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MASSLESS PHASES FOR THE VILLAIN MODEL IN d ≥ 3

by Paul DARIO & Wei WU

Abstract. — A major open question in statistical mechanics, known as the Gaussian
spin wave conjecture, predicts that the low temperature phase of the Abelian spin
systems with continuous symmetry behave like Gaussian free fields. In this paper we
consider the classical Villain rotator model in Zd, d ≥ 3 at sufficiently low temperature,
and prove that the truncated two-point function decays asymptotically as |x|2−d, with
an algebraic rate of convergence. We also obtain the same asymptotic decay separately
for the transversal two-point functions. This quantifies the spontaneous magnetization
result for the Villain model at low temperatures and constitutes a first step toward a
more precise understanding of the spin-wave conjecture. We believe that our method
extends to finite range interactions, and to other Abelian spin systems and Abelian
gauge theory in d ≥ 3. We also develop a quantitative perspective on homogenization
of uniformly convex gradient Gibbs measures.

Résumé. (Phases sans masse du modèle de Villain pour d ≥ 3) – Une question ouverte
majeure en mécanique statistique, connue sous le nom de conjecture des vagues de
spins, prédit que les systèmes de spins équipés d’une symétrie abélienne continue se
comportent comme des champs libres gaussiens à basse température. Dans cet article,
nous considérons le modèle de Villain en dimension supérieure ou égale à 3 à une
température suffisamment basse, et nous démontrons que la fonction de deux points
décroît asymptotiquement comme celle d’un champ libre gaussien. Afin d’obtenir
ce résultat, nous développons une approche quantitative pour l’homogénéisation des
mesures de Gibbs sur les champs de gradients avec un potentiel uniformément convexe.
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CHAPTER 1

INTRODUCTION

1.1. Rotator models and the spin wave picture

Rotator models, such as the XY and the Villain models, have drawn considerable
attention from distinct research communities in mathematical and theoretical physics.
They are of much interest in statistical mechanics, as they exhibit new types of phase
transition for ferromagnetic systems and can be applied to the design of novel ma-
terials. A canonical rotator model is the XY model defined as follows: given a finite
set U ⊆ Zd, we assign to each function θ : U → (−π, π] satisfying θ = 0 on the
external vertex boundary ∂U the energy

HXY
U (θ) := −

∑
x,y∈U+

x∼y

cos(θ(x)− θ(y)),

where U+ := U∩∂U and the notation x ∼ y means that the points x and y are nearest
neighbor in the lattice Zd. The Gibbs measure of the XY model with zero boundary
condition at inverse temperature β > 0 is then defined the probability distribution

(1.1.1) dµXY
β,U (dθ) :=

1

ZXY
β,U

exp
(
−βHXY

U (θ)
) ∏

x∈U

dθ(x)1θ|∂U=0.

The XY model can be equivalently seen as a spin system with spin valued in the circle
S1 by setting Sx := eiθx . In this article, we will be interested in another closely related
rotator model, the Villain model [90] is defined by the Gibbs weight

(1.1.2) dµVill
β,U (dθ) :=

1

ZVill
U

∏
x∼y

vβ(θ(x)− θ(y)) dθ(x)1θ|∂U=0,

where is the heat kernel on S1 defined according to the identity

(1.1.3) vβ(θ) :=
∑
m∈Z

exp

(
−β

2
(θ + 2πm)2

)
.

The two models belong to the class of spin systems with continuous Abelian sym-
metry. They exhibit a similar behavior and have been extensively studied in the
literature. We collect below some of their main features.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



2 CHAPTER 1. INTRODUCTION

Since the spins take values in the compact space S1, the existence of a thermody-
namic limit for the XY model (i.e., an infinite-volume limit as U →∞) is guaranteed
along subsequences by standard compactness arguments. It is additionally known that
this limit is unique, and we denote it by µXY

β (see [79]). The Griffiths correlation in-
equalities [58, 25, 79] imply that that the expected value of the spins and the two-point
function are monotone in the domain U and in particular show the convergences

⟨Sx⟩µXY
β,U

−→
U↑Zd

⟨Sx⟩µXY
β

and ⟨Sx · Sy⟩µXY
β,U

−→
U↑Zd

⟨Sx · Sy⟩µXY
β

.

The same results hold for the Villain model, and we denote by µV
β the corresponding

thermodynamic limit (1).
In two dimensions, the Mermin-Wagner theorem [78] shows that there is no con-

tinuous symmetry breaking at any temperature, i.e., for any β > 0,

(1.1.4) ⟨Sx⟩µXY
β

= 0.

In particular, the system does not undergo an order/disorder phase transition. Nev-
ertheless, the system is known to exhibit a phase transition of a different type, char-
acterized by a different asymptotic behavior of the correlation function: there exists
a critical inverse temperature βc ∈ (0,∞) such that in the low temperature regime
(β > βc), the two-point function ⟨Sx · S0⟩µβ

decays polynomially fast (which charac-
terizes a so-called topological long-range order [72]), while, in the high temperature
regime (β ≤ βc), the two-point function decays exponentially fast. This phase tran-
sition is known as the Berezinskii-Kosterlitz-Thouless transition became the basis
of the Nobel prize in Physics in 2016 to Haldane, Kosterlitz and Thouless. From
a mathematical perspective, the existence of this transition was established in the
celebrated work of Fröhlich and Spencer [50], and has been the subject of recent
developments [75, 43, 4].

In the low temperature regime (β > βc), additional predictions can be made regard-
ing the behavior of the model. A simple heuristics suggests that, as the temperature
goes to zero, the spins tend to align with each other so as to minimize the Hamiltonian.
Using the approximations, when |δθ| ≪ 1,
(1.1.5)

exp(β cos(δθ)) ≈
∑
m∈Z

exp

(
−β

2
(δθ + 2πm)2

)
and cos (2π (δθ)) ≈ 1− (δθ)

2
/2,

it is expected that at low temperature, both the XY and the Villain Gibbs measures
on large scales behave like the Gaussian measure

(1.1.6) µGFF
β (dϕ) :=

1

Z
exp

(
−β

2

∑
x∼y

(ϕ(x)− ϕ(y))
2

)∏
x

dϕ(x).

1. The monotonicity of the correlation function and the uniqueness of the infinite volume Gibbs
state were first established for the XY model [79]. However, the Villain model can be represented
as a metric graph limit of the XY model [85, 50]. By taking this limit, we obtain the corresponding
monotonicity and the uniqueness of Gibbs state for the Villain model.
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1.1. ROTATOR MODELS AND THE SPIN WAVE PICTURE 3

The Gibbs measure (1.1.6) is the Gaussian free field, and its law is fully character-
ized by its covariance matrix given by the lattice Green’s function. This heuristic
computation is the starting point of the celebrated spin wave picture originating in
the work of Dyson [42] (see also [78]). The spin wave conjecture predicts that at low
temperatures both the XY and the Villain Gibbs measures behave on large scales like
a Gaussian free field of the form (1.1.6) with a notable difference: since the approxi-
mations (1.1.5) are not exact (and does not recover the information of the periodized
field in (1.1.1) and (1.1.2)), a corrective term, corresponding to the so-called vortex
lines, has to be taken into account in the analysis, and the limiting Gaussian free field
describing the large-scale behaviors of the XY and Villain models should display an
effective temperature βeff ̸= β (with βeff = (1 + o(1))β as β →∞).

More precisely, the spin wave picture in the case of the two-point function asserts
that, for d = 2 and β > βc, there exists an effective inverse temperature βeff > 0 (with
βeff ̸= β) such that
(1.1.7)〈

ei(θ(0)−θ(x))
〉

µV
β

=
〈
ei(ϕ(0)−ϕ(x))

〉
µGF F

βeff

(1 + o(1)) = |x|−
1

2πβeff + o
(
|x|−

1
2πβeff

)
.

Rigorous (but non-optimal) power law upper and lower bounds for the two-point
function were established in the 1980s in the celebrated works of McBryan-Spencer [77]
and Fröhlich-Spencer [49] in the low temperature regime, namely, for β ≫ 1,

c1|x|−
1

2πβ1 ≤ ⟨S0 · Sx⟩µV
β
≤ c2|x|−

1
2πβ ,

where β1 = β1(β) and satisfies β1 = β(1 + o(1)) as β → ∞. For a closely related
model, the two dimensional two-component Coulomb gas with small activity, Falco
justified the spin wave picture (with an effective βeff in the exponent) for all the inverse
temperatures in the Kosterlitz-Thouless phase, in a series of impressive works [45, 46].
For the two dimensional XY and Villain models, the asymptotic two point function
(1.1.7) still remains an important open question.

In three dimensions and higher, the breakthrough work of Fröhlich, Simon and
Spencer [48] shows that these models undergo an order/disorder phase transitions:
there exists an critical inverse temperature βc > 0 such that

for any β > βc, ⟨Sx⟩µβ
̸= 0 and for any β < βc, ⟨Sx⟩µβ

= 0.

In the low temperature phase (β > βc), the spin wave picture predicts that there exist
two coefficients c1, c2 such that

(1.1.8) ⟨S0 · Sx⟩µV
β

= c1 +
c2

|x|d−2
+ o

(
1

|x|d−2

)
.

Considerable progress towards quantitative information for the XY/Villain model
at low temperature were made in the 1980s. In dimensions d ≥ 3, the best known
result is the one of Fröhlich and Spencer [51] who observed that the classical Villain
model in Zd can be mapped, via duality, to a statistical mechanical model of lattice

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



4 CHAPTER 1. INTRODUCTION

Coulomb gas. They obtained the following next order description of the correlation
function at low temperature.

Proposition 1.1.1 (Fröhlich and Spencer [51]). — Let µV
β be the thermodynamic limit

of the Villain model in Zd, for d ≥ 3. There exist constants β0 = β0(d), c0 = c0(β, d),
such that for all β > β0,

⟨S0 · Sx⟩µV
β

= c0 +O

(
1

|x|d−2

)
.

Moreover, denote by G the lattice Green’s function in Zd, then we have as β →∞,

exp

(
1

β
(G(0)−G(x))

)
≥ ⟨S0 · Sx⟩µV

β
≥ exp

((
1

β
+ o

(
1

β

))
(G(0)−G(x)))

)
.

This suggests that the truncated two-point function may be related to a massless
free field in Rd, which corresponds to the emergence of a (conjectured) Goldstone bo-
son. Similar results were also obtained for the Abelian gauge theory in four dimensions
(see [51, 66]). Kennedy and King in [70] obtained a similar low temperature expan-
sion for the Abelian Higgs model, which couples an XY model with a gauge fixing
potential. Their proofs rely on a different approach, via a transformation introduced
by [14] and a polymer expansion.

It is also of much interest to justify the spin wave conjecture separately for the
longitudinal and transversal two-point functions of the rotator models, i.e., observ-
ables of the form ⟨cos θ(0) cos θ(x)⟩µXY

β
and ⟨sin θ(0) sin θ(x)⟩µXY

β
. The best known

result is due to Bricmont, Fontaine, Lebowitz, Lieb, and Spencer [26], where, relies
on a combination of the infrared bound [48], a Mermin-Wagner type argument, and
correlation inequalities, they perform a low temperature expansion of the truncated
correlation function of the XY model and obtain the following expansion.

Proposition 1.1.2 (Bricmont, Fontaine, Lebowitz, Lieb, and Spencer [26]). — There ex-
ist an inverse temperature β1 < ∞ and two constants c1 > c2 > 0 such that, for
any β ≥ β1,

c2
β|x|d−2

≤ ⟨sin θ(0) sin θ(x)⟩µXY
β

≤ c1
β|x|d−2

.

Despite these considerable progress, the rigorous derivations of the spin wave Con-
jecture (1.1.8) remain largely open. The main result of our paper, stated below, iden-
tifies the next-order term for the Villain model in dimensions three and higher, by
obtaining the precise asymptotics of the two-point functions at low temperature.

Theorem 1. — For any dimension d ≥ 3, there exist β0 = β0(d) and α = α(d) > 0

such that, for any β ≥ β0, there exist constants c0 = c0(β, d), c1 = c1(β, d),
c2 = c2(β, d), and such that, for all β > β0, the transversal two-point function has
the asymptotics

(1.1.9) ⟨sin θ(0) sin θ(x)⟩µV
β

=
c2

|x|d−2
+O

(
1

|x|d−2+α

)
,

ASTÉRISQUE 447



1.1. ROTATOR MODELS AND THE SPIN WAVE PICTURE 5

and the spin-spin correlation function satisfies

(1.1.10) ⟨S0 · Sx⟩µV
β

= c0 +
c1

|x|d−2
+O

(
1

|x|d−2+α

)
.

Remark 1.1.3. — The proof of Theorem 1 yields the following characterization for the
constant c0

c0 = ⟨S0⟩2µV
β
.

Regarding the constants c1 and c2, the free field computation (1.1.5) indicates that
they should be close to the constant

C = − 1

β
exp (G(0)/β)

Γ(d/2− 1)

4πd/2
,

where Γ is the standard Gamma function. The constant C is defined so as to satisfy〈
ei(ϕ(0)−ϕ(x))

〉
µGF F

β

= exp

(
1

β
(G(0)−G(x))

)
= exp (G(0)/β)+

C

|x|d−2
+O

(
1

|x|d−1

)
.

In this direction, the proof of Theorem 1 yields the identities

c1 = C +O(e−cβ) and c2 = −C +O(e−cβ).

Remark 1.1.4. — It follows from (1.1.9) and (1.1.10) that the two-point correlation
function is asymptotically rotation invariant. Indeed, the proof yields rotation invari-
ance for the Villain Gibbs measures that are invariant under the π/2-degree rotations
and the reflections of the lattice. For more general Villain models, i.e., replacing the
potential (1.1.3) by

vβ,x,y(θ) :=
∑
m∈Z

exp

(
−βJx,y

2
(θ + 2πm)2

)
,

for strictly positive, nearest neighbor and periodic coupling constants Jx,y, one expects
the second order term to take the form of a more general (2−d)-homogeneous function.

We remark here that an alternative approach, based on elaborate renormalization
group analysis, was developed in a series of works of Balaban, and culminated in [15].
They studied a class of Euclidean field theories that are invariant under the O(N)

symmetry group, for N ≥ 2, and obtained results similar to Theorem 1 for these
models.

We conclude the introduction by mentioning two open questions. The Gaussian spin
wave approximation predicts that the two-point function of the XY model in d ≥ 3

also admits a low temperature expansion like that stated in Theorem 1. The main
challenge is a technical one: in the first step of the proof (described in Section 1.2
below), a duality transformation and a cluster expansion step are used to prove that
the model can be expressed as gradient model with a strictly convex potential (this
part of the proof follows well-known arguments [51, 16]). The specific structure of the
Hamiltonian of the Villain model (1.1.2) allows an exact factorisation (in particular,
the two-point function can be factorized as a Gaussian contribution and a vortex
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6 CHAPTER 1. INTRODUCTION

contribution, see Section 3, (3.1.6)). Such an exact factorization does not hold for the
XY model and a new idea for renormalization is required to implement the argument.

The spin wave conjecture and the asymptotic two-point function (1.1.7) remains
open for the XY and Villain model in d = 2. The renormalization argument developed
by Falco [45, 46] does not directly apply, because by applying a duality transform to
the XY and Villain model, one obtains a lattice Coulomb gas with infinite activity
(instead of small activity). Building new insights into the renormalization group anal-
ysis, Bauerschmidt, Park and Rodriguez showed recently that the scaling limit of the
two-dimensional Discrete Gaussian at high temperature is a continuous Gaussian free
field (with an effective inverse temperature) in [17, 18]. Their result makes another
progress toward the spin-wave conjecture for the two-dimensional Villain model in
the low temperature regime (β ≫ 1). Resolving the conjecture requires extending the
results of [17, 18] to more singular test functions.

1.2. Strategy of the proof

We initiate a renormalization-Helffer-Sjöstrand-homogenization program to prove
Theorem 1. The periodic potential of the XY and Villain model makes the inter-
action highly non-convex, and poses significant challenges to study their large scale
behavior. Indeed, the ground states at zero temperature already leads to highly non-
trivial variational problems (see, e.g., [5]). To overcome these difficulties, we start
from the insight of Fröhlich and Spencer [51] (see also [16, Section 5]), applying a
duality transformation and a cluster expansion to the Villain Gibbs measure. In the
low temperature regime (β ≫ 1), this argument shows that two-point function can
be expressed as a non-linear and non-local observable of a uniformly convex gradi-
ent model (or uniformly convex ∇ϕ model). Contrary to the Villain and XY models,
tools from PDE and homogenization theory can be applied to study the behavior
over large-scales of the uniformly convex ∇ϕ model (see Section 1.2.2), which can
thus be used to study the Villain model via the duality transformation of [51]. The
general strategy described above encounters two difficulties. Firstly the convex model
is not nearest neighbor, and has an infinite-range with exponential tail. Secondly the
two-point function of the Villain model is mapped via the duality transform to a non-
linear and non-local observable (see Proposition 3.1.1). Understanding the behavior
of this observable requires a precise, quantitative theory to describe the large-scale
behavior of the convex gradient model.

This first part of the proof thus consists of applying a duality transformation and
cluster expansion to relate the Villain model to a uniformly convex ∇ϕ model. It is
the subject of Section 3 and mostly follows [51] and [16, Section 5]. The second part
of the proof consists of studying quantitatively the large-scale behavior of the convex
gradient Gibbs model and treating the non-linear, non-local observable arising from
the arguments of [51] and [16, Section 5], and is the subject of the remaining sections.

One of the main tools to study∇ϕmodel is the so-called Helffer-Sjöstrand equation,
originally introduced by Helffer and Sjöstrand [68], Naddaf and Spencer [82] and
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Giacomin, Olla and Spohn [55] to identify the scaling limit of the model. The main
insight of [68, 82] is that the large-scale behavior of the ∇ϕ model is related to the
large-scale behavior of the solutions of an infinite-dimensional elliptic equation called
the Helffer-Sjöstrand equation. The crucial observation of [82] is that the large-scale
behavior of these solutions can be studied using techniques of homogenization.

At a high level, the proof of Theorem 1 consists of developing a quantitative ho-
mogenization theory for the Helffer-Sjöstrand equation and exploits the insights of
the following three works: the work of Naddaf and Spencer [82], that relates large-
scale behavior of the convex gradient Gibbs measure to an elliptic homogenization
problem for the Helffer-Sjöstrand equation; the quantitative theory for homogeniza-
tion by Armstrong, Kuusi and Mourrat [7, 6]; and the application of quantitative
homogenization to the ∇ϕ model by Armstrong and Wu [8]. However there is a dis-
tinct difference of our method compared to [82, 7, 8]. Firstly, the results of [82] are
qualitative, and a quantitative theory is required to understand the behavior of the
Villain model. To obtain a quantitative rate of homogenization it is crucial to have
some decorrelation of the underlying random field. In [7], a straightforward mixing
condition of the coefficient field is assumed. The argument in [8] relies on couplings
based on the probabilistic interpretation of the equation to obtain decorrelation of the
gradient field. In the present paper, we rely on the observation that this information
can be obtained by studying another infinite-dimensional equation, the second-order
Helffer-Sjöstrand equation (see [29, (2.12)] or Section 1.2.4); in particular, the decor-
relation is a consequence of the decay estimates for the Green’s function associated
with the second-order Helffer-Sjöstrand operator. We note that the second-order equa-
tion appears in the work [29], and is closely related to techniques used to develop a
quantitative theory of stochastic homogenization in [61, 62, 59, 60].

The following subsections provide a more detailed outline of the argument.

1.2.1. Sine-Gordon representation and polymer expansion. — The spin wave compu-
tation (1.1.8) is only heuristic and does not give the correct constants C1, C2. The
main problem for the spin wave heuristics (1.1.8) is that it ignores the formation of
vortices, which are defined on the faces of Zd. Kosterlitz and Thouless [72] gave a
heuristic argument, indicating that the vortices interact like a neutral Coulomb gas
taking integer-valued charges.

Our proof of Theorem 1 starts from an insight of Fröhlich and Spencer [51], which
makes this observation rigorous. In particular, the correlation function of the Villain
model in Zd, d ≥ 3 can be mapped, by duality, to a statistical mechanical model
with integer-valued and locally neutral charges on discrete 2-forms Λ2(Zd), interact-
ing with Coulomb potential (see Section 3.1). By performing a Fourier transform of
this Gibbs measure with respect to the charge variable, we obtain a helpful random
field representation of the Coulomb gas, known as the sine-Gordon representation (see
e.g., [49, 50]). When the temperature is low enough, opposite charges tend to bind
together into neutral (short range) dipoles, therefore on large scales this Coulomb gas
behaves like an effective dipole gas with a reduced effective activity of the charges.
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This can be formalized by applying a one-step renormalization argument and a clus-
ter expansion, following the presentation of [16, Chapter 5]. The renormalized Gibbs
measure (see (3.1.16)) is a vector-valued random interface model in Λ2(Zd) with infi-
nite range and uniformly convex potential. The question of the asymptotic behavior
of the Villain correlation function is thus reduced to the question of the quantitative
understanding of the large-scale properties of the random interface model.

1.2.2. Random surfaces and Helffer-Sjöstrand equation. — Our study of the large-
scale properties of the random interface model starts from the insight of Naddaf
and Spencer [82] that the fluctuations of the field are closely related to an elliptic
homogenization problem for the Helffer-Sjöstrand equation [68, 89]. This approach has
been used by Giacomin, Olla and Spohn in [55] to prove that the large-scale space-time
fluctuations of the field is described by an infinite-dimensional Ornstein-Uhlenbeck
process and by Deuschel, Giacomin and Ioffe to establish concentration properties and
large deviation principles on the random surface (we also refer to [88, 21, 22, 31, 30] for
extension of these results to some non-convex potentials, and [73] for a study of a more
general class of Hamiltonians). The strategy presented in many of the aforementioned
articles relies on a probabilistic approach: one can, through the Helffer-Sjöstrand
representation, reduce the problem to a question of random walk in dynamic random
environment, and then prove properties on this object, e.g., invariance principles,
using the results of Kipnis and Varadhan [71], or annealed upper bounds on the
heat kernel, using Delmotte and Deuschel [41]. However, the results obtained so far
using this probabilistic approach are not quantitative. A more analytical approach
was developed by Armstrong and Wu in [8], where they extend and quantify the
homogenization argument of Naddaf and Spencer [82], resolved an open question
posed by Funaki and Spohn [53] regarding the C2 regularity of surface tension, and
the fluctuation-dissipation conjecture of [55].

Besides the approach based on the Helffer-Sjöstrand equation and the random walk
representation, various techniques have been successfully used on the model. Funaki
and Spohn [53] established the hydrodynamic limit of the model relying on methods
developed in the setting of the Ginzburg-Landau equation with a conserved order pa-
rameter [65]. A renormalization group approach has been implemented in the works
of Adams, Kotecký, Müller [3] and Adams, Buchholz, Kotecký, Müller [2]. In these
contributions, the authors study the ∇ϕ model for a general class of (perturbative)
non-convex potentials (in a low temperature regime) and establish (among other re-
sults) regularity properties as well as the strict convexity of the surface tension of
the model. The articles [3, 2] differ from ours in various aspects. In [3, 2], the authors
consider a nonconvex perturbation of Gaussian, and proved after successive renormal-
izations the surface tension (i.e., the log partition function under different tilts) gains
sufficient regularity and convexity. In the present article, the gradient-type model ob-
tained from the Villain model by duality is uniformly convex, and the main difficulty
relies on the specific structure of the model: the Hamiltonian has infinite-range, the
observable we wish to study is highly non-linear and non-local. Therefore it is not
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enough to prove the Gibbs measure converges to a Gaussian free field in the scaling
limit, and we need to estimate the correlation of nonlinear functions of the field with
high precision, which we do by implementing methods from PDE and homogenization
theory.

On a high level, we follow the analytical approach, namely the program developed
in [82, 8] on homogenization for the random interface models. Since the sine-Gordon
representation and the polymer expansion give a random interface model valued in
the vector space R(d

2) with long range and uniformly convex potential, an application
of the strategy of Naddaf and Spencer [82] to this model leads to the Helffer-Sjöstrand
operator

(1.2.1) L := −∆ϕ + Lspat,

which is an infinite-dimensional elliptic operator acting on functions defined in the
space Ω×Zd where Ω is the set of functions ϕ : Zd → R(d

2) (see (3.4.4) for the precise
definition of this operator), where Ω is the space of functions from Zd to R(d

2) in
which the vector-valued random interface considered in this article takes its values.
The operator ∆ϕ is the (infinite-dimensional) Laplacian computing derivatives with
respect to the height of the random surface and L is an operator associated with a
uniformly elliptic system of equations with infinite range (and with exponential decay
on the size of the long range coefficients) on the discrete lattice Zd. The analysis of
these systems requires to overcome some difficulties; a number of properties which
are valid for elliptic equations, and used to study the random interface models, are
known to be false for elliptic systems. It is for instance the case for the maximum
principle, which is used to obtain a random walk representation, the De Giorgi-Nash-
Moser regularity theory for uniformly elliptic and parabolic PDE (see [84, 39], [57,
Section 8] and the counterexample of De Giorgi [40]) and the Nash-Aronson estimate
on the heat kernel (see [11]).

To resolve this lack of regularity, we rely on a perturbative argument, and make
use of ideas from Schauder theory (see [67, Section 3]), as well as the ones from the
large-scale regularity in homogenization (see Avellaneda, Lin [12, 13] and Armstrong,
Smart [10]); we leverage on the fact that the inverse temperature β is chosen very
large so that the elliptic operator L can be written

Lspat := − 1

2β
∆ + Lpert,

where the operator Lpert is a perturbative term; its typical size is of order β−
3
2 ≪ β−1.

One can thus prove that any solution u of the Equation (1.2.1) is well-approximated
on every scale by a solution u of the equation −∆ϕ− 1

2β ∆ for which the regularity can
be easily established. It is then possible to borrow the strong regularity properties of
the function u and transfer it to the solution of (1.2.1). This strategy is implemented
in Section 5 and allows us to prove the C0,1−ε-regularity of the solution of the Helffer-
Sjöstrand equation, and to deduce from this regularity property various estimates on
other quantities of interest (e.g, decay estimates on the heat kernel in dynamic random
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environment, decay and regularity for the Green’s matrix associated with the Helffer-
Sjöstrand operator). The regularity exponent ε depends on the dimension d and the
inverse temperature β, and tends to 0 as β tends to infinity; in the perturbative
regime, the result turns out to be much stronger than the C0,α-regularity provided
by the De Giorgi-Nash-Moser theory (for some tiny exponent α > 0) in the case
of elliptic equations, and allows to quantify (precisely) the mixing properties of the
random field.

1.2.3. Stochastic homogenization. — The main difficulty to establish Theorem 1 is
that since the Villain model is not exactly solvable, the dependence of the constants c1
and c2 on the dimension d and the inverse temperature β is highly non explicit; one
does not expect to have a simple formula for these coefficients. However, it is necessary
to analyze them in order to prove the expansions (1.1.9) and (1.1.10); this is achieved
by using tools from the quantitative theory of stochastic homogenization.

This theory is typically interested in the understanding of the large-scale behavior
of the solutions of the elliptic equation

(1.2.2) −∇ · a(x)∇u = 0 in Rd,

where a is a random, uniformly elliptic coefficient field that is stationary and ergodic.
The general objective is to prove that, on large scales, the solutions of (1.2.2) behave
like the solutions of the elliptic equation

(1.2.3) −∇ · a∇u = 0 in Rd,

where a is a constant uniformly elliptic coefficient called the homogenized matrix. The
theory was initially developed in the 80’s, in the works of Kozlov [74], Papanicolaou
and Varadhan [86], and Yurinskĭı [91]. Dal Maso and Modica [32, 33] extended these
results a few years later to non-linear equations using variational arguments inspired
by Γ-convergence. All of these results rely on the ergodic theorem, and are therefore
purely qualitative.

The main difficulty in the establishment of a quantitative theory is to transfer
the quantitative ergodicity encoded in the coefficient field a to the solutions of the
equation. This problem was addressed in a satisfactory fashion for the first time by
Gloria and Otto in [61, 62], where, building upon the ideas of [83], they used spectral
gap inequalities (or concentration inequalities) to transfer the quantitative ergodicity
of the coefficient field to the solutions of (1.2.2). These results were then further
developed in [64, 63, 59, 60].

Another approach, which is the one pursued in this article, was initiated by Arm-
strong and Smart in [10], who extended the techniques of Avellaneda and Lin [12, 13],
the ones of Dal Maso and Modica [32, 33] and obtained an algebraic, suboptimal
rate of convergence for the homogenization error of the Dirichlet problem associated
with the non-linear version of the Equation (1.2.2). These results were then improved
in [9, 6, 7] to obtain optimal rates. Their approach relies on mixing conditions on the
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coefficient fields and on the quantification of the closeness of dual monotone quanti-
ties (see Section 6). An extension of the techniques of [7] to the setting of differential
forms (which also appear in this article in the dual Villain model) can be found in [35],
and to the uniformly convex gradient field model in [34]. In [81], Mourrat and Otto
study the correlation structure of the corrector and prove that it is similar, in the
large-scale limit, to the one of a variant of a Gaussian free field. Their strategy shares
some similarities with ours: under some suitable assumptions on the coefficient field,
they use a Helffer-Sjöstrand representation formula to study the correlation of the
corrector, and reduce the problem to the question of the quantitative homogenization
of the Green’s function associated with the heterogeneous operator (1.2.2).

To prove Theorem 1, we apply the techniques of [7] to the Helffer-Sjöstrand equa-
tion to prove the quantitative homogenization of the mixed derivative of the Green’s
matrix associated with this operator. The strategy can be decomposed into two steps.

The first one relies on the variational structure of the Helffer-Sjöstrand operator and
is the main subject of Section 6: following the arguments of [7, Section 2], we define two
subadditive quantities, denoted by ν and ν∗. The first one corresponds to the energy
of the Dirichlet problem associated with the Helffer-Sjöstrand operator (1.2.1) in a
domain U ⊆ Zd and subject to affine boundary condition, the second one corresponds
to the energy of the Neumann problem of the same operator with an affine flux. Each
of these two quantities depends on two parameters: the domain of integration U and
the slope of the affine boundary condition, denoted by p (for ν) and p∗ (for ν∗). These
energies are quadratic, uniformly convex with respect to the variables p and p∗, and are
approximately convex dual to one another. They additionally satisfy a subadditivity
property with respect to the domain U , and one can show that they converge as the
size of the domain tends to infinity to a pair of quadratic, convex dual functions, i.e.,
there exists a positive definite matrix a such that

ν (U, p) −→
|U |→∞

1

2
p · ap and ν∗ (U, p∗) −→

|U |→∞

1

2
p∗ · a−1p∗.

The matrix a plays a similar role as the homogenized matrix in (1.2.3); in the case of
the present random interface model, it gives the covariance matrix of the continuous
(homogenized) Gaussian free field which describes the large-scale behavior of the
random surface as established in [82]. The objective of the proofs of Section 6 is to
quantify this convergence and to obtain an algebraic rate: we show that, for large β,
there exists an exponent α > 0 depending only on the dimension d such that for any
cube □ ⊆ Zd of size R > 0,

(1.2.4)
∣∣∣∣ν (□, p)− 1

2
p · ap

∣∣∣∣+ ∣∣∣∣ν (□, p∗)− 1

2
p∗ · a−1p∗

∣∣∣∣ ≤ CR−α.

The strategy to prove the quantitative rate (1.2.4) relies on the approximate convex
duality of the maps p 7→ ν (U, p) and p∗ 7→ ν∗ (U, p∗). Following [7], we use a multiscale
argument to prove that, as one passes to a larger scale, the convex duality defect

p 7→ inf
p∗∈Rd

[ν (□, p) + ν∗ (□, p∗)− p · p∗] ,
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must contract by a multiplicative factor strictly smaller than 1, and thus it is equal
to 0 in the infinite volume limit. More precisely we show that the convex duality
defect can be controlled by the subadditivity defect, and then iterate the result over
all the scales from 1 to R to obtain (1.2.4) (see Section 6.1.3). As a byproduct of
the proof, we obtain a quantitative control on the sublinearity of the finite-volume
corrector defined as the solution of the Dirichlet problem: given an affine function lp
of slope p, and a cube □R := [−R,R]d ∩ Zd of size R,{

L (lp + χR,p) = 0 in □R × Ω,

χR,p = 0 on ∂□R × Ω.

This estimate takes the following form

(1.2.5) ∥χR,p∥L2(□R,µβ) ≤
C

R1−α
,

where the average L2-norm is considered over both the spatial variable and the random
field (see (2.1.5)).

The second step in the argument, which extends the results of [8], is to prove
quantitative homogenization of the mixed derivative of the Green’s matrix associated
with the Helffer-Sjöstrand operator (1.2.1); it is the subject of Section 7. In the setting
of the divergence form elliptic operator (1.2.2), the properties of the Green’s function
are well-understood: moment bounds on the Green’s function, its gradient and mixed
derivative are proved in [41, 19, 28], and quantitative homogenization estimates are
proved in [7, Sections 8 and 9] and in [20]. The argument used here relies on a common
strategy in stochastic homogenization: the two-scale expansion. It is implemented as
follows: the large-scale behavior of the fundamental solution G : Ω × Zd → R(d

2)×(d
2)

of the elliptic system
LG = δ0 in Zd × Ω,

is described by the (deterministic) fundamental solution G : Zd → R(d
2)×(d

2) of the
homogenized elliptic system

−∇ · a∇G = δ0 in Zd.

The proof of this result relies on a two-scale expansion for systems of equations: we
select a suitable cube □ ⊆ Rd and define the function, for any k ∈ {1, . . . ,

(
d
2

)
}

H·k := G·k +
d∑

i=1

(d
2)∑

j=1

χR,eij
∇iGjk.

We then compute the value of LH and prove, by using the quantitative information
obtained on the corrector (1.2.5), that this value is small in a suitable functional
space. This argument shows that the function H (resp. its gradient) is quantitatively
close to the functions G (resp. its gradient). Once this is achieved, we can iterate
the argument to obtain a quantitative homogenization result for the mixed derivative
of the Green’s matrix. The overall strategy is similar to the one in the case of the
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divergence form elliptic Equations (1.2.2) but a number of technicalities need to be
treated along the way pertaining to either the Witten Laplacian ∆ϕ (this difficulty has
been successfully addressed in [8]), and the infinite range of the elliptic operator Lspat

(using the exponential decay of the interaction is enough to adapt the arguments
developed in the nearest-neighbor setting).

1.2.4. Second-order Helffer-Sjöstrand equation. — As we mentioned, the method pur-
sued in this paper differs from [7] and [8] and is based on the regularity theory of
the second-order Helffer-Sjöstrand equation. We note that, contrary to the case of the
homogenization of the elliptic Equation (1.2.2), the subadditive quantities are deter-
ministic objects and are applied to the operator (1.2.1) which is essentially infinite-
dimensional. To quantify the subadditive ergodic theorem and obtain the rate of
convergence (1.2.4), it is crucial that the random fields ∇ϕ that appears in the defi-
nition of ν and ν∗ decorrelates (see Definition 6.1.4). While the proofs of quantitative
rate of convergence in [7, Section 2] rely on a finite range dependence assumption of
the coefficient field, we rely here on the regularity properties of the Helffer-Sjöstrand
operator to prove sufficient decorrelation estimates on the field. The same issues were
addressed in the work of Armstrong and Wu [8], to study the ∇ϕ model and prove
C2-regularity of the surface tension conjectured by Funaki and Spohn [53]; the argu-
ments presented there are different as they rely on couplings based on the probabilistic
interpretation of the equation to obtain sufficient decorrelation of the discrete gradi-
ent ∇ϕ. In the present paper, we rely on the observation of Conlon and Spencer [29]
that if u is a solution to the Helffer-Sjöstrand Equation (1.2.1), then the derivative
of the function u with respect to the field ϕ, i.e., the map v : (x, ϕ, y) 7→ ∂yu(x, ϕ),
for x, y ∈ Zd and ϕ ∈ Ω, solves a second-order Helffer-Sjöstrand equation of the form

(1.2.6) ∆ϕv(x, y, ϕ)+Lspat,xv(x, y, ϕ)+Lspat,yv(x, y, ϕ)+(∂yL ) v = 0 in Zd×Zd×Ω.

We refer to Section 5.4 for a precise definition. This operator is then used in [29] to
obtain uniform third moment bounds for the ∇ϕ Gibbs measure. We note that this
strategy is very similar to the one developed in stochastic homogenization in [61, 62, 59,
60]. In this paper we exploit more precise information of the operator, and apply the
C0,1−ε regularity theory to obtain decay estimates on the Green’s function associated
with (1.2.6). In particular, we obtain the regularity theory for the second-order Helffer-
Sjöstrand operator for large β, namely, the off-diagonal decay of the associated Green’s
matrix, its gradient, and its mixed derivative (see Corollary 5.4.4). These properties
can be used to quantify the ergodicity of the Helffer-Sjöstrand equation and obtain
the quantitative rate of convergence (1.2.4).

The second-order Helffer-Sjöstrand equation also plays a crucial role to derive The-
orem 1 from the homogenization results. Applying the duality, we map the two-point
function of the Villain model to a non-local observable (see Proposition 3.1.1). This
non-local observable is then analyzed by repeated applications of the Helffer-Sjöstrand
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representation to single out the main contribution (thus the second-order Helffer-
Sjöstrand operator emerges), and the C0,1−ε regularity theory is crucially applied to
control the remainder terms (see Section 4.4 and Section 4.5 for the details).

1.2.5. First order expansion of the two-point functions. — The first order expansion
of the two-point function stated in Theorem 1 is obtained by post-processing all
the arguments above. We first use the sine-Gordon representation and the polymer
expansion to reduce the question to the understanding of the large scale behavior of
a vector-valued random surface model, whose Hamiltonian is a perturbation of the
one of a Gaussian free field, and use the properties of the Helffer-Sjöstrand equation
to treat the problem. The proof of Theorem 1 is decomposed into three parts:

— We establish a C0,1−ε-regularity theory for the solutions of the Helffer-
Sjöstrand and second-order Helffer-Sjöstrand operators by using the techniques
of Schauder regularity (through a perturbative argument) in order to obtain a
precise understanding of the correlation structure of the random field, this is
done in Section 5;

— We prove a quantitative homogenization theorem for the mixed derivative asso-
ciated with the Helffer-Sjöstrand operator (Theorem 2), this is done in Sections 6
and 7;

— We post-process the results of the two arguments above to prove Theorem 1.
The proof relies on the study of the non-local observable introduced in Proposi-
tion 3.1.1; it requires to analyze a number of terms, to isolate the leading order
terms, and to estimate quantitatively the lower order ones. It is rather techni-
cal and is split into two sections: in Section 4, we present a detailed sketch of
the argument, isolate the leading order from the lower order terms, and state
the estimates on each of these terms. Section 8 is devoted to the proof of the
technical estimates.

1.3. Organization of the paper

This article is the short version of the v1 of arxiv preprint [36], which contains in
addition some detailed but standard computations which are recalled here without
a proof. In the next section, we introduce some preliminary notation and results. In
Section 3, we recall the dual formulation of the Villain model in terms of a vector-
valued random interface model, based on the ideas of Fröhlich and Spencer [51] and
following the presentation of Bauerschmidt [16]. We then derive the Helffer-Sjöstrand
equation for the renormalized measure and state the main regularity estimates on
the Green’s matrix proved in Section 5, and the quantitative homogenization of the
mixed derivative of the Green’s matrix proved in Sections 6 and 7. In Section 4, we
sketch the proof of the main theorem, assuming the C0,1−ε regularity for the solutions
of the Helffer-Sjöstrand equation (established in Section 5), and the quantitative ho-
mogenization of the mixed derivative of the Green’s matrix (established in Sections 7
and 8). Finally in Section 8, we give detailed proofs of the claims in Section 4.
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CHAPTER 2

PRELIMINARIES

2.1. Notation and assumptions

2.1.1. General notation. — We work on the Euclidean lattice Zd in dimension d ≥ 3,
and denote by |·| the Euclidean norm on the lattice Zd. We say that two points
x, y ∈ Zd are neighbors, and denote it by x ∼ y, if |x−y| = 1. We denote by e1, . . . , ek

the canonical basis of Rd. Given a subset U ⊆ Zd, we define its interior U◦ and its
inner boundary ∂U by the formulae

U◦ := {x ∈ U : x ∼ y =⇒ y ∈ U} and ∂U := U \ U◦.
If the subset U ⊆ Zd is finite, we denote by |U | its cardinality and refer to this
quantity as the volume of U . We denote by diamU the diameter of U defined by the
formula diamU := supx,y∈U |x − y|. Given a point x ∈ Zd and a radius r > 0, we
denote by B(x, r) the discrete Euclidean ball of center x and radius r. We frequently
use the notation Br to mean B(0, r). We also define the annulus AR := B2R \BR.

A discrete cube □ of Zd is a subset of the form

(2.1.1) □ := x+ [−N,N ]
d ∩ Zd with x ∈ Zd and N ∈ N.

We refer to the point x as the center of the cube □, and to the integer 2N + 1 as its
length. For L ∈ N, we also denote by □L := [−N,N ]

d ∩ Zd.
Given three real numbers X,Y ∈ R and κ ∈ [0,∞), we write

X = Y +O(κ) if and only if |X − Y | ≤ κ.

We frequently consider functions defined from Zd and valued in R of the form
x→ |x|−k. We implicitly extend these functions at the point x = 0 by the value 1 so
that they are defined on the entire lattice Zd.

2.1.2. Notation for vector-valued functions. — For each integer k ∈ N, we let
F
(
Zd,Rk

)
be the set of functions defined on Zd and taking values in Rk. Given a

function g ∈ F
(
Zd,Rk

)
, we denote by g1, . . . , gk its components on the canonical

basis of Rk and write g = (g1, . . . , gk). We define the support of the function g to be
the set

supp g :=
{
x ∈ Zd : g(x) ̸= 0

}
.
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For each integer i ∈ {1, . . . , d}, we define its discrete i-th derivative ∇ig : Zd → Rk

and its adjoint ∇∗i g : Zd → Rk by the formulae, for each x ∈ Zd,

∇ig(x) := g(x+ ei)− g(x) and ∇∗i g(x) := g(x)− g(x− ei).

The discrete gradient ∇g : Zd → Rd×k is then defined by

(2.1.2) ∇g(x) = (∇igj(x))1≤i≤d,1≤j≤k and ∇∗g(x) = (∇∗i gj(x))1≤i≤d,1≤j≤k .

We define similarly the divergence, for any function g : Zd → Rd,

∇ · g(x) =

d∑
i=1

gi(x)− gi(x− ei),

We extend this definition to a more general class of vector-valued functions as follows:
for an integer k ∈ N, and a function g = (gij)1≤i≤d,1≤j≤k : Zd → Rd×k, we define
∇ · g : Zd → Rk by the identity

∇ · g(x) =

(
d∑

i=1

gi,1(x)− gi,1(x− ei), . . . ,

d∑
i=1

gi,k(x)− gi,k(x− ei)

)
.

The Laplacian is then defined by the identity ∆ = ∇ ·∇ and is equivalently given by
the explicit formula: for any g : Zd → Rk,

(2.1.3) ∆g(x) =
∑
y∼x

(g(y)− g(x)) .

Given two functions f, g : Zd → Rk and a point x ∈ Zd, we define the scalar product
f(x) · g(x) :=

∑d
i=1 fi(x)gi(x). To ease the notation, we may write f(x)g(x) to mean

f(x) · g(x). Given a finite subset U ⊆ Zd, we define the L2-scalar products (·, ·) and
(·, ·)U according to the formulae

(2.1.4) (f, g) =
∑
x∈Zd

f(x)g(x) and (f, g)U :=
∑
x∈U

f(x)g(x).

For each subset U ⊆ Zd, we define the L2 (U)-norm

∥g∥L2(U) :=

(∑
x∈U

|g(x)|2
) 1

2

.

where the notation | · | refers to the Euclidean norm on Rk. Given a bounded subset
U ⊆ Zd, we denote by L2(U) the normalized norm

∥g∥L2(U) :=

 1

|U |
∑
x∈Zd

|g(x)|2
 1

2

.

We introduce the normalized Sobolev norms H1(U) by the formula

∥g∥H1(U) :=
1

diamU
∥g∥L2(U) + ∥∇g∥L2(U) .
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We denote by H1
0 (U) the set of functions from U to Rk which are equal to 0 outside

the set U (by analogy to the Sobolev space).

2.1.3. Notation for Gibbs measures. — We let Ω be the set of vector-valued func-
tions ϕ : Zd → R(d

2). We then introduce the set of smooth local and compactly
supported functions of the set Ω

C∞c (Ω) :=
{
F : Ω → R : ∃n ∈ N,∃x1, . . . , xn ∈ Zd and ∃ f ∈ C∞c (Rn)

such that F (ϕ) = f(ϕ(x1), . . . , ϕ(xn))} .

For k ∈ N, we extend the previous notation to vector-valued functions F : Ω → Rk and
write F ∈ C∞c (Ω) if all the components of F belong to C∞c (Ω) (i.e., if F = (F1, . . . , Fk)

and for any i ∈ {1, . . . , k}, Fi ∈ C∞c (Ω)).
Given a probability measure µ on Ω and measurable function X : Ω → R which is

integrable with respect to the measure µ, we denote by ⟨X⟩µ and varµ [X] its expec-
tation and variance respectively. As before, we extend the notation to vector-valued
functions by writing ⟨X⟩µ =

(
⟨X1⟩µ , . . . , ⟨Xk⟩µ

)
∈ Rk and varµ [X] =

∑k
i=1 varµ [Xi]

for X = (X1, . . . , Xk).

Fix u : Ω → Rk. For x ∈ Zd and each integer i ∈
{

1, . . . ,
(
d
2

)}
, we define the

differential operators ∂x,i and ∂x by the formulae

∂x,iu(ϕ) := lim
h→0

u(ϕ+ hei1x)− u(ϕ)

h
∈ Rk

and

∂xu(ϕ) =
(
∂x,1u, . . . , ∂x,(d

2)
u
)
∈ R(d

2)×k,

where
(
e1, . . . , e(d

2)

)
is the canonical basis of R(d

2). We define the space H1 (µ) to be
the closure of the space C∞loc(Ω) with respect to the norm

∥u∥H1(µ) := ∥u∥L2(µ) +

∑
x∈Zd

∥∂xu∥2L2(µ)

 1
2

.

For any subset U ⊆ Zd, we define the L2 (U, µ) to be the set of functions u : U×Ω → R
such that

∥u∥L2(U,µ) :=

(∑
x∈U

∥u(x, ·)∥2L2(µ)

) 1
2

.

If U ⊆ Zd is finite, we additionally define

(2.1.5) ∥u∥L2(U,µ) :=

(
1

|U |
∑
x∈U

∥u(x, ·)∥2L2(µ)

) 1
2

.
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We similarly define the H1(U, µ)-norms by the formulae

(2.1.6) ∥u∥H1(U,µ) :=

(∑
x∈U

∥u(x, ·)∥2H1(µ) + ∥∇u∥2L2(U,µ)

) 1
2

as well as

(2.1.7) ∥u∥Ḣ1(U,µ) :=

∑
x∈Zd

∑
y∈U

∥∂xu(y, ·)∥2L2(µ) + ∥∇u∥2L2(U,µ)

 1
2

.

2.1.4. Discrete differential forms. — For each integer k ∈ {1, . . . , d}, a k-cell of the
lattice Zd is a set of the form, for a subset {i1, . . . , ik} ⊆ {1, . . . , d}, and a point x ∈ Zd,{

x+

k∑
l=1

λleil
∈ Rd : 0 ≤ λ1, . . . , λk ≤ 1

}
.

We equip the set of k-cells with an orientation induced by the canonical orientation of
the lattice Zd and denote by Λk(Zd) the set of oriented k-cells of the lattice Zd. Given
a k-cell ck, we denote by ∂ck the boundary of the cell; it can be decomposed into a
disjoint union of (k− 1)-cells. The values k = 0, 1, 2 are of specific interest to us; they
correspond to the set of vertices, edges and faces of the lattice Zd. We will denote
these spaces by V (Zd), E(Zd) and F (Zd) respectively. Given a box □ ⊆ Zd, we denote
by Λk(□) the set of oriented k-cells which are included in the cube □, and by V (□),
E(□) and F (□) the set of vertices, edges and faces of the cube □ respectively.

For each k-cell ck, we denote by c−1
k the same k-cell as ck with reverse orientation

and by ∂ck the boundary this cell. A k-form u is a mapping from Λk(□) to R such
that u

(
c−1
k

)
= −u (ck) .

Given a k-form u, we define its exterior derivative du according to the formula, for
each oriented (k + 1)-cell ck+1,

(2.1.8) du (ck+1) =
∑

ck⊆∂ck+1

u(ck),

where the orientation of the face ck is given by the orientation of the (k + 1)-cell
ck+1; we set the convention du = 0 for any d-form u. We define the codifferential d∗

according to the formula, for each (k − 1)-cell ck−1 and each k-form u : Λk (□) → R,

(2.1.9) d∗u (ck−1) :=
∑

∂ck∋ck−1

u(ck).

Clearly, du is a (k+1)-form and d∗u is a (k−1)-form; we set d∗u = 0 for any 0-form u.
One also verifies the properties, for each k-form u : Λk(□) → R, ddu = 0 and
d∗d∗u = 0. For arbitrary k-forms u, v : Λk(Zd) → R with finite support, we define the
scalar product (·, ·) by the formula

(2.1.10) (u, v) =
∑

ck∈Λk(Zd)

u(ck)v(ck).
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We may restrict the scalar product (·, ·) to forms which are only defined in a cube □;
we denote the corresponding scalar product by (·, ·)□. It is defined by the formula,
for each pair of k-forms u, v : Λk(□) → R,

(u, v) =
∑

ck∈Λk(□)

u(ck)v(ck).

The codifferential d∗ is the formal adjoint of the exterior derivative d with re-
spect to this scalar product: Given a k-form u : Λk(Zd) → R and a (k + 1)-form
v : Λk+1(Zd) → R with finite supports, one has the identity

(2.1.11) (du, v) = (u,d∗v) .

For an integer k ∈ {0, . . . , d−1} and a cube □ ⊆ Zd, we define the tangential boundary
of the cube ∂k,t□ to be the set of all the k-cells which are included in the boundary
of the cube □. Given a k-form u : Λk(□) → R, we define its tangential trace tu to be
the restriction of the form u to the set ∂k,t□. One has the formula, for each k-form
u : Λk(□) → R such that tu = 0 and each (k + 1)-form v : Λk(□) → R,

(du, v)□ = (u,d∗v)□ .

2.1.5. Differential forms as vector-valued functions. — Given a subset

I = (i1, . . . , ik) ⊆ {1, . . . , d}
of cardinality k. We denote by Λk

I (Zd) the set of oriented k-cells of the hypercubic
lattice Zd which are parallel to the vectors (ei1 , . . . , eik

). This set can be characterized
as follows: if we let cI be the k-cell defined by the formula

cI :=

{
k∑

l=1

λleil
∈ Rd : 0 ≤ λ1, . . . , λk ≤ 1

}
,

then we have

(2.1.12) Λk
I (Zd) =

{
x+ cI : x ∈ Zd

}
.

The identity (2.1.12) allows to identify the vector space of k-forms to the vector space
of functions defined on Zd and valued in R(d

k) according the procedure described
below. Note that there are

(
d
k

)
subsets of {1, . . . , d} of cardinality k and consider an

arbitrary enumeration I1, . . . , I(d
k)

of these sets. To each k-form û : Λk(Zd) → R, we

can associate a vector-valued function u : Zd → R(d
k) defined by the formula, for each

point x ∈ Zd,

(2.1.13) u(x) =

(
û (x+ cI1) , . . . , û

(
x+ cI

(d
k)

))
.

This identification is enforced in most of the article; in fact, except in Section 3.1,
we always work with vector-valued functions instead of differential forms. We use the
identification (2.1.13) to extend the formalism described in Section 2.1 to differential
forms; we may for instance refer to the gradient of a form, or the Laplacian of a form
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etc. Reciprocally, we extend the formalism described in Section 2.1.4 to vector-valued
functions; given a function u : Zd → R(d

k), we may refer to the exterior derivative,
the codifferential, which we still denote by du, d∗u respectively. We note that the two
definitions of the scalar products (2.1.4) for vector valued functions and (2.1.10) for
differential forms coincide through the identification (2.1.13).

From the definition of the exterior derivative d and the codifferential d∗ given
in (2.1.8) and (2.1.9) and the identification (2.1.13), one sees that the differential
operators d and d∗ are linear functionals of the gradient ∇.

We record the following identity which relates the Laplacian ∆ defined in (2.1.3)
to the exterior derivative d and the codifferential d∗,

(2.1.14) −∆ = dd∗ + d∗d.

Using the identities d◦d = 0 and d∗◦d∗ = 0, one obtains that the Laplacian commutes
with the exterior derivative and codifferential.

2.1.6. Charges. — An important role is played by the set of integer-valued, compactly
supported 2-forms q which satisfy dq = 0 and have connected support. These functions
are often called charges in connection with the Coulomb gas of Section 3. We denote
by Q the set of these forms, i.e.,

(2.1.15) Q :=
{
q : Zd → Z(d

2) : |supp q| <∞, supp q is connected and dq = 0
}
.

We may restrict our considerations to the charges of Q whose support is included in
a cube □ ⊆ Zd; to this end, we introduce the notation

Q□ :=
{
q : Zd → Z(d

2) : supp q ⊆ □, supp q is connected and dq = 0
}
.

An important result about the exterior derivative is the Poincaré lemma. We will
need to use the following version of the lemma in the discrete setting for integer-valued
forms. The result is stated in [51, Lemma 1]. A proof can be found in [27, Lemma 2.2].
We mention that the inequality (2.1.16) is not proved in [27, Lemma 2.2], but can be
deduced from the argument (essentially, the inductive argument developed there can
be combined with [27, (2.4)] to obtain the result).

Lemma 2.1.1 (Poincaré for integer-valued forms). — Let k be an integer of the
set {1, . . . , d − 1} and q be a k-form with values in Z such that dq = 0, then there
exists a (k − 1)-form nq with values in Z such that q = dnq. Moreover, nq can
be chosen such that suppnq is contained in the smallest hypercube containing the
support of q and such that

(2.1.16) ∥nq∥L∞ ≤ C ∥q∥1 .

Given a point (x, y) ∈ Zd × Zd, we denote by Qx and Qx,y the set of charges q ∈ Q

such that the point x and the points x, y belong to the support of nq respectively, i.e.,
(2.1.17)
Qx := {q ∈ Q : x ∈ suppnq} and Qx,y := {q ∈ Q : x ∈ suppnq and y ∈ suppnq} .
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Similarly, we define
Q□,x := {q ∈ Q□ : x ∈ suppnq}

and Q□,x,y := {q ∈ Q□ : x ∈ suppnq and y ∈ suppnq} .
(2.1.18)

2.2. Convention for constants and exponents

Throughout this article, the symbols c and C denote positive constants which may
vary from line to line. These constants may depend only on the dimension d and the
inverse temperature β. We use the symbols α, β, γ, δ to denote positive exponents
which depend only on the dimension d. Usually, we use the letter C for large constants
(whose value is expected to belong to [1,∞)) and c for small constants (whose value
is expected to be in (0, 1]). The values of the exponents α, β, γ, δ are always expected
to be small. When the constants and exponents depend on other parameters, we write
it explicitly and use the notation C := C(d, β, t) to mean that the constant C depends
on the parameters d, β and t.

When the constants depend on the charges q ∈ Q (see (2.1.15)), we frequently keep
track of their dependence on this parameter; more specifically we need that the growth
of the constant C is at most algebraic in the parameter ∥q∥1. We usually denote by Cq

a constant which depends on the parameters d, β and q and which satisfies the growth
condition Cq ≤ C ∥q∥k

1 , for some C := C(d, β) <∞ and k := k(d) <∞. We allow the
values of C and k to vary from line to line and we may write

Cq + Cq ≤ Cq or CqCq ≤ Cq.

We usually do not keep track of the dependence of the constants on the inverse
temperature β (even though we believe it should be possible with our techniques)
except in Sections 5 and 6. In these two sections, we assume that the constants
depend only on the dimension d and make it explicit if they depend on the inverse
temperature β.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024





CHAPTER 3

DUALITY AND HELFFER-SJÖSTRAND REPRESENTATION

3.1. From Villain model to solid on solid model

In this section we recall the duality relation between the Villain model in Zd and a
statistical mechanical model of lattice Coulomb gas, with integer-valued and locally
neutral charges (which can also be viewed as a solid-on-solid model) defined on Λ2(Zd),
as observed in [51]. One may then perform a Fourier transform with respect to the
charge variable, and obtain a classical random field representation of the Coulomb
gas, known as the sine-Gordon representation. When the temperature is low enough,
we may apply a one-step renormalization argument, following the presentation of
Bauerschmidt [16] (see also [51]), to reduce the effective activity of the charges, thus
obtain an effective, real valued random interface model on 2-forms with a uniformly
convex potential.

Recall that the partition function for the Villain model in a cube □ ⊆ Zd with zero
boundary condition is given by

Z□,0 :=

∫ ∏
e⊆E(□)

∑
m∈Z

exp

(
−β

2
(∇θ(e)− 2πm)

2

) ∏
x∈∂□

δ0 (θ(x))
∏

x∈□◦
1[−π,π)(θ(x)) dθ(x).

Since we will need to use the formalism of discrete differential forms in this section,
we note that the function θ : □ 7→ R can be seen as a 0-form, in that case the discrete
gradient ∇θ can be seen as a 1-form and is equal to the exterior derivative dθ. We
may thus rewrite

Z□,0 :=

∫ ∏
e⊆E(□)

∑
m∈Z

exp

(
−β

2
(dθ(e)− 2πm)

2

) ∏
x∈∂□

δ0 (θ(x))
∏

x∈□◦
1[−π,π)(θ(x)) dθ(x).

Permuting the sum with the product and the integral, we obtain
(3.1.1)

Z□,0 =
∑

m∈ZE(□)
t=0

∫ ∏
e⊆E(□)

exp

(
−β

2
(dθ(e)− 2πm(e))

2

)∏
x∈∂□

δ0 (θ(x))
∏

x∈□◦
1[−π,π)(θ(x)) dθ(x),

where we have used the notation

ZE(□)
t=0 := {m : E(□) 7→ Z : tm = 0 on ∂□} .
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Observe that we may split the sum according to

(3.1.2)
∑

m∈ZE(□)
t=0

=
∑

q∈ZF (□)
t=0 ,dq=0

∑
m∈ZE(□)

t=0 ,dm=q

,

where we have set

ZF (□)
t=0 := {q : F (□) 7→ Z : tq = 0 on ∂□} .

A combination of (3.1.1) and (3.1.2) yields

Z□,0 =
∑

q∈ZF (□)
t=0 ,dq=0

∑
m∈ZE(□)

t=0 ,dm=q

∫ ∏
e⊆E(□)

exp

(
−β

2
(dθ(e)− 2πm(e))

2

)

×
∏

x∈∂□

δ0 (θ(x))
∏

x∈□◦
1[−π,π)(θ(x)) dθ(x).

Here q : F (□) → Z is the “vortex charge” on each plaquette of □, which arises,
informally, from ∮

F

dθ(e) = 2πq(F ).

For each q ∈ ZF (□)
t=0 satisfying dq = 0, we denote by nq an element of ZE(□)

t=0 such
that dnq = q, chosen arbitrarily among all the possible candidates (the set of candi-
dates is not empty by Proposition 2.1.1). Using that each 1-form m ∈ ZE(□)

t=0 satisfying
dm = 0 can be uniquely written dw, for some w : □ 7→ Z satisfying w = 0 on the
boundary ∂□, one can rewrite the previous display according to

Z□,0 =
∑

q∈ZF (□)
t=0 ,dq=0

∑
w∈Z□

0

∫ ∏
e⊆E(□)

exp

(
−β

2
(dθ(e)− 2π (nq + dw) (e))

2

)

×
∏

x∈∂□

δ0 (θ(x))
∏

x∈□◦
1[−π,π)(θ(x))dθ(x),

where we have set
Z□

0 := {w : □ 7→ Z : w = 0 on ∂□} .
Using the change of variable ϕ := θ − 2πw, and summing over all the maps w ∈ Z□

0 ,
one obtains

Z□,0 =
∑

q∈ZF (□)
t=0 ,dq=0

∫
R□

∏
e⊆E(□)

exp

(
−β

2
(dϕ(e)− 2πnq(e))

2

)∏
x∈∂□

δ0 (ϕ(x))
∏

x∈□◦
dϕ(x).

We then decompose the function nq as a sum of an exact and co-exact form. Specifi-
cally, one can prove that there exists a function ϕnq ∈ Z□

0 and a two form ψnq ∈ ZF (□)
t=0

such that

(3.1.3) nq = dϕnq + d∗ψnq .

The function ψnq can in fact be identified more precisely: there exists a linear oper-
ator (−∆□)

−1 (which corresponds to inverting the Laplacian in the box □ with the
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suitable boundary condition as explained below) such that

ψnq
= (−∆□)

−1
q.

To be more specific, the operator (−∆□)
−1 is defined for general k-forms as follows.

For each i ∈
{

1, . . . ,
(
d
2

)}
, let us denote by ∂Ii

□ the subset of faces of the boundary ∂□

which are parallel to the cell cIi , and fix a k-form q ∈ Λk(□).
We then let w := (w1, . . . , w(d

k)
) be the solution of the boundary value problem

(3.1.4)


−∆wi = qi in □,

wi = 0 in ∂Ii
□,

∇wi · n = 0 on ∂□ \ ∂Ii
□,

that is, we solve the Laplace equation with Dirichlet boundary condition on the faces
parallel to the cell cIi and Neumann boundary condition on the cells orthogonal to cIi

(see Proposition A.2.4). We then define

(−∆□)
−1
q := w.

Then using the translation invariance of the Lebesgue measure, we obtain

Z□,0 =
∑

q∈ZF (□)
t=0 ,dq=0

∫
R□

∏
e⊆E(□)

exp

(
−β

2

(
dϕ(e)− 2πd∗ (−∆□)

−1
q(e)

)2
)

×
∏

x∈∂□

δ0 (ϕ(x))
∏
x∈□

dϕ(x).

The previous identity can be simplified

Z□,0 = ZGFF × Z(0)(3.1.5)

:=

∫
R□

exp

(
−β

2
(dϕ, dϕ)

) ∏
x∈∂□

δ0 (ϕ(x))
∏
x∈□

dϕ(x)

×
∑

q∈ZF (□)
t=0 ,dq=0

exp
(
−2π2β

(
q, (−∆□)

−1
q
))

.

Using the identity dϕ = ∇ϕ (valid for 0-forms), we see that the first term in the left
hand side of (3.1.5) is the partition function of the discrete Gaussian free field in
the cube □ with Dirichlet boundary condition. In other words, the Villain partition
function factorizes into the partition function of a Gaussian free field, and the vortex
charges that form a (neutral) Coulomb gas.

One can use the same argument to study the two-point function〈
ei(θ(x)−θ(0))

〉
µV

β,□,0

.

For any point x ∈ □, define the string observable h0x : E(Zd) 7→ Z to be the indicator
function of a (arbitrarily chosen) line joining 0 to x such that d∗h0x = 1x − 10 and
h{□,x} : E(□) 7→ Z be the indicator of the straight line connecting x to the boundary
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of the box □ in the direction e1. We have by definition d∗h0x = 1x − 10 in Zd and
d∗h{□,x} = 1x in the box □. With the same computation, we obtain

(3.1.6)
〈
ei(θ(x)−θ(0))

〉
µV

β,□,0

=
〈
ei(ϕ(x)−ϕ(0))

〉
GFF

〈
e−2iπ(q,(−∆□)−1dh0x)

〉
µC(β)

and 〈
eiθ(x)

〉
µV

β,□,0

=
〈
eiϕ(x)

〉
GFF

〈
e−2iπ(q,(−∆□)−1dh{□,x})

〉
µC(β)

.

Here〈
ei(ϕ(x)−ϕ(0))

〉
GFF

:= Z−1
GFF

×
∫
R□

ei(ϕ(x)−ϕ(0)) exp

(
−β

2
(∇ϕ,∇ϕ)

)∏
x∈∂□

δ0 (ϕ(x))
∏

x∈□◦
dϕ(x)

and〈
e−2iπ(q,(−∆□)−1dh0x)

〉
µC(β)

= Z(0)−1

×
∑

q∈ZF (□)
t=0 ,dq=0

e−2π2β(q,(−∆□)−1q)e−2iπ(q,(−∆□)−1dh0x).

Following [16], we define the functions

σ{□,x} := (−∆□)
−1

dh{□,x} and σ{□,0x} := (−∆□)
−1

dh0x.

For later purposes, we note that one has the pointwise convergences
(3.1.7)
σ{□,0} −→

□↑∞
(−∆)

−1
dh0, σ{□,x} −→

□↑∞
(−∆)

−1
dhx and σ{□,0x} −→

□↑∞
(−∆)

−1
dh0x,

where h0 (resp. hx) is the indicator of the straight line starting from 0 (resp. x) in
the direction e1. To ease the notation, we denote the limiting functions in (3.1.7) by

σ0 := (−∆)
−1

dh0, σx := (−∆)
−1

dhx and σ0x := (−∆)
−1

dh0x.

In particular, using that the Laplacian commutes with the operators d and d∗, we
obtain
(3.1.8)
d∗σ0 = (−∆)

−1
d∗dh0 = −h0 − (−∆)

−1
dd∗h0 = −h0 − (−∆)

−1
d10 = −h0 −∇G,

where G is the standard random walk Green’s function on the lattice Zd. A conse-
quence of the identity (3.1.8) is the equality

(3.1.9) e−2iπ(q,σ0) = e−2iπ(nq,∇G).

Similar statements hold for the maps σx and σ0x, and we may write

(3.1.10) e−2iπ(q,σx) = e−2iπ(nq,∇Gx) and e−2iπ(q,σ0x) = e−2iπ(nq,∇Gx−∇G),

where we have used the notation Gx := G(· − x).
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We next collect the following identity: for each q ∈ ZE(□)
t=0 satisfying dq = 0, one

has

(3.1.11)
(
q, σ{□,x} − σ{□,0}

)
=
(
q, σ{□,0x}

)
mod Z.

To justify the identity (3.1.11), we note that, with the same argument as in (3.1.3),
we may write

h{□,x} − h{□,0} − h{□,0x} = dϕ+ d∗σ{□,x} − d∗σ{□,0} − d∗σ{□,0x},

for some field ϕ : □ → R satisfying ϕ = 0 on the boundary ∂□. Taking the scalar
product with the 1-form dϕ, and performing integrations by parts, we obtain that(

dϕ, h{□,x} − h{□,0} − h0x

)
=
(
ϕ,d∗h{□,x} − d∗h{□,0} − d∗hx

)
= (ϕ, 1x − 10 − (1x − 10)) = 0

and(
dϕ+ d∗σ{□,x} − d∗σ{□,0} − d∗σ{□,0x},dϕ

)
= (dϕ,dϕ) +

(
σ{□,x} − σ{□,0} − σ{□,0x},ddϕ

)
= (dϕ,dϕ) .

A combination of the two previous displays implies dϕ = 0 and thus

h{□,x} − h{□,0} − h0x = d∗σ{□,x} − d∗σ{□,0} − d∗σ{□,0x}.

We then use that q = dnq for some nq ∈ ZE(□)
t=0 to write(

q, σ{□,x} − σ{□,0} − σ{□,0x}
)

=
(
nq,d

∗σ{□,x} − d∗σ{□,0} − d∗σ{□,0x}
)

=
(
nq, h{□,x} − h{□,0} − h0x

)
∈ Z.

This is (3.1.11). A consequence of (3.1.11) is that for each q ∈ ZE(□)
t=0 satisfying dq = 0,

e−2iπ(q,σ{□,x}−σ{□,0}) = e−2iπ(q,σ{□,0x}).

We set the notation, for each σ : F (□) → R,

(3.1.12) Z (σ) :=
∑

q∈ZF (□)
t=0 ,dq=0

e−2π2β(q,(−∆□)−1q)e−2iπ(q,σ).

So that
Z
(
σ{□,x}

)
Z (0)

=
〈
e−2iπ(q,σ{□,x})

〉
µC(β)

and
Z
(
σ{□,0x}

)
Z (0)

=
〈
e−2iπ(q,σ{□,0x})

〉
µC(β)

.

Next, we introduce the functional space C(□) defined as follows

C(□) :=

{
ϕ :=

(
ϕ1, . . . , ϕ(d

2)

)
: □→ R(d

2) : ∀i ∈
{

1, . . . ,

(
d

2

)}
, ϕi = 0 on ∂□ \ ∂Ii

□

}
.

and denote by ϕ :=
(
ϕ1, . . . , ϕ(d

k)

)
the vector-valued Gaussian free field valued in the

space C(□) (or more specifically, the Gaussian field whose covariance matrix is given
by the finite volume Green’s function associated with the Laplace equation described
in (3.1.4)). Using the previous definition, we see that, for each q ∈ ZE(□) satisfying
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dq = 0 and tq = 0,

E
[
e2iπ(q,ϕ)

]
= e−2π2β(q,(−∆□)−1q) = e−2π2β(q,(−∆□)−1q).

Consequently,

Z
(
σ{□,0x}

)
=

∑
q∈ZF (□)

t=0 ,dq=0

E
[
e−2iπ(q,ϕ+σ{□,0x})

]
.

Thus the partition function of this lattice Coulomb gas can be represented in terms
of a characteristic function with respect to a Gaussian measure. We then claim that,
for β sufficiently large, a one-step renormalization maps the Coulomb gas model to
an effective one with very small effective activity. Using that the discrete Laplacian
is bounded from above, one has that (−∆□)

−1 ≥ c, for some c := c(d) > 0. We
then choose the inverse temperature β larger than the value c2 and decompose the
Gaussian field ϕ as the sum of two independent Gaussian fields ϕ1 +ϕ2, such that ϕ1

and ϕ2 have covariance matrices β
(
(−∆□)−1 − β−

1
2 Id
)

and β
1
2 Id. We can thus write

Z
(
σ{□,0x}

)
=

∑
q∈ZF (□)

t=0 ,dq=0

E
[
e−2iπ(q,ϕ1+ϕ2+σ{□,0x})

]
=

∑
q∈ZF (□)

t=0 ,dq=0

e−π2β1/2(q,q)Eµ1

[
e−2iπ(q,ϕ1+σ{□,0x})

]
,

where µ1 is a Gaussian measure on C(□), given by

dµ1(ϕ1) = Const× exp

(
− 1

2β

(
ϕ1,
(
(−∆□)−1 − β−

1
2 Id
)−1

ϕ1

))
dϕ1,

where dϕ1 denotes the Lebesgue measure on the space C(□). For β sufficiently large,

we may expand
(
(−∆□)−1 − β−

1
2 Id
)−1

into a convergent sum(
(−∆□)−1 − β−

1
2 Id
)−1

= −∆ +
∑
n≥1

1

βn/2
(−∆)n+1,

where in the right-hand side, the symbol ∆ refers to the discrete Laplacian acting
on the space C(□) (with the corresponding boundary condition so that it can be
iterated). Thus

dµ1(ϕ1) = Z−1
1 × exp

 1

2β
(ϕ1,∆ϕ1)−

∑
n≥1

1

2β

1

βn/2
(ϕ1, (−∆)n+1ϕ1)

1ϕ1∈C(□) dϕ1.

Following [16], (especially Lemmas 5.14 and 5.15 there), since e−π2β1/2(q,q) decays to
zero rapidly in ∥q∥1 :=

∑
x∈F (□) |q(x)|, we may apply a cluster expansion to conclude
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that for β large enough, one can re-sum Z (σ0x) as

Z(σ0x) = Eµ1

exp

∑
q∈Q□

z(β, q)e−2iπ(q,ϕ1+σ{□,0x})


= Eµ1

exp

∑
q∈Q□

z(β, q) cos
(
2π
(
q, ϕ1 + σ{□,0x}

)) ,
where the sum is over all lattice animals q ∈ Q□ with connected support satisfying
dq = 0 in the cube □ and tq = 0 on the boundary ∂□ (see (2.1.15)), and z(β, q) is a
real number given by the formula (see [16, (5.71)])

(3.1.13) z(β, q) =

∞∑
n=1

1

n!
I(G(supp q1, . . . , supp qn))

∑
q1+...+qn=q

e−
1
2 cβ

∑
i(qi,qi),

where the sum runs over all the charges q1, . . . , qn with connected support satisfying
dqi = 0, and the combinatorial factor I(G(supp q1, . . . , supp qn)) is defined as follows:
we let G(supp q1, . . . , supp qn) be the connection graph of the sets supp q1, . . . , supp qn
(i.e., the graph whose vertices are supp q1, . . . , supp qn, and with an edge between
supp qi and supp qj if and only if the two sets have nonempty intersection), and for a
connected graph G, we define

I(G) :=
∑

H⊆G

(−1)|E(H)|,

where the sum runs over all the connected spanning subgraphs of G. These definitions
and formulae are the ones of [16, Section 5.5.3]. A few observations can be deduced
from them:

— the real number z(β, q) depends only on the charge q, and the inverse temper-
ature β in particular, it does not depend on the box □ or on the vertex x;

— the coefficient z(β, q) satisfies some invariance properties with respect to the
charge q and is not affected by translation or rotations of the charge as well as
reflections (in fact the coefficient is invariant under any linear transformation
preserving the lattice Zd applied to the charge q);

— by [16, Lemma 5.15], one has the estimate

(3.1.14) |z(β, q)| ≤ e−cβ1/2∥q∥1 , for some c := c(d) > 0.

Similarly,

Z(0) = Eµ1

exp

∑
q∈Q□

z(β, q)e−2iπ(q,ϕ1)

 = Eµ1

exp

∑
q∈Q□

z(β, q) cos (2π (q, ϕ1))

 .
Using the trigonometric identity

cos
(
2π
(
q, ϕ1 + σ{□,0x}

))
= cos (2π (q, ϕ1)) cos

(
2π
(
q, σ{□,0x}

))
− sin (2π (q, ϕ1)) sin

(
2π
(
q, σ{□,0x}

))
,
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we may write

Z(σ{□,0x})

Z(0)
=

〈
exp

(∑
q∈Q□

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□,0x}, q)

)(3.1.15)

+
∑

q∈Q□

z(β, q) cos (2π(ϕ, q))
(
cos
((

2π(σ{□,0x}, q)
))
− 1
)
)

〉
µβ,□

.

Here µβ,□ is defined as a measure on the space C(□) by

dµβ,□(ϕ) := Const

× exp

 1

2β
(ϕ,∆ϕ)−

∑
n≥1

1

2β

1

βn/2
(ϕ, (−∆)n+1ϕ) +

∑
q∈Q□

z(β, q) cos (2π (q, ϕ))

 dϕ.

(3.1.16)

Combining (3.1.6) and (3.1.15), we have the following dual representation for the two-
point function of the Villain model. Let G□ be the Dirichlet Green’s function defined
on the vertices of the cube □,

(3.1.17)

{
−∆G□(·, x) = δx in □,

G□(·, x) = 0 on ∂□.

Proposition 3.1.1. — There exists an inverse temperature β1 := β1(d) <∞ such that
for any β ≥ β1,〈

ei(θ(x)−θ(0))
〉

µV
β,□,0

exp

(
1

2β
(G□(x, x) +G□(0, 0)− 2G□(0, x))

)
(3.1.18)

=

〈
exp

(∑
q∈Q□

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□,0x}, q)

)
+
∑

q∈Q□

z(β, q) cos (2π(ϕ, q))
(
cos
((

2π(σ{□,0x}, q)
))
− 1
))〉

µβ,□

.

Following the same argument, we also obtain the dual representation for〈
ei(θ(x)+θ(0))

〉
µV

β,□,0

. Define σ{□,0x} := σ{□,0} + σ{□,x}. We then have〈
ei(θ(x)+θ(0))

〉
µV

β,□,0

exp

(
1

2β
(G□(x, x) +G□(0, 0)− 2G□(0, x))

)
(3.1.19)

=

〈
exp

(∑
q∈Q□

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□,0x}, q)

)
+
∑

q∈Q□

z(β, q) cos (2π(ϕ, q))
(
cos
(
2π(σ{□,0x}, q)

)
− 1
))〉

µβ,□

.
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In view of (3.1.6), to study the two-point function of the (finite-volume) Villain model,
it suffices to compute the expectation of a non-linear functional (3.1.18) with respect
to the Gibbs measure µβ,□. Notice that the neutrality condition dq = 0 indicates
µβ,□ is a measure of gradient-type, i.e., the Hamiltonian only depends on the discrete
gradient ∇ϕ. Additionally, for β large, the exponential smallness of z(β, q) implies
that µβ,□ is a smooth perturbation of the discrete Gaussian free field

µGFF (dϕ) := Const× exp

(
1

2β
(ϕ,∆ϕ)

)
dϕ.

These observations imply that the measure µβ,□ belongs to the class of models in
statistical physics known as the uniformly convex ∇ϕ model. This category of models
has been extensively studied in the literature, and we refer to [52] for a description of
its literature. In particular, one can apply the techniques and tools developed in the
context of the ∇ϕ model to study the asymptotic behavior of the measure µβ,□. This
is the subject on the next sections where:

— We apply the Brascamp-Lieb inequality [24] to the measure µβ,□ and use
it to prove the existence of a thermodynamic limit, denoted by µβ , for the
measure µβ,□ (i.e., the existence of an infinite-volume limiting measure when
|□| → ∞).

— We present the standard tool used to study the macroscopic behavior of the
model known as the Helffer-Sjöstrand representation and combine it with quan-
titative homogenization to show that on large scales the measure µβ behaves
like an effective Gaussian free field, with the covariance matrix depending on β.

Remark 3.1.2. — On a heuristical level, the second point above (asserting that the
measure µβ behaves over large scales as an effective Gaussian free field) is sufficient to
justify that the subleading order of (3.1.15) (and therefore, of the truncated two-point
function) should decay asymptotically as C|x|2−d, for some constant C depending
on β.

To see this, we first note that, for β sufficiently large, the inequality (3.1.14) implies
that the coefficient z(β, q) decays exponentially fast as the L1-norm of the charge q
increases. On a heuristical level, we may make the following simplifying assumption:
we assume that the coefficient z(β, q) is equal to 0 for all the charges except on
the simplest ones satisfying the neutrality condition, i.e., the charges of the form
q = (δx − δx+ei

), for i = 1, . . . , d (also called dipoles), for which it takes a nonzero
value denoted by z(β). Thus the right side of (3.1.18) is approximately (after taking
the limit |□| → ∞ to replace the finite-volume Gibbs measure µβ,□ by the infinite-
volume measure µβ , the function σ□,0x by σ0x and using the identity (3.1.10))〈

exp

 ∑
e∈E(□)

z(β) sin (2π(∇ϕ(e))) sin (2π(∇G(e)−∇Gx(e)))


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× exp

 ∑
e∈E(□)

z(β) cos (2π(∇ϕ(e))) (cos (2π(∇G(e)−∇Gx(e)))− 1)

〉
µβ

.

Since | cos (2π(∇G(e)−∇Gx(e)))−1| ≤ C(∇G(e)−∇Gx(e))2 decays fast away from 0

and x, let us assume for now that the term∑
e∈E(□)

z(β) cos (2π(∇ϕ(e))) (cos (2π(∇G(e)−∇Gx(e)))− 1)

only contributes to the lower order. By further making the approximation sin a ≈ a

for small a, we may further approximate the expression above by〈
exp

 ∑
e∈E(□)

z(β)2π(∇ϕ(e))2π(∇G(e)−∇Gx(e))

〉
µβ,□

.

Using an integration by parts, this equals to
〈
exp(z(β)4π2(ϕ(0)− ϕ(x)))

〉
µβ,□

. As-
suming that over large scales the measure µβ behaves like a Gaussian free field, we
may conclude〈

exp(z(β)4π2(ϕ(0)− ϕ(x)))
〉

µβ,□
≈ exp

(
1

2
varµβ,□

(z(β)4π2(ϕ(0)− ϕ(x)))

)
≈ C0(d, β) + C1(d, β)|x|2−d.

We remark that the computation above is only heuristical and the constants C0, C1 ob-
tained are not the right constants. Indeed, the non-local charges in Q□, the non-linear
functions sinx and cosx, and the non-Gaussian field µβ,□ contribute to a nontrivial
correction of these constants. Such corrections can be obtained rigorously through the
homogenization of the Helffer-Sjöstrand PDE.

3.2. Brascamp-Lieb inequality

As we discussed, when β is sufficiently large, the measure µβ,□ is a small smooth
perturbation of a discrete Gaussian free field, and is in particular log-concave. In
this framework, one is able to apply the celebrated Brascamp-Lieb inequality [24, 23]
described below. We let H : C(□) → R be a (strictly) convex function satisfying∫

C(□)
exp(−H(ϕ))dϕ <∞, and introduce the probability measure

µ(dϕ) :=
1

Z
exp (−H(ϕ)) dϕ.

The Brascamp Lieb inequality estimates the variance of a general (differentiable)
functional F : C(□) → R of the field ϕ under the measure µ. In order to state it, we
will need the following notation

(3.2.1)
〈
∂F, (HessH)−1∂F

〉
µ

:=
∑

x,y∈□◦

(d
2)∑

i=1

〈
∂x,iF (HessH)

−1
(x,i),(y,j) ∂y,jF

〉
µ
,
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where (HessH)
−1 is the inverse of the Hessian of H defined by

HessH := (∂x,i∂y,jH)(x,i),(y,j)∈□×(d
2)
.

Proposition 3.2.1 (Brascamp-Lieb inequality for log-concave measures [24, 23]). — Let
µ be the log-concave measure defined in (3.2.1). For any smooth and compactly sup-
ported function F : C(□) → R, one has the upper bound

varµ [F ] ≤
〈
∂F, (HessH)−1∂F

〉
µ
.

We next apply the Brascamp-Lieb inequality to the measure µ□,β . Specifically, we
apply it to a class of observables which will be useful to study the Villain model and
upgrade it to obtain an estimate on exponential moments (following the techniques
of [52, Theorem 4.9]). In order to state the result, we first need to identify the Green’s
function associated with the Laplace Equation (3.1.4). For each x ∈ □ and each
i ∈
{

1, . . . ,
(
d
2

)}
, we let GC(□),i : □→ R be the solution of the equation

−∆GC(□),i(·, x) = δx in □,

GC(□),i(·, x) = 0 in ∂□ \ ∂Ii
□,

n · ∇GC(□),i(·, x) = 0 in ∂Ii□.

We note that, in dimension d ≥ 3, the Green’s function GC(□),i(·, x) is bounded
uniformly in the vertex x, the box □ and the index i. We record two properties of
this finite-volume Green’s function. First, for any box □, any index i ∈ {1, . . . ,

(
d
2

)
},

and any pair of vertices x, y ∈ □,

0 ≤ GC(□),i(y, x) ≤
C

|x− y|d−2
.

In the discrete setting and in dimensions d ≥ 3, the Green’s function is bounded and
we have GC(□),i(x, x) ≤ C, for any i ∈

{
1, . . . ,

(
d
2

)}
, □ ⊆ Zd, and x ∈ □. To include

this case in the notation, we implicitly extend all the functions of the form x 7→ |x|−k

for k ≥ 0 by the value 1 when x = 0 (as mentioned in Section 2.1).
Additionally, the finite-volume Green’s function converges to the infinite-volume

one and we have: for any index i ∈ {1, . . . ,
(

d
k

)
}, and any pair of vertices x, y ∈ Zd,

GC(□),i(y, x) −→
□→∞

G(y, x).

In the case of the finite-volume Green’s function defined on a box with Dirichlet
boundary condition, they can be found in [76, Section 4.6]. They can be easily ex-
tended to the case considered here (where the boundary condition is a combination
of the Dirichlet and Neumann boundary conditions).

Proposition 3.2.2 (Brascamp-Lieb inequality for µβ,□). — Fix two constants C0 < ∞
and c > 0. There exists an inverse temperature β1 := β1(d,C0, c) < ∞ and a
constant C := C(d) such that for any β ≥ β1, the following two properties hold:
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— For any vertex x ∈ □,

(3.2.2) ⟨exp (|ϕ(x)|)⟩µβ,□
≤ C.

— For every collection of coefficients (g(β, q))q∈Q□
satisfying

|g(β, q)| ≤ C0 exp(−cβ1/2∥q∥1),
if we denote by Z :=

∑
q∈Q□

g(β, q) sin (2π(ϕ, q)), then

(3.2.3) ⟨exp (Z)⟩µβ,□
≤ exp

( ∑
x,y∈□

(d
2)∑

i=1

GC(□),i(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ,□

)
.

Proof. — We first apply the Brascamp-Lieb inequality with the map
(3.2.4)

H(ϕ) := − 1

2β
(ϕ,∆ϕ) +

∑
n≥1

1

2β

1

βn/2
(ϕ, (−∆)n+1ϕ)−

∑
q∈Q□

z(β, q) cos (2π (q, ϕ)) .

The Hessian of the Hamiltonian H can then be explicitly computed: the first two
terms of (3.2.4) are quadratic (thus their Hessian is constant), and the Hessian of the
third term can be obtained by differentiating the cosine twice. We obtain the following
identity: for any ϕ, ψ ∈ C(□),

(ψ,HessH(ϕ)ψ) = − 1

2β
(ψ,∆ψ) +

∑
n≥1

1

2β

1

βn/2
(ψ, (−∆)n+1ψ)

−
∑

q∈Q□

z(β, q) (q, ψ)
2
cos (2π (q, ϕ)) .

Using that the second term is nonnegative and that the absolute value of the cosine
is always smaller than 1, we deduce that

(ψ,HessH(ϕ)ψ) ≥ 1

2β
∥∇ψ∥2L2(□) −

∑
q∈Q□

|z(β, q)| (q, ψ)
2
.

We then estimate the second term in the right-hand side and prove that it is small
compared to the first one. To this end, we write

(3.2.5)
∑

q∈Q□

|z(β, q)| (q, ψ)
2 ≤

∑
q∈Q□

e−cβ∥q∥1 (q, ψ)
2

=
∑

q∈Q□

e−cβ∥q∥1(nq,d
∗ψ)2.

We then use the Cauchy-Schwarz inequality and deduce∑
q∈Q□

e−cβ∥q∥1 (nq,d
∗ψ)

2 ≤
∑

q∈Q□

e−cβ∥q∥1 ∥nq∥2L2 ∥d∗ψ∥2L2(supp nq)

=
∑

q∈Q□

∑
y∈supp nq

e−cβ∥q∥1 ∥nq∥2L2 |d∗ψ(y)|2

≤
∑
y∈□

|d∗ψ(y)|2
 ∑

q∈Q□,y

e−cβ∥q∥1 ∥nq∥2L2

 .
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We then observe that the term in the right-hand side can be bounded as follows: one
has the estimate, for any y ∈ Zd,

(3.2.6)
∑

q∈Q□,y

e−cβ∥q∥1 ∥nq∥2L2 ≤ Ce−c
√

β .

To prove this inequality, we first absorb the polynomial factor by using (A.2.6) and
writing

∥nq∥2L2 e
−cβ∥q∥1 ≤ ∥q∥d+2

1 e−c
√

β∥q∥1 ≤ Ce−c′
√

β∥q∥1

for some constant c′ ∈ (0, c). We then decompose over the supports of the charges. To
this end, let us denote by Ay the set of the finite connected subsets of Zd containing
the vertex y. We then write∑

q∈Qy

e−c
√

β∥q∥1 =
∑

X∈Ay

∑
q∈Q□

supp q=X

e−c′
√

β∥q∥1 =
∑

X∈Ay

∑
q∈Q□

supp q=X

(∏
x∈X

e−c′
√

β|q(x)|

)
.

Exchanging the sum and the product, we see that∑
q∈Q□

supp q=X

(∏
x∈X

e−c′
√

β|q(x)|

)
≤
∏
x∈X

 ∞∑
q(x)=1

e−c′
√

β|q(x)|

 =

(
e−c

√
β

1− e−c
√

β

)|X|
.

We thus obtain∑
q∈Qy

e−c
√

β∥q∥1 ≤ C
∑

X∈Ay

e−c
√

β|X| = C

∞∑
n=1

|{X ∈ Ay : |X| = n}| e−c
√

βn.

We next note that

(3.2.7) |{X ∈ Ay : |X| = n}| ≤ eCn.

The inequality (3.2.7) can be established by associating each connected set of n ver-
tices with one of its spanning trees, and then bounding the number of such spanning
trees. Choosing the inverse temperature β large enough (i.e., such that c

√
β ≥ 2C),

we deduce that ∑
q∈Qy

e−c
√

β∥q∥1 ≤ e−c
√

β ,

where we have reduced the value of the exponent c in the right-hand side. Additionally,
we have the estimate ∥d∗ψ∥2L2(□) ≤ C ∥∇ψ(y)∥2L2(□) (this follows form the definition
of the codifferential). Combining the previous displays, we obtain∑

q∈Q□

|z(β, q)| (nq,d
∗ψ)

2 ≤ Ce−c
√

β ∥∇ψ∥L2(□) .

Combining the four previous displays and choosing β small enough, we obtain
(3.2.8)

(ψ,HessH(ϕ)ψ) ≥ 1

2β
∥∇ψ∥2L2(□) − Ce−c

√
β ∥∇ψ∥L2(□) ≥

1

4β
∥∇ψ∥2L2(□) =

1

4β
(ψ,−∆ψ) .
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We have thus proved the following inequality of symmetric operator on the
space C(□): for any ϕ ∈ C(□)

HessH(ϕ) ≥ − 1

4β
∆.

Noting that the inverse of the discrete Laplacian on the space C(□) is the Green’s
function, we obtain: for any ϕ, ψ ∈ C(□),

(
ψ,HessH(ϕ)−1ψ

)
≤ 4β

∑
x,y∈□

(d
2)∑

i=1

ψi(x)GC(□),i(x, y)ψi(y).

For any i ∈ {1, . . . ,
(
d
2

)
} and any x ∈ □, we can apply the Brascamp-Lieb inequality

with the function Fx,i(ϕ) := ϕi(x). We obtain

(3.2.9) var [ϕi(x)] ≤ 4βGC(□),i(x, x) ≤ C,

where in the second inequality, we used that the Green’s function is bounded uniformly
in the box □ and the vertex x ∈ □. We next upgrade the estimate (3.2.9) from an
upper bound on the variance to an upper bound on exponential moments. To this
end, we follow the techniques of [52, Theorem 4.9] and consider the function

t 7→ log ⟨exp (tϕi(0))⟩µβ,□
.

The second derivative of this map is given by the formula
∂2

∂t2
log ⟨exp (tϕi(0))⟩µβ,□

= varµt
(ϕ(0)) ,

where the measure µt is defined via density

dµt =
1

Z
× exp (H(ϕ) + tϕi(0)) dϕ.

We then note that the Hessian of the Hamiltonian ϕ 7→ H(ϕ) + tϕi(0) is the same as
the one of H. We may thus apply the Brascamp-Lieb inequality to the measure µt.
We obtain, for any t ∈ [0, 1],

∂2

∂t2
log ⟨exp (tϕi(0))⟩µβ,□

= varµt
(ϕ(0)) ≤ C.

Integrating over t ∈ [0, 1] twice and noting that ⟨ϕ(0)⟩µβ,□
= 0 (by the ϕ 7→ −ϕ

symmetry of the field) yields the bound

⟨exp (ϕi(0))⟩µβ,□
≤ C.

Using once again the ϕ 7→ −ϕ symmetry of the field, we also have

⟨exp (−ϕi(0))⟩µβ,□
≤ C.

Combining that the two previous estimates and noting that they hold for any
i ∈ {1, . . . ,

(
d
2

)
} completes the proof of (3.2.2).
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We then prove the inequality (3.2.3). By the Brascamp-Lieb inequality, we have

varµβ,□
[Z] ≤ 4β

∑
x,y∈□

(d
2)∑

i=1

GC(□),i(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ,□
.

We next upgrade the previous inequality from an estimate on the variance to an
estimate on exponential moments using the same strategy as before. We first note
that

∂2

∂t2
log ⟨exp (tZ)⟩µβ,□

= varµt (Z) ,

where the measure µt is defined via the density

dµt = Const× exp (H(ϕ) + tZ(ϕ)) dϕ.

We will then apply the Brascamp-Lieb inequality to the measure µt. To this end, we
need to show that: for any ϕ, ψ ∈ C(□) and any t ∈ [0, 1],

(3.2.10) (ψ,Hess (H + tZ)(ϕ)ψ) ≥ 1

8β
(ψ, (−∆)ψ) .

From (3.2.8), we see that it is sufficient to prove

|(ψ,HessZ(ϕ)ψ)| ≤ 1

8β
(ψ, (−∆)ψ) .

Using the definition Z :=
∑

q∈Q□
g(β, q) sin (2π(ϕ, q)), we can compute the Hessian of

the map X by differentiating the sine twice. We obtain the identity

(ψ,HessZ(ϕ)ψ) = −4π2
∑

q∈Q□

g(β, q) sin (2π(ϕ, q)) (q, ψ)2.

Using the assumption on the coefficient g(β, q), we deduce that

|(ψ,HessZ(ϕ)ψ)| ≤
∑

q∈Q□

e−cβ∥q∥1 (nq,d
∗ψ)

2
.

The proof is then identical to the proof (3.2.2) (specifically the term in the right-
hand side appears in (3.2.5)). Applying the Brascamp-Lieb inequality, we obtain, for
any t ∈ [0, 1],

∂2

∂t2
log ⟨exp (tZ)⟩µβ,□

= varµt
(Z) ≤ 8β

∑
x,y∈□

(d
2)∑

i=1

GC(□),i(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ,□
.

Integrating over t ∈ [0, 1] twice and noting that ⟨Z⟩µβ,□
= 0 (by the ϕ 7→ −ϕ symmetry

of the field) completes the proof of (3.2.3).

3.3. Thermodynamic limit

The Brascamp-Lieb inequality allows us to prove the existence of a thermodynamic
limit for the measures µβ,□ as □ → ∞. Specifically, by Proposition 3.2.2 (since all
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the constants in the statement do not depend on the volume) and a tightness argu-
ment, there exists a sequence of boxes (□Lk

)k∈N centered at 0 and of side length Lk

such that Lk tends to infinity as k tends to infinity and such that the sequence of
measures µβ,□Lk

converges weakly in the space Ω to an infinite-volume, translation-
invariant Gibbs measure denoted by µβ . By taking the limit in the finite volume
identity (3.1.6), and using that µV

β,□,0 converges to the unique Gibbs state µV
β , we see

that any possible limit µβ gives the same contribution to the correlation functions of
the Villain model, thus it suffices to study any of such µβ .

We record below three properties of the measure µβ , which are direct consequences
of Proposition 3.2.2 and the definition of µβ :

— There exists a constant C := C(d, β) <∞ such that, for any x ∈ Zd,

⟨exp (|ϕ(x)|)⟩µβ
≤ C and ⟨ϕ(x)⟩µβ

= 0.

— For any box L ∈ N, any collection of coefficients (g(β, q))q∈QL
satisfying

|g(β, q)| ≤ C exp(−cβ1/2∥q∥1), if we denote by Z :=
∑

q∈QL
g(β, q) sin (2π(ϕ, q)),

then

(3.3.1) ⟨exp (Z)⟩µβ
≤ exp

 ∑
x,y∈Zd

(d
2)∑

i=1

G(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ

 .

Combining with the thermodynamic limit results for the Villain model [25, 58], we
are now ready to state the following dual representation in infinite volume. To this
end, for L ∈ N denote by XL : Ω → R and Y L : Ω → R the two random variables

XL :=
∑

q∈Q□L

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□L,0x}, q)

)
+
∑

q∈Q□L

z(β, q) cos (2π(ϕ, q))
(
cos
(
2π(σ{□L,0x}, q)

)
− 1
)
,

Y L :=
∑

q∈Q□L

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□L,0x}, q)

)
.

We first prove that the random variables XL and YL converge in L2(µβ) as L tends
to infinity.

Proposition 3.3.1. — There exists an inverse temperature β1 := β1(d) <∞ such that
for any β ≥ β1, the sequences of random variables XL and YL converge as L → ∞
in L2(µβ).

Proof. — We first introduce the two random variables
XL :=

∑
q∈Q□L

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q))

+
∑

q∈Q□L

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1) ,

YL :=
∑

q∈Q□L

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q)) .

and prove that the function YL converges in L2(µβ). In the argument below, we will
denote by Cx a generic and typically large constant depending on the parameters d, β
and on the vertex x ∈ Zd (which is fixed through the proof). By the Brascamp-Lieb
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inequality, we have

varµβ
[Y2L − YL] ≤

∑
y,z∈□2L

4β

(d
2)∑

i=1

G□,i(y, z) ⟨(∂y,i(Y2L − YL)) (∂z,i(Y2L − YL))⟩µβ
.

An explicit computation shows

∂y,i(Y2L − YL) =
∑

q∈Q2L\Q□L

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q)) qi(y).

By definition of σ0x, the identity q = dnq and the bound |sin θ| ≤ |θ| for θ ∈ R, we
have

|z(β, q)q(y) sin (2π(σ0x, q)) | ≤ Ce−c
√

β∥q∥1 |q(y)||(σ0x, q)|
(3.3.2)

≤ Ce−c
√

β∥q∥1 |q(y)||(d∗σ0x, nq)|

≤ Ce−c
√

β∥q∥1 |q(y)| ∥d∗σ0x∥L2(supp nq) ∥nq∥L2(Zd)

≤ Ce−c
√

β∥q∥1 |q(y)| ∥∇G(·, 0)−∇G(·, x)∥L2(supp nq) ∥nq∥L2(Zd) .

We next use the bound |∇∇G(0, z)| ≤ C|z|−d on the mixed derivative of the Green’s
function and obtain

∥∇G(·, 0)−∇G(·, x)∥L2(supp nq) ≤ |suppnq|
1
2 sup

z∈supp nq

|∇G(z, 0)−∇G(z, x)|

≤ Cx |suppnq|
1
2

(diamnq)
d

|y|d
.

Combining the two previous displays and reducing the value of the constant c in the
exponential to absorb all the terms involving the diameter, support and L2-norm of
the charge nq, we obtain

e−c
√

β∥q∥1 |q(y)||(σ0x, q)| ≤
Cxe

−c
√

β∥q∥1 |q(y)|
|y|d

.

(3.3.3)

Thus,

|∂y,i(Y2L − YL)| ≤ Cx

|y|d
∑

q∈Q2L\Q□L

e−c
√

β∥q∥1 |q(y)|(3.3.4)

≤ Cx

|y|d
e−

c
2

√
β dist(y,□2L\□L)

∑
q∈Q2L\Q□L

e−
c
2

√
β∥q∥1 |q(y)|

≤ Cx

|y|d
e−

c
2

√
β dist(y,□2L\□L)

∑
q∈Qy

e−
c
2

√
β∥q∥1 |q(y)|

≤ Cx

|y|d
e−

c
2

√
β dist(y,□2L\□L).
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The second inequality relies on the observation that a charge satisfying q ∈ Q2L \ Q□L

and q(y) ̸= 0 must have a diameter larger than dist(y,□2L \ □L) (and thus
∥q∥1 ≥ dist(y,□2L \ □L) since q is integer-valued with a connected support). The
third inequality is a consequence of (A.2.9) of Appendix A (choosing the value k = 1,
and noting that, by the definition of the L1-norm, |q(y)| ≤ ∥q∥1). Consequently

varµβ
[Y2L − YL] ≤ Cx

∑
y,z∈Zd

1

|y − z|d−2

e−c
√

β dist(y,□2L\□L)

|y|d
e−c

√
β dist(z,□2L\□L)

|z|d
.

Summing over the dyadic scales, we obtain

∞∑
n=1

varµβ
[Y2n+1 − Y2n ]

(3.3.5)

≤ Cx|x|2
∞∑

n=1

∑
y,z∈Zd

1

|y − z|d−2

e−c
√

β dist(y,□2n+1\□2n )

|y|d
e−c

√
β dist(z,□2n+1\□2n )

|z|d

≤ Cx

∑
y,z∈Zd

1

|y − z|d−2

1

|y|d
1

|z|d
≤ Cx.

Using that, for any L ∈ N, the ϕ 7→ −ϕ invariance of the measure µβ implies ⟨YL⟩µβ
= 0,

we deduce that the sequence of random variables YL converges in L2(µβ) to a limit
that we denote by

(3.3.6) Y =
∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q)) .

We next prove the convergence of the random variables XL. By the definition of σ0x,
the identity q = dnq, the estimate |∇∇G(y)| ≤ C|y|−d and a computation similar to
the one of (3.3.2), we have, for each vertex y ∈ Zd, and each charge q ∈ Qy,

(3.3.7) |z(β, q) (cos (2π(σ0x, q))− 1) | ≤ C exp(−c
√
β∥q∥1)(σ0x, q)

2 ≤ Cxe
−c
√

β∥q∥1

|y|2d
.

Since the map x→ |x|−2d is summable in Zd, we deduce that for any field ϕ ∈ Ω,∑
q∈Q

|z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)|(3.3.8)

≤
∑
y∈Zd

∑
q∈Qy

|z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)|

≤ Cx

∑
y∈Zd

1

|y|2d

∑
q∈Qy

exp(−c
√
β∥q∥1)

≤ Cx

∑
y∈Zd

1

|y|2d

≤ Cx.
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The previous inequality implies that the sequence of random variables∑
q∈Q□L

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

converges uniformly over all the possible values of the field ϕ ∈ Ω. In particular it
converges in L∞(µβ) (and thus in L2(µβ)). We denote the limit by

X =
∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q))

+
∑
q∈Q

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1) .
(3.3.9)

The proof of the convergences of the random variables YL and XL is complete. To
complete the proof of Proposition 3.3.1, it is sufficient to show that

(3.3.10) varµβ

[
YL − Y L

]
−→

L→∞
0 and varµβ

[
XL −XL

]
−→

L→∞
0.

We only sketch the proof of the first convergence. Using the definition of the
maps σ{□L,0x} and (standard) regularity estimates on the finite-volume Green’s
functions, we have the bound

(3.3.11)
∣∣∇σ{□L,0x}(y)

∣∣ ≤ Cx

|y|d
.

Using the previous upper bound and the same computation as the one leading
to (3.3.5), we obtain that for any ε > 0 there exists Rε > 0 such that for any L ≥ Rε

varµβ

 ∑
q∈Q□L

\Q□Rε

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□L,0x}, q)

) ≤ ε

and

varµβ

 ∑
q∈Q□L

\Q□Rε

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q))

 ≤ ε.

Additionally, using the convergence (3.1.7), we see that
(3.3.12)

sup
ϕ∈Ω

∣∣∣∣∣∣∣
∑

q∈Q□Rε

z(β, q) sin (2π(ϕ, q))
(
sin (2π(σ0x, q))− sin

(
2π(σ{□L,0x}, q)

))∣∣∣∣∣∣∣ −→L→∞
0.

A combination of the three previous displays yields the convergence (3.3.10) for the
variance of the random variable YL − Y L.

Finally, the convergence of the variance of the random variable XL − XL can be
deduced form the one of the variable YL − Y L and the following result: as in (3.3.8),
we can use the convergence (3.1.7) with the bound (3.3.11) (together with the bound
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|cos θ − 1| ≤ θ2/2 and the summability of the function y 7→ |y|−2d on Zd) to obtain

sup
ϕ∈Ω

∣∣∣∣ ∑
q∈Q□L

z(β, q) cos (2π(ϕ, q))
(
cos
(
2π(σ{□L,0x}, q)

)
− 1
)

(3.3.13)

−
∑
q∈Q

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

∣∣∣∣ −→L→∞
0.

Using the previous proposition, we are able to establish an infinite-volume version
of Proposition 3.1.1.

Proposition 3.3.2. — There exists an inverse temperature β1 := β1(d) <∞ such that
for any β ≥ β1,〈

ei(θ(x)−θ(0))
〉

µV
β

exp

(
1

2β
(G(0, 0)− 2G(0, x))

)
(3.3.14)

=

〈
exp

(∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q))

+
∑
q∈Q

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

)〉
µβ

and 〈
ei(θ(x)+θ(0))

〉
µV

β

exp

(
1

2β
G(0, x)

)
(3.3.15)

=

〈
exp

(∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q))

+
∑
q∈Q

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

)〉
µβ

.

Proof. — We give the proof of (3.3.14) below, (3.3.15) follows from the same argu-
ment. By [25, 58], there exists a thermodynamic limit for the Villain model, denoted
by µV

β such that
〈
ei(θ(x)−θ(0))

〉
µV

β,□Lk

→
〈
ei(θ(x)−θ(0))

〉
µV

β

as k → ∞. We also have

that the finite-volume Green’s function G□Lk
(·, 0) converges to G(·, 0) as k tends to

infinity.
In the argument below, we will (still) denote by Cx a generic and typically large

constant depending on the parameters d, β and on the vertex x ∈ Zd (which is fixed
through the proof). By Proposition 3.1.1, it is enough to show the convergence

(3.3.16)
〈
exp

(
XLk

)〉
µβ,□Lk

−→
k→∞

⟨exp (X)⟩µβ
.

We first prove the (simpler) convergence

(3.3.17) ⟨exp (XLk
)⟩µβ,□Lk

−→
k→∞

⟨exp (X)⟩µβ
.
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We first fix k,R ∈ N satisfying |x| ≪ R≪ Lk, and write

⟨exp(XLk
)⟩µβ,□Lk

= ⟨exp(XR)⟩µβ,□Lk

+ ⟨exp(XR) (exp(XLk
−XR)− 1)⟩µβ,□Lk

and

⟨exp(X)⟩µβ
= ⟨exp(XR)⟩µβ

+ ⟨exp(XR) (exp(X −XR)− 1)⟩µβ
.

We then note that, for any R > 0, the random variable XR is a bounded Lipschitz
function (with a large Lipschitz constant depending on R) which only depends on the
values of the field ϕ inside the box [−R,R]d. Thus,

⟨exp(XR)⟩µβ,□Lk

−→
k→∞

⟨exp(XR)⟩µβ
.

We next apply the Hölder inequality and obtain
(3.3.18)

⟨exp(XR) (exp(XLk
−XR)− 1)⟩µβ,□Lk

≤ ⟨exp(2XR)⟩1/2
µβ,□Lk

〈
(exp(XLk

−XR)− 1)
2
〉1/2

µβ,□Lk

.

We estimate the two terms in the right side. For the first one, let us first observe that,
by (3.3.8), there exists a constant Cx := Cx(d, β, x) <∞ such that

(3.3.19) XR ≤ YR + Cx.

Combining the previous estimate with the Brascamp-Lieb inequality (Proposi-
tion 3.2.2) and obtain, for some constant Cx := Cx(d, β, x) <∞,

⟨exp(2XR)⟩µβ,□Lk

≤ C exp

( ∑
x,y∈□◦

(d
2)∑

i=1

GC(□),i(x, y) ⟨(∂x,iYR) (∂y,iYR)⟩µβ,□Lk

)
.

Using the estimates (3.3.1) (with Z = YR), (3.3.19), and an explicit computation, we
obtain the upper bound

(3.3.20) ⟨exp(2XR)⟩µβ,□Lk

≤ Cx.

There remains to estimate the second term in the right side of (3.3.18). We claim that

(3.3.21)
〈
(exp(XLk

−XR)− 1)
2
〉

µβ,□Lk

≤ Cx

R
d
2−1

.

Using (3.3.7) and the same computation as in (3.3.8), we see that, for any L > R,
and any field ϕ ∈ Ω,∣∣∣∣∑

q∈QL

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

−
∑

q∈QR

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

∣∣∣∣ ≤ Cx

Rd
.

This result implies that to prove the estimate (3.3.21), it is sufficient to show

(3.3.22)
〈
(exp(YLk

− YR)− 1)
2
〉

µβ,□Lk

≤ Cx

R
d
2−1

.
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We can Taylor expand the left side of (3.3.22) and use the ϕ→ −ϕ symmetry of the
field to obtain

LHS =

〈∑
k≥1

1

k!
(YLk

− YR)k

2〉
µβ,□Lk

=
∑
l≥1

〈
2l∑

j=1

1

j!(2l − j)!
(YLk

− YR)2l

〉
µβ,□Lk

.

We then apply the exponential Brascamp-Lieb inequality to obtain, for any C ≥ 1

and β chosen sufficiently large (depending on C),〈
(YLk

− YR)2l
〉

µβ,□Lk

≤ (2l)!

C2l

(〈
eC(YLk

−YR) + e−C(YLk
−YR)

〉
µβ,□Lk

− 2

)

≤ (2l)!

C2l

[
exp

(
2C

∑
y,z∈□Lk

(d
2)∑

i=1

GC(□),i(y, z) ⟨(∂y,i(YLk
− YR)) (∂z,i(YLk

− YR))⟩µβ,□Lk

)
− 1

]
.

Summing over l, and choosing C large enough (universally), we obtain

〈
(exp(YLk

− YR)− 1)
2
〉

µβ,□Lk

(3.3.23)

≤ C

[
exp

(
2C

∑
y,z∈□Lk

(d
2)∑

i=1

GC(□),i(y, z) ⟨(∂y,i(YLk
− YR)) (∂z,i(YLk

− YR))⟩µβ,□Lk

)
− 1

]
.

We claim that, the term in the right side of (3.3.23) is bounded by C|x|R2−d. Using
the same computation as in (3.3.4), we have

|∂y,i(YLk
− YR)| ≤ Cxe

− c
2

√
β dist(y,□Lk

\□R)

|y|d
.

Using the estimate (3.3.3) and the bound GC(□),i(y, z) ≤ C
|y−z|d−2 , we obtain

∑
y,z∈□Lk

(d
2)∑

i=1

GC(□),i(y, z) ⟨(∂y,i(YLk
− YR)) (∂z,i(YLk

− YR))⟩µβ,□Lk

≤ Cx

∑
y,z∈□Lk

\□R

1

|y − z|d−2

e−
c
2

√
β dist(y,□Lk

\□R)

|y|d
e−

c
2

√
β dist(z,□Lk

\□R)

|z|d

≤ Cx

Rd−2
,

which, together with (3.3.18), (3.3.20), and (3.3.23), implies

⟨exp(XR) exp(X −XR)⟩µβ
≤ Cx

R
d
2−1

.
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The same computation yields

⟨exp(XR) (exp(X −XR)− 1)⟩µβ
≤ Cx

R
d
2−1

.

So that the proof of (3.3.17) is complete. To prove (3.3.16), it is thus sufficient to
show

(3.3.24)
〈
exp

(
XLk

)〉
µβ,□Lk

− ⟨exp (XLk
)⟩µβ,□Lk

−→
k→∞

0.

This is a consequence of the convergences (3.3.12) and (3.3.12), the bound (3.3.22)
and the bound: for any R ≥ 0 and any L ≥ R,∥∥∥∥∥∥exp

 ∑
q∈QL\QR

z(β, q) sin (2π(ϕ, q)) sin
(
2π(σ{□L,0x}, q)

)− 1

∥∥∥∥∥∥
2

L2(µβ,□L
)

≤ Cx

R
d
2−1

.

The proof of the previous inequality is identical to the proof of (3.3.22) (the only
difference is that the bound (3.3.11) needs to be used instead of the decay estimates
on the Green’s function).

3.4. The Helffer-Sjöstrand representation

Proposition 3.3.2 shows that, in order to understand the asymptotic behavior as x
tends to infinity of the two point function, it is sufficient to understand the behavior
of the expectation of the random variable exp(X) under the measure µβ as x tends
to infinity.

The Gibbs measure µβ is a specific example of a model of stochastic interface model
extensively studied in the literature called the ∇ϕ model [52]. In particular, following
the ideas and techniques of [68, 89, 82, 55], the large-scale behavior of the ∇ϕ model
can be understood by studying the large-scale behavior of an infinite dimensional
PDE called the Helffer-Sjöstrand equation [68, 82]. In this section, we adapt the tools
developed by Helffer-Sjöstrand and Naddaf and Spencer [82] to our framework, and
introduce the Helffer-Sjöstrand PDE associated with the measure µβ .

Specifically, in Sections 3.4.1 and 3.4.2, we introduce the Helffer-Sjöstrand PDE,
present two equivalent approaches to solve this PDE: the first one is based on varia-
tional techniques of [82], the second one is based on a dynamical interpretation of the
equation and is the one of [55]. We then show, following [82], how its solutions can be
used to identify the covariance of general functionals of the field ϕ distributed accord-
ing to the measure µβ . In Section 3.4.4, we introduce the Green’s matrix associated
with the Helffer-Sjöstrand operator and state a quantitative homogenization theorem
for this map. This result is a crucial step in the proof of Theorem 1, and its proof
occupies a large part of this article: it is the subject of Sections 6 and 7, where we
combine the ideas of [82, 55] with the recent development in quantitative stochastic
homogenization of [7, 8].
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3.4.1. The Witten Laplacian. — Following the techniques of [53, 82, 55], we know that
the measure µβ is stationary, ergodic and reversible with respect to the Langevin dy-
namics defined as follows. We let

{
Bt(x) : t ≥ 0, x ∈ Zd

}
is a collection of indepen-

dent Brownian motions valued in R(d
2) and let ϕ : [0,∞]× Zd → R(d

2) be the solution
of the system of stochastic differential equation: for t ≥ 0 and x ∈ Zd,

dϕt(x) = − 1

2β
∆ϕt(x) +

∑
n≥0

1

2β

1

βn/2
(−∆)n+1ϕt(x)(3.4.1)

−
∑
q∈Q

2πz(β, q)q(x) sin (2π (q, ϕ)) +
√

2dBt(x).

We refer to [53] for the justification of this property and a proof of the solvability of the
Langevin dynamics (3.4.1). Following the idea of [82], one observes that the Langevin
dynamics is a Markov process whose infinitesimal generator is the operator ∆ϕ defined
on the set of (real-valued) functions F ∈ C∞c (Ω) by the formula: for any ϕ ∈ Ω,

∆ϕF (ϕ) :=
∑

x∈□◦
∂2

xF (ϕ)−
∑
x∈Zd

[
1

2β
∆ϕ(x)−

∑
n≥1

1

2β

1

βn/2
(−∆)n+1ϕ(x)(3.4.2)

−
∑
q∈Q

2πz(β, q)q(x) sin (2π (q, ϕ))

]
∂xF (ϕ),

where the notation ∂2
x means

∑(d
2)

i=1 ∂
2
x,i, and we implicitly take the scalar product

between the two terms in the right side of (3.4.2). The operator ∆ϕ is thus symmetric
with respect to the measure µβ,L, and one has the identities

⟨F∆ϕG⟩µβ
= ⟨G∆ϕF ⟩µβ

= −
∑
x∈Zd

⟨∂xF, ∂xG⟩µβ
, ∀F,G ∈ C∞c (Ω).

3.4.2. Helffer-Sjöstrand operator. — In this section, we introduce the Helffer-
Sjöstrand operator. This operator is defined in (3.4.4) and acts on function defined
on Zd × Ω and valued in R(d

2). Its definition requires to introduce a few spaces
and definitions. We first introduce the space of smooth and compactly supported
functions defined on Zd × Ω

C∞c (Zd × Ω) := {F : Zd × Ω → R(d
2) : ∀x ∈ Zd, F (x, ·) ∈ C∞c (Ω)

and F (x, ·) = 0 for all but finitely many x ∈ Zd }.
We then extend the domain of the Witten Laplacian −∆ϕ to the functions of
C∞c (Zd × Ω) as follows: for any F ∈ C∞c (Zd × Ω), any (y, ϕ) ∈ Zd × Ω,

∆ϕF (y, ϕ) :=
∑
x∈Zd

∂2
xF (y, ϕ)−

∑
x∈Zd

[
1

2β
∆ϕ(x)−

∑
n≥1

1

2β

1

βn/2
(−∆)n+1ϕ(x)(3.4.3)

−
∑
q∈Q

2πz(β, q)q(x) sin (2π (q, ϕ))

]
∂xF (y, ϕ),
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where all the partial derivative are with respect to the field ϕ (for a fixed point y ∈ Zd).
We next extend the definition of the discrete Laplacian ∆ to functions of C∞c (Zd×Ω)

by setting: for any (y, ϕ) ∈ Zd × Ω,

∆F (y, ϕ) :=
∑
x∼y

(F (x, ϕ)− F (y, ϕ)).

We similarly define the iteration of the Laplacian (−∆)k by iterating the previous
definition. For q ∈ Q, and ϕ ∈ Ω, we define the coefficient

aq(ϕ) := 4π2z (β, q) cos (2π (ϕ, q)) .

Given a function F ∈ C∞c (Zd × Ω) and ϕ ∈ Ω, we introduce the notation

∇qF (ϕ) := (q, F (·, ϕ)).

We finally combine the two previous definitions, and introduce the operator

∇∗q · aq∇qF (ϕ, x) = 4π2z (β, q) cos (2π (ϕ, q)) (F (·, ϕ), q) q(x).

The notation is motivated by the following symmetry property satisfied by the oper-
ator ∇∗q · aq∇q: for any F,G ∈ C∞c (Zd × Ω),∑

x∈Zd

〈
∇∗q · aq∇qF (·, x)G(·, x)

〉
µβ

=
∑
x∈Zd

〈
∇∗q · aq∇qG(ϕ, x)F (ϕ, x)

〉
µβ

= ⟨aq (F, q) (G, q)⟩µβ

= ⟨aq∇qF∇qG⟩µβ
.

Additionally, due to the assumption dq = 0, the function ∇∗q ·aq∇qF depends only on
the discrete gradient ∇F . Equipped with these definitions, we introduce the Helffer-
Sjöstrand operator acting on functions F : Ω× Zd → R(d

2)

(3.4.4) L := −∆ϕ −
1

2β
∆ +

1

2β

∑
n≥1

1

β
n
2

(−∆)
n+1

+
∑
q∈Q

∇∗q · aq∇q.

The following definition introduce a notion of weak solutions for the Helffer-Sjöstrand
operator.

Definition 3.4.1 (Solution of the Helffer-Sjöstrand equation). — Let f : Zd × Ω → R(d
2)

be such that f ∈ L2(Zd, µβ). A function u : Zd × Ω → R(d
2) is called a weak solution

of the Helffer-Sjöstrand equation

Lu = f in Ω× Zd,

if, for any function F ∈ C∞c (Zd × Ω), one has the identity∑
x∈Zd

⟨u(x, ·), LF (x, ·)⟩µβ
=
∑
x∈Zd

⟨f(x, ·), F (x, ·)⟩µβ
.

The next proposition establishes the solvability of the Helffer-Sjöstrand using the
variational approach used by Naddaf-Spencer [82]. We recall the definition of the
space Ḣ1(Zd, µβ) introduced in (2.1.7) of Section 2.
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Proposition 3.4.2 (Variational solvability). — For any f : Zd × Ω → Rd×(d
2) satisfy-

ing f ∈ L2(Zd, µβ), there exists a unique weak solution u : Zd × Ω → R(d
2) in the

space Ḣ1(Zd, µβ) of the equation

(3.4.5) Lu = ∇ · f in Zd × Ω,

which satisfies, for some C(d, β) <∞,

(3.4.6) sup
x∈Zd

∥u(x, ·)∥2L2(µβ) +
∑
x∈Zd

∥∂xu∥2L2(Zd,µβ) + ∥∇u∥2L2(Zd,µβ) ≤ C ∥f∥2L2(Zd,µβ) .

Remark 3.4.3. — We require that the right-hand side (3.4.5) is in divergence form.
This assumption simplifies the proof but is not strictly necessary. Indeed, using the
Gagliardo-Nirenberg-Sobolev inequality, one could prove the existence and unique-
ness of variational solutions of the Helffer-Sjöstrand equation Lu = f if the function
f : Zd × Ω → R(d

2) satisfies

(3.4.7)

∑
x∈Zd

|f(x, ·)|2d/(d−2)


d−2
2d

∈ L2(µβ).

Proof. — Using that the space C∞c (Zd × Ω) is dense in Ḣ1(Zd, µβ), we see that a
function u ∈ Ḣ1(Zd, µβ) is a solution of (3.4.5) if and only if

∑
x,y∈Zd

⟨(∂yu(x, ·))(∂yw(x, ·))⟩µβ
+

1

2β

∑
x∈Zd

⟨∇u(x, ·)∇w(x, ·)⟩µβ

(3.4.8)

+
1

2β

∑
n≥1

1

β
n
2

∑
x∈Zd

〈
∇n+1u(x, ·),∇n+1w(x, ·)

〉
µβ

+
∑
q∈Q

⟨∇qu · aq∇qw⟩µβ

= −
∑
x∈Zd

⟨f(x, ·)∇w(x, ·)⟩µβ
, ∀w ∈ Ḣ1(Zd, µβ).

As in the proof of Proposition 3.2.2, we may use the estimate |aq| ≤ Ce−cβ∥q∥1 to
show that, if β is sufficiently large, the bilinear form on the left side of the previous
display is coercive with respect to the Ḣ1(Zd, µβ)-norm. The Lax-Milgram Theorem
therefore yields the existence of a unique solution u ∈ Ḣ1(Zd, µβ). Applying the
Gagliardo-Nirenberg-Sobolev inequality (for a fixed field ϕ ∈ Ω) yields

(3.4.9) sup
x∈Zd

|u(x, ϕ)|2 ≤

∑
y∈Zd

|u(y, ϕ)|2d/(d−2)

(d−2)/d

≤
∑
y∈Zd

|∇u(y, ϕ)|2 .

Integrating over the measure µβ completes the proof of Proposition 3.4.2.

As it has been observed in the literature [82, 55], there exists a dynamical repre-
sentation for the solution u of the Helffer-Sjöstrand PDE Lu = ∇ · f . The formula is
stated in Proposition 3.4.6, and we will use it in this article to obtain upper bounds on
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the solution u. In order to state the result, we introduce a few additional definitions.
Given a field ϕ ∈ Ω, we consider the solution of the Langevin dynamics started from ϕ

at time t = 0, that is,

(3.4.10)



dϕt(x) =
1

2β
∆ϕt(x)dt−

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1ϕt(x)dt

+
∑
q∈Q

(
∇∗q · aq(ϕt)∇qϕt

)
(x)dt+

√
2dBt(x),

ϕ0(x) = ϕ(x).

We denote by Pϕ the law of the dynamics (ϕt)t≥0 starting from ϕ and by Eϕ the
expectation with respect to the measure Pϕ. The solvability of the SDE (3.4.10) is
guaranteed for µβ-almost every ϕ ∈ Ω by the arguments of [55, Section 2.1.3] or [53,
Section 2.2].

For y ∈ Zd, we define the Dirac mass δy : Zd → R(d
2)×(d

2) to be the diagonal matrix

δy(x) :=
(
1{x=y} · 1{i=j}

)
1≤i,j≤(d

2)
.

For any fixed realization of the dynamics
{
ϕt(x) : t ≥ 0, x ∈ Zd

}
, we let

Pϕ : [0,∞]× Zd × Zd → R(d
2) × R(d

2)

be the fundamental solution (also referred to as heat kernel) of the parabolic system
of equations
(3.4.11)

∂tP
ϕ· (·, ·; y)− 1

2β
∆Pϕ· (·, ·; y) +

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1Pϕ· (·, ·; y)

+
∑
q∈Q

∇∗q · aq(ϕt)∇qP
ϕ· (·, ·; y) = 0 in [0,∞]× Zd,

Pϕ· (0, ·, y) = δy in Zd.

To be more specific, we follow the standard technique to define the fundamental
solution of a system of parabolic equations: For any fixed column in the matrix δy,
we solve the system (3.4.11) with this specific column and obtain a function valued in
the space R(d

2). We then use the
(
d
2

)
solutions obtained this way to define the matrix

valued function Pϕ.
There are two important properties about the fundamental solution Pϕ· . First, the

bound |aq| ≤ Ce−cβ∥q∥1 shows that, for β large enough, the system (3.4.11) is a small
perturbation of the heat equation (or equivalently has a small ellipticity contrast).
This observation implies that the system of Equations (3.4.11) is in the range of
applicability of the Schauder regularity theory. This is the subject of Section 5, where
we adapt the arguments of the Schauder regularity to the system (3.4.11) and obtain
the bounds on the heat kernel Pϕ· , its gradient and mixed derivative collected in the
following proposition.
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Proposition 3.4.4 (Nash-Aronson estimate and regularity for the heat kernel). — There
exists an inverse temperature β1 := β1(d) <∞ such that for any β ≥ β1, there exists
a constant C := C(d, β) < ∞ such that, for any realization of the dynamics (ϕt)t≥0,
any (t, x, y) ∈ [1,∞]× Zd × Zd,∣∣Pϕ· (t, x; y)

∣∣ ≤ C

td/2
exp

(
−|x− y|

Ct

)
.

Additionally, for any regularity exponent ε > 0, there exists an inverse temperature
β1(d, ε) <∞ such that, for any β ≥ β1,∣∣∇xP

ϕ· (t, x; y)
∣∣ ≤ C

td/2+1/2−ε
exp

(
−|x− y|

Ct

)
and ∣∣∇x∇yP

ϕ· (t, x; y)
∣∣ ≤ C

td/2+1−ε
exp

(
−|x− y|

Ct

)
.

Remark 3.4.5. — The bounds on the coefficients aq show that the ellipticity contrast
of the system (3.4.11) does not depend on the realization of the dynamics (ϕt)t≥0.
A consequence of this observation is that the Schauder regularity theory applies uni-
formly in the realization of the dynamics, and thus the upper bounds of Proposi-
tion 3.4.4 are uniform over the dynamics (ϕt)t≥0.

The proof of these properties can be found in Proposition 5.3.1 of Section 5. The
second important property of the heat kernel Pϕ· is that, as observed in [82, Sec-
tion 2.2.2] and [55, Section 3], it is related to the solutions of the Helffer-Sjöstrand
equation as explained below.

Proposition 3.4.6 (Dynamical solvability of the Helffer-Sjöstrand equation [82, 55]). —
Fix f : Zd × Ω → Rd×(d

2) such that f ∈ L2(Zd, µβ) and let u ∈ Ḣ1(Zd, µβ) be the
solution of the Helffer-Sjöstrand equation Lu = ∇ · f defined in Proposition 3.4.2.
Then, one has the identity

(3.4.12) u (x, ϕ) =

∫ ∞

0

∑
y∈Zd

Eϕ

[
f(y, ϕt)∇yP

ϕ·(t, y;x)
]
dt.

The rigorous justification of the Formula (3.4.12) requires to use tools from spectral
theory. The argument in the case of the dual Villain model is identical to the one
presented for the uniformly elliptic∇ϕmodel in the articles of Naddaf and Spencer [82,
Section 2.2.2] and Giacomin, Olla and Spohn [55, Section 3].

3.4.3. The Helffer-Sjöstrand representation formula. — The main reason to introduce
the Helffer-Sjöstrand operator is that it can be used to compute the covariance of gen-
eral functional of the field ϕ through the Helffer-Sjöstrand representation formula. The
result was initially introduced by Helffer-Sjöstrand [68] and Naddaf and Spencer [82,
(1.10)] and is stated below.
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Proposition 3.4.7 (Helffer-Sjöstrand representation formula [68, 82, 55]). — Consider
two functions F,G ∈ H1(µβ) and assume that there exist f, g : Zd × Ω → Rd×(d

2)

satisfying f, g ∈ L2
(
Zd, µβ

)
and such that

(3.4.13) ∂xF = ∇ · f(x, ·) and ∂xG = ∇ · g(x, ·).

Let u ∈ Ḣ1(Zd, µβ) be the solution of the Helffer-Sjöstrand equation Lu = ∇·f . Then
one has the identity

(3.4.14) covµβ
[F,G] =

∑
x∈Zd

⟨g(x, ·)∇u(x, ·)⟩µβ
.

An example of function F ∈ H1(µβ) satisfying (3.4.13) is the function F (ϕ) := ϕ(0)− ϕ(x)
for any x ∈ Zd. For any charge q ∈ Q, the neutrality condition dq = 0 ensures that the
function Fq(ϕ) := (q, ϕ) satisfies (3.4.13). In general, any reasonable function which
depends only on the discrete gradient of the field satisfy this condition. In the rest
of this article, we will apply it to general functional of the field such as the random
variables X and Y defined in (3.3.9) and (3.3.6), which, still due to the neutrality
condition dq = 0, satisfy (3.4.13).

The proof of this result for the ∇ϕ model can be found in [82, (1.10)] and [55,
Proposition 3.1]. The proof for the measure µβ follows from the same arguments.

3.4.4. The Green’s matrix. — In this section, we introduce the Green’s matrix asso-
ciated with the Helffer-Sjöstrand operator L and state some of its main properties
regarding existence, decay and homogenization.

Proposition 3.4.8. — For any function f : Ω → R satisfying f ∈ L2 (µβ) and any
y ∈ Zd, there exists a unique variational solution Gf (·; y) : Zd × Ω → R(d

2)×(d
2) of the

Helffer-Sjöstrand equation

LGf (·; y) = fδy in Zd × Ω.

The map Gf (·; y) is the fundamental solution of the operator L . As it was the case
for the heat kernel Pϕ· , since the operator L is an elliptic system, the fundamental
solution takes its values in the set of matrices of size

(
d
2

)
×
(
d
2

)
. We will refer to it as

the Green’s matrix.
The Green’s function can be used to decompose general solutions the Helffer-

Sjöstrand equation. If we let u be the solution of the Equation (3.4.5) and assume
that f ∈ L2(Zd, µβ) takes the specific form f(y, ϕ) = f(ϕ)g(y) for some f ∈ L2(µβ)

and g ∈ L2(Zd), then we have

u(x, ϕ) =
∑
y∈Zd

∇yGf (x, ϕ; y)g(y).
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Proof. — Using the Gagliardo-Nirenberg-Sobolev inequality, and specifically the in-
equality (3.4.9), we have the upper bound

∀u ∈ Ḣ1(Zd, µβ), ∥u(y, ·)∥2L2(µβ) ≤
∑
y∈Zd

∥∇u(y, ϕ)∥2 .

The previous inequality implies that the bilinear form∑
x,y∈Zd

⟨(∂yu(x, ·))(∂yw(x, ·))⟩µβ
+

1

2β

∑
x∈Zd

⟨∇u(x, ·)∇w(x, ·)⟩µβ

+
1

2β

∑
n≥1

1

β
n
2

∑
x∈Zd

〈
∇n+1u(x, ·),∇n+1w(x, ·)

〉
µβ

+
∑
q∈Q

⟨∇qu · aq∇qw⟩µβ
− ⟨fw(y, ·)⟩µβ

is coercive. The result then follows from the Lax-Milgram Theorem.

As it was the case for the variational solutions of the Helffer-Sjöstrand equation,
the Green’s matrix admits a dynamical interpretation relying on the heat kernel Pϕ·

as stated in the following proposition.

Proposition 3.4.9. — Fix f ∈ L2(µβ) and y ∈ Zd. The Green’s matrix Gf (·; y) satisfies
the identity

(3.4.15) Gf (x, ϕ; y) =

∫ ∞

0

Eϕ

[
f(ϕt)P

ϕ·(t, y, x)
]
dt.

Remark 3.4.10. — Using the previous proposition with the bound of Proposition 3.4.4
on the heat kernel, one can extend the definition of the Green’s matrix to functions
f ∈ L1(µβ) (instead of f ∈ L2(µβ)).

Combining Proposition 3.4.4 and Proposition 3.4.9, we obtain the following upper
bounds on the Green’s function Gf , its gradient and mixed derivative.

Proposition 3.4.11. — For any regularity exponent ε > 0, there exists an inverse tem-
perature β1(d, ε) <∞ such that for any β > β1 the following result holds. There exists
a constant C(d, β) <∞ such that for any x, y ∈ Zd,

∥Gf (x, ·; y)∥L2(µβ) ≤
C ∥f∥L2(µβ)

|x− y|d−2
,

and the regularity estimates on the gradient and the mixed derivative

∥∇xGf (x, ·; y)∥L2(µβ) ≤
C ∥f∥L2(µβ)

|x− y|d−1−ε

and

∥∇x∇yGf (x, ·; y)∥L2(µβ) ≤
C ∥f∥L2(µβ)

|x− y|d−ε
.

In the second part of this section, we investigate the homogenization properties of
the Green’s matrix, which are a crucial ingredient in the proof of Theorem 1. The
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main result we establish is stated in Theorem 2. The proof of this result is the subject
of Sections 6 and 7.

From the theory of stochastic homogenization and its application to the Helffer-
Sjöstrand equation [59, 7, 82, 8], one expects that there exists a deterministic, positive
definite matrix aβ (which is a small perturbation of the matrix 1

2β Id) such that the
Green’s matrix associated with the Helffer-Sjöstrand operator (3.4.4), defined by

LG = δ0 in Zd × Ω

homogenizes to the Green’s matrix G associated with the Laplacian operator ∇·aβ∇

(3.4.16) −∇ · aβ∇G = δ0 in Zd,

in the sense that, as x→∞,∥∥G (x, ·)−G(x)
∥∥

L2(µβ)
= o

(
1

|x|d−2

)
.

When applying to the Villain model (see computations in Section 4) we need more
precise result: specifically, we need to prove quantitative homogenization for the mixed
derivative associated with the Green’s matrix. Results of this nature have been estab-
lished in the homogenization literature (see e.g., [7, Section 8.6] or [20]). The main
contribution of Sections 6 and 7 is to adapt the techniques developed in [8, 7] to the
setting of the Helffer-Sjöstrand operator L .

In order to state Theorem 2, we need to introduce an important quantity in stochas-
tic homogenization: the first-order corrector. For i, j ∈ {1, . . . , d} × {1, . . . ,

(
d
2

)
}, we

recall the notation lij for the affine function introduced in Section 2

lij :=

{
Rd → R(d

2),

x 7→ (0, . . . , 0, x · ei, 0, . . . , 0) ,

where the term x · ei appears in the j-th position. We denote by ∇χij the gradient of
the first-order corrector, defined to be the unique stationary solution of the Helffer-
Sjöstrand equation

L (lij + χij) = 0 in Zd × Ω.

It is precisely defined in Proposition 6.4.4. Once equipped with the gradient of the
corrector, we can define the exterior derivative d∗χij by using that the codifferential
d∗ is a linear functional of the gradient (see (A.2.12)). The following theorem proves a
quantitative homogenization result for a version of the mixed derivative of the Green’s
function (3.4.15), the specific form of the function (3.4.17) is justified by the fact that
it is the correct object to consider in order to prove Theorem 1 in Section 4.

Theorem 2 (Homogenization of the mixed derivative of the Green’s matrix). — We fix
a charge q1 ∈ Q such that 0 belongs to the support of nq1

, let Uq1
be the solution of

the Helffer-Sjöstrand equation

(3.4.17) LUq1
= cos (2π (ϕ, q1)) q1 in Zd × Ω,
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and let Gq1
:=
(
Gq1,1, . . . , Gq1,(d

2)

)
be the map defined by the formula, for each inte-

ger k ∈
{

1, . . . ,
(
d
2

)}
,

(3.4.18) Gq1,k =
∑

1≤i≤d

∑
1≤j≤(d

2)

〈
cos (2π (ϕ, q1))

(
nq1 ,d

∗leij + d∗χij

)〉
µβ
∇iGjk.

There exist an inverse temperature β1 := β1(d) <∞, an exponent γ := γ(d) > 0 and a
constant Cq1

which satisfies the estimate |Cq1
| ≤ C ∥q1∥k

1 for some C := C(d, β) <∞
and k := k(d) < ∞, such that for each β ≥ β0, and each radius R ≥ 1, one has the
inequality

(3.4.19)

∥∥∥∥∥∥∥∇Uq1 −
∑

1≤i≤d

∑
1≤j≤(d

2)

(eij +∇χij)∇iGq1,j

∥∥∥∥∥∥∥
L2(B2R\BR,µβ)

≤ Cq1

Rd+γ
.

Remark 3.4.12. — The functions ∇Uq1
and ∇iGq1

behave like mixed derivative of
Green’s matrices, in particular, they should decay like the map x→ |x|−d. Theorem 2
states that their difference is quantitatively smaller than the typical size of the two
functions: we obtain an algebraic rate of convergence with additional exponent γ > 0

in the right side of (3.4.19).

Remark 3.4.13. — For the purposes of Section 4, we record here that the statement
of Theorem 2 can be simplified by using the formalism of discrete differential forms
and exploiting the symmetries of the system. In particular, we have the following
properties:

— the operator −∇ · aβ∇ can be written

(3.4.20) −∇ · aβ∇ =
1

2β

(
d∗d +

(
1 + λβ

)
dd∗
)
,

where λβ is a real coefficient which is small and tends to 0 as β tends to infinity.
This property is stated in Remark 6.1.11;

— the gradient of the infinite volume corrector only depends on the value of the
codifferential d∗leij

(in particular, it is equal to 0 if d∗leij
= 0) as mentioned

in Remarks 6.4.2 and 6.4.5. We use the notation of Remark 6.4.5: given an
integer k ∈ {1, . . . , d}, we let select a vector p :=

∑
1≤i≤d

∑
1≤j≤(d

2)
pijeij such

that d∗lp = ek and denote by ∇χk :=
∑

1≤i≤d

∑
1≤j≤(d

2)
pij∇χij .

Using these ingredients, we can rewrite the definition of the map Gq1,k stated
in (3.4.18): we have

Gq1,k =
∑

1≤i≤d

⟨cos (2π (ϕ, q1)) (nq1
, ei + d∗χi)⟩µβ

(
d∗G·k

)
· ei.
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We then use that, by definition, the map G·,k solves the equation −∇ · aβ∇G = δ0,
and the identities −∆ = dd∗ + d∗d, d ◦ d = 0, and d∗ ◦ d∗ = 0 to write

−
(
1 + λβ

)
∆d∗G·,k =

(
1 + λβ

)
(dd∗ + d∗d) d∗G·k =

(
1 + λβ

)
d∗dd∗G·k

= d∗
(
d∗dG·k +

(
1 + λβ

)
dd∗
)
G·k

= d∗
(
−∇ · aβ∇G·,k

)
= d∗δ0.

The exterior derivative d∗G can thus be explicitly computed in terms of the gradi-
ent of the Green’s matrix associated with the operator −

(
1 + λβ

)
∆, which is equal

to the standard random walk Green’s function on the lattice Zd multiplied by the
value

(
1 + λβ

)−1
.
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CHAPTER 4

FIRST-ORDER EXPANSION
OF THE TWO-POINT FUNCTION:

OVERVIEW OF THE PROOF

In this section, we show that Theorem 1 can be obtained by combining Theorem 2,
which gives a quantitative rate of convergence of the mixed gradients of the Helffer-
Sjöstrand Green’s matrix, with the regularity theory for the Helffer-Sjöstrand operator
established in Section 5.

In order to prove Theorem 1 it is enough, by Proposition 3.3.2, to prove the ex-
pansion stated in the following theorem.

Theorem 3. — There exist constants β0 := β0(d), c0 := c0 (β, d) , c1 (β, d), and an
exponent γ′ := γ′(d) > 0 such that for every β > β0, and every x ∈ Zd,

Z (σ0x)

Z(0)
= c0 +

c1
|x|d−2

+O

(
C

|x|d−2+γ′

)
,

and
Z (σ0x)

Z(0)
= c0 +

c1
|x|d−2

+O

(
C

|x|d−2+γ′

)
.

The proof of Theorem 3 requires to use the following statements stated in Section 3
and proved in Sections 5, 6 and 7:

— We use the quantitative homogenization of the mixed derivative of the Green’s
matrix associated with the Helffer-Sjöstrand operator L . The precise statement
we need to use is stated in Theorem 2. The proof of this theorem is the subject
of Sections 6 and 7;

— We use the C0,1−ε-regularity theory established in Section 5; more specifically,
we need to use the regularity estimates for the Helffer-Sjöstrand Green’s ma-
trix stated in Proposition 3.4.11 and on the Green’s matrix associated with
the second-order Helffer-Sjöstrand operator stated in Proposition 5.4.4. We ad-
ditionally make the assumption that the regularity exponent ε is very small
compared to the exponent γ which appears in the statement of Theorem 2 (for
instance, we assume that the ratio γ/ε is larger than 100d). This condition can
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always be ensured by increasing the inverse temperature β (as the exponent γ
depends only on the dimension).

Apart from these three results, the proof of Theorem 3, which is contained in this
section (and Section 8 for the technical estimates), is largely independent from Sec-
tions 5, 6 and 7.

This section is organized as follows. We first set up the argument and introduce
some preliminary notation in Section 4.1. We then simplify the expression (4.1.1)
below in a series of technical lemmas stated in Sections 4.2, 4.3 and 4.4. In particular,
in Sections 4.3 and 4.4, we sketch the argument that one can decouple the Helffer-
Sjöstrand Green’s matrix from the exponential terms arising from the dual model in
Section 3. The proofs of these lemmas rely on the C0,1−ε-regularity theory established
in Section 5, we give an outline of the arguments and postpone the proofs to Section 8.
The core of the proof of Theorem 3 (thus Theorem 1) is given in Section 4.5. This
section is decomposed into two subsections. We first write an outline of the argument
in Section 4.5.1 and then present the details of the proof in Section 4.5.2.

4.1. Preliminary notation

We first recall that we have the identity
Zβ(σ0x)

Zβ(0)
=

〈
exp

(∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(σ0x, q))(4.1.1)

+
∑
q∈Q

z(β, q) cos (2π(ϕ, q)) (cos (2π(σ0x, q))− 1)

)〉
µβ

.

We also recall that, by the definition of the function σ0x given in Section 3.1, we have
the equality

d∗σ0x = d∗d (−∆)
−1
h0x = h0,x − dd∗ (−∆)

−1
h0x = h0,x − d (−∆)

−1
d∗h0x

= h0,x − d (−∆)
−1

(1x − 10)

= h0,x +∇G−∇Gx.

We then use the identity q = dnq, that the maps q, nq and h0,x take values in Z, and
the periodicity of the sine and the cosine to deduce that

sin (2π(σ0x, q)) = sin (2π(∇G−∇Gx, nq))

and

cos (2π(σ0x, q)) = cos (2π(∇G−∇Gx, nq)) .
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One can then expand the sine and the cosine by using the trigonometric formulae.
We obtain the identities

sin (2π(∇G−∇Gx, nq)) = sin (2π(∇G,nq))− sin (2π(∇Gx, nq))(4.1.2)

+ (cos (2π(∇Gx, nq))− 1) sin (2π(∇G,nq))

− (cos (2π(∇G,nq))− 1) sin (2π(∇Gx, nq)) ,

and

cos (2π(∇G−∇Gx, nq))− 1 = (cos (2π(∇G,nq))− 1) (cos (2π(∇Gx, nq))− 1)

(4.1.3)

+ (cos (2π(∇G,nq))− 1) + (cos (2π(∇Gx, nq))− 1)

+ sin (2π(∇G,nq)) sin (2π(∇Gx, nq)) .

We then combine the identities (4.1.2) and (4.1.3) with the right side of (4.1.1). To
ease the notation, we introduce the following random variables
(4.1.4)

Xx := exp

(
−
∑
q∈Q

z(β, q)

(
sin (2π(ϕ, q)) sin (2π(∇Gx, nq))−

1

2
cos (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1)

)
,

Y0 := exp

(∑
q∈Q

z(β, q)

(
sin (2π(ϕ, q)) sin (2π(∇G, nq)) +

1

2
cos (2π(ϕ, q)) (cos (2π(∇G, nq))− 1)

))
,

Yx := exp

(∑
q∈Q

z(β, q)

(
sin (2π(ϕ, q)) sin (2π(∇Gx, nq)) +

1

2
cos (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1)

))
,

Xsin cos := exp

(
−
∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇Gx, nq)) (cos (2π(∇G, nq))− 1)

)

× exp

(∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇G, nq)) (cos (2π(∇Gx, nq))− 1)

)
,

Xcos cos := exp

(∑
q∈Q

z(β, q) cos (2π(ϕ, q)) (cos (2π(∇G, nq))− 1) (cos (2π(∇Gx, nq))− 1)

)
,

Xsin sin := exp

(∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G, nq)) sin (2π(∇Gx, nq))

)
.

In this notation we have

(4.1.5)
Zβ(σ0x)

Zβ(0)
= ⟨Y0XxXsin cosXcos cosXsin sin⟩µβ

.

Our aim is to first simplify the identity (4.1.5) and then to apply Theorem 2.

4.2. Removing the terms Xsin cos, Xcos cos and Xsin sin

We first show that the terms Xsin cos, Xcos cos and Xsin sin are lower order terms
which can be removed from the analysis. We prove the following lemma.
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Lemma 4.2.1. — There exist constants β0 := β0(d) <∞, c := c(d, β), and C := C(d, β)

such that, for each β > β0,

(4.2.1)
Zβ(σ0x)

Zβ(0)
= ⟨Y0Xx⟩µβ

+
c ⟨Y0Xx⟩µβ

|x|d−2
+O

(
C

|x|d−1

)
.

A consequence of the identity (4.2.1) is the equivalence

∃c1, c2 ∈ R,
Zβ(σ0x)

Zβ(0)
= c1 +

c2
|x|d−2

+O

(
C

|x|d−2+γ′

)
⇐⇒ ∃c1, c2 ∈ R, ⟨Y0Xx⟩µβ

= c1 +
c2

|x|d−2
+O

(
C

|x|d−2+γ′

)
.

This lemma is technical and its proof is not the core of the argument; the proof is
thus deferred to Section 8. We provide here a sketch of the argument.

Sketch of the proof of Lemma 4.2.1. — To prove the identity (4.2.1), we first record
four standard inequalities, for each y ∈ Zd, and each a ∈ R,
(4.2.2)

|∇G(y)| ≤ C

|y|d−1
, |∇Gx(y)| ≤ C

|y − x|d−1
, |sin a| ≤ |a|, and |cos a− 1| ≤ 1

2
|a|2.

Using the estimates (4.2.2) and the exponential decay of the coefficient z(β, q), we
prove the following estimates:

(i) The random variables Xsin cos and Xcos cos belong to the space L∞ (µβ) and
satisfy the estimates

(4.2.3)


∥Xsin cos − 1∥L∞ ≤ C

|x|d−1
,

∥Xcos cos − 1∥L∞ ≤ C

|x|d−1
.

(ii) We prove that the random variableXsin sin also belongs to the space L∞ (µβ) and
that its fluctuations around the value 1 are of order |x|2−d. This is larger than
the fluctuations of the random variables Xsin cos and Xcos cos and one needs to be
more precise in the analysis: we prove the following estimates on the expectation
and the variance of Xsin sin

(4.2.4)


varµβ

Xsin sin ≤
C

|x|2d−2
,

⟨Xsin sin⟩µβ
= 1 +

c

|x|d−2
+O

(
C

|x|d−1

)
.

The variance is estimated thanks to the Brascamp-Lieb inequality and the ex-
pectation is estimated thanks to the estimates (4.2.2) and a Taylor expansion
of the exponential.

A combination of the estimates (4.2.3) and (4.2.4) is then sufficient to prove
Lemma 4.2.1.
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Remark 4.2.2. — The same proof also yields

(4.2.5)
Zβ(σ0x)

Zβ(0)
= ⟨Y0Yx⟩µβ

+
c ⟨Y0Yx⟩µβ

|x|d−2
+O

(
C

|x|d−1

)
.

In general, c ̸= c since the O(|x|d−2) term above is contributed by ⟨X−1
sin sin⟩µβ

instead
of ⟨Xsin sin⟩µβ

.

4.3. Removing the contributions of the cosines

From Lemma 4.2.1, we see that to prove Theorem 1, it is sufficient to obtain the
following expansion

(4.3.1) ∃c1, c2 ∈ R, ⟨Y0Xx⟩µβ
= c1 +

c2
|x|d−2

+O

(
C

|x|d−2+γ′

)
.

Let us note that, by the translation invariance of the measure µβ , the expectation of
the random variableXx does not depend on the point x ∈ Zd: we have, for each x ∈ Zd,
⟨Xx⟩µβ

= ⟨X0⟩µβ
. A consequence of this observation is that to prove (4.3.1), it is

sufficient to show

(4.3.2) cov [Xx, Y0] =
c2

|x|d−2
+O

(
C

|x|d−2+γ′

)
.

Indeed, the expansion (4.3.2) implies (4.3.1) with the value c1 = ⟨Y0⟩µβ
⟨X0⟩µβ

. To
prove the identity (4.3.1), we use the Helffer-Sjöstrand representation formula and
write the covariance in the following form

(4.3.3) cov [Xx, Y0] =
∑

y∈Zd ⟨(∂yXx) Y (y, ·)⟩µβ
,

where Y : Zd × Ω → R(d
2) is the solution of the Helffer-Sjöstrand equation, for

each (y, ϕ) ∈ Zd × Ω,

(4.3.4) LY (y, ϕ) = ∂yY0(ϕ).

For each point x ∈ Zd, we introduce the notation Qx : Zd × Ω → R(d
2) to denote the

following function: for each pair (y, ϕ) ∈ Zd × Ω,

(4.3.5) Qx(y, ϕ) := 2π
∑

q∈Q z(β, q) cos (2π(ϕ, q)) sin (2π(∇Gx, nq)) q(y).

These charges are defined so as to have the identities, for each y ∈ Zd,
(4.3.6)

∂yY0(ϕ) =

(
Q0(y, ϕ)− 1

2
2π
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇G,nq))− 1) q(y)

)
Y0(ϕ)

and
(4.3.7)

∂yXx(ϕ) = −
(
Qx(y, ϕ) +

1

2
2π
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1) q(y)

)
Xx(ϕ).
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We also define the random charges nQx : Zd × Ω → Rd according to the formula
(4.3.8)
nQx

:=
∑
q∈Q

2πz(β, q) (cos (2π(ϕ, q)) sin (2π(∇Gx, nq)))nq so that dnQx
= Qx.

We note that, by the exponential decay |z (β, q)| ≤ Ce−c
√

β∥q∥1 , the decay of the
gradient of the Green’s matrix stated in (4.2.2), and the inequality | sin a| ≤ |a|, the
random charges Qx and nQx

satisfy the L∞ (µβ)-estimate: for each y ∈ Zd,

(4.3.9) ∥Qx(y, ·)∥L∞(µβ) ≤
C

|y − x|d−1
and ∥nQx(y, ·)∥L∞(µβ) ≤

C

|y − x|d−1
.

By a similar argument, but using this time the inequality | cos a − 1| ≤ 1
2 |a|

2, one
obtains the inequality, for each y ∈ Zd,

(4.3.10)

∣∣∣∣∣∣
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1) q(y)

∣∣∣∣∣∣ ≤ C

|y − x|2d−2

and

(4.3.11)

∣∣∣∣∣∣
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1)nq(y)

∣∣∣∣∣∣ ≤ C

|y − x|2d−2
.

The reason we record the inequalities (4.3.10) and (4.3.11) is that, since 2d−2 > d−1,
the function x 7→ |x|2d−2 decays faster than x 7→ |x|d−1. From this observation,
we expect that the terms Q0(y)Y0 and Qx(y)Xx are the leading order terms in the
identities (4.3.6) and (4.3.7), and that the terms involving the cosine of the gradient of
the Green’s functions are lower order terms which can be removed from the analysis.
This is what is proved in the following lemma.

Lemma 4.3.1 (Removing the contributions of the cosines). — One has the identity

(4.3.12) cov [Xx, Y0] =
∑
y∈Zd

⟨XxQx(y)V(y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
,

where V : Zd × Ω → R(d
2) is the solution of the Helffer-Sjöstrand equation, for each

pair (y, ϕ) ∈ Zd × Ω,

(4.3.13) LV(y, ϕ) = Q0(y, ϕ)Y0(ϕ).

A consequence of the identity (4.3.12) is the equivalence

∃c2 ∈ R, cov [Xx, Y0] =
c2

|x|d−2
+O

(
C

|x|d−2+γ′

)
⇐⇒ ∃c2 ∈ R,

∑
y∈Zd

⟨XxQx(y)V(y, ·)⟩µβ
=

c2
|x|d−2

+O

(
C

|x|d−2+γ′

)
.

The proof of this result is again technical and does not represent the core of the
argument; it is thus deferred to Section 8. The argument relies on two ingredients:
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(i) We use the decay estimates for the Helffer-Sjöstrand Green’s matrix, its gradient
and its mixed derivative stated in Proposition 3.4.11;

(ii) We use the estimates (4.3.9) and (4.3.11) and take advantage of the fact that
the function x 7→ |x|2d−2 decays faster than the map x 7→ |x|d−1.

We complete this section by recording that we may also prove

∃c1, c2 ∈ R, ⟨Y0Yx⟩µβ
= c1 +

c2
|x|d−2

+O

(
C

|x|d−2+γ′

)
(4.3.14)

by showing

cov [Yx, Y0] =
c2

|x|d−2
+O

(
C

|x|d−2+γ′

)
.

Indeed, we have the following analogue of (4.3.12)

cov [Yx, Y0] =
∑
y∈Zd

⟨YxQx(y)V(y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.

The proof of this identity is almost the same as (4.3.12) with only notational changes,
and is therefore omitted.

4.4. Decoupling the exponentials

The next (and final) technical step consists in removing the exponential terms Xx

and Y0 from the computation. To this end, we prove the decorrelation estimate stated
in the following lemma.

Lemma 4.4.1 (Decoupling the exponential terms). — One has the expansions

cov [Xx, Y0] = ⟨Y0⟩µβ
⟨X0⟩µβ

∑
y∈Zd

⟨Qx(y, ·)U (y, ·)⟩µβ
+O

(
C

|x|d−1+ε

)
,(4.4.1)

and

cov [Yx, Y0] = ⟨Y0⟩2µβ

∑
y∈Zd

⟨Qx(y, ·)U (y, ·)⟩µβ
+O

(
C

|x|d−1+ε

)
,(4.4.2)

where the function U : Zd×Ω → R(d
2) is the solution of the Helffer-Sjöstrand equation

L U = Q0 in Zd × Ω.

The identity (4.4.1) implies the equivalence

∃c2 ∈ R,
∑
y∈Zd

⟨XxQx(y, ·)V(y, ·)⟩µβ
=

c2
|x|d−2

+O

(
C

|x|d−2+γ′

)

⇐⇒ ∃c2 ∈ R,
∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
=

c2
|x|d−2

+O

(
C

|x|d−2+γ′

)
.
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Remark 4.4.2. — The function U can be decomposed according to the following pro-
cedure: if, for each charge q ∈ Q, we denote by Uq : Zd × Ω → R(d

2) the solution of
the Helffer-Sjöstrand equation

(4.4.3) LUq = cos (2π (ϕ, q)) q in Zd × Ω,

then we have the identity

(4.4.4) U = 2π
∑
q∈Q

z(β, q) sin (2π(∇G,nq)) Uq.

Remark 4.4.3. — By writing q = dnq, we can rewrite the Equation (4.4.3) in the
following form

LUq = d (cos (2π (·, q1))nq) in Zd × Ω.

As a consequence the function Uq can be expressed in terms of the Helffer-Sjöstrand
Green’s matrix according to the formula, for each pair (y, ϕ) ∈ Zd × Ω,

(4.4.5) Uq(y, ϕ) =
∑

z∈supp nq

d∗zGcos(2π(·,q))(y, ϕ; z)nq(z).

Using the decay estimate on the gradient and mixed derivative of the Green’s matrix
stated in Proposition 3.4.11, we obtain that the map Uq satisfies the upper bounds,
for each y ∈ Zd,

(4.4.6) ∥Uq(y, ·)∥L∞(µβ) ≤
Cq

|y − z|d−1−ε
and ∥∇Uq(y, ·)∥L∞(µβ) ≤

Cq

|y − z|d−ε
,

where z is a point which belongs to the support of the charge nq (chosen arbitrarily).

Remark 4.4.4. — A consequence of the estimate (4.4.6) is that by using the exponen-
tial decay of the coefficient z (β, q) (see (3.1.14)) and the inequality, for each charge
q ∈ Q,

|sin (2π(∇G,nq))| ≤ 2π |(∇G,nq)| ≤ 2π ∥∇G∥L2(supp nq) ∥nq∥2 ≤
Cq

|z|d−1
,

where z is a point in the support of nq (chosen arbitrarily), we deduce the inequality,
for each point y ∈ Zd,

∥U (y, ·)∥L∞(µβ) ≤ 2π
∑
z∈Zd

∑
q∈Qz

|z(β, q) sin (2π(∇G,nq))| ∥Uq(y, ·)∥L∞(µβ)

≤
∑
z∈Zd

∑
q∈Qz

e−c
√

β∥q∥1
Cq

|z|d−1 × |y − z|d−1−ε

≤ C
∑
z∈Zd

1

|z|d−1 × |y − z|d−1−ε

≤ C

|y|d−2−ε
.
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where we used the exponential decay of the term e−c
√

β∥q∥1 to absorb the algebraic
growth of the term Cq ≤ C ∥q∥k

1 in the third inequality. The same argument also
yields the estimate

∥∇U (y, ·)∥L∞(µβ) ≤
C

|y|d−1−ε
.

We now give an heuristic argument explaining why we expect the decoupling esti-
mate (4.4.1) to hold.

Heuristic of the proof of Lemma 4.4.1. — The strategy of the proof is to first decou-
ple the exponential term Xx and then decouple the exponential term Y0; to decouple
the term Xx, we prove the expansion
(4.4.7)∑

y∈Zd

⟨XxQx(y, ·)V(y, ·)⟩µβ
= ⟨X0⟩µβ

∑
y∈Zd

⟨Qx(y, ·)V(y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.

A heuristic reason justifying why one can expect the expansion (4.4.7) to hold is the
following. By the definition of the random variable Xx given in (4.1.4) and the decay
of the gradient of the Green’s function ∇Gx stated in (4.2.2), we expect the random
variable Xx to essentially depend on the value of the gradient of the field around the
point x. The statement is voluntarily vague; one could give a mathematical meaning
to it by arguing that if one considers a large constant C depending only on the
dimension d, then the conditional expectation of the random variable Xx with respect
to the sigma-algebra generated by the fields (∇ϕ(y))y∈B(x,C) is a good approximation
of the random variable Xx in the space L2 (µβ).

Additionally, using similar arguments to the one presented in Remarks 4.4.3
and 4.4.4, but using the L2 (µβ)-estimate ∥Y0∥L2(µβ) ≤ C instead of the (stronger)
pointwise upper bound |cos (2π (ϕ, q))| ≤ 1, one obtains the L2(µβ)-estimate, for
each y ∈ Zd,

(4.4.8) ∥∇V(y, ·)∥L2(µβ) ≤
C

|y|d−1−ε
.

While we can prove the estimate (4.4.8) using Proposition 3.4.11, we expect that its
real decay is of order |y|1−d, and make this assumption for the rest of the argument.
We use an integration by parts to write, for each field ϕ ∈ Ω,∑

y∈Zd

Qx(y, ϕ)V(y, ϕ) =
∑
y∈Zd

nQx(y, ϕ)d∗V(y, ϕ).

Since we expect the random charge nQx(y) to decay like |y − x|1−d (see the esti-
mate (4.3.9)), and the random variable d∗V(y, ·) to decay |y|1−d (since the codiffer-
ential d∗ is a linear functional of the gradient ∇), we have

(4.4.9)
∑
y∈Zd

nQx
(y, ϕ)d∗V(y, ϕ) ≃

∑
y∈Zd

1

|y − x|d−1
× 1

|y|d−1
≃ 1

|x|d−2
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



68 CHAPTER 4. FIRST-ORDER EXPANSION OF THE TWO-POINT FUNCTION

The point of the identity (4.4.9) is that while we expect the sum
∑

y∈Zd nQx
(y, ϕ)d∗V(y, ϕ)

to be of order |x|2−d, its restriction to the ball B(x,C) is of lower-order since we have∑
y∈B(x,C)

nQx
(y, ϕ)d∗V(y, ϕ) ≃

∑
y∈B(x,C)

1

|y − x|d−1
× 1

|y|d−1
≃ 1

|x|d−1
.

A consequence of this result is that we expect the main contribution of the sum∑
y∈Zd nQx(y, ϕ)d∗V(y, ϕ) to come mostly from the points y outside the ball B(x,C).

To summarize the heuristic explanation, one should expect that:

— the random variable Xx depends mostly on the gradient of the field inside a
ball B(x,C) for some large but fixed constant C depending only on the dimen-
sion;

— the random variable
∑

y∈Zd nQx
(y, ϕ)d∗V(y, ϕ) depends mostly on the value of

the gradient of the field outside the ball B(x,C).

Since the gradient of the field decorrelates (sufficiently fast in our case), we expect
the random variable

∑
y∈Zd nQx

(y, ϕ)d∗V(y, ϕ) and Xx to decorrelate; this is what is
proved by (4.4.7).

Once we have proved the identity (4.4.7), we can prove the expansion (4.3.12) by
applying the same argument, and by using the symmetry of the Helffer-Sjöstrand
operator.

4.5. First order expansion of the two-point function

Once the Lemmas 4.2.1, 4.3.1 and 4.4.1 are established, we have showed that, to
prove Theorem 3, it is enough to obtain the expansion

(4.5.1) ∃c ∈ R,
∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
=

c

|x|d−2
+O

(
C

|x|d−2+γ′

)
.

This section is devoted to the proof of (4.5.1). We first give a sketch of the proof
in Section 4.5.1 and provide the details of the argument in Section 4.5.2.

4.5.1. Heuristic argument. — In this section, we present a heuristic argument for
the proof of the expansion (4.5.1). A large part of the proof is concerned with the
treatment of the technicalities inherent to the dual Villain model (sum over all the
charges q ∈ Q, presence of a sine etc.). In order to highlight the main ideas of the
argument, we make the following simplifications:

— We assume that for β large enough, one may essentially reduce the charges to the
collection of dipoles

(
d1{y,y+ei}

)
y∈Zd,1≤i≤d

. The exponential decay on the coef-
ficient z (β, q) constraints the L1-norm of the charge q to be small. One can thus
assume that only the charges q ∈ Q which minimize the value ∥q∥1 contribute
to the sum; this leads us to considering the dipoles

(
d1{x,x+ei}

)
x∈Zd,1≤i≤d

. We
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will thus assume that only the dipoles
(
d1{x,x+ei}

)
x∈Zd,1≤i≤d

count in the sum,
and we will denote by z(β) = z(β; d1{x,x+ei}).

An important, but mostly technical, part of the argument presented in Sec-
tion 4.5.2 is devoted to proving that this dipole approximation yields the correct
picture. Under this assumption, one has the simplifications

Qx = z(β)
∑d

i=1

∑
y∈Zd 2π sin (2π∇iG(y)) d1{y,y+ei}

and

U = z(β)
∑d

i=1

∑
y∈Zd 2π sin (2π∇iGx(y)) Uy,i,

where the function Uy,i is the solution of the Helffer-Sjöstrand equation

LUy,i = d
(
cos (2π (d∗ϕ(y) · ei)) 1{y,y+ei}

)
in Zd × Ω.

— Since the gradients of the Green’s functions ∇iG(y) are usually small, we con-
sider the first-order expansion of the sine and replace the value sin (2π∇iGx(y))

by 2π∇iGx(y). With this assumption, we have

Qx = z(β)(2π)2
∑d

i=1

∑
y∈Zd ∇iG(y)d1{y,y+ei}

and

U = z(β)(2π)2
∑d

i=1

∑
y∈Zd ∇iGx(y)Uy,i.

Using these simplifications, we compute

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= z(β)2(4π2)2

(4.5.2)

×
d∑

i,j=1

∑
y,y1∈Zd

∇iG(y)∇jGx(y1) ⟨cos(2πd∗ϕ(y1) · ei)d
∗Uy,j(y1, ϕ) · ei⟩µβ

.

Using the translation invariance of the measure µβ , one has the identity, for each pair
of points y, y1 ∈ Zd,
(4.5.3)
⟨cos(2πd∗ϕ(y1) · ei)d

∗Uy,j(y1, ϕ) · ei⟩µβ
= ⟨cos(2πd∗ϕ(y1 − y) · ei)d

∗U0,j(y1 − y, ϕ) · ei⟩µβ
.

Putting the identity (4.5.3) into the equality (4.5.2) and performing the change of
variable κ := y1 − y, we obtain

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= z(β)2(4π2)2

(4.5.4)

×
d∑

i,j=1

∑
y,κ∈Zd

∇iG(y)∇jGx(κ− y) ⟨cos(2πd∗ϕ(κ) · ei)d
∗U0,j(κ, ϕ) · ei⟩µβ

.

The strategy is then to simplify the right side of (4.5.4) by arguing that the
term d∗U0,j behaves like the mixed derivative of a deterministic Green’s function.
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Proving a quantitative version of this result is the subject of Theorem 2 which is
proved in Sections 7 and 8; in this setting, it can be stated as follows: there exists
an exponent γ := γ(d) > 0 and, for each pair of integers i, j ∈ {1, . . . , d}, there exist
deterministic constants ci,j := ci,j(d, β) such that, for each radius R ≥ 1,
(4.5.5)∑
κ∈B2R\BR

∣∣∣∣∣∣⟨cos(2πd∗ϕ(κ) · ei)d
∗U0,j(κ, ϕ) · ei⟩µβ

−
d∑

i1,j1=1

ci,i1cj,j1∇i1∇j1G(κ)

∣∣∣∣∣∣ ≤ C

Rγ
.

Once equipped with this estimate, we let Ei,j : Zd 7→ R be the error term defined
according to the formula, for each κ ∈ Zd,

Ei,j(κ) := ⟨cos(d∗ϕ(κ) · ei)d
∗U0,j(κ, ϕ) · ei⟩µβ

−
d∑

i1,j1=1

ci,i1cj,j1∇i1∇j1G(κ).

According to the regularity estimate on the gradient of the Helffer-Sjöstrand Green’s
matrix stated in Proposition 3.4.11 (via the Formula (4.4.5)) and the homogenization
estimate (4.5.5), this term satisfies the L1 and pointwise estimates

(4.5.6) ∀R ≥ 1,
1

Rd

∑
κ∈B2R\BR

|Ei,j(κ)| ≤
C

Rd+γ
and ∀κ ∈ Zd, |Ei,j(κ)| ≤

C

|κ|d−ε
.

We can use the definition of the term Ei,j to rewrite the identity (4.5.4). We obtain

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= z(β)2(4π2)2

d∑
i,i1,j,j1=1

ci,i1cj,j1
∑

y,κ∈Zd

∇iG(y)∇jGx(κ− y)∇i1∇j1G(κ)

(4.5.7)

+ z(β)2(4π2)2
d∑

i,j=1

∇iG(y)∇jGx(κ− y)Ei,j(κ).

The right side of the identity (4.5.7) can then be refined. First using the esti-
mates (4.5.6) on the error term Ei,j and Proposition 8.5.1 proved in Section 8.5, we
can show the following expansion: there exists an exponent γ′ := γ′(d) > 0 such that

(4.5.8)
d∑

i,j=1

∑
y,κ∈Zd

∇iG(y)∇jGx(κ− y)Ei,j(κ)

=

d∑
i,j=1

Ki,j

∑
y,κ∈Zd

∇iG(y)∇jGx(κ− y) +O

(
C

|x|d−2+γ′

)
,

where the constants Ki,j are obtained from the error terms Ei,j according to the
formula

Ki,j := z(β)2
(
4π2
)2 ∑

κ∈Zd

Ei,j(κ),
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which, by the estimate (4.5.6), is well-defined. A combination of the identity (4.5.7)
with the expansion (4.5.8) then shows

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= z(β)2(4π2)2

d∑
i,i1,j,j1=1

ci,i1cj,j1
∑

y,κ∈Zd

∇iG(y)∇jGx(κ− y)∇i1∇j1G(κ)

(4.5.9)

+

d∑
i,j=1

Ki,j

∑
y,κ∈Zd

∇iG(y)∇jGx(κ− y) +O

(
C

|x|d−2+γ′

)
.

This expansion does not give the Result (4.5.1) directly and we need to exploit the
symmetries of the dual Villain model to conclude. The argument relies on the fol-
lowing observation: since the Villain and dual Villain model are invariant under
the action of the group H of the lattice preserving transformations introduced in
Section 2, the same property holds for the two-point function, and thus for the
map x 7→

∑
y∈Zd ⟨Qx(y)U (y, ·)⟩µβ

.
One can then use this invariance property together with the expansion (4.5.9) to

prove that this expansion must take the simpler form

(4.5.10)
∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
=

c

|x|d−2
+O

(
C

|x|d−2+γ′

)
.

This is achieved by using the property of the discrete Green’s function and relies
on tools from Fourier analysis. The proof can be found in Section 8.4. The expan-
sion (4.5.10) is exactly (4.5.1); the proof is thus complete.

4.5.2. Proof of the expansion (4.5.1). — We first write Qx = dnQx , perform an in-
tegration by parts, and use the identities (4.3.8) and (4.4.4) to expand the sum∑

y∈Zd ⟨Qx(y)U (y, ·)⟩µβ
. We obtain

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ

∑
y∈Zd

⟨nQx
(y)d∗U (y, ·)⟩µβ

(4.5.11)

= (4π2)2
∑
y∈Zd

∑
q1,q2∈Q

z(β, q1)z(β, q2) sin (2π(∇G,nq2)) sin (2π(∇Gx, nq1))

× ⟨cos (2π(ϕ, q1)) d∗Uq2
(y, ϕ)⟩µβ

nq1
(y).

To simplify the sum over all the charges q1, q2, we introduce an equivalence relation
on the set of charges Q: we say that two charges q and q′ are equivalent, and denote
it by q ∼ q′, if and only if one is the translation of the other, i.e.,

q ∼ q′ ⇐⇒ ∃z ∈ Zd, q(z + ·) = q′.

This relation gives rise to a quotient space, which we denote by Q/Zd. For each charge
q ∈ Q, we denote by [q] its equivalence class. For each equivalence class [q] ∈ Q/Zd, we
select a charge q ∈ Q0 which belongs to this equivalent class (and break ties among
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the possible candidates by using an arbitrary criterion). We note that, for each charge
q ∈ Q, by the definition of the charge nq and of the coefficient z (β, q), we have the
identities, for each point z ∈ Zd,

(4.5.12) z (β, q) = z (β, q(· − z)) , nq(·−z) = nq(· − z) and
(
nq(·−z)

)
= (nq) .

We also note that, by using the translation invariance of the measure µβ and the
definition of the function Uq2

given in (4.4.3), we have the equality, for each pair of
points (y, z) ∈ Zd,〈

cos (2π(ϕ, q1)) d∗Uq2(·−z)(y, ϕ)
〉

µβ
= ⟨cos (2π(ϕ, q1(·+ z))) d∗Uq2(y − z, ϕ)⟩µβ

.

Additionally, we can decompose the sum over the charges q ∈ Q along the equivalence
classes, i.e., we can write, for any summable function F : Q → R,

(4.5.13)
∑
q∈Q

F (q) =
∑

[q]∈Q/Zd

∑
z∈Zd

F (q (· − z)).

Combining the identities (4.5.12) and (4.5.13), we can rewrite the equality (4.5.11),∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= (4π2)2

∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)(4.5.14)

×
[ ∑

z1,z2,y∈Zd

sin (2π(∇G,nq2
(· − z2))) sin (2π(∇Gx, nq1

(· − z1)))

× ⟨cos (2π(ϕ, q1(· − z1 + z2))) d∗Uq2
(y − z2, ϕ)⟩µβ

nq1
(y − z1)

]
.

We first rearrange the identity (4.5.14). We use the identities (∇Gx, nq1
(· − z1)) =

(∇Gx(·+ z1), nq1
), (∇G,nq2

(· − z2)) = (∇G(·+ z2), nq2
), and perform the change of

variable y := y − z1. We obtain

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= (4π2)2

∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)

(4.5.15)

×

 ∑
z1,z2,y∈Zd

sin (2π(∇G(·+ z2), nq2
)) sin (2π(∇Gx(·+ z1), nq1

)) Cnq1
(y)

 ,
︸ ︷︷ ︸

(4.5.15)–(q1,q2)

where C = ⟨cos (2π(ϕ, q1(· − z1 + z2))) d∗Uq2(y + z1 − z2, ϕ)⟩µβ
. The rest of the proof

is decomposed into two steps:

— In the first step, we use Theorem 2 and the regularity estimates established
in Proposition 3.4.11 to prove the following result: there exists an exponent
γ′ := γ′(d) > 0 such that for each pair of charges q1, q2 ∈ Q, and each pair of
integers (i, j) ∈ {1, . . . , d}2, there exist constants Kq1,q2

:= Kq1,q2
(q1, q2, d, β),

Cq1,q2 := Cq1,q2(q1, q2, d, β), cq1

ij := cq1

ij (i, j, q1, d, β) such that the term
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(4.5.15)–(q1, q2) satisfies the expansion

(4.5.16)

(4.5.15)–(q1, q2) =

d∑
i,j,k,l=1

cq1

ij c
q2

kl

∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x− z2)

+Kq1,q2

∑
z1∈Zd

∇G(z1) · (nq2
)×∇Gx(x− z1) · (nq1

) +O

(
Cq1,q2

|x|d−2+γ′

)
.

We recall that the vectors (nq1) and (nq2) belongs to Rd and are defined by the
formulae

(nq1
) :=

∑
y∈Zd

nq1
(y) and (nq2

) :=
∑
y∈Zd

nq2
(y).

We also record that all the constants Kq1,q2
, cq1,q2

ij and Cq1,q2
grow at most

algebraically fast in the values ∥q1∥1 and ∥q2∥1, i.e., there exist an exponent
k := k(d) < ∞ and a constant C := C(d, β) < ∞ such that one has the
estimates

(4.5.17)∣∣cq1

ij

∣∣ ≤ C ∥q1∥k
1 , |Kq1,q2

| ≤ C ∥q1∥k
1 ∥q2∥

k
1 , and |Cq1,q2

| ≤ C ∥q1∥k
1 ∥q2∥

k
1 .

— In the second step, we use the symmetry and rotation invariance of the dual
Villain model to prove that the expansion (4.5.16) implies the expansion (4.5.1).

We focus on the proof of (4.5.16) and first simplify the term (4.5.15)–(q1, q2) by
removing the sine. To this end, we use the following ingredients:

— We use the inequality, |sin a− a| ≤ 1
6a

3, valid for any real number a ∈ R, and
the inequality, for each charge q ∈ Q0, and each point z ∈ Zd,

|(∇G,nq(· − z))| ≤ Cq

|z|d−1
.

We deduce that, for each pair of points z1, z2 ∈ Zd,

(4.5.18) |sin (2π(∇G(·+ z2), nq2
))− 2π(∇G(·+ z2), nq2

)| ≤ Cq2

|z2|3d−3
,

and

(4.5.19) |sin (2π(∇Gx(·+ z1), nq1
))− 2π(∇Gx(·+ z1), nq1

)| ≤ Cq1

|z1 − x|3d−3
.

— We further simplify the terms 2π(∇G,nq2(·−z2)) and 2π(∇Gx, nq1(·−z1)). We
use that the double gradient of the Green’s function decays like |z|−d, and the
assumption that the point 0 belongs to the supports of the charges nq1

and nq2
.
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We obtain

|2π(∇Gx(·+ z1), nq1)− 2π (nq1) · ∇Gx(z1)| = |2π(∇Gx(z1 + ·)−∇Gx(z1), nq1)|

(4.5.20)

≤ Cq2

|z2 − x|d
.

The same argument shows the estimate

(4.5.21) |2π(∇G,nq2
(· − z2))− 2π (nq2

) · ∇G(z2)| ≤
Cq2

|z2|d
.

We then combine the inequalities (4.5.18) and (4.5.20) on the one hand, (4.5.19)
and (4.5.21) on the other hand, and use the inequality 3d − 3 > d. We obtain
the two estimates

(4.5.22) |sin (2π(∇Gx, nq2
(· − z2)))− 2π (nq2

) · ∇Gx(z2)| ≤
Cq2

|x− z1|d
,

and

(4.5.23) |sin (2π(∇Gx, nq1
(· − z1)))− 2π (nq1

) · ∇G(z1)| ≤
Cq1

|z1|d
.

— We use the estimate (4.4.6) and deduce that, for each point y in the support
of nq1

,∣∣∣⟨cos (2π(ϕ, q1(· − z1 + z2))) d∗Uq2
(y + z1 − z2, ϕ)⟩µβ

∣∣∣ ≤ Cq1,q2

|z1 − z2|d−ε
;

— We have the inequalities, for each point x ∈ Zd,∑
z1,z2∈Zd

1

|x− z1|d
× 1

|z1 − z2|d−ε
× 1

|z2|d−1
≤ C ln |x|
|x|d−1−ε

and ∑
z1,z2∈Zd

1

|x− z1|d−1
× 1

|z1 − z2|d−ε
× 1

|z2|d
≤ C

|x|d−1−ε
.

A combination of the four items listed above implies the expansion

(4.5.15)–(q1, q2) = (4π2)2
∑

z1,z2,y∈Zd

∇G(z2) · (nq2)∇Gx(z1) · (nq1)Cnq1(y)︸ ︷︷ ︸
(4.5.24)–(q1,q2)

(4.5.24)

+O

(
Cq1,q2

|x|d−1−ε

)
,

where C = ⟨cos (2π(ϕ, q1(· − z1 + z2))) d∗Uq2
(y + z1 − z2, ϕ)⟩µβ

. A consequence of the
identity (4.5.24) is that to prove the expansion (4.5.16), it is enough to prove the
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following result

(4.5.24)–(q1, q2) =

d∑
i,j,k,l=1

cq1

ij c
q2

kl

∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x− z2)

(4.5.25)

+Kq1,q2

∑
z1,y∈Zd

∇G(z2) · (nq2
)∇Gx(z2 + κ) · (nq1

) +O

(
Cq1,q2

|x|d−2+γ

)
.

The rest of the argument is devoted to the proof of (4.5.25) and relies on the homog-
enization of the mixed derivative of the Helffer-Sjöstrand Green’s matrix stated in
Theorem 2.

We first consider the term (4.5.24)–(q1, q2) and perform the change of variable
κ := z1 − z2. We obtain

(4.5.24)–(q1, q2) = (4π2)2
∑

z1,κ,y∈Zd

∇G(z2) · (nq2
)∇Gx(z2 + κ) · (nq1

)(4.5.26)

× ⟨cos (2π(ϕ, q1(· − κ))) d∗Uq2
(y + κ, ϕ)⟩µβ

nq1
(y).

We then post-process the result of Theorem 2 so that it can be used to estimate
the term (4.5.24)–(q1, q2); the objective is to prove the estimate (4.5.30) below. We
use that the codifferential d∗ is a linear functional of the gradient to deduce from
Theorem 2 that, for each radius R ≥ 1,

(4.5.27)

∥∥∥∥∥∥∥d∗Uq2
−
∑

1≤i≤d

∑
1≤j≤(d

2)

(
d∗leij

+ d∗χij

)
∇iGq2,j

∥∥∥∥∥∥∥
L2(B2R\BR,µβ)

≤ Cq2

Rd+γ
.

We recall the notation AR := B2R\BR. Using the arguments and notation introduced
in Remark 3.4.13, we obtain the identity∑

1≤i≤d

∑
1≤j≤(d

2)

(
d∗leij

+ d∗χij

)
∇iGq2,j =

∑
1≤i≤d

(ei + d∗χi)
(
d∗Gq2

· ei

)
.

The estimate (4.5.27) then implies, by using the stationarity of the gradient of the
infinite-volume corrector and the Cauchy-Schwarz inequality,∑

κ∈AR

∣∣∣∣⟨cos (2π(ϕ, q1(· − κ))) d∗Uq2
(κ, ϕ)⟩µβ

(4.5.28)

−
∑

1≤i≤d

⟨cos (2π(ϕ, q1)) (ei + d∗χi(0, ϕ))⟩µβ

(
d∗Gq2

(κ) · ei

)∣∣∣∣ ≤ Cq2

Rγ
.
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The inequality (4.5.28) can be generalized into the following result: for each point
y ∈ Zd, ∑

κ∈AR

∣∣∣∣⟨cos (2π(ϕ, q1(· − κ))) d∗Uq2
(y + κ, ϕ)⟩µβ

(4.5.29)

−
∑

1≤i≤d

⟨cos (2π(ϕ, q1)) (ei + d∗χi(y, ϕ))⟩µβ

(
d∗Gq2

(κ) · ei

)∣∣∣∣
≤ Cq2

(1 + |y|2d+γ
)

Rγ
.

The proof of the estimate (4.5.29) relies on a technical argument, we omit it here and
refer to the long version of the article for the details ([36, Chapter 4, Section 5.2]).

We then consider the estimate (4.5.29) for a point y in the support of the charge nq1 ,
take the scalar product with the vector nq1(y), and sum over all the points y in the
support of nq1

. We obtain

∑
κ∈AR

∣∣∣∣⟨cos (2π(ϕ, q1(· − κ))) (nq1
,d∗Uq2

(·+ κ, ϕ))⟩µβ

(4.5.30)

−
∑

1≤i≤d

⟨cos (2π(ϕ, q1)) (nq1
, ei + d∗χi(y, ϕ))⟩µβ

(
d∗Gq2(κ) · ei

)∣∣∣∣ ≤ Cq1,q2

Rγ
.

We then focus on the term (4.5.24)–(q1, q2) (and more specifically on the right side
of (4.5.26)) and use the inequality (4.5.30) to simplify it. To ease the notation, we
introduce the following definitions:

— We let Eq1,q2 be the map from Zd to R defined according to the formula, for each
point κ ∈ Zd,

Eq1,q2
(κ) := ⟨cos (2π(ϕ, q1(· − κ))) (nq1

,d∗Uq2
(·+ κ, ϕ))⟩µβ

−
∑

1≤i≤d

⟨cos (2π(ϕ, q1)) (nq1 , ei + d∗χi)⟩µβ

(
d∗Gq2(κ) · ei

)
.

It is an error term which is small; in view of the estimate (4.5.30), Remark 4.4.3,
and the definition of the map Gq2,j stated in (3.4.18), it satisfies the inequalities

(4.5.31) ∀R ≥ 1,
∑

κ∈AR

|Eq1,q2
(κ)| ≤ Cq1,q2

Rγ
and ∀κ ∈ Zd, |Eq1,q2

(κ)| ≤ Cq1,q2

|κ|d−ε
.

— We recall the definition of the coefficient λβ stated in Remark 4.4.3. For each
pair of integers (i, j) ∈ {1, . . . , d}2, we define the coefficient cqij according to the
formula

cqij := 4π2
(
1 + λβ

)− 1
2 [(nq) · ei]× ⟨cos (2π(ϕ, q1)) (nq1

, ej + d∗χj)⟩µβ
.
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Using these notation together with Remark 3.4.13 and an explicit computation (which
we omit here), we obtain the formula∑

1≤i≤d

⟨cos (2π(ϕ, q1)) (nq1
, ei + d∗χi(y, ϕ))⟩µβ

(
d∗Gq2

(κ) · ei

)
=
(
1 + λβ

)−1 ∑
1≤i,j≤d

⟨cos (2π (ϕ, q1)) (nq1
, ei + d∗χi)⟩µβ

× ⟨cos (2π (ϕ, q2)) (nq2
, ej + d∗χj)⟩µβ

∇i∇jG.

The term (4.5.24)–(q1, q2) then becomes

(4.5.24)–(q1, q2) =

d∑
i,j,k,l=1

cq1

ij c
q2

kl

∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x− z2)

+ 4π2
∑

z2,κ∈Zd

∇G(z2) · (nq2)∇G(z2 + κ− x) · (nq1)Eq1,q2(κ).

To prove the estimate (4.5.25), it is thus sufficient to prove that there exists a
constant Kq1,q2

such that

4π2
∑

z2,κ∈Zd

∇G(z2) · (nq2
)∇Gx(z2 + κ) · (nq1

)Eq1,q2
(κ)

= Kq1,q2

∑
z1∈Zd

∇G(z2) · (nq2)∇Gx(z2) · (nq1) +O

(
Cq1,q2

Rd+γ′

)
.

The proof of this result relies on the estimates (4.5.31); it is the subject of Proposi-
tion 8.5.1 and is deferred to Section 8. We note that the argument gives the following
explicit value for the constant Kq1,q2

Kq1,q2 = 4π2
∑
κ∈Zd

Eq1,q2(κ).

By the estimates (4.5.31), the constant Kq1,q2
is well-defined and grows at most al-

gebraically fast in the parameters ∥q1∥1 and ∥q2∥1 as required. The proof of the
expansion (4.5.16) is complete.

We complete the proof of Theorem 1 by showing that (4.5.16) implies the result.
We first sum the expansion (4.5.16) over all the equivalence classes [q1], [q2] ∈ Q/Zd,
and use the exponential decay of the coefficients z (β, q1) and z (β, q2) to absorb the
algebraic growth of the constants cq1

ij , cq2

ij and Cq1,q2
. We obtain

∑
y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
= 4π2

∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)× (4.5.15)–(q1, q2)

(4.5.32)

= 4π2
∑

[q1],[q2]∈Q/Zd

d∑
i,j,k,l=1

z (β, q1) z (β, q2) c
q1

ij c
q1

kl(4.5.33)
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×
∑

z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x− z2)

+ 4π2
∑

[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)Kq1,q2
(4.5.34)

×
∑

z1∈Zd

∇G(z1) · (nq2
)×∇G(x− z1) · (nq1

)

+ 4π2
∑

[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)O

(
Cq1,q2

|x|d−2+γ′

)

=

d∑
i,j,k,l=1

cijckl

∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x− z2)

+

d∑
i,j=1

Ki,j

∑
z1∈Zd

∇iG(z1)∇jG(x− z1) +O

(
C

|x|d−2+γ′

)
,

where we have set

cij := 4π2
∑

[q]∈Q/Zd

z (β, q) cqij

and

Ki,j := 4π2
∑

[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)Kq1,q2 [(nq1) · ei]× [(nq1) · ej ] ,

which are well-defined by the exponential decay of the coefficient z(β, q).
We then simplify the expansion (4.5.32) by noting that, since the measure µβ is

invariant under the symmetries and rotations of the lattice Zd, the function
x 7→

∑
y∈Zd ⟨Qx(y)U (y, ·)⟩µβ

satisfies the same invariance property. It is proved
in Proposition 8.5.1 in Section 8 that this invariance property combined with the
expansion (4.5.32) implies that there exists a constant c := c(d, β) such that∑

y∈Zd

⟨Qx(y)U (y, ·)⟩µβ
=

c

|x|d−2
+O

(
C

|x|d−2+γ′

)
.

This is precisely the expansion (4.5.1). The proof of Theorem 1 is complete.
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CHAPTER 5

REGULARITY THEORY
FOR LOW TEMPERATURE

DUAL VILLAIN MODEL

In this section, we study the regularity properties of the solutions of the Helffer-
Sjöstrand operator

(5.0.1) L := −∆ϕ −
1

2β
∆ +

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1 +
∑
q∈Q

∇∗q · aq∇q,

where we recall the notation, for each charge q ∈ Q,

(5.0.2) ∇∗q · aq∇qu = z (β, q) cos (2π (ϕ, q)) (u, q) q.

We decompose this operator into two terms: the Witten Laplacian −∆ϕ which acts
on the field ϕ and the spatial term Lspat defined by the formula

Lspat := − 1

2β
∆ +

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1 +
∑
q∈Q

∇∗q · aq∇q.

The operator Lspat is uniformly elliptic. The purpose of this section is to apply the
techniques from the theory of elliptic regularity to understand the large-scale behavior
of the solutions of the equation Lu = 0. We study three types of objects:

— In Sections 5.1 and 5.2, we study the solutions of the equation Lu = 0. We estab-
lish a Caccioppoli inequality (Proposition 5.1.1) and C0,1−ε-regularity estimates
(Proposition 5.2.4).

— In Section 5.3, we study the Helffer-Sjöstrand Green’s matrix and heat kernel.
We prove Gaussian bounds on the heat kernel, decay estimates on the Green’s
matrix, and C0,1−ε-regularity estimates for both functions.

— In Section 5.4, we introduce the last important tool in the proof of Theorem 1:
the second-order Helffer-Sjöstrand equation. This equation is used to understand
how a solution of the Helffer-Sjöstrand equation depends on the underlying
field ϕ, and is used to compute convariances of the form cov [u,X], where X is
an explicit random variable (depending on ϕ) and u is a solution of the Helffer-
Sjöstrand equation;

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



80 CHAPTER 5. REGULARITY THEORY

Let us give a few comments and heuristic of the proofs presented in this section.
The demonstrations rely on two main ingredients:

— If we decompose the Helffer-Sjöstrand operator L as follows

(5.0.3) L = −∆ϕ −
1

2β
∆︸ ︷︷ ︸

L0

+
1

2β

∑
n≥1

1

β
n
2

(−∆)n+1 +
∑
q∈Q

∇∗q · aq∇q︸ ︷︷ ︸
Lpert

,

then the operator Lpert is a perturbation of L0 if the inverse temperature β is
large enough. The operator L0 has properties similar to the ones of the Laplacian
and a complete regularity theory is available. The strategy to obtain regular-
ity estimates relies on Schauder theory (see [67, Section 3]): since the opera-
tor Lpert is a perturbation of the operator L0, one can prove that each solution
of the equation Lu = 0 is well-approximated on every scale by a solution u of
the equation L0u = 0. One can then borrow the regularity of the function u and
transfer it to the function u. This process causes a deterioration of the regular-
ity for the function u: one obtains a C0,1−ε-regularity theory for the solutions
of the system Lu = 0, for some strictly positive exponent ε. The size of the
exponent ε depends on the size of the perturbative term and thus on the inverse
temperature β; it tends to 0 as β tends to infinity.

— The second ingredient is the dynamical solvability of Proposition 3.4.6 which
allows to express the Helffer-Sjöstrand Green’s matrix as the integral over time
of a heat-kernel associated to a parabolic, time-dependent, uniformly elliptic
system of equations. The system we obtain is a small perturbation of the stan-
dard discrete heat equation, and we can apply the Schauder regularity theory
described in the previous item to prove regularity properties on the heat-kernel
(e.g., Nash-Aronson estimate, C0,1−ε-regularity estimates). We then transfer
these properties to the Helffer-Sjöstrand Green’s matrix by an integration over
time.

We complete the introduction of this section by mentioning that we need to keep
track of the dependence of the constants on the inverse temperature β, since one of
our objectives is to prove that the regularity exponent ε tends to 0 as the inverse
temperature β tends to infinity. The constants are thus only allowed to depend on
the dimension.

5.1. Caccioppoli inequality for the solutions of the Helffer-Sjöstrand equation

In this section, we prove a Caccioppoli inequality for the operator L , the proof
follows the standard technique but some technical difficulties have to be taken into
account due the infinite range of the operator L . In particular, the result obtained
is slightly different from the one of the standard Caccioppoli inequality: there is a
long range term in the right sides of (5.1.2) and (5.1.3). Since the coefficients of the
operator L decay exponentially fast, the long range terms in the right sides of (5.1.2)
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and (5.1.3) exhibit the same decay. Before stating the result, we recall the notation for
the average (over the space variable) of a function over a ball: for u : Zd ×Ω → R(d

2),

(u)BR
: ϕ 7→ 1

|BR|
∑

x∈BR

u(x, ϕ).

Proposition 5.1.1 (Caccioppoli inequality). — Fix a radius R ≥ 1 and let u : Zd × Ω → R(d
2)

be a solution of the Helffer-Sjöstrand equation

(5.1.1) Lu = 0 in B2R × Ω.

Then there exist a constant C := C(d) <∞ and an exponent c := c(d) > 0 such that
the following estimates hold

β
∑
y∈Zd

∥∂yu∥L2(BR,µβ) + ∥∇u∥L2(BR,µβ)

(5.1.2)

≤ C

R
∥u∥L2(B2R,µβ) +

∑
x∈Zd\B2R

e−c(ln β)|x| ∥u(x, ·)∥L2(µβ) ,

and
(5.1.3)

∥∇u∥L2(BR,µβ) ≤
C

R

∥∥u− (u)B2R

∥∥
L2(B2R,µβ)

+
∑
x∈Zd

e−c(ln β)(R∨|x|) ∥u(x, ·)∥L2(µβ) .

Remark 5.1.2. — The two long range terms in the right sides of (5.1.2) and (5.1.3) are
error terms which are small and are caused by the infinite range of the operator Lspat.
They decay exponentially fast and are typically of order e−R.

Proof. — The argument follows the standard outline of the proof of the Caccioppoli
inequality; a number of technical details, pertaining to the interation of the Laplacian
and the discrete differential forms need to be taken into account in the analysis.
Since the argument does not contain any new idea regarding the method, we omit
it here and refer to the long version of this article for the details ([36, Chapter 5,
Proposition 1.1]).

5.2. Regularity theory for the Helffer-Sjöstrand operator

The purpose of this section is to prove the C0,1−ε-regularity of the solutions of the
Helffer-Sjöstrand Equation (5.0.1). The result is stated in Proposition 5.2.4.

The proof relies on Schauder theory; as is explained in (5.0.3), the strategy is to
decompose the Helffer-Sjöstrand operator L into two terms: the operators L0 and
Lpert. The operator L0 is the leading order term. For this operator a C0,1-regularity
theory is available. This result is stated in Proposition 5.2.1 and the proof is essentially
equivalent to the standard proof of the regularity for harmonic functions.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



82 CHAPTER 5. REGULARITY THEORY

The second operator Lpert is a perturbative term; it is small when the inverse
temperature β is large. The strategy is to argue that any solution u of the Helffer-
Sjöstrand equation is well-approximated on every scale by a solution u of the equation
−∆ϕu+ 1

2β ∆u = 0 and to transfer the regularity of the function u to the solution u.
This section can be decomposed into three propositions:

— Proposition 5.2.1 establishes a regularity theory for the solutions u of the equa-
tion L0u = 0.

— Proposition 5.2.2 states that if a function u is well-approximated, in the sense
of the estimate (5.2.3) below, by a solution of the equation −∆ϕu− 1

2β ∆u = 0,
then a C0,1−ε-regularity estimate holds for the function u.

— Proposition 5.2.4 establishes the regularity for the solutions of the Helffer-
Sjöstrand equation. We prove that any solution u of the equation Lu = 0 is
well-approximated by a solution u of the equation L0u = 0 and apply Proposi-
tion 5.2.4 to conclude.

5.2.1. Regularity theory for the operator −∆ϕ − 1
2β ∆. — In this section, we establish

a regularity theory for the operator −∆ϕ − 1
2β ∆.

Proposition 5.2.1 (Regularity theory for the operator −∆ϕ − 1
2β ∆). — Fix a radius

R > 0, and let u : B2R × Ω be a solution of the equation

−∆ϕu−
1

2β
∆u = 0 in B2R × Ω.

Then, for any integer k ∈ N, there exists a constant Ck < ∞ depending on the
dimension d and the integer k such that the following estimate holds

(5.2.1) sup
x∈BR

∥∥∇ku(x, ·)
∥∥

L2(µβ)
≤ Ck

Rk+ d
2

∥∥u− (u)B2R

∥∥
L2(B2R,µβ)

.

Proof. — The proof is standard and relies on two ingredients: the Caccioppoli in-
equality and the observation that the spatial gradient ∇ commutes with the two
Laplacians −∆ϕ and ∆. First by the Caccioppoli inequality, one has

∥∇u∥L2(BR,µβ) ≤
C

R

∥∥u− (u)B2R

∥∥
L2(B2R,µβ)

.

We then note that, since u is a solution of the equation L0u = 0, the gradient of u is also
a solution of the equation L0∇u = 0. One can thus apply the Caccioppoli inequality
to the gradient of u and deduce∥∥∇2u

∥∥
L2(BR,µβ)

≤ C

R
∥∇u∥L2(B2R,µβ) .

An iteration of this argument shows that, for any integer k ≥ 1, the L2 (BR, µβ)-norm
of the iterated gradient ∇ku is controlled by the L2 (B2R, µβ)-norm of the function u
with the appropriate scaling. By an application of the Sobolev embedding theorem
(see [1, Section 4]), we obtain the regularity estimate (5.2.1).
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5.2.2. Regularity theory for the Helffer-Sjöstrand operator. — The next proposition
states that if a map u is well-approximated on every scale by a solution u of the
equation L0u = 0, then the function u satisfies a C0,1−ε-regularity estimate for some
exponent ε depending only on the dimension d and the precision of the approximation.
The proof follows a well-known strategy of Campanato (see e.g., [56]). The proof
written below is an adaptation of the one of Hofmann and Kim [69].

Proposition 5.2.2. — Fix X ≥ 1, a regularity exponent ε > 0, and a constant K > 0.
There exists two constants δε > 0 and C := C(d, ε) < ∞, depending on the pa-
rameters d and ε such that the following statement holds. For any R ≥ 2X, if a
function u ∈ L2 (BR, µβ) satisfies the property that, for any r ∈ [X, 1

2R], there exists
a solution u ∈ L2 (B2r, µβ) of the equation

−∆ϕu−
1

2β
∆u = 0 in B2r × Ω,(5.2.2)

such that

∥∇(u− u)∥L2(Br,µβ) ≤ δε ∥∇u∥L2(B2r,µβ) +K,(5.2.3)

then for every r ∈ [X,R],

∥∇u∥L2(Br,µβ) ≤ C

(
R

r

)ε

∥∇u∥L2(BR,µβ) + CK.(5.2.4)

Before starting the proof, we record the following lemma, which is a consequence
of Giaquinta [56, Lemma 2.1].

Lemma 5.2.3. — Fix two non-negative real numbers X,R such that R ≥ 2X ≥ 2 and
two non-negative constants C0,K. For any regularity exponent ε > 0, there exist two
constants δε := δε (C, ε, d) and C1 := C1 (C, ε, d) such that the following statement
holds. If ϕ : R+ → R is a non-negative and non-decreasing function which satisfies
the estimate, for each pair of real numbers ρ, r ∈ [X,R] satisfying ρ ≤ r,

(5.2.5) ϕ (ρ) ≤ C0

((ρ
r

) d
2

+ δε

)
ϕ(r) +K,

then one has the estimate, for any ρ, r ∈ [X,R] satisfying ρ ≤ r,

(5.2.6) ϕ (ρ) ≤ C1

((ρ
r

) d
2−ε

ϕ(r) +Kρ
d
2

)
.

Proof. — This lemma can be extracted from [56, Lemma 2.1 p86] by setting α = d
2 ,

β = d
2 − ε and by using that the radii R, r are larger than 1.

Proof of Proposition 5.2.2. — We fix a regularity exponent ε > 0, let δε > 0 be
the constant provided by Lemma 5.2.3, and fix two radii ρ, r ∈

[
X, 1

2R
]

with ρ ≤ r.
We let u be the solution of the Equation (5.2.2) in the set Br × Ω such that the
estimate (5.2.3) holds. We note that the estimate (5.2.3) implies the inequality

∥∇u∥L2(Br,µβ) ≤ C ∥∇u∥L2(B2r,µβ) +K.
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By the regularity theory for the map u established in Proposition 5.2.1, we have

(5.2.7) ∥∇u∥L2(Bρ,µβ) ≤ C
(ρ
r

) d
2 ∥∇u∥L2(Br,µβ) .

By combining the estimates (5.2.3) and (5.2.7) and the estimate on the L2-norm of
the gradient of u mentioned above, we compute

∥∇u∥L2(Bρ,µβ) ≤ ∥∇ (u− u)∥L2(Bρ,µβ) + ∥∇u∥L2(Bρ,µβ)

≤ ∥∇ (u− u)∥L2(Br,µβ) +
(ρ
r

) d
2 ∥∇u∥L2(Br,µβ)

≤ δε ∥∇u∥L2(B2r,µβ) +K +
(ρ
r

) d
2
(
C ∥∇u∥L2(B2r) +K

)
≤ C

((ρ
r

) d
2

+ δε

)
∥∇u∥L2(B2r,µβ) + 2K.

We apply Lemma 5.2.3 with the function ϕ(ρ) = ∥∇u∥L2(Bρ). The inequality (5.2.6)
with the choice r = R gives, for any radius ρ ∈ [X,R],

∥∇u∥L2(Bρ,µβ) ≤ C1

(( ρ
R

) d
2−ε

∥∇u∥L2(BR,µβ) + 2Kρ
d
2

)
.

Dividing both side of the estimate by ρ
d
2 completes the proof.

We now use Propositions 5.2.1 and 5.2.2 to obtain C0,1−ε-regularity for the solu-
tions of the Helffer-Sjöstrand equation.

Proposition 5.2.4 (C0,1−ε-regularity theory). — For any regularity exponent ε > 0,
there exists an inverse temperature β0 := β0 (d, ε) < ∞ such that the following
statement holds. There exist two constants C := C(d, ε) < ∞ and c := c(d) > 0

such that for any radius R ≥ 1, any inverse temperature β ≥ β0, and any func-
tion u : Zd × Ω → R solution of the equation

Lu = 0 in BR × Ω,

one has the estimate
(5.2.8)

∥∇u(0, ·)∥L2(µβ) ≤
C

R1−ε

∥∥u− (u)BR

∥∥
L2(BR,µβ)

+
∑
x∈Zd

e−c(ln β)(R∨|x|) ∥u(x, ·)∥L2(µβ) .

Proof. — The strategy of the proof is to apply Proposition 5.2.2 to the function u

and then to apply the Caccioppoli inequality. We fix a regularity exponent ε > 0, a
radius R ≥ 1, and split the argument into two steps:

— In Step 1, we prove that the map u satisfies the following property: there exist
an inverse temperature β0 (ε, d) <∞, and a constant C := C(d) <∞ such that
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for every β > β0, and every radius r ≥ (lnR)
2, the following estimate holds

(5.2.9)

∥∇u∥L2(Br,µβ) ≤ C

(
R

r

) ε
2

∥∇u∥L2(BR,µβ) +
∑

x∈Zd\BR

e−c(ln β)|x| ∥∇u(x, ·)∥L2(µβ) .

— In Step 2, we deduce from (5.2.9) and the Caccioppoli inequality stated in
Proposition 5.1.1, the pointwise estimate (5.2.8).

Step 1. — To prove the estimate (5.2.9), the strategy is to apply Proposition 5.2.2.
To this end, we set X := (lnR)

2, and fix a radius r ∈
[
X, 1

2R
]
. We then define the

function u to be the solution of the boundary value problem

(5.2.10)

−∆ϕu−
1

2β
∆u = 0 in Br × Ω,

u = u on ∂Br × Ω.

We first prove that the map u is a good approximation of the map u. Specifically, we
prove that there exist two constants C := C(d) <∞ and c := c(d) > 0 such that

∥∇(u− u)∥L2(Br,µβ) ≤
C

β
1
2

∥∇u∥L2(B2r,µβ)(5.2.11)

+ Ce−c(ln β)(ln R)2 ∥∇u∥L2(BR,µβ)

+ C
∑

x∈Zd\BR

e−c(ln β)|x| ∥∇u(x, ·)∥L2(µβ) .

To prove the estimate (5.2.11), we note that the map u−u is a solution of the following
system of equations
(5.2.12)
−∆ϕ(u− u)− 1

2β
∆(u− u) = − 1

2β

∑
n≥1

1

β
n
2

(−∆)n+1u−
∑
q∈Q

∇∗q · aq∇qu in Br × Ω,

u− u = 0 on ∂Br × Ω.

We extend the function (u− u) by 0 outside the ball BR so that it is defined on the
entire space Zd and use it as a test function in the system (5.2.12). We obtain

(5.2.13)
∑
y∈Zd

∥∂y (u− u)∥2L2(Br,µβ) +
1

2β
∥∇ (u− u)∥2L2(Br,µβ)

= − 1

2β

∑
n≥1

1

β
n
2

∑
x∈Zd

〈
∇n+1u(x, ·) · ∇n+1(u− u)(x, ·)

〉
µβ︸ ︷︷ ︸

(5.2.13)−(i)

−
∑
q∈Q

⟨∇qu · aq∇q(u− u)⟩µβ︸ ︷︷ ︸
(5.2.13)−(ii)

.

The terms (5.2.13)-(i) and (5.2.13)-(ii) are perturbative terms which can be proved
to be small by using the two following ingredients:

— The discrete gradient is a bounded operator and the inverse temperature β is
chosen large, this is used to estimate the term (5.2.13)-(i);
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— The coefficient aq satisfy the upper bound |aq| ≤ e−c
√

β∥q∥1 , this is used to
estimate the term (5.2.13)-(ii).

We omit the technical details here which can be found in the long version of this article
([36, Chapter 5, Proposition 2.4]); the result we obtain is the one stated in (5.2.11).

We complete Step 1 by proving that the estimate (5.2.11) implies the esti-
mate (5.2.9). We consider the regularity exponent ε fixed at the beginning of the
proof and the parameter δ ε

2
provided by Proposition 5.2.2 (associated with the

exponent ε
2 ). We let C := C(d) <∞ and c := c(d) > 0 be the constants which appear

in the inequality (5.2.11) and set

X := (lnR)
2

and

K := Ce−c ln β(ln R)2 ∥∇u∥L2(BR,µβ) + C
∑

x∈Zd\BR

e−c(ln β)|x| ∥∇u(x, ·)∥L2(µβ) .

An application of Proposition 5.2.2 shows the inequality: for any radius r ∈ [X,R],

∥∇u∥L2(Br,µβ) ≤ C

(
R

r

) ε
2

∥∇u∥L2(BR,µβ)(5.2.14)

+ Ce−c ln β(ln R)2 ∥∇u∥L2(BR,µβ)

+ C
∑

x∈Zd\BR

e−c(ln β)|x| ∥∇u(x, ·)∥L2(µβ) .

We then note that the exponential term e−c(ln β)(ln R)2 decays faster than any power
of R, so the second term on the right side of (5.2.14) can be bounded from above by
the first term on the right side. This completes the proof of the inequality (5.2.9).

Step 2. — We select r = (lnR)
2, apply the Caccioppoli inequality to estimate the

right side of the inequality (5.2.9), and use that the discrete gradient is a bounded
operator to replace the term ∥∇u(x, ·)∥L2(µβ) by

∑
y∼x ∥u(y, ·)∥L2(µβ). We obtain

∥∇u∥L2(B(ln R)2 ,µβ) ≤ C

(
R

(lnR)
2

) ε
2

1

R

∥∥u− (u)BR

∥∥
L2(BR,µβ)

+ C
∑
x∈Zd

e−c(ln β)(R∨|x|) ∥u(x, ·)∥L2(µβ) .

We apply the discrete L∞ − L2 -estimate

∥∇u(0)∥L2(µβ) ≤ ∥∇u∥L2(B(ln R)2 ,µβ) ≤ (lnR)
d ∥∇u∥L2(B(ln R)2 ,µβ) .

We then combine the two previous displays and the estimate (lnR)
d ≤ CR

ε
2 to obtain

the inequality (5.2.8). The proof of Proposition 5.2.4 is complete.
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5.3. Nash-Aronson estimate and regularity theory for heat kernels

In this section, we study the dynamical solvability of the Helffer-Sjöstrand equation
and prove the bounds stated in Section 3 (and specifically Proposition 3.4.6).

We first recall the definition of the Langevin dynamics associated wiht the Gibbs
measure µβ . Given a field ϕ ∈ Ω, we let (ϕt)t≥0 be the diffusion process evolving
according to the Langevin dynamics

(5.3.1)



dϕt(x) =
1

2β
∆ϕt(x)dt−

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1ϕt(x)dt

+
∑
q∈Q

(
∇∗q · aq(ϕt)∇qϕt

)
(x)dt+

√
2dBt(x),

ϕ0(x) = ϕ(x),

where
{
Bt(x) : t ≥ 0, x ∈ Zd

}
is a collection of independent normalized R(d

2)-valued
independent Brownian motions. We denote by Pϕ the law of the dynamics (ϕt)t≥0

starting from ϕ and by Eϕ the expectation with respect to the measure Pϕ. Given a
realization of the dynamics, we let Pϕ be the solution of the parabolic system

∂tP
ϕ· (·, ·; y)− 1

2β
∆Pϕ· (·, ·; y) +

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1Pϕ· (·, ·)

+
∑
q∈Q

(
∇∗q · aq(ϕt)∇qP

ϕ· (·, ·; y)
)

= 0 in [0,∞]× Zd,

Pϕ· (0, ·; y) = δy in Zd.

The main purpose of this section is to prove upper bounds on the heat kernel
Pϕ· and on its spatial derivatives. We introduce the following definition. For each
constant C > 0, we let ΦC be the function defined from (0,∞) × Zd to R by the
formula, for each pair (t, x) ∈ (0,∞)× Zd,

(5.3.2) ΦC(t, x) =


t−

d
2 exp

(
−|x|

2

Ct

)
if |x| ≤ t,

exp

(
−|x|
C

)
if |x| ≥ t.

The next proposition is the main result of this section.

Proposition 5.3.1 (Gaussian bounds and C0,1−ε-regularity for the heat kernel). — For
any regularity exponent ε > 0, there exists an inverse temperature β1(d, ε) <∞, and
a constant C := C(d, ε) < ∞ such that for every β > β1, for any realization of the
dynamics (ϕt)t≥0, any (t, x, y) ∈ [1,∞]× Zd × Zd,

(5.3.3)
∣∣Pϕ·(t, x; y)

∣∣ ≤ CΦC

(
t

β
, x− y

)
.
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Moreover, one has the following C0,1−ε-regularity estimate on the gradient of the heat
kernel ∣∣∇xP

ϕ·(t, x; y)
∣∣ ≤ C

(
β

t

) 1
2−ε

ΦC

(
t

β
, x− y

)
,(5.3.4)

and on the mixed derivative of the heat kernel∣∣∇x∇yP
ϕ·(t, x; y)

∣∣ ≤ C

(
β

t

)1−ε

ΦC

(
t

β
, x− y

)
.(5.3.5)

Remark 5.3.2. — Due to the discrete setting of the problem and the infinite range
of the operator L , the heat kernel does not have Gaussian decay when the value |x|
tends to infinity. Instead it decays exponentially fast; this justifies the introduction of
the function ΦC .

Remark 5.3.3. — For later use, we need to keep track of the dependence of the
constants in the inverse temperature β.

In the rest of Section 5.3, we give an outline of the proof of Proposition 5.3.1; the
details of the argument can be found in the long version of this article ([36, Chapter 5,
Sections 3.1 and 3.2]).

Outline of the proof of Proposition 5.3.1. — Gaussian bounds on the heat kernel are
usually a consequence of the Nash-Aronson estimate (see [11, 44]) for uniformly elliptic
operators. This result cannot be applied here since the operator ∂t+Lϕt

spat is a parabolic
system of equations, and we refer to the counter-example of De Giorgi [40] disproving
the Liouville property and the C0,α-regularity theory for systems of elliptic equations.
To prove Gaussian bounds and regularity on the heat kernel, we use a different strategy
and proceed according to the following outline:

1. We use that the elliptic operator Lϕt

spat is a perturbation of the Laplacian to
establish C0,1−ε-regularity for the solutions of the system

(5.3.6) ∂tu+ Lϕt

spatu = 0.

2. We use the C0,1−ε-regularity and an interpolation argument to obtain
L∞-bounds on the solutions of the Equation (5.3.6). More precisely, we
prove that every solution of the system (5.3.6) in the parabolic cylinder Q2r

satisfies the pointwise estimate

∥u∥L∞(Qr) ≤ C ∥u∥L2(Q2r) +

∫ 0

−r2

∑
x∈Zd\Br

e−c(ln β)|x| |u(t, x)|2 dt.

3. We prove that the solutions of the adjoint of the parabolic operator ∂t + Lϕt

spat

satisfies the same pointwise estimate.
4. We use the pointwise regularity estimates and the technique of Fabes and

Stroock [44], which is based on the technique of Davies [37, 38] (see also the
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article of Hofmann and Kim [69]) to establish the Gaussian bounds on the heat
kernel stated in (5.3.3).

5. We combine the Gaussian bounds on the heat kernel with the C1−ε-regularity
theory for the solutions of (5.3.6) to obtain the upper bounds on the gradient
and mixed derivative of the heat kernel stated in (5.3.4) and (5.3.5).

5.4. Definition and regularity for the second-order Helffer-Sjöstrand operator

We introduce and study the second-order Helffer-Sjöstrand operator. We mention
that this operator was initially introduced in the article of Conlon and Spencer [29],
and the general underlying philosophy is closely related to the one developed in
stochastic homogenization in [61, 62, 59, 60].

Let us fix a function G ∈ C∞c (Zd × Ω) and let u be the solution of the Helffer-
Sjöstrand equation

Lu = G in Ω× Zd.

As mentioned above, in Section 8.3, we will have to estimate covariances of the
form cov [u,X] , where X is an explicit functional of the field ϕ. By the Helffer-
Sjöstrand representation formula (Proposition 3.4.7), it is sufficient to understand
the properties of the functions ∂xu, for x ∈ Zd.

The strategy is then to find an equation satisfied by the map ∂xu. In this direction,
we may apply (formally) the operator ∂x to both the left and right hand sides of the
identity Lu = G. We obtain the identity

(5.4.1) ∂x−∆ϕu−
1

2β
∆∂xu+

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1∂xu+∂x

∑
q∈Q

∇∗q · aq∇qu

 = ∂xG.

To go further in the computation, let us introduce the following notation:

— We define the function v, h : Zd × Zd ×Ω 7→ R(d
2)×(d

2) by the formulae, for each
for (x, y, ϕ) ∈ Zd × Zd × Ω, v(x, y, ϕ) = ∂xu(y, ϕ) and h(x, y, ϕ) = ∂xG(y, ϕ).

— Given a map h : Zd×Zd×Ω 7→ R(d
2)×(d

2), we denote by ∆x the spatial Laplacian
in the first variable and by ∆y the Laplacian in the second variable. We also
denote by

∑
qx∈Q ∇∗qx

· aqx
∇qx

h and by
∑

qy∈Q ∇∗qy
· aqy

∇qy
h the operators∑

qx∈Q

∇∗qx
· aqx

∇qx
h : (x, y, ϕ) 7→

∑
q∈Q

aq(ϕ) (h (·, y, ϕ) , q) q(x)

and ∑
qy∈Q

∇∗qy
· aqy

∇qy
h : (x, y, ϕ) 7→

∑
q∈Q

aq(ϕ) (h (x, ·, ϕ) , q) q(y).

— Finally, we denote by Lspat,x and Lspat,y the operators

Lspat,x := − 1

2β
∆xu+

1

2β

∑
n≥1

1

β
n
2

(−∆x)n+1u+
∑
qx∈Q

∇∗qx
· aqx

∇qx
u,
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and

Lspat,y := − 1

2β
∆yu+

1

2β

∑
n≥1

1

β
n
2

(−∆y)n+1u+
∑
qy∈Q

∇∗qy
· aqy

∇qy
u.

The term ∂· − ∆ϕu can be computed by using the same strategy as the one used
to derive the Helffer-Sjöstrand equation in Section 3.4, and we obtain, for each
(x, y, ϕ) ∈ Zd × Zd × Ω,

∂x −∆ϕu(y, ϕ) = −∆ϕv(x, y, ϕ)− 1

2β
∆xv(x, y, ϕ) +

1

2β

∑
n≥1

1

β
n
2

(−∆x)n+1v(x, y, ϕ)

(5.4.2)

+
∑
qx∈Q

∇∗qx
· aqx

∇qx
v(x, y, ϕ)

= −∆ϕv(x, y, ϕ) + Lspat,xv(x, y, ϕ)

The term ∂x

(∑
q∈Q ∇∗q · aq∇qu

)
can be computed by using the exact formula stated

in (5.0.2):

∂x

∑
q∈Q

∇∗q · aq∇qu(y, ϕ)

 = ∂x

∑
q∈Q

aq (u, q) q(y)

(5.4.3)

=
∑
q∈Q

∂xaq (u, q) q(y) +
∑
q∈Q

aq (v(x, ·, ϕ), q) q

=
∑
q∈Q

2πz (β, q) cos (2π (ϕ, q)) (u, q) q(x)⊗ q(y)(5.4.4)

+
∑
qy∈Q

∇∗qy
aqy
∇qy

v(x, y, ϕ).

Combining the identities (5.4.1), (5.4.2), and (5.4.3), we obtain that the map v solves
the equation

(5.4.5) −∆ϕv(x, y, ϕ) + Lspat,xv(x, y, ϕ) + Lspat,yv(x, y, ϕ)

= −
∑
q∈Q

2πz (β, q) cos (2π (ϕ, q)) (u, q) q(x)⊗ q(y) + ∂xG(y, ϕ).

This equality can be rigorously justified using the arguments of Section 3.4 and of [82,
55]. The identity (5.4.5) motivates the definition of the second-order Helffer-Sjöstrand
operator acting on functions defined on Ω× Zd × Zd and valued in R(d

2)×(d
2)

(5.4.6) Lsec := −∆ϕ + Lspat,x + Lspat,y.

This operator has the same properties than the one satisfied by the Helffer-
Sjöstrand operator and listed in Section 3. In particular, it can be solved using
the variational techniques of Proposition 3.4.2 or the dynamical interpretation of
Proposition 3.4.6.
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As it was the case for the Helffer-Sjöstrand operator, it is natural to consider the
Green’s function associated with the second-order operator It is introduced in the
following definition.

Definition 5.4.1 (Green matrix for the second-order Helffer-Sjöstrand equation). — For
any (y, y1) ∈ Zd×Zd, we let δ(y,y1) : Zd×Zd → R(d

2)
2×(d

2)
2

be the Dirac mass defined
by the formula

δ(y,y1)((x, x1)) :=
(
1{(x,x1)=(y,y1)} · 1{i=j}

)
1≤i,j≤(d

2)
2 .

For any function f : Ω → R satisfying f ∈ L2(µβ), we define the Green’s function
associated with the second-order equation Gsec,f : Ω×Zd×Zd → R(d

2)
2×(d

2)
2

according
to the formula

(5.4.7) LsecGsec,f = fδ(y,y1) in Ω× Zd × Zd.

As in Proposition 3.4.8 of Section 3.4.4, the existence of the Green’s function can
be established variationally, by applying the Gagliardo-Nirenberg-Sobolev inequality.

As in Section 3.4.4, one can solve the second-order Helffer-Sjöstrand equation dy-
namically as stated in the following proposition.

Proposition 5.4.2. — Fix f ∈ L2(µβ) and (y, y1) ∈ Zd × Zd. The Green’s matrix
Gsec,f (·; y, y1) satisfies the identity

Gsec,f (x, x1, ϕ; y, y1) :=

∫ ∞

0

Eϕ

[
f(ϕt)P

ϕ·
sec(t, y, y1;x, x1)

]
dt,

where Pϕ·
sec(·, · ;x, x1) is the solution of the system of equations,∂tP

ϕ·
sec (·, ·, · ;x, x1) +

(
Lϕt

spat,x + Lϕt

spat,y

)
Pϕ·

sec (·, ·, · ;x, x1) = 0 in (0,∞)× Zd × Zd,

Pϕ·
sec (0, ·, · ;x, x1) = δ(x,x1) in Zd × Zd.

5.4.1. Gaussian bounds and regularity estimates for the Green’s matrix. — In this sec-
tion, we study the decay properties of the Green’s matrix associated with the second-
order Helffer-Sjöstrand operator.

The operator Lϕ·
spat,x +Lϕ·

spat,y is a uniformly elliptic operator on the 2d-dimensional
space Zd×Zd. If the inverse temperature β is chosen large enough, then this operator
is a perturbation of the 2d-dimensional Laplacian ∆x + ∆y. Hence the same argu-
ments as in Section 5.3 can be used to prove Gaussian bounds and C0,1−ε-regularity
estimates on the heat kernel Pϕ·

sec; the only difference is that the underlying space is
2d-dimensional.

The result stated in Proposition 5.4.3 is strictly stronger than the one obtained by
the previous argument since we obtain estimates on the triple and quadruple gradients
of the heat kernel. These properties are obtained by making use of the specific struc-
ture of the problem and relies on the observation that the elliptic operators Lspat,x

and Lspat,y only act on the x and y variables respectively. This remark implies that
these operators commute and thus the heat kernel Pϕ·

sec can be factorized as follows.
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If we let δy : Zd → R(d
2)

2×(d
2)

2

be the Dirac mass defined by the formula

δy(x) :=
(
1{x=y} · 1{i=j}

)
1≤i,j≤(d

2)
2 .

and consider the solution Pϕ·
sec,x : Zd 7→ R(d

2)
2×(d

2)
2

of the system of equations,{
∂tP

ϕ·
sec,x (·, · ;x) + Lϕt

spat,xP
ϕ·
sec,x (·, · ;x) = 0 in (0,∞)× Zd,

Pϕ·
sec (0, ·, · ;x) = δx in Zd.

and define similarly the solution Pϕ·
sec,y. Then we have the identity

(5.4.8) Pϕ·
sec (t, y, y1 ;x, x1) = Pϕ· (t, y ;x)Pϕ· (t, y1 ;x1) ,

where the product in the right-hand side refers to the product of matrices of size(
d
2

)2 × (d2)2. Thanks to this property, one can obtain additional regularity estimates
on the map Pϕ·

sec; for instance, if we denote by ∇x, ∇y, ∇x1
, ∇y1

the gradient with
respect to the first, second, third, and fourth spatial variable, then we have

(5.4.9) ∇x∇y∇x1
∇y1

Pϕ·
sec(y, y1;x, x1) = ∇x∇yP

ϕ· (t, y ;x)∇x1
∇y1

Pϕ· (t, y1 ;x1) .

The strategy is then to combine the regularity estimates proved in Proposition 5.3.1
with the factorization Formula (5.4.8) to obtain additional regularity properties on
the heat kernel associated with the second-order equation. The results are collected
in the following proposition.

Proposition 5.4.3. — For any regularity exponent ε > 0, there exists an inverse tem-
perature β0 (d, ε) < ∞ such that the following statement holds. For any inverse
temperature β > β0 and any realization of the dynamics (ϕt)t≥0, there exists a
constant C(d, ε) <∞ such that for each (x, y, x1, y1) ∈

(
Zd
)4, one has the estimate∣∣Pϕ·

sec (t, x, x1; y, y1)
∣∣ ≤ CΦC

(
t

β
, x− x1

)
ΦC

(
t

β
, y − y1

)
,

and the C0,1−ε-regularity estimates: if we let ∇1,∇2,∇3 and ∇4 be any permutation
of the set of gradients ∇x,∇x1

,∇y and ∇y1
, then one has the four inequalities:

(i) On the gradient of the heat kernel∣∣∇1P
ϕ·
sec (t, x, x1; y, y1)

∣∣ ≤ C

(
β

t

) 1
2−ε

ΦC

(
t

β
, x− x1

)
ΦC

(
t

β
, y − y1

)
.

(ii) On the double gradient of the heat kernel∣∣∇1∇2P
ϕ·
sec (t, x, x1; y, y1)

∣∣ ≤ C

(
β

t

)1−ε

ΦC

(
t

β
, x− x1

)
ΦC

(
t

β
, y − y1

)
.

(iii) On the triple gradient of the heat kernel∣∣∇1∇2∇3P
ϕ·
sec (t, x, x1; y, y1)

∣∣ ≤ C

(
β

t

) 3
2−ε

ΦC

(
t

β
, x− x1

)
ΦC

(
t

β
, y − y1

)
.
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(iv) On the quadruple gradient of the heat kernel∣∣∇1∇2∇3∇4P
ϕ·
sec (t, x, x1; y, y1)

∣∣ ≤ C

(
β

t

)2−ε

ΦC

(
t

β
, x− x1

)
ΦC

(
t

β
, y − y1

)
.

Proposition 5.4.3 is obtained by combining Proposition 5.3.1 with the factorization
identity (5.4.9).

From these estimates, we deduce the bounds on the elliptic Green’s matrix and its
gradients stated in the following proposition.

Proposition 5.4.4. — For any regularity exponent ε > 0, there exists an inverse
temperature β0 (d, ε) < ∞ such that the following statement holds. For any in-
verse temperature β > β0, there exists a constant C(d, ε) < ∞ such that for each
(x, y, x1, y1) ∈

(
Zd
)4, one has the estimate

∥Gsec,f (x, y, ·;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

|x− x1|2d−2 + |y − y1|2d−2
.

Additionally, for any permutation ∇1,∇2,∇3 and ∇4 of the set of gradients
∇x,∇x1

,∇y and ∇y1
, one has the estimates:

(i) On the gradient of the Green’s matrix

∥∇1Gsec,f (x, y, ·;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

|x− x1|2d−1−ε + |y − y1|2d−1−ε
;

(ii) On the double gradient of the Green’s matrix

∥∇1∇2Gsec,f (x, y, ·;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

|x− x1|2d−ε + |y − y1|2d−ε
;

(iii) On the triple gradient of the Green’s matrix

∥∇1∇2∇3Gsec,f (x, y, ·;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

|x− x1|2d+1−ε + |y − y1|2d+1−ε
;

(iv) On the quadruple gradient of the Green’s matrix

∥∇1∇2∇3∇4Gsec,f (x, y, ·;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

|x− x1|2d+2−ε + |y − y1|2d+2−ε
.

The estimates on the elliptic Green’s matrix are obtained by integrating the in-
equalities of Proposition 5.4.3 over the times t in [0,∞) and applying the Cauchy-
Schwarz inequality.
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CHAPTER 6

QUANTITATIVE CONVERGENCE
OF THE SUBADDITIVE QUANTITIES

The objective of this section and of Section 7 is to prove Theorem 2. The strategy
adopted follows the one of [7], and relies on the introduction of two subadditive energy
quantities related to the variational formulation associated with the Helffer-Sjöstrand
operator. The first one, denoted by ν(□, p), represents the energy of the minimizer
associated with the Dirichlet problem in a cube □ with affine boundary condition
lp(x) := p · x. The second one, denoted by ν∗(□, q), represents the energy of the
minimizer associated with the Neumann problem with boundary flux ∇lq. These two
quantities satisfy a subadditivity property with respect to the domain of integration
and converge as the sidelength of the cube tends to infinity. Moreover, the quantities
ν and ν∗ are convex with respect to the slopes of the boundary conditions, and are
approximately convex dual to each other. The main focus of this section is to prove
by a multiscale argument that, as the size of the domains tends to infinity, these
quantities converge to a pair of dual convex conjugate functions, and to extract from
the proof a quantification of the rate of convergence.

While the general strategy comes from the theory of quantitative stochastic ho-
mogenization presented in [7], the adaptation of the techniques presented in this
monograph requires to overcome three types of difficulties:

— One needs to take into account the Laplacian with respect to the ϕ-variable.
— One needs to take into account the infinite range of the operator L .
— We need to homogenize an elliptic system instead of an elliptic PDE.

While the first point has been successfully treated in [8] to study the ∇ϕ model, the
last two points are intrinsic to the Coulomb gas representation of the Villain model
and will be treated in this section.

This section is organized as follows. In Sections 6.1 and 6.2, we define the sub-
additive energy quantities ν and ν∗, and collect some of their basic properties. In
Section 6.3, we obtain a quantitative rate of convergence for these quantities. In
Section 6.4, we introduce a finite-volume version of first-order corrector associated
with the Helffer-Sjöstrand operator L . We use the quantitative rate of convergence
of the energy ν to establish quantitative sublinearity of the corrector and to prove a
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quantitative estimate on the weak norm of its flux. This function and its properties
are crucial to prove the quantitative homogenization of the mixed derivative of the
Green’s matrix in Section 7.

Throughout this entire section, we fix a regularity exponent ε which is small com-
pared to 1 and depends only on the dimension d. We assume that the inverse tem-
perature β is large enough so that all the results presented in Section 5 hold with the
regularity exponent ε.

We complete this introduction by mentioning that in this section, the constants are
only allowed to depend in the dimension d as we need to keep track of their dependence
on the inverse temperature β. The objective is to prove that the quantitative rate of
convergence α obtained in Proposition 6.1.10 and 6.4.3 remains bounded away from 0

as β tends to infinity.

6.1. Definition of the subadditive quantities and basic properties

6.1.1. Definition of the energy quantities. — Let □ be a cube of Zd, we define the
energy functional E□ according to the formula, for each function u ∈ H1

(
Zd, µβ

)
,

E□ [u] := β
∑
y∈Zd

∥∂yu∥2L2(□,µβ) +
1

2
∥∇u∥2L2(□,µβ)

+
1

2

∑
n≥1

1

β
n
2

∥∥∇n+1u
∥∥2

L2(Zd,µβ)
− β

∑
supp q∩□̸=∅

⟨∇qu · aq∇qu⟩µβ
.

We introduce the bilinear form associated with the energy E□: for each function u ∈
H1
(
Zd, µβ

)
,

B□ [u, v] := β
∑
x∈□

∑
y∈Zd

⟨∂yu(x, ·), ∂yv(x, ·)⟩µβ
+

1

2

∑
x∈□

⟨∇u(x, ·),∇v(x, ·)⟩µβ

+
1

2

∑
n≥1

∑
x∈Zd

1

β
n
2

〈
∇n+1u(x, ·),∇n+1v(x, ·)

〉
µβ
−
∑

supp q∩□ ̸=∅

β ⟨∇qu · aq∇qv⟩µβ
.

This energy and bilinear form are useful to define the energy quantity ν. To define
the dual energy ν∗, we need to introduce an alternative definition of the mappings
E□ and B□. The technical difficulty encountered is the following: one cannot consider
the energy E□ of a function v only defined in the cube □ since the infinite range of
the operator L requires to know the values of the function in the entire space Zd. To
fix this issue, we restrict the summation over the set of charges q ∈ Q whose support
is included in the cube □, and over the sets of integers n and points x such that the
value ∆nv(x) can be computed by only knowing the values of the function v in the
cube □. As it will be useful later in the proofs, we also remove a boundary layer term,
and we recall the definition of trimmed cube stated in (A.1.2) of Appendix A. We
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define the energy E∗□ by the formula

E∗□ [u] := β
∑
y∈Zd

∥∂yu∥2L2(□,µβ) +
1

2

∑
n≥0

∑
x∈□,dist(x,∂□)≥n

1

β
n
2

∥∥∇n+1u(x, ·)
∥∥2

L2(µβ)

− 1

β
1
4

∥∇u∥2L2(□\□−,µβ) − β
∑

supp q⊆□

⟨∇qu · aq∇qu⟩µβ
,

as well as the corresponding bilinear form B∗
□, for each u, v ∈ H1 (□, µβ),

B∗
□ [u, v] := β

∑
x∈□

∑
y∈Zd

⟨∂yu(x, ·), ∂yv(x, ·)⟩µβ

+
1

2

∑
n≥1

∑
x∈□,dist(x,∂□)≥n

1

β
n
2

〈
∇n+1u(x, ·),∇n+1v(x, ·)

〉
µβ

− 1

β
1
4

∑
x∈□\□−

⟨∇u(x, ·),∇v(x, ·)⟩µβ
− β

∑
supp q⊆□

⟨∇qu · aq∇qv⟩µβ
.

Let us make a few remarks about the definition of the energy E∗□.

Remark 6.1.1. — The iterated Laplacian ∆n has range 2n; given a point x ∈ □, we
only consider the iteration of the Laplacian until the integer n := dist(x, ∂□). This
ensures that for any function v ∈ H1 (□, µβ), the quantity ∆nv is well-defined.

Remark 6.1.2. — We only consider the charges q whose support is included in the
cube □, this ensures that for any function v ∈ H1 (□, µβ), the quantity ∇q · aq∇qv is
well-defined.

Remark 6.1.3. — We subtract an additional term in the boundary layer{
x ∈ □ : dist(x, ∂□) ≤

√
R/10

}
,

where R denotes the sidelength of the cube □. This term is a perturbative terms for
two reasons: (i) we are only summing on a small boundary layer of size

√
R/10 of the

cube □, and (ii) the multiplicative factor β−
1
4 is much smaller than the leading order

term of the energy E∗□, which is of order 1. The reason justifying the presence of this
term is that it is useful to deal with the infinite range of the operator L ; in particular,
it is useful to prove the subadditivity of the energy functional ν∗ in Proposition 6.2.5.
The specific choice for the exponent 1/4 for the power of β is arbitrary; we only need
an exponent which is strictly between 0 and 1/2.

By choosing the inverse temperature β sufficiently large, one can prove that the
energy E□ satisfies the following coercivity and boundedness properties: there exist
constants c(d) > 0 and C(d) <∞ such that, for each map u ∈ H1

0

(
Zd, µβ

)
,

(6.1.1) c [[u]]H1(□,µβ) ≤ E□ [u] ≤ C [[u]]H1(□,µβ) ,
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where we recall the notation [[u]]H1(□,µβ) introduced in Section 2.1.3. The same esti-
mate holds for the energy functional E∗□: for each u ∈ H1 (□, µβ),

(6.1.2) c [[u]]H1(□,µβ) ≤ E∗□ [u] ≤ C [[u]]H1(□,µβ) .

We now proceed by giving the definitions of the subadditive quantities ν and ν∗.

Definition 6.1.4 (Subadditive quantities). — For each cube □ of Zd, and each pair of
vectors p, p∗ ∈ Rd×(d

2), we define the energies

ν (□, p) := inf
u∈lp+H1

0 (□,µβ)

1

2|□|
E□[u],(6.1.3)

and

ν∗ (□, p∗) := sup
v∈H1(□,µβ)

− 1

2|□|
E∗□[v] +

1

|□|
∑
x∈□

p∗ · ⟨∇v(x)⟩µβ
.(6.1.4)

Remark 6.1.5. — We recall the definition of the affine function lp stated in (A.1.4).
We implicitly extend the functions of the space lp+H1

0 (□, µβ) by the affine function lp
outside the cube □.

It is clear from the estimate (6.1.1) that the energy quantities ν and ν* are well-
defined, quadratic in the variables p and p∗ respectively, and that they satisfy the
upper and lower bounds, for each cube □ ⊆ Zd and each pair of vectors p, p∗ ∈ Rd×(d

2),

(6.1.5) c |p|2 ≤ ν (□, p) ≤ C |p|2 and c |p∗|2 ≤ ν∗ (□, p∗) ≤ C |p∗|2 .
It follows from the standard argument of the calculus of variations that the minimizer
in the variational Definition (6.1.3) exists and is unique; we denote it by u (·,□, p). The
maximizer in the variational formulation (6.1.4) exists and is unique up to additive
constant. This property is not a direct consequence of the standard arguments; it
requires to use the properties of the Helffer-Sjöstrand equation and the regularity
estimates established in Section 5. We omit the details of the argument and refer to the
long version of this article ([36, Appendix B], first version of the arXiv submission). We
denote by v (·,□, p∗) the unique maximizer which satisfies

∑
x∈□ ⟨v (x, ·,□, p∗)⟩µβ

= 0.
Additionally, we record that this maximizer satisfies the interior variance estimate

(6.1.6) sup
x∈ 1

3□
var [v (x, ·,□n, p

∗)] ≤ C |p∗|2 .

The maps p 7→ u (·, ·,□, p) and p∗ 7→ v (·, ·,□, p∗) are linear, and they satisfy the
estimates

(6.1.7) ∥∇u (·, ·,□, p)∥L2(□,µβ) ≤ C |p| and ∥∇v (·, ·,□, p∗)∥L2(□,µβ) ≤ C |p∗| .

The goal of this section is to prove that, as the size of the cube □ tends to infinity,
the two quantities ν and ν∗ converge and to obtain an algebraic rate of convergence.
We obtain a result along a specific sequence of cubes defined below.
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Figure 1. The picture on the left represents the cube □n+1, the white
interior cubes are the cubes (z+□n)z∈Zn

and the set in black is the bound-
ary layer BLn.

Definition 6.1.6 (Triadic cube and Zn). — We define the sequence ln of non-negative
real numbers according to the induction formula

l0 = 1 and for each n ∈ N, ln+1 = 3ln +
√
ln.

For each n ∈ N, we define the cube □n :=
(
− ln

2 ,
ln
2

)d ∩ Zd. We denote by
Zm,n := ln3m−nZd ∩□n and by BLm,n the mesoscopic boundary layer defined by the
formula BLm,n := □n \

⋃
z∈Zm,n

(z + □m). The cube □n can be partitioned according
to the formula

□n :=
⋃

z∈Zm,n

(z + □m) ∪BLm,n.

We also introduce the notation Zn := Zn,m, BLn := BLn+1,n. We refer to Figure 1 for
an illustration of these definitions. The set BLm,n is introduced to treat the infinite
range of the operator L .

In the following remarks, we record without proof some properties pertaining the
Definition 6.1.6.

Remark 6.1.7. — There exists a universal constant C such that, for each integer n ∈ N,
3n ≤ ln ≤ C3n.

Remark 6.1.8. — The cardinality of the set Zm,n is equal to 3d(n−m).

Remark 6.1.9. — One has the volume estimate |BLm,n| ≤ C3−
m
2 |□n|.
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6.1.2. Statement of the main result. — The main result obtained in this section is a
quantitative rate of convergence for the two energy quantities ν and ν∗; it is stated
below.

Proposition 6.1.10. — There exists an inverse temperature β0 := β0 (d) <∞ such that
the following statement holds. There exist constants c := c(d) > 0, C := C(d) < ∞
and an exponent α := α(d) > 0 such that for each inverse temperature β ≥ β0,
there exists a symmetric positive definite matrix a ∈ Rd(d

2)×d(d
2) such that for each

integer n ∈ N, and each pair of vectors p, p∗ ∈ Rd×(d
2), one has the estimates∣∣∣∣ν (□−n , p)− 1

2
p · ap

∣∣∣∣ ≤ C3−αn|p|2 and
∣∣∣∣ν∗ (□n, p

∗)− 1

2
p∗ · a−1p∗

∣∣∣∣ ≤ C3−αn|p∗|2.

Remark 6.1.11. — Using the symmetries of the model, we can prove the following
properties. If we let L2,d∗ be the linear map introduced in Section 2.1.5, then there
exists a coefficient λβ := λβ(d, β) which tends to 0 as β tends to infinity such that

(6.1.8)


a =

1

2
Id in the space KerL2,d∗ ,

a =
(1 + λβ)

2
Id in the space (KerL2,d∗)

⊥
.

A direct consequence of (6.1.8) is the identity between the elliptic systems

−∇ · a∇ =
1

2

(
d∗d +

(
1 + λβ

)
dd∗
)
.

These properties are a consequence of Proposition 6.1.10 and of Property (3) of Propo-
sition 6.1.12.

6.1.3. Outline of the argument. — The proof of Proposition 6.1.10 relies on ideas
which were initially developed in [10], and follows the presentation given in [7]. The
argument relies on the definition of the quantity

(6.1.9) J (□, p, p∗) := ν
(
□−, p

)
+ ν∗ (□, p∗)− p · p∗.

By the estimate (6.1.20) below, we know that the quadratic form J is almost positive,
in the sense that it satisfies the inequality, for each cube □ of size R, and each pair
of vectors p, p∗ ∈ Rd×(d

2),

J (□, p, p∗) ≥ −CR− 1
2

(
|p|2 + |p∗|2

)
.

To prove Proposition 6.1.10, we argue that the map J (□, p, p∗) can be bounded from
above in the following sense: for each vector p ∈ Rd, there exists a vector p∗ ∈ Rd

such that

(6.1.10) J (□, p, p∗) ≤ C3−αn|p|2.
Additionally, we prove that the vector p∗ is close to ap. The quantitative rate of con-
vergence stated in Proposition 6.1.10 is then a relatively straightforward consequence
of the estimate (6.1.10). The proof of (6.1.10) is the core of the argument, it relies
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on a hierarchical decomposition of space and requires to introduce the subadditivity
defect at scale ln,

τn := sup
p,p∗∈B1

(
ν
(
□−n , p

)
− ν

(
□−n+1, p

))
+ (ν∗ (□n, p

∗)− ν∗ (□n+1, p
∗))(6.1.11)

= sup
p,p∗∈B1

J (□n, p, p
∗)− J (□n+1, p, p

∗) .

We then prove a series of propositions and lemmas (Propositions 6.2.1 and 6.2.5,
Lemmas 6.3.1, 6.3.2, 6.3.4 and 6.3.5), where various quantities are estimated in terms
if the subadditivity defect τn. From these results we deduce an inequality of the form:
for each integer n ∈ N, and each vector p ∈ Rd×(d

2), there exists a vector p∗ ∈ Rd×(d
2)

such that
J (□n+1, p, p

∗) ≤ Cτn,

which can be rewritten

(6.1.12) J (□n+1, p, p
∗) ≤ C

C + 1
J (□n, p, p

∗) .

The estimate (6.1.12) shows that, by passing from one scale to another, the energy
quantity J has to contract by a multiplicative factor strictly less than 1. An itera-
tion of the inequality (6.1.12) yields the algebraic rate of convergence stated in the
inequality (6.1.10).

6.1.4. Basic properties. — We first record some basic properties of the energy quan-
tities ν and ν∗; they are analogous to [7, Lemma 2.2].

Proposition 6.1.12 (Basic properties of ν and ν∗). — Fix a cube □ ⊆ Zd, and two vec-
tors p, p∗ ∈ Rd×(d

2). The energy quantity ν(□, p) (resp. ν∗(□, p∗)) and the minimizer
u(·,□, p) (resp. maximizer v(·,□, p∗)) satisfy the properties:

1. First variation. The optimizing functions satisfy the following identities:

B□[u(·,□, p), w] = 0, ∀w ∈ H1
0 (□, µβ) ,

and

B∗
□[v(·,□, p∗), w] =

1

|□|
∑
x∈□

p∗ · ⟨∇w(x, ·)⟩µβ
, ∀w ∈ H1 (□, µβ) .

2. Second variation. For each function w ∈ lp +H1
0 (□, µβ),

1

2|□|
E□ [w]− ν(□, p) =

1

2|□|
E□ [u (·,□, p)− w] .(6.1.13)

For each w ∈ H1(□, µβ),

ν∗ (□, p∗) +
1

2
E□ [w]− 1

|□|
∑
x∈□

p∗ · ⟨∇w(x)⟩µβ
=

1

2|□|
E∗□ [v (·,□, p∗)− w] .(6.1.14)
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3. Quadratic representation. There exist two symmetric positive definite matrices
a(□),a∗(□) ∈ Rd(d

2)×d(d
2) such that

(6.1.15) ν(□, p) =
1

2
p · a(□)p and ν∗(□, p∗) =

1

2
p∗ · a∗(□)−1p∗.

Additionally, there exist two real coefficients λβ,□ and λ∗β,□, which tend to 0

as β tends to infinity, such that

(6.1.16)

{
a(□) = Id in the space KerL2,d∗ ,

a(□) = (1 + λβ,□)Id in the space (KerL2,d∗)
⊥
.

and

(6.1.17)

{
a∗(□) = Id in the space KerL2,d∗ ,

a∗(□) = (1 + λ∗β,□)Id in the space (KerL2,d∗)
⊥
.

We denote by Lt
2,d∗ : Rd → Rd×(d

2) its adjoint of the map L2,d∗ . By differenti-
ating the identities (6.1.15) with respect to the parameters p and p∗, we obtain
the equalities

1

|□|
∑
x∈□

(
1

2
⟨∇u(x, ·,□, p)⟩µβ

− β
∑

supp q∩□̸=∅

⟨aq∇qu(·, ·,□, p)⟩µβ
Lt

2,d∗ (nq(x))

)
= a(□)p

(6.1.18)

and
1

|□|
∑
x∈□

⟨∇v(x, ·,□, p∗)⟩µβ
= a∗(□)−1p∗.(6.1.19)

4. One-sided convex duality. For each discrete cube □ of sidelength R, we have the
estimate

(6.1.20) J (□, p, p∗) =
1

2|□|
E∗□

[
v (·,□, p∗)− u

(
·,□−, p

)]
+O

(
C|p|2R− 1

2

)
.

Proof. — The proof of the properties (1) and (2) are straightforward and we refer
to [7, Lemma 2.2]. For the identity (6.1.15), the arguments of [7] give the follow-
ing results: for each cube □ ⊆ Zd, there exist two positive definite matrices a(□),
a∗(□) ∈ Rd(d

2)×d(d
2), such that, for each p, p∗ ∈ Rd×(d

2),

ν(□, p) =
1

2
p · a(□)p and ν∗(□, p∗) =

1

2
p∗ · a∗(□)−1p∗.

To prove the estimate (6.1.16), we use that any p ∈ KerL2,d∗ , one has the identity
dlp = 0. This implies that the minimizer in the energy ν (□, p) is attained by the
map lp, from which one obtains that the linear map a is equal to the identity on
the space KerL2,d∗ . The proof of the result on the orthogonal complement of the
space KerL2,d∗ is a consequence of the rotation and symmetry invariance of the dual
Villain model. The proof of (6.1.17) is identical.
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To prove the identity (6.1.18), we differentiate the equality (6.1.13) with respect
to the variable p. We obtain, for each p, p′ ∈ Rd×(d

2),

a(□)p · p′ = 1

|□|
∑
x∈□

1

2
⟨∇u(x, ·,□, p) · p′⟩µβ

− β
∑

supp q∩□̸=∅

⟨aq∇qu(·, ·,□, p)⟩µβ
(nq,d

∗lp′)

(6.1.21)

=
1

|□|
∑
x∈□

1

2
⟨∇u(x, ·,□, p) · p′⟩µβ

− β
∑

supp q∩□̸=∅

⟨aq∇qu(·, ·,□, p)⟩µβ
(nq, L2,d∗ (∇lp′))

=
1

|□|
∑
x∈□

1

2
⟨∇u(x, ·,□, p) · p′⟩µβ

− β
∑

supp q∩□̸=∅

⟨aq∇qu(·, ·,□, p)⟩µβ
(nq, L2,d∗ (p′))

=
1

|□|
∑
x∈□

(
1

2
⟨∇u(x, ·,□, p) · p′⟩µβ

− β
∑

supp q∩□ ̸=∅

⟨aq∇qu(·, ·,□, p)⟩µβ
Lt

2,d∗ (nq(x)) · p′
)
.

Using that the identity (6.1.21) is valid for every vector p′ ∈ Rd×(d
2), we obtain the

identity (6.1.18).
There only remains to prove the one-sided convex duality property stated

in (6.1.20). We apply the second variation Formula (6.1.14), with the func-
tion u = u (·,□−, p), and use the identity

1

|□|
∑
x∈□

p∗ ·
〈
∇u(x, ·,□−, p)

〉
µβ

= p · p∗,

which is a consequence of the inclusion □− ⊆ □ and the fact that the map u belongs
to the space lp +H1

0 (□, µβ). We obtain

ν∗ (□, p∗) +
1

2 |□|
E∗□ [u]− p∗ · p =

1

2|□|
E∗□

[
v (·,□, p∗)− u

(
·,□−, p∗

)]
.

By definition of the function u, we have the equality ν (□−, p) = 1
2|□−|E□− [u]. To

prove the inequality (6.1.20), it is thus sufficient to prove

(6.1.22)
∣∣∣∣ 1

|□−|
E□− [u]− 1

|□|
E∗□ [u]

∣∣∣∣ ≤ CR−
1
2 .

The proof of the inequality (6.1.22) relies on the definitions of the two energies E□−

and E∗□, and the fact that the function u is equal to the affine function lp outside the
cube □−. We omit the details here and refer to the long version of the article ([36,
Chapter 6, Proposition 1.12]).

6.2. Subadditivity for the energy quantities

In this section, we prove a spatial subadditivity property for the two energies ν
and ν∗. The result is quantified, and we estimate the H1 (□, µβ)-norm of the differ-
ence of the minimizer u (resp. maximizer v) over two different scales in terms of the
difference ν (□m, p)− ν (□n, p) (resp. ν∗ (□m, p

∗)− ν∗ (□n, p
∗)).
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6.2.1. Subadditivity for the energy ν. — In this section, we prove that the energy
quantity ν satisfies a subadditivity property with respect to the domain of integration
and deduce from it the existence of the homogenized matrix a. The statement of
Proposition 6.2.1 is quantified; we prove that the H1-norm of the difference of the
minimizer u over two different scales in terms of the subadditivity defect for the energy
ν.

Proposition 6.2.1 (Subadditivity for ν). — There exists an inverse temperature
β0 := β0 (d) <∞ such that, for each β ≥ β0, the following statement is valid. There
exists a constant C := C(d) < ∞ such that for each pair of integers (m,n) ∈ N
satisfying n > m, and each vector p ∈ Rd×(d

2),

(6.2.1)
1

|Zm,n|
∑

z∈Zm,n

[[u(·,□n, p)− u(·, z + □m, p)]]
2
H1(□n+1,µβ)

≤ C
(
ν (□m, p)− ν (□n, p) + C3−

m
2 |p|2

)
.

Remark 6.2.2. — Since it is useful in the rest of the proof, we note that the demon-
stration of Proposition 6.2.1 can be adapted to the case of trimmed cubes so as to
obtain the estimate, for each pair of integers m,n ∈ N such that m ≤ n,

1

|Zm,n|
∑

z∈Zm,n

[[
u(·,□−n , p)− u(·, z + □−m, p)

]]2
H1(□n+1,µL)

≤ C
(
ν
(
□−m, p

)
− ν

(
□−n , p

)
+ C3−

m
2 |p|2

)
.

Since the proof is essentially the same as the proof of Proposition 6.2.1; we omit the
details.

Before proving Proposition 6.2.1, we record an immediate corollary of the subad-
ditivity property for the energy ν.

Corollary 6.2.3. — There exists an inverse temperature β0 := β0 (d) < ∞ such that,
for each β ≥ β0, there exists a symmetric positive definite matrix a such that, for
each vector p ∈ Rd×(d

2), one has

ν (□n, p) −→
n→∞

p · ap.

By Property (3) of Proposition 6.1.12, this statement can be rewritten equivalently as

a (□n) −→
n→∞

a.

Additionally, one deduces from (6.2.1) the lower bound estimate in the sense of sym-
metric positive definite matrices

(6.2.2) a (□n) ≥ a− C3−
n
2 Id×(d

2)
,

where Id×(d
2)

denotes the identity matrix of the space Rd×(d
2).
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Remark 6.2.4. — By Remark 6.2.2, the convergence also holds with the trimmed
triadic cubes and we have, for each vector p ∈ Rd×(d

2),

ν
(
□−n , p

)
−→

n→∞
p · ap, a

(
□−n
)
−→

n→∞
a, and ∀n ∈ N, a

(
□−n
)
≥ a−C3−

n
2 Id(d

2)
.

Proof. — Since the left side of (6.2.1) is non-negative, we have the inequality, for
each pair of integers m,n ∈ N such that n > m,

(6.2.3) ν (□n, p) ≤ ν (□m, p) + C3−
m
2 |p|2.

Combining the inequality (6.2.3) with the fact that the sequence (ν (□n, p))n∈N is
non-negative implies that it converges with the estimate (6.2.2).

We now focus on the proof of Proposition 6.2.1.

Proof of Proposition 6.2.1. — For the sake of simplicity, we only write the proof in
the case when the difference between the integersm and n is equal to 1: we consider the
specific case of the pair (n, n+ 1). We assume without loss of generality that |p| = 1.

We let w be the function of lp+H1
0 (□n+1, µβ) defined by the following construction:

— For each point z ∈ Zn+1, we set w := u(·, z + □n, p);

— On the mesoscopic boundary layer BLn, we set w := lp.
Applying the second variation Formula (6.1.13) and the coercivity of the energy func-
tional E stated in (6.1.1) gives the inequality

(6.2.4) [[u(·,□n+1, p)− w]]
2
H1(□n+1,µβ) ≤ C

(
1

2|□n+1|
E□n+1

[w]− ν(□, p)

)
.

Using that, for each point z ∈ Zn, the function w is equal to the minimizer
u(·, z + □n, p) in the cube (z + □n), we have the inequality
(6.2.5)∑
z∈Zn+1

[[u(·,□n+1, p)− u(·, z + □n, p)]]
2
H1(□n+1,µβ) ≤ [[u(·,□n+1, p)− w]]

2
H1(□n+1,µβ) .

By the estimates (6.2.4) and (6.2.5), we see that, to prove the inequality (6.2.1), it is
thus sufficient to prove

(6.2.6)
1

2|□|
E□n+1

[w] ≤ ν (□n, p) + C3−
n
2 .

We now prove the inequality (6.2.6). By definition of the energy E, we have

E□n+1
[w] := β

∑
y∈Zd

∥∂yw∥2L2(□n+1,µβ)︸ ︷︷ ︸
(6.2.7)–(i)

+
1

2
∥∇w∥2L2(□n+1,µβ)︸ ︷︷ ︸

(6.2.7)–(ii)

(6.2.7)

+
1

2

∑
k≥1

1

β
k
2

∥∥∇k+1w
∥∥2

L2(Zd,µβ)︸ ︷︷ ︸
(6.2.7)–(iii)

−β
∑

supp q∩□n+1 ̸=∅

⟨∇qw · aq∇qu⟩µβ︸ ︷︷ ︸
(6.2.7)–(iv)

.
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We estimate the four terms on the right side separately. The term (6.2.7)-(i) involving
the derivative with respect to the field ϕ can be estimated by the following argument.
Since the map w is equal to the deterministic affine function lp in the boundary layer
BLn, we have the identity ∂yw(x, ·) = 0 for any point x ∈ BLn and any point y ∈ Zd.
This implies the equality

(6.2.8)
∑
y∈Zd

∥∂yw∥2
L2(□n+1µβ)

=
∑
z∈Zn

∑
y∈Zd

∥∂yu(·, z + □n)∥2L2(z+□nµβ) .

This completes the estimate of the term (6.2.7)-(i). For the term (6.2.7)-(ii), we use
the same argument and note that ∇w(x, ·) = p for any point x ∈ BLn. We obtain

1

|□n+1|
∥∇w∥2L2(□n+1µβ) =

1

|□n+1|
∑
z∈Zn

∥∇u(·, z + □n, p)∥2L2(z+□n,µβ) +
|BLn|
|□n+1|

(6.2.9)

≤ 1

|□n+1|
∑
z∈Zn

∥∇u(·, z + □n, p)∥2L2(z+□n,µβ) + C3−
n
2 .

The term (6.2.7)-(iii) can be estimated with a similar strategy, but some additional
technicalities need to be treated along the way to deal with the iterations of the
Laplacian and the sum over the charges. We omit the details here and only give the
results

(6.2.10) (6.2.7)–(iii) ≤
∑
z∈Zn

∑
k≥1

1

β
k
2

∥∥∇k+1u (·, z + □n, p)
∥∥2

L2(Zd,µβ)
+ Ce−c(ln β)3

n
2 ,

and
(6.2.11)
(6.2.7)–(iv) ≤

∑
z∈Zn

∑
supp q∩(z+□n)

⟨∇qu (·, z + □n, p) · aq∇qu (·, z + □n, p)⟩µβ
+ C3−

n
2 |□n+1|.

We finally combine the equality (6.2.7), the estimates (6.2.8), (6.2.9), (6.2.10), (6.2.11)
to obtain the inequality (6.2.6). The proof of Proposition 6.2.1 is complete.

6.2.2. Subadditivity for the energy ν∗. — In this section, we prove a similar statement
for the energy ν∗.

Proposition 6.2.5 (Subadditivity for ν∗). — There exists a constant C := C(d) < ∞
such that for each pair of integers (n,m) ∈ N such that n > m and each vector
p∗ ∈ Rd×(d

2),

(6.2.12)
1

|Zm,n|
∑

z∈Zm,n

[[v(·, ·,□n, p
∗)− v(·, ·, z + □m, p

∗)]]
2
H1(z+□m,µβ)

≤ C
(
ν∗ (□m, p)− ν∗ (□n, p) + 3−

n
2 |p∗|2

)
.

As it was the case for the energy quantity ν, we deduce from Proposition 6.2.5 that
the sequence (ν∗ (□n, p

∗))n∈N converges as n tends to infinity.
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Corollary 6.2.6. — There exists an inverse temperature β0 := β0 (d) < ∞ such that
for each β ≥ β0 the following statement is valid. There exists a symmetric definite
positive a∗ such that for each vector p∗ ∈ Rd×(d

2),

ν∗ (□n, p
∗) −→

n→∞
a−1
∗ |p∗|2 .

By the Property (3) of Proposition 6.1.12, this statement can be rewritten equivalently

a∗ (□n)
−1 −→

n→∞
a−1
∗ .

We also have the lower bound, for each integer n ∈ N,

a∗ (□n)
−1 ≥ a−1

∗ − C3−
n
2 Id(d

2)
.

Proof of Proposition 6.2.5. — For the sake of simplicity, we only write the proof in
the specific case of the pair (m,n) = (n+ 1, n). We assume without loss of generality
that |p∗| = 1.

We consider the function v := v (·,□n+1, p
∗) and, for z ∈ Zn, we restrict it to the

cubes (z + □n). We apply the second variation Formula (6.1.14) and the coercivity of
the energy functional E∗z+□n

. We obtain, for each point z ∈ Zn,

[[v(·,□n+1, p
∗)− v(·, z + □n, p

∗)]]
2
H1(z+□n,µβ)

≤ C

ν∗ (z + □n, p
∗) +

1

2|□n|
E∗z+□n

[v] +
1

|□n|
∑

x∈z+□

p∗ · ⟨∇v(x)⟩µβ

 .

Summing over the points z ∈ Zn, and dividing by the cardinality of Zn shows

1

|Zn|
∑
z∈Zn

[[v(·,□n+1, p
∗)− v(·, z + □n, p

∗)]]
2
H1(z+□n,µβ)

≤ C

(
ν∗ (□n, p

∗) +
∑
z∈Zn

1

2 |Zn| · |□n|
E∗z+□n

[v] +
1

|Zn| · |□n|
∑

x∈□n

p∗ · ⟨∇v(x)⟩µβ

)
.

The factor |Zn| = 3d on the left side depends only on the dimension d, and can thus
be incorporated in the constant C in the right side. We deduce that, to prove the
inequality (6.2.12), it is sufficient to prove

(6.2.13)
∑
z∈Zn

1

|Zn| · |□n|

1

2
E∗z+□n

[v] +
∑

x∈z+□n

p∗ · ⟨∇v(x)⟩µβ


≤ 1

2|□n+1|
E∗□n+1

[v]︸ ︷︷ ︸
(6.2.13)−(i)

+
1

|□n+1|
∑

x∈□n+1

p∗ · ⟨∇v(x)⟩µβ︸ ︷︷ ︸
(6.2.13)−(ii)

+C3−
n
2 .

We first estimate the term (6.2.13)-(ii). We use the estimate (6.1.7) on the L2-norm
of the gradient of the function v, the Cauchy-Schwarz inequality, and the volume
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estimate

|□n+1| − |Zn| · |□n| =

∣∣∣∣∣∣□n+1 \
⋃

z∈Zn

(z + □n)

∣∣∣∣∣∣ = |BLn| ≤ C3−
n
2 |□n+1| .

We obtain

∑
z∈Zn

1

|Zn| · |□n|
∑

x∈z+□n

p∗ · ⟨∇v(x, ·)⟩µβ

(6.2.14)

≤ 1

|□n+1|
∑
z∈Zn

∑
x∈z+□n

p∗ · ⟨∇v(x)⟩µβ
+

(
|BLn|
|□n+1|

) 1
2

∥∇v∥L2(□n+1,µβ)

≤ 1

|□n+1|
∑

x∈□n+1

p∗ · ⟨∇v(x, ·)⟩µβ
+

1

|□n+1|
∑

x∈BLn

p∗ · ⟨∇v(x, ·)⟩µβ
+ C3−

n
4

≤ 1

|□n+1|
∑

x∈□n+1

p∗ · ⟨∇v(x, ·)⟩µβ
+

(
|BLn|
|□n+1|

) 1
2

∥∇v∥L2(□n+1,µβ) + C3−
n
4

≤ 1

|□n+1|
∑

x∈□n+1

p∗ · ⟨∇v(x, ·)⟩µβ
+ C3−

n
4 .

To estimate the term (6.2.13)-(i), we compare the two energies
∑

z∈Zn
E∗z+□n

[v] and
E∗□n+1

[v], and estimate the terms which differ in the two quantities. These terms are
either boundary layer terms or terms coming from the sum over the charges and the
iterations of the Laplacian. In both cases, we can prove that they are small; we omit
the technical details and only write the result

(6.2.15)
∑
z∈Zn

1

2 |Zn| · |□n|
E∗z+□n

[v] ≤ 1

2 |□n+1|
E∗□n+1

[v] + Ce−c3
n
2 .

Combining the estimates (6.2.15) and (6.2.14) shows the inequality (6.2.13) and com-
pletes the proof of Proposition 6.2.5.

6.3. Quantitative convergence of the subadditive quantities

In this section, we prove an algebraic rate of convergence for the quantity J defined
in (6.1.9). We recall the definition of the subadditivity defect τn given in (6.1.11), and
we introduce the following notation: for each integer n ∈ N,

(6.3.1) an := a∗ (□n) ,

and call the matrix an the approximate homogenized matrix. We first prove a series
of lemmas, estimating various quantities in terms of the subadditivity defect τn.

Before starting the proofs, let us make the following remark. By Corollaries 6.2.3
and 6.2.6, the subadditivity defect τn converges to 0 as n tends to infinity. In particular
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all the quantities which are bounded from above by the subadditivity defect τn tend
to 0 as n tends to infinity.

6.3.1. Control over the approximate homogenized coefficient. — The first lemma we
prove establishes that the difference between the matrices an over two different scales
can be estimated in terms of the subadditivity defect τn.

Lemma 6.3.1. — There exists a constant C := C(d) < ∞ such that, for any pair of
integers (m,n) ∈ N2 with m ≤ n,∣∣a−1

n − a−1
m

∣∣2 ≤ n∑
k=m

τk + C3−
m
2 .

Proof. — Before starting the proof, we collect a few ingredients and notation used in
the argument:

— By the Formula (6.1.19), we have the identity
∑

x∈□n
⟨∇v(x, ·,□n, p

∗)⟩µβ
=

a−1
n p∗;

— By definition of the subadditivity defect τk, we have the identity, for each
p ∈ Rd(d

2),

ν∗ (□m, p)− ν∗ (□n, p) ≤ |p|2
n∑

k=m

τk.

We fix a vector p∗ ∈ Rd(d
2) such that |p∗| = 1, and use the Formula (6.1.19) to write

a−1
n p∗ =

1

|□n|
∑

x∈□n

⟨∇v(x, ·,□n, p
∗)⟩µβ

(6.3.2)

=
1

|□n|
∑

z∈Zm,n

∑
x∈z+□m

⟨∇v(x, ·,□n, p
∗)⟩µβ︸ ︷︷ ︸

(6.3.2)–(i)

+
1

|□n|
∑

x∈BLm,n

⟨∇v(x, ·,□n, p
∗)⟩µβ︸ ︷︷ ︸

(6.3.2)–(ii)

.

The term (6.3.2)-(ii) is the simplest one, we estimate it by the Cauchy-Schwarz in-
equality, the estimate on the L2-norm of the gradient of v stated in (6.1.7), and the
volume estimate |BLm,n| ≤ C3−

m
2 |□n|. We obtain

(6.3.3)

∣∣∣∣∣∣ 1

|□n|
∑

x∈BLm,n

⟨∇v(x, ·,□n, p
∗)⟩µβ

∣∣∣∣∣∣ ≤ C3−
m
2 .
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To estimate the term (6.3.2)-(i), we use the estimate (6.1.7), the identity BLm,n =

□n \
⋃

z∈Zm,n
(z + □n), and the volume estimate |BLm,n| ≤ C3−

m
2 |□n|. We obtain

1

|□n|
∑
z∈Zn

∑
x∈z+□m

⟨∇v(x, ·,□n, p
∗)⟩µβ

=
1

|Zm,n|
1

|z + □m|
∑
z∈Zn

∑
x∈z+□m

⟨∇v(x, ·,□n, p
∗)⟩µβ

+O
(
C3−

m
2

)
.

Applying the subadditivity estimate stated in Proposition 6.2.1, we find that
1

|Zm,n|
1

|z + □m|
∑
z∈Zn

∑
x∈z+□m

∣∣∣⟨∇v(x, ·,□n, p
∗)−∇v(x, ·, z + □m, p

∗)⟩µβ

∣∣∣(6.3.4)

≤ 1

|Zm,n|
∑

z∈Zm,n

∥∇v (·,□n, p
∗)−∇v (·, z + □m, p

∗)∥L2(z+□m,µβ)

≤

 1

|Zm,n|
∑

z∈Zm,n

∥∇v (·,□n, p
∗)−∇v (·, z + □m, p

∗)∥2L2(z+□m,µβ)

 1
2

≤

 1

|Zm,n|
∑

z∈Zm,n

[[∇v (·,□n, p
∗)−∇v (·, z + □m, p

∗)]]
2
H1(z+□m,µβ)

 1
2

≤ C

(
n∑

k=m

τk

) 1
2

+ C3−
m
2 .

We then use the inequality (6.3.4), the translation invariance of the measure µβ , and
the identity

∑
x∈□n

⟨∇v(x, ·,□m, p
∗)⟩µβ

= a−1
m p∗. We obtain

1

|Zm,n|
1

|z + □m|
∑
z∈Zn

∑
x∈z+□m

⟨∇v(x, ·,□n, p
∗)⟩µβ

(6.3.5)

=
1

|Zm,n|
∑

z∈Zm,n

1

|z + □m|
∑

x∈z+□m

⟨∇v(x, ·, z + □m, p
∗)⟩µβ

+O

(
C

( n∑
k=m

τk

) 1
2

+ C3−
m
2

)

=
1

|□m|
∑

x∈□m

⟨∇v(x, ·,□m, p
∗)⟩µβ

+O

(
C

( n∑
k=m

τk

) 1
2

+ C3−
m
2

)

= a−1
m p∗ +O

(
C

( n∑
k=m

τk

) 1
2

+ C3−
m
2

)
.

We then combine the identity (6.3.2) with the estimates (6.3.3) and (6.3.5) to complete
the proof of Lemma 6.3.1.
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6.3.2. Control over the variance of the spatial average of the maximizer v. — The next
step in the argument is to control the variance of the spatial average of the maximiser
v. We prove that its variance contracts and obtain an algebraic rate of convergence.
The proof relies on an explicit computation and makes use of the second-order Helffer-
Sjöstrand equation introduced in Section 3.4 to estimate the correlation between
the random variables ϕ 7→ v(x, ϕ,□n+1, p) and ϕ 7→ v(x′, ϕ,□n+1, p) for a pair of
points x, x′ ∈ □n+1 distant from one another.

Lemma 6.3.2 (Variance estimate). — There exists a constant C := C(d) < ∞ such
that, for each n ∈ N, and each p∗ ∈ Rd×(d

2),

(6.3.6) varµβ

 1

|□n|
∑

x∈□n

∇v(x, ·,□n+1, p
∗)

 ≤ C3−(d− 5
2 )n|p∗|2.

For later purposes, we also record that the variance of the flux contracts

(6.3.7) var

 1

|□n|
∑

x∈□n

1

2
∇v (x, ·,□n+1, p

∗) + β
∑
q∈Q

aq∇qv (·, ·,□n+1, p
∗)nq(x)


≤ C3−(d− 5

2 )n|p∗|2.

Remark 6.3.3. — The value of the coefficient d − 5
2 is arbitrary; we can prove the

result for any fixed number strictly smaller than d− 2 by choosing β large enough.

Proof. — We fix an inverse temperature β large enough so that all the regularity
results of Section 5 hold with the regularity exponent ε = 1

4 . We decompose the
argument into two steps.

Step 1. — To ease the notation, we denote by v := v (·, ·,□n+1, p
∗). We assume

without loss of generality that |p∗| = 1. We first decompose the variance

(6.3.8) varµβ

 1

|□n|
∑

x∈□n

∇v(x, ·)

 =
1

|□n|2
∑

x,x′∈□n

covµβ
[∇v (x, ·) ,∇v (x′, ·)] .

We then prove the estimate, for each pair of points x, x′ ∈ □n,

(6.3.9)
∣∣covµβ

[∇v (x, ·) ,∇v (x′, ·)]
∣∣ ≤ C3

n
2

|x− x′|d−2
.

The estimate (6.3.6) can then be deduced from (6.3.9) and (6.3.8); indeed we have

varµβ

 1

|□n|
∑

x∈□n

∇v(x, ·)

 ≤ 1

|□n|2
∑

x,x′∈□n

covµβ
[∇v (x, ·) ,∇v (x′, ·)]

≤ C3
n
2

|□n|2
∑

x,x′∈□n

1

|x− x′|d−2
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≤ C3−(d− 5
2 )n.

We now fix two points x, x′ ∈ □n, and focus on the proof of (6.3.9). By applying the
Helffer-Sjöstrand formula, we write

(6.3.10) covµβ
[∇v (x, ·) ,∇v (x′, ·)] =

∑
y∈Zd

⟨∂y∇v (x, ·) Hx′(y, ·)⟩µβ
,

where Hz′ is the solution of the Helffer-Sjöstrand equation, for each pair (y, ϕ) ∈ Zd × Ω,

LHx′(y, ϕ) = ∂y∇v (x′, ϕ) .

We then decompose the function Hx′ according to the collection of Green’s matrices(
G∂y∇v(x′,·)

)
y∈Zd . We obtain

Hx′(y, ϕ) =
∑

y′∈Zd

G∂y′∇v(x′,·) (y, ϕ; y′) .

Using Proposition 3.4.11, we can estimate the L2(µβ)-norm of the function Hx′ , for
each point y ∈ Zd,

(6.3.11) ∥Hx′ (y, ·)∥L2(µβ) ≤ C
∑

y′∈Zd

∥∂y′∇v (x′, ·)∥L2(µβ)

|y − y′|d−2
.

We then claim that we have the estimates, for each pair of points y, y′ ∈ Zd,

(6.3.12) ∥∂y∇v (x, ·)∥L2(µβ) ≤
C3

n
4

|y − x|d+ 3
4

and ∥∂y′∇v (x′, ·)∥L2(µβ) ≤
C3

n
4

|y′ − x′|d+ 3
4

.

The estimate (6.3.12) is proved in Step 2 below. Combining the inequalities (6.3.11),
(6.3.12), and the Formula (6.3.10), we obtain
(6.3.13)

covµβ
[∇v (x, ·) ,∇v (x′, ·)] ≤ C3

n
2

∑
y,y′∈Zd

1

|y′ − x′|d+ 3
4

× 1

|y − x|d+ 3
4

× 1

|y − y′|d−2
.

The sum in the right side of the inequality (6.3.13) can be explicitly computed and
we obtain the inequality (6.3.9).

Step 2. Proof of (6.3.12). — The argument relies on the second-order Helffer-
Sjöstrand equation introduced in Section 5.4 and on the reflection principle to
solve the Neumann problem (6.3.16) below. Given a cube Q ⊆ Zd of sidelength R,
we recall the notation 1

2Q to denote the cube which has the same center as Q

and sidelength R/2. We consider the specific cube □ := (0, ln+1)
d and the func-

tion v (·, ·,□, p∗). Since the cube □n+1 can be obtained from the cube □ by a
translation, and since the measure µβ is translation invariant, we see that to prove
the estimate (6.3.12), it is sufficient to prove the inequality, for each point y ∈ 1

3□,
and each point z ∈ Zd,

(6.3.14) ∥∂z∇v (y, ·,□, p∗)∥L2(µβ) ≤
C3

n
4

|y − z|d+ 3
4

.
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The reason justifying this specific choice for the cube □ will become clear later in
the proof. Using the definition of the map v := v (·, ·,□, p∗) as a minimizer in the
variational formulation of ν∗ (□, p∗) stated in (6.1.4), we see that it is a solution of
the Neumann problem

(6.3.15)

{
−∆ϕv + L□v = 0 in □× Ω,

n · ∇v = n · p∗ on ∂□× Ω,

where the operator L□ is the uniformly elliptic operator defined by the formula

L□ := − 1

2β
∆ +

1

2β

∑
k≥1

(−1)k+1

β
k
2

∇k+1 ·
(
1□k∇k+1

)
+

1

β
5
4

∇ ·
(
1□\□−∇

)
+

∑
supp q⊆□

∇q · aq∇q,

where we recall the notation □k := {x ∈ □ : dist(x, ∂□) ≥ k}. The specific, technical
formula of the operator L□ is not relevant in the proof; the important point of the
argument is that the operator L□ is well-defined for functions which are only defined in
the interior of the triadic cube □, and that, as it is the case for elliptic operator Lspat,
it is uniformly elliptic and is a perturbation of the Laplacian − 1

2β ∆. As a consequence,
all the results stated in Section 5 for the Helffer-Sjöstrand operator L are also valid for
the operator −∆ϕ+L□. In particular, all the arguments stated in Section 5.4 about the
second-order Helffer-Sjöstrand equation apply in this setting. By applying the partial
derivative ∂ to the system (6.3.15), we obtain that, if we denote by w(y, z, ϕ) =

∂zv (y, ϕ), then the function w solves the system
(6.3.16)
−∆ϕw + L□,yw + Lspat,zw =

∑
supp q⊆□

z (β, q) (2π) sin (2π (ϕ, q)) (v, q) qy ⊗ qz

in □× Zd × Ω,

n · ∇yw = 0 on ∂□× Zd × Ω,

where the subscripts y (resp. z) in the notation L□,y (resp. Lspat,z) means that the
spatial operator L□n+1

(resp. Lspat,z) only acts on the spatial variable y (resp. z). We
introduce the notation f to denote the function

f :=


□× Zd × Ω → Rd×d,

(y, z, ϕ) 7→
∑

supp q⊆□

z (β, q) (2π) sin (2π (ϕ, q)) (v, q)nq(y)⊗ nq(z).

Using this notation, the system (6.3.16) becomes

(6.3.17)

{
−∆ϕw + L□,yw + Lspat,zw = dydzf in □× Zd × Ω,

n · ∇yw = 0 on ∂□× Zd × Ω.

To solve the system (6.3.17), we use the reflection principle. To this end, we need to
introduce a few definitions, notation and remarks. We fix a point z ∈ Zd and extend
the elliptic operator L□, the functions v and f (·, z), initially defined on the cube □,
to the entire space according to the following procedure. We let □̃ be the discrete
cube (−ln+1, ln+1)

d. For each point x = (x1, . . . , xd) ∈ □̃, we extend f by setting, for
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any (i, j) ∈ {1, . . . , d}2,

(6.3.18) fij (x, z, ϕ) = (−1)sgn(xi)fij (|x1| , . . . , |xd| , z, ϕ) .

We also use the reflection to extend the operator L□ to the cube □̃, and denote this
extension by L□̃. We then extend the operator L□̃ and the function f periodically
from the cube □̃ to Zd, and let w̃ be the solution of the elliptic system

(6.3.19) −∆ϕw̃ + L□̃,y
w̃ + Lspat,zw̃ = dydzf in Zd × Zd × Ω.

Given a point y1 ∈ □, we denote by [y1] ⊆ Zd, the set of vertices ỹ1 ∈ □̃ whose
coordinate are in absolute value equal to the coordinates of y1 and the reflections
of this set. This definition together with (6.3.18) ensures that for any y1 ∈ □ and
any ỹ1 ∈ [y1] and i, j ∈ {1, . . . , d}

|fij (ỹ1, z, ϕ)| = |fij (y1, z, ϕ)| .
One can verify that, with this construction, the restriction of the function w̃ to the
subcube □ satisfies the elliptic system (6.3.17); it is thus equal to the function w.
We now study the function w̃. We denote by G̃sec the Green’s matrix associated with
the operator −∆ϕ + L□̃,y

+ Lspat,z. As was already mentioned, the operator L□̃ is a
perturbation of the Laplacian 1

2β ∆; as a consequence, one can apply the same proofs as
the ones written in Section 5, and obtain the same results. In particular the statement
of Proposition 5.4.4 holds for the Green’s matrix G̃sec. Using that the function w̃ solves
the system (6.3.19), we obtain the explicit formula

∇yw̃(y, z, ϕ) =
∑

y1,z1∈Zd

∇yd∗y1
d∗z1

G̃sec,f(y1,z1,·) (y, z, ϕ; y1, z1) .

Using the statement of Proposition 5.4.4, we obtain the estimate on the L2 (µβ)-norm
of the function w̃, for any y ∈ □ and any z ∈ Zd,

∥∇yw̃(y, z, ·)∥L2(µβ) ≤ C
∑

y1,z1∈Zd

∥f (y1, z1, ·)∥L2(µβ)

|y1 − y|2d+ 3
4 + |z1 − z|2d+ 3

4

(6.3.20)

≤ C
∑

y1∈□,z1∈Zd

∥f (y1, z1, ·)∥L2(µβ)

∑
ỹ1∈[y1]

1

|ỹ1 − y|2d+ 3
4 + |z1 − z|2d+ 3

4

.

We first estimate the second sum in the right-hand side, and obtain∑
ỹ1∈[y1]

1

|ỹ1 − y|2d+ 3
4 + |z1 − z|2d+ 3

4

≤ 1

|y1 − y|2d+ 3
4 + |z1 − z|2d+ 3

4

+
1

3nd max(3n, |z1 − z|)d+ 3
4

.

To compute (6.3.20), we prove the estimate, for each pair of points y1 ∈ □ and z1 ∈ Zd,

(6.3.21) ∥f (y1, y1 + z1, ·)∥L2(µβ) ≤ Ce−c
√

β|z1|
∑

y0∈□

e−c
√

β|y0−y1| ∥∇v(y0, ·)∥L2(µβ) .
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Let us make a comment about the estimate (6.3.21). Due to the exponential decay
|z (β, q)| ≤ Ce−c

√
β∥q∥1 , the function f decays exponentially fast outside the diagonal

{(y, y) : y ∈ □} ⊆ Z2d. This phenomenon can be observed in the inequality (6.3.21):
the exponential term e−c

√
β|z1| is small when the norm of z1 is large, i.e., when the

point (y1, y1+z1) is far from the diagonal {(y, y) ∈ □×□}. Furthermore, on the diago-
nal, the term ∥f (y1, y1, ·)∥L2(µβ) is approximately equal to the value ∥∇v(y1, ·)∥L2(µβ);
but again the sum over all the charges needs to be taken into consideration and ex-
plains the sum over all the radii in the right side of (6.3.21) with the exponential
decay e−c

√
βr.

We now prove the estimate (6.3.21). We start from the inequality, for each pair of
points y1 ∈ □ and z1 ∈ Zd,

(6.3.22) ∥f (y1, y1 + z1, ·)∥L2(µβ)

≤
∑
q∈Q

∑
y∈supp nq

e−c
√

β∥q∥1 ∥∇v(y, ·)∥L2(µβ) ∥nq∥L∞ |nq(y1)| |nq(y1 + z1)| .

We then note that if a charge q is such that the two points y1 and y1 + z1 belong to
the support of nq, then the diameter of nq is larger than |z1|, and thus the diameter
of q is larger than c|z1|, for some constant c(d) > 0. From this remark, we deduce that

(6.3.23)
∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥L∞ |nq(y1)| |nq(y1 + z1)| ≤ Ce−c
√

β|z1|.

Similarly, if a charge q is such that the three points y1 and y1 +z1 and y belong to the
support of nq, then the diameter of nq is larger than max (|z1|, |y − y1|) ≥ |z1|+|y−y1|

2 .
This argument implies that the diameter of q has to be larger than c (|z1|+ |y − y1|),
and we deduce that
(6.3.24)∑

q∈Q

e−c
√

β∥q∥11{y∈supp nq} ∥nq∥L∞ |nq(y1)| |nq(y1 + z1)| ≤ Ce−c
√

β(|z1|+|y−y1|).

Combining the estimates (6.3.22), (6.3.23), and (6.3.24), we obtain

∥f (y1, y1 + z1, ·)∥L2(µβ)

≤
∑
q∈Q

∑
y0∈supp nq

e−c
√

β∥q∥1 ∥∇v(y0, ·)∥L2(µβ) ∥nq∥L∞ nq(y1)nq(y1 + z1)

≤
∑

y0∈□

∑
q∈Q

e−c
√

β∥q∥1 ∥∇v(y0, ·)∥L2(µβ) 1{y0∈supp nq} ∥nq∥L∞ nq(y1)nq(y1 + z1)

≤ Ce−c
√

β|z1|
∑

y0∈□

e−c
√

β|y0−y1| ∥∇v(y0, ·)∥L2(µβ) ,

and we have proved the inequality (6.3.21).
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We now come back to the estimate (6.3.20), fix a point y ∈ □, and use the esti-
mate (6.3.21). We obtain

∥∇yw̃(y, z, ϕ)∥L2(µβ) ≤ C
∑

y0,y1∈□,z1∈Zd

e−c
√

β(|z1−y1|+|y0−y1|) ∥∇v (y0, ·)∥L2(µβ)

|y1 − y|2d+ 3
4 + |z1 − z|2d+ 3

4

(6.3.25)

+ C
∑

y0,y1∈□,z1∈Zd

e−c
√

β(|z1−y1|+|y0−y1|) ∥∇v (y0, ·)∥L2(µβ)

3nd max(3n, |z1 − z|)d+ 3
4

.

We first estimate the second term in the right-hand side and write∑
y0,y1∈□,z1∈Zd

e−c
√

β(|z1−y1|+|y0−y1|) ∥∇v (y0, ·)∥L2(µβ)

3dn max(3n, |z1 − z|)d+ 3
4

(6.3.26)

≤
C ∥∇v∥L2(□,µβ)

max(3n, |z|)d+ 3
4

≤ C

max(3n, |z|)d+ 3
4

≤ C

|z − y|d+ 3
4

,

where we have used that y ∈ 1
3□ to obtain the last inequality. We then estimate the

first term in the right-hand side of (6.3.25) and focus on the sum over the variables
y1 and z1. The exponential decay of the terms e−c

√
β|z1−y1| and e−c

√
β|y0−y1| forces

the sum to contract on the points y1 = y0 and z1 = y0. We have the inequality,∑
y1,z1∈Zd

e−c
√

β(|z1−y1|+|y0−y1|)

|y1 − y|2d+ 3
4 + |z1 − z|2d+ 3

4

≤ C

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4

.

Using the previous estimate, we can simplify the inequality (6.3.25), and we obtain

∥∇yw̃(y, z, ϕ)∥L2(µβ) ≤ C
∑

y0∈□

∥∇v(y0, ·)∥L2(µβ)

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4

.

We then truncate the sum, depending on whether the point y0 belongs to the cube
1
2□. We write

∥∇yw̃(y, z, ϕ)∥L2(µβ) ≤ C
∑

y0∈ 1
2□

∥∇v (y0, ·)∥L2(µβ)

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4︸ ︷︷ ︸
(6.3.27)–(i)

(6.3.27)

+ C
∑

y0∈□\ 1
2□

∥∇v (y0, ·)∥L2(µβ)

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4︸ ︷︷ ︸
(6.3.27)–(ii)

.

We treat the two terms in the right side of (6.3.27) separately. For the term (6.3.27)-
(i), we use that the map v is a solution of the Helffer-Sjöstrand Equation (6.3.15)
in the cube □, and apply Proposition 5.2.4 with the regularity exponent ε = 1

4 . We
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obtain, for each point y0 ∈ 1
2□,

(6.3.28) ∥∇v (y0, ·)∥L2(µβ) ≤ C (ln+1)
1
2 ∥∇v∥L2(□,µβ) ≤ C3

n
2 ,

where we used Remark 6.1.7 and the inequality (6.1.7) in the second inequality. Using
the estimate (6.3.28), we can compute the term (6.3.27)-(i)

∑
y0∈ 1

2□

∥∇v (y0, ·)∥L2(µβ)

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4

≤ C3
n
2

∑
y0∈ 1

2□

1

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4

(6.3.29)

≤ C3
n
2

∑
y0∈Zd

1

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4

≤ C
3

n
2

|y − z|d+ 3
4

,

where we used the result of Appendix C in the last inequality. We now treat the
term (6.3.27)-(ii). In that case, we use the estimate |y − y0| ≥ c|y0|, valid for any
point y0 ∈ Zd \ 1

2□ and any point y ∈ 1
3□. We obtain the inequality∑

y0∈□\ 1
2□

∥∇v (y0, ·)∥L2(µβ)

|y0 − y|2d+ 3
4 + |y0 − z|2d+ 3

4

≤ C
∑

y0∈□\ 1
2□

∥∇v (y0, ·)∥L2(µβ)

|y0|2d+ 3
4 + |y0 − z|2d+ 3

4

.

We then note that, for any point y0 ∈ □ \ 1
2□, and each point z ∈ Zd, one has the

inequalities

(6.3.30) cmax(3n, |z|)2d+ 3
4 ≤ |y0|2d+ 3

4 + |y0 − z|2d+ 3
4 ≤ Cmax(3n, |z|)2d+ 3

4 .

We thus deduce that

(6.3.31)
∑

y0∈□\ 1
2□

∥∇v (y0, ·)∥L2(µβ)

|y0|2d+ 3
4 + |y0 − z|2d+ 3

4

≤ C

max (|z|, 3n)
d+ 3

4

≤ C

|z − y|d+ 3
4

.

By combining the estimates (6.3.26), (6.3.27), (6.3.29) and (6.3.31), we deduce that

(6.3.32) ∥∇yw̃(y, z, ·)∥L2(µβ) ≤
C3

n
4

|z − y|d+ 3
4

.

We complete the argument by recalling that, for each y ∈ □, and each z ∈ Zd, the func-
tion w̃ is defined so that we have ∇yw̃ (y, z, ·) = ∂z∇v (y, ·,□). The inequality (6.3.32)
can thus be rewritten

∥∂z∇v (y, ·,□, p∗)∥ ≤ C3
n
4

|y − z|d+ 3
4

.

The proof of the inequality (6.3.14), and thus of Step 2 is complete.

6.3.3. Control over the L2-norms of the functions u − lp and v − a∗ (□n)
−1
lp∗ . —

The objective of this section is to prove that the optimizers u(·, ·,□−n+1, p) and
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v(·, ·,□n+2, p
∗) are close in the L2 (□n, µβ)-norm to affine functions. The result relies

on the multiscale Poincaré inequality stated in Appendix B, and is quantified in
terms of the subadditivity defect τn.

Lemma 6.3.4 (L2 estimate for the optimizers u and v). — There exist an inverse tem-
perature β0 := β0(d) <∞ and a constant C := C(d) <∞ such that, for each β > β0,
each integer n ∈ N, and each pair of vectors p, p∗ ∈ Rd×(d

2),

(6.3.33)
∥∥u(·, ·,□−n+1, p)− lp

∥∥2

L2(□n+1,µβ)
≤ C|p|232n

(
3−

n
2 +

n∑
m=0

3−
n−m

2 τm

)
,

and ∥∥∥v(·, ·,□n+2, p
∗)− la−1

n p∗
− (v(·, ·,□n+2, p

∗))□n+1,µβ

∥∥∥2

L2(□n+1,µβ)
(6.3.34)

≤ C|p∗|232n

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

Proof. — We assume without loss of generality that |p| = 1 and |p∗| = 1. To ease the
notation, we denote by u := u(·, ·,□−n+1, p) and by v := v(·, ·,□n+2, p

∗). The strategy
of the proof relies on two ingredients:

— First, we need to estimate the spatial averages of the gradients of the func-
tions u − lp and v − la∗(□n)−1p∗ and prove that they are small. To be more
precise, we estimate these spatial averages in terms of the subadditivity defects
τn. The proof relies on different arguments depending on which function we
consider:

— For the function u, we use the subadditivity property stated in Proposi-
tion 6.2.1 and the following fact: for any discrete cube □ ⊆ Zd and any
function f : □ → R which is equal to 0 on the boundary of the cube □,
one has the identity ∑

x∈□

∇f(x) = 0.

— For the function v, we use the subadditivity property stated in Proposi-
tion 6.2.1, and Lemma 6.3.2 to control the variance of the spatial average
of its gradient.

— The multiscale Poincaré inequality, which is stated in Proposition B.0.1 in Ap-
pendix B. This inequality allows to estimate the L2-norm of a function in terms
of the spatial averages of its gradient.

We first focus on the function u := u(·, ·,□−n+1, p), and prove the inequality (6.3.33).
We first recall that the function u is extended by the affine function lp outside the
cube □−n+1. We thus have∥∥u(·, ·,□−n+1, p)− lp

∥∥2

L2(□n+1,µβ)
=
∥∥u(·, ·,□−n+1, p)− lp

∥∥2

L2(□−n+1,µβ)
.
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By the multiscale Poincaré inequality stated in Proposition B.0.1 of Appendix B, we
have

∥∥u(·, ·,□−n+1, p)− lp
∥∥2

L2(□n+1,µβ)

(6.3.35)

≤ C
∥∥∇u(·, ·,□−n+1, p)− p

∥∥2

L2(□n+1,µβ)︸ ︷︷ ︸
(6.3.35)–(i)

+ C3n
n∑

m=0

3m

|Zm,n|
∑

z∈Zm,n

〈 1

|z + □m|
∑

x∈z+□m

∇u(·, ·,□−n+1, p)− p

2〉
µβ︸ ︷︷ ︸

(6.3.35)–(ii)

.

We bound the term (6.3.35)-(i) using the estimate (6.1.7). We obtain the inequality
(6.3.36)∥∥∇u(·, ·,□−n+1, p)− p

∥∥2

L2(□n+1,µβ)
≤ 2 ∥∇u(·, ·,□n+1, p)∥2L2(□−n+1,µβ) + 2|p2| ≤ C|p2|.

To estimate the term (6.3.35)-(ii), we use the two following ingredients:

— The subadditivity of the energy ν which is stated in Proposition 6.2.1 and
Remark 6.2.2. It reads, for each integer m ∈ {1, . . . , n},

|Zm,n|
−1

∑
z∈Zm,n

[[
u(·, ·,□−n+1, p)− u(·, ·, z + □−m, p)

]]2
H1(z+□−m,µβ)

≤ C
(
ν
(
□−m, p

)
− ν

(
□−n+1, p

)
+ 3−

m
2 |p|2

)
≤ C

(
n∑

k=m

τk + 3−
m
2 |p|2

)
.

— For each point z ∈ Zm,n, the function u(·, z + □−m, p) belongs to the space
lp +H1

0 (z + □−m, µβ). This implies that, for each realization of the field ϕ ∈ Ω,

(6.3.37)
1

|z + □m|
∑

x∈z+□m

∇u(x, ϕ, z + □−m, p) = p.

We deduce the inequality, for each integer m ∈ {1, . . . , n},
(6.3.38)∑
z∈Zm,n

1

|Zm,n|

〈(
1

|z + □m|
∑

x∈z+□m

∇u(x, ·,□−n+1, p)−p
)2〉

µβ

≤ C

( n∑
k=m

τk+3−
m
2 |p|2

)
.

Combining the estimates (6.3.35), (6.3.36), and (6.3.38) completes the proof of the
estimate (6.3.33).
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We now prove the inequality (6.3.34). By the multiscale Poincaré inequality, we
have

∥∥∥∥v(·, ·,□n+2, p
∗)− la−1

n p∗
−
(
v(·, ·,□n+2, p

∗)− la−1
n p∗

)
□n+1

∥∥∥∥2

L2(□n+1,µβ)

(6.3.39)

≤ C
∥∥∇v(·,□n+2, p

∗)− a−1
n p∗

∥∥2

L2(□n+1,µβ)︸ ︷︷ ︸
(6.3.39)–(i)

+ C3n
n∑

m=0

3m

|Zm,n|

〈 1

|z + □m|
∑

x∈z+□m

∇v(·,□n+2, p
∗)− a−1

n p∗

2〉
µβ︸ ︷︷ ︸

(6.3.39)–(ii)

.

We first treat the term on the left side. Since the average value of a linear map on a
cube centered at 0 is equal to 0, we have that(

v(·, ·,□n+2, p
∗)− la−1

n p∗

)
□n+1

=
1

|□n+1|
∑

x∈□n+1

v(x, ·,□n+2, p
∗).

We then use the estimate (6.1.6) and the inclusion □n+1 ⊆ 1
3□n+2. We obtain∥∥∥∥(v(·, ·,□n+2, p

∗)− la−1
n p∗

)
□n+1

− (v(·, ·,□n+2, p
∗))□n+1,µβ

∥∥∥∥2

L2(µβ)

(6.3.40)

= varµβ

[
(v(·, ·,□n+2, p

∗))□n+1

]
≤ C

|□n|
∑

x∈□n+1

varµβ
[v(x, ·,□n+2, p

∗)]

≤ C

|□n|
∑

x∈ 1
3□n+2

var [v(x, ·,□n+2, p
∗)]

≤ C|p∗|.

We now treat the terms in the right side of (6.3.39). The term (6.3.39)-(i) can be
estimated with the same argument as in the inequality (6.3.36). We obtain

(6.3.41)
∥∥∇v(·, ·,□n+2, p

∗)− a−1
n p∗

∥∥2

L2(□n+1,µβ)
≤ C.

To estimate the term (6.3.39)-(ii), we prove that, for each integer m ∈ {1, . . . , n},
(6.3.42)

1

|Zm,n|

〈 1

|z + □m|
∑

x∈z+□m

∇v(·, ·,□n+2, p
∗)− a−1

n p∗

2〉
µβ

≤ C3−
m
2 + C

n∑
k=m

τk.
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To this end, we decompose the left side of (6.3.42) and write

1

|Zm,n|
∑

z∈Zm,n

〈(
1

|z + □m|
∑

x∈z+□m

∇v(·, ·,□n+2, p
∗)− a−1

n p∗
)2〉

µβ

(6.3.43)

≤ 3 |Zm,n|
−1

∑
z∈Zm,n

[[v(·, ·,□n+2, p
∗)− v(·, ·, z + □m, p

∗)]]
2
H1(z+□m,µβ)

+ 3
∣∣a−1

n p∗ − a−1
m p∗

∣∣2
+ 3 |Zm,n|

−1
∑

z∈Zm,n

〈(
1

|z + □m|
∑

x∈z+□m

∇v(·, ·, z + □m, p
∗)− a−1

m p∗
)2〉

µβ

.

We estimate the first term on the right side by Proposition 6.2.5, and the second term
by Lemma 6.3.1. We obtain

|Zm,n|
−1

∑
z∈Zm,n

[[v(·, ·,□n+2, p
∗)− v(·, ·, z + □m, p

∗)]]
2
H1(z+□m,µβ) +

∣∣a−1
n p∗ − a−1

m p∗
∣∣2

(6.3.44)

≤ C3−
m
2 + C

n∑
k=m

τk.

There remains to estimate the third term in the right side of (6.3.43). We first recall
the identity, for each integer m ∈ N,

1

|□m|
∑

x∈□m

⟨∇v(x, ·,□m, p
∗)⟩µβ

= a−1
m p∗.

We use the translation invariance of the measure µβ and Lemma 6.3.2. To ease the
notation, we note that in dimension larger than 3, we have the estimate d − 5

2 ≥
1
2 .

We obtain

|Zm,n|
−1

∑
z∈Zm,n

〈 1

|z + □m|
∑

x∈z+□m

∇v(x, ·, z + □m, p
∗)− a−1

m p∗

2〉
µβ

(6.3.45)

=

〈 1

|□m|
∑

x∈□m

∇v(x, ·,□m, p
∗)− a−1

m p∗

2〉
µβ

(6.3.46)

= varµβ

 1

|□m|
∑

x∈□n

∇v(x, ·,□m, p
∗)


≤ varµβ

 1

|□m|
∑

x∈□m

∇v(x, ·,□m+1, p
∗)

+ τm
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≤ C
(
3−

m
2 + τm

)
.

Combining the estimates (6.3.40), (6.3.41), (6.3.43), (6.3.44), and (6.3.45) completes
the proof of (6.3.34).

6.3.4. Control over the energy J . — In this section, we obtain from the previous re-
sults and the Caccioppoli inequality a quantitative control over the energy quan-
tity J (□n, p,anp). The argument needs to take into account the infinite range of
the Helffer-Sjöstrand operator and the specific forms of the energies E and E∗ which
causes some technicalities in the analysis. The result is stated in the lemma below.

Lemma 6.3.5. — There exist an inverse temperature β0 := β0(d) < ∞ and a
constant C := C(d) < ∞ such that for each β ≥ β0, each integer n ∈ N, and
each p ∈ Rd×(d

2),

(6.3.47) J (□n, p,anp) ≤ C|p|2
(

3−
n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

Proof. — The strategy of the proof relies on three ingredients: the Caccioppoli in-
equality stated in Proposition 5.1.1, the one-sided convex duality Formula (6.1.20)
stated in Proposition 6.1.12, and the L2-norm estimate on the optimizers u and v

stated in Lemma 6.3.4.
We fix a slope p ∈ Rd and assume without loss of generality that |p| = 1. By

Proposition 6.1.12, we have the identity

J (□n, p,anp) = E∗□n

[
u
(
·, ·,□−n , p

)
− v (·, ·,□n,anp)

]
+O

(
C3−

m
2

)
.

To prove the estimate (6.3.47), it is thus sufficient to prove the estimate

(6.3.48) E∗□n

[
u
(
·, ·,□−n , p

)
− v (·, ·,□n,anp)

]
≤ C

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

Using the coercivity of the energy E∗□n
stated in (6.1.2), we see that to prove the

inequality (6.3.48), it is sufficient to prove the estimate

(6.3.49)
[[
u
(
·, ·,□−n , p

)
− v (·, ·,□n,anp)

]]2
H1(□n,µβ)

≤ C

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
,

and by Propositions 6.2.1 and 6.2.5, we see that to prove (6.3.49) it is sufficient to
prove
(6.3.50)[[

u
(
·, ·,□−n+1, p

)
− v (·, ·,□n+2,anp)

]]2
H1(□n,µβ)

≤ C

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

We now focus on the proof of (6.3.50). In the rest of the proof, we make use of the
notation u := u

(
·, ·,□−n+1, p

)
and v := v (·, ·,□n+2,anp)− (v (·, ·,□n+2,anp))□n+1,µβ

.
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By Lemma 6.3.4, we have the L2 (□n+1, µβ)-estimate

(6.3.51) ∥u− v∥2L2(□n+1,µβ) ≤ 2 ∥u− lp∥2L2(□n+1,µβ) + 2 ∥v − lp∥2L2(□n+1,µβ)

≤ C32n

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

We recall the following notation: for each integer k ∈ N, we denote by □k
n+2 the interior

cube □k
n+2 := {x ∈ □n+2 : dist (x, ∂□n+2) ≥ k}. By the first variation formula stated

in Proposition 6.1.12, the maps u and v are solutions of the equations

Lu = 0 in □−n+1 × Ω and L□n+2
v = 0 in □n+2 × Ω,

where we recall the definition of the Helffer-Sjöstrand operator L□n+2

L□n+2
:= −∆ϕ −

1

2β
∆ +

1

2β

∑
k≥1

(−1)k+1

β
k
2

∇k+1 ·
(
1□k

n+2
∇k+1

)
− 1

β
5
4

∇ ·
(
1□n+2\□−n+2

∇
)

+
∑

supp q⊆□n+2

∇q · aq∇q.

One can adapt the proof of the Caccioppoli inequality (Proposition 5.1.1) to
the operator L□n+2

and obtain the following statement. There exists a constant
C := C(d) <∞ such that for any vector fields F : □n+2 × Ω → Rd×(d

2) and
G : □n+2×Ω → Rd, any ball B(x, r) such that B(x, 2r) is included in the cube □n+2,
and every solution w : B(x, 2r)× Ω → R(d

2) of the equation

L□n+2
w = ∇ · F + dG in B(x, 2r)× Ω,

one has the estimate

(6.3.52) [[w]]H1(Br(x),µβ) ≤
C

R
∥w∥L2(B2r(x),µβ)

+ ∥F∥L2(B2r(x),µβ) + ∥G∥L2(B2r(x),µβ) +
∑

y∈□n+2\B2r(x)

e−c(ln β)|y−x| ∥w(y, ·)∥L2(µβ) .

We then note that, by the definition of the operator L□n+2
, the function u satisfies

the equation
L□n+2

u = ∇ · F + dG in □−n+1 × Ω,

where the vector fields F and G are defined by the formulae, for each x ∈ □−n+1,

F (x) := − 1

2β

∑
k≥dist(x,∂□n+2)

1

β
k
2

(−∆)k∇u(x) and G(x) :=
∑

supp q ̸⊆□n+2

aq∇qu× nq(x).

We estimate the L2 (□n+1, µβ)-norm of the functions F and G. We first note that
every point x in the cube □n+1 satisfies the inequality dist(x, ∂□n+2) ≥ c3n. Using
the boundedness of the discrete Laplacian operator, the upper bound on the L2-norm
of the gradient of the function u stated in (6.1.7), and choosing the inverse temperature
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β large enough, we have

∥F∥L2(□n+1,µβ) ≤
∑

k≥c3n

1

β
k
2

∥∥∆k∇u
∥∥

L2(□n+1,µβ)
(6.3.53)

≤
∑

k≥c3n

Ck

β
k
2

∥∇u∥L2(□−n+2,µβ) ≤ Ce−c(ln β)3
n
2 .

Using a similar argument, we note that for each point x in the interior cube □n+1, if
a charge q ∈ Q is such that its support is not included in the cube □n+2 and such that
the point x belongs to the support of nq, then its diameter must be larger than c3n.
We then use the exponential decay on the coefficient aq and the estimate (6.1.7) to
obtain

∥G∥L2(□n+1,µβ) =

∥∥∥∥∥∥
∑

supp q ̸⊆□n+2

aq(∇qu)nq

∥∥∥∥∥∥
L2(□n,µβ)

≤ Ce−c
√

β3n

∥∇u∥L2(□−n+2,µβ)

(6.3.54)

≤ Ce−c
√

β3n

.

We now apply the Caccioppoli inequality (5.1.2) to the function w := u− v, which is
solution of the equation L□n+2

(u− v) = ∇ · F + dG in the set □−n+1 × Ω. We obtain

β
∑
y∈Zd

∥∂y (u− v)∥L2(□n,µβ) + ∥∇ (u− v)∥L2(□n,µβ)(6.3.55)

≤ C3−2n ∥u− v∥2L2(□−n+1,µβ)︸ ︷︷ ︸
(6.3.55)–(i)

+ ∥F∥2L2(□−n+1,µβ) + ∥G∥2L2(□−n+1,µβ)︸ ︷︷ ︸
(6.3.55)–(ii)

+

 ∑
x∈□n+2\□−n+1

e−c(ln β)|x| ∥u(x, ·)− v(x, ·)∥L2(µβ)


2

︸ ︷︷ ︸
(6.3.55)–(iii)

.

We estimate the term (6.3.55)-(i) thanks to the inequality (6.3.51). We obtain

(6.3.56) C3−2n ∥u− v∥2L2(□−n+1,µβ) ≤ C

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

We estimate the term (6.3.55)-(ii) by the inequalities (6.3.53) and (6.3.54). We obtain

(6.3.57) ∥F∥2L2(□−n+1,µβ) + ∥G∥L2(□−n+1,µβ) ≤ Ce−c(ln β)3
n
2 .

For the term (6.3.55)-(iii), we use the estimate (6.3.51), the observation τn ≤ C, and
note that if a point x lies outside the cube □n, then its norm must be larger than c3n.
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We obtain

∑
x∈□n+2\□−n+1

e−c
√

β|x| ∥(u− v)(x, ·)∥L2(µβ) ≤ Ce−c
√

β3n ∑
x∈□n+2

∥∇(u− v)(x, ·)∥L2(µβ)

(6.3.58)

≤ Ce−c
√

β3n

3
dn
2 ∥u− v∥L2(□n+2,µβ)

≤ Ce−c
√

β3n

.

Combining the estimates (6.3.55), (6.3.56), (6.3.57), and (6.3.58) completes the proof
of Lemma 6.3.5.

6.3.5. Quantitative rate of convergence for the energy J . — In this section, we use
Lemma 6.3.5 together with an iterative argument to obtain an algebraic rate of con-
vergence for the quantity J (□n, p,anp). The strategy implemented in the proof is
essentially the one described in the paragraph following Proposition 6.1.10 up to a
technical difficulty: the term in the right side of the estimate (6.3.47) of Lemma 6.3.5
is not the subadditivity defect τn but a weighted average the subadditivity defects.
This additional technicality requires to make use of a weighted quantity denoted by F̃n

in the proof below.

Proposition 6.3.6. — There exist a constant C := C(d) <∞ and an exponent
α := α(d) > 0 such that, for each integer n ∈ N, and each p ∈ Rd×(d

2),

J (□n, p,anp) ≤ C|p|23−αn.

We record, as a corollary, that the quantitative rate of convergence established in
Proposition 6.3.6 implies a quantitative estimate on the subadditivity defect τn.

Corollary 6.3.7. — There exist a constant C := C(d) <∞ and an exponent
α := α(d) > 0 such that, for each integer n ∈ N,

(6.3.59) −C3−
n
2 ≤ τn ≤ C3−αn.

Proof of Proposition 6.3.6 and Corollary 6.3.7. — We let B1 be the unit ball
in Rd(d

2). We denote by C0 the constant which appears in the right side of the
identity (6.1.20), and define, for each integer n ∈ N,

Fn := sup
p∈B1

ν
(
□−n , p

)
+ ν∗ (□n,anp)− an|p|2 + C0|p|23−

n
2 .

We note that by the inequality (6.1.5), we have the upper bound, for each integer
n ∈ N, Fn ≤ C. By Proposition 6.1.12 and Lemma 6.3.5, we have, for each integer
n ∈ N,

(6.3.60) 0 ≤ Fn ≤ C

(
3−

n
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.
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Additionally, we obtain from the subadditivity properties stated in Propositions 6.2.1
and 6.2.5

(6.3.61) Fn+1 ≤ Fn + C3−
n
2 .

Combining the estimates (6.3.60) and (6.3.61) implies that

0 ≤ Fn+1 ≤ C

(
3−

n+1
2 +

n+1∑
m=0

3−
n−m

2 τm

)
.

By definition of the subadditivity defect τn, and the fact that the maps

p→ ν
(
□−n , p

)
− ν

(
□−n+1, p

)
+ C|p|23−n

2

and
p∗ → ν∗ (□n, p

∗)− ν∗ (□n+1, p
∗) + C |p∗|2 3−

n
2

are quadratic and non-negative, we have

τn ≤ C

d∑
k=1

(
ν
(
□−n , ek

)
− ν

(
□−n+1, ek

)
+ ν∗ (□n, ek)− ν∗ (□n+1, ek)

)
+ C3−

n
2

(6.3.62)

≤ C
(
Fn − Fn+1 + 3−

n
2

)
.

We then define F̃n := 3−
n
4

∑n
k=0 3

k
4 Fk. From the estimates (6.3.60), (6.3.62), and the

inequality F0 ≤ C, we deduce that

F̃n − F̃n+1 = 3−
n
4

n∑
k=0

3
k
4 (Fk − Fk+1)− 3−

(n+1)
4 F0(6.3.63)

≥ 3−
n
4

n∑
k=0

3
k
4

(
1

C
τk − 3−

k
2

)
− C3−

n
4(6.3.64)

≥ 1

C

n∑
k=0

3−
(n−k)

4 τk −
n∑

k=0

3−
(n−k)

4 3−
k
2 − C3−

n
4

≥ 1

C

n∑
k=0

3−
(n−k)

4 τk − C3−
n
4 .

We then compute, by using the inequalities (6.3.61) and (6.3.60),

F̃n+1 = 3−
n+1

4

n+1∑
k=0

3
k
4 Fk = 3−

n
4

n∑
k=0

3
k
4 Fk+1 + 3−

n+1
4 F0

≤ 3−
n
4

n∑
k=0

3
k
4

(
Fk + C3−

n
2

)
+ C3−

n
4

≤ F̃n + C3−
n
4 .
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We use the estimate (6.3.60) and write

F̃n+1 ≤ 3−
n
4

n∑
k=0

3
k
4 Fk + C3−

n
4 ≤ 3−

n
4

n∑
k=0

3
k
4

(
C3−

k
2 +

k∑
m=0

3−
k−m

2 τm

)
+ C3−

n
4

(6.3.65)

≤ C3−
n
4

n∑
k=0

3−
k
4 + 3−

n
4

n∑
k=0

3−
k
4

k∑
m=0

3−
m
2 τm + C3−

n
4

≤ C

n∑
k=0

3−
n−k

4 τk + C3−
n
4 .

By combining the estimates (6.3.63) and (6.3.65), we have obtained

F̃n+1 ≤ C
(
F̃n − F̃n+1

)
+ C3−

n
4 .

The previous inequality can be rewritten

(6.3.66) F̃n+1 ≤
C

C + 1
F̃n + C3−

n
4 .

We set α0 := 1
ln 3 ln C

C+1 so that we have 3α0 = C
C+1 , and define the exponent

α := min
(
α0,

1
8

)
. We iterate the inequality (6.3.66), and note that the inequality

F0 ≤ C implies the inequality F̃0 ≤ C. We obtain

F̃n ≤ 3−α0nF̃0 + C

n∑
k=0

3−α0k3−
n−k

4 ≤ C3−αn.

Finally, by the definition of the weighted sum F̃n, we have the inequality Fn ≤ F̃n.
The proof of Proposition 6.3.6 is complete.

There only remains to prove Corollary 6.3.7. The lower bound in (6.3.59) is a direct
consequence subadditivity properties stated in Propositions 6.2.1 and 6.2.5. For the
upper bound, we use the inequality (6.3.62) together with the estimates Fn ≤ C3−αn

and Fn+1 ≥ 0.

6.3.6. Quantitative rate of convergence for the subadditive quantities ν and ν∗. — In
this section, we deduce Proposition 6.1.10 from Proposition 6.3.6.

Proof of Proposition 6.1.10. — Before starting the proof, we collect some ingredients
which were proved in this section:

— By Proposition 6.1.12 and Definition 6.3.1, we have the identities, for each in-
teger n ∈ N, and each p, p∗ ∈ Rd,

(6.3.67) ν
(
□−n , p

)
=

1

2
p · a

(
□−n
)
p and ν∗ (□n, p

∗) =
1

2
p∗ · a−1

n p∗.

— By Property (4) of Proposition 6.1.12, there exist two strictly positive
constants c, C depending only on the dimension d such that, for every cube
□ ⊆ Zd,

(6.3.68) cId×(d
2)
≤ a(□),a∗(□) ≤ CId×(d

2)
.
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— By Corollaries 6.2.3 and 6.2.6, we have the convergences

(6.3.69) a
(
□−n
)
−→

n→∞
a and a−1

n −→
n→∞

a−1
∗ .

— By the one-sided convex duality estimate (6.1.20) and Proposition 6.3.6, we have
the inequalities, for each p ∈ Rd×(d

2),

−C|p|23−n
2 ≤ ν (□n, p) + ν∗ (□n,anp)− an|p|2 ≤ C|p|23−αn,

which can be rewritten, by using (6.3.67),

(6.3.70)
∣∣a (□−n )− an

∣∣ ≤ C3−αn.

— By Lemma 6.3.1 and Corollary 6.3.7, we have the inequality, for each pair of
integers (m,n) ∈ N such that m ≤ n,

(6.3.71)
∣∣a−1

n − a−1
m

∣∣2 ≤ n∑
k=m

τk + C3−
m
2 ≤

n∑
k=m

C3−αk + C3−
m
2 ≤ C3−αm.

We now combine the four previous results to complete the proof of Proposi-
tion 6.1.10. First by sending n to infinity in the inequality (6.3.70), and using the
convergence (6.3.69), we obtain the identity a = a−1

∗ . Then by sending n to infinity
in the inequality (6.3.71), we obtain the inequality, for each integer m ∈ N,

(6.3.72)
∣∣a−1

m − a−1
∣∣ ≤ C3−αm.

We then combine the inequality (6.3.68) with the inequality (6.3.72) to obtain

(6.3.73) |am − a| ≤ C3−αm.

Combining the estimates (6.3.70) and (6.3.73), we deduce that, for each integer n ∈ N,

(6.3.74)
∣∣a (□−n )− a

∣∣ ≤ ∣∣a (□−n )− an

∣∣+ |an − a| ≤ C3−αn.

Proposition 6.1.12 is then a consequence of the estimates (6.3.73), (6.3.74), and the
representation formulae (6.3.67).

6.4. Definition of the first-order corrector and quantitative sublinearity

An important ingredient to prove the quantitative homogenization of the mixed
derivative of the Green’s matrix associated with the Helffer-Sjöstrand operator (which
is the subject of Section 7) is the first-order corrector. The objective of this section is
to introduce this function, and to deduce from the algebraic rate of convergence on
the energy ν established in Proposition 6.1.10 two properties on this map:

— The quantitative sublinearity of the corrector, this result is stated in the Equa-
tion (6.4.1).

— A quantitative estimate on the H−1-norm of the flux of the corrector, this result
is stated in the estimate (6.4.2).

The corrector which is introduced in this section is a finite-volume version of the
corrector (see Definition 6.4.1), the reason justifying this choice is that it is simpler
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to construct from the subadditive energy ν and allows the arguments developed in
Section 7 to work. We do not try to construct the infinite-volume corrector as it would
require to prove a quantitative homogenization theorem and establish a large-scale
regularity theory (following the techniques of [7, Section 3]), and the development
of this technology is not necessary to prove Theorem 1. Nevertheless, the specific
structure of the problem (and the strong regularity properties established in Section 5)
allows to define the gradient of the infinite-volume corrector with a simple argument;
the construction is carried out in Proposition 6.4.4.

6.4.1. Finite-volume corrector. — This section is devoted to the definition and the
study of the finite-volume corrector.

Definition 6.4.1 (Finite-volume corrector). — For each integer n ∈ N, and each slope
p ∈ Rd×(d

2), we define the finite-volume corrector at scale 3n to be the function
χn,p : Zd × Ω → R(d

2) defined by the formula

χn,p := u
(
·, ·,□−n , p

)
− lp.

We recall that the corrector extended by 0 outside the trimmed cube □−n . Given
two integers (i, j) ∈ {1, . . . , d} × {1, . . . ,

(
d
2

)
}, we denote by eij ∈ Rd×(d

2) the vector
eij = (0, . . . , ei, . . . , 0) , and denote by χn,ij := χn,eij .

Remark 6.4.2. — The finite volume corrector χn,p is the solution of the equation
−∆ϕχn,p −

1

2β
∆χn,p +

1

2β

∑
n≥1

1

β
n
2

(−∆)
n+1

χn,p +
∑
q∈Q

∇∗q · aq∇q (lp + χn,p) = 0

in □−n × Ω,

χn,p = 0 on ∂□−n × Ω.

By the identity∇q (lp + χn,p) = (nq,d
∗lp + d∗χn,p), we see that the corrector depends

only on the value of d∗lp. In particular, if d∗lp = 0 then χn,p = 0. As the vectors d∗lp
belong to the space Rd, the collection of correctors (χp)

p∈Rd×(d
2)

forms a d-dimensional

vector space from which we extract a basis: for each integer i ∈ {1, . . . , d}, we select
a vector pi ∈ Rd×(d

2) such that d∗lpi
= ei and denote by ∇χi = ∇χpi

.

The following proposition establishes quantitative sublinearity of the corrector and
provides a quantitative estimate for the H−1-norm of its flux.

Proposition 6.4.3 (Quantitative sublinearity). — There exist a constant C := C(d), an
exponent α(d) > 0, and an inverse temperature β0(d) <∞ such that, for every inverse
temperature β > β0, and every vector p ∈ Rd×(d

2), the finite-volume corrector satisfies
the following estimates

(6.4.1) ∥χn,p∥L2(□−n ,µβ) ≤ C|p|3(1−α)n
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and
(6.4.2)∥∥∥∥∥∥1

2
(p+∇χn,p) + β

∑
q∈Q

aq∇q (lp + χn,p)L
t
2,d∗ (nq)− ap

∥∥∥∥∥∥
H−1(□−n ,µβ)

≤ C|p|3(1−α)n.

Proof. — The estimate (6.4.1) is obtained by combining Lemma 6.3.4 and Corol-
lary 6.3.7. The proof of the estimate (6.4.2) regarding the flux is more involved and
we split it into two steps. The argument requires to take into account the infinite range
of the sum over the charges (by using the boundary layer BLn and the exponential
decay of the coefficient aq), which makes the proof technical. Since similar technical-
ities have already been treated in the previous sections, and the analysis does not
contain any new arguments, we omit some of the details and only write a (detailed)
sketch of the proof.

Step 1. — In this step, we prove that, to prove (6.4.2) it is sufficient to prove the
estimate, for each p∗ ∈ Rd×(d

2),

∥∥∥∥∥∥1

2
∇v (·, ·,□n, p

∗) + β
∑

supp q⊆□n

aq∇qv (·, ·,□n, p
∗)Lt

2,d∗ (nq)− p∗

∥∥∥∥∥∥
H−1(□−n ,µβ)

(6.4.3)

≤ C|p∗|3(1−α)n.

We fix a vector p∗ ∈ Rd×(2
d) and recall that, by definition of the first order corrector,

lp + χn,p = u (·, ·,□−n , p). To ease the notation, we denote by u := u (·, ·,□−n , p) and
by v := v (·, ·,□n,ap). First, we note that Proposition 6.1.12 implies the inequality
|a (□−m)− a| ≤ C3−αm. Combining this result with the estimate (6.1.7), we obtain
the inequality, for each vector p ∈ Rd×(d

2),

∥∇v (·, ·,□n,ap)−∇v (·, ·,□n,anp)∥L2(□n,µβ) = ∥∇v (·, ·,□n,ap− anp)∥L2(□n,µβ)

(6.4.4)

≤ C3−αn|p|.

We use the inequality (6.4.4) with the estimate (6.3.49) stated in the proof of Propo-
sition 6.3.5 and Corollary 6.3.7. We deduce that

∥∇u−∇v∥L2(□n,µβ) ≤ ∥∇u−∇v (·, ·,□n,anp)∥L2(□n,µβ)(6.4.5)

+ ∥∇v (·, ·,□n,anp)−∇v∥L2(□n,µβ)

≤ C3−αn|p|.

Using the estimate (6.4.5), we can write∥∥∥∥∥∥1

2
∇u+ β

∑
q∈Q

aq (∇qu)L
t
2,d∗ (nq)− ap

∥∥∥∥∥∥
H−1(□−n ,µβ)
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≤

∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq (∇qv)L
t
2,d∗ (nq)− ap

∥∥∥∥∥∥
H−1(□−n ,µβ)

+

∥∥∥∥∥∥1

2
∇ (u− v) + β

∑
q∈Q

aq (∇q (u− v))Lt
2,d∗ (nq)

∥∥∥∥∥∥
H−1(□n,µβ)

≤

∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq (∇qv)L
t
2,d∗ (nq)− ap

∥∥∥∥∥∥
H−1(□n,µβ)

+ C3n

∥∥∥∥∥∥1

2
∇ (u− v) + β

∑
q∈Q

aq (∇q (u− v))Lt
2,d∗ (nq)− ap

∥∥∥∥∥∥
L2(□n,µβ)

.

Using the estimate |aq| ≤ e−c
√

β∥q∥1 , we see that∥∥∥∥∥∥1

2
∇ (u− v) + β

∑
q∈Q

aq (∇q (u− v))Lt
2,d∗ (nq)

∥∥∥∥∥∥
L2(□n,µβ)

≤ C ∥∇ (u− v)∥L2(□n,µβ)

≤ C3−αn|p|.
A combination of the two previous displays shows

(6.4.6)

∥∥∥∥∥∥1

2
∇u+ β

∑
q∈Q

aq (∇qu)nq − ap

∥∥∥∥∥∥
H−1(□n,µβ)

≤

∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq (∇qv)L
t
2,d∗ (nq)− ap

∥∥∥∥∥∥
H−1(□n,µβ)

+ C3(1−α)n|p|.

The estimate (6.4.6) implies that to prove the inequality (6.4.2), it is sufficient to
prove (6.4.3).

Step 2. Proving the estimate (6.4.3). — The argument is similar to the proof pre-
sented in Lemma 6.3.4. To ease the notation, we denote by v := v (·, ·,□n, p

∗) and
by vz,m := v (·, ·, z + □m, p

∗), and assume without loss of generality that |p∗| = 1. We
use the H−1-version of the multiscale Poincaré inequality stated in Proposition B.0.1
of Appendix B. We obtain

∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq∇qvL
t
2,d∗ (nq)− p∗

∥∥∥∥∥∥
2

H−1(□−n ,µβ)

(6.4.7)
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≤ C

∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq∇qvL
t
2,d∗ (nq)− p∗

∥∥∥∥∥∥
2

L2(□−n ,µβ)

+ C3n
n∑

m=0

∑
z∈Zm,n

3m

|Zm,n|

(6.4.8)

×

〈(
1

|z + □m|
∑

x∈z+□m

1

2
∇v(x, ·) + β

∑
q∈Q

aq∇qvL
t
2,d∗ (nq(x))− p∗

)2
〉

µβ

.

The first term in the right side of (6.4.7) can be estimated by the estimate (6.1.7).
We obtain

(6.4.9)

∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq∇qvL
t
2,d∗ (nq)− p∗

∥∥∥∥∥∥
L2(□−n ,µβ)

≤ C.

To estimate the second term in the right side of (6.4.7), we proceed as in Lemma 6.3.4,
and use the subadditivity estimate stated in Proposition 6.2.5 and Corollary 6.2.6.
We obtain

∑
z∈Zm,n

1

|Zm,n|

〈 1

|z + □m|
∑

x∈z+□m

1

2
∇v(x, ·) + β

∑
q∈Q

aq∇qvL
t
2,d∗ (nq(x))− p∗

2〉
µβ

(6.4.10)

≤
∑

z∈Zm,n

1

|Zm,n|

(6.4.11)

×

〈(
1

|z + □m|
∑

x∈z+□m

1

2
∇vz,m(x, ·) + β

∑
q∈Q

aq∇qvz,mL
t
2,d∗ (nq(x))− p∗

)2
〉

µβ

+ C3−αm.

We then use the two following results:

— The identity, for each point z ∈ Zm,n,〈
1

|z + □m|
∑

x∈z+□m

1

2
∇vz,m(x, ·) + β

∑
q∈Q

aq∇qvz,mL
t
2,d∗ (nq(x))

〉
µβ

= p∗.

— The variance estimate

var

 1

|z + □m|
∑

x∈z+□m

1

2
∇vz,m(x, ·) + β

∑
q∈Q

aq∇qvz,mL
t
2,d∗ (nq(x))

 ≤ C3−
m
2 ,
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which is a consequence of Lemma 6.3.2, the inequality d − 5
2 ≥ 1

2 valid in
dimension larger than 3, and the translation invariance of the measure µβ .

We obtain the estimate
(6.4.12)〈 1

|z + □m|
∑

x∈z+□m

1

2
∇vz,m(x, ·) + β

∑
q∈Q

aq∇qvz,mL
t
2,d∗ (nq(x))− p∗

2〉
µβ

≤ C3−
m
2 .

Combining the estimates (6.4.7), (6.4.9), (6.4.10), and (6.4.12), we have obtained∥∥∥∥∥∥1

2
∇v + β

∑
q∈Q

aq∇qvL
t
2,d∗ (nq)− p∗

∥∥∥∥∥∥
H−1(□−n ,µβ)

≤ C3(1−α)n.

The proof of Proposition 6.4.3 is complete.

6.4.2. Gradient of the infinite-volume corrector. — The next proposition establishes
the existence and stationarity of the spatial gradient of the infinite-volume corrector.

Proposition 6.4.4 (Existence of the gradient of the infinite-volume corrector and station-
arity). — There exists a stationary random field ∇χ : Zd × Ω → R satisfying the
following property, for each p ∈ Rd, and each integer n ∈ N,

∥∇χn,p −∇χp∥L2(□m,µβ) ≤ C3−nα.

Remark 6.4.5. — The property stated in Remark 6.4.2 about the finite volume cor-
rector also applies to the infinite volume corrector.

Let us first present the main idea of the argument. By assuming that the inverse
temperature is large enough, one has C0,1−ε-regularity estimates for the solutions
of the Helffer-Sjöstrand equation, following the arguments given in Section 5.2. By
Proposition 6.1.10, one also has an algebraic rate of convergence for the subadditive
energy ν with exponent α. The exponent ε depends on the inverse temperature β and
tends to 0 as β tends to infinity, while the exponent α depends only on the dimension,
and remains bounded away from zero when the inverse temperature tends to infinity.
It is thus possible to choose β sufficiently large so that the exponent ε is smaller than
the exponent α/2, and to leverage on this property, the C0,1−ε-regularity estimate
presented in Proposition 5.2.2, and the Caccioppoli inequality to prove the existence
of the gradient of the infinite-volume corrector.

Proof. — We fix a vector p ∈ Rd×(d
2) and assume without loss of generality that

|p| = 1. We decompose the proof into two steps. In the first step, we prove that, for
each point x ∈ Zd, the sequence (∇χn,p(x, ·))n∈N is Cauchy in the space L2 (µβ). This
implies that it converges, and we define the gradient of the infinite-volume corrector
to be its limit. In the second step we prove that the function ∇χp is stationary.
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Step 1. — We prove the inequality, for each point x ∈ Zd integer n ∈ N such that
x ∈ □−n ,

(6.4.13) ∥∇χn,p(x, ·)−∇χn+1,p(x, ·)∥L2(µβ) ≤ C3−
α
2 n.

We now fix a point x ∈ Zd and prove the estimate (6.4.13). By the definition of the
correctors stated in Definition 6.4.1, the functions χn and χn+1 are solutions of the
Helffer-Sjöstrand equations

L (lp + χn,p) = 0 in □−n × Ω and L (lp + χn+1,p) = 0 in □−n+1 × Ω.

In particular, the difference χn+1,p − χn,p is solution of the equation

L (χn+1,p − χn,p) = 0

in the set □−n×Ω. We can thus apply Proposition 5.2.4 to obtain, for each integer n ∈ N
such that x ∈ □n−1,

∥∇χn,p(x, ·)−∇χn+1,p(x, ·)∥L(µβ) ≤ sup
y∈□n−1

∥∇χn,p (y, ·)−∇χn+1,p (y, ·)∥L2(µβ)

(6.4.14)

≤ C3(ε−1)n
∥∥∥χn,p − χn+1,p − (χn,p − χn+1,p)□−n

∥∥∥
L2(□−n ,µβ)

≤ C3(ε−1)n ∥χn,p − χn+1,p∥L2(□−n ,µβ) .

By combining the estimate (6.4.14) and Proposition 6.4.3, we obtain the estimate, for
each pair of integers n ∈ N such that x ∈ □n−1,

∥∇χn,p (x, ·)−∇χn+1,p (x, ·)∥L2(µβ) ≤ C3(ε−α)n.

Using the assumption ε ≤ α
2 , we obtain

(6.4.15) ∥∇χn,p (x, ·)−∇χn+1,p (x, ·)∥L2(µβ) ≤ C3−
α
2 n.

The inequality (6.4.15) implies that, the sequence (∇χn,p(x, ·))n∈N is Cauchy in the
space L2 (µβ). This implies that it converges in the space L2 (µβ). We define the
gradient of the corrector ∇χp(x, ·) to be the limiting object.

From the estimate (6.4.15), we also deduce that, for each pair of integers n ∈ N,

∥∇χn,p (x, ·)−∇χp (x, ·)∥L2(µβ) ≤ C3−
α
2 n.

The proof of Step 1 is complete.

Step 2. — In this step, we prove the stationarity of the infinite-volume gradient
corrector. For z ∈ Zd, we will make use of the notation τz for the translation of the
field introduced in Section 2. We prove the identity, for each (x, ϕ) ∈ Zd × Ω,

(6.4.16) ∇χp (x, ϕ) = ∇χp (z + x, τzϕ) .

To prove the equality (6.4.16), we first note that, by the definition of the function u,
we have the equality, for each point z ∈ Zd, each cube □ ⊆ Zd, and each pair
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(x, ϕ) ∈ (y + □)× Ω,

(6.4.17) u (x, ϕ, y + □, p) = u (x− y, τ−yϕ,□, p) .

Using the identity (6.4.17), the result established in Step 1, and the translation in-
variance of the measure µβ , we obtain that the sequence (∇u (x, ·, y + □n, p)− p)n∈N
converges in the space L2 (µβ) to the random variable ϕ → ∇χp (x− y, τ−yϕ).
Thus to prove the identity (6.4.16), it is sufficient to prove that the sequence
(∇u (x, ·, y + □n, p)− p)n∈N also converges in L2 (µβ) to the gradient of the corrector
ϕ→ ∇χp(x, ϕ). This is what we now prove.

We first note that the proof of Proposition 6.1.12 can be adapted so as to have the
following result. For each y ∈ Zd, and each integer n such that 3

n
2 ≥ 2|y|, one has the

estimate

(6.4.18)
∑
z∈Zn

∥∇u (·, ·, y + z + □n, p)−∇u (·, ·,□n+1, p)∥2L2(y+z+□n,µβ)

≤ C
(
ν (□n, p)− ν (□n+1, p) + 3−

n
2

)
.

The proof is identical; indeed under the assumption 3
n
2 ≥ 2|y|, one can partition

the triadic cube (y + □n+1) into the collection of triadic cubes (y + z + □n)z∈Zn
and

a boundary layer of width of size 3
n
2 . One can then rewrite the proof of Proposi-

tion 6.1.12 to obtain the estimate (6.4.18). We then use Proposition 6.1.12 (or more
precisely Corollary 6.3.7), and obtain the inequality

∥∇u (·, ·, y + □n, p)−∇u (·, ·,□n+1, p)∥2L2(y+□n,µβ) ≤ C3−αn.

Using the C1−ε-regularity estimate stated in Proposition 5.2.4, the assumption ε ≤ α
2 ,

and an argument similar to the one presented in Step 1, we obtain, for each integer n ∈
N such that 3

n
2 ≥ 2|y|, and each point x ∈ □n−1,

∥∇u (x, ·, y + □n, p)−∇u (x, ·,□n+1, p)∥2L2(µβ) ≤ C3−
α
2 n.

Using the definition of the finite-volume corrector given in Definition 6.4.1 and the
inequality (6.4.13), we deduce that

∥∇u (x, ·, y + □n, p)− p−∇χp (x, ·)∥2L2(µβ) ≤ C3−
α
2 n.

The previous inequality implies that the sequence (∇u (x, ·, y + □n, p)− p)n∈N con-
verges in the space L2 (µβ) to the random variable ϕ → ∇χp (x, ϕ). The proof of
Proposition 6.4.4 is complete.
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CHAPTER 7

QUANTITATIVE HOMOGENIZATION
OF THE GREEN’S MATRIX

7.1. Statement of the main result

The objective of this section is to prove the homogenization of the mixed gradient
of the Green’s matrix stated in Theorem 2. We first introduce the notation aβ := a/β

and the Green’s matrix associated with the homogenized operator ∇·aβ∇: we denote
by G : Zd → R(d

2)×(d
2) the fundamental solution of the elliptic system

(7.1.1) −∇ · aβ∇G = δ0 in Zd.

The matrix aβ is a small perturbation of the matrix 1
2β Id and the size of the per-

turbation is of order β−
3
2 ≪ β−1. The solvability of the equation is thus ensured by

the arguments of Section 5; more specifically, a Nash-Aronson estimate holds for the
heat-kernel associated with the operator −∇·aβ∇ which can then be integrated over
time. We rewrite the statement of Theorem 2 below

Theorem 2 (Homogenization of the mixed derivative of the Green’s matrix). — Fix a
charge q1 ∈ Q such that 0 belongs to the support of nq1

and let Uq1
be the solution of

the Helffer-Sjöstrand equation

(7.1.2) LUq1 = cos (2π (ϕ, q1)) q1 in Zd × Ω.

For each integer k ∈
{

1, . . . ,
(
d
2

)}
, we define the function Gq1,k : Zd → R by the

formula

Gq1,k =
∑

1≤i≤d

∑
1≤j≤(d

2)
〈
cos (2π (ϕ, q1))

(
nq1 ,d

∗leij + d∗χij

)〉
µβ
∇iGjk.

Then, there exist an inverse temperature β0 := β0(d) <∞, an exponent γ := γ(d) > 0,
and a constant Cq1

which satisfies the estimate |Cq1
| ≤ C ∥q1∥k

1 for some constant
C := C(d, β) <∞ and exponent k := k(d) < ∞, such that for each β ≥ β0 and each
radius R ≥ 1, one has the inequality

(7.1.3)
∥∥∥∥∇Uq1

−
∑

1≤i≤d

∑
1≤j≤(d

2)

(eij +∇χij)∇iGq1,j

∥∥∥∥
L2(AR,µβ)

≤ Cq1

Rd+γ
.
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Remark 7.1.1. — Since the codifferential d∗ is a linear functional of the gradient, the
map d∗χij is well-defined even if we have only defined the gradient of the infinite-
volume corrector: we have the identity d∗χij = L2,d∗ (∇∗χij).

Remark 7.1.2. — We recall that in this section, the constants are allowed to depend
on the dimension d and on the inverse temperature β.

Remark 7.1.3. — We recall the definition of the annulus AR := B2R \BR; its volume
is of order Rd.

Remark 7.1.4. — The double sum
∑

1≤i≤d

∑
1≤j≤(d

2)
appears frequently in the proofs

of this section; to ease the notation, we denote it by
∑

i,j .

Remark 7.1.5. — Since the form q1 can be written dnq1
, we expect the two gradients

∇Uq1
and ∇Gq1

to behave like the mixed derivative of the Green’s function, i.e., they
should be of order R−d in the annulus AR. The proposition asserts that the difference
between the two terms ∇Uq1 and

∑
i,j (eij +∇χij)∇iGq1,j is quantitatively smaller

than the typical size of the two terms considered separately.

7.2. Outline of the argument

The strategy of the proof of Theorem 2 relies on a classical strategy in homogeniza-
tion: the two-scale-expansion. The proofs presented in the section make essentially use
of two ingredients established in Sections 5 and 6:

— The quantitative sublinearity of the finite-volume corrector and the estimate on
the H−1-norm of the flux stated in Proposition 6.4.3.

— The C0,1−ε-regularity theory established in Section 5.

We now give an outline of the proof of Theorem 2. The argument is split into two
sections:

— In Section 7.3, we perform the two-scale expansion and obtain a result of homog-
enization for the gradient of the Green’s matrix as stated in Proposition 7.2.1.

— In Section 7.4, we use the result of Proposition 7.2.1 and perform the two-scale
expansion a second time to obtain the quantitative homogenization of the mixed
derivative of the Green’s matrix stated in Theorem 2.

7.2.1. Homogenization of the gradient of the Green’s matrix. — In this subsection, we
present an outline of the proof of Section 7.3; the objective is to establish the quantita-
tive homogenization of the gradient of the Green’s matrix stated in Proposition 7.2.1
below.

Proposition 7.2.1 (Homogenization of the Green’s matrix). — Let G : Zd × Ω → R(d
2)×(d

2)

be the Green’s matrix associated with the Helffer-Sjöstrand equation

(7.2.1) LG = δ0 in Zd × Ω.
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Then, there exist an inverse temperature β0(d) <∞, an exponent γ := γ(d) > 0, and
a constant C := C(d) < ∞ such that, for any β > β0, any radius R ≥ 1, and any
integer k ∈

{
1, . . . ,

(
d
2

)}
,

(7.2.2)

∥∥∥∥∥∥∇G·k −
∑
i,j

(eij +∇χij)∇iGjk

∥∥∥∥∥∥
L2(AR,µβ)

≤ C

Rd−1+γ
.

To set up the argument, we first select an inverse temperature β large enough,
depending only on the dimension d, such that the quantitative sublinearity of the
finite-volume corrector and of its flux stated in Proposition 6.4.3 holds with exponent
α > 0. Following the argument explained at the beginning of Section 6.4, we can
choose the parameter β large enough so that all the results presented in Section 5
pertaining to the C0,1−ε-regularity theory for the Helffer-Sjöstrand operator L are
valid with a regularity exponent ε which is small compared to the exponent α (we
assume for instance that the ratio between ε and α is smaller than 100d2). We also
fix an exponent δ which is both larger than ε and smaller than α and corresponds to
the size of a mollifier exponent which needs to be taken into account in the argument
(we assume for instance that the ratios between the exponents α and δ and between
the exponents ε and δ are both smaller than 10d). We have thus three exponents in
the argument; they can be ordered by the following relations

(7.2.3) 0 < ε︸︷︷︸
regularity

≪ δ︸︷︷︸
mollifier exponent

≪ α︸︷︷︸
homogenization

≪ 1.

We additionally assume that the exponents ε, δ and α are chosen in a way that they
depend only on the dimension d. The exponent γ in the statement of Proposition 7.3.1
depends only ε, δ and α (and thus only on the dimension d).

We now give an outline of the proof of the inequality (7.2.2). The first step of the
argument is to approximate the Green’s matrices G and G; the main issue is that
the spatial Dirac function δ0 in the definitions of the Green’s matrices G in (7.2.1)
and G in (7.1.1) is too singular and causes some problems in the analysis. To remedy
this, we replace the Dirac function δ0 by a smoother function, and make use of the
mollifier exponent δ: we let ρδ be a discrete function from Zd to R(d

2)×(d
2), we denote

its components by (ρδ,ij)1≤i,j≤(d
2)

, and assume that they satisfy the four properties

supp ρδ ⊆ BR1−δ , 0 ≤ ρδ,ij ≤ CR−(1−δ)d,
∑
x∈Zd

ρδ,ij(x) = 1{i=j},(7.2.4)

and ∀k ∈ N, ∣∣∇kρδ,ij

∣∣ ≤ C

R(d+k)(1−δ)
,

which implies in particular that ρδ,ij = 0 if i ̸= j. We define the functions
Gδ : Zd × Ω → R(d

2)×(d
2) and Gδ : Zd → R(d

2)×(d
2) to be the solution of the systems, for
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each integer k ∈
{

1, . . . ,
(
d
2

)}
,

(7.2.5) LGδ,·k = ρδ,·k in Ω× Zd, −∇ ·
(
aβ∇Gδ,·k

)
= ρδ,·k in Zd.

We then prove, by using the regularity theory established in Section 5, that the
functions Gδ, Gδ are good approximations of the functions G , G. This is the subject of
Lemma 7.3.1 where we show that there exists an exponent γ := γ(d, β, δ, ε) > 0 such
that
(7.2.6)
∥∇Gδ −∇G∥L∞(AR,µβ) ≤ CR1−d−γ and

∥∥∇Gδ −∇G
∥∥

L∞(AR,µβ)
≤ CR1−d−γ .

By the estimates (7.2.6), we see that to prove Proposition 7.3.1 it is sufficient to prove
the inequality, for each integer k ∈ {1, . . . ,

(
d
2

)
},

(7.2.7)

∥∥∥∥∥∥∇Gδ,·k −
∑
i,j

(eij +∇χij)∇iGδ,jk

∥∥∥∥∥∥
L2(AR,µβ)

≤ CR1−d−γ .

We now sketch the proof of the inequality (7.2.7). We let m be the integer uniquely
defined by the inequalities 3m ≤ R1+δ < 3m+1, and consider the collection of
finite-volume correctors (χm,ij)1≤i≤d,1≤j≤(d

2)
. We then define the two-scale expansion

Hδ : Zd × Ω → R(d
2)×(d

2) according to the formula, for each k ∈
{

1, . . . ,
(
d
2

)}
,

(7.2.8) Hδ,·k := Gδ,·k +
∑
i,j

(
∇iGδ,jk

)
χm,ij .

We now fix an integer k ∈
{

1, . . . ,
(
d
2

)}
. The strategy is to compute the value of LHδ,·k

by using the explicit formula on the map Hδ,·k stated in (7.2.8), and to prove that it
is quantitatively close to the map ρδ,·k in the correct functional space; precisely, we
prove the H−1-estimate,

(7.2.9) ∥LHδ,·k − ρδ,·k∥H−1(B
R1+δ ,µβ) ≤ CR1−d−γ .

Obtaining this result relies on the quantitative behavior of the corrector and of the
flux established in Proposition 6.4.3. Once one has a good control over the H−1-norm
of LHδ,·k − ρδ,·k, the inequality (7.2.7) can be deduced from the following two argu-
ments:

— We use that the function Gδ,·k satisfies the equation LGδ,·k = ρδ,·k to obtain that
the H−1-norm of the term L (Hδ,·k − Gδ,·k) is small. We then introduce a cutoff
function η : Zd → R which satisfies:

(7.2.10) supp η ⊆ AR, 0 ≤ η ≤ 1, η = 1 on
{
x ∈ Zd : 1.1R ≤ |x| ≤ 1.9R

}
,

and ∀k ∈ N,
∣∣∇kη

∣∣ ≤ C
Rk , and use the function η (Hδ,·k − Gδ,·k) as a test function

in the definition of the H−1-norm of the inequality (7.2.9). We obtain that the
L2-norm of the difference (∇Hδ,·k −∇Gδ,·k) is small (the cutoff function is used
to ensure that the function η (Hδ,·k − Gδ,·k) is equal to 0 on the boundary of the
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ball BR1+δ and can thus be used as a test function). The precise estimate we
obtain is the following

(7.2.11) ∥∇Hδ,·k −∇Gδ,·k∥L2(Zd,µβ) ≤ CR
d
2 +1−d−γ .

— By using the identity (7.2.8), we can compute an explicit formula for the gradient
of the two-scale expansion Hδ,·k. We then use the quantitative sublinearity of
the corrector stated in Proposition 6.4.3 and the property of the gradient of the
infinite volume corrector stated in Proposition 6.4.4 to deduce that the L2-norm
of the difference ∇Hδ,·k −

∑
i,j(eij +∇χij)∇iGjk is small; the precise result we

obtain is the following

(7.2.12)

∥∥∥∥∥∥∇Hδ,·k −
∑
i,j

(eij +∇χij)∇iGjk

∥∥∥∥∥∥
L2(Zd,µβ)

≤ CR
d
2 +1−d−γ .

The inequality (7.2.7) is then a consequence of the inequalities (7.2.11) and (7.2.12).

7.2.2. Homogenization of the mixed derivative of the Green’s matrix. — In this sub-
section, we present the arguments of Section 7.4. The objective there is to use Propo-
sition 7.2.1 to prove Theorem 2. The proof is decomposed into four steps:

— In Step 1, we use Proposition 7.2.1 and the symmetry of the Helffer-Sjöstrand
operator L to prove the inequality in expectation

(7.2.13)

(
R−d

∑
z∈AR

∣∣∣⟨Uq1(z, ·)⟩µβ
−Gq1(z)

∣∣∣2) 1
2

≤ C

Rd−1+γ
.

— In Step 2, we prove the variance estimate, for each point z ∈ Zd,

(7.2.14) var [Uq1
(z, ·)] ≤ Cq1

|z|2d−2ε
.

Since we expect the function z 7→ Uq1
(z) to decay like |z|1−d; its variance should

be of order |z|2−2d. The estimate (7.2.14) states that the variance of the random
variable ϕ→ Uq1(z, ϕ) is (quantitatively) smaller than its size; this means that
the random variable Uq1

(z) concentrates around its expectation. We then use
the result established in Step 1 to refine the result: since by (7.2.13), one knows
that the expectation of the map Uq1(z) is close to the function Gq1 , one deduces
that the function Uq1

is close to the function Gq1
in the L2(AR, µβ)-norm. The

precise estimate we obtain is the following

(7.2.15)
∥∥Uq1

−Gq1

∥∥
L2(AR,µβ)

≤ Cq1

Rd−1−γ
.

The proof of the inequality (7.2.14) does not rely on tools from stochastic ho-
mogenization; we appeal to the Brascamp-Lieb inequality and use the properties
of the second-order Helffer-Sjöstrand equation introduced in Section 5.4.
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— In Step 3, we prove the estimate (7.1.3), the proof is similar to the argument
presented in the proof of Proposition 7.2.1 and relies on a two-scale expansion;
it is decomposed into two substeps.

In Substep 3.1, We define the two-scale expansion Hq1 by the formula

(7.2.16) Hq1 := Gq1 +
∑
i,j

∇iGq1,jχm,ij .

We then use that the function Gq1 is a solution to the equation ∇·aβ∇Gq1 = 0

in the annulus AR to prove that the H−1 (AR, µβ)-norm of the term LHq1 over
the annulus AR is small; we show

(7.2.17) ∥LHq1
∥H−1(AR,µβ) ≤

Cq1

Rd+γ
.

The proof is essentially a notational modification of the proof of the esti-
mate (7.2.9), and is even simpler since we do not have to take into account
the exponent δ and the function ρδ.

In Substep 3.2, we use that the function Uq1
satisfies the identity

LUq1
= 0 in the set AR × Ω to deduce that the H−1 (AR, µβ)-norm of

the term L (Hq1
−Uq1

) = LHq1
is small. We then consider the map η defined

in (7.2.10) and use the function η (Hq1 −Uq1) as a test function in the defini-
tion of the H−1 (AR, µβ)-norm of the term L (Hq1

−Uq1
). We obtain that the

L2
(
A1

R, µβ

)
-norm of the difference ∇Hq1

− ∇Uq1
is small, where we used the

notation A1
R :=

{
x ∈ Zd : 1.1R ≤ |x| ≤ 1.9R

}
. This is the subject of Substep

3.2 where we prove

(7.2.18) ∥∇Uq1
−∇Hq1

∥L2(A1
R,µβ) ≤

Cq1

Rd+γ
.

— Step 4 is the conclusion of the argument, we use the explicit formula for the
two-scale expansion Hq1 given in (7.2.16), the quantitative sublinearity of the
corrector stated in Proposition 6.4.3, and the quantitative estimate for the differ-
ence of the finite and infinite-volume gradient of the corrector stated in Propo-
sition 6.4.4 to prove the estimate

(7.2.19)

∥∥∥∥∥∥∇Hq1 −
∑
i,j

(eij +∇χij)∇iGq1,j

∥∥∥∥∥∥
L2(AR,µβ)

≤ Cq1

Rd+γ
.

The argument is a notational modification of the one used to prove (7.2.16). We
finally combine the estimates (7.2.18) and (7.2.19) to obtain the estimate (7.1.3),
and complete the proof of Theorem 2.

7.3. Two-scale expansion and homogenization of the gradient of the Green’s matrix

This section is devoted to the proof of Proposition 7.2.1. We collect some prelim-
inary results in Section 7.3.1 and prove Theorem 2 in Sections 7.3.2, 7.3.3 and 7.3.4
following the outline given in Section 7.2.
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7.3.1. Preliminary estimates. — In this section, we collect some preliminary properties
which are used in the proof of Proposition 7.2.1.

We first introduce some notation for the exponent γ. As was already mentioned,
this exponent depends on the parameters α, δ and ε; in the argument, we need to keep
track of its order of magnitude and we proceed as follows:

— We use the notation γ1 when the exponent is of order 1; a typical example is
the exponent γ1 := 1 − c0α − c1δ − c2ε for some constants c0, c1, c2 depending
only on the dimension d.

— We use the notation γα when the exponent is of order α; a typical example is
the exponent γα := α − c0δ − c1ε for some constants c0, c1 depending only on
the dimension d.

— We use the notation γδ when the exponent is of order δ; a typical example is the
exponent γδ := δ− c0ε for some constant c0 depending only on the dimension d.

We always have the ordering

0 < γε ≪ γδ ≪ γα ≪ γ1.

We also allow the value of the exponents γε, γδ, γα, γ1 to vary from line to line in the
argument as long as the order of magnitude is preserved. In particular, we may write

γ1 = γ1 − α, γα = γα − δ and γδ = γδ − ε.

We are now able to collect and prove some regularity estimates pertaining to the
Green’s matrices G , Gδ, G and Gδ.

Proposition 7.3.1. — The following properties hold:

— There exists an exponent γδ > 0 such that one has the L∞-estimates
(7.3.1)

∥∇G (x, ·)−∇Gδ(x, ·)∥L∞(AR,µβ) ≤
C

Rd−1+γδ
and

∥∥∇G−∇Gδ

∥∥
L∞(AR)

≤ C

Rd−1+γδ
.

— The Green’s matrix Gδ satisfies the following L∞-estimates

(7.3.2) ∥Gδ∥L∞(Zd,µβ) ≤
C

R(1−δ)(d−2)
and ∥∇Gδ∥L∞(Zd,µβ) ≤

C

R(1−δ)(d−1−ε)
,

as well as the estimates

(7.3.3) ∥Gδ∥L∞(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−2)
and ∥∇Gδ∥L∞(A

R1+δ ,µβ) ≤
C

R(1+δ)(d−1−ε)
.

— The homogenized Green’s matrix Gδ satisfies the regularity estimate, for each
integer k ∈ N,

(7.3.4)
∥∥∇kGδ

∥∥
L∞(Zd,µβ)

≤ C

R(1−δ)(d−2+k)
,

as well as the estimate

(7.3.5)
∥∥∇kGδ

∥∥
L∞(A

R1+δ ,µβ) ≤
C

R(1+δ)(d−2+k)
.
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Proof of Proposition 7.3.1. — The proof relies on the regularity estimates established
in Section 5. We first note that, by definitions of the functions G and Gδ, we have the
identities

(7.3.6) G (x, ϕ) = G1 (x, ϕ; 0) and Gδ (x, ϕ) =
∑

y∈B
R1−δ

G1 (x, ϕ; y) ρδ(y),

where the product in the right side of (7.3.6) is the standard matrix product be-
tween G1 (x, ϕ; y) and ρδ(y). Using that the map ρδ has total mass 1 and the regu-
larity estimate on the Green’s matrix stated in Proposition 5.4.4, we obtain, for each
point x ∈ AR,

∥∇xG (x, ·; 0)−∇xGδ(x, ·; y)∥L∞(µβ) ≤
∑

y∈B
R1−δ

ρδ(y) ∥∇xG1(x, ·; 0)−∇xG1(x, ·; y)∥L∞(µβ)

≤ R1−δ sup
y∈B

R1−δ

∥∇x∇yG1(x, ·; y)∥L∞(µβ)

≤ R1−δ sup
y∈B

R1−δ

|x− y|−d−ε

≤ R1−δR−d−ε.

This computation implies the estimate (7.3.1) with the exponent γδ = δ − ε which is
strictly positive by the assumption (7.2.3).

The estimate on the homogenized Green’s matrix is similar and even simpler since
we only have to work with the Green’s matrix associated with the discrete elliptic
operator ∇ · aβ∇ on Zd; we omit the details.

The proof of the inequality (7.3.2) relies on the estimates on the Green’s matrix
and its gradient established in Proposition 3.4.11. We use the identity (7.3.6) and
write, for each point x ∈ Zd,

∥Gδ (x, ·)∥L∞(µβ) =
∑

y∈B
R1−δ

|ρδ(y)| ∥G1 (x, ϕ; y)∥L∞(µβ)

≤ 1

R(1−δ)d

∑
y∈B

R1−δ

C

|x− y|d−2

≤ 1

R(1−δ)d

∑
y∈B

R1−δ

C

|y|d−2

≤ 1

R(1−δ)(d−2)
.

A similar computation shows the bound for the gradient of the Green’s matrix and
the bounds (7.3.3) in the annulus AR1+δ .

To prove the regularity estimate (7.3.4), we use the definition of the map Gδ given
in (7.2.5) and note that

−∇ · aβ∇
(
∇kGδ

)
= ∇kρδ in Zd.
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We then use the properties of the function ρδ stated in (7.2.4) and standard estimates
on the homogenized Green’s matrix G. We obtain, for each point x ∈ Zd,∣∣∇kGδ(x)

∣∣ ≤ ∑
y∈B

R1−δ

∣∣∇kρδ(y)
∣∣ ∣∣G (x− y)

∣∣
≤ C

R(d+k)(1−δ)

∑
y∈B

R1−δ

1

|x− y|d−2
≤ C

R(1−δ)(d−2+k)
.

There only remains to prove the estimate (7.3.5). To this end, we select a point x ∈
AR1+δ and write

∣∣∇kGδ(x)
∣∣ =

∣∣∣∣∣∣
∑

y∈B
R1−δ

∇kG (x− y) ρδ(y)

∣∣∣∣∣∣
≤

∑
y∈B

R1−δ

|ρδ(y)|
|x− y|d−2+k

≤ C

R(d−2+k)(1+δ)

∑
y∈B

R1−δ

|ρδ(y)|

≤ C

R(1+δ)(d−2+k)
.

We have now collected all the necessary preliminary ingredients for the proof of
Proposition 7.2.1 and devote the rest of Section 7.3 to its demonstration.

7.3.2. Estimating the weak norm of LHδ−ρδ . — In this section, we fix an integer k ∈{
1, . . . ,

(
d
2

)}
, let Hδ,·k be the two-scale expansion introduced in (7.2.8) and prove that

there exists an exponent γα > 0 such that

(7.3.7) ∥LHδ,·k − ρδ,·k∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

The strategy is to use the explicit formula for the map Hδ,·k to compute the value
of the term LHδ,·k. We then prove that its H−1 (BR1+δ , µβ)-norm is small by using
the quantitative properties of the corrector stated in Proposition 6.4.3. We first write
(7.3.8)

LHδ,·k = −∆ϕHδ,·k︸ ︷︷ ︸
Substep 1.1

+
1

2β

∑
n≥1

1

β
n
2

(−∆)n+1Hδ,·k︸ ︷︷ ︸
Substep 1.2

− 1

2β
∆Hδ,·k +

∑
q∈Q

∇∗q · aq∇qHδ,·k︸ ︷︷ ︸
Substep 1.3

.

We treat the three terms in the right side in three distinct substeps.

Substep 1.1. — In this substep, we treat the term −∆ϕHδ,·k. Since the homogenized
Green’s matrix Gδ,·k does not depend on the field ϕ, we have the formula

(7.3.9) −∆ϕHδ,·k =
∑
i,j

∇iGδ,jk (∆ϕχm,ij) .
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Sustep 1.2. — In this substep, we study the iteration of the Laplacian of the two-scale
expansion. We prove the identity

(7.3.10)
∑
n≥1

1

β
n
2

(−∆)n+1Hδ,·k =
∑
i,j

∑
n≥1

1

β
n
2
∇iGδ,jk(−∆)n+1χm,ij +R∆n ,

where R∆n is an error term which satisfies the H−1 (BR1+δ , µβ)-estimate

(7.3.11) ∥R∆n∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

We use the following identity for the iteration of the Laplacian on a product of func-
tions: given two smooth functions f, g ∈ C∞

(
Rd
)
, we have the identity

(7.3.12) ∆n (fg) =

n∑
r=0

r∑
l=0

(
n− r

l

)(
∇r∆lf

)
·
(
∇r∆n−r−lg

)
.

We note that this formula is valid for continuous functions (with the continuous
Laplacian), it can be adapted to the discrete setting by taking into considerations
translations of the functions f and g. Since this adaptation does not affect the overall
strategy of the proof, we ignore this technical difficulty in the rest of the argument
and apply the Formula (7.3.12) to the two-scale expansion Hδ,·k as such. We obtain
(7.3.13)

∆nHδ,·k = ∆nGδ,·k +
∑
i,j

n∑
r=0

r∑
l=0

(
n− r

l

)(
∇r∆l∇iGδ,jk

)
·
(
∇r∆n−r−lχm,ij

)
.

We first focus on the term ∆nGδ,·k in the identity (7.3.13) and prove that it is small
in the H−1 (BR1+δ , µβ)-norm. Using the regularity estimate (7.3.4), we have, for each
integer n ≥ 2,

∥∥∆nGδ,·k
∥∥

H−1(B
R1+δ ,µβ) ≤ CR1+δ

∥∥∆nGδ,·k
∥∥

L2(B
R1+δ ,µβ) ≤ CR1+δ

∥∥∆nGδ,·k
∥∥

L∞(B
R1+δ)

(7.3.14)

≤ C2nR1+δ

R(1−δ)(d−2+2n)

≤ C2nR1+δ

R(1−δ)(d−2+4)

≤ C2n

Rd−1+γ1
,

where we have set γ1 := 2 + δ(d+ 1) > 0.
Using the regularity estimate (7.3.4) a second time, we can estimate the terms

of the right side of the identity (7.3.13) with more than 3 derivatives on the
homogenized Green’s matrix Gδ. We obtain the following inequality: for each
(i, j) ∈ {1, . . . , d} × {1, . . . ,

(
d
2

)
} and each (r, l) ∈ {1, . . . , d}2 such that l ≤ n− k and

k + 2l ≥ 2,∥∥(∇r∆l∇iGδ,jk

)
·
(
∇r∆n−r−lχm,ij

)∥∥
H−1(B

R1+δ ,µβ)
(7.3.15)
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≤ CR1+δ
∥∥(∇r∆l∇iGδ,jk

)
·
(
∇r∆n−r−lχm,ij

)∥∥
L2(B

R1+δ ,µβ)

≤ CR1+δ
∥∥∇r∆l∇iGδ,jk

∥∥
L∞(B

R1+δ)
×
∥∥∇r∆n−r−lχm,ij

∥∥
L2(B

R1+δ ,µβ)

≤ Cr+2lR1+δ

R(1−δ)(d−1+2l+r)

∥∥∇r∆n−r−lχm,ij

∥∥
L2(B

R1+δ ,µβ)
.

We use that the discrete operator ∇r∆n−r−l is bounded in the space L2 (BR1+δ) and
Proposition 6.4.3 to estimate the L2-norm of the corrector. We obtain
(7.3.16)∥∥∇r∆n−r−lχm,ij

∥∥
L2(B

R1+δ ,µβ)
≤ C2n−2l ∥χm,ij∥L2(B

R1+δ ,µβ) ≤ C2n−2lR(1+δ)(1−α).

Putting the estimates (7.3.15) and (7.3.16) together and using the inequality
3 ≤ 2l + r ≤ 2n, we deduce that

∥∥(∇r∆l∇iGδ,jk

)
·
(
∇r∆n−r−lχm,ij

)∥∥
H−1(B

R1+δ ,µβ)
≤ C2nR1+δ

R(1−δ)(d+2)
R(1+δ)(1−α)

(7.3.17)

≤ C2n

Rd−1+γ1
,

where we have set γ1 := 1 + α− αδ + δ (d− 1) + δ > 0.
We then estimate the H−1-norm of the terms corresponding to the parameters

r = 1 and l = 0 in the sum in the right side of the identity (7.3.13). To estimate it,
we select a function h ∈ H1

0 (BR1+δ , µβ) such that ∥h∥H1(B
R1+δ ,µβ) ≤ 1. We use the

function h as a test function, perform an integration by parts in the first line, use
the Cauchy-Schwarz inequality in the second line and the continuity of the discrete
Laplacian (as an operator acting on L2(Zd)) in the third line

1

R(1+δ)d

∑
x∈B

R1+δ

〈(
∇∇iGδ,jk (x, ·)

)
·
(
∇∆n−1χm,ij(x, ·)

)
h(x, ·)

〉
µβ

(7.3.18)

=
1

R(1+δ)d

∑
x∈B

R1+δ

〈
χm,ij(x, ·)∇ ·∆n−1

((
∇∇iGδ,jk (x, ·)

)
h(x, ·)

)〉
µβ

≤ ∥χm,ij∥L2(B
R1+δ ,µβ)

∥∥∇ ·∆n−1
(
∇∇iGδ,jkh

)∥∥
L2(B

R1+δ ,µβ)

≤ Cn ∥χm,ij∥L2(B
R1+δ ,µβ)

∥∥∇ · (∇∇iGδ,jkh
)∥∥

L2(B
R1+δ ,µβ) .

Using the regularity estimate for the homogenized Green’s matrix stated in (7.3.4) and
the inequality ∥h∥L2(B

R1+δ ,µβ) ≤ CR1+δ (which is a consequence of the assumption
∥h∥H1(B

R1+δ ,µβ) ≤ 1 and the Poincaré inequality), we obtain

∥∥∇ · ((∇∇iGδ,jk

)
h
)∥∥

L2(B
R1+δ ,µβ) ≤

∥∥∇3Gδ,jkh
∥∥

L2(B
R1+δ ,µβ) +

∥∥∇2Gδ,jk∇h
∥∥

L2(B
R1+δ ,µβ)

(7.3.19)

≤ CR1+δ

R(1−δ)(d+1)
+

C

R(1−δ)d
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≤ C

Rd−δ(d+2)
.

We then combine the estimate (7.3.18) with the inequality (7.3.19) and the quantita-
tive sublinearity of the corrector to obtain

1

R(1+δ)d

∑
x∈B

R1+δ

〈(
∇∇iGδ,jk (x)

)
·
(
∇∆n−1χm,ij(x, ·)

)
h(x, ·)

〉
µβ
≤ CnR(1+δ)(1−α)

Rd−δ(d+2)

(7.3.20)

≤ Cn

Rd−1+γα
,

where we have set γα := α(1 + δ)− δ(d+ 3) > 0.

By combining the identity (7.3.13) with the estimates (7.3.14), (7.3.17), (7.3.20)
and choosing the inverse temperature β large enough so that the series

(
Cn

β
n
2

)
n∈N

is

summable, we obtain the main Result (7.3.10) and (7.3.11) of this substep.

Substep 1.3. — In this substep, we study the term pertaining to the charges in the
identity (7.3.8). We prove the expansion

−1

2β
∆Hδ,·k +

∑
q∈Q

∇∗q · aq∇qHδ,·k = −∇ · aβ∇Gδ,·k −
∑
i,j

1

2β
∇iGδ,jk∆χm,ij(7.3.21)

+
∑
i,j

∑
q∈Q

∇iGδ,jk∇∗q · aq∇qχm,ij +RQ,

where RQ is an error term which satisfies the H−1 (BR1+δ , µβ)-norm estimate

(7.3.22) ∥RQ∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

We first compute the gradient and the Laplacian of the two-scale expansion Hδ,·k
using the notation of (A.1.6) to expand the gradient of a product. We obtain the
formulae

(7.3.23) ∇Hδ,·k = ∇Gδ,·k +
∑
i,j

[
∇∇iGδ,jk ⊗ χm,ij +∇iGδ,jk∇χm,ij

]
,

and
(7.3.24)
∆Hδ,·k = ∆Gδ,·k +

∑
i,j

∇ ·
(
∇∇iGδ,jk ⊗ χm,ij

)
+
(
∇∇iGδ,jk

)
· (∇χm,ij) +

(
∇iGδ,jk

)
∆χm,ij .

We first treat the term ∆Hδ,·k and use the two following ingredients:

(i) We introduce the notation RQ,1 :=
∑

i,j ∇ ·
(
∇∇iGδ,jk ⊗ χm,ij

)
. By using the

regularity estimate (7.3.4) on the homogenized Green’s matrix and the quanti-
tative sublinearity of the corrector, we prove that this term is an error term and
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estimate its H−1 (BR1+δ , µβ)-norm according to the following computation

∥RQ,1∥H−1(B
R1+δ ,µβ) ≤ C

∥∥∥∥∥∥
∑
i,j

∇∇iGδ,jk ⊗ χm,ij

∥∥∥∥∥∥
L2(B

R1+δ ,µβ)

≤
∑
i,j

C
∥∥∇∇iGδ,jk

∥∥
L∞(B

R1+δ ,µβ) ∥χm,ij∥L2(B
R1+δ ,µβ)

≤ CR(1+δ)(1−α)

R(1−δ)d

≤ C

Rd−1+γα
,

where we have set γα := α(1 + δ)− δ(d+ 1) > 0.

(ii) Second, we use the identity ∆Gδ,·k = ∇ · ∇Gδ,·k =
∑

i,j ∇ ·
(
∇iGδ,jkeij

)
.

We obtain

(7.3.25) ∆Hδ,·k = ∇·

∑
i,j

∇iGδ,jk (eij +∇χm,ij)

+
∑
i,j

(
∇iGδ,jk

)
∆χm,ij +RQ,1.

We then treat the term pertaining to the charges; the objective is to prove the identity∑
q∈Q

∇∗q · aq∇qHδ,·k =
∑
i,j

∇∇iGδ,jk

∑
q∈Q

aq∇q

(
leij

+ χm,ij

)
Lt

2,d∗ (nq)(7.3.26)

+
∑
q∈Q

∇iGδ,jk∇∗q · aq∇q

(
leij

+ χm,ij

)
+RQ,2,

where RQ,2 is an error term which satisfies the estimate

(7.3.27) ∥RQ,2∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

To prove this result, we select a test function h : Zd → R(d
2) which belongs to the

space H1
0 (BR1+δ , µβ) and satisfies the estimate ∥h∥H1(B

R1+δ ,µβ) ≤ 1. For each charge
q ∈ Q, we select a point xq which belongs to the support of the charge q arbitrarily.
We then write

(7.3.28)
∑
q∈Q

aq∇qHδ,·k∇qh =
∑
q∈Q

aq (nq,d
∗Hδ,·k) (nq,d

∗h) .

We use the exact formula for Hδ and apply the codifferential. We obtain

d∗Hδ,·k = L2,d∗ (∇Hδ,·k) = L2,d∗

(
∇Gδ,·k +

∑
i,j

[
∇∇iGδ,jk ⊗ χm,ij +∇iGδ,jk∇χm,ij

])(7.3.29)

= d∗Gδ,·k +
∑
i,j

∇iGδ,jkd∗χm,ij +
∑
i,j

L2,d∗
(
∇∇iGδ,jk ⊗ χm,ij

)
.
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We record the following formula

d∗Gδ,·k = L2,d∗
(
∇Gδ,·k

)
= L2,d∗

∑
i,j

∇iGδ,jkeij

 = L2,d∗

∑
i,j

∇iGδ,jk∇leij


(7.3.30)

=
∑
i,j

∇iGδ,jkL2,d∗
(
∇leij

)
=
∑
i,j

∇iGδ,jkd∗leij .

Putting the identities (7.3.29) and (7.3.30) back into (7.3.28), we obtain∑
q∈Q

aq∇qHδ,·k∇qh =
∑
i,j

∑
q∈Q

aq

(
nq,∇iGδ,jk

(
d∗leij

+ d∗χm,ij

))
(nq,d

∗h)

︸ ︷︷ ︸
(7.3.31)–(i)

(7.3.31)

+
∑
q∈Q

aq

(
nq, L2,d∗

(
∇∇iGδ,jk ⊗ χm,ij

))
(nq,d

∗h)

︸ ︷︷ ︸
(7.3.31)–(ii)

.

The second term (7.3.31)-(ii) is an error term which is small and can be estimated
thanks to the regularity estimate (7.3.4) and Young’s inequality. We obtain∣∣∣∣∣∣∣
〈∑

q∈Q

aq

(
nq, L2,d∗

(
∇∇iGδ,jk ⊗ χm,ij

))
(nq,d

∗h)

〉
µβ

∣∣∣∣∣∣∣
≤
∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥22
∥∥∇2Gδ,jk

∥∥
L∞(Zd,µβ)

∥χm,ij∥L2(supp nq,µβ) ∥∇h∥L2(supp nq,µβ)

≤ C

R(1−δ)(d+1)

∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥22 ∥χm,ij∥L2(supp nq,µβ) ∥∇h∥L2(supp nq,µβ)

≤ C

R(1−δ)(d+1)

×
∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥22
(
R−1+α ∥χm,ij∥2L2(supp nq,µβ) +R1−α ∥∇h∥2L2(supp nq,µβ)

)
.

We then use the inequality, for each point x ∈ Zd,

(7.3.32)
∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥22 1{x∈supp nq} ≤ C.

We deduce that∣∣∣∣∣∣∣
〈∑

q∈Q

aq

(
nq, L2,d∗

(
∇∇iGδ,jk ⊗ χm,ij

))
(nq,d

∗h)

〉
µβ

∣∣∣∣∣∣∣
ASTÉRISQUE 447



7.3. TWO-SCALE EXPANSION AND HOMOGENIZATION. . . 151

≤ CR−1+α

R(1−δ)(d+1)
∥χm,ij∥2L2(B

R1+δ ,µβ) +
CR1−α

R(1−δ)(d+1)
∥∇h∥2L2(B

R1+δ ,µβ) .

We then use Proposition 6.4.3 and the assumption ∥∇h∥L2(B
R1+δ ,µβ) ≤ 1. We obtain

(7.3.33)∣∣∣∣∣∣∣
1

R(1+δ)d

〈∑
q∈Q

aq

(
nq, L2,d∗

(
∇∇iGδ,jk ⊗ χm,ij

))
(nq,d

∗h)

〉
µβ

∣∣∣∣∣∣∣ ≤
CR1−α

R(1−δ)d
≤ C

Rd−1+γα
,

where we have set γα = α− δ (d+ 1) > 0.
To treat the term (7.3.31)-(i), we make use of the point xq and write∑

q∈Q

aq

(
nq,∇iGδ,jk

(
d∗leij + d∗χm,ij

))
(nq,d

∗h)

=
∑
q∈Q

aq

(
nq,
(
d∗leij + d∗χm,ij

)) (
nq,∇iGδ,jkd∗h

)
+
∑
q∈Q

aq

(
nq,
(
∇iGδ,jk −∇iGδ,jk(xq)

) (
d∗leij + d∗χm,ij

))
(nq,d

∗h)

+
∑
q∈Q

aq

(
nq

(
d∗leij

+ d∗χm,ij

)) (
nq,
(
∇iGδ,jk −∇iGδ,jk(xq)

)
d∗h

)
.

The terms on the second and third lines are error terms which are small, they can
be estimated by the regularity estimate (7.3.4) on the gradient of the homogenized
Green’s matrix and Young’s inequality as follows∣∣∣∣∣∣∣
〈∑

q∈Q

aq

(
nq,
(
∇iGδ,jk −∇iGδ,jk(xq)

) (
d∗leij + d∗χm,ij

))
(nq,d

∗h)

〉
µβ

∣∣∣∣∣∣∣
≤
∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥2
∥∥∇Gδ,jk −∇Gδ,jk(xq)

∥∥
L∞(supp nq,µβ)

× ∥∇χm,ij∥L2(supp nq,µβ) ∥∇h∥L2(supp nq,µβ)

≤ C

R(1−δ)d

∑
q∈Q

e−c
√

β∥q∥1 ∥nq∥2 diamnq

(
∥∇χm,ij∥2L2(supp nq,µβ) + ∥∇h∥2L2(supp nq,µβ)

)
.

We then apply the estimate (7.3.32), the bound ∥∇χm,ij∥L2(B
R1+δ ,µβ) ≤ C on the

gradient of the corrector and the assumption ∥∇h∥L2(B
R1+δ ,µβ) ≤ 1 to conclude that

∣∣∣∣∣∣∣
1

R(1+δ)d

〈∑
q∈Q

aq

(
nq,
(
∇iGδ,jk −∇iGδ,jk(xq)

) (
d∗leij + d∗χm,ij

))
(nq,d

∗h)

〉
µβ

∣∣∣∣∣∣∣
(7.3.34)

≤ C

R(1−δ)d
≤ C

R(d−1)+γ1
,
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where we have set γ1 = 1− δ > 0. The same argument proves the inequality

∣∣∣∣∣∣∣
1

R(1+δ)d

〈∑
q∈Q

aq

(
nq

(
d∗leij

+ d∗χm,ij

)) (
nq,
(
∇iGδ,jk −∇iGδ,jk(xq)

)
d∗h

)〉
µβ

∣∣∣∣∣∣∣
(7.3.35)

≤ C

R(d−1)+γ1
,

with the same exponent γ1 > 0. Combining the identity (7.3.31) with the esti-
mates (7.3.33), (7.3.34), (7.3.35), we have obtained the following result: for each
function h ∈ H1

0 (BR1+δ , µβ) such that ∥h∥H1(B
R1+δ ,µβ) ≤ 1, one has the expansion

1

R(1+δ)d

∑
q∈Q

aq∇qHδ,·k∇qh =
1

R(1+δ)d

∑
q∈Q

aq

(
nq,
(
d∗leij

+ d∗χm,ij

)) (
nq,∇iGδ,jkd∗h

)
+O

(
C

Rd−1+γα

)
.

We then use the identity ∇iGδ,jkd∗h = d∗
(
∇iGδ,jkh

)
− L2,d∗

(
∇∇iGδ,jk ⊗ h

)
which

is established in (7.3.30). We deduce that

(7.3.36)
∑
q∈Q

aq∇qHδ,·k∇qh =
∑
q∈Q

aq

(
nq,
(
d∗leij + d∗χm,ij

)) (
nq,d

∗ (∇iGδ,jkh
))

+
∑
q∈Q

aq

(
nq,
(
d∗leij

+ d∗χm,ij

)) (
nq, L2,d∗

(
∇∇iGδ,jk ⊗ h

))
+O

(
C

Rd−1+γα

)
.

This implies the identity (7.3.26) and the estimate (7.3.27).
We now complete the proof of (7.3.21). To prove this identity, it is sufficient, in

view of (7.3.25) and (7.3.26), to prove the estimate

1

2β

∑
i,j

(
∇∇iGδ,jk

)
· (eij +∇χm,ij) +

∑
i,j

(
∇∇iGδ,jk

)∑
q∈Q

aq∇q

(
leij

+ χm,ij

)
Lt

2,d∗ (nq)

(7.3.37)

= −∇ ·
(
aβ∇Gδ,·k

)
+RQ,3,

where the term RQ,3 satisfies the estimate

(7.3.38) ∥RQ,3∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

The proof relies on the quantitative estimate for the H−1 (BR1+δ , µβ)-norm of the
flux corrector stated in Proposition 6.4.3 and the regularity estimate (7.3.4) on the
homogenized matrix Gδ and the identity

∇ · aβ∇Gδ,·k = ∇ ·
∑
i,j

∇iGδ,jkaβeij =
∑
i,j

∇∇iGδ,jk · aβeij .
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We select a function h : Zd → R(d
2) which belongs to the space H1

0 (BR1+δ , µβ) and
such that ∥h∥H1(B

R1+δ ,µβ) ≤ 1. We use it as a test function and write

Substep 1.4. — In this substep, we conclude Step 1 and prove the estimate (7.3.7).
We use the identity (7.3.8) and the identities (7.3.9) proved in Substep 1, (7.3.10)
proved in Substep 2 and (7.3.21) proved in Substep 3. We obtain

LHδ,·k = −∇ · aβ∇Gδ,·k +
∑
i,j

∇iGδ,jk

(
∆ϕχm,ij +

1

2β
∆χm,ij(7.3.39)

+
∑
q∈Q

∇∗q · aq∇q

(
leij + χm,ij

)
+

1

2β

∑
n≥1

1

β
n
2

(−∆)n+1χm,ij

)
+RQ +R∆n .

We then treat the three lines of the previous display separately. For the first line, we
use the identity

(7.3.40) −∇ · aβ∇Gδ,·k = ρδ,·k in Zd.

For the second line, we use that, by the definition of the finite-volume corrector
given in Definition 6.4.1, this map is a solution of the Helffer-Sjöstrand equation
L
(
leij + χm,ij

)
= 0 in the set BR1+δ × Ω. We obtain∑

i,j

∇iGδ,jk

(
∆ϕχm,ij +

1

2β
∆χm,ij +

∑
q∈Q

∇∗q · aq∇q

(
leij

+ χm,ij

)
(7.3.41)

+
1

2β

∑
n≥1

1

β
n
2

(−∆)n+1χm,ij

)
(7.3.42)

=
∑
i,j

∇iGδ,jkL
(
leij

+ χm,ij

)
= 0.

For the third line, we use the estimates (7.3.11) and (7.3.22) on the error terms RQ

and R∆n respectively. We obtain

(7.3.43) ∥RQ +R∆n∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

A combination of the identities (7.3.39), (7.3.40), (7.3.41) and the estimate (7.3.43)
proves the inequality

∥LHδ,·k − ρδ,·k∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

The proof of the estimate (7.3.7) is complete.

7.3.3. Estimating the L2-norm of the term∇Gδ−∇Hδ . — The objective of this section
is to prove that the gradient of the Green’s matrix ∇Gδ and the gradient of the two-
scale expansion ∇Hδ are close in the L2 (AR, µβ)-norm. More specifically, we prove
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that there exists an exponent γδ > 0 such that one has the estimate

(7.3.44) ∥∇Gδ −∇Hδ∥L2(AR,µβ) ≤
C

R(d−1)+γδ
.

To prove this inequality, we work on the larger set BR1+δ/2 and prove the estimate

∥∇Gδ −∇Hδ∥L2(B
R1+δ/2

,µβ) ≤
C

R(1+δ)(d−1−ε/2)
.(7.3.45)

The inequality (7.3.44) implies (7.3.45); indeed, by using that the annulus AR is
included in the ball BR1+δ , we can compute

∥∇Gδ −∇Hδ∥L2(AR,µβ) ≤

(∣∣BR1+δ/2

∣∣
|AR|

) 1
2

∥∇Gδ −∇Hδ∥L2(B
R1+δ/2

,µβ)

≤ C

(
Rd(1+δ)

Rd

) 1
2 C

R(1+δ)(d−1−ε/2)

≤ C

Rd−1+γδ
,

where we have set γδ := δ(d
2 − 1 − ε/2) > 0. We now focus on the proof of the

estimate (7.3.45) and fix an integer k ∈
{

1, . . . ,
(
d
2

)}
to write the proof. The strategy

is to use the identity LGδ,·k = ρδ,·k to rewrite the estimate (7.3.7) in the following form

(7.3.46) ∥L (Hδ,·k − Gδ,·k)∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

We then use the function Gδ,·k − Hδ,·k as a test function in the definition of the
H−1-norm in the inequality (7.3.46) to obtain the H1-estimate stated in (7.3.45), as
described in the outline of the proof at the beginning of this section. The overall strat-
egy is relatively straightforward; however, one has to deal with the following technical
difficulty. By definition of theH−1-norm, one needs to use a function inH1

0 (BR1+δ , µβ)

as a test function; in particular the function must be equal to 0 outside the ball BR1+δ .
This condition is not verified by the function Gδ,·k−Hδ,·k which is thus not a suitable
test function. To overcome this issue, we introduce a cutoff function η : Zd → R
supported in the ball BR1+δ which satisfies the properties

(7.3.47) 0 ≤ η ≤ 1B
R1+δ

, η = 1 in BR1+δ

2

, and ∀k ∈ N,
∣∣∇kη

∣∣ ≤ C

R(1+δ)k
,

and use the function η (Gδ,·k −Hδ,·k) as a test function. The main difficulty is thus to
treat the cutoff function. This difficulty is similar to the one treated in the proof of
the Caccioppoli inequality stated in Proposition 5.1.1 and we will omit some of the
technical details of the argument.

We first write

1

R(1+δ)d

∑
x∈B

R1+δ

⟨η (Gδ,·k −Hδ,·k) L (Gδ,·k −Hδ,·k)⟩µβ

(7.3.48)
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≤ ∥L (Gδ,·k −Hδ,·k)∥H−1(B
R1+δ ,µβ) ∥η (Gδ,·k −Hδ,·k)∥H1(B

R1+δ ,µβ)

≤ C

Rd−1+γα
∥η (Gδ,·k −Hδ,·k)∥H1(B

R1+δ ,µβ) .

We then treat the terms in the left and right sides of the inequality (7.3.48) separately.
Regarding the left side, we prove the estimate

(7.3.49) ∥η (Gδ,·k −Hδ,·k)∥H1(B
R1+δ ,µβ) ≤

C

Rd−1−δd
.

The proof relies on the properties of the cutoff function η stated in (7.3.47), the reg-
ularity estimate on the Green’s matrix stated in Proposition 7.3.1, the L∞-bound on
the homogenized Green’s matrix Gδ stated in (7.3.4) and the bounds on the corrector
and its gradient recalled below

∥χm,ij∥L2(B
R1+δ ,µβ) ≤ CR(1+δ)(1−α), ∥∇χm,ij∥L2(B

R1+δ ,µβ) ≤ C

and ∑
x∈Zd

∥∂xχm,ij∥2L2(B
R1+δ ,µβ) ≤ C.

We first write

∥η (Gδ,·k −Hδ,·k)∥H1(B
R1+δ ,µβ) ≤

1

R1+δ
∥η (Gδ,·k −Hδ,·k)∥L2(B

R1+δ ,µβ)︸ ︷︷ ︸
(7.3.50)–(i)

(7.3.50)

+ ∥∇η (Gδ,·k −Hδ,·k)∥L2(B
R1+δ ,µβ)︸ ︷︷ ︸

(7.3.50)–(ii)

+ ∥η (∇Gδ,·k −∇Hδ,·k)∥L2(B
R1+δ ,µβ)︸ ︷︷ ︸

(7.3.50)–(iii)

+ β
∑
x∈Zd

∥η (∂xGδ,·k − ∂xHδ,·k)∥L2(B
R1+δ ,µβ)︸ ︷︷ ︸

(7.3.50)–(iv)

,

and treat the four terms in the right side separately. For the term (7.3.50)–(i), we use
that the function η is non-negative and smaller than 1 to write

1

R1+δ
∥η (Gδ,·k −Hδ,·k)∥L2(B

R1+δ ,µβ) ≤
1

R1+δ

(
∥Gδ,·k∥L2(B

R1+δ ,µβ) + ∥Hδ,·k∥L2(B
R1+δ ,µβ)

)
.

We then estimate the L2-norm of the Green’s matrix Gδ thanks to the estimate

∥Gδ,·k∥L2(B
R1+δ ,µβ) ≤ ∥Gδ,·k∥L∞(Zd,µβ) ≤

C

R(1−δ)(d−2)
.

The L2-norm of the two-scale expansion Hδ can be estimated according to the fol-
lowing computation

∥Hδ,·k∥L2(B
R1+δ ,µβ) ≤

∥∥Gδ,·k
∥∥

L2(B
R1+δ ,µβ)
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+
∑
i,j

∥∥∇iGδ,jk

∥∥
L∞(B

R1+δ ,µβ) ∥χm,ij∥L2(B
R1+δ ,µβ)

≤ C

R(1−δ)(d−2)
+
CR(1+δ)(1−α)

R(1−δ)(d−1)

≤ C

R(1−δ)(d−2)
,

where we have used the inequality α ≫ δ in the third inequality. A combination of
the three previous displays shows the estimate
(7.3.51)

1

R1+δ
∥η (Gδ,·k −Hδ,·k)∥L2(B

R1+δ ,µβ) ≤
C

R1+δ ×R(1−δ)(d−2)
≤ C

Rd−1−δ(d−3)
.

The proof of the term (7.3.50)–(ii) is identical, we use the estimate |∇η| ≤ C
R1+δ and

apply the estimate obtained for the term (7.3.50)–(ii). We obtain

(7.3.52) ∥∇η (Gδ,·k −Hδ,·k)∥L2(B
R1+δ ,µβ) ≤

C

Rd−1−δ(d−3)
.

For the term (7.3.50)–(iii), we first write

∥η (∇Gδ,·k −∇Hδ,·k)∥L2(B
R1+δ ,µβ) ≤ ∥∇Gδ,·k∥L∞(Zd,µβ) + ∥∇Hδ,·k∥L2(B

R1+δ ,µβ) .

The L∞-norm of the Green’s matrix ∇Gδ,·k is estimated by Proposition 7.3.1. We have

∥∇Gδ,·k∥L∞(Zd,µβ) ≤
C

R(1−δ)(d−1−ε)
.

For the L2-norm of the two-scale expansion H , we use the Formula (7.3.23) and write

∥∇Hδ,·k∥L2(B
R1+δ ,µβ)≤

∥∥∇Gδ,·k
∥∥

L∞(Zd)
+
∑
i,j

∥∥∇∇iGδ,jk

∥∥
L∞(Zd)

∥χm,ij∥L2(B
R1+δ ,µβ)

+
∑
i,j

∥∥∇iGδ,jk

∥∥
L∞(Zd)

∥∇χm,ij∥L2(B
R1+δ ,µβ)

≤ C

R(1−δ)(d−1−ε)
+
CR(1+δ)(1−α)

R(1−δ)(d−ε)
+

C

R(1−δ)(d−1−ε)

≤ C

Rd−1−ε−δ(d−1−ε)
.

A combination of the three previous displays together with the inequality δ ≫ ε yields
the estimate

(7.3.53) ∥η (∇Gδ,·k −∇Hδ,·k)∥L2(B
R1+δ ,µβ) ≤

C

Rd−1−δd
.

There remains to estimate the term (7.3.50)–(iv). We first write

β
∑
x∈Zd

∥η (∂xGδ,·k − ∂xHδ,·k)∥L2(B
R1+δ ,µβ) ≤ β

∑
x∈Zd

∥η∂xGδ,·k∥L2(B
R1+δ ,µβ)︸ ︷︷ ︸

(7.3.54)–(i)

(7.3.54)

+ β
∑
x∈Zd

∥η∂xHδ,·k∥L2(B
R1+δ ,µβ)︸ ︷︷ ︸

(7.3.54)–(ii)
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and estimate the two terms in the right side separately. For the term (7.3.54)–(i),
we use that the map Gδ,·k is a solution of the equation LGδ,·k = ρδ,·k and use the
map η2Gδ,·k as a test function. We obtain

β
∑
x∈Zd

∥η∂xGδ,·k∥2L2(B
R1+δ ,µβ) = −1

2

∑
x∈Zd

〈
∇Gδ,·k(x, ·) · ∇

(
η2Gδ,·k

)
(x, ·)

〉
µβ

− β
∑
q∈Q

〈
∇qGδ,·k · aq∇q

(
η2Gδ,·k

)〉
µβ

− 1

2

∑
n≥1

∑
x∈Zd

1

β
n
2

〈
∇n+1Gδ,·k(x, ·) · ∇n+1

(
η2Gδ,·k

)
(x, ·)

〉
µβ

+ β
∑
x∈Zd

ρδ,·k(x)η2(x) · ⟨Gδ,·k(x, ·)⟩µβ
.

We then estimate the four terms in the right sides using the pointwise estimates on
the function Gδ and its gradient stated in Proposition 7.3.1, the properties on the
functions ρδ and η stated in (7.2.4) and (7.3.47) respectively. We omit the technical
details and obtain the estimate

(7.3.55)
∑

x∈Zd ∥η∂xGδ,·k∥2L2(B
R1+δ ,µβ) ≤

C
R2(1−δ)(d−1−ε) .

The term (7.3.54)–(ii) involving the two-scale expansion is the easiest one to esti-
mate; using the explicit formula for the map Hδ,·k and the fact that the function Gδ,·k
does not depend on the field ϕ, we have the identity

∂xHδ,·k :=
∑

i,j ∇iGδ,jk∂xχm,ij .

We deduce that

∑
x∈Zd

∥η∂xHδ,·k∥L2(B
R1+δ ,µβ) ≤

∑
x∈Zd

∥∂xHδ,·k∥L2(B
R1+δ ,µβ)

(7.3.56)

≤ C
∑
i,j

∥∥∇Gδ,·k
∥∥

L∞(Zd)

∑
x∈Zd

∥∂xχm,ij∥L2(B
R1+δ ,µβ)

≤ C

R(1−δ)(d−1−ε)
.

Combining the inequalities (7.3.54), (7.3.55) and (7.3.56) yields

(7.3.57)
∑

x∈Zd ∥η (∂xGδ,·k − ∂xHδ,·k)∥L2(B
R1+δ ,µβ) ≤

C
Rd−1−ε−δ(d−1−ε) ≤ C

Rd−1−δd .

The inequality (7.3.49) is then obtained by combining the estimates (7.3.51),
(7.3.52), (7.3.53) and (7.3.57). We then put the inequality back into the inequal-
ity (7.3.48) and deduce that

1

R(1+δ)d

∑
x∈B

R1+δ

⟨η (Gδ,·k −Hδ,·k) L (Gδ,·k −Hδ,·k)⟩µβ
≤ C

Rd−1+γα ×Rd−1−δd

(7.3.58)

≤ C

R2d−2+γα
,
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where we have used in the second inequality that the exponent γα is of order α and
is thus much larger than the value δd.

In the rest of this step, we treat the left side of (7.3.58) and prove the inequality

∥∇Gδ,·k −∇Hδ,·k∥2
L2

(
B

R1+δ
2

,µβ

) ≤ 1

R(1+δ)d

∑
x∈B

R1+δ

⟨η (Gδ,·k −Hδ,·k) L (Gδ,·k −Hδ,·k)⟩µβ

(7.3.59)

+
C

R(1+δ)(2d−2−ε)
.

First, by definition of the Helffer-Sjöstrand operator L , we have the identity

∑
x∈Zd

⟨η (Gδ,·k −Hδ,·k) L (Gδ,·k −Hδ,·k)⟩µβ

(7.3.60)

=
∑

x,y∈Zd

η(x)
〈
(∂yGδ,·k(x, ·)− ∂yHδ,·k(x, ·))2

〉
µβ

+
1

2β

∑
x∈Zd

⟨(∇Gδ,·k −∇Hδ,·k) (x, ·) · ∇ (η (Gδ,·k −Hδ,·k)) (x, ·)⟩µβ

+
∑
q∈Q

⟨∇q (Gδ,·k −Hδ,·k) · aq∇q (η (Gδ,·k −Hδ,·k))⟩µβ

+
1

2β

∑
n≥1

∑
x∈Zd

1

β
n
2

〈
∇n+1 (Gδ,·k −Hδ,·k) (x, ·) · ∇n+1 (η (Gδ,·k −Hδ,·k)) (x, ·)

〉
µβ
.

We then estimate the four terms on the right side separately. For the first one, we use
that it is non-negative∑

x,y∈Zd

η(x)2
〈
(∂yGδ,·k(x, ·)− ∂yHδ,·k(x, ·))2

〉
µβ

≥ 0.

For the second one, we expand the gradient of the product η (Gδ,·k −H ) and write∑
x∈Zd

⟨(∇Gδ,·k −∇Hδ,·k) (x, ·) · ∇ (η (Gδ,·k −Hδ,·k)) (x, ·)⟩µβ
(7.3.61)

=
∑
x∈Zd

η(x) ⟨(∇Gδ,·k −∇Hδ,·k) (x, ·) · (∇Gδ,·k −∇Hδ,·k) (x, ·)⟩µβ

+
∑
x∈Zd

⟨(∇Gδ,·k −∇Hδ,·k) (x, ·) · ∇η(x) (Gδ,·k −Hδ,·k) (x, ·)⟩µβ
.

we divide the identity (7.3.61) by the volume factor R(1+δ)d and use the properties
of the function η stated in (7.3.47). In particular, we use that the gradient of η is
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supported in the annulus AR1+δ := BR1+δ \BR1+δ

2

and obtain

1

R(1+δ)d

∑
x∈Zd

⟨(∇Gδ,·k −∇Hδ,·k) (x, ·) · ∇ (η (Gδ,·k −Hδ,·k)) (x, ·)⟩µβ

(7.3.62)

≥ c ∥η (∇Gδ,·k −∇Hδ,·k)∥2L2(B
R1+δ ,µβ)

− C

R1+δ
∥∇Gδ,·k −∇Hδ,·k∥L2(A

R1+δ ,µβ) ∥Gδ,·k −Hδ,·k∥L2(A
R1+δ ,µβ) .

By a computation similar to the one performed for the term (7.3.50)–(iii), but using
the estimates (7.3.3) and (7.3.5) for the Green’s matrices in the distant annulus AR1+δ ,
instead of the L∞-estimates (7.3.2) and (7.3.4). We obtain

∥∇Gδ,·k −∇Hδ,·k∥L2(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−1−ε)
(7.3.63)

and

∥Gδ,·k −Hδ,·k∥L2(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−2)
.

A combination of the inequalities (7.3.62) and (7.3.63) proves the estimate

(7.3.64)
1

R(1+δ)d

∑
x∈Zd

⟨(∇Gδ,·k −∇Hδ,·k) (x, ·) · ∇ (η (Gδ −Hδ,·k)) (x, ·)⟩µβ
+

C

R(1+δ)(2d−2−ε)

≥ c ∥η (∇Gδ,·k −∇Hδ,·k)∥2L2(B
R1+δ ,µβ) .

The other terms in the right side of the identity (7.3.60) involving the sum over the
iteration of the Laplacian and over the charges q ∈ Q are treated similarly and we
omit the details. The results obtained are stated below

(7.3.65)
1

R(1+δ)d

∑
q∈Q

⟨∇q (Gδ,·k −Hδ,·k) · aq∇q (η (Gδ,·k −Hδ,·k))⟩µβ
+

C

R(1+δ)(2d−2−ε)

≥ −Ce−c
√

β ∥η (∇Gδ,·k −∇Hδ,·k)∥2L2(Zd,µβ)

and

1

R(1+δ)d

∑
n≥1

∑
x∈Zd

1

β
n
2

〈
∇n+1 (Gδ,·k −Hδ,·k) (x, ·) · ∇n+1 (η (Gδ,·k −Hδ,·k)) (x, ·)

〉
µβ

(7.3.66)

+
C

R(1+δ)(2d−2−ε)

≥
∑
n≥1

∑
x∈Zd

1

β
n
2

〈
η(x)

∣∣∇n+1 (Gδ,·k −Hδ,·k) (x, ·)
∣∣2〉

µβ

≥ 0.
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We then combine the identity (7.3.60) with the estimates (7.3.64), (7.3.65) and (7.3.66)
and assume that the inverse temperature β is large enough. We obtain

1

R(1+δ)d

∑
x∈Zd

⟨η (Gδ,·k −H ) L (Gδ,·k −Hδ,·k)⟩µβ
+

C

R(1+δ)(2d−2−ε)

≥ c ∥η (∇Gδ,·k −∇Hδ,·k)∥2L2(Zd,µβ)

≥ c ∥∇Gδ,·k −∇Hδ,·k∥2L2(B
R1+δ/2

,µβ) .

The proof of the inequality (7.3.59) is then complete. To complete the proof of Step
2, we combine the estimates (7.3.58) and (7.3.59). We obtain
(7.3.67)

∥∇Gδ,·k −∇Hδ,·k∥2
L2

(
B

R1+δ
2

,µβ

) ≤ C

R2d−2+γα
+

C

R(1+δ)(2d−2−ε)
≤ C

R(1+δ)(2d−2−ε)
,

where the last inequality is a consequence of the fact that γα is of order α and
of the ordering α ≫ δ ≫ ε. Since the inequality (7.3.67) is valid for any integer
k ∈

{
1, . . . ,

(
d
2

)}
, the proof of the estimate (7.3.45) is complete.

7.3.4. Homogenization of the gradient of the Green’s matrix. — In this section, we
post-process the conclusion (7.3.45) of Section 7.3.3 and prove that the gradient of
the Green’s matrix ∇G·k is close to the map

∑
i,j (eij +∇χij)∇iGjk. The objective

is to prove that there exists an exponent γδ > 0 such that

(7.3.68)

∥∥∥∥∥∥∇G·k −
∑
i,j

(eij +∇χij)∇iGjk

∥∥∥∥∥∥
L2(AR,µβ)

≤ C

Rd−1+γδ
.

We first use the regularity estimates stated in Proposition 7.3.1 and the L2-bound
on the gradient of the infinite-volume corrector, for each x ∈ Zd, each pair of inte-
gers (i, j) ∈ {1, . . . , d} × {1, . . . ,

(
d
2

)
}, ∥∇χij(x, ·)∥L2(µβ) ≤ C. We write

∥∥∥∥∥∥∇ (G·k − Gδ,·k)−
∑
i,j

(eij +∇χij)∇i

(
Gδ,jk −Gjk

)∥∥∥∥∥∥
L2(AR,µβ)

(7.3.69)

≤ ∥∇ (G·k − Gδ,·k)∥L2(AR,µβ)

+
∑
i,j

∥(eij +∇χij)∥L2(AR,µβ)

∥∥∇i

(
Gδ,jk −Gjk

)∥∥
L∞(AR,µβ)

≤ C

Rd−1+γδ
.

Using the inequality (7.3.69), we see that, to prove (7.3.68), it is sufficient to prove
the estimate

(7.3.70)

∥∥∥∥∥∥∇Gδ,·k −
∑
i,j

(eij +∇χij)∇iGδ,jk

∥∥∥∥∥∥
L2(AR,µβ)

≤ C

Rd−1+γδ
.

ASTÉRISQUE 447



7.4. HOMOGENIZATION OF THE MIXED DERIVATIVE OF THE GREEN’S MATRIX 161

We then use the main estimate (7.3.45) and deduce that, to prove the inequal-
ity (7.3.70), it is sufficient to prove

(7.3.71)

∥∥∥∥∥∥∇Hδ,·k −
∑
i,j

(eij +∇χij)∇iGδ,jk

∥∥∥∥∥∥
L2(AR,µβ)

≤ C

Rd−1+γδ
.

The rest of the argument of this step is devoted to the proof of (7.3.71). We first
use the explicit formula for the gradient of the two-scale expansion ∇Hδ,·k stated
in (7.3.23) and write∥∥∥∥∥∥∇Hδ,·k −

∑
i,j

(eij +∇χm,ij)∇iGδ,jk

∥∥∥∥∥∥
L2(AR,µβ)

≤
∑
i,j

∥∥∇∇iGδ,jkχm,ij

∥∥
L2(AR,µβ)

+
∥∥(∇iGδ,jk

)
(∇χm,ij −∇χij)

∥∥
L2(AR,µβ)

.

We then use the regularity estimate (7.3.4), the quantitative sublinearity of the cor-
rector stated in Proposition 6.4.3, and Proposition 6.4.4 to quantify the L2-norm of
the difference between the gradient of finite-volume corrector and the gradient of the
infinite-volume corrector. We obtain∥∥∥∥∥∥∇Hδ,·k −

∑
i,j

(eij +∇χm,ij)∇iGδ,jk

∥∥∥∥∥∥
L2(AR,µβ)

≤
(

|AR|
|BR1+δ |

) 1
2 CR1−α

Rd−ε
(7.3.72)

+

(
|AR|
|BR1+δ |

) 1
2 CR−α

Rd−1−ε

≤ C

Rd−1+γα
,

where we have set γα := α − ε − dδ
2 > 0. Using that the exponent γα is larger than

the exponent γδ completes the proof of the estimate (7.3.68).

7.4. Homogenization of the mixed derivative of the Green’s matrix

The objective of this section is to use Proposition 7.2.1 to prove Theorem 2. We
fix a charge q1 ∈ Q and recall the definitions of the maps Uq1 and Gq1 given in the
statement of Theorem 2. The proof is decomposed into three sections and follows the
outline of the proof given in Section 7.2.2.

7.4.1. Preliminary estimates. — In this section, we record some properties pertaining
to the functions Uq1

and Gq1
which are used in the argument.

Proposition 7.4.1. — There exist an inverse temperature β0 := β0(d) < 0 and a
constant Cq1

which satisfies the estimate Cq1
≤ C ∥q1∥k

1 , for some C(d) < ∞ and
k(d) < ∞, such that the following statement holds: For each point y ∈ Zd and each
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integer k ∈ N, one has the estimates

∥∇Uq1
(y, ·)∥L∞(µβ) ≤

Cq1

|y|d−ε
, ∥Uq1

(y, ·)∥L∞(µβ) ≤
Cq1

|y|d−1−ε

and ∣∣∇kGq1
(y)
∣∣ ≤ Cq1

|y|d−1+k
.

Proof. — The proof is a consequence of the regularity estimates stated in Proposi-
tion 3.4.11 and the identity q = dnq.

7.4.2. Exploiting the symmetry of the Helffer-Sjöstrand operator. — The objective of
this section is to use Proposition 7.2.1 and the symmetry of the Helffer-Sjöstrand
operator L to prove the following estimate

(7.4.1)

(
R−d

∑
z∈AR

∣∣∣⟨Uq1
(z, ·)⟩µβ

−Gq1
(z)
∣∣∣2) 1

2

≤ C

Rd−1+γδ
.

We start from the formula, for each integer k ∈
{

1, . . . ,
(
d
2

)}
,

(7.4.2)

∥∥∥∥∥∥d∗G·k −
∑
i,j

(
d∗leij

+ d∗χij

)
∇iGjk

∥∥∥∥∥∥
L2(AR,µβ)

≤ C

Rd−1+γδ
,

which is a direct consequence of Proposition 7.2.1 since the codifferential is a linear
functional of the gradient. Using the estimate (7.4.2), we deduce that

R−d
∑

x∈AR

∣∣∣∣⟨cos (2π (ϕ, q1(x+ ·))) (nq1 (x+ ·) ,d∗G·k)⟩µβ

−
∑
i,j

〈
cos (2π (ϕ, q1(x+ ·)))

(
nq1 (x+ ·) ,

(
d∗leij + d∗χij

))〉
µβ
∇iGjk(x)

∣∣∣∣ ≤ Cq1

Rd−1+γδ
.

By the translation invariance of the measure µβ and the stationarity of the gradient
of the infinite-volume corrector, we deduce that∑

i,j

〈
cos (2π (ϕ, q1(x+ ·)))

(
nq1 (x+ ·) ,

(
d∗leij + d∗χij

))〉
µβ
∇iGjk(x)

=
∑
i,j

〈
cos (2π (ϕ, q1))

(
nq1

,
(
d∗leij

+ d∗χij

))〉
µβ
∇iGjk(x)

= Gq1 (x) .

We now claim that we have the identity, for each point x ∈ AR,

⟨cos (2π (ϕ, q1(x+ ·))) (nq1
(x+ ·) ,d∗G )⟩µβ

=
〈
Uq1(x+·)(0, ·)

〉
µβ
.
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The proof of this result is a consequence of the symmetry of the Helffer-Sjöstrand
operator L and the stationarity of the measure µβ . We compute

⟨cos (2π (ϕ, q1(x+ ·))) (nq1
(x+ ·) ,d∗G )⟩µβ

= ⟨(cos (2π (ϕ, q1(x+ ·))) q1 (x+ ·) , G )⟩µβ

=
〈(

cos (2π (ϕ, q1(x+ ·))) q1 (x+ ·) , L−1δ0
)〉

µβ

=
〈(

L−1 cos (2π (ϕ, q1(x+ ·))) q1 (x+ ·) , δ0
)〉

µβ

=
〈
Uq1(x+·)(0, ·)

〉
µβ
.

A combination of the four previous displays implies

(7.4.3) R−d
∑

x∈AR

∣∣∣〈Uq1(x+·)(0, ·)
〉

µβ
−Gq1

(x)
∣∣∣ ≤ C

Rd−1+γδ
.

We then use the translation invariance of the measure µβ and the definition of the
map Uq1

as the solution of the Helffer-Sjöstrand Equation (7.1.2) to write

(7.4.4)
〈
Uq1(x+·)(0, ·)

〉
µβ

= ⟨Uq1
(x, ·)⟩µβ

.

Combining the inequality (7.4.3) with the identity (7.4.4), we obtain

(7.4.5) R−d
∑

x∈AR

∣∣∣⟨Uq1
(x, ·)⟩µβ

−Gq1
(x)
∣∣∣ ≤ C

Rd−1+γδ
.

We finally upgrade the L1-inequality stated in (7.4.5) into an L2-inequality: by using
Proposition 7.4.1, we write

R−d
∑

x∈AR

∣∣∣⟨Uq1
(x, ·)⟩µβ

−Gq1
(x)
∣∣∣2

≤

(
R−d

∑
x∈AR

∣∣∣⟨Uq1
(x, ·)⟩µβ

−Gq1
(x)
∣∣∣)(∥Uq1

(x, ·)∥L∞(AR,µβ) +
∥∥Gq1

∥∥
L∞(AR)

)
≤ Cq1

Rd−1+γδ ×Rd−1−ε

≤ Cq1

R2d−2+γδ
,

where we have used the convention notation described at the beginning of Section 7.3
to absorb the exponent ε into the exponent γδ in the third inequality.

7.4.3. Contraction of the variance of Uq1
. — In this section, we prove that the random

variable Uq1
contracts around its expectation. To this end, we prove the variance

estimate, for each point z ∈ Zd,

(7.4.6) var [Uq1
(z, ·)] ≤ Cq1

|z|2d−2ε
.

Let us make a comment about the result: since the size of the random variable
Uq1

(z, ·) is of order |z|1−d (since it behaves like the gradient of a Green’s function), we
would expect its variance to be of order |z|2−2d. The inequality (7.4.6) asserts that it
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is in fact of order |z|2ε−2d which is smaller than the typical size of the random variable
thcalUq1

(z, ·) by an algebraic factor: the random variable Uq1
(z, ·) concentrate around

its expectation.
Once this estimate is established, we can combine it with the estimate (7.4.1)

established in Section 7.4.2 to prove that the map Uq1
is close to the (deterministic)

Green’s function Gq1 in the L2 (AR, µβ)-norm: we obtain the inequality

(7.4.7)
∥∥Uq1 −Gq1

∥∥
L2(AR,µβ)

≤ C

Rd−1+γδ
.

We now prove of the variance estimate (7.4.6). We first apply the Brascamp-Lieb
inequality and write
(7.4.8)

var [Uq1
(z, ·)] ≤ C

∑
y,y1∈Zd

∥∂yUq1
(z, ·)∥L2(µβ)

C

|y − y1|d−2
∥∂y1

Uq1
(z, ·)∥L2(µβ) .

A consequence of the inequality (7.4.8) is that, to estimate the variance of the ran-
dom variable Uq1

(z, ·), it is sufficient to understand the behavior of the mapping
y 7→ ∂yUq1(z, ·). To this end, we appeal to the second-order Helffer-Sjöstrand equation:
following the arguments developed in Section 5.4, the map u : (y, z, ϕ) 7→ ∂yUq1

(z, ϕ)

is solution of the second-order equation

Lsecu(x, y, ϕ) = −
∑
q∈Q

2πz (β, q) cos (2π (ϕ, q)) (Uq1 , q) q(x)⊗ q(y)

+ 2π sin (2π (ϕ, q1)) q1(x)⊗ q1(y) in Zd × Zd × Ω.

The function u can be expressed in terms of the Green’s matrix Gsec, and we write,
for each triplet (x, y, ϕ) ∈ Zd × Zd × Ω,

u(x, y, ϕ) =
∑
q∈Q

2πz (β, q)
∑

x1,y1∈Zd

d∗x1
d∗y1

Gsec,cos(2π(ϕ,q))(Uq1
,q) (x, y, ϕ;x1, y1)nq(x1)⊗ nq(y1)

+
∑

x1,y1∈Zd

2πd∗x1
d∗y1

Gsec,sin(2π(ϕ,q1)) (x, y, ϕ;x1, y1)nq1
(x1)⊗ nq1

(y1).

We use the regularity estimates on the Green’s matrix stated in Proposition 5.4.4 to
obtain, for each pair of points (x, y) ∈ Zd × Zd,

∥u(x, y, ·)∥L∞(µβ) ≤ C
∑
q∈Q

e−c
√

β∥q∥1
∑

x1,y1∈Zd

|nq(x1)| |nq(y1)| ∥(d∗Uq1
, nq)∥L∞(µβ)

|x− x1|2d−ε + |y − y1|2d−ε︸ ︷︷ ︸
(7.4.9)–(i)

(7.4.9)

+
∑

x1,y1∈Zd

|nq1
(x1)| |nq1

(y1)|
|x− x1|2d−ε + |y − y1|2d−ε︸ ︷︷ ︸

(7.4.9)–(ii)

.
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We then estimate the two terms (7.4.9)–(i) and (7.4.9)–(ii) separately. We first focus
on the term (7.4.9)–(i) and prove the inequality

(7.4.10) (7.4.9)–(i) ≤ Cq1

|x− y|d−ε max (|x| , |y|)d−1
.

To prove the estimate (7.4.10), we first decompose the set of charges Q according to
the following procedure. For each z ∈ Zd, we denote by Qz the set of charges q ∈ Q

such that the point z belongs to the support of nq, i.e., Qz := {q ∈ Q : z ∈ suppnq}.
We note that we have the equality Q :=

⋃
z∈Zd Qz but the collection (Qz)z∈Zd is not a

partition of Q. We first prove that, for each point z ∈ Zd,∑
q∈Qz

e−c
√

β∥q∥1
∑

x1,y1∈Zd

|nq(x1)| |nq(y1)| ∥(d∗Uq1 , nq)∥L∞(µβ)

|x− x1|2d−ε + |y − y1|2d−ε
(7.4.11)

≤ Cq1

(|x− z|2d−ε + |y − z|2d−ε)× |z|d−ε
.

To prove the estimate (7.4.11), we first use Proposition 7.4.1 to estimate the
term ∥(d∗Uq1

, nq)∥L∞(µβ). We write, for each charge q ∈ Qz,
(7.4.12)

∥(d∗Uq1
, nq)∥L∞(µβ) ≤ ∥∇Uq1

∥L∞(supp nq,µβ) ∥nq∥L1 ≤ Cq,q1
sup

z1∈supp nq

1

|z1|d−ε
≤ Cq,q1

|z|d−ε
.

Putting the inequality (7.4.12) into the left side of the estimate (7.4.11), we obtain∑
q∈Qz

e−c
√

β∥q∥1
∑

x1,y1∈Zd

|nq(x1)| |nq(y1)| ∥(d∗Uq1 , nq)∥L∞(µβ)

|x− x1|2d−ε + |y − y1|2d−ε
(7.4.13)

≤
∑
q∈Qz

Ce−c
√

β∥q∥1Cq,q1

|z|d−ε

∑
x1,y1∈supp nq

1

|x− x1|2d−ε + |y − y1|2d−ε
.

The term in the right side of (7.4.13) can be explicitly computed by using the expo-
nential decay of the term e−c

√
β∥q∥1 and we obtain∑

q∈Qz

e−c
√

β∥q∥1
∑

x1,y1∈Zd

|nq(x1)| |nq(y1)| ∥(d∗Uq1 , nq)∥L∞(µβ)

|x− x1|2d−ε + |y − y1|2d−ε

≤ Cq1

|z|d−ε × (|x− z|2d−ε + |y − z|2d−ε)
.

Summing over all the points z ∈ Zd, we obtain

(7.4.14) (7.4.9)–(i) ≤
∑
z∈Zd

Cq1

|z|d−ε × (|x− z|2d−ε + |y − z|2d−ε)
.
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The term on the right side can be explicitly estimated. We omit the details and give
the result

(7.4.15) (7.4.9)–(i) ≤ C

|x− y|d max (|x| , |y|)d−2ε
.

Combining the estimates (7.4.14) and (7.4.15) completes the proof of the esti-
mate (7.4.10).

The term (7.4.9)–(ii) can also be estimated by an explicit computation which we
skip here. We obtain

(7.4.16) (7.4.9)–(ii) ≤ Cq1

|x|2d−ε + |y|2d−ε
.

We then combine the estimates (7.4.9), (7.4.10), (7.4.16) to deduce the inequality, for
each pair of points x, y ∈ Zd,

∥u(x, y, ·)∥L∞(µβ) ≤
Cq1

|x− y|d−ε max (|x| , |y|)d−ε
.

We use this inequality to estimate the variance of the random variable Uq1
(x, ·) by

using the Formula (7.4.8). We obtain

var [Uq1
(z, ·)] ≤ C

∑
y,y1∈Zd

Cq1

|z − y|d−ε max (|z| , |y|)d−1
· C

|y − y1|d−2
· Cq1

|z − y1|d−ε max (|z| , |y1|)d−ε
.

We use that the terms max (|z| , |y1|) and max (|z| , |y|) are both larger than the
value |z| to deduce that

var [Uq1(z, ·)] ≤
Cq1

|z|2d−2ε

∑
y,y1∈Zd

1

|z − y|d−ε
· 1

|y − y1|d−2
· 1

|z − y1|d−ε
≤ Cq1

|z|2d−2ε
.

The proof of the estimate (7.4.6) is complete.

7.4.4. Homogenization of the mixed derivative of the Green’s matrix. — The objective
of this section is to complete the proof of Theorem 2. We fix a radius R > 1 and let
m be the smallest integer such that the annulus AR is included in the cube □m. The
proof relies on a two-scale expansion following the outline described in Section 7.2.2.
We define the function Hq1 by the formula

(7.4.17) Hq1 := Gq1 +
∑
i,j

∇iGq1,jχm,ij .

We decompose the argument into three steps.

Step 1. — In this step, we prove that the H−1 (AR, µβ)-norm of the term LHq1 is
small; more specifically, we prove that there exists an exponent γα > 0 such that one
has the estimate

(7.4.18) ∥LHq1∥H−1(AR,µβ) ≤
Cq1

Rd+γα
.
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The proof is essentially identical to the argument presented in Section 7.3.2: we use
the exact formula for the two-scale expansion Hq1

given in (7.4.17) to compute the
value of LHq1

and then use the quantitative properties of the corrector stated in
Proposition 6.4.3 to prove that the H−1 (AR, µβ)-norm of the term LHq1

satisfies the
estimate (7.4.18). Since the proof is rather long due to the technicalities caused by
the specific structure of the operator L (iterations of the Laplacian, sum over all the
charges q ∈ Q), we do not rewrite it but only point out the main differences:

— We work in the annulus AR and not in the ball BR1+δ , this difference makes
the proof simpler since we do not have to take the additional parameter δ into
considerations.

— We can always assume that the diameter of the charge q1 is smaller than R/2,
otherwise the constant Cq1 is larger than Rk for some large number k :=

k(d) (since it is allowed to have an algebraic growth in the parameter ∥q1∥1)
and the estimate (7.4.18) is trivial in this situation. Under the assumption
diam q1 ≤ R/2, we use the identity −∇ · aβ∇Gq1 = 0 in the annulus AR in-
stead of the identity −∇ · aβ∇Gδ = ρδ in the ball BR1+δ .

— We use the regularity estimates on the function Gq1
stated in Proposition 7.4.1

instead of the estimates on the Green’s function G stated in Proposition 7.3.1.
Since the mapGq1 scales like the gradient of the Green’s function (in particular it
decays like |x|1−d), we obtain an additional factor R in the right side of (7.4.18)
compared to (7.3.7), i.e., we obtain

∥LHq1∥H−1(AR,µβ) ≤
Cq1

Rd+γα
instead of ∥LHδ,·k − ρδ,·k∥H−1(AR,µβ) ≤

C
Rd−1+γα

.

Step 2. — In this step, we use the main Result (7.4.18) of Substep 3.1 to prove that
the gradient of the Green’s function ∇Uq1 is close to the gradient of the two-scale
expansion ∇Hq1 in the L2 (AR, µβ)-norm. We prove the estimate

(7.4.19) ∥∇Uq1
−∇Hq1

∥L2(AR,µβ) ≤
Cq1

Rd+γδ
.

To simplify the rest of the argument, we do not prove the estimate (7.4.19) directly.
We slightly reduce the size of the annulus AR and define the set A1

R to be the annulus
A1

R :=
{
x ∈ Zd : 1.1R ≤ |x| ≤ 1.9R

}
. We note that we have the inclusion, for each

radius R ≥ 1, A1
R ⊆ AR. In this substep, we prove the inequality

(7.4.20) ∥∇Uq1 −∇Hq1∥L2(A1
R,µβ) ≤

Cq1

Rd+γδ
.

The inequality (7.4.19) can then be deduced from (7.4.20) by a covering argument.
The argument is similar to the one presented in Section 7.3.3 except that, instead of

making use of the mollifier exponent δ to prove that the H1-norm is of the difference
(∇Hδ −∇Gδ) is small, as it was done in the estimates (7.3.62) and (7.3.63), we use
the main Result (7.4.7) of Section 7.4.3. We first let η be a cutoff function which
satisfies the properties:

(7.4.21) 0 ≤ η ≤ 1, supp η ⊆ AR, η = 1 in A1
R, ∀k ∈ N,

∣∣∇kη
∣∣ ≤ C

Rk .
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We then use the function η (Uq1 −Hq1) as a test function in the definition of the
H−1 (AR, µβ)-norm of the inequality (7.4.18) and use the identity LUq1 = 0 in the
set AR × Ω. We obtain

1

Rd

∑
x∈AR

⟨η (Uq1
−Hq1

)L (Uq1
−Hq1

)⟩µβ

(7.4.22)

≤ ∥L (Uq1 −Hq1)∥H−1(B
R1+δ ,µβ) ∥η (Uq1

−Hq1
)∥H1(AR,µβ)

≤ C

Rd+γα
∥η (Uq1

−Hq1
)∥H1(AR,µβ) .

We then estimate the H1 (AR, µβ)-norm of the function Uq1
−Hq1

with similar argu-
ments as the one presented in the proof of the inequality (7.3.49), the only difference
is that we use the regularity estimates stated in Proposition 7.4.1 instead of the reg-
ularity estimates for the functions Gδ and H . We obtain
(7.4.23)

∥η (Uq1
−Hq1

)∥H1(AR,µβ) ≤ ∥ηUq1
∥H1(AR,µβ) + ∥ηHq1

∥H1(AR,µβ) ≤
Cq1

Rd−1−ε
.

For later use, we also note that the same argument yields to the inequality

(7.4.24) ∥∇Uq1
−∇Hq1

∥L2(AR,µβ) ≤ ∥∇Uq1
∥L2(AR,µβ) + ∥∇Hq1

∥L2(AR,µβ) ≤
Cq1

Rd−ε
.

We then combine the inequalities (7.4.20) and (7.4.22) and use the ordering ε ≪ γα

to deduce that

(7.4.25)
1

Rd

∑
x∈AR

⟨η (Uq1
−Hq1

) L (Uq1
−Hq1

)⟩µβ
≤ Cq1

R2d+γα
.

Thus to prove the inequality (7.4.20), it is sufficient to prove the estimate

∥∇Uq1
−∇Hq1

∥2L2(A1
R,µβ) ≤

1

Rd

∑
x∈AR

⟨η (Uq1
−Hq1

) L (Uq1
−Hq1

)⟩µβ
+

Cq1

R2d+γδ
.

First, by definition of the Helffer-Sjöstrand operator L , we have the identity

∑
x∈Zd

⟨η(Uq1
−Hq1

)L (Uq1
−Hq1

)⟩µβ
=

∑
x,y∈Zd

η(x)
〈
(∂yUq1

(x, ·)− ∂yHq1
(x, ·))2

〉
µβ

(7.4.26)

+
1

2β

∑
x∈Zd

⟨(∇Uq1 −∇Hq1) (x, ·) · ∇ (η (Uq1 −Hq1)) (x, ·)⟩µβ

+
∑
q∈Q

⟨∇q (Uq1 −Hq1) · aq∇q (η (Uq1 −Hq1))⟩µβ

+
1

2β

∑
n≥1

∑
x∈Zd

1

β
n
2

〈
∇n+1 (Uq1

−Hq1
) (x, ·) · ∇n+1 (η (Uq1

−Hq1
)) (x, ·)

〉
µβ
.
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We then estimate the four terms on the right side separately. For the first one, we use
that it is non-negative

(7.4.27)
∑

x,y∈Zd

η(x)2
〈
(∂yUq1(x, ·)− ∂yHq1(x, ·))

2
〉

µβ

≥ 0.

For the second one, we expand the gradient of the product η2 (Uq1
−Hq1

) and use
the properties of the function η stated in (7.4.21) to obtain

R−d
∑
x∈Zd

⟨(∇Uq1(x, ·)−∇Hq1)(x, ·) · ∇ (η (Uq1 −H )) (x, ·)⟩µβ

(7.4.28)

≥ c ∥η (∇Uq1
−∇Hq1

)∥2L2(AR,µβ)

− C

R
∥∇Uq1 −∇Hq1∥L2(AR,µβ) ∥Uq1 −Hq1∥L2(AR,µβ) .

We then use the inequality (7.4.7) and the estimate (7.4.24) and the quantitative
sublinearity of the corrector to deduce that
(7.4.29)
1

R
∥∇Uq1

−∇Hq1
∥L2(AR,µβ) ∥Uq1

−Hq1
∥L2(AR,µβ) ≤

1

R
· C

Rd−ε
· C

Rd−1+γδ
≤ C

R2d+γδ
.

We then combine the inequalities (7.4.28) and (7.4.29) to deduce that

(7.4.30) R−d
∑
x∈Zd

⟨(∇Uq1(x, ·)−∇Hq1) (x, ·) · ∇ (η (Uq1 −Hq1)) (x, ·)⟩µβ
+

Cq1

R2d+γδ

≥ c ∥η (∇Uq1 −∇Hq1)∥
2
L2(AR,µβ) .

The two remaining terms in the right side of the estimate (7.4.26) (involving the
iteration of the Laplacian and the sum over the charges) are estimated following the
ideas developed in Section 7.3.3 (see (7.3.65) and (7.3.66)). We skip the details and
write the result:

(7.4.31) R−d
∑
q∈Q

⟨∇q (Uq1 −Hq1) · aq∇q (η (Uq1 −Hq1))⟩µβ
+

Cq1

R(2d+γδ)

≥ −Ce−c
√

β ∥η (∇Uq1
−∇Hq1

)∥2L2(AR,µβ)

and
(7.4.32)

R−d
∑
n≥1

∑
x∈Zd

1

β
n
2

〈
∇n+1 (Uq1

−Hq1
) (x, ·) · ∇n+1 (η (Uq1

−Hq1
)) (x, ·)

〉
µβ

+
Cq1

R(2d+γδ)
≥ 0.

We then combine the estimates (7.4.27), (7.4.30), (7.4.31) and (7.4.32) with the iden-
tity (7.4.26), choose the inverse temperature β large enough so that the right side
of (7.4.31) can be absorbed by the right side of (7.4.28) and use that the cutoff
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function η is equal to 1 in the annulus A1
R. We obtain

(7.4.33)

∥∇Uq1
−∇Hq1

∥L2(A1
R,µβ) ≤

C

Rd

∑
x∈Zd

⟨η (Uq1
−Hq1

) L (Uq1
−Hq1

)⟩µβ
+

Cq1

Rd+γδ
.

We then combine the inequality (7.4.33) with the estimate (7.4.25) to complete the
proof of (7.4.20). Step 2 is complete.

Step 3. The conclusion. — In this step, we prove the L2-estimate

(7.4.34)

∥∥∥∥∥∥∇Uq1 −
∑
i,j

(eij +∇χij)∇Gq1,j

∥∥∥∥∥∥
L2(AR,µβ)

≤ Cq1

Rd+γδ
.

In view of the estimate (7.4.20) proved in Step 2, it is sufficient to prove the inequality

(7.4.35)

∥∥∥∥∥∥∇Hq1 −
∑
i,j

(eij +∇χij)∇Gq1,j

∥∥∥∥∥∥
L2(AR,µβ)

≤ Cq1

Rd+γδ
.

The proof of (7.4.35) relies on the regularity estimate on the function Gq1 stated
in Proposition 7.4.1, the quantitative sublinearity of the corrector stated in Proposi-
tion 6.4.3, and the quantitative estimate for the difference of the finite and infinite-
volume gradient of the corrector stated in Proposition 6.4.4. The argument is identical
(and even simpler since we do not have to take into account the parameter δ) to the
argument given in Section 7.3.4 so we skip the details. The proof of Step 3, and thus
of Theorem 2, is complete.
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CHAPTER 8

FIRST-ORDER EXPANSION
OF THE TWO-POINT FUNCTION:

TECHNICAL LEMMAS

In this section, we present the proofs of the technical lemmas which are used in
Section 4 to prove Theorem 1. All the tools used in this section have been introduced
in Section 3 except one: The second-order Helffer-Sjöstrand equation introduced in
Section 5.4.

Most of the heuristic of the arguments are presented in Section 4 and we refer to
it for an overview of the results. As it may be useful to the reader, we record below
the tools established in this article which are used in the proofs below:

— In Sections 8.1, 8.2 and 8.3, we study the correlation of random variables; this
is achieved by using the Helffer-Sjöstrand representation formula. We need to
use the properties of the Green’s matrix associated with the Helffer-Sjöstrand
operator stated in Proposition 3.4.11.

— In Section 8.3, we need to study the correlation between a solution of a Helffer-
Sjöstrand equation and the random variables Xx and Y0. To this end, we appeal
Helffer-Sjöstrand representation formula and the second-order Helffer-Sjöstrand
equation as well as to the properties of the Green’s matrix associated with this
operator stated in Proposition 5.4.4.

— Sections 8.4 and 8.5 are devoted to the proofs of some properties of the discrete
Green’s function on the lattice Zd; they can be read independently of the rest
of the article.

8.1. Removing the terms Xsin cos, Xcos cos and Xsin sin

We recall the definitions of the values Zβ(σ) and Zβ(0) introduced in (3.1.12),
the definitions of the random variables Y0, Xx, Xsin cos, Xcos cos, Xsin sin introduced
in (4.1.4) and the identity

(8.1.1)
Zβ(σ)

Zβ(0)
= ⟨Y0XxXsin cosXcos cosXsin sin⟩µβ

.
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Proof of Lemma 4.2.1. — As is explained in Section 4.2, the proof of the lemma is
based on the proof of the following estimates

(8.1.2)



∥Xsin cos − 1∥L∞ ≤ C

|x|d−1
,

∥Xcos cos − 1∥L∞ ≤ C

|x|d−1
,

varµβ
Xsin sin ≤

C

|x|2d−2
,

E [Xsin sin] = 1 +
c

|x|d−2
+O

(
C

|x|d−1

)
.

The fact that (8.1.2) implies (4.2.1) is straightforward, and we refer to the long version
of this article ([36, Chapter 8, Section 1]) for the details. To prove (8.1.2), we first
focus on the first two inequalities involving the random variables Xsin cos and Xcos cos.
They can be obtained thanks to the following ingredients:

— For each point y ∈ Zd and each charge q ∈ Qy, we have the estimate

|(∇G,nq)| ≤ ∥∇G∥L2(supp nq) ∥nq∥2 ≤
Cq

|y|d−1
,

a similar computation shows the estimate (∇Gx, nq) ≤ Cq|y − x|1−d.
— The standard estimates, for each real number a ∈ R, | sin a| ≤ |a|, | cos a− 1| ≤ 1

2 |a|
2

and the estimate, for each charge q ∈ Q, |z (β, q)| ≤ e−c
√

β∥q∥1 .

We obtain the inequality∣∣∣∣∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇Gx, nq)) (cos (2π(∇G,nq))− 1)

∣∣∣∣(8.1.3)

≤ C
∑
y∈Zd

∑
q∈Qy

e−c
√

β∥q∥1Cq

|y − x|d−1

1

|y|2d−2

≤ C
∑
y∈Zd

1

|y − x|d−1

1

|y|2d−2

≤ C

|x|d−1
,

where we used the exponential decay of the term e−c
√

β∥q∥1 to absorb the algebraic
growth of the constant Cq. With a similar strategy, we obtain the two inequalities
(8.1.4) ∣∣∣∣∑

q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇G,nq)) (cos (2π(∇Gx, q))− 1)

∣∣∣∣ ≤ C

|x|d−1
,

∣∣∣∣∑
q∈Q

z(β, q) sin (2π(ϕ, q))
1

2
(cos(2π(∇Gx, q))− 1) (cos(2π(∇G, q))− 1)

∣∣∣∣ ≤ C

|x|d−1
.
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We then combine the estimates (8.1.3) and (8.1.4) and use that the exponential func-
tion is Lipschitz on any bounded intervals of R to obtain, for each realization of the
field ϕ ∈ Ω,

|Xsin cos(ϕ)− 1| ≤ C

|x|d−1
and |Xcos cos(ϕ)− 1| ≤ C

|x|d−1
.

This result implies the L∞ (µβ)-estimates stated in (8.1.2).
There remains to prove the estimates corresponding to the variance and the ex-

pectation of the random variable Xsin sin in (8.1.2). We first note that a computation
similar to the one performed in (8.1.3) gives the following L∞(µβ)-estimate: for each
realization of the field ϕ ∈ Ω,

∣∣∣∣∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

∣∣∣∣ ≤ C
∑
y∈Zd

1

|y − x|d−1

1

|y|d−1

(8.1.5)

≤ C

|x|d−2
.

By the estimate (8.1.5) and the Taylor expansion of the exponential, we obtain the
bound∣∣∣∣Xsin sin − 1−

∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

∣∣∣∣
≤ C

(∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

)2

≤ C

|x|2d−4
.

Since the dimension d is assumed to be larger than 3, we have the inequality
2d− 4 ≥ d− 1. We deduce that to prove the estimates pertaining to the random
variable Xsin sin in (8.1.2), it is sufficient to prove the inequality

(8.1.6) var

∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

 ≤ C

|x|2d−2

and the expansion
(8.1.7)

E

∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

 =
c

|x|d−2
+O

(
C

|x|d−1

)
.

The estimate (8.1.6) involving the variance can be estimated by the Helffer-Sjöstrand
representation formula and the bounds on the Green’s matrix G stated in Proposi-
tion 3.4.11. We first note that, for each point y ∈ Zd,
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(8.1.8) ∂y

∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))


= −

∑
q∈Q

2πz(β, q) sin (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq)) q(y).

From the identity (8.1.8), we deduce that to compute the variance (8.1.6), one needs
to solve the Helffer-Sjöstrand equation

(8.1.9) LW(y, ϕ) = −
∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇G, q)) sin (2π(∇Gx, q)) q(y).

The Equation (8.1.9) can be solved explicitly by using the Green’s matrix associated
with the Helffer-Sjöstrand operator; we obtain the following formula for the codiffer-
ential of W

d∗W(y, ϕ) = −
∑
q∈Q

z(β, q) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

×
∑

z∈supp nq

d∗yd∗zGsin(2π(ϕ,q)) (y, ϕ; z)nq(z).

Using the estimate on the Helffer-Sjöstrand Green’s matrix proved in Proposi-
tion 3.4.11, and the fact that the codifferential d∗ is a linear functional of the
gradient, we deduce the estimate, for each point y ∈ Zd,

∥d∗W(y, ·)∥L∞(µβ) ≤
∑
z∈Zd

∑
q∈Qz

e−c
√

β∥q∥1Cq

|z|d−1|z − x|d−1

1

|y − z|d−ε
(8.1.10)

≤
∑
z∈Zd

C

|z|d−1|z − x|d−1

1

|y − z|d−ε
.

Using the definition of the map W, we apply the Helffer-Sjöstrand representation
formula and deduce that

var

[∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

]

= 4π2
∑
y∈Zd

〈(∑
q∈Q

z(β, q) sin (2π(ϕ, q))

× sin (2π(∇G,nq)) sin (2π(∇Gx, q)nq(y))

)
d∗W(y, ϕ)

〉
µβ

.

Using the estimates (8.1.10) and a computation similar to the one performed in (8.1.3),
we deduce that

var

[∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

]
(8.1.11)
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≤
∑
y∈Zd

∑
q∈Qy

e−c
√

β∥q∥1Cq

|y|d−1|x− y|d−1
∥d∗W(y, ·)∥L∞(µβ)

≤ C
∑

y,z∈Zd

1

|y|d−1|x− y|d−1
× 1

|z|d−1|z − x|d−1
× 1

|y − z|d−ε

≤ C

|x|2d−2
,

where we used the results stated in Appendix C in the last line. There only remains
to prove the identity (8.1.7). To this end, we use the ideas and notation presented in
Section 4.5.2 and decompose the sum∑

q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

=
∑

[q]∈Q/Zd

z(β, q)
∑
y∈Zd

cos (2π(ϕ, q(y + ·)))

× sin (2π(∇G,nq(y + ·))) sin (2π(∇Gx, nq(y + ·))) .
Taking the expectation, using the translation invariance of the measure µβ , we deduce
that

E

∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

(8.1.12)

=
∑

[q]∈Q/Zd

z(β, q)E [cos (2π(ϕ, q))]
∑
y∈Zd

sin (2π(∇G(· − y), nq)) sin (2π(∇Gx(· − y), nq)) .

Fix an equivalence class [q] ∈ Q/Zd. By using a Taylor expansion of the sine and
standard properties of the discrete Green’s function G, we obtain the expansion∑

y∈Zd

sin (2π(∇G(· − y), nq)) sin (2π(∇Gx(· − y), nq))(8.1.13)

= 4π2
∑
y∈Zd

∇G(y) · (nq)×∇Gx(y) · (nq) +O

(
Cq

|x|d−1

)

= 4π2
d∑

i,j=1

(nq)i (nq)j

∑
y∈Zd

∇iG(y)∇jGx(y) +O

(
Cq

|x|d−1

)
.

Putting this estimate back into (8.1.12), we deduce that

E

∑
q∈Q

z(β, q) cos (2π(ϕ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

(8.1.14)

=

d∑
i,j=1

cij
∑
y∈Zd

∇iG(y)∇jGx(y) +O

(
C

|x|d−1

)
,
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where the constants cij are defined by the formulae

cij = 4π2
∑

[q]∈Q/Zd

z(β, q)E [cos (2π(ϕ, q))] (nq)i (nq)j .

The expansion (8.1.14) is not exactly (8.1.7). To complete the argument, we appeal
to the symmetry invariance of the model and claim that it implies the identities
cij = 0 if i ̸= j and cii = cjj for each pair (i, j) ∈ {1, . . . , d}2. The proof follows from
standard symmetry arguments and we omit it here. Once this result is established,
the expansion (8.1.7) is obtained from (8.1.14) thanks to an integration by parts and
the properties of the discrete Green’s function.

8.2. Removing the contributions of the cosines

The goal of this section is to prove Lemma 4.3.1.

Proof of Lemma 4.3.1. — We start from the Helffer-Sjöstrand representation formula
stated in (4.3.3) and recalled below

(8.2.1) cov [Xx, Y0] =
∑
y∈Zd

⟨(∂yXx) Y (y, ·)⟩µβ
,

where Y : Zd × Ω → R(d
2) is the solution of the Helffer-Sjöstrand equation, for each

pair (y, ϕ) ∈ Zd × Ω,

(8.2.2) LY (y, ϕ) = ∂yY0(ϕ).

Using the definition of the random variables Y0 and Xx stated in (4.1.4), we have the
identities, for each y ∈ Zd,
(8.2.3)

∂yY0(ϕ) = −

Q0(y, ϕ) +
1

2
2π
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇G,nq))− 1) q(y)

Y0(ϕ)

and
(8.2.4)

∂yXx(ϕ) = −

Qx(y, ϕ) +
∑
q∈Q

1

2
2πz (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1) q(y)

Xx(ϕ).

The objective of the proof is to remove the terms involving the cosine in the right sides
of the identities (8.2.3) and (8.2.4). The proof requires to use the following estimates
established in (4.3.9) and (4.3.11): for each point y ∈ Zd,

∥nQx
(y, ·)∥L∞(µβ) ≤

C

|y − x|d−1
(8.2.5)
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and ∣∣∣∣∣∣
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1)nq(y)

∣∣∣∣∣∣ ≤ C

|y − x|2d−2
,

as well as the estimates

∥nQ0
(y, ·)∥L∞(µβ) ≤

C

|y|d−1
,(8.2.6)

and ∣∣∣∣∣∣
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇G,nq))− 1)nq(y)

∣∣∣∣∣∣ ≤ C

|y|2d−2
.

We split the argument into three steps:

— In Step 1, we prove that the solution of the Helffer-Sjöstrand equation Y satisfies
the upper bound, for each y ∈ Zd,

(8.2.7) ∥d∗Y (y, ·)∥L2(µβ) ≤
C

|y|d−1−ε
.

— In Step 2, we prove that the covariance between the random variables Xx and
Y0 satisfies the expansion

(8.2.8) cov [Xx, Y0] =
∑
y∈Zd

⟨XxQx(y, ·)Y (y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.

— In Step 3, we use the symmetry of the Helffer-Sjöstrand operator L to complete
the proof of Lemma 4.3.1.

Step 1. — We first express the function Y in terms of the Green function associated
with the Helffer-Sjöstrand operator L . From the Equation (8.2.2), we deduce the
formula for the codifferential of the map Y , for each pair (y, ϕ) ∈ Zd × Ω,

d∗Y (y, ϕ) = 2π
∑

y1∈Zd

∑
q∈Q

z(β, q) sin (2π(∇G,nq)) d∗yd∗y1
Gcos(2π(·,q))Y0

(y, ϕ; y1)nq(y1)

+ 2π
∑

y1∈Zd

∑
q∈Q

1

2
(cos (2π(∇G,nq))− 1) d∗yd∗y1

Gsin(2π(·,q))Y0
(y, ϕ; y1)nq(y1).

Using the estimate on the Helffer-Sjöstrand Green’s matrix proved in Proposi-
tion 3.4.11, that the random variable Y0 belongs to the space L2 (µβ), and the Taylor
expansions of the sine and cosine, we obtain the inequality

∥d∗Y (y, ·)∥L2(µβ) ≤
∑

y1∈Zd

C

|y1|d−1

∥∥d∗yd∗y1
Gcos(2π(·,q))Y0

(y, ϕ; y1)
∥∥

L2(µβ)

+
∑

y1∈Zd

C

|y1|2d−2

∥∥d∗yd∗y1
Gsin 2π(·,q)Y0

(y, ϕ; y1)
∥∥

L2(µβ)
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≤
∑

y1∈Zd

C

|y1|d−1|y − y1|d−ε
+

C

|y1|2d−2|y − y1|d−ε

≤ C

|y|d−1−ε
.

The proof of Step 1 is complete.

Step 2. — By the Helffer-Sjöstrand Formula (8.2.1), we have the identity

cov [Xx, Y0] =
∑
y∈Zd

⟨(∂yXx) Y (y, ·)⟩µβ

(8.2.9)

=
∑
y∈Zd

⟨Qx(y)XxY (y, ·)⟩µβ

− π

〈∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1)nq(y)Xxd∗Y (y, ·)
〉

µβ

.

The objective of this step is to prove that the term involving the cosine in the right
side of (8.2.9) is of lower order; specifically, we prove the estimate (8.2.10) below. The
proof relies on the three following ingredients: the Taylor expansion of the cosine,
the L2 (µβ)-estimate ∥Xx∥L2(µβ) ≤ C, and the estimate (8.2.7) proved in Step 1. We
obtain∣∣∣∣∣∣12
∑
q∈Q

z (β, q) (cos (2π(∇Gx, nq))− 1)nq(y) ⟨sin (2π(ϕ, q))Xxd∗Y (y, ·)⟩µβ

∣∣∣∣∣∣
≤ 1

2

∑
q∈Q

|z (β, q) (cos (2π(∇Gx, nq))− 1)nq(y)| ∥sin (2π(ϕ, q))Xx∥L2(µβ) ∥d
∗Y (y, ·)∥L2(µβ)

≤ C

|y − x|2d−2
· 1

|y|d−1−ε
.

Summing the inequality over all the points y ∈ Zd and using the results of Appendix C
then shows
(8.2.10)∣∣∣∣ ∑

y∈Zd

1

2

〈∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇Gx, nq))− 1)nq(y)Xxd∗Y (y, ·)
〉

µβ

∣∣∣∣ ≤ C

|x|d−1−ε
.

Step 3. The conclusion. — We use the main Result (8.2.8) of Step 2 and the symme-
try of the Helffer-Sjöstrand operator to complete the proof of Lemma 4.3.1. By the
expansion (8.2.8), we see that it is sufficient to prove the estimate

(8.2.11)
∑
y∈Zd

⟨Qx(y, ·)XxV(y, ·)⟩µβ
=
∑
y∈Zd

⟨Qx(y, ·)XxY (y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.
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By the symmetry of the Helffer-Sjöstrand operator, we can write

(8.2.12)
∑
y∈Zd

⟨Qx(y, ·)XxY (y, ·)⟩µβ
=
∑
y∈Zd

⟨Xx (y, ·) ∂yY0⟩µβ
,

where the mapping Xx : Zd × Ω → R(d
2) is the solution of the Helffer-Sjöstrand

equation,

LXx = QxXx in Zd × Ω.(8.2.13)

The objective of this step is thus to prove the following expansion

(8.2.14)
∑
y∈Zd

⟨Xx (y, ·) ∂yY0⟩µβ
=
∑
y∈Zd

⟨Xx (y, ·)Q0(y, ·)Y0⟩µβ
+O

(
C

|x|d−1−ε

)
.

The proof is similar to the one written in Steps 1 and 2. With the same arguments
as the ones developed in Step 1, one obtains the following upper bound for the func-
tion d∗Xx: for each y ∈ Zd,

(8.2.15) ∥d∗Xx(y, ·)∥L2(µβ) ≤
C

|y − x|d−1−ε
.

Using the same arguments as the ones developed in Step 2, we obtain the inequality

∣∣∣∣∣∣
∑
y∈Zd

∑
q∈Q

z (β, q) (cos (2π(∇G,nq))− 1)nq(y, ϕ) ⟨d∗Xx(y, ϕ) sin (2π(ϕ, q))Y0(ϕ)⟩µβ

∣∣∣∣∣∣
(8.2.16)

≤ C

|x|d−1−ε
.

Combining the inequalities (8.2.15) and (8.2.16) with the Formula (8.2.3) implies the
expansion (8.2.14). We then use the symmetry of the Helffer-Sjöstrand operator a
second time to obtain the identity

(8.2.17)
∑
y∈Zd

⟨Xx (y, ·)Q0(y, ·)Y0⟩µβ
=
∑
y∈Zd

⟨Qx(y, ·)XxV (y, ·)⟩µβ
,

where the function V is defined as the solution of the Helffer-Sjöstrand Equa-
tion (4.3.13). Combining the identities (8.2.14), (8.2.12) and (8.2.17), we obtain the
expansion (8.2.11). This completes the proof of Step 3 and of Lemma 4.3.1.

8.3. Decoupling the exponentials

The objective of this section is to remove the exponential terms Xx and Y0 from the
computation. We prove the decorrelation estimate stated in Lemma 4.4.1. The argu-
ment makes use of the bounds on the Green’s matrix G obtained in Proposition 3.4.11
and on the Green’s matrix Gsec,f associated with the second-order Helffer-Sjöstrand
operator proved in Proposition 5.4.4. Before stating the lemma, we record two esti-
mates which are used in its proof:
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— We recall the definition of the random variable Xx : Zd × Ω → R(d
2) defined

in (8.2.13) as the solution of the Helffer-Sjöstrand equation, for each (z, ϕ) ∈ Zd×
Ω, LXx(z, ϕ) = ∂zXx; by the inequality (8.2.15), it satisfies the L2 (µβ)-estimates

(8.3.1) ∥Xx(z, ·)∥L2(µβ) ≤
C

|z − x|d−2−ε
, and ∥d∗Xx(z, ·)∥L2(µβ) ≤

C

|z − x|d−1−ε
.

— The function V defined in the statement of Lemma 4.3.1; by the estimate (4.4.8),
it satisfies the estimate

(8.3.2) ∥d∗V(z, ·)∥L2(µβ) ≤
C

|x|d−1−ε
.

Proof of Lemma 4.4.1. — We recall the notation and results introduced in Re-
marks 4.4.2, 4.4.3 and 4.4.4 which will be used in the proof. We start from the result
of Lemma 4.3.1 which reads

cov [Xx, Y0] =
∑
y∈Zd

⟨XxQx(y, ·)V(y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
,

where V is the solution of the Helffer-Sjöstrand equation, for each (y, ϕ) ∈ Zd × Ω,

(8.3.3) LV(y, ϕ) = Q0(y, ϕ)Y0(ϕ).

We split the argument into two steps:

— In Step 1, we prove the decorrelation estimate
(8.3.4)∑

y∈Zd

⟨XxQx(y, ·)V(y, ·)⟩µβ
= ⟨Xx⟩µβ

∑
y∈Zd

⟨Qx(y, ·)V(y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.

Let us note that since the measure µβ is invariant under translations, the
value ⟨Xx⟩µβ

does not depend on the point x.
— In Step 2, we prove the expansion

(8.3.5)
∑
y∈Zd

⟨Qx(y, ·)V(y, ·)⟩µβ
= ⟨Y0⟩µβ

∑
y∈Zd

⟨Qx(y, ·)U (y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.

Lemma 4.4.1 is a consequence of (8.3.4) and (8.3.5).

Step 1. — The expansion (8.3.4) can be rewritten in terms of the covariance between
the random variables Xx and Qx(y)V(y, ·); it is equivalent to the expansion

(8.3.6)
∑
y∈Zd

cov [Xx, Qx(y, ·)V(y, ·)] = O

(
C

|x|d−1−ε

)
.

To prove the expansion (8.3.6), we apply the Helffer-Sjöstrand representation formula
which reads, for each point y ∈ Zd,

(8.3.7) cov [Xx, Qx(y, ·)V(y, ·)] =
∑
z∈Zd

⟨Xx(z, ·)∂z (Qx(y, ·)V(y, ·))⟩µβ
.
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Summing over the points y ∈ Zd and performing an integration by parts in the
variable y, we deduce that∑

y∈Zd

cov [Xx, Qx(y, ·)V(y, ·)] =
∑

y,z∈Zd

⟨Xx(z, ·)∂z (Qx(y, ·)V(y, ·))⟩µβ

=
∑

y,z∈Zd

⟨Xx(z, ·)∂z (nQx
(y, ·)d∗V(y, ·))⟩µβ

.

We split the proof into two substeps:

— In Substep 1.1, we compute the value of ∂z (nQx
(y, ·)d∗V(y, ·)). We prove the

identity (8.3.20) and the inequalities (8.3.21).
— In Substep 1.2, we deduce the expansion (8.3.4) from Substep 1.1.

Substep 1.1. — We first expand the derivative

(8.3.8) ∂z (nQx
(y, ·)d∗V(y, ·)) = (∂znQx

(y, ·)) d∗V(y, ·)︸ ︷︷ ︸
(8.3.8)–(i)

+nQx
(y, ·)∂zd

∗V(y, ·)︸ ︷︷ ︸
(8.3.8)–(ii)

.

The term (8.3.8)–(i) can be computed explicitly from the definition of the charge nQx

and the identity q = dnq. We obtain

(
∂znQx

(y, ϕ)d∗V(y, ϕ)

(8.3.9)

=

(∑
q∈Q

4π2z(β, q) (sin (2π(ϕ, q)) sin (2π(∇Gx, nq)))nq(y)⊗ q(z)

)
d∗V(y, ϕ)

= dz

((∑
q∈Q

4π2z(β, q) (sin (2π(ϕ, q)) sin (2π(∇Gx, nq)))nq(y)⊗ nq(z)

)
d∗V(y, ϕ)

)
.

We then estimate the term in the right side of (8.3.9). To this end, we note that the
sum over the charges q ∈ Q can be restricted to the set of charges Qy,z and use the
two inequalities: first,

∑
q∈Qy,z

e−c
√

β∥q∥1 ≤ e−c
√

β|y−z| established in (A.2.9) and, for

each charge q ∈ Qy, |sin (2π(∇Gx, nq))| ≤ Cq

|x−y|d−1 . We deduce that

∣∣∣∣∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇Gx, nq))nq(y)⊗ nq(z)

∣∣∣∣ ≤ ∑
q∈Qx,y

e−c
√

β∥q∥1
Cq

|y − x|d−1

(8.3.10)

≤ Ce−c
√

β|y−z|

|y − x|d−1
.

Combining the estimate (8.3.10) with the inequality (8.3.2) on the codifferential of
the function V, we obtain, for each pair of points z, y ∈ Zd,∥∥∥∥(∑

q∈Q

z(β, q) (sin (2π(·, q)) sin (2π(∇Gx, nq)))nq(y)⊗ nq(z)

)
d∗V(y, ·)

∥∥∥∥
L2(µβ)
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≤ Ce−c
√

β|y−z|

|y − x|d−1 × |y|d−1−ε
.

We now treat the term (8.3.8)–(ii). To estimate the L2 (µβ)-norm of the map ∂zd
∗V(y, ϕ),

we start from the definition of the map V as the solution of the Helffer-Sjöstrand
Equation (8.3.3) and apply the derivative ∂z to both sides of the identity (8.3.3).
Following the arguments developed at the beginning of Section 5.4, we obtain that the
map Vsec : (y, z, ϕ) → ∂zV(y, ϕ) is the solution of the second-order Helffer-Sjöstrand
equation

LsecVsec(y, z, ϕ)

(8.3.11)

=

(∑
q∈Q

4π2z(β, q) (sin (2π(ϕ, q)) sin (2π(∇G,nq))) q(y)⊗ q(z)

)
Y0

+
∑
q∈Q

2πz (β, q) sin (2π (ϕ, q)) (d∗V, nq) q(y)⊗ q(z)

−Q0(y, ϕ)⊗
(
Q0(z, ϕ) +

1

2
2π
∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇G,nq))− 1) q(z)

)
Y0.

We decompose the function Vsec into three functions, Vsec,1, Vsec,2 and Vsec,3 accord-
ing to the three terms in the right side of (8.3.11), i.e.,
(8.3.12)

LsecVsec,1(y, z, ϕ) =

(∑
q∈Q

z(β, q) sin (2π(ϕ, q)) sin (2π(∇G,nq)) q(y)⊗ q(z)

)
Y0,

LsecVsec,2(y, z, ϕ) =
∑
q∈Q

z (β, q) sin (2π (ϕ, q)) (d∗V, nq) q(y)⊗ q(z),

LsecVsec,3(y, z, ϕ) = −Q0(y, ϕ)⊗
(
Q0(z, ϕ)

+
1

2

∑
q∈Q

z (β, q) sin (2π(ϕ, q)) (cos (2π(∇G,nq))− 1) q(z)

)
Y0.

We then estimate the three terms Vsec,1, Vsec,2 and Vsec,3 separately. The first two
terms can be estimated by using a strategy similar to the one used in Step 1 of the
proof of Lemma 4.3.1: we use the Equations (8.3.12) to obtain explicit formulae in
terms of the Green’s matrix Gsec associated with the second-order Helffer-Sjöstrand
equation, and use Proposition 5.4.4 to estimate them. We omit the technical details
which can be found in the long version of this article ([36, Chapter 8, Lemma 3.1]).
The results are collected in (8.3.21) below.

The estimate for the term Vsec,3 is more involved. Using a similar strategy with ad-
ditional technical details: we prove that there exists a map Wsec,3 : Zd × Zd × Ω → Rd×(d

2)
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which satisfies the identity, for each (y, z, ϕ) ∈ Zd × Zd × Ω,

(8.3.13) Vsec,3(y, z, ϕ) = dzWsec,3(y, z, ϕ),

as well as the upper bounds

∥Wsec,3(y, z, ·)∥L2(µβ) ≤
C

|y|d− 3
2−ε × |z|d− 3

2−ε
(8.3.14)

and ∥∥d∗yWsec,3(y, z, ·)
∥∥

L2(µβ)
≤ C

|y|d−1−ε × |z|d−1−ε
.(8.3.15)

The strategy to prove the identity (8.3.13) and the estimate (8.3.14) is the following.
We use the dynamic formulation to solve the Helffer-Sjöstrand Equation (8.3.12), and
obtain the identity

Vder,3(y, z, ϕ) =
∑

y1,z1∈Zd

∫ ∞

0

Eϕ

[
−Y0(ϕt)P

ϕ·
der(t, y1, z1; y, z)Q0(y1, ϕt)⊗Q0(z1, ϕt)

](8.3.16)

− π
∑

y1,z1∈Zd

∑
q∈Q

z (β, q) (cos (2π(∇G,nq))− 1)

×
∫ ∞

0

Eϕ

[
sin (2π(ϕt, q))Y0(ϕt)P

ϕ·
der(t, y1, z1; y, z)Q0(y1, ϕt)⊗ q(z1)

]
,

where, given a trajectory (ϕt)t≥0 of the Langevin dynamics, the map Pϕ·
der(·, ·, · ; y, z) :

(0,∞)× Zd × Zd → R(d
2)

4

denotes the solution of the parabolic system of equations,∂tP
ϕ·
der (·, ·, · ; y, z) +

(
Lϕt

spat,x + Lϕt

spat,y

)
Pϕ·

der (·, ·, · ; y, z) = 0 in (0,∞)× Zd × Zd,

Pϕ·
der (0, ·, · ; y, z) = δ(y,z) in Zd × Zd.

Let us observe that, thanks to the specific structures of the second-order Helffer-
Sjöstrand equation (see (5.4.8)) and of the right-hand side of (8.3.16), one can factorize
this term and obtain

Vder,3(y, z, ϕ) = −
∑

q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1)) sin (2π(∇G,nq2))

(8.3.17)

×
∫ ∞

0

Eϕ

[
cos (2π(ϕt, q1)) cos (2π(ϕt, q2))Y0(ϕt)(q1, P

ϕ·(t, ·; y))⊗ (q2, P
ϕ·(t, ·; z))

]
dt

+ π
∑

q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1
)) (cos (2π(∇G,nq2

))− 1)

×
∫ ∞

0

Eϕ

[
cos (2π(ϕt, q1)) cos (2π(ϕt, q2))Y0(ϕt)(q1, P

ϕ·(t, ·; y))⊗ (q2, P
ϕ·(t, ·; z))

]
dt.

The strategy is then to use the symmetry of the spatial operator Lϕt

spat, to observe

that, for any charge q ∈ Q and any time T > 0, if we let RT,q : (0, T )×Zd → R(d
2) be
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the solution of the parabolic system of equations (note that we reverse the time in
the dynamic ϕt and replaced it by ϕT−t){

∂tRT,q − L
ϕT−t

spat RT,q = 0 in (0, T )× Zd,

RT,q (0, ·) = q in Zd,

then we have RT,q(T, y) = (q, Pϕ·(T, ·; y)). We may then consider the solution
ST,q : (0, T )× Zd → Rd of the parabolic system of equations
∂tST,q −

(
1

2β
∆− 1

2β

∑
n≥1

1

β
n
2

(−∆)n+1

)
ST,q = −

∑
q∈Q

z (β, q) cos (2π (ϕT−·, q)) (∇qRT,q)nq

in (0,∞)× Zd,

Sϕ·
T,q (0, ·) = nq in Zd,

and define Qϕ·
q (T, y) := ST,q(T, y). Using the estimate on the heat-kernel in dynamic

environment stated in Proposition 3.4.4 and the Duhamel principle, one can prove
the following results, for each point y ∈ Zd, and each time t ≥ 1,

(8.3.18) Pϕ·
q (t, y) = dQϕ·

q (t, y) and
∣∣Qϕ·

q (t, y)
∣∣ ≤ Cqt

εΦC (t, y − y1) ,

where y1 is a point which lies in the support of the charge nq. We then define Wder,3

by the formula

Wder,3(y, z, ϕ)

(8.3.19)

= −
∑

q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1
)) sin (2π(∇G,nq2

))

×
∫ ∞

0

Eϕ

[
cos (2π(ϕt, q1)) cos (2π(ϕt, q2))Y0(ϕt)(q1, P

ϕ·(t, y))⊗Qϕ·
q2

(t, z)
]
dt

+
1

2
2π

∑
q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1
)) (cos (2π(∇G,nq2

))− 1)

×
∫ ∞

0

Eϕ

[
cos (2π(ϕt, q1)) cos (2π(ϕt, q2))Y0(ϕt)(q1, P

ϕ·(t, y))⊗Qϕ·
q2

(t, z)
]
dt.

We can verify the equality (8.3.13) by an explicit (and straightforward) computa-
tion making use of the identities (8.3.17) and (8.3.18). The bounds (8.3.14) can be
verified by using the explicit Formula (8.3.19), the bound on the heat kernel in the
dynamic environment (Proposition 3.4.4), and the bounds on the function Qq stated
in (8.3.18). We omit the details which can be found in the long version of this article
([36, Chapter 8, Lemma 3.1]).

Conclusion of Substep 1.1. — We have the identity, for each pair of points (y, z) ∈ Zd,

∂z (nQx
(y, ·)d∗V(y, ·)) = (∂znQx

(y, ·)) d∗V(y, ·) + nQx
(y, ·)∂zd

∗V(y, ·)
(8.3.20)

= (∂znQx
(y, ·)) d∗V(y, ·) + nQx

(y, ·)d∗yVsec,1(y, z, ·)
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+ nQx(y, ·)d∗yVsec,2(y, z, ·) + dz

(
nQx(y, ·)d∗yWsec,3(y, z, ·)

)
,

with the estimates
(8.3.21)

∥(∂znQx(y, ·)) d∗V(y, ·)∥L2(µβ) ≤
Ce−c

√
β|y−z|

|y − x|d−1 × |y|d−1−ε
,∥∥nQx

(y, ·)d∗yVsec,1(y, z, ·)
∥∥

L2(µβ)
≤ C

|x− y|d−1−ε × |z − y|d+1−ε ×max (|y| , |z|)d−1−ε
,

∥∥nQx
(y, ·)d∗yVsec,2(y, z, ·)

∥∥
L2(µβ)

≤ C

|x− y|d−1−ε × |z − y|d+1−ε ×max (|y| , |z|)d−1−ε
,

∥∥nQx
(y, ·)d∗yWsec,3(y, z, ·)

∥∥
L2(µβ)

≤ C

|y − x|d−1|y|d−1−ε|z|d−1−ε
.

Substep 1.2. — We prove the covariance estimate (8.3.6). By the Helffer-Sjöstrand
representation formula we have, for each point y ∈ Zd,

(8.3.22) cov [Xx, Qx(y, ·)V(y, ·)] =
∑
z∈Zd

⟨Xx(z, ·)∂z (Qx(y, ·)V(y, ·))⟩µβ
.

Using the Formula (8.3.22), we write∑
y∈Zd

cov [Xx, Qx(y, ·)V(y, ·)] =
∑

y,z∈Zd

⟨Xx(z, ·)∂z (Qx(y, ·)V(y, ·))⟩µβ
(8.3.23)

=
∑

y,z∈Zd

⟨Xx(z, ·)∂z (nQx
(y, ·)d∗V(y, ·))⟩µβ

.

We combine the identities (8.3.20) and (8.3.23), and obtain∑
y∈Zd

cov [Xx, Qx(y, ·)V(y, ·)]

=
∑

y,z∈Zd

⟨Xx(z, ·) (∂znQx(y)) d∗V(y, ·)⟩µβ
+
∑

y,z∈Zd

〈
Xx(z, ·)nQx(y)d∗yVsec,1(y, z, ·)

〉
µβ

+
∑

y,z∈Zd

〈
Xx(z, ·)nQx

(y)d∗yVsec,2(y, z, ·)
〉

µβ
+
∑

y,z∈Zd

〈
d∗Xx(z, ·)

(
nQx

(y)d∗yWsec,3(y, z, ·)
)〉

µβ
.

We use the estimates (8.3.1) on the function Xx and the estimates (8.3.21). We obtain∣∣∣∣∣∣
∑
y∈Zd

cov [Xx, Qx(y, ·)V(y, ·)]

∣∣∣∣∣∣ ≤
∑

y,z∈Zd

C

|z − x|d−2−ε

e−c
√

β|y−z|

|y − x|d−1 × |y|d−1−ε
(8.3.24)

+
∑

y,z∈Zd

C

|z − x|d−2−ε

1

|x− y|d−1−ε × |z − y|d+1−ε ×max (|y| , |z|)d−1−ε

+
∑

y,z∈Zd

C

|z − x|d−1−ε

1

|y − x|d−1|y|d−1−ε|z|d−1−ε
.
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The term in the right side can be estimated by an explicit computation. We skip the
details here and obtain the expansion (8.3.6). Step 1 is complete.

Step 2. — To complete the proof of Lemma 4.4.1, there remains to prove the expan-
sion (8.3.5). The strategy of the proof relies on the symmetry of the Helffer-Sjöstrand
operator L ; if we let Ux the solution of the equation LUx = Qx in Zd × Ω, then we
have the identities∑

y∈Zd

⟨Qx(y, ·)V(y, ·)⟩µβ
=
∑
y∈Zd

⟨Ux (y, ·)Q0(y, ·)Y0⟩µβ

and ∑
y∈Zd

⟨Qx(y, ·)U (y, ·)⟩µβ
=
∑
y∈Zd

⟨Ux(y, ·)Q0(y, ·)⟩µβ
.

Using these identities, we see that the expansion (8.3.5) is equivalent to∑
y∈Zd

⟨Ux (y, ·)Q0(y, ·)Y0⟩µβ
= ⟨Y0⟩µβ

∑
y∈Zd

⟨Ux (y, ·)Q0(y, ·)⟩µβ
+O

(
C

|x|d−1−ε

)
.

The proof of this result is similar to the proof written in Step 1, and is in fact simpler
since we do not have to treat the term Vsec,3 in (8.3.12); we omit the details.

8.4. Using the symmetry and rotation invariance of the dual Villain model

This section is devoted to the proof of some properties of the discrete convolution
of the discrete Green’s function on the lattice Zd. We recall the definition of the group
H of the lattice-preserving maps introduced in Section 2.1.

Lemma 8.4.1. — Fix four integers j, j1, k, k1 ∈ {1, . . . , d} and let F : Zd → R be the
function

Fj,k,j1,k1
(x) :=

∑
y,κ∈Zd

∇jG(y)∇kG(x− y − κ)∇j1∇k1
G(κ).

Then, if we let Jj,k,j1,k1
: Rd\{0} → R be the (2−d)-homogeneous map whose Fourier

transform is given by the formula Ĵi,j,k,l(ξ) = ξiξjξkξl |ξ|−6
. Then for any ε > 0, one

has the identity

Fj,k,j1,k1
(x) = Jj,k,j1,k1

(x) +O

(
1

|x|d−1−ε

)
.

A direct consequence of the previous lemma is the corollary stated below.

Corollary 8.4.2. — Fix two integers j, j1 ∈ {1, . . . , d} and let Fj,j1 : Zd → R be the
map

Fj,j1(x) =
∑
y∈Zd

∇jG(y)∇j1G(x− y),
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then, for any ε > 0, one has the identity

Fj,j1(x) = Jj,j1(x) +O

(
1

|x|d−1−ε

)
,

where the map Jj,j1 is (2− d)-homogeneous and its Fourier transform is given by the
formula Ĵi,j(ξ) = ξiξj |ξ|−4

.

The proofs of this lemma and this corollary follow standard arguments; we refer to
the long version of this article ([36, Chapter 8, Section 4]) for the details.

The following proposition is used in the proof of Theorem 1. It asserts that if a
linear combination of the maps Fi,j,k,l and Fi,j , with a specific structure given by the
problem considered in this article, is invariant under the group H lattice preserving
maps, then it must satisfy the expansion given by (8.4.2).

Proposition 8.4.3. — Assume that there exist coefficients (cij)1≤i,j≤d and (Kij)1≤i,j≤d,
an exponent α > 0 and a map U which is invariant under the group H of the lattice-
preserving maps such that

U(x) =

d∑
i,j,k,l=1

cijcklFi,j,k,l(x) +

d∑
i,j=1

KijFi,j(x) +O

(
C

|x|d−2+α

)
,(8.4.1)

then there exists a constant c ∈ R such that

U(x) =
c

|x|d−2
+O

(
C

|x|d−2+α

)
.(8.4.2)

Proof. — Applying Lemma 8.4.1 and Corollary 8.4.2, the expansion (8.4.1) can be
rewritten

U(x) =

d∑
i,j,k,l=1

cijcklJi,j,k,l(x) +

d∑
i,j=1

KijJi,j(x) +O

(
C

|x|d−2+α

)
.

Using that the maps Ji,j,k,l and Ji,j are (2 − d)-homogeneous, we see that the as-
sumption that U is invariant under the lattice-preserving maps implies that the same
property holds for the function

∑d
i,j,k,l=1 cijcklJi,j,k,l +

∑d
i,j=1KijJi,j : for each h ∈ H

and each x ∈ Zd \ {0}, one has
(8.4.3)

d∑
i,j,k,l=1

cijcklJi,j,k,l(h(x)) +

d∑
i,j=1

KijJi,j(h(x)) =

d∑
i,j,k,l=1

cijcklJi,j,k,l(x) +

d∑
i,j=1

KijJi,j(x).

Using the homogeneity of the maps Ji,j,k,l and Ji,j , the result can be extended to
each point of Rd \ {0}. Let us denote by P the homogeneous polynomial of degree 4

(8.4.4) P (ξ) =

 d∑
i,j=1

cijξiξj

2

+ |ξ|2
d∑

i,j=1

Kijξiξj ,
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so that the Fourier transform of the map
∑d

i,j,k,l=1 cijcklJi,j,k,l +
∑d

i,j=1KijJi,j is
equal to the function ξ 7→ P (ξ) |ξ|−6.

Taking the Fourier transform on both sides of the identity (8.4.3), we obtain the
identity, for any ξ ∈ Rd, and any h ∈ H,

(8.4.5) P (h (ξ)) = P (ξ) .

Using the Definition (8.4.4), the property (8.4.5) and an explicit computation which
we omit here, we prove that there exists a coefficient a ∈ R such that

(8.4.6) P (ξ) = a

(
d∑

i=1

ξ2i

)2

= a |ξ|4 .

The equality (8.4.6) implies that the Fourier transform of the map
d∑

i,j,k,l=1

cijcklJi,j,k,l +

d∑
i,j=1

KijJi,j

is equal to a|ξ|−2, which implies, by taking the inverse Fourier transform, that there
exists a constant c such that, for any x ∈ Rd \ {0},

(8.4.7)
d∑

i,j,k,l=1

cijcklJi,j,k,l(x) +

d∑
i,j=1

KijJi,j(x) =
c

|x|d−2
.

Combining the identity (8.4.7) with the expansion (8.4.1), we have obtained

U(x) =
c

|x|d−2
+O

(
C

|x|d−2+α

)
.

The proof of Proposition 8.4.3 is complete.

8.5. Treating the error term Eq1,q2

This section is devoted to the treatment the error term Eq1,q2
used in the proof of

Theorem 1.

Proposition 8.5.1. — Fix two exponents γ, ε ∈ (0, 1] such that ε ≤ γ
4(d−2) , and two

charges q1, q2 ∈ Q. Let Eq1,q2
: Zd → R be a function which satisfies the pointwise and

L1-estimates, for each point κ ∈ Zd and each radius R ≥ 1,

(8.5.1) |Eq1,q2
(κ)| ≤ C

|κ|d−ε
and

∑
κ∈B2R\BR

|Eq1,q2
(κ)| ≤ CR−γ .

Then, the constant Kq1,q2
:= 4π2

∑
κ∈Zd Eq1,q2

(κ) is well-defined in the sense that the
sum converges absolutely, and one has the expansion

(8.5.2) 4π2
∑

z2,κ∈Zd

∇G(z2) · (nq2
)∇Gx(z2 + κ) · (nq1

)Eq1,q2
(κ)
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= Kq1,q2

∑
z2∈Zd

∇G(z2) · (nq2
)∇G(z2 − x) · (nq1

) +O

(
Cq1,q2

|x|d−2+ γ
4(d−2)

)
.

Proof. — The proof of this lemma relies on (elementary) considerations about the
discrete Green’s function, we refer to the long version of this article ([36, Chapter 8,
Section 5]) for the details.
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APPENDIX A

LIST OF NOTATION AND PRELIMINARY RESULTS

A.1. Notation and assumptions

A.1.1. General notation and assumptions. — We work on the Euclidean lattice Zd in
dimension d ≥ 3. We denote by |·| the standard Euclidean norm on the lattice Zd. We
say that two points x, y ∈ Zd are neighbors, and denote it by x ∼ y, if |x − y| = 1.
We denote by e1, . . . , ek the canonical basis of Rd.

Given a subset U ⊆ Zd, we define its interior U◦ and its boundary ∂U by the
formulae

U◦ := {x ∈ U : x ∼ y =⇒ y ∈ U} and ∂U := U \ U◦.
If the subset U ⊆ Zd is finite, we denote by |U | its cardinality and refer to this
quantity as the volume of U . We denote by diamU the diameter of U defined by the
formula diamU := supx,y∈U |x − y|. Given a point x ∈ Zd and a radius r > 0, we
denote by B(x, r) the discrete euclidean ball of center x and radius r. We frequently
use the notation Br to mean B(0, r). We also define the annulus AR := B2R \BR.

A discrete cube □ of Zd is a subset of the form

(A.1.1) □ := x+ [−N,N ]
d ∩ Zd with x ∈ Zd and N ∈ N.

We refer to the point x as the center of the cube □, and to the integer 2N + 1 as
its length. We denote by □L := [−N,N ]

d ∩ Zd. Given a parameter r > 0, we use the
nonstandard convention of denoting by r□ the cube

r□ := x+ [−rN, rN ]
d ∩ Zd.

If □ is the cube given by (A.1.1), then we define the trimmed cube □− by the formula

(A.1.2) □− := x+

(
−N

2
+

√
N

10
,
N

2
−
√
N

10

)d

∩ Zd.

Given three real numbers X,Y ∈ R and κ ∈ [0,∞), we write

X = Y +O(κ) if and only if |X − Y | ≤ κ.
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For each integer i ∈ {1, . . . , d}, we denote by hi the reflection of the lattice Zd with
respect to the hyperplane

{
z ∈ Zd : zi = 0

}
, i.e.,

hi :=

{
Zd → Zd

(z1, . . . , zd) 7→ (z1, . . . ,−zi, . . . , zd).

For each pair of integers i, j ∈ {1, . . . , d} with i < j, we denote by hij the map

hij :=

{
Zd → Zd

(z1, . . . , zd) 7→ (z1, . . . , zj , . . . , zi, . . . , zd).

We define H the group of lattice preserving transformation to be the group of linear
maps generated by the collections of functions (hi)1≤i≤d and (hij)1≤i<j≤d with respect
to the composition law.

We frequently consider functions defined from Zd and valued in R of the form
x→ |x|−k. We implicitly extend these functions at the point x = 0 by the value 1 so
that they are defined on the entire lattice Zd.

A.1.2. Notation for vector-valued functions. — For each integer k ∈ N, we let
F
(
Zd,Rk

)
be the set of functions defined on Zd and taking values in Rk. Given a

function g ∈ F
(
Zd,Rk

)
, we denote by g1, . . . , gk its components on the canonical

basis of Rk and write g = (g1, . . . , gk). We define the support of the function g to be
the set

supp g :=
{
x ∈ Zd : g(x) ̸= 0

}
.

For each integer i ∈ {1, . . . , d}, we define its discrete i-th derivative ∇ig : Zd → Rk

by the formula, for each x ∈ Zd,

∇ig(x) := g(x+ ei)− g(x),

and its gradient ∇g : Zd → Rd×k by the formula

∇g(x) = (∇ig(x))1≤i≤d = (∇igj(x))1≤i≤d,1≤j≤k .

We denote by∇∗i the adjoint gradient defined by the formula∇∗i g(x) = g(x−ei)−g(x)
and the adjoint gradient

∇∗g(x) = (∇∗i g(x))1≤i≤d = (∇∗i gj(x))1≤i≤d,1≤j≤k .

We define similarly the divergence, for any function g : Zd → Rd,

∇ · g(x) = −
d∑

i=1

∇∗i g(x).

We extend this definition to a more general class of vector-valued functions as follows:
For an integer k ∈ N, and a function g = (gij)1≤i≤d,1≤j≤k : Zd → Rd×k, we define
∇ · g : Zd → Rk by the identity

∇ · g(x) =

(
d∑

i=1

gi,1(x)− gi,1(x− ei), . . . ,

d∑
i=1

gi,k(x)− gi,k(x− ei)

)
.
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The Laplacian is then defined by the identity ∆ = ∇ ·∇ and is equivalently given by
the explicit formula: for any g : Zd → Rk,

(A.1.3) ∆g(x) =
∑
y∼x

(g(y)− g(x)) .

We will consider higher order derivatives as follows: For each integer n ∈ N, we denote
by ∇ng : Zd → Rnd×k as follows

∇ng(x) := (∇i1 · · · ∇ing(x))1≤i1,...,in≤d .

We will also denote by ∆n = ∆ ◦ . . . ◦ ∆ the Laplacian operator iterated n-times.
We note that these discrete operators have range n and 2n respectively, i.e., given a
point x ∈ Zd and a function u : Zd → Rk one can compute the value of ∇nu(x) (resp.
∆nu(x)) by knowing only the values of u inside the ball B(x, n) (resp. B(x, 2n)).

For each function g : Zd × Zd → Rk, we denote by ∇x the discrete gradient with
respect to the first variable and by and ∇y the discrete gradient with respect to the
second variable. Formally, for each point (x, y) ∈ Zd × Zd, we write

∇xg(x, y) = (gj(x+ ei, y)− gj(x, y))1≤i≤d,1≤j≤k

and

∇yg(x, y) = (gj(x, y + ei)− gj(x, y))1≤i≤d,1≤j≤k .

We similarly define the i-th derivatives ∇i,x and ∇i,y and the Laplacians ∆x and ∆y,
and the higher-order derivatives ∇n

i,x and ∇n
i,y with respect to the first and second

variables.
Given a vector p ∈ Rd×k, we write p = (p1, . . . , pk) where the components p1, . . . , pk

belong to the space Rd. We denote by lp the affine function defined by the formula

(A.1.4) lp :=

{
Zd → Rk,

x 7→ (p1 · x, . . . , pk · x) .

This notation will be frequently used in the case k =
(
d
2

)
.

For i, j ∈ {1, . . . , d}×{1, . . . ,
(
d
2

)
}, we will use the notation lij for the affine functions

lij :=

{
Rd → R(d

2),

x 7→ (0, . . . , 0, x · ei, 0, . . . , 0) ,

where the term x · ei appears in the j-th position.

A.1.3. Notation for matrix-valued functions. — A tool frequently used in this article
is the notion of fundamental solution for system of elliptic equations (and in particular
for the Helffer-Sjöstrand equation), which requires to introduce matrix-valued func-
tion. Given an pair of integers k, l ∈ N, we may identify the vector space Rk×l with
the space of (k× l)-matrices with real coefficients. Given a map F : Zd ×Zd → Rk×l,
we denote its components by (Fij)1≤i≤k,1≤j≤l. For each integer i ∈ {1, . . . , k}, we
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denote by Fi· the map

Fi· :

{
Zd × Zd → Rl,

(x, y) 7→ (Fij(x, y))1≤j≤l .

We similarly define the map F·j : Zd × Zd → Rk for each integer j ∈ {1, . . . , l}.
As in Section A.1.2, we define the gradients ∇xF : Zd × Zd → R(d×k)×l and
∇yF : Zd × Zd → Rk×(d×l) with respect to the first and second variables.

A.1.4. Scalar and matrix product. — We present in this section an index of the in-
trinsic scalar products used in the article.

Given two functions f, g : Zd → Rk and a point x ∈ Zd, we will use the notation

f(x)g(x) =

k∑
i=1

fi(x)gi(x)

∇f(x)∇g(x) =

d∑
i=1

k∑
j=1

∇ifj(x)∇igj(x)

∇f(x)g(x) =

 k∑
j=1

∇ifj(x)gj(x)


1≤i≤d

.

Given a matrix-valued function F : Zd → Rk×l, two functions f : Zd → Rk and
g : Zd → Rl, and x, y ∈ Zd, we denote by

F (x, y)f(x) =

(
k∑

i=1

Fij(x, y)fi(x)

)
1≤j≤l

F (x, y)g(y) =

 l∑
j=1

Fij(x, y)gj(y)


1≤i≤k

f(x)F (x, y)g(y) =

k∑
i=1

l∑
j=1

Fij(x, y)fi(x)gj(y).

Similarly, for f : Zd → Rd×k and g : Zd → Rd×l, we write

∇xF (x, y)f(x) =

(
d∑

i1=1

k∑
i=1

∇x,i1Fij(x, y)fi1i(x)

)
1≤j≤l

∇yF (x, y)g(y) =

 d∑
j1=1

l∑
j=1

∇y,j1Fij(x, y)gj1j(y)


1≤i≤k

f(x)∇x∇yF (x, y)g(y) =

d∑
i1=1

d∑
j1=1

k∑
i=1

l∑
j=1

∇x,i1∇y,j1Fij(x, y)fi1i(x)gj1j(y).
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As it will be useful when dealing with the second-order Helffer-Sjöstrand equation,
we extend these definitions to functions defined on Z2d and Z2d × Z2d (see also Sec-
tion A.2.2).

Given f : Zd → Rk and h : Zd → Rl, we denote by f ⊗ g : Zd × Zd → Rk×l the
tensor product between the two functions f and g; it is defined by the formula, for
each x ∈ Zd,

(A.1.5) f ⊗ g(x) := (fi(x)gj(x))1≤i≤k,1≤j≤l .

This notation allows to expand gradients of products of functions: for each function u :

Zd → R, one has

(A.1.6) ∇(ug)(x) = ∇u⊗ g(x) + u(x)∇g(x).
For x, y ∈ Zd, we will also use the notation

f(x)⊗ g(y) := (fi(x)gj(y))1≤i≤k,1≤j≤l .

A.1.5. Norms and functional spaces. — We define the L2-scalar product (·, ·) accord-
ing to the formula

(A.1.7) (f, g) =
∑
x∈Zd

f(x)g(x),

We restrict this scalar product to a set U ⊆ Zd and define, for any pair of func-
tions f, g : U → Rk,

(A.1.8) (f, g)U :=
∑
x∈U

f(x)g(x).

Given a bounded subset U ⊆ Zd, we define the average of g over the set U by the
formula

(g)U :=
1

|U |
∑
x∈U

g(x) ∈ Rk.

For each subset U ⊆ Zd, we define the L∞ (U)-norm

∥g∥L∞(U) := sup
x∈U

|g(x)| .

where the notation |·| denotes the Euclidean norm on Rk. Given a bounded subset U ⊆
Zd, we denote by Lp(U) the normalized norms

∥g∥Lp(U) :=

(
1

|U |
∑
x∈Zd

|g(x)|p
) 1

p

.

We introduce the normalized Sobolev norms H1(U) and H−1(U) by the formulae

∥g∥H1(U) :=
1

(diamU)
∥g∥L2(U) + ∥∇g∥L2(U)

and

∥g∥H−1(U) :=
{

(f, g)U : f : U → Rk, ∥f∥H1(U) ≤ 1
}
.
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We denote byH1
0 (U) the set of functions from U to Rk which are equal to 0 outside the

set U (by analogy to the Sobolev space). We implicitly extend the functions of H1
0 (U)

by the value 0 to the entire lattice Zd.

A.1.6. Notation for the parabolic problem. — In Section 5, we study the solutions of
parabolic equations. We introduce in this section a few definitions and notation per-
taining to this setting. For s > 0 and t ∈ R, we define the time intervals Is := (−s, 0]

and Is(t) := (−s+ t, t]. Given a point x ∈ Zd and a radius r > 0, we denote the
parabolic cylinder by Qr(t, x) := Ir2(t)×B(x, r) (where B(x, r) is the discrete ball).
To simplify the notation, we write Qr to mean Qr(0, 0).

A.1.7. Notation for Gibbs measures. — We let Ω be the set of vector-valued func-
tions ϕ : Zd → R(d

2). Given a cube □ ⊆ Zd, we let Ω0(□) be the set of vector-valued
functions ϕ : □ → R(d

2) such that ϕ = 0 on ∂□. Given z ∈ Zd, we define τz : Ω → Ω

to be the translation: τzϕ(·) = ϕ(z + ·).

Given an inverse temperature β > 0, a probability measure µβ on Ω and measurable
function X : Ω → R which is either nonnegative or integrable with respect to the
measure µβ , we denote its expectation and variance by ⟨X⟩µβ

and varµβ
[X]. We

define the L2 (µβ)-norm of the random variable X according to the formula

∥X∥L2(µβ) :=

(∫
Ω

|X(ϕ)|2 µβ(dϕ)

) 1
2

.

For each point x ∈ Zd and each integer i ∈
{

1, . . . ,
(
d
2

)}
, we let ωx,i be the function

ωx,i(y) :=

{
ei if x = y

0 if x ̸= y,

where
(
e1, . . . , e(d

2)

)
is the canonical basis of R(d

2). We define the differential opera-
tors ∂x,i and ∂x by the formulae

∂x,iu(ϕ) := lim
h→0

u(ϕ+ hωx,i)− u(ϕ)

h
and ∂xu(ϕ) =

(
∂x,1u, . . . , ∂x,(d

2)
u
)
.

We let C∞loc(Ω) be the set of smooth, local and compactly supported functions of the
set Ω. We define the space H1 (µβ) to be the closure of the space C∞loc(Ω) with respect
to the norm (rescaled with respect to the inverse temperature β)

∥u∥H1(µβ) := ∥u∥L2(µβ) +

β ∑
x∈Zd

∥∂xu∥2L2(µβ)

 1
2

.
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For any subset U ⊆ Zd, we let L2 (U, µβ) to be the set of measurable functions
u : Zd × Ω → Rk which satisfy

∥u∥L2(U,µβ) :=

(∑
x∈U

∥u(x, ·)∥2L2(µβ)

) 1
2

<∞.

When the set U is finite, we define the normalized L2 (U, µβ) semi-norm by the formula

(A.1.9) ∥u∥L2(U,µβ) :=

(
1

|U |
∑
x∈U

∥u(x, ·)∥2L2(µβ)

) 1
2

,

as well as the space and space-field averages for: u : Zd × Ω → R(d
2) and ϕ ∈ Ω,

(u)U (ϕ) =
1

|U |
∑
x∈U

u(x, ϕ) and (u)U,µβ
=

1

|U |
∑
x∈U

⟨u(x, ·)⟩µβ
.

We define the norm H1(U, µβ) by the formula

∥u∥H1(U,µβ) :=

(∑
x∈U

∥u(x, ·)∥2H1(µβ) + ∥∇u∥2L2(U,µβ)

) 1
2

,

as well as the normalized H1(U, µβ)-norm

∥u∥2H1(U,µβ) :=
1

(diamU)
2 |U |

∑
x∈U

∥u(x, ·)∥2L2(µβ)

+
β

|U |
∑
y∈Zd

∑
x∈U

∥∂yu(x, ·)∥2L2(µβ) +
1

|U |
∥∇u∥2L2(U,µβ) .

We define the subset H1
0 (U, µβ) to be the subset of functions of H1 (U, µβ) which

are equal to 0 on the boundary ∂U × Ω. We implicitly extend these functions by the
value 0 to the space Zd. In particular, we always think of elements of H1

0 (U, µβ) as
functions defined on the entire space. We introduce the seminorm

[[u]]
2
H1(U,µβ) :=

β

|U |
∑

x∈U,y∈Zd

∥∂yu(x, ·)∥2L2(µβ) +
1

|U |
∥∇u∥2L2(U,µβ) .

We define the H−1(U, µ)-norm by the formula

∥u∥H−1(U,µβ) := sup

{
1

|U |
∑
x∈U

⟨u(x, ·)v(x, ·)⟩µβ
: v ∈ H1

0 (U, µβ) , ∥v∥H1(U,µβ) ≤ 1

}
.

We next state a Poincaré inequality for H1(U, µβ). We give two statements, one
for functions which vanish on the boundary of U and another for zero-mean functions
in the case U is a cube.

Lemma A.1.1 (Poincaré inequality forH1(U, µβ)). — Let □L be a cube of size L. There
exists C(d, β) <∞ such that:
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(i) For every subset U ⊆ □L and w ∈ H1
0 (U, µβ),

(A.1.10) ∥w∥L2(U,µβ) ≤ CL [[w]]H1(U,µβ) .

(ii) For every cube □′ ⊆ □L and w ∈ H1(□′, µβ),

(A.1.11) ∥w − (w)□′∥L2(□′,µβ)
≤ CL [[w]]H1(□′,µβ) .

Proof. — The results are obtained by applying the standard Poincaré’s inequalities
for each realization of the field ϕ ∈ Ω, and then integrating over the fields.

A.2. Discrete differential forms

For each integer k ∈ {1, . . . , d}, a k-cell of the lattice Zd is a set of the form, for a
subset {i1, . . . , ik} ⊆ {1, . . . , d}, and a point x ∈ Zd,{

x+

k∑
l=1

λleil
∈ Rd : 0 ≤ λ1, . . . , λk ≤ 1

}
.

We equip the set of k-cells with an orientation induced by the canonical orientation
of the lattice Zd and denote by Λk(Zd) the set of oriented k-cells of the lattice Zd.
Given a k-cell ck, we denote by ∂ck the boundary of the cell; it can be decomposed
into a disjoint union of (k − 1)-cells. The values k = 0, 1, 2 are of specific interest to
us; they correspond to the set of vertices, edges and faces of the lattice Zd. We will
denote these spaces by V (Zd), E(Zd) and F (Zd) respectively.

A.2.1. Definitions and basic properties. — Given an integer k ∈ {0, . . . , d}, we denote
by Λk(Zd) the set of oriented k-cells of the hypercubic lattice Zd.

For each k-cell ck, we denote by c−1
k the same k-cell as ck with reverse orientation

and by ∂ck the boundary this cell. A k-form u is a mapping from Λk(□) to R such
that u

(
c−1
k

)
= −u (ck) .

Given a k-form u, we define its exterior derivative du according to the formula, for
each oriented (k + 1)-cell ck+1,

(A.2.1) du (ck+1) =
∑

ck⊆∂ck+1

u(ck),

where the orientation of the face ck is given by the orientation of the (k+1)-cell ck+1;
we set the convention du = 0 for any d-form u. We define the codifferential d∗ ac-
cording to the formula, for each (k − 1)-cell ck−1 and each k-form u : Λk (□) → R,

(A.2.2) d∗u (ck−1) :=
∑

∂ck∋ck−1

u(ck).

Clearly, du is a (k+1)-form and d∗u is a (k−1)-form; we set d∗u = 0 for any 0-form u.
One also verifies the properties, for each k-form u : Λk(□) → R, ddu = 0 and
d∗d∗u = 0. For arbitrary k-forms u, v : Λk(Zd) → R with finite support, we define the
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scalar product (·, ·) by the formula

(A.2.3) (u, v) =
∑

ck∈Λk(Zd)

u(ck)v(ck).

We may restrict the scalar product (·, ·) to forms which are only defined in a cube □;
we denote the corresponding scalar product by (·, ·)□. It is defined by the formula,
for each pair of k-forms u, v : Λk(□) → R,

(u, v) =
∑

ck∈Λk(□)

u(ck)v(ck).

The codifferential d∗ is the formal adjoint of the exterior derivative d with re-
spect to this scalar product: Given a k-form u : Λk(Zd) → R and a (k + 1)-form
v : Λk+1(Zd) → R with finite supports, one has the identity

(A.2.4) (du, v) = (u,d∗v) .

For an integer k ∈ {0, . . . , d − 1} and a cube □ ⊆ Zd, we define the tangential
boundary of the cube ∂k,t□ to be the set of all the k-cells which are included in the
boundary of the cube □. Given a k-form u : Λk(□) → R, we define its tangential
trace tu to be the restriction of the form u to the set ∂k,t□. One has the formula, for
each k-form u : Λk(□) → R such that tu = 0 and each (k + 1)-form v : Λk(□) → R,

(du, v)□ = (u,d∗v)□ .

We will need the classical Poincaré lemma in the discrete setting. In the continuous
setting, a proof of this result can be found in [80], in the discrete setting in [27,
Lemma 2.2].

Lemma A.2.1 (Poincaré). — Let □ ⊆ Zd be a cube of the lattice Zd of sidelength R

and k be an integer in the set {1, . . . , d − 1}. For each k-form f : Λk(□) → R such
that df = 0 and tf = 0 on the tangential boundary ∂k,t□, there exists a (k− 1)-form
u : Λk−1(□) → R such that tu = 0 on the tangential boundary ∂k,t□ and du = f in
the cube □. Additionally, one can choose the form u such that

∥u∥L2(□) ≤ CR ∥f∥L2(□) .

An important role is played by the set of integer-valued, compactly supported
forms q which satisfy dq = 0 and have connected support. We denote by Q the set of
these forms, i.e.,

(A.2.5) Q :=
{
q : Zd → Z : |supp q| <∞, supp q is connected and dq = 0

}
.

We may restrict our considerations to the charges of Q whose support is included in
a cube □ ⊆ Zd; to this end, we introduce the notation

Q□ :=
{
q : Zd → Z : supp q ⊆ □, supp q is connected and dq = 0

}
.

We will need to use the following version of Lemma A.2.1 for the forms of the set Q,
for which we refer to [27, Lemma 2.2].
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Lemma A.2.2 (Poincaré for integer-valued forms). — Let k be an integer of the
set {1, . . . , d − 1} and q be a k-form with values in Z such that dq = 0, then there
exists a (k − 1)-form nq with values in Z such that q = dnq. Moreover, nq can
be chosen such that suppnq is contained in the smallest hypercube containing the
support of q and such that

∥nq∥L∞ ≤ C ∥q∥1 .

As it is useful in the article, we record a series of inequalities satisfied by the charges
q ∈ Q,

(A.2.6)



∥q∥L∞ ≤ ∥q∥1 ,
diam q ≤ |supp q| ≤ ∥q∥1 ,

diamnq ≤ C ∥q∥1 ,

|suppnq| ≤ C ∥q∥d
1 ,

∥nq∥L1 ≤ |suppnq| ∥nq∥L∞ ≤ C ∥q∥d+1
1 ,

∥nq∥L2 ≤ ∥nq∥
1
2

L1 ∥nq∥
1
2

L∞ ≤ C ∥q∥
d
2 +1
1 .

The proofs of the first two inequalities is a consequence of

∥q∥L∞ = sup
x∈Zd

|q(x)| ≤
∑
x∈Zd

|q(x)| = ∥q∥1

and, using that the charge q is integer-valued,

diam q ≤ |supp q| =
∑
x∈Zd

1{q(x)̸=0} ≤
∑
x∈Zd

|q(x)| ≤ ∥q∥1

For the third inequality, we note that the sidelength of the smallest integer con-
taining the support of q is smaller than (C diam q) (for some constant C depending
only on the dimension). Since the form nq is supported in this hypercube, we have
diamnq ≤ C diam q ≤ C ∥q∥1. Similarly the cardinality of the support of nq is smaller
than the cardinality of the hypercube, and thus diamnq ≤ (C diam q)d ≤ C ∥q∥d

1. The
last two inequalities are obtained by combining the previous results with interpolation
arguments.

Given x, y ∈ Zd ×Zd, we denote by Qx and Qx,y the set of charges q ∈ Q such that
the point x and the points x, y belong to the support of nq respectively, i.e.,
(A.2.7)
Qx := {q ∈ Q : x ∈ suppnq} and Qx,y := {q ∈ Q : x ∈ suppnq and y ∈ suppnq} .
We also define, for any □ ⊆ Zd,

Q□,x := {q ∈ Q□ : x ∈ suppnq}(A.2.8)

and

Q□,x,y := {q ∈ Q□ : x ∈ suppnq and y ∈ suppnq} .
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We also record two inequalities involving the sum of charges: for each pair of
points (x, y) ∈ Zd, each integer k ∈ N, and each constant c > 0, there exists β0 > 0

such that for any β ≥ β0,

(A.2.9)


∑
q∈Qx

∥q∥k
1 e
−c
√

β∥q∥1 ≤ Ce−c0

√
β ,

∑
q∈Qx,y

∥q∥k
1 e
−c
√

β∥q∥1 ≤ Ce−c0

√
β|x−y|,

where the constants C, c0 depend on k, c and the dimension d. To prove the first
inequality, we first absorb the polynomial factor by writing

∥q∥k
1 e
−c
√

β∥q∥1 ≤ Ce−c′
√

β∥q∥1

for some constant c′ ∈ (0, c). We then decompose over the supports of the charges. To
this end, let us denote by Ax the set of the finite connected subsets of Zd containing
the vertex x. We then write∑

q∈Qx

e−c
√

β∥q∥1 =
∑

X∈Ax

∑
q∈Q□

supp q=X

e−c′
√

β∥q∥1 =
∑

X∈Ax

∑
q∈Q□

supp q=X

(∏
x∈X

e−c′
√

β|q(x)|

)
.

Exchanging the sum and the product, we see that∑
q∈Q□

supp q=X

(∏
x∈X

e−c′
√

β|q(x)|

)
≤
∏
x∈X

 ∞∑
q(x)=1

e−c′
√

β|q(x)|

 =

(
e−c

√
β

1− e−c
√

β

)|X|
.

We thus obtain∑
q∈Qx

e−c
√

β∥q∥1 ≤
∑

X∈Ax

e−c
√

β|X| =

∞∑
n=1

|{X ∈ Ax : |X| = n}| e−c
√

βn.

We next note that the number of connected components of the lattice containing a
vertex x ∈ Zd and of size n ∈ N grows exponentially fast in n, i.e.,

|{X ∈ Ax : |X| = n}| ≤ eCn.

Choosing the inverse temperature β large enough (i.e., such that c
√
β ≥ C), we deduce

that ∑
q∈Qx

e−c
√

β∥q∥1 ≤ e−c0

√
β .

The proof of the second estimate of (A.2.9) can be deduced from the first one by noting
that, any charge q ∈ Qx,y has a diameter larger than |x− y| (and thus ∥q∥1 ≥ |x− y|
since the charge q is assumed to have connected support) and that Qx,y ⊆ Qx. We
thus write (increasing the value of β if necessary)∑

q∈Qx,y

∥q∥k
1 e
−c
√

β∥q∥1 = e−
c
2

√
β|x−y|

∑
q∈Qx,y

∥q∥k
1 e
− c

2

√
β∥q∥1
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≤ e−
c
2

√
β|x−y|

∑
q∈Qx

∥q∥k
1 e
− c

2

√
β∥q∥1

≤ e−
c
2

√
β|x−y|e−c0

√
β

≤ Ce−c0

√
β|x−y|.

A.2.2. Differential forms as vector-valued functions. — Given a subset

I = (i1, . . . , ik) ⊆ {1, . . . , d}
of cardinality k, we denote by Λk

I (Zd) the set of oriented k-cells of the hypercubic
lattice Zd which are parallel to the vectors (ei1 , . . . , eik

). This set can be characterized
as follows: if we let cI be the k-cell defined by the formula

cI :=

{
k∑

l=1

λleil
∈ Rd : 0 ≤ λ1, . . . , λk ≤ 1

}
,

then we have

(A.2.10) Λk
I (Zd) =

{
x+ cI : x ∈ Zd

}
.

The identity (A.2.10) allows to identify the vector space of k-forms to the vector
space of functions defined on Zd and valued in R(d

k) according the procedure described
below. Note that there are

(
d
k

)
subsets of {1, . . . , d} of cardinality k and consider an

arbitrary enumeration I1, . . . , I(d
k)

of these sets. To each k-form û : Λk(Zd) → R, we

can associate a vector-valued function u : Zd → R(d
k) defined by the formula, for each

point x ∈ Zd,

(A.2.11) u(x) =

(
û (x+ cI1

) , . . . , û

(
x+ cI

(d
k)

))
.

This identification is enforced in most of the article; in fact, except in Section 3.1,
we always work with vector-valued functions instead of differential forms. We use the
identification (A.2.11) to extend the formalism described in Section A.1 to differential
forms; we may for instance refer to the gradient of a form, or the Laplacian of a form
etc. Reciprocally, we extend the formalism described in Section A.2.1 to vector-valued
functions; given a function u : Zd → R(d

k), we may refer to the exterior derivative, the
codifferential and the tangential trace of the function u, which we still denote by du,
d∗u and tu respectively. We note that the two definitions of the scalar products (A.1.7)
for vector valued functions and (A.2.3) for differential forms coincide through the
identification (A.2.11).

From the definition of the exterior derivative d and the codifferential d∗ given
in (A.2.1) and (A.2.2) and the identification (A.2.11), one sees that the dif-
ferential operators d and d∗ are linear functionals of the gradient ∇: for each
integer k ∈ {1, . . . , d}, there exist linear maps Lk,d : Rd×(d

k) → R( d
k+1) and

Lk,d∗ : Rd×(d
k) → R( d

k−1) such that, for each function u : Zd → R(d
k), and each
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point x ∈ Zd,

(A.2.12) du(x) = Lk,d (∇u(x)) and d∗u(x) = Lk,d∗ (∇∗u(x)) .
Using that linear maps on finite dimensional vector spaces are continuous, we obtain
the estimates, for each point x ∈ Zd,

|du(x)| ≤ C |∇u(x)| and |d∗u(x)| ≤ C |∇∗u(x)| ,
for some constant C depending only on the dimension d.

This article frequently deals with functions defined on the space Zd×Ω×Zd (resp.
Z2d×Ω×Z2d) and valued in R(d

2)×(d
2) (resp. R(d

2)
2×(d

2)
2

) since these maps correspond
to the fundamental solutions of the Helffer-Sjöstrand operator (resp. second-order
Helffer-Sjöstrand operator) associated with the dual Villain model.

Given a map F : Zd × Ω× Zd → R(d
2)×(d

2), we denote by

dxF : Zd × Ω× Zd → R(d
2)×(d

3), dyF : Zd × Ω× Zd → R(d
3)×(d

2),

the exterior derivative with respect to the first and second variable, and by

d∗xF : Zd × Ω× Zd → Rd×(d
2) d∗yF : Zd × Ω× Zd → R(d

2)×d,

the codifferential with respect to the first and second variable respectively. They are
defined by the formulae, for each triplet (x, y, ϕ) ∈ Zd × Zd × Ω, and each integer
k ∈

{
1, . . . ,

(
d
2

)}
,

(dxF (x, ϕ, y))·k = L2,d (∇xF·k(x, ϕ, y)) , (dyF (x, ϕ, y))k· = L2,d (∇yFk·(x, ϕ, y))

and

(d∗xF (x, y, ϕ))·k = L2,d∗ (∇∗xF·k(x, y, ϕ)) ,
(
d∗yF (x, y, ϕ)

)
k· = L2,d∗

(
∇∗yFk·(x, y, ϕ)

)
.

Similarly, given a function F : Z2d × Ω × Z2d → R(d
2)

2×(d
2)

2

, we define, for
each (x, y, ϕ, x1, y1) ∈ Zd × Zd × Ω × Zd × Zd, each field ϕ ∈ Ω and each triplet of
integers i, j, k ∈

{
1, . . . ,

(
d
2

)}


(dxF (x, x1, ϕ, y, y1))·ijk = L2,d (∇xF·ijk(x, x1, ϕ, y, y1)) ,

(dx1
F (x, x1, ϕ, y, y1))i·jk = L2,d (∇x1

Fi·jk(x, x1, ϕ, y, y1)) ,

(dyF (x, x1, ϕ, y, y1))ij·k = L2,d (∇yFij·k(x, x1, ϕ, y, y1)) ,

(dy1
F (x, x1, ϕ, y, y1))ijk· = L2,d (∇y1

Fijk·(x, x1, ϕ, y, y1)) ,

and similarly

(d∗xF (x, x1, ϕ, y, y1))·ijk = L2,d∗ (∇∗xF·ijk(x, x1, ϕ, y, y1)) ,(
d∗x1

F (x, x1, ϕ, y, y1)
)
i·jk

= L2,d∗
(
∇∗x1

Fi·jk(x, x1, ϕ, y, y1)
)
,(

d∗yF (x, x1, ϕ, y, y1)
)
ij·k = L2,d∗

(
∇∗yFij·k(x, x1, ϕ, y, y1)

)
,(

d∗y1
F (x, x1, ϕ, y, y1)

)
ijk· = L2,d∗

(
∇∗y1

Fijk·(x, x1, ϕ, y, y1)
)
.
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We extend these definitions so that we can consider mixed derivatives; for instance,
we may use the notation d∗yd∗xF (or any other combination of exterior derivatives and
codifferentials). It is clear that as long as the derivatives involve different variables,
they commute: we have for instance d∗yd∗xF = d∗xd∗yF .

We complete this section by recording the Gaffney-Friedrichs inequality which pro-
vides an upper bound on the L2-norm of the gradient of a form in terms of the L2-norm
of its exterior derivative and the codifferential assuming that the tangential trace of
the form vanishes.

Proposition A.2.3 (Gaffney-Friedrichs inequality for cubes). — Let □ be a cube of Zd.
Then there exists a constant C := C(d) <∞ such that for each k-form u : Λk(□) → R
with vanishing tangential trace, we have

∥∇u∥L2(□) ≤ C
(
∥du∥L2(□) + ∥d∗u∥L2(□)

)
.

The proof of the continuous version of this inequality can be found in [54, 47] or
in the monograph [87, Proposition 2.2.3]. We complete this section by proving the
solvability of a boundary value problem involving discrete differential forms used in
Section 3.1.

Proposition A.2.4. — For any integer k ∈ {1, . . . , d − 1}, any cube □ ∈ Zd, and
any k-form q := (q1, . . . , q(d

k)
) : □→ R(d

k) such that dq = 0 in the cube □ and tq = 0

on the boundary ∂□, there exists a unique solution to the boundary value problem

(A.2.13)


dd∗w = q in □,

dw = 0 in □,

tw = 0 on ∂□,

td∗w = 0 on ∂□.

If we denote by w1, . . . , w(d
k)

the coordinates of the map w, then they solve the following

boundary value problem: for each i ∈ {1, . . . ,
(

d
k

)
}, if we denote by ∂Ii□ the subset of

faces of the boundary ∂□ which are parallel to the cell cIi
, then we have

(A.2.14)


−∆wi = qi in □,

wi = 0 in ∂Ii
□,

∇wi · n = 0 on ∂□ \ ∂Ii□.

Remark A.2.5. — The boundary condition (A.2.14) is a combination of the Dirich-
let and Neumann boundary conditions: given an integer i ∈ {1, . . . ,

(
d
k

)
}, we assign

Dirichlet boundary condition to the faces which are parallel to the cell cIi
, and Neu-

mann boundary condition to the faces which are orthogonal to the cell cIi .

Proof. — The boundary value problem (A.2.13) admits a variational formulation
which can be used to prove existence and uniqueness of the solutions. We first define
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the set of k-forms

Ck
0 (□) :=

{
u : □→ R(d

k) : du = 0 in□ and tu = 0 on ∂□
}
.

We then define the energy functional Jq : Ck
0 (□) → R according to the formula

Jq(u) :=
1

2
∥d∗u∥L2(□) − (q, u)□ .

To prove the solvability of the problem (A.2.13), we prove that there exists unique
minimizer to the variational problem

inf
u∈Ck

0 (□)
J(u).

We first use that, by Lemma A.2.1, there exists a (k − 1)-form nq : □→ R( d
k−1) such

that tnq = 0 on ∂□ and dnq = q in the cube □. We then perform an integration by
parts to write

Jq(u) =
1

2
∥d∗u∥L2(□) − (nq,d

∗u)□ .

The technique then follows the standard strategy of the calculus of variations.
The energy functional Jq is bounded from below and we consider a minimizing
sequence (wn)n∈N. It is clear that the norms ∥d∗wn∥L2(□) are uniformly bounded
in n ∈ N. Using that dwn = 0 and the Gaffney-Friedrich inequality stated in Propo-
sition A.2.3, we obtain that the norms ∥∇wn∥L2(□) and ∥wn∥L2(□) are uniformly
bounded in n. We can thus extract a subsequence which converges in the discrete
space L2 (□) and verify that the limit is solution to the problem (A.2.13). The
uniqueness is a consequence of the uniform convexity of the functional Jq.

To prove (A.2.14), note that the condition dw = 0 and the identity dδ + δd = −∆

imply that −∆w = q in the cube □. Using the definition of the Laplacian for vector-
valued function (stated in (A.1.3)), we have that for each integer i ∈ {1, . . . ,

(
d
k

)
},

−∆wi = qi in the cube □. The boundary condition tw = 0 implies that wi is equal
to 0 on each face which is parallel to the cell cIi

; the condition td∗w = 0 implies
that the function wi satisfies a Neumann boundary condition on the faces of the
boundary ∂□ which are orthogonal to the cell cIi

.
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APPENDIX B

MULTISCALE POINCARÉ INEQUALITY

Proposition B.0.1 (Multiscale Poincaré inequality). — There exists a constant
C := C(d) such that for each cube integer n ∈ N, the following statements hold:

1. For each function f ∈ L2 (□n, µβ),∥∥f − (f)□n

∥∥2

H−1(□n,µβ)
≤ C ∥f∥2L2(□n,µβ)

+ C3n
n∑

m=0

3m

|Zm,n|
∑

z∈Zm,n

〈(
1

|z + □m|
∑

x∈z+□m

f(x, ·)
)2〉

µβ

.

2. For any function f ∈ L2 (□n, µβ), one has the estimate

∥f − (f)□∥
2
L2(□n,µβ)

≤ C ∥∇f∥2L2(□n,µβ)

+ C3n
n∑

m=0

3m

|Zm,n|
∑

z∈Zm,n

〈(
1

|z + □m|
∑

x∈z+□m

∇f(x, ·)
)2〉

µβ

.

3. for each function f ∈ L2 (□n, µβ) such that f = 0 on the boundary of the cube
□n

∥f∥2L2(□n,µβ) ≤ C ∥∇f∥2L2(□n,µβ)

+ C3n
n∑

m=0

3m

|Zm,n|
∑

z∈Zm,n

〈(
1

|z + □m|
∑

x∈z+□m

∇f(x, ·)
)2〉

µβ

.

Proof. — The proof is an almost immediate application of the multiscale Poincaré
inequality proved in [7, Proposition 1.7 and Lemma 1.8]. We only treat the inequality
(1); the other two estimates are similar. We consider a field ϕ ∈ Ω and apply [7, Propo-
sition 1.7 and Lemma 1.8] and a Cauchy-Schwarz inequality to the map x→ f(x, ϕ)

(with a fixed field ϕ). We obtain∥∥f(·, ϕ)− (f(·, ϕ))□n

∥∥2

H−1(□n)
≤ C ∥f(·, ϕ)∥2L2(□n)

+ C3n
n∑

m=0

3m

|Zm,n|
∑

z∈Zm,n

(
1

|z + □m|
∑

x∈z+□m

f(x, ϕ)

)2

.
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Taking the expectation with respect to the field ϕ gives〈∥∥f − (f)□n

∥∥2

H−1(□n)

〉
µβ

≤ C ∥f∥2L2(□n)

+ C3n
n∑

m=0

3m

|Zm,n|
∑

z∈Zm,n

〈(
1

|z + □m|
∑

x∈z+□m

f(x, ·)
)2〉

µβ

.

We complete the proof by using the estimate∥∥f − (f)□n

∥∥2

H−1(□n,µβ)
≤
〈∥∥f − (f)□n

∥∥2

H−1(□n)

〉
µβ

,

which is a direct consequence of the definitions of the H−1(□) and H−1(□, µβ)-norms
stated in Appendix A.
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APPENDIX C

BASIC ESTIMATES ON DISCRETE CONVOLUTIONS

The objective of this appendix is to collect estimates on some discrete convolutions
of functions decaying algebraically fast at infinity. These estimates are used in various
places in the article and are elementary; their proof can be found in the long version
of this article [36, Appendix C].

Proposition C.0.1. — Given a pair of exponents α, β > 0 such that α+β > d, a small
exponent ε > 0, and a point x ∈ Zd, then:

(i) If α ∈ (0, d) and β ∈ (0, d),∑
y∈Zd

1

|y|α
1

|x− y|β
≤ C

|x|α+β−d
.

(ii) If α = d and β ∈ (0, d],∑
y∈Zd

1

|y|α
1

|x− y|β
≤ C ln |x|

|x|β
.

(iii) If α > d and β ∈ (0,∞),∑
y∈Zd

1

|y|α
1

|x− y|β
≤ C

|x|min(α,β)
.

(iv) One has the estimate∑
z1,z2∈Zd

1

|x− z1|d
1

|z1 − z2|d−ε

1

|z2|d−1
≤ C ln |x|
|x|d−1−ε

.

(v) One has the estimate∑
z1,z2∈Zd

1

|x− z1|d−1

1

|z1 − z2|d−ε

1

|z2|d
≤ C ln |x|
|x|d−1−ε

.

and equivalently∑
y,z∈Zd

1

|y|d−1|x− y|d−1

1

|z|d−1|z − x|d−1

1

|y − z|d−ε
≤ C

|x|2d−2
.
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(vi) For each exponent α > d,∑
y∈Zd

1

|y|α + |y − x|α
≤ C

|x|α−d
,

where the constant C depends on the parameters α and d. A variation of the
proof gives the following generalization of (C.0.1): for every cube □ ⊆ Zd of
center 0 and sidelength R ≥ 1, and every point y ∈ Zd,∑

y0∈Zd\□

1

|y0|α + |y0 − y|α
≤ C

max (R, |y|)α−d
.
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A major open question in statistical mechanics, known as the
Gaussian spin wave conjecture, predicts that the low temperature
phase of the Abelian spin systems with continuous symmetry behave
like Gaussian free fields. In this paper we consider the classical Vil-
lain rotator model in Zd, d ≥ 3 at sufficiently low temperature, and
prove that the truncated two-point function decays asymptotically
as |x|2−d, with an algebraic rate of convergence. We also obtain the
same asymptotic decay separately for the transversal two-point func-
tions. This quantifies the spontaneous magnetization result for the
Villain model at low temperatures and constitutes a first step toward
a more precise understanding of the spin-wave conjecture. We believe
that our method extends to finite range interactions, and to other
Abelian spin systems and Abelian gauge theory in d ≥ 3. We also
develop a quantitative perspective on homogenization of uniformly
convex gradient Gibbs measures.

Une question ouverte majeure en mécanique statistique, connue
sous le nom de conjecture des vagues de spins, prédit que les systèmes
de spins équipés d’une symétrie abélienne continue se comportent
comme des champs libres gaussiens à basse température. Dans cet arti-
cle, nous considérons le modèle de Villain en dimension supérieure ou
égale à 3 à une température suffisamment basse, et nous démontrons
que la fonction de deux points décroît asymptotiquement comme celle
d’un champ libre gaussien. Afin d’obtenir ce résultat, nous dévelop-
pons une approche quantitative pour l’homogénéisation des mesures
de Gibbs sur les champs de gradients avec un potentiel uniformément
convexe.
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