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HEEGNER POINTS, STARK-HEEGNER POINTS,
AND DIAGONAL CLASSES

Massimo Bertolini, Henri Darmon, Victor Rotger,
Marco Adamo Seveso and Rodolfo Venerucci

Abstract.—This volume comprises four interrelated articles whose unifying theme is
the study of Heegner and Stark-Heegner points, and their connections with the p-
adic logarithm of certain global cohomology classes attached to a pair of weight one
theta series of a common (imaginary or real) quadratic field. These global classes are
obtained from p-adic deformations of diagonal classes attached to triples of modu-
lar forms of weight > 1, and naturally generalise a construction of Kato which one
recovers when the two theta series are replaced by Eisenstein series of weight one. Un-
derstanding the extent to which such classes obtained via the p-adic interpolation of
motivic cohomology classes are themselves motivic is a key motivation for this study.
A second is the desire to show that Stark-Heegner points, whose global nature is still
poorly understood theoretically, arise from classes in global Galois cohomology.

Résumé (Points de Heegner, points de Stark-Heegner et classes diagonales).— Ce vo-
lume est constitué de 4 articles interdépendants dont le théme unificateur est I’étude
des points de Heegner et de Stark-Heegner, et leurs relation avec certaines classes de
cohomologie Galoisienne globales associées & une paire de séries theta de poids un
du méme corps quadratique (imaginaire ou réel). Ces classes proviennent de défor-
mations p-adiques des classes diagonales associés & des triplets de formes modulaires
de poids > 1, et généralisent une construction de Kato que l'on récupére quand les
deux séries theta sont remplacés par des séries d’Eisenstein de poids un. Une des
motivations pour cette étude est de comprendre dans quelle mesure de telles classes,
obtenues par interpolation p-adique & partir de familles de classes motiviques, restent
elles-mémes motiviques. Ces résultats permettent aussi de démontrer que les points
de Stark-Heegner, dont les propriétés d’algébricité sont encore complétement conjec-
turales, proviennent tout au moins de classes de cohomologie globales.

© Astérisque 434, SMF 2022






TABLE OF CONTENTS

HENRI DARMON & VICTOR ROTGER — Stark-Heegner points and diagonal
ClASSES o oot
CIntroduction ...
. Stark-Heegner points .......... .o
. p-adic L-functions associated to Hida families ........................
. A p-adic Gross-Zagier formula for Stark-Heegner points ..............
. Setting the stage ..o
. Factorisation of p-adic L-series ...........cooiiiiiiiiiiinininnnnnan..
CMain results ..
References .......ooii e

N O O W N

HENRI DARMON & VICTOR ROTGER — p-adic families of diagonal cycles
Introduction ...t e
1. Background ............
1.1. Basic notations ............ooiiiiiiiiiii
1.2. Modular forms and Galois representations ........................
1.3. Hida families and A-adic Galois representations ..................
1.4. Families of Dieudonné modules ........... ...,
2. Generalized Kato classes ...
2.1. A compatible collection of cycles ............. ...,
2.2. Galois cohomology classes ............couiiiiiiiniiininenin.
2.3. A-adic cohomology €lasses ............ooiiiiiiiiiiiiiiiii i
3. Higher weight balanced specializations ................... ... .. ...,
. Cristalline specializations ............ ...,
5. Triple product p-adic L-functions and the reciprocity law .............
5.1. Perrin-Riou’s regulator ........ .. .. .. i
References ....... ..o e

W

MASSIMO BERTOLINT & MARCO ADAMO SEVESO & RODOLFO VENERUCCI
— Reciprocity laws for balanced diagonal classes .........................
1. Description and statement of results .................. .ot

1.1. The three-variable reciprocity law ............ .. ... .. ... ... ..



vi TABLE OF CONTENTS

1.2. Specializations at unbalanced points ................ ... ... . ...
2. Cohomology of modular curves .............c.ociiiiiiiiiiiiiiii...
2.1. Modular Curves . ......c.uenuiitin i
2.2. Degeneracy Maps . ..o.uueennte et
2.3. Relative Tate modules and Hecke operators ......................
2.4. Deligne representations ..............oiiiiiiiiiiiiiiiiiiii..
2.5. Comparison with de Rham cohomology ..........................
3. Diagonal classes ...
3.1. The explicit reciprocity law ....... ... ... o i
3.2. Comparison with Gross-Kudla-Schoen diagonal cycles ............
4. Big étale sheaves and Galois representations ..........................
4.1. Locally analytic functions and distributions ......................
4.2. Btale Sheaves ..........ooeieeiiii e
4.3. The ordinary Case .........c.o.ouueiniintiiini ..
5. Hida families ..o
6. Garrett-Rankin p-adic L-functions ...............ccooiiiiiiieninnn....
6.1. Test vectors and special value formulae ..........................
7. Selmer groups and big logarithms ............. . .. . .. il
7.1. A four-variable big logarithm ................ ... ... oL,
7.2. The balanced Selmer group ..........c..coiiiiiiiiiiiinine...
7.3. The three-variable big logarithms ................ ... ... ... ...
8. Proof of Theorem A ... .. .. . e
8.1. Construction of K(f,g,h) ... ..o
8.2. Balanced specializations of k(f,g,h) .........c..coiiiiil
8.3. p-stabilization of diagonal classes ...............cocoiiiiiiiiat.
8.4. p-stabilization of de Rham classes ..................ccoiiiiiinn.
8.5. Conclusion of the proof ...... ... .. .. ...
9. Proof of Theorem B ... ..
9.1. Proof in the non-exceptional case ....................ciiiiiiL.
9.2. Derivatives of big logarithms I ........... ... ... ... ... . ...
9.3. Improved diagonal classes .............cooiiiiiiiiiiiiiiiii
9.4. Conclusion of the proof ........ ... .. .. i
References . .....o.onuon i

MASSIMO BERTOLINI & MARCO ADAMO SEVESO & RODOLFO VENERUCCI
— Balanced diagonal classes and rational points on elliptic curves ......
1. Description and statement of results ............. ... ... .. i
2. Derivatives of big logarithms IT ........... ... ... ... . i i,
2.1. The projection wggpn and the class kKoo (f, g, ) - ocovviiiiiiii.
2.2. Tate’s theory and the constant ¢y .................... .. ... ...,
2.3. An exceptional zero formula and Equation (??) ..................
3. Factorisations of p-adic L-functions ............. ... ...
3.1. The Mazur-Kitagawa p-adic L-function ..........................

ASTERISQUE 434

82

84

85

86

86

90

91

94

97
101
104
105
110
115
117
126
128
129
129
131
134
136
136
138
144
150
152
153
154
156
164
167
171

175
175
181
182
183
185
192
192



TABLE OF CONTENTS vii

3.2. Hida-Rankin p-adic L-functions attached to quadratic fields ... .. 194
3.3. Proof of Theorem 3.1 ..... ..ot 195
3.4. Proofs of Lemma 3.2 and Lemma 3.3 ............................. 196
References ... ..o e 200

SOCIETE MATHEMATIQUE DE FRANCE 2022






RESUMES DES ARTICLES

Points de Stark-Heegner et classes diagonales
HENRI DARMON & VICTOR ROTGER ........ooiiiiiiiiiiiiiiiiinan... 1

Les points de Stark-Heegner généralisent les points de Heegner quand un corps
quadratique réel K remplace le corps quadratique imaginaire de la théorie de la
multiplication complexe. La démarche p-adique qui les sous-tend fait que ces
points sur une courbe elliptique F sont & priori locaux, définis sur une extension
finie de Q,. On conjecture qu’ils sont de nature globale, qu’ils appartiennent aux
groupes de Mordell-Weil de E sur certains corps de classe de K, et qu’ils satisfont
une loi de réciprocité de Shimura décrivant I'action de G = Gal(K/K). Les
conjectures de [15] prédisent ainsi qu’une combinaison linéaire de points de Stark-
Heegner pondérée par les valeurs d’un caractére ¢ de Gk appartient au sous-
espace propre correspondant du groupe Mordell-Weil de E sur le corps de classe
découpé par 1, et qu’elle est non triviale si et seulement si L'(E/K,¥,1) # 0.
On démontre que cette combinaison linéaire provient tout au moins d’une classe
globale dans la 1-partie du pro-p groupe de Selmer de E, et qu’elle est non-
triviale lorsque la dérivée premiére d’une certaine fonction L p-adique associée &
FE ne s’annule pas en .

Familles p-adiques de cycles diagonaux
HENRI DARMON & VICTOR ROTGER .......ooviiiiiiiiiniiiiiinnn... 29

On construit une famille & trois variables de classes de cohomologie associée &
des cycles diagonaux sur le produit triple de tours de courbes modulaires, et on
démontre une loi de réciprocité qui réalise la fonction L p-adique d’un triplet de
familles de Hida comme l’'image de cette famille de classes de cohomologie par le
régulateur A-adique de Perrin-Riou.

Lois de réciprocité pour les classes diagonales équilibrées
MAsSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI 7
Cet article construit une classe diagonale k(f, g, h) a trois variables dans la co-
homologie de la représentation galoisienne associée a un triplet auto-dual (f, g, h)
de familles de Hida. Le premier résultat principal (Théoréme A de la Section 1.1)
fournit une loi de réciprocité explicite reliant x(f, g, h) a la fonction L p-adique

© Astérisque 434, SMF 2022
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de Garrett-Rankin attachée a (f, g, h). La classe k(f, g, h) s’obtient par interpo-
lation p-adique des classes diagonales dans les groupes de Selmer & la Bloch-Kato
des spécialisations de (f, g, h) aux triplets de poids classiques «équilibrés». On en
déduit que la valeur de k(f, g, h) en une spécialisation (f, g, h) de poids déséquili-
bré est une limite p-adique de classes cristallines. Le deuxiéme résultat principal
(Théoréeme B de la Section 1.2) montre que 'obstruction a ce qu’une dérivée
appropriée de x(f,g,h) en (f,g,h) soit cristalline est controlée par la valeur

centrale critique de la fonction L complexe de f ® g ® h.

Classes diagonales équilibrées et points rationaux sur les courbes elliptiques
MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI 175

Soit A une courbe elliptique sur le corps des rationnels ayant réduction multi-
plicative en un premier p, et soit K un corps quadratique dans lequel p est inerte.
Sous une hypothése de Heegner généralisée (cf. article précédent) associe aux don-
nées (A, p, K) une classe diagonale dans le groupe de Selmer du module de Tate
p-adique de A sur certains corps de classes d’anneau de K. Ces classes diagonales
sont des limites p-adiques de classes de provenance géométrique, appartenant a la
cohomologie de certains produits de variétés de Kuga-Sato. Le résultat principal
de cet article relie ces classes diagonales aux logarithmes p-adiques de points de
Heegner quand K est complexe, et de Stark-Heegner quand K est réel.

ASTERISQUE 434
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Stark-Heegner points and diagonal classes
HENRI DARMON & VICTOR ROTGER ........oiiiiiiiiiiiiiiiinn... 1

Stark-Heegner points are conjectural substitutes for Heegner points when the
imaginary quadratic field of the theory of complex multiplication is replaced by a
real quadratic field K. They are constructed analytically as local points on elliptic
curves with multiplicative reduction at a prime p that remains inert in K, but
are conjectured to be rational over ring class fields of K and to satisfy a Shimura
reciprocity law describing the action of Gx on them. The main conjectures of
[15] predict that any linear combination of Stark-Heegner points weighted by the
values of a ring class character ¥ of K should belong to the corresponding piece
of the Mordell-WEeil group over the associated ring class field, and should be non-
trivial when L'(E/K,,1) # 0. Building on the results on families of diagonal
classes described in the remaining contributions to this volume, this note explains
how such linear combinations arise from global classes in the idoneous pro-p
Selmer group, and are non-trivial when the first derivative of a weight-variable
p-adic L-function (/K,1) does not vanish at the point associated to (E/K, ).

p-adic families of diagonal cycles
HENRI DARMON & VICTOR ROTGER .......cooviiiiiiiiniiiiiinnn... 29
This note provides the construction of a three-variable family of cohomology
classes arising from diagonal cycles on a triple product of towers of modular
curves, and proves a reciprocity law relating it to the three variable triple-product
p-adic L-function associated to a triple of Hida families by means of Perrin-Riou’s
A-adic regulator.

Reciprocity laws for balanced diagonal classes
MAsSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI 7

This article constructs a 3-variable balanced diagonal class k(f,g,h) in the
cohomology of the Galois representation associated to a self-dual triple (f, g, h)
of p-adic Hida families. Its first main result (Theorem A of Section 1.1) establishes
an explicit reciprocity law relating «(f, g, h) to the unbalanced Garrett-Rankin
p-adic L-function attached to (f, g, k). The class k(f, g, h) arises from the p-adic

© Astérisque 434, SMF 2022
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interpolation of diagonal classes in the Bloch-Kato Selmer groups of the special-
izations of (f, g, h) at balanced triples of classical weights. As a consequence, the
value of k(f, g, h) at a specialization (f, g, h) of (f, g, h) at an unbalanced triple
of classical weights is a p-adic limit of crystalline classes. Our second main result
(Theorem B of Section 1.2) shows that the obstruction to the crystallinity of an
appropriate derivative of k(f, g, h) at (f,g,h) is encoded in the central critical
value of the complex L-function of f ® g ® h.

Balanced diagonal classes and rational points on elliptic curves
MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI 175

Let A be an elliptic curve over the rationals with multiplicative reduction at
a prime p, and let K be a quadratic field in which p is inert. Under a general-
ized Heegner assumption, our previous contribution (see previous article) to this
volume attaches to (A, p, K) balanced diagonal classes in the Selmer groups of
the p-adic Tate module of A over certain ring class fields of K. These classes
are obtained as p-adic limits of geometric classes in the cohomology of higher-
dimensional Kuga-Sato varieties. The main result of this paper relates these
diagonal classes to p-adic logarithms of Heegner or Stark-Heegner points, de-
pending on whether K is complex or real respectively.
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PREFACE

Over the last three decades, the method of Fuler systems has been honed into a
powerful and versatile technique for relating the arithmetic of a motive to its associ-
ated L-function, in the spirit of the conjectures of Deligne, Bloch-Beilinson, Bloch-
Kato and Perrin-Riou. Among its most notable successes is the proof of the weak
Birch and Swinnerton-Dyer conjecture asserting the equality of the algebraic and an-
alytic rank of an elliptic curve over Q when the latter invariant is < 1, as well as
the finiteness of the associated Shafarevich-Tate group. These statements are partic-
ularly striking in the rank one setting, given the dearth of systematic techniques for
constructing rational or algebraic points on elliptic curves with direct connections to
L-function behaviour.

An important precursor of the Euler System concept is the seminal work of Coates
and Wiles [14] in the mid 1970’s, where certain global cohomology classes constructed
from norm-compatible collections of elliptic units in Z,-extensions of an imaginary
quadratic field are used to prove the finiteness of Mordell-Weil groups of elliptic curves
with complex multiplication, when the L-function of the associated Grossencharakter
does not vanish at its center. The stronger method of Euler systems parlays their tame
deformations, arising from objects defined over tamely ramified abelian extensions of
finite, p-power degree, into an efficient approach for establishing the finiteness of
Selmer and Shafarevich-Tate groups in addition to Mordell-Weil groups. The genesis
of this approach occurs with the work of Francisco Thaine on circular units [27] in
the late 1980’s, whose inspiration can be traced back even further to Kummer. The
subsequent transposition of Thaine’s approach to the setting of elliptic units is the
basis for Karl Rubin’s remarkable strengthening [25] of the approach of Coates-Wiles,
with dramatic consequences for the finiteness of Shafarevich-Tate groups of elliptic
curves with complex multiplication. Kolyvagin’s almost simultaneous but independent
breakthrough [23] exploits Heegner points and their connection with special values of
L-series exhibited earlier by Gross and Zagier [21] to prove the equality of analytic
and algebraic ranks and the finiteness of the Shafarevich-Tate group for all (modular)
elliptic curves over Q of analytic rank < 1.

Shortly afterwards, Kazuya Kato [22] pioneered an entirely different Euler system
approach in which Heegner points are replaced by Beilinson elements in the second
K-groups of modular curves—more accurately, by their p-adic deformations arising
from norm-compatible systems in towers of modular curves, echoing the theme of
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p-adic variation that was already present in the work of Coates and Wiles. Some
20 years later, it was realised that Kato’s approach could be profitably adapted to
other closely related settings, in which Beilinson elements are replaced by so-called
Beilinson-Flach elements [7] and diagonal cycles on a triple product of modular curves
[17], whose p-adic deformations—particularly, those that are germane to the study of
the Birch and Swinnerton-Dyer conjecture—are referred to as generalised Kato-classes
in the articles by Darmon—Rotger ([19] and [20]) or as (specialisations of) balanced
diagonal classes in the contributions by Bertolini-Seveso—Venerucci ([11] and [12]) to
this collection. These classes are the key to proving the weak Birch and Swinnerton-
Dyer conjecture in analytic rank zero for Mordell-Weil groups of elliptic curves over
ring class fields of quadratic fields, both imaginary and real [18] (see also [9] for a
simpler variant to this method, applied in greater generality). For instance, if H is
the Hilbert class field of a quadratic field K, then the implication

(0.1) “L(E/H,1) #0 = E(H) is finite”

is known unconditionally via these methods. When K is imaginary, the original path-
way to such a result, as described in [1], rests crucially on the existence of compatible
families of Heegner points, as well as building on the theory of congruences between
modular forms and on the p-adic uniformisation of Shimura curves. The route to the
same result when K is real quadratic is entirely different and makes no use of the
theory of complex multiplication, for the simple but compelling reason that no such
theory is currently available in the setting of real quadratic fields.

Extending the theory of complex multiplication to real quadratic fields represents
the simplest open case of Hilbert’s twelfth problem aiming to adapt the Jugendtraum of
Kronecker to ground fields other than the rational numbers or CM fields. A systematic
attempt was initiated around 2000 to formulate a theory of “real multiplication”,
involving p-adic rather than complex analytic objects. The resulting real quadratic
analogues of Heegner points, defined in [15] in terms of Coleman’s theory of p-adic
integration, are referred to as Stark-Heegner points. They are expected to give rise
to a systematic norm-compatible supply of global points (on suitable elliptic curves
over Q) defined over ring class fields of real quadratic fields. Because of their strong
analogy with Heegner points, they form the basis for a purely conjectural extension of
the approach of Kolyvagin described in [1] for proving (0.1) when K is real quadratic,
which is discussed for instance in [4].

The article [3] introduces a different approach to Stark—Heegner points, by realising
them as derivatives of Hida—Rankin p-adic L-functions. This point of view leads to
the proof in loc. cit. of the rationality of Stark—Heegner points attached to genus
characters of real quadratic fields. It also provides the crucial bridge to connect
Stark—Heegner points to generalised Kato classes arising from suitable p-adic families
of diagonal cycles. The results of [2] can likewise be exploited to make a similar
comparison with Heegner points. The explicit comparison between Heegner or Stark-
Heegner points and generalised Kato classes, with a view to broadening the scope of

ASTERISQUE 434
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the conjecture of Perrin-Riou on rational points on elliptic curves [24], is the main
goal of this volume.

Comparisons of this type between different Euler systems and Heegner points have
a number of fruitful antecedents, among which it may be worthwhile to mention the
following:

1. A pioneering early work by Rubin [26] examines the global Selmer class arising
from the Euler system of elliptic units and finds that the logarithm of such a
class is proportional to the square of the logarithm of a global point arising from
a Heegner point construction. This comparison of elliptic units and Heegner
points has intriguing consequences for the construction of rational points on
CM elliptic curves via the special values of the Katz p-adic L-function of an
imaginary quadratic field.

2. In an attempt to extend Rubin’s theorem to elliptic curves without complex
multiplication, Bernadette Perrin-Riou conjectured in [24] that the p-adic loga-
rithm of the global Selmer class arising from p-adic families of Beilinson elements
via Kato’s method should likewise be expressed in terms of the square of the
logarithm of a Heegner point. This is proved in [28| for elliptic curves with
multiplicative reduction at p, and in [8] in the general case. One of the key
ingredients in the latter work are the articles [6] and [5], the latter of which
proposes an alternate approach to Rubin’s formula based on special values of
p-adic Rankin L-series rather than of the Katz p-adic L-function.

3. The systematic study of “p-adic iterated integrals” undertaken in [16] leads to
a general conjectural formula relating the p-adic logarithms of generalised Kato
classes to certain regulators which are linear combinations with algebraic coef-
ficients of products of two logarithms of global points on elliptic curves. This
formula is conceptualised in the framework of a p-adic Birch and Swinnerton-
Dyer conjecture in [10]. The cases where this conjecture is proved uncondi-
tionally (thanks to Heegner points) are an important ingredient in the proof of
Perrin-Riou’s conjecture described in [§].

The present volume collects four interrelated articles, partially motivated by the
goal of systematically studying the p-adic logarithm of the balanced diagonal class
attached to a pair of weight one theta series of an imaginary (resp. real) quadratic field,
and of relating it to the product of logarithms of two Heegner (resp. Stark—Heegner)
points. More precisely, the first article [19] gives an overview of the theory of Stark—
Heegner points and of Hida—Rankin p-adic L-functions attached to elliptic curves, and
explains the general strategy used to relate Stark—Heegner points to generalised Kato
classes. The second article [20] studies the problem of the p-adic interpolation of the
image of diagonal cycles under the étale Abel-Jacobi map, leading to a 3-variable A-
adic class in Iwasawa cohomology. It establishes moreover an explicit reciprocity law,
connecting this class to a Hida—Garrett—Rankin p-adic L-function attached to a triple
of Hida families of cusp forms. The third article [11] undertakes the construction
of a so-called balanced diagonal class in three variables from a different standpoint,
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by exploiting the invariant theory of the diagonal embedding of GLs into its triple
product, combined with the Ash—Stevens theory of p-adic distributions. This analytic
approach, formulated in the context of Coleman families of modular forms, lends itself
to generalisations to higher groups. It allows to establish an explicit reciprocity law
in this context, which is at the base of the results of the subsequent article. In
turn the constructions of [20] deal more directly with the geometry of diagonal cycles
and have been investigated further for example in [13]. The fourth article [12] gives
detailed proofs of the formulae relating the product of the p-adic logarithms of two
Heegner points or Stark—Heegner points to the specialisation at the weight (2,1,1)
of the balanced diagonal class. We refer to the extensive introductions of the various
chapters for further details.

At present, the collection of Heegner points on a modular elliptic curve, arising
from the combination of modularity and of the theory of complex multiplication,
still represents the “gold standard” for understanding the Birch and Swinnerton-Dyer
conjecture, particularly in analytic rank one, where the crucial issue of producing
non-trivial algebraic points of infinite order on elliptic curves becomes inescapable.
By contrast, generalised Kato classes, as well as their forebearers arising from elliptic
units make a priori only tenuous contact with these central issues, upon which further
progress on the Birch and Swinnterton-Dyer conjecture would seem to be crucially
dependent. Obtaining tight connections between generalised Kato classes and global
points on elliptic curves, such as those proved in this volume, is worthwhile for at least
two reasons. Firstly, it seems important to understand the extent to which Selmer
classes constructed via a p-adic limiting process are related to “motivic” extensions
attached to genuine global points on elliptic curves (or more general algebraic cycles
on higher dimensional varieties). The results of the present monograph combine with
those of [26], [28], [8], [16] and [10] to present a coherent picture in the setting of
generalised Kato classes arising from diagonal cycles on triple products. Secondly,
it lends some theoretical support for the theory of Stark—Heegner points, towards
the hope of extending the available constructions of rational points on elliptic curves
beyond the theory of Heegner points.

This monograph owes a tremendous debt to the vision of Perrin-Riou, whose con-
jecture of [24] is a basic prototype for the results that are proved here. Perrin-Riou’s
insights into the connection between Euler systems and p-adic L-functions through
her fundamental “dual exponential map in p-adic families” also provides a key ingre-
dient for the proofs of our main results. It is therefore a pleasure to dedicate this
collection to Bernadette Perrin-Riou on her 65th birthday.
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STARK-HEEGNER POINTS AND DIAGONAL CLASSES

by

Henri Darmon & Victor Rotger

Abstract. — Stark-Heegner points are conjectural substitutes for Heegner points when
the imaginary quadratic field of the theory of complex multiplication is replaced
by a real quadratic field K. They are constructed analytically as local points on
elliptic curves with multiplicative reduction at a prime p that remains inert in K,
but are conjectured to be rational over ring class fields of K and to satisfy a Shimura
reciprocity law describing the action of Gx on them. The main conjectures of [11]
predict that any linear combination of Stark-Heegner points weighted by the values
of a ring class character 1 of K should belong to the corresponding piece of the
Mordell-Weil group over the associated ring class field, and should be non-trivial when
L'(E/K,,1) # 0. Building on the results on families of diagonal classes described
in the remaining contributions to this volume, this note explains how such linear
combinations arise from global classes in the idoneous pro-p Selmer group, and are
non-trivial when the first derivative of a weight-variable p-adic L-function ., (f/ K, v)
does not vanish at the point associated to (E/K, ).

Résumé. — Les points de Stark-Heegner généralisent les points de Heegner quand
un corps quadratique réel K remplace le corps quadratique imaginaire de la théorie
de la multiplication complexe. La démarche p-adique qui les sous-tend fait que ces
points sur une courbe elliptique E sont a priori locaux, définis sur une extension finie
de Qp. On conjecture qu’ils sont de nature globale, qu’ils appartiennent aux groupes
de Mordell-Weil de E sur certains corps de classe de K, et qu’ils satisfont une loi de
réciprocité de Shimura décrivant I’action de G := Gal(K/K). Les conjectures de [11]
prédisent ainsi qu’une combinaison linéaire de points de Stark-Heegner pondérée par
les valeurs d’un caractére 1) de G appartient au sous-espace propre correspondant
du groupe Mordell-Weil de E sur le corps de classe découpé par ¥, et qu’elle est non
triviale si et seulement si L'(E/K,,1) # 0. On démontre que cette combinaison
linéaire provient tout au moins d’une classe globale dans la -partie du pro-p groupe
de Selmer de E, et qu’elle est non-triviale lorsque la dérivée premiére d’une certaine
fonction L p-adique associée & E ne s’annule pas en .

2010 Mathematics Subject Classification. — 11G18, 14G35.
Key words and phrases. — Stark-Heegner points, diagonal cycles, triple product L-functions, general-
ized Kato classes.
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2 HENRI DARMON & VICTOR ROTGER

1. Introduction

Let E be an elliptic curve over Q of conductor N and let K be a quadratic field
of discriminant D relatively prime to N, with associated Dirichlet character x .

When xx(—N) = —1, the Birch and Swinnerton-Dyer conjecture predicts a sys-
tematic supply of rational points on E defined over abelian extensions of K. More
precisely, if H is any ring class field of K attached to an order O of K of conductor
prime to DN, the Hasse-Weil L-function L(E/H, s) factors as a product

(1.1) L(E/H,s) =[] L(E/K,, )
P

of twisted L-series L(E/K,, s) indexed by the finite order characters
¥ :G = Gal (H/K) — L*,

taking values in some fixed finite extension L of Q. The L-series in the right-hand
side of (1.1) all vanish to odd order at s = 1, because they arise from self-dual Galois
representations and have sign xx(—N) in their functional equations. In particular,
L(E/K,9,1) = 0 for all . An equivariant refinement of the Birch and Swinnerton-
Dyer conjecture predicts that the v-eigenspace E(H)Y C E(H) ® L of the Mordell-
Weil group for the action of Gal (H/K) has dimension > 1, and hence, that E(H)®Q
contains a copy of the regular representation of G.

When K is imaginary quadratic, this prediction is largely accounted for by the
theory of Heegner points on modular or Shimura curves, which for each v as above pro-
duces an explicit element P, € E(H)Y. The Gross-Zagier formula implies that Py, is
non-zero when L' (E /K 1,1) # 0. Thus it follows for instance that F(H)® Q contains
a copy of the regular representation of G when L(E/H, s) vanishes to order [H : K]
at the center.

When K is real quadratic, the construction of non-trivial algebraic points in F(H)
appears to lie beyond the scope of available techniques. Extending the theory of
Heegner points to this setting thus represents a tantalizing challenge at the frontier
of our current understanding of the Birch and Swinnerton-Dyer conjecture.

Assume from now on that D > 0 and there is an odd prime p satisfying
(1.2) N=pM withpt M,  xx()=-1, xx(M)=1

A conjectural construction of Heegner-type points, under the further restriction
that xx (¢) = 1 for all ¢|M, was proposed in [11], and extended to the more general
setting of (1.2) in [18], [16], [29], [24] and [36]. It leads to a canonical collection of
so-called Stark-Heegner points

P, e EH®Q,) =] E(H,
plp

indexed by the ideal classes a of Pic(O), which are regarded here as semi-local points,
ie., [H : K]-tuples Py, = {Pa}|p of local points in E(K),). This construction, and its
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equivalence with the slightly different approach of the original one, is briefly recalled
in §2.

As a formal consequence of the definitions (cf. Lemma 2.1), the semi-local points P,
satisfy the Shimura reciprocity law

Py = Piec(o).a forall o €@,

a

where G acts on the group E(H ® Q,) in the natural way and rec : G — Pic(O) is
the Artin map of global class field theory.

The construction of the semi-local point P, € [] olp E (Hy,) is purely p-adic analytic,
relying on a theory of p-adic integration of 2-forms on the product H x H,, where
‘H denotes Poincaré’s complex upper half plane and H, stands for Drinfeld’s rigid
analytic p-adic avatar of H, the integration being performed, metaphorically speaking,
on two-dimensional regions in H, X H bounded by Shintani-type cycles associated
to ideal classes in K. The following statement of the Stark-Heegner conjectures of
loc.cit. is equivalent to [11, Conj. 5.6, 5.9 and 5.15], and the main conjectures in [18],
[16], [29], [24] and [36] in the general setting of (1.2):

Conjecture (Stark-Heegner Conjecture). — The semi-local points P, belong to the nat-
ural image of E(H) in E(H ® Q,), and the ¢-component

P¢, = Z ¢_1(G)Pa € E(H® Qp)w
acPic(O)

is non-trivial if and only if L'(E/K,,1) # 0.

The Stark-Heegner Conjecture has been proved in many cases where ¢ is a
quadratic ring class character. When 12 = 1, the induced representation

Vg = Ind%?ﬁ =x1 D X2

decomposes as the sum of two one-dimensional Galois representations attached to
quadratic Dirichlet characters satisfying

x1(p) = —x2(p),  x1(M) = x2(M),

and the pair (x1,x2) can be uniquely ordered in such a way that the L-series
L(E,x1,s) and L(E,x2,s) have sign 1 and —1 respectively in their functional
equations.

Define the local sign a := a,(E), which is equal to either 1 or —1 according to
whether E has split or non-split multiplicative reduction at p. Let p be a prime of H
above p, and let o, € Gal (H/Q) denote the associated Frobenius element. Because
p is inert in K/Q, the unique prime of K above p splits completely in H/K and o,
belongs to a conjugacy class of reflections in the generalized dihedral group Gal (H/Q).
It depends in an essential way on the choice of p, but, because 1 cuts out an abelian
extension of Q, the Stark-Heegner point

(1.3) P} :=Py+a-o,Py
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4 HENRI DARMON & VICTOR ROTGER

does not depend on this choice. It can in fact be shown that

pa_ ) 2Py ifxa(p) =0
v 0 if xao(p) = —c.

The recent work [32] of Mok and [28] of Longo, Martin and Yan, building on the
methods introduced in [4, Thm. 1], [31], and [30], asserts:

Theorem (Stark-Heegner theorem for quadratic characters). — Let 1 be a quadratic
ring class character of conductor prime to 2DN. Then the Stark-Heegner point Py
belongs to E(H) ® Q and is non-trivial if and only if

(1.4) L(E,x1,1) #0, L'(E,x2,1)#0, and x2(p)=a.

The principle behind the proof of this result is to compare Pj} to suitable Heegner
points arising from Shimura curve parametrisations, exploiting the fortuitous circum-
stance that the field over which P, is conjecturally defined is a biquadratic extension
of Q and is thus also contained in ring class fields of imaginary quadratic fields (in
many different ways).

The present work is concerned with the less well understood generic case where
$? # 1, when the induced representation Vj, is irreducible. Note that ¢ is either
totally even or totally odd, i.e., complex conjugation acts as a scalar ¢, € {1,—1} on
the induced representation V.

The field which v cuts out cannot be embedded in any compositum of ring class
fields of imaginary quadratic fields, and the Stark-Heegner Conjecture therefore seems
impervious to the theory of Heegner points in this case.

The semi-local point Pj of (1.3) now depends crucially on the choice of p, but it
is not hard to check that its image under the localisation homomorphism

Jpt E(H ® Qp) — E(H,) = E(K))

at p is independent of this choice, up to scaling by L* (cf. Lemma 2.4). It is the local
point

PS, = 3p(P§) € E(H,) ® L = B(K,) ® L,

which will play a key role in Theorems A and B below.

Theorems A and B are conditional on either one of the two non-vanishing hypothe-
ses below, which apply to a pair (F, K) and a choice of archimedean sign € € {—1,1}.
The first hypothesis is the counterpart, in analytic rank one, of the non-vanishing for
simultaneous twists of modular L-series arising as the special case of [14, Def. 6.§]
discussed in (168) of loc.cit., where it plays a similar role in the proof of the Birch
and Swinnerton—Dyer conjecture for L(E/K, ), s) when L(E/K,1,1) # 0. The main
difference is that we are now concerned with quadratic ring class characters for which
L(E/K,1,s) vanishes to odd rather than to even order at the center.
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Hypothesis (Analytic non-vanishing hypothesis). — Given (E,K) as above, and a
choice of a sign ¢ € {1,—1}, there exists a quadratic Dirichlet character x of
conductor prime to DN satisfying

X(_l) = —€, XXK(p) = qQ, L(E7X7 1) 7é 07 L/(E7 XXK 1) 7é 0.

The second non-vanishing hypothesis applies to an arbitrary ring class character &
of K.

Hypothesis (Weak non-vanishing hypothesis for Stark-Heegner points)
Given (E,K) as above, and a sign € € {1,—1}, there exists a ring class character
& of K of conductor prime to DN with e¢ = —e for which P, #0.

That the former hypothesis implies the latter follows by applying the Stark-Heegner
theorem for quadratic characters to the quadratic ring class character £ of K attached
to the pair (x1,Xx2) := (X, XXk ) supplied by the analytic non-vanishing hypothesis.
The stronger non-vanishing hypothesis is singled out because it has the virtue of
tying in with mainstream questions in analytic number theory on which there has
been recent progress [33]. On the other hand, the weak non-vanishing hypothesis is
known to be true in the classical setting of Heegner points, when K is imaginary
quadratic. In fact, for a given FE and K, all but finitely many of the Heegner points P,
(as a ranges over all ideal classes of all possible orders in K) are of infinite order,
and P¢ and P are therefore non-trivial for infinitely many ring class characters &,
and for at least one character of any given conductor, with finitely many exceptions.
It seems reasonable to expect that Stark-Heegner points should exhibit a similar
behavior, and the experimental evidence bears this out as one can readily verify on a
software package like Pari or Magma. In practice, efficient algorithms for calculating
Stark-Heegner points make it easy to produce a non-zero P, for any given (E, K),
and indeed, the extensive experiments carried out so far have failed to produce even
a single example of a vanishing P when £ has order > 3. Thus, while these non-
vanishing hypotheses are probably difficult to prove in general, they are expected to
hold systematically. Moreover, they can easily be checked in practice for any specific
triple (E, K, €) and therefore play a somewhat ancillary role in studying the infinite
collection of Stark-Heegner points attached to a fixed E and K.

Let V,(E) := (lin E[p"]) ® Q, denote the Galois representation attached to E
and let
Sel,(E/H) := Hi (H,V,(E))
be the pro-p Selmer group of E over H. The 1-component of this Selmer group is an
L,-vector space, where L,, is a field containing both Q, and L, by setting

Sel,(E/H)Y = {x € H{ (H,Vp(E))®q, Ly s.t. ox =1(c)-x for all o € Gal (H/K)}.
Since F is defined over Q, the group
Sel,(E/H) ~ @,H; (Q, V,(E) ® e)
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6 HENRI DARMON & VICTOR ROTGER

admits a natural decomposition indexed by the set of irreducible representations g
of Gal(H/Q). In this note we focus on the isotypic component singled out by 1,
namely

(1.5) Sel, (B, ¢) := H}(Q, Vp(E) ® Vy) = Sel,(E/H)¥ ® Sel,(E/H)?,

where Shapiro’s lemma combined with the inflation-restriction sequence gives the
above canonical identifications.

It will be convenient to assume from now on that E[p] is irreducible as a Gq-mod-
ule. This hypothesis could be relaxed at the cost of some simplicity and transparency
in some of the arguments.

Theorem A. — Assume that the (analytic or weak) non-vanishing hypothesis holds
for (E,K,¢). Let ¢ be any non-quadratic ring class character of K of conductor
prime to DN, for which €y, = €. Then there is a global Selmer class

Ky € Sel,(E, 1)
whose natural image in the group E(H,) ® L, of local points agrees with Pyy-

The Selmer class mentioned in the statement above is constructed as a p-adic limit
of diagonal classes. In particular, it follows from Theorem A that

(1.6) Py, #0 = dimg, Sel(T),(E/H)¥ > 1.

As a corollary, we obtain a criterion for the infinitude of Sel,(E/H)¥ in terms of the
p-adic L-function .Z,(f/K, ) constructed in [4, §3|, interpolating the square roots
of the central critical values L(fy/K,1,k/2), as fr ranges over the weight k > 2
classical specializations of the Hida family passing through the weight two eigenform
f associated to E. The interpolation property implies that .Z,(f/K, ) vanishes at k =
2, and its first derivative £, (f/K,)(2) is a natural p-adic analogue of the derivative
at s = 1 of the classical complex L-function L(f/K,1,s). The following result can
thus be viewed as a p-adic variant of the Birch and Swinnerton-Dyer Conjecture in
this setting.

Theorem B. — If £,/ (f/K,v¢)(2) # 0, then dimy,, Sel(T),(E/H)¥ > 1.

Theorem B is a direct corollary of (1.6) in light of the main result of [4], recalled in
Theorem 4.1 below, which asserts that Pj is non-trivial when %,/ (£/K,)(2) # 0.

Remark 1. — Assume the p-primary part of (the v-isotypic component of) the Tate-
Shafarevich group of E/H is finite. Then Theorem A shows that Py, arises from a
global point in E(H) ® Ly, as predicted by the Stark-Heegner conjecture. Moreover,
Theorem B implies that dim;, E(H)¥ > 1 if %,'(f/K,v)(2) # 0.

Remark 2. — The irreducibility of Vi, when ¢ is non-quadratic shows that P is non-
trivial if and only if the same is true for Py. The Stark-Heegner Conjecture combined
with the injectivity of the map from E(H) ® L to E(H,) ® L suggests that P,
never vanishes when Py # 0, but the scenario where PJ is a non-trivial element of
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the kernel of j, seems hard to rule out unconditionally, without assuming the Stark-
Heegner conjecture a priori.

Remark 3. — Section 2 is devoted to review the theory of Stark-Heegner points. For
notational simplicity, §2 has been written under the stronger Heegner hypothesis

xk(p) = -1, Xk (£) =1 for all £|M

of [11]. This section merely collects together the basic notations and principal results
of [11], [4], [32] and [28]. Exact references for the analogous results needed to cover
the more general setting of (1.2) are given along the way. The remaining sections
§3, 4, 5, 6 and 7, which form the main body of the article, adapt without change to
proving Theorems A and B under the general assumption (1.2). In particular, while
quaternionic modular forms need to be invoked in the general construction of Stark-
Heegner points of [18], [16] and [29], the arguments in loc. cit. only employ classical
elliptic modular forms in order to deal with the general setting.

Remark 4. — The proof of Theorems A and B summarized in this note invokes sev-
eral crucial results on families of diagonal classes that are proved in the remaining
contributions to this volume. In particular the articles [7] and [8] supply essential
ingredients in the extension of the Perrin-Riou style reciprocity laws in settings where
the idoneous p-adic L-function admits an “exceptional zero”. In a previous version of
this article it was wrongly claimed that one of the key inputs, namely Formula (7.7) in
the text, follows from one of the main results in Venerucci’s paper [37]; the authors are
grateful to Bertolini, Seveso and Venerucci for pointing out this error and supplying
a proof of this important formula in their contributions to this volume.

History and connection with related work. — The first two articles in this volume are
the culmination of a project which originated in the summer of 2010 during a two
month visit by the first author to Barcelona, where, building on the approach of [5],
the authors began collaborating on what eventually led to the p-adic Gross-Zagier
formula of [13] relating p-adic Abel-Jacobi images of diagonal cycles on a triple prod-
uct of modular curves to the special values of certain Garrett-Rankin triple product
p-adic L-functions. In October of that year, they realized that Kato’s powerful idea of
varying Galois cohomology classes in (cyclotomic) p-adic families could be adapted to
deforming the étale Abel Jacobi images of diagonal cycles, or the étale regulators of
Belinson-Flach elements, along Hida families. The resulting generalized Kato classes
obtained by specializing these families to weight one seemed to promise significant
arithmetic applications, notably for the Birch and Swinnerton-Dyer conjecture over
ring class fields of real quadratic fields—a setting that held a special appeal because of
its connection with the still poorly understood theory of Stark-Heegner points. This
led the authors to formulate a program, whose broad outline was already in place by
the end of 2010, and whose key steps involved

— In the setting of “analytic rank zero,” a proof of the “weak Birch and Swin-
nerton Dyer conjecture” for elliptic curves over Q twisted by certain Artin
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8 HENRI DARMON & VICTOR ROTGER

representations g of dimension < 4 arising in the tensor product of a pair of
odd two-dimensional Artin representations, i.e., the statement that

L(E,0,1)#0 = (E(H)® )% =0.

This was carried out in [14] and [6] by showing that the generalized Kato classes
fail to be crystalline precisely when L(E, g,1) # 0.

— In the setting of “analytic rank one,” when L(E, p,1) = 0 it becomes natural to
compare the relevant generalized Kato class to algebraic points in the g-isotypic
part of E(H), along the lines of conjectures first formulated by Rubin (for
CM elliptic curves) and by Perrin-Riou (in the setting of Kato’s work). Several
precise conjectures were formulated along those lines, notably in [12], guided by
extensive numerical experiments conducted with Alan Lauder. In general, the
independent existence of such global points is tied with deep and yet unproved
instances of the Birch and Swinnerton-Dyer conjecture, but when g is induced
from a ring class character of a real quadratic field K and p is a prime of
multiplicative reduction for E which is inert in K, it becomes natural to compare
the resulting generalized Kato class (a global invariant in the Selmer group,
albeit with p-adic coefficients) to Stark-Heegner points (which are defined purely
p-adic analytically, but are conjecturally motivic, with Q-coefficients).

Starting roughly in 2012, the idea of exploiting p-adic families of diagonal cycles
and Beilinson-Flach elements was taken up by several others, motivated by a broader
range of applications. While the authors were fleshing out their strategy for writing the
two papers appearing in this volume, they thus benefitted from several key advances
made during this time, which have simplified and facilitated the work that is described
herein, and which it is a pleasure to acknowledge, most importantly:

— The construction of three variable cohomology classes was further developed
and perfected, in the setting of Beilinson-Flach elements by Lei, Loeffler and
Zerbes [26] and several significant improvements were subsequently proposed,
notably in the article [22] in which Kings’ A-adic sheaves play an essential
role. These provide what are often more efficient and general approaches to
constructing p-adic families of cohomology classes.

— The article [7] by Bertolini, Seveso and Venerucci that appears in this volume
constructs a three-variable A-adic class of diagonal cohomology classes by a dif-
ferent method, building on the work of Andreatta-Iovita-Stevens, and makes a
more systematic study of such classes in settings where there is an exceptional
zero, surveying a wider range of scenarios. Although there is some overlap be-
tween the two works as far as the general strategy is concerned, both present
a different take on these results. Indeed, the approach in this note eschews the
methods of Andreatta-Iovita-Stevens in favor of an approach based on the study
of a collection of cycles on the cube of the modular curve X (N) of full level
structure. These cycles are of interest in their own right, and shed a useful com-
plementary perspective on the construction of the A-adic cohomology classes
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for the triple product. Indeed, their study forms the basis for the ongoing PhD
thesis of David Lilienfeldt [27], and has let to interesting open questions (cf. e.g.,
those that are explored in [10]).

— Families of cohomology classes based on compatible collections of Heegner
points are of course a long-standing theme in the subject, and have been taken
up anew, for instance in the more recent works of Castella-Hsieh [9], Kobayashi
[23] and Jetchev-Loefller-Zerbes [21].
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The second author also acknowledges the financial support by ICREA under the
ICREA Academia programme. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 682152). It is a pleasure to thank M.L.
Hsieh and M. Longo for detailed explanations of their respective recent preprints,
and M. Bertolini, M. Seveso, and R. Venerucci for their complementary works [7], [8]
appearing in this volume.

2. Stark-Heegner points

This section recalls briefly the construction of Stark-Heegner points originally pro-
posed in [11] and compares it with the equivalent but slightly different presentation
given in the introduction. As explained in Remark 3, we provide the details under the
running assumptions of loc. cit., and we refer to the references quoted in the introduc-
tion for the analogous story under the more general Hypothesis (1.2).

Let E/Q be an elliptic curve of conductor N := pM with p { M. Since E has
multiplicative reduction at p, the group E(Q,2) of local points over the quadratic
unramified extension Q> of Q, is equipped with Tate’s p-adic uniformisation

cI)Tate : Q;<2/qz - E(Qp2)

Let f be the weight two newform attached to F via Wiles’ modularity theorem, which
satisfies the usual invariance properties under Hecke’s congruence group I'o(N), and

let
r.— {( “ Z > € SLo(Z[1/p]), ¢=0 (mod M)}

Cc

denote the associated p-arithmetic group, which acts by Mobius transformations
both on the complex upper-half plane H and on Drinfeld’s p-adic analogue
H, :=P1(Cp) —P1(Q,). The main construction of Sections 1-3 of [11] attaches
to f a non-trivial indefinite multiplicative integral

Try
Hy x Po(Q) x P1(Q) — CX /g%, (ra,y) Hf/ wy
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satisfying

TPy Ty
(2.1) ][ / wy :][/ wy, for all y € T,
Yz T

along with the requirement that

o L ()" f L ffo L

This function is obtained, roughly speaking, by applying the Schneider-Teitelbaum
p-adic Poisson transform to a suitable harmonic cocycle constructed from the modu-
lar symbol attached to f. It is important to note that there are in fact two distinct
such modular symbols, which depend on a choice of a sign w,, = *1 at co and are
referred to as the plus and the minus modular symbols, and therefore two distinct
multiplicative integral functions, with different transformation properties under ma-
trices of determinant —1 in GLs(Z[1/p]). More precisely, the multiplicative integral
associated to w., satisfies the further invariance property

—Tpr—=Yy T LY Woo
f =)
See Sections 1-3 of loc. cit., and §3.3. in particular, for further details.

Let K be a real quadratic field of discriminant D > 0, whose associated Dirichlet
character x i satisfies the Heegner hypothesis

xx(p) = -1, xx(£) =1 for all £|M.

It follows that D is a quadratic residue modulo M, and we may fix a § € (Z/MZ)*
satisfying 62 = D (mod M). Let K, ~ Q> denote the completion of K at p, and
let v/D denote a chosen square root of D in K.

Fix an order O of K, of conductor c relatively prime to DN. The narrow Picard
group G := Pic(0O) is in bijection with the set of SLo(Z)-equivalence classes of binary
quadratic forms of discriminant Dc?. A binary quadratic form F = Az? + Bzy + Cy?
of this discriminant is said to be a Heegner form relative to the pair (M,d) if M
divides A and B = dc (mod M). Every class in Gp admits a representative which is
a Heegner form, and all such representatives are equivalent under the natural action
of the group I'o(M). In particular, we can write

Go =To(M)\ {Az® + Bzy + Cy*>  with (4, B) = (0,6c) (mod M)}.
For each class a := Az? + Bxy + Cy? € Go as above, let

~B+¢VD
Ta = ————— € K, — Qp CH,, 'ya::(

r—Bs —2Cs
24 ’

2As r + Bs

where (7, s) is a primitive solution to the Pell equation x? — Dc?y? = 1. The matrix
Yo € I' has 74 as a fixed point for its action on H,. This fact, combined with properties
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(2.1) and (2.2), implies that the period

Ta ffYaZ
Ja::][/ Wy EK;/QZ
T

does not depend on the choice of x € P1(Q) that was made to define it. Property (2.1)
also shows that J, depends only on a and not on the choice of Heegner representative
that was made in order to define 7, and ~,. The local point

y(a) = (I)Tate(t]a) c E(Kp)

is called the Stark-Heegner point attached to the class a € Go.

Let H denote the narrow ring class field of K attached to O, whose Galois group is
canonically identified with G via global class field theory. Because p is inert in K/Q
and Gal (H/K) is a generalized dihedral group, this prime splits completely in H/K.
The set P of primes of H that lie above p has cardinality [H : K] and is endowed
with a simply transitive action of Gal (H/K) = Go, denoted (a,p) — a * p.

Set K := Hom(P, E(K,)) ~ K;H:K]. There is a canonical identification

(2.3) H®Q, =K/,

sending € H ® Q,, to the function p — z(p) := x,, where z, denotes the natural
image of x in H, = K,,. The group Gal (H/K) acts compatibly on both sides of (2.3),
acting on the latter via the rule

(2.4) ox(p) = z(c xp).
Our fixed embedding of H into Q, determines a prime po € P. Conjecture 5.6 of
[11] asserts that the points y(a) are the images in E(K,) of global points P} € E(H)

under this embedding, and Conjecture 5.9 of loc. cit. asserts that these points satisfy
the Shimura reciprocity law

P!, =rec(b)~P’, for all b € Pic(O),

where rec : Pic(O) — Gal (H/K) denotes the reciprocity map of global class field
theory.

It is convenient to reformulate the conjectures of [11] as suggested in the introduc-
tion, by parlaying the collection {y(a)} of local points in E(K),) into a collection of
semi-local points

P, € E(H®Q,) = E(K,)”
indexed by a € Gop. This is done by letting P, (viewed as an E(K,)-valued function
on the set P) be the element of E(H ® Q,) given by

(Pa)(b o) := y(ab),
so that, by definition
(2.5) Poa(p) = Pa(bp).

This point of view has the pleasant consequence that the Shimura reciprocity law
becomes a formal consequence of the definitions:
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Lemma 2.1. — The semi-local Stark-Heegner points P, € E(H ® Q) satisfy the
Shimura reciprocity law

rec(b) " (P,) = Pyq.
Proof. — By (2.4),
rec(b) 1 (P,)(p) = Pa(rec(b) xp) = P, (b *p), for all p € P.
But on the other hand, by (2.5)
Pa(b *P) = Pba(p)'
The result follows from the two displayed identities. O
The modular form f is an eigenvector for the Atkin-Lehner involution Wy acting
on Xo(N). Let wy denote its associated eigenvalue. Note that this is the negative
of the sign in the functional equation for L(E,s) and hence that F(Q) is expected
to have odd (resp. even) rank if wy = 1 (resp. if wy = —1). Recall the prime pg
of H attached to the chosen embedding of H into Qp. The frobenius element at pg
in Gal (H/Q) is a reflection in this dihedral group, and is denoted by oy, .

Proposition 2.2. — For all a € Go,
UpOPa = ’l,UNPu—l.
Proof. — Proposition 5.10 of [11] asserts that

opey(a) = wny(ca)
for some ¢ € Go. The definition of ¢ which occurs in equation (177) of loc.cit. directly
implies that
opoy(1) =wny(1),  opy(a) = wyy(a™),
and the result follows from this. O

Lemma 2.1 shows that the collection of Stark-Heegner points P, is preserved under
the action of Gal (H/K), essentially by fiat. A corollary of the less formal Proposi-
tion 2.2 is the following invariance of the Stark-Heegner points under the full action

of Gal (H/Q):
Corollary 2.3. — For all 0 € Gal (H/Q) and all a € Go,
oP, = w}s\;’Pb, for some b € Gp,

where
) 0 ifoeGal(H/K);
11 ifo¢ Gal(H/K).

Proof. — This follows from the fact that Gal (H/Q) is generated by Gal (H/K) to-
gether with the reflection oy, . O
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To each p € P we have associated an embedding j, : H — K, and a frobenius
element o, € Gal (H/Q). If p’ = o * p is another prime in P, then we observe that

(2.6) Jpr =Jpo o1, Opr = Uapa_l, Jpr ©0pr =jp00p0 o L.
Let ¢ : Gal(H/K) — L* be a ring class character, let

1 _
ey = e UEEC;O Y(o)o~ ! € L[Go]

be the associated idempotent in the group ring, and denote by
P¢ = 6,/,P1 (S E(H® Qp) QL

the 1-component of the Stark-Heegner point. Recall from the introduction the sign
a € {—1,1} which is equal to 1 (resp. —1) if F has split (resp. non-split) multiplicative
reduction at the prime p. Following the notations of the introduction, write

Py = (1+aog,)Py.

Lemma 2.4. — The local point j,(Pj) is independent of the choice of prime p € P
that was made to define it, up to multiplication by a scalar in Y(Go) C L*.

Proof. — Let p’ = o x p be any other element of P. Then by (2.6),

jor(l+aoy)Py = jyoo '(1+acoyo V)eyPr =jyo(l+aoy)o teyPr
= 9(0) gy o (1 + aoy)Py.
The result follows. O
Ezxamples. — This paragraph describes a few numerical examples illustrating the

scope and applicability of the main results of this paper. By way of illustration,
suppose that E is an elliptic curve of prime conductor N = p, so that M = 1. In that
special case the Atkin-Lehner sign wy is related to the local sign a by

wy = —Q.

The following proposition reveals that the analytic non-vanishing hypothesis fails in
the setting of the Stark-Heegner theorem for quadratic characters of [4] when e = —1:

Proposition 2.5. — Let 1 be a totally even quadratic ring class character of K of
conductor prime to N. Then Py is trivial.

Proof. — Let (x1,x2) = (X, XXk ) be the pair of even quadratic Dirichlet characters
associated to 1, ordered in such a way that L(E, x1,s) and L(E, x2, s) have signs 1
and —1 respectively in their functional equations. Writing sign(F, x) € {—1,1} for the
sign in the functional equation of the twisted L-function L(E, x, s), it is well-known
that, if the conductor of yx is relatively prime to N,

sign(E, x) = sign(E)x(—=N) = —wnx(—=1)x(p) = ax(p)x(-1).
It follows that
axi(p) =1,  axa(p) = -1,
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14 HENRI DARMON & VICTOR ROTGER

but Equation (1.4) in the Stark-Heegner theorem for quadratic characters implies
Py =0. O
P

The systematic vanishing of Py for even quadratic ring class characters of K can
be traced to the failure of the analytic non-vanishing hypothesis of the introduction,
which arises for simple parity reasons. The failure is expected to occur essentially
only when F has prime conductor p, i.e., when M = 1, and never when M satisfies
ordy(M) = 1 for some prime g. Because of Proposition 2.5, the main theorem of [4]
gives no information about the Stark-Heegner point Pj attached to even quadratic
ring class characters of conductor prime to p, on an elliptic curve of conductor p.

On the other hand, in the setting of Theorem A of the introduction, where v has
order > 2, this phenomenon does not occur as the non-vanishing of P, and PJ “ are
equivalent to each other, in light of the irreducibility of the induced representation V.
The numerical examples below show many instances of non-vanishing Py for ring class
characters of both even and odd parity.

Ezample. — Let E : y? +y = 23 — x be the elliptic curve of conductor p = 37, whose
Mordell-Weil group is generated by the point (0,0) € E(Q). Let K = Q(+/5) be the
real quadratic field of smallest discriminant in which p is inert. It is readily checked
that L(E/K, s) has a simple zero at s = 1 and that F(K) also has Mordell-Weil rank
one. The curve E has non-split multiplicative reduction at p and hence o = —1 in
this case. It is readily verified that the pair of odd characters (x1, x2) attached to the
quadratic imaginary fields of discriminant —4 and —20 satisfy the three conditions
in (1.4), and hence the analytic non-vanishing hypothesis is satisfied for the triple
(E,K,e = 1). In particular, Theorem A holds for E, K, and all even ring class
characters of K of conductor prime to 37.

Let O be an order of Ok with class number 3, and let H be the corresponding
cubic extension of K. The prime p of H over p and a generator o of Gal (H/K) can
be chosen so that the components

P1 = Pp, P2 = ng, P3 = PUQP
in E(H,) = E(K)) of the Stark-Heegner point in E(H ® Q,) satisfy
P, =Py, Py = P, P3 = P,.

Letting ¢ be the cubic character which sends o to ¢ := (1 + v/—3)/2, we find that

Jp(Py) = P+ (Py+(Ps,
0p(Jp(Pyp)) = P14+ (Ps+(*P3=P +(P;+ (P,
Jp(Py) = V=3 x (P, — P3) = V-3 x (P> — Py).

The following table lists the Stark-Heegner points Py, P, and P, — P attached to the
first few orders O C Ok of conductor ¢ = ¢(O) and of class number three, calculated
to a 37-adic accuracy of 2 significant digits. (The numerical entries in the table below
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are thus to be understood as elements of (Z/372Z)[v/5].)

c(0) Py P, P, — P,
18 | (—635, —256) (319 + 678v/5, —481230+/5) (—360, 684 + 27/5)
38 | (—154,447) | (—588 4+ 1237+/5,367 + 386/5) (—437,684 + 87+/5)
46 | (223,12-37) | (=112 + 629V/5, (—6 + 34v/5) - 37) 00
47 | (610,—229) (539 + 71v/5, 10 + 439V/5) (—293,684 + 1132/5)
54 | (533,—-561) (679 + 984+/5, 391 + 862V/5) (93,684 + 673v/5)

Since the Mordell-Weil group of E(K) has rank one, the data in this table is enough
to conclude that the pro-37-Selmer groups of E over the ring class fields of K attached
to the orders of conductors 18, 38, 47 and 54 have rank at least 3. As for the order
of conductor 46, a calculation modulo 373 reveals that P, — P, is non-trivial, and
hence the pro-37 Selmer group has rank > 3 over the ring class field of that con-
ductor as well. Under the Stark-Heegner conjecture, more is true: the Stark-Heegner
points above are 37-adic approximations of global points rather than mere Selmer
classes. But recognizing them as such (and thereby proving that the Mordell-Weil
ranks are > 3) typically requires a calculations to higher accuracy, depending on the
eventual height of the Stark-Heegner point as an algebraic point, about which nothing
is known of course a priori, and which can behave somewhat erratically. For example,
the z-coordinates of the Stark-Heegner points attached to the order of conductor 47
appear to satisfy the cubic polynomial

x3 — 31922 + 190z + 420,

while those of the Stark-Heegner points for the order of conductor 46 appear to satisfy
the cubic polynomial

235234700123 — 3477269879122 4 138835821427z — 136501565573

with much larger coefficients, whose recognition requires a calculation to at least 7
digits of 37-adic accuracy.

The table above produced many examples of non-vanishing P} for ¢ even, and in
particular it verifies the non-vanishing hypothesis for Stark-Heegner points stated in
the introduction, for the sign € = —1. This means that Theorem A is also true for
odd ring class characters of K, even if the premise of (1.6) is never verified for odd
quadratic characters of K.

3. p-adic L-functions associated to Hida families

Let
f=>"an(f)q" € A¢llq]]

n>1
be the Hida family of tame level M and trivial tame character passing through f;
cf. [4] and [15, §1.3] for more details on the notations chosen for Hida families.
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Let o € Wy denote the point of weight 2 such that f;,, = f. Note that
f;, € S2(N) is new at p, while for any z € Wy¢ with wt(z) = k > 2, f,(q) =
£2(q) — B2 (gP) is the ordinary p-stabilization of an eigenform f? of level M = N/p.
We set £, = f;, = f.

Let K be a real quadratic field in which p remains inert and all prime factors of M
split, and fix throughout a finite order anticyclotomic character ¥ of K of conductor
¢ coprime to DN, with values in a finite extension L,/Q,. Note that ¢ (p) = 1 as the
prime ideal pOg is principal.

Under our running assumptions, the sign of the functional equation satisfied by
the Hasse-Weil-Artin L-series L(E/K,v,s) = L(f,,s) is

5(E/Ka1/)) = _17

and in particular the order of vanishing of L(E/K,1,s) at s = 1 is odd. In contrast,
at every classical point x of even weight k£ > 2 the sign of the functional equation
satisfied by L(f,/K,,s) is

e(fs/K, ) = +1

and one expects generic non-vanishing of the central critical value L(f,/K, 1, k/2).
In [4, Definition 3.4], a p-adic L-function

gp(f/Kadj) € Af

associated to the Hida family f, the ring class character ¥ and a choice of collection
of periods was defined, by interpolating the algebraic part of (the square-root of) the
critical values L(f;/K, 1, k/2) for x € W¢ with wt(z) =k =k, + 2 > 2. See also [28,
§4.1] for a more general treatment, encompassing the setting considered here.

In order to describe this p-adic L-function in more detail, let ®¢ ¢ denote the
classical modular symbol associated to f, with values in the space Py (C) of homo-
geneous polynomials of degree k, in two variables with coeflicients in C. The space
of modular symbols is naturally endowed with an action of GL3(Q) and we let (I):;,C

and @¢ C denote the plus and minus eigencomponents of ®¢ ¢ under the involution
at infinity induced by we, = ((1) _01).

As proved in [25, §1.1] (with slightly different normalizations as for the powers
of the period 27i that appear in the formulas, which we have taken into account

accordingly), there exists a pair of collections of complex periods
{Qf cleewss {4 cleewy € C¥
satisfying the following two conditions:

(i) the modular symbols

o 0y
<I>;; = i“_”’c, P, = —£.C take values in Q(fy) = Q{an(fz) }n>1),
Q% c Q. ¢
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Note that conditions (i) and (ii) above only characterize Qf .c up to multiplication
by non-zero scalars in the number field Q(£,).

Fix an embedding Q — Q, C C,, through which we regard @i as Cp-valued
modular symbols. In [19], Greenberg and Stevens introduced measure-valued modular
symbols u:«' and pg interpolating the classical modular symbols @}z and ¢ as z
ranges over the classical specializations of f.

More precisely, they show (cf.[19, Theorem 5.13] and [3, Theorem 1.5]) that for
every x € Wy, there exist p-adic periods

(3.1) f 2 %, €Cp,
such that the specialization of ,uf and pg at x satisfy
(3.2) z(pf) = Qt’p @;’;, z(pg) =Q - Pp .

Since no natural choice of periods in o bresents itself, the scalars Q+ and Q_
are not expected to vary p-adically contlnuously However, conditions (i) and (ii) above
imply that the product th P Qf: » € C, is a more canonical quantity, as it may also
be characterized by the formula

_ L FORE e
(3-3) x(NfJ‘r) x(pg ) = Q;‘ZJ)wa,p : 1’70?7
<fI Y f$>
which is independent of any choices of periods
This suggests that the map =z — Q Q p may extend to a p-adic analytic func-
tion, possibly after multiplying it by sultable Euler like factors at p. And indeed, the
following theorem is proved in one of the contributing articles of Bertolini, Seveso and

Venerucci to this volume, and we refer to [8, §3] for the proof.

Theorem 3.1. — There exists a rigid-analytic function fp(Sme(f)) on a neighbor-
hood Ug of We around xo such that for all classical points x € UsNWY of weight k > 2:

(3.4) Zp(Sym*(£)) () = &o(Ea)En(E) - OF 0

fe,p?

where &(£,) and &1(£,) are as in [13, Theorem 1.3]. Moreover, %, (Sym®(f))(zo) € Q*.

Remark 3.1. — The motivation for denoting Xp(Sme(f)) the p-adic function ap-

pearing above relies on the fact that inm’p are p-adic analogues of the complex periods
Qi,c- As is well-known, the product th,c Qe ¢ = 42 (£2,£2) is essentially the near-
central critical value of the classical L-function associated to the symmetric square
of £7. In addition to this, as M. L. Hsieh remarked to us, it might not be difficult to
show that fp(Sme(f)) is a generator of Hida’s congruence ideal in the sense of |20,

§1.4, p.4].

The result characterizing the p-adic L-function .Z,(f/K, ) alluded to above is
[4, Theorem 3.5], which we recall below. Although [4, Theorem 3.5] is stated in
loc. cit. only for genus characters, the proof has been recently generalized to arbitrary
(not necessarily quadratic) ring class characters 1 of conductor ¢ with (¢, DN) =1 by
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Longo, Martin and Yan in [28, Theorem 4.2], by employing Gross-Prasad test vectors
to extend Popa’s formula [35, Theorem 6.3.1] to this setting.

Let f. € K* denote the explicit constant introduced at the first display of [28,
§3.2]. It only depends on the conductor ¢ and its square lies in Q*.

Theorem 3.2. — The p-adic L-function L,(f/K, 1) satisfies the following interpola-
tion property: for all x € Wg of weight wt(z) =k =k + 2 > 2, we have

Ly (/K 9)(2) = fep (2) x L(E7 /K, 4, k/2)"?,

where .
o k. €
- for (D)7 ()
=(1— 2k . 2 . P .
fe,p ($) ( Qe P ) (271_1.);% /2 Q:‘j c

4. A p-adic Gross-Zagier formula for Stark-Heegner points

One of the main theorems of [4] is a formula for the derivative of .Z,(f/K,v¢) at
the point zg, relating it to the formal group logarithm of a Stark-Heegner point.
This formula shall be crucial for relating these points to generalized Kato classes and
eventually proving our main results.

Theorem 4.1. — The p-adic L-function Z,(f/K,) vanishes at the point zo of
weight 2 and

(1.1 L LI, = t1og, (D).

T=Tq

Proof. — The vanishing of Z,(f/K,9) at x = x( is a direct consequence of the
assumptions and definitions, because x = xq lies in the region of interpolation of the
p-adic L-function and therefore .%,(f/K, 1) (x0) is a non-zero multiple of the central
critical value L(f/K,,1). This L-value vanishes as remarked in the paragraph right
after (1.1).

The formula for the derivative follows verbatim as in the proof of [4, Theorem 4.1].
See also [28, Theorem 5.1] for the statement in the generality required here. Finally, we
refer to [30] for a formulation and proof of this formula in the setting of quaternionic
Stark-Heegner points, under the general assumption of (1.2). O

5. Setting the stage

In this section we set the stage for the proofs of Theorems A and B by introducing
a particular choice of triplet of eigenforms (f, g, h) of weights (2,1,1). Let E/Q be an
elliptic curve having multiplicative reduction at a prime p and set oo = a,(E) = £1.
Let
¥:Gal(H/K) — L*
be an anticyclotomic character of a real quadratic field K satisfying the hypotheses
stated in the introduction.
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In particular we assume that a prime ideal p above p in H has been fixed and either
of the non-vanishing hypotheses stated in loc. cit. holds; these hypotheses give rise to
a character £ of K having parity opposite to that of ¥ that we fix for the remainder
of this note, satisfying that the local Stark-Heegner point ng is non-zero.

As shown in [14, Lemma 6.9], there exists a (not necessarily anti-cyclotomic) char-
acter ¥y of finite order of K and conductor prime to DNg such that

(5.1) Yo /by = &/Y.

Since by hypothesis £/% is totally odd, it follows that o has mixed signature (4, —)
with respect to the two real embeddings of K.

Let ¢ C Ok denote the conductor of ¥y and let x denote the odd central Dirich-
let character of ¥y. Let xi also denote the quadratic Dirichlet character associated
to K/Q.

Let f € Sy(pMy) denote the modular form associated to E by modularity. Likewise,
set

Mg = D62 ~NK/Q(C) and Mh =D- NK/Q(C)

and define the eigenforms

9 =0(ot) € S1(My, xxx) and h=0(y") € S1(Mp,x "xk)

to be the theta series associated to the characters ¥y and 9y 1 respectively.

Recall from the introduction that E[p] is assumed to be irreducible as a Gg-module.
This implies that the mod p residual Galois representation attached to f is irreducible,
and thus also non-Eisenstein mod p. The same claim holds for g and h because 1 and
¢ have opposite signs and p is odd, hence ¢ # ¥*! (mod p).

Note that p { My M,M),. As in previous sections, we let M denote the least common
multiple of My, M, and Mj. The Artin representations V; and V}, associated to g
and h are both odd and unramified at the prime p. Since p remains inert in K, the
arithmetic frobenius Fr, acts on V; and V}, with eigenvalues

{agn@g} = {C7 _C}a {ah)ﬂh} = {<717 _Cil}a

where ( is a root of unity satisfying x(p) = —¢2.
In light of (5.1) we have o9/1o = ¥ and 9o /¢) = &, hence the tensor product
of V, and V}, decomposes as

(5.2) Voh =V, ® Vi, ~ Ind R (¢) ® Ind(€) as Gq-modules
and

Vo=V&aVfi, V,=Ve VP Van = @ Vil as Gq,-modules,
(a,b)

where (a,b) ranges through the four pairs (ay, o), (g, Br), (Bgs @r), (By, Brn). Here
Vg%, say, is the Gq,-submodule of V; on which Fr, acts with eigenvalue oy, and
similarly for the remaining terms.
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Let W, be an arbitrary self-dual Artin representation with coeflicients in L, and
factoring through the Galois group of a finite extension H of Q. Assume W, is un-
ramified at p. There is a canonical isomorphism

(5-3) HYQ,V,(E)®@W,) =~ (H(H,V,(E))®W,)&HQ
= Homgai(a/q) (W, H' (H,V,(E))),

where the the second equality follows from the self-duality of W,. Kummer theory
gives rise to a homomorphism

(54)  §:E(H)"? := Homgy (r/q)(Wp, E(H) ® L,) — H'(Q,Vp(E) ® W,).
For each rational prime ¢, the maps (5.3) and (5.4) admit local counterparts
HY(Qq, Vp(E)®W,) =~  Homgal (r/q)(Wp, ®xcH' (H, Vy(E))),
b (OxeB(HN)" — H'(Qe, Vo(E) @ Wy),

for which the following diagram commutes:

(5.5) E(H)Y» ——— HY(Q,V,(E) ® W,,)

j/rese lrese

(EBWE(H,\))WP LN HY(Qq, V,(E) @ Wp).

For primes ¢ # p, it follows from [34, (2.5) and (3.2)] that H*(Qg, V,(E)®W,,) = 0.
(We warn however that if we were working with integral coefficients, these cohomol-
ogy groups may contain non-trivial torsion.) For £ = p, the Bloch-Kato submodule
H}(Qp, Vp(E) ® W,) is the subgroup of H}(Q,,V,(E) ® W,) formed by classes of
crystalline extensions of Galois representations of V,(E) ® W, by Q,. It may also be
identified with the image of the local connecting homomorphism d,,.

Lemma 5.1. — There is a natural isomorphism of Ly-vector spaces

H{ (Qp, Vi (E) @ Wy) = Hi (Qp, V7 @ W= @ H'(Qy, V™ @ W, /W, =2),
where recall o = a,(E) = 1.
Proof. — We firstly observe that H} (Q,, V,(E) @ W,) = H(Q,, V,(E) ® W,,) by

e.g.,[1, Prop. 2.0 and Ex. 2.20], because V,,(E)® W), contains no unramified submodule.
As shown in [17, Lemma, p.125], it follows that

H{ (Qp, Vp(E) ® W) = Ker(H'(Qp, V,(E) @ Wy) — H'(I,,V, (E) @ W,))

is the kernel of the composition of the homomorphism in cohomology induced
by the natural projection V,(E) — V7 (E) and restriction to the inertia sub-
group I, C Gq,.

The long exact sequence in Galois cohomology arising from the exact sequence

0— V;"(E) — Vp(E) — Vp_(E) —0
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shows that the kernel of the map H'(Q,, V,(E) ® W) — H'(Q,, V, (E) ® W) is
naturally identified with H'(Q,, V" (E) ® W}). We have H'(I, Qp(¥ecyc)) = 0 for
any nontrivial unramified character . Besides, it follows from e.g.,[15, Example 1.4]
that Hf (Qp, Qp(ecyc)) = ker (H'(Qp, Qplecyc)) — H'(Ip, Qplecyc))) is a line in
the two-dimensional space H'(Qy, Qp(gcyc)), which Kummer theory identifies with
Z;@zp Q, sitting inside Q' ®zp Qy.

Note that V,(E) = Ly(¢fecyc) and V, (E) =~ L, (1) where 1y is the unramified
quadratic character of Gq, sending Fr; to a. The lemma follows. O

The Selmer group Sel(T),(E,W,) is defined as
Sel(T), (B, W) := {\ € H'(Q, V,(E) @ W) : resy(X) € Hi (Qp, Vp(E) ® W)}

Here res,, stands for the natural map in cohomology induced by restriction from Gq
to GQp .

6. Factorisation of p-adic L-series

The goal of this section is proving a factorisation formula of p-adic L-functions
which shall be crucial in the proof of our main theorems.

Keep the notations introduced in the previous section and recall in particular the
sign o := ap(f) € {%1} associated to E. Let g and h,¢-: denote the ordinary
p-stabilizations of g and h on which the Hecke operator U, acts with eigenvalue

(6.1) ag:=(¢ and oy := al™

respectively.

Let f, g and h be the Hida families of tame levels My, My, M} and tame charac-
ters 1, xxk, X ' Xk passing respectively through f, g and ha¢-1. The existence of
these families is a theorem of Wiles [38], and their uniqueness follows from a recent
result of Bellaiche and Dimitrov [2] (note that the main theorem of loc. cit. indeed
applies because oy # By, ap # B, and p does not split in K). Let o, yo, 20 denote
the classical points in Wg, W, and W, respectively such that f,, = f, g,, = g¢ and
h, = hoc-1.

As explained in [13], [14] and recalled briefly in [15, (5.1)] in this volume, associated
to a choice

f. € SXid(M)[fL g € SXI:I(M’ XXK)[g]a Fl € SXﬁ,d(va_lXK)[h]

of A-adic test vectors of tame level M there is a three-variable p-adic L-function
fpf (f' , &, fl) Among such choices, Hsieh [20] pinned down a particular choice of test
vectors with optimal interpolation properties (cf.loc. cit. and [15, Prop. 5.1] for more
details), which we fix throughout this section.

Define

(6.2) L (,9¢, hac1) € Ag

SOCIETE MATHEMATIQUE DE FRANCE 2022



22 HENRI DARMON & VICTOR ROTGER

to be the one-variable p-adic L-function arising as the restriction of ﬁpf (f' , g, ﬁ) to
the rigid analytic curve We X {yo, 20}-

In addition, recall the p-adic L-functions described in §3 associated to the twist
of E/K by an anticyclotomic character of K, and set fo(k,) := (Dcz)% /§2, where
fe is the constant introduced at the first display of [28, §3.2]. Note that the rule
k +— fo(k,) extends to an Iwasawa function, that we continue to denote fo, because p
does not divide Dc?. Recall also the rigid-analytic function .Z,(Sym?*(f)) in a neigh-
borhood Uy C Wt of z¢ introduced in (3.4).

Theorem 6.1. — The following factorization of p-adic L-functions holds in Ag:
Zp(Sym?(£) x L1 (£, 5c hag-1) = fo - Lo (£/K, ) x Z,(£/K, €).

Proof. — Tt follows from [15, Prop. 5.1] that %, (f, ¢, iuza¢1) satisfies the following
interpolation property for all z € Wy of weight k& > 2:

1—og®p*  L(£7,9,h, §)'/
1-FEpR T (f1)

Besides, it follows from Theorem 3.2 that the product of .Z,(f/K,v) and
Z,(f/ K, &) satisfies that for all x € Wy of weight k > 2:

Lo (8K, )L, (£/ K, €)(x) = fr,p(2) - fee(x) x L(E7 /K, 9, k/2)"/? - L(E7 /K, €, k/2)/?,

where

v

B (F, e, ha-)(@) = (2mi) - (L2

2. (DA (B 9f 0
feop (@) - fela) = (1 - ag2p)? - Rl fep fer
P [3 . (27.”)190 QE,CQ&,C
A direct inspection to the Euler factors shows that for all z € Wy of weight k > 2:
(6.3) L(f;,g9,h,k/2) = L(f; /K, ¢, k/2) - L(£; /K, &, k/2).

Recall finally from Theorem 3.1 that the value of .%,(Sym?(f)) at a point
zeUsN Wf? is

2, (Sym®*(£))(2) = (1 - B p' ") (1 — o *p™)Qf Qp .
Combining the above formulae together with the equality
Qf ¢ Qp ¢ =4n(), 1)),

T

described in §3, it follows that the following formula holds for all z € Wy of weight k > 2:
Zy(Sym®(£))(@) X L7 (F, ¢, hac—1) (@) = Ao (k,) - Z(£/K, ) (x) x Z,(/K,€)(x).

Since Wy is dense in Wk for the rigid-analytic topology, the factorization formula
claimed in the theorem follows. O

Recall from Theorem 3.2 that %, (f/K,v) and .Z,(f/K, £) both vanish at = and
d

(64) -

gp(f/K7w)|z:zo T=x

1 W d 1 .

dx
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By Theorem 3.1, .%,(Sym?*(f))(z¢) € Q*. It thus follows from Theorem 6.1 that
the order of vanishing of fpf(f'v, g¢, FLaca) at x = 1z is at least two and

d2 FV v T a e
(6.5) @«gpf(fv,gca hagfl)| =0 '10gp(P¢) 'logp(Pg )s

where C} is a non-zero simple algebraic constant.
As recalled at the beginning of this article, ng is non-zero. We can also suppose
that P is non-zero, as otherwise there is nothing to prove. Hence (6.5) shows that

=T

the order of vanishing of fpf(f'v, gcs 7La<_1) at x = z¢ is exactly two.

7. Main results

Let us now explain the proofs of the main theorems stated in the introduction by
invoking the results proved in previous sections in combination with some of the main
statements proved in the remaining contributions to this volume.

Let

k(f,g,h) € H'(Q, Vi, (M))
be the A-adic global cohomology class introduced in [15, Def. 5.2].
Define VI gn (M) as the A¢[Gq]-module obtained by specializing the Aggn[Gq]-mod-
ule V}gh(M) at (yo, z0)- Let

(7.1) K, g¢, hac-1) = Vyo 5o k(f, 8, h) € H'(Q, V], (M))
denote the specialization of x(f, g, h) at (yo, 20), and

/{(fa gc¢, hochl) € Hl(Q’ Vfgh(M))
denote the class obtained by specializing (7.1) further at xg.
Let us analyze the above class locally. According to the discussion preceding
Lemma 5.1, it follows that res; (k(f, g¢, hac-1)) = 0 at every prime £ # p.
In order to study it at p, write x,(f,g¢c,hac-1) = respk(f,gc,hac-1) €
HY(Qyp, Vi ® Vyp(M)).
After setting Vg“,f’ =Vy® fo , we find that there is a natural decomposition

(7~2) (Q;m E) ®Vgh @H va p ) )

(a;b)

where (a,b) ranges through the four pairs (agy, ar), (ag, Br), (By, @), (Bg, Br). Anal-
ogous decompositions hold for the various Galois cohomology groups appearing in
this section. Given a class k € H(Q,, V,(E) ® V,,(M)), we shall denote £ for its
projection to the corresponding (a, b)-component.

Note that

(73) QgQp = ﬁgﬁh = qQ, O‘gﬁh = ﬂgah = —Q.

Hence, according to Lemma 5.1, £(f, g¢, hac¢-1) lies in the Bloch-Kato finite submodule
of HY(Q, Vygn(M)) if and only if
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(i) ’ip(fy 9¢, ha(fl)%ﬂh and ”ip(fa g¢, ha(*)ﬁgah lie in Hl(Qm Vp+(E) Y Vgh(M))a
(i) kp(f,9¢, hac-1)%*" and ky(f, g¢, hacfl)ﬁgﬂh lie in H}(Q,, V;;“(E) ® Vyu(M)).

By [15, Proposition 1.5.8], the local class x,(f,gc, hac-1) is the specialization
at (o, Yo, 20) of a A-adic cohomology class with values in the A-adic representation
V;ﬁ'gh(M ), which recall is defined as the span in Vlgh(M ) of (suitably twisted) triple
tensor products of the form Vfi ® Vg ® Vﬁ, with at least two +’s in the exponents.

Since V,? = V& and V57 = V.,
the very definition of V;"gh(M) that the (agy,ap)-component of ky(f,g¢,hac-1)
in H(Q,, Vy® Vgo;fah (M)) vanishes—this yields a fortiori claim (ii) for the
(g, p)-component. The same reasoning also yields that the (a4,B8,) and
(Bg, an)-components of the projection of k,(f,g¢,hac-1) to Hl(Q,”VJT ® Vyn(M))
vanish, and hence (i) holds.

It only remains to analyze the (3,, B )-component &y (f, g¢, hoc-1). For this purpose

we define the A¢[Gq,]-modules

and similarly for V}, it follows from

W = Veg0(M) := Ve(M) (e V) @ Vi ™ (M),

W = Vi (M) 1= Vi (M) (g ) © V™ (1),

It follows from (6.1) that Vgﬂh’g = L,(a) is the one-dimensional representation af-

forded by the character of Gal (K,/Q,) sending Fr, to o = a,(E). Hence W~ is the
sub-quotient of Vlgh(M ) that is isomorphic to several copies of Af(\Il?hgf_ 1/ %), where

as in [15, (1.5.5)], \Il?h denotes the unramified character of Gq, satisfying
qj?h(ﬁp) = ap(f)aljl(gl)agl(hl) = a-a,(f).
Let
(7.4) &I (£, 9¢, hac-1) € HY(Qp, W), kI (£,9¢, hac-1)” € H'(Qp, W)

denote the image of k,(f,g¢,hqc-1) under the map induced by the projec-
tion V}th (M) — W = V¢ gg(M), and further to W= = V5 5(M) respectively.

Equivalently and in consonance with our notations, ng (f,9¢,hac-1)" is the spe-
cialization at (yo,20) of the local class k] (f,g,h)~ introduced in [15, (1.5.8)] and
invoked in [15, Theorem 1.5.1]. Hence [15, Theorem 1.5.1] applies and asserts that the
following identity holds in A for any triple (£, g, h) of A-adic test vectors:

(75) <Lf,gh(n£(fv 9¢s ha(*l)i)a Ure ® wéz‘ b wﬁ*<_1> = gpf(f‘va g(a 77/04(*1)'

Let now ng (f,9¢,hac-1) and mg (f,9¢,hac-1)” denote the specializations at zq of
the classes in (7.4). According to our previous definitions, we have

(76) K’p(fa g(ahag"*l)ﬁgﬁh = K‘;J:(fa ngh’agfl)'

Since a,(f) = a € {£1} and g¢(xo) = 1, it follows from the above description
of W and the character \Ilgh that W(xg) ~ V,(E;)(M) as Gq,-modules, where
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E, is the (trivial or quadratic) twist of F given by «. Hence /-@1’; (f,9¢, hac—1) €
HY(Qp, V(B ) (M)).

The Bloch-Kato dual exponential and logarithm maps associated to the p-adic rep-
resentation V,,(E)(M) take values in a space L, (M) consisting of several copies of the
base field L,. Given a choice of test vectors, it gives rise to a projection L,(M) — L.
We shall denote by a slight abuse of notation

loggk : Hi (Qp, Vy(E+)(M)) — Ly

the composition of the Bloch-Kato logarithm with the projection to L.

The following fundamental input comes from the main results due to Bertolini,
Seveso and Venerucci in this volume, and we refer to [7] and [8] for the detailed proof;
here we just content to point out to precise references in loc. cit. As explained in the
introduction, in a previous version of this paper Formula (7.7) below was wrongly
attributed to [37].

Theorem 7.1 (Bertolini, Seveso, Venerucci). — The local class mg( f,9¢, hac—1) is crys-
talline and

=Cy- IOgBK(Hi(fa 9¢s haC*I))

for some nonzero rational number Cy € Q*.

2
(7.7) @gpf(fvagcahaclﬂ

T=T0

Indeed, the first claim of the above theorem follows from [7, Theorem BJ: since
L(f,g9,h,1) = 0 it follows from the equivalence between (a) and (c) of [7, §9.4]
that the dual exponential map vanishes on HZJ: (f,9¢, hac—1)—note that the improved
class £ (f, g¢, hac-1) of loc. cit. is simply a non-zero multiple of x(f, g¢, hac-1) in our
setting, because of (7.3). This amounts to saying that the class is crystalline. For-
mula (7.7) follows from [8, Proposition 2.2] combined with (7.5).

In light of (7.6) and the above discussion, the above theorem implies that
&(f,9¢s hac-1) belongs to the Selmer group H} (Q, Vygn(M)), as conditions (i) and
(ii) above are fulfilled.

Recall from (5.2) that Vg, = Vi, @ Ve decomposes as the direct sum of the induced
representations of ¢ and £. Write

K (£, 9¢ hac1) € Hi (Q,V,(E) ® Vy(M)),
ke(f,9¢, hac1) € Hi (Q, Vo (E) ® Ve(M))

for the projections of the class k(f, g¢, hac-1) to the corresponding quotients. We
denote as in the introduction

K5 (f,9¢, hac—1) = (1 + aoy)ky(f, 9¢, hac-1) € Hf (H, VP(E)(M))@&@&

the component of £y (f, g¢, hac-1) on which o, acts with eigenvalue «, and likewise
with v replaced by the auxiliary character €.

Lemma 7.1. — We have

1OgE,p K’z(fa 9¢, hcxc—l) = 1OgE,p K’?(fv 9¢s haC—l)-
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Proof. — We may decompose the local class
i = Rpl(f 9, hag—1) = (RS9, kG, Bocn, cBaln)

in HY(Q,,Vy ® V;;fah (M)) as the sum of four contributions with respect to the
decomposition (7.2) afforded by the eigen-spaces for the action of oy,. In addition to
that, x, also decomposes as

kip = (Kyp, hie.p) € Hi (Qp, V,(B) ® V(M) ® H (Qp, V,(E) ® Ve(M)),

where Ky p, K¢ p are the local components at p of the classes in (7.8). An easy exercise
in linear algebra shows that

(7.8) Kp? " = Ky p = K py ”ggﬁh = Kyp T K p-

Since we already proved that x,°*" = 0, the above display implies that Kgp = Bep

are the same element. The lemma follows. ]
Let

logg, 5, * Hi (Qp, Vs © Vg (M)) T N (Qy, Vy @ Vi (M) 2 L,
denote the composition of the natural projection to the (8y, 8)-component with the
Bloch-Kato logarithm map associated to the p-adic representation Vy ® thg fn (M) ~
Vi, (M) and the choice of test vectors. Note that H{ (Q,, V,(EL)) = H{ (Qp, Qp(1)),
which as recalled in [15, Example 1.1.4 (c)] is naturally identified with the completion
of Z, and the Bloch-Kato logarithm is nothing but the usual p-adic logarithm on Z;
under this identification. Lemma 7.1 together with the second identity in (7.8) imply
that

(l) logE,p H%(fa 9¢, hac_l) = logﬁgﬁh (Ep(fv 9ge¢, hac—l ))
Thanks to (7.7) we have
. d? PV
(i) logg, g, (kp(f, 9¢, hac-1)) = ﬁfpf(fvngahaC—l)lz:mo (mod L*).

Finally, fix (f' , g, fl) to be Hsieh’s choice of A-adic test vectors satisfying the prop-
erties stated in Theorem 6.1. Recall from (6.5) that, with this choice, we have

oy d2 FAVARVERE 4 o a
(iii) (#47) Efpf(fv,gg, hac-1)| = log,(Py) - log,(P¢) (mod L™).

z=mg
Define
Koy 1= logE,p(Pg‘)_1 X Ky (f; Gas ha)-
It follows from the combination of (i)-(ii)-(iii) that k. fulfills the claims stated in
Theorem A, and hence the theorem is proved.

Theorem B also follows, because the non-vanishing of the first derivative
£ LB/ K, Q) implies that PgJ, # 0. Theorem A then implies that the
T=x0 >

class ky € HE(H,V,(E)(M))¥®¥ is non-trivial.
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p-ADIC FAMILIES OF DIAGONAL CYCLES

by

Henri Darmon & Victor Rotger

Abstract. — This note provides the construction of a three-variable family of coho-
mology classes arising from diagonal cycles on a triple product of towers of modular
curves, and proves a reciprocity law relating it to the three variable triple-product
p-adic L-function associated to a triple of Hida families by means of Perrin-Riou’s
A-adic regulator.

Résumé. — On construit une famille & trois variables de classes de cohomologie
associée & des cycles diagonaux sur le produit triple de tours de courbes modulaires,
et on démontre une loi de réciprocité qui réalise la fonction L p-adique d’un triplet
de familles de Hida comme l'image de cette famille de classes de cohomologie par le
régulateur A-adique de Perrin-Riou.

Introduction

The main purpose of this article is to supply a construction of a three-variable
family of cycles interpolating the generalized diagonal cycles introduced in [7], and to
prove a reciprocity law relating this family to the three variable triple-product p-adic
L-function associated to a triple of Hida families by means of Perrin-Riou’s A-adic
regulator.

In order to give a flavor of our construction, let us describe in more detail the
organization and contents of this article.

After reviewing some background in the first section, in Section 2 we construct
for every r > 1 a completely explicit family of cycles in the cube X3 of the modular
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curve X, = X;(Mp") of I'1(Mp")-level structure. This family is parametrized by the
space of SLa(Z/p"Z)-orbits of the set

S, = ((Z2/p"Z x Z/p"Z)')* C (Z/p"Z)*)°

of triples of primitive row vectors of length 2 with entries in Z/p"Z, on which
GLy(Z/p"Z) acts diagonally by right multiplication. Any triple in ¥, gives rise to
a twisted diagonal embedding of the modular curve X(p") of I'; (M) U I'(p")-level
structure into the three-fold X? and the associated cycle is defined as the image of
this map: we refer to (2.4) for the precise recipe.

The parameter space %,./SLo(Z/p"Z) is closely related to ((Z/p"Z)*)® and as
shown throughout §2, the associated family of global cohomology classes introduced
in Definition 2.9 can be packaged into a global A-adic cohomology class parametrized
by three copies of weight space.

Along §3 and §4 we study the higher weight and cristalline specializations of this
family and we eventually prove in Theorem 4.1 that they interpolate the classes
introduced in [7] as claimed above.

Finally, in §5 we recall Garrett-Hida’s triple product p-adic L-function associated
to a triple of Hida families (f,g,h) and prove in Theorem 5.1 a reciprocity law ex-
pressing the latter as the image of our three-variable cohomology classes (as specified
in Definition 5.2) under Perrin-Riou’s A-adic regulator.

It is instructive to compare the construction of our family to the approach
taken in [8], which associated to a triple (f,g,h) consisting of a fized newform
f and a pair (g,h) of Hida families a one-variable family of cohomology classes
instead of the two-variable family that one might have felt entitled to a pri-
ori. This shortcoming of the earlier approach can be understood by noting that
the space of embeddings of X(p") into X;(M) x X, x X, as above in which
the projection to the first factor is fixed is naturally parametrized by the coset
space My(Z/p"Z)' /SLy(Z/p"Z), where My(Z/p"Z)" denotes the set of 2 x 2 matrices
whose rows are not divisible by p. The resulting cycles are therefore parametrized by
the coset space GLy(Z/p"Z)/SLe(Z/p"Z) = (Z/p"Z)*, whose inverse limit with r is
the one dimensional p-adic space Z, rather than a two-dimensional one.

As mentioned already in our previous article in this volume, these cycles are of
interest in their own right, and shed a useful complementary perspective on the con-
struction of the A-adic cohomology classes for the triple product when compared to
[3]- Indeed, their study forms the basis for the ongoing PhD thesis of David Lilienfeldt
[17], and has let to interesting open questions as those that are explored by Castella
and Hsieh in [3].

1. Background

1.1. Basic notations. — Fix an algebraic closure Q of Q. All the number fields that
arise will be viewed as embedded in this algebraic closure. For each such K, let G :=
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Gal (Q/K) denote its absolute Galois group. Fix an odd prime p and an embed-
ding Q — Qp; let ord, denote the resulting p-adic valuation on Q*, normalized in
such a way that ord,(p) = 1.

For a variety V defined over K C Q, let V denote the base change of V to Q. If
F is an étale sheaf on V', write H, ét(V,}' ) for the ith étale cohomology group of V'
with values in F, equipped with its continuous action by G .

Given a prime p, let Q(pp=) = Ur>1Q(¢-) be the cyclotomic extension of Q ob-
tained by adjoining to Q a primitive p”-th root of unity (.. Let

eye : G — Gal (Qup=)/Q) = Z
denote the p-adic cyclotomic character. It can be factored as ecye = w{ecyc), Where
w:Gq — fip—1 (€cye) : Gq — 1+ pZy,

are obtained by composing €., with the projection onto the first and second factors
in the canonical decomposition Z; =~ p, 1 % (1+pZy). If M is a Z,[Gq]-module and
j is an integer, write M(j) = M ® sgyc for the j-th Tate twist of M.

Let

K, =Z,((2/p2)"]), R:=12, 2] :=1lm&k,

denote the group ring and completed group ring attached to the profinite group Z, .

The ring A is equipped with p — 1 distinct algebra homomorphisms w’ : A — A (for
0 < i< p-—2) to the local ring

A =Z,[[1 +pZy)| = lim Z,[1 + pZ/p"Z] = Z,[[T]],

where w’ sends a group-like element a € ZX to w'(a)(a) € A. These homomorphisms
identify A with the direct sum

p—2
i-@a
i=0
The local ring A is called the one variable Iwasawa algebra. More generally, for any
integer t > 1, let
ot . N . .
K = K&z, 1. &z &, A® = A&y .t &z A~ Z,[[T1,... T

The latter ring is called the Iwasawa algebra in t variables, and is isomorphic to the
power series ring in ¢ variables over Zj,, while

jo\®t _ @A@)t,

[

the sum running over the (p — 1) distinct ZX valued characters of (Z/pZ)**.
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1.2. Modular forms and Galois representations. — Let
¢=q+ Y an(d)q" € Sk(M,x)
n>2

be a cuspidal modular form of weight k > 1, level M and character x : (Z/MZ)* — C*,
and assume that ¢ is an eigenform with respect to all good Hecke operators Ty, £ 1 M.

Fix an odd prime number p (that in this section may or may not divide M).
Let O4 denote the valuation ring of the finite extension of Q,, generated by the fourier
coefficients of ¢, and let T denote the Hecke algebra generated over Z, by the good
Hecke operators T; with £ { M and by the diamond operators acting on Sk (M, x).
The eigenform ¢ gives rise to an algebra homomorphism

£y T — Oy

sending Ty to ay(¢) and the diamond operator (£) to x(¢).
A fundamental construction of Shimura, Deligne, and Serre-Deligne attaches to ¢
an irreducible Galois representation

0s : Gq — Aut(Vy) ~ GL3(0y)
of rank 2, unramified at all primes ¢ { Mp, and for which
(1.1) det(l — Q¢(F1”e)$) =1— ae((b)x + X(f)ﬁk_le,

where Fry, denotes the arithmetic Frobenius element at £. This property characterizes
the semi-simplification of g4 up to isomorphism.

When k := k + 2 > 2, the representation V can be realized in the p-adic étale
cohomology of an appropriate Kuga-Sato variety. Since this realization is important
for the construction of generalized Kato classes, we now briefly recall its salient fea-
tures. Let Y = Y71(M) and X = X;(M) denote the open and closed modular curve
representing the fine moduli functor of isomorphism classes of pairs (A4, P) formed by
a (generalized) elliptic curve A together with a torsion point P on A of exact order M.
Let

(1.2) 7T A — Y

denote the universal elliptic curve over Y.
The k, -th open Kuga-Sato variety over Y is the & -fold fiber product

(1.3) AP = Aoxy B) xy A,

of A, over Y. The variety A’§° admits a smooth compactification A% which is fibered
over X and is called the k -th Kuga-Sato variety over X ; we refer to Conrad’s appendix
in [2] for more details. The geometric points in A% that lie above Y are in bijection
with isomorphism classes of tuples [(A, P), Py,..., Py |, where (A, P) is associated to
a point of Y as in the previous paragraph and Pi,..., P, are points on A.

The representation Vj is realized (up to a suitable Tate twist) in the middle degree

étale cohomology H gg“(flko ,Z,). More precisely, let

H’r = Rl'/T* Z/prz(l)7 H = Rlﬂ-* ZP(1)7
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and for any k. > 0, define
(1.4) Hye = TSym" (H,),  H% := TSym" (H)

to be the sheaves of symmetric k -tensors of H, and H, respectively. As defined
in e.g., [2, (2.1.2)], there is an idempotent € in the ring of rational correspondences
of A% whose induced projector on the étale cohomology groups of this variety satisfy:

(1.5) er, (HETH (A% Zy(K))) = HY (X, HR).
Define the O4-module

(1.6) Vo(M) 1= HL(X, (1) ®re, Oy,

and write

(L.7) @y Hyy (X, 1 (1)) — V(M)

for the canonical projection of T[Gq]-modules arising from (1.6). Deligne’s results
and the theory of newforms show that the module V(M) is the direct sum of several
copies of a locally free module V;, of rank 2 over O, that satisfies (1.1).

Let oy and 3, the two roots of the p-th Hecke polynomial 72 —a,,(¢)T + x(p)p* 1,
ordered in such a way that ord,(ag) < ord,(8s). (If ay and B, have the same p-adic
valuation, simply fix an arbitrary ordering of the two roots.) We set x(p) = 0 whenever
p divides the primitive level of ¢ and thus ay = ap(¢) and 8y = 0 in this case. The
eigenform ¢ is said to be ordinary at p when ord,(ag) = 0. In that case, there is an
exact sequence of Gq,-modules

(1.8) 0—=V}) —V,—V, =0, V=04l xv,"), Vy ~04(y),
where 9, is the unramified character of Gq, sending Fr, to ay.

1.3. Hida families and A-adic Galois representations. — Fix a prime p > 3. The formal
spectrum

W := Spf(A)
of the Iwasawa algebra A = Z,[[1 + pZ,]] is called the weight space attached to A.
The A-valued points of W over a p-adic ring A are given by

W(A) = Hom,e (A, A) = Homg,, (1 + pZ,, A™),

where the Hom'’s in this definition denote continuous homomorphisms of p-adic rings
and profinite groups respectively. Weight space is equipped with a distinguished col-
lection of arithmetic points vy . , indexed by integers k, > 0 and Dirichlet characters
€:(1+pZ/p"Z) — Qp(r—1)* of p-power conductor. The point vy . € W(Z,[(,]) is
defined by
Uk e(n) = a(n)nkO,

and the notational shorthand vy := vy 1 is adopted throughout. More generally, if
A is any finite flat A-algebra, a point z € W := Spf(i&) is said to be arithmetic if its
restriction to A agrees with v, . for some k, and e. The integer k = k, + 2 is called
the weight of z and denoted wt(z).
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Let
(1.9 Eeye - G — A

denote the A-adic cyclotomic character which sends a Galois element o to the group-
like element [(ecyc(0))]. This character interpolates the powers of the cyclotomic char-
acter, in the sense that

k, _
(110) l/ko £ oéCyC = <Ecyc>k° —¢- Ecglc -w k,

Let M > 1 be an integer not divisible by p.

Definition 1.1. — A Hida family of tame level M and tame character x:(Z/M Z)X—>Q;
is a formal q-expansion
¢=>_ an(d)q" € Ag[lq]]
n>1
with coefficients in a finite flat A-algebra Ay, such that for any arithmetic point
x € Wy := Spf(Ag) above vy ., where k, > 0 and € is a character of conductor p”,
the series

b, = w(an(9))d" € Qyllal]

n>1

is the g-expansion of a classical p-ordinary eigenform in the space Sp(Mp", xew %)
k

of cusp forms of weight k =k, + 2, level Mp" and nebentype xyew %
By enlarging Ay if necessary, we shall assume throughout that Ag contains the
M-th roots of unity.

Definition 1.2. — Let x € Wy be an arithmetic point lying above the point vy . of
weight space. The point x is said to be

— tame if the character € is tamely ramified, i.e., factors through (Z/pZ)* .

— crystalline if ew™% = 1, i.e., if the weight k specialization of ¢ at x has trivial

nebentypus character at p.

We let Wy, denote the set of crystalline arithmetic points of We.

Note that a crystalline point is necessarily tame but of course there are tame
points that are not crystalline. The justification for this terminology is that the Galois
representation V_ is crystalline at p when z is crystalline.

If  is a crystalline point, then the classical form ¢, is always old at p if £ > 2.
In that case there exists an eigenform ¢; of level M such that ¢, is the ordinary
p-stabilization of ¢;. If the weight is k = 1 or 2, ¢, may be either old or new at p; if
it is new at p then we set ¢, = ¢, in order to have uniform notations.

We say ¢ is residually irreducible if the mod p Galois representation associated
to the Deligne representations associated to ¢2 for any crystalline classical point is
irreducible.
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Finally, the Hida family ¢ is said to be primitive of tame level My | M if for all
but finitely many arithmetic points x € Wy of weight k > 2, the modular form ¢,
arises from a newform of level M.

The following theorem of Hida and Wiles associates a two-dimensional Galois rep-
resentation to a Hida family ¢ (cf.e.g.,[20, Théoréme 7]).

Theorem 1.1. — Assume ¢ is residually irreducible. Then there is a rank two Ag-mod-
ule Vg equipped with a Galois action
(1.11) 0 : Gqg — AutA¢(V¢) ~ GLQ(A¢),

such that, for all arithmetic points x : Ay — Qp,
Vo ®an, Qp = Vg, ® Q,.
Let
bg: G, — Ay
denote the unramified character sending a Frobenius element Fr, to a,(¢). The re-
striction of Vg to Gq, admits a filtration

(1.12)
0 — V; — Vg — V; — 0 where V; ~ A¢(¢;lxsgylc§0yc) and V:ﬁ ~ Ay (vg).

The explicit construction of the Galois representation V4 plays an important role
in defining the generalized Kato classes, and we now recall its main features.
Forall 0 <r < s, let

X, =X (Mp"), Xrs = X1(Mp") X x,(mpry Xo(Mp®),

where the fiber product is taken relative to the natural projection maps. In particular,

— the curve X := X := X1(M) represents the functor of elliptic curves A with
I'y (M)-level structure, i.e., with a marked point of order M;

— the curve X, represents the functor classifying pairs (A, P) consisting of a gen-
eralized elliptic curve A with I’y (M)-level structure and a point P of order p”
on A;

— the curve Xos = X1(M) X x, ) Xo(Mp®) classifies pairs (A4, C) consisting of a
generalized elliptic curve A with I’y (M) structure and a cyclic subgroup scheme C
of order p° on A;

— the curve X, ; classifies pairs (A, P, C) consisting of a generalized elliptic curve A
with T'; (M) structure, a point P of order r on A and and a cyclic subgroup
scheme C' of order p® on A containing P.

The curves X, and Xy, are smooth geometrically connected curves over Q. The
natural covering map X, — Xy, is Galois with Galois group (Z/p"Z)* acting on
the left via the diamond operators defined by

(1.13) (a)(A, P) = (A, aP).
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Let
(1.14) wy : Xpp1 — X»

denote the natural projection from level r + 1 to level r which corresponds to the
map (A, P) — (A,pP), and to the map 7 +— 7 on upper half planes. Let

wo: Xpy1 — X,

denote the other projection, corresponding to the map (4, P) — (A/(p" P), P+{(p" P)),
which on the upper half plane sends 7 to pr. These maps can be factored as

(].].5) Xr+1 Xr+1
RN IAN
© ©
XT,T+1 T> Xry XT,T+1 T Xr-

For all » > 1, the vertical map u is a cyclic Galois covering of degree p, while the
horizontal maps 7; and s are non-Galois coverings of degree p. When r = 0, the
map p is a cyclic Galois covering of degree p — 1 and 7y are non-Galois coverings of
degree p + 1.

The A-adic representation Vg shall be realized (up to twists) in quotients of the
inverse limit of étale cohomology groups arising from the tower

w w w w w
X:o N r+1—1>Xr—1>'“—1>X1—1>X0

of modular curves. Define the inverse limit

(1.16) He (X5, Zy) = lim He (X, Zy),

W1x
where the transition maps arise from the pushforward induced by the morphism .
This inverse limit is a module over the completed group rings Z,[[Z,]] arising from the
action of the diamond operators, and is endowed with a plethora of extra structures
that we now describe.

Hecke operators. — The transition maps in (1.16) are compatible with the action of
the Hecke operators T, for all n that are not divisible by p. Of crucial importance
for us in this article is Atkin’s operator U,, which operates on H} (X,,Z,) via the
composition
U, = m1.7m5
arising from the maps in (1.15).
The operator Uy is compatible with the transition maps defining H, élt (X%,Z,),

Inverse systems of étale sheaves. — The cohomology group H, élt(X *+Z,) can be iden-
tified with the first cohomology group of the base curve X; with values in a certain
inverse systems of étale sheaves.

For each r > 1, let

(1.17) Lr=wi'Z,

T

ASTERISQUE 434



p-ADIC FAMILIES OF DIAGONAL CYCLES 37

be the pushforward of the constant sheaf on X, via the map
wI_l X, — X3
The stalk of £ at a geometric point = (A, P) on X is given by
L7 = Zp[A]p"(P)],

where
Alp"(P) := {Q € A[p"] such that p"~'Q = P}.

The multiplication by p map on the fibers gives rise to natural homomorphisms of
sheaves

(1.18) [Pl : L34y — L2

and Shapiro’s lemma gives canonical identifications
Hé}t(XTv Zp) = Hét(Xh ‘C:)v

for which the following diagram commutes:

Hélt(Xr-Hv Zp) WL} Hgt(Xra Zp)

o [p] S s
Hy (X1, Ly ) —— HE (X1, L),

Let £} := lim £ denote the inverse system of étale sheaves relative to the maps [p]
Pl
,
arising in (1.18). By passing to the limit, we obtain an identification

(1.19) Hélt(X;ovzp) = lingélt(Xl,[,;’f) = Hélt(Xl’L:o)'
r>1
Weight k specialization maps. — Recall the p-adic étale sheaves H* introduced in

(1.4), whose cohomology gave rise to the Deligne representations attached to modular
forms of weight k¥ = k, +2 via (1.6). The natural k -th power symmetrisation function

AP — M, Qe QR
restricted to A[p"](P) and extended to L; , by Z,-linearity, induces morphisms
(1.20) spp, L — My

of sheaves over X; (which are thus compatible with the action of Gq on the fibers).
These specialization morphisms are compatible with the transition maps [p] in the
sense that the diagram
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commutes, where the bottom horizontal arrow denotes the natural reduction map.
The maps spy, ,. can thus be pieced together into morphisms

(1.21) spy: L, — M.
The induced morphism
(1.22) SP : Hélt(X:mzp) - Hélt(XlaHk")v

arising from those on H} (X1, L%,) via (1.19) will be denoted by the same symbol
by abuse of notation, and is referred to as the weight k = k, + 2 specialization map.
The existence of such maps having finite cokernel reveals that the A-adic Galois
representation Hélt()?;o, Z,) is rich enough to capture the Deligne representations
attached to modular forms on X; of arbitrary weight k& > 2.

For each a € 1+ pZ,, the diamond operator (a) acts trivially on X; and as multi-
plication by a® on the stalks of the sheaves ’Hf". It follows that the weight k special-
ization map spj factors through the quotient H}, (Xx, Z,) Ay, Z,, i.e., one obtains
a map

SP : Hgt(X;O,Zp) Onui, Lp — He’lt(XlaHk°)~

Remark 1.3. — The inverse limit £ of the sheaves £ on X has been systematically
studied by G. Kings in [15, §2.3-2.4], and is referred to as a sheaf of Iwasawa modules.
Jannsen introduced in [14] the étale cohomology groups of such inverse systems of
sheaves, and proved the existence of a Hoschild-Serre spectral sequence, Gysin excision
exact sequences and cycle map in this context.

Ordinary projections. — Let

(1.23) e* = lim U™
denote Hida’s (anti-)ordinary projector. Since U; commutes with the push-forward
maps w1, this idempotent operates on H}, (X% ,Z,). While the structure of the
A-module H} (X%,Z,) seems rather complicated, a dramatic simplification occurs

after passing to the quotient e*Hélt(X';o,Zp), as the following classical theorem of
Hida shows.

Theorem 1.2 (12, Cor. 3.3 and 3.7]). — The Galois representation e*H (X%, Z,(1))
is a free A-module. For each vy, € W with k, > 0, the weight k = k, +2 specialization
map induces maps with bounded cokernel (independent of k)

spr ¢ e He(X%, Zp(1) ®u, Zp — e"Hyy (X1, 1S (1))
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Galots representations attached to Hida families. — The Galois representation V4 of
Theorem 1.1 associated by Hida and Wiles to a Hida family ¢ of tame level M and
character x can be realized as a quotient of the A-module e* H} (X%, Z,(1)). More
precisely, let

§¢:TA—>A¢

be the A-algebra homomorphism from the A-adic Hecke algebra T, to the A-alge-
bra Ag generated by the fourier coefficients of ¢ sending T to ay(¢).
Then we have, much as in (1.7), a quotient map of A-adic Galois representations

(124)  wg: e Hy (X5, Zp(1) — " Hgy (X5, Zp(1)) @y 6, Ao = Vo (M),
for which the following diagram of Ts[Gg]-modules is commutative:

*

(1.25) e HL (X2, Zp(1) — 2 Vg (M)

Jo |

e*HY (X, HE (1) —— = V. (Mp),

for all arithmetic points = of Wy of weight k = k + 2 and trivial character.
Asin (1.7), V(M) is non-canonically isomorphic to a finite direct sum of copies of a
Ay[Gql-module V4 of rank 2 over Ay, satisfying the properties stated in Theorem 1.1.
One can of course work alternatively with the ordinary projection e := lim,,_, U;}!
rather than the anti-ordinary one, in which case one similarly constructs a quotient
map of A-adic Galois representations

(1.26) @ eHgy(Xoo, Zp(1)) =€ lim Hg (X, Zy(1)) — Vg (M).
W2
1.4. Families of Dieudonné modules. — Let Byr denote Fontaine’s field of de Rham

periods, BIR be its ring of integers and log[(pe-] denote the uniformizer of BIR associ-
ated to a norm-compatible system (poo = {{pn }n>0 of p"-th roots of unity. (cf. e.g.,[4,
§1]). For any finite-dimensional de Rham Galois representation V' of Gq, with coef-
ficients in a finite extension L,/Q,, define the de Rham Dieudonné module

D(V) = (V®Bgr)%r.

It is an L,-vector space of the same dimension as V, equipped with a descending
exhaustive filtration Fil? D(V) = (V ® log’[(|BJz)® by L,-vector subspaces.
Let Beris C Bgr denote Fontaine’s ring of crystalline p-adic periods. If V' is crys-
talline (which is always the case if it arises as a subquotient of the étale cohomology of
an algebraic variety with good reduction at p), then there is a canonical isomorphism

D(V) =~ (V @ Beyis) 9,

which furnishes D(V') with a linear action of a Frobenius endomorphism &.
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In [4] Bloch and Kato introduced a collection of subspaces of the local Galois
cohomology group H'(Q,, V), denoted respectively

Hg(QIHV) g Hfl(QIHV) g Hgl(QINV) g Hl(Qva)v

and constructed homomorphisms

(1.27) loggk : HY(Qp, V) = D(V)/(Fil®D(V) + D(V)*=1)
and
(1.28) exppk 1 H'(Qp, V)/H}(Q,, V) = Fil°D(V)

that are usually referred to as the Bloch-Kato logarithm and dual exponential map.
We illustrate the above Bloch-Kato homomorphisms with a few basic examples
that shall be used several times in the remainder of this article.

Example 1.4. — As shown e.g.,in [4], [1, §2.2], for any unramified character ¢ of Gq,
and all n € Z we have:

(a) If n > 2, orn=1and ¢ # 1, then H;(Qp, Ly(vegy.)) = H(Qp, Lp(vely.)) is
one-dimensional over L, and the Bloch-Kato logarithm induces an isomorphism

1OgBK : Hl(va Lp(wggyc)) = D(Lp(wegyc))

(b) If n < 0,0orn=0and ¢ # 1, then H}(Qp, Ly(vel,.)) = 0 and H'(Qy, Ly (¢pel,.))
is one-dimensional. The dual exponential gives rise to an isomorphism

exphk : H'(Qp, Lp(vel,.)) — Fil’D(L,(vel,.)) = D(Ly(vel,.))-

(c) Assume ¢ = 1.If n = 0, then H'(Q,, L,) has dimension 2 over L,, H}(Q,, L,) =
H}(Qp, L,) has dimension 1 and H;(Qy, L,) has dimension 0 over L. The Bloch-
Kato dual exponential map induces an isomorphism

eXPpK Hl(vaLp)/Hfl(va Ly) — FHOD(LP) = D(Lp) = Ly.
Class field theory identifies H'(Qp, Ly) with Homeont(Q), Qp) ® Ly, which is
spanned by the homomorphisms ord, and log,,.

If n = 1, then HY(Q,,Ly(1)) = HL(Qp, Ly(1)) is 2-dimensional and
H}(Q,, L,(1)) = HX(Qp, Ly(1)) has dimension 1 over L,. As proved e.g.,in [1,
Prop. 2.9], Kummer theory identifies the spaces H}(Q,, L,(1)) C H'(Q,, L,(1))
with ZX®L,, sitting inside QX®Ly. Under this identification, the Bloch-Kato
logarithm is the usual p-adic logarithm on Z.

Let Zgr denote the ring of integers of the completion of the maximal unramified
extension of Q. If V' is unramified then there is a further canonical isomorphism

(1.29) D(V) = (V @ Z:")%as.
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Let ¢ be an eigenform (with respect to the good Hecke operators) of weight
k=k +22>2, level M and character x, with fourier coeflicients in a finite exten-
sion L, of Q,. The comparison theorem [9] of Faltings-Tsuji combined with (1.6)
asserts that there is a natural isomorphism

D(Vy(M)) =~ Hip(X1(M), H* (1))[g]

of Dieudonné modules over L,,. Note that D(V,;(M)) is the direct sum of several copies
of the two-dimensional Dieudonné module D(Vy).

Assume that p t M and ¢ is ordinary at p. Then V(M) is crystalline and ® acts
on D(Vg(M)) as

_ K +177—1
(1.30) ® = x(p)p™"U, .

In particular the eigenvalues of ® on D(Vy(M)) are X(p)pkoﬂozg1 = f4 and
X(p)p’“ﬂ“,@’;1 = gy, the two roots of the Hecke polynomial of ¢ at p. For future
reference, recall from [7, Theorem 1.3] the Euler factors

—2k2

(131)  &(d):=1-x"'Bop' " =1-="=, &(¢):=1-x(p)ay’p
Let ¢* = ¢ ® x € Sk(M, x) denote the twist of ¢ by the inverse of its nebentype
character. Poincaré duality induces a perfect pairing
(,): D(Vu(M)) x D(Vy«(M)) — D(L,) = L.

The exact sequence (1.8) induces in this setting an exact sequence of Dieudonné
modules

(1.32) 0 — D(V; (M) == D(Vy(M)) = D(V,; (M)) — 0.

Since V(M is unramified, we have D(V, (M)) ~ (V, (M) ® ZET)GQP This sub-
module may also be characterized as the eigenspace D(V, (M)) = D(V, s(M))2=% of
eigenvalue g for the action of frobenius.

The rule (15 = wg that attaches to a modular form its associated differential form

gives rise to an 1somorphlsm Se(M, X)L, 0] — Fil’(D(V4(M))) € D(V4(M)). More-
over, the map 7 of (1.32) induces an isomorphism

(1.33) Sk(M,x)1,[¢] = Fil’(D(V4(M))) = D(V, (M)).
Any element w € D(V,. (M)) gives rise to a linear map
w: DV (M) — Ly, n— (n,77 (W)
Similarly, any n € D(Vg; (M)) may be identified with a linear functional
n:D(Vy (M) — Ly, w (7 (w),n),

and given ¢ € Sk(M, X)L, (8] we set ng : D(V.(M)) — Ly, ¢ = n3(p) = Lop)
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Let now A be a finite flat extension of the Iwasawa algebra A and let U denote
a free A-module of finite rank equipped with an unramified A-linear action of Gq, .
Define the A-adic Dieudonné module

D(U) := (USZE") .

As shown in e.g.,[23, Lemma 3.3], D(U) is a free module over A of the same rank
as U.

Examples of such A-adic Dieudonné modules arise naturally in the context of fam-
ilies of modular forms thanks to Theorem 1.1. Indeed, let ¢ be a Hida family of tame
level M and character x, and let ¢* denote the A-adic modular form obtained by
twisting ¢ by x.

Let V4 and V4 (M) denote the global A-adic Galois representations described in
(1.24). It follows from (1.12) that to the restriction of V4 to Gq, one might associate
two natural unramified A[Gq,]-modules of rank one, namely

V; ~ Ag(pg) and U; = Vg(X_lecwﬁ_l)-

cyc

Define similarly the unramified modules V(M) and U; (M).
Let

1.34) S4(M, =< ¢ e S¢d(M, t. $ ;
(1.34)  SR(M, x)[¢] {¢€A( X) s U = a) (@)

For any crystalline arithmetic point z € Wy of weight k, the specialization of a
A-adic test vector ¢ € S¢d(M, x)[¢] at x is a classical eigenform by € Sk(Mp, x)
with coefficients in L, = z(Ay) ® Qp and the same eigenvalues as ¢, for the good

Hecke operators.
Likewise, define

Ty = ar(®)$, VLt Mp, }

S4(M, x)" [¢) = {77 D SRAM,X) — Ag

noT; = ay)n, VetMp, }
noUy = ay(P)n

Let Qg denote the field of fractions of Ag. Associated to any test vector
¢ e STY(M, x)[], [7, Lemma 2.19] describes a Qg-linear dual test vector

(1.35) ¢ € STUM, %)Y (] Qo

such that for any ¢ € S¢4(M, ¥) and any point x € Wg,

#($"(p)) = (Pl

9 v ok )

<¢$’ ¢$>

where (,) denotes the pairing induced by Poincaré duality on the modular curve
associated to the congruence subgroup I'; (M) NTy(p). This way, the specialization of

Y
a A-adic dual test vector ¢ € SS4(M, x)V[¢@] at x gives rise to a linear functional

ng. : Sk(Mp,%)[¢3] — L.
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A natural Qg-basis of S{4(M,x)[p]® Qe is given by the A-adic modular
forms ¢(g?) as d ranges over the positive divisors of M /Mg and it is also obvious
that {¢(¢?)" : d | ]&4 } provides a Qg-basis of SY(M, ¥)V [¢p] ® Qp.

The following statement shows that the linear maps described above can be made
to vary in families.

Proposition 1.5. — For any A-adic test vector ¢ € S¢Y(M, x)[P] there exist homo-
morphisms of Agy-modules

wy : D(UG. (M) — A, ng: D(Vg (M)) — Qg,

whose specialization at a classical point © € Wy, such that ¢, is the ordinary stabi-
lization of an eigenform ¢, of level M are, respectively

zowy = E(¢;) ewi(wye) as functionals on D(U;} (Mp)),
1
Tony = AT ‘ewf(néz) as functionals on D(Vd’_t(Mp))
Proof. — This is essentially a reformulation of [16, Propositions 10.1.1 and 10.1.2],

which in turn builds on [24]. Namely, the first claim in Prop. 10.1.2 of loc. cit. asserts
that wg, exists such that at any z € Wg as above, zowy = wy = Pr** (w 450)

where Pr®” is the map defined in [16, 10.1.3] sendlng ¢S to its ordinary p-stabilization

o\ __ X0 ¢1 _ ﬁ¢° /
$,. Note that wi(¢gl) = Gos Bz g ﬁ¢> , where ng denotes the non-ordinary
specialization of ¢)° Since ewy, =0 and & (d3) = M the claim follows.

The second part of [16, Propos1t10n 10.1.2] asserts that there exists a A-adic func-
tional 775 % such that for all = as above:

- Prng:
TN T X (@D)E($2)E1(2)

as Ly-linear functionals on D(V¢* (Mp)). Here A\(¢2) € Q* denotes the pseudo-
eigenvalue of ¢, which we recall is the scalar given by

(1.36) Wi (¢z) = A@z) - o5

where Wy @ Si(M,x) — Sp(M,x~!) stands for the Atkin-Lehner operator. Since
we are assuming that Ay contains the M-th roots of unity (cf. the remark right after
Definition 1.1), Prop. 10.1.1 of loc. cit. shows that there exists an element A(¢p) € Ay
interpolating the pseudo-eigenvalues of the classical p-stabilized specializations of ¢.
The claim follows by taking n > = Ao)7 b The same argument as above yields that

for all = as above, x ony = = & (o, )%, which amounts to the statement of

the proposition. O

SOCIETE MATHEMATIQUE DE FRANCE 2022



44 HENRI DARMON & VICTOR ROTGER

2. Generalized Kato classes

2.1. A compatible collection of cycles. — This section defines a collection of codimen-
sion two cycles in X;(Mp")3 indexed by elements of (Z/p"Z)*3 and records some of
their properties.

We retain the notations that were in force in Section 1.3 regarding the meanings
of the curves X = X; (M), X, = X;(Mp") and X, ;. In addition, let

Y(pT) =Y XX(l) Y(pr), X(pr) =X XX(l) X(pr)

denote the (affine and projective, respectively) modular curve over Q(¢,.) with full
level p" structure. The curve Y(p") classifies triples (A4, P, Q) in which A is an elliptic
curve with 'y (M) level structure and (P, Q) is a basis for A[p"] satisfying (P, Q) = (.,
where ( ,) denotes the Weil pairing and (. is a fixed primitive p"-th root of unity.
The curve X(p") is geometrically connected but does not descend to a curve over Q,
as can be seen by noting that the description of its moduli problem depends on the
choice of ¢,. The covering X(p")/X is Galois with Galois group SLy(Z/p"Z), acting
on the left by the rule

(2.1) (“ Z) (A,P,Q) = (A,aP + bQ, cP + dQ).

c
Consider the natural projection map
(2.2) ol X @] x o] X2 — X3

induced on triple products by the map @/ of (1.14). Write A C X3 for the usual
diagonal cycle, namely the image of X under the diagonal embedding = — (z,z,x).
Let A, be the fiber product A x xs X3 via the natural inclusion and the map of (2.2),
which fits into the cartesian diagram

A —— X3
AC—— X3,

An element of a Z,-module (2 is said to be primitive if it does not belong to pf?, and
the set of such primitive elements is denoted Q’. Let

Sr=((Z/p"Z x Z/p"Z)')* C ((Z/p"Z)*)?

be the set of triples of primitive row vectors of length 2 with entries in Z/p"Z, equipped
with the action of GLy(Z/p"Z) acting diagonally by right multiplication.

Lemma 2.1. — The geometrically irreducible components of A, are defined over Q(¢,)
and are in canonical bijection with the set of left orbits
3. /SLa(Z/p"Z).
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Proof. — Each triple
(v1,v2,v3) = ((x1,91), (22, ¥2), (%3,3)) € Zr
determines a morphism
Plorwsws) P X(07) — A, C X
of curves over Q((,), defined in terms of the moduli descriptions on Y(p") by
(A, P,Q) = ((A,21P + 11Q), (A, 22P + y2Q), (4, 23 P + y3Q)).
It is easy to see that if two elements (v1,v2,v3) and (v], vh,v5) € 3, satisfy
(v, vh,v5) = (v1,v2,v3)y, with v € SLy(Z/p"Z),
then
(p(vi,vé,vé) = P(v1,v2,v3) © V>

where v is being viewed as an automorphism of X(p") as in (2.1). It follows that the
geometrically irreducible cycle

Ar (Ula V2, U3) = <)0(1)1,1)2,7)3)>k(Sg(pr))

depends only on the SLo(Z/p"Z)-orbit of (v1,ve,v3).

Since SLo(Z/p"Z) acts transitively on (Z/p"Z x Z/p"Z)', one further checks that
the collection of cycles A, (v1,v2,v3) for (vi,vs,v3) € 5,/SLa(Z/p"Z) do not over-
lap on Y;? and cover A,. Hence the irreducible components of A, are precisely
A, (v1,v9,v3) for (vy,vg,v3) € 3, /SLo(Z/p"Z). O

defined by

The quotient 3, /SLo(Z/p"Z) is equipped with a natural determinant map
T2 Y2
T3 Y3

D:%,/SLy(Z/p"Z) — (Z/p"Z)?
For each [dy,ds,d3] € (Z/p"Z)3, we can then write

rld, da, ds] := {(v1,v2,v3) € X, with D(vi,v2,v3) = (d1,d2,d3)} .

3 Ys

1 U1

1 Y

T2 Y2

) )

D ((x191), (€2, v2), (€3,3)) := (

The group SLo(Z/p"Z) operates simply transitively on X.,.[d1, d2, ds3] if (and only if)
(2.3) [dy,d2,d3) € I, := (Z/p"Z)™>.

In particular, if (v, ve,v3) belongs to X, [d1, ds, ds], then the cycle A,(v1,vs,vs) de-
pends only on [di,ds,ds] € I, and will henceforth be denoted

(2.4) Ar[dy, dy, d3] € CH*(X?).

A somewhat more intrinsic definition of A,[dy,ds,d3] as a curve embedded in X is

that it corresponds to the schematic closure of the locus of points ((4, P1), (4, P2), (4, Ps))
satisfying

(2.5) (P, P3) = ¢, (P, P1) = (P, (P1, Pp) = (.
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This description also makes it apparent that the cycle A,[d1,ds,d3] is defined
over Q(¢,) but not over Q. Let 0, € Gal (Q(¢,)/Q) be the automorphism associated
tom € (Z/p"Z)*, sending ¢, to ™. The threefold X? is also equipped with an action
of the group

(2.6) G, = (Z/p"Z)*)? = {{a1,a2,a3), a1,a9,a3 € (Z/p"Z)*}

of diamond operators, where the automorphism associated to a triple ((a1), {az), (as))
has simply been denoted (a1, as,as).

Lemma 2.2. — For all diamond operators {a1,az,a3) € G, and all [d1,da,ds] € I,

(2.7) (a1,az,a3)Av[dy,dy,d3] = Aylazas - dy,aia3 - d,a1a2 - ds).
For all o, € Gal (Q(¢r)/Q),
(28) UmAr[dl,dQ,dg] = Ar[m‘dl,m-dg,m-dg].

Proof. — Equation (2.7) follows directly from the identity
D(ayv1, azvs, azvs) = [azas, aias, ajaz]D(vi,vs,v3).

The first equality in (2.8) is most readily seen from the Equation (2.5) defining the
cycle A,[dy,ds,ds], since applying the automorphism o, € Gal(Q(¢,)/Q) has the
effect of replacing ¢, by (". O

Remark 2.3. — Assume m is a quadratic residue in (Z/p"Z)*, which is the case, for
instance, when o, belongs to Gal (Q(¢)/Q(¢1)). Then it follows from (2.7) and (2.8)
that

(2.9) OmArldy, dy,ds] = (m,m,m)*2A,[d1,ds, ds].

Let us now turn to the compatibility properties of the cycles A,[dy, ds, d3] as the
level r varies. Recall the modular curve X, ., classifying generalized elliptic curves
together with a distinguished cyclic subgroup of order p"+! and a point of order p”
in it. The maps u, @, 71, ws and my of (1.15) induce similar maps on the triple
products:

3 3
(2.10) X2 X7
3 3
wy wWo
3 3 3 3
Xr,r+1 T} Xr’ Xr,r—i—l T) Xr .
1 2

A finite morphism j : V3 — V5 of varieties induces maps
jo: CH (V1) — CH/(Ve),  j*: CH/(V2) — CH’ (1)

between Chow groups, and j,5* agrees with the multiplication by deg(j) on CH? (V).
If j is a Galois cover with Galois group G,

(2.11) 5T (A) = oA,

oeG

ASTERISQUE 434



p-ADIC FAMILIES OF DIAGONAL CYCLES 47

By abuse of notation we will denote the associated maps on cycles (rather than just
on cycle classes) by the same symbols.

Lemma 2.4. — For allr > 1 and all [d}, d, d5] € I,+1 whose image in I,. is [dy,d2, d3),
(@3)« Argr[d), dy, di] = p° Ay[dy, da, ds],
(w;)’)*ArJrl[d?UdIZadé] = (Up)®3Ar[d17d27d3]‘
The cycles Ay[d1,da,ds] also satisfy the distribution relations
> Avildy,dh,di] = ()" Avldy, da, ds],
[df,d3,ds]
where the sum is taken over all triples [dy,d},ds] € I.11 which map to [di,d2,ds]

in I,.

Proof. — A direct verification based on the definitions shows that the morphisms p?
and 73 of (2.10) induce morphisms
3

3 s
A [dydy, dy) — p3 A, [dy, dy, dy] —— A,[dy, dy, ds],

of degrees 1 and p® respectively. Hence the restriction of @? to A, [d}, d}, ds] induces
a map of degree p3 from A,.[d},d},d5] to A,[d1,ds,ds], which implies the first
assertion. It also follows from this that

(2.12) :UJEAT-H[ /1’ IZ’dg] = (W?)*AT[dth’dﬂ'
Applying (73). to this identity implies that
(WS)*ATJrl[dll? dl27 dg] = (Up)®3Ar[d17 da, d3].

The second compatibility relation follows. To prove the distribution relation, observe
that the sum that occurs in it is taken over the p? translates of a fixed A, 1[d, db, dj)
for the action of the Galois group of X?,, over X2 .., and hence, by (2.11), that

Z Aria] /1’ /27 13] :(M*)sﬂiAﬂ-l[ /1’ I2’ g]

[df,d3,ds]
The result then follows from (2.12). O
2.2. Galois cohomology classes. — The goal of this section is to parlay the cycles

A,[d1,d,d3] into Galois cohomology classes with values in H}, (X, Z,)®3(2), essen-
tially by considering their images under the p-adic étale Abel-Jacobi map:
(2.13) AJey : CH*(X7)o — HY(Q, HE (XD, Z,(2))),
where
CH?*(X?2)o := ker (CH*(X?) — H(X2,Z,(2)))
denotes the kernel of the étale cycle class map, i.e., the group of null-homologous

algebraic cycles defined over Q. There are two issues that need to be dealt with.
Firstly, the cycles A, [d1, d2, d2] need not be null-homologous and have to be suitably
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modified so that they lie in the domain of the Abel Jacobi map. Secondly, these
cycles are defined over Q((¢,-) and not over Q, and it is desirable to descend the field
of definition of the associated extension classes.

To deal with the first issue, let ¢ be any prime not dividing Mp, and let T; denote
the Hecke operator attached to this prime. It can be used to construct an algebraic
correspondence on X3 by setting

0 = (Tg — (g +1))%°.

Lemma 2.5. — The element 0, annihilates the target HZ, (X2, Z,) of the étale cycle
class map on CH?(X3).

Proof. — The correspondence T acts as multiplication by (¢+1) on HZ (X,,Z,) and
0, therefore annihilates all the terms in the Kiinneth decomposition of HZ (X, Z,).
O

The modified diagonal cycles in CH?>(X3) are defined by the rule

(214) Ai[dl,dQ,dg] = HqAr[dl,dg,d'g,].
Lemma 2.5 shows that they are null-homologous and defined over Q(¢). Define
krldi,da,d3] = AJa(A7[d1, da, ds]) € HY(Q(G), He (X, Zy)®%(2)).

To deal with the circumstance that the cycles Af[d;,ds,ds] are only defined
over Q(¢,), and hence that the associated cohomology classes k,[d1, d2, d3] need not

(and in fact, do not) extend to Gq, it is necessary to replace the Z,[G,|[Gq]-module
H} (X,,Z,)®3(2) by an appropriate twist over Q((.). Let G, denote the Sylow

(S)

p-subgroup of the group G, of (2.6), and let G := lim G,.. Let
A(Gy) = Z,[G,], AGx) = Z,[[G]]
be the finite group ring attached to G, and the associated Iwasawa algebra, respec-
tively.
Let A(GT)(:I:%) denote the Galois module which is isomorphic to A(G,) as a

A(Gr)-module, and on which the Galois group Ggq(c,) is made to act via its quo-
tient Gal (Q(¢,)/Q(¢1)) = 1 + pZ/p"Z, the element o, acting as multiplication by

the group-like element (m,m,m)¥'/2. Let A(Goo)(i%) denote the projective limit of
the A(G,)(£5). It follows from the definitions that if

Uk, 6,m, : MGr) — Z/p"Z, or Vi, oty m, - MGoo) — Zy
is the homomorphism sending (a;, as, as) to allco aé" asz°, then

L - m,
(2.15) MG () @y . LD = (Z/pfz)(scy(ckowﬁ o)/2)7

where the tensor product is taken over A(G,), and similarly for G. In particular if
k +¢ +m, = 2t is an even integer,

(2.16) AMGoo) () ®un, . Zp = Zy(—1) ()
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as Gq-modules. More generally, if Q is any A(G) module, write

Q) = QBra) AMC)(F), A5 == Q@) MGoo) (50,

for the relevant twists of (2, which are isomorphic to Q as a A(Goo)[Gq(u,e)l-module
but are endowed with different actions of Gq.
There is a canonical Galois-equivariant A(G,)-hermitian bilinear, A(G,)-valued
pairing
- 1 - 1
(2.17) (0 s Ha (X0, )22 (2)(5) x Hiy (X, Zp)®*(1)(5) — A(Gr),

given by the formula

{a,b)r == Z (a?,b)x, - (d1,d2,d3),

o=(d1,ds,d3)E€G,
where
()x, + Hgp(Xr, Zp)%%(2) x Hgy (X, 2,)°(1) — HE(X,, Z,(1)%° = Z,
arises from the Poincaré duality between HJ (X3, Z,)(2) and H (X2, Z,)(1). This
pairing enjoys the following properties:
— For all X € A(G,),

(Aa,b)r = X"(a,b)r, (@, A0)r = A(a, b)),

where \* € A(G,) is obtained from A by applying the involution on the group
ring which sends every group-like element to its inverse. In particular, the pairing
of (2.17) can and will also be viewed as a A(G,)-valued *-hermitian pairing

M Hgt(erZp)®3(2) x Hélt(XmZp)@g(l) — A(Gy).
— For all 0 € Gg(¢,), we have {(oa,ob)), = (a,b)),.

— The U, and U} operators are adjoint to each other under this pairing, giving rise
to a duality (denoted by the same symbol, by an abuse of notation)

(e 2 e HE (X, Z,)%(2)(5) x eHE (X, Z,)2(1)(5) — A(G).
Define
H'M(X,) == Homp e,y (HE (Xr, Z,) 2 (1)(5), AG)) = HE (X, Z,)%(2)(5),
HIY(X,) == Hompa,) (eHY (X1, Z,)2(1)(5), A(G))) = " HE (X, Z,) 2% (2) (5).

The above identifications of Z,[G q(,)]-modules follow from the pairing (2.17).
To descend the field of definition of the classes x,[d;,d2,ds], we package them
together into elements

wrla,b,c] € HY(Q(G), H'M (X))
indexed by triples
(2.18) la,b,d € I = (Z/pZ)® = pp1(Z,)° C (Z))*.
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The class k. [a,b,c] is defined by setting, for all 0 € Gq,) and all v, € H (X, Z,)®3(1),
(2.19) krla, b, c](a) (V) = (krla, b, cl(a), v ) r,

where the elements a,b,c € (Z/pZ)* are viewed as elements of (Z/p"Z)* via the
Teichmiiller lift alluded to in (2.18). Note that there is a natural identification

HY(Q(G), H'N(X,)) = Exth (g, (00 (HA (X Z,) ¥ (1), A(G,),

because H}(X,,Z,)®3(1) = Hélt(X'r,Zp)‘@?’(l)(%) as Gq(c,)-modules and the

A(G,)-dual of the latter is H''1(X,.). With these definitions we have
Lemma 2.6. — The class Kk.[a,b, c] is the restriction to Gqc,) of a class

krla,b,c] € HY(Q(G), H'M(X,)) = Bxt} g oqe,,1 (o (X Zp)®2 (1) (5), A(G,)).
Furthermore, for all m € py_1(Zy),

Omkrla,b, c] = k.[ma, mb, mc].

Proof. — We will prove this by giving a more conceptual description of the cohomol-
ogy class k. [a, b, c]. Let |A| denote the support of an algebraic cycle A, and let
(2.20) Allla,b, ] := |AS[a, b, c]| x x3 X7

denote the inverse image in X2 of |A$[a, b, c]|, which fits into the cartesian diagram

A:[[av b7 C]]C% X'?

| =

|AS[a, b, ]| —— X3.
As in the proof of Lemma 2.1, observe that

Ada,b,cl= || |A2[ads, bdy, cds]),
[d1,d2,d3]€I}

where I! denotes the p-Sylow subgroup of I,.. Consider now the commutative diagram
of A(G,)[Gq(¢1)]-modules with exact rows:

(2.21) AG)(ED)

HE (X7, Z,)(2)— H(X}=A[a, b, c]], Z,)(2) — HE (A7 [a, b, c]], Zy)o

where
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— the map j is the inclusion defined on group-like elements by
j ((dl, d2, d3>) = cl(A?[ad2d3, bd1d3, Cdldg]),
which is Gq(¢,)-equivariant by Lemma 2.2;

— the middle row arises from the excision exact sequence in étale cohomology (cf. [14,
(3.6)] and [21, p.108]);

— the subscript of 0 appearing in the rightmost term in the exact sequence denotes
the kernel of the cycle class map, i.e.,

Hg (A7[[a, b, cll, Zp)o := ker (Hg (A7[[a, b, cl], Zp)o — H (X7, Z,(2)))
and the fact that the image of j is contained in HY, (A%[[a, b, c]], Z,)o follows from
Lemma 2.5;

— the projection p is the one arising from the Kiinneth decomposition.

Taking the pushout and pullback of the extension in (2.21) via the maps p and j
yields an exact sequence of A(G,)[Gq({1)]-modules

-1

(2.22) 0 —— H}(X,,Z,)®*(2) — E, —— A(G,)(57) —— 0.

Taking the A(G,)-dual of this exact sequence, we obtain
0—— A(Gr)(%) —— B, —— HL(X,,Z,)®3(1)* —— 0,

where M* means the A(G,)-module obtained from M by letting act A(G,) on it by

composing with the involution A — A*. Twisting this sequence by (%) and noting
-1

that M*(==) ~ M (%)* yields an extension

(2.23) 0 —— A(G,) B, HY(X,,Z,)%3(1)(5)" —— 0.

Since
_ 1., > 1
H (X, Zp)*°(1)(5)" = Homy g, (He (X, Zy) % (2)(5), A(Gr)),
it follows that the cohomology class realizing the extension E. is an element of
= 1
HY(Q(¢1), Homp (g, (Hey(Xr, Z,)**(1)(5), A(G)))) = HY(Q(G), H (X)),

because the duality afforded by ((, )) is hermitian (and not A-linear). When restricted
to Gq(c,), this class coincides with x,[a,b,c], and the first assertion follows.

The second assertion is an immediate consequence of the definitions, using the
Galois equivariance properties of the cycles A,[dy,ds,ds] given in the first assertion

of Lemma 2.2. O

Remark 2.7. — The extension E; of (2.23) can also be realized as a subquotient of
the étale cohomology group H2(X2—A%[[a,b,c]],Z,)(1) with compact supports, in
light of the Poincaré duality

HE (X7=A7]a,b,cl], Z,)(2) x HI(X7=Al[[a,b,cll, Z,)(1) — Zy.
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2.3. A-adic cohomology classes. — Thanks to Lemma 2.6, we now dispose, for
each [a,b,c] € p,—1(Zp)3, of a system
(2.24) krla,b,c) € HY(Q(¢r), HMY (X))

of cohomology classes indexed by the integers » > 1, so that e*k,.[a,b,c] €
HY(Q(G1), Hy' (X)) Let

Dr41,rt A(Gr-i-l) B A(G'r)

be the projection on finite group rings induced from the natural homomorphism
Gr+1 — GT.

Lemma 2.8. — Let v,41 € HA(Xr41,Z,)%3(1) and v € Hi(X,,Z,)®3(1) be
elements that are compatible under the pushforward by w;, i.e., that satisfy
(@?)x(Yr41) = 7. For all 0 € Gy,

Pritr (Kriala, b, c)(0)(vr41)) = Krla, b, (o) (7).
Proof. — This amounts to the statement that

pr+1,r(<<”ir+1[aa b, C]a '7r+1>>r+1) = <<”ir[aa b, c]a 'YT»T'
But the left-hand side of this equation is equal to

Z((NS)*(MS)*’%H[G% /Sabdll évcdlldé]aryr+1>xr+1 : <d1’d2ad3>a
Gr

where the sum runs over (dy,ds,ds) € G, and (d},d},d}) denotes an (arbitrary) lift
of (dy,ds,ds) to G,41. The third assertion in Lemma 2.4 allows us to rewrite this as

> ((@3)*k,ladads, bd1ds, edida], Yri1) x, 4, - (d1, da, ds)

G,
= Z(Hr[ad2d3,bd1d3,0d1d2], (@) aYrs1)x, - {d1,d2,d3)
G-
= Z<K)r[ad2d3’bdld3uCd1d2]’77‘>Xr : <d13d27d3>
G’V‘
= (krla,b,cl, v )rs
and the result follows. O
Define
. - 1
(2.25) H'M(XE) == Homy o) (Hé (X%, Zp)®° (1)(5), A(Goo))

= Hom (o) (HE (X1, £2)3(1)(5), A(Ga0)),

where the identification follows from (1.19).
Thanks to Lemma 2.8, the classes k,[a,b, ] can be packaged into a compatible
collection. Namely:
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Definition 2.9. — Set
(2.26) Koola, b, ] := (Kpla,b,c]), 5, € H'(Q(¢1), H'M (X))

It will also be useful to replace the classes k[, b, ¢] by elements that are essentially
indexed by triples

(w1, wa,ws) : (Z/pZ*)> — Z)

of tame characters of G, /G,. Assume that the product wjwows is an even character.
This assumption is equivalent to requiring that

wiwows = 6%,  for some 6 : (Z/pZ)* — Z;.

Note that for a given (w1, ws,ws), there are in fact two characters § as above, which
differ by the unique quadratic character of conductor p. With the choices of w1, ws,ws
and J in hand, we set

3
(2.27) Koo(wr,wa,ws;0) 1= (pfil)?’ . Z 67 (abe) - wy (a)wz (b)ws(c) - Koo b, ac, ab],
[a,b,c]

where the sum is taken over the triples [a, b, c| of (p — 1)st roots of unity in Z,. The
classes Koo (w1, ws,ws;d) satisfy the following properties.

Lemma 2.10. — For all o, € Gal (Q(C0)/Q),
Om Koo (W1, ws,ws;0) = 6(M)Keo (w1, ws,ws;d).
For all diamond operators (a1, az,as) € pp—1(Zp)3
(a1, a2, a3) Koo (w1, ws,ws; §) = wiag(ay, as,as) - Keo(wi,ws,ws;d).

Proof. — This follows from a direct calculation based on the definitions, using the
compatibilities of Lemma 2.2 satisfied by the cycles A,[d1, ds, ds]. O

The classes Koola,b,c] and Koo (w1,ws,ws;d) are called the A-adic cohomology
classes attached to the triple [a, b, c] € p,—1(Z,)* or the quadruple (w1, ws,ws; ). As
will be explained in the next section, they are three variable families of cohomology
classes parametrised by points in the triple product W x W x W of weight spaces,
and taking values in the three-parameter family of self-dual Tate twists of the Galois
representations attached to the different specializations of a triple of Hida families.

3. Higher weight balanced specializations
For every integer k, > 0 define
Wi = HY (X1, He)
and recall from the combination of (1.19), (1.21) and (1.22) the specialization map
(3.1) D, Hi (X5, Bp) = Hi (X1, £5) — Wi,
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Fix throughout this section a triple
k=Fk +2, =1 +2, m=m, + 2
of integers > 2 for which k, + ¢, +m, = 2t is even. Let
Holome = M RHS [H™
viewed as a sheaf on X3, and

W™ = W @ W @ W™ (2 1).

my

As one readily checks, the p-adic Galois representation Wlk 0% ™o s Kummer self-

dual, i.e., there is an isomorphism of G'q-modules
Homg.o (Wi "™ Zp(1)) = Wyso ™.

The specialization maps give rise, in light of (2.16), to the triple product special-
ization map
(3.2) SPh, 4, m, = SPk, @ 5P, @sph, :H(XL) — W
and to the associated collection of specialized classes
(33)  malk,L,m,)la,bcl = sDg g m (Roola,bd)) € HH(Q(G), Wy =™,

Note that for (k,,£ ,m ) = (0,0,0), it follows from the definitions (cf. e.g., the proof

(CRAMT) (<]

of Lemma 2.6) that the class k1 (k,,£,,m, )[a,b,c] is simply the image under the étale
Abel-Jacobi map of the cycle Af[a,b, c].

The main goal of this section is to offer a similar geometric description for the above
classes also when (k, ¢, m) is balanced and k,, £, ,m > 0, which we assume henceforth
for the remainder of this section.

In order to do this, it shall be useful to dispose of an alternate description of
the extension (2.22) in terms of the étale cohomology of the (open) three-fold X3 —

|AS[a, b, ¢]| with values in appropriate sheaves.

Lemma 3.1. — Let L;ﬁg?’ denote the exterior tensor product of L), over the triple
product X3. There is a commutative diagram

Hgt(X;i? ZP)(z) E— I—Ié3t()(7:“i - A:[[av b’ C]], Z;D)(2) — Hgt(A:[[av b’ C]], Z;D)

HE (X7, £799)(2) — HE(XT — |A%]a, b, ]|, £;7%)(2) — HE (1A [a, b, ]|, £552)),

in which the leftmost maps are injective and the horizontal sequences are ezract.
Proof. — Recall from (1.17) that
£ = (@ x @y x w2,

where
r—1 r—1 r—1 ., 3 3
w;  Xw;  Xw; X — Xj
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is defined as in (2.2). The vertical isomorphisms then follow from Shapiro’s lemma
and the definition of Ag[[a,b,c]] in (2.20). The horizontal sequence arises from the
excision exact sequence in étale cohomology of [14, (3.6)] and [21, p. 108]. O

Lemma 3.2. — For all [a,b,c] € I,
HY (Ai[a, b, c], HF % me) = Z,(2).

Proof. — The Clebsch-Gordan formula asserts that the space of tri-homogenous poly-
nomials in 6 = 2 + 2 + 2 variables of tridegree (k,, ¢ ,m, ) has a unique SLy-invariant
element, namely, the polynomial

kO/ ZO/ mol
T2 Y2 T3 Y3 N
Pko,eo,mo($13y1,$2,y2,1’3,y3): )
T3 Y3 1 Y T2 Y2
where
/ _ko+€o+mo / ko_£o+mo !’ ko+£o_mo
e N s L S

Since the triplet of weights is balanced, it follows that k,’,£’,m ' > 0. From the
Clebsch-Gordan formula it follows that HY, (A1[a, b, c], HF+% ™) is spanned by the
global section whose stalk at a point ((A, P1), (A, P»), (A, P5)) € Aq]a, b, c] as in (2.5)
is given by

(X2 @YY@ X3)%% @(X1 03—V @ X3)% ®(X; @Y, — ¥, © Xa)®™,
where (X;,Y;), i = 1,2,3, is a basis of the stalk of H at the point (A, P;) in X;. The
Galois action is given by the t-th power of the cyclotomic character because the Weil
pairing takes values in Z,(1) and k," + £ +m,' =t. O

Write cli ¢ m, (A1la,b,c]) € H (|A]a,b, c]|, H ™) for the standard generator
given by Lemma 3.2. Define

(3.4) AJi o m (Arfa,b,d) € HH(Q(C), Wy ™)

to be the extension class constructed by pulling back by j and pushing forward by p
in the exact sequence of the middle row of the following diagram:
p(t)
fj
k, 4, ,my,

(3.5)
HE (X3, Hboboome ) (2)—— HE (XP-A, H %) (2) —— HE (A H

|

Wko 7£o UL (t)7

Z

)

where
— A = Aqfa, b, c;
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— the map j is the Gq(¢,)-equivariant inclusion defined by j(1) = clg ¢ m, (A);

— the surjectivity of the right-most horizontal row follows from the vanishing of the
group H (X3, H% % ™) which in turn is a consequence of the Kiinneth formula
and the vamshlng of the terms HZ (X7, H") when k, > 0 (cf.[2, Lemmas 2.1,
2.2)).

In particular the image of j lies in the image of the right-most horizontal row and
this holds regardless whether the cycle is null-homologous or not. The reader may
compare this construction with (2.21), where the cycle A%[[a, b, c]] is null-homologous
and this property was crucially exploited.

Theorem 3.1. — Set AJy, 4 m, (Afla,b,c]) = 0,ATx 4 m, (A1la,b,c]). Then the iden-
tity
(ko » Ko y T, )[aa b, C] = AJko Ay ymy (Ai[aa b, C])

holds in HY(Q(¢1), Wie ™).

Proof. — Set A := Af[a,b, c] in order to alleviate notations. Thanks to Lemma 3.1,
the diagram in (2.21) used to construct the extension E, realizing the class k. [a, b, c]
is the same as the diagram

(3.6)
AGr) (=)

0 —— HZ(XP, £7%%)(2) —— HE(X} — |A], £7%9)(2) —— Hg (1A}, £79%)

|

H (X1, L7)%3(2).
Let
Uk t,m, - MGr) — Z/p"Z

be the algebra homomorphism sending the group like element (d;, ds, d3) to d]f" dg" ds°,
and observe that the moment maps of (1.20) allow us to identify

* r ko7eo7mo
L@y, . (Z/p72) =H;

Tensoring (3.6) over A(G,) with Z/p"Z via the map vg ¢ m : A(G,) — Z/p"Z,
yields the specialized diagram which coincides exactly with the mod p” reduction of
(3.5), with A = AY[a, b, c]. The result follows by passing to the limit with r. O

Corollary 3.3. — Let

(3.7) A (wi,wa,ws;0) := Z 5 (abe)ws (a)ws (b)ws(c)AS[a, b, c].

[a,b,c]ely

(p)
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Then

SPZO £ ,m, (K'oo(wla w2, W3, 5) = AJkO NARCR (AT((U:[,WQ, w3; 5))

Proof. — This follows directly from the definitions. O

4. Cristalline specializations

Let f, g, h be three arbitrary primitive, residually irreducible p-adic Hida
families of tame levels My, M,, M, and tame characters xf, Xg, Xh, respec-
tively, with associated weight space Wr x Wy x Wg. Assume x¢XgXn = 1 and
set M = lem(My, Mg, My). Let (z,y,2) € Wy x W x Wi be a point lying above a
classical triple (Vg e,V 05 Vm,,e5) € W3 of weight space. As in Definition 1.2, the
point (z,y, z) is said to be tamely ramified if the three characters €1, €2 and €3 are

tamely ramified, i.e., factor through the quotient (Z/pZ)* of Z), and is said to be
crystalline if eqw™% = eqw™% = egw™™ = 1.

Fix such a crystalline point (z,y, z) of balanced weight (k, £, m) = (k, + 2,4 +2,m_+2),
and let (f;,g,,h,) be the specializations of (f,g,h) at (z,y,%). The ordinariness
hypothesis implies that, for all but finitely many exceptions, these eigenforms are the

p-stabilisations of newforms of level dividing M, denoted f, g and h respectively:

£:(q) = f(a) — Br f(d"), gy = 9(q) — Byg(d®), h.(q) = h(q) — Brh(q").

Since the point (z,y, z) is fixed throughout this section, the dependency of (f,g,h)
on (z,y, z) has been suppressed from the notations, and we also write (fa, 9o, ha) :=
(fz, gy, h,) for the ordinary p-stabilisations of f, g and h.

Recall the quotient Xg; of X1, having I'g(p)-level structure at p, and the projection
map 4 : X; — Xo1 introduced in (1.15). By an abuse of notation, the symbol H%* is
also used to denote the étale sheaves appearing in (1.4) over any quotient of X5, such
as Xp1. Let

Wi = Hélt(le Hko) ® Hét(Xl’ Heo) ® Hélt(Xh H™ )(2 - t)7
Wor := H}(Xo1, H*) @ H} (Xo1, H*) @ Hp (Xo1, H™)(2 — t)
be the Galois representations arising from the cohomology of X; and Xy; with values

in these sheaves. They are endowed with a natural action of the triple tensor product
of the Hecke algebras of weight & , £, m,  and level Mp.

Let W1[fa, 9o, ha] denote the (fa, ga, ha)-isotypic component of W; on which the
Hecke operators act with the same eigenvalues as on fo, ® go ® ho. Let my, g, 1.,
W1 — Wi[fas Ga, ha] denote the associated projection. Use similar notations for Wy .

Recall the family
. Ko 61(.«)70,620.)70,63(4}7 %5 = Keoll, 1, 1]
4.1 k £ Mo 1 1,1,1;1

that was introduced in (2.27). By Lemma 2.10, this class lies in H*(Q,H!(X2%)).
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Recall the choice of auxiliary prime ¢ made in the definition of the modified diagonal
cycle (2.14). We assume now that ¢ is chosen so that

Cq = (aqg(f) — ¢ —1)(aq(g) —a—1)(aq(h) —q¢—1)
is a p-adic unit. Note that this is possible because the Galois representations g¢, og and

on were assumed to be residually irreducible and hence f, g and h are non-Eisenstein
mod p. Let

(42) Kll(faagomha) = T Gasha SP;,y,z K’oo(]-v]-al; 1)) S Hl(Qawl[favga)ha])

1
Cq
be the specialization at the crystalline point (z,y,2) of (4.1), after projecting it to
the (fa, 9o, ha)-isotypic component of Wi via 7y, 4. h,. We normalize the class by
multiplying it by the above constant in order to remove the dependency on the choice
of q.

The main goal of this section is to relate this class to the generalized Gross-Schoen
diagonal cycles that were studied in [7], arising from cycles in Kuga-Sato varieties
which are fibered over X3 and have good reduction at p.

The fact that (z,y,z) is a crystalline point implies that the diamond operators
in Gal (X1/Xo1) act trivially on the (fa,da,ho)-€igencomponents, and hence the
Hecke-equivariant projection u3 : Wi — Wy induces an isomorphism

/‘i : Wilfa, Gas Bal — Woilfas o, hal-
The first aim is to give a geometric description of the class

/‘\"Ol(faagaaha) = Ui’il(fouga,hcx)

in terms of appropriate algebraic cycles. To this end, recall the cycles Aq[a,b,c| €
CH?(X?}) introduced in (2.4), and let p* := £p be such that Q(y/p*) is the quadratic
subfield of Q(¢1)-

Lemma 4.1. — The cycle pu3Aila,b,c] depends only on the quadratic residue sym-
bol (“Tf’c) attached to abc € (Z/pZ)*. The cycles

b
Ay = udAila,b,c]  for any a,b,c with (ac> =1,
p

b
o1 = M3A1la,b,c]  for any a,b,c with <apc> =-1

belong to CH?*(X3,/Q(v/p*)) and are interchanged by the non-trivial automorphism
of Q(vp*).

Proof. — Arguing as in Lemma 2.2 shows that for all (d1,ds,d3) € I = (Z/pZ)*3,
<d1, dg, d3>A1 [a, b, C] = Al [d2d3a, d1d3b, dldQC].

The orbit of the triple [a,b,c] under the action of I is precisely the set of triples
[a', ¥, '] for which (%) = (aTlf"). Since Xo; is the quotient of X; by the group I,
it follows that u2A[a, b, c] depends only on this quadratic residue symbol, and hence

ASTERISQUE 434



p-ADIC FAMILIES OF DIAGONAL CYCLES 59

that the classes Aj; and Ay, in the statement of Lemma 4.1 are well-defined. Further-
more, Lemma 2.6 implies that, for all m € (Z/pZ)*, the Galois automorphism o,, fixes
AS‘I and Ay; if m is a square modulo p, and interchanges these two cycle classes oth-
erwise. It follows that they are invariant under the Galois group Gal (Q(¢1)/Q(+v/p*))
and hence descend to a pair of conjugate cycles Aoil defined over Q(+1/p¥), as claimed.

O

It follows from this lemma that the algebraic cycle
(4.3) Ao1 := A, + Ay, € CH*(X3,/Q).

is defined over Q. To describe it concretely, note that a triple (Cy, Cs, C3) of distinct
cyclic subgroups of order p in an elliptic curve A admits a somewhat subtle discrete
invariant in (u$? — {1}) modulo the action of (Z/pZ)*?, denoted o(Cy,Cs,Cs3) and
called the orientation of (C1,C2,C3). This orientation is defined by choosing genera-
tors Py, P», P3 of C7, Cy and C5 respectively and setting

0(C1,C3,C3) := (Py, P3) ® (P3, P1) ® (P1, Py) € p$® — {1}.

It is easy to check that the value of o(Cy,C3,C3) in pf® — {1} only depends on
the choices of generators Py, P, and Ps, up to multiplication by a non-zero square
in (Z/pZ)*. In view of (2.5), we then have

(4.4) Aot ={((4,C1),(4,Cs),(A,C3))  with Cy # Cy # Cs},y
and

Ad = {((A4,C1),(4,Cs),(A,C3))  with o(C1,C2,C5) = al®?,  a € (Z/pZ)**},

Aj = {((A,C1),(A,Cs),(A,C3))  with o(C1,C2,C3) = alP®, a ¢ (Z/pZ)**}.

Recall the natural projections
Ty, Xo1 — X, w1,y X1 — X
to the curve X = Xy(M) of prime to p level, and set
Wo = HL(Xo,H%)® H(Xo,He) ® HY(Xo, H™)(2 — 1),

The Galois representation Wy is endowed with a natural action of the triple tensor

product of the Hecke algebras of weight k , £, m_ and level M. Let Wy|f, g, h] denote

09 Mo

the (f, g, h)-isotypic component of Wy, on which the Hecke operators act with the same
eigenvalues as on f ® g ® h. Note that the U, operator does not act naturally on Wy
and hence one cannot speak of the (fu, g, ha)-eigenspace of this Hecke module. One
can, however, denote by Wi[f, g, h] and Wo1[f, g, h] the (f, g, h)-isotypic component
of these Galois representations, in which the action of the U, operators on the three
factors are not taken into account. Thus, Wo1[fa, ga, ha] is the image of Wo1[f, g, h]
under the ordinary projection, and likewise for W;. In other words, denoting by 7¢ 4 5
the projection to the (f, g, h)-isotypic component on any of these modules, one has

. *
T forgarha = € Tf,g,h

whenever the left-hand projection is defined.
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The projection maps
(m1,m1,m) s Xo) — X3, (w1, w1, 1) : X; — X3
induces push-forward maps
(71,71, 71)x : Wot[fas 9o ha] — Wolf, 9, h],
(w1, @1, @1)s : Wilfas ga, ha] — Wo[f, g, R]

on cohomology, as well as maps on the associated Galois cohomology groups.
The goal is now to relate the class

(45) (wlﬁwhwl)*(’%l(fa’gav ha)) = (771777-17771)*(’(':01("‘04’9(17 ha))

to those arising from the diagonal cycles on the curve Xy = X, whose level is prime
to p.

To do this, it is key to understand how the maps 7, and (1, 71, 71 )« interact with
the Hecke operators, especially with the ordinary and anti-ordinary projectors e and
e*, which do not act naturally on the target of 71,. Consider the map

k S k S
(m1,m9) : Wy := HE,(Xo1, H*) — Wy° := HZ (X0, H"™).

It is compatible in the obvious way with the good Hecke operators arising from primes
¢ 1 Mp, and therefore induces a map

(4.6) (m1,m2) : Wes [f] — Wo° [f] @ Woo [f]

on the f-isotypic components for this Hecke action. As before, note that Wéc‘l’ [f]is a

priori larger than W(fi’ [fa], which is its ordinary quotient.
Let &¢ == xy (p)p*~! be the determinant of the frobenius at p acting on the two-
dimensional Galois representation attached to f, and likewise for g and h.

Lemma 4.2. — For the map (71,72) as in (4.6),
R iy ]
o &r 0 o
(2)5 = (o o) )
T2 §rp ap(f) T2

Proof. — The definitions 7 and 7y imply that, viewing U, and U (resp. T}) as
correspondences on a Kuga-Sato variety fibered over Xo; (resp. over Xj), we have
7T1Up=Tp7T1—7T2, 71'1U;=p7'('2
71'2Up = p[p]ﬂ'l 7'l'2[]£,k = —[p]ﬂ'l —|—Tp7r2,
where [p] is the correspondence induced by the multiplication by p on the fibers
and on the prime-to-p part of the level structure. The result follows by passing to

the f-isotypic parts, using the fact that [p] induces multiplication by ¢ fp_l on this
isotypic part. O
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For the next calculations, it shall be notationally convenient to introduce the no-
tations

5f:af—ﬂf, (592049—,39, 5h:ah—,8h, 5fgh:5f6g6h~

Lemma 4.3. — For (71, 7m2) as in Lemma 4.2,

QpT] — T m — B

moe= MMM moe= MBI _ g g,
) o5
~1
—Bsm T - T + o
Wloe*ziﬂf k4 2, mgoe’ = & ™t oy 2:pa]71-(7rloe*).
oy of

Proof. — The matrix identities

(o) - G
& 0 B oy 0 By) \Br ay ’
S I S [ [
=&t ap(f) &7t &t )\ o B ) \&pt &opt)
show that
hm<ap(f) —1>"' _ (1 1)(1 0)(1 1>_1
&r 0 By oy 0 0 B ay
—_ (571 Oéf _1>’
! (ff —Bf
1im< ° p) = 6;1<_ﬁf_1 p),
=&t ap(f) —&p7t oy

and the result now follows from Lemma 4.2. O

Lemma4.4. — Let k € HY(Q,Wo1[f,g,h]) be any cohomology class with values
in the (f,g,h)-isotypic subspace of Woi, and let e,e* : HY(Q,Woi[fgh]) —
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HY(Q,Wo1[fa,gas ha]) denote the ordinary and anti-ordinary projections. Then
(71,71, 1) (eR) = J;QI,L X {afagah(m,m,m)*

— agop (e, 1, T1) s — Qo (T, Mo, T )w — Qporg (M1, T, T2) s

+ ap(m1, T, M) + g(ma, T, T2)s + gy - (T2, T2, 1)
- (71—2,71-2’71-2)*}(’9);

(m1, 71, m1)«(€"K) = 5;glh X { — B¢ BgBr(m1,m1,m1)x
+ DBy Br(m2, T1, T1)w + PBsBr(m1, T2, T1)s + PBs By (1, T1, T2)w
—pzﬂf(maﬂzﬂfz)* - pQﬁg(Wzﬂflam)* - Pzﬂh(ﬂz,ﬂzam)*
+p3(7f277r2,7f2)*}(/€),
where we recall that 4, 1= ((ay — Bf) (g — By)(an — Bn)).
Proof. — This follows directly from Lemma 4.3. O
Recall the notations
k =k—2, L =0-2, m, =m — 2, ri=(k +4¢+m)/2.

Let A denote the Kuga-Sato variety over X as introduced in 1.2. In [7, Defini-
tions 3.1,3.2 and 3.3], a generalized diagonal cycle

Ak:o,éo,mo — Ag" NN N c CHT+2(AI<:O x Aéo > Am°,Q)
is associated to the triple (k , £ ,m,).

When k ,£,,m, > 0, A% %™ is obtained by choosing subsets A, B and C of the
set {1,...,7} which satisfy:
4A=k, #B=t, #C=m, ANBNC =10,

#BNC)=r—k,
The cycle A& is defined as the image of the embedding A" into A% x A% x A™
given by sending (E, (P,...,P.)) to ((E, Pa),(E, Pg), (E, Pc)), where for instance

P, is a shorthand for the k -tuple of points P; with j € A.
Let also Agc’l’e" Mo e CH™ 2 (AR x A% x A™) denote the generalized diagonal cycle
in the product of the three Kuga-Sato varieties of weights (k, ¢, m) fibered over Xo1,

defined in a similar way as in (4.4) and along the same lines as recalled above.

#ANC)=r—1¢, #(ANB)=r—m,.

©

More precisely, Agi’e" " is defined as the schematic closure in A% x A% x A™o
of the set of tuples ((E,C1,Pa),(E,Cs, Pg),(E,Cs,Pc)) where Pa, Pg, P are as
above, and C7,C5,C3 is a triple of pairwise distinct subgroups of order p in the
elliptic curve F.

Since the triple (k ,£ ,m,) is fixed throughout this section, in order to alleviate

notations in the statements below we shall simply denote A and Agl for Akerlosmo

k0 ,m, .
and A" respectively.
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Lemma 4.5. — The following identities hold in CH™ ?(A% x A% x A™):

(1, w1, m) (Af) = (p+ 1p(p — 1)(AY),

(ma, w1, m1)a (Af)) = p(p — 1) x (T,1,1)(AY),

(1, w2, 1) (Af)) = p(p — 1) x (1, T, 1)(A"),

(71,1, m2) (M) = p(p = 1) x (1,1, T;)(A¥),

(1,72, m2)(Af;) = (p — 1) x (1, T, T,)(AF) — p" % Dy)

(2,1, m2) (Af1) = (p = 1) X (T, 1,T,)(AF) — p" = Dy)

(2,2, 1) (A81) = (p = 1) X (T, Tp, 1)(A*) — p" ™™ Dy)

(12, 2, m2) (Aby) = (Tp, T, Tp)(AF) — p" o By — p" =% By — p" =™ B3 — p"(p + 1) A,

where the cycles D1, Dy and D3 satisfy

([p]’ 1, 1)*(D1) = pko (Tp’ L, )*(Aﬁ)’ (17 [p]7 1)*(D2) = pio (17 TP7 1)*(Aﬁ)7

(1,1, [p))«(D3) = p™ (1,1, T;,)(AF),
the cycles E1, FEs and E3 satisfy

([p],1,1)<(B1) = p™ (T;2, 1, 1) (AF), (L, [p], 1)« (B2) = p* (1, T2, 1)(AF),

(1,1, [p])«(E3) = p™ (1,1, sz)(Aﬂ)7
and Ty :=T7 — (p+1)[p].
Proof. — The first four identities are straightforward: the map m; X m; X 71 induces
a finite map from Agl to Af of degree (p + 1)p(p — 1), which is the number of
possible choices of an ordered triple of distinct subgroups of order p on an ellip-
tic curve, and likewise m X 71 X 7 induces a map of degree p(p — 1) from Agl
to (T,,1,1)A¥. The remaining identities follow from combinatorial reasonings based
on the explicit description of the cycles Agl and Af. For the 5th identity, observe
that (71, 72, 72)« induces a degree (p — 1) map from Ag1 to the variety X parametris-
ing triples ((E, Pa), (E', Pg), (E", P&)) for which there are distinct cyclic p-isogenies
¢t E — E'and ¢’ : E — E”, the system of points P, C E’ and P/ C E” indexed
by the sets B and C' satisfy

¢ (PanB) = PIILmBa ¢"(Panc) = PX(’WC?

and for which there exists points @ pnc C E indexed by B N C satisfying

¢ (@Bnc) = Ppnes ©"(@Bnc) = Ppnc-

On the other hand, (1,7}, T,) parametrises triples of the same type, in which E’ and
E" need not be distinct. It follows that

(4.7) (1,T,,T,) (A = X + p"~ % Dy,
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where the closed points of Dy correspond to triples ((E, Pa), (E', Pg), (E', P})) for
which there is a cyclic p-isogeny ¢’ : E — E’ satisfying

©'(PanB) = PIILXOB’ ¢'(Panc) = P;mC'

The coefficient of p"~% in (4.7) arises because each closed point of D; comes

from p#(BNC) distinct closed points on (1,T,,T,)(A¥), obtained by translating the
points P; € Pgnc with j € BN C by arbitrary elements of ker(y). The fifth identity
now follows after noting that the map ([p], 1,1]) induces a map of degree p* from D
to (Tp,1,1).A%. The 6th and 7th identity can be treated with an identical reasoning
by interchanging the three factors in W% x W% x W™ . As for the last identity,
the map (o, 72, m2) induces a map of degree 1 to the variety Y consisting of triples
(E',E",E") of elliptic curves which are p-isogenous to a common elliptic curve E
and distinct. But it is not hard to see that

(Tp>Tp’Tp)(Au) =Y +pr_k° Ey + pT_e" Ey+p"™ " E3+p(p+ I)Anv

where the additional terms on the right hand side account for triples (E’, E”, E"")
where £/ # E” = E", where E" # E' = E", where E' # E’ = E”, and where
E’' = E" = E" respectively. O

of (1.5). It was shown in [7, §3.1] that (e, €g_, €m_ )AF %™ is a null-homologous cycle
and we may define

(4.8) K(f, 9, h) = gn Adee((ex, , €0, , €m, ) AR ™) € HY(Q, Wolf, g, h])

as the image of this cycle under the p-adic étale Abel-Jacobi map, followed by the
natural projection from HZ°"!(A% x A% x A, Q,(c)) to Wéc" ™o induced by the
Kiinneth decomposition and the projection my 4 5.

It follows from [7, (66)], (1.5) and the vanishing of the terms H¢ (X1, H* ) for i # 1
when k£ > 0, that the class «(f, g, h) is realized by the (f, g, h)-isotypic component
of the same extension class as in (3.5), after replacing X; by the curve X = X, and
A = A%0%0 i taken to be the usual diagonal cycle in X3. In the notations of (3.4),
this amounts to

(4.9) H(f’ g’ h) = 7Tf7gﬂhAJkO 720 ’mo (A)'

Similar statements holds over the curve Xy;. Namely, we also have the following:

Assume for the remainder of the section that &, £,,m, > 0. Recall the projectors ¢,

Proposition 4.6. — The cycle (ex, ,€p ,€m, )A’g"l’e" "o s null-homologous and the fol-

lowing equality of classes holds in H(Q, Wo1[fas 9as hal):

k, 4, ,my
(410) K01 (fow Go) h’a) = pS " Tfargasha AJét((Eko ) €4, Emy )AOOI )
Proof. — Corollary 3.3 together with (4.2) imply that
1
K/l(faagay ha) = 6 T f o Gasha AJko W, ,my (Acl)(]-’ ]-7 ]-; 6))>
q
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in which § = 1 is the trivial character of (Z/pZ)*. Since u® induces a finite map of
degree (p—1)2 from the support of A;(1,1,1;68) to Agy, it follows from the convention
adopted in (3.7) that

3

p o
K/Ol(f0t7ga7h’0t) = :u‘i K/l(fa;ga’h'a) = 6 : 7Tfo¢7ga7ha AJko7eo7mo (AOI)a
q

where AJy o m (A§;) is defined to be the class realized by the same extension class
as in (3.5), after replacing X; by the curve Xy and replacing A by the cycle A,
arising from (4.4). Since Ag"l’e" "™ s fibered over Ag;, the same argument as in (4.9)

then shows that
ATk g, m, (Bo1) = Adea((en, €1, m, ) 0675 ™).

Since 7y, g. by (Do1) = C%Wfa,ga,ha(ASl)a the proposition follows. O
Theorem 4.1. — With notations as before, letting c = r + 2, we have
gbal(fa Ja ha)
w1, W1, @1)x K1(farGas Pa) = " x k(f,g,h),
( 1 1 1) 1(f g ) g(fa)g(ga)g(ha) (f g )
where

EP (far garha) = (L—apBeBrp™ ) (1 — BragBrp~ ) (1 — BByanp ) (1 — BtByBrp ™),

and
E(fo) =1=X;7' (B3P ™", E€(9a) = 1—x; ' P)B2P" ", E(ha) = 1—x; ' ()Bip' ™™

Proof. — In view of (4.5), (4.8) and (4.10), it suffices to prove the claim for the

&M Since k, , ¢ m, are fixed throughout the

01 Yo )
. . . kool . .
discussion, we again denote A# = A% ™ and Agl = Ay "™ to lighten notations.

When combined with Lemma 4.4, Lemma 4.5 equips us with a completely explicit
formula for comparing (ﬂl,wl,wl)*e*(Agl) with the generalized diagonal cycle A.
Namely, since the correspondences ([p],1,1), (1,[p],1) and (1,1, [p]) induce multipli-
cation by p¥, p% and p™ respectively on the (f, g, h)-isotypic parts, while (7}, 1,1),
(1,7,,1), and (1,1, T},) induce multiplication by a,(f), ap(g), and a,(h) respectively,
it follows that, with notations as in the proof of Lemma 4.5,

ﬂ'f,g,h(Dl) = ap(f)ﬂ'f,g,h(Au)a
7190 (D2) = ap(g)ms g0 (AY),
.gn(Ds) = ap(h)msgn(AY),

kO 7e0 7m0

k,,
cycles A and (71,71, 71) €Ay

and that
f.gn(B1) = (ap(f) = (p+ 1)p" )ms 60 (AF),
f.gn(E2) = (a5(9) — (p+ 1)p )y, 0,n(AF),
7.9 (Es) = (ap(h) = (p+ 1)p™ )7y 6,1 (AF).
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By projecting the various formulae for (m, 7y, ﬂl)*(Agl) that are given in Lemma 4.5
to the (f, g, h)-isotypic component and substituting them into Lemma 4.4, one obtains
a expression for ef,g’h(m,m,m)*e*(Agl) as a multiple of 7, ,(A*) by an explicit
factor, which is a rational function in af, oy and o, This explicit factor is somewhat
tedious to calculate by hand, but the identity asserted in Theorem 4.1 is readily
checked with the help of a symbolic algebra package. O

5. Triple product p-adic L-functions and the reciprocity law

Let (f,g,h) be a triple of p-adic Hida families of tame levels My, Mg, M) and
tame characters xr, Xg4, Xn @s in the previous section. Let also

(f*,g",h") = (f @ Xr,8® X4, h ® Xn)
denote the conjugate triple.
As before, we assume xsxgxr = 1 and set M = lem(My, My, My).
Let A¢, Ag and Ay be the finite flat extensions of A generated by the coefficients

of the Hida families f, g and h, and set Agp = Af®szg®szh. Let also Q¢ denote
the fraction field of A¢ and define

Qf,gh = Qf®Ag®Ah~

Let We,, = W x Wg x Wy C Ween = Spf(Aggn) denote the set of triples of
crystalline classical points, at which the three Hida families specialize to modular
forms with trivial nebentype at p (and may be either old or new at p). This set
admits a natural partition, namely

Ween = W U Wiy, U Wiy U Wea,
where
— W{gh denotes the set of points (z,y,z) € Wg,, of weights (k,¢,m) such
that £ > ¢+ m.

— nggh and Wﬁgh are defined similarly, replacing the role of f with g (resp. h).

— F;ﬁ is the set of balanced triples, consisting of points (z,y, z) of weights (k,£,m)

such that each of the weights is strictly smaller than the sum of the other two.

Each of the four subsets appearing in the above partition is dense in Wggp, for the
rigid-analytic topology.

Recall from (1.34) the spaces of A-adic test vectors S§™¢
of a triple

(M, xs)[f]. For any choice

(f,8,h) € SF(M, xs)[£] x SF(M, x)lg] x ST (M, xn)[h]

of A-adic test vectors of tame level M, in [7, Lemma 2.19 and Definition 4.4] we con-
structed a p-adic L-function .%,7 (f, g, h) in Q¢&Ag&Ay, giving rise to a meromorphic
rigid-analytic function

(5.1) 2,7 (f,8,h) : Weggn — C,.
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As shown in [7, §4], this p-adic L-function is characterized by an interpolation
property relating its values at classical points (z,y,z2) € Wg;,h to the central critical
value of Garrett’s triple-product complex L-function L(f,,g,,h,, s) associated to the
triple of classical eigenforms (f;,g,,h,). The fudge factors appearing in the inter-
polation property depend heavily on the choice of test vectors: cf.[7, §4] and [6, §2]
for more details. In a recent preprint, Hsieh [13] has found an explicit choice of test
vectors, which yields a very optimal interpolation formula which shall be useful for
our purposes. We describe it below:

Proposition 5.1. — for every (z,y,z) € Wffgh of weights (k, £, m) we have

g L v a(k,,m
62 2! ) = e S TT Cx Lo,
z e v|Noo

where
(1) c= k+04+m—2

2 s
(ii) a(k,é, m) — (27ri)_2k . (k+€+m74)! . (k+€72m72)! . (kfegm72)! . (kfzzfm)!’
50(96) =1-x; (p)ﬂfmpl ’“,
Ei(z) :==1— xs(p)ag ’p’,
— k—t—m _ k—f—m
E(w,y.2) = (1 xs(w)og ag,anp™ ) x (1= xs(p)ag g, n.p ")
_ k—t—m k—t—m
x (1= xs(p)ag Be,an.p™ ") x (1= xs(p)ag g, B 7" ).
(iv) The local constant C, € Q(f;,8y,h.) depends only on the admissible represen-
tations of GL2(Q,) associated to (f;,8,,h,) and on the local components at v
of the test vectors.

Moreover, there exists a distinguished choice of test vectors (f g, ) (as specified
by Hsieh in [13, §3]) for which pr(f,g, h) lies in Aggn and the local constants may
be taken to be C, =1 at allv | Noo.

Proof. — This follows from [13, Theorem A], after spelling out explicitly the defini-
tions involved in Hsieh’s formulation.

Let us remark that throughout the whole article [7], it was implicitly assumed
that f,, g¢ and h,, are all old at p, and note that the definition we have given here
of the terms &y(z), &1 (z) and E(x,y, z) is exactly the same as in [7] in such cases,
because B¢, = xs(p)ag p 1pk=1 when £, is old at p.

In contrast with loc. cit.,in the above proposition we also allow any of the eigen-
forms f,, g, and h,, to be new at p (which can only occur when the weight is 2); in
such case, recall the usual convention adopted in §1.2 to set 35 = 0 when p divides
the primitive level of an eigenform ¢. With these notations, the current formulation
of £(x,y,2), Eo(x) and & (z) is the correct one, as one can readily verify by rewriting
the proof of |7, Lemma 4.10]. O
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5.1. Perrin-Riou’s regulator. — Recall the A-adic cyclotomic character g.,. and the
unramified characters ¥¢, ¥g, ¥y of Gq, introduced in Theorem 1.1. As a piece of
notation, let g¢ : Gq, — Af denote the composition of Ecyc and the natural inclusion
AX C A?, and likewise for g and g,,. Expressions like ¢ W,y or EfEgEn are a short-
hand notation for the A;gh—valued character of Gq, given by the tensor product of
the three characters.

Let Ve, Vg and Vi be the Galois representations associated to f, g and h in
Theorem 1.1.

The purpose of this section is describing in precise terms the close connection
between the diagonal cycles constructed above and the three-variable triple-product
p-adic L-function. In order to do that, let us introduce the Aggn-modules
(63)  Vig=Vi® Vg8 Va(-1)(5) = Vi ® Vg ® Va(esher 55 %, %)

cyc

and
(5.4) Vign(M) = Ve(M) & V(M) ® Vi (M)(~1)(5).

The pairing defined in (2.17) yields an identification

HUY(XE) = HY (Roor Z) 3 (2)(2).

As explained in (1.26), Vttgh(M ) is isomorphic to the direct sum of several copies

of Vigh and there are canonical projections ws, wg, wn which assemble into a
1

Gq-equivariant map ws g : H'H(X2%) = HL (X oo, Zp)®3(2)(?) — V}gh(M).

Recall the three-variable A-adic global cohomology class

b ew ™l w0 1) = keo(1,1,151) € HH(Q,HM (XX))

introduced in (4.1).
Set Cy(f, g, h) := (a,(f) —g—1)(aqe(g) —g—1)(aqg(h) —g—1). Note that Cy(f, g, h) is
a unit in A, because its classical specializations are p-adic units (cf. (4.2)).

Koo(€1w™

Definition 5.2. — Define
B 1
Cq (f7 g7 h)

to be the projection of the above class to the (f,g, h)-isotypical component.

K’(fv g, h) : © Wf,g hx (F‘"oo (elw_ko ) 62‘*}_[0 ) 63"‘)—mO > 1)) € Hl(Qa Vzgh(M))

In the above definition, we normalize x(f,g,h) by the constant C,(f,g,h) so
that the classical specializations of k(f,g,h) at classical points coincide with the
classes k1(fu, 9o, Po) introduced in (4.2).

Let

res, : H'(Q, Vi, (M)) - H'(Qp, Vi, (M))

denote the restriction map to the local cohomology at p and set

Kp(f, 8, h) = res,(k(f, g, h)) € H'(Q,, Vi, (M)).
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The main result of this section asserts that the p-adic L-function Epf (f,g,h)
introduced in §5 can be recast as the image of the A-adic class k,(f, g, h) under a
suitable three-variable Perrin-Riou regulator map whose formulation relies on a choice
of families of periods which depends on the test vectors f , 8, h.

The recipe we are about to describe depends solely only on the projection
of k,(f, g, h) to a suitable sub-quotient of V}gh which is free of rank one over Aggp,
and whose definition requires the following lemma.

Lemma 5.3. — The Galois representation V fgn s endowed with a four-step filtration
0C VL CVE, € Ve, € Vi,

by Gq,-stable Aggn-submodules of ranks 0, 1, 4, 7 and 8 respectively.

The group Gq, acts on the successive quotients for this filtration (which are free
over Agen of Tanks 1, 3, 3 and 1 respectively) as a direct sum of one dimensional
characters,

+ - i
Vigh =", zig-l: = 0f" Dng 1y Vigh = NgnONG, Oty vo = e
fgh fgh fgh
where
' = (UpWgWn x &2y (eregen)'/?, Negh = Ve U Up X ek (gpegen) 2,
g = NTR 73 50 T S en)'? mEn =Xy W Uh x (gpeg e )Y,
g =Xy el Uit X eoyelereg 'en)? mBy = XoUr UVt X (g7 'egen )2,
77{1g = Xhl\Ilh\I’ 1\11 X Ecyc(§f§g§h ) /2, T]Fg = Xh\I’f\I/g\If}_ll X (5f g_ )1/2

Proof. — Let ¢ be a Hida family of tame character x as in §1.3. Let v denote the
unramified character of Gq, sending a Frobenius element Fr, to a,(¢) and recall
from (1.12) that the restriction of V4 to Gq, admits a filtration

O—>Vg—>V¢—>V;—>O

with
Vi~ Mg (Vg Xerreteye)s Vg = Ag(tg).
Set
—-1/2 _— —1/2
Vit = Vi @ Vi @ Vi(eher Ve V2en ),

Vin=(Ve®VI@V] + Vi @V @ Vi + Vi @ Vi ® Vi) (enher ez 2en )

cyc

Vin = (Vi@ Vg ® Vi + Ve @ VE @ Vi + VF ® Vg ® Vi) (eher /e %en /).

cyc

It follows from the definitions that these three representations are Aggn[Gq,]-sub-

modules of Vigh of ranks 1, 4, 7 as claimed. Moreover, since x fxgxr = 1, the rest of
the lemma follows from (1.12). O
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A one-dimensional character n : Gq, — C,; is said to be of Hodge-Tate weight —j
if it is equal to a finite order character times the j-th power of the cyclotomic character.
The following is an immediate corollary of Lemma 5.3.

Corollary 5.4. — Let (z,y,2) € Wen e a triple of classical points of weights (k,£,m).

The Galois representation Vfi,gy,hz is endowed with a four-step Gq,-stable filtration

++ + — T
0 - ‘/fmvgyvhz - ‘/fzygyahz C ‘/fzvgyvhz - ‘/fzvgyvhz’

and the Hodge-Tate weights of its successive quotients are:

Subquotient Hodge-Tate weights
++ —k—f—m
‘/fzvgyyhz 2 +1
+ ++ k——m —k+l—m —k—4+m
sz,gy,hz sz,gy,hz 2 2 ) 2

—k-‘r;-‘r’m _ 1’ k—g—‘rm _ 1’ k+L—m 1

2

= ¥
‘/fa': 18y ,h /‘/fz '8y h

k+itm _
5 2

‘/facvgyvhz /‘/fw,gy,hz

Corollary 5.5. — The Hodge-Tate weights of ij’gy,hz are all strictly negative if and
only if (k,£,m) is balanced.

Let VE" and VE" (M) be the subquotient of V;[gh (resp. of Vlgh(M )) on which Gq,
acts via (several copies of) the character

h h h
(5.5) ng = UE" x OF",

where

— U8 is the unramified character of Gq, sending Fr, to X7 (p)ay(f)ay(g) tay(h) 7,
and

— @%h is the Aggn-adic cyclotomic character whose specialization at a point of
weight (k,£,m) is el . with t := (=k + £ +m)/2.

The classical specializations of V?h are
—k—0—m+4 _ 1,—
SR 2 L, (0 e ) 0,
where the coefficient field is L, = Q,(f;,g,, h.). Note that ¢t > 0 when (z,y,2) € W}?ﬁ,
while ¢ < 0 when (z,y,2) € Wffgh.

Recall now from §1.4 the Dieudonné module D(Vfiyhz (Mp)) associated to (5.6).
As it follows from loc. cit., every triple

(56)  VEP =V eV e V(

(M, w2, w3) € D(Vgk (Mp)) x D(Vg (Mp)) x D(Vy. (Mp))

* *
Y z

gives rise to a linear functional 17; ® ws ® w3 : D(foyhz (Mp)) — L.
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In order to deal with the p-adic variation of these Dieudonné modules, write
gh
V(M) as
h h
VE (M) =U(68"),
where U is the unramified Aggn-adic representation of Gq, given by (several copies

of) the character \Ilfh.
As in §1.4, define the A-adic Dieudonné module

L s rnr\G
D(U) := (URZ,")"<r.
In view of (1.29), for every (z,y,z) € Ween there is a natural specialization map
Va2 D(U) — DUE™),
where Ufg:hz = U @nrgen Qp(fes gy, hs) ~ Vfiyhz (Mp)(-t).
Proposition 5.6. — For any triple of test vectors
(f,8,h) € STUM, xs)[£] x S3(M, xo)[g] x ST (M, xn)[h,
there exists a homomorphism of Aggn-modules
(o np Qg Qwy.) : D(U) — Qs gn,
such that for all X € D(U) and all (z,y,2) € Wg,, such that £, is the ordinary

stabilization of an eigenform £ of level M :
1

Vage (7 ® wge @ wp)) = (V6L (E2)

X <Vz,y,z(A)7 77{‘; ® wé; ® wﬁ;)'
Recall from (1.31) that
E(f7) =1-x"'(0Bp' ™", &(F) =1 - x(p)agp* 2

Proof. — Since U is isomorphic to the unramified twist of V; @ V& ® V", this follows
from Proposition 1.5 because &y (f) = & (£2*) and & (£2) = &1 (£9%). O

It follows from Example 1.4 (a) and (b) that the Bloch-Kato logarithm and dual
exponential maps yield isomorphisms

~

logpx : HY(Qy, Vfiyhz) — D(Vfiyhz)7 ift >0,

expik : HH(Qy, VM) =5 D(VE™),  ift<o.
Define
k—t—m _q e
(5 7) gPR(.’I} Yy Z) = 1_p : afw agyahz _ 1 —-p ﬁfmagyahz

L+m—k—2 1 -1 - _ —c .
I—p 2 of0g, 0, 1 —p~cas, Bg, On,

The following is a three-variable version of Perrin-Riou’s regulator map constructed
in [25] and [18].
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Proposition 5.7. — There is a homomorphism
Ef,gh : Hl(Q[MV%‘h(M)) - D(U)v

such that for all k), € Hl(Qp,Vgh(M)) the image L¢ gn(kp) satisfies the following
interpolation properties:

(i) For all balanced points (x,y,z) € Wf]?gallu

ﬂ.gPR

A (z,y,2) - logpk (Vay,=(Kp))-

Vz,y,z (ﬁf,gh(“p)) =

(ii) For all points (z,y,z2) € ngh,
Ve,y,z (Ef,gh(“p)) = (_1)t ~(1=1)! 'gPR(xvya z) ’eXPEK(Vﬂﬂ,y,Z(“p))'

Proof. — This follows by standard methods as in [16, Theorem 8.2.8], [18, Ap-
pendix B], [8, §5.1]. O

Proposition 5.8. — The class k,(f,g,h) belongs to the image of H'(Q,, V;gh(M))
in HY(Qp, V}Lgh(M)) under the map induced from the inclusion Véh(M) — Vlgh(M).

Proof. — Let (z,y,z2) € Wen be a triple of classical points of weights (k,£,m). By the
results proved in §4, the cohomology class k,(f;, gy, h.) is proportional to the image
under the p-adic étale Abel-Jacobi map of the cycles appearing in (4.8), that were
introduced in [7, §3]. The purity conjecture for the monodromy filtration is known
to hold for the variety A% x A% x A™ by the work of Saito (cf.[26], [22, (3.2)]).
By Theorem 3.1 of loc.cit., it follows that the extension k,(f;, g,,h,) is crystalline.
Hence £, (£;, gy, h.) belongs to H} (Q,, Vfi,gy,hz (Mp)) C HY(Q,, Vngy,hz(Mp)).
Since (k, £, m) is balanced, Corollary 5.5 implies that ij g,.h. is the subrepresen-

tation of Vfi,gy,hz on which the Hodge-Tate weights are all strictly negative. As is
well-known (cf. [10, Lemma 2, p.125], [19, §3.3] for similar results), the finite Bloch-

Kato local Selmer group of an ordinary representation can be recast a la Greenberg
[11] as

H}Qp, Vi g 1) = ker (HY(Qp, V{

1 T +
fz,gyahz zagyvhz) - H (Ip’ ‘/fz,gyghz/‘/fzggyvhz)) 4

where I, denotes the inertia group at p.

Since the set of balanced classical points is dense in Wegy for the rigid-analytic
topology, it follows that the A-adic class ,(f, g, h) belongs to the kernel of the natural
map

H'(Qp, Vigy (M) — H' (I, Vi, (M) / Vg1, (M)).
Since the kernel of the restriction map
HY(Qp, Vign (M) Vi, (M) — H' (I, Vig, (M) / Vi, (M))

is trivial by Lemma 5.3, the result follows. O
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Thanks to Lemma 5.3 and Proposition 5.8, we are entitled to define
(5.8) wi(f,gh)” € HY(Q,VE'(M))
as the projection of the local class k,(f, g, h) to V?h(M).

Theorem 5.1. — For any triple of A-adic test vectors (F,g,ﬁ), the following equality
holds in the ring Qf gn:

<£f7gh(ﬁ',£(f,g,h)_ )7 Ure ®w§" ®wf,* > = gpf(fvgafl)

Proof. — 1t is enough to prove this equality for a subset of classical points that is
dense for the rigid-analytic topology, and we shall do so for all balanced triple of
crystalline classical points (z,y,2) € W}’;ﬁ such that f,, g, and h,, are respectively
the ordinary stabilization of an eigenform f := {7, g := g, and h := hj of level M.

Set k, = k] (f,g,h)” and £ = (L¢gn(k, ), M. © wg- ® wy.) for notational sim-
plicity. Proposition 5.6 asserts that the following identity holds in L,:

Vgyo(L) = <l/x7y,z(£f7gh(l‘é;)), M- Qwgr @ wE,;).
Recall also from Proposition 1.5 that
1 * * *
Mg = mewl (Mp.), wg = Eo(9)ewi(wy), wi. = Eo(h)ew](wy.)
and

(=1

t!

Vay,=(Legn(ky,)) = - ETM(2,y, 2) logpk (Vo= (K;))
by Proposition 5.7.

Recall the class x(f, g, h) = r(f;, gy, h7) introduced in (4.8) arising from the gener-
alized diagonal cycles of [7]. Asin (5.8), we may define x/(f,g,h)™ € H*(Q,, Vj’ch(M))
as the projection to Vfgh(M) of the restriction at p of the global class k(f, g, h).

It follows from Theorem 4.1 that

Sbal (LL‘, Y, Z) y
(1= B1/a7)(1 — By/ag)(1 — Bufan)

(wh Wi, wl)*”x,y,z("i‘p )

H{)‘ (f’ 97 h)i?
where

EP (z,y,2) = (1 — arByBrp ) (1 — BragBup™ ) (1 — BByanp™ ) (1 — B1ByBrp~°).
The combination of the above identities shows that the value of £ at the balanced
triple (z,y, z) is
(=1)" - &> (z,y, 2)E7 (=, y, 2)
th- & (f)E(S)
Besides, since the syntomic Abel-Jacobi map appearing in [7] is the composition

of the étale Abel-Jacobi map and the Bloch-Kato logarithm, the main theorem of
loc. cit. asserts in the present notations that

(_1)t gf($7 Y, Z)
th Eo(fE(f)

Vr,y,Z(L) = X <10gBK(K£(fa 9, h))7 ﬂf* ® wy @ wﬂ*)

Va,y,z (gpf(f‘a g, 1"1)) = (logpk (K';f)(f’ 9:h)7), s ® Wy ® wﬁ*)?
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where

EN@,y,2) = (1 — Braganp™©) (1 — BragBup™¢) (1 — BrByanp™®) (1 — BsByBrp~¢) -
Since

Sf(:n,y,z) = Sbal(a:,y,z) X EPR(m,y,z)

and the sign and factorial terms also cancel, we have

Va?,y,Z(ﬁ) = Vz,y,z (:fpf(i g7 fl))y

as we wanted to show. The theorem follows. O
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RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES

by

Massimo Bertolini, Marco Adamo Seveso & Rodolfo Venerucci

Abstract. — This article constructs a 3-variable balanced diagonal class «(f, g, h) in
the cohomology of the Galois representation associated to a self-dual triple (f, g, h)
of p-adic Hida families. Its first main result (Theorem A of Section 1.1) establishes an
explicit reciprocity law relating x(f, g, h) to the unbalanced Garrett-Rankin p-adic
L-function attached to (f,g,h). The class «(f,g,h) arises from the p-adic inter-
polation of diagonal classes in the Bloch-Kato Selmer groups of the specializations
of (f,g,h) at balanced triples of classical weights. As a consequence, the value
of k(f, g, h) at a specialization (f, g, h) of (f, g, h) at an unbalanced triple of classical
weights is a p-adic limit of crystalline classes. Our second main result (Theorem B of
Section 1.2) shows that the obstruction to the crystallinity of an appropriate deriva-
tive of k(f,g,h) at (f,g,h) is encoded in the central critical value of the complex
L-function of f ® g ® h.

Résumé. — Cet article construit une classe diagonale k(f, g, h) a trois variables dans
la cohomologie de la représentation galoisienne associée a un triplet auto-dual (f, g, h)
de familles de Hida. Le premier résultat principal (Théoréme A de la Section 1.1)
fournit une loi de réciprocité explicite reliant «(f, g, h) a la fonction L p-adique de
Garrett-Rankin attachée a (f, g, h). La classe k(f, g, h) s’obtient par interpolation
p-adique des classes diagonales dans les groupes de Selmer & la Bloch-Kato des
spécialisations de (f, g, h) aux triplets de poids classiques «équilibrés». On en déduit
que la valeur de k(f, g, h) en une spécialisation (f, g, h) de poids déséquilibré est une
limite p-adique de classes cristallines. Le deuxiéme résultat principal (Théoréme B de
la Section 1.2) montre que 'obstruction a ce qu’une dérivée appropriée de «(f, g, h)
en (f,g,h) soit cristalline est contrdlée par la valeur centrale critique de la fonction
L complexe de f ® g ® h.

2010 Mathematics Subject Classification. — 11F67; 11G40, 11G35.
Key words and phrases. — p-adic L-functions, diagonal cycles, Perrin-Riou maps, explicit reciprocity
laws.
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1. Description and statement of results

The reciprocity laws alluded to in the title of this work concern the diagonal class
arising in the cohomology of the big Galois representation attached to a self-dual
triple of Hida p-adic families of cusp forms. Our construction of this class builds on
the push-forward of a canonical generator of an invariant space of locally analytic
functions along the diagonal morphism of a modular curve into the corresponding
triple-product threefold. It constitutes a crucial step towards the proof of the main
results of this paper and of those of our other contribution [14| to the present volume.

The specializations of the diagonal class at triples of classical weights in the so-
called balanced region, in which each weight is strictly smaller than the sum of the
other two, give rise to cohomology classes admitting a similar description in terms
of invariant theory which are closely related to diagonal cycles in Chow groups of
Kuga-Sato varieties. As a consequence, the diagonal class belongs to a big Selmer
group, called the balanced Selmer group, which interpolates in the geometric region
of balanced weights the Bloch-Kato Selmer groups of the triple tensor product repre-
sentations of the corresponding modular forms.

The first main result of this paper—Theorem A of Section 1.1—pertains to the
specialization of the diagonal class to the three unbalanced regions where one weight
is at least equal to the sum of the other two. The explicit reciprocity laws proved
therein identify the image of the diagonal class by a branch of the Perrin-Riou big
logarithm corresponding to the choice of unbalanced region as the 3-variable p-adic
L-function interpolating the central critical values of the Garrett-Rankin complex
L-functions attached to the triples of weights in that region.

Our second main result—Theorem B of Section 1.2—proves that the specialization
of the diagonal class at an unbalanced point is crystalline at p if and only if the
corresponding central critical value is zero. This criterion follows directly from the
reciprocity law of Theorem A combined with Jacquet’s conjecture proved by Harris-
Kudla when the p-adic L-function for the corresponding unbalanced region does not
have an exceptional zero in the sense of Mazur-Tate-Teitelbaum. The exceptional
cases can only occur at unbalanced triples in which the modular form of dominant
weight is multiplicative at p. These subtler cases require the proof of an exceptional
zero formula for the 3-variable p-adic L-function, combined with an analysis of the
derivatives of the Perrin-Riou logarithm at the unbalanced point and the costruction
of an improved class.

Applications to the arithmetic of elliptic curves obtained from instances of the ex-
ceptional case constitute the object of the main results of our other contribution [14]
to this volume, and represent one motivating feature of the present work. The Hida
families considered in this setting respectively interpolate the weight-two modular
form attached to an elliptic curve A over the rational numbers and two weight-one
theta series associated to the same quadratic field K and subject to natural arith-
metic conditions. In this setting, we establish a factorisation of the triple product
p-adic L-function along the line (k,1,1) as a product of two Hida-Rankin p-adic

ASTERISQUE 434



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 79

L-functions attached to A/K, which implies a relation between the fourth derivative
at weights (2,1,1) of the former p-adic L-function and the product of the second
derivatives at k = 2 of the latter. This translates into a formula for the Bloch-Kato
logarithm of the specialization of the diagonal class at (2,1,1) as a product of formal
group logarithms of Heegner points or Stark-Heegner points, depending respectively
on whether K is imaginary quadratic or real quadratic. This result provides a bridge
between the diagonal class arising from the geometry of higher dimensional varieties
and the theory of rational points on elliptic curves, lending also some support to the
conjecture on the rationality of Stark-Heegner points.

1.1. The three-variable reciprocity law. — Fix a prime p > 5, algebraic closures Q
and Q, of Q and Q, respectively, and embeddings Q — Q, and Q — C. Let L be
a finite extension of Q, and let

1= an(k)-q" € OUp)[d],

n>1
g'= Z bn(l)-q" € O(UQ)HQH
n>1
and  R'=cy(m)-q" € OUn)[q]

be primitive, L-rational Hida p-adic families of modular forms of tame conductors
Ng, Ng and Ny, centers k,, [, and m, and tame characters x ¢, xg and xn respectively
(cf. Section 5). Here Ny is a positive integer coprime to p, U is an L-rational open
disk centered at k, € Z>; in the p-adic weight space W, and O(Us) is the ring of
analytic functions on Uy. For each k in U§' = {k € UfNZx» | k = k, mod 2(p—1)} the
weight-k specialization f} = En>1 an(k) - ¢" € L]g] N Sk(Ngp, x¢) is a p-stabilized
newform of weight k, level I'y(Ny) N o(p) and character x . In particular the p-th
Fourier coefficient a,(k) is a unit in the ring Ay of functions a € O(Uy) satisfying
|oz(a:)|p < 1forall z € Up. If k > 2 then f is the ordinary p-stabilization of a newform

fi in Sk(Ng,xg). If k = 2 then either f} = f} is new or it is the p-stabilization of a
newform f} of level Ny. A similar discussion applies to g* and h*.

Let (¢°,u,) denote one of pairs (f, k,), (g",1,) and (h*,m,). If u, = 1, then the
weight-one specialization &) of ¢* is a cuspidal-overconvergent (but not necessarily
classical) ordinary modular form. Throughout the paper we make the following

Assumption 1.1. — If u, = 1, then §§ is a p-stabilization of a classical, cuspidal and
p-regular newform of level I'1(Ng), without real multiplication by a quadratic field in
which p splits.

A weight-one eigenform has real multiplication if it is equal to the theta series
Yy =D . x(a)- ¢N® associated with a ray class character x of a real quadratic field K,
where a runs over the non-zero ideals of Ok and Na = |Ok /a|. Moreover, a normalized
weight-one eigenform £ = ano an(&) - g™ of level I'; (INg) and character x is said to
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be p-regular if its p-th Hecke polynomial X% —a,(£)- X +x¢(p) is separable. We refer to
Remarks 1.4 and to Section 5 below for explanations on the relevance of Assumption
1.1 for the main results of this paper.

Let N be the least common multiple of Ng, Ng and Np. A level-N test vector
for (f*,g* k') is a triple (f,g,h) of Hida families of common tame level N, hav-
ing (f*, g%, h*) as associated triple of primitive families (cf. Section 5). For each k
in de the weight-k specialization f;, of f is an ordinary cusp form of weight &,
level I'1 (V) N To(p) and character x ¢, which is an eigenvector for U, and T, for all
primes ¢ { Np, with the same eigenvalues as fi. Similarly for g and h. Fix a level-N
test vector (f,g,h) for (f*, g%, h').

We make throughout this paper the following crucial self-duality assumption.

Assumption 1.2. — We have x¢ - Xg ' Xn = 1.

Set X = Ug! x UZ' x Ug!, where Ug! = U§' U {k,} (so that Uf' = Ug' if k, > 2),
and ﬁgd and U ,‘il are defined similarly. Assumption 1.2 implies that k + [ + m is an
even integer for all w = (k,I,m) in de x Ug x U, hence ¢y = (k+1+m —2)/2 is
a positive integer. Let ¥ ¢ be the set of w in X such that k > [ + m, define similarly
Yg and ¥ and denote by . the complement in 3 of the union of 3¢, ¥g and Xp,.
One calls Xy, the balanced region.

Denote by € one of the symbols f,g and h and correspondingly by £ one of f, g
and h. Let 0 = A¢[1/p] be the space of bounded analytic functions on Uz and
set Opgn = OF ®1, Oy @1, Op,. Associated with (f, g, h) one has:

e Garrett-Rankin square root p-adic L-functions ff(f,g, h) in Oygp, interpolating
the square roots of the central critical values L(f{ ® gi ® h%,, ¢,,) of the complex
Garrett-Rankin L-functions L(f} ® gj ® hf,,s) for classical triples w = (k,1,m)
in the region ¢ (cf. Remark 1.8(1) and see Section 6 for details).

e An Ofgp-adic representation V(f, g, h) of Gq = Gal(Q/Q), satisfying the follow-
ing interpolation property (cf. Section 7.2). For each classical triple w = (k,1,m)
in ¥ let V(ff, g}, h%,) be the central critical twist (i.e., the ¢,-th Tate twist)
of the tensor product of the Deligne representations of ff, g and hf,. Then the
base change V(f;,9;, hm) of V(f,g,h) under evaluation at (k,l,m) on Opgp is
isomorphic to @?:1 V(fi, g}, hi,), for some integer a > 1 which is independent
of (k,1,m) € ¥ (cf. Section 7.2).

o A balanced Selmer group H,(Q,V (f,g,h)) C H'(Q,V(f,g,h)), which interpo-
lates the Bloch-Kato Selmer groups Sel(Q, V(f, g;, b)) for all balanced triples
(k,1,m) € Zpa (cf. Section 7.2).

e Perrin-Riou big logarithms

"gﬁ = fogg(f,g,h) : H&)al(Qp?V(f7g7h’)) - ﬁfg’”

satisfying the following interpolation properties. Say that & = f to fix ideas.
Then for all balanced triples w = (k,l,m) in a subset of ¥y, which is dense
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in Up x Ug x Uy, and for all local balanced classes 2 in H},,(Qp, V(f,g,h))
Ly (resp(2)) () = E5 (£ 91 hm) - IOggp(ffw)(ﬂ?k‘EQ wg, ® Wh,,)-

Here &(fy,9;,hm) is an explicit non-zero algebraic number, the class 2,
in HE (Qp, V(fi, g5, b)) is the specialization of 2 at w, log,, is the Bloch-Kato
logarithm and n}‘k ® wg, ® wp,, is the differential considered in Section 7.3, to
which we refer for details.

According to a conjectural picture envisioned by Perrin-Riou the L-functions
sz (f,g,h) should arise from a global balanced class via the logarithms Z. Our
first main result confirms this expectation.

Theorem A. — There is a canonical class k(f, g, h) in H.;(Q,V(f,g,h)) such that,
for € = f,g,h, one has

Ze(ves, (k(f,9,h))) = 25 (£.9,h).

Remarks 1.3. — 1. The equality displayed in Theorem A determines the class (f, g, h)
only up to addition by an element in a suitable (conjecturally trivial) restricted Selmer
group. Nonetheless Section 8.1 gives a geometric construction of a canonical three-
variable balanced class k(f, g, h) satisfying the conclusions of Theorem A.

2. Theorem 8.1 and Proposition 8.3 express the specialization of k(f, g, h) at a bal-
anced triple (k,l,m) € ¥y, as an explicit multiple of a suitable Selmer diagonal class
k(fe, 91, hm) € Sel(Q,V(fy,9;, hm)) associated in Section 3 with (f,g;, bm) (cf.
Proposition 3.2). The latter is in turn related to the values of .sz(f, g,h) at (k,I,m)
by an explicit reciprocity law (cf. Proposition 3.6). Theorem A then follows from
analytic continuation.

3. Both the square-root p-adic L-function fpg( f,g,h) and the big logarithm
Ze = ZLoge(f,g,h) genuinely depend on the choice of the level-N test vec-
tor (f,g,h) for (f*,g*,h*). On the other hand the big Galois representation
V(f,g,h) = Vn(f*,g*, h*) and the balanced class

k(f.g.h) = kn(f g* h*)
depend on the test vector (f, g, h) only through its level N and the systems of eigen-
values defined by (f*, g%, h*) (cf. Sections 5 and 8.1).
4. The construction of k(f,g,h) given in Section 8.1 applies more generally to a
triple (f, g, h) of (not necessarily ordinary) Coleman families. The p-adic L-function

fpf (f,g,h) has recently been constructed in [2], and it is natural to wonder if one
can generalize Theorem A to this setting.

Remark 1.4. — Let (¢*,u,) denote one of pairs (f*,k,), (g%,1,) and (h*,m,). When
u, = 1, Assumption 1.1 guarantees that the big Galois representation V(&) and its
canonical Gq,-unramified quotient V(§)~ are free over O (cf. Section 5 below for
more details). It is likely that Theorem A can be proved without this assumption, at
the cost of extending scalars to the fraction field of Ofgp, in the definition of k(f, g, h)
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and in the statement of the explicit reciprocity law. On the other hand, the freeness
of V(&) and V(&)™ are crucial in the proofs of Theorem B below and of the main
result of our contribution [14].

Remark 1.5. — By using different methods, extending those of [21], the contribution
of Darmon and Rotger [22] to this volume gives an alternate construction of the
3-variable diagonal class.

Remark 1.6. — The class k(f, g, h) is constructed by interpolating diagonal classes
in the Bloch-Kato Selmer groups Sel(Q, V (fs,g;, h)) for all triples (k,I,m) € Zpar.
By using systems of étale sheaves attached to spaces of locally analytic functions and
the big Abel-Jacobi map defined in equation (156), this geometric problem is reduced
to the simpler one of constructing a canonical invariant in a space of locally analytic
functions. This invariant element plays a central role in the construction, carried out
in [29] (cf. also [36]), of a balanced triple-product p-adic L-function interpolating the
square-roots of the central critical values L(ff ® g} ® h,,c,,) for triples w = (k,1,m)
in the balanced region X,. We remark that a similar method can be applied in
other settings, for example for the interpolation of generalized Heegner cycles. In this
case, the relevant invariant function was instrumental for the definition in [10] of an
anticyclotomic two-variable p-adic L-function. The resulting big Heegner class gives
rise via an explicit reciprocity law to the p-adic L-functions considered in [11, 1]. See
also [39] for a related construction in the Heegner case.

1.2. Specializations at unbalanced points. — Let w, = (k,l,m) be a classical triple in
the unbalanced region X ¢. The following assumption will be in force in this section
(cf. Remarks 1.8).

Assumption 1.7. — The local sign e¢(ff,9},h%,) is equal to +1 for each rational
prime £.

Theorem B stated below relates the specialization of the big diagonal class «(f, g, h)
at w, to the central value of the complez Garrett-Rankin L-function L(f{ ®gj ®h}, s).
This relation is particularly intriguing and subtle when ﬁpf (f,g,h) has an exceptional
zero at w, in the sense of Mazur-Tate-Teitelbaum.

Let Hg = Hg(w,) be the g-improving plane in Uy x Ug x Up, defined by the equation

k—l+m=k—-1+m.

Let Ogn = Og®y, Op, and (shrinking Uy and Up, if necessary) let vy : Opgn — Ogp be
the map sending F(k,l,m) to its restriction F(I — m + k+ m — [,I,m) to Hg.

Set V(f,g,h)|Hg =V(f,9,h) ®y, Ogn and denote by

w(f.9.h)|,, € H(Q,V(f.g,h)

Hy |Hg)
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the image of x(f, g, h) under the morphism induced in cohomology by v4. Define the
analytic g-Euler factor

Xg(p) : bp(l) (k—l4+m—2)/2
1 E,(f,g,h)=1— p € Ogh.
( ) g( 9 ) Cp(m)ap(l_m+k+m_l) 9

Section 9.3 proves the factorisation
(2) K’(f)gah)|Hg =gg(fvgah)H;(fagvh)
for a canonical g-improved balanced diagonal class

’iz(‘f’g’h) € Héal(QpﬂV(fvgah)

This is not interesting nor surprising if £,(f, g, h) does not vanish at w,. On the other
hand, if £,(f;,9;, hm) = 0 this implies that the specialization of x(f,g,h) at w,
vanishes independently of whether the complex L-function L(f{ ® gf ® h?,, s) vanishes
at the central point s = ¢,,. This phenomenon is the first source of exceptional
zeros in the present setting. Since we are limiting our discussion to Hida families, the
vanishing of £,(f, g, h) at w, is equivalent to the following conditions:

B) wo=(2,1,1), plle(fy), pre(gr)-e(h) and xa(p) - ap(2) - by(1) = ¢p(1),

where ¢(f,),c(g;) and c(h1) denote the conductors of f,,g; and h; respectively. In
particular g; and h; are classical weight-one eigenforms.

The second source of exceptional zeros for .pr (f,g9,h) at w, is of a different (non
geometric) nature (cf. Section 9.2). It is related to the vanishing at w, of the analytic
f-unbalanced Euler factor

|Hg)'

by(l) - cp(m) .
4 £ , ,h =1- P 4 (k—1 m)/2€ﬁ )

which on the f-improving plane in Uy x Ug x Uy, defined by the equation
k—-l-m=k—-1l-m

interpolates a different Euler factor of fpf (f,g,h). In the present ordinary scenario,
this vanishing is equivalent to the following conditions:

(6) wo=(2,1,1), plle(fa), pre(gr)-c(ha) and xz(p)-by(1) - ¢p(1) = ap(2).

We say that the unbalanced triple w, in X ¢ is exceptional if the conditions displayed
in Equation (3) or those displayed in Equation (5) are satisfied.

Remarks 1.8. — 1. Assumption 1.7 is in place to guarantee that for weights in the
unbalanced region the Garrett-Rankin complex L-functions involved in the definition
of the triple-product p-adic L-function have sign of the functional equation equal
to +1, and that the corresponding central values can be described in terms of trilinear
forms arising on GLy g (cf. [31]). On the other hand, Theorem A holds regardless of
this assumption and does not exclude the possibility of vanishing of the diagonal class
for sign reasons.
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2. The exceptional zero condition (3) is symmetric in g and h. Precisely, define
Hn,V(f, g, h)|7-t ,6(F, g, h)|H and &,(f, g, h) by switching in the above definitions
h g

the roles of g of h. Then
K:(f’g7h)|'Hh = gh(.fag7h') . HZ(f7g7h)

for a unique canonical h-improved diagonal class k}(f,g,h) in the global Galois
cohomology of V(f,g, h)|H .

g
3. The restriction of the class x(f,g,h) to the plane Hys also factors as the
product of £¢(f,g,h) and a canonical class fi}(_f,g,h) in the Galois cohomology
of V(f,g, h)|H . This factorisation is uninteresting in the present setting, as the Eu-
£

ler factor £(f, g, h) does not vanish at any classical point of the region X¢.

4. Under Assumption 1.1, the exceptional zero conditions (3) and (5) are mutually
exclusive. Indeed, if one of them holds, then the other is satisfied precisely if the
form g} (or equivalently h}) is p-irregular.

Define the diagonal class

H*(fk:agla hm) € Hl(Qa V(fkugl, h’m))
by the following recipe. If the conditions stated in Equation (3) are not satisfied, then

K:*(flwghhm) = H(fkaglyhm)

is the specialization of k(f, g, h) at the classical triple w, = (k, [, m). If Equation (3)
is satisfied, one defines

K*(f27gl7h1) = H;(f27gl7h1)7

where the global class &} (f;,91,h1) is the specialization of the g-improved diagonal
class H;(.fagah) at w, = (2a 13 1)' (NOte that HZ(anglahl) = _’i;(f%ghhl)')

Theorem B. — The diagonal class K*(fi,9;, hm) is crystalline at p if and only if the
complex L-function L(f} ® g} ® h%,,s) vanishes at s = %

Acknowledgements. The authors are grateful to F. Andreatta for helpful conversations
about his work with A. Tovita and G. Stevens on overconvergent Eichler-Shimura iso-
morphisms. They also thank the referees for their detailed comments and corrections,
which resulted in a significant improvement of our contributions to this volume.

2. Cohomology of modular curves

In a first reading of this paper it will be sufficient to get acquainted with the main
definitions and notations of this section. The precise description of the various Hecke
operators will be necessary for crucial computations in the arguments of later sections
(see in particular Section 8). The exposition follows [41, Section 2].
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2.1. Modular curves. — Let M > 1 and N > 1 be positive integers such that
M + N > 5. Denote by

Y(M,N) — Spec(Z[1/M N])
the scheme which represents the functor

SH—— {isomorphism classes of S-triples (E, P, Q)},

where S is a Z[1/M N]-scheme, E is an elliptic curve over S, and P and @ are sections
of E over S such that M- P =0, N-Q = 0 and the map Z/MZ x Z/NZ — E which
on (a,b) takes the value a - P + b - @ is injective. More generally, for each rational
prime £ > 1, we consider as in [41] the schemes

Y(M(),N) — Z[1/(MN] and Y (M,N(¥))— Z[1/¢MN].
The Z[1/¢M N]-scheme Y (M (¢), N) classifies 4-tuples (E, P, Q, C), where (E, P, Q) is
as above and C is a cyclic subgroup of E of order M which contains P and is
complementary to @) (viz. the map Z/NZ x C — E which sends (a,z) to a-Q + z is
injective). Similarly Y (M, N(¢)) classifies 4-tuples (E, P,@Q,C) where C is a cyclic
subgroup of order /N which contains @ and is complementary to P. Denote by
E(M,N) — Y(M,N),
E(M(6), N) — Y(M(¢), N)
and E(M,N({)) — Y(M,N(£))
the universal elliptic curves over Y(M,N), Y(M(£),N) and Y (M, N(¢)) respectively.
Let H= {z € C | &(z) > 0} be the Poincaré upper half-plane and set

I'(M,N) = {v in SLy(Z) such that v = (}9) mod (¥ &) }.

Then
(6) Y(M,N)(C) = (Z/MZ)" x T'(M,N)\H,
where the class of (a,z) in (Z/MZ)* x H corresponds to the isomorphism class
of the triple (C/Z @ Zz,az/M,1/N). The Riemann surfaces Y (M (¢), N)(C) and
Y (M,N(£))(C) admit a similar complex uniformisation by (Z/MZ)* x H.

There is an isomorphism of Z[1/¢M N]-schemes
which on the 4-tuple (E, P,Q,C),s in Y/(M, N(¢)) (for some Z[1/¢M N]-scheme S)
takes the value

¢e(E,P,Q,C) = (E/NC,P+NC,t"(Q)NC + NC, (¢ '(Z-P)+ NC)/NC),

where £71(-) is the inverse image of - under multiplication by £ on E. On complex
points (cf. Equation (6)) this is induced by the map (Z/MZ)*xH — (Z/MZ)* xH
which sends (a, z) to (a,?- z). If

pi(E(M(£),N)) — Y (M, N(¢))
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denotes the base change of E(M(¢),N) — Y (M ({), N) under ¢y, there is a natural
degree-£ isogeny

Ao E(M,N(£)) — ¢y (E(M(¢), N)).
When M = 1 one denotes by
(7) YVi(N) = Y(1,N) and Yi(N,0) = Y(1,N(0)

the affine modular curves over Z[1/N] and Z[1/N{] corresponding to the sub-
groups T1(N) and Ty(N,¢) = Ty(N) N To(erd(N+1) of SLy(Z) respectively.

Similarly one writes
Ei(N)=E(1,N) and Ei(N,¢)=E(1,N(¥))

for the universal elliptic curves over Y;(N) and Y7 (N, ¢) respectively.

2.2. Degeneracy maps. — Let M and N be as in the previous section, and let £ be a
rational prime. Let

Y(M,N¢) L5y (M, N(0)) 25 Y(M, N)
and Y(M¢,N) L5y (M(6), N) 25 Y(M, N)

be the natural degeneracy maps (e.g., w(E,P,Q) = (E,P{ - Q,Z - Q) and
V[(EaPaQ7C) = (E7P7Q)>a and define

pry : Y(M,N{) — Y(M,N) and pr,:Y(M,N¢)— Y(M,N)
by the formulae
pr;(E,P,Q)=(E,P,¢-Q) and pr,(E,P,Q)=(E/NZ-Q,P+NZ-Q,Q+NZ-Q).

Under the isomorphism (6) the map pr; (resp., pr,) is induced by the identity (resp.,
multiplication by £) on the complex upper half-plane H. Unwinding the definitions
one easily checks the identities

(8) pry =veope and  pr, =g o g o fig.

The degeneracy maps fu, fle, Ve, V¢, pr; and pr, are finite étale morphisms of
Z[1/M N/]-schemes.

2.3. Relative Tate modules and Hecke operators. — Let N, M and ¢ be as in the
previous section and let S be a Z[1/M N¢p]-scheme. For every Z[1/M N{p]-scheme X
write Xg = X Xz[1/mnep) S and denote by A = Ax either the locally constant sheaf
Z/p™Z(j) or the locally constant p-adic sheaf (cf. [26, Definition 12.6]) Z,(j) on Xet,
for fixed m > 1 and j € Z. Moreover fix an integer r > 0.
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The previous sections yield the following commutative diagram, in which the
smaller squares are cartesian.

(9)

E(M,N)s+—— E(M,N({))s X 0, (E(M(£),N)s) —— E(M(£),N)s —— E(M,N)s
’UM<N\L 'UM,N(Z)J/ l UM(z),Nl v J/'UIM,N
Y (M, N)g <= Y (M, N(£))s ==Y (M, N(£))s —— Y (M(£),N)s —— Y (M, N)s.

Here vas,n, v (o), v and vas n(e) are the structural maps, one writes again v, and 7,
(resp., A7) for the base changes to S of the corresponding degeneracy maps (resp.,
isogeny), and the unlabeled maps are the natural projections.

If Y(-)s denotes one of Y(M,N)s,Y(M(¢),N)s and Y (M,N(¥))s, set
(10) Z(A) = R'..Z,(1) ®z, A and J"(A)=Homu(Z.(A),A).
Here Rv., is the g-th right derivative of v., : E(-)¢t — Y (-)et and one calls

7Y 7(2,)
the relative Tate module of the universal elliptic curve E(-) — Y(-). The perfect
cup-product pairing
T Rz, T — R*v..Z,(2)

and the relative trace R?v..Z, = Z,(—1) give the perfect relative Weil pairing

(11) ) py e T O, T — Z(1),

under which one identifies .7.(—1) with .7* = Homg_ (7., Z,). It is a consequence of
the smooth base change theorem (cf. Corollary 4.2, Chapter IV of [45]) that 7.(A)
and J*(A) are locally constant p-adic sheaves on Y;(N)g, of formation compatible
with base changes along morphisms of Z[1/N M{p|-schemes S’ — S. (This justifies
the choice to suppress the dependence on S from the notations.) Define

L (A) =Tsym 7 (A) and .7 ,(A)=Symm’,.J*(A),

where for any finite free module M over a profinite Z,-algebra R one denotes
by TsympM the R-submodule of symmetric tensors in M®” and by Symm; M the
maximal symmetric quotient of M®T.

Notation. — When Y (-)s = Y (1, N)g is the modular curve Y;(NN)g associated with
the congruence subgroup I'1 (V), and the level N is clear from the context, we use the
simplified notations

(12) L(A) = AN (A), L =%(2Zy), S (A)=S1Nr(A) and S, = S (Zy).

If there is no risk of confusion, we use the same simplified notations to denote the étale
sheaves .21 n(s),r(A) and 71 n(s),r(A) on the modular curve Y (1, N(£))s = Y1(N,£)s
of level 'y (N) N T (24 (N)+1) (cf. Equation (7)).

Throughout the rest of this section let .#" denote either .Z. .(A) or .7 ,.(A). Ac-
cording to the proper base change theorem [45, Chapter VI, Corollary 2.3] and the
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diagram (9), associated with the finite étale morphisms v, and 7 one has natural
isomorphisms

(13) Vi (Fin) = Fune and (Zhn) = FM(e),N+
which induce pullbacks
(14)
vi Hét(Y(M, N)Svﬁ&,N) vy
HE(Y (M, N(0)s, T3 wo) He (Y (M(0), N)s, F3r0),n)
and traces (cf. [45, Lemma 1.12, pag. 168])
(15)
Ve He?t(Y(Mv N)Sv‘?JT/I,N) Vow
HE (Y (M, N(0)s, Fiy o) Hy, (Y(M (), N)s, Zire),n):

Similarly the (finite étale) isogeny A, induces morphisms
(16) Apx yﬁ[,N(@) — ¥y (9&(2),1\7) and A7 :pp (a%@(z),zv) - yX/I,N(Z)'

More precisely, associated with the f-isogeny A, there is a trace Mg, 0o A} — id.
Asvody = vpr n(e), Wwhere v : p (E(M(£),N)s) — Y (M (£), N)s is the first projection,
it induces a map vy N (£)«0A; — v« Applying R! and using the natural isomorphisms
@3 (R'op o), n+Zp(1)) = R'w,Z,(1) and N;Z,(1) = Z,(1), this in turn induces a
morphism R'vas n(0)«Zp(1) — @} (R'var(e),n+Zp(1)), and finally the push-forwards
Ae« which appear in Equation (16). The pullbacks are defined similarly, after replacing
the trace Az o A} — id with the adjunction morphism id = Ay, o Aj. Together with
¢ the previous morphisms give a pushforward

(17) @ = @ex 0 Aex : Hy (Y (M, N (D)5, Fip ne)) — Hee(Y (M (0), N)s, Fip0),n)
and a pullback
®; =\ op; : Hy(Y(M(0),N)s, Zipy n) — Hee(Y (M, N(0)s, Fiy no))-
Define the dual ¢-th Hecke operator
T; = ve o ®j o : Hy (Y (M, N)s, Fiy n) — HL(Y (M, N)s, Ziy )
We also consider the ¢-th Hecke operator
Ty = g0 @puovy : Hy (Y (M, N)s, Fir ) — HL(Y(M,N)s, Fir n)-

As customary, if the prime ¢ divides M N, we also denote by U, and U, the Hecke
operators Ty and T respectively.

For each profinite Z,-algebra R and each finite free R-module M, the evaluation
map induces a perfect pairing

TsympM ®g SymmprM™* — R,
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where M* = Hompg(M,Z,). This defines a perfect pairing ., ®z, ;- — Z,, hence
a cup-product

(18)

(s '>N : Hét(Yl(N)Q,fr(l)) Rz, Hélt,c(Yl(N)Q,yr) I HéQt,c(Yl(N)Q’ Zp(l))

IR

Z

D>

which by Poincaré duality is perfect after inverting p. The Hecke operators T, induce
endomorphisms on the compactly supported cohomology H élmc(Yl(N )a>+), and by
construction Ty and Ty (resp., T; and Ty) are adjoint to each other under (:,-),. In

addition, the Eichler-Shimura isomorphism (cf. Chapter 8 of [60])
(19) Hélt(Yl(N)Q7$r) ®Zp C= MT—O—Q(Na C) S ST+2(N7 C)

(depending on a fixed embedding Z, — C) commutes with the action of the Hecke
operators T, on both sides.
After replacing the left hand square in the diagram (9) with the cartesian square

E(M,Nt)s ——— E(M,N(¢))s

'UM,NZJ J/'UM,N(E)

Y(M,Nb)s ——— Y(M,N(0))s,

one defines as in Equations (14) and (15) the maps pj and py.. For - = 1,£ one can
also define as above morphisms
(20)

. N pr’

Hét(Y(Ma Nf)s, <gsj?\ﬁ/I,NE) = Hét(Y(Ma N)Sv j]?\n/I,N) - Hét(Y(Ma NE)SW ﬁ](/[,NE)a
which according to Equation (8) satisfy the identities

(21) pry, = Vex O pus, PI] = piy oV, Pry, = Ups 0 oo pupe and pry = py o @y oy,

As a consequence, if deg(uy) denotes the degree of the finite morphism py, one has
the relations

(22) deg(iir) Ty = pry, opr} and  deg(s) T} = pry, o pr.

2.3.1. Diamond and Atkin-Lehner operators. — We recall here the geometric def-
inition of the diamond and Atkin-Lehner operators on the cohomology groups
H: (Y (")s,-ZT) (where .ZT are the sheaves introduced in the previous section). For
simplicity we limit the discussion to the modular curves Yj(:) of level T'i(-), and
denote by %, the étale sheaf 77 on Y1(:)s.

For every unit d in (Z/NZ)* the diamond operator (d) : Y1(N)s — Y1(N)g is
the automorphism of Y;(N)s defined on the moduli problem by sending (E, P)
to (E,d - P). Denote by P;(N) the universal point of order N of E;(N)g. The pair
(E1(N)s,d - Pi(N)) is an elliptic curve with I'; (V)-level structure over Y;(N)g, hence
there exists a unique isomorphism (d) : F1(N)s = E;(N)g which makes the following
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diagram cartesian:

(d)
Ei(N)s ——— E1(N)s

’UNJ l’uN
(d)

Yl(N)S —_— Yl(N)S.

This induces automorphisms (d) = (d)" and (d) = (d), of H} (Y1(N)s,.%,) which are
inverse to each other.

Assume in the rest of this Section 2.3.1 that p does not divide NV and that S is a
scheme over Z[1/N, u,]. Set ¢, = €2™/P. For every elliptic curve E denote by E,, the
kernel of multiplication by p and by (-, '>Ep : B, x E, — p, the Weil pairing. Since
p1 N the curve Y7 (Np) classifies triples (F, P, @), where E is an elliptic curve and P
(resp., Q) is a point of exact order N (resp., p). (More precisely a pair (E, Py,), where
E is an elliptic curve over and Py, is a section of exact order Np, corresponds in the
above identification to the triple (E,p - Pnp, N - Pnp).) The Atkin-Lehner operator
wp = we, : Y1(Np)s = Y1(Np)s is the automorphism of Y1 (Np)s defined by

wP(EaP7Q) = (E/ZQaP+ZQ7QI+ZQ)7
where Q' € E, is characterized by (Q, Q") B, = (p. There is a natural commutative
diagram

Er(Np)s —— w}(E1(Np))s —— By(Np)s

W{ J lw

Wp
Y1(Np)s =———=Y1(Np)s —— Y1(Np)s,

in which the right-hand square is cartesian and b, is a degree-p isogeny. As in Equa-
tions (13)—(17), associated with the previous diagram one has a Atkin-Lehner oper-
ator

* %

wp + Hy (Y1(Np)s, F7) — Hey(Yi(Np)s, wy(Fr)) —> H (Yi(Np)s, F7)

and a dual Atkin-Lehner operator

Wpx Wpx

w) s By (Yi(Np)s, Zr) 225 Hiy (Y1 (Np)s,wi(F)) 25 Hiy(Vi(Np)s, 7).

More generally, let @ be a divisor of Np such that @ and Np/Q are coprime. After
replacing the pair (p, N) with (Q, Np/Q) in the previous construction, one defines
the Atkin-Lehner operators wg on H} (Y1(Np)s, Z).

2.4. Deligne representations. — Let
F=>"an(f)q" € Sk, xy)
n>1

be a normalized cusp form of weight k£ > 2, level I'; (V) and character xy. Set
N, = N/p°*4%»(N) and assume that f is an eigenvector for the Hecke operator T for
every prime £ { N,. (In particular f is an eigenvector for U, if p divides N.)
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Let L/Q, be a finite extension containing the Fourier coefficients of f. Define
(23) HL(YA(N) gy Zo—a(1))r, —> V()

to be the maximal L-quotient on which 7, and (dY = (d), act as multiplication
by a;(f) and x¢(d) respectively, for all £ { N, and (d) € (Z/NZ)*. If f is new of
conductor N then V(f) is the dual of the Deligne representation of f: for every
prime ¢t Np an arithmetic Frobenius Frob, € Gq at ¢ acts on it with characteristic
polynomial

det (1 — Frobe|V(f) - X) =1 —ae(f) - X + xs(€) - €571 X2,
In general V(f) & @;_, V(fP"™) is (non-canonically) isomorphic to the direct sum of

a finite number of copies of V(fP"™), where fP*™ is the primitive form (of conductor
a divisor of N) associated with f. Dually let

VA (f) = Hg ((Yi(N)q, La-2)r

be the maximal L-submodule on which the Hecke operators T; and (d) = (d)" act
as multiplication by a,(f) and x(d) respectively, for every prime ¢ { N, and unit d
modulo N. (Since f is cuspidal, one can replace the compactly supported cohomology
Hj, . with the full cohomology H}, in the definition of V*(f).) If f is new of level N

ét,c
then V*(f) is the Deligne Gq-representation of f. In general V*(f) = @7_, V*(fP"™)
for a positive integer a.

Because (by construction) 7, and (d)” are respectively the adjoints of 7, and (d),
under the morphism (-, ), defined in Equation (18), the latter induces a pairing

(24) (VI @ V() — L,
which is perfect by Poincaré duality [45, Chapter VI].
2.5. Comparison with de Rham cohomology. — Let A be a subring of C,. Write

v: E — Y for one of the universal morphisms vys,n et cetera that as been previously
introduced. Denote by

ydR = ydR(v) = RIU*(ﬁE — QIE/Y)
the relative de Rham cohomology of E/Y and for every r > 0 set
<5ﬂdR,,« = Symm’"ﬁy YdR.

Let w = v*Q}E % be the invertible sheaf of relative differentials on E/Y. The vector
bundle .#4R is equipped with the Hodge filtration

0—>£—’ydR—’£_1—>O

and with an integrable Gauf-Manin connection V : .%4r — Y4r Qay Q%, K For all
r > 0 these give rise to the Hodge filtration

(25) W e— = W ® SR r—1 —— LdR,r

and to an integrable connection on .74 ,, denoted again by V.
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Set Zyr = Homg, (F4r, Oy) and ZLyr,» = Tsymy,, Zyr, equipped with the in-
duced Hodge filtration and integrable connection (denoted again by V). If % = ., ¥
define the de Rham cohomology groups

; ; v
Hig (Y, Zar,r) = B (Y, Zarr — Far,r @0y Uy i)

(where the complex F4r , v, Far,r oy Q%, /K is concentrated in degrees zero and

one). As in Section 2.3 one defines on HgR(Y, Zar,r) Hecke operators Ty and T, for
every prime ¢ (when Y = Y (M, N)), and diamond operators (d), for every unit d
of Z/NZ (when Y = Yy (N)).

Taking A = Q,, the comparison theorem of Faltings-Tsuji [25, 61] (and the Leray
spectral sequence for vy, cf. the proof of [11, Lemma 2.2]) gives a natural, Hecke
equivariant isomorphism of filtered Q,-vector spaces

(26) Dar (Hz(Y1(N)q,: #1)Q,) = Hip(Y1(N)q,, Far.r);

where Dyr(-) = H°(Q,, - ®q, Bar) with Bgr Fontaine’s field of p-adic periods, and
the filtration on the de Rham cohomology arises from the Hodge filtration on Zyg (cf.
Equation (25)). Denote by M, 2(N, Z) the Z-module of modular forms of weight r+2,
level I'1 (V) and integral Fourier coefficients, and set M, (N, R) = M, 2(N,Z)®z R
for every ring R. It then follows that canonically

(27) Fil' Dar (H (Y1(N)q,,-77)Q,) ©q Qun) = M, 45(N, Q,) ®q Q(un)

for every 1 <i < k —1 (cf. [11, Lemma 2.2]). Under the isomorphisms (26) and (27)
the space Fil' Hiy (Y1(N)q,-Zar,») corresponds to the image of M, 2(N,Q) under
the Atkin-Lehner operator wy.

Let f and L/Q, be as in the previous section and assume that L contains Q(un).
Define

Var(f) — Hir(Yi(N)q,, Yark—2)1L
to be the maximal submodule on which T, and (d), act respectively as a¢(f) and
Xf(d) for every prime £{ N, and every d € (Z/NZ)*, and dually (cf. Section 2.4)

Hir(Yi(N)q,, Zk—2(1)) — Var(f)-

(Here Zar,r(j) = Zar,r as flat sheaves and Filide’r(j) = Filiﬂdem.) The com-
parison isomorphism (26) gives

(28) Dar(V(f)) = Var(f) and Dar(V*(f)) = Vir(f),
and Equation (27) implies that they restrict to canonical isomorphisms
(29) Fil’Vyr(f) 2 Sp(N, L) and Fil'Vig(f) = Sk(N,L);.

Here f* =3 5 an(f) - q" € Sk(N,Xy) is the dual of f and Sk(N,L). denotes the
L-module of cusp forms in Si (N, L) which are eigenvectors for the Hecke operators T
and (d), with the same eigenvalues as -, for all primes ¢ f N, and units d in Z/NZ.
One denotes by

(30) wy € Fil'ViR(f)
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the element corresponding to f under the second isomorphism in Equation (29).
The pairing (24) and the isomorphisms (28) induce a perfect duality

(31) () Var(f) ®c Var(f) — Dar(L) = L,
which together with the isomorphisms (29) gives rise to perfect pairings
(32) ()5 Sk(N, L) - @ Vi (f)/Fil' — L

and  (-,-); : Var(f)/Fil’ ®L Sk(N,L); — L,

under which we often identify Vi (f)/Fil' with the L-linear dual of Sk(N,L)y-.
Denote by

(33) fU=wn(f) = N1 (N2)7F - f(=1/N2)
the image of f under the Atkin-Lehner isomorphism

wn : Sp(N, x7) = Sk(N, Xy)

and define

(34) 1y € Vi (f)/Fil'

to be the element which represents the linear functional
(fw7 ! )N

35 Jp=—"-"—:S5,(N,L)s; — L.

(35) I TTT. (N, L)y

Here (1, V)N = [Iy, ()0 ﬂ(z)u(z)ykdz# (with z = x + 4y) is the Petersson scalar
product on Si(IN, C). The a priori C-valued functional J; indeed takes values in L
(cf. [33, Proposition 4.5]).

Assume that ord,(IN) < 1, that p does not divide the conductor of xy, and
that a,(f) is a unit in €. Then the Gq,-representations V'(f) are semistable,
viz. Dar(V'(f)) = D& (V' (f)). It follows that Dar(V"(f)), hence Vi (f) by Equa-
tion (28), are equipped with an L-linear Frobenius endomorphism ¢. Enlarging L if
necessary, let ay € 0* be the unit root of the Hecke polynomial

hip=X2—ap(f) - X +xs )P = (X —ay) - (X - By)

of f. As proved in [58] the characteristic polynomial of the Frobenius endomorphism
¢ acting on Vi (f) is a power of hy,, and

(36) Vir(f) = Fi'ViR () @ Vir (£)9=7.
As a consequence 7y lifts uniquely to a differential
(37) ng € Var(f)*=%.
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3. Diagonal classes

Notation. In this section Y71(N) = Yi(N)q denotes the modular curve of
level T1(N) = I'(1,N) over Q and .7 = J; n denotes the relative Tate module
of the universal elliptic curve E1(N) = E1(N)q (cf. Equation (10)).

Fix a geometric point n = ny : Spec(Q) — Yi(N) and denote by Gy =
75 (Y1(N),n) the fundamental group of Y7 (V) with base point 1. Then the stalk .7,
of 7 at n is a free Z,-module of rank two, equipped with a continuous action of Gy.

Choose an isomorphism of Z,-modules ¢ : .7, = Z, ® Z, satisfying (cf. Equation (11))
(38) (,9) g, =E&(x) NEW)

for every z,y € 7, (where one identifies A’ Z2 and Z, via (1,0) A (0,1) = 1) and
denote by
on : Gn — Autz, (7)) = GLa(Zy)

the corresponding continuous group morphism. According to Proposition A 1.8 of
[26] the map which sends .Z to its stalk .%, gives an equivalence between the cate-
gory of locally constant p-adic sheaves on Y;(N)e and that of p-adic representations
of Gn. Then restriction via gy allows to associate with every continuous represen-
tation of GL2(Z,) into a free finite Z,-module M a smooth sheaf M®' on Y;(N)
satisfying M* = M.

Let S;(A) be the set of two-variable homogeneous polynomials of degree i
in Afz1, z2], equipped with the action of GLy(Z,) defined for every g € GL2(Z,) and
P(z1,x2) € S;(A) by

gP(x1,23) = P((z1,22) - 9),
and let L;(A) be the A-linear dual of S;(A), with GLg(Z,)-action defined
by gu(P(z1,z2)) = plg'P(x1,22)) for every g € GL2(Z,), p € L;(A) and
P(z1,x2) € S;(A). Then (as sheaves on Y1(IN)q) one has (cf. Equation (12))

(39) L(A) = Li(A)*  and  Z(A) = Si(A)*.

In particular 7, is isomorphic to Lq(Zp), hence Z,(1), = A’ Ty = det™!, where
det’ : GLy(Zp) — Z; is defined by det’(-) = det(-)? for j € Z. As a consequence, for
every j € Z and every p-adic representation M of GLy(Z,):

(40)  H°(GL(Z,), M ® det™) — H°(Gn, M ® det™7) = HY, (Y1(N), M*(j)).

Let » = (r1,72,73) € N3 be a triple of nonnegative integers satisfying the following
assumption.

Assumption3.1. — 1. ry +ro+7r3 =271 with r € N.
2. For every permutation {3, j,k} of {1,2,3} one has r; +r; > 7.

Let S, denote the GLy(Zj)-representation S, (Z,) ®z, Sr,(Zp) ®z, Sr,(Zy), which
we identify with the module of six-variable polynomials in Z,[x,y, z] which are ho-
mogeneous of degree 71, ro and r3 in the variables * = (z1,22), ¥ = (y1,¥2) and
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z = (21, 22) respectively. Following the Clebsch-Gordan decomposition of classical
invariant theory, define (cf. Assumption 3.1)

T—7T3 T—T2 T—7T1
T, T T x
(41)  Det}y = det o cdet [Th 77 Cdet (V1 P2 ,
Y1 Y2 21 22 21 22

which is a GL2(Z,)-invariant of S, @ det™":

Dethy € H°(GLy(Z,), Sy ® det™™").
After setting .7, = 7, (Z,) ®z, S,(Zyp) @z, Sr,(Zyp), denote by
(42) Detly € HY (Y1(N), Zp(r))
the class corresponding to Det}, under the natural injection (40). Let

pj : Yi(N)® = Yi(N)
be the natural projections, let
T =015 (Lp) ®z, 557, (Zp) @z, P55, (Zp)

and set

Wy = Hg (Yi(N)g, Sn) (r + 2).
Since Y1(N)gq is a smooth affine curve over Q one has

Hg(Y1(N)g, S (r +2)) =0,
hence the Hochschild-Serre spectral sequence
HP(Q, HE, (Y, S (r +2))) = HE ' (Yi(N)?, S0 (r +2))
defines a morphism
HS : Hyy (Yi(N)?, S (r +2)) — H'(Q,Wy,q).

Let d: Y1(N) — Y1(N)3 be the diagonal embedding. As

EY"(N) = ET(N) Xy, (n)s Y1(N)
is isomorphic to the base change of u% : ET(N) — Y;(N)? under d, there is a natural
isomorphism d*.7},) & .7, of smooth sheaves on Y; (V). The codimension-2 closed
embedding d then gives a pushforward map

dy : Hy(Yi(N), Z(r)) — Hg(Yi(N)?, S (r + 2)),

and one defines the diagonal class of level N and weights r + 2:
(43) kN, =HSod.(Dethy) € H(Q,Wy )
as the image of Det; under the composition of d. with HS. Let Wy » = Wy » ®z, Qp
and let H},.(Q, W) be the geometric Bloch-Kato Selmer group of Wy, over Q, viz.

geo
the module of classes in H!(Q, Wy ) which are unramified at every prime different

from p, and whose restrictions at p belong to the geometric subspace

Hyoo(Qp, Wi r) = ker (H'(Qp, Wn,») — H'(Qp, Wi r ®q, Bar))
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(cf. [16, Section 3]). The results of [50] (cf. the proof of Theorem 5.9) yield the following
crucial proposition.

Proposition 3.2. — The class iy, belongs to Hy.,(Q, W »).
The bilinear form det” : L;(Z,) ®z, Li(Z,) — Z, ® det™ defined by

det*(p®v) = p @ v((z1y2 — 2211)")

for all p, v € L;(Z,) becomes perfect after extending scalars to Q,, hence induces an
isomorphism of GL2(Z,)-modules

si 1 Si(Qp) = Homq, (Li(Qy), Qp) = Li(Q,) ®z, det’.

Under the equivalence -¢* this corresponds by Equation (39) to an isomorphism of
sheaves

(44) S; x(Qp) = Z(Qp) ®Zp Zp(_i)'

Define the sheaves %, on Y1(N) and %, on Y1(N)? as above, and set
(45) VN = HE(V(N)g, Zr)2—7) and Vn, =Vn, ®z, Qp
The tensor product of the Sy, gives an isomorphism s, : Wy » = Vi p. Set

(46) RN,» = sr*(RN,’r') S Hgleo(Q7 VN,T‘)'

Remarks 3.3. — 1. We strived to define diagonal classes with values in the represen-
tations Vi n, as the corresponding cohomology groups are those which are extensively
studied in the literature (cf. Sections 4 and 5).

2. For every 0 < j < i denote by [z1,22]; the projection of 257 ® ¥/ in 5;(Q,).
Then [z1,72]; is a Qp-basis of S;(Q,) and one writes [z, 2]} for the dual basis
of L;(Qp). A direct computation shows that s; : S;(Q,) = L;(Q,) is given by the
formula

(17 (}) - sulferszay) = fon, sl

Set k=11 +2,] =ry+ 2 and m = r3 + 2, and consider three cuspidal normalized

modular forms

f:Zan(f)qn ESk(N7Xf)7

n>1

9= an(9)-¢" € Si(N,xy),
n>1

h=" an(h) 4" € Sn(N, x)
n>1

of level I'; (), weights k,! and m and characters x¢, xy and xp. Assume in the rest
of this section the following
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Assumption 3.4. — 1. The triple (f, g, h) is self-dual, that is xy - Xq - xn = 1.
2. The forms f, g and h are eigenvectors for the Hecke operators Ty, for every £1 N.
3. If p divides N then f,g and h are eigenvectors for the Hecke operator U,.

Note that Assumption 3.4.1 implies Assumption 3.1.1, id est that k + [+ m is an
even integer. Moreover, Assumption 3.1.2 states that the triple (k,l,m) is balanced
(with the terminology introduced in Section 1.1). Set

(47) V(f.9,h) =V(f)@LV(g) ®L V(R)((4—k —1—m)/2).

The Kiinneth decomposition and projection to the (f, g, h)-isotypic component give
a morphism of Gg-modules

(48) prfgh :VN,'r ®QPL %"V(fhgah)
and one defines the diagonal class associated to the triple (f, g, k) by

K(fhg? h) = prfgh(’ch,'l‘) € Hgleo(Q7 V(f?g’ h))

3.1. The explicit reciprocity law (cf.[13]). — Let » and (f, g, h) be as in the previous
section. In particular » and (f, g, h) satisfy Assumption 3.1 and Assumption 3.4 re-
spectively. In addition, assume in this section that ord,(N) < 1, that the conductors
of xf, xg and Xy, are all coprime to p, and that the forms f,g and h are p-ordinary
(viz. their p-th Fourier coefficients are p-adic units).

Lemma 3.5. — For e in {geo, fin, exp}, the Bloch-Kato local conditions

H.(Qp, V(f,9,h) — H'(Qy, V(f,9,h))
(cf. [16, Section 3]) are all equal.

Proof. — Set w = (k,l,m). For £ = f, g, h, denote by &* the newform of conductor
N¢|N and weight v = k,l, m associated to £, and set

V=V(eLV(g)eLVHh)((4—k—1-—m)/2).

Since V(&) is isomorphic to the direct sum of a finite number of copies of V' (&*) (cf.
Section 2.4), it is sufficient to prove the statement after replacing V (f, g, h) with V.
Moreover, since V is isomorphic to its Kummer dual V* = Homp,(V, L(1)), it is suffi-
cient to prove that HL (Qp,V) equals Hg (Qp, V) (cf. Proposition 3.8 of [16]). Ac-
cording to [16, Corollary 3.8.4], the quotient Hg (Qp,V)/Hg,,(Qp, V) is isomorphic
to D/(¢ — 1)D, where D is the crystalline module Deis(V) = H°(Q,,V ®q, Beris)
associated with the restriction of V' to Gq,, and ¢ is the crystalline Frobenius acting
on it. We are then reduced to prove the claim

(49) D#=t = .
The assumptions ord,(N) < 1 and p { cond(x¢) guarantee that V(%)) oo s
Q

D

semi-stable, hence so is . Denote by Dg = , ® st) an
i ble, h i V|G D by Dg (& HO Qp, V(& Q, B d
Qp
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Dy = H°(Q,,V ®q, Bst) the semi-stable Fontaine modules of V(§”)|G and V|
Qp Qp

respectively. One has
Dy (§') = L-ag @ L - be,

where a;¢ and bg are p-eigenvectors with eigenvalues a,(£#) ™1 and p' ~“x¢(p) "ta,(£)
respectively (cf. Section 2.5). Moreover the monodromy operator Ng on Dy (&) is
zero if p { N¢, and satisfies Ne(ag) = be and Ng(be) = 0 if p || Ne. Consider the
set By, = {a,,,b,, : - =0, f,g,h} of elements of

Dyt = Dy (f*) ®L Dst(g*) ®L Dst(h*) ®q, Deris(Qp((4 —k —1—m)/2))
defined by
a, =a;@a,@a, @t al by @a, @a, @ T2,
bl = af®b, @b, ® {A=k—l-m)/2, b, =b; @b, @b, ® f4—k—1-m)/2

et cetera, where ¢ is the canonical generator of De;is(Qp(1)). Then B, is an L-basis

of p-eigenvectors of Dy, with respective eigenvalues &, = {a,,8, : - = 0, f,g,h},
where
Y - PO ()
w = ’ - ’
ap(f*)ap(g*)ap(h*) Y xs(pap(gt)ap (h?)

ad and ol are defined similarly, and 3;, is defined by the equality
prog, B, =1
Since the forms f, g and h are ordinary and w is balanced, one has
ord,(8;,) < 0 < ordy(a%,) < ord,(ay,)

for - = 0, f,g,h and £ = f, g, h. In particular the L-module D&="' (hence D®=1) is
contained in the space generated by the eigenvectors a$, for ¢ = £, g, h.

Definee¢ € {0,1} to be 1 (resp., 0) if p divides (resp., does not divide) the conductor
N¢ of € = f,g,h, and set €, = € + €4 + €5,. According to Theorems 4.5.17 (namely
the Ramanujan-Petersson conjecture) and 4.6.17 of [47] one has

o = plov- e

for £ = f,g9,h, where ||OO denotes the complex absolute value. As a consequence

th:l vanishes if e, =0 or g, = 2. If g, = 1, say €5 = 1, then D;i:l is contained

in L-ag @ L-a”. On the other hand, the monodromy operator N on D, satisfies
N(a%) =b! and N(al)=Db9,

hence D:}ZI’N:O vanishes in this case. Finally, if ¢,, = 3, then
N(af,) = b, + b

for each permutation (¢,¢,¢") of (f,g,h), hence D¥=! = D;’fl’N:O = 0 also in this
case, thus proving the claim (49). O
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It follows from the previous Lemma 3.5 that, upon setting
(50) Var(f,9,h) = Var(f) ®r Var(g) ®L Var(h) (4 — k — 1 —m)/2),
the Bloch-Kato exponential and the isomorphism (28) give an isomorphism

expy : Var(f, 9, h)/Fil° = Hyoo(Qyp, V(f,9, h)).
Similarly for the dual representations define
(51) Vir(f:9,h) = Var(f) @1 Vir(9) @1 Var () ((k + 1 +m —2)/2).
Then the perfect dualities (31) (for f, g and h) yield a natural isomorphism
Var(f, 9, h)/Fil’ = Fil°Vir (f, 9, 1),

where -V = Homp (-, L). Its composition with exp,, ! defines an isomorphism

(52) 1ng : Hgleo(Qpa V(fag) h)) = FﬂOVd*R(fvg, h)v

For every global Selmer class  in Hy,,(Q,V(f,g,h)) one simply writes log, () as a
shorthand for log,,(res,(k)).

Denote by w, € Fil' 'V (9) and wy, € Fil™ 'V (h) the differentials corre-
sponding to g and h respectively under the isomorphism (29), and recall the class
n¢ € Vir(f)#=% defined in Equation (37). Since Fil'Vi5 (f) equals Vi (f) and
I+m—22>(k+14m—2)/2 by Assumption 3.1(2) one has
(53) N} ® wg ® wy, € Fil'ViR (£, g, h).

Assume in the rest of this section that p does not divide V. For every s in Z denote
by

M;(N,L) C Z,[q] ®z, L
the space of p-adic modular forms of weight s and level I'; (V) defined over L. Let

Ss(Na L) Ccq- ﬁ[[q]] ®ZP Qp

be the subspace of cuspidal p-adic modular forms. M (N, L) contains naturally the
space M, (I'1(N,p), L) of classical modular forms of level I'; (N,p) = I'y(N) N Ty (p)
and g-expansion in L[g]. It is equipped with the Hecke operators U = U, and V =V,
which are described on g-expansions by

U(Zan-q")ZZanp.q” and V(Zan.q")zzan,qm

n>0 n>0 n>0 n>0
respectively. Serre’s derivative operator d = ¢ - d% on L[q] restricts to a morphism
d: M(N,L) = Mgi2(N, L).
For every s > 2 Hida defined in [33] an ordinary projector
€ord : Mg(N, L) —» M (T'1(N,p), L)
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onto the space M* (T (N, p), L) of classical ordinary modular forms of level I'; (N, p),
which is a section of the natural inclusion M¢*(T'y(N,p), L) — M,(N, L). Given
S € Sl(rl(va)aL) and ¢ € Sm(Fl(N7p)7L) set

EA(E, 1) = eopa (AP T2l ) € SPTYT (N, p), L),

where [Pl and d(F—1=m)/2¢[P] are defined as follows. Note first that t = (k—1—m)/2is a
negative integer by Assumption 3.1. The p-depletion £[P) € S;(N, p) is defined by £[P] =
(1 —VU)E. If £ has g-expansion Zn>1 an(€) - ¢ then

¢lel = Z an(€) - ¢,
(n,p)=1
hence the limit of p-adic modular forms

dté*[p] — lim dt+(p*1)p”£

n—oo

defines a p-adic modular form of weight I+ 2t such that d—*(d*¢P!) = ¢l and d*¢lP! x ¢
belongs to Si(N, L).

Let £ € Si(N, xe, L) be a eigenvector for the Hecke operators Ty, for all primes
¢ { N. Assume that ¢ is p-ordinary, viz. T,(§) = ap(€) - € for a unit ap(§) in O*.
Let a¢ and (¢ be the roots of the p-th Hecke polynomial X2 — a,,(€) - X + x¢(p)p"~—*
of £. Enlarging L if necessary, assume that a¢ and (¢ belong to L, and order them
in such a way that oy € 0" is a p-adic unit and gy € pF~1. 0*. Then the (ordinary)
p-stabilization of &:

(54) €a(q) = €(q) — Be - £(a”) € SPA(T1(N, p), xe)

is a normalized eigenvector for the Hecke operator Ty, with the same eigenvalue as &,
for every prime £ { Np, and is an eigenvector for U, with eigenvalue c,. Taking £ to
be one of f,g,h and f* = wy(f) gives rise to the p-stabilized forms f, gn, ho and
f = (f")q in Sk(T'1(N,p), L). Define (cf. Sections 2.5 and 6)

(f;u’ Ezrd(g7 h))NP L
(f&vaf:xﬂ)Np Sl

In [13] we proved the following ezplicit reciprocity law. Its proof uses the ideas and
techniques introduced in [11, 20, 12, 43]. In particular it relies on Besser’s general-
ization of Coleman’s p-adic integration and the work of Bannai-Kings, Nekovar and
Nizio [48, 51, 52, 15, 16], which forces the assumption p{ N in the statement.

(55) gpf(favgaaha) =

Proposition 3.6 ([13]). — Assume that p does not divide N, and that the eigenforms
f,g9 and h are p-ordinary. Then

Ing(R(fug7h))(n? ®wg ®wh) = E(fvg7h) : gpf(fa7ga7ha)7

where
Cornte = (1-2) (1~ 2)

1 o) (1 Srog) (71— Soflgn) (1 - B2 )

E(f,g,h) = (
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3.2. Comparison with Gross-Kudla-Schoen diagonal cycles. — This section elucidates
the relation between the diagonal classes introduced above and the Gross-Kudla-
Schoen diagonal cycles. It will not be used in the sequel of this paper.

Let the notations and assumptions be as in the previous section. In this section
only we also assume r; > 1 for j = 1,2,3. As in [20, Section 3.1] fix three subsets
A={a,...,ar,}, B=A{b1,...,b,} and C ={c1,...,cr, } of {1,...,7} of cardinali-
ties 71, ro and r3 respectively, such that ANBNC = (). This is possible by Assumption
31.For 1 <j<r,letp;: Ef(N)=Ei(N) Xy, (n) - Xyy(v) B1(N) — Eq(N) be
the projection from the r-fold fibered product of E;(N) over Yi(N) onto its j-th
component. Define
(56) tnr = (paspi,pc) : Bf(N) — E{(N) & B} (N) xq Ef*(N) xq Ey*(IV),
where ps = pa, X -+ X pa,, : E{(N) — E"(N) and pp and pc are defined
similarly. Then ¢y, = tn,4,B,c) I8 a closed immersion of relative dimension
dim ET(N) —dim E](N) =r +2, and one defines the generalized Gross-Kudla-
Schoen diagonal cycle of level N and weights r 4+ 2 (cf. Section 3 of [20]) as

(57) AN = v (B{(N)) € CH™(ET(N)),
where CH’ (+) is the Chow group of codimension-j cycles in - modulo rational equiv-
alence.

For i € N denote by &; = pb x ¥; the semi-direct product of ué = {£+1}* with
the symmetric group ¥; on i letters. The permutation action of ¥; on E!(N) and
the action of us on E1(N) induce an action of &; on E!(N). Define the character
¥i 1 &; — {£1} by ¢;(s1,...,8,0) =sgn(c)-s1---s;, and set &; = 7 > ges,; Vil9)
g. Then ¢; gives an idempotent in the ring Corr(E?(N))q of correspondences on E%(N)
with rational coeflicients. Set e, = &, ® €., ® &, € Corr(ET(N))q. The Lieberman
trick (cf. the proof of Lemme 5.3 of [23]) shows that e, kills the cohomology group
Hgt (ET(N)q,Qp) for every j # 2r + 3, hence the image

cley(er - Any) € HITHET(N), Qp(r +2))
of €, - An,» under the cycle class map
cle : CH"™ (BT (N))q — H T (ET(N), Qu(r +2))
belongs to
Fil’ H2 (BT (N), Qp(r + 2))
= ker (HZ (BT (N), Qy(r +2)) ™ HE (I (N)q, Qy(r +2))) .

where 7 : ET(N)q — ET(N) is the projection. As a consequence one can consider
the Abel-Jacobi image

AJf;t (er - Any) =HSoclet(er - Anyr) € H'(Q,er - HgtrJrg(EI(N)Q’ Qy(r +2)))
of €, - Ay, under the composition of the cycle class map cle; with the morphism

(58) HS:Fil"HZ " (ET(N),Qu(r +2)) — H'(Q, Hy "*(ET(N)q, Qp(r +2)))
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arising from the Hochschild-Serre spectral sequence. According to the Lieberman trick
the Leray spectral sequence associated with the structural map ET(N) — Y;(N)3
induces a natural isomorphism

(59) Ly i ep HI (BT (N)qy Qp(r+2)) = Hgy (Vi(N)g, 1) @2, Qp(r+2) = Wi
Denote by

Lo+ H'(Que0 - H 3BT (N)q, Qu(r +2))) = H'(Q, Wi, »)
the isomorphism induced in Galois cohomology by L.

Proposition 3.7. — The image of AJ;t(S,,. - AN.p) under the isomorphism Ly, is equal
(up to sign) to By p.

Proof. — To ease notation set E° = E;(N), Y = Y1(N), tr» = tn,, and denote
by u” = u} the structural morphism

uh xqulg xqui : ET(N) — Y1(N)>.
Let ¢, : E” — E?" be the proper morphism defined by

[’T(Pla"'ap'l‘) = ({Paj},{ij},{ch}),

so that ¢, is the composition of ¢, with the natural map d, : E?" — E".
Define

#* = R*u?Z,, %" =R¥u.Z, and %" =R¥u"Z,.
Then ¢+, induces relative pull-back and pushforward maps
9 R (r) — Z, and O, :Z, — Z*(r)
which are adjoint to each other under the perfect relative Poincaré duality
B (r) @z, X" (r) — R uZ,(2r) 2 Z,

induced by the cup-product pairing. (They induce on the stalks at a geometric
point y : Spec(Q) — Y the pull-back HZ (EZ,Zy(r)) — HZ(E},Zy(r)) = Zy
and push-forward Z, = H{(E;,Z,) — HZ (E.",Z,(r)) associated with ¢, x, Q
respectively.) The Leray spectral sequences associated with the morphisms u?" and
u” identify the Q,-linear extensions of HY, (Y, %" (r)) and H4 (Y3, %) (r + 2)) with
direct summands of HZ (E?",Q,(r)) and H; t*(E™, Q,(r + 2)) respectively. (This
is again a consequence of the Lieberman trick, cf. [23].) By the functoriality of the
Leray spectral sequence, under these identifications ¥,, and d, are compatible with
the absolute push-forward maps attached to ¢, and d,, viz. the following diagram is
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commutative:
(60)
D s d
Qp HQ(Y, %% (r))q, ———— HL(Y?, 2" (r + 2))q,
LeraYl Lerayl
d’f‘* r r
Hgt(ET Q) S Hzr(Ezr, Qy(r)) ——— Hé2t +4(E ; Qp(r +2)).

On the other hand the compatibility of the cycle class
cley : CH(ET)q — Hi T(E™, Qy(r +2))

with proper push-forwards and the definition of the diagonal cycle A, = Ay, yield
the identities

clet(Ar) = clot 0 bps(ET) = (1) = dips 0 114 (1).
In addition, using again the functoriality of the Leray spectral sequences, one has the
commutative diagram

HA (V3,27 (r 4+ 2))q, ——s HA (Y3, S (r + 2))q, — = HL(Q,W,)

LerayJ/ J/Leray

Fil’ 2+ (B, Q,(r + 2)) HY(Q, &, - H T (EL, Qp(r +2))),

where ppy) : R [r] is the natural projection and W, = Wy .. Since &, acts as
the identity on .#},, the previous three equations prove that (cf. Equation (59))

L,,.*(AJ?(E,.-A,,.)) = HS 0 p[p) 0 dy 0 Vpu(1).

After setting Det” = Det?;, to conclude the proof of the proposition it is then sufficient
to show that

(61) Det” = pp 0¥, (1) € Hegt(Y, (1),

where p, : #%"(r) - Z,(r) is the natural projection. Let S = S1(Z,) be the stan-
dard representation of GLg(Z,). Recall the geometric point n : Spec(Q) — Y
and the isomorphism ¢ : Z, = S ® det™' fixed above (cf. Equations (39)
and (44)). The GLy(Z,)-representation %> (r), contains S®?" ® det™" as a di-
rect summand, and p,:Z* (r), — S»(r), = Sr ® det™" is the composition of
pr: %’”(r)n — 8% @ det™" and the mnatural projection pr, : S®?" @ det™ —»
S @ det™". Let 92, : Z, — %*"(r) be the relative push-forward associated
(as above) with the morphism E" — E?" which sends the point (Pi,...,P,)
to (P1, Py,..., P, P.). Then

(62) Gy = 0p 090,
where 0, = 04, p ¢ is any fixed permutation of {1,...,2r} satisfying
UT(Pl,Pl,.. PT,P)—( a1y Parl Pbla---7PbT27Pc1a---aPcr3)
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for every point (Py,...,P.) of E". The image of 1 under the composition
prody, : Zp = Hgt(Ef;, Z,) — Hgtr(Ezry Zy(r)) = %QT(r)n — S @ det ™"

(where one writes again 99, for the morphism induced by ¥¢, on the stalks at ) is
equal to

Fr:($®y_y®m)®ra

where « and y give a Z,-basis of S C Z, [z, y]. It then follows by the definition of Det”
(see Equation (42)) and Equation (62) that in order to prove the claim (61) is it
sufficient to prove (setting Det” = Det}y)

(63) Det” = pr,. 0 0, (F).

The previous formula is easily verified if 7 < 2 or r = (2,2,2) (hence r = 3). Assume
now r > 3 and r # (2,2,2). Then at least one of [ANB|, |ANC| and |BNC)| is greater
or equal than 2. Without loss of generality one can then assume 7o = min{ry,rs,73}
and that the sets A and C are of the form

A={1,ras3,...,a,,} and C={c1,...,crs—2,1,7}.

Let s = (r1 — 2,79,73 — 2) and s = r — 2. Then s satisfies Assumption 3.1 and
one can chose as above a permutation o5 = 04, g,c, of {1,...,2- (r — 1)} relative
to A, = {as,...,ar,—1}, B and C, = {c1,...,¢r,—2}. Extend o5 to a permutation
(denoted by the same symbol) of {1,...,2r} by o5(i) = i fori = 1,2,2r—1, 2r Without
loss of generality one can then assume that o, = 04, ¢ is the composition of o5 with
the permutation o, s of {1,...,2r} defined by 0,5(2) = 2r — 1 and o,5(i) = i
for i # 2,2r — 1, hence by induction on r one has

2
pr,. © 0 (Fy) = pr,. 0 0p(s (F1 ® 05(Fs) ® F1) = det <m1 ”) - Det®.
21 22

Since r —ry = s—s3+2and r —r; = s —s; for j # 2, this proves Equation (63), and
with it the proposition. O

4. Big étale sheaves and Galois representations

Sections 4.1 and 4.2 collect the technical background entering the construction of
the three-variable diagonal class of Theorem A. In particular they present a slight
extension of the overconvergent cohomology theory developed by Ash-Stevens and
Andreatta-Iovita-Stevens in [6, 3].

Notation. In this section N is a positive integer coprime with p. Set I' = ' (N, p),
let Y denote the affine modular curve Y; (N, p) of level I' defined over Z[1/Np| and
let w: E — Y be the universal elliptic curve E;(N,p). Denote by C, the universal
order-p cyclic subgroup C1(N,p) of E1(N,p).
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4.1. Locally analytic functions and distributions. — Let L be a finite extension of Q,
with ring of integers ¢ and maximal ideal m = 7 - 0. Let W be the weight space
over Qp, viz. the rigid analytic space over Q, which parametrises the continuous
characters of Zj. It is isomorphic to p — 1 copies of the open unit disk, indexed by
the powers w’ of the Teichmiiller character w : Fy — Z%. We identify Z x Z/(p —1)Z
with a subset of W(Q,,) by sending the pair (n,a) to the character (n,a) : Z; — Z;
defined by (n,a)(u-w) = u™-w® for every u € 1+ pZ, and w € F;. Given x € W and
z € Z;, we often write 2" for x(z).

Let U C W be a connected wide open disk defined over L. Write U N Z for the set
of characters in U(Q,) of the form (n,4y) for some n € Z with n(mod p — 1) = iy,
where iy € Z/(p — 1)Z satisfies Klp. = w' for every k € U. Denote by O(U) the

ring of rigid analytic functions on U, and by Ay C O(U) the set of a € O(U) such
that ordy,(a(x)) > 0 for every € U. The O-algebra Ay is isomorphic to the power
series ring O[T]. In particular it is a regular local ring, complete with respect to the
topology defined by its maximal ideal my = (7, T). Let

L% *
K/U.Zp_)AU

be the character sending z € Zj to the analytic function ki (2) € Aj; which ont € U
takes the value
ky(2)(t) = 272

In what follows let (B, k) denote either the pair (Ay, ky) or (O, r) for some r € W(L),
and write mp for the maximal ideal of B. For every nonnegative integer m > 0 let
LA,,(Z,, B) be the space of functions «y : Z, — B converging on balls of width m,
viz. for every [a] € Z/p™Z one has y(a+p™z) =3, 5, ca(7) - 2" for a sequence ¢, (7)
in B which converges to zero in the mp-adic topology. We always assume that U is
contained in a connected affinoid domain in W and that the function sending =z
to Ky (1 + pz) belongs to LA, (Z,, Ay). The latter condition is guaranteed by taking
m = m(U) big enough.

Define T = Z; x Z, and T = pZ, x Z,,. Right multiplication on Zf) by the semi-
group

VA /
Yo(p) = < Zp Zp> C Matay2(Zp) (resp., o(p) = (
b4y p

Z, Z,

« (- Matgxg(Zp)
pZy Zp) )

preserves the subset T (resp., T'). In particular both T and T’ are preserved by scalar
multiplication by Z; and right multiplication by the Iwahori subgroup

To(pZy) = Zo(p) N g (p)
of GL2(Z,). Define

A = {f :T— B| f(1,2) € LA, (%, B) and

(64) fla-t) = k(a)- f(t) for every a € Zy, t € T},
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and similarly define A/ = as the space of functions f : T — B such that f(pz,1)

K,m

belongs to LA, (Zy, B), and f(a-t) = k(a) - f(t) for all a € Z; and t € T'. Set
Ao =Aem®eoL, D, =Homg(A,,,,B) and D, =D, ®sL,

where the superscript - denotes either () or 7. We equip A, with the mp-adic topol-
ogy and D, ,,, with the weak-* topology, viz. the weakest topology which makes the
evaluation-at- f morphism continuous for every f in A, ,,. The B-module A, ,, is pre-
served by the left action of ¥ (p) on functions f : T — B given by - f(¢t) = f(t-7), for
every v € Xy(p) and t € T". This equips A, ,,, with the structure of a B[¥;(p)]-module,
and induce on D, ,, the structure of a right B[¥(p)]-module. If (B,x) = (Av, ky)
we write A;; . and Dy, as shorthands for A, ., and Dy ..

Remark 4.1. — For any function f : T — B define f, : Z, — B by f,(z) = f(1, 2).
The map which to f associates f, gives an isomorphism of B-modules between
Aym and LA, (Z,, B). This intertwines the action of ¥¢(p) on A, ., with the one
on LA,,(Z,, B) given by

- fo(z) = (a+c2)" - fo (Z:ii) , where o= (Z Z) .

K,m

The B-module LA,,(Z,, B) is isomorphic to the product HZZO_ 'B [T]°, where
B[TTe is the set of power series -, b, - T" in B[T] with lim, .. b, = 0 in the
mp-adic topology. Under this isomorphism, for every 0 < a < p™ —1 and every n > 0,
the power T™ in the a-th factor of LA,,(Z,, B) corresponds to an element f, , € Ay m.
Every f € Ay m can be written uniquely as f = ZogagpM—l,n>0 ban(f) - fan with
limy, o0 ba,n(f) = 0 for every 0 < a < p™ — 1. A similar discussion applies to Aj_ ..

4.1.1. Hecke operators. — Set Zy(p) = Xy(p) N GL2(Q,p), and recall that I' denotes
the congruence subgroup I'1 (N) NT'g(p) of SLy(Z). Let M be a right Ey(p)-module
(e.g., M =D, ). Given o € E(p) one defines a Hecke operator

T, : H(T,M) — H’(I', M)
as follows (cf. [4, Section 1.1]). Write T'oT' = [['7, T'o; with o; € Ey(p), and define
t; : T —> T by ;-7 = ti(7) - 0y(y) (for some 1 < i(y) < n,). If € € H/(T, M) is
represented by the homogeneous j-cochain ¢ : TV+1 — M then T, (¢) = cl(£,), where
&, : 9Tt — M is defined by

£ 0re ) = 3 0 - (1)) o
=1

For every prime ¢ denote by oy (resp., o;) the diagonal matrix with diagonal (1,£)
(resp., (£,1)). If o4 (resp., oy) belongs to Zg(p) set T; = Ty, (resp., Ty = Toy). As
usual one also writes U, for T}, if £ divides Np. The previous discussion then equips
HY(T, Dy ) (resp., H'(T, Dy, ,,)) with the action of the p-th Hecke operator U, (resp.,
p-th dual Hecke operator UI’))7 as well as with the action of the Hecke operators Ty
and T} for every prime £ # p.

ASTERISQUE 434



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 107

Let N be a left Zy(p)-module (e.g., N = A, ) and let N°P denote the abelian

group N equipped with the structure of right Z;(p)~!-module by n-7 = 771 . n

for every n € N and 7 € Ey(p)~!. After identifying H*(I', N) and H*(T, N°P) de-
fine for every o € E;(p) the Hecke operator T, on H*(I', N) to be the Hecke opera-
tor T,,-1 on H'(I', N°P) defined in previous paragraph. This equips H*(T, Ay m) (resp.,
H'(T, Al ,,)) with the action of the p-th Hecke operator U, = T, (resp., p-th dual
Hecke operator U]', = TU;D), as well as with the action of the Hecke operators T = T,
and T, = 1, for every prime £ different from p.

4.1.2. Atkin-Lehner operators. — Let @ be a positive divisor of Np, such that Q) and
Np/Q are coprime. Consider any matrix

_[(Qa b
wQ = (Np Qd) S MQ(Z)

such that det(wg) = Q and d =1 (mod Np/Q). Such a matrix satisfies
(65) F=wqg-T-w,'

If p divides @, then right multiplication by wg on Zf) maps T onto T’, hence
induces a topological morphism of B-modules wq : Aj ,, — Ak m- Together with
conjugation by the inverse of wg on I' (cf. Equation (65)), it yields a morphism of
pairs wq : (I', A}, ,,,) — (', Ay ), which in turn induces a morphism

(66) wq : HY(T, A, ) — H' (T, Acm).
A direct computation proves that, for each z in H 1(F,A;’m), one has
U, o wy(z) = wp o Uzl> o (p)y (z) and U, ownp(z) = wnpo Uz',(a;),

where (p)y = T., is the Hecke operator on H'(T', A, ) associated with any matrix
a, in SLy(Z) of the form a,, = (Napc %) withd =1 (mod p) and d = p (mod N). The
dual of wq : A ,, — A m yields a map wq : Dy m — Dy ,,, which together with
conjugation by wg on I' induces as above a morphism

(67) wq : HY(T, Dym) — HY(T, D), ).
For each y in H'(T', D,.,,) one has
(68) wp o Uy(y) = U; owpo (p)y (y) and wypoUy(y) = U; o wnp(y).
If p does not divide @, then wg belongs to I'g(pZ,), and for - = (J,/ one defines
(69) wq:H'(T,D;,,) — H'(T,D,,,,) and wq: H'(T, A, ,,) — H'(T, 4, )

to be the Hecke operators Ty, introduced in Section 4.1.1.
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4.1.3. Specializations and comparison. — Let k = r +2 € U and let m, € Ay be a
uniformiser at k — 2 (hence 7 and 7, generate my ). There are short exact sequences
of ¥;(p)-modules (cf. [3, Proposition 3.11])

T Pk

(70) 0 At Avrm

A, —0;

Tk Pk

0 Dy Dy D, n — 0.

The morphisms py are defined by the formulae

pi(f)(@,y) = f(z,y)(k) and  pe(p)(7) = plyw) (k)
for every f € Ay, (z,y) € T', p € Dy, and v € A, ., where vy (z,y) = ky(z) -
Y(1,y/2) f T =T and yw(z,y) = ku(y) -y(@/y, )T =T
Let » € U N Z3( be a nonnegative integer. Viewing two-variable polynomials as
analytic functions on T" gives a natural map of X(p)-modules S,.(0) — A, ., and
dually a morphism of ¥ (p)-modules D,.,, — L,(0). Together with the comparison
isomorphisms between étale and Betti cohomology:

(71)  Hg(Yq, 7 (0)) = H'(T,S5,.(0)) and H(Yq, %.(0)) = H'(T,L,(0))
they induce comparison morphisms
(72) Hi(Yq, #(0)) — H'(T,A,,,) and H'(T,D;,) — Hy(Yq, £ (0)).

The second isomorphism in Equation (71) is Hecke equivariant, hence so is the sec-
ond morphism in Equation (72). On the other hand the first isomorphism in Equa-
tion (71) (resp., morphism in Equation (72)) intertwines the actions of the Hecke op-
erators Uy, Ty, U,, T; on the left hand side with those of Hecke operators Uy, Ty, Uy, T}
respectively on the right hand side (whenever the latter are defined).

4.1.4. Slope decompositions. — Let % be a Q,-Banach algebra, let N be a module
over A, let u be a H-linear endomorphism of N, and let h € Q. Following [6]
one says that N admits a slope < h decomposition with respect to u if there exists a
(necessarily unique) direct sum decomposition

N = Nsh ® N>R
into #[u]-modules such that the conditions 1--3 below are satisfied. One says that a
polynomial P(¢) in ZJt] has slope < h if every edge of its Newton polygon has slope

< h. Let B[t]S" be the set of polynomials in Z[t] of slope < h and whose leading
coefficient is a multiplicative unit. For every P(t) € %[t] write P*(t) = ti°&(F). P(1/t).

1. N<" is finitely generated over 4.

2. There exists P(t) € Z[t]S" such that P*(u) kills NS,

3. For every P(t) € #[t|S" the endomorphism P*(u) of N>" is an isomorphism.
Let m and U be as in Section 4.1, let k =7 +2 € U(L), and let h € Q>¢. Set

7; = {(LvAr,maUp)7(L7Al U;;)v(LaDr,m7 Up)y(L7DI UII))}

rm? r,m?
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and

TU = {(ﬁUaAU,vap)’ (ﬁU7 IU7m7U;I;)7 (ﬁUaDU,ma Up)a (ﬁUa ;]7m7U;I;)}7

where Oy is a shorthand for Ay[1/p]. Recall that Ay is isomorphic to the power series
ring O[T], equipped with the topology defined by the maximal ideal my & (7, T),
hence Oy is isomorphic to the L-module L[T]° of power series in L[T] with bounded
Gauf norm. If s is a real number satisfying 0 < s < 1, define ||s s L[T]° — Rxo
by [ 2,500n - T"| = sup,sos” - |an|p. Then ||s is an L-Banach algebra norm
on L[T]°, which is independent of s and induces the (7, T')-adic topology on O[T].
This corresponds to an L-Banach algebra norm on Oy, which restricts to the my-adic
topology on the &-submodule Ay. The discussion on slope < h decompositions then
applies to each triple (%, M, u) in 7, UTy. The following proposition is a consequence
of the work of Coleman and Ash-Stevens [19, 6] (see also [3]).

Proposition 4.2. — Let (#,M,u) be a triple in T, UTy. If r € U N Zxy, one also
allows (%, M, u) to denote either (L,S.(L),U,) or (L, L.(L),U,), with U, = Uy, U,.

1. Up to shrinking U if necessary, the B-module H*(T', M) admits a slope < h
decomposition with respect to w. Moreover, for - = 0,1, the specialization maps py

defined in Equation (70) induce Hecke equivariant isomorphisms

pr : HY(T, Ay, )S" @4y Au/m 2 HY(T, A, "
and pi: H'(T, Dy )N ®ay Av/me 2 HY(T, D, ,,,)S".
2. Assume that v = (n,a) € Zxo x Z/(p — 1)Z with n = a (mod p — 1) and

h <n+1. Then (for - = 0,1) the natural maps S,(L) — A,.,, and D,. ., — L.(L)
induce Hecke equivariant isomorphisms

m

HYT, S, (L)S" =2 H'\(T, A,,,)S" and H'(T,D,,)S" = H'T,L.(L))S",

where the superscript <'h in HY(T', —)S™ refers to the slope decomposition with respect
to the endomorphism U,,.

Let r be a nonnegative integer and let h € Q> such that b < r+1. As the étale co-
homology groups H}, (Yq, )L and H, & (Yq, %)L are finite-dimensional over L, they
admit slope <'h decompositions with respect to U,,. Part 2 of Proposition 4.2 then im-
plies that the comparison maps defined in Equation (72) induce natural isomorphisms
of L-modules (cf. the last lines of the previous section)

(73)  Hk(Yq, %)5" = H'(T, Arm)S" and HY(T,D,)S" = HL (Yo, Z) 5"

One obtains similar isomorphisms after replacing A, ,, and D, ,, with A;. , and D, ,,
respectively.
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4.2. Etale sheaves. — Let .7 = i, v be the relative Tate module R'u,Z,(1)
of E over Y (cf. Equation (10)). Fix a geometric point 1 : Spec(Q) — Y and
denote by G = Gy, the fundamental group $*(Y,n). Fix in addition an isomorphism

£: 9,27, ®Z, of Z,-modules such that, for every x,y € 7, one has
(74) (z, ?J>EpoC =¢(x)NE(y) and E(Cp,n) =F,-(1,0),

where (,-)p  is the Weil pairing, A’ 72 =7, via (1,0) A (0,1) =1, and & : By ) =
F, ®F, is the reduction of £ modulo p. The action of G on 7, and the isomorphism
¢ give a continuous morphism g : G — GLy(Z,). Since the subgroup C, , of E, , is
preserved by the action of G, the second condition in Equation (74) implies that o
factors through a continuous morphism ¢ : G — T'o(pZ,). Let S;(Yzt) be the category
of locally constant constructible sheaves on Y with finite stalk of p-power order
at n, and for every topological group G denote by M(G) the category of finite
sets of p-power order, equipped with a continuous action of G. Taking the stalk at n
defines an equivalence of categories -, : Sf(Y;) = M¢(G), whose inverse ¢t : M(G) &
Sf(Yer) restricts via o to a functor ¢ : M;(To(pZp)) — S¢(Yat). (Here both G and
T'y(pZ,) have the profinite topology.) Define Ms(G) to be the category of G-modules
M which are filtered unions M = |J,.; M; with M; € Mj(G) for every i € I, and
M(G) C M,s(G)N to be the category of inverse systems of objects of M.s(G). Define
similarly Scis(Yar) and S(Yes) C Sets(Yer)N. If G denotes one of G and T'g(pZy), the
functor -¢* extends to -** : M(G) — S(Y). Let (M;);en be an inverse system
of G-modules and let M = lim M;. If the inverse system (M;); defining M is clear
from the context, we say that M belongs to M(G) to mean that (M;); does. If this is
the case we write M for (M;).

More generally for every scheme S one defines the category S(Se¢t) as above. For
every % = (Z;)ieN € S(Set) set

H},(S,.7) = R (mD(S,))(F); and HL(S,.F) = lim H}, (S, 72),

so that (H gt(S, F) is the continuous étale cohomology in the sense of [38] and) there
are short exact sequences

(75) 0 — R'im H}™'(S,.F3) — H}(S,.F) — H,(S,.F) — 0.

One similarly defines compactly supported cohomology groups H. gt,c(s7 Z) and
HY, o(S, ) (cf. [38]).
Let (B, k) be as in Section 4.1. The modules A, ,,, and D;, ,,, belong to M(T'o(pZ,)):

D, . =limD,  /FiVD, |
m = D, :
A =0 A, 0 AL
~J

and A, /mp- A, = ]Fili A,

Jjzi
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where (Fil/ D, .m)j>o0 is a decreasing filtration by B[%(p)]-submodules on D;, ,,, such
that D, ./ Filj is finite for every j, and where (Fil; ;A, ,,);>: is an increasing filtration
on A, ,, / miy - A, ., by B[X;(p)]-submodules of finite cardinality. Precisely one defines

FiljD,;,m = {,u €Dym | w(fan) € m”l;" for every 0 <a <p™ —1land n < j}
(cf. [3, Definition 3.9 and Proposition 3.10]) and

Fili jAy = @ B (fan+mp) CA, . /mh- A, .,

0<ap™—1,ny
where (fa,n)o<a<pm—1,n>0 is the orthonormal basis of A, ,, defined in Remark 4.1.
Denote by

Avm = Al and - Dy =D,
the images of A, ,, and D, respectively under -* : M(I¢(pZ,)) — S(Ye). For
every j = 0 set

,m

An ,m,j _'An m/mB K,m?
DI{ 7 = D/@ m/Flpa
t
An ,m,J 'Anem
and D, ., ;= ’D:fm],

so that A, is a shortened notation for the inverse system (A, ,, ;)jen and
similarly D, ,, = (D, ,, ;)jen. If S is a Z[1/Np|-scheme one can define for ev-
ery prime ¢ { Np (resp., prime ¢|Np, unit d € (Z/NZ)*) Hecke operators T,
(vesp., U;, (d)) acting on H((Ys, A, ) and HZ(Ys, (cf. Section 2.3
or [3, Section 5]). We list below some of the basic properties satisfied by A, ,,
and D, ,,. Let S be a Z[1/Np|-scheme and let x : Z; — B* be a continuous
character. Let B/m%(x) € My (To(pZp)) be a copy of B/m’; equipped with the
action of I'g(pZ,) defined by 7 - b = x(det(y)) - b, and let B(x) = lim.; B/m%(x).
If C, .. denotes either A, , =~ or D,, = define C, , (x) = C, . ®5 B(x) and
Coon(X0) = Ciopn (0% = Cin & (B/mig(x))Sng. As ustal, if (B, %) — (Au, k), one
sets Cyy,,. = C,

Ku,m,-*

nmg)

e For each k =7+ 2 € U(L), each j € N and - = {),/, the specialization maps (70)
induce morphisms

Pkt Ay i (X) = A, i (x) and  pi Dy, (X)) = Dy i (X)s

which in turn induce in cohomology specialization maps

(76) Pk : Helt(YSaAU,m(X)) I H;t(Y57Ar,m(X))
a‘nd Pk * He}t(YS7DU,m(X)) - Helt(YS’Dr,m(X))
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~ HY(T',D,, ,, ;), which induce

e There are natural isomorphisms Hj, (YQ, D ' Dyeomj

€

isomorphisms (cf. Theorem 3.15 of [3])
(77) Hélt (YQ7 Dn,m) = Hét (YQ7 Dn,m) = H1 (F7 Dn,m)
and Hét,c(YQ7'D;@,m) = H}et,c(YQv D;g,m) = I{c1 (]'—‘7DI.<,7’IT7,)
of B-modules compatible with the action of the Hecke operators and with the
specialization maps p,.. Here HJ(T,-) = H/~1(T, I(-)) is defined to be the (j—1)-th
cohomology group of I with values in the I'-module
I(-) = Homg(Div’(P*(Q)), )

(cf. Proposition 4.2 of [5]).

1

e There are natural maps H} (Yg, A, ,, ;) — H'(T, A, ,, ;), inducing an isomor-

phism of B-modules (cf. Lemma 4.3 below and the discussion preceding it)
(78) Hét (YQa Am,m) = Hl (F7 An,m)

compatible with the action of the Hecke operators and with the specialization
maps. In light of the exact sequence (75), the isomorphism (78) yields a Hecke
equivariant short exact sequence of B-modules

(719 00— RlliI? H(Yq, A, ;) — Hi(Yq, A, ,,) — H'Y(T, A ) — 0.

K,m

1)

e The B-modules H}, (Yq, D; ,,) and H, (Yg, A, ,,,) are equipped with natural con-
tinuous actions of Gq which commute with the Hecke operators and the special-
ization maps. Moreover as Gq-modules

(80) Hee (Vs Dy (X)) = B (Yq, Dy.m) (XQ)
and  Hy (Yo, Ay (X)) = Hee(Yq, Ay m) (Xa),

where xq = x © x;ylc : Gq — B* and Xcyc 1 Gq — Zj is the p-adic cyclotomic
character. A similar statement holds for the compactly supported cohomology
Hét,c(YCPD;c,m)'

e We equip H'(T, D, ,,),H:(T,D,,,) and H'(T, A, ) with the structures of
continuous Gq-modules via the isomorphisms (77) and (78) respectively. If
h € Q3o (and U is sufficiently small) the slope < h submodules H'(T', D;, ,,)S",
H (T, Dy, ,,)S" and HY(T, A, ,)S" of HY(T,D, .)q, H:T,Dyn)q, and

H'(T, A, ,.)q, respectively (cf. Proposition 4.2) are preserved by the action

K,m

of GQ.
e Set Ay,; = (Ay/m%)® and Ay = (Ay,;)jen € S(Yer). There are canonical iso-

morphisms of Ay-modules
(81) tracey : H2(T', Ay) = H (Yq, Av) = Ay.

ét,c
The evaluation morphism Ay, ®4, Dy, — Au and the trace tracey induce a
cup-product

HI(F’Ab,m) Ay Hcl(F7DU,m) I HB(F’AU) = Ay,
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under which the Hecke operator U, acting on H T, Ap.m) is adjoint to U, acting
on H! (I, Dy,,)- This in turn induces for h € Q3o (and U sufficiently small)
morphisms of Ay[1/p]-modules

gi],m : Hl(r) A.U,m)gh — HomAU[l/p] (Hcl (F’ DU,m)<h7 AU[l/p])

e Define det : T x T" — Zy by det((z1,72), (y1,¥2)) = Z1y2 — 2y1, and denote
by detyy : T x T" — Aj; the composition of det with ky : Zy — A;. Evaluation
at dety defines a I'-equivarint bilinear form Dy ,, ®a, D&m — Ay. Together
with tracey (cf. Equation (81)) this induces a cup-product pairing

(82) dety; : H'(T', Dy,m) ®a, He (T, Dy ) — HZ(T,Ay) = Ay

under which the Hecke operators U, and Uz’, are adjoint to each other. For
every h € Qxo the (inverse of the) adjoint of det;; induces an isomorphism
of Ay[l/p]-modules

CUm = Homay 1 /(HE (T, Dy ) ", Au[1/p]) = HY(T, Dy,m) <"
Similarly one defines an isomorphism
Com  Homa, (1 /p)(H (T, Dum) ", Au[1/p]) = HY (T, Dy, <"

o Let h € Q. If U is sufficiently small the composition of (y » with &y, gives a
morphism of Gg-modules

(83) sup : H' (T, Aym) S (ky) — H' (T, Dy, ) S,

where ky : Gq — A}, is defined by ky(9) = ku(Xeye(9)) for every g € Gq.
For every integer k = r + 2 in U N Z such that A < k — 1, the following diagram
of L[Gq]-modules commutes.

SU,h

(84) HY (T, Ay,m) S (ky) Hl(F,D&m)@

Hélt(Yva?")Eh(r) Hélt(YQﬂgT)fh

By a slight abuse of notation, here one writes again p; for the composi-
tion of the specialization map pr : HY(T, Ay m)S" — HY(T, A.m)S" (tesp.,
pr : HY(T,Dy, )" — HY(T,D;,)S") with the comparison isomorphism
H\(T, Ar,n)<" = H (Yo, #)S™ (resp., H'(T, D.,,,,)<" = H\(T', %.)5") defined
in Equation (73). Similarly the composition of (j;,, with &, . gives a morphism
of Gq-modules

syt H' (T, Ay ) S (ky) — H'(T, Dy,m) <"

and the diagram of Gg-modules obtained by replacing Ay, D{]’m and sy, with
Ay m» Du,m and sy, respectively in Equation (84) commutes.
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o The Atkin-Lehner operators w,, (resp., wny) defined in Equations (66) and (67)
are Gq-equivariant (resp., Gq(uy)-equivariant).

Due to the lack of a reference, we explain how to construct the crucial iso-
morphism (78). Let - denote either the empty symbol or /, and let Fil; ;A, ,, =
(Fil; j A, ,,)¢" be the étale sheaf on Y associated with the finite B/m’B[I']-module
Fil; ;A ,,- The comparison isomorphisms between étale and Betti cohomology yields
isomorphisms

comp, ; : Hj (Yq,Fil;; A, ,,) = H' (I, Fil; j A, ).
The étale cohomology of the affine scherne Yq commutes with filtered direct limits.
Moreover, since the group I is finitely generated, the cohomology functor H(T,-)
commutes with filtered direct limits (cf. Exercises 1 and 4 on page 196 of [17]). Taking

the direct limit for j — oo of the isomorphisms comp, ; then gives isomorphisms
of B/m’B-modules

comp; : Hl(F’A;{,m,z) Hgt(YQvAnmz)
which in turn entail an isomorphism of B-modules

comp : lim H*(T, Almi) = Hét(YQ, A;Qym).
The sought for isomorphism (78) is defined as the composition of the comparison
isomorphism comp and the natural map H'(I', A, ) — lim, H'(T, A, ), which

is an isomorphism by Lemma 4.3 below. The Hecke equivariance of the 1som0rphism
(78) is proved precisely as in Sections 3.2 and 3.3 of [3].

Lemma 4.3. — The natural maps
HYT, A, ,,) — lim H (T, A;
) —

n,m,i)
%

are isomorphisms of B-modules.

Proof. — We adapt the proof of [3, Lemma 3.13] to our setting. To ease notation,
set A; = A, ,,;and A=A, . For each [-module M, let

C'(F,M):O—)M—>01(F,M) —>C2(F,M) —

be the usual complex of inhomogeneous cochains computing the cohomology groups
HI(T',M) = ZJ(T', M) /im(d’~'), where C’ (", M) is the group of maps from I'V to M
and Z7(T', M) = ker(d?). Denote by d* (resp., d}) the differentials in C*(T, .A) (resp.,
C*(T', A;)), so that one has the following commutative diagram with exact rows.
(Recall that by definition A; is a shorthand for A/m% - A.)

A —>Z1(1“ A ——— H(T,A) ——— 0

o |

lim_ A, *mm Z\ (T, A;) —— lim HY(T, A;)
«—1
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To prove that 9 is an isomorphism, it is then sufficient to show that ¢ is surjective and
that ¢ is an isomorphism. The cokernel of € is contained in R! @i(Ai/HO (T, Ai)),
which vanishes since the maps A;y1/H°(T, A;11) — A;/H(T, A;) are surjective.
Moreover, as A = lim, A;, the natural map C*(T', A) — lim, C*(T', A;) is an isomor-
phism, hence so is ¢ by the left exactness of the inverse limit. O

4.3. The ordinary case. — This section explains the relations between the ordinary
(id est slope < 0) parts of the modules Hl(F,D'Um) and the big ordinary Galois
representations considered in [34, 54, 55]. This will be particularly relevant for the
study of the eigencurve in a neighborhood of a classical weight-one eigenform (where
the Eichler-Shimura isomorphism of [3] does not apply).

Since H'(T', D;, ,,,) is a profinite group (as Dj, ,, is), the limit e, 4 = limy,_ U]l',"!
defines an idempotent in the B-endomorphism ring of H'(I,D; ,,). (Here as usual
(B, k) denotes either (Ay,ky) or (€,r) with r in W(L), and - denotes either the
empty symbol or /.) Set

H'T,D;, )" = €pq - H'(T', Dy, ).

This is a finite Ap-module, which recasts H'(T', D;, ,,,)S? after inverting p.
Following [34, 54|, define

T = lim H}, (Y1 (N9 Zp (1)),

where 7 € Zy>; and the transition maps are given by the traces pr;, induced in
cohomology by the degeneracy maps pr; : Y1(Np™t!) — Y;(Np") introduced in
Equation (8). As the maps pr;, are Hecke-equivariant, the module T is equipped
with the action of Hecke operators T (resp., U;), for each prime £ not dividing (resp.,
dividing) Np. Moreover, the action of (Z/p"Z)* on H} (Y1(Np")q, Zp(1)) via diamond
operators makes T a module over o = Z,[Z;]. Let

D’ = Homg,, (Step(T'), Z,)

be the right ¥{(p)-module of measures on T’, where Step(T’) is the set of Z,-valued
step functions on T’. Section 4.1.1 equips H*(I',D’) with the action of Hecke opera-
tors UI’) and T}, for - = 0,/ and ¢ a rational prime different from p. A slight variant of
Lemma 6.8 of [30] yields a Hecke-equivariant isomorphism of ¢-modules

(85) T g\, D)),

where the action of the Iwasawa algebra ¢ on the right hand side arises from that of
the group Z5 = Z% - (') < X(p) on D'

Each measure p in D’ extends to a Ay-linear morphism py : (T, Ay) — Ay on
the space €(T’, Ay) of Ay-valued continuous functions on T’. The map sending p to
the restriction of uy to Ay, — €(T', Ay) defines a morphism of 3 (p)-modules

! /
D' — Dym,
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which in turn induces a Hecke-equivariant morphism of Ay-modules
(86) H'(I,D') ® Ay — H' (T, Dy;,,.),

where Ay has the structure of o-algebra arising from sy : Z; — Ay
After setting

T§0 = e:)rd ‘T ®, AU?
the composition of the maps (85) and (86) yields an isomorphism of Ay-modules
(87) Shy,m : T5" = HY(T, Dy,,)<°(1),

which is Hecke-equivariant and Gq-equivariant. In order to prove this, let r be a
positive integer in U. Since H?(T,-) vanishes for each I'-module - of finite cardinality
(and Dy, ,, is profinite), evaluation at k = r + 2 on Ay induces an isomorphism

(88) H' (F’ D;],m)go Ay AU/Trk = Hl(F7 D;‘,m)go'
Moreover, for each j > 0, the natural map D, ,, — L,(€) induces an isomorphism
(89) H/(T,D,,,)<° = H(T, L(0))<",

which for j = 1 recasts the isomorphism displayed in Part 2 of Proposition 4.2 after
inverting p. (Indeed a direct computation shows that <p§” ?) € X{(p) maps the
kernel K, of D, ,, — L.(0) into p"*t' - K7 for each 0 < i < p — 1, from which

r,m )
one deduces that the anti-ordinary projector e 4 kills H’(T', K}, ,,) for each j > 0.)
On the other hand, the inclusion S,(Z,) — ¥(T’,Z,) dualises to a specialization
map p; : D' — L,(Z,), and Hida’s control theorem (cf. [34, 54]) shows that the

isomorphism (85) and pj; induce a Hecke-equivariant isomorphism
(90) €hra - T ®0 o/ Iy = H'(T, L, (Z,))< ",

where I is the ideal of ¢ generated by [1 + p] — (1 + p)” and [p] — p", with p a
generator of F; and [] : Z; — o* the tautological map. It follows from Equa-
tions (88)—(90) that the base change of Shy ,,, along the projection Ay — Ay /7y is
an isomorphism. Together with Nakayama’s Lemma, this implies that Shy,, is sur-
jective, and that ker(Shy,.,) ®a, Au/7k is a quotient of the m-torsion submodule
of H'(T', Dy, ,,,)S°. The latter is in turn a quotient of H°(T', D;,,,)S?, which vanishes by
Equation (89). Another application of Nakayama’s Lemma then proves that Shy ,, is
injective, thus concluding the proof of the claim (87).
Set Oy = Ay[1/p] and denote by

b(U) = H(N,U) — Enda, (H' (T, Dyy,,)<°)[1/p]

the Hecke algebra generated over Oy by the dual Hecke operators (U, )qnps (T7)ernyp
and ((d))ae(z/nz)- acting on H'(T, D&m)@. For each positive integer r and - = 0,7,
let A" (Np") be the ring generated by the Hecke operators (U,)qnp, (T;)enp and
({d))dec(z/nz)+ acting on the space Ma(Np") of complex modular forms of weight 2.
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Conjugation by the Atkin-Lehner isomorphism wy,r € Isoc(M2(Np")) restricts to
an isomorphism h(Np") = h'(Np"), sending U, and T} to U, and T} respectively. Set

(91)  hype =€ {i_rrrl(h'(NpT) ®z Zp) and  hiy,e(U) = ki, ®6 Ov,

where the transition maps in the inverse limit defining hnpe (resp., Ay, ) are induced
by the inclusions My (Np"™) C Ma(Np"t1) (resp., the maps Ma(Np") — My(Np™1)
sending f(z) to f(pz)). The Atkin-Lehner operators (wnpr)r>1 induce an isomorphism
of Ay-modules between hype (U) and Ay, (NV), and since h(Np") acts faithfully
on Hi (Y1(Np")q, Zp(1)) (cf. Equation (19)), the Shapiro isomorphism Shy,, defined
in Equation (87) yields an isomorphisms of &y-modules

(92) hnpes (U) = (N, U).

sending the Hecke operators Ty and U, to the corresponding duals 7y and U,.
Denote by C = C(N) = Spf(hnp=)q, Berthelot’s rigid fiber of the formal spectrum

of hype (cf. Section 7 of [40]). The structural maps ¢ — hpnpe yield a finite and

flat morphism  : C — W, and Equation (92) gives an isomorphism of &y-modules

(93) h(U) = O(C xw U)

mapping the dual Hecke operators T; (¢ { Np) and U; (g|Np) in the left hand side
to the corresponding Hecke operators T, and U, in the right hand side, where O(-)
denotes the ring of bounded analytic functions on -.

Section 6 of [57] gives an isomorphism between C and the ordinary locus ¢°™d =
©°*(N) of the Buzzard-Coleman-Mazur eigencurve ¢ = ¢(N) of tame level N, map-
ping the Hecke operators in hAnpe to the corresponding Hecke operators in & (E°rd).
In light of Equation (93), this gives isomorphisms

(94) h(U) = (€ xyw U)

mapping the dual Hecke operators in the left hand side to the corresponding Hecke
operators in the right hand side.

Remark 4.4. — If U is a sufficiently small open disk in W centered at an inte-
ger k, > 2, and h is a non-negative rational number satisfying h < k, — 2, then
the overconvergent Eichler-Shimura isomorphism [3, Theorem 1.3] implies that the
isomorphism (94) holds after replacing ¥°*¢ with the slope < h locus of %, and §(U)
with the Hecke algebra acting on the slope < h subspace of Hl(F,D&m). On the
other hand, their result does not apply when U is centered at k, = 1 (and h = 0), a
crucial scenario for the applications of the main results of this paper to the arithmetic
of elliptic curves (cf. [14]).

5. Hida families

As explained in Section 6 of [3] (see also Section 6 of [30]), the big Galois repre-
sentations associated to p-adic Coleman-Hida families (generically) appear as direct
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factors of the cohomology groups H!(T, Dy ). This section recalls these results, pay-
ing particular attention to the case (not covered in loc. cit.) where the open disk U
is centered at weight 1 in W(Q,). To simplify the exposition we limit the discussion
to Hida families. This suffices for the applications we have in mind (and requires no
mention of the theory of (¢, I')-modules and trianguline representations).

Let M be a positive integer coprime to p, let U C W be an L-rational open disk
centered at a positive integer k, € Z>1, and let x be a Dirichlet character modulo M.
Let Oy = Ay[1/p] be the ring of bounded analytic functions on U, and let

U'={keUNZ|k>2and k=k, mod 2 (p—1)}

be the set of classical points of U. An Oy -adic cusp form of tame level M and tame
character x is a formal g-expansion

£=Y an(f;k)-q" € Ould]

n>1

such that, for each classical weight k € U, the weight-k specialization

fo=_ an(fik)-q" € ST (Mp, X)L

n>1
is the g-expansion of a p-ordinary cusp form in SP*4(Mp, x)r. Here

Slcc)rd(Mp7 X)L = €ord * Sk(Mpa X)La

where egq = lim, o U;” is Hida’s ordinary projector acting on the L-module
Sk(Mp, x)r of cusp forms of weight k, level I'1 (M) N T'g(p), character x and Fourier
coefficients in Q N L (under the fixed embedding Q — Q,). Denote by Srd(M, x)
the Oy-module of Opy-adic cusp forms of tame level M and character x. It is
equipped with the action of Hecke operators Ty, for primes ¢ { Mp, and U,, for
primes £|Mp, which are compatible with the usual Hecke operators on S¢™(Mp, x)
for each k € U. A cusp form f in SgFY(M,x) is normalized if a;(f;k) is the
constant function with value one on U. A (L-rational) Hida family of tame level M,
tame character x and center k, € Z>; is an Oy-adic cusp form f € S,Ofd (M, x), for
some U as above, which is an eigenvector for the Hecke operators U, and T}, for each
prime ¢ t Mp (equivalently such that, for each k € U I the weight-k specialization
fi is an eigenvector for the Hecke operators U, and Ty, for all primes ¢ { Mp.) A
normalized Hida family f € SF4(M, x) is new (or primitive) of tame level M if the
conductor of the eigenform f, is equal to M for all k¥ > 2 in U°.. To each Hida family
f € SgFd(M, x) is associated a unique pair (My, f*), where My is a positive divisor
of M and f* =37 -, an(k)-¢" in SF4(My, x) is a new Hida family of tame level My
such that U,(f) = ap(k) - f and To(f) = ae(k) - f for all primes £ { M. We call My
the conductor of f and f* the primitive Hida family associated with f. Moreover, we
denote by

S (M, x )] — S7 (M, x)
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the Op-module of Hida families in Sgr4(M, x ) having f* as associated primitive Hida
family. A level-N test vector for f* is an element of SF4(M, x#)[f*] of the form

(95) f= > ra Y,

0<d|M/M;

for analytic functions (r4)q in Oy without common zeros in U.
Fix in the rest of this section a positive divisor Ny of N and a normalized eigenform

fi, = an-q" € My, (T1(Ng) N To(p), X#)1
n>1

of weight k, > 1, level Ng¢p, character x5 : (Z/NfZ)* — L* and Fourier coefficients
in L, satisfying the following (cf. Assumption 1.1)

Assumption 5.1. — One of the following statements 1--2 holds true.

1. The form f,ﬁo is cuspidal of weight k, > 2, p-ordinary (id est a, is a p-adic unit
under the fized embedding Q — Qp) and its conductor is divisible by Ng.

2. The form f,ﬁo is a p-stabilization of a cuspidal and p-reqular weight-one newform
of level Ny, without real multiplication by a quadratic field in which p splits.

The previous assumption guarantees that the eigencurve k : € (Ny) — W (cf.
Section 4.3) is étale at (the L-rational point corresponding to) fj . In case 5.1(1)
(resp., case 5.1(2)) this follows from Corollary 1.4 of [34] and Section 6 of [57] (resp.,
Theorems 1.1 and 7.2 of [8]). As a consequence, there exists an open connected disk
Uy in W, centered at k,, and a section Up — €' (Ny) ®q, L of k ®q, L mapping Uy
isomorphically onto an open admissible neighborhood of f,ia. In light of Equation (94),
this yields an idempotent eg: in the Hecke algebra (cf. Section 4.3)

H Y h(Ny, Uy),

and an isomorphism of Oy, -algebras between ey - H and Oy, . Let
(96) p:H— Oy,

be the composition of this isomorphism with the projection onto ez - H.

For each positive integer n, denote by Al C 3 (p)NM2(Z) the set of integral matri-
ces a = (¢ }4) satisfying det(a) =n, d=1 mod N, pf{d and ¢ =0 mod Np. Define
T, = Yoea; Ta, where T, is the endomorphism of H'(I'1(N¢) N Lo(p), Dy ) S°
introduced in Section 4.1.1 (and m = m(Uy) is sufficiently large). The dual Hecke
operator T, belongs to H (cf. [60, Chapter 3]), and after setting

an(k) = a‘n(fua k) = (P(T’I/L)7

the formal g-expansion

=) an(k) - q" € Oy [d]

n>=1
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is the (unique) cuspidal primitive Hida family in Sg;d(Nf, xf) of tame level Ny and
character x ¢ specializing to f,io at k,. For each positive integer n, it is an eigenvector
for the Hecke operator T,, with eigenvalue a,, (k).

The rest of this section summarizes the main result from Hida theory needed in
the sequel of the paper. Fix a level-N test vector

£ € SgAN,x5)F)

for f*. To ease notation, set Ay = Ay, Of = Oy, D}, = Dy, m and Dy = Dy, o
(where as usual - denotes either the empty symbol or /). Denote by k—k, a uniformiser
at ko, in Ag, so that & is a module of power series in L[k — k,] which converge for

any k in Us. One has ry, (t) = w(t)F—2 - )% for all t € Z;, and

(97) Ky, = wf;f 'ﬂf}fcz :Gq — Af.

Here weyc and kcyc denote the composition of the p-adic cyclotomic character
Xeye : G — Z;

k—2 is

with the projections w : Zy — F, and () : Z, — 1+ pZ,, respectively, and k¢,

the Af-valued character which on g € Gq takes the value kcyec (g)k—2.

e For every classical weight £ > 2 in de the weight-k specialization f; is old at p.
Indeed f;, = fo is the ordinary p-stabilization of an eigenform f = f; in Sx(N, x5)
(cf. Equation (54)), hence a,(k) = ay is the unit root of

Xt Eg X+ x5 = (X —ap) - (X = By).

(We refer the reader to [34] for more details.)

e To ease notation, set
V = H'(I'1(Ng) NTo(p), Df ,,)S°(1) and H = b(Ng, Uy).
According to the main results of [55] and the isomorphism (92), there is a short
exact sequence of H[Gq,]-modules
(98) 0— VT —V-—5V —0,

where V* are finite free Of-modules. The Gq,-module V™ is unramified and
an arithmetic Frobenius acts on it as multiplication by the p-th Fourier coef-
ficient a,(k) of f*. Moreover, there are canonical isomorphisms of H-modules
) VAR Hpar and V- = Homg, (H, Oy ), where Hp,, is the quotient of H acting
faithfully on the parabolic subspace H', (T'1(Ny) N To(p), D}’m)go(l) of V.

par
Applying the idempotent ez: (defined before Equation (96)) to the short exact
sequence (98) gives a short exact sequence of Jf[Gq,]-modules

(99) 0— V()T — V() — V() —0,
where (for - equal to one of the symbols @, + and —)
V(fn) = efu -V
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is a free Op-direct summand of V'.

e The 0f[Gql-module V(f*) has rank two over 0y, and is unramified outside Ngp.
For every prime ¢ not dividing Ngp, the characteristic polynomial of an arithmetic
Frobenius Frob, in Gq at £ is given by (cf. Equation (106) below)

det(1 — Frobe [V (f*) - X) = 1 — ay(k) - X + x£(0) - £y, (£) - £- X

In particular the determinant of V' (f*) is given by (cf. Equation (97))

(100) detﬁfv(f) = Xf * Xcyc " Kuy = Xf 'wéc;c_l : "i?y_cl‘

As the arithmetic Frobenius Frob, € Gq, acts on V™ as multiplication by a,(k),
one deduces isomorphisms of 0¢[Gq,]-modules

(101) V()" 205 (1+ sy, + x5 —ap(k))  and  V(F)™ = G5 (a,(k)),

where for every a € Az one writes @ : Gq, — Aj for the continuous unramified
character satisfying a(Frob,) = a.

e Recall the level-N test vector f for f* fixed above, and define
H'(T, D} ,,)S°(1) — V()

to be the maximal Of-quotient of H!(T, D, )S°(1) on which the dual Hecke
operators Ty, Uy, and (d)" act respectively as multiplication by a,(k), a,(k) and
xf(d), for each prime ¢ not dividing Np and each unit d in (Z/NZ)*. This is
equal to the Gg-modules V(f*) = e;: - V introduced above when N = Ny and
f = f*. In general, the Oy[Gq]-module V(f) is (non-canonically) isomorphic to
the direct sum of a finite number of copies of V (f*). In particular, V(f) is a free
Oy-module, and there is a short exact sequence of Jf[Gq,]-modules

(102) 0— V()T — V() — V()" —0

with V(f)* free of finite rank over 0 and V(f)~ unramified.
Dually, define
V*(f) = H¢(T, Dy m)S"(—ky)

be the maximal O¢-submodule of H} (T, Dy ;) S°(—£y, ) on which the Hecke oper-
ators Ty, U, and (d) act respectively as multiplication by a,(k), ap(k) and x#(d),
for every prime £t Np and every unit d in (Z/NZ)*. Then V*(f) is an 0p[Gq]-di-
rect summand of HZ (T, Dy ,,,)S%(— Ky, ), isomorphic to the @p-dual of V(f). In-
deed the bilinear form det*Uf defined in Equation (82) induces a perfect pairing
of 05|Gq]-modules (cf. [55] and Section 4.3)

(103) (g V() ®e VI(F) — Of.

Let V*(f)* < V*(f) be the maximal unramified submodule of the restriction
of V*(f) to Gq,, and let V*(f)~ be the quotient of V*(f) by V*(f)*. There is
then a short exact sequence of Jf[Gq,]-modules

0— V*(f)F — V() — V()" —0,
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and the bilinear form (-, ) f induces perfect, Gq,-equivariant pairings
(104) ()5 V(E)T ®a, VAT — O

Because H!(T, Dj,,,)S° is an Op-direct summand of H'(T, D ,,), there are
natural 0;[Gq]-projections

(105) prf:Hl(l",D},m)(l)—»V(f) and pr}‘:Hcl(I‘,Df,m)(—K,Uf)—»V*(f).

e For all classical points £ in UJSI the specialization map pj in the right column of
Equation (84) gives rise to an isomorphism of L[Gq]-modules

(106) pr 2 V(F) @, Ap/(mi) = He (Y1(N, p) g, La—2(1)) g = V().
Here
H(Yi(N,p)g, Zr—2(1)) — H&(V1(N,p)g, Li—2(1))5;

is the maximal quotient on which 7, U}, and (dY act respectively as multiplication
by as(k),ap(k) and x¢(p) for any prime £ t Np and any unit d in (Z/NpZ)*. If
t : Y1(Np) — Y71(IV,p) is the natural projection (viz. the one induced by the
identity on H under (6)), the second isomorphism in Equation (106) is the one
induced by the pull-back

t*: Hy(Y1(N,p)q, Li-2(1)) — Hg (Y1(Np)q, ZLi—2(1)).

If k, = 1, so that f; = En>1 an(1)- g™ is a classical, cuspidal weight-one Hecke
eigenform (cf. Assumption 5.1), then the weight-one specialization

V(fi) =V(f) ®xr, Ag/(m1)

of V(f*) yields a canonical model of the dual of the Deligne-Serre representation
attached to ff. More generally, if f; is classical, set V(f;) = V(f) ®a, Ag/m
(which is non-canonically isomorphism to the direct sum of a finite number
of V(£%).) In order to have coherent notation and terminology, we still denote by

(107) p1: V(F) @ap Ap/(m1) — V(£1)

the identity map, and refer to it as the specialization map at weight one.

Similarly for each classical weight & in U]‘il there are natural isomorphisms
of L[Gq,]-modules

(108) pr 2 V() @ap Ag/(m) = V(£

(cf. the discussion following Equation (84)). Moreover for each z € V(f) and
y € V*(f) one has

(109) (@,9)5 (k) = (p(2), Pk (¥)) 5, »

where (-,-)  is the perfect bilinear form defined in Equation (24).
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e For each k in de and - = (), ¥, one has short exact sequences of L[Gq,]-modules
(110) 0=V ()" — V(i) — V(i) —0,

where V(f;)~ is the maximal Ggq,-unramified L-quotient of V(f;), and
V*(fi)* is the maximal Gq, -unramified L-submodule of V*(f;). The spe-
cialization maps (106) and (108) induce isomorphisms

(111) pr VI (F)F @K L=V (f)".
According to Equation (101) the inertia subgroup Iq, of Gq, acts on V(f,)" via

Xfy_cl, and trivially on V(f,)~. If k& > 2, applying Dggr(:) to the previous exact

sequence and using Equation (28) gives natural isomorphisms

(112)  Deis(V(fi)") = Var(#i)/FiI°  and  Fil’Var(fi) = Deris(V(£i)7)-
Similarly Iq, acts trivially on V*(f;)" and via Xiy_ck on V*(f;,)~, hence Equa-
tions (28) and (110) give

(113)  Deno(V*(£)*) 2 Van(fo) /Fil'  and  FVin(£i) 2 Do (V' (£))-

e The Atkin-Lehner operator wy, introduced in Equation (67) induces an isomor-
phism of Jf[Gq(cy)]-modules (cf. Equation (68))

WNp * HI(F’DU,m)<O = Hl(FﬁDb,m)goa

intertwining the action of the dual Hecke operators U,,, T; and (d) on the left hand

side with that of the Hecke operators U, T; and (d)™" on the right hand side, for
each prime ¢ not dividing Np and each unit d modulo N. Since the form flio is
cuspidal, it induces Galois equivariant isomorphisms

(114) wyy V() (L+ Ky, +x5) 2 V),
for - equal to one of the symbols (), + and —.
o Set
* — * — 2 Snr\ G »
(115) D*(f)” = (V'(f)” (1 + kuy + x5) ®z, Zy7) " [1/p),

where V*(f)~ is a Gq,-stable Ag-lattice in V*(f)~, and Z;‘r is the ring of integers
of the p-adic completion QE” of the maximal unramified extension of Q,. (Note
that V*(f)~ (1+ky; +xy) is an unramified Gq,-module, cf. Equations (101) and
(104).) It is a free finite Op-module (of rank one if f = f* is primitive). For each
classical point k in U;l, the isomorphism (111) and the second isomorphism in
Equation (113) induce a specialization isomorphism

. \Ga,
(116)  pi: D*(F)” @x L= (V () (h—1+x5) ®q, Qi) " = Fil' Vin(£,).

As V*(f;,)~(k — 1) is unramified, in the previous equation one identifies the
middle term with the tensor product of Deyis(V*(f) ), Deris(Qp(k — 1)) and
Deiis(L(x#)). The second isomorphism then arises from Equation (113), the
canonical isomorphism Deis(Qp(k — 1)) = Qp, and the isomorphism between

SOCIETE MATHEMATIQUE DE FRANCE 2022



124 MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI

Deis(L(xf)) and L sending the Gaufi sum ZaE(Z/c(Xf)Z)* xf(a) ® Conegy Of
the primitive character X7 attached to xs to the identity, where c(xyf) is the
conductor of x5 and (c(y,) is a primitive c(x)-th root of unity.

In light of the isomorphisms (87) and (114), the main result of [55] and Theo-
rem 9.5.2 of [42] yield an Eichler-Shimura isomorphism

(117) ES; : D*(£)” = Spt (N, xg)[f],

whose base change along evaluation at a classical point k£ € de is equal to
the composition of the specialization isomorphism (116) with the isomorphism
Fil'Vix (fi) = Sk(Np, L)y, defined in Equation (27). One defines

(118) wy € D*(f)”
to be the image of the Hida family f under the inverse of ES;, so that
(119) pr(wg) = wy,

for each classical point k in de (cf. Equation (30)). (When k, > 2, the overconver-
gent Eichler-Shimura isomorphism proved in [3] extends these results to Coleman
families of slope at most k, — 2.)

e Set
* * 5 Hnr) Gap
(120) D*(f)* = (V'(f)" &z, Z37) "% [1/p],
where V*(f)* is a Gq,-stable Ag-lattice in V*(f)*. The perfect duality (-, -); (cf.

Equation (104)), the Atkin-Lehner isomorphism wxp (cf. Equation (114)) and the
Eichler-Shimura isomorphism ES; give rise to an isomorphism

ES; : D*(f)" = Homg, (SZ* (N, x7) (%], OF),

whose base change along evaluation at k € UJSI on Uy equals the composition of
the specialization isomorphism

* ~ * Anr) G P~ YS* .
(121)  pe: D) @ L= (V(£i)" ®q, Q)% = Vir(fi)/Fil'
arising from Equations (111) and (113), and the isomorphism
Vir(fi)/Fil' = Homp (Sk(Np, L)z, L) = Homp (Sk(Np, L)y, , L),

where the first map is the adjoint of the perfect duality (-, '>fk defined in Equa-
tion (32) (cf. Equation (109)), and the second is the dual of

(—1)k°72 “WNp : Sk(Np, L)-fk = Sk(Np, L)f’:

We claim that (shrinking Uy if necessary) there exists

(122) ng € D*(f)*
such that, for each classical point k in U§!, one has (cf. Equation (34))
(123) pr(ng) = (p — Dap(k) - ng, -
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Indeed, write f = > ,rq - f*(¢?), with functions (Ta)a|(n/ny) in O without
common zeros. For each positive divisor d of N/Ng, the Q-rational morphism
vg : Y1(N,p)q — Y1(Nf,p)q arising from multiplication by d on H (cf. Equa-
tion (6)) induces a Gq-equivariant morphism vg, : V*(f) — V*(f*) (cf. Equa-
tion (77)), which in turn induces vq. : D*(f)~ — D*(f*)~. Under the Eichler-
Shimura isomorphism ES;, the latter gives rise to a map

va, : SEL (N, x#) ] — Sgit (Ng, x#) ] = 6 - f*.

Set Traces = >, ;74 - Vg, and define the big differential 77z € D*(f)* to be the
image under the inverse of ES}Ir of the linear form sending the Hida family f’

in S{};d(N, x#)[f*] to the first Fourier coefficient of Traces(f’):

ES (1) (f') = ar(Traces (f')).
It follows from the definitions and Equation (109) that

o — (_1\ko—2 (fkafk)Np .
Pk(nf) - ( 1) (f]iaf]:)pr n.fk

for each classical point k£ in UJSI. As explained in the proof of Lemma 2.19 of

[20], the elements (—1)k>—2. % are interpolated by an analytic function &%
k) JK/Npp

on Uy, which does not vanish at k, (as f;_ is non-zero by the definition of level-N
test vector for f*). Shrinking Uy if necessary, one can then assume that & is a unit
in Of, and define the sought-for O-adic differential n¢ to be (p — 1) - é"f_l -ap(k)
times 7).

e Similarly as in Equations (115) and (120), for - = %, define the Jp-module

(124) D(f) = (V(F) () &z, Z2) % [1/p)],

where V(f) is a Gq,-stable Oy-lattice in V(f)’, v~ is the trivial character and
vt = —1 — Ky, (so that the twist of V(f) by v is unramified, cf. Equa-
tion (101)). The pairings (-,-); defined in Equation (104) and the isomorphism
De1is(L(xf)) =2 L sending the Gaul sum G(xy) to the identity induce perfect
dualities of Op-modules (denoted again by the same symbols)

(125) ()5 : D(f)* ®g, D*(f)T — 6.

Similarly as in Equations (116) and (121), for each classical point k € UJEI, the
specialization maps (111) and the isomorphisms (112) give rise to specialization
isomorphisms of L-modules

(126)  pr: D(£)* @k L = Var(f,)/Fil® and pg : D(f)” @k L = Fil’Var(£).

Under the isomorphisms (116), (121) and (126), the base change of (125) along
evaluation at k on O is compatible with the perfect duality (31).
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o If k, = 1, the representations V(f;) and V*(f,) are Artin representations un-
ramified at p. After setting V' (f;)* = V' (f)* ®; L (for - = 0, ), one has a
decomposition of Gq,-modules

V() =2V (f)Te V().
Indeed, according to Assumption 5.1(2) one has
V(£)" =V(F)T=n and V(f)T = V(fi)"Pron,
where Frob, is an arithmetic Frobenius, ay = a,(1) and ag, - B¢, = x5 (p).

In order to have a uniform notation (cf. Equation (112)), if k, = 1 one
sets Vip(f1) = Deris(V'(f;)) and defines

(127) VdR(fl)/FﬂO = DcriS(V(f1)+) and FﬂOVdR(fl) = Deris(V(f1)7)-

Similarly set Fil' Vi (f;) = Deris(V*(f1)7) and Vig (£1)/Fil' = Denis(V* (1) 7).
The pairing (103) then induces a perfect and Gq-equivariant duality

V(fi) @ V*(fy) — L,

under which V(f;)" is the orthogonal complement of V*(f;)*. This in turn in-
duces on the crystalline Dieudonné modules a perfect pairing

(128) (g Var(fi) ®L Var(f1) — L,

which identifies Fil’Var (f;) and Var(f;)/Fil® with the duals of V3 (f;)/Fil' and
Fil* Vir (f1) respectively. One finally defines

(129) wg, = p1(wy) € Fil'ViR(£;) and nyg = pi(ng) € Vir(fy)/Fil'

as the specializations of wy and 7y respectively at weight one.

6. Garrett-Rankin p-adic L-functions

Fix three primitive L-rational Hida families

Fi=) anlk) - ¢" € S (Ng, xs),

n>1
9= 3 bul) - q" € ST (Ngy xo)
n>1
and h'= Z cn(m) - q" € ST (Nh, xn).
n>1

Let N be the least common multiple of Ng, Ng and Ny, and let
feSgi(N,xzs), 9€S57HN,xg) and h e STIN, xn)

be Hida families with associated primitive forms f*, g* and h* respectively. Suppose
that Assumption 1.2 holds true, namely x - xg - X is the trivial character modulo N.
Denote by che“ the set of classical triples w = (k,l,m) in ¥ such that p does not
divide the conductor of f;,g; and h,.
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For any w € X% one has f, = (fk)a:9; = (91)a and hy, = (hy)q for (unique)
p-ordinary eigenforms f, ¢; and h,, of common level N (cf. Equation (54)). Similarly
fi.g; and hi, are the ordinary p-stabilizations of newforms f}, g/ and hf, of levels
Ng, Ng and Np, respectively.

Lemma 6.1. — There exists a Hida family wy(f) in S}};d(N, Xf) such that, for
any k € UJE1 with p not dividing the conductor of f;,, the weight-k specialization
wn (f)k is the ordinary p-stabilization of ¥ = wn(fx).

Proof. — A direct computation (see Proposition 1.5 of [7]) shows that
wy opry, = ((p,1)) -pryowy and wy opr] = pryowy

as morphisms from HjR(Yl(N)QP,YdR,k,g)L to H&R(Yl(Np)QP,YdR,k,g)L, where
((p,1)) is the diamond operator associated with (p,1) under the identification
Z/NpZ = Z/NZ x F,,. As a consequence

(130) (f)a = (pr’; 0wy — % pt owN) fo

=wpno <pr’{ - pi;}l 'PFZ> fre = wn (fy)-

The lemma follows from the previous equation and [42, Proposition 10.1.2], namely
the existence of a morphism wy : Sl‘};d(N, Xf) — Sg,;d(N, X#) which specializes to the
Atkin-Lehner operator wy on the ordinary part of Si(I'1(IV, p), x¢) for each classical
weight k in UJE1 (cf. Equations (69) and (117)). O

According to the previous lemma and the results of [32, 20, 33] Hida’s method (cf.
[33]) can be applied to construct a square-root Garrett-Rankin p-adic L-function

fpf(‘f»gah) € ﬁ_fgh

such that, for each classical triple w = (k,[,m) in chen, one has

(131) fpf(f7g,h)(’w) :gpf(fkvgl’hm)a

where fpf (fi> 91, hm) is the p-adic period associated in Equation (55) to the p-stabi-
lization of the triple (fx, gi, hm,).

Remark 6.2. — The p-adic L-function fpf (f,g,h) slightly differs from the one
denoted by the same symbol in [20]. Precisely our pr (f,g,h) is equal to their
fpf(wN(f*),g, h), where f* is the Hida family which specializes to the dual of f;
for each £ in de.
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6.1. Test vectors and special value formulae. — In this section assume the following
hypotheses (cf. [36]).

Assumption 6.3. — 1. There is a triple (k,l,m) in X such that the local sign
eq(fi,g], i) is equal to +1 for all primes q|N.
2. The greatest common divisor of Ny, Ng and Np is squarefree.
3. There is a classical point k in U]Sl such that V (f{) is residually irreducible and
p-distinguished.

Under these assumptions, Section 3.5 of [36] implies the existence of an explicit
level-N test vector (f*,g*,h*) for (f*,g* h*) such that the Garrett-Rankin triple
product p-adic L-function

Lp(fﬁ’gﬁ’ hﬁ) = "g’ﬂpf(f*7g*a h*)2
satisfies the following interpolation property (see Theorem A of loc. cit.). For all
— ;1 yhgen
w = (k,l,m) in X%
(132)

)

i ey L(k,m) E(fi 9, hin)? L(fE®g; ® My, k+l+2m_2)
Lp(fkagl’hm)_ alk,l,m) ﬁ HL 2
2a(klm) " £ (FI)2- & (f)? m2=2) - (ff )N,

where the notations are as follows.

o a(k,l,m) € Usgp, is a linear form in the variables k,l and m and
(133)
L(k,m,1) = ((k+l1+m—4)/2)!- ((k+1-m—2)/2)!- ((k+m—1-2)/2)!- ((k—1—m)/2)!.

e Set cy, = (k+14+m—2)/2, ar = ay(k), Br = x5 (P)P* 1 /ak, as = b,(1) et cetera.
Then

(134)
et = (1 0t (1 el (P (1 il
b p pv pew
(135) (.fk)—l—@ and gl(fli):1_p/-32k'

o For each rational prime ¢ dividing IV, Loc, is an explicit non-zero rational number,
independent of w.

e Let w(f}),7(g]) and m(h%,) be the cuspidal automorphic representations of GLg
attached to f}, g/ and hf, respectively, and set IT,, = 7(ff) ®7(g}) @ w(hi,). Then
L(fi®g ®@hi,, s)=LI,,s+ (3—k—1—m)/2).

Thanks to the results of Garrett and Harris-Kudla [27, 31] one knows that
L(fi ® g; ® h,,s) admits an analytic continuation to all of C and satisfies a
functional equation with global epsilon factor £(IL,,, 1/2) equal to +1 relating its
values at s and k+1+m — 2 —s.
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This is proved by Hsieh in Theorem A of [36] relying on the special value formulae
of Garrett, Harris-Kudla and Ichino [27, 31, 37].

7. Selmer groups and big logarithms

Let (f*, g% h*) and (f,g,h) be as in Section 6.

7.1. A four-variable big logarithm. — Let (cf. Section 5, in particular Equations (97),
(102) and (101))

M(f,g,h); =V ()" &L V(g)t &L V(R)* (Wi ™™ k5 ™™)
This is a free Jpgp-module on which Gq, acts via the unramified character
V:Gq, — G‘gp — Ofgn
defined by

(136) (Frob,) — XgXh(P) - ap(k)

bp(1) - ¢p(m)
(cf. Equation (101)). Let Ocye C Qp[J — jo] be the ring of bounded analytic functions
on an open disk Uey. centered at j, = (ko — lo — m,)/2, and let k37 : Gq — O, be
defined by nc‘yJ;(g) = exp,(—J - log,(Xcyc(9))). Denote by Ofgn the tensor product

Ofgh ©q, Ocyc and define the Opgn[Gq,]-module

(137) M(fagy h)f = M(fag,h)f ®Qp ﬁcyc (wc_yjco . ’igy{;) .

Denote by Z = Zggn the set of integers such that j = j, (mod p — 1) and set
E=¥xZ. Forall w = (k,I,m) € ¥ let ¥,, : Gq, — L* be the composition of ¥
with evaluation at w on Opgp and define M(f,,9;, hm)r = M(f,g,h); ®, L as
the base change of M(f,g,h) under evaluation at & on Opgp, which is isomorphic
to L(¥,,)? for some positive integer a > 1. If z = (w,5) € ¥ then evaluation at x
on Ofgp induces a natural isomorphism of L[Gq,]-modules

pe: M(f,g,h)f @z L= M(fy, ), hm)p(—3).
If
Apgh = Af @6 Ag ® 6 Ap
then
M(f,g,h)s =M(f,g,h)¢[1/p]

for a Aggn[Gq,]-module M(f, g, h)y, free of finite rank over Aggp. Let Z;r = W(F,) be
the ring of Witt vectors of an algebraic closure of F, and define

Ga,
[

D(f7gah)f = (M(fvgah)f ®Zp Z;r) 1/p]

and
D(fagvh)f = D(fvgah)f ®Qp ﬁcyc-
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(Note that D(f,g,h); is naturally isomorphic to D(f)~ ®r D(g)T ®r D(h)*, cf.
Equation (124).) As M(f, g, h)s is unramified and free over Aggn, D(f,g,h)s is a free
Opgn-module of the same rank as M(f,g,h)s. For all classical triples w = (k,l,m)
in ¥ the specialization maps (106) induce a natural isomorphism

Pw * D(.fag)h’)f ®w L = Dcris(M(fkagl)hm)f)

Let t, denote Fontaine’s p-adic analogue of 273, which depends on a fixed choice of a
compatible sequence (e of p"-th roots of unit for n > 0. The element ¢t = t; ! ®(p is
a canonical generator of D,is(Q,(1)), and gives rise to a generator t* of Deyis(Qy (%))
for each i € Z. For any x = (w,j) in ¥ define the isomorphism

(138) pz: D(f,9,h)f ®z L= Deyis(M (£, 91 Bn) (—5))-

by the formulae p,(a® ) = B(j) - puw(a) @t~ for each a« € D(f,g,h); and B € Oye.
If 7 < 0 then the Bloch-Kato exponential map gives an isomorphism

€XPy : DcriS(M(fk’glvhm)f(—j)) = Hl(Qp’M(fkvglahm)f(_j))v

and one writes log, for its inverse. If j > 0 denote by

exp; : Hl(QpaM(fk7gl)hm)f(_j)) — Dcris(M(fkaglahm)f(_j))

the Bloch-Kato dual exponential map. The following proposition is a consequence
of the work of Ochiai [53] and Loeffler-Zerbes [44], which extends previous work of
Coleman-Perrin-Riou [18, 56] (see also Theorem 8.2.3 of [42]).

Proposition 7.1. — There ezists a unique morphism of Ofgn-modules

Ly : H(Qp, M(f,9,h);) — D(f,g,h)s

such that for any x = (w,j) in & with U, (Frob,) # p'*J and any Z in
Hl(vaM(fugah)f) one has

) _ _q1yi+1 o
Li(2), = <1 S > (1 - %(Mb”)) b lesl (%) i 5 <0
’ Uy (Froby) plti jlexpt(Z) if =0
where L§(Z ), and 25, are shorthands for p, o L§(Z) and py.(Z) respectively.

7.1.1. Opgn-adic differentials. — Recall the Op-modules D*(f)* (resp., D(f)*) in-
troduced in Equations (115) and (120) (resp., Equation (124)), and define similarly
D*(&)* and D(&)* for € = g, h. Then (cf. Section 7.1)

D(f,ga h)f = D(f)7 ®L D(g)Jr ®L D(h)+ ®Qp ﬁcyca
and one defines dually
D*(f,g,h)s = D*(f)* &L D*(g)” ®L D*(h)” ®q, Ocyc,
so that the perfect dualities (-, '>£’ for € = f,g,h (cf. Equation (125)) yield a pairing

(139) <'a ')fgh, : D(fvgah)f ®5’th D*(fvg7h)f - ﬁfgh~
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Moreover, identifying Deyis(Q, (7)) = Qp - t* with Q,, (i € Z), the isomorphisms (116),
(121), (126) (and their analogues for g and h) give specialization isomorphisms

(140)  py: D(f,9,h) s ®s L = Fil’Var(fy) @1 Var(g;)/Fil° ® L Var () /Fil°
and
(141)  ps: D*(f,9,h) s ®2 L = Vir(fi)/Fil' @ Fil'Viz (g,) ®L Fil'Vig (hm),
for each classical 4-tuple z = (k,l,m,7) in ¥ with k,I,m > 2.

Define the Opgp-adic differential (cf. Equations (118) and (122))
(142) wagwh:77f®wg®wh®1€[)*(f,gah)f~

According to Equation (119), Equation (123), and the discussion following Equa-
tion (126), for each z = (k,I,m,j) € ¥ with k,I,m > 2 and each p in D(f,g,h);
one has

(143) (i mpwgn) gn (2) = (0 — Dag(h) - (pa1), 15, ® wg, ©0m )y o

where () Foghm 18 the product of the perfect dualities (-, ->§ introduced in Equa-
tion (32), for £ equal to f;, g; and h,.
Define the four-variable f-big logarithm

(144) jf = jog(fvg7h) d:ef <‘C_.f(‘)7nfwgwh>‘fgh : Hl(Qp>M(fagvh)f) — ﬁ_fgh,

to be the composition of £y with the linear form (-, NfWeWh) pgp O D(f,g,h);.
Mutatis mutandis the previous constructions apply after replacing f with a = g, h.
One obtains four-variable a-big logarithms %, : H(Qp, M(f,g,h)a) — Ofgh.

7.1.1.1. Weight-one specializations. — With the notations introduced in the last part
of Section 5 (cf. Equations (127)—(129)), the isomorphisms (140) and (141) and the
definition of the pairing (-, '>fk9zhm extend to all classical 4-tuples z = (k,l,m,j) in &,
independently on whether the weights k,l and m are geometric or not (id est equal
to 1). Moreover, if k > 2, Equation (143) still holds.

7.2. The balanced Selmer group. — Define the continuous character
Efgh : Gq — Ofgp
by the formula

(Uko—lo=mo) /2 o () (A—h—l=m)/2

Etgn(9) = weye(9)
for every g in Gq, and the Jpgn[Gql-representation
V(f,9,h) =V (f)®LV(9)®LV (h) ®¢,,, Efgh-

Equations (103) and (114) imply that V' (f, g, h) is Kummer self-dual: the product of
the perfect dualities [-,-]¢ : V(§) ®g, V(§) — O¢(1 + Ky, + Xxe¢) defined by [z,y]e =
(z, w;,é(y))s yields a perfect, skew-symmetric duality (cf. Assumption 1.2)

[‘a ‘]fgh : V(.fvgah) ®ﬁfgh V(f’gvh) - ﬁfgh(l)a

cyc
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whose adjoint identifies V(f, g, h) with its own Kummer dual. Moreover, for all w =
(k,l,m) in ¥ the specialization maps (106) induce isomorphisms

(145) pw : V(F,9,h) ®w L=V (fi, 91, hm)

(ct. Equation (47)), where - ®,, L denotes the base change under evaluation at w.
Define a decreasing filtration .# V(f) on V(f) by Z/V (f) = V(f) for every j < 0,

FYW(Ff) = V(f)* and FIV(f) = 0 for j > 2, and similarly .# V(g) and .Z V (h).

Let # V(f,g,h) be the tensor product filtration:

FV(f.g,h)=| Y. FV(f) &L FWV(g) &L F V()| ®a,,, Efgn-

ptg+r=n

This is a decreasing filtration of V(f,g,h) by Ofgn[Gq,]-submodules, satisfying
F*V(f,g,h) = 0 and F°V(f,g,h) = V(f,g,h). The annihilator of .Z*V(f,g,h)
under the duality [-,-|sgn is equal to F*V(f, g, h), hence the adjoint of [-, ] sgn
induces isomorphisms of Ofgn[Gq,]-modules

(146) gr'V(f.g,h) = Homg,,, (gr> 'V (f, g, h), Opgn(1))
(where gr'V(f,g,h) = FV(f,g,h)/F1). If one sets

V(f,9,h); =V (f)" @ V(g)" &L V(h)" ®ay,, Esgn,
and defines similarly V(f, g, h), and V(f, g, h)p, then

(147) g’V (f,g,h) =V (f,g.h)s ®V(f,g,h)g ®V(f,g,h)n

as Opgn|Gq,]-modules. It follows form Equation (146) and the definitions that the

inertia subgroup Iq,(,,) of the absolute Galois group of Q(u,) acts on er*V(f,g,h)

and gr'V(f, g, h) via the characters ngl;jl+m_2)/2 and mgig’““‘"‘)/z respectively. In

addition, Equations (146) and (147) show that gr’V(f,g,h) and gr'V(f,g,h) are
isomorphic respectively to the direct sum of a finite number of copies of

l4+m—~k l+k—m k+m—1 k—l—m+2 m—l—k+2 l—k—m+2
2 2 2 2 2 2
Keyc D Keye @D Keyc and Keyc D Keyc D Keyc

as Iq(u,)-modules (where k¢ . = Opgn(k2,.)). In particular, for each i € Z one has
(148) H°(Qp, &'V (f,g,h)) = 0.
Define the balanced local condition
Hpu(Qp, V(£,9,h) = H'(Qy, 72V (£, 9, h)).

In light of Equation (148), the morphism induced on the first Gq,-cohomology groups
by the inclusion .#2V (f,g,h) — V(f,g,h) is injective, hence we can, and will,
identify the balanced local condition with a submodule of H*(Q,, V(f, g, h)), namely

H&al(Qll? V(va) h’)) = Im(Hl(QZN y2V(‘f’g7 h)) - HI(QI” V(fag7 h)))
For - = f, g, h, one denotes by p. both the natural Gq,-equivariant projection

p.: FV(f,g,h) — V(f,g,h).
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arising from Equation (147) and the morphism
p.: Hl;al(QP?V(f’g7h’)) - Hl(QWV(fvg)h)-)

it induces in cohomology.
For all morphisms of L-algebras ¢ : Opgn — O, set

ch(f>gah)~ = V(f,g,h). Ry ﬁqo and ﬁ'ch(f,g,h) = f'V(f,g,h) PP ﬁgﬁa
denote again by by p. : V,(f,g,h) = V,,(f,g, h). the natural projections, and define
H‘éal(Qpana(fagvh)) = Im(Hl(QP,}ﬂVw(f,g,h)) — Hl(QP,Vw(f,g,h))) .

If w=(k,l,m) is a triple in ¥ and ¢ is evaluation at w, we identify V,(f, g, h) with
V(fi, 9, hm) under the specialization isomorphism p,, (cf. Equation (145)).
One has the following crucial lemma.

Lemma 7.2. — If w = (k,m,l) € L. is a balanced classical triple, then

(149) Hpo(Qp, V(Fi 91 b)) = Hen(Qp, V (£, 91, hin)),

where HE (Q,,-) is the Bloch-Kato finite local condition (cf. Lemma 3.5). As a con-
sequence, the Bloch-Kato exponential map gives an isomorphism

eXp,, - VdR(fk7gl7hm)/FﬂO = Héal(Qp7V(fkvgl7hm))‘
Proof. — Set V' =V (f,9;, hm), and consider the exact sequence of Gq,-modules
0— FV —V —V/.F> 0.
The discussion preceding Equation (148) shows that .#2V has Hodge-Tate weights

k+l+m—-2 kE+l—-m k+m-—1 l+m—k
) ’ and a9
2 2 2 2
while V/.%? has Hodge-Tate weights
k—l-m+2 Il—-k-m+2 m—-k—-1+2 4—k—-1l—m
, , and .
2 2 2 2

Since w is a balanced classical triple, it follows that all the Hodge-Tate weights of #2V
(resp., V/.72) are positive (resp., non-positive), hence

(150) tgqr(F2V) = Dgr(#2V) and Fil’Dyr(V/.Z?%) = Dar(V/.7?)

(where tgyg(-) = Dgr(-)/Fil°). The second equality implies that Hl (Qp, V/F?)
vanishes (cf. Corollary 3.8.4 of [16]), and since .%# 2V is isomorphic to the Kummer dual
of V/.72, this in turn implies H'(Qp, #?V) = Hg,,(Q,, #2V) (cf. Proposition 3.8 of
[16]). As HE (Qp,V) = H,.,(Qp, V) by Lemma 3.5, one deduces that Hg, (Qp,V)
contains the balanced subspace H{,(Qp,V). On the other hand, Equation (150)
shows that the inclusion #2V «—— V induces an isomorphism between the tangent
space of .72V and that of V. It follows that H_, ,(Q,,V) is contained in the im-
age of H}, ,(Qp,.#2V), hence a fortiori in the balanced subspace H},(Qp, V). Since
HL (Qp,V) = H{,(Qp, V) by Lemma 3.5, this concludes the proof of the first state-

ment. The second statement follows from the first and Lemma 3.5. O
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7.3. The three-variable big logarithms. — Let w = (k, 1, m) be a classical triple in X. If
w € Yy, is balanced, then the differential % Owg Owh,, belongs to FilOVd*R(fk, g, hin)
by Equation (53). In this case denote by

Ing : H&al(QPv V(fkagla hm)) = VdR(fkagh hm)/FﬂO

the inverse of the Bloch-Kato exponential (cf. Lemma 7.2), and define

1ng(')f = logp() (W?k ® Wg, ® whm) : H’éal(QPa V(fk7 g h’m)) — L
to be the composition of log, with evaluation on n;‘k ® wg, ® w,, . Here one identifies

Var(Fi» 91, m) /Fil0 with the dual of FilOVd*R( fi,9;, i) under the product of the
perfect dualities (-, ->€ introduced in Equation (31), for &, = fi,9;, hm-
If w belongs to X ¢ denote by

exp; : Hl(Qp7 V(fk> gla hm)) — FilOVdR(fk’ gl7 hm)
the Bloch-Kato dual exponential map, and by
expy () = expy () (nf, ® wg, @ wn,,) : H'(Qp, V(f1,91:hm)) — L
its composition with evaluation at n;’ék ® wg, ® Wh,,. As above, here one identifies

Fil’Vir (fy, 91, hm) with a subspace of the dual of Vi3 (fi,;, hrm) under the tensor
product of the pairings (-,-), defined in (31) and (128). (If either I or m is equal
to 1, the definitions of Var(fy,9;, hm) and Vi (fi, 9, bm) given in Equations (50)
and (51) are understood in light of the conventions of Section 5, cf. Equation (127).)

To ease notation set ay, = a,(k), B = x5 (p)p" 1 /ak, ar = by(l) et cetera. Recall
that for each classical triple w = (k,l,m) in ¥ one writes ¢,, = (k+ 1+ m — 2)/2
(which belongs to N by Assumption 1.2).

Proposition 7.3. — There is a unique morphism of Opgn-modules

gf = "go‘g(f7g7h) : Héal(QP7V(fvg7h’)) - ﬁfgh
such that, for all w = (k,l,m) € & with axBiBm # p* and 3 € HE,(Qp, V(f,g,h))

_ Braiam _1)ew—Fk )

(1 kpclw ) . ((Cl‘w)fk_)!logp(slu)f if w € Ypa
(1 - %) (k= co — D)Vexp}(3u)y if w e Ty,
where 34 = puws(3). Moreover £ factors through

Py« - H&al(QPﬂ V(f797 h)) - Hl(QIN V(f797 h)f)
Proof. — Set My = M(f,g,h);, V=V (f,g,h) and V; = V(f,g,h);. Let

Z5(3)(w) = (p— Doy, -

0+ Opgh — Ofgh

be the surjective morphism of L-algebras which sends the analytic function F(k,l,m,j)
to its restriction F'(k,l,m,(k —1 —m)/2) to the hyperplane defined by the equation
2j = k — 1l — m. (Here we implicitly shrink the disks Us,Ug and Up, if necessary,
in order to guarantee that (kK — 1 — m)/2 takes values in the disk Uiy, fixed in
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Section 7.1.) Unwinding the definitions one finds that ¥ induces an isomorphism
of Opgn[Gq,]-modules (denoted by the same symbol)

(151) V: My Qg Opgn = V5.
We claim that this map entails an isomorphism
(152) Oy : H(Qp, My) ®9 Opgn = H' (Qp, V).

Granting this, one can define .Z% by the composition
Ly Hy(Qp,V(f,9,h) ™ H'(Q,, V(£,9,h)y)
9t — Lr®id
—>H1(Qp7M(fag7h)f) X ﬁfgh = ﬁfghv

where %} is the four-variable f-big logarithm defined in Equation (144). Unraveling
the definitions, one checks that the interpolation property satisfied by 2% is a direct
consequence of Proposition 7.1. It then remains to prove the claim (152).

As M is a free module over the domain Ofgp, the claim (152) is equivalent to the
vanishing of the (2§ — k + I + m)-torsion submodule of H?(Q,, My). Set

A= Afgh ®Zp Acyc:

where Acyc is the Z,-module of functions in &y, bounded by one. The J-algebra
]ngh is isomorphic to a power series ring in four variables with coefficients in &.
In particular, it is a regular local complete Noetherian ring with finite residue field
(hence a UFD). Write My = M¢[1/p] for a A[Gq,]-module My free of finite rank over A.
For every discrete or compact A-module - write Z(-) = Homcont (-, Qp/Zyp) for its
Pontrjagin dual. According to the local Tate duality and the Pontrjagin duality

(153) H*(Qy, My)[2) — b+ L+ m] = 2( 7 (0 (~1)%% /(2 — k +1+m))[1/p].

Let Frob, be the arithmetic Frobenius in G}' = Gal(Q,"/Q,) and let v be a topo-
logical generator of G} = Gal(Q,(up=)/Q,) (recall that p is odd). By construction
(after identifying G?pr with the product of G}" and G;f) Frob,, acts on My as multi-
plication by ¥, = ¥(Frob,) and v acts on Ms(—1) as multiplication by the inverse
of Ty = wltie - 41+3 where w, = weye(7) and v, = Keye(7y). This yields

DMy (~1))%% /(25 — k+1+m) = @ @<(\I/0—1AFO—1)[2j —k+1+ m])

for some positive integer a (cf. Equation (137)). We prove that the module

A

— 29—k +1
W, — 1,1, 1) kritml

is killed by a power of p, which together with Equation (153) proves the claim (152).
If j, # —1, the function I', — 1 is a unit in Acyc[1/p], hence AJ(V,—1,T,—1) is killed

SOCIETE MATHEMATIQUE DE FRANCE 2022



136 MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI

by a power of p. Assume then j, = —1 and let F = F(w, ) be an element of A whose
image in 1/(¥, —1,T, — 1) is killed by 2§ — k + I + m. This implies that

A+m—k—2)-F(w,—1) = (Uo(w) — 1) - G(w)

for some G(w) in Aggp. As j, = —1 there is a classical triple w = (k,I,m) € X
such that [ + m — k — 2 = 0 and such that p does not divide the conductor of f;,g,
and h,,. According to the Ramanujan-Petersson conjecture the inverse of ¥,(w) has
complex absolute value \/p for every such w (cf. Equation (136)). As a consequence
l+m — k — 2 is not an irreducible factor of ¥, — 1, hence the latter divides F'(w, —1)
by the previous equation. This proves that F' belongs to the ideal generated by ¥, —1
and j + 1. As (T, — 1)/(1 + 5) is a unit in Acyc[1/p], it follows that p™¥(?°) . F' maps
to zero in A/(¥, —1,T, — 1) for a non-negative integer N(v,) independent of F, as
was to be shown. O

We call £ the three variable f-big logarithm. Mutatis mutandis, for @ = g, h one
defines a-big logarithms

,fa : Hgal(Qva(fag’h)) - ﬁfghd
which factor through pa. : HL,(Qp, V(f,g,h)) — HY(Q,, V(f,g,h),) and satisfy

similar interpolation properties.

8. Proof of Theorem A

This section proves Theorem A stated in the Introduction.

8.1. Construction of x(f,g,h). — Fix a nonnegative integer = > 1, which will be
made sufficiently large below. For £ = f,g,h and - = 0,/ set A, = At A = Ay,
D; = Dy, , and D = Dy, (cf. Section 4 for the relevant definitions). Similarly, for
anyu € U¢NZ,set A, = A, . D, =D, ,, A, =A, and D, =D, ,.
Set
(TxT)o={(t1,t2) € T x T | det(t1,t2) € Zy},

where det((z1,2), (y1,y2)) = T1y2—22y1. Let (T x T)Y be the complement of (T x T)g
in Tx T. Note that (T x T)g and (T x T)? are open compact subsets of T x T, preserved
by the diagonal action of I'g(pZ,). Identify Ay ® Ap = Ag ®¢ Ap with a space of
locally analytic functions on T x T, homogeneous of weights kg = Ky, and kKp = Ky,
in the first and second variable respectively. The orthonormal basis of Ay & Ap, arising
from Remark 4.1 gives a decomposition of I'g(pZj,)-modules

Ay & An = (Ag & An)o @ (Ag & An)°,

where (Ag ® Ap)o and (Ag ® Ap)° consist in locally analytic functions supported
on (T x T)o and (T x T)? respectively. Let Afgn = Ay ®¢ Ag ®¢ Ap and define the
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characters k% : Zy — Af ), and kfgy, 0 Zy — A7, by

* _ (lo+mo—ko—2)/2 (I+m—k—2)/2
K3 (u) = w(u) (u)
w

W
and g (1) = w(u) B2 o0/

for every u = w(u) - (u) in Zy = Fy x 1+ pZ,. (Recall by the discussion preceding
Equation (97) that g (u) is equal to w(u)k=2- (u)*7?, and similarly for kg and Kp.)
Here one uses Assumption 1.2, which guarantees that the quantity k, 4+, + m, is an
even integer. Define similarly xj and &}, so that rfg, = £} + kg + £}, (again with
additive notation). After noting that det : Zf, X Zf, — Z, maps T X T to Z, let

Det = Det]?" : T/ x T x T — Aggn

be the function which vanishes identically on T/ x (T x T)? and on an element (x, y, 2)
in T x (T x T)g takes the value

Det(z,y, z) = det(x,y)" - det(z, z)"s - det(y, z)"7.

Because ky+kj, = k¢, one has Det(u-x,y, z) = rz(u) -Det(z,y, 2) for every u € Z,
hence for + big enough Det(z,y,,2,) belongs to A} for every (y,,2,) € T x T.
Similarly Det(x,,y, 2,) € Ay and Det(x,,y,,2) € Ap for every (z,,2,) € T' x T
and (x,,y,) € T x T respectively. Moreover

Det(z -7,y - 7,2 - 7) = det(y)"7o» - Det(z,y, 2)

for every v € T'o(pZ,). As a consequence Det can be identified with an element
of A% ® Ag ® An(—=Kfgp), which is invariant under tlle diaAgonal action of I'g(pZ,)
(cf. Section 4.2). Since the I'g(pZj)-representation A% @ Ag ® Ap corresponds to the
pro-sheaf A ©® Ag ® Ap on Y = Y1(N,p) under the functor -¢* (cf. loc. cit.) this
yields

(154) Detf?" € HY,(Y, A} ® Ag ® An(—K}gn))-
Let I =T';(N,p) and let d : Y — Y3 be the diagonal embedding. Define

1
ap(k)

(155) n(f,g,h)z -H(f,g,h)oEHI(Q,V(f,g,h)),

where

K(£,9,h)° = AJLS" (Det{?)

SOCIETE MATHEMATIQUE DE FRANCE 2022



138 MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI

is the image of the big invariant Detf\f;‘ under the big Abel-Jacobi map AJ g:tgh defined
by the following composition.

HY(Y, A@Ag @ An(—Kgn)) = HE(Y?, A} 8 Ag B Ap(—+fgp) @z, Zy(2))
=, HY(Q, H}, (Y3, A R AG KAL) (2 + Kfgn))

(156) RN H'(Q,H'(T,A}) & H' (T, Ag) & H' (T, An)(2 + Kfgn))
(r 9D f1(Q, HU(T, Ag) &1, HM(T, Ag) &1 HY(T, Ap)(2 + Kigh))
T {1 (Q, HY(T, Dp)<° &y, HY (D, D))< &y, H' (T, D) <°(2 = K} gn))
I HN(QV(F) &1 V(g) &1 V(M) (=1 = Kjgn)) = HY(Q,V(f,g,h)).

Here kg, 1 Gq — Afgp denotes the composition of rfg, with the p-adic cyclo-
tomic character Xqyc. The first arrow is the push-forward by the diagonal embed-
ding d. The morphism HS arises from the Hochschild-Serre spectral sequence and
Equation (80). (Note that Hglt(Y(—‘;’,f) vanishes for every pro-sheaf .# € S(Y3), as
follows easily from Equation (75) and [45, Chapter VI, Theorem 7.2].) The map K
comes from the Kiinneth decomposition and the projection in Equation (79). The
morphism (w, ® id ® id), is the one induced in cohomology by the Gg-equivariant
Atkin-Lehner operator w,, : HI(I‘,A'f) — HYT, Ag) (cf. Sections 4.1.2 and 4.2).
The penultimate arrow sggp. is induced by the tensor product of the morphisms
of Gq-modules

HI(F,AG) - Hl(F7Aa)<O S HI(F7D0/.)<O(_K’Ua)

for @ = f,g,h, where the first map is the projection to the slope < 0 part and
Sa = Sy, 0 is defined in Equation (83). Finally Plegh denotes the tensor product of
the Gq-equivariant projections pr, defined in Equation (105).

8.2. Balanced specializations of x(f,g,h). — Let w = (k,l,m) € Xpa be a balanced
triple of classical weights, let 7 = (k—2,{—2,m—2) = w—2, and let r = (r1+7r2+7r3)/2.
Recall the diagonal classes

R’NPJ‘ € Hgleo(Q7 WNPJ‘) and KNp,r = Srx (RNP,T) € Hgleo(Q7 VNP,T‘)

introduced in Equations (43) and (46), and define the twisted diagonal class
(157)
HT(flﬁ gl7 h’m) = prfkglhm* (S’I‘* ((w; (Y ld ® ld)* (F':Np,r))) € Hgleo(Q7 V(flw gl7 hm))

Here pry, g p,, is the projection defined in Equation (48) and

(w;/; ®id® id)* : Hl(Q(Np)a WNZLT') — Hl(Q(Np)v WNp,r)

is the map induced by the dual Atkin-Lehner operator
wy, + ey (Y1(Np)q, 7)) = Hg (Yi(Np)q, )

p
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(cf. Section 2.3.1) and the Kiinneth decomposition on Wpyy .. A priori the
class k1 (fy, g;, hm) then lives in the geometric subgroup of H*(Q(up), V (fi, g1 hm))-
On the other hand the forms f;, g, and h,, have level I'; (N, p) = I'1 (N)NT'o(p), hence
the cohomology class Rnp.» is in the image of the map induced in Gq-cohomology
by the pull-back H3, (Y1 (N, p)%, 1)) (Cw) — Hg’t(Yl(Np)%, 1)) (cw) = Wip,r. Be-
cause the Atkin-Lehner operator wj, acting on H (Y1(N, P)q, - 7k—2) is Gq-equivari-
ant, this implies that x'(f;, g;, hm) is fixed by the action of the Galois group of Q(,)
over Q, hence can naturally be viewed as a geometric class in H'(Q, V (£, g;, bm))-
With the notations already introduced one has the following

Theorem 8.1. — For each balanced triple w = (k,l,m) in Ly one has

(p - l)a.f;C 'pw(’i(fag7h)) = <1 - W) : HT(fmghhm)'

Before giving the proof of Theorem 8.1 we deduce the following

Corollary 8.2. — k(f,g,h) lies in the balanced Selmer group H} (Q,V(f,g,h)).

Proof. — By definition one has to prove that the class
resy,p("{’(f>ga h)) € Hl(Qa V(.f7.97 h)/ﬁz‘/(f’g, h’))

is zero, where resg , is the composition of the restriction at p and the map induced
by V(f,g,h) - V(f,g,h)/F2. According to Proposition 3.2 for every balanced
triple w = (k,l,m) in Xy, one has

resp (Ht(fk’ g1, hm)) € Hgleo(Qpa V(fka g, hm))

Let X7, be the set of (k,I,m) in ¥pa such that p does not divide the conductors
of fi,g9, and h,,. One has

Hgleo(QP’ V(fkvgk’ hm» = ker(Hl(Qp’ V(fk>gl7 hm)) - Hl(QP’ V(fkvgh hM)/gQ))
and
s, Bg,Bh,, D °

for all w = (k,I,m) in X¢,, (by the Ramunajan-Petersson conjecture). The pre-
vious two equations and Theorem 8.1 imply that the class resgz ,(k(f,g,h))
specializes to zero in HY(Q,,V(fy, g1, hm)/F?) at every w in X2 . Because
Ypa is demse in Up x Ug x Up, to conclude the proof it is then sufficient to
show that H'(Q,,V(f,g,h)/F?) is Opgn-torsion free (hence a submodule of
a reflexive Opgn-module), which implies that ﬂwezgal(k -kl —-1l,m —m)-
HY(Qu,V(f,g9,h)/F%) = 0. This is a consequence of the following claim. If
© € Ofgn is irreducible and one sets O, = Ofgn/(p), then

(158) H°(Q,,V(f,9,h)/F* ®s,,, Op) =0.
The rest of the proof is then devoted to the proof of this claim.
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Section 7.2 shows that there is a short exact sequence of Gq,(,,)-modules
Op(05)% ® Op(09)%" ® Oy (00)° — V(£,9,0)/F* @64, Op — Op(05gn)",
where a is a positive integer and the characters 0. : Gq,(,,) — O, are defined by

Opgn = KGR ap(k) 'Bp(l) - ép(m),

cyc

05 = r(k—l-m+2)/2 X# -Ep(l) - Ep(m) - ap (k)™

cyc
and similarly for 65 and 0. Set ppgn = 4—k—1—m, set py = k—1—m+2 and define
similarly pg and pp. Denote by p, and 6, one of . and 6. respectively. If - Opgp, is
different from one of the ideals pq - Opgn, then H(Iq, (), V(F,9,h) /7> ®o,,, Op) is
trivial and (158) holds true. Assume now p = u-gpg for a unit u in g, so that 0, is an
unramified character of Gq,(y,). According to the Ramanujan-Petersson conjecture
one has

|0a (Frob, ) (w)| = v/p

for all w € 39, NV (p) (where |- | is the complex absolute value and V' (p) is the zero
locus of p). Shrinking the disks U. if necessary, we can assume that ¢, NV (p) is
non-empty (otherwise p would be a unit). The previous equation then implies that
the characters 6. are non-trivial and (158) follows. O

Proof of Theorem 8.1. — According to [46, Section I1.7] for every n,7 > 1 there is a
trace isomorphism

Tracey~ : H2"P3 (Y™, 0/m'(n+ 1)) = 0/m".

ét,c
(See Chapter II, Section 2 of loc. cit. for the definition of Hy .(Y™,), denoted

H.(Y™,-) there.) For all finite smooth sheaves .Z of &/mi-modules on Y, Tracey
and the cup-product define perfect pairings

(159)  (,-)yn = Traceyn oU: HL (Y™, F) @r HZ >/ (Y™, 4(n 4+ 1)) — O/m’,

ét,c
where ¢ is the dual of .# (cf. Chapter II, Corollary 7.7 of [46]). Denote by .%;
in S;(Ys;) the sheaf associated to Fil; ;A,, , for u > 0 and fixed j > i > 0, and by ¥,
the 0 /mi-dual of .% . One has a Hecke equivariant diagram of adjoint morphisms,
where the Hecke operators are defined by constructions similar to those of Section 2.3.
(160)

HY(Y, 7, ® Fry @ Ty (1) X HE, (V9 ©%r, %y (2— 1)) ——2 . G jmi

‘| I |

HA(YS, 7, R Fy B Ty (r+2) x HE (Y39, 0, 09, (2 1) — 2> g/mi.

»Iry

Let A- and A’ be shorthands for A:, and A, respectively. Similarly as above,
the orthonormal basis of A, & A, arising from Remark 4.1 gives a decomposition
of T'o(pZp)-modules

Au ® Av = (Au ® A’U)O @ (Au ® Av)oa
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where (A, ® A,)o (resp., (A, ®A4,)°) can be identified with a space of locally analytic
functions on T x T supported on (T x T)g (resp., (T x T)?). This in turn induces
similar decompositions

Fu® Fy = (7@ F)o® (7 ® %) and %, 0% = (9. ®%)0® (% 2%,)°.

Let t : Y1(Np) — Y1(N,p) = Y be the natural projection. To ease notations, let
Det € HY, (Y, A,, ® A,, ® A,,(r)) denote the image of Det?;, under the composition
of the push-forward ¢, with the natural map

Hgt(Yv ‘5/?”1 ® ym ®y?”3(r)) - He(’z)t(yv A;q ®Aﬂ”2 ® A,«3(7”))

For j = j(i) large enough, let D = D7, € HY,(Y, 7/, ® Fy, @ Fp,(r)) be a represen-
tative of Det (mod m’) (cf. Section 4.2), and let Dy = Df ;, be its projection to the
cohomology group HY, (Y, Z) & (Fr, ® Fr,)o(r)). By construction

(161) (p—1) - pu(Det) = limD7 ;.

For all z in H?

(d.(D—D0),1®© UF*(2))ys = (D — Do, d* (1© UF*(2))),
= (D—Dg,5*(1®6*(1® US*(2))))
(162) = (00" (1@ U(1®0"(2))y
=p" - (D,6*(U, ®1(1®6%(2))))
=p" - (D,d(U, @ 1®1(2))),
=p " (di(D),U, @1 ®1(2))

(V3,9 K¥,,K%,,(2—r)) one has the equalities (cf. Equation (160))

Y

Y

y3?
where 6 : Y — Y2 is the diagonal embedding. To justify the third equality one notes
that

1®6* 01U -1QU,0l® "

(resp., 1@ U, 01®§*) takes values in the submodule H, (Y, ¥}, @ (%, ®%,)0(2—7))
(resp., in HY, (Y, !, © (Gr, ©%,,)°(2 — 1)), and that H} (Y, 9, © (9, © G )o(2 — 1))
is orthogonal to Hg, (Y, #/, ® (F, ® F,)°(r)). (Compare with the proof of Propo-
sition 5.4 of [29].)

All the other equalities in Equation (162) but the fourth are standard. To prove the
remaining equality, let 7 : Y — Spec(Z[1/Np]) and w = 7 x 7 : Y2 — Spec(Z[1/Np))
be the structural maps. Let Rm and Rw, be the §-functors associated in [26, Chap-
ter I, Definition 8.6] with the compactifiable maps 7 and =, so that by definition
HE (Y,-) = H{ (Z[1/Np], Rm-) and Héqt’c(Yz,') = Hf (Z[1/Np], Rm) for any
q =0 (cf. Section I1.7 of [46]). If ¢ denotes the étale sheaf ¥4 X (%, ® 4,,)(2 — 1)
on Y2, one can lift the Hecke operators 1®U, and U, ®1 on H, .(Y?,%) to morphisms

(denoted by the same symbols) Rm¥ — Rm¥ (cf. Section 2.3). The diagonal em-
bedding 6* : Y — Y2, the morphism of sheaves

B:6"G =9 @Y, %, (2—1) — O/m(2)
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defined by the cup product with D, and the trace morphism

try : RmO/m'(2) — 0 /m'[-2]
(see the discussion preceding Theorem 7.6 in [46, Chapter II, Section 7]) induce a
map ¥ = try o B0 6* : Rm% — O /m'[—2]. In order to prove the forth equality in

Equation (162) it is then sufficient to prove that the composition = = $01®U, agrees
with W = y¢(p)p" " - ¥ o U, ® 1. By using the Kiinneth isomorphism

RmY = Rm¥Y, ®% Rm\(%, ® 9, (2 — 1)),

the sought for equality = = W follows from the same formal computation as in the
proof of Proposition 2.9 of [29].

Since the operators 1 ® U2? and U] ©® 1 ® 1 acting on Hgt’C(Y?’,%T’l X%, XY, (2-7))

are the adjoints under (-,-)ys of the operators 1 ® UZ‘?Q and U, ® 1 ® 1 acting
on HZ (Y3, 7! X .%, XK .Z,(r+2)), and since (-,-)ys is perfect, Equation (162)
yields

(1®Up,®Up)od.(D—Do) =p" " - (U, ®1®1) 0di(D).
In light of Equation (161), this implies

(163) (p—1)-1®U,®Up) ocKoHSod, o p,(Det)
=(1QU,®U,—p" ™ -U,®1®1) ocKoHSod,(Det)

in H, (Q,H' (T, A,)®r H (T, A,,) ® H (T, A;,,)(r + 2)), where A, is a shorthand
for A;, ,, and the morphisms K,HS and d, are defined as in Equation (156), after

U,
replacing the big étale sheaf A} ® Ay ® Ap with A ® A, ® A,,. To ease notations
write O (resp., #) for the left (resp., right) hand side of Equation (163).

For each nonnegative integer v and %, = ., %, let

Hélt(Yl(Np)Qv Fu)o — Hgt(Yl(Np)Qy Fu)L

be the L-direct summand on which the diamond operator (d) acts trivially for each
integer d coprime to p and congruent to one modulo N, so that the pull-back t*
yields an isomorphism between Hj (Yq, #u)r and H} (Y1(Np)q, Fu), with inverse
p%l times the push-forward t,. For - = ),/ denote by

Cy t Hélt(Yl(Np)Qayu)O I Hl(r’Au)

the composition of ¢, with the comparison morphism introduced in Equation (72).
By construction

(., ® cry ® Cry)x oK (Rnp,r) = Ko HS 0 d,(Det)

(where the morphism K which appear in the left hand side refers to the Kiinneth
decomposition of Wy » = H3, (Y1(Np)q, #r)) (7 + 2)), hence

®=(c, ®cr,®cpy)so(l QU @U, —p" - Up®1® 1) oK (Rnp,r)
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(cf. the discussion following Equation (72)). Since wy, o ¢, = ¢, o w,,, where wj, is the
Atkin-Lehner operator defined in Section 2.3.1 and w, is the one defined in Equa-
tion (66), and since w;,U, = (p)y U,w,, as endomorphisms of H} (Y1(Np)q, ), one
deduces

(164) wy,;(M) =cro(1@U, @ U, —p" ™ - (p)y U, ®1® 1) 0wy, f, oK (Rnvp,r),

where wp, ; = w, ®id ®id, w), ; = w, ®id®id and ¢, = ¢, @ ¢, & Cpy-
Taking h = 0 and replacing Ay and Dy, with A, and D), (for v € N) respectively in
the definition of the map sy, (cf. Equation (83)) yields a Gq-equivariant morphism

Su0: H'(T, Ay)S"(u) — H'(T, D},)<,
which intertwines the action of U, on the source with that of U, on the target. If

comp,, : Hl(F,D;)glo — Hélt(Yl(Np)Q,fu)glo

denotes the composition of t* : HY (Yg,.Zu)r — HA(Y1(Np)q, Zu)o with the com-
parison isomorphism defined in Equation (73), then (cf. Equation (44))

1
p—1
as maps from H} (Y1(Np), Yu)fo(u) to HY(T, fu)fo. Set S0 = Sry,0®8r,,0®Sry0
and comp, = comp,, ® comp,, ® comp,. . It then follows from Equation (164) and

the definition of the twisted diagonal class k'(fy, g;, hm) that the equality
(166)

(165) COMP,, © Sy 0O Cy = Sux

Qg,Qh,, Xr(P)p" "o
e (GO0 g
p—1 Qg,Qh,,
holds in Hy (Z[1/Np],V(fy, g1, hm)). (Here pry g p is the tensor product of the
projections pr. defined in Equation (23), for - equal to f,g; and h,,.)
By construction, one has

prfkglhm* OCOHIp,r.* o S”‘vo* owpvf*(‘)

Ko HS o d, o p,(Det) = p,, cKoHS o d,(Det),

where the maps K,HS and d, which appear in the right hand side are the ones
introduced in Equation (156). Since the maps p,, and comp,. are Hecke-equivariant,
and since s, intertwines the action of U, on H'(T,A,)S® with that of U}

on HY(I', D)<' (for each nonnegative integer ), it follows that
(167) & = (p — 1)ag,an,, *Prs g p,, © COMP,, O S 0x O Wy f+ O py © Ko HS 0 dy(Det),
where one defines

<> = prfkglhm* © comp,., © Sp,0% © wp,f*(q?)'

One has wp, £+ 0 py = P ©Wp, f+. Moreover the diagram (84) and Equation (165) yield

1

1
-1
COMp,, 0 Sy,0 0 Put2 = Zﬁ *Sux O0Cy O Pyy2 = gfl + COIMP,, © Py+2 O Sye,0
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as morphisms from H'(T', A¢)<%(k¢) — HZ (Y1(Np)q,-Z.)s °, for (€,u) equal to one
of the pairs (f,k—2), (g,l—2) and (h, m—2), (cf. the discussion following the diagram
(84)). (With a slight abuse of notation, in the previous equation one writes c;;! for the
inverse of the isomorphism between H} (Y1(Np)gq, )5 and HY(T, A,)<° induced
by ¢,.) Finally, with the notations introduced in Equations (105) and (106), one has
the following equality of Gq-equivariant maps from H'(T, D;)S%(1) to V(f,):

Prg. ©COMP, © Put2 = Put2 O Prg.
It then follows from Equation (167) and the definitions of (< and) x(f, g, h)° that
(168) pr.fkgzhm* © comp,.* o S7‘70* © wp,f* (@) = agzahm " Pw (H(th, h’)o)'

As xsXxgxn = 1 by Assumption 1.2, and by definition ag,8g, = xg (p)p2t1,
an, Br,, = Xxn(p)p"2T1 and 2r = r;+ry+r;3, the theorem follows from Equations (163),
(166) and (168). (Recall that x(f,g,h)° = ap(k) - &(f,g,h).) O

8.3. p-stabilization of diagonal classes. — Write in this section
Yi(M) =Y1(M)q

for every integer M > 3. Recall the degeneracy maps pr; : Y1(Np) — Yi(NN), for
i =1, p, defined in Section 2.2.

Let w € ¥y, and 7 = w — 2 be as in the previous section. Assume k,I,m > 3 and
that p does not divide the conductors of f;,g; and h,,. As in Section 6 let f = fi
(resp., g = g; and h = h,;,) be the cusp form of weight k (resp., [, m), level I'1 (N) and
character x ¢ (resp., Xg, Xn) Whose ordinary p-stabilization is f;, (resp., g;, hr,). It is an
eigenvector for the Hecke operator Ty, with the same eigenvalue as f; (resp., g;, hm),
for every prime £{ Np, and an eigenvector for T, with eigenvalue a,(f) = ay, + By,
(resp., ap(g) = ag, + Bg,, ap(h) = an,, + Ph,,). Assume without loss of generality
that B, belongs to L for a = f,,g;, hm, and denote by

Hg* : Vp,r ®Q, L — Vyo, ®qQ, L
the morphism (cf. Equations (20) and (45))
(169)

By, B Bh,.
Hg* = (prl* - pT_kl ' prp* ® Pri. — ZTill : prp* ® Pry, — pm_1 ' prp* .

A direct computation shows that the composition pryg, o II7, factors through the
projection pry, g ., hence IIY, induces a morphism

%Cglhm* : V(fkaglzhm) — V(fkvghhm)

of L[Gq]-modules, which is indeed an isomorphism (see Equation (48) for the defini-
tion of the projections pry,;, and prfkglhm). Note that r = (r1,r2,73) and (fx, g1, hm)
satisfy Assumption 3.1 and Assumption 3.4 respectively, hence the class &(fx, g1, hm)
in HY(Q,V (fx, g1, hm)) is defined. Denote again by

?kglhm* : Hl(QvV(fkagl7hm)) - Hl(Qa V(fkaglahm))
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the morphism induced in Galois cohomology by II% ;.

Proposition 8.3. — Assume k,l,m > 3 and that p does not divide the conductors
of fr,9; and hy,. Then

?kglhm*(KT(fk7gl7 hm))

is equal to

0= Day, (1- 250l ) (1 Onladne ) (o Ol ) oy ).

Proof. — Fix a geometric point 7 : Spec(C) — Y (1, N(p)), corresponding to the class
of z in H under the isomorphism (6). With a slight abuse of notation denote again by 7
the complex point v, 07 : Spec(C) — Y (1, N), and by 7 both the complex points ¢, o
n : Spec(C) — Y (1(p),N) and i, o ¢, on : Spec(C) — Y (1,N). Then n and 7
correspond respectively to the classes of z and p-z under the analytic isomorphisms (6).
With the notations of Section 2.3 (see in particular the diagram (9)) write

Ty = R o1 Ny Zp(1), TP = Ry neZp(1) and T = R'vi n.Zy(1)

for the relative Tate modules of E(1, N(p)) — Y (1,N(p)), E(1(p),N) — Y (1(p),N)
and E(1, N) — Y (1, N) respectively (cf. Section 2.3). There are then natural isomor-
phisms

(170) Tiym 2Ly ®Zy 22Ty and TP 27,07, pz= T

Here the subscripts 7 and 7 denote the stalks at 1 and 7 respectively, and for each w
in H one writes

Z,®Z, w=H (C/A,,Z) @z Z,

for the p-adic completion of the integral homology of the complex elliptic curve C/A,,,
where A, = Z®Z-w. As in Sections 3 and 4.2, after identifying 7, ,, with Z, ® Z,
under the Z,-basis {1,z}, the natural action of the étale fundamental group
Gy = T8(Y (1, N(p)), 1) (resp., G®) = m(Y (1(p), N), 7)) on Fy),, (resp., Tp*)
gives a continuous representation o) : Gy — I'(1,N(p)) ®z Z, — GL2(Zy)
(0@ : G - T(1(p), N) ®z Z, — GLy(Z,)), where T'(1, N(p)) (resp., T'(1(p), N)) is
the subgroup of matrices in (¢%) in SLy(Z) with ¢ =0, d =1 (mod N) and ¢ = 0
(mod p) (resp., b =0 (mod p)). For each i > 0 set

Fp)i = Symmy,_J;)(—1) and 7P = Symmy_ 7@ (-1),

where as in Section 2.3 the Tate twists 7, (—1) and .7 (¥)(—1) are identified with
the duals of .7,y and 7 ®) under the Weil pairings on E(1, N(p)) and E(1(p), N)

respectively. Then the stalks of .#{; ; and Z(p ) at n and 7}, viewed as representations
of G,y and G®) respectively, correspond via o(p) and o) to the I'(1, N(p))-module
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S; = Si(Z,) and the I'(1(p), N)-module S; (cf. Section 3). As a consequence, for
each j > 0 and u € Z there is a natural inclusion (cf. Section 4.2)

(171)  HYT(1,N(p)),Si ® det™*) —————— H"(G(p), Si ® det ™)

Hgt(y(lv N(p))vtsﬂ(p),i ®Zp Zp(u))’

and an isomorphism
HL(Y(1,N(p))q, Z)4) = H (T(1,N(p)), S:),

and similarly for the data (T(1(p), N),G®, .7 ")) in place of (T(1, N(p)), G(pys -Z(p).i)-
As already explained in Section 3, there are similar isomorphisms after replacing o(;)
with the representations g : G — GLa(Z,) (resp., ¢ : G — GLy(Z,)) arising from the
action of G = 7$t(Y (1, N),n) (resp., G = 7$*(Y' (1, N), 7)) on the stalk at 7 (resp., 7)
of .7 = #(Zp). Under these isomorphisms, the maps

(172) Npe = (M) 2 81 2 (S )y — (A)q = 5

and A = (A), 8 2 (SP)y — (Fpyidn =i

induced respectively on the stalks at 77 and n by the morphisms (16) are given by

(173) A;’,*(p):<1 O>. P and Ajj(P):(ﬁ °>.p,

0 p 1
for P in S;. Indeed the base change
Xij : C/A, = E(1,N(p)) x, C — E(1(p),N) x; C = C/A,,

of the p-isogeny A, along # is induced by multiplication by p on C, hence the
map Ajx : 7 ®) T(py it induces on the Tate modules is represented by (g (1]),
once one identifies 7,y and 7 ®) with Z2 under the Z,-bases {1, z} and {1,pz} (cf.
Equation (170)). Because the dual isogeny A} of Aj; is the map C/A,, — C/A, in-
duced by the identity on C, and A;. and )\%* are adjoint to each other under the Weil
pairings on C/A, and C/A,,, Equation (173) follows.

After this preliminary discussion, we divide the proof into three steps. For each
triple 4, j, k of elements of {1,p} write

PTjj ks« = Prix ® Prj, & Pry, - ZNp,r(n) - ZNp,’r(n);

forn € Zand Z =V or Z = W, and denote by the same symbol the map they induce
in Gq-cohomology. For any curve X over Q write d : X — X? for the diagonal
embedding.
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Step 1. — One has the identities in H(Q, Vy »(r + 2)):

(174) Pri11.(KNpr) = (p2 —1) kN, and prppp*(HN:Dﬂ') = (p2 —1p" - kNpe

As the element Det” = Det}y is invariant under GLy(Z,), it defines under the
inclusion (171) an element Det” in HY (Y (1, N(p)),-#(),:(r)), and similarly elements
(denoted by the same symbol) in HY, (Y (1(p), N), #(),:(r)) and HY (Y (1,N),.7(r)).
According to Equation (173) and the definition of Det” in Equation (41) one has

(175) A« (Det™) = p" - Det”,
where A7, = AL @ \72 @ A7 ®id : S ® det”™ " — S, ® det™", hence (since 7, has
degree p + 1)
Ups © Ppx 0 A, (Det”™) = (p+ 1)p" - Det” € HY (Y(1,N),.%n(r)).
Retracing the definitions of Section 2.3 and using Equation (21) this gives
pr,,(Det”) = (p*> —1)p" - Det™.
The previous equation and the functoriality of the Hochschild-Serre spectral sequence
implies (cf. Section 3)
Prppps (KNp,r) = SpxoHSopr,,  0d,(Det”™) = sy, oHSod,opr,, (Det™) = (p*—1)p" -k ».

This proves the second identity in Equation (174). The first one is proved by a similar
(and simpler) argument.

8.3.1. Step 2. — The following identities hold in H*(Q, Vy »(r + 2)):
(176)
Prpi1(Enpr) = 0 — 1) - T, ® id @ id(kn .5 ); Prypps(BNpr) = (p— Dp"™" - T, ® id ® id(k )5

(p—1)-1d®T, ®id(kns);  Prpipe(npr) = (p—1p" " 1d @ Ty @id(kn,r);

Pr1p1*(”Np,r)

prllp*(HNPJ‘) (p - 1) (id®id® TP(K’N,T‘); prppl*(KNPﬂ‘) = (p - 1)pT7T3 Fidid® T;;(K’N,T‘)‘

We prove the second identity in the first line. Note that the finite étale cover 7, is
not Galois. To remedy this let ¥ : ¥ — Y (1, N) be a finite étale Galois morphism
which factors through o, o ¢, : Y(1,N(p)) — Y (1,N), say ¥ = 1, 0 ¢, 0 a with
a:)Y — Y(1,N(p)). Denote by G = Gal(+) its Galois group. For each v > 1
denote by 7{, = vp. : H' (Y(1,N(p)), #p)u) — H'(Y(1,N),,), and similarly
set T = v,. Set

u oy u
T = Ups O Pps O A

px I
wuk __ yu* * ok
= A, 0w, 00,
T 1% ToX r3*
Tije =T Q" @m?
r _ T1 T2 T3
and 71-ijk* = Tix ® Wj* 02 ﬂ-k*v

where 4, j, k is any triple of elements of {1, p}. Moreover for each morphisma : X — Y
of curves over Q write @ = a xq a xq a : X3 — Y3. With these notations it follows
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directly from the definitions that
(177) Tl ppe © Moy = (P +1)°p" 17 . T/ @ id ® id.
On the other hand, after setting
KNpr = Srx 0 HS 0 dy 0 9" (Det”),
one has (p + 1) deg(a) - kn,» = 9+ (K}, ), hence
(p+ 1) deg(a)* T (EN ) = Ap 0 0y 09" 0 D (K )

= Z )\;* Oy © (gl X g2 X 93)*(’{':’](\/’;777')'
(91,92,93)€G?

For each g,h € G one has Tpi © )\;@'* oy 0gy =p"t - Y, = p" - Uy 0 hy, hence the
previous equation yields

(178)
(p+1) deg(a)* - 77, 0 My (KN )

=p"tTs E : (Vs 0 ALY ® U © s ® Dpsc © Pps) © €t © g1, (K 1)
(91,92,93)€G3

= (p+ 1) deg(0)" - (Vpn © P © P ® P © 9p) © (A @1 @ 1) (i),
where K}, . = Sps 0HS 0d. 0 (¥ 0 ) *(Det"). According to Equations (41) and (173)
Aps(Expr) = Aps @ AL @ A (KNp ) =D - Kipr

p 0

and Ao AJL(P) = (0 )

>'P=P”~P,

for P in S,,, hence (since 2r = r; + r5 + r3) one can rewrite Equation (178) as

(179) erp* ° W;;p(’if\’w) =(p+ 1)2ZDT ’ 7rrmn* (“;\/pﬂ‘)'

(Note that, regarding the natural isomorphism of Equation (171) and its analogue
for Y (1, N(p)) as equalities, the pullback by , 0 ¢, is identified with the identity.) In
addition Equation (8) gives

(180) prlpp* (HNPJ‘) = ﬂ-{lpp* o ll’p* (HNPJ‘) = (p - 1) : Tri‘pp*(n;\/'p,r)'

Equations (177), (179) and (180) finally give
(P+1)*p" - prippu(binps) = (P — 1) (p+1)*p 4" - T} @ id @ id(kn,r).-

This proves the second identity in the first line of Equation (176). The other equalities
in the second column (resp., the equalities in the first column) are proved by a similar
(resp., similar and simpler) argument.

Step 8. We can now conclude the proof of the proposition.
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Applying the projector pry, ,,  (see Equation (48)) to the identities (174) and
(176) gives

Pri11.(KNpr) fgh = (p —1)-s(f,9,h);

Py (KNp,r) fon = 07 (0° = 1) - K(f, 9, h);

Prp11s (Fnp,r) rgn = (0 — V)X £ (P)ap(f) - 6(f, 9, h);
(181) Pr1pps (KNp,r) foh = (P — 1)p" " ap(f) - Fv(f oh);

Pr1p1*("9Np,r)fgh = (p — 1)xqg(p)ay(9) - k(f,9,h);

Prp1ps (KNp,r) fgn = (P — 1)p" " " ap(g) - £(f, g, h);

P11 (KNpr) fgh = (P — 1)Xn(P)ap(h) - k(f, g, h);

Prpp1*("’pr, Jigh = (p— 1)p" " "ap(h) - £(f, g, h).

Here (f,9,h) = (f&,91,hm), Priju(knpr)fgn is a shorthand for the image
of pr;p. (KNp,») under pry ., = Pry, o p ., and we used the identity T, = Tj, o (p) as
endomorphisms of HY (Y1(N)q,-%i(j))q,- Because the map

si : Hy (Yi(Np)q, i) — He(Yi(Np)g, £) (i)

intertwines the action of the dual Atkin-Lehner operators w; on both sides, it follows
from the definitions that

(182) H?‘gh*(nT(fk,gl,hm)) = DIy s (H (('w ®1d®1d) (’{Np,r)))'
It it easily checked that
DI, 0w, = p'-pr;, and pry, o w,, = (pY - Py

as morphisms from H}, (Y1(Np)q,-%;) to H (Y1(N)gq,-Z:). As a consequence, setting
(p)/f = (p) ® id ® id and writing ay = ag, By = By, , g = g, et cetera, one has

1Ty, o (w), ®id ® id)

= <<p>l . prp* - % : prl*) Y <pr1* - 1% : prp*) ® (prl* - Z% ' pI'p*>
By By () Bn (p)y B1Bq

+ pr2+2 *Pripix

/
- <p>f : prpll* - ? "Prigi« — pT2+1 : prppl* - pT3+1 : prplp*

BB ByBn () BrBebn

prat2 " Pliip« pratrat? " Plppp« pratrats “Plipps

Together with Equations (181) and (182) this yields

H?gh* (K’T(‘fkvghhm)) = (p - 1) ' é"f(f,g’h) : K)(f,g,h),
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where (recalling that a,(§) = a¢ + B¢ and aefBe = xe(p)p®™* for £ € Ss(N, xe),
that 2r = 71 + ro + r3 and that xXxgXn(p) = 1 by Assumption 1.2)

Br  xs®)Bgan  x#(P)ByBr  xz(P)aghn
gf(f?gﬂh) =ay+ fy—Bf — ? - prz+ra—r+l - prz+rs—r+l - pratrz—r+l

X7 (P)BeBr | Xg(P)BrogBy Xg(P)ﬁf/3§+>Zh(p)ﬁfﬂhah Xr(p)Bs B
p’l“3+’l"27’r‘+1 pr2+2 pr2+2 p'r3+2 p'r3+2

as3) 4 Xt®BoBr  Xs(®)Bibn  asBiBybu _ BiPeP
prz+rafr+1 pr2+r37r+2 pr1+r2+r37r+3 pT1+Tz+T‘3*T‘+3
_ ( BiByon  Braghn  BiBebn | Xn(P)BiB;

pr+2 pr+2 pr+2 pr1+r2+3

Xf(P)B}  xq(p)B307 Xf(p)ﬂf:ﬂgﬂh>

prit2 pritrat3 prrita

o (1 28) - 2) (- 228)
This concludes the proof of the proposition. O
8.4. p-stabilization of de Rham classes. — Let w = (k,l,m) be a classical triple in X,

such that p does not divide the conductors of f;,, g; and h,,. As in the previous section
denote by fx, g1 and h,, the modular forms of level I'; (V) with ordinary p-stabiliza-
tions fi, g, and h,, respectively. For each integer M > 3 denote by Vg (M) the
(k+ 1+ m — 2)/2-th Tate twist of the tensor product of the de Rham cohomology
groups Hy (Y3 (M)q,,”ar,r;)L, for j = 1,2,3. Then the restriction of the morphism

Virr(N) — Vir »(Np)
defined by

* IB.f * * ﬂg * * ﬂhm *
(prl - pkfl "prp | © Py — plfll "Prp | © | pry— pm—1 "PTp
to the (f, g, h)-isotypic component of Vi ,.(IV) gives a p-stabilization isomorphism
?:glhm : Var (ke 91, hin) = Vir (Fis 915 Bom)-

Lemma 8.4. — Assume that p does not divide the conductors of fi, g, and h,,. Then

B, B,
ax «a _ k _ k) e
Feaihn (Nf, ®wg ®wn,,) = (p—1ay, <1 “ag ) \' " pay, ) 15 E 00 G

Proof. — Set II3* = pr] — pﬁ,ffl - prp, set IIy, = pry, — % - pry, and define simi-
larly II¢* and II%'. By the definition of p-stabilization (cf. Equation (54)), one has
II¢* (we) = we,, for any & € Sk(N, L)y, , and similarly for II?"* and II% . In particular

(184) 07" (wg,) = wg, and I} (wp,,) = wh,,-
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According to Equation (3.4.5) on Page 76 of [60], one has
(@”, 6" )y = M™% (a,b)

for any cuspidal forms a and b of weight n and level I'; (M), where we recall that
W = wp() is a shorthand for the image of - under the Atkin-Lehner operator wjs
defined in Equation (33), and (-,-)as is the Petersson product on S, (M, C) defined
after Equation (35). It follows that (cf. Equation (34) and the discussion following it)
(f];vvgw)Np (fkaga)Np (fk‘ag)N

185 ng, , Wnp o T (w = > = = .

(U85) g wony W) = (o ) = (oo fidw (e
for each £ in Si(N, L)y, , where £¥ = wyp(&q).

The (easily verified) relations wy, opr} = pryowy and wypopr, =p

yield

k—2 “priown

II7, ownp o IIY* = (prl* — ]% ~prp*> o (pr; s 'pr}‘) ocwy

2
=(p-1) <T; - 72(17 +p1)/6fk + f;;: -Tp> oCwWN.

As ay(fr) = af, + By, and T, owy and T, o wy act respectively as a,(fx) - wn and
Xf(@)ap(fr) - wn on ViR (fx), a direct computation then gives (cf. Equation (183))

By, By,
¢ oy =(p-1 I— =2 1—-—".
kx © WNp O Llg (p )Oéfk ( oy, pay, wN

as morphisms from Vi (fx) to Viz(fr). Because II?* and II, are adjoint to each
other under the pairings (-, -) 1, and (-,) £ this implies

(™ (n5,), wnp o TR (we)) .

oo () () T

(186)

(8N ()N

(S N (fes fe)n

for each ¢ in Syx(N,L);, = Fil'Viz(fx). As the composition wy, o II¥* gives an
isomorphism between Sy (N, L), and Sk(Np, L)y;, and the isomorphism

IR Vir (fx) = Var(fx)

commutes with the action of the Frobenius endomorphism on both sides, comparing
Equation (185) with Equation (186) yields the identity

k(o ,8 . ﬂ " o
= - i, (1-22) (1- 25 g

k

(cf. Equation (37) for the definition of the differential 7% ). The lemma follows from
the previous equation and Equation (184). O
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8.5. Conclusion of the proof. — This section concludes the proof of Theorem A.

According to Corollary 8.2 the class x(f, g, h) belongs to H. ,(Q,V(f,g,h)). Let
X9, be the set of balanced triples (k, [, m) such that k,!,m > 3 and p does not divide
the conductors of f;, g, and h,,. Let £ denote one of f, g and h. Because X}, is dense
in Ug x Ug x Up, in order to prove Theorem A it is sufficient to show that

(187) ZE (’i(fagv h))(w) = gpg(fkaglvhm)

for every w = (k,l,m) in X7, where to ease the notation one writes

gﬁ(“(f? g, h’)) = gE(reSP(K(fag’ h)))

Fix such a triple w and to ease notation set ay = ay, , 8y = By, , 0y = g, et cetera.
Consider first the case & = f. Write as usual » = (r1,7r9,73) = (k— 2,0l —2,m — 2).
Since p does not divide the conductor of f,,g; and h,,, the Ramanujan-Petersson

conjecture gives
(-2)-2)-22) 0
of pay prt

Moreover f;, = fo (resp., g§; = ga, hm = ha) is the ordinary p-stabilization of a cusp
form f = fy (resp., g = gi, h = hy,) of level T';(N). Proposition 7.3, the definition
of log,(-); and Lemma 8.4 then prove that

(=1 (r =) Z5 (5(F, g, h)) (w)
is equal to
<1_ if) (1_ ﬂ) (1_ afﬁgﬁh) - log, (k(f, 9, h)w) (54 (17 © wg © wh)),

pos prt?

arf

where £(f,g,h)w € HL,;(Qp, V(1 91, b)) is the image of k(f, g, k) under the spe-
cialization map p,, (and as usual log,(-) is a shorthand for log,(res,(-)) for all global
classes - in HL (Q,V(fi, g1, hm))). As 147, is the transpose of II% ., the functori-
ality under correspondences of the Faltings comparison isomorphism for E;(N) and
of the Leray spectral sequence (from which Equation (26) is deduced) imply that

(188) log, (k(£,9, h)w) o 153, = log, (15,1.(5(f,9,h)w) )

as functionals on FilOV(;‘R( fyg,h). According to Theorem 8.1 and Proposition 8.3

H?gh*(’i(.fa g, h)w)

equals

(189) (1_(110’857/3’1) <1_ﬂfag'8h> (1_51“5570%) (1_’WL> -k(f,g,h).

p'r+2 pr+2 pr+2 pr+2
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The previous three equations show that .Zs (k(f, g, h))(w) is equal to the product of
(mayr (1 2eoagn) (1 e ) (1 el ) (1- 22a2)

e (-2)0-2)

logp (K(fv 9, h)) (77? B wg ® wh)a
which in turn is equal to fpf (fx, 915 hm) by the explicit reciprocity law Proposition 3.6.
This proves Equation (187), and with it Theorem A, for £ = f.
The proofs of Equation (187) for & = g, h are similar. We give the details for £ = g.
Exchanging the roles of f and g in the constructions of Sections 7.1, 7.3, and 8.4,
(the resulting) Propositions 7.3 and 8.4 proves that

(=D (r = r2)t- L4 (k(£, 9, b)) (w)

and

is equal to
(1- “f?i;?‘h)
(1-8) (1 £2) (1 - o) log,, (r(f, 9, h)w) (g (wr © g © wh)).
- pag r+2

Equations (188)—(189) (which are symmetric in (f, g, h)) then prove that the special
value 25 (k(f, g, h))(w) is the product of

(cayrrs (1 228ae) (1 2zfafe) (1 Slage) (1 - S

e -5 (-2)

log, (k(f,9,h))(ws ® Ny @ wh).
This is precisely the formula for £J(fy,g;, hm) obtained by replacing the triple
(£i, 91, hm) with (g, fi, hm) in the statement of the explicit reciprocity law Propo-
sition 3.6, thus concluding the proof of Theorem A.

and

9. Proof of Theorem B

This section proves Theorem B stated in the Introduction. The notations and
assumptions are as in Section 1.2. Then (f, g, h) is a level-N test vector for (f*, g*, h*)
and w, = (k,l,m) is an unbalanced triple in L.

For the convenience of the reader, we briefly describe the contents of the different
subsections. Section 9.1 proves Theorem B assuming that w, is not exceptional in
the sense of Section 1.2. Section 9.2 proves an exceptional zero formula for the big
logarithm %y when w, is exceptional of type (5), viz. in the exceptional case arising
from the vanishing at w, of the analytic f-Euler factor £3(f,g,h) introduced in
Equation (4). Section 9.3 constructs the improved diagonal classes s (f,g,h) and
&3 (f,g,h) introduced in Section 1.2. Their construction is nontrivial only when the
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g-Euler factor £,(f, g, h) defined in Equation (1) vanishes at w,, that is when w, is
exceptional of type (3) (cf. Section 1.2). Section 9.4 finally proves Theorem B when
w, is exceptional.

9.1. Proof in the non-exceptional case. — This section proves Theorem B when w, is
not exceptional.

Lemma 9.1. — The Bloch-Kato finite, exponential and geometric subspaces of the local
cohomology group H*(Qy, V(fi,g;, hm)) are all equal.

Proof. — We use the notations introduced in the proof of Lemma 3.5. As in loc. cit.,
it is sufficient to prove that D= N=° vanishes.

Since k > I+ m, one has ord,(af) < —1 and ord,(8;,) < —1 for - = 0, g, h, hence

D;’;zl is contained in the L-module generated by a,,,a?,a" and bf. Moreover

|aw| = p(aw—l)/2’ |Oéfu| — p(Ew—Z-Eg—l)/Q and |55;| _ p(2~€f—5w—1)/2
for £ = g, h (cf. loc. cit. for the notation). It follows that D%~" is equal to zero if
ew=0o0r¢g, =2. If g, =3, then D;izl is contained in L -ad & L - aZ and
N(r-al +s-a")=(r4+s)-bl +7-b" +5-b9,

for each 7, s in L, hence D%~""=0 = 0. If ¢, = ge = 1for £ = g, h and {, ¢} = {g, h},
then D;’fl is contained in the L-module generated by a,, and a$,, and

N(r-a,+s-al)=r-a +s-bl,
hence D;’fLN:O = 0. Finally, if ¢,, = £ = 1, one has
N(r-ay+s-al +t-a" +u-bf)=r-al +s-b" +¢t-bI +u-b,,
hence D¥=1"N=0 yvanishes also in this case, concluding the proof of the lemma. O
In light of Lemma 9.1, in order to prove Theorem B it is sufficient to show that
(190) expj (k(fy, 91, hm)) =0 if and only if L(fi®g]®hk,, (k+1+m—2)/2) =0,

where expy is the Bloch-Kato dual exponential and expj(-) = expj (res,(-)) for any -
in the global cohomology group H'(Q,V (f:,g;, hm)).
Set

(191) V(190 b)) =V (£)F 0L V'(g) LV (hm)(c.),

where c. = 4 —k—1—-m)/2and c. = (k+1+m—2)/2if - = 0 and - = *
respectively. Because k > [+ m the inclusion V*(f,, g;, hm)T — V*(f%,9;, hm) and
the projection V(f.,g;, bm) — V(F, 95, Bm)” induce isomorphisms

(192) -Dst(‘/>k (fka g hm)+) = Vd*R(fka g, hm)/Fllo
and FilOVdR(fkaglahm) = DSt(V(fkvglvhm)i)
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respectively. (If g, or h,, is a weight-one modular form, the modules Var (£, 9;, Pm)
and Vi (fi,9;, hm) are defined using the conventions introduced in the last item of
Sections 5, cf. Equations (127) and (129) and Section 7.1.1.1.) Let

<" '>fkglhm : FﬂOVdR(.fk:agb h'm) L Vd*R(flwgla h’m)/FﬂO — L

be the perfect pairing induced on the de Rham modules by the specialization at w,
(cf. Equations (106)—(109)) of the tensor product of the pairings (,-), defined in
Equation (103), for &€ = f,g, h. (According to Equation (109), if k,! and m are all
geometric this is also induced by the tensor product of the pairings (-, ) ¢ introduced
in Equation (31), for £ = f},g;, hm.) By construction V(f,,g;, hm)s is a Gq,-sub-
module of V(fi,9;, hm)”, and the image of

DCriS(V(.fkaghhm)f) — Dst(V(fkvg[ahm)_) = FﬂOVdR(fk;aglyhm)

(cf. Equation (192)) is orthogonal under (-,-) 5 ; , =~ to the kernel of the projection

Vd*R(-flcvgthL)/FﬂO = Dst(V*(fk7glvhm)+) - DcriS(V*(fkyglth)f)v

where V*(fi,,9;, hm)s is the c,-th Tate twist of V*(f,)T ®1 V*(g,)” @1 V*(hm)™.
Moreover, after setting =, = (w,, (k — 1 — m)/2) (and identifying Dcis(Qp(3)) with
Q, - t*), one has by definition (cf. Section 7)
Dcris(v(fkaglahm)f) = D(fagvh)f ®xo L
and Dcris(v*(fkvglahm)f):D*(.fag,h')f ®:1:o L.
By Corollary 8.2 the class «(f, g, h) is balanced, viz. its restriction at p is the im-
age of a (unique) class &(f,g,h) in H(Qp, Z2V(f,g,h)). Let k(fi,g;, hm) be

the specialization of %(f,g,h) at w,, and let k(f,,g;, hm)s be its image in
HY(Qp, V(S 91, hm)¢) under the morphism py. (cf. Section 7.2). As the diagram

(193) Hl(Qpa jQV(fkagl) hm)) E— Hl(Qp7 V(fkaglv hm))

.| |

Hl(Qm V(fkvgl’ h’m)f) E— Hl(va V(fk’ g1, hm)_)
commutes, the previous paragraph reduces the proof of Equation (190) to the following
claim.

(a) The Garrett L-function L(f] ® g} ® hi,,s) vanishes at s = (k+ 1+ m — 2)/2 if
and only if

<eXp;<)(K’(fk7gl7 hm)f)a u>.fkglhm =0

for all differentials 4 in D(f,g,h); ®,, L. Here exp;, is the Bloch-Kato dual
exponential on H(Qy, V (£, 9:, hm)s) and (-, ) #.g,h., 1S the specialization at z,
of the bilinear form (,-) ¢, defined in Equation (139).
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As (f,g,h) varies through the level-N test vectors for (f*, g, h*), the special-
izations at z, of the associated Opgp-adic differentials nswgwp (cf. Equation (142))
generate D*(fi,g;, hm)s ®, L. This follows from the results of Sections 2.5, 5 and
7.1.1. As a consequence the claim (o) is equivalent to

(B) The Garrett L-function L(f} ® g} ® h!,, s) vanishes at s = (k+1+m —2)/2 if
and only if

<eXp;("5(.fkv g hm)f)v nfkwglwhm>_fkglhm =0

for all level-N test vectors (f,g,h) for (f*,g* h*), where 1y wg wp, in
Deris(V*(fi5 91, hm) ) is the specialization of ngwgwn at x, (cf. Section 7.1.1).

Remark 9.2. — As explained in Remark 1.3(3), the class k(f, g, h), hence &(f,g,h)
and a fortiori x(f;,g;, hm)y, is independent of the choice of the level-N test vec-

tor (f,g,h) for (f*,g*, h*).

Assume in the rest of this section that w, is not exceptional. This implies that

Bt ag,an,, #pFtitm=2/2
k l m

for each test vector (f,g,h). (As usual 8y, = x7(p)p*!/ap(k), hence the previous
equation is a consequence of Equation (5) and the Ramanujan-Petersson conjecture.)
According to Theorem A, (the proof of) Proposition 7.3 and the previous equation,
for each level-N test vector (f, g, h) one has

"gpf(fk7gl7hm) = g’wo : <eXp;(K(f/€’gl7hm)f)’n-fkwglwhm>fkglhm

for a non-zero algebraic number &, . The statement (3) can then be rephrased as

(v) L(fi ® g} @ hi,, (k+1+m —2)/2) = 0 if and only if £ (f},g;, hm) = 0 for all
level-N test vectors (f, g, h) for (f*, g, h').

Under the current Assumption 1.7 on the local signs e,(ff, g}, h%,), the claim (v) is a
consequence of Jacquet’s conjecture proved by Harris-Kudla in [31]. Indeed, as w, is
not exceptional, there exist test vectors (f, g, h) such that fpf (£, 9;, him) is a non-
zero multiple of the complex central value L(f} ® g} ® hf,,(k+1+m —2)/2) (cf.
Section 6 and [20, Theorems 4.2 and 4.7]).

9.2. Derivatives of big logarithms I. — Assume in this section that the unbalanced
classical triple w, in Xy satisfies the conditions displayed in Equation (5) of Sec-
tion 1.2. In particular w, = (2,1, 1).

Denote by & = .7, the ideal of functions in Ofgp which vanish at w,. The
exceptional zero condition (5) and Proposition 7.3 imply that the big logarithm .7
takes values in .#. According to loc. cit. £ factors through the morphism induced
by the projection ps : F2V(f,g,h)) — V(f,g,h)s and we write again

gf : Hl(Qp,V(‘f’g7h)f) — S

for the resulting map. The aim of this section is to prove Proposition 9.3 below, which
gives a formula for the derivative of %% at w,, namely for the the composition of .Z%
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with the projection .# — .#/.#2. In order to state it we need to introduce further
notations.

Since xf(p) = xgxn(p) and X#(p) - ap(2) = bp(1) - ¢, (1) under the current assump-
tions, the Gq,-representation

V(£2)55 EV(£,9.h); @, L=V(fy)” ®LV(g)" @1 V(hi)*

is isomorphic to the direct sum of a finite number of copies of the trivial p-adic
representation of G, = Gq, (cf. Section 7.2). Let G2 be the Galois group of the
maximal abelian extension of Q,, and let

rec, : QE® Q, X G2 ® Q,

be the reciprocity map of local class field theory, normalized by requiring that rec, (p~1)

is an arithmetic Frobenius. Identify H'(Q,,Q,) = Homcont(G;b, Q,) with
Homont (Qj, Qp) under rec,, so that
(194) HY(Qyp, V(£2)55) = Homeont (Q5, Q) ®q, V()55

and Deris(V(£2)55) =V (F2) 55

Under these identifications the Bloch-Kato dual exponential exp’ on H'(Qp, V/( f2)55)
satisfies

(195) exp, (Y @ v) = ¥(e(1)) -v € V(f2)g4
for all 1 ® v in Homeont(Q}, Qp) ®q, V(f2) 54, Where
e(l)=(1+p)®log,(1+p)~ ' €Z;®Q,.
Similarly the Gq,-module
V()55 S V()T @0V (91)” ®LV (hy)

is isomorphic to the direct sum of several copies of the trivial representation of Gq,,
hence Dcris(V*(fQ)gﬁ) = V*(fz)gﬂ and Paragraph 7.1.1.1 give a perfect pairing

{ '>_f291h1 : V(fz),gg ®L V*(f2);5 — L.

For each 3 = ¥ ®v in H'(Qy, V(f,)55), With ¢ € Homeon(Q}, Qp) and v € V(£5)55,
and each ¢ in Q*, define (cf. Equation (129) and the discussion preceding it)
3(q) =¥(a) v € V(f2)ss
and
3(0)f = (0= Dap(2) - (3(a), 05, ® wg, @ Why ), . € L.

Let 3 in H(Qyp,V(f;,91,h1)) be the specialization at w, of a balanced class 3
in Héal(Qp, V(f,g,h)), that is 3 = p,,«(3). Then 3 is the natural image of a unique
class 9 in HY(Q,, #2V(f,g,h)). Define

(196) Vf = P« (pwo*@))) € Hl(Qpa V(fz)gg)
and  exp;(3)5 =(p — 1)ap(2) - (expy(vs), s, ® wg, ®Wh, )y o 4 -
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The following key proposition studies the derivatives of the logarithm %, extend-
ing some of the results of [62]. Its proof exploits the existence of an improved big
logarithm for the restriction of £ to the improving plane Hy defined by the equa-
tion k = I + m. Part 1 of the proposition is a crucial ingredient in the proof of the
main result of our contribution [14], and Part 3 is essential for the ongoing proof of
Theorem B in the exceptional case (cf. Section 9.4). Part 2 is not used elsewhere in
the paper and is stated for completeness (and with future applications of this work
in mind). Before stating the proposition, we introduce some notation.

For the proof of Theorem B, we are especially interested in the improving line
Hpg in Uy x Ug x Up, defined by the equations k = I + 1 and m = 1; it is the
intersection of the improving planes Hgy (introduced in Section 1.2) and Hy. Let
resfg : Opgn — Ug be the morphism sending the analytic function F'(k,I,m) to its
restriction F'(I+1,1,1) to the improving line Hysq. For each 0pgp-module M, denote
by M|H,g =M Qres;q U4 the base chance of M along resgg, and for each m in M

denote by m|,, the image of m under the projection M — M|H . Set
fg fa

V(fg,h1) =V(f,g, b)), and V(fg,hi); =V(f,g9,h)s|,, .

Shrinking Uy and Up, if necessary, assume that [ + m belongs to Uy for each (I,m)
in Ug x Up, and recall the analytic f-Euler factor

bp(l) - ¢p(m)
X5 (P) - ap(l+m)

introduced in Equation (4). (We also recall that a,(k), b,(1) and c,(m) are the p-th
Fourier coefficients of the primitive Hida families f*, g* and h* associated respectively
with f, g and h.) In the present exceptional zero scenario (cf. Equation (5)) it vanishes
at (I, m) = (1,1). Denote by

g;(fgvhl) = 6;(f7gﬂh)|Hfg € ﬁg

(197) Ei(f,g,h)=1- € Oy ®1, Op

the restriction of £7(f, g, h) to Hzg. Finally define the analytic £ -invariants
£3" = —2-dlog ap(k:)|k:2, £y =—2-dlog bp(l)|l=1 and £3" = —2-dlog cp(m)|m:1.
We can now state the main result of this section.
Proposition 9.3. —
1. Let 3€ HY(Qp,V(f,9,h)¢) and let 3 = py,(3) € H(Qp, V(f2)ss)- Then
21— 1/p) - Z5(3) = (367 ")s — & - 3(e();s) - (k —2)
+ (25 sl =3 N)ys) - - 1)

+ (& 3le)s —5(7)s) - (m—1)  (mod #2).
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2. Let 3 be a local balanced class in HL,(Qp, V(f,g,h)) and let 3 = py,(3) be its
w,-specialization in HE,(Qp, V (f2,91,R1)). Then

2(1-1/p) - Z5(3)
is congruent modulo 72 to
(g3 —2) - =1+ (8 - 2) - (m = 1)) - exp} )
3. There exists a morphism
g‘j(.ngl«l)f : Hl(Qpa V(fg,h1)s) — Oy
such that, for each local class 3 in H(Qyp,V(fg,h1)f) and each positive inte-
gerl>1 in Uy congruent to 1 modulo p — 1, one has

EW) - LV (gg,m1); B)) = (p = Dap(l + 1) - (exp,(3), 5, ,Wg,Whs ) £y 19,015

where &(1) = 1 — 2PeeltD and 5 = pi(3) in HY(Qyp, V(fia1, 91, k1)) is the

weight-l specialization of 3. Moreover, the following diagram commutes.

Ly

Hl(Qp7V(fag7h)f) ﬁfgh
reng*l J/resh?
1 g;(fg’hl)'g‘j(fg,hﬂf
HY(Qp,V(fg,h1)y) Oy.

Proof. — Let ¢ : ﬁ_fgh — Ofgn be the map which sends the analytic func-
tion F'(k,l,m,j) in ﬁ_fgh to its restriction F'(k,l,m,0) € Opgn to the hyperplane
J = 0 (see Section 7.1 and note that j, = 0). Because M(f,g,h)s is equal (by
definition) to the base change M (f,g,h); ®c Ofgn, this induces in cohomology

e HY(Qp, M(f,g,h)s) — H'(Qp, M(f,g,h)y).

A slight generalization of [62, Proposition 3.8] stated in Lemma 9.4 below gives an
improved big dual exponential

‘C} : Hl(QpaM(fag)h’)f) — D(f)gah)f
such that, for all classes 3 in H'(Q,, M(f,g,h)s) and all w = (k,l,m) € ¥, one has
(198) (1—p~' Wy (Froby)) - L3(3)(w) = exp* (3u),
where ¥, is the composition of the unramified character ¥ : Gq, — 0%, introduced
in Equation (136) with evaluation at w, exp* is the Bloch-Kato dual exponential
on HY(Qu, M (f1,9;, him)¢), and 3, is a shorthand for py.(3). (Precisely, after setting
X = Opgh, # = M(f,g,h)s and ® = ¥, then one has L} = &zp}, with the notations
of Lemma 9.4.) Recall the big logarithm .5 introduced in Equation (144), and let

g; : Hl(QpaM(f7g’h’)f) - ﬁfgh

be the composition of L} with the base change

<'7nfwgwh>fgh Qe ﬁfgh : D(f7ga h)f - ﬁfgh
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of the linear form (-, nfwgwn) ¢, along €. Equation (198) and Proposition 7.1 yield
(199) g0 Ly = (1—U(Frob,)™") - Zf oe,.

Define ¢ = py, : Opgh — Ocyc by o(F(k,l,m,5)) = F(w,,j) and denote
by M(f,,g:,h1)s the base change M(f,g,h)s ®, O.yc. Note that in the present
setting Gq, acts on M(f5,9:,h1) ¢ via the character k23, and for all integers j divis-

cyc?
ible by p — 1, evaluation at j on O,y induces a natural isomorphism (cf. Section 7.1)
(200) V(£2)55(=3) = M(f2,91,h1)y ®; L.

The results of Coleman and Perrin-Riou (see Section 4 of [56]) then give a morphism
of Ocyc-modules

‘ipcyc : Hl(Qpa
such that, for all classes 3 in H}(Q,,
j =0 (mod p— 1), one has

(f2agl7h1)f) — ﬁcyc

M
M(f5,91,h1)¢) and all integers j > 0 satisfying

N (=p)
(201) Leye(3)(J) = J!m

Here 3; is the image of 3 in Hl(Qp,V(fQ)EB(—j)) under the morphism induced
by (200) and one writes again

exp*(3;)s-

exp” ()5 = (p — 1)ap(2) - <exp*(.)?nf2wglwh1>‘f2glh1
for the composition of the linear form (p — 1)a,(2) - (-, nf2wglwh1>f gk, OO0 V(£2)ss
29111
with the Bloch-Kato dual exponential map
exp’ s H'(Qp, V(£2)35(=1)) — V(£2)35 ®q, Qp - t77 = V(f2)gs

(cf. Section 7.1 and Equation (194)). According to Proposition 3.6 of [62] (see also [9,
Proposition 2.2.2]), for all classes 3 in H'(Qp, M(f,,91,h1)s) one has
d _ _

g5 ZeveBi=o = (1= 1/p) 737"y,
where 3 is a shorthand for 3¢. Moreover Proposition 7.1 and Equation (201) yield the
identity
(203) 00 %Ls = Lye 0 0x-

Let 3 be a class in H'(Q,, V(f,g,h)s) and let 3 = py,(3) € H'(Qp, V(f2)55)
be its specialization at w,. As explained in the proof of Proposition 7.3 (see in

particular Equations (151) and (152)), the class 3 can by lifted to an element %
in H(Q,, M(f,g,h)s) via the map induced in cohomology by the isomorphism

(202)

and one has

(204) Z:(3)(k,l,m) = Z;(Z)(k,l,m,(k —1—m)/2),
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for any such lift 2. As (cf. Equation (136))
2-(1-¥(Frob,) ") =" - 1-1)+ & (m—-1)— &P - (k—2)+--,
where the dots denote the terms of higher degree in the Taylor expansion at wo,
Equations (199) and (203) yield that 2(1 — 1/p) - L$(Z) is equal to
2 (1~ @(Froby)™") (1 = 1/p) - Zf (e(2)) +2(1 — 1/p) - Loye(0:(2)) + -+,
which in turn agrees with
se))s- (L5 A=)+ L5 (m—1) -5 (k—2)) +2-3(p™ ")y -5+

by Equations (195), (198) and (202). This proves Part 1 in the statement.
To prove Part 2 let 3,9),3 and y; be as in Equation (196), so that

(205) exp,(3)5 = vs(e(l))s

(cf. Equation (195)). Note that the L[Gp]-module Z2V (f,,g;, h1) splits as the direct

sum of its submodules V(fz)iﬂ =V (f2,91,h1)g, V(fz);a =V (fy,91,h1)n and
V(f2)es = V(f2) @ V(g1)" ®r V(hi)*

(cf. Section 7.2). Moreover, if V(fz)‘ﬁ"ﬁ denotes the tensor product of V(f,)*,V(gy)™

and V(hy)*t (that is Z3V (f,,g,,h1) with the notations of Section 7.2), the projec-
tion V' (fy)ps —> V(f2) 55 gives rise to a short exact sequence of Gq,-modules

(206) 0 — V(£2)hs - V(Fa)ss " V(F2)js — 0.

It follows that the image of H(Q,, #2V(f;,91,h1)) under ps. equals that
of H(Qy, V(f,)ss) under m~, hence

(207) by €, (H(Qp V(£2)ss))
The short exact sequence (206) defines an extension class gy in

Exty g, (V(£2)5s: V(£2)fs) = H'(Qp, L(1)) ©1 Homy (V(£2) 55,V (F2)f5(—1)).
After identifying H'(Q,, L(1)) with Q, &® L under the Kummer isomorphism, this
defines a morphism

Loy + H'(Qp, V(f2)55) = Homeont(Qp, L) @1 V(£3) 55
- V(f2);,6(_1) = HQ(Qpa V(fZ)gﬁ)a

where the last isomorphism arises from the invariant map H?(Q,, L(1)) & L of local
class field theory. A direct computation, carried out in Lemma 9.5 below, shows
that L,, is equal to the connecting morphism H'(Q,, V(f2)z3) — H?(Q,, V(fg);ﬂ)
associated with the exact sequence (206). It then follows from Equation (207) that
(208) Lg; (nf) = 0.

According to Theorem 3.18 of [30] ¢y is of the form qf ® 07 for some linear form
6 V(fa)gs — V(fz);ﬁ and qy in Q) & L such that ord,(qy) # 0 and

£5" =log,(ay)/ordp(qy)-
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Then
log,, = log, —£3" - ord, € Homon(Qy, L)

is the branch of the p-adic logarithm which vanishes at q; and L - log, ;® LV( fz)E,@ is
contained in the kernel of L,.. Taking the long exact sequence associated with
(206) one easily checks that the kernel of Ly, has the same dimension as V(f,) 45,
hence L - log, ®.V(f3)55 is equal to the kernel of Ly, . Equation (208) then yields
ny = log, ®uy for some vy in V(f,),5, hence
(209) Dr(p™") = L5 - vp = L5 g (e(1)).
Part 1 of the proposition and Equations (205) and (209) give

2(1-1/p)- Z5(3) =20 = 1/p) - L o ps+(D)

L (007 — 2 0s(e))y) - (k- 2)

(25 ey =07 ) =)+ (2 ey =07 )y) - (m - 1)
FE )y (8 - £F) (-1 + (8 - £F) - (m - 1))
P et 3y (€ - SF) -1+ (S~ £F) - (m 1) (mod ),

as was to be shown.
We finally prove Part 3. Taking # = Oy, 4 =V (fg,h1); and & =resggo ¥ in
Lemma 9.4 gives an improved big dual exponential

éazvp;‘/(‘fgyhl)f : Hl(QpaV(fg7h1)f) — D(.fgah’l)v

where D(fg,h1); = (V(fg,h1)s ®z, Z;‘)GQP [1/p] and V(fg, h1); is a Gq,-invariant
Ag-lattice in V(fg, h1)s. Note that D(fg, h1)s is naturally isomorphic to the base
change of D(f,g,h)s along resgq : Opgn, — Oy, and define

Viramny, P H (Qp V(fg,h1)) — O
to be the composition of @@mp;(fg’hl)f with the base change
('777_fwgwh> ®resfg ﬁg : D(.fga hl)f - ﬁg
along resysg of the linear form (-, nfwgwh)fgh on D(f,g,h)s. After noting that
1 — U(Frob,) (I + m,l,m) =€;(f,g,h) and 1—p ' T, (Frob,) = &()

for each positive integer ! > 1 in Uy congruent to 1 modulo p—1, where w = (I+1,1,1)
in Hyg, the interpolation property satisfied by 2y (g n,) ; and the commutativity of
the diagram in the statement follow directly from Equation (143) (cf. Section 7.1.1.1
for the case | = 1), Proposition 7.3 (and its proof) and Lemma 9.4. O

The following two lemmas have been invoked in the proof of Proposition 9.3.
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Lemma 9.4. — Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let Z = R|1/p]. Let M be a free R-module of finite rank, equipped
with the action of Gq, given by a continuous unramified character ® : Gq, — R*.
Set M4 = M[1/p]. Then there exists a morphism of Z%-modules

Expy  HY(Qp, M) — (M &z, Z2")%» [1/p]

such that, for each continuous morphism of Z,-algebras v : R — Qp and each class

3 € HY(Qp, . #), one has

v(€rp3(3)) = (1—p~' - ®,(Frob,)) " - expi(3.),

where the notations are as follows. Set €, = v(R) and L, = Frac(0,). The un-
ramified character ®, : Gq, — O, is the composition of ® with v, the class 3,
in HY(Qyp, L, (®,)) is the image of 3 under the map induced in cohomology by v, and

expy, : H'(Qp, L (®1)) — Deris(Lu(®)) = (0,(2,) &3z, Zp7) 2 [1/p]
is the Bloch-Kato dual exponential.

Proof. — When # = 0§ and .# = Oy (a,(k)), this is [62, Proposition 3.8]. Mutatis
mutandis, the proof of loc. cit. works in this more general setting. O

Lemma 9.5. — Let M and N be two finite dimensional L-vector spaces, equipped with
the trivial action of the absolute Galois group Gy, of Qy, let

(210) 0— M1 -5V N—0
be a short exact sequence of (continuous) L|G,]-modules, and let
qv € Extp g (N, M(1)) = Q; ®z, Hom, (N, M)

be the corresponding extension class (where one identifies H'(Qyp,Z,(1)) with the
p-adic completion Qy, of Q, via the Kummer map). Then the connecting morphism

v+ H'(Qp, N) — H(Qp, M(1))
associated with the short exact sequence (210) is equal to the composition
Ly : H(Qp, N) = Homeont (Q}), Zp) ®z, N =5 M = H*(Q,, M (1)),

where the first isomorphism arises from the local Artin map rec, : Qp — G;b (send-
ing p~* to an arithmetic Frobenius), the second isomorphism arises from the invariant
map inv, : H*(Q,, Z,(1)) 2 Z,, and ey is evaluation at gy (under the product of the
natural dualities Q;‘, ®z, Homcont(Q;, Z,) — Z, and Hom(N,M)®L N — M).

Proof. — Identify M (1) with a subspace of V' via the injective morphism «, and fix
an L-linear section o0 : N — V of . Under the natural isomorphisms

Exty g, (N, M(1)) = Extpq (L, Hom (N, M)(1)) = H'(Q,, Hom (N, M)(1)),
the extension class of (210) is represented by the 1-cocylce

§v =&v,o : Gp — Homp (M, N)(1)
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defined by the formulae
g(a(n)) —a(n) = &v(g)(n)
for each g in G, and each n in N.
For each 1-cocycle (id est continuous morphism of groups) ¢ : G, — N, the image
of ¢ under the connecting map Jy is represented by the 2-cocycle 67, () defined by

(99, h) = g(a(e(h)) — o (e(gh) + o (w(9)) = &v(9)(p(h)) = &v Uev ¢ (9, h),
where Uey : C2, 4 (Gp, Homp (N, M)(1)) Q1 Coont (Gp, N) — Coni (Gp, M (1)) denotes

cont cont cont
the cup-product induced on continuous cochains by the evaluation pairing

ev:Hom;,(N,M)®, N — M
(cf. Sections 3.4.1.2 and 3.4.5.1 of [49]). If (-,-),, denotes the composition of the
cup-product pairing induced in (1, 1)-cohomology by U, with the M-linear extension
invar : H2(Qpy M(1) = H(Qp, Zy(1)) ©z, M 2= M

of the local invariant map inv,, it follows that

(211) invay (S () = (cl(€v), ©)ey »
where cl(-) denotes the class represented by -. Under the natural isomorphisms
H'(Qp,Homp (N, M)(1)) = H(Qp, Z,(1)) ®z, Homy (N, M)

and H'(Qp, N) = H'(Qp,Z,) ®2z, N, the pairing (-,-),, corresponds to the product
of ev and the local Tate duality

mvy,

() HY(Qp, Zp(1)) ®2, H'(Qp Zp) — H(Qp, Zp(1)) =5 Z,
associated with the multiplication pairing Z,(1) ®z, Z, — Z,. Finally one has
(r(a),x) = x(recp(q))
for each x in H'(Qp, Z,) and each ¢ in Q}, where & : Q5 — H'(Q,, Z,(1)) denotes
the Kummer map (cf. Proposition 1 in Section 2.3 of [59]), hence
(cl(&v), ey = ev (),
which combined with Equation (211) concludes the proof. O

9.3. Improved diagonal classes. — This section proves the existence of the big g-im-
proved diagonal class introduced in Equation (2) of Section 1.2.

Section 8.1 associates to the ordered triple of Hida families (f,g,h) the big di-
agonal class k(f,g,h) (which is symmetric in the forms g and h). After identifying
the big Gq-representations V(f,g,h),V(g, f,h) and V(h, f,g) under the natural
isomorphisms, a priori the three classes

&(f,g9,h), k(g,f,h) and r(h,f,g)
in H'(Q,V(f,g,h)) may be different. This is indeed not the case.

Lemma 9.6. — The classes k(f,g,h), k(g, f,h) and k(h, f,g) are equal.
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Proof. — Let X2, be the set of balanced triples w = (k,{, m) such that p does not
divide the conductors of f,, g, and h,,. Since H*(Q,V(f,g,h)) is a torsion-free
O¢gn-module and 39 , is dense in Up x Ug x Up, one has

(| (k—kl—1,m—-m) -H(Q,V(f,g,h)) =0.

weXP |

It is then sufficient to prove that the three classes in the statement have the same
specialization at each balanced classical triple w in 37 ;. Because the map Hj}k Gl
(defined after Equation (169)) is an isomorphism at each point (k,I,m) of X¢_,, this
is a consequence of Theorem 8.1 and Proposition 8.3. O

We now construct the g-improved balanced diagonal class
(212) F‘:;(fvg7h) € H&al(Q7V(.f7gah)|Hg)

satisfying Equation (2) of Section 1.2.
Set Agh = Ag ®e An, so that Ogn = Agn[1/p]. For every Aggp-module M, define

M|'H = M®ug Agh

g

to be the base change of the Aggp-module M under the morphism vg : Aggn — Agn
sending the analytic function F'(k,l,m) to its restriction F'(I — m + 2,1, m) to the
g-improving plane Hg (cf. Section 1.2). A similar notation applies to Oggp-modules
and sheaves of Agsp or Ogpp-modules.

Remark 9.7. — The space A; ® Af ® Ah|H is identified with a subspace of the
Agr-valued functions f on T’ x T x T that are locally analytic and such that

fte -z, ty -y, t,-2) = Vg(tgft';gt';h) f(z,y,2).

(This can be seen by applying [28, Lemma 7.3] with X = T’ x T x T to reduce the
statement to the fact that the formation of locally analytic function—without the
homogeneity property imposed—is compatible with base change.) Conversely, such a
function f can be assumed to be in the image of A’f ® Ag ® AhIHQ’ by increasing the

radius of convergence in the definition of Ay = Ay, ,, Ay = Ay and Aj = Ay - .

Consider the analytic function D} : T' x T x T — Agyp defined by the formula
Dy(z,y,2) = det(z, )" - det(z, 2)"F - det(y, z)F+m—1=2/2

for each (x,y,z) in T' X T x T with a = (aj,a3) for @ = x,y, 2. (Because we
apply an integer power to the last determinant, there is no need to restrict to the
domain T" x (T x T)g as we did in the definition of Det in Section 8.1.) Then Det} :=
vg oDy : T x T x T — Agp is a locally analytic function satisfying the homogeneity
property of Remark 9.7. It also satisfies the invariance property

Dety(z -7,y -7,z 7) = det(y)"?*"ss» - Dety(z - v,y - v,z - 7).
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Applying Remark 9.7 and recalling that kg = vg o Kgfh, We have thus defined
(213) Det} € H'(To(pZy), Ay ® Ag ®Ah|HQ(—H9)).
With the notations of Sections 4.2 and 8.1, let
A;"IZAf&AthQ = A;@Afé?Ahﬁzg and A;@Af®Ah|HQ = d*(A;@AfXAHHQ)

be the étale sheaf on Y3 associated with the representation A; ® Ag ® ‘Ah|H
g
in M(T'o(pZ,)?) and its pull back under the diagonal embedding d : ¥ — Y3
respectively, so that one has a natural inclusion
(214) HO(To(Z,), Ay & Ag & An, (—hg)) — HE(Y, Ay @ As © An, (—rg).
On the other hand, consider the following composition.

HE(Y, Alg ® Af ® Ah|Hg(_”g))
(215) o (VP A RA; KA (—hg) Oz, Zy(2)
B, gt (Q7 Hg’t(y(%, A; X Af X Ah|7-tg)(2 + K',g)).

Because HY, (Y(%, Z) vanishes for every pro-sheaf .# € S(Y2) (cf. the discussion fol-
lowing Equation (156)), one has a natural isomorphism

HE (Y, Ay KAf K .Ah|Hg) = H; (Y3, As RAGK Ah)lng-

Moreover, as in Equation (156), the base change along vg of the projection arising
from the Kiinneth decomposition et cetera induce a map

(216)  H'(Q, H}, (Y5, Ay B Ag X Ah)|Hg(2 +kg)) — H'(Q,V(g,f. )|, ),

[44,

and we denote by

(@17)  AJEHL(Y. A, © Ay @ Anp, (—rg) — H'(QV(g £ b)), )

the composition of the maps (215) and (216).
Identifying V(f, g, h)|H and V(g, f, h)|H , one defines the sought for g-improved
g g

diagonal class (212) to be the image of Det; under the big Abel-Jacobi map defined
in Equation (217), multiplied by the normalizing factor %(l) (cf. Equation (155)):

* 1 *
Hg(fagv h) = m . AJgtfh (Detg).
p
(Here one views Det as a global section of the étale sheaf Aj @A ®Ah|Hg (—kg) via

the inclusion (214).) The balancedness of x;(f, g, h) follows from a similar argument
as the one in the proof of Corollary 8.2.
We now verify that xj(f, g, h) satisfies the identity displayed in Equation (2):

(218) R(F,9,B)),, = E(F,9.h) - K (F 9. h).

ASTERISQUE 434



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 167

Let Hg' be the intersection of Hg with Ug' x Ug' x Ul. As HY(Q,V(f, g, h)|,,
g

a torsion-free Ugp-module, in order to prove the previous equation it is sufficient to
show that

(219) pw*(’i(fagv h)) = gg(.flwgla hm) . pw*(/‘iZ(fagyh))

for each classical triple w = (k,[,m) in the subset

HYM = {(k,1,m) € HJ' | m >3}

) is

of 'H;l, where p,, : V(f,g,h) — V(f},9;, hnn) is the specialization map (cf. Equa-
tion (145)) and &y (fy, g, hm) is the value of £,(f,g, h) at (I,m). The set Hp*! is the
intersection of Hg with the balanced region Xi,.;. Moreover Lemma 9.6 and Theo-
rem 8.1 yield

(p - 1)bp(l) : Qw*("‘;(fag7h’)) = gg(fk’glahm) : HT(gla .fk:?hm)

for each w = (k,I,m) in HZ*. (Recall from Equation (157) that the definition of
the twisted diagonal class &'(g;, fi, Am) is not symmetric in the forms f;, g; and h,y,.
Indeed, after identifying V(g;, fi, bm) with V(f;, g;, b)), it follows from Theorem 8.1
and Lemma 9.6 that the class k(g;, fi,, h.n) is in general not equal to x'(fy,, g;, hm)-)
To prove Equation (219), and with it Equation (218), it then remains to prove that

(p— l)bp(l) * Pwx (/i;(f,g, h)) = K’T(glv S hm)

for each w = (k,I,m) in 'Hgal. After unwinding the definition, this is in turn a direct
consequence of the identity

pw(Dety) = Det’l'v(;u),
where r(w) = (I—2,k—2,m—2), which holds true in Sy(,) — A]_, ® Ay_2 & A2
for each balanced triple w = (k,l,m) in Hgal by the very definitions of the invariants
Det; and Det}, (cf. Equations (213) and (41)).

9.4. Conclusion of the proof. — Assume that w, = (2,1,1) is exceptional. As in
Section 9.2, denote by H ¢4 the intersection of the improving planes Hgy and Hg, that
is the set of triples in Uy x Ug x Up, of the form (I + 1,1,1). Denote by

Zf(t9.h) = 2(£.9.h)],, €,

the analytic function on Uy which on I takes the value fpf (fi41,91, h1) (cf. Equa-
tion (55)). Define similarly

5;(fg,h1) = 5;(f,g,h)| Y € ﬁg and gg(fg7h’1) = gg(fagah)leg € ﬁg'

Hy

Lemma 9.8. — Let hy be the modular form of weight one and level T'1(N) with p-sta-
bilization hy. One has

fpf(fg7hl) = g;(fgahl) ’ gg(fgvhl) : gpf*(fgahl)a
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where .i”pf*(fg,hl) is the analytic function in Og which on the classical point | > 1
in U;l takes the value

(wn(F)i+1,h1-g)Np
(wn (F)i41, wN (Fis1)Np

gpf*(fl-kl:glv hl) =

Moreover, the following two conditions are equivalent.
1. Zf*(£2,91, 1) is zero for all level-N test vectors (f,g,h) for (f*,g% h').
2. The complex central value L(f} ® g} ® hi,1) vanishes.

Proof. — Set U = Ug, denote by (-, )u : SgF(N, xf) ®ow) S (N, xs) — OU)
the O(U)-adic Petersson product (cf. Section 7 of [35]) and define

(wN (f)+1,€ora(h1 - 9))v
(wn(f)+1,wn(f)+1)u

Here wy(f) is the Hida family introduced in Lemma 6.1, wy(f)4+1 is the family
in Sgrd(N, xf) whose specialization at the classical point m > 2 equals wy(f,,,1)
and eqq is Hida’s ordinary projector from the space of O(U)-adic cusp forms of tame
level N and character ¥f onto Sgrd(N, x#), cf. [35]. (Concretely eora(h1 - g): equals
eord (h1-g;) for each classical point [ in U®!, where the idempotent ey;q occurring in the
right hand side is equal to lim,_, U;!') By construction the value of fpf *(fg,h1)
at a classical point m > 1 equals fpf*(flﬂ,gl, h1).
Recall the operator V' =V, on L[q] defined by V (3" ¢,q") = 3 ¢ng¢™". Then

gpf*(fg7hl) =

hi=(1=Bn -V)hy and AP =(1-an, -V)h

with ap, - Bn, = Xa(p), and similarly ggp] = (1 — ag, - V)g,. Since gEP] -V(hy) is

p-depleted (viz. its n-th Fourier coefficient is zero if p|n), it is killed by eqpq, hence
(wN(fl+1)7gl : V(hl))Np = Qgq, - (wN(fl+1)7 Vig, - hl))Np

agz
= ——— - (wn(fiz1),9: 1) -
X (P)as,., ( +1) )Np
(To justify the last equality, note that eq,qo0 V = Up_1 “€orq and U, acts on wy (fi1 ;)
as X7 (p) - oy, ,.) Then

aglahl

)Zf(@%) (wn(fi41) 91 -hl)Np.

(wN(fl+1)7eord(gl . h[lp]))Np = (1 _

Similarly the vanishing of eqq (ggp I V(h1)) yields

_ )Zg(p)agl
ahlaferl

(wN(fl+1)7gl : h’l)Np = <1 ) . (wN(.fH-l)agl . hl)Np'
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Using once again the identity ey q (gl[p] -V (h1)) = 0 one deduces that g?!.hy —g, .h[ll’] is
killed by eord, hence the previous two equations give (cf. Equations (55) and (131))

(wn (fiz1), eord(gg”] ~h1))np
(wn (fiz1)s wn(fig1)

(1 _ O‘gzahl> (1 _ Xg(p)agz) ) (wn (fi+1),9: - h1)Np
(

)Zf(p)@fl+1 Qh, Qf, wN(fl+l)7wN(fl+1))Np
= g}k(fag7 h)(w) : gg(f7ga h)(w) : gpf*(fl—i-lvgla hl)

for each I > 1, where w = (I+1,1,1). (See Equations (1) and (197) for the definitions
of &(f,g,h) and 5;(f,g, h) respectively.) This proves the first statement.

The second statement follows from the main result of [31] and Theorem 3 of
[24]. (Note that (wn(f3),91-h1)y, = O for each level-N test vectors (f,g,h)
for (f*,g* h*), cf. the discussion preceding the statement of [24, Theorem 3].) O

ZI(f,9,h)(w) =

As in Section 9.2, for each Opgp-module M denote by M g, = M ®resgg g

the base change of M along the morphism resgg : Opgn — Oy sendlng F(k,l,m)
to F(1+1,1,1), and for each m in M denote by m|,, the natural image of m in the

quotient M |H of M. Finally, if £ is equal to one of f, g and h, define
(.fg,h'l): FV (f g, )| fa and V(fgahl)E:V(f3g7h)£|Hfg

Lemma 9.9. — The map

Hl(Qpa yZV(fg, hl)) I Hl(Qp) V(fga hl))
induced by the inclusion F2V (fg,h1) — V(fg,h1) is injective.

Proof. — Set M =V (fg,h1) and Mg = V(fg, hi)¢. The statement follows from the
vanishing of H%(Q,, V(fg,h1)/.#?), which in turn follows from the claim:

(220) H°(Q,, e’ M) = H°(Q,,gr' M) = 0.

To prove the claim, recall from Section 7.2 that the inertia subgroup of Gq,,) acts
on gr’M = M/.Z'M via the character £l;!, hence H%(Q,,gr’M) = 0. Moreover,
denote by ®¢, &, and ®; the Oy-valued unramified characters of Gq, sending an

. . . X cap (141 X bp(l cp(l .
arithmetic Frobenius to X’;ip(;)_cp((f) ), a:‘fl(fi).cﬁ ()1) nd a’;’(‘l(f:)l) b( (2) respectively. Then

Gq,(u,) acts on My, M, and M), via the characters @, @, - /{iyc and ®p, - Kcyc Te-
spectively (cf. Section 7.2). According to the Ramanujan—Petersson conjecture the
complex numbers a,(l + 1) and b,(l) have absolute values p'/? and p(!=1)/2 respec-
tively for each classical point I > 3 in Uy, hence H°(Q,, M¢(j)) = 0 for £ = f,g,h
and each integer j. Since gr?M is isomorphic to the direct sum of M Mg and Mp,
and since gr' M is isomorphic to the Kummer 0g-dual of gr?M (cf. Section 7.2), the

claim follows. O
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We can now conclude the proof of Theorem B in the exceptional case.
Recall the g-improved balanced class x}(f,g,h) in Hﬁal(Q,V(f,g,h)m ) con-
g

structed in Section 9.3. By the definition of the balanced condition (cf. Section 7.2),
the restrictions at p of the classes x(f, g, h) and «;(f,g, h) are the images of classes

#(f,g,h) € H'(Qp, Z°V(f,g,h)) and &.(f,g,h) € H(Qp, F°V(f,g,h)
respectively. Denote by
k(g h) = i(f.g, )|, and &)(fg.ha) = K)(f.g, )],
their restrictions to the improving line H g, and set

k(fg,h1)f = ps(k(fg,h1)) and ky(fg,h1) = ps.(Ry(fg, 1)),

where pr : Z2V(fg,h1) — V(fg,h1); is the natural projection (cf. Section 7.2).
According to Equation (218) and Lemma 9.9 one has

’{':(fga hl)f = gg(fga hl) : H;(.fgv hl)f
It then follows from Theorem A, Part 3 of Proposition 9.3 and Lemma 9.8 that
"E/ﬂpf*(fgv h’l) = g\j(fg,hl)f (K;(fgv hl))

Evaluating both sides of the previous equation at I = 1 and using once again Part 3
of Proposition 9.3 one gets the identity

(221) fpf*(f%gh hl) =p- ap(2) : <exp;(’4’;(f2agla hl)f)) nf,Wg,Why >.f291h1
where & (f2,91,h1)y is the weight-1 specialization of x}(fg, h1);:
ﬁ;(f%gla hl)f = pl*("i;(fga h’l)f) € Hl(QPa V(fQ)EIB)

Similarly as in Section 9.1, we claim that the following statements are equivalent.

In,)

(a) The complex central value L(f} ® g} ® hi, 1) vanishes.
(b) ZJ*(f3,91,h1) = 0 for all level-N test vectors (f,g, h) for (f*,g°, h*).
(c) expy(kg(fa, 91, h1)5) = 0.
() expp(res, (5} (f. g1, h1))) = 0.
(e) ky(f2,91,h1) is crystalline at p.
(As usual, here k;(fs,9;,h1) in HY(Q,,V(f3,91,h1)) denotes the specialization
of x;(f,g,h) at w,.) The equivalence between (a) and (b) is proved in Lemma 9.8.
As (f,g,h) varies through the level-N test vectors for (f*, g% h*), the differen-
tials 7f,wg, wh, generate the L-module V*(fz);ﬁ = DdR(V*(fQ);ﬂ) (cf. Section 9.2).
Equation (221) then proves that (b) and (c) are equivalent to each other. (Recall
that x(f,g,h), hence x;(f,g,h), is independent of the choice of the level-N test
vectors (f, g, h) for (f*,g*, h*), cf. Remark 1.3(3).)
The equivalence between (c) and (d) follows, as in Section 9.1, from the balanced-
ness of the improved diagonal class. More precisely, the projection

p V(f2zglvh1) — V(f27g17h1)_
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induces an isomorphism between Fil’Vyg (f,,g;, 1) and Dar(V (f5, 91, h1)”), hence
(d) is equivalent to the vanishing of the dual exponential of p; (res,(k(f3, 91, h1))). In
addition, since V(f;)55 = V(f2,91, 1)y is a Gq,-direct summand of V(f;,g,,h1)~
(cf. Section 9.2), and since (fy, gy, h1) is balanced at p, the diagram (193) yields

p*_ (reSP(H;(anghhl))) = H;(vaghhl)fa

thus proving the equivalence between (c) and (d).
Finally, the equivalence between (d) and (e) follows from Lemma 9.1. This con-
cludes the proof of Theorem B in the exceptional case.
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BALANCED DIAGONAL CLASSES
AND RATIONAL POINTS ON ELLIPTIC CURVES

by

Massimo Bertolini, Marco Adamo Seveso & Rodolfo Venerucci

Abstract. — Let A be an elliptic curve over the rationals with multiplicative reduction
at a prime p, and let K be a quadratic field in which p is inert. Under a generalized
Heegner assumption, our previous contribution [5] to this volume attaches to (A4, p, K)
balanced diagonal classes in the Selmer groups of the p-adic Tate module of A over
certain ring class fields of K. These classes are obtained as p-adic limits of geometric
classes in the cohomology of higher-dimensional Kuga-Sato varieties. The main result
of this paper relates these diagonal classes to p-adic logarithms of Heegner or Stark-
Heegner points, depending on whether K is complex or real respectively.

Résumé. — Soit A une courbe elliptique sur le corps des rationnels ayant réduction
multiplicative en un premier p, et soit K un corps quadratique dans lequel p est
inerte. Sous une hypothése de Heegner généralisée, [5] associe aux données (A4, p, K)
une classe diagonale dans le groupe de Selmer du module de Tate p-adique de A
sur certains corps de classes d’anneau de K. Ces classes diagonales sont des limites
p-adiques de classes de provenance géométrique, appartenant & la cohomologie de
certains produits de variétés de Kuga-Sato. Le résultat principal de cet article relie
ces classes diagonales aux logarithmes p-adiques de points de Heegner quand K est
complexe, et de Stark-Heegner quand K est réel.

1. Description and statement of results

Let (f,9,,ha) be a triple of p-adic Hida families of common tame level N. Assume
that f interpolates the weight 2 cusp form attached to an elliptic curve A/Q with
multiplicative reduction at p, and that g, and h, respectively specialize in weight 1
to (p-stabilized) theta-series g, and h, associated to the same quadratic extension
K/Q, having good reduction at p and inverse characters. Let x(f,g,,Pa) be the
diagonal class constructed in our previous contribution [5] to this volume. This article
builds on the main results of loc. cit. to relate (a component of) the Bloch-Kato

2010 Mathematics Subject Classification. — 11G05 (11G40).
Key words and phrases. — Diagonal cycles, Heegner points, Stark-Heegner points.
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logarithm of the specialization at (2,1,1) of (f,g,,, ha) to the product of the formal
group logarithms of two Heegner points, respectively Stark-Heegner points when K is
imaginary, respectively real. See Theorem A below for the precise statement, holding
under Assumption 1.1.

Our strategy goes along the following lines. Let fpf (£, 9o, ha) denote the restriction
to the line (k,1,1) of the triple product p-adic L-function fpf(f,ga,ha) defined in
loc. cit.. Section 3 shows that ,pr (£, 9o, ha)? factors as a product of two Hida-Rankin
p-adic L-functions attached to A/K. A suitable extension of main result of [1], resp.
[2] for K imaginary quadratic, resp. real quadratic shows that the second derivative
at k = 2 of the above mentioned Hida-Rankin p-adic L-functions is equal to the
square of the formal group logarithm of a Heegner point, resp. Stark-Heegner point.
Theorem A of [5] describes fpf (f,9a,ha) as the image by a branch of the Perrin-
Riou logarithm of the restriction of «(f,g,,hq) to the line (k,1,1). Theorem A of
this paper then follows from Proposition 2.2, which extends results of [22] to obtain
a formula for the second derivative of the Perrin-Riou logarithm of the above class
at k= 2.

More precisely, let A/Q be an elliptic curve of conductor Nyp, having multiplicative
reduction at a prime p > 3 (hence p { Ny). Let K/Q be a quadratic extension of
discriminant dx coprime with Nyp and quadratic character ex : (Z/dgZ)* — po. Let

f=Y an(A)-q" € So(N;p, Z)*

n>1

be the weight-two newform associated with A by the modularity theorem of Wiles,
Taylor-Wiles et al., and let

vy Gk — Q" and v, :Gx — QF

be two ray class characters of K. Write Ny = NfJr . Nf_, where each prime divisor
of NfJr (resp., N;~) splits (resp., is inert) in K. We make the following

Assumption 1.1. — 1. (Heegner hypothesis) p is inert in K/Q, Ny~ is square-free and
€K(—Nf_) = +1.
2. (Modularity) When K/Q is real, both vy and vy, have mized signature.
3. (Cuspidality) The characters vy and vy, are not induced by Dirichlet characters.
4. (Self-duality) The central characters of vy and v, are inverse to each other.
5. (Local signs) The conductors of v4 and vy, are coprime to p - dg - Ny.

6. (Residual irreducibility) The F,[Gql-module A,(Q) of p-torsion points of A is
irreducible.

Let ve denote either vy or v, and let L/Q, be a finite extension containing the
Fourier coefficients of f and the values of v¢. In light of Assumption 1.1, the two-
dimensional L-representation Indg (ve) of Gq induced by v¢ : Gg — L* is odd and
irreducible. Thanks to the work of Hecke [16, Section 4.8], it arises from the cuspidal
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weight-one theta series
£= ve(a) g~ € S1(Ne, xe).
a

Here the sum runs over the ideals a of Ok which are coprime to the conductor f¢ of v,
Na denotes the norm of a, N¢ = di - Nfe and x¢ = ek - v§™, where i : Gq — Q*
is the central character of v¢. The form ¢ is primitive of conductor N and the dual
of its Deligne-Serre L-representation is isomorphic to Indg (ve).

Since p is inert in K/Q, one has a,(§) = 0 so that the p-th Hecke polynomial of §

is equal to

X%+ xe(p).
Let a¢ € 0* be a fixed square root of —x¢(p), and write
. Xe\P
1) =)= G- 6@) € SiNepxd) it e = X4 g

for the corresponding p-stabilization. (Here we assume that L contains ag.) Since
Xg - Xh is the trivial character, without loss of generality we may assume that the
roots oy, By, an, By are ordered in such a way that

(2) ag-ap =0y Bn =ap(A) = £1.

As explained in Section 5 of our contribution [5], the work of Hida and Wiles im-
plies the existence of a unique triple (f*, g%, h!,) of L-rational primitive Hida families
of tame conductors (Ny, Ng, N3) and tame characters (x¢, xg,Xxr) Which specializes
to the triple (f, ga,ha) at w,. Note that the triple (f*, g%, h*) satisfies Assumptions
1.1 and 1.2 stated in Section 1 of [5] (cf. Equation (1) and Assumption 1.1.3), and
that w, = (2,1,1) is ezceptional in the sense of Section 1.2 of loc. cit. (cf. Equa-
tion (2)).

With notations as in Section 1.1 of loc. cit., denote by N the least common multiple
of Ny, Ny and Ny, by V(f, 9., ha) the big Galois representation attached to any choice
of level-N test vector for (f*, g%, h’,) (cf. Remark 1.3(3) of loc. cit.), and by

’i(fagaa hoz) € Hlial(Qv V(fagaa ha))

the corresponding diagonal class. In [11] Hsieh constructs a distinguished level-N
test vector (f,g,,ha) (denoted (f*,g%,h’) in [5, Section 6.1]) for (f*, g%, h’), and
computes explicitly the local constants which appear in the interpolation formulae
satisfied by the p-adic L-function fpf(f,ga, h,) (cf. Sections 1.1 and 6.1 of loc. cit.).

Let V,(A) = Ta,(A) ®z Q be the p-adic Tate module of A with Q,-coefficients,
let Y1 (N¢p) be the open modular curve over Q of level I'y (Nyp), and let V(f) be the
f-isotypic quotient of H} (Y1(Nfp)g, Qp(1)) (cf. Sections 2.1 and 2.4 of [5]). Fix a
modular parametrisation

oo : Y1(Nyp) — A.

This induces an isomorphism of Gg-modules
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which we often consider as an equality in what follows. Set
V(f,9,h) =Vp(A) ®q, V(g) ®L V(h),

where V(§) = V (£, ) is the canonical model of the dual of the Deligne-Serre represen-
tation of & = g, h arising from the specialization of V(£,) at weight one (cf. Section 5
of [5]). The fixed test vector (f,g,,hs) and modular parametrisation p., determine
a projection V(fy, 9,1, ha1) — V(f, g, h) (denoted w, in Section 2 below), mapping
the specialization at w, of k(f,g,,ha) to a global class

K/aa(fagvh) € Hl(Q,V(f,g,h)).

Let ¢ be the non-trivial element of Gal(K/Q) and let v§ : Gk — L* be the
conjugate of v¢ by c¢. By Assumption 1.1(4) the characters

p=vg-v, and Y =v,- v}

are ring class characters of K (i.e., ¢¢ = ¢! and ¢ = ¢~!). Note the factorisation
of Gq-representations

(4) V(f,9:h) = Vp(4) ® Indg (¢) & V,(4) ® Indg (¥).
In particular the Bloch-Kato Selmer group Sel(Q, V(f,g,h)) decomposes as
(5) Sel(Q, V(f,9,h)) = Sel(K,, V(A4))? @ Sel(Ky, V,(A))?,

where K./K denotes the ring class field having the same conductor as - and
Sel(K.,V,(A)) is the submodule of the Selmer group Sel(K.,V,(A4)) ®q, L
of V,(A) ®q, L over K. on which Gal(K./K) acts via the inverse of -.

It follows from Equation (4) and the Artin formalism that the Garrett triple prod-
uct L-function L(f ® g® h,s) = L(V(f, g, h), s) factors as the product of the Rankin
L-functions L(A/K, ¢, s) and L(A/K,,s), which have both sign —1 in their func-
tional equation by Assumption 1.1.1. In particular L(f ® g ® h, s) vanishes to order
at least two at s = 1. Theorem B of [5] in the exceptional case then proves that the
diagonal class koo (f, g, k) is crystalline at p, hence belongs to the Bloch-Kato Selmer
group Sel(Q, V(f,g,h)) of the representation V(f, g, h) of Gq:

Kaalf;9,h) € Sel(Q,V(f,g,h)).

Write o for either ¢ or . The articles [1] and [2] (see also [9]) associate to f and
o a p-adic L-function
Lp(f/Kag) € ﬁf&

interpolating the central values of the L-series L(fx/K, o, s) of the base change of fj
to K twisted by o. Their definition, which depends only on the primitive family f*,
is recalled in Section 3.2 below.

Write K, for the completion of K at the inert prime p. Noting that p splits com-
pletely in K,/K, let Frob, in Gal(K,/Q) be the Frobenius element determined by
the fixed embedding of Q into Qp, mapping K, to K,. Denote by

log,,, : A(Ky)p = A(Kp)®L — K, ®q, L
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the L-linear extension of the composition

A(K,)Q, = HE, (K, V(£)) =25 tang, () = K,,

where H}  is the finite subspace of H', tan i, (f) is the tangent space of the de Rham
module H°(K,, V(f) ®q, Bar), the first isomorphism arises from the map poo. and
Kummer theory, log, is the Bloch-Kato logarithm and the second isomorphism is
evaluation at the canonical differential wy in the dual of tang, (f) associated with f
(see Section 2.5 of [5], in particular Equations (29), (30) and (32)). Under our running
assumptions, the p-adic L-function L,(f/K,p) vanishes at k = 2 to order at least
two. An extension of the main results of [1] and [2] in the imaginary quadratic and real
quadratic setting respectively—see in particular |9, 13, 14, 17]—prove the existence of
a non-zero algebraic constant @ € Q* such that

d2
(6) cj - wLp(f/K, Q)k=2 = Q- log’ (P),

where c; = cf(poo) € K, is an explicit non-zero p-adic constant (depending on p)
introduced in Section 2.2 below (see also Remark 1.2), and the point P; in A(K))L
are defined as follows.

If K is imaginary quadratic, choose a primitive Heegner point P in A(K,) and let

Po= Y. o0)'-P° and P =P,+e- P, fore=aq,(A).
c€Gal(K,/K)

Note that the global point P is viewed in Equation (6) as a local point via our fixed
embedding of Q into Qp. When p is quadratic one checks that Frob, acts on P, via
a sign ¢, (see for example the discussion in Section 4 of [1]).

If K is real quadratic, the local point P, in A(K,) is defined as in the above
formula, by exploiting the action of Pic(O,) on a Stark-Heegner point P € A(K,)
attached to K,, where Pic(0,) = Gal(K,/K) is the Picard group of the order O,
of K corresponding to K, via class field theory.

Remark 1.2. — The main results of [1, 2] are stated in terms of the logarithm
log 4 = log,, o9y, * A(K)) — Kp,

where g4 is the Tate period of Aq,, ¥Tate : K;j/qﬁ = A(K,) is the Tate parametri-
sation and log,, : K; — K, is the branch of the p-adic logarithm which vanishes
at g4 (see Section 2.2 below for more details). The p-adic constant c; € K, (defined
in Equation (14) below) accounts for the discrepancy between log 4 and the logarithm
log,,, introduced above (cf. Lemma 2.1 below). The nontrivial element of Gal(K},/Q,)
acts on ¢y as multiplication by € = a,(A), hence c? belongs to Q. Similarly logi ; (Pg)
belongs to L, so that the identity (6) takes place in L.

Denote by
fpf(f7 Yo ha) € ﬁf
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the restriction of .,%pf (f,9,,ha) to the line (k,1,1). Theorem 3.1 below shows the
factorisation formula

(7) gpf(f’gouha)2:’Q{'Lp(f/Kﬁp)‘Lp(f/Kvw)y

where ¢/ is a bounded analytic function on Uy such that <7(2) is an element of Q*.
Under the assumptions of this section, Proposition 2.2 gives a formula for the

second derivative of the Perrin-Riou big logarithm of a balanced class along the line

(k,1,1) at the point k = 2. Combined with [5, Theorem A], this gives the equality

d2
(8) ¢} - 3L (100, ha)ima = Q- 0B (resy (oo (., 1)),

where Q is an explicit constant in Q* and loggg (resp(Kaalf,g,h))) is the evaluation
of the p-adic Bloch-Kato logarithm of res,(kaa(f,g,h)) at a canonical differential
wr @ wy, ® wp, (see Section 2 for details).

Combining Equations (6), (7) and (8) yields

Theorem A. — For Q in Q* one has the equality
IOgﬁ,B (resp(ﬁ?aa(.ﬂg? h))) = Q . Ingf (P;) ' logwf (P{Z)

Recall that the complex L-function L(f ® g ® h, s) attached to V(f, g, h) vanishes
to order at least 2 at s = 1 by Assumption 1.1.

Corollary B. — Let K be imaginary quadratic. If o = ¢ or ¢ is quadratic, assume
that € = €,. Then

2

ds?

Proof. — Under the current assumptions P, is non-zero whenever P, is non-zero.

Corollary B then follows from Theorem A combined with S.-W. Zhang’s proof of the
Gross-Zagier formula for Shimura curves [23]. O

L(f®g®h,8)s=1 7é 0 — logﬁﬁ(resp(”aa(fagah))) 7é 0

Remark C. — Theorem A and a suitable converse to the Gross-Zagier-Kolyvagin the-
orem show that the equivalent statements of Corollary B are also equivalent to the
equality

(9) Sel(Q,V(f,9,h)) = L - kaalf,9,h) ® L - Kps(f, g,h),

that is the Selmer group Sel(Q, V(f, g, h)) is generated by the global class kqa(f, g, k)
and its counterpart xgs(f,g,h) defined by replacing the pair (g, ha) with (gg, hg)
(ct. Equation (2)).

To show that the equality (9) follows from the non-vanishing of the second deriva-
tive of L(f ® g ® h, s), one notes that this condition implies that Sel(Q, V' (f, g, h)) is
two-dimensional by the Gross-Zagier-Kolyvagin theorem. The classes koo (f, g, h) and
kpg(f, g, h) are both non-trivial by Corollary B, hence one is reduced to prove that
they are linearly independent. This follows again from Corollary B, noting that

log g (resp(/ilgg(f, g, h))) =0
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since the Selmer class kgg(f, g, h) arises from the balanced class (f,ggs, hp)-
Conversely, assume that the classes kao(f,9,h) and kgg(f,g,h) generate the
Selmer group Sel(Q, V (f, g, h)), so that

(10) dimy, Sel(Q, V(f,g,h)) < 2.
Granting a converse of the Gross-Zagier-Kolyvagin theorem of the form
(11) dimy, Sel(K,, Vp(A)? <1 = ords=1L(f/K,0,s) = dimy, Sel(K,, V,(A4))°

for p equal to ¢ and 1 as above, one concludes readily as follows. Since the sign
of the functional equation of L(f/K,p,s) is —1, Equations (10) and (11) imply
that L(f/K, o, s) has a simple zero at s = 1 for ¢ = ¢ and v, hence L(f®g®h, s) has a
double zero at s = 1. The above converse theorem may be approached by an extension
of the methods of the forthcoming work [4], which prove Birch and Swinnerton-Dyer
formulae for general families of anticyclotomic characters of p-power conductor and
are suited to extend such formulae to arbitrary ring class characters.

In the real quadratic setting, the next result relates the (local) Stark-Heegner points
to the (global) Selmer group Sel(Q,V (f,g,h)).

Corollary D. — Assume that K s real quadratic. If the Stark-Heegner points Pg and
Pj are both non-trivial, then dimp Sel(Q,V(f,g,h)) > 2.

Proof. — Theorem A implies that koo (f,g,h) and xgg(f,g,h) are non-zero. The
same argument as in Remark C shows that these classes are linearly independent. [

Remark E. — Under the assumptions of Corollary D, the definition of ko (f, g, k)
and rgg(f,g,h) combined with Theorem A imply that the Stark-Heegner point P;
(0 = ¢, ) arises as the restriction at p of a Selmer class in Sel(K,, V,,(A))2. We refer
the reader to the contribution [8] by Darmon-Rotger to this volume for an extensive
discussion of this application (see in particular Theorem A of loc. cit.).

2. Derivatives of big logarithms II

This section should be regarded as a continuation of [5, Section 6], where a study of
multivariable Perrin-Riou logarithms is undertaken. After the preliminary Sections 2.1
and 2.2, Proposition 2.2 in Section 2.3 establishes a formula for the second derivative
of the Perrin-Riou big logarithm of a balanced class along the line (k,1,1) at the
point k = 2, which constitutes a crucial ingredient in the proof of Theorem A.

Let (f,g,h) and (f*, g%, h%) be as in Section 1. Denote by (f,g,,ha), or more
simply (f,g,h), any level-N test vector for (f*, g%, h!) (where N is as in Section 1).
Throughout this Section Assumption 1.1 is in force. In particular Assumption 6.3
of loc. cit. is satisfied (as A,(Q) is p-distinguished by Tate’s theory, since p > 5,
cf. Section 2.2 below), hence one can consider the distinguished level-N test vec-
tor (f*,g%,h) introduced in Section 6.1 of loc. cit.. (To ease notations, the latter
was simply denoted (f,g,, o) in Section 1).
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2.1. The projection w4y, and the class ko (f, g, h). — Associated with the choice of
a test vector (f,g,h) = (f, 9., ha) we define a Gq-equivariant projection

(12) Wfgh - V(angl)hl) - V(f7gomhoz)

by the following recipe. Let £ denote one of f, g, or h,. For each positive integer d
dividing N/N¢ denote by

(% Yl(va) — Yl(N§>p)

the degeneracy map corresponding to multiplication by d on H under the analytic
isomorphism defined in Equation (6) of loc. cit.. The Q-rational map v, induces
pull-backs v} : V*(&*) — V*(€) (for - = 0,+), which in turn induce morphisms
vy D*(€9)F — D*(€)* and v} : HY(Q,, V*(¢")) — HY(Q,,V*(£)) between the
associated period rings and Galois cohomology groups. As d runs over the positive
divisors of N/Ng, the images of D*(£")* under the operators v}, generate D*(£)*
over U¢. As a consequence, if w, and 7, (for - = 0,4) denote the O¢-adic differentials
associated to & in Equations (118) and (122) of loc. cit. respectively, one has

ng =vi(n}), wg=vg(wg) and wp =vj(w})
with Og-linear combinations v; of the operators vj. (See Section 5 of [5], especially
Equation (95), Equations (117)--(123) and the discussion following them, for more

details.) Denote by vg. : V(§) — V(§°) the dual of vf under the perfect pairing
(103) of loc. cit. and set

Wegh = Vfx @ Ugx & Ups : V(.fagah) — V(fuagfxahfy)'

With a slight abuse of notation, the map (12) is defined as the base change of wygn
under evaluation at w, = (2,1,1) on Ofgn (cf. Equations (106) and (107) of [5]).
Recall the modular parametrisation

Poo : Y1(Nyp) — A
fixed in Section 1 (cf. Equation (3)) and set
Wi = Poox & ido Wergrht - V(.f27glyh1) — V(f7goc7hoc) = V(f,g7h),

(where id denotes the identity on V(g,) ®1 V(ha) = V(g9) ®1 V(h).) Then with the
notation of Section 1 (cf. Remark 1.3(3) and Theorem B of [3])

l{’aa(f7g’ h) = w*(ﬁ(-f%glahl)) € Sel(QaV(f7gah))

For each local crystalline class 3 in Hi (Qp, V (f, ga, ha)) define the 33-component
of its p-adic logarithm by

loggs(3) = <10gp(3)a“’f ®wy, @ wha>fgaha ’

where wy is the differential associated with f in Equation (30) of [5], the weight-one
differentials wg, and wp,, are the specializations of wy and wﬁla at weight one (cf.
Equation (129) of [5]), and the pairing (-,-);, , arises from the product of perfect
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dualities (-, -)5 introduced in Equations (31) and (128) of [5], for £ = f, gu, ha- Finally

for any global Selmer class k in Sel(Q, V(f, g, h)) define (cf. Equation (8))
loggﬁ(resp(”)) = 10gﬁﬁ(”p)»

where K, € HE (Qp, V(f, gas ha)) is defined by poos ® id(kp) = res, (k).

2.2. Tate’s theory and the constant c;. — The Tate parametrisation (cf. Chapter V of
[21]) yields a rigid analytic isomorphism
OTate : Eq, — AK,,
between the Tate curve ‘
Eq, = G:;%Kp/qi
over K, and the base change Ak, of A to K. Here G;if K, is the rigid multiplicative
group over K, and g4 € pZ, is the Tate period of Aq, (cf. loc. cit.).
Denote again by
PTate * VP(EQA) = %(A)
the isomorphism of Gk ,-modules induced by the Tate parametrisation on the p-adic
Tate modules with Q-coeflicients, and define

PTate = (piite O Poox * V(f) = VP(EQA)

as the composition of its inverse with peos @ V(f) = V,(A) (cf. Equation (3)). It
induces a morphism of filtered modules (denoted by the same symbol)

PTate * DdRqu(V(f)) = DdR,Kp(VP(EqA))’
where Dyg k, (-) = H°(K,, - ®q, Bar) is Fontaine’s de Rham functor.

The projection G:;Lgf K, — E,, gives rise to an exact sequence of G'k,-modules
(13) 0— Qp(1) — Vp(Eq,) — Qp — 0.
Applying Fontaine’s de Rham functor Dyr,x,(-) = HO(K,, -®q, Bar) to the previous
exact sequence yields a morphism Dgr k,(Vp(E,,)) — Dar k,(Qp) = K,, which
restricts to an isomorphism Fil® Dyg_ K, (Vp(Eq,)) = Kp. Define
14 € Fil'Dar, k,, (Vp(Eq,))

to be the generator corresponding to the identity of K, under this isomorphism.
On the other hand, the newform f corresponds (under Faltings’ comparison isomor-
phism) to a canonical generator wy of FilODdR,Kp(V(f)) = Fil'Vi (f) ®q, Kp (cf.
Equations (29) and (30) of [5], noting that V(f)(—1) = V*(f)). The non-zero p-adic
constant

cf € K;
which appears in Equation (6) of Section 1 is defined by the identity

(14) pTate(wf) =Cf- 1,4

With the notations of Section 1, the following lemma shows that Equation (6) is a
restatement of the main results of [1, 2] (cf. Remark 1.2).

SOCIETE MATHEMATIQUE DE FRANCE 2022



184 MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI

Lemma 2.1. — Up to sign, one has the identity

°f ) - log, .

logwf = 7deg(poo

Proof. — Let u € O be a p-adic unit and let P = @rate(u) be its image in A(K))
under the Tate parametrisation, so that

(15) log 4 (P) = log,,(u),

where log,, : K — K, is the p-adic logarithm.
For V' equal to one of Q,(1),V,(A),V,(E,,) and V(f), denote by tangy (V) the
tangent space of Dyr,x, (V') and by

logy : Hg, (Kp, V) — tang (V)
the Bloch-Kato logarithm (viz. the inverse of the Bloch-Kato exponential map for V,
which is an isomorphism). After identifying O*Kp®va resp. A(K,)®Q, with the finite
subspace of H!(K,, Q,(1)), resp. H' (K, V,(A)) via Kummer theory, one has
(16)
log, (u) = (logq,(1)(u),1),, = (108v,(z,,) (1), 1a)y, = (logv, (4)(P)s ¢rae(14))yys

where

() m * Dar, i, (Qp(1)) ®k, Dar,x,(Qp) — Dar,k,(Qp(1)) = K,

is the pairing associated with the multiplication m : Q,(1) ®q, Qp — Q,(1), and
for A equal to either A, or E,,, the morphism

(- )w : tangg (Vp(A)) @k, Fil’Dar k, (Vp(A)) — Dar,x, (Qp(1)) = K,

is the one induced by the Weil pairing W : V,(A) ®q, Vp(A) — Qp(1). (The first
identity in Equation (16) is well known, while the others follow from the functoriality
of the Bloch-Kato logarithm and of the Weil pairing, after noting that the Weil pairing
on E,, and the multiplication map m are compatible via the exact sequence (13).)

Under the natural isomorphism between V,,(4) and H} (Aq, Q,(1)), the Weil pair-
ing agrees (up to sign) with the cup-product pairing

Hji(Aq, Qp(1)) ®q, Hey(Aq, Qp(1)) — HE (Aq, Qp(2)) = Qu(1)

associated with the multiplication map Q,(1) ®q, Qp(1) — Q,(2), hence

(logy, (4)(P), ¢rate(La))y, = deg(poo) - {108y (1) (9w (P)); Poon © PTate(14)) -
By the definitions of log,, ; and cy, the right hand side of the previous equation equals

deg(poo
eg(Poo) log
cr
Together with Equations (15)-(16), this prove that log,, (P) and m~ log 4 (P) are
equal for each point P € A(K,) in the image of (’)f{p under the Tate parametrisation.

Since Oj = has finite index in Eqg, (Kp), this concludes the proof. O

P).

wy (
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2.3. An exceptional zero formula and Equation (8). — As above, denote by (f,g,h) =
(f,94,ha) alevel-N test vector for (f*,gé,, h',). Let

3 S Hkl)al(an V(.f7g7 h))

be a local balanced class such that

3 dZEf pwo(3) € Hi'lln(Qp7V(f27g17h1))'

In other words we assume that the specialization 3 of 3 at w, = (2,1, 1) belongs to the
Bloch-Kato Selmer finite subspace of H(Q,, V(fs, g1, h1)). The aim of this section
is to prove the following exceptional zero formula for the analytic function

ff(3§k?1,1) = gog(fagvh)(3)|(k,l,m):(k,1,1) € Oy,
viz. the restriction to the line (k,1,1) of the image of 3 under the Perrin-Riou loga-
rithm %y = Zog(f,g,h) (cf. [22]). In light of Theorems A and B of our article [5],
taking (f,g,h) = (f*,9%,h,,) and 3 = res,(k(f,g,h)) in its statement yields the
key Equation (8) used in Section 1 to derive Theorem A.

Proposition 2.2. — One has ordg=2Z5(3;k,1,1) > 2 and (up to sign)
2

d deg(poo) 1\"!
2 R . k ]_ 1 —_9 = 700 1 _ . 1 .
Cf de ws/pf(Ba s Ly )k—2 20rdp(QA) ( p) Ogﬁﬂ (wfgh(z,))

We first prove a simple lemma. As in Section 1.1 of [5], denote by As the ring of
analytic functions on Uy bounded by one, so that Jp = As[1/p]. Let
®:Gq, — Af

be a continuous character such that ®(-)g=2 is the trivial character, and let V be a
free Op-module of finite rank on which Gq, acts via ® - xcyc. Let V =V ®3 L be the
base change of V under evaluation at k = 2 on Jf. Multiplication by kK —2 on V
gives rise to an exact sequence

17) - — HY(Q,,V) *=2 H(Q,,V) — H(Q,,V) 2 HTYQ,,V) — -+ .

As ®(-)p=2 is the trivial character of Gq, the representation V is the direct sum of a
finite number of copies of L(1), hence there are natural isomorphisms

H'(Q,,V) 2 QioV(-1) and H*(Q,,V)=V(-1)

arising from Kummer’s theory and the invariant map inv, : H*(Q,,Q,(1)) & Q,
respectively. One considers the previous isomorphisms as identities in the rest of this
section. Define

By : QieV(~1) 2 H2(Q,, V) — H*(Q,, V) ®3 L= V(-1),

where the second map is the natural projection (and the isomorphism comes from
the exact sequence (17), since H3(Q,, V) vanishes). Because ®(-)g—2 is the trivial
character its derivative defines a morphism

d
25 8 Or=2 € H'(Qp, L) = Homeon (Q;, L),
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where the isomorphism is induced by the reciprocity map
rec, : Qr®Q, = Gy ©Q,
(normalized as in [5, Section 9.2]). Taking the tensor product over L with V' (—1) this
induces a morphism (denoted by the same symbol)
d .
%¢(‘)k=2 1 QpRV(=1) — V(-1).
Lemma 2.3. — We have By = 2 &(-)p—o.

Proof. — Without loss of generality one can assume that V is equal to O¢(® - xcyc),
hence V = L(1). Let z = ¢®v be an element of Q;@L and let ¢, : Gq, — L(1) be
a 1-cocycle representing it. Let ¢, : Gq, — Of(® - Xcyc) be the 1-cochain defined
by viewing ¢, as a function with values in 0. Clearly é,(-)k=2 = c;. If d denotes
the differential in the complex C?, . (Qp, Of(® - Xcyc)) of inhomogeneous continuous
cochains of Gq, with values in Of(® - Xcyc), then

8ea(0,7) = (B(0) ~ 1) Xeye(0) - a(r) = - B(0 )iz~ (Xexe(0) ex(7)) - (k= 2) 4+,

where the dots denote higher terms in the Taylor expansion at k = 2. This and local
class field theory yield

(@) = invy (7 B0z Ucl(e2) = 7@z v

where U is the cup-product associated with the multiplication map L®yL(1) — L(1).
The lemma follows. O

Proof of Proposition 2.2. — By assumption 3 = 1.(9) is the image of a (unique)
cohomology class Q) in H(Q,, 2V (f, g, h)) under the map induced by the inclusion
v F2V(f,9,h) = V(f,g,h). Set

U = Pwo*(m) € Hl(Qpag.QV(févgl’hl))a

0 that 3 = py,«(3) is the image of y under the natural map. By construction (cf. [5,
Proposition 7.3])

(18) Z5(3) = L5 (05(D))-

If e and o denote either « or 3, define as in Section 9.2 of loc. cit. (cf. the proof of
Proposition 9.3 of loc. cit.)
V(fa)eo = V(£2) @LV(g1)e ®L V(h1)o,

where - = 0,4+ and V(&)g = V(&))" and V(&)a = V(&)™ for € = g,h. In the
present setting the form &, is regular, viz. ag, and B¢, = —og, are distinct, hence
V(&;)e is equal to the subspace V (&;)F°P»=* of V(&) on which an arithmetic Frobe-
nius Frob, acts as multiplication by e (cf. Section 9.2 of loc. cit.). It follows that
for - = () and - = & there are canonical direct sum decompositions

(19) V(f2,91:01) =V (£2)aa ©V(F2)us © V(F2)3a © V(F2)5s
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of L[Gq,]-modules. In particular V(fs,g,h1)r = V(f;)ss is a direct summand
of V(f5,91, 1)~ (cf. Equation (191) of loc. cit.), hence
pr(n) =0

since by assumption j is crystalline (cf. Section 9.1 of loc. cit., in particular Equation
(193)). As a consequence

(20) pr+@)=(k=2) D+ (U-1)- D+ (m—-1)-Dm

for classes 9. in H(Q,,V(f,g,h)s) (cf. the proof of Proposition 7.3 of loc. cit. or
[22, Lemma 5.6]). Set

Dk = puw,«(Dk) € Hl(Qp) V(fQ’glahl)f)’

Because Zf is Opgp-linear, Equation (18), Proposition 9.3(1) of loco citato and The-
orem 3.14 of [10] give

(21)

(1-2) o3kt D = o)y = (e = = uaa)
FYAPTE R, L D=2 =9r(p 7)s f Uk f_ordp(qA) De(qa)fs,

where

1
—3 £:" = dlogay,(k)k=2

is the logarithmic derivative at k = 2 of the p-th Fourier coefficient a,(k) of f* (cf.
Section 9.2 of [5]). In particular this implies that the quantity 9x(ga)y is independent
of the choice of Yy, satisfying Equation (20).

As shown in the proof of Proposition 9.3 of loc. cit. the class of the extension

(22) 0— V(.fQ);g — V(f2)ss — V(fz)gg —0
in
EXti[GQp](V(ﬁ)Ega V(f2)gﬁ) = Q;®QpHomL(V(f2)Ega V(fQ);ﬁ(_l))
is equal to
a5, = 4a®0y,

for an isomorphism g, : V(f5) 55 — V( fz)gﬁ(—l), and the connecting morphisms 8}2
associated to (22) satisfy

(23) 8%, (v) = qa®dy, (v) = q5,Uv and 8} (p®v) = —p(qa)-0g,(v) = —qz,U(pRW)

for all ¢ in Homeont (Qy, L) and v in V/( fz)Eg: where U is the cup-product induced by
the evaluation map. Define

V(Fss = (V(f) ®a; kiye’?) @L V(gy)T @1 V(h1)™T.

These are 0¢[Gq,]-modules, sitting in a short exact sequence

0— V(s — V(Fles — V(s —0
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which specializes to (22) under evaluation at k = 2 on ;. Identify the Op-module
V(f)pp with the direct sum of V(f)gﬁ and V(f);s under a fixed Of-splitting of the
previous exact sequence. There is then a continuous map

g5 : Gq, — Homg, (V(£)55 V(F)5p)
satisfying the following properties. For all v+ € V( f)gﬁ and 0 € Gq, (cf. Equa-
tion (101) of loc. cit.)

/2 1-k/2
(24) o(v") = eye(0) - e (0) 't and o(v7) = w

"/’f’ébgl ’(/}hl (U) "/}gl wh1 (‘7)

where ¢z : G — A% is the unramified character of Gq, which sends an arith-
metic Frobenius Frob, to a,(k), and similarly vg ,vn, : G(“Qrp — O* are defined
by vg, (Frob,) = b,(1) and v, (Frob,) = ¢, (1) respectively. (Here one uses that both
Xf and xg - Xn are equal to the trivial character.) Moreover the specialization

a5 (=2 : Gq, — Qu(1) ®q, Home, (V(£2) 55,V (£2) 55(=1))

of gy at k = 2 (via Homg, (V(f) 54,V (F)f5) ®2 L = Homp(V(£,) g, V(£5)535)) is &
1-cocycle satisfying

v +gg(o,v7),

(25) cl(gf(Jr=2) = az,-

For future reference denote by @5 : Ggq, — A; the character
k/2— -1 - -1

(26) Q5 = "iq{f ! 'w_f ) 911 '7/’h1 )

so that ®¢(-)g=2 is the trivial character and Gq, acts on V(f);ﬁ via Xcyc © Pg.
Denote by

Vs € H'(Qp, V(f)ps) and Yrpp € H (Qp, V(F)55)
the images of P and Y under the maps induced by the projections
FV(f,9,0) — FV(£,91,h1) — V(P)ss
and
V(f7gvh)f - V(.fagphl)f = V(.f)gﬂ
1—k/2

respectively. (Here V(f,gy,h1) = V(f) ®1 V(g9,) @1 V(h1)(kcye ' ~). Note that
the discussion leading to Equation (19) yields a similar canonical decomposition
of the 0p[Gql-module V(f,g;,h1).) According to Equation (20) the cohomology
class P gg is represented by a 1-cocycle of the form

Yas =Y @ (k—2)-Y;;: Gq, — V(f)ss,

for 1-cochains Yy, : Gq, — V(f)j35- Using Equation (24) the cocycle relation for Yz
gives

(27) dYB"'ﬂ(U, 7)=—(k —2)-qs(o, Yﬂ_ﬁ(r)) and dYg; =0.
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In particular the specializations y35 : Gq, — V(f2)33 of Yj5 at k = 2 are both
1-cocycles and by construction

(28) i (935) =9pp and (k—2)-cl(Y5) = (k—2) - Dr,ps
where 0?3[5 = cl(yf;ﬁ) € HY(Q,,V( f2)§5) are the classes represented by ygﬂ, the
map i is the one induced by the inclusion it : V(f,); < V(f;)ps and pgp
in H'(Qy, V(f,)pp) is the image of y under the map induced by the projection onto
the direct summand V (f,) 5 of Z2V (f,, g1, h1). The second identity in Equation (28)
implies

Dk(ga)r = 955(qa)s
(cf. the remark after Equation (21)), hence Equation (21) can be rephrased as

1\ d? -1
29 1— =) 23,k 1, )= —— -9 .
(29) (1-3) ook 1 0ime = s w0
In light of Equations (24)—(26) and Lemma 2.3, the first equalities in Equations (27)
and (28) yield

(30) _8}’2 (055) =inv, (Cl (Qf2 (o, y,g,g (T))))

d 1
= _BV(f);B (U;ﬁ) = _%éf(ngﬁ)k=2 =73 IquA(UEﬁ)'

More precisely, the first equality follows from Equation (23), the second from Equa-
tions (25) and (27) and the definition of ﬁv(f);;ﬁv and the third from Lemma 2.3.

Finally, for each unit u in Zy, one has (cf. Equation (26))

d d _ d _ 1
o5 2f (Wie=2 = %fify/f H(recp(u))p=2 = %(“km s = 5+ logy(u)
and d d 1
a5 2 (Pe=2 = ag - an - pap(k)e—z = —5 - £,
which in light of the identity £3" = i?ii((l;i)) proved in [10, Theorem 3.14] yields the

last equality in Equation (30). (Here one denotes again by
logg, : Qu&V (£2)45(=1) — V(£2)5(=1) = Dexis(V(£2) 35)

the morphism induced by log,, = log, —:;iz ((Zi)) -ordy, 1 Qp — Q).

As the connecting morphisms 8?2 and —8}2 are adjoint to each other under the
cup-product induced by (-, '>f291h1’ Equations (23), (29) and (30) combine to give
(31)

(1_1).6125 (31, Doz = = (log,(0%), 37 (ns, ©wg, Bwn, )
» dk2 Flo, vy 1y L)e=2 20rdp(qA) quA 05,3 O f, Nf, OwWg, OWh, fa9,h1”

Since f has trivial character, one has V*(f) = V(f)(=1) for - = 0,+ (cf. Sec-
tions 2.5 and 5 of [5]). There are then natural Gal(X,/Q,)-equivariant isomorphisms

FﬂlDdR,Kp(V*(f)) =~ FﬂODdR,Kp (V(f)) = Dcris,Kp (V(f)_) = V(f)_ ®Qp KIH
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under which we identify the differential (cf. Section 2.5 of loco citato)
wy € Fil'Vip (f) = Fil' Dag &, (V*(f)) @2 H»/ Q)
with an element of V(f)~. Lemma 2.4 below proves that
G
deg (o)
in V* (f)gﬂ =V(f)T(-1) ®q, V*(9)~ ®L V(h)~, hence by construction

df(wf ®wy, @ws,) = “Nf S Wy, @ Wh,

deg(poo) .

(32) 5;21 (77f2 ® wg, ®wh1) ==+ c? -wfgh(wf ® wg,, ®wha),

where @}/, = v;®vy;®uy, is the adjoint of wsgp under the Poicaré dualities (-, <),
and ()¢ o .- Finally, the first identity in Equation (28) gives
(33) log,,,(v35) = ma5(l0g, (3)),
where mgg is the composition
Dar(V (£, 91, hl))/FﬂO = Dy (V(f2,91,h1) ") — Dcris(V(fQ)gﬁ)

arising from Equations (191) and (192) of [5] and Equation (19). Since by construction
the §B-logarithm log s, factors through the projection mgg, the proposition is a direct
consequence of Equations (31)—(33). O

Lemma 2.4. — Let
0 V(f)” — KyeV()"(-1)
be the connecting morphism associated with the exact sequence of G,-modules
0 — V() — V() — V()" —0.
Then 8y = qa®d¢ for an isomorphism
5 V()T — V(HT(-1)
satisfying, up to sign, the following identity in V (f)*(=1):

7
o (ws) = dog(o) ™M
Proof. — Consider the following diagram of Q,[Gk,|-modules with exact rows, in
which all the vertical maps are isomorphisms.
(34) 0 ——Q,(1) —— Vp(Ey,) Qp 0
s0$ac{ ‘PTM{ %ac{
0—— Vp(A)"* Vp(A) Vp(A)- ——0
@;J Poos @WT
0——V(NH7* V(f) V({f)m ——0.
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Here @rate is the map induced on the p-adic Tate modules by the Tate uniformisation

Eq, = Ag,, and the first row is the short exact sequence induced by the natural

projection G k, — Eq, (cf. Introduction).

The class in
Extq, (1 (Qp, Qp(1)) = H' (Kp, Qp(1)) = K,;0Q,
represented by the first row equals g4®1, hence the associated connecting morphism
Otate 1 Qp — K38Q,
satisfies
(35) Orate(1) = ga®1.
After setting

Yga = -ord, € Homcont(K;7 Qp) ~ ' (va Qp)7

ordy(qa)
this implies
(36) <'7qAaaTate(1)>m =1,
where

(s Vm HI(KP’ Q) ®q, Hl(va Qy(1) — K,
is the local Tate pairing attached to the multiplication m : Q, ®q, Qp(1) — Q,(1).
Moreover, the Diagram (34) and Equation (35) imply that the connecting morphisms

04 Vp(A)” — K @V, (A)T(=1) and 8y : V()" — K;@V(f)*(-1)
associated respectively to the second and third rows of Diagram (34) are of the form
(37) da=qa®bs and Of =qa®dy
for isomorphisms d4 : V,(A)™ — V,(A)T(—1) and 67 : V(f)~ — V(f)T(-1).

Up to sign, one has the identities

(wr,0p(wp)) ;= (Vga ®wp, 0p(wy)) ¢

1 _ _
= deg(poo) : <’YQA ® poo*(wf)’ aA(poo*(wf))>Weﬂ
2
(38) = (s © PTae (D), 04 @)
deg(@%) e
2
c
f —
- deg(Poo) . <7q“ ® SOT&te(l)’SOJTrate(aTate(1))>Wei1
2
C
_ f .
- deg(poo) <’YQA7aTate(1)>m )

where (-, Yyeit 1 H (Kp, Vp(A)T)®q, H' (K, V,(A)~) — K, is the local Tate pairing
associated with the Weil paring on V,(A). Indeed, the first equality follows from
Equation (37). The second equality follows (up to sign) from the functoriality of
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Poincaré duality under finite morphisms of curves and its compatibility with the
Weil pairing on elliptic curves. The third equality follows from the definition of cy
(cf. Equation (14)). The fourth equality follows from Diagram (34). The fifth and
last equality follows from the functoriality of the Weil paring under isogenies, after
noting that the Kummer duality between Q,(1) and Q, induced by the Weil pairing
on V,(E,,) is equal (up to sign) to the multiplication map m.

Since V(f)*T(=1) = Deis(V(f)T) is a one-dimensional Q,-vector space generated
by 1y and (wg,ny) ; = 1, the lemma follows from Equations (36) and (38). O

3. Factorisations of p-adic L-functions

This section is devoted to the proof of Theorem 3.1 below, viz. the crucial factori-
sation Formula (7) of Section 1, under the assumptions listed therein. In light of the
discussion of Section 1 (see Equations (7) and (8)) and of Section 2, this is the last
step in our proof of Theorem A.

The reader is cautioned that the notations for p-adic L-functions in force here
are consistent with those of [5, Section 6] and differ slightly from those of Section 1.
Thus L,(f*, g*, h*) denotes the square of the triple product square-root p-adic L-func-
tion fpf(f*,g*, h*) attached to our fixed choice of test vector (f*,g*, h*), and the
restriction of L,(f*, g%, h*) to the line (k,1,1) is denoted

Lp(fuag’i,h’i) = Lp(fuagaaha)

(recall that g* and h* interpolate the chosen p-stabilisations g, and h, respectively).
Accordingly, the Hida-Rankin p-adic L-functions associated to the ring class charac-
ters ¢ and v are denoted by L,(f*, ) and L,(f*,v) (as observed in Section 1, they
depend only on the primitive family f*).

Theorem 3.1. — Up to shrinking Uy if necessary, there is a factorisation

Lp(fuvgulﬂhnl) =4 - Lp(fu/K’ <P) : Lp(fn/K7¢)7

where of € 0% is a bounded analytic function on Uy such that

</ (2) € Q(gi, h})",
Q(gi, hi) being the field generated by the Fourier coefficients of g} and h.

3.1. The Mazur-Kitagawa p-adic L-function. — Let x be a Dirichlet character of
conductor coprime to Nyp. For every classical point k € U;l let L(f,g,x,s) be the
Hecke L-series of f{ ® x, defined as the analytic continuation of the Dirichlet series
> ns1 X(n)an(f)-n™° converging absolutely for R(s) > (k+1)/2. A result of Shimura
gives complex periods Qoo (fi)T and Qo (ff)~ in * satisfying the following properties.
One has

Qoo(fli)+ : Qoo(fli)_ = (f]gaf]i)prT(k)a
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where r(k) is equal to one if k = 2 and to zero otherwise. Upon setting

Qoo (£, %) = Qoo (f7)7E0
(sign(x) being the sign of x(—1)) the quantity

(k/2 = 1)!-g(x) - L(ff, x, k/2)
(=2mi)R/2=1 - Qoo (. x)
belongs to the number field Q(f{, x) generated over Q by the Fourier coefficients of f}
and the values of x. Here g(x) = ZaE(Z/CXZ)* X(a) - ¢¢, is the Gauh sum of x = x 1,
where ¢, is the conductor of x and (., = e*""/°x. One calls L(f},X,k/2)a the

algebraic part of the central critical value L(ff, x,k/2).
According to a result of Mazur and Kitagawa (cf. [12, 10, 1]) the algebraic central
values L(f], x,k/2)alg, defined for k € U¢, can be interpolated by an analytic function

Lp(fu7X) € ﬁf’

which we call the Mazur-Kitagawa p-adic L-function of (f*,x). More precisely, up to
shrinking Uy if necessary, there exist for every k € U Jil non-zero p-adic periods

AL AL €Qp, with AT =1,

(39) L(f;:’X,k/Z)alg = € Q(f]ivX)

such that
(40)
_ k/2—1 k/2—1
ign P x(p) P27 x(p)
Ly( k) = 3 (1~ ) (1-a
’ ’ ap(k) ap (k)
where ei(p) = 0 if k = 2 (i.e., if f} is p-new) and e;(p) = 1 otherwise (i.e., if f} is
p-old).

) LU )t

Remark 3.1. — 1. The p-adic L-function L,(f*,x) is the restriction to the central
critical line s = k/2 of a two-variable p-adic L-function

LYR(f%,x) = LY (f*, x) (k, §) € OpR0yc

of the weight variable k € Us and cyclotomic variable j (cf. [5, Section 7.1]). For every
classical point k € UJZ31 one has

LYR(£%, ) (K, 5) = A% - L (£, %) (),

where L, (f},X) = Ly(f},X)(d) € Ocyc is the cyclotomic p-adic L-function of f{ ® x
(cf. [15]) defined as the Mellin transform of a measure on Zy x (Z/c,Z)* associated
to the sign(x)-modular symbol attached to f;. In order to construct Lg/IK( f*, x) one
interpolates these modular symbols, and the p-adic periods )\f are the error terms
arising from the p-adic interpolation.
2. If k=2 and
x(p) = ap(2)
(with a,(2) = ap(A) = £1), the Euler factor 1 — P27 Ghich appears in Equa-

ap (k)
tion (40) vanishes. In this exzceptional zero situation (cf. [15]) L,(f*,x) vanishes
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at k = 2 independently of whether the complex L-series L(f, Y, s) vanishes at s = 1
or not.

3.2. Hida-Rankin p-adic L-functions attached to quadratic fields. — Let K/Q be a
quadratic field of discriminant coprime to Nyp, satisfying the Heegner hypothesis
given in Assumption 1.1(1). To lighten notations, assume in the real quadratic case
that N; =1 (so that one works with forms on GL2).

The Hida-Rankin p-adic L-function attached to the pair (Ff*,0) (0 = ¢ or )
introduced in [1] and [2] is an analytic function

Lp(fu/Kv Q) € ﬁf
satisfying the following interpolation property. For every classical point k € UJ‘EI
ph—2 2
(41) LP(.fu/Ka Q)(k) = Qp(flucv 9)2 <1 - a (k)2> L(fluc/K’ 0, k/2)alga
P
where the algebraic part of L(f/K, 0,k/2) is defined by

(k/2 —1)12 . alk= /2
@ri)F 2 - 07 0)
Here L(f{/K,0,s) = L(f} ® ¥,,s) is the Rankin-Selberg convolution of f; and
the weight-one theta series ¥, associated to o, and the complex and p-adic periods

Qoo (ff, 0) and Q,(ff, o) are defined as follows.
When K is real quadratic, then

sign 2 sign 2
Qoo (ffs0) = (Ve (F)= @), Qu(ff0) = (AF9)".
When K/Q is imaginary quadratic, one sets
Qoo(f]i? 9) = (f]i7f]§;)prr(k) ,

where (k) =1 if k = 2 and r(k) = 0 otherwise.

We finally recall the definition of the p-adic periods Q,(f{,0) in the imaginary
case. With the notations of Assumption 1.1 let B;q be the definite quaternion al-
gebra with discriminant N, oc. As explained in Section 2 of [1] the form f} gives

(42) L(fi/K, 0, k/2)ag = -L(f}/K,0,k/2) € L.

rise, via the Jacquet-Langlands correspondence, to a weight-k eigenform ¢ on B* of
level Zq(pNT,N™) C B*, having the same system of Hecke eigenvalues as f}. This
form is unique up to multiplication by a non-zero scalar. As in loc. cit., for every k > 2
(resp., k = 2) normalize ¢y, by requiring that its Petersson norm is equal to 1 (resp.,
that it takes values in Z). This characterizes ¢ up to sign for k > 2. According to
Theorem 2.5 of loc. cit. (up to shrinking Uy if necessary) there exists an Jy-adic fam-
ily ¢ of eigenforms on B* whose specialization at a classical point k& € U is equal
to Ag(k) - ¢x, for some
)\B(k) € L* with )\3(2) =1

(see Section 2 of loc. cit. for the details). The definition of L, (f*/K) given in Section 3
of loc. cit. depends on ¢, and one sets Q,(ff, 0) = Ag(k). In particular Q,(f, o) = 1.
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3.3. Proof of Theorem 3.1. — The decomposition of Galois representations
V(g) ®1 V(h) = Ind§ (vy) ®L Indg (v) = Indg (@) ® Ind§ (¥)
yields for every k € U ;1 a factorisation of complex L-functions

The imaginary case. Assume that K/Q is imaginary quadratic and let k be a
classical point in U;l N Zs5. Then the complex period Qoo (ff,0) is equal to the
Petersson norm (f}, f,’i>prr<k), hence Equations (42), (43) and [5, (133)], give
(44)

T(k,1,1) L(ff®g®h,k/2) 22h-i-olkLD)
ga(k,1,1)  g2(k-2) . (f/ucaf/uc)?vf - dl;{—1

With notations as in [5, Section 6], one finds from Equations (1) and (2)

. L(f]i/K,QO,k/2)a1g : L(f]i/Kvwa k/2)alg~

2

Since Q,(ff, 0) is equal to the quaternionic period Ag(k) for both o = ¢ and o = ¢
(cf. the discussion following Equation (41)), Equations (42), (41), (44), (45) and [5,
(132), (135)] yield

(46) Ly(£*, 93, hi) (k) = o5 i - - Lp(F* /K, ) (k) - Lp(F*/ K, ) (k)

for every k € U]'il N Z~ 4, where one writes

1 22k:—4—a(k,1,1)
k-
K

Lok = 3R EF) ()

Loc,.
v|N
Since Loc, is a non-zero constant in Q* for every v|N, and p does not divide dg, the

values @7° € Q* for k € U;l are interpolated by a unit in ﬁ; . Equation (46) then
reduces the proof of Theorem 3.1 to the following statement.

Lemma 3.2. — There exists a bounded analytic function o/p € Of satisfying the fol-
lowing properties.

1. o/p(k) = 9B, for infinitely many classical points k € UJ%I.

2. @B (2) is a non-zero element in Q*.

We defer the proof of Lemma 3.2 to Section 3.4 below.
The real case. Assume that K is real quadratic and let k € U }1 N Z~4. Define the
quantity

1
TN AL &) E(F)

By a similar argument as in the imaginary case, one reduces the proof of Theorem 3.1
to the following statement.
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Lemma 3.3. — There ezists a bounded analytic function g1, € Of satisfying the
following properties.

1. e, (k) = oL, k for infinitely many classical points k € U;I.

2. Wg1,(2) is a non-zero element in Q*.

3.4. Proofs of Lemma 3.2 and Lemma 3.3. — According to Proposition 5.2 of [1] there
exists an analytic function mf(ﬁz € Oy (denoted 7 in loc. cit.) such that, for every
keU J‘él NZss

_ AB(k)?  Aav,k

— = d 8 (2 *,
A;: . )\]; eQ{Byk; an GLZ( ) € Q

A1, (k)

In particular, after shrinking Uy if necessary, the analytic function °Q{GBL2 is a unit
in 0. This implies that Lemma 3.2 follows from Lemma 3.3, hence to conclude the
proof of Theorem 3.1 it is sufficient to prove the latter.

To prove Lemma 3.3 we consider triple product p-adic L-functions associated to f*
and two weight one Eisenstein series attached to the characters which appear in the
following lemma.

Lemma 3.4. — There exists two Dirichlet characters x and v satisfying the following
properties.

1. The conductors ¢y, and cy of x and ¢ are coprime to each other and coprime
to Nyp.

2. x is even and x(p) is different from £1.

3. ¢ is odd and ¥(p) = —ap(f).
4. Both L(f,x,s) and L(f,14,s) do not vanish at s = 1.

Proof. — Let £ be a prime which does not divide Nyp. According to the main result
of [18] there exists n, € N such that L(f,x,1) # 0 for every primitive Dirichlet
character x of Gal(Q(ue)*/Q) = (Z/¢"Z)* /{£1} with n > n,, where Q(ue )7 is
the maximal totally real subfield of the ¢™-th cyclotomic extension of Q. If n > n, is
such that ™ { p* — 1, this shows that there exists a character x such that

(a) the conductor ¢, = £" of x is coprime to Nyp.
(b) x(—1) = +1 and x(p) # *1.
(¢) L(f,x,s) does not vanish at s = 1.

Let g be a fixed prime which divides Ny exactly, whose existence is guaranteed
by Assumption 1.1. For every quadratic character o denote by sign(f ® o) the sign
at s = 1 in the functional equation satisfied by the Hecke L-function L(f, o, s). Choose
any quadratic Dirichlet character ¢ satisfying the following properties.

(d) The conductor c(¢1) of ¥, is coprime with ¢ - Nyp.
(e) ¥1(—1) = +1 and 91 (¢) = +1 for every prime ¢ which divides Ny/qg.

(f) ¢1(p) = —ap(f) and P1(q) = ap(f) - sign(f).
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One has (cf. Theorem 3.66 of [19])

sign(f ® ¢1) = sign(f) - Y1(—Nyp) = -1,
hence the main result of [6] shows that there exists a quadratic Dirichlet character 19
such that
(g) the conductor of 35 is coprime to £ - c(1)2) - Nsp.
(h) 2(—1) = —1 and v¥2(t) = +1 for every prime divisor ¢ of N¢p.
(1) L(f,1 - 19, s) does not vanish at s = 1.

According to (a)--(i) the characters x and ¥ = 1) - 15 satisfy the required properties.
O

Fix two characters x and 1 satisfying the conclusions of the previous lemma, and
set N = Nyc,cy and
E=x""y7h
Since x, ¥ and £ are non-trivial and £ is odd, one can consider the weight one Eisenstein
series

M8

Biod) =3 oo )) ¢ € My(N,€7Y)
n=1
and
2©=80.9="5Y 1S o6 ¢ c (.0,

n>1
where o(a, 8)(n) = }_ 4, a(n/d) - B(d) for every Dirichlet characters a and 3, and

1 is the trivial character. Following Section 3 of [3], for every classical point k € U;l
define

(.f[ga €ord (dk/2—1E(§) X E(Xa Tp)))Np
(.f[ga f]i)Np ’

where E(¢) = E(&)P) € My (N,€) and E(x,v) = E(x,®¥)P) € M;(N,£71) are the
p-depletions of E(§) and E(x,) (cf. [5, Section 3.1]). The article [3] shows that the
function which to k € U;l associates L, (f}, E(x,v)) extends to an analytic function

Ly(f*, E(x,¥)) € 0f.

(The notation is justified by the following lemma, cf. Remark 3.6.) For all k € de
define

(48) Ly(£i E(x,¥)) =

B —iNy
Cxwlk) = 5= x(ep) -Pley) - [T1(Ny) : Ti(N)]

For - = x,% Section 3.1 associates to (f*,-) the Mazur-Kitagawa p-adic L-function
L,(f*,") € 6.
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Lemma 3.5. — 1. Let Q(x, %) be the field generated over Q by the values of x and 1.
Then

Lp(f, E(x,$))(2) = (P +1) - Cyus(2) - Lp(£7,)(2) - Lp(£7, 9)(2) € Qx, ¥)"

In particular the p-adic L-function L,(f*, E(x,v¢)) does not vanish at k = 2.
2. (cf. [3]) For every classical point k € UJZ’I (strictly) greater than 2 one has

(49)  Lp(f* EOG 9)) (k) = Fars.k - Cxp (k) - Lp(F7, %) (k) - Lp(£%,4) (k)

Proof. — 1. Write for simplicity g = F(§) and h = E(x, ), and consider the p-sta-
bilisations

9a(q) = 9(q) — &) - 9(d”), 98(q) = g(q) — g(¢”) and ha(q) = h(q) — ¥ (p) - h(g").

Then f (resp., ga, 93, ha) is an eigenvector for the Up-operator with eigenvalue
af = ap(2) = £1 (resp., 1, £(p), x(p)), hence Lemma 3.4 and the same computations
as in the proof of [7, Lemma 4.10] show that

2- (.98 ha)yp, = (L= x(P)/ap(2)) - (£, 90 ha)y, -

As £(p) # 1 by Lemma 3.4, one can write g = (go — &(p) - 93)/(1 — &(p)), which
together with the previous equation and a direct computation gives the identity

' 9 h‘a
(50) Ly(ff E(x,v))(2) =2 <1 - :}((I;))) . (f(; f)N)Np

The L-series of the forms f and h, admit Euler product expansions, hence the Rankin
method (see the argument leading to Equation (18) of [3], or [20, Theorem 2 and
Lemma 1]) gives

(51) (f7g'ha)Np:_ig(g)pr'L(f(g)houl)y

where g(-) is the GauR sum of the character -. (Note that (-, ")y, equals 872 times the
Petersson product defined in Equation 9 of [3].) Since the characters x and 1 have
opposite parity, one has

(52) Qoo (£ X) - Qoo (f,9) = (f, F)ngp = [L1(Ng) : Ti(N)]H - (£, g

Moreover a direct comparison of Euler factors (cf. [20, Lemma 1]) and Lemma 3.4

give

653 LU ® hoy1) = (1= 220 17 0 n1) = (14 1) (7001 L0, 1)
As g(&) = g(x ™) - g(¥™) - x Hew)¥(cy) (since (cy,cy) = 1), the statement is a
direct consequence of Equations (39)—(40), Equations (50)—(53) and Lemma 3.4.

2. This is proved in Proposition 3.3 of [3]. Since the setting of loc. cit. is slightly
different from ours, for the convenience of the reader we briefly review the argument.
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Equations (35) and (41) and Proposition 3.2 of [3], together with Proposition 4.6 of
[7], show that for every classical point k > 2 one has

_Efooy) (LSPTIEE) Bk,
Eo(F}) - E1(F) (Fi- D ’

Lp(£*, E(x,¥))(k)

where
6k/2_1 : Ml(Na 6) — gzl(N7§)

is the (k/2 — 1)-th iterate of the Shimura-MaaR derivative operator. Here & (f}) and
&1(ff) are as in Equation [5, (135)], and

E(f} X W) = <1_pk/(;)(p)) (“W) (“W)

(Recall that ¢ = ¢! is a quadratic character, cf. Lemma 3.4, and that &(f}) is
non-zero for k > 2.) The Rankin method (see Equations (18) and (19) of [3]) yields

(1,82 () Bl )y = — G Lt b/2) - LU 0,2

As in the proof of Part 1 the statement follows easily from the definitions and the
previous three equations. O

Since the analytic functions L,(f*, E(x,v)), Ly(f*, x) and L,(f*, %) do not vanish
at k = 2 by Lemma 3.5(1), and since C, (k) is clearly an invertible element of I,
Lemma 3.5(2) implies that the values /g1, x, defined for k € U! N Z+, are interpo-
lated by an analytic function @y, (k) which does not vanish at k = 2. In addition, the
explicit formula for the value of L,(f*, E(x,)) at k = 2 displayed in Lemma 3.5(1)
gives

JZ{GL2 (2) =p+1.

This concludes the proof of Lemma 3.3, and with it the proofs of Lemma 3.2 and
Theorem 3.1.

Remark 3.6. — 1. The previous lemma (or better its proof) shows that L,(f*, E(x,v))
can be though of as a p-adic Rankin-Selberg convolution, which interpolates the
critical values L(f! ® E(x,),k/2) of the convolution of f! with E(x,%). One can
also think of L,(f*, E(x,v)) = % (f*, E(§), E(x,)) as a square-root triple-product
p-adic L-function (cf. Equations (48) and [5, (55)]), whose square interpolates the
complex central values L(f} @ E(§) ® E(x,v), k/2).

2. Note that the Euler factor & (ff) =1 — 15:(7;)22 vanishes at k = 2, as a manifes-
tation of the presence of an exceptional zero for L,(f*,s) and L,(f*, g}, h}) in the
sense of [15] (cf. Remark 3.1(2)).
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