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ARITHMETIC DIVISORS ON ORTHOGONAL
AND UNITARY SHIMURA VARIETIES

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla,
Keerthi Madapusi Pera, Michael Rapoport, Tonghai Yang

Abstract. — The three papers in this volume concern the modularity of generating
series of divisors on integral models of orthogonal and unitary Shimura varieties.

Résumé (Diviseurs arithmétiques sur les variétés orthogonales et unitaires de Shimura).
— Les trois articles de ce volume traitent de modularité des séries génératrices des
diviseurs sur les modèles entiers de variétés orthogonales et unitaires de Shimura.
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PREFACE

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla,
Keerthi Madapusi Pera, Michael Rapoport & Tonghai Yang

The formation of modular generating series whose coefficients are geometric cycles
began with the work of Hirzebruch-Zagier [14], who constructed divisors on com-
pactified Hilbert modular surfaces over C, and showed that their cohomology classes
formed the coefficients of a weight 2 modular form.

An extensive study of the modularity of generating series for cohomology classes
of special cycles in Riemannian locally symmetric spaces M = Γ\X was undertaken
in a series of papers [21, 22, 23] of Kudla and Millson. The main technical tool was a
family of Siegel type theta series valued in the de Rham complex of M , from which
modularity was inherited by the image in cohomology.

The special cycles used by Kudla-Millson are given by an explicit geometric con-
struction, and so, in the cases where M is (the complex fiber of) a Shimura variety, it
is natural to ask whether the analogous generating series for special cycle classes in the
Chow group is likewise modular. In the case of Shimura varieties of orthogonal type,
this question was raised in [19]. In some special cases modularity of the Chow group-
valued generating series can be deduced from modularity of the cohomology-valued
generating series; see [27, 26] for example.

The generating series for Heegner points in the Jacobian of a modular curve
was proved to be modular by Gross-Kohnen-Zagier [12]. Motivated by their work,
Borcherds [2, 3] proved the modularity of the generating series of Heegner (= special)
divisors in the Chow groups of Shimura varieties of orthogonal type. His method de-
pended on the miraculous construction of Borcherds products: meromorphic modular
forms on orthogonal Shimura varieties, constructed via a regularized theta lift, whose
explicitly known divisors provide enough relations among special divisors to prove
modularity.

The three papers in this volume are concerned with similar modularity results,
but now for generating series of divisors on integral models of orthogonal and uni-
tary Shimura varieties; more precisely, of generating series with coefficients in the
codimension one arithmetic Chow groups of Gillet-Soulé.

© Astérisque 421, SMF 2020
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The first results in this arithmetic direction were obtained in [20], which dealt
with arithmetic divisors on quaternionic Shimura curves (a special case of orthogonal
Shimura varieties). Still in the Shimura curve setting, quite complete results on the
modularity of generating series were obtained in the book [24]. There the case of
arithmetic 0-cycles is also treated and the corresponding generating series is shown to
coincide with the central derivative of a weight 3/2 Siegel genus 2 incoherent Eisenstein
series.

The Green functions used in [20, 24] are derived from the Kudla-Millson theta series,
and a similar construction can be used to obtain Green functions for special divisors
on all orthogonal Shimura varieties. On the other hand, Bruinier [4] generalized the
regularized theta lift of Borcherds by allowing harmonic Maass forms as inputs. This
provides a different construction of Green functions for special divisors, with the
advantage that one can try to use the method of Borcherds to establish modularity of
the corresponding generating series with coefficients in the arithmetic Chow group. In
the case of Hilbert modular surfaces (once again, a special case of orthogonal Shimura
varieties), this was done in [5].

The main obstruction to extending the method of Borcherds to integral models is
that the divisor of a Borcherds product is, a priori, only known on the generic fiber
of the Shimura variety. To obtain modularity of the generating series with coefficients
in the codimension one arithmetic Chow group, one must compute the divisor of
a Borcherds product on the integral model, where the divisor may contain vertical
components.

The first paper [6] of this volume deals with arithmetic divisors on compactified
unitary Shimura varieties of signature (n−1, 1), and the main result is the modularity
of the corresponding generating series with coefficients in the arithmetic Chow group.
The proof follows the method of Borcherds, with the essential new ingredient being
the calculation of the vertical components and boundary components appearing in
the divisor of a unitary Borcherds product.

The second paper [7] of this volume contains applications of the modularity result
just stated. One can form the Petersson inner product of the generating series of
arithmetic divisors against a cusp form g of the appropriate weight and level. This
defines a class in the codimension one arithmetic Chow group of the unitary Shimura
variety, called the arithmetic theta lift of g. On the other hand, taking Zariski closures
of CM points yields cycles of dimension one on the integral model, which one can then
intersect with the arithmetic theta lift. The main results show that such intersections
are equal to central derivatives of (generalized) L-functions, somewhat in the spirit of
the Gross-Zagier theorem [13] on heights of Heegner points. These results complete, in
some sense, the series of papers [16, 17, 8], which contain the bulk of the intersection
calculations.

The second paper also proves special cases of Colmez’s conjecture [10] on the
periods of CM abelian varieties. These special cases can actually be deduced from
the averaged version of the conjecture [1, 25], but the proofs given here yield new
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information about the arithmetic of unitary Shimura varieties, which we hope is of
independent interest.

Another application of the modularity result on unitary Shimura varieties has been
found by W. Zhang [29], who has used it in his proof of the Arithmetic Fundamental
Lemma.

The third paper [18] proves the modularity of generating series of arithmetic di-
visors on integral models of orthogonal type Shimura varieties. As in the unitary
case, the new ingredient in the proof of modularity is the calculation of divisors of
Borcherds products on integral models. This extends results of Hörmann [15], who
does such calculations only after inverting all primes where the integral model has
nonsmooth reduction. Hörmann must assume that the Shimura variety has cusps (so
that one can study the Borcherds product using its q-expansion), an assumption that
is removed here using an arithmetic version of the embedding trick of Borcherds.

With the results of this volume in hand, it is natural to ask about the modularity
of generating series of arithmetic special cycles in higher codimension. Although the
reader will find no such results in this volume, there is progress along these lines. The
modularity of generating series of higher codimension cycles in the Chow group of
the generic fiber of an orthogonal Shimura variety has been proved by Bruinier and
Raum [9], building on the unpublished thesis of W. Zhang [28]. An extension of this
result to cycles in the Chow groups of the integral model will appear in forthcoming
work of Howard and Madapusi Pera, but extending the result further to arithmetic
Chow groups remains an open problem. The recent construction of Green currents
for higher codimension special cycles by Garcia-Sankaran [11] is a significant step in
this direction.
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MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport
& Tonghai Yang

Abstract. — We form generating series, valued in the Chow group and the arithmetic
Chow group, of special divisors on the compactified integral model of a Shimura vari-
ety associated to a unitary group of signature (n− 1, 1), and prove their modularity.
The main ingredient in the proof is the calculation of vertical components appearing
in the divisor of a Borcherds product on the integral model.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura unitaires)
Nous formons des séries génératrices, à valeurs dans le groupe de Chow et dans le

groupe de Chow arithmétique, formées des diviseurs spéciaux sur le modèle intégral
compact d’une variété de Shimura associée à un groupe unitaire de signature (n−1, 1),
et prouvons leur modularité. L’ingrédient principal de la preuve est le calcul des
composantes verticales apparaissantes dans le diviseur d’un produit de Borcherds sur
le modèle intégral.

1. Introduction

The goal of this paper is to prove the modularity of a generating series of special
divisors on the compactified integral model of a Shimura variety associated to a uni-
tary group of signature (n − 1, 1). The special divisors in question were first studied
on the open Shimura variety in [33, 34], and then on the toroidal compactification
in [24].

This generating series is an arithmetic analogue of the classical theta kernel used
to lift modular forms from U(2) and U(n). In a similar vein, our modular generating

2010 Mathematics Subject Classification. — 14G35, 14G40, 11F55, 11F27, 11G18.
Key words and phrases. — Shimura varieties, Borcherds products.
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T.Y. was supported in part by NSF grant DMS-1500743 and DMS-1762289.
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8 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

series can be used to define a lift from classical cuspidal modular forms of weight n
to the codimension one Chow group of the unitary Shimura variety.

1.1. Statement of the main result. — Fix a quadratic imaginary field k ⊂ C of odd
discriminant disc(k) = −D. We are concerned with the arithmetic of a certain unitary
Shimura variety, whose definition depends on the choices of k-hermitian spaces W0

andW of signature (1, 0) and (n−1, 1), respectively, where n ≥ 3. We assume thatW0

and W each admit an Ok-lattice that is self-dual with respect to the hermitian form.
Attached to this data is a reductive algebraic group

(1.1.1) G ⊂ GU(W0)×GU(W )

over Q, defined as the subgroup on which the unitary similitude characters are equal,
and a compact open subgroup K ⊂ G(Af ) depending on the above choice of self-dual
lattices. As explained in § 2, there is an associated hermitian symmetric domain D,
and a Deligne-Mumford stack Sh(G,D) over k whose complex points are identified
with the orbifold quotient

Sh(G,D)(C) = G(Q)\D ×G(Af )/K.

This is the unitary Shimura variety of the title.
The stack Sh(G,D) can be interpreted as a moduli space of pairs (A0, A) in which

A0 is an elliptic curve with complex multiplication by Ok, and A is a principally po-
larized abelian scheme of dimension n endowed with an Ok-action. The pair (A0, A) is
required to satisfy some additional conditions, which need not concern us in the in-
troduction.

Using the moduli interpretation, one can construct an integral model of Sh(G,D)

over Ok. In fact, following work of Pappas and Krämer, we explain in § 2.3 that there
are two natural integral models related by a morphism SKra → SPap. Each integral
model has a canonical toroidal compactification whose boundary is a disjoint union
of smooth Cartier divisors, and the above morphism extends uniquely to a morphism

(1.1.2) S∗Kra → S∗Pap

of compactifications.
Each compactified integral model has its own desirable and undesirable properties.

For example, S∗Kra is regular, while S∗Pap is not. On the other hand, every vertical (i.e.,
supported in nonzero characteristic) Weil divisor on S∗Pap has nonempty intersection
with the boundary, while S∗Kra has certain exceptional divisors in characteristics p | D
that do not meet the boundary. An essential part of our method is to pass back and
forth between these two models in order to exploit the best properties of each. For
simplicity, we will state our main results in terms of the regular model S∗Kra.

In § 2 we define a distinguished line bundle ω on SKra, called the line bundle of
weight one modular forms, and a family of Cartier divisors ZKra(m) indexed by inte-
gers m > 0. These special divisors were introduced in [33, 34], and studied further in
[11, 23, 24]. For the purposes of the introduction, we note only that one should regard
the divisors as arising from embeddings of smaller unitary groups into G.

ASTÉRISQUE 421
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Denote by
Ch1

Q(S∗Kra) ∼= Pic(S∗Kra)⊗Z Q
the Chow group of rational equivalence classes of divisors with Q coefficients. Each
special divisor ZKra(m) can be extended to a divisor on the toroidal compactification
simply by taking its Zariski closure, denoted Z∗Kra(m). The total special divisor is
defined as

(1.1.3) Ztot
Kra(m) = Z∗Kra(m) + BKra(m) ∈ Ch1

Q(S∗Kra)

where the boundary contribution is defined, as in (5.3.3), by

BKra(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ).

The notation here is the following: The sum is over the equivalence classes of proper
cusp label representatives Φ as defined in § 3.1. These index the connected compo-
nents S∗Kra(Φ) ⊂ ∂S∗Kra of the boundary (1). Inside the sum, (L0, 〈., .〉) is a hermitian
Ok-module of signature (n− 2, 0), which depends on Φ.

The line bundle of modular forms ω admits a canonical extension to the toroidal
compactification, denoted the same way. For the sake of notational uniformity, we
extend (1.1.3) to m = 0 by setting

(1.1.4) Ztot
Kra(0) = ω

−1 + Exc ∈ Ch1
Q(S∗Kra).

Here Exc is the exceptional divisor of Theorem 2.3.4. It is a reduced effective divisor
supported in characteristics p | D, disjoint from the boundary of the compactification.
The following result appears in the text as Theorem 7.1.5.

Theorem A. — Let χk : (Z/DZ)× → {±1} be the Dirichlet character determined
by k/Q. The formal generating series∑

m≥0

Ztot
Kra(m) · qm ∈ Ch1

Q(S∗Kra)[[q]]

is modular of weight n, level Γ0(D), and character χnk in the following sense: for
every Q-linear functional α : Ch1

Q(S∗Kra)→ C, the series∑
m≥0

α(Ztot
Kra(m)) · qm ∈ C[[q]]

is the q-expansion of a classical modular form of the indicated weight, level, and char-
acter.

We can prove a stronger version of Theorem A. Denote by Ĉh
1

Q(S∗Kra) the Gillet-
Soulé [20] arithmetic Chow group of rational equivalence classes of pairs Ẑ = (Z,Gr),

where Z is a divisor on S∗Kra with rational coefficients, and Gr is a Green function

(1) After base change to C, each S∗Kra(Φ) decomposes into h connected components, where h is the
class number of k.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



10 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

for Z. We allow the Green function to have additional log-log singularities along the
boundary, as in the more general theory developed in [13]. See also [8, 24].

In § 7.3 we use the theory of regularized theta lifts to construct Green functions
for the special divisors Ztot

Kra(m), and hence obtain arithmetic divisors

Ẑtot
Kra(m) ∈ Ĉh

1

Q(S∗Kra)

for m > 0. We also endow the line bundle ω with a metric, and the resulting metrized
line bundle ω̂ defines a class

Ẑtot
Kra(0) = ω̂

−1 + (Exc,− log(D)) ∈ Ĉh
1

Q(S∗Kra),

where the vertical divisor Exc has been endowed with the constant Green function
− log(D). The following result is Theorem 7.3.1 in the text.

Theorem B. — The formal generating series

φ̂(τ) =
∑
m≥0

Ẑtot
Kra(m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]]

is modular of weight n, level Γ0(D), and character χnk, where modularity is understood
in the same sense as Theorem A.

Remark 1.1.1. — As this article was being revised for publication, Wei Zhang an-
nounced a proof of his arithmetic fundamental lemma, conjectured in [52]. Although
the statement is a purely local result concerning intersections of cycles on unitary
Rapoport-Zink spaces, Zhang’s proof uses global calculations on unitary Shimura va-
rieties, and makes essential use of the modularity result of Theorem B. See [53].

Remark 1.1.2. — Theorem B implies that the Q-span of the classes Ẑtot
Kra(m) is finite

dimensional. See Remark 7.1.2.

Remark 1.1.3. — There is a second method of constructing Green functions for the
special divisors, based on the methods of [36], which gives rise to a non-holomorphic
variant of φ̂(τ). It is a recent theorem of Ehlen-Sankaran [16] that Theorem B implies
the modularity of this non-holomorphic generating series. See § 7.4.

One motivation for the modularity result of Theorem B is that it allows one to
construct arithmetic theta lifts. If g(τ) ∈ Sn(Γ0(D), χnk) is a classical scalar valued
cusp form, we may form the Petersson inner product

θ̂(g)
def
= 〈φ̂, g〉Pet ∈ Ĉh

1

C(S∗Kra)

as in [38]. One expects, as in [loc. cit.], that the arithmetic intersection pairing of θ̂(g)

against other cycle classes should be related to derivatives of L-functions, providing
generalizations of the Gross-Zagier and Gross-Kohnen-Zagier theorems. Specific in-
stances in which this expectation is fulfilled can be deduced from [11, 23, 24]. This
will be explained in the companion paper [10].
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As this paper is rather long, we explain in the next two subsections the main ideas
that go into the proof of Theorem A. The proof of Theorem B is exactly the same,
but one must keep track of Green functions.

1.2. Sketch of the proof, part I: the generic fiber. — In this subsection we sketch the
proof of modularity only in the generic fiber. That is, the modularity of

(1.2.1)
∑
m≥0

Ztot
Kra(m)/k · qm ∈ Ch1

Q(S∗Kra/k)[[q]].

The key to the proof is the study of Borcherds products [4, 5].
A Borcherds product is a meromorphic modular form on an orthogonal Shimura

variety, whose construction depends on a choice of weakly holomorphic input form,
typically of negative weight. In our case the input form is any

(1.2.2) f(τ) =
∑

m�−∞
c(m)qm ∈M !,∞

2−n(D,χn−2
k ),

where the superscripts ! and ∞ indicate that the weakly holomorphic form f(τ) of
weight 2 − n and level Γ0(D) is allowed to have a pole at the cusp ∞, but must be
holomorphic at all other cusps. We assume also that all c(m) ∈ Z.

Our Shimura variety Sh(G,D) admits a natural map to an orthogonal Shimura
variety. Indeed, the k-vector space

V = Homk(W0,W )

admits a natural hermitian form 〈., .〉 of signature (n−1, 1), induced by the hermitian
forms on W0 and W . The natural action of G on V determines an exact sequence

(1.2.3) 1→ Resk/QGm → G→ U(V )→ 1

of reductive groups over Q.
We may also view V as a Q-vector space endowed with the quadratic form

Q(x) = 〈x, x〉 of signature (2n − 2, 2), and so obtain a homomorphism G → SO(V ).
This induces a map from Sh(G,D) to the Shimura variety associated with the
group SO(V ).

After possibly replacing f by a nonzero integer multiple, Borcherds constructs a
meromorphic modular form on the orthogonal Shimura variety, which can be pulled
back to a meromorphic modular form on Sh(G,D)(C). The result is a meromorphic
section ψ(f) of ω

k, where the weight

(1.2.4) k =
∑
r|D

γr · cr(0) ∈ Z

is the integer defined in § 5.3. The constant γr =
∏
p|r γp is a 4th root of unity (with

γ1 = 1) and cr(0) is the constant term of f at the cusp

∞r =
r

D
∈ Γ0(D)\P1(Q),

in the sense of Definition 4.1.1.
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Initially, ψ(f) is characterized by specifying − log ‖ψ(f)‖, where ‖ · ‖ is the Pe-
tersson norm on ω

k. In particular, ψ(f) is only defined up to rescaling by a complex
number of absolute value 1 on each connected component of Sh(G,D)(C). We prove
that, after a suitable rescaling, ψ(f) is the analytification of a rational section of the
line bundle ω

k on Sh(G,D). In other words, the Borcherds product is algebraic and
defined over the reflex field k. This allows us to view ψ(f) as a rational section of ω

k

both on the integral model SKra, and on its toroidal compactification.
We compute the divisor of ψ(f) on the generic fiber of the toroidal compactification

S∗Kra/k, and find

(1.2.5) div(ψ(f))/k =
∑
m>0

c(−m) · Ztot
Kra(m)/k.

The calculation of the divisor on the interior SKra/k follows immediately from the
corresponding calculations of Borcherds on the orthogonal Shimura variety. The mul-
tiplicities of the boundary components are computed using the results of [32], which
describe the structure of the Fourier-Jacobi expansions of ψ(f) along the various
boundary components.

The equality of divisors (1.2.5) implies the relation

k · ω =
∑
m>0

c(−m) · Ztot
Kra(m)/k

in the Chow group Ch1
Q(S∗Kra/k). The cusp ∞1 = 1/D is Γ0(D)-equivalent to the

usual cusp at ∞, and so c1(0) = c(0). Substituting the expression (1.2.4) for k into
the left hand side and using (1.1.4) therefore yields the relation

(1.2.6)
∑
r|D
r>1

γrcr(0) · ω =
∑
m≥0

c(−m) · Ztot
Kra(m)/k

in Ch1
Q(S∗Kra/k). In § 4.2 we construct for each r | D an Eisenstein series

Er(τ) =
∑
m≥0

er(m) · qm ∈Mn(D,χnk),

which, by a simple residue calculation, satisfies

cr(0) = −
∑
m>0

c(−m)er(m).

Substituting this expression into (1.2.6) yields

(1.2.7) 0 =
∑
m≥0

c(−m) ·
(
Ztot

Kra(m)/k +
∑
r|D
r>1

γrer(m) · ω
)
,

where we have also used the relation er(0) = 0 for r > 1.
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We now invoke a variant of the modularity criterion of [5], which is our Theo-
rem 4.2.3: if a formal q-expansion∑

m≥0

d(m)qm ∈ C[[q]]

satisfies 0 =
∑
m≥0 c(−m)d(m) for every input form (1.2.2), then it must be the

q-expansion of a modular form of weight n, level Γ0(D), and character χnk. It follows
immediately from this and (1.2.7) that the formal q-expansion∑

m≥0

(
Ztot

Kra(m)/k +
∑
r|D
r>1

γrer(m) · ω
)
· qm

is modular in the sense of Theorem A. Rewriting this as∑
m≥0

Ztot
Kra(m)/k · qm +

∑
r|D
r>1

γrEr(τ) · ω

and using the modularity of each Eisenstein series Er(τ), we deduce that (1.2.1) is
modular.

1.3. Sketch of the proof, part II: vertical components. — In order to extend the argu-
ments of § 1.2 to prove Theorem A, it is clear that one should attempt to compute
the divisor of the Borcherds product ψ(f) on the integral model S∗Kra and hope for
an expression similar to (1.2.5). Indeed, the bulk of this paper is devoted to precisely
this problem.

The subtlety is that both div(ψ(f)) and Ztot
Kra(m) will turn out to have vertical

components supported in characteristics dividing D. Even worse, in these bad char-
acteristics the components of the exceptional divisor Exc ⊂ S∗Kra do not intersect the
boundary, and so the multiplicities of these components in the divisor of ψ(f) cannot
be detected by examining its Fourier-Jacobi expansion.

This is where the second integral model S∗Pap plays an essential role. The morphism
(1.1.2) sits in a cartesian diagram

Exc //

��

S∗Kra

��

Sing // S∗Pap,

where the singular locus Sing ⊂ S∗Pap is the reduced closed substack of points at
which the structure morphism S∗Pap → Spec(Ok) is not smooth. It is 0-dimensional
and supported in characteristics dividing D. The right vertical arrow restricts to an
isomorphism

(1.3.1) S∗Kra \ Exc ∼= S∗Pap \ Sing.
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For each connected component s ∈ π0(Sing) the fiber

Excs = Exc×S∗Pap
s

is a smooth, irreducible, vertical Cartier divisor on S∗Kra, and Exc =
⊔
s Excs.

As the Ok-stack S∗Pap is proper and normal with normal fibers, every irreducible
vertical divisor on it is the reduction, modulo some prime of Ok, of an entire connected
(= irreducible) component. From this it follows that every vertical divisor meets the
boundary. Thus one could hope to use (1.3.1) to view ψ(f) as a rational section
on S∗Pap, compute its divisor there by examining Fourier-Jacobi expansions, and then
pull that calculation back to S∗Kra.

This is essentially what we do, but there is an added complication. The line bun-
dle ω on (1.3.1) does not extend to S∗Pap, and similarly the divisor Z∗Kra(m) on (1.3.1)
cannot be extended across the singular locus to a Cartier divisor on S∗Pap. However,
if you square the line bundle and the divisors, they have much better behavior. This
is the content of the following result, which is an amalgamation of Theorems 2.4.3,
2.5.3, 2.6.3, and 3.7.1 of the text.

Theorem C. — There is a unique line bundle ΩPap on S∗Pap whose restriction to
(1.3.1) is isomorphic to ω

2. Denoting by ΩKra its pullback to S∗Kra, there is an iso-
morphism

ω
2 ∼= ΩKra ⊗O(Exc).

Similarly, there is a unique Cartier divisor Ytot
Pap(m) on S∗Pap whose restriction to

(1.3.1) is equal to 2Ztot
Kra(m). Its pullback Ytot

Kra(m) to S∗Kra satisfies

2Ztot
Kra(m) = Ytot

Kra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs.

Here Ls is a positive definite self-dual hermitian lattice of rank n associated to the
singular point s, and 〈., .〉 is its hermitian form.

Setting Ytot
Pap(0) = Ω

−1
Pap, we obtain a formal generating series∑
m≥0

Ytot
Pap(m) · qm ∈ Ch1

Q(S∗Pap)[[q]],

whose pullback via S∗Kra → S∗Pap is twice the generating series of Theorem A, up to
an error term coming from the exceptional divisors. More precisely, Theorem C shows
that the pullback is

2
∑
m≥0

Ztot
Kra(m) · qm −

∑
s∈π0(Sing)

ϑs(τ) · Excs ∈ Ch1
Q(S∗Kra)[[q]],

where each ϑs(τ) is the classical theta function whose coefficients count points in the
positive definite hermitian lattice Ls.

Over (1.3.1) we have ω
2k ∼= Ω

k
Pap, which allows us to view ψ(f)2 as a rational

section of the line bundle Ω
k
Pap on S∗Pap. We examine its Fourier-Jacobi expansions

along the boundary components and are able to compute its divisor completely (it
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happens to include nontrivial vertical components). We then pull this calculation back
to S∗Kra, and find that ψ(f), when viewed as a rational section of ω

k, has divisor

div(ψ(f)) =
∑
m>0

c(−m) · Ztot
Kra(m) +

∑
r|D

γrcr(0) ·
(Exc

2
+
∑
p|r

S∗Kra/Fp

)
−
∑
m>0

c(−m)

2

∑
s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

− k · div(δ),

where δ ∈ Ok is a square root of −D, p ⊂ Ok is the unique prime above p | D, and
S∗Kra/Fp is the mod p fiber of S∗Kra, viewed as a divisor. This is stated in the text as
Theorem 5.3.3. Passing to the generic fiber recovers (1.2.5), as it must.

As in the argument leading to (1.2.7), this implies the relation

0 =
∑
m≥0

c(−m) ·

(
Ztot

Kra(m)− 1

2

∑
s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

)

+
∑
m≥0

c(−m) ·
∑
r|D
r>1

γrer(m)

(
ω− Exc

2
−
∑
p|r

S∗Kra/Fp

)

in the Chow group of S∗Kra, and the modularity criterion implies that

∑
m≥0

Ztot
Kra(m) · qm − 1

2

∑
s∈π0(Sing)

ϑs(τ) ·Excs +
∑
r|D
r>1

γrEr(τ) ·

(
ω− Exc

2
−
∑
p|r

S∗Kra/Fp

)

is a modular form. As each theta series ϑs(τ) and Eisenstein series Er(τ) is modular,
so is

∑
Ztot

Kra(m) · qm. This completes the outline of the proof of Theorem A.

1.4. The structure of the paper. — We now briefly describe the contents of the various
sections of the paper.

In § 2 we introduce the unitary Shimura variety associated to the group G of (1.1.1),
and explain its realization as a moduli space of pairs (A0, A) of abelian varieties
with extra structure. We then review the integral models constructed by Pappas and
Krämer, and the singular and exceptional loci of these models. These are related by
a cartesian diagram

Exc //

��

SKra

��

Sing // SPap,

where the vertical arrow on the right is an isomorphism outside of the 0-dimensional
singular locus Sing. We also define the line bundle of modular forms ω on SKra.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



16 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

The first main result of § 2 is Theorem 2.4.3, which asserts the existence of a line
bundle ΩPap on SPap restricting to ω

2 over

SKra \ Exc ∼= SPap \ Sing.

We then define the Cartier divisor ZKra(m) on SKra and prove Theorem 2.5.3,
which asserts the existence of a Cartier divisor YPap(m) on SPap whose restriction
to SPap \ Sing coincides with 2ZKra(m). Up to error terms supported on the excep-
tional locus Exc, the pullbacks of ΩPap and YPap(m) to SKra are therefore equal to ω

2

and 2ZKra(m), respectively. The error terms are computed in Theorem 2.6.3, which
is the analogue of Theorem C for the noncompactified Shimura varieties.

In § 3 we describe the canonical toroidal compactifications S∗Kra → S∗Pap, and the
structure of their formal completions along the boundary. In § 3.1 and § 3.2 we in-
troduce the cusp labels Φ that index the boundary components, and their associated
mixed Shimura varieties. In § 3.3 we construct smooth integral models CΦ of these
mixed Shimura varieties, following the general recipes of the theory of arithmetic
toroidal compactification, as moduli spaces of 1-motives. In § 3.4 we give a second
moduli interpretation of these integral models. This is one of the key technical steps
in our work, and allows us to compare Fourier-Jacobi expansions on our unitary
Shimura varieties to Fourier-Jacobi expansions on orthogonal Shimura varieties. See
the remarks at the beginning of § 3 for further discussion. In § 3.5 and § 3.6 we con-
struct the line bundle of modular forms and the special divisors on the mixed Shimura
varieties CΦ. Theorem 3.7.1 describes the canonical toroidal compactifications S∗Kra

and S∗Pap and their properties. In § 3.8 we describe the Fourier-Jacobi expansions of
sections of ω

k on S∗Kra in algebraic language, and in § 3.9 we explain how to express
these Fourier-Jacobi coefficients in classical complex analytic coordinates.

In the short § 4 we introduce the weakly holomorphic modular forms that will be
used as inputs for the construction of Borcherds products. We also state in Theo-
rem 4.2.3 a variant of the modularity criterion of Borcherds.

In § 5 we consider the unitary Borcherds products associated to weakly holomorphic
forms

(1.4.1) f ∈M !,∞
2−n(D,χn−2

k ).

Ultimately, the integrality properties of the unitary Borcherds products will be de-
duced from an analysis of their Fourier-Jacobi expansions. These expansions involve
certain products of Jacobi theta functions, and so, in § 5 we review facts about the
arithmetic theory of Jacobi forms. For us, Jacobi forms will be sections of a suitable
line bundle Jk,m on the universal elliptic curve living over the moduli stack (over Z)
of all elliptic curves. The key point is to have a precise description of the divisor of
the canonical section

Θ24 ∈ H0(E ,J0,12)

of Proposition 5.1.4. In § 5.2 we prove Borcherds quadratic identity, allowing us to
relate J0,1 to a certain line bundle (determined by a Borcherds product) on the
boundary component BΦ associated to a cusp label Φ.
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After these technical preliminaries, we come to the statements of our main re-
sults about unitary Borcherds products. Theorem 5.3.1 asserts that, for each weakly
holomorphic form (1.4.1) satisfying integrality conditions on the Fourier coefficients
c(m) with m ≤ 0, there is a rational section ψ(f) of the line bundle ω

k on S∗Kra

with explicit divisor on the generic fiber and prescribed zeros and poles along each
boundary component. Moreover, for each cusp label Φ, the leading Fourier-Jacobi
coefficient of ψ(f) has an expression as a product of three factors, two of which, P vert

Φ

and P hor
Φ , are constructed in terms of Θ24. Theorem 5.3.3 gives the precise divisor

of ψ(f) on S∗Kra, and Theorem 5.3.4 gives an analogous formula on S∗Pap. An essential
ingredient in the calculation of these divisors is the calculation of the divisors of the
factors P vert

Φ and P hor
Φ , which is done in § 5.4.

In § 6 we prove the main results stated in § 5.3. In § 6.1 we construct a vector valued
form f̃ from (1.4.1), and give expressions for its Fourier coefficients in terms of those
of f . The vector valued form f̃ defines a Borcherds product ψ̃(f) on the symmetric
space D̃ for the orthogonal group of the quadratic space (V,Q) and, in § 6.2, we define
the unitary Borcherds product ψ(f) as its pullback to D. In § 6.3 we determine the
analytic Fourier-Jacobi expansion of ψ(f) at the cusp Φ by pulling back the product
formula for ψ̃(f) computed in [32] along a one-dimensional boundary component
of D̃. In § 6.4 we show that the unitary Borcherds product constructed analytically
arises from a rational section of ω

k and that, after rescaling by a constant of absolute
value 1, this section is defined over k. This is Proposition 6.4.4. In § 6.5 we complete
the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

In § 7 we use the calculation of the divisors of Borcherds products to prove the
modularity results discussed in detail earlier in the introduction.

In § 8 we provide some supplementary technical calculations.

1.5. The case n = 2. — Throughout the introduction we have assumed that n ≥ 3,
but one could ask if similar results hold for n = 2. This seems to be a delicate question.

The assumption that n ≥ 3 guarantees that W contains an isotropic k-line, which
implies that Sh(G,D) has no compact (meaning proper over k) components. When
n = 2 the Shimura variety Sh(G,D) is essentially a union of classical modular curves
(if W contains an isotropic k-line) or of compact quaternionic Shimura curves (if
W contains no isotropic k-line).

When n = 2 one could still construct Borcherds products on Sh(G,D) as pull-
backs from orthogonal Shimura varies, and use the results of [26] to prove that they
are defined over the reflex field k. Analyzing their divisors on the integral models
SKra → SPap seems quite difficult. The compact case falls well outside the reach
of our arguments, which rely in an essential way on the anaysis of Fourier-Jacobi
expansions near the boundary of a toroidal compactification.

However, even in the noncompact n = 2 case there are some technical issues that
we do not know how to resolve. Foremost among these is that when n = 2 the
reduction of SPap at a prime of Ok above D is not normal, and so (as in the familiar
case of modular curves) the reduction of an irreducible component need not remain
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irreducible. This causes the proof of Proposition 6.5.2 to break down in a serious
way. In essence, we do not know how to exclude the possibility that constants κΦ

appearing in Proposition 6.4.1 contribute some nontrivial error term to the divisor of
the Borcherds product.

In § 2 and § 3 we assume n ≥ 2, but from § 5 onwards we restrict to n ≥ 3 (the
integer n plays no role in the short § 4).

1.6. Thanks. — The results of this paper are the outcome of a long term project,
begun initially in Bonn in June of 2013, and supported in a crucial way by three
weeklong meetings at AIM, in Palo Alto (May of 2014) and San Jose (November of
2015 and 2016), as part of their AIM SQuaRE’s program. The opportunity to spend
these periods of intensely focused efforts on the problems involved was essential. We
would like to thank the University of Bonn and AIM for their support.

1.7. Notation. — Throughout the paper, k ⊂ C is a quadratic imaginary field of odd
discriminant disc(k) = −D. Denote by δ =

√
−D ∈ k the unique choice of square

root with Im(δ) > 0, and by d = δOk the different of Ok.
Fix a π ∈ Ok satisfying Ok = Z + Zπ. If S is any Ok-scheme, define

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS
εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS ,

where iS : Ok → OS is the structure map. The ideal sheaves generated by these sec-
tions are independent of the choice of π, and sit in exact sequences of free OS-modules

0→ (εS)→ Ok ⊗Z OS
α⊗x7→iS(α)x−−−−−−−−→ OS → 0

and
0→ (εS)→ Ok ⊗Z OS

α⊗x 7→iS(α)x−−−−−−−−→ OS → 0.

It is easy to see that εS · εS = 0, and that the images of (εS) and (εS) under

Ok ⊗Z OS
α⊗x 7→iS(α)x−−−−−−−−→ OS

Ok ⊗Z OS
α⊗x 7→iS(α)x−−−−−−−−→ OS ,

respectively, are both equal to the sub-sheaf dOS . This defines isomorphisms
of OS-modules

(1.7.1) (εS) ∼= dOS ∼= (εS).

If N is an Ok ⊗Z OS-module then N/εSN is the maximal quotient of N on which
Ok acts through the structure morphism iS : Ok → OS , and N/εSN is the maximal
quotient on which Ok acts through the complex conjugate of the structure morphism.
If D ∈ O×S then more is true: there is a decomposition

(1.7.2) N = εSN ⊕ εSN,

and the summands are the maximal submodules on which Ok acts through the struc-
ture morphism and its conjugate, respectively. From this discussion it is clear that
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one should regard εS and εS as integral substitutes for the orthogonal idempotents
in k ⊗Q C ∼= C × C. The Ok-scheme S will usually be clear from context, and we
abbreviate εS and εS to ε and ε.

Let kab ⊂ C be the maximal abelian extension of k in C, and let

art : k×\k̂× → Gal(kab/k)

be the Artin map of class field theory, normalized as in [43, § 11]. As usual,
S = ResC/RGm is Deligne’s torus.

For a prime p ≤ ∞ we write (a, b)p for the Hilbert symbol of a, b ∈ Q×p . Recall that
the invariant of a hermitian space V over kp = k ⊗Q Qp is defined by

invp(V ) = (detV,−D)p,(1.7.3)

where detV is the determinant of the matrix of the hermitian form with respect to
a kp-basis. If p < ∞ then V is determined up to isomorphism by its kp-rank and
invariant. If p = ∞ then V is determined up to isomorphism by its signature (r, s),
and its invariant is inv∞(V ) = (−1)s.

The term stack always means Deligne-Mumford stack.

2. Unitary Shimura varieties

In this section we define a unitary Shimura variety Sh(G,D) over our quadratic
imaginary field k ⊂ C and describe its moduli interpretation. We then recall the
work of Pappas and Krämer, which provides us with two integral models related by
a surjection SKra → SPap. This surjection becomes an isomorphism after restriction
to Ok[1/D]. We define a line bundle of weight one modular forms ω and a family of
Cartier divisors ZKra(m), m > 0, on SKra,

The line bundle ω and the divisors ZKra(m) do not descend to SPap, and the main
original material in § 2 is the construction of suitable substitutes on SPap. These sub-
stitutes consist of a line bundle ΩPap that agrees with ω

2 after restricting to Ok[1/D],
and Cartier divisors YPap(m) that agree with 2ZKra(m) after restricting to Ok[1/D].

2.1. The Shimura variety. — Let W0 and W be k-vector spaces endowed with her-
mitian forms H0 and H of signatures (1, 0) and (n − 1, 1), respectively. We always
assume that n ≥ 2. Abbreviate

W (R) = W ⊗Q R, W (C) = W ⊗Q C, W (Af ) = W ⊗Q Af ,

and similarly for W0. In particular, W0(R) and W (R) are hermitian spaces over
C = k ⊗Q R.

We assume the existence of Ok-lattices a0 ⊂W0 and a ⊂W , self-dual with respect
to the hermitian forms H0 and H. As the inverse of δ =

√
−D ∈ k generates the

inverse different of k/Q, this is equivalent to self-duality with respect to the symplectic
forms

(2.1.1) ψ0(w,w′) = Trk/QH0(δ−1w,w′), ψ(w,w′) = Trk/QH(δ−1w,w′).
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This data will remain fixed throughout the paper.
As in (1.1.1), let G ⊂ GU(W0) × GU(W ) be the subgroup of pairs for which

the similitude factors are equal. We denote by ν : G → Gm the common similitude
character, and note that ν(G(R)) ⊂ R>0.

Let D(W0) = {y0} be a one-point set, and define

(2.1.2) D(W ) = {negative definite C-planes y ⊂W (R)},

so that G(R) acts on the connected hermitian domain

D = D(W0)×D(W ).

The lattices a0 and a determine a maximal compact open subgroup

(2.1.3) K =
{
g ∈ G(Af ) : gâ0 = â0 and gâ = â

}
⊂ G(Af ),

and the orbifold quotient

Sh(G,D)(C) = G(Q)\D ×G(Af )/K

is the space of complex points of a smooth k-stack of dimension n − 1, denoted
Sh(G,D).

The symplectic forms (2.1.1) determine a k-conjugate-linear isomorphism

(2.1.4) Homk(W0,W )
x 7→x∨−−−−→ Homk(W,W0),

characterized by ψ(xw0, w) = ψ0(w0, x
∨w). The k-vector space

V = Homk(W0,W )

carries a hermitian form of signature (n− 1, 1) defined by

(2.1.5) 〈x1, x2〉 = x∨2 ◦ x1 ∈ Endk(W0) ∼= k.

The group G acts on V in a natural way, defining an exact sequence (1.2.3).
The hermitian form on V induces a quadratic form Q(x) = 〈x, x〉, with associated

Q-bilinear form

(2.1.6) [x, y] = Trk/Q〈x, y〉.

In particular, we obtain a representation G→ SO(V ).

Proposition 2.1.1. — The stack Sh(G,D)/C has 21−o(D)h2 connected components,
where h is the class number of k and o(D) is the number of prime divisors of D.

Proof. — Each g ∈ G(Af ) determines Ok-lattices

ga0 = W0 ∩ gâ0, ga = W ∩ gâ.

The hermitian forms H0 and H need not be Ok-valued on these lattices. However, if
rat(ν(g)) denotes the unique positive rational number such that

ν(g)

rat(ν(g))
∈ Ẑ×,
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then the rescaled hermitian forms rat(ν(g))−1H0 and rat(ν(g))−1H make ga0 and ga
into self-dual hermitian lattices.

As D is connected, the components of Sh(G,D)/C are in bijection with the
set G(Q)\G(Af )/K. The function g 7→ (ga0, ga) establishes a bijection from
G(Q)\G(Af )/K to the set of isometry classes of pairs of self-dual hermitian Ok-lat-
tices (a′0, a

′) of signatures (1, 0) and (n − 1, 1), respectively, for which the self-dual
hermitian lattice HomOk

(a′0, a
′) lies in the same genus as HomOk

(a0, a) ⊂ V .
Using the fact that SU(V ) satisfies strong approximation, one can show that there

are exactly 21−o(D)h isometry classes in the genus of HomOk
(a0, a), and each isometry

class arises from exactly h isometry classes of pairs (a′0, a
′).

It will be useful at times to have other interpretations of the hermitian domain D.
The following remarks provide alternate points of view. Recalling the idempotents
ε, ε ∈ k ⊗Q C of § 1.7, define isomorphisms of real vector spaces

(2.1.7) prε : W (R) ∼= εW (C), prε : W (R) ∼= εW (C)

as, respectively, the compositions

W (R) ↪→W (C) = εW (C)⊕ εW (C)
proj.−−−→ εW (C)

W (R) ↪→W (C) = εW (C)⊕ εW (C)
proj.−−−→ εW (C).

Remark 2.1.2. — Each pair z = (y0, y) ∈ D determines a line prε(y) ⊂ W (C), and
hence a line

z = HomC(W0(C)/εW0(C),prε(y)) ⊂ εV (C).

This construction identifies

D ∼=
{
z ∈ εV (C) : [z, z] < 0

}
/C× ⊂ P(εV (C))

as an open subset of projective space.

Remark 2.1.3. — Define a Hodge structure

F 1W0(C) = 0, F 0W0(C) = εW0(C), F−1W0(C) = W0(C)

on W0(C), and identify the unique point y0 ∈ D(W0) with the corresponding mor-
phism S→ GU(W0)R. Every y ∈ D(W ) defines a Hodge structure

F 1W (C) = 0, F 0W (C) = prε(y)⊕ prε(y
⊥), F−1W (C) = W (C)

on W (C). If we identify y ∈ D(W ) with the corresponding morphism S→ GU(W )R,
then for any point z = (y0, y) ∈ D the product morphism

y0 × y : S→ GU(W0)R ×GU(W )R

takes values in GR. This realizes D ⊂ Hom(S, GR) as a G(R)-conjugacy class.
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Remark 2.1.4. — In fact, the discussion above shows that Sh(G,D) admits a map to
the Shimura variety defined the group U(V ) together with the homomorphism

hGross : S→ U(V )(R), z 7→ diag(1, . . . , 1, z̄/z).

Here we have chosen a basis for V (R) for which the hermitian form has matrix
diag(1n−1,−1). Note that, for analogous choices of bases for W0(R) and W (R), the
corresponding map is

h : S→ G(R), z 7→ (z)× diag(z, . . . , z, z̄),

which, under composition with the homomorphism G(R) → U(V )(R), gives hGross.
The existence of this map provides an answer to a question posed by Gross: how
can one explicitly relate the Shimura variety defined by the unitary group U(V ), as
opposed to the Shimura variety defined by the similitude group GU(V ), to a moduli
space of abelian varieties? Our answer is that Gross’s unitary Shimura variety is a
quotient of our Sh(G,D), whose interpretation as a moduli space is explained in the
next section.

2.2. Moduli interpretation. — We wish to interpret Sh(G,D) as a moduli space of
pairs of abelian varieties with additional structure. First, we recall some generalities
on abelian schemes.

For an abelian scheme π : A→ S over an arbitrary base S, define the first relative
de Rham cohomology sheaf H1

dR(A) = R1π∗Ω
•
A/S as the relative hypercohomology of

the de Rham complex Ω•A/S . The relative de Rham homology

HdR
1 (A) = Hom(H1

dR(A),OS)

is a locally free OS-module of rank 2 · dim(A), sitting in an exact sequence

0→ F 0HdR
1 (A)→ HdR

1 (A)→ Lie(A)→ 0.

Any polarization of A induces an OS-valued alternating pairing on HdR
1 (A), which in

turn induces a pairing

(2.2.1) F 0HdR
1 (A)⊗ Lie(A)→ OS .

If the polarization is principal then both pairings are perfect. When S = Spec(C),
Betti homology satisfies H1(A(C),C) ∼= HdR

1 (A), and

A(C) ∼= H1(A(C),Z)\HdR
1 (A)/F 0HdR

1 (A).

For any pair of nonnegative integers (s, t), define an algebraic stackM(s,t) over k as
follows: for any k-scheme S let M(s,t)(S) be the groupoid of triples (A, ι, ψ) in which

— A→ S is an abelian scheme of relative dimension s+ t,
— ι : Ok → End(A) is an action such that the locally free summands

Lie(A) = εLie(A)⊕ εLie(A)

of (1.7.2) have OS-ranks s and t, respectively,
— ψ : A→ A∨ is a principal polarization, such that the induced Rosati involution †

on End0(A) satisfies ι(α)† = ι(α) for all α ∈ Ok.
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We usually omit ι and ψ from the notation, and just write A ∈M(s,t)(S).

Proposition 2.2.1. — The Shimura variety Sh(G,D) is isomorphic to an open and
closed substack

(2.2.2) Sh(G,D) ⊂M(1,0) ×kM(n−1,1).

More precisely, Sh(G,D)(S) classifies, for any k-scheme S, pairs

(2.2.3) (A0, A) ∈M(1,0)(S)×M(n−1,1)(S)

for which there exists, at every geometric point s→ S, an isomorphism of hermitian
Ok,`-modules

(2.2.4) HomOk
(T`A0,s, T`As) ∼= HomOk

(a0, a)⊗ Z`

for every prime `. Here the hermitian form on the right hand side of (2.2.4) is the
restriction of the hermitian form (2.1.5) on Homk(W0,W )⊗Q`. The hermitian form
on the left hand side is defined similarly, replacing the symplectic forms (2.1.1) on W0

and W with the Weil pairings on the Tate modules T`A0,s and T`As.

Proof. — As this is routine, we only describe the open and closed immersion on
complex points. Fix a point

(z, g) ∈ Sh(G,D)(C).

The component g determines Ok-lattices ga0 ⊂ W0 and ga ⊂ W , which are self-dual
with respect to the symplectic forms

rat(ν(g))−1ψ0 and rat(ν(g))−1ψ

of (2.1.1), rescaled as in the proof of Proposition 2.1.1.
By Remark 2.1.3 the point z ∈ D determines Hodge structures on W0 and W , and

in this way (z, g) determines principally polarized complex abelian varieties

A0(C) = ga0\W0(C)/F 0(W0)

A(C) = ga\W (C)/F 0(W ),

with actions of Ok. One can easily check that the pair (A0, A) determines a complex
point of M(1,0) ×kM(n−1,1), and this construction defines (2.2.2) on complex points.

The following lemma will be needed in § 2.3 for the construction of integral models
for Sh(G,D).

Lemma 2.2.2. — Fix a k-scheme S, a geometric point s→ S, a prime p, and a point
(2.2.3). If the relation (2.2.4) holds for all ` 6= p, then it also holds for ` = p.

Proof. — As the stack Sh(G,D) is of finite type over k, we may assume that
s = Spec(C). The polarizations on A0 and A induce symplectic forms on the first
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homology groups H1(A0,s(C),Z) and H1(As(C),Z), and the construction (2.1.5)
makes

LBe(A0,s, As) = HomOk

(
H1(A0,s(C),Z), H1(As(C),Z)

)
into a self-dual hermitian Ok-lattice of signature (n− 1, 1), satisfying

LBe(A0,s, As)⊗Z Z` ∼= HomOk
(T`A0,s, T`As)

for all primes `.
If the relation (2.2.4) holds for all primes ` 6= p, then LBe(A0,s, As) ⊗ Q and

Homk(W0,W ) are isomorphic as k-hermitian spaces everywhere locally except at p,
and so they are isomorphic at p as well. In particular, for every ` (including ` = p)
both sides of (2.2.4) are isomorphic to self-dual lattices in the hermitian space
Homk(W0,W ) ⊗Q Q`. By the results of Jacobowitz [27] all self-dual lattices in this
local hermitian space are isomorphic (2), and so (2.2.4) holds for all `.

Remark 2.2.3. — For any positive integer m define

K(m) = ker
(
K → AutOk

(â0/mâ0)×AutOk
(â/mâ)

)
.

For a k-scheme S, a K(m)-structure on (A0, A) ∈ Sh(G,D)(S) is a triple (α0, α, ζ) in
which ζ : µm ∼= Z/mZ is an isomorphism of S-group schemes, and

α0 : A0[m] ∼= â0/mâ0, α : A[m] ∼= â/mâ

are Ok-linear isomorphisms identifying the Weil pairings on A0[m] and A[m] with
the Z/mZ-valued symplectic forms on â0/mâ0 and â/mâ deduced from the pairings
(2.1.1). The Shimura varietyG(Q)\D×G(Af )/K(m) admits a canonical model over k,
parametrizing K(m)-structures on points of Sh(G,D).

2.3. Integral models. — In this subsection we describe two integral models
of Sh(G,D) over Ok, related by a morphism SKra → SPap.

The first step is to construct an integral model of the moduli space M(1,0). More
generally, we will construct an integral model of M(s,0) for any s > 0. Define an
Ok-stackM(s,0) as the moduli space of triples (A, ι, ψ) over Ok-schemes S such that

— A→ S is an abelian scheme of relative dimension s,
— ι : Ok → End(A) is an action such εLie(A) = 0, or, equivalently, such that the

induced action of Ok on the OS-module Lie(A) is through the structure map
iS : Ok → OS ,

— ψ : A → A∨ is a principal polarization whose Rosati involution satisfies
ι(α)† = ι(α) for all α ∈ Ok.

The stackM(s,0) is smooth of relative dimension 0 over Ok by [24, Proposition 2.1.2],
and its generic fiber is the stack M(s,0) defined earlier.

Remark 2.3.1. — The stack M(n−2,0) will play an important role in § 3. In the de-
generate case n = 2, we interpret this as M(0,0) = Spec(Ok). The universal abelian
scheme over it should be understood as the 0 group scheme.

(2) This uses our standing hypothesis that D is odd.
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The question of integral models for M(n−1,1) is more subtle, but well-understood
after work of Pappas and Krämer. The first integral model was defined by Pappas
[45]. Let

MPap
(n−1,1) → Spec(Ok)

be the stack whose functor of points assigns to an Ok-scheme S the groupoid of triples
(A, ι, ψ) in which

— A→ S is an abelian scheme of relative dimension n,
— ι : Ok → End(A) is an action satisfying the determinant condition

det(T − ι(α) | Lie(A)) = (T − α)n−1(T − α) ∈ OS [T ]

for all α ∈ Ok,
— ψ : A → A∨ is a principal polarization whose Rosati involution satisfies

ι(α)† = ι(α) for all α ∈ Ok,
— viewing the elements εS and εS of § 1.7 as endomorphisms of Lie(A), the induced

endomorphisms ∧n
εS :

∧n
Lie(A)→

∧n
Lie(A)∧2

εS :
∧2

Lie(A)→
∧2

Lie(A)

are trivial (Pappas’s wedge condition).
It is clear that the generic fiber ofMPap

(n−1,1) is isomorphic to the moduli spaceM(n−1,1)

defined earlier. Denote by
Sing(n−1,1) ⊂M

Pap
(n−1,1)

the singular locus: the reduced substack of points at which the structure morphism
to Ok is not smooth.

Theorem 2.3.2 (Pappas). — The stack MPap
(n−1,1) is flat over Ok of relative dimen-

sion n− 1, and is Cohen-Macaulay and normal. Moreover:

1. For any prime p ⊂ Ok, the reductionMPap
(n−1,1)/Fp is Cohen-Macaulay. If n > 2

the reduction is geometrically normal.

2. The singular locus is a 0-dimensional stack, finite over Ok and supported in
characteristics dividing D. It is the reduced substack underlying the closed sub-
stack defined by δ · Lie(A) = 0.

Proof. — When n > 2 all of this is proved in [45] using the theory of local models,
and it is straightforward to check that the arguments carry over (3) to the case n = 2.
The only change is that if p ⊂ Ok lies above p | D, the stack MPap

(1,1)/Ok,p
is étale

locally isomorphic to
Spec(Ok,p[x, y]/(xy − p)),

whose special fiber is not normal.

(3) When n = 2, the Ok-stackMPap
(n−1,1)

admits a canonical descent to Z, and Pappas analyzes the
structure of this descent. The descent is regular, but the regularity is destroyed by base change to Ok.
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The stack MPap
(n−1,1) is not regular, but has a natural resolution of singularities.

This leads us to our second integral model of M(n−1,1). As in the work of Krämer
[31], define

MKra
(n−1,1) → Spec(Ok)

to be the stack whose functor of points assigns to an Ok-scheme S the groupoid of
quadruples (A, ι, ψ,FA) in which

— A→ S is an abelian scheme of relative dimension n,
— ι : Ok → End(A) is an action of Ok,
— ψ : A→ A∨ is a principal polarization satisfying ι(α)† = ι(α) for all α ∈ Ok,
— FA ⊂ Lie(A) is an Ok-stable OS-module local direct summand of rank n− 1

satisfying Krämer’s condition: Ok acts on FA via the structure map Ok → OS ,
and acts on the line bundle Lie(A)/FA via the complex conjugate of the struc-
ture map.

There is a proper morphism

(2.3.1) MKra
(n−1,1) →M

Pap
(n−1,1)

defined by forgetting the subsheaf FA, and we define the exceptional locus

(2.3.2) Exc(n−1,1) ⊂MKra
(n−1,1)

by the Cartesian diagram

Exc(n−1,1)
//

��

MKra
(n−1,1)

��

Sing(n−1,1)
//MPap

(n−1,1).

Theorem 2.3.3 (Krämer). — The Ok-stack MKra
(n−1,1) is regular and flat with reduced

fibers, and satisfies the following properties:

1. The exceptional locus (2.3.2) is a disjoint union of smooth Cartier divisors.
Its fiber over a geometric point s→ Sing(n−1,1) is isomorphic to the projective
space Pn−1 over k(s).

2. The morphism (2.3.1) is proper and surjective, and restricts to an isomorphism

MKra
(n−1,1) \ Exc(n−1,1)

∼=MPap
(n−1,1) \ Sing(n−1,1).

For an Ok-scheme S, the inverse of this isomorphism endows

A ∈
(
MPap

(n−1,1) \ Sing(n−1,1)

)
(S)

with the subsheaf FA = ker
(
ε : Lie(A)→ Lie(A)

)
.
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Proof. — When n > 2 all of this is proved in [31] using the theory of local models,
and it is straightforward to check that nearly everything (4) carries over to the case
n = 2. In particular, if n = 2 and p ⊂ Ok lies above p | D, the same arguments used
in [loc. cit.] show thatMKra

(1,1)/Ok,p
is étale locally isomorphic to the regular scheme

Spec(Ok,p[x, y]/(xy − π)),

for any uniformizer π ∈ Ok,p.

Recalling (2.2.2), we define our first integral model

SPap ⊂M(1,0) ×MPap
(n−1,1)

as the Zariski closure of Sh(G,D) in the fiber product on the right, which, like all fiber
products below, is taken over over Spec(Ok). Using Lemma 2.2.2, one can show that
it is characterized as the open and closed substack whose functor of points assigns to
any Ok-scheme S the groupoid of pairs

(A0, A) ∈M(1,0)(S)×MPap
(n−1,1)(S)

such that, at any geometric point s → S, the relation (2.2.4) holds for all primes
` 6= char(k(s)).

Our second integral model of Sh(G,D) is defined as the cartesian product

SKra
//

��

M(1,0) ×MKra
(n−1,1)

��

SPap
//M(1,0) ×MPap

(n−1,1).

The singular locus Sing ⊂ SPap and exceptional locus Exc ⊂ SKra are defined by the
cartesian squares

Exc //

��

SKra

��

Sing //

��

SPap

��

M(1,0) × Sing(n−1,1)
//M(1,0) ×MPap

(n−1,1).

(4) When n > 2, the statement of [31, Theorem 4.4] asserts that the special fiber of the local model
ofMKra

(n−1,1)
is the union of two smooth and geometrically irreducible varieties of dimension n − 1,

whose intersection is smooth and geometrically irreducible of dimension n − 2. When n = 2, the
structure of the local model is slightly different: its geometric special fiber is a union X1 ∪X2 ∪X3

of three irreducible varieties, each isomorphic to P1, intersecting in such a way that X1 ∩ X2 and
X2∩X3 are distinct reduced points. The difference between the two cases occurs because the schemeQ
defined in the proof of [31, Theorem 4.4], which parametrizes isotropic lines in a quadratic space of
dimension n over a finite field, is geometrically irreducible only when n > 2.
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Both loci are proper over Ok, and supported in characteristics dividing D.

Theorem 2.3.4 (Pappas, Krämer). — The Ok-stack SKra is regular and flat with
reduced fibers. The Ok-stack SPap is Cohen-Macaulay and normal, with Cohen-
Macaulay fibers. Furthermore:

1. If n > 2, the geometric fibers of SPap are normal.

2. The exceptional locus Exc ⊂ SKra is a disjoint union of smooth Cartier divi-
sors. The singular locus Sing ⊂ SPap is a reduced closed stack of dimension 0,
supported in characteristics dividing D.

3. The fiber of Exc over a geometric point s→ Sing is isomorphic to the projective
space Pn−1 over k(s).

4. The morphism SKra → SPap is surjective, and restricts to an isomorphism

(2.3.3) SKra \ Exc ∼= SPap \ Sing.

For an Ok-scheme S, the inverse of this isomorphism endows

(A0, A) ∈
(
SPap \ Sing

)
(S)

with the subsheaf FA = ker
(
ε : Lie(A)→ Lie(A)

)
.

Proof. — All of this follows from Theorems 2.3.2 and 2.3.3, along with the fact
thatM(1,0) → Spec(Ok) is finite étale.

Remark 2.3.5. — Let (A0, A) be the universal pair over SPap. The vector bundle
HdR

1 (A0) is locally free of rank one over Ok⊗ZOSPap
and, by definition of the moduli

problem defining SPap, its quotient Lie(A0) is annihilated by ε. From this it is not
hard to see that

F 0HdR
1 (A0) = εHdR

1 (A0).

2.4. The line bundle of modular forms. — We now construct a line bundle of modular
forms ω on SKra, and consider the subtle question of whether or not it descends
to SPap. The short answer is that it doesn’t, but a more complete answer can be
found in Theorems 2.4.3 and 2.6.3.

By Remark 2.1.3, every point z ∈ D determines Hodge structures on W0 and
W of weight −1, and hence a Hodge structure of weight 0 on V = Homk(W0,W ).
Consider the holomorphic line bundle ω

an on D whose fiber at z is the complex line
ω

an
z = F 1V (C) determined by this Hodge structure.

Remark 2.4.1. — It is useful to interpret ω
an in the notation of Remark 2.1.2. The

fiber of ω
an at z = (y0, y) is the line

(2.4.1) ω
an
z = HomC(W0(C)/εW0(C),prε(y)) ⊂ εV (C),

and hence ω
an is simply the restriction of the tautological bundle via the inclusion

D ∼=
{
w ∈ εV (C) : [w,w] < 0

}
/C× ⊂ P(εV (C)).
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There is a natural action of G(R) on the total space of ωan, lifting the natural action
on D, and so ω

an descends to a line bundle on the complex orbifold Sh(G,D)(C).
This descent is algebraic, has a canonical model over the reflex field, and extends in
a natural way to the integral model SKra, as we now explain.

Let (A0, A) be the universal object over SKra, let FA ⊂ Lie(A) be the universal
subsheaf of Krämer’s moduli problem, and let

F⊥A ⊂ F 0HdR
1 (A)

be the orthogonal to FA under the pairing (2.2.1). It is a rank one OSKra
-module local

direct summand on which Ok acts through the structure morphism Ok → OSKra .
Define the line bundle of weight one modular forms on SKra by

ω = Hom(Lie(A0),F⊥A ),

or, equivalently, ω
−1 = Lie(A0)⊗ Lie(A)/FA.

Proposition 2.4.2. — The line bundle ω on SKra just defined restricts to the already
defined ω

an in the complex fiber. Moreover, on the complement of the exceptional locus
Exc ⊂ SKra we have

ω = Hom(Lie(A0), εF 0HdR
1 (A)).

Proof. — The equality F⊥A = εF 0HdR
1 (A) on the complement of Exc follows from

the characterization
FA = ker(ε : Lie(A)→ Lie(A))

of Theorem 2.3.4, and all of the claims follow easily from this and examination of the
proof of Proposition 2.2.1.

The line bundle ω does not descend to SPap, but it is closely related to another
line bundle that does. This is the content of the following theorem, whose proof will
occupy the remainder of § 2.4. The result will be strengthened in Theorem 2.6.3.

Theorem 2.4.3. — There is a unique line bundle ΩPap on SPap whose restriction to
the nonsingular locus (2.3.3) is isomorphic to ω

2. We denote by ΩKra its pullback via
SKra → SPap.

Proof. — Let (A0, A) be the universal object over SPap, and recall the short exact
sequence

0→ F 0HdR
1 (A)→ HdR

1 (A)
q−→ Lie(A)→ 0

of vector bundles on SPap. As HdR
1 (A) is a locally free Ok⊗ZOSPap

-module of rank n,
the quotient HdR

1 (A)/εHdR
1 (A) is a rank n vector bundle.

Define a line bundle

PPap = Hom
(∧n

HdR
1 (A)/εHdR

1 (A),
∧n

Lie(A)
)

on SPap, and denote by PKra its pullback via SKra → SPap. Let

ψ : HdR
1 (A)⊗HdR

1 (A)→ OSPap
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be the alternating pairing induced by the principal polarization on A. If a and b are
local sections of HdR

1 (A), define a local section Pa⊗b of PPap by

Pa⊗b(e1 ∧ · · · ∧ en) =

n∑
k=1

(−1)k+1 · ψ(εa, ek) · q(εb) ∧ q(e1) ∧ · · · ∧ q(en)︸ ︷︷ ︸
omit q(ek)

.

Remark 2.4.4. — To see that Pa⊗b is well-defined, one must check that modifying
any ek by a section of εHdR

1 (A) leaves the right hand side unchanged. This is an easy
consequence of the vanishing of∧2

ε :
∧2

Lie(A)→
∧2

Lie(A)

imposed in the moduli problem defining SPap.

Lemma 2.4.5. — The morphism

(2.4.2) P : HdR
1 (A)⊗HdR

1 (A)→ PPap

defined by a⊗ b 7→ Pa⊗b factors through a morphism

P : Lie(A)⊗ Lie(A)→ PPap.

After pullback to SKra there is a further factorization

(2.4.3) P : Lie(A)/FA ⊗ Lie(A)/FA → PKra,

and this map becomes an isomorphism after restriction to SKra \ Exc .

Proof. — Let a and b be local sections of HdR
1 (A).

Assume first that a is contained in F 0HdR
1 (A). As F 0HdR

1 (A) is isotropic under
the pairing ψ, Pa⊗b factors through a map∧n

Lie(A)/εLie(A)→
∧n

Lie(A).

In the generic fiber of SPap, the sheaf Lie(A)/εLie(A) is a vector bundle of rank n−1.
This proves that Pa⊗b is trivial over the generic fiber. As Pa⊗b is a morphism of vector
bundles on a flat Ok-stack, we deduce that Pa⊗b = 0 identically on SPap.

If instead b is contained in F 0HdR
1 (A) then q(εb) = 0, and again Pa⊗b = 0. These

calculations prove that P factors through Lie(A)⊗ Lie(A).
Now pullback to SKra. We need to check that Pa⊗b vanishes if either of a or b lies

in FA. Once again it suffices to check this in the generic fiber, where it is clear from

(2.4.4) FA = ker(ε : Lie(A)→ Lie(A)).

Over SKra we now have a factorization (2.4.3), and it only remains to check that
its restriction to (2.3.3) is an isomorphism. For this, it suffices to verify that (2.4.3)
is surjective on the fiber at any geometric point

s = Spec(F)→ SKra \ Exc.
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First suppose that char(F) is prime to D. In this case ε, ε ∈ Ok ⊗Z F are (up
to scaling by F×) orthogonal idempotents, FAs = εLie(As), and we may choose an
Ok ⊗Z F-basis e1, . . . , en ∈ HdR

1 (As) in such a way that

εe1, εe2, . . . , εen ∈ F 0HdR
1 (As)

and
q(εe1), q(εe2), . . . , q(εen) ∈ Lie(As)

are F-bases. This implies that

Pe1⊗e1(e1 ∧ · · · ∧ en) = ψ(εe1, εe1) · q(εe1) ∧ q(εe2) ∧ · · · ∧ q(εen) 6= 0,

and so
Pe1⊗e1 ∈ Hom

(∧n
HdR

1 (As)/εH
dR
1 (As),

∧n
Lie(As)

)
is a generator. Thus P is surjective in the fiber at z.

Now suppose that char(F) divides D. In this case there is an isomorphism

F[x]/(x2)
x 7→ε=ε−−−−−→ Ok ⊗Z F.

By Theorem 2.3.4 the relation (2.4.4) holds in an étale neighborhood of s, and it
follows that we may choose an Ok⊗ZF-basis e1, . . . , en ∈ HdR

1 (As) in such a way that

e2, εe2, εe3, . . . , εen ∈ F 0HdR
1 (As)

and
q(e1), q(εe1), q(e3) . . . , q(en) ∈ Lie(As)

are F-bases. This implies that

Pe1⊗e1(e1 ∧ · · · ∧ en) = ψ(εe1, e2) · q(εe1) ∧ q(e1) ∧ q(e3) ∧ · · · ∧ q(en) 6= 0,

and so, as above, P is surjective in the fiber at z.

We now complete the proof of Theorem 2.4.3. To prove the existence part of the
claim, we define ΩPap by

Ω
−1
Pap = Lie(A0)⊗2 ⊗ PPap,

and let ΩKra be its pullback via SKra → SPap. Tensoring both sides of (2.4.3) with
Lie(A0)⊗2 defines a morphism

ω
−2 → Ω

−1
Kra,

whose restriction to SKra \ Exc is an isomorphism. In particular ω
2 and ΩPap are

isomorphic over (2.3.3).
The uniqueness of ΩPap is clear: as Sing ⊂ SPap is a codimension ≥ 2 closed

substack of a normal stack, any line bundle on the complement of Sing admits at
most one extension to all of SPap.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



32 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

2.5. Special divisors. — Suppose S is a connected Ok-scheme, and

(A0, A) ∈ SPap(S).

Imitating the construction of (2.1.5), there is a positive definite hermitian form
on HomOk

(A0, A) defined by

(2.5.1) 〈x1, x2〉 = x∨2 ◦ x1 ∈ EndOk
(A0) ∼= Ok,

where
HomOk

(A0, A)
x 7→x∨−−−−→ HomOk

(A,A0)

is the Ok-conjugate-linear isomorphism induced by the principal polarizations on A0

and A.
For any positive m ∈ Z, define the Ok-stack ZPap(m) as the moduli stack assigning

to a connected Ok-scheme S the groupoid of triples (A0, A, x), where
— (A0, A) ∈ SPap(S),
— x ∈ HomOk

(A0, A) satisfies 〈x, x〉 = m.
Define a stack ZKra(m) in exactly the same way, but replacing SPap by SKra. Thus
we obtain a cartesian diagram

ZKra(m) //

��

SKra

��

ZPap(m) // SPap,

in which the horizontal arrows are relatively representable, finite, and unramified.
Each ZKra(m) is, étale locally on SKra, a disjoint union of Cartier divisors. More

precisely, around any geometric point of SKra one can find an étale neighborhood U
with the property that the morphism ZKra(m)U → U restricts to a closed immersion
on every connected component Z ⊂ ZKra(m)U , and Z ⊂ U is defined locally by
one equation; this is [24, Proposition 3.2.3], but a cleaner argument (working on the
Rapoport-Zink space corresponding to SKra) can be found in [25, Proposition 4.3].
Summing over all connected components Z allows us to view ZKra(m)U as a Cartier
divisor on U , and gluing as U varies over an étale cover defines a Cartier divisor
on SKra, which we again denote by ZKra(m).

Remark 2.5.1. — It follows from (2.3.3) and the paragraph above that ZPap(m) is
locally defined by one equation away from the singular locus, and so defines a Cartier
divisor on SPap \ Sing. This Cartier divisor does not extend to all of SPap.

Remark 2.5.2. — We can make the specal divisors more explicit in the complex fiber,
as in [34, Proposition 3.5] or [23, § 3.8]. Recall from § 2.1 that the Q-vector space
V = Homk(W0,W ) carries a quadratic form. Using the description

D ∼=
{
z ∈ εV (C) : [z, z] < 0

}
/C× ⊂ P(εV (C))

of Remark 2.1.2, every x ∈ V with Q(x) > 0 determines an analytic divisor

D(x) = {z ∈ D : [z, x] = 0}.
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A choice of g ∈ G(Af ) determines a connected component

(G(Q) ∩ gKg−1)\D z 7→(z,g)−−−−−→ G(Q)\D ×G(Af )/K ∼= SKra(C),

and if we set
L = HomOk

(ga0, ga) ⊂ V
the restriction of ZKra(m)(C)→ SKra(C) to this component is

(G(Q) ∩ gKg−1)\
⊔
x∈L

Q(x)=m

D(x)→ (G(Q) ∩ gKg−1)\D.

The following theorem, whose proof will occupy the remainder of § 2.5, shows
that ZKra(m) is closely related to another Cartier divisor on SKra that descends
to SPap. This result will be strengthened in Theorem 2.6.3.

Theorem 2.5.3. — For every m > 0 there is a unique Cartier divisor YPap(m) on SPap

whose restriction to SPap \ Sing agrees with 2ZPap(m). In particular its pullback
YKra(m) via SKra → SPap agrees with 2ZKra(m) over SKra \ Exc.

Proof. — The map ZPap(m) → SPap is finite, unramified, and relatively repre-
sentable. It follows that every geometric point of SPap admits an étale neighborhood
U → SPap such that U is a scheme, and the morphism

ZPap(m)U → U

restricts to a closed immersion on every connected component

Z ⊂ ZPap(m)U .

We will construct a Cartier divisor on any such U , and then glue them together as U
varies over an étale cover to obtain the divisor YPap(m).

Fix Z as above, let I ⊂ OU be its ideal sheaf, and let Z ′ be the closed subscheme
of U defined by the ideal sheaf I2. Thus we have closed immersions

Z ⊂ Z ′ ⊂ U,

the first of which is a square-zero thickening.
By the very definition of ZPap(m), along Z there is a universal Ok-linear map

x : A0Z → AZ . This map does not extend to a map A0Z′ → AZ′ , however, by
deformation theory [40, Chapter 2.1.6] the induced Ok-linear morphism of vector
bundles

x : HdR
1 (A0Z)→ HdR

1 (AZ)

admits a canonical extension to

(2.5.2) x′ : HdR
1 (A0Z′)→ HdR

1 (AZ′).

Recalling the morphism (2.4.2), define Y ⊂ Z ′ as the largest closed subscheme over
which the composition

(2.5.3) HdR
1 (A0Z′)⊗HdR

1 (A0Z′)
x′⊗x′−−−−→ HdR

1 (AZ′)⊗HdR
1 (AZ′)

P−→ PPap|Z′
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vanishes.

Lemma 2.5.4. — If U → SPap factors through SPap \ Sing, then Y = Z ′.

Proof. — Lemma 2.4.5 provides us with a commutative diagram

HdR
1 (A0Z′)

⊗2 x′⊗x′
//

(2.5.3)
,,

HdR
1 (AZ′)

⊗2 q⊗q
//
(
Lie(AZ′)/FAZ′

)⊗2

∼=
��

PPap|Z′ ,

where
FAZ′ = ker(ε : Lie(AZ′)→ Lie(AZ′))

as in Theorem 2.3.4.
By deformation theory, Z ⊂ Z ′ is characterized as the largest closed subscheme

over which (2.5.2) respects the Hodge filtrations. Using Remark 2.3.5, it is easily seen
that Z ⊂ Z ′ can also be characterized as the largest closed subscheme over which

H1(A0Z′)
q◦x′−−−→ Lie(AZ′)/FAZ′

vanishes identically. As Z ⊂ Z ′ is a square zero thickening, it follows first that the
horizontal composition in the above diagram vanishes identically, and then that (2.5.3)
vanishes identically. In other words Y = Z ′.

Lemma 2.5.5. — The closed subscheme Y ⊂ U is defined locally by one equation.

Proof. — Fix a closed point y ∈ Y of characteristic p, let OU,y be the local ring of U
at y, and let m ⊂ OU,y be the maximal ideal. For a fixed k > 0, let

U = Spec(OU,y/mk) ⊂ U

be the k-th order infinitesimal neighborhood of y in U . The point of passing to
the infinitesimal neighborhood is that p is nilpotent in OU , and so we may apply
Grothendieck-Messing deformation theory.

By construction we have closed immersions

Y

��

Z // Z ′ // U.

Applying the fiber product ×UU throughout the diagram, we obtain closed immer-
sions

Y

��

Z // Z ′ // U
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of Artinian schemes. As k is arbitrary, it suffices to prove that Y ⊂ U is defined by
one equation.

First suppose that p - D. In this case U → U → SPap factors through the nonsingu-
lar locus (2.3.3). It follows from Remark 2.5.1 that Z ⊂ U is defined by one equation,
and Z ′ is defined by the square of that equation. By Lemma 2.5.4, Y ⊂ U is also
defined by one equation.

For the remainder of the proof we assume that p | D. In particular p > 2. Consider
the closed subscheme Z ′′ ↪→ U with ideal sheaf I3, so that we have closed immersions
Z ⊂ Z ′ ⊂ Z ′′ ⊂ U. Taking the fiber product with U , the above diagram extends to

Y

��

Z // Z ′ // Z ′′ // U .

As p > 2, the cube zero thickening Z ⊂ Z ′′ admits divided powers extending the
trivial divided powers on Z ⊂ Z ′. Therefore, by Grothendieck-Messing theory, the
restriction of (2.5.2) to

x′ : HdR
1 (A0Z′)→ HdR

1 (AZ′)

admits a canonical extension to

x′′ : HdR
1 (A0Z′′)→ HdR

1 (AZ′′).

Define Y ′ ⊂ Z ′′ as the largest closed subscheme over which

(2.5.4) HdR
1 (A0Z′′)⊗HdR

1 (A0Z′′)
x′′⊗x′′−−−−→ HdR

1 (AZ′′)⊗HdR
1 (AZ′′)

P−→ PPap|Z′′
vanishes identically, so that there are closed immersions

Y

��

// Y ′

��

Z // Z ′ // Z ′′ // U .

We pause the proof of Lemma 2.5.5 for a sub-lemma.

Lemma 2.5.6. — We have Y = Y ′.

Proof. — As in the proof of Lemma 2.5.4, we may characterize Z ⊂ Z ′′ as the
largest closed subscheme along which x′′ respects the Hodge filtrations. Equivalently,
by Remark 2.3.5, Z ⊂ Z ′′ is the largest closed subscheme over which the composition

HdR
1 (A0Z′′)

x′′◦ε−−−→ HdR
1 (AZ′′)

q−→ Lie(AZ′′)

vanishes identically. This implies that Z ′ ⊂ Z ′′ is the largest closed subscheme over
which

(2.5.5) HdR
1 (A0Z′′)

⊗2 (x′′◦ε)⊗2

−−−−−−→ HdR
1 (AZ′′)

⊗2 q⊗2

−−→ Lie(AZ′′)
⊗2

vanishes identically.
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It follows directly from the definitions that Y = Y ′ ∩ Z ′, and hence it suffices to
show that Y ′ ⊂ Z ′. In other words, it suffices to show that the vanishing of (2.5.4)
implies the vanishing of (2.5.5).

For local sections a and b of H1(AZ′′), define

Qa⊗b : F 0HdR
1 (AZ′′)⊗

∧n−1
Lie(AZ′′)→

∧n
Lie(AZ′′)

by
Qa⊗b(e1 ⊗ q(e2) ∧ · · · ∧ q(en)) = ψ(a, e1) · q(b) ∧ q(e2) ∧ · · · ∧ q(en).

It is clear that Qa⊗b depends only on the images of a and b in Lie(AZ′′), and that
this construction defines an isomorphism

(2.5.6) Lie(AZ′′)
⊗2 Q−→ Hom

(
F 0HdR

1 (AZ′′)⊗
∧n−1

Lie(AZ′′),
∧n

Lie(AZ′′)
)
.

It is related to the map

Lie(AZ′′)
⊗2 P−→ Hom

(∧n
HdR

1 (AZ′′)/εH
dR
1 (AZ′′),

∧n
Lie(AZ′′)

)
of Lemma 2.4.5 by

Pa⊗b(e1 ∧ · · · ∧ en) = Qεa⊗εb(e1 ⊗ q(e2) ∧ · · · ∧ q(en))

for any local section e1 ⊗ e2 ⊗ · · · ⊗ en of

F 0HdR
1 (AZ′′)⊗HdR

1 (AZ′′)⊗ · · · ⊗HdR
1 (AZ′′).

Putting everything together, if (2.5.4) vanishes, then Px′′(a0)⊗x′′(b0) = 0 for all local
sections a0 and b0 of HdR

1 (A0Z′′). Therefore

Qx′′(εa0)⊗x′′(εb0) = 0

for all local sections a0 and b0, which implies, as (2.5.6) is an isomorphism, that (2.5.5)
vanishes. This proves that Y ′ ⊂ Z ′, and hence Y = Y ′.

Returning to the proof of Lemma 2.5.5, the map (2.5.4), whose vanishing defines
Y ′ ⊂ Z ′′, factors through a morphism of line bundles

HdR
1 (A0Z′′)/εH

dR
1 (A0Z′′)⊗HdR

1 (A0Z′′)/εH
dR
1 (A0Z′′)→ PPap|Z′′ ,

and hence Y = Y ′ is defined inside of Z ′′ locally by one equation. In other words,
if we denote by I ⊂ OU and J ⊂ OU the ideal sheaves of Z ⊂ U and Y ⊂ U ,
respectively, then I3 is the ideal sheaf of Z ′′ ⊂ U , and

J = (f) + I3

for some f ∈ OU . But Y ⊂ Z ′ implies that I2 ⊂ J , and hence I3 ⊂ IJ . It follows
that the image of f under the composition

J /I3 → J /IJ → J /mJ

is an OU -module generator, and J is principal by Nakayama’s lemma.
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At last we can complete the proof of Theorem 2.5.3. For each connected component
Z ⊂ ZPap(m)U we have now defined a closed subscheme Y ⊂ Z ′. By Lemma 2.5.5 it
is an effective Cartier divisor, and summing these Cartier divisors as Z varies over all
connected components yields an effective Cartier divisor YPap(m)U on U . Letting U
vary over an étale cover and applying étale descent defines an effective Cartier divisor
YPap(m) on SPap.

The Cartier divisor YPap(m) just defined agrees with 2ZPap(m) on SPap \ Sing.
This is clear from Lemma 2.5.4 and the definition of YPap(m). The uniqueness claim
follows from the normality of SPap, exactly as in the proof of Theorem 2.4.3.

2.6. Pullbacks of Cartier divisors. — After Theorem 2.4.3 we have two line bundles
ΩKra and ω

2 on SKra, which agree over the complement of the exceptional locus Exc.
We wish to pin down more precisely the relation between them.

Similarly, after Theorem 2.5.3 we have Cartier divisors YKra(m) and 2ZKra(m).
These agree on the complement of Exc, and again we wish to pin down more precisely
the relation between them.

Denote by π0(Sing) the set of connected components of the singular locus Sing ⊂
SPap. For each s ∈ π0(Sing) there is a corresponding irreducible effective Cartier
divisor

Excs = Exc×SPap
s ↪→ SKra

supported in a single characteristic dividing D. These satisfy

Exc =
⊔

s∈π0(Sing)

Excs.

Remark 2.6.1. — As Sing is a reduced 0-dimensional stack of finite type over Ok/d,
each s ∈ π0(Sing) can be realized as the stack quotient

s ∼= Gs\Spec(Fs)

for a finite field Fs of characteristic p | D acted on by a finite group Gs.

Fix a geometric point Spec(F)→ s, and set p = char(F). By mild abuse of notation
this geometric point will again be denoted simply by s. It determines a pair

(2.6.1) (A0,s, As) ∈ SPap(F),

and hence a positive definite hermitian Ok-module

Ls = HomOk
(A0,s, As)

as in (2.5.1). This hermitian lattice depends only on s ∈ π0(Sing), not on the choice
of geometric point above it.

Proposition 2.6.2. — For each s ∈ π0(Sing) the abelian varieties A0s and As are su-
persingular, and there is an Ok-linear isomorphism of p-divisible groups

(2.6.2) As[p
∞] ∼= A0s[p

∞]× · · · ×A0s[p
∞]︸ ︷︷ ︸

n times
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identifying the polarization on the left with the product polarization on the right. More-
over, the hermitian Ok-module Ls is self-dual of rank n.

Proof. — Certainly A0s is supersingular, as p is ramified in Ok ⊂ End(A0s).
Denote by p ⊂ Ok be the unique prime above p. Let W = W (F) be the Witt ring

of F, and let Fr ∈ Aut(W ) be the unique continuous lift of the p-power Frobenius
on F. Let D(W ) denote the covariant Dieudonné module of As, endowed with its
operators F and V satisfying FV = p = V F . The Dieudonné module is free of rank n
over Ok ⊗Z W , and the short exact sequence

0→ F 0HdR
1 (As)→ HdR

1 (As)→ Lie(As)→ 0

of F-modules is identified with

0→ V D(W )/pD(W )→ D(W )/pD(W )→ D(W )/V D(W )→ 0.

As D is odd, the element δ ∈ Ok fixed in § 1.7 satisfies ordp(δ) = 1. This implies
that

δ · D(W ) = V D(W ).

Indeed, by Theorem 2.3.2 the Lie algebra Lie(As) is annihilated by δ, and hence
δ · D(W ) ⊂ V D(W ). Equality holds as

dimF
(
D(W )/δ · D(W )

)
= n = dimF

(
D(W )/V D(W )

)
.

Denote by N ⊂ D(W ) the set of fixed points of the Fr-semilinear bijection

V −1 ◦ δ : D(W )→ D(W ).

It is a free Ok,p-module of rank n endowed with an isomorphism

D(W ) ∼= N ⊗Zp W

identifying V = δ ⊗ Fr−1. Moreover, the alternating form ψ on D(W ) induced by the
polarization on As has the form

ψ(n1 ⊗ w1, n2 ⊗ w2) = w1w2 · Trk/Q

(
h(n1, n2)

δ

)
for a perfect hermitian pairing h : N × N → Ok,p. By diagonalizing this hermitian
form, we obtain an orthogonal decomposition of N into rank one hermitian Ok,p-mod-
ules, and tensoring this decomposition with W yields a decomoposition of D(W ) as
a direct sum of principally polarized Dieudonné modules, each of height 2 and slope
1/2. This corresponds to a decomposition (2.6.2) on the level of p-divisible groups.

In particular, As is supersingular, and hence is isogenous to n copies of A0s. Using
the Noether-Skolem theorem, this isogeny may be chosen to be Ok-linear. It follows
first that Ls has Ok-rank n, and then that the natural map

Ls ⊗Z Zq ∼= HomOk
(A0s[q

∞], As[q
∞])

is an isomorphism of hermitian Ok,q-modules for every rational prime q. It is easy to
see, using (2.6.2) when q = p, that the hermitian module on the right is self-dual, and
hence the same is true for Ls ⊗Z Zq.
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The remainder of § 2.6 is devoted to proving the following result.

Theorem 2.6.3. — There is an isomorphism

ω
2 ∼= ΩKra ⊗O(Exc)

of line bundles on SKra, as well as an equality

2ZKra(m) = YKra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

of Cartier divisors.

Proof. — Recall from the proof of Theorem 2.4.3 the morphism

ω
−2

Ω
−1
Kra

Lie(A0)⊗2 ⊗ (Lie(A)/FA))⊗2
(2.4.3)

// Lie(A0)⊗2 ⊗ PKra,

whose restriction to SKra \ Exc is an isomorphism. If we view this morphism as a
global section

(2.6.3) σ ∈ H0(SKra,ω
2 ⊗Ω

−1
Kra),

then

(2.6.4) div(σ) =
∑

s∈π0(Sing)

`s(0) · Excs

for some integers `s(0) ≥ 0, and hence

(2.6.5) ω
2 ⊗Ω

−1
Kra
∼=

⊗
s∈π0(Sing)

O(Excs)
⊗`s(0).

We must show that each `s(0) = 1.
Similarly, suppose m > 0. It follows from Theorem 2.5.3 that

(2.6.6) 2ZKra(m) = YKra(m) +
∑

s∈π0(Sing)

`s(m) · Excs

for some integers `s(m). Moreover, it is clear from the construction of YKra(m)

that 2ZKra(m)− YKra(m) is effective, and so `s(m) ≥ 0. We must show that

`s(m) = #{x ∈ Ls : 〈x, x〉 = m}.

Fix s ∈ π0(Sing), and let Spec(F) → s, p = char(F), and (A0s, As) ∈ SPap(F) be
as in (2.6.1). Let W = W (F) be the Witt ring of F, and set W = Ok ⊗Z W . It is a
complete discrete valuation ring of absolute ramification degree 2. Fix a uniformizer
$ ∈ W. As p is odd, the quotient map

W →W/$W = F

admits canonical divided powers.
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Denote by D0 and D the Grothendieck-Messing crystals of A0s and As, respectively.
Evaluation of the crystals (5) along the divided power thickening W → F yields free
Ok ⊗ZW-modules D0(W) and D(W) endowed with alternating W-bilinear forms ψ0

and ψ, and Ok-linear isomorphisms

D0(W)/$D0(W) ∼= D0(F) ∼= HdR
1 (A0s)

and
D(W)/$D(W) ∼= D(F) ∼= HdR

1 (As).

The W -modules D0(W ) and D(W ) are canonically identified with the covariant
Dieudonné modules of A0s and As, respectively. The operators F and V on these
Dieudonné modules induce operators, denoted the same way, on

D0(W) ∼= D0(W )⊗W W, D(W) ∼= D(W )⊗W W.

For any elements y1, . . . , yk in an Ok ⊗Z W-module, let 〈y1, . . . , yk〉 be the
Ok ⊗ZW-submodule generated by them. Recall from § 1.7 the elements

ε, ε ∈ Ok ⊗ZW.

Lemma 2.6.4. — There is an Ok ⊗ZW-basis e0 ∈ D0(W) such that

F D0(W)
def
= 〈εe0〉 ⊂ D0(W)

is a totally isotropic W-module direct summand lifting the Hodge filtration on D0(F),
and such that V e0 = δe0.

Similarly, there is an Ok ⊗ZW-basis e1, . . . , en ∈ D(W) such that

F D(W)
def
= 〈εe1, εe2, . . . , εen〉 ⊂ D(W)

is a totally isotropic W-module direct summand lifting the Hodge filtration on D(F).
This basis may be chosen so that V ek+1 = δek, where the indices are understood
in Z/nZ, and also so that

ψ
(
〈ei〉, 〈ej〉

)
=

{
W if i = j,

0 otherwise.

Proof. — As in the proof of Proposition 2.6.2, we may identify

D0(W ) ∼= N0 ⊗Zp W

for some free Ok,p-module N0 of rank 1, in such a way that V = δ⊗Fr−1, and the al-
ternating form on D0(W ) arises as theW -bilinear extension of an alternating form ψ0

on N0. Any Ok,p-generator e0 ∈ N0 determines a generator of the Ok,p ⊗Zp W-module

D0(W) ∼= N0 ⊗Zp W,

(5) If p = 3, the divided powers on W → F are not nilpotent, and so we cannot evaluate the
usual Grothendieck-Messing crystals on this thickening. However, Proposition 2.6.2 implies that the
p-divisible groups of A0s and As are formal, and Zink’s theory of displays [54] can be used as a
substitute.
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which, using Remark 2.3.5 has the desired properties.
Now set N = N0 ⊕ · · · ⊕ N0 (n copies), so that, by Proposition 2.6.2, there is an

isomorphism
D(W ) ∼= N ⊗Zp W

identifying V = δ ⊗ Fr−1, and the alternating bilinear form on D(W ) arises from an
alternating form ψ on N . Let Zpn ⊂W be the ring of integers in the unique unramified
degree n extension of Qp, and fix an action

ι : Zpn → EndOk,p
(N)

in such a way that ψ(ι(α)x, y) = ψ(x, ι(α)y) for all α ∈ Zpn .
There is an induced decomposition

D(W ) ∼=
⊕

k∈Z/nZ

D(W )k,

where
D(W )k = {e ∈ D(W ) : ∀α ∈ Zpn , ι(α) · e = Frk(α) · e}

is free of rank one over Ok ⊗Z W . Now pick any Zpn -module generator e ∈ N , view
it as an element of D(W ), and let ek ∈ D(W )k be its projection to the kth summand.
This gives an Ok⊗ZW -basis e1, . . . , en ∈ D(W ), which determines an Ok⊗ZW-basis
of D(W) with the required properties.

By the Serre-Tate theorem and Grothendieck-Messing theory, the lifts of the Hodge
filtrations specified in Lemma 2.6.4 determine a lift

(2.6.7) (Ã0s, Ãs) ∈ SPap(W)

of the pair (A0s, As). These come with canonical identifications

HdR
1 (Ã0s) ∼= D0(W), HdR

1 (Ãs) ∼= D(W),

under which the Hodge filtrations correspond to the filtrations chosen in Lemma 2.6.4.
In particular, the Lie algebra of Ãs is

Lie(Ãs) ∼= D(W)/F D(W) = 〈e1, e2, . . . , en〉/〈εe1, εe2, . . . , εen〉.

The W-module direct summand

FÃs = 〈e2, . . . , en〉/〈εe2, . . . , εen〉

satisfies Krämer’s condition (§ 2.3), and so determines a lift of (2.6.7) to

(Ã0s, Ãs) ∈ SKra(W).

To summarize: starting from a geometric point Spec(F) → s, we have used
Lemma 2.6.4 to construct a commutative diagram

(2.6.8) Spec(F)

��

// Excs

��

// s

��

Spec(W) // SKra
// SPap.
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Lemma 2.6.5. — The pullback of the map (2.4.3) via Spec(W)→ SKra vanishes iden-
tically along the closed subscheme Spec(W/$W), but not along Spec(W/$2W).

Proof. — The W-submodule of

(2.6.9) Lie(Ãs) ∼= D(W)/〈εe1, εe2, . . . , εen〉

generated by e1 is Ok-stable. The action of Ok ⊗ZW on this W-line is via

Ok ⊗ZW
α⊗x 7→iW(α)x−−−−−−−−−→W

(where iW : Ok → W is the inclusion), and this map sends ε to a uniformizer of W;
see § 1.7. Thus the quotient map q : D(W)→ Lie(Ãs) satisfies q(εe1) = $q(e1) up to
multiplication by an element of W×. It follows that

Pe1⊗e1(e1 ∧ · · · ∧ en) = $ · ψ(εe1, e1) · q(e1) ∧ q(e2) ∧ · · · ∧ q(en)

up to scaling by W×.
We claim that ψ(εe1, e1) ∈ W×. Indeed, as q(e1) generates a W-module direct

summand of (2.6.9), there is some

x ∈ F D(W) = 〈εe1, εe2, . . . , εen〉 ⊂ D(W),

such that ψ(x, e1) ∈ W×. We chose our basis in Lemma 2.6.4 in such a way
that ψ(εei, e1) = 0 for i > 1. It follows that ψ(εe1, e1) is a unit, and hence the same
is true for ψ(εe1, e1) = ψ(e1, εe1) = −ψ(εe1, e1).

We have now proved that

Pe1⊗e1(e1 ∧ · · · ∧ en) = $ · q(e1) ∧ q(e2) ∧ · · · ∧ q(en)

up to scaling by W×, from which it follows that

Pe1⊗e1(e1 ∧ · · · ∧ en) ∈
∧n

Lie(Ãs)

is divisible by $, but not by $2.
The quotient

HdR
1 (Ãs)/εH

dR
1 (Ãs) ∼= D(W)/〈εe1, . . . , εen〉

is generated as a W-module by e1, . . . , en. From the calculation of the previous para-
graph, it now follows that Pe1⊗e1 ∈ PKra|Spec(W) is divisible by $ but not by $2. The
quotient

Lie(Ãs)/FÃs ∼= D(W)/〈εe1, e2, . . . , en〉

is generated as a W-module by the image of e1, and we at last deduce that

P ∈ Hom
(
(Lie(A)/FA)⊗2,PKra

)
|Spec(W)

is divisible by $ but not by $2.
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Recall the global section σ of (2.6.3). It follows immediately from Lemma 2.6.5
that its pullback via Spec(W)→ SKra has divisor Spec(W/$W), and hence

Spec(W)×SKra
div(σ) = Spec(W/$W).

Comparison with (2.6.4) proves both that `s(0) = 1, and that

(2.6.10) Spec(W)×SKra
Excs = Spec(W/$W).

Recalling (2.6.5), this completes the proof that

ω
2 ∼= ΩKra ⊗O(Exc).

It remains to prove the second claim of Theorem 2.6.3. Given any x ∈ Ls =

HomOk
(A0s, As), denote by k(x) the largest integer such that x lifts to a morphism

Ã0s ⊗W W/($k(x))→ Ãs ⊗W W/($k(x)).

Lemma 2.6.6. — As Cartier divisors on Spec(W), we have

ZKra(m)×SKra
Spec(W) =

∑
x∈Ls
〈x,x〉=m

Spec(W/$k(x)W).

Proof. — Each x ∈ Ls with 〈x, x〉 = m determines a geometric point

(2.6.11) (A0z, Az, x) ∈ ZKra(m)(F)

and surjective morphisms

OSKra,x

xx ##

OZKra(m),x W,

where OZKra(m),x is the étale local ring at (2.6.11), OSKra,x is the étale local ring at
the point below it, and the arrow on the right is induced by the map Spec(W)→ SKra

of (2.6.8). There is an induced isomorphism of W-schemes

OZKra(m),x ⊗OSKra,x
W ∼=W/($k(x))

and the claim follows by summing over x.

Lemma 2.6.7. — As Cartier divisors on Spec(W), we have

YKra(m)×SKra Spec(W) =
∑
x∈Ls
〈x,x〉=m

Spec(W/$2k(x)−1W).

Proof. — Each x ∈ Ls = HomOk
(A0s, As) with 〈x, x〉 = m induces a morphism of

crystals D0 → D, and hence a map

D0(W)
x−→ D(W)
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respecting the F and V operators. By Grothendieck-Messing deformation theory, the
integer k(x) is characterized as the largest integer such that the composition

F 0HdR
1 (Ã0s)

⊂
// HdR

1 (Ã0s)
x // HdR

1 (Ãs)
q

// Lie(Ãs)

εD0(W)
⊂

// D0(W)
x // D(W) // D(W)

〈εe1,εe2,...,εen〉

vanishes modulo $k(x). In other words the composition

HdR
1 (Ã0s)

x◦ε−−→ HdR
1 (Ãs)

q−→ Lie(Ãs)

vanishes modulo $k(x), but not modulo $k(x)+1.
Using the bases of Lemma 2.6.4, we expand

x(e0) = a1e1 + · · ·+ anen

with a1, . . . , an ∈ Ok ⊗ZW. The condition that x respects V implies that a1 = · · · = an.
Let us call this common value a, so that

q(x(εe0)) = ε · q(ae1 + · · ·+ aen) = aε · q(e1)

in Lie(Ãs). By the previous paragraph, this element is divisible by $k(x) but not
by $k(x)+1, and so

(2.6.12) q(aεe1) = $k(x)q(e1)

up to scaling by W×.
On the other hand, the submodule of Lie(Ãs) generated by q(e1) is isomorphic

to (Ok ⊗ZW)/〈ε〉 ∼=W, and ε acts on this quotient by a uniformizer in W. Thus

(2.6.13) εq(e1) = $q(e1)

up to scaling by W×.
Combining (2.6.12) and (2.6.13) shows that, up to scaling by W×,

aε = $k(x)−1ε

in the quotient (Ok ⊗Z W)/〈ε〉. By the injectivity of the quotient map
〈ε〉 → (Ok ⊗Z W)/〈ε〉, this same equality holds in 〈ε〉 ⊂ Ok ⊗Z W. Using this
and (2.6.12), we compute

Px(e0)⊗x(e0)(e1 ∧ · · · ∧ en) = ψ(aεe1, e1) · q(aεe1) ∧ q(e2) ∧ · · · ∧ q(en)

= $2k(x)−1 · ψ(εe1, e1) · q(e1) ∧ q(e2) ∧ · · · ∧ q(en)

= $2k(x)−1 · q(e1) ∧ q(e2) ∧ · · · ∧ q(en),

up to scaling by W×. Here, as in the proof of Lemma 2.6.5, we have used
ψ(εe1, e1) ∈ W×.
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This calculation shows that the composition

HdR
1 (Ã0s)

⊗2 x⊗x
// HdR

1 (Ãs)
⊗2 P // P|Spec(W)

vanishes modulo $2k(x)−1, but not modulo $2k(x), and the remainder of the proof
is the same as that of Lemma 2.6.6: comparing with the definition of YKra(m), see
especially (2.5.3), shows that

OYKra(m),x ⊗OSKra,x
W ∼=W/($2k(x)−1),

and summing over all x proves the claim.

Combining Lemmas 2.6.6 and 2.6.7 shows that

Spec(W)×SKra

(
2ZKra(m)− YKra(m)

)
=

∑
x∈Ls
〈x,x〉=m

Spec(W/$W)

as Cartier divisors on Spec(W). We know from (2.6.10) that

Spec(W)×SKra
Exct =

{
Spec(W/$W) if t = s,

0 if t 6= s

and comparison with (2.6.6) shows that

`s(m) = #{x ∈ Ls : 〈x, x〉 = m},

completing the proof of Theorem 2.6.3.

3. Toroidal compactification

In this section we describe canonical toroidal compactifications

SKra
//

��

S∗Kra

��

SPap
// S∗Pap

and the structure of their formal completions along the boundary. Using this descrip-
tion, we define Fourier-Jacobi expansions of modular forms.

The existence of toroidal compactifications with reasonable properties is not a
new result. In fact the proof of Theorem 3.7.1, which asserts the existence of good
compactifications of SPap and SKra, simply refers to [24]. Of course [loc. cit.] is itself
a very modest addition to the established literature [17, 40, 41, 49]. Because of this,
the reader is perhaps owed a few words of explanation as to why § 3 is so long.

It is well-known that the boundary charts used to construct toroidal compactifica-
tions of PEL-type Shimura varieties are themselves moduli spaces of 1-motives (or,
what is nearly the same thing, degeneration data in the sense of [17]). This moduli
interpretation is explained in § 3.3.
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It is a special feature of our particular Shimura variety Sh(G,D) that the bound-
ary charts have a second, very different, moduli interpretation. This second moduli
interpretation is explained in § 3.4. In some sense, the main result of § 3 is not Theo-
rem 3.7.1 at all, but rather Proposition 3.4.4, which proves the equivalence of the two
moduli problems.

The point is that our goal is to eventually study the integrality and rationality
properties of Fourier-Jacobi expansions of Borcherds products on the integral models
of Sh(G,D). A complex analytic description of these Fourier-Jacobi expansions can be
deduced from [32], but it is not a priori clear how to deduce integrality and rationality
properties from these purely complex analytic formulas.

To do so, we will exploit the fact that the formulas of [32] express the Fourier-Jacobi
coefficients in terms of the classical Jacobi theta function. The Jacobi theta function
can be viewed as a section of a line bundle on the universal elliptic curve fibered over
the modular curve, and when interpreted in this way it has known integrality and
rationality properties (this is explained in § 5.1).

By converting the moduli interpretation of the boundary charts from 1-motives to
an interpretation that makes explicit reference to the universal elliptic curve and the
line bundles that live over it, the integrality and rationality properties of the Fourier-
Jacobi coefficients can be deduced, ultimately, from those of the classical Jacobi theta
function.

3.1. Cusp label representatives. — Recall that W0 and W are k-hermitian spaces of
signatures (1, 0) and (n− 1, 1), respectively, with n ≥ 2. Tautologically, the subgroup

G ⊂ GU(W0)×GU(W )

acts on both W0 and W . If J ⊂W is an isotropic k-line, its stabilizer P = StabG(J)

in G is a parabolic subgroup. This establishes a bijection between isotropic k-lines
inW and proper parabolic subgroups of G. If n > 2 then such isotropic k-lines always
exist.

Definition 3.1.1. — A cusp label representative for (G,D) is a pair Φ = (P, g) in which
g ∈ G(Af ) and P ⊂ G is a parabolic subgroup. If P = StabG(J) for an isotropic k-line
J ⊂W , we call Φ a proper cusp label representative. If P = G we call Φ an improper
cusp label representative.

For each cusp label representative Φ = (P, g) there is a distinguished normal sub-
group QΦ C P . If P = G we simply take QΦ = G. If P = StabG(J) for an isotropic
k-line J ⊂W then, following the recipe of [47, § 4.7], we define QΦ as the fiber product

(3.1.1) QΦ
νΦ //

��

Resk/QGm

a 7→(a,Nm(a),a,id)

��

P // GU(W0)×GL(J)×GU(J⊥/J)×GL(W/J⊥).
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The morphism G → GU(W ) restricts to an injection QΦ ↪→ GU(W ), as the action
of QΦ on J⊥/J determines its action on W0.

Let K ⊂ G(Af ) be the compact open subgroup (2.1.3). Any cusp label represen-
tative Φ = (P, g) determines compact open subgroups

KΦ = gKg−1 ∩QΦ(Af ), K̃Φ = gKg−1 ∩ P (Af ),

and a finite group

(3.1.2) ∆Φ =
(
P (Q) ∩QΦ(Af )K̃Φ

)
/QΦ(Q).

Definition 3.1.2. — Two cusp label representatives Φ = (P, g) and Φ′ = (P ′, g′) are
K-equivalent if there exist γ ∈ G(Q), h ∈ QΦ(Af ), and k ∈ K such that

(P ′, g′) = (γPγ−1, γhgk).

One may easily verify that this is an equivalence relation. Obviously, there is a unique
K-equivalence class of improper cusp label representatives.

From now through § 3.6, we fix a proper cusp label representative Φ = (P, g),
with P ⊂ G the stabilizer of an isotropic k-line J ⊂ W . There is an induced weight
filtration wtiW ⊂W defined by

0 ⊂ J ⊂ J⊥ ⊂ W

wt−3W ⊂ wt−2W ⊂ wt−1W ⊂ wt0W

and an induced weight filtration on V = Homk(W0,W ) defined by

Homk(W0, 0) ⊂ Homk(W0, J) ⊂ Homk(W0, J
⊥) ⊂ Homk(W0,W )

wt−2V ⊂ wt−1V ⊂ wt0V ⊂ wt1V .

It is easy to see that wt−1V is an isotropic k-line, whose orthogonal with respect to
(2.1.5) is wt0V . Denote by griW = wtiW/wti−1W the graded pieces, and similarly
for V .

The Ok-lattice ga ⊂W determines an Ok-lattice

gri(ga) =
(
ga ∩ wtiW

)
/
(
ga ∩ wti−1W

)
⊂ griW.

The middle graded piece gr−1(ga) is endowed with a positive definite self-dual hermi-
tian form, inherited from the self-dual hermitian form on ga appearing in the proof
of Proposition 2.1.1. The outer graded pieces

(3.1.3) m = gr−2(ga), n = gr0(ga)
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are projective rank one Ok-modules (6), endowed with a perfect Z-bilinear pairing
m⊗Z n→ Z inherited from the perfect symplectic form on ga appearing in the proof
of Proposition 2.2.1.

Remark 3.1.3. — The isometry class of ga as a hermitian lattice is determined by the
isomorphism classes of m and n as Ok-modules and the isometry class of gr−1(ga) as
a hermitian lattice. This follows from the proof of [24, Proposition 2.6.3], which shows
that one can find a splitting (7)

ga ∼= gr−2(ga)⊕ gr−1(ga)⊕ gr0(ga),

in such a way that the outer summands are totally isotropic, and each is orthogonal
to the middle summand.

Exactly as in (2.1.4), there is a k-conjugate linear isomorphism

Homk(W0, gr−1W )
x7→x∨−−−−→ Homk(gr−1W,W0).

If we define

L0 = HomOk
(ga0, gr−1(ga))(3.1.4)

Λ0 = HomOk
(gr−1(ga), ga0),

then x 7→ x∨ restricts to an Ok-conjugate linear isomorphism L0
∼= Λ0. These are,

in a natural way, positive definite self-dual hermitian lattices. For x1, x2 ∈ L0 the
hermitian form on L0 is defined, as in (2.1.5), by

〈x1, x2〉 = x∨1 ◦ x2 ∈ EndOk
(ga0) ∼= Ok,

while the hermitian form on Λ0 is defined by

〈x∨2 , x∨1 〉 = 〈x1, x2〉.

Lemma 3.1.4. — Two proper cusp label representatives Φ and Φ′ are K-equivalent if
and only if Λ0

∼= Λ′0 as hermitian Ok-modules and n ∼= n′ as Ok-modules. Moreover,
the finite group (3.1.2) satisfies

(3.1.5) ∆Φ
∼= U(Λ0)×GLOk

(n).

Proof. — The first claim is an elementary exercise, left to the reader. For the second
claim we only define the isomorphism (3.1.5), and again leave the details to the reader.
The group P (Q) acts on both W0 and W , preserving their weight filtrations, and so
acts on both the hermitian space Homk(gr−1W,W0) and the k-vector space gr0W .
The subgroup P (Q) ∩QΦ(Af )K̃Φ preserves the lattices

Λ0 ⊂ Homk(gr−1W,W0)

and n ⊂ gr0W , inducing (3.1.5).

(6) In fact m ∼= n as Ok-modules, but identifying them can only lead to confusion.
(7) This uses our standing assumption that k has odd discriminant.
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3.2. Mixed Shimura varieties. — The subgroup QΦ(R) ⊂ G(R) acts on

DΦ(W ) = {k-stable R-planes y ⊂W (R) : W (R) = J⊥(R)⊕ y},

and so also acts on
DΦ = D(W0)×DΦ(W ).

The hermitian domain of (2.1.2) satisifies D(W ) ⊂ DΦ(W ), and hence there is a
canonical QΦ(R)-equivariant inclusion D ⊂ DΦ.

The mixed Shimura variety

(3.2.1) Sh(QΦ,DΦ)(C) = QΦ(Q)\DΦ ×QΦ(Af )/KΦ

admits a canonical model Sh(QΦ,DΦ) over k by the general results of [47]. By rewrit-
ing the double quotient as

Sh(QΦ,DΦ)(C) ∼= QΦ(Q)\DΦ ×QΦ(Af )K̃Φ/K̃Φ,

we see that (3.2.1) admits an action of the finite group ∆Φ of (3.1.2), induced by the
action of P (Q)∩QΦ(Af )K̃Φ on both factors of DΦ×QΦ(Af )K̃Φ. This action descends
to an action on the canonical model.

Proposition 3.2.1. — The morphism νΦ of (3.1.1) induces a surjection

Sh(QΦ,DΦ)(C)
(z,h)7→νΦ(h)−−−−−−−−→ k×\k̂×/Ô×k

with connected fibers. This map is ∆Φ-equivariant, where ∆Φ acts trivially on the
target. In particular, the number of connected components of (3.2.1) is equal to the
class number of k, and the same is true of its orbifold quotient by the action of ∆Φ.

Proof. — The space DΦ is connected, and the kernel of νΦ : QΦ → Resk/QGm is
unipotent (so satisfies strong approximation). Therefore

π0

(
Sh(QΦ,DΦ)(C)

) ∼= QΦ(Q)\QΦ(Af )/KΦ
∼= k×\k̂×/νΦ(KΦ),

and an easy calculation shows that νΦ(KΦ) = Ô×k .

It will be useful to have other interpretations of DΦ.

Remark 3.2.2. — Any point y ∈ DΦ(W ) determines a mixed Hodge structure on W
whose weight filtration wtiW ⊂ W was defined above, and whose Hodge filtration is
defined exactly as in Remark 2.1.3. As in [46, p. 64] or [47, Proposition 1.2] there is an
induced bigrading W (C) =

⊕
W (p,q), and this bigrading is induced by a morphism

SC → GU(W )C taking values in the stabilizer of J(C). The product of this morphism
with the morphism SC → GU(W0)C of Remark 2.1.3 defines a map z : SC → QΦC,
and this realizes DΦ ⊂ Hom(SC, QΦC).

Remark 3.2.3. — Imitating the construction of Remark 2.1.2 identifies

DΦ
∼=
{
w ∈ εV (C) : V (C) = wt0V (C)⊕ Cw ⊕ Cw

}
/C× ⊂ P(εV (C))

as an open subset of projective space.
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3.3. The first moduli interpretation. — Using the pair (Λ0, n) defined in § 3.1, we now
construct a smooth integral model of the mixed Shimura variety (3.2.1). Following
the general recipes of the theory of arithmetic toroidal compactifications, as in [17,
24, 42, 40], this integral model will be defined as the top layer of a tower of morphisms

CΦ → BΦ → AΦ → Spec(Ok),

smooth of relative dimensions 1, n− 2, and 0, respectively.
Recall from § 2.3 the smooth Ok-stack

M(1,0) ×Ok
M(n−2,0) → Spec(Ok)

of relative dimension 0 parametrizing certain pairs (A0, B) of polarized abelian
schemes over S with Ok-actions. The étale sheaf HomOk

(B,A0) on S is locally
constant; this is a consequence of [11, Theorem 5.1].

Define AΦ as the moduli space of triples (A0, B, %) over Ok-schemes S, in which
(A0, B) is an S-point ofM(1,0) ×Ok

M(n−2,0), and

% : Λ0
∼= HomOk

(B,A0)

is an isomorphism of étale sheaves of hermitian Ok-modules.
Define BΦ as the moduli space of quadruples (A0, B, %, c) over Ok-schemes S, in

which (A0, B, %) is an S-point of AΦ, and c : n → B is an Ok-linear homomorphism
of group schemes over S. In other words, if (A0, B, %) is the universal object over AΦ,
then

BΦ = HomOk
(n, B).

Suppose we fix µ, ν ∈ n. For any scheme U and any morphism U → BΦ, there is
a corresponding quadruple (A0, B, %, c) over U . Evaluating the morphism of U -group
schemes c : n → B at µ and ν determines U -points c(µ), c(ν) ∈ B(U), and hence
determines a morphism of U -schemes

U
c(µ)×c(ν)−−−−−−→ B ×B ∼= B ×B∨.

Denote by L(µ, ν)U the pullback of the Poincaré bundle via this morphism. As U
varies, these line bundles are obtained as the pullback of a single line bundle L(µ, ν)

on BΦ.
It follows from standard bilinearity properties of the Poincaré bundle that L(µ, ν)

depends, up to canonical isomorphism, only on the image of µ⊗ ν in

SymΦ = Sym2
Z(n)/

〈
(xµ)⊗ ν − µ⊗ (xν) : x ∈ Ok, µ, ν ∈ n

〉
.

Thus we may associate to every χ ∈ SymΦ a line bundle L(χ) on BΦ, and there are
canonical isomorphisms

L(χ)⊗ L(χ′) ∼= L(χ+ χ′).

Our assumption that D is odd implies that SymΦ is a free Z-module of rank one.
Moreover, there is positive cone in SymΦ ⊗Z R uniquely determined by the condition
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µ⊗µ ≥ 0 for all µ ∈ n. Thus all of the line bundles L(χ) are powers of the distinguished
line bundle

(3.3.1) LΦ = L(χ0)

determined by the unique positive generator χ0 ∈ SymΦ.
At last, define BΦ-stacks

CΦ = Iso(LΦ,OBΦ), C∗Φ = Hom(LΦ,OBΦ).

In other words, C∗Φ is the total space of the line bundle L−1
Φ , and CΦ is the complement

of the zero section BΦ ↪→ C∗Φ. In slightly fancier language,

CΦ = SpecBΦ

(⊕
`∈Z
L`Φ
)
, C∗Φ = SpecBΦ

(⊕
`≥0

L`Φ
)
,

and the zero section BΦ ↪→ C∗Φ is defined by the ideal sheaf
⊕

`>0 L`Φ.

Remark 3.3.1. — When n = 2 the situation is a bit degenerate. In this case

BΦ = AΦ =M(1,0),

LΦ is the trivial bundle, and CΦ → BΦ is the trivial Gm-torsor.

Remark 3.3.2. — Using the isomorphism of Lemma 3.1.4, the group ∆Φ acts on BΦ

via
(u, t) • (A0, B, %, c) = (A0, B, % ◦ u−1, c ◦ t−1),

for (u, t) ∈ U(Λ0) × GLOk
(n). The line bundle LΦ is invariant under ∆Φ, and hence

the action of ∆Φ lifts to both CΦ and C∗Φ.

Proposition 3.3.3. — There is a ∆Φ-equivariant isomorphism

Sh(QΦ,DΦ) ∼= CΦ/k.

Proof. — This is a special case of the general fact that mixed Shimura varieties
appearing at the boundary of PEL Shimura varieties are themselves moduli spaces
of 1-motives endowed with polarizations, endomorphisms, and level structure. The
core of this is Deligne’s theorem [14, § 10] that the category of 1-motives over C is
equivalent to the category of integral mixed Hodge structures of types (−1,−1),
(−1, 0), (0,−1), (0, 0). See [42], where this is explained for Siegel modular varieties,
and also [12]. A good introduction to 1-motives is [2].

To make this a bit more explicit in our case, denote by XΦ the Ok-stack whose func-
tor of points assigns to an Ok-scheme S the groupoid XΦ(S) of principally polarized
1-motives A consisting of diagrams

n

��

0 // m⊗Z Gm // B // B // 0
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in which B ∈M(n−2,0)(S), B is an extension of B by the rank two torus m⊗Z Gm in
the category of group schemes with Ok-action, and the arrows are morphisms of fppf
sheaves of Ok-modules.

To explain what it means to have a principal polarization of such a 1-motive A, set
m∨ = Hom(m,Z) and n∨ = Hom(n,Z), and recall from [14, § 10] that A has a dual
1-motive A∨ consisting of a diagram

m∨

��

0 // n∨ ⊗Z Gm // B∨ // B∨ // 0.

A principal polarization is an Ok-linear isomorphism B ∼= B∨ compatible with the
given polarization B ∼= B∨, and with the isomorphisms m ∼= n∨ and n ∼= m∨ deter-
mined by the perfect pairing m⊗Z n→ Z defined after (3.1.3).

Using the “description plus symétrique” of 1-motives [14, (10.2.12)], the Ok-stack CΦ
defined above can be identified with the moduli space whose S-points are triples
(A0, A, %) in which

— (A0, A) ∈M(1,0)(S)×XΦ(S),
— % : Λ0

∼= HomOk
(B,A0) is an isomorphism of étale sheaves of hermitian

Ok-modules, where B ∈M(n−2,0)(S) is the abelian scheme part of A.
To verify that Sh(QΦ,DΦ) has the same functor of points, one uses Remark 3.2.2

to interpret Sh(QΦ,DΦ)(C) as a moduli space of mixed Hodge structures on W0 and
W , and uses the theorem of Deligne cited above to interpret these mixed Hodge
structures as 1-motives. This defines an isomorphism Sh(QΦ,DΦ)(C) ∼= CΦ(C). The
proof that it descends to the reflex field is identical to the proof for Siegel mixed
Shimura varieties [42].

We remark in passing that any triple (A0, A, %) as above automatically satisfies
(2.2.4) for every prime `. Indeed, both sides of (2.2.4) are now endowed with weight
filtrations, analogous to the weight filtration on Homk(W0,W ) defined in § 3.1. The
isomorphism % induces an isomorphism (as hermitian Ok,`-lattices) between the gr0

pieces on either side. The gr−1 and gr1 pieces have no structure other then projective
Ok,`-modules of rank 1, so are isomorphic. These isomorphisms of graded pieces imply
the existence of an isomorphism (2.2.4), exactly as in Remark 3.1.3.

3.4. The second moduli interpretation. — In order to make explicit calculations, it
will be useful to interpret the moduli spaces

CΦ → BΦ → AΦ → Spec(Ok)

in a different way.
Suppose E → S is an elliptic curve over any base scheme, and denote by PE the

Poincaré bundle on
E ×S E ∼= E ×S E∨.
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If U is any S-scheme and a, b ∈ E(U), we obtain an OU -module PE(a, b) by pulling
back the Poincare bundle via

U
(a,b)−−−→ E ×S E ∼= E ×S E∨.

The notation is intended to remind the reader of the bilinearity properties of the
Poincaré bundle, as expressed by canonical OU -module isomorphisms

PE(a+ b, c) ∼= PE(a, c)⊗ PE(b, c)(3.4.1)

PE(a, b+ c) ∼= PE(a, b)⊗ PE(a, c)

PE(a, b) ∼= PE(b, a),

along with PE(e, b) ∼= OU ∼= PE(a, e). Here e ∈ E(U) is the zero section.
Let E →M(1,0) be the universal elliptic curve with complex multiplication by Ok.

Its Poincaré bundle satisfies, for all α ∈ Ok, the additional relation PE(αa, b) ∼=
PE(a, αb).

Recall the positive definite self-dual hermitian lattice L0 of (3.1.4). Using Serre’s
tensor construction, we define an abelian scheme

(3.4.2) E ⊗ L0 = E ⊗Ok
L0

over M(1,0). As explained in detail in [1], the principal polarization on E and the
hermitian form on L0 can be combined to define a principal polarization on E ⊗ L0,
and we denote by PE⊗L0 the Poincaré bundle on

(E ⊗ L0)×M(1,0)
(E ⊗ L0) ∼= (E ⊗ L0)×M(1,0)

(E ⊗ L0)∨.

The Poincaré bundle PE⊗L0
can be expressed in terms of PE . If U is a scheme, a

morphism
U → (E ⊗ L0)×M(1,0)

(E ⊗ L0)

is given by a pair of U -valued points

c =
∑

si ⊗ xi ∈ E(U)⊗ L0, c′ =
∑

s′j ⊗ x′j ∈ E(U)⊗ L0,

and the pullback of PE⊗L0
to U is

PE⊗L0
(c, c′) =

⊗
i,j

PE(〈xi, x′j〉si, s′j).

Define QE⊗L0 to be the line bundle on E ⊗ L0 whose restriction to the U -valued
point c =

∑
si ⊗ xi is

(3.4.3) QE⊗L0
(c) =

⊗
i<j

PE(〈xi, xj〉si, sj)⊗
⊗
i

PE(γ〈xi, xi〉si, si),

where

γ =
1 + δ

2
∈ Ok.
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It is related to PE⊗L0 by canonical isomorphisms

PE⊗L0(a, b) ∼= QE⊗L0(a+ b)⊗QE⊗L0(a)−1 ⊗QE⊗L0(b)−1(3.4.4)

PE⊗L0
(a, a) ∼= QE⊗L0

(a)⊗2.

for all U -valued points a, b ∈ E(U)⊗ L0.

Remark 3.4.1. — As in the constructions of [40, § 1.3.2] or [44, § 6.2], the line bundle
QE⊗L0

determines a morphism E ⊗ L0 → (E ⊗ L0)∨. The relations (3.4.4) amount
to saying that this morphism is the principal polarization constructed in [1].

Remark 3.4.2. — The line bundle PE⊗L0(δa, a) is canonically trivial. This follows by
comparing

PE⊗L0
(γa, a)⊗2 ∼= PE⊗L0

(a, a)⊗ PE⊗L0
(δa, a)

with
PE⊗L0

(γa, a)⊗2 ∼= PE⊗L0
(γa, a)⊗ PE⊗L0

(γa, a) ∼= PE⊗L0
(a, a).

Remark 3.4.3. — In the slightly degenerate case of n = 2, E ⊗L0 is the trivial group
scheme overM(1,0), and PE⊗L0

is the trivial bundle onM(1,0).

Proposition 3.4.4. — As above, let E → M(1,0) be the universal object. There are
canonical isomorphisms

CΦ //

∼=
��

BΦ
//

∼=
��

AΦ

∼=
��

Iso(QE⊗L0 ,OE⊗L0) // E ⊗ L0
//M(1,0),

and the middle vertical arrow identifies LΦ
∼= QE⊗L0

.

Proof. — Define a morphism AΦ →M(1,0) by sending a triple (A0, B, %) to the CM
elliptic curve

(3.4.5) E = HomOk
(n, A0).

To show that this map is an isomorphism we will construct the inverse.
If S is any Ok-scheme and E ∈ M(1,0)(S), we may define (A0, B, %) ∈ AΦ(S) by

setting
A0 = E ⊗Ok

n, B = HomOk
(Λ0, A0),

and taking for % : Λ0
∼= HomOk

(B,A0) the tautological isomorphism. The principal
polarization on B is defined using the Ok-linear isomorphism

A0 ⊗Ok
L0

a⊗x7→〈 . ,x∨〉a−−−−−−−−−→ HomOk
(Λ0, A0)

and the principal polarization on A0 ⊗Ok
L0 constructed in [1], exactly as in the

discussion following (3.4.2). The construction E 7→ (A0, B, %) is inverse to the above
morphism AΦ →M(1,0).
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Now identify AΦ
∼=M(1,0) using the above isomorphism, and denote by (A0, B, %)

and E the universal objects on the source and target. They are related by canonical
isomorphisms

(3.4.6) BΦ = HomOk
(n, B)

HomOk
(n⊗Ok

Λ0, A0)

∼=
44

∼=
**

HomOk
(Λ0, E).

Combining this with the Ok-linear isomorphism

E ⊗ L0
a⊗x 7→〈 . ,x∨〉a−−−−−−−−−→ HomOk

(Λ0, E)

defines BΦ
∼= E⊗L0. All that remains is to prove that this isomorphism identifies LΦ

with QE⊗L0
, which amounts to carefully keeping track of the relations between the

three Poincaré bundles PB , PE , and PA0
.

Any fractional ideal b ⊂ k admits a unique positive definite self-dual hermitian
form, given explicitly by 〈b1, b2〉 = b1b2/N(b). It follows that any rank one projec-
tive Ok-module admits a unique positive definite self-dual hermitian form. For the
Ok-module HomOk

(n,Ok), this hermitian form is

〈`1, `2〉 = `1(µ)`2(ν) + `1(ν)`2(µ),

where µ⊗ ν = χ0 ∈ SymΦ is the positive generator appearing in (3.3.1).
The relation (3.4.5) implies a relation between the line bundles PE and PA0

. If U is
any AΦ-scheme and we are given points

s, s′ ∈ E(U) = HomOk
(n, A0U )

of the form s = `(·)a and s′ = `′(·)a′ with `, `′ ∈ HomOk
(n,Ok) and a, a′ ∈ A0(U),

then

PE(s, s′) ∼= PA0

(
〈`, `′〉a, a′

)
PE(γs, s) ∼= PA0

(
`(µ)a, `(ν)a

)
.

Similarly, the isomorphism B ∼= HomOk
(Λ0, A0) implies a relation between PB and

PA0
. If U is an S-scheme, a morphism U → B ×AΦ

B is given by a pair of points

b, b′ ∈ B(U) = HomOk
(Λ0, A0U )

of the form b = 〈., λ〉a and b′ = 〈., λ′〉a′ with λ, λ′ ∈ Λ0 and a, a′ ∈ A0(U). The
pullback of PB to U is the line bundle

PB(b, b′) = PA0
(a, 〈λ, λ′〉a′).
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Using the isomorphisms (3.4.6), a point c ∈ BΦ(U) admits three different interpre-
tations. In one of them, c has the form

c =
∑

`i(·)〈., λi〉ai ∈ HomOk
(n⊗Ok

Λ, A0U ).

By setting

bi = 〈., λi〉ai ∈ HomOk
(Λ0, A0U ) = B(U)

si = `i(·)ai ∈ HomOk
(n, A0U ) = E(U),

we find the other two interpretations

c =
∑

`i(·)bi ∈ HomOk
(n, BU )

c =
∑
〈., λi〉si ∈ HomOk

(Λ0, EU ).

The above relations between PB , PE , and PA0
imply

PB(c(µ), c(ν)) ∼=
⊗
i,j

PB(`i(µ)bi, `j(ν)bj)

∼=
⊗
i,j

PA0
(`i(µ)ai, 〈λi, λj〉`j(ν)aj)

∼=
⊗
i<j

PA0
(〈`i, `j〉ai, 〈λi, λj〉aj)⊗

⊗
i

PA0
(`i(µ)ai, `i(ν)〈λi, λi〉ai)

∼=
⊗
i<j

PE(si, 〈λi, λj〉sj)⊗
⊗
i

PE(γsi, 〈λi, λi〉si).

Now write λi = x∨i with xi ∈ L0, and use the relation

PE(si, 〈λi, λj〉sj) = PE(〈λj , λi〉si, sj) = PE(〈xi, xj〉si, sj)

to obtain an isomorphism PB(c(µ), c(ν)) ∼= QE⊗L0(c). The line bundle on the left
is precisely the pullback of LΦ via c, and letting c vary we obtain an isomorphism
LΦ
∼= QE⊗L0

.

3.5. The line bundle of modular forms. — We now define a line bundle of weight
one modular forms on our mixed Shimura variety, analogous to the one on the pure
Shimura variety defined in § 2.4.

The holomorphic line bundle ω
an on D defined in § 2.4 admits a canonical extension

to
DΦ = D(W0)×DΦ(W ),

which we denote by ω
an
Φ . Indeed, recalling that D(W0) = {y0} is a one-point set,

an element z ∈ DΦ is represented by a pair (y0, y) in which y is a k-stable R-plane
in W (R) such that W (R) = J⊥(R)⊕ y. The fiber of ω

an
Φ at z is the line

HomC(W0(C)/εW0(C),prε(y)) ⊂ εV (C),

exactly as in Remark 2.1.2 and (2.4.1).
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If we embed DΦ into projective space over εV (C) as in Remark 3.2.3, then ω
an
Φ is

simply the restriction of the tautological bundle. There is an obvious action of QΦ(R)

on the total space of ω
an
Φ , lifting the natural action on DΦ, and so ω

an
Φ determines a

holomorphic line bundle on the complex orbifold Sh(QΦ,DΦ)(C).
As in § 2.4, the holomorphic line bundle ω

an
Φ is algebraic and descends to the canon-

ical model Sh(QΦ,DΦ). In fact, it admits a canonical extension to the integral model
CΦ, as we now explain.

Recalling the Ok-modules m and n of (3.1.3), define rank two vector bundles on AΦ

by

M = m⊗Z OAΦ
, N = n⊗Z OAΦ

.

Each is locally free of rank one over Ok ⊗Z OAΦ
, and the perfect pairing between m

and n defined after (3.1.3) induces a perfect bilinear pairing M ⊗ N → OAΦ . Using
the almost idempotents ε, ε ∈ Ok ⊗Z OAΦ

of § 1.7, there is an induced isomorphism
of line bundles

(M/εM)⊗ (εN) ∼= OAΦ
.

Recalling that AΦ carries over it a universal triple (A0, B, %), in which A0 is an
elliptic curve with Ok-action, we now define a line bundle on AΦ by

ωΦ = Hom(Lie(A0), εN),

or, equivalently,

ω
−1
Φ = Lie(A0)⊗OAΦ

M/εM.

Denote in the same way its pullback to any step in the tower

C∗Φ → BΦ → AΦ.

The above definition of ωΦ is a bit unmotivated, and so we explain why ωΦ is
analogous to the line bundle ω on SKra defined in § 2.4. Recall from the proof of
Proposition 3.3.3 that CΦ carries over it a universal 1-motive A. This 1-motive has
a de Rham realization HdR

1 (A), defined as the Lie algebra of the universal vector
extension of A, as in [14, (10.1.7)]. It is a rank 2n-vector bundle on CΦ, locally free of
rank n over Ok ⊗Z OCΦ , and sits in a diagram of vector bundles

0

��

0

��

F 0HdR
1 (B)

��

M

��

0 // F 0HdR
1 (A) //

��

HdR
1 (A) // Lie(A) //

��

0

N

��

Lie(B)

��

0 0,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



58 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

with exact rows and columns. The polarization on A induces a perfect symplectic
form on HdR

1 (A). This induces a perfect pairing

(3.5.1) F 0HdR
1 (A)⊗ Lie(A)→ OCΦ

as in (2.2.1), which is compatible (in the obvious sense) with the pairings

F 0HdR
1 (B)⊗ Lie(B)→ OCΦ

and N⊗M→ OCΦ that we already have.
The signature condition on B implies that εF 0HdR

1 (B) = 0 and εLie(B) = 0. Using
this, and arguing as in [24, Lemma 2.3.6], it is not difficult to see that

FA = ker(ε : Lie(A)→ Lie(A))

is the unique codimension one local direct summand of Lie(A) satisfying Kramer’s
condition as in § 2.3, and that its orthogonal under the pairing (3.5.1) is F⊥A =

εF 0HdR
1 (A). Moreover, the natural maps

M/εM→ Lie(A)/FA, F⊥A → εN

are isomorphisms. These latter isomorphisms allow us to identify

ωΦ = Hom(Lie(A0),F⊥A ), ω
−1
Φ = Lie(A0)⊗ Lie(A)/FA

in perfect analogy with § 2.4.

Proposition 3.5.1. — The isomorphism

CΦ(C) ∼= Sh(QΦ,DΦ)(C)

of Proposition 3.3.3 identifies the analytification of ωΦ with the already defined ω
an
Φ .

Moreover, the isomorphism AΦ
∼=M(1,0) of Proposition 3.4.4 identifies

ωΦ
∼= d · Lie(E)−1 ⊂ Lie(E)−1

where d = δOk is the different of Ok, and E →M(1,0) is the universal elliptic curve
with CM by Ok.

Proof. — Any point z = (y0, y) ∈ DΦ determines, by Remarks 2.1.3 and 3.2.2, a pure
Hodge structure on W0 and a mixed Hodge structure on W , these induce a mixed
Hodge structure on V = Homk(W0,W ), and the fiber of ω

an
Φ at z is

ω
an
Φ,z = F 1V (C) = HomC(W0(C)/εW0(C), εF 0W (C)).

On the other hand, we have just seen that

ωΦ = Hom(Lie(A0),F⊥A ) = Hom(Lie(A0), εF 0HdR
1 (A)).

With these identifications, the proof of the first claim amounts to carefully tracing
through the construction of the isomorphism of Proposition 3.3.3.

For the second claim, the isomorphism A0
∼= E ⊗Ok

n induces a canonical isomor-
phism

Lie(A0) ∼= Lie(E)⊗Ok
n ∼= Lie(E)⊗N/εN,

ASTÉRISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 59

where we have used the fact that n⊗Ok
OAΦ = N/εN is the largest quotient of N on

which Ok acts via the structure morphism Ok → OAΦ
. Thus

ωΦ = Hom(Lie(A), εN)

∼= Hom(Lie(E)⊗N/εN, εN)

∼= Lie(E)−1 ⊗OAΦ
Hom(N/εN, εN).

Now recall the ideal sheaf (ε) ⊂ Ok ⊗Z OAΦ
of § 1.7. There are canonical isomor-

phisms of line bundles

dOAΦ
∼= (ε) ∼= Hom(N/εN, εN),

where the first is (1.7.1) and the second is the tautological isomorphism sending ε to
the multiplication-by-ε map N/εN→ εN. These constructions determine the desired
isomorphism

ωΦ
∼= Lie(E)−1 ⊗OAΦ

dOAΦ
.

3.6. Special divisors. — Let Y0(D) be the moduli stack over Ok parametrizing cyclic
D-isogenies of elliptic curves over Ok-schemes, and let E → E ′ be the universal object.
See [28, Chapter 3] for the definitions.

Let (A0, B, %, c) be the universal object over BΦ. Recalling the Ok-conjugate linear
isomorphism L0

∼= Λ0 defined after (3.1.4), each x ∈ L0 defines a morphism

n
c−→ B

%(x∨)−−−→ A0

of sheaves of Ok-modules on BΦ. Define ZΦ(x) ⊂ BΦ as the largest closed substack
over which this morphism is trivial. We will see in a moment that this closed substack
is defined locally by one equation. For any m > 0 define a stack over BΦ by

(3.6.1) ZΦ(m) =
⊔
x∈L0

〈x,x〉=m

ZΦ(x).

We also view ZΦ(m) as a divisor on BΦ, and denote in the same way the pullback of
this divisor via C∗Φ → BΦ.

Remark 3.6.1. — In the slightly degenerate case n = 2 we have L0 = 0, and every
special divisor ZΦ(m) is empty.

We will now reformulate the definition of ZΦ(x) in terms of the moduli problem
of § 3.4. Recalling the isomorphisms of Proposition 3.4.4, every x ∈ L0 determines a
commutative diagram

BΦ

∼= //

��

E ⊗ L0

〈.,x〉
//

��

E //

��

E

��

AΦ

∼= //M(1,0) M(1,0)
// Y0(D),
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whereM(1,0) → Y0(D) sends E to the cyclic D-isogeny

E → E ⊗Ok
d−1,

and the rightmost square is cartesian. The upper and lower horizontal compositions
are denoted jx and j, giving the diagram

(3.6.2) BΦ
jx

//

��

E

��

AΦ
j
// Y0(D).

Proposition 3.6.2. — For any nonzero x ∈ L0, the closed substack ZΦ(x) ⊂ BΦ is
equal to the pullback of the zero section along jx. It is an effective Cartier divisor, flat
over AΦ. In particular, as AΦ is flat over Ok, so is each divisor ZΦ(x).

Proof. — Recall the isomorphisms

E ∼= HomOk
(n, A0), B ∼= HomOk

(Λ0, A0)

from the proof of Proposition 3.4.4. If we identify A0 ⊗Ok
L0
∼= B using

A0 ⊗Ok
L0

a⊗x 7→〈.,x∨〉a−−−−−−−−−→ HomOk
(Λ0, A0) ∼= B,

we obtain a commutative diagram of AΦ-stacks

E ⊗Ok
L0

//

〈.,x〉
��

HomOk
(n, A0 ⊗Ok

L0) // HomOk
(n, B) = BΦ

%(x∨)

��

E // HomOk
(n, A0),

in which all horizontal arrows are isomorphisms. The first claim follows immediately.
The remaining claims now follow from the cartesian diagram

ZΦ(x) //

��

M(1,0)

e

��

BΦ

∼= // E ⊗ L0

〈.,x〉
// E.

The zero section e : M(1,0) ↪→ E is locally defined by a single nonzero equation [28,
Lemma 1.2.2], and so the same is true of its pullback ZΦ(x) ↪→ BΦ. Composition
along the bottom row is flat by [44, Lemma 6.12], and hence so is the top horizontal
arrow.

Remark 3.6.3. — For those who prefer the language of 1-motives: As in the proof of
Proposition 3.3.3, there is a universal triple (A0, A, %) over CΦ in which A0 is an elliptic
curve with Ok-action and A is a principally polarized 1-motive with Ok-action. The
functor of points of ZΦ(m) assigns to any scheme S → CΦ the set

ZΦ(m)(S) = {x ∈ HomOk
(A0,S , AS) : 〈x, x〉 = m},
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where the positive definite hermitian form 〈., .〉 is defined as in (2.5.1). Thus our
special divisors are the exact analogues of the special divisors on SKra defined in § 2.5.

3.7. The toroidal compactification. — We describe the canonical toroidal compactifi-
cation of the integral models SKra → SPap of § 2.3.

Theorem 3.7.1. — Let S� denote either SKra or SPap. There is a canonical toroidal
compactification S� ↪→ S∗�, flat over Ok of relative dimension n − 1. It admits a
stratification

S∗� =
⊔
Φ

S∗�(Φ)

as a disjoint union of locally closed substacks, indexed by the K-equivalence classes of
cusp label representatives (defined in § 3.1).

1. The Ok-stack S∗Kra is regular.

2. The Ok-stack S∗Pap is Cohen-Macaulay and normal, with Cohen-Macaulay
fibers. If n > 2 its fibers are geometrically normal.

3. The open dense substack S� ⊂ S∗� is the stratum indexed by the unique equiv-
alence class of improper cusp label representatives. Its complement

∂S∗� =
⊔

Φ proper

S∗�(Φ)

is a smooth divisor, flat over Ok.
4. For each proper Φ the stratum S∗�(Φ) is closed. All components of S∗�(Φ)/C are

defined over the Hilbert class field kHilb, and they are permuted simply transi-
tively by Gal(kHilb/k). Moreover, there is a canonical identification of Ok-stacks

∆Φ\BΦ

��

S∗�(Φ)

��

∆Φ\C∗Φ S∗�

such that the two stacks in the bottom row become isomorphic after completion
along their common closed substack in the top row. In other words, there is a
canonical isomorphism of formal stacks

(3.7.1) ∆Φ\(C∗Φ)∧BΦ
∼= (S∗�)∧S∗�(Φ).

The morphism SKra → SPap extends uniquely to a stratum preserving morphism
of toroidal compactifications. This extension restricts to an isomorphism

(3.7.2) S∗Kra \ Exc ∼= S∗Pap \ Sing,

compatible with (3.7.1) for any proper Φ.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



62 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

The line bundle ω on SKra defined in § 2.4 admits a unique extension (denoted
the same way) to the toroidal compactification in such a way that (3.7.1) iden-
tifies it with the line bundle ωΦ on C∗Φ. A similar statement holds for ΩKra, and
these two extensions are related by

ω
2 ∼= ΩKra ⊗O(Exc).

The line bundle ΩPap on SPap defined in § 2.4 admits a unique extension (de-
noted the same way) to the toroidal compactification, in such a way that (3.7.1)
identifies it with ω

2
Φ.

For any m > 0, define Z∗Kra(m) as the Zariski closure of ZKra(m) in S∗Kra. The
isomorphism (3.7.1) identifies it with the Cartier divisor ZΦ(m) on C∗Φ.

For any m > 0, define Y∗Pap(m) as the Zariski closure of YPap(m) in S∗Pap.
The isomorphism (3.7.1) identifies it with 2ZΦ(m). Moreover, the pullback
of Y∗Pap(m) to S∗Kra, denoted Y∗Kra(m), satisfies

2Z∗Kra(m) = Y∗Kra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs.

Proof. — Briefly, in [24, § 2] one finds the construction of a canonical toroidal com-
pactification

M�
(n−1,1) ↪→M

�,∗
(n−1,1).

Using the open and closed immersion

S� ↪→M(1,0) ×M�
(n−1,1),

the toroidal compactification S∗� is defined as the Zariski closure of S�

in M(1,0) ×M�,∗
(n−1,1). All of the claims follow by examination of the construc-

tion of the compactification, along with Theorem 2.6.3.

Remark 3.7.2. — If W is anisotropic, so that (G,D) has no proper cusp label repre-
sentatives, the only new information in the theorem is that SPap and SKra are already
proper over Ok, so that

SPap = S∗Pap, SKra = S∗Kra.

Corollary 3.7.3. — Assume that n > 2. The Cartier divisor Y∗Pap(m) on S∗Pap is
Ok-flat, as is the restriction of Z∗Kra(m) to S∗Kra \ Exc.

Proof. — Fix a prime p ⊂ Ok, and let Fp be its residue field. To prove the first
claim, it suffices to show that the support of the Cartier divisor Y∗Pap(m) contains no
irreducible components of the reduction S∗Pap/Fp .

By way of contradiction, suppose Ep ⊂ S∗Pap/Fp is an irreducible component con-
tained in Y∗Pap(m), and let E ⊂ S∗Pap be the connected component containing it.

ASTÉRISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 63

Properness of S∗Pap over Ok,p implies that the reduction E/Fp is connected [18, Corol-
lary 8.2.18]. The reduction E/Fp is normal by Theorem 3.7.1 and our assumption
that n > 2, and hence is irreducible. Thus

Ep = E/Fp .

Our assumption that n > 2 also guarantees that W contains a nonzero isotropic
vector, from which it follows that the boundary

∂C = C ∩ ∂S∗Pap

is nonempty (one can check this in the complex fiber).
Proposition 3.6.2 implies that ZΦ(m) is Ok-flat for every proper cusp label rep-

resentative Φ, and so it follows from Theorem 3.7.1 that Y∗Pap(m) is Ok-flat when
restricted to some étale neighborhood U → C of ∂C. On the other hand, the closed
immersion

U/Fp
∼= Cp ×S∗Pap

U → Y∗Pap(m)×S∗Pap
U

shows that the divisor Y∗Pap(m)|U → U contains the special fiber U/Fp , so is not
Ok-flat. This contradiction completes the proof that Y∗Pap(m) is flat.

As the isomorphism (3.7.2) identifies Y∗Pap(m) with 2Z∗Kra(m), it follows that the
restriction of Z∗Kra(m) to the complement of Exc is also flat.

3.8. Fourier-Jacobi expansions. — We now define Fourier-Jacobi expansions of sec-
tions of the line bundle ω

k of weight k modular forms on S∗Kra.
Fix a proper cusp label representative Φ = (P, g). Suppose ψ is a rational function

on S∗Kra, regular on an open neighborhood of the closed stratum S∗Kra(Φ). Using the
isomorphism (3.7.1) we obtain a formal function, again denoted ψ, on the formal
completion

(C∗Φ)∧BΦ
= SpfBΦ

(∏
`≥0

L`Φ
)
.

Tautologically, there is a formal Fourier-Jacobi expansion

(3.8.1) ψ =
∑
`≥0

FJ`(ψ) · q`

with coefficients FJ`(ψ) ∈ H0(BΦ,L`Φ). In the same way, any rational section ψ of ω
k

on S∗Kra, regular on an open neighborhood of S∗Kra(Φ), admits a Fourier-Jacobi ex-
pansion (3.8.1), but now with coefficients

FJ`(ψ) ∈ H0(BΦ,ω
k
Φ ⊗ L`Φ).

Remark 3.8.1. — Let π : C∗Φ → BΦ be the natural map. The formal symbol q can
be understood as follows. As C∗Φ is the total space of the line bundle L−1

Φ , there is a
tautological section

q ∈ H0(C∗Φ, π∗L−1
Φ ),

whose divisor is the zero section BΦ ↪→ C∗Φ. Any FJ` ∈ H0(BΦ,L`Φ) pulls back to a
section of π∗L`Φ, and so defines a function FJ` · q` on C∗Φ.
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3.9. Explicit coordinates. — Once again, let Φ = (P, g) be a proper cusp label repre-
sentative. The algebraic theory of § 3.8 realizes the Fourier-Jacobi coefficients of

(3.9.1) ψ ∈ H0(S∗Kra,ω
k)

as sections of line bundles on the stack

BΦ
∼= E ⊗ L0.

Here E → M(1,0) is the universal CM elliptic curve, the tensor product is over Ok,
and we are using the isomorphism of Proposition 3.4.4. Our goal is to relate this to
the classical analytic theory of Fourier-Jacobi expansions by choosing explicit complex
coordinates, so as to identify each coefficient FJ`(ψ) with a holomorphic function on
a complex vector space satisfying a particular transformation law.

The point of this discussion is to allow us, eventually, to show that the Fourier-
Jacobi coefficients of Borcherds products, expressed in the classical way as holomor-
phic functions satisfying certain transformation laws, have algebraic meaning. More
precisely, the following discussion will be used to deduce the algebraic statement of
Proposition 6.4.1 from the analytic statement of Proposition 6.3.1.

Consider the commutative diagram

Sh(QΦ,DΦ)(C)
∼= //

��

CΦ(C) // BΦ(C) // AΦ(C)

∼=
��

k×\k̂×/Ô×k
a7→E(a)

//M(1,0)(C).

Here the isomorphisms are those of Propositions 3.3.3 and 3.4.4, and the vertical
arrow on the left is the surjection of Proposition 3.2.1. The bottom horizontal arrow
is defined as the unique function making the diagram commute. It is a bijection,
and is given explicitly by the following recipe: recalling the Ok-module n of (3.1.3),
each a ∈ k̂× determines a projective Ok-module

b = a ·HomOk
(n, ga0)

of rank one, and the elliptic curve E(a) has complex points

(3.9.2) E(a)(C) = b\(b⊗Ok
C).

For each a ∈ k̂× there is a cartesian diagram

E(a) ⊗ L0
//

��

E ⊗ L0

��

Spec(C)
E(a)

//M(1,0).

Now suppose we have a section ψ as in (3.9.1). Using the isomorphisms BΦ
∼= E⊗L0

and ωΦ
∼= d · Lie(E)−1 of Propositions 3.4.4 and 3.5.1, we view its Fourier-Jacobi
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coefficients
FJ`(ψ) ∈ H0(BΦ,ω

k
Φ ⊗ L`Φ)

as sections
FJ`(ψ) ∈ H0

(
E ⊗ L0, d

k · Lie(E)−k ⊗Q`E⊗L0

)
,

which we pull back along the top map in the above diagram to obtain a section

(3.9.3) FJ
(a)
` (ψ) ∈ H0

(
E(a) ⊗ L0,Lie(E(a))−k ⊗Q`E(a)⊗L0

)
.

Remark 3.9.1. — Recalling that d = δOk is the different of k, we are using the inclu-
sion dk ⊂ k ⊂ C to identify

dk · Lie(E(a))−k ∼= Lie(E(a))−k.

In particular, this isomorphism is not multiplication by δ−k.

The explicit coordinates we will use to express (3.9.3) as a holomorphic function
arise from a choice of Witt decomposition of the hermitian space V = Homk(W0,W ).
The following lemma will allow us to choose this decomposition in a particularly nice
way.

Lemma 3.9.2. — The homomorphism νΦ of (3.1.1) admits a section

QΦ νΦ

// Resk/QGm.

s

uu

This section may be chosen so that s(Ô×k ) ⊂ KΦ, and such a choice determines a
decomposition

(3.9.4)
⊔

a∈k×\k̂×/Ô×k

(QΦ(Q) ∩ s(a)KΦs(a)−1)\DΦ
∼= Sh(QΦ,DΦ)(C),

where the isomorphism is z 7→ (z, s(a)) on the copy of DΦ indexed by a.

Proof. — Fix an isomorphism of hermitian Ok-modules

ga0 ⊕ ga ∼= ga0 ⊕ gr−2(ga)⊕ gr−1(ga)⊕ gr0(ga)

as in Remark 3.1.3. After tensoring with Q, we let k× act on the right hand side
by a 7→ (a,Nm(a), a, 1). This defines a morphism k× → G(Q), which, using (3.1.1),
is easily seen to take values in the subgroup QΦ(Q). This defines the desired section
s, and the decomposition (3.9.4) is immediate from Proposition 3.2.1.

Fix a section s as in Lemma 3.9.2. Recall from § 3.1 the weight filtration wtiV ⊂ V
whose graded pieces

gr−1V = Homk(W0, gr−2W )

gr0V = Homk(W0, gr−1W )

gr1V = Homk(W0, gr0W )
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have k-dimensions 1, n − 2, and 1, respectively. Recalling (3.1.1), which describes
the action of QΦ on the graded pieces of V , the section s determines a splitting
V = V−1 ⊕ V0 ⊕ V1 of the weight filtration by

V−1 = {v ∈ V : ∀ a ∈ k×, s(a)v = av}
V0 = {v ∈ V : ∀ a ∈ k×, s(a)v = v}
V1 = {v ∈ V : ∀ a ∈ k×, s(a)v = a−1v}.

The summands V−1 and V1 are isotropic k-lines, and V0 is the orthogonal complement
of V−1 + V1 with respect to the hermitian form on V . In particular, the restriction of
the hermitian form to V0 ⊂ V is positive definite.

Fix an a ∈ k̂× and define an Ok-lattice

L = HomOk
(s(a)ga0, s(a)ga) ⊂ V.

Using the assumption s(Ô×k ) ⊂ KΦ, we obtain a decomposition

L = L−1 ⊕ L0 ⊕ L1

with Li = L∩Vi. The images of the lattices Li in the graded pieces griV are given by

L−1 = a ·HomOk
(ga0, gr−2(ga))

L0 = HomOk
(ga0, gr−1(ga))

L1 = a−1 ·HomOk
(ga0, gr0(ga)).

In particular, L0 is independent of a and agrees with (3.1.4).
Choose a Z-basis e−1, f−1 ∈ L−1, and let e1, f1 ∈ d−1L1 be the dual basis with

respect to the (perfect) Z-bilinear pairing

[ . , . ] : L−1 × d−1L1 → Z,

obtained by restricting (2.1.6). This basis may be chosen so that

(3.9.5)
L−1 = Ze−1 + Zf−1 d−1L−1 = Ze−1 +D−1Zf−1,

L1 = Ze1 +DZf1 d−1L1 = Ze1 + Zf1.

As εV1(C) ⊂ V1(C) is a line, there is a unique τ ∈ C satisfying

(3.9.6) τe1 + f1 ∈ εV1(C).

After possibly replacing both e1 and e−1 by their negatives, we may assume
that Im(τ) > 0.

Proposition 3.9.3. — The Z-lattice b = Zτ + Z is contained in k, and is a fractional
Ok-ideal. The elliptic curve

(3.9.7) E(a)(C) = b\C

is isomorphic to (3.9.2), and there is an Ok-linear isomorphism of complex abelian
varieties

(3.9.8) E(a)(C)⊗ L0
∼= bL0\V0(R).
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Under this isomorphism the inverse of the line bundle (3.4.3) has the form

(3.9.9) Q−1
E(a)(C)⊗L0

∼= bL0\(V0(R)× C),

where the action of y0 ∈ bL0 on V0(R)× C is

y0 · (w0, q) =
(
w0 + εy0, q · eπi

〈y0,y0〉
N(b) e−π

〈w0,y0〉
Im(τ)

−π 〈y0,y0〉
2Im(τ)

)
.

Proof. — Consider the Q-linear map

(3.9.10) V−1
αe−1+βf−1 7→ατ+β−−−−−−−−−−−−→ C.

Its C-linear extension V−1(C)→ C kills the vector e−1 − τ f−1 ∈ εV−1(C), and hence
factors through an isomorphism V−1(C)/εV−1(C) ∼= C. This implies that (3.9.10) is
k-conjugate linear. As this map identifies L−1

∼= b, we find that the Z-lattice b ⊂ C
is Ok-stable. From 1 ∈ b we then deduce that b ⊂ k, and is a fractional Ok-ideal.
Moreover, we have just shown that

(3.9.11) L−1
αe−1+βf−1 7→ατ+β−−−−−−−−−−−−→ b

is an Ok-conjugate linear isomorphism.
Exactly as in (2.1.4), the self-dual hermitian forms on ga0 and ga induce an

Ok-conjugate-linear isomorphism

HomOk
(ga0, gr−2(ga)) ∼= HomOk

(gr0(ga), ga0),

and hence determine an Ok-conjugate-linear isomorphism

L−1 = a ·HomOk
(ga0, gr−2(ga))

∼= a ·HomOk
(gr0(ga), ga0)

= a ·HomOk
(n, ga0).

The composition

a ·HomOk
(n, ga0) ∼= L−1

(3.9.11)−−−−−→ b
is an Ok-linear isomorphism, which identifies the fractional ideal b with the projective
Ok-module used in the definition of (3.9.2). In particular it identifies the elliptic curves
(3.9.2) and (3.9.7), and also identifies

E(a)(C)⊗ L0 = (b\C)⊗ L0
∼= (b⊗ L0)\(C⊗ L0).

Here, and throughout the remainder of the proof, all tensor products are over Ok.
Identifying C⊗ L0

∼= V0(R) proves (3.9.8).
It remains to explain the isomorphism (3.9.9). First consider the Poincaré bundle

on the product
E(a)(C)× E(a)(C) ∼= (b× b)\(C× C).

Using classical formulas, the space of this line bundle can be identified with the
quotient

PE(a)(C) = (b× b)\(C× C× C),
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where the action is given by

(b1, b2) · (z1, z2, q) =
(
z1 + b1, z2 + b2, q · eπHτ (z1,b2)+πHτ (z2,b1)+πHτ (b1,b2)

)
,

and we have set Hτ (w, z) = wz/Im(τ) for complex numbers w and z.
Directly from the definition, the line bundle (3.4.3) on

E(a)(C)⊗ L0
∼= (b⊗ L0)\(C⊗ L0)

is given by
QE(a)(C)⊗L0

∼= (b⊗ L0)\
(
(C⊗ L0)× C

)
,

where the action of b ⊗ L0 on (C ⊗ L0) × C is given as follows: Choose any set
x1, . . . , xn ∈ L0 of Ok-module generators, and extend the Ok-hermitian form on L0

to a C-hermitian form on C⊗ L0. If

y0 =
∑
i

bi ⊗ xi ∈ b⊗ L0

and
w0 =

∑
i

zi ⊗ xi ∈ C⊗ L0

then
y0 · (w0, q) = (w0 + y0, q · eπX+πY ),

where the factors X and Y are

X =
∑
i<j

(
Hτ (〈xi, xj〉zi, bj) +Hτ (zj , 〈xi, xj〉bi) +Hτ (〈xi, xj〉bi, bj)

)
=

1

Im(τ)

∑
i 6=j

〈zi ⊗ xi, bj ⊗ xj〉+
1

Im(τ)

∑
i<j

〈bi ⊗ xi, bj ⊗ xj〉

and, recalling γ = (1 + δ)/2,

Y =
∑
i

(
Hτ (γ〈xi, xi〉zi, bi) +Hτ (zi, γ〈xi, xi〉bi) +Hτ (γ〈xi, xi〉bi, bi)

)
=

1

Im(τ)

∑
i

〈zi ⊗ xi, bi ⊗ xi〉+
1

Im(τ)

∑
i

γ〈bi ⊗ xi, bi ⊗ xi〉.

For elements y1, y2 ∈ b⊗ L0, we abbreviate

α(y1, y1) =
〈y1, y2〉
δN(b)

− 〈y2, y1〉
δN(b)

∈ Z.

Using 2iIm(τ) = δN(b), some elementary calculations show that

πX + πY − π〈w0, y0〉
Im(τ)

=
2πi

δN(b)

∑
i<j

〈bi ⊗ xi, bj ⊗ xj〉+
2πi

δN(b)

∑
i

〈γbi ⊗ xi, bi ⊗ xi〉
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=
π

2Im(τ)

∑
i,j

〈bi ⊗ xi, bj ⊗ xj〉 −
πi

N(b)

∑
i,j

〈bi ⊗ xi, bj ⊗ xj〉

+2πi
∑
i<j

α(γbi ⊗ xi, bj ⊗ xj) +
2πi

N(b)

∑
i

〈bi ⊗ xi, bi ⊗ xi〉.

All terms in the final line lie in 2πiZ, and so

eπX+πY = e
π〈w0,y0〉

Im(τ) e
π〈y0,y0〉
2Im(τ) e−

πi〈y0,y0〉
N(b) .

The relation (3.9.9) follows immediately.

Proposition 3.9.3 allows us to express Fourier-Jacobi coefficients explicitly as func-
tions on V0(R) satisfying certain transformation laws. Suppose we start with a global
section

(3.9.12) ψ ∈ H0
(
S∗Kra/C,ω

k
)
.

For each a ∈ k̂× and ` ≥ 0 we have the algebraically defined Fourier-Jacobi coefficient

(3.9.13) FJ
(a)
` (ψ) ∈ H0

(
E(a) ⊗ L0,Q`E(a)⊗L0

)
of (3.9.3), where we have trivialized Lie(E(a)) using (3.9.7). The isomorphism (3.9.9)
now identifies (3.9.13) with a function on V0(R) satisfying the transformation law

(3.9.14) FJ
(a)
` (ψ)(w0 + y0) = FJ

(a)
` (ψ)(w0) · eiπ`

〈y0,y0〉
N(b) eπ`

〈w0,y0〉
Im(τ)

+π`
〈y0,y0〉
2Im(τ)

for all y0 ∈ bL0.

Remark 3.9.4. — If we use the isomorphism prε : V0(R) ∼= εV0(C) of (2.1.7) to view
(3.9.13) as a function of w0 ∈ εV0(C), the transformation law can be expressed in
terms of the C-bilinear form [., .] as

FJ
(a)
` (ψ)(w0 + prε(y0)) = FJ

(a)
` (ψ)(w0) · eiπ`

Q(y0)

N(b) eπ`
[w0,y0]

Im(τ)
+π`

Q(y0)

2Im(τ)

for all y0 ∈ bL0. This uses the (slightly confusing) commutativity of

V0(R)
prε //

〈.,y0〉
��

εV0(C)
⊂
// V0(C)

[.,y0]

��

k ⊗Q R C.

In order to give another interpretation of our explicit coordinates, let NΦ ⊂ QΦ be
the unipotent radical, and let UΦ ⊂ NΦ be its center. The unipotent radical may
be characterized as the kernel of the morphism νΦ of (3.1.1), or, equivalently, as the
largest subgroup acting trivially on all graded pieces griV .
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Proposition 3.9.5. — There is a commutative diagram

(3.9.15) (UΦ(Q) ∩ s(a)KΦs(a)−1)\DΦ

z 7→(w0,q)
//

��

εV0(C)× C×

��

(NΦ(Q) ∩ s(a)KΦs(a)−1)\DΦ
// bL0\(εV0(C)× C×),

in which the horizontal arrows are holomorphic isomorphisms, and the action of bL0

on
εV0(C)× C× ∼= V0(R)× C×

is the same as in Proposition 3.9.3.

Proof. — Recall from Remark 3.2.3 the isomorphism

DΦ
∼=
{
w ∈ εV (C) : εV (C) = εV−1(C)⊕ εV0(C)⊕ Cw

}
/C×.

As εV (C) is totally isotropic with respect to [., .], a simple calculation shows that
every line w ∈ DΦ has a unique representative of the form

−ξ(e−1 − τ f−1) + w0 + (τe1 + f1) ∈ εV−1(C)⊕ εV0(C)⊕ εV1(C)

with ξ ∈ C and w0 ∈ εV0(C) = V0(R). These coordinates define an isomorphism of
complex manifolds

(3.9.16) DΦ
w 7→(w0,ξ)−−−−−−→ εV0(C)× C.

The action of G on V restricts to a faithful action of NΦ, allowing us to express
elements of NΦ(Q) as matrices

n(φ, φ∗, u) =

1 φ∗ u+ 1
2φ
∗ ◦ φ

1 φ

1

 ∈ NΦ(Q)

for maps

φ ∈ Homk(V1, V0), φ∗ ∈ Homk(V0, V−1), u ∈ Homk(V1, V−1)

satisfying the relations

0 = 〈φ(x1), y0〉+ 〈x1, φ
∗(y0)〉

0 = 〈u(x1), y1〉+ 〈x1, u(y1)〉

for xi, yi ∈ Vi. The subgroup UΦ(Q) is defined by φ = 0 = φ∗.
The group UΦ(Q)∩s(a)KΦs(a)−1 is cyclic, and generated by the element n(0, 0, u)

defined by

u(x1) =
〈x1, a〉

[L−1 : Oka]
· δa

for any a ∈ L−1. In terms of the bilinear form, this can be rewritten as

u(x1) = −[x1, f−1]e−1 + [x1, e−1]f−1.
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In the coordinates of (3.9.16), the action of n(0, 0, u) on DΦ becomes

(w0, ξ) 7→ (w0, ξ + 1),

and setting q = e2πiξ defines the top horizontal isomorphism in (3.9.15).
Let V −1 = V−1 with its conjugate action of k. There are group isomorphisms

(3.9.17) NΦ(Q)/UΦ(Q) ∼= V −1 ⊗k V0
∼= V0.

The first sends
n(φ, φ∗, u) 7→ y−1 ⊗ y0,

where y−1 and y0 are defined by the relation φ(x1) = 〈x1, y−1〉 · y0, and the second
sends

(αe−1 + βf−1)⊗ y0 7→ (ατ + β)y0.

Compare with (3.9.11).
A slightly tedious calculation shows that (3.9.17) identifies

(NΦ(Q) ∩ s(a)KΦs(a)−1)/(UΦ(Q) ∩ s(a)KΦs(a)−1) ∼= bL0,

defining the bottom horizontal arrow in (3.9.15), and that the resulting action of bL0

on εV0(C)×C× agrees with the one defined in Proposition 3.9.3. We leave this to the
reader.

Any section (3.9.12) may now be pulled back via

(NΦ(Q) ∩ s(a)KΦs(a)−1)\D z 7→(z,s(a)g)−−−−−−−−→ Sh(G,D)(C)

to define a holomorphic section of (ωan)k, the kth power of the tautological bundle on

D ∼=
{
w ∈ εV (C) : [w,w] < 0

}
/C×.

The tautological bundle admits a natural NΦ(R)-equivariant trivialization: any line
w ∈ D must satisfy [w, f−1] 6= 0, yielding an isomorphism

[ . , f−1] : ω
an ∼= OD.

This trivialization allows us to identify ψ with a holomorphic function on D ⊂ DΦ,
which then has an analytic Fourier-Jacobi expansion

(3.9.18) ψ =
∑
`

FJ
(a)
` (ψ)(w0) · q`

defined using the coordinates of Proposition 3.9.5. The fact that the coefficients here
agree with (3.9.13) is a special case of the main results of [39], which compare algebraic
and analytic Fourier-Jacobi coefficients on general PEL-type Shimura varieties.

4. Classical modular forms

Throughout § 4 we let D be any odd squarefree positive integer, and abbreviate
Γ = Γ0(D). Let k be any positive integer.
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4.1. Weakly holomorphic forms. — The positive divisors of D are in bijection with
the cusps of the complex modular curve X0(D)(C), by sending r | D to

∞r =
r

D
∈ Γ\P1(Q).

Note that r = 1 corresponds to the usual cusp at infinity, and so we sometimes
abbreviate ∞ =∞1.

Fix a positive divisor r | D, set s = D/r and choose

Rr =

(
α β

sγ rδ

)
∈ Γ0(s)

with α, β, γ, δ ∈ Z. The corresponding Atkin-Lehner operator is defined by the matrix

Wr =

(
rα β

Dγ rδ

)
= Rr

(
r

1

)
.

The matrix Wr normalizes Γ, and so acts on the cusps of X0(D)(C). This action
satisfies Wr · ∞ =∞r.

Let χ be a quadratic Dirichlet character modulo D, and let

χ = χr · χs

be the unique factorization as a product of quadratic Dirichlet characters χr and χs
modulo r and s, respectively. Write

Mk(D,χ) ⊂M !
k(D,χ)

for the spaces of holomorphic modular forms and weakly holomorphic modular forms
of weight k, level Γ, and character χ. We assume that χ(−1) = (−1)k, since otherwise
M !
k(D,χ) = 0.
Denote by GL+

2 (R) ⊂ GL2(R) the subgroup of elements with positive determinant.
It acts on functions on the upper half plane by the usual weight k slash operator

(f |k γ)(τ) = det(γ)k/2(cτ + d)−kf(γτ), γ =

(
a b

c d

)
∈ GL+

2 (R),

and f 7→ f |k Wr defines an endomorphism of M !
k(D,χ) satisfying

f |k W 2
r = χr(−1)χs(r) · f.

In particular, Wr is an involution when χ is trivial.
Any weakly holomorphic modular form

f(τ) =
∑

m�−∞
c(m) · qm ∈M !

k(D,χ)

determines another weakly holomorphic modular form

χr(β)χs(α) · (f |k Wr) ∈M !
k(D,χ),
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which is easily seen to be independent of the choice of parameters α, β, γ, δ in the
definition of Wr. This second modular form has a q-expansion at ∞, denoted

(4.1.1) χr(β)χs(α) · (f |k Wr) =
∑

m�−∞
cr(m) · qm.

Definition 4.1.1. — We call (4.1.1) the q-expansion of f at ∞r. Of special interest is
cr(0), the constant term of f at ∞r.

Remark 4.1.2. — If χ is nontrivial, the coefficients of (4.1.1) need not lie in the sub-
field of C generated by the Fourier coefficients of f .

4.2. Eisenstein series and the modularity criterion. — Fix an integer k ≥ 2. Denote by

M !,∞
2−k(D,χ) ⊂M !

2−k(D,χ)

the subspace of weakly holomorphic forms that are holomorphic outside the cusp ∞,
and by

M∞k (D,χ) ⊂Mk(D,χ)

the subspace of holomorphic modular forms that vanish at all cusps different from∞.
If k > 2 there is a decomposition

M∞k (D,χ) = CE ⊕ Sk(D,χ),

where E is the Eisenstein series

E =
∑

γ∈Γ∞\Γ

χ(d) · (1 |k γ) ∈Mk(D,χ).

Here Γ∞ ⊂ Γ is the stabilizer of ∞ ∈ P1(Q), and γ =
(
a b
c d

)
∈ Γ.

We also define the (normalized) Eisenstein series for the cusp ∞r by

Er = χr(−β)χs(αr) · (E |k Wr) ∈Mk(D,χ).

It is independent of the choice of the parameters in Wr, and we denote by

Er(τ) =
∑
m≥0

er(m) · qm

its q-expansion at ∞.

Remark 4.2.1. — Our notation for the q-expansion of Er is slightly at odds with
(4.1.1), as the q-expansion of E at∞r is not

∑
er(m)qm. Instead, the q-expansion of E

at ∞r is χr(−1)χs(r)
∑
er(m)qm, while the q-expansion of Er at ∞r is

∑
e1(m)qm.

In any case, what matters most is that

constant term of Er at ∞s =

{
1 if s = r,
0 otherwise.

The constant terms of weakly holomorphic modular forms in M !,∞
2−k(D,χ) can be

computed using the above Eisenstein series.
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Proposition 4.2.2. — Assume k > 2. Suppose r | D and

f(τ) =
∑

m�−∞
c(m) · qm ∈M !,∞

2−k(D,χ).

The constant term of f at the cusp ∞r, in the sense of Definition 4.1.1, satisfies

cr(0) +
∑
m>0

c(−m)er(m) = 0.

Proof. — The meromorphic differential form f(τ)Er(τ) dτ on X0(D)(C) is holomor-
phic away from the cusps ∞ and ∞r. Summing its residues at these cusps gives the
desired equality.

Theorem 4.2.3 (Modularity criterion). — Suppose k ≥ 2. For a formal power series

(4.2.1)
∑
m≥0

d(m)qm ∈ C[[q]],

the following are equivalent.

1. The relation
∑
m≥0 c(−m)d(m) = 0 holds for every weakly holomorphic form∑

m�−∞
c(m) · qm ∈M !,∞

2−k(D,χ).

2. The formal power series (4.2.1) is the q-expansion of a modular form
in M∞k (D,χ).

Proof. — As we assume k ≥ 2, that the map sending a weakly holomorphic modular
form f to its principal part at ∞ identifies

M !,∞
2−k(D,χ) ⊂ C[q−1].

On the other hand, the map sending a holomorphic modular form to its q-expansion
identifies

M∞k (D,χ) ⊂ C[[q]].

A slight variant of the modularity criterion of [5, Theorem 3.1] shows that each sub-
space is the exact annihilator of the other under the bilinear pairing C[q−1]⊗ C[[q]] −→ C
sending P ⊗ g to the constant term of P · g. The claim follows.

5. Unitary Borcherds products

The goal of § 5 is to state Theorems 5.3.1, 5.3.3, and 5.3.4, which assert the existence
of Borcherds products on S∗Kra and S∗Pap having prescribed divisors and prescribed
leading Fourier-Jacobi coefficients. These theorems are the technical core of this work,
and their proofs will occupy all of § 6.

We assume n ≥ 3 throughout § 5.
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5.1. Jacobi forms. — In this section we recall some of the rudiments of the arithmetic
theory of Jacobi forms. A more systematic treatment can be found in the work of
Kramer [29, 30].

Let Y be the moduli stack over Z classifying elliptic curves, and let π : E → Y be
the universal elliptic curve. Abbreviate Γ = SL2(Z), and let H be the complex upper
half-plane. The groups Γ and Z2 each act on H× C by(

a b

c d

)
· (τ, z) =

(
aτ + b

cτ + d
,

z

cτ + d

)
,

[
α

β

]
· (τ, z) = (τ, z + ατ + β) ,

and this defines an action of the semi-direct product Γ∗ = Γ n Z2. We identify the
commutative diagrams (of complex orbifolds)

(5.1.1) Γ\(H× C)

�� %%

Lie(E(C))

exp

�� %%

Γ∗\(H× C) // Γ\H E(C) // Y(C)

by sending (τ, z) ∈ H× C to the vector z in the Lie algebra of C/(Zτ + Z).
Define a line bundle O(e) on E as the inverse ideal sheaf of the zero section

e : Y → E . The Lie algebra Lie(E) is (by definition) e∗O(e), and ωY = Lie(E)−1 is
the usual line bundle of weight one modular forms on Y (see Remark 5.1.3 below). In
particular, the line bundle

Q = O(e)⊗ π∗ωY
on E is canonically trivialized along the zero section. By the constructions of [40,
§ 1.3.2] and [44, § 6.2], this line bundle induces a homomorphism

(5.1.2) E → E∨,

which is none other than the unique principal polarization of E (one can verify this
fiber-by-fiber over geometric points of Y, reducing the claim to standard properties
of elliptic curves over fields). Denote by P the pullback of the Poincaré bundle via

E ×Y E ∼= E ×Y E∨.

For a scheme U and points a, b ∈ E(U), denote by Q(a) the pullback of Q via
a : U → E , and by P(a, b) the pullback of P via (a, b) : U → E ×Y E . There are
canonical isomorphisms

P(a, b) ∼= Q(a+ b)⊗Q(a)−1 ⊗Q(b)−1

and
P(a, a) ∼= Q(a)⊗Q(a).

Given the way that (5.1.2) is constructed from Q, the first isomorphism is essentially
a tautology. The second is a consequence of the isomorphisms

Q(2a) ∼= Q(a)⊗3 ⊗Q(−a) ∼= Q(a)⊗4,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



76 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

which follow from the theorem of the cube [17, Theorem I.1.3] and the invariance of Q
under pullback by [−1] : E → E , respectively.

Definition 5.1.1. — The diagonal restriction

J0,1 = (diag)∗P ∼= Q2

is the line bundle of Jacobi forms of weight 0 and index 1 on E . More generally,

Jk,m = Jm0,1 ⊗ π∗ωkY
is the line bundle of Jacobi forms of weight k and index m on E .

The isomorphism of the following proposition is presumably well-known. We in-
clude the proof in order to make explicit the normalization of the isomorphism (see
Remark 5.1.3 below, for example).

Proposition 5.1.2. — Let p : H×C→ E(C) be the quotient map. The holomorphic line
bundle J an

k,m on E(C) is isomorphic to the holomorphic line bundle whose sections
over an open set U ⊂ E(C) are holomorphic functions F (τ, z) on p−1(U ) satisfying
the transformation laws

F

(
aτ + b

cτ + d
,

z

cτ + d

)
= F (τ, z) · (cτ + d)k · e2πimcz2/(cτ+d)

and

(5.1.3) F (τ, z + ατ + β) = F (τ, z) · e−2πim(α2τ+2αz).

Proof. — Let Jk,m be the holomorphic line bundle on E(C) defined by the above
transformation laws.

By identifying the diagrams (5.1.1), a function f , defined on a Γ-invariant open
subset of H and satisfying the transformation law

f

(
aτ + b

cτ + d

)
= f(τ) · (cτ + d)−1

of a weight −1 modular form, defines a section τ 7→ (τ, f(τ)) of the line bundle

Γ\(H× C) ∼= Lie(E(C)) ∼= (ωan
Y )−1

on Γ\H. This determines an isomorphism J1,0
∼= J an

1,0. It now suffices to construct an
isomorphism J0,1

∼= J an
0,1, and then take tensor products.

Fix τ ∈ H, set Eτ = C/(Zτ + Z), and restrict both J an
0,1 and J0,1 to line bundles

on Eτ ⊂ E(C). The imaginary part of the hermitian form

Hτ (z1, z2) =
z1z2

Im(τ)

on C restricts to a Riemann form on Zτ +Z. Using classical formulas for the Poincaré
bundle on complex abelian varieties, as found in the proof of [3, Theorem 2.5.1], the
restriction of J an

0,1 to the fiber Eτ is isomorphic to the holomorphic line bundle deter-
mined by the Appell-Humbert data 2Hτ and the trivial character Zτ + Z→ C×. The
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sections of this holomorphic line bundle are, by definition, holomorphic functions gτ
on C satisfying the transformation law

gτ (z + `) = gτ (z) · e2πHτ (z,`)+πHτ (`,`)

for all ` ∈ Zτ + Z. If we set

F (τ, z) = gτ (z) · e−πHτ (z,z),

this transformation law becomes (5.1.3).
The above shows that J an

0,1 and J0,1 are isomorphic when restricted to the fiber
over any point of Y(C), but such an isomorphism is only determined up to scaling
by C×. To pin down the scalars, and to get an isomorphism over the total space, use
the fact that both J an

0,1 and J0,1 come (by construction) with canonical trivializations
along the zero section. By the Seesaw Theorem [3, Appendix A], there is a unique
isomorphism J an

0,1
∼= J0,1 compatible with these trivializations.

Remark 5.1.3. — The proof of Proposition 5.1.2 identifies a classical modular form
f(τ) =

∑
c(m)qm of weight k and level Γ with a holomorphic section of (ωan

Y )k,
again denoted f , satisfying an additional growth condition at the cusp. Under our
identification, the q-expansion principle takes the following form: if R ⊂ C is any
subring, then f is the analytification of a global section f ∈ H0(Y/R,ωkY/R) if and
only if c(m) ∈ (2πi)kR for all m.

For τ ∈ H and z ∈ C, we denote by

ϑ1(τ, z) =
∑
n∈Z

eπi(n+ 1
2 )

2
τ+2πi(n+ 1

2 )(z− 1
2 )

the classical Jacobi theta function, and by

η(τ) = eπiτ/12
∞∏
n=1

(1− e2nπiτ )

Dedekind’s eta function. Set

Θ(τ, z)
def
= i

ϑ1(τ, z)

η(τ)
= q1/12(ζ1/2 − ζ−1/2)

∞∏
n=1

(1− ζqn)(1− ζ−1qn),

where q = e2πiτ and ζ = e2πiz.

Proposition 5.1.4. — The Jacobi form Θ24 defines a global section

Θ24 ∈ H0(E ,J0,12)

with divisor 24e, while (2πiη2)12 determines a nowhere vanishing section

(2πiη2)12 ∈ H0(Y,ω12
Y ).
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Proof. — It is a classical fact that (2πiη2)12 is a nowhere vanishing modular form of
weight 12. Noting Remark 5.1.3, the q-expansion principle shows that it descends to a
section on Y/Q, and thus may be viewed as a rational section on Y. Another application
of the q-expansion principle shows that its divisor has no vertical components. Thus
its divisor is trivial.

Classical formulas show that Θ24 defines a holomorphic section of J an
0,12 with divi-

sor 24e, and so the problem is to show that Θ24 is defined over Q, and extends to a
section on the integral model with the stated divisor. One could presumably deduce
this from the q-expansion principle for Jacobi forms as in [29, 30]. We instead borrow
an argument from [51, § 1.2], which requires only the more elementary q-expansion
principle for functions on E .

Let d be any positive integer. The bilinear relations (3.4.1) imply that the line
bundle J d2

0,1 ⊗ [d]∗J−1
0,1 on E is canonically trivial, and so

θ24
d = Θ24d2

⊗ [d]∗Θ−24

defines a meromorphic function on E(C). The crucial point is that θ24
d is actually a

rational function defined over Q, and extends to a rational function on the integral
model E with divisor

(5.1.4) div(θ24
d ) = 24

(
d2E [1]− E [d]

)
.

As in [51, p. 387], this follows by computing the divisor first in the complex fiber,
then using the explicit formula

θ24
d (τ, z) = q2(d2−1)ζ−12d(d−1)

∏
n≥0

(1− qnζ)d
2

1− qnζd
∏
n>0

(1− qnζ−1)d
2

1− qnζ−d

24

and the q-expansion principle on E to see that the divisor has no vertical components.
The line bundle ω

12
Y is trivial, and hence there are isomorphisms

J0,12
∼= Q24 ∼= O(e)24 ⊗ π∗ω12

Y
∼= O(e)24.

Thus there is some Θ̃24 ∈ H0(E ,J0,12) with divisor 24e, and the rational function

θ̃24
d = Θ̃24d2

⊗ [d]∗Θ̃−24

on E also has divisor (5.1.4).
Consider the meromorphic function ρ = Θ24/Θ̃24 on E(C). By computing the

divisor in the complex fiber, we see that ρ is a nowhere vanishing holomorphic function,
and hence is constant. But this implies that

ρd
2−1 = θ24

d /θ̃
24
d .

By what was said above, the right hand side is (the analytification of) a nowhere
vanishing function on E . This implies that ρd

2−1 = ±1, and the only way this can
hold for all d > 1 is if ρ = ±1.
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Now consider the tower of stacks

Y1(D)→ Y0(D)→ Y
over Spec(Z) parametrizing elliptic curves with Drinfeld Γ1(D)-level structure,
Γ0(D)-level structure, and no level structure, respectively. See [28, Chapter 3] or [15]
for the definitions. We denote by E the universal elliptic curve over any one of these
bases, and view the line bundle of Jacobi forms J0,12 as a line bundle on any one
of the three universal elliptic curves. Similarly, we view the Jacobi forms Θ24 and
(2πiη2)12 of Proposition 5.1.4 as being defined over any one of these bases.

The following lemma will be needed in § 5.3.

Lemma 5.1.5. — Let Q : Y1(D)→ E be the universal D-torsion point. For any r | D
the line bundle

(5.1.5)
⊗

b∈Z/DZ
b 6=0
rb=0

(bQ)∗J0,12

on Y1(D) is canonically trivial, and its section

F 24
r =

⊗
b∈Z/DZ
b6=0
rb=0

(bQ)∗Θ24

admits a canonical descent, denoted the same way, to a section of the trivial bundle
on Y0(D).

Proof. — If x1, . . . , xr are integers representing the r-torsion subgroup of Z/DZ, then
6
∑
x2
i ≡ 0 (mod D). The bilinear relations (3.4.1) therefore provide a canonical

isomorphism⊗
b∈Z/DZ
b 6=0
rb=0

P(bQ, bQ)⊗12 ∼=
⊗

b∈Z/DZ
b6=0
rb=0

P(Q, 12b2Q) ∼= P(Q, e) ∼= OY1(D)

of line bundles on Y1(D). This is the desired trivialization of (5.1.5). The section F 24
r

is obviously invariant under the action of the diamond operators on Y1(D), and so
descends to Y0(D).

5.2. Borcherds’ quadratic identity. — For the remainder of § 5 we denote by
χk : (Z/DZ)× → {±1} the Dirichlet character determined by the extension k/Q,
abbreviate

(5.2.1) χ = χn−2
k ,

and fix a weakly holomorphic form

(5.2.2) f(τ) =
∑

m�−∞
c(m)qm ∈M !,∞

2−n(D,χ)

with c(m) ∈ Z for all m ≤ 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



80 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

For a proper cusp label representative Φ as in Definition 3.1.1, recall the self-dual
hermitian Ok-lattice L0 of signature (n−2, 0) defined by (3.1.4). The hermitian form
on L0 determines a quadratic form Q(x) = 〈x, x〉, with associated Z-bilinear form
[x1, x2] = Trk/Q〈x1, x2〉 of signature (2n− 4, 0).

The modularity criterion of Theorem 4.2.3 implies the following identity of
quadratic forms on L0 ⊗ R.

Proposition 5.2.1 (Borcherds’ quadratic identity). — For all u ∈ L0 ⊗ R,∑
x∈L0

c(−Q(x)) · [u, x]2 =
[u, u]

2n− 4

∑
x∈L0

c(−Q(x)) · [x, x].

Proof. — The homogeneous polynomial

P (u, v) = [u, v]2 − [u, u] · [v, v]

2n− 4

on L0 ⊗R is harmonic in both variables u and v. For any fixed u ∈ L0 ⊗R there is a
corresponding theta series

θ(τ, u, P ) =
∑
x∈L0

P (u, x) · qQ(x) ∈ Sn(D,χ).

The modularity criterion of Theorem 4.2.3 therefore shows that∑
m>0

c(−m)
∑
x∈L0

Q(x)=m

(
[u, x]2 − [u, u] · [x, x]

2n− 4

)
= 0

for all u ∈ L0 ⊗ R. This implies the assertion.

Recall from (3.6.2) that every x ∈ L0 determines a diagram

(5.2.3) BΦ
jx

//

��

E

��

AΦ
j
// Y0(D),

where, changing notation slightly from § 5.1, Y0(D) is now the open modular curve
over Ok. Recall also that BΦ carries a distinguished line bundle LΦ defined by
(3.3.1), used to define the Fourier-Jacobi expansions of (3.8.1). We will use Borcherds’
quadratic identity to relate the line bundle LΦ to the line bundle J0,1 of Jacobi forms
on E .

Proposition 5.2.2. — The rational number

(5.2.4) multΦ(f) =
∑
m>0

m · c(−m)

n− 2
·#{x ∈ L0 : Q(x) = m}
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lies in Z, and there is a canonical isomorphism

L2·multΦ(f)
Φ

∼=
⊗
m>0

⊗
x∈L0

Q(x)=m

j∗xJ
c(−m)
0,1

of line bundles on BΦ.

Proof. — Proposition 5.2.1 implies the equality of hermitian forms∑
x∈L0

c(−Q(x)) · 〈u, x〉 · 〈x, v〉 =
〈u, v〉
2n− 4

∑
x∈L0

c(−Q(x)) · [x, x]

= 〈u, v〉 ·multΦ(f)

for all u, v ∈ L0. As L0 is self-dual, we may choose u and v so that 〈u, v〉 = 1, and
the integrality of multΦ(f) follows from the integrality of c(−m).

Set E = E ×Y0(D) AΦ, and use Proposition 3.4.4 to identify BΦ
∼= E ⊗ L0. The

pullback of the line bundle⊗
m>0

⊗
x∈L0

Q(x)=m

j∗xJ
⊗c(−m)
0,1

∼=
⊗
x∈L0

j∗xJ
⊗c(−Q(x))
0,1

via any T -valued point a =
∑
ti ⊗ yi ∈ E(T )⊗ L0 is, in the notation of § 3.4,⊗

x∈L0

PE
(∑

i

〈yi, x〉ti,
∑
j

〈yj , x〉tj
)⊗c(−Q(x))∼=

⊗
i,j

⊗
x∈L0

PE
(
c(−Q(x))·〈yi, x〉·〈x, yj〉·ti, tj

)
∼=
⊗
i,j

PE
(
〈yi, yj〉 · ti, tj

)⊗multΦ(f)

∼= PE⊗L0(a, a)⊗multΦ(f)

∼= QE⊗L0
(a)⊗2·multΦ(f).

This, along with the isomorphism QE⊗L0
∼= LΦ of Proposition 3.4.4, proves that

L2·multΦ(f)
Φ

∼= Q2·multΦ(f)
E⊗L0

∼=
⊗
m>0

⊗
x∈L0

Q(x)=m

j∗xJ
c(−m)
0,1 .

5.3. The unitary Borcherds product. — We now state our main results on Borcherds
products.

For a prime p dividing D define

(5.3.1) γp = ε−np · (D, p)np · invp(Vp) ∈ {±1,±i},

where invp(Vp) is the invariant of Vp = Homk(W0,W )⊗Q Qp in the sense of (1.7.3),
and

εp =

{
1 if p ≡ 1 (mod 4)

i if p ≡ 3 (mod 4).
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It is equal to the local Weil index of the Weil representation of SL2(Zp) on
SLp ⊂ S(Vp), where Vp is viewed as a quadratic space as in (2.1.6). This is explained
in more detail in § 8.1. For any r dividing D we define

(5.3.2) γr =
∏
p|r

γp.

Let cr(0) denote the constant term of f at the cusp∞r, as in Definition 4.1.1, and
define

k =
∑
r|D

γr · cr(0).

We will see later in Corollary 6.1.4 that all γr · cr(0) ∈ Q.
For every m > 0 define a divisor

(5.3.3) BKra(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ)

with rational coefficients on S∗Kra. Here the sum is over all K-equivalence classes of
proper cusp label representatives Φ in the sense of § 3.2, L0 is the hermitianOk-module
of signature (n − 2, 0) defined by (3.1.4), and S∗Kra(Φ) is the boundary divisor of
Theorem 3.7.1. It follows immediately from the definition (5.2.4) that∑

m>0

c(−m) · BKra(m) =
∑
Φ

multΦ(f) · S∗Kra(Φ).

For m > 0 define the total special divisor

Ztot
Kra(m) = Z∗Kra(m) + BKra(m),

where Z∗Kra(m) is the special divisor defined on the open Shimura variety in § 2.5, and
extended to the toroidal compactification in Theorem 3.7.1.

The following theorems assert the existence of Borcherds products on S∗Kra and
S∗Pap having prescribed divisors and prescribed leading Fourier-Jacobi coefficients.
Their proofs will occupy all of § 6.

Theorem 5.3.1. — After possibly replacing the form f of (5.2.2) by a positive integer
multiple, there is a rational section ψ(f) of the line bundle ω

k on S∗Kra with the
following properties.

1. In the generic fiber, the divisor of ψ(f) is

div(ψ(f))/k =
∑
m>0

c(−m) · Ztot
Kra(m)/k.

2. For every proper cusp label representative Φ, the Fourier-Jacobi expansion
of ψ(f), in the sense of (3.8.1), along the boundary divisor

∆Φ\BΦ
∼= S∗Kra(Φ)

has the form
ψ(f) = qmultΦ(f)

∑
`≥0

ψ` · q`,
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where ψ` is a rational section of ω
k
Φ ⊗ L

multΦ(f)+`
Φ over BΦ.

3. For any Φ as above, the leading coefficient ψ0 admits a factorization

ψ0 = P ηΦ ⊗ P
hor
Φ ⊗ P vert

Φ ,

where the three terms on the right are defined as follows.

(a) Proposition 3.5.1 provides us with an isomorphism

d−1
ωΦ
∼= j∗ωY

of line bundles on AΦ, where j : AΦ → Y0(D) is the morphism of (5.2.3),
and ωY = Lie(E)−1 is the pullback via Y0(D) → Y of the line bundle
of weight one modular forms. Pulling back the modular form (2πiη2)12 of
Proposition 5.1.4 defines a nowhere vanishing section

j∗(2πiη2)k ∈ H0(AΦ, d
−k

ω
k
Φ).

Using the canonical inclusion ωΦ ⊂ d−1
ωΦ, define

P ηΦ = j∗(2πiη2)k,

but viewed as a rational section of ω
k
Φ over AΦ. Denote in the same way its

pullback to BΦ.
(b) Recalling the function

F 24
r =

⊗
b∈Z/DZ
b6=0
rb=0

(bQ)∗Θ24

on Y0(D) of Lemma 5.1.5, define a rational function

P vert
Φ =

⊗
r|D
r>1

j∗F γrcr(0)
r

on AΦ, and again pull back to BΦ.
(c) Using Proposition 5.2.2, define a rational section

P hor
Φ =

⊗
m>0

⊗
x∈L0

〈x,x〉=m

j∗xΘc(−m)

of the line bundle LmultΦ(f)
Φ on BΦ.

These properties determine ψ(f) uniquely.

Remark 5.3.2. — In replacing f by a positive integer multiple, we are tacitly assuming
that the constants γrcr(0) and c(−m) are integer multiples of 24 for all r | D and all
m > 0. This is necessary in order to guarantee k ∈ 12Z, and to make sense of the
three factors (2πiη2

Φ)k, P hor
Φ , and P vert

Φ .

In fact, we can strengthen Theorem 5.3.1 by computing precisely the divisor of ψ(f)

on the integral model S∗Kra.
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Theorem 5.3.3. — The rational section ψ(f) of ω
k has divisor

div(ψ(f)) =
∑
m>0

c(−m) · Ztot
Kra(m)

+ k ·
(

Exc

2
− div(δ)

)
+
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp

−
∑
m>0

c(−m)

2

∑
s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs,

where p ⊂ Ok is the unique prime above p, Ls is the self-dual Hermitian Ok-lattice
defined in § 2.6, and Excs ⊂ Exc is the fiber over the component s ∈ π0(Sing). Recall
that δ =

√
−D ∈ k.

It is possible to give a statement analogous to Theorem 5.3.3 for the integral
model S∗Pap. To do this we first define, exactly as in (5.3.3), a Cartier divisor

Ytot
Pap(m) = Y∗Pap(m) + 2BPap(m)

with rational coefficients on S∗Pap. Here Y∗Pap(m) is the Cartier divisor of Theo-
rem § 3.7.1, and

BPap(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Pap(Φ).

It is clear from Theorem 3.7.1 that

(5.3.4) 2 · Ztot
Kra(m) = Ytot

Kra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs,

where Ytot
Kra(m) denotes the pullback of Ytot

Pap(m) via S∗Kra → S∗Pap.

The isomorphism
ω

2 ∼= ΩKra ⊗O(Exc)

of Theorem 3.7.1 identifies ω
2k ∼= Ω

k
Kra in the generic fiber of S∗Kra, allowing us to

view ψ(f)2 as a rational section of Ω
k
Kra. As S∗Kra → S∗Pap is an isomorphism in

the generic fiber, this section descends to a rational section of the line bundle Ω
k
Pap

on S∗Pap.

Theorem 5.3.4. — When viewed as a rational section of Ω
k
Pap, the Borcherds prod-

uct ψ(f)2 has divisor

div(ψ(f)2) =
∑
m>0

c(−m) · Ytot
Pap(m)− 2k · div(δ) + 2

∑
r|D

γrcr(0)
∑
p|r

S∗Pap/Fp .

These three theorems will be proved simultaneously in § 6. Briefly, we will map our
unitary Shimura variety Sh(G,D) to an orthogonal Shimura variety, where a mero-
morphic Borcherds product is already known to exist. If we pull back this Borcherds
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product to Sh(G,D)(C), the leading coefficient in its analytic Fourier-Jacobi expan-
sion is known from [32], up to multiplication by some unknown constants of absolute
value 1.

By converting this analytic Fourier-Jacobi expansion into algebraic language, we
will deduce the existence of a Borcherds product ψ(f) satisfying all of the properties
stated in Theorem 5.3.1, up to some unknown constants in the leading Fourier-Jacobi
coefficient. These unknown constants are the κΦ’s appearing in Proposition 6.4.1. We
then rescale the Borcherds product to make many κΦ = 1 simultaneously.

After such a rescaling, the divisor of ψ(f)2 on S∗Pap can be computed from the
Fourier-Jacobi expansions, and agrees with the divisor written in Theorem 5.3.4.
Pulling back that divisor calculation via S∗Kra → S∗Pap, and using Theorem 2.6.3,
yields the divisor of Theorem 5.3.3.

Using the above divisor calculations, we prove that all κΦ are roots of unity. Thus,
after replacing f by a multiple, which replaces ψ(f) by a power, we can force all
κΦ = 1, completing the proofs.

5.4. A divisor calculation at the boundary. — Let Φ be a proper cusp label repre-
sentative for (G,D). The following proposition is a key ingredient in the proofs of
Theorems 5.3.1, 5.3.3, and 5.3.4.

Proposition 5.4.1. — The rational sections P ηΦ, P
hor
Φ , and P vert

Φ of the line bundles ω
k
Φ,

LmultΦ(f)
Φ , and OBΦ , respectively, have divisors

div(P ηΦ) = −k · div(δ)

div(P hor
Φ ) =

∑
m>0

c(−m)ZΦ(m)

div(P vert
Φ ) =

∑
r|D

γrcr(0)
∑
p|r

BΦ/Fp .

In particular, the divisor of P hor
Φ is purely horizontal (Proposition 3.6.2), while the

divisors of P ηΦ and P vert
Φ are purely vertical.

Proof. — By Proposition 5.1.4 the section

j∗(2πiη2)k ∈ H0(AΦ, d
−k

ω
k
Φ) ∼= H0(Y0(D),ωkY)

has trivial divisor. When we use the inclusion ωΦ ⊂ d−1
ωΦ to view it instead as a

rational section P ηΦ of ω
k
Φ, its divisor becomes div(δ−k). This proves the first equality.

To prove the remaining two equalities, let E → Y0(D) be the universal elliptic
curve, and denote by e : Y0(D) → E the 0-section. It is an effective Cartier divisor
on E .

Directly from the definition of P hor
Φ we have the equality

div(P hor
Φ ) =

∑
m>0

c(−m)

24

∑
x∈L0

〈x,x〉=m

div(j∗xΘ24).
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Combining Proposition 5.1.4 with (3.6.1) shows that∑
x∈L0

〈x,x〉=m

div(j∗xΘ24) =
∑
x∈L0

〈x,x〉=m

24j∗x(e) =
∑
x∈L0

〈x,x〉=m

24ZΦ(x) = 24ZΦ(m),

and the first equality follows immediately.
Recall the morphism j : AΦ → Y0(D) of § 3.6. For the second equality it suffices

to prove that the function F 24
r on Y0(D) defined in Lemma 5.1.5 satisfies

(5.4.1) div(j∗F 24
r ) = 24

∑
p|r

AΦ/Fp .

Let C ⊂ E be the universal cyclic subgroup scheme of orderD. For each s | D denote
by C[s] ⊂ C the s-torsion subgroup, and by C[s]× ⊂ C[s] the closed subscheme of
generators. This is defined as follows. Noting that

C[s] =
∏
p|s

C[p],

we define

C[s]× =
∏
p|s

C[p]×,

where C[p]× denotes the closed subscheme of generators of C[p] as in [21, § 3.3]. Note
that C[p]× coincides with the subscheme of points of exact order p Z (see [21, Re-
mark 3.3.2]) which allows the comparison with the formulation of the moduli problem
in [28, Chapter 3]. Here and in the sequel, we are using [21, § 3.3] as a convenient
summary of Oort-Tate theory (see also [19]) and of facts from [28] and [15].

There is an equality of Cartier divisors

1

24
div(F 24

r ) =
(
C[r]− e

)
×E,e Y0(D) =

∑
s|r
s6=1

(
C[s]× ×E,e Y0(D)

)

on Y0(D). Indeed, one can check this after pullback to Y1(D), where it is clear from
Proposition 5.1.4, which asserts that the divisor of the section Θ24 appearing in the
definition of F 24

r is equal to 24e. If s is divisible by two distinct primes then(
C[s]× ×E,e Y0(D)

)
= 0,

and hence

div(F 24
r ) = 24

∑
p|r

(
C[p]× ×E,e Y0(D)

)
.

Now pull back this equality of Cartier divisors by j. Recall that j is defined as the
composition

AΦ
∼=M(1,0)

i−→ Y0(D),
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where the isomorphism is the one provided by Proposition 3.4.4, and the arrow la-
beled i endows the universal CM elliptic curve E →M(1,0) with its cyclic subgroup
scheme E[δ]. Thus

(5.4.2) i∗div(F 24
r ) = 24

∑
p|r

(
E[p]× ×E,eM(1,0)

)
,

where p denotes the unique prime ideal in Ok over p.
Fix a geometric point z : Spec(Falg

p ) → M(1,0), and view z also as a geometric
point of E or E using

M(1,0)
e−→ E

i−→ E .
Let OE,z and OE,z denote the completed étale local rings of E and E at z.

There is an isomorphism

OE,z ∼= W [[X,Y, Z]]/(XY − wp)

for some uniformizer wp in the Witt ring W = W (Falg
p ). Compare with [21, The-

orem 3.3.1]. Under this isomorphism the 0-section of E is defined by the equation
Z = 0, and the divisor C[p]× is defined by Zp−1 −X = 0. Moreover, noting that the
completed étale local ring ofM(1,0) at z can be identified with Ok ⊗W , the natural
map OE,z → OE,z is identified with the quotient map

W [[X,Y, Z]]/(XY − wp)→W [[X,Y, Z]]/(XY − wp, X − uY )

for some u ∈W×.
Under these identifications, the closed immersion

E[p]× ×E,eM(1,0) ↪→M(1,0)

corresponds, on the level of completed local rings, to the quotient map

OM(1,0),z W [[X,Y, Z]]/(XY − wp, X − uY, Z)

��

Falg
p W [[X,Y, Z]]/(XY − wp, X − uY, Z, Zp−1 −X).

This implies that
E[p]× ×E,eM(1,0) =M(1,0)/Falg

p
.

The equality (5.4.1) is clear from this and (5.4.2).

6. Calculation of the Borcherds product divisor

In this section we prove Theorems 5.3.1, 5.3.3, and 5.3.4. We assume throughout
that n ≥ 3.

Throughout § 6 we keep f as in (5.2.2), and again assume that c(−m) ∈ Z for all
m ≥ 0. Recall that V = Homk(W0,W ) is endowed with the hermitian form 〈x, y〉 of
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(2.1.5), as well as the Q-bilinear form [x, y] of (2.1.6). The associated quadratic form
is

Q(x) = 〈x, x〉 =
[x, x]

2
.

6.1. Vector-valued modular forms. — Let L ⊂ V be any Ok-lattice, self-dual with
respect to the hermitian form. The dual lattice of L with respect to the bilinear
form [., .] is L′ = d−1L.

Let ω be the restriction to SL2(Z) of the Weil representation of SL2(Q̂) (associ-
ated with the standard additive character of A/Q) on the Schwartz-Bruhat functions
on L ⊗Z Af . The restriction of ω to SL2(Z) preserves the subspace SL = C[L′/L] of
Schwartz-Bruhat functions that are supported on L̂′ and invariant under translations
by L̂. We obtain a representation

ωL : SL2(Z)→ Aut(SL).

For µ ∈ L′/L, we denote by φµ ∈ SL the characteristic function of µ.

Remark 6.1.1. — The conjugate representation ωL on SL, defined by

ωL(γ)(φ) = ωL(γ)(φ)

for φ ∈ SL, is the representation denoted ρL in [4, 7, 9].

Recall the scalar valued modular form

f(τ) =
∑

m�−∞
c(m) · qm ∈M !,∞

2−n(D,χ)

of (5.2.2), and continue to assume that c(m) ∈ Z for all m ≤ 0. We will convert f into
a C[L′/L]-valued modular form f̃ , to be used as input for Borcherds’ construction of
meromorphic modular forms on orthogonal Shimura varieties. The restriction of ωL
to Γ0(D) acts on the line C · φ0 via the character χ = χn−2

k , and hence the induced
function

f̃(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(f |2−n γ)(τ) · ωL(γ)−1φ0(6.1.1)

is an SL-valued weakly holomorphic modular form for SL2(Z) of weight 2 − n with
representation ωL. Its Fourier expansion is denoted

(6.1.2) f̃(τ) =
∑

m�−∞
c̃(m) · qm,

and we denote by c̃(m,µ) the value of c̃(m) ∈ SL at a coset µ ∈ L′/L.
For any r | D let γr ∈ {±1,±i} be as in (5.3.2), and let cr(m) be the mth Fourier

coefficient of f at the cusp ∞r as in (4.1.1). For any µ ∈ L′/L define rµ | D by

(6.1.3) rµ =
∏
µp 6=0

p,

where µp ∈ L′p/Lp is the p-component of µ.
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Proposition 6.1.2. — For all m ∈ Q the coefficients c̃(m) ∈ SL satisfy

c̃(m,µ) =

{∑
rµ|r|D γr · cr(mr) if m ≡ −Q(µ) (mod Z),

0 otherwise.

Moreover, for m < 0 we have

c̃(m,µ) =

{
c(m) if µ = 0,
0 if µ 6= 0,

and the constant term of f̃ is given by

c̃(0, µ) =
∑
rµ|r|D

γr · cr(0).

Proof. — The first formula is a special case of results of Scheithauer [50, Section 5].
For the reader’s benefit we provide a direct proof in § 8.2.

The formula for the m = 0 coefficient is immediate from the general formula. So is
the formula for m < 0, using the fact that the singularities of f are supported at the
cusp at ∞.

Remark 6.1.3. — The first formula of Proposition 6.1.2 actually also holds for f in
the larger space M !

2−n(D,χ).

Corollary 6.1.4. — The coefficients c(m) and c̃(m) satisfy the following:

1. The c(m) are rational for all m.

2. The c̃(m,µ) are rational for all m and µ, and are integral if m < 0.

3. For all r | D we have γr · cr(0) ∈ Q. In particular

c̃(0, 0) =
∑
r|D

γr · cr(0) ∈ Q.

Proof. — For the first claim, fix any σ ∈ Aut(C/Q). The form fσ − f ∈ M !,∞
2−n is

holomorphic at all cusps other than∞, and vanishes at the cusp∞ by the assumption
that as c(m) ∈ Z for m ≤ 0. Hence fσ − f is a holomorphic modular form of weight
2− n < 0, and therefore vanishes identically. It follows that c(m) ∈ Q for all m.

Now consider the second claim. In view of the Proposition 6.1.2 the coeffi-
cients c̃(m,µ) of f̃ with m < 0 are integers. Hence, for any σ ∈ Aut(C/Q), the
function f̃σ− f̃ is a holomorphic modular form of weight 2−n < 0, which is therefore
identically 0. Therefore f̃ has rational Fourier coefficients.

The third claim follows from the second claim and the formula for the constant
term of f̃ given in Proposition 6.1.2.
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6.2. Construction of the Borcherds product. — We now construct the Borcherds prod-
uct ψ(f) of Theorem 5.3.1 as the pullback of a Borcherds product on the orthogonal
Shimura variety defined by the quadratic space (V,Q). Useful references here include
[4, 7, 37, 22].

After Corollary 6.1.4 we may replace f by a positive integer multiple in order to
assume that c(−m) ∈ 24Z for all m ≥ 0, and that γrcr(0) ∈ 24Z for all r | D. In
particular the rational number

k = c̃(0, 0)

of Corollary 6.1.4 is an integer. Compare with Remark 5.3.2.
Define a hermitian domain

(6.2.1) D̃ = {w ∈ V (C) : [w,w] = 0, [w,w] < 0}/C×.

Let ω̃
an be the tautological bundle on D̃, whose fiber at w is the line Cw ⊂ V (C).

The group of real points of SO(V ) acts on (6.2.1), and this action lifts to an action
on ω̃

an.
As in Remark 2.1.2, any point z ∈ D determines a line Cw ⊂ εV (C). This con-

struction defines a closed immersion

(6.2.2) D ↪→ D̃,

under which ω̃
an pulls back to the line bundle ω

an of § 2.4. The hermitian domain D̃ has
two connected components. Let D̃+ ⊂ D̃ be the connected component containing D.

For a fixed g ∈ G(Af ), we apply the constructions of § 6.1 to the input form f and
the self-dual hermitian Ok-lattice

L = HomOk
(ga0, ga) ⊂ V.

The result is a vector-valued modular form f̃ of weight 2 − n and representation
ωL : SL2(Z)→ SL. The form f̃ determines a Borcherds product Ψ(f̃) on D̃+; see [4,
Theorem 13.3] and Theorem 7.2.4. For us it is more convenient to use the rescaled
Borcherds product

(6.2.3) ψ̃g(f) = (2πi)c̃(0,0)Ψ(2f̃)

determined by 2f̃ . It is a meromorphic section of (ω̃an)k.
The subgroup SO(L)+ ⊂ SO(L) of elements preserving the component D̃+ acts

on ψ̃g(f) through a finite order character [6]. Replacing f by mf has the effect
of replacing ψ̃g(f) by ψ̃g(f)m, and so after replacing f by a multiple we assume
that ψ̃g(f) is invariant under this action.

Denote by ψg(f) the pullback of ψ̃g(f) via the map

(G(Q) ∩ gKg−1)\D → SO(L)+\D̃+

induced by (6.2.2). It is a meromorphic section of (ωan)k on the connected component

(G(Q) ∩ gKg−1)\D z 7→(z,g)−−−−−→ Sh(G,D)(C).
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By repeating the construction for all g ∈ G(Q)\G(Af )/K, we obtain a meromorphic
section ψ(f) of the line bundle (ωan)k on

Sh(G,D)(C) ∼= SKra(C).

After rescaling on every connected component by a complex constant of absolute
value 1, this will be the section whose existence is asserted in Theorem 5.3.1.

Proposition 6.2.1. — The divisor of ψ(f) is

div(ψ(f)) =
∑
m>0

c(−m) · ZKra(m)(C).

Proof. — The divisor of ψ̃g(f) on D̃+ was computed by Borcherds in terms of the
Fourier coefficients c̃(−m) of f̃ , and from this it is easy to obtain a formula for the
divisor of ψg(f) on D. See [7, Theorem 3.22] and [22, Theorem 8.1] for the details.
The claim therefore follows by using Proposition 6.1.2 to rewrite this formula in terms
of the c(−m), and comparing with the explicit description of ZKra(m)(C) stated in
Remark 2.5.2.

6.3. Analytic Fourier-Jacobi coefficients. — We return to the notation of § 3.9. Thus
Φ = (P, g) is a proper cusp label representative for (G,D), we have chosen

s : Resk/QGm → QΦ

as in Lemma 3.9.2, and have fixed a ∈ k̂×. This data determines a lattice

L = HomOk
(s(a)ga0, s(a)ga),

and Witt decompositions

V = V−1 ⊕ V0 ⊕ V1, L = L−1 ⊕ L0 ⊕ L1.

Choose bases e−1, f−1 ∈ L−1 and e1, f1 ∈ L1 as in § 3.9.
Imitating the construction of (3.9.16) yields a commutative diagram

D
(6.2.2)

//

w 7→(w0,ξ)

��

D̃+

w 7→(τ,w0,ξ)

��

εV0(C)× C // H× V0(C)× C

in which the vertical arrows are open immersions, and the horizontal arrows are closed
immersions. The vertical arrow on the right is defined as follows: Any w ∈ D̃ pairs
nontrivially with the isotropic vector f−1, and so may be scaled so that [w, f−1] = 1.
This allows us to identify

D̃ = {w ∈ V (C) : [w,w] = 0, [w,w] < 0, [w, f−1] = 1}.

Using this model, any w ∈ D̃+ has the form

w = −ξe−1 + (τξ −Q(w0))f−1 + w0 + τe1 + f1
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with τ ∈ H, w0 ∈ V0(C), and ξ ∈ C. The bottom horizontal arrow is (w0, ξ) 7→ (τ, w0, ξ),
where τ is determined by the relation (3.9.6).

The construction above singles out a nowhere vanishing section of ω̃an, whose value
at an isotropic line Cw is the unique vector in that line with [w, f−1] = 1. As in the
discussion leading to (3.9.18), we obtain a trivialization

[ . , f−1] : ω̃
an ∼= OD̃+ .

Now consider the Borcherds product ψ̃s(a)g(f) on D̃+ determined by the lattice L
above (that is, replace g by s(a)g throughout § 6.2). It is a meromorphic section
of (ω̃an)k, and we use the trivialization above to identify it with a meromorphic
function. In a neighborhood of the rational boundary component associated to the
isotropic plane V−1 ⊂ V , this meromorphic function has a product expansion.

Proposition 6.3.1 ([32]). — There are positive constants A and B with the following
property: For all points w ∈ D̃+ satisfying

Im(ξ)− Q(Im(w0))

Im(τ)
> A Im(τ) +

B

Im(τ)
,

there is a factorization

ψ̃s(a)g(f) = κ · (2πi)k · η2k(τ) · e2πiIξ · P0(τ) · P1(τ, w0) · P2(τ, w0, ξ)

in which κ ∈ C× has absolute value 1, η is the Dedekind η-function, and

I =
1

12

∑
b∈Z/DZ

c̃

(
0,− b

D
f−1

)
− 2

∑
m>0

∑
x∈L0

c(−m) · σ1(m−Q(x)).

The factors P0 and P1 are defined by

P0(τ) =
∏

b∈Z/DZ
b6=0

Θ

(
τ,
b

D

)c̃(0, bD f−1)

and
P1(τ, w0) =

∏
m>0

∏
x∈L0

Q(x)=m

Θ
(
τ, [w0, x]

)c(−m)
.

The remaining factor is

P2(τ, w0, ξ) =
∏

x∈δ−1L0
a∈Z

b∈Z/DZ
c∈Z>0

(
1− e2πicξe2πiaτe2πib/De−2πi[x,w0]

)2·c̃(ac−Q(x),µ)

,

where µ = −ae−1 − b
D f−1 + x+ ce1 ∈ δ−1L/L.

Proof. — This is just a restatement of [32, Corollary 2.3], with some simplifications
arising from the fact that the vector-valued form f̃ used to define the Borcherds
product is induced from a scalar-valued form via (6.1.1).
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Amore detailed description of how these expressions arise from the general formulas
in [32] is given in the appendix.

If we pull back the formula for the Borcherds product ψ̃s(a)g(f) found in Propo-
sition 6.3.1 via the closed immersion (6.2.2), we obtain a formula for the Borcherds
product ψs(a)g(f) on the connected component

(G(Q) ∩ s(a)gKg−1s(a)−1)\D z 7→(z,s(a)g)−−−−−−−−→ Sh(G,D)(C),

from which we can read off the leading analytic Fourier-Jacobi coefficient.

Corollary 6.3.2. — The analytic Fourier-Jacobi expansion of ψ(f), in the sense of
(3.9.18), has the form

ψs(a)g(f) =
∑
`≥I

FJ
(a)
` (ψ(f))(w0) · q`,

where I is the integer of Proposition 6.3.1. The leading coefficient FJ
(a)
I (ψ(f)), viewed

as a function on V0(R) as in the discussion leading to (3.9.14), is given by

(6.3.1) FJ
(a)
I (ψ(f))(w0) = κ · (2πi)k · η(τ)2k · P0(τ) · P1(τ, w0),

where τ ∈ H is determined by (3.9.6),

P0(τ) =
∏
r|D

∏
b∈Z/DZ
b 6=0
rb=0

Θ

(
τ,
b

D

)γrcr(0)

and
P1(τ, w0) =

∏
m>0

∏
x∈L0

Q(x)=m

Θ
(
τ, 〈w0, x〉

)c(−m)
.

The constant κ ∈ C, which depends on both Φ and a, has absolute value 1.

Proof. — Using Proposition 6.3.1, the pullback of ψ̃s(a)g(f) via (6.2.2) factors as a
product

ψs(a)g(f) = κ · (2πi)k · η2k(τ) · e2πiξI · P0(τ)P1(τ, w0)P2(τ, w0, ξ),

where ξ ∈ C× and w0 ∈ V (R) ∼= εV (C). The parameter τ ∈ H is now fixed, determined
by (3.9.6). The equality∏

b∈Z/DZ
b 6=0

Θ

(
τ,
b

D

)c̃(0, bD f−1)

=
∏
r|D

∏
b∈Z/DZ
b 6=0
rb=0

Θ

(
τ,
b

D

)γrcr(0)

follows from Proposition 6.1.2, and allows us to rewrite P0 in the stated form. To
rewrite the factor P1 in terms of 〈., .〉 instead of [., .], use the commutative diagram of
Remark 3.9.4. Finally, as Im(ξ)→∞, so q = e2πiξ → 0, the factor P2 converges to 1.
This P2 does not contribute to the leading Fourier-Jacobi coefficient.
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Proposition 6.3.3. — The integer I defined in Proposition 6.3.1 is equal to the integer
multΦ(f) defined by (5.2.4), and the product (6.3.1) satisfies the transformation law
(3.9.14) with ` = multΦ(f).

Proof. — The Fourier-Jacobi coefficient FJ
(a)
I (ψ(f)) appearing on the left hand side

of (6.3.1) is, by definition, a section of the line bundle QI
E(a)⊗L on E(a) ⊗ L. When

viewed as a function of the variable w0 ∈ V0(R) using our explicit coordinates, it
therefore satisfies the transformation law (3.9.14) with ` = I.

Now consider the right hand side of (6.3.1), and recall that τ is fixed, determined
by (3.9.6). In our explicit coordinates the function Θ(τ, 〈w0, x〉)24 of w0 ∈ V0(R) is
identified with a section of the line bundle j∗xJ0,12 on E(a) ⊗L; this is clear from the
definition of jx in (3.6.2), and Proposition 5.1.4. Thus P1(τ, w0), and hence the entire
right hand side of (6.3.1), defines a section of the line bundle⊗

m>0

⊗
x∈L0

Q(x)=m

j∗xJ
c(−m)/2
0,1

∼= L2·multΦ(f/2)
Φ

∼= QmultΦ(f)

E(a)⊗L ,

where the isomorphisms are those of Proposition 5.2.2 and Proposition 3.4.4. This
implies that the right hand side of (6.3.1) satisfies the transformation law (3.9.14)
with ` = multΦ(f).

A function on V0(R) cannot satisfy the transformation law (3.9.14) for two different
values of `, and hence I = multΦ(f). Note that we are using here the standing
hypothesis n > 2; if n = 2 then V0(R) = 0, and the transformation law (3.9.14) is
vacuous.

For a more direct proof of the proposition, see § 8.4.

6.4. Algebraization and descent. — The following weak form of Theorem 5.3.1 shows
that ψ(f) is algebraic, and provides an algebraic interpretation of its leading Fourier-
Jacobi coefficients.

Proposition 6.4.1. — The meromorphic section ψ(f) is the analytification of a ratio-
nal section of the line bundle ω

k on SKra/C. This rational section satisfies the following
properties:

1. When viewed as a rational section over the toroidal compactification,

div(ψ(f)) =
∑
m>0

c(−m) · Z∗Kra(m)/C +
∑
Φ

multΦ(f) · S∗Kra(Φ)/C.

2. For every proper cusp label representative Φ, the Fourier-Jacobi expansion
of ψ(f) along S∗Kra(Φ)/C, in the sense of § 3.8, has the form

ψ(f) = qmultΦ(f)
∑
`≥0

ψ` · q`.

3. The leading coefficient ψ0, a rational section of ω
k
Φ ⊗ L

multΦ(f)
Φ over BΦ/C,

factors as
ψ0 = κΦ ⊗ P ηΦ ⊗ P

hor
Φ ⊗ P vert

Φ
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for a unique section

κΦ ∈ H0(AΦ/C,O×AΦ/C).

This section satisfies |κΦ(z)| = 1 at every complex point z ∈ AΦ(C). (The other
factors appearing on the right hand side were defined in Theorem 5.3.1.)

Proof. — Using Corollary 6.3.2 and Proposition 6.3.3, one sees that ψ(f) extends to
a meromorphic section of ω

k over the toroidal compactification S∗Kra(C), vanishing to
order I = multΦ(f) along the closed stratum

S∗Kra(Φ)/C ⊂ S∗Kra/C

indexed by a proper cusp label representative Φ.
The calculation of the divisor of ψ(f) over the open Shimura variety SKra(C) is

Proposition 6.2.1. The algebraicity claim now follows from GAGA (using the fact that
the divisor is already known to be algebraic), proving all parts of the first claim. The
second and third claims are just a translation of Corollary 6.3.2 into the algebraic
language of Theorem 5.3.1, using the explicit coordinates of § 3.9 and the change of
notation (2πiη2)k = P ηΦ, P0 = P vert

Φ and P1 = P hor
Φ .

We now prove that ψ(f), after minor rescaling, descends to k. This can be deduced
from the analogous statement about Borcherds products on orthogonal Shimura va-
rieties proved in [26], but in the unitary case there is a much more elementary proof.
This will require the following two lemmas.

Lemma 6.4.2. — The geometric components of Sh(G,D) are defined over the Hilbert
class field kHilb of k, and each such component has trivial stabilizer in Gal(kHilb/k).

Proof. — One could prove this using Deligne’s reciprocity law for connected com-
ponents of Shimura varieties [43, § 13], but it also follows easily from the theory of
toroidal compactification.

Our assumption that n > 2 guarantees that every connected component of S∗Kra/C
contains some connected component of the boundary. It is a part (8) of Theorem 3.7.1
that all such boundary components are defined over the Hilbert class field, and it
follows that the same is true for components of S∗Kra/C. The same is therefore true for
the components of the interior

SKra/C ∼= Sh(G,D)/C.

The claim about stabilizers follows from the open and closed immersion

Sh(G,D) ⊂M(1,0) ×kM(n−1,1)

of (2.2.2), along with the classical fact (from the theory of complex multiplication
of elliptic curves) that the geometric components of M(1,0) form a simply transitive
Gal(kHilb/k)-set.

(8) This particular part of Theorem 3.7.1 follows from the reciprocity law for the boundary compo-
nents ofMPap

(n−1,1)
proved in [24, Proposition 2.6.2].
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The lemma allows us to choose a set of connected components

{Xi} ⊂ π0

(
Sh(G,D)/kHilb)

in such a way that

Sh(G,D)/kHilb =
⊔
i

⊔
σ∈Gal(kHilb/k)

σ(Xi).

For each index i, pick gi ∈ G(Af ) in such a way that Xi(C) is equal to the image of

(G(Q) ∩ giKg−1
i )\D z 7→(z,gi)−−−−−−→ Sh(G,D)(C).

Choose an isotropic k-line J ⊂ W , let P ⊂ G be its stabilizer, and define a proper
cusp label representative Φi = (P, gi). The above choices pick out one boundary
component on every component of the toroidal compactification, as the following
lemma demonstrates.

Lemma 6.4.3. — The natural maps ⊔
i S∗Kra(Φi) //

∼=

��

S∗Kra

��

⊔
iAΦi

⊔
i BΦi

88

&&

oo

⊔
i S∗Pap(Φi) // S∗Pap

induce bijections on connected components. The same is true after base change to k
or C.

Proof. — Let X∗i ⊂ S∗Pap(C) be the closure of Xi. By examining the complex an-
alytic construction of the toroidal compactification [24, 39, 47], one sees that some
component of the divisor S∗Pap(Φi)(C) lies on X∗i .

Recall from Theorem 3.7.1 that the components of S∗Pap(Φi)(C) are defined
over kHilb, and that the action of Gal(kHilb/k) is simply transitive. It follows
immediately that

S∗Pap(Φi)(C) ⊂
⊔

σ∈Gal(kHilb/k)

σ(X∗i ),

and the inclusion induces a bijection on components. By Proposition 3.2.1 and the
isomorphism of Proposition 3.3.3, the quotient map

CΦ(C)→ ∆Φi\CΦi(C)

induces a bijection on connected components, and both maps CΦ → BΦ → AΦ have
geometrically connected fibers (the first is a Gm-torsor, and the second is an abelian
scheme). We deduce that all maps in

AΦi(C)← BΦi(C)→ ∆Φi\BΦi(C) ∼= S∗Kra(Φi)(C) ∼= S∗Pap(Φi)(C)
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induce bijections on connected components.
The above proves the claim over C, and the claim over k follows formally from

this. The claim for integral models follows from the claim in the generic fiber, using
the fact that all integral models in question are normal and flat over Ok.

Proposition 6.4.4. — After possibly rescaling by a constant of absolute value 1 on every
connected component of S∗Kra/C, the Borcherds product ψ(f) is defined over k, and
the sections of Proposition 6.4.1 satisfy

κΦ ∈ H0(AΦ/k,O×AΦ/k
)

for all proper cusp label representatives Φ. Furthermore, we may arrange that κΦi = 1

for all i.

Proof. — Lemma 6.4.3 establishes a bijection between the connected components
of S∗Kra(C) and the finite set

⊔
iAΦi(C). On the component indexed by z ∈ AΦi(C),

rescale ψ(f) by κΦi(z)
−1. For this rescaled ψ(f) we have κΦi = 1 for all i.

Suppose σ ∈ Aut(C/k). The first claim of Proposition 6.4.1 implies that the divisor
of ψ(f), when computed on the compactification S∗Kra/C, is defined over k. Therefore
σ(ψ(f))/ψ(f) has trivial divisor, and so is constant on every connected component.

By the third claim of Proposition 6.4.1, the leading coefficient in the Fourier-Jacobi
expansion of ψ(f) along the boundary stratum S∗Kra(Φi) is

ψ0 = P ηΦi ⊗ P
hor
Φi ⊗ P

vert
Φi ,

which is defined over k. From this it follows that σ(ψ(f))/ψ(f) is identically equal to 1

on every connected component of S∗Kra/C meeting this boundary stratum. Varying i
and using Lemma 6.4.3 shows that σ(ψ(f)) = ψ(f).

This proves that ψ(f) is defined over k, hence so are all of its Fourier-Jacobi
coefficients along all boundary strata S∗Kra(Φ). Appealing again to the calculation of
the leading Fourier-Jacobi coefficient of Proposition 6.4.1, we deduce finally that κΦ is
defined over k for all Φ.

6.5. Calculation of the divisor, and completion of the proof. — The Borcherds product
ψ(f) on S∗Kra/k of Proposition 6.4.4 may be viewed as a rational section of ω

k on the
integral model S∗Kra.

Let Φ be any proper cusp label representative. Combining Propositions 6.4.1 and
6.4.4 shows that the leading Fourier-Jacobi coefficient of ψ(f) along the boundary
divisor S∗Kra(Φ) is

(6.5.1) ψ0 = κΦ ⊗ P ηΦ ⊗ P
hor
Φ ⊗ P vert

Φ .

Recall that this is a rational section of ω
k
Φ ⊗L

multΦ(f)
Φ on BΦ. Here, by mild abuse of

notation, we are viewing κΦ as a rational function on AΦ, and denoting in the same
way its pullback to any step in the tower

C∗Φ
π−→ BΦ → AΦ.
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Lemma 6.5.1. — Recall that π has a canonical section BΦ ↪→ C∗Φ, realizing BΦ as a
divisor on C∗Φ. If we use the isomorphism (3.7.1) to view ψ(f) as a rational section
of the line bundle ω

k
Φ on the formal completion (C∗Φ)∧BΦ

, its divisor satisfies

div(ψ(f)) = div(δ−kκΦ) + multΦ(f) · BΦ

+
∑
m>0

c(−m)ZΦ(m) +
∑
r|D

γrcr(0)
∑
p|r

π∗(BΦ/Fp).

Proof. — The key step is to prove that the divisor of ψ(f) can be computed from
the divisor of its leading Fourier-Jacobi coefficient ψ0 by the formula

(6.5.2) div(ψ(f)) = π∗div(ψ0) + multΦ(f) · BΦ.

Recalling the tautological section q with divisor BΦ from Remark 3.8.1, consider the
rational section

R = q−multΦ(f) ·ψ(f) =
∑
i≥0

ψi · qi

of ω
k
Φ ⊗ π∗L

multΦ(f)
Φ on the formal completion (C∗Φ)∧BΦ

.
We claim that div(R) = π∗∆ for some divisor ∆ on BΦ. Indeed, whatever div(R) is,

it may decomposed as a sum of horizontal and vertical components. We know from
Theorem 3.7.1 and Proposition 6.4.1 that the horizontal part is a linear combination
of the divisors ZΦ(m) on C∗Φ defined by (3.6.1); these divisors are, by construction,
pullbacks of divisors on BΦ. On the other hand, the morphism C∗Φ → BΦ is the total
space of a line bundle, and hence is smooth with connected fibers. Thus every vertical
divisor on C∗Φ, and in particular the vertical part of div(R), is the pullback of some
divisor on BΦ.

Denoting by i : BΦ ↪→ C∗Φ the zero section, we compute

∆ = i∗π∗∆ = i∗div(R) = div(i∗R) = div(ψ0).

Pulling back by π proves that div(R) = π∗div(ψ0), and (6.5.2) follows.
We now compute the divisor of ψ0 on BΦ using (6.5.1). The divisors of P ηΦ, P

hor
Φ ,

and P vert
Φ were computed in Proposition 5.4.1, which shows that on BΦ we have the

equality

div(ψ0) = div(δ−kκΦ) +
∑
m>0

c(−m)ZΦ(m) +
∑
r|D

γrcr(0)
∑
p|r

BΦ/Fp .

Combining this with (6.5.2) completes the proof.

Proposition 6.5.2. — When viewed as a rational section of ω
k on S∗Kra, the Borcherds

product ψ(f) has divisor

div(ψ(f)) =
∑
m>0

c(−m) · Z∗Kra(m) +
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−k) +
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp(6.5.3)
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up to a linear combination of irreducible components of the exceptional divisor
Exc ⊂ S∗Kra. Moreover, each section κΦ of Proposition 6.4.4 has finite multiplicative
order, and extends to a section κΦ ∈ H0(AΦ,O×AΦ

).

Proof. — Recall from Lemma 6.4.3 that the natural maps⊔
i BΦi

//

��

⊔
i S∗Pap(Φi) // S∗Pap

⊔
iAΦi

induce bijections on connected components, as well as on connected components of
the generic fibers.

All stacks in the diagram are proper over Ok, and have normal fibers. (For S∗Pap

this follows from Theorem 3.7.1 and our assumption that n > 2. The other stacks
appearing in the diagram are smooth over Ok.) It follows from this and [18, Corol-
lary 8.2.18] that all arrows in the diagram induce bijections between the irreducible
(= connected) components modulo any prime p ⊂ Ok.

Deleting the (0-dimensional) singular locus Sing ⊂ S∗Pap does not change the irre-
ducible components of S∗Pap or its fibers, and so if we define

U def
= S∗Pap \ Sing ∼= S∗Kra \ Exc,

then the natural maps ⊔
i BΦi

//

��

⊔
i S∗Pap(Φi) // U

⊔
iAΦi

induce bijections on irreducible components, as well as on irreducible components
modulo any prime p ⊂ Ok.

Suppose Φ is any proper cusp label representative, and let UΦ ⊂ U be the union
of all irreducible components that meet S∗Pap(Φ). If we interpret div(κΦ) as a divisor
on U using the bijection

{vertical divisors on AΦ} ∼= {vertical divisors on UΦ},

then the equality of divisors (6.5.3) holds after pullback to UΦ, up to the error term
div(κΦ). Indeed, this equality holds in the generic fiber of UΦ by Proposition 6.4.1,
and it holds over an open neighborhood of S∗Pap(Φ) by Lemma 6.5.1 and the isomor-
phism of formal completions (3.7.1). As the union of the generic fiber with this open
neighborhood is an open substack whose complement has codimension ≥ 2, the stated
equality holds over all of UΦ.

Letting Φ vary over the Φi and using κΦi = 1, we see from the paragraph above
that (6.5.3) holds over

⊔
i UΦi = U . With this in hand, we may reverse the argument
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to see that the error term div(κΦ) vanishes for every Φ. It follows that κΦ extends to
a global section of O×AΦ

.
It only remains to show that each κΦ has finite order. Choose a finite extension L/k

large enough that every elliptic curve over C with complex multiplication by Ok ad-
mits a model over L with everywhere good reduction. Choosing such models deter-
mines a faithfully flat morphism⊔

Spec(OL)→M(1,0)
∼= AΦ,

and the pullback of κΦ is represented by a tuple of units (x`) ∈
∏
O×L . Each x` has

absolute value 1 at every complex embedding of L (this follows from the final claim
of Proposition 6.4.1), and is therefore a root of unity. This implies that κΦ has finite
order.

Proof of Theorem 5.3.1. — Start with a weakly holomorphic form (5.2.2). As in § 6.2,
after possibly replacing f by a positive integer multiple, we obtain a Borcherds prod-
uct ψ(f). This is a meromorphic section of (ωan)k. By Proposition 6.4.1 it is algebraic,
and by Proposition 6.4.4 it may be rescaled by a constant of absolute value 1 on each
connected component in such a way that it descends to k.

Now view ψ(f) as a rational section of ω
k over S∗Kra. By Proposition 6.5.2 we may

replace f by a further positive integer multiple, and replace ψ(f) by a corresponding
tensor power, in order to make all κΦ = 1. Having trivialized the κΦ, the existence
part of Theorem 5.3.1 now follows from Proposition 6.4.1. For uniqueness, suppose
ψ′(f) also satisfies the conditions of that theorem. The quotient of the two Borcherds
products is a rational function with trivial divisor, which is therefore constant on
every connected component of S∗Kra(C). As the leading Fourier-Jacobi coefficients
of ψ′(f) and ψ(f) are equal along every boundary stratum, those constants are all
equal to 1.

Proof of Theorem 5.3.4. — As in the statement of the theorem, we now view ψ(f)2

as a rational section of the line bundle Ω
k
Pap on S∗Pap. Combining Proposition 6.5.2

with the isomorphism
S∗Kra \ Exc ∼= S∗Pap \ Sing,

of (3.7.2), and recalling from Theorem 3.7.1 that this isomorphism identifies

ω
2k ∼= Ω

k
Kra
∼= Ω

k
Pap,

we deduce the equality

div(ψ(f)2) =
∑
m>0

c(−m) · Y∗Pap(m) + 2
∑
Φ

multΦ(f) · S∗Pap(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Pap/Fp(6.5.4)

of Cartier divisors on S∗Pap \Sing. As S∗Pap is normal and Sing lies in codimension ≥ 2,
this same equality must hold on the entirety of S∗Pap.
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Proof of Theorem 5.3.3. — If we pull back via S∗Kra → S∗Pap and view ψ(f)2 as a
rational section of the line bundle

Ω
k
Kra
∼= ω

2k ⊗O(Exc)−k,

the equality (6.5.4) on S∗Pap pulls back to

div(ψ(f)2) =
∑
m>0

c(−m) · Y∗Kra(m) + 2
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp .

Theorem 2.6.3 allows us to rewrite this as

div(ψ(f)2) = 2
∑
m>0

c(−m) · Z∗Kra(m) + 2
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp

−
∑
m>0

c(−m)
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs.

If we instead view ψ(f)2 as a rational section of ω
2k, this becomes

div(ψ(f)2) = 2
∑
m>0

c(−m) · Z∗Kra(m) + 2
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp

−
∑
m>0

c(−m)
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

+ k · Exc

as desired.

7. Modularity of the generating series

Now armed with the modularity criterion of Theorem 4.2.3 and the arithmetic
theory of Borcherds products provided by Theorems 5.3.1, 5.3.3, and 5.3.4, we prove
our main results: the modularity of generating series of divisors on the integral models
S∗Kra and S∗Pap of the unitary Shimura variety Sh(G,D). The strategy follows that of
[5], which proves modularity of the generating series of divisors on the complex fiber
of an orthogonal Shimura variety.

Throughout § 7 we assume n ≥ 3.
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7.1. The modularity theorems. — Denote by

Ch1
Q(S∗Kra) ∼= Pic(S∗Kra)⊗Z Q

the Chow group of rational equivalence classes of Cartier divisors on S∗Kra with Q
coefficients, and similarly for S∗Pap. There is a natural pullback map

Ch1
Q(S∗Pap)→ Ch1

Q(S∗Kra).

Let χ = χnk be the quadratic Dirichlet character (5.2.1).

Definition 7.1.1. — If V is any Q-vector space, a formal q-expansion

(7.1.1)
∑
m≥0

d(m) · qm ∈ V [[q]]

is modular of level D, weight n, and character χ if for any Q-linear map α : V → C
the q-expansion ∑

m≥0

α(d(m)) · qm ∈ C[[q]]

is the q-expansion of an element of Mn(D,χ).

Remark 7.1.2. — If (7.1.1) is modular then its coefficients d(m) span a subspace of V
of dimension ≤ dimMn(D,χ). We leave the proof as an exercise for the reader.

We also define the notion of the constant term of (7.1.1) at a cusp∞r, generalizing
Definition 4.1.1.

Definition 7.1.3. — Suppose a formal q-expansion g ∈ V [[q]] is modular of level D,
weight n, and character χ. For any r | D, a vector v ∈ V (C) is said to be the constant
term of g at the cusp ∞r if, for every linear functional α : V (C) → C, α(v) is the
constant term of α(g) at the cusp ∞r in the sense of Definition 4.1.1.

For m > 0 we have defined in § 5.3 effective Cartier divisors

Ytot
Pap(m) ↪→ S∗Pap, Ztot

Kra(m) ↪→ S∗Kra

related by (5.3.4). We have defined in § 3.7 line bundles

ΩPap ∈ Pic(S∗Pap), ω ∈ Pic(S∗Kra)

extending the line bundles on the open integral models defined in § 2.4. For notational
uniformity, we define

Ytot
Pap(0) = Ω

−1
Pap, Ztot

Kra(0) = ω
−1 ⊗O(Exc).

Theorem 7.1.4. — The formal q-expansion∑
m≥0

Ytot
Pap(m) · qm ∈ Ch1

Q(S∗Pap)[[q]],
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is a modular form of level D, weight n, and character χ. For any r | D, its constant
term at the cusp ∞r is

γr ·
(
Ytot

Pap(0) + 2
∑
p|r

S∗Pap/Fp

)
∈ Ch1

Q(S∗Pap)⊗Q C.

Here γr ∈ {±1,±i} is defined by (5.3.2), p ⊂ Ok is the unique prime above p | r, and
Fp is its residue field.

Proof. — Let f be a weakly holomorphic form as in (5.2.2), and assume again
that c(m) ∈ Z for all m ≤ 0. The space M !,∞

2−n(D,χ) is spanned by such forms. The
Borcherds product ψ(f) of Theorem 5.3.1 is a rational section of the line bundle

ω
k =

⊗
r|D

ω
γrcr(0),

on S∗Kra. If we view ψ(f)2 as a rational section of the line bundle

Ω
k
Pap
∼=
⊗
r|D

Ω
γrcr(0)
Pap

on S∗Pap, exactly as in Theorem 5.3.4, then

div(ψ(f)2) = −
∑
r|D

γrcr(0) · Ytot
Pap(0)

holds in the Chow group of S∗Pap. Comparing this with the calculation of the divisor
of ψ(f)2 found in Theorem 5.3.4 shows that

(7.1.2) 0 =
∑
m≥0

c(−m) · Ytot
Pap(m) +

∑
r|D
r>1

γrcr(0) · (Ytot
Pap(0) + 2Vr),

where we abbreviate Vr =
∑
p|r S∗Pap/Fp .

For each r | D we have defined in § 4.2 an Eisenstein series

Er(τ) =
∑
m≥0

er(m) · qm ∈Mn(D,χ),

and Proposition 4.2.2 allows us to rewrite the above equality as

0 =
∑
m≥0

c(−m) ·
[
Ytot

Pap(m)−
∑
r|D
r>1

γrer(m) · (Ytot
Pap(0) + 2Vr)

]
.

Note that we have used er(0) = 0 for r > 1, a consequence of Remark 4.2.1.
The modularity criterion of Theorem 4.2.3 now shows that∑

m≥0

Ytot
Pap(m) · qm −

∑
r|D
r>1

γrEr · (Ytot
Pap(0) + 2Vr)

is a modular form of level D, weight n, and character χ, whose constant term vanishes
at every cusp different from ∞.
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The theorem now follows from the modularity of each Er, together with the de-
scription of their constant terms found in Remark 4.2.1.

Theorem 7.1.5. — The formal q-expansion∑
m≥0

Ztot
Kra(m) · qm ∈ Ch1

Q(S∗Kra)[[q]],

is a modular form of level D, weight n, and character χ.

Proof. — Recall from Theorems 2.6.3 and 3.7.1 that pullback via S∗Kra → S∗Pap sends

Ytot
Pap(m) 7→ 2 · Ztot

Kra(m)−
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

for all m > 0. This relation also holds for m = 0, as those same theorems show that

Ytot
Pap(0) = Ω

−1
Pap 7→ ω

−2 ⊗O(Exc) = 2 · Ztot
Kra(0)− Exc.

Pulling back the relation (7.1.2) shows that

0 =
∑
m≥0

c(−m) ·
(
Ztot

Kra(m)−
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m}
2

· Excs

)
+
∑
r|D
r>1

γrcr(0) ·
(
Ztot

Kra(0)− 1

2
· Exc + Vr

)

in Ch1
Q(S∗Kra) for any input form (5.2.2), where we now abbreviate

Vr =
∑
p|r

S∗Kra/Fp .

Using Proposition 4.2.2 we rewrite this as

0 =
∑
m≥0

c(−m) ·
(
Ztot

Kra(m)−
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m}
2

· Excs

)
−
∑
m≥0

c(−m)
∑
r|D
r>1

γrer(m)
(
Ztot

Kra(0)− 1

2
· Exc + Vr

)
,

where we have again used the fact that er(0) = 0 for r > 1.
The modularity criterion of Theorem 4.2.3 now implies the modularity of∑

m≥0

Ztot
Kra(m) · qm − 1

2

∑
s∈π0(Sing)

ϑs(τ) ·Excs −
∑
r|D
r>1

γrEr(τ) ·
(
Ztot

Kra(0)− 1

2
·Exc + Vr

)
.

The theorem follows from the modularity of the Eisenstein series Er(τ) and the theta
series

ϑs(τ) =
∑
x∈Ls

q〈x,x〉 ∈Mn(D,χ).
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7.2. Green functions. — Here we construct Green functions for special divisors
on S∗Kra as regularized theta lifts of harmonic Maass forms.

Recall from Section 2 the isomorphism of complex orbifolds

SKra(C) ∼= Sh(G,D)(C) = G(Q)\D ×G(Af )/K.

We use the uniformization on the right hand side and the regularized theta lift to
construct Green functions for the special divisors

Ztot
Kra(m) = Z∗Kra(m) + BKra(m)

on S∗Kra. The construction is a variant of the ones in [9] and [11], adapted to our
situation.

We now recall some of the basic notions of the theory of harmonic Maass forms,
as in [9, Section 3]. Let H∞2−n(D,χ) denote the space of harmonic Maass forms f of
weight 2− n for Γ0(D) with character χ such that

— f is bounded at all cusps of Γ0(D) different from the cusp ∞,
— f has polynomial growth at ∞, in sense that there is a

Pf =
∑
m<0

c+(m)qm ∈ C[q−1]

such that f − Pf is bounded as q goes to 0.
A harmonic Maass form f ∈ H∞2−n(D,χ) has a Fourier expansion of the form

f(τ) =
∑
m∈Z

m�−∞

c+(m)qm +
∑
m∈Z
m<0

c−(m) · Γ
(
n− 1, 4π|m| Im(τ)

)
· qm,(7.2.1)

where

Γ(s, x) =

∫ ∞
x

e−tts−1dt

is the incomplete gamma function. The first summand on the right hand side of
(7.2.1) is denoted by f+ and is called the holomorphic part of f , the second summand
is denoted by f− and is called the non-holomorphic part.

If f ∈ H∞2−n(D,χ) then (6.1.1) defines an SL-valued harmonic Maass form
for SL2(Z) of weight 2− n with representation ωL. Proposition 6.1.2 extends to such
lifts of harmonic Maass forms, giving the same formulas for the coefficients c̃+(m,µ)

of the holomorphic part f̃+ of f̃ . In particular, if m < 0 we have

c̃+(m,µ) =

{
c+(m) if µ = 0,
0 if µ 6= 0,

(7.2.2)

and the constant term of f̃ is given by

c̃+(0, µ) =
∑
rµ|r|D

γr · c+r (0).

The formula of Proposition 4.2.2 for the contant terms c+r (0) of f at the other cusps
also extends.
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As before, we consider the hermitian self-dual Ok-lattice L = HomOk
(a0, a) in

V = Homk(W0,W ). The dual lattice of L with respect to the bilinear form [., .] is
L′ = d−1L. Let

SL ⊂ S(V (Af ))

be the space of Schwartz-Bruhat functions that are supported on L̂′ and invariant
under translations by L̂.

Recall from Remark 2.1.2 that we may identify

D ∼= {w ∈ εV (C) : [w,w] < 0}/C×,

and also
D ∼= {negative definite k-stable R-planes z ⊂ V (R)}.

For any x ∈ V and z ∈ D, let xz be the orthogonal projection of x to the plane
z ⊂ V (R), and let xz⊥ be the orthogonal projection to z⊥.

For (τ, z, g) ∈ H×D ×G(Af ) and ϕ ∈ SL, we define a theta function

θ(τ, z, g, ϕ) =
∑
x∈V

ϕ(g−1x) · ϕ∞(τ, z, x),

where the Schwartz function at ∞,

ϕ∞(τ, z, x) = v · e2πiQ(x
z⊥ )τ+2πiQ(xz)τ̄ ,

is the usual Gaussian involving the majorant associated to z. We may view θ as a
function H × D × G(Af ) → S∨L . As a function in (z, g) it is invariant under the left
action of G(Q). Under the right action of K it satisfies the transformation law

θ(τ, z, gk, ϕ) = θ(τ, z, g, ωL(k)ϕ), k ∈ K,

where ωL denotes the action of K on SL by the Weil representation and v = Im(τ).
In the variable τ ∈ H it transforms as a S∨L-valued modular form of weight n − 2

for SL2(Z).
Fix an f ∈ H∞2−n(D,χ) with Fourier expansion as in (7.2.1), and assume

that c+(m) ∈ Z for m ≤ 0. We associate to f the divisors

ZKra(f) =
∑
m>0

c+(−m) · ZKra(m)

Ztot
Kra(f) =

∑
m>0

c+(−m) · Ztot
Kra(m)

on SKra and S∗Kra, respectively. As the actions of SL2(Z) and K via the Weil represen-
tation commute, the associated SL-valued harmonic Maass form f̃ is invariant under
K. Hence the natural pairing SL × S∨L → C gives rise to a scalar valued function
(f̃(τ), θ(τ, z, g)) in the variables (τ, z, g) ∈ H × D × G(Af ), which is invariant under
the right action of K and the left action of G(Q). Hence it descends to a function
on SL2(Z)\H× Sh(G,D)(C).
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We define the regularized theta lift of f as

Θreg(z, g, f) =

∫ reg

SL2(Z)\H

(
f̃(τ), θ(τ, z, g)

) du dv
v2

.

Here the regularization of the integral is defined as in [4, 9, 11]. We extend the incom-
plete Gamma function

(7.2.3) Γ(0, t) =

∫ ∞
t

e−v
dv

v

to a function on R≥0 by setting

Γ̃(0, t) =

{
Γ(0, t) if t > 0,
0 if t = 0.

Theorem 7.2.1. — The regularized theta lift Θreg(z, g, f) defines a smooth function
on SKra(C) \ ZKra(f)(C). For g ∈ G(Af ) and z0 ∈ D, there exists a neighborhood
U ⊂ D of z0 such that

Θreg(z, g, f)−
∑
x∈gL
x⊥z0

c+(−〈x, x〉) · Γ̃
(
0, 4π|〈xz, xz〉|

)
is a smooth function on U .

Proof. — Note that the sum over x ∈ gL∩z⊥0 is finite. Since Sh(G,D)(C) decomposes
into a finite disjoint union of connected components of the form

(G(Q) ∩ gKg−1)\D,

where g ∈ G(Af ), it suffices to consider the restriction of Θreg(f) to these components.
On such a component, Θreg(z, g, f) is the regularized theta lift considered in [11,

Section 4] of the vector valued form f̃ for the lattice

gL = gL̂ ∩ V = HomOk
(ga0, ga) ⊂ V,

and hence the assertion follows from (7.2.2) and [11, Theorem 4.1].

Remark 7.2.2. — Let ∆D denote the U(V )(R)-invariant Laplacian on D. There exists
a non-zero real constant c (which only depends on the normalization of ∆D and which
is independent of f), such that

∆DΘreg(z, g, f) = c · degZKra(f)(C)

on the complement of the divisor ZKra(f)(C).

Using the fact that
Γ(0, t) = − log(t) + Γ′(1) + o(t)

as t → 0, Theorem 7.2.1 implies that Θreg(f) is a (sub-harmonic) logarithmic Green
function for the divisor ZKra(f)(C) on the non-compactified Shimura variety SKra(C).
These properties, together with an integrability condition, characterize it uniquely up
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to addition of a locally constant function [11, Theorem 4.6]. The following result
describes the behavior of Θreg(f) on the toroidal compactification.

Theorem 7.2.3. — On S∗Kra(C), the function Θreg(f) is a logarithmic Green func-
tion for the divisor Ztot

Kra(f)(C) with possible additional log-log singularities along the
boundary in the sense of [13].

Proof. — As in the proof of Theorem 7.2.1 we reduce this to showing that Θreg(f) has
the correct growth along the boundary of the connected components of S∗Kra(C). Then
it is a direct consequence of [11, Theorem 4.10] and [11, Corollary 4.12].

Recall that ω
an is the tautological bundle on

D ∼=
{
w ∈ εV (C) : [w,w] < 0

}
/C×.

We define the Petersson metric ‖ · ‖ on ω
an by

‖w‖2 = − [w,w]

4πeγ
,

where γ = −Γ′(1) denotes Euler’s constant. This choice of metric on ω
an induces a

metric on the line bundle ω on SKra(C) defined in § 2.4, which extends to a metric
over S∗Kra(C) with log-log singularities along the boundary [11, Proposition 6.3]. We
obtain a hermitian line bundle on S∗Kra, denoted

ω̂ = (ω, ‖ · ‖).

If f is actually weakly holomorphic, that is, if it belongs to M !,∞
2−n(D,χ), then

Θreg(f) is given by the logarithm of a Borcherds product. More precisely, we have
the following theorem, which follows immediately from [4, Theorem 13.3] and our
construction of ψ(f) as the pullback of a Borcherds product, renormalized by (6.2.3),
on an orthogonal Shimura variety.

Theorem 7.2.4. — Let f ∈M !,∞
2−n(D,χ) be as in (5.2.2). The Borcherds product ψ(f)

of Theorem 5.3.1 satisfies

Θreg(f) = − log ‖ψ(f)‖2.

7.3. Generating series of arithmetic special divisors. — We can now define arithmetic
special divisors on S∗Kra, and prove a modularity result for the corresponding gen-
erating series in the codimension one arithmetic Chow group. This result extends
Theorem 7.1.5.

Recall our hypothesis that n > 2, and let m be a positive integer. As in [9, Propo-
sition 3.11], or using Poincaré series, it can be shown that there exists a unique
fm ∈ H∞2−n(D,χ) whose Fourier expansion at the cusp ∞ has the form

fm = q−m +O(1)

as q → 0. According to Theorem 7.2.3, its regularized theta lift Θreg(fm) is a loga-
rithmic Green function for Ztot

Kra(m).
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Denote by Ĉh
1

Q(S∗Kra) the arithmetic Chow group [20] of rational equivalence classes
of arithmetic divisors with Q-coefficients. We allow the Green functions of our arith-
metic divisors to have possible additional log-log error terms along the boundary
of S∗Kra(C), as in the theory of [13]. For m > 0 define an arithmetic special divisor

Ẑtot
Kra(m) = (Ztot

Kra(m),Θreg(fm)) ∈ Ĉh
1

Q(S∗Kra)

on S∗Kra, and for m = 0 set

Ẑtot
Kra(0) = ω̂

−1 + (Exc,− log(D)) ∈ Ĉh
1

Q(S∗Kra).

In the theory of arithmetic Chow groups one usually works on a regular scheme
such as S∗Kra. However, the codimension one arithmetic Chow group of S∗Pap makes
perfect sense: one only needs to specify that it consists of rational equivalence classes
of Cartier divisors on S∗Pap endowed with a Green function.

With this in mind one can use the equality

Ytot
Pap(m)(C) = 2Ztot

Kra(m)(C)

in the complex fiber S∗Pap(C) = S∗Kra(C) to define arithmetic divisors

Ŷtot
Pap(m) = (Ytot

Pap(m), 2Θreg(fm)) ∈ Ĉh
1

Q(S∗Pap)

for m > 0. For m = 0 we define

Ŷtot
Pap(0) = Ω̂

−1
+ (0,−2 log(D)) ∈ Ĉh

1

Q(S∗Pap),

where the metric on Ω is induced from that on ω, again using Ω ∼= ω
2 in the complex

fiber.

Theorem 7.3.1. — The formal q-expansions

φ̂(τ) =
∑
m≥0

Ẑtot
Kra(m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]](7.3.1)

and ∑
m≥0

Ŷtot
Pap(m) · qm ∈ Ĉh

1

Q(S∗Pap)[[q]]

are modular forms of level D, weight n, and character χ.

Proof. — For any input form f ∈M !,∞
2−n(D,χ) as in (5.2.2), the relation in the Chow

group given by the Borcherds product ψ(f) is compatible with the Green functions,
in the sense that

− log ‖ψ(f)‖2 =
∑
m>0

c(−m) ·Θreg(fm).

Indeed, this directly follows from f =
∑
m>0 c(−m)fm and Theorem 7.2.4.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



110 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

This observation allows us to simply repeat the argument of Theorems 7.1.4 and
7.1.5 on the level of arithmetic Chow groups. Viewing ψ(f)2 as a rational section of
the metrized line bundle Ω

k
Pap, the arithmetic divisor

d̂iv(ψ(f)2)
def
=
(
div(ψ(f)2),−2 log ‖ψ(f)‖2

)
∈ Ĉh

1

Q(S∗Pap)

satisfies both

(7.3.2) d̂iv(ψ(f)2) = Ω̂
k

Pap = −2k · (0, log(D))−
∑
r|D

γrcr(0) · Ŷtot
Pap(0)

and, recalling δ =
√
−D ∈ k,

d̂iv(ψ(f)2) =
∑
m>0

c(−m) · Ŷtot
Pap(m)− 2k · (div(δ), 0) + 2

∑
r|D

γrcr(0) · V̂r

=
∑
m>0

c(−m) · Ŷtot
Pap(m)− 2k · (0, log(D)) + 2

∑
r|D

γrcr(0) · V̂r,
(7.3.3)

where V̂r is the the vertical divisor Vr =
∑
p|r S∗Pap/Fp endowed with the trivial Green

function. Note that in the second equality we have used the relation

0 = d̂iv(δ) = (div(δ),− log |δ2|) = (div(δ), 0)− (0, log(D))

in the arithmetic Chow group. Combining (7.3.2) and (7.3.3), we deduce that

0 =
∑
m≥0

c(−m) · Ŷtot
Pap(m) +

∑
r|D
r>1

γrcr(0)
(
Ŷtot

Pap(0) + 2 · V̂r
)
.

With this relation in hand, both proofs go through verbatim.

7.4. Non-holomorphic generating series of special divisors. — In this subsection we
discuss a non-holomorphic variant of the generating series (7.3.1), which is obtained
by endowing the special divisors with other Green functions, namely with those con-
structed in [23, 24] following the method of [36]. By combining Theorem 7.3.1 with a
recent result of Ehlen and Sankaran [16], we show that the non-holomorphic generat-
ing series is also modular.

For every m ∈ Z and v ∈ R>0 define a divisor

BKra(m, v) =
1

4πv

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ)

with real coefficients on S∗Kra. Here the sum is over all K-equivalence classes of proper
cusp label representatives Φ in the sense of § 3.2, L0 is the hermitian Ok-module of
signature (n− 2, 0) defined by (3.1.4), and S∗Kra(Φ) is the boundary divisor of Theo-
rem 3.7.1. Note that BKra(m, v) is trivial for allm < 0. We define classes in Ch1

R(S∗Kra),
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depending on the parameter v, by

Ztot
Kra(m, v) =

Z
∗
Kra(m) + BKra(m, v) if m 6= 0

ω
−1 + Exc + BKra(0, v) if m = 0.

Following [23, 24, 36], Green functions for these divisors can be constructed as
follows. For x ∈ V (R) and z ∈ D we put

R(x, z) = −2Q(xz).

Recalling the incomplete Gamma function (7.2.3), for m ∈ Z and

(v, z, g) ∈ R>0 ×D ×G(Af )

we define a Green function

Ξ(m, v, z, g) =
∑

x∈V \{0}
Q(x)=m

χL̂(g−1x) · Γ(0, 2πvR(x, z)),(7.4.1)

where χL̂ ∈ SL denotes the characteristic function of L̂. As a function of the variable
(z, g), (7.4.1) is invariant under the left action of G(Q) and under the right action
of K, and so descends to a function on R>0 × Sh(G,D)(C). It was proved in [24,
Theorem 3.4.7] that Ξ(m, v) is a logarithmic Green function for Ztot

Kra(m, v) when
m 6= 0. When m = 0 it is a logarithmic Green function for BKra(0, v).

Consequently, we obtain arithmetic special divisors in Ĉh
1

R(S∗Kra) depending on the
parameter v by putting

Ẑtot
Kra(m, v) =

(Ztot
Kra(m, v),Ξ(m, v)) if m 6= 0

ω̂
−1 + (BKra(0, v),Ξ(0, v)) + (Exc,− log(Dv)) if m = 0.

Note that for m < 0 these divisors are supported in the archimedian fiber.

Theorem 7.4.1. — The formal q-expansion

φ̂non-hol(τ) =
∑
m∈Z
Ẑtot

Kra(m, v) · qm ∈ Ĉh
1

R(S∗Kra)[[q]],

is a non-holomorphic modular form of level D, weight n, and character χ. Here
q = e2πiτ and v = Im(τ).

Proof. — Theorem 4.13 of [16] states that the difference

(7.4.2) φ̂non-hol(τ)− φ̂(τ)

is a non-holomorphic modular form of level D, weight n, and character χ, valued
in Ĉh

1

C(S∗Kra). Hence the assertion follows from Theorem 7.3.1.

The meaning of modularity in Theorem 7.4.1 is to be understood as in [16, Defini-
tion 4.11]. In our situation it reduces to the statement that there is a smooth function
s(τ, z, g) on H× Sh(G,D)(C) with the following properties:
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1. in (z, g) the function s(τ, z, g) has at worst log-log-singularities at the boundary
of Sh(G,D)(C) (in particular it is a Green function for the trivial divisor);

2. s(τ, z, g) transforms in τ as a non-holomorphic modular form of level D, weight
n, and character χ;

3. the difference φ̂non-hol(τ)− s(τ, z, g) belongs to the space

Mn(D,χ)⊗C Ĉh
1

C(S∗Kra)⊕ (Rn−2Mn−2(D,χ))⊗C Ĉh
1

C(S∗Kra),

where Rn−2 denotes the Maass raising operator as in Section 8.4.

8. Appendix: some technical calculations

We collect some technical arguments and calculations. Strictly speaking, none of
these are essential to the proofs in the body of the text. We explain the connection
between the fourth roots of unity γp defined by (5.3.1) and the local Weil indices ap-
pearing in the theory of the Weil representation, provide alternative proofs of Propo-
sitions 6.1.2 and 6.3.3, and explain in greater detail how Proposition 6.3.1 is deduced
from the formulas of [32].

8.1. Local Weil indices. — In this subsection, we explain how the quantity γp defined
in (5.3.1) is related to the local Weil representation.

Let L ⊂ V be as in § 6.1, and recall that SL = C[L′/L] is identified with a subspace
of S(V (Af )) by sending µ ∈ L′/L to the characteristic function φµ of µ+ L̂ ⊂ V (Af ).

As dimQ V = 2n and D is odd, the representation ωL of SL2(Z) on SL is the
pullback via

SL2(Z) −→
∏
p|D

SL2(Zp)

of the representation
ωL =

⊗
p|D

ωp,

where ωp = ωLp is the Weil representation of SL2(Zp) on SLp ⊂ S(Vp). These Weil
representations are defined using the standard global additive character ψ = ⊗pψp,
which is trivial on Ẑ and on Q and whose restriction to R ⊂ A is given by ψ(x) =

exp(2πix). Recall that, for a ∈ Q×p and b ∈ Qp,

ωp(n(b))φ(x) = ψp(bQ(x)) · φ(x)

ωp(m(a))φ(x) = χnk,p(a) · |a|np · φ(ax)

ωp(w)φ(x) = γp

∫
Vp

ψp(−[x, y]) · φ(y) dy, w =
( −1

1

)
,

where γp = γp(L) is the Weil index of the quadratic space Vp with respect to ψp
and χk,p is the quadratic character of Q×p corresponding to kp. Note that dy is the
self-dual measure with respect to the pairing ψp([x, y]).
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Lemma 8.1.1. — The Weil representation ωp satisfies the following properties.

1. When restricted to the subspace SLp ⊂ S(Vp), the action of γ ∈ SL2(Zp) depends
only on the image of γ in SL2(Fp).

2. The Weil index is given by

γp = ε−np · (D, p)np · invp(Vp)

where (a, b)p is the Hilbert symbol for Qp and invp(Vp) is the invariant of Vp in
the sense of (1.7.3).

Proof. — (i) It suffices to check this on the generators. We omit this.
(ii) We can choose an Ok,p-basis for Lp such that the matrix for the hermitian
form is diag(a1, . . . , an), with aj ∈ Z×p . The matrix for the bilinear form [x, y] =

TrKp/Qp(〈x, y〉) is then diag(2a1, . . . , 2an, 2Da1, . . . , 2Dan). Then, according to the
formula for βV in [35, p. 379], we have

γ−1
p = γQp(

1

2
· ψp ◦ V ) =

n∏
j=1

γQp(ajψp) · γQp(Dajψp),

where we note that, in the notation there, x(w) = 1, and j = j(w) = 1. Next by
Proposition A.11 of the appendix to [48], for any α ∈ Z×p , we have γQp(αψp) = 1 and

γQp(αpψp) =

(
−α
p

)
· εp = (−α, p)p · εp.

Here note that if η = αpψp, then the resulting character η̄ of Fp is given by

η̄(ā) = ψp(p
−1a) = e(−p−1a).

and γFp(η̄) =
(
−1
p

)
· εp. Thus

γp = ε−np · (−D/p, p)np · (det(V ), p)p,

as claimed.

8.2. A direct proof of Proposition 6.1.2. — The proof of Proposition 6.1.2, which ex-
presses the Fourier coefficients of the vector valued form f̃ in terms of those of the
scalar valued form f ∈ M !

2−n(D,χ), appealed to the more general results of [50]. In
some respects, it is easier to prove Proposition 6.1.2 from scratch than it is to extract
it from [loc. cit.]. This is what we do here.

Recall that f̃ is defined from f by the induction procedure of (6.1.1), and that
the coefficients c̃(m,µ) in its Fourier expansion (6.1.2) are indexed by m ∈ Q and
µ ∈ L′/L. Recall that, for r | D, rs = D,

Wr =

(
rα β

Dγ rδ

)
= Rr

(
r

1

)
, Rr =

(
α β

sγ rδ

)
∈ Γ0(s).
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Note that

(8.2.1) Γ0(D)\SL2(Z) = Γ0(D)\SL2(Z)/Γ(D) '
∏
p|D

Bp\SL2(Fp),

so this set has order
∏
p|D(p+ 1). A set of coset representatives is given by

⊔
r|D

c (mod r)

Rr

(
1 c

1

)
.

Now, using (4.1.1), we have(
f
∣∣
2−nRr

(
1 c

1

))
(τ) =

(
f
∣∣
2−nWr

(
r−1 r−1c

1

))
(τ)

= χr(β)χs(α)
∑

m�−∞
r
n
2−1cr(m) · e

2πim(τ+c)
r .(8.2.2)

On the other hand, the image of the inverse of our coset representative on the right
side of (8.2.1) has components

(
1 −c

1

)(
0 −β
−sγ α

)
if p | r(

1 −c
1

)(
rδ −β
0 α

)
if p | s.

Note that rαδ − sβγ = 1. Then, as elements of SL2(Fp), we have

(
1 −c

1

)(
β

β−1

)(
−1

1

)(
1 αβ

1

)
if p | r(

1 −c
1

)(
α−1

0 α

)(
1 −αβ

1

)
if p | s.

The element on the second line just multiplies φ0,p by χp(α). For the element on the
first line, the factor on the right fixes φ0 and

ωp

((
−1

1

))
φ0 = γp p

−n2
∑

µ∈L′p/Lp

φµ.

Thus, the element on the first line carries φ0,p to

χp(β)γp p
−n2

∑
µ∈L′p/Lp

ψp(−cQ(µ))φµ.
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Recall from (6.1.3) that for µ ∈ L′/L, rµ is the product of the primes p | D such
that µp 6= 0. Thus

(8.2.3) ωL

(
Rr

(
1 c

1

))−1

φ0 = χs(α)χr(β) γr r
−n2

∑
µ∈L′/L
rµ|r

e2πicQ(µ)φµ.

Taking the product of (8.2.2) and (8.2.3) and summing on c and on r, we obtain∑
r|D

γr · r−1
∑

c (mod r)

∑
µ∈L′/L
rµ|r

e2πicQ(µ)φµ
∑

m�−∞
cr(m)e

2πim(τ+c)
r

=
∑
r|D

γr
∑

µ∈L′/L
rµ|r

φµ
∑

m�−∞
m
r +Q(µ)∈Z

cr(m) q
m
r

=
∑
m∈Q

m�−∞

∑
µ∈L′/L

m+Q(µ)∈Z

∑
r

rµ|r|D

γrcr(mr)φµ q
m.

This gives the claimed general expression for c̃(m,µ) and completes the proof of
Proposition 6.1.2.

8.3. A more detailed proof of Proposition 6.3.1. — In this section, we explain in more
detail how to obtain the product formula of Proposition 6.3.1 from the general formula
given in [32].

For our weakly holomorphic SL-valued modular form f̃ of weight 2 − n, with
Fourier expansion given by (6.1.2), the corresponding meromorphic Borcherds product
Ψ(f̃) on D̃+ has a product formula [32, Corollary 2.3] in a neighborhood of the
1-dimensional boundary component associated to L−1. It is given as a product of 4

factors, labeled (a), (b), (c) and (d). We note that, in our present case, there is a
basic simplification in factor (b) due to the restriction on the support of the Fourier
coefficients of f̃ . More precisely, for m > 0, c̃(−m,µ) = 0 for µ /∈ L, and c̃(−m, 0) =

c(−m). In particular, if x ∈ L′ with [x, e−1] = [x, f−1] = 0, then Q(x) = Q(x0), where
x0 is the (L0)Q component of x. If x0 6= 0, then Q(x) > 0, and c̃(−Q(x), µ) = 0

for µ /∈ L. The factors for Ψ(f̃) are then given by:
(a) ∏

x∈L′
[x,f−1]=0
[x,e−1]>0

mod L∩Q f−1

(
1− e−2πi[x,w]

)c̃(−Q(x),x)
.

(b)

P1(w0, τ1)
def
=

∏
x∈L0

[x,W0]>0

(
ϑ1(−[x,w], τ1)

η(τ1)

)c(−Q(x))

,
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where W0 is a Weyl chamber in V0(R), as in [32, § 2].
(c)

P0(τ1)
def
=

∏
x∈d−1L−1/L−1

x 6=0

(
ϑ1(−[x,w], τ1)

η(τ1)
eπi[x,w]·[x,e1]

)c̃(0,x)/2

(d) and
κ η(τ1)c̃(0,0) qI02 ,

where κ is a scalar of absolute value 1, and

I0 = −
∑
m

∑
x∈L′∩(L−1)⊥

mod L−1

c̃(−m,x)σ1(m−Q(x)).

The factors given in Proposition 6.3.1 are for the form

ψ̃g(f)
def
= (2πi)c̃(0,0)Ψ(2f̃).

The quantity q2 in [32] is our e(ξ), and τ1 there is our τ .
Recall from (3.9.5) that d−1L−1 = Ze−1+D−1Zf−1, so that, in factor (c), the prod-

uct runs over vectors D−1b f−1, with b (mod D) nonzero. For these vectors [x, e1] = 0.
In the formula for I, x runs over vectors of the form

x = − b

D
f−1 + x0,

with x0 ∈ d−1L0. But, again, if x0 6= 0, Q(x) = Q(x0) > 0 and c̃(−Q(x), x) = 0 unless
b = 0, and so the sum in that term runs over x0 ∈ L0 x0 6= 0 and over − b

D f−1’s.
Thus the factors for ψ̃g(f) are given by:

(a) ∏
x∈L′

[x,f−1]=0
[x,e−1]>0

mod L∩Q f−1

(
1− e−2πi[x,w]

)2 c̃(−Q(x),x)
,

(b)

P1(w0, τ1)
def
=

∏
x0∈L0
x0 6=0

(
ϑ1(−[x0, w], τ1)

η(τ1)

)c(−Q(x0))

,

(c)

P0(τ1)
def
=

∏
b∈Z/DZ
b6=0

(
ϑ1(−[x,w], τ1)

η(τ1)

)c̃(0, bD f−1)

,

(d) and, setting k = c̃(0, 0),
κ2 ( 2πi η2(τ))k q2I0

2 ,
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where κ is a scalar of absolute value 1, and

I0 = −2
∑
m>0

∑
x0∈L0

c(−m)σ1(m−Q(x0)) +
1

12

∑
b∈Z/DZ

c̃(0,
b

D
f−1).

Here note that for ψ̃g(f) = (2πi)c̃(0,0)Ψ(2f̃) we have multiplied the previous expres-
sion by 2.

Finally recall

w = −ξe−1 + (τξ −Q(w0))f−1 + w0 + τe1 + f1.

If [x, f−1] = 0, then x has the form

x = −ae−1 −
b

D
f−1 + x0 + ce1,

so that

[x,w] = −c ξ + [x0, w0]− aτ − b

D
,

and
Q(x) = −ac+Q(x0).

Using these values, the formulas given in Proposition 6.3.1 follow immediately.

8.4. A direct proof of Proposition 6.3.3. — Here we give a direct proof of Proposi-
tion 6.3.3, which does not rely on Corollary 6.3.2. We begin by recalling some general
facts about derivatives of modular forms.

We let q ddq be the Ramanujan theta operator on q-series. Recall that the image
under q ddq of a holomorphic modular form g of weight k is in general not a modular
form. However, the function

D(g) = q
dg

dq
− k

12
gE2(8.4.1)

is a holomorphic modular form of weight k + 2 (see [11, § 4.2]). Here

E2(τ) = −24
∑
m≥0

σ1(m)qm

denotes the non-modular Eisenstein series of weight 2 for SL2(Z). In particular
σ1(0) = − 1

24 . We extend σ1 to rational arguments by putting σ1(r) = 0 if r /∈ Z≥0.
If Rk = 2i ∂∂τ + k

v denotes the Maass raising operator, and

E∗2 (τ) = E2(τ)− 3

πv

is the non-holomorphic (but modular) Eisenstein series of weight 2, we also have

D(g) = − 1

4π
Rk(g)− k

12
gE∗2 .
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Proposition 8.4.1. — Let f ∈M !,∞
2−n(D,χ) as in (5.2.2). The integer

I =
1

12

∑
α∈d−1L−1/L−1

c̃(0, α)− 2
∑
m>0

c(−m)
∑
x∈L0

σ1(m−Q(x)).

defined in Proposition 6.3.1 is equal to the integer

multΦ(f) =
1

n− 2

∑
x∈L0

c(−Q(x))Q(x)

defined by (5.2.4).

Proof. — Consider the S∨L0
-valued theta function

Θ0(τ) =
∑
x∈L′0

qQ(x)χ∨x+L0
∈Mn−2(ω∨L0

).

Applying the above construction (8.4.1) to Θ0 we obtain an S∨L0
-valued modular form

D(Θ0) =
∑
x∈L′0

Q(x)qQ(x)χ∨x+L0
− n− 2

12
Θ0E2 ∈Mn(ω∨L0

)

of weight n. For its Fourier coefficients we have

D(Θ0) =
∑

ν∈L′0/L0

∑
m≥0

b(m, ν)qmχ∨ν

b(m, ν) =
∑

x∈ν+L0

Q(x)=m

Q(x) + 2(n− 2)
∑

x∈ν+L0

σ1(m−Q(x)).

As in [11, (4.8)], an SL-valued modular form F induces an SL0-valued form FL0 . If
we denote by Fµ the components of F with respect to the standard basis (χµ) of SL,
we have

FL0,ν =
∑

α∈d−1L−1/L−1

Fν+α(8.4.2)

for ν ∈ L′0/L0.
Let f̃ ∈M !

2−n(ωL) be the SL-valued form corresponding to f , as in (6.1.1). Using
(8.4.2) we obtain

f̃L0
∈M !

2−n(ωL0
)

with Fourier expansion

f̃L0
=
∑
ν,m

∑
α∈δ−1I/I

c̃(m, ν + α)qmχν+L0
.

We consider the natural pairing between the SL0-valued modular form f̃L0 of weight
2− n and the S∨L0

-valued modular form D(Θ0) of weight n,

(f̃L0
, D(Θ0)) ∈M !

2(SL2(Z)).

ASTÉRISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 119

By the residue theorem, the constant term of the q-expansion vanishes, and so∑
m≥0

∑
ν∈L′0/L0

α∈δ−1I/I

c̃(−m, ν + α)b(m, ν) = 0.(8.4.3)

We split this up in the sum overm > 0 and the contribution fromm = 0. Employing
Proposition 6.1.2, we obtain that the sum over m > 0 is equal to∑

m>0

c(−m)b(m, 0).

For the contribution of m = 0 we notice

b(0, ν) =

{
−n−2

12 , ν = 0 ∈ L′0/L0,

0, ν 6= 0.

Hence this part is equal to

−n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α).

Inserting the two contributions into (8.4.3), we obtain

0 =
∑
m>0

c(−m)b(m, 0)− n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α)

=
∑
m>0

c(−m)

( ∑
x∈L0

Q(x)=m

Q(x) + 2(n− 2)
∑
x∈L0

σ1(m−Q(x))

)

− n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α)

=
∑
x∈L0

c(−Q(x))Q(x) + 2(n− 2)
∑
m>0

c(−m)
∑
x∈L0

σ1(m−Q(x))

− n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α)

= (n− 2)multΦ(f)− (n− 2)I.

This concludes the proof of the proposition.

Now we verify directly the other claim of Proposition 6.3.3: the function

P1(τ, w0) =
∏
m>0

∏
x∈L0

Q(x)=m

Θ
(
τ, 〈w0, x〉

)c(−m)

satisfies the transformation law (3.9.14) with respect to the translation action of bL0

on the variable w0.
First recall that, for a, b ∈ Z,

Θ(τ, z + aτ + b) = exp
(
− πia2τ − 2πiaz + πi(b− a)

)
·Θ(τ, z).
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If we write α = aτ + b and τ = u+ iv, then

a =
Im(α)

v
=
α− ᾱ

2iv
, b = Re(α)− u

v
Im(α).

Thus
1

2
a2τ + az +

1

2
(a− b) =

1

4iv
(α− ᾱ)α+

1

2iv
(α− ᾱ)z +

1

2
(a− b− ab).

For z and w in C, write

R(z, w) = Rτ (z, w) = Bτ (z, w)−Hτ (z, w) =
1

v
z(w − w̄).

Then
1

4v
(α− ᾱ)α+

1

2v
(α− ᾱ)z =

1

2
R(z, α) +

1

4
R(α, α),

and we can write

Θ(τ, z + α) = exp(−πR(z, α)− π

2
R(α, α)) · exp(πi(a− b− ab))−1 Θ(τ, z).

We will consider the contribution of the 1
2 (a− b− ab) term separately.

For β ∈ V0, we have 〈w0 + β, x〉 = 〈w0, x〉 + 〈β, x〉. Suppose that for all x ∈ L0,
we have 〈β, x〉 = aτ + b for a and b in Z. Writing b = Z + Zτ , this is precisely the
condition that β ∈ bL0. Then we obtain a factor

exp

−π∑
m>0

∑
x∈L0

Q(x)=m

c(−m)

[
R
(
〈w0, x〉, 〈β, x〉

)
+
R
(
〈β, x〉, 〈β, x〉

)
2

] .

Expanding the sum and using the hermitian version of Borcherds’ quadratic identity
from the proof of Proposition 5.2.2, we have∑

x∈L0

c(−Q(x))

v

[
〈w0, x〉〈β, x〉 − 〈w0, x〉〈x, β〉+

〈β, x〉〈β, x〉
2

− 〈β, x〉〈x, β〉
2

]

= −1

v

(
〈w0, β〉+

1

2
〈β, β〉

)
· 1

2n− 4
·
∑
x∈L0

c(−Q(x)) [x, x]

= −1

v

(
〈w0, β〉+

1

2
〈β, β〉

)
·multΦ(f).

Thus, using I = multΦ(f), we have a contribution of

exp
(π〈w0, β〉

v
+
π〈β, β〉

2v

)I
to the transformation law.
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Next we consider the quantity

a− b− ab =
Im(α)

v
− Re(α)− u Im(α)

v
− Im(α)

v

(
Re(α)− u Im(α)

v

)
=
α− ᾱ

2iv
− (α+ ᾱ)

2
− u(α− ᾱ)

2iv
− α− ᾱ

2iv

(
(α+ ᾱ)

2
− u(α− ᾱ)

2iv

)
.

This will contribute exp(−πiA), where A is defined as the sum∑
x6=0

c(−Q(x))

[
α− ᾱ

2iv
− α+ ᾱ

2
− u(α− ᾱ)

2iv
− α− ᾱ

2iv

(
(α+ ᾱ)

2
− u(α− ᾱ)

2iv

)]
,

where α = 〈β, x〉. Since x and −x both occur in the sum, the linear terms vanish and

A =
∑
x 6=0

c(−Q(x))

[
− α− ᾱ

2iv

(
(α+ ᾱ)

2
− u(α− ᾱ)

2iv

)]
.

Using the hermitian version of Borcherds quadratic identity, as in the proof of Propo-
sition 5.2.2, we obtain

A =
uI

2v2
· 〈β, β〉.

Thus we have

P1(τ, w0 + β) = P1(τ, w0) · exp
(π
v
〈w0, β〉+

π

2v
〈β, β〉

)I
· exp

(−2πiu〈β, β〉
4v2

)I
.

Finally, we recall the conjugate linear isomorphism L−1
∼= b of (3.9.11) defined

by e−1 7→ τ and f−1 7→ 1. As

d−1L−1 = Ze−1 +D−1Zf−1,

we have −δ−1τ = aτ +D−1b for some a, b ∈ Z, and hence

τ = −D−1b(a+ δ−1)−1.

This gives u/v = aD
1
2 . Also, using

δe−1 = −Dae−1 − b f−1,

we have
1

2
(1 + δ) e−1 =

1

2
(1−Da) e−1 −

1

2
b f−1 ∈ Ze−1 + Zf−1 = L−1.

Thus a is odd and b is even. Recall that N(b) = 2v/
√
D. Thus

u

4v2
=

aD
1
2

2N(b)D
1
2

,

and, since 〈β, β〉 ∈ N(b), we have

exp
(
− 2πiu〈β, β〉

4v2

)
= exp

(
− πi〈β, β〉

N(b)

)
= ±1.
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The transformation law is then

P1(τ, w0 + β) = exp
(π
v
〈w0, β〉+

π

2v
〈β, β〉 − iπ 〈β, β〉

N(b)

)I
· P1(τ, w0),

as claimed in Proposition 6.3.3.
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MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES II:

ARITHMETIC APPLICATIONS

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport
& Tonghai Yang

Abstract. — We prove two formulas in the style of the Gross-Zagier theorem, relating
derivatives of L-functions to arithmetic intersection pairings on a unitary Shimura
variety. We also prove a special case of Colmez’s conjecture on the Faltings heights
of abelian varieties with complex multiplication. These results are derived from the
authors’ earlier results on the modularity of generating series of divisors on unitary
Shimura varieties.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura
unitaires II: applications arithmétiques)

Nous prouvons deux formules dans le style du théorème de Gross-Zagier, reliant les
dérivées des fonctions L aux accouplements d’intersection arithmétique sur une variété
de Shimura unitaire. Nous prouvons également un cas particulier de la conjecture de
Colmez sur les hauteurs de Faltings des variétés abéliennes à multiplication complexe.
Ces résultats sont déduits des résultats antérieurs des auteurs sur la modularité des
séries génératrices de diviseurs sur les variétés de Shimura unitaires.

1. Introduction

Fix an integer n ≥ 3, and a quadratic imaginary field k ⊂ C of odd discriminant
disc(k) = −D. Let χk : A× → {±1} be the associated quadratic character, let
dk ⊂ Ok denote the different of k, let hk be the class number of k, and let wk be the
number of roots of unity in k.
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By a hermitian Ok-lattice we mean a projective Ok-module of finite rank endowed
with a nondegenerate hermitian form.

1.1. Arithmetic theta lifts. — Suppose we are given a pair (a0, a) in which
— a0 is a self-dual hermitian Ok-lattice of signature (1, 0),
— a is a self-dual hermitian Ok-lattice of signature (n− 1, 1).

This pair determines hermitian k-spaces W0 = a0Q and W = aQ.
From this data we constructed in [6] a smooth Deligne-Mumford stack Sh(G,D) of

dimension n− 1 over k with complex points

Sh(G,D)(C) = G(Q)\D ×G(Af )/K.

The reductive group G ⊂ GU(W0) × GU(W ) is the largest subgroup on which the
two similitude characters agree, and K ⊂ G(Af ) is the largest subgroup stabilizing
the Ẑ-lattices â0 ⊂W0(Af ) and â ⊂W (Af ).

We also defined in [6, §2.3] an integral model

(1.1.1) SKra ⊂M(1,0) ×Ok
MKra

(n−1,1)

of Sh(G,D). It is regular and flat over Ok, and admits a canonical toroidal compact-
ification SKra ↪→ S∗Kra whose boundary is a smooth divisor.

The main result of [6] is the construction of a formal generating series of arithmetic
divisors

(1.1.2) φ̂(τ) =
∑
m≥0

Ẑtotal
Kra (m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]]

valued in the Gillet-Soulé codimension one arithmetic Chow group with rational co-
efficients, extended to allow log-log Green functions at the boundary as in [10, 4], and
the proof that this generating series is modular of weight n, level Γ0(D), and charac-
ter χnk. The modularity result implies that the coefficients span a finite-dimensional
subspace of the arithmetic Chow group [6, Remark 7.1.2].

After passing to the arithmetic Chow group with complex coefficients, for any
classical modular form

g ∈ Sn(Γ0(D), χnk)

we may form the Petersson inner product

〈φ̂, g〉Pet =

∫
Γ0(D)\H

g(τ) · φ̂(τ)
du dv

v2−n

where τ = u+ iv. As in [24], define the arithmetic theta lift

(1.1.3) θ̂(g) = 〈φ̂, g〉Pet ∈ Ĉh
1

C(S∗Kra).

Armed with the construction of the arithmetic theta lift (1.1.3), we are now able
to complete the program of [18, 19, 7] to prove Gross-Zagier style formulas relating
arithmetic intersections to derivatives of L-functions.

The Shimura variety S∗Kra carries different families of codimension n−1 cycles con-
structed from complex multiplication points, and our results show that the arithmetic
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intersections of these families with arithmetic lifts are related to central derivatives
of L-functions.

1.2. Central derivatives and small CM points. — In §2 we construct an étale and
proper Deligne-Mumford stack Ysm over Ok, along with a morphism

Ysm → S∗Kra.

This is the small CM cycle. Intersecting arithmetic divisors against Ysm defines a
linear functional

[− : Ysm] : Ĉh
1

C(S∗Kra)→ C,

and our first main result computes the image of the arithmetic theta lift (1.1.3) under
this linear functional.

The statement involves the convolution L-function L(g̃, θΛ, s) of two modular forms

g̃ ∈ Sn(ωL), θΛ ∈Mn−1(ω∨Λ)

valued in finite-dimensional representations of SL2(Z). We refer the reader to §2.3 for
the precise definitions. Here we note only that g̃ is the image of g under an induction
map

(1.2.1) Sn(Γ0(D), χnk)→ Sn(ωL)

from scalar-valued forms to vector-valued forms, that θΛ is the theta function at-
tached to a quadratic space Λ over Z of signature (2n− 2, 0), and that the L-function
L(g̃, θΛ, s) vanishes at its center of symmetry s = 0.

Theorem A. — The arithmetic theta lift (1.1.3) satisfies

[θ̂(g) : Ysm] = −degC(Ysm) · d
ds
L(g̃, θΛ, s)|s=0

.

Here we have defined

degC(Ysm) =
∑

y∈Ysm(C)

1

|Aut(y)|
,

where the sum is over the finitely many isomorphism classes of the groupoid of complex
points of Ysm, viewed as an Ok-stack.

The proof is given in §2, by combining the modularity result of [6] with the main
result of [7]. In §3 we provide alternative formulations of Theorem A that involve
the usual convolution L-function of scalar-valued modular forms, as opposed to the
vector-valued forms g̃ and θΛ. See especially Theorem 3.4.1.
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1.3. Central derivatives and big CM points. — Fix a totally real field F of degree n,
and define a CM field

E = k ⊗Q F.

Let Φ ⊂ Hom(E,C) be a CM type of signature (n− 1, 1), in the sense that there is a
unique ϕsp ∈ Φ, called the special embedding, whose restriction to k agrees with the
complex conjugate of the inclusion k ⊂ C. The reflex field of the pair (E,Φ) is

EΦ = ϕsp(E) ⊂ C,

and we denote by OΦ ⊂ EΦ its ring of integers.
We define in §4.2 an étale and proper Deligne-Mumford stack Ybig over OΦ, along

with a morphism of Ok-stacks

Ybig → S∗Kra.

This is the big CM cycle. Here we view Ybig as an Ok-stack using the inclusion
Ok ⊂ OΦ of subrings of C (which is the complex conjugate of the special embed-
ding ϕsp : Ok → OΦ). Intersecting arithmetic divisors against Ybig defines a linear
functional

[− : Ybig] : Ĉh
1

C(S∗Kra)→ C.

Our second main result relates the image of the arithmetic theta lift (1.1.3) under
this linear functional to the central derivative of a generalized L-function defined as
the Petersson inner product 〈E(s), g̃〉Pet. The modular form g̃(τ) is, once again, the
image of g(τ) under the induction map (1.2.1). The modular form E(τ, s) is defined as
the restriction via the diagonal embedding H → Hn of a weight one Hilbert modular
Eisenstein series valued in the space of the contragredient representation ω∨L. See §4.3
for details.

Theorem B. — Assume that the discriminants of k/Q and F/Q are odd and relatively
prime. The arithmetic theta lift (1.1.3) satisfies

[θ̂(g) : Ybig] =
−1

n
· degC(Ybig) · d

ds
〈E(s), g̃〉Pet|s=0

.

Here we have defined

degC(Ybig) =
∑

y∈Ybig(C)

1

|Aut(y)|
,

where the sum is over the finitely many isomorphism classes of the groupoid of complex
points of Ybig, viewed as an Ok-stack.

The proof is given in §4, by combining the modularity result of [6] with the inter-
section calculations of [8, 18, 19].
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1.4. Colmez’s conjecture. — Suppose E is a CM field with maximal totally real sub-
field F . Let DE and DF be the absolute discriminants of E and F , set ΓR(s) =

π−s/2Γ(s/2), and define the completed L-function

Λ(s, χE) =

∣∣∣∣DE

DF

∣∣∣∣ s2 ΓR(s+ 1)[F :Q]L(s, χE)

of the character χE : A×F → {±1} determined by E/F . It satisfies the functional
equation Λ(1− s, χE) = Λ(s, χE), and

Λ′(0, χE)

Λ(0, χE)
=
L′(0, χE)

L(0, χE)
+

1

2
log

∣∣∣∣DE

DF

∣∣∣∣− [F : Q]

2
log(4πeγ),

where γ = −Γ′(1) is the Euler-Mascheroni constant.
Suppose A is an abelian variety over C with complex multiplication by OE and

CM type Φ. In particular A is defined over the algebraic closure of Q in C. It is a
theorem of Colmez [12] that the Faltings height

hFalt
(E,Φ) = hFalt(A)

depends only on the pair (E,Φ), and not on A itself. Moreover, Colmez gave a con-
jectural formula for this Faltings height in terms of logarithmic derivatives of Artin
L-functions. In the special case where E = k, Colmez’s conjecture reduces to the
well-known Chowla-Selberg formula

(1.4.1) hFalt
k = −1

2
· Λ′(0, χk)

Λ(0, χk)
− 1

4
· log(16π3eγ),

where we omit the CM type {id} ⊂ Hom(k,C) from the notation.
Now suppose we are in the special case of §1.3, where

E = k ⊗Q F

and Φ ⊂ Hom(E,C) has signature (n − 1, 1). In this case, Colmez’s conjecture sim-
plifies to the equality of the following theorem.

Theorem C ([29]). — For a pair (E,Φ) as above,

hFalt
(E,Φ) = − 2

n
· Λ′(0, χE)

Λ(0, χE)
+

4− n
2
· Λ′(0, χk)

Λ(0, χk)
− n

4
· log(16π3eγ).

In [6, §2.4] we defined the line bundle of weight one modular forms ω on S∗Kra. It
was endowed it with a hermitian metric in [6, §7.2], and the resulting metrized line
bundle determines a class

ω̂ ∈ Ĉh
1

Q(S∗Kra).

The constant term of (1.1.2) is

(1.4.2) Ẑtot
Kra(0) = −ω̂ + (Exc,− log(D))

where Exc is the exceptional locus of S∗Kra appearing in [6, Theorem 2.3.4]. It is a
smooth effective Cartier divisor supported in characteristics dividing D, and we view
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it as an arithmetic divisor by endowing it with the constant Green function − log(D)

in the complex fiber.

Theorem D. — The metrized line bundle ω̂ satisfies

[ω̂ : Ybig] =
−2

n
· degC(Ybig) · Λ′(0, χE)

Λ(0, χE)
.

Theorem C is proved in [29] as a consequence of the average version of Colmez’s
conjecture [2, 30, 20]. Note that the proof in [29] does not require our standing hypoth-
esis that disc(k) is odd. Of course the assumption that disc(k) is odd is still needed
for Theorem D, as it is only under these hypotheses that we have even defined the
integral model S∗Kra and its line bundle of weight one modular forms.

In §5 we will show that Theorems C and D are equivalent. One can interpret this in
one of two ways. As Theorem C is already known, this equivalence proves Theorem D.
On the other hand, in §4.5 will give an independent proof of Theorem D under the
additional assumption that the discriminants of k and F are odd and relatively prime.
In this way we obtain a new proof of Theorem C under these extra hypotheses.

1.5. The case n = 2. — Throughout the introduction we have assumed that n ≥ 3,
and the reader might wonder how much of what we have written extends to the case
n = 2.

As explained in [6, §1.6], when n = 2 the proof of the modularity of (1.1.2) breaks
down because there is no known integral model of Sh(G,D) whose reduction at the
primes of Ok dividing D is normal. The existence of such a model when n > 2 is used
in [loc. cit.] to compute the vertical components of divisors of Borcherds products.

When n = 2, the Shimura variety Sh(G,D) is essentially a union of modular
curves (if the k-hermitian space W admits an isotropic line) or compact quaternionic
Shimura curves (if W is anisotropic). In either case the analogues of Theorems A
and B are close in spirit to the Gross-Zagier theorem [15] and its generalizations
[31]. In particular, the statement of Theorems A is quite parallel to the key result
Theorem 6.1 in [15, Section 1.6]. If we interchange in the computation of [θ̂(g) : Ysm]

the order of taking the Petersson inner product and the height pairing, this quantity
is very analogous to the left hand side of Theorem 6.1 in [15]. Both quantities are
expressed as central derivatives of a Rankin convolution L-function of g and a binary
theta function which is determined by the CM cycle in question. If g is a newform, then
θ̂(g) should lie in a g-isotypical component and the height pairing in our Theorem A
should be proportional to the height of the g-isotypical component of (a twist of) Ysm.
It would be interesting to make such a comparison precise. However, note that there
are substantial differences as well. While we work with unitary Shimura varieties and
CM points whose discriminants are equal to the level, Gross and Zagier work with
GL2 Shimura varieties and CM points whose discriminants are coprime to the level.

Theorem C is true as stated when n = 2, and is proved in [29]. Indeed, Colmez’s
conjecture is known for all quartic CM fields. If the quartic CM field is Galois over Q,
then the Galois group is abelian and Colmez’s conjecture is known by work of Colmez
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[12] and Obus [25]. In the non-Galois case the CM types form a single Aut(C/Q)-orbit;
as Colmez’s conjecture is constant on such orbits, the full Colmez conjecture follows
from the average case proved in [2] and [30].

Theorem D is also true as stated when n = 2. Indeed, when we prove the equivalence
of Theorems C and D in §5 we only assume n ≥ 2.

1.6. Thanks. — The results of this paper are the outcome of a long term project,
begun initially in Bonn in June of 2013, and supported in a crucial way by three
weeklong meetings at AIM, in Palo Alto (May of 2014) and San Jose (November of
2015 and 2016), as part of their AIM SQuaRE’s program. The opportunity to spend
these periods of intensely focused efforts on the problems involved was essential. We
would like to thank the University of Bonn and AIM for their support.

2. Small CM cycles and derivatives of L-functions

In this section we combine the results of [6] and [7] to prove Theorem A. Although
we will restrict to n ≥ 3 in §2.5, we allow n ≥ 2 until that point.

2.1. A Shimura variety of dimension zero. — Define a rank three torus Tsm over Q as
the fiber product

Tsm
//

��

Gm

diag.

��

Resk/QGm × Resk/QGm
Nm×Nm

// Gm ×Gm.

Its group of Q-points is

Tsm(Q) ∼= {(x, y) ∈ k× × k× : xx = yy}.

The fixed embedding k ⊂ C identifies Deligne’s torus S with the real algebraic
group (Resk/QGm)R, and the diagonal inclusion

S ↪→ (Resk/QGm)R × (Resk/QGm)R

factors through a morphism hsm : S → Tsm,R. The pair (Tsm, {hsm}) is a Shimura
datum, which, along with the compact open subgroup

Ksm = Tsm(Af ) ∩ (Ô×k × Ô
×
k ),

determines a 0-dimensional k-stack Sh(Tsm) with complex points

Sh(Tsm)(C) = Tsm(Q)\{hsm} × Tsm(Af )/Ksm.
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2.2. The small CM cycle. — The Shimura variety just constructed has a moduli in-
terpretation, which allows us to construct an integral model. The interpretation we
have in mind requires first choosing a triple (a0, a1, b) in which

— a0 is a self-dual hermitian Ok-lattice of signature (1, 0),
— a1 is a self-dual hermitian Ok-lattice of signature (0, 1),
— b is a self-dual hermitian Ok-lattice of signature (n− 1, 0).

The hermitian forms on a0 and b induce a hermitian form of signature (n − 1, 0) on
the projective Ok-module

Λ = HomOk
(a0, b),

as explained in [7, §2.1] or [6, (2.1.5)].
Recall from [7, §3.1] or [6, §2.3] the Ok-stacksM(p,0) andM(0,p). Both parametrize

abelian schemes A → S of relative dimension p ≥ 1 over Ok-schemes, endowed with
principal polarizations and Ok-actions. For the first moduli problem we impose the
signature (p, 0) condition that Ok acts on the OS-module Lie(A) via the structure
morphism Ok → OS . For the second we impose the signature (0, p) condition that the
action is by the complex conjugate of the structure morphism. Both of these stacks
are étale and proper over Ok by [19, Proposition 2.1.2].

Remark 2.2.1. — The generic fibers of M(1,0) and M(0,1) are the Shimura varieties
associated to a0Q and a1Q, while the generic fiber ofM(n−1,0) contains the Shimura
variety associated to bQ as an open and closed substack. For more precise information,
see [23, Proposition 2.13] and the lemma that precedes it.

Denote by Ỹsm the functor that associates to every Ok-scheme S the groupoid of
quadruples (A0, A1, B, η) in which

(2.2.1) (A0, A1, B) ∈M(1,0)(S)×M(0,1)(S)×M(n−1,0)(S),

and

(2.2.2) η : HomOk
(A0, B) ∼= Λ

is an isomorphism of étale sheaves of hermitian Ok-modules, where the hermitian form
on the left hand side is defined as in [6, (2.5.1)]. We impose the further condition that
for every geometric point s→ S, and every prime ` 6= char(s), there is an isomorphism
of hermitian Ok,`-lattices

(2.2.3) HomOk
(A0s[`

∞], A1s[`
∞]) ∼= HomOk

(a0, a1)⊗Z Z`.

Lemma 2.2.2. — If

s→M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0)

is a geometric point of characteristic 0 such that (2.2.3) holds for all primes ` except
possibly one, then it holds for the remaining prime as well.

Proof. — The proof is identical to [6, Lemma 2.2.2].

ASTÉRISQUE 421



MODULARITY OF UNITARY GENERATING SERIES II 135

Proposition 2.2.3. — The functor Ỹsm is represented by a Deligne-Mumford stack,
étale and proper over Ok, and there is a canonical isomorphism of k-stacks

(2.2.4) Sh(Tsm) ∼= Ỹsm/k.

Proof. — For any Ok-scheme S, let N (S) be the groupoid of triples (2.2.1) satisfying
(2.2.3) for every geometric point s→ S and every prime ` 6= char(s). In other words,
the definition is the same as Ỹsm except that we omit the datum (2.2.2) from the
moduli problem.

We interrupt the proof of Proposition 2.2.3 for a lemma.

Lemma 2.2.4. — The functor N is represented by an open and closed substack

N ⊂M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0).

Proof. — This is [7, Proposition 5.2]. As the proof there is left to the reader, we
indicate the idea. Let

B ⊂M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0)

be one connected component, and suppose there is a geometric point s→ B of char-
acteristic p such that (2.2.3) holds for all ` 6= p. The geometric fibers of the `-adic
sheaf HomOk

(A0[`∞], A1[`∞]) on

B(p) = B ×Spec(Z) Spec(Z(p))

are all isomorphic, and therefore (2.2.3) holds for all geometric points s → B(p) and
all ` 6= p. In particular, using Lemma 2.2.2, if s → B is a geometric point of charac-
teristic 0, then (2.2.3) holds for every prime `. Having proved this, one can reverse
the argument to see that (2.2.3) holds for every geometric point s → B and ev-
ery ` 6= char(s). Thus if the condition (2.2.3) holds at one geometric point, it holds
at all geometric points on the same connected component.

We now return to the proof of Proposition 2.2.3. As noted above, the stacksM(p,0)

andM(0,p) are étale and proper over Ok, and hence the same is true of N .
Let (A0, A1, B) be the universal object over N . Combining [7, Theorem 5.1] and

[17, Corollary 6.9], the étale sheaf HomOk
(A0, B) is represented by a Deligne-Mumford

stack whose connected components are finite étale over N . Fixing a geometric point
s → N , we obtain a representation of πet1 (N , s) on a finitely generated Ok-module
HomOk

(A0s, Bs), and the kernel of this representation cuts out a finite étale cover
N ′ → N over which the sheaf HomOk

(A0, B) becomes constant.
It is now easy to see that the functor Ỹsm is represented by the disjoint union of

finitely many copies of the maximal open and closed substack of N ′ over which there
exists an isomorphism (2.2.2).

It remains to construct the isomorphism (2.2.4). The natural actions of Ok on a0
and b, along with the complex conjugate of the natural action of Ok on a1, determine
a morphism of reductive groups

Resk/QGm × Resk/QGm
(w,z) 7→(w,z,z)−−−−−−−−−→ GU(a0Q)×GU(a1Q)×GU(bQ).
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Restricting this morphism to the subtorus Tsm defines a morphism

S hsm−−→ Tsm,R → GU(a0R)×GU(a1R)×GU(bR),

endowing the real vector spaces a0R, a1R, and bR with complex structures.
The isomorphism (2.2.4) on complex points sends a pair

(hsm, g) ∈ Sh(Tsm)(C)

to the quadruple (A0, A1, B, η) defined by

A0(C) = a0R/ga0, A1(C) = a1R/ga1, B(C) = bR/gb,

endowed with their natural Ok-actions and polarizations as in the proof of [6, Propo-
sition 2.2.1]. The datum η is the canonical identification

HomOk
(A0, B) = HomOk

(ga0, gb) = HomOk
(a0, b) = Λ.

It follows from the theory of canonical models that this isomorphism on complex points
descends to an isomorphism of k-stacks, completing the proof of Proposition 2.2.3.

The finite group Aut(Λ) of automorphisms of the hermitian lattice Λ acts on Ỹsm

by
γ ∗ (A0, A1, B, η) = (A0, A1, B, γ ◦ η),

allowing us to form the stack quotient Ysm = Aut(Λ)\Ỹsm. The forgetful map

Ỹsm →M(1,0) ×M(0,1) ×M(n−1,0)

(all fiber products over Ok) factors through an open and closed immersion

Ysm →M(1,0) ×M(0,1) ×M(n−1,0)

whose image is the open and closed substack N of Lemma 2.2.4.
The triple (a0, a1, b) determines a pair (a0, a) as in the introduction, simply by

setting a = a1 ⊕ b. This data determines a unitary Shimura variety with integral
model SKra as in (1.1.1), and there is a commutative diagram

Ysm
//

π

��

M(1,0) ×M(0,1) ×M(n−1,0)

��

SKra
⊂

//M(1,0) ×MKra
(n−1,1).

The vertical arrow on the right sends

(A0, A1, B) 7→ (A0, A1 ×B),

and the arrow π is defined by the commutativity of the diagram.

Remark 2.2.5. — In order for A1 × B to define a point ofMKra
(n−1,1), we must endow

its Lie algebra with a codimension one subsheaf

FA1×B ⊂ Lie(A1 ×B)

satisfying Krämer’s condition [6, §2.3]. We choose FA1×B = Lie(B).
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Definition 2.2.6. — Composing the morphism π in the diagram above with the inclu-
sion of SKra into its toroidal compactification, we obtain a morphism of Ok-stacks

π : Ysm → S∗Kra

called the small CM cycle.

As in [19, Definition 3.1.8], there is a linear functional

Ĉh
1

C(S∗Kra)→ C

called arithmetic degree along Ysm and denoted Ẑ 7→ [Ẑ : Ysm], defined as the com-
position

Ĉh
1

C(S∗Kra)
π∗−→ Ĉh

1

C(Ysm)
d̂eg−−→ C.

The first arrow is pullback of arithmetic divisors. The second arrow (arithmetic degree)
is normalized as follows: An irreducible divisor Z ⊂ Ysm is necessarily supported in
finitely many nonzero characteristics, and hence any C-valued function Gr(Z, .) on
the finite set Ysm(C) defines a Green function for it. The arithmetic degree of the
arithmetic divisor

(Z,Gr(Z, .)) ∈ Ĉh
1

C(Ysm)

is defined to be

d̂eg(Z,Gr(Z, .)) =
∑
q⊂Ok

∑
z∈Z(Falg

q )

log(N(q))

#AutX (z)
+

∑
z∈Ysm(C)

Gr(Z, z)
#AutYsm(C)(z)

,

where Falg
q is an algebraic closure of Ok/q, and N(q) = #(Ok/q).

Remark 2.2.7. — The above definition of arithmetic degree does not include a factor
of 1/2 in front of the archimedean contribution, seemingly in disagreement with the
usual definition (see [13, §3.4.3] for example). In fact there is no disagreement. Our
convention is that Ysm(C) means the complex points of Ysm(C) as a k-stack, whereas
in the usual definition it would be regarded as a Q-stack. Thus the usual definition
includes a sum over twice as many complex points, but with a 1/2 in front.

Remark 2.2.8. — The small CM cycle arises from a morphism of Shimura varieties.
Indeed, there is a morphism of Shimura data (Tsm, {hsm})→ (G,D), and the induced
morphism of Shimura varieties sits in a commutative diagram

Sh(Tsm) //

∼=
��

Sh(G,D)

∼=
��

Ỹsm/k
// Ysm/k

π // SKra/k.

Proposition 2.2.9. — The degree degC(Ysm) of Theorem A satisfies

degC(Ysm) = (hk/wk)2 · 21−o(D)

|Aut(Λ)|
,
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where o(D) is the number of distinct prime divisors of D.

Proof. — This is an elementary calculation. Briefly, the groupoid Ysm(C) has
21−o(D)h2

k isomorphism classes of points, and each point has the same automorphism
group O×k ×O

×
k × U(Λ).

Recall from (1.4.2) that the constant term of (1.1.2) is

Ẑtot
Kra(0) = −ω̂ + (Exc,− log(D)),

where ω̂ is the metrized line bundle of weight one modular forms. The exceptional
locus Exc ⊂ SKra was defined in [6, §2.3]. It is a reduced effective Cartier divisor
supported in characteristics dividing D, and can be characterized as follows. The
integral model SKra carries over it an abelian scheme A→ SKra of relative dimension n
endowed with an action of Ok. This abelian scheme is obtained by pulling back the
universal object from the second factor of the fiber product in (1.1.1). If we let δ ∈
Ok be a fixed square root of −D, then Exc is the reduced stack underlying closed
substack of SKra defined by δ · Lie(A) = 0.

Proposition 2.2.10. — The constant term (1.4.2) satisfies

[Ẑtot
Kra(0) : Ysm] = −[ω̂ : Ysm] = 2 degC(Ysm) · Λ′(0, χk)

Λ(0, χk)
.

Proof. — The second equality was proved in the course of proving [7, Theorem 6.4].
We note that the argument uses the Chowla-Selberg formula (1.4.1) in an essential
way.

The first equality is equivalent to

[(Exc,− log(D)) : Ysm] = 0,

and so it suffices to prove

(2.2.5) [(0, log(D)) : Ysm] = degC(Ysm) · log(D) = [(Exc, 0) : Ysm].

The first equality in (2.2.5) is obvious from the definitions. To prove the second
equality, we first prove

(2.2.6) Ysm ×SKra
Exc = Ysm ×Spec(Ok) Spec(Ok/dk).

As the exceptional locus Exc ⊂ SKra is reduced and supported in characteristics
dividing D, it satisfies

Exc ⊂ SKra ×Spec(Ok) Spec(Ok/dk).

This implies the inclusion ⊂ in (2.2.6). As Ysm is étale over Ok, the right hand side
of (2.2.6) is reduced, and hence so is the left hand side. To prove that equality holds
in (2.2.6), it now suffices to check the inclusion ⊃ on the level of geometric points.

As above, let δ ∈ Ok be a square root of −D. Suppose p | D is a prime, p ⊂ Ok is
the unique prime above it, and Falg

p is an algebraic closure of its residue field. Suppose
we have a point y ∈ Ysm(Falg

p ) corresponding to a triple (A0, A1, B) over Falg
p . As δ = 0
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in Falg
p , the signature conditions imply that the endomorphism δ ∈ Ok kills the Lie

algebras of A0, A1, and B. In particular δ kills the Lie algebra of A1 × B, which is
the pullback via

π : Ysm → SKra

of the universal A→ SKra. Using the characterization of Exc recalled above, we find
that that π(y) ∈ Exc. This proves (2.2.6).

The equality (2.2.6), and the fact that both sides of that equality are reduced,
implies that

[(Exc, 0) : Ysm] =
∑
p|D

log(p)
∑

y∈Ysm(Falg
p )

1

|Aut(y)|
.

On the other hand, the étaleness of Ysm → Spec(Ok) implies that the right hand side
is equal to ∑

p|D

log(p)
∑

y∈Ysm(C)

1

|Aut(y)|
= log(D) · degC(Ysm),

completing the proof of the second equality in (2.2.5).

2.3. The convolution L-function. — Recall that we have defined a hermitian Ok-lat-
tice Λ = HomOk

(a0, b) of signature (n− 1, 0). We also define hermitian Ok-lattices

L0 = HomOk
(a0, a1), L = HomOk

(a0, a),

of signature (1, 0) and (n− 1, 1), so that L ∼= L0 ⊕ Λ.

The hermitian form 〈., .〉 : L × L → Ok determines a Z-valued quadratic form
Q(x) = 〈x, x〉 on L, and we denote in the same way its restrictions to L0 and Λ. The
dual lattice of L with respect to the Z-bilinear form

(2.3.1) [x1, x2] = Q(x1 + x2)−Q(x1)−Q(x2)

is L′ = d−1
k L.

As in [7, §2.2] we denote by SL = C[L′/L] the space of complex-valued functions
on L′/L, and by ωL : SL2(Z)→ AutC(SL) the Weil representation. There is a complex
conjugate representation ωL on SL defined by

ωL(γ)φ = ωL(γ)φ.

Suppose we begin with a classical scalar-valued cusp form

g(τ) =
∑
m>0

c(m)qm ∈ Sn(Γ0(D), χnk).

Such a form determines a vector-valued form

(2.3.2) g̃(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(g|nγ)(τ) · ωL(γ−1)φ0 ∈ Sn(ωL),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



140 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

where φ0 ∈ SL is the characteristic function of the trivial coset. This construction
defines the induction map (1.2.1). The form g̃(τ) has a q-expansion

g̃(τ) =
∑
m>0

c̃(m)qm

with coefficients c̃(m) ∈ SL.
There is a similar Weil representation ωΛ : SL2(Z) → AutC(SΛ), and for every

m ∈ Q we define a linear functional RΛ(m) ∈ S∨Λ by

RΛ(m)(φ) =
∑
x∈Λ′

〈x,x〉=m

φ(x)

where φ ∈ SΛ and 〈., .〉 : ΛQ×ΛQ → k is the Q-linear extension of the hermitian form
on Λ. The theta series

θΛ(τ) =
∑
m∈Q

RΛ(m)qm ∈Mn−1(ω∨Λ)

is a modular form valued in the contragredient representation S∨Λ .
As in [7, §5.3] or [9, §4.4], we define the Rankin-Selberg convolution L-function

L(g̃, θΛ, s) = Γ
(s

2
+ n− 1

) ∑
m≥0

{c̃(m), RΛ(m)}
(4πm)

s
2 +n−1

.(2.3.3)

Here {., .} : SL × S∨L → C is the tautological pairing. The inclusion

Λ′/Λ→ L′/L

induces a linear map SL → SΛ by restriction of functions, and we use the dual
S∨Λ → S∨L to view RΛ(m) as an element of S∨L .

Remark 2.3.1. — The convolution L-function satisfies a functional equation in s 7→ −s,
forcing L(g̃, θΛ, 0) = 0.

Remark 2.3.2. — In this generality, neither the cusp form g nor the theta series θΛ is
a Hecke eigenform. Thus the convolution L-function (2.3.3) cannot be expected to
have an Euler product expansion.

2.4. A preliminary central derivative formula. — We now recall the main result of [7],
and explain the connection between the cycles and Shimura varieties here and in that
work.

Define hermitian Ôk-lattices

L0,f = HomOk
(a0, a1)⊗Z Ẑ, Lf = HomOk

(a0, a)⊗Z Ẑ,

and let L0,∞ and L∞ be kR-hermitian spaces of signatures (1, 0) and (n, 0), respec-
tively. In the terminology of [7, §2.1], the pairs

L0 = (L0,∞,L0,f ), L = (L∞,Lf )
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are incoherent hermitian (kR, Ôk)-modules. Our small CM cycle is related to the cycle
of [7, §5.1] by

Ysm
// SKra

Y(L0,Λ)
//ML,

and the metrized line bundle ω̂
−1 of [6] agrees with the metrized cotautological bun-

dle T̂L of [7].
Let ∆ be the automorphism group of the finite abelian group L′/L endowed with

the quadratic form L′/L→ Q/Z obtained by reduction of Q : L→ Z. The tautological
action of ∆ on SL = C[L′/L] commutes with the Weil representation ωL, and hence
∆ acts on all spaces of modular forms valued in the representation ωL.

Let H2−n(ωL) be the space of harmonic Maass forms of [7, §2.2]. Every
f ∈ H2−n(ωL) has a holomorphic part

f+(τ) =
∑
m∈Q

m�−∞

c+f (m) · qm,

which is a formal q-expansion with coefficients in SL. Let c+f (0, 0) be the value
of c+f (0) ∈ SL at the trivial coset.

As in [5] or [9, §3.1], there is a ∆-equivariant, surjective, conjugate linear differential
operator

ξ : H2−n(ωL)→ Sn(ωL),

and the construction of [7, (4.15)] defines a linear functional

(2.4.1) Ẑ : H2−n(ωL)∆ → Ĉh
1

C(S∗Kra).

These are related by the main result of [7], which we now state.

Theorem 2.4.1 ([7]). — The equality

[Ẑ(f) : Ysm]− c+f (0, 0) · [ω̂ : Ysm] = −degC(Ysm) · L′(ξ(f), θΛ, 0)

holds for any ∆-invariant f ∈ H2−n(ωL).

2.5. The proof of Theorem A. — Throughout §2.5 we assume n ≥ 3. Under this
assumption the linear functional (2.4.1) is closely related to the coefficients of the
generating series (1.1.2). Indeed, If m is a positive integer, [7, Lemma 3.10] shows
that there is a unique

fm ∈ H2−n(ωL)∆

with holomorphic part

(2.5.1) f+
m(τ) = φ0 · q−m +O(1),
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where φ0 ∈ SL is the characteristic function of the trivial coset. Applying the above
linear functional to this form recovers the m-th coefficient

Ẑtot
Kra(m) = Ẑ(fm)

of the generating series (1.1.2).
The following proposition explains the connection between the linear functional

(2.4.1) and the arithmetic theta lift (1.1.3).

Proposition 2.5.1. — For every g ∈ Sn(Γ0(D), χnk) there is a ∆-invariant form
f ∈ H2−n(ωL) such that

(2.5.2) θ̂(g) = Ẑ(f) + c+f (0, 0) · Ẑtot
Kra(0),

and such that ξ(f) is equal to the form g̃ ∈ Sn(ωL) defined by (2.3.2). Moreover, we
may choose f to be a linear combination of the forms fm characterized by (2.5.1).

Proof. — Consider the space H∞2−n(Γ0(D), χnk) of harmonic Maass forms of [6, §7.2].
The constructions of [5] provide us with a surjective conjugate linear differential op-
erator

ξ : H∞2−n(Γ0(D), χnk)→ Sn(Γ0(D), χnk),

and we choose an f0 ∈ H∞2−n(Γ0(D), χnk) such that ξ(f0) = g. It is easily seen
that f0 may be chosen to vanish at all cusps of Γ0(D) different from ∞. This can,
for instance, be attained by adding a suitable weakly holomorphic form in the space
M !,∞

2−n(Γ0(D), χnk) of [6, §4.2]. The Fourier expansion of the holomorphic part of f0 is
denoted

f+
0 (τ) =

∑
m∈Q

c+0 (m)qm.

As in (2.3.2), the form f0 determines an SL-valued harmonic Maass form

f(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(f0|2−nγ)(τ) · ωL(γ−1)φ0 ∈ H2−n(ωL)∆.

As the ξ-operator is equivariant for the action of SL2(Z), we have ξ(f) = g̃. According
to [6, Proposition 6.1.2], which holds analogously for harmonic Maass forms, the
coefficients of the holomorphic part f+ satisfy

c+f (m,µ) =

{
c+0 (m) if µ = 0,

0 otherwise,

for all m ≤ 0. This equality implies that

f =
∑
m>0

c+0 (−m)fm,

where fm ∈ H2−n(ωL)∆ is the harmonic form characterized by (2.5.1). Indeed, the
difference between the two forms is a harmonic form h whose holomorphic part∑
m≥0 c

+
h (m)qm has no principal part. It follows from [5, Theorem 3.6] that such

a harmonic form is actually holomorphic, and therefore vanishes because the weight
is negative.
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The above decomposition of f as a linear combination of the fm’s implies that

Ẑ(f) =
∑
m>0

c+0 (−m) · Ẑtot
Kra(m) ∈ Ĉh

1

C(S∗Kra),

and consequently

θ̂(g) = 〈φ̂, ξ(f0)〉Pet

= {f0, φ̂}

=
∑
m≥0

c+0 (−m) · Ẑtot
Kra(m)

= Ẑ(f) + c+f (0, 0) · Ẑtot
Kra(0).

Here, in the second line, we have used the bilinear pairing

{., .} : H∞2−n(Γ0(D), χnk)×Mn(Γ0(D), χnk)→ C

analogous to [5, Proposition 3.5], and the fact that f0 vanishes at all cusps different
from ∞.

Remark 2.5.2. — It is incorrectly claimed in [7, §1.3] that (2.5.2) holds for every
form f with ξ(f) = g̃.

The following is stated in the introduction as Theorem A.

Theorem 2.5.3. — If g ∈ Sn(Γ0(D), χnk) and g̃ ∈ Sn(ωL) are related by (2.3.2), then

[θ̂(g) : Ysm] = −degC(Ysm) · L′(g̃, θΛ, 0).

Proof. — Choosing f as in Proposition 2.5.1, and using the first equality of Proposi-
tion 2.2.10, yields

[θ̂(g) : Ysm] = [Ẑ(f) : Ysm]− c+f (0, 0) · [ω̂ : Ysm].

Thus the claim follows from Theorem 2.4.1.

3. Further results on the convolution L-function

In this section we specialize to the case where g ∈ Sn(Γ0(D), χnk) is a new eigenform,
and express the convolution L-function (2.3.3) associated to the vector valued cusp
form g̃ in terms of the usual L-function associated to g.

This allows us, in Theorem 3.4.1 below, to rewrite Theorem A of the introduction
in a way that avoids vector-valued modular forms. When n is even, it also allows us
to formulate a version of Theorem A in which the L-function has an Euler product.

We assume n ≥ 2 until we reach §3.4, at which point we restrict to n ≥ 3.
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3.1. Atkin-Lehner operators. — Recall that χk is the idele class character associated
to the quadratic field k. If we view χk as a Dirichlet character modulo D, then any
factorization D = Q1Q2 induces a factorization

χk = χQ1
χQ2

where χQi : (Z/QiZ)× → C× is a quadratic Dirichlet character.
Fix a normalized cuspidal new eigenform

g(τ) =
∑
m>0

c(m)qm ∈ Sn(Γ0(D), χnk).

As in [6, Section 4.1], for each positive divisor Q | D, fix a matrix

RQ =

(
α β
D
Qγ Qδ

)
∈ Γ0(D/Q)

with α, β, γ, δ ∈ Z, and define the Atkin-Lehner operator

WQ =

(
Qα β

Dγ Qδ

)
= RQ

(
Q

1

)
.

The cusp form

gQ(τ) = χnQ(β)χnD/Q(α) · g|nWQ

=
∑
m>0

cQ(m)qm,

is then independent of the choice of α, β, γ, δ.
Let εQ(g) be the fourth root of unity

εQ(g) =
∏
q|Q

q prime

χnQ(Q/q) · λq,

where

λq = c(q) ·

{
−q1−n2 if n ≡ 0 (mod 2)

δqq
1−n

2 if n ≡ 1 (mod 2),

and δq is defined by

(3.1.1) δq =

{
1 if q ≡ 1 (mod 4)

i if q ≡ 3 (mod 4).

According to [3, Theorem 2], we have

cQ(m) = εQ(g)χnQ(m)c(m) if (m,Q) = 1,

cQ(m) = εQ(g)χnD/Q(m)c(m) if (m,D/Q) = 1,

cQ(m1m2) = εQ(g)−1cQ(m1)cQ(m2) if (m1,m2) = 1.
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Remark 3.1.1. — If n is even, then the Fourier coefficients of g are totally real. It
follows that gQ = εQ(g)g for every divisor Q | D. Furthermore,

εQ(g) =
∏
q|Q

(
− q1−n2 c(q)

)
= ±1.

3.2. Twisting theta functions. — Let (a0, a1, b) be a triple of self-dual hermitian
Ok-lattices of signatures (1, 0), (0, 1), and (n− 1, 0), as in §2.2, and recall that from
this data we constructed hermitian Ok-lattices

a = a1 ⊕ b, L = HomOk
(a0, a)(3.2.1)

of signature (n− 1, 1). We also define

L1 = HomOk
(a0, a1), Λ = HomOk

(a0, b),(3.2.2)

so that L = L1 ⊕ Λ.

Let GU(Λ) be the unitary similitude group associated with Λ, viewed as an alge-
braic group over Z. For any Z-algebra R its R-valued points are given by

GU(Λ)(R) = {h ∈ GLOk
(ΛR) : 〈hx, hy〉 = ν(h)〈x, y〉 ∀x, y ∈ ΛR},

where ν(h) ∈ R× denotes the similitude factor of h. Note the relation

Nmk/Q(det(h)) = ν(h)n−1.(3.2.3)

For h ∈ GU(Λ)(R) the similitude factor ν(h) belongs to R>0.
As Λ is positive definite, the set

XΛ = GU(Λ)(Q)\GU(Λ)(Af )/GU(Λ)(Ẑ)

is finite. Denoting by
CL(k) = k×\k̂×/Ô×k

the ideal class group of k, the natural map Resk/QGm → GU(Λ) to the center induces
an action

CL(k)×XΛ −→ XΛ.(3.2.4)

As in the proof of [6, Proposition 2.1.1], any h ∈ GU(Λ)(Af ) determines an Ok-lat-
tice

Λh = ΛQ ∩ hΛ̂.

This lattice is not self-dual under the hermitian form 〈−,−〉 on ΛQ. However, there
is a unique positive rational number rat(ν(h)) such that

ν(h)

rat(ν(h))
∈ Ẑ×,

and the lattice Λh is self-dual under the rescaled hermitian form

〈x, y〉h =
1

rat(ν(h))
· 〈x, y〉.
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If h ∈ GU(Λ)(Ẑ) then Λh = Λ. If h ∈ GU(Λ)(Q), then Λh ∼= Λ as hermitian Ok-mod-
ules. Hence h 7→ Λh defines a function from XΛ to the set of isometry classes of
self-dual hermitian Ok-module of signature (n− 1, 0).

Similarly, for any h ∈ GU(Λ)(Af ) we define a self-dual hermitian Ok-lattice of
signature (0, 1) by endowing

L1,h = L1Q ∩ det(h)L̂1

with the hermitian form

〈x, y〉h =
1

rat(ν(h))n−1
· 〈x, y〉.

The assignment h 7→ L1,h defines a map from XΛ to the set of isometry classes of
self-dual hermitian Ok-lattices of signature (0, 1).

Lemma 3.2.1. — For any h ∈ GU(Λ)(Af ) the hermitian Ok-lattice

Lh = L1,h ⊕ Λh

is isomorphic everywhere locally to L. Moreover, Lh and L become isomorphism after
tensoring with Q.

Proof. — Let p be a prime. As in [6, §1.8], a kp-hermitian space is determined by its
dimension and invariant. The relations

det(Λh ⊗Z Q) = rat(ν(h))1−n · det(Λ⊗Z Q),

det(L1,h ⊗Z Q) = rat(ν(h))1−n · det(L1 ⊗Z Q),

combined with (3.2.3), imply that L⊗ZQ and Lh⊗ZQ have the same invariant every-
where locally. As they both have signature (n− 1, 1), they are isomorphic everywhere
locally, and hence isomorphic globally.

A result of Jacobowitz [22] shows that any two self-dual lattices in L ⊗Z Q are
isomorphic everywhere locally, and hence it follows from the previous paragraph that L
and Lh are isomorphic everywhere locally.

Define a linear map

Mn−1(ω∨Λ)→Mn−1(Γ0(D), χn−1
k )

from S∨Λ-valued modular forms to scalar-valued modular forms by evaluation at the
characteristic function φ0 ∈ SΛ of the trivial coset 0 ∈ Λ′/Λ. This map takes the
vector valued theta series θΛ ∈Mn−1(ω∨Λ) of §2.3 to the scalar valued theta series

θscΛ (τ) =
∑

m∈Z≥0

Rsc
Λ (m) · qm,

where Rsc
Λ (m) is the number of ways to represent m by Λ.

Let η be an algebraic automorphic form for GU(Λ) which is trivial at ∞ and right
GUΛ(Ẑ)-invariant. In other words, a function

η : XΛ −→ C.
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Throughout we assume that under the action (3.2.4) the function η transforms with
a character χη : CL(k)→ C×, that is,

η(αh) = χη(α)η(h).(3.2.5)

We associate a theta function to η by setting

θscη,Λ =
∑
h∈XΛ

η(h)

|Aut(Λh)|
· θscΛh ∈Mn−1(Γ0(D), χn−1

k ).

This form is cuspidal when the character χη is non-trivial. We denote its Fourier
expansion by

θscη,Λ(τ) =
∑
m≥0

Rsc
η,Λ(m) · qm.

Similarly, we may define

θη,Λ(τ) =
∑
h∈XΛ

η(h)

|Aut(Λh)|
· θΛh(τ),

but this is only a formal sum: as h varies the forms θΛh take values in the varying
spaces S∨Λh .

Lemma 3.2.1 allows us to identify SL ∼= SLh , and hence make sense of the L-func-
tion L(g̃, θΛh , s) as in (2.3.3). In the next subsection we will compare

(3.2.6) L(g̃, θη,Λ, s) =
∑
h∈XΛ

η(h)

|Aut(Λh)|
· L(g̃, θΛh , s)

to the usual convolution L-function

(3.2.7) L(g, θscη,Λ, s) = Γ
(s

2
+ n− 1

) ∞∑
m=1

c(m)Rsc
η,Λ(m)

(4πm)
s
2 +n−1

of the scalar-valued forms g and θscη,Λ.

3.3. Rankin-Selberg L-functions for scalar and vector valued forms. — In this subsec-
tion we prove a precise relation between (3.2.6) and (3.2.7). First, we give an explicit
formula for the Fourier coefficients a(m,µ) of g̃ in terms of those of g analogous to
[6, Proposition 6.1.2].

For a prime p dividing D define

(3.3.1) γp = δ−np · (D, p)np · invp(Vp) ∈ {±1,±i},

where invp(Vp) is the invariant of Vp = Homk(W0,W )⊗QQp in the sense of [6, (1.8.3)]
and δp ∈ {1, i} is as before. It is equal to the local Weil index of the Weil representation
of SL2(Zp) on SLp ⊂ S(Vp), where Vp is viewed as a quadratic space by taking the
trace of the hermitian form. This is explained in more detail in [6, Section 8.1]. For
any Q dividing D we define

(3.3.2) γQ =
∏
q|Q

γq.
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Remark 3.3.1. — If n is even and p | D, then (3.3.1) simplifies to

γp =

(
−1

p

)n/2
invp(Vp).

For any µ ∈ L′/L define Qµ | D by

Qµ =
∏
p|D
µp 6=0

p,

where µp is the image of µ in L′p/Lp. Let φµ ∈ SL be the characteristic function of µ.

Proposition 3.3.2. — For all m ∈ Q the coefficients ã(m) ∈ SL of g̃ satisfy

ã(m,µ) =


∑
Qµ|Q|D Q

1−nγQ · cQ(mQ) if m ≡ −Q(µ) (mod Z),

0 otherwise.

Proof. — The first formula is a special case of results of Scheithauer [26, Section 5]. It
can also be proved in the same way as Proposition 6.1.2 of [6]. The complex conjuga-
tion over γQ arises because of the fact that g̃ transforms with the complex conjugate
representation ωL. The additional factor Q1−n is due to the fact that we work here
in weight n.

Proposition 3.3.3. — The convolution L-function (2.3.3) satisfies

L(g̃, θΛ, s) =
∑
Q|D

Q
s
2 γQ · L(gQ, θ

sc
Λq , s),

where q ∈ k̂× is such that q2Ô×k = QÔ×k . Moreover, for any η : XΛ → C satisfying
(3.2.5) the L-functions (3.2.6) and (3.2.7) are related by

L(g̃, θη,Λ, s) =
∑
Q|D

Q
s
2 γQ · χη(q−1)L(gQ, θ

sc
η,Λ, s).

Proof. — Proposition 3.3.2 implies

L(g̃, θΛ, s)

Γ( s2 + n− 1)
=

∑
µ∈Λ′/Λ

∑
m∈Q>0

∑
Qµ|Q|D

Q1−nγQ ·
cQ(mQ)RΛ(m,φµ)

(4πm)
s
2 +n−1

=
∑
Q|D

Q1−nγQ
∑

m∈ 1
QZ>0

cQ(mQ)

(4πm)
s
2 +n−1

∑
µ∈Λ′/Λ
Qµ|Q

RΛ(m,φµ)

=
∑
Q|D

Q
s
2 γQ

∑
m∈Z>0

cQ(m)

(4πm)
s
2 +n−1

∑
µ∈Λ′/Λ
Qµ|Q

RΛ(m/Q, φµ).
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The first claim now follows from the relation∑
µ∈Λ′/Λ
Qµ|Q

RΛ(m/Q, µ) = RΛq−1 (m, 0) = RΛq(m, 0).

For the second claim, if we replace Λ by Λh and L1 by L1,h for h ∈ XΛ, then L

and γQ remain unchanged. The above calculations therefore imply that

L(g̃, θη,Λ, s) =
∑
Q|D

γQQ
s
2

∑
h∈XΛ

η(h)

|Aut(Λh)|
L(gQ, θ

sc
Λqh

, s)

=
∑
Q|D

γQQ
s
2

∑
h∈XΛ

η(q−1h)

|Aut(Λh)|
L(gQ, θ

sc
Λh
, s)

=
∑
Q|D

γQQ
s
2 · χη(q−1)L(gQ, θ

sc
η,Λ, s),

where we have used (3.2.5) and the fact that |Aut(Λh)| = |Aut(Λqh)|.

Corollary 3.3.4. — If n is even, then

L(g̃, θη,Λ, s) = L(g, θscη,Λ, s) ·
∏
p|D

(
1 + χη(p−1)εp(g)γpp

s
2

)
.

Proof. — This is immediate from Proposition 3.3.3 and Remark 3.1.1.

3.4. Small CM cycles and derivatives of L-functions, revisited. — Now we are ready to
state a variant of Theorem A using only scalar valued modular forms. Assume n ≥ 3.

Every h ∈ XΛ determines a codimension n− 1 cycle

(3.4.1) Ysm,h → S∗Kra

as follows. From the triple (a0, a1, b) fixed in §3.2 and the hermitian Ok-lattices
Lh = L1,h ⊕ Λh of Lemma 3.2.1, we denote by a1,h and bh the unique hermitian
Ok-lattices satisfying

L1,h
∼= HomOk

(a0, a1,h), Λh ∼= HomOk
(a0, bh),

and set ah = a1,h⊕bh so that Lh ∼= HomOk
(a0, ah). Compare with (3.2.1) and (3.2.2).

Repeating the construction of the small CM cycle Ysm with the triple (a0, a1, b)

replaced by (a0, a1,h, bh) results in a proper étale Ok-stack Ysm,h. Repeating the con-
struction of the Shimura variety SKra with the triple (a0, a) replaced by (a0, ah) results
in a new Shimura variety SKra,h, along with a finite and unramified morphism

Ysm,h → SKra,h.

It follows from Lemma 3.2.1 that a and ah are isomorphic everywhere locally, and
examination of the moduli problem defining SKra in [6, §2.3] shows that SKra depends
only the everywhere local data determined by the pair (a0, a), and not on the actual
global Ok-hermitian lattices. Therefore, there is a canonical morphism of Ok-stacks

Ysm,h → SKra,h
∼= SKra
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in which the isomorphism is simply the identity functor on the moduli problems.
In the end, this amounts to simply repeating the construction of Ysm → SKra from
Definition 2.2.6 word-for-word, but replacing Λ by Λh everywhere. This defines the
desired cycle (3.4.1).

Each algebraic automorphic form η : XΛ → C satisfying (3.2.5) now determines a
cycle

ηYsm =
∑
h∈XΛ

η(h) · Ysm,h

on S∗Kra with complex coefficients, and a corresponding linear functional

[− : ηYsm] : Ĉh
1

C(S∗Kra)→ C.

Theorem 3.4.1. — The arithmetic theta lift (1.1.3) satisfies

[θ̂(g) : Ysm] = −degC(Ysm) · d
ds

[∑
Q|D

Q
s
2 γQL(gQ, θ

sc
Λq , s)

]
|s=0

,

where q ∈ k̂× is such that q2Ô×k = QÔ×k . Moreover, if n is even and η : XΛ → C
satisfies (3.2.5), then

[θ̂(g) : ηYsm] = −21−o(dk) (hk/wk)
2 · d
ds

[
L(g, θscη,Λ, s)·

∏
p|D

(
1+χη(p−1)εp(g)γpp

s
2

)]
|s=0

,

where p ∈ k̂× such that p2Ô×k = pÔ×k . Note that in the first formula the sum is
over all positive divisors Q | D, while in the second the product is over the prime
divisors p | D.

Proof. — The first assertion follows from Theorem A and Proposition 3.3.3.
For the second assertion, applying Theorem A to

Ysm,h → S∗Kra,h
∼= S∗Kra

yields

[θ̂(g) : Ysm,h] = −degC(Ysm,h) · d
ds
L(g̃, θΛh , s)|s=0

.

Combining this with Proposition 2.2.9 yields

[θ̂(g) : ηYsm] = −21−o(dk) (hk/wk)
2 · d
ds
L(g̃, θη,Λ, s)|s=0

,

and an application of Corollary 3.3.4 completes the proof.

Remark 3.4.2. — Since the L-function (3.2.6) vanishes at s = 0, the same must be
true for the expressions in brackets on the right hand sides of the equalities of the
above theorem. In particular, when n is even, then either L(g, θscη,Λ, s) or at least one
of the factors

1 + χη(p−1)εp(g)γpp
s
2
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(for a prime p | D) vanishes at s = 0. If we pick the newform g such that the latter
local factors are nonvanishing, then L(g, θscη,Λ, 0) = 0 and we obtain

[θ̂(g) : ηYsm] = −21−o(dk) h
2
k

w2
k

·
∏
p|D

(
1 + χη(p−1)εp(g)γp

)
· L′(g, θscη,Λ, 0).

4. Big CM cycles and derivatives of L-functions

In this section we prove Theorem B by combining results of [6] and [18, 19, 8]. We
asume n ≥ 2 until §4.4, at which point we restrict to n ≥ 3.

4.1. A Shimura variety of dimension zero. — Let F be a totally real field of degree n,
and define a CM field E = k⊗Q F. Define a rank n+ 2 torus Tbig over Q as the fiber
product

Tbig
//

��

Gm

diag.

��

Resk/QGm × ResE/QGm
Nm×Nm

// Gm × ResF/QGm.

Its group of Q-points is

Tbig(Q) ∼= {(x, y) ∈ k× × E× : xx = yy}.

Remark 4.1.1. — There is an isomorphism

Tbig(Q) ∼= k× × ker(Nm : E× → F×)

defined by (x, y) 7→ (x, x−1y). It is clear that this arises from an isomorphism

Tbig
∼= Resk/QGm × ker

(
Nm : ResE/QGm → ResF/QGm

)
.

As in the discussion preceding Theorem B, let Φ ⊂ HomQ(E,C) be a CM type of
signature (n− 1, 1), let

ϕsp : E → C
be its special element, and let OΦ be the ring of integers of EΦ = ϕsp(E).

The CM type Φ determines an isomorphism Cn ∼= ER, and hence an embedding
C× → E×R arising from a morphism of real algebraic groups S→ (ResE/QGm)R. This
induces a morphism

S→ (Resk/QGm)R × (ResE/QGm)R,

which factors through a morphism

hbig : S→ Tbig,R.

The pair (Tbig, {hbig}) is a Shimura datum, which, along with the compact open
subgroup

Kbig = Tbig(Af ) ∩ (Ô×k × Ô
×
E),
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determines a 0-dimensional EΦ-stack Sh(Tbig) with complex points

Sh(Tbig)(C) = Tbig(Q)\{hbig} × Tbig(Af )/Kbig.

4.2. The big CM cycle. — The Shimura variety just constructed has a moduli inter-
pretation, which we will use to construct an integral model. The interpretation we
have in mind requires first choosing a triple (a0, a, iE) in which

— a0 is a self-dual hermitian Ok-lattice of signature (1, 0),
— a is a self-dual hermitian Ok-lattice of signature (n− 1, 1),
— iE : OE → EndOk

(a) is an action extending the action of Ok.
Denoting by H : a× a→ Ok the hermitian form, we require further that

H(iE(x)a, b) = H(a, iE(x)b)

for all x ∈ OE and a, b ∈ a, and that in the decomposition

aR ∼=
⊕

ϕF :F→R
a⊗OF ,ϕF R

the summand indexed by ϕF = ϕsp|F is negative definite (which, by the signature
condition, implies that the other summands are positive definite).

Remark 4.2.1. — In general such a triple need not exist. In the applications will as-
sume that the discriminants of k/Q and F/Q are odd and relatively prime, and in
this case one can construct such a triple using the argument of [18, Proposition 3.1.6].

We now define a moduli space of abelian varieties with complex multiplication
by OE and type Φ, as in [18, §3.1]. Denote by CMΦ the functor that associates to
every OΦ-scheme S the groupoid of triples (A, ι, ψ) in which

— A→ S is an abelian scheme of dimenension n,
— ι : OE → End(A) is an OE-action,
— ψ : A→ A∨ is a principal polarization such that

ι(x)∨ ◦ ψ = ψ ◦ ι(x)

for all x ∈ OE .
We also impose the Φ-determinant condition that every x ∈ OE acts on Lie(A) with
characteristic polynomial equal to the image of∏

ϕ∈Φ

(T − ϕ(x)) ∈ OΦ[T ]

in OS [T ]. We usually abbreviate A ∈ CMΦ(S), and suppress the data ι and ψ from
the notation. By [18, Proposition 3.1.2], the functor CMΦ is represented by a Deligne-
Mumford stack, proper and étale over OΦ .

Remark 4.2.2. — The Φ-determinant condition defined above agrees with that of [18,
§3.1]. As in [16, Proposition 2.1.3], this is a consequence of Amitsur’s formula, which
can be found in [1, Theorem A] or [11, Lemma 1.12].
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Define an open and closed substack

Ybig ⊂M(1,0) ×Ok
CMΦ

as the union of connected components B ⊂M(1,0) ×Ok
CMΦ satisfying the following

property: for every complex point y = (A0, A) ∈ B(C), and for all primes `, there is
an OE-linear isomorphism of hermitian Ok,`-lattices

(4.2.1) HomOk,`
(A0[`∞], A[`∞]) ∼= HomOk

(a0, a)⊗Z Q`.

Remark 4.2.3. — To verify that a connected component B ⊂ M(1,0) ×Ok
CMΦ is

contained in Ybig, it suffices to check that (4.2.1) holds for one complex point y ∈ B(C).
This is a consequence of the main theorem of complex multiplication and the fact that
the points of B(C) form a single Aut(C/EΦ)-orbit.

Proposition 4.2.4. — There is a canonical isomorphism of EΦ-stacks

Sh(Tbig) ∼= Ybig/EΦ
.

Proof. — The natural actions of Ok and OE on a0 and a determine an action of the
subtorus

Tbig ⊂ Resk/QGm × ResE/QGm
on a0Q and aQ, and the morphism hbig : S → Tsm,R endows each of the real vector
spaces a0R and aR with a complex structure.

The desired isomorphism on complex points sends

(hbig, g) ∈ Sh(Tsm)(C)

to the pair (A0, A) defined by

A0(C) = a0R/ga0, A(C) = aR/ga.

The elliptic curve A0 is endowed with its natural Ok-action and its unique principal
ploarization. The abelian variety A is endowed with its natural OE-action, and the
polarization induced by the symplectic form determined by its Ok-hermitian form, as
in the proof of [6, Proposition 2.2.1].

It follows from the theory of canonical models that this isomorphism on complex
points descends to an isomorphism of EΦ-stacks.

The triple (a0, a, iE) determines a pair (a0, a) as in the introduction, which de-
termines a unitary Shimura variety with integral model SKra as in (1.1.1). Recalling
that Ok ⊂ OΦ as subrings of C, we now view both Ybig and CMΦ as Ok-stacks. There
is a commutative diagram

Ybig
//

π

��

M(1,0) × CMΦ

��

SKra
//M(1,0) ×MKra

(n−1,1)
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(all fiber products are over Ok), in which the vertical arrow on the right is the identity
on the first factor and “forget complex multiplication” on the second. The arrow π is
defined by the commutativity of the diagram.

Remark 4.2.5. — In order to define the morphism

CMΦ →MKra
(n−1,1)

in the diagram above, we must endow a point A ∈ CMΦ(S) with a subsheaf
FA ⊂ Lie(A) satisfying Krämer’s condition [6, §2.3]. Using the morphism

OE
ϕsp

−−→ OΦ → OS ,

denote by Jϕsp ⊂ OE ⊗Z OS the kernel of

OE ⊗Z OS
x⊗y 7→ϕsp(x)·y−−−−−−−−−→ OS .

According to [19, Lemma 4.1.2], the subsheaf FA = JϕspLie(A) has the desired prop-
erties.

Definition 4.2.6. — Composing the morphism π in the diagram above with the inclu-
sion of SKra into its toroidal compactification, we obtain a morphism of Ok-stacks

π : Ybig → S∗Kra,

called the big CM cycle.

Exactly as in §2.2, the arithmetic degree along Ybig is the composition

Ĉh
1

C(S∗Kra)
π∗−→ Ĉh

1

C(Ybig)
d̂eg−−→ C.

We denote this linear functional by Ẑ 7→ [Ẑ : Ybig].

Remark 4.2.7. — The big CM cycle arises from a morphism of Shimura varieties.
Indeed, there is a morphism of Shimura data (Tbig, {hbig})→ (G,D), and the induced
morphism of Shimura varieties sits in a commutative diagram of EΦ-stacks

Sh(Tbig) //

∼=
��

Sh(G,D)/EΦ

∼=
��

Ybig/EΦ

π // SKra/EΦ
.

Proposition 4.2.8. — The degree degC(Ybig) of Theorem B satisfies

1

n
· degC(Ybig) =

hk
wk
· Λ(0, χE)

2r−1
,

where r is the number of places of F that ramify in E (including all archimedean
places).
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Proof. — It is clear from Proposition 4.2.4 that

1

n
· degC(Ybig) =

∑
y∈Sh(Tbig)(C)

1

|Aut(y)|
=
|Tbig(Q)\Tbig(Af )/Kbig|
|Tbig(Q) ∩Kbig|

.

Note that when we defined the degree on the left we counted the complex points of Ybig

viewed as an Ok-stack, whereas in the middle expression we are viewing Sh(Tbig) as
an EΦ-stack. This is the reason for the correction factor of n = [EΦ : k] on the left.

Let E′ ⊂ E× be the kernel of the norm map Nm : E× → F×, and define

Ê′ ⊂ Ê×, Ô′E ⊂ Ô×E
similarly. Note that µ(E) = E′ ∩ Ô′E is the group of roots of unity in E, whose order
we denote by wE . Using the isomorphism Tbig(Q) ∼= k××E′ of Remark 4.1.1, we find

(4.2.2)
|Tbig(Q)\Tbig(Af )/Kbig|
|Tbig(Q) ∩Kbig|

=
hk
wk
· |E

′\Ê′/Ô′E |
wE

.

Denote by CF and CE the ideal class groups of E and F , and by F̃ and Ẽ their
Hilbert class fields. As E/F is ramified at all archimedean places, F̃ ∩ E = F , and
the natural map

Gal(Ẽ/E)→ Gal(F̃ /F )

is surjective. Hence, by class field theory, the norm

Nm : CE → CF

is surjective. Denote its kernel by B, so that we have a short exact sequence

1→ B → CE
Nm−−→ CF → 1.

Define a group

B̃ = E×\

{
(B, β) :

B ⊂ E is a fractional OE-ideal,
β ∈ F×, and Nm(B) = βOF

}
,

where the action of E× is by α · (B, β) = (αB, ααβ). There is an evident short exact
sequence

1→ Nm(O×E)\O×F
β 7→(OE ,β)−−−−−−−→ B̃ → B → 1.

Lemma 4.2.9. — We have [O×E : Nm(O×E)] = 2n−1wE.

Proof. — Let Q = [O×E : µ(E)O×F ]. If Q = 1 then

[Nm(O×E) : O×,2F ] = 1 and [O×E : O×F ] =
1

2
· wE ,

and so

[O×F : Nm(O×E)] = [O×F : O×,2F ] = 2n =
2n−1wE

[O×E : O×F ]
,

where the middle equality follows from Dirichlet’s unit theorem.
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If Q > 1 then [27, Theorem 4.12] and its proof show that Q = 2, and that the
image of the map φ : O×E → O

×
E defined by φ(x) = x/x is the index two subgroup

φ(O×E) = µ(E)2 ⊂ µ(E). From this it follows easily that

[Nm(O×E) : O×,2F ] = 2 and [O×E : O×F ] = wE ,

and so

[O×F : Nm(O×E)] =
1

2
· [O×F : O×,2F ] = 2n−1 =

2n−1wE

[O×E : O×F ]
.

Combining the information we have so far gives

(4.2.3) |B̃| = [O×F : Nm(O×E)] · |B| = 2n−1wE

[O×E : O×F ]
· |CE |
|CF |

= wE · Λ(0, χE),

where the final equality is a consequence of Dirichlet’s class number formula.

Lemma 4.2.10. — There is an exact sequence

1→ E′\Ê′/Ô′E → B̃ → {±1}r → {±1} → 1.

Proof. — Every x ∈ Ê′ determines a fractional OE-ideal B = xOE with Nm(B) = OF ,
and the rule x 7→ (B, 1) is easily seen to define an injection

(4.2.4) E′\Ê′/Ô′E → B̃.

Given a (B, β) ∈ B̃, consider the elements χE,v(β) ∈ {±1} as v runs over all
places of F . If v is split in E then certainly χE,v(β) = 1. If v is inert in E then
Nm(B) = βOF implies that χE,v(β) = 1. As the product over all v of χE,v(β) is
equal to 1, we see that sending (B, β) to the tuple of χE,v(β) with v ramified in E
defines a homomorphism

(4.2.5) B̃ → ker
(
{±1}r product−−−−−→ {±1}

)
.

To see that (4.2.5) is surjective, fix a tuple (εv)v ∈ {±1}r indexed by the places
of F ramified in E, and assume that

∏
v εv = 1. Let b ∈ A×F be any idele satisfying:

— If v is ramified in E then χE,v(bv) = εv.
— If v is a finite place of F then bv ∈ O×F,v.

The second condition implies that χE,v(bv) = 1 whenever v is unramified in E, and
hence

χE(b) =
∏
v

εv = 1.

Thus b lies in the kernel of the reciprocity map

A×F → F×\A×F /Nm(A×E) ∼= Gal(E/F ),

and so can be factored as b = β−1xx for some β ∈ F× and x ∈ A×E . Setting B = xOE ,
the pair (B, β) ∈ B̃ maps to (εv)v under (4.2.5).

It only remains to show that the image of (4.2.4) is equal to the kernel of (4.2.5).
It is clear from the definitions that the composition

E′\Ê′/Ô′E → B̃ → {±1}r
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is trivial, proving one inclusion. For the other inclusion, suppose (B, β) ∈ B̃ lies in
the kernel of (4.2.5). We have already seen that this implies that β ∈ F× satisfies
χE,v(β) = 1 for every place v of F , and so β is a norm from E everywhere locally. By
the Hasse-Minkowski theorem, β is a norm globally, say β = αα with α ∈ E×. In the
group B̃, we therefore have the relation

(B, β) = α−1(B, β) = (A, 1)

for a fractional OE-ideal A = α−1B satisfying Nm(A) = OF . Any such A has the
form A = xOE for some x ∈ Ê′, proving that (B, β) lies in the image of (4.2.4).

Combining the lemma with (4.2.3) gives

|E′\Ê′/Ô′E |
wE

=
|B̃|

2r−1wE
=

Λ(0, χE)

2r−1
,

and combining this with (4.2.2) completes the proof of Proposition 4.2.8.

Proposition 4.2.11. — Assume that the discriminants of k and F are relatively prime.
The constant term (1.4.2) satisfies

[Ẑtot
Kra(0) : Ybig] = −[ω̂ : Ybig].

Proof. — The stated equality is equivalent to

[(Exc,− log(D)) : Ybig] = 0,

and so it suffices to prove

[(0, log(D)) : Ybig] = degC(Ybig) · log(D) = [(Exc, 0) : Ybig].

The first equality is clear from the definitions. To prove the second equality, we first
argue that

(4.2.6) Ybig ×SKra
Exc = Ybig ×Spec(Ok) Spec(Ok/dk),

as in the proof of Proposition 2.2.10.
The inclusion ⊂ of (4.2.6) is again clear from

Exc ⊂ SKra ×Spec(Ok) Spec(Ok/dk).

Recall that Ybig → Spec(OΦ) is étale. Our hypothesis on the discriminants of k and
F implies that Spec(OΦ) → Spec(Ok) is étale at all primes dividing dk, and hence
the same is true for Ybig → Spec(Ok). This implies that the right hand side of (4.2.6)
is reduced, and hence so is the left hand side. To prove equality in (4.2.6), it therefore
suffices to prove the inclusion ⊃ on the level of geometric points.

Suppose p | dk is prime, and let Falg
p be an algebraic closure of its residue field.

Suppose that y ∈ Ybig(Falg
p ) corresponds to the pair (A0, A), so that A ∈ CMΦ(Falg

p ).
Let W be the completed étale local ring of the geometric point

Spec(Falg
p )

y−→ Ybig → Spec(OΦ).

More concretely, W is the completion of the maximal unramified extension of Ok,p,
equipped with an injective ring homomorphism OΦ →W . Let Cp be the completion of

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



158 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

an algebraic closure of the fraction field of W , and fix an isomorphism of EΦ-algebras
C ∼= Cp.

For every ϕ ∈ Φ the induced map OE → C ∼= Cp takes values in the subring W ,
and the induced map

OE ⊗Z W →
∏
ϕ∈Φ

W

is surjective (by our hypothesis that k and F have relatively prime discriminants).
Denote its kernel by JΦ ⊂ OE ⊗Z W , and define an OE ⊗Z W -module

LieΦ = (OE ⊗Z W )/JΦ
∼=
∏
ϕ∈Φ

W.

As in the proof of [19, Lemma 4.1.2], there is an isomorphism of OE ⊗Z Falg
p -modules

Lie(A) ∼= LieΦ ⊗W Falg
p
∼=
∏
ϕ∈Φ

Falg
p .

Let δ ∈ Ok be a square root of −D. As the image of δ under

OE
ϕ−→W → Falg

p

is 0 for every ϕ ∈ Φ, it follows from what was said above that δ annihilates Lie(A).
Exactly as in the proof of Proposition 2.2.10, this implies that the image of y under
Ybig → SKra lies on the exceptional divisor. This completes the proof of (4.2.6), and
the remainder of the proof is exactly as in Proposition 2.2.10.

4.3. A generalized L-function. — The action iE : OE → EndOk
(a) makes

L = HomOk
(a0, a)

into a projective OE-module of rank one, and the Ok-hermitian form on L defined by
[6, (2.1.5)] satisfies 〈αx1, x2〉 = 〈x1, αx2〉 for all α ∈ OE and x1, x2 ∈ L. It is a formal
consequence of this that the E-vector space V = L⊗ZQ carries an E-hermitian form

〈−,−〉big : V × V → E,

uniquely determined by the property

〈x1, x2〉 = TrE/k〈x1, x2〉big.

This hermitian form has signature (0, 1) at ϕsp|F , and signature (1, 0) at all other
archimedean places of F .

From the E-hermitian form we obtain an F -valued quadratic form Q(x) = 〈x, x〉big

on V with signature (0, 2) at ϕsp|F , and signature (2, 0) at all other archimedean places
of F . The Q-quadratic form

(4.3.1) Q(x) = TrF/QQ(x)

is Z-valued on L ⊂ V , and agrees with the quadratic form of §2.3. Let

ωL : SL2(Z)→ AutC(SL)
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be the Weil representation on the space SL = C[L′/L], where L′ = d−1
k L is the dual

lattice of L relative to the Z-bilinear form (2.3.1).
Write each ~τ ∈ FC in the form ~τ = ~u+ i~v with ~u,~v ∈ FR, and set

HF = {~τ ∈ FC : ~v is totally positive}.

Every Schwartz function φ ∈ S(V̂ ) determines an incoherent Hilbert modular Eisen-
stein series

(4.3.2) E(~τ , s, φ) =
∑
α∈F

Eα(~v, s, φ) · qα

on HF , as in [8, (4.4)] and [2, §6.1]. If we identify

SL = C[L′/L] ⊂ S(V̂ )

as the space of L̂-invariant functions supported on L̂′, then (4.3.2) can be viewed as
a function E(~τ , s) on HF taking values in the complex dual S∨L .

We quickly recall the construction of (4.3.2). If v is an arichmedean place of F ,
denote by (Cv,Qv) the unique positive definite rank 2 quadratic space over Fv. Set
C∞ =

∏
v|∞ Cv. The rank 2 quadratic space

C = C∞ × V̂

over AF is incoherent, in the sense that it is not the adelization of any F -quadratic
space. In fact, C is isomorphic to V everywhere locally, except at the unique
archimedean place ϕsp|F at which V is negative definite.

Let ψQ : Q\A→ C× be the standard additive character, and define

ψF : F\AF → C×

by ψF = ψQ◦TrF/Q. Denote by I(s, χE) the degenerate principal series representation
of SL2(AF ) induced from the character χE | · |s on the subgroup B ⊂ SL2 of upper
triangular matrices. Thus I(s, χE) consists of all smooth functions Φ(g, s) on SL2(AF )

satisfying the transformation law

Φ

((
a b

a−1

)
g, s

)
= χE(a)|a|s+1Φ(g, s).

The Weil representation ωC determined by the character ψF defines an action
of SL2(AF ) on S(C ), and for any Schwartz function

φ∞ ⊗ φ ∈ S(C∞)⊗ S(V̂ ) ∼= S(C )

the function

(4.3.3) Φ(g, 0) = ωC (g)(φ∞ ⊗ φ)(0)

lies in the induced representation I(0, χE). It extends uniquely to a standard section
Φ(g, s) of I(s, χE), which determines an Eisenstein series

E(g, s, φ∞ ⊗ φ) =
∑

γ∈B(F )\SL2(F )

Φ(γg, s)
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in the variable g ∈ SL2(AF ).
We always choose φ ∈ SL ⊂ S(V ), and take the archimedean component φ∞ of

our Schwartz function to be the Gaussian distribution

φ1
∞ = ⊗φ1

v ∈
⊗
v|∞

S(Cv)

defined by φ1
v(x) = e−2πQv(x), so that the resulting Eisenstein series

E(~τ , s, φ) =
1√

Nm(~v)
· E(g~τ , s, φ

1
∞ ⊗ φ)

has parallel weight 1. Here

g~τ =

(
1 ~u

0 1

)(√
~v

1/
√
~v

)
∈ SL2(FR)

and Nm : F×R → R× is the norm.
A choice of ordering of the embeddings F → R fixes an isomorphism ofHF with the

n-fold product of the complex upper half-plane with itself, and the diagonal inclusion
H ↪→ HF is independent of the choice of ordering. By restricting our Eisenstein series
to the diagonal we obtain an S∨L-valued function

E(τ, s) = E(~τ , s)|H
in the variable τ ∈ H, which transforms like a modular form of weight n and repre-
sentation ω∨L under the full modular group SL2(Z).

Given a cusp form g̃ ∈ Sn(ωL) valued in SL, consider the Petersson inner product

(4.3.4) 〈E(s), g̃〉Pet =

∫
SL2(Z)\H

{
g̃(τ), E(τ, s)

} du dv
v2−n ,

where {., .} : SL×S∨L → C is the tautological pairing. This is an unnormalized version
of the generalized L-function

L(s, g̃) = Λ(s+ 1, χE) · 〈E(s), g̃〉Pet

of [8, (1.2)] or [2, §6.3].
Let F+ ⊂ F be the subset of totally positive elements. The Eisenstein series E(~τ , s)

satisfies a functional equation in s 7→ −s, forcing it to vanish at s = 0. As in [8,
Proposition 4.6] and [2, §6.2], we can extract from the central derivative E′(~τ , 0) a
formal q-expansion

aF (0) +
∑
α∈F+

aF (α) · qα.

If α ∈ F+ then E′α(~v, 0, φ) is independent of ~v, and we define aF (α) ∈ S∨L by

aF (α, φ) = Λ(0, χE) · E′α(~v, 0, φ).

We define aF (0) ∈ S∨L by

aF (0, φ) = Λ(0, χ) · E′0(~v, 0, φ)− Λ(0, χE) · φ(0) log Nm(~v).

Again, this is independent of ~v.
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Remark 4.3.1. — For notational simplicity, we often denote by aF (α, µ) the value
of aF (α) : SL → C at the characteristic function of a coset µ ∈ L′/L.

For any nonzero α ∈ F , define

Diff(C , α) = {places v of F : Cv does not represent α}.

This is a finite set of odd cardinality, and any v ∈ Diff(C , α) is necessarily nonsplit
in E. We are really only interested in this set when α ∈ F+. As C is positive definite
at all archimedean places, for such α we have

Diff(C , α) = {primes p ⊂ OF : Vp does not represent α}.

We will need explicit formulas for all aF (α, µ) with α ∈ F+, but only for the trivial
coset µ = 0. These are provided by the following proposition.

Proposition 4.3.2. — Suppose α ∈ F+.

1. If |Diff(C , α)| > 1 then aF (α) = 0.

2. If Diff(C , α) = {p}, then

aF (α, 0) = −2r−1 · ρ(αdF p
−εp) · ordp(αpdF ) · log(N(p)),

where the notation is as follows: r is the number of places of F ramified in E

(including all archimedean places), dF ⊂ OF is the different of F , and

εp =

{
1 if p is inert in E
0 if p is ramified in E.

Moreover, for any fractional OF -ideal b ⊂ F we have set

ρ(b) = |{ideals B ⊂ OE : BB = bOE}|.

In particular, ρ(b) = 0 unless b ⊂ OF .

Proof. — Up to a change of notation, this is [18, Proposition 4.2.1], whose proof
amounts to collecting together calculations of [28]. More general formulas can be
found in [2, §7.1] and [21, §4.6].

Proposition 4.3.3. — Assume that the discriminants of k and F are relatively prime.
For any µ ∈ L′/L we have

aF (0, µ) =

{
−2Λ′(0, χE) if µ = 0

0 otherwise.

Proof. — Let Φµ =
∏
pΦµ,p be the standard section of I(s, χE) determined by the

characteristic function φµ ∈ SL ⊂ S(V ) of µ ∈ L′/L. According to [2, Proposi-
tion 6.2.3], we then have

(4.3.5) aF (0, µ) = −2φµ(0)Λ′(0, χE)− Λ(0, χE) · d
ds

(∏
p

Mp(s, φµ)
)
|s=0

,
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where the product is over all finite places p of F , and the local factors on the right
have the form

(4.3.6) Mp(s, φµ) = cp ·
Lp(s+ 1, χE)

Lp(s, χE)
·W0,p(s,Φµ)

for some constants cp independent of s. Here, setting

w =
(

0 −1
1 0

)
, n(b) = ( 1 b

0 1 ) ,

the function

W0,p(s,Φµ) =

∫
Fp

Φµ,p (wn(b), s) db

is the value of the local Whittaker function W0,p(g, s,Φµ) at the identity in SL2(Fp).
Our goal is to prove thatMp(s, φµ) is independent of s, and hence both the particular
value of cp and the choice of Haar measure on Fp are irrelevant to us.

Fix a prime p ⊂ OF , and let p be the rational prime below it. We may identify
Vp ∼= Ep in such a way that Lp ∼= OE,p, and so that the Fp-valued quadratic form Q
on Vp ∼= Ep becomes

Q(x) = βxx

for some β ∈ F×p . If dF denotes the different of F/Q, then

(4.3.7) βOF,p = d−1
F OF,p.

Indeed, let dE be the different of E/Q. The lattice L′p = d−1
k OE,p is the dual lattice

of OE,p relative to the Qp-bilinear form [x, y] = TrEp/Qp(βxy), which implies the first
equality in

β−1OE,p = dEd
−1
k OE,p = dFOE,p.

The second equality is a consequence of our assumption that the discriminants of k

and F are relatively prime.
If we endow Vp = Ep with the rescaled quadratic form

Q](x)
def
= β−1Q(x) = xx,

and define a new additive character

ψ]F,p(x)
def
= ψF,p(βx)

(unramified by (4.3.7)), we obtain a new Weil representation

ω] : SL2(Fp)→ Aut(S(Vp)),

and hence, as in (4.3.3), a function

S(Vp)
φ7→Φ]p(s,g)
−−−−−−−→ Ip(s, χE)

defined by first setting Φ]p(0, g) = ω](g)φ(0), and then extending to a standard section.
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The local Schwartz function φµ,p ∈ S(Vp) now determines a standard section
Φ]µ,p(g, s) of Ip(s, χE), and explicit formulas for the Weil representation, as in [21,
(4.2.1)], show that ∫

Fp

Φµ,p (wn(b), s) db =

∫
Fp

Φ]µ,p (wn(b), s) db.

What our discussion shows is that there is no harm in rescaling the quadratic form
on Vp to make β = 1, and simultaneously modifying the additive character ψF,p to
make it unramified.

After this rescaling, one can easily deduce explicit formulas for W0,p(s,Φµ) from
the literature. Indeed, if the local component µp ∈ L′p/Lp is zero, then the calculations
found in [28, §2] imply that

W0,p(s,Φµ) =
Lp(s, χE)

Lp(s+ 1, χE)

up to scaling by a nonzero constant independent of s. If instead µp 6= 0 then p is
ramified in E (and in particular p > 2), and it follows from the calculations found
in the proof of [21, Proposition 4.6.4] that W0,p(s,Φµ) = 0. In any case (4.3.6) is
independent of s for every p, and so the derivative in (4.3.5) vanishes.

4.4. A preliminary central derivative formula. — The entirety of §4.4 is devoted to
proving Theorem 4.4.1, which a big CM analogue of Theorem 2.4.1. The proof will
make essential use of the calculations of [18, 19, 8].

We assume n ≥ 3 throughout §4.4. This allows us to make use of the distinguished
harmonic forms

fm ∈ H2−n(ωL)∆

(for m > 0) characterized by (2.5.1).

Theorem 4.4.1. — Assume that the discriminants of k/Q and F/Q are odd and rela-
tively prime, and fix a positive integer m. If f = fm is the harmonic form above, and
Ẑ is the linear function (2.4.1), then

n · [Ẑ(f) : Ybig]

degC(Ybig)
+ 2c+f (0, 0)

Λ′(0, χE)

Λ(0, χE)
= − d

ds
〈E(s), ξ(f)〉Pet|s=0

.

For the form f = fm we have

Ẑ(f) = Ẑtot
Kra(m) =

(
Ztot

Kra(m),Θreg(fm)
)
∈ Ĉh

1
(S∗Kra),

where the Green function Θreg(fm) for the divisor Ztot
Kra(m) is constructed in [6, §7] as

a regularized theta lift. The arithmetic degree appearing in Theorem 4.4.1 decomposes
as
(4.4.1)

[Ẑ(f) : Ybig] =
∑
p⊂Ok

log(N(p))
∑

y∈(Ztot
Kra(m)∩Ybig)(Falg

p )

length(Oy)

|Aut(y)|
+

∑
y∈Ybig(C)

Θreg(fm)(y)

|Aut(y)|
,
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where Fp = Ok/p, and Oy is the étale local ring of

(4.4.2) Ztot
Kra(m) ∩ Ybig

def
= Ztot

Kra(m)×S∗Kra
Ybig

at y. The final summation is over all complex points of Ybig, viewed as an Ok-stack.
We will see that the terms on the right hand side of (4.4.1) are intimately related to
the Eisenstein series coefficients aF (α) of §4.3.

We first study the structure of the stack-theoretic intersection (4.4.2). Suppose S is
a connected OΦ-scheme, and

(A0, A) ∈
(
M(1,0) ×Ok

CMΦ

)
(S)

is an S-point. The Ok-module HomOk
(A0, A) carries an Ok-hermitian form 〈−,−〉

defined by [6, (2.5.1)]. The construction of this hermitian form only uses the underlying
point of SKra, and not the action OE → EndOk

(A). As in [19, §3.2], the extra action
of OE makes HomOk

(A0, A) into a projective OE-module, and there is a totally
positive definite E-hermitian form 〈−,−〉big on

(4.4.3) V (A0, A) = HomOk
(A0, A)⊗Z Q

characterized by the relation

〈x1, x2〉 = TrE/k〈x1, x2〉big.

for all x1, x2 ∈ HomOk
(A0, A).

Fix an α ∈ F+. Recalling that

(4.4.4) Ybig ⊂M(1,0) ×Ok
CMΦ

as an open and closed substack, for any OΦ-scheme S let Zbig(α)(S) be the groupoid
of triples (A0, A, x), in which

— (A0, A) ∈ Ybig(S),
— x ∈ HomOk

(A0, A) satisfies 〈x, x〉big = α.
This functor is represented by an OΦ-stack Zbig(α), and the evident forgetful mor-
phism

Zbig(α)→ Ybig

is finite and unramified.
This construction is entirely analogous to the construction of the special divisors

Ztot
Kra(m)→ SKra of [6]. In fact, directly from the definitions, if S is an OΦ-scheme an

S-point
(A0, A, x) ∈

(
Ztot

Kra(m) ∩ Ybig

)
(S)

consists of a pair (A0, A) ∈ Ybig(S) and an x ∈ HomOk
(A0, A) satisfying m = 〈x, x〉.

From this it is clear that there is an isomorphism

(4.4.5) Ztot
Kra(m) ∩ Ybig

∼=
⊔
α∈F+

TrF/Q(α)=m

Zbig(α),

defined by sending the triple (A0, A, x) to the same triple, but now viewed as an
S-point of the stack Zbig(α) determined by α = 〈x, x〉big.
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Proposition 4.4.2. — For each α ∈ F+ the stack Zbig(α) is either empty, or has di-
mension 0 and is supported at a single prime of OΦ. Moreover,

1. If |Diff(C , α)| > 1 then Zbig(α) = ∅.
2. Suppose that Diff(C , α) = {p} for a single prime p ⊂ OF , let q ⊂ OE be the

unique prime above it, and denote by qΦ ⊂ OΦ the corresponding prime under
the isomorphism ϕsp : E ∼= EΦ. Then Zbig(α) is supported at the prime qΦ, and
satisfies ∑

y∈Zbig(α)(Falg
qΦ

)

1

|Aut(y)|
=
hk
wk
· ρ(αdF p

−εp),

where FqΦ is the residue field of qΦ, and εp and ρ are as in Proposition 4.3.2.
Moreover, the étale local rings at all geometric points

y ∈ Zbig(α)(Falg
qΦ

)

have the same length

length(Oy) = ordp(αpdF ) ·

{
1/2 if Eq/Fp is unramified
1 otherwise.

Proof. — This is essentially contained in [18, §3]. In that work we studied the
OΦ-stack ZΦ(α) classifying triples (A0, A, x) exactly as in the definition of Zbig(α),
except we allowed the pair (A0, A) to be any point ofM(1,0) ×Ok

CMΦ rather than
a point of the substack (4.4.4). Thus we have a cartesian diagram

Zbig(α) //

��

ZΦ(α)

��

Ybig
//M(1,0) ×Ok

CMΦ.

As the bottom horizontal arrow is an open and closed immersion, so is the top hori-
zontal arrow. In other words, our Zbig(α) is a union of connected components of the
stack ZΦ(α) of [18].

Lemma 4.4.3. — Each ZΦ(α) has dimension 0. If y is a geometric point of ZΦ(α)

corresponding to a triple (A0, A, x) over k(y), then k(y) has nonzero characteristic,
A0 and A are supersingular, and the E-hermitian space (4.4.3) has dimension one.
Moreover, if p ⊂ OF denotes the image of y under the composition

(4.4.6) ZΦ(α)→ Spec(OΦ) ∼= Spec(OE)→ Spec(OF )

(the isomorphism is ϕsp : E ∼= EΦ), then p is nonsplit in E, and the following are
equivalent:

— The geometric point y factors through the open and closed substack

Zbig(α) ⊂ ZΦ(α).
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— The E-hermitian space (4.4.3) is isomorphic to V everywhere locally except at p
and ϕsp|F .

Proof. — This is an easy consequence of [18, Proposition 3.4.5] and [18, Proposi-
tion 3.5.2]. The only part that requires explanation is the final claim.

Fix a connected component

B ⊂M(1,0) ×Ok
CMΦ.

As in [18, §3.4], for each complex point y = (A0, A) ∈ B(C) one can construct from
the Betti realizations of A0 and A an E-hermitian space

V (B) = Homk
(
H1(A0(C),Q), H1(A(C),Q)

)
of dimension 1. This hermitian space has signature (0, 1) at ϕsp|F , and signature (1, 0)

at all other archimedean places of F . Moreover, as in Remark 4.2.3, this hermitian
space depends only on the connected component B, and not on the particular complex
point y. The open and closed substack

Ybig ⊂M(1,0) ×Ok
CMΦ

can be characterized as the union of all components B for which V (B) ∼= V .
So, suppose we have a geometric point y = (A0, A, x) of ZΦ(α), and denote by

B ⊂M(1,0) ×Ok
CMΦ

the connected component containing the underlying point y = (A0, A). The content
of [18, Proposition 3.4.5] is that the hermitian space (4.4.3) is isomorphic to V (B)

everywhere locally except at p and ϕsp|F . From this we deduce the equivalence of the
following statements:

— The geometric point y → ZΦ(α) factors through Zbig(α).

— The underlying point y →M(1,0) ×Ok
CMΦ factors through Ybig.

— The hermitian spaces V (B) and V are isomorphic.
— The E-hermitian space (4.4.3) is isomorphic to V everywhere locally except

at p and ϕsp|F .

Now suppose that Zbig(α) is nonempty. If we fix a geometric point y = (A0, A, x)

as above, the vector x ∈ HomOk
(A0, A) satisfies 〈x, x〉big = α, and hence (4.4.3)

represents α. The above lemma now implies that V represents α everywhere locally
except at p and ϕsp|F , where p is the image of y under (4.4.6). From this it follows
first Diff(C , α) = {p}, and then that all geometric points of Zbig(α) have the same
image under (4.4.6), and lie above the same prime qΦ ⊂ OΦ characterized as in the
statement of Proposition 4.4.2. In particular, if |Diff(C , α)| > 1 then Zbig(α) = ∅.

It remains to prove part (2) of the proposition. For this we need the following
lemma.

Lemma 4.4.4. — Assume that Diff(C , α) = {p} for some prime p ⊂ OF , and let
q ⊂ OE be the unique prime above it. The open and closed substack Zbig(α) ⊂ ZΦ(α)
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is equal to the union of all connected components of ZΦ(α) that are supported at the
prime qΦ.

Proof. — We have already seen that every geometric point of Zbig(α) lies above the
prime qΦ, and so it suffices to prove that every geometric point of ZΦ(α) lying above
the prime qΦ factors through Zbig(α). Let y → ZΦ(α) be such a point.

If y corresponds to the triple (A0, A, x), then x ∈ HomOk
(A0, A) satis-

fies 〈x, x〉big = α, and hence (4.4.3) represents α. But the assumption that
Diff(C , α) = {p} implies that V represents α everywhere locally except at p and
ϕsp|F , and it follows from this that V and (4.4.3) are isomorphic locally every-
where except at p and ϕsp|F . By the previous lemma, this implies that y factors
through Zbig(α).

With this last lemma in hand, all parts of (2) follow from the corresponding state-
ments for ZΦ(α) proved in [18, Theorem 3.5.3] and [18, Theorem 3.6.2].

Proposition 4.4.5. — For every α ∈ F+ we have∑
p⊂Ok

n · log(N(p))

degC(Ybig)

∑
y∈Zbig(α)(Falg

p )

length(Oy)

|Aut(y)|
= − aF (α, 0)

Λ(0, χE)
,

where the inner sum is over all Falg
p -points of Zbig(α), viewed as an Ok-stack.

Proof. — Combining Propositions 4.2.8, 4.3.2, and 4.4.2 shows that∑
qΦ⊂OΦ

n · log(N(qΦ))

degC(Ybig)

∑
y∈Zbig(α)(Falg

qΦ
)

length(Oy)

|Aut(y)|
= − aF (α, 0)

Λ(0, χE)
,

where the inner sum is over all Falg
qΦ points of Zbig(α), viewed as an OΦ-stack. The

claim follows by collecting together all primes qΦ ⊂ OΦ lying above a common prime
p ⊂ Ok.

Proposition 4.4.6. — The regularized theta lift Θreg(fm) satisfies

n

degC(Ybig)

∑
y∈Ybig(C)

Θreg(fm)(y)

|Aut(y)|

= − d

ds
〈E(s), ξ(fm)〉Pet|s=0

+
∑
α∈F+

TrF/Q(α)=m

aF (α, 0)

Λ(0, χE)
− 2c+fm(0, 0) · Λ′(0, χE)

Λ(0, χE)
.

Proof. — This is a special case of the main result of [8]. This requires some explana-
tion, as that work deals with cycles on Shimura varieties of type GSpin, rather than
the unitary Shimura varieties under current consideration.

Recall that we have an F -quadratic space (V ,Q) of rank two, and a Q-quadratic
space (V,Q) whose underlying Q-vector space

V = Homk(W0,W )
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is equal to V , and whose quadratic form is (4.3.1). As in [8, §2] or [2, §5.3] this data
determines a commutative diagram

1 // Gm // TGSpin
//

��

TSO
//

��

1

1 // Gm // GSpin(V ) // SO(V ) // 1,

with exact rows, of algebraic groups over Q. The torus TSO = ResF/QSO(V ) has
Q-points

TSO(Q) = {y ∈ E× : yy = 1},

while the torus TGSpin has Q-points

TGSpin(Q) = E×/ker(Norm : F× → Q×).

The map TGSpin → TSO is x 7→ x/x. To these groups one can associate morphisms of
Shimura data

(TGSpin, {hGSpin}) //

��

(TSO, {hSO})

��

(GSpin(V ),DGSpin) // (SO(V ),DSO).

In the top row both data have reflex field EΦ. In the bottom row both data have
reflex field Q.

Let KSO ⊂ SO(V )(Af ) be any compact open subgroup that stabilizes the lattice
L ⊂ V , and fix any compact open subgroup KGSpin ⊂ GSpin(V )(Af ) contained in
the preimage of KSO. The Shimura data in the bottom row, along with these compact
open subgroups, determine Shimura varieties MGSpin → MSO. These are Q-stacks of
dimension 2n− 2.

The Shimura data in the top row, along with the compact open subgroups
KGSpin ∩ TGSpin(Af ) and KSO∩TSO(Af ), determine Shimura varieties YGSpin → YSO.

These are EΦ-stacks of dimension 0, but we instead view them as stacks over Spec(Q),
so that there is a commutative diagram

(4.4.7) YGSpin
//

��

YSO

��

MGSpin
// MSO.

Assume that the compact open subgroup KSO acts trivially on the quotient L′/L.
For every form f ∈ H2−n(ωL), one can find in [8, Theorem 3.2] the construction of a
divisor ZGSpin(f) on MGSpin, along with a Green function Θreg

GSpin(f) for that divisor,
constructed as a regularized theta lift. Up to change of notation, [8, Theorem 1.1]
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asserts that
(4.4.8)

n

degC(YGSpin)

∑
y∈YGSpin(C)

Θreg
GSpin(f, y)

|Aut(y)|
= − d

ds
〈E(s), ξ(f)〉Pet|s=0

+
∑
m≥0

µ∈L′/L

a(m,µ)c+f (−m,µ)

Λ(0, χE)
,

where the coefficients a(m) ∈ SL are defined by

a(m) =
∑
α∈F+

TrF/Q(α)=m

aF (α)

if m > 0, and by a(0) = aF (0).
It is not difficult to see, directly from the constructions, that both the divisor

ZGSpin(f) and the Green function Θreg
GSpin(f) descend to the quotient MSO. If we call

these descents ZSO(f) and Θreg
SO(f), it is a formal consequence of the commutativity of

(4.4.7) that the equality (4.4.8) continues to hold if all subscripts GSpin are replaced
by SO.

Moreover, suppose that our form f ∈ H2−n(ωL) is invariant under the action of the
finite group ∆ of §2.4, as is true for the form fm of (2.5.1). In this case one can see,
directly from the definitions, that the divisor ZSO(f) and the Green function Θreg

SO(f)

descend to the orthogonal Shimura variety determined by the maximal compact open
subgroup

KSO = {g ∈ SO(V )(Af ) : gL = L}.

From now on we fix this choice of KSO.
Specializing (4.4.8) to the form f = fm, and using the formula for a(0) = aF (0)

found in Proposition 4.3.3, we obtain

n

degC(YSO)

∑
y∈YSO(C)

Θreg
SO(fm)(y)

|Aut(y)|
= − d

ds
〈E(s), ξ(fm)〉Pet|s=0

+
a(m, 0)

Λ(0, χE)
− 2c+fm(0, 0) · Λ′(0, χE)

Λ(0, χE)
.(4.4.9)

As in [6, §2.1], our group G ⊂ GU(W0) × GU(W ) acts on V in a natural way,
defining a homomorphism G → SO(V ). On the other hand, Remark 4.1.1 shows
that Tbig

∼= Resk/QGm×TSO, and projection to the second factor defines a morphism
Tbig → TSO. We obtain morphisms of Shimura data

(Tbig, {hbig}) //

��

(TSO, {hSO})

��

(G,D) // (SO(V ),DSO),
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which induce morphisms of k-stacks

Ybig/k
//

��

YSO/k

��

SKra/k
// MSO/k.

The Green function Θreg(fm) on SKra/k defined in [6, §7.2] is simply the pullback
of the Green function Θreg

SO(fm) via the bottom horizontal arrow. It follows easily that

n

degC(YSO)

∑
y∈YSO(C)

Θreg
SO(fm)(y)

|Aut(y)|
=

n

degC(Ybig)

∑
y∈Ybig(C)

Θreg(fm)(y)

|Aut(y)|
,

and comparison with (4.4.9) completes the proof of Proposition 4.4.6.

Proof of Theorem 4.4.1. — Combining the decomposition (4.4.5) with Proposi-
tion 4.4.5 shows that∑

p⊂Ok

n log(N(p))

degC(Ybig)

∑
y∈(Ztot

Kra(m)∩Ybig)(Falg
p )

length(Oy)

|Aut(y)|
=

∑
α∈F+

TrF/Q(α)=m

−aF (α, 0)

Λ(0, χE)
.

Plugging this formula and the archimedean calculation of Proposition 4.4.6 into (4.4.1)
leaves

n · [Ẑ(fm) : Ybig]

degC(Ybig)
= −2c+fm(0, 0) · Λ′(0, χE)

Λ(0, χE)
− d

ds
〈E(s), ξ(fm)〉Pet|s=0

,

as desired.

4.5. The proof of Theorem B. — We now use Theorem 4.4.1 to prove a special case
of Theorem D, and then prove Theorem B. We assume n ≥ 3.

Recall the differential operator

ξ : H2−n(ωL)→ Sn(ωL)

of §2.4. Its kernel is the subspace

M !
2−n(ωL) ⊂ H2−n(ωL)

of weakly holomorphic forms.

Lemma 4.5.1. — In the notation of §2.4, there exists a ∆-invariant form f ∈M !
2−n(ωL)

such that c+f (0, 0) 6= 0, and

Ẑ(f) + c+f (0, 0) · Ẑtot
Kra(0) = 0.

Proof. — Denote by

S!,∞
2−n(Γ0(D), χnk) ⊂M !

2−n(Γ0(D), χnk)
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the subspace of forms that vanish at all cusps other than ∞, and choose any form

f0(τ) =
∑
m∈Z

m�−∞

c0(m) · qm ∈ S!,∞
2−n(Γ0(D), χnk)

such that c0(0) 6= 0. The existence of such a form can be proved as in [4, Lemma 4.11].
As in (2.3.2) there is an induced form

f(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(f0|2−nγ)(τ) · ωL(γ−1)φ0 ∈M !
2−n(ωL)∆,

which we claim has the desired properties.
Indeed, the proof of Proposition 2.5.1 shows that c+f (0, 0) = c0(0), and that

f =
∑
m>0 c0(−m)fm. In particular,

Ẑ(f) =
∑
m>0

c0(−m) · Ẑtot
Kra(m) ∈ Ĉh

1

C(S∗Kra).

Given any modular form

g(τ) =
∑
m≥0

d(m) · qm ∈Mn(D,χnk),

summing the residues of the meromorphic form f0(τ)g(τ)dτ on X0(D)(C) shows that∑
m≥0

c0(−m) · d(m) = 0.

Thus the modularity of the generating series (1.1.2) implies the second equality in

(4.5.1) Ẑ(f) + c0(0) · Ẑtot
Kra(0) =

∑
m≥0

c0(−m) · Ẑtot
Kra(m) = 0.

We can now prove Theorem D under some additional hypotheses. These hypotheses
will be removed in §5.

Theorem 4.5.2. — If the discriminants of k/Q and F/Q are odd and relatively prime,
then

[ω̂ : Ybig] =
−2

n
· degC(Ybig) · Λ′(0, χE)

Λ(0, χE)
.

Proof. — If we choose f as in Lemma 4.5.1 then ξ(f) = 0, and so Theorem 4.4.1
simplifies to

−nc+f (0, 0) · [Ẑtot
Kra(0) : Ybig]

degC(Ybig)
+ 2c+f (0, 0) · Λ′(0, χE)

Λ(0, χE)
= 0.

An application of Proposition 4.2.11 completes the proof.

The following is Theorem B in the introduction.
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Theorem 4.5.3. — Assume that the discriminants of k/Q and F/Q are odd and rel-
atively prime, and let g ∈ Sn(Γ0(D), χn) and g̃ ∈ Sn(ωL) be related by (2.3.2). The
central derivative of the Petersson inner product (4.3.4) is related to the arithmetic
theta lift (1.1.3) by

[θ̂(g) : Ybig] =
−1

n
· degC(Ybig) · d

ds
〈E(s), g̃〉Pet|s=0

.

Proof. — If we choose f as in Proposition 2.5.1, then ξ(f) = g̃ and

[θ̂(g) : Ybig] = [Ẑ(f) : Ybig] + c+f (0, 0) · [Ẑtot
Kra(0) : Ybig].

Proposition 4.2.11 and Theorem 4.5.2 allow us to rewrite this as

[θ̂(g) : Ybig] = [Ẑ(f) : Ybig]− c+f (0, 0) · [ω̂ : Ybig]

= [Ẑ(f) : Ybig] +
2

n
· c+f (0, 0) · degC(Ybig) · Λ′(0, χE)

Λ(0, χE)
,

and comparison with Theorem 4.4.1 completes the proof.

5. Faltings heights of CM abelian varieties

In §5 we assume n ≥ 2, and study Theorems C and D of the introduction. As in
§1.3, let F be a totally real field of degree n, set

E = k ⊗Q F,

and let Φ ⊂ Hom(E,C) be a CM type of signature (n−1, 1). We fix a triple (a0, a, iE)

as in §4.2.

5.1. Some metrized line bundles. — By virtue of the inclusion (1.1.1), there is a uni-
versal pair (A0, A) over SKra consisting of an elliptic curve π0 : A0 → SKra and an
abelian scheme π : A→ SKra of dimension n.

Endowing the Lie algebras of A0 and A with their Faltings (a.k.a. Hodge) metrics
gives rise to metrized line bundles

Lie(A0) ∈ P̂ic(SKra), det(Lie(A)) ∈ P̂ic(SKra).

A vector η in the fiber

det(Lie(As))
−1 ∼=

∧n
Fil1H1

dR(As) ⊂
∧n

H1
dR(As)

at a complex point s ∈ SKra(C) has norm

(5.1.1) ‖η‖2s =
∣∣∣ ∫
As(C)

η ∧ η
∣∣∣.

The metric on Lie(A0) is defined similarly.
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We now recall some notation from [6, §1.8]. Fix a π ∈ Ok such that Ok = Z + Zπ.
If S is any Ok-scheme, define

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS(5.1.2)

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS ,

where iS : Ok → OS is the structure map. We usually just write ε and ε, when the
scheme S is clear from context.

Remark 5.1.1. — If N is an Ok ⊗Z OS-module then N/εN is the maximal quotient
of N on which Ok acts through the structure morphism iS : Ok → OS , and N/εN is
the maximal quotient on which Ok acts through the conjugate of the structure mor-
phism. If D ∈ O×S then

N = εN ⊕ εN,
and the summands are the maximal submodules on which Ok acts through the struc-
ture morphism and its conjugate, respectively.

As in [6, §2.2], the relative de Rham homology HdR
1 (A) is a rank 2n vector bundle

on SKra endowed with an action of Ok induced from that on A. In fact, it is locally
free of rank n as an Ok ⊗Z OSKra

-module, and

V = HdR
1 (A)/εHdR

1 (A)

is a rank n vector bundle. We make det(V) into a metrized line bundle by declaring
that a local section η of its inverse

det(V)−1 ∼=
∧n

εH1
dR(A) ⊂ Hn

dR(A)

has norm (5.1.1) at a complex point s ∈ SKra(C).
As the exceptional divisor Exc ⊂ SKra of [6, §2.3] is supported in characteristics

dividing D, the line bundle O(Exc) is canonically trivial in the generic fiber. We
endow it with the trivial metric. That is to say, the constant function 1, viewed as a
section of O(Exc), has norm ‖1‖2 = 1.

Recall that the line bundle ω of [6, §2.4] was endowed with a metric in [6, §7.2],
defining

ω̂ ∈ P̂ic(SKra).

For any positive real number c, denote by

O〈c〉 ∈ P̂ic(SKra)

the trivial bundle OSKra
endowed with the constant metric ‖1‖2 = c.

Proposition 5.1.2. — There is an isomorphism

O〈8π2eγD−1〉⊗2 ⊗ ω̂
⊗2 ⊗ det(Lie(A))⊗ Lie(A0)⊗2 ∼= O(Exc)⊗ det(V)

of metrized line bundles on SKra.
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Proof. — In [6, §2.4] we defined a line bundle ΩKra on SKra by

ΩKra = det(Lie(A))−1 ⊗ Lie(A0)⊗−2 ⊗ det(V),

and in [6, Theorem 2.6.3] we constructed an isomorphism

ω
⊗2 ∼= ΩKra ⊗O(Exc).

This defines the desired isomorphism

(5.1.3) ω
⊗2 ⊗ det(Lie(A))⊗ Lie(A0)⊗2 ∼= O(Exc)⊗ det(V)

on underlying line bundles, and it remains to compare the metrics.
In the complex fiber this can be made more explicit. At any complex point

s ∈ SKra(C) the Hodge short exact sequence admits a canonical splitting

HdR
1 (As) = F 0(As)⊕ Lie(As),

where F 0(As) = Fil0HdR
1 (As) is the nontrivial step in the Hodge filtration. When

combined with the decomposition of Remark 5.1.1 we obtain

HdR
1 (As) = εF 0(As)︸ ︷︷ ︸

1

⊕ εF 0(As)︸ ︷︷ ︸
n−1

⊕ εLie(As)︸ ︷︷ ︸
n−1

⊕ εLie(As)︸ ︷︷ ︸
1

,

where the subscripts indicate the dimensions as C-vector spaces. There is a similar
decomposition

HdR
1 (A0s) = εF 0(A0s)︸ ︷︷ ︸

0

⊕ εF 0(A0s)︸ ︷︷ ︸
1

⊕ εLie(A0s)︸ ︷︷ ︸
1

⊕ εLie(A0s)︸ ︷︷ ︸
0

.

Denote by

(5.1.4) ψ : HdR
1 (As)×HdR

1 (As)→ C

the alternating pairing determined by the principal polarization on As. The two direct
summands

εF 0(As)⊕ εLie(As) ⊂ HdR
1 (As)

are interchanged by complex conjugation. We endow both εF 0(As) and εLie(As) with
the metric

(5.1.5) ‖b‖2s =

∣∣∣∣ψ(b, b)

2πi

∣∣∣∣ ,
so that the pairing

(5.1.6) ψ : εF 0(As)⊗ εLie(As)→ O〈4π2〉−1
s

is an isometry.
For a, b ∈ εLie(As), define pa⊗b : εF 0(As)→ εLie(As) by

(5.1.7) pa⊗b(e) = ψ(εa, e) · εb = −Dψ(a, e) · b.

The factor of −D comes from the observation that ε acts on εLie(As) as ±
√
−D,

where the sign depends on the choice of π used in (5.1.2).
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We now define Pa⊗b by the commutativity of

(5.1.8) det(Vs)
Pa⊗b

//

∼=
��

det(Lie(As))

∼=
��

εF 0(As)⊗ det(εLie(As))
pa⊗b⊗id

// εLie(As)⊗ det(εLie(As)).

This defines the isomorphism

(5.1.9) (εLie(As))
⊗2 P−→ Hom

(
det(Vs),det(Lie(As))

)
of [6, Lemma 2.4.5].

Lemma 5.1.3. — The isomorphism (5.1.9) defines an isometry

det(Vs) ∼= O〈2πD−1〉⊗2
s ⊗ (εF 0(As))

⊗2 ⊗ det(Lie(As)).

Proof. — Fix an isomorphism
∧2n

H1(As(C),Z) ∼= Z and extend it to a C-linear
isomorphism

vol :
∧2n

HdR
1 (As) ∼= C.

Under the de Rham comparison isomorphism H1(As(C),C) ∼= HdR
1 (As), the pair-

ing (5.1.4) restricts to a perfect pairing

ψ : H1(As(C),Z)×H1(As(C),Z)→ 2πiZ.

It follows that there is a unique element Ψ = α ∧ β ∈
∧2

H1(As(C),Z) such that

2πi · ψ(a, b) = ψ(α, a)ψ(β, b)− ψ(α, b)ψ(β, a)

for all a, b ∈ H1(As(C),Z). The map(∧n−1
H1(As(C),Z)

)
⊗
(∧n−1

H1(As(C),Z)
)
→ Z

defined by a⊗ b 7→ vol(Ψ ∧ a ∧ b) is a perfect pairing of Z-modules.
We now metrize the line

det(εLie(As)) ⊂
∧n−1

εHdR
1 (As)

by ‖µ‖2 = |vol(Ψ ∧ µ ∧ µ)|. With this definition, the vertical arrows in (5.1.8) are
isometries.

Using (5.1.6) and (5.1.7), one sees that the map

pa⊗b ∈ Hom(F 0(As), εLie(As))

satisfies ‖pa⊗b‖ = 2πD · ‖a⊗ b‖, and hence also ‖Pa⊗b‖ = 2πD · ‖a⊗ b‖. This proves
that the isomorphism P defines an isometry

O〈2πD〉⊗2
s ⊗ (εLie(As))

⊗2 ∼= Hom
(
det(Vs),det(Lie(As))

)
.

The isomorphism (5.1.6) allows us to rewrite this as

det(Vs) ∼= O〈2πD−1〉⊗2
s ⊗ (εF 0(As))

⊗2 ⊗ det(Lie(As)).
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The proof of [6, Proposition 2.4.2] gives an isomorphism

(5.1.10) ωs
∼= Hom(Lie(A0s), εF

0(As)) ⊂ εVC,

where
V = Homk

(
H1(A0s(C),Q), H1(As(C),Q)

)
.

As in [6, §2.1], there is a Q-bilinear form [., .] : V ×V → Q induced by the polarizations
on A0s and As. If we extend this to a C-bilinear form on

VC = Homk⊗C
(
HdR

1 (A0s), H
dR
1 (As)

)
then the metric on ωs is defined, as in [6, §7.2], by

‖x‖2 =
|[x, x]|
4πeγ

for any x ∈ Hom(Lie(A0s), εF
0(As)).

On the other hand, we have defined the Faltings metric on Lie(A0s), and defined a
metric on εF 0(As) by (5.1.5). The following lemma shows that (5.1.10) respects the
metrics, up to scaling by a factor of 4πeγ .

Lemma 5.1.4. — The isomorphism (5.1.10) defines an isometry

O〈4πeγ〉s ⊗ ω̂s
∼= Hom(Lie(A0s), εF

0(As)).

Proof. — The alternating form

ψ0 : HdR
1 (A0s)×HdR

1 (A0s)→ C

analogous to (5.1.4) restricts to a perfect pairing

ψ0 : H1(A0s(C),Z)×H1(A0s(C),Z)→ 2πiZ,

and hence the Faltings metric on Lie(A0s) = εHdR
1 (A0s) is

‖a‖2 = (2π)−1|ψ0(a, a)|.

From the definition of the bilinear form on V , one can show that

[x, x] · ψ0(a, a) = ψ(xa, xa)

for all x ∈ εVC. Comparing with the metric on εF 0(As) shows that

4πeγ · ‖x‖2 · ‖a‖2 = (2π)−1 · |ψ(xa, xa)| = ‖xa‖2,

for all x ∈ ωs and a ∈ Lie(A0s), as claimed.

The two lemmas provide us with isometries

det(Vs) ∼= O〈2πD−1〉⊗2
s ⊗ (εF 0(As))

⊗2 ⊗ det(Lie(As))

∼= O〈8π2eγD−1〉⊗2
s ⊗ ω̂

⊗2
s ⊗ Lie(A0s)

⊗2 det(Lie(As))

and the composition agrees with the isomorphism (5.1.3). This completes the proof
of Proposition 5.1.2.
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Recall the big CM cycle π : Ybig → S∗Kra of Definition 4.2.6. All of the metrized
line bundles on SKra appearing in Proposition 5.1.2 can be extended to the toroidal
compactification S∗Kra (with possible log-singularities along the boundary) so as to
define classes in the codimension one arithmetic Chow group. However, we don’t
actually need this. Indeed, we can define a homomorphism

[− : Ybig] : P̂ic(SKra)→ R

as the composition

P̂ic(SKra)
π∗−→ P̂ic(Ybig) ∼= Ĉh

1
(Ybig)

d̂eg−−→ R.

As the big CM cycle does not meet the boundary of the toroidal compactification,
the composition

Ĉh
1
(S∗Kra) ∼= P̂ic(S∗Kra)→ P̂ic(SKra)

[−:Ybig]−−−−−→ R

agrees with the arithmetic degree along Ybig of Definition 4.2.6.

Remark 5.1.5. — Directly from the definitions, and recalling Remark 2.2.7, the
metrized line bundle O〈c〉 satisfies

[O〈c〉 : Ybig] =
∑

y∈Ybig(C)

− log ‖1‖2 = − log(c) · degC(Ybig).

5.2. The Faltings height. — Recall from §4.2 the moduli stack CMΦ of abelian vari-
eties over OΦ-schemes with complex multiplication by OE and CM type Φ.

Suppose A ∈ CMΦ(C). Choose a model of A over a number field L ⊂ C large
enough that the Néron model π : A → Spec(OL) has everywhere good reduction.
Pick a nonzero rational section s of the line bundle π∗Ω

dim(A)
A/OL on Spec(OL), and

define

hFalt
∞ (A, s) =

−1

2[L : Q]

∑
σ:L→C

log
∣∣ ∫
Aσ(C)

sσ ∧ sσ
∣∣,

and
hFalt
f (A, s) =

1

[L : Q]

∑
p⊂OL

ordp(s) · log N(p).

By a result of Colmez [12], the Faltings height

hFalt
(E,Φ) = hFalt

f (A, s) + hFalt
∞ (A, s)

depends only on the pair (E,Φ).

Proposition 5.2.1. — The arithmetic degree of Lie(A) along Ybig satisfies

[det(Lie(A)) : Ybig] = −2 degC(Ybig) · hFalt
(E,Φ).

Similarly, recalling the Faltings height hFalt
k of (1.4.1),

[Lie(A0) : Ybig] = −2 degC(Ybig) · hFalt
k .
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Proof. — Suppose we are given a morphism y : Spec(OL) → Ybig for some finite
extension L/EΦ. The restriction of A to OL has complex multiplication by OE and
CM type Φ, and comparing the definition of the Faltings height with the definition
of d̂eg found in [19, §3.1], shows that the composition

P̂ic(SKra)
π∗−→ Ĉh

1
(Ybig)

y∗−→ Ĉh
1
(Spec(OL))

d̂eg−−→ R

sends Lie(A)−1 to [L : Q] · hFalt
(E,Φ).

We may choose L in such a way that the Ok-stack

Ybig ×Spec(OΦ) Spec(OL)

admits a finite étale cover by a disjoint union Ybig =
⊔

Spec(OL) of, say, m copies
of Spec(OL), and then

[Lie(A) : Ybig]

degC(Ybig)
=

[Lie(A) : Ybig]

degC(Ybig)
= −

m[L : Q] · hFalt
(E,Φ)

m[L : k]
= −2 · hFalt

(E,Φ).

This proves the first equality, and the proof of the second is similar.

5.3. Gross’s trick. — The goal of §5.3 is to compute the degree of the metrized line
bundle det(V) along the big CM cycle. The impatient reader may skip directly to
Proposition 5.3.6 for the answer. However, the strategy of the calculation is simple
enough that we can explain it in a few sentences.

It is an observation of Gross [14] that the metrized line bundle det(V) behaves, for
all practical purposes, like the trivial bundle OSKra

endowed with the constant metric
‖1‖2 = exp(−c) for a certain period c. This is made more precise in Theorem 5.3.1 and
Corollary 5.3.2 below. A priori, the constant c is something mysterious, but one can
evaluate it by computing the degree of det(V) along any codimension n−1 cycle that
one chooses. We choose a cycle along which the universal abelian scheme A → SKra

degenerates to a product of CM elliptic curves. Using this, one can express the value
of c in terms of the Faltings height hFalt

k appearing in (1.4.1). The degree of det(V)

along Ybig is readily computed from this.
To carry out this procedure, the first step is to construct a cover of SKra(C) over

which the line bundle det(V) can be trivialized analytically. Fix a positive integer m,
let K(m) ⊂ K be the compact open subgroup of [6, Remark 2.2.3], and consider the
finite étale cover

ShK(m)(G,D)(C)

��

G(Q)\D ×G(Af )/K(m)

��

Sh(G,D)(C) G(Q)\D ×G(Af )/K.

This cover has a moduli interpretation, exactly as with SKra itself, but with addi-
tional level m structure. This allows us to construct a regular integral model SKra(m)

over Ok[1/m] of ShK(m)(G,D), along with a finite étale morphism

SKra(m)→ SKra/Ok[1/m].

ASTÉRISQUE 421



MODULARITY OF UNITARY GENERATING SERIES II 179

We use the notation det(V) for both the metrized line bundle on SKra, and for its
pullback to SKra(m).

The following results extends a theorem of Gross [14, Theorem 1] to integral models.

Theorem 5.3.1. — Suppose m ≥ 3, let Zalg ⊂ C be the subring of all algebraic integers,
and fix a connected component

C ⊂ SKra(m)/Zalg[1/m].

The line bundle det(V) admits a nowhere vanishing section

η ∈ H0(C,det(V)).

Such a section is unique up to scaling by Zalg[1/m]×, and its norm ‖η‖2 is constant
on C(C).

Proof. — For some g ∈ G(Af ) we have a complex uniformization

Γ\D z 7→(z,g)−−−−−→ C(C) ⊂ ShK(m)(G,D)(C),

where Γ = G(Q) ∩ gK(m)g−1, and under this uniformization the total space of the
vector bundle det(V) is isomorphic to Γ\(D × C), where the action of Γ on C is via
the composition

Γ ⊂ G(Q)→ GL(W )
det−−→ k× ⊂ C×.

The compact open subgroup K(m) is constructed in such a way that there is a
Ok-lattice ga ⊂W (k) stabilized by Γ, and such that Γ acts trivially on ga/mga. This
implies that the above composition actually takes values in the subgroup

{ζ ∈ O×k : ζ ≡ 1 (mod mOk)},

which is trivial by our assumption that m ≥ 3. In other words, the vector bundle
det(V) becomes (non-canonically) trivial after restriction to X (C). In fact, the ar-
gument of [14, Theorem 1] shows that one can find a trivializing section η that is
algebraic and defined over Qalg ⊂ C, and that such a section is unique up to scaling
by (Qalg)× and has constant norm ‖η‖2.

All that remains to show is that η may be chosen so that it extends to a nowhere
vanishing section over Zalg[1/m]. The key is to recall from [6, §2.3] that Sh(G,D) has
a second integral model SPap over Ok, which is normal with geometrically normal
fibers. It is related to the first by a surjective morphism SKra → SPap, which restricts
to an isomorphism over Ok[1/D]. It has a moduli interpretation very similar to that
of SKra, which allows us to do two things. First, there is a canonical descent of the
vector bundle V to SPap, defined again by V = HdR

1 (A)/εHdR
1 (A), but where now

(A0, A) is the universal pair over SPap. Second, we can add level K(m) structure to
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obtain a cartesian diagram

SKra(m) //

��

SKra/Ok[1/m]

��

SPap(m) // SPap/Ok[1/m]

of Ok[1/m]-stacks with étale horizontal arrows.
In particular, SPap(m) is normal with geometrically normal fibers, from which it

follows that the above diagram extends to

C //

��

SKra(m)/Zalg[1/m]
//

��

SKra/Zalg[1/m]

��

B // SPap(m)/Zalg[1/m]
// SPap/Zalg[1/m]

for some connected component B ⊂ SPap(m)/Zalg[1/m] with irreducible fibers.
Now fix a number field L ⊂ C containing k large enough that the section η and

the components C and B are defined over OL[1/m]. Viewing η as a rational section of
the line bundle det(V) on B, its divisor is a finite sum of vertical fibers of B, and so
there is a fractional OL[1/m]-ideal b ⊂ L such that

div(η) =
∑
q|b

ordq(b) · Bq,

where Bq is the mod q fiber of Y. By enlarging L we may assume that b is principal,
and hence η can be rescaled by an element of L× to have trivial divisor on B. But
then η also has trivial divisor on C, as desired.

Corollary 5.3.2. — Let A ⊂ SKra be a connected component. There is a constant
c = cA ∈ R with the following property: for any finite extension L/k and any mor-
phism Spec(OL)→ A, the image of det(V) under

(5.3.1) P̂ic(SKra)→ P̂ic(A)→ P̂ic(Spec(OL))
d̂eg−−→ R

is equal to c · [L : k].

Proof. — Fix an integer m ≥ 3. The open and closed substack

A(m) = A×SKra
SKra(m)

of SKra(m), may be disconnected, so we fix one of its connected components A(m)◦ ⊂
A(m). This is an Ok[1/m]-stack, which may become disconnected after base change
to Zalg[1/m]. Fix one connected component

C ⊂ A(m)◦/Zalg[1/m]

and let η ∈ H0(C,det(V)) be a trivializing section as in Theorem 5.3.1.
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Choose a finite Galois extension M/k contained in C, large enough that C and η
are defined over OM [1/m]. For each σ ∈ Gal(M/k) we obtain a trivializing section

ησ ∈ H0(Cσ,det(V)),

which, by Theorem 5.3.1, has constant norm ‖ησ‖.
Let R(m) be the quotient of R by the Q-span of {log(p) : p | m}, and define

c(m) =
−1

[M : k]

∑
σ∈Gal(M/k)

log ‖ησ‖2 ∈ R(m).

This is independent of the choice of M , and also independent of η by the uniqueness
claim of Theorem 5.3.1. Moreover, for any number field L/k and any morphism

Spec(OL[1/m])→ A(m)◦,

the image of det(V) under

P̂ic(A(m)◦)→ P̂ic(Spec(OL[1/m]))
d̂eg−−→ R(m)

is equal to c(m) · [L : k].
Now suppose we are given some Spec(OL)→ A as in the statement of the corollary.

After possible enlarging L, this morphism admits a lift

A(m)◦

��

Spec(OL[1/m]) //

77

A/Ok[1/m],

and from this it is easy to see that the image of det(V) under the composition of
(5.3.1) with R→ R(m) is equal to c(m) · [L : k].

In particular, the image of det(V) under the composition of (5.3.1) with the diag-
onal embedding

R ↪→
∏
m≥3

R(m)

is equal to the tuple of constants c(m) · [L : Q]. What this proves is that there is a
unique c ∈ R whose image under the diagonal embedding is the tuple of constants
c(m), and that this is the c we seek.

Proposition 5.3.3. — The constant c = cA of Corollary 5.3.2 is independent of A, and
is equal to

c = (4− 2n)hFalt
k + log(4π2D),

where hFalt
k is the Faltings height (1.4.1).

Proof. — Recall that we have fixed a triple (a0, a, iE) as in §4.2. Fix a g ∈ G(Af ) in
such a way that the map

D z 7→(z,g)−−−−−→ Sh(G,D)(C)
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factors through A(C), and a decomposition of Ok-modules

ga = a1 ⊕ · · · ⊕ an,
in which each ai is projective of rank 1. Define elliptic curves over the complex numbers
by

Ai(C) = gai\aiC/εaiC
for 0 ≤ i < n, and

An(C) = gan\anC/εanC.
Endow the abelian variety A = A1 × · · · ×An with the diagonal action of Ok, and

the principal polarization induced by the perfect symplectic form on ga, as in the proof
of [6, Proposition 2.2.1]. The pair (A0, A) then corresponds to a point (z, g) ∈ A(C).

As each Ai has complex multiplication by Ok, we may choose a number field L con-
taining k over which all of these elliptic curves are defined and have everywhere good
reduction. If we denote again by A0, . . . , An and A the Néron models over Spec(OL),
the pair (A0, A) determines a morphism

Spec(OL)→ A ⊂ SKra.

The pullback of V to Spec(OL) is the rank n vector bundle

V|Spec(OL)
∼= V1 ⊕ · · · ⊕ Vn,

where Vi = HdR
1 (Ai)/εH

dR
1 (Ai). We endow V−1

i
∼= εH1

dR(Ai) with the metric (5.1.1),
so that

det(V)|Spec(OL)
∼= V1 ⊗ · · · ⊗ Vn

is an isomorphism of metrized line bundles.
The following two lemmas relate the images of V1, . . . ,Vn under the arithmetic

degree

(5.3.2) P̂ic(Spec(OL))
d̂eg−−→ R

to the Faltings height hFalt
k .

Lemma 5.3.4. — For 1 ≤ i < n, the arithmetic degree (5.3.1180equation.5.3.12 sends

Vi 7→ −[L : Q] · hFalt
k .

Proof. — The action of Ok on Lie(Ai) is through the inclusion Ok → OL, and hence,
as in [6, Remark 2.3.5], the quotient map

HdR
1 (Ai)→ Lie(Ai)

descends to an isomorphism of line bundles Vi ∼= Lie(Ai). If we endow Lie(Ai)
−1 with

the Faltings metric (5.1.1) then this isomorphism respects the metrics, and the claim
follows as in the proof of Proposition 5.2.1.

Lemma 5.3.5. — The arithmetic degree (5.3.1180equation.5.3.12 sends

Vn 7→ [L : Q] ·
(
hFalt
k − 1

2
log(4π2D)

)
.
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Proof. — The action of Ok on Lie(Ai) is through the complex conjugate of the in-
clusion Ok → OL, from which it follows that the Hodge short exact sequence takes
the form

0 // F 0(An) // HdR
1 (An) // Lie(An) // 0

0 // εHdR
1 (A0) // HdR

1 (An) // HdR
1 (An)/εHdR

1 (An) // 0.

In particular, the endomorphism ε on HdR
1 (An) descends to an isomorphism

Vn ∼= F 0(An).
Let

ψn : HdR
1 (An)⊗HdR

1 (An)→ OL
be the perfect pairing induced by the principal polarization on An, and define a second
pairing Ψ(x, y) = ψn(εx, y). It follows from the previous paragraph that this descends
to a perfect pairing

Ψ : Vn ⊗ Lie(An) ∼= OL.
However, if we endow Lie(An)−1 with the Faltings metric (5.1.1), then this pairing is
not a duality between metrized line bundles.

Instead, an argument as in the proof of Proposition 5.1.2 shows that

Ψ : Vn ⊗ Lie(An) ∼= OL
〈

1

2π
√
D

〉
.

is an isomorphism of metrized line bundles. With this isomorphism in hand, the
remainder of the proof is exactly as in the previous lemma.

The two lemmas show that the image of det(V) under (5.3.1) is
n∑
i=1

d̂eg(Vi) = [L : Q] ·
(

(2− n) · hFalt
k − 1

2
log(4π2D)

)
as claimed. This completes the proof of Proposition 5.3.3.

Proposition 5.3.6. — The metrized line bundle det(V) satisfies

[det(V) : Ybig] = degC(Ybig) ·
(

(4− 2n)hFalt
k + log(4π2D)

)
.

Proof. — As in the proof of Proposition 5.2.1, we may fix a finite extension L/EΦ

and a finite étale cover Ybig =
⊔

Spec(OL) of the Ok-stack

Ybig ×Spec(OΦ) Spec(OL)

by, say, m copies of Spec(OL). Corollary 5.3.2 then implies
[det(V) : Ybig]

degC(Ybig)
=

[det(V) : Ybig]

degC(Ybig)
=
cm · [L : k]

m · [L : k]
= c.

Appealing to the evaluation of the constant c found in Proposition 5.3.3 completes
the proof.
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5.4. Theorems C and D. — We can now put everything together, and relate the arith-
metic degree of ω̂ along Ybig to the Faltings height hFalt

(E,Φ).

Proposition 5.4.1. — The metrized line bundle ω̂ satisfies
[ω̂ : Ybig]

degC(Ybig)
= hFalt

(E,Φ) +
n− 4

2
· Λ′(0, χk)

Λ(0, χk)
+
n

4
log(16π3eγ).

Proof. — Proposition 5.1.2 shows that

2 · [O〈8π2eγD−1〉 ⊗ ω̂ : Ybig] + [det(Lie(A)) : Ybig] + 2 · [Lie(A0) : Ybig]

= [O(Exc) : Ybig] + [det(V) : Ybig].

Proposition 5.2.1 and Remark 5.1.5 imply that the left hand side is equal to

2 · [ω̂ : Ybig]− 2 degC(Ybig) ·
(

log(8π2eγD−1) + hFalt
(E,Φ) + 2 · hFalt

k

)
,

while Proposition 5.3.6 shows that the right hand side is equal to

2 degC(Ybig) ·
(
(2− n)hFalt

k + log(2πD)
)
.

Note that we have used here the equality

[O(Exc) : Ybig] = [(Exc, 0) : Ybig] = degC(Ybig) · log(D).

from the proof of Proposition 4.2.11.
Combining these formulas yields

[ω̂ : Ybig]

degC(Ybig)
= hFalt

(E,Φ) + (4− n)hFalt
k + log(16π3eγ),

and substituting the value (1.4.1) for hFalt
k completes the proof.

It is clear from Proposition 5.4.1 that Theorems C and Theorem D are equivalent.
As Theorem C is proved in [29], this completes the proof of Theorem D.

On the other hand, we proved Theorem D in §4.5 under the assumption that n ≥ 3

and the discriminants of k and F are odd and relatively prime, and so this gives a
new proof of Theorem C under these hypotheses.
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ARITHMETIC OF BORCHERDS PRODUCTS

by

Benjamin Howard & Keerthi Madapusi Pera

Abstract. — We compute the divisors of Borcherds products on integral models of
orthogonal Shimura varieties. As an application, we obtain an integral version of a
theorem of Borcherds on the modularity of a generating series of special divisors.

Résumé (Arithmétique des produits de Borcherds). — Nous calculons les diviseurs des
produits de Borcherds sur des modèles intégraux de variétés de Shimura orthogonales.
Comme application, nous obtenons une version intégrale d’un théorème de Borcherds
sur la modularité d’une série génératrice de diviseurs spéciaux.

1. Introduction

In the series of papers [4, 5, 6], Borcherds introduced a family of meromorphic
modular forms on orthogonal Shimura varieties, whose zeroes and poles are prescribed
linear combinations of special divisors arising from embeddings of smaller orthogonal
Shimura varieties. These meromorphic modular forms are the Borcherds products of
the title.

After work of Kisin [31] on integral models of general Hodge and abelian type
Shimura varieties, the theory of integral models of orthogonal Shimura varieties and
their special divisors was developed further in [26, 27] and [39, 1, 2].

The goal of this paper is to combine the above theories to compute the divisor
of a Borcherds product on the integral model of an orthogonal Shimura variety. We
show that such a divisor is given as a prescribed linear combination of special divisors,
exactly as in the generic fiber.
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The first such results were obtained by Bruinier, Burgos Gil, and Kühn [9], who
worked on Hilbert modular surfaces (a special type of signature (2, 2) orthogonal
Shimura variety). Those results were later extended to more general orthogonal
Shimura varieties by Hörmann [26, 27], but with some restrictions.

Our results extend Hörmann’s, but with substantially weaker hypotheses. For ex-
ample, our results include cases where the integral model is not smooth, cases where
the divisors in question may have irreducible components supported in nonzero char-
acteristics, and even cases where the Shimura variety is compact (so that one has no
theory of q-expansions with which to analyze the arithmetic properties of Borcherds
products).

1.1. Orthogonal Shimura varieties. — Given an integer n ≥ 1 and a quadratic space
(V,Q) over Q of signature (n, 2), one can construct a Shimura datum (G,D) with
reflex field Q.

The group G = GSpin(V ) is a subgroup of the group of units in the Clifford algebra
C(V ), and sits in a short exact sequence

1→ Gm → G→ SO(V )→ 1.

The hermitian symmetric domain is

D = {z ∈ VC : [z, z] = 0, [z, z] < 0}/C× ⊂ P(VC),

where the bilinear form

(1.1.1) [x, y] = Q(x+ y)−Q(x)−Q(y)

on V has been extended C-bilinearly to VC.
To define a Shimura variety, fix a Z-lattice VZ ⊂ V on which the quadratic form is

Z-valued, and a compact open subgroup K ⊂ G(Af ) such that

(1.1.2) K ⊂ G(Af ) ∩ C(VẐ)×.

Here C(VẐ) is the Clifford algebra of the Ẑ-quadratic space VẐ = VZ⊗Ẑ. The canonical
model of the complex orbifold

ShK(G,D)(C) = G(Q)\
(
D ×G(Af )/K

)
is a smooth n-dimensional Deligne-Mumford stack

ShK(G,D)→ Spec(Q).

As in work of Kudla [32, 34], our Shimura variety carries a family of effective Cartier
divisors

Z(m,µ)→ ShK(G,D)

indexed by positive m ∈ Q and µ ∈ V ∨Z /VZ, and a metrized line bundle

ω̂ ∈ P̂ic(ShK(G,D))
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of weight one modular forms. Under the complex uniformization of the Shimura va-
riety, this line bundle pulls back to the tautological bundle on D, with the metric
defined by (4.2.3).

We say that VZ is maximal if there is no proper superlattice in V on which Q takes
integer values, and is maximal at p if the Zp-quadratic space VZp = VZ ⊗ Zp has the
analogous property. It is clear that VZ is maximal at every prime not dividing the
discriminant [V ∨Z : VZ].

Let Ω be a finite set of rational primes containing all primes at which VZ is not
maximal, and abbreviate

ZΩ = Z[1/p : p ∈ Ω].

Assume that (1.1.2) factors as K =
∏
pKp, in such a way that

Kp = G(Qp) ∩ C(VZp)×

for every prime p 6∈ Ω. For such K there is a flat and normal integral model

SK(G,D)→ Spec(ZΩ)

of ShK(G,D). It is a Deligne-Mumford stack of finite type over ZΩ, and is a scheme
if K is sufficiently small. At any prime p 6∈ Ω, it satisfies the following properties:

1. If the lattice VZ is self-dual at a prime p (or even almost self-dual in the sense
of Definition 6.1.1) then the restriction of the integral model to Spec(Z(p)) is
smooth.

2. If p is odd and p2 does not divide the discriminant [V ∨Z : VZ], then the restriction
of the integral model to Spec(Z(p)) is regular.

3. If n ≥ 6 then the reduction mod p is geometrically normal.

The integral model carries over it a metrized line bundle

ω̂ ∈ P̂ic(SK(G,D))

of weight one modular forms, extending the one already available in the generic fiber,
and a family of effective Cartier divisors

Z(m,µ)→ SK(G,D)

indexed by positive m ∈ Q and µ ∈ V ∨Z /VZ.

Remark 1.1.1. — If VZ is itself maximal, one can take Ω = ∅, choose

K = G(Af ) ∩ C(VẐ)×

for the level subgroup, and obtain an integral model of ShK(G,D) over Z.
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1.2. Borcherds products. — In § 5.1, we recall the Weil representation

ρVZ : S̃L2(Z)→ AutC(SVZ)

of the metaplectic double cover of SL2(Z) on the C-vector space

SVZ = C[V ∨Z /VZ].

Any weakly holomorphic form

f(τ) =
∑
m∈Q

m�−∞

c(m) · qm ∈M !
1−n2

(ρVZ
)

valued in the complex-conjugate representation has Fourier coefficients

c(m) ∈ SVZ ,

and we denote by c(m,µ) the value of c(m) at the coset µ ∈ V ∨Z /VZ. Fix such an f ,
assume that f is integral in the sense that c(m,µ) ∈ Z for all m and µ.

Using the theory of regularized theta lifts, Borcherds [5] constructs a Green function
Θreg(f) for the analytic divisor

(1.2.1)
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ)(C)

on ShK(G,D)(C), and shows (after possibly replacing f by a suitable multiple) that
some power of ω

an admits a meromorphic section ψ(f) satisfying

(1.2.2) − 2 log ‖ψ(f)‖ = Θreg(f).

This implies that the divisor of ψ(f) is (1.2.1). These meromorphic sections are the
Borcherds products of the title.

Our main result, stated in the text as Theorem 9.1.1, asserts that the Borcherds
product ψ(f) is algebraic, defined over Q, and has the expected divisor when viewed
as a rational section over the integral model.

Theorem A. — After possibly replacing f by a positive integer multiple, there is a
rational section ψ(f) of the line bundle ω

c(0,0) on SK(G,D) whose norm under the
metric (4.2.3) satisfies (1.2.2), and whose divisor is

div(ψ(f)) =
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ).

The unspecified positive integer by which one must multiply f can be made at least
somewhat more explicit. For example, it depends only on the lattice VZ, and not on
the form f . See the discussion of § 9.3.

As noted earlier, similar results can be found in the work of Hörmann [26, 27].
Hörmann only considers self-dual lattices, so that the corresponding integral model
SK(G,D) is smooth, and always assumes that the quadratic space V admits an
isotropic line. This allows him to prove the flatness of div(ψ(f)) by examining the
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q-expansion of ψ(f) at a cusp. As Hörmann’s special divisors Z(m,µ), unlike ours,
are defined as the Zariski closures of their generic fibers, the equality of divisors stated
in Theorem A is then a formal consequence of the same equality in the generic fiber.

In contrast, we can prove Theorem A even in cases where the divisors in question
may not be flat, and in cases where V is anisotropic, so no theory of q-expansions is
available.

The reader may be surprised to learn that even the descent of ψ(f) to Q was
not previously known in full generality. Indeed, there is a product formula for the
Borcherds product giving its q-expansions at every cusp, and so one should be able
to detect the field of definition of ψ(f) from a suitable q-expansion principle.

If V is anisotropic then ShK(G,D) is proper over Q, no theory of q-expansions
exists, and the above strategy fails completely. But even when V is isotropic there is
a serious technical obstruction to this argument. The product formula of Borcherds is
not completely precise, in that the q-expansion of ψ(f) at a given cusp is only specified
up to multiplication by an unknown constant of absolute value 1, and there is no a
priori relation between the different constants at different cusps. These constants are
the κ(a) appearing in Proposition 5.4.2.

If ShK(G,D) admits (a toroidal compactification with) a cusp defined over Q there
is no problem: simply rescale the Borcherds product by a constant of absolute value
1 to remove the mysterious constant at that cusp, and now ψ(f) is defined over Q.
But if ShK(G,D) has no rational cusps, then to prove that ψ(f) descends to Q one
must compare the q-expansions of ψ(f) at all points in a Galois orbit of cusps. One
can rescale the Borcherds product to trivialize the constant at one cusp, but then one
has no control over the constants at other cusps in the Galois orbit.

Using the q-expansion principle alone, is seems that the best one can prove is
that ψ(f) descends to the minimal field of definition of a cusp. Our strategy to improve
on this is sketched in § 1.4 below.

Remark 1.2.1. — As in the statement and proof of [26, Theorem 10.4.12], there is
an elementary argument using Hilbert’s Theorem 90 that allows one to rescale the
Borcherds product so that it descends to Q, but in this argument one has no control
over the scaling factor, and it need not have absolute value 1. In particular this
rescaling may destroy the norm relation (1.2.2). Even worse, rescaling by such factors
may introduce unwanted and unknown vertical components into the divisor of the
Borcherds product on the integral model of the Shimura variety, and understanding
what’s happening on the integral model is the central concern of this work.

1.3. Modularity of generating series. — The family of special divisors determines a
family of line bundles

Z(m,µ) ∈ Pic(SK(G,D))
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indexed by positive m ∈ Q and µ ∈ V ∨Z /VZ. We extend the definition to m = 0 by
setting

Z(0, µ) =

{
ω
−1 if µ = 0

OSK(G,D) if µ 6= 0.

Exactly as in the work of Borcherds [6], Theorem A produces enough relations in
the Picard group to prove the modularity of the generating series of these line bundles.
Let

φµ ∈ SVZ = C[V ∨Z /VZ]

denote the characteristic function of the coset µ ∈ V ∨Z /VZ.

Theorem B. — The formal q-expansion∑
m≥0

µ∈V ∨Z /VZ

Z(m,µ)⊗ φµ · qm

is a modular form valued in Pic(SK(G,D))⊗ SVZ . More precisely, we have∑
m≥0

µ∈V ∨Z /VZ

α(Z(m,µ)) · φµ · qm ∈M1+n
2

(ρVZ)

for any Z-linear map α : Pic(SK(G,D))→ C.

Theorem B is stated in the text as Theorem 9.4.1. After endowing the special
divisors with Green functions as in [8], we also prove a modularity result in the group
of metrized line bundles. See Theorem 9.5.1.

1.4. Idea of the proof. — We first prove Theorem A assuming that n ≥ 6, and that VZ
splits an integral hyperbolic plane. This assumption has three crucial consequences.
First, it guarantees the existence of cusps of ShK(G,D) defined over Q. Second, it
guarantees that our integral model has geometrically normal fibers, so that we may
use the results of [40] to fix a toroidal compactification in such a way that every
irreducible component of every mod p fiber of SK(G,D) meets a cusp. Finally, it
guarantees the flatness of all special divisors Z(m,µ).

As noted above, the existence of cusps over Q allows us to deduce the descent
of ψ(f) to Q using the q-expansion principle. Moreover, by examining the q-expansions
of ψ(f) at the cusps, one can show that its divisor is flat over ZΩ, and the equality
of divisors in Theorem A then follows from the known equality in the generic fiber.

Remark 1.4.1. — In fact, we prove that our divisors are flat over Z as soon as n ≥ 4.
When n ∈ {1, 2, 3} the orthogonal Shimura varieties and their special divisors can
be interpreted as a moduli space of abelian varieties with additional structure, as in
the work of Kudla-Rapoport [35, 36, 37]. Already in the case of n = 1, Kudla and
Rapoport [37] provide examples in which the special divisors are not flat.
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To understand how to deduce the general case from the special case above, we
first recall how Borcherds constructs ψ(f) in the complex fiber. If V contains an
isotropic line, the construction boils down to explicitly writing down its q-expansion
as an infinite product. This gives the desired ψ(f), along with the norm relation
(1.2.2), on the region of convergence. The right hand side of (1.2.2) is a pluriharmonic
function defined on the complement of the support of (1.2.1), and the meromorphic
continuation of ψ(f) follows more-or-less formally from this.

Suppose now that V is anisotropic. The idea of Borcherds is to fix isometric em-
beddings of V into two (very particular) quadratic spaces V [1] and V [2] of signature
(n+ 24, 2). From this one can construct morphisms of orthogonal Shimura varieties

ShK(G,D)

j[1]

vv

j[2]

((

ShK[1](G[1],D[1]) ShK[2](G[2],D[2]).

As both V [1] and V [2] contain isotropic lines, one already has Borcherds products on
their associated Shimura varieties.

The next step should be to define

(1.4.1) ψ(f) =
(j[2])∗ψ(f [2])

(j[1])∗ψ(f [1])

for (very particular) weakly holomorphic forms f [1] and f [2]. The problem is that the
quotient on the right hand side is nearly always either 0/0 or ∞/∞, and so doesn’t
really make sense.

Borcherds gets around this via an analytic construction on the level of hermitian
domains. On the hermitian domain

D[i] = {z ∈ V [i]
C : [z, z] = 0, [z, z] < 0}/C× ⊂ P(V

[i]
C ),

every irreducible component of every special divisor has the form

D[i](x) = {z ∈ D[i] : z ⊥ x}

for some x ∈ V [i], and the dual of the tautological line bundle ωD[i] on D[i] admits a
canonical section

obstan
x ∈ H0(D[i],ω−1

D[i])

with zero locus D[i](x). See the discussion at the beginning of § 6.5.
Whenever there is an x ∈ V [i] such thatD ⊂ D[i](x), Borcherds multiplies ψ(f [i]) by

a suitable power of obstan
x in order to remove the component D[i](x) from div(ψ(f [i]).

After modifying both ψ(f [1]) and ψ(f [2]) in this way, the quotient (1.4.1) is defined.
This process is what Borcherds calls the embedding trick in [5]. As understood by
Borcherds, the embedding trick is a purely analytic construction. The sections obstan

x

over D[i] do not descend to the Shimura varieties, and have no obvious algebraic
properties. In particular, even if one knows that the ψ(f [i]) are defined over Q, it is
not obvious that the renormalized quotient (1.4.1) is defined over Q.
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One of the main contributions of this paper is an algebraic analogue of the
embedding trick, which works even on the level of integral models. This is based
on the methods used to compute improper intersections in [11, 1, 28]. The idea
is to use deformation theory to construct an analogue of the section obstan

x , not
over all of ShK[i](G[i],D[i]), but only over the first order infinitesimal neighborhood
of ShK(G,D) in ShK[i](G[i],D[i]). This section is the obstruction to deforming x

appearing in § 6.5.
With this algebraic analogue of the embedding trick in hand, we can make sense

of the quotient (1.4.1), and compute the divisor of the left hand side in terms of the
divisors of the numerator and denominator on the right. This allows us to deduce the
general case of Theorem A from the special case explained above.

1.5. Organization of the paper. — Ultimately, all arithmetic information about
Borcherds products comes from their q-expansions, and so we must make heavy
use of the arithmetic theory of toroidal compactifications of Shimura varieties of
[47, 40]. This theory requires introducing a substantial amount of notation just to
state the main results. Also, because Borcherds products are rational sections of
powers of the line bundle ω, we need the theory of automorphic vector bundles on
toroidal compactifications. This theory is distributed across a series of papers of
Harris [24, 18, 19, 20] and Harris-Zucker [21, 22, 23].

Accordingly, before we even begin to talk about orthogonal Shimura varieties, we
first recall in § 2 the main results on toroidal compactification from Pink’s thesis [47],
and in § 3 the results of Harris and Harris-Zucker on automorphic vector bundles. All
of this is in the generic fiber of fairly general Shimura varieties.

Beginning in § 4 we specialize to case of orthogonal Shimura varieties. We consider
their toroidal compactifications, and give a purely algebraic definition of q-expan-
sions of modular forms on them. In particular, we prove the q-expansion principle
Proposition 4.6.3, which can be used to detect their fields of definition.

In § 5 we introduce Borcherds products and, when V admits an isotropic line,
describe their q-expansions.

In § 6 we introduce integral models of orthogonal Shimura varieties over Z(p), along
with their line bundles of modular forms and special divisors. This material is drawn
from [39, 1, 2], although we work here in slightly more generality. The main new result
in § 6 is the pullback formula of Proposition 6.6.3, which explains how the special
divisors behave under pullback via embeddings of orthogonal Shimura varieties. This
formula, whose proof is similar to calculations of improper intersections found in
[11, 1, 28], is essential to our algebraic version of the embedding trick.

In § 7 we prove some technical properties of the integral models over Z(p). We show
that the special divisors are flat when n ≥ 4, and the integral model has geometrically
normal fibers when n ≥ 6. When p 6= 2 these results already appear in [2]. The
methods here are similar, except that we appeal to the work of Ogus [44] instead of
[29] (which excludes p = 2) to control the dimension of the supersingular locus.
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In § 8 we extend the theory of toroidal compactifications and q-expansions to our
integral models, making use of the general theory of toroidal compactifications of
Hodge type Shimura varieties found in [40]. The culmination of the discussion is
Corollary 8.2.4, which allows one to use q-expansions to detect the flatness of divisors
of rational sections of ω and its powers.

Finally, in § 9 we put everything together to prove Theorem A. The modularity
result of Theorem B (and its extension to the group of metrized line bundles) follows
immediately from Theorem A and the modularity criterion of Borcherds.

1.6. Notation and conventions. — For every a ∈ A×f there is a unique factorization

a = rat(a) · unit(a)

in which rat(a) is a positive rational number and unit(a) ∈ Ẑ×.
Class field theory provides us with a reciprocity map

rec : Q×>0\A
×
f
∼= Gal(Qab/Q),

which we normalize as follows. Let µ∞ be the set of all roots of unity in C, so
that Qab = Q(µ∞) is the maximal abelian extension of Q. The group (Z/MZ)×

acts on the set of M -th roots of unity in the usual way, by letting u ∈ (Z/MZ)× act
by ζ 7→ ζu. Passing to the limit yields an action of Ẑ× on µ∞, and the reciprocity
map is characterized by

ζrec(a) = ζunit(a)

for all a ∈ A×f and ζ ∈ µ∞.
We follow the conventions of [14] and [47, Chapter 1] for Hodge structures

and mixed Hodge structures. As usual, S = ResC/RGmC is Deligne’s torus, so
that S(C) = C× × C×, with complex conjugation acting by (t1, t2) 7→ (t̄2, t̄1). In
particular, S(R) ∼= C× by (t, t̄) 7→ t. If V is a rational vector space endowed
with a Hodge structure S → GL(VR), then V (p,q) ⊂ VC is the subspace on which
(t1, t2) ∈ C× × C× = S(C) acts via t−p1 t−q2 . There is a distinguished cocharacter

wt : GmR → S

defined on complex points by t 7→ (t−1, t−1). The composition

GmR
wt−→ S→ GL(VR)

encodes the weight grading on VR, in the sense that⊕
p+q=k

V (p,q) = {v ∈ VC : wt(z) · v = zk · v, ∀z ∈ C×}.

Now suppose that V is endowed with a mixed Hodge structure. This consists of
an increasing weight filtration wt•V on V , and a decreasing Hodge filtration F •VC
on VC, whose induced filtration on every graded piece

(1.6.1) grk(V ) = wtkV/wtk−1V
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is a pure Hodge structure of weight k. By [46, Lemma-Definition 3.4] there is a canon-
ical bigrading VC =

⊕
V (p,q) with the property that

wtkVC =
⊕
p+q≤k

V (p,q), F iVC =
⊕
p≥i

V (p,q).

This bigrading is induced by a morphism SC → GL(VC).

2. Toroidal compactification

This section is a (relatively) short summary of Pink’s thesis [47] on toroidal com-
pactifications of canonical models of Shimura varieties. See also [26] and [21, 23]. We
limit ourselves to what is needed in the sequel, and simplify the discussion somewhat
by only dealing with those mixed Shimura varieties that appear at the boundaries of
pure Shimura varieties.

2.1. Shimura varieties. — Throughout § 2 and § 3 we let (G,D) be a (pure) Shimura
datum in the sense of [47, § 2.1]. Thus G is a reductive group over Q, and D is a
G(R)-homogeneous space equipped with a finite-to-one G(R)-equivariant map

h : D → Hom(S, GR)

such that the pair (G, h(D)) satisfies Deligne’s axioms [14, (2.1.1.1)-(2.1.1.3)]. We
often abuse notation and confuse z ∈ D with its image h(z).

The weight cocharacter

(2.1.1) w
def
= h(z) ◦ wt : GmR → GR

of (G,D) is independent of z ∈ D, and takes values in the center of GR.

Hypothesis 2.1.1. — Because it will simplify much of what follows, and because it is
assumed throughout [23], we always assume that our Shimura datum (G,D) satisfies:

1. The weight cocharacter (2.1.1) is defined over Q.

2. The connected center of G is isogenous to the product of a Q-split torus with
a torus whose group of real points is compact.

Suppose K ⊂ G(Af ) is any compact open subgroup. The associated Shimura vari-
ety

ShK(G,D)(C) = G(Q)\
(
D ×G(Af )/K

)
is a complex orbifold. Its canonical model ShK(G,D) is a Deligne-Mumford stack
over the reflex field E(G,D) ⊂ C. If K is neat in the sense of [47, § 0.6], then
ShK(G,D) is a quasi-projective scheme. By slight abose of notation, the image of
a point (z, g) ∈ D ×G(Af ) is again denoted

(z, g) ∈ ShK(G,D)(C).
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Remark 2.1.2. — Let Gm(R) = R× act on the two point set

H0
def
= {2πε ∈ C : ε2 = −1}

via the unique continuous transitive action: positive real numbers act trivially, and
negative real numbers swap the two points. If we define

H0 → Hom(S,GmR)

by sending both points to the norm map C× → R×, then (Gm,H0) is a Shimura
datum in the sense of [47].

2.2. Mixed Shimura varieties. — Toroidal compactifications of Shimura varieties are
obtained by gluing together certain mixed Shimura varieties, which we now define.

Recall from [47, Definition 4.5] the notion of an admissible parabolic subgroup
P ⊂ G. If Gad is simple, this just means that P is either a maximal proper parabolic
subgroup, or is all of G. In general, it means that if we write Gad = G1 × · · · × Gs
as a product of simple groups, then P is the preimage of a subgroup P1 × · · · × Ps,
where each Pi ⊂ Gi is an admissible parabolic.

Definition 2.2.1. — A cusp label representative Φ = (P,D◦, h) for (G,D) is a triple
consisting of an admissible parabolic subgroup P , a connected component D◦ ⊂ D,
and an h ∈ G(Af ).

As in [47, § 4.11 and § 4.12], any cusp label representative Φ = (P,D◦, h) determines
a mixed Shimura datum (QΦ,DΦ), whose construction we now recall.

Let WΦ ⊂ P be the unipotent radical, and let UΦ be the center of WΦ. According
to [47, § 4.1] there is a distinguished central cocharacter λ : Gm → P/WΦ. The weight
cocharacter w : Gm → G is central, so takes values in P , and therefore determines a
new central cocharacter

(2.2.1) w · λ−1 : Gm → P/WΦ.

Suppose G→ GL(N) is a faithful representation on a finite dimensional Q-vector
space. Each point z ∈ D determines a Hodge filtration F •NC on N . Any lift of (2.2.1)
to a cocharacter Gm → P determines a grading N =

⊕
Nk, and the associated weight

filtration
wt`N =

⊕
k≤`

Nk

is independent of the lift. The triple (N,F •NC,wt•N) is a mixed Hodge structure
[47, § 4.12, Remark (i)], and the associated bigrading of NC determines a morphism
hΦ(z) ∈ Hom(SC, PC) independent of the choice of faithful representation N .

As in [47, § 4.7], define QΦ ⊂ P to be the smallest closed normal subgroup through
which every such hΦ(z) factors. Thus we have normal subgroups

UΦ CWΦ CQΦ C P,

and a map
hΦ : D → Hom(SC, QΦC).
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The cocharacter (2.2.1) takes values in QΦ/WΦ, defining the weight cocharacter

(2.2.2) wΦ : Gm → QΦ/WΦ.

Remark 2.2.2. — Being an abelian unipotent group, Lie(UΦ) ∼= UΦ has the structure
of a Q-vector space. By [47, Proposition 2.14], the conjugation action of QΦ on UΦ is
through a character

(2.2.3) νΦ : QΦ → Gm.

By [47, Proposition 4.15(a)], the map hΦ restricts to an open immersion on every
connected component of D, and so the diagonal map

D → π0(D)×Hom(SC, QΦC)

is a P (R)-equivariant open immersion. The action of the subgroup UΦ(R) on π0(D) is
trivial, and we extend it to the trivial action of UΦ(C) on π0(D). Now define

DΦ = QΦ(R)UΦ(C)D◦ ⊂ π0(D)×Hom(SC, QΦC).

Projection to the second factor defines a finite-to-one map

hΦ : DΦ → Hom(SC, QΦC),

and we usually abuse notation and confuse z ∈ DΦ with its image hΦ(z).
Having now defined the mixed Shimura datum (QΦ,DΦ), the compact open sub-

group

KΦ
def
= hKh−1 ∩QΦ(Af )

determines a mixed Shimura variety

(2.2.4) ShKΦ
(QΦ,DΦ)(C) = QΦ(Q)\

(
DΦ ×QΦ(Af )/KΦ

)
,

which has a canonical model ShKΦ
(QΦ,DΦ) over its reflex field. Note that the reflex

field is again E(G,D), by [47, Proposition 12.1]. The canonical model is a quasi-
projective scheme if K (hence KΦ) is neat.

Remark 2.2.3. — If we choose our cusp label representative to have the form
Φ = (G,D◦, h), then (QΦ,DΦ) = (G,D) and

ShKΦ
(QΦ,DΦ) = ShhKh−1(G,D) ∼= ShK(G,D).

As a consequence, all of our statements about the mixed Shimura varieties
ShKΦ

(QΦ,DΦ) include the Shimura variety ShK(G,D) as a special case.
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2.3. The torsor structure. — Define Q̄Φ = QΦ/UΦ and D̄Φ = UΦ(C)\DΦ. The pair

(Q̄Φ, D̄Φ) = (QΦ,DΦ)/UΦ

is the quotient mixed Shimura datum in the sense of [47, §2.9]. Let K̄Φ be the image
of KΦ under the quotient map QΦ(Af ) → Q̄Φ(Af ), so that we have a canonical
morphism

(2.3.1) ShKΦ
(QΦ,DΦ)→ ShK̄Φ

(Q̄Φ, D̄Φ),

where the target mixed Shimura variety is defined in the same way as (2.2.4).

Proposition 2.3.1. — Define a Z-lattice in UΦ(Q) by ΓΦ = KΦ∩UΦ(Q). The morphism
(2.3.1) is canonically a torsor for the relative torus

TΦ
def
= ΓΦ(−1)⊗Gm

with cocharacter group ΓΦ(−1) = (2πi)−1ΓΦ.

Proof. — This is proved in [47, § 6.6]. In what follows we only want to make the torsor
structure explicit on the level of complex points.

The character (2.2.3) factors through a character ν̄Φ : Q̄Φ → Gm. A pair (z, g) ∈
DΦ ×QΦ(Af ) determines points

(z, g) ∈ ShKΦ
(QΦ,DΦ)(C), (z̄, ḡ) ∈ ShK̄Φ

(Q̄Φ, D̄Φ)(C),

and we define TΦ(C)→ ShK̄Φ
(Q̄Φ, D̄Φ)(C) as the relative torus with fiber

(2.3.2) UΦ(C)/(gKΦg
−1 ∩ UΦ(Q)) = UΦ(C)/rat(ν̄Φ(ḡ)) · ΓΦ

at (z̄, ḡ). There is a natural action of TΦ(C) on (2.2.4) defined as follows: using the
natural action of UΦ(C) on DΦ, a point u in the fiber (2.3.2) acts as (z, g) 7→ (uz, g).

It now suffices to construct an isomorphism

(2.3.3) TΦ(C) ∼= TΦ(C)× ShK̄Φ
(Q̄Φ, D̄Φ)(C),

and this is essentially [47, § 3.16]. First choose a morphism

(2.3.4) D̄Φ
z̄ 7→2πε(z̄)−−−−−−→ H0

in such a way that it, along with the character ν̄Φ, induces a morphism of mixed
Shimura data (Q̄Φ, D̄Φ)→ (Gm,H0). Such a morphism always exists, by the remark
of [47, § 6.8]. The fiber (2.3.2) is

UΦ(C)/rat(ν̄Φ(ḡ)) · ΓΦ
2πε(z̄)/rat(ν̄Φ(ḡ))−−−−−−−−−−−→ UΦ(C)/ΓΦ(1),

and this identifies TΦ(C) fiber-by-fiber with the constant torus

(2.3.5) UΦ(C)/ΓΦ(1) ∼= ΓΦ ⊗ C/Z(1) ∼= ΓΦ ⊗ C× (−2πε◦)−1

−−−−−−−→ ΓΦ(−1)⊗ C×.

Here 2πε◦ is the image of D◦ under DΦ → D̄Φ → H0, and the minus sign is included
so that (2.6.5) holds below; compare with the definition of the function “ord” in [47,
§ 5.8].
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One can easily check that the trivialization (2.3.3) does not depend on the choice
of (2.3.4).

Remark 2.3.2. — Our Z-lattice ΓΦ ⊂ UΦ(Q) agrees with the seemingly more compli-
cated lattice of [47, § 3.13], defined as the image of

{(c, γ) ∈ ZΦ(Q)0 × UΦ(Q) : cγ ∈ KΦ}
(c,γ)7→γ−−−−−→ UΦ(Q).

Here ZΦ is the center of QΦ, and ZΦ(Q)0 ⊂ ZΦ(Q) is the largest subgroup acting
trivially on DΦ (equivalently, acting trivially on π0(DΦ)). This follows from the final
comments of [loc. cit.] and the simplifying Hypothesis 2.1.1, which implies that the
connected center of QΦ/UΦ is isogenous to the product of a Q-split torus and a torus
whose group of real points is compact (see the proof of [47, Corollary 4.10]).

Denoting by 〈−,−〉 : Γ∨Φ(1) × ΓΦ(−1) → Z the tautological pairing, define an
isomorphism

Γ∨Φ(1)
α 7→qα−−−−→ Hom(ΓΦ(−1)⊗Gm,Gm) = Hom(TΦ,Gm)

by qα(β ⊗ z) = z〈α,β〉. This determines an isomorphism

TΦ
∼= Spec

(
Q[qα]α∈Γ∨Φ(1)

)
,

and hence, for any rational polyhedral cone (1) σ ⊂ UΦ(R)(−1), a partial compactifi-
cation

(2.3.6) TΦ(σ)
def
= Spec

(
Q[qα]α∈Γ∨Φ(1)

〈α,σ〉≥0

)
.

More generally, the TΦ-torsor structure on (2.3.1) determines, by the general theory
of torus embeddings [47, § 5], a partial compactification

(2.3.7) ShKΦ(QΦ,DΦ) //

��

ShKΦ(QΦ,DΦ, σ)

vv

ShK̄Φ
(Q̄Φ, D̄Φ)

with a stratification by locally closed substacks

(2.3.8) ShKΦ
(QΦ,DΦ, σ) =

⊔
τ

ZτKΦ
(QΦ,DΦ, σ)

indexed by the faces τ ⊂ σ. The unique open stratum

Z
{0}
KΦ

(QΦ,DΦ, σ) = ShKΦ
(QΦ,DΦ)

corresponds to τ = {0}. The unique closed stratum corresponds to τ = σ.

(1) By which we mean a convex rational polyhedral cone in the sense of [47, § 5.1]. In particular,
each σ is a closed subset of the real vector space UΦ(R)(−1).
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2.4. Rational polyhedral cone decompositions. — Let Φ = (P,D◦, h) be a cusp label
representative for (G,D), with associated mixed Shimura datum (QΦ,DΦ). We denote
by D◦Φ = UΦ(C)D◦ the connected component of DΦ containing D◦.

Define the projection to the imaginary part cΦ : DΦ → UΦ(R)(−1) by

cΦ(z)−1 · z ∈ π0(D)×Hom(S, QΦR)

for every z ∈ DΦ. By [47, Proposition 4.15] there is an open convex cone

(2.4.1) CΦ ⊂ UΦ(R)(−1)

characterized by D◦ = {z ∈ D◦Φ : cΦ(z) ∈ CΦ}.

Definition 2.4.1. — Suppose Φ = (P,D◦, h) and Φ1 = (P1,D◦1 , h1) are cusp label
representatives. A K-morphism

(2.4.2) Φ
(γ,q)−−−→ Φ1

is a pair (γ, q) ∈ G(Q)×QΦ1
(Af ), such that

γQΦγ
−1 ⊂ QΦ1

, γD◦ = D◦1 , γh ∈ qh1K.

A K-morphism is a K-isomorphism if γQΦγ
−1 = QΦ1

.

Remark 2.4.2. — The Baily-Borel compactification of ShK(G,D) admits a stratifi-
cation by locally closed substacks, defined over the reflex field, whose strata are in-
dexed by the K-isomorphism classes of cusp label representatives. Whenever there
is a K-morphism Φ → Φ1, the stratum indexed by Φ is “deeper into the boundary”
than the stratum indexed by Φ1, in the sense that the Φ-stratum is contained in
the closure of the Φ1-stratum. The unique open stratum, which is just the Shimura
variety ShK(G,D), is indexed by the K-isomorphism class consisting of all cusp label
representatives of the form (G,D◦, h) as D◦ and h vary.

Suppose we have a K-morphism (2.4.2) of cusp label representatives. It follows
from [47, Proposition 4.21] that UΦ1

⊂ γUΦγ
−1, and the image of the open convex

cone CΦ1
under

(2.4.3) UΦ1(R)(−1)
u 7→γ−1uγ−−−−−−→ UΦ(R)(−1)

lies in the closure of the open convex cone CΦ. Define, as in [47, Definition-
Proposition 4.22],

C∗Φ =
⋃

Φ→Φ1

γ−1CΦ1
γ ⊂ UΦ(R)(−1),

where the union is over all K-morphisms with source Φ. This is a convex cone ly-
ing between CΦ and its closure, but in general C∗Φ is neither open nor closed. For
every K-morphism Φ→ Φ1 as above, the injection (2.4.3) identifies C∗Φ1

⊂ C∗Φ.

Definition 2.4.3. — A (rational polyhedral) partial cone decomposition of C∗Φ is a col-
lection ΣΦ = {σ} of rational polyhedral cones σ ⊂ UΦ(R)(−1) such that

— each σ ∈ ΣΦ satisfies σ ⊂ C∗Φ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



202 BENJAMIN HOWARD & KEERTHI MADAPUSI PERA

— every face of every σ ∈ ΣΦ is again an element of ΣΦ,
— the intersection of any σ, τ ∈ ΣΦ is a face of both σ and τ ,
— {0} ∈ ΣΦ.

We say that ΣΦ is smooth if it is smooth, in the sense of [47, § 5.2], with respect to
the lattice ΓΦ(−1) ⊂ UΦ(R)(−1). It is complete if

C∗Φ =
⋃
σ∈ΣΦ

σ.

Definition 2.4.4. — A K-admissible (rational polyhedral) partial cone decomposition
Σ = {ΣΦ}Φ for (G,D) is a collection of partial cone decompositions ΣΦ for C∗Φ, one
for every cusp label representative Φ, such that for any K-morphism Φ → Φ1, the
induced inclusion C∗Φ1

⊂ C∗Φ identifies

ΣΦ1
= {σ ∈ ΣΦ : σ ⊂ C∗Φ1

}.

We say that Σ is smooth if every ΣΦ is smooth, and complete if every ΣΦ is complete.

Fix a K-admissible complete cone decomposition Σ of (G,D).

Definition 2.4.5. — A toroidal stratum representative for (G,D,Σ) is a pair (Φ, σ) in
which Φ is a cusp label representative and σ ∈ ΣΦ is a rational polyhedral cone whose
interior is contained in CΦ. In other words, σ is not contained in any proper subset
C∗Φ1

( C∗Φ determined by a K-morphism Φ→ Φ1.

We now extend Definition 2.4.1 from cusp label representatives to toroidal stratum
representatives.

Definition 2.4.6. — A K-morphism of toroidal stratum representatives

(Φ, σ)
(γ,q)−−−→ (Φ1, σ1)

consists of a pair (γ, q) ∈ G(Q)×QΦ1
(Af ) such that

γQΦγ
−1 ⊂ QΦ1

, γD◦ = D◦1 , γh ∈ qh1K,

and such that the injection (2.4.3) identifies σ1 with a face of σ. Such a K-morphism
is a K-isomorphism if γQΦγ

−1 = QΦ1
and γ−1σ1γ = σ.

The set of K-isomorphism classes of toroidal stratum representatives will be de-
noted StratK(G,D,Σ).

Definition 2.4.7. — We say that Σ is finite if #StratK(G,D,Σ) <∞.

Definition 2.4.8. — We say that Σ has the no self-intersection property if the following
holds: whenever we are given toroidal stratum representatives (Φ, σ) and (Φ1, σ1), and
two K-morphisms

(Φ, σ)
--

11 (Φ1, σ1),

the two injections
UΦ1

(R)(−1)
--

11 UΦ(R)(−1)
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of (2.4.3) send σ1 to the same face of σ.

The no self-intersection property is just a rewording of the condition of [47, § 7.12].
If Σ has the no self-intersection property then so does any refinement (in the sense of
[47, § 5.1]).

Remark 2.4.9. — Any finite and K-admissible cone decomposition Σ for (G,D) ac-
quires the no self-intersection property after possibly replacing K by a smaller com-
pact open subgroup [47, § 7.13]. Moreover, by examining the proof one can see that if
K factors as K = K`K

` for some prime ` with K` ⊂ G(Q`) and K` ⊂ G(A`f ), then it
suffices to shrink K` while holding K` fixed.

2.5. Functoriality of cone decompositions. — Suppose that we have an embedding
(G,D)→ (G′,D′) of Shimura data.

As explained in [40, (2.1.28)], every cusp label representative

Φ = (P,D◦, g)

for (G,D) determines a cusp label representative

Φ′ = (P ′,D′,◦, g′)

for (G′,D′). More precisely, we define g′ = g, let D′,◦ ⊂ D′ be the connected compo-
nent containing D◦, and let P ′ ⊂ G′ be the smallest admissible parabolic subgroup
containing P . In particular,

QΦ ⊂ QΦ′ , UΦ ⊂ UΦ′ , CΦ ⊂ CΦ′ .

If K ⊂ G(Af ) is a compact open subgroup contained in a compact open subgroup
K ′ ⊂ G′(Af ), then every K-morphism

Φ
(γ,q)−−−→ Φ1

determines a K ′-morphism

Φ′
(γ,q)−−−→ Φ′1.

Any K ′-admissible rational cone decomposition Σ′ for (G′,D′) pulls back to a
K-admissible rational cone decomposition Σ for (G,D), defined by

ΣΦ = {σ′ ∩ C∗Φ : σ′ ∈ Σ′Φ′}

for every cusp label representative Φ of (G,D). It is shown in [20, § 3.3] that Σ is
finite whenever Σ′ is so. It is also not hard to check that Σ has the no self-intersection
property whenever Σ′ does, and that it is complete when Σ′ is so.

Given a cusp label representative Φ for (G,D) and a σ ∈ ΣΦ, there is a unique
rational polyhedral cone σ′ ∈ Σ′Φ′ such that σ ⊂ σ′, but σ is not contained in any
proper face of σ′. The assignment (Φ, σ) 7→ (Φ′, σ′) induces a function

StratK(G,D,Σ)→ StratK′(G
′,D′,Σ′)

on K-isomorphism classes of toroidal stratum representatives.
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2.6. Compactification of canonical models. — In this subsection we assume that
K ⊂ G(Af ) is neat. Suppose Σ is a finite and K-admissible complete cone decompo-
sition for (G,D).

Remark 2.6.1. — A Σ with the above properties always exists, and may be refined, in
the sense of [47, § 5.1], to make it smooth. This is the content of [47, Theorem 9.21].

The main result of [47, § 12] is the existence of a proper toroidal compactification

ShK(G,D) ↪→ ShK(G,D,Σ),

in the category of algebraic spaces over E(G,D), along with a stratification

(2.6.1) ShK(G,D,Σ) =
⊔

(Φ,σ)∈StratK(G,D,Σ)

Z
(Φ,σ)
K (G,D,Σ)

by locally closed subspaces indexed by the finite set StratK(G,D,Σ) appearing in Def-
inition 2.4.7. The stratum indexed by (Φ, σ) lies in the closure of the stratum indexed
by (Φ1, σ1) if and only if there is a K-morphism of toroidal stratum representatives
(Φ, σ)→ (Φ1, σ1).

If Σ is smooth then so is the toroidal compacification.
After possibly shrinkingK, we may assume that Σ has the no self-intersection prop-

erty (see Remark 2.4.9). The no self-intersection property guarantees that the strata
appearing in (2.6.1) have an especially simple shape. Fix one (Φ, σ) ∈ StratK(G,D,Σ)

and write Φ = (P,D◦, h). Pink shows that there is a canonical isomorphism

(2.6.2) ZσKΦ
(QΦ,DΦ, σ)

∼= //

��

Z
(Φ,σ)
K (G,D,Σ)

��

ShKΦ
(QΦ,DΦ, σ) ShK(G,D,Σ)

such that the two algebraic spaces in the bottom row become isomorphic after for-
mal completion along their common locally closed subspace in the top row. See [47,
Corollary 7.17] and [47, Theorem 12.4].

In other words, if we abbreviate

ŜhKΦ(QΦ,DΦ, σ) = ShKΦ(QΦ,DΦ, σ)∧ZσKΦ
(QΦ,DΦ,σ)

for the formal completion of ShKΦ
(QΦ,DΦ, σ) along its closed stratum, and abbrevi-

ate (2)

ŜhK(G,D,Σ) = ShK(G,D,Σ)∧
Z

(Φ,σ)
K (G,D,Σ)

for the formal completion of ShK(G,D,Σ) along the locally closed stratum
Z

(Φ,σ)
K (G,D,Σ), there is an isomorphism of formal algebraic spaces

(2.6.3) ŜhKΦ
(QΦ,DΦ, σ) ∼= ŜhK(G,D,Σ).

(2) In order to limit the already burdensome notation, we choose to suppress the dependence on (Φ, σ)

of the left hand side. The meaning will always be clear from context.
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Remark 2.6.2. — In [47] the isomorphism (2.6.3) is constructed after the left hand
side is replace by its quotient by a finite group action. Thanks to Hypothesis 2.1.1
and the assumption that K is neat, the finite group in question is trivial. See [48,
Lemma 1.7 and Remark 1.8].

We can make the above more explicit on the level of complex points. Suppose
(Φ, σ) is a toroidal stratum representative with underlying cusp label representative
Φ = (P,D◦, h), and denote by QΦ(R)◦ ⊂ QΦ(R) the stabilizer of the connected
component D◦ ⊂ D. The complex manifold

UKΦ(QΦ,DΦ) = QΦ(Q)◦\(D◦ ×QΦ(Af )/KΦ)

sits in a diagram

(2.6.4) UKΦ
(QΦ,DΦ) //

(z,g) 7→(z,gh)

��

ShKΦ
(QΦ,DΦ)(C)

ShK(G,D)(C),

in which the horizontal arrow is an open immersion, and the vertical arrow is a local
isomorphism. This allows us to define a partial compactification

UKΦ
(QΦ,DΦ) ↪→ UKΦ

(QΦ,DΦ, σ)

as the interior of the closure of UKΦ
(QΦ,DΦ) in ShKΦ

(QΦ,DΦ, σ)(C).
Any K-morphism as in Definition 2.4.6 induces a morphism of complex manifolds

UKΦ(QΦ,DΦ)
(z,g)7→(γz,γgγ−1q)−−−−−−−−−−−−→ UKΦ1

(QΦ1 ,DΦ1),

which extends uniquely to

UKΦ
(QΦ,DΦ, σ)→ UKΦ1

(QΦ1
,DΦ1

, σ1).

Complex analytically, the toroidal compactification is defined as the quotient

ShK(G,D,Σ)(C) =
( ⊔

(Φ,σ)∈StratK(G,D,Σ)

UKΦ(QΦ,DΦ, σ)
)/
∼,

where ∼ is the equivalence relation generated by the graphs of all such morphisms.
By [47, § 6.13] the closed stratum appearing in (2.3.8) satisfies

(2.6.5) ZσKΦ
(QΦ,DΦ, σ)(C) ⊂ UKΦ

(QΦ,DΦ, σ).

The morphisms in (2.6.4) extend continuously to morphisms

(2.6.6) UKΦ
(QΦ,DΦ, σ) //

��

ShKΦ(QΦ,DΦ, σ)(C)

ShK(G,D,Σ)(C)

in such a way that the vertical map identifies

ZσKΦ
(QΦ,DΦ, σ)(C) ∼= Z

(Φ,σ)
K (G,D,Σ)(C).
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This agrees with the analytification of the isomorphism (2.6.2).
Now pick any point z ∈ ZσΦ(QΦ,DΦ, σ)(C). Let R be the completed local ring

of ShK(G,D,Σ)/C at z, and let RΦ be the completed local ring of ShKΦ
(QΦ,DΦ, σ)/C

at z. Each completed local ring can be computed with respect to the étale or analytic
topologies, and the results are canonically identified. Working in the analytic topology,
the morphisms in (2.6.6) induce an isomorphism R ∼= RΦ, as they identify both rings
with the completed local ring of UKΦ(QΦ,DΦ, σ) at z. This analytic isomorphism
agrees with the one induced by the algebraic isomorphism (2.6.3).

3. Automorphic vector bundles

Throughout § 3 we fix a Shimura datum (G,D) satisfying Hypothesis 2.1.1, and a
compact open subgroup K ⊂ G(Af ).

We recall the theory of automorphic vector bundles on the Shimura variety
ShK(G,D), on its toroidal compactification, and on the mixed Shimura varieties
appearing along the boundary. The main reference is [23].

3.1. Holomorphic vector bundles. — Let Φ = (P,D◦, h) be a cusp label representative
for (G,D). As in § 2, this determines a mixed Shimura datum (QΦ,DΦ) and a compact
open subgroup KΦ ⊂ QΦ(Af ).

Suppose we have a representation QΦ → GL(N) on a finite dimensional Q-vector
space. Given a point z ∈ DΦ, its image under

DΦ → Hom(SC, QΦC)

determines a mixed Hodge structure (N,F •NC,wt•N). The weight filtration is inde-
pendent of z, and is split by any lift Gm → QΦ of the weight cocharacter (2.2.2).

Denote by (Nan
dR, F

•Nan
dR,wt•N

an
dR) the doubly filtered holomorphic vector bundle

on DΦ × QΦ(Af )/KΦ whose fiber at (z, g) is the vector space NC endowed with the
Hodge and weight filtrations determined by z. There is a natural action of QΦ(Q)

on this doubly filtered vector bundle, covering the action on the base. By taking the
quotient, we obtain a functor

(3.1.1) N 7→ (Nan
dR, F

•Nan
dR,wt•N

an
dR)

from finite dimensional representations of QΦ to doubly filtered holomorphic vector
bundles on ShKΦ(QΦ,DΦ)(C). Ignoring the double filtration, this functor is simply

(3.1.2) N 7→Nan
dR = QΦ(Q)\

(
DΦ ×NC ×QΦ(Af )/KΦ

)
.

Given a KΦ-stable Ẑ-lattice NẐ ⊂ N ⊗ Af , we may define a Z-lattice

gNZ = gNẐ ∩N

for every g ∈ QΦ(Af ), along with a weight filtration

wt•(gNZ) = gNẐ ∩ wt•N.
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Denote by (NBe,wt•NBe) the filtered Z-local system on DΦ × QΦ(Af )/KΦ whose
fiber at (z, g) is (gNZ,wt•(gNZ)). This local system has an obvious action of QΦ(Q),
covering the action on the base. Passing to the quotient, we obtain a functor

NẐ 7→ (NBe,wt•NBe)

from KΦ-stable Ẑ-lattices in N ⊗ Af to filtered Z-local systems on (2.2.4).
By construction there is a canonical isomorphism

(3.1.3) (Nan
dR,wt•N

an
dR) ∼= (NBe ⊗Oan,wt•NBe ⊗Oan),

where Oan denotes the structure sheaf on ShKΦ
(QΦ,DΦ)(C).

3.2. The Borel morphism. — Suppose G→ GL(N) is any faithful representation of G
on a finite dimensional Q-vector space. A point z ∈ D determines a Hodge structure
S→ GL(NR) on N , and we denote by F •NC the induced Hodge filtration. As in [43,
§ III.1] and [23, § 1], define the compact dual

(3.2.1) M̌(G,D)(C) =

{
descending filtrations on NC

that are G(C)-conjugate to F •NC

}
.

By construction, there is a canonical G(R)-equivariant finite-to-one Borel morphism

D → M̌(G,D)(C)

sending a point of D to the induced Hodge filtration on NC. The compact dual is
the space of complex points of a smooth projective variety M̌(G,D) defined over the
reflex field E(G,D), and admitting an action of GE(G,D) inducing the natural action
of G(C) on complex points. It is independent of the choice of z, and of the choice of
faithful representation N .

More generally, there is an analogue of (3.2.1) for the mixed Shimura datum
(QΦ,DΦ), as in [26, Main Theorem 3.4.1] and [27, Main Theorem 2.5.12]. Let
QΦ → GL(N) be a faithful representation on a finite dimensional Q-vector space.
Any point z ∈ DΦ then determines a mixed Hodge structure (N,F •NC,wt•N), and
we define the dual of (QΦ,DΦ) by

M̌(QΦ,DΦ)(C) =

{
descending filtrations on NC

that are QΦ(C)-conjugate to F •NC

}
.

It is the space of complex points of an open QΦ,E(G,D)-orbit

M̌(QΦ,DΦ) ⊂ M̌(G,D),

independent of the choice of z ∈ DΦ and N . By construction, there is a QΦ(C)-equiv-
ariant Borel morphism

DΦ → M̌(QΦ,DΦ)(C).
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3.3. The standard torsor. — We want to give a more algebraic interpretation of the
functor (3.1.1).

Harris and Zucker [23, § 1] prove that the mixed Shimura variety (2.2.4) carries a
standard torsor (3). This consists of a diagram of E(G,D)-stacks

(3.3.1) JKΦ
(QΦ,DΦ)

a

��

b // M̌(QΦ,DΦ)

ShKΦ
(QΦ,DΦ),

in which a is a relative QΦ-torsor, and b is QΦ-equivariant. See also the papers of
Harris [24, 18, 19], Harris-Zucker [21, 22], and Milne [42, 43]. Complex analytically,
the standard torsor is the complex orbifold

JKΦ(QΦ,DΦ)(C) = QΦ(Q)\
(
DΦ ×QΦ(C)×QΦ(Af )/KΦ

)
,

withQΦ(C) acting by s·(z, t, g) = (z, ts−1, g). The morphisms a and b are, respectively,

(z, t, g) 7→ (z, g) and (z, t, g) 7→ t−1z.

Exactly as in [23], we can use the standard torsor to define models of the vector
bundles (3.1.1) over the reflex field. First, we require a lemma.

Lemma 3.3.1. — Suppose Ň → M̌(QΦ,DΦ) is a QΦ-equivariant vector bundle; that
is, a finite rank vector bundle endowed with an action of QΦ,E(G,D) covering the action
on the base. There are canonical QΦ-equivariant filtrations wt•Ň and F •Ň on Ň , and
the construction

Ň 7→ (Ň , F •Ň ,wt•Ň)

is functorial in Ň .

Proof. — Fix a faithful representation QΦ → GL(H). Suppose we are given an
étale neighborhood U → M̌(QΦ,DΦ) of some geometric point x of M̌(QΦ,DΦ). By
the very definition of M̌(QΦ,DΦ), U determines a QΦU -stable filtration F •HU

on HU = H ⊗OU . After possibly shrinking U we may choose a cocharacter
µx : Gm → QΦU splitting this filtration.

As QΦU acts on ŇU , the cocharacter µx determines a filtration F •ŇU , which
does not depend on the choice of splitting. Gluing over an étale cover of M̌(QΦ,DΦ)

defines the desired filtration F •Ň . The definition of wt•Ň is similar, but easier: it is
the filtration split by any lift Gm → QΦ of the weight cocharacter (2.2.2).

Now suppose we have a representation QΦ → GL(N) on a finite dimensional Q-vec-
tor space. Applying Lemma 3.3.1 to the constant QΦ-equivariant vector bundle

Ň = M̌(QΦ,DΦ)×Spec(E(G,D)) NE(G,D)

(3) A.k.a. standard principal bundle.
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yields aQΦ-equivariant doubly filtered vector bundle (Ň , F •Ň ,wt•Ň) on M̌(QΦ,DΦ).
The construction

(3.3.2) N 7→ (NdR, F
•NdR,wt•NdR) = QΦ\b∗(Ň , F •Ň ,wt•Ň)

defines a functor from representations of QΦ to doubly filtered vector bundles
on ShKΦ

(QΦ,DΦ). Passing to the complex fiber recovers the functor (3.1.1).
The following proposition extends the above functor to partial compactifications.

Proposition 3.3.2. — For any rational polyhedral cone σ ⊂ UΦ(R)(−1) there is a func-
tor

N 7→ (NdR, F
•NdR,wt•NdR),

extending (3.3.2), from representations of QΦ on finite dimensional Q-vector spaces
to doubly filtered vector bundles on ShKΦ

(QΦ,DΦ, σ).

Proof. — This is part of [23, Definition-Proposition 1.3.5]. Here we sketch a different
argument.

Recall the TΦ-torsor structure on (2.3.1). On complex points, this action was de-
duced from the natural left action of UΦ(C) on DΦ. Of course the group UΦ(C)

also acts on both factors of DΦ × QΦ(C) on the left, and imitating the proof of
Proposition 2.3.1 yields action of the relative torus TΦ(C) on the standard torsor
JKΦ

(QΦ,DΦ)(C), covering the action on ShKΦ
(QΦ,DΦ)(C).

To see that the action is algebraic and defined over the reflex field, one can reduce,
exactly as in the proof of [23, Proposition 1.2.4], to the case in which (QΦ,DΦ) is
either a pure Shimura datum, or is a mixed Shimura datum associated with a Siegel
Shimura datum. The pure case is vacuous (the relative torus is trivial). The Siegel
mixed Shimura varieties are moduli spaces of polarized 1-motives, and it is not difficult
to give a moduli-theoretic interpretation of the torus action, along the lines of [40,
§ 2.2.8]. From this interpretation the descent to the reflex field is obvious.

In the diagram (3.3.1), the arrow a is TΦ-equivariant, and the arrow b is constant
on TΦ-orbits. This is clear from the complex analytic description.

Taking the quotient of the standard torsor by this action, we obtain a diagram

TΦ\JKΦ
(QΦ,DΦ)

a

��

b // M̌(QΦ,DΦ)

ShK̄Φ
(Q̄Φ, D̄Φ),

in which a is a relative QΦ-torsor and b is QΦ-equivariant. Pulling back the quotient
TΦ\JKΦ

(QΦ,DΦ) along the diagonal arrow in (2.3.7) defines the upper left entry in
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the diagram

JKΦ(QΦ,DΦ, σ)

a

��

b // M̌(QΦ,DΦ)

ShKΦ
(QΦ,DΦ, σ)

extending (3.3.1), in which a is a QΦ-torsor, and b is QΦ-equivariant. Now simply
repeat the construction (3.3.2) to obtain the desired functor.

Remark 3.3.3. — The proof actually shows more: because the standard torsor admits
a canonical descent to ShK̄Φ

(Q̄Φ, D̄Φ), the same is true of all doubly filtered vector
bundles (3.3.2). Compare with [23, (1.2.11)].

3.4. Automorphic vector bundles on toroidal compactifications. — Assume that K is
neat, and that Σ is a finite K-admissible complete cone decomposition for (G,D)

having the no self-intersection property.
By results of Harris and Harris-Zucker, see especially [23], one can glue together

the diagrams in the proof of Proposition 3.3.2 as (Φ, σ) varies in order to obtain a
diagram

(3.4.1) JK(G,D,Σ)

a

��

b // M̌(G,D)

ShK(G,D,Σ)

in which a is a G-torsor and b is G-equivariant. This implies the following:

Theorem 3.4.1. — There is a functor N 7→ (NdR, F
•NdR) from representations of G

on finite dimensional Q-vector spaces to filtered vector bundles on ShK(G,D,Σ), com-
patible, in the obvious sense, with the isomorphism

ŜhKΦ
(QΦ,DΦ, σ) ∼= ŜhK(G,D,Σ)

of (2.6.3) and the functor of Proposition 3.3.2, for every toroidal stratum representa-
tive

(Φ, σ) ∈ StratK(G,D,Σ).

In other words, there is an arithmetic theory of automorphic vector bundles on
toroidal compactifications.

Remark 3.4.2. — Over the open Shimura variety ShK(G,D) there is also a weight
filtration wt•NdR on NdR, but it is not compatible with the weight filtrations along
the boundary. It is also not very interesting. On an irreducible representation N the
(central) weight cocharacter w : Gm → G acts through z 7→ zk for some k, and the
weight filtration has a unique nonzero graded piece grkNdR.
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3.5. A simple Shimura variety. — Let (Gm,H0) be the Shimura datum of Re-
mark 2.1.2. For any compact open subgroup K ⊂ A×f , we obtain a 0-dimensional
Shimura variety

(3.5.1) ShK(Gm,H0)(C) = Q×\(H0 × A×f /K),

with a canonical model ShK(Gm,H0) over Q.
The action of Aut(C) on its complex points satisfies

(3.5.2) τ · (2πε, a) = (2πε, aaτ )

whenever τ ∈ Aut(C) and aτ ∈ A×f are related by τ |Qab
= rec(aτ ). This implies that

ShK(Gm,H0) ∼= Spec(F ),

where F/Q is the abelian extension characterized by

rec : Q×>0\A
×
f /K

∼= Gal(F/Q).

The following proposition shows that all automorphic vector bundles on (3.5.1)
are canonically trivial. The particular trivializations will be essential in our later
discussion of q-expansions. See especially Proposition 4.6.1.

Proposition 3.5.1. — For any representation Gm → GL(N) there is a canonical iso-
morphism

N ⊗OShK(Gm,H0)
n⊗17→n−−−−−→NdR

of vector bundles. If Gm acts on N through the character z 7→ zk, the global section
n = n⊗ 1 is given, in terms of the complex parametrization

Nan
dR = Q×\(H0 ×NC × A×f /K)

of (3.1.2), by

(2πε, a) 7→
(

2πε,
rat(a)k

(2πε)k
· n, a

)
.

Proof. — First set N = Q with Gm acting via the identity character z 7→ z, and set
NẐ = Ẑ. Recalling (3.1.3), the quotient NBe\Nan

dR defines an analytic family of rank
one tori over ShK(Gm,H0)(C), whose relative Lie algebra is the line bundle

Lie(NBe\Nan
dR) = Nan

dR = Q×\(H0 × C× A×f /K).

Using this identification, we may identify the standard C×-torsor

(3.5.3) JK(Gm,H0)(C) = Q×\
(
H0 × C× × A×f /K

)
with the C×-torsor of trivializations of Lie(NBe\Nan

dR).
On the other hand, the isomorphisms

(N ∩ aNẐ)\NC = (Q ∩ aẐ)\C 2πε/rat(a)−−−−−−−→ Z(1)\C exp−−→ C×
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identify NBe\Nan
dR, fiber-by-fiber, with the constant torus C×, and so identify (3.5.3)

with the C×-torsor of trivializations of Lie(C×). The canonical model of (3.5.3) is
now concretely realized as the Gm-torsor

JK(Gm,H0) = Iso
(
Lie(Gm),OShK(Gm,H0)

)
.

For any ring R, the Lie algebra of Gm = Spec(R[q, q−1]) is canonically trivialized
by the invariant derivation q · d/dq. Thus the standard torsor admits a canonical
section which, in terms of the uniformization (3.5.3), is

(2πε, a) 7→
(

2πε,
rat(a)

2πε
, a

)
.

This section trivializes the standard torsor, and induces the desired trivialization of
any automorphic vector bundle.

Remark 3.5.2. — Let Gm act on N via z 7→ zk. What the above proof actually shows
is that there are canonical isomorphisms

N ⊗OShK(Gm,H0)
∼= N ⊗ Lie(Gm)⊗k ∼= NdR.

4. Orthogonal Shimura varieties

In § 4 we specialize the preceding theory to the case of Shimura varieties associated
to the group of spinor similitudes of a quadratic space (V,Q) over Q of signature
(n, 2) with n ≥ 1. This will allow us to define q-expansions of modular forms on such
Shimura varieties, and prove the q-expansion principle of Proposition 4.6.3.

4.1. The GSpin Shimura variety. — Let G = GSpin(V ) as in [39]. This is a reductive
group over Q sitting in an exact sequence

1→ Gm → G→ SO(V )→ 1.

There is a distinguished character ν : G→ Gm, called the spinor similitude. Its kernel
is the usual spin double cover of SO(V ), and its restriction to Gm is z 7→ z2.

The group G(R) acts on the hermitian domain

(4.1.1) D =
{
z ∈ VC : [z, z] = 0 and [z, z] < 0

}
/C× ⊂ P(VC)

in the obvious way. This hermitian domain has two connected components, inter-
changed by the action of any γ ∈ G(R) with ν(γ) < 0. The pair (G,D) is the GSpin
Shimura datum. Its reflex field is Q.

By construction, G is a subgroup of the multiplicative group of the Clifford algebra
C(V ). As such, G has two distinguished representations. One is the standard repre-
sentation G → SO(V ), and the other is the faithful action on H = C(V ) defined by
left multiplication in the Clifford algebra. These two representations are related by a
G-equivariant injection

(4.1.2) V → EndQ(H)
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defined by the left multiplication action of V ⊂ C(V ) on H. A point z ∈ D determines
a Hodge structure on any representation of G. For the representations V and H, the
induced Hodge filtrations are

(4.1.3) F 2VC = 0, F 1VC = Cz, F 0VC = (Cz)⊥, F−1VC = VC,

and

(4.1.4) F 1HC = 0, F 0HC = zHC, F−1HC = HC.

Here we are using (4.1.2) to view Cz ⊂ EndC(HC).
In order to obtain a Shimura variety ShK(G,D) as in 1.1, we fix a Z-lattice VZ ⊂ V

on which Q is Z-valued and assume that the compact open subgroup K ⊂ G(Af ) is
chosen as in (1.1.2). According to [39, Lemma 2.6], any such K stabilizes both VẐ and
its dual, and acts trivially on the discriminant group

(4.1.5) V ∨Z /VZ
∼= V ∨Ẑ /VẐ.

4.2. The line bundle of modular forms. — Applying the functor of Proposition 3.3.2 to
the standard representation G→ SO(V ) yields a filtered vector bundle (VdR, F

•VdR)

on ShK(G,D). The filtration has the form

0 = F 2VdR ⊂ F 1VdR ⊂ F 0VdR ⊂ F−1VdR = VdR,

in which F 1VdR is a line, isotropic with respect to the bilinear form

(4.2.1) [−,−] : VdR ⊗ VdR → OShK(G,D)

induced by (1.1.1), and F 0VdR = (F 1VdR)⊥. These properties are clear from the
complex analytic definition (3.1.1) of V an

dR , and the explicit description of the Hodge
filtration (4.1.3). In particular, the filtration on VdR is completely determined by the
isotropic line F 1VdR.

Definition 4.2.1. — The line bundle of weight one modular forms on ShK(G,D) is
defined by

ω = F 1VdR.

For any g ∈ G(Af ), the pullback of ω via the complex uniformization

D z 7→(z,g)−−−−−→ ShK(G,D)(C)

is just the tautological bundle on the hermitian domain (4.1.1). In particular, the line
bundle ω carries a metric, inherited from the metric

(4.2.2) ‖z‖2naive = −[z, z]

on the tautological bundle. We will more often use the rescaled metric

(4.2.3) ‖z‖2 = − [z, z]

4πeγ

where γ = −Γ′(1) is the Euler-Mascheroni constant.
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4.3. The Hodge embedding. — As above, let H = C(V ) viewed as a faithful 2n+2-di-
mensional representation of G ⊂ C(V )× via left multiplication. If we define a Z-lattice
in H by

HZ = C(VZ),

the inclusion (1.1.2) implies that HẐ = HZ ⊗Z Ẑ is K-stable.
The discussion of § 3 provides a filtered vector bundle (HdR, F

•HdR) on ShK(G,D),
and a Z-local system HBe over the complex fiber endowed with an isomorphism

HBe ⊗OShK(G,D)(C)
∼= Han

dR.

The double quotient

(4.3.1) A(C) = HBe\Han
dR/F

0Han
dR

defines an analytic family of complex tori over ShK(G,D)(C). In fact, this arises from
an abelian scheme over ShK(G,D), as we now explain.

As in [1, § 2.2], one may choose a symplectic form ψ on H such that the represen-
tation of G factors through GSg = GSp(H), and induces a Hodge embedding

(G,D)→ (GSg,DSg)

into the Siegel Shimura datum determined by (H,ψ). Explicitly, choose any vectors
v, w ∈ V of negative length with [v, w] = 0 and set

δ = vw ∈ C(V ).

If we denote by c 7→ c∗ the Q-algebra involution on C(V ) fixing pointwise the subset
V ⊂ C(V ), then δ∗ = −δ. Denoting by Trd : C(V ) → Q the reduced trace, the
symplectic form

ψ(x, y) = Trd(xδy∗)

has the desired properties.
As in (3.2.1), we may describe the compact dual M̌(G,D) as aG-orbit of descending

filtrations on the faithful representation H. It is more convenient to characterize the
compact dual as the Q-scheme with functor of points

M̌(G,D)(S) = {isotropic lines z ⊂ V ⊗OS},

where line means a locally free OS-module direct summand of rank one. In order to
realize M̌(G,D) as a space of filtrations on H, first define

M̌(GSg,DSg)(S) = {Lagrangian subsheaves F 0 ⊂ H ⊗OS}

and then use (4.1.2) to define a closed immersion

M̌(G,D)→ M̌(GSg,DSg),

sending the isotropic line z ⊂ V to the Lagrangian zH ⊂ H.
By rescaling, we may assume that ψ is Z-valued on HZ, and so the Hodge em-

bedding defines a morphism from ShK(G,D) to a moduli stack of polarized abelian
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varieties of dimension 2n+1. Pulling back the universal object defines the Kuga-Satake
abelian scheme

π : A→ ShK(G,D).

The Kuga-Satake abelian scheme does not depend on the choice of ψ, but the polar-
ization on it does. Passing to the complex analytic fiber recovers the family of complex
tori defined by (4.3.1).

The first relative de Rham homology of A, with its Hodge filtration, is related to
the vector bundle HdR by a canonical isomorphism of filtered vector bundles

HdR
∼= Hom

(
R1π∗Ω

•
A/ShK(G,D),OShK(G,D)

)
.

4.4. Cusp label representatives: isotropic lines. — We wish to make more explicit the
structure of the mixed Shimura datum (QΦ,DΦ) associated to a cusp label represen-
tative

Φ = (P,D◦, h)

for (G,D). See § 2.2 for the definitions.
The admissible parabolic P ⊂ G is the stabilizer of a totally isotropic subspace

I ⊂ V with dim(I) ∈ {0, 1, 2}. In this subsection we assume that P ⊂ G is the
stabilizer of an isotropic line I ⊂ V . The case of isotropic planes will be considered in
§ 4.5.

The P -stable weight filtration on V defined by

wt−3V = 0, wt−2V = wt−1V = I, wt0V = wt1V = I⊥, wt2V = V,

and the Hodge filtration (4.1.3) determined by a point z ∈ D, together determine a
mixed Hodge structure

SC
hΦ(z)−−−→ PC → SO(VC)

on V of type {(−1,−1), (0, 0), (1, 1)}.
Similarly,the P -stable weight filtration on H defined by

wt−3H = 0, wt−2H = wt−1H = IH, wt0H = H,

and the Hodge filtration (4.1.4) determined by a point z ∈ D, together determine a
mixed Hodge structure

SC
hΦ(z)−−−→ PC → GSp(HC)

on H of type {(−1,−1), (0, 0)}. In the definition of the weight filtration we are using
the inclusion I ⊂ EndQ(H) determined by (4.1.2), and setting

IH = SpanQ{`x : ` ∈ I, x ∈ H}.

The proof of the following lemma is left as an exercise to the reader.

Lemma 4.4.1. — Recalling the notation (1.6.1), the largest closed normal subgroup
QΦ ⊂ P through which every such hΦ(z) factors is

QΦ = ker
(
P → GL(gr0(H))

)
.
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The action QΦ → SO(V ) is faithful, and is given on the graded pieces of wt•V by
the commutative diagram

(4.4.1) QΦ
νΦ //

��

Gm

t 7→(t,1,t−1)
��

P // GL(I)× SO(I⊥/I)×GL(V/I⊥),

in which νΦ is the restriction to QΦ of the spinor similitude on G. This agrees with
the character (2.2.3). The groups UΦ and WΦ are

UΦ = WΦ = ker(νΦ : QΦ → Gm),

and there is an isomorphism of Q-vector spaces

(4.4.2) (I⊥/I)⊗ I ∼= UΦ(Q)

sending v ⊗ ` ∈ (I⊥/I)⊗ I to the unipotent transformation of V defined by

x 7→ x+ [x, `]v − [x, v]`−Q(v)[x, `]`.

The dual of (QΦ,DΦ) is the Q-scheme with functor of points

(4.4.3) M̌(QΦ,DΦ)(S) =


isotropic lines z ⊂ V ⊗OS such that

V → V/I⊥

identifies z ∼= (V/I⊥)⊗OS

 .

Every point
z ∈ DΦ ⊂ π0(D)×Hom(SC, QΦC)

determines a mixed Hodge structure on V of type {(−1,−1), (0, 0), (1, 1)}, and the
Borel morphism

DΦ → M̌(QΦ,DΦ)(C)

sends z to the isotropic line F 1VC ⊂ VC. This induces an isomorphism

(4.4.4) DΦ
∼= π0(D)× M̌(QΦ,DΦ)(C).

4.5. Cusp label representatives: isotropic planes. — In this subsection we fix a cusp
label representative Φ = (P,D◦, h) with P ⊂ G the stabilizer of an isotropic plane
I ⊂ V .

The P -stable weight filtrations on V defined by

wt−2V = 0, wt−1V = I, wt0V = I⊥, wt1V = V,

and the Hodge filtration (4.1.3) determined by a point z ∈ D, together determine a
mixed Hodge structure

SC
hΦ(z)−−−→ PC → SO(VC)

on V of type {(−1, 0), (0,−1), (0, 0), (1, 0), (0, 1)}.
Similarly, the P -stable weight filtration on H defined by

wt−3H = 0, wt−2H = I2H, wt−1H = IH, wt0H = H,
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and the Hodge filtration (4.1.4) determined by a point z ∈ D, together determine a
mixed Hodge structure

SC
hΦ(z)−−−→ PC → GSp(HC)

on H of type {(−1,−1), (−1, 0), (0,−1), (0, 0)}. In the definition of the weight filtra-
tion we are using the inclusion I ⊂ EndQ(H) determined by (4.1.2), and setting

IH = SpanQ{`x : ` ∈ I, x ∈ H}
I2H = SpanQ{``′x : `, `′ ∈ I, x ∈ H}.

The proof of the following lemma is left as an exercise to the reader.

Lemma 4.5.1. — Recalling the notation (1.6.1), the largest closed normal subgroup
QΦ ⊂ P through which every such hΦ(z) factors is

QΦ = ker
(
P → GL(gr0(H))

)
.

The natural action QΦ → SO(V ) is faithful, and is trivial on the quotient I⊥/I.
The groups UΦ CWΦ CQΦ are

WΦ = ker(QΦ → GL(I)),

and

UΦ
∼=
∧2

I,

where we identify a ∧ b ∈
∧2

I with the unipotent transformation of V defined by

x 7→ x+ [x, a]b− [x, b]a.

The dual of (QΦ,DΦ) is the Q-scheme with functor of points

M̌(QΦ,DΦ)(S) =


isotropic lines z ⊂ V ⊗OS such that

V → V/I⊥ identifies z with a rank one
local direct summand of (V/I⊥)⊗OS

 .

Every point z ∈ DΦ determines a mixed Hodge structure on V of type

{(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)},

and again the Borel morphism

DΦ → M̌(QΦ,DΦ)(C)

sends z 7→ F 1VC. It identifies DΦ with the open subset

DΦ = UΦ(C)D ⊂ π0(D)× M̌(QΦ,DΦ)(C).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



218 BENJAMIN HOWARD & KEERTHI MADAPUSI PERA

4.6. The q-expansion principle. — Now suppose the compact open subgroup K of
(1.1.2) is neat, and small enough that there exists a finite K-admissible complete
cone decomposition Σ for (G,D) having the no self-intersection property. See § 2.4 for
the definitions.

The results of Pink recalled in § 2.6 provide us with a toroidal compactification

(4.6.1) ShK(G,D,Σ) =
⊔

(Φ,σ)∈StratK(G,D,Σ)

Z
(Φ,.σ)
K (G,D,Σ),

and the result of Harris-Zucker recalled as Theorem 3.4.1 gives a filtered vector bundle

0 = F 2VdR ⊂ F 1VdR ⊂ F 0VdR ⊂ F−1VdR = VdR

on the compactification, endowed with a quadratic form

[−,−] : VdR → OShK(G,D,Σ)

induced by the bilinear form on V . Exactly as in 4.2, the line bundle of weight one
modular forms

ω = F 1VdR

is isotropic with respect to this bilinear form, and F 0VdR = (F 1VdR)⊥. These con-
structions extend those of § 4.2 from the open Shimura variety to its compactification.

In order to define q-expansions of sections of ω
⊗k on (4.6.1), we need to make some

additional choices. The first choice is a boundary stratum

(4.6.2) Z
(Φ,σ)
K (G,D,Σ)/C ⊂ ShK(G,D,Σ)/C

indexed by a toroidal stratum representative (Φ, σ) in which the parabolic subgroup
appearing in the underlying cusp label representative

Φ = (P,D◦, h)

is the stabilizer of an isotropic line I ⊂ V . The second choice is a nonzero vector ` ∈ I,
which will determine a trivialization of ω in a formal neighborhood of the stratum
(4.6.2).

As D has two connected components, there are exactly two continuous surjections
ν : D → H0. Fix one of them. It, along with the spinor similitude ν : G → Gm,
induces a morphism of Shimura data

(G,D)
ν−→ (Gm,H0).

Denote by 2πε◦ ∈ H0 the image of the component D◦. There is a unique continuous
extension of ν : D → H0 to νΦ : DΦ → H0, and this determines a morphism of mixed
Shimura data

(4.6.3) (QΦ,DΦ)
νΦ−−→ (Gm,H0),

where νΦ : QΦ → Gm is the character of (4.4.1).
Applying the functor of Proposition 3.3.2 to the QΦ-representations I ⊂ V de-

termines vector bundles IdR ⊂ VdR on ShKΦ
(QΦ,DΦ, σ). The vector bundle VdR is
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endowed with a filtration and a symmetric bilinear pairing, exactly as in the discussion
following (4.6.1), and restricting the bilinear pairing yields a homomorphism

(4.6.4) [., .] : IdR ⊗ ω→ OShKΦ
(QΦ,DΦ,σ).

The choice of nonzero vector ` ∈ I defines a section

`an ∈ H0
(
ShKΦ

(QΦ,DΦ)(C), Ian
dR

)
of the line bundle

Ian
dR = QΦ(Q)\

(
DΦ × IC ×QΦ(Af )/KΦ

)
by sending

(z, g) 7→
(
z,

rat(νΦ(g))

νΦ(z)
· `, g

)
.

Proposition 4.6.1. — The holomorphic section `an extends uniquely to the partial com-
pactification ShKΦ

(QΦ,DΦ, σ)(C). This extension is algebraic and defined over Q, and
so arises from a unique global section

(4.6.5) ` ∈ H0
(
ShKΦ(QΦ,DΦ, σ), IdR

)
.

Moreover, (4.6.4) is an isomorphism, and induces an isomorphism

ω
ψ 7→[`,ψ]−−−−−→ OShKΦ

(QΦ,DΦ,σ).

Proof. — As the action of QΦ on I is via νΦ : QΦ/UΦ → Gm, the discussion of
§ 3.5 (see especially Remark 3.5.2) identifies IdR with the pullback of the line bundle
I ⊗ Lie(Gm) ∼= I ⊗OShνΦ(KΦ)(Gm,H0) via

ShKΦ
(QΦ,DΦ, σ)

(2.3.7)−−−−→ ShK̄Φ
(Q̄Φ, D̄Φ) = ShνΦ(KΦ)(Gm,H0).

The section (4.6.5) is simply the pullback of the trivializing section

`⊗ 1 ∈ H0
(
ShνΦ(KΦ)(Gm,H0), I ⊗OShνΦ(KΦ)(Gm,H0)

)
.

It now suffices to prove that (4.6.4) is an isomorphism. Recall from § 4.4
that M̌(QΦ,DΦ) has functor of points

M̌(QΦ,DΦ)(S) =

{
isotropic lines z ⊂ V ⊗OS such that
V → V/I⊥ identifies z ∼= (V/I⊥)⊗OS

}
.

Let Ǐ and V̌ be the (constant) QΦ-equivariant vector bundles on M̌(QΦ,DΦ) de-
termined by the representations I and V . In the notation of Lemma 3.3.1, the line
bundle ω̌ = F 1V̌ is the tautological bundle, and the bilinear form on V determines a
QΦ-equivariant isomorphism

Ǐ ⊗ ω̌ → V̌ ⊗ V̌ [−,−]−−−→ OM̌(QΦ,DΦ).

By examining the construction of the functor in Proposition 3.3.2, the induced mor-
phism (4.6.4) is also an isomorphism.
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It follows from the analysis of § 4.4 that the diagram (2.3.7) has the form

ShKΦ
(QΦ,DΦ) //

νΦ

��

ShKΦ
(QΦ,DΦ, σ)

uu

ShνΦ(KΦ)(Gm,H0),

in which the arrow labeled νΦ is a torsor for the n-dimensional torus

TΦ = Spec
(
Q[qα]α∈Γ∨Φ(1)

)
over the 0-dimensional base ShνΦ(KΦ)(Gm,H0). To define q-expansions we will trivi-
alize this torsor over an étale extension of the base, effectively putting coordinates on
the mixed Shimura variety ShKΦ

(QΦ,DΦ).
Choose an auxiliary isotropic line I∗ ⊂ V with [I, I∗] 6= 0. This choice fixes a

section

(QΦ,DΦ)
νΦ

// (Gm,H0).

s
uu

The underlying morphism of groups s : Gm → QΦ sends, for any Q-algebra R, a ∈ R×
to the orthogonal transformation

(4.6.6) s(a) · x =


ax if x ∈ IR
a−1x if x ∈ I∗,R
x if x ∈ (I ⊕ I∗)⊥R.

To characterize s : H0 → DΦ, we first use (4.4.3) to view

I∗C ∈ M̌(QΦ,DΦ)(C).

Recalling the isomorphism (4.4.4), the preimage of I∗C under the projection

DΦ
∼= π0(D)× M̌(QΦ,DΦ)(C)→ M̌(QΦ,DΦ)(C)

consists of two points, indexed by the two connected components of D. The function
s : H0 → DΦ is defined by sending 2πε◦ ∈ H0 to the point indexed by D◦, and the
other element of H0 to the point indexed by the other connected component of D.

The section s determines a Levi decomposition QΦ = GmnUΦ. Choose a compact
open subgroup K0 ⊂ Gm(Af ) small enough that its image under (4.6.6) is contained
in KΦ, and set

KΦ0 = K0 n (UΦ(Af ) ∩KΦ) ⊂ KΦ.

Our hypothesis that K is neat implies that K0 ⊂ KΦ0 ⊂ KΦ are also neat.
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Proposition 4.6.2. — Assume that the rational polyhedral cone σ ⊂ UΦ(R)(−1) has
(top) dimension n. The above choices determine a commutative diagram⊔

a∈Q×>0\A
×
f /K0

T̂Φ(σ)/C
∼= //

��

ŜhKΦ0
(QΦ,DΦ, σ)/C

��

ŜhK(G,D,Σ)/C
∼= // ŜhKΦ(QΦ,DΦ, σ)/C

of formal algebraic spaces, in which the vertical arrows are formally étale surjections.
Here

(4.6.7) T̂Φ(σ)
def
= Spf

(
Q[[qα]]α∈Γ∨Φ(1)

〈α,σ〉≥0

)
is the formal completion of (2.3.6) along its closed stratum, the lower left corner is
the formal completion of ShK(G,D,Σ)/C along the 0-dimensional stratum (4.6.2), and
the bottom isomorphism is (2.6.3).

Proof. — Consider the diagram

ShK0(Gm,H0)×Spec(Q) TΦ

**

ShKΦ0(QΦ,DΦ) //

νΦ

��

ShKΦ(QΦ,DΦ)

νΦ

��

ShK0
(Gm,H0) //

s

[[

ShνΦ(KΦ)(Gm,H0),

in which the arrows labeled νΦ are the TΦ-torsors of (2.3.1), and the isomorphism
“=” is the trivialization induced by the section s.

There is a canonical bijection

(4.6.8) Q×>0\A
×
f /K0

'−→ ShK0
(Gm,H0)(C)

defined by a 7→ [(2πε◦, a)]. We remind the reader that 2πε◦ ∈ H0 was fixed in the
discussion preceding (4.6.3).

Using this, the top row of the above diagram exhibits ShKΦ
(QΦ,DΦ)/C as an étale

quotient

(4.6.9)
⊔

a∈Q×>0\A
×
f /K0

TΦ/C ∼= ShKΦ0
(QΦ,DΦ)/C → ShKΦ

(QΦ,DΦ)/C.

This morphism extends to partial compactifications, and formally completing along
the closed stratum yields a formally étale morphism⊔

a∈Q×>0\A
×
f /K0

T̂Φ(σ)/C ∼= ŜhKΦ0
(QΦ,DΦ, σ)/C → ŜhKΦ

(QΦ,DΦ, σ)/C.

This defines the top horizontal arrow and the right vertical arrow in the diagram.
The vertical arrow on the left is defined by the commutativity of the diagram.
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Propositions 4.6.2 and 4.6.1 now give us a working theory of q-expansions along
the 0-dimensional boundary stratum (4.6.2) determined by a top dimensional cone
σ ⊂ UΦ(R)(−1). Taking tensor powers in Proposition 4.6.1 determines an isomorphism

[`⊗k, . ] : ω
⊗k ∼= OShKΦ

(QΦ,DΦ,σ),

and hence any global section

ψ ∈ H0
(
ShK(G,D,Σ)/C,ω

⊗k)
determines a formal function [`⊗k, ψ] on

ŜhK(G,D,Σ)/C ∼= ŜhKΦ(QΦ,DΦ, σ)/C.

Now pull this formal function back via the formally étale surjection⊔
a∈Q×>0\A

×
f /K0

T̂Φ(σ)/C → ŜhK(G,D,Σ)/C

of Proposition 4.6.2. By restricting the pullback to the copy of T̂Φ(σ)/C indexed by a,
we obtain a formal q-expansion (a.k.a. Fourier Jacobi expansion)

(4.6.10) FJ(a)(ψ) =
∑

α∈Γ∨Φ(1)
〈α,σ〉≥0

FJ(a)
α (ψ) · qα ∈ C[[qα]]α∈Γ∨Φ(1)

〈α,σ〉≥0

.

We emphasize that (4.6.10) depends on the choice of toroidal stratum representative
(Φ, σ), as well as on the choices of ν : D → H0, I∗, and ` ∈ I. These will always be
clear from context.

For each τ ∈ Aut(C), denote by aτ ∈ Q×>0\A
×
f the unique element with

rec(aτ ) = τ |Qab
.

The following is our q-expansion principle; see also [27, Theorem 2.8.7].

Proposition 4.6.3 (Rational q-expansion principle). — For any a ∈ A×f and τ ∈ Aut(C),
the q-expansion coefficients of ψ and ψτ are related by

FJ(aaτ )
α (ψτ ) = τ

(
FJ(a)

α (ψ)
)
.

Moreover, ψ is defined over a subfield L ⊂ C if and only if

FJ(aaτ )
α (ψ) = τ

(
FJ(a)

α (ψ)
)

for all a ∈ A×f , all τ ∈ Aut(C/L), and all α ∈ Γ∨Φ(1).

Proof. — The formal scheme T̂Φ(σ) of (4.6.7) has a distinguished Q-valued point
defined by qα = 0 (i.e., the unique point of the underlying reduced Q-scheme), and
so has a distinguished C-valued point. Hence, using the morphism⊔

a∈Q×>0\A
×
f /K0

T̂Φ(σ)/C → ŜhKΦ
(QΦ,DΦ, σ)(C)
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of Proposition 4.6.2, each a ∈ Q×>0\A
×
f determines a distinguished point

cusp(a) ∈ ŜhKΦ(QΦ,DΦ, σ)(C).

By examining the proof of Proposition 4.6.2, the reciprocity law (3.5.2) implies that

cusp(aaτ ) = τ(cusp(a))

for any τ ∈ Aut(C), and the q-expansion (4.6.10) is, tautologically, the image of the
formal function [`⊗k, ψ] in the completed local ring at cusp(a). The first claim is now
a consequence of the equality

[`⊗k, ψ]τ = [`⊗k, ψτ ]

of formal functions on

ŜhKΦ
(QΦ,DΦ, σ) ∼= ŜhK(G,D,Σ).

The second claim follows from the first, and the observation that two rational
sections ψ1 and ψ2 are equal if and only if FJ(a)(ψ1) = FJ(a)(ψ2) for all a. Indeed,
to check that ψ1 = ψ2, it suffices to check this in a formal neighborhood of one point
on each connected component of ShK(G,D,Σ)/C. Using strong approximation for the
simply connected group

Spin(V ) = ker
(
ν : G→ Gm),

one can show that the fibers of

ShK(G,D)(C)→ Shν(K)(Gm,H0)(C)

are connected. This implies that the images of the points cusp(a) under

ŜhKΦ0
(QΦ,DΦ, σ)(C)→ ŜhKΦ

(QΦ,DΦ, σ)(C) ∼= ŜhK(G,D,Σ)(C)

hit every connected component of ShK(G,D,Σ)(C).

5. Borcherds products

Once again, we work with a fixed Q-quadratic space (V,Q) of signature (n, 2) with
n ≥ 1, and denote by (G,D) the associated GSpin Shimura datum of § 4.1. Fix a
Z-lattice VZ ⊂ V on which the quadratic form is Z-valued, and let K be as in (1.1.2).
Recalling the notation of Remark 2.1.2, fix a choice of

2πi ∈ H0.

We recall the analytic theory of Borcherds products [5, 8] on ShK(G,D)(C) using
the adelic formulation as in [33]. Assuming that V contains an isotropic line, we
express their product expansions in the algebraic language of § 4.6.
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5.1. Weakly holomorphic forms. — Let S(VAf ) be the Schwartz space of locally
constant C-valued compactly supported functions on VAf = V ⊗ Af . For any
g ∈ G(Af ) abbreviate

gVZ = gVẐ ∩ V.

Denote by SVZ ⊂ S(VAf ) the finite dimensional subspace of functions invariant
under VẐ, and supported on its dual lattice; we often identify it with the space

SVZ = C[V ∨Z /VZ]

of functions on V ∨Z /VZ. The metaplectic double cover S̃L2(Z) of SL2(Z) acts via the
Weil representation

ρVZ : S̃L2(Z)→ AutC(SVZ),

as in [5, 8, 10]. Define the complex conjugate representation by

ρVZ
(γ) · ϕ = (ρVZ(γ) · ϕ),

for γ ∈ S̃L2(Z) and ϕ ∈ SVZ .

Remark 5.1.1. — There is a canonical basis

{φµ : µ ∈ V ∨Z /VZ} ⊂ SVZ ,

in which φµ is the characteristic function of µ + VZ. This allows us to identify SVZ

with its own C-linear dual. Under this identification, the complex conjugate represen-
tation ρVZ

agrees with with contragredient representation ρ∨VZ
. It also agrees with the

representation denoted ωVZ in [1, 2].

Denote byM !
1−n/2(ρVZ

) the space of weakly holomorphic forms for S̃L2(Z) of weight
1− n/2 and representation ρVZ

, as in [5, 8, 10]. In particular, any

(5.1.1) f(τ) =
∑
m∈Q

m�−∞

c(m) · qm ∈M !
1−n2

(ρVZ
)

is an SVZ-valued holomorphic function on the complex upper half-plane H. Each
Fourier coefficient c(m) ∈ SVZ is determined by its values c(m,µ) at the various
cosets µ ∈ V ∨Z /VZ. Moreover, c(m,µ) 6= 0 implies m ≡ Q(µ) modulo Z.

Definition 5.1.2. — The weakly holomorphic form (5.1.1) is integral if

c(m,µ) ∈ Z

for all m ∈ Q and all µ ∈ V ∨Z /VZ.

It is a theorem of McGraw [41] that the space of all forms (5.1.1) has a C-basis of
integral forms.
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5.2. Borcherds products and regularized theta lifts. — We now recall the meromorphic
Borcherds products of [5, 8, 33].

Write τ = u + iv ∈ H for the variable on the complex upper half-plane. For
each ϕ ∈ S(VAf ) there is a Siegel theta function

ϑ(τ, z, g;ϕ) : H×D ×G(Af )→ C,

as in [33, (1.37)], satisfying the transformation law

ϑ(τ, γz, γgh;ϕ) = ϑ(τ, z, g;ϕ ◦ h−1)

for any γ ∈ G(Q) and any h ∈ G(Af ). If we use the basis of Remark 5.1.1 to define

ϑ(τ, z, g) =
∑

µ∈V ∨Z /VZ

ϑ(τ, z, g, φµ) · φµ,

we obtain a function
ϑ(τ, z, g) : H×D ×G(Af )→ SVZ ,

which transforms in the variable τ like a modular form of weight n
2 − 1 and represen-

tation ρVZ .
Given a weakly holomorphic form (5.1.1) one can regularize the divergent integral

(5.2.1) Θreg(f)(z, g) =

∫
SL2(Z)\H

f(τ)ϑ(τ, z, g)
du dv

v2

as in [5, 8, 33]. Here we are using the map SVZ ⊗ SVZ → C defined by

φµ ⊗ φν 7→

{
1 if µ = ν

0 otherwise

to obtain an SL2(Z)-invariant scalar-valued integrand f(τ)ϑ(τ, z, g).
As the subgroupK acts trivially on the quotient (4.1.5), the subspace SVZ ⊂ S(VAf )

is K-invariant. It follows that (5.2.1) satisfies

Θreg(f)(γz, γgk) = Θreg(f)(z, g)

for any γ ∈ G(Q) and any k ∈ K. This allows us to view Θreg(f) as a function
on ShK(G,D)(C), which we call the regularized theta lift. Our Θreg(f) is usually
denoted Φ(f) in the literature.

Remark 5.2.1. — The following fundamental theorem of Borcherds implies that the
regularized theta lift is real analytic away from a prescribed divisor, with logarithmic
singularities along that divisor. Remarkably, the regularization process gives Θreg(f)

a meaningful value at every point of ShK(G,D)(C), including along the singular
divisor. In the context of unitary Shimura varieties, this is [11, Theorem 4.1] and [11,
Corollary 4.2], and the proof for orthogonal Shimura varieties is identical. In other
words, Θreg(f) is a well-defined (but discontinuous) function on all of ShK(G,D)(C).
Its values along the singular divisor will be made more explicit in § 9.2 when we use
the embedding trick to complete the proof of Theorem 9.1.1.
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Theorem 5.2.2 (Borcherds). — Assume that f is integral. After multiplying f by any
sufficiently divisible positive integer (4), there is a meromorphic section Ψ(f) of the
analytic line bundle (ωan)⊗c(0,0)/2 on ShK(G,D)(C) such that, away from the support
of div(Ψ(f)), we have

(5.2.2) − 4 log ‖Ψ(f)‖naive = Θreg(f) + c(0, 0) log(π) + c(0, 0)Γ′(1).

Here Γ′(s) is the derivative of the usual Gamma function, and ‖−‖naive is the metric
of (4.2.2).

Proof. — Choose a connected component D◦ ⊂ D, let G(R)◦ ⊂ G(R) be its stabilizer
(this is just the subgroup of elements on which the spinor similitude ν : G → Gm is
positive) and define G(Q)◦ similarly. Denote by ωD◦ the restriction to D◦ of the
tautological line bundle on (4.1.1). It carries an action of G(R)◦ covering the action
on the base, and a G(R)◦ invariant metric (4.2.2).

For any g ∈ G(Af ), denote by

Θreg
g (f)(z)

def
= Θreg(f)(z, g)

the restriction of the regularized theta lift to the connected component

(5.2.3) (G(Q)◦ ∩ gKg−1)\D◦ z 7→(z,g)−−−−−→ ShK(G,D)(C).

Borcherds [5] proves the existence of a meromorphic section Ψg(f) of ω
⊗c(0,0)/2
D◦

satisfying

(5.2.4) − 4 log ‖Ψg(f)‖naive = Θreg
g (f) + c(0, 0) log(π) + c(0, 0)Γ′(1).

Note that Borcherds does not work adelically. Instead, for every input form (5.1.1)
he constructs a single meromorphic section Ψclassical(f) over D◦. However, g ∈ G(Af )

determines an isomorphism V ∨Z /VZ → gV ∨Z /gVZ, which induces an isomorphism

M !
1−n2

(ρVZ
)
f 7→g·f−−−−→M !

1−n2
(ρgVZ

).

Replacing the pair (VZ, f) by (gVZ, gf) yields another meromorphic section
Ψclassical(gf) over D◦, and

Ψg(f) = Ψclassical(gf).

The relation (5.2.4) determines Ψg(f) up to scaling by a complex number of abso-
lute value 1, and the linearity of f 7→ Θreg

g (f) implies the multiplicativity

Ψg(f1 + f2) = Ψg(f1)⊗Ψg(f2)

relation, up to the ambiguity just noted. As Θreg
g (f) is invariant under translation by

every γ ∈ G(Q)◦ ∩ gKg−1, we must have

γ ·Ψg(f)(z) = ξg(γ) ·Ψg(f)(γz)

for some unitary character

(5.2.5) ξg : G(Q)◦ ∩ gKg−1 → C×.

(4) In particular, we may assume c(0, 0) ∈ 2Z.
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The main result of [7] asserts that the character ξg is of finite order, and so we may
replace f by a positive integer multiple in order to make it trivial. The section Ψg(f)

now descends to the quotient (5.2.3).
Repeating this procedure on every connected component of ShK(G,D)(C) yields a

section Ψ(f) satisfying (5.2.2).

The meromorphic section Ψ(f) of the theorem is what is usually called the
Borcherds product (or Borcherds lift) of f . We will use the same terminology to refer
to the meromorphic section

ψ(f) = (2πi)c(0,0)Ψ(2f)

of (ωan)⊗c(0,0), which has better arithmetic properties. We will see in § 9 that,
after rescaling by a constant of absolute value 1 on every connected component
of ShK(G,D)(C), the section ψ(f) is algebraic and defined over the reflex field Q.

Proposition 5.2.3. — Assume that either n ≥ 3, or that n = 2 and V has Witt in-
dex 1. The Borcherds product Ψ(f) of Theorem 5.2.2, a priori a meromorphic section
on ShK(G,D)(C), is the analytification of a rational section on ShK(G,D)/C.

Proof. — It suffices to prove this after shrinking K, so we may assume that K is
neat and ShK(G,D) is a quasi-projective variety. The hypotheses on n imply that the
boundary of the (normal and projective) Baily-Borel compacification

ShK(G,D) ↪→ ShK(G,D)BB

lies in codimension ≥ 2.
Let D be the polar part of the divisor of Ψ(f), so that D is an effective an-

alytic divisor on ShK(G,D)(C) with div(Ψ(f)) + D effective. The proof of Levi’s
generalization of Hartogs’ theorem [17, § 9.5] shows that the topological closure of D
in ShK(G,D)BB(C) is again an analytic divisor. By Chow’s theorem on the algebraic-
ity of analytic divisors on projective varieties, this closure is algebraic, and so D itself
was algebraic.

Now view Ψ(f) as a holomorphic section of the analytification of the line bundle
ω
⊗c(0,0)/2 ⊗ O(D) on ShK(G,D)/C. By Hartshorne’s extension of GAGA [25, Theo-

rem VI.2.1] this section is algebraic, as desired.

5.3. The product expansion I. — As in the proof of Theorem 5.2.2, fix a connected
component D◦ ⊂ D and an h ∈ G(Af ), and denote by Ψh(f) the restriction of the
Borcherds product to the connected component

(G(Q)◦ ∩ hKh−1)\D◦ z 7→(z,h)−−−−−→ ShK(G,D)(C).

In this subsection we recall the product expansion for Ψh(f) due to Borcherds. Let
ωD◦ be the restriction to D◦ of the tautological bundle on (4.1.1).
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Assume throughout § 5.3 that there exists an isotropic line I ⊂ V . Choose a second
isotropic line I∗ ⊂ V with [I, I∗] 6= 0, but do this in a particular way: first choose a
Z-module generator

` ∈ I ∩ hVZ,
and then choose a k ∈ hV ∨Z such that [`, k] = 1. Now take I∗ be the span of the
isotropic vector

(5.3.1) `∗ = k −Q(k)`.

Obviously [`, `∗] = 1, but we need not have `∗ ∈ hV ∨Z .
Abbreviate V0 = I⊥/I. This is a Q-vector space endowed with a quadratic form of

signature (n− 1, 1), and a Z-lattice

(5.3.2) V0Z = (I⊥ ∩ hVZ)/(I ∩ hVZ) ⊂ V0.

Denote by
LightCone(V0R) = {w ∈ V0R : Q(w) < 0}

the light cone in V0R. It is a disjoint union of two open convex cones. Every v ∈ I⊥C
determines an isotropic vector

`∗ + v − [`∗, v]`−Q(v)` ∈ VC,

depending only on the image v ∈ V0C. The resulting injection V0C → P1(VC) restricts
to an isomorphism

V0R + i · LightCone(V0R) ∼= D,
and we let

(5.3.3) LightCone◦(V0R) ⊂ LightCone(V0R)

be the connected component with

V0R + i · LightCone◦(V0R) ∼= D◦.

There is an action ρV0Z of S̃L2(Z) on the finite dimensional C-vector space SV0Z ,
exactly as in § 5.1, and a weakly holomorphic modular form

f0(τ) =
∑
m∈Q

m�−∞

∑
λ∈V ∨0Z/V0Z

c0(m,λ) · qm ∈M !
1−n2

(ρV0Z
),

whose coefficients are defined by

c0(m,λ) =
∑

µ∈hV ∨Z /hVZ
µ∼λ

c(m,h−1µ).

Here we understand h−1µ to mean the image of µ under the isomorphism
hV ∨Z /hVZ → V ∨Z /VZ defined by multiplication by h−1. The notation µ ∼ λ re-
quires explanation: denoting by

p : (I⊥ ∩ hV ∨Z )/(I⊥ ∩ hVZ)→ V ∨0Z/V0Z
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the natural map, µ ∼ λ means that there is a

(5.3.4) µ̃ ∈ I⊥ ∩ (µ+ hVZ)

such that p(µ̃) = λ.
Every vector x ∈ V0 of positive length determines a hyperplane x⊥ ⊂ V0R. For

each m ∈ Q>0 and λ ∈ V ∨0Z/V0Z define a formal sum of hyperplanes

H(m,λ) =
∑

x∈λ+V0Z
Q(x)=m

x⊥,

in V0R, and set
H(f0) =

∑
m∈Q>0

λ∈V ∨0Z/V0Z

c0(−m,λ) ·H(m,λ).

Definition 5.3.1. — A Weyl chamber for f0 is a connected component

(5.3.5) W ⊂ LightCone◦(V0R) \ Support(H(f0)).

Let N be the positive integer determined by NZ = [hVZ, I ∩ hVZ], and note
that `/N ∈ hV ∨Z . Set

(5.3.6) A =
∏

x∈Z/NZ
x 6=0

(
1− e2πix/N

)c(0,xh−1`/N)

.

Tautologically, every fiber of ωD◦ is a line in VC, and each such fiber pairs nontriv-
ially with the isotropic line IC. Using the nondegenerate pairing

[ ., . ] : IC ⊗ ωD◦ → OD◦ ,
the Borcherds product Ψh(f) and the isotropic vector ` ∈ I determine a meromorphic
function [`⊗c(0,0)/2,Ψh(f)] on D◦. It is this function that Borcherds expresses as an
infinite product.

Theorem 5.3.2 (Borcherds [5, 8]). — For each Weyl chamber W there is a vector % ∈ V0

with the following property: For all

v ∈ V0R + i ·W ⊂ V0C

with |Q(Im(v))| � 0, the value of [`⊗c(0,0)/2,Ψh(f)] at the isotropic line

`∗ + v − [`∗, v]`−Q(v)` ∈ D◦

is given by the (convergent) infinite product

κA · e2πi[%,v]
∏
λ∈V ∨0Z

[λ,W ]>0

∏
µ∈hV ∨Z /hVZ

µ∼λ

(
1− ζµ · e2πi[λ,v]

)c(−Q(λ),h−1µ)

for some κ ∈ C of absolute value 1. Here, recalling the vector k ∈ hV ∨Z appearing in
(5.3.1), we have set

ζµ = e2πi[µ,k].
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Remark 5.3.3. — The vector % ∈ V0 of the theorem is theWeyl vector. It is completely
determined by the weakly holomorphic form f0 and the choice of Weyl chamber W .

5.4. The product expansion II. — We now connect the product expansion of Theo-
rem 5.3.2 with the algebraic theory of q-expansions from § 4.6. Throughout § 5.4 we
assume that K is neat.

The theory of § 4.6 applies to sections of the algebraic line bundle ω/C
on ShK(G,D)/C and at the moment we only know the algebraicity of Borcherds
products in special cases (Proposition 5.2.3). Throughout § 5.4, we simply assume
that our given Borcherds product Ψ(f) is algebraic.

Begin by choosing a cusp label representative

Φ = (P,D◦, h)

for which P is the stabilizer of an isotropic line I. Let ` ∈ I ∩ hVZ be a generator, let
`∗ be as in (5.3.1), and let I∗ = Q`∗.

Recall from the discussion surrounding (4.6.6) that the choice of I∗ determines
morphisms of mixed Shimura data

(QΦ,DΦ)
νΦ

// (Gm,H0),

s
uu

where we specify that νΦ : DΦ → H0 sends the connected component D◦Φ ⊂ DΦ

containing D◦ to the 2πi ∈ H0 fixed at the beginning of § 5.
Set V0 = I⊥/I as before. The connected component (5.3.3) was chosen in such a

way that the isomorphism

V0C
⊗`−−→ V0C ⊗ I

(4.4.2)−−−−→ UΦ(C)

identifies
V0R + i · LightCone◦(V0R) ∼= UΦ(R) + CΦ,

where CΦ ⊂ UΦ(R)(−1) is the open convex cone (2.4.1). Equivalently, the isomor-
phism

(5.4.1) V0R
⊗(−2πi)−1`−−−−−−−−→ V0R ⊗ I(−1) ∼= UΦ(R)(−1)

(note the minus sign!) identifies LightCone◦(V0R) ∼= CΦ.

Lemma 5.4.1. — Fix a Weyl chamber W as in (5.3.5). After possibly shrinking K,
there exists a K-admissible, complete cone decomposition Σ of (G,D) having the
no self-intersection property, and such that the following holds: there is some top-
dimensional rational polyhedral cone σ ∈ ΣΦ whose interior is identified with an open
subset of W under the above isomorphism

CΦ
∼= LightCone◦(V0R).
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Proof. — This is an elementary exercise. Using Remark 2.6.1, we first shrink K in
order to find some K-admissible, complete cone decomposition Σ of (G,D) having
the no self-intersection property. We may furthermore choose Σ to be smooth, and
applying barycentric subdivision [47, § 5.24] finitely many times yields a refinement
of Σ with the desired properties.

For the remainder of § 5.4 we assume that K, Σ, W , and σ ⊂ UΦ(R)(−1) are as in
Lemma 5.4.1. As in § 4.6, the line bundle ω on ShK(G,D) has a canonical extension
to ShK(G,D,Σ), and we view Ψ(f) as a rational section over ShK(G,D,Σ)/C.

The top-dimensional cone σ singles out a 0-dimensional stratum

Z
(Φ,σ)
K (G,D,Σ) ⊂ ShK(G,D,Σ)

as in § 2.6. Completing along this stratum, Proposition 4.6.2 provides us with a for-
mally étale surjection⊔

a∈Q×>0\A
×
f /K0

Spf
(
C[[qα]]α∈Γ∨Φ(1)

〈α,σ〉≥0

)
→ ŜhK(G,D,Σ)/C,

where K0 ⊂ A×f is chosen small enough that the section (4.6.6) satisfies s(K0) ⊂ KΦ.
As in (4.6.10), the Borcherds product Ψ(f) and the isotropic vector ` determine a
rational formal function [`⊗c(0,0)/2,Ψ(f)] on the target, which pulls back to a rational
formal function

(5.4.2) FJ(a)(Ψ(f)) ∈ Frac
(
C[[qα]]α∈Γ∨Φ(1)

〈α,σ〉≥0

)
for every index a. The following proposition explains how this formal q-expansion
varies with a.

Proposition 5.4.2. — Let F ⊂ C be the abelian extension of Q determined by

rec : Q×>0\A
×
f /K0

∼= Gal(F/Q).

The rational formal function (5.4.2) has the form

(5.4.3) (2πi)c(0,0)/2 · FJ(a)(Ψ(f)) = κ(a)Arec(a)qα(%) · BP(f)rec(a).

Here κ(a) ∈ C is some constant of absolute value 1, and the power series

BP(f) ∈ OF [[qα]]α∈Γ∨Φ(1)
〈α,σ〉≥0

(Borcherds Product) is the infinite product

BP(f) =
∏
λ∈V ∨0Z

[λ,W ]>0

∏
µ∈hV ∨Z /hVZ

µ∼λ

(
1− ζµ · qα(λ)

)c(−Q(λ),h−1µ)

.
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The constant A and the roots of unity ζµ have the same meaning as in Theorem 5.3.2,
and these constants lie in OF . The meaning of qα(λ) is as follows: dualizing the iso-
morphism (5.4.1) yields an isomorphism

(5.4.4) V0R
λ7→α(λ)−−−−−→ UΦ(R)∨(1),

and the image of each λ ∈ V0R appearing in the product satisfies

α(λ) ∈ Γ∨Φ(1).

The condition [λ,W ] > 0 implies 〈α(λ), σ〉 > 0. Of course qα(%) has the same meaning,
with % ∈ V0 the Weyl vector of Theorem 5.3.2. Again α(%) ∈ Γ∨Φ(1), but need not satisfy
the positivity condition with respect to σ.

Proof. — First we address the field of definition of the constants A and ζµ.

Lemma 5.4.3. — The constant A of (5.3.6) lies in OF , and ζµ ∈ OF for every µ

appearing in the above product.

Proof. — Suppose a ∈ K0. It follows from the discussion preceeding (4.1.5)
that s(a) ∈ hKh−1 stabilizes the lattice hVZ, and acts trivially on the quotient
hV ∨Z /hVZ. In particular, s(a) acts trivially on the vector `/N ∈ hV ∨Z /hVZ. On the
other hand, by its very definition (4.6.6) we know that s(a) acts by a on this vector.
It follows that (a − 1)`/N ∈ hVZ, from which we deduce first a − 1 ∈ N Ẑ, and then
Arec(a) = A.

Suppose µ ∈ hV ∨Z /hVZ satisfies µ ∼ λ for some λ ∈ V ∨0Z. By (5.3.4) we may fix
some µ̃ ∈ I⊥ ∩ (µ+ hVZ). This allows us to compute, using (5.3.1),

ζrec(a)
µ = e2πi[µ̃,ak] = e2πi[µ̃,a`∗]e2πiQ(k)·[µ̃,a`]

= e2πi[µ̃,s(a)−1`∗]e2πiQ(k)·[µ̃,s(a)`].

As [µ̃, `] = 0, we have [µ̃, s(a)`] = 0 = [µ̃, s(a)−1`]. Thus

ζrec(a)
µ = e2πi[µ̃,s(a)−1`∗]e2πiQ(k)·[µ̃,s(a)−1`] = e2πi[µ̃,s(a)−1k] = e2πi[s(a)µ̃,k].

As above, s(a) acts trivially on hV ∨Z /hVZ, and we conclude that

ζrec(a)
µ = e2πi[µ̃,k] = ζµ.

Suppose a ∈ A×f . The image of the discrete group

Γ
(a)
Φ = s(a)KΦs(a)−1 ∩QΦ(Q)◦

under νΦ : QΦ → Gm is contained in Ẑ× ∩ Q×>0 = {1}, and hence Γ
(a)
Φ is contained

in ker(νΦ) = UΦ. Recalling that the conjugation action of QΦ on UΦ is by νΦ, we find
that

Γ
(a)
Φ = rat(νΦ(s(a))) ·

(
KΦ ∩ UΦ(Q)

)
= rat(a) · ΓΦ

as lattices in UΦ(Q).
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Recalling (4.6.9) and (2.6.4), consider the following commutative diagram of com-
plex analytic spaces

(5.4.5)
⊔
a Γ

(a)
Φ \D◦ //

∼= z 7→(z,s(a))

��

⊔
a TΦ(C)

∼=
��

⊔
a ΓΦ(−1)⊗ C×

UKΦ0
(QΦ,DΦ) //

��

ShKΦ0
(QΦ,DΦ)(C)

��

UKΦ
(QΦ,DΦ) //

(z,g) 7→(z,gh)

��

ShKΦ
(QΦ,DΦ)(C)

ShK(G,D)(C),

in which all horizontal arrows are open immersions, all vertical arrows are local isomor-
phisms on the source, and the disjoint unions are over a set of coset representatives
a ∈ Q×>0\A

×
f /K0. The dotted arrow is, by definition, the unique open immersion

making the upper left square commute.

Lemma 5.4.4. — Fix a λ ∈ V0R whose image under (5.4.4) satisfies

α(λ) ∈ Γ∨Φ(1),

and suppose
v ∈ V0R + i · LightCone◦(V0R).

If we restrict the character
qα(λ) : TΦ(C)→ C×

to a function Γ
(a)
Φ \D◦ → C× via the open immersion in the top row of (5.4.5), its

value at the isotropic vector

`∗ + v − [`∗, v]`−Q(v)` ∈ D◦

is e2πi[λ,v]/rat(a).

Proof. — The proof is a (rather tedious) exercise in tracing through the defini-
tions. The dotted arrow in the diagram above is induced by the open immersion
D◦ ⊂ UΦ(C)D◦ = D◦Φ and the isomorphisms

(5.4.6)
⊔
a

Γ
(a)
Φ \D

◦
Φ
∼= ShKΦ0

(QΦ,DΦ)(C) ∼=
⊔
a

TΦ(C).

The second isomorphism is the trivialization of the TΦ(C)-torsor

(5.4.7) ShKΦ0
(QΦ,DΦ)(C)→ ShK0

(Gm,H0)(C)

induced by the section s : (Gm,H0)→ (QΦ,DΦ), as in the proof of Proposition 4.6.2.
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Tracing through the proof of Proposition 2.3.1, this isomorphism is obtained by
combining the isomorphism

(5.4.8) UΦ(C)/ΓΦ
∼= ΓΦ(−1)⊗ C/Z(1)

id⊗exp−−−−→ ΓΦ(−1)⊗ C× = TΦ(C)

with the isomorphism

(5.4.9) UΦ(C)/ΓΦ
−rat(a)−−−−−→ UΦ(C)/Γ

(a)
Φ
∼= Γ

(a)
Φ \D

◦
Φ

obtained by trivializing Γ
(a)
Φ \D◦Φ as a UΦ(C)/Γ

(a)
Φ -torsor using the point `∗ ∈ D◦Φ.

Note the minus sign in (5.4.9), which arises from the minus sign in the isomorphism
(2.3.5) used to define the torsor structure on (5.4.7).

Denote by β the composition

V0R
⊗`−−→ V0R ⊗ I

(4.4.2)−−−−→ UΦ(R).

It is related to α(λ) ∈ UΦ(R)∨(1) by

〈α(λ), β(v)〉 = −2πi · [λ, v],

for all v ∈ V0R. Extending β complex linearly yields a commutative diagram

TΦ(C)

(5.4.6)V0C
β

// UΦ(C)

(5.4.9) ((

(5.4.8)
66

Γ
(a)
Φ \D◦Φ,

and going all the way back to the definitions preceding (2.3.6), we find that the
pullback of qα(λ) : TΦ(C)→ C× to a function on V0C is given by

qα(λ)(v) = e−2πi[λ,v].

On the other hand, the composition along the bottom row sends
v

−rat(a)
∈ V0C

to the point obtained by translating `∗ ∈ D◦Φ by the vector v⊗ ` ∈ V0C⊗ I, viewed as
an element of UΦ(C) using (4.4.2). This translate is

`∗ + v − [`∗, v]`−Q(v)` ∈ D◦Φ,

and hence the value of qα(λ) at this point is

qα(λ)

(
v

−rat(a)

)
= e2πi[λ,v]/rat(a).
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Lemma 5.4.5. — Suppose v ∈ V0R + i · W with |Q(Im(v))| � 0. The value of the
meromorphic function

rat(a)c(0,0)/2 · [`c(0,0)/2,Ψs(a)h(f)]

at the isotropic line `∗ + v − [`∗, v]`−Q(v)` ∈ D◦ is

A
rec(a)
Φ · e2πi[%,v]/rat(a) ×

∏
λ∈V ∨0Z

[λ,W ]>0

∏
µ∈hV ∨Z /hVZ

µ∼λ

(
1− ζrec(a)

µ · e2πi[λ,v]/rat(a)
)c(−Q(λ),h−1µ)

,

up to scaling by a complex number of absolute value 1.

Proof. — The proof amounts to carefully keeping track of how Theorem 5.3.2 changes
when Ψh(f) is replaced by Ψs(a)h(f). The main source of confusion is that the vectors
` and `∗ appearing in Theorem 5.3.2 were chosen to have nice properties with respect
to the lattice hVZ, and so we must first pick new isotropic vectors `(a) and `(a)

∗ having
similarly nice properties with respect to s(a)hVZ.

Set `(a) = rat(a)`. This is a generator of

I ∩ s(a)hVZ = rat(a) · (I ∩ hVZ).

Now choose a k(a) ∈ s(a)hV ∨Z such that [`(a), k(a)] = 1, and let I(a)
∗ ⊂ V be the span

of the isotropic vector
`
(a)
∗ = k(a) −Q(k(a))`(a).

Using the fact that QΦ acts trivially on the quotient I⊥/I, it is easy to see that
the lattice

V
(a)
0Z = (I⊥ ∩ s(a)hVZ)/(I ∩ s(a)hVZ) ⊂ I⊥/I

is equal, as a subset of I⊥/I, to the lattice V0Z of (5.3.2). Thus replacing hVZ
by s(a)hVZ has no effect on the construction of the modular form f0, or on the
formation of Weyl chambers or their corresponding Weyl vectors.

Similarly, as QΦ stabilizes I, the ideal NZ = [hVZ, I ∩ hVZ] is unchanged if h is
replaced by s(a)h. Replacing h by s(a)h in the definition of A now determines a new
constant

A(a) =
∏

x∈Z/NZ
x 6=0

(
1− e2πix/N

)c(0,x·h−1s(a)−1`(a)/N)

=
∏

x∈Z/NZ
x 6=0

(
1− e2πix/N

)c(0,x·unit(a)−1h−1`/N)

=
∏

x∈Z/NZ
x 6=0

(
1− e2πix·unit(a)/N

)c(0,xh−1`/N)

= Arec(a).
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Citing Theorem 5.3.2 with h replaced by s(a)h everywhere, and using the isomor-
phism

s(a)hV ∨Z /s(a)hVZ ∼= hV ∨Z /hVZ

induced by the action of s(a)−1, we find that the value of

(5.4.10) [(`(a))c(0,0)/2,Ψs(a)h(f)] = rat(a)c(0,0)/2[`c(0,0)/2,Ψs(a)h(f)]

at the isotropic line

`
(a)
∗ + v − [`

(a)
∗ , v]`(a) −Q(v)`(a) ∈ D◦

is given by the infinite product

A
(a)
Φ · e2πi[%,v]

∏
λ∈V ∨0Z

[λ,W ]>0

∏
µ∈hV ∨Z /hVZ

µ∼λ

(
1− e2πi[s(a)µ,k(a)] · e2πi[λ,v]

)c(−Q(λ),h−1µ)
.

Now make a change of variables. If we set v(a) = `∗ − rat(a)`
(a)
∗ ∈ V0, we find that

the value of (5.4.10) at the isotropic line

`∗+v− [`∗, v]`−Q(v)` = `
(a)
∗ +

(v + v(a)

rat(a)

)
−
[
`
(a)
∗ ,
(v + v(a)

rat(a)

)]
`(a)−Q

(v + v(a)

rat(a)

)
`(a)

is

A
(a)
Φ · e2πi[%,v+v(a)]/rat(a)

×
∏
λ∈V ∨0Z

[λ,W ]>0

∏
µ∈hV ∨Z /hVZ

µ∼λ

(
1− e2πi[s(a)µ,k(a)]e2πi[λ,v+v(a)]/rat(a)

)c(−Q(λ),h−1µ)

.

Assuming that µ ∼ λ, we may lift λ ∈ I⊥/I to µ̃ ∈ I⊥∩(µ+hVZ). As s(a) ∈ QΦ(Af )

acts trivially on (I⊥/I)⊗ Af , we have

[λ, v(a)] = [λ, s(a)−1v(a)] = [µ̃, s(a)−1v(a)].

Using (4.6.6) and the definition of v(a), we find

rat(a)−1s(a)−1v(a) = unit(a)`∗ − s(a)−1`
(a)
∗ .

Combining these relations with [µ̃, `∗] = [µ̃, k] and [µ̃, `
(a)
∗ ] = [µ̃, k(a)] shows that

[λ, v(a)]

rat(a)
= [µ̃,unit(a)k − s(a)−1k(a)].

As unit(a)k − s(a−1)k(a) ∈ hV ∨
Ẑ

and µ̃− µ ∈ hVZ, we deduce the equality

[λ, v(a)]

rat(a)
= [µ,unit(a)k − s(a)−1k(a)]
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in Q/Z ∼= Q̂/Ẑ. Thus

e2πi[s(a)µ,k(a)]e2πi[λ,v+v(a)]/rat(a) = e2πi[µ,s(a)−1k(a)]e2πi[λ,v+v(a)]/rat(a)

= e2πi[µ,unit(a)k]e2πi[λ,v]/rat(a)

= ζunit(a)
µ · e2πi[λ,v]/rat(a).

Finally, the equality

e2πi[%,v+v(a)]/rat(a) = e2πi[%,v]/rat(a)

holds up to a root of unity, simply because [%, v(a)] ∈ Q.

Working on one connected component

Γ
(a)
Φ \D

◦ ↪→ UKΦ0
(QΦ,DΦ),

the pullback of Ψ(f) is Ψs(a)h(f). The pullback of the section `an of the constant
vector bundle Ian

dR determined by IC is, by the definition preceding Proposition 4.6.1,
the constant section determined by

rat(a)

2πi
· ` ∈ IC.

Thus on Γ
(a)
Φ \D◦ we have the equality of meromorphic functions

(2πi)c(0,0)/2 · [`⊗c(0,0)/2,Ψ(f)] = rat(a)c(0,0)/2 · [`⊗c(0,0)/2,Ψs(a)h(f)].

Combining the two lemmas above, we see that the value of this meromorphic function
at the isotropic line `∗ + v − [`∗, v]`−Q(v)` ∈ D◦ is

A
rec(a)
Φ · qα(%) ·

∏
λ∈V ∨0Z

[λ,W ]>0

∏
µ∈hV ∨Z /hVZ

µ∼λ

(
1− ζrec(a)

µ · qα(λ)

)c(−Q(λ),h−1µ)

,

up to scaling by a complex number of absolute value 1. The stated q-expansion (5.4.3)
follows from this.

It remains to prove the integrality conditions α(λ) ∈ Γ∨Φ(1). A priori, every α(λ)

appearing in the product above (including λ = %) lies in UΦ(Q)∨(1). However, as the
product itself is invariant under the action of

Γ
(a)
Φ = rat(a) · ΓΦ ⊂ UΦ(Q)

on D◦, the uniqueness of the q-expansion implies that only those terms

(5.4.11) qα(λ) = e2πi[λ,v]/rat(a)

that are themselves invariant under Γ
(a)
Φ can appear. Pullback by the action of

u ∈ UΦ(Q) sends
qα(λ) 7→ qα(λ) · e〈α(λ),u〉/rat(a),

where 〈−,−〉 : UΦ(Q)∨(1)⊗ UΦ(Q)→ Q(1) is the tautological pairing, and it follows
that the invariance of (5.4.11) under Γ

(a)
Φ is equivalent to the integrality condition

α(λ) ∈ Γ∨Φ(1).
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This completes the proof of Proposition 5.4.2.

6. Integral models

As in § 5, we keep VZ ⊂ V of signature (n, 2) with n ≥ 1. Fix a prime p at which
VZ is maximal in the sense of § 1.1, and assume that the compact open subgroup
(1.1.2) factors as K = KpK

p with p-component

Kp = G(Qp) ∩ C(VZp)×.

Under this assumption, we recall from [1, 2] the construction of an integral model

SK(G,D)→ Spec(Z(p))

of ShK(G,D), and extensions to this model of the line bundle of weight one modular
forms and the special divisors. In those references it is assumed that VZ is maximal
at every prime, but nearly everything extends verbatim to the more general case
considered here. Indeed, one only has to be careful about the definitions of special
divisors in § 6.4. Once the correct definitions are formulated the proofs of [loc. cit.]
go through without significant change, and we simply give the appropriate citations
without further comment.

The main new result is the pullback formula of Proposition 6.6.3, which describes
how special divisors restrict under embeddings between orthogonal Shimura varieties
of different dimension. This will be a crucial ingredient in our algebraic variant of the
embedding trick of Borcherds.

6.1. Almost self-dual lattices. — The motivation for the following definition will be-
come clear in § 6.3.

Definition 6.1.1. — We say that VZp is almost self-dual if it has one of the following
(mutually exclusive) properties:

— VZp is self-dual;
— p = 2, dimQ(V ) is odd, and [V ∨Z2

: VZ2
] is not divisible by 4.

Remark 6.1.2. — Almost self-duality is equivalent to the smoothness of the quadric
over Zp parameterizing isotropic lines in VZp . Here, an isotropic line in VR for an
Zp-algebra R is a local direct summand I ⊂ VR of rank 1 that is locally generated by
an element v ∈ I satisfying Q(v) = 0.

Recall from § 4.3 that G acts on the Q-vector space H = C(V ), and that one may
choose a Z-valued symplectic form ψ on

HZ = C(VZ)

in such a way that the action of G induces a Hodge embedding into the Siegel Shimura
datum determined by (H,ψ). The following lemma will be used in § 8 to choose ψ in
a particularly nice way.
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Lemma 6.1.3. — Assume that V has Witt index 2 (this is automatic if n ≥ 5). If
VZp is almost self-dual, then we may choose ψ as above in such a way that HZp is
self-dual.

Proof. — Choose any isotropic line I ⊂ V , and let ` ∈ I∩VZ be a Z-module generator.
Let N be the positive integer defined by

NZ = [VZ, `].

On the one hand, `/N ∈ V ∨Z /VZ is isotropic under the Q/Z-valued quadratic form
induced by Q. On the other hand, maximality of VZp implies that V ∨Zp/VZp has no
nonzero isotropic vectors. Thus `/N ∈ VZp , and so p - N .

It follows that there is some k ∈ VZ such that p - [k, `], and from this it is easy to
see that there exists a vector v ∈ Zk + Z` such that Q(v) is negative and prime to p.

The Q-span of k, ` ∈ V is a hyperbolic plane over Q, and the Zp-span of k, ` ∈ VZp is
an integral hyperbolic plane over Zp. It follows that the orthogonal complement

W = (Qk + Q`)⊥ ⊂ V

has Witt index 1, and that the Z-lattice WZ = W ∩ VZ satisfies

VZp = Zpk ⊕ Zp`⊕WZp .

In particular WZp is again maximal. Repeating the argument above with VZ replaced
by WZ, we find another vector w ∈ VZ with Q(w) negative and prime to p, and
[v, w] = 0.

We have now constructed an element δ = vw ∈ C(VZ) such that

δ2 = −Q(v)Q(w) ∈ Z×(p).

Set ψ(x, y) = Trd(xδy∗), exactly as in § 4.3.
It remains to prove that HZp is self-dual. We will use the decomposition

HZp = H+
Zp ⊕H

−
Zp

induced by the decomposition C(VZp) = C+(VZp)⊕C−(VZp) into even and odd parts.
It is not hard to see that these direct summands of HZp are orthogonal to each other
under ψ, and so it suffices to prove the self-duality of each summand individually.

According to [13, § C.2], the almost self-duality of VZp implies that the even Clifford
algebra C+(VZp) is an Azumaya algebra over its center, and this center is itself a finite
étale Zp-algebra. Equivalently, C+(VZp) is isomorphic étale locally on Spec(Zp) to a
finite product of matrix algebras. It follows from this that

C+(VZp)⊗ C+(VZp)
x⊗y 7→Trd(xy)−−−−−−−−−→ Zp

is a perfect bilinear pairing. The self-duality of H+
Zp under ψ follows easily from this.

The self-duality of H−Zp then follows using the isomorphism

H−Zp
∼= H+

Zp

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



240 BENJAMIN HOWARD & KEERTHI MADAPUSI PERA

given by right multiplication by the v ∈ C(VZ) chosen above, and the relation

ψ(xv, yv) = −Q(v) · ψ(x, y)

for all x, y ∈ H.

6.2. Isometric embeddings. — We will repeatedly find ourselves in the following sit-
uation. Suppose we have another quadratic space (V �, Q�) of signature (n�, 2), and
an isometric embedding V ↪→ V �. This induces a morphism of Clifford algebras
C(V )→ C(V �), which induces a morphism of GSpin Shimura data

(G,D)→ (G�,D�).

Just as we assume for (V,Q), suppose we are given a Z-lattice V �Z ⊂ V � on which
Q� is integer valued, and which is maximal at p. Let

K� = K�p ·K�,p ⊂ G�(Af ) ∩ C(V �Ẑ )×

be a compact open subgroup with p-component

K�p = G�(Qp) ∩ C(V �Zp)×.

Assume that VZ ⊂ V �Z and K ⊂ K�, so that we have a finite and unramified morphism

(6.2.1) j : ShK(G,D)→ ShK�(G
�,D�)

of canonical models. Our choices imply (using the assumption that VZp is maximal)
that VZp = VQp ∩ V �Zp and Kp = K�p ∩G(Qp).

Lemma 6.2.1. — It is possible to choose (V �, Q�) and V �Z as above in such a way
that V �Z is self-dual. Moreover, we can ensure that V ⊂ V � has codimension at most 2

if n is even, and has codimension at most 3 if n is odd.

Proof. — An exercise in the classification of quadratic spaces over Q shows that we
may choose a positive definite quadratic space W in such a way that the orthogonal
direct sum V � = V ⊕W admits a self-dual lattice locally at every finite prime (for
example, we may arrange for V � to be a sum of hyperbolic planes locally at every finite
prime). From Eichler’s theorem that any two maximal lattices in a Qp-quadratic space
are isometric [16, Theorem 8.8], it follows that any maximal lattice in V � is self-dual.
Enlarging VZ to a maximal lattice V �Z ⊂ V � proves the first claim.

A more careful analysis, once again using the classification of quadratic spaces, also
yields the second claim.

6.3. Definition of the integral model. — We now define our integral model of the
Shimura variety ShK(G,D).

Assume first that VZp is almost self-dual. This implies, by [13, § C.4], that

G = GSpin(VZ(p)
)

is a reductive group scheme over Z(p), and hence that Kp = G(Zp) is a hyperspecial
compact open subgroup ofG(Qp). Thus ShK(G,D) admits a canonical smooth integral
model SK(G,D) over Z(p) by the results of Kisin [31] (and [30] if p = 2).
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Remark 6.3.1. — The notion of almost self-duality does not appear anywhere in our
main references [39, 1, 2] on integral models of ShK(G,D). This is due to an oversight
on the authors’ part: we did not realize that one could obtain smooth integral models
even if VZp fails to be self-dual.

According to [30, Proposition 3.7] there is a functor

(6.3.1) N 7→ (NdR, F
•NdR)

from representations G → GL(N) on free Z(p)-modules of finite rank to filtered vectors
bundles on SK(G,D), restricting to the functor (3.3.2) in the generic fiber. (5)

Applying this functor to the representation VZ(p)
yields a filtered vector bundle

(VdR, F
•VdR). Applying the functor to the representation HZ(p)

= C(VZ(p)
) yields

a filtered vector bundle (HdR, F
•HdR). The inclusion (4.1.2) restricts to VZ(p)

→
End(HZ(p)

), which determines an injection

VdR → End(HdR)

onto a local direct summand.
For any local section x of VdR, the composition x ◦ x is a local section of the

subsheaf OSK(G,D) ⊂ End(HdR). This defines a quadratic form

Q : VdR → OSK(G,D),

with an associated bilinear form

[−,−] : VdR ⊗ VdR → OSK(G,D)

related as in (1.1.1). The filtration on VdR has the form

0 = F 2VdR ⊂ F 1VdR ⊂ F 0VdR ⊂ F−1VdR = VdR,

in which F 1VdR is an isotropic line, and F 0VdR = (F 1VdR)⊥. As in § 4.2, the line
bundle of weight one modular forms on SK(G,D) is

ω = F 1VdR.

If VZp is not almost self-dual then choose auxiliary data (V �, Q�) as in § 6.2 in such
a way that V �Zp is almost self-dual. This determines a commutative diagram

(6.3.2) SK(G,D)

��

ShK(G,D)

��

oo

SK�(G�,D�) ShK�(G
�,D�),oo

in which the lower left corner is the canonical integral model of ShK�(G
�,D�), and

the upper right corner is defined as its normalization in ShK(G,D), in the sense of
[2, Definition 4.2.1]. By construction, SK(G,D) is a normal Deligne-Mumford stack,
flat and of finite type over Z(p).

(5) There is also a weight filtration on NdR, but, as noted in Remark 3.4.2, it is not very interesting
over the pure Shimura variety.
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Define the line bundle of weight one modular forms on SK(G,D) by

(6.3.3) ω = ω
�|SK(G,D)

,

where ω
� is the line bundle on SK�(G�,D�) constructed in the almost self-dual case

above. The line bundle (6.3.3) extends the line bundle of the same name previously
constructed on the generic fiber.

The following is [2, Proposition 4.4.1].

Proposition 6.3.2. — The Z(p)-stack SK(G,D) and the line bundle ω are indepen-
dent of the auxiliary choices of (V �, Q�), V �

Ẑ
, and K� used in their construction,

and the Kuga-Satake abelian scheme of § 4.3 extends uniquely to an abelian scheme
A → SK(G,D).

The following is a restatement of the main result of [39].

Proposition 6.3.3. — If p > 2 and p2 does not divide [V ∨Z : VZ], then SK(G,D) is
regular.

Remark 6.3.4. — Our SK(G,D) is not quite the same as the integral model of [1].
That integral model is obtained from SK(G,D) by deleting certain closed substacks
supported in characteristics p for which p2 divides [V ∨Z : VZ]. The point of deleting
such substacks is that the vector bundle VdR on ShK(G,D) of § 4.2 then extends
canonically to the remaining open substack. In the present work, as in [2], the only
automorphic vector bundle required on SK(G,D) is the line bundle of modular forms ω

just constructed; we have no need of an extension of VdR to SK(G,D).

6.4. Special divisors. — For m ∈ Q>0 and µ ∈ V ∨Z /VZ there is a Cartier divisor
Z(m,µ) on SK(G,D), defined in [1, 2] in the case where VZ is maximal. As we now
assume only the weaker hypothesis that VZ is maximal at p, the definition requires
minor adjustment.

We first define the divisors in the generic fiber, where they were originally con-
structed by Kudla [32]. Our construction is different, and has a more moduli-theoretic
flavor.

By the theory of automorphic vector bundles described in § 3, the G-equivariant
inclusion (4.1.2) determines an inclusion

(6.4.1) VdR ⊂ End(HdR)

of vector bundles on ShK(G,D), respecting the Hodge filtrations. Recall from § 4.3
that the filtered vector bundle HdR is canonically identified with the first relative de
Rham homology of the Kuga-Satake abelian scheme

π : A→ ShK(G,D).

The compact open subgroup K ⊂ G(Af ) appears as a quotient of the étale fun-
damental group of ShK(G,D), and hence representations of K give rise to étale local
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systems. In particular, for any prime ` the Z`-lattice HZ` determines an étale sheaf
of Z`-modules H` on ShK(G,D). This is just the relative `-adic Tate module

H`
∼= Hom(R1πet,∗Z`,Z`)

of the Kuga-Satake abelian scheme.
As in the discussion preceding (4.1.5), K also acts on both

VZ` = VZ ⊗ Z` and V ∨Z` = V ∨Z ⊗ Z`,

and the induced action on the quotient V ∨Z`/VZ` is trivial. These representations of K
determine étale sheaves of Z`-modules V` ⊂ V ∨` , along with an inclusion of étale
Z`-sheaves

(6.4.2) V` ⊂ End(H`).

and a canonical trivialization V ∨` /V`
∼= V ∨Z`/VZ` . In particular, each µ` ∈ V ∨Z`/VZ`

determines a subsheaf of sets

(6.4.3) µ` + V` ⊂ V` ⊗Q`.

Suppose we are given a Q-scheme S and a morphism S → ShK(G,D). Denote
byAS → S the pullback of the Kuga-Satake abelian scheme. A quasi-endomorphism (6)

x ∈ End(AS)⊗Q is special if
— its de Rham realization

xdR ∈ H0(S,End(HdR)|S)

lies in the subsheaf VdR|S , and
— its `-adic realization

x` ∈ H0(S,End(H`)|S ⊗Q`)

lies in the subsheaf V`|S ⊗Q` for every prime `.
The space of all special quasi-endomorphisms of AS is a Q-subspace

V (AS) ⊂ End(AS)⊗Q.

Under the inclusion V ⊂ End(H), the quadratic form on V becomes Q(x) = x ◦ x.
Similarly, the square of any x ∈ V (AS) lies in Q ⊂ End(AS) ⊗ Q, and V (AS) is
endowed with the positive definite quadratic form Q(x) = x ◦x. For each µ ∈ V ∨Z /VZ,
we now define

(6.4.4) Vµ(AS) ⊂ V (AS)

to be the set of all special quasi-endomorphisms whose `-adic realization lies in the
subsheaf (6.4.3) for every prime `, and set

Z(m,µ)(S)
def
= {x ∈ Vµ(AS) : Q(x) = m}.

(6) A quasi-endomorphism should really be defined as global section of the Zariski sheaf End(AS)⊗Q
on S. If S is not of finite type over Q, the space of such global sections can be strictly larger
than End(AS)⊗ Q. For simplicity of notation, we ignore this minor technical point.
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We now explain how to extend this definition to the integral model.
First assume that VZ is self-dual at p. As in the discussion following (6.3.1), the

inclusion of vector bundles (6.4.1) has a canonical extension to the integral model
SK(G,D). Directly from the definitions, so does the inclusion of étale Q`-sheaves
(6.4.2) for any ` 6= p. As a substitute for p-adic étale cohomology, we use the inclusion

(6.4.5) Vcrys ⊂ End(Hcrys)

of locally free crystals on SK(G,D)/Fp as in [2, Proposition 4.2.5]. There is a canonical
isomorphism

Hcrys
∼= Hom(R1πcrys,∗Ocrys

AFp/Zp
,Ocrys
MFp/Zp

)

between Hcrys and the first relative crystalline homology of the reduction of the
Kuga-Satake abelian scheme π : A → SK(G,D) of Proposition 6.3.2.

Still assuming that VZ is self-dual at p, suppose we are given a Z(p)-scheme S and
a morphism S → SK(G,D), and let AS be the pullback of the Kuga-Satake abelian
scheme. We call x ∈ End(AS)⊗ Z(p) special if

— its de Rham realization

xdR ∈ H0(S,End(HdR)|S)

lies in the subsheaf VdR|S ,
— its `-adic realization

x` ∈ H0(S,End(H`)|S ⊗Q`)

lies in the subsheaf V`|S ⊗Q` for every prime ` 6= p,
— its p-adic realization

xp ∈ H0(SQ,End(Hp)|SQ
)

over the generic fiber SQ lies in the subsheaf Vp|SQ
, and

— its crystalline realization

xcrys ∈ H0(SFp ,End(Hcrys)|SFp
)

over the special fiber SFp lies in the subcrystal Vcrys|SFp
.

The space of all such x ∈ End(AS)⊗ Z(p) is denoted

V (AS)Z(p)
⊂ End(AS)⊗ Z(p),

and tensoring with Q defines the subspace of all special quasi-endomorphisms

V (AS) ⊂ End(AS)⊗Q.

It endowed with a positive definite quadratic form Q(x) = x ◦x exactly as above. For
any µ ∈ V ∨Z /VZ we define

(6.4.6) Vµ(AS) ⊂ V (AS)Z(p)

as the subset of elements whose `-adic realization lies in (6.4.3) for every prime ` 6= p.
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Now consider the general case in which VZ ⊂ V is only assumed to be maximal
at p. In this generality we still have the étale Q`-sheaves (6.4.2) for ` 6= p. However,
there is no adequate theory of automorphic vector bundles or crystals on SK(G,D);
compare with Remark 6.3.4. In particular, we have no adequate substitute for the
sheaves in (6.4.5).

So that we may apply the results of [1, 2], enlarge VZ to a lattice V ′Z ⊂ V that is
maximal at every prime. This choice determines a second Z-lattice H ′Z ⊂ HQ, and
hence a second Kuga-Satake abelian scheme

A′ → SK(G,D)

endowed with an isogeny A → A′ of degree prime to p. Choose a larger quadratic
space V � as in § 6.2 admitting a maximal lattice V �Z ⊂ V � that is self-dual at p, and
an isometric embedding V ′Z → V �Z .

By the very construction of the integral model, there is a finite morphism

SK(G,D)→ SK�(G�,D�).

According to [1, Proposition 2.5.1], the abelian schemes A′ and

A� → SK�(G�,D�)

carry right actions of the integral Clifford algebras C(V ′Z) and C(V �Z ), respectively,
and are related by a canonical isomorphism

(6.4.7) A′ ⊗C(V ′Z ) C(V �Z ) ∼= A�|SK(G,D)
.

Note that the Serre tensor construction on the left is defined because the maximality
of V ′Z implies that V ′Z ⊂ V �Z as a Z-module direct summand, which implies that the
natural map C(V ′Z)→ C(V �Z ) makes C(V �Z ) into a free C(V ′Z)-module.

Definition 6.4.1. — Suppose we are given a morphism S → SK(G,D). A quasi-
endomorphism

x ∈ End(AS)⊗Q

is special if the induced quasi-endomorphism of A′S commutes with the action
of C(V ′Z), and its image under the map

EndC(V ′Z )(A′S)⊗Q→ EndC(V �Z )(A�S)⊗Q

induced by (6.4.7) is a special quasi-endomorphism of A�S (in the sense already defined
for the self-dual-at-p lattice V �Z ).

The following is [2, Proposition 4.3.4].

Proposition 6.4.2. — If S is connected, then x ∈ End(AS)⊗Q is special if and only if
the restriction xs ∈ End(As) ⊗ Q is special for some (equivalently, every) geometric
point s→ S.
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Once again, the space of all special quasi-endomorphisms

V (AS) ⊂ End(AS)⊗Q

carries a positive definite quadratic form Q(x) = x ◦x. By construction it comes with
an isometric embedding

(6.4.8) V (AS) ⊂ V (A�S).

It remains to define a subset

(6.4.9) Vµ(AS) ⊂ V (AS)

for each coset µ ∈ V ∨Z /VZ. Let µ` ∈ V ∨Z`/VZ` be the `-component. If ` 6= p let

Vµ`(AS) ⊂ V (AS)

be the subset of elements whose `-adic realization lies in the subsheaf (6.4.3). To treat
the p-part of µ, define

Λ = {x ∈ V �Z : x ⊥ VZ}.

The maximality of VZ at p implies that VZp ⊂ V �Zp is a Zp-module direct summand.
From this and the self-duality of V �Z at p it is easy to see that the projections to the
two factors in

V � = V ⊕ ΛQ

induce bijections

(6.4.10) V ∨Zp/VZp
∼= (V �Zp)∨/V �Zp

∼= Λ∨Zp/ΛZp .

The image of µp under this bijection is denoted µ̄p ∈ Λ∨Zp/ΛZp . As in [1, Proposi-
tion 2.5.1], there is a canonical isometric embedding

Λ→ V (A�S)Z(p)

whose image is orthogonal to that of (6.4.8). In fact, we have an orthogonal decmpo-
sition

V (A�S) = V (AS)⊕ ΛQ,

which allows us to define

(6.4.11) Vµp(AS) = {x ∈ V (AS) : x+ µ̄p ∈ V (A�S)Z(p)
}.

Finally, define (6.4.9) by

Vµ(AS) =
⋂
`

Vµ`(AS).

This set is independent of the choice of auxiliary data V ′Z ⊂ V �Z ⊂ V � used in its
definition, and agrees with the definition (6.4.4) if S is a Q-scheme. See [2, Proposi-
tion 4.5.3].

The following is [1, Proposition 2.7.2].
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Proposition 6.4.3. — Given a positive m ∈ Q and a µ ∈ V ∨Z /VZ, the functor sending
an SK(G,D)-scheme S to

Z(m,µ)(S) = {x ∈ Vµ(AS) : Q(x) = m}

is represented by a finite, unramified, and relatively representable morphism of
Deligne-Mumford stacks

(6.4.12) Z(m,µ)→ SK(G,D).

In the next subsection we will justify in what sense the morphisms (6.4.12), which
are not even closed immersions, deserve the name special divisors.

We end this section by describing what the morphism (6.4.12) looks like in the
complex fiber. For each g ∈ G(Af ), the pullback of (6.4.12) via the complex uni-
formization

D z 7→(z,g)−−−−−→ ShK(G,D)(C)

can be made explicit. Each x ∈ V with Q(x) > 0 determines an analytic subset

D(x) = {z ∈ D : [z, x] = 0}

of the hermitian domain (4.1.1).
From the discussion of § 4.3, we see that the fiber of the Kuga-Satake abelian

scheme at a point z ∈ D is the complex torus

Az(C) = gHZ\HC/zHC.

The action of x ∈ V ⊂ End(H) by left multiplication in the Clifford algebra C(V )

defines a quasi-endomorphism of Az(C) if and only if it preserves the subspace
zHC ⊂ HC, and a linear algebra exercise shows that this condition is equivalent
to z ∈ D(x). Using this, one can check that the pullback of (6.4.12) via the above
complex uniformization is

(6.4.13)
⊔

x∈gµ+gVZ
Q(x)=m

D(x)→ D.

Here, by mild abuse of notation, gµ is the image of µ under the action-by-g isomor-
phism V ∨Z /VZ → gV ∨Z /gVZ

6.5. Deformation theory. — We need to explain the sense in which the morphism
(6.4.12) merits the name special divisor. This is closely tied up with the deformation
theory of special endomorphisms, which will also be needed in the proof of the pullback
formula of Proposition 6.6.3 below.

It is enlightening to first consider the complex analytic situation of (6.4.13). Each
subset D(x) ⊂ D is not only an analytic divisor, but arises as the 0-locus of a canonical
section

(6.5.1) obstan
x ∈ H0(D,ω−1

D )
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of the inverse of the tautological bundle ωD on (4.1.1). Indeed, recalling that the fiber
of ωD at z ∈ D is the isotropic line Cz ⊂ VC, we define (6.5.1) as the linear functional

Cz z 7→[z,x]−−−−−→ C.

This is the analytic obstruction to deforming x.
Returning to the algebraic world, suppose

(6.5.2) S //

��

Z(m,µ)

��

S̃ // SK(G,D)

is a commutative diagram of stacks in which S → S̃ is a closed immersion of schemes
defined by an ideal sheaf J ⊂ OS̃ with J2 = 0. After pullback to S, the Kuga-Satake
abelian scheme A → SK(G,D) acquires a tautological special quasi-endomorphism

x ∈ Vµ(AS),

and we want to know when this lies in the image of the (injective) restriction map

(6.5.3) Vµ(AS̃)→ Vµ(AS).

Equivalently, when there is a (necessarily unique) dotted arrow

S //

��

Z(m,µ)

��

S̃

;;

// SK(G,D)

making the diagram commute.

Proposition 6.5.1. — In the situation above, there is a canonical section

(6.5.4) obstx ∈ H0
(
S̃,ω|−1

S̃

)
,

called the obstruction to deforming x, such that x lies in the image of (6.5.3) if and
only if obstx = 0.

Proof. — Suppose first that VZ is self-dual at p, so that we have an inclusion

VdR → End(HdR)

as a local direct summand of vector bundles on SK(G,D). The vector bundle HdR

is identified with the first relative de Rham homology of the Kuga-Satake abelian
scheme S. As such, it is is endowed with its Gauss-Manin connection, which restricts
to a flat connection

∇ : VdR → VdR ⊗ Ω1
SK(G,D)/Z(p)

.
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Indeed, one can check this in the complex fiber, over which the connection becomes
identified, using (3.1.3), with

VBe ⊗Z OShK(G,D)(C)
1⊗d−−→ VBe ⊗Z Ω1

ShK(G,D)(C).

The de Rham realization

(6.5.5) xdR ∈ H0(S,VdR|S)

is parallel, and therefore admits parallel transport (the algebraic theory of parallel
transport can be extracted from [3, § 2], for example) to S̃: there is a unique parallel
extension of xdR to

(6.5.6) x̃dR ∈ H0(S̃,VdR|S̃).

We now define obstx be the image of x̃dR under VdR → VdR/F
0VdR, and use the

perfect bilinear pairing (4.2.1) to identify

VdR/F
0VdR

∼= (F 1VdR)−1 = ω
−1.

The local sections of F 0VdR are precisely those local sections of VdR ⊂ End(HdR)

which preserve the Hodge filtration F 0HdR ⊂HdR. The vanishing of obstx is equiv-
alent to

x̃dR ∈ H0(S̃, F 0VdR|S̃),

which is therefore equivalent to the endomorphism

x̃dR ∈ End(HdR|S̃)

respecting the Hodge filtration. Using the deformation theory of abelian schemes
described in [38, Chapter 2], this is equivalent to

x ∈ Vµ(AS) ⊂ End(AS)⊗ Z(p)

admitting an extension to
x̃ ∈ End(AS̃)⊗ Z(p).

Using Proposition 6.4.2 it is easy to see that when such an extension exists it must
lie in Vµ(AS). This proves the claim when VZ is self-dual at p.

We now explain how to construct the section (6.5.4) in general. Fix an isometric
embedding VZ ⊂ V �Z as in § 6.2, and assume that V �Z is self-dual at p, so that we have
morphisms of integral models

SK(G,D)→ SK�(G�,D�).

In the notation of (6.4.11), the special quasi-endomorphism x ∈ Vµ(AS) determines
another special quasi-endomorphism

x� = x+ µ̄p ∈ V (AS)Z(p)
,

and x extends to Vµ(AS̃) and only if x� extends to V (AS̃)Z(p)
.

The self-dual-at-p case considered above determines an obstruction to deforming x�,
denoted

obstx� ∈ H0
(
S̃,ω�|−1

S̃

)
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



250 BENJAMIN HOWARD & KEERTHI MADAPUSI PERA

Recalling that ω|S̃ = ω
�|S̃ by definition, we now define (6.5.4) by

obstx = obstx� .

It is easy to check that this does not depend on the auxiliary choice of V �Z used in its
construction, and has the desired properties.

Proposition 6.5.2. — Every geometric point of SK(G,D) admits an étale neighborhood
U → SK(G,D) such that

Z(m,µ)/U → U

restricts to a closed immersion on every connected component of its domain. Each
such closed immersion is an effective Cartier divisor on U .

Proof. — The first claim is a formal consequence of Proposition 6.4.3, and holds for
any finite, unramified, relatively representable morphism of Deligne-Mumford stacks.
Indeed, if Os denotes the étale local ring at a geometric point s → SK(G,D), then
finiteness and relative representability imply that

Spec(Os)×SK(G,D) Z(m,µ) ∼=
⊔
t

Spec(Ot),

where t runs over the geometric points t → Z(m,µ) above s, and unramifiedness
implies that each morphism Os → Ot is surjective.

Fix one such t, set J = ker(Os → Ot), and consider the nilpotent thickening

Spec(Ot) = Spec(Os/J) ↪→ Spec(Os/J2).

In particular, we have a diagram

Spec(Ot) //

��

Z(m,µ)

��

Spec(Os/J2) // SK(G,D)

exactly as in (6.5.2). The pullback of the Kuga-Satake abelian scheme to Spec(Ot)
acquires a tautological special quasi-endomorphism x. The obstruction to deforming x
is, after choosing a trivialization of ω|Spec(Ot)

, an element

obstx ∈ Os/J2

that generates J/J2 as an Os-module. Nakayama’s lemma now implies that J ⊂ Os is
a principal ideal, and so Spec(Ot) ↪→ Spec(Os) is an effective Cartier divisor.

This proves the claim on the level of étale local rings, and the extension to étale
neighborhoods is routine.

Proposition 6.5.2 is what justifies referring to the morphisms (6.4.12) as divisors,
even though they are not closed immersions. In the notation of that proposition, every
connected component of the source of

Z(m,µ)/U → U
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determines a Cartier divisor on U . Summing over all such components and then gluing
as U varies over an étale cover defines an effective Cartier divisor on SK(G,D) in the
usual sense. When no confusion can arise (and perhaps even when it can), we denote
this Cartier divisor again by Z(m,µ).

We end this subsection by explaining the precise relation between the analytic
obstruction (6.5.1) and the algebraic obstruction (6.5.4).

Fix a g ∈ G(Af ). If we pull back the diagram (6.5.2) via the morphism

(6.5.7) D z 7→(z,g)−−−−−→ ShK(G,D)(C)

we obtain (at least if S̃ is of finite type over Q) a diagram

S = San ×ShK(G,D)an D //

��

⊔
D(x)

��

S̃ = S̃an ×ShK(G,D)an D // D,

of complex analytic spaces, in which the disjoint union is as in (6.4.13), and the
vertical arrow on the left is defined by a coherent sheaf of ideals whose square is 0. In
particular S → S̃ induces an isomorphism of underlying topological spaces.

For a fixed x, let S(x) ⊂ S be the union of those connected components of whose
image under the top horizontal arrow lies in the factor D(x). This determines a union
of connected components S̃(x) ⊂ S̃, and gives us a diagram of complex analytic spaces

San

��

S(x) //

��

oo D(x)

��

S̃an S̃(x) //oo D.

Proposition 6.5.3. — There is an equality of sections

obstan
x |S̃(x)

= obstx|S̃(x)
,

where the left hand side is the pullback of (6.5.1) via S̃(x) → D and the right hand
side is the pullback of (6.5.4) via S̃(x)→ S̃an.

Proof. — The pullback of VdR via (6.5.7) is canonically identified with the constant
vector bundle

VdR|D = V ⊗OD,
and under this identification the pullback of the connection ∇ is the induced by the
usual d : OD → Ω1

D/C.
By the discussion leading to (6.4.13), the pullback of (6.5.5) via S(x) → San is

identified with the constant section

x⊗ 1 ∈ H0
(
S(x),VdR|S(x)

)
,
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and the pullback of (6.5.6) via S̃(x)→ S̃an is its unique parallel extension

x⊗ 1 ∈ H0
(
S̃(x),VdR|S̃(x)

)
.

Thus obstx|S̃(x)
is the image of x⊗ 1 under

V ⊗OS̃(x)
∼= VdR|S̃(x)

→
(
VdR/F

0VdR

)
|S̃(x)

∼= ω
−1

S̃(x)
.

On the other hand, the analytically defined obstruction (6.5.1) is, essentially by
construction, the image of the constant section x⊗ 1 under

V ⊗OD ∼= VdR|D →
(
VdR/F

0VdR

)
|D
∼= ω

−1
D .

The stated equality of sections over S̃(x) follows immediately.

6.6. The pullback formula for special divisors. — Suppose we are in the general situ-
ation of § 6.2 (in particular, we impose no assumption of self-duality on V �Z ), so that
we have a morphism (6.2.1) of Shimura varieties

ShK(G,D)→ ShK�(G
�,D�).

The larger Shimura variety ShK�(G
�,D�) has its own integral model

SK�(G�,D�)→ Spec(Z(p)),

obtained by repeating the construction of § 6.3 with (G,D) replaced by (G�,D�). That
is, choose an isometric embedding V � ⊂ V �� into a larger quadratic space that admits
an almost self-dual lattice at p, and define SK�(G�,D�) as a normalization. Of course
SK�(G�,D�) has its own line bundle ω

�, its own Kuga-Satake abelian scheme, and its
own collection of special divisors Z�(m,µ).

Proposition 6.6.1. — The above morphism of canonical models extends uniquely to a
finite morphism

(6.6.1) SK(G,D)→ SK�(G�,D�)

of integral models. The line bundles of weight one modular forms on the source and
target of (6.6.1) are related by a canonical isomorphism

(6.6.2) ω
�|SK(G,D)

∼= ω.

Proof. — The existence and uniqueness of (6.6.1) is proved in [1, Proposition 2.5.1].
If V �Z is almost self-dual at p then (6.6.2) is just a restatement of the definition

of ω. For the general case, one embeds V � into a quadratic space V �� admitting a
lattice that is almost self-dual at p. This allows one to identify both sides of (6.6.2)
with the pullback of ω

�� for some morphisms

SK(G,D)→ SK�(G�,D�)→ SK��(G��,D��)

into the larger Shimura variety determined by V ��.
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Define a quadratic space

Λ = {x ∈ L�Z : x ⊥ L}
over Z of signature (n� − n, 0). There are natural inclusions

VZ ⊕ Λ ⊂ V �Z ⊂ (V �Z )∨ ⊂ V ∨Z ⊕ Λ∨

all of finite index, from which it follows that the orthogonal decomposition

V � = V ⊕ ΛQ

identifies
µ+ V �Z =

⊔
µ1+µ2∈µ

(µ1 + VZ)× (µ2 + Λ).

Here the disjoint union over µ1 + µ2 ∈ µ is understood to mean the union over all
pairs

(µ1, µ2) ∈ (V ∨Z /VZ)⊕ (Λ∨/Λ)

satisfying µ1 + µ2 ∈ (µ+ V �Z )/(VZ ⊕ Λ).
The following lemma gives a corresponding decomposition of special quasi-

endomorphisms. For the proof see [1, Proposition 2.6.4].

Proposition 6.6.2. — For any scheme S and any morphism S → SK(G,D) there is a
canonical isometry

V (A�S) ∼= V (AS)⊕ ΛQ,

which restricts to a bijection

(6.6.3) Vµ(A�S) ∼=
⊔

µ1+µ2∈µ
Vµ1

(AS)× (µ2 + Λ).

The relation between special divisors on the source and target of (6.6.1) is most
easily expressed in terms of the line bundles associated to the divisors, rather than
the divisors themselves. By abuse of notation, we now use Z(m,µ) to denote also the
line bundle on SK(G,D) determined by the Cartier divisor of the same name, extend
the definition to m ≤ 0 by

Z(m,µ) =

{
ω
−1 if (m,µ) = (0, 0)

OSK(G,D) otherwise,

and use similar conventions for SK�(G�,D�).

Proposition 6.6.3. — For any rational number m ≥ 0 and any µ ∈ (V �Z )∨/V �Z , there
is a canonical isomorphism of line bundles

Z�(m,µ)|SK(G,D)
∼=

⊗
m1+m2=m
µ1+µ2∈µ

Z(m1, µ1)⊗rΛ(m2,µ2)

on SK(G,D). Here we have set

RΛ(m,µ) = {λ ∈ µ+ Λ : Q(λ) = m}
and rΛ(m,µ) = #RΛ(m,µ).
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Proof. — If m < 0, or if m = 0 and µ 6= 0, the tensor product on the right is empty,
and both sides of the desired isomorphism are canonically trivial. If (m,µ) = (0, 0)

the claim is just a restatement of Proposition 6.6.1. Thus we may assume that m > 0.
The decomposition (6.6.3) induces an isomorphism

Z�(m,µ)/SK(G,D)
∼=

⊔
m1+m2=m
µ1+µ2∈µ
m1>0

λ∈RΛ(m2,µ2)

Z(m1, µ1) t
⊔
µ2∈µ

λ∈RΛ(m,µ2)

SK(G,D)(6.6.4)

of SK(G,D)-stacks, where the condition µ2 ∈ µ means that

0 + µ2 ∈ (V ∨Z /VZ)⊕ (Λ∨/Λ)

lies in the subset (µ+ V �Z )/(VZ ⊕Λ). Explicitly, given any connected scheme S and a
morphism

S → SK(G,D),

a lift of the morphism to the first disjoint union on the right hand side of (6.6.4)
determines a pair

(x, λ) ∈ Vµ1(AS)× (µ2 + Λ)

satisfying m1 = Q(x) and m2 = Q(λ). Using (6.6.3) we obtain a special quasi-
endomorphism

x� = x+ λ ∈ Vµ(A�S).

Similarly, a lift to the second disjoint union determines a vector λ ∈ µ2 + Λ satisfying
m = Q(λ), which determines a special quasi-endomorphism

(6.6.5) x� = 0 + λ ∈ Vµ(A�S).

In either case Q(x�) = m, and so our lift determines an S-point of the left hand side
of (6.6.4).

If Λ∨ does not represent m, then RΛ(m,µ2) = ∅ for all choices of µ2, and the
desired isomorphism of line bundles

Z�(m,µ)|SK(G,D)
∼=

⊗
m1+m2=m
µ1+µ2∈µ
m1>0

Z(m1, µ1)⊗rΛ(m2,µ2)

∼=
⊗

m1+m2=m
µ1+µ2∈µ

Z(m1, µ1)⊗rΛ(m2,µ2),

on SK(G,D) follows immediately from (6.6.4). In general, the decomposition (6.6.4)
shows that the support of Z�(m,µ) contains the image of (6.6.1) as soon as there is
some µ2 ∈ µ for which RΛ(m,µ2) is nonempty. Thus we must compute an improper
intersection.

Fix a geometric point s → SK(G,D) and, as in Proposition 6.5.2, an étale neigh-
borhood

U� → SK�(G�,D�)
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of s small enough that the morphism

Z�(m,µ)/U� → U�

restricts to a closed immersion on every connected component of the domain. By
shrinking U� we may assume that these connected components are in bijection with
the set of lifts

Z�(m,µ)/U�

��

s

99

// U�.

Having so chosen U�, we then choose a connected étale neighborhood

U → SK(G,D)

of s small enough that there exists a lift

U

��

// U�

��

SK(G,D) // SK�(G�,D�),

and so that in the cartesian diagram

Z�(m,µ)/U //

��

Z�(m,µ)/U�

��

U // U�

each of the vertical arrows restricts to a closed immersion on every connected com-
ponent of its source, and the top horizontal arrow induces a bijection on connected
components.

The decomposition (6.6.4) induces a decomposition of U -schemes

Z�(m,µ)/U ∼=
⊔

m1+m2=m
µ1+µ2∈µ
m1>0

λ∈RΛ(m2,µ2)

Z(m1, µ1)/U t
⊔
µ2∈µ

λ∈RΛ(m,µ2)

U.

The first disjoint union defines a Cartier divisor on U . In the second disjoint union, the
copy of U indexed by λ ∈ RΛ(m,µ2) is the image of the open and closed immersion

fλ : U → Z�(m,µ)/U

obtained by endowing the Kuga-Satake abelian scheme A�U with the special quasi-
endomorphism 0 + λ ∈ Vµ(A�U ) of (6.6.5).

There is a corresponding canonical decomposition of U�-schemes

(6.6.6) Z�(m,µ)/U� = Z�prop t
⊔
µ2∈µ

λ∈RΛ(m,µ2)

Z�λ,
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in which

(6.6.7) Z�λ ⊂ Z�(m,µ)/U�

is the connected component containing the image of

U
fλ−→ Z�(m,µ)/U → Z�(m,µ)/U�

and
Z�prop ⊂ Z�(m,µ)/U�

is the union of all connected components not of this form.
It is clear from the definitions that the image of U → U� intersects the Cartier

divisor Z�prop → U� properly, and in fact

(6.6.8) Z�prop/U
∼=

⊔
m1+m2=m
µ1+µ2∈µ
m1>0

λ∈RΛ(m2,µ2)

Z(m1, µ1)/U .

On the other hand, the image of U → U� is completely contained within the support
of every Z�λ → U�.

By mild abuse of notation, we denote again by Z�prop and Z�λ the line bundles on U�

determined by the Cartier divisors of the same name.

Lemma 6.6.4. — There is a canonical isomorphisms of line bundles

Z�prop|U
∼=

⊗
m1+m2=m
µ1+µ2∈µ
m1>0

Z(m1, µ1)⊗rΛ(m2,µ2)|U ,

and a canonical isomorphism

(6.6.9) Z�λ|U
∼= ω

−1|U .

Proof. — The first isomorphism is clear from the isomorphism of U -schemes (6.6.8).
The second isomorphism is more subtle, and is based on similar calculations in the
context of unitary Shimura varieties; see especially [11, Theorem 7.10] and [28].

Our étale neighborhood U� → SK�(G�,D�) was chosen in such a way that
Z�λ → U� is a closed immersion defined by a locally principal sheaf of ideals
Jλ ⊂ OU� . The closed subscheme

Z̃�λ ⊂ U�

defined by J2
λ is called the first order tube around Z�λ. We now have morphisms

U
fλ−→ Z�λ ↪→ Z̃�λ ↪→ U� → SK�(G�,D�).

Tautologically, J−1
λ is the line bundle on U� determined by the Cartier divi-

sor Z�λ. Denote by σλ the constant function 1, viewed as a section of OU� ⊂ J−1
λ , so

that div(σλ) = Z�λ.
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On the other hand, after restriction to the connected component (6.6.7) the Kuga-
Satake abelian scheme A� acquires a tautological

x� ∈ Vµ(A�Z�λ).

The discussion of § 6.5 then provides us with a canonical section

obstx� ∈ H0
(
Z̃�λ,ω−1|Z̃�λ

)
whose zero locus is the closed subscheme Z�λ.

The idea is roughly that the equality of divisors

div(σλ) = div(obstx�)

should imply that there is a unique isomorphism of line bundles (6.6.9) over the first
order tube sending σλ 7→ obstx� , which we would then pull back via fλ. This is a
bit too strong. Instead, we argue that such an isomorphism exists Zariski locally on
the first order tube, and that any two such local isomorphisms restrict to the same
isomorphism over U .

Indeed, working Zariski locally, we can assume that

U = Spec(R), U� = Spec(R�)

for integral domains R and R�, and

Z�λ = Spec(R�/J), Z̃�λ = Spec(R�/J2).

The morphisms U → Z�λ → U� then correspond to homomorphisms

R� → R�/J → R.

Let p ⊂ R� be the kernel of this composition, so that J ⊂ p. Note that p 6∈ p, as the
flatness of SK(G,D) over Z(p) implies that R has no p-torsion.

Assume that we have chosen trivializations of the line bundles ω|U� and Z
�
λ on U�,

so that our sections obstλ and σλ are identified with elements

a ∈ R�/J2 and b ∈ R�,

respectively. Each of these elements generates the ideal J/J2 ⊂ R�/J2.

Lemma 6.6.5. — There exists u ∈ R�/J2 such that ua = b. The image of any such u
in R�/p ⊂ R is a unit. If also u′a = b, then u = u′ in R�/p ⊂ R.

Proof. — Suppose we are given any x ∈ R�/J2 with bx = 0. We claim that

x ∈ p/J2.

If not, then any lift x ∈ R� becomes a unit in the localization R�p. As bx ∈ J2, we
obtain

(6.6.10) b ∈ p2R�p.

We have noted above that p 6∈ p, and so R�p is a Q-algebra. The source and target
of

Z�(m,µ)→ SK�(G�,D�)
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have smooth generic fibers, and so R�p → R�p/bR
�
p is a morphism of regular local rings.

By (6.6.10), this morphism induces an isomorphism on tangent spaces, and so is itself
an isomorphism. Thus b = 0 in R�p, and hence also in R�. This contradicts the fact
that b generates the ideal J .

As a and b generate both generate J/J2, there exist u, v ∈ R�/J2 such that ua = b

and vb = a. Obviously b · (1 − uv) = 0, and taking x = 1 − uv the paragraph above
implies 1 − uv ∈ p/J2. Thus the image of u in R�/p is a unit with inverse v. If also
u′a = b, the same argument shows that the image of u′ in R�/p is a unit with inverse v,
and hence u = u′ in R�/p.

The discussion above provides us with a canonical isomorphism

Z�λ|U
∼= ω

−1|U
Zariski locally on U , and gluing over an open cover completes the proof of
Lemma 6.6.4.

We now complete the proof of Proposition 6.6.3. If we interpret the isomorphism
of U�-schemes (6.6.6) as an isomorphism

Z�(m,µ)|U�
∼= Z�prop ⊗

⊗
µ2∈µ

λ∈RΛ(m,µ2)

Z�λ,

of line bundles on U�, pull back via U → U�, and use Lemma 6.6.4, we obtain
canonical isomorphisms

Z�(m,µ)|U
∼=

( ⊗
m1+m2=m
µ1+µ2∈µ
m1>0

Z(m1, µ1)⊗rΛ(m2,µ2)|U

)
⊗

( ⊗
µ2∈µ

ω
−rΛ(m,µ2)|U

)

∼=
⊗

m1+m2=m
µ1+µ2=µ

Z(m1, µ1)⊗rΛ(m2,µ2)|U

of line bundles over the étale neighborhood U of s→ SK(G,D). Now let U vary over
an étale cover and apply descent.

7. Normality and flatness

Keep VZ ⊂ V and K ⊂ G(Af ) as in § 6, and once again fix a prime p at which
VZ is maximal. After some technical preliminaries in § 7.1, we prove in § 7.2 that the
special fiber of the integral model

SK(G,D)→ Spec(Z(p))

is geometrically normal if n ≥ 6, and that the special divisors are flat if n ≥ 4. When
p 6= 2 these results already appear (7) in [2]. Here we use similar ideas, but employ the

(7) With the sharper bounds n ≥ 5 and n ≥ 3, respectively.
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methods of Ogus [44] to control the dimension of the supersingular locus, as these
apply even when p = 2.

7.1. Local properties of special cycles. — Suppose in this subsection that VZ is self-
dual at p. As in the discussion of § 6.3, the smooth integral model SK(G,D) comes
with filtered vector bundles 0 ⊂ F 0HdR ⊂HdR and

0 ⊂ F 1VdR ⊂ F 0VdR ⊂ VdR,

along with an injection VdR → End(HdR) onto a local direct summand. Composition
in End(HdR) endows VdR with a quadratic form

Q : VdR → OSK(G,D),

under which F 1VdR is an isotropic line with orthogonal subsheaf F 0VdR.
Recall from (6.4.6) the Z-module (6.4.6) of special quasi-endomoprhisms

V0(AS) ⊂ End(AS)⊗ Z(p)

determined by the trivial coset 0 ∈ V ∨Z /VZ. Any x ∈ V0(AS) has a de Rham realiza-
tion xdR, which is a global section of the subsheaf

VdR,S ⊂ End(HdR,S).

In particular, de Rham realization defines a morphism of OS-modules

V0(AS)⊗OS → VdR,S .

compatible with the quadratic forms on source and target. In fact, as is clear from
the proof of Proposition 6.5.1, the image is contained in F 0VdR,S .

Fix a positive definite quadratic space Λ over Z, and consider the stack

(7.1.1) Z(Λ)→ SK(G,D)

with functor of points

Z(Λ)(S) = {isometric embeddings ι : Λ→ V0(AS)}

for any morphism S → SK(G,D). As observed in [2, § 4.4] (see also Lemma 7.1.1
below), this is a Deligne-Mumford stack over Z(p) whose generic fiber is smooth of
dimension n− rank(Λ). Moreover, the morphism (7.1.1) is finite and unramified.

We now briefly recall the deformation theory of these stacks. As in the proof of
Proposition 6.5.1, we have a canonical flat connection

∇ : VdR → VdR ⊗ Ω1
SK(G,D)/Z(p)

.

This connection satsfies Griffiths’s transversality with respect to the Hodge filtration,
and the Kodaira-Spencer map associated with it induces an isomorphism

F 1VdR ⊗
(
Ω1
SK(G,D)/Z(p)

)∨ ∼= F 0VdR/F
1VdR.

Dualizing, and using the bilinear pairing on VdR, we obtain an isomorphism

F 0VdR/F
1VdR

∼= (VdR/F
0VdR)⊗ Ω1

SK(G,D)/Z(p)
.
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This is [39, Proposition 4.16], whose proof applies also when p = 2; one only has to
replace appeals to results from [31] with appeals to the analogous results from [30].

Now, suppose that we have a point s of SK(G,D) valued in a field k. If s̃ is
any lift of s to the ring of dual numbers k[ε], the connection ∇ induces a canonical
isomorphism

ξs̃ : VdR,s ⊗k k[ε] ∼= VdR,s̃,

and thus gives rise to an isotropic line

F 1
s̃ (VdR,s ⊗k k[ε])

def
= ξ−1

s̃ (F 1VdR,s̃) ⊂ VdR,s ⊗k k[ε].

By construction, this line lifts F 1VdR,s.
The properties of the Kodaira-Spencer map mentioned above can now be reinter-

preted as saying that the association

s̃ 7→ F 1
s̃ (VdR,s ⊗k k[ε])

is a bijection from the tangent space of SK(G,D) at s to the space of isotropic lines
in VdR,s ⊗k k[ε] lifting F 1VdR,s. This latter space can be canonically identified with
the k-vector space

Homk(F 1VdR,s, F
0VdR,s/F

1VdR,s)

as follows: Any lift F 1
s̃ (VdR,t ⊗k k[ε]) will be contained in F 0VdR,s ⊗k k[ε], and so we

can consider the associated map

F 1
s̃ (VdR,s ⊗k k[ε])→ (F 0VdR,s/F

1VdR,s)⊗k k[ε],

which will factor as

F 1
s̃ (VdR,s ⊗k k[ε]) //

ε7→0

��

(F 0VdR,s/F
1VdR,s)⊗k k[ε]

F 1VdR,s ϕs̃
// F 0VdR,s/F

1VdR,s.

1⊗ε

OO
.

The desired identification is now given by the assignment F 1
s̃ 7→ ϕs̃.

We can say more. Suppose that s lifts to a k-point of Z(Λ) corresponding to an
embedding Λ ↪→ V (As). We will continue to use s to denote this lift as well. The de
Rham realization of the embedding gives a map

Λ→ F 0VdR,s,

and we let
ΛdR,s ⊂ F 0VdR,s

be the k-subspace generated by its image. Now, the bijection from the previous para-
graph identifies the tangent space of Z(Λ) at s with the space of isotropic lines
in VdR,s⊗k k[ε] that lift F 1VdR,s and are also orthogonal to ΛdR,s. This space in turn
can be identified with the k-vector space

(7.1.2) Homk(F 1VdR,s,Λ
⊥
dR,s),
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where
ΛdR,s ⊂ F 0VdR,s/F

1VdR,s

is the the image of ΛdR,s and Λ
⊥
dR,s is its orthogonal complement.

For proofs of the above statements, which use the explicit description of the com-
plete local rings of SK(G,D), see [39, Prop. 5.16]. As observed there, they also apply
more generally to arbitrary nilpotent divided power thickenings. We record some im-
mediate consequences.

Lemma 7.1.1. — Let the notation be as above, and set r = rank(Λ).

1. The completed étale local ring ÔZ(Λ),s is a quotient of ÔSK(G,D),s by an ideal
generated by rank(Λ) elements.

2. Z(Λ) is smooth at s if and only if ΛdR,s has k-dimension rank(Λ). In particular,
the generic fiber of Z(Λ) is smooth.

3. Suppose that k has characteristic p, and that the Krull dimension of ÔZ(Λ),s/(p)

is n − rank(Λ). Then Z(Λ) and Z(Λ)Fp are local complete intersections at s.
Moreover, Z(Λ) is flat over Z(p) at s.

Proof. — The first claim is a consequence of the deformation theory explained
above (more precisely, of its generalization to arbitrary square-zero thickenings) and
Nakayama’s lemma. See [39, Corollary 5.17].

For the second claim, note that Z(Λ) will be smooth at s if and only if its tangent
space at s has dimension n − rank(Λ). As we have identified the tangent space with
(7.1.2), this is equivalent to ΛdR,s having dimension rank(Λ). For the assertion about
the generic fiber, it suffices to check the criterion for smoothness at every C-valued
point. Now, note that the de Rham realization

V0(As)⊗Z C→ VdR,s,

is injective, and also that the image of this realization is precisely the weight (0, 0)

part of the Hodge structure on VdR,s, and hence is complementary to F 1VdR,s. This
implies that ΛdR,s has dimension r over C, and hence that Z(Λ) is smooth at s.

Now we come to the third claim. Note that ÔSK(G,D),s is formally smooth
over W (k) of Krull dimension n + 1. Hence, ÔSK(G,D),s/(p) is also formally smooth
over k of Krull dimension n, and ÔZ(Λ),s/(p), which is its quotient by an ideal
generated by rank(Λ) element, is a complete intersection as soon as

dim
(
ÔZ(Λ),s/(p)

)
= n− rank(Λ).

This is precisely our hypothesis.
Now, note that we have

n− rank(Λ) + 1 ≤ dim(ÔZ(Λ),s) ≤ dim
(
ÔZ(Λ),s/(p)

)
+ 1 = n− rank(Λ) + 1.

Here, the first two inequalities follow from Krull’s Hauptidealsatz. This shows

dim(ÔZ(Λ),s) = n− rank(Λ) + 1,
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and implies that ÔZ(Λ),s is a complete intersection ring.
Finally, to see that Z(Λ) is flat over Z(p) at s, note that p cannot be a zero divisor

in ÔZ(Λ),s: Indeed, the equality

dim (ÔZ(Λ),s/(p)) = n− rank(Λ) = dim ÔZ(Λ),s − 1

implies that p is not contained in any minimal prime of ÔZ(Λ),s. Since ÔZ(Λ),s is a
complete intersection ring and hence Cohen-Macaulay, this implies that p is not a
zero divisor.

For any morphism S → Z(Λ), de Rham realization defines a morphism

Λ⊗OS → VdR,S .

Let ΛdR,S ⊂ VdR,S be the image of this morphism.
We will consider the canonical open substack

(7.1.3) Zpr(Λ) ↪→ Z(Λ)

characterized by the property that a morphism S → Z(Λ) factors through Zpr(Λ) if
and only if ΛdR,S ⊂ VdR,S is a local direct summand of rank equal to rank(Λ).

Proposition 7.1.2. — Consider the following assertions:

1. For any generic geometric point η of Zpr(Λ)Fp , the Kuga-Satake abelian scheme
Aη is ordinary, and the tautological map Λ→ V0(Aη) is an isomorphism.

2. The special fiber Zpr(Λ)Fp is a generically smooth local complete intersection of
dimension n− rank(Λ).

3. The special fiber Zpr(Λ)Fp is smooth outside of a codimension 2 subspace.

Then (1) and (2) hold whenever rank(Λ) ≤ n/2, and (3) holds whenever rank(Λ) ≤
(n− 1)/2.

Proof. — We will prove the proposition by induction on the rank of Λ. For any integer
r ≥ 0 and i ∈ {1, 2, 3}, let Pi(r) be the statement that assertion (i) is valid whenever
rank(Λ) = r. We claim

(i) if 0 ≤ r ≤ (n− 1)/2 then P2(r) implies P1(r),

(ii) if r ≤ (n− 2)/2 then P1(r) and P2(r) together imply P2(r + 1),

(iii) if r ≤ (n− 3)/2 then P1(r) and P2(r) together imply P3(r + 1).

Once the claims are proved, the lemma will follow by induction. Indeed, the base
case P2(0) is implied by the smoothness of SK(G,D).

The claims themselves follow from an argument derived from [44], which was used
in [39, Proposition 6.17], and exploits the following simple lemma.

Lemma 7.1.3. — Let Z be an Fp-scheme admitting an unramified map Z → SK(G,D).
Suppose that we have a local direct summand N ⊂ VdR|Z that is horizontal for the
integrable connection

VdR,Z → VdR,Z ⊗OZ Ω1
Z/Fp
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induced from the one on VdR. Suppose also that

F 1VdR,Z ⊂N .

Then dim(Z) ≤ rank(N)− 1. If, in addition N ∩F 0VdR,Z is a local direct summand
of VdR,Z , then we in fact have

dim(Z) ≤ rank(N ∩ F 0VdR,Z)− 1.

Proof. — For the first assertion, it is enough to show that, at any point z ∈ Z(k)

valued in a field k, the tangent space of Z at z has dimension at most rank(N)− 1.
But our hypotheses imply that, if z̃ ∈ Z(k[ε]) is any lift of Z, then we must have

F 1
z̃ (VdR,Z ⊗k k[ε]) ⊂ (Nz ⊗k k[ε]) ∩ (F 0VdR,z ⊗k k[ε]).

This, combined with the fact that Z is unramified over SK(G,D), implies that the
tangent space of Z at z can be identified with a subspace of

Homk(F 1VdR,z,Nz) ⊂ Homk(F 1VdR,z, F
0VdR,z/F

1VdR,z),

where Nz is the image of Nz ∩F 0VdR,z in F 0VdR,z/F
1VdR,z. We are now done, since

Nz has dimension at most rank(N)− 1.
The second assertion is immediate from the proof of the first.

We begin with claim (i). Assume P2(r), and suppose rank(Λ) = r. Fix a geometric
generic point η of Zpr(Λ)Fp . Then P2(r) implies that there is a smooth Fp-scheme U ,
equidimensional of dimension n − r, and an étale map U → Zpr(Λ)Fp , whose image
contains η.

As explained in the proof of [39, Proposition 6.17], there is a canonical isotropic
line

C ⊂ VdR,U ,

called the conjugate filtration, which is horizontal for the connection on VdR,U , is
contained in Λ⊥dR,U , and is such that a point t ∈ U(k) is non-ordinary if and only if
Ct ⊂ F 0VdR,t, or, equivalently, if and only if

F 1VdR,t ⊂ C⊥t ∩Λ⊥dR,t.

Now, we have
Ct ⊂ ΛdR,t

only if F 1VdR,t ⊂ ΛdR,t. See for instance [39, Lemma 4.20]. Therefore, since we are
assuming that U is smooth, the subsheaf

CU + ΛdR,U ⊂ VdR,U

is a horizontal local direct summand of rank r + 1.
By Lemma 7.1.3, if Z ⊂ U is a closed subscheme with

F 1VdR,Z ⊂ CZ + ΛdR,Z ,
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then dimZ ≤ r. Using r ≤ (n − 1)/2, we see that r = dimZ < dimU = n − r.
Therefore, after shrinking U if necessary, we can assume that

F 1VdR,U + CU + ΛdR,U ⊂ VdR,U

is a direct summand of rank r + 2, or, equivalently, that

F 0VdR,U ∩C⊥U ∩Λ⊥dR,U ⊂ VdR,U

is a direct summand of rank n− r. Therefore, once again by Lemma 7.1.3, the locus
in U where F 1VdR,U is contained in this direct summand has dimension at most
n− r − 1. But this is precisely the non-ordinary locus in U . As dim(U) = n− r, this
shows the first part of P1(r).

Suppose now that the map Λ → V0(Aη) is not a bijection, so that there exists
x ∈ V0(Aη) such that

Λ̃ = Λ + 〈x〉 ⊂ V0(Aη)

is a direct summand of rank r + 1, and its de Rham realization

Λ̃dR,η = ΛdR,η + 〈xdR,η〉 ⊂ VdR,η

is a k(η)-vector subspace of dimension r + 1.
After shrinking U if necessary, we can assume that x ∈ V0(AU ), and that de Rham

realization gives us a local direct summand

Λ̃dR,U = ΛdR,U + 〈xdR,U 〉 ⊂ VdR,U

of rank r + 1 that is horizontal for the connection. However, the discussion of the
deformation theory above Lemma 7.1.1 implies that, over U , the Kodaira-Spencer
map factors through an isomorphism

(F 0VdR,U/F
1VdR,U )/ΛdR,U

∼= (VdR,U/F
1VdR,U )⊗OU Ω1

U/Fp .

However, the horizontality of Λ̃dR,U guarantees that its (non-trivial) image on the
left-hand side is in the kernel of the Kodaira-Spencer map. This contradiction finishes
the proof of claim (i).

We will prove claims (ii) and (iii). Suppose that P1(r) and P2(r) hold and
that rank(Λ) = r + 1. Write Λ = Λ1 ⊕ Λ0, where rank(Λ0) = 1. Then we have an
obvious factorization

Zpr(Λ)→ Zpr(Λ1)→ SK(G,D).

The first arrow exhibits Zpr(Λ)Fp as a divisor on Zpr(Λ1)Fp (étale locally on the source,
in the sense of Proposition 6.5.2). Indeed, the complete local rings of the former are
cut out by one equation in those of the latter, and P1(r) shows that Zpr(Λ)Fp does
not contain any generic points of Zpr(Λ1)Fp . Therefore, by Lemma 7.1.1 and P2(r),
we find that Zpr(Λ)Fp is a local complete intersection of dimension n− (r + 1).

Let W ⊂ Zpr(Λ)Fp be the nonsmooth locus, with its reduced substack structure.
We find from Lemma 7.1.1 that

F 1VdR|W ⊂ ΛdR|W .
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By Lemma 7.1.3, this implies that dim(W ) ≤ r. This is bounded by n− r − 2 under
the hypothesis r ≤ (n− 2)/2, and by n− r − 3 if r ≤ (n− 3)/2. This proves (ii) and
(iii), and completes the proof of Proposition 7.1.2.

It will be useful to recall some bounds on the dimension of the supersingular locus
in the mod-p fiber of SK(G,D) under the assumption that VZp is almost self-dual.

Proposition 7.1.4. — Suppose that VZp is almost self-dual of rank n+ 2, and suppose
that Z → SK(G,D) is an unramified morphism from an Fp-scheme Z such that, for
all points z ∈ Z(k) valued in a field k, the abelian variety Az is supersingular. Then
dim(Z) ≤ n/2. If VQp is an orthogonal sum of hyperbolic planes, we have the sharper
bound

dim(Z) ≤ n

2
− 1.

Proof. — If VQp is not an orthogonal sum of hyperbolic planes, then we can find an
embedding

VZ ↪→ V �Z ,

where V �Qp is of this form, and where the codimension of V ⊂ V � is 1 if n is odd and 2

if n is even. Using such an embedding, the proposition can be reduced to proving the
final assertion, and so we may assume that VQp (and hence VZp) is an orthogonal sum
of hyperbolic planes.

When p > 2, the proposition follows from the much finer results of [29], which give
a complete description of the supersingular locus of SK(G,D)Fp . However, if one is
only interested in upper bounds, one can appeal to the methods of [45], which apply
even when p = 2 and VZp is self-dual. See in particular Proposition 14 of [loc. cit.]

For the convenience of the reader, we sketch the basic idea here. First, we can
replace Z with its underlying reduced scheme. Second, we can throw away its singular
part, and assume that Z is smooth.

If z ∈ Z(k) is a geometric point, then the Artin invariant of z is the k-codimension
of the image of V0(Az) ⊗Z k → VdR,z. This is an integer between 1 and n/2. Ogus’s
argument shows that there is a canonical filtration of F 0VdR,Z by coherent, isotropic,
horizontal coherent subsheaves

E1 ⊂ · · ·Ei ⊂ · · · ⊂ En/2 ⊂ F 0VdR,Z

with the following properties:
— A geometric point z ∈ Z(k) has Artin invariant ≤ j if and only if

F 1VdR,z ⊂ Ej,z.

— If Z≥j ⊂ Z is the open subscheme where the Artin invariant is ≥ j, then
Ej,Z≥j is a rank j local direct summand of VdR,Z≥j .

Note that the first condition ensures that locus where the Artin invariant is bounded
below by j is indeed an open subscheme of Z.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



266 BENJAMIN HOWARD & KEERTHI MADAPUSI PERA

Given these two properties, it is immediate from Lemma 7.1.3 that the dimension
of Z is bounded above by r − 1, where r is the maximal Artin invariant attained by
a geometric point of Z. This proves the proposition.

The construction of Ej is as follows. For j = 1, E1 is just the conjugate filtration
C ⊂ VdR,Z already encountered in the proof of Proposition 7.1.2. The crystalline
Frobenius on the crystalline realization of AZ induces an isometry

γ : Fr∗Z(F 0VdR,Z/F
1VdR,Z) ∼= C⊥/C,

where FrZ is the absolute Frobenius on Z. Now inductively define Ej ⊂ C⊥ as the
pre-image of the image of Ej−1 under the composition

Fr∗ZEj−1 ↪→ Fr∗ZF
0VdR,Z

γ−→ C⊥/C.

It follows from the argument in [45, Lemma 5] that Ej is a subsheaf of F 0VdR,Z

for all j, so that the inductive procedure is well-defined. That it is isotropic, coherent
and horizontal follows from the construction. That the filtration thus obtained has
the desired properties follows from the arguments in Proposition 6 and Lemma 9 of
[loc. cit.].

Lemma 7.1.5. — Suppose that Λ is maximal at p. The complement of Zpr(Λ) in Z(Λ)

lies above the supersingular locus of SK(G,D)Fp . If we let

m =


n
2 if VZp is an orthogonal sum of hyperbolic planes
bn2 c if n is odd
n
2 − 1 otherwise,

then the following properties hold.

1. If rank(Λ) ≤ m then Zpr(Λ)Fp is dense in Z(Λ)Fp .

2. If rank(Λ) ≤ m−1 then the complement of Zpr(Λ)Fp in Z(Λ)Fp has codimension
at least 2.

Proof. — Once we know that the complement is supported above the supersingular
locus of the mod-p fiber, the rest will follow from the bounds in Proposition 7.1.4.

To prove the assertion on the complement, we first note that the open immer-
sion (7.1.3) induces an isomorphism of the generic fibers; see [39, Prop. 6.16]. There-
fore, we only have to show that the mod-p fiber of the complement is supported on the
supersingular locus. Equivalently, we must show that, for any non-supersingular point
s ∈ Z(Λ)(k) valued in a field k of characteristic p, the subspace ΛdR,s ⊂ VdR,s has
k-dimension rank(Λ).

Arguing as in [39, § 6.27], we find that, for such a point s, the de Rham realization
map

V0(As)⊗ k → VdR,s

is injective. Moreover, by the maximality of Λ at p, the image of

Λ⊗ Z(p) → V0(As)⊗ Z(p)
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is a Z(p)-module direct summand of rank rank(Λ). Combining these two observations
shows that the subspace ΛdR,s ⊂ VdR,s has k-dimension rank(Λ), and completes the
proof of the lemma.

Proposition 7.1.6. — Suppose that Λ is maximal at p, and let m be defined as in
Lemma 7.1.5.

1. If rank(Λ) ≤ m then Z(Λ)Fp is a generically smooth local complete intersection
of dimension n− rank(Λ). Moreover, Z(Λ) is normal and flat over Z(p).

2. If rank(Λ) ≤ m− 1 then Z(Λ)Fp is geometrically normal.

Proof. — Note that we always have

m ≤ n

2
and m− 1 ≤ n− 1

2
.

First suppose rank(Λ) ≤ m. Combining Proposition 7.1.2 and Lemma 7.1.5 shows
that Zpr(Λ)Fp is a generically smooth local complete intersection of dimension
n− rank(Λ), and is dense in Z(Λ)Fp . Hence Z(Λ)Fp is itself generically smooth of
dimension n− rank(Λ).

It now follows from claim (3) of Lemma 7.1.1 that Z(Λ) is a local complete in-
tersection, flat over Z(p). In particular, it is Cohen-Macaualy and so satisfies Serre’s
property (Sk) for all k ≥ 1. Recall from claim (2) of Lemma 7.1.1 that the generic
fiber of Z(Λ) is smooth over Q. As we have already proved that the special fiber is
generically smooth, Z(Λ) is regular in codimension one, and hence satisfies Serre’s
property (R1). Claim (2) now follows from Serre’s criterion for normality.

Now suppose rank(Λ) ≤ m − 1. We have already shown that the geometric fiber
of Z(Λ)Fp is a local complete intersection. So, just as above, to show that it is normal
it is enough to show that it is regular in codimension one. This follows by combining
Proposition 7.1.2 and Lemma 7.1.5, which shows that Zpr(Λ)Fp is smooth outside of
a codimension two subspace, and that its complement in Z(Λ)Fp has codimension at
least 2.

7.2. Normality of the fibers, and flatness of divisors. — We return to the general set-
ting in which VZ ⊂ V is any maximal lattice, and deduce two important consequences
from the results of § 7.1.

Proposition 7.2.1. — If n ≥ 6, the special fiber of SK(G,D) is geometrically normal.

Proof. — When p > 2, this is part of [2, Theorem 4.4.5]. The same idea of proof
works in general, bolstered now by Proposition 7.1.6

Using Lemma 6.2.1, we may choose an embedding VZ ↪→ V �Z as in § 6.2 in such a
way that V �Z is self-dual at p, and

Λ = {x ∈ V �Z : x ⊥ VZ}
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has rank at most r, where r = 2 if n is even and r = 3 otherwise. (8)

There is a commutative diagram

Z�(Λ)

��

SK(G,D)

77

// SK�(G�,D�),

in which the vertical morphism is defined as in (7.1.1), the horizontal morphism is
(6.6.1), and the diagonal arrow is induced by the isometric embedding

Λ→ V0(A�SK(G,D)),

determined by (6.6.3).
The self-duality of V �Zp gives us an isomorphism

V ∨Zp/VZp
∼= Λ∨Zp/ΛZp

of quadratic spaces over Qp/Zp, as in (6.4.10). The maximality of VZ at p implies that
the left hand side contains no nonzero isotropic vectors, and so neither does the right
hand side. This implies the maximality of Λ at p. With this in hand, we may apply
Proposition 7.1.6 and the inequality

r ≤ n+ r

2
− 2,

which holds as n ≥ 6, to see that Z�(Λ) has geometrically normal fibers.
Thus it suffices to show that the diagonal arrow is an open and closed immersion.

This holds in the generic fiber by [39, Lemma 7.1], and hence also on the level of
integral models as the source and target are both normal.

Proposition 7.2.2. — Assume that n ≥ 4. For every positive m ∈ Q and µ ∈ V ∨Z /VZ,
the special divisor Z(m,µ) is flat over Z(p).

Proof. — When p > 2 this is [2, Proposition 4.5.8]. We explain how to extend the
proof to the general case.

As in the proof of Proposition 7.2.1 fix an embedding VZ ↪→ V �Z with V �Z self-dual
at p, and so that

Λ = {x ∈ V �Z : x ⊥ VZ}
is maximal of rank at most r with r = 2 when n is even and r = 3 otherwise. (9)

Consider again the finite unramified morphism

Z�(Λ)→ SK�(G�,D�).

(8) If p 6= 2 we can choose V �
Z to be self-dual at p with r = 2. In this case, we can improve the bound

to n ≥ 5 as in [2, Theorem 4.4.5].
(9) Once again, if p > 2, then we can always take r = 2 and the result can be strengthened to only
require n ≥ 3.
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By Proposition 7.1.6, this is normal and flat over Z(p), as long as we have

2 ≤ n+ 2

2
− 1,

for n even and
3 ≤ n+ 3

2
− 1,

for n odd. These inequalities hold for n ≥ 4.
Using the decomposition (6.6.4), we may choose a positive m� ∈ Q and a

µ� ∈ (V �Z )∨/V �Z in such a way that

Z(m,µ) ⊂ Z�(m�, µ�)×SK� (G�,D�) SK(G,D)

as an open and closed substack. Now use the open and closed immersion

SK(G,D)→ Z�(Λ)

from the proof of Proposition 7.2.1 to identify

(7.2.1) Z(m,µ) ⊂ Z�(m�, µ�)×SK� (G�,D�) Z�(Λ)

as a union of connected components. In particular, by Proposition 6.5.2, the projection

(7.2.2) Z(m,µ)→ Z�(Λ)

is, étale locally on the target, a disjoint union of closed immersions each defined by a
single equation.

Lemma 7.2.3. — The image of (7.2.2) contains no irreducible component of Z�(Λ)Fp .

Proof. — An S-point of Z(m,µ) determines a special quasi-endomorphism x ∈ V (AS)

with Q(x) = m. The image of such an S-point under the inclusion (7.2.1) determines
an x� ∈ V (A�S), as well as an isometric embedding ι : Λ → V0(AS). Unpacking the
construction of the inclusion (7.2.1), we find that the orthogonal decomposition

V (A�S) = V (AS)⊕ ΛQ,

of Proposition 6.6.2 identifies x� = x + ι(λ) for some λ ∈ ΛQ. In particular, x deter-
mines a nonzero element of V (A�S) orthogonal to ι(ΛQ), and

ι : ΛQ → V (A�S)

is not surjective.
In contrast, for every generic point η of Z�(Λ)Fp we have

ιη : Λ ∼= V0(A�η).

Indeed, this follows from the density Zpr(Λ)Fp ⊂ Z(Λ)Fp proved in Lemma 7.1.5, and
assertion (1) of Proposition 7.1.2. It can be checked that the numerical hypotheses
hold under our hypothesis n ≥ 4.

Thus the image of (7.2.2) cannot contain the generic point of any irreducible com-
ponent of Z�(Λ)Fp , completing the proof of the lemma.
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To complete the proof of Proposition 7.2.2, we apply the following lemma to the
complete local ring of the local complete intersection (and hence Cohen-Macaulay)
stack Z�(Λ) at a point in the image of (7.2.2), and taking a to be the equation defining
the complete local ring of Z(m,µ) at a point in the pre-image.

Lemma 7.2.4. — Let R be a complete local flat Z(p)-algebra that is Cohen-Macaulay.
Suppose that a ∈ R is such that Spec(R/aR) ⊂ Spec R does not contain any irre-
ducible component of Spec(R⊗Z(p)

Fp). Then R/aR is also flat over Z(p).

Proof. — Since R is Z(p)-flat, R/pR is once again Cohen-Macaulay. Our hypotheses
imply that the image a ∈ R/pR of a is not contained in any minimal prime of R/pR,
which means that a is a non-zero divisor in R/pR. Since R is local, this is equivalent
to saying that p is a non-zero divisor in R/aR, which shows that R/aR is Z(p)-flat.

This completes the proof of Proposition 7.2.2

8. Integral theory of q-expansions

Keep the hypotheses and notation of § 6 and § 7. In particular, we fix a prime p at
which VZ ⊂ V is maximal. We now consider toroidal compactifications of the integral
model

SK(G,D)→ Spec(Z(p)).

If V is anisotropic then [40, Corollary 4.1.7] shows that the integral model is already
proper. Therefore, in this subsection, we assume that V admits an isotropic vector.

8.1. Toroidal compactification. — Fix auxiliary data V �Z ⊂ V � and K� as in § 6.2,
and choose this in such a way that V �Z is almost self-dual at p. In particular, from
(6.3.2) we have the finite morphism

SK(G,D)→ SK�(G�,D�)

of integral models, under which ω
� pulls back to ω.

We may choose the auxiliary V � to have signature (n�, 2) with n� ≥ 5. By
Lemma 6.1.3, this allows us to choose a symplectic form ψ� on

H� = C(V �)

in such a way that the Z-lattice H�Z = C(V �Z ) is self-dual at p. As in § 4.3 we obtain
an embedding

(G�,D�)→ (GSg,DSg)

into the Siegel Shimura datum determined by (H�, ψ�). Recalling the Shimura datum
(Gm,H0) of § 3.5, this also fixes a morphism (G�,D�)→ (Gm,H0).

Define reductive groups over Z(p)by

G� = GSpin(V �Z(p)
), GSg = GSp(H�Z(p)

),
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so that G� → GSg extends to a closed immersion G� → GSg. Fix a compact open
subgroup

KSg = KSg
p KSg,p ⊂ GSg(Af )

containing K� and satisfying KSg
p = GSg(Zp). After shrinking the prime-to-p parts of

K ⊂ K� ⊂ KSg,

we assume that all three are neat.
We can construct a toroidal compactification of SK(G,D) as follows. Fix a finite,

completeKSg-admissible cone decomposition ΣSg for (GSg,DSg). As explained in §2.5,
it pulls back to a finite, complete, K�-admissible polyhedral cone decomposition Σ�

for (G�,D�), and a finite, complete, K-admissible polyhedral cone decomposition Σ

for (G,D). If ΣSg has the no self-intersection property, then so do the decompositions
induced from it.

Assume that KSg and ΣSg are chosen so that ΣSg is smooth and satisfies the no
self-intersection property. We obtain a commutative diagram

(8.1.1) SK(G,D,Σ)

��

ShK(G,D,Σ)

��

oo

SK�(G�,D�,Σ�)

��

ShK�(G
�,D�,Σ�)oo

��

SKSg(GSg,DSg,ΣSg) ShKSg(GSg,DSg,ΣSg),oo

where SKSg(GSg,DSg,ΣSg) is the toroidal compactification of SKSg(GSg,DSg) con-
structed by Faltings-Chai. Note that the neatness of KSg implies that it is an alge-
braic space, rather than a stack, but does not guarantee that it is a scheme. The two
algebraic spaces above it are defined by normalization, exactly as in (6.3.2).

According to [40, Theorem 4.1.5], the algebraic space SK(G,D,Σ) is proper
over Z(p) and admits a stratification

(8.1.2) SK(G,D,Σ) =
⊔

(Φ,σ)∈StratK(G,D,Σ)

Z(Φ,σ)
K (G,D,Σ)

by locally closed subspaces, extending (2.6.1), in which every stratum is flat over Z(p).
The unique open stratum is SK(G,D), and its complement is a Cartier divisor.

Fix a toroidal stratum representative (Φ, σ) ∈ StratK(G,D,Σ) in such a way that
the parabolic subgroup underlying Φ is the stabilizer of an isotropic line. As in § 2.3,
the cusp label representative Φ determines a TΦ-torsor

ShKΦ
(QΦ,DΦ)→ ShνΦ(KΦ)(Gm,H0),

and the rational polyhedral cone σ determines a partial compactification

ShKΦ
(QΦ,DΦ) ↪→ ShKΦ

(QΦ,DΦ, σ).
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The base ShνΦ(KΦ)(Gm,H0) of the TΦ-torsor, being a zero dimensional étale scheme
over Q, has a canonical finite normal integral model defined as the normalization
of Spec(Z(p)). The picture is

SνΦ(KΦ)(Gm,H0)

��

ShνΦ(KΦ)(Gm,H0)

��

oo

Spec(Z(p)) Spec(Q).oo

Proposition 8.1.1. — Define an integral model

TΦ = Spec
(
Z(p)[qα]α∈Γ∨Φ(1)

)
of the torus TΦ of § 2.3.

1. The Q-scheme ShKΦ
(QΦ,DΦ) admits a canonical integral model

SKΦ
(QΦ,DΦ)→ Spec(Z(p)),

endowed with the structure of a relative TΦ-torsor

SKΦ
(QΦ,DΦ)→ SνΦ(KΦ)(Gm,H0)

compatible with the torsor structure (2.3.1) in the generic fiber.

2. There is a canonical isomorphism

ŜKΦ
(QΦ,DΦ, σ) ∼= ŜK(G,D,Σ)

of formal algebraic spaces extending (2.6.3).

Here SKΦ
(QΦ,DΦ) ↪→ SKΦ

(QΦ,DΦ, σ) is the partial compactification determined by
the rational polyhedral cone

σ ⊂ UΦ(R)(−1) = Hom(Gm, TΦ)R

and the formal scheme on the left hand side is its completion along its unique closed
stratum. On the right,

ŜK(G,D,Σ) = SK(G,D,Σ)∧
Z(Φ,σ)
K (G,D,Σ)

is the formal completion along the stratum indexed by (Φ, σ).

Proof. — This is a consequence of [40, Theorem 4.1.5].

By [40, Theorem 2] and [15], both SK�(G�,D�,Σ�) and the Faltings-Chai com-
pactification are proper. They admit stratifications

SK�(G�,D�,Σ�) =
⊔

(Φ�,σ�)∈StratK� (G�,D�,Σ�)

Z(Φ�,σ�)
K� (G�,D�,Σ�),

and

SKSg(GSg,DSg,ΣSg) =
⊔

(ΦSg,σSg)∈StratKSg (GSg,DSg)

Z(ΦSg,σSg)
KSg (GSg,DSg,ΣSg),
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analogous to (8.1.2). By [40, (4.1.13)], these stratifications satisfy a natural compati-
bility: if

(Φ, σ) ∈ StratK(G,D,Σ)

has images (Φ�, σ�) and (ΦSg, σSg), in the sense of § 2.5, then the maps in (8.1.1)
induce maps on strata

Z(Φ,σ)
K (G,D,Σ)→ Z(Φ�,σ�)

K� (G�,D�,Σ�)→ Z(ΦSg,σSg)
KSg (GSg,DSg,ΣSg).

Applying the functor of Proposition 8.1.2 below to the G�-representation V �Z(p)

yields a line bundle ω
� = F 1V �dR on SK�(G�,D�,Σ�), which we pull back to a line

bundle ω on SK(G,D,Σ). This gives an extension of (6.3.3) to the toroidal compact-
ification.

Proposition 8.1.2. — There is a functor

N 7→ (NdR, F
•NdR)

from representations G� → GL(N) on free Z(p)-modules of finite rank to filtered vec-
tors bundles on SK�(G�,D�,Σ�), extending the functor (6.3.1) on the open stratum,
and the functor of Theorem 3.4.1 in the generic fiber.

Proof. — Consider the filtered vector bundle (H�dR, F
•H�dR) over ShK�(G

�,D�) ob-
tained by applying the functor (3.3.2) to the representation

G� → GSg = GSp(H�).

Now let ν� : G� → Gm be the spinor similitude, and let Q(ν�) denote the
corresponding one-dimensional representation of G�. It determines a line bundle
on ShK�(G

�,D�), which is canonically a pullback via the morphism

ShK�(G
�,D�) ν�−→ Shν�(K�)(Gm,H0).

Combining this with Remark 3.5.2, we see that the line bundle determined by Q(ν�)

is canonically identified with Lie(Gm), and hence the G�-equivariant morphism
ψ� : H ⊗H → Q(ν�) induces an alternating form

ψ� : H�dR ⊗H�dR → Lie(Gm).

The nontrivial step F 0H�dR in the filtration is a Lagrangian subsheaf with respect to
this pairing.

The vector bundle H�dR is canonically identified with the pullback via

ShK�(G
�,D�)→ ShKSg(GSg,DSg)

of the first relative homology

HSg
dR = Hom

(
R1π∗Ω

•
ASg/ShKSg (GSg,DSg),OShKSg (GSg,DSg)

)
of the universal polarized abelian scheme π : ASg → ShKSg(GSg,DSg). As the universal
abelian scheme extends canonically to the integral model, so does HSg

dR. Its pullback
defines an extension of H�dR, along with its filtration and alternating form, to the
integral model SK�(G�,D�).
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Now fix a family of tensors
{sα} ⊂ H�,⊗Z(p)

that cut out the reductive subgroup G� ⊂ GSg. The functoriality of (3.3.2) implies
that these tensors define global sections {sα,dR} of H�,⊗dR over the generic fiber. By
[31, Corollary 2.3.9], they extend (necessarily uniquely) to sections over the integral
model SK�(G�,D�).

By [40, Proposition 4.3.7], the filtered vector bundle (H�dR, F
•H�dR) admits

a canonical extension to SK�(G�,D�,Σ�). The alternating form ψ� and the sec-
tions sα,dR also extend (necessarily uniquely).

This allows us to define a G�-torsor

JK�(G�,D�,Σ�)
a−→ SK�(G�,D�,Σ�),

whose functor of points assigns to a scheme S → SK�(G�,D�,Σ�) the set of all
pairs (f, f0) of isomorphisms

(8.1.3) f : H�dR/S
∼= H�Z(p)

⊗OS , f0 : Lie(Gm)/S ∼= OS ,

satisfying f(sα,dR) = sα ⊗ 1 for all α, and making the diagram

H�dR/S ⊗H�dR/S
ψ�

//

f⊗f
��

Lie(Gm)

f0

��

(H�Z(p)
⊗OS)⊗ (H�Z(p)

⊗OS)
ψ�

// OS

commute.
Define smooth Z(p)-schemes M̌� and M̌Sg with functors of points

M̌(G�,D�)(S) = {isotropic lines z ⊂ V �Z(p)
⊗OS}

M̌(GSg,DSg)(S) = {Lagrangian subsheaves F 0 ⊂ H�Z(p)
⊗OS}.

These are integral models of the compact duals M̌(G�,D�) and M̌(GSg,DSg) of § 4.3,
and are related, using (4.1.2), by a closed immersion

(8.1.4) M̌(G�,D�)→ M̌(GSg,DSg),

sending the isotropic line z ⊂ V �Z(p)
to the Lagrangian zH�Z(p)

⊂ H�Z(p)
.

We now have a diagram

(8.1.5) JK�(G�,D�,Σ�)

a

��

b // M̌(G�,D�)

SK�(G�,D�,Σ�),

in which a is a G�-torsor and b is G�-equivariant, extending the diagram (3.4.1) already
constructed in the generic fiber. To define the morphism b we first define a morphism

JK�(G�,D�,Σ�)→ M̌(GSg,DSg)
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by sending an S-point (f, f0) to the Lagrangian subsheaf

f(F 0HdR/S) ⊂ HZ(p)
⊗OS .

This morphism factors through (8.1.4). Indeed, as (8.1.4) is a closed immersion, this
is a formal consequence of the fact that we have such a factorization in the generic
fiber, as can be checked using the analogous complex analytic construction.

With the diagram (8.1.5) in hand, the construction of the desired functor proceeds
by simply imitating the construction (3.3.2) used in the generic fiber.

8.2. Integral q-expansions. — Continue with the assumptions of § 8.1, and now fix a
toroidal stratum representative

(Φ, σ) ∈ StratK(G,D,Σ)

as in § 4.6. Thus Φ = (P,D◦, h) with P the stabilizer of an isotropic line I ⊂ V , and
σ ∈ ΣΦ is a top dimensional rational polyhedral cone. Let

(Φ�, σ�) ∈ StratK�(G
�,D�,Σ�)

be the image of (Φ, σ), in the sense of § 2.5.
The formal completions along the corresponding strata

Z(Φ,σ)
K (G,D,Σ) ⊂ SK(G,D,Σ)(8.2.1)

Z(Φ�,σ�)
K� (G�,D�,Σ�) ⊂ SK�(G�,D�,Σ�)

are denoted

ŜK(G,D,Σ) = SK(G,D,Σ)∧
Z(Φ,σ)
K (G,D,Σ)

,

ŜK�(G�,D�,Σ�) = SK�(G�,D�,Σ�)∧Z(Φ�,σ�)
K� (G�,D�,Σ�)

.

These are formal algebraic spaces over Z(p) related by a finite morphism

(8.2.2) ŜK(G,D,Σ)→ ŜK�(G�,D�,Σ�).

Fix a Z(p)-module generator ` ∈ I ∩ VZ(p)
. Recall from the discussion leading to

(4.6.10) that such an ` determines an isomorphism

[`⊗k,−] : ω
⊗k → O

ŜhK(G,D,Σ)

of line bundles on ŜhK(G,D,Σ).

Proposition 8.2.1. — The above isomorphism extends uniquely to an isomorphism

[`⊗k,−] : ω
⊗k → OŜK(G,D,Σ)

of line bundles on the integral model ŜK(G,D,Σ).
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Proof. — The maximality of VZp implies that VZp ⊂ V �Zp is a Zp-module direct sum-
mand. In particular,

IZ(p)
= I ∩ VZ(p)

= I ∩ V �Z(p)
⊂ V �Z(p)

is a Z(p)-module direct summand generated by `. Because ω is defined as the pullback
of ω

�, and because the uniqueness part of the claim is obvious, it suffices to construct
an isomorphism

(8.2.3) [`,−] : ω
� → OŜK� (G�,D�,Σ�),

extending the one in the generic fiber, and then pull back along (8.2.2).
We return to the notation of the proof of Proposition 8.1.2. Let P� ⊂ G� be the

stabilizer of the isotropic line IZ(p)
⊂ V �Z(p)

, define a P�-stable weight filtration

wt−3H
�
Z(p)

= 0, wt−2H
�
Z(p)

= wt−1H
�
Z(p)

= IZ(p)
H�Z(p)

, wt0H
�
Z(p)

= H�Z(p)
,

and set
Q�Φ = ker

(
P� → GL(gr0(H�Z(p)

))
)
.

Compare with the discussion of § 4.4.
The Z(p)-schemes of (8.1.4) sit in a commutative diagram

M̌�Φ //

��

M̌Sg
Φ

��

M̌(G�,D�) // M̌(GSg,DSg),

in which the horizontal arrows are closed immersions, and the vertical arrows are open
immersions. The Z(p)-schemes in the top row are defined by their functors of points,
which are

M̌�Φ(S) =


isotropic lines z ⊂ V �Z(p)

⊗OS such that

V �Z(p)
→ V �Z(p)

/I⊥Z(p)

identifies z ∼= (V �Z(p)
/I⊥Z(p)

)⊗OS


and

M̌Sg
Φ (S) =


Lagrangian subsheaves F 0 ⊂ H�Z(p)

⊗OS such that

H�Z(p)
→ gr0(H�Z(p)

)

identifies F 0 ∼= gr0(H�Z(p)
)⊗OS

 .

Passing to formal completions, the diagram (8.1.5) determines a diagram

(8.2.4) ĴK�(G�,D�,Σ�)

a

��

b // M̌(G�,D�)

ŜK�(G�,D�,Σ�)
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of formal algebraic spaces over Z(p), in which a is a G�-torsor and b is G�-equivariant,
and ĴK�(G�,D�,Σ�) is the formal completion of JK�(G�,D�,Σ�) along the fiber over
the stratum (8.2.1).

Lemma 8.2.2. — The G�-torsor in (8.2.4) admits a canonical reduction of structure
to a Q�Φ-torsor J �Φ, sitting in a diagram

J �Φ

a

��

b // M̌�Φ

ŜK�(G�,D�,Σ�).

Proof. — The essential point is that the filtered vector bundle (H�dR, F
•H�dR)

on SK�(G�,D�,Σ�) used in the construction of the G�-torsor

JK�(G�,D�,Σ�)→ SK�(G�,D�,Σ�)

acquires extra structure after restriction to ŜK�(G�,D�,Σ�). Namely, it acquires a
weight filtration

wt−3H
�
dR = 0, wt−2H

�
dR = wt−1H

�
dR, wt0H

�
dR = H�dR,

along with distinguished isomorphisms

gr−2(H�dR) ∼= gr−2(H�Z(p)
)⊗ Lie(Gm)

gr0(H�dR) ∼= gr0(H�Z(p)
)⊗OŜK� (G�,D�,Σ�).

This follows from the discussion of [40, (4.3.1)]. The essential point is that over the
formal completion ŜK�(G�,D�,Σ�) there is a canonical degenerating abelian scheme,
and the desired extension of H�dR is its de Rham realization. The extension of the
weight and Hodge filtrations is also a consequence of this observation; see [40, § 1],
and in particular [40, Proposition 1.3.5].

The desired reduction of structure J �Φ ⊂ ĴK�(G�,D�,Σ�) is now defined as the
closed formal algebraic subspace parametrizing pairs of isomorphisms (f, f0) as in
(8.1.3) that respect this additional structure.

Moreover, after restricting H�dR to ŜK�(G�,D�,Σ�), the surjection H�dR → gr0H
�
dR

identifies F 0H�dR
∼= gr0H

�
dR. Indeed, in the language of [40, § 1], this just amounts to

the observation that the de Rham realization of a 1-motive with trivial abelian part
has trivial weight and Hodge filtrations.

As the composition

J �Φ ⊂ ĴK�(G�,D�,Σ�)
b−→ M̌(G�,D�) ⊂ M̌(GSg,DSg)

sends (f, f0) 7→ f(F 0H�dR), it takes values in the open subscheme

M̌Sg
Φ ⊂ M̌(GSg,DSg).
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It therefore take values in the closed subscheme M̌�Φ ⊂ M̌
Sg
Φ , as this can be checked in

the generic fiber, where it follows from the analogous complex analytic constructions.

Returning to the main proof, let Ǐ ⊂ V̌ � be the constant Q�Φ-equivariant line
bundles on M̌�Φ determined by the representations IZ(p)

⊂ V �Z(p)
, and let ω̌� ⊂ V̌ � be

the tautological line bundle. The self-duality of V �Z(p)
guarantees that the bilinear

pairing on V̌ � restricts to an isomorphism

[−,−] : Ǐ ⊗ ω̌� → OM̌�Φ .

Pulling back these line bundles to J �Φ and taking the quotient by Q�Φ, we obtain an
isomorphism

[−,−] : IdR ⊗ ω
� → OŜK� (G�,D�,Σ�)

of line bundles on ŜK�(G�,D�,Σ�).
On the other hand, the action of Q�Φ on IZ(p)

is through the character ν�Φ, which
agrees with the restriction of ν� : G� → Gm to Q�Φ. The canonical morphism

J �Φ → ĴK�(G�,D�,Σ�)
(f,f0) 7→f0−−−−−−→ Iso

(
Lie(Gm),OŜK� (G�,D�,Σ�)

)
of formal algebraic spaces over ŜK�(G�,D�,Σ�) identifies ker(ν�Φ)\J �Φ with the trivial
Gm-torsor

Iso
(
Lie(Gm),OŜK� (G�,D�,Σ�)

) ∼= Aut
(
OŜK� (G�,D�,Σ�)

)
over ŜK�(G�,D�,Σ�). As the action of G� on IZ(p)

is via ν�Φ, this trivialization fixes
an isomorphism

IdR = Q�Φ\
(
IZ(p)

⊗OJ �Φ
)

= Gm\
(
IZ(p)

⊗Oker(ν�Φ)\J �Φ

)
∼= IZ(p)

⊗OŜK� (G�,D�,Σ�).

The generator ` ∈ IZ(p)
now determines a trivializing section ` = `⊗1 of IdR, defin-

ing the desired isomorphism (8.2.3). This completes the proof of Proposition 8.2.1.

Let I∗ ⊂ V and

(QΦ,DΦ)
νΦ

// (Gm,H0).

s
uu

be as in the discussion preceding Proposition 4.6.2. Choose a compact open subgroup
K0 ⊂ A×f small enough that s(K0) ⊂ KΦ, and assume that K0 factors as

K0 = Z×p ·K
p
0 .

Let F/Q be the abelian extension of Q determined by

rec : Q×>0\A
×
f /K0

∼= Gal(F/Q).

Fix a prime p ⊂ OF above p, and let R ⊂ F be the localization of OF at p. Note that
the above assumption on K implies that p is unramified in F .
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Proposition 8.2.3. — If we set

T̂Φ(σ) = Spf
(
Z(p)[[qα]]α∈Γ∨Φ(1)

〈α,σ〉≥0

)
,

there is a unique morphism⊔
a∈Q×>0\A

×
f /K0

T̂Φ(σ)/R → ŜK(G,D,Σ)/R

of formal algebraic spaces over R whose base change to C agrees with the morphism
of Proposition 4.6.2. Moreover, if t is any point of the source and s is its image
in ŜK(G,D,Σ)/R, the induced map on étale local rings Oets → Oett is faithfully flat.

Proof. — The uniqueness of such a morphism is clear. We have to show existence.
The proof of this proceeds just as that of Proposition 4.6.2, except that it uses Propo-
sition 8.1.1 as input. The only additional observation required is that we have an
isomorphism

(8.2.5)
⊔

a∈Q×>0\A
×
f /K0

Spec(R) ∼= SK0
(Gm,H0)/R

of R-schemes, which realizes (4.6.8) on C-points. Here SK0
(Gm,H0) is defined as the

normalization of Spec(Z(p)) in ShK0
(Gm,H0).

To see this, note that the defining property of canonical models provides an iso-
morphism

Spec(F ) ∼= ShK0
(Gm,H0)

of Q-schemes, and hence an isomorphism F -schemes⊔
a∈Q×>0\A

×
f /K0

Spec(F ) ∼= ShK0
(Gm,H0)/F .

Using the fact that p is unramified in F , one can see that this isomorphism extends
to (8.2.5).

Suppose ψ is a section of the line bundle ω
⊗k on ShK(G,D)/F . It follows from

Proposition 4.6.3 that the q-expansion (4.6.10) of ψ has coefficients in F for every
a ∈ A×f . If we view ψ as a rational section on SK(G,D,Σ)/R, the following result gives
a criterion for testing flatness of its divisor.

Corollary 8.2.4. — Assume that the special fiber of SK(G,D)/R is geometrically nor-
mal, and for every a ∈ A×f the q-expansion (4.6.10) satisfies

FJ(a)(ψ) ∈ R[[qα]]α∈Γ∨Φ(1)
〈α,σ〉≥0

.

If this q-expansion is nonzero modulo p for all a, then div(ψ) is R-flat.
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Proof. — As SK(G,D,Σ)/R is flat over R, to show that div(ψ) is R-flat it is enough
to show that its support does not contain any irreducible components of the special
fiber of SK(G,D,Σ)/R.

Every connected component

C ⊂ SK(G,D,Σ)/R

has irreducible special fiber. Indeed, we have assumed that the special fiber
of SK(G,D)/R is geometrically normal. It therefore follows from [40, Theorem 1]
that the special fiber of SK(G,D,Σ)/R is also geometrically normal. On the other
hand, [40, Corollary 4.1.11] shows that C has geometrically connected special
fiber. Therefore the special fiber of C is both connected and normal, and hence is
irreducible.

As in the proof of Proposition 4.6.3, the closed stratum

Z(Φ,σ)
K (G,D,Σ)/R ⊂ SK(G,D,Σ)/R

meets every connected component. Pick a closed point s of this stratum lying on the
connected component C. By the definition of FJ(a)(ψ), and from Proposition 8.2.3,
our hypothesis on the q-expansion implies that the restriction of ψ to the completed
local ring Os of s defines a rational section of ω

⊗k whose divisor is an R-flat Cartier
divisor on Spf(Os).

It follows that div(ψ) does not contain the special fiber of C, and varying C shows
that div(ψ) contains no irreducible components of the special fiber of SK(G,D,Σ)/R.

Remark 8.2.5. — If VZp is almost self-dual, then SK(G,D) is smooth over Z(p), and
hence has geometrically normal special fiber. Without the assumption of almost self-
duality, Proposition 7.2.1 tells us that the special fiber is geometrically normal when-
ever n ≥ 6.

9. Borcherds products on integral models

Keep VZ ⊂ V of signature (n, 2) with n ≥ 1, and let (G,D) be the associated
GSpin Shimura datum. As in the introduction, let Ω be a finite set of prime numbers
containing all primes at which VZ is not maximal, and choose (1.1.2) to be factorizable
K =

∏
pKp with

Kp = G(Qp) ∩ C(VZp)×

for all p 6∈ Ω. Set ZΩ = Z[1/p : p ∈ Ω].

9.1. Statement of the main result. — In § 6.3 and § 6.4 we constructed, for every prime
p 6∈ Ω, an integral model over Z(p) of the Shimura variety ShK(G,D), along with a
family of special divisors and a line bundle of weight one modular forms. As explained
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in [1, § 2.4] and [2, § 4.5], as p varies these models arise as the localizations of a flat
and normal integral model

SK(G,D)→ Spec(ZΩ),

endowed with a family of special divisors Z(m,µ) indexed by positive m ∈ Q and
µ ∈ L∨/L, and a line bundle of weight one modular forms ω.

Theorem 9.1.1. — Suppose

f(τ) =
∑
m∈Q

m�−∞

c(m) · qm ∈M !
1−n2

(ρVZ
)

is a weakly holomorphic form as in (5.1.1), and assume f is integral in the sense
of Definition 5.1.2. After multiplying f by any sufficiently divisible positive integer,
there is a rational section ψ(f) of ω

⊗c(0,0) over SK(G,D) whose norm under the
metric (4.2.3) is related to the regularized theta lift of § 5.2 by

(9.1.1) − 2 log ‖ψ(f)‖ = Θreg(f),

and whose divisor is

(9.1.2) div(ψ(f)) =
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ).

The remainder of this subsection is devoted to proving Theorem 9.1.1 under some
restrictive hypotheses on the pair VZ ⊂ V . These will allow us to deduce algebraicity
of the Borcherds product from Proposition 5.2.3, prove its descent to Q using the
q-expansion principle of Proposition 4.6.3, and deduce the equality of divisors (9.1.2)
from the flatness of both sides over ZΩ.

Proposition 9.1.2. — If n ≥ 6, and if there exists an h ∈ G(Af ) and isotropic vec-
tors `, `∗ ∈ hVZ such that [`, `∗] = 1, then Theorem 9.1.1 holds.

Proof. — It suffices to treat the case where

K = G(Af ) ∩ C(VẐ)×,

for then we can pull back ψ(f) to any smaller level structure.
The vectors `, `∗ ∈ V satisfy the relation (5.3.1) with k = `∗. Let I and I∗ be the

isotropic lines in V spanned by ` and `∗, respectively. Let P be the stabilizer of I, and
let D◦ ⊂ D be a connected component. This determines a cusp label representative

Φ = (P,D◦, h).

Although we will not use this fact explicitly, the following lemma implies that
the 0-dimensional stratum of the Baily-Borel compactification ShK(G,D)BB indexed
by Φ is geometrically connected. In other words, Baily-Borel compactification has a
cusp defined over Q.
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Lemma 9.1.3. — The complex orbifold ShK(G,D)(C) is connected, and the section
(4.6.6) determined by I∗ satisfies

(9.1.3) s(Ẑ×) ⊂ KΦ.

Proof. — We first prove (9.1.3). Consider the hyperbolic place

W = Q`+ Q`∗ ⊂ V.

Its corresponding spinor similitude group GSpin(W ) is just the unit group of the even
Clifford algebra C+(W ). The natural inclusion GSpin(W ) → G takes values in the
subgroup QΦ, and the cocharacter (4.6.6) factors as

Gm
s−→ GSpin(W )→ QΦ,

where the first arrow sends a ∈ Q× to

s(a) = a−1`∗`+ ``∗ ∈ C+(W )×.

From this explicit formula and the inclusion

HẐ = Ẑ`⊕ Ẑ`∗ ⊂ hVẐ,

it is clear that (4.6.6) satisfies

s(Ẑ×) ⊂ C+(WẐ)× ⊂ QΦ(Af ) ∩ C(hVẐ)× = KΦ.

Now we prove the connectedness claim. From (9.1.3) it follows that

Ẑ× = νΦ(s(Ẑ×)) ⊂ νΦ(KΦ) ⊂ ν(K),

and hence the 0-dimensional Shimura variety

Shν(K)(Gm,H0)(C) = Q×\H0 × A×f /ν(K)

consists of a single point. The proof of Proposition 4.6.3 shows that the fibers of

ShK(G,D)(C)→ Shν(K)(Gm,H0)(C)

are connected, completing the proof.

Applying Theorem 5.2.2 and Proposition 5.2.3 to the form 2f gives us a rational
section

(9.1.4) ψ(f) = (2πi)c(0,0)Ψ(2f)

of ω
⊗c(0,0) over ShK(G,D)/C. We first prove that ψ(f) can be rescaled by a constant

of absolute value 1 to make it defined over Q.
Fix a neat compact open subgroup K̃ ⊂ K small enough that there is a K̃-ad-

missible complete cone decomposition Σ for (G,D) satisfying the conclusion of
Lemma 5.4.1. In particular, we have a top-dimensional rational polyhedral cone
σ ∈ ΣΦ whose interior is contained in a fixed Weyl chamber

W ⊂ LightCone◦(V0R) ∼= CΦ.
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Let ψ̃(f) denote the pullback of ψ(f) to ShK̃(G,D,Σ)/C. Recalling the construction
of q-expansions of (4.6.10), the toroidal stratum representative

(Φ, σ) ∈ StratK̃(G,D,Σ)

determines a collection of formal q-expansions

(9.1.5) FJ(a)(ψ̃(f)) ∈ C[[qα]]α∈Γ∨Φ(1)
〈α,σ〉≥0

indexed by a ∈ Q×>0\A
×
f /K̃0, where K̃0 ⊂ Gm(Af ) is chosen small enough that its

image under (4.6.6) is contained in K̃Φ.
We can read off these q-expansions from Proposition 5.4.2, which implies

(9.1.6) FJ(a)(ψ̃(f)) =
(
κ(a) · qα(%) · BP(f)

)2
,

for an explicit

(9.1.7) BP(f) ∈ Z[[qα]]α∈Γ∨Φ(1)
〈α,σ〉≥0

,

and some constants κ(a) ∈ C of absolute value 1. Indeed, the hypotheses on `, `∗ ∈ VZ
imply that the constants N and A appearing in (5.3.6) are equal to 1, and our choice
of k = `∗ ∈ hVZ implies that ζµ = 1 for all µ ∈ hV ∨Z /hVZ.

Moreover, it is clear from the presentation of BP(f) as a product that its constant
term is equal to 1.

The q-expansion (9.1.5) is actually independent of a. Indeed, using the notation of
(5.4.5), with K replaced by K̃ throughout, these q-expansions can be computed in
terms of the pullback of ψ(f) to the upper left corner in⊔

a∈Q×>0\A
×
f /K̃0

Γ̃
(a)
Φ \D◦

��

z 7→(z,s(a)h)
// ShK̃(G,D)(C)

��

(KΦ ∩ UΦ(Q))\D◦
z 7→(z,h)

// ShK(G,D)(C).

Here we have chosen our coset representatives a ∈ Ẑ×. This implies, by Lemma 9.1.3,
that s(a) ∈ KΦ ⊂ hKh−1, and so

Γ̃
(a)
Φ = s(a)K̃Φs(a)−1 ∩ UΦ(Q) ⊂ KΦ ∩ UΦ(Q)

and s(a)hK = hK. It follows that the pullback of ψ(f) to the upper left corner is the
same on every copy of D◦.

Having proved that all of the κ(a) are equal, we may rescale ψ(f) by a constant
of absolute value 1 to make all of them equal to 1. The q-expansion principle of
Proposition 4.6.3 now implies that ψ̃(f) is defined over Q, and the same is therefore
true of ψ(f). The equality (9.1.1) follows from the equality (5.2.2).

It only remains to prove the equality of divisors (9.1.2). In the generic fiber, this
follows from (9.1.1) and the analysis of the singularities of Θreg(f) found in [5] or [8].
To prove equality on the integral model, it therefore suffices to prove that both sides

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



284 BENJAMIN HOWARD & KEERTHI MADAPUSI PERA

of the desired equality are flat over ZΩ. Flatness of the special divisors Z(m,µ) is
Proposition 7.2.2.

To prove the flatness of div(ψ(f)) it suffices to show, for every prime p 6∈ Ω,
that div(ψ(f)) has no irreducible components supported in characteristic p. This
follows from Corollary 8.2.4 and the observation made above that (9.1.7) has nonzero
reduction at p.

The only technical point is that to apply Corollary 8.2.4 to the integral model
of ShK̃(G,D,Σ) over Z(p), we must choose K̃ to have p-component

K̃p = G(Qp) ∩ C(VZp)×,

and similarly choose K̃0 to have p-component Z×p . As p varies, this forces us to vary K̃.
As we need K̃ to satisfy the conclusion of Lemma 5.4.1, this may require us to also
vary both Σ and the rational polyhedral cone σ ∈ ΣΦ. Thus, having rescaled the
Borcherds product to eliminate the constants κ(a) at one boundary stratum, we may
be forced to apply Corollary 8.2.4 at a different boundary stratum of a different
toroidal compactification at different level structure, at which we must deal with new
constants κ(a).

This is not really a problem. For a given p, one can check using Remark 2.4.9 that
it is possible to choose K̃ (and hence Σ and σ ∈ ΣΦ) as in Lemma 5.4.1 by shrinking
only the prime-to-p part of K. Using Lemma 9.1.3, we may then choose K̃0 to have
p-component Z×p . Now pull back ψ(f) via the resulting étale cover

SK̃(G,D)/Z(p)
→ SK(G,D)/Z(p)

over integral models over Z(p) to obtain a section ψ̃(f) whose q-expansion again has
the form (9.1.6) for some constants κ(a) of absolute value 1.

The point is simply that our ψ(f), hence also ψ̃(f), has been rescaled so that it is
defined over Q. This allows us to use the q-expansion principle of Proposition 4.6.3
to deduce that each κ(a) is rational, hence is ±1. Thus the power series (9.1.6) has
integer coefficients and nonzero reduction at p. Corollary 8.2.4 implies that the divisor
of ψ̃(f) has no irreducible components in characteristic p, so the same holds for ψ(f).

9.2. Proof of Theorem 9.1.1. — In this subsection we complete the proof of The-
orem 9.1.1 by developing a purely algebraic analogue of the embedding trick of
Borcherds. This allows us to deduce the general case from the special case proved
in Proposition 9.1.2.

According to [5, Lemma 8.1] there exist self-dual Z-quadratic spaces Λ[1] and Λ[2]

of signature (24, 0) whose corresponding theta series

ϑ[i](τ) =
∑
x∈Λ[i]

qQ(x) ∈M12(SL2(Z),C)

are related by

(9.2.1) ϑ[2] − ϑ[1] = 24∆.
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Here ∆ is Ramanujan’s modular discriminant, and Q is the quadratic form on Λ[i].
Denote by

r[i](m) = #{x ∈ Λ[i] : Q(x) = m}

the m-th Fourier coefficient of ϑ[i]. Set

(9.2.2) V
[i]
Z = VZ ⊕ Λ[i] and V [i] = V ⊕ Λ

[i]
Q .

In the notation of § 5.1, the inclusion VZ ↪→ V
[i]
Z identifies

V ∨Z /VZ
∼= (V

[i]
Z )∨/V

[i]
Z ,

and the induced isomorphism
SVZ
∼= S

V
[i]
Z

is compatible with the Weil representations on source and target. The fixed weakly
holomorphic form f of (5.1.1) therefore determines a form

f [i](τ) =
∑
m∈Q

m�−∞

c[i](m) · qm ∈M !
−11−n2

(ρ
V

[i]
Z

)

by setting f [i] = f/(24∆). The relation

f = ϑ[2]f [2] − ϑ[1]f [1]

implies the equality of Fourier coefficients

(9.2.3) c(m,µ) =
∑
k≥0

r[2](k) · c[2](m− k, µ)−
∑
k≥0

r[1](k) · c[1](m− k, µ).

Each V [i] determines a GSpin Shimura datum (G[i],D[i]). By choosing

K [i] = G[i](Af ) ∩ C(V
[i]

Ẑ
)×

for our compact open subgroups, we put ourselves in the situation of § 6.6. Note that
in § 6.6 the integral models were over Z(p), but everything extends verbatim to ZΩ.
In particular, we have finite morphisms of integral models

SK(G,D)

j[1]

zz

j[2]

$$

S [1] S [2]

over ZΩ, where we abbreviate

S [i] = SK[i](G[i],D[i]).

Each S [i] has its own line bundle of weight one modular forms ω
[i] and its own family

Z [i](m,µ) of special divisors.
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The following lemma shows that each V [i]
Z ⊂ V [i] satisfies the hypotheses of Propo-

sition 9.1.2. Thus, after replacing f (and hence both f [1] and f [2]) by a positive integer
multiple, we obtain a Borcherds product ψ(f [i]) on S [i] with divisor

(9.2.4) div(ψ(f [i]) =
∑
m>0

µ∈V ∨Z /VZ

c[i](−m,µ) · Z [i](m,µ).

Lemma 9.2.1. — There exist isotropic vectors `, `∗ ∈ V [i]
Z with [`, `∗] = 1.

Proof. — Let H = Z` ⊕ Z`∗ be the integral hyperbolic plane, so that ` and `∗ are
isotropic with [`, `∗] = 1. To prove the existence of an isometric embedding H→ V

[i]
Z ,

we first prove the existence everywhere locally.
At the archimedean place this is clear from the signature, so fix a prime p. The

Qp-quadratic space Λ[i] ⊗Z Qp has dimension ≥ 5, so admits an isometric embedding

H⊗Qp → Λ[i] ⊗Qp.

Enlarging the image of H⊗ Zp to a maximal lattice, and invoking Eichler’s theorem
that all maximal lattices in a Qp-quadratic space are isometric [16, Theorem 8.8],
we find that H ⊗ Zp embeds into the (self-dual, hence maximal) lattice Λ[i] ⊗ Zp. A
fortiori, it embeds into V [i]

Z ⊗Z Zp.
The existence of the desired embeddings everywhere locally implies that there exist

isometric embeddings

(9.2.5) a : H⊗Q→ V
[i]
Z ⊗Q,

and
α : H⊗ Ẑ→ V

[i]
Z ⊗ Ẑ.

We may choose these in such a way that a and α induce the same embedding
of Qp-quadratic spaces at all but finitely many primes p. All embeddings

H⊗Qp → V
[i]
Z ⊗Qp

lie in a single SO(V [i])(Qp)-orbit, and so there exists a

g ∈ SO(V [i])(Af )

such that

(9.2.6) ga(H⊗ Ẑ) = α(H⊗ Ẑ).

Fix a subspace W ⊂ V
[i]
Z ⊗ Q of signature (2, 1) perpendicular to the image of

(9.2.5). There exists an isomorphism SO(W ) ∼= PGL2 identifying the spinor norm

SO(W )(Af )→ A×f /(A
×
f )2

with the determinant, and hence the spinor norm is surjective. This allows us to
modify g by an element of SO(W )(Af ), which does not change the relation (9.2.6),
in order to arrange that g has trivial spinor norm. Now choose any lift

g ∈ Spin(V [i])(Af ),
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and note that (9.2.6) implies

ga(H⊗ Ẑ) ⊂ V [i]
Z ⊗ Ẑ.

As the spin group is simply connected, it satisfies strong approximation. By
choosing γ ∈ Spin(V [i])(Q) sufficiently close to g, we find an isometric embedding
γa : H→ V

[i]
Z .

At least formally, we wish to define

ψ(f) =
(j[2])∗ψ(f [2])

(j[1])∗ψ(f [1])
.

As noted in § 1.4, the image of j[i] will typically be contained in the support of the
divisor of ψ(f [i]), and so the quotient on the right will typically be either 0/0 or∞/∞.

The key to making sense of this quotient is to combine the following lemma, which
is really just a restatement of (9.2.4), with the pullback formula of Proposition 6.6.3.
As in the pullback formula, we use Z [i](m,µ) to denote both the special divisor and
its corresponding line bundle, and extend the definition to m ≤ 0 by

Z [i](m,µ) =

{
(ω[i])−1 if (m,µ) = (0, 0)

OS[i] otherwise.

Lemma 9.2.2. — The Borcherds product ψ(f [i]) determines an isomorphism of line
bundles

OS[i]
∼=

⊗
m≥0

µ∈V ∨Z /VZ

Z [i](m,µ)⊗c
[i](−m,µ).

Proof. — If m > 0 there is a canonical section

s[i](m,µ) ∈ H0
(
S [i],Z [i](m,µ)

)
with divisor the Cartier divisor Z [i](m,µ) of the same name. This is just the constant
function 1, viewed as a section of

OS[i] ⊂ Z [i](m,µ).

The equality of divisors (9.2.4) implies that there is a unique isomorphism

(ω[i])⊗c
[i](0,0) ∼=

⊗
m>0

µ∈V ∨Z /VZ

Z [i](m,µ)⊗c
[i](−m,µ)

sending

ψ(f [i]) 7→
⊗
m>0

µ∈V ∨Z /VZ

s[i](m,µ)⊗c
[i](−m,µ),

and so the claim is immediate from the definition of Z [i](0, µ).
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Proof of Theorem 9.1.1. — If we pull back the isomorphism of Lemma 9.2.2 via j[i]

and use the pullback formula of Proposition 6.6.3, we obtain isomorphisms of line
bundles

OSK(G,D)
∼=

⊗
m1,m2≥0
µ∈V ∨Z /VZ

Z(m1, µ)⊗r
[i](m2)·c[i](−m1−m2,µ)

for i ∈ {1, 2}. These two isomorphisms, along with (9.2.3), determine an isomorphism

OSK(G,D)
∼=

⊗
m≥0

µ∈V ∨Z /VZ

Z(m,µ)⊗c(−m,µ).

Now simply reverse the reasoning in the proof of Lemma 9.2.2. Rewrite the iso-
morphism above as

ω
c(0,0) ∼=

⊗
m>0

µ∈V ∨Z /VZ

Z(m,µ)⊗c(−m,µ).

Each line bundle on the right admits a canonical section s(m,µ) whose divisor is
the Cartier divisor Z(m,µ) of the same name, and so the rational section of ω

c(0,0)

defined by

(9.2.7) ψ(f) =
⊗
m>0

µ∈V ∨Z /VZ

s(m,µ)⊗c(−m,µ)

has divisor
div(ψ(f)) =

∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ).

To complete the proof of Theorem 9.1.1, we need only prove that the section defined
by (9.2.7) satisfies the norm relation (9.1.1).

Fix a g ∈ G(Af ), and consider the complex uniformizations

D[1] // S [1](C)

D //

j[1]

>>

j[2]
  

SK(G,D)(C)

j[1]
88

j[2]
&&

D[2] // S [2](C),

in which all horizontal arrows send z 7→ (z, g).
Denote by ψg(f) the pullback of ψ(f) to D. The similarly defined meromorphic

sections ψg(f [i]) on D[i] are already assumed to satisfy the norm relation

−2 log ‖ψg(f [i])‖ = Θreg
g (f [i])

on D[i], where
Θreg
g (f [i]) = Θreg(f [i], g)
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is the regularized theta lift of § 5.2.
Recall from § 6.5 that every x ∈ V [i] with Q(x) > 0 determines a global section

obstan
x ∈ H0

(
D[i],ω−1

D[i]

)
,

with zero locus the analytic divisor

D[i](x) = {z ∈ D[i] : [z, x] = 0}.

The pullback of Z [i](m,µ)(C) to D[i] is given by the locally finite sum of analytic
divisors ∑

x∈gµ+gV
[i]
Z

Q(x)=m

D[i](x).

Define the renormalized Borcherds product

ψ̃g(f
[i]) = ψg(f

[i])⊗
⊗
m>0

⊗
λ∈Λ[i]

Q(λ)=m

(obstan
λ )⊗−c

[i](−m,0).

This is a meromorphic section of
⊗

m≥0

(
ωD[i]

)⊗r[i](m)c[i](−m,0) with divisor

div
(
ψ̃g(f

[i])
)

=
∑
m>0

µ∈V ∨Z /VZ

c[i](−m,µ)
∑

x∈gµ+gV
[i]
Z

Q(x)=m

x6∈Λ[i]

D[i](x).

Note that each divisor D[i](x) appearing on the right hand side intersects the
subspace D ⊂ D[i] properly. Indeed, If we decompose x = y + λ with y ∈ gµ + gVZ
and λ ∈ Λ, then

D[i](x) ∩ D =

{
D(y) if Q(y) > 0

∅ otherwise,

where D(y) = {z ∈ D : [z, y] = 0}.
This is the point: by renormalizing the Borcherds product we have removed pre-

cisely the part of its divisor that intersects D improperly, and so the renormalized
Borcherds product has a well-defined pullback to D. Indeed, using the relation (9.2.3),
we see that

(9.2.8) ψg(f) =
(j[2])∗ψ̃g(f

[2])

(j[1])∗ψ̃g(f [1])

is a section of the line bundle ω
⊗c(0,0)
D . By directly comparing the algebraic and

analytic constructions, which ultimately boils down to the comparison of algebraic
and analytic obstructions found in Proposition 6.5.3, one can check that it agrees
with the ψg(f) defined at the beginning of the proof.
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Define the renormalized regularized theta lift

Θ̃reg
g (f [i]) = Θreg

g (f [i]) + 2
∑
m>0

c[i](−m, 0)
∑
λ∈Λ[i]

Q(λ)=m

log ‖obstan
λ ‖

so that

(9.2.9) − 2 log ‖ψ̃g(f [i])‖ = Θ̃reg
g (f [i]).

Combining this with (9.2.8) yields

−2 log ‖ψg(f)‖ = (j[2])∗Θ̃reg
g (f [2])− (j[1])∗Θ̃reg

g (f [1]).

As was noted in Remark 5.2.1, the regularized theta lift Θreg
g (f [i]) is over-

regularized, in the sense that its definition makes sense at every point of D[i], even
at points of the divisor along which Θreg

g (f [i]) has its logarithmic singularities. As
in [1, Proposition 5.5.1], its values along the discontinuity agree with the values
of Θ̃reg

g (f [i]), and in fact we have

(j[i])∗Θreg
g (f [i]) = (j[i])∗Θ̃reg

g (f [i])

as functions on D.
On the other hand, for each i ∈ {1, 2}, the regularized theta lift has the form

Θreg
g (f [i])(z) =

∫
SL2(Z)\H

f [i](τ)ϑ[i](τ, z, g)
du dv

v2

as in (5.2.1). As in [12, (4.16)], when we restrict the variable z to D ⊂ D[i] the theta
kernel factors as

ϑ[i](τ, z, g) = ϑ(τ, z, g) · ϑ[i](τ),

where ϑ(τ, z, g) is the theta kernel defining Θreg
g (f). Thus

(j[i])∗Θreg
g (f [i]) =

∫
SL2(Z)\H

f(τ)ϑ(τ, z, g) · ϑ
[i](τ)

24∆

du dv

v2
.

Combining this last equality with (9.2.1) proves the first equality in

Θreg
g (f) = (j[2])∗Θreg

g (f [2])− (j[1])∗Θreg
g (f [1])

= (j[2])∗Θ̃reg
g (f [2])− (j[1])∗Θ̃reg

g (f [1]),

which is just a more explicit statement of [5, Lemma 8.1]. Combining this with (9.2.8)
and (9.2.9) shows that ψ(f) satisfies the norm relation (9.1.1), and completes the
proof of Theorem 9.1.1.
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9.3. A remark on sufficient divisibility. — In order to obtain a Borcherds product ψ(f)

on the integral model SK(G,D) → Spec(ZΩ), Theorem 9.1.1 requires that we first
multiply the integral form

f(τ) =
∑
m∈Q

m�−∞

c(m) · qm ∈M !
1−n2

(ρVZ
)

by some unspecified positive integer N . In fact, examination of the proof shows
that N = N(VZ) depends only on the quadratic lattice VZ, and not on the choice
of f , the finite set of primes Ω, or the level subgroup K.

Indeed, one first checks this in the situation of Proposition 9.1.2. Thus we assume
that n ≥ 6, and that there exists an h ∈ G(Af ) and isotropic vectors `, `∗ ∈ hVZ with
[`, `∗] = 1. As in the proof of that proposition, one can reduce to the case

K = G(Af ) ∩ C(VẐ)×.

The only point in the proof of Proposition 9.1.2 where one must replace f by Nf

is when Theorem 5.2.2 and Proposition 5.2.3 are invoked to obtain the Borcherds
product (9.1.4) over the complex fiber ShK(G,D)/C. Thus we only need to require
that N be chosen divisible enough that the multipliers

ξg(f) : G(Q)◦ ∩ gKg−1 → C×

of (5.2.5) satisfy ξg(f)N = 1, as f varies over all integral forms as above and g ∈ G(Af )

runs over the finite set of indices in⊔
g

(G(Q)◦ ∩ gKg−1)\D◦ ∼= ShK(G,D)/C.

This is possible, as the natural map

G(Q)◦ ∩ gKg−1 → SO(gVZ)

has kernel {±1}, and its image has finite abelianization; see [7].
The general case follows by examining the constructions of § 9.2. Applying the spe-

cial case above to the lattices in (9.2.2) yields positive integers N(V
[1]
Z ) and N(V

[2]
Z ).

Any multiple of
N(VZ) = N(V

[1]
Z ) ·N(V

[2]
Z )

is then “sufficiently divisible” for the purposes of Theorem 9.1.1.

9.4. Modularity of the generating series. — For any positive m ∈ Q and any µ ∈
V ∨Z /VZ, we denote again by

Z(m,µ) ∈ Pic(SK(G,D))

the line bundle defined by the Cartier divisor of the same name. Extend the definition
to m = 0 by

Z(0, µ) =

{
ω
−1 if µ = 0

OSK(G,D) otherwise.
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Recall from § 5.1 the Weil representation

ρVZ : S̃L2(Z)→ AutC(SVZ)

on SVZ = C[V ∨Z /VZ].

Theorem 9.4.1. — Let φµ ∈ SVZ be the characteristic function of the coset µ ∈ V ∨Z /VZ.
For any Z-linear map α : Pic(SK(G,D))→ C we have∑

m≥0
µ∈V ∨Z /VZ

α(Z(m,µ)) · φµ · qm ∈M1+n
2

(ρVZ).

Proof. — According to the modularity criterion of [6, Theorem 3.1], a formal q-ex-
pansion ∑

m≥0
µ∈V ∨Z /VZ

a(m,µ) · φµ · qm

with coefficients in SVZ defines an element of M1+n
2

(ρVZ) if and only if

(9.4.1) 0 =
∑
m≥0

µ∈V ∨Z /VZ

c(−m,µ) · a(m,µ)

for every

f(τ) =
∑
m∈Q

µ∈V ∨Z /VZ

c(m,µ) · qm ∈M !
1−n2

(ρVZ
).

By the main result of [41], it suffices to verify (9.4.1) only for f(τ) that are integral,
in the sense of Definition 5.1.2.

For any integral f(τ), Theorem 9.1.1 implies that

ω
c(0,0) =

∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ)

up to a torsion element in Pic(SK(G,D)), and hence∑
m≥0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ) ∈ Pic(SK(G,D))

is killed by any Z-linear map α : Pic(SK(G,D)) → C. Thus the claimed modularity
follows from the result of Borcherds cited above.
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9.5. Modularity of the arithmetic generating series. — Bruinier [8] has defined a Green
function Θreg(Fm,µ) for the divisor Z(m,µ). This Green function is constructed, as
in (5.2.1), as the regularized theta lift of a harmonic Hejhal-Poincare series

Fm,µ ∈ H1−n2 (ρVZ
),

whose holomorphic part, in the sense of [10, § 3], has the form

F+
m,µ(τ) =

(
φµ + φ−µ

2

)
· q−m +O(1),

where φµ ∈ SVZ is the characteristic function of the coset µ ∈ V ∨Z /VZ. See [1, § 3.2]
and the references therein.

This Green function determines a metric on the corresponding line bundle, and so
determines a class

Ẑ(m,µ) = (Z(m,µ),Θreg(Fm,µ)) ∈ P̂ic(SK(G,D))

for every positive m ∈ Q and µ ∈ V ∨Z /VZ. Recall that that we have defined a metric
(4.2.3) on the line bundle ω, and so obtain a class

ω̂ ∈ P̂ic(SK(G,D)).

We define

Ẑ(0, µ) =

{
ω̂
−1 if µ = 0

0 otherwise.

Theorem 9.5.1. — Suppose n ≥ 3. For any Z-linear functional

α : P̂ic(SK(G,D))→ C

we have ∑
m≥0

µ∈V ∨Z /VZ

α
(
Ẑ(m,µ)

)
· φµ · qm ∈M1+n

2
(ρVZ).

Proof. — The assumption that n ≥ 3 implies that any form

f(τ) =
∑
m∈Q

µ∈V ∨Z /VZ

c(m,µ) · qm ∈M !
1−n2

(ρVZ
)

has negative weight. As in [10, Remark 3.10], this implies that any such f is a linear
combination of the Hejhal-Poincare series Fm,µ, and in fact

f =
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Fm,µ.

This last equality follows, as in the proof of [11, Lemma 3.10], from the fact that the
difference between the two sides is a harmonic weak Maass form whose holomorphic
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part is O(1). In particular, we have the equality of regularized theta lifts

Θreg(f) =
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) ·Θreg(Fm,µ).

Now assume that f is integral. After replacing f by a positive integer multiple,
Theorem 9.1.1 provides us with a Borcherds product ψ(f) with arithmetic divisor

d̂iv(ψ(f)) = (div(ψ(f)),− log ‖ψ(f)‖2) =
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Ẑ(m,µ).

On the other hand, in the group of metrized line bundles we have

d̂iv(ψ(f)) = ω̂
⊗c(0,0) = −c(0, 0) · Ẑ(0, 0).

The above relations show that∑
m≥0

µ∈V ∨Z /VZ

c(−m,µ) · Ẑ(m,µ) ∈ P̂ic(SK(G,D))

is a torsion element for any integral f . Exactly as in the proof of Theorem 9.4.1, the
claim follows from the modularity criterion of Borcherds.
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