families of stable pointed curves over an
arbitrary smooth base in §8.7.

4.3. Propagation of vacua

The propagation of vacua theorem, first proved by Tsuchiya, Ueno, and Yamada for
spaces of coinvariants constructed from representations of affine Lie algebras [74, Prop
2.2.3, Cor 2.2.4], says that spaces of coinvariants associated to a stable n-pointed curve with
coordinates remain invariant when adding a new marked point and the trivial module.

The result was established in the generality we need here by Codogni [19, Thm 3.6] (see
also [21, Thm 6.2]). Other special cases were previously treated in the literature, including
the case of coinvariants defined by quasi-primary generated vertex operator algebras V' for
which Vy = C either at a fixed smooth pointed curve with coordinates [76, 3], or on stable
pointed rational curves [67]. Moreover, propagation of vacua was proved for conformal
blocks defined at a fixed smooth curve in [38, §10.3.1].

To state the theorem, we need the following setup. Let (C — S, P., ts) be a family of stable
n-pointed curves with coordinates. Let Q: S — C be a section such that Q(S) is contained
in the smooth locus of C and is disjoint from P;(S), for eachi € {1,...,n}, and let r be a
formal coordinate at Q(S).

THEOREM 4.3.1 (Propagation of Vacua [19, Thm 3.6]). — Let V be a vertex operator
algebra with one-dimensional weight zero space. Assume that C \ Pe(S) is affine over S. The
linear map

M®*—> M*QV, uru®1”
induces a canonical Os-module isomorphism
v (V;M*) SVViMteV)

(C/S,Paete) (C/S,PeliQ, telir)

Varying (Q., r), the induced isomorphisms are compatible. Moreover, as 1 is fixed by the action
of Aut O, the isomorphism is equivariant with respect to change of coordinates.

The proof requires two main ingredients: (1) the axiom on the vacuum vector; and (2) the
existence of a PBW basis for V' [44].
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5. Finite-dimensionality of coinvariants

Using coinvariants by the action of Zhu’s Lie algebra (§), Abe and Nagatomo show that
spaces of coinvariants at smooth pointed curves of arbitrary genus are finite-dimensional [3].

We show here that the result of [3] extends to coinvariants by the action of the chiral
Lie algebra. Moreover, we further extend the result in [3] by allowing the following twist
of the chiral Lie algebra: given a smooth n-pointed curve (C, P,), and an effective divisor
D = Y7, n;iQ; on C not supported at P,, consider

(31) Lcvp,(V, D) :=H’(C\ Po,Vc ® oc(—D)/ImV),

where ImV denotes the intersection of V(V¢) and Ve ® wc (— D). This is the space of sections
in Lc\p, (V) vanishing with order at least n; at Q;, for each i, and gives a Lie subalgebra
of Levp, (V).

5.1. C,-cofiniteness
For k > 2 and a V-module M (e.g., M = V), set:
Ck(M) :=spanc {Aiym : A €V, me M}.

One says that M is Cy-cofinite if dim¢ M/ Cir(M) < oo. For a C,-cofinite vertex operator
algebra V' with one-dimensional weight zero space, any finitely generated V' -module is
Cy-cofinite, for k > 2 [17]. As explained in [5], the C,-cofiniteness has a natural geometric
interpretation which generalizes the concept of lisse modules introduced in [15] for the
Virasoro algebra.

ProPOSITION 5.1.1. — Let V be a Cy-cofinite vertex operator algebra with one-dimensional
weight zero space. Let C be a smooth curve with distinct points P+, ..., P,, and D an effective
divisor on C not supported at P.. Fix formal coordinates t; at P;, for each i. For finitely
generated V-modules M, ..., M", the coinvariants MZC\P. v.p) are finite-dimensional.

Proof. — Recall the map from (23) obtained by fixing the formal coordinates ¢; at P;, for

eachi: Loyp, (V, D) = £p,(V),0 = op,. For k € N, define
Fr ﬁc\P.(V, D) = {O’ S ,CC\P.(V, D) | degopl. <k, forall i} s
which gives L¢\ p, (V, D) the structure of a filtered Lie algebra. Let
FiM*® = @ Mj, where Mj:= Z M(111®"‘®M:1'n-
0<d<k dy++dy,=d
Since Fi Lovp, (V. D) - FiM®* C FryM?®, the Lcoyp, (V, D)-module M*® is a filtered
Lc\p,(V, D)-module. One has an induced filtration on MZC\P. v.D):
Fi (M2 m) 7= (FeM® + Lovp, (V. D) - M®) [Levp, (V. D) - M.

Step 1. — Let U be a finite-dimensional subspace of V such that V = U & C, (V). Contrary
to [3], elements of U are not required to be quasi-primary here. Let dy be the maximum of

the degree of the homogeneous elements in U. Similar to [3, Lemma 4.1], by an application
of the Riemann-Roch and the Weierstrass gap theorem, there exists an integer N such that

HO (c,w§1—" (P, — D)) £0, forallk<dy,l>N,iec{l,... n).
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Step 2. — For a V-module M and with N as in Step 1, define the subset
Cn(U.M) =spanc {Apm : A €U, meM, | >N}.

We claim that for each i the set M! ® --- ® Cy (U, M') ® --- ® M" is in the kernel of the
canonical surjective linear map

« 7 ° . ° °
M" > gr, (MLC\p.W,D)) = & Tk (M£C\P.(V,D)> [Fie (Mﬁcv\p.(v,D)) :

For this, it is enough to show that 7 (ml ® - QAHM @ ® m,,) = 0, for homogeneous
A € U of degree a, m; € Méi, and [ > N. Note that C \ P; is affine for all i. As in the
proof of Proposition 3.3.1, elements of Lc\p; (V, D) C Lc\p, (V) can be lifted to sections
of Ve ® wc(—D) on C \ P;. By Lemmas 2.6.3 and 2.6.1, the vector space of such sections
is isomorphic to the space of sections of
(32) P Vi ® 0 *(-D)

k>0
on C \ P;. Following Step 1, there exists a section 0 = A ® u of (32) on C \ P; such that its
image via the map Lc\p; (V, D) — £p, (V) from (23) is

op; = A[_l] + Z CjA[j], for some cj € C.

j>=1
One has A[_y - M(;i C Mji,~+a+171 and A - lell_ C Mti',-+a+172 for j > —I. Moreover,
since u is holomorphic at a point P, # P;, one hasop, = Zszo asAps), for some a; € C. It

follows that op, - Mj; C M , , . From the identity
oM@ - @mp) =3 r_ 1M ® - ®0p, (M) @+ R my,
one has
Mm@ Apm; - @my € Fy g, 1ari—2M* + Lc\p, (V. D) - M®.
Since the element on the left-hand side is in Fy~ g, 4q+1-1M°, it follows that it maps to zero
via 7. The claim follows.
Step 3. — After Step 2, the map n factors through
() MUy (UMY @ @M Cy U M") e (ME )

By [3, Prop. 4.5], there is a positive integer k such that Cx (M') C Cy (U, M") for all i.
In particular, dim M'/Cy (U, M") < dim M'/Cy (M"). These are finite as the M* are all
Ci-cofinite by [17]. It follows that the source in (33) is finite-dimensional, hence so is the
target. This implies that the coinvariants are finite-dimensional as well. O

The proof of Proposition 5.1.1 extends over families of smooth curves C — S with n
disjoint sections Pq,..., P,, and for each i, a formal coordinate #; at P;(S). Hence, we
conclude:

COROLLARY 5.1.2. — Let V be a Cy-cofinite vertex operator algebra with one-dimensional
weight zero space. For any collection of finitely generated V-modules M, ..., M", the sheaf
of coinvariants V(V'; M*®)(c/s,Pe.1e) IS @ coherent Os-module.
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6. The modules Z and Z

In service of the proof of the factorization theorem, we consider the modules Z and Z in
§6.1, and coinvariants constructed from them in §6.2.

6.1. Definitions and properties

Let V be a vertex operator algebra. Recall the associative algebra %(V) from §1.4.
Consider the 2(V)®2-module

®2
Z = (Ind?;EK;S()A(V)) = (%(V) ® %)< A(V))®2,

where (V) <o acts trivially on A(V'), and the action of Z(V)o on A(V) is induced from the
projection %(V)y — A(V). With the notation from §1.6, one has that Z = M(A(V))®2,
where M(A(V)) is the generalized Verma %(V')-module induced from the natural represen-
tation A(V') of A(V).

We will also consider a quotient Z of Z defined as follows. Let &7 be the subalgebra
of %(V)®? generated by (V) ®c %(V)<o, #(V) <o @c % V), and %(V)o @c %V )o.
Consider the Z(V)®2-module

Z = nd%M% 4W) = (2(")®2) @5 AV).

where Z(V) ®c % (V)<o and Z(V)<o ®c (V) act trivially on A(V), and the action
of Z(V)o ®c % (V) on A(V) is induced via the natural surjection

UV )o ®@c %(V)o — A(V) ®c A(V)
from the action of A(V) ®c A(V) given by
(a@a®b)(c)=a-c- (=), fora®be AV)R AV),c e A(V).

LEMMA 6.1.1. — Let V be a rational vertex operator algebra. One has %(V)®%-module
isomorphisms

Z= P WeW )@Y oY )ad Z= H Wwew,
w,Yew Wew

with W the set of representatives of isomorphism classes of simple V -modules.

Proof. — Since V is rational, the algebra A(V) is semisimple [77]. From Wedderburn’s
theorem, one has A(V) = @Pres E ® EY, where & is the finite set of representatives
of isomorphism classes of simple A(V)-modules. Using the one-to-one correspondence
between simple V-modules and simple A(V)-modules [77], and rationality of V' which
implies that the V-module induced from any simple A(V)-module is simple, it follows that
each simple V-module is W = %(V) ®«v)., E, for some E € &. Moreover, there exists
a canonical V-module isomorphism %/(V) ®_%(V)<o EY = (%(V) Quw)_, E) . for E € &
[67, Prop. 7.2.1]. The statement follows by linearit§. - O
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6.2. Replacing coinvariants with Z

The main result of this section is Proposition 6.2.1, which generalizes [67, Prop. 7.2.2,
Cor. 8.6.2] to curves of arbitrary genus. The statement describes coinvariants of the action
of a Lie subalgebra Lc\ p, (V. {Q+, Q_}) of the chiral Lie algebra Lc\p, (V).

We begin by defining Lc\p, (V,{Q+, O_}). For this, let C be a smooth curve, possibly
disconnected, with two nonempty, disjoint sets of distinct marked points Pe = (P, ..., Py)
and Q¢ = (Q+, Q). Assume that C \ P, is affine. After Lemmas 2.6.3 and 2.6.1, one has

HO(C\ Po.Ve) = @) HO (C\ P, Vi @ 02 7F).
k>0
Fixing an isomorphism, consider the following Lie subalgebra of the chiral Lie algebra
Levp, (V):
Bizo HO (C\ Pa. Ve 80 0 (—kQ+ — k0-))
VH?(C \ P.,Vc)
Asin (31), VH?(C \ P., Vc) is the intersection of ImV with the subspace
@ H° (C \ P, Vk ®c a)?l_k(—kQ+ - kQ—))
k>0
of H(C \ P.,.Vc ® wc).
Select formal coordinates #; at P; and s; at Q;. Let £p, (V) := @?:1 Lp; (V) and
Lo.,(V):= L9, (V) ® Lo_(V). There are Lie algebra injections
(35) Lovp, (VAQ+,0-3) — £p,(V) and Levp, (V. {0+, 0-}) — Lo (V).
The image of an element of (34) in £¢, (V) = £(V)®? via the restriction map in (35) is

daiAdyn @) biAy € LN C Lo (V)
i>k j>k

34 Lcove, VAQ+,0-)) =

for homogeneous A € V' of degree k > 0 and coefficients a;, b; € C.

We use here the assumption that V' is Cy-cofinite,i.e.,dimc V/C1 (V) < oo, where C1(V) is
the subspace of V linearly spanned by A1)B for A,B € V.o and by L_;V.If V is
C;-cofinite and V = C1V, then lowest weight V' -modules admit spanning sets of PBW-type
[54]. Also, C»-cofinitess implies Cq-cofinitess [54], hence the assumption here is weaker.

PROPOSITION 6.2.1. — Consider (C, Pe U Qe,te U So), Le, a smooth coordinatized
(n + 2)-pointed curve, possibly disconnected, such that C \ P, is affine. Let V be a Cy-cofi-
nite vertex operator algebra with one-dimensional weight zero space, and let MY, ..., M" be
V-modules. The map

M® > M*Qc Z, w i w147V g 140
where 140) e A(V) is the unit, induces an isomorphism of vector spaces

h:M

: ZC\P.(Vs{Q+,Q_}) — (M' Rc Z)

LC\P.\_’Q. (V) :

Proof. — We proceed in three steps.
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Step 1. — We first show that the map & is well-defined. Observe that Z is naturally
equipped with a left action of L¢\ p,ug. (V) induced by the Lie algebra homomorphisms
Levpawg.(V) = Lo.(V) = %(V)®2.

Given an element 0 € Lc\p, (V. {0+, 0-}) C Lc\proug.(V), let op, be the image
of o in £p, (V) via the restriction map in (35), and similarly let o, be its image in £o, (V),
fori = 1,2. Since og;, € £(V)<o, the elements 0p, ® 1 and 1 ® og_ act trivially
on A(V) ® A(V) C Z. This implies

(36) op, (w) ® 11V @ 14V = & (w ® 11" & 1A<V))
—w®og, (1A(V)) 147y @ 11V 6y (1A(V))
. (w ® 14 & 1A<V))

for w € M*®. It follows that the image of any element is independent of the equivalence class
representative in the quotient, hence the map % between the spaces of coinvariants is well-
defined.

Step 2. — Next, we show that the map / is surjective: Given w ® z; ® z, in M* ® Z, there
exists w’ € M*® such that

wez ®z=w @11 @147 mod Loy pang. (V) (M* ® Z).
By linearity, and reordering elements in %/(V'), we can reduce to the case
21®zy =D D14 Q Ey - E1140),

with each D; and E; in £(V)s¢. The surjectivity is clear when / = m = 0. By induction on /
(and similarly on m), it is then enough to show that

WRzZI®zm=w ®z]®2 mod L\ p,uo,(V)(M* ® Z)

for some w’ in M*®, when z; = Dy (z’l) for some homogeneous D € V and Dy
in £(V)>o. Each component of the curve C has at least one of the marked points in P,. By
Proposition 3.4.1, there exists o € L\ p,ug, (V) such that

o9, = D1 € Lo, (V)/Lo, (V,NO4),

og_.=0€ Lo (V)/Lo_(V.NQO-),
for N > 0. It is enough to take N such that

Diij(z]) ® z2 = z; ® Djj1(z2) =0 in Z foralli > N.
Such N exists because (V') acts smoothly on each factor. This implies
00, () ®z2+2] ®00_(22) = Dy - 21 @ 22 = 21 ® 2».
It follows that
Wz ®z =0(w Rz ®2) —op, (W) ® 2] @ z2,
hence
Wz ®z=—0p, (W) ®2;®z;  mod Loyp,uo, (V)M ® Z).

Repeating the same argument for z,, the surjectivity of & follows.
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Step 3. — It remains to show that / is injective. Equivalently, we show the surjectivity of the

dual map
V. ° v . v
h : ((M ®C Z)LC\POUQU(V)) - (MEC\P.(Vs{Q-ﬁ-’Q—}))
given by

B (®)(w) = ® (w 811" g 1A(V)), for w € M.

For this, select an element ® in the target of #¥. We construct an element ® in the source
of hY such that 1Y (®) = ®.

First, we define ® as a linear functional on M*® ®c Z. We use a spanning set for Z
obtained as follows. Since V is C;-cofinite and V, = C1V, lowest weight V-modules admit
spanning sets of PBW-type [54, Cor. 3.12]. Since Z is the tensor product of two lowest
weight V-modules, we conclude that Z admits a spanning set of PBW-type. Select a spanning
set of PBW-type for Z, and consider a generating element

— pl _...pl 140 . EL 140D
(37) 21 ® 23 = Dy Dy 15 @ Eff g Epjpp 1 €Z

with DY, ..., D! E',...,E™ eV, andi1,....i], j1..... jm € Z such that

1 2 2 1 1
D[il], e D[iZ], Ef’}m], e E[jz] € £(V)so and D[il], E[j]] € £(V)so.
Looking more closely at [54], one can assume that all D!.....D! E', ... E™ are in the

complement of C; (V) in V. Note that the elements D[lm, E[lil] € £(V)o generate the lowest

weight space from the vector 14(") ® 14(") 'We proceed by induction on / and m. We start
by defining

@ (w ® 110 g 1A<V>) = B(w).
Next, assume that ® has been defined on elements w ® z; ® z, forw € M*® and z; ® z, as
in (37) for fixed | and m. Consider an element
w®D[4i'+]Z1 ®zp € M®* Qc Z
forsome w ® z;1 ® zo € M* ®c Z, DT € V,and iy € Z. Choose an integer N > 0 such
that
Dfjzi®z=21®Djjz2=0 inZforalli>N.
As in Step 2, such N exists because (V') acts smoothly on each of the two factors of Z. By
Proposition 3.4.1, there exists 0 € L\ p,ug. (V') such that

(8) 0p, = D[L] € Lo, (V)/Lo,(V.NO,),
og_ = 0e SQi(V)/EQf (v, NQ_)
Define

n
<I>(w ® Djf 171 ®Zz) ==Y P(w1® - Qop W) ® - Qw, ®71 ® 22),
i=1
where w = w; ®---® w, € M*. Note that since the generating elements for Z are expressed
in terms of D',..., D! E', ..., E™, which are not in Cy(V), then Phi automatically
respects the relations in Z, and hence defines a linear map on M*® ®¢ Z. Since ® vanishes
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on Lc\p, (V,{Q+, O_}), the definition of @ here is independent of the choice of o satisfying
(38). One proceeds in a similar way to define ® on elements of type

w Rz ®E[';+]22€M' Qc Z

forw®z;®z, € M*Q@cZ, ET € V,and j, € Z. By induction, this defines ® on a spanning
set of PBW-type for M* ®¢ Z, hence by linearity, on M* ®¢ Z. A direct calculation shows
that

o} (w ® Dﬁ-a]Df’ib] 71 Q® 22) - @ (w ® Dﬁ»b]Dﬁ-a] 71 ® zz) =& (w ® [Dﬁ.a], Dﬁ-b]] 1 ® 22>
and similarly

(0] (w ®z1® EEJJ-H]E[bjb] 22) ) (w ®z1® E[bjb]Eﬁ-a] 22) =o (w ®z1® [E[“ja], E[bjb]] 22) ,
hence ® is independent of the choice of the spanning set.

Finally, we check that ® vanishes on L\ p,ug. (V) (M® ®c Z). Fix t in Loy pyug. (V).
By definition of &, one has

O] (w ® 10, (21) ® 22) + @ (w ®Rz1 ® ‘L’Q_(Zz)) =—® (0p, (W) ® 21 ® 2)
for any 0 € Lc\p,ug.(V) satisfying conditions analogous to (38), hence we can choose
o = t. It follows that ® vanishes on 7 (M*® ®c Z) forall t € L¢\p,ug.(V), hence @ is

in the source of #V. By construction, one has 1V (®) = ®, hence /" is surjective. This ends
the proof. m

7. Proof of the factorization theorem

Here we prove our main result, which we state in complete detail below. For this let
us first set some notation. Let (C, P.) be a stable n-pointed curve with exactly one simple
node, denoted Q. Let C — C be the normalization of C, let QO+and Q- € C be the
two preimages of Q, and set Qe = (Q+, 0-). The curve Cc may not be connected. Fix
formal coordinates t; at P;, foreachi = 1,...,n, and s+ at Q4. Suppose M',..., M" are
V-modules, set M* = @7_, M, and let # be the set of representatives of isomorphism
classes of simple V-modules. Consider the map
(39) M*— P M*&cW &c W', U @ u® 1,

ey Wew
where "0 = idw, € End(Wp) = W ® WOV. Here W, is the degree zero space of the

module W = P;., W;. Recall that, by definition, the vector spaces W and WO\/ are finite-
dimensional.

THEOREM 7.0.1 (Factorization theorem). — Let V be a rational, Cy-cofinite vertex oper-
ator algebra with one-dimensional weight zero space. The map (39) gives rise to a canonical
isomorphism of vector spaces

VIV M) cpot = P V(ViM* &c W ¢ W) (@ PaiQurtatse) -
wew

This isomorphism is equivariant with respect to change of the coordinates t..
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The proof we give here roughly follows the outline of the proof in [67, §8.6], with the
generalizations to coinvariants defined using the chiral Lie algebra instead of Zhu’s Lie
algebra, and for curves of arbitrary genus, made possible by Propositions 3.3.1 and 6.2.1.

Proof. — By Definition (30), due to propagation of vacua (Theorem 4.3.1), we can reduce
to the case C \ P, affine, after possibly adding more marked points P; and corresponding
modules V. Using the formal coordinates ¢; at P;, fori = 1,...,n, and s+ at Q 1, one has
Lie algebra homomorphisms

Leve, (V) = £p, (V) and LE\p,ug,(V) = L, (V) ® Lo, (V).
In the following, we show that (39) induces a canonical isomorphism

(40) MZ ,.on= D (M*@cW ocW)
Wew

LE\Peuoe V)’
We will argue that there is a commutative diagram

[ ] h [ ]
Mﬁé\Po(Vs{Q+’Q—}) = M ®(CZ)£€‘\P0\_IQ.(V)

l l

[ ] f [ ]
MCC\P.(V) = (M ®c a56\1).L|Q.(V) ’

Then after Lemma 6.1.1, the isomorphism f gives (40).
Step 1. — The top horizontal isomorphism / is given by Proposition 6.2.1.
Step 2. — We argue that there is an inclusion

vLa\p, V{04, 0-}) = Leve, (V).

Indeed, by Proposition 3.3.1 an element of L¢\p, (V) can be realized as o in L&\ p, 10, (V)
such that g, € £(V)<o and the restrictions [og, |, of oo, to £(V)e satisfy [og_], =
s [O'Q +]0. In particular, L&\ p, (V. {Q+. Q-}) from (34) is identified as a Lie subalgebra
of Lcyp, (V) by pullback along the normalization, since its elements satisfy og . € £(V)<o.

Step 3. — To show that the bottom horizontal map f is an isomorphism, it remains to verify
that the kernel of the left vertical map is identified with the kernel of the right vertical map
by the isomorphism /.

Step 3(a). — The kernel of the left vertical map is the space
K = Lovp, (V) (MZG\P.(V’{Q%QJ)) .
Note that for o in Lc\ p, (V'), the formula for the bracket (4) gives
[0©@).0 (Le\p, (V04 0-D) | € 0 (Levp, (V2 10+, 0-D).

where ¢ is as in (24). It follows that o acts on the source of /. The left vertical map is thus
the quotient by the action of Lcyp, (V) /L& p, (V. {Q+. O-}).
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Step 3(b). — We conclude the argument by showing that the right vertical map is the
quotient by A(K). Recall that h(w) = w @ 14 @ 140 for w € M*. Hence, h(K) is
linearly spanned by

41 op,(w) ® 11N 14" = _y oo (1A(V)) R 11—y @ 11V og_ (1A(V))

modulo L&\ p,1,0,(V) (M* ® Z), for 0 € Lc\p, (V) and w € M*®. Since %(V)<o acts
trivially on A(V'), (41) is congruent to

~w® [0g, ], (1A(V)) ® 14V _ 0y 140 g [0 ], (IA(V)>

modulo L&\ p, 10, (V) (M* ® Z). From Proposition 3.3.1, one has [og_], = 9 ([og, ],)-
By linearity, it follows that 4(K) is linearly spanned by

(42) —-w & B[k—l] (IA(V)> [ lA(V) —w & IA(V) R (B[k—l]) (IA(V))

modulo L&\ p,,0,(V) (M* ® Z), for w € M* and homogeneous B € V of degree k. Here,
Bg—1jand ¢ (B[k_l]) are in £(V)o, and recall that the action of £(V)¢ on A(V) is induced
from the projection £(V)o — A(V).

One has b (140) = (1407) b for all b € £(V)o, where (14(")) b denotes the right action
of b € £(V)o on 140)_ Using this in (42), we conclude that 4 (K) is linearly spanned by

(43) —w & (1A(V)) B[k—l] [ lA(V) —-—w&Q lA(V) [ (1A(V)) 2 (B[k—l])

modulo L&\ p, 1,0, (V) (M* ® Z), for w € M* and homogeneous B € V' of degree k.
From Lemma 6.1.1, the target of / is isomorphic to

(M ®Z) oo = W@YW (M @WRW, Y ®Yy) .,
(44) ,
~ WEBYEW M @WSY),. @ W &Yy

The second isomorphism is due to the fact that Lo, (V) acts on the left of W ® W', and
similarly, £o_ (V) acts on the left of Y ® Y,)’, so that L&\ poug,(V)onlyactson M*@W QY.
Expressing (43) via the isomorphisms in (44), #(K) is linearly spanned by

- (MW ®Y) @) ® Bi—1y (W) ® Yy’

v @ Wy' ® 9 (B[k—ll) (Yov)

LE\PeLiOe
—-(M* W ® Y)Ea\p.ug.
for W,Y e % and homogeneous B € V of degree k. Here the right action of B_q;
and ¥ (Bpx—1) in £(V)o on W, and Y’ is given by Lemma 1.8.3, and recall that ¢ is an

involution. It follows that 2(K) in (M*® ® Z)ﬁé\p Loe) is isomorphic to

P M ewey)
wyew

with .7 (W', Yy') C Wy’ ® Y’ linearly spanned by
Yw o (Bk—1]) ® ¥y + ¥w ® Yy © Bx—1].
where yw € Wy, ¥y € Y for W,Y € #, and B € Vj, for k > 0. One has
W' ® Yo'/ (Wy'. Yy') = Homyy) (Wo. Yy') .

\V2 \Y2
Levro ) @7 (VYY)
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and by Schur’s Lemma, this is isomorphic to C when ¥ = W’ and zero otherwise.
This and the description of Z from Lemma 6.1.1 imply that, after taking the quotient
of (M* ®c Z) 4 . 0. (v) bY h(K), one obtains (M* ®c Z)ﬁ’c\p.ug.(V)’ hence the stat;
ment.

8. Sewing and local freeness

In this section we prove VB corollary. For this, we start with the sewing theorem
(Theorem 8.5.1), a refined version of the factorization theorem. This requires the notion of
formal smoothings, reviewed below.

8.1. Formal smoothings

For a C-algebra R with smooth Spec(R), let 65 — So := Spec(R) be a flat family of
nodal curves with a single simple node defined by a section Q and with n distinct smooth
points given by sections Py = (P1, ..., Py). Assume that 6p \ P.(So) is affine over So. Up to
an étale base change of Sy of degree two, we can normalize %y and obtain a smooth family
of (n + 2)-pointed curves %o — So with sections Pa LI (Q+,0-),where Q+(Sp) C %o are the
preimages of the node in 6,/Sy. Fix formal coordinates s and s— at Q+(Sp) and Q_(Sy),
respectively. Such coordinates determine a smoothing of (6o, P.) over S := Spec(R[q]). That
is, a flat family € — S = Spec(R[q]) with sections P, = (P, ..., P,) such that the general
fiber is smooth and the special fiber is identified with 5 — Sy. The family ‘% — S trivially
extends to a family of smooth curves % — S with n + 2 sections P., O4,and Q_:

~

€ €

Ny
Pe,04,0— S = Spec(R[q])- Pe

The formal coordinate at Q 1 (So) extends to a formal coordinate, still denoted s, at Q +(S)
— thatis, s+ is a generator of the ideal of the completed local R[¢]-algebra of % at O+(R)—
such that locally around the node, the family %’ is defined by s s_ = ¢. For more details, see
[61,p.457]and [10, pp. 184-5]. We emphasize that the existence of such families holds over the
formal base S = Spec(R[q]), or equivalently, over the complex open unit disk around Sy in
the analytic category, but fails over a more general base. Moreover, one still has that (g\ P.(S)
and € \ P.(S) are affine over S.

8.2. The sheaf of vertex algebras over formal smoothings

We define here the sheaf of vertex algebras Vi over a family ¥ — S as in §8.1. After
§2.5, it is enough to describe V¢ on the formal neighborhood ®¢ of the node Q. The
completed local ring 5Q consists of elements of the form }; ;i ; sis/ fora;j € R.
After identifying s+ = (54, si_) and s_ = &, s_), the ring 5’\Q is realized as the subring
of R(s+)[¢] ® R(s-)[¢] consisting of elements of type

3 ey (770 )

i,j=0
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with «; ; € R. The space of sections of V¢ over ® g is generated by
i—j 1 i
(45) ZO[,‘J(A@SIH ]q]’(_l)aZFLllc(A)@si k+j zqz)
£,j20 k>0

for homogeneous A € V' of degree @ and «;,; € R. For g = 0, one recovers the description
given in §2.5 for nodal curves.

Similar to the case of a nodal curve, we can identify a logarithmic connection
Vi Vs — Ve ® wys. The description of V on a smooth open set follows from the descrip-
tion of the connection V over a smooth curve. Specifically, for every smooth point P € €'\ Q,
there is an open set S’ C S and an open set U C ¢ \ Q over S’ and containing P such that
there exists an étale map U — A}g,. This implies that U has a global coordinate ¢, and thus
V|U ~, V ® Oy. On the open set U, the connection V is provided by the endomorphism
ofV|U givenby L_; ® idy + idy ® d;, asin §2.7.1.

We are left to describe V over ®p. Recall that (?—Jr*,—dss—_—) is a generator of wy/s

over 5’}3. Using this trivialization, the connection V is defined by the endomorphism (21)
extended over R[q] by linearity, that is:

(L_1 ® S+idR((s+))|[q]] +idy ® s+ 8s+ ,—L_1® S_idR((s_))ﬂq]] —idy ® S_as_) .

As in the proof of Proposition 2.7.3, one needs to show that the target of this map lies inside
Vi (D), and not merely in V ® (R(s+))[¢] ® R((s-)[¢]). This amounts to a verification as
in the proof of Proposition 2.7.3.

8.3. The chiral Lie algebra over formal smoothings

Next, we globalize the Lie algebra £(V') ancillary to V' and the chiral Lie algebra.

Select a formal coordinate ¢; at P;(S). On the formal neighborhood ® p, = Spec R[t;, q],
one has V(ghgp ~: (V ® R[#]) [¢]. Since the restriction of V over Dp, is given by

L_1 ® idgyy; 41 + 1dy ® dy;, we have an identification as in (22):

:tl'
(46) H® (D5, Ve ® wq/s/ImV) —> £,(V)lgl.
We define the chiral Lie algebra assigned to V and (¢, P.) as

Ve ® a)ag/s)

Lop, (V) :=H° (% \ Pa(S), v

This extends §3.1. The map
n - n
Lavn (V) —> D H (95, Ve @ wgys/ImV) = €D £, (V)]
i=1 i=1
induced by the restriction of sections and (46) is a Lie algebra morphism.
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REMARK 8.3.1. — As in Proposition 3.3.1, L4\ p, (V) can be described as the subspace
of LZ p,ui0, (V) generated by those elements o whose restrictions og, to £o, (V)[g] satisfy

_ A g
o0, = ) i Ari-j—1 4’
/>0

- 1 .
og_ = (-1 ! Z Ui, j Z ] (LIICA)[a_k.;.j_i—l] ¢

i,j=0 k>0

= > ;0 (Agyioj-1) 4’
i,j>0
for homogeneous A € V of degree a and integers i, j € Zx>¢. This uses that sections of Ve

over Do are generated by (45), sections of wy /s over D are generated by (dss—:, —ds%)

over ﬁQ, and the definition of ¥ from (7).

8.4. Sheaf of coinvariants over formal smoothings

Let (¢/S, P.) be as in §8.1. Fix formal coordinates #; at P;(S), fori = 1,...,n.
Given V-modules M1, ..., M", let M* := @"_, M'. One defines the sheaf of coinvariants
V(V; M*®) /s, P..te) as in §4, that is:

V(V:iM)cess.pose) = (M ® Os), . ).

The factorization theorem holds for the restriction of V(V'; M ®) /s, p. ) to the special fiber
Cg() —> S()I

THEOREM 8.4.1. — Let V be a rational, Cy-cofinite vertex operator algebra with one-
dimensional weight zero space. The map (39) induces a canonical Us,-module isomorphism

V(V M) (go/50, i) = EDV(ViM* @ W ® W') (2150, PaliQustalise)
Wwew

As a consequence of Corollary 5.1.2 and Theorem 8.4.1 we obtain the following result on
coherence.

THEOREM 8.4.2. — Let V be a rational, Cy-cofinite vertex operator algebra with one-
dimensional weight zero space. For finitely generated V-modules M Lo . M", the
sheaf V(V'; M®)(5/S,Pe te) IS a coherent Os-module.

Proof. — Corollary 5.1.2 implies that the restriction of V(V; M®)(x/s,pe.ze) t0 S \ So 18
coherent. We are left to show that the restriction of V(V;M?®)(s/s Puse) to So, le.,
V(V'; M*®)(%y/So,Pe,te) 15 coherent. This follows from Theorem 8.4.1 and Corollary 5.1.2
appliedtoV(V; M* QW ® W’)(%/SO,P.UQ_, O

follse)"
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8.5. Sewing

Given a simple V-module W = P, o Wi, define
=3 "1"g e (We W)l
i>0
where 1%i .= idw, € End(W;) = W; ® W,". Consider the map
(47) M — P MoWRIW)gl. u— P uxl”.
wew wew

The following result extends [67, Thm 8.4.6] to curves of arbitrary genus.

THEOREM 8.5.1 (Sewing Theorem). — Let V be a rational, C,-cofinite vertex operator
algebra with one-dimensional weight zero space, and set M® = Q'_, M* for V-modules M".
The map (47) induces a canonical Os,[q]-module isomorphism ¥V such that the following
diagram commutes

V(V:M®)(%/8,Po,te) 3 PVIyV:M W W’)(%/SO,P.UQ.,z.us.) ﬁ%) Os,l4]
0

l Wew
V(Vs M®) (G50, Pae) —— BV VM @W @ W)z /50 Pauatalise) -

Wew

This isomorphism is equivariant with respect to change of the coordinates te.

REMARK 8.5.2. — Theorems 8.4.1 and 8.5.1 give a canonical isomorphism

V(V, M.)(%”/S,P.,t.) =V (V, M.)(%O/SO,POJO) |Iq]]

In particular, this means that to the non-trivial deformation & of %y, there corresponds a
trivial deformation of the space of conformal blocks.

Proof of Theorem 8.5.1. — As in the proof of the factorization theorem, we can reduce
to the case ¥ \ P, affine over S, and show that (47) induces a canonical R[g]-module
isomorphism, still denoted W, such that the following diagram commutes

® Us,lq]

. Y . ’
M ® O5)z ) > @ (M QW WS @’SO)L%\,,,MQ,W)@,SO

l Wew
(M*® Os), oy — D (M @W W ®0s,)

Wew Lg\reuoe (V)

Here, the vertical maps are obtained by specializing at ¢ = 0.
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Step 1. — We show that (47) induces a well-defined map W between spaces of coinvari-
ants. For this, it is enough to show that for each 0 € L4\ p, (V) and W € #/, one has
op, (M*) @ 1V =0 (M* ® 1V), or equivalently

(48) (00, ®1+1®00) (1") =0.
From Remark 8.3.1 and by linearity, we can reduce to the case when
00, = Afa+i-j-114’ and oo =9 (Aati-j—1) ¢’

for homogeneous A € V of degree a and integers i, j > 0. The vanishing of (48) follows
from the identity

(49) (Alati-j—11 ® 1 + 1 ® O (Agti—j—11) ¢ /) (1) =0

established in [67, Lemma 8.7.1] (there is a sign difference between the involution ¢ used here
and the involution used in [67]). Thus we conclude that the map W is well-defined and makes
the diagram above commute.

Step 2. — Since (i) the target of ¥ is a free O, [¢]-module of finite rank, (ii) the source is
finitely generated (Theorem 8.4.2), and (iii) ® is an isomorphism modulo ¢ (Theorem 8.4.1),
Nakayama’s lemma implies that W is an isomorphism (this is as in [74, 61, 67]). O

8.6. The sheaf of coinvariants on M, ,

Let M, ¢,n be the restriction of M, , over the locus M, of smooth pointed curves
(see §2.2.2 for definitions). The vertex algebra bundle and the chiral Lie algebra defined on
smooth curves in §§2 and 3, respectively, give the vertex algebra bundle and the sheaf of chiral
Lie algebras on M, o.n- 10 §§8.2 and 8.3, the vertex algebra bundle and the sheaf of chiral Lie
algebras are defined on formal smoothings of families of nodal curves. Gluing as in [13], one
obtains the vertex algebra bundle and the sheaf of chiral Lie algebras on Mg ,,. Similarly, the
sheaf of coinvariants defined on families of smooth curves in §4 gives the sheaf of coinvariants
V(V;M*®) on M, o.n- In §8.4, the sheaf of coinvariants is defined on formal smoothings of
families of nodal curves. By gluing as in [13], one obtains the sheaf of coinvariants V(V; M*)
on Mg .

8.7. The sheaf of coinvariants on M, ,

Throughout this section, we require every V-module M to further satisfy the following
property: there exists a complex number cps called the conformal dimension (or conformal
weight) of M such that for every homogeneous v € M one has Lo(v) = (deg(v) + cp)v.
This condition holds whenever M = V or, for instance, when M is a simple V-module.
Furthermore, if V' is C,-cofinite, then cps is a rational number [64].

The sheaf of coinvariants on M, , is obtained from a two-step process [21, §6.3], reviewed
next. Consider the group scheme Aut;O which represents the functor assigning to a
C-algebra R the group:

Aut; O(R) = {z + p(2) =z4az®>+---|a; € R}.
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This is a subgroup scheme of the group scheme AutO. In particular, one has
AutO = Gy x Aut;O. The (Aut 0)®"-torsor Mg, — ﬂg,n factors as the composi-
tion of an (Aut40)®"-torsor and a G -torsor:

Meg.n
(Auty o)@"/
(50) Ton (Aut 0)®"
Mg n.
Here 7;,1 is the space of tuples (C, P., 7o), Where 7o = (71, ..., T,) With 7; a non-zero 1-jet

of a formal coordinate at P; for each i. As in [21, §6.3.1], (Aut, O)®" acts on V(V; M*®),
and descending along the (Aut; ©)®"-torsor in (50), one obtains a sheaf of coinvariants
V/(V;M*) on 7;’,1.

The idea for the descent of V/ (V; M*®) to M, , is inspired by Tsuchimoto [72] (and used
to prove [21, Theorem 8.1]): first, one tensors V/ (V'; M *) with an appropriate line bundle to
obtain a new sheaf on which Gﬁ‘j" acts; after descending the new sheaf, one then tensors back
with the dual of the line bundle. Next, we detail this argument using root stacks.

The case n > 1 can be treated by iterating the procedure used for n = 1, hence we
discuss only this latter case and set M! =: M. We will restrict to the case in which the
conformal dimension cps of M is a rational number, and we write ¢y = % fora € Z and
d e N. We consider line bundles Loy = (V)% on M := Mgi,and Lg = 7n*Lpg
onJ = 7;(’1, where 7: J — M is the map forgetting the 1-jets and W is the cotangent
line bundle corresponding to the marked point.

8.7.1. Root stacks. — We briefly review some properties of the root stacks &£/ M and
Y/L7]T. Our primary reference is [59], and more information can be found in [60, §§3.3
and 4], [68, §10.3], and [4, App. B].

The root stack /L 4/ M is the stack parametrizing d-th roots of the line bundle £ 4. In
other words, /L (/M represents the functor which associates to every scheme ¢: Y — M
the groupoid of pairs (N, f) where AV is a line bundle on ¥ and f: N®¢ — ¢*L,, is an
isomorphism. An isomorphism between (N7, f1) and (N2, f2) is an isomorphism of line
bundles g: N7 — N> such that f5 0 g®? = f;. One defines y/L/J similarly.

Since L 7 is the pullback of £ along 7, one has a Cartesian diagram

YETT - YT M
(51) ra |7

J ——— M.

In particular, \/L7/J — V/Lam/M is a G-torsor. The stacks L/ M and /L7/T
have universal line bundles Uy, and U7 = ({1/5)* Upq such that L{ﬁd = piLam and
U?d = p} Ej.
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The key property that we will use about (/£7/J (and L/ M as well) is that its
category of quasi-coherent sheaves has an eigendecomposition with respect to the action of

the inertial group ug4 of d-th roots of unity, and the degree zero component on /L7/J
(resp., v/La/M) consists of pullbacks of quasi-coherent sheaves on J (resp., M). By [59,
Lemma 3.1.1.7], the eigensheaves for the trivial character on the root stack are identified
with sheaves on the base stack M. This allows one to conclude that the pullback via p 7 is
fully faithful, i.e., two quasi-coherent sheaves on J are isomorphic if and only if they are
isomorphic when pulled back to {/£7/J.

8.7.2. The final descent. — Let V' := V’/(V; M). The quasi-coherent sheaf p%V’/ ® U
on /L7/J hasan action of G,, as in [21, §4.2.1, 6.3.2] ©. Descending along the G,,-torsor
f/EJ/j — d\/EM/M, we obtain a sheaf F on /£ (/M for which

(Vm)*F = p5V @Uy.

Tensoring the above with (Y/7)*UY, = U3, we have
(52) (Ym) (FoUy) = phv’.
It follows that F ® U}, lives in the degree zero component, hence it descends to a sheaf

V(V;M) on M such that p3, V(V: M) = F ® Uy,. By its construction and the commu-
tativity of (51), one has

(0 po)* V(ViM) = (paco V) V(i M) = p5 V.

Since the pullback of sheaves to a root stack is fully faithful, we deduce that V/ = 7* V(V; M).
In particular, V/ descends to a sheaf V(V; M), which is therefore well-defined on M, ;.

REMARK 8.7.3. — Here we list some observations.

1. When V is C,-cofinite and rational, we can descend V/ (V; M) to a sheaf V(V; M)
over Mg, for every finitely-generated V-module M. Indeed, since the category
of V-modules is semisimple, we can decompose M = @P,c; M ¢ with M* a simple
V-module with rational conformal dimension and / a finite index set. This induces
the decomposition V/(V; M) = Dres V7 (V: M*Y), and we can apply the descent
argument of §8.7.2 to each component V/ (V; M¥).

2. For simplicity, we have given the details of the argument when the conformal dimen-
sions are rational. This is indeed the case for simple modules over a C,-cofinite V, and
allows for the use of a root stack defined by a line bundle. While not needed for this
paper, an analogous argument can be made for complex, irrational conformal dimen-
sions, using a gerbe that is a generalization of the root stack.

3. When M? = V for all i, the action of G&" on V/(V; M*) from [21, §4.2.1, 6.3.2]
is compatible with the restriction of the action of (Aut ©)®”, In this case, the above
construction simplifies, since the two descents along the (Aut;()®"-torsor and
G2 -torsor in (50) are equivalent to the descent along the (Aut O)®"-torsor.

(M For this action, one uses the filtration on V¥ (V; M) induced by the Z>¢-grading of the module M.
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4. The method used to construct the sheaf V(V; M®) on /Vg,n from V/ (V; M*®) guaran-
tees that, when V(I'; M ®) is of finite rank on My ,,, the Chern character of V(V'; M*®)
on M, , is given by [21, Cor 9.1].

8.8. Proof of the VB corollary

By means of Theorems 8.4.2 and 8.5.1, one concludes that the sheaf of coinvariants
V(V; M*) is a vector bundle of finite rank on M, ,, and this gives rise to a vector bundle of
finite rank on ./\_/lg,,,, asin[74],[71,§2.7],[61], [67]. We sketch the argument for completeness.

First, we argue that V(V'; M*®) is a vector bundle of finite rank on Mg ,. The sheaf
V(V;M*®) on M, o 1s coherent (Corollary 5.1.2) and is equipped with a projectively flat
connection [21]. As in [74], see also [71, §2.7], it follows that V(V; M*®) is locally free of
finite rank on M| ¢.n- After Theorem 8.4.2 and gluing the sheaf as in [13], it follows that the
sheaf V(V'; M*®) is also coherent on M, ,. It remains to show that V(V; M*) is locally free
on Mg ,,. For this, consider a stable family of n-pointed nodal curves (¢, — Spec(R), P.),
and for simplicity, assume that it has only one simple node. Consider its formal smoothing
(¢ — Spec(R[q]), P.) as described in §8.1. For each i, fix a formal coordinate ¢; at P;(S).
The sewing theorem (Theorem 8.5.1) implies that V(V'; M ®) (/s p, 1) is locally free of finite
rank, hence we conclude the argument. For families of curves with more nodes, one proceeds
similarly. It follows that V(V'; M ®) is a vector bundle of finite rank on M ;.

Finally, since V is rational, by §8.7 and Remark 8.7.3(i), we can descend V(V'; M*®) to a
sheaf of coinvariants on /Vg,,,. As the descent of a vector bundle is a vector bundle, this
concludes the proof of the VB corollary. O

9. Examples

Here we list examples of vertex operator algebras V satisfying the hypotheses of our
theorems, namely: (1) V = @, ;. o Vi with Vy =~ C; (2) V isrational; and (3) V is C,-cofinite.

9.1. Virasoro VOAs

Given the Lie subalgebra Virso := CK @ zC[z]d; of the Virasoro Lie algebra Vir, and c,
h e C,let Mcj := U(Vir) @y (yir ) C1, where Cl inherits the structure of a Virso-module
by setting L,50l = 0, Lol = hl, and K1 = cl. There is a unique maximal proper
submodule J., C M. Forh = 0, J. o contains a submodule generated by the singular
vector L_11 € M, o [37]. Set

Lc,h = Mc,h/-]c,hv M. = Mc,0/<L—11)v and Vir. 1= Lc,O-

Ifc # cpyg i=1-— %, with relatively prime p,q € Nsuch that1 < p < ¢, then
M, = Virg, thatis, J. o = (L_;1), while for ¢ = ¢, 4, the submodule J. o is generated by
two singular vectors [37]. By [43, Thm 4.3], M, and Vir, are VOAs. Since A(M,) = Clx]
[43, Thm 4.6], M, is not rational. However, Vir, is rational if and only if ¢ = ¢, 4 [75, Thm

4.2]1f and only if Vir, is C,-cofinite [29, Lemma 12.3] (see also [5, Prop. 3.4.1]). In this case,
(p—mq)>—(p—q)*

A(Vir.) is a quotient of C[x], and simple Vir.-modules are the L p, for h = i

withO<m < pand0 <n <gq.
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9.2. Simple affine VOAs

One may associate to a finite-dimensional complex simple Lie algebra g and £ € Z-g, a
simple vertex operator algebra L,(g), described in [43, §2], [56, §6.2] (see also [67, §A.1.1]).
This is rational by [43, Thm 3.1.3] and C,-cofinite by [77] (see also [29, Prop. 12.6], [5,
Prop. 3.5.1)).

9.3. The moonshine module V!

A rational vertex operator algebra V' with no nontrivial simple V' -modules is called /olo-
morphic, and if (1) and (3) also hold, then V" must have central charge divisible by 8 [31]. One
example is given by the moonshine module V¥ of central charge 24, whose automorphism
group is the monster group [42].

9.4. Even lattice vertex algebras

Vertex operator algebras Vy, given by positive-definite even lattices L of finite rank [16] are
rational [24] and C,-cofinite [29]. Zhu’s algebra is described in [26, Thm 3.4].

9.5. Exceptional W -algebras

Arakawa [7] has shown that a large class of simple W-algebras are C,-cofinite, including
the minimal series principal W-algebras [39] and the exceptional W-algebras of Kac-
Wakimoto [53]. Moreover, the minimal series principal W-algebras and a large subclass of
exceptional affine W -algebras are rational [6, §, 9].

9.6. Orbifolds, commutants, and tensor products

More vertex operator algebras can be obtained from the examples discussed above
through standard constructions resulting in orbifold algebras, commutants, and tensor
products. These constructions often preserve our desired properties. For instance, for a finite
subgroup G of the automorphism group Aut(V), the orbifold algebra V¢ is conjecturally
C,-cofinite and rational when so is V. This holds for G solvable and V' simple [65, 18]. For a
subalgebra A C V, the commutant Com(.A, V') [43] is conjecturally C,-cofinite and rational
if so are both A and V. This holds for parafermions [34]. The VOAs V1, ..., V'™ are rational
if and only if V' = ®;"=1 Vi is rational [33]; in this case, if the V! are C,-cofinite, then so
is V [27].

Appendix

Zhu'’s Lie algebra and isomorphic coinvariants

For a smooth curve C and a quasi-primary generated vertex algebra V with Vy =~ C, in
addition to the chiral Lie algebra L\ p, (V) (§3.1), one also has Zhu’s Lie algebra g ¢\ p, (V),
reviewed in §A.1.

In Proposition A.2.1, we show that when defined, gc\ p, (V) is isomorphic to the image
of Lc\p, (V) under the Lie algebra homomorphism ¢ (Proposition A.2.1). Nagatomo and
Tsuchiya extend the definition of gc\ p, (V') to stable pointed rational curves [67], and they
indicate that their coinvariants are equivalent to those studied by Beilinson and Drinfeld in
[14], suggesting they knew that Proposition A.2.1 holds in that case.
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A quasi-primary vector is an element A € V such that L1 4 = 0, and V is quasi-primary
generated if and only if L; V3 = 0[30]. A vertex algebra V = @,., Vi with Vy = C satisfies
L,V; = 0ifand only if V' = V' (see [41, §5.3] and [32, §2]). In I;articular, in the results of
Huang [49] and Codogni [19], the vertex algebras studied are quasi-primary generated.

A.1. The Lie algebra gc\p, (V)

In [77], given a smooth pointed curve (C, P.) and a quasi-primary generated vertex oper-
ator algebra V for which Vo = C, Zhu defines a Lie algebra gc\p, (V), generalizing the
construction of Tsuchiya, Ueno, and Yamada for affine Lie algebras. Namely, consider

gcovp. (V) :i= ¢q @ Vi, @ H (C \ P.,a)?l_k) ’

k>0
where
n
(53) b PVl (C\ Poo@ ) > P2, ()
k>0 i=1
is the map induced by

B® > (Resy—o Y [B.tilur, (1)) _

.....

Here #; is a formal coordinate at the point P;, Y[B, t;] 1= Y ycy Bt k=1 and pp; is the
Laurent series expansion of w at P;, the image of u via

HO(C\ Pa.0@' %) — HO (Df, @) =, C@) (i)',

When V is assumed to be quasi-primary generated with Vo = C, Zhu shows that gc\p, (V) is
a Lie subalgebra of £(V)®". The argument uses that any fixed smooth algebraic curve admits
an atlas such that all transition functions are Mdbius transformations. Transition functions
between charts on families of curves of arbitrary genus are more general, hence the need to
consider the more involved construction for the chiral Lie algebra based on the (Aut O)-twist
of V in §2.

A.2. Isomorphism of coinvariants

When gc\p, (V) is well-defined and C \ P, is affine, one can define the space of coinvari-

ants M;C\P vy as the quotient of the £(V)®”-module M* by the action of the Lie subal-

gebra g o\ p, (V) of £(V)®". These spaces were introduced in [76], and studied also in [3, 67].
Recall the homomorphisms ¢, from (24) and ¢4 from (53).

PrOPOSITION A.2.1. — When gc\p, (V) is well-defined (§A.1), one has

Im(pc) = Im(py).

It follows that there exists an isomorphism of vector spaces
. ~ .
MQC\P.(V) = MCC\P.(V)'
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Proof. — One has

(54) P vi ® H (c \ P.,wg’l—k) =H [ C\ Po. P Ve ® 0@'F
k>0 k>0

~H [ C\ Po. @ (@'
k>0

)ea dim Vi

o\ @ dim Vi
From Lemma 2.6.1, one has gr,Vc = Py (a)? - ) . It follows that

dim Vi
H|C\ PP (wgl—")@ 1= H(C\ P er Ve ® wc).
k>0

Now by Lemma 2.6.3,
(55) H® (C \ Pa.gr,Vc ® wc) 2 H’ (C\ Po. Ve ® ).
On the other hand, as C \ P, is assumed to be affine, one has

Leve, (V) 2 HY(C\ Po, Ve @ wc) /VH (C\ Po, V).

The map ¢, is induced from the composition
n n
(56) HO(C\ P Ve & oc) — @ H (D, Ve @ oc ) - @ £, (V).
i=1 i=1

The first map is canonical and obtained by restricting sections; the second is (22). By [38,
§6.6.9], sections in VH® (D;‘,[,Vc) act trivially. Hence (56) induces a map from the Lie

algebra Le\p, (V) to @7_; L4, (V). It follows that the image of ¢ coincides with the image
of H* (C \ P..Vc ® wc) in @i, £, (V) via (56). Composing (54) and (55), and by the
definition of ¢ in (53), the image of the map in (56) coincides with the image of ¢,. O
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