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PARAMETRIX FOR WAVE EQUATIONS
ON A ROUGH BACKGROUND

I
REGULARITY OF THE PHASE AT INITIAL TIME
II
CONSTRUCTION AND CONTROL AT INITIAL TIME

by Jérémie SZEFTEL

Abstract. — This book is dedicated to the construction and the control of a parametrix
to the homogeneous wave equation [g¢ = 0, where g is a rough metric satisfying the
Einstein vacuum equations. Controlling such a parametrix as well as its error term
when one only assumes L? bounds on the curvature tensor R of g is a major step of
the proof of the bounded L? curvature conjecture proposed in [10], and solved jointly
with S. Klainerman and I. Rodnianski in [17]. On a more general level, this book
deals with the control of the eikonal equation on a rough background, and with the
derivation of L2 bounds for Fourier integral operators on manifolds with rough phases
and symbols, and as such is also of independent interest.

Résumé. (Parametrix pour I’équation des ondes sur un espace-temps peu régulier :
I. Régularité de la phase a l'instant initial. II. Construction et controle a I’instant
initial) — Cet ouvrage est dédié a la construction et au contrdle d’une paramétrix
pour I’équation des ondes homogéne [g¢ = 0, ol g est une métrique peu réguliére
satisfaisant les équations d’Einstein dans le vide. Le contréle d’une telle paramétrix
ainsi que du terme d’erreur associé lorsque ’on suppose seulement des bornes L? sur
le tenseur de courbure R de g est une étape cruciale de la preuve de la conjecture
de courbure L? proposée dans [10], et résolue conjointement avec S. Klainerman
et I. Rodnianski dans [17]. Plus généralement, cet ouvrage concerne le controle de
I’équation eikonale sur un espace-temps peu régulier et la dérivation de bornes L2
pour des opérateurs intégraux de Fourier sur des variétés avec une phase et un
symbole peu réguliers, et posséde de ce point de vue un intérét propre.

© Astérisque 443, SMF 2023
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CHAPTER 1

INTRODUCTION

We consider the Einstein vacuum equations,
(11) Raﬂ = 03

where R, denotes the Ricci curvature tensor of a four dimensional Lorentzian space
time (cM, g). The Cauchy problem consists in finding a metric g satisfying (1.1)
such that the metric induced by g on a given space-like hypersurface ¥y and the
second fundamental form of 3y are prescribed. The initial data then consists of a
Riemannian three dimensional metric g;; and a symmetric tensor k;; on the space-
like hypersurface ¥y = {¢t = 0}. Now, (1.1) is an overdetermined system and the
initial data set (Xg, g, k) must satisfy the constraint equations

Tkij — Vi Trk = 0,
(1.2) Viki; = ViTrk =0
R — |k* + (Trk)? = 0,

where the covariant derivative V is defined with respect to the metric g, R is the
scalar curvature of g, and Trk is the trace of k with respect to the metric g.

The fundamental problem in general relativity is to study the long term regularity
and asymptotic properties of the Cauchy developments of general, asymptotically flat,
initial data sets (2o, g, k). As far as local regularity is concerned it is natural to ask
what are the minimal regularity properties of the initial data which guarantee the
existence and uniqueness of local developments. In [17], we obtain the following result
which solves bounded L? curvature conjecture proposed in [10]:

Theorem 1.1 (Theorem 1.10 in [17]). — Let (M, g) an asymptotically flat solution to
the Finstein vacuum Equations (1.1) together with a mazimal foliation by space-like
hypersurfaces £y defined as level hypersurfaces of a time function t. Let ryo1 (X4, 1) the
volume radius on scales < 1 of ¥; (V. Assume that the initial slice (39,9, k) is such

that:
1

IRllz2(z0) < €, [kllz2(mo) + IVEIL2(m0) < € and 7vo1(¥o,1) 2 3.

1. See Remark 1.5 below for a definition.
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2 CHAPTER 1. INTRODUCTION

Then, there exists a small universal constant €9 > 0 such that if 0 < € < ¢, then the
following control holds on 0 <t < 1:

IRl e

[0,1

| =

| L2(S0) Se kllpes  z2my) + I VE| L

[0,1) Bl (Z) ~ € and Oggglrvol(ztv 1) >

Remark 1.2. — While the first nontrivial improvements for well posedness for quasi-
linear hyperbolic systems (in spacetime dimensions greater than 1 + 1), based on
Strichartz estimates, were obtained in [2], [1], [27], [28], [11], [14], [20], Theorem 1.1,
is the first result in which the full nonlinear structure of the quasilinear system, not
just its principal part, plays a crucial role. We note that though the result is not op-
timal with respect to the standard scaling of the Einstein equations, it is nevertheless
critical with respect to its causal geometry, i.e., L? bounds on the curvature is the
minimum requirement necessary to obtain lower bounds on the radius of injectivity
of null hypersurfaces. We refer the reader to Section 1 in [17] for more motivations
and historical perspectives concerning Theorem 1.1.

Remark 1.3. — The regularity assumptions on ¥y in Theorem 1.1—i.e., R and Vk
bounded in L?(¥q)—correspond to an initial data set (g, k) € HZ (Zo) x HL . (Zo).

Remark 1.4. — In [17], our main result is stated for corresponding large data. We then
reduce the proof to the small data statement of Theorem 1.1 relying on a truncation
and rescaling procedure, the control of the harmonic radius of ¥ based on Cheeger-
Gromov convergence of Riemannian manifolds together with the assumption on the
lower bound of the volume radius of ¥y, and the gluing procedure in [7], [6]. We refer
the reader to Section 2.3 in [17] for the details.

Remark 1.5. — We recall for the convenience of the reader the definition of the volume
radius of the Riemannian manifold ¥;. Let B,.(p) denote the geodesic ball of center p
and radius r. The volume radius ry.(p,r) at a point p € ¥; and scales < r is defined
N 1By (p)
. Br’ b
Tvol(p,T) = Inf — 5
with |B,| the volume of B, relative to the metric g; on ¥;. The volume ra-

dius 7yo1(2¢, ) of ¥y on scales < r is the infimum of ry.(p, r) over all points p € ¥;.

The proof of Theorem 1.1, obtained in the sequence of papers [17], [23], [24], [25],
[26], [22], relies on the following ingredients (?):

A Provide a system of coordinates relative to which (1.1) exhibits a null structure.
B Prove appropriate bilinear estimates for solutions to Ug¢ = 0, on a fized Ein-
stein vacuum background ).

2. We also need trilinear estimates and an L*(c) Strichartz estimate (see the introduction in
[17]).
3. Note that the first bilinear estimate of this type was obtained in [12].

ASTERISQUE 443



CHAPTER 1. INTRODUCTION 3

C Construct a parametriz for solutions to the homogeneous wave equations
Lgp =0 on a fized Einstein vacuum background, and obtain control of the
parametriz and of its error term only using the fact that the curvature tensor is

bounded in L2.

Steps A and B are carried out in [17]. In particular, the proof of the bilinear
estimates rests on a representation formula for the solutions of the wave equation
using the following plane wave parametrix (:

+oo
(1.3) Sf(t,x) = /S ) /O eMut2@) f(A)A\2dNdw, (t,x) € M,

where u(.,.,w) is a solution to the eikonal equation g*?9,udsu = 0 on M such
that u(0,z,w) ~ z.w when |z| — +oo on Xy ). Therefore, in order to complete the
proof of the bounded L? curvature conjecture, we need to carry out step C with the
parametrix defined in (1.3).

Remark 1.6. — Note that the parametrix (1.3) is invariantly defined (9, i.e., without
reference to any coordinate system. This is crucial since coordinate systems consistent
with L2 bounds on the curvature would not be regular enough to control a parametrix.

Remark 1.7. — In addition to their relevance to the resolution of the bounded L2
curvature conjecture, the methods and results of step C are also of independent in-
terest. Indeed, they deal on the one hand with the control of the eikonal equation
g°P0,udzu = 0 at a critical level ™, and on the other hand with the derivation of L?
bounds for Fourier integral operators with significantly lower differentiability assump-
tions both for the corresponding phase and symbol compared to classical methods (see
for example [21] and references therein).

In view of the energy estimates for the wave equation, it suffices to control the
parametrix at ¢ = 0 (i.e., restricted to Xg)

+o0
(1.4) Sf(0,z) = / / e?0m) £(XGIA2dNdw, = € B
sz Jo
and the error term
(1.5)

Ef(t,x) = OgSf(t,x) = /S ] /0 = MO y(t, z,w) fAw)AdAdw, (t,z) € M.

4. (1.3) actually corresponds to a half-wave parametrix. The full parametrix corresponds to the
sum of two half-parametrix. See [24] for the construction of the full parametrix.

5. The asymptotic behavior for u(0,z,w) when |z| — +oo will be used in [24] to generate with
the parametrix any initial data set for the wave equation.

6. Our choice is reminiscent of the one used in [20] in the context of H2+¢ solutions of quasilinear
wave equations. Note however that the construction in that paper is coordinate dependent.

7. We need at least L2 bounds on the curvature to obtain a lower bound on the radius of injectivity
of the null level hypersurfaces of the solution u of the eikonal equation, which in turn is necessary
to control the local regularity of u (see [25]).
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4 CHAPTER 1. INTRODUCTION

This requires the following ingredients, the two first being related to the control of
the parametrix restricted to Xy (1.4), and the two others being related to the control
of the error term (1.5):

C1 Make an appropriate choice for the equation satisfied by u(0,z,w) on g, and
control the geometry of the foliation generated by the level surfaces of u(0,z,w)
on 20.

C2 Prove that the parametriz att = 0 given by (1.4) is bounded in Z(L?(R?), L*(X))
using the estimates for u(0,x,w) obtained in C1.

C3 Control the geometry of the foliation generated by the level hypersurfaces of u
on M.

C4 Prove that the error term (1.5) satisfies the estimate | Ef| 120 < Cl|AfllL2(rs)
using the estimates for u and Ogu proved in C3.

Step C3 was initiated in the sequence of papers [13], [15], [16] where the authors
prove the estimate Ogu € L (M), which is crucial for step C3 and C4. In the present
paper, we focus on step C1. Remember that u is a solution to the eikonal equation
g*P0,udsu = 0 on oM. To define u in a unique manner, we still have to prescribe u
on Xy. Having in mind steps C2 and C3, we look for u(0,z,w) satisfying the three
following conditions:

Cla u(0,z,w) ~ z.w when || — +0o on .

C1b Ugu(0,z,w) is in L>®(X). In fact, the estimate Ogu € L (M) is obtained in
[13] using a transport equation (the Raychadhouri equation) so that one needs
the corresponding estimate on Xo (i.e., at t =0).

Clc u(0,z,w) has enough regularity in © and w to achieve step C2, i.e., to control
the parametriz at t = 0 given by (1.4).

Such a choice turns out to be a difficult task. This is due to the fact that the initial
data set (2o, g, k) has very little regularity. In fact, to be consistent with the bounded
L? curvature conjecture, one should only assume that the curvature tensor R of g
and Vk are in L2(X). Together with C1b, this drastically limits the regularity in z
of u(0,z,w). Although (3, g, k) is independent of w (which only intervenes in Cla to
prescribe the asymptotic behavior of u(0,z,w)), the function u(0, z,w) has also very
limited regularity in w. We will thus have to make a very careful choice of u(0,z,w)
to be able to satisfy the three conditions Cla C1b Clc at the same time.

Let us note that the typical choice u(0,z,w) = z - w in a given coordinate system
would not work for us, since we don’t have enough control on the regularity of a
given coordinate system within our framework. Instead, we need to find a geometric
definition of 4(0,z,w). A natural choice would be

Ogu =0 on Xy,

ASTERISQUE 443



CHAPTER 1. INTRODUCTION 5

which by a simple computation turns out to be the following simple variant of the
minimal surface equation (®)

Vu Vu Vu
div( — ) =k —, =— %o
”(ww) <|W|’|Vu|> on =

Unfortunately, this choice does not allow us to have enough control of the derivatives
of u in the normal direction to the level surfaces of u. This forces us to look for an
alternate equation for wu:

Vu 1 Vu Vu
di — ) =1- — 4+ k| =, —— .
”(m) Vul * <|Vu|’|w|> on %o

In the time symmetric case, i.e., & = 0, this choice simply means that the mean
curvature of the level surfaces of u is equal to 1 minus the lapse of u. In this context,
this construction has not appeared in the literature. It is closest in spirit to the mean
curvature flow equation, as it can be recast in an alternative form

% = (1+ H+knn)N,
where N is the mean curvature of the level surface of u. Its main advantage is that
it turns out to be parabolic in the normal direction to the level surfaces of u. Con-
sequently, this construction retains the regularity of the leaves of the foliation of the
minimal surface choice, but also additionally gives stronger control in the normal
direction to the leaves.

The rest of the paper is as follows. In Chapter 2, we motivate our choice
for u(0,z,w) and we state the main results. In Chapter 3, we assume the existence
of u(0,z,w) and prove calculus inequalities with respect to the foliation generated
by u(0,z,w) on Yo, which will be needed in the sequel. In Chapter 4, we investigate
the regularity of u(0,z,w) with respect to z. In Chapter 5, we recall the properties
of the geometric Littlewood-Paley decompositions established in [15], and we derive
useful commutator estimates, product estimates, as well as parabolic estimates.
In Chapter 6, we derive additional regularity for w(0,z,w) with respect to z. In
Chapter 7, we investigate the regularity of u(0, z,w) with respect to w. In Chapter 7,
we construct a global coordinate system on the leaves of the foliation generated
by 4(0, z,w) on Xg. Finally, we derive additional estimates for u(0, z,w) in Chapter 8.

Acknowledgments. — The author wishes to express his deepest gratitude to Sergiu
Klainerman and Igor Rodnianski for stimulating discussions and constant encourage-
ments during the long years where this work has matured. He also would like to stress
that the basic strategy of the construction of the parametrix and how it fits into the
whole proof of the bounded L? curvature conjecture has been done in collaboration
with them.

8. In the time symmetric case k = 0, this is exactly the minimal surface equation.
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CHAPTER 2

MAIN RESULTS

From now on, there will be no further reference to 3; for ¢ > 0. Since there is no
confusion, we will denote ¥y simply by ¥ in the rest of the paper.

2.1. Modification of R and k near the asymptotic end

Recall from Theorem 1.1 that our assumptions on the initial data set (X, g, k) are
the following

(2.1) IRl L2y + 1kl z2(m) + IVE| L2(s) < e,

where € > 0 is small enough. Now, as a byproduct of the reduction to these small
initial data outlined in Remark 1.4 and performed in Section 2.3 of [17], we may also
assume the existence of a global coordinate system on (X, g, k) relative to which we
have

(22) CIEl? < guE'E < 2P
and (X, g, k) is smooth in |z| > 1.

In order to construct «(0, z,w) satisfying the asymptotic behavior Cla, we need to
modify (3, g, k) outside of |z| < 1. We can glue it to (R3,6,0) so that the new initial
data set is still smooth outside of |z| < 1, satisfies (2.1), and coincides with (R34, 0)
outside of a slightly larger neighborhood. We still denote this initial data set (2, g, k).
Of course, (X, g,k) does not satisfies the constraint equations in the annulus where
the gluing takes place. However, for the construction of u(0,z,w), we only require
(X, 9, k) to satisfy the constraint equations in |z| < 1. Outside of |z| < 1, (2, g,k) is
smooth, so things are much easier.

Finally, in order to be consistent with the statement of Theorem 1.1, we consider

a maximal foliation, i.e.,
Trk = 0.
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8 CHAPTER 2. MAIN RESULTS

2.2. Geometry of the foliations generated by u on ¢/ and by u|_onX
=

Let u a solution to the eikonal equation g"‘ﬁaauagu =0on oM. Let L =—g*P0,u Op
be the corresponding null generator vector field and s its affine parameter, i.e.,
L(s) = 1. Let us introduce the level hypersurfaces of u

Huy = {(t,z) in M such that u = up},
which generate a foliation on M. The level surfaces P, of s generate the geodesic
foliation on &/4,.
The geometry of ¢4, depends in particular of the null second fundamental form
(2.3) X(X,Y) = g(DxL,Y),

with X,Y arbitrary vector fields tangent to the s-foliation P;, and where D is the
covariant differentiation with respect to g. We denote by trx the trace of y, i.e.,
tr x = 048y 4B where x4 are the components of x relative to an orthonormal frame
(ea)a=1,2 on the leaves of the s-foliation. An easy computation yields:

(2.4) Ogu = try,

so that ones needs to prove enough regularity for tr x to control the error term (1.5)
of the parametrix (1.3). tr x satisfies the well known Raychadhouri equation

d 1
2. t 2t 2 ~12
( 5) ds 1'X+2(IX) = |X|7

with Xap = xap —1/2tr xdap the traceless part of x. This transport equation is used
in [13] to prove the crucial estimate trx € L (M) provided that try is in L*®(X)
att =0.

Let us now recall the link between Ul and trx|2. We define the lapse a = |Vu| ™1,

and the unit vector N such that Vu = a1 N. We also define the level surfaces
P,, = {z in ¥ such that u = up},

so that N is the normal to P, in ¥. The second fundamental form 6 of P, is defined
by

(2.6) 0(X,Y)=g(VxN,Y),

with X,Y arbitrary vector fields tangent to the wu-foliation P, on ¥ and where V

denotes the covariant differentiation with respect to g. We extend 6 as a tensor on X
by setting

(2.7) O(N,.) = 0(.,N) = 0.

We denote by tr 6 the trace of 6, i.e., tr@ = 648045 where 45 are the components
of 6 relative to an orthonormal frame (e4)a=1,2 on P,. We then have the following
equality on X:

(2.8) trxy =tré +trk.
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2.3. STRUCTURE EQUATIONS OF THE FOLIATION GENERATED BY A FUNCTION 9

Now, Trk = trk + knyn. Recall from Section 2.1 that we impose Trk = 0 which
corresponds to a maximal foliation. Thus, we obtain the following relation between u
and tr y on X:

(2.9) trx =tr0 —kyy on 3.
Finally, using (2.4) and (2.9), we may reformulate C1b as:
(2.10) trf — kyy € L™°(X).

2.3. Structure equations of the foliation generated by a function v on ©

We recall the structure equations of the foliation generated by a scalar function w
on X (see for example [4]).

Proposition 2.1. — The orthonormal frame frame N,ea, A = 1,2 of ¥ satisfies the
following system:

Vyea =Yyea+a (¥ a)N,
VaN =0ages,
Vpea =Vgea —0apN,
VnN = —a"'Va.
Also, the lapse a and the second fundamental form 0 satisfy the following system:
a 'A(a) = —Vntr6 — 6> + Ry,
(2.12) YV20up = 1V 4tr0 + Ry a,

a_IWAWBa +VnOa + 292603 —tr00ap + Kyap = Rasg,

(2.11)

where §AB = 0ap — 1/2tr0d4p is the traceless part of 0, K is the Gauss curvature
of Py, v is the metric on P, induced by g, and YV is the intrinsic covariant derivative
on P,. Finally, we have:

(2.13) 2K —tr6® 4+ 10|> = R — 2RyN-

Proof. — We start with (2.11). Note that the second equality in (2.11) follows from
the definition of the second fundamental form 6. Also, the first and the third equal-
ity follow from the second and the fourth equality and the fact that the frame is
orthonormal. Thus, it remains to prove the fourth equality in (2.11).
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Since Vu = a~!N, we have N(u) = a~!. Thus, using e4(u) = 0 using the fact that
the frame is orthonormal, we obtain:

Va(a™) = Va(N(u))
= [ea, N](u)
=VaN(u) — Vyea(u)
=a 'g(N,VAN — Vyea)
=a"'g(VNN,eq),

which concludes the proof of (2.11).
We now turn to the proof of (2.12) starting with the first equation. Using the
definition of the curvature tensor R, we have:

9([Va,VNIN,ep) = g(V s VNN, e5) — g(VNV 4N, eB) + 9(Vvye N, ep)
=g(VaVnN,eg) — g(VNVaN,eg) + g(Vvyes N, eB)
= —RanBN + 9(VviN-VyesNseB) + 9(Vvyes N, eB)
= —Ranpn +0aclcs,
where we used (2.11) in the last inequality. Taking the trace yields:
[div, VN]IN = —Rnn + 0%,
which together with (2.11) implies:
(2.14) div(VyN) = Vn(div(N)) + [div, VN]N = Vntr — Ryn + |6]%
Using (2.11), we have:
div(VyN) = —div(a™'Va) = —dif(a"*Va) — |a~*Va|* = —a"* A(a),
which together with (2.14) proves the first equality of (2.12).

Next, we turn to the second equality of (2.12). Using the definition of the curvature
tensor R, we have:

Ya0sc — Vlac =ea(g(VeN,ec)) — 0(V 4ep,ec) — 0(en, ¥V sec)
—ep(9(VaN,ec)) +60(Vgea,ec) + 0(ea, Yec)
=9((VaVe —VBVa)N,ec) + g(VeN,Vaec — ¥V ec)
—0(VaeB,ec) —9(VaN,Vpec — Vgec) + 0(Vgea, ec)
= Rapno + g(vVAeB—VAeB—VBeA+WBeAN’ ec)
= RaBnoc,

where we used (2.11), the fact that 6 is symmetric, and the fact that the frame is
orthonormal. Taking the trace yields:

dif(0)a = V 4tr0 + Rapnpg = V4tr0 + Ran,
which together with the definition of ) proves the second equality of (2.12).
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We now turn to the last equality of (2.12). Using the definition of the curvature
tensor R and the property (2.7) of 6, we have:

VnOag =VN(g(VaN,eg)) —0(Vnea,eg) —0(ea, Vner)
=9(VNVaN,ep) — 0(Vyea,en)
=9(VaVnNN,ep) + RanBn + 9(Vvyes—vanN,ep) — 0(Vyea,en)

=9(VaVNN,ep) + Ranpn + g(vaeA—WNeA—VANN’ eB),

which together with (2.11) yields:

(2.15) VNOaB Z—G_IWAWBa—GAcecg-l-RANBN.
Now, the Gauss equation of the foliation generated by w on X reads:
(2.16) Rsp = RangN + Kvap + 0acblcp —tr06ag,

which together with (2.15) proves the last equation of (2.12).

Finally, we turn to (2.13). This follows from taking the trace of the Gauss Equa-
tion (2.16). Note that it also follows form taking the trace of the last equality of (2.12)
and using the first equality. O

2.4. Commutation formulas

Let IT the projection operator from the tangent space of X to the tangent space P,,
which is defined in an arbitrary orthonormal frame on ¥ by

II! = §; — N'N;.
Then, for any P,-tangent tensor F, we define ¥ F' as the projection of Vy F on P,:
VUi, = I - I VN U, g,
We have the following useful commutation formulas between ¥ and Y, (see [4]
page 64).

Lemma 2.2. — For any P,-tangent tensor F' on X, we have schematically:
(2.17) Vy,YIF=a"'Ya -VNF—0-YF+Ry -F+0-a"'Ya - F.
In particular, we obtain for any scalar f on X:

(2.18) V. VIf =a"'VaVnf—-0-Vf

and:

(2.19)

[V, Alf = —tr0Af —20-V°f + 207 'Va - YVNS +a ' faVNf — 2Ry, - Vf
—Vtr0-Yf—20-a"'Va- VY.
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We will use some variants of the commutator Formulas (2.17), (2.18) and (2.19).
In particular, for any scalar function f on X, (2.19) yields:

alV,a 'Alf = —(tr0+a 'Vya)Af —20- V2 f + 20" 'Va-VYVNFf+a "A@)Vyf
(2.20) — 2Ry -Vf—Vtr6-Vf—20-a"'Va-Vf.

Also, for some applications we have in mind, we would like to get rid of the terms
containing Y in the right-hand side of (2.17), (2.18) and (2.19). This is achieved by
considering the commutators with ¥ instead of Y. (2.17) implies for any P,-tan-
gent tensor F' on X, schematically:

(2.21) Vv YIF =—ab - YF +aRy. - F+6-Y(a)- F.

Using twice the commutator Formula (2.21), we obtain, schematically:

(2.22) [V N AlF =YV (—0-YF+RN.-F+6-Y(a)F)-Y0-YF+Ry.-YF+0-Y(a)-VF.
In view of (2.21), we also have for any scalar function f on X:

(2.23)  [Van,Alf = —atrAf — 26 - Y f + (—2aRy. — aVtr 0 + 20 - Ya) - V.

Finally, we conclude this section with the following commutator formula on P,.
For any scalar function f on P,, we have:

(2.24) [V, Alf = KV f.

2.5. The choice of u(0, z,w)
In view of (2.10), we may reformulate Cla C1b Clc. We look for u(0, z,w) satisfying
the three following conditions:

Cla u(0,z,w) ~ z.w when |z| — +00 on X

C1b trf — kyn € LOO(E)

Clc u(0,z,w) has as enough regularity in x and w to achieve step C2, i.e., to control
the parametriz at t = 0 given by (1.4),

where the initial data set (¥, g, k) satisfies:

Vik;; =0,
(2.25) R = |k|?,
Trk = 0

and where R and Vk are in L?(X) and satisfy the smallness assumption (2.1).

In order to motivate our choice of u(0,z,w), we investigate the regularity of the
lapse a, which by (2.12) satisfies the following equation:
(2.26) a *A(a) = —Vntr — |0> — Ryn.

Since R is in L%(X), (2.26) implies that a has at most two derivatives in L?(¥). Thus,
u(0, 7, w) has at most three derivatives with respect to = in L?(X). This is not enough
to satisfy Clc (i.e., to obtain the boundedness of the parametrix at t = 0 in L?). In
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fact, the classical T*T argument (see for example [21]) relies on integrations by parts
in z and would require at least one more derivative since ¥ has dimension 3.

Alternatively, we could try to use the TT* argument which relies on integrations
by parts in w. Indeed, R being independent of w, one would expect the regularity
of u(0, z,w) with respect to w to be better. Differentiating (2.26) with respect to w,
we obtain:

(2.27) a *A(Bpa) =2V VNa+ -,

where the term on the right-hand side comes from the commutator [J,,, A] (see Chap-
ter 7). Thus, obtaining an estimate for J,a from (2.27) requires to control Vya.
Unfortunately, (2.26) seems to give control of tangential derivatives of a only. This is
where the specific choice of u(0, z,w) comes into play.

Having in mind the equation of minimal surfaces (i.e., tré = 0), condition C1b
suggest the choice tr§ — kyy = 0. Unfortunately, this equation together with (2.26)
does not provide any control of V ya. We might propose as a second guess natural
guess to take instead tr — knxny = V ya. Plugging in (2.26) yields an elliptic equation
for a: V4a+ a *A(a) = —|0]2 — Vn(kny) — Ryn. This allows us to control Va
in L?(X). However, V ya is at most in H'(X) which does not embed in L (%)—since
Y has dimension 3—so that condition C1b is not satisfied. To sum up, the first guess
tr —kyn = 0 satisfies C1b, but not Clc, whereas the second guess tr0 —kyny = Vya
might satisfy Clc, but does not satisfy C1b.

The correct choice is the intermediate one:

(2.28) tr —kyy =1—a.

We will see in Chapter 4 that a — 1 belongs to L*°(X) so that C1b is satisfied. Also,
plugging (2.28) in (2.26) yields:

(2.29) VNa—a_lﬁ(a) = |9|2+VN(kNN)+RNN-

This parabolic equation will allow us to control normal derivatives of a. In turn, we
will control derivatives of a with respect to w using (2.27). Ultimately, we will prove
enough regularity with respect to both z and w for Clc to be satisfied.

2.6. Main results

From now on, we will not make any further reference to the space-time /7. Instead,
we will work only with the initial data set (X, g, k). Thus, since there can be no more
confusion, we will denote u(0, z,w) simply by u(z,w). To u, we associate P,, a, N,
6 and K as in Section 2.2. For 1 < p,q < 400, we define the spaces L?L?(P,) for
tensors F' on ¥ using the norm:

1/p
IPlsziocry = ( [ 1P Rpdn)
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14 CHAPTER 2. MAIN RESULTS

Remark 2.3. — In the rest of the paper, all inequalities hold for any w € S? with
the constant in the right-hand side being independent of w. Thus, one may take the
supremum in w everywhere. To ease the notations, we do not explicitly write down
this supremum.

We first state a result of existence and regularity with respect to x for u.

Theorem 2.4. — Let (X, g, k) chosen as in Section 2.1. There exists a scalar function u
on ¥ x S? satisfying assumption Cla and such that:

la— 1||L§°L2
(2.30)
tr& — knnllze(s) + IVOllL2z) + 1Kl z2z) Ses

where P,, a, N, 8 and K are associated to u as in Section 2.2.

Notice that condition C1b is implied by (2.30). In order to state our second result,
we introduce fractional Sobolev spaces H’(P,) on the surfaces P, for any b € R
(see Section 5.6 for their definition). We have the following estimate for V% a, and
improved estimate for Vya.

Theorem 2.5. — Let (X,g,k) chosen as in Section 2.1. Let u the scalar function
on ¥ x S? constructed in Theorem 2.4, and let P,, a, N, § and K be associated
to u as in Section 2.2. We have:

(2.31) IVnallLeoracp,) + [VRa <e.

”LiH’%(Pu) ~
The third theorem investigates the regularity of u with respect to w:

Theorem 2.6. — Let (X, g, k) chosen as in Section 2.1. Let u the scalar function on XX
S? constructed in Theorem 2.4, and let P,, a, N, 6 and K be associated to u as in
Section 2.2. We have:
2
10wallzee(z) + IVOuallzor2(py) + IV Quallzz(m) + IVNOuall , 3
+ ||vNawa||LZOH—%(Pu) + ||V?Vawa||LiH_%(Pu) + ||V8W0||L2(2) S 67

(2.32) 0N |lL =) ST,

105l o gyt gy F N2l s ) T N1V MO s ) + [VOZONlL2s) S e
(2.33) 102N Lo () S 1
and
(2.34) 103wl () S 1.

Remark 2.7. — In order to prove Theorem 2.4, Theorem 2.5 and Theorem 2.6, we
will rely in a fundamental way on the choice (2.28) for u, and on the structure of the
constraint equations in the maximal foliation (2.25).
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2.7. Coordinate systems on P, and %

In order to prove Theorem 2.4, Theorem 2.5 and Theorem 2.6, we will use embed-
dings on the level surfaces P, of u. These embeddings are discussed in Chapter 3,
and their proof will require in particular, the existence of a suitable coordinate sys-
tem. The following proposition establishes the existence of a global coordinate system
on P,.

Proposition 2.8. — Let w € S%. Let ®, : P, — T,,S? defined by:

(2.35) D, () := O,u(z,w),

where T,,S? is the tangent space to S? at w. Then ®, is a global C* diffeomorphism
from P, to T,S?.

The following proposition establishes the existence of a global coordinate system
on ¥ and provides the control of the determinant of the corresponding Jacobian. This
will turn out to be useful to control the parametrix at ¢ = 0 given by (1.4), which
corresponds to step C2 (see [24]).

Proposition 2.9. — Let w € S%. Let ® : ¥ — R3 defined by:
(2.36) O(z) == u(z,w)w + d,u(z,w) = u(z,w)w + P, (x),

where ®,, has been defined in (2.35). Then ® is a bijection, and the determinant of
its Jacobian satisfies the following estimate:

(2.37) Il det(Jac @)| — 1] Lo () S €.

2.8. Additional estimates

Below, we provide several additional estimates. These are consequences of Theo-
rem 2.4, Theorem 2.5 and Theorem 2.6 that will be needed in steps C2 and C3 (see
respectively [24] and [25]). We start with a first proposition.

Proposition 2.10. — Let (X, g,k) chosen as in Section 2.1. Let u the scalar function
on X x S? constructed in Theorem 2.4, and let N be associated to u as in Section 2.2.
For allz € ¥ and w € S?, we have:

(2.38) |N(z,w) + N(z,—w)| Se.
Also, we have:
(2.39) ||N(z,w) = N(z,w')| — |w — || < |w — &'|(e + |w — ']), Vz € T, w,w €S2
Finally, let v € S? and ®, the map defined in (2.36). Then, we have:
u(z,w) — @, (z) - w=O(e|lw — v|?),
(2.40) Owt(z,w) — 0, (P, (2) - w) = O(e|lw — v|),
Pu(z,w) — 0% (®,(z) -w) = O(e).
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We introduce the family of intrinsic Littlewood-Paley projections P; which have
been constructed in [15] using the heat flow on the surfaces P, (see Section 5.1 for their
main properties). This allows us to define the following Besov space /3 for tensors F
on X:

(2.41) I1Fllg= Z 2/|PjFllLec2(p,) + [ P<oFllee2(py)>
j=0

where P.g = > <0 P;. In particular, one can show that a scalar function belonging
to 3 also belongs to L°°(X) (see [15]). Now, as recalled in the introduction, the
reason for requiring condition C1b for w is that a crucial space-time quantity has
been proved to be in L in [13] relying on a transport equation (the Raychadhouri
equation) so that the corresponding quantity at ¢ = 0 should be in L*°(X). However,
pseudodifferential operators of order 0 do not map L* to L* which forces the authors
in [13] to actually prove a stronger estimate. In fact, they work with a Besov space
which both embeds in L* and is stable relative to operators of order 0. In turn, this
forces us to obtain a stronger version of condition C1b. This is the aim of the following
proposition:

Proposition 2.11. — Let (X, g,k) chosen as in Section 2.1. Let u the scalar function
on ¥ x S? constructed in Theorem 2.4, and let P,, N and 0 be associated to u as in
Section 2.2. We have:

(242) ||tr6—kNN||C%>§€.

Using the geometric Littlewood Paley projections P; together with the estimates
for Vya in (2.30), and the estimate for V4.a in (2.31), we obtain the following propo-
sition:

Proposition 2.12. — Let (X, g,k) chosen as in Section 2.1. Let u the scalar function
on ¥ x S? constructed in Theorem 2.4, and let a and N be associated to u as in
Section 2.2. For all j > 0, there are scalar functions @’ and a’ such that:

(2.43) Vya = al + a, where ||a{||L2(Z) < 2"%¢ and ||VNaé||L2(E) < 2e.

Remark 2.13. — Recall from Section 2.5 that we do not have enough regularity in «
to apply the T*T method. Alternatively, we could try the TT™ method which relies
on integration by parts in w. But 2u € L2 (X) is also not enough and we would need
at least one more derivative in w (see also Remark 7.6). Nevertheless, we will prove
in [24] that the regularity of u both with respect to z and w obtained in this paper is

enough to show that condition Clc is satisfied.

The rest of the paper is as follows. In Chapter 3, we prove various embeddings
and estimates on P, and ¥ which are compatible with the regularity for u obtained
in Theorem 2.4. In Chapter 4, we prove Theorem 2.4. In Chapter 5, we recall the
properties of the geometric Littlewood-Paley projections P; introduced in [15]. We
then prove several commutator and product estimates, as well as estimates for some
parabolic equations on X. In Chapter 6, we prove Theorem 2.5. In Chapter 7, we prove
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Theorem 2.6. In Chapter 8, we prove Proposition 2.8 and Proposition 2.9. Finally,
Proposition 2.10, Proposition 2.11 and Proposition 2.12 are proved in Chapter 9.
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CHAPTER 3

CALCULUS INEQUALITIES

3.1. The Sobolev embedding on ¥

Recall from Section 2.1 that there is a global coordinate system on (3, g, k) relative
to which we have

1 ind
(3.1) §|§|2 < gi;€°¢ < 20¢2
Lemma 3.1. — Let f a real scalar function on 3. Then:
(32) 14113 ) S N9 2203y
Proof. — We may assume that f has compact support in . In the global coordinate

system z = (21, x2,x3) on ¥ satisfying (3.1), we have:

3
|f(x1,22,23)|2 =

/ 01f(y,z2,23) dy/ 02 f(x1,y,x3) dy/ Osf $1,$23y)dy
</ |01 f(y, x2,x3) |dy) </ |02 f(x1,y,3) |dy) (/ |03 f(x1, 22,y )|dy) .
Hence,

/|f($1,$2,$3)|%dx1dx2dx3
RS

S </3 |‘91f($17902a$3)|dfﬂld9€2d$3> (/3 |<92f(w1,:c2,xs)ldwldwzdw3>
R R

2

(NI

%
</3 |83f(a:1,x2,x3)|dm1d:c2dac3> 5 </3 |Vf($1,1'2,$3)|d$1d$2d$3>
R R

Now in view of the coordinates system property (3.1), we deduce from the previous
estimate:

</]R3 |f(£l3)|% V |gt|d$1dib‘2d1§3> ’ ,S /R3 |Vf(fl?)|\/ |gt|dw1dx2dx3

as desired. ]
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As a corollary of the estimate (3.2), we may derive the following Sobolev embed-
dings.

Corollary 3.2. — Given an arbitrary tensorfield F' on %, we have
(33) [FllLss) S IVFlL2s)-

Proof. — We use (3.2) with f = |F|*:
1 zs sy = NFPN g ) S NEPFVFl ) S IVE L2 1P l7e sy,
which yields (3.3). O

3.2. Embeddings compatible with the foliation generated by « on X

We assume the existence of a real function u on ¥.. We define the lapse a = |Vu|™!,
and the unit vector N such that Vu = a 'N. We also define the level sur-
faces P, = {z /u(z) = u} so that N is the normal to P,. In this section we establish
some basic calculus inequalities with respect to the foliation generated by v on ¥ in
the strip S defined by:

S = {z such that —2 < u(z) < 2}.

These calculus inequalities will be used in all subsequent sections of the present paper.
We will use the following assumptions, which are consistent with our assumption on R
and our choice of bootstrap assumptions (see (4.9), (4.10), (4.11), (4.12)):

(3.4)
[RllL2s) + lla = Lz (sy + I¥VallL2sy + IVallrz(s) + [[tr ] s (s)
+1IVOllzaes) + o™ Vallze, |, rapn) + 10llzee, | zacpn) + 1K IL2s) <6
for some small enough constant § > 0.

Let p,, denote the area element of P,. Then, for all integrable function f on S, the
coarea formula implies:

(3.5) /S fds = /_ 22 /P u fadp,du.

It is also well-known that for a scalar function f:

(3.6) dci (/ fduu> _ /P <Z{L +tr0f> d.

For 1 < p,q < 400, we define the spaces LI[’_2 2] L%(P,) using the norm

/p

1Pl ey = (/ I o d ) .
In particular, in view of the assumptions (3.4) for a, L’[) 2 L7 (P,) coincides with
LP(S) for all 1 < p < 400. We denote by v the metric induced by g on P,, and by ¥
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the induced covariant derivative. We define the space H'(S) for tensors F on S using
the norm

IENm(s) = (||F||2L2(S) + ||VF”%2(S))1/2'
A coordinate chart U C P, with coordinates z', 22 is admissible if, relative to these
coordinates, there exists a constant ¢ > 0 such that,

(3.7 cYEP < vap(p)EAEP < clg)?, uniformly for all p € U.

We assume that P, can be covered by a finite number of admissible coordinate charts,
i.e., charts satisfying the conditions (3.7). Furthermore, we assume that the constant ¢
in (3.7) and the number of charts is independent of w.

Remark 3.3. — The existence of a covering of P, by coordinate charts satisfying
(3.7) with a constant ¢ > 0 and the number of charts independent of u follows from
Proposition 2.8.

Under these assumptions, the following calculus inequality has been proved in [15]:

Proposition 3.4. — Let f be a real scalar function. Then,
(3-8) [ fllz2pn) SNV e, + 1fllzr e

As a corollary of the estimate (3.8), the following Gagliardo-Nirenberg inequality
is derived in [15]:

Corollary 3.5. — Given an arbitrary tensorfield F' on P, and any 2 < p < o0, we
have:

1—2 2
(3.9) VFllzocru) S IV FNga i IF s oy + I Fllzaen)-

As a corollary to (3.8) it is also classical to derive the following inequality (for a
proof, see for example [8] page 157):

Corollary 3.6. — For any tensorfield F' on P, and any p > 2,
(3.10) |Fllee(p.y S IVFLepyy + | FllLe(py)-

Below, we state and prove several embeddings with respect to the foliation gener-
ated by v on X. The difficulty is to obtain these estimates while using only assumptions
that are compatible with the regularity for u obtained in Theorem 2.4.

Proposition 3.7. — Let F be a tensorfield on S such that F € H'(S). Assume also

(3-4). Then F belongs to L®, 5 L*(Py).
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Proof. — We have
(3.11)

||F(u, ')HAIX}(P,L) = ”F(_27 ')||%4(P_2)

+ 4/ VnF@' 2') - F(u o) | F(u,2)|?du dp

P,/
/ / tr|F (v, 2")|[*du’ dps

SIF(=2,)2s(p_y) + IIVNFllL2s)IF 1 2os)
+ ||tr9||LG(S)||F||L24/5(s)
SIF2, ) apay + IVNFllz(s) 1 Fos) + 1FlLs2, | p2arsp,),

where we used the assumption (3.4) for tr 6 in the last inequality. Replacing F' with
¢(u)F where ¢ is a smooth function such that ¢(—2) = 1 and ¢(2) = 0, and proceed-
ing as in (3.11), we obtain:

(312) IF(=2,)2aps) SNVNFlleaes) | Flizecs) + 1FL, | ossce,) + 1F2a0s),

which together with (3.11) yields:
(3.13)
1P, s S 19 F s IFIEa(s) + 1FULya,  paussqry + 1Flacs) 1FIeqs)-

This concludes the proof by taking the supremum in u on the left-hand side, and by
using the Sobolev embedding (3.3) and the following estimate:
1Pl ,ooey S WF o) IFIRe, oarny O

In Proposition 3.7, we can get rid of the assumption that F € L?(S). This is done
in the following corollary.

Corollary 3.8. — Let F be a tensorfield on S such that VF € L2*(S) and
F(-2,.) € L*(P_y). Assume also (3.4). Then F belongs to Lfo’Q]L‘*(Pu) and
L8(S). Moreover, if F(—2,.) € L%(P_3), then F also belongs to L‘[’f272]L2(Pu) and
H(S).

Proof. — The proof of Proposition 3.7 yields:
1 3
) S IF(=2, )l iagpn) + VN Fll s o) I Pl s,
+ It Oll Lo (s) (1Fll Lee, | acpny + 1 Flls(s));

which together with the Sobolev embedding (3.3), and the assumption (3.4) for tr6,
yields for ¢ small enough:

(3.14) IFa

Il e

[—2,2]

rap,) SIF(=2, )lzep_y) + IVF| L2(s)-

This proves the first statement of the corollary.

li.
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Now, we also assume that F(—2,.) € L%(P_y).
1F (u, Mz2p,) = I1F (=2, ) Z2(p_y)

—|—2/ VNF(u z') - F(u',z')du dp,

/ / tr0|F (v, 2" |>du’ dpp

SIF(=2,)Z2(p_,) + IVNFllz2(s) I Fllz2(s)
+ ||tr 9||L6(S)||F||L12/s (S)
SIF(=2,)32p,) + IVNFllz2 )| Fllee, , L2 P

1/2
+ ”tr9”L6(S)||F||LF3212]L2(PU)”F”LS(s)v

(3.15)

which proves that F' € L[ 2,9] L?(P,) by taking the supremum in u on the left-hand

side and using the Sobolev embedding (3.3) and the assumption (3.4) for tré. This
concludes the proof of the corollary. O

Proposition 3.9. — Let F be a tensorfield on S such that F € L%, , L %(P,) and
VF € L%(S). Then F belongs to L*(S).

Proof. — We have
(3.16)

2 2
1P, = | 1PUEsceadu S [ IPILucr,

2
< / UE B oy IFE B pyy + IF I (p,))du
SIFB, , oo IVFIas) + IFI:

S ||F||L°°2 2]L2(Pu)(||WF||L2(S) + ||F||L<[>j2’2]L2(Pu))7
where we have used (3.9) with p = 4. O

o L2 (Pu)

Proposition 3.10. — Let F be a tensorfield on S such that F € H(S) and
VVF € L?(S). Assume also (3.4). Then F belongs to L>®°(S) and VNYF be-
longs to L%(S). Moreover, the conclusion still holds if instead of F € H'(S) we
assume VF € L%(S) and F(-2,.) € L*(P_y).

Proof. — Using (3.10) with p = 4 and Proposition 3.7, we obtain:

B17) Fllzoesy S NV FlLee, o) FIF e, , apny S IEais) + VY| L2(s)-

Thus, we just need to prove that VyY¥F belongs to L?(S) to conclude the proof.
Since YV y F belongs to L?(9), it remains to prove that [V, Vx|F is in L?(S). The

2,2]
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commutation Formula (2.17) yields:
(3.18)
VN VIF N L2s) < (IValloge, , opny + 100<, | o)) IV Ellz2.

(||R||L2(S) +lVallzz , | 22y l0llLe=, , L2p) I FllL=(s)-

p A (PL)

Using the Gagliardo—Nlrenberg inequality (3.9) and Proposition 3.7 to bound the norm
in L[ 2,2] L*(P,) and L2, oL 4(P,) of VF and Va, together with the estimate (3.17)
and the estimate (3.4), we finally obtain:

(3.19) IVNYVFL2s) S (1 + [|Vallzi(s) + [|VallL2cs) + ||Y7 allr2(s))
X (IFlar sy + IVVE | L2(s))-
Next, we evaluate V y¥a. The commutation formula for scalars (2.18) yields:
IV, Vlallacs) < (IVallpee, , zapay + 10ll2e<, , 2 Vall

which together with the Gagliardo-Nirenberg inequality (3.9) and Proposition 3.7 to
bound the norm in L[{z ] L*(P,) of Ya, and the estimate (3.4), implies

(3:20) [IVNVallL2(s) S IVVNallz2s) + (IVallais) +6) IV ValL2(s) + [ VallL2(s))-
Using again (3.4), we deduce for § > 0 small enough:
(3.21) IVnYalL2cs) S 0.

Finally, we conclude the proof in the case where F € H!(S) using (3.19) together
with the smallness assumption (3.4) and (3.21). In the case where VF € L?(S) and
F(-2,.) € LY(P_, ) we proceed in the same way except that we use Corollary 3.8 to
bound Fin L2, o LA4(P,). O

2 2]L (Pu)»

Proposition 3.11. — Let F be a tensorfield on S such that Y°F € L%*(S),
VNF € L*(S) and YF(-2,.) € L?(P-3). Assume also (3.4). Then YF belongs
to L, 5 L*(Pu) and to L*(S).

Proof. — We start with the estimate of ¥F in LFSQVQ]LQ(P,L). We have:

u
IVF(u, )32p,) = IVF(=2, )75, +2/2/P VNYF(',2") - VF (', 2")du'dp.
+/ / tr0|YF(u', 2")|>du’ dpsy
_2 u/

SIVE(=2,)lZ2p,) +

/ / YVNFW,2') - VF(u', 2" )du'dp,
—-2J P,

') - VF, z")du'dp,

YF|?,

72 ,2]

u!

(3.22) + IItrGIILwZ 2 L4 (Pu)

JATER
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NP2 o) + 1AF 12031V Fllas)
PN INIF g 9Pl nece)

2
+ltr 0l ee, , paen) IV Fl32s),

where we used in the last inequality an integration by parts and the Gagliardo- Niren-
berg inequality (3.9). Now, using the commutator Formula (2.17), we have:

||[W,VN]F||L[272 2]L%(Pu) 5 ||a_1Y7aVNF — QVF + Ry F + 9(1_1Y7(7,F1||L[2

L3 (P)
< lla™'Va ||L[°32Y2]

+ (IRl L2(s) + 100 Vel L2(s) 1 Fll e,
S (1Bllz2s) + 10l Lee, 2o P
(3.23) +lla™Vallre, , 14@) IV Fllzzs) + IVFllze, | z2(p0)s

where we used in the last inequality the Gagliardo-Nirenberg inequality (3.9). (3.22)
and (3.23) yields:

IVE(u, M72cp,) S IVF(=2,)72p_,)
+ 1+ [|Rllr2es) + ||0||L[°32Y2]L4(Pu) +lla”'Va | L

(-2,2]
2 2
X (HVNF”%?(S) + ||Y7F||L<[>32,2]L2(Pu)||y7 Fllrzs) + IV FH%Z(S))-
Finally, taking the supremum in u and using the assumption (3.4) implies:
2
(3:24)  NVFllLx, , z2py) S IVE(=2,)llz2(po) + IV Fll2es) + IVNFllL2(s)-
Next, we estimate of YF in L*(S). In view of Proposition 3.9, we have:

IV llacs) S NIV Fllzacs) + |V Flles, , 2 cp)-

[—2,2

rP)IVNF|2sy + 110l i) IVF I L2(s)

[-2,2]

LA(Py)

L4(P,))

Together with (3.24), this concludes the proof of the proposition. O

Proposition 3.12. — Let F be a vector field on S such that F(-2,.) € L?(P_y),
VF € L%(S), and VNF = Vfi + F, where fi is a scalar function on S such that
f1 € L*(S) and Fy is a vector field on S such that Fy € L*/3(S). Assume also (3.4).
Then F belongs to L, 5 L*(P,).

Proof. — We have
(3.25)

1F G My S 12,0y + [ [ VNF P
72 Ul

—|—/ / tr 0| F |2 dppy du’
—2 "

§||F(—2,.)||%2(P_2)+/ /P (Vf1+ Fy) - Fdpiy du/

-2
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26 CHAPTER 3. CALCULUS INEQUALITIES

2
it llzes) 17172

S IF (=2, -)||2L2(P,2) +/ / frdifFd ., du’
—2J P,
2
+ |E2| (s | F'll Lacs) + ||tf9||L6(s)||F||L%(S)

SIF(=2, ) F2p,y + (1f1llL2esy + 1Pl ass(s))
X (IVF||z2(sy + IFllze=. . 12(P.))

[—2,2]

1 5
1tz ITF sy I, ooy + 1Pl e

[=2,2]
where we have used Proposition 3.9 to bound ||F| gy, and (3.9) with p = 12/5 to
bound ||F||12/5(5). This concludes the proof by taking the supremum in u on the
left-hand side and using the assumption (3.4). O

3.3. The Bochner identity and consequences

We recall the Bochner identity on P, (which has dimension 2). This allows us to
control the L2 norm of the second derivatives of a tensorfield in terms of the L? norm
of the laplacian and geometric quantities associated with P, (see for example [15] for
a proof).

Proposition 3.13. — Let K denote the Gauss curvature of P,. Then
(i) For a scalar function f:

3.26 1P = 2y — | K|V .
(3.26) [ st = [ 1apP [ sty
(ii) For a vector field F,:

(3.27)

[ 9P = [ 1aFPu [ KITER- R et P+ [ KPR,
P, P, P, P,
where AiWF = vV, F,, cuflF = dif(*F) =€, ¥, Fp.

Remark 3.14. — As a consequence of (3.27) together with a L*°(P,) estimate for
tensors, we have the following Bochner inequality for tensors F' on P, (see [15] for a
proof):

2
(3:28) |V Fllr2(p.) S 1AF | L2(p,) + 1K 2p) IV F | 2py) + 1K T2 (p) | Fll L2 (-
Using Proposition 3.13, we obtain the following proposition:

Proposition 3.15. — Let f be a scalar function on S such that Yf(—2,.) € L?(P_3),
Vnf € L3(S) and Af € L2(S). Assume also (3.4). Then Y°f belongs to L2(S) and
Y[ belongs to L, 5 L*(Py).
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Proof. — The Bochner identity (3.26) implies:
IV° Fllzas) < 1AFlzacs) + IK VIS s)
SNAFllzaes) + 1K s 1V Flzacs)
S8 lzaes) + 1K) VAL, oo 171 5Gs)
+ V£l zee

[-2,2]

(3.29)

L2(P,));
where we have used Proposition 3.9. Thus, it just remains to prove that V[ be-
longs to L2, o L?(P,). In order to use Proposition 3.12 , we have first to estimate

[Vn, Y]f, which is given by the commutator Formula (2.18). We estimate [V, Y] f
in L? , o L*3(P,):

1190, Y1512

—2,2]

vasp,y S a7 Vallie, @) IV fllzacs)
+ HGHLE’jQ’Q]L‘l(Pu)||Y7f||Lf’f212]L2(Pu)'
Thus, VNYf = Vf1 + F» where f; = Vyf belongs to L?(S) and Fy = [V, Y|f

belongs to L[z_2 2] L*/3(P,). According to Proposition 3.12, and using assumption (3.4),
this implies:

IVflLee

[—2,2]

2
2Py S IV Ellz2s)y + IV fllecsy + IV Fllee, | r2(Pu)-

[—2,2]

For § > 0 small enough, this yields:
IV, , 22py S IV Fllzs) + IV Fllacs):

[—2,2]

Together with (3.29), this implies:
2 1/2 2
19 Fllzas) S 197 lzags) + 1KY 6 19 Fllzags),

which concludes the proof since || K||z2(s) < 0 for a small § > 0 in view of assumption
(3.4). O

3.4. Parabolic and elliptic estimates

In the proof of Theorem 2.4 and Theorem 2.6, we will often encounter parabolic
equations of the following type:

(VN —a'A)f=h on —2<u<?2

(see for Example (2.29)). In Proposition 3.16 and Proposition 3.17 below, we obtain
estimates for such equations.

Proposition 3.16. — Let f be a scalar function on S such that:
(3.30) (VN —a A f=h on —2<u<2,
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where h is in L*(S). Assume also that f(—2,.) and Yf(—2,.) both belong to L*(P_5).
Finally, assume (3.4). Then, we have:

331 N flleee, 2y T IV llLee, 22y + VN FllLzcs) + V2 £llz2(s)

[-2,2

S Pllzzesy + 1£(=2, Me2pooy + N1V F(=2, )ll2(p_y)-

Proof. — We multiply (3.30) by f and integrate on —2 < v/ < u where u < 2. Using
integration by parts together with (3.5) and (3.6), we obtain:

1 -
I )z, + lla V2V f11Za(s)

1 1 u u
= Z||F(=2,)]? +7// ‘ltGQdu/d’+// hfdp, du'
(332) 2||f( )||L2(P,2) 2 . u,a r f 1Y U . y f 122 U

12 M3apyy + e Ollzce, , zacen 712,
-2

N

A3 (P
+ k2l fllze, , L2
Together with (3.9) and (3.4), we get:
(3.33) ”f”%‘[’ijL?(Pu) FIVFlZ2(s) S WPlZags) + 1F (=2, )72cp_y)-

We multiply (3.30) by Af and integrate on —2 < v’ < u where u < 2:
CEDIN O AR (2 £ M N

u
— [ [ rafaduds S bl 18 s
—2 "
Using integration by parts together with (3.5) and (3.6), we obtain:

(3.35)
1 _
IVF e p,) + lla YV2ASII72 s

1 v ,
< IV Mo+ [ [ 198911 S

[ wrPodned = [ [ PaWrO dpdu + )| A s
-2 "

—2J P,

Using the commutator Formula (2.18), we get:

(3:36) [IVfl7, | racpn + lla™ 2 AF 112 (s

[—2,2]

SIVF=2 )5z pa) +100nee, s PolIVFIL: | | nsssp,y + RNz () 1AF L2cs),
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which together with (3.9) and (3.4) yields:
(331) 1V, orn + 1851320s)

S UV S 72cs) + IV FFs) + IV (=2, )72 (pyy + 1Pl 72cs)
Since Vnf = a " 'Af + h, (3.37) yields:

2
(338) IVNFlTaes) S 0UVFIZa(s) + 1V FllZacs) + IV (=2, )22 (py) + [BlI72s),
which together with Proposition 3.15, (3.4) and (3.37) implies:

(3.39) IV FlZ2(s) S SV A2 cs) + 1V F (=2, )12 p_y) + 1olF2cs)-
Finally, (3.33), (3.37), (3.38) and (3.39) yield (3.31) for § > 0 small enough. O

Proposition 3.17. — Let f be a scalar function on S such that:
(3.40) (VN —a*A)f=h on —2<u<2.

Assume that there exists a vector field H on S tangent to P, and a scalar function hy
on S such that:

(3.41) h = dif(H) + hy with H € L*(S) and hy € L3(8S).
Assume also that f(—2,.) belongs to L?>(P_z). Finally, assume (3.4). Then, we have:
(3:42) [ fllzee, , 22y + IV fllz2cs) S [1HL2s) + ||h1||L§(S) +1F (=2, )2 p_)-

Proof. — We multiply (3.40) by f and integrate on —2 < u’ < u where u < 2. Using
integration by parts together with (3.5) and (3.6), we obtain:

1 _
(3.43) 17w Iz, + lla V2 fl e s)

1 1 [ B
=Sl +5 [ [ @t
(3.44) / / hf iy dud
SIF2 )y + 000, e I,
—2

+/ hfdu, du'.
—2JP,,

Taking (3.41) into account, we have:
(3.45)

/ / hfdp., du —/ / dit(H) fad ., du’ +/ fhidp, du’
/ / P ’

= —/ HY fdp, du’ —/ / “Va H fdp, du’
2JP, P,
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+/ fhldﬂu’dul
—2J P,

SV fllzs)llHlzzcs) + 1 fllzacs)(la™ Va llLacs) 1H | 22 (s)
Flal g )
which together with Proposition 3.9 and (3.4) yields:

646) [ [ hidwodu’ S (i, w100 (1H ) + 1l 3 )
72 P’LL, !

Finally, (3.9), (3.4), (3.43) and (3.46) imply (3.42). O

In Chapter 4, we will have among other things to control 0 (the traceless part

of 8). Now, according to the second equation of (2.12), 6 satisfies an equation of the

type dif(F) = h. Thus, we conclude this section with an estimate that will allow us
to control the solution to such equations.

Proposition 3.18. — Let F' a symmetric 2-tensor such that trF = 0. Then:
1
(3.47) IVF|l2(s) S AW F (| 2(s) + 1K 7205y |1 FllLacs)-

Proof. — This follows immediately from the following identity for Hodge systems (see
for example [13]):

(3.48) /P (|VF)? 4+ 2K|F|?) = Q/P |digF|?. O

u
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CHAPTER 4

CONSTRUCTION OF THE FOLIATION
AND REGULARITY WITH RESPECT TO x

This chapter deals with the proof of Theorem 2.4. By Section 2.1, we may assume
that (X, g, k) coincides with (R3,,0) outside of a compact, say |z| > 1. Notice that
in |z| > 1 and for all w € S?, the scalar function z.w satisfies the Equation (2.28) and
the estimate (2.30), since a = 1,0 = 0 and N = w in this region. Thus, we would like
to construct a function u solution of (2.28) satisfying (2.30) in a region containing
|z| < 2 and to glue it to z.w in 1 < |z| < 2. Now, (2.28) is of parabolic type—see
(2.29)—where u plays the role of time. Therefore, for each w € S%, we will construct
u(.,w) on a strip of type S = {z € ¥ such that — 2 < u(z,w) < 2} solution of:

{tr&—kNNzl—a, on —2<u<2,

(4.1) u(.,w)=—-2 on z.w=-2.

The rest of the chapter is as follows. We first prove a priori estimates consistent
with the estimate (2.30) and valid on —2 < u < 2 for the solution u of (4.1). We
also prove on —2 < u < 2 a priori estimates for higher derivatives of the solution u
of (4.1). We then extend a solution u of (2.28) on u < « to a solution on the strip
a<u<a+T:

(4.2) tr —kyy=1—a, on a<u<a+T,

where —2 < o < 2, and T > 0 is small enough. Together with the a priori estimates,
this allows us to control the solution of (4.2) on —2 + kT < u < =2+ (k + 1)T
uniformly with respect to k = 0,...,[4/T] in order to obtain a solution u of (4.1)
on —2 < u < 2. Finally, we conclude the proof of Theorem 2.4 by showing how to
glue the solution u of (4.1) to z.w in 1 < |z| < 2 in order to obtain a solution on ¥
satisfying (2.30).

Remark 4.1. — In order to obtain higher order derivatives estimates for (4.1), and
in order to construct the solution of (4.2), we need to assume that (¥, g, k) is more
regular. We would like to insist on the fact that this additional regularity is only
assumed to obtain the existence of u solution of (4.1). On the other hand, we only
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32 CHAPTER 4. CONSTRUCTION OF THE FOLIATION AND REGULARITY

rely on the control of ||R| z2(x) and ||[VE|[2(s) given by (2.1) to prove the estimate
(2.30).

4.1. A priori estimates for lower order derivatives

Let (X, g,k) chosen as in Section 2.1. In particular, we assume:
(4.3) IVEllL2z) + IRl z2(s) < e

Let u a scalar function on ¥ x S?, and let P,, a, N, § and K be associated to u
as in Section 2.2. Assume that u satisfies the additional Equation (2.28). The Equa-
tions (2.11) (2.12) (2.13) may be rewritten:

VAN = 0apep,
(4.4)
VNN = —77@,
tl‘e—k)NNZI—CL,
Vina — a_lA(a) = |9|2 + VN(kNN) + RyN,
(4.5) ~ 1
WBQAB = §Y7Atr9 + Rna,
a 'V, Vpa+ Vnbas +050cs + Kvap = Rap
and
(4.6) 2K —tr6® +10|> = R — 2RyN-

In this section, we establish a priori estimates for a, N, # and K corresponding to
(2.30) in the region S of ¥ between P_5 and P, (ie., S = {z/ — 2 < u(z,w) < 2})
where w is initialized on x.w = —2 by:

(4.7 u(z,w) =—-2 on z.w=—2.

Note that the first equation of (4.5), (4.7) and the fact that (g, k,>) coincides with
(6,0,R3) for |z| > 2 yields:

(4.8) VP(a—1)=0,VP0=0,VP’(N—w)=0forallpeN on u=-2,

so that the subsequent integrations by parts will not create boundary terms at u = —2.
We will assume:

(4.9)

lla=1ze, , 2Py +IVallLes, |, p2py) +lla =1z () + IV VallL2(s) + [ Kl 22(s) < De
and

(4.10) VO] 125y < D%,

where D is a large enough constant. We will then try to improve on these estimates.
Let us note that (4.8), (4.9) and (4.10) together with Corollary 3.8, Proposition 3.9
and Proposition 3.10 yield:

(4.11) IVnallzas) + IVallze, , pacp,) + I Vallzs(s) < D

[=2,2]
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and
(4.12) ||9||L 2L2(P) T 10| o

Also, using Corollary 3.8, (4.3), and the fact that ¥k = 0 on z.w = —2 by Section 2.1
yields:

(4.13) Ellzee, , 2Py + 1Kl e

rapy) + 10l zos) < De.

[~2,2]

r4p,) + |kllze(s) < De.

Z2,2]

4.1.1. Improvement of the bootstrap assumptions (4.10). — We start by estimating 6.

Since tr — kyny = 1 — a, we have from (4.9):

(4.14) ltr& — kx|l Loe(s) < De.

Also, the first equation of (4.5) together with (4.4) yields, schematically:

Vntr = Vykny — QkWaN — Vna, Vir0 = Ykyn + 2kn. - 0 — Va,
so that:
[Vtrfllrz(sy S Valla(sy + IVEllL2(s)

(4.15) + Ikl Lee, , zapu) (IVal e

S(D+ D )e,

where we have used the bootstrap assumption (4.9), (4.11), (4.12) and (4.13) to obtain
the last inequality. We continue with the estimates for 8. The third equation in (4.5)
and Proposition 3.18 yield:

vie,) T 10, , 1)

[-2,2]

~ 1 ~
(4.16) IWOllL2(s) S IVt bllLacsy + BN llL2s) + 1Kl 225 101l La(s)>
which together with (4.3), (4.9), (4.12) and (4.15) yields:
(4.17) 1Vl 2(s) S (D + Die?)e.
Also, using the last equation of (4.5), we have:
(4.18) IVnBllz2s) S IV7all2cs) + 1K [l L2(s) + I Rllz2s) + 1001 74¢s)»
which together with (4.3), (4.9) and (4.12) yields:
(4.19) IVN0ll2(s) S (D + De)e.
Finally, (4.15), (4.17) and (4.19) yield:
(4.20) V]| 25y S (D + De?)e,

which is an improvement of (4.10).

4.1.2. Improvement of the bootstrap assumptions (4.9). — We now try to improve
(4.9). Note first that (4.6) yields:

(4.21) 1K L2(s) S lItr 6l Zacsy + 160174 (s) + 1Rl L2()-

Together with (4.3) and (4.12), this yields:

(4.22) 1K 22s) < (1 + D%)e.
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We rewrite the second equation of (4.5) as:

(4.23) (Vy—a'A)la—1)=h,

where h is given by:

(4.24) h=101>+ Vn(knn) + Ryn-

Using the second equation of (4.4) implies:

(4.25) Vn(knn) = VNknn + K(VNN,N) =Vnkyy — k(Va,N),
which together with (4.24) yields:

(4.26) h =10+ Vnkny — k(Va,N) + Ryn-.

Using (4.3), (4.11), (4.12), (4.13) and (4.26), we obtain:

(4.27) Ihllzecs) < (1+ Doe)e.

Using Proposition 3.16, (4.8), (4.9), (4.11), (4.12), (4.23) and (4.27) we obtain:
(4.28)

lla = UlLe, , L2pn) + IVallLee, , L2p) + IV NallL2s) + IV2allz2(s) $ (1+ Doe)e.

In order to obtain estimates for YV ya and V3% a, we differentiate the second equa-
tion of (4.5) by Vy:

(4.29) (Vn —a *A)Vya = [Vy,a ' Ala+ 20V N0 + Vi kny + VNRNN.
Using (4.25), we have:

(4.30) Vi(knn) = VN (Vnkny — k(Va, N)).

The Commutator Formula (2.18) and the second equation of (4.4) yield:
Vn(k(Va,N)) = —-Vnk(Ya,N) - k(VNVa,N)

wan + K(Va, Vo)

= —Vnk(Va,N) — k(YVya,N)
— Vnak(Ya,N) +60(Va,ea)kan + k(Va, Va).

Using the constraint Equations (1.2) and the fact that we have a maximal foliation
yields:

(4.32) VNk(NN) = —Vakan
= —dif(kn.) — trbknn + 0aBkas,

which together with the commutator Formula (2.17), the second equation of (4.4),
(4.30) and (4.31) implies, schematically:

(4.33) V% (knn) = —dit(Vnkn.) + a0 'VaVyky + 0VEkx + Ry.k+ 00~ 'Vaky.
+ VnOk + 0V Nk + 0kVa + Vk(Va, N)
+ k(YVna,N)+ Vyak(Va, N)
+ 0k + k(Va, Ya).
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We use the twice-contracted Bianchi identity on %

(4.34) VIR, = %viR,

together with the constraint Equations (1.2) to express VyRyn:

(4.35) VNRNN = —VaRan +k-Vnk

= —di#(RN) +tr0RNyN — 0aRap + k- Vik.
Finally, we use the commutator Formula (2.20) for a scalar f:
(4.36) alVy,a *Ala = —trAa — 26 - Y’a+ 20" 'Ya-YVya—2Ry. - Va
—Vtro-Va— 20 - a”'Ya - Ya.

(4.29), (4.33), (4.35) and (4.36) yield:

(4.37) (Vy —a AV ya = dit(H) + hy,

where the tensor H is given by

(4.38) H=-Vykny—-—RnN

and where the scalar h; is given schematically by

(4.39)

hy = —a 'tr0Aa — 27 '0Y%a + 20" 2VaYVya — 2Ry.a"Va — Vtrba~'Ya

+20la"Va|? + 20V N0 + a~'Va Vnky. + VOk + 0VE + Ry k
+0a"'Yaky. + 2kVnk + VNE(Va,N) + k(YVna,N)
+ Vyak(Va,N) + 0k + k(Va,Va) + 0R.

We estimate H in L?(S) using (4.3):

(4.40) [HllL2(s) < [IVEllL2s) + 1R 2(s) < 2e.
We estimate h in L%_Q’Q]L%(Pu):
(4.41)

Al s sy S UBleg, zscen + 1Paller, escen + e, ooces)

x (IV2allc2(s) + 1YV nallzacs) + 1Rl z2(s) + V0]l 22(s)
+IVElL2(s) + I1VallZas) + 101745y + IVvalZas) + 1E1Zas),
which together with (4.3), (4.9), (4.10), (4.11), (4.12) and (4.13) yields:

< 9.2
(4.42) 1ol s gt p,y S D%

Using Proposition 3.17, (4.8), (4.11), (4.12), (4.37), (4.40) and (4.42) we obtain:
(443) ||VNa||Loo L2(P,) + ||Y7VNCL||L2(S) S (1 + D9€)E.

[—2,2]

Now, Proposition 3.10 together with (4.28) and (4.43) yields:
(4.44) lla =1l z(s) S (1+ D%)e.
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Finally, (4.22), (4.28), (4.43) and (4.44) imply:

lla = 1lze, , r2epny + IVallLes, | r2pn) + lla = 1z (s)

(4.45) .
+HIVValz2csy) + 1 Kllz2sy S (14 D%)e,

which is an improvement of (4.9).
Thus, there is a universal constant D such that (4.9) and (4.10) hold. Together
with (4.4) and (4.14), this yields (2.30).

4.2. A priori estimates for higher order derivatives

In addition to (4.3), we assume the following control on R and k:
(4.46) VIR r2es) + [V k| 125y < M, forall 1 < j <5,

where M is a large constant. The goal of this section is to prove the following propo-
sition:

Proposition 4.2. — Let (3, g,k) chosen as in Section 2.1, and satisfying (4.46). Let u
a scalar function defined on S = {z/ — 2 < u(z,w) < 2}, and let P,, a, N, 6
and K be associated to u as in Section 2.2. Assume that u satisfies the additional
Equation (2.28) and is initialized on z.w = —2 by (4.7). Then, a and 0 satisfy the
following estimates:

(447) V2V alliags) + [V7alliags) + (V90 1as) < C(M), for all 1< 5 < 5.

Remark 4.3. — In connection with Remark 4.1, let us insist again on the fact that
the assumption (4.46) is only used to obtain the existence of u solution to (4.1).

The proof of Proposition 4.2 is postponed to Appendix A.2.

4.3. Construction of the foliation on a small strip

Let —2 < a < 2. In the following theorem, we assume that the u-foliation satisfying
(2.28) exists on —2 < u < o, and we show how to extend u to a solution on the strip
a <u < a+ T provided T > 0 is chosen small enough.

Theorem 4.4. — Assume that we have the following control on R and k:
(4.48) VIR z2cs) + IV k| 225y < +o0, forallj=1<j<5.
Also, assume that u is a solution to (2.28) for —2 < u < « such that
(4.49) la —1| <1/4, foru<a

and

(4.50) V70| L2 (sn{u<a)) < +00, forall j=1<j <5.
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Then, there exists a constant T > 0 such that we may extend the solution u of (2.28)
to a < u < a+T. Furthermore, T only depends on the size of the norms appearing
in (4.48) and (4.50).

Remark 4.5. — We do not claim any sharpness in the Sobolev exponents appearing
in the statement of Theorem 4.4. Our goal is to obtain an existence result with 7" > 0
depending only on a fixed number of derivatives of (R, k), and of 6 in u < «, no
matter how large this fixed number is.

The proof of Theorem 4.4 is postponed to Appendix A.5.

4.4. Proof of Theorem 2.4

We apply here the strategy explained in the introduction of Chapter 4.
Let 0 < oo < 4. We look for a solution u(.,w) to:
{tré)—kNNzl—a, on —2<u<-—-2+4aq,

4.51
(4:51) u(,w)=-2 on z.w=-2.

Theorem 4.4 ensures that u(.,w) solution of (4.51) exists as long as |a — 1| < 1/4 and
VI0(.,w) || L2(sn{ux—2+a}), 1 < j < 5, stay under control. Now, the a priori estimates
(4.9) and (4.47) yield |a — 1| < 1/4 and the control of the norm of |[V/0(.,w)| r2(s),
1 < j < 5. Thus, we deduce the existence of u(.,w) solution of:
{tr&—kNNzl—a, on —2<u<2,
(4.52)
u(,,w)=-2 on z.w= -2,

satisfying (4.9), (4.10) and (4.47) on —2 < u < 2.

Now, we would like to glue the solution wu(.,w) of (4.52) to z.w in the region
1 < |z| < 2 where (%, g,k) coincides with (R3,4,0) by Section 2.1. We will use the
following lemma.

Lemma 4.6. — Let u(.,w) the solution of (4.52) satisfying (4.9), (4.10) and (4.47)
on —2 < u < 2. Then, we have:

(4.53) 1+ ]z) Hu— 2w+ |Vu—w| Se, in {|z] >1}n{-2<u< 2}
The proof of Lemma 4.6 is postponed to the end of the section. We now conclude
the proof of Theorem 2.4 by showing how to glue u and z.w together in {1 < |z| < 2}.

Let ¢ a smooth function with compact support which is equal to 1 on |z| < 1 and to
0 on |z| > 2. Let @ be defined on X by:

(4.54) t=opu+ (1-p)rw.

Then, 4 satisfies Cla. Also, since u satisfies (4.9) and (4.10) in {—2 < u < 2}, since
z.w satisfies the same estimates in |z| > 1, and since we have (4.53) on 1 < |z| < 2,
4 satisfies (2.30) on X. This concludes the proof of Theorem 2.4.
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Proof of Lemma 4.6. — We first show that u(.,w) satisfies better estimates in this
region due to the hypoellipticity of the parabolic-elliptic system (4.5). In particular,
we obtain the following improvement of (4.47) for j = 2:

(4.55) |V*Vallz2es) + V2allr2(s) + V20l r2(s) S &, in {Ja] > 1} n{-2 <u<2}.

In fact, C(M) in (4.47) comes from the assumption (4.46) on the norms of R and k.
However, since R and k vanish in |z| > 1, we may take M = 0 in this region. Let us
prove for example the estimate for ||Y72VNa||L2(S) in (4.55), the others being similar.

Let ¢ a smooth function with compact support which is equal to 1 on |z| < 1. Using
(A.1), we obtain an equation for (1 — ¢)Vya:

(4.56) (VN —a 'A)[(1 = ¢)Vna] = (1 - )b + h,
where h is given by (A.2) and h is given by:

(4.57) h=—-VneVna+a ' ApVna+ 207 VeV V ya.
(A.5) and the fact that R and k vanish on the support of 1 — ¢ yield:
(4.58) 1= )hllas) S 2l (L= @) V26 1ags) + =

(4.9) and the fact that ¢ is smooth yields:

(4.59) IAllz2s) S e

Proposition 3.16, (4.56), (4.58) and (4.59) yield:

(4.60)  [[(1 =) VXalz(s) + (1 = @)V’ Vvalras) S Ve = ) V20 12(s) + &
In the same fashion, we adapt the analysis of (A.7)-(A.24) and we use the fact that R
and k vanish on the support of 1 — ¢ to obtain estimates for ||(1 — go)WsaHLz(S) and
(1 — ¢)V?0||12(s) which yield (4.55).

We now use (4.55) and the fact that u = —2 on z.w = —2 to show that v and z.w
are close to each other in the region {|z| > 1} N{—2 < u < 2}. Proposition 3.10, (4.4)
and (4.55) yield:

(4.61) IVN|<e, in{jz|>1}n{-2<u< 2}

Since N = w on z.w = —2, (4.61) yields:

(4.62) IN —w|Se, in{lz] >1}Nn{-2<u <2}

We have u = z.w on z.w = —2, so since Vu = a~! N, (4.9) and (4.62) yield the desired
estimate (4.53). This concludes the proof of Lemma 4.6. O

ASTERISQUE 443



CHAPTER 5

LITTLEWOOD-PALEY THEORY ON P, AND CONSEQUENCES

In this chapter, we introduce several tools which will be needed to prove Theo-
rem 2.5 and Theorem 2.6. We introduce and recall the main properties of the family
of intrinsic Littlewood-Paley projections P; which has been constructed in [15] us-
ing the heat flow on the surfaces P,. We then prove a crucial bound for K. This
allows us to derive suitable commutator estimates, product estimates and estimates
for parabolic equations.

Remark 5.1. — Recall that (X, g, k) coincides with (R3,6,0) in |z| > 2. Also, u(z,w)
coincides with z.w in |z| > 2, and so a =1, N = w, § = 0 and K = 0 in this region.
Therefore, u clearly satisfies the estimates of Theorem 2.5, Theorem 2.6 and of the
propositions thereafter in the region |z| > 2. Thus, in the rest of the paper, we will
restrict the proof all our estimates in the strip S = {#/ —2 < u < 2} where u(z,w) is

solution to:
{tr&—kNNzl—a, on —2<u<?2,

u(,,w)=-2 on z.w=—2.

5.1. Properties of the geometric Littlewood-Paley projections P;

In this section, we introduce and recall the main properties of the family of intrinsic
Littlewood-Paley projections P; which has been constructed in [15] using the heat
flow on the surfaces P,. We recall the properties of the heat equation for arbitrary
tensorfields F' on P,.

O, U(T)F — AU(T)F =0, U(O)F = F.
The following L? estimates for the operator U(7) are proved in [15].

Proposition 5.2. — We have the following estimates for the operator U(r):
(5.1) ||U(T)F||222<pu)Jr/0 IYU (T )F72p,ydm" S I F L2 s)s

(5:2) IVU(T)FIZ2p, +/O IAU (7)) F L2 (p, ) dr" S IIVFIIL2(s),

SOCIETE MATHEMATIQUE DE FRANCE 2023



40 CHAPTER 5. LITTLEWOOD-PALEY THEORY ON P, AND CONSEQUENCES
T
2 2 2
(5.3) TIYU(T)F(|z2(p,) +/0 TNAU(T)Fllz2(p,ydr" < 1F 2 (s)-

We also introduce the nonhomogeneous heat equation:
0;V(r) — AV(r) = F(r), V(0) =0,

for which we easily derive the following estimates:

Proposition 5.3. — Let 3 > 0. We have the following estimates for the operator V(7):

G4) TV Oy + [ IAVEapyir’ S [ 1PEEapdr

65 WORseo+ [ 19V Baeodr's [ [ VP,

6.0 TIVORapy+ [ PIWVEORapatrs [ [ VP
PV + | V() 2 S / i VP s

T 26-1
(57) +A 7'/ A ||V(7'l)||%z(Pu)d’T/.

We now recall the definition of the geometric Littlewood-Paley projections P; con-
structed in [15]:

Definition 5.4. — Consider a smooth function m on [0, 00), vanishing sufficiently fast
at 0o, verifying the vanishing moments property:

[e.e]
(5.8) / MR m(r)dr =0, |ki|+ |k2| < N.
0

We set, m;(1) = 2%'m(2%I7) and define the geometric Littlewood-Paley (LP) projec-
tions P;, for arbitrary tensorfields F' on S to be

(5.9) P,F = /000 m;(T)U(r)Fdr.

Given an interval I C 7 we define

P =Y PjF.

jel

In particular we shall use the notation Pcy, P<p, Psj, P>k.

Observe that P; are selfadjoint, i.e., P; = P}, in the sense,

<P;F,G> = <F, P;G>,
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where, for any given m-tensors F, G

<F,G>=/ AT Iy i Gy
P,

u

denotes the usual L? scalar product. Recall also from [15] that there exists a func-
tion m satisfying (5.8) such that the LP-projections associated to m verify:

(5.10) dp=1I

The following properties of the LP-projections P; have been proved in [15]:

Theorem 5.5. — The LP-projections P; verify the following properties:
i) LP-boundedness For any 1 < p < oo, and any interval I C Z,
(5.11) IPrF | rpyy S I1FllLecpy)-

ii) Bessel inequality

D P FlG2p) S IFNG2p,)-
J
iii) Finite band property For any 1 < p < co.

|AP;F o) S 22| F e ey

(5.12) < -2
|B5Fllep.y S 277N AF Lo p,)-
In addition, the L? estimates
(5.13) IVP;Fll2p,) S 2|1l L2 (p,)

IP;Fllr2pyy S 277 IVF 2P,
hold together with the dual estimate

1BV F2p,y S 2NIF||z2(p,)-
iv) Weak Bernstein inequality For any 2 < p < oo
2y,
1P FlLrpyy S (2(1 P4 DI F|z2p,),
[P<oFllLe(p,) S IFllL2(py),

together with the dual estimates
IPiFlzep,) S QU797+ DIF] L,
I1P<oFllL2(p,) S 1F N Lo (p,)-
We use the Littlewood-Paley projections P; to define Sobolev spaces H’(P,).
Definition 5.6. — Let b € R. Then, we define the Sobolev space H?(P,) as follows:

IF1 %o pyy = Z 22| P F||32(p,y + IP<0Fll72(p,)-
720

Let us state a lemma about the action of ¥ on H®(P,).
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Lemma 5.7. — Let 0 < b < 1. Let F a tensor on P, such that F € H(P,). Then,
VF € HY(P,).

Proof. — We have:

(5.14) IP;YE | z2(p,) S Y _IIPYPF|2(p,).
1>0

If I < j, we use the boundedness of P; on L?(P,) and the finite band property for P,
to obtain:

(5.15) 2OV P YPF| r2p,) S 2OV | VPF 12 (p,)
S 2j(b_l)zl||Pll['j||L2(Pu)
<270 B R pap,),

where we used in the last inequality the fact that [ < j and b < 1.
If I > j, we use the finite band property for P; to obtain:

(5.16) 2=V PV F||p2pyy S 2707V | BF|| 12 p,)
<27 B || 2y,

where we used in the last inequality the fact that [ > j and b > 0. Finally, (5.14),
(5.15) and (5.16) imply:

D POTVINRYEfap,y S D | D2 OO R 2,

320 720 \1>0
2lb 2
522 IPE(72p,)
1>0

S oy,
where we used the fact that min(b, 1 —b) > 0. This concludes the proof of the lemma.
O

We also recall the definition of the negative fractional powers of A2 = I — A on

any smooth tensorfield F' on P, used in [15].
1 * s
(5.17) A®F = 7/ =2 e U () Fdr,
I'(=a/2) Jo
where « is an arbitrary complex number with R(a) < 0 and T" denotes the Gamma
function. We extend the definition of fractional powers of A to the range of a with
R(«) > 0, on smooth tensorfields F', by defining first
AF =A"2.(I-AF

for 0 < R(a) < 2 and then, in general, for 0 < R(a) < 2n, with an arbitrary positive
integer n, according to the formula

A®F = A2 . (I — A)"F.
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With this definition, A® is symmetric and verifies the group property A®A? = A*+5,
We also have by standard complex interpolation the following inequality:

(5.18) [ARH =B F| o ) S A [APFl St

Using the operators A%, we complete (5.1)-(5.3) with:

(5.19)  [ATU(MN)F|i2p, +/0 TIVATU(T)FllLz(p,yd7" S AT FIZs),
(5.20) TIU(T)F L2 p,) +/0 TINYU () F L p,ydr" S IHAT F L2 (o),
for a € R,

(5.21) [ACV(1) 2, + / VAV ()2 sy < / /P A2V () F (7' ) dpudr’
and for0 <n << 1:

(5.22) VU F|ILap,) + /OT TN AU () F e, dr S IATTF | Fags),s
(5.23)  THNU)F|Iap,) + /OT T NYU )Pl p,dr S AT TF o),
(5.24) TNU(T)FI2p,) + /OT VUV Fllap, dr S IAT"Fllas),
(5.25) T |ATU(T)F | Zap,) + /OT T NU )Pl p,ydr S IAT T F (o s)-

We now investigate the boundedness of A= on LP(P,) spaces for 0 < o < 1. For
any tensor F' on P, and any a € R, integrating by parts and using the definition of A,
we get:

(5.26)
APl + VAPl = [ A"PA®Pdu, + [ PA°FYAFdp,

= / (1 — AA*FA“Fdu, = / A2A®FA®Fdpu,
P, P,

u

= AT F (|32 (p,y-
Taking o = —1 in (5.26), we obtain:
(5.27) IVAT Fllr2p,) S IFlL2(p.)-

Below, we deduce several estimates from (5.27). Taking the adjoint of (5.27), we
obtain for any vector field F:

(5.28) AT v F || 2 (p,) S IF |l L2(p,)-
Also, (3.9) and (5.27) imply for any tensor F' on P,:
(5.29) AT Fllopyy S I1Fllz2(p,) for all 2 < p < 4o0.
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Taking the adjoint of (5.29) yields:
(5.30) AT Fll2py) S IFllzep,) forall 1 < p < 2.
Interpolating between the identity and A~!, we deduce form (5.30):

2
(5.31) A~ F|lr2p,) S IIF|lLr(p,) for all 0 < a <1, T7a <p<L2

Finally, we conclude this section by recalling the sharp Bernstein inequality for
scalars obtained in [15]. It is derived under the additional assumption that the
Christoffel symbols I'4, of the coordinate system (3.7) on P, verify:

(5.32) > [ IPhelPdatda® <7,

with a constant ¢ > 0 independent of v and where U is a coordinate chart.

Remark 5.8. — The existence of a covering of P, by coordinate charts satisfying (3.7)
and (5.32) with a constant ¢ > 0 and the number of charts independent of u will be
established in Proposition 8.1.

Let 0 < <1, and let K, be defined by:
(5.33) Ky = AT K| 2 (p,)-
Then, we have the following sharp Bernstein inequality for any scalar function f

on P,, 0 <y < 1,any j >0, and an arbitrary 2 < p < oo (see [15]):

. j —Li 1
(5.34) 1P flleoepy S 27 (L+277 (K777 + K57 ) + DI fllc2 (e
2 1

(5.35) IPcoflliee(pyy S (L4 K797 + K77 ) fllezp,)-

Also, the Bochner identity (3.26) together with the properties of A implies the fol-
lowing inequality (see [15]):

(5.36) /P V2 < /P AP+ (KD 4 K) /P i

Thus, we need to bound K., in order to be able to use (5.34), (5.35), and (5.36).
For R(a)) < 0, we will use the fact that for any tensor F' on P,:

—+oo
(5.37) IA=F|22p,) S 1P<oFllZ2(p,) + Z 272 P F||22(p,)-

§=0
which follows from the methods in [15]. Therefore, we would like to control K
in LPH~*(P,) for some o < 1. This is the goal of the next section.

5.2. Control of K in L°H™2 (P,)

The goal of this section is to prove the following estimate.
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Proposition 5.9. — Let (X, g,k) chosen as in Section 2.1. Let u the scalar function
on X x §? constructed in Theorem 2.4, and let P,, N, 8 and K be associated to u as
in Section 2.2. We have:

(5.38) Z 27j||PjK||%3°L2(Pu) + ||P<OK||%3°L2(PU) Se.
j=0

Proof. — Recall from (4.9) that:
(5.39) K| z2sy S e
Also, (2.25) and (4.6) yield:
VNK =trfVntr — 0V N0 + kVyk — VNRNN,
which together with (4.35) implies:
VK =dif(B) + b,

where
B=Rn,b=tr6Vytr — VNl + R(Va, N).
Multiplying by a, this implies:

(5.40) Vun K = dif(B1) + b1,
where
(5.41) By =aRn, by =—Ya-B+atrVytr0 —adVyb + aR(Va, N).
Using (4.3), (4.10), (4.11) and (4.12), we obtain:
(5.42) [BillL2(s) <€
and
(5.43) ||b1||L[2_272]L§(Pu) S 0llzee, , 0P IV N0 L2(s)
+ (IBull2(s) | Bl 2(s) Vel pe, , Lo (e
Se.
In particular, (5.28), (5.30), (5.40), (5.42) and (5.43) yield:
(5.44) AT VNK |25y S e

We may assume the existence of /]5; with the same properties than P; such

—~2
that P; = P; (see [15]), and for simplicity we write P; = sz. Also, using the fact
that AA=! = I and that A commutes with P;, we obtain:

P,V nK = AP;(P;A"'V,nK),
which together with property (iii) of Theorem 5.5 yields:
1P VanK | 12(s) S AP (PAAT ' Van K) ||22(s) S 27 |PAAT ' Van K || 12(s)-
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Using property (ii) of Theorem 5.5, we get:
D 27N P Van K Tas) S D _IPAT Van K |F2gs) S 1A Van K| 72(s)-

Jj=0 Jj=0
Together with (5.44), we finally obtain:
(5.45) 22_2j||PjVaNK||2L2(S) Sé
Jj=0

To prove Proposition 5.9, we assume:
(5.46) 22 7|1 K”L"“ o2 T ||P<0K||L°° L) S < D%?
7>0

where D is a large enough constant. We will then try to improve (5.46). Note that
(5.36), (5.37) and (5.46) yield for any scalar function f on P,:

(5.47) IV*f132(p0) S IAF1F2(p,) + (De + D)V £ll72(p,)-
The term ||P<0K||Loo

[—2,2]

the sum > ;5,27 | P;K||2(s)- We will use the following variant of (3.15) where we
do not yet use Cauchy-Schwarz in v for the integral containing V y F":

[L2(Py) is easier to bound, so we concentrate on estimating

2
s SIFC2 ey + [ IVNF o IPlesce, du

(5.48) Flliz, e
+IVF | z2s) 1 F'l| £2(s)-
Using (5.48), the fact that P;K = 0 on v = —2, and properties (ii) and (iii) of
Theorem 5.5, we have:
(5.49)
22 jHPjK”LFjZJ]L%PU)
j=0

<327 ([ 1K 193 K g + 1P K5 1P K o)

j=>0
<2 ([ 1B R o 193 B K sgdn) + IPE R
3=>0 3=>0
—2
< 22 J (/ ||PjKI|L2(Pu)||VaNPjK||L2(Pu)du) —|—g2’
j=>0

where we used in the last inequality the estimate (4.9) for a and the estimate (5.39)
for K. We inject the estimate:

IVanPiK||r2(p,) S I1PjVanKllL2(p,) + I[Van, Pi1K| 2(p,)
n (5.49). We obtain:

D 2P rapy S D _UIPiK I ais) + 27| PiVan K 22(s)
j=0 3=>0
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+ 2P K i, o Vo Py, 1oe + 2
3>0
which together with the estimates (5.39) and (5.45) for K implies:
(5:50) Y 27IPKILx, | rapy S D27 IVan, PIKIL, | pacp,) €
j=>0 ji>0
Now, we will prove:

(5.51) V. 1K s, , ca(ryy S 25(c + De2).
Together with (5.50), this yields:
y _i
> 2 J||PjK||2LF32Y2]L2(Pu) S+ S 275 | (24 D%t S + D,
Jj=0 j>0

which is an improvement of (5.46). Thus we have:

22 J”P K||L°° L2 (Pu) + ||P<OK||L°°2 L2 (Pu) Sé?,
j>0

which concludes the proof of Proposition 5.9 provided (5.51) holds.
In the rest of the proof, we focus on obtaining (5.51). We have:

(5.52) [Van, Pj1K = / m;(T)V (7)dr,
where V(1) is satisfies:

(559 (0, — AV(r) = [Vax, AU, V(0) =
In view of (5.52), we have:
65 T B o S [ mi@IVEl

Now, using (5.18) and (5.26), we have:
(5.55)

oo oo o 2 L 1
/ mj(7)||V(T)||L2(Pu)dT§/O m; (T)ATSV ()| 22p, IVATEV (D)l 22 (p, AT
0

2 1
oo 1 3 oo 1 6
([ IV Olaodr) (TIPSOl e r)
0

X </Ooo mj(7')2d7'>(13

NPA <SUP||A_éV(T)||L2(Pu) + (/ ||VA_éV(T)||%2(Pu)dT> ) .
T 0

2’2]L2(Pu)d7--
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Integrating in u and using (5.54), we obtain:

0 B2 (PL)

+ /22 (/0w||y7AéV(T)||§2(Pu)dr> : du) .

1
_1 T _1 2
650 INHVOl e+ [ ([ 1PV eyt ) duse+eD.

(5.56) ”[vaN:Pj]K”L[lszQ]LZ(Pu) S 2% (SUPHA_éV(T)HL[l

Now, we will prove:
2
-2
Together with (5.56), this yields the wanted estimate (5.51).

In the rest of the proof, we focus on obtaining (5.57). In view of (5.53) and the
heat flow estimate (5.21), we have:

—1 4 —1
1A 3V(T)|Iiz(pu)+/0 IVA=V(T)IL2(p, d7’

S/OT /P AV () [Van, AU (T dpudr'.

Injecting the commutator Formula (2.23), integrating by parts, we obtain the following
estimate:

(558  JATHV(D)[2ap, + / IVA= V() 21,
< (|a¥(O) [ 12py + V(@8] 12(pyy + 0Bl 2(pn)
x / VU () oy | VA3V () 2y

where
2<p<3.
Now, we have in view of (5.26) and (5.18):

_2 _1 1 _2 2
IVAT3V () z2(pa) S IAT3VIT) 22 p ) IVAT3 V()22 (p,
which together with (5.58) implies:

(5.59) ||A‘%V(T)||22(Pu)+/0 IVA=3V ()L (p,yd7’

T 1y
5(IlaW(9)||2m<pu)+IIV(a)Hlliz<Pu)+IIaRIIQLz(pu>)/O OO ) 3o, T

The Gagliardo-Nirenberg inequality (3.9) implies:
T 1y
PR T
2(1—

T 1y % %)
§/0 Y CICOT PR b GO Pt
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; 2o
S ([ W0t )" ([ APV )

where we used in the last inequality the fact that:

1 2
=) —1+2>0
(3>_ +p>

in view of the restriction p < 3. Together with the Bochner inequality (5.47), we
obtain:

T 1y
| IV e

< (14 De + Dichy =2 ( J IR0 i + [ T’||4AU<T'>||22<Pu>dT'> .

Thus, we obtain in view of the heat flow estimates (5.1) and (5.3):

T 1y
/0 POy’ S I p.

Together with (5.59), this yields:

_1 T _1
A=V ()22, + / IPA V() o

_z2
S (L+ De+ DY) 7 (|aV(O) 22 (p,) + IV (@812 (p,) + laR|Z2(p, ) IK |72 (p,)-
Integrating in u, this yields:

2 T %
ISV e+ [ ([ 19TV @B ) au

< (1+ De 4 D)5 (Y (O) | 2(s) + IV (@8] z2(s)
+ ll[aR| L2(s) 1 K] L2(s)
S (1+ De + D4€4)%_%€2,
where we used in the last inequality the estimate (2.30) for @ and 6, the smallness

assumption (2.1) for R, and the estimate (5.39) for K. Now, since 2 < p < 3, we
obtain:

2 T %
||A_%V(T)||L[1 ]LZ(P )‘F/ (/ ||WA_%V(T’)||2LQ(P )dT'> du§g2—|—D%5%,
—2,2 u 9 0 u
which implies (5.57). This concludes the proof of the proposition. O
Remark 5.10. — The following consequence of Proposition 5.9 will be useful in the
next two sections. Proposition 5.9 and (5.37) with the choice @ = 1/2 imply:
_1

(5.60) 1K1 || Lo (—2,2) = 1A 2KHLFSM]LZ(P,L) Se,
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where K /5 has been defined in (5.33). Together with (5.34) and (5.35) with the choice
~v = 1/2, we obtain for any scalar function f on P, and any j > 0:

(5.61) 1P fllzepuy S 22\ fllp2cp,)s

(5.62) |P<ofllzeepyy S IIfllz2(py)-

Also, (5.60) and (5.36) with the choice v = 1/2 imply:

(5.63) [ovties [ iareee [
P, P, Py

Using the Bochner inequality (5.63), we may prove the following lemma.

Lemma 5.11. — For any 1-form F on P,, for any 1 < p < 2 and for all j > 0, we
have:

. 2,
(5.64) | Py difr(F)[ L2 p,) S 277 (|1 F Lo (p,)-
Proof. — By duality, it suffices to prove for any scalar function f on P,, for
any 2 < p < 400 and for all j > 0 the following inequality:
1y,
(5.65) IVP; fllepn < 22079 fll2(p,)-

Now, using the Gagliardo-Nirenberg inequality (3.9), the Bochner inequality for scalar
functions (5.63), and the property iii) of Theorem 5.5 for Littlewood-Paley projections,
we have:

op 'l :
IVE; fllzoceny S IV P Lyl IVP
_2 H
S (AP fllz2cpyy + VP fll2p)' IV P Fl 2 p,
11

< 2% ”)||f||L2(Pu),

which is (5.65). This concludes the proof of Lemma 5.11. O
Let us state another consequence of the Bochner inequality (5.63).

Lemma 5.12. — Let 0 < b < 2. Let f a scalar on P, such that f € H°(P,). Then,
Yfe€H " (Py).

Proof. — We have:
(5.66) 1PV fllzp) S D IP VPl L2(p.)-

1>0
If | < j, we use the finite band property of P; and P, and the Bochner inequality
(5.63) for scalars to obtain:

(5.67) 2O VB VP e,y £ 2PNV PS L2

S 207202 Py f L2py

S 27PN f | oy,
where we used in the last inequality the fact that [ < j and b < 2.
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If I > j, we use the finite band property for P; to obtain:
(5.68) 2j(b_1)”Pjy7Plf||L2(Pu) S 2 Pifll (e,
S 277 P £ oy ),

where we used in the last inequality the fact that I > j and b > 0. Finally, (5.66),
(5.67) and (5.68) imply:
2

PIER L2 AESED DY DIC e LA EIEN

>0 320 \ 120
2lb 2
522 1P fllz2(p,)
1>0

S 1 e,

where we used the fact that min(b, 2 —b) > 0. This concludes the proof of the lemma.
O

Finally, the bound (5.60) allows us to prove the following Hodge inequality.

Lemma 5.13. — Let F a symmetric 2-tensor such that trF' = 0. Then:

(5.69) IVEN 2P,y S IAWF || L2(p,) + el FllL2(p,)-
Proof. — Recall the identity (3.48) for Hodge systems:

(5.70) / (IVF[? + 2K|F[2) = z/P Ead
We have: ) ’

2 < 2
/ U] S Ul o oy PPl o,
SellFRlyy

where we used the bound (5.60) in the last inequality. Together with (5.70), this
implies:
1 1
(5.71) IVEl2py S IARF| L2 (e, +€§|||F|2||;%(P .
Next, we estimate the last term in the right-hand side of (5.71). We have:

Pi(|F[*) = 27 ¥ PA(F[?) = 27X Pydif(V(|F[*)).
Together with (5.64), we obtain:
i Jo_9indi
24| By (1F?) e,y < 2527224 | Y g
S 27| Flles ey IVE |2,y

—i 1 8
S0 F NS o IV o
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where we used in the last inequality the Gagliardo-Nirenberg estimate (3.9). This
yields:

HEPl 5 o S W IV E e
Together with (5.71), we obtain (5.69). This concludes the proof of the lemma. O

5.3. Estimates for the commutator [V, , P;]

In this section, we state several estimates for the commutator [V,x, P;]. To simplify
the exposition, the proof are postponed to Appendix B. The reason we prefer to
consider [V,n, P;] instead of [V,n, P;] is because the former does not contain any N
derivative in view of the commutator estimates (2.22) and (2.23). We start with a
first commutator estimate.

Proposition 5.14. — Let f a scalar function on S. Then, for any j > 0 and for
any § > 0, we have the following commutator estimate:

(5.72) IVan, Pilfllzzcs) S €lA2* Fllzzcs) +€llA° Flloe, , 12pa)-
We state a second commutator estimate.

Proposition 5.15. — Let F' a tensor on S. Then, for any j > 0 and for any 6 > 0, we
have the following commutator estimate:

(5.73)  Van BiIFls, , 2p) S 2770 (I¥F |l 2gs) + IF e, rcm) -

Proposition 5.15 yields the following corollary.

Corollary 5.16. — For any P,-tangent tensor F' on S such that F =0 on u = —2,
and for all j > 0, we have:

(5.74) 1PN e 3,y S I N2 cs)-
We state a third commutator estimate.

Proposition 5.17. — Let f a scalar function on S. Then, for any j > 0 and for
any 0 < 6 < a < 1, we have the following commutator estimate:

(5.75) ”[VaN:Pj]fHL[{ 2L (P S < 2% AT f|l p2(s).-

2,

We state a fourth commutator estimate.

Proposition 5.18. — Let f a scalar function on S. Then, for any j > 0 and for
any § > 0, we have the following commutator estimate:

(5.76) IIVan, Pilfllzzcs) S 27V elAf as) + 1V lleee, , 22 cpa)-
Proposition 5.18 yields the following corollary.

Corollary 5.19. — Let a tensor F on S such that F =0 on u = —2, Y°F € L*(S)
and VnF € L2HY(P,) for b> 0. Then, F € L>(S).
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We state a fifth commutator estimate.

Proposition 5.20. — Let f a scalar function on S. Then, for any j > 0 and for
any § > 0, we have the following commutator estimate:

(5.77) IVan, Pilfllzzcs) S PellA™C " fllie, | 12p0)-

5.4. Product estimates

In this section, we derive several product estimates. To simplify the exposition, the
proof are postponed to Appendix C. Note that all product estimates in this section
are sharp except the first one.

Proposition 5.21. — Let 0 < b < L. For any tensors F, G and H on P, such

2
that F - G - H is a scalar, we have:

(5.78) £ - G - Hllaopyy S NE N2 lGIm e 1 H 3 -

Proposition 5.22. — For any P,-tangent tensor G and H on S such that G - H is a
scalar, we have:

(5.79) IG - Hl2(p,) S IIG IH]|

HY (Pu) H (Pu)
Proposition 5.23. — For any scalars f and h on P,, we have:
(5.80) 170l -3 oy S (Wfllzery + 19 laceu) Il -y -

Proposition 5.24. — For any P,-tangent tensor G and H on S such that G - H is a
scalar, and for all j > 0, we have:

(5.81) D 27|P{(G - H)F sy S 1G5y 1 H 1725
j=0

Lemma 5.25. — Let F and G two tensors on P, such that the contraction F - G is a
scalar. Then, we have:

(5.82) Sg}(;?*jllpj(F @llezpy S IFI IG
JZ

a3 Py g3 (p,)

Lemma 5.26. — Let —1 < b < 1. Let f a scalar function on P,, and G a I1-form
on P,. Then, we have:

(5.83) AR (f G me-1(p0) S N lep) (1G] Lo py) + VG L2(p))-

Lemma 5.27. — Let 1 < b < 2. Let f a scalar function on S, and G a 1-form on S.
Then, we have:
(5.84)

”di/(/(fG)HLﬁH”—l(Pu) S (||f||L3Hb(Pu) + ||f||Lu°ch—1(P JUIG Lo sy + ||Y7G||L[ 2oL L2(Py))-
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Lemma 5.28. — Let 0 < b < 1. Let F a tensor on P, and h a scalar function on P,.
Then, we have:

(5.85) IERl gocpyy S IF Lo pyy + IVl L2 p )P a0 Py ) -

5.5. Estimates for parabolic equations on S

Consider the following parabolic equation:
(5.86) (VN —a 'A)f=h on S,

where f and h are scalar functions on S. In Proposition 3.16 and Proposition 3.17, we
obtained estimates for such equations. In this section, we derive additional estimates
involving the Littlewood Paley projections of Section 5.1. We start with the following
commutation lemma.

Lemma 5.29. — Let f satisfying Equation (5.86). Then, P;f satisfies the following
parabolic equation:

(5.87) (VN —a *A)(P;f) = a ' P;(ah) + a [Vun, Pjlf on S.

Proof. — We multiply Equation (5.86) with a. We obtain:
(Var — A)f = ah.

Next, we commute with P;, using the fact that P; commutes with A. We obtain:
(Van — A)(P;f) = Pj(ah) + [Van, Pl f.

Finally, multiplying with =1, we get (5.87). This concludes the proof of Lemma 5.29.
O

Proposition 5.30. — Let f be a scalar function on S satisfying (5.86) and such

that f =0 on u = —2. Assume that there exists two tensors G and H on S on S
on S tangent to P, such that:
(5.88) h=G-H with |H|| 125y S € and |G| gr(s) S €.
Then, we have:
(5.89) ”f”L[sz)z]L‘l(Pu) Se
and:
(5.90) > (23j||ij||%2(S) + 2j||ij||%‘[33272]L2(Pu) + 2_j||Pj(VNf)||2L2(S)> Sé?
Jj=0
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Proof. — We multiply (5.86) by f3 and integrate on —2 < u’ < u where u < 2. Using
integration by parts together with (3.5) and (3.6), we obtain:

(5.91)
1 _
ZHf(uv Miaeny + 1a™ 2 FV 726

1 1 u u
ZHf(_Z ')”%4(1’72) + 5/ /P a”ttr 6f4dﬂu’du/ + / 2/ hf3d'u'u’dul

-2

N

ltr0llcce, , oo 1112,

16
(2.2 % (Pu)

3

- Hh”Lﬁzz]L%(Pu)Hf”L?—ZZ]Lm(P“)’

where we used in the last inequality the fact that f =0 on u = —2. In view of the
assumptions (5.88) on h, we have h = G - H, and thus:

S IGllLes

[—2,2]

S G ar )1 H | 22 (s)

<e,

~

||h||L[27212]Lg(PU) L)l H L2 (s)

where we used Proposition 3.7, and the estimates for G and H provided by (5.88).
Together with (5.91), and the estimate (2.30) for tr 6, we obtain:

1f (s MLapy Se+elllflloe

[-2,2]

L4(P,) T ||f||Lf

_212]L12(Pu))'

Taking the supremum in u on the left-hand side, we get:
(5.92) ||f||L‘[°j2’2]L4(Pu) Se+ EHfHL‘[Lzz]LlQ(Pu)-

Next, we derive an estimate for P;f. In view of Lemma 5.29 and since f satisfies
(5.86), P; f satisfies the following parabolic equation:

(5.93) (VN —a *A)(Pjf) = a ' Pj(ah) + a ' [Vun, Pj]f on S.
Together with the estimate (3.31), we obtain:
1P fllcee, 2y T IV (B Pllces, 22 + IVN (P )l L2cs) + V(P )l z2(s)
< 0 Pyah) (s, + la~ Vo, P 1as) + 1P £(=2 e s
VP )2, )llL2cp_s)
S lla™ ' Pi(ah)|l2(s) + lla ' [Van, Bl fll22(s)s

where we used in the last inequality the fact that Py = 0 in v = —2. Using the finite
band property for P; and the estimate (2.30) for a, we obtain:

(5.94) 27| P;fl e

[—2,2]

2Py T IVN(PiHllL2cs) + 27| P; fll Lacs)
SPi(ah)llzzcsy + I [Van, PilfllLzcs)-
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Next, we estimate the two terms in the right-hand side in (5.94) starting with the
first one. Since ah = G - (aH), and in view of Proposition 5.24, we have:

(5.95) Z 277||Pj(ah)|1 725y S G F sy llaH 1725y S €7,
J=0
where we used in the last inequality the assumption (5.88) for G and H, and the

estimate (2.30) for a. For the second term in the right-hand side in (5.94), we used
the commutator estimate (5.72), which yields for any § > 0:

1
IVans Pl fllzacsy S ellA27 fllLacs) + EHA&fHL‘[’jQ’z]L?(Pu)-
Together with (5.94) and (5.95), we obtain:

(596) 3 (1P ey + XIS e, iamy + 2 NPT D) s

>0
1
SEA+ A fl|T2(s) + ||A5f||%[°32,2]L2(Pu))~

Now, since § > 0, we have:

1
(5.97) AR f|Fas) + ||A5f||%i’3212]L2(Pu)
2
S @R fllas) + 2°0Piflln, , r2(Pu)
>0
S 2P f ey + Y 2P f||mety L2(Pa)
j>0 Jj=0
< (MNP sy + 2 1P e, 1aim)
>0

where we chose in the last estimate 0 < § < . Finally, (5.96) and (5.97) imply:
(5.98) (23j||ij||%2(S) + 2j||ij||%szy2]L2(Pu) + 2_j||Pj(VNf)||2Lz(S)> Sen
§>0
Next, we estimate the LE‘ 9 2]H !(p) norm of f. Using the Bessel inequality for P;,
we have:

I£1I74

_ 2
i = 10|,

N

ZQ%HPJ'f”%?(S) s?

720

124\

D2NPSILs,  1ae

Jj=0
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Thus, in view of (5.98), we have:
6.99) 171 i < | 21 | [ 218, e | <<
j=0 Jj=20

In view of (5.92), we need to estimate ||f||Lf’_2 L2 (P Now, note that applying the
Sobolev embedding (3.8) with f? for some integer g > 2 yields:

£ 1720 (p,y = 1F N z2cpay S NV Dz en) + 1Mz e
S ANzt IV F 2Py + 11 0py)-

Using the previous inequality successively with ¢ = 3,4,5,6 implies the following
variant of the Gagliardo-Nirenberg inequality (3.9):

1 2
1 lzzeny S 10 o IV Sy + 1 o).

In particular, we obtain:

2 2
(5'100) ||f||L6 ', 2]L12(P ) ~ ”f”Loo L4(pu)||y7f||zfl LZ(p 53 ”f”LOO L4(Pu)’
where we used (5.99) in the last 1nequality. Finally, (5.100) and (5.92) yleld:

”f”L‘[’fz’Q]L‘l(Pu) Se

which together with (5.98) implies (5.89) and (5.90). This concludes the proof of the
proposition. O

We have the following extension of Proposition 3.16.

Proposition 5.31. — Let f be a scalar function on S such that P;f satisfies:

(5.101) (VN —a *A)(Pjf)=h on S.
Assume also that f =0 on u = —2, and that we have a decomposition for h:
h = hy + hs.

Then, we have:

(5.102) 2P flle, , 12pn) + 27 1P fllzacs) S lhallzacs) + 27 e e

(2,2 L2 (Pu)”

Proof. — We multiply (5.101) by AP;f and integrate on —2 < v’ < u where u < 2.
We proceed as in (3.34) (3.35) (3.36) (3.37), except that we estimate the integral in

of (3.32) involving h as:
/ / hAP; fadp, du’ / / ho AP} fadp, du’
[L2(P, WA NLe, 2

S lhallzzes ||4AP f||L2(s + [|h2l L2
L2 (P IV (P; )l oo

hiAP; fadp, du'| +

[—2,2]

< a2 (o) |1 AP; £l 2 sy + 2 1hal[z: L2(P.)>

2 [=2,2]
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where we used the estimate (2.30) for a and the finite band property for P;. We obtain
the analog of (3.37):

VP f[|7 L2(P,) T ||45ij||%2(5)

[—2,2]
2 .
Se(IVP; fllzacsy + IV (Pif)lZacs) + 1hillZes) + 22jllhalli[l_2 L2 (P’

Finally, (5.103) together with the Bochner inequality (5.63) and the finite band prop-
erty for P; yields (5.102). This concludes the proof of the proposition. O

(5.103)

Proposition 5.32. — Let f be a scalar function on S satisfying (5.86) and such
that f =0 on u = —2. Assume that h satisfies:
(5.104)
h = hi + hy with 5_1;18||Pj(ah1)||L2(S) < 2%¢ and 31>113||Pj(ah2)||L[1_2 JLA(P) S < e2d.
j> J> ’

Then, we have:

(5105) sup||ij||L2(S) + sup 2_j||ij||Li>32 2]L2(Pu) 5 E.
j=0 j=0 ’

Proof. — Recall from (5.93) that P; f satisfies the following parabolic equation:
(Vn —a Q) (P;f) = a"'Pj(ah) + ™ [Van, Pj]f on S.
Together with the estimate (5.102), we obtain:
27| P, Fllee, r2 ) + 2%7||P; f | L2 (s)
S lla™ 1Pj(ah1)”L2(S) + 2j”a_lpj(ahQ)”L[l_Q’z]L?(Pu) + 2j||a_1[vaN7Pj]f||L[1_2’2]L2(Pu)
S e2¥ +27|[Von, P, ]f”L

where we used the estimate (2.30) for a and the assumption (5.104) on h. This yields:

22] 2(Py)»

(5106) 277\ fllzee, , rocray + IPifllzacs) S € + 27 [Van, Pilfllz , , 22(p0)-
Next, we use the commutator estimate (5.75). We have:
(5.107) IVan, Pilflizs , , 22py) S 27| A0 F| 12 (s),
for any 0 < § < a < 1. Now, for any ¢ > 0, we have:
(5.108) 1A= Fllz2(s) £ D_IAT PiFllzas,)
j=>0
S Z 277°|| P F|L2(s)
Jj=0
< sup||P; fllLz(s)-
Jj=0
Finally, (5.106), (5.107) and (5.108) imply for any j > O:
2P fllnee, , r2pn) + 1P fllzaes) Se+ 5S1>118||ij||L2(S),
i
which yields (5.105). This concludes the proof of the proposition. O

ASTERISQUE 443



5.5. ESTIMATES FOR PARABOLIC EQUATIONS ON S 59

Proposition 5.33. — Let f be a scalar function on S satisfying (5.86) and such
that f =0 on u = —2. Assume that h satisfies:

(5.109) S 279 Py(ah) ags) S €
j=>0

Then, we have:

(5:110) 3 (PP I3ecs) + 27 1P e, cogpny + 2V IBA(TN DIEecs)) S
3=0

Proof. — Recall the estimate (5.94):

L2y + IVN(PiHll2csy + 22 [1P fllnz(s)
S IPj(ah)|z2(sy + [[Van, PilfllL2(s)

20| Pi fllne

[—2,2]

This yields:
(5.111) > (2j||ij||2L2(S) + 2_j”ij||%‘[>j272]L2(Pu) + 2_3j||PJ‘(VNf)||2L2(S)>
§>0
S D27V (ah)lIFags) + D 27V [ Vans PilflIZas)
j=>0 3>0
S+ 27Y[Van, Pl F2s)s
Jj=20
where we used the assumption (5.109) in the last inequality.
Next, we use the commutator estimate (5.77), which yields for any § > 0:

I[Van, Pl fllz2(sy S 27e| A0 5)f||L°°22]L (Pu)-
Together with (5.111), we obtain:

(G5.112) 3 (PIPfIRags) + 2 NP e, oo + 2 NPTN D cs))
j=0

N DYP A e e D fliee, 2 cpn
>0
<e?(1+ ||A7(176)f||%[°j2’2]L2(Pu))'

Now, since § > 0, we have:

2
(5.113) 1A f e oo S | 27O ONP e, rcr)
’ >0
< ZQ (2-39) j”P f| LlnftyL2(p )
7>0
< 2N, ooy
7>0
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where we chose in the last estimate 0 < § < %. Finally, (5.112) and (5.113) imply
(5.110). This concludes the proof of the proposition. O

Proposition 5.34. — Let f be a scalar function on S satisfying (5.86) and such
that f =0 on u = —2. Assume that h satisfies:

(5.114) > 27| Pi(ah) 325y S €
j=0
Then, we have:

(5.115) S (2P 2as) + PP e, , 1oeny + 2 IR (TN DI Ras)) S €

320
Proof. — The proof follows from (5.93), (5.94), (5.95), (5.96), (5.97), (5.98). O

Proposition 5.35. — Let 0 < b < 1. Let f be a scalar function on S satisfying (5.86)
and such that f =0 on u = —2. Assume that h satisfies:

(5.116) Z22jb||Pj(ah)||%2(S) Se
j=0

Then, we have:

(5.117)

S (2B I ags) + 20 B e ooy + 2P IR (TN DI s)) S €

320

Proof. — Recall the estimate (5.94):

2j||ij||L[°32Y2]L2(Pu) + VN (P )llrzcs) + 2271 Pj fllpzcs)
SPi(ah)lzzcsy + I [Van, PilfllL2(s)-
This yields:

> (2(4+2b)j”ij”%2(S) + 2(2+2b)j||ij||2L‘[>f2,2]L2(Pu) + 22bj||Pj(VNf)||%2(S))

3>0
S D02 (ah)lFas) + D 2 (Van, Pyl f s
>0 720
(5118) e+ 2V IIVan, Pl f[ecs),
320

where we used the assumption (5.116) in the last inequality.
Next, we use the commutator estimate (5.76), which yields for any ¢ > 0:

IIVan, Pilfllz2s) S 2_(1_6)j5(||4Af”L2(S) F UV e, . 12p.))-

[—2,2]
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Together with (5.118), we obtain:

> (2(4+Zb)j||ij||%2(S) + 2(2+2b)j”ij”%‘[’jsz?(Pu) + 22bj”Pj(VNf)”%2(S))

320

—2j(1—b—35
<2y ;}2 2j(1-b—0) 52(|l4ﬁf||2L?(S)+”Wf”%f’im]w(&))
V-

(5:119) S A+ IAflIZ2(s) + 1V FITee, , r2m):

where we chose in the last inequality 0 < § < 1 — b which is possible since b < 1. Now,
the finite band property for P; yields:

2
VA 25y + IV IEe, L roeny S | 2o@¥ NP raes) + 2 Piflage, y12(ey)
720
S (24 B sy + 2SR, e
Jj=>0

where we used in the last inequality the fact that b > 0. Together with (5.119), this
implies (5.117). This concludes the proof of the proposition. O
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CHAPTER 6

ESTIMATES FOR V ya AND V%a (PROOF OF THEOREM 2.5)

This chapter is dedicated to the proof of Theorem 2.5. We recall the decomposition
(4.37) (4.38) (4.39):

(6.1) (VN —a *A)Vya = dif(H) + h,
where the tensor H is given by
(6.2) H=-Vykn—-—RnN

and where the scalar h is given schematically by

h=—a""tr0Aa — 2a'0Y%a + 2a2Va¥YVya — 2Ry.a ' Va — Vtrfa~'Va
+20la'Va|? + 20V N0 + a~'Va Vky. + VOk + 0VE + Ry k
+0a'Yaky +2kV Nk + VNk(Va,N) + k(VVNa,N)
+ Vyak(Va,N) + 0k + k(Va,Va) + 0R.

We introduce the scalar functions on S a1 and as solutions of:

(6.3)

(6.4) (Vn —a"'A)a; = honS, a1(—2,.) =0

and:

(6.5) (Vy —a 'A)ay = dif(H)onS, az(—2,.) =0,

which yields, in view of (6.1), the fact that Vya(—2,.) = 0, the decomposition:
(6.6) Vya = a1+ as.

Remark 6.1. — In the right-hand side of (6.1), the regularity of h is better than the
regularity of di#(H) (see (6.12)). On the other hand, we can not make sense of Vyh,
while the contracted Bianchi identities on ¥ allow us to make sense of V nydifr(H)
(see in particular (6.33)). Thus, the idea behind the decomposition (6.6) is to take
advantage of the regularity of h for a;, and to use the structure of di#(H) to obtain
a useful equation for V yas (see (6.39)). We carry out this strategy in the rest of the
chapter.

The following two propositions state the regularity of a; and as.
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Proposition 6.2. — Let a1 be the solution of (6.4), where h is defined in (6.3). Then,
we have:

(6.7) larllze, , opn) S €

and:

6.8 > (23j||Pja1||2L2(S) + 2j||Pja1”%Fﬁ212]L2(Pu) + 27j||Pj(VNa1)||%2(5)) <e.
>0

Proposition 6.3. — Let ay be the solution of (6.5), where H is defined in (6.2). Then,
we have:

(6.9) lazllze, , Lacp) S &
(6.10) > 22j||Pja2||Lfi>32,2]L2(Pu) Se
>0

and
(6.11) S‘ilg“Pj(VNaQ)HLZ(S) Se
Jj=zZ

The proof of Proposition 6.2 is postponed to Section 6.1, while the proof of Propo-
sition 6.3 is postponed to Section 6.2. In view of the decomposition (6.6) for Vya,
the estimates (6.7) (6.8) for a;, and the estimates (6.9) (6.10) (6.11) for az, we im-
mediately obtain the estimate (2.31) for Vya and V% a. This concludes the proof of
Theorem 2.5.

6.1. Proof of Proposition 6.2

In view of the Definition (6.3), the scalar function h may be written as a linear

combination of terms of the form h = F - G, where F is schematically given by:
F=Y%a+YVyna+R+V0+|a~'Va|?+ Vk+a'Vak+ V(a)k
and G is schematically given by:
G=0+a"'Va +k.

In view of the estimate (2.30) for a and ¢, and in view of the assumption (2.1) for R
and k, we deduce:
(6.12) h=F -G with |[F|12s) S € and ||G||g1(s) S €-
Now, in view of the Equation (6.4) satisfied by a1, and the decomposition (6.12) for h,

the estimates (6.7) and (6.8) are a consequence of the estimates (5.89) and (5.90) of
Proposition 5.30. This concludes the proof of Proposition 6.2.
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6.2. Proof of Proposition 6.3
In view of the decomposition (6.6) of V ya, we have:
as =Vya—aq,

which together with the estimate (2.30) for a and the estimates (6.7) and (6.8) for a;
implies:

(6.13) Vazl|z2(s) + ||a2||Li’32,2]L2(Pu) Se.

Next, we derive en equation for V,yas. We use the following commutation lemma.

Lemma 6.4. — Let f satisfying the following parabolic equation:

(Van — A)f = ah.
Then, VN[ satisfies the following parabolic equation:
(6.14) (Vy —a 'A)(Van f) = Vn(ah) + a ! [Van, Alf on S.

Proof. — We multiply equation the equation satisfied by f with a. We obtain:
(VaN - A)f = ah.
Next, we commute with V, 5. We obtain:
(Van = A)(Van f) = Van(ah) + [Van, Alf.

Finally, multiplying with a=!, we get (6.14). This concludes the proof of Lemma 5.29.
O

In view of the Equation (6.5) satisfied by as, and in view of the commutation
Lemma 6.4, V,yas satisfies:

(6.15) (Vy —a 'A)(Vanas) = Vi (adif(H)) + o™ [Van, Alas.

Next, we evaluate both terms in the right-hand side of (6.15) starting with the second
one. Using the commutation Formula (2.23), we have:

(6.16) a ' [Van, Alag = hy + ha,
where h; and hg are given schematically by:

(6.17) hy = dif(0 - Vaz)
and:

(6.18) hy = (R + Y0 + 8Ya)Ya,.

We first estimate h;. We have:

ahy = dif(ab - Vaz) — V(a) - 0Vas.
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In view of the estimate (5.64) and the sharp Bernstein inequality (5.61), we obtain:

i .
(6.19) IPj(ahy) p2sy S 27 [|ad - Yazll . iyt 27(|Y(a) - 0V azl|L2(s)
—2,2] u

33
S 22 llallee )0l Lee, | Py IV a2l L2(s)
+27(|V(a)| L

o, L@ 0llLee, | a1V azllL2(s)
S2e,
where we used in the last inequality the estimate (2.30) for # and a, and the estimate
(6.13) for Yas. Next, we estimate hy. In view of the estimate (2.30) for § and a, the
assumption (2.1) for R, and the estimate (6.13) for Yaz, we have:
h2llzi(s) S (IRll2csy + V8] L2(s) + 18]l Lacs) [ VallLacs)) [ Vazll2(s) S €2,
which together with the dual of the sharp Bernstein inequality (5.61) yields:

(6.20) 1P (aho)ll;

—2,2

L2(P) S Y lallpe(s)llhllLis) S 2e,

where we used in the last inequality the estimate (2.30) for a.
Next, we estimate the first term in the right-hand side of (6.15). We have:

aVy(adif(H)) = Van (adif(H))
= Von(a)dif(H) + a[Ven, div](H) + adif(Von H),
which together with the commutator Formula (2.21) yields:

(6.21) aVy(adif(H)) = adif(Von H) + hs + ha,
where hz and hy are given by:

(6.22) hs = dif(Vy(a)H — abH)

and

(6.23) hy = =(V(Van(a)) + V(ab) + aRn. + af - Y(a)) - H.
Now, in view of the definition of H (6.2), we have:

(6.24) [Hz2(s) < IVEllL2(s) + |1 RllL2(s) S &

where we used in the last inequality the assumption (2.1) on R and k. We first
estimate h3. In view of the estimate (5.64), we obtain:

(6.25)

35
1P (ha) | p2(s) S 22 (IIVN(a)HIIL?

oH

_2,2]L%<Pu>)

3J
S2z ||a||L°°(S)(||vN(a)”L°° L4(P,) T HOHLE’EZQ]L“(PH))||H||L2(S)

[—2,2]
N
S2%e(l+ asllne, , race,),

where we used in the last inequality the estimate (2.30) for 6 and a, the estimate
(6.24) for H, the decomposition Vya = a1 + ag, and the estimate (6.7) for a;. Next,
we estimate hy. In view of the estimate (2.30) for 6 and a, the assumption (2.1) for R,
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and the estimate (6.24) for H, we have:
lhallzrcsy S (IVVvallzz(s) + IV (ad)l z2(s) + laR| L2 sy + ||§||L4(S)||Wa”L4(S))
X [[HllL2(s)
<e?,
which together with the dual of the sharp Bernstein inequality (5.61) yields:
(6.26) 173 ()l

—2,2]

L2(P) S 27 || byl 1 sy S 2e.

Next, we estimate the first term in the right-hand side of (6.21), i.e., adi¥(V,n H).
Recall the definition of H (6.2):
H=-Vykny—Rn.

We take the V,n derivative of each of the two terms in the definition of H starting
with the first one. Using the constraint Equations (1.2) and the fact that we have a
maximal foliation yields:

(6.27) Vnkna = —VBkpa.
Now, we have:
VPBkpa = difka + tr0kya + 0apknp.
Together with (6.27), we obtain, schematically:
(6.28) Vnky, = —difvk — 0 - kn..
Taking the V, derivative, we obtain:
Vaon (Vnkn) = —dif(Venk) — [Van, diflk — Von(8) - kn. — 0 - Vonkn. — 0 - kv, o N-

Using the commutation Formula (2.21) and the structure Equation (4.4), we obtain,
schematically:

(6.29) Von (Vnky) = —dif(Vank) + adVE + a(R + VO + 0¥ (a))k.
Next, we take the V,n derivative of the second term in the definition of H. The
twice-contracted Bianchi identity on X yields:
ViR = ~VPRan+ [ VAR,
which together with the constraint Equations (1.2) implies:
(6.30) VnRya=—-VBR g+ k- Vk.

Now, we have:
VPRup =YV Rap +tr0Ry4 +0a5Rnp.
Together with (6.30), we obtain schematically:

(6.31) VNRy. = —di#¥R—0-R+ k- Vk.
This yields:
(6.32) Vaon(Ry.) = —dif(aR) + V(a) - R—ab - R+ ak - Vk.
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Finally, in view of the Definition (6.2) of H, (6.29) and (6.32), we obtain schematically:
VonH = dif(Vonk +aR) 4+ a(0 + k)VE + a(R+ VO + 0V (a))k + (V(a) + ab) - R.
This yields:
(6.33) VonH = dif(Hy) + Ho,
where H; is a 2-tensor given by:
H, =V,nk+aR
and Hs is a 1-form given by:
Hy =a(0+ k)VE+a(R+ VO +0Y(a))k + (V(a) + ab) - R.
In particular, we have:
(6.34) [HillL2(s) S llallL=(s)(IVElL2(s) + [ BllL2(s)) S €,

where we used in the last inequality the assumption (2.1) on k and R. Also, we have:

||H2||L[2_2 S (P Sllallpoesy(NOlles.  pacpyy + l1kllLee. | Lacpy)

[—2,2] [—2,2]
+la™ VWallpe, , 24 IVEIL2(s) + [ Rllz2s) + [1VOlz2(s))
(6.35) <e,

where we used in the last inequality the assumption (2.1) on k and R and the estimate
(2.30) for a and 6. In view of (6.33), we obtain schematically:

adif (Vo H) = difdif(aHy) + dik(V(a) - Hy) + Y*(a) - Hy + dif(aHz) + V(a) - Hy
(6.36) = hg + hg,
where the scalar functions on S hs and hg are given by:
hs = digdif(aHy) + dif(V(a) - Hy) + dif(aHs2) + V(a) - Ho
and:
he = V(a) - H;.
Using the finite band property for P;, the sharp Bernstein inequality (5.61) and the
estimate (5.64), we obtain:

T, 35
1P;(hs)lLa(sy < 2% | AT dikdifll 2 o,y laH  L2(s) + 27 V(@) - Hillz2(s)

35 .
+ 27 ||aH2||L[2 . Q]L%(Pu) +27||V(a) - H2||L[272’2]L1(pu)

2 A —1 35
S 2V A Nlgzapay lall oo s) | Hill L2 gs) + 272 IV (@)lzee, , e 1H1 ] 22(s)

ﬂ .
+272 [la = (s) ||Hz||L[2 +2’[[V(a)] Lee

B (P Fa b 1 H2ll

4 3
2 L3 (Pu)

which together with the Bochner inequality for scalars (5.63), the estimate (2.30)
for a, and the estimates (6.34) and (6.35) for H; and Hs implies:

(6.37) 1P;(hs)llz2(s) < 2%e.
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Next, we estimate hg. In view of the estimate (2.30) for a and the estimate (6.34)
for Hy, we have:
2
lhelli(sy S 1V allrz(s)lHillzz(s) < e
Together with the sharp Bernstein inequality (5.61), we obtain:

(6.38) ”Pj(hG)”L[l_sz?(Pu) < 2e.
Finally, in view of (6.15), (6.16), (6.21) and (6.36), we have:
(6.39) (VN — ailﬁ)(vaNag) = hy + hs,

where h7 and hg are defined by:

hy =hi +a ths +a ths
and:

hs = ho +a Yhy + a” he.
In view of (6.19), (6.25) and (6.37), we have:

(6.40) |1 Pj(ahz)|lL2(s) S 2%7e(1 + ||a2”LE’jzy2]L4(Pu))'
Also, in view of (6.20), (6.26) and (6.38), we have:
(641) ||P](ah8)||L[1 ]L2(Pu) 5 2jE.

—2,2

Now, in view of (6.39), (6.40) and (6.41), (5.105) implies:
(6.42) SliIO>||Pj(VaNa2)||L2(S) Se(l+ [lazllpe, | Lap,))-
3>

[=2,2]

Next, we state three lemma.

Lemma 6.5. — For any scalar function f on S, and for any 0 < b < 1, we have:
(6.43) sup 27°|| P (a™! f) L2(s) < sup 27°|| P f | 2 s)-

Jj=0 j=0
Lemma 6.6. — For any scalar function f on S such that f =0 on u = —2, we have:
(6.44)

Z22j||ij||%,‘[’j2 2 L2(Pu) SV Ellzzs) + ”f”L‘[’jsz?(Pu) + S‘;l(f)’||Pj(VNf)||L2(S)-
’ =2

j=0
Lemma 6.7. — For any scalar function f on S such that f =0 on u = —2, we have:

(6.45) 12,y S 19 Sl + SUBILPS(V )

The proof of Lemma 6.5 is postponed to Section 6.3, the proof of Lemma 6.6 is
postponed to Section 6.4 and the proof of Lemma 6.5 is postponed to Section 6.5. Let
us now conclude the proof of Proposition 6.3. In view of (6.13) and Lemma 6.7, we
have:

(6.46) laz] L

[-2,2]

rip,) SE+ S‘i%’HPj(VNaz)HLz(sy
V-
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Together with (6.42), we obtain:
sup||P;(Vanaz2)ll2(sy S €(1 + supl|Pj(Vnaz)| r2(s))-
Jj=0 j>0

Together with Lemma 6.5 and (6.46), we obtain:
(6.47) S‘ig||Pj(VNa2)||L2(S) +llaallLee, , Lop,) S &
iz

—2,2]

Finally, (6.13), (6.47) and Lemma 6.6 imply:

2| p. £]|4
22 ||ij||L‘[’jQ’2]L2(Pu) Se

j=20

This concludes the proof of Proposition 6.3.

6.3. Proof of Lemma 6.5
We have:

(6.48) 1P (a®! £)llz2(s) S ZHPj(ailf’zf)HL?(sy
1>0

If I < j, we use the finite band property for P;, and we obtain:
(6.49)
2| P (a* Puf)ll2s) S 277 VNIV Pif) s
S 270 aE WP £l 2y + 2770V (@) Pof | Las)
S 2770 0F | oo () I VP L L2(s)
+ 277N Y (@i, , pap)

< 270000 qup 28| P, f 2oy,
q>0

sz||Lf

o LR

where we used in the last inequality the finite band property and Bernstein for P,
and the estimate (2.30) for a.
If I > j, we use the fact that:

Pi(a*!'Pf) = 27 P;(a™! AP.f)
=272 Pj(dif(a™ YV RS)) — 272 Py(V(a™ )V Fif),
which together with the finite band property and Bernstein for P; yields:
20| P (¢ Pif)llcacs) S 27O aF WP S| 2y + 2772 V(@ VRS Nz, 1ecp,)

[-2,2]

S 272D (0| oo s) + 1V (@ D nee, , pae) IV Pl L2(s)
(6.50) < 27D sup 29| Py |l 12 s,
q2>0
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where we used in the last inequality the finite band property for P;, and the estimate
(2.30) for a.
Finally, (6.48), (6.49) and (6.50) yield for all j > 0:

28| Py (a* f)llp2esy S | D (271 7HOTN) 4 g liml(H)) sgglqufllew)
1>0 a=

< sup|| Py fllz2(s),
q=0

where we used in the last inequality the fact that 0 < b < 1. Taking the supremum
in j yields (6.43). This concludes the proof of Lemma 6.5.

6.4. Proof of Lemma 6.6

We follow the proof of Corollary 5.16. Proceeding as in (B.12), we obtain for all
3 =>0:
(6.51)

—2
2N PifllLee, , r2py S 2 (/2 ||ij||L2(Pu)||VaNij||L2(Pu)du> +2%||P; fl|2s)-
Then, proceeding as in (B.13), we obtain in view of (6.51):
2NPifle, . r2pn) S PP fllzo)lP(Van Fllz2cs)

a2
A2 Pjflliee, 2 p) [[Vans Bl FllLs | | 12ep,y) + 22| Pi f|I2(s)-

—2,2]

This implies:
PP 3, 2y S 2 NP o) 1B (Van Dl s
FINVaws BIFIE, | pagey + 2P sy

Taking the square on both side, summing in 7 > 0, and using the Bessel inequality
yields:

SNBSS IB s | (0l BTl
>0 S 3>0 320

+ z;ozwn[va]v, P\F ,  rapy + 2;32 1B fllas)-
2> J>

Using the Bessel inequality for P; and Lemma 6.5, we finally obtain:
4
65 SPIBII, srcen S 191 + (sl BTN Do)
320 ’ 320

30 29|(Va, PIFIL,
x>0

2.2 L? (Pu)”
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Now, we have in view of the commutator estimate (5.73):

”[PJ’VGN]f”L[ 2,112 (Pu) ~ S2770- 6)5(||Y7f||L2(S) + ”f”L[ 2] L2(P,));
for any 6 > 0. Proceeding as in (B.15), we obtain:
(6.53) > 27|p, Fliee, , 2p0) S IV L2090 + 112, , n2cp-

7>0
Finally, (6.52) and (6.53) yield (6.44). This concludes the proof of Lemma 6.7.

6.5. Proof of Lemma 6.7

Lemma 6.7 is an improvement of Proposition 3.7 where one has a slightly weaker
assumption on V f. Proceeding as in (3.11), we have:

(6.54) £ (s M Tagp,y = 1F (=2, M zaep,) +4/2/P Vnf',2") fPdu'dp

+ / / trof (v, ') du' dpy
—2 !

<Z/ /P (Vv £) (W, ') Py (f3)du dp

3>0

Tl bl , e 1712,
[_

16
(L (Py)

< (supnP (Y f) ||L2(s>) S () ecs)

7>0

+ellf I3, o 17122

o o L (Pu)?
(-2,2)
where we used the fact that f(—2,.) = 0 and the estimate (2.30) for tr 6. (6.54) yields:

4

3

1, M acp,) S (SHPIIP (VN 1) ||L2(S)> YR Fezcsy | + IV lT2cs)s

7>0
which after taking the supremum in u on the left-hand side implies:

3

(6-55) \IfllLee, , acrn SSUPHP(VNf)HL?(S)-l‘ ZHP 2y | +1IVFlzzes)-

7>0
Next, we estimate the second term in the right-hand side of (6.55). We have:
(6.56) 1P (f)z2s) S Z 125 (Pf P f Py f)lL2(s)-
l,m,q
We may assume:
l>m2>q
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and we consider the following three cases:
qg>j,q<j<landl <j.
We start with the case ¢ > j. Then, using the strong Bernstein inequality for scalars
(5.34) for P;, we have:
(6.57)
1P (Pof P f Py f)|lL2(sy < 2j”Plmequf”L[2_2’2]L1(Pu)

§2j||sz||L2(S)||me||L[°o pie)I1Paflleee, , Lap.)

—2,2] —2,2]

SYTEYR P pas) 1P e, , 12 |1 Paf o=, p2(pas

[—2,2] [—2,2]
where we used Bernstein for P,, and F, in the last inequality.
Next, we consider the case ¢ < j < I. Then, the boundedness of P; on L?*(P,)
yields:

(6.58)
1P (Pif PmfPyf)ll2csy S NPLf P fPyfllLecs)
S NP llzs)ll P | oo () |1 Paf | oo ()
S 2 NP e s) 1P fllLee, ,z2pollPafllzes, , r2cpu)s

(2,21
where we used in the last inequality the strong Bernstein inequality for scalars (5.34)
for P,, and F,.
Finally, we consider the case [ < j. Using the finite band property for P;, we have:
(6.59)  Pj(Pf P fPyf) = 272 Py(A(PLf P f Py f))
=27 Py (AP P f Py f) + 27 Pi(V(PL)Y (P f) Py f)
+ permutations of (I, m,p).
Using the boundedness of P; on L?(P,), we have:
(6.60)
1P (AP ) P f P )2 sy S (|APS) P f Py fllz2(s)
S NAPS (25| Pon fll o (8) [ Pa fll Lo ()
S 22 P e o) | P f e, e | Paflliee, 22 (p)s

[-2,2] [—2,2]
where we used in the last inequality the finite band property for P;, and the strong
Bernstein inequality for scalars (5.34) for P, and P,. Using again the boundedness
of P; on L?(P,), we have:

(6.61)
1B (PP ST (P ) Puf)z2(5) < IV BV (P ) oz cs)
< IVRS 2

—2,2

3l 3m
S22 TP | pas) 1P fllzee, , z2po | Pafllie, L2 cp)s

]L4(Pu)||Y7me||L°° 4P Poflle=(s)

[—2,2]
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where we used in the last inequality the Gagliardo-Nirenberg inequality (3.9), the
Bochner inequality for scalars (5.63), the finite band property for P, and P,,, and
the strong Bernstein inequality for scalars (5.34) for P,. Now, since we assumed
that [ > m, (6.59), (6.60) and (6.61) imply:

(6.62)

1 P (Prf P f Py f)llL2s) S 27 2]JFQlJFWLq||sz||L2(s)||f:’mf||L<><>2 a2 @IPaf e, 2Py

Finally, in view of (6.56), (6.57), (6.58) and (6.62), and since we assumed
that [ > m > q, we obtain:

_7_|77m|_ —al
1P (F)lL2gsy S Y 2 5 2P flls))

l,m,q

X (2%||me||L[°j2’2]L2(Pu))(2§ ||qu||L[°32,2]L2(Pu))'

This yields:

(6.63) D> 1P ()llz2sy SO D) IPf 112 (s)
3>0 §>0 \1>0
X Z 2" 22m||P’mf||L°°2 L2 (P)
m>0

4

_li—al 2¢g 4
Z 2752 ”qu”L[szz]L?(Pu)
q=>0

Bl

3
2
S| 2291Pif ey |+ | D220 IS, roce
>0 >0 ’

1

2

S ||y7f||L2(S) ZQMHPJ'JCH%&J]L?(PM) )

j=0
where we used in the last inequality the Bessel inequality. Now, (6.55) and (6.63)
imply:
I llzes, L3Py © SHIO>||Pj(VNf)||L2(S)

IS sy | 302 1Pi

PO B IV £llzzcs),
7>0

—2

which together with Lemma 6.6 yields (6.45). This concludes the proof of Lemma 6.7.
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CHAPTER 7

REGULARITY OF THE FOLIATION WITH RESPECT TO w

Let u(z,w) the function constructed in Chapter 4. In this chapter, we prove Theo-
rem 2.6 which deals with the control of the derivatives with respect to w of the foliation
generated by u(z,w) on X. Recall that (¥,g,k) coincides with (R3,4,0) in |z| > 2.
Also, u(z,w) coincides with z.w in |z| > 2, and so ¢ = 1, N = w and 6 = 0 in this
region. Thus, u clearly satisfies the estimates of Theorem 2.6 in |z| > 2 and it is
enough to control the derivatives with respect to w of the function u(x,w) solution
to:

{tr&—kNNzl—a, on —2<u<?2,
(7.1)
u(,,w)=-2 on z.w= -2,

in the strip § = {/ —2 <u < 2}.

To u(x,w), we associate the quantities NV, a, § and K as in Section 2.2. We will
have to differentiate these quantities several times with respect to w. Since a and K
(resp. N) are scalars (resp. is a vector field) defined on —2 < u < 2, the meaning
of 9,N, 0,a and 9, K is clear. On the other hand, 6 is a 2-tensor on P,, and we need
to extend it to a 2-tensor on —2 < u < 2 for 9,0 to be properly defined. We choose
the trivial extension:

(7.2) O(N,.)=06(.,,N) =0,

so that 6 is a symmetric 2-tensor on —2 < u < 2. For consistency, we extend its
traceless part 6 in the same way:

(7.3) 8(N,.)=6(,N) =0,

so that 0 is a symmetric 2-tensor on —2 < u < 2 satisfying:

(7.4) 8(X,Y)=0(X,Y)— %trG(X.Y — (X.N)(Y.N)),

where X,Y are two vector fields on X.
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76 CHAPTER 7. REGULARITY OF THE FOLIATION WITH RESPECT TO w

7.1. First order derivatives with respect to w

The goal of this section is to prove (2.32). We first give an outline of the proof.
Differentiating the second equation of (4.5) with respect to w, we obtain:

(7.5) (Vn —a 'A)d,a=2YVNa+2Rno, N+,

where the first term on the right-hand side comes from the commutator [J,,, A] (see
(7.13)). Since YV ya and R are in L?(S) respectively by (4.9) and (4.3), this suggests
in view of Proposition 3.16 that:

(7.6) ||VN6wa||L2(S) + ||Wawa||LF32Y2]L2(Pu) —+ ||W28wa”L2(S) g €.
Next, we differentiate (7.5) with respect to V. We obtain:
(7.7) (VN - a_IA)VNawa = QWV?V(Z + QVNRN&,N + -

The term VyRpys,n may be treated using the contracted Bianchi identity for R-—as
we did for VyRyy in Section 2.4—and turns out to be in L2H~'1~%(P,). On the
other hand, in view of the estimate (2.31) for V%a, YV%a belongs to L2H™3(P,).
This suggest in view of Proposition 5.33 that:

(7.8) IV NOuall + VX ua

L2HE(P,) L2H™3(P,) Se
By interpolation between (7.6) and (7.8), we should obtain 8,,a in L°H % (P,) which
embeds in L*°(S) since P, has dimension 2.

We now turn to the estimates for 9,,0. Since trf = a — 1 4+ kn, we differentiate
in w, and we easily obtain from the assumption on k (4.3) and the estimate (7.6)
that Vo, tré € L2(S). To obtain estimates for 9,60, we differentiate the last two
equations of (4.5) with respect to w:

(7.9) { V20u0a5 = 5V a0utr0+ -,

. VN&,GAB:—WvNa_yAyBawa+... ,
where the first term on the right-hand side of the second equation comes from the com-
mutator [3,, V] (see (7.12)). Using the fact that Vd,trf € L%(S), YVya € L2(S)
and V°8,a € L2(S), we then obtain V,0 € L2(S).

Finally, we turn to the estimates for 9, N. Differentiating (4.4) with respect to w,
we obtain:

(7.10) { VOUN = 8,0+ -+ ,

VNOuN = —Vo,a+---.

Together with the fact that YV,0 and Y°d,a belong to L2(S), this implies
that V°0,N and YVnNO,N belong to L2(S). Using Proposition 3.10, we obtain
that J,N belongs to L*>(S).

The rest of this section is as follows. We start by deriving commutator formulas
for [8,,Y), [0w, A] and [8,,, V*]. Then, we prove the estimates for d,a. We continue
with the estimates for 0,6. And we conclude with the estimates for 9, N.
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7.1.1. Commutator formulas. — We have the following commutator formulas:

Lemma 7.1. — Let f a scalar on . We have:

(7.11) 00, VIf = =Vo,nIN = VNfOLN,

(7.12) (00, ¥ (ea,e) = —(0.N)aV2 (N, e5) — (0uN) 5V f(N, ea)
= 0u,0aBVNf —0aBY, N

and

(7.13) [0, Alf = —2V?f(N,0,N) — 8,tr 0V N f — tr 0¥y f-

Proof. — Differentiating with respect to w the equality

(7.14) Yf=Vf—-VnNIN

and using the fact that d, commutes with V since g is independent of w, we obtain:

(7.15) [0, YIf = =Va,NfN = VN fO,N.

Now, we have:

(7.16) 9(0,N,N) =0,

which follows from the differentiation of g(N, N) = 1 with respect to w. Thus,
d,N is tangent to P, which implies that Vo, nf = ¥V, yf. Together with (7.15),
this yields (7.11).
We now turn to the proof of (7.12). Differentiating (7.14) by ¥, we obtain:

(7.17) Y?f(ea,en) = V2f(ea,en) — Vi fOas.
Let II denote the projection of vector fields of ¥ on vector fields tangent to P,:
(7.18) X =X — (X.N)N.
The commutator [J,,, IT] satisfies:
(7.19) [0, X = —(X.0,N)N — (X.N)9,N.
For X,Y two vector fields on ¥ independent of w, we differentiate WQ fIIX,IIY) with
respect to w using (7.17), (7.19) and the fact that 9, commutes with V:
(7.20)
8, (V2f(IIX, TIY)) = V28, f(I1X, TIY) — (X.8,N)V*f(N,TIY)

— (X.N)V2f(9,N,IIY) — (Y.0,N)V2f(N,IIX)

— (Y.N)V?f(0,N,IIX) — VN0, fOxy — Vo nl0xy — VN fO.0xy,
where we have used the fact that Opxmy = 6xy from (7.2). evaluating (7.20)
at X = ey, Y = ep yields (7.12). Finally, taking the trace of (7.12) yields (7.13). O
Lemma 7.2. — Let p a symmetric 2-tensor on ¥ such that p(N,.) = 0. Then, we have:

([0w,dif]p)a = —trbps,na — OappBo.N — VNpo,NB + 0o,NCPCA

7.21
(7.21) + (0.N)aOBcpcB-
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Proof. — For any symmetric 2-tensor v on X, we have:
(7.22)
YVovag = ec(vap) — v(Voea, ep) — v(ea, Yoen)

= ec(vap) —v(Vcea —g(Veea,N)N,ep) —v(ea,Vep — g(Vcep, N)N)
=ec(vap) —v(Vcea,ep) —v(ea,Veep) — acvnp — Opcvna
= Veovap —0acvnp — 0pcvna.

Applying (7.22) to p and using the fact that p(N,.) = p(., N) = 0, we obtain:

(7.23) Yopas =Veopas.

Let X a vector field on ¥ independent of w. Using (7.19) and (7.23), we have:
(7.24)

9w ((difp)rix) = 0u(V gpanx) = 0u(Vapanx)
= Vo,eapanx + Vaps,esnix + Valupanx — (X.N)Vapas,n
—(X.é)wN)VApAN.

Now, differentiating g(ea,ep) = dap and g(ea, N) = 0 with respect to w, we obtain:
(7.25) Oue1 = g(due1,e2)e2 — g(0uN,e1)N,

Ouez = —9(3“;61762)61 - g(c%N, 62)N~
This yields
(7.26) Vo,eapanx + Vaps,e,nix = —VNpo,Nix — Vo, NPNTIX -
Since p(N,.) = p(., N) = 0, we have:
(7.27) VapNB = €a(PNB) — PVANB — PNV ses = —0acpoB-
Using again p(N,.) = p(.,N) = 0, we have:
which together with (7.22) applied to J,p yields:

Va0upap =YV 40upaB +0440.,pNB +04B0upaAN
= (dif0up)B — trbps,NB — BaBpo,NA-
Finally, (7.24), (7.26), (7.27) and (7.29) yield:

(7.29)

O ((difp)nx) = (dif0up)nx — trbps, Nux — OBuxpPBO,N — VNPa, NTIX
+0s, nBpBrx — (X.N)Vppps, N + (X.0.N)0pcpcs.
Taking X = ey in (7.30) yields (7.21). O

(7.30)

We conclude this section by recalling the link between ¥,V f and V2f(ea, N)
for a scalar function f:

(7.31) YAVNf=V?flea,N)+0(ea, V).
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7.1.2. Estimates for J,a. — Note that the first equation of (4.5), (4.7) and the fact
that (g, k,X) coincides with (8,0, R?) for |z| > 2 yields:

(7.32) VP?(0,a) =0, VP9,0 =0, VP(O,N —0,w)=0forallpe N on u= -2,

so that integrations by parts will not create boundary terms at u = —2.

Differentiating the second equation of (4.5) with respect to w, and using the com-
mutator Formula (7.11), (7.13), the fact that J,N is tangent to P, by (7.16), and
(7.31), we obtain:

(7.33) VnO,a—a 'Ad,a = h,

where h is given by:

h=-Vs na— a?9,aha — 2V, nVna+20(0,N, Va)

= Outr0VNa —tr0Y, ya+200,0 + 0,(VN(knn)) + 2BNo,N-

Using (4.4), we have:

(7.35) Vn(knn) = VNknn — 2k(Va, N),

which together with (7.11) yields:

0.,(Vn(knN)) = Vo,nknn + 2V kN, N — 2k(Va,0,N)

— 2k(Y0,a,N) + 2Y78WNakNN + 2V nakno,N-

Using (7.34) and (7.36), we estimate the norm of h in L?(S):

hllz2(s) < IVallz2(s) 100N || L= (s) + ||a_2||L°o||4Aa||L2(S)||5’wa||L°°
+ 1YV nallrz(s)|0u N L= (s) + [10lla(s) | Vall s (s) 10w N Lo (s)
+ |0utr 0] La(s) IV val zas) + [Itr 0l zacs) I VallLa(s) 0w N || oo 5)
X |0uN ||Loo(s) + 10llLa(s) 10Ol Lacsy + [IVEl £2(5) | 0w N Lo ()
+ [kl zes)[Vall2(s) 100N (| L= (s) + |kl La(s) [ VOual zacs)
+ Rl 2(5) 00N || Lox (5)-

Together with (4.3), (4.9), (4.11), (4.12) and (4.13), this yields:

(7.38)  [[hllz2(s) S €llOuNL=(s) + ellOuwall Lo (s) + €| VOwallLa(s) + €[00 La(s)-

Proposition 3.16, (7.32), (7.33) and (7.38) yield:

0wallLes, |, 2P0y + IVOuallLa(s) + IV0ualle, | L2p.) + IV*0ual L2 (s)

S e(lduallre + 10N (Lo (s) + 1000l Lacs))-
Next, we differentiate Equation (7.33) by V. We obtain:
(7.40) Vn(VNO,a) — a *A(VND,a) = [V, a *Al(0,a) + Vi (h),

where h is given by (7.34). Next, we estimate each term in the right-hand side of
(7.40) starting with the first one. In view of the commutator Formula (2.20), we have:

(7.41) alVn, a_lﬁ]awa =hy + 2a_1Y7aY7VN8wa + a_lﬁaVNawa,

(7.34)

(7.36)

(7.37)

(7.39)
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where the scalar function h; is given by:
h1 = —(tr9+a_1VNa)Aﬁwa—2§-Y728wa—2RN,~Y78wa—WtrG-Wawa+2§~a_ly7a-y76wa.
h, satisfies the following estimate:
ppy S (Bllne, , 12pu) + la7 Vvaloe | 12p) V2000l 2(s)

+ (IRl L2s) + [IVtr 0l L2(s) + 16a~" Va2 &)IVuallLee,

Together with the estimates (7.39) for d,,a, (4.3) for R, (4.11) for a, and (4.12) for 0,
we obtain:

(7.42) 1hallze.

Iallze

L2 (Pu)'

2y LY (PL) R < e([l0wallze(s) + 10w N[ Lo (s) + [08] La(s))-

Also, the second term in (7.41) satisfies in view of the product estimate (5.82):

sup2™? | P(a™  Va¥ Vadua)lza(s) S IVVNOuall -4 o a7 Wall oot -
s wHb (P,

which together with the Lemma 5.7, the embedding (5.74), and the estimate (4.9)
for a yield:

(743) sup2 J”P (a IWaWVN(S‘ a ||L2(S) <E||VN8 a||L2H2 P)

The third term in the right-hand side of (7.41) satisfies in view of the product estimate
(5.82):

sup 2|0 BaV n0u0)lsa(s) S IVl 1 o™ Bl

SIVNBaal s o, (1R Y,y )
-2 2
a1Vl d )

which together with the Lemma 5.7, the embedding (5.74), and the estimate (4.9)
for a yield:

(7.44) up 277 P, (0™ BaVdua)llizs) S IVNOual 1

Next, we estimate the second term in (7.40), i.e., Vn(h). In view of (7.34), we
have:

(7.45) Vi (h) = hy+hs — 20" dif (a0, NV%a) + VN (0o (Vi (Enn))) +2VNRyo, N,
where hy and hs are given respectively by:
hy = a"2Yd,a- YV Na +a 20,aYa - VVna+ a 20,a[Vy, Ala — 2073V yad,ala
+2a73|Va|*V NO,a + 2V NO(D, N, Va) + 20(V NI, N, Va) + 0(0,N,VyVa)
— VN(Outr0)Vya — Vntr 0V, y(a) —trOVNYV, ya+2VyYa-Yo,a
—2VNV, yaVNa+2V NG - 0,0 + 20V NO,0 — 2Ra*1Y7a oun T 2RNvyo,N
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and:
hs = o 'dif(a10,aVVya) + a 2Va - YV NO.a + a” 2V N (0,a)Aa + 2dik(d,N)Via
- Ga’lvawNaV?va — 9,tr0V%a+ aVa - VNY(d,0a).
Let us first estimate hy and hs. In view of the definition of hy, we have:

1h2| L2

[-2,2)
Sla 2= (IV0ualrx, , r2(py) + 10uallne, , LapnIValoe, , pae)IIVVallzacs)
+lla™*0uall 2 (s) (Vv Alall 2

—2,2

L (Py)

L)t IVNal Lz (s)2lldallr2(s))
a3 o= Pl , oaen) IV Boalliocs)

FIVNOlL2 910N Val Lee, , 120y + 10|, , 2P VNI N L1(s)[IWa) [ 1(s)

[=2,2]

FN00uNlLex, , 2 VN ValL2(s) + IV N (Ootr0) || L2(s) [ VNval Les, , 22(p.)

[=2,2]

FIVNtr Ol L2 s) Vo, v (@lLee, , 22y + 1600l e, | 22P)IVN Yo, nallLz(s)
+IVaVYal L2 IVOualle | 12(p,) + IVN Yo, nallLzs)IVNallLe, | r2p,)

[—2,2] [=2,2]

FIVNOlL2 91000l =, | L2 pu) + 10l Lee

[—2,2]

+ IRl 2sylla ™ Vallzes. . r2(py10uN Lo (s) + 1Rl 2(s) IV NOW N || Lo [L2(P.)>

[—2,2] [-2,2

2o 2P VN OOl L2 (s)

which together with the commutator Formula (2.19) for [V, A], the estimates (4.9)
(4.11) for a, (4.10) (4.12) for 6, the estimate (4.3) for R, and the estimate (7.39)
for 0,a yields:

||h2||L[272Y2]L1(Pu) S e(ll0wallpoe sy + IVNOu NI La(s) + 100Nl Lo (s) + |00 La(s)
(7.46) + VN0l L2(s) + 10u0l Lo . L2(Py))-

[—2,2]

Also, in view of the definition of hs and the product estimate (5.82), the finite band
property for P; and the estimates (7.43) and (7.44), we have:
sup 27|1Pj(ahs)l L2 (p,) S lla” BuallL(s)| WV nallLaes) + el Vvduall g
Jjz u “
+ ([|diF (8, N)

+ ||ad,tr 0|

”LgoH%(Pu) + ”Wf”wl\’a”LgoH%(Pu)

NV

1 a 1
Ly H2(Py) HLiH_f(Pu)’

which together with the estimate (2.31) for Vya and V% a, the estimates (4.9) (4.11)

for a, the estimate (7.39) for 0,a, the embedding (5.74) and the product estimate
(5.85) yields:

(7.47)
sup 277||Pj(ahs)ll L2 (p.) S e(lOualloe sy + IVOLN e, , 2Py + 100N [ (s)
-

+ [|diF (0, V) | + 1901l La(s) + 1V Otr O] L2(s))-

1
LeHZ(P,)
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Next, we estimate the third term in (7.45). In view of the product estimate (5.83)
with b= 1, f = V4 a and G = ad, N, we have:

||dW(G’8WNV?VG’) ”LiH*% (Pu)

1950l 3 o (100Nl 5) + 19 (00Nl , 2

Together with the estimate (2.31) for V3a, the estimate (2.31) for Vya, and the
estimates (4.9) (4.11) for a, this yields:

(148) AR (@NVRO 1y g ) S N () + V0N s, 12
Next, we estimate the third term in (7.45). We have:
VN (0u(VN(knN))) = Vo, N(VNEnN) + [V, Vo, n]|(knn) + 2V N (VN (kNo,N))
= dif#(0,NVn(knn)) — dif(0.N)V i (knn) + Vvyo,n(kvn) +a ' Vo yaV(knn)
—0(0,N, A)Y 4(knn) +2VN(VNkno,N — k(a™'Va,0,N) + k(N,VNO,N))
= dif(0,N(Vnknn — 2k(a"1Va,N))) — dit(0.N)(Vnknn — 2k(a"1Va, N))
+ Veyo,n(knn) + a_IVmNa(VNkNN —2k(a='Ya,N))
— 0(0,N, A)(Vaknn + 20a5ksN) + 2V N (VNkno,n) — 2V Nk(a™'Va,d,N)
—2k(Vn(a='Va),0,N) — 4k(a=1Va,VNO,N) + 2V Nk(N,VNO,N)
+ 2k(N,VNVNO,N),
where we used the structure Equations (4.4) for N and the commutator For-
mula (2.18). This yields:
(7.49) VN (0.,(Vn(knn)))
=a 'dif(ad0, NV NknN) + 2V N (Vnkno,N) + 2k(N, VNV NO,N) + ha,
with h4 satisfying:
(7.50)
Il

—2,2]

iry S (IVElzs) (lo~ Va | e

Za.2)
+lkllLe, , 22 (IVVallL2(s) + la=Va|[Zacs) + ”0”%4(5)))
X [|0u N || L (s)
+ (||Vk||L2(S) + ke, , Lapylla™ Va ||L<[>32’2]L4(pu))
x ||V5wN||L[°32)2]L2(Pu))
S e([[0uN]zoe(s) + [IVOLN Lo, L2(P)),

[—2,2]

w2 T 10lle=, , 22p)

where we used in the last inequality the estimate (4.3) for k, the estimate (4.9) for a
and the estimate (4.12) for . Now, in view of the constraint Equations (2.25), we
have

Vnkna =—-VBkpa.
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This yields:
Vnkno,Nn = =V BkBo, N
= —dit(ko,n.) + ka(Vad,N)p — tr0kna,n-
Differentiating with respect to V, we obtain:
Vn(Vnkno,N)
= —diZ(Vn (ks n.)) — [Vn,di¥] (ko n.) + VNka(Va0uN)g + kap(VNV40,N)p
— Vntrbkno, N — trO0Vnkyo,n + tr0k(a=1Va,0,N) — trOknv yo, N
= —di#(Vnka,n.) — (a™'VaVy + 0V +R+a"'Va -0) - ko, n.
+ Vnkap(Va0uN)p + kap([Vn,V]a0uN)p — Vntr0knso, v — tr 0V Nkno, N
+tr0k(a='Va,0,N) — tr0knv o, N
= —di#(Vnka,n.) — (a"'VaVy + 0V +R+a"'Va -0) - ko, n.
+ VNka(VAOLN)g+k-(a"'VYaVy +0Y+R+a"'Va -0)-0,N
— Vntrbkno,n — trO0Vnkno,n + tr0k(a™1Va,0,N) — trOknv o, N,

where we used the commutator estimate (2.17). This yields:

(7.51) Vn(Vnkyo,n) = —a~'dit(aV nko,n.) + hs,
with hs satisfying:
(7.52)
Ihslize , , zrcpny S IVEIL2s) (a7 Va e, , 2 + 100 Lee, , 222 100N | o s)
+IVOuNI e, | 12(P))
+ ||vawN”L[°32,2]L2(Pu)||k||L4(S)(”9||L4(S) +[la™"VallLs))

+IVNOllL2s)llkl Lee, , 22 (P 100N Lo ()
S el0uN oo sy + IVOuNLee, , 22(Pu)5

where we used in the last inequality the estimate (4.3) for k, the estimates (4.9) (4.11)
for a, and the estimates (4.10) (4.12) for 6.

Next, we estimate the fourth term in (7.45). Using the twice contracted Bianchi
identities (4.34), we have

VNRan = —-VBRap+k-Vak.
This yields:
VnRyo,n = —dif(Ro,n.) + trO0RNo, N — Rap(Va0,N)p + k- Vo, nk.
We obtain:
(7.53) VnRyo,n = —a”'dif(aRo,n.) + he,

SOCIETE MATHEMATIQUE DE FRANCE 2023



84 CHAPTER 7. REGULARITY OF THE FOLIATION WITH RESPECT TO w

with hg satisfying:
(7.54) ||h6||L[2 2 L1 (P S S IRl z2s) (V0. N||L 2(py + (la™'Va ||L°°22]L (P.)
+ ||9||L <, 2]L2(Pu))||awN||L°°(S))
+ ||Vk||L2 & IElLee, , 22 (P 10Nl Lo ()
S e([|0uN|[e(s) + ||Y78 Nllpe_ | 12(P,))s

[-2,2]
where we used in the last inequality the estimate (4.3) for R and k, the estimate
(4.13) for k, and the estimate (4.12) for 6.

Finally, (7.45), (7.49), (7.51) and (7.53) imply:

Vn(h) = hy + h3 + hy + 2hs + 2he — 20~ ' dif(ad, NV a) + 2k(N, VNV O, N)
+ a 'dif(ad, NV nkyn) — 2a” 1 dif(aV vka,n.) — 20~ *dif(aRa, N.)-

Together with (7.40) and (7.41), this implies:

(7.55) Vn(VnOua) —a ' A(VND,a) = hy,

where h7 is given by:

hy = a ' (h1 4+ 2a"'VaYV NO,a + a P AaV ND,a) + ho + hg + hy + 2hs + 2hg

— 247 dif(ad,NVAa) + 2k(N, VNV NI,N) + a 'dif(ad, NV nknn)
— 207 'dif(aV nks, n.) — 2a" dif(aRs, N.).

Together with the strong Bernstein inequality for scalars (5.61), the finite band prop-
erty for P;, and the estimate (4.9) for a, this yields:

[|Pj(ah7)llLz2(s)
S <||hl||L2 o LN (P) T ||h2”L[2_212]L1(Pu) + ||h4||L[2_2Y

+lhollze, o1 ey ) + 1P (@ho)llzacs) + I1Pi(a™ Fa - PV n0.0)|1acs)
+ 115 (0  AaV 5 Bua) | L2(s) + | P (dik(adu NV a)) | 2(s)

+ 1| P (dif(ak(N, ¥y V0 N)) 2s) + 2 (IV skl 2 s

+ IR 2(s))llall Los (5) 10w N || oo (s)-

Together with the estimates (7.38), (7.42), (7.43), (7.44), (7.46), (7.50), (7.52) and
(7.54), the estimate (4.9) for a, the estimate (7.39) for d,a, and the estimate (4.3)
for R and k, we obtain:

1P (ahr)llz2(s) < 52](”5 allzes(s) + 100N || Lo (5) + [IVNOLN || La¢s) + V(0L N) | Lo
+ [|di# (9, N) | + 11001l Ls(s) + V00l 2(5) + 1000 L=

gL (P T ||h5||L[2_2’2]L1(Pu)

LeH2(P,) 22,2 L7 (Pu)

+1VN0ual L, 3 ) + 1B (@0 N VR )] 22s)
+||Pj(ak(N,VNVN8wN ||L2(S)-
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Together with the estimate (7.48), we finally obtain:

(756) lahl, 3 )

S E<||3wa||Loc(S) + |10u Nl Lo (s) + IVNOLNlLa(s) + IVO.NllLe, | 2(p.)

RO,
+ k(N VX OLN)|

—|— (V0.0 L2(sy + VO a||L2H2 P, ))

LgH*é(Pu)'
Now, in view of (7.55) and Proposition 5.33, we have:

||VN8 a”LQH ) + ||vNawa||L1°L°H7%(Pu) + ||V?Vawa||LiH*%(Pu) 5 ||ah7||LiH*%(Pu)'

Together with (7.56), this yields:

(7.57)  [[VNOuall + |[VnOLal + ”v?\[awa”

1 1 3
L2ZH?2(P,) L H™ 2(Py) L2H™ 2 (Py,)

< 5<||3wa||Loc(S) + 100Nz (s) + IVNOLN|La(s) + IVOLN | Lee, , 22(P0)

IO,
+ |lak(N, VNV NOLN)|

+ IV00l2(s) + IV n0ual 3 )

L2HTE (P

In view of Corollary 5.19, we have

(7.58) I0uallL(s) S 1V*Buall2(s) + IV N Ouall

Thus, we finally obtain, in view of (7.57) and (7.58):

(7.59)
IVNOual

L2HZ(P,)’

) TIVNOual )+ IVidual

3
L2H3( Lo H™ 3 ( LZH™2(P,)

< e(nawzvnmw) + Vw0 N s + ||vawN||L[ogz,2]L2<pu>

+ [|diF (0, V) | + ||vaw9||L2(S)> + lak(N, VNV NOLN)|

1 3 .
L HZ(P,) L2H™2(P,)

7.1.3. Estimates for 0,,0. — Let us start by showing that 8w§ is traceless when seen
as a tensor on P,. Differentiating (7.4) with respect to w, we obtain:

9,0(X,Y) =0,0(X,Y) — 1c’)wtre(X.Y — (X.N)(Y.N))
(7.60) . 2
+ 5t 0(X.0,N)(Y.N) + (X.N)(Y-0.N)),

which yields:

~ 1
(7.61) 0,0aB = 0,048 — §awtr95,43,
so that:
(7.62) tr (0,0) = tr (8,0) — B tr .
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We compute O, tr 0:

(7.63) Outr0 = 0,(044) = tr(0,0) + 20(ea,0.€4).
Together with (7.2), (7.63) and (7.25), this yields

(7.64) ,tr = tr (9,,0).

Finally, (7.62) and (7.64) imply that 8,0 is traceless:

(7.65) tr (8,0) = 0.

We now turn to the estimates for 9,,tr 6. Differentiating the first equation of (4.5)
with respect to w, we obtain:

(7.66) Outr = —0,a + 2kno, N,
so that:
(7.67) Vo,tr = -Vo,a+ 2VE(N,0,N) + 2k(VN,9,N) + 2k(N,VI,N),

which in turn yields:

(7.68)
[VOu,tr 0] 125y S IVOwallz2(sy + [IVE| £2(s) 10w Nl Lo ()

+ kllLas) IVN I Las) 100 N[ oo () + 1]l L2(5) [ VOLN [ La(s).-
Together with Proposition 3.9, (4.3), (4.11) and (4.13), we obtain:
(7.69) IVOutrblL2(s) S [VOuallL2(s) + ellOuN L (s) + €IVOLN||Lacs).-

We now turn to the estimates for Ya,,6. We differentiate the third equation of (4.5)
with respect to w. Using (7.11), and (7.21), we obtain:
(7.70) (dif0,0) 4 = h,
where h is given by:
(7.71)

h = tr 9§awNA + aABé\BBwN + vNaawNA - 6’aché\CA
~ 1 1
— (awN)AeBCQCB + §Y7A8wtr9 — §VNtI‘ 9(8WN)A + RA&.,N — (8WN)ARNN.

Differentiating (7.4) with respect to V y, we obtain:

~ 1
(772) VN9A3=VNOAB—§VN'EI'9(SAB.
Also, the definition of tr# and 0 implies:
(7.73) 0achcp —Bachos =0,
which together with (7.71) and (7.72) yields:
(7.74)

h= %WAawtre + VnNbs,NB — %VNtI‘ G(GMN)A + tr GﬁauNA — (8WN)AHBC§CB
+ Rao,N — (OuN)aRNN.
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We estimate the norm of h in L2(9):
(7.75)
IBll2(s) S 1V0utr 0]l 2¢s) + IV N0l L2(s) 100N (| Lo () + 1001745y 100N [ L= (5)
+ 1Rl L2(s) 10 N | Lo s).-
Together with (4.3), (4.10) and (4.12), this yields:
(7.76) 1725y S 1VOutr0][L2(s) + €llOu N Lo (s)-
Proposition 3.18, (7.65), (7.70) and (7.76) imply:

~ 1 ~
(7.77)  V0u,0llL2(s) S V0wt bllr2(s) + ellOuN || (s) + 1K 72 (5) 1001l La(s)-
Finally, Corollary 3.8, (4.9), (7.32), (7.69) and (7.77) yield:

778) V0,01 L2(s) < elldwallLee, , L2(pu) + IVOuallL2(s)
+ €| 0uN | Lo (8) + ellVOLN|| 125y + £2 | VOO L2(s)-

We now turn to the estimates for V39,0. Let X,Y two vector fields on ¥ inde-
pendent of w. (7.2) and the last equation of (4.5) imply:

(7.79) @ 'Vux Viya + Vabuxmy + 640y + Kg(ILX, 1Y) = R(ILX,11Y).

We differentiate (7.79) with respect to w. Using (7.12), (7.19) and , and evaluating
at X = ey, Y = ep, we obtain:

(7.80) V0,048 = h,
where h is given by:
(7.81)
h =-a"'V,Vz00a+ (0,N)aa"'V2a(eg,N) + (8,N)pa"'V3a(ea, N)

+ 0,040 ' Vya+ HABa_lyawNa + a‘28waY7AY7B,8wa — Vo, nbaB
— (0uN)aAVNONE — (0uN)BVNOna — 0.05008 — 050,008 — 0.KvaB
— (0uN)aRNB — (OuN)BRNA4.

Using (4.4) and (7.2), we have:

(7.82) VnOna =0(Va,ea).
Using (7.22), (7.31) and (7.82), we rewrite (7.81) as:
h = —a‘IWAWBawa + (&uN)Aa_lWBVNa + (6WN)BG,_1WAVN0,

+ 00407 'Vva+0apa 'V, ya+a 20,0V ,Vdoa — YV, nOan
- 2(8wN)A9(Y7a, eB) — Q(OWN)BQ(WG,CA) - 8w0§003 - 9%80_,903
— 0yKvap — (0uN)aRNB — (0.N)BRnNa.

(7.83)
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Thus, we estimate the norm of h in L?(S) by:
(7.84)

_ 2
2llL2sy S lla 1||L<><>(S)<||Y7 Ouallz(s) + [IVVvallL2() 100N || L= (s)

F 11000115 [VvallLacs) + ||9||L4<s>IIWa|IL4(S)||3wN||Loo(s>)

+ la™?| oo sy |0wall Lo sy | Vall 2s) + 1V 2(5) 100N || oo ()
+ 110l Las)lIVallLa(s) 100N | oo (s) + 10Ol La(s) 10l Lo sy + 100K (| L2(s)
+ 1Rl z2(s) 10w N || Lo (s)-

Differentiating (4.6) with respect to w and using Corollary 3.8, (4.3), (4.12) and (7.32),
we obtain:

10w K|L2(s) S 1Bl L2(s) 100N (Lo (s) + 101 L2 (5) 100l La(s)
(7.85) S ell0uN| Lo (s) +€l|0u0]| L1 (s)
S el|0uN Lo sy + € VOO L2 (s)-

(4.3), (4.9), (4.11), (4.12), (7.84) and (7.85) yield:
(7.86)
lhllzz(s) S ||7723wa||L2(S)+5(||3wa||L<>o(S)+||5'wN||Lw(S)+||3w9||L4(S)+||V3w9||L2(5)>-
Corollary 3.8, Proposition 3.9, (7.32), (7.80) and (7.86) yield:
(7.87)

IV 50t 25y S IV Buallzzcsy + 5(||3wa||L°°(S) + 10w N | Lo (sy + ||V3w‘9||L2(S))~
Finally, (7.69), (7.78) and (7.87) yield:
(7.88)

V0.0l 2(s) S IV 0uallr2(s) + 5(||8wa”L°°(S) + |0 Nl Lo (s) + ||V3wN||L4(S))-

7.1.4. Estimates for §,N. — We start by estimating the norm of V9,N in L*(S).
Let X,Y two vector fields on ¥ independent of w. We rewrite the first equation of
(4.4) as:

(7.89) 9(Vnx N,IIY') = 6(I1X,1IIY).

We differentiate (7.89) with respect to w. Using (7.19) and evaluating at X = ey,
Y = ep, we obtain:

(7.90) 9g(Va0,N,ep) = 0,048 — (8wN)Aa_1WBa.
Also, using (7.16), we have:
(7.91) 9(Va0,N,N) = —g(0,N,V4N)=—0(0,N,ea).

Differentiating the second equation of (4.4) and using (7.11), we obtain:
(7.92)
VNOLN = —0(0,N,es)es — a_lyawa +a 'Vyad,N + a_IWBMNaN + a_28way7a.
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(7.90), (7.91) and (7.92) yield:
IVOuN|zas) < 1100l La(s) + [VOuallacsy + ([[VallLacsy + 10l 2acs)
+IVnalLa(s))10u Nl L (s) + uallL=(s))-
Together with (4.11) and (4.12), this yields:
(7.94) [VOuN|lLa(s)y S 10u0ll2a(s) + IVOuallLas) + €ll0uN (Lo (s) + €llOwal o (s)-
Finally, using Corollary 3.8 and Proposition 3.9, we obtain:
[VOL,NllLacsy S IVOLO|lL2(s) + [VOual L 2o L2(Py) T ”WQawa”Lz(S)
(7.95) P22
+ €l|0uN 2= (s) + €llOual L (s)-
Next, we estimate the norm of VO, N in L%, , L*(P,). In view of (7.90), (7.91)
and (7.92), we have:
V0N sz, 5ok
SN0, , r2pn) + a7 VoualLe, , r2ep,y + (la™ Vallze, |, r2(p,)
Hl0llee, , r2epy +lla™ Vivallze, |, 12(p)) (100N | Lo s) + [0wall L= (s))-
Together with (4.11) for a and (4.12) for 6, this yields:

(7.93)

IVOuN||Le<, , L2(Pu)
S 1900 Lee, , L2y + [ VOwal| Lo

Finally, we obtain:

2P T (100Nl Loo (5) + [10wall Lo s))-

—2

(7.96) IVOLN|zcx, , L2gp)

S IVOub||L2(s) + | V0w a”L r2(p,) T E([|0uN || L (s) + 10ual L= (s))-

—2,2]

Next, we estimate the norm of dif(d,N) in L2 Hz2 (P,). In view of (7.90), we have:
dif(0,N) = tr (0.,0) — a_lyawsz
This yields:
GO 8 py S 10080 g oy + 10 vl
In view of Corollary 5.16, we finally obtain:
(7.97)
I1d# (O N e 3
S IVOLOlL2(s) + V(e Vo na)llLa(s)
SNVl L2(s) + V(@™ Va)ll L2(s) 0w Nl oo sy + lla™ Valla(s) IVOL N pacs)
S VOOl L2 (s) + e(|0uN || Lo (s) + IV Nl La(s)),
where we used in the last inequality the estimates (4.9) and (4.11) for a.
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In view of the right-hand side of (7.59), we need to control

lak(N, VA VnON) L, 0 -

In view of (7.92), we have:
VNVNOLN
= —-VnNO(O,N,es)ea —0(VNO,N,es)es — aleVN(?wa — ail[VN, Y]0.a
+ a_QVNaW(?wa + a_IV?VaawN + a7 'VnaV NI, N —a™%(Vya)?0,N
+Vn(a™'Va)o, NN + a_IVVNawNaN - a_IWaNNaa_IVa + Vn(a™2Ya)d,a
+ a_zvNawaWa.
This yields
(7.98) VNVNO,N = —a 'YV NO,a — a 2VaVyO,a + a 'V%ad,N + H,
where, in view of the commutator Formula (2.18), the vector field H is given by
H = -VxN0(O,N,es)es —0(VNO,N,es)ea +a 10 -V0,a+ a2V yaVd,a
+a 'VNaVNO,N —a *(Vya)?0,N + Vn(a 'Va)o,nN + a ' Vg, 5 yalN
- a_lyawNaa_lva + Vn(a™2Ya)d,a.
We have
[1H|lL2(sy S (||V9||L2(S) + V(@ 2Va) | L2s) + (18]l Lacsy + VLN Las)
+ lla™ ' Voual sy + ||a_lva||L4(S))2)(1 + 10w N | (s) + 10wal L= (s));
which together with (4.9), (4.10), (4.11) and (4.12) yields:
(7.99) [[HllL2(s) S e(IVOuallLacs) + VO N Las) + 100N || Lo (s) + [|0ual oo (s))-
Using the finite band property for P;, we obtain
(7.100) [P (ak(N, H))lz2(s)
< 2| ak(N, H) | 2

2, o L (P)

S llallpe(s)lkllLes, | 2P 1 1 L2(s)

2]
S e(|Vowal Lacsy + IVOLN | Lacs) + |0uN || Lo (s) + [|0wal Lo (s))s
where we used in the last inequality the estimate (7.99) for H, the estimate (4.9)
for a and the estimate (4.13) for k. Next, we estimate the other terms generated by
the right-hand side of (7.98). In view of the product estimate (5.82), the embeddings

(5.74) and Lemma 5.7, we have
(7.101) [|P;(ak(N,a 'YV nOua)llrzis) S 2MRN .y IV VN Oual

S 2||kN| g s IV Oual

L2H™%(P,)
1
L2H?Z (P,)

SYellVadoall, 41 o
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where we used in the last inequality the estimates (4.3) and (4.13) for k, (4.11) and
(4.4). Using the finite band property for P;, we have

(7.102)

| P;(ak(N,a ?*VaV n0,a))|12(s) < 27[lak(N, a_QWaVNawa)HL[z

o LR

S 2J ||ka_1y70/||L‘[’32’2]L2(Pu) ||VN8wa||L2(S)
< 2|kl

=, ot Polla” Vel sp) | VadualLas)

C2.2)
< 2e||VnduallLas),

where we used in the last inequality the estimate (4.13) for k and the estimate (4.11)
for a. In view of the product estimate (5.82) and the embeddings (5.74), we have

(7.103) [|Pj(ak(N,a™'ViaduN))l2(s) < 2’ [kNOLN| [Viall

1 1
L3°H7(Pu)| LIH™2(Py)

S VENON ) IVRall o g3

< 2e(|0uN L= (s) + IVOLN | Las)),
where we used in the last inequality the estimates (4.3) and (4.13) for k, (4.11), (4.4),
and the estimate (2.31) for V%-a. Finally, (7.98)—(7.103) imply
(7.104)

||ak(N, VNVNawN) ||L2 H,% (P.)

S e(IV8uallzacs) + 190N rs(s) + 10N () + I0uallz(s) + IV ndoall 13 )
We now estimate the norm of 9, N in L*>°(.S). Using (7.32) and the fact that (3, g)
coincides with (R3,6) for |z| > 1 by Section 2.1, we have:

(7.105) 9g(0uN,0,N) =1 on z.w= -2,

where I is the 2 x 2 identity matrix.
We will estimate the L°°(S) norm of ¢g(d,,N,d,N) — I using Proposition 3.10. To
this end, we need to estimate the norm of:

(7.106) Y*(9(0,N,0,N) — I) = 2¥(g(VO,N,d.N)),

(7.107) and YVn(g(d,N,0,N) —I) =2Y(g9(Vn,N,d,N)),

in L2(S). First we estimate the norm of (7.106) in L?(S). Using (7.90), we have:
(7.108) 9(V 40uN,0,N) = 0,0(0,N,ea) — (awN)Aa_lyawNa,

which together with (7.106) yields:

(7.109)

WZB(g(awNa auN) - I) = 2WA(aw0)(eB’ 8wN) + 280,,9(63, WAawN)
—29(V 40uN,e5)Vy na— 2(0,N)gY(a"1Va)(ea,0u,N)
—2(8,N)Bg(V 40.N,a"Va).
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We estimate the norm of ¥>(g(d,,N,8,N) — I):
1V*(9(0N, 0uN) = Dllz2(s) S V00l 22(5) 100 N | o2 (5) + (101 22 (s)
(7.110) + 105N Lo (s)la™ Va | L)) V0N La(s)
+ ||6wN||2Loo(S)||W(a_lva)||L2(S)a
which together with (4.9) and (4.11) yields:
(7.111)

IV2(9(8uN, 8uN) = Dliz2(s) < V80l 22(5) 10w Nl 2o (5) + (100l a(s)
+ &[0 N L () IV Nl La(s) + [0 N ()-

We turn to the estimate of the norm of (7.107) in L?(S). Using (7.92), we have:
(7.112)
9(VNO,N,0,N) = —0(8,N,0,N) —a~ 'V, n(0ua) +a ' Vyald,N[* + a~?0,a¥,_ ya,

which together with (7.107) yields:
(7.113)

YaVn(9(0uN,0,N) —I)
= —2Y ,0(0u,N,0,N) — 40(YV 40N, 0,N) — 2¥(a~ 'V (0,a))(0uN,ea)
—29(V 40uN,a"'Vd,a) + 2Y(a" ' Vna)|0,N|* + 40~ 'V yag(VO,N, 0,N)
+VY(a™?Ya)d,a-0,N + a_QGwaWWauNa + a_QW(awa)WawNa.
We estimate the norm of YV (g(0,N,0,N) — I):
(7.114)
IVVN(g(0uN,0,N) = I)|lL2(s)
S Y2000l L2(5) 100N | e (s) + (1V0]l 2(s) + 1V wallL2(s) 10N 7 < (s
+ (10l zacs) + IVNallLas) VO N La(s) 100N | 2o (s) + [ VOu Nl za(s) | VOual La(s),
which together with (4.9), (4.10), (4.11) and (4.12) yields:
(7.115)
IVVN(9(0uN, 0uN) = 1) 12(s)
SNV 0uallr2(s) 100N | o (5) + 0N 7 (5) + €l VO N [ 4(5) 100 N L= (5
+ [IVO0uN | Las) I VOuallLacs)-
Proposition 3.10, (7.111) and (7.115) yield:
(7.116)
19(0uN,0,N) — I|lL=(s)
S V0Nl La(s) (IVuallLacs) + 1001l s(s)) + (17 Bwall2(s) + | 00N L (s)
+&[V0uN|lLa(s) + I¥0.01 L2(5)) |00 N [ o< (s)-
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(7.116) implies:

(7.117) |0, N|L=(s)

S 1+ V0Nl scs) + [F0uallacs) + 10,01 1acs) + 1% 0uall cs) + [F00]12(s).
Together with Corollary 3.8, Proposition 3.9 and (7.95), we obtain:

(7.118)  [|0uN|zoe(sy S 1+ [VOuallLee, , L2(pa) + IV 0uallL2(s) + VOOl z2(s)-

[-2,2

Finally, (7.39), (7.59), (7.88), (7.58), (7.95), (7.96), (7.97), (7.104) and (7.118) yield:

(7.119)
10wallLes, | 2P0 + IVOualle, | L2p,) + IV 0uallL2(s) + IVnOuall ;3 p
HIVNOuall oyt py + ||V?v3wa||L3H—g(Pu) + [0l Lo (s) + (VOO L2(s)
+ [VOuN |l La(s)
Se
and
(7.120) 0N | (s) S 1,

which concludes the proof of (2.32).

7.2. Second order derivatives with respect to w

The goal of this section is to prove (2.33). We first give an outline of the proof.
Differentiating the Equation (7.33) for d,a with respect to w, we obtain:

(7.121) (Vn —a 'A)0%a =2Via+ YVna+2Rs NoN + -+

where the first two terms on the right-hand side come respectively from the commu-
tators [0, ¥] and [0,,, A] (see (7.11) and (7.13)). Since R is in L*(S) by (4.3), V& a is
in L2H—2(P,) by (2.31), and VN8,a is in L2Hz (P,) by (2.32), this suggests in view
of Proposition 5.34 that:

(7.122) 102all <e.

HIVN02al ot ) S

+|0Zal

3 1
L3 H?2 (Py) Ly H2(Py)

Remark 7.3. — Note that we may not differentiate the Equation (7.121) for 82a with
respect to V. Indeed, the term VyRy, no,~ has no structure: unlike Ryy and
Rng,n which were involved in the equation for a and d,a, Ry, ns,n does not con-
tain any contraction with N since 9, N is tangent to P,. Thus, unlike VyRyy and
VNnRno, N, We can not write VyRp, no,v as a tangential derivative using the con-
tracted Bianchi identities for R. In turn, we can not obtain any estimate for V% d2a.
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Next, we turn to the estimates for 926. Differentiating the Equation (7.66) for 9,tr 6
and the Equation (7.70) for 9,0 with respect to w, we obtain:

Vo2tro = Vkyozn + -+,
V282045 = Ryoan + -,
which together with the estimate (4.3) for R and k yields Y920 € L?(S) provided
02N belongs to L>(S).

Finally, we turn to the estimates for 82 N. Differentiating the Equations (7.90),
(7.91) and (7.92) for 0,,N with respect to w, we obtain:

VOEN = 20+,
VNO2N = —a 'VO2a+--- .
Together with the fact that V4,0 belong to L?(S) and d,a belongs to LLH?(P,),
this suggests using interpolation that 2N belongs to L;’OH%(PU). Since % > 1, and
since P, is 2 dimensional, we obtain that 92N belongs indeed to L>(S).

The rest of this chapter is as follows. We first prove the estimates for 92a. Then,
we prove the estimates for 926. Finally, we conclude with the estimates for 92N .

(7.123)

(7.124)

7.2.1. Estimates for 92a. — Recall (7.33) and (7.34). d,,a satisfies:
(7.125) VnO,a—a 'Ad,a = a th,
where h is given by:
h=-Yy na— a"%d,afha — 2V, nVna+20(0,N,Va)
— 0utr0Vna —tr0Y, ya+200,0 + 0,(Vn(knn)) +2RNo,N-

Now, differentiating (7.125) with respect to w and using the commutator For-
mula (7.13), we obtain:

(7.127) VnO2a —a 'Ad2a = —2a" ' dif(V N (0,a)0uN) + O,h +a " hy,
where h; is given by:
hi = —a¥V,_n(0ua) — a"'0,aA(d,a) + 2dit (0, N)V 5 (d,a)
+20(0uN, Y(0,a)) — Outr 0V N (9,a) — tr 0V, (0wa).
Together with the product estimate (5.79), this yields:
(7.128)
[hllz>(s)
S llallzoe () 100N | oo (5) [V (@)l 2(s) + [[0wall o (s) | A(Owa) [ L2(s)
RO 1 o IV O
18024(5) 10N 1222 (5) | 9(0u) 8 5) + 1080813 o 198 @)
+ [[tr Ol a5y 10w Nl Lo (5) [V (Owa) | La(s) + [10wall Lo (s)llllL2(s)

(7.126)

HZ(P,)
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S e(1+ [[diF (3. N) |l + [| 0w tr 4]

; L)
L H2 (Py) L HZ (Py)

where we used in the last inequality the estimate (4.9) for a, the estimate (4.12) for 6,
and the estimate (2.32) for d,a and 9,,N. In view of Corollary 5.16 and the estimate
(7.97), we have:

1PN, 3 oy 100003
S ”vangLQ(S) + ”V(WaWNG)HH(S)
< IVubllL2(sy + IV Val 25y 00 N || Lo (s) + | Vall o) | VAN (s
Se

where we used in the last inequality the estimates (4.9) and (4.11) for a, and the
estimate (2.32) for 9,0 and J,N. Together with (7.128), this finally yields:

(7129) ||h1||L2(S) SE.

Next, we estimate the first term in the right-hand side of (7.127). In view of the
product estimate (5.83), we have:

(7.130) [di#(Vn (0a)0uN) ||
S IV (8ua)|l

Se,

L2H"%(P,)
10N Lo (s) + IVOuN Lo | 12(Py))

L?A‘j’%(l"u)(| [~2,2]

where we used in the last inequality the estimate (2.32) for d,a and 0, N.
Finally, we estimate the second term in the right-hand side of (7.127). We first
provide a decomposition of 92 N. Differentiating (7.16) with respect to w, we obtain:

(7.131) 9(®2N,N) = —g(d,N,d,N),
which yields:
(7.132) 02N =TI(02N) — |0, N|>N.

Next, we compute 9, h. Differentiating (7.126) with respect to w and using (7.132)
and the commutator Formula (7.11), we obtain:

(7.133) Ouh = 2|0,N|*V%a — 2a ' dif(Vn (0,a)0,N) + ha,

where hs is given by:

he = _Wn(agN)a — Yo, n(0ua) — a"20,aA(0,a) + 2a3(0,a)? Aa — a20,,a[0., Ala
— 2Voe iy VNG = 2V y Vo, wa+ 20(02N, Va) +20.6(0. N, Ya) +26(8. N, Yd,.a
— Vn(a)9,N) — 02tr 0V ya — O,tr 0V 5 (D,a) — 20,tr 0V na —tr0Vaz na
—troV,, n(0ua) + 2YaVd2a + 2|Vd,a|* — 2VnaV, nOva =2V, n(a)VNOua
— 2V g2 yaVNa — 2|Y73wNa|2 -2V, n(0ua)VNa =2V, yaVin(Oua) + 20026
+2(0,6)* + Vonknn +2VNknoz N +4Vo,nkno,N + 2V ks, No,N + 2RNo2 N
+2Rs, No,N-
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Together with the product estimate (5.79), this yields:
[h2llz2(s)
S lla™?8uall Lo (5) || ABwal L2(s) + lla™> (0ua)?(| Lo (s) | AallL2(s)
+ lla280a] L () 110w Alal L2 (s) + Vel L2(s) 102N || Lo (s)
+ [V0ual r2(s) 100Nl () + 17V nall 25 |02 Nl o= () + [V all2(5) 10 N | s,
+ | Vallza(s) | VOuN | £4(5) /100N || Lo 5y + 10l 245y 102N | L= (5) [ Vall 24 (s)
+ 1001l L4(5) 0w N Lo (s | Vall La(s) + 0]l s () 10w N (| o< (5) ([ VOwal Lacs)
+ IVnallacs) 100N L= (s)) + |83 tr 0||L[2_2’2]L4(Pu)||vNa||L[°i2y2]L4(Pu)
0ol o 1 [VNOual + [10utr O]l Las) I VallLa(s) 0o N[ L= (s)
+ [[tr 0]l Lacs) I Vall Lacs) 02N | oo sy + It 0]l Lacs) [ VOwall La(s) 10w Nl oo (s)
+ ||Y7@||LZOH%(PU)||Y733@||LiH%(Pu) + [ V8ualZacs)
+IVaalLss IVwallLss) 10Nl L=(s) + Vo, 5 (@l o 113 (p, IVNOwall o 3
+ | VallLs(s) IV vall Las) 102N | e sy + 1 VallZa(s) 100N 1700 sy
+IV0uallss)IVvallLss)l0Nl z=(s) + 1V, 5 (@l oo 13 (p, IVNOwall o 3 5

L2H?(P,)

+ [0l y
+ (IVE]L2gs) + IRl () (182N 1o 5) + 10N e )

Se(t+ 10%allss ,, rary + V020l s ) + IO2N oo + 19261122, sacey);

2]L4(Pu)||339||L[27 Lapy) + 10,0075

—2

where we used in the last inequality the commutator Formula (7.13) and the identity
(7.31), the estimates (4.9) (4.11) for a, the estimate (2.31) for Vya, the estimate
(4.12) for 0,0, the estimate (4.3) for k and R, the estimate (2.32) for d,a, 0,0 and
9, N, and Corollary 5.16. Together with the Gagliardo-Nirenberg inequality (3.9) and
the Lemma 5.12, this yields:

(7.134) 2]l z2(s) S e(1 +[|82all + 102N |5y + IV020] L2(s))-

L2HE (P.)
Next, we evaluate the first term in the right-hand side of (7.133). In view of Propo-
sition 5.23, we have:

010N PRl oy ) S (010N Pl (s) + P @ONP ez, 220 ol
< elllall () 10N s, + IV ||Loo2 .
+IV8N e, , L2po lall (s 18 N o= 5))
(7.135) <e,

where we used the estimate (2.31) for V3 a, the estimates (4.9) (4.11) for a, and the
estimate (2.32) for 9, N.

H™3(P,)

210N |7 (s)
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Finally, in view of (7.127) and (7.133), we have:
(7.136) VNO2a—a 'Ad%a = hs,
where h3 is given by:
hs = —4a *dif(V N (0,0)0,N) + 2|0, N|*Vaa + a thy + ho.
Together with the estimates (7.129), (7.130), (7.134), (7.135) and the estimate (4.9)
for a, this yields:
(7.137)

[lahs]| S AV (0wa)duN) ||

L2H 3 (P,) ~ L2H™3(P,
+ [hallz2(sy + llaha|| L2 (s)
Se(l+ (182 + 03N | =) + IV020] 2 (s))-
Now, in view of (7.136) and Proposition 5.34, we have:
185 all + 103 all +VNnZa]

) + ||a|8wN|2v?Va||LiH*%(Pu)

3
L2H2(P,)

<
L2HE(P,) LeH3 (P,) L2H 3 (P,) ~ ”h?’HLgH—%(Pu)'
Together with (7.137), this yields:
2 2
2l 10l s o

e+ |02l

+IVNORal,, oy

) + ||‘93;N||Lw(5) + ||Y7839||L2(s))~

3
L3 H?2(Py)

L2H3 (P,
Thus, we finally obtain:

(7.138) 105a] +[|0Zal +[[VndZal

1 1
Ly H2 (Py) LZH™ 2 (Py)

Se(l+ ||33;N||L°°(5) + ||Y7839||L2(S))-

3
L3 H?2(Py)

7.2.2. Estimates for 920. — Let us start by computing the trace of 8“,(9\ when seen as
a tensor on P,. Differentiating (7.60) with respect to w, we obtain:

PO(X,Y)=020(X,Y) — %aitrQ(X.Y — (X.N)(Y.N))
+ 0,tr0((X.0,N)(Y.N) + (X.N)(Y.0,N))
+ %tre((X.aiN)(Y.N) + (X.N)(Y.02N) + 2(8,N - X)(0,N - Y)),

which yields:

(7.139) 0045 = 020ap — 5020945 + tx0(0LN) 4(DuN) 5,
so that:

(7.140) tr (020) = tr (926) — 82tr 6 + tr 0|0, N|>.

We compute 92tr 0. In view of (7.64), we have:

(7.141) 02tr0 = 0,,(0.,0.44) = tr (026) + 20,0(ea,Duen).
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Now, in view of (7.2), we have:
(7.142) 0,0(N,.) = —0(0,N,.).
(7.141), (7.142) and (7.25) yield
(7.143) 02tr0 = tr (0%6) + 20(0,N, 0, N).
Finally, (7.140) and (7.143) imply:
(7.144) tr (926) = tr 0|8, N|? — 20(8, N, . N).
We now turn to the estimates for 92tr 6. Differentiating (7.66) with respect to w,
we obtain:
Rtr0 = —9%a + 2knoz N + 2ko, No, N,
so that:
VO2tro = —Vo2a + 2k on n + 2Ry nos v + 2VENa2N 4k, g t+ 2V Ko NoL N,
which in turn yields:
190201l sy < 1902all sy + [Kluie, , oo po (V02N 2z
+ ||Y7N||Lf7272]L4(Pu)”asz”L‘”(S) + ”WawN”L[{ZYZ]L‘l(Pu)HawN”LOC(S))
+ VKl £2(5) (105N | o= (5) + 00N |7 (5))-

Together with the Gagliardo-Nirenberg inequality (3.9), Lemma 5.12, the estimate
(2.32) for 9,a and 0, N, and the estimate (4.3) for k, we obtain:

(7.145)  [[V02tr 0] 12(5) S 1V02allza(s) + (1 + [V202N () + 92Nl = ))-

We now turn to the estimates for W83§ We differentiate the third equation of (4.5)
with respect to w. We introduce the symmetric tensor ¢ on S defined by:

JLA(Py)

~

1
(7.146) o(X,Y) = 0,0(X,Y) + (9(8wN, Y) = tr09,N - Y) N-X

1
+ <9(awN,X) — tr00,N - X) N -Y,

which in view of (7.60) and (7.142) satisfies:
o(N,.)=0(,N)=0.
We may thus apply the commutator Formula (7.21) to o. We obtain:
(7.147) ([Ow,dif]o)a = —trfos,na —b0apoa, N — VNOo,NB + b0, NcOCA
+ (0uN)abpcocs.

Now, in view of the Definition (7.146) of o, and the structure equation for N (4.4),
we have:

(7.148) oaB = du0as,

VNoap = VNO,OAp — é\awNBWAa - é\E)WNAWBa
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YooaB = WcangB + 05, 8vB04c + 0o, N a05c,
which together with (7.147) implies:

([0, dif]0) 4 = —tr 00,00, 8.4 — 0450050, 8 — VNOubo,n5 + 00,8V, ya

(7.149) + @\awNauNVAa + 09, ncO.0c4 + (0.N) 405c0.0c 5.
Now, we have in view of (7.148), (7.70) and (7.74):
(7.150) (difo) 4 = h,

where h is given by:
1 1 ~ —~
h = §Y7A3wtr9 + VNOBwNB — EthI‘O(auN)A + 2tr aeawNA + GABGBBwN

— (8uN) 405c00B + Rag,n — (0uN)aRnN.

Differentiating (7.150) and (7.151) with respect to w, and using (7.149) and the com-
mutator Formula (7.11), we obtain:

(7.152) (dif0,0) 4 = ha,

where h; is given by:

(7.151)

1 1
hy = §Y7A33,tr9 - ivNawtr 0(0uN)a + VNOozna +2VNOu0o,na + Vo, nbo.Na
1 1 1 —~
- ithI‘ 9(85]\7),4 - EVNawtre(awN)A - §W8thr 0(0,N)a + 2tr 9083NA

+3tr 00,09, 4 + 20,tr 000, x4 + 04B050z N + 0,048080, N + 20450.080, N
— (82N)a08c0cE — (0uN) 40u0pclcs — 2(0uN) 405cd.0cE — b5, NcOuwbc A
- é\BWNBWaNNa - gawNawNVAa + Ragzn — (02N)aRNN — 2(0,N)aRNo, N-
h satisfies:
[P1llL2(s) S VA2t O]l 2(s) + IVO] L2(5) (183 N (| o< (5) + 1N |7 (5))
+ V0,0l L2(s) 10w N Lo (5)
+ 1011z 5) 18 a5 (102 Nl o< s)
+ 10N sy) + 10,011 45y 101l 2 () 1N [l v 5
+ 110001l La(5) 101 48) |0 N || e (5 + ||§||L4(S)||Y7a||L4(S)||3wN||%oo(S)
+ Rl z2(s) (102N || Lo 5y + ||5wN||2Loo(s))-

Together with the estimate (7.145) for 9%tr 6, the estimates (4.10) (4.12) for 6, the
estimate (2.32) for 9,0 and 9, N, the estimate (4.11) for a, and the estimate (4.3)
for R, we obtain:

(7153)  lhalliacs) S 1IV02allaqs) +e( + V202N () + 92N ]| 5))-
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Next, we compare di#d,0 to di#d20. Differentiating the Definition (7.146) of o
with respect to w first, and then dif, we obtain:

(7.154) difd,0 = difd20 + ha,
where hs is given schematically by:
hy = YO(82N + (9,N)?) + V8,00,N + 8,0Y0,N + 0(VO>N + 8,NY9,,N).
ho satisfies:
Ihallz2(s) S NV0NL2(s) (102N L sy + ||3wN||ioo(5)) + 1V0u,0]| L2(5) 0w N Lo (5)
+ 1000l e, , 1o IVOLN L2, | Lacp.)
+ ”9”Lffzz]L4(Pu)(”WBEJNHLiZQ]L‘l(Pu) + ||awN||L°°(S)||VawN||L[272,2]L4(Pu))-

Together with the Gagliardo-Nirenberg inequality (3.9), the estimates (4.10) (4.12)
for 0 and the estimate (2.32) for 9,0 and 9, N, we obtain

(7.155) Ihallzacs) S (1 + 12N e (s) + V32N zo(s))

Finally, in view of (7.152), (7.153), (7.154) and (7.155), we have:
(7.156) ||di}(’(33§)||L2(S) SIVZallLzcs) + e + 182N || L= (s) + ||Y7235N||L2(s))-
Next, we estimate YVtr (920). In view of (7.144), we have:

Vir (826) = |0, N> Vtr 6 + 2tr 00, NYO,N — 2Y0(, N, 9y N) — 46(9. N, YO, N).
This yields:

1Wer (920)122(s) S IV0llL2(5) 0N [ oe sy + 1011 23(5) | VO N [l () |0 N | L= (5,

which together with the estimates (4.10) (4.12) for 0, and the estimate (2.32) for 9, N
and 0,0 implies:

(7.157) 1 Vtx (820) | z2(s) < e-
Together with (7.156), we obtain:

14k (928 — tr (9201 12(s) S V02allza(s) + (1 + 102N Lo (s) + V202N [ 12(s))-
In view of the Hodge estimate (5.69), this implies:

19020 - tr (820)) Il 2(s) S 1902all2gs) + (L + 1N 0w (s) + IV N | 12(s)),
which together with (7.157) yields:
(7.158)  [9820l0a(s) < I¥02alliags) + (U + 102N 1m(s) + IO N [ 1xcs)).
Now, in view of (7.139), we have:

V020l 25y S V020l L2(s) + VO tr 0| 2(s) + ||Y7t1°9||L2(s)||5wN||2Loo(S)
+ [tr 0l La() [ VO N || La(5) 100N || Lo (5)-
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7.2. SECOND ORDER DERIVATIVES WITH RESPECT TO w 101

Together with the estimate (7.145) for 92tr 6, the estimate (7.158) for 826, the esti-
mates (4.10) (4.12) for tr# and the estimate (2.32) for 9, N, we finally obtain:

(7.159)  [V826llz2(s) S IV02allza(s) + (1 + 102N 1=(s) + V202 Nl 12s)).

7.2.3. Estimates for 92 N. — Let X,Y two vector fields on ¥ independent of w. We
rewrite (7.90):

(7160) g(anawN, HY) = awgnxny — (awN)HXvaa.

We differentiate (7.160) with respect to w. Using (7.19) and evaluating at X = ey,
Y = ep, we obtain:

9(Va92N, ep) = g(VnOuN,ep)(0uN)a — 9(V40uN, N)(9uN)E
= 02045 — 0,ONB(OuN) 4 — 0,0an(0.N)p — (02N) 4V za
— (0uN)aYV 5(0ua) + (0uN) a(0uN)BVia.
Together with the identities (7.91), (7.92), (7.142), we obtain:
(7.161)
9(V 492N, ep)
=020 — (02N)aVga —2(0.N) AV 5(8ua) + 2(8.N) 4(8,N) sV ya.
Next, we differentiate the identity (7.131). We obtain:
g(VAOLN,N) + g(02N,VaN) = —=2g(V49,N,d,N).
Together with (4.4) and (7.90), we obtain:
(7.162) g(V402N,N) = 0402y — 20,040, N8 + (0.N) 4V, na-
Finally, differentiating (7.92), and using the commutator Formula (7.11), and the
identities (7.2) and (7.25), we obtain:
(7.163)
VNOLN = —0(82N,es)ea — V(02a) + Vo nya+ Va2 N — Vo, N0, N
— 0,0(0uN,ea)es + 2V, n(0ua)N + 2V N(0,a)0uN + 2V, n(a)0uN.
Next, we estimate Y202 N. Differentiating (7.161) and (7.162), we obtain:
IV* 02N |2 (s)
SIVO201 L2s) + (102N || Lo (s) + I VOZN|| 2 rap)(IVallze, | Lap.)

(2,2
2
+ 1V allL2es) + 1Vl 2csy + 100l Les, , 1acpa)) + (100N Lo (s) + V0N le, | La(p.))

[—2,2] [—2,2]
X (”Vawa”L[{zyz]L‘i(Pu) + ||Y723wa||L2(S) + V0.0l 2¢s) + 10lle. . 1a(p.))

(2,2
+ (10N Lo (s) + V0uN e, , 141V Vel L2es) + Va2, |, nace,))-
Together with the Gagliardo-Nirenberg inequality (3.9), the estimates (4.9) (4.11)
for a, the estimates (4.10) (4.12) for 6, and the estimate (2.32) for d,,a, 9,,6 and 9, N,
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we obtain:
||Y7 32N||L2(s S ||77329||L2 y Fe(l+ ||32N||Loo(s + ||Y7 o SN 22(s))
and thus:

(7.164) IV202N 12gs) S 11902001 2(s) + (1 + 12N [ (s))-
Next, we estimate V02 N. In view of (7.163), we have:
(7.165) VNOEN = —-V(02a) + 2V N (0,a)0,N + H,

where H is given by:
H=—0(02N,ea)ea + Vorna+ VnadiN — Vo, yO.N
— 0,0(0uN,ea)ea + 2V, n(0,a)N + 2V, n(a)0,N.
We have:
IVH| z2(s) S (||82N||L°°(S + ||Y732N||L[2 2y LA (Pu ))(||9||L°°
+ V0l 2es) + [ Valloe, | ap,) + 1VVallL2(s)) + IV Vo, n0u N L2(s)
+ ([[0uN | Lo sy + [ V0. N||L © oL u))(”(?we”L[osz]L“(Pu) + V0,012 (s)
+IVouallLex, , Lo, + V80l 2(s)) + (10N [l Lo (s)
+IYV0uNllzee, , 1ap)*(IVallze, , e, + 1V all2(s))-

Together with the Gagliardo-Nirenberg inequality (3.9), the estimates (4.9) (4.11)
for a, the estimates (4.10) (4.12) for 0, and the estimate (2.32) for d,,a, 0,,6 and 9, N,
we obtain:

(7.166) IVH L2(s) S €1+ 102N L= () + V02Nl 2(s))-
Also, Lemma 5.12 yields:
(7.167) 1920}, 0y < 10200 3
The product estimate (5.85) implies:
IV (0a)0uN|| dua)| 10w N[ Lo (s) + V0L N || L
which together with the estimate (2.32) for d,,a and 9, N yields:
<
(7.168) ”VN(a“’a)a“’N”LgH%(Pu) Se
Finally, (7.165), (7.166), (7.167) and (7.168) imply:
(7.169) [VNOIN] +e(LHIOZN | oo 5) FIV*OIN [ 12(s))-

2y L (P)

Lz(Pu)))

L2HZ(P,) ~ SV L2H%(Pu)(

[-2,2]

2
L2H3(P,) S HawanLgH%(Pu)
Next, we estimate the L°>°(S) norm of 92 N. In view of Corollary 5.19, we have:

2
102 Nllp<(s) S V02N za(s) + IVNOENT 13 -
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Together with (7.164) and (7.169), we finally obtain:

(7.170) IV 2N L2(s) + ||VN32N||L2H2 pyt 182Nl L= (s)
< IP820l2cs) + 102all 3, +
Finally, (7.138), (7.159) and (7.170) yield:
(7.171) 165 all +|0Zal +VNnOZa|

3 1 _1
L3 H2(Py) Ly HZ2(Py) L3H™2(Py)

VOOl z2cs) + IV 0N (z2(s) + IVNOENI Lo 3 ) S

and:
(7.172) 105Nl = sy < 1,
which concludes the proof of (2.33).

7.3. Third order derivatives with respect to w

The goal of this section is to prove (2.34). We first give an outline of the proof.
We start with the derivation of an equation for 93u. Recall that div(N) = tr6,
N =Vu/|Vu|, a =1/|Vu| and tr =1 — a + knn, so that:

Vu 1
(7.173) d1v< ) 11— = +knn.
[V [Vl
Differentiating (7.173) three times with respect to w yields:
(7.174) (VN —a *A)0Pu=Vd2a+--.

In view of the estimate (2.33) for 92a and the parabolic estimate (5.117), this suggests
that 93u satisfies the following estimate:

(7.175) 103 || Pyt |03

Sl g gy + 1900

L2H3 L2H?(P,) ~

Now, since 92u € L°H E(Pu) and P, is 2-dimensional, we obtain that §3u belongs
to L*(S).

The rest of this section is as follows. We start by deriving the equations for 93u
and 02 N. Then, we prove the estimates for 92 u.

Remark 7.4. — Note that §2u = 93 (z.w) on z.w = —2, which yields:
(7.176) |02u| ~ || when |z| — +00 on z.w = —2.

This lack of decay is a problem when one tries to solve (7.174). However, recall from
Chapter 4 that the final solution will be equal to z.w in the region |z| > 2 so that the
estimate (2.34) is clearly satisfied there. Thus, we may estimate ¢392 u instead of 82 u,
where ¢ is a smooth function on ¥ equal to 1 on |z| <2, ¢ > 0on X, and ¢ ~ |z|~3
when |z| goes to infinity. Then, pd3u is L? on z.w = —2. Also, the lower order terms
generated by commuting (7.122) with the multiplication by ¢ are all under control
since they are localized in a compact region of |x| > 2 where u is explicitly given
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by u = z - w. In the rest of the section, we omit this detail and we assume that the
decay of 82u is sufficient at z.w = —2.

Remark 7.5. — One may ask whether it is possible to obtain estimates for higher
order derivatives of u and a with respect to w. Consider first 9%a. Differentiating the
Equation (7.127) for 82a twice would yield:

(VN —a *Q)3ra=V3d2a+ - .

Now, we notice in Remark 7.3 that one can not obtain an estimate for V%.a, so
that the above equation for 9%a is useless. On the other hand, differentiating the
Equation (7.174) with respect to w, we obtain:

(7.177) (Vy —a ') u=Vd3a+ - .
Now, differentiating Vu = a~' N three times with respect to w, we obtain:
03a=—aVNOiu+---,

which together with (7.175) suggests that 83a belongs to L2Hz (P,). Thus, in view of
(7.177) and the parabolic estimate (5.115), we see that d2u is at best in LZOH% (P.)
which does not embed in L*°(S). Interpolating with (7.175), we see that the best
estimate we might hope for is:

1
(7.178) 93H0y € L>(S) for all § < 5

Remark 7.6. — Note in conjunction with Remark 2.13 that the estimate (7.178) would
still be at least half a derivative away from allowing to apply the TT* method in
step C2.

7.3.1. Derivation of the equation for 92 N and 93u. — We first establish the link be-
tween 92 log(a) and 92 u:

Lemma 7.7. — 92 log(a) and 82u are linked by the following equality:

(7.179) 92 log(a) = —aV N (82u) — |0,N|? + (9, log(a))?.

Proof. — We start with the equality Vu = a~!'N. Differentiating it with respect to w,
we obtain:

(7.180) Vo,u=a"'0,N — a1, log(a)N,
which together with (7.16) yields:
dou = a td,N,
(7.181) {VZ&UU = —a"'9, log(a).
Differentiating the second equation of (7.181) with respect to w yields:
(7.182) VnO2u + Vo, nO0uu = —a" 92 log(a) + a~ (0, log(a))*.

Together with (7.181), this yields (7.179). O
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Next, we establish the link between 93N and 82 u:

Lemma 7.8. — 93N and 82u are linked by the following equality:
BN = aY(93u) + (302 log(a) — 3(0, log(a))?)d,N + 30, log(a)d> N

(7.183) . .
+ (—39(0u,N,0;N) + 30,,10g(a)|0,N|*)N.

Proof. — Differentiating the first equation of (7.181) with respect to w and using
(7.11) yields:

(7.184)  YVOiu— Yo, n(0uu)N — VN (Ou)0uN = a'0?N —a=19, 1og(a)d,,N.
Together with (7.181), this yields:

(7.185) 02N = aY(d%u) + 28, 1og(a)d,N — |8, N|>N.
Differentiating (7.185) with respect to w, we obtain:
(7.186)

03N = ad,, (V(0%u)) + ad,, log(a)V(02u) + 207 log(a)d, N + 208,,log(a)d> N
—29(92N,8,N)N — |0,N|*d,N.
(7.11), (7.185), (7.179) and (7.186) yield:
BN = a(V(Du) — Vo, n(02u)N — VN (82u)0,N) + ad,, log(a) V(82 u)
+ 282 log(a)d, N + 20,,log(a)0>N — 29(8>N,8,N)N — |0, N[*0,N

(7.187) . ) , )
= aY(9,u) + (39, log(a) — 3(8., log(a))*) 0N + 30, log(a)0,N
+ (=39(0,N,92N) + 30, log(a)|0,N|?)N,
which implies (7.183). O

We finally derive an equation for 82 u:

Lemma 7.9. — 03 satisfies the following equation:
(7.188) (Vn —a 1A)03u
= 2a"*Vga n(log(a)) — 2a"*k(N,03N) — a™'0,, log(a) ADZu + 2a_1Y78WNVN83u

+ 82 log(a)(3a=28,,tr 0 — 2a='9,, log(a) — 8a~>Y,_ log(a) + 4a~*k(N,d,,N))
+ 4a_2Y78wN8u2) log(a) + 6a—2v33Naw log(a) — 124720, log(a)V 2 v log(a)
+ 124729, log(a)k(N,92N) 4+ 6a20(d,N,02N) — 3a~*tr 0g(d,N, > N)
— 6a"?k(0,N,02N) —3a"'g(0,N,02N) — 5a~%(9,, log(a))?0,tr 0
+2a729,0(0,N,8,N) — 16a~29,, log(a)V_ n (0w log(a)) — 2a71(8,, log(a))?
+a™2(0,, 10g(a))2(16y78wN(10g(a)) —8k(N,0,N)) + 0, log(a)(4a"*tr 0|0, N |?
—8a720(d,N,8,N) + 12a"%k(0,N,d,N) + 3a 1|0, N|?).
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Proof. — We start by obtaining an equation for d,,u. We differentiate the first equa-
tion of (4.5) by w:

(7.189) Outr0 — 2k(N,0,N) = —ad, log(a).

By (4.4), we have tr§ =div(N), and differentiating with respect to w, we obtain:
(7.190) O,tré = div(9,N).

Now, for any vector field X tangent to P,, we have:

(7.191) div(X) = dif(X) + YV log(a),

which together with (7.16) and (7.190) yields:

(7.192) Outr0 = dif(9,N) + V,_ y log(a).

(7.181), (7.189) and (7.192) imply:
(7.193) (Vy —a 'A)d,u = a ' Vlog(a) Vo, u + a_QWBWN log(a) — 2a~%k(N,d,N),
which together with the first equation of (7.181) yields:
(7.194) (VN —a *A)0,u = 2a_2Y76wN log(a) — 2a?k(N, 8, N).
We differentiate (7.194) with respect to w to obtain an equation for 92:
VN (020) + Vg, (Outs) — a™ A@20) — D, A)(Dt) + a0, (10(a)) AOu)
= Qa*QW&JN(@w log(a)) + 2a~ >V a2 y(log(a)) — 4a~29, log(a)V 5, n log(a)

(7.195)
—2a"?k(N,92N) — 2a%k(8,,N,0,N) + 4029, log(a)k(N,d,N).

The first equation of (7.181) and (7.192) yield:

(7.196) A(D,u) = at9,trf — 2a_1Y78uN log(a).
(7.13), (7.181), (7.195) and (7.196) imply:
(7.197)

(VN —a ' R)d%u = —2a7"V*(9,u)(N,0,N) + 2a~>V g2 v (log(a))
—2a72k(N,92N) + 2a720,,(log(a))d,tr 6 + 2a_2Y76wN(8w log(a))
—6a720, log(a)V,_ n log(a) + 4a729,, log(a)k(N,,N)
—a %tr0|0,N|* - 2a"%k(0,,N,d,N) — a0, N|*
Using (7.181), we rewrite V?(9,u)(N,0,N) as:
V2(0,u)(N,0,N) = Vo,n(VN(8uu) = Vv, N (Duw)
¥y, (a0, 108(0)) — 00N, €)Y 4 (Bt
= —a71F,_ (0, 108(a)) + a0, 10g(a) Y, (108 (a))
—a '0(8,N,d,N).

(7.198)
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(7.197) and (7.198) yield:
(7.199)
(Vy —a” ' f)u
= 2a_2V35N(10g(a)) —2a"?k(N,02N) + 2a~20,,(log(a))d,,tr
+ 4a72y78wN(8w log(a)) — 8a~20,, log(a)V 5, v log(a) + 4a=29,, log(a)k(N,d,N)
—a"%tr0|0,N|? 4+ 2a"20(0,N,0,N) — 2a*k(0,N,d,N) —a |0, N|*.
Differentiating (7.199) with respect to w, we obtain:
(7.200)
(Vn —a AP u + WawN(?f,u +a719,, log(a)AD%u — a™ 1[0, A]0%u
= 2a_2VagN(log(a)) —2a72k(N,03N) + 24720, log(a)d>tr 0
+ 92 log(a)(2a=28,,tr 6 — 8a_2Y73wN log(a) + 4a=2k(N,d,N))
+ 4a*2Y78wN(‘35 log(a) + 6a~*V g2 nO,, log(a) — 124729, log(a) Vg2 v log(a)
+ 84729, log(a)k(N,92N) + 4a%0(d,N,02N) — 2a™tr0g(0, N, 5> N)
—6a"?k(0,N,02N) —2a"'g(0,N,02N) — 4a=%(9,, log(a))?0,tr 0
—a"20,tr0|0,N|? + 2a729,0(8,N,d,N) — 16a~29, log(a) V5, n (9w log(a))
+a"%(0, log(a))Q(IGWBMN(Iog(a)) — 8k(N,d,N)) + 8, log(a)(2a~2tr 0|9, N |?
—4a720(0,N,0,N) + 8a"2k(0,N,0,N) 4+ a *|0,N|?).
Using (7.185), we have:

(7.201) WawN(?f,u =a"'g(0,N,92N) — 2a~'9, log(a)|0,, N|>.
(7.13) and (7.31) yield:
(7.202)

[0, AlO2u = —2V?02u(N, 0,N) — 0,tr 0V Nou — tr OV, yO2u
= —2y78quNagu + 260(0,,N, Y02u) — O,tr OV 02 u — tr GWBWNQ%u,
which together with (7.185) and (7.179) implies:
(7.203)
[On, AO2u = —ZWSWNVNaiu +a=10,tr 092 log(a) + 2a~'0(8,N, 52 N)
—a 'trfg(8,N,9:N) — a~10,tr (9, log(a))? + a~'9,tr 0|0, N|?
— 40719, 10g(a)8(d, N, 8, N) + 2tr 69, log(a)|0, N|2.
Differentiating the first equation of (4.5) twice with respect to w, we obtain:
(7.204)  9%trO = —ad? log(a) — a(d, log(a))? + 2k(N,d2N) + 2k(d,N, 0, N).
Finally, (7.200), (7.201), (7.203) and (7.204) imply (7.188). O
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7.3.2. Estimates for 93u. — The Equation (7.188) takes the form:

(7.205) (VN —a 'A)0Pu = h,

where h is given by:

h = 2a"*V s y(log(a)) — 2a~*k(N,93N)
— a9, log(a)pO%u + 2a_1Y76wNVN8£u + 02 log(a)(3a~20,tr 0 — 2419, log(a)
— 8a_2776uN log(a) + 4a?k(N,8,N)) + 4a_2Y76wN83, log(a)
+ 6a_2V35N8w log(a) — 124720, log(a)V g2 v log(a)
+12a729,, log(a)k(N,92N) + 6a20(,N,02N) — 3a"*tr0g(d,N, 92 N)
— 6a"?k(0,N,02N) —3a"'g(0,N,d2N) — 5a~%(9,, log(a))?d,tr o
+2a729,0(0,N,d,N) — 16a=20,, log(a)V,_ (9. log(a)) — 2a71(d,, log(a))?
a=2(d, log(a))2(16y78wN(log(a)) — 8k(N,8,N)) + 0., log(a)(4a=2tr 0|0, N |?

—8a720(9,N,8,N) + 12a%k(0,N,9,N) + 3a~ 0, N|?).

Let 0 < b < % We estimate the norm of h in L2 H®(P,). Using the product estimate
(5.78), we have:

12l 22 £ (P,
S lla™*Vos v (log(a)) 2 o) + ||85N||L3H1(Pu)||a_2k”LZOH%(Pu)
10l o A + o™ W, T2l e

+ 1182 1og(a) | 2 12 e, (la >0t 6] + a0 108, 3

Lo HZ (Py)
+ ||a_2y78wNIOg(a)”Lon%(Pu) + la™2k(N, 5wN)||LZ<,H§(Pu))

+ a2V, n 02 108(a)l L2 o (p,) + lla™2Voz N8 l0g(a)l| L2 1 (p,)
+ lla=20, log(a) || e 1 (P, 1O N | [V log(a)|| L2 m1(p,)

+ [|la=260,N||

L H2(P,)
+ 102N |2 1P, (la ™28, Jog (@) || oo 1 (o) 1Kl
+ lla=2tr 69, N|| + lla=2kduN]|

1 1
LEH?2(Pu) L¥H2(Py)

LeHZ (P,) LeHZ (P, ))
+ 110710 108(0) 21 (o 10800l 3 ) + 10000 1y 18 o N0 0N e
10,108 o 3 ol 0N 12x, 21 po|F (o Tog(@) 15 )
+ 10720, 108(0) 13 ) 19 108 B e 11 ) + 102808 @ 21,
X IV, n 008@ 1 13 oy + 10N 3 )
+ 1192 108(@)l| = 11 e, (16 + %] a0 N1z 1 (p).

Together with the embedding (5.74), the estimates (4.9) and (4.11) for a, the estimate
(4.10) and (4.12) for @, the estimates (4.3) (4.13) for k, the estimate (2.32) for J,a,

1
LeHZ(P,) LeH?Z (P,)
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0, N and 9,0, and the estimate (2.33) for 92 log(a) and 92N, we obtain:
(7.206)
Al Lz o (P,
S ||a_2V83N(10g(a))||L3Hb(Pu) + 5||4A85u||LﬁH1(Pu) + ||a_1y78wNvNaf;u”LiHb(Pu)
+ 1672V, n 02 10g(a) | L2 o (p,) + lla™> Vo2 y O l0g(a)l| L2 o (p,)
+e+ el 0N L2 1 (-

Next, we estimate the various terms in the right-hand side of (7.206) starting with

the fifth one. Using the decomposition (7.132) of 2N, we have:
a_2V,93N8w log(a) = —a~ %0, N|>*V N0, log(a) + a_QWH(BQ ~) 9. log(a).
Together with the product estimate (5.78), this yields:
(7.207)
0= a3 30, 108(0) L3 1) S o™ N I s ) 19 0 1080y 4

a2 Ny ) IV ToB(@) 230 e,

Se

where we used in the last inequality the embedding (5.74), the estimate (4.9) for a,
the estimate (2.32) for d,a, 9, N, and the estimate (2.33) for 92 N.

Next, we estimate the first term in the right-hand side of (7.206). We first provide
a decomposition of 83 N. Differentiating (7.131) with respect to w, we obtain:

9(05N,N) = =39(92N,9.N),

which yields:
(7.208) 3N =T(d3N) — 3g(02N,d,N)N.
We obtain:

a=?V g3 n(log(a)) = —3a~2g(82N, 0, N)Vy (log(a)) + ™ Vg vy (l0g(a)).
Together with the product estimate (5.78), this yields:
lla=*V oz n(log(@) | 2 e (p,) S NOZN ]

0N a2 a2 T 08@] 13 o,

(7.209) S e+ 105N Lz m(puy)s

where we used in the last inequality the embedding (5.74), the estimates (4.9) (4.11)
for a, the estimate (2.32) for 9, N, and the estimate (2.33) for 2 N.
Next, we estimate the fourth term in the right-hand side of (7.206). We have:

a_QV(%N@i log(a) = dit(a=28% log(a)d,N) — dit(a=28,N)5? log(a).
Together with the product estimates (5.84) and (5.78), this yields:
(7.210)  [la™?Vy, nO2 log(a)ll Lz mo(p,)

LeH}(Py) la™0uN | Lo 11 (2, IV v (log (@) | 2 711 ()

)
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< ldik(a202 og(@)0 N) 22 1o p,) + ldik(a 20, N)02 Log(a) | 2 s p,)
S (102108(@) 1, 13 o, + 102108, . 3 ) (1020 N 105

+IV(@20uN)lLee, . 12(py) + |dik(a 20, N)| L2 r1.(py))
<e

~ =)

[-2,2]

where we used in the last inequality the estimate (4.9) for a, the estimate (2.32)
for 8, N, and the estimate (2.33) for 92 log(a).
Next, we estimate the second term in the right-hand side of (7.206). In view of
(7.185), we have:
M(02N) = aV(8%u) + 20, log(a)d, N.
Differentiating, we obtain:
A (TILN)) = ap(Ou) + V(a) - V(05u) + 2V 5, v (9 log(a)) + 20, log(a)dik (9. N),
which together with (7.185) implies:
A(D*u) = a1k (TI(82N)) — a_QWH(BzN)a + 2a_1Y78uN(a)8w log(a)
- 2a_1Y78wN(6w log(a)) — 24718, log(a)dik(d,N).
This yields:
(7.211)
A2l L2 2 (P
< (la™ zee(s) + 1V (@ Nllze, , aep) (IdRIIOIN) 22 12 p)
+ [ V* 0. log(a)ll 2 (5) 10N | o (5)) + 177 all 2 (102N | o= s)
+ 18, 10g(@) | Lo () 10N || o= (59) + 1778 Log (@) 12(s) la ™" B N [ o= s
+ 10, 10g(@) | oo () I VO N [l 12 111 1) + V70w Log (@)l 2 () | VO N |1, , 14
Se

where we used in the last inequality the estimates (4.9) (4.12) for a, the estimate
(2.32) for d,a and 9, N, and the estimate (2.33) for 52 N.

Next, we estimate the third term in the right-hand side of (7.206). Differentiating
the identity (7.179), we have:

a_lyawNVNé)iu
= a_lvawN (—a_lag log(a) — a |0,N|? + a~ (8, log(a))z)
= —a" Y, n(9210g(a)) + a7*V,, y log(a)(9 log(a) + [0.N|* — (9., log(a))?)
—2a720,N - Yy nOuN + 20720, log(a)V,_ y (0. log(a)).
Together with the product estimate (5.78), we obtain:
(7.212)
”a_lya_,NvNaiu”LiHb(Pu)
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S eV, n (02 0g(@)llz e, + e Vo, n log(@) . g, (105 ToB(@) 22 12 P
+ 100N L 1 (P) 10w Nl 22 12 (P, + 110w l0g (@)l Loe 112 (P, |0 J0g (@) | 22 11 P,))
+ 10w N || e 51 (P) VO N 2 1P,

+ 110, 10g(@) . 3, 1W00 Log (@)l 1z 1. (P 100 Nl o rr1 )
<e,

where we used in the last inequality the estimate (7.210), the embedding (5.74), the
estimates (4.9) (4.11) for a, the estimate (2.32) for 9,a and 9, N, and the estimate
(2.33) for 02 log(a).

Finally, in view of (7.206), (7.207), (7.209), (7.210), (7.211) and (7.212), we obtain:

(7.213) 18l 2 mepy S €+ €lON | L2 1 (p)-

In view of the Equation (7.205) for 82u, the estimate (7.213), and the estimate (5.117)
for parabolic equations, we obtain:
(7.214)

102 ull L2 2+ (py) + 105Ul Lo rrvo(pyy + IV NOS Ul L2 o (py) S € + 02N L2 1 (P,

forany0<b<%.
Next, we estimate 92 N. Recall (7.183):

03N = aY(d3u) + (392 log(a) — 3(d,, log(a))?)d, N + 30, log(a)d> N
+ (—39(8,N,92N) + 39, log(a)|0,N|*)N.
Together with the Gagliargdo-Nirenberg inequality (3.9), this yields:
(7.215)
SN Nz 12 (o)
S (llallpee sy + ||Y7a||ij2y2]L4(Pu))||azu||LiH2(Pu)
+ (162 0g(@) L2 11 ey + (19 108(@ 311y + 101 1oB(@) | =(5))?)
% (10Nl 13 (pyy + 185N 5)) + (10, 108(0) 1 15 + 100 108(@)]| <)
10N e 1Py + 19N o (5)) (182 N 2 12y + 182 N )
+ (|18, 10g(a) |l L 1 (p,) + 1180 10g(a) || Lo () (10w N | oo 1 (P + 100N [ (5))?
S e+ [105ullz2 2 (p,)),
where we used in the last inequality the estimates (4.9) (4.12) for a, the estimate
(2.32) for d,,a and 9, N, and the estimate (2.33) for 82 log(a) and §2N. (7.214) and
(7.215) imply:
182 ull L2 r2+o () + 1 ull oo rrve(pyy + IVNOSull Lz me(p,) S e + 1850l 2 m2(p,)),
for any 0 < b < % This yields:

(7.216) 103 ull L2 o+ () + 105wl Lo rvnpy) + IV NOSull L2 o (p,) S &,
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for any 0 < b < 3. Now, the strong Bernstein inequality for scalars (5.61) yields:
183 ull oo sy S D IR0 ullpo(s)
Jj=0

S PIPddul i, , r2p)
Jj=0

S Z 277° 103 ull Lo 1+ (P,
Jj=0
S ”63“”L3°H1+b(Pu)a
where the last inequality hods for any b > 0. Together with (7.216), we finally obtain:
103 ull Lo (s) S 1.
This concludes the proof of (2.34).
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CHAPTER 8

A GLOBAL COORDINATE SYSTEM ON P, AND X

The inequalities in Chapters 3 and 9 have been derived under the assumption
that P, can be covered by a finite number of charts satisfying the conditions (3.7)
and (5.32) such that the constant ¢ > 0 in (3.7) and (5.32) and the number of
charts is independent of u. In this chapter, we prove that a covering of P, by such
coordinate systems exists. We first prove the existence of a global coordinate system
on P,, which corresponds to the proof of Proposition 2.8. We then show that (3.7) and
(5.32) hold for this global coordinate system on P, with a constant ¢ > 0 independent
of u. Finally, we also introduce a global coordinate system on ¥ for which we control
the determinant of the corresponding Jacobian, which corresponds to the proof of
Proposition 2.9.

8.1. Proof of Proposition 2.8

Recall the Definition (2.35) of ®, : P, — T,,S%
b, (x) = dyu(z,w),
where T,,S? is the tangent space to S? at w.

Step 1. ®, is a local C* diffeomorphism. — We first prove that ®, is a local C!
diffeomorphism. Using (7.181) we obtain a formula for d®,,:

(8.1) d®, = Yo,u=a"19,N.

In particular, if ej,es is an orthonormal frame on TP, and (p,%) are the usual

spherical coordinates on S?, we have:
g 0 N7el g 0 N761

(8.2) Jacw, = ot [ 0N e)(OpN e}
9(0,N, e2)g(9y N, e2)

Our estimates for a and 9, N together with (8.2) imply that we control ®, in C*. We

deduce a formula for (Jac®,)*Jac®,, from (8.2):

9(0,N,8,N)g(0yN, BWN)>

8.3 Jac®,)*Jac®, = a2
(&) ( : (g(&pN, 9,N)g(0yN,0,N)
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114 CHAPTER 8. A GLOBAL COORDINATE SYSTEM ON P, AND X

which we denote for simplicity by:
(8.4) (Jac®,)*Jac®, = a"2g(d,N,0,N).

Recall that u coincides with z.w in |z| > 2, so that (Jac®,)*Jac®, is equal to the
2 x 2 identity matrix I in this region. According to (2.30) and (7.116), we have:

(8.5) |(Jac®,)*Jac®y, — I|| 1 (x) S &
so that | det((Jac®,)*Jac®,) — 1| < €. In turn, this yields:
(5.6) I det(Fac®, )| — 1 () < <.

From the fact that ®,, is C! and (8.6), we deduce that ®,, is a C*! local diffeomorphism.

Step 2. ®,, is onto. — We continue by showing that &, is onto. The image of &, is
a nonempty subset of T,,S? which is open since it is a local diffeomorphism at each
point in P,. Let us show that the image of ®,, is also closed in T,,S?. Indeed, consider
a subsequence ®,,(z,) = y, that converges to some y in T.,S?. In particular, y,, is a
bounded sequence. Since u coincides with z.w in the region |z| > 2, it is easy to check
that

lim |®,(2)] = +o0,
TEP,, |x|—+o00

so that x,, must be a bounded sequence too. Thus, we may extract a subsequence
from z,, that converges towards some z € P,. Finally, we have ®,(z) = y by the
continuity of ®,, so that the image of ®, is closed. Thus, the image of ®, is a
nonempty open and closed subset of T,,S%. Since T,,S? is connex, the image of ®,
coincides with 7,,S?, and ®,, is onto.

Step 3. ®, is one-to-one. — We conclude the proof of Proposition 2.8 by showing
that ®, is one-to-one. Let us assume the contrary. Then, there exists 1 and x5 in P,
such that z7 # z2 and ®,(z1) = @, (x2). In particular, using the Definition (2.35)
of ®, and the usual spherical coordinates (¢, 1) on S?, we have:

(8.7) Opu(z1,w) = 0pu(ze2,w) and Oyu(z1,w) = Opu(zs,w).
We define o := 9, u(z1,w) and 8 := dyu(z1,w). (8.7) implies that:
(8.8) {90,u(.,w) =a} and {9yu(.,w) = B} intersect at two distinct points in P,.

Our goal from now on is to prove that the situation described in (8.8) can not
happen. Let us first show that the level curve {J0,u(.,w) = a} is connex in P,. Note
that {0, u(.,w) = a} coincides with the union of two half straight lines in the region
|z| > 2 since u coincides with z.w there. Let us call C_ and C the connex component
containing each of these half straight lines. Let zy a point on {0, u(.,w) = a}. We
consider the following curve:

dp
(8.9) 2 = 9N (u(7), 1(0) = zo.
Since 9, N is tangent to {J,u(.,w) = a}, we see that the curve y is contained inside

{0yu(.,w) = a}. Note also that according to (8.3) and (8.5), we have |0,N| ~ 1
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everywhere, so that p exists for all 7 € R and does not have a limit in P, when
T — Fo00. Let us prove that:
(8.10) lim |u(7)| = +oo.

T—t00

Indeed, if (8.10) does not hold, then we can construct a sequence (7)nen
such that 7, — £oo and pu(7,) — z for some z in {Jd,u(.,w) = a}. Now, since
Vd,u =a '9,N(z) # 0, the implicit function theorem implies the existence of a
neighborhood V' of z in P, such that {0,u(.,w) = a} coincides with a single arc of
curve in V. Let ng € N large enough such that u(r,) € V for all n > ng. Then, for
each n > ng and for 7 sufficiently close to 7,, u(7) lies inside V and is therefore on
this arc of curve. Since p does not have a limit in P, when 7 — 400, this implies
that u(7) covers the whole arc of curve inside V for each n > ng and for 7 sufficiently
close to 7,,. Thus, u(7) must be periodic.

Let us now consider the connex components of P, \ {u(7), 7 € R}. If there is only
one such component, then there is a neighborhood W in P, of {u(7), 7 € R} where
Opou # ocon W\{u(71), 7 € R} and W\ {u(r), 7 € R} is connex. Thus, either d,u > a
everywhere on W \ {u(7), 7 € R}, or ,u < o everywhere on W \ {u(7), 7 € R}. In
both cases, 0,u reaches a local extrema on {u(7), 7 € R}, and its gradient vanishes.
This is impossible since Yd,u = a~'d,N(z) # 0 everywhere.

Assume now that P, \ {u(7), 7 € R} has at least two connex components. Since
{u(T), T € ]R} is periodic, it is compact, and at least one connex component must
be precompact. The boundary of this connex component is {u(7), 7 € R} where
0d,u = . So O,u reaches a local extrema inside this precompact connex component,
and its gradient vanishes there. This is impossible since a=*8,N (z) # 0 everywhere.
This concludes the proof of (8.10).

Since (8.10) holds, this means that any point o in {0,u(.,w) = a} belongs either
to C_ or to Cy. We now prove that C_ = C+. Assume the contrary. Consider z for
example on C... Then since C; coincides with a half straight line in the region |z| > 2,
(8.10) implies that C'; N{|x| > 2} is covered at least twice by u(7) (when 7 — —oo and
when 7 — 400). Thus, u(7) takes at least one value twice and must be periodic, which
is in contradiction with (8.10). Thus C_ = Cy and the level curve {0, u(.,w) = a} is
connex in P,.

We now prove that the situation described in (8.8) can not happen. Let z; and z2
the two distinct points of (8.8) where {O,u(.,w) = a} and {9yu(.,w) = B} intersect.
Since the level curve {O,u(.,w) = a} is connex in P,, {O,u(.,w) = a} \ ({1} U {z2})
has three connex components in P,. Also, since {O,u(.,w) = a} coincides with
the union of two half straight lines in the region |z| > 2, one of these three con-
nex components is precompact. Let us call C' this precompact connex component
of {0, u(.,w) = a}\ ({z1}U{z2}). Note that its boundary 0C consists of {z1}U{z2}.
Then, since Oyu(z1) = Oyu(z2) = B by (8.7), Oyu reaches a local extrema at a point z
inside C. Thus, the tangent vector to {O,u(.,w) = a} and {Oyu(.,w) = B} at £ must
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be collinear. This implies that 0, N (z) and 9, N (z) must be collinear. It is impossible
since (8.3) and (8.5) yield |0,N| ~ 1, |0,N| =~ 1 and |g(0,N,0yN)| Se.

Finally, we have proved that the situation in (8.8) can not happen so that ®,, is
one-to-one. This concludes the proof of Proposition 2.8.

8.2. The control of the Christoffel symbols

We now show that the global coordinate system induced by ®,, on P, satisfies (3.7)
and (5.32) such that the constant ¢ > 0 in (3.7) and (5.32) is independent of u.

Proposition 8.1. — Let w € S?. Let &, : P, — T,S? defined by (2.35). Then, it
induces a global coordinate system on P, which satisfies:

(8.11) aB(P)EAEP — 67| Selél?,  uniformly for all p € R
Moreover, the Christoffel symbols I‘gc verify,
(8.12) > / ITAc|2datda? < 2.

A,B,cVR?

Proof. — The coordinates functions on P, induced by the global C! diffeomorphism
®,, defined in (2.35) are given by:
(8.13) z1 = 0pu(.,w), 2 = Oyu(.,w),
which using (8.1) implies:
9 _ 9
61)1 n 6:1;2
Since vap = 9(32, 32-) (8.3), (8.5) and (8.14) imply (8.11).

We now turn to the proof of (8.12). By definition of the Christoffel symbols I'4 -,
we have:

(8.14) a”'9,N, =a"'0,N.

(8.15) =g <VBajc’ 824) :
In view of (8.14) and (8.15), the Christoffel symbols are of the form:
(8.16) I'=0a"g(Vo,n0uN,0,N) — a"°V,_ yag(0,N,0,N),
which together with (7.108) implies:
(8.17) I'=0a"%9,0(0,N,0,N) —2a"%Y, yal0.N|*
(2.30), (2.32) and (8.17) imply:
(8.18)
ITl|zee 2Py S 1000l Lo 2P 100N (7o 55y + V0l Lo 2Py 100 N 130 () S €
which is (8.12). This concludes the proof of Proposition 8.1. O
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8.3. Proof of Proposition 2.9

Let w € S%. Recall the Definition (2.36) of ® : ¥ — R3:

O(z) = u(z,w)w + dyu(z,w) = u(z,w)w + P, (z),
where ®,, has been defined in Proposition 2.8.

We start by showing that @ is one-to-one. Assume that ®(z1) = ®(z2) for z; and
%9 in ¥. Then, since the image of ®, is contained in T,,S?, w®P,(z)=0forallz € &,
so we have from (2.36):

(8.19) u(ry,w) = u(x2,w) and Py, ) (21) = Py(a,.w)(T2).

Since ®,, is one-to-one by Proposition 2.8, (8.19) implies 1 = x2. Thus, ® is one-to-
one.

We now prove that ® is onto. Let y € R?. Then y = (y.w)w + 3’ where y’ belongs
to T,,S?. Let u = y.w. Since ®,, is onto by Proposition 2.8, there exists € P, such
that ®,(z) = y'. Thus, u(z,w) = y.w and P, (z) = y' so that ®(z) = y by (2.36).
Therefore, ® is onto.

We now turn to the proof of (2.37). Using the fact that Vu = a~' N together with
(7.181) we obtain a formula for d®:

(8.20) d® = (Vu)w + Vo,u=a"'Nw+a '0,N —a'9,aN.
In particular, if ej,es is an orthonormal frame on TP, and (p,%) are the usual
spherical coordinates on S?, we have:

1 —0ya —0ya
(8.21) Jac®k =a" |0 g(@,N,e1) g(dyN,e1)

0 g(0,N,e2) g(OyN,e2)
We deduce from (8.21) a formula for (Jac®,,)*Jac®,,:

1 —8¢a —6¢a
(Jac®,)*Jac®, = a *x | —9,a  (8,a)? + g(8,N,8,N)  d,adyag(d,N,d,N)
—0ya 8¢a8¢,a+g(8¢N, QON) ((9wa)2 +g((9wN, 8¢N)

Taking the determinant yields:

(8.22) det((Jac®)*Jac®) = a2 det((Jac®,)*Jacd,,),
which together with (8.5) implies:
(8.23) [det((Jac®)*Jac®) — 1| g (x) Se.

(8.23) yields (2.37). This concludes the proof of Proposition 2.9.
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CHAPTER 9

ADDITIONAL ESTIMATES

This chapter is dedicated to the proof of Proposition 2.10, Proposition 2.11 and
Proposition 2.12.

9.1. Proof of Proposition 2.10

We start with the proof of the estimate (2.38). We first derive an estimate for VN
and V2N. In view of the structure Equation (4.4), we have:

IVNIlz2es) + IV N r2(sy S 10ll2(s) + la™*Va || r2s)
+ VOl L2(s) + V(e Va) |l p2(s)
(9.1) Se+IV(a'Va)llp2s),

where we used in the last inequality the estimate (4.9) for a and the estimate (4.10)
for 6. Now, we have:

IV(a='Va)lz2s) S IV(a™'VallLzs) + [Vva~ ! Va | 2s)
Slla ™z (IVVall2(sy + [V N, Vallpzs))
+ 672 = (s) I VallZa(s)
Se+ [V, Vlallzas)

where we used in the last inequality the estimates (4.9) (4.11) for a. Together with
the commutator estimate (2.18), we deduce:

V(e 'Va)lr2s) S e+ 1V, Vel rzs)

Se+ (10llLacs) + la™ Va |l Las) I Vall s
Se,

where we used in the last inequality the estimates (4.9) (4.11) for a and the estimate
(4.10) for 0. In view of (9.1), we finally obtain:

(9.2) VNl r2cs) + V2N || 22(s) S e
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Next, recall from Proposition 3.10 the following bound on the L°°(S) norm of a
tensor F' on S. We have:

(9-3) [E Nz sy S NF (=2, )llzapoy) + IVFlL2s) + WV E | L2(s)-

Now, recall that v = - w in |z| > 2, and thus P,—_s = {z - w = —2}. Therefore,

P_s is included in the region |z| > 2. In particular, if FF = 0 in |z| > 2, we may use
(9.3) and obtain:

(94) ||F||L°°(Z) S ||VF||L2(E) =+ ||WVF||L2(E) fOI' all F SllCh that F = 0 iIl |£U| Z 2

Also, working in the global coordinate system on P, given by Proposition 2.8, we
easily derive

Ifllz2pyy S IV fllz2(p,) for any scalar f such that f =0 in P, N {|z| > 2}.
Integrating in u, and in view of coarea formula (3.5), we deduce
Ifllz2=) S NIV fllz2(s) for any scalar f such that f =0 in |z] > 2.

With the choice f = |F|, this yields

IFlz2(s) S IIVF| z2(s) for any tensor F' such that F' =0 in |z| > 2.
Together with (9.4), we finally obtain
(9.5) I Fllzo () S NIVVF| 12(x) for all F such that F =0 in |z| > 2.
Since u = z - w in |z| > 2, we have in particular N = w in |z| > 2. This yields:

N(z,w)+ N(z,—w) =w —w =01in |z| > 2.

Thus, using the estimate (9.5) with F' = N(.,w) + N (., —w) implies:

IN(ow) + N =w)llzee ) S IVEN(w)llzzemy + VAN —0)ll2 s

Se

where we used the fact that VN = 0 in |z| > 2 and the estimate (9.2). This concludes
the proof of the estimate (2.38).
Next, we prove the estimate (2.39). We have:
N(z,w') = N(z,w) + O,N(z,w)(w — ') + / OEN(.,w")dw" (w — w')?.
[w,w']
This yields:
96)  [IN(@,w) = N(@,w")| — [0,V (2,0)(w — )| S 82N || syl — '?
S |w - wl|27
where we used in the last inequality the estimate (2.33) for 92 N. Now, the estimate
(7.116) implies:
|9(0uN,0,N) — I||L°°(S) Se.
This yields:
[10LN (z,w)(w — )| — |w — '] S elw — ).
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Together with (9.6), we obtain:
IN(z,w) = N(z,w)| — |w — || $ |w—w[(e+|w—wl).
This concludes the proof of the estimate (2.39).
Finally, we prove the estimate (2.40). We first estimate u, ,u and §%u. Differen-
tiating the equality Vu = =1 N, and using the structure Equation (4.4), we obtain:
(9.7) IV?ull 25y S lla™ValL2(sy + la™ 0l r2(s) S &,

where we used in the last inequality the estimate (4.9) for a and the estimate (4.10)
for 6. Also, differentiating the identity (7.180) for Vd,u, and using the structure
Equation (4.4), we obtain:
(9.8)
||V2(9w’u,||L2(S) S ||a_1V8wN||Lz(S) + ||a_1V6wa||Lz(S)
+ (la72VallLacsy + la™ 0l Lags)) (10wall oo (s) + 18N [ L= (s))

Se
where we used in the last inequality the estimate (4.9) for a, the estimate (4.10) for 6
and the estimate (2.32) for 9, N and 9,,a. Finally, differentiating (7.180) with respect
to w, we obtain:

V(02u) =a '02N —a *0%aN — 2a719,Nd,a + a %(d,a)*N.

Differentiating with respect to ¥, we obtain:
(9.9)
IVVOZullzcs) S lla™ o= (s)(IVOZNllz2(s) + IVOZallL2(s) + (la™*Val e, , race,)

+ ||a_19||Lf° L4 (105N || 2

2
—2,2] f_2,2) L4 (Pu) + Hau.;a’”L2 LA(P,)

[-2,2]

+ lowall 2.

2
+IV0uallL2(s) 100N [ o< (s)
+ 18uall = (s)(lla=*Vall L2(s) + la™ V. N|| L2 (s))
<e,

~

2P 0uN () + 100allTe | 15ep,)

where we used in the last inequality the estimates (4.9) (4.11) for a, the estimates
(4.10) (4.12) for 6, the estimate (2.32) for J,N and J,a, and the estimate (2.33)
for 92N and d2a.

Recall that for w € S?, the map ®,, : ¥ — R? is defined by:

b, (2) = u(z,w)w + d,u(z,w).
Since v = z - w in |z| > 2, we have:
D, (z) =z for |z| > 2,
which yields:
(9.10) u(z,w) — ®,(z) - w =0, dyu(z,w) — 0,(P,(z) -w) =0,
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and 9%u(z,w) — 02(®,(x) -w) =0in |z| > 2.
Now, let v € S2. We first estimate 02 u(z,w) — 02(®, () -w). In view of (9.10) and
(9.5), we have:
(9.11)
105u(.w) = 92(@u () - w)llLe(s) S NVVOZu(,w)llz2(sy + V20uul, v)l|L2(x)
+IV?u(, v)ll L2 s
Se

where we used in the last inequality the estimate (9.7) for u, the estimate (9.8) for d,,u,
and the estimate (9.9) for 92 u.
Next, we estimate J,u(z,w) — 0, (P, (x) - w). We have:

(9.12) D, (z) w=ulz,V)v w+ dyu(z,v)w

jw —v|?

=u(z,v) + dyu(z,v)(w —v) — u(z,v),
where we used in the last equality the fact that d,u(z,v)r = 0. Thus, we obtain:

Ovu(z,w) — 0,(P,(z) -w) = Ouu(z,w) — dpu(z,v) — (W —v)u(z,v)

= /aiu(x,w')(w —v) — (w = v)u(z,v),

where W’ is on the arc [w,v] of S?. Together with (9.10) and (9.5), this implies:

(9.13)

100u(sw) = 0u(®u () - W)llz=(z) S lw = PI(IV VOZu(, )2y + V2ul, v)l L2s)
S elw —vl,

where we used in the last inequality the estimate (9.7) for u and the estimate (9.9)

for 82 u.
Finally, we estimate u(z,w) — ®,(z) - w. In view of (9.12), we have:

_ 2
u(z,w) — ®,(z) - w=u(z,w) —ulz,v) — d,u(z,v)(w—v) + lw 5 d u(z,v)
_ 2
/82 (z,0)(w—v)* + lw 2V| u(z,v),
where w’ is on the arc [w,v] of S?. Together with (9.10) and (9.5), this implies:

(9.14)
Ju(,w) = @,() - wlLe(s) S lw = vIP(IV' V2 ul, w)li2s) + Vul, 1) 2s))
5 6|w - V|27
where we used in the last inequality the estimate (9.7) for u and the estimate (9.9)
for 82 u.

Finally, (9.11), (9.13) and (9.14) imply (2.40). This concludes the proof of Propo-
sition 2.10.
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9.2. Proof of Proposition 2.11

Recall from the first equation of (4.5) that tr @ —kyy = 1—a. Now, since a satisfies

(2.30), tr @ — kyn satisfies:
IVN(tr0 —knn)lz2s) + IV (tr 0 — knn)lle, . r2p,) + IVV(tr0 — knn)llL2cs) Se-

[=2,2]

Thus, Proposition 2.11 is a direct consequence of the following proposition:

Proposition 9.1. — Let a scalar function f on X such that f =0 on u = —2 and:

(9.15) IVfllLes, 20 + IVN Fllzzs) + VY fllz2s) S e
Then, we have:
(9.16) 13 < e

The rest of this section is dedicated to the proof of Proposition 9.1.

Proof. — Using the Definition (2.41), (3.15), property (iii) of Theorem 5.5 and (9.15),
we have:

£l = Z 2j||ij||L<[’jz’2]L2(Pu) + 1P<ofllze, , L2(Pu)
j=>0

. 1 1
S D 2NP 1 Fa sy IV NP Fllagsy + IV fll2(s)) 2

§>0
1 1
+ 1P<ofll72(s)IVNP<ofll2(s) + IV P<ofll2(s))?
1 o 1
S NAF 125y VNP fllzcs) + 277 1 Afllz2cs)) 2

320

1 1
F 1122 ) IV N P<ofllz2cs) + 1 llz2cs)) 2

(9.17)

<

(L)

1 1 1
2 Z”VaNij”Zz(s) + ||vaNP<0f||22(s) té&,

Jj=0
where we used the estimate (2.32) for @ in the last estimate. The term ||VanP<of]lz2(s)

1
is easier to bound, so we concentrate on estimating the sum .-, [[Van P; fl|2(s)-
Let 0 < 6 < 1. In view of the finite band property for P;, and the commutator

estimate (5.76), we have:
(9-18) [I[VanP; fllrzsy S NP (VanH)llr2csy + [[Van, Pl fllrzs)

S 27NV (Van Hllz2(s) + 2_(1_5”6(”4&]0”&(3) + ||Y7f||L[°3212]L2(Pu))

S 270 e(|lal| Lo sy WV N FllL2(s) + ||Y7a||Li>32,2]L4(Pu)||VNf||L[27212]L4(Pu)

1A 2es) + 1V fllzee, , 22 pu)

< o= (1=8)ig
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where we used in the last inequality the Gagliardo-Nirenberg inequality (3.9), the
estimate (2.30) for a and the estimate (9.15) for f. Since § < 1, (9.17) and (9.18)
imply (9.16). This concludes the proof of the proposition. O

9.3. Proof of Proposition 2.12

We decompose V ya in the following way:

(9.19) Vna = dal + al, where o] = P ;/3(Vna) and al = P<;/5(Vna).

Using the estimate (4.9) for a and the finite band property for P;, we obtain:

020) ol < 3 1PVnalias S Y 27199 wallas) £ 279%.
1>j/2 1>j/2

We also have:
(9.21) IVnadlizesy < D IVNPVNalras) S Y IVanPVial Las),
1<j/2 1<j/2

where we used in the last inequality the estimate (4.9) for a.
Next, we estimate V,y P,V ya. Let § > 0. In view of the finite band property for P,
and the commutator estimate (5.72), we have:

IVan PV nall2cs) S 1P(aVia)l2(s) + [Van, PIVNal r2(s)

1 1
< 22 [aVial +el|A2 TV vall p2(s)

L3H ™% (P.)
+ EI|A6VNGJ||L<[332’2]L2(pu).
Together with the product estimate (5.80), we obtain:
922)  IVaxPiVxals) S 2 (lallmcs) + ¥allir, , o) IV3al s
+ eIV wallzas) + el Vaal e s,
S2e+ ellVnallpe s (p,),

where we used in the last inequality the estimate (2.30) for a and the estimate (2.31)
for V% .a. Now, in view of the decomposition (6.6) of Vya, and the estimates (6.8)
and (6.10), we have for all 5 > 0:

i
||PjVNa”Li’jz,2]L2(Pu) S27 g,

which yields:

(9.23) IV nall e.

D= (P S
Choosing 0 < § < £ in (9.22) and using (9.23) finally yields:

”VaNPlvNa”L?(S) 5 2%6.
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Together with (9.21), we obtain:

(9.24) IVnadllres) S D 2%e S 2te.
1<j/2

Finally, in view of (9.19), (9.20) and (9.24), we obtain the conclusion of the proposi-
tion.
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APPENDIX A

PROOF OF PROPOSITION 4.2 AND THEOREM 4.4

A.1. Proof of (4.47) for j = 2

Remark first that (4.47) for j = 1 has already been obtained in Section 4.1. We
prove (4.47) by iteration on j. Let us first start in this section with the case j = 2.

We start by estimating ||V%al|12(s) and ||Y72VNa||L2(S). By (4.29) and (2.20), we
have:

(A.1) (Vy —a 'A)Vya =h,

where h is defined by:

h=—a"'trAa — 20" '0V%a + 20 2YaVVya — 2Ry.a"'Va — VirfaVa
+20la"'Va|? + 20V N0 + Vikny + VRN

We estimate ||h||12(s):

(A.2)

2
[Pllz2(s) S 10lLoe(s) ¥ allL2(s) + [1WallLes, , Lepy WV Nallze | pacp.)
+ | Bllzo= () [I¥allL2(sy + [ Wtr o] 2.

+ 1161l zecs) [ ValZos) + 100z, , 22 IVNOllL2 | nace,)

—2,2] [—2,2]

(A.3) 212]L4(Pu)||Wa||L‘[>f272]L4(Pu)
+IVRknNllzacs) + VN Ryl 225,

which together with (4.9), (4.11), (4.12), (4.46) and (A.3) yields:

1Pllzzcs) S e(lfllzoe(s) + IV Vnallrz ,

+ ||VN6||L[272’2]L4(PH) +e?)+ M.

Together with (3.9), Proposition 3.10, (4.9) and (4.10), this implies:
(A.5) IhllL2s) S eIVl 2(s) + IV Vvallpas) +€) + M.
Proposition 3.16, (4.8), (4.9), (4.11), (4.12), (A.1) and (A.5) yield:

(A.6) IVVwalix, , 12 + [Vialias) + 1V Vaallzacs) S el V202 + M.

[—2,2]

iy TVt Ol pap,)

[—2,2]
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Let us now estimate ||V’ al| 12(s)- We differentiate the second equation of (4.5) with
respect to Y and we obtain, in view of the commutator Formula (2.24):

(A7) a 'AVa = h+ YVya,

where h is defined by:

(A.8) h=—a"*Yapa+ Ka 'Va +20Y0 + YVnkyn + VRNN-
(A.7) yields:

(A.9) la~ ' AVal|r2(s) < [|BllL2cs) + IV V vallr2(s)-

We estimate [|hl|12(s):

2
||h||L2(S) N ||Y7a||L‘[’32,2]L4(Pu)”W a||L[2_2’2]L4(Pu) + ||K||L3(S)||Wa||L6(S)
(A.10) F10lege, o L1 VO L2, | apay + VYV NEN Nl L2(s)
+ IVRNwz2(s)-
Together with (4.6), (4.11), (4.12) and (4.46), this yields:
(A.11) lhllzz(s) S 5(||y72a||L[2_2)2]L4(Pu) +&%+ M)+ 5||V0||L[2_2’2]L4(Pu) + M.
Together with (3.9), (4.9) and (4.10), this implies:
(A.12) IAllz2cs) S 5(||Y73@||L2(s) + ||W29||L2(S) + M)+ M.
Now, (4.6), (4.12) and (4.46) imply:
(A13)  [Kllzs(s) + 1K lzex, , 2P S 161176 sy + ||9||%[°3212]L4(Pu) +MSM+e
(3.27) and (A.13) yield:
(A.14)

3 1/2 2
19°all2(s) S I8V alzags) + IKIEZ, | pon, I¥al

[-2,2
2
S 1AVal p2s) + (M +€%)[|V a||L[{
Together with (3.9) and (4.9), this implies:

24p) T I KllLscs) Vel s s)
pa L) T (M +&?)e.

(A.15) IV%all2(s) S | AVallL2gs) + (M? + %)e.
(4.9), (A.9), (A.12) and (A.15) yield:
(A.16) ||V3a||L2(S) S 5||V20||L2(S) + M.

Let us now estimate ||Y729||L2(5). We differentiate the first equation of (4.1), which
yields together with (4.9) and (4.46):

(A.17) IV*tr 0l 2(s) < [V7allnz(s) + [V knnll S € + M.

Let us now estimate ||Y72§||L2(S). We consider the Hodge operator )2 which takes
any symmetric traceless 2-tensor F' on P, into the 1-form di#F. Let *0)o its ad-
joint which takes 1-forms on P, into the 2-covariant symmetric traceless tensor
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(*D2F)ap = VgFa+ YV 4Fp — (difF)yap. We have the following identity:

1

(A18) ‘DoDe = —LB+ K
Thus, applying *<)2 to the third equation of (4.5), we obtain:
(A.19) A8 = 2K0 —* Dy(Vtr6) — 2* Da(Ry.).
(A.19) together with (4.46) and (A.17) yields:
(A.20) 188]1z2(s) < 1KBllz2(s) + M +e.
The analog of (3.27) for 2-tensors, (4.12), (A.13) and (A.20) yield:
(A.21)

~ 1/2 ~ ~

198 0ze9) S IEL2, ool P8z, oo+ I sy Bllzogs) + M + &

[=2,2]

SMA+VOlLz , rap,y + (M +e%)e+ M +e.
Together with (3.9) and (4.10), this implies:

(A.22) ||W2§||L2(S) S M.
Finally, (A.17) and (A.22) yield:
(A.23) 1V26]| 2(s) S M.

Let us now estimate ||VV y0|12(g). Differentiating the last equation of (4.5) by V,
taking the norm in L%(S), using (2.17), and estimating the various quantities in the
same fashion as previously, we obtain:

(A.24) IVVNOll2(s) S IV Vvallacs) + €l V20| 12(s) + M.
Finally, (A.6), (A.16), (A.23) and (A.24) yield the proof of (4.47) for j = 2.

A.2. End of the proof of Proposition 4.2

In this appendix, we end the proof of Proposition 4.2 by arguing by iteration, i.e.,
by proving (4.47) for j + 1 assuming (4.47) for j with 2 < j < 4.
We state two lemmas which will be used in the course of the proof.

Lemma A.1. — Let F a tensor on S and l € N. Assume that (4.47) holds with j = 2.
Assume also that ||VViallr2(s) < C(M). Then, we have the following inequality:

-1
(A.25)  [|V'F|lL2s) < C(M) <||VZNF||L2(S) + [V Fllg2s) + > ||VmF||L2(S)) :

m=0

SOCIETE MATHEMATIQUE DE FRANCE 2023



130 APPENDIX A. PROOF OF PROPOSITION 4.2 AND THEOREM 4.4

Lemma A.2. — Let f a scalar function on S. We have the following commutator
formula:

(A.26) |
[Vsa P Alf = (2a7'Va Y +a ' pa+ (j - D]a™ ' Va )V f

P q T
+ (1" VN> (H v“%v;’éﬂe) (H W“’*l‘VE”ViR> VIV,
=1 m=1 n=1

2 1 2 .
,w, and w; satisfy:

142 .1
where tj ,t;,v;,,v

m
ti+- ot v+ oy Fwl w4 s =2,
(A.27) B+ +to+oi+ i twi o Fuwitsa=j—q-—r,

2<j—1,0<1<p, ss<j—1.

We postpone the proof of Lemma A.1 to Section A.3, and the proof of Lemma A.2
to Section A.4. We now continue the proof of Proposition 4.2. We differentiate the
second equation of (4.5) by V:

(A.28) (Vn —a *A)Vya=h,

where h is defined by:

(A.29) h=[V4,a A+ Vi (10]?) + Vi kny + VA Ran-

We estimate ||h| 2(s). Using (4.46) and (A.29), we obtain:

(A.30) IBllz2cs) S I19%, 0~ Blallas) + 1% (6 zags) + M.

If j = 2, we have:

(A.31) VX0 L2(8) S 10l ()[[V20ll2(s) + IVO a5y S M2,

where we have used Proposition 3.10 to bound the L*°(S) norm. If j > 3, using (4.47)
for j and Leibnitz formula yields:

(A.32) IV IO 2y S D0 V76l () IV 0l 12(s) < C(M).
0<p<j/2

We now estimate ||[V§V, a~'Alal|L2(s) with the help of (A.26). We have:
la™"Ya YViallzees) < la Vallze, , vopla™ VaVValzz , | e,

[—2,2
20 11/2 i 1/2
S ellY* Vial o IV VAl o),
where we have used (3.9) and (4.11). Using the estimate (4.9) for a, and the Gagliardo-
Nirenberg inequality (3.9), we have:

(A.33)

(A.34) ”a_IAGVgVGHL?(S) S ||a_1||L°°(S)||4Aa||L‘[’f272]L4(Pu)”ngaHL[{z’z]L‘l(Pu)
1 1 Y S
< ||4M||iz(5)||774Aa||22(3)||V§va||iz(3)||Y7V§va||iz(s>

. 1
< OO0 | YVl s,
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where we used in the last inequality (4.47) for j and for 2. Using (4.47) for j and for
2 yields:

(A.35) lla='Va *Vialrz(s) S lla'Va |2 (s Vialz2s) < C(M),

where we have used Proposition 3.10 to bound |la™Va || (s). Using (4.47) for j and
for 2 together with (A.27) yields:
(A.36)

P q T
(H v vN> (H vy 0) (H v vfo) V"' Via
m=1 n=1

=1

< C(M).
12(s)

(A.26), (A.33), (A.34), (A.35) and (A.36) yield:
(A.37)

IV, ™ Alallzes) S COM)A+VViallZs ) +e(IV*Vival s + 1V Vivall2(s)).

Finally, (A.30), (A.31), (A.32) and (A.37) yield:
(A.38)

1Rl L2(s) S CM)(L+ C(M) [V VYall 7)) + eIV Viallp2s) + IV Vel 2s))-
Proposition 3.16, (A.28) and (A.38) yield:
(A.39) IVVNallLe, , 2 + 1V Vivalzs) + IV allzgs) < C(M).
Now, (4.47) for j, (A.25) and (A.39) yield:
(A.40) V7 a| 25y < C(M).

Let us now estimate ||Y7j+19||L2(S). We differentiate the first equation of (4.5)
by Y/ *', which yields together with (4.46) and (4.47) for j:
(A.41) V7" tr 6]l 2(s) < 1V all2s) + IV kvwllzes) < C(M).
Differentiating (A.19) by Wj_l, we obtain:
(A.42) VA0 = 277 TN (KO) — VT (" Da(Vir 0) — 277 (" Da(Ru.)).
(4.46) and (A.41) yield:

(A.43) V7~ Da(Vtr ) n2cs) + 1V~ (" Da(RN.)) | 22(s) < C(M).
Using Leibnitz formula together with (4.6), (4.46) and (4.47) for j, we obtain:
(A44) 1Y 7 (KB)l|a(s) < C(M).
(A.42), (A.43) and (A.44) yield:
(A.45) 177" £8ll2cs) < C(M).
Now, (2.24) yields:
j—1
(A.46) AV =Y T IA Y VTTRY,
p=1
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which together with (4.6), (4.46), (4.47) and (A.45) implies:

(A.47) 1AV ]| 2(s) < C(M).
The analog of (3.27) for 2-tensors, (A.13) and (A.47) yield:
(A.48)

PN
IV 0 (s

—17] 1/2 i i1
SIAY Biac) + IKIYZ,  anol98z o + 1 ) 199 Blsogs)
S M+ 52)(||Vj9||L[2_2y2]L4(Pu) Y 70l Los)) + C(M).

Together with (3.9) and (4.47) for j, this implies:

(A.49) ||77j+15||L2(S) <C(M).
Finally, (A.41) and (A.49) yield:
(A.50) 17 *40] 12(s) < C(M).

Let us now estimate ||Vj]\;r16||Lz(S). Differentiating the last equation of (4.5) by V7,
taking the norm in L2(S), using the computation (A.64) of [V4,, V] proved in the
appendix, (4.47) for j, (A.39), and estimating the various quantity in the same fashion
as previously, we obtain:

(A.51) IVR 0l L2(s) < C(M).
Now, (4.47) for j, (A.25), (A.50) and (A.51) yield:
(A.52) V10| 25y < C(M).

Also, differentiating the last equation of (4.5) by V7, taking the norm in L?(S), (4.47)
for 7, (A.52), and estimating the various quantity in the same fashion as previously,
we obtain:

(A.53) V2V~ 2al| 125y < C(M).

Finally, (A.40), (A.52) and (A.53) yield (4.47) for j + 1 so that (4.47) is true for all
1 < j < 5. This concludes the proof of Proposition 4.2.

A.3. Proof of Lemma A.1

Let us first recall the following result (see for instance [5]). If the symbol a(z, &)
satisfies:

(A54) Sl;p||a(.,§)||H3/2+5(R3) < +00o

for some & > 0, then the pseudodifferential operator a(z, D) acting on R? is bounded
on L%(R3). Now, assume that the symbol a(x, ) satisfies:

(A55) Sl;p||a(.,§)||H5/2+5(R3) < +00o
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for some 6 > 0 and:
(A.56) a(z,&) > 1 for all (z,£).

Then, using the previous result and the symbolic calculus for the adjoint and the
composition of pseudodifferential operators, one can show that:

(A.57) a(z, D) — va(z, D)*/a(z, D) is bounded from H(R?) to L*(R?).
Thus, under the assumptions (A.55) (A.56), the Garding inequality holds:
(A.58) (a(z, D)v,v) > —C|lv||g-1(rs),

where v is in L2(R?) and C > 0 is a constant depending in the quantity in (A.55).
Now, consider

(A.59) a(z, &) = 211 <<N'|§|>2l + (e.é>2l> -1

Then, we clearly have (A.56). We also have (A.55):
(A.60) Sgplla("ﬁ)llﬂsmw < C(INNlgss2+s) < C(IVPN|l12(s)) < C(M),
where we have used (4.4), (4.47) with j = 2 and | YV%a| r2(s) < C(M). Thus, a de-

fined by (A.59) satisfies (A.58), which together with the choice v = |D|'F concludes
the proof of Lemma A.1.

A.4. Proof of Lemma A.2

We start by deriving a formula for the commutator [V, ¥]. Let F' a tensor on S.
Using (2.17), one proves the following commutator formula by iteration:

V4, YIF = jVaVy F

(A.61) LS (H VN) (H vW) (H WR) v

=2 m=1 n=1

p q T
+ (H vﬁlva) (H vw) <H vm) YV F,
=1 m=1 n=1
where t;, v,,, and w,, satisfy:
L1+ +ilpt+tvi+-Fvtwr++w,+s=5—q-—r,
(A.62) ’ ! . _
t<j-1L,1<i<ps<j-—-1L

Then, using the fact that:

(A.63) [V, Y] = [V, VIV + VIV, Y,

we deduce from (A.61) and (A.62) the following commutator formula:

P 2 d 1 2 r 1 2
(A.64) [V, VPF = (H v vﬁw) (H W”MV}W) (H W”"V%"R> VOVE,
=1 m=1 n=1
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where t},t?, v}, v2,, w) and w2 satisfy:
ti++t vl o Fw e wl s =2,
(A.65) B+t +vi ot twi ot wi s = —q—r,
7 <j—1,0<1<p, 851 +83<j+1.
Now, using (2.20), we have for any scalar f on S:

Vi, a Al =D Vi VN, a AV f

=1
J -~
=> Vil (-(tr0+a 'Vya)A—20-V* +2a"'Va YVy
=1

AV — 2Ry -V — Vtr6-V 420 - a-'Va. V)V
(A.66) a AVN 2RN. W Wt 0 W+29 W W)VN f

J
=2 Vi (@ ' VaYVy T o AV )
=1

J
+ Z Vi (—(tr0 +a ' Vya)A — 26 - Y2 —2Ry. -V
=1
—Vtr0-V+20-a"'Va- V)V f
We rewrite the first term in the right-hand side of (A.66):
(A.67)
J
D VN WaY VT 4 o AaViTT)
=1

1Y7aY7V f+ja~” 14AaV

J 7 -1
£ VAl IV 43 Y VR Y v e
=1 =1 m=1
j i-1
+) > VR AV f
=1 m=1
—1 v -1 v (.7 - l) 2v]
Ya¥Vh f + ja~ Aa )

J

>0 VRV - (- VeV
=1

J

-1 j 1-1
YD VRV VYV Y DD VR AV S

=1 m=1 =1 m=1

Finally, (A.61), (A.62), (A.64), (A.65), (A.66) and (A.67) yield (A.26) and (A.27).
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A.5. Proof of Theorem 4.4

Recall that for —2 < a < 2, we assume that the u-foliation satisfying (2.28) exists
on —2 < u < a. Recall also that proving Theorem 4.4 consists in extending u to a
solution on the strip @ < u < a + T provided T > 0 is chosen small enough.

We start by constructing an auxiliary foliation initialized on P,—.

Lemma A.3. — Assume that R and k satisfy (4.48). Also, assume that u is a solution
to (2.28) for u < « satisfying (4.49) and (4.50). Let the scalar function u satisfying
the Eikonal equation and initialized on P,—, by the u-foliation, i.e.,

(A.68) 9(Vu, Vu) =1,  u = o

Then, the foliation by u is defined on the region Ss of ¥ given by
ﬁé:{a§2<a+é}

for some § > 0 small enough only depending on the norms appearing in (4.48) (4.50).
Furthermore, denoting by P, a and 0 respectively the corresponding leaves, lapse and
second fundamental form of the u-foliation, we have

(A.69) a=1,
3
(A.70) jtr6 — k(N, N)| < 2
and
(A.71) 10l Lo e, + Joax, V78| L 12(p,) < +o0.

We postpone the proof of Lemma A.3 to Section A.6.

Definition A.4. — The map ®,(p) from P,—, to S; is given by
Pa(p)=p,  N(Pu(p)) =0.

Similarly to the proof of local existence for the mean curvature flow in [9], we will
write the solutions to (2.28) as graphs over P,_,. More precisely, consider a scalar
function f on a neighborhood of © = a in [a, +00) X P,—,. Then, where we look u as

(A.72) P, ={®(p) € S5 /u= f(u,p)},  flayp)=aq,

where we note that any point ¢ € S is of the form ®,(p) for a unique u € [, a + )
and a unique p € P,_,.
We will rely on the following three lemmas.

Lemma A.5. — Let a coordinates system (z*,2%) on a chart of P,, and extend (z!, z?)

to S5 by N(z4) =0 for A= 1,2 so that (u,z',z?) forms a coordinates system on a
chart of Ss. Also, introduce a coordinates system (u,y",y*) on U, P, with

1_ .1 2 _ .2
y =z, y =x.

SOCIETE MATHEMATIQUE DE FRANCE 2023



136 APPENDIX A. PROOF OF PROPOSITION 4.2 AND THEOREM 4.4

Then, we have
7AB:lAB+awAfaach7 A7B:1727
gAuzaufazAfv A:1727
Guu = (auf)27
where v and vy denote respectively the induced metrics of P, and P,,, and where
YaB = Y(0ya,0y5), V,p=9(04,0:8), gau:=9g(0ya,0u), Guu = g(Ou,0u).
Also, the unit normal N to P, is given by N“0, + NAE)yA with
’yABazB f

V1 AB3,f0,5]
1

" 0uf\/1— 1 ABOyafOpe ]

N4 = A=1,2

) 9

u

provided
Ouf >0, YABO A fO,5f < 1.

Next, we compute the mean curvature tr # and the lapse a of the u-foliation.

Lemma A.6. — We have

0 ABY A fO, 5 Ou
tro = syAB d v (17%0.11%, f)3 Bpn f + 2p)
2 (1 — '}’ABamA fazB f) 2 \/1 - ’YABaa:A fazBf
+ ’YAB’)/CBayA (NC) + ’YABNCQ(DayA ayc , 8y3)

and
e \/1 _ @) + @) = 20 fOuaf
det(7)
provided
Auf >0, Ao Afo,f<1
and

Y11 (052 )2 + Y22(0p1 f)? — 2721051 fOr2 f
< 1.
det(v)

Next, we rewrite Equation (2.28).

Lemma A.7. — Decompose f as
flu,z',2%) = u+ f(z', 22 u).

Then, the Equation (2.28) takes the following form
auf_ Al(u)f_ FIAB <W1(u)f> awAaxBf
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= (N, N) =t + Y (V0 F) ki + FL2 (V0 7) 0 + Fs (Vo F)

where F{A

B, FQij, F{*B and Fy are smooth in a neighborhood of the origin such that
FPO) =0,  F(0)=0  FP0)=0, F0,0=0
and where the metric y(u) on Py,—q is given by

(w]ap(a',2%) = [9(0,a,00)|(u = f(u, 2", 2%), 2", 2%).

We postpone the proof of Lemmas A.5, A.6 and A.7 respectively to Sections A.7,
A8 and A.9.
We are now ready to prove Theorem 4.4:

Proof. — Recall from Lemma A.7 that (2.28) takes the following form
auf_ Al(u)f_ FIAB <y71(u)f) amAame
=k(N,N) — tr0 + Fy’ (Wl(u)f> kij + F3'P (Vl(u)f> Oap+ Fy (Vl(u)f/) )
where F{AB, FQij and F3 are smooth functions in a neighborhood of the origin such
that
FiP0) =0,  F/(0)=0, F¥0)=0,  F(0,00=0
and where

Flu,at,2?) = u+ f(zt, 22, u).

We consider the above quasilinear scalar parabolic equation for fon a<u<a+T
with T' < § so that we may rely on the control of the u foliation of Lemma A.3. Note
that

f(a,-)zf(oz,-)—azo,

ie., fhas trivial initial data at u = a. We look for fNin the following set
Xoir = {F| s, sw 19Tl <3}

0<i<4 a<u<a+T
where 6 will be chosen small enough below. Local existence then follows for

T=T (5, max, IV7El L2 (s, max, ||VJ0||L2(E)> >0

small enough by Banach fixed point and standard parabolic estimates, where we
used in particular the control of k& provided by (4.48) and the one for § provided by
Lemma A.3.

Next, we need to check that, with such ]7, f satisfies the conditions

Ouf >0, ABO A fOsf <1

SOCIETE MATHEMATIQUE DE FRANCE 2023



138 APPENDIX A. PROOF OF PROPOSITION 4.2 AND THEOREM 4.4

and
Y11(852f)? + 722851 f)? — 2721051 fO2 f
<1
det(v)

used in the derivation of the parabolic equation for f First, note from the above
Banach fixed point procedure that we have

= 7l < i 7] <3 =
O f1 = 1022 SIS max, ~ sup Wy flleepy S0, A=1.2,

=2 a<u<o

which implies the last two conditions for f provided § is chosen small enough. Con-
cerning the condition 9, f > 0, notice from the parabolic equation for f that

1001 < 1N, N) = tr8] + & F+ FAZ (V) F) 2a020 |
+ ‘sz (Wz(u)f) kij + F5'8 (Wﬂmf) Oap+ Fy (Vl(u)f)‘
< [k(N, N) — tr 6] + O(3) (11;1%2 IV kll 2 (s + max IIVJPIILZ(E)) :
In particular, choosing § small enough, we have
01 < KN, ) — 6] + ¢
In view of the control for (N, N) — tr provided by Lemma A.3, we deduce

~ 1
< —
0.1 < 3

and hence

DN | =

0uf] = 114 8uf| > 1—|0uf] >

so that we indeed have 9, f > 0.

Finally, having established the existence of f, and checked that the necessary con-
ditions for the derivation of the parabolic equation for fare satisfied by f, it remains
to recover u from the equation

flzt, 2% u(zt, 2%, u) = u.

Since 9,f > 0, the existence of w follows immediately from applying the implicit
function theorem to the above equation in the neighborhood of (z!,z?,u = a) which
satisfies f(z!, 22, @) = o thanks to the initialization of f. This concludes the proof of
Theorem 4.4. O

A.6. Proof of Lemma A.3

Since
9(Vu,Vu) =1,

we immediately have the identity a = 1.
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Next, we focus of the estimates for the second fundamental form 6 of the u-foliation.
Since local existence for the Eikonal equation is classical, we only sketch the proof.
In view of (2.12) and (2.13), and using the fact that ¢ = 1, we have

1
VnOap +2050cp — 100,45 + 5((“@)2 —0]* + R— 2Ry n)7,p, = Ras-

One easily derives from this system of transport equations the following estimates

1625 2acp,) + max, IV°8lez 2o,

SHOllzap,—.) + 1@2‘4”?7 9”L2(Pu )t V4 <1 + 18]z~ + Dax, ||Y7j9||L°oL2 P ))

< (19 Rl + 100z o + g 90010, ))

where we used the fact that § = 0 on Bﬁza = P,—., as well as the the commutation
Formula (2.21) and the fact that @ = 1 to differentiate the equation for 8 , 5 with Y.
We infer

J
100l Lo rap,) + pax, V"0l Lo r2p,)
S 121?§5||V39||L2(Sﬂ{uﬁa}) +1/8 <1 +llLerap,) + max, ||Y7J9||L30L2(Pu)>

X <||VS2R||L2(E) 8l rap,) + Joax, ||77j9||LgoL2(Pu)>
and hence
100l Lo Lap,) + max, IV 0l| Lo 12(p,) < +00
for some § > 0 small enough only dependlng on the norms appearing in (4.48) (4.50).

Using the above system of transport equations for # to recover Vy derivates, we
deduce

0l Lo racp,) + 2ax, ||VjQ||Li°L2(££) < +oo.
Finally, we consider the estimate for tr§ — k(IN, V). We have
[trf — k(N N) | L= (s,)
<tr = kN, N)llzp,_ ) + IVNOllLie(p,) + IVElLL L= (p)
< |ltr6 — k(, >||Loo<p 2+ V(] |vNe||LzLoo<p ) HIVE Lz,
< lord — (N, N) =, .

+0vV/§ <||9||L3°L4(Pu) + X V70l oo 2(p,) + max, ||V]k||L2(z)> :

In view of the above, we infer, for § > 0 small enough,

1
[br@ = k(N, N) || o= (s,) < [1br8 = (N, N) |2 (p,_,) + 5-
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Since we have N = N, trf = tr6 and P,_, = Py—o on u = «, we infer
1
[br@ = k(N N)|[poe(s,) < 610 = knnllecp_a) + -

Also, since u is a solution to (2.28) for u < «, this yields
1
[tr6 — k(N N) [ (s,) < lla = Lo () + 3’
which together with (4.49) implies

l[tr @ — k(N, N)|| L= (s,) <

| w

as stated. This concludes the proof of Lemma A.3.

A.7. Proof of Lemma A.5

To perform computations, we consider a coordinates system (z!,z2) on a chart
of P,. Then, we extend (z',2?) to S5 by

N@EA) =0, A=1,2,
so that (u,z!,z?) forms a coordinates system on a chart of S 5, and in view of the

definition of the map ®,(p), the coordinates of ®,,(p) are given by (u, 2!, z?) if (2!, 2?)
are the coordinates of p on P,. In particular, we have in this coordinates system

Ou=0N, 9(0u, 0za) =0, 9(Ou; Oy) = 1.
Also, note that P, is given in these local coordinates by
(u, zt, 2?), u=f(u,z*,z?).
Next, we introduce a coordinates system (u,y',%?) on U, P. with
gl =l y? =2
and notice that
Oya = Opa + Oy fOy, Oy = 0, f0,.
In this coordinates system, we compute
9(0,1,0,) = 9(Ops + By [y, Dy + Dy 10)
= 9(0ya,0,8) + 0pa fOrn f
9(0ya,0y) = g(9pa + Opa fOu, 0u fOu)
= 0pafOuf,
9(Ous 8u) = 9(0ufu, 0ufBu) = (Buf)?
and hence
YAB =y +0safOusf, AB=1,2,
gau = 0ufOraf, A=1,2
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Guu = (auf)2a
as stated, where 7 and 7 denote respectively the induced metrics of P, and P, and
where

YaB = 7Y(0ya,0y8), ¥, p5=9(04,0:5), gau:=g(9ya,0u); Guu = g(Ou,0u).
Next, we introduce the following vector field
N =8, + N*0,a
and choose (ﬁl,ﬁQ), such that N is normal to P, ie,for A=1,2,
0=g(N,8,4) = g(dy + NP8,5,0,4)
= Gua + NB’YBA
and hence
N4 = " gup.
Also, we have
g(N,N) = (8, + N49,4,8, + NP8,5)
= Guu + 2N gua + N NPy ,p
= guu — 27*PguBgus + v*“9ucv?P gunvaB
= Guu = 7P guBgua-
We deduce that the unit norma N to P, is given by N“0, + N AayA with
7B gup 1

- ) A= ]-) 27 N = )
\/guu - ’yCDguCguD \/guu - ’YCDguCguD
which we rewrite as

NA =

PYABamB f

1= 22B0,a [0, ]
1

" 0uf/1—12P0,4 [0, ]

N4 = A=1,2,

u

provided
duf >0, yABO,afOe f < 1.
This concludes the proof of Lemma A.5.

A.8. Proof of Lemma A.6

The mean curvature tr 6 of the u-foliation is given by
tré = ’YABg(DayA N, 6yB)
=4P9(Do, , (N"8y),8,5) + 7P g(Da s (N“yc),dys).
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Since
vAP9(Doy 4 (N*D.),0y5) = P04 (N*)gup + N*v*Pg(Dp 4 0u, 0y5)
= ,YABayA (N“)guB + Nu’yABg(Dau ayA, 6ya)
1

= ’YABayA (Nu)guB + §Nu'YABau (7AB)7

we infer

1
trd = y29,4 (N*)gup + §N“7A38u(7AB)
+7*P10B0,a(NC) + 1PN g(Dy , 0,c,0,5).
Next, we compute

AB
ayA (Nu) _ aanuf 6yA (’)’ BIA fazB f)

(S

(0uf)*T =B, fO,5 | 28, f (1 — yABO,a fO,5 f)

8xA 8uf u ayA (’YABaa:A faach) u
— N N
Ouf 2(1 — yAB8,4 f0,5 f)

and
8u(’YAB) =0y (lAB + 8acAfazBf>
= au(lAB) 4+ 0pa fOLO0LB f + Oy fO,0,4 f,
which yields
1
’)’ABayA (N*)gup + §Nu7ABGU(7AB)

0 ABY A fO,n
zlvABNu{J(azAauf_ A (17001102 f) )M

2 Ouf 2(1 = yAB8,4 0,5 f)

+ a“(lAB) + azAfauame + axBfauazAf}

1
= 2'yABNu{ — 20,8 f0,a0uf + 0,4 f0,0,8f + Oy fO,0,a f

9ya (VA8 8,4 fO,5 f)
(1 — yABY A fO, f)

- %WABN i { Oy (17 O Oen )

Oy fOLSf + 8u('7AB)}

(1 —yAB8,a 0,5 f) oo fOuf + 5u(’YAB)}

and hence

e = Loy [ 04200 f0r0 )
2 (1—4ABO,af0,zf)

+ 74 Bycp0,a (NC) + B NCg(Dy , Byc,0,5).

YTy

azBfauf + au(’YAB)}
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Recalling that 8, = 0, f0, we infer

ayA (")/ABazA fazB f)
(1 =480, f0,5 )
+ 7B ycp0,a (NC) + B NCg(Dy ,0yc,0,5).

1 AB pru
tro = 57 N auf{ azBf‘i‘au(’yAB)}

y©s Yy
Since
u 1
0uf\/1—7ABOyafO,5 f

we deduce

1 0,4 ABaxA 0,5 Oy

trﬁszyAB Y (’Y f f)éawa_‘_ ,(1143)

2 (1 - ’YABawA faach) 2 \/1 - ’YABamA faxBf

+7*Py0p0,a (NC) + B NCg(Dy ,0,c,0,5),
as stated.

Next, we compute the lapse a of the u-foliation. We have

det(g) = Guu det(’y) — Gu2 (’Yugm - 72191u) + 9u1(’71292u - 72291u)

= ( guu + —9u2(’)’1192u - ’72191u) + 9u1(71292u - ’Y22g1u) det(fy).
det(v)

On the other hand, we have by the coarea formula, written in the (y',y?,u) coordi-

nates system,
det(g) = a+/det(y),

where a is the lapse, and hence

_ _qu(’Ylngu - 721g1u) + Gu1 (71292u - 72291u)
a = guu +
det(v)

Since
JAu = 6uf8w‘4fa A= 1,2, Guu = (6uf)27

we may rewrite a as

e \/1 11102 F) 4922001 f)? = 2921001 0,2 f

ouf,

det(7)
provided 9, f > 0 and
Y11 (022 ) + 722(021 f)* — 2721001 fOa2 f <1
det(y)
This concludes proof of Lemma A.6.
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A.9. Proof of Lemma A.7
We look for f under the form
Flu,zt, 2?) = u+ f(z', 22, u),
so that
Ouf =140,f, Opaf=0,4f, A=1,2.
Plugging in the formula for 45 and N4 of Lemma A.5, we infer
VAB =7,y + 0safOrn f
and
(Y + 0o JOum )0, |
V1= Oy + 00 fOpe )0, O |
Then, plugging in the formula for tr 6§ of Lemma A.6, and using the fact that
0u(¥ ) = 20ap: Y P0u(y,,) =280,

NA:— A:1,2.

we infer
tro = _Al(u)f - F5AB (Wl(u)f)) BIAame + trQ+ FéqB (Wl(u)f)) QAB7
where FAP and F§'P are smooth in a neighborhood of the origin such that
FAP(0)=0,  F{P(0)=0.

Also, plugging in the formula for a of Lemma A.6, we infer

a= (1 +F (Wl(u)f) ) (14 8.f),
where F; is a smooth function in a neighborhood of the origin such that
F7(0) =0.
Next, we use
N = N"9, + N*0,
= N“0,f0y + N*(0pa + 0,4 f0y)
= (N®8yf + NA9,a f) By + N48,a
and plug the formula for NV of Lemma A.5 to obtain
1— 7?88, fO,af 48,5 f

N - u
\/1 - PYABazAfazBf B \/1 - 'YABameazAf

Bya.

We infer
knny =k(N,N) + Fg (Vl(u)f) Kij,
where ng is smooth in a neighborhood of the origin such that

FZ(0) = 0.
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In view of the above identities for trf, a and kny, we may thus rewrite (2.28),
given by

tr@ —kyy =1-—a,
as

(14 7 (Vo F) ) 0+ 0uF) = 1= B F = FLE (V00 ) 0000 F

= k(N N) + Y (V) bis = 28 = FP (V0 F) a3,

or
8uf_ Aj(u)f_ FIAB <W1(u)f> azAaxBf
= (N, N) = 08+ Fg? (V) F) iy + Fi*® (Vo) 0am + Fa (V) -
where F{AB inj , F{'B and F, are smooth in a neighborhood of the origin such that
F{P(0) =0, F'(0=0, F?(0)=0, Fi0,0)=0.
This concludes the proof of Lemma A.7.
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APPENDIX B

PROOF OF THE ESTIMATES FOR THE COMMUTATOR [V,x, Pj]

In this appendix, we prove the commutator estimates stated in Section 5.3.

B.1. Proof of Proposition 5.14
Proceeding as in (5.50), (5.51), (5.52), we have:

(B.1) Von, Pilf = / m;(r
where V is given by:
(B.2) (07 = M)V (1) = [Van, AlU(7) f, V(0) = 0.

In view of (B.1), we have:

I[Van, Bilfllz2s) S /0 m; (T)[V(7)| L2 (s)dr.
Thus, to obtain (5.72), it suffices to show:
(B.3) supl|[V(7)llz2(s) S 5||A§+5f||L2(S) + EHA(Sf”L‘[’sz]L?(Pu)-

From now on, we focus on proving (B.3).
In view of (B.2) and the heat flow estimate (5.5), we have:

IV s, / IV ()22’ < / / V() Vars AU () dpradr”.

Using the commutator Formula (2.23), and integrating the second order derivative by
parts, we obtain the following estimate:

IV(OIZ2p,) +/0 1YV ()22 p,)dr’
S (@Y O)l L2 e,y + 1¥(@)f]l L2 (p.) + IICLRIILzuaL))/0 IVU () s IV () s e dr’

a0 e L2 cr) / VU o 19V )2y dr
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Together with the Gagliardo-Nirenberg inequality (3.9), Proposition 3.7, and the es-
timate (2.30) for a and 6, we obtain:

V) g, + / 19V ()12 o "
< ([a¥(O) 2 p,, + 19 (@6120py + 0Bl cp)
T o1
x / A VR () gy IVU () 2oy
T 1 T
e / 190 e IVU (e oy + / 1YV ()2, "

1 /7 ,—14s
g [TV B
0

for any § > 0. This yields:

IV llZ2cp,) +/0 1YV () 22(p,ydr" S 10V O 72p,) + V(a)0ll72(p,) + laR]T2(p,))
o1
X/O T2 VPU ()2 VU () 2, dr

+é’ /0 V2 U )Lz IVU () 22, dr

and integrating in u, we obtain:

BA) VI + / 1YV ()12 5y dr”
< e sup ( / T'2“5||WQU<T'>||L2<Pu>||WU<T'>||L2<pu>dT)
u 0

+62/0 VU ) l20s) I VU () [l 2(syd,

where we used the estimate (2.30) for a and 6, and the smallness assumption (2.1)
for R. Now, we have:

T 1_6
/0 A NGRU () o [T () 2y

T 1-25 T
S/o 7' ||¢U(T/)||%2(Pu)d7"+/o IVU ()72 p,)d7"s

where we used the Bochner inequality for scalars (5.63). Together with the heat flow
estimate (5.24), we obtain:

o1
(B.5) sup(/0 T2 IIVQU(T’)IIL%PIL)IIWU(T’)||L2<Pu)dT’)SIIAMfIIZLw L2(P)-

[=2,2]

Also, we have:

(B.6) /OTHWZU(H)nm||WU<T'>||L2<S)dT'
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S [N agsydr + (supr'5||w<r>||i2<s>> ( / T’”“)
0 T 0

1
S ||A2+26f||%2(5),

where we used in the last inequality the Bochner inequality for scalars (5.63) and a
heat flow estimate. Finally, (B.4), (B.5) and (B.6) imply:

1
sup V(1) llc2(s) S €A fllngs, , z2cpy) + €llAZT flr2(s).

Since § > 0 is arbitrary, this yields (B.3), which concludes the proof of the proposition.

B.2. Proof of Proposition 5.15

Proceeding as in (B.1) (B.2), we have:
®.7) Vo P = [ my(e)V (r)a,
where V is given by: ’
(B.8) (0r — AV (7) = [Van, AJU(7)F, V(0) = 0.

In view of (B.7), we have:

am PPl oaceo S [ i@Vl oy

Thus, to obtain (5.73), it suffices to show:
(B.9) V()L

—2,2]

1

_9
ey S84 (I9Fllacs) + 1Flleee, , r2cm ) -

From now on, we focus on proving (B.9).
In view of (B.8) and the heat flow estimate (5.5), we have:

(B10) [V(7)|2sp, + / IV ()22’ < / /P V() [V ars AU () dprudr.

Injecting the commutator Formula (2.22) in (B.10), integrating by parts, and using
the L*°(P,) estimate (3.10), we obtain the following estimate:

V)2, + / 1YV ()|

S (laYO)llz2p.) + 1V(a)0ll L2 (p,) + ||aR||L2(Pu>)/0 IVU ) Lo e ¥V (T) L2 (P, dTs

where 2 < p < 4 will be chosen later. Together with the Gagliardo-Nirenberg inequal-
ity (3.9), we obtain:

IV(OIZ2p,) +/0 1YV ()ILz (p,ydr’

’ 201-3) ;
S (IaYO)z2(p,) + IV(@)0172(p,) + laR]Z2(p,) /0 IV U 2p IV "
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Taking the square root, and integrating in w, this yields:

(B.11) “V(T)”L[{ZZ]LZ(PH) S ([aY(0)|lz2(sy + [1V(a)f|L2(sy + laR] L2(s))

T 2(1— 5 :
([ 190G IO g ')
1
T 2(1— 2 2
([ oo N, )|
L3

where we used in the last inequality the estimate (2.30) for a and 6, and the smallness
assumption (2.1) for R. Now, in view of the Bochner identity for tensors (3.28)

Lz
Se

have:

2(1— =
/ IPU S e IVU ()

2(1-2)
< / (1AU )20y + 1K |2 IFU g2 py + 1K 2o [0 22,
4
X ||WU(T/)||£2(pu)dTI

T 1-2 , o7 2
g(/o ||4AU(T/)||2‘LQ(Pu)dT'> (/0 IIVU(T’)II%z<pu>dT’>

41—

IIKIILz(p /(IIWU( T)NZ2ep,) + U2 p,))dr-

Integrating in u, and using the fact that 2 < p < 4, this yields:

/ /IIWU Mo VU ()1 2y du

<73 <sup||y7U(r’)||2LZ(S) +/0 IIAU(T’)IIiz(adT')

) 4_
+||K||L2 et

o (sup<||w<r'>||%2(s> T Basy)

sup ( /OT<WU<T’>H%2<PU> + ||U<7’>Hi2<m>df'> )

Together with the estimate (2.30) for K, and the heat flow estimates (5.1) and (5.2),
we obtain:

2(1— 4
/ | IS IR

2 4_
S (7P + ) UV FIacs) + IF e, o)
Together with (B.11), we finally obtain:

WVOlar, , 2 <

1 2_ 1
e (15 +7578) (IVFllnacs) + 1Pl pae))-
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Since 6 > 0, we may choose p such that:

4
2<p<min|(4,—~],
P mln( 2—5)

which yields (B.9). This concludes the proof of the proposition.

B.3. Proof of Corollary 5.16

Using the inequality (5.48), the fact that P;F' = 0 on u = —2, and properties (ii)
and (iii) of Theorem 5.5, we have:

(B.12)
Z2j ”PJ'F”ZLE’EQ’Q]L?(PU)

>0

S ([ IR FIuaeo IV By Pl + 1P ls) |9 Fluscs) )

7=>0
<2 ([ IR Fl eIV Bl an) + 2P FI
= >0

—2
< sz (/ |P F||L2(P )||V NP F||L2(P )du> + ||y7F||L2(S)7

3>0
where we used the estimate (2.30) for a in the last inequality. Now, we have:
IVanPiEllL2py) S 1B (Van )|z ey + [1[Van, B L2 (py),
which together with (B.12), and the properties (ii) and (iii) of Theorem 5.5 implies:

(B.13) >0 2j||PjF||%<[>jz’2]L2(Pu)
S VNPF| o) 1P (Van F)llz2(s)
3>0
+ Y 2\|PiF|zee.r2p ) [Van, PiIF |2 12epy + | VE |32
L2, 2P WVaN, BN | r2(py) 12(9)
7>0
<> 2%|| Py F |22 (s) + Z”Pj(VaNF)H%Z(S)
j=0 j=0
2 2
+ (> 2|p F||L°°22] (P.) Z2j||[PjvVaN]FH%[l_lQ]L?(Pu) +IVF|I7s)
j=0 j=0
; ;
ZQJ'”PJ’FHQL‘?ZZ]L?(PU) Z2j||[Pj7VGN]Fni[l_zg]L?(Pu) +IVE(Z2(s)-
>0 >0
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This yields:
(B.14) Y PIPFlie  rap,) S ZQjII[Pj,VaN]FIIQL[l_

[-2,2]
j=0 j>0

’2]L2(pu) + ”vF”iz(s)

2

Now, we have in view of the commutator estimate (5.73):

I[P}, VaN]F”%[lizz]Lz(Pu) S 2770 De(|VF | Lags) + ||F||L‘[’j2y2]L2(Pu))7
for any § > 0. In view of Corollary 3.8 and the fact that F' = 0 on u = —2, we obtain:
||[P]7 VaN]F||i[1_272]L2(Pu) 5 2_j(1_6)5||F||H1(S)'

Together with (B.14), this yields:

22j||PjFH%‘[>jQ’2]L2(Pu) <l1+ 22—1’(1—25) ”F”%—Il(S)'

>0 320

Choosing 0 < § < 1/2, we obtain:
(B.15) SSVIPFIe, | pary < I s)

Jj=0

which is the wanted estimate. This concludes the proof of the corollary.

B.4. Proof of Proposition 5.17

In view of (B.1), we have:

e Pz o S [ ms IV, i
where V is given by:
(B.16) (0r = V(1) = [Van, AlU(7)f, V(0) = 0.
Thus, to obtain (5.75), it suffices to show:
(B.17)

2 T %
AV Ole, oo+ [ ( / IIVA“V(T’)IIia(pu>dT’> du S e[ A0 F || s).

Indeed, once (B.17) is obtained, one proceeds as in (5.55) (5.56) to deduce (5.75).
From now on, we focus on proving (B.17).
In view of (B.16) and the heat flow estimate (5.21), we have:

A=V () e p,y +/0 IPA=V ()3 p, " 5/0 / A2V () [V, AU (7 )dpudr

Injecting the commutator Formula (2.23), integrating by parts, we obtain the following
estimate:

(B.18) A=V (D) Z2cp,) +/O VA=V ()l p,)dr”
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S (1aVO)L2p.y + 1V ()0l 2Py + laR] L2(p,))

></O IVU () Loy VA2V () L2 (p,dr,

where 5
2<p< ——
o

will be chosen later. Now, we have in view of (5.26) and (5.18):

VA2V ()22, S ATV ()G VATV (T ) 12 (p, )
which together with (B.18) implies:
(B.19)

IIA""V(T)IIiz(pu)-F/O VA=V (T)IIZ2(p, ) dr’

< (la¥O)L2(p,) + ¥(a)011Z:(p,) + IIGRII%z(pu>)/O T NYU ) L, T

The Gagliardo-Nirenberg inequality (3.9) and the Bochner inequality (5.63) imply:
| IO gy
< T e N 2(1—
S | IO AU
T b T4
S/O 7’ ||77U(T')||2£2<pu)d7'Jr/0 AU () 12 e, dTs

where b is given by:
2
(B.20) b=a_ -1+ -.
p

We have 0 < b < 1 from the choice of o and p. Thus, we obtain in view of the heat
flow estimates (5.22) and (5.24):

/ P NTU N oy S IA £,

0
Together with (B.19), this yields:

A=V (D) |72 (e, +/0 VA=V ()L p, dr’

S (1a¥O)zz(p,) + 1V(2)0lZ2(p,) + laRlZ2p, ) IAT" fll72(p,)-
Integrating in u, this yields:

2 T %
B2) AV, e+ [ ( / ||WA‘“V<T’>||%2<Pu>dr') du

< (1aY(0) | 2(sy + V()8 L2(s) + llaRl p2(s) 1A Fll2(s)
S elATFl sy,
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where we used in the last inequality the estimate (2.30) for a and 6, and the smallness
assumption (2.1) for R. Now, in view of the Definition (B.20) of b, and since § < a,
we may choose p > 2 close enough to 2 such that b_ > ¢, which together with (B.21)
implies (B.17). This concludes the proof of the proposition.

B.5. Proof of Proposition 5.18
Proceeding as in (B.1) (B.2), we have:

(B.22) Vo Blf = [ myo)V(ran,
0
where V is given by:

(B.23) (0r — PV (1) = [Van, AU(7) f, V(0) =0

In view of (B.22), we have:

|[Vans P1flz2cs) < / my (V) p2s)dr-

Thus, to obtain (5.75), it suffices to show:

)

1_5
(B.24) IVl S 784 (1Al 2s) + 1V Flse, , z2ce) -

From now on, we focus on proving (B.24).
In view of (B.23) and the heat flow estimate (5.5), we have:

Vs + [ WPV g 5 [ VT MU it

Using the commutator Formula (2.23), we obtain the following estimate:
IV ()ll72(p,) +/O 1YV ()22 p,ydr’
T2
S1lsr, eeceny [ IF0E izqon IV scodr

+ (la¥bl > (p,) + V(@) 2(p,) + ”aR”L?(Pu))/O VU zap) IV () lzsp,ydr'.

Together with the Gagliardo-Nirenberg inequality (3.9), Proposition 3.7, and the es-
timate (2.30) for a and 6, we obtain:

IV ()72 (p,) +/0 1YV ()22 (p,ydr’
< (aYO) L2 (p,) + 1¥(a)0l1Z(p,) + laRIZ2(p,))

o1 T
x / T2V L2 | VU ()| L2 (p,y dr + €2 / TNV 3 T
0 0
1 /7 1 (7 _14s
45 [ IV Bapdr+ 5 [ 77V aqryar
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for any § > 0. This yields:
IVWrcen+ [ 19V
< (a¥(O)Z2p,) + I¥()0]Z2p,) + laR]Z2(p,))
x /OT P ENYP U e VU () |12 py dr + €2 /OT ) AUCOT P
and integrating in u, we obtain:

(B25)  IV()las + / 1YV ()12 5y d7"
< e sup ( / T'z“snv?rf(v/)np(pu)||WU<T'>||L2<Pu>dT>
u 0

T
e / A VRO ()2 sy,

where we used the estimate (2.30) for a and 6, and the smallness assumption (2.1)
for R. Now, we have:

T l_é
(B.26) /T'Q IV°U ()2 ) |1PU (7 22 (p, A7
0

1
2

< P sl YU e | 1av )

S 71_6||Y7f||2L2(Pu)7
where we used the Bochner inequality for scalars (5.63) and the heat flow estimate
(5.2). Also, we have:

T o1_s 3_
(B.27) /OT” IV U () 72sydr’ S 7270 sup | AU (7)1 72s

3_
STE0A 72 s)s
where we used the Bochner inequality for scalars (5.63) and a heat flow estimate.

Finally, (B.25), (B.26) and (B.27) yield (B.24). This concludes the proof of the propo-
sition.

B.6. Proof of Proposition 5.19

Let us start by proving the corollary in the case where f is a scalar function on S
satisfying the same assumptions that F. We estimate ||P;f ||2L[°° L2(P,)" Using the
AP s

inequality (5.48) and the fact that P;f =0 on v = —2, we have:
1P fliZe . 12y S IPifllezs)IVNPiflizzcsy + 1B fllL2s) IV P fllL2cs)
(B.28) (=22 , )
SIP fllezs)[VanPiflizcs) + 2211 P fllz2 sy
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where we used in the last inequality the estimate (2.30) for a, and the finite band
property for P;. Now, we have:

IVanPjfllrz2(p,) S 1P (Van Hllczcp,) + I[Van, Pilfllzzcp,),
which together with (B.28) implies:

2
||ij||L‘[’j2,2]L2(Pu)
SIP Fll2) 1Py (Van H)li2csy + 1B fll 2 )l Van, Pl fllz2(s) + 22 1P fll72(s)
S (279 Van Flzmeen) + 272 119an, Pl lias) + 279 18 s ) 147 lzcs),

where we used in the last inequality the finite band property for P;, and the definition
of H®(P,). Together with (6.43) and the commutator estimate (5.76), we obtain:

(B.29)
IPfIe, , cacr

S (2_(2+b)j||VNf||LgHb(Pu) +27 GVl pee . 12(py) + ||4Af||L2(S))) IAflz2(s)

[—2,2]

for any § > 0. Now, in view of Proposition 3.15, we have:
(B.30) IVfllLee, 2Py S NAFl2cs) + VN FllL2s)-
Since b > 0, (B.29) and (B.30) imply:
(142}
(B.31) 1P flicee, 12y S 27291V fll2 o cpy) + IV £l z2(s))-

[-2,2]

Now, we have:

£ llzeocsy S D IPifllpee(sy S 22j||ij||ij272]L2(Pu),

Jj=0 Jj=0

where we used in the last inequality the strong Bernstein inequality for scalars (5.61).
Together with (B.32) and the fact that b > 0, we obtain:

(B.32) I fllz=csy SIVNFllzzmvp,) + IV fllLacs)-

Next, we turn to the case where F is a tensor. Using (B.32) with % instead for b,
and with f = |F|?, we obtain:

2
1F N (s) SIIF - VNF] +IIFY Fllracs) + IVF (I Zas)

2
eyt I1F[|Loe () IV FllL2(s)

2
HIV FlZ(s) + IVNFIL2(s),

where we used in the last inequality Proposition 3.11 to estimate ||V F| r4(s). This
yields:

(B.33) 1F N (s) S IIF - VNF]

L2HE (P,)
SIF-VNF|

2
L2HS3(P,) +IY F”%Q(S> + ||VNF||%2(S>'
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Next, we estimate the first term in the right-hand side of (B.33). We have:

(B.34) IPj(F - VNF)llz2esy S Y P (F - PVNF)|L2(s)-
1>0

In the case [ > j, the boundedness of P; on L?(P,) yields:
(B.35) 2% |Py(F - PVNF)|r2(s) S 2% |IF - AVNFl2s)

S 27 |Fllo () | VN Fll 2s)

S 2 F o ) I VN Fll iz o -
In the case [ < j, we use the finite band property for P;. We have:

Pj(F-PVNF) =272 Pj(A(F - PVNF))
= 2" P;(dif(VF - RVNF)) + 27 P;(dik(F - VAV NF)).

Together with (5.64) -note that YF'- P,V x F is a 1-form—and the finite band property
for P;, we obtain:
2% |P(F - BVNF)|r2(s)

<29°3|YF - RVNF| ,
[

bi .
by F2ETIE FRNF )

bi_ g
S22 2V e

[—2,2] 2

L2(Pu)||PlVNF||L[2_ gLty T 2%7j||F||L°°(S)”WPIVNF”P(S)-
Using Bernstein and the finite band property for P, this yields for [ < j:
(B.36) 2% Py(F - BVNF)|12(s)

S 2¥ @ WP, , 12 + 2 I F e (s) [PV N F 125

<2 T IEON(YE L,

We may assume b < 3. Then, using (B.34), (B.35) for I > j, and (B.36) for | < j, we
obtain:

b _bs
22 ||B(F - VN F)lL2s) S 272 (IVF ||z, , 2Py + 1F e () IVNFll L2 o cpy)
which yields:
1E-VNEl L,y py S UVFlLg, 220 + IF =) IVNFllz b e,
Together with (B.33), we obtain:

r2(p,) T 1Fllze ) IVNF| 2 5o (py)-

1F 1 (s
S UVFl e, , 22y + I1E Lo (s)IVNFll L2 mocp,) + IV*Fll72(s) + IVNFlI72s)
and thus:
[ElLe(s) S NVF e, , 2Py + IVNFllLz mep,) + IV*F | L2s)-
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Now, using Proposition 3.11 to estimate ||V F|| L%, 5 L2 (Pu)s We finally get:

2
[EllL=s)y S IVNEFllz e,y + 1V Fllrecs)-
This concludes the proof of the corollary.

B.7. Proof of Proposition 5.20

In view of (B.1), we have:

IVan, Pilfllz2(s) 5/0 mi(T)|V(T)||L2(s)dT,

where V is given by:

(B.37) (0 = PV (7) = [Van, AlU(7) f, V(0) = 0.
Thus, to obtain (5.75), it suffices to show:
(8.38) | W5y S A e,y

Indeed, (B.38) yields:

1Van, Pilfllz2(s) 5/0 mi(T)[|V(7)||L2(s)dT

<([ mj<r>2dr)% ([ W)

S Ve A e

[_272]L2(Pu)>

which is (5.77). From now on, we focus on proving (B.38).
In view of (B.37) and the heat flow estimate (5.21), we have:

AV (D) oo + / IVA~V () 2y’

< /OT /Pu A2V (1) [Van, AU (7)dpydr'.

Injecting the commutator Formula (2.23), integrating by parts, we obtain the following
estimate:

(B.39) ATV (D22 (p,) +/O VA=V ()22 (p, ) dr’
S eV (O)L2(p,) + IV (a)0] L2(p,) + llaR| L2(p,))
X/O IVU ()| 2r(p) IVAT2V (7)) | L2,y dT,

where
2<p<4
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will be chosen later. Now, we have in view of (5.26):

||VA_2V(T/)||L2(Pu) S ”A_lV(T/)HLZ(Pu)a
which together with (B.39) implies:
(B.40)

AT V()12 +/0 IVA=V ()L p, ydr’

T 1_
§(IlaW(f?)IIQLz(pu)+||Y7(a)9||2m(pu)+||aR||2Lz(pu))/0 T VU () s (7"

The Gagliardo-Nirenberg inequality (3.9) and the Bochner inequality (5.63) imply:

Tl Tl 4 2(1-2)
| IO ot S [ IO i |8V

T
< / NPT () 2y

T 1+b
+ / AT () [y

where b is given by:
2
(B.41) b=1_—-1+—-.
b

We have 0 < b < 1 from the choice of p. Thus, we obtain in view of the heat flow
estimates (5.22) and (5.24):

/0 NP oy’ S IA F2a .

Together with (B.19), this yields:
AV + [ VAV s,y

S ([aYO)122(p,) + I1¥(a)0lI32(p,) + laRIZ2(p, ) )IAT FlIZ2(p,)-
Integrating in u, this yields:
(B.42)

AT V(D)1Zs) +/O VATV ()22 (5ydr”

S (||GV(9)||L2(S) + ||77(a)‘9||L2(S) + ||aR||L2(S))||A7b7f||L°° L2(P,)

[—2.2]
N EHA_b_fHL‘[)fQYZ]LQ(Pu):
where we used in the last inequality the estimate (2.30) for a and 6, and the smallness
assumption (2.1) for R. Now, in view of the Definition (B.41) of b, and since § > 0,

we may choose p > 2 close enough to 2 such that b_ > 1 — §, which together with
(B.42) implies (B.38). This concludes the proof of the proposition.
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APPENDIX C

PRODUCT ESTIMATES

In this appendix, we prove the commutator estimates stated in Section 5.4.

C.1. Proof of Proposition 5.21
We have:
(C.1) |P;(F -G H)l|r2p,y S D_IPj(F - G- PH)|2(p,).-

1>0

We first consider the case where [ < j. Since 0 < b < %, there exists a real number p
such that:

(C.2)

3
§_b

We have:
IP;(F -G - PH)|12p,) = 272 | P{(AF - G - RH))l|12(p,)
= 27| Py(dip(V(F - G - PH)))| L2(p,)-
Since F' - G - H is a scalar, we may use (5.64), and we obtain:
2°\|P;(F - G- PH)||r2(p,)
S P22 |V(F -G PH)|ae,

S(bh— 2
< PO D (VF | 2(p) |Gl i ) P 12 + I F | ir ) VG 22 (o | P | )
+ 1 Fll e |G L) IVPH | L2 (py)),

where 4 < r < 400 is given by:
2 1 1

r p 2
Together with the finite band property and Bernstein for P}, and using the Gagliardo-
Nirenberg inequality (3.9), we obtain in the case [ < j:
(C.3)

. o1 2
28| Py(F - G- PH)||12(py) S 270 | Fll o 1G | (2 2 | PLH || 22 ()
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— max(j —b-2
S 27 OGN s ) Gl o 1 3

where we used in the last inequality the fact that [ < j and the choice of p (C.2).
Next, we consider the case I > j. Since 0 < b < %, there exists a real number ¢
such that:

2
Then, let 4 < r < +00 such that:
2 1 1
roq 2

Using the boundedness of P; on L?(P,), Bernstein for P;, and the Gagliardo-Nirenberg
inequality (3.9), we have:

(C.5)
20| Pj(F - G- BH)| 2P,y S 2°°IF - G- PH| 12(p,)
S 20N F || e polIGI e e |1 PH | Lacp,)
< 2 F (| e, )||G||H1(P 12" U8 PH | 12 py)

— max(J, 2
< 27 maxGDG =37 F|| g oy |Gl WH 3 5,0

where we used in the last inequality the fact that [ > j and the choice of ¢ (C.4).
Let § given by:
6=min(3—b—2,2—1—b>.
2 P g
Then, we have § > 0 in view of (C.2) and (C.4). Now, in view of (C.1), (C.3) and
(C.5), we have:

> 2PP(G -G E)lTap,y S IF I e IG I3 (p, IIHIIZ% Z > 2t

>0 Pu) >0 \ >0
SNF B G e |HIZ

since § > 0. This concludes the proof of the proposition.

C.2. Proof of Proposition 5.22

We have:
(C.6) IP{(G - H)2py S Y IP{(PG - PrH)l|L2(p,)-
I,m>0
By symmetry, we may assume:
I <m.
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We first consider the case where | < m < j. Then, we have:
|P{(PiG - PrH) 2Py = 272 |P{(APIG - PrH))l| 12,
= 27¥ | Py(diW(V (PG - PnH)))ll2(p)-
Since G - H is a scalar, we may use (5.64), and we obtain:
(C7)  IP(BG- PuH)ll1sp,)

<2° 2i9% V(PG - P, H)||L2(P)

< 2 ¥ VPGl ar | Pl scr,) + 2 |Gl uoen | VPuH e,
ST @ £ 2 ) | PG ey | P H 12

[i=m]

_li=m] il 1 m
277 70 22|PGl2py 22 (| PmH | L2(p,),

where we used the finite band property and Bernstein for P, and P,,, and the fact
that | <m < j.

Next, we consider the case where [ < j < m. Then, we use the boundedness of P;
on L?(P,) which yields:

(C.8) |Pj(PG - PnH)|r2p,) S IIPG - PnHlL2(p,)
S PG| Lep )y |1 PrH | L3 (p,)
S 25 |PGlap,)2%

A

(Pu)
S 2T TR 28| BG agn 2% |1 P H 12(r),

where we used Bernstein for P; and P,,, and the fact that [ < j < m.

Finally, we consider the case where j < [ < m. Then, we use Bernstein for P; which
yields:

(C9)  IP{(PG - PuH)llz2p) S 2 PG PuHll 3

<28 ||PlG||L3(Pu)||PmH||L3<Pu>
P m
< 2528 | PGl p2p,) 23 [PmH|l L2 (p,)

l5— M\ 15—t

<27 ~5 23| BG| L2 p) 2 % | P H | L2 (P,

where we used Bernstein for P; and P,,, and the fact that j <l < m.
Finally, we have in view of (C.6), (C.7), (C.8) and (C.9):

YIPG-H)iepy SO | D IP(PG - PrH)l|2p,

3j>0 7>0 \I,m>0

_limml il
SY D 25| PG r2(p,) 2% | P H | 22 (p,

§>0 \l,m>0
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Z2l||PlG”%2(Pu) Z 2m||PmH||%2(Pu)

>0 m>0
SIGIEy 0 I

This yields (5.79) which concludes the proof of the proposition.

C.3. Proof of Proposition 5.23
We have:

(C.10) 1P (FR)IL2(py S D _IIPi(F PRI 2(p,)-
1>0

If I < j, we use the boundedness of P; on L?(P,) to obtain:
(C.11) 272 ||P;(fPih) Me2py S 27 H ||fPlh||L2(P
<27 F(|fl g (py 1P 22,

_1
< (P27 2||Pihl 2P,y

where we used in the last inequality the fact that [ < j.
If I > j, we use the following identity:

P;(fPh) = 272 Py(f Piph) = 272 Py(dif(f Y Ph)) + 272 Py (V f - Y Pih).
Together with the finite band property for P;, the strong Bernstein inequality (5.61)
for scalars, and the finite band property for P;, we obtain:

24 PP oy S 242 UB,ARUTPD o) + B3 (TS - YRR 2(,)
<2 (IS YA 2,y + IS - VPRl 12 p,)

J

<237 (I fllzeepyy + IV Fllz2(p)) IV BBl 22 (P,)
<9

n

J

2" l(”f”L‘X’(P y F IV f o2 eyl Pkl L2 py)

(C.12) (”f”LOO(Pu) + ||Y7f||L2(Pu))2_§||Plh||L2(Pu)7

where we used in the last inequality the fact that [ > j.
Finally, (C.10), (C.11) and (C.12) imply:

—J 2 2 2 2
D 2P (T py S (IF G ey + IV FIIT2(p0) D ( h||L2(Pu))
=0 j>0
S I (pyy + IV F T2 p,) ZZ_lHPthiz(Pu)
1>0
S U2y + IV FIZ2p,)) IR ||2_§(P )

This concludes the proof of the proposition.
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C.4. Proof of Proposition 5.24

We estimate ||P;(G - PLH)||z2(p,) starting with the case where j > I. Using the
boundedness of P; on L%(P,) of P;, we have:

15(G - PH) | 2(s) S G llLpe, , Lo 1P H | L2

_2,2]L4(Pu)
1
S 22||Gll gy 1P H || 2 sy,

where we used in the last inequality the Proposition 3.7 and the Bernstein inequality
for P;. This yields in the case j > I:

_ i _ =4l
(C.13) 2 4|[Py(G - Pl 1as) S 27 TGl s | P 1o gs).

Next, we consider the case where | > j, and we estimate || P;(P,G - PH)| r2(p,)
starting with the case where m > [. Using the sharp Bernstein inequality (5.61), we
have:

(C.14) 1P (PG - PH) | 12(s) S 22| PmGllze, , 2p) |1 PiH || 2(s).-

Finally, we consider the case where [ > j and [ > m. Using the finite band property
for P;, we have:

I1P;(PnG - PH)||2(5) S 27 ||1Pj (PG - AP H)|2(s)
S 272|Py (VPG - VPH) |2 s)
+ 272 Py(dif(V PG - PH))| L2 (s).-
Using the sharp Bernstein inequality (5.61) for the first term and the estimate (5.64)
with p = 4/3 for the second term, we obtain:
(C.15)
|1Pj(PrG - PH) | 125) S 272 |V PnGllree, , L2p VP H | 12(s)

[—2,2]

5
+22 "2 VP, G|

[—2,2]

2p)|PH| Lz | pa(py)

[—2,2]
33

j—l+m 3 _3lim
<(2i7Hm pos -2t )“PmG”LE’fZZ]LQ(Pu)”PZH”LZ(S)»

where we used in the last inequality Bernstein for P, and P,,. (C.14) and (C.15) yield
in the case [ > j:

(C.16) ‘ v
24| By (PG - PiH)|pa(s) S 2777 50

Finally, (C.13) and (C.16) imply:

(2% || PGl e

[—2,2]

()P H || L2 (s)-

Z2ij||Pj(G “H)||7205) S | I1G1F sy + Z 2m||PmG||2L‘[>jzy2]L2(Pu)
>0 m>0

x \ D IPH| 25
1>0
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S NGl (s I1H1Z2 sy,
where we used in the last inequality Corollary 5.16 for G and the Bessel inequality
for H. This concludes the proof of the proposition.

C.5. Proof of Lemma 5.25

We have:
(C.17) 1By (F - O)lzeny S 3 IB{RE - Pu)ls2(r,)-

I,m>0

If j = max(j,l,m), we use the boundedness of P; on L?(P,) and the Bernstein
inequality for P, and P, to obtain:

(C18)  277||Pj(PF - PnG)12pyy S 277||PF - PGl 12(p)
S 27| PF || op) PGl e py)
a2l om
$2772%5 23 ||PBF | L2y |1 PGl 22 (py)

[l—m|

_ 1 _m
S27 0 22||PF|2p,27 2 (| PnGllLe(py),

where we used in the last inequality the fact that j = max(j,l,m).
If | = max(j,1,m), we use for P; the strong Bernstein inequality for scalars (5.61)
which yields:

(C19)  277||Py(PF - PuG)ll12(p,) S IPF - PuGllLi(p,)
SNPF| 22 py I PmGllLe(p,)

[1=m]

— I _m
$27 7 27| PF12(p,)2” 7 1PnGllL2cp,),

where we used in the last inequality the fact that [ = max(j,1,m).
If m = max(j,1,m), we use the following identity:

Pj(RF - PnG) =27"""P;(RF - pAP,G)
= 272" (P(A(PF - PnG)) + Pj(A(PF) - PG)
+ P (dif(V(PF) - PrG)))
=272m(2% Pj(P,F - P,,G) + 2% P;(P,F - P,,G)
+ P (dif(V (R F) - PnG))).

Together with the boundedness of P; on L?(P,), the strong Bernstein inequality for
scalars (5.61), and the estimate (5.64), we obtain:

(C.20)
279||Pj(P.F - PyG)ll2(p,)
. . . 25
S 2797 Q¥ | PF - PrGl|1ap,) + 222 | PF - PnGl|pip,) + 27 |V(PF) - PmG”Lg(Pu)

S 27972 (2| PoF || o (po) |1 PmGllLe(po) + 22N P || L2 (po | PGl 2 (P
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37
+ 22 |[V(PE) | L2p) 1 PmGllLap,))
< 27T R AR 4 92 4 9F TN E ) | PF| Lo | PGl 12(p,)

<

1 _m
[PF L2(p,)27 2 [ PmGllL2(p,)»

where we used Bernstein for P,,, the finite band property and Bernstein for P;, and
the fact that m = max(j,1, m).
Finally, (C.17), (C.18), (C.19) and (C.ZO) imply for all j > 0:

27| Pi(F - @2y S Z

I,m>0

Fllr2(p)2” 2 | PnGllL2(py)

N[
N[

Z2l||IDlF||%2(Pu) Z 2_m||P’mG||%2(Pu)

1>0 m>0
SIFl g3 ) |G-
This concludes the proof of the lemma.
C.6. Proof of Lemma 5.26
We have:
(C.21) 1P (A (f D) p2cpay S D _NIPH (ARGl 2,
1>0

If I < j, we used the boundedness of P; on L?(P,), and the strong Bernstein inequality
for scalars (5.61) and the finite band property for P;. We obtain:

(C.22) 29~V Py(AK(P(F)R)) |2 (p.)
< 270D di(P(f)G) | L2 (o)
<20 VNV(PAG L2py) + 1BFYG |22 (p))
S PCD(VBS) 2o |Gl (p) + [P (oo VG 22 (p,))
SYOVL(Gllrw (py + IVG L2 ) I PF 2.
< 27Ol L (py + 1VG 2P )2 I P N 22

where we used in the last inequality the fact that [ < j and b < 1.
If I > j, we use the following identity:

P;(dif(P(£)G)) = 27 P (dik(ARI(£)G))
— 272(P, (AR (TRF)G)) + P (AT - YG)).
Together with the estimate (5.64) for P;, we obtain:
210V Py (AR (B(f)G))ll 2
< POV By (A (AR (VPO zz(p,y + 1By (AT R(S) - VG L2 p,))
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< 20C=D=2 | Pidigdifl|op 2 ) I VP (F) Gl L2y + 2% |VP(f) - VGll2(p)),

where p satisfies:

2

which is possible since —1 < b < 1. Together with the Bochner inequality for scalars
(5.63) and the finite band property for P;, this yields:

27O~V Py (dif (P (f)G)) L2(py)
SO QINYPS |12 (e |Gl (pu) + 27 1P e () IV G 225

where r is given by:
1 1 1

+ .
r 2 p
Together with the Gagliardo-Nirenberg inequality (3.9), the Bochner inequality for
scalars (5.63), and the finite band property for P;, we obtain:

(C.24)
27O~V Py (i (P ()Gl L2(py)
< 200292090 4 9T 9 D) (|G 1 () + IVG 2 (PP F 2
< @70 om0 (G| oo () + 19 G 2P )2 I Pl 2P

where we used in the last inequality (C.23), the fact that b+ 1 > 0, and the fact
that [ > j.
Finally, (C.21), (C.23) and (C.24) imply:

> 223 Py (dif(PU(F)G)) I 2 p,

720
2
—|j7—1| min(1— —-1+2
S ST ST Hm b)) (G ) + (VG2 (p)) 22 I P 2
j=>0 \I>0
S (G112 p,y + IVGIZ2p,) D 2°" |1 Pif |F2p,

1>0
S G (py) + VG T2 p ) F o ()

This concludes the proof of the lemma.

C.7. Proof of Lemma 5.27
We have:
(C.25) 1P (i (f )l z2(sy S D NP (@AF(PU(F)G))L2(s)-

1>0
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If I < j, we use the finite band property for P; to obtain:
2907V Py (dif (P (£)G)) 2 s)
S YOV )| 2 s)
S PO (VPG p(s) + IV | p2(s) + | P(H)VARE) [12(s)
S POV PNz (s) [Gll=(s) + IV ez, o 1AMz, pace)
+ ||Pl(f)||Loo(s)||Y72(G)||L2(S)),

where p and ¢ are such that:

2 2 1
-+ -=-,2<qg<p<+oo.
p q 2

Together with the Bochner inequality for scalars (5.63), the Gagliardo-Nirenberg in-
equality (3.9), the finite band property for P;, and the strong Bernstein inequality for
scalars (5.61), we obtain:

210D Py (dif(P(f)G))ll2(s)
S PO @Gl () + Gz, , pacp)IPfllzacs)
+ 2l||Y72(G)||L2(s)||H(f)||Lf32,2]L2(Pu))
S 27N (G e s + ARGz, , pacpy + IV (@)llzcs)
x @2 Pfllzacs) + 207V NPUO) e

[_212]L2(Pu))a

where we used in the last inequality the fact that [ < j and b < 2. Since this holds
for any ¢ > 2, we finally obtain:

(C.26) 27V Py(dif(P(f)G))lz2s)
S27HIED (G e sy + Id#(GI s, , 22+ 2y + IV*(@)ll2(s)
x (2P| Pifllzacs) + 2" VIR e, , r2(pn)-
If I > j, the finite band property for P; yields:
(C.27) 2OV PR (P(f)G)) 225y S 2 NP(HClnas)
S 2% Gll pes sy 1P| 22 cs)
< 277Gl oo ()2 1P () 2 (9),

where we used in the last inequality the fact that [ > j and b > 0.
Finally, (C.25), (C.26) and (C.27) imply:

3 22C=Di|| Py (A (fG)) 32 s

320

S UGy + GO, | 1os ) + IFH(@)n(s)
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X Z Z2_”_]"min(2_b’b)(21b||Pl(f)||L2(S) + 2! 0=V Py (f )||L°°2 L2 2(P,))
j=>0 \1>0

S (G ws) + GO, | oo,y + IV (@lEecs)

x D @IR(H)F2s) + 22OV
1>0

S (IGIILs) + IIdi/‘f(G)Ili[z s L (P + IV (@)lI2(s))

< (IF1Z2 1o,y + ||f||L3°Hb—1(Pu))-

=, L2(Pu))

This concludes the proof of the lemma.

C.8. Proof of Lemma 5.28
We have:

(C.28) 1P (FR) |2 (py) S D IR (EP(R) L2 (p,)-
1>0

If | < j, we use the finite band property for P;, and the strong Bernstein inequality
for scalars (5.61) and the finite band property for P;, which yields:

(C.29)

218\ Py (FPy(h))||p2(pyy) S 27O VIV(EP(R))] £2(po)
SYCV(VE| L2 p)y IR (py) + | Fllz p) VPR |22 (p,))
S 2O V(NVE| L2y 2 N Puh) |2 (poy + 1 F Nl Lo py 2 1 Po(R) |22y )
< 27O W E| p2py) + || oo (pu)) 2 1 PL(R) | 22 (o) s

where we used in the last inequality the fact that [ < j and b < 1.
If I > j, we use the boundedness of P; on L?(P,) which yields:

(C.30) 27| Py (FP (W) |2 (pyy S 2PN FPi(R)| 2P,
S 2P|l oo (py | PL(R) | L2(Py))
S 27 Pl poo 2y 2 | Pi(R) L2 ) »

where we used in the last inequality the fact that [ > j and b > 0.
Finally, (C.28), (C.29) and (C.30) imply:

> 22 Py (FP(A) 2 p,)
j20

S IFIZ e (pyy + IVEZ2p,0) D | D27 P2 | PRIl 2 e,

720 \120
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SUF G pyy + IVFIZ20) D 22 IPUB) 2P,
1>0

S (||F||%oo(1>u) + ”WF”%P(PH))”h”%Ib(Pu)‘
This concludes the proof of the lemma.
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CHAPTER 10

INTRODUCTION

We consider the Einstein vacuum equations,
(10.1) Rag =0,

where R, denotes the Ricci curvature tensor of a four dimensional Lorentzian space
time (¢}, g). The Cauchy problem consists in finding a metric g satisfying (10.1)
such that the metric induced by g on a given space-like hypersurface ¥y and the
second fundamental form of ¥y are prescribed. The initial data then consists of a
Riemannian three dimensional metric g;; and a symmetric tensor k;; on the space-
like hypersurface ¥y = {t = 0}. Now, (10.1) is an overdetermined system and the
initial data set (g, g, k) must satisfy the constraint equations

Vik;; — V;Trk = 0,
R — |k* + (Trk)? = 0,

where the covariant derivative V is defined with respect to the metric g, R is the
scalar curvature of g, and Trk is the trace of k with respect to the metric g.

The fundamental problem in general relativity is to study the long term regularity
and asymptotic properties of the Cauchy developments of general, asymptotically flat,
initial data sets (2o, g, k). As far as local regularity is concerned it is natural to ask
what are the minimal regularity properties of the initial data which guarantee the
existence and uniqueness of local developments. In [17], we obtain the following result
which solves bounded L? curvature conjecture proposed in [10]:

(10.2)

Theorem 10.1 (Theorem 1.10in [17]). — Let (M, g) an asymptotically flat solution to
the Einstein vacuum Equations (10.1) together with a mazimal foliation by space-like
hypersurfaces ¥y defined as level hypersurfaces of a time function t. Let ryo1 (X, 1) the
volume radius on scales < 1 of ¥; (V. Assume that the initial slice (3¢, g, k) is such
that:

1
IRlz2(z0) < &, IEllz2(mo) + IVEIL2(mo) < € and 7vo1(¥o,1) 2 5.

1. See Remark 10.5 below for a definition.
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Then, there exists a small universal constant €9 > 0 such that if 0 < € < ¢, then the
following control holds on 0 <t < 1:

IRl e

[0,1

| =

| L2(S0) Se kllpes  z2my) + I VE| L

[0,1) Bl (Z) ~ € and 0%1151£1TV°1(Et’ 1) >

Remark 10.2. — While the first nontrivial improvements for well posedness for quasi-
linear hyperbolic systems (in spacetime dimensions greater than 1 + 1), based on
Strichartz estimates, were obtained in [2], [1], [27], [28], [11], [14], [20], Theorem 10.1,
is the first result in which the full nonlinear structure of the quasilinear system, not
just its principal part, plays a crucial role. We note that though the result is not op-
timal with respect to the standard scaling of the Einstein equations, it is nevertheless
critical with respect to its causal geometry, i.e., L? bounds on the curvature is the
minimum requirement necessary to obtain lower bounds on the radius of injectivity
of null hypersurfaces. We refer the reader to Section 1 in [17] for more motivations
and historical perspectives concerning Theorem 10.1.

Remark 10.3. — The regularity assumptions on ¥y in Theorem 10.1—i.e., R and V&
bounded in L?(¥q)—correspond to an initial data set (g, k) € HZ (Zo) x HL . (Zo).

Remark 10.4. — In [17], our main result is stated for corresponding large data. We
then reduce the proof to the small data statement of Theorem 10.1 relying on a
truncation and rescaling procedure, the control of the harmonic radius of ¥y based on
Cheeger-Gromov convergence of Riemannian manifolds together with the assumption
on the lower bound of the volume radius of ¥, and the gluing procedure in [7], [6].
We refer the reader to Section 2.3 in [17] for the details.

Remark 10.5. — We recall for the convenience of the reader the definition of the
volume radius of the Riemannian manifold ¥;. Let B,(p) denote the geodesic ball of
center p and radius r. The volume radius ryo (p, r) at a point p € 3; and scales < r is
defined by B ()]
. Br’ b
Tvol(p,T) = Inf — 5
with |B,| the volume of B, relative to the metric g; on ¥;. The volume ra-

dius 7yo1(2¢, ) of ¥y on scales < r is the infimum of ry.(p, r) over all points p € ¥;.

The proof of Theorem 10.1, obtained in the sequence of papers [17], [23], [24], [25],
[26], [22], relies on the following ingredients (?):

A Provide a system of coordinates relative to which (10.1) exhibits a null structure.
B Prove appropriate bilinear estimates for solutions to Ug¢ = 0, on a fized Ein-
stein vacuum background ).

2. We also need trilinear estimates and an L*(c) Strichartz estimate (see the introduction in
[17]).
3. Note that the first bilinear estimate of this type was obtained in [12].
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C Construct a parametriz for solutions to the homogeneous wave equations
Lgp =0 on a fized Einstein vacuum background, and obtain control of the
parametriz and of its error term only using the fact that the curvature tensor is

bounded in L2.

Steps A and B are carried out in [17]. In particular, the proof of the bilinear
estimates rests on a representation formula for the solutions of the wave equation
using the following plane wave parametrix:

+oo
(10.3) Sf(t,x) = /S 2 /0 e t2@) £ (AN dAdw, (t,z) € M,

where u(.,.,w) is a solution to the eikonal equation go‘ﬁaauagu = 0 on oM such
that u(0, z,w) ~ z.w when |z| — +00 on Xo.

Remark 10.6. — Actually, (10.3) only corresponds to a half wave parametrix. The
full parametrix will be derived in Section 11.1.

Remark 10.7. — The asymptotic behavior for u(0,z,w) when |z|] — +oo will be
important to generate arbitrary initial data for the wave equation (see (11.21)).

Remark 10.8. — Note that the parametrix (10.3) is invariantly defined ¥, i.e., without
reference to any coordinate system. This is crucial since coordinate systems consistent
with L? bounds on the curvature would not be regular enough to control a parametrix.

In order to complete the proof of the bounded L? curvature conjecture, we need
to carry out step C with the parametrix defined in (10.3).

Remark 10.9. — In addition to their relevance to the resolution of the bounded L2
curvature conjecture, the methods and results of step C are also of independent in-
terest. Indeed, they deal on the one hand with the control of the eikonal equation
gP0,udzu = 0 at a critical level ®, and on the other hand with the derivation of L?
bounds for Fourier integral operators with significantly lower differentiability assump-
tions both for the corresponding phase and symbol compared to classical methods (see
for example [21] and references therein).

In view of the energy estimates for the wave equation, it suffices to control the
parametrix at ¢t = 0 (i.e., restricted to Xg)

+o0o
(10.4) Sf(0,z) = / / e?029) f (AWIA2dAdw, € %
sz Jo

4. Our choice is reminiscent of the one used in [20] in the context of H2t€ solutions of quasilinear
wave equations. Note however that the construction in that paper is coordinate dependent.

5. We need at least L2 bounds on the curvature to obtain a lower bound on the radius of injectivity
of the null level hypersurfaces of the solution u of the eikonal equation, which in turn is necessary
to control the local regularity of u (see [25]).
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and the error term
(10.5)

+oo
Ef(t,x) = OgSf(t,z) = /S/O e BTy (t, 2, w) fOw)A3dAdw, (t, ) € M.

This requires the following ingredients, the two first being related to the control of
the parametrix restricted to ¥ (10.4), and the two others being related to the control
of the error term (10.5):

C1 Make an appropriate choice for the equation satisfied by u(0,z,w) on g, and
control the geometry of the foliation generated by the level surfaces of u(0,z,w)
on Xg.

C2 Prove that the parametriz att = 0 given by (10.4) is bounded in T(L*(R3), L*(S))
using the estimates for u(0,z,w) obtained in C1.

C3 Control the geometry of the foliation generated by the level hypersurfaces of u
on M.

C4 Prove that the error term (10.5) satisfies the estimate || Ef||12() < ClIAf]lL2(®s)
using the estimates for u and Ogu proved in C3.

Concerning step C1, let us note that the typical choice «(0,z,w) = z-w in a given
coordinate system would not work for us, since we don’t have enough control on the
regularity of a given coordinate system within our framework (®). Instead, in [23], we
rely on a geometric definition for u(0,z,w) to achieve step C1. In the present paper,
we focus on step C2.

Note that the parametrix at ¢ = 0 given by (10.4) is a Fourier integral operator
(FIO) with phase u(0,z,w). Now, we only assume R € L%*(X¢) and Vk € L?(%p) in
order to be consistent with the statement of Theorem 10.1. This severely limits the
regularity we are able to obtain in step C1 for u(0,z,w) (see [23] and Section 11.2).
Although R and k do not depend on the parameter w, the regularity in w we are able
to obtain in step C1 for u(0,z,w) is very limited as well (. In particular, we obtain
for the phase u(0,z,w) of Sf(x,0) in (10.4) ®):

(10.6) sup (IV%ull 2wy + VOl (50) + V2Bt + 103uls, ) S =

Let us note that the classical arguments for proving L? bounds for FIO are based either
on a TT* argument, or a T*T argument, which requires in our setting (¥ taking at
least 4 derivatives of the phase in L>(Xg x S?) either with respect to x for T*T, or

6. This issue appears because we are working at the level of H? solutions for Einstein equations.
In particular, the choice 4(0,z,w) = z - w in a given coordinate system is used in [20] in the context
of H?*t€ solutions for quasilinear wave equations.

7. This is due to the fact that our estimates are better in directions tangent to the wu-foliation
on Xo. Now, after differentiation with respect to w, derivatives in tangential directions pick up a
nonzero component along the normal direction to the u-foliation on Yo (see [23] for details).

8. Actually, we have weaker bounds for the estimates where all the spatial derivatives are taken
in the direction normal to the u-foliation on 3¢ (see Section 11.2).

9. Since X is 3-dimensional.
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with respect to (A,w) for TT* (see for example [21]). Both methods would fail by a
large margin, in particular in view of the regularity (10.6) obtained for the phase of
the parametrix at initial time S f(z,0). In order to obtain the control required in step
C2 with the regularity of the phase of the FIO Sf(x,0) given by (10.6), we are forced
to design a method which allows us to take advantage both of the regularity in  and
w. This is achieved using in particular the following ingredients:

— geometric integrations by parts taking full advantage of the better regularity
properties in directions tangent to the level surfaces of u(0,z,w) 19,

— the standard first and second dyadic decomposition in frequency and angle (see
[21]), as well as another decomposition involving frequency and angle,

— after localization in frequency and angle, an estimate for the diagonal term using
the TT* argument and a change of variable tied to u(0, z,w).

The rest of the paper is as follows. In Chapter 2, we present the full parametrix
for solutions to the homogeneous wave equation Lg¢ = 0, we recall the regularity for
the phase u(0,z,w) obtained in [23], and we state our main results. In Chapter 3,
we prove the boundedness on L? of a pseudodifferential operator acting on R? with
a rough symbol introducing the main ideas in a simple setting. In Chapter 4, we
prove the boundedness on L? of a Fourier integral operator acting on X, with phase
u(0,z,w) and a symbol having limited regularity consistent with the one given by
our parametrix. Finally, we use the results of Chapter 4 to show the existence and to
control our parametrix in Chapter 5.

Acknowledgments. — The author wishes to express his deepest gratitude to Sergiu
Klainerman and Igor Rodnianski for stimulating discussions and constant encour-
agements during the long years where this work has matured. He also would like
to stress that the basic strategy of the construction of the parametrix and how it
fits into the whole proof of the bounded L? curvature conjecture has been done in
collaboration with them. Finally, he would like to mention the influential work [20]
providing construction and control of parametrices for H27¢ solutions of quasilinear
wave equations.

10. Let us repeat that we actually obtain a weaker bound than (10.6) for the estimates where all
the spatial derivatives are taken in the direction normal to the u-foliation on Xg (see Section 11.2).
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CHAPTER 11

MAIN RESULTS

From now on, there will be no further reference to 3; for ¢ > 0. Since there is no
confusion, we will denote ¥y simply by ¥ in the rest of the paper.

11.1. Presentation of the parametrix

In this section, we construct a parametrix for the following homogeneous wave
equation:

{ngﬁ =0 on oM,
(11.1)

¢l = ¢o, T(9)|_ = ¢1,
where ¢ and ¢; are two given functions on ¥ and 7 is the future oriented unit normal
to X in oM.

We recall the plane wave representation of the solution of the flat wave equation.
This corresponds to the case where g is the Minkowski metric. (11.1) becomes:

{ O¢ = 0 on R'3,
¢(0,.) = ¢o, 9 ¢(0,.) = ¢1 on R>.

The plane wave representation of the solution ¢ of (11.2) is given by:

/SZ/ gi(—trawn L <0677¢ Ow) + éjﬁbl(}‘w))dkdw
/Sz/ i(t+a- w)Al <c7¢ Ow) — cf](/)l)f)\w)) d\dw,

where ¢ denotes the Fourier transform on R3.
We would like to construct a parametrix in the curved case similar to (11.3). We
introduce two solutions u4 of the eikonal equation

(11.2)

(11.3)

(11.4) go‘ﬂf)‘aui&gui =0 on W,
such that:
(11.5) T(us) = F|Vus| = Fai' on 3,
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where T is the future oriented unit normal to X in the space-time ¢/, V is the gradient
on ¥ associated to the metric g, |- | is the length associated to g for vector fields on 3,
and ay is the lapse of uy on ¥.. We look for a parametrix for (11.1) of the form:

(11.6)
+oo
Syfr(t,z)+S_f_(t,z) = / / e+ tmw) £ (AWIN2dAdw
s2 Jo

—+o0
+ / / eM=bTw) £ (X )N2ddw, (t,z) € M.
S2 Jo

Thanks to (11.4), this parametrix generates the following error term:
(11.7)

+oo
Befit)+ B-f(to) = [ [ Mo, (0,0, Qw)Ndrd
s2 Jo
“+oo
+/ / eMu=GTDI0 gy (¢ z,w) f- Ow)X3dAdw, (t,x) € M.
S22 Jo

In the next two sections, we precise the parametrix (11.6) by prescribing u+ on ¥ and
by making our choice for fi explicit.

11.1.1. Prescription of v, and u_ on ¥. — (11.4) and (11.5) are not enough to define
44 in a unique manner. Indeed, we still need to prescribe u4+ on 3. To motivate our
choice, we need to introduce some geometric objects connected to ui. Let Ny the
vector field on ¥ defined by:

Vui

11.8 Ny = =
(11.8) == Vg ] arVuy
and L4 the vector field on ¢/ which is given on ¥ by:
(11.9) Li=0a+g%0,us+dp = ax(~T(usx)T + Vuy) = +T + Ny.

Let P,, = {z € ¥/uy(z) = us} denote the level surfaces of uy in 3. Since Ny is
the unit normal to P, , the second fundamental form of P,, in ¥ is given by:

(11.10) i, el) = g(DefNi,eﬁ), A,B=1,2,
where (ef,ef) is an arbitrary orthonormal frame of TP,, . Let
My ={(t,z) € M/ us(t,z) =uy}

denote the null level hypersurfaces of uy in oM. Since L is null and orthogonal
to P,, in ¢/, , the null second fundamental form xi is given on P,, by:

(11.11) x+(ed, ef) = g(DeiLi,ejg,), A,B=1,2.

Taking the trace in (11.10) and (11.11), and using (11.9) and the fact that k is the
second fundamental form of X, we obtain:

(11.12) try4 = trk + tro4.
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Note that Trk = trk+ &y, where Tr denotes the trace for 2-tensors on Y. In addition
to the constraint Equations (10.2), we choose a maximal foliation to be consistent with
the statement of Theorem 10.1. This corresponds to Trk = 0. Together with (11.12),
this yields:

(1113) try+ = :FkNiNi + trfy.
Now, an easy computation yields:
(11.14) Ogus = a3 'trys,

so that the error term (11.7) may be rewritten:
(11.15)
Eyfi(t,z) + E_f_(t,x)

+oo
:/ / e Be©) g (8, w) ey (2, w) f (Aw) A3 dAdw
52 Jo

—+o0
+/ / eM-bo@) g (¢ 2 w) e (t @, w) f- Qw)X3dAdw, (8, 1) € M.
s2 Jo

In view of (11.15), one has to show in particular that trx+ belongs to L® (/) as
part of step C3 in order to complete step C4. This estimate is obtained in [13] using a
transport equation (the Raychadhouri equation). Thus, one needs the corresponding
estimate on ¥ (i.e., at t = 0):

(11.16) trxy € L*(9),

which in view of (11.13) is equivalent to:

(11.17) Fhknyng +tr0p € L(S).

Now, we construct in [23] a function u(z,w) on ¥ x S? such that
(11.18) —knn +trf € L>(8S).

Note that —u(z, —w) satisfies:

(11.19) knn + trf € L2(S).

Thus, in view of (11.17), (11.18) and (11.19), we initialize uy on ¥ by:
(11.20) w4 (0,2,w) = u(z,w) and u_ (0,2, w) = —u(z, —w) for (z,w) € T x S?.

Remark 11.1. — Note that in the particular case where k = 0—the so-called time
symmetric case-, we may take

ur(0,2,w) = u_(0,z,w) = u(z,w) for (z,w) € ¥ x §%.

In particular, we have u;(0,z,w) = u_(0,z,w) = = - w in the flat case.

11.1.2. The choice of f, and f_. — Having defined uy, we still need to define fi
in the parametrix (11.6). According to (11.1), the half wave parametrix S; and S_
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should satisfy on X:

(11.21) T(S4 £4)(0,z) + T(S_f_)(0,z) = ¢1(z).

Let us introduce the following operators acting on functions of R3:

{ S+f+(0,x)+s,f,(07.’13) :¢0(m)a

+oo
(11.22) M. f(z) = / / etiru(@Ew) £\ ) N2dAdw
sz Jo
and
+o0 )
(11.23) Qif(x):// et @ E) 4 (3 +0) 7 F(Aw)A2dAdw,
sz Jo

where a(z,w) = |Vu(z,w)|™! is the lapse of u. Using (11.5), the definition of S in
(11.6), (11.20), the Definition (11.22) of My and the Definition (11.23) of Q4, we
may rewrite (11.21) as:

(11.24) QrOM1) — Q_(Mf2) = i1

The goal of this paper will be to show that there exist a unique (f4, f—) satisfying
(11.24), and that (fy, f_) satisfies the following estimate:

(11.25) A+ llz2sy + IMf=llz2®s) S IV@ollzz(sy + l@1ll2(s)-

Remark 11.2. — In the case of the flat wave Equation (11.2), we have (2, g) = (R3,4),
ut(t,z,w) = Ft+z-w, u(z,w) = z-w and a(z,w) = 1. In particular, the operators M
and @+ defined respectively by (11.22) and (11.23) all coincide with the inverse Fourier
transform. Then, the system (11.24) admits the following solutions:

£200) = 3 (Foo0) £ L2,

which clearly satisfy the estimate (11.25).

{ Myfy+M_f- = ¢o,

Before stating precisely the main results of this paper, we will first recall the reg-
ularity obtained for the phase u(z,w) constructed in [23].

11.2. Regularity assumptions on the phase u(z,w)

The operators My and Q4 defined respectively in (11.22) and (11.23) are Fourier
integral operators with phase twu(z, +w). The regularity assumptions on u(z,w) will
be crucial to show the existence of (f;, f—) satisfying (11.24) and the estimate (11.25).
In this section, we state our assumptions on u(z,w).

We define the lapse a(z,w) = |Vu(z,w)|™!, and the unit vector N such that
Vu(z,w) = a(z,w) I N(z,w). We also define the level surfaces P, = {z / u(z,w) = u}
so that N is the normal to P,. The second fundamental form € of P, is defined by

(11.26) 0(X,Y) = g(VxN,Y),
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with X,Y arbitrary vector fields tangent to the u-foliation P, of ¥ and where V
denotes the covariant differentiation with respect to g. We denote by tr6 the trace
off,i.e., trf = 5480 4 5 where 045 are the components of  relative to an orthonormal
frame (e4)a=1,2 on P,.

Let p, denote the area element of P,. Then, for all integrable function f on 3, the
coarea formula implies:

(11.27) /E fds = /u /P fadp,du.

It is also well-known that for a scalar function f:

(11.28) % (/ fduu> = /P <;l£ +tr9f> Al -

For 1 < p,q < 400, we define the spaces L’ ]Lq (P,) using the norm

[—2,2

P
I1Plsr oo = ||F||Lq(P>) .

We assume that 1/2 < a(z) < 2 for all x € X (see Assumption 1 below) so
that Lf_M]Lp(Pu) coincides with LP(X) for all 1 < p < +oo. We denote by ~ the
metric induced by g on P,, and by YV the induced covariant derivative.

We now state our assumptions for the phase u(z,w) of our Fourier integral opera-
tors. These assumptions are compatible with the regularity obtained for the func-
tion u(z,w) constructed in [23] (this construction corresponds to step C1). The
constant € > 0 below satisfies 0 < € < 1 and will be chosen later to be sufficiently
small.

Assumption 1. Regularity with respect to x. — We have
(11.29)

IVallLee, , 2Py + lla = oo (s) + WVl L2(s) + 10]l L=
Assumption 2. Regularity with respect to w. — We have

-2

L2 T IVOlL2s) S e

(11.30) 10uallL2(s) + [IVOuallL2(sy + 100l 2(s) + VOOl L2(s) S &,
(11.31) 105 all e (s) S 1 for some 0 < o < 1.

(11.32) 10N Lo sy S 1,

(11.33) ||N(z,w) — N(z,w')| — |w — || S (e + |w — &'|)|w — '], V& € B, w,u" € §?,
(11.34) IVOZN | L2(s) S €

and

(11.35) 102wl e ) S 1-
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Assumption 3. Additional regularity with respect to . — For all j > 0, there are
scalar functions a] and aj such that:

Viya = a{ + a% where ||aji||L2(S) S 279/2%, ||ag”Li’32’2]L2(Pu) Se

(11.36) . ‘ .
and [[Vvaszas) + lasllze |, re(p,) S 2772

Assumption 4. Global change of variable on ¥. — Let w € S?. Let ¢, : ¥ — R3
defined by:
(11.37) () = u(z,w)w + dyu(z,w).

Then ¢,, is a bijection, and the determinant of its Jacobian satisfies the following
estimate:

(11.38) Il det(Jacu)| — Ll rs) < e

Assumption 5. Comparison of u(z,w) with a phase linear in w. — Let v € S? and
¢, the map defined in (11.37). Then, we have:

u(z,w) — ¢, () -w = O(e|lw — v|?),

(11.39) Ouu(z,w) — 0,y(Pu () -w) = O(e|lw — v|),
du(z,w) — 82(¢(x) - w) = O(e).
Assumption 6. Comparison of N(x,—w) with N(z,w). — For allz € ¥ and w € S?,
we have:
(11.40) |IN(z,w) + N(z,—w)| Se.

Remark 11.3. — In Assumptions 1-6, all inequalities hold for any w € S? with the
constant in the right-hand side being independent of w. Thus, one may take the
supremum in w everywhere. To ease the notations, we do not explicitly write down
this supremum.

Remark 11.4. — The fact that we may take a small constant € > 0 in Assumptions 1-6
is directly related to the assumptions on ¥ for R and k in Theorem 10.1.

Remark 11.5. — In the case of the flat wave Equation (11.2), we have (2, g) = (R3,4),
u(z,w) =2 -w,a =1, N =w and ¢, = Idgs. Thus, Assumptions 1-6 are clearly
satisfied with € = 0.

Remark 11.6. — 1In [23], the phase u(z,w) is actually exactly equal to z-w on |z| > 2.
This is made possible by exploiting the finite speed of propagation of Einstein vacuum
equations (see [23]).

Remark 11.7. — Recall that the lapse a is at the level of one derivative of u with re-
spect to z. Thus, we obtain from (11.29) that some components of V3u are in L2(S5).
Note that this is not true for all components since (11.36) does not allow us to con-
trol V%a in L%(S). In fact, (11.36) is only at the level of 3/2 derivatives of a with
respect to N in L2.
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11.3. Main results

We first state a result of boundedness on L? for Fourier integral operators with
phase u(z,w).

Theorem 11.8. — Let u be a function on ¥ x S? satisfying Assumption 1, Assump-
tion 2 and Assumption 4. Let U the Fourier integral operator with phase u(z,w) and
symbol b(x,w):

“+o0
(11.41) Uf(z) = / / e @bz w) fF(Aw)AZdAdw.
sz Jo
Let D > 0. We assume furthermore that b(z,w) satisfies:
(11.42) [bll oo (s) + VOl | 2(psy + [V VOl L2(s) S D,
(11.43) 10ubll2(s) + IVOLbllL2(s) S D
and

Vb =bj + by where ||bi|lL2(s) S 272D, [1balleee, , 2Py S D
(11.44)

NS

<2

and |V nbdllzacs) + (03]l | | ro(py) < 22D.

[-2,2]

Then, U is bounded on L? and satisfies the estimate:
(11.45) U fllr2s) < DI fllpz(rs)-

Remark 11.9. — We intend to apply Theorem 11.8 to the Fourier integral opera-
tors M4 and Q4+ introduced in Section 11.1.2 whose symbol are respectively 1 and
a~!. Thus, our assumptions on the regularity of the symbol b(x,w) are consistent with
the assumptions on the regularity of a(z,w) given by Assumptions 1-3.

Recall the definition of the Fourier integral operators M1 and @4 introduced in
Section 11.1.2:

+oo
(11.46) My f(z) = / / etAu(@Ew) £ (N ) A2dAdw
S2 Jo
and
+o0 )
(11.47) Qif(z) = / / eFMUEED) g (2 +0) T FAw) A2 dAdw.
s2Jo

The following theorem is the main result of this paper and achieves step C2.

Theorem 11.10. — Let u be a function on ¥ x S? satisfying Assumptions 1-6. Then,
there exist a unique (f4, f—) satisfying:

Myfy +M_f_ = ¢o,
{Q+()\f+) —Q-(A\f-) =id1.
Furthermore, (fy, f—) satisfies the following estimate:
(11.49) [Af+ll2@s) + IAf=llL2@e) S IV @ollrzcs) + l¢1llz2(s)-

(11.48)
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Remark 11.11. — In view of the definition of U, My and @, the estimates (11.45)
and (11.49) correspond to the obtention of L? bounds for Fourier integral operators.
Let us repeat that the classical arguments for proving L? bounds for Fourier operators
are based either on a TT* argument, or a T*T argument, which requires in our
setting () taking at least 4 derivatives of the phase in L™ (X x S?) either with respect
to z for T*T, or with respect to (A, w) for TT* (see for example [21]). Both methods
would fail by far within the regularity for the phase u(x,w) given by Assumptions 1-4
and for the symbol b(z,w) given by (11.42) (11.43) (11.44).

11.4. Boundnessness on L? for pseudodifferential operators acting on R3 with rough
symbols

Theorem 11.8 yields the following result on the L? boundedness of pseudodiffer-
ential operators acting on R3® which corresponds to the case ¥ = R3 ¢ = § and
u(z,w) =z w.

Theorem 11.12. — Let B the pseudodifferential operator with symbol b(z,w):

+oo
(11.50) Bf(z) :/ / e h(z, w)f fAw) A dAdw.
s2 Jo
We assume furthermore that b(z,w) satisfies:

(11.51)  [[bllgs/zmsy + VOl Lo, | 22(p,) + IV VDl L2(rs) + |00l 17240 ms) < D,

[=2,2]
for some constant D > 0 and o > 0. Then, B is bounded on L? and satisfies the
estimate:

(11.52) IBfllz2rs)y < DIl fllz2(rs)-

Remark 11.13. — We do not claim that Theorem 11.12 is an improvement compared
to the vast literature on boundedness on L? for pseudodifferential operators. Its pur-
pose is to give a warm up for the proof of Theorem 11.8, i.e., boundedness on L? for
Fourier integral operators on a 3 dimensional Riemannian manifold 3.

Remark 11.14. — The assumptions (11.51) hold for any w € S? with the constant in
the right-hand side being independent of w. Thus, one may take the supremum in w
everywhere. To ease the notations, we do not explicitly write down this supremum.

Remark 11.15. — In the Euclidean setting, the derivative ¥ simply refers to deriva-
tives in directions orthogonal to w. Also, the space L‘fo 2]LQ(Pu) is defined with re-
spect to u(z,w) = z-w and the level surfaces of u are now planes P, = {z/z-w = u}.

Remark 11.16. — The assumptions on the symbol b(z,w) in Theorem 11.12 are
slightly different from the ones in Theorem 11.8. In particular, we do not assume
that b €< oo since this is a consequence of the assumption (11.51) and Sobolev

1. Since Xg is 3-dimensional.
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embeddings in dimension 3. Also, the assumption (11.44) follows from assump-
tion (11.51). Indeed, let A; denote the usual Littlewood Paley projections in R3
which localizes at frequencies of size 2/. We may decompose Vb = bl + b}, with
bl = A.;Vb and b? = A<;Vb and we obtain (11.44) by using [|b]| gs/2gsy < D.
Finally, (11.51) only assumes [|0,,b|| g1/2+a(rsy < D while (11.43) assumes essentially
that ||0,,b[ g1 (rs) is bounded. We may actually relax (11.43) by replacing it with the
analog of ||0,b]g1/24agsy < D. However, this would require to discuss fractional
Sobolev spaces on ¥ and would complicate the exposition.

The rest of the paper is as follows. In Chapter 12, we prove Theorem 11.12. In
Chapter 13, we prove Theorem 11.8. Finally, we prove Theorem 11.10 in Chapter 14.
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CHAPTER 12

PROOF OF THEOREM 11.12

While the conclusion of Theorem 11.12 follows from Theorem 11.8 in the
case (X,9) = (R3,6) where § is the euclidean metric, and u(z,w) = z - w, it will
be instructive to perform the proof first in this simple case of a pseudodifferential
operator on R3. This will clarify the main ideas, before turning to the proof of The-
orem 11.8 for Fourier integral operators on a 3 dimensional Riemannian manifold X
in Chapter 13.

12.1. The basic computation

Since the Fourier transform is an isomorphism of L?(R3), we may remove the
Fourier transform in the Definition (11.50) of B in order to ease the notations:

“+o0
(12.1) Bf(z) = / / e h(z, w) f(Aw) A2 dAdw.
sz Jo
We start the proof of Theorem 11.12 with the following instructive computation:

| BfllL2(ms) S/ dw
S2

L2(R3)

+oo
‘ / e F(Aw)A2dA
0

+oo
b(x,w) / e fF(Aw)AZdA
0

(12.2) o

2
Lm-w

< [ Il oo

< D|Afll L2,
where we have used Plancherel with respect to A, Cauchy-Schwarz with respect to w
and (11.51) to bound ||b||L<[>32’2]L2(pu) (note that the space L[OSZQ]L?(PM) is defined with
respect to u(z,w) = z-w and the level surfaces of u are now planes P, = {z/ z-w = u}).
(12.2) misses the conclusion (11.52) of Theorem 11.12 by a power of A. Now, assume
for a moment that we may replace a power of \ by a derivative on b(z,w). Then, the
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same computation yields:

+oo
/ Vb(z,w)e ™ f(Aw) AdAdw
s2 Jo

L2(R3)

(123) ‘/—&-oo ei)\a:wf(/\w))\Zd)\
0

dw
L.

< [ IVt )l oo

< DI fllz2r3),

which is (11.52). This suggests a strategy which consists in making integrations by
parts to trade powers of A\ against derivatives of the symbol b(z,w).

12.2. Structure of the proof of Theorem 11.12

The proof of Theorem 11.12 proceeds in three steps. We first localize in frequen-
cies of size A ~ 27. We then localize the angle w in patches on the sphere S? of
diameter 277/2. Finally, we estimate the diagonal terms.

12.2.1. Step 1: decomposition in frequency. — For the first step, we introduce ¢ and
1) two smooth compactly supported functions on R such that:

(12.4) P(A) + > 9(277)) =1 for all A € R.
j=0
We use (12.4) to decompose Bf as follows:
(12.5) Bf(z)= ) B;f(x),
j=z-1

where for j > 0:

+oo
(12.6) Bjf(z) = /S ) /O eATh(z, w)h(27IN) f(Aw)A2dAdw
and
+oo
(12.7) B_,f(z) = /S ] /0 ez, w) () f(Aw) A 2dAdw.

This decomposition is classical and is known as the first dyadic decomposition (see
[21]). The goal of this first step is to prove the following proposition:

Proposition 12.1. — The decomposition (12.5) satisfies an almost orthogonality prop-
erty:

(12.8) IBf 112 ms) < Z 1B flI72 ey + D2 fl172rs)-

j=-1

The proof of Proposition 12.1 is postponed to Section 12.3.
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12.2.2. Step 2: decomposition in angle. — Proposition 12.1 allows us to estimate
| B f |l 2 (rs) instead of || B f||z2(rs). The analog of computation (12.2) for || B; f|| 2 (rs)
yields:

(12.9) I1B; fll2zey < DIMp2TIN) fll ey S D27 [$(277X) fll 2 o)

which misses the wanted estimate by a power of 27. We thus need to perform a
second dyadic decomposition (see [21]). We introduce a smooth partition of unity on
the sphere S%:

(12.10) Z nj(w)=1forallwe S?
vel

where the support of 7% is a patch on §? of diameter ~ 279/2, We use (12.10) to
decompose B; f as follows:

(12.11) B;f(z) =) BYf(x),
vel
where:
+oo
Yflz) = ePMTYh(x. w “INnY (w w)A? w.
212 Bre- [ f b, (2T N () ) N2dAd

We also define:
(12 13) Y-1= H(p()‘)fHL’Z(RS), Yi = ||¢(2_])\)f||L2(]R3)7 ] >0,
v = Y27 NnY (W) fllr2@s), § >0, v €T,

which satisfy:

(12.14) 2oy = D %= D > ()%

i>—1 j>—1vel

The goal of this second step is to prove the following proposition:

Proposition 12.2. — The decomposition (12.11) satisfies an almost orthogonality prop-
erty:

(12.15) I1B; fllE2 ey S DIBY FlIZe ey + D

vell

The proof of Proposition 12.2 is postponed to Section 12.4.

12.2.3. Step 3: control of the diagonal term. — Proposition 12.2 allows us to es-
timate | BYf||p2rs) instead of ||B;f||r2s). The analog of computation (12.2)
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for ||B]Vf||L2(R3) yields:
(12.16)

1BY L) < / b )l d

2
LI*L-J

2(Pu)

400
/0 X5 (27T N () f (Aw) X2dA

22]

< Dy /vol(supp(n})) | (277 ) (w) fll 2(re)
j/2. v
5 D2j ’YJ ’
where the term ,/vol(supp(n}-’ )) comes from the fact that we apply Cauchy-Schwarz

in w. Note that we have used in (12.16) the fact that the support of 7} is 2 dimensional
and has diameter 277/2 so that:

(12.17) vol(supp(n?)) < 279/%.

Now, (12.16) still misses the wanted estimate by a power of 2/2. Nevertheless, taking
advantage of the regularity of d,b given by (11.51), we are able to estimate the
diagonal term:

Proposition 12.3. — The diagonal term B} f satisfies the following estimate:
(12.18) ||B}’f||L2(R3) ~ D’Yg

The proof of Proposition 12.3 is postponed to Section 12.5.

12.2.4. Proof of Theorem 11.12. — Proposition 12.1, 12.2 and 12.3 immediately yield
the proof of Theorem 11.12. Indeed, (12.8), (12.14), (12.15) and (12.18) imply:

||Bf||2L2(R3) S Z ||ij||i2(]R3) + D2||f||2L2(]R3)

i>-1
S Y0 DB fllieesy + D* Y 7 + D272 ey
(12.19) j>—1vel j>—1
SD* Y Y ()P + D) A+ Dl
j>—1vel j>—1
S D117z gsy,
which is the conclusion of Theorem 11.12. O

The remainder of Chapter 12 is dedicated to the proof of Proposition 12.1, 12.2
and 12.3.

12.3. Proof of Proposition 12.1 (almost orthogonality in frequency)
We have to prove (12.8):

(12.20) IBfIZ2mey S D 1B flIEa(eoy + D2 f 1122 me)-
i>-1
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This will result from the following inequality using Shur’s Lemma:

(12.21) '/3 B, f(2) B f(z)dz| < D22~ 5"~ for |j — k| > 2.
R

12.3.1. A first integration by parts. — From now on, we focus on proving (12.21). We
may assume j > k + 3. We have:

(12.22)

[ = [ [ [ [ (], )

X P(27IN) FAw) A2 (27N F (VW) (N)2dAdwd N dw'.

We integrate by parts with respect to 9., in fR3 gz w—iNzw' b(z,w)b(z,w’)dz using
the fact that:
%

(12:23) R v e G
We obtain:
(12.24)
. Sy 7 ’ _— . . , z.L‘)b , ﬁ
/ ezAm-wsz T w b(a:,w)b(:c,w’)dx — ’L/ ezkz-wfz)\ zT-w 8 ('T w) (LE w )dl’
R3 R3 >\ _ )\Iw . w/
, N i o D(@ W) Dbz, W)
AT w—iN T w ) T-w )
dx.
+Z/1R3e A= Nw-w 3:

Since |Nw - w'| < A, we may expand the fractions in (12.24):
Nw-w\?
12.25 —_— = .
( ) A— A’w w’ ,,Z ( >

For p € Z, We introduce the notation F} ,(z - w):

+o0
(12.26) Fip(r-w)= / ePT @ (279N) F(Aw) (277 N)PAZd.
0
Together with (12.22), (12.24) and (12.25), this implies:
(12.27) / B;f(z)Bpf(z)dw = > AL+ > A2
p>0 p>0

where AII) and A12: are given by:

(12.28)
AL = 9=i=r(=k)

X / (/ Bm.wb(a:,w)w”Fj,p1(a:~w)dw) . (/ b(x,w')w’ka,p(m‘w’)dw’> dz
RS \Js? 52
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and
(12.29)
A2 = 9=i=pli=h)

></ (/ b(x,w)prFj,pl(x-w)dw) : ( Vb(x,w’)w’ka,p(ac-w’)dw’) dx.
r3 \Js? 52

Remark 12.4. — The expansion (12.25) allows us to rewrite [, B;f(z)Byf(z)dz in
the form (12.27), i.e., as a sum of terms A, A2. The key point is that in each of these
terms—according to (12.28) and (12.29)—one may separate the terms depending
of (\,w) from the terms depending on (N, w’).

12.3.2. Estimates for A} and A2. — The term containing one derivative of b in (12.28)
may be estimated using the basic computation (12.2):

/S2 Op.wb(z, w)WPF; __1(x - w)dw

L2(R3)
(12.30) < [ NOzwb(z, w)wP e, | r2p) I Fj—p-1(z - )Lz dw
s2 [=2,2]
< HVbHLFjQ’z]LQ(Pu)||'¢)(2_j)‘)f()‘w)(Q_j)‘)_p_l)‘||L2(R3)
< D2p+1+j’yj,

where we have used the assumption (11.51) on b and the fact that (277X)~! < 2 on
the support of 1/(277)). In the same way, the term containing one derivative of b in
(12.29) may be estimated by:

‘ L2(R3)

(12.31) < [ 196 e, o [ Fople sz, do

< ”VbHLE’jZZ]L%Pu)||¢(2_k)‘/)f(>‘/wl)(Q_k)‘/)p)‘/HLZ(D@)
< D2p+k’7k7

Vb(z,w" w' Fy, (2 - w)dw'
S2

where we have used the assumption (11.51) on b and the fact that (27¥\’) < 2 on the
support of (27%)\).
Note that Proposition 12.2 together with Proposition 12.3 yields the estimate:

(12.32) 1B; fllL2rsy < D
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for any symbol b satisfying the assumptions (11.51). Now, the term containing no
derivative of b in (12.28) has a symbol given by b(z,w’)w’” which satisfies the as-
sumptions (11.51) since b does. Applying (12.32), we obtain:

/ b(z,w W Fy p(z - w')dw’
52 L2 (R9)

S D@7 N) VW) (27 NP 2y
< D2Pryy.

(12.33)

In the same way, the term containing no derivative of b in (12.29) has a symbol given
by b(z,w)wP*! which satisfies the assumptions (11.51) since b does. Applying again
(12.32), we obtain:

/ b(z,w)wP T F; (2 w)dw

S? L2(R3)
S DI NF W)@ N) P 2 (rey
5 D2p+1’)’j.

Finally, the definition of A} (12.28) and the estimates (12.30) and (12.33) yield:

(12.34)

(12.35) |43 S D227 PRy Wp > 0.
Similarly, the definition of AZ (12.29) and the estimates (12.31) and (12.34) yield:
(12.36) |A2] < D2?P~ PTGk g, p > 0.

(12.35) and (12.36) imply:

(12.37) > AL+ D A2 S D270k | N omPUETR) ) gy < DRTU Ry
p>1 p>0 p>0

where we have used the assumption j—k—2 > 0. (12.27) and (12.37) will yield (12.21)
provided we obtain a similar estimate for A}. Now, the estimate of A} provided by
(12.35) is not sufficient since it does not contain any decay in j — k. We will need to
perform a second integration by parts for this term.

12.3.3. A more precise estimate for A}. — From (12.28) with p = 0, we have:
(12.38) A} = 2_j/ < Oz-wb(x,w)Fjo(x - w)dw) By (z)dz.
R3 \Js2

Since b(z,w) is assumed to be in H3/2(R?), we may only make one half integration
by parts. To this end, we decompose 0;.,b as in Remark 11.16. Let A; denote the
usual Littlewood Paley projections in R which localizes at frequencies of size 2. We
decompose 9,.,b = b{ + bg with b{ = A ;0z.,b and bg = A<;0;..b and we obtain

(12.39) 1631 25y < D27 % and | Vb 12 (es) S D2%
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by using [|b]| gra/2(gsy < D. In turn, this yields a decomposition for Ag:
(12.40) Ap = Agy + Ag s

where:

A(l)’1 =277 /R3 (/82 bl (z,w) Fj oz - w)dw> By (z)dz,
(12.41)

A%’2 =277 /]Ra (/52 bl (z,w) Fj oz - w)dw) By (z)dz.

We first estimate Aj ;. We have:
|G, <277 / / b} (z,w)Fjo(z - w)By(z)ds
R3

(12.42) <27 [ 10 ColieFrolzz 1Bl

dw

2, 2]L2(Pu)du)

L2(pu)dw,

[-2,2]

5D2‘7/ I Fjollzz | Bkl Lo
S2

where we have used (12.39) in the last inequality. Plancherel yields:
(12.43) IFjollzz , ., < 197N fOw)Mz2@s) S 279

In view of (12.42), we also need to estimate ||Bk||Loo L2 (Pu)- We have:

(12.44) 1Billzee, , 22pa) < 1Bil 3 oy | Bil - ws) S D? Ve Bil 3 oy
(R3) ( (R3)

[-2,2]
where we have used a standard trace theorem for the first inequality, and (12.32) for
the second inequality. We still need to estimate ||V Bg||12(rs). We have:

VB (z / / = eANUTb(x,w)(27FN) fF Aw) A2dAdw
(12.45) 5

+oo
+z2k// e ub(2, w) (27PN (27FN) F Ow) A2 dAdw.
SQ
Using the basic computation (12.2) for the first term together with the fact

that Vb e LfoVQ]LQ(Pu), and (12.32) for the second term together with the fact
that wb(z,w) satisfies the assumption (11.51), we obtain:

(1246) ||VBk||L2(]R3) ~ D2 Yk -
Finally, (12.42), (12.43), (12.44) and (12.46) yield:
(12.47) 43 1] < D277 .
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12.3.4. A second integration by parts. — We now estimate the term A(l)’2 defined in
(12.41). We perform a second integration by parts relying again on (12.23). We obtain:

(12.48)
A(1)72 = Z*Zj/ (/ Db (z,w)Fjo( - w)dw) By (z)dx
RS \Js?

+ 272]‘/ (/ b} (2, w)wFjo(z - w)dw) . </ Vb(z,w')Fo(z - w’)dw’> dz+ -,
R3 $2 §?

where we only mention the first term generated by the expansion (12.25). In fact, the
other terms are estimated in the same way and generate more decay in j — k similarly
to the estimates (12.35), (12.36).

The first term in the right-hand side of (12.48) has the same form than Ag ; defined

in (12.41) where b/ is replaced by 2779,.,b%. By (12.39), 2778,.,b), satisfies:
1277 8p.bdl| L2 msy S D272

Since bjl- and 277 az.wbg satisfy the same estimate, we obtain the analog of (12.47) for
the first term in the right-hand side of (12.48):

2% /]RS </S2 8m.wb§(m,w)Fj70(a: . w)dw> By (z)dz

- We now estimate the second term in the right-hand side of (12.48). Recall that
b} = A<;0,.,b so that together with the assumption (11.51), we have:

(12.50) 1920l Lee, , L2Pu) S D-

(12.49) < D277 .

We estimate the scorn term in the right-hand side of (12.48) using the assumption
(11.51), the basic computation (12.2) and (12.50):

(12.51)

272]-/ (/ bé(x,w)ijwo(x . w)dw) : ( Vo(z,w')Fyo(z - W’)d‘”/) dx
R3 S2? S2

<272 b} (z,w)wFjo(z - w)dw

S2

Vb(z,w')Fyo(z - w')dw'
S2

L2(R3)

<27 ([ bl oo Frollzz )

< ([ITBaz, s oz o)
N D22_(j_k)7ﬂk-
Finally, (12.48), (12.49) and (12.51) imply:
(12.52) AL ,| < D277 .

L2(R3)
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12.3.5. End of the proof of Proposition 12.1. — Since A} = Al + Al the estimate
(12.47) of Aj; and the estimate (12.52) of Ag , yield:

(12.53) 43| < D27 e

Together with (12.27) and (12.37), this implies:

(12.54) ‘/RS B; f(z)Bif(z)dz| S DQZ_Q%‘W;C for |j — k| > 2.

Finally, (12.54) together with Shur’s Lemma yields:

(12.55) IBfI72ms) S D I1Biflli2msy + D217z sy
i>—1

This concludes the proof of Proposition 12.1. O

12.4. Proof of Proposition 12.2 (almost orthogonality in angle)
We have to prove (12.15):
(12.56) 1B; fllE2 ey S DIBY FlIZe sy + D
vel
This will result from the following inequality:
Dy

(12.57) T

|, B @) B ) <

where o > 0. Indeed, since S? is 2 dimensional and 1 < 2//2|v —/| < 29/2 for v,/ € T
and v # v/, we have:

!
/|)27aa |V_V | 7& 07

1
(12.58) Slll,pz 22 (272 — p])Ea < Cy < +00Va > 0.

Thus, (12.57) and (12.58) together with Shur’s Lemma imply (12.56).

12.4.1. A second decomposition in frequency. — From now on, we focus on proving
(12.57). Integrating by parts twice in fRs B f(x )B” f( )dz would ultimately yield:

Y §(2)B7 1 (x) p? % % /
This corresponds to the case @ = 0 in (12.58) and ylelds to a log-loss since we have:
1 .
(12.60) sup Ey: @7~

To avoid this log-loss, we do a second decomposition in frequency. A belongs to the
interval [2/~1,2771] which we decompose in intervals Ij:

(12.61) [2771 271 = U  Ir where diam(I;) ~ 27|y — v/|".

1<k<|yv—v'|~

ASTERISQUE 443



12.4. PROOF OF PROPOSITION 12.2 (ALMOST ORTHOGONALITY IN ANGLE) 201

Let ¢ a partition of unity of the interval [2/71,27%1] associated to the I;’s. We
decompose B f as follows:

(12.62) Bif(e)= >, = Byf(),

1<k<L|v—v'|~«

where:

(12.63) B* f(x) / ] / - e bz, w)h (27T NNY (W) i (N) f (Aw) A2 dAdw.
We also define: i

(12:64) 7" = [ Nnf @)\ fllr2@sy, 52 0, v €T, 1 <k < |y — /|74,
which satisfy:

(12.65) ORI D C7 i

1<k<|yv—v'|~«

12.4.2. The two key estimates. — We will prove the following two estimates:
(12.66)

BY*f(2)BY* f(x)d

2 vk vk
D%y

~ 2ia/2(2i/2|y — p|)2-e’ v -

V#£0,1<k<|v—v|"

RS
and

v,k v k'
D2y

|k k/|2](1 a/2)/2(2j/2|l/_ul| 14+a/2?
for v —v|#£0, 1<k Kk <|v-V|"" k#K.

By f(2) B f(x)de|

(12.67) .
(12.66) and (12.67) imply:
(12.68)

‘/ B f(z)BY f(x)dz| < BY* f(2) B f(x)dx

R3

>

1<k<L|v—v'|~

DY

1<k#k'<|lv—v'|—«

/R ) BY*f(2)BY " f(z)da

D2 vk vk

< J
~ Z 2ja/2(2j/2|y_y/|)2—

1<k<|v—v/ |~

D2 uk vk

- > . %

1<kk/<|p—v/|- |k — k/|22(1_ )(23/2|” —VI|)l+e/2

Dy
~ 2jo¢/2(2j/2|y _ l/’|)2*
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where we have used (12.65) in the last inequality and the fact that:

1
(12.69) sup > T S olloa(lv - VI
e R E R PR E

Since (12.68) yields the wanted estimate (12.57), we are left with proving (12.66) and
(12.67).

12.4.3. Proof of (12.66). — The estimate (12.66) will result of two integrations
by parts with respect to tangential derivatives. By definition of Y, we have
Yh = Vh — (V,h)w for any function h on R3. In particular, we have Y(z - w) = 0
and Y(z - w') = o' — (v - w)w. Now, since |w’ — (v’ - w)w|? =1 — (v’ - w)?, this yields:

g

12.70 grow—iNew _ 1 g (ghew-iNow')
(270 T o e )
where

I
(12.71) e

V1— (v w)?
is a tangent vector with respect of the level surfaces of = - w. Similarly, we have:
i

12.72 ei)\m-w—i)\’z-w’ - - ,/ eiAmw—iA’x-w’ ’
( ) ) 1_(w,_w)277€( )
where

_ AR
(12.73) e G

- (@ w2

is a tangent vector with respect of the level surfaces of z -w’. For p € Z, We introduce
the notation F} ; p(z - w):

+oo
(12.74) Fipp(z-w) = /O ePT (279 N) i (A) F(Aw) (27IN)PAZdA.

We integrate once by parts using (12.70) in [p, B;’kf(a:)B;',’kf(x)da: and we obtain:
(12.75) / BY* f()BY " f(x)dw

RS -

_ o / 1Y b(z,w)b(z’,w’)
Rexszxs2 /1 — (W' w)?

; 1b(z,w)V b(z’, W’ —_—, o
+277 /R3 . ( - )Y(i‘;,( E )Fj)kyg(a:-w)Fj,k,_l(x-w’)nj (W)nf (W')dwdw'dz.
X X - N

Fjpo(@ - w)Fj k1 (z - )} (w)n! (o) dwdwdz

We then integrate a second time by parts using (12.72) (so that there is at least one
tangential derivative on b(z,w’)):

(12.76)

/R ) B f(x)BY " f(x)dx
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Y V/bx,wbm’,w’ - v v
ow [ Bt e i
XX

. b :E,w e/b xlawl v Ul
+ 27 /}R3 e Ve (1 — ()27/ w()2 )Fj,k,o(x-w)Fj,h_g(x-w’)nj (W)} (W')dwdw'dz
X X

Y Veb(z,w)Veb(a! W' I v/
oy [ o o e (o
XX

o b x,w /,Veb -'17/7(4)/ v v
2 ? /]R3 §2xS2 ( 1)—sz/ . w()2 )Fj’k’fl(x ' w)Fjﬁ’*l(x ’ w’)nj (w)nj (wl)dewldm'
xS2x

Control of the right-hand side of (12.76). — We now estimate the four terms in
(12.76). Using the fact that:

2
(12.77) woo =1- h"%l

we obtain the following expansions:

1
12. = 1 E
(12.78) 1— (w-w)? |1/—1/’|2 +

p+g>1

w—v p W= q
v — /| v — /|
and

v — v 9 w—v \ (W —v\!
12.79 =
( ) ¢ 1—(1/’~1/)2+ Z P v — /| lv—v)

p+g>1

where ¢'p,q and ¢ , are constants. The expansions (12.78) and (12.79) allow us to

q S —
rewrite the four terms of [, B}"k f (ac)B]'-’/"'c f(z)dz such that one may separate the
terms depending of (\,w) from the terms depending on ()N, w’). For instance, the first
term in the right-hand side of (12.76) becomes:

(12.80)
(23/2|1/ V))2 > CM/ ( YVb(z,w)Fjo(z - w) (H)pnﬂw)dw)

p+q=>0
/ / w =v\* v ’
X b(z, ) Fj -2 ') | ——— | 0 (W)dw' | dz,
S2

lv—v|
where ¢, 4 are constants. Since we have:
|w—1/|< 1 |w’—1/|< 1

12.81 - -
( ) lv—v'| ~ 202y — /| lv—v'| ~ 212y — v’
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the terms in the expansion (12.80) have more and more decay, and it is enough to
consider the first one. We have:

9-i /]R ( /S L YVb(@,w)Fj k(@ - w)itf (w)dw>

@77
x ( b(z,w')Fj i —2(x - w')n}/ (w’)dw') dx
S2

(12.82)

277 ”
< @ —v))? (/Sz||Y7Vb||L2(R3)||F‘,k,0||Lg<7w77j (w)dw>

X / b(z,w')Fj g, —2(z - w’)n}"(w')dw’
S2 L2(R3)
Using the estimate for the diagonal term (12.18) yields:
(12.83) / b(z,w') Fjk,—2(z - ')} (o')do' < DyF.
S? L2(R3)

Using Cauchy Schwartz in A together with the size of the support of ¢, yields:
(12.84) 1Fskollre, < 2%72 0 = v/ [Fll9 (27 M)k fOw)All 2.

Finally, the assumption (11.51) on b(z,w), the size of the support in w, (12.82), (12.83)
and (12.84) imply:

2—J

/}R3 </2 YVb(z,w)Fj oz - w)n}'(w)dw>

@72 — V]2
D2|V_Vl|% v,k v k'

’ n v /
x</S2b(m,w)Fj,k,_z(:r~w)nj (w)dw>d9«“ @2y =z i

which satisfies the wanted estimate (12.66). The last term in the right-hand side of
(12.76) is estimated exactly in the same way.

Control of the second term in the right-hand side of (12.76). — We still need to
estimate the second and the third term in the right-hand side of (12.76). Estimating
them directly would yield the estimate (12.59) and ultimately the log-loss (12.60).
Thus, we need to integrate by parts once more. We first consider the second term in
the right-hand side of (12.76). Integrating by parts using (12.72) yields:

(12.86)

(12.85)
N

2—2j / Web(x7w)ve’b(x/’wl)
R3 x§2 xS?

1— (v w)?

— i2*3j/ Ve’Web(x7w)ve’b($lvwl)
rixsexsz (1= (W w)?)3?

Fiko(z-w)Fjp—o(x- w’)n}’(w)n}’, (W) dwdw'dx

Fjp—1(z - w)Fjp—2(z - ') ()} (') dwdw'dz
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3 Veb(z,w)V, Verb(a', ') v (N T
+427% /]R3XSZX82 0 (o ) Fjg-1(z - w)Fjp —o(z - ') (w)ny (o')dwdw'dz.
The two terms in the right-hand side of (12.86) are estimated in the same way, so we
only consider the first one. It is estimated by:

/ VeV b(z,w)Veb(a!,w')
R3xS2xS2

i (1= ()

Fjm1(@ - w) oz - @)t ()} (o) dwdw'd

. 1
<273 VYb(z, Fip_1llpe
- /Sz xS2 (1 - (w’ . w)2)3/2 ” W (x w)||L2(R3)|| Jsk, 1||Lz'“’

X V(s @) o5 12 (P | F—2ll 22 nf (@)} () dwdw
(12.87)
D2|V—V'|% vk v k'
~ m% Vi
where we have used Plancherel to estimate ”Fj’k’_QHLi-w" Cauchy-Schwartz in w and

w’, the assumption (11.51) on b, and the estimate (12.84). (12.87) satisfies the wanted
estimate (12.66).

Control of the third term in the right-hand side of (12.76) and end of the proof of
(12.66). — Finally, we consider the third term in the right-hand side of (12.76).
Neither of the two terms Vb and V. b contain tangential derivatives, so integrating
by parts directly would require to control two normal derivatives of b, which is not
part of the assumptions (11.51). We first remark using the Definition (12.71) of e and
(12.73) of € that:

1-uw w)(w+uw)

12.88 e+eée =
( ) 1— (v w)?

)

which yields the estimate:

(12.89) et+e Slv—v.

This allows us to rewrite the third term in the right-hand side of (12.76) as:
(12.90)

iy Veb(x,w)Veb(a!,w! v v
o [ T b a(o ) P G
X X

— 2—2j / ng(:v,w)veb(x/awl)
R

3 %S2x§2 1- (w’ . w)2

Fjj—1(z w)Fjp_1(z- w’)n}’(w)n;’/ (w")dwdw'dz

Y Vereb(z,w)Veb(z!,w! -, Y
+27% /RS o ks 1(_ (w)’w)(Z )Fj,k’,l(x-w)Fj,k’,l(a:-w’)nj (W)} (W) dwdw'dz.
X X

The first term in the right-hand side of (12.90) is estimated in exactly as we proceeded
for the second term in the right-hand side of (12.76) (i.e., by performing an additional
integration by parts with the help of (12.72)). The second term in the right-hand side
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of (12.90) is estimated directly by:

iy Veireb(z,w)Veb(z!, w! —_— o
2 /Rs S2x§2 . 1(— (u))’o.))(2 )Fj’kv—l(x'w)Fjvkv—l(m'w/)nj (w)nj (w)dwdw'dz
X X
<972 M vb F. Vb(z'. o'
<r® [ Vb )l e Wil 9V e 2oce,
X

X | Fjp,—1llzz_,nf (w)ny (')dwd’
(12.91)
< D2 v,k u',k
~ 2i/2(2i/2 |y — y,|)'7j Vi

where we have used Plancherel to estimate ||Fjx —1[/zz  and ||Fj -1l , Cauchy-
: T w

Schwartz in w and w’, the assumption (11.51) on b, and the estimate (12.89). (12.91)
satisfies the wanted estimate (12.66) for 0 < o < 1. We now control all the terms in
the right-hand side of (12.76) which concludes the proof of (12.66).

12.4.4. Proof of (12.67). — The estimate (12.67) will result of two integra-
tions by parts, one with respect to the normal derivative, and one with re-
spect to tangential derivatives. We first integrate by parts with respect to 0.,

in [os B;’kf(x)B;/’k/f(:v)dx using (12.23). We obtain:

/ B?’kf(x)Bl,/l’k,f(x)dm _ / /+OO /+OO Z
R3 ’ ’ R3xS2xS2? J0 0 A= Nw-w

X Br.b(@, w)b(z, ) (W)Y (&)
X Y2 NP27IN)dr (N) i (N)
x fOw) fFNw NN 2NN dwdw' dz

+oo +o0 i
R3xS2x82 J0 0 A—Nw-w

X b(a,w)y.wbla, ')t (W) (W)
X P27IN 27N )b (A)prr (N)
x f(w) fFNW)XEN AN dwdw' dz.

We then integrate a second time by parts using (12.70) for the first term in the right-
hand side of (12.92), and using (12.72) for the second term in the right-hand side of

(12.92)
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(12.92) (so that there is at least one tangential derivative on b(x,w’)). We obtain:

(12.93)
1

B @B g = [ [T [
RS ° ! R3xS2x§2 /0 0 A= Nw - W)Ny/1—(w-w)?
X Y, Oa-0ob(@, w)b(@, )} ()n (@) (27 N (277 M)k (N dir (X) f (Aw) f (N
+oo +o0
2y/2 l / 1
X)\ )\ d)\d)\ dwdwdm+\/ﬂz;3XS2XS2/0' L ()\—)\ILU'(U/)A/ /1—((4)'(4}/)2

X Dpb(@, ) Veb(@, w')nf ()n? (@277 N (277 X )i (N drr (V) f ) f (X'

% A2V 2dNdN dwdw' da: + /

—+o0 400 1
R3x82xs2/o /o A= Nw- - w)A/1 = (w-w')?

X Verb(@, )y b(@, w0 ()} ()27 NP2 N )bV () f Q) f(N')

% A2N2dNdN dwdw' da + /

400 ptoo 1
]R3><S2XS2/O /o A= Nw-w)A/1 = (w-w')?
X b(, )V o, B wb(@, )y (@) () (27 N2 N )bV b (X) f Aw) f (V')
X A2\ dNdN dwdw' de.
Since | — k27 |v — v/|%| < 27|y — V/|* on the support of ¢ and
N — K2y = <2 -]

on the support of ¢/, we have the following expansion:

1 _ 1 Y e ( A= k2 — | )p
A= Nw-w'  (k—FK)2|v -] PO\ (k — k)20 |v — V|
(12.94) P20
y (X—klzj|’/—’/|a )‘1< )\'|w—w’|2 )7“
(k—Fk)2i v — V| (k— kN2 v —v'|*)
For p € Z and g € N, we introduce the notation F} j , 4( - w):
(12.95)

oo i N\ 9
Fyopa(i - w) = / " e (07T 6 () FOW) (2T A (A"“Q'") X,

20|y — V|

(12.93), (12.94) and (12.95) yield:

(12.96) By f(z)BY F f(x)de = Y cpqr(Aph, +Ap2 + AL+ AZ2 ),

RS P,q,T D,q,T D,q,T
p,q,r>0
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1,1 1,2 2,1 2,2 : .
where Ay, ., Ao, Apy . and A7 are given by:
(12.97)

A 1 / 1
DT (k= k)PTatr 120y — /| Jraigeyge /1 — (- w')?

2N\ T
X <M> Weax.wb(l',w)Fj,k,O,p(I cw)b(z, W) Fj g r—1,4(T - w')dwdw'dz,

lv — v

(12.98)

e 1 / B S
PO (k — K)patrH122i)y — e Jpasgayge /T — (w- )2

12N\ T
X <M> Oz wb(2, W) Fj 10,p(2 - w)Veb(x, ) Fj 1 p—1,4(x - w')dwdw' dz,

v — V|

(12.99)

21 _ L / _r
PaT (| — fPratrH1225)y — e fos oo /1 — (w-w')?

12N\ T
8 <|ww|> ve’b(mv w)F]—,k,fl,p('x : w)aﬂv-wb(ma wl)FjaklyT’CI(x ’ w’)dwdwldQZ

v —v'|e
and
(12.100)

22 _ 1 / -
Par (f — kPratr+1225 |y — p|e fos oo er /1 — (w-w)?

2N\ T
8 (M) b(z,w)Fj k,—1,p( - W)V Op.ub(@, W) Fj 1 g (2 - w)dwdw' da.

v — v
Control of AL ., Ay, A2 and A22 . — We start by evaluating A2 . We have:

1 1
1,2 - oo
|Ap’q,fr| S (k,‘ _ k_/)p+q+r+122]‘|y _ V/|a /RSXS2XSQ 1 _ (w . w/)z ||Vb($7w)||L[_2,2]L2(Pu)

X 1 Fjk0pllzz IVO(@, &)L L2p, ) | Fir r—1,qll 22, dwdw”
(12.101)
2 vk v E
< D™
~ (k- k/)p+q+r+12j/2(1fa) (21/2|1/ _ 1/’|)1+a’

where we have used Plancherel to estimate || Fj k. 0,p L2

x-w

and ||Fj g rqll 2, Cauchy-
Schwartz in w and w’ and the assumption (11.51) on b. We control Ag:;: in the same
way.

It remains to estimate A;):zlz,r and Agjgﬂn. They are controlled in the the same way,
so we focus on estimating ALl . Using the expansions (12.78) and (12.79), we obtain:

P,q,T"
2 : 1,1
prq,ﬁlymAp,q,r,l,m’

I,m>0

(12.102) AL

p,q,T
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where A" are given by:

pqum

ALt _ L
pa,mlm (k — k')pratr+12i(3/2=a/2)(2i/2|y — 1/|)1+a

(12.103) X/ﬂ@ (/ <|;)_yy,|> YVb(z,w)Fj k0p(x - w)nj (w )dw>
x (/S (H)mb(:p,w’)FJ b 1,g( - WY (w )dw)dw.

The terms in the expansion (12.102) have more and more decay, and it is enough to
consider the first one. We have:
1
(k _ k/)p+q+r+12j(3/27a/2) (2j/2|y _ V/|)1+a

/]R3 ( 52 YVb(z,w)Fjp,0,p(x - w)ﬁ}-’(w)dw>

X

x (/S2b(a: W) Py r—1,q(@ - W)Y (w )dw)dm

1
<
= (k — k)pratr12i(3/2-a/2)(23/2|y — /|)1+e

< (L1998l I splez 1 @) )

(12.104)

X / b(z, ') Fj gt r—1,q(z - w')n}/(w’)dw'
52 L2(R?)
Using the estimate for the diagonal term (12.18) yields:
(12.105) / b(@, W) Fj s r—1,(@ - )Y (') dw’ < DyF
52 L2(R?)

Finally, the assumption (11.51) on b(z,w), the size of the support in w, the bound
(12.84) on [|F} .0,p]l e, (12.103), (12.104) and (12.105) imply:

D2|1/— l|a Vk’YJV k'

P,q,T (k kl)p+q+r+12j/2(1 a)(2J/2|V_Z//|)1+a

(12.106) |ALL

Summing in p, g, the estimate (12.101) and its analog for qur together with
(12.106) and its analog for A2  and using (12.96), we obtain the wanted estimate
(12.67).

12.4.5. End of the proof of Proposition 12.2. — We have proved the estimates (12.66)
and (12.67) in the two previous sections. Since (12.66) and (12.67) yield (12.57) (see
Section 12.4.2), this concludes the proof of Proposition 12.2. O
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12.5. Proof of Proposition 12.3 (Control of the diagonal term)
We have to prove (12.18):

(12.107) 1B fll2rs) < D -

Recall that BY is given by:

(12.108) B f(z) = /S2 b(w,w)Fj(z - w)ni (w)dw,
where F;(x - w) is defined by:

(12.109) Fi(z-w) = /O o eATh(279N) fF(Aw) A2dA.

We decompose By in the sum of two terms:
(12.110)

B;-’f(a:) =b(z,v) /52 Fj(x- w)n;(w)dw + /Sz(b(a:,w) —b(z,v))Fj(x- w)n;(w)dw.
Notice that the first term in the right-hand side of (12.110) is equal to
(2111)  bow) [ Fy(e- @) = ba,n)d 0N @) f ) (@),

where ¢ denotes the Fourier transform on R3. Now, the assumption (11.51) on b
imply that |[b]| o (rsy S D. Together with (12.111), this yields:

b(z, 1/)/ Fy(z - w)nj (w)dw
s2 L2(R?)
We turn to the second term in the right-hand side of (12.110). We have:

/82(b(x, w) = b(z,v))Fj(z - w)n; (w)dw

(12.112) ‘

S Dy

(12.113) ‘

L2(R?)
< [ 1b6e0) = ba e, 2o Il )i
Now, H'/?2+%(R3) embeds in L, 2}LZ(PU) for any a > 0, thus:
(12.114)

b, w) — b, ) looe,  p2(pn) < 1002, 0) = b, )| gs/aea sy S @ = V118l ir/ave

Together with (12.113), this yields:
| 0a) = b ) Fia-w)rf )

</ |lw = v[|0ubll 1 /2+a(msy | Fjll 22 1} (w)dw S Dy,
S

(12.115) L2(R?)

where we have used Plancherel to estimate ||Fj||z2 , Cauchy-Schwartz in w, the as-

sumption (11.51) on b, and the fact that |w — v| < 277/2 on the support of ny-
Finally, (12.110), (12.112) and (12.115) yield the wanted estimate (12.107) which

concludes the proof of Proposition 12.3. 0.
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CHAPTER 13

PROOF OF THEOREM 11.8
(L> BOUNDEDNESS FOR FOURIER INTEGRAL OPERATOR)

13.1. The basic computation

We start the proof of Theorem 11.8 with the following instructive computation:

+oo
1U fllzecs) S/ b(x,w)/ e F(Aw)AZdA dw
§2 0 L2(S)
13.1 +oo
- S/ 16(z, @)llLee, , L2(Pu) / eMFOw)NdN||  dw
S2 ’ 0 L2
< DM fllz2s),

where we have used Plancherel with respect to A\, Cauchy-Schwarz with respect to w
and (11.51) to bound ||b||LF32)2]L2(Pu). (13.1) misses the conclusion (11.45) of Theo-
rem 11.8 by a power of A\. Now, assume for a moment that we may replace a power
of X by a derivative on b(z,w). Then, the same computation yields:

—+oo
/ Vb(z,w)e™™ f(Aw)AdAdw
S2 Jo

L*(S)

(13.2)

—+oo
/ eMFAw)A2dN||  dw
0

< [Ivbe )l oo

< D|fllz2cs),
which is (11.45). This suggests a strategy which consists in making integrations by
parts to trade powers of A\ against derivatives of the symbol b(z,w).

L2

13.2. Structure of the proof of Theorem 11.8

The proof of Theorem 11.8 proceeds in three steps. We first localize in frequencies of
size A ~ 27. We then localize the angle w in patches on the sphere S? of diameter 277/2.
Finally, we estimate the diagonal terms.
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13.2.1. Step 1: Decomposition in frequency. — For the first step, we introduce ¢ and
1 two smooth compactly supported functions on R such that:

(13.3) P(\) + D 9(277)) =1 for all A € R.
Jj=20
We use (13.3) to decompose U f as follows:
(13.4) Uf(z)= > Uif(),
j>—1

where for j > 0:

“+o0
(13.5) Uif(z) = /S ] /0 ePh(x, w)Y(279N) F(Aw) A2 dAdw
and
+o00
(13.6) U_1f(x):/82/0 ez, w)e(\) fAw)A2dAdw.

This decomposition is classical and is known as the first dyadic decomposition (see
[21]). The goal of this first step is to prove the following proposition:

Proposition 13.1. — The decomposition (13.4) satisfies an almost orthogonality prop-
erty:

(13.7) 1Uf1Z2s) < Z 1U; £ 225y + D2 1172 (gey-

j>—1

The proof of Proposition 13.1 is postponed to Section 13.3.

13.2.2. Step 2: Decomposition in angle. — Proposition 13.1 allows us to estimate
|U;fllL2s) instead of ||[Uf||L2(s). The analog of computation (13.1) for ||U;f|l12(s)
yields:

(13.8) 1U; fllz2(s) < DIMETIN) fllzzcmy S D29 (277N) fll 22 (ro)

which misses the wanted estimate by a power of 27. We thus need to perform a
second dyadic decomposition (see [21]). We introduce a smooth partition of unity on
the sphere S?:

(13.9) Z nY(w) =1 for all w € S?,
vel

where the support of 7] is a patch on S? of diameter ~ 279/2, We use (13.9) to
decompose U, f as follows:

(13.10) Uif(z) =Y U f(z),
where:
“+o0
Yf(z) = e (z, w I Y (w WN2dMdw.
(13.11) Uzs@) = [ [ b w)p A ) fOw) P
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We also define:
(13.12) -1 = [le(N) fll2rs), v = 19277 fll2 sy, 5 =0,
v = v (W) fllL2gsy, 5= 0, v €T,

which satisfy:
(13.13) 11y = D275 = D2 D)
ji>—1 j>—1vel

The goal of this second step is to prove the following proposition:

Proposition 13.2. — The decomposition (13.10) satisfies an almost orthogonality prop-
erty:

(13.14) 1U; 7205y S ZHU}/fHQm(S) + D4
vel

The proof of Proposition 13.2 is postponed to Section 13.4.

13.2.3. Step 3: Control of the diagonal term. — Proposition 13.2 allows us to estimate
U7 fllz2s) instead of ||U; f||z2(sy.- The analog of computation (13.1) for ||U} f|l2(s)
yields:

(13.15)
10} Plezcs) < [ 1e)leg, eace d

+oo
[T e @
0 L2

< Dy /vol(supp(n)) A (27 N () f 1| L2 )
S DYy,

where the term ,/Vol(supp(r];’)) comes from the fact that we apply Cauchy-Schwarz

in w. Note that we have used in (13.15) the fact that the support of n; is 2 dimensional
and has diameter 277/ so that:

(13.16) \/vol(supp(n?)) < 27972,

Now, (13.15) still misses the wanted estimate by a power of 27/2. Nevertheless, we are
able to estimate the diagonal term:

Proposition 13.3. — The diagonal term U} | satisfies the following estimate:
(13.17) 107 fllz2s) S Dvi-

The proof of Proposition 13.3 is postponed to Section 13.5.
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13.2.4. Proof of Theorem 11.8. — Proposition 13.1, 13.2 and 13.3 immediately yield
the proof of Theorem 11.8. Indeed, (13.7), (13.13), (13.14) and (13.17) imply:

U225y S D MU Fl1F2s) + DS II22eey

j>—1
<Y Z||Uj”f||%2(5) +D? > A2+ D?|| £ 1172 gy
(13.18) j>—1ver j>—1
SD2Y N () + D% Y A+ Dl
j>—1vel j>—1
S D112 gsy
which is the conclusion of Theorem 11.8. O

The remainder of Chapter 13 is dedicated to the proof of Propositions 13.1, 13.2
and 13.3.

13.3. Proof of Proposition 13.1 (almost orthogonality in frequency)
We have to prove (13.7):

(13.19) UF1Zes) S D2 Ui flIZe(s) + D111z ms)-
j>—1

This will result from the following inequality using Shur’s Lemma:

(13.20) < D225, for |j — k| > 2.

. Uj f(x)Ug f(z)dZ

13.3.1. A first integration by parts. — From now on, we focus on proving (13.20). We
may assume j > k + 3. We have:

(13.21) /Uf JUrf (z)dS = /Sz /+°° /Sz /+oo (/ “""X“'b(w,w)b(x,w')dz)

X Y(27INFOw)A2P(27FN) F (VW) (V) 2dAdwd N dw'.
We integrate by parts with respect to 9, in fz etru—iA “,b(m,w)b(x,w’)dz using the
coarea formula (11.27) and the fact that:
13.22 iAu—iA’u' — _ Z au i)\u—i)\’u’
( ) € A_A/%Q(N,N/) (e )7
where we use the notation u for u(z,w), a for a(z,w), N for N(z,w), v’ for u(z,w’),
a’ for a(z,w’) and N’ for N(z,w’). We will also use the notation b for b(z,w), ¥
for b(z,w’), 0 for O(x,w) and 0’ for O(x,w’). Using (13.22), we obtain:

(13.23)

- iy 0, bt/
iIAu—iN u . idu—i\'u’
bb'dy = X
/ze ’/ze X=X &g(N, )
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N i bO, b
. iIAu—iN u u
dx
vif e X =N Eg(N, )
. N7 bytrg
. iIAu—iN'u
“/; X = Nig(N,N)

d¥

N / pirumiv V2 g(N, N') — S5 g(N, N'))
s (= N g(N, N)?

X / ivu—ivw W (VNN N') + g(N, VN N'))
5 (A =N gg(N,N)?

where we have used (11.28) to obtain the third term in the right-hand side of (13.23).
Since [\ % g(N, N')| < A, we may expand the fractions in (13.23):

ds,

1 1 (XN Zg(N,N')\*
13.24 = ol

(13.24) T o )

a p>0
and

1 p+1 [ NZg(N,N')\*
(13.25) S =) ( a

(A = V&g, N~ 22 ) )
For p € Z, We introduce the notation F; ,(u):
(13.26) Fjp(u) = / eMah(27IN) F(Aw) (27IN)PAZA.
0

Together with (13.21), (13.23) and (13.24), this implies:

(13.27) /Ujf( Wi f@)dS =Y A+ > AZ+Y AT+ A,
)

p>0 p>0 p>0 p>0
1 A2 43 4 ; .
where A4, A7, A; and Aj are given by:
(13.28)

Al = 2—3‘—1’0—’“)/ < (VNb+btre)aP“NPFj,_,,_l(u)dw)
= S2

: ( / b'a'—PN'PFk,p(u')dwf> ds.,
SZ
(13.29)

AZ — 9—3i—p(—k) /Z < 5 bap+1Np+1Fj7_p_1(u)dw>

. ( Vb’a’_pN’ka,p(u’)dw’)dE.
SZ
(13.30)
Af; =(p+ 1)2_j_(p+1)(j_k)/ </ b(VyaN + aVNN)aprFj’_p_g(u)dw>
S2
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. ( b’a’_p_lN’pJ"le,p_,_l(u’)dw’) as
S2

and
(13.31)

A; =(p+ 1)27]-7(’&1)(]‘7]9) /E </§2 bap+1Np+2Fj,—p—2(u)dw)

: ( / v (Vlog(a’)N' + VN’)a’_p_lN’ka7p+1(u’)dw’) dx.
S2
Remark 13.4. — The expansion (13.24) allows us to rewrite [ U; f(z)Uf(2)d% in
the form (13.27), i.e., as a sum of terms A}, A2 A3 A% The key point is that in each
of these terms—according to (13.28)-(13.31)—one may separate the terms depending
of (\,w) from the terms depending on (N, w’).

13.3.2. Estimates for A} and A2. — Let H(z,w) a tensor such that HHHLE’L 2D (P) <D.
Then proceeding as in the basic computation (13.1), we have for any p € Z:
(13.32)

H(z,w)F;,(u)dw
S2

< [ Mz, a1 Fip @l do
L2(s) Js? ’

< [ H g

2 L2 (Pu) 9277 A) F(Aw) (27T N)P Al 2wy

< D2|p|+j’yj,
where we have used the fact that 1/2 < 279X < 2 on the support of 1(277)). Now,
Assumption 1 on the regularity of a, N, 6 and assumption (11.42) on the regularity

of b yield:
|V b+ btr ) NPl e, pagr) + VY@ Nl 5,

(13.33) + |6(VvaN + aV y N)aPN?| 1

a2 L2 (Pu)

+ b/ (V1og(a')N' + VN")a' 7' NP|| s 12(p.,) S D,
which together with (13.32) implies:

/S2 (Vb + btr 0)ap+1Nij7_p_1(u)dw

L2(8)

+ . Vb'a' PNPFy (') dw'

L*(S)
(13.34) + b(VnaN + aVNN)a’?NPF; _,_o(u)dw
2

L2(S)

+1[ [ ¥ (Viog(a')N'+ VN"Ya' P ' N’ Fy py1 (u)d’
SQ

L2(8)
< D2ty
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Note that Proposition 13.2 together with Proposition 13.3 yields the estimate:

(13.35) 1U; fllzz(s) < D

for any symbol b satisfying the assumptions (11.42) and (11.43). Now, the terms con-
taining no derivative in (13.28)-(13.31) have a symbol given respectively by b'a’ ? N'?,
baPFINPTL o/ "PTI NP and baPt1 NP2, These symbols satisfies the assumptions
(11.42) and (11.43) since b does, and since a, N, 0 satisfy Assumption 1 and Assump-

tion 2. Applying (13.35), we obtain:
(13.36)

‘ / b’a’_pN'ka,p(u’)dw’ + / b,a/_p_lN/p—i_le,p_H(’u/)dw/ < D2P,

2 L2(S) §2 L2(S)

and

(13.37)

‘ / baPTINPTLE o (u)dw + / baPTINPTEE o (u)dw < D2Py;,
s2 L2(S) S2? L2(S)

where we have used the fact that 1/2 < 277\ < 2 on the support of (277 )\).
Finally, the definition of A, —A? given by (13.28)-(13.31) and the estimates (13.34),
(13.36) and (13.37) yield:

(13.38) |4} S D227 PRy Wp > 0
and
(13.39) | A2 + | A3] + | A3 S D22~ @GRy 0y vp > 0.

(13.38) and (13.39) imply:

SOIAL+ D (A2 + | A3] + [Ag]) S D27UR) [ Y " 27pU=k=2) | o,
p>1 p=>0 p>0

(13.40) < D27 G"Ry

where we have used the assumption j—k—2 > 0. (13.27) and (13.40) will yield (13.20)
provided we obtain a similar estimate for A}. Now, the estimate of A} provided by
(13.38) is not sufficient since it does not contain any decay in j — k. We will need to
perform a second integration by parts for this term.

13.3.3. A more precise estimate for A}. — From (13.28) with p = 0, we have:
(13.41) A} = 2—j/ </ (ava+btra)Fj,1(u)dw> Ug(z).
s \Us?

We decompose Vb = b{ + bg using the assumption (11.44). In turn, this yields a

decomposition for A}:

(13.42) Ay = Af1 + Af o,
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where:

Ay, = g—j/ (/ ab{Fj,o(u)dw> Uy (x)dx,
P S?

Ay, =27 / ( / (ab} +btr9)Fj,0(u)dw> Uk(z)dX.
P S?

We first estimate Aj ;. We have:

Al <2 [

(13.44) <277 /SZIIbi||L2<s)||a||L°°<S>||F',o||La||Uk||Lf32,2]L2<Pu>dw

(13.43)

/ ab{Fj,O(u)Uk(x)dz‘ dw
P

_3J
S0 ¥ [ ol Ul , wordo
S2 ’

where we have used Assumption 1 on a and the assumption (11.44) on b{ in the last
inequality. Plancherel yields:

(13.45) IFjollzz, < 927N fOw)A L2 (sy < 279;-
In view of (13.44), we also need to estimate ||Uk||L<[>32'2]L2(pu). We have:
(13.46)
1 1 I 1
1Vellzre, , 22pn) S IV Uelza() +[Ul205) 10 ags) S Dt D4 19U

where we have used the fact that H'(X) embeds in L[OSZQ]L2 (P,) for the first inequal-
ity (see [23] Corollary 3.6 for a proof only using the regularity given by Assumption 1),

and (13.35) for the second inequality. We still need to estimate ||VUyg||2(g). We have:

+oo
VU (z) = / / eV (27FN) fF(w) A2dAdw
(13.47) §270

+oo
+ 2k / / eMba "IN (27FA) (27 N) F (Aw) A2 d A dw.
sz Jo

Using the basic computation (13.1) for the first term together with the fact that
Vbe L2, , L?(P,), and (13.35) for the second term together with the fact that ba =1 N
satisfies the assumptions (11.42) and (11.43), we obtain:

(13.48) VU] 25y S D2" 3.
Finally, (13.44), (13.45), (13.46) and (13.48) yield:
(13.49) 45,1 £ D277 3.
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13.3.4. A second integration by parts. — We now estimate the term A(l)’2 defined in
(13.43). We perform a second integration by parts relying again on (13.22). We obtain:

A, = sz/ (/ (Vnbla + b,V na + batr e)Fj,o(u)dw) Uy (z)dS
(13.50) B ATE

+ 2_2]»/ (/ bgazNFj,o(u)dw) VU (z)dE + -+,
b)) S2?

where we only mention the first term generated by the expansion (13.24). In fact, the
other terms generated by (13.24) and the ones generated by (13.25) are estimated in
the same way and generate more decay in j — k similarly to the estimates (13.38)
(13.39).

The first term in the right-hand side of (13.50) has the same form than Ag ; defined

in (13.43) where ab’ is replaced by 279 (Vybla+ bV ya + abltr §). By Assumption 1
and (11.44), 279(Vbla + b3V na + abltr 0) satisfies:
1279 (V nbha + b3V va + abjtr 0) || 2(s)

<277V nbd | r2s llall oo (s) + 2_j||b%‘||L[272 Z]LOO(PU)||VNGI|L‘[§2 2 L2 (P)
(13.51) , . ’ ’

+ 27| o (s) ||b§||L[2_2)2]Loo(Pu) (s 0||LF32,2]L2(PM)
< D27k,
Since b} and 279 (V ybla + b)V ya + abltr 0) satisfy the same estimate, we obtain the

analog of (13.49) for the first term in the right-hand side of (13.50):
(13.52)

’2—21’/ (/ (Vnbla + bV na + abltr e)Fj,O(u)dw) Uk(x)dE‘ < D277 .
) S2?

We now estimate the second term in the right-hand side of (13.50). Using Assump-
tion 1 on a together with (11.44), we have:
(13.53) 650N zee, , r2(p,) S D-

We estimate the second term in the right-hand side of (13.50) using the assumption
(11.42) on b, the basic computation (13.1) and (13.53):

(13.54)

2_2j/ (/ béazNFj,o(U)dw) ( Vb’Fk,o(U')dw'>d2
2 \Js? s?

/Sz by a?NF;o(u)dw

<927%

VbV Fy o(u')dw’
S2

L2(S)
<927% < ||b§a2NllLf32 2]L2(Pu)||Fj,0||Lﬁdw> </ ||Vb||Lf32 2]L2(Pu)||Fk,0||Lﬁdw>
2 ' 2 '

< D*27 07y,

L2(8)
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Finally, (13.50), (13.52) and (13.54) imply:
i—k
(13.55) |[452| £ D277 .
13.3.5. End of the proof of Proposition 13.1. — Since A} = A} + Al the estimate
(13.49) of Aj; and the estimate (13.55) of Ag , yield:
(13.56) 43| < D27 e
Together with (13.27) and (13.40), this implies:

(13.57)

/ U, £ (2) U f @S| < D*2~ 3, for |5 — k| > 2.
b

Finally, (13.57) together with Shur’s Lemma yields:

(13.58) IUFI32 S D U £l320s) + DM £ 1132 @) -
j>—1
This concludes the proof of Proposition 13.1. O

13.4. Proof of Proposition 13.2 (almost orthogonality in angle)
We have to prove (13.14):

(13.59) 10 I35y < DTS Fllzags) + D}
vel

This will result from the following inequality:

(13.60)

D2y D2y
v 7 < ii iy )
’/ZU] f(x)U f(.']:)dz ~ 2j06/2(2j/2|]/_,//|)2—0t + (2j/2|1/—1j,|)37 |V v | #0’
where a > 0. Indeed, since S? is 2 dimensional and 1 < 2//2|v—1/| < 29/2 for v,/ € T
and v # v/, we have:

1
(1361) Slip; m <C< 4o
and
1
(13.62) Slll,pz; a2 (272 — p])Ea < Cy < +o00Va > 0.

Thus, (13.60), (13.61) and (13.62) together with Shur’s Lemma imply (13.59).

Remark 13.5. — In [20], the authors rely on a partial Fourier transform with respect to
a coordinate system on P, to prove almost orthogonality in angle for their parametrix.
In our case, coordinate systems on P, are not regular enough, which forces us to work
invariantly. More precisely, we will use geometric integrations by parts in tangential
directions to P, in order to obtain (13.60).
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13.4.1. A second decomposition in frequency. — From now on, we focus on proving
(13.60). Integrating by parts twice in [y, UJ‘-’f(x)U‘-"f(x)dZ would ultimately yield:

D2y
13. v v’ J 7 _ 4,/ .
( 3 63) ‘/ U U ) ‘ (23/2|I/ l/,|)27 |V v | 7& 0

This corresponds to the case @ = 0 in (13.61) and yields to a log-loss since we have:
1 .
(13.64) sup ; @ o~

To avoid this log-loss, we do a second decomposition in frequency. A belongs to the

interval [29~1 29+1] which we decompose in intervals I}:

(13.65) [2971, 201 = U I, where diam(Iy,) ~ 27 |v — v/|.
1<k<|v—v'|~«

Let ¢ a partition of unity of the interval [2/71,27%1] associated to the I’s. We

decompose U/ f as follows:

(13.66) Ulf@) = Y. UMFf),
1<k<L|v—v'|~«

where:

(13.67) ULk f (=) / ] / o bz, w)h(27INNY (W) i (N) f Aw) A2 dAdw.
We also define: i

(13.68) 7" = w27 Nnf (@)ee (N fllr2@sy, 52 0, v €T, 1 <k < Jy— /|74,
which satisfy:

(13.69) = > (M2

1<k<L|v—v'|~

13.4.2. The two key estimates. — We will prove the following two estimates:

2 vk vk 2 vk vk
Dy ; D"y

Vk v’k
(1370 '/ U )U f( )dz‘ 2Ja/2(2j/2|1/_ l//|)2 [ + (2]/2|V _ l/l|)3
for v —v|#0,1<k<|v—0V|®

and
D2 yk 1/ k'

v,k 1/ N J
/ U f f( )dz‘ ~ |k k/|2]/2 1 4a)(2j/2|l/—V/|)1+4a

for [v—v|#£0, 1 <kk <|v—V|"*k#K.

(13.71)
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(13.70) and (13.71) imply:
(13.72)

‘/U” z)UY' f )dz‘ >

1<k<L|v—v'|—e

‘LU?WWMﬁ“f@ME

+

[ o s T

1<k?5ﬁk}/<‘l/ V|~

D2 v,k vk

< J
~ Z 2ja/2(2j/2|l/_y/|)2—

1<k< |p—p'| o
D2 v,k u k

73
MR DN e v

1<k<|v—v/|~«

2 vk VK
sy 2
bt T a b= R[23078) (23/2]y, )14
Dyiy D*yiy

<

~ 2ja/2(2j/2|y_yl|)2—oc (2j/2|l/—l/’|)37
where we have used (13.69) and the fact that we may choose 0 < o < 1/5, together
with the fact that:

(13.73) sup
1<k<|yv—v'|~«

1
W < allog(lvy = V'])].
1<k <|u—v!| =2, k'#k
Since (13.72) yields the wanted estimate (13.60), we are left with proving (13.70) and
(13.71).

13.4.3. Proof of (13.70). — The estimate (13.70) will result of two integrations
by parts with respect to tangential derivatives. By definition of Y, we have
Yh =Vh — (Vnh)N for any function h on X. In particular, we have Y(u) = 0
and Y(u') = a' "N’ —a’"'g(N’, N)N. Now, since |[N' — (N’ - N)N|2 =1 — (N’ - N)2,
this yields:

idu—iN ) idu—i\ u’
(13.74) ehumiN T — V(- (N,‘N)Q)VN’—Q(N,N’)N(B Aumiay

where we have used the fact that N’ — (N’ - N)N is a tangent vector with respect of
the level surfaces of u. Similarly, we have:

idu—iX v’ i idu—iX v’
(13.75) eru—iNuT — —mvag(N,N')N’(e AuiA )s

)
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where we have used the fact that N — (N - N')N’ is a tangent vector with respect of
the level surfaces of «’. For p € Z, We introduce the notation Fj x ,(u):

+o00
(13.76) Fjpp(u) = / eNh(27IN) o (A) fF(Aw) (279 X)PAZdA.
0
We integrate once by parts using (13.74) in [;, U;j’kf(a:)U;/’kf(:c)dZ and we obtain:
v,k vk
/EU]. f@)U; " f(z)dE
(13.77) _ Z.Q_j/ div ((N/ — (N - N/)N)a/bb’>
IxS?xS§? 1- (N,N/)2

X Fjgo(w)Fjp,—1(u)nf (w)n}-" (W) dwdw'd¥.

We then integrate a second time by parts using (13.75) (so that there is at least one
tangential derivative for each quantity where two derivatives are taken):

(13.78)
| urt sty pwas
_o-2j . ((N=(N-N)N"a . ((N'—(N-N')N)a'bt/
=2 j/zxszxgzd”< I~ (VN2 d”( - (V- N2 ))
X Fj g —1(w) Fj 1 ()} ()} (&) dwdw'd3.

Computation of the right-hand side of (13.78). — We would like to compute the
double divergence term in the right-hand side of (13.78). This is done in the following
lemma.

Lemma 13.6. — The double divergence term in the right-hand side of (13.78) is given
by:

div ( (Nl__(ZV' ,A]r\/,),;\:)a div ( ol I EJ\([NNXIJ'\)QG/W> )

1 < N—N, >p<N’—N,,/>q
= —————— E C }717
N, — N,/|? S0 PE\|N, — N,/| |IN, — Nu/|

(13.79)

where F' is a combination of terms in the following list:
(VO —V8)aa'bb (6 —0')V(ab)a't/
|N,,—N,,/| ’ |N,,—Nl,/|

, OV (ab)a't', abdV (a't’), YV (ab)a'b’,

13.80
( ) (60— 0")%aa’bb’

130 "y, 2 "
V(@V®)al, Vab)V(a't), Zees

06’ aa’bb’, 6%aa’bl’.

The proof of Lemma 13.6 is postponed to the Appendix A. The following lemma
gives the structure of the terms in the list (13.80).
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Lemma 13.7. — The terms in the list (13.80) have the following form:

H3(a:,w, v, V/)H4(Sﬂ,w/, v, V/)

(13.81) Hy(z,w,v,v)Hy(z, ', v,v") + 272y — ] ,
where Hy, Hy, Hy satisfy:

(13.82) [H1l[L2s) + [1Hsll e, , 2Py + [ Hall L 22,y S D

and where Hy satisfies:

(13.83) | Hzl|zo~(s) + 10w Hz || L2(s) + IVOu Hal|L2(s) < D,

or w in the support of n% and W’ in the support o 7]’('.
J J

The proof of Lemma 13.7 is postponed to the Appendix B. In the rest of this
section, we show how Lemma 13.6 and Lemma 13.7 yield the proof of (13.70).

End of the proof of (13.70). — Using (13.78), Lemma 13.6 and Lemma 13.7, we may
rewrite [, U;’kf(x)Uj'.’/’kf(ac)dE as:
(13.84) [ UY* f(z) U."“k f(z)ds
N — NV P ! v
= 3 o [ m - UL (o) B

p,q>0

N =N, \* .,
X (/ (M) Hz(l',u/,l/, V/)Fj’k’_l(ul)n; (wl)dwl> X

N—N, \” )
+ 3 o [ e o UL (=) e Bt )

p,q>0

N' =N, \? S
(L () mte s v ey @)as ) as

We estimate the two terms in the right-hand side of (13.84) starting with the second
one. We have:

L=y (L (=) et meon)

N' — N, \*? _—
v H ! /F' _ Y4 / / E
X </S <|N —N,,/|> a(z, 0 v V) Fy g (W) (w )dw)d ‘

92—
< (20/2|y — v/|)3+p+a </ ||H3||L[ 2.2 L2 (Pu )1 EG k=1l L2 75 (w )dw)

< (o Fi sl @0 )
(13.85)

ok
D2y
T (2P - v))Ser
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where we have used Assumption 2 to estimate |N, — N,/|, Plancherel to estimate
| £ k,~1ll2 and [|Fjx 1] 12, Cauchy-Schwartz in w and w’, and the estimate (13.82)
for Hy and H,. -

We now estimate the second term in the right-hand side of (13.84). We have:

T s oo

2= J
Ererred (R P LT P <w>dw>

/S N = Ny ) H (o0, g (0 ()

L2(S)
Dlv — 1/|°‘ vk
~ (2]/2|V _ V/|)2+p+q
(13.86)
/ (29/2(N' = N,»)) Ha(z, 0", v, V) Fj o1 (@)} (") du’ ’
. L2($)

where we have used Assumption 2 to estimate |N, — N,|, Cauchy-Schwartz in w, the
estimate (13.82) for H; and the following estimate for ||Fjx —1|/z:

(13.87) 1F-1lloe S 2572w = V|2 (19277 N g (V) FOAw)All 2,
which follows form taking Cauchy Schwartz in A together with the size of the support

of ¢y. Note that the symbol F' = (2//2(N'—N,.))?Hy(x,w’, v, V') satisfies the following
assumptions:

(13.88) IIF|| Lo (s) S D, [10uF lr2es) S 4D, [IVOLFll12s) S ¢°D,

where we have used Assumption 2 for 9,N and 92N, and the assumption (13.83)
satisfied by Hy. We will see in Section 13.5 that assumptions (13.88) on a symbol is
enough to control the diagonal term in L?(S) (i.e., to obtain the estimate (13.17)).
Thus, we obtain:

(13.89)

‘ /82(2j/2(N’ — N Hy(@,w', v, V") Fj 1 (') (@) de’ <1+ qz)D%{/,k.

L2(S)

(13.86) and (13 89) imply:

/. R
23/2|N NV'|) S2 |N1/ _NI/’| e 3.k, =1 W75 (W)W
N' =N, \* .
* </gz <|N,,—N,,|> Hy(z,0', v, V") Fj k1 (u')n; (w’)dw’) dz‘
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(13.90)
<(1+Q)D2|V_VI|2 I/kl/k
> @ =y

Finally, (13.84), (13.85) and (13.90) yield:

] / UPH ()0 (@)

D2Vka

(1+q)D?*v —v'|2 NN
~ Z Cp,q 2]/2|V_’//|)2+p+q J 79 + Z 23/2|,/_,//| 3+p+gq
p,q>0

(13.91)

p,q>0
‘l)zll/_l/l|2 ukuk+ D? Vk’Y;k
S @Ry T @R =)
which concludes the proof of estimate (13.70).

13.4.4. Proof of (13.71). — The estimate (13.71) will result of two integrations by
parts, one with respect to the normal derivative, and one with respect to tangential
derivatives. We have:

13.92 idu—i\u _ ia v iAdu—i\ u’ .
(13.92) ‘ P s ORLC

We integrate once by parts using (13.92) in [ Uj'f’kf(a:)U]’.'”k/f(a:)dE. We obtain:

—+oo 400
[vrtsau Tiwan=i [ [
by Ix$2xS?2 JO 0

(1393) 4 (/\ /\?N;(Ijv N’)) 0% (@) (@) P2ING2IN) G (N)drr (N)

X f()\w)f()\'w’))\2)\’zd)\d)\’dwdw'dE.
We then expand the divergence term in the right-hand side of (13.93):
) aN by
(13.94) dlv(A—A’(f,g(N,N’)) = D; + Do,
where D; and Dy are given by:
abt/div(N) + Vi (ab)t/
A—=XNZg(N,N')

1=

13.95
o vV (a)aa’ " B g(N, N') + Vv (g(N, N'))a”a’” bl
(A= NZg(N,N))2
and
abV y (b) , Vi (a')a*a’ b/ g(N,N')
13. Do = _
R P E R U R e R )G

We then integrate a second time by parts using (13.74) for D; and using (13.75)
for Do (so that there is at least one tangential derivative on a, o', b, b’ when two
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derivatives are taken). We obtain:
(13.97)

/U"kf( U f(a)ds = /EXSQXSZ/M/M .

e (&0 —g<gv aeLl © D1 ) (2NN (V)

+oo +o0 1
FOW) FNW)INN? AN dwdw'dS + / / / =
Y xS2xS§? A

« div (<N 1‘_9% J\]’V)imp) 0 (@)n (@ @I NBEIN ) gk (N (V)

x fOw)f(Nw)AZN2dAdN dwdw'dY.

Computation of the right-hand side of (13.97). — We would like to compute the two
divergence term in the right-hand side of (13.97). This is done in the following lemma.

Lemma 13.8. — The two divergence term in the right-hand side of (13.97) have the
following form.:

(13.98) where Fj,j = 1,2,3 is a combination of terms in the following list:
(0 —0)0aa’bt! (60 — 0" )V (ab)a't
(13.99) [N, —N,| ° [N, —N,|
V(a)V(b)a'b', V(ab)V(a't'), V(0)aa'bb', 0'aa’bt’, 6%aa’bh’.
The proof of Lemma 13.8 is postponed to the Appendix C. The following lemma
gives the structure of the terms in the list (13.99).

, OV (ab)a't', abdV (a't’), YV (ab)a'b’,

Lemma 13.9. — The terms in the list (13.99) have the following form:

(13.100) Hy(z,w,v,v)Hs(z,w',v,v") + H3(z,w, v,V Hy(z, 0", v, V'),
where Hy, Hs, Hy satisfy:
(13.101) [H1lL2s) + 1Hslloe, | 2Py + [ HallL 22 (p,) S D

and where Hy satisfies:
(13.102) [ Hz||Lo(s) + 10w Hz||L2(s) + [[VOuHa | 12(s5) < D,

or w in the support of n% and W’ in the support o 77‘-’/.
J J

The proof of Lemma 13.9 follows the same line as the proof of Lemma 13.7 and is
left to the reader. In the rest of this section, we show how Lemma 13.8 and Lemma 13.9
yield the proof of (13.71).
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End of the proof of (13.71). — Using (13.97), Lemma 13.8 and Lemma 13.9, we may
rewrite [, U;—"kf(x)U]l-’/’kf(x)dE as:
(13.103)

/)S ULk f(2)U* f(z)ds

1 2 3
_ 2 : < p,q,l,m,n,0 + Cp.q.l,m,n,0 p,q,l,m,n,0 )

Lot 50 (k _ k")|l/ _ V/|a (k _ k/)Qly _ l/l|2a + (k‘ _ k’)3|l/ _ V/|3a

1 2-3/2
X (k — k/)l+m+n+o /E (2j/2|Ny _ Ny/|)1+p+q
. a—a !

v (/ (272(N = N,))? </l’> Hi(z,w,v,V")Fj .0, n(u)n}’(w)dw)

s? lv—v'|* T

I _ , m ,

X (/ (27/2(N' = N,))? <|aa|a> Hy(@,0, 0,V ) B g o (0 (w’)dw’) s

s2 vV —Vv

1 2 3

+ Z ( cp,q,l,m,n,o + cp,q,l,m,n,o cp,q,l,m,n,o )

Lot a0 (k _ k/)|I/ _ I/’|°‘ (k‘ _ k')2|1/ _ V/|2a + (k _ k/)3|y _ I/’|3O‘

1 2-31/2
X (kJ — kl)l+m+n+o L (2j/2|N1/ _ NV,|)1+p+q

l
; a—a, y
x ( L@@ = wp (L) (e w ) By w0 <w>dw>

I , m ,
X (/ (27/2(N" — N,))? (m) Hy(z,w', v, V') Fj k,oy,0(u )0} (w')dw’) ax,
s -

where (01,02) = (0,—1) in the case of the term involving Dy, and (o1, 02) = (—1,0)

in the case of the term involving Ds. We estimate the two terms in the right-hand
side of (13.103) starting with the second one. We have:

9—3j/2
| @, =y

l
™ </ (2j/2(N _ N,,))p <|a—a/7> Hg(wi, v, y/)Fj ko1 n(u)n;(W)dw>
g2 v—u| e

I _ , m ,
X ( (27/2(N" = N,»))? <|““|> Hy(z,w', v,V ) Fj ooy ,0(u)) (w')dw’) dE‘
s2 v—v|“
9-37/2

< s ([l e Bl ()00

< ([l n Vs ollzs i )
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(13.104)
2—j/2D2,y;(,k,y]y’,k
~ @Ry — e

where we have used Assumption 2 to estimate |N, — N,/|, Plancherel to estimate
| F) k,00,mllL2 and ||Fj g oy .0/l 22, , Cauchy-Schwartz in w and ', the estimate (13.101)
for H3 and Hy4, and:

la — a,| lw— | 5
a|lpeis) S ———— =1
|| wa”L (S) ~ (2]/2|V_1//|)05 ~

(13.105)

lv—ve ~ [v—v'|>
on the support of 7] thanks to Assumption 2.
We now estimate the second term in the right-hand side of (13.103). We have:

(13.106

)
2—3j/2
/2 (2j/2|Ny — NV/|)1+P+11

x ( [eror -y (228 ) oy u’)Fj,k,m,Au)n;(w)dw)

lv — V|
i/2 ’ a — ay " / ! T 1
X /(2” (N — N,))? 7| 1 Hy(z, ', v, V') F} oy 0(u)] (W')dw' | dE
S2 v—v|“

273]'/2 .
< s (Ml sl @)

. a, —_ a”/ m I/l
/82(2]/2(N’ — N,))? () Hy(z,u', v, V’)Fj7k,027o(u')nj (W)dw'

lv —v'|

X

L2(8)
2_3'/2D7]'~/’k

<

~(29/2|y — v|) Pt

. a/ —_ ay/ m V/
/82(23/2(N' — N,))! (> Hy (2,0, 1, V) Fj 1 oy,0 (W' )0} (') d’

lv— /|~

X

)

L2(8)

where we have used Assumption 2 to estimate |V, — N,-|, Cauchy-Schwartz in w, the
estimate (13.87) for ||F} x,o,,n|lL~, and the estimate (13.101) for H;. Note that the

symbol
a —ay,

F= (2j/2(N’—N,,,))q< >mH2(x,w’,1/, V')

v —v'|e
satisfies the following assumptions:

m
[Fl 2oy S D5 10uF lz2sy S <q + |1/—1/’|0‘> D
(13.107)

2
and [[V0,F| 2(s) < <q2 + m”’“’) ,

lv — V']
where we have used Assumption 2 for 9,N, 92N, §,,a and 8%a, and the assumption
(13.102) satisfied by Hy. We will see in Section 13.5 that assumptions (13.107) on a
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230 CHAPTER 13. PROOF OF THEOREM 11.8
symbol is enough to control the diagonal term in L2(S) (i.e., to obtain the estimate
(13.17)). Thus, we obtain:

. (1,/ — al/' m Ul
/s2 (27/2(N' = N,»))4 <|> Hy(z,w', v, V") Fj k.oy,0(u )0 (W)dw'

v—v

£3(8)
(13.108)

S (1+q2+

(13.106) and (13.108) imply:

m2 +mq lf,,k
|l/— Vl|cx J

2—3]’/2
/2 (2j/2|N,, — N,,/|)1+P+q

X (29/2(N — N,)))? 24 lHl(%%VW’)Fj,k,al,n(U)’fI;(W)dw
(Lermor-mor (3=5) )

lv — V|

I S\ ,
X (/ (212(N" = N,))* <|aal,> Hy(z,w', v, V") Fj k,oy,0(u )0} (w’)dw’) dZ‘
S2

v—v|
(13.109)
< (1+d®+ m)27 2Dy — |7 g vk
~ (2072|y — v'|)1+p+a i
Finally, (13.103), (13.104) and (13.109) yield:
(13.110)

‘ /E Uk fayuy f(ac)dE‘

cl c2 3
< Z p,q,l,m,n,0 + p,q,l,m,n,0 + p,q;l,m,n,0
~ |k._kl||y_yl|a |k_k./|2|y_yl|2a |k._kl|3|y_yl|3a

l,m,n,0,p,q>0

1+ +m?)272D v =/ [7™ .
[k — k/[i+m+nto(2i/2|y — pi|)i+pra 3 Vi

1 2 3
+ Z p,q.l,m,n,0 + p,q.l,m,n,0 + Cp.q,l,m,n,0
|k_kl||l/_yl|a |k_kl|2|l/_yl|2a |k_k/|3|y_yl|3a

l,m,n,0,p,q>0

2_j/2D2 v,k vk
X |k _ k/|l+m+n+o(2j/2|l/ _ V/|)1+p+q7j 7

2 vk vk
D™

<
~ |k _ k/|2j/2(1—4a)(2j/2|y _ Vl|)1+4a’

which concludes the proof of estimate (13.71).

13.4.5. End of the proof of Proposition 13.2. — We have proved the estimates (13.70)
and (13.71) in the two previous sections. Since (13.70) and (13.71) yield (13.60) (see
Section 13.4.2), this concludes the proof of Proposition 13.2. O
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13.5. Proof of Proposition 13.3 (control of the diagonal term)
We have to prove (13.17):

(13.111) U7 fllrz(sy < Dy -

Recall that U} is given by:

(13.112) Uj f (=) :/ bF (u)nf (w)dw,
S2

where F(u) is defined by:
+oo
(13.113) Fji(u) = / eMh(27IN) F(Aw) AZd.
0
We decompose U} in the sum of two terms:

(13.114) U} f(z) = b(z,v) /S2 Fy(u)nf (w)dw —|—/ (b(w,w) — b(z,v)) Fj(u)n? (w)dw.

S2
We start with the first term. The assumption (11.42) on b implies:
(13.115) Hb(m, 1/)/ Fy(u)n? (w)dw <D ‘ Fj(u)nj (w)dw
52 L2(S) s? L2(S)

The following proposition allows us to estimate the right-hand side of (13.115).
Proposition 13.10. — The right-hand side of (13.115) satisfies the following bound:

(13.116) /Sz Fj(u)nf (w)dw

S5
L2(5)

The proof of Proposition 13.10 is postponed to Section 13.5.1. In the rest of this
section, we show how Proposition 13.10 yields the proof of (13.111). In particular,
(13.116) together with (13.115) implies the following bound for the first term in the
right-hand side of (13.114):

S Dy

b(z, 1/)/ Fj(u)n}’(w)dw
s L2(8)
We turn to the second term in the right-hand side of (13.114). We have:

‘ /s (b(z,w) = b(z, v)) Fj (u)nf (w)dw

(13.117) ‘

L2(S)

(15.118) < [ 1) = ol o 1Pl (o)

< /82 |lw = v|([|0ubl 2(s) + IVOubllL2(s)) |l 2} (w)dw
< Dy,

where we have used Plancherel to estimate ||Fj||zz, Cauchy-Schwartz in w, the fact
that H(X) embeds in L, 2]LQ(PU) (see [23] Corollary 3.6 for a proof only using
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the regularity given by Assumption 1), the assumption (11.43) on b, and the fact
that |w — v| < 279/2 on the support of 7}.

Finally, (13.114), (13.117) and (13.118) yield the wanted estimate (13.111) which
concludes the proof of Proposition 13.3. .

13.5.1. Proof of Proposition 13.10. — Recall that [, F;(u)n?(w)dw is given by:

+oo
(13.119) /S ) Fj(u)n} (w)dw = /S ] /0 e P27 N0k (w) f(Aw) A’ dAdw.

Relying on the classical TT* argument, (13.116) is equivalent to proving the bound-
edness in L?(S) of the operator whose kernel K is given by:

—+oo
(13.120)  K(z,y) = / / eAulme) =W ©)y (27 Nk (w) A dAdw, z,y € X.
sz Jo

The decay satisfied by this kernel is stated in the following proposition.

Proposition 13.11. — The kernel K defined in (13.120) satisfies the following decay
estimate for all x,y in X:
27
(1 + |2[u(z, v) — u(y, v)| — 27/2|0,u(z,v) — duu(y,v)||)?
27
U+ 2720u(z,v) — Bauly, V)

K (z,y)| <

(13.121)

The proof of Proposition 13.11 is postponed to Section 13.5.2. In the rest of this
section, we show how (13.121) implies Proposition 13.10. According to Schur’s Lemma,
the operator whose kernel is K is bounded on L?(S) provided we can prove the
following bound:

(13.122) sup/ |K(z,y)|dy < +o0, sup/ |K (z,y)|dx < +o0.
zeX Jx yes Jx

Due to the symmetry of K in z,y, the two bounds in (13.122) are obtained in the
same way. We focus on establishing the first bound. In view of (13.121), we have:

(13.123)

97
K(z,y)|dy < / , -
SRRy R ee e e B e R I
27
X :
(1+ 2i/2|8,u(z,v) — d,u(y,v)|)3
Now, according to Assumption 4, there is a global change of variable on 3 ¢, : & — R3
defined by:

(13.124) o (x) == u(z,v)v + d,u(z,v),

dy.
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such that ¢, is a bijection, and the determinant of its Jacobian satisfies the following
estimate:

(13.125) Il det(Jacg, )| — 1|~ (s) S €.

Using the change of variable y — y = ¢, (y) — ¢, (z) € R? in the right-hand side of
(13.123) together with (13.125), we obtain:

27 2J
13.126 K(z,y)|dy < . . ; dy,
(13.126) /z' (=9)] yN/Rs A+ 2 o= 2Py O+ 22y

where y = y-v + 9’ and ¢y - v = 0. Making the change of variable y — 2 where
z is defined by z - v = 27y - v and 2’ = 29/2y/ in the right-hand side of (13.126), and
remarking that z - v is one dimensional, and 2’ is two dimensional, we obtain:
< dz <

(15.121) J i s | e o S

(13.127) implies the first bound in (13.122). K being symmetric with respect to z,y,
the second bound in (13.122) is also true. Thus, the operator whose kernel is K is
bounded on L?(S) which concludes the proof of Proposition 13.10. O

13.5.2. Proof of Proposition 13.11. — Recall the definition of K:
+o0
(13.128) K(:r,y):/ / eAu@@)=Au L)y (279 \p¥ (w)A2dAdw, T,y € 3.
s2 Jo

We need to prove that K satisfies the following decay estimate for all z,y in 3:
K < 2
x’ ~ - .
KON G Tute, ) — (o, )] — 272000, ) — Oy, 1))
(13.129) »
X , .
(1 + 2J/2|awu(xa V) - 8wu(yv V)|)3
Proof of (13.129). — Recall from Remark 11.6 that u(z,w) is exactly equal to z - w
in |z| > 2. Thus, we may restrict ourselves to |z| < 2 where we have in view of
Assumption 2:
(13.130)
|u(z, w)| + [Ouu(z,w)| + |02u(z, w)| + |02 u(z,w)| <1, Vo with |z| < 2, Vw € S2.

We will obtain (13.129) as a consequence of the following estimate:

+oo . )
(13.131)  |K(z, )| 5/8/0 (1+2j|u(m’(j)_u(y7w)|)3¢(2*JA)?7}f(w))\2dAdw,

where {[; is smooth and compactly supported in (0, +00) and 7} is bounded on S? and
has the same support as 7. Indeed, we have:

u(z,w) — u(y,w) = u(z,v) —uly,v) + (Quu(z,v) — Ouuly,v))(w —v)
(13.132) +O(lv — w|?),
Ouu(z,w) — d,uly,w) = d,u(z,v) — duu(y,v) + O(jv — wl),
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where we have used a Taylor expansion in w together with (13.130). Using the fact
that 2//?|w — v| < 1 on the support of 7% together with (13.132), we obtain for w in
the support of 7:

14 |27 |u(z, v) — uly, v)| — 2/2|0u(z, v) — Buu(y,v)|| S 1+ 27 ju(z,w) — u(y,w)),
(13.133)

and 1+ 27/2|0,u(z,v) — dyu(y, v)| <1+ 27720, u(z, w) — duu(y,w)).
(13.131) and (13.133) imply:

1
K (z,y)| S

(1 + [2]u(z, v) — uly,v)| = 227?|0,u(z, v) — Ouu(y, v)|])?

1 teo
—J 2
x (1 +29/2|0,u(z,v) — O,uly,v /Sz / 1/} A) ]( w)A"dAdw.

(13.134)

Now, we have:
(13.135)

+oo +oo
/ / P(27INTTY (W)A2dAdw = ( ¢(2j)\))\2d)\> (/ ﬁ;f(w)dw> < 2%,
S2 0 s2

where we have used the fact that 77} is bounded on S? and the fact that the support

of 7% is two dimensional with a diameter of size ~ 277/2. Finally, (13.134) and (13.135)
imply (13.129) which is the wanted estimate.

Proof of (13.131). — To conclude the proof of Proposition 13.11, it remains to prove
(13.131). This will follow by performing three integrations by parts with respect to w
and two integrations by parts with respect to A\. We start with the integrations by
parts with respect to w. Our goal is to show that K(z,y) is a sum of terms of the
form:
/ /+°° e w)midu(yw) gy w v) (MO u(z,w) — dyuly,w))?)!
(13.136) 52 (1+ Aduu(z,w) — Buuly,w)?)™
277 N)7 (w) A2 dAdw,

where [, m are integers, where F' does not depend on A, where 77;’ is bounded on S?
and has the same support as 77 and where the integrand in (13.136) satisfies:
(13.137)

F(z,y,w,r)(AQuu(z,w) — duuly,w))*)'| _ 1

‘ (14 Movu(z,w) — dyuly,w)|?)™ ~ (14 21720 u(x,w) — O,u(y,w)])3’

To this end, we use:

(1 — i(Bpu(z,w) — Bou(y, w))d, e (u@w) —uy,w))
(1 4+ ABuu(z, w) — duuly, w)|?)

(13.138)  eAulmw)—ulyw)) —

ASTERISQUE 443



13.5. PROOF OF PROPOSITION 13.3 (CONTROL OF THE DIAGONAL TERM) 235

We integrate by parts once in the integral (13.128) defining K using (13.138). We
obtain:

(13.139)

K +oo e w) —idulyw) 29 M) (w)A2dAd
= [ e st N

+o0 ei)\u(z,w)—i)\u(y,w)Al 2_j)\ i} )\2d)\d
" /82 /0 14+ Mo,u(z,w) — dpu(y,w)|? W )15 (w) w

+oo ePulz,w)—idu(y.w) 4, 27N\ (w)A%dAd
+ /sz /0 (1+ MOou(z,w) — 3wu(y7w)|2)2w( ) ’

+o0 ei)\u(z,w)fi)\u(y,w)A?) ] '
279IX)279/29,m} (w)A*dAd
+ /Sz /0 1+ NBu(z, ) — Bouly, )2 $(277X) 5 (w) w,

where Aq, Ag, A3 are given by:
Ay =i(%u(z,w) — O2u(y,w)),

(13.140) Ay = —2iN(0%u(z,w) — O2u(y,w)) (Buu(z,w) — u(y,w))?,
As = 127/ (Qu(z,w) — dyu(y,w)).

The first term in the right-hand side of (13.139). — Integrating by parts in the first
term of the right-hand side of (13.139) using (13.138) yields:

(13.141)
+oo ei/\u(w,w)—i)\u(y,w) ‘ ,
27IN)nY (w)A“dAd
/82 /o 1+ Adwu(z,w) — d,u(y,w)|? ¥( )nj (w) w
+oo eiAu(m,w)—i)\u(y,u)A(l) '
- 277 \)n¥ (w)A%dAd
/Sz /0 (14 ANowu(z,w) — O,uly,w)|?)? P )i (w) w

+o00 eiAu(m,w)—iAu(y,w)Ag 2_j)\ , )\Qd)\d
" /Sz /0 (1 4+ MOwu(z,w) — d,u(y,w)|?)3 W ) (w) w

+o0 eiAu(m,w)—M“(y’w)Ag 279\)2"3/28 pv A2d\d
+/Sz/0 1+ Nowu(z,w) —3uu(y7w)|2)2¢( : ) B

where A}, AZ, A3 are given by:
A5 =1+ (B u(z,w) — Puly,w)),

(13.142) A2 = —4iXN0Pu(z,w) — O2u(y,w)) (Ouu(z,w) — u(y,w))?,
A3 =229, u(z,w) — d,u(y,w)).

(13.130) implies the following bound for the integrand in the right-hand side of
(13.141):

(13.143)

143 . 143
(1 + )‘|8wu(wi) - auu(ya w)|2)2 (1 + )‘|8wu(wi) - 8wu(y7w)|2)3
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A7l 1

<
* 1+ Mopu(z,w) — dpu(y,w)[?)? ~ (1 + 27/2|0,u(z,w) — dyu(y,w)|)®

(13.143)

Also, we have:
(13.144) |0wns (W) < 29/2 for all w € S2,

so that 277/ 28“,77;’ satisfies the assumptions of 7. Thus, the first term of the right-
hand side of (13.139) satisfies (13.136) (13.137).

The terms involving Ay, As and As in the right-hand side of (13.139). — Integrating
by parts in the term involving A; of the right-hand side of (13.139) using (13.138)
yields:
(13.145)

+oo eiAu(m,w)—iAu(y,w)Al Q_j)\ , )\2d)\d
-/Sz / 14+ Mo,u(z,w) — dpu(y,w)|? W )nj (w) w

+o00 ei)\u(z,w)fi)\u(y,w A1A1 _
- 279\ (w)A2dAd
/Sz / (14 AOwu(z,w) — dyuly,w)|?)? 5%( )n; (w)A w

+oo ei)\u(z,w) idu(y, w)A%Al )
279 N)n% (w)N2dAd
A e e e o RO

+oo ei)\u(a:,w)—i)\u(y,w)A(S)Al ) )
27I0)279/29,,n% (w)N2d\d
L N0 Bty VR o N
+/ /+°° e“‘“(”“’)_i)‘"(y*‘”)i(@wu(x,w) — Opu(y,w))0,41
52 (1 + Aowu(r,w) — Oyu(y,w)|?)?

where A}, A2, A} are given by (13.142). In view of (13.143), we have the following
bound for the integrand in the right-hand side of (13.145):

Y(2TIN)nY (w) A2 dAdw,

(13.146)
|AgA | n |AZA |
1+ MNowu(z,w) — duu(y,w)|?)? (1 + AQuu(z,w) — duu(y,w)|?)?
N |A3 A, | |0,u(z, w) — Ouu(y, w)||0, A1
(1 + AOuu(r,w) — duu(y,w)?)? (1 + Mdyu(z,w) — duu(y,w)|?)?

< | A1 |Ouu(z,w) — Opu(y,w)||0w, A1

~ 1+ 2200u(@,w) — duuly,w))? (14 20/2|0,u(z,w) — Ouu(y,w)])*
Now, in view of the Definition (13.140) of A; and the estimate (13.130), we have:
(13.147) |A1] £ 1, and |0 u(z,w) — Oyu(y, w)||0uA1| S 1.

In view of (13.146) and (13.147) the term involving A; of the right-hand side of
(13.139) satisfies (13.136) (13.137).

ASTERISQUE 443



13.5. PROOF OF PROPOSITION 13.3 (CONTROL OF THE DIAGONAL TERM) 237

We proceed similarly for A; and As. In particular, in view of the Definition (13.140)
of Ay, A3 and the estimate (13.130), we may replace (13.147) with the following esti-
mates:

42| S (277210,u(z,w) — Duuly, w)|)?,
|0uu(z,w) = Buuly, w)||0uAz| S (277210,u(z,w) — uuly, w)|)?,
|43] < 27/%|0uu(z,w) — Buu(y,w)]
and
|0, u(z, w) — Byuly,w)||0uAs| < 29/2|0,u(z, w) — B,u(y,w)|.

Finally, the four terms in the right-hand side of (13.139) satisfy the estimates (13.136)
(13.137). Thus K (z,y) satisfies (13.136) (13.137).

Integration by parts with respect to A and end of the proof of (13.131). — In order to
obtain (13.131), we still need to perform two integration by parts with respect to A
n (13.136). We have:
(1 — 27 (u(z, w) — u(y,w))29 9y ) e (@w)—uly.w))
(1 +2¥[u(z,w) — u(y,w)|?)
Notice that the only term depending on A under the integral (13.136) is:
P(27IN)N2F
(1 + Nowu(@,w) — Ouuly, w)[*)™

(13.148)  eAlul@w)—ulyw)) —

(13.149)

Now, we have:

; 1/)(2—9')\))\2+l
20 <(1 + Adou(z,w) — 8wU(y,w)l2)m>

_ (@+1-m)p27IN) + /(277 0)) A2

(13150) (1 + )\|8wu(x’w) — awu(yyw)P)m
m%(Zij)\))‘ZJrl — _ 1/"(/\)
T AT NBuule,w) = duly, )yt e v = T3

Thus integrating by parts in A in the integral (13.136) using (13.148) essentially divides
the integrand by 1+ 27|u(z,w) —u(y,w)|. In particular, after two integrations by parts
using (13.148) in the integral (13.136), and together with the estimate (13.137), we
obtain that K (x,y) is a sum of terms of the form:

[ e )0t ) Ok
(13.151)  Js2 (1 + Aowu(z, w) — duuly,w)[*)™(1 + 27 |u(z, w) — u(y, w)|)?
X (27N (W)A2dAdw,

where [,m are integers, where {j; is smooth and compactly supported in (0,+0c0),
where ﬁ;’ is bounded on S? and has the same support as n; and where the integrand
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in (13.151) satisfies:
F(z,y,w,v)(A0,u(z,w) — O,u(y,w))?)!
(1 + Aowu(z, w) — Ouu(y,w)*)™ (1 + 27 u(z,w) — u(y,w)|)?
< 1
S 0+ 2 u(ww) — uly, @) )20+ 2720,0(,0) — douly, @)
Finally, (13.151) and (13.152) yield (13.131) which is the wanted estimate. This con-
cludes the proof of Proposition 13.11. O

(13.152)
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CHAPTER 14

PROOF OF THEOREM 11.10

In order to prove Theorem 11.10, we first show that the Fourier integral operator U
of Theorem 11.8 almost preserve the L? norm provided we make additional assump-
tions on its symbol. We then use this observation to prove the estimate (11.49). Fi-
nally, we conclude the proof of Theorem 11.10 by establishing the existence of (f;, f-)
solution of the system (11.48).

14.1. A refinement of Theorem 11.8

In Theorem 11.8, we have proved that the Fourier integral operator U with phase
u and symbol b is bounded on L?(S) provided u satisfies Assumption 1, Assumption 2
and Assumption 4, and the symbol b satisfies (11.42) (11.43). We now would like to
prove that U satisfies the following bound from below:

(14.1) I fllz2@®sy S WU fllz2cs),

provided u also satisfies Assumption 5 and under additional assumptions on the sym-
bol b. This is the aim of the following proposition.

Proposition 14.1. — Let u be a function on ¥ x S? satisfying Assumption 1, Assump-
tion 2, Assumption 4 and Assumption 5. Let U the Fourier integral operator with
phase u(z,w) and symbol b(z,w):

(14.2) Uf(x) = / ) / o M@ p(z W) f(Aw)A2dAdw.

We assume furthermore thatSb(x?w) satisfies:

(14.3) 100l 2(s) + [IVOubl[L2(s) S 1,
(14.4) 16 =lzoo(s) + VOllLee, , 2(p) + W VDllL2(s) S €
and

(14.5) Vb =b] + b} where ||| 12(s) S 27 Fe, [Whlloe, , ro(p) S €

and ||VNb§||L2(S) + ||bg||L[2_2’2]L°°(Pu) < 2%e.
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Then, U is bounded on L? and satisfies the estimate:

(14.6) I fll2wsy S WU fllzacs)-

Remark 14.2. — Notice that the only difference in the assumptions with respect to
Theorem 11.8 lies in the fact that u also satisfies Assumption 5 and in the constant D
which has been replaced by 1 in (14.3) and by ¢ in (14.4) (14.5).

We now turn to the proof of Proposition 14.1. We review the three steps of The-
orem 11.8—decomposition in frequency, decomposition in angle, and control of the
diagonal term—indicating each time how to refine the estimates.

14.1.1. Step 1: Decomposition in frequency. — As in step 1 of the proof of Theo-
rem 11.8, we decompose U f in frequency:

(14.7) Uf(z)= > Uif(@),
j2-1
where the operators U; are defined by (13.5) (13.6). We have:
18 Ul = Y. [Us@Ti@ss Y [ vi@iiwas.
li—il<2 —i>27

Now, the proof of Proposition 13.1 together with the fact that b satisfies (14.4) (14.5)
immediately yields:

(14.9) > [ U @TF@az| S el
li—t|>27%
Thus, together with (14.8), we obtain:
(14.10) WUFas = > /EUjf(x)sz(w)dE+0(€)||f||%Z(Rs>-
l7—11<2

Remark 14.3. — The sum over |j—I| < 2 in the right-hand side of (14.10) corresponds
to the terms such that the support of 1/(277)\) and the support of 1(277)\') have a
non empty intersection, where 1 has been introduced in (13.3).

14.1.2. Step 2: Decomposition in angle. — As in step 2 of the proof of Theorem 11.8,
we decompose U; f in angle:

(14.11) Uif(z) =Y U!f(z),
vel

where the operators U} are defined by (13.11). In order to control the diagonal term
in a third step (see next section), we have to modify slightly the size of the support
of our partition of unity 7; on S? introduced in (13.9). Let 6 > 0 such that:

(14.12) 0<vVe<<dxl
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We now require that the support of 7; is a patch on S? of diameter ~ §277/2. We

have:
/ Uf (2)Uif (x)dS = ) > /Z UY f(2)UY f(z)dS

li—1<2 [§=11<2 |v—v’|<282-/2

+ Y > / UY f(2)U} f(x)dS.

[7=1L2 lv—v'|>282-3/2

(14.13)

The proof of Proposition 13.2 yields:

y €
(1419 > [ U@ @] < g
lv—v’|>262-3/2
where v;,v; have been defined in (13.12). Indeed, (14.14) follows from the equivalent
of the two key estimates (13.70) (13.71). For example, let us consider the equivalent
of (13.70). We obtain:

56’}’;’ k’yju k 55’)/]1/ k’YJV k

v,k v’k
Y Y Y < —
(14.15) '/U )l " fle)d ‘N Qa2 (22l — vt @il — ]
for [v—v'|#0, 1<k <|v—1|"%

where ¢ comes from the fact that b satisfies (14.4), and § from the fact that the square
root of the volume of the support of 7 now yields §277/2 instead of 277 /2. The worst
term in the right-hand side of (14.15) is the second one. It may be rewritten:
14.16 e S e B
(14.16) (29/2|1/—1/’|)3 o 57(2j/25—1|y—y’|)3
and yields the factor ¢5=2 in the right-hand side of (14.14).
Finally, (14.13) and (14.14) yield:

> / Ui f(@)U f(z)dS = ) > / Uy f(2)UY f(x)dE

(14.17)  li—u<2”> =<2 jv—v/|<202-3/2 " =
+0(55) I1£132ao)-

Remark 14.4. — The sum over |[v — /| < 26279/2 in the right-hand side of (14.17)
corresponds to the terms such that the support of n; and the support of ny " have a non
empty intersection. The number of terms in this sum only depends on the dimension
of S? and is therefore a universal constant.

14.1.3. Step 3: Control of the diagonal term. — The goal of this section is to estimate
the term 35, oo 01, j<2so-i2 J5 Uf F(@) U} f(2)dZ.

A first reduction. — Remark first that the proof of Proposition 13.3 together with
the fact that b satisfies (14.3) immediately yields:

(14.18) 10 Fllzaes) S 7
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We introduce the operator S defined on X by:

“+o0
(14.19) SYf(z) = / / A=) (27I N (w) f(Aw) A2dAdw.
s2Jo
By Proposition 13.10, we have:
(14.20) 157 fllzecs) S5

The estimate (13.118) together with the assumption (14.3) on b, (14.18), (14.20) and
the fact that |w — v| < 6277/2 on the support of 7% yields:

> Y [ur@urfaas

li=U<2 [v—v’|<262-9/2

= > X / b(z, ) f(2)b(w, v)SY F(2)dS + O@) | f32as),

|§—11<2 [y—'|<202-3/2

(14.21)

which together with the assumption (14.4) on b and (14.20) implies:

> X /E U (@)UY f(z)dS

i—1|<2 |v—v'|<262-3/2
(14.22) =<2 jv—v/|<

=YY [ SU@STI@as 06+ o) e
—U1<2 jv—v'| <2629/
We want to estimate the term 3, ;5 32|, <aso-is2 Jg UF f(@)UY f(2)d%. In view
of (14.22), we may estimate instead the term
> Y[ sy@sti@as
=112 [y—v'|<262-3/2 7 %

End of the proof of Proposition 14.1. — Recall Assumption 4 which states that the
map ¢, : & — R3 defined by:

(14.23) v (z) = u(z,v)v + O,u(z, V)
is a bijection, such that the determinant of its Jacobian satisfies the following estimate:
(14.24) || det(Jaco, )| — 1| Le=(s) S €.

Let us note ¥ ~! the inverse Fourier transform on R3. We introduce the operator gjl’
on X defined by:
(14.25)

S (@) = I TN Gul@) = [ PO ) ) NN

R3

The following proposition shows that the term [, SY f(z)SY 'f(x)dX is close to the
term i gjl’f(x)gl”'f(m)dil
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Proposition 14.5. — We have the following bound:
(14.26) 182 f =S¥ fllz2cs) S 827

We postponed the proof of Proposition 14.5 to the next section. Let us show how
Proposition 14.5 allows us to conclude the proof of Proposition 14.1. (14.10), (14.17),
(14.22) and (14.26) yield:

(14.27)
-~ YIS £ 1
U= > X [ S@F f@ds+0 (5 +68) Il

li—U<2 |[v—v’|<262-9/2

Making the change of variable y = ¢, () in [ gj‘ff(x)gl”/f(x)dZ and using (14.24)
and (14.25) implies:

D /E 8 £(2) Y f(x)dz

|i—11<2 |-’ <262-3/2

=Y Y [ S eermnnd TG D

li—11<2 jy—v'|<262-9/2

14.28
( ) + 0@ f 1172 s

=YY [ e g @ 0wE g @ wdy
li—11<2 jy—v'|<252-3/2 7 B
+ OE) I e,

where we have used the fact that &7 ~! is an isomorphism on L?(IR3) in the last equality
of (14.28). Now, we have:
(14.29)

> > /R3 P27 N0 (W) fQw)y (2~ N0y (@) f Qw)dy = || 172 @s),

=112 [v—v’|<252-3/2

which together with (14.27) and (14.28) yields:
€ 1
(14:30) 10 122(5) = 1 1aqem) + O (55 + 6% ) 1 1a ey

Choosing 62 and e6~2 small enough, we deduce from (14.30):

(14.31) [ fllzsy S NUfllz2cs)s
which is the wanted estimate. This conclude the proof of Proposition 14.1. U

14.1.4. Proof of Proposition 14.5

Reduction to a decay estimate. — Relying on the classical TT* argument, (14.26) is
equivalent to proving the boundedness in L?(S) with a norm O(J) of the operator
whose kernel K is given by:

+oo
(14.32) K(z,y) = / / eAu(@@)=Auvw)yy (279 \)p¥ (w) A2 dAdw
s2 Jo
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+o0
+// emqsy(a:)»wfiwu(y)'ww(Q*jA)n;(w)AQdAdw
sz Jo
T iu(mw)—irdy (9) j 2
_/Sz/o piru(z, v @27 N)nY (w)A2dAdw

“+o0
- / / AP (@)= ) g (377 \)n¥ (w) A dAduw.
§2 40

(14.26) then reduces to proving the following decay for the kernel K in (14.32):
i
1+ [27]u(z, v) = u(y,v)| = 272|0,u(z, v) = Ouu(y, v)||)?
27
* U+ 27(0,u(z, v) — duuly, V))?
The proof of the fact that (14.33) implies (14.26) is identical to the proof in Sec-

tion 13.5.1 of the fact that the decay estimate (13.121) implies (13.116). In fact,
performing the exact same changes of variables leads to:

(14.34) sup [ |G,y S 6, sup [ 1K (e.9)lds <6
rzeX J X yeX Jx

K (z,y)| < 62
(14.33)

Finally, (14.34) yields (14.26) by Schur’s Lemma.

Proof of the decay estimate (14.33). — The proof of (14.33) follows from the proof of
Proposition 13.11 in Section 13.5.2. In fact, let us consider the following quantity A
defined by:

+oo
_ i\ —J v 2
(14.35) A= /S/O e (27T Nk (w) A dAdw,

where p is a function defined on S2. Then applying 3 integrations by parts with respect
to w and 2 integrations by parts with respect to A as in the proof of Proposition 13.11
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yields to the following equality:

i J i/2 2 3 —J
A= Fo(22p(w), 29/20,p(), 0p(w), 0% p(w), 0% p(w), 273)
SZ
xz/)0(2 J)\)nj( ))\Qd)\dw

+oo
5 (27 p(w), 27728, dup(w), 82 p(w), 83 p(w), 279 A
e ), 0up(w), B2p(w), O2p(), 277 A)
x P1(27IN) (6277729, )n (w) A2 dAdw

+oo
6 5 (27 p(w), 2/28,, Dup(w), 82 p(w), 277\
e ) ), 0up(e), B2p(w), 279)
X (277 N) (627 J/Za) Y (w)A2dAdw

+oo
+6” / / F3(27 p(w), 27/20,p(w), Bup(w), 277 X)
SZ
x 3(277X)(6277/20,,)%n} (w) A2 dAdw,

where v;,1 = 0,1,2, 3 is smooth and compactly supported in (0, 400), (6277/29,,)n
1 =0,1,2,3 is bounded on S? and has the same support as ny, and Fj,l =0,1,2,3
are smooth function satisfying the following estimates:

|Fo(2p(w), 27/200p(w), Bup(w), O p(w), B2p(w), 277 N)]
+|Fy (2 p(w), 27728, p(w), B p(w), B2 p(w), B2 p(w), 279 N

(14.36)

(14.37) + [P (27 p(w), 27720, p(w), Bup(w), 82 p(w), 277 N)]
+ |F3(2jp(w):2j/23wp(W),<9wp(w) 279 )|
< 1

(1 +27[p(w)[)2(1 + 29/2]0up(w)])*

Indeed, this has been done in the proof of Proposition 13.11 for the particular
case p(w) = u(z,w) — u(y,w) but is easily seen to hold in the general case with the
exact same proof. Applying (14.35) to the 4 terms in the right-hand side of (14.32)
respectively with

p1(w) = u(z,w) —u(y,w), pa(w) = ¢u(z) - w = b (Y) - w,

(14.38) p3(w) = u(z,w) — ¢, (y) - w and py(w) = ¢, (y) - w — u(y,w)
yields:
2 3 +o0
K@y =3 > ¢ / / Fulpaltn (2770) (6279/20,)'n (w) A% dAdw
q=11=0 §270
(14.39)

4 4 +oo
N l/ / Filpgltn(27I0)(6277/28,,) ¥ (w) A*dAdw,
q=3 1=0
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where Fj[p,] is defined for ¢ = 1,2, 3,4 by:

(14.40)
Filpg] = Fi(2 pg(w), 2720, pg(w), Bupg(w), B2 pg (w), 85 pg(w), 277 X), 1= 0,1,
Falpg) = F2(27pg(w), 2720094 (), 8upq (W), 02 pg (), 277N),
F[pq] = F3(2qu(w), 2j/28wpq(w), 0upq(w), 2_j>‘)'

We rewrite (14.39) as

(14.41)
3

+oo
K =357 [ [ el = R0 @ ) s

+oo
+25 [ el - Bilpaye ) 62970 )

We now estimate Fl[pl] — Fi[ps] and Fj[p2] — Fi[p4].- One easily checks that the first
order derivatives of Fj satisfy the same estimate as the estimates (14.37) satisfied
by Fj. Together with Assumption 5 on u(z,w) — ¢, () - w, (13.132) and (13.133), we
deduce the following estimates on the support of ny:

(14.42)  |Folpa] — Folps]| + [Folp2] — Folpal| + [Filp1] — Filps]| + [Fi[p2] — Filp4]|

< [Folpall + [ Folp2ll + [Folps]| + [Folpall + [ Fileall + [Falp2]| + [Filps]| + [ Filpal|
1

<
S U+ 2, v) — uly, v)] — 207210,u(z, v) — Ouuly, v)])2
1
* 1+ 202[0,u(z, v) — duuly, v))*

(14.43)
|Falp1] — Fa[ps]| + [Fz[p2] — Fa[pa]|

< (Y ulz,w) = ¢u(2) - |+ 2|uly,w) — du(y) - wl
+ 27210, u(z, w) = Bu (¢ (2) - w)| + 27/210,uly, w) — (@ (y) - w)]
+105u(z,w) = 92 (du(x) - w)| + |05 u(y,w) — 92 (du(y) - w)])

1
* 0T 127z, v) — u(y, v)] — 272]0,u(z, v) — Ouu(y, v)||)2
1
1+ 20720,u(z, v) — puly, v)))?
<4 . 1A
~ 1T 27ulz, v) — uly, v)] — 272[00ulz, v) — Buu(y, v)[))?
1

* W+ 20720, ule, v) — Buuly, v)])?
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and
(14.44)
|F3(p1] — Fslps]| + |F3lp2] — Fslp4]|

S (2j|u(x,w) - ¢I/(x) ’ w' + 2j|u(y7w) - ¢l/(y) : w|
+ 2j/2|awu(x’ w) - aw(qsu(x) w)| + 2j/2|awu(y’ LU) - 8w(¢v(y) ' w)')

1
S+ 2, v) — uly, v)] — 272[8,u(w, v) — Bou(y, v)]])?
1
“ U+ 272|00u(z, ) — Buuly, v)])°
< 52 1
~ A+ |2 u(e, v) — uly, v)| — 29/2]0,u(z, v) — Duu(y, v)||)?
1

U+ 20720, ule, v) — duuly, )|)P’

where we have used the fact that |w — v| < §277/2 on the support of ny,and € S 6 in
view of (14.12). Now, we have:

+oo
(14.45) / B2 (5279/20,,) Y (w)N2dAdw
S22 Jo

([ wwn) ([ o) <o
0 S2

where we have used the fact that (6279/ 28w)l77;-’ (w) is bounded on S? and the fact that

its support is two dimensional with a diameter ~ §279/2. (14.41)-(14.45) immediately
yield the decay estimate (14.33). Finally, as explained after (14.33), (14.33) yields
(14.34) which implies (14.26). This concludes the proof of Proposition 14.5. O

Remark 14.6. — Note that Assumption 5 does not contain any estimate for the
term 02u — 93 (¢, (z) - w). Instead, this term is estimated using Assumption 2:

|05 — 05 (¢u(2) - w)| 1

and thus is not bounded from above by O(e) unlike the corresponding estimate
for 02u — 8%(¢,(z) - w) in Assumption 5. As a consequence, (14.42) cannot be im-
proved, and is responsible for the introduction of the extra smallness parameter ¢ in
the decomposition in angle.

14.2. Proof of the estimate 11.19

Recall the definition of the Fourier integral operators M1 and @+ introduced in
Section 11.1.2:

+oo
(14.46) M. f(z) = / / eFru(@ED) £\ N2dAdw
S2 Jo
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and
+o0 )
(14.47) Q+if(x) = / / eFu@ ) gz +0) 7 F(Aw)A2dAdw.
s2 Jo
Let (f4, f-) satisfying:
14.48 ,
(449 Qi (M) = Q-(AF-) = in.
The goal of this section is to prove that (f, f—) satisfies the following estimate:
(14.49) [Af+llz2ey + IAMf=[lL2re) S [V ollLz(s) + [|#1]l22(s)-
Using Proposition 14.1 in the case of a symbol b = 1, we obtain:
(14.50)  [[Mfllze@e) S 1My (Af+)llL2cs) and [[Af-[[r2rs) S M- (Af=)llz2(s),
which yields:
A llz2 sy + 1A= IlL2(r3)
(14.51) SIMa(Mf)llpz(s) + 1M-(Af-)llz2s)
SIM (M fy) + M_o(Af)llz2sy + 1My (A fy) = M_(Af-)|lz2(s)-

{ My fi +M_f_ = ¢o,

We have:
“+oo
(14.52)  (Q+ — My)f(z) = / / eFPM@ ) (g2 +0)71 — 1) fF(Aw)A2dAdw.
Sz Jo

Due to Assumption 1-3 on a, the symbol a(z,+w)~* — 1 of Q1 — M satisfies the
assumptions (11.42)-(11.44) of Theorem 11.8 with D = e. Thus, we obtain from
(11.45) that:

(14.53) Q@+ — Mx)fllzzs) S ellfllzre)-
The second equation of (14.48), (14.51) and (14.53) yield:

(14.54)  [IMfollpz@e) + IAf-ll2@e) S 1M (Af+) + Mo(Af)llpzcs) + [91llz2cs)-
The following lemma will allow us to bound the first term in the right-hand side of
(14.54).

Lemma 14.7. — For any (f+, f—), we have the following bound:
My (Af4) + M_(Af-)llz2s) S IIVMy(f+) + VM_(f-)llL2(s)

(14.55) i
+(o+ 57) (IAfellz2 sy + 1A=Lz o)),

where § may be chosen as in (14.12).

Before proving Lemma 14.7, we first conclude the proof of the estimate (11.49).
(14.12), (14.54) and (14.55) yield:

(14.56)  [IAf+llzze) + 1A= llL2@e) S IVMy(f3) + VM_(f-)ll2(s) + ld1ll2(s)-
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Applying V to the first equation of (14.48) and using (14.56) implies:
(14.57) Mo llzame) + M llz2s) S IVoollzas) + I61llas)
which is the wanted estimate (11.49).

Proof of Lemma 14.7. — Since Vu = a~'N, we have:

+oo )
(14.58) VMyf(z) = +i / / eFMu@E) g (3 +0)TIN (2, 2w)A f (Aw) A2 dAdw.
s2 Jo
We introduce the operator Py defined by:
(14.59) Py f(z / / eFM@E) N (g +0) f(Aw)A2dAdw.
SQ

Due to Assumption 1-3 on a and N, the symbol i + (a(z,+w)”! — 1)Ni of
VMy FiPy()\.) satisfies the assumptions (11.42)-(11.44) of Theorem 11.8 with
D = e. Thus, we obtain from (11.45) that:
(14.60) IVML(f) F iPr(Af)llz2s) S el Afll2qre)-
Thus, the proof of Lemma 14.7 reduces to the proof of the following estimate:

M5 (f4) + M_(f)llL2(s) S 1P+(f+) = P-(f-)llL2s)

+ (64 53) (NFllzacesy + 1= e,

for any (fy,f_) in L?(R3) x L?(R3). To prove (14.61), we decompose in frequency
and angle as in the proof of Proposition 14.1, in order to reduce ourselves to diagonal
terms.

(14.61)

Decomposition in frequency. — As in step 1 of the proof of Theorem 11.8, we decom-
pose My (f+) and Py(f1) in frequency:
(14.62) Mi(fe)(@) = ) (Ms); fx(x) and Pi(fx)(x) = Y (Pi);fe(2),

j>—1 j=-1
where the operators (My);, (Py), are defined as in (13.5) (13.6). Following step 1 of
the proof of Proposition 14.1, we obtain the equivalent of (14.10):

My (fy) +M_(f )”%2(5)

) = T [ (OL3£4()+ M)y £ @)L @)+ (- @)

+ 0(6)(||f+||2L2<Rs) + 11172 sy)
and

IPa(f3) = P(f) sy
Aoty = 5 [ (PL@) = (P /(@) - (PFo(@) = (P -(@)as

|l7—1<2

+ 0@ (I £+l 72 ms) + 1~ 172 (es))-
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Decomposition in angle. — As in step 2 of the proof of Proposition 14.1, we decom-
pose (My);f+ and (Py);f+ in angle:
(14.65) (Ms);fe(z) =) (M)} f(x) and (Ps);fe(z) = Y (Px)i f(2),

vel vel
where the operators (M) and (P ) are defined as in (13.11) and where the support
of our partition of unity 7} on S? is a patch of diameter ~ §277/2 with § chosen as in

(14.12). Following step 2 of the proof of Proposition 14.1, we obtain the equivalent of
(14.17):

(1460) 3 [ (OL0);f4@) + (1), - @)L (@) + (T if-(@)as
l7-11<2
=Y Y i+ 00 @)

li—1<2 [y—1|<262-3/2

x (M) Fo(@) + L) F-(@)dZ + 0 (55) (1132 + 15132 ey)

and
(14.67)

> /((P+)jf+(1‘) — (P-);f-(2) - (Pr)if+ () = (P-)i1f-(x))d%

li—i<2’®

=YY [P - () (P ) - (P s
li—11<2 [v—v'|<252-3/2 " Z
+0 (&) (4 Beqany + 17— 13ages):
End of the proof of Lemma 14.7. — (14.63) and (14.66) yield:
(14.68)

ML)+ M (o= S 3 / (M) o () + (M_) - (2))

li—U<2 jy—v|<252-9/2

(L)Y f (@) + ML F-@NAZ + O (55) (1 12y + 11 ey
and (14.64) and (14.67) yield:
(14.69) [Py (f+) = P-(f-)lZ2(s)

= > > /((P+)jf+(w)—(P—)?f—(ﬂf))~((P+);"f+(w)—(P_)l"’f_(x))dz
li—11<2 [p—v'|<282-3/2 7 %
+0 () (1 Baguay + 17

The operator (Ps)% — N(z,+v)(My)Y has a symbol given by N(z,+w) — N(z,+v).
Thus, the estimate (13.118) together with Assumption 2 on 9,N, and the fact
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that |w — v| < 6279/2 on the support of n¥ yields:

> > //S((P+)J”-f+($) — (P_)jf-(2)) - (PL)Y f+(x) = (P-)} f-(x))dX

li—U<2 |[v—v’|<262-9/2

(14.70)
=Y Y [0 - N ) (M) (@)

li=11<2 jp—v'|<262-9/2

(N (2, v) (M)} 1 () = Nz, =) (M-)y f-(2))dZ + O@) (14 Z2zs) + 1~ Z2(zs))-
Now, Assumption 6 yields |N(z,v) + N(z, —v)| < € which together with (14.70) and
the fact that IV is a unit vector implies:

> > /E((P+)5f+(:v) — (PL)jf-(2)) - (PL)Y f+(x) = (P-)} f-(x))dX

li—U<2 |[v—v’|<262-9/2

=y > /((M+)j”-f+(x) + (ML) f- (@) (M) fo (@) + (M) f-(2))dE
—11<2 jv—v/|<252-3/2 7
(14.71)
+ 00 + )1 F+ 17 2ma) + 1 F= 117 2Rs))-
Finally, (14.68), (14.69) and (14.71) yield:
P+ (f+) — Pf(f*)”%"’(s) = |[[My(f+) + M*(f*)”%ﬂ(s)
+0 (64 55) (1F+ 132y + 1=l an),

which implies (14.61). As noticed at the beginning of the proof, (14.61) yields the
wanted estimate (14.55). This concludes the proof of Lemma 14.7. O

(14.72)

14.3. Existence of (fy, f_)

In the previous section, we have proved the estimate (11.49):

(14.73) [Af+llz2mey + [IMf=llL2e) S IVollrzcs) + 91llz2(s)
for any (f, f—) satisfying the following system:

My fy +M_f_ = ¢o,
Q+(Af+) —Q-(Af-) = id1.
Notice that (14.73) implies the uniqueness of (fi, f—) solution of (14.74). In this
section, we complete the proof of Theorem 11.10 by proving the existence of (f, f—)
solution of (14.74).
Recall that the phase u(z,w) of our Fourier integral operators has been constructed

in [23] on ¥ x S? under the assumption that (X, g, k) satisfies the following bounds
consistent with the assumptions on X for R and k in Theorem 10.1:

(14.75) ||R||L2(S) <eg, ||Vk||L2(S) <e.

(14.74)
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(3, g, k) also satisfies the constraint equations:

Vik;; =0,
(14.76) R = |k|?,
Trk = 0,

where the last equation in (14.76) comes from the fact that we work with a maximal
foliation. We introduce two sets V' and W':

(14.77) V ={(%, g,k) such that (14.75) and (14.76) are satisfied}

and
(14.78)
W ={(X%,9,k) € V such that (fy, f—) solution of (14.74) exist for all (¢g, P1)

such that V¢o € L*(S) and ¢; € L*(S)}.

In order to prove the existence of (fy,f-) solution of (14.74), we will show that
V = W by a connectedness argument. This will result from the following two lemmas.

Lemma 14.8. — Let N > 0 an integer. Then, the set V is connected for the topology
of (9,k) € C4UX) x C171(X).

Lemma 14.9. — Let N > 0 an integer. Then, the set W is open and closed in V' for
the topology of (g,k) € C4(X) x C1=1(X) provided q is chosen sufficiently large.

Remark 14.10. — The assumptions on the regularity on (¥, g, k) in Lemma 14.8 and
14.9 are much stronger than the ones appearing in the bounded L? curvature con-
jecture. We would like to insist on the fact that this smoothness is only assumed
to obtain the existence of (fy, f—) solution of (14.74). On the other hand, we only
rely on the control of ||R||z2(g) and || Vk| z2(s) given by (14.75) to prove the estimate
(14.73).

We postpone the proof of Lemma 14.8 and Lemma 14.9 respectively to Sec-
tion 14.3.1 and Section 14.3.2. Let us now conclude the proof of Theorem 11.10. Note
first that W is not empty. In fact, the flat initial data set (3, g, k) = (R?,§,0) belongs
to V, where § denotes the euclidean metric. In that case, our construction in [23]
yields the usual Fourier phase u(z,w) = z - w. Then, the system (14.74) reduces to:

(14.79) { 55‘7_ (f+)+c5:7‘ (f—)=<{>o,
FEOf4) = F L) = id,

which admits the solution:

(14.80) o = 3 (Fon £ Z120)

where ¢ denotes the Fourier transform on R®. Thus, (X, g,k) = (R3,6,0) belongs
to W, which implies that W is not empty. It is also open and closed in V for the
topology of (g,k) € C4(X) x C9=(X) by Lemma 14.9 for ¢ sufficiently large. Since
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V is connected for the topology of (g,k) € C4(X) x C47}(X) by Lemma 14.8, this
implies that W = V. This proves the existence of (f;, f—) solution of (14.74) and
concludes the proof of Theorem 11.10. O

14.3.1. Proof of Lemma 14.8

The conformal method of Lichnerowicz. — We start by reviewing the conformal
method of Lichnerowicz for constructing solutions to the constraint Equations (14.76)
on Y. Let g a Riemannian metric on ¥. We define the Riemannian metric g and the
symmetricé—tensor k as:

g=9g,
(14.81) {k I

where o is a traceless symmetric 2-tensor and ¢ a conformal factor tending to 1

at infinity. Then, (g, k) defined in (14.81) satisfies the constraint equations (14.76)
provided that (¢, o) satisfy the following system:

{—SM +R¢— o™ " =0,

14.82
( ) dive =0,

where R is the scalar curvature of g and where the divergence and the Laplacian are
taken with respect to g.

The ezistence of 0. — We now turn to the question of the existence of ¢ and o
solution to (14.82). In order to exploit the smallness condition (14.75), we need an
existence theory for rough solutions to the constraint Equations (14.76). We will follow
the exposition in [18] (we refer to [3] for the smooth case). Let | € N and p € R. We
introduce the spaces H},(X) defined by:

(14.83) H})(E) =<¢h/ Z (1 + |x|)—P—3/2+|a|h||L2(S) < 400
|| <t

We recall first the construction of a symmetric traceless divergence free 2-tensor o
on Y. To this end, we introduce the conformal Killing operator I and the vector
Laplacian Ap:

2
LX =Zxg — gdiv(X)g,
Ar = div(LX),

(14.84)

where X is a vector field on X, Zx is the Lie derivative with respect to X, and the
divergence is taken with respect to the metric g. If S is a symmetric traceless 2-tensor,
and if we can solve

(14.85) ALX = —div(S),

then setting o = S+ LX yields divo = 0 which solves the second equation of (14.82).
The fact that this is always possible is known as the York decomposition. In the
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context of a rough metric g, the following result holds (see [18]):

Let 1-<p<0, g€ Hﬁ(E) and S € H;_I(E). There is a unique X
solution to (14.85), and X satisfies || X||rz2(x) < ||S||H;71(2).

This yields a solution ¢ to dive = 0 such that 0 =S +LX

and |lollz_ =) S ISla2_, (s)-

(14.86)

The ezistence of . — We then have to solve the first equation of (14.82) which is
the Lichnerowicz equation. This is not an easy task in general since one has to show
that g is conformally related to a metric with vanishing scalar curvature. However,
we are in the particular case of small data in view of (14.75), and we will obtain the
existence of ¢ by a fixed point method. Let for —1 < p < 0 and let g € Hg(s) Then,
recall from [18] that —A is invertible as an operator from HZ(X) to H) ,(X) so that
the following estimate holds:

(14.87) I(=A)hllzz < Wllao_ycsy —1 < p <0.

This allows us to rewrite the first equation of (14.82) in the form of a fixed point

foryp=¢—1:
(1488) b= (M) (~R+ o — Ry +loP(+9) T - 1)

Now, we deduce from the embedding of H2(X) in L>®(X) for p < 0 and from the
properties of the spaces H f)(E) with respect to the pointwise multiplication proved in
[18] the following inequality:
(14.89)

I=R+ o> = Ry + o (L +4) " = Dllmo ) S IRmo )1+ [¢llmzcs))

+ ||‘7||iI;_1(2)(1 + (1Yl m2(s))),
where ¢ is an increasing function, and where we assume that the control
||'€[J||H§(E) <1/2 holds. Thus, in view of (14.86), we have for —1 < p < 0 and
¥l rrz(sy < 1/2:

(14.90)
[-R+ o> = Ry + o> (1 + )" — Dz, S IRIm (A + 19lla2(s))

ISy (1 + (2.

where ¥ is an increasing function. In view of (14.90), we immediately obtain the

existence of ¢ solution to (14.88) provided || R go(s)+ S|z _, (s) < € for a sufficiently
p—1

small €.

Proof of Lemma 14.8. — Let us come back to the proof of Lemma 14.8. We will prove
that all solutions (3, g, k) of the constraint Equations (14.76) satisfying the bound
(14.75) are connected to (R2,d,0) by a continuous path. For 0 < 7 < 1, we introduce:

TTr k

(14.91) g =79+ (1 —r7)dand S, =7k — 3 9
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where Tr, denotes the trace with respect to the metric g, - Let =1 < p <0. From the
smallness assumptions (14.75) and the Definition (14.91) of g, and S, we immediately
obtain:

(14.92) 1B Mo,z + 157l =) S €
where R, is the scalar curvature of g . In view of (14.86), (14.88) (14.90) and (14.92),
we obtain the existence of (o7, ¢,) in Hi_;(X) x HZ(s) solution to:
_SAT+ET T — |01 ;:07
" s+ Brde ~ lorl’
dive, =0,

where R_ is the scalar curvature of g, and where the divergence and the Laplacian
are taken with respect to g, Finally, settlng

gT = d)'rg )
(14.94) L
kr = ¢;20‘ra

we obtain a solution (¥, g-, k-) to the constraint Equations (14.76) which satisfies the
following bound:

(14.95) lgr = Sllmzm) + kel () S €

Thus (g,,k.) satisfies the bound (14.75) so that (3, g,, k) belongs to the set V
defined by (14.77). Furthermore, recall from (14.88) that ¢, is obtained by a
fixed point argument. This implies in particular the uniqueness of (0., ;) so that
(9r,kr) = (6,0) at 7 = 0 and (gr,k-) = (g,k) at 7 = 1. Using standard results
in elliptic regularity, we also obtain that the path 7 — (g,,k,) is continuous for
the topology of C(X) x C4=1(X) provided (g,k) € CI(X) x C?~1(X). Thus, all
solutions (X, g, k) of the constraint Equations (14.76) satisfying the bound (14.75)

are connected to (R3,6,0) by a continuous path, which concludes the proof of
Lemma 14.8. U

Remark 14.11. — In general, the connectedness of the set of all solutions (X, g, k) of
the constraint Equations (14.76) is an open problem (see [19] for a partial answer).
Here, the smallness condition (14.75) makes the problem much easier, as the solutions
are obtained by a fixed point argument in this case.

14.3.2. Proof of Lemma 14.9
The operator A. — We start by rewriting the system (14.74) as

Lo VM, fy+VM_f_ = Vg,
(14.96) Qe(M4) — Q-(\f2) = idn.

We define the operators Mi as:

—_~ +m .
(14.97) Mif(z) = :I:/ / eFM@E) o (3 1)) TIN (2, 2w) f (Aw) AN2dAdw,
s2Jo

SOCIETE MATHEMATIQUE DE FRANCE 2023



256 CHAPTER 14. PROOF OF THEOREM 11.10

so that (14.96) becomes:

(14.98) {M+(Af+) — M_(Af-) = =iV,

Q+(Af1+) — Q-(Af-) =id1.

We define the linear operator A as:

(14.99) A(fir fo) = (M (f) = M_(£2), Q+(f+) — Q-(f-)).

By Theorem 11.8 and Assumption 1-4 on u, a and N, A is a bounded operator
from L?(R3) x L%(R3) to L?(S)3 x L%(S). In view of (11.49), it satisfies the following
estimate:

(14.100) I+ lle2s) + 1= lL2rs) S A4, f-)llL2(s)2xL2(8)-

Finally, in view of (14.98) and the Definition (14.99) of A, we may rewrite the set W

as:

(14.101) W = {(%,9,k) € V such that A is surjective}.

W is closed. — We have to show that the set W given by (14.101) is both open and
closed for the C4(X) x C971(X) topology when ¢ is sufficiently large. Let us first show
that W is closed. Let (gn,kn),n € N a sequence in W such that it has a limit (g, k)
for the C(X) x C971(X) topology. Let A, be the operator associated to (g, k), and
A the operator associated to A. A, is surjective for all n > 0, and we would like to
prove that A is surjective. Notice first that the fact that A is a bounded operator
from L%(R3) x L%(R3) to L?(S)® x L?(S) together with the estimate (14.100) implies
that the image of A is closed in L?(S)® x L?(S). Thus, we may reduce the problem
to showing that a dense subset of L?(S)3 x L?(S) belongs to the image of A. Let us
consider (¢g,¢1) in C7(X) x CS(X) which is dense in L?(S)3 x L2(S9). Since A, is
surjective, there are (f, f™) such that:

(14.102) An(f3 f2) = (Vo, ¢1)-
Differentiating (14.102) six times and using (14.100), we obtain:
1+ %) 2y + 111+ X%) f2 ]| 2 ey
S (lgnllcacsy + llknllca-1()) (Pollcr =y + P1llce)

for a sufficiently large q. We deduce from (14.103) the existence of a constant C' > 0
independent of n such that:

(14.104) 1L+ 2°) 2|2 sy + (1 + A%) 2| L2 sy < C < +o0.

In particular, we may assume in up to a subsequence that (f}, f*) converges up to a
subsequence to (f, f_) weakly in L?(R3) x L?(R?). We have:

(14.105)  An(f7, f2) = A(f4, f-) = (A = M) (Y, f2) + A(FE = fos f2 = f-).
We will show that both terms in the right-hand side of (14.105) converge to 0 weakly
in L?(S)3 x L%(S). We start with the first term. For (H,h) € C?(2)? x C2(X), we

(14.103)
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have in view of the Definition (14.99) of A:
(14.106)

/E((An —N)(fr, M), (H, h))dz’

/S2 /Om((fﬁv 1), (A = A)*(H, h))AQd)\dw‘

+oo

S Resexenes [ [ Q720w+ 17O Olin () = )=o)

+llay (b w) — a7 (W)L (s) + 1N, w) = N(,w) || s)) A2 dAdw
SIH, W) llcosyzxcos) (1L + A fEllLzey + 11+ X°) f7 ]| 2re))

X Sugz(ﬂun(ww) —u(, W)Ly + lay ' (w) — a7 (W)L (s)
we
+ [N (-, w) = N(,,w)ll L= (s))-
Since (gn, k) converges to (g, k) in C?(X) x C?71(X), we have for q large enough:

(14.107) ngr}rloo sug (lun (., w) — (., w) || Loo sy + lap ' (- w) — a™ (., w) || e (s)
wes?
+[Nn(sw) = N, @)L= (s))
=0.

Using (14.104), (14.106) and (14.107) implies that (A, — A)(f}, f") converges
weakly in L2(S)® x L2(S) to 0. Also, using the fact that A is a bounded operator
from L?(R3) x L*(R3) to L*(S)® x L*(S) and that (f},f") converges to (f4,f-)
weakly in L?(R®) x L?(R®), we obtain that A(f? — fy, f™ — f_) converges weakly
in L?(S9)® x L?(S) to 0. In view of (14.105), this implies that A,(f?, f") converges
weakly to A(fy, f—) in L*(S)? x L?(S). Together with (14.102), this implies

(14108) A(f+7f—) = (v¢07¢1)'
Thus, A is surjective which concludes the proof of the fact that W is closed.

W is open. — To conclude the proof of Lemma 14.9, we need to prove that W is open
for the C9(X) x C1~1(X) topology when ¢ is sufficiently large. Let (g, k) € W and let A
the operator associated to (g, k). Then A is surjective which together with the estimate
(14.100) implies that A is an isomorphism from L?(R3) x L?(R3) to L%(S)3 x L2(S).
In turn, this implies that AA* is an isomorphism of L2(S)3 x L2(S). Let (§,k) € W
such that:

(14.109) 15 — gllcacs) + Ik = Ellgar(s) <6

for a small constant 6 > 0 to be chosen later, and let A the operator associated
to (g, E) Then, A and A consist of Fourier integral operators whose phase and symbol
are O(6) close to each other in the C%(X) topology. Integrating by parts several times
in the kernel of AA* and KT\*, we deduce the following bound provided g¢ is sufficiently
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large:

(14.110) IAR* — AN [lger2 (593 x 2sy) S O

Since the isomorphism of L?(S)? x L2?(S) form an open set, we deduce from (14.110)
that AA* is an isomorphism of L?(S)3 x L?(S) for § > 0 small enough. In particular,
A is surjective for § > 0 small enough. Therefore, A € W provided 6 > 0 defined

in (14.109) is chosen small enough. Thus, W is open. This concludes the proof of
Lemma 14.9. U
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PROOF OF LEMMA 13.6

We would like to compute the double divergence term in the right-hand side of
(13.78):
. ((N=(N-N)NYa . ((N'—(N-N)N)d'bb
D.1 d d .
(D-1) W( 1-(N-nNyz 1— (N-N')2
We recall the structure equations for N:
{VAN = Oages,

VNN = —Va.

(D.2)

In particular, (D.2) implies:
(D.3) div(N) = tré.
Using (D.3), we have:
’r_ LN/ 1pp/
div (N — (N -N'")N)a'bb
1—(N-N')?
(tr6" — g(N,N")tr0 — Vn(g(N,N')))a’dbd’ + V ni_g(n,n7yn (a’DD)
1- g(Nv Nl)z
2a'bb'V ni_gv NN (9(N, N'))g(N, N')
(1 _g(Na N/)2)2 .
Differentiating again, we obtain:
N — (N-N)N' N — (N -N' 'bb!
div [V = JNa 40 (€ ( )N )a'bb
1—(N-N")? 1—(N-N")?
_ Ay + A + As
~(L=g(N,N")2)2 " (1-g(N,N')?)3 (1 —g(N,N")%)*’
where A;, As, Az are given by:
(DG) Al = (vag(N,N’)N’tr 0, — g(N, NI)VN,Q(N’N/)N/tI' G)aa’bb'
— (Vn—gv,nryn (9(N, N'))tr o + VN_gv.NyN' VN (g(N, N")))aa’bb’
+ (tl" 0/ - g(N, N’)tr@ — VN(g(N, N/)))avag(N,N’)N’ (O/bb/)

(D.4) _

(D.5)
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+ aVn_g(n,N )NV N —g(n, NN (a'BD)
+((tr0 — g(N, N')tr 0" = Vo (g(N, N'))a + Viv_gv,vyv (@)
x ((tr8" — g(N,N")tr6 — Vn(g(N,N")))a'bb' + V ni_ g, n1yn (a'bD)),
(D.7) Ay =2aVN_gn,nyn (9(N, N'))g(N,N')
X ((tr6 — g(N,N")tr6 — Vn(g(N,N")))a'bb" + V N/ _g(n,n)n (a'b))
+ 2aa’bb'V n_g(v, NN Vv —g(v,nyN (9(N, N'))g(N, N)
+2aa'bb'V i _g(n, vy N (9(N, N'))V N g (v nyn (9(N, N'))
+2aV ni—g(n, NN (9(N, N'))g(N, N')V §_g(n, N7y v (a'bD)
+ ((tr@ — g(N,N")tr 0’ — Vi (9(N,N")))a + Vn_gn,n )N (a))
x 2a'b0'V n/_g(n,nyn (9(N,N'))g(N, N')
+2aV N _gnnyn (9(N, N'))g(N,N')
X ((kr 6 — g(N,N")tr6 — Vn(g(N,N")))a'bb’ + V n/_g(v,n)n (a'b))
and
(D-8) Az = 8aa'bb'V n1_ (v, )N (9(N, N'))Vy_g(n nyn (g (N, N'))g(N, N')2.
Notice that N — (N - N')N’ is tangent to P, and that N’ — (N - N')N is tangent
to P,. Notice also that 1 — g(IN, N') is of order two in N — N”:
N —N',N - N')
2
In view of (D.5)-(D.9), one easily checks that the double divergence (D.1) takes the

wanted form (13.79) (13.80) provided that we are able to control all the terms in the
following list:

(D.10)
Vn(g(N,N"))  Vn_gnnyn' (N —g(N,N')N) Vn_gnn)n (g(N,N))
(1—g(N,N"))/2 1—-g(N,N') T (L—g(N, N
Vn_gn NN VN(GN,N'))  VN_gnN)N Vv —gv, NN (9(N, N))
1-g(N,N’) ’ (I—g(N,N"))? '
Control of the first term of (D.10). — Using the structure equation for N (D.2), we
have:
(D.11) Vn(g9(N,N"))
= g(VNNJ NI) +g(N7 Nl)g(N7VN/N/) +g(Na vN—g(N,N’)N’]V’I)
= —g(Vlog(a), N') + g(N, N")g(N, ¥ log(a')) + (N — g(N, N')N', N — g(N,N')N')
= _g(V1og(a)7N/ _g(N7 NI)N) +g(N7N/)g(N _g(N7 NI)NI7v10g(aI))
+0'(N — g(N,N)N',N — g(N,N")N").

(D.9) 1= g(v, Ny = I
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Using (D.9), we have:
[N —g(N,N')N'| [N"—g(N,N')N| _
(1—g(N,N"))V2 ~ (1—g(N,N"))/2 "~

In view of (D.9), (D.11) and (D.12), the term % is under control and

(D.12)

involves terms in the list (13.80).

Control of the second term of (D.10). — Using the structure equation for N (D.2),
we have:
(D.13)

VN_Q(NvN/)N/(N/ - g(N7 N/)N) = vN—g(N,N’)N'N/ - g(N, NI)VN—g(N7N/)N’N
— Vn—gv,n)n (g(N,N'))N
= QI(N —g(N, N’)N', ear)ear

—g(N,N')(1 = g(N,N")*)VyN — g(N,N")V n:_gv,n1)nN)

— ((1 = g(N, N')*)g(=Vlog(a), N')

_g(NaN/)e(Nl _g(N7N/)NaN/_g(N7N,)N)

+6'(N — g(N,N')N',N — g(N,N')N'))N

=0'(N —g(N,N')N' es)ea +0(N' — g(N,N')N,es)ea

- (1 - g(Na N,)2)0(N/ - g(Na N,)N’ eA)eA

+g(N,N')(1 = g(N, N")?) Y log(a)

+ (1 —g(N, N’)Q)VN'—g(N,N')N log(a)N

+ g(N, N’)G(N' — g(N,N')N, N — g(N,N’)N)N

—0'(N —g(N,N')N',N — g(N,N')N')N,
where we have used the fact that:
(D.14) N —g(N,N")N' = (1 - g(N,N")*)N — g(N,N")(N" — g(N,N")N).
Note that the tangential components N — (N - N')N’ and N’ — (N - N')N satisfy:
(D.15) (N —=g(N,N)N') + (N' = g(N,N')N) = (N + N')(1 - g(N, N")),
so that we may divide 8'(N — g(N,N')N',ea)ear + (N’ — g(N,N')N,ea)es by
1 —g(N,N’). Thus, in view of (D.9), (D.12), (D.13) and (D.15), the term

vN—g(N,N’)N’(N, — g(N, NI)N)
1- g(Nv N/)

is under control and involves terms in the list (13.80).
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Control of the third term of (D.10). — Using the structure equation for N (D.2)
together with (D.14), we have:

vN—g(N,N’)N’(g(Nv N’)) = Q(VN—g(N,N')N'N, N’) + g(N, vN—g(N,N’)N’N/)
= —(1—g(N,N")*)g(V log(a), N' = g(N,N")N)
—g(N,N")0(N' — g(N,N')N,N' — g(N,N')N)
+60'(N —g(N,N')N',N — g(N,N")N").

(D.16)

In view of (D.9), (D.12), (D.15) and (D.16), the term VN‘(gl(i\';E';\;f}'\;,(f)g]y;N ) is under

control and involves terms in the list (13.80).

Control of the fourth term of (D.10). — Differentiating (D.11) with respect
to vN—g(N,N’)N’7 we have:
(D.17)

Vn—gvnyn Vi (g(N, N')) = =V?log(a)(N — g(N,N')N', N’ — g(N,N")N)
—g(Vlog(a), Vn_gn,nyn' (N — g(N,N')N))
+ Vn_g.nyn (9(N, N'))g(Vlog(a'), N — g(N,N')N')
+ g(N,N")V?log(a')(N — g(N,N')N',N — g(N,N')N")
+ g(N,N")g(Vlog(a'), Vn_gn,nyn (N — g(N,N')N"))
+ Vyn_gvnyn ' (N —g(N,N)N',N — g(N,N')N")
+20'(Vn_gv,nyn (N = g(N,N')N'), N — g(N,N')N").

vN—g(N,N’)N’(N_g(N7NI)Nl) Thi
TGN . This
similar to (D.13). Using the structure equation for N (D.2), we obtain:
(D.18)  Vy_gv NN (N —g(N,N')N')
= Vn_gvnynN — g(N,N)V_gnnyn N
- vN—g(N,N’)N’(g(Nv N,))N/
=(1—g(N,N")*)VNN — g(N,N)Vy_gnvnyNN
- g(N7 N,)a/(N - g(N7 NI)le eA/)CA/
—((1 = g(N,N")*)g(—¥ log(a), N')
_g(NaN/)a(N/ _g(NaNI)N7NI _g(N7N/)N)
+0/(N_g(N7N/)N17N_g(N7Nl)N/))NI
= —(1-g(N, N')Q)Wlog(a) —g(N,N")O(N' — g(N,N")N,ea)ex
- g(Nv N,)GI(N - g(Na N,)N/7 eA/)eA’
+ (1= g(N,N")*)V 51— gn, NN log(a) N’
+g(N,NY0(N' — g(N,N')N,N' — g(N,N")N)N’
—60'(N —g(N,N')N',N — g(N,N")N')N".

In view of (D.17), we need to control the term is very
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In view of (D.9), (D.12), (D.15) and (D.18), the term VN_‘](N’N{B\;'((]\]X];?)(N’N/)N,) is
under control and involves terms in the list (13.80). Note also that the terms
V2log(a)(N — g(N,N')N', N’ — g(N,N')N)
and V?log(a’)(N — g(N,N')N',N — g(N,N")N’)
appearing in (D.17) both contain at least one tangential derivative. Together

with (D.9), (D.12), (D.15), (D.16), (D.17) and (D.18), this yields that the

VN_“N’lN_/)g]\(]J/VV;VV,()g(N’N ) is under control and involves terms in the list (13.80).

Control of the fifth term of (D.10). — Exchanging the role of N and N’ in (D.16),
we obtain:

Vv gu (90N, N')) = —(1 = (N, N')2)g(V log(a), N — g(N, N')N'")
(D.19) —g(N,N")0'(N — g(N,N')N',N — g(N,N")N")
+0(N' — g(N,N')N, N’ — g(N, N")N).
Differentiating (D.19) with respect to V y_g(n, n7)n7, We obtain:
(D.20)
VN_gv,NIN' VN —g(n,N )N (g(N, N'))
= —(1 - g(N,N')*)V?log(a’)(N — g(N,N')N', N — g(N,N")N')

term

— (L= g(N, N )Voy ovnrynr (N—g(V, NN Jog(a)
+ 29(N, N )Vn_gnv,nyn (9N, N'))V Nn_g(nv, vy 1og(a)
= Vn—gv,nyn (g(N, N'))' (N — g(N,N')N', N — g(N, N')N")
—g(N, NI)VN—g(N,N/)N’el(N - g(N, N’)N’, N —g(N, N/)NI)
—2g9(N, N0 (Vn_gv,nryn' (N = g(N,N')N'), N — g(N, N')N")
+ VN _gw.nyn (N = g(N, N')N,N' — g(N,N')N)
+20(Vn—gv,nyn' (N = g(N,N')N), N — g(N,N')N).

Together with (D.13), (D.16) and (D.18), we get:

(D.21) Vn_gv,N)N' VN —gv,nyN(9(N, N'))

= —(1—g(N,N')*)V*log(a’)(N — g(N,N")N', N — g(N,N")N')
+ (1 - g(N,N")?*)?g(Vlog(a), V log(a'))

+ (1 —g(N,N")*)g(N,N")(N' — g(N, N')N, Vlog(a'))

+ (1 —g(N,N")*)g(N,N")0'(N — g(N,N")N', V log(a'))

— (1—g(N,N")?)? VN’ _g(N,N")N log(a)V n log(a')

— (1 —g(N,N')*)g(N, N")(N' — g(N, N')N, N’ — g(N, N')N)V y: log(a’)
+ (1 —g(N,N)*)¢'(N — g(N,N')N', N — g(N,N")N")V y log(a')

- 2g(N, N )VN—g(N,N/)N’ log(a )( — g(N, N/)Q)VN’—g(N,N')N IOg((I)
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—29(N,N')*Vn_gn,nyne log(a’)0(N' — g(N,N')N, N’ — g(N,N")N)
+ 29(N, N )V N_g(n,nyn 1og(a')0' (N — g(N,N')N',N — g(N,N')N’)
+ (1= g(N, N )V _gv,nv)n log(a)f' (N — g(N,N')N', N — g(N,N')N')
+ g(N,N")0(N' — g(N,N')N,N’ — g(N,N')N)

x @' (N — g(N,N')N',N — g(N,N')N')
—0'(N —g(N,N)N',N — g(N,N')N")?
—g(N,N")Vn_gw.nyn0' (N —g(N,N)N',N — g(N,N")N')
+ VN_gnnyn0(N' = g(N,N')N,N' — g(N,N')N)
+2g(N,N')(1 = g(N, N')*)¢'(Vlog(a), N — g(N, N')N')
+2g(N, N')(1 — g(N, N")*)6(V log(a), N' — g(N,N')N)
—2(1—g(N,N')*)8(ea, N' — g(N,N')N)?
+29(N,N")?0'(ea, N — g(N, N')N"YO(N' — g(N,N')N, e )
+2g(N,N")?0'(esr, N — g(N,N')N')?
+2g(N,N")?0'(ea, N — g(N,N')N")§(N’ — g(N,N')N,en)
+29(N,N")?0(es, N' — g(N,N")N)2.

Note that the term V?log(a’)(N — g(N,N')N’, N — g(N, N')N’) appearing in (D.21)
contains at least one tangential derivative (it actually contains two tangential deriva-
tives). Note also that the terms:

(D.22)

29(N,N")20'(ea, N — g(N,N')N"YO(N' — g(N,N')N, e )
+29(N,N")%0'(ear, N — g(N, N')N")?
+2g(N,N")?0'(ea, N — g(N,N')N")§(N' — g(N,N')N,e)
+2g(N,N")?0(es, N' — g(N,N')N)?

appearing in (D.21) may be rewritten:
(D.23) 2g9(N,N")?(0'(N — g(N,N')N',.) + O(N’ — g(N,N')N, .))%.
Together with (D.9), (D.12), (D.15) and (D.21), this yields that the term

Vg NN VN —gv, NN (g(N, N'))
(1—-g(N,N"))?

is under control and involves terms in the list (13.80). This concludes the proof of
Lemma 13.6. O
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PROOF OF LEMMA 13.7

We start with the terms YV (ab)a’t/, 8V (ab)a’t’, V(a)V(b)a't/, 62aa’bl’ in the list
(13.80). They all take the form (13.81) with H3 = Hy = 0, Hy = a'b’ and taking
respectively Hy = YV(ab), Hy = 6V (ab), H; = V(a)V(b) and H; = 6%ab. Thanks
to Assumption 1 and Assumption 2 on a, and the assumptions (11.42) (11.43) on b,
the estimates (13.82) and (13.83) are satisfied.

We now consider the other terms:

(VO —V8)aa'bt (6 —0")V(ab)a't

NN N -N Ve

V(ab)V(a'b'), W, 06’ aa’bd’.
We focus on (V‘T&va;\)/‘jflllbb’ and ("I&fl_)}lzllzb/ the others being similar. For %,
:V]; Il)ave: (VO —V0)aa'bd' (VO —V0,)aa’bb’ = (VO, —VO')aa'b’

|NV_NV’| B |N1/_NV’| |NU_N1/’|

and the two terms in (E.1) are of the form (13.81) with H3 = H, = 0, and respec-
tively H; = W, Hy, = @'t and H; = %, H, = ab. Thanks to
Assumption 1 and Assumption 2 on a,f and the assumptions (11.42) (11.43) on b,
the estimates (13.82) and (13. 83) are satisfied. In particular, we have:

V0,0 L2 (s)

(E2) | SR < plTRlee < p
N,,/| £2(8) 212y — V|
and
_ /
(E.3) H VO, =V8)ab| - < DIV, (s < D,
=Nl s

where we have used Assumption 2 to estimate | N, — N,/| , the fact that |v —w| < 27/2
on the support of 7y and the fact that 29/2|y — v/| > 1. We finally consider the
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_ "2 !’ /
term (U=00°aa'0Y" o have:

IN,—N,.|?
(B.4) (6 — 0")2aa’bb’ _ (0 —0,)%aa’bt/ N (0 —06,)(0, —0)ad'bt! (0, — 0)*aa’bb/
. |NV—N,,/|2 |N,,—N,,/|2 |NV—N,,/|2 |N,,—N,,r|2
The first and the last term in (E.4) are estimated like the term %W remark-
ing that
2

6,)%ab ||aw9||L4(S) 2 2
E.5) — ————— < {|0,0 Vo,0 <1
B9 S ]g  @ il S 10:00ce) 19000 <
and

)ab
@) | SIS 10,010 + 190015 S

L2(S)

Finally, the second term in (E.4) is of the form (13.81) with Hy = Hy; = 0,
Hy = 29/2(0 — 0,)ab and Hy = (z=23r.
Thanks to Assumption 1 and Assumption 2 on a,6 and the assumption (11.42)

on b, the estimates (13.82) and (13.83) are satisfied. In particular, we have:
(E7) ||2j/2(0—6,,)ab||L<[>32 L2(P,) ND||6 9||Loc>2 2 L2(P,)
S D(110.0l L2 sy + VOO L2(s)) S D

(E-8) S Dl0,0] e

o L2 (Pu)
S D190 25y + (VOO L2(s)) S D,
where we have used the fact that H'(X) embeds in L2,y oL 2(P,) (see [23] Corol-

lary 3.6 for a proof only using the regularity given by Assumption 1). This concludes
the proof of Lemma 13.7. O

(0, = 9a’t’
NN <o L2(Pa)

| N, N,,/|
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PROOF OF LEMMA 13.8

We need to compute the divergence terms involving D; and D5 in (13.97). We start
with the term involving D;.

E1. The divergence term involving D; in (13.98)

Using the Definition (13.95) of D together with the structure Equation (D.2) for N
and (D.3), we obtain:

(F.1)

div ((N’ —g(N,N)N)a' 1) _ Ay
1 —g(N,N')? (1=g(N,N" )X =N &g(N,N'))
N AN N As
(L—g(N, N2 A= NgZg(N,N'))2 (1 —g(N,N")?)2(A=XN5g(N,N"))
N AN As\?

(1 —g(N,N")2)2(A = X &7g(N, N"))? T g NP (A - N&g(N,N'))*’
where A;, Ao, A3, A4, As are given by:
(F.2)
Ay = d'Vy_gv,nyn (abb)tr 0 4 aa’bb'V yi_ g (v nryntr 0
+a'V2(ab)(N,N' = g(N,N')YN)V' + Vv, .y vr,nN(ab)a't’
+a'Vn(ab) Vi _gv vy () + (ad’bb'tr 0 + V v (ab)a’d’)
X (t08 — g(N, N')tr 0 — Ty (g(N, N')) + 0~ Vg gy (@),
(F.3)
Ay =V?a(N,N’ — g(N,N')N)abb'g(N,N') + Vv, (a)abb'g(N,N')
T+ &VN (@)Y gnyn (@ 0B )g(N, N') + ¥ (a)abb'V y (g(N, N'))
+a'V i _gvnn (20 7206V (g(N, N')) + a2a’ 06’V g v vy Vv (g (N, N'))

+ (tr 0/ — g(N, N')trH — VN(Q(N, NI)) + a/_lvN/_g(N’N/)N((ll))

—g(n,NHYNN

SOCIETE MATHEMATIQUE DE FRANCE 2023



268 APPENDIX F. PROOF OF LEMMA 13.8

x (aV n (a)bb'g(N, N') + a2d’ "V x (g(N, N"))bb') + (aa’bb'tr 6 + V x (ab)a’t)

X (VN’—g(N,N’)N(aalil)g(N’ N')+ aalilvN'—g(N,N’)N(g(N’ N')),
(F.4)
As = 2a’b'(abtr § + V n (ab))V nr—gv,nyn (9(N, N'))g(N, N'),
(F.5)
Ay =206 (aVy(a)d " g(N,N') + a*a’ >V (g(N,N')))
X Vnr_gn, NN (g(N,N'))g(N,N')
and
(F.6)
As = 2(VNug(N,Nf)N(aa/_l)g(Na N') + aa/_lvN’fg(N,N’)N(g(Na N')))
x (aVn(a)bb'g(N,N') + a*a’ ">V (g(N, N'))bb').
Note that the term V?2(ab)(N,N’ — g(N,N’)N) appearing in (F.2) and the
term V2(a)(N,N’' — g(N,N')N) appearing in (F.3) contain at least one tangen-
tial derivative. In view of (F.1)-(F.6), one easily checks that the divergence term

involving D; in (13.97) takes the wanted form (13.8) (13.99) provided that we are
able to control the two following terms:

VN(g(N, NI)) vN—g(N,N/)N’(g(JV’a N/))
(1 —g(N,N)V2" (1= g(N,N"))3/>
The terms in (F.7) correspond to the first and the third term of (D.10). Thus, this
control has already been proved in Appendix D.

(F.7)

E2. The divergence term involving D in (13.98)

Using the Definition (13.96) of Dy together with the structure Equation (D.2) for N
and (D.3), we obtain:

(F.8)

div((N—g(N,N’)N’)aD2> _ Ay
1—g(N,N')? (1—g(N,N)H)(XA =N 5g(N,N"))
N AN N A,
(1=g(N,N))A=NZg(N,N"))? (1 —g(N,N)?)2(A =N 5g(N,N'))
AN Az N2

+

(L—=g(N,N")?)2(A = XN &g(N,N'))? T g N - N&g(N,N"))3’
where Aq, Ao, A3, A4, As are given by:
(F.9)

A1 = aVn_gnnyn (ab) V(b)) 4+ a®bV3 (V) (N, N — g(N,N')N')

+a*0Vy N (0)
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+ (atr& - ag(N, N/)tl“ 0/ - aVN/ (g(N, N/)) + VN_g(N,N:)N/(a))abVN(b’),
(F.10)
Ay = —Vn_gnnn (a®0) Vi (a)g(N, N')ab'a’
aa’ 7*V2(d')(N, N — g(N, N')N")g(N, N )bt/
2
a*a’” Vo, o(N, N’)N’N( ) (W, l)b
—a®bVn(a )V gvnyn (b'd )g( ,N')
ada’ 2V (a' )b VN—gv,nyN (g(N,N')) — a®a’ " *V iy (a')g(N, N')bv/
x (atr@ — ag(N,N')tr 0’ — aV N/ (g(N,N')) + Vn_gv.nryne (a) + a®bV y (V)
X (VN—g(N,N’)N’(aa/_l)g(Na N')+ aal_lvN—g(N,N’)N’ (9(N,N"))),
(F.11)
Az = 2a*bV n_g(v.nyn (9(N, N'))g(N, N' )V (¥),
(F.12)
Ay = =2aa" 706V y_ g nywe (9(N, N'))g (N, N')?V (),
and
(F.13)
As = _Z(VN—g(N,N’)N’(aal_l)g(Na N') + aal_lvN—g(N,N’)N’ (9(N,N")))
a®a' >V (a)g(N, N')b'.
Note that the term VZ2(b')(N,N — g(N,N’)N’) appearing in (F.9) and the
term VZ(a’)(N,N — g(N,N’)N’) appearing in (F.10) contain at least one tan-
gential derivative. In view of (F.8)-(F.13), one easily checks that the divergence
term involving Dy in (13.97) takes the wanted form (13.8) (13.99) provided that we

are able to control the two terms in (F.7). This control has already been proved in
Appendix D. This concludes the proof of Lemma 13.8. O

SOCIETE MATHEMATIQUE DE FRANCE 2023






K., norm of the Gauss curvature, 44
H (R?)norm, 21

LPLi(P,) norm, 13

LI[”_ZQ]L‘I(PU) norm, 20

Besov norm 3, 16

coarea formula on S, 20

lapse a, 8

Littlewood-Paley projector P;, 40

INDEX

271

maximal constraint equations, 12

normal N, 8

operator A%, 42

region S, 20

second fundamental form 6, 8

Sobolev space H®(P,), 41

structure equations of the u-foliation,
9






(1]

[2]

3]

4]

[5]

[6]

7]

8]

[9]

BIBLIOGRAPHY

H. BAHOURI & J.-Y. CHEMIN — “Equations d’ondes quasilinéaires et effet disper-
sif Int. Math. Res. Not. 1999 (1999), p. 1141-1178.

, “Bquations d’ondes quasilinéaires et estimations de Strichartz,” Amer. J.
Math. 121 (1999), p. 1337-1377.

Y. CHOQUET-BRUHAT & J. W. YORK, JR. — “The Cauchy problem,” in General
relativity and gravitation, vol. 1, Plenum, 1980, p. 99-172.

D. CHRISTODOULOU & S. KLAINERMAN — The global nonlinear stability of the
Minkowski space, Princeton Mathematical Series, vol. 41, Princeton Univ. Press,
1993.

R. R. CoiFMAN & Y. MEYER — Au dela des opérateurs pseudo-différentiels,
Astérisque, vol. 57, Société Mathématique de France, 1978.

J. CORVINO — “Scalar curvature deformation and a gluing construction for the
Einstein constraint equations,” Comm. Math. Phys. 214 (2000), p. 137-189.

J. CorviNO & R. M. SCHOEN — “On the asymptotics for the vacuum Einstein
constraint equations,” J. Differential Geom. 73 (2006), p. 185-217.

D. GILBARG & N. S. TRUDINGER — Elliptic partial differential equations of second
order, second ed., Grundl. math. Wiss., vol. 224, Springer, 1983.

G. HUISKEN & A. POLDEN — “Geometric evolution equations for hypersurfaces,”
in Calculus of variations and geometric evolution problems (Cetraro, 1996), Lec-
ture Notes in Math., vol. 1713, Springer, 1999, p. 45-84.

[10] S. KLAINERMAN — “PDE as a unified subject,” vol. Special Volume, Part I, 2000,

GAFA 2000 (Tel Aviv, 1999), p. 279-315.

[11] S. KLAINERMAN & I. RODNIANSKI — “Improved local well-posedness for quasi-

linear wave equations in dimension three,” Duke Math. J. 117 (2003), p. 1-124.

SOCIETE MATHEMATIQUE DE FRANCE 2023



274 BIBLIOGRAPHY

«RiT: : . ” . .
, - D J. . .
[12] Bilinear estimates on curved space-times,” J. Hyperbolic Differ. Equ. 2

(2005), p. 279-291.

[13] , “Causal geometry of Einstein-vacuum spacetimes with finite curvature

flux,” Invent. math. 159 (2005), p. 437-529.

, “Rough solutions of the Einstein-vacuum equations,” Ann. of Math. 161
(2005), p. 1143-1193.

[14]

[15] , “A geometric approach to the Littlewood-Paley theory,” Geom. Funct.

Anal. 16 (2006), p. 126-163.

[16] , “Sharp trace theorems for null hypersurfaces on Einstein metrics with

finite curvature flux,” Geom. Funct. Anal. 16 (2006), p. 164-229.

[17] S. KLAINERMAN, I. RODNIANSKI & J. SZEFTEL — “The bounded L? curvature
conjecture,” Invent. math. 202 (2015), p. 91-216.

[18] D. MAXWELL — “Rough solutions of the Einstein constraint equations,” J. reine
angew. Math. 590 (2006), p. 1-29.

[19] B. SmiTH & G. WEINSTEIN — “Quasiconvex foliations and asymptotically flat

metrics of non-negative scalar curvature,” Comm. Anal. Geom. 12 (2004), p. 511—
551.

[20] H. F. SMITH & D. TATARU — “Sharp local well-posedness results for the nonlinear
wave equation,” Ann. of Math. 162 (2005), p. 291-366.

[21] E. M. STEIN — Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals, Princeton Mathematical Series, vol. 43, Princeton Univ. Press,
1993.

[22] J. SzZEFTEL — “Sharp Strichartz estimates for the wave equation on a rough
background,” Ann. Sci. Ec. Norm. Supér. 49 (2016), p. 1279-1309.

[23] —_, “Parametrix for wave equations on a rough background I: Regularity of
the phase at initial time,” this volume, p. 1-171.

[24] , “Parametrix for wave equations on a rough background II: Construction

and control at initial time,,” this volume, p. 173-275.
[25] , “Parametrix for wave equations on a rough background III: Space-time
regularity of the phase,” Astérisque, vol. 401, Société Mathématique de France,
2018.

ASTERISQUE 443



BIBLIOGRAPHY 275

[26] , “Parametrix for wave equations on a rough background IV: Control of

the error term,” Astérisque, vol. 444, Société Mathématique de France, 2023.

[27] D. TATARU — “Strichartz estimates for operators with nonsmooth coefficients and
the nonlinear wave equation,” Amer. J. Math. 122 (2000), p. 349-376.

[28] , “Strichartz estimates for second order hyperbolic operators with nons-

mooth coefficients. II1,” J. Amer. Math. Soc. 15 (2002), p. 419-442.

SOCIETE MATHEMATIQUE DE FRANCE 2023






442

441.
440.
439.

438.
437.
436.
435.
434.

433.

432.
431.

430.
429.

428.
427.
426.

425.
424.

423.
422.
421.
420.
419.
418.
417.

416.

415.

ASTERISQUE

2023

. G. DAVID, J. FENEUIL & S. MAYBORODA - Elliptic theory in domains with boundaries of mixed
dimension

J. CALVERT, A. HAMMOND & M. HEGDE - Brownian structure in the KPZ fixed point

S. GUILLERMOU - Sheaves and symplectic geometry of cotangent bundles

F. DIAMOND, P. KASSAEI & S. SASAKI — A mod p Jacquet-Langlands relation and Serre filtration
via the geometry of Hilbert modular varieties: splicing and dicing

2022

SEMINAIRE BOURBAKI, volume 2021/2022, exposés 1181-1196

A. BORODIN & M. WHEELER - Colored stochastic vertex models and their spectral theory

S.-J. OH & D. TATARU — The Yang-Mills heat flow and the caloric gauge

R. DONAGI & T. PANTEV - Parabolic Hecke eigensheaves

M. BERTOLINI, H. DARMON, V. ROTGER, M. A. SEVESO & R. VENERUCCI — Heegner points,
Stark-Heegner points, and diagonal classes

F. BINDA, D. PARK & P. A. @STVZAR — Triangulated categories of logarithmic motives over a field
Y. WAKABAYASHI — A theory of dormant opers on pointed stable curves

Q. GUIGNARD - Geometric local e-factors

2021

SEMINAIRE BOURBAKI, volume 2019/2021, exposés 1166-1180

E. GWYNNE & J. MILLER — Percolation on uniform quadrangulations and SLEe on +/8/3-Liouville
quantum gravity

K. PRASANNA — Automorphic cohomology, motivic cohomology, and the adjoint L-function

B. DUPLANTIER, J. MILLER & S. SHEFFIELD - Liouville quantum gravity as a mating of trees
P. BIRAN, O. CORNEA & E. SHELUKHIN - Lagrangian shadows and triangulated categories

T. BACHMANN & M. HOYOIS - Norms in Motivic Homotopy Theory

B. BHATT, J. LURIE & A. MATHEW - Revisiting the de Rham-Witt complex

2020

K. ARDAKOV - Equivariant J)-modules on rigid analytic spaces

SEMINAIRE BOURBAKI, volume 2018/2019, exposés 1151-1165

J.H. BRUINIER, B. HOWARD, S.S. KUDLA, K. MADAPUSI PERA, M. RAPOPORT & T. YANG —
Arithmetic divisors on orthogonal and unitary Shimura varieties

H. RINGSTROM - Linear systems of wave equations on cosmological backgrounds with convergent
asymptotics

V. GORBOUNOV, O. GWILLIAM & B. WILLIAMS - Chiral differential operators via quantization
of the holomorphic o-model

R. BEUZART-PLESSIS — A Jocal trace formula for the Gan-Gross-Prasad conjecture for unitary
groups: the Archimedean case

J.D. ADAMS, M. VAN LEEUWEN, P.E. TRAPA & D.A. VOGAN, JR. — Unitary representations of
real reductive groups

S. CROVISIER, R. KRIKORIAN, C. MATHEUS & S. SENTI (eds.) — Some aspects of the theory of
dynamical systems: A tribute to Jean-Christophe Yoccoz, I

S. CROVISIER, R. KRIKORIAN, C. MATHEUS & S. SENTI (eds.) — Some aspects of the theory of
dynamical systems: A tribute to Jean-Christophe Yoccoz, |



414,
413.

412.
411.

410.
409.
408.
407.

406.

405.
404.

403.

402.

401.

400.
399.
398.

397.

396.
395.
394.
393.
392.

391.
390.
389.
388.
387.
386.

385.
384.

383.

2019

SEMINAIRE BOURBAKI, volume 2017/2018, exposés 1136-1150

M. CRAINIC, R. LOJA FERNANDES & D. MARTINEZ TORRES - Regular Poisson manifolds of
compact types

E. HERSCOVICH — Renormalization in Quantum Field Theory (after R. Borcherds)

G. DAVID — Local regularity properties of almost- and quasiminimal sets with a sliding boundary
condition

P. BERGER & J.-C. YOCCOZ - Strong regularity

F. CALEGARI & A. VENKATESH — A torsion Jacquet-Langlans correspondence

D. MAULIK & A. OKOUNKOV - Quantum groups and quantum cohomology

SEMINAIRE BOURBAKI, volume 2016/2017, exposés 1120-1135

2018

L. FARGUES & J.-M. FONTAINE - Courbes et fibrés vectoriels en théorie de Hodge p-adique
(Préface par P. COLMEZ)

J.-F. BONY, S. FUJIIE, T. RAMOND & M. ZERZERI — Resonances for homoclinic trapped sets
O. MATTE & J. S. M@LLER — Feynman-Kac formulas for the ultra-violet renormalized Nelson
model

M. BERTI, T. KAPPELER & R. MONTALTO - Large KAM tori for perturbations of the defocusing
NLS equation

H. BAO & W. WANG — A new approach to Kazhdan-Lustig theory of type B via quantum symmetric
pairs

J. SZEFTEL — Parametrix for wave equations on a rough background Ill: space-time regularity of
the phase

A. DUCROS - Families of Berkovich Spaces

T. LIDMAN & C. MANOLESCU — The equivalence of two Seiberg-Witten Floer homologies

W. TECK GAN, F. GAO, W. H. WEISSMAN - L-groups and the Langlands program for covering
groups

S. RICHE & G. WILLIAMSON - Tilting modules and the p-canonical basis

2017

Y. SAKELLARIDIS & A. VENKATESH — Periods and harmonic analysis on spherical varieties

V. GUIRARDEL & G. LEVITT - JSJ decompositions of groups

J. XIE — The Dynamical Mordell-Lang Conjecture for polynomial endomorphisms of the affine plane
G. BIEDERMANN, G. RAPTIS & M. STELZER — The realization space of an unstable coalgebra
G. DAVID, M. FILOCHE, D. JERISON & S. MAYBORODA - A Free Boundary Problem for the
Localization of Eigenfunctions

S. KELLY — Voevodsky motives and | dh-descent

SEMINAIRE BOURBAKI, volume 2015/2016, exposés 1104-1119

S. GRELLIER & P. GERARD — The cubic Szegé equation and Hankel operators

T. LEVY — The master field on the plane

R. M. KAUFMANN, B. C. WARD - Feynman Categories

B. LEMAIRE, G. HENNIART — Représentations des espaces tordus sur un groupe réductif connexe
p-adique

2016

A. BRAVERMAN, M. FINKELBERG & H. NAKAJIMA — Instanton moduli spaces and W -algebras
T. BRADEN, A. LICATA, N. PROUDFOOT & B. WEBSTER — Quantizations of conical symplectic
resolutions

S. GUILLERMOU, G. LEBEAU, A. PARUSINSKI, P. SCHAPIRA & J.-P. SCHNEIDERS -
Subanalytic sheaves and Sobolev spaces



Astérisque

Revue internationale de haut niveau,
Astérisque publie en francgais et en anglais
des monographies de qualité, des séminaires
prestigieux, ou des comptes-rendus de grands
colloques internationaux. Les textes sont
choisis pour leur contenu original ou pour la
nouveauté de la présentation qu’ils donnent
d’un domaine de recherche. Chaque volume
est consacré & un seul sujet, et tout le spectre

des mathématiques est en principe couvert.

Astérisque is a high level international jour-
nal which publishes excellent research mono-
graphs in French or in English, and proceed-
ings of prestigious seminars or of outstand-
ing international meetings. The texts are se-
lected for the originality of their contents or
the new presentation they give of some area
of research. Each volume is devoted to a sin-
gle topic, chosen, in principle, from the whole
spectrum of mathematics.

Instructions aux auteurs / Instructions to Authors

Le manuscrit doit étre envoyé au format
pdf au comité de rédaction, a I’adresse élec-
tronique asterisque@smf.emath.fr. Les ar-
ticles acceptés doivent étre composés en La-
TeX avec la classe smfart ou smfbook, dis-
ponible sur le site de la SMF http://smf.
emath.fr, ou avec toute classe standard.

The manuscript must be sent in pdf for-
mat to the editorial board to the email ad-
dress asterisque@smf.emath.fr. The ac-
cepted articles must be composed in LaTeX
with the smfart or the smfbook class, available
on the SMF website http: // smf. emath. fr,
or with any standard class.



http://smf.emath.fr
http://smf.emath.fr
http://smf.emath.fr

This book is dedicated to the construction and the con-
trol of a parametrix to the homogeneous wave equation
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the bounded L? curvature conjecture proposed in Klainer-
man (2000), and solved jointly in Klainerman, Rodnianski
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with the control of the eikonal equation on a rough back-
ground, and with the derivation of L? bounds for Fourier
integral operators on manifolds with rough phases and sym-
bols, and as such is also of independent interest.

Cet ouvrage est dédié a la construction et au con-
trole d’une paramétrix pour ’équation des ondes homogene
Ugp = 0, ot g est une métrique peu réguliére satisfaisant
les équations d’Finstein dans le vide. Le contréle d’une telle
paramétriz ainsi que du terme d’erreur associé lorsque [’on
suppose seulement des bornes L? sur le tenseur de courbure
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de courbure L* proposée dans Klainerman (2000), et ré-
solue dans Klainerman, Rodnianski € Szeftel (2015). Plus
généralement, cet ouvrage concerne le contréle de l’équation
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bornes L? pour des opérateurs intégraux de Fourier sur des
variétés avec une phase et un symbole peu réguliers, et pos-
sede de ce point de vue un intérét propre.
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